diff --git "a/6182/metadata.json" "b/6182/metadata.json" new file mode 100644--- /dev/null +++ "b/6182/metadata.json" @@ -0,0 +1,37302 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "6182", + "quality_score": 0.8468, + "per_segment_quality_scores": [ + { + "start": 117.76, + "end": 118.96, + "probability": 0.7084 + }, + { + "start": 124.78, + "end": 127.3, + "probability": 0.8795 + }, + { + "start": 128.32, + "end": 128.6, + "probability": 0.9021 + }, + { + "start": 129.68, + "end": 130.72, + "probability": 0.8511 + }, + { + "start": 136.18, + "end": 136.6, + "probability": 0.049 + }, + { + "start": 137.24, + "end": 142.0, + "probability": 0.9239 + }, + { + "start": 142.84, + "end": 144.92, + "probability": 0.9965 + }, + { + "start": 145.84, + "end": 149.28, + "probability": 0.7288 + }, + { + "start": 149.86, + "end": 152.1, + "probability": 0.9983 + }, + { + "start": 152.28, + "end": 153.19, + "probability": 0.977 + }, + { + "start": 154.0, + "end": 154.7, + "probability": 0.8676 + }, + { + "start": 156.22, + "end": 159.98, + "probability": 0.2738 + }, + { + "start": 161.26, + "end": 163.98, + "probability": 0.9771 + }, + { + "start": 167.5, + "end": 168.06, + "probability": 0.5877 + }, + { + "start": 168.62, + "end": 170.6, + "probability": 0.9614 + }, + { + "start": 175.64, + "end": 176.04, + "probability": 0.6304 + }, + { + "start": 176.74, + "end": 178.44, + "probability": 0.9572 + }, + { + "start": 178.71, + "end": 182.4, + "probability": 0.6453 + }, + { + "start": 182.79, + "end": 185.6, + "probability": 0.8891 + }, + { + "start": 186.12, + "end": 187.74, + "probability": 0.9863 + }, + { + "start": 187.74, + "end": 189.54, + "probability": 0.9963 + }, + { + "start": 190.52, + "end": 193.13, + "probability": 0.9795 + }, + { + "start": 193.68, + "end": 195.22, + "probability": 0.8749 + }, + { + "start": 195.52, + "end": 197.5, + "probability": 0.9795 + }, + { + "start": 197.58, + "end": 199.44, + "probability": 0.9523 + }, + { + "start": 200.12, + "end": 202.66, + "probability": 0.83 + }, + { + "start": 203.8, + "end": 204.6, + "probability": 0.2086 + }, + { + "start": 205.16, + "end": 209.4, + "probability": 0.9274 + }, + { + "start": 209.72, + "end": 210.36, + "probability": 0.7722 + }, + { + "start": 211.64, + "end": 213.08, + "probability": 0.6501 + }, + { + "start": 213.36, + "end": 216.82, + "probability": 0.7285 + }, + { + "start": 217.14, + "end": 222.26, + "probability": 0.9511 + }, + { + "start": 223.4, + "end": 226.5, + "probability": 0.9415 + }, + { + "start": 227.78, + "end": 230.84, + "probability": 0.9451 + }, + { + "start": 231.84, + "end": 235.64, + "probability": 0.9993 + }, + { + "start": 236.4, + "end": 237.66, + "probability": 0.9116 + }, + { + "start": 237.7, + "end": 240.0, + "probability": 0.9775 + }, + { + "start": 241.22, + "end": 245.24, + "probability": 0.9956 + }, + { + "start": 245.88, + "end": 248.38, + "probability": 0.9536 + }, + { + "start": 249.22, + "end": 250.44, + "probability": 0.4035 + }, + { + "start": 250.56, + "end": 253.32, + "probability": 0.9051 + }, + { + "start": 253.96, + "end": 256.7, + "probability": 0.8857 + }, + { + "start": 256.7, + "end": 263.56, + "probability": 0.7416 + }, + { + "start": 263.82, + "end": 266.6, + "probability": 0.9912 + }, + { + "start": 267.54, + "end": 273.8, + "probability": 0.9081 + }, + { + "start": 273.98, + "end": 274.5, + "probability": 0.6674 + }, + { + "start": 275.16, + "end": 283.7, + "probability": 0.9072 + }, + { + "start": 283.92, + "end": 285.2, + "probability": 0.9937 + }, + { + "start": 285.88, + "end": 288.58, + "probability": 0.9116 + }, + { + "start": 288.58, + "end": 291.94, + "probability": 0.8623 + }, + { + "start": 292.12, + "end": 293.32, + "probability": 0.7269 + }, + { + "start": 294.0, + "end": 299.64, + "probability": 0.8887 + }, + { + "start": 300.22, + "end": 303.7, + "probability": 0.9871 + }, + { + "start": 304.46, + "end": 305.44, + "probability": 0.8119 + }, + { + "start": 305.9, + "end": 311.12, + "probability": 0.9953 + }, + { + "start": 311.4, + "end": 313.3, + "probability": 0.997 + }, + { + "start": 313.82, + "end": 316.22, + "probability": 0.9698 + }, + { + "start": 317.0, + "end": 319.84, + "probability": 0.9885 + }, + { + "start": 320.38, + "end": 322.22, + "probability": 0.9814 + }, + { + "start": 323.36, + "end": 326.9, + "probability": 0.9746 + }, + { + "start": 327.72, + "end": 331.3, + "probability": 0.9951 + }, + { + "start": 331.96, + "end": 332.66, + "probability": 0.7812 + }, + { + "start": 333.42, + "end": 334.8, + "probability": 0.9842 + }, + { + "start": 335.46, + "end": 337.28, + "probability": 0.998 + }, + { + "start": 338.16, + "end": 339.28, + "probability": 0.978 + }, + { + "start": 340.4, + "end": 342.96, + "probability": 0.9885 + }, + { + "start": 342.96, + "end": 346.84, + "probability": 0.9497 + }, + { + "start": 350.24, + "end": 350.24, + "probability": 0.0642 + }, + { + "start": 350.24, + "end": 352.66, + "probability": 0.9141 + }, + { + "start": 352.66, + "end": 355.68, + "probability": 0.9471 + }, + { + "start": 356.42, + "end": 357.04, + "probability": 0.6721 + }, + { + "start": 357.26, + "end": 358.7, + "probability": 0.6211 + }, + { + "start": 358.94, + "end": 361.76, + "probability": 0.9266 + }, + { + "start": 362.76, + "end": 365.32, + "probability": 0.7007 + }, + { + "start": 367.62, + "end": 369.7, + "probability": 0.6762 + }, + { + "start": 369.76, + "end": 370.52, + "probability": 0.573 + }, + { + "start": 370.54, + "end": 371.52, + "probability": 0.8649 + }, + { + "start": 371.58, + "end": 372.96, + "probability": 0.9506 + }, + { + "start": 373.3, + "end": 374.83, + "probability": 0.8816 + }, + { + "start": 374.88, + "end": 376.12, + "probability": 0.8885 + }, + { + "start": 376.24, + "end": 379.46, + "probability": 0.9454 + }, + { + "start": 379.94, + "end": 382.44, + "probability": 0.9563 + }, + { + "start": 382.62, + "end": 385.4, + "probability": 0.6387 + }, + { + "start": 385.8, + "end": 390.66, + "probability": 0.961 + }, + { + "start": 390.66, + "end": 394.8, + "probability": 0.9896 + }, + { + "start": 395.62, + "end": 402.2, + "probability": 0.978 + }, + { + "start": 402.8, + "end": 404.8, + "probability": 0.9885 + }, + { + "start": 404.86, + "end": 407.2, + "probability": 0.9961 + }, + { + "start": 407.62, + "end": 409.62, + "probability": 0.9871 + }, + { + "start": 409.94, + "end": 410.78, + "probability": 0.8492 + }, + { + "start": 411.4, + "end": 414.9, + "probability": 0.9907 + }, + { + "start": 415.36, + "end": 417.12, + "probability": 0.8792 + }, + { + "start": 417.22, + "end": 420.2, + "probability": 0.8922 + }, + { + "start": 420.28, + "end": 421.1, + "probability": 0.5448 + }, + { + "start": 421.1, + "end": 422.56, + "probability": 0.9902 + }, + { + "start": 423.12, + "end": 426.07, + "probability": 0.9895 + }, + { + "start": 428.84, + "end": 430.84, + "probability": 0.7558 + }, + { + "start": 431.64, + "end": 438.16, + "probability": 0.8327 + }, + { + "start": 438.82, + "end": 440.54, + "probability": 0.8586 + }, + { + "start": 440.96, + "end": 446.98, + "probability": 0.9941 + }, + { + "start": 447.14, + "end": 454.24, + "probability": 0.9871 + }, + { + "start": 455.02, + "end": 463.6, + "probability": 0.9661 + }, + { + "start": 464.6, + "end": 466.28, + "probability": 0.9624 + }, + { + "start": 466.34, + "end": 474.98, + "probability": 0.9686 + }, + { + "start": 475.34, + "end": 476.48, + "probability": 0.9988 + }, + { + "start": 477.4, + "end": 480.26, + "probability": 0.9878 + }, + { + "start": 480.54, + "end": 483.02, + "probability": 0.4056 + }, + { + "start": 483.56, + "end": 485.6, + "probability": 0.9768 + }, + { + "start": 485.62, + "end": 490.38, + "probability": 0.9908 + }, + { + "start": 490.52, + "end": 490.98, + "probability": 0.6586 + }, + { + "start": 491.62, + "end": 493.5, + "probability": 0.9418 + }, + { + "start": 494.78, + "end": 496.66, + "probability": 0.6433 + }, + { + "start": 497.8, + "end": 498.52, + "probability": 0.7823 + }, + { + "start": 498.7, + "end": 499.94, + "probability": 0.7318 + }, + { + "start": 500.7, + "end": 504.54, + "probability": 0.9155 + }, + { + "start": 504.54, + "end": 509.38, + "probability": 0.9884 + }, + { + "start": 509.54, + "end": 511.44, + "probability": 0.9865 + }, + { + "start": 512.02, + "end": 513.36, + "probability": 0.9989 + }, + { + "start": 516.04, + "end": 521.96, + "probability": 0.853 + }, + { + "start": 528.26, + "end": 533.04, + "probability": 0.4749 + }, + { + "start": 533.96, + "end": 537.92, + "probability": 0.9941 + }, + { + "start": 538.62, + "end": 539.62, + "probability": 0.9584 + }, + { + "start": 539.78, + "end": 545.14, + "probability": 0.6957 + }, + { + "start": 545.24, + "end": 546.12, + "probability": 0.8881 + }, + { + "start": 546.44, + "end": 548.72, + "probability": 0.1785 + }, + { + "start": 548.72, + "end": 551.3, + "probability": 0.3891 + }, + { + "start": 551.94, + "end": 553.14, + "probability": 0.8106 + }, + { + "start": 553.98, + "end": 559.14, + "probability": 0.9932 + }, + { + "start": 560.44, + "end": 562.2, + "probability": 0.5852 + }, + { + "start": 563.14, + "end": 564.58, + "probability": 0.631 + }, + { + "start": 565.44, + "end": 571.74, + "probability": 0.9995 + }, + { + "start": 572.28, + "end": 575.16, + "probability": 0.9972 + }, + { + "start": 575.7, + "end": 579.7, + "probability": 0.8264 + }, + { + "start": 580.44, + "end": 583.01, + "probability": 0.7807 + }, + { + "start": 584.02, + "end": 591.7, + "probability": 0.88 + }, + { + "start": 595.2, + "end": 596.04, + "probability": 0.9277 + }, + { + "start": 601.74, + "end": 602.78, + "probability": 0.7789 + }, + { + "start": 604.48, + "end": 606.16, + "probability": 0.8729 + }, + { + "start": 607.1, + "end": 610.62, + "probability": 0.7284 + }, + { + "start": 611.46, + "end": 613.96, + "probability": 0.7936 + }, + { + "start": 615.78, + "end": 618.7, + "probability": 0.765 + }, + { + "start": 620.22, + "end": 623.38, + "probability": 0.8033 + }, + { + "start": 625.02, + "end": 625.44, + "probability": 0.8815 + }, + { + "start": 626.38, + "end": 627.08, + "probability": 0.9114 + }, + { + "start": 628.08, + "end": 629.72, + "probability": 0.9203 + }, + { + "start": 629.92, + "end": 631.0, + "probability": 0.8733 + }, + { + "start": 631.12, + "end": 631.32, + "probability": 0.5436 + }, + { + "start": 631.32, + "end": 632.8, + "probability": 0.706 + }, + { + "start": 632.8, + "end": 635.0, + "probability": 0.8212 + }, + { + "start": 635.72, + "end": 637.4, + "probability": 0.4714 + }, + { + "start": 637.64, + "end": 641.26, + "probability": 0.9187 + }, + { + "start": 642.14, + "end": 649.38, + "probability": 0.8611 + }, + { + "start": 650.92, + "end": 653.44, + "probability": 0.887 + }, + { + "start": 655.08, + "end": 658.14, + "probability": 0.9801 + }, + { + "start": 659.54, + "end": 664.64, + "probability": 0.7214 + }, + { + "start": 665.42, + "end": 670.62, + "probability": 0.7706 + }, + { + "start": 670.76, + "end": 671.82, + "probability": 0.8728 + }, + { + "start": 672.42, + "end": 673.1, + "probability": 0.3488 + }, + { + "start": 673.78, + "end": 675.18, + "probability": 0.9519 + }, + { + "start": 677.14, + "end": 680.12, + "probability": 0.9701 + }, + { + "start": 680.58, + "end": 681.68, + "probability": 0.7634 + }, + { + "start": 682.54, + "end": 685.52, + "probability": 0.9659 + }, + { + "start": 686.32, + "end": 687.04, + "probability": 0.7537 + }, + { + "start": 687.86, + "end": 692.18, + "probability": 0.9265 + }, + { + "start": 692.88, + "end": 694.79, + "probability": 0.992 + }, + { + "start": 695.92, + "end": 698.3, + "probability": 0.9961 + }, + { + "start": 699.22, + "end": 700.76, + "probability": 0.9508 + }, + { + "start": 702.16, + "end": 703.64, + "probability": 0.5156 + }, + { + "start": 703.92, + "end": 710.06, + "probability": 0.9876 + }, + { + "start": 712.44, + "end": 715.04, + "probability": 0.9333 + }, + { + "start": 715.68, + "end": 717.66, + "probability": 0.589 + }, + { + "start": 717.94, + "end": 719.04, + "probability": 0.4828 + }, + { + "start": 719.16, + "end": 720.3, + "probability": 0.9055 + }, + { + "start": 720.64, + "end": 721.68, + "probability": 0.9724 + }, + { + "start": 724.7, + "end": 726.58, + "probability": 0.664 + }, + { + "start": 727.74, + "end": 730.92, + "probability": 0.7403 + }, + { + "start": 731.74, + "end": 733.08, + "probability": 0.9988 + }, + { + "start": 733.94, + "end": 734.62, + "probability": 0.9077 + }, + { + "start": 735.72, + "end": 736.46, + "probability": 0.6454 + }, + { + "start": 737.58, + "end": 740.34, + "probability": 0.998 + }, + { + "start": 741.5, + "end": 747.82, + "probability": 0.7856 + }, + { + "start": 751.34, + "end": 752.08, + "probability": 0.6597 + }, + { + "start": 753.14, + "end": 755.92, + "probability": 0.7394 + }, + { + "start": 757.26, + "end": 758.58, + "probability": 0.8986 + }, + { + "start": 759.92, + "end": 761.62, + "probability": 0.5774 + }, + { + "start": 763.3, + "end": 766.3, + "probability": 0.9768 + }, + { + "start": 768.7, + "end": 772.56, + "probability": 0.9904 + }, + { + "start": 773.9, + "end": 775.34, + "probability": 0.9978 + }, + { + "start": 776.58, + "end": 779.78, + "probability": 0.9479 + }, + { + "start": 780.44, + "end": 782.3, + "probability": 0.9525 + }, + { + "start": 783.38, + "end": 785.9, + "probability": 0.922 + }, + { + "start": 786.9, + "end": 788.6, + "probability": 0.9748 + }, + { + "start": 789.42, + "end": 792.52, + "probability": 0.9484 + }, + { + "start": 793.48, + "end": 793.96, + "probability": 0.9702 + }, + { + "start": 794.86, + "end": 795.84, + "probability": 0.9984 + }, + { + "start": 796.5, + "end": 801.64, + "probability": 0.9922 + }, + { + "start": 802.4, + "end": 809.48, + "probability": 0.7682 + }, + { + "start": 809.54, + "end": 811.99, + "probability": 0.9954 + }, + { + "start": 813.62, + "end": 814.66, + "probability": 0.6114 + }, + { + "start": 816.52, + "end": 817.64, + "probability": 0.925 + }, + { + "start": 818.61, + "end": 819.96, + "probability": 0.5196 + }, + { + "start": 820.98, + "end": 821.72, + "probability": 0.9343 + }, + { + "start": 822.7, + "end": 824.2, + "probability": 0.8628 + }, + { + "start": 825.28, + "end": 828.84, + "probability": 0.9928 + }, + { + "start": 830.0, + "end": 832.42, + "probability": 0.9893 + }, + { + "start": 832.65, + "end": 836.5, + "probability": 0.9923 + }, + { + "start": 837.02, + "end": 839.88, + "probability": 0.8376 + }, + { + "start": 840.68, + "end": 842.36, + "probability": 0.6742 + }, + { + "start": 842.88, + "end": 844.5, + "probability": 0.7863 + }, + { + "start": 845.14, + "end": 849.08, + "probability": 0.8073 + }, + { + "start": 849.88, + "end": 851.12, + "probability": 0.9835 + }, + { + "start": 852.19, + "end": 853.58, + "probability": 0.9604 + }, + { + "start": 854.32, + "end": 857.42, + "probability": 0.7585 + }, + { + "start": 858.6, + "end": 860.5, + "probability": 0.8207 + }, + { + "start": 861.63, + "end": 862.12, + "probability": 0.6121 + }, + { + "start": 862.12, + "end": 862.46, + "probability": 0.4861 + }, + { + "start": 862.46, + "end": 863.72, + "probability": 0.8148 + }, + { + "start": 864.2, + "end": 873.84, + "probability": 0.9814 + }, + { + "start": 874.76, + "end": 885.08, + "probability": 0.8083 + }, + { + "start": 885.98, + "end": 886.52, + "probability": 0.9697 + }, + { + "start": 887.68, + "end": 891.46, + "probability": 0.9601 + }, + { + "start": 892.96, + "end": 895.96, + "probability": 0.939 + }, + { + "start": 896.1, + "end": 900.08, + "probability": 0.9771 + }, + { + "start": 900.96, + "end": 901.5, + "probability": 0.5488 + }, + { + "start": 902.24, + "end": 909.56, + "probability": 0.9691 + }, + { + "start": 910.18, + "end": 911.82, + "probability": 0.6222 + }, + { + "start": 912.52, + "end": 913.66, + "probability": 0.6318 + }, + { + "start": 914.44, + "end": 918.86, + "probability": 0.9629 + }, + { + "start": 919.52, + "end": 921.34, + "probability": 0.9289 + }, + { + "start": 921.8, + "end": 925.61, + "probability": 0.8622 + }, + { + "start": 927.04, + "end": 928.22, + "probability": 0.6644 + }, + { + "start": 928.9, + "end": 930.32, + "probability": 0.8152 + }, + { + "start": 930.64, + "end": 931.82, + "probability": 0.9941 + }, + { + "start": 931.96, + "end": 933.48, + "probability": 0.9148 + }, + { + "start": 934.24, + "end": 937.78, + "probability": 0.9794 + }, + { + "start": 938.44, + "end": 938.88, + "probability": 0.4987 + }, + { + "start": 939.12, + "end": 943.24, + "probability": 0.8504 + }, + { + "start": 943.38, + "end": 945.82, + "probability": 0.7518 + }, + { + "start": 949.4, + "end": 950.14, + "probability": 0.8345 + }, + { + "start": 951.7, + "end": 952.16, + "probability": 0.9096 + }, + { + "start": 952.82, + "end": 953.34, + "probability": 0.912 + }, + { + "start": 953.96, + "end": 955.38, + "probability": 0.6275 + }, + { + "start": 956.82, + "end": 962.62, + "probability": 0.9912 + }, + { + "start": 963.8, + "end": 964.44, + "probability": 0.7193 + }, + { + "start": 965.0, + "end": 965.18, + "probability": 0.9646 + }, + { + "start": 965.82, + "end": 967.34, + "probability": 0.9899 + }, + { + "start": 967.94, + "end": 969.2, + "probability": 0.8569 + }, + { + "start": 969.84, + "end": 974.5, + "probability": 0.9275 + }, + { + "start": 975.12, + "end": 976.86, + "probability": 0.7572 + }, + { + "start": 977.58, + "end": 978.66, + "probability": 0.7476 + }, + { + "start": 979.3, + "end": 980.6, + "probability": 0.7274 + }, + { + "start": 981.2, + "end": 983.47, + "probability": 0.7074 + }, + { + "start": 984.67, + "end": 989.0, + "probability": 0.9764 + }, + { + "start": 989.36, + "end": 989.74, + "probability": 0.7342 + }, + { + "start": 992.52, + "end": 993.56, + "probability": 0.6583 + }, + { + "start": 995.3, + "end": 995.5, + "probability": 0.8667 + }, + { + "start": 996.06, + "end": 998.62, + "probability": 0.999 + }, + { + "start": 1000.7, + "end": 1003.18, + "probability": 0.9497 + }, + { + "start": 1004.18, + "end": 1005.2, + "probability": 0.9963 + }, + { + "start": 1006.04, + "end": 1009.46, + "probability": 0.8995 + }, + { + "start": 1010.3, + "end": 1010.62, + "probability": 0.8882 + }, + { + "start": 1012.82, + "end": 1014.64, + "probability": 0.9756 + }, + { + "start": 1015.58, + "end": 1018.7, + "probability": 0.9512 + }, + { + "start": 1019.92, + "end": 1024.02, + "probability": 0.6613 + }, + { + "start": 1024.88, + "end": 1027.72, + "probability": 0.7534 + }, + { + "start": 1029.78, + "end": 1032.38, + "probability": 0.9507 + }, + { + "start": 1032.52, + "end": 1038.94, + "probability": 0.7574 + }, + { + "start": 1039.62, + "end": 1041.13, + "probability": 0.6343 + }, + { + "start": 1041.98, + "end": 1047.24, + "probability": 0.6685 + }, + { + "start": 1047.8, + "end": 1048.78, + "probability": 0.9889 + }, + { + "start": 1049.34, + "end": 1050.46, + "probability": 0.9788 + }, + { + "start": 1051.64, + "end": 1056.36, + "probability": 0.8505 + }, + { + "start": 1057.14, + "end": 1058.35, + "probability": 0.8767 + }, + { + "start": 1059.38, + "end": 1062.44, + "probability": 0.973 + }, + { + "start": 1062.44, + "end": 1066.92, + "probability": 0.9878 + }, + { + "start": 1067.44, + "end": 1068.76, + "probability": 0.9865 + }, + { + "start": 1069.62, + "end": 1070.18, + "probability": 0.8071 + }, + { + "start": 1070.46, + "end": 1071.54, + "probability": 0.8059 + }, + { + "start": 1071.74, + "end": 1072.66, + "probability": 0.9646 + }, + { + "start": 1073.66, + "end": 1075.24, + "probability": 0.9927 + }, + { + "start": 1075.82, + "end": 1078.32, + "probability": 0.6935 + }, + { + "start": 1078.94, + "end": 1082.5, + "probability": 0.7651 + }, + { + "start": 1083.08, + "end": 1083.36, + "probability": 0.8945 + }, + { + "start": 1084.32, + "end": 1088.3, + "probability": 0.8573 + }, + { + "start": 1088.32, + "end": 1090.28, + "probability": 0.9825 + }, + { + "start": 1091.66, + "end": 1092.2, + "probability": 0.7916 + }, + { + "start": 1092.48, + "end": 1094.02, + "probability": 0.8138 + }, + { + "start": 1094.2, + "end": 1096.98, + "probability": 0.9956 + }, + { + "start": 1096.98, + "end": 1100.06, + "probability": 0.9976 + }, + { + "start": 1100.18, + "end": 1102.1, + "probability": 0.9253 + }, + { + "start": 1102.78, + "end": 1104.22, + "probability": 0.9985 + }, + { + "start": 1104.32, + "end": 1107.67, + "probability": 0.9087 + }, + { + "start": 1108.86, + "end": 1111.08, + "probability": 0.7489 + }, + { + "start": 1111.94, + "end": 1113.3, + "probability": 0.993 + }, + { + "start": 1114.08, + "end": 1115.98, + "probability": 0.8322 + }, + { + "start": 1116.92, + "end": 1119.82, + "probability": 0.9746 + }, + { + "start": 1119.9, + "end": 1120.29, + "probability": 0.9481 + }, + { + "start": 1121.34, + "end": 1125.59, + "probability": 0.7632 + }, + { + "start": 1126.47, + "end": 1127.33, + "probability": 0.7595 + }, + { + "start": 1128.11, + "end": 1128.41, + "probability": 0.8318 + }, + { + "start": 1129.45, + "end": 1130.97, + "probability": 0.7979 + }, + { + "start": 1132.17, + "end": 1137.71, + "probability": 0.7851 + }, + { + "start": 1138.13, + "end": 1138.83, + "probability": 0.8104 + }, + { + "start": 1141.02, + "end": 1145.97, + "probability": 0.2739 + }, + { + "start": 1146.59, + "end": 1149.13, + "probability": 0.7893 + }, + { + "start": 1149.91, + "end": 1155.43, + "probability": 0.8845 + }, + { + "start": 1156.69, + "end": 1161.09, + "probability": 0.7184 + }, + { + "start": 1162.31, + "end": 1163.33, + "probability": 0.6439 + }, + { + "start": 1163.89, + "end": 1164.67, + "probability": 0.8596 + }, + { + "start": 1167.55, + "end": 1168.83, + "probability": 0.9226 + }, + { + "start": 1168.83, + "end": 1170.97, + "probability": 0.8679 + }, + { + "start": 1171.35, + "end": 1171.77, + "probability": 0.0197 + }, + { + "start": 1181.21, + "end": 1188.53, + "probability": 0.0651 + }, + { + "start": 1189.13, + "end": 1190.51, + "probability": 0.0371 + }, + { + "start": 1192.07, + "end": 1195.27, + "probability": 0.0214 + }, + { + "start": 1195.77, + "end": 1196.15, + "probability": 0.1575 + }, + { + "start": 1201.31, + "end": 1206.67, + "probability": 0.0055 + }, + { + "start": 1215.78, + "end": 1224.59, + "probability": 0.0479 + }, + { + "start": 1224.59, + "end": 1227.99, + "probability": 0.0406 + }, + { + "start": 1229.33, + "end": 1232.41, + "probability": 0.022 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.0, + "end": 1251.0, + "probability": 0.0 + }, + { + "start": 1251.76, + "end": 1251.88, + "probability": 0.0377 + }, + { + "start": 1251.88, + "end": 1254.9, + "probability": 0.2755 + }, + { + "start": 1255.52, + "end": 1258.48, + "probability": 0.9585 + }, + { + "start": 1259.96, + "end": 1262.0, + "probability": 0.7493 + }, + { + "start": 1262.3, + "end": 1265.18, + "probability": 0.9965 + }, + { + "start": 1265.94, + "end": 1266.53, + "probability": 0.9158 + }, + { + "start": 1267.58, + "end": 1268.94, + "probability": 0.5819 + }, + { + "start": 1270.9, + "end": 1272.06, + "probability": 0.9689 + }, + { + "start": 1272.9, + "end": 1276.12, + "probability": 0.9814 + }, + { + "start": 1276.64, + "end": 1281.26, + "probability": 0.9876 + }, + { + "start": 1282.3, + "end": 1284.02, + "probability": 0.7003 + }, + { + "start": 1284.64, + "end": 1287.5, + "probability": 0.7435 + }, + { + "start": 1288.9, + "end": 1289.92, + "probability": 0.9274 + }, + { + "start": 1290.52, + "end": 1295.54, + "probability": 0.8389 + }, + { + "start": 1295.54, + "end": 1301.22, + "probability": 0.9756 + }, + { + "start": 1301.94, + "end": 1304.12, + "probability": 0.9607 + }, + { + "start": 1304.76, + "end": 1305.4, + "probability": 0.9682 + }, + { + "start": 1308.46, + "end": 1310.26, + "probability": 0.9064 + }, + { + "start": 1311.56, + "end": 1313.28, + "probability": 0.8685 + }, + { + "start": 1314.22, + "end": 1316.84, + "probability": 0.7784 + }, + { + "start": 1318.08, + "end": 1319.1, + "probability": 0.7958 + }, + { + "start": 1319.68, + "end": 1323.18, + "probability": 0.9963 + }, + { + "start": 1323.18, + "end": 1326.92, + "probability": 0.9902 + }, + { + "start": 1328.26, + "end": 1329.22, + "probability": 0.9806 + }, + { + "start": 1329.78, + "end": 1335.0, + "probability": 0.9814 + }, + { + "start": 1335.46, + "end": 1340.7, + "probability": 0.9933 + }, + { + "start": 1341.24, + "end": 1345.32, + "probability": 0.9958 + }, + { + "start": 1346.54, + "end": 1348.38, + "probability": 0.8745 + }, + { + "start": 1349.0, + "end": 1350.4, + "probability": 0.9432 + }, + { + "start": 1350.98, + "end": 1354.74, + "probability": 0.9958 + }, + { + "start": 1356.94, + "end": 1358.28, + "probability": 0.9188 + }, + { + "start": 1359.18, + "end": 1360.94, + "probability": 0.9977 + }, + { + "start": 1361.62, + "end": 1368.42, + "probability": 0.9645 + }, + { + "start": 1369.06, + "end": 1372.98, + "probability": 0.9956 + }, + { + "start": 1374.4, + "end": 1375.7, + "probability": 0.9989 + }, + { + "start": 1376.48, + "end": 1378.28, + "probability": 0.9995 + }, + { + "start": 1378.82, + "end": 1380.44, + "probability": 0.9701 + }, + { + "start": 1381.34, + "end": 1384.82, + "probability": 0.9951 + }, + { + "start": 1385.22, + "end": 1388.64, + "probability": 0.9031 + }, + { + "start": 1389.76, + "end": 1391.12, + "probability": 0.9865 + }, + { + "start": 1391.9, + "end": 1397.48, + "probability": 0.9935 + }, + { + "start": 1399.4, + "end": 1402.92, + "probability": 0.8282 + }, + { + "start": 1403.82, + "end": 1406.3, + "probability": 0.9916 + }, + { + "start": 1406.98, + "end": 1408.84, + "probability": 0.9885 + }, + { + "start": 1413.52, + "end": 1417.76, + "probability": 0.9793 + }, + { + "start": 1418.6, + "end": 1422.9, + "probability": 0.9829 + }, + { + "start": 1423.9, + "end": 1425.82, + "probability": 0.9919 + }, + { + "start": 1427.12, + "end": 1430.06, + "probability": 0.9382 + }, + { + "start": 1430.88, + "end": 1432.9, + "probability": 0.907 + }, + { + "start": 1433.68, + "end": 1439.26, + "probability": 0.9894 + }, + { + "start": 1440.72, + "end": 1441.88, + "probability": 0.9006 + }, + { + "start": 1442.4, + "end": 1443.42, + "probability": 0.9871 + }, + { + "start": 1443.98, + "end": 1447.52, + "probability": 0.753 + }, + { + "start": 1448.16, + "end": 1449.36, + "probability": 0.9938 + }, + { + "start": 1450.5, + "end": 1452.18, + "probability": 0.9885 + }, + { + "start": 1453.06, + "end": 1454.78, + "probability": 0.9908 + }, + { + "start": 1455.52, + "end": 1457.3, + "probability": 0.9939 + }, + { + "start": 1458.0, + "end": 1459.54, + "probability": 0.947 + }, + { + "start": 1461.12, + "end": 1462.86, + "probability": 0.9844 + }, + { + "start": 1463.4, + "end": 1469.66, + "probability": 0.9946 + }, + { + "start": 1470.26, + "end": 1475.06, + "probability": 0.999 + }, + { + "start": 1476.72, + "end": 1477.84, + "probability": 0.5696 + }, + { + "start": 1478.38, + "end": 1485.9, + "probability": 0.9784 + }, + { + "start": 1486.4, + "end": 1487.68, + "probability": 0.7373 + }, + { + "start": 1488.1, + "end": 1491.56, + "probability": 0.9971 + }, + { + "start": 1492.54, + "end": 1493.4, + "probability": 0.6481 + }, + { + "start": 1495.04, + "end": 1499.12, + "probability": 0.9846 + }, + { + "start": 1499.12, + "end": 1503.4, + "probability": 0.9691 + }, + { + "start": 1503.74, + "end": 1507.54, + "probability": 0.9742 + }, + { + "start": 1509.32, + "end": 1513.9, + "probability": 0.9937 + }, + { + "start": 1513.9, + "end": 1518.5, + "probability": 0.9839 + }, + { + "start": 1519.6, + "end": 1520.54, + "probability": 0.6062 + }, + { + "start": 1521.1, + "end": 1523.16, + "probability": 0.9575 + }, + { + "start": 1524.32, + "end": 1524.5, + "probability": 0.6435 + }, + { + "start": 1524.94, + "end": 1524.96, + "probability": 0.4025 + }, + { + "start": 1524.96, + "end": 1527.38, + "probability": 0.2959 + }, + { + "start": 1528.28, + "end": 1529.94, + "probability": 0.224 + }, + { + "start": 1531.54, + "end": 1532.42, + "probability": 0.8335 + }, + { + "start": 1534.02, + "end": 1536.06, + "probability": 0.9965 + }, + { + "start": 1537.24, + "end": 1537.94, + "probability": 0.9017 + }, + { + "start": 1539.0, + "end": 1540.0, + "probability": 0.998 + }, + { + "start": 1540.92, + "end": 1541.26, + "probability": 0.5223 + }, + { + "start": 1542.32, + "end": 1545.4, + "probability": 0.9185 + }, + { + "start": 1545.74, + "end": 1551.08, + "probability": 0.596 + }, + { + "start": 1551.24, + "end": 1551.34, + "probability": 0.3926 + }, + { + "start": 1551.64, + "end": 1553.12, + "probability": 0.8587 + }, + { + "start": 1553.72, + "end": 1554.58, + "probability": 0.8685 + }, + { + "start": 1556.2, + "end": 1557.1, + "probability": 0.7966 + }, + { + "start": 1557.76, + "end": 1558.62, + "probability": 0.9879 + }, + { + "start": 1559.58, + "end": 1560.66, + "probability": 0.813 + }, + { + "start": 1562.12, + "end": 1562.94, + "probability": 0.9556 + }, + { + "start": 1563.5, + "end": 1563.94, + "probability": 0.9163 + }, + { + "start": 1565.0, + "end": 1574.32, + "probability": 0.9956 + }, + { + "start": 1574.88, + "end": 1576.02, + "probability": 0.5733 + }, + { + "start": 1576.56, + "end": 1579.8, + "probability": 0.998 + }, + { + "start": 1581.1, + "end": 1584.72, + "probability": 0.878 + }, + { + "start": 1585.6, + "end": 1587.4, + "probability": 0.6582 + }, + { + "start": 1587.96, + "end": 1590.6, + "probability": 0.9873 + }, + { + "start": 1591.22, + "end": 1594.54, + "probability": 0.9957 + }, + { + "start": 1594.66, + "end": 1595.9, + "probability": 0.8977 + }, + { + "start": 1596.34, + "end": 1597.36, + "probability": 0.9771 + }, + { + "start": 1598.46, + "end": 1598.88, + "probability": 0.48 + }, + { + "start": 1599.04, + "end": 1599.82, + "probability": 0.9404 + }, + { + "start": 1600.76, + "end": 1602.74, + "probability": 0.661 + }, + { + "start": 1603.48, + "end": 1605.74, + "probability": 0.9831 + }, + { + "start": 1606.32, + "end": 1610.14, + "probability": 0.9967 + }, + { + "start": 1610.96, + "end": 1616.28, + "probability": 0.9858 + }, + { + "start": 1616.6, + "end": 1618.06, + "probability": 0.9757 + }, + { + "start": 1618.16, + "end": 1621.7, + "probability": 0.8682 + }, + { + "start": 1622.14, + "end": 1623.2, + "probability": 0.6733 + }, + { + "start": 1623.26, + "end": 1623.94, + "probability": 0.8598 + }, + { + "start": 1624.1, + "end": 1627.34, + "probability": 0.9825 + }, + { + "start": 1628.08, + "end": 1629.86, + "probability": 0.8928 + }, + { + "start": 1629.92, + "end": 1632.9, + "probability": 0.9141 + }, + { + "start": 1633.28, + "end": 1634.16, + "probability": 0.7586 + }, + { + "start": 1634.6, + "end": 1639.78, + "probability": 0.9988 + }, + { + "start": 1640.54, + "end": 1644.12, + "probability": 0.9806 + }, + { + "start": 1644.78, + "end": 1645.06, + "probability": 0.936 + }, + { + "start": 1646.64, + "end": 1648.4, + "probability": 0.5643 + }, + { + "start": 1656.1, + "end": 1656.1, + "probability": 0.261 + }, + { + "start": 1656.1, + "end": 1656.86, + "probability": 0.5395 + }, + { + "start": 1657.32, + "end": 1662.74, + "probability": 0.9247 + }, + { + "start": 1662.98, + "end": 1666.38, + "probability": 0.9957 + }, + { + "start": 1667.82, + "end": 1669.04, + "probability": 0.66 + }, + { + "start": 1669.84, + "end": 1674.36, + "probability": 0.756 + }, + { + "start": 1674.38, + "end": 1680.38, + "probability": 0.9731 + }, + { + "start": 1681.28, + "end": 1684.04, + "probability": 0.8996 + }, + { + "start": 1684.64, + "end": 1686.4, + "probability": 0.8033 + }, + { + "start": 1686.92, + "end": 1689.6, + "probability": 0.7531 + }, + { + "start": 1689.6, + "end": 1694.16, + "probability": 0.9677 + }, + { + "start": 1694.78, + "end": 1698.46, + "probability": 0.9932 + }, + { + "start": 1698.58, + "end": 1700.64, + "probability": 0.9915 + }, + { + "start": 1702.1, + "end": 1707.1, + "probability": 0.9937 + }, + { + "start": 1707.68, + "end": 1712.0, + "probability": 0.9966 + }, + { + "start": 1712.54, + "end": 1713.58, + "probability": 0.8538 + }, + { + "start": 1714.1, + "end": 1714.54, + "probability": 0.4551 + }, + { + "start": 1715.4, + "end": 1719.0, + "probability": 0.996 + }, + { + "start": 1719.44, + "end": 1724.96, + "probability": 0.7494 + }, + { + "start": 1725.42, + "end": 1727.96, + "probability": 0.5958 + }, + { + "start": 1728.26, + "end": 1731.48, + "probability": 0.9587 + }, + { + "start": 1732.46, + "end": 1732.64, + "probability": 0.7049 + }, + { + "start": 1733.22, + "end": 1733.44, + "probability": 0.5382 + }, + { + "start": 1733.74, + "end": 1736.68, + "probability": 0.6742 + }, + { + "start": 1736.68, + "end": 1737.34, + "probability": 0.7783 + }, + { + "start": 1737.36, + "end": 1737.82, + "probability": 0.7672 + }, + { + "start": 1737.9, + "end": 1739.88, + "probability": 0.7938 + }, + { + "start": 1740.34, + "end": 1743.8, + "probability": 0.7644 + }, + { + "start": 1744.36, + "end": 1745.82, + "probability": 0.6068 + }, + { + "start": 1747.12, + "end": 1750.3, + "probability": 0.7641 + }, + { + "start": 1750.8, + "end": 1753.19, + "probability": 0.9475 + }, + { + "start": 1754.56, + "end": 1756.98, + "probability": 0.8213 + }, + { + "start": 1757.8, + "end": 1758.47, + "probability": 0.9175 + }, + { + "start": 1759.0, + "end": 1759.76, + "probability": 0.7361 + }, + { + "start": 1759.96, + "end": 1760.57, + "probability": 0.9855 + }, + { + "start": 1761.0, + "end": 1761.52, + "probability": 0.3871 + }, + { + "start": 1761.64, + "end": 1762.82, + "probability": 0.2204 + }, + { + "start": 1763.76, + "end": 1765.16, + "probability": 0.9583 + }, + { + "start": 1765.28, + "end": 1765.82, + "probability": 0.7381 + }, + { + "start": 1765.86, + "end": 1768.9, + "probability": 0.8288 + }, + { + "start": 1769.48, + "end": 1774.3, + "probability": 0.907 + }, + { + "start": 1774.48, + "end": 1775.1, + "probability": 0.4458 + }, + { + "start": 1775.9, + "end": 1780.96, + "probability": 0.9849 + }, + { + "start": 1781.64, + "end": 1784.74, + "probability": 0.9694 + }, + { + "start": 1785.38, + "end": 1787.54, + "probability": 0.985 + }, + { + "start": 1787.78, + "end": 1788.28, + "probability": 0.9395 + }, + { + "start": 1788.46, + "end": 1789.9, + "probability": 0.6674 + }, + { + "start": 1790.28, + "end": 1793.34, + "probability": 0.7236 + }, + { + "start": 1793.58, + "end": 1795.94, + "probability": 0.8843 + }, + { + "start": 1795.94, + "end": 1800.94, + "probability": 0.9868 + }, + { + "start": 1801.02, + "end": 1805.52, + "probability": 0.9795 + }, + { + "start": 1806.02, + "end": 1807.5, + "probability": 0.6319 + }, + { + "start": 1807.94, + "end": 1808.64, + "probability": 0.2414 + }, + { + "start": 1808.74, + "end": 1811.78, + "probability": 0.6735 + }, + { + "start": 1811.86, + "end": 1812.6, + "probability": 0.4502 + }, + { + "start": 1812.6, + "end": 1812.6, + "probability": 0.0613 + }, + { + "start": 1812.6, + "end": 1813.06, + "probability": 0.3145 + }, + { + "start": 1813.06, + "end": 1814.42, + "probability": 0.6869 + }, + { + "start": 1814.72, + "end": 1816.72, + "probability": 0.952 + }, + { + "start": 1816.89, + "end": 1818.22, + "probability": 0.7601 + }, + { + "start": 1818.22, + "end": 1821.64, + "probability": 0.9908 + }, + { + "start": 1822.18, + "end": 1822.69, + "probability": 0.5194 + }, + { + "start": 1822.92, + "end": 1824.0, + "probability": 0.8848 + }, + { + "start": 1824.38, + "end": 1828.36, + "probability": 0.978 + }, + { + "start": 1828.86, + "end": 1830.44, + "probability": 0.9492 + }, + { + "start": 1831.84, + "end": 1832.46, + "probability": 0.5179 + }, + { + "start": 1832.58, + "end": 1834.3, + "probability": 0.8762 + }, + { + "start": 1834.86, + "end": 1836.16, + "probability": 0.9487 + }, + { + "start": 1836.18, + "end": 1836.4, + "probability": 0.7682 + }, + { + "start": 1836.44, + "end": 1844.58, + "probability": 0.9806 + }, + { + "start": 1845.1, + "end": 1847.02, + "probability": 0.926 + }, + { + "start": 1849.04, + "end": 1851.92, + "probability": 0.9943 + }, + { + "start": 1851.92, + "end": 1855.4, + "probability": 0.9819 + }, + { + "start": 1855.48, + "end": 1856.22, + "probability": 0.5358 + }, + { + "start": 1856.96, + "end": 1858.86, + "probability": 0.988 + }, + { + "start": 1859.16, + "end": 1860.7, + "probability": 0.9719 + }, + { + "start": 1861.86, + "end": 1866.08, + "probability": 0.9289 + }, + { + "start": 1867.28, + "end": 1873.36, + "probability": 0.9384 + }, + { + "start": 1873.5, + "end": 1876.8, + "probability": 0.9969 + }, + { + "start": 1876.8, + "end": 1880.74, + "probability": 0.941 + }, + { + "start": 1880.92, + "end": 1882.38, + "probability": 0.9875 + }, + { + "start": 1882.6, + "end": 1884.06, + "probability": 0.946 + }, + { + "start": 1884.82, + "end": 1886.88, + "probability": 0.7592 + }, + { + "start": 1887.52, + "end": 1888.92, + "probability": 0.3596 + }, + { + "start": 1889.64, + "end": 1894.36, + "probability": 0.9384 + }, + { + "start": 1894.68, + "end": 1896.78, + "probability": 0.898 + }, + { + "start": 1897.3, + "end": 1899.22, + "probability": 0.8982 + }, + { + "start": 1900.48, + "end": 1903.24, + "probability": 0.9931 + }, + { + "start": 1904.4, + "end": 1907.92, + "probability": 0.9969 + }, + { + "start": 1908.04, + "end": 1911.12, + "probability": 0.7629 + }, + { + "start": 1911.38, + "end": 1914.48, + "probability": 0.8774 + }, + { + "start": 1915.34, + "end": 1917.12, + "probability": 0.7557 + }, + { + "start": 1917.26, + "end": 1924.42, + "probability": 0.9059 + }, + { + "start": 1925.08, + "end": 1929.7, + "probability": 0.9934 + }, + { + "start": 1929.88, + "end": 1934.52, + "probability": 0.9361 + }, + { + "start": 1934.8, + "end": 1937.02, + "probability": 0.8691 + }, + { + "start": 1938.4, + "end": 1941.44, + "probability": 0.7851 + }, + { + "start": 1941.66, + "end": 1943.02, + "probability": 0.9312 + }, + { + "start": 1943.66, + "end": 1946.46, + "probability": 0.9854 + }, + { + "start": 1947.22, + "end": 1947.92, + "probability": 0.7484 + }, + { + "start": 1949.04, + "end": 1953.52, + "probability": 0.9798 + }, + { + "start": 1954.24, + "end": 1954.82, + "probability": 0.993 + }, + { + "start": 1955.7, + "end": 1957.22, + "probability": 0.8364 + }, + { + "start": 1958.24, + "end": 1958.72, + "probability": 0.7516 + }, + { + "start": 1959.32, + "end": 1960.62, + "probability": 0.9956 + }, + { + "start": 1961.22, + "end": 1965.38, + "probability": 0.9938 + }, + { + "start": 1965.82, + "end": 1969.06, + "probability": 0.8865 + }, + { + "start": 1969.78, + "end": 1974.24, + "probability": 0.9545 + }, + { + "start": 1974.8, + "end": 1976.58, + "probability": 0.7811 + }, + { + "start": 1977.18, + "end": 1981.24, + "probability": 0.8719 + }, + { + "start": 1982.04, + "end": 1982.86, + "probability": 0.7525 + }, + { + "start": 1983.64, + "end": 1992.54, + "probability": 0.8477 + }, + { + "start": 1993.0, + "end": 1997.36, + "probability": 0.9908 + }, + { + "start": 1998.06, + "end": 2000.04, + "probability": 0.9751 + }, + { + "start": 2001.72, + "end": 2007.5, + "probability": 0.799 + }, + { + "start": 2008.0, + "end": 2009.78, + "probability": 0.8531 + }, + { + "start": 2010.44, + "end": 2012.0, + "probability": 0.9656 + }, + { + "start": 2012.52, + "end": 2014.68, + "probability": 0.9131 + }, + { + "start": 2015.22, + "end": 2016.14, + "probability": 0.9067 + }, + { + "start": 2017.0, + "end": 2018.1, + "probability": 0.818 + }, + { + "start": 2018.48, + "end": 2019.16, + "probability": 0.6565 + }, + { + "start": 2019.18, + "end": 2020.12, + "probability": 0.9797 + }, + { + "start": 2020.54, + "end": 2021.0, + "probability": 0.8129 + }, + { + "start": 2021.42, + "end": 2023.02, + "probability": 0.864 + }, + { + "start": 2023.68, + "end": 2024.97, + "probability": 0.8321 + }, + { + "start": 2026.76, + "end": 2028.4, + "probability": 0.6523 + }, + { + "start": 2029.34, + "end": 2032.24, + "probability": 0.9498 + }, + { + "start": 2032.66, + "end": 2033.38, + "probability": 0.6692 + }, + { + "start": 2033.76, + "end": 2036.84, + "probability": 0.6639 + }, + { + "start": 2037.4, + "end": 2039.43, + "probability": 0.9816 + }, + { + "start": 2040.02, + "end": 2041.66, + "probability": 0.992 + }, + { + "start": 2042.2, + "end": 2045.38, + "probability": 0.8676 + }, + { + "start": 2047.4, + "end": 2049.52, + "probability": 0.6688 + }, + { + "start": 2051.82, + "end": 2055.7, + "probability": 0.9907 + }, + { + "start": 2056.56, + "end": 2060.26, + "probability": 0.9937 + }, + { + "start": 2060.94, + "end": 2064.58, + "probability": 0.8106 + }, + { + "start": 2065.4, + "end": 2067.52, + "probability": 0.9231 + }, + { + "start": 2068.14, + "end": 2070.92, + "probability": 0.6862 + }, + { + "start": 2071.0, + "end": 2072.76, + "probability": 0.8888 + }, + { + "start": 2073.3, + "end": 2076.82, + "probability": 0.9864 + }, + { + "start": 2077.2, + "end": 2079.04, + "probability": 0.7964 + }, + { + "start": 2079.54, + "end": 2083.54, + "probability": 0.9916 + }, + { + "start": 2084.5, + "end": 2087.4, + "probability": 0.8021 + }, + { + "start": 2088.12, + "end": 2088.86, + "probability": 0.9831 + }, + { + "start": 2089.84, + "end": 2094.38, + "probability": 0.9963 + }, + { + "start": 2094.9, + "end": 2101.16, + "probability": 0.9915 + }, + { + "start": 2101.86, + "end": 2105.08, + "probability": 0.9966 + }, + { + "start": 2105.6, + "end": 2107.58, + "probability": 0.8935 + }, + { + "start": 2108.78, + "end": 2113.48, + "probability": 0.9688 + }, + { + "start": 2115.04, + "end": 2117.14, + "probability": 0.9614 + }, + { + "start": 2118.38, + "end": 2119.68, + "probability": 0.7788 + }, + { + "start": 2120.24, + "end": 2120.96, + "probability": 0.802 + }, + { + "start": 2121.36, + "end": 2125.17, + "probability": 0.992 + }, + { + "start": 2125.8, + "end": 2126.26, + "probability": 0.7458 + }, + { + "start": 2126.52, + "end": 2127.06, + "probability": 0.933 + }, + { + "start": 2127.12, + "end": 2129.82, + "probability": 0.829 + }, + { + "start": 2130.56, + "end": 2131.14, + "probability": 0.61 + }, + { + "start": 2131.26, + "end": 2132.72, + "probability": 0.7455 + }, + { + "start": 2132.72, + "end": 2132.72, + "probability": 0.3484 + }, + { + "start": 2132.8, + "end": 2133.24, + "probability": 0.8121 + }, + { + "start": 2133.52, + "end": 2135.2, + "probability": 0.8611 + }, + { + "start": 2135.88, + "end": 2136.74, + "probability": 0.9181 + }, + { + "start": 2137.98, + "end": 2142.08, + "probability": 0.9339 + }, + { + "start": 2142.9, + "end": 2146.86, + "probability": 0.9629 + }, + { + "start": 2147.82, + "end": 2151.48, + "probability": 0.752 + }, + { + "start": 2152.22, + "end": 2153.22, + "probability": 0.9491 + }, + { + "start": 2153.94, + "end": 2156.06, + "probability": 0.9816 + }, + { + "start": 2159.1, + "end": 2161.66, + "probability": 0.8781 + }, + { + "start": 2162.1, + "end": 2162.92, + "probability": 0.9068 + }, + { + "start": 2164.18, + "end": 2165.58, + "probability": 0.8307 + }, + { + "start": 2166.36, + "end": 2170.14, + "probability": 0.9986 + }, + { + "start": 2170.16, + "end": 2174.68, + "probability": 0.9358 + }, + { + "start": 2175.32, + "end": 2176.0, + "probability": 0.6747 + }, + { + "start": 2176.8, + "end": 2177.78, + "probability": 0.6896 + }, + { + "start": 2178.24, + "end": 2180.66, + "probability": 0.6971 + }, + { + "start": 2181.28, + "end": 2184.16, + "probability": 0.9821 + }, + { + "start": 2185.32, + "end": 2189.68, + "probability": 0.9602 + }, + { + "start": 2189.84, + "end": 2190.92, + "probability": 0.8194 + }, + { + "start": 2194.15, + "end": 2196.48, + "probability": 0.3197 + }, + { + "start": 2196.62, + "end": 2198.4, + "probability": 0.9586 + }, + { + "start": 2198.9, + "end": 2201.52, + "probability": 0.7827 + }, + { + "start": 2202.8, + "end": 2205.28, + "probability": 0.6977 + }, + { + "start": 2205.96, + "end": 2210.82, + "probability": 0.9967 + }, + { + "start": 2211.68, + "end": 2213.82, + "probability": 0.985 + }, + { + "start": 2215.58, + "end": 2218.74, + "probability": 0.7403 + }, + { + "start": 2219.48, + "end": 2222.06, + "probability": 0.9703 + }, + { + "start": 2223.16, + "end": 2227.64, + "probability": 0.992 + }, + { + "start": 2230.08, + "end": 2230.8, + "probability": 0.5762 + }, + { + "start": 2231.38, + "end": 2231.52, + "probability": 0.153 + }, + { + "start": 2231.92, + "end": 2236.44, + "probability": 0.9753 + }, + { + "start": 2237.5, + "end": 2241.08, + "probability": 0.9692 + }, + { + "start": 2242.72, + "end": 2244.08, + "probability": 0.8391 + }, + { + "start": 2244.28, + "end": 2248.8, + "probability": 0.9934 + }, + { + "start": 2249.38, + "end": 2252.06, + "probability": 0.9601 + }, + { + "start": 2252.8, + "end": 2253.52, + "probability": 0.7945 + }, + { + "start": 2253.98, + "end": 2258.04, + "probability": 0.8414 + }, + { + "start": 2262.34, + "end": 2263.14, + "probability": 0.7141 + }, + { + "start": 2263.24, + "end": 2265.08, + "probability": 0.9944 + }, + { + "start": 2265.6, + "end": 2266.62, + "probability": 0.9979 + }, + { + "start": 2267.34, + "end": 2271.06, + "probability": 0.9825 + }, + { + "start": 2271.96, + "end": 2273.86, + "probability": 0.993 + }, + { + "start": 2273.94, + "end": 2277.84, + "probability": 0.9155 + }, + { + "start": 2277.98, + "end": 2279.62, + "probability": 0.9944 + }, + { + "start": 2281.16, + "end": 2286.44, + "probability": 0.9217 + }, + { + "start": 2287.58, + "end": 2288.52, + "probability": 0.9824 + }, + { + "start": 2289.46, + "end": 2292.9, + "probability": 0.9759 + }, + { + "start": 2293.76, + "end": 2294.76, + "probability": 0.9937 + }, + { + "start": 2295.46, + "end": 2299.02, + "probability": 0.993 + }, + { + "start": 2300.06, + "end": 2302.42, + "probability": 0.9906 + }, + { + "start": 2303.56, + "end": 2308.22, + "probability": 0.9831 + }, + { + "start": 2308.8, + "end": 2312.3, + "probability": 0.9957 + }, + { + "start": 2313.26, + "end": 2316.28, + "probability": 0.9394 + }, + { + "start": 2316.84, + "end": 2318.2, + "probability": 0.9749 + }, + { + "start": 2319.1, + "end": 2320.2, + "probability": 0.9061 + }, + { + "start": 2320.64, + "end": 2322.06, + "probability": 0.2704 + }, + { + "start": 2322.58, + "end": 2322.82, + "probability": 0.6946 + }, + { + "start": 2323.48, + "end": 2324.96, + "probability": 0.8218 + }, + { + "start": 2326.98, + "end": 2331.4, + "probability": 0.766 + }, + { + "start": 2332.34, + "end": 2335.92, + "probability": 0.8565 + }, + { + "start": 2336.46, + "end": 2338.24, + "probability": 0.9403 + }, + { + "start": 2339.08, + "end": 2339.08, + "probability": 0.0258 + }, + { + "start": 2339.68, + "end": 2339.82, + "probability": 0.0654 + }, + { + "start": 2340.38, + "end": 2341.84, + "probability": 0.8177 + }, + { + "start": 2342.26, + "end": 2344.08, + "probability": 0.9401 + }, + { + "start": 2344.46, + "end": 2349.82, + "probability": 0.9772 + }, + { + "start": 2350.66, + "end": 2353.4, + "probability": 0.9665 + }, + { + "start": 2354.6, + "end": 2355.16, + "probability": 0.9871 + }, + { + "start": 2357.34, + "end": 2359.26, + "probability": 0.7681 + }, + { + "start": 2360.42, + "end": 2361.24, + "probability": 0.6284 + }, + { + "start": 2362.48, + "end": 2363.68, + "probability": 0.5547 + }, + { + "start": 2364.18, + "end": 2364.32, + "probability": 0.8401 + }, + { + "start": 2364.36, + "end": 2367.78, + "probability": 0.9626 + }, + { + "start": 2367.78, + "end": 2373.78, + "probability": 0.964 + }, + { + "start": 2373.98, + "end": 2375.04, + "probability": 0.955 + }, + { + "start": 2375.3, + "end": 2377.48, + "probability": 0.7665 + }, + { + "start": 2378.98, + "end": 2380.42, + "probability": 0.9937 + }, + { + "start": 2382.32, + "end": 2384.4, + "probability": 0.7227 + }, + { + "start": 2385.96, + "end": 2387.78, + "probability": 0.804 + }, + { + "start": 2388.34, + "end": 2390.09, + "probability": 0.9802 + }, + { + "start": 2393.06, + "end": 2394.68, + "probability": 0.9754 + }, + { + "start": 2395.74, + "end": 2397.1, + "probability": 0.6577 + }, + { + "start": 2397.98, + "end": 2400.24, + "probability": 0.8365 + }, + { + "start": 2401.48, + "end": 2402.1, + "probability": 0.8208 + }, + { + "start": 2404.24, + "end": 2408.74, + "probability": 0.9946 + }, + { + "start": 2410.34, + "end": 2411.78, + "probability": 0.7537 + }, + { + "start": 2412.82, + "end": 2414.42, + "probability": 0.9717 + }, + { + "start": 2416.64, + "end": 2418.44, + "probability": 0.9946 + }, + { + "start": 2419.48, + "end": 2420.5, + "probability": 0.7258 + }, + { + "start": 2421.56, + "end": 2423.08, + "probability": 0.8795 + }, + { + "start": 2423.64, + "end": 2424.7, + "probability": 0.9365 + }, + { + "start": 2425.48, + "end": 2426.65, + "probability": 0.9607 + }, + { + "start": 2427.36, + "end": 2428.74, + "probability": 0.9979 + }, + { + "start": 2429.3, + "end": 2432.24, + "probability": 0.982 + }, + { + "start": 2433.6, + "end": 2435.02, + "probability": 0.8904 + }, + { + "start": 2435.28, + "end": 2436.0, + "probability": 0.6544 + }, + { + "start": 2436.08, + "end": 2436.68, + "probability": 0.4483 + }, + { + "start": 2437.02, + "end": 2437.98, + "probability": 0.8198 + }, + { + "start": 2438.18, + "end": 2439.34, + "probability": 0.9622 + }, + { + "start": 2439.46, + "end": 2440.34, + "probability": 0.8242 + }, + { + "start": 2440.7, + "end": 2441.78, + "probability": 0.7359 + }, + { + "start": 2441.84, + "end": 2443.6, + "probability": 0.9873 + }, + { + "start": 2444.24, + "end": 2445.68, + "probability": 0.916 + }, + { + "start": 2446.28, + "end": 2447.34, + "probability": 0.9412 + }, + { + "start": 2447.74, + "end": 2449.26, + "probability": 0.8965 + }, + { + "start": 2449.68, + "end": 2450.1, + "probability": 0.5635 + }, + { + "start": 2450.52, + "end": 2454.22, + "probability": 0.9613 + }, + { + "start": 2455.16, + "end": 2457.86, + "probability": 0.9506 + }, + { + "start": 2458.62, + "end": 2461.02, + "probability": 0.9578 + }, + { + "start": 2461.94, + "end": 2463.54, + "probability": 0.8279 + }, + { + "start": 2464.22, + "end": 2465.08, + "probability": 0.8347 + }, + { + "start": 2465.54, + "end": 2467.76, + "probability": 0.9702 + }, + { + "start": 2468.42, + "end": 2469.8, + "probability": 0.947 + }, + { + "start": 2470.32, + "end": 2472.44, + "probability": 0.9751 + }, + { + "start": 2473.3, + "end": 2475.02, + "probability": 0.9934 + }, + { + "start": 2475.28, + "end": 2477.26, + "probability": 0.9948 + }, + { + "start": 2477.86, + "end": 2479.92, + "probability": 0.9263 + }, + { + "start": 2480.0, + "end": 2481.0, + "probability": 0.9951 + }, + { + "start": 2482.32, + "end": 2483.04, + "probability": 0.6861 + }, + { + "start": 2483.5, + "end": 2487.16, + "probability": 0.992 + }, + { + "start": 2487.16, + "end": 2493.04, + "probability": 0.7993 + }, + { + "start": 2493.66, + "end": 2493.66, + "probability": 0.4443 + }, + { + "start": 2495.24, + "end": 2498.4, + "probability": 0.8816 + }, + { + "start": 2499.32, + "end": 2502.77, + "probability": 0.942 + }, + { + "start": 2503.8, + "end": 2505.54, + "probability": 0.9875 + }, + { + "start": 2505.62, + "end": 2507.14, + "probability": 0.9974 + }, + { + "start": 2507.64, + "end": 2509.6, + "probability": 0.9937 + }, + { + "start": 2510.16, + "end": 2518.92, + "probability": 0.9547 + }, + { + "start": 2519.88, + "end": 2520.8, + "probability": 0.7952 + }, + { + "start": 2521.36, + "end": 2521.72, + "probability": 0.4918 + }, + { + "start": 2528.08, + "end": 2528.32, + "probability": 0.0062 + }, + { + "start": 2528.4, + "end": 2530.72, + "probability": 0.9761 + }, + { + "start": 2531.44, + "end": 2533.44, + "probability": 0.7835 + }, + { + "start": 2535.24, + "end": 2535.52, + "probability": 0.8591 + }, + { + "start": 2542.12, + "end": 2542.58, + "probability": 0.8953 + }, + { + "start": 2544.44, + "end": 2545.8, + "probability": 0.6042 + }, + { + "start": 2546.58, + "end": 2548.3, + "probability": 0.9036 + }, + { + "start": 2548.8, + "end": 2551.44, + "probability": 0.9221 + }, + { + "start": 2551.98, + "end": 2552.72, + "probability": 0.9712 + }, + { + "start": 2566.74, + "end": 2567.56, + "probability": 0.1797 + }, + { + "start": 2579.8, + "end": 2579.9, + "probability": 0.0034 + }, + { + "start": 2579.9, + "end": 2582.8, + "probability": 0.9554 + }, + { + "start": 2583.9, + "end": 2584.84, + "probability": 0.9712 + }, + { + "start": 2586.42, + "end": 2587.6, + "probability": 0.8892 + }, + { + "start": 2589.14, + "end": 2590.4, + "probability": 0.994 + }, + { + "start": 2591.54, + "end": 2593.36, + "probability": 0.9971 + }, + { + "start": 2595.32, + "end": 2595.86, + "probability": 0.9529 + }, + { + "start": 2597.08, + "end": 2599.72, + "probability": 0.9868 + }, + { + "start": 2601.18, + "end": 2601.98, + "probability": 0.9473 + }, + { + "start": 2602.9, + "end": 2603.46, + "probability": 0.9966 + }, + { + "start": 2605.0, + "end": 2605.48, + "probability": 0.5133 + }, + { + "start": 2607.3, + "end": 2610.58, + "probability": 0.9796 + }, + { + "start": 2611.68, + "end": 2612.58, + "probability": 0.8566 + }, + { + "start": 2613.56, + "end": 2618.36, + "probability": 0.9962 + }, + { + "start": 2619.98, + "end": 2622.03, + "probability": 0.942 + }, + { + "start": 2622.62, + "end": 2623.54, + "probability": 0.9459 + }, + { + "start": 2625.32, + "end": 2629.26, + "probability": 0.883 + }, + { + "start": 2630.52, + "end": 2630.76, + "probability": 0.7017 + }, + { + "start": 2631.3, + "end": 2632.26, + "probability": 0.7529 + }, + { + "start": 2633.16, + "end": 2635.28, + "probability": 0.9946 + }, + { + "start": 2636.04, + "end": 2636.62, + "probability": 0.9743 + }, + { + "start": 2638.58, + "end": 2639.4, + "probability": 0.668 + }, + { + "start": 2640.4, + "end": 2642.92, + "probability": 0.9738 + }, + { + "start": 2643.68, + "end": 2646.77, + "probability": 0.5461 + }, + { + "start": 2648.02, + "end": 2650.5, + "probability": 0.9222 + }, + { + "start": 2651.06, + "end": 2656.84, + "probability": 0.88 + }, + { + "start": 2657.72, + "end": 2659.54, + "probability": 0.9727 + }, + { + "start": 2660.8, + "end": 2662.42, + "probability": 0.9971 + }, + { + "start": 2663.38, + "end": 2664.18, + "probability": 0.8997 + }, + { + "start": 2665.2, + "end": 2667.86, + "probability": 0.7399 + }, + { + "start": 2668.4, + "end": 2675.86, + "probability": 0.9877 + }, + { + "start": 2676.72, + "end": 2681.76, + "probability": 0.921 + }, + { + "start": 2683.16, + "end": 2683.54, + "probability": 0.7995 + }, + { + "start": 2684.66, + "end": 2686.54, + "probability": 0.9281 + }, + { + "start": 2688.34, + "end": 2689.84, + "probability": 0.8979 + }, + { + "start": 2690.48, + "end": 2692.44, + "probability": 0.9919 + }, + { + "start": 2692.98, + "end": 2697.86, + "probability": 0.9367 + }, + { + "start": 2697.86, + "end": 2701.12, + "probability": 0.9937 + }, + { + "start": 2702.6, + "end": 2704.87, + "probability": 0.9849 + }, + { + "start": 2705.56, + "end": 2707.22, + "probability": 0.9957 + }, + { + "start": 2707.88, + "end": 2711.08, + "probability": 0.9678 + }, + { + "start": 2711.98, + "end": 2716.16, + "probability": 0.9702 + }, + { + "start": 2716.9, + "end": 2718.78, + "probability": 0.5779 + }, + { + "start": 2720.16, + "end": 2721.0, + "probability": 0.5349 + }, + { + "start": 2721.54, + "end": 2725.28, + "probability": 0.8768 + }, + { + "start": 2725.96, + "end": 2726.42, + "probability": 0.5305 + }, + { + "start": 2726.96, + "end": 2728.2, + "probability": 0.7524 + }, + { + "start": 2729.06, + "end": 2734.32, + "probability": 0.7212 + }, + { + "start": 2735.48, + "end": 2738.26, + "probability": 0.8986 + }, + { + "start": 2739.88, + "end": 2742.74, + "probability": 0.9523 + }, + { + "start": 2743.34, + "end": 2746.12, + "probability": 0.9938 + }, + { + "start": 2747.16, + "end": 2747.24, + "probability": 0.6724 + }, + { + "start": 2747.78, + "end": 2752.2, + "probability": 0.9953 + }, + { + "start": 2753.16, + "end": 2753.82, + "probability": 0.7016 + }, + { + "start": 2754.93, + "end": 2757.52, + "probability": 0.9204 + }, + { + "start": 2758.32, + "end": 2759.9, + "probability": 0.8766 + }, + { + "start": 2760.92, + "end": 2762.92, + "probability": 0.6959 + }, + { + "start": 2763.32, + "end": 2765.76, + "probability": 0.9602 + }, + { + "start": 2766.3, + "end": 2769.62, + "probability": 0.9803 + }, + { + "start": 2770.86, + "end": 2771.46, + "probability": 0.8089 + }, + { + "start": 2772.14, + "end": 2773.68, + "probability": 0.5652 + }, + { + "start": 2774.24, + "end": 2776.5, + "probability": 0.8763 + }, + { + "start": 2776.92, + "end": 2779.12, + "probability": 0.983 + }, + { + "start": 2780.24, + "end": 2781.5, + "probability": 0.9904 + }, + { + "start": 2781.72, + "end": 2783.16, + "probability": 0.9816 + }, + { + "start": 2783.88, + "end": 2787.26, + "probability": 0.9929 + }, + { + "start": 2787.62, + "end": 2788.1, + "probability": 0.8921 + }, + { + "start": 2788.54, + "end": 2789.26, + "probability": 0.9404 + }, + { + "start": 2789.92, + "end": 2792.2, + "probability": 0.8762 + }, + { + "start": 2793.44, + "end": 2794.32, + "probability": 0.6817 + }, + { + "start": 2795.18, + "end": 2795.86, + "probability": 0.3819 + }, + { + "start": 2796.7, + "end": 2797.32, + "probability": 0.8119 + }, + { + "start": 2797.98, + "end": 2801.46, + "probability": 0.8602 + }, + { + "start": 2802.2, + "end": 2805.24, + "probability": 0.9795 + }, + { + "start": 2805.96, + "end": 2810.42, + "probability": 0.9087 + }, + { + "start": 2811.64, + "end": 2812.92, + "probability": 0.9322 + }, + { + "start": 2813.68, + "end": 2814.36, + "probability": 0.9681 + }, + { + "start": 2815.44, + "end": 2818.08, + "probability": 0.9834 + }, + { + "start": 2818.62, + "end": 2820.49, + "probability": 0.856 + }, + { + "start": 2821.34, + "end": 2822.52, + "probability": 0.6834 + }, + { + "start": 2822.94, + "end": 2824.72, + "probability": 0.9228 + }, + { + "start": 2826.08, + "end": 2826.92, + "probability": 0.9693 + }, + { + "start": 2827.76, + "end": 2828.62, + "probability": 0.8383 + }, + { + "start": 2829.46, + "end": 2834.04, + "probability": 0.9865 + }, + { + "start": 2834.8, + "end": 2836.2, + "probability": 0.8779 + }, + { + "start": 2837.06, + "end": 2839.52, + "probability": 0.927 + }, + { + "start": 2840.76, + "end": 2843.36, + "probability": 0.9518 + }, + { + "start": 2844.32, + "end": 2845.0, + "probability": 0.9321 + }, + { + "start": 2845.98, + "end": 2850.9, + "probability": 0.9888 + }, + { + "start": 2851.78, + "end": 2853.36, + "probability": 0.9553 + }, + { + "start": 2854.12, + "end": 2857.52, + "probability": 0.9679 + }, + { + "start": 2858.08, + "end": 2859.72, + "probability": 0.9129 + }, + { + "start": 2860.38, + "end": 2862.42, + "probability": 0.84 + }, + { + "start": 2863.14, + "end": 2865.06, + "probability": 0.7649 + }, + { + "start": 2865.8, + "end": 2866.08, + "probability": 0.8146 + }, + { + "start": 2866.64, + "end": 2868.48, + "probability": 0.7326 + }, + { + "start": 2869.48, + "end": 2871.0, + "probability": 0.794 + }, + { + "start": 2872.2, + "end": 2873.12, + "probability": 0.9693 + }, + { + "start": 2874.78, + "end": 2875.44, + "probability": 0.8611 + }, + { + "start": 2876.38, + "end": 2878.62, + "probability": 0.9036 + }, + { + "start": 2879.14, + "end": 2882.96, + "probability": 0.9943 + }, + { + "start": 2884.42, + "end": 2889.2, + "probability": 0.9899 + }, + { + "start": 2889.64, + "end": 2892.5, + "probability": 0.7869 + }, + { + "start": 2892.92, + "end": 2895.84, + "probability": 0.7972 + }, + { + "start": 2896.96, + "end": 2900.66, + "probability": 0.6169 + }, + { + "start": 2901.48, + "end": 2901.82, + "probability": 0.6973 + }, + { + "start": 2902.4, + "end": 2903.26, + "probability": 0.7066 + }, + { + "start": 2904.36, + "end": 2906.72, + "probability": 0.8988 + }, + { + "start": 2907.68, + "end": 2911.26, + "probability": 0.7498 + }, + { + "start": 2912.38, + "end": 2913.08, + "probability": 0.8342 + }, + { + "start": 2913.7, + "end": 2915.68, + "probability": 0.996 + }, + { + "start": 2916.2, + "end": 2917.6, + "probability": 0.8064 + }, + { + "start": 2918.16, + "end": 2920.98, + "probability": 0.9709 + }, + { + "start": 2921.78, + "end": 2925.14, + "probability": 0.9819 + }, + { + "start": 2925.66, + "end": 2926.22, + "probability": 0.9895 + }, + { + "start": 2926.78, + "end": 2926.92, + "probability": 0.7232 + }, + { + "start": 2927.72, + "end": 2928.54, + "probability": 0.9741 + }, + { + "start": 2929.44, + "end": 2933.94, + "probability": 0.9941 + }, + { + "start": 2934.98, + "end": 2936.94, + "probability": 0.9677 + }, + { + "start": 2937.62, + "end": 2938.32, + "probability": 0.9827 + }, + { + "start": 2939.04, + "end": 2943.02, + "probability": 0.9868 + }, + { + "start": 2943.88, + "end": 2944.48, + "probability": 0.8326 + }, + { + "start": 2945.32, + "end": 2946.6, + "probability": 0.5114 + }, + { + "start": 2947.2, + "end": 2948.42, + "probability": 0.4733 + }, + { + "start": 2948.96, + "end": 2951.4, + "probability": 0.848 + }, + { + "start": 2952.32, + "end": 2953.76, + "probability": 0.9681 + }, + { + "start": 2954.44, + "end": 2957.84, + "probability": 0.9895 + }, + { + "start": 2959.0, + "end": 2961.02, + "probability": 0.9775 + }, + { + "start": 2961.74, + "end": 2964.64, + "probability": 0.9959 + }, + { + "start": 2965.22, + "end": 2968.1, + "probability": 0.8794 + }, + { + "start": 2969.06, + "end": 2973.12, + "probability": 0.8804 + }, + { + "start": 2973.5, + "end": 2977.44, + "probability": 0.9863 + }, + { + "start": 2977.92, + "end": 2980.3, + "probability": 0.9979 + }, + { + "start": 2981.22, + "end": 2987.12, + "probability": 0.9854 + }, + { + "start": 2987.12, + "end": 2989.5, + "probability": 0.8397 + }, + { + "start": 2990.24, + "end": 2991.7, + "probability": 0.8615 + }, + { + "start": 2992.6, + "end": 2994.15, + "probability": 0.7849 + }, + { + "start": 2995.32, + "end": 2996.56, + "probability": 0.8709 + }, + { + "start": 2997.2, + "end": 2999.28, + "probability": 0.8475 + }, + { + "start": 3003.72, + "end": 3005.02, + "probability": 0.5868 + }, + { + "start": 3006.64, + "end": 3007.13, + "probability": 0.7172 + }, + { + "start": 3009.68, + "end": 3011.3, + "probability": 0.9957 + }, + { + "start": 3012.6, + "end": 3013.34, + "probability": 0.9453 + }, + { + "start": 3014.0, + "end": 3015.26, + "probability": 0.9987 + }, + { + "start": 3016.7, + "end": 3019.2, + "probability": 0.9392 + }, + { + "start": 3020.22, + "end": 3021.56, + "probability": 0.9307 + }, + { + "start": 3022.64, + "end": 3023.76, + "probability": 0.9235 + }, + { + "start": 3024.84, + "end": 3027.06, + "probability": 0.8703 + }, + { + "start": 3027.78, + "end": 3028.34, + "probability": 0.9197 + }, + { + "start": 3029.3, + "end": 3030.16, + "probability": 0.7643 + }, + { + "start": 3030.88, + "end": 3036.06, + "probability": 0.9583 + }, + { + "start": 3036.72, + "end": 3037.74, + "probability": 0.8443 + }, + { + "start": 3038.34, + "end": 3039.64, + "probability": 0.9213 + }, + { + "start": 3042.32, + "end": 3044.82, + "probability": 0.9946 + }, + { + "start": 3044.82, + "end": 3047.2, + "probability": 0.9961 + }, + { + "start": 3049.48, + "end": 3052.26, + "probability": 0.9606 + }, + { + "start": 3053.62, + "end": 3054.33, + "probability": 0.894 + }, + { + "start": 3055.64, + "end": 3057.08, + "probability": 0.996 + }, + { + "start": 3058.1, + "end": 3063.8, + "probability": 0.9971 + }, + { + "start": 3065.26, + "end": 3066.76, + "probability": 0.6513 + }, + { + "start": 3068.38, + "end": 3069.82, + "probability": 0.9546 + }, + { + "start": 3070.94, + "end": 3073.14, + "probability": 0.9967 + }, + { + "start": 3073.82, + "end": 3075.26, + "probability": 0.9621 + }, + { + "start": 3076.78, + "end": 3078.32, + "probability": 0.9949 + }, + { + "start": 3079.12, + "end": 3080.72, + "probability": 0.9292 + }, + { + "start": 3081.78, + "end": 3083.4, + "probability": 0.9975 + }, + { + "start": 3084.04, + "end": 3085.12, + "probability": 0.9982 + }, + { + "start": 3086.68, + "end": 3088.32, + "probability": 0.674 + }, + { + "start": 3089.38, + "end": 3092.94, + "probability": 0.9974 + }, + { + "start": 3094.34, + "end": 3095.24, + "probability": 0.9962 + }, + { + "start": 3096.2, + "end": 3097.31, + "probability": 0.9615 + }, + { + "start": 3098.04, + "end": 3099.82, + "probability": 0.9908 + }, + { + "start": 3101.1, + "end": 3102.22, + "probability": 0.963 + }, + { + "start": 3104.4, + "end": 3105.08, + "probability": 0.7974 + }, + { + "start": 3106.06, + "end": 3107.88, + "probability": 0.7728 + }, + { + "start": 3108.58, + "end": 3111.64, + "probability": 0.9829 + }, + { + "start": 3112.5, + "end": 3114.52, + "probability": 0.9603 + }, + { + "start": 3115.58, + "end": 3117.38, + "probability": 0.9944 + }, + { + "start": 3118.46, + "end": 3121.2, + "probability": 0.9542 + }, + { + "start": 3122.16, + "end": 3128.42, + "probability": 0.998 + }, + { + "start": 3129.88, + "end": 3131.02, + "probability": 0.7188 + }, + { + "start": 3131.76, + "end": 3132.66, + "probability": 0.9769 + }, + { + "start": 3134.6, + "end": 3135.96, + "probability": 0.9885 + }, + { + "start": 3136.9, + "end": 3138.34, + "probability": 0.9948 + }, + { + "start": 3139.52, + "end": 3142.37, + "probability": 0.9934 + }, + { + "start": 3143.28, + "end": 3144.32, + "probability": 0.6072 + }, + { + "start": 3145.0, + "end": 3146.02, + "probability": 0.9024 + }, + { + "start": 3146.16, + "end": 3148.9, + "probability": 0.872 + }, + { + "start": 3149.08, + "end": 3150.4, + "probability": 0.9688 + }, + { + "start": 3151.0, + "end": 3152.1, + "probability": 0.9926 + }, + { + "start": 3154.74, + "end": 3158.04, + "probability": 0.9663 + }, + { + "start": 3158.7, + "end": 3159.54, + "probability": 0.98 + }, + { + "start": 3160.42, + "end": 3162.94, + "probability": 0.8953 + }, + { + "start": 3163.78, + "end": 3164.4, + "probability": 0.7558 + }, + { + "start": 3165.4, + "end": 3167.46, + "probability": 0.8179 + }, + { + "start": 3168.06, + "end": 3170.16, + "probability": 0.9567 + }, + { + "start": 3171.7, + "end": 3173.18, + "probability": 0.9895 + }, + { + "start": 3174.12, + "end": 3176.06, + "probability": 0.9973 + }, + { + "start": 3178.16, + "end": 3181.2, + "probability": 0.9663 + }, + { + "start": 3181.86, + "end": 3183.46, + "probability": 0.9972 + }, + { + "start": 3184.44, + "end": 3185.14, + "probability": 0.7443 + }, + { + "start": 3186.68, + "end": 3188.48, + "probability": 0.867 + }, + { + "start": 3189.62, + "end": 3192.44, + "probability": 0.9974 + }, + { + "start": 3193.24, + "end": 3195.72, + "probability": 0.9921 + }, + { + "start": 3197.06, + "end": 3198.24, + "probability": 0.9197 + }, + { + "start": 3199.34, + "end": 3203.56, + "probability": 0.9568 + }, + { + "start": 3204.92, + "end": 3208.68, + "probability": 0.7925 + }, + { + "start": 3209.38, + "end": 3211.89, + "probability": 0.9266 + }, + { + "start": 3213.6, + "end": 3215.2, + "probability": 0.7621 + }, + { + "start": 3216.2, + "end": 3219.28, + "probability": 0.9576 + }, + { + "start": 3219.9, + "end": 3221.1, + "probability": 0.9443 + }, + { + "start": 3222.44, + "end": 3223.1, + "probability": 0.906 + }, + { + "start": 3225.18, + "end": 3229.22, + "probability": 0.86 + }, + { + "start": 3230.6, + "end": 3233.76, + "probability": 0.9331 + }, + { + "start": 3234.76, + "end": 3236.0, + "probability": 0.9087 + }, + { + "start": 3237.16, + "end": 3239.72, + "probability": 0.6254 + }, + { + "start": 3240.84, + "end": 3241.72, + "probability": 0.7981 + }, + { + "start": 3242.34, + "end": 3243.42, + "probability": 0.975 + }, + { + "start": 3244.26, + "end": 3244.96, + "probability": 0.8955 + }, + { + "start": 3246.28, + "end": 3248.54, + "probability": 0.9978 + }, + { + "start": 3249.36, + "end": 3252.18, + "probability": 0.8403 + }, + { + "start": 3252.86, + "end": 3254.06, + "probability": 0.9304 + }, + { + "start": 3254.92, + "end": 3256.52, + "probability": 0.7829 + }, + { + "start": 3256.68, + "end": 3257.7, + "probability": 0.998 + }, + { + "start": 3259.24, + "end": 3260.94, + "probability": 0.9417 + }, + { + "start": 3261.94, + "end": 3263.3, + "probability": 0.9888 + }, + { + "start": 3264.34, + "end": 3266.8, + "probability": 0.9827 + }, + { + "start": 3267.76, + "end": 3268.44, + "probability": 0.7669 + }, + { + "start": 3269.1, + "end": 3270.29, + "probability": 0.9641 + }, + { + "start": 3271.4, + "end": 3273.5, + "probability": 0.5825 + }, + { + "start": 3274.02, + "end": 3274.76, + "probability": 0.6789 + }, + { + "start": 3275.46, + "end": 3278.24, + "probability": 0.9785 + }, + { + "start": 3279.76, + "end": 3281.02, + "probability": 0.9934 + }, + { + "start": 3282.1, + "end": 3282.92, + "probability": 0.9557 + }, + { + "start": 3283.66, + "end": 3285.46, + "probability": 0.8936 + }, + { + "start": 3287.02, + "end": 3287.96, + "probability": 0.9608 + }, + { + "start": 3289.22, + "end": 3292.18, + "probability": 0.9697 + }, + { + "start": 3292.48, + "end": 3293.18, + "probability": 0.6742 + }, + { + "start": 3293.38, + "end": 3294.24, + "probability": 0.9396 + }, + { + "start": 3295.08, + "end": 3296.96, + "probability": 0.8987 + }, + { + "start": 3297.52, + "end": 3299.78, + "probability": 0.9473 + }, + { + "start": 3300.6, + "end": 3301.86, + "probability": 0.7995 + }, + { + "start": 3303.32, + "end": 3303.96, + "probability": 0.7229 + }, + { + "start": 3304.58, + "end": 3305.32, + "probability": 0.8898 + }, + { + "start": 3306.0, + "end": 3306.5, + "probability": 0.8032 + }, + { + "start": 3307.58, + "end": 3308.36, + "probability": 0.9129 + }, + { + "start": 3308.84, + "end": 3314.12, + "probability": 0.9559 + }, + { + "start": 3314.12, + "end": 3316.74, + "probability": 0.978 + }, + { + "start": 3318.1, + "end": 3320.26, + "probability": 0.7703 + }, + { + "start": 3321.0, + "end": 3324.42, + "probability": 0.9983 + }, + { + "start": 3326.26, + "end": 3330.76, + "probability": 0.9961 + }, + { + "start": 3331.64, + "end": 3334.58, + "probability": 0.9991 + }, + { + "start": 3334.58, + "end": 3337.98, + "probability": 0.9983 + }, + { + "start": 3339.34, + "end": 3340.66, + "probability": 0.9811 + }, + { + "start": 3341.22, + "end": 3343.62, + "probability": 0.998 + }, + { + "start": 3344.0, + "end": 3345.74, + "probability": 0.9163 + }, + { + "start": 3346.34, + "end": 3348.9, + "probability": 0.9893 + }, + { + "start": 3349.84, + "end": 3357.22, + "probability": 0.9816 + }, + { + "start": 3357.92, + "end": 3359.44, + "probability": 0.9978 + }, + { + "start": 3360.9, + "end": 3362.48, + "probability": 0.8749 + }, + { + "start": 3363.14, + "end": 3363.6, + "probability": 0.9226 + }, + { + "start": 3364.36, + "end": 3365.96, + "probability": 0.9944 + }, + { + "start": 3366.6, + "end": 3370.24, + "probability": 0.9452 + }, + { + "start": 3370.24, + "end": 3373.6, + "probability": 0.9896 + }, + { + "start": 3375.64, + "end": 3376.78, + "probability": 0.7765 + }, + { + "start": 3377.42, + "end": 3380.08, + "probability": 0.9775 + }, + { + "start": 3380.44, + "end": 3381.04, + "probability": 0.8629 + }, + { + "start": 3382.54, + "end": 3384.0, + "probability": 0.8296 + }, + { + "start": 3384.54, + "end": 3386.24, + "probability": 0.9856 + }, + { + "start": 3386.94, + "end": 3388.76, + "probability": 0.8958 + }, + { + "start": 3389.66, + "end": 3391.18, + "probability": 0.9054 + }, + { + "start": 3393.42, + "end": 3395.3, + "probability": 0.9672 + }, + { + "start": 3395.96, + "end": 3398.8, + "probability": 0.985 + }, + { + "start": 3399.42, + "end": 3405.38, + "probability": 0.987 + }, + { + "start": 3406.34, + "end": 3408.78, + "probability": 0.9758 + }, + { + "start": 3409.32, + "end": 3410.0, + "probability": 0.7204 + }, + { + "start": 3411.26, + "end": 3411.54, + "probability": 0.9799 + }, + { + "start": 3412.98, + "end": 3415.2, + "probability": 0.9824 + }, + { + "start": 3415.96, + "end": 3417.36, + "probability": 0.9852 + }, + { + "start": 3418.24, + "end": 3419.34, + "probability": 0.9846 + }, + { + "start": 3419.88, + "end": 3420.9, + "probability": 0.9924 + }, + { + "start": 3422.16, + "end": 3424.12, + "probability": 0.7672 + }, + { + "start": 3424.94, + "end": 3426.16, + "probability": 0.9776 + }, + { + "start": 3426.76, + "end": 3428.16, + "probability": 0.9709 + }, + { + "start": 3428.84, + "end": 3434.02, + "probability": 0.9966 + }, + { + "start": 3435.1, + "end": 3437.58, + "probability": 0.6923 + }, + { + "start": 3438.88, + "end": 3441.1, + "probability": 0.9961 + }, + { + "start": 3441.74, + "end": 3443.1, + "probability": 0.7051 + }, + { + "start": 3443.68, + "end": 3445.62, + "probability": 0.8865 + }, + { + "start": 3446.42, + "end": 3449.15, + "probability": 0.996 + }, + { + "start": 3450.1, + "end": 3452.26, + "probability": 0.6641 + }, + { + "start": 3452.98, + "end": 3455.08, + "probability": 0.9908 + }, + { + "start": 3456.08, + "end": 3459.18, + "probability": 0.9691 + }, + { + "start": 3460.06, + "end": 3463.18, + "probability": 0.9142 + }, + { + "start": 3464.3, + "end": 3471.4, + "probability": 0.9987 + }, + { + "start": 3471.4, + "end": 3472.82, + "probability": 0.33 + }, + { + "start": 3473.44, + "end": 3477.31, + "probability": 0.9813 + }, + { + "start": 3478.02, + "end": 3480.66, + "probability": 0.993 + }, + { + "start": 3482.12, + "end": 3485.22, + "probability": 0.8751 + }, + { + "start": 3485.94, + "end": 3487.62, + "probability": 0.9982 + }, + { + "start": 3488.24, + "end": 3492.04, + "probability": 0.9893 + }, + { + "start": 3493.12, + "end": 3495.08, + "probability": 0.9643 + }, + { + "start": 3495.72, + "end": 3497.18, + "probability": 0.9555 + }, + { + "start": 3497.66, + "end": 3502.12, + "probability": 0.9938 + }, + { + "start": 3502.38, + "end": 3503.6, + "probability": 0.9007 + }, + { + "start": 3505.28, + "end": 3506.96, + "probability": 0.653 + }, + { + "start": 3507.66, + "end": 3508.3, + "probability": 0.8624 + }, + { + "start": 3508.96, + "end": 3511.8, + "probability": 0.9528 + }, + { + "start": 3512.74, + "end": 3515.76, + "probability": 0.9923 + }, + { + "start": 3517.0, + "end": 3518.64, + "probability": 0.9662 + }, + { + "start": 3519.52, + "end": 3524.06, + "probability": 0.998 + }, + { + "start": 3524.64, + "end": 3526.28, + "probability": 0.9959 + }, + { + "start": 3527.7, + "end": 3529.64, + "probability": 0.9937 + }, + { + "start": 3530.44, + "end": 3533.68, + "probability": 0.9871 + }, + { + "start": 3535.18, + "end": 3537.36, + "probability": 0.9956 + }, + { + "start": 3538.4, + "end": 3540.52, + "probability": 0.9426 + }, + { + "start": 3540.62, + "end": 3542.28, + "probability": 0.7437 + }, + { + "start": 3543.36, + "end": 3545.74, + "probability": 0.9978 + }, + { + "start": 3546.44, + "end": 3547.1, + "probability": 0.9927 + }, + { + "start": 3548.3, + "end": 3550.24, + "probability": 0.991 + }, + { + "start": 3550.96, + "end": 3554.08, + "probability": 0.8957 + }, + { + "start": 3555.12, + "end": 3557.36, + "probability": 0.9861 + }, + { + "start": 3558.54, + "end": 3559.5, + "probability": 0.6682 + }, + { + "start": 3560.5, + "end": 3562.18, + "probability": 0.9978 + }, + { + "start": 3563.3, + "end": 3566.76, + "probability": 0.9938 + }, + { + "start": 3567.4, + "end": 3569.1, + "probability": 0.9136 + }, + { + "start": 3569.96, + "end": 3572.08, + "probability": 0.8436 + }, + { + "start": 3573.44, + "end": 3575.28, + "probability": 0.7666 + }, + { + "start": 3575.88, + "end": 3577.44, + "probability": 0.9692 + }, + { + "start": 3578.06, + "end": 3579.88, + "probability": 0.9717 + }, + { + "start": 3580.92, + "end": 3582.74, + "probability": 0.9955 + }, + { + "start": 3583.5, + "end": 3586.08, + "probability": 0.949 + }, + { + "start": 3586.94, + "end": 3589.36, + "probability": 0.9924 + }, + { + "start": 3589.98, + "end": 3591.42, + "probability": 0.9858 + }, + { + "start": 3591.98, + "end": 3592.84, + "probability": 0.9863 + }, + { + "start": 3593.36, + "end": 3593.9, + "probability": 0.542 + }, + { + "start": 3594.62, + "end": 3595.64, + "probability": 0.8912 + }, + { + "start": 3596.2, + "end": 3599.18, + "probability": 0.926 + }, + { + "start": 3599.92, + "end": 3601.16, + "probability": 0.9991 + }, + { + "start": 3601.88, + "end": 3605.74, + "probability": 0.9639 + }, + { + "start": 3606.42, + "end": 3607.38, + "probability": 0.5037 + }, + { + "start": 3608.16, + "end": 3609.58, + "probability": 0.9997 + }, + { + "start": 3610.38, + "end": 3611.96, + "probability": 0.8216 + }, + { + "start": 3612.48, + "end": 3616.16, + "probability": 0.9901 + }, + { + "start": 3616.78, + "end": 3617.78, + "probability": 0.993 + }, + { + "start": 3619.02, + "end": 3620.78, + "probability": 0.9991 + }, + { + "start": 3621.04, + "end": 3622.48, + "probability": 0.9985 + }, + { + "start": 3623.7, + "end": 3626.62, + "probability": 0.8886 + }, + { + "start": 3627.16, + "end": 3628.42, + "probability": 0.8545 + }, + { + "start": 3628.92, + "end": 3631.02, + "probability": 0.9739 + }, + { + "start": 3631.6, + "end": 3632.76, + "probability": 0.9907 + }, + { + "start": 3633.42, + "end": 3634.5, + "probability": 0.9984 + }, + { + "start": 3635.12, + "end": 3636.28, + "probability": 0.999 + }, + { + "start": 3636.9, + "end": 3638.46, + "probability": 0.9367 + }, + { + "start": 3639.58, + "end": 3641.44, + "probability": 0.9346 + }, + { + "start": 3642.32, + "end": 3644.38, + "probability": 0.9191 + }, + { + "start": 3645.14, + "end": 3646.64, + "probability": 0.9838 + }, + { + "start": 3647.32, + "end": 3649.4, + "probability": 0.9897 + }, + { + "start": 3650.26, + "end": 3652.34, + "probability": 0.9974 + }, + { + "start": 3652.88, + "end": 3654.3, + "probability": 0.9945 + }, + { + "start": 3655.58, + "end": 3657.04, + "probability": 0.6469 + }, + { + "start": 3658.1, + "end": 3659.55, + "probability": 0.9985 + }, + { + "start": 3660.58, + "end": 3661.36, + "probability": 0.7575 + }, + { + "start": 3662.44, + "end": 3663.74, + "probability": 0.9328 + }, + { + "start": 3664.34, + "end": 3667.1, + "probability": 0.995 + }, + { + "start": 3667.94, + "end": 3670.22, + "probability": 0.9236 + }, + { + "start": 3670.9, + "end": 3672.76, + "probability": 0.8771 + }, + { + "start": 3673.36, + "end": 3677.46, + "probability": 0.9697 + }, + { + "start": 3678.62, + "end": 3679.88, + "probability": 0.9828 + }, + { + "start": 3680.5, + "end": 3682.14, + "probability": 0.8239 + }, + { + "start": 3683.0, + "end": 3683.94, + "probability": 0.9164 + }, + { + "start": 3685.46, + "end": 3689.22, + "probability": 0.9929 + }, + { + "start": 3689.78, + "end": 3690.62, + "probability": 0.8899 + }, + { + "start": 3691.52, + "end": 3693.88, + "probability": 0.9731 + }, + { + "start": 3694.42, + "end": 3694.92, + "probability": 0.9867 + }, + { + "start": 3696.16, + "end": 3697.76, + "probability": 0.9982 + }, + { + "start": 3698.84, + "end": 3701.78, + "probability": 0.9859 + }, + { + "start": 3702.44, + "end": 3707.9, + "probability": 0.8984 + }, + { + "start": 3709.14, + "end": 3709.74, + "probability": 0.9312 + }, + { + "start": 3710.96, + "end": 3712.1, + "probability": 0.8772 + }, + { + "start": 3712.28, + "end": 3712.96, + "probability": 0.4696 + }, + { + "start": 3712.98, + "end": 3713.7, + "probability": 0.6429 + }, + { + "start": 3714.64, + "end": 3716.82, + "probability": 0.9705 + }, + { + "start": 3717.4, + "end": 3720.96, + "probability": 0.9902 + }, + { + "start": 3721.9, + "end": 3724.62, + "probability": 0.998 + }, + { + "start": 3725.24, + "end": 3726.24, + "probability": 0.9598 + }, + { + "start": 3727.28, + "end": 3730.18, + "probability": 0.9932 + }, + { + "start": 3730.94, + "end": 3731.88, + "probability": 0.8405 + }, + { + "start": 3733.08, + "end": 3736.18, + "probability": 0.9792 + }, + { + "start": 3736.86, + "end": 3738.68, + "probability": 0.9988 + }, + { + "start": 3739.86, + "end": 3740.78, + "probability": 0.9142 + }, + { + "start": 3741.44, + "end": 3745.52, + "probability": 0.9409 + }, + { + "start": 3746.42, + "end": 3748.44, + "probability": 0.9282 + }, + { + "start": 3749.18, + "end": 3751.5, + "probability": 0.9946 + }, + { + "start": 3752.24, + "end": 3753.78, + "probability": 0.8137 + }, + { + "start": 3753.92, + "end": 3755.98, + "probability": 0.9461 + }, + { + "start": 3756.12, + "end": 3756.7, + "probability": 0.8625 + }, + { + "start": 3757.12, + "end": 3758.0, + "probability": 0.961 + }, + { + "start": 3759.08, + "end": 3761.6, + "probability": 0.9963 + }, + { + "start": 3761.6, + "end": 3765.72, + "probability": 0.9819 + }, + { + "start": 3766.6, + "end": 3766.92, + "probability": 0.9077 + }, + { + "start": 3768.5, + "end": 3770.92, + "probability": 0.9318 + }, + { + "start": 3771.6, + "end": 3772.46, + "probability": 0.7322 + }, + { + "start": 3773.18, + "end": 3774.5, + "probability": 0.8662 + }, + { + "start": 3775.16, + "end": 3777.96, + "probability": 0.9928 + }, + { + "start": 3777.96, + "end": 3781.44, + "probability": 0.9791 + }, + { + "start": 3782.84, + "end": 3783.48, + "probability": 0.8067 + }, + { + "start": 3783.58, + "end": 3784.34, + "probability": 0.7629 + }, + { + "start": 3784.4, + "end": 3787.26, + "probability": 0.9981 + }, + { + "start": 3787.74, + "end": 3790.0, + "probability": 0.9902 + }, + { + "start": 3790.62, + "end": 3792.12, + "probability": 0.9961 + }, + { + "start": 3793.3, + "end": 3795.88, + "probability": 0.9626 + }, + { + "start": 3796.54, + "end": 3800.52, + "probability": 0.9773 + }, + { + "start": 3801.16, + "end": 3804.02, + "probability": 0.995 + }, + { + "start": 3805.3, + "end": 3806.2, + "probability": 0.751 + }, + { + "start": 3806.38, + "end": 3807.36, + "probability": 0.8916 + }, + { + "start": 3807.44, + "end": 3810.76, + "probability": 0.9951 + }, + { + "start": 3811.98, + "end": 3813.5, + "probability": 0.9333 + }, + { + "start": 3814.24, + "end": 3815.88, + "probability": 0.9868 + }, + { + "start": 3817.22, + "end": 3822.48, + "probability": 0.9646 + }, + { + "start": 3823.26, + "end": 3823.98, + "probability": 0.8733 + }, + { + "start": 3824.62, + "end": 3827.32, + "probability": 0.9863 + }, + { + "start": 3827.96, + "end": 3829.52, + "probability": 0.9487 + }, + { + "start": 3830.14, + "end": 3832.68, + "probability": 0.3222 + }, + { + "start": 3834.16, + "end": 3836.16, + "probability": 0.7265 + }, + { + "start": 3837.38, + "end": 3838.36, + "probability": 0.6743 + }, + { + "start": 3839.02, + "end": 3841.56, + "probability": 0.9676 + }, + { + "start": 3842.06, + "end": 3844.84, + "probability": 0.8486 + }, + { + "start": 3848.32, + "end": 3850.96, + "probability": 0.8103 + }, + { + "start": 3853.52, + "end": 3854.34, + "probability": 0.7253 + }, + { + "start": 3855.48, + "end": 3856.38, + "probability": 0.8879 + }, + { + "start": 3858.66, + "end": 3860.06, + "probability": 0.8634 + }, + { + "start": 3860.16, + "end": 3861.0, + "probability": 0.7926 + }, + { + "start": 3861.38, + "end": 3865.26, + "probability": 0.9377 + }, + { + "start": 3867.24, + "end": 3869.1, + "probability": 0.9946 + }, + { + "start": 3871.46, + "end": 3872.06, + "probability": 0.9597 + }, + { + "start": 3872.84, + "end": 3873.4, + "probability": 0.9716 + }, + { + "start": 3873.94, + "end": 3874.14, + "probability": 0.4899 + }, + { + "start": 3876.32, + "end": 3878.06, + "probability": 0.9388 + }, + { + "start": 3879.26, + "end": 3882.5, + "probability": 0.778 + }, + { + "start": 3883.34, + "end": 3884.72, + "probability": 0.8947 + }, + { + "start": 3886.46, + "end": 3887.86, + "probability": 0.5975 + }, + { + "start": 3887.9, + "end": 3889.48, + "probability": 0.9541 + }, + { + "start": 3889.86, + "end": 3890.4, + "probability": 0.9799 + }, + { + "start": 3890.7, + "end": 3892.36, + "probability": 0.8411 + }, + { + "start": 3893.38, + "end": 3894.07, + "probability": 0.9786 + }, + { + "start": 3895.06, + "end": 3896.32, + "probability": 0.9829 + }, + { + "start": 3897.3, + "end": 3897.86, + "probability": 0.8002 + }, + { + "start": 3899.74, + "end": 3903.04, + "probability": 0.982 + }, + { + "start": 3903.38, + "end": 3906.16, + "probability": 0.9919 + }, + { + "start": 3906.3, + "end": 3907.92, + "probability": 0.8958 + }, + { + "start": 3908.02, + "end": 3909.32, + "probability": 0.9922 + }, + { + "start": 3910.98, + "end": 3916.12, + "probability": 0.9946 + }, + { + "start": 3917.32, + "end": 3919.8, + "probability": 0.9869 + }, + { + "start": 3921.62, + "end": 3922.82, + "probability": 0.6982 + }, + { + "start": 3924.18, + "end": 3926.6, + "probability": 0.9157 + }, + { + "start": 3927.58, + "end": 3928.84, + "probability": 0.9314 + }, + { + "start": 3929.5, + "end": 3934.02, + "probability": 0.9769 + }, + { + "start": 3936.16, + "end": 3936.92, + "probability": 0.9985 + }, + { + "start": 3937.88, + "end": 3942.48, + "probability": 0.9963 + }, + { + "start": 3944.18, + "end": 3946.66, + "probability": 0.9982 + }, + { + "start": 3947.82, + "end": 3948.6, + "probability": 0.8683 + }, + { + "start": 3949.12, + "end": 3951.72, + "probability": 0.9971 + }, + { + "start": 3952.84, + "end": 3956.74, + "probability": 0.9935 + }, + { + "start": 3957.72, + "end": 3959.08, + "probability": 0.9976 + }, + { + "start": 3960.16, + "end": 3961.02, + "probability": 0.9946 + }, + { + "start": 3961.64, + "end": 3963.8, + "probability": 0.9981 + }, + { + "start": 3964.68, + "end": 3965.28, + "probability": 0.8291 + }, + { + "start": 3965.96, + "end": 3966.72, + "probability": 0.732 + }, + { + "start": 3967.3, + "end": 3969.66, + "probability": 0.9877 + }, + { + "start": 3971.7, + "end": 3976.52, + "probability": 0.9898 + }, + { + "start": 3977.78, + "end": 3979.82, + "probability": 0.9923 + }, + { + "start": 3981.56, + "end": 3983.72, + "probability": 0.9969 + }, + { + "start": 3984.76, + "end": 3986.24, + "probability": 0.9897 + }, + { + "start": 3987.3, + "end": 3989.08, + "probability": 0.9502 + }, + { + "start": 3990.06, + "end": 3991.71, + "probability": 0.9736 + }, + { + "start": 3993.64, + "end": 3997.42, + "probability": 0.9591 + }, + { + "start": 3998.04, + "end": 3999.18, + "probability": 0.6573 + }, + { + "start": 4000.04, + "end": 4003.6, + "probability": 0.9099 + }, + { + "start": 4004.34, + "end": 4005.7, + "probability": 0.7103 + }, + { + "start": 4006.32, + "end": 4007.6, + "probability": 0.9776 + }, + { + "start": 4008.54, + "end": 4009.84, + "probability": 0.925 + }, + { + "start": 4010.74, + "end": 4013.14, + "probability": 0.9424 + }, + { + "start": 4013.66, + "end": 4014.66, + "probability": 0.9021 + }, + { + "start": 4016.2, + "end": 4017.62, + "probability": 0.9762 + }, + { + "start": 4018.44, + "end": 4022.3, + "probability": 0.9793 + }, + { + "start": 4022.94, + "end": 4024.92, + "probability": 0.896 + }, + { + "start": 4026.08, + "end": 4027.59, + "probability": 0.9927 + }, + { + "start": 4028.64, + "end": 4033.72, + "probability": 0.9878 + }, + { + "start": 4034.28, + "end": 4035.86, + "probability": 0.9072 + }, + { + "start": 4037.04, + "end": 4037.54, + "probability": 0.9069 + }, + { + "start": 4038.42, + "end": 4042.98, + "probability": 0.9702 + }, + { + "start": 4044.32, + "end": 4046.26, + "probability": 0.9238 + }, + { + "start": 4046.94, + "end": 4051.64, + "probability": 0.9787 + }, + { + "start": 4052.54, + "end": 4054.12, + "probability": 0.9887 + }, + { + "start": 4054.78, + "end": 4057.0, + "probability": 0.9976 + }, + { + "start": 4057.76, + "end": 4060.48, + "probability": 0.9986 + }, + { + "start": 4060.48, + "end": 4064.18, + "probability": 0.9916 + }, + { + "start": 4064.98, + "end": 4071.16, + "probability": 0.9924 + }, + { + "start": 4073.2, + "end": 4076.82, + "probability": 0.987 + }, + { + "start": 4077.82, + "end": 4078.86, + "probability": 0.9389 + }, + { + "start": 4079.12, + "end": 4080.58, + "probability": 0.8809 + }, + { + "start": 4080.94, + "end": 4081.74, + "probability": 0.9425 + }, + { + "start": 4081.9, + "end": 4082.4, + "probability": 0.9809 + }, + { + "start": 4083.06, + "end": 4083.46, + "probability": 0.7118 + }, + { + "start": 4084.78, + "end": 4086.76, + "probability": 0.998 + }, + { + "start": 4088.42, + "end": 4090.24, + "probability": 0.9106 + }, + { + "start": 4090.4, + "end": 4091.04, + "probability": 0.9303 + }, + { + "start": 4091.24, + "end": 4091.94, + "probability": 0.8977 + }, + { + "start": 4092.14, + "end": 4092.36, + "probability": 0.7398 + }, + { + "start": 4093.62, + "end": 4095.26, + "probability": 0.9912 + }, + { + "start": 4095.4, + "end": 4097.9, + "probability": 0.8787 + }, + { + "start": 4100.16, + "end": 4101.32, + "probability": 0.8906 + }, + { + "start": 4101.94, + "end": 4102.52, + "probability": 0.7918 + }, + { + "start": 4103.36, + "end": 4104.16, + "probability": 0.9285 + }, + { + "start": 4105.78, + "end": 4107.5, + "probability": 0.7728 + }, + { + "start": 4107.54, + "end": 4110.52, + "probability": 0.9919 + }, + { + "start": 4111.54, + "end": 4115.64, + "probability": 0.9976 + }, + { + "start": 4115.64, + "end": 4120.9, + "probability": 0.8947 + }, + { + "start": 4122.26, + "end": 4126.36, + "probability": 0.9811 + }, + { + "start": 4126.54, + "end": 4129.1, + "probability": 0.9988 + }, + { + "start": 4130.06, + "end": 4130.7, + "probability": 0.8958 + }, + { + "start": 4131.44, + "end": 4138.3, + "probability": 0.9976 + }, + { + "start": 4139.1, + "end": 4140.12, + "probability": 0.9741 + }, + { + "start": 4140.9, + "end": 4141.92, + "probability": 0.8212 + }, + { + "start": 4142.5, + "end": 4144.02, + "probability": 0.9801 + }, + { + "start": 4144.7, + "end": 4145.04, + "probability": 0.9609 + }, + { + "start": 4145.72, + "end": 4147.74, + "probability": 0.5124 + }, + { + "start": 4148.52, + "end": 4151.2, + "probability": 0.9723 + }, + { + "start": 4151.72, + "end": 4151.98, + "probability": 0.9848 + }, + { + "start": 4154.26, + "end": 4154.52, + "probability": 0.5234 + }, + { + "start": 4155.2, + "end": 4158.64, + "probability": 0.9843 + }, + { + "start": 4159.9, + "end": 4163.18, + "probability": 0.9688 + }, + { + "start": 4164.38, + "end": 4167.7, + "probability": 0.9921 + }, + { + "start": 4168.86, + "end": 4170.52, + "probability": 0.9731 + }, + { + "start": 4171.8, + "end": 4172.36, + "probability": 0.927 + }, + { + "start": 4173.14, + "end": 4175.6, + "probability": 0.9912 + }, + { + "start": 4176.48, + "end": 4177.1, + "probability": 0.958 + }, + { + "start": 4178.08, + "end": 4178.72, + "probability": 0.9838 + }, + { + "start": 4179.36, + "end": 4181.24, + "probability": 0.8377 + }, + { + "start": 4182.84, + "end": 4183.86, + "probability": 0.9266 + }, + { + "start": 4185.54, + "end": 4186.84, + "probability": 0.9967 + }, + { + "start": 4187.88, + "end": 4190.1, + "probability": 0.955 + }, + { + "start": 4190.32, + "end": 4191.14, + "probability": 0.8418 + }, + { + "start": 4191.28, + "end": 4192.28, + "probability": 0.8752 + }, + { + "start": 4193.1, + "end": 4194.56, + "probability": 0.9666 + }, + { + "start": 4194.72, + "end": 4198.46, + "probability": 0.9672 + }, + { + "start": 4199.54, + "end": 4200.54, + "probability": 0.6826 + }, + { + "start": 4201.42, + "end": 4202.68, + "probability": 0.9658 + }, + { + "start": 4206.56, + "end": 4207.4, + "probability": 0.0772 + }, + { + "start": 4207.4, + "end": 4208.84, + "probability": 0.9147 + }, + { + "start": 4209.94, + "end": 4211.76, + "probability": 0.9983 + }, + { + "start": 4213.16, + "end": 4215.28, + "probability": 0.9907 + }, + { + "start": 4216.82, + "end": 4218.42, + "probability": 0.9529 + }, + { + "start": 4219.28, + "end": 4221.66, + "probability": 0.9922 + }, + { + "start": 4222.78, + "end": 4226.22, + "probability": 0.9933 + }, + { + "start": 4227.4, + "end": 4232.82, + "probability": 0.998 + }, + { + "start": 4232.82, + "end": 4237.38, + "probability": 0.9997 + }, + { + "start": 4240.22, + "end": 4243.86, + "probability": 0.972 + }, + { + "start": 4245.54, + "end": 4251.24, + "probability": 0.9916 + }, + { + "start": 4252.98, + "end": 4255.72, + "probability": 0.8939 + }, + { + "start": 4256.56, + "end": 4264.38, + "probability": 0.9907 + }, + { + "start": 4266.3, + "end": 4267.08, + "probability": 0.984 + }, + { + "start": 4268.58, + "end": 4270.02, + "probability": 0.8346 + }, + { + "start": 4271.74, + "end": 4272.72, + "probability": 0.9131 + }, + { + "start": 4275.82, + "end": 4279.08, + "probability": 0.8084 + }, + { + "start": 4279.92, + "end": 4282.56, + "probability": 0.7749 + }, + { + "start": 4283.88, + "end": 4289.54, + "probability": 0.9946 + }, + { + "start": 4290.82, + "end": 4291.48, + "probability": 0.9605 + }, + { + "start": 4292.58, + "end": 4293.42, + "probability": 0.9873 + }, + { + "start": 4294.2, + "end": 4295.16, + "probability": 0.6378 + }, + { + "start": 4296.08, + "end": 4296.72, + "probability": 0.9113 + }, + { + "start": 4298.1, + "end": 4301.66, + "probability": 0.9979 + }, + { + "start": 4303.02, + "end": 4306.64, + "probability": 0.9964 + }, + { + "start": 4307.62, + "end": 4310.88, + "probability": 0.997 + }, + { + "start": 4312.66, + "end": 4313.72, + "probability": 0.9787 + }, + { + "start": 4314.84, + "end": 4317.66, + "probability": 0.9963 + }, + { + "start": 4319.64, + "end": 4321.6, + "probability": 0.7526 + }, + { + "start": 4322.46, + "end": 4323.66, + "probability": 0.9965 + }, + { + "start": 4324.32, + "end": 4327.92, + "probability": 0.8549 + }, + { + "start": 4328.72, + "end": 4330.08, + "probability": 0.9932 + }, + { + "start": 4330.96, + "end": 4332.78, + "probability": 0.8392 + }, + { + "start": 4333.6, + "end": 4334.56, + "probability": 0.9421 + }, + { + "start": 4335.3, + "end": 4335.92, + "probability": 0.8812 + }, + { + "start": 4337.06, + "end": 4343.12, + "probability": 0.9098 + }, + { + "start": 4343.76, + "end": 4344.9, + "probability": 0.9822 + }, + { + "start": 4346.14, + "end": 4348.12, + "probability": 0.6453 + }, + { + "start": 4350.08, + "end": 4350.76, + "probability": 0.8686 + }, + { + "start": 4351.0, + "end": 4352.9, + "probability": 0.9954 + }, + { + "start": 4353.82, + "end": 4354.48, + "probability": 0.9851 + }, + { + "start": 4365.14, + "end": 4367.6, + "probability": 0.9489 + }, + { + "start": 4367.72, + "end": 4368.73, + "probability": 0.9824 + }, + { + "start": 4373.3, + "end": 4374.84, + "probability": 0.8099 + }, + { + "start": 4374.84, + "end": 4375.76, + "probability": 0.723 + }, + { + "start": 4377.24, + "end": 4378.66, + "probability": 0.8464 + }, + { + "start": 4380.32, + "end": 4381.16, + "probability": 0.5514 + }, + { + "start": 4383.22, + "end": 4385.28, + "probability": 0.6415 + }, + { + "start": 4386.36, + "end": 4390.84, + "probability": 0.9868 + }, + { + "start": 4392.04, + "end": 4392.83, + "probability": 0.9517 + }, + { + "start": 4393.48, + "end": 4396.96, + "probability": 0.9838 + }, + { + "start": 4397.52, + "end": 4399.5, + "probability": 0.9401 + }, + { + "start": 4401.86, + "end": 4402.6, + "probability": 0.8373 + }, + { + "start": 4403.36, + "end": 4403.88, + "probability": 0.9899 + }, + { + "start": 4405.0, + "end": 4406.08, + "probability": 0.9784 + }, + { + "start": 4407.14, + "end": 4407.52, + "probability": 0.9374 + }, + { + "start": 4408.34, + "end": 4408.7, + "probability": 0.9875 + }, + { + "start": 4409.66, + "end": 4410.12, + "probability": 0.9009 + }, + { + "start": 4410.98, + "end": 4411.22, + "probability": 0.9915 + }, + { + "start": 4412.1, + "end": 4413.06, + "probability": 0.8632 + }, + { + "start": 4414.24, + "end": 4416.02, + "probability": 0.8602 + }, + { + "start": 4416.86, + "end": 4418.12, + "probability": 0.8994 + }, + { + "start": 4419.32, + "end": 4421.46, + "probability": 0.9817 + }, + { + "start": 4422.08, + "end": 4423.26, + "probability": 0.956 + }, + { + "start": 4423.92, + "end": 4425.6, + "probability": 0.9413 + }, + { + "start": 4426.34, + "end": 4428.96, + "probability": 0.5897 + }, + { + "start": 4430.1, + "end": 4431.38, + "probability": 0.9743 + }, + { + "start": 4432.2, + "end": 4437.7, + "probability": 0.9977 + }, + { + "start": 4438.44, + "end": 4440.46, + "probability": 0.8724 + }, + { + "start": 4440.5, + "end": 4441.12, + "probability": 0.4918 + }, + { + "start": 4441.24, + "end": 4444.7, + "probability": 0.9688 + }, + { + "start": 4446.08, + "end": 4446.62, + "probability": 0.5188 + }, + { + "start": 4447.58, + "end": 4449.04, + "probability": 0.6037 + }, + { + "start": 4449.9, + "end": 4453.74, + "probability": 0.7849 + }, + { + "start": 4454.38, + "end": 4458.94, + "probability": 0.9247 + }, + { + "start": 4459.7, + "end": 4463.46, + "probability": 0.9388 + }, + { + "start": 4463.98, + "end": 4464.54, + "probability": 0.9607 + }, + { + "start": 4465.76, + "end": 4471.8, + "probability": 0.9953 + }, + { + "start": 4472.74, + "end": 4473.76, + "probability": 0.7385 + }, + { + "start": 4474.36, + "end": 4476.44, + "probability": 0.9117 + }, + { + "start": 4477.18, + "end": 4478.3, + "probability": 0.8576 + }, + { + "start": 4478.96, + "end": 4483.3, + "probability": 0.9618 + }, + { + "start": 4484.04, + "end": 4485.58, + "probability": 0.8861 + }, + { + "start": 4487.26, + "end": 4488.4, + "probability": 0.7012 + }, + { + "start": 4489.2, + "end": 4492.2, + "probability": 0.9182 + }, + { + "start": 4493.02, + "end": 4499.86, + "probability": 0.9912 + }, + { + "start": 4500.5, + "end": 4504.22, + "probability": 0.9932 + }, + { + "start": 4505.34, + "end": 4507.22, + "probability": 0.9854 + }, + { + "start": 4508.76, + "end": 4511.22, + "probability": 0.8735 + }, + { + "start": 4512.12, + "end": 4512.66, + "probability": 0.779 + }, + { + "start": 4513.5, + "end": 4518.6, + "probability": 0.9518 + }, + { + "start": 4519.48, + "end": 4520.04, + "probability": 0.7449 + }, + { + "start": 4520.88, + "end": 4522.78, + "probability": 0.9974 + }, + { + "start": 4523.32, + "end": 4523.98, + "probability": 0.9738 + }, + { + "start": 4524.92, + "end": 4525.32, + "probability": 0.7715 + }, + { + "start": 4526.06, + "end": 4526.72, + "probability": 0.6567 + }, + { + "start": 4527.66, + "end": 4529.82, + "probability": 0.9009 + }, + { + "start": 4530.46, + "end": 4533.36, + "probability": 0.9937 + }, + { + "start": 4534.42, + "end": 4535.24, + "probability": 0.711 + }, + { + "start": 4535.98, + "end": 4536.76, + "probability": 0.87 + }, + { + "start": 4537.46, + "end": 4539.82, + "probability": 0.9735 + }, + { + "start": 4540.74, + "end": 4545.86, + "probability": 0.9676 + }, + { + "start": 4546.4, + "end": 4548.44, + "probability": 0.9982 + }, + { + "start": 4549.02, + "end": 4552.66, + "probability": 0.9836 + }, + { + "start": 4553.32, + "end": 4553.76, + "probability": 0.9423 + }, + { + "start": 4554.78, + "end": 4555.24, + "probability": 0.7658 + }, + { + "start": 4555.78, + "end": 4556.22, + "probability": 0.9806 + }, + { + "start": 4557.42, + "end": 4561.36, + "probability": 0.9942 + }, + { + "start": 4561.36, + "end": 4565.32, + "probability": 0.9452 + }, + { + "start": 4565.94, + "end": 4566.96, + "probability": 0.8677 + }, + { + "start": 4567.96, + "end": 4573.96, + "probability": 0.9913 + }, + { + "start": 4576.0, + "end": 4578.46, + "probability": 0.8413 + }, + { + "start": 4579.46, + "end": 4580.8, + "probability": 0.963 + }, + { + "start": 4581.88, + "end": 4582.26, + "probability": 0.9211 + }, + { + "start": 4583.0, + "end": 4583.54, + "probability": 0.8767 + }, + { + "start": 4584.7, + "end": 4585.12, + "probability": 0.7295 + }, + { + "start": 4585.74, + "end": 4590.08, + "probability": 0.9897 + }, + { + "start": 4590.08, + "end": 4595.22, + "probability": 0.9984 + }, + { + "start": 4595.86, + "end": 4596.68, + "probability": 0.9917 + }, + { + "start": 4598.1, + "end": 4600.7, + "probability": 0.8417 + }, + { + "start": 4600.74, + "end": 4601.44, + "probability": 0.6635 + }, + { + "start": 4601.58, + "end": 4602.82, + "probability": 0.9892 + }, + { + "start": 4604.16, + "end": 4606.25, + "probability": 0.998 + }, + { + "start": 4606.8, + "end": 4609.26, + "probability": 0.8789 + }, + { + "start": 4610.42, + "end": 4612.54, + "probability": 0.863 + }, + { + "start": 4613.26, + "end": 4614.56, + "probability": 0.7554 + }, + { + "start": 4615.54, + "end": 4618.22, + "probability": 0.7368 + }, + { + "start": 4619.24, + "end": 4620.1, + "probability": 0.9316 + }, + { + "start": 4620.82, + "end": 4626.0, + "probability": 0.9359 + }, + { + "start": 4626.62, + "end": 4627.4, + "probability": 0.5212 + }, + { + "start": 4628.04, + "end": 4628.28, + "probability": 0.7474 + }, + { + "start": 4629.56, + "end": 4635.42, + "probability": 0.9539 + }, + { + "start": 4636.76, + "end": 4641.74, + "probability": 0.8826 + }, + { + "start": 4643.18, + "end": 4644.86, + "probability": 0.6512 + }, + { + "start": 4645.7, + "end": 4649.08, + "probability": 0.9645 + }, + { + "start": 4650.32, + "end": 4651.5, + "probability": 0.7826 + }, + { + "start": 4652.42, + "end": 4653.16, + "probability": 0.8234 + }, + { + "start": 4654.1, + "end": 4656.54, + "probability": 0.5787 + }, + { + "start": 4656.68, + "end": 4661.66, + "probability": 0.9745 + }, + { + "start": 4663.36, + "end": 4663.96, + "probability": 0.7823 + }, + { + "start": 4668.26, + "end": 4670.54, + "probability": 0.759 + }, + { + "start": 4671.28, + "end": 4674.58, + "probability": 0.9757 + }, + { + "start": 4677.64, + "end": 4679.62, + "probability": 0.7969 + }, + { + "start": 4680.16, + "end": 4680.78, + "probability": 0.6866 + }, + { + "start": 4681.58, + "end": 4683.1, + "probability": 0.9217 + }, + { + "start": 4683.62, + "end": 4684.82, + "probability": 0.6496 + }, + { + "start": 4685.34, + "end": 4685.76, + "probability": 0.7498 + }, + { + "start": 4686.18, + "end": 4686.84, + "probability": 0.7407 + }, + { + "start": 4687.12, + "end": 4688.26, + "probability": 0.9659 + }, + { + "start": 4688.4, + "end": 4688.92, + "probability": 0.6674 + }, + { + "start": 4689.6, + "end": 4690.56, + "probability": 0.9592 + }, + { + "start": 4691.24, + "end": 4692.72, + "probability": 0.7928 + }, + { + "start": 4693.12, + "end": 4693.72, + "probability": 0.7681 + }, + { + "start": 4694.52, + "end": 4695.98, + "probability": 0.9503 + }, + { + "start": 4696.9, + "end": 4699.04, + "probability": 0.7219 + }, + { + "start": 4699.56, + "end": 4701.5, + "probability": 0.9434 + }, + { + "start": 4702.52, + "end": 4703.48, + "probability": 0.7138 + }, + { + "start": 4704.58, + "end": 4709.06, + "probability": 0.9646 + }, + { + "start": 4710.12, + "end": 4713.34, + "probability": 0.6327 + }, + { + "start": 4714.18, + "end": 4716.42, + "probability": 0.953 + }, + { + "start": 4717.02, + "end": 4720.94, + "probability": 0.9111 + }, + { + "start": 4722.6, + "end": 4723.72, + "probability": 0.9292 + }, + { + "start": 4724.76, + "end": 4726.72, + "probability": 0.727 + }, + { + "start": 4727.4, + "end": 4729.8, + "probability": 0.7401 + }, + { + "start": 4730.5, + "end": 4731.98, + "probability": 0.9602 + }, + { + "start": 4732.72, + "end": 4733.5, + "probability": 0.4947 + }, + { + "start": 4733.66, + "end": 4734.96, + "probability": 0.9563 + }, + { + "start": 4735.52, + "end": 4736.68, + "probability": 0.9918 + }, + { + "start": 4737.48, + "end": 4739.51, + "probability": 0.9092 + }, + { + "start": 4740.58, + "end": 4745.33, + "probability": 0.9209 + }, + { + "start": 4746.48, + "end": 4747.26, + "probability": 0.666 + }, + { + "start": 4748.24, + "end": 4749.46, + "probability": 0.843 + }, + { + "start": 4749.98, + "end": 4752.4, + "probability": 0.7588 + }, + { + "start": 4753.2, + "end": 4756.14, + "probability": 0.947 + }, + { + "start": 4757.28, + "end": 4759.16, + "probability": 0.9542 + }, + { + "start": 4759.7, + "end": 4762.86, + "probability": 0.9634 + }, + { + "start": 4763.68, + "end": 4765.72, + "probability": 0.7796 + }, + { + "start": 4766.8, + "end": 4769.94, + "probability": 0.9924 + }, + { + "start": 4770.5, + "end": 4772.26, + "probability": 0.9727 + }, + { + "start": 4772.92, + "end": 4774.06, + "probability": 0.9709 + }, + { + "start": 4774.64, + "end": 4776.96, + "probability": 0.9814 + }, + { + "start": 4778.56, + "end": 4781.52, + "probability": 0.9287 + }, + { + "start": 4782.14, + "end": 4784.16, + "probability": 0.8623 + }, + { + "start": 4784.34, + "end": 4786.44, + "probability": 0.9491 + }, + { + "start": 4788.58, + "end": 4791.22, + "probability": 0.938 + }, + { + "start": 4791.66, + "end": 4793.38, + "probability": 0.8726 + }, + { + "start": 4794.2, + "end": 4794.9, + "probability": 0.9138 + }, + { + "start": 4795.76, + "end": 4798.12, + "probability": 0.6014 + }, + { + "start": 4798.84, + "end": 4801.04, + "probability": 0.9388 + }, + { + "start": 4802.04, + "end": 4803.96, + "probability": 0.9936 + }, + { + "start": 4805.06, + "end": 4809.94, + "probability": 0.968 + }, + { + "start": 4810.92, + "end": 4814.9, + "probability": 0.9864 + }, + { + "start": 4815.7, + "end": 4816.86, + "probability": 0.9845 + }, + { + "start": 4817.16, + "end": 4822.9, + "probability": 0.8774 + }, + { + "start": 4823.66, + "end": 4824.36, + "probability": 0.6489 + }, + { + "start": 4825.62, + "end": 4827.62, + "probability": 0.9365 + }, + { + "start": 4828.3, + "end": 4831.28, + "probability": 0.9498 + }, + { + "start": 4832.2, + "end": 4832.66, + "probability": 0.943 + }, + { + "start": 4833.52, + "end": 4833.74, + "probability": 0.9596 + }, + { + "start": 4834.86, + "end": 4836.64, + "probability": 0.5126 + }, + { + "start": 4837.34, + "end": 4840.62, + "probability": 0.946 + }, + { + "start": 4841.4, + "end": 4843.2, + "probability": 0.9079 + }, + { + "start": 4844.28, + "end": 4847.7, + "probability": 0.9848 + }, + { + "start": 4848.54, + "end": 4850.5, + "probability": 0.961 + }, + { + "start": 4851.18, + "end": 4852.34, + "probability": 0.7416 + }, + { + "start": 4852.68, + "end": 4853.3, + "probability": 0.6561 + }, + { + "start": 4854.36, + "end": 4858.36, + "probability": 0.9871 + }, + { + "start": 4859.06, + "end": 4859.48, + "probability": 0.8054 + }, + { + "start": 4860.28, + "end": 4864.54, + "probability": 0.9883 + }, + { + "start": 4865.56, + "end": 4868.6, + "probability": 0.9962 + }, + { + "start": 4869.44, + "end": 4869.94, + "probability": 0.5997 + }, + { + "start": 4870.46, + "end": 4872.26, + "probability": 0.7651 + }, + { + "start": 4873.26, + "end": 4876.1, + "probability": 0.9882 + }, + { + "start": 4876.92, + "end": 4877.48, + "probability": 0.6893 + }, + { + "start": 4878.12, + "end": 4878.92, + "probability": 0.8778 + }, + { + "start": 4879.78, + "end": 4881.82, + "probability": 0.9893 + }, + { + "start": 4882.74, + "end": 4884.24, + "probability": 0.7949 + }, + { + "start": 4885.02, + "end": 4886.36, + "probability": 0.8864 + }, + { + "start": 4887.78, + "end": 4888.72, + "probability": 0.835 + }, + { + "start": 4889.46, + "end": 4890.38, + "probability": 0.8163 + }, + { + "start": 4891.16, + "end": 4892.68, + "probability": 0.9395 + }, + { + "start": 4893.32, + "end": 4894.36, + "probability": 0.7542 + }, + { + "start": 4895.04, + "end": 4895.9, + "probability": 0.8148 + }, + { + "start": 4896.48, + "end": 4898.02, + "probability": 0.9938 + }, + { + "start": 4898.56, + "end": 4901.28, + "probability": 0.9793 + }, + { + "start": 4901.9, + "end": 4905.42, + "probability": 0.9569 + }, + { + "start": 4906.16, + "end": 4908.8, + "probability": 0.9966 + }, + { + "start": 4909.58, + "end": 4909.82, + "probability": 0.8177 + }, + { + "start": 4910.86, + "end": 4911.72, + "probability": 0.8071 + }, + { + "start": 4912.34, + "end": 4913.04, + "probability": 0.7858 + }, + { + "start": 4913.64, + "end": 4914.32, + "probability": 0.8844 + }, + { + "start": 4915.0, + "end": 4916.56, + "probability": 0.9493 + }, + { + "start": 4917.5, + "end": 4924.28, + "probability": 0.9715 + }, + { + "start": 4925.02, + "end": 4926.78, + "probability": 0.7359 + }, + { + "start": 4927.52, + "end": 4927.98, + "probability": 0.8232 + }, + { + "start": 4928.7, + "end": 4930.76, + "probability": 0.9801 + }, + { + "start": 4931.36, + "end": 4934.24, + "probability": 0.9232 + }, + { + "start": 4934.92, + "end": 4936.4, + "probability": 0.918 + }, + { + "start": 4937.82, + "end": 4939.8, + "probability": 0.9076 + }, + { + "start": 4940.46, + "end": 4943.74, + "probability": 0.8093 + }, + { + "start": 4944.48, + "end": 4945.12, + "probability": 0.6514 + }, + { + "start": 4945.66, + "end": 4947.96, + "probability": 0.8541 + }, + { + "start": 4948.56, + "end": 4951.16, + "probability": 0.8132 + }, + { + "start": 4951.74, + "end": 4954.64, + "probability": 0.9868 + }, + { + "start": 4955.58, + "end": 4956.12, + "probability": 0.7543 + }, + { + "start": 4956.64, + "end": 4958.74, + "probability": 0.8806 + }, + { + "start": 4959.3, + "end": 4960.84, + "probability": 0.9185 + }, + { + "start": 4961.48, + "end": 4968.64, + "probability": 0.9829 + }, + { + "start": 4969.94, + "end": 4972.54, + "probability": 0.9857 + }, + { + "start": 4973.24, + "end": 4977.7, + "probability": 0.9728 + }, + { + "start": 4978.48, + "end": 4979.38, + "probability": 0.8647 + }, + { + "start": 4980.52, + "end": 4981.86, + "probability": 0.9503 + }, + { + "start": 4982.56, + "end": 4983.6, + "probability": 0.7113 + }, + { + "start": 4984.18, + "end": 4984.6, + "probability": 0.6768 + }, + { + "start": 4985.2, + "end": 4987.26, + "probability": 0.9766 + }, + { + "start": 4988.0, + "end": 4990.16, + "probability": 0.9891 + }, + { + "start": 4990.86, + "end": 4994.48, + "probability": 0.7566 + }, + { + "start": 4995.2, + "end": 4997.8, + "probability": 0.9932 + }, + { + "start": 4998.32, + "end": 5000.68, + "probability": 0.9451 + }, + { + "start": 5001.38, + "end": 5002.2, + "probability": 0.9743 + }, + { + "start": 5002.86, + "end": 5003.52, + "probability": 0.9253 + }, + { + "start": 5003.96, + "end": 5010.18, + "probability": 0.9766 + }, + { + "start": 5010.78, + "end": 5013.28, + "probability": 0.965 + }, + { + "start": 5014.34, + "end": 5015.68, + "probability": 0.9462 + }, + { + "start": 5016.22, + "end": 5017.63, + "probability": 0.9883 + }, + { + "start": 5018.06, + "end": 5020.3, + "probability": 0.978 + }, + { + "start": 5020.76, + "end": 5022.06, + "probability": 0.9668 + }, + { + "start": 5023.34, + "end": 5024.52, + "probability": 0.7466 + }, + { + "start": 5025.3, + "end": 5029.46, + "probability": 0.9873 + }, + { + "start": 5030.4, + "end": 5034.14, + "probability": 0.9714 + }, + { + "start": 5035.12, + "end": 5037.06, + "probability": 0.7938 + }, + { + "start": 5037.74, + "end": 5041.68, + "probability": 0.9029 + }, + { + "start": 5042.22, + "end": 5047.62, + "probability": 0.9066 + }, + { + "start": 5047.8, + "end": 5048.3, + "probability": 0.7638 + }, + { + "start": 5050.1, + "end": 5051.76, + "probability": 0.6824 + }, + { + "start": 5053.25, + "end": 5055.16, + "probability": 0.5842 + }, + { + "start": 5055.42, + "end": 5056.72, + "probability": 0.5778 + }, + { + "start": 5057.24, + "end": 5061.26, + "probability": 0.7957 + }, + { + "start": 5061.44, + "end": 5062.35, + "probability": 0.448 + }, + { + "start": 5062.84, + "end": 5065.6, + "probability": 0.8162 + }, + { + "start": 5066.7, + "end": 5066.72, + "probability": 0.1104 + }, + { + "start": 5067.72, + "end": 5069.14, + "probability": 0.3512 + }, + { + "start": 5069.68, + "end": 5073.0, + "probability": 0.9956 + }, + { + "start": 5076.6, + "end": 5078.34, + "probability": 0.6137 + }, + { + "start": 5079.44, + "end": 5080.34, + "probability": 0.7593 + }, + { + "start": 5080.6, + "end": 5081.6, + "probability": 0.9246 + }, + { + "start": 5081.68, + "end": 5082.88, + "probability": 0.8654 + }, + { + "start": 5083.92, + "end": 5087.48, + "probability": 0.9893 + }, + { + "start": 5088.44, + "end": 5093.1, + "probability": 0.9943 + }, + { + "start": 5094.3, + "end": 5095.84, + "probability": 0.8513 + }, + { + "start": 5096.9, + "end": 5100.68, + "probability": 0.9702 + }, + { + "start": 5101.38, + "end": 5103.92, + "probability": 0.293 + }, + { + "start": 5104.06, + "end": 5104.54, + "probability": 0.2817 + }, + { + "start": 5104.54, + "end": 5104.66, + "probability": 0.0855 + }, + { + "start": 5104.72, + "end": 5108.26, + "probability": 0.4476 + }, + { + "start": 5108.64, + "end": 5109.02, + "probability": 0.3823 + }, + { + "start": 5110.21, + "end": 5112.65, + "probability": 0.9204 + }, + { + "start": 5113.26, + "end": 5114.22, + "probability": 0.885 + }, + { + "start": 5114.58, + "end": 5115.92, + "probability": 0.8481 + }, + { + "start": 5117.42, + "end": 5118.08, + "probability": 0.0883 + }, + { + "start": 5119.18, + "end": 5121.48, + "probability": 0.0814 + }, + { + "start": 5122.0, + "end": 5123.44, + "probability": 0.0036 + }, + { + "start": 5126.02, + "end": 5128.3, + "probability": 0.62 + }, + { + "start": 5129.14, + "end": 5132.18, + "probability": 0.9122 + }, + { + "start": 5133.12, + "end": 5136.36, + "probability": 0.9596 + }, + { + "start": 5137.36, + "end": 5138.12, + "probability": 0.7609 + }, + { + "start": 5138.7, + "end": 5138.84, + "probability": 0.8323 + }, + { + "start": 5139.56, + "end": 5143.24, + "probability": 0.9885 + }, + { + "start": 5143.96, + "end": 5146.38, + "probability": 0.9985 + }, + { + "start": 5147.12, + "end": 5148.82, + "probability": 0.9993 + }, + { + "start": 5149.5, + "end": 5150.68, + "probability": 0.7987 + }, + { + "start": 5151.56, + "end": 5152.4, + "probability": 0.5788 + }, + { + "start": 5152.92, + "end": 5155.9, + "probability": 0.9986 + }, + { + "start": 5156.76, + "end": 5159.82, + "probability": 0.5406 + }, + { + "start": 5160.58, + "end": 5163.22, + "probability": 0.8438 + }, + { + "start": 5164.14, + "end": 5166.98, + "probability": 0.9299 + }, + { + "start": 5167.56, + "end": 5172.8, + "probability": 0.9736 + }, + { + "start": 5173.42, + "end": 5176.16, + "probability": 0.9657 + }, + { + "start": 5176.92, + "end": 5177.38, + "probability": 0.8805 + }, + { + "start": 5178.28, + "end": 5182.56, + "probability": 0.9968 + }, + { + "start": 5183.1, + "end": 5186.74, + "probability": 0.9605 + }, + { + "start": 5187.32, + "end": 5188.08, + "probability": 0.7769 + }, + { + "start": 5188.74, + "end": 5189.56, + "probability": 0.817 + }, + { + "start": 5190.44, + "end": 5193.1, + "probability": 0.9492 + }, + { + "start": 5193.7, + "end": 5194.04, + "probability": 0.8427 + }, + { + "start": 5194.74, + "end": 5195.04, + "probability": 0.594 + }, + { + "start": 5195.6, + "end": 5197.86, + "probability": 0.9865 + }, + { + "start": 5198.32, + "end": 5200.42, + "probability": 0.8831 + }, + { + "start": 5201.0, + "end": 5202.0, + "probability": 0.9194 + }, + { + "start": 5202.56, + "end": 5203.28, + "probability": 0.9971 + }, + { + "start": 5224.54, + "end": 5224.74, + "probability": 0.1351 + }, + { + "start": 5224.74, + "end": 5224.74, + "probability": 0.315 + }, + { + "start": 5224.74, + "end": 5226.64, + "probability": 0.5707 + }, + { + "start": 5228.56, + "end": 5233.72, + "probability": 0.8987 + }, + { + "start": 5236.08, + "end": 5237.76, + "probability": 0.8989 + }, + { + "start": 5238.7, + "end": 5240.02, + "probability": 0.9751 + }, + { + "start": 5240.66, + "end": 5244.86, + "probability": 0.981 + }, + { + "start": 5246.36, + "end": 5246.5, + "probability": 0.9853 + }, + { + "start": 5248.36, + "end": 5248.96, + "probability": 0.8949 + }, + { + "start": 5249.7, + "end": 5250.46, + "probability": 0.7098 + }, + { + "start": 5251.92, + "end": 5254.5, + "probability": 0.9084 + }, + { + "start": 5255.34, + "end": 5258.04, + "probability": 0.8023 + }, + { + "start": 5259.62, + "end": 5260.7, + "probability": 0.9972 + }, + { + "start": 5262.3, + "end": 5267.5, + "probability": 0.9502 + }, + { + "start": 5268.6, + "end": 5270.04, + "probability": 0.9948 + }, + { + "start": 5271.94, + "end": 5274.35, + "probability": 0.9656 + }, + { + "start": 5277.68, + "end": 5283.1, + "probability": 0.9905 + }, + { + "start": 5284.26, + "end": 5286.14, + "probability": 0.8646 + }, + { + "start": 5288.54, + "end": 5291.7, + "probability": 0.999 + }, + { + "start": 5292.54, + "end": 5295.4, + "probability": 0.9454 + }, + { + "start": 5295.92, + "end": 5297.44, + "probability": 0.9382 + }, + { + "start": 5298.86, + "end": 5299.98, + "probability": 0.8523 + }, + { + "start": 5300.78, + "end": 5305.86, + "probability": 0.9875 + }, + { + "start": 5306.36, + "end": 5307.4, + "probability": 0.7527 + }, + { + "start": 5308.2, + "end": 5310.7, + "probability": 0.964 + }, + { + "start": 5311.94, + "end": 5317.76, + "probability": 0.9969 + }, + { + "start": 5319.0, + "end": 5324.38, + "probability": 0.9977 + }, + { + "start": 5325.1, + "end": 5326.44, + "probability": 0.97 + }, + { + "start": 5327.44, + "end": 5328.12, + "probability": 0.9638 + }, + { + "start": 5329.76, + "end": 5333.04, + "probability": 0.9868 + }, + { + "start": 5333.9, + "end": 5335.48, + "probability": 0.9681 + }, + { + "start": 5336.1, + "end": 5339.28, + "probability": 0.9326 + }, + { + "start": 5340.38, + "end": 5345.78, + "probability": 0.9753 + }, + { + "start": 5346.42, + "end": 5347.48, + "probability": 0.8815 + }, + { + "start": 5348.62, + "end": 5350.78, + "probability": 0.9965 + }, + { + "start": 5351.4, + "end": 5352.14, + "probability": 0.7981 + }, + { + "start": 5353.06, + "end": 5357.54, + "probability": 0.988 + }, + { + "start": 5358.6, + "end": 5362.82, + "probability": 0.9641 + }, + { + "start": 5364.28, + "end": 5368.12, + "probability": 0.9884 + }, + { + "start": 5369.9, + "end": 5372.84, + "probability": 0.9438 + }, + { + "start": 5373.9, + "end": 5375.82, + "probability": 0.9883 + }, + { + "start": 5376.24, + "end": 5381.1, + "probability": 0.9953 + }, + { + "start": 5382.18, + "end": 5384.24, + "probability": 0.9877 + }, + { + "start": 5384.94, + "end": 5390.22, + "probability": 0.9814 + }, + { + "start": 5390.9, + "end": 5393.54, + "probability": 0.9896 + }, + { + "start": 5394.5, + "end": 5395.54, + "probability": 0.8429 + }, + { + "start": 5396.92, + "end": 5398.16, + "probability": 0.9985 + }, + { + "start": 5398.48, + "end": 5399.68, + "probability": 0.9976 + }, + { + "start": 5400.78, + "end": 5402.68, + "probability": 0.9858 + }, + { + "start": 5403.92, + "end": 5408.94, + "probability": 0.9611 + }, + { + "start": 5409.76, + "end": 5411.1, + "probability": 0.8207 + }, + { + "start": 5412.12, + "end": 5414.78, + "probability": 0.9976 + }, + { + "start": 5416.36, + "end": 5419.34, + "probability": 0.999 + }, + { + "start": 5420.28, + "end": 5420.8, + "probability": 0.906 + }, + { + "start": 5420.92, + "end": 5421.72, + "probability": 0.9843 + }, + { + "start": 5421.76, + "end": 5424.86, + "probability": 0.9951 + }, + { + "start": 5425.66, + "end": 5427.14, + "probability": 0.5674 + }, + { + "start": 5428.42, + "end": 5429.92, + "probability": 0.9915 + }, + { + "start": 5431.16, + "end": 5433.58, + "probability": 0.9882 + }, + { + "start": 5433.76, + "end": 5435.58, + "probability": 0.9572 + }, + { + "start": 5436.32, + "end": 5437.46, + "probability": 0.8638 + }, + { + "start": 5438.2, + "end": 5440.82, + "probability": 0.9767 + }, + { + "start": 5441.36, + "end": 5445.6, + "probability": 0.9976 + }, + { + "start": 5446.3, + "end": 5447.86, + "probability": 0.9065 + }, + { + "start": 5448.92, + "end": 5455.14, + "probability": 0.994 + }, + { + "start": 5455.36, + "end": 5456.98, + "probability": 0.8857 + }, + { + "start": 5457.46, + "end": 5460.82, + "probability": 0.9604 + }, + { + "start": 5461.5, + "end": 5466.8, + "probability": 0.9891 + }, + { + "start": 5467.54, + "end": 5469.08, + "probability": 0.9432 + }, + { + "start": 5471.04, + "end": 5472.7, + "probability": 0.98 + }, + { + "start": 5473.16, + "end": 5475.46, + "probability": 0.9644 + }, + { + "start": 5476.28, + "end": 5477.74, + "probability": 0.9225 + }, + { + "start": 5478.78, + "end": 5482.02, + "probability": 0.984 + }, + { + "start": 5483.78, + "end": 5487.42, + "probability": 0.961 + }, + { + "start": 5487.98, + "end": 5489.88, + "probability": 0.8783 + }, + { + "start": 5490.18, + "end": 5493.82, + "probability": 0.9541 + }, + { + "start": 5494.56, + "end": 5495.2, + "probability": 0.9821 + }, + { + "start": 5495.76, + "end": 5501.28, + "probability": 0.9863 + }, + { + "start": 5501.86, + "end": 5502.72, + "probability": 0.7282 + }, + { + "start": 5504.16, + "end": 5507.0, + "probability": 0.9969 + }, + { + "start": 5507.84, + "end": 5510.26, + "probability": 0.9881 + }, + { + "start": 5511.1, + "end": 5514.32, + "probability": 0.9963 + }, + { + "start": 5514.88, + "end": 5516.64, + "probability": 0.9806 + }, + { + "start": 5517.56, + "end": 5522.92, + "probability": 0.9733 + }, + { + "start": 5523.18, + "end": 5526.7, + "probability": 0.9865 + }, + { + "start": 5527.26, + "end": 5532.16, + "probability": 0.9922 + }, + { + "start": 5532.94, + "end": 5536.84, + "probability": 0.8672 + }, + { + "start": 5537.74, + "end": 5538.46, + "probability": 0.8564 + }, + { + "start": 5539.38, + "end": 5542.1, + "probability": 0.9557 + }, + { + "start": 5543.12, + "end": 5544.56, + "probability": 0.7674 + }, + { + "start": 5545.9, + "end": 5551.82, + "probability": 0.9939 + }, + { + "start": 5552.18, + "end": 5554.24, + "probability": 0.9918 + }, + { + "start": 5555.0, + "end": 5557.46, + "probability": 0.9356 + }, + { + "start": 5558.12, + "end": 5562.26, + "probability": 0.9776 + }, + { + "start": 5562.94, + "end": 5565.68, + "probability": 0.8656 + }, + { + "start": 5566.88, + "end": 5567.86, + "probability": 0.9736 + }, + { + "start": 5568.34, + "end": 5568.9, + "probability": 0.8316 + }, + { + "start": 5568.98, + "end": 5573.7, + "probability": 0.979 + }, + { + "start": 5575.38, + "end": 5579.09, + "probability": 0.9966 + }, + { + "start": 5580.66, + "end": 5582.98, + "probability": 0.9968 + }, + { + "start": 5583.66, + "end": 5588.52, + "probability": 0.9897 + }, + { + "start": 5589.9, + "end": 5590.58, + "probability": 0.7146 + }, + { + "start": 5591.48, + "end": 5592.5, + "probability": 0.9989 + }, + { + "start": 5593.44, + "end": 5596.44, + "probability": 0.9818 + }, + { + "start": 5597.84, + "end": 5600.0, + "probability": 0.9926 + }, + { + "start": 5600.74, + "end": 5601.34, + "probability": 0.5267 + }, + { + "start": 5602.06, + "end": 5603.5, + "probability": 0.9789 + }, + { + "start": 5604.14, + "end": 5604.94, + "probability": 0.9742 + }, + { + "start": 5606.0, + "end": 5608.9, + "probability": 0.9895 + }, + { + "start": 5609.5, + "end": 5612.48, + "probability": 0.994 + }, + { + "start": 5613.42, + "end": 5614.02, + "probability": 0.7622 + }, + { + "start": 5614.88, + "end": 5616.06, + "probability": 0.845 + }, + { + "start": 5617.26, + "end": 5618.54, + "probability": 0.9714 + }, + { + "start": 5619.18, + "end": 5621.42, + "probability": 0.9773 + }, + { + "start": 5622.18, + "end": 5626.04, + "probability": 0.9622 + }, + { + "start": 5626.78, + "end": 5629.32, + "probability": 0.9954 + }, + { + "start": 5629.8, + "end": 5632.56, + "probability": 0.9868 + }, + { + "start": 5633.24, + "end": 5634.42, + "probability": 0.8814 + }, + { + "start": 5635.58, + "end": 5637.32, + "probability": 0.992 + }, + { + "start": 5638.0, + "end": 5639.12, + "probability": 0.9886 + }, + { + "start": 5640.52, + "end": 5643.62, + "probability": 0.9349 + }, + { + "start": 5644.74, + "end": 5646.46, + "probability": 0.989 + }, + { + "start": 5647.46, + "end": 5648.26, + "probability": 0.9976 + }, + { + "start": 5648.88, + "end": 5649.0, + "probability": 0.7798 + }, + { + "start": 5649.74, + "end": 5652.18, + "probability": 0.9941 + }, + { + "start": 5653.18, + "end": 5653.76, + "probability": 0.8981 + }, + { + "start": 5654.38, + "end": 5657.46, + "probability": 0.9301 + }, + { + "start": 5658.28, + "end": 5660.32, + "probability": 0.9975 + }, + { + "start": 5660.6, + "end": 5663.9, + "probability": 0.9941 + }, + { + "start": 5664.38, + "end": 5665.08, + "probability": 0.7788 + }, + { + "start": 5666.1, + "end": 5667.02, + "probability": 0.9441 + }, + { + "start": 5667.66, + "end": 5668.32, + "probability": 0.6873 + }, + { + "start": 5668.68, + "end": 5670.8, + "probability": 0.9837 + }, + { + "start": 5671.42, + "end": 5671.92, + "probability": 0.9886 + }, + { + "start": 5673.06, + "end": 5673.3, + "probability": 0.79 + }, + { + "start": 5674.04, + "end": 5674.98, + "probability": 0.6427 + }, + { + "start": 5676.02, + "end": 5676.2, + "probability": 0.7017 + }, + { + "start": 5677.76, + "end": 5678.04, + "probability": 0.8628 + }, + { + "start": 5679.68, + "end": 5686.54, + "probability": 0.9692 + }, + { + "start": 5687.2, + "end": 5689.64, + "probability": 0.7202 + }, + { + "start": 5690.52, + "end": 5695.12, + "probability": 0.9959 + }, + { + "start": 5695.74, + "end": 5698.43, + "probability": 0.9533 + }, + { + "start": 5699.54, + "end": 5701.1, + "probability": 0.4993 + }, + { + "start": 5701.7, + "end": 5702.34, + "probability": 0.7781 + }, + { + "start": 5702.46, + "end": 5707.82, + "probability": 0.9723 + }, + { + "start": 5708.12, + "end": 5710.74, + "probability": 0.9802 + }, + { + "start": 5711.3, + "end": 5712.42, + "probability": 0.974 + }, + { + "start": 5712.7, + "end": 5713.26, + "probability": 0.7365 + }, + { + "start": 5713.78, + "end": 5714.65, + "probability": 0.8831 + }, + { + "start": 5715.58, + "end": 5718.48, + "probability": 0.9966 + }, + { + "start": 5718.96, + "end": 5720.06, + "probability": 0.8625 + }, + { + "start": 5720.68, + "end": 5721.06, + "probability": 0.5874 + }, + { + "start": 5721.8, + "end": 5722.54, + "probability": 0.8962 + }, + { + "start": 5723.36, + "end": 5729.22, + "probability": 0.9297 + }, + { + "start": 5729.8, + "end": 5730.88, + "probability": 0.6829 + }, + { + "start": 5731.94, + "end": 5733.68, + "probability": 0.5137 + }, + { + "start": 5735.54, + "end": 5737.3, + "probability": 0.6564 + }, + { + "start": 5738.18, + "end": 5739.48, + "probability": 0.1873 + }, + { + "start": 5740.34, + "end": 5743.46, + "probability": 0.9834 + }, + { + "start": 5743.98, + "end": 5745.8, + "probability": 0.9734 + }, + { + "start": 5746.72, + "end": 5749.04, + "probability": 0.9971 + }, + { + "start": 5749.94, + "end": 5752.26, + "probability": 0.978 + }, + { + "start": 5752.8, + "end": 5754.36, + "probability": 0.9897 + }, + { + "start": 5755.18, + "end": 5762.36, + "probability": 0.9943 + }, + { + "start": 5763.38, + "end": 5766.68, + "probability": 0.9844 + }, + { + "start": 5767.96, + "end": 5771.26, + "probability": 0.8557 + }, + { + "start": 5771.96, + "end": 5773.8, + "probability": 0.9796 + }, + { + "start": 5774.7, + "end": 5777.04, + "probability": 0.9217 + }, + { + "start": 5778.14, + "end": 5781.92, + "probability": 0.9887 + }, + { + "start": 5781.92, + "end": 5785.68, + "probability": 0.9993 + }, + { + "start": 5786.6, + "end": 5787.6, + "probability": 0.8164 + }, + { + "start": 5788.04, + "end": 5789.12, + "probability": 0.9592 + }, + { + "start": 5789.58, + "end": 5790.72, + "probability": 0.8896 + }, + { + "start": 5791.22, + "end": 5793.96, + "probability": 0.9929 + }, + { + "start": 5796.76, + "end": 5798.9, + "probability": 0.5869 + }, + { + "start": 5799.66, + "end": 5801.08, + "probability": 0.88 + }, + { + "start": 5803.34, + "end": 5810.78, + "probability": 0.8546 + }, + { + "start": 5811.6, + "end": 5813.8, + "probability": 0.8226 + }, + { + "start": 5814.58, + "end": 5818.48, + "probability": 0.7478 + }, + { + "start": 5819.24, + "end": 5823.24, + "probability": 0.8566 + }, + { + "start": 5825.62, + "end": 5827.47, + "probability": 0.6713 + }, + { + "start": 5828.84, + "end": 5832.34, + "probability": 0.989 + }, + { + "start": 5832.94, + "end": 5835.38, + "probability": 0.9877 + }, + { + "start": 5836.28, + "end": 5840.22, + "probability": 0.9886 + }, + { + "start": 5840.22, + "end": 5842.44, + "probability": 0.7579 + }, + { + "start": 5844.06, + "end": 5849.04, + "probability": 0.897 + }, + { + "start": 5849.22, + "end": 5850.5, + "probability": 0.9551 + }, + { + "start": 5851.62, + "end": 5854.1, + "probability": 0.9714 + }, + { + "start": 5855.0, + "end": 5855.96, + "probability": 0.9173 + }, + { + "start": 5856.7, + "end": 5858.0, + "probability": 0.9589 + }, + { + "start": 5859.4, + "end": 5861.52, + "probability": 0.9479 + }, + { + "start": 5862.2, + "end": 5863.7, + "probability": 0.9937 + }, + { + "start": 5865.88, + "end": 5867.4, + "probability": 0.9971 + }, + { + "start": 5868.1, + "end": 5872.58, + "probability": 0.9874 + }, + { + "start": 5872.86, + "end": 5875.88, + "probability": 0.9781 + }, + { + "start": 5876.38, + "end": 5878.42, + "probability": 0.9009 + }, + { + "start": 5878.9, + "end": 5879.65, + "probability": 0.4034 + }, + { + "start": 5887.18, + "end": 5891.08, + "probability": 0.9954 + }, + { + "start": 5893.8, + "end": 5895.92, + "probability": 0.7355 + }, + { + "start": 5897.28, + "end": 5898.02, + "probability": 0.9641 + }, + { + "start": 5900.58, + "end": 5902.78, + "probability": 0.9982 + }, + { + "start": 5903.8, + "end": 5907.52, + "probability": 0.9841 + }, + { + "start": 5909.12, + "end": 5910.02, + "probability": 0.9315 + }, + { + "start": 5911.18, + "end": 5914.12, + "probability": 0.9928 + }, + { + "start": 5914.28, + "end": 5916.8, + "probability": 0.9764 + }, + { + "start": 5917.48, + "end": 5917.84, + "probability": 0.925 + }, + { + "start": 5918.46, + "end": 5922.64, + "probability": 0.9758 + }, + { + "start": 5924.42, + "end": 5926.92, + "probability": 0.98 + }, + { + "start": 5928.66, + "end": 5932.46, + "probability": 0.9736 + }, + { + "start": 5932.62, + "end": 5933.42, + "probability": 0.677 + }, + { + "start": 5934.42, + "end": 5934.98, + "probability": 0.5855 + }, + { + "start": 5935.64, + "end": 5936.82, + "probability": 0.8021 + }, + { + "start": 5936.9, + "end": 5937.14, + "probability": 0.4927 + }, + { + "start": 5937.28, + "end": 5938.86, + "probability": 0.4436 + }, + { + "start": 5939.46, + "end": 5944.38, + "probability": 0.9906 + }, + { + "start": 5944.94, + "end": 5947.02, + "probability": 0.9805 + }, + { + "start": 5948.2, + "end": 5948.58, + "probability": 0.6117 + }, + { + "start": 5948.66, + "end": 5951.76, + "probability": 0.9878 + }, + { + "start": 5952.04, + "end": 5952.28, + "probability": 0.6746 + }, + { + "start": 5954.38, + "end": 5956.7, + "probability": 0.9992 + }, + { + "start": 5957.66, + "end": 5958.3, + "probability": 0.5651 + }, + { + "start": 5959.06, + "end": 5960.8, + "probability": 0.9198 + }, + { + "start": 5961.64, + "end": 5965.84, + "probability": 0.773 + }, + { + "start": 5966.4, + "end": 5968.42, + "probability": 0.9623 + }, + { + "start": 5970.28, + "end": 5971.38, + "probability": 0.9914 + }, + { + "start": 5972.48, + "end": 5976.62, + "probability": 0.9959 + }, + { + "start": 5977.18, + "end": 5983.14, + "probability": 0.9988 + }, + { + "start": 5983.86, + "end": 5984.7, + "probability": 0.7358 + }, + { + "start": 5985.32, + "end": 5989.7, + "probability": 0.9901 + }, + { + "start": 5990.6, + "end": 5991.54, + "probability": 0.7437 + }, + { + "start": 5992.48, + "end": 5993.96, + "probability": 0.825 + }, + { + "start": 5995.16, + "end": 5997.76, + "probability": 0.9818 + }, + { + "start": 5998.02, + "end": 6001.38, + "probability": 0.8038 + }, + { + "start": 6001.54, + "end": 6006.3, + "probability": 0.9264 + }, + { + "start": 6007.02, + "end": 6010.8, + "probability": 0.9683 + }, + { + "start": 6010.88, + "end": 6012.34, + "probability": 0.8143 + }, + { + "start": 6012.44, + "end": 6017.5, + "probability": 0.9357 + }, + { + "start": 6017.84, + "end": 6018.32, + "probability": 0.7638 + }, + { + "start": 6018.42, + "end": 6019.58, + "probability": 0.9596 + }, + { + "start": 6021.12, + "end": 6023.14, + "probability": 0.8834 + }, + { + "start": 6023.9, + "end": 6025.58, + "probability": 0.7247 + }, + { + "start": 6025.92, + "end": 6026.94, + "probability": 0.416 + }, + { + "start": 6027.08, + "end": 6029.76, + "probability": 0.8038 + }, + { + "start": 6030.24, + "end": 6031.36, + "probability": 0.8657 + }, + { + "start": 6032.56, + "end": 6034.38, + "probability": 0.8539 + }, + { + "start": 6035.16, + "end": 6036.4, + "probability": 0.8712 + }, + { + "start": 6037.32, + "end": 6039.78, + "probability": 0.8402 + }, + { + "start": 6040.7, + "end": 6042.34, + "probability": 0.8524 + }, + { + "start": 6043.2, + "end": 6046.52, + "probability": 0.9233 + }, + { + "start": 6047.82, + "end": 6050.62, + "probability": 0.9401 + }, + { + "start": 6050.96, + "end": 6052.72, + "probability": 0.8968 + }, + { + "start": 6053.48, + "end": 6053.98, + "probability": 0.6918 + }, + { + "start": 6054.68, + "end": 6058.16, + "probability": 0.9893 + }, + { + "start": 6058.82, + "end": 6062.14, + "probability": 0.9946 + }, + { + "start": 6062.24, + "end": 6063.92, + "probability": 0.9939 + }, + { + "start": 6064.72, + "end": 6066.16, + "probability": 0.928 + }, + { + "start": 6066.46, + "end": 6067.02, + "probability": 0.8741 + }, + { + "start": 6067.12, + "end": 6067.7, + "probability": 0.9636 + }, + { + "start": 6068.18, + "end": 6070.12, + "probability": 0.7609 + }, + { + "start": 6070.82, + "end": 6074.04, + "probability": 0.9806 + }, + { + "start": 6074.72, + "end": 6077.62, + "probability": 0.8406 + }, + { + "start": 6078.0, + "end": 6080.04, + "probability": 0.9886 + }, + { + "start": 6080.86, + "end": 6085.16, + "probability": 0.7496 + }, + { + "start": 6085.26, + "end": 6089.68, + "probability": 0.9427 + }, + { + "start": 6092.18, + "end": 6096.32, + "probability": 0.9848 + }, + { + "start": 6096.32, + "end": 6096.9, + "probability": 0.9698 + }, + { + "start": 6097.24, + "end": 6099.1, + "probability": 0.9902 + }, + { + "start": 6101.42, + "end": 6102.0, + "probability": 0.8757 + }, + { + "start": 6102.32, + "end": 6105.18, + "probability": 0.9827 + }, + { + "start": 6106.54, + "end": 6109.24, + "probability": 0.988 + }, + { + "start": 6110.04, + "end": 6110.8, + "probability": 0.8474 + }, + { + "start": 6111.44, + "end": 6112.1, + "probability": 0.9717 + }, + { + "start": 6112.8, + "end": 6114.56, + "probability": 0.9403 + }, + { + "start": 6115.28, + "end": 6116.92, + "probability": 0.7644 + }, + { + "start": 6117.52, + "end": 6119.98, + "probability": 0.9846 + }, + { + "start": 6121.16, + "end": 6124.38, + "probability": 0.8545 + }, + { + "start": 6125.96, + "end": 6127.86, + "probability": 0.6385 + }, + { + "start": 6128.0, + "end": 6128.38, + "probability": 0.6192 + }, + { + "start": 6128.58, + "end": 6130.16, + "probability": 0.6707 + }, + { + "start": 6131.18, + "end": 6132.73, + "probability": 0.9596 + }, + { + "start": 6133.82, + "end": 6137.78, + "probability": 0.5303 + }, + { + "start": 6138.28, + "end": 6138.74, + "probability": 0.9619 + }, + { + "start": 6139.24, + "end": 6144.5, + "probability": 0.9702 + }, + { + "start": 6144.6, + "end": 6147.96, + "probability": 0.9873 + }, + { + "start": 6147.96, + "end": 6152.54, + "probability": 0.998 + }, + { + "start": 6153.04, + "end": 6155.76, + "probability": 0.937 + }, + { + "start": 6156.62, + "end": 6159.92, + "probability": 0.9874 + }, + { + "start": 6160.64, + "end": 6167.38, + "probability": 0.9913 + }, + { + "start": 6168.14, + "end": 6170.06, + "probability": 0.974 + }, + { + "start": 6170.92, + "end": 6173.36, + "probability": 0.9611 + }, + { + "start": 6173.52, + "end": 6174.42, + "probability": 0.9752 + }, + { + "start": 6174.84, + "end": 6175.38, + "probability": 0.7792 + }, + { + "start": 6175.97, + "end": 6181.88, + "probability": 0.8811 + }, + { + "start": 6182.08, + "end": 6183.69, + "probability": 0.9927 + }, + { + "start": 6184.56, + "end": 6190.52, + "probability": 0.9961 + }, + { + "start": 6190.68, + "end": 6191.3, + "probability": 0.8228 + }, + { + "start": 6191.9, + "end": 6194.76, + "probability": 0.8783 + }, + { + "start": 6195.26, + "end": 6197.62, + "probability": 0.967 + }, + { + "start": 6198.12, + "end": 6200.05, + "probability": 0.9937 + }, + { + "start": 6200.88, + "end": 6204.66, + "probability": 0.9891 + }, + { + "start": 6205.1, + "end": 6206.86, + "probability": 0.9995 + }, + { + "start": 6207.02, + "end": 6209.4, + "probability": 0.9916 + }, + { + "start": 6209.92, + "end": 6213.18, + "probability": 0.9831 + }, + { + "start": 6213.3, + "end": 6214.22, + "probability": 0.9805 + }, + { + "start": 6214.74, + "end": 6216.72, + "probability": 0.6937 + }, + { + "start": 6217.48, + "end": 6219.22, + "probability": 0.7031 + }, + { + "start": 6219.42, + "end": 6222.24, + "probability": 0.9469 + }, + { + "start": 6222.36, + "end": 6224.47, + "probability": 0.9976 + }, + { + "start": 6225.28, + "end": 6227.96, + "probability": 0.985 + }, + { + "start": 6227.96, + "end": 6229.99, + "probability": 0.8975 + }, + { + "start": 6230.46, + "end": 6234.06, + "probability": 0.9955 + }, + { + "start": 6234.06, + "end": 6236.62, + "probability": 0.9601 + }, + { + "start": 6237.14, + "end": 6238.4, + "probability": 0.6094 + }, + { + "start": 6238.92, + "end": 6240.8, + "probability": 0.6044 + }, + { + "start": 6241.68, + "end": 6242.54, + "probability": 0.9116 + }, + { + "start": 6242.6, + "end": 6246.82, + "probability": 0.9884 + }, + { + "start": 6247.9, + "end": 6252.4, + "probability": 0.726 + }, + { + "start": 6252.98, + "end": 6254.58, + "probability": 0.986 + }, + { + "start": 6255.22, + "end": 6255.48, + "probability": 0.6569 + }, + { + "start": 6256.48, + "end": 6258.76, + "probability": 0.7468 + }, + { + "start": 6259.46, + "end": 6259.9, + "probability": 0.4894 + }, + { + "start": 6260.54, + "end": 6263.36, + "probability": 0.9699 + }, + { + "start": 6263.96, + "end": 6265.72, + "probability": 0.992 + }, + { + "start": 6266.14, + "end": 6268.5, + "probability": 0.9879 + }, + { + "start": 6269.08, + "end": 6270.42, + "probability": 0.8337 + }, + { + "start": 6271.24, + "end": 6272.26, + "probability": 0.9536 + }, + { + "start": 6272.38, + "end": 6273.5, + "probability": 0.7093 + }, + { + "start": 6273.98, + "end": 6277.5, + "probability": 0.9958 + }, + { + "start": 6278.04, + "end": 6279.26, + "probability": 0.9855 + }, + { + "start": 6279.74, + "end": 6280.84, + "probability": 0.8711 + }, + { + "start": 6281.1, + "end": 6281.92, + "probability": 0.9795 + }, + { + "start": 6282.94, + "end": 6284.6, + "probability": 0.7123 + }, + { + "start": 6285.0, + "end": 6285.92, + "probability": 0.8904 + }, + { + "start": 6286.34, + "end": 6290.52, + "probability": 0.8632 + }, + { + "start": 6290.7, + "end": 6293.94, + "probability": 0.9701 + }, + { + "start": 6294.18, + "end": 6294.98, + "probability": 0.7491 + }, + { + "start": 6295.5, + "end": 6296.22, + "probability": 0.8934 + }, + { + "start": 6297.7, + "end": 6298.9, + "probability": 0.9519 + }, + { + "start": 6298.96, + "end": 6300.78, + "probability": 0.5018 + }, + { + "start": 6300.9, + "end": 6301.2, + "probability": 0.6193 + }, + { + "start": 6301.54, + "end": 6302.3, + "probability": 0.7225 + }, + { + "start": 6302.46, + "end": 6302.9, + "probability": 0.6288 + }, + { + "start": 6305.78, + "end": 6311.48, + "probability": 0.9465 + }, + { + "start": 6311.96, + "end": 6312.58, + "probability": 0.5781 + }, + { + "start": 6313.1, + "end": 6313.9, + "probability": 0.7322 + }, + { + "start": 6314.44, + "end": 6317.4, + "probability": 0.9507 + }, + { + "start": 6318.04, + "end": 6320.24, + "probability": 0.7922 + }, + { + "start": 6322.58, + "end": 6325.4, + "probability": 0.8242 + }, + { + "start": 6326.04, + "end": 6329.12, + "probability": 0.9966 + }, + { + "start": 6329.56, + "end": 6333.74, + "probability": 0.996 + }, + { + "start": 6333.86, + "end": 6334.76, + "probability": 0.9545 + }, + { + "start": 6335.22, + "end": 6337.0, + "probability": 0.9982 + }, + { + "start": 6337.62, + "end": 6341.86, + "probability": 0.7476 + }, + { + "start": 6341.96, + "end": 6342.66, + "probability": 0.766 + }, + { + "start": 6343.16, + "end": 6344.5, + "probability": 0.9926 + }, + { + "start": 6344.94, + "end": 6346.25, + "probability": 0.9722 + }, + { + "start": 6346.8, + "end": 6348.85, + "probability": 0.9722 + }, + { + "start": 6349.68, + "end": 6352.86, + "probability": 0.9688 + }, + { + "start": 6353.56, + "end": 6355.96, + "probability": 0.987 + }, + { + "start": 6356.78, + "end": 6358.04, + "probability": 0.7681 + }, + { + "start": 6358.22, + "end": 6360.94, + "probability": 0.8574 + }, + { + "start": 6361.5, + "end": 6365.68, + "probability": 0.9701 + }, + { + "start": 6366.84, + "end": 6369.08, + "probability": 0.969 + }, + { + "start": 6369.94, + "end": 6372.08, + "probability": 0.9522 + }, + { + "start": 6372.7, + "end": 6373.8, + "probability": 0.7397 + }, + { + "start": 6374.44, + "end": 6375.46, + "probability": 0.8167 + }, + { + "start": 6376.48, + "end": 6378.4, + "probability": 0.6948 + }, + { + "start": 6378.86, + "end": 6379.74, + "probability": 0.9013 + }, + { + "start": 6380.12, + "end": 6381.7, + "probability": 0.8023 + }, + { + "start": 6382.2, + "end": 6387.98, + "probability": 0.9966 + }, + { + "start": 6388.02, + "end": 6389.28, + "probability": 0.8198 + }, + { + "start": 6389.84, + "end": 6394.78, + "probability": 0.9717 + }, + { + "start": 6394.88, + "end": 6395.44, + "probability": 0.9037 + }, + { + "start": 6395.58, + "end": 6397.66, + "probability": 0.8591 + }, + { + "start": 6398.0, + "end": 6400.06, + "probability": 0.892 + }, + { + "start": 6400.42, + "end": 6401.26, + "probability": 0.476 + }, + { + "start": 6401.88, + "end": 6403.24, + "probability": 0.7172 + }, + { + "start": 6403.82, + "end": 6406.74, + "probability": 0.9408 + }, + { + "start": 6407.46, + "end": 6409.86, + "probability": 0.5492 + }, + { + "start": 6410.32, + "end": 6411.32, + "probability": 0.8648 + }, + { + "start": 6411.72, + "end": 6413.98, + "probability": 0.8579 + }, + { + "start": 6414.24, + "end": 6417.18, + "probability": 0.8479 + }, + { + "start": 6417.18, + "end": 6420.4, + "probability": 0.9847 + }, + { + "start": 6421.32, + "end": 6422.4, + "probability": 0.8561 + }, + { + "start": 6422.76, + "end": 6426.36, + "probability": 0.9745 + }, + { + "start": 6426.78, + "end": 6428.54, + "probability": 0.7694 + }, + { + "start": 6429.0, + "end": 6430.72, + "probability": 0.7026 + }, + { + "start": 6432.34, + "end": 6433.06, + "probability": 0.6188 + }, + { + "start": 6434.42, + "end": 6435.96, + "probability": 0.864 + }, + { + "start": 6437.02, + "end": 6438.54, + "probability": 0.9862 + }, + { + "start": 6439.32, + "end": 6441.3, + "probability": 0.9945 + }, + { + "start": 6441.86, + "end": 6444.0, + "probability": 0.9768 + }, + { + "start": 6445.24, + "end": 6446.32, + "probability": 0.9097 + }, + { + "start": 6446.8, + "end": 6450.96, + "probability": 0.9523 + }, + { + "start": 6451.48, + "end": 6455.4, + "probability": 0.995 + }, + { + "start": 6456.3, + "end": 6456.98, + "probability": 0.9017 + }, + { + "start": 6457.16, + "end": 6459.6, + "probability": 0.8862 + }, + { + "start": 6459.92, + "end": 6462.28, + "probability": 0.8158 + }, + { + "start": 6462.46, + "end": 6463.59, + "probability": 0.999 + }, + { + "start": 6464.3, + "end": 6465.98, + "probability": 0.7978 + }, + { + "start": 6466.42, + "end": 6467.42, + "probability": 0.9521 + }, + { + "start": 6468.16, + "end": 6468.76, + "probability": 0.8803 + }, + { + "start": 6469.26, + "end": 6474.92, + "probability": 0.9948 + }, + { + "start": 6475.64, + "end": 6477.74, + "probability": 0.9585 + }, + { + "start": 6478.26, + "end": 6482.72, + "probability": 0.9901 + }, + { + "start": 6482.82, + "end": 6484.7, + "probability": 0.9372 + }, + { + "start": 6485.34, + "end": 6487.4, + "probability": 0.9569 + }, + { + "start": 6487.74, + "end": 6488.91, + "probability": 0.854 + }, + { + "start": 6489.38, + "end": 6491.5, + "probability": 0.9805 + }, + { + "start": 6492.0, + "end": 6493.07, + "probability": 0.9565 + }, + { + "start": 6493.68, + "end": 6494.5, + "probability": 0.9478 + }, + { + "start": 6495.02, + "end": 6496.46, + "probability": 0.9772 + }, + { + "start": 6496.86, + "end": 6498.26, + "probability": 0.9447 + }, + { + "start": 6498.66, + "end": 6499.68, + "probability": 0.9902 + }, + { + "start": 6500.0, + "end": 6502.76, + "probability": 0.9569 + }, + { + "start": 6503.32, + "end": 6504.98, + "probability": 0.9679 + }, + { + "start": 6505.36, + "end": 6505.96, + "probability": 0.6812 + }, + { + "start": 6506.28, + "end": 6507.3, + "probability": 0.9884 + }, + { + "start": 6507.44, + "end": 6508.32, + "probability": 0.7149 + }, + { + "start": 6508.92, + "end": 6510.92, + "probability": 0.8729 + }, + { + "start": 6511.54, + "end": 6512.38, + "probability": 0.7264 + }, + { + "start": 6512.72, + "end": 6516.9, + "probability": 0.9832 + }, + { + "start": 6517.12, + "end": 6517.48, + "probability": 0.832 + }, + { + "start": 6518.66, + "end": 6520.02, + "probability": 0.7271 + }, + { + "start": 6520.38, + "end": 6523.14, + "probability": 0.8079 + }, + { + "start": 6542.22, + "end": 6543.04, + "probability": 0.7739 + }, + { + "start": 6543.62, + "end": 6545.02, + "probability": 0.6949 + }, + { + "start": 6545.6, + "end": 6546.5, + "probability": 0.726 + }, + { + "start": 6547.92, + "end": 6550.16, + "probability": 0.9938 + }, + { + "start": 6551.04, + "end": 6552.86, + "probability": 0.9132 + }, + { + "start": 6554.02, + "end": 6556.16, + "probability": 0.978 + }, + { + "start": 6556.88, + "end": 6560.12, + "probability": 0.9868 + }, + { + "start": 6561.44, + "end": 6565.72, + "probability": 0.8931 + }, + { + "start": 6567.9, + "end": 6569.82, + "probability": 0.9404 + }, + { + "start": 6570.74, + "end": 6571.92, + "probability": 0.9451 + }, + { + "start": 6572.54, + "end": 6574.28, + "probability": 0.8916 + }, + { + "start": 6574.96, + "end": 6578.82, + "probability": 0.9979 + }, + { + "start": 6579.76, + "end": 6584.56, + "probability": 0.9882 + }, + { + "start": 6586.06, + "end": 6592.48, + "probability": 0.9902 + }, + { + "start": 6593.8, + "end": 6597.42, + "probability": 0.9718 + }, + { + "start": 6598.18, + "end": 6600.86, + "probability": 0.9383 + }, + { + "start": 6601.54, + "end": 6602.96, + "probability": 0.9709 + }, + { + "start": 6604.7, + "end": 6606.56, + "probability": 0.9668 + }, + { + "start": 6607.88, + "end": 6611.98, + "probability": 0.9905 + }, + { + "start": 6613.98, + "end": 6615.68, + "probability": 0.9374 + }, + { + "start": 6616.6, + "end": 6618.76, + "probability": 0.9982 + }, + { + "start": 6620.06, + "end": 6624.22, + "probability": 0.9927 + }, + { + "start": 6624.28, + "end": 6627.54, + "probability": 0.9557 + }, + { + "start": 6628.22, + "end": 6633.28, + "probability": 0.9923 + }, + { + "start": 6633.32, + "end": 6636.54, + "probability": 0.9976 + }, + { + "start": 6638.04, + "end": 6641.84, + "probability": 0.9132 + }, + { + "start": 6642.06, + "end": 6645.82, + "probability": 0.9895 + }, + { + "start": 6646.38, + "end": 6648.86, + "probability": 0.9934 + }, + { + "start": 6649.5, + "end": 6650.34, + "probability": 0.7701 + }, + { + "start": 6651.92, + "end": 6654.18, + "probability": 0.9843 + }, + { + "start": 6654.8, + "end": 6656.72, + "probability": 0.9884 + }, + { + "start": 6657.28, + "end": 6658.44, + "probability": 0.9832 + }, + { + "start": 6659.44, + "end": 6661.88, + "probability": 0.8885 + }, + { + "start": 6662.4, + "end": 6664.58, + "probability": 0.9844 + }, + { + "start": 6665.32, + "end": 6666.7, + "probability": 0.9863 + }, + { + "start": 6667.86, + "end": 6670.0, + "probability": 0.6771 + }, + { + "start": 6671.2, + "end": 6672.42, + "probability": 0.9683 + }, + { + "start": 6673.02, + "end": 6675.0, + "probability": 0.8165 + }, + { + "start": 6676.04, + "end": 6677.88, + "probability": 0.8389 + }, + { + "start": 6678.0, + "end": 6679.86, + "probability": 0.9934 + }, + { + "start": 6680.66, + "end": 6681.9, + "probability": 0.9644 + }, + { + "start": 6682.72, + "end": 6688.12, + "probability": 0.9802 + }, + { + "start": 6688.86, + "end": 6690.06, + "probability": 0.9945 + }, + { + "start": 6690.66, + "end": 6695.96, + "probability": 0.9923 + }, + { + "start": 6696.62, + "end": 6698.56, + "probability": 0.9897 + }, + { + "start": 6699.14, + "end": 6700.2, + "probability": 0.7509 + }, + { + "start": 6701.02, + "end": 6702.3, + "probability": 0.9567 + }, + { + "start": 6704.06, + "end": 6706.04, + "probability": 0.6618 + }, + { + "start": 6707.08, + "end": 6708.38, + "probability": 0.9784 + }, + { + "start": 6709.1, + "end": 6709.96, + "probability": 0.8409 + }, + { + "start": 6710.52, + "end": 6714.79, + "probability": 0.9926 + }, + { + "start": 6716.0, + "end": 6717.7, + "probability": 0.9764 + }, + { + "start": 6718.66, + "end": 6718.78, + "probability": 0.9381 + }, + { + "start": 6719.32, + "end": 6719.46, + "probability": 0.9994 + }, + { + "start": 6720.18, + "end": 6721.12, + "probability": 0.9342 + }, + { + "start": 6721.7, + "end": 6723.7, + "probability": 0.9958 + }, + { + "start": 6724.22, + "end": 6726.58, + "probability": 0.9904 + }, + { + "start": 6727.7, + "end": 6729.38, + "probability": 0.9873 + }, + { + "start": 6729.98, + "end": 6735.42, + "probability": 0.8944 + }, + { + "start": 6736.9, + "end": 6743.2, + "probability": 0.993 + }, + { + "start": 6744.32, + "end": 6745.28, + "probability": 0.4459 + }, + { + "start": 6745.36, + "end": 6751.42, + "probability": 0.9818 + }, + { + "start": 6751.9, + "end": 6753.02, + "probability": 0.9356 + }, + { + "start": 6753.98, + "end": 6759.04, + "probability": 0.9832 + }, + { + "start": 6759.26, + "end": 6763.94, + "probability": 0.9955 + }, + { + "start": 6764.66, + "end": 6765.78, + "probability": 0.7076 + }, + { + "start": 6766.4, + "end": 6767.72, + "probability": 0.8637 + }, + { + "start": 6768.9, + "end": 6769.88, + "probability": 0.389 + }, + { + "start": 6770.54, + "end": 6772.8, + "probability": 0.9247 + }, + { + "start": 6773.22, + "end": 6773.68, + "probability": 0.7277 + }, + { + "start": 6775.5, + "end": 6775.92, + "probability": 0.8427 + }, + { + "start": 6778.18, + "end": 6782.34, + "probability": 0.8066 + }, + { + "start": 6793.66, + "end": 6795.9, + "probability": 0.9912 + }, + { + "start": 6796.58, + "end": 6800.24, + "probability": 0.8225 + }, + { + "start": 6800.36, + "end": 6802.04, + "probability": 0.7736 + }, + { + "start": 6802.2, + "end": 6810.12, + "probability": 0.8578 + }, + { + "start": 6810.7, + "end": 6813.2, + "probability": 0.7575 + }, + { + "start": 6813.88, + "end": 6817.48, + "probability": 0.9182 + }, + { + "start": 6817.98, + "end": 6818.2, + "probability": 0.5083 + }, + { + "start": 6818.2, + "end": 6821.52, + "probability": 0.9656 + }, + { + "start": 6821.9, + "end": 6822.76, + "probability": 0.858 + }, + { + "start": 6823.26, + "end": 6823.8, + "probability": 0.3696 + }, + { + "start": 6824.42, + "end": 6831.6, + "probability": 0.8222 + }, + { + "start": 6832.08, + "end": 6834.66, + "probability": 0.9973 + }, + { + "start": 6835.22, + "end": 6837.1, + "probability": 0.8877 + }, + { + "start": 6837.48, + "end": 6841.26, + "probability": 0.9885 + }, + { + "start": 6841.68, + "end": 6846.9, + "probability": 0.9955 + }, + { + "start": 6847.42, + "end": 6848.76, + "probability": 0.8684 + }, + { + "start": 6849.06, + "end": 6851.72, + "probability": 0.991 + }, + { + "start": 6851.84, + "end": 6852.5, + "probability": 0.7343 + }, + { + "start": 6852.98, + "end": 6853.94, + "probability": 0.6384 + }, + { + "start": 6854.54, + "end": 6858.26, + "probability": 0.8407 + }, + { + "start": 6858.64, + "end": 6860.06, + "probability": 0.5169 + }, + { + "start": 6860.06, + "end": 6866.86, + "probability": 0.9949 + }, + { + "start": 6867.28, + "end": 6870.62, + "probability": 0.9883 + }, + { + "start": 6871.12, + "end": 6871.86, + "probability": 0.9714 + }, + { + "start": 6871.98, + "end": 6874.78, + "probability": 0.9949 + }, + { + "start": 6875.34, + "end": 6878.38, + "probability": 0.7876 + }, + { + "start": 6878.46, + "end": 6878.74, + "probability": 0.8552 + }, + { + "start": 6878.92, + "end": 6881.26, + "probability": 0.9728 + }, + { + "start": 6882.94, + "end": 6884.42, + "probability": 0.8923 + }, + { + "start": 6885.32, + "end": 6886.54, + "probability": 0.7798 + }, + { + "start": 6886.8, + "end": 6887.46, + "probability": 0.8538 + }, + { + "start": 6887.96, + "end": 6890.18, + "probability": 0.2679 + }, + { + "start": 6897.98, + "end": 6900.54, + "probability": 0.4776 + }, + { + "start": 6900.58, + "end": 6904.44, + "probability": 0.861 + }, + { + "start": 6904.96, + "end": 6907.54, + "probability": 0.1914 + }, + { + "start": 6908.86, + "end": 6911.08, + "probability": 0.3138 + }, + { + "start": 6928.38, + "end": 6930.46, + "probability": 0.2546 + }, + { + "start": 6931.06, + "end": 6933.76, + "probability": 0.9932 + }, + { + "start": 6934.68, + "end": 6939.24, + "probability": 0.9715 + }, + { + "start": 6939.24, + "end": 6944.92, + "probability": 0.9747 + }, + { + "start": 6945.5, + "end": 6947.32, + "probability": 0.5813 + }, + { + "start": 6948.83, + "end": 6953.28, + "probability": 0.8325 + }, + { + "start": 6953.38, + "end": 6953.76, + "probability": 0.8403 + }, + { + "start": 6962.76, + "end": 6963.58, + "probability": 0.5243 + }, + { + "start": 6964.6, + "end": 6966.1, + "probability": 0.824 + }, + { + "start": 6968.64, + "end": 6975.22, + "probability": 0.9946 + }, + { + "start": 6976.12, + "end": 6978.78, + "probability": 0.9274 + }, + { + "start": 6979.08, + "end": 6982.46, + "probability": 0.9493 + }, + { + "start": 6983.02, + "end": 6987.04, + "probability": 0.9831 + }, + { + "start": 6987.94, + "end": 6988.68, + "probability": 0.9408 + }, + { + "start": 6990.18, + "end": 6994.08, + "probability": 0.9911 + }, + { + "start": 6994.7, + "end": 6997.86, + "probability": 0.985 + }, + { + "start": 6998.82, + "end": 7000.46, + "probability": 0.4224 + }, + { + "start": 7000.86, + "end": 7004.78, + "probability": 0.9435 + }, + { + "start": 7006.48, + "end": 7008.08, + "probability": 0.9958 + }, + { + "start": 7008.6, + "end": 7011.75, + "probability": 0.9951 + }, + { + "start": 7012.74, + "end": 7017.22, + "probability": 0.917 + }, + { + "start": 7018.28, + "end": 7018.7, + "probability": 0.9927 + }, + { + "start": 7019.42, + "end": 7022.82, + "probability": 0.9761 + }, + { + "start": 7024.08, + "end": 7025.84, + "probability": 0.9908 + }, + { + "start": 7026.52, + "end": 7028.86, + "probability": 0.8452 + }, + { + "start": 7029.54, + "end": 7034.98, + "probability": 0.9956 + }, + { + "start": 7037.2, + "end": 7040.56, + "probability": 0.9888 + }, + { + "start": 7040.78, + "end": 7041.28, + "probability": 0.9658 + }, + { + "start": 7041.44, + "end": 7043.48, + "probability": 0.9903 + }, + { + "start": 7044.12, + "end": 7045.42, + "probability": 0.9229 + }, + { + "start": 7046.34, + "end": 7050.94, + "probability": 0.8856 + }, + { + "start": 7052.48, + "end": 7053.32, + "probability": 0.8717 + }, + { + "start": 7053.9, + "end": 7060.56, + "probability": 0.9982 + }, + { + "start": 7062.46, + "end": 7067.6, + "probability": 0.9983 + }, + { + "start": 7068.9, + "end": 7072.16, + "probability": 0.9322 + }, + { + "start": 7072.16, + "end": 7076.1, + "probability": 0.9994 + }, + { + "start": 7076.52, + "end": 7077.84, + "probability": 0.724 + }, + { + "start": 7078.3, + "end": 7079.18, + "probability": 0.7963 + }, + { + "start": 7079.82, + "end": 7084.52, + "probability": 0.901 + }, + { + "start": 7085.42, + "end": 7085.76, + "probability": 0.5673 + }, + { + "start": 7085.78, + "end": 7086.42, + "probability": 0.7518 + }, + { + "start": 7086.6, + "end": 7089.76, + "probability": 0.9925 + }, + { + "start": 7091.08, + "end": 7091.82, + "probability": 0.9606 + }, + { + "start": 7093.38, + "end": 7094.8, + "probability": 0.9207 + }, + { + "start": 7096.04, + "end": 7097.5, + "probability": 0.7382 + }, + { + "start": 7098.9, + "end": 7100.38, + "probability": 0.78 + }, + { + "start": 7101.18, + "end": 7102.06, + "probability": 0.9292 + }, + { + "start": 7103.92, + "end": 7107.36, + "probability": 0.7559 + }, + { + "start": 7108.08, + "end": 7109.48, + "probability": 0.9397 + }, + { + "start": 7110.16, + "end": 7111.82, + "probability": 0.5116 + }, + { + "start": 7112.56, + "end": 7115.78, + "probability": 0.981 + }, + { + "start": 7116.56, + "end": 7121.66, + "probability": 0.9966 + }, + { + "start": 7121.66, + "end": 7122.38, + "probability": 0.625 + }, + { + "start": 7123.14, + "end": 7127.04, + "probability": 0.9982 + }, + { + "start": 7127.58, + "end": 7129.94, + "probability": 0.6639 + }, + { + "start": 7130.48, + "end": 7135.28, + "probability": 0.9811 + }, + { + "start": 7136.3, + "end": 7138.58, + "probability": 0.8477 + }, + { + "start": 7138.72, + "end": 7142.98, + "probability": 0.8411 + }, + { + "start": 7144.28, + "end": 7145.4, + "probability": 0.8926 + }, + { + "start": 7145.6, + "end": 7151.48, + "probability": 0.9166 + }, + { + "start": 7152.5, + "end": 7159.14, + "probability": 0.8569 + }, + { + "start": 7159.8, + "end": 7163.8, + "probability": 0.9871 + }, + { + "start": 7164.6, + "end": 7165.6, + "probability": 0.8936 + }, + { + "start": 7167.32, + "end": 7167.74, + "probability": 0.894 + }, + { + "start": 7168.74, + "end": 7170.06, + "probability": 0.9944 + }, + { + "start": 7174.9, + "end": 7180.8, + "probability": 0.9432 + }, + { + "start": 7181.74, + "end": 7187.2, + "probability": 0.7708 + }, + { + "start": 7188.46, + "end": 7192.26, + "probability": 0.986 + }, + { + "start": 7192.92, + "end": 7194.71, + "probability": 0.9956 + }, + { + "start": 7195.46, + "end": 7198.29, + "probability": 0.7358 + }, + { + "start": 7199.16, + "end": 7202.52, + "probability": 0.9744 + }, + { + "start": 7203.9, + "end": 7210.06, + "probability": 0.936 + }, + { + "start": 7210.24, + "end": 7211.0, + "probability": 0.5467 + }, + { + "start": 7211.26, + "end": 7216.42, + "probability": 0.9575 + }, + { + "start": 7218.3, + "end": 7220.66, + "probability": 0.9021 + }, + { + "start": 7221.48, + "end": 7222.5, + "probability": 0.9742 + }, + { + "start": 7223.46, + "end": 7230.3, + "probability": 0.9642 + }, + { + "start": 7231.76, + "end": 7237.72, + "probability": 0.9973 + }, + { + "start": 7238.24, + "end": 7240.12, + "probability": 0.5692 + }, + { + "start": 7241.04, + "end": 7241.28, + "probability": 0.4474 + }, + { + "start": 7241.34, + "end": 7244.12, + "probability": 0.9466 + }, + { + "start": 7244.12, + "end": 7248.88, + "probability": 0.9894 + }, + { + "start": 7249.66, + "end": 7251.74, + "probability": 0.7312 + }, + { + "start": 7253.2, + "end": 7257.46, + "probability": 0.9928 + }, + { + "start": 7258.44, + "end": 7263.28, + "probability": 0.9019 + }, + { + "start": 7263.82, + "end": 7267.9, + "probability": 0.9787 + }, + { + "start": 7268.44, + "end": 7269.02, + "probability": 0.9402 + }, + { + "start": 7269.84, + "end": 7273.56, + "probability": 0.9839 + }, + { + "start": 7274.9, + "end": 7277.82, + "probability": 0.8062 + }, + { + "start": 7278.46, + "end": 7280.46, + "probability": 0.773 + }, + { + "start": 7281.24, + "end": 7282.66, + "probability": 0.6196 + }, + { + "start": 7283.8, + "end": 7285.08, + "probability": 0.78 + }, + { + "start": 7285.64, + "end": 7288.32, + "probability": 0.9678 + }, + { + "start": 7288.94, + "end": 7290.36, + "probability": 0.738 + }, + { + "start": 7291.74, + "end": 7292.72, + "probability": 0.6246 + }, + { + "start": 7293.34, + "end": 7295.78, + "probability": 0.9284 + }, + { + "start": 7296.22, + "end": 7299.22, + "probability": 0.9718 + }, + { + "start": 7300.6, + "end": 7304.86, + "probability": 0.9799 + }, + { + "start": 7304.86, + "end": 7309.0, + "probability": 0.9012 + }, + { + "start": 7309.64, + "end": 7314.8, + "probability": 0.9507 + }, + { + "start": 7316.48, + "end": 7317.88, + "probability": 0.8936 + }, + { + "start": 7318.42, + "end": 7321.98, + "probability": 0.9829 + }, + { + "start": 7321.98, + "end": 7326.58, + "probability": 0.8558 + }, + { + "start": 7327.42, + "end": 7329.14, + "probability": 0.9441 + }, + { + "start": 7329.96, + "end": 7331.76, + "probability": 0.7976 + }, + { + "start": 7332.7, + "end": 7335.14, + "probability": 0.864 + }, + { + "start": 7336.06, + "end": 7340.66, + "probability": 0.9228 + }, + { + "start": 7340.8, + "end": 7341.1, + "probability": 0.5143 + }, + { + "start": 7341.48, + "end": 7342.84, + "probability": 0.965 + }, + { + "start": 7344.7, + "end": 7345.2, + "probability": 0.4616 + }, + { + "start": 7345.28, + "end": 7345.76, + "probability": 0.3245 + }, + { + "start": 7345.92, + "end": 7346.9, + "probability": 0.758 + }, + { + "start": 7347.04, + "end": 7351.24, + "probability": 0.9892 + }, + { + "start": 7352.46, + "end": 7355.12, + "probability": 0.9689 + }, + { + "start": 7355.56, + "end": 7359.22, + "probability": 0.9866 + }, + { + "start": 7359.22, + "end": 7363.1, + "probability": 0.9857 + }, + { + "start": 7363.96, + "end": 7367.22, + "probability": 0.8985 + }, + { + "start": 7367.78, + "end": 7368.7, + "probability": 0.9751 + }, + { + "start": 7370.75, + "end": 7374.74, + "probability": 0.918 + }, + { + "start": 7375.5, + "end": 7376.76, + "probability": 0.7017 + }, + { + "start": 7377.24, + "end": 7378.01, + "probability": 0.2619 + }, + { + "start": 7378.3, + "end": 7383.78, + "probability": 0.9465 + }, + { + "start": 7385.18, + "end": 7387.94, + "probability": 0.7967 + }, + { + "start": 7388.16, + "end": 7388.74, + "probability": 0.4165 + }, + { + "start": 7388.94, + "end": 7390.5, + "probability": 0.8206 + }, + { + "start": 7391.24, + "end": 7392.32, + "probability": 0.7129 + }, + { + "start": 7392.4, + "end": 7394.24, + "probability": 0.7242 + }, + { + "start": 7394.54, + "end": 7397.7, + "probability": 0.5741 + }, + { + "start": 7399.02, + "end": 7402.46, + "probability": 0.9882 + }, + { + "start": 7403.08, + "end": 7408.06, + "probability": 0.9844 + }, + { + "start": 7408.14, + "end": 7411.62, + "probability": 0.7005 + }, + { + "start": 7411.98, + "end": 7413.02, + "probability": 0.7248 + }, + { + "start": 7413.42, + "end": 7415.44, + "probability": 0.9862 + }, + { + "start": 7416.9, + "end": 7420.76, + "probability": 0.9964 + }, + { + "start": 7421.62, + "end": 7424.06, + "probability": 0.8827 + }, + { + "start": 7425.8, + "end": 7431.04, + "probability": 0.9855 + }, + { + "start": 7432.28, + "end": 7435.36, + "probability": 0.9947 + }, + { + "start": 7436.0, + "end": 7436.76, + "probability": 0.9941 + }, + { + "start": 7437.42, + "end": 7438.62, + "probability": 0.9146 + }, + { + "start": 7439.88, + "end": 7444.14, + "probability": 0.9971 + }, + { + "start": 7444.66, + "end": 7444.86, + "probability": 0.9865 + }, + { + "start": 7446.26, + "end": 7450.2, + "probability": 0.757 + }, + { + "start": 7451.06, + "end": 7454.4, + "probability": 0.9227 + }, + { + "start": 7454.4, + "end": 7457.0, + "probability": 0.9674 + }, + { + "start": 7459.52, + "end": 7464.34, + "probability": 0.922 + }, + { + "start": 7466.0, + "end": 7468.5, + "probability": 0.9071 + }, + { + "start": 7469.12, + "end": 7472.26, + "probability": 0.6654 + }, + { + "start": 7472.74, + "end": 7473.22, + "probability": 0.934 + }, + { + "start": 7474.02, + "end": 7477.58, + "probability": 0.9794 + }, + { + "start": 7478.46, + "end": 7483.14, + "probability": 0.9838 + }, + { + "start": 7483.76, + "end": 7487.96, + "probability": 0.9194 + }, + { + "start": 7490.08, + "end": 7494.85, + "probability": 0.8497 + }, + { + "start": 7495.34, + "end": 7497.08, + "probability": 0.9893 + }, + { + "start": 7498.3, + "end": 7500.46, + "probability": 0.9211 + }, + { + "start": 7501.18, + "end": 7505.26, + "probability": 0.9935 + }, + { + "start": 7505.98, + "end": 7508.84, + "probability": 0.822 + }, + { + "start": 7509.48, + "end": 7511.92, + "probability": 0.3349 + }, + { + "start": 7512.34, + "end": 7515.2, + "probability": 0.6077 + }, + { + "start": 7516.0, + "end": 7519.76, + "probability": 0.9912 + }, + { + "start": 7522.08, + "end": 7525.18, + "probability": 0.8573 + }, + { + "start": 7526.78, + "end": 7529.68, + "probability": 0.7545 + }, + { + "start": 7530.28, + "end": 7531.84, + "probability": 0.8751 + }, + { + "start": 7532.96, + "end": 7535.56, + "probability": 0.9458 + }, + { + "start": 7536.02, + "end": 7539.9, + "probability": 0.8735 + }, + { + "start": 7541.1, + "end": 7547.76, + "probability": 0.9565 + }, + { + "start": 7548.26, + "end": 7552.46, + "probability": 0.8217 + }, + { + "start": 7552.86, + "end": 7554.44, + "probability": 0.9523 + }, + { + "start": 7556.1, + "end": 7557.04, + "probability": 0.844 + }, + { + "start": 7557.14, + "end": 7557.74, + "probability": 0.7806 + }, + { + "start": 7557.78, + "end": 7558.28, + "probability": 0.4353 + }, + { + "start": 7558.78, + "end": 7560.66, + "probability": 0.9885 + }, + { + "start": 7560.84, + "end": 7562.92, + "probability": 0.6347 + }, + { + "start": 7564.2, + "end": 7567.18, + "probability": 0.7838 + }, + { + "start": 7567.96, + "end": 7570.72, + "probability": 0.9697 + }, + { + "start": 7571.84, + "end": 7574.34, + "probability": 0.8758 + }, + { + "start": 7575.24, + "end": 7579.18, + "probability": 0.9476 + }, + { + "start": 7579.18, + "end": 7582.7, + "probability": 0.9978 + }, + { + "start": 7583.8, + "end": 7587.6, + "probability": 0.9756 + }, + { + "start": 7588.5, + "end": 7589.92, + "probability": 0.6266 + }, + { + "start": 7590.7, + "end": 7595.98, + "probability": 0.9774 + }, + { + "start": 7596.84, + "end": 7600.88, + "probability": 0.9864 + }, + { + "start": 7602.2, + "end": 7603.48, + "probability": 0.8204 + }, + { + "start": 7603.78, + "end": 7604.28, + "probability": 0.443 + }, + { + "start": 7604.78, + "end": 7608.0, + "probability": 0.9358 + }, + { + "start": 7608.12, + "end": 7615.26, + "probability": 0.6472 + }, + { + "start": 7615.84, + "end": 7616.76, + "probability": 0.9705 + }, + { + "start": 7617.02, + "end": 7618.6, + "probability": 0.3312 + }, + { + "start": 7618.78, + "end": 7619.32, + "probability": 0.5569 + }, + { + "start": 7620.04, + "end": 7622.46, + "probability": 0.9951 + }, + { + "start": 7622.66, + "end": 7625.0, + "probability": 0.9461 + }, + { + "start": 7625.18, + "end": 7630.58, + "probability": 0.8627 + }, + { + "start": 7631.22, + "end": 7637.5, + "probability": 0.934 + }, + { + "start": 7637.74, + "end": 7638.52, + "probability": 0.3295 + }, + { + "start": 7639.14, + "end": 7642.62, + "probability": 0.7452 + }, + { + "start": 7643.44, + "end": 7644.1, + "probability": 0.6259 + }, + { + "start": 7644.58, + "end": 7645.72, + "probability": 0.9659 + }, + { + "start": 7645.84, + "end": 7647.12, + "probability": 0.9536 + }, + { + "start": 7647.36, + "end": 7650.62, + "probability": 0.9127 + }, + { + "start": 7651.18, + "end": 7653.82, + "probability": 0.9392 + }, + { + "start": 7654.4, + "end": 7656.18, + "probability": 0.9549 + }, + { + "start": 7658.12, + "end": 7658.12, + "probability": 0.1601 + }, + { + "start": 7658.12, + "end": 7659.8, + "probability": 0.603 + }, + { + "start": 7660.72, + "end": 7663.32, + "probability": 0.6576 + }, + { + "start": 7678.68, + "end": 7679.66, + "probability": 0.7434 + }, + { + "start": 7681.4, + "end": 7682.54, + "probability": 0.7817 + }, + { + "start": 7684.44, + "end": 7688.28, + "probability": 0.9814 + }, + { + "start": 7689.28, + "end": 7690.96, + "probability": 0.9976 + }, + { + "start": 7692.68, + "end": 7694.04, + "probability": 0.9929 + }, + { + "start": 7694.9, + "end": 7699.2, + "probability": 0.9686 + }, + { + "start": 7700.98, + "end": 7703.56, + "probability": 0.8632 + }, + { + "start": 7705.38, + "end": 7706.04, + "probability": 0.7624 + }, + { + "start": 7707.74, + "end": 7709.92, + "probability": 0.901 + }, + { + "start": 7711.84, + "end": 7718.72, + "probability": 0.9934 + }, + { + "start": 7718.9, + "end": 7719.41, + "probability": 0.9932 + }, + { + "start": 7720.3, + "end": 7721.45, + "probability": 0.9167 + }, + { + "start": 7722.96, + "end": 7724.4, + "probability": 0.7251 + }, + { + "start": 7727.42, + "end": 7728.56, + "probability": 0.6548 + }, + { + "start": 7731.76, + "end": 7734.44, + "probability": 0.9396 + }, + { + "start": 7737.22, + "end": 7738.28, + "probability": 0.9995 + }, + { + "start": 7738.9, + "end": 7740.74, + "probability": 0.9948 + }, + { + "start": 7740.88, + "end": 7741.44, + "probability": 0.6479 + }, + { + "start": 7742.4, + "end": 7748.03, + "probability": 0.9871 + }, + { + "start": 7749.54, + "end": 7750.54, + "probability": 0.9966 + }, + { + "start": 7753.86, + "end": 7757.22, + "probability": 0.9945 + }, + { + "start": 7760.06, + "end": 7763.64, + "probability": 0.9957 + }, + { + "start": 7765.7, + "end": 7766.78, + "probability": 0.7448 + }, + { + "start": 7767.24, + "end": 7771.64, + "probability": 0.9953 + }, + { + "start": 7771.74, + "end": 7773.04, + "probability": 0.8708 + }, + { + "start": 7775.64, + "end": 7781.08, + "probability": 0.5625 + }, + { + "start": 7781.8, + "end": 7783.78, + "probability": 0.9971 + }, + { + "start": 7784.94, + "end": 7789.01, + "probability": 0.9917 + }, + { + "start": 7790.3, + "end": 7794.0, + "probability": 0.9952 + }, + { + "start": 7796.14, + "end": 7799.36, + "probability": 0.9537 + }, + { + "start": 7802.0, + "end": 7802.28, + "probability": 0.5143 + }, + { + "start": 7802.44, + "end": 7807.9, + "probability": 0.7926 + }, + { + "start": 7807.9, + "end": 7810.26, + "probability": 0.9976 + }, + { + "start": 7812.4, + "end": 7814.26, + "probability": 0.8972 + }, + { + "start": 7816.02, + "end": 7817.32, + "probability": 0.6329 + }, + { + "start": 7818.94, + "end": 7821.28, + "probability": 0.9771 + }, + { + "start": 7821.44, + "end": 7822.2, + "probability": 0.7861 + }, + { + "start": 7822.42, + "end": 7829.5, + "probability": 0.9912 + }, + { + "start": 7829.94, + "end": 7830.56, + "probability": 0.5032 + }, + { + "start": 7831.96, + "end": 7834.76, + "probability": 0.8169 + }, + { + "start": 7836.64, + "end": 7838.46, + "probability": 0.9875 + }, + { + "start": 7839.88, + "end": 7841.88, + "probability": 0.9747 + }, + { + "start": 7843.22, + "end": 7845.46, + "probability": 0.9819 + }, + { + "start": 7845.78, + "end": 7848.88, + "probability": 0.9963 + }, + { + "start": 7849.9, + "end": 7854.48, + "probability": 0.9857 + }, + { + "start": 7855.08, + "end": 7856.72, + "probability": 0.9835 + }, + { + "start": 7857.76, + "end": 7859.14, + "probability": 0.7814 + }, + { + "start": 7860.16, + "end": 7860.8, + "probability": 0.3155 + }, + { + "start": 7861.0, + "end": 7862.56, + "probability": 0.6902 + }, + { + "start": 7862.82, + "end": 7863.26, + "probability": 0.6671 + }, + { + "start": 7863.3, + "end": 7863.9, + "probability": 0.7451 + }, + { + "start": 7864.02, + "end": 7866.78, + "probability": 0.7972 + }, + { + "start": 7866.9, + "end": 7867.84, + "probability": 0.5857 + }, + { + "start": 7870.64, + "end": 7872.46, + "probability": 0.5899 + }, + { + "start": 7875.62, + "end": 7877.42, + "probability": 0.7956 + }, + { + "start": 7878.44, + "end": 7880.82, + "probability": 0.9366 + }, + { + "start": 7882.1, + "end": 7884.42, + "probability": 0.999 + }, + { + "start": 7885.14, + "end": 7888.1, + "probability": 0.9403 + }, + { + "start": 7888.9, + "end": 7890.46, + "probability": 0.9367 + }, + { + "start": 7891.26, + "end": 7894.44, + "probability": 0.9816 + }, + { + "start": 7895.96, + "end": 7899.26, + "probability": 0.9986 + }, + { + "start": 7899.36, + "end": 7902.06, + "probability": 0.9277 + }, + { + "start": 7902.46, + "end": 7905.3, + "probability": 0.9882 + }, + { + "start": 7905.48, + "end": 7908.12, + "probability": 0.9986 + }, + { + "start": 7909.12, + "end": 7910.16, + "probability": 0.9455 + }, + { + "start": 7910.76, + "end": 7914.12, + "probability": 0.7264 + }, + { + "start": 7914.86, + "end": 7919.46, + "probability": 0.9865 + }, + { + "start": 7921.56, + "end": 7921.88, + "probability": 0.1288 + }, + { + "start": 7922.28, + "end": 7922.68, + "probability": 0.3231 + }, + { + "start": 7922.72, + "end": 7923.06, + "probability": 0.6904 + }, + { + "start": 7923.2, + "end": 7927.37, + "probability": 0.9139 + }, + { + "start": 7929.9, + "end": 7930.02, + "probability": 0.7021 + }, + { + "start": 7930.02, + "end": 7931.48, + "probability": 0.4337 + }, + { + "start": 7931.48, + "end": 7933.04, + "probability": 0.7617 + }, + { + "start": 7933.04, + "end": 7935.6, + "probability": 0.7083 + }, + { + "start": 7935.98, + "end": 7936.2, + "probability": 0.6993 + }, + { + "start": 7936.26, + "end": 7936.56, + "probability": 0.8004 + }, + { + "start": 7936.68, + "end": 7939.32, + "probability": 0.9766 + }, + { + "start": 7939.34, + "end": 7940.3, + "probability": 0.8552 + }, + { + "start": 7940.8, + "end": 7941.4, + "probability": 0.6191 + }, + { + "start": 7941.48, + "end": 7941.98, + "probability": 0.9114 + }, + { + "start": 7943.65, + "end": 7944.98, + "probability": 0.1045 + }, + { + "start": 7945.24, + "end": 7945.92, + "probability": 0.4994 + }, + { + "start": 7946.66, + "end": 7948.2, + "probability": 0.2279 + }, + { + "start": 7948.92, + "end": 7952.12, + "probability": 0.5525 + }, + { + "start": 7952.34, + "end": 7953.5, + "probability": 0.8323 + }, + { + "start": 7955.68, + "end": 7956.86, + "probability": 0.0689 + }, + { + "start": 7957.68, + "end": 7959.85, + "probability": 0.9871 + }, + { + "start": 7962.26, + "end": 7963.96, + "probability": 0.1347 + }, + { + "start": 7964.54, + "end": 7967.36, + "probability": 0.5635 + }, + { + "start": 7969.56, + "end": 7973.18, + "probability": 0.663 + }, + { + "start": 7973.28, + "end": 7976.1, + "probability": 0.7172 + }, + { + "start": 7976.9, + "end": 7976.98, + "probability": 0.1372 + }, + { + "start": 7976.98, + "end": 7980.68, + "probability": 0.7358 + }, + { + "start": 7981.46, + "end": 7986.12, + "probability": 0.7893 + }, + { + "start": 7986.2, + "end": 7987.36, + "probability": 0.2251 + }, + { + "start": 7987.82, + "end": 7989.7, + "probability": 0.7446 + }, + { + "start": 7989.9, + "end": 7991.02, + "probability": 0.9834 + }, + { + "start": 7992.88, + "end": 7994.48, + "probability": 0.6708 + }, + { + "start": 7995.06, + "end": 7997.96, + "probability": 0.924 + }, + { + "start": 7998.84, + "end": 8000.3, + "probability": 0.9831 + }, + { + "start": 8001.7, + "end": 8001.9, + "probability": 0.4321 + }, + { + "start": 8002.2, + "end": 8002.88, + "probability": 0.4806 + }, + { + "start": 8003.36, + "end": 8004.11, + "probability": 0.7099 + }, + { + "start": 8004.65, + "end": 8006.46, + "probability": 0.8559 + }, + { + "start": 8006.62, + "end": 8007.6, + "probability": 0.9415 + }, + { + "start": 8009.04, + "end": 8010.56, + "probability": 0.5695 + }, + { + "start": 8011.38, + "end": 8014.06, + "probability": 0.9663 + }, + { + "start": 8015.14, + "end": 8015.18, + "probability": 0.1497 + }, + { + "start": 8015.28, + "end": 8015.76, + "probability": 0.6275 + }, + { + "start": 8015.86, + "end": 8016.16, + "probability": 0.6113 + }, + { + "start": 8016.24, + "end": 8019.48, + "probability": 0.9846 + }, + { + "start": 8020.06, + "end": 8021.75, + "probability": 0.7454 + }, + { + "start": 8023.18, + "end": 8024.22, + "probability": 0.7363 + }, + { + "start": 8025.12, + "end": 8026.86, + "probability": 0.1262 + }, + { + "start": 8027.1, + "end": 8031.26, + "probability": 0.8053 + }, + { + "start": 8031.72, + "end": 8032.38, + "probability": 0.0037 + }, + { + "start": 8034.68, + "end": 8035.04, + "probability": 0.1427 + }, + { + "start": 8036.77, + "end": 8039.46, + "probability": 0.8823 + }, + { + "start": 8039.5, + "end": 8039.96, + "probability": 0.6928 + }, + { + "start": 8039.98, + "end": 8040.78, + "probability": 0.4846 + }, + { + "start": 8041.66, + "end": 8041.66, + "probability": 0.0032 + }, + { + "start": 8041.66, + "end": 8043.12, + "probability": 0.2623 + }, + { + "start": 8043.44, + "end": 8044.9, + "probability": 0.8854 + }, + { + "start": 8045.42, + "end": 8047.18, + "probability": 0.9355 + }, + { + "start": 8050.68, + "end": 8050.9, + "probability": 0.058 + }, + { + "start": 8050.9, + "end": 8050.9, + "probability": 0.3935 + }, + { + "start": 8050.9, + "end": 8051.11, + "probability": 0.318 + }, + { + "start": 8051.6, + "end": 8053.8, + "probability": 0.4817 + }, + { + "start": 8054.2, + "end": 8056.4, + "probability": 0.7361 + }, + { + "start": 8056.58, + "end": 8058.48, + "probability": 0.3971 + }, + { + "start": 8058.6, + "end": 8059.48, + "probability": 0.4604 + }, + { + "start": 8059.54, + "end": 8063.94, + "probability": 0.1914 + }, + { + "start": 8063.94, + "end": 8070.97, + "probability": 0.8998 + }, + { + "start": 8071.26, + "end": 8072.12, + "probability": 0.8618 + }, + { + "start": 8072.48, + "end": 8073.7, + "probability": 0.5984 + }, + { + "start": 8073.76, + "end": 8074.46, + "probability": 0.662 + }, + { + "start": 8074.76, + "end": 8077.26, + "probability": 0.6063 + }, + { + "start": 8077.5, + "end": 8079.48, + "probability": 0.801 + }, + { + "start": 8079.96, + "end": 8082.46, + "probability": 0.7495 + }, + { + "start": 8082.48, + "end": 8083.38, + "probability": 0.4987 + }, + { + "start": 8083.38, + "end": 8083.38, + "probability": 0.0157 + }, + { + "start": 8083.38, + "end": 8084.02, + "probability": 0.2195 + }, + { + "start": 8084.6, + "end": 8086.99, + "probability": 0.9182 + }, + { + "start": 8087.9, + "end": 8091.02, + "probability": 0.9622 + }, + { + "start": 8091.14, + "end": 8094.5, + "probability": 0.9351 + }, + { + "start": 8096.74, + "end": 8099.19, + "probability": 0.6782 + }, + { + "start": 8099.84, + "end": 8100.44, + "probability": 0.6193 + }, + { + "start": 8100.56, + "end": 8104.86, + "probability": 0.8311 + }, + { + "start": 8104.98, + "end": 8105.57, + "probability": 0.9058 + }, + { + "start": 8106.88, + "end": 8107.72, + "probability": 0.78 + }, + { + "start": 8107.78, + "end": 8108.38, + "probability": 0.8888 + }, + { + "start": 8108.48, + "end": 8109.38, + "probability": 0.9624 + }, + { + "start": 8109.46, + "end": 8111.28, + "probability": 0.7177 + }, + { + "start": 8111.28, + "end": 8115.12, + "probability": 0.7113 + }, + { + "start": 8115.18, + "end": 8116.14, + "probability": 0.8762 + }, + { + "start": 8117.52, + "end": 8121.96, + "probability": 0.9365 + }, + { + "start": 8122.98, + "end": 8124.54, + "probability": 0.8425 + }, + { + "start": 8124.64, + "end": 8125.54, + "probability": 0.8015 + }, + { + "start": 8125.88, + "end": 8133.08, + "probability": 0.9728 + }, + { + "start": 8133.52, + "end": 8134.44, + "probability": 0.661 + }, + { + "start": 8135.5, + "end": 8138.98, + "probability": 0.824 + }, + { + "start": 8138.98, + "end": 8142.52, + "probability": 0.9676 + }, + { + "start": 8142.98, + "end": 8144.98, + "probability": 0.9606 + }, + { + "start": 8145.06, + "end": 8146.42, + "probability": 0.9144 + }, + { + "start": 8147.2, + "end": 8150.1, + "probability": 0.8197 + }, + { + "start": 8150.76, + "end": 8152.78, + "probability": 0.8827 + }, + { + "start": 8154.26, + "end": 8156.08, + "probability": 0.5898 + }, + { + "start": 8156.16, + "end": 8156.82, + "probability": 0.4467 + }, + { + "start": 8157.82, + "end": 8158.48, + "probability": 0.9547 + }, + { + "start": 8158.64, + "end": 8158.92, + "probability": 0.7737 + }, + { + "start": 8158.96, + "end": 8159.58, + "probability": 0.7282 + }, + { + "start": 8159.64, + "end": 8160.24, + "probability": 0.8779 + }, + { + "start": 8161.02, + "end": 8165.3, + "probability": 0.9614 + }, + { + "start": 8165.98, + "end": 8167.6, + "probability": 0.7015 + }, + { + "start": 8167.68, + "end": 8171.2, + "probability": 0.9816 + }, + { + "start": 8171.44, + "end": 8172.52, + "probability": 0.4731 + }, + { + "start": 8173.76, + "end": 8175.16, + "probability": 0.7312 + }, + { + "start": 8177.0, + "end": 8179.52, + "probability": 0.9535 + }, + { + "start": 8180.32, + "end": 8184.14, + "probability": 0.8553 + }, + { + "start": 8185.56, + "end": 8186.54, + "probability": 0.7413 + }, + { + "start": 8187.08, + "end": 8189.06, + "probability": 0.8248 + }, + { + "start": 8189.54, + "end": 8190.96, + "probability": 0.9494 + }, + { + "start": 8191.36, + "end": 8192.36, + "probability": 0.8124 + }, + { + "start": 8193.12, + "end": 8196.7, + "probability": 0.8122 + }, + { + "start": 8197.26, + "end": 8198.1, + "probability": 0.9679 + }, + { + "start": 8199.02, + "end": 8200.48, + "probability": 0.6276 + }, + { + "start": 8200.6, + "end": 8201.34, + "probability": 0.7689 + }, + { + "start": 8201.68, + "end": 8202.02, + "probability": 0.895 + }, + { + "start": 8202.12, + "end": 8202.42, + "probability": 0.5929 + }, + { + "start": 8202.5, + "end": 8203.12, + "probability": 0.9292 + }, + { + "start": 8203.36, + "end": 8203.94, + "probability": 0.7546 + }, + { + "start": 8204.56, + "end": 8205.76, + "probability": 0.9762 + }, + { + "start": 8205.86, + "end": 8206.86, + "probability": 0.8101 + }, + { + "start": 8206.88, + "end": 8208.03, + "probability": 0.4096 + }, + { + "start": 8209.02, + "end": 8211.52, + "probability": 0.6733 + }, + { + "start": 8212.32, + "end": 8217.66, + "probability": 0.9515 + }, + { + "start": 8218.62, + "end": 8220.74, + "probability": 0.8314 + }, + { + "start": 8221.4, + "end": 8222.0, + "probability": 0.0575 + }, + { + "start": 8223.24, + "end": 8223.9, + "probability": 0.4544 + }, + { + "start": 8223.96, + "end": 8224.4, + "probability": 0.9282 + }, + { + "start": 8224.5, + "end": 8225.2, + "probability": 0.9753 + }, + { + "start": 8225.3, + "end": 8226.02, + "probability": 0.8816 + }, + { + "start": 8226.92, + "end": 8227.36, + "probability": 0.956 + }, + { + "start": 8227.46, + "end": 8228.04, + "probability": 0.419 + }, + { + "start": 8228.2, + "end": 8230.9, + "probability": 0.4087 + }, + { + "start": 8231.0, + "end": 8233.02, + "probability": 0.9561 + }, + { + "start": 8234.34, + "end": 8235.62, + "probability": 0.9185 + }, + { + "start": 8235.62, + "end": 8239.5, + "probability": 0.88 + }, + { + "start": 8239.58, + "end": 8240.0, + "probability": 0.7666 + }, + { + "start": 8240.92, + "end": 8241.92, + "probability": 0.7598 + }, + { + "start": 8242.04, + "end": 8247.64, + "probability": 0.9669 + }, + { + "start": 8248.3, + "end": 8250.8, + "probability": 0.8108 + }, + { + "start": 8252.22, + "end": 8254.64, + "probability": 0.9759 + }, + { + "start": 8255.32, + "end": 8257.98, + "probability": 0.8771 + }, + { + "start": 8258.54, + "end": 8259.33, + "probability": 0.8059 + }, + { + "start": 8260.06, + "end": 8262.56, + "probability": 0.6656 + }, + { + "start": 8263.1, + "end": 8264.22, + "probability": 0.9028 + }, + { + "start": 8264.74, + "end": 8266.22, + "probability": 0.8664 + }, + { + "start": 8266.34, + "end": 8268.0, + "probability": 0.7703 + }, + { + "start": 8268.96, + "end": 8270.4, + "probability": 0.4204 + }, + { + "start": 8271.0, + "end": 8272.18, + "probability": 0.7225 + }, + { + "start": 8272.74, + "end": 8272.98, + "probability": 0.7764 + }, + { + "start": 8273.04, + "end": 8276.02, + "probability": 0.6425 + }, + { + "start": 8276.7, + "end": 8276.92, + "probability": 0.7184 + }, + { + "start": 8278.74, + "end": 8278.78, + "probability": 0.248 + }, + { + "start": 8278.78, + "end": 8280.6, + "probability": 0.3697 + }, + { + "start": 8281.74, + "end": 8284.22, + "probability": 0.8216 + }, + { + "start": 8284.36, + "end": 8285.38, + "probability": 0.9448 + }, + { + "start": 8285.42, + "end": 8285.52, + "probability": 0.5395 + }, + { + "start": 8286.46, + "end": 8286.88, + "probability": 0.9485 + }, + { + "start": 8286.94, + "end": 8287.36, + "probability": 0.8123 + }, + { + "start": 8287.44, + "end": 8289.11, + "probability": 0.7835 + }, + { + "start": 8290.06, + "end": 8291.74, + "probability": 0.8613 + }, + { + "start": 8292.42, + "end": 8293.22, + "probability": 0.9088 + }, + { + "start": 8293.84, + "end": 8296.74, + "probability": 0.9602 + }, + { + "start": 8296.98, + "end": 8299.94, + "probability": 0.9393 + }, + { + "start": 8300.3, + "end": 8302.66, + "probability": 0.9869 + }, + { + "start": 8303.42, + "end": 8304.1, + "probability": 0.9914 + }, + { + "start": 8304.8, + "end": 8305.52, + "probability": 0.7832 + }, + { + "start": 8306.2, + "end": 8310.48, + "probability": 0.9858 + }, + { + "start": 8311.26, + "end": 8311.72, + "probability": 0.7302 + }, + { + "start": 8311.98, + "end": 8313.48, + "probability": 0.9813 + }, + { + "start": 8315.04, + "end": 8321.32, + "probability": 0.8589 + }, + { + "start": 8321.84, + "end": 8324.86, + "probability": 0.4463 + }, + { + "start": 8326.38, + "end": 8326.96, + "probability": 0.0899 + }, + { + "start": 8326.98, + "end": 8327.1, + "probability": 0.7763 + }, + { + "start": 8327.24, + "end": 8327.8, + "probability": 0.6678 + }, + { + "start": 8327.88, + "end": 8328.34, + "probability": 0.4167 + }, + { + "start": 8328.54, + "end": 8330.8, + "probability": 0.6997 + }, + { + "start": 8330.98, + "end": 8331.88, + "probability": 0.5695 + }, + { + "start": 8332.18, + "end": 8335.76, + "probability": 0.8254 + }, + { + "start": 8336.16, + "end": 8338.78, + "probability": 0.8427 + }, + { + "start": 8338.82, + "end": 8339.62, + "probability": 0.7066 + }, + { + "start": 8339.66, + "end": 8339.84, + "probability": 0.8268 + }, + { + "start": 8340.02, + "end": 8340.68, + "probability": 0.5529 + }, + { + "start": 8341.74, + "end": 8344.72, + "probability": 0.591 + }, + { + "start": 8345.44, + "end": 8348.36, + "probability": 0.9919 + }, + { + "start": 8349.2, + "end": 8349.42, + "probability": 0.6701 + }, + { + "start": 8349.62, + "end": 8353.14, + "probability": 0.9754 + }, + { + "start": 8353.64, + "end": 8354.38, + "probability": 0.7876 + }, + { + "start": 8354.54, + "end": 8355.02, + "probability": 0.8887 + }, + { + "start": 8355.26, + "end": 8355.82, + "probability": 0.9722 + }, + { + "start": 8356.48, + "end": 8359.82, + "probability": 0.651 + }, + { + "start": 8360.9, + "end": 8363.08, + "probability": 0.6584 + }, + { + "start": 8363.68, + "end": 8365.8, + "probability": 0.9368 + }, + { + "start": 8365.94, + "end": 8369.0, + "probability": 0.9854 + }, + { + "start": 8369.0, + "end": 8372.5, + "probability": 0.7676 + }, + { + "start": 8373.16, + "end": 8373.5, + "probability": 0.498 + }, + { + "start": 8374.02, + "end": 8375.64, + "probability": 0.6802 + }, + { + "start": 8375.92, + "end": 8376.74, + "probability": 0.9607 + }, + { + "start": 8377.3, + "end": 8379.0, + "probability": 0.9813 + }, + { + "start": 8379.28, + "end": 8379.54, + "probability": 0.8445 + }, + { + "start": 8379.6, + "end": 8380.95, + "probability": 0.6597 + }, + { + "start": 8381.2, + "end": 8381.4, + "probability": 0.5617 + }, + { + "start": 8381.92, + "end": 8383.18, + "probability": 0.9907 + }, + { + "start": 8384.52, + "end": 8386.08, + "probability": 0.9316 + }, + { + "start": 8386.26, + "end": 8386.9, + "probability": 0.8808 + }, + { + "start": 8387.38, + "end": 8391.04, + "probability": 0.8853 + }, + { + "start": 8391.22, + "end": 8393.5, + "probability": 0.9707 + }, + { + "start": 8394.42, + "end": 8395.0, + "probability": 0.5383 + }, + { + "start": 8395.4, + "end": 8396.26, + "probability": 0.952 + }, + { + "start": 8396.96, + "end": 8398.28, + "probability": 0.8403 + }, + { + "start": 8399.0, + "end": 8400.62, + "probability": 0.9888 + }, + { + "start": 8401.58, + "end": 8403.63, + "probability": 0.985 + }, + { + "start": 8404.84, + "end": 8406.18, + "probability": 0.9828 + }, + { + "start": 8407.3, + "end": 8407.72, + "probability": 0.7917 + }, + { + "start": 8408.14, + "end": 8409.2, + "probability": 0.864 + }, + { + "start": 8409.54, + "end": 8409.86, + "probability": 0.6451 + }, + { + "start": 8410.14, + "end": 8410.74, + "probability": 0.9319 + }, + { + "start": 8411.72, + "end": 8412.84, + "probability": 0.9014 + }, + { + "start": 8413.78, + "end": 8416.52, + "probability": 0.7192 + }, + { + "start": 8417.38, + "end": 8418.44, + "probability": 0.7866 + }, + { + "start": 8419.62, + "end": 8420.58, + "probability": 0.852 + }, + { + "start": 8421.86, + "end": 8422.86, + "probability": 0.8494 + }, + { + "start": 8424.08, + "end": 8424.8, + "probability": 0.5399 + }, + { + "start": 8425.02, + "end": 8426.52, + "probability": 0.1073 + }, + { + "start": 8426.64, + "end": 8427.78, + "probability": 0.2102 + }, + { + "start": 8428.0, + "end": 8428.0, + "probability": 0.0055 + }, + { + "start": 8428.0, + "end": 8428.0, + "probability": 0.2652 + }, + { + "start": 8428.0, + "end": 8430.0, + "probability": 0.5504 + }, + { + "start": 8430.04, + "end": 8430.96, + "probability": 0.1489 + }, + { + "start": 8432.0, + "end": 8434.2, + "probability": 0.6235 + }, + { + "start": 8434.78, + "end": 8437.02, + "probability": 0.9496 + }, + { + "start": 8437.7, + "end": 8438.7, + "probability": 0.635 + }, + { + "start": 8439.2, + "end": 8439.74, + "probability": 0.9388 + }, + { + "start": 8439.86, + "end": 8440.45, + "probability": 0.7559 + }, + { + "start": 8440.88, + "end": 8441.66, + "probability": 0.2903 + }, + { + "start": 8441.66, + "end": 8442.5, + "probability": 0.665 + }, + { + "start": 8442.94, + "end": 8444.54, + "probability": 0.6079 + }, + { + "start": 8444.58, + "end": 8445.64, + "probability": 0.9409 + }, + { + "start": 8445.88, + "end": 8446.38, + "probability": 0.9111 + }, + { + "start": 8447.22, + "end": 8450.06, + "probability": 0.0174 + }, + { + "start": 8450.06, + "end": 8450.14, + "probability": 0.0287 + }, + { + "start": 8450.14, + "end": 8450.14, + "probability": 0.2326 + }, + { + "start": 8450.14, + "end": 8450.14, + "probability": 0.1173 + }, + { + "start": 8450.14, + "end": 8450.76, + "probability": 0.6139 + }, + { + "start": 8450.86, + "end": 8451.98, + "probability": 0.4963 + }, + { + "start": 8452.02, + "end": 8452.96, + "probability": 0.6813 + }, + { + "start": 8453.78, + "end": 8454.38, + "probability": 0.7476 + }, + { + "start": 8455.24, + "end": 8455.68, + "probability": 0.6801 + }, + { + "start": 8456.54, + "end": 8458.58, + "probability": 0.9766 + }, + { + "start": 8459.0, + "end": 8459.9, + "probability": 0.8973 + }, + { + "start": 8460.68, + "end": 8460.78, + "probability": 0.1113 + }, + { + "start": 8462.74, + "end": 8463.2, + "probability": 0.017 + }, + { + "start": 8463.2, + "end": 8463.94, + "probability": 0.5098 + }, + { + "start": 8464.54, + "end": 8467.28, + "probability": 0.9321 + }, + { + "start": 8468.58, + "end": 8470.76, + "probability": 0.99 + }, + { + "start": 8470.9, + "end": 8472.58, + "probability": 0.7538 + }, + { + "start": 8473.2, + "end": 8474.7, + "probability": 0.9775 + }, + { + "start": 8475.22, + "end": 8477.24, + "probability": 0.9338 + }, + { + "start": 8477.3, + "end": 8478.12, + "probability": 0.7618 + }, + { + "start": 8478.34, + "end": 8479.72, + "probability": 0.0883 + }, + { + "start": 8479.84, + "end": 8484.64, + "probability": 0.5801 + }, + { + "start": 8484.74, + "end": 8484.92, + "probability": 0.0035 + }, + { + "start": 8484.92, + "end": 8484.92, + "probability": 0.0399 + }, + { + "start": 8484.92, + "end": 8486.2, + "probability": 0.6766 + }, + { + "start": 8486.22, + "end": 8486.83, + "probability": 0.3736 + }, + { + "start": 8487.2, + "end": 8489.16, + "probability": 0.8845 + }, + { + "start": 8489.26, + "end": 8491.46, + "probability": 0.9534 + }, + { + "start": 8492.06, + "end": 8492.9, + "probability": 0.9228 + }, + { + "start": 8493.18, + "end": 8493.68, + "probability": 0.7605 + }, + { + "start": 8494.08, + "end": 8494.82, + "probability": 0.6875 + }, + { + "start": 8494.96, + "end": 8498.2, + "probability": 0.9869 + }, + { + "start": 8498.24, + "end": 8498.38, + "probability": 0.5671 + }, + { + "start": 8498.4, + "end": 8498.86, + "probability": 0.9658 + }, + { + "start": 8499.06, + "end": 8501.72, + "probability": 0.9704 + }, + { + "start": 8502.1, + "end": 8502.56, + "probability": 0.9632 + }, + { + "start": 8502.96, + "end": 8503.5, + "probability": 0.8072 + }, + { + "start": 8503.62, + "end": 8503.8, + "probability": 0.7735 + }, + { + "start": 8504.22, + "end": 8504.74, + "probability": 0.4926 + }, + { + "start": 8504.92, + "end": 8505.36, + "probability": 0.9201 + }, + { + "start": 8506.89, + "end": 8509.28, + "probability": 0.8464 + }, + { + "start": 8509.94, + "end": 8510.74, + "probability": 0.9262 + }, + { + "start": 8510.9, + "end": 8512.53, + "probability": 0.9618 + }, + { + "start": 8513.2, + "end": 8514.14, + "probability": 0.8496 + }, + { + "start": 8514.54, + "end": 8514.74, + "probability": 0.8974 + }, + { + "start": 8514.84, + "end": 8515.3, + "probability": 0.4722 + }, + { + "start": 8515.44, + "end": 8515.78, + "probability": 0.3529 + }, + { + "start": 8515.78, + "end": 8517.18, + "probability": 0.5442 + }, + { + "start": 8518.0, + "end": 8522.24, + "probability": 0.906 + }, + { + "start": 8522.74, + "end": 8523.48, + "probability": 0.6798 + }, + { + "start": 8523.68, + "end": 8523.94, + "probability": 0.5281 + }, + { + "start": 8524.16, + "end": 8524.98, + "probability": 0.9873 + }, + { + "start": 8525.6, + "end": 8527.2, + "probability": 0.7849 + }, + { + "start": 8527.8, + "end": 8528.52, + "probability": 0.845 + }, + { + "start": 8528.56, + "end": 8528.78, + "probability": 0.9255 + }, + { + "start": 8528.92, + "end": 8531.12, + "probability": 0.9176 + }, + { + "start": 8532.06, + "end": 8533.76, + "probability": 0.9232 + }, + { + "start": 8535.98, + "end": 8536.68, + "probability": 0.765 + }, + { + "start": 8536.76, + "end": 8539.24, + "probability": 0.959 + }, + { + "start": 8539.8, + "end": 8540.26, + "probability": 0.5964 + }, + { + "start": 8541.56, + "end": 8543.28, + "probability": 0.8621 + }, + { + "start": 8543.4, + "end": 8545.14, + "probability": 0.7879 + }, + { + "start": 8545.32, + "end": 8546.14, + "probability": 0.9402 + }, + { + "start": 8546.56, + "end": 8547.52, + "probability": 0.9718 + }, + { + "start": 8547.98, + "end": 8548.74, + "probability": 0.9164 + }, + { + "start": 8549.1, + "end": 8550.06, + "probability": 0.9874 + }, + { + "start": 8550.5, + "end": 8551.66, + "probability": 0.8236 + }, + { + "start": 8552.5, + "end": 8552.58, + "probability": 0.1161 + }, + { + "start": 8552.58, + "end": 8552.98, + "probability": 0.2875 + }, + { + "start": 8553.7, + "end": 8554.04, + "probability": 0.8149 + }, + { + "start": 8554.34, + "end": 8555.06, + "probability": 0.8009 + }, + { + "start": 8555.18, + "end": 8556.68, + "probability": 0.943 + }, + { + "start": 8557.32, + "end": 8557.66, + "probability": 0.4588 + }, + { + "start": 8558.22, + "end": 8558.86, + "probability": 0.7321 + }, + { + "start": 8559.76, + "end": 8559.98, + "probability": 0.7914 + }, + { + "start": 8560.02, + "end": 8562.32, + "probability": 0.8872 + }, + { + "start": 8562.78, + "end": 8563.02, + "probability": 0.8694 + }, + { + "start": 8563.56, + "end": 8565.08, + "probability": 0.676 + }, + { + "start": 8566.7, + "end": 8568.38, + "probability": 0.9714 + }, + { + "start": 8570.38, + "end": 8573.4, + "probability": 0.9943 + }, + { + "start": 8573.88, + "end": 8574.39, + "probability": 0.8652 + }, + { + "start": 8576.18, + "end": 8578.04, + "probability": 0.8662 + }, + { + "start": 8578.1, + "end": 8578.54, + "probability": 0.6666 + }, + { + "start": 8579.2, + "end": 8579.5, + "probability": 0.4811 + }, + { + "start": 8580.42, + "end": 8581.14, + "probability": 0.9747 + }, + { + "start": 8581.94, + "end": 8582.18, + "probability": 0.7554 + }, + { + "start": 8582.28, + "end": 8582.72, + "probability": 0.674 + }, + { + "start": 8582.86, + "end": 8584.8, + "probability": 0.5807 + }, + { + "start": 8584.92, + "end": 8585.52, + "probability": 0.4708 + }, + { + "start": 8586.12, + "end": 8587.82, + "probability": 0.9395 + }, + { + "start": 8588.94, + "end": 8591.39, + "probability": 0.9501 + }, + { + "start": 8592.14, + "end": 8592.86, + "probability": 0.9668 + }, + { + "start": 8593.68, + "end": 8595.6, + "probability": 0.6942 + }, + { + "start": 8595.82, + "end": 8597.08, + "probability": 0.9785 + }, + { + "start": 8597.82, + "end": 8600.14, + "probability": 0.8901 + }, + { + "start": 8600.64, + "end": 8602.18, + "probability": 0.9673 + }, + { + "start": 8602.7, + "end": 8604.48, + "probability": 0.6895 + }, + { + "start": 8606.14, + "end": 8606.36, + "probability": 0.1039 + }, + { + "start": 8606.56, + "end": 8607.22, + "probability": 0.1355 + }, + { + "start": 8607.28, + "end": 8609.5, + "probability": 0.1546 + }, + { + "start": 8609.5, + "end": 8610.48, + "probability": 0.2791 + }, + { + "start": 8612.03, + "end": 8613.38, + "probability": 0.615 + }, + { + "start": 8614.24, + "end": 8616.76, + "probability": 0.3485 + }, + { + "start": 8616.76, + "end": 8616.9, + "probability": 0.0868 + }, + { + "start": 8616.9, + "end": 8617.22, + "probability": 0.4321 + }, + { + "start": 8617.78, + "end": 8619.06, + "probability": 0.8288 + }, + { + "start": 8619.84, + "end": 8621.7, + "probability": 0.8163 + }, + { + "start": 8622.34, + "end": 8623.96, + "probability": 0.9722 + }, + { + "start": 8624.1, + "end": 8624.65, + "probability": 0.791 + }, + { + "start": 8624.9, + "end": 8625.08, + "probability": 0.9478 + }, + { + "start": 8626.0, + "end": 8626.84, + "probability": 0.9692 + }, + { + "start": 8627.24, + "end": 8628.36, + "probability": 0.8823 + }, + { + "start": 8629.0, + "end": 8630.28, + "probability": 0.8164 + }, + { + "start": 8630.28, + "end": 8631.22, + "probability": 0.8496 + }, + { + "start": 8631.46, + "end": 8633.18, + "probability": 0.9755 + }, + { + "start": 8633.36, + "end": 8636.0, + "probability": 0.9602 + }, + { + "start": 8636.03, + "end": 8638.49, + "probability": 0.8707 + }, + { + "start": 8638.56, + "end": 8638.84, + "probability": 0.4396 + }, + { + "start": 8639.24, + "end": 8640.57, + "probability": 0.9668 + }, + { + "start": 8641.16, + "end": 8643.28, + "probability": 0.979 + }, + { + "start": 8643.78, + "end": 8644.74, + "probability": 0.9053 + }, + { + "start": 8645.18, + "end": 8645.54, + "probability": 0.5912 + }, + { + "start": 8645.82, + "end": 8647.6, + "probability": 0.6806 + }, + { + "start": 8647.98, + "end": 8648.4, + "probability": 0.0308 + }, + { + "start": 8648.4, + "end": 8648.62, + "probability": 0.5288 + }, + { + "start": 8648.62, + "end": 8650.02, + "probability": 0.3403 + }, + { + "start": 8650.48, + "end": 8652.18, + "probability": 0.8398 + }, + { + "start": 8652.4, + "end": 8652.74, + "probability": 0.7047 + }, + { + "start": 8653.46, + "end": 8655.68, + "probability": 0.6735 + }, + { + "start": 8655.98, + "end": 8657.18, + "probability": 0.8174 + }, + { + "start": 8658.2, + "end": 8658.88, + "probability": 0.6241 + }, + { + "start": 8675.38, + "end": 8677.16, + "probability": 0.7775 + }, + { + "start": 8678.72, + "end": 8679.1, + "probability": 0.2389 + }, + { + "start": 8679.34, + "end": 8684.92, + "probability": 0.8447 + }, + { + "start": 8685.04, + "end": 8689.9, + "probability": 0.952 + }, + { + "start": 8691.58, + "end": 8692.6, + "probability": 0.7593 + }, + { + "start": 8693.1, + "end": 8693.16, + "probability": 0.8257 + }, + { + "start": 8694.86, + "end": 8697.44, + "probability": 0.9719 + }, + { + "start": 8699.16, + "end": 8700.78, + "probability": 0.928 + }, + { + "start": 8701.86, + "end": 8703.96, + "probability": 0.9967 + }, + { + "start": 8705.82, + "end": 8706.98, + "probability": 0.8174 + }, + { + "start": 8707.92, + "end": 8708.64, + "probability": 0.8449 + }, + { + "start": 8709.0, + "end": 8710.3, + "probability": 0.9136 + }, + { + "start": 8710.46, + "end": 8712.24, + "probability": 0.9972 + }, + { + "start": 8713.16, + "end": 8715.57, + "probability": 0.9951 + }, + { + "start": 8716.74, + "end": 8718.56, + "probability": 0.7861 + }, + { + "start": 8719.68, + "end": 8723.58, + "probability": 0.9845 + }, + { + "start": 8723.58, + "end": 8727.0, + "probability": 0.9899 + }, + { + "start": 8728.22, + "end": 8729.76, + "probability": 0.8302 + }, + { + "start": 8731.5, + "end": 8732.3, + "probability": 0.7816 + }, + { + "start": 8733.16, + "end": 8735.2, + "probability": 0.9819 + }, + { + "start": 8736.74, + "end": 8738.7, + "probability": 0.9881 + }, + { + "start": 8738.76, + "end": 8742.84, + "probability": 0.9727 + }, + { + "start": 8744.36, + "end": 8748.02, + "probability": 0.9723 + }, + { + "start": 8748.14, + "end": 8751.9, + "probability": 0.8184 + }, + { + "start": 8752.98, + "end": 8755.94, + "probability": 0.8713 + }, + { + "start": 8756.96, + "end": 8759.94, + "probability": 0.9742 + }, + { + "start": 8761.14, + "end": 8763.18, + "probability": 0.9971 + }, + { + "start": 8764.12, + "end": 8768.88, + "probability": 0.9455 + }, + { + "start": 8769.18, + "end": 8770.78, + "probability": 0.991 + }, + { + "start": 8770.88, + "end": 8772.12, + "probability": 0.9691 + }, + { + "start": 8772.98, + "end": 8777.18, + "probability": 0.9363 + }, + { + "start": 8777.94, + "end": 8782.65, + "probability": 0.9219 + }, + { + "start": 8784.52, + "end": 8784.8, + "probability": 0.4988 + }, + { + "start": 8786.32, + "end": 8786.52, + "probability": 0.1624 + }, + { + "start": 8786.52, + "end": 8789.72, + "probability": 0.8264 + }, + { + "start": 8790.62, + "end": 8793.08, + "probability": 0.9956 + }, + { + "start": 8793.52, + "end": 8798.44, + "probability": 0.9268 + }, + { + "start": 8799.26, + "end": 8801.19, + "probability": 0.6956 + }, + { + "start": 8802.56, + "end": 8804.3, + "probability": 0.5421 + }, + { + "start": 8804.38, + "end": 8806.98, + "probability": 0.9146 + }, + { + "start": 8807.56, + "end": 8809.76, + "probability": 0.8883 + }, + { + "start": 8810.64, + "end": 8813.9, + "probability": 0.9945 + }, + { + "start": 8814.6, + "end": 8817.04, + "probability": 0.9339 + }, + { + "start": 8817.8, + "end": 8820.74, + "probability": 0.9919 + }, + { + "start": 8821.62, + "end": 8826.36, + "probability": 0.5306 + }, + { + "start": 8826.48, + "end": 8829.28, + "probability": 0.8345 + }, + { + "start": 8829.32, + "end": 8832.78, + "probability": 0.979 + }, + { + "start": 8834.14, + "end": 8835.46, + "probability": 0.8586 + }, + { + "start": 8836.34, + "end": 8840.38, + "probability": 0.9835 + }, + { + "start": 8840.8, + "end": 8841.72, + "probability": 0.8594 + }, + { + "start": 8841.92, + "end": 8842.8, + "probability": 0.8564 + }, + { + "start": 8843.1, + "end": 8843.1, + "probability": 0.4419 + }, + { + "start": 8848.56, + "end": 8849.44, + "probability": 0.8085 + }, + { + "start": 8850.5, + "end": 8853.94, + "probability": 0.7645 + }, + { + "start": 8853.96, + "end": 8855.6, + "probability": 0.7696 + }, + { + "start": 8856.48, + "end": 8863.22, + "probability": 0.8613 + }, + { + "start": 8864.22, + "end": 8865.56, + "probability": 0.8499 + }, + { + "start": 8866.22, + "end": 8868.36, + "probability": 0.9969 + }, + { + "start": 8869.62, + "end": 8870.53, + "probability": 0.9993 + }, + { + "start": 8871.36, + "end": 8873.46, + "probability": 0.9908 + }, + { + "start": 8874.2, + "end": 8877.56, + "probability": 0.9505 + }, + { + "start": 8878.4, + "end": 8882.12, + "probability": 0.9629 + }, + { + "start": 8882.54, + "end": 8884.23, + "probability": 0.9971 + }, + { + "start": 8884.98, + "end": 8886.78, + "probability": 0.4188 + }, + { + "start": 8887.84, + "end": 8893.76, + "probability": 0.9917 + }, + { + "start": 8894.58, + "end": 8898.26, + "probability": 0.955 + }, + { + "start": 8899.1, + "end": 8902.14, + "probability": 0.7117 + }, + { + "start": 8902.82, + "end": 8904.28, + "probability": 0.9041 + }, + { + "start": 8904.36, + "end": 8906.31, + "probability": 0.9771 + }, + { + "start": 8907.14, + "end": 8912.33, + "probability": 0.9575 + }, + { + "start": 8913.98, + "end": 8915.47, + "probability": 0.8401 + }, + { + "start": 8916.14, + "end": 8917.06, + "probability": 0.5986 + }, + { + "start": 8918.14, + "end": 8919.02, + "probability": 0.7379 + }, + { + "start": 8919.92, + "end": 8920.94, + "probability": 0.9369 + }, + { + "start": 8921.5, + "end": 8923.9, + "probability": 0.9417 + }, + { + "start": 8924.68, + "end": 8926.4, + "probability": 0.9924 + }, + { + "start": 8926.62, + "end": 8929.36, + "probability": 0.926 + }, + { + "start": 8929.48, + "end": 8933.48, + "probability": 0.9734 + }, + { + "start": 8934.22, + "end": 8935.42, + "probability": 0.9878 + }, + { + "start": 8935.94, + "end": 8936.42, + "probability": 0.9808 + }, + { + "start": 8936.64, + "end": 8937.92, + "probability": 0.9941 + }, + { + "start": 8938.66, + "end": 8939.48, + "probability": 0.8564 + }, + { + "start": 8939.56, + "end": 8940.19, + "probability": 0.9869 + }, + { + "start": 8941.02, + "end": 8943.3, + "probability": 0.9951 + }, + { + "start": 8944.18, + "end": 8947.42, + "probability": 0.9858 + }, + { + "start": 8948.02, + "end": 8949.45, + "probability": 0.8449 + }, + { + "start": 8950.22, + "end": 8953.04, + "probability": 0.9932 + }, + { + "start": 8953.86, + "end": 8955.28, + "probability": 0.9969 + }, + { + "start": 8956.04, + "end": 8957.38, + "probability": 0.7206 + }, + { + "start": 8957.44, + "end": 8958.54, + "probability": 0.9638 + }, + { + "start": 8960.18, + "end": 8963.36, + "probability": 0.9515 + }, + { + "start": 8963.9, + "end": 8965.02, + "probability": 0.9424 + }, + { + "start": 8965.08, + "end": 8970.04, + "probability": 0.9976 + }, + { + "start": 8970.66, + "end": 8970.88, + "probability": 0.9912 + }, + { + "start": 8971.96, + "end": 8972.8, + "probability": 0.8312 + }, + { + "start": 8972.92, + "end": 8974.28, + "probability": 0.8491 + }, + { + "start": 8974.46, + "end": 8977.19, + "probability": 0.8524 + }, + { + "start": 8977.54, + "end": 8978.3, + "probability": 0.3358 + }, + { + "start": 8980.38, + "end": 8983.1, + "probability": 0.863 + }, + { + "start": 8983.92, + "end": 8985.28, + "probability": 0.9777 + }, + { + "start": 8986.52, + "end": 8989.54, + "probability": 0.7181 + }, + { + "start": 8989.84, + "end": 8990.76, + "probability": 0.9707 + }, + { + "start": 8994.97, + "end": 8998.14, + "probability": 0.916 + }, + { + "start": 8998.34, + "end": 8998.76, + "probability": 0.7371 + }, + { + "start": 8999.02, + "end": 9002.1, + "probability": 0.4768 + }, + { + "start": 9002.1, + "end": 9002.66, + "probability": 0.4217 + }, + { + "start": 9002.78, + "end": 9003.74, + "probability": 0.7285 + }, + { + "start": 9003.94, + "end": 9005.35, + "probability": 0.8096 + }, + { + "start": 9005.74, + "end": 9006.6, + "probability": 0.5694 + }, + { + "start": 9008.92, + "end": 9011.26, + "probability": 0.5403 + }, + { + "start": 9012.12, + "end": 9012.56, + "probability": 0.1356 + }, + { + "start": 9012.56, + "end": 9012.56, + "probability": 0.2157 + }, + { + "start": 9012.56, + "end": 9013.41, + "probability": 0.7391 + }, + { + "start": 9014.66, + "end": 9015.54, + "probability": 0.7997 + }, + { + "start": 9016.78, + "end": 9016.78, + "probability": 0.165 + }, + { + "start": 9016.78, + "end": 9017.64, + "probability": 0.7726 + }, + { + "start": 9018.41, + "end": 9020.62, + "probability": 0.6562 + }, + { + "start": 9021.42, + "end": 9022.72, + "probability": 0.8455 + }, + { + "start": 9022.8, + "end": 9024.28, + "probability": 0.9579 + }, + { + "start": 9024.9, + "end": 9026.7, + "probability": 0.9644 + }, + { + "start": 9026.9, + "end": 9030.6, + "probability": 0.7382 + }, + { + "start": 9031.02, + "end": 9032.4, + "probability": 0.8692 + }, + { + "start": 9032.98, + "end": 9034.06, + "probability": 0.8698 + }, + { + "start": 9034.14, + "end": 9034.44, + "probability": 0.9839 + }, + { + "start": 9035.8, + "end": 9037.8, + "probability": 0.9341 + }, + { + "start": 9038.38, + "end": 9040.88, + "probability": 0.502 + }, + { + "start": 9041.66, + "end": 9042.87, + "probability": 0.3664 + }, + { + "start": 9043.6, + "end": 9045.26, + "probability": 0.9917 + }, + { + "start": 9045.5, + "end": 9047.04, + "probability": 0.9895 + }, + { + "start": 9047.32, + "end": 9048.02, + "probability": 0.484 + }, + { + "start": 9048.6, + "end": 9051.5, + "probability": 0.8594 + }, + { + "start": 9052.18, + "end": 9053.38, + "probability": 0.9148 + }, + { + "start": 9053.74, + "end": 9055.36, + "probability": 0.9108 + }, + { + "start": 9055.5, + "end": 9056.29, + "probability": 0.9868 + }, + { + "start": 9057.1, + "end": 9059.58, + "probability": 0.932 + }, + { + "start": 9059.74, + "end": 9060.46, + "probability": 0.7324 + }, + { + "start": 9060.88, + "end": 9061.68, + "probability": 0.857 + }, + { + "start": 9061.82, + "end": 9062.24, + "probability": 0.6475 + }, + { + "start": 9062.28, + "end": 9064.36, + "probability": 0.9907 + }, + { + "start": 9065.52, + "end": 9066.12, + "probability": 0.884 + }, + { + "start": 9067.58, + "end": 9068.04, + "probability": 0.7095 + }, + { + "start": 9068.06, + "end": 9068.18, + "probability": 0.5986 + }, + { + "start": 9068.26, + "end": 9069.64, + "probability": 0.9642 + }, + { + "start": 9069.7, + "end": 9072.1, + "probability": 0.8608 + }, + { + "start": 9072.26, + "end": 9073.0, + "probability": 0.8741 + }, + { + "start": 9073.52, + "end": 9074.48, + "probability": 0.8215 + }, + { + "start": 9075.14, + "end": 9079.4, + "probability": 0.9692 + }, + { + "start": 9079.96, + "end": 9080.62, + "probability": 0.5537 + }, + { + "start": 9081.2, + "end": 9081.9, + "probability": 0.838 + }, + { + "start": 9082.42, + "end": 9084.76, + "probability": 0.8923 + }, + { + "start": 9085.1, + "end": 9085.98, + "probability": 0.7152 + }, + { + "start": 9086.6, + "end": 9087.66, + "probability": 0.7774 + }, + { + "start": 9087.92, + "end": 9089.06, + "probability": 0.568 + }, + { + "start": 9089.56, + "end": 9092.38, + "probability": 0.8397 + }, + { + "start": 9092.48, + "end": 9094.68, + "probability": 0.8212 + }, + { + "start": 9094.84, + "end": 9097.2, + "probability": 0.9773 + }, + { + "start": 9097.92, + "end": 9100.36, + "probability": 0.9312 + }, + { + "start": 9101.18, + "end": 9104.58, + "probability": 0.9908 + }, + { + "start": 9104.74, + "end": 9105.4, + "probability": 0.8965 + }, + { + "start": 9106.44, + "end": 9107.74, + "probability": 0.5387 + }, + { + "start": 9108.5, + "end": 9108.98, + "probability": 0.6871 + }, + { + "start": 9111.94, + "end": 9114.18, + "probability": 0.9053 + }, + { + "start": 9114.58, + "end": 9117.3, + "probability": 0.6704 + }, + { + "start": 9118.2, + "end": 9119.14, + "probability": 0.7729 + }, + { + "start": 9119.46, + "end": 9119.88, + "probability": 0.7274 + }, + { + "start": 9120.52, + "end": 9121.4, + "probability": 0.8828 + }, + { + "start": 9121.94, + "end": 9122.4, + "probability": 0.917 + }, + { + "start": 9122.9, + "end": 9123.76, + "probability": 0.8724 + }, + { + "start": 9123.82, + "end": 9124.26, + "probability": 0.8914 + }, + { + "start": 9124.76, + "end": 9125.2, + "probability": 0.917 + }, + { + "start": 9125.84, + "end": 9128.06, + "probability": 0.861 + }, + { + "start": 9128.38, + "end": 9128.58, + "probability": 0.6047 + }, + { + "start": 9128.76, + "end": 9129.0, + "probability": 0.6288 + }, + { + "start": 9129.18, + "end": 9130.68, + "probability": 0.8975 + }, + { + "start": 9131.16, + "end": 9131.44, + "probability": 0.885 + }, + { + "start": 9132.08, + "end": 9133.17, + "probability": 0.9457 + }, + { + "start": 9134.0, + "end": 9135.26, + "probability": 0.985 + }, + { + "start": 9135.64, + "end": 9139.62, + "probability": 0.9512 + }, + { + "start": 9139.62, + "end": 9142.58, + "probability": 0.8846 + }, + { + "start": 9143.28, + "end": 9144.08, + "probability": 0.4766 + }, + { + "start": 9145.76, + "end": 9146.24, + "probability": 0.3323 + }, + { + "start": 9146.24, + "end": 9149.06, + "probability": 0.5001 + }, + { + "start": 9149.62, + "end": 9151.98, + "probability": 0.5078 + }, + { + "start": 9152.04, + "end": 9153.78, + "probability": 0.9434 + }, + { + "start": 9153.9, + "end": 9154.11, + "probability": 0.9305 + }, + { + "start": 9155.02, + "end": 9157.36, + "probability": 0.9865 + }, + { + "start": 9157.46, + "end": 9158.2, + "probability": 0.7924 + }, + { + "start": 9161.18, + "end": 9162.1, + "probability": 0.3207 + }, + { + "start": 9162.74, + "end": 9165.24, + "probability": 0.339 + }, + { + "start": 9165.4, + "end": 9166.09, + "probability": 0.1902 + }, + { + "start": 9166.24, + "end": 9166.92, + "probability": 0.4772 + }, + { + "start": 9167.0, + "end": 9167.96, + "probability": 0.6614 + }, + { + "start": 9168.58, + "end": 9170.74, + "probability": 0.9187 + }, + { + "start": 9171.12, + "end": 9173.3, + "probability": 0.8274 + }, + { + "start": 9173.38, + "end": 9174.56, + "probability": 0.5994 + }, + { + "start": 9175.3, + "end": 9177.2, + "probability": 0.9242 + }, + { + "start": 9177.24, + "end": 9180.02, + "probability": 0.9082 + }, + { + "start": 9180.1, + "end": 9182.22, + "probability": 0.9958 + }, + { + "start": 9183.16, + "end": 9184.24, + "probability": 0.8542 + }, + { + "start": 9185.5, + "end": 9186.9, + "probability": 0.9154 + }, + { + "start": 9187.08, + "end": 9188.22, + "probability": 0.9901 + }, + { + "start": 9188.76, + "end": 9189.62, + "probability": 0.8726 + }, + { + "start": 9190.34, + "end": 9190.5, + "probability": 0.7172 + }, + { + "start": 9190.58, + "end": 9191.06, + "probability": 0.649 + }, + { + "start": 9191.46, + "end": 9192.66, + "probability": 0.9414 + }, + { + "start": 9193.16, + "end": 9194.2, + "probability": 0.9447 + }, + { + "start": 9194.24, + "end": 9194.62, + "probability": 0.6405 + }, + { + "start": 9194.66, + "end": 9196.3, + "probability": 0.7472 + }, + { + "start": 9196.38, + "end": 9197.3, + "probability": 0.8888 + }, + { + "start": 9197.36, + "end": 9197.73, + "probability": 0.7526 + }, + { + "start": 9197.94, + "end": 9200.34, + "probability": 0.806 + }, + { + "start": 9201.0, + "end": 9202.78, + "probability": 0.9537 + }, + { + "start": 9203.5, + "end": 9205.6, + "probability": 0.8916 + }, + { + "start": 9205.72, + "end": 9206.2, + "probability": 0.568 + }, + { + "start": 9207.22, + "end": 9208.34, + "probability": 0.8515 + }, + { + "start": 9208.9, + "end": 9213.82, + "probability": 0.7305 + }, + { + "start": 9213.82, + "end": 9214.06, + "probability": 0.8481 + }, + { + "start": 9214.24, + "end": 9217.53, + "probability": 0.9363 + }, + { + "start": 9219.06, + "end": 9220.18, + "probability": 0.7771 + }, + { + "start": 9220.66, + "end": 9221.44, + "probability": 0.6344 + }, + { + "start": 9224.14, + "end": 9227.12, + "probability": 0.2497 + }, + { + "start": 9239.18, + "end": 9239.9, + "probability": 0.3366 + }, + { + "start": 9239.9, + "end": 9241.98, + "probability": 0.6572 + }, + { + "start": 9242.44, + "end": 9247.74, + "probability": 0.8699 + }, + { + "start": 9249.14, + "end": 9254.58, + "probability": 0.7701 + }, + { + "start": 9254.74, + "end": 9256.03, + "probability": 0.7995 + }, + { + "start": 9257.06, + "end": 9260.9, + "probability": 0.8052 + }, + { + "start": 9262.9, + "end": 9264.5, + "probability": 0.0128 + }, + { + "start": 9266.96, + "end": 9268.22, + "probability": 0.8248 + }, + { + "start": 9274.14, + "end": 9276.66, + "probability": 0.7712 + }, + { + "start": 9277.62, + "end": 9277.96, + "probability": 0.7015 + }, + { + "start": 9279.32, + "end": 9283.12, + "probability": 0.9603 + }, + { + "start": 9283.74, + "end": 9286.36, + "probability": 0.7817 + }, + { + "start": 9289.62, + "end": 9290.5, + "probability": 0.0214 + }, + { + "start": 9291.24, + "end": 9293.76, + "probability": 0.9086 + }, + { + "start": 9294.44, + "end": 9296.58, + "probability": 0.8097 + }, + { + "start": 9297.4, + "end": 9302.8, + "probability": 0.9797 + }, + { + "start": 9304.0, + "end": 9306.54, + "probability": 0.9307 + }, + { + "start": 9307.08, + "end": 9312.2, + "probability": 0.9983 + }, + { + "start": 9312.74, + "end": 9316.22, + "probability": 0.9875 + }, + { + "start": 9316.78, + "end": 9323.36, + "probability": 0.945 + }, + { + "start": 9323.8, + "end": 9325.82, + "probability": 0.9008 + }, + { + "start": 9326.4, + "end": 9329.48, + "probability": 0.9489 + }, + { + "start": 9330.36, + "end": 9332.8, + "probability": 0.9578 + }, + { + "start": 9333.92, + "end": 9339.18, + "probability": 0.9805 + }, + { + "start": 9339.98, + "end": 9345.24, + "probability": 0.9323 + }, + { + "start": 9346.02, + "end": 9352.54, + "probability": 0.9222 + }, + { + "start": 9352.88, + "end": 9354.32, + "probability": 0.5917 + }, + { + "start": 9354.54, + "end": 9359.12, + "probability": 0.8351 + }, + { + "start": 9359.12, + "end": 9363.36, + "probability": 0.9946 + }, + { + "start": 9364.68, + "end": 9365.66, + "probability": 0.622 + }, + { + "start": 9366.04, + "end": 9370.06, + "probability": 0.9927 + }, + { + "start": 9370.8, + "end": 9376.74, + "probability": 0.9878 + }, + { + "start": 9377.68, + "end": 9378.42, + "probability": 0.7751 + }, + { + "start": 9379.0, + "end": 9382.56, + "probability": 0.9973 + }, + { + "start": 9382.56, + "end": 9387.22, + "probability": 0.9462 + }, + { + "start": 9387.82, + "end": 9391.1, + "probability": 0.9946 + }, + { + "start": 9391.76, + "end": 9393.78, + "probability": 0.9796 + }, + { + "start": 9394.58, + "end": 9400.5, + "probability": 0.9933 + }, + { + "start": 9401.18, + "end": 9403.62, + "probability": 0.8667 + }, + { + "start": 9404.72, + "end": 9410.06, + "probability": 0.8683 + }, + { + "start": 9410.86, + "end": 9411.66, + "probability": 0.8843 + }, + { + "start": 9412.34, + "end": 9414.04, + "probability": 0.9906 + }, + { + "start": 9414.62, + "end": 9417.02, + "probability": 0.3789 + }, + { + "start": 9417.6, + "end": 9418.86, + "probability": 0.8115 + }, + { + "start": 9419.06, + "end": 9422.7, + "probability": 0.8073 + }, + { + "start": 9423.94, + "end": 9428.52, + "probability": 0.9891 + }, + { + "start": 9429.16, + "end": 9435.46, + "probability": 0.9832 + }, + { + "start": 9435.78, + "end": 9442.16, + "probability": 0.863 + }, + { + "start": 9443.18, + "end": 9445.78, + "probability": 0.9361 + }, + { + "start": 9446.74, + "end": 9456.22, + "probability": 0.9043 + }, + { + "start": 9457.0, + "end": 9458.8, + "probability": 0.7697 + }, + { + "start": 9459.66, + "end": 9463.87, + "probability": 0.7977 + }, + { + "start": 9464.88, + "end": 9469.7, + "probability": 0.8977 + }, + { + "start": 9470.24, + "end": 9478.56, + "probability": 0.687 + }, + { + "start": 9479.14, + "end": 9483.82, + "probability": 0.9972 + }, + { + "start": 9485.08, + "end": 9489.98, + "probability": 0.9702 + }, + { + "start": 9490.52, + "end": 9494.26, + "probability": 0.7477 + }, + { + "start": 9494.54, + "end": 9499.02, + "probability": 0.8203 + }, + { + "start": 9499.78, + "end": 9504.5, + "probability": 0.8195 + }, + { + "start": 9505.76, + "end": 9508.56, + "probability": 0.769 + }, + { + "start": 9509.58, + "end": 9514.56, + "probability": 0.9069 + }, + { + "start": 9515.18, + "end": 9521.84, + "probability": 0.8618 + }, + { + "start": 9524.04, + "end": 9527.32, + "probability": 0.8098 + }, + { + "start": 9528.62, + "end": 9538.18, + "probability": 0.7686 + }, + { + "start": 9539.02, + "end": 9542.18, + "probability": 0.8323 + }, + { + "start": 9542.18, + "end": 9547.1, + "probability": 0.9771 + }, + { + "start": 9547.64, + "end": 9549.8, + "probability": 0.968 + }, + { + "start": 9550.44, + "end": 9551.48, + "probability": 0.8393 + }, + { + "start": 9552.08, + "end": 9554.56, + "probability": 0.9806 + }, + { + "start": 9555.34, + "end": 9556.7, + "probability": 0.9887 + }, + { + "start": 9557.34, + "end": 9558.26, + "probability": 0.9027 + }, + { + "start": 9558.78, + "end": 9561.14, + "probability": 0.9759 + }, + { + "start": 9562.32, + "end": 9564.34, + "probability": 0.7734 + }, + { + "start": 9565.0, + "end": 9567.34, + "probability": 0.8129 + }, + { + "start": 9567.88, + "end": 9569.9, + "probability": 0.9404 + }, + { + "start": 9570.48, + "end": 9571.18, + "probability": 0.827 + }, + { + "start": 9571.42, + "end": 9579.02, + "probability": 0.984 + }, + { + "start": 9579.82, + "end": 9580.42, + "probability": 0.8955 + }, + { + "start": 9580.68, + "end": 9585.88, + "probability": 0.797 + }, + { + "start": 9586.7, + "end": 9589.3, + "probability": 0.8857 + }, + { + "start": 9589.92, + "end": 9597.46, + "probability": 0.9509 + }, + { + "start": 9598.38, + "end": 9604.82, + "probability": 0.9919 + }, + { + "start": 9605.36, + "end": 9613.6, + "probability": 0.971 + }, + { + "start": 9614.12, + "end": 9618.9, + "probability": 0.9651 + }, + { + "start": 9620.08, + "end": 9622.76, + "probability": 0.8485 + }, + { + "start": 9623.42, + "end": 9629.52, + "probability": 0.7756 + }, + { + "start": 9629.56, + "end": 9632.4, + "probability": 0.6638 + }, + { + "start": 9633.52, + "end": 9638.3, + "probability": 0.7041 + }, + { + "start": 9638.86, + "end": 9643.72, + "probability": 0.9927 + }, + { + "start": 9644.2, + "end": 9651.06, + "probability": 0.9839 + }, + { + "start": 9653.08, + "end": 9655.78, + "probability": 0.7637 + }, + { + "start": 9656.34, + "end": 9660.06, + "probability": 0.9434 + }, + { + "start": 9660.58, + "end": 9663.36, + "probability": 0.8134 + }, + { + "start": 9663.92, + "end": 9665.58, + "probability": 0.6345 + }, + { + "start": 9666.24, + "end": 9667.08, + "probability": 0.7381 + }, + { + "start": 9667.62, + "end": 9667.84, + "probability": 0.6743 + }, + { + "start": 9668.5, + "end": 9670.94, + "probability": 0.9002 + }, + { + "start": 9671.08, + "end": 9673.5, + "probability": 0.673 + }, + { + "start": 9687.02, + "end": 9687.84, + "probability": 0.6517 + }, + { + "start": 9689.5, + "end": 9690.94, + "probability": 0.911 + }, + { + "start": 9691.58, + "end": 9693.44, + "probability": 0.9885 + }, + { + "start": 9694.56, + "end": 9696.9, + "probability": 0.6788 + }, + { + "start": 9697.02, + "end": 9699.2, + "probability": 0.9767 + }, + { + "start": 9700.62, + "end": 9701.32, + "probability": 0.9215 + }, + { + "start": 9701.46, + "end": 9705.92, + "probability": 0.8389 + }, + { + "start": 9706.92, + "end": 9710.56, + "probability": 0.815 + }, + { + "start": 9713.02, + "end": 9713.9, + "probability": 0.732 + }, + { + "start": 9714.3, + "end": 9715.14, + "probability": 0.8237 + }, + { + "start": 9715.52, + "end": 9716.38, + "probability": 0.917 + }, + { + "start": 9718.4, + "end": 9720.14, + "probability": 0.9971 + }, + { + "start": 9721.58, + "end": 9723.52, + "probability": 0.9558 + }, + { + "start": 9723.9, + "end": 9726.5, + "probability": 0.9832 + }, + { + "start": 9728.22, + "end": 9730.2, + "probability": 0.9968 + }, + { + "start": 9732.44, + "end": 9734.38, + "probability": 0.9532 + }, + { + "start": 9736.88, + "end": 9741.16, + "probability": 0.9886 + }, + { + "start": 9743.04, + "end": 9743.4, + "probability": 0.589 + }, + { + "start": 9743.6, + "end": 9745.52, + "probability": 0.9722 + }, + { + "start": 9746.96, + "end": 9747.62, + "probability": 0.575 + }, + { + "start": 9749.54, + "end": 9750.88, + "probability": 0.9987 + }, + { + "start": 9753.54, + "end": 9754.06, + "probability": 0.8146 + }, + { + "start": 9755.46, + "end": 9756.78, + "probability": 0.6962 + }, + { + "start": 9758.62, + "end": 9760.1, + "probability": 0.9937 + }, + { + "start": 9760.36, + "end": 9761.72, + "probability": 0.9035 + }, + { + "start": 9763.12, + "end": 9763.78, + "probability": 0.9268 + }, + { + "start": 9765.0, + "end": 9767.34, + "probability": 0.8853 + }, + { + "start": 9770.4, + "end": 9770.66, + "probability": 0.0719 + }, + { + "start": 9770.66, + "end": 9770.66, + "probability": 0.3521 + }, + { + "start": 9770.66, + "end": 9771.54, + "probability": 0.5284 + }, + { + "start": 9774.54, + "end": 9774.68, + "probability": 0.1671 + }, + { + "start": 9774.68, + "end": 9775.2, + "probability": 0.5056 + }, + { + "start": 9776.0, + "end": 9777.3, + "probability": 0.0878 + }, + { + "start": 9777.82, + "end": 9782.74, + "probability": 0.9567 + }, + { + "start": 9782.74, + "end": 9784.98, + "probability": 0.9548 + }, + { + "start": 9785.12, + "end": 9785.63, + "probability": 0.2801 + }, + { + "start": 9786.14, + "end": 9786.32, + "probability": 0.4429 + }, + { + "start": 9786.54, + "end": 9787.5, + "probability": 0.3753 + }, + { + "start": 9787.66, + "end": 9791.81, + "probability": 0.9846 + }, + { + "start": 9792.54, + "end": 9792.96, + "probability": 0.1808 + }, + { + "start": 9793.4, + "end": 9795.08, + "probability": 0.9229 + }, + { + "start": 9795.96, + "end": 9799.02, + "probability": 0.9622 + }, + { + "start": 9799.52, + "end": 9800.16, + "probability": 0.5237 + }, + { + "start": 9800.74, + "end": 9802.24, + "probability": 0.7845 + }, + { + "start": 9803.1, + "end": 9804.42, + "probability": 0.9778 + }, + { + "start": 9804.6, + "end": 9805.24, + "probability": 0.9636 + }, + { + "start": 9805.6, + "end": 9807.66, + "probability": 0.9757 + }, + { + "start": 9808.48, + "end": 9809.37, + "probability": 0.9753 + }, + { + "start": 9810.02, + "end": 9814.06, + "probability": 0.9517 + }, + { + "start": 9814.32, + "end": 9815.02, + "probability": 0.0303 + }, + { + "start": 9815.95, + "end": 9823.84, + "probability": 0.9959 + }, + { + "start": 9824.36, + "end": 9825.26, + "probability": 0.8263 + }, + { + "start": 9826.9, + "end": 9828.34, + "probability": 0.1752 + }, + { + "start": 9829.16, + "end": 9831.42, + "probability": 0.0593 + }, + { + "start": 9832.18, + "end": 9834.54, + "probability": 0.4922 + }, + { + "start": 9835.7, + "end": 9840.14, + "probability": 0.6795 + }, + { + "start": 9840.58, + "end": 9842.82, + "probability": 0.627 + }, + { + "start": 9843.48, + "end": 9843.8, + "probability": 0.7693 + }, + { + "start": 9844.08, + "end": 9845.64, + "probability": 0.5026 + }, + { + "start": 9847.0, + "end": 9850.54, + "probability": 0.8489 + }, + { + "start": 9850.62, + "end": 9850.84, + "probability": 0.4206 + }, + { + "start": 9851.44, + "end": 9851.68, + "probability": 0.3544 + }, + { + "start": 9852.06, + "end": 9853.94, + "probability": 0.6137 + }, + { + "start": 9854.22, + "end": 9855.28, + "probability": 0.2147 + }, + { + "start": 9855.34, + "end": 9858.54, + "probability": 0.8748 + }, + { + "start": 9858.6, + "end": 9859.5, + "probability": 0.082 + }, + { + "start": 9861.2, + "end": 9862.06, + "probability": 0.6897 + }, + { + "start": 9862.16, + "end": 9864.32, + "probability": 0.6087 + }, + { + "start": 9864.38, + "end": 9864.74, + "probability": 0.5826 + }, + { + "start": 9864.8, + "end": 9864.86, + "probability": 0.0909 + }, + { + "start": 9865.02, + "end": 9866.72, + "probability": 0.2902 + }, + { + "start": 9866.8, + "end": 9868.68, + "probability": 0.2095 + }, + { + "start": 9869.48, + "end": 9871.06, + "probability": 0.8774 + }, + { + "start": 9871.98, + "end": 9875.36, + "probability": 0.7582 + }, + { + "start": 9875.46, + "end": 9878.04, + "probability": 0.9949 + }, + { + "start": 9878.98, + "end": 9882.28, + "probability": 0.8091 + }, + { + "start": 9882.86, + "end": 9883.58, + "probability": 0.9482 + }, + { + "start": 9883.76, + "end": 9884.74, + "probability": 0.8729 + }, + { + "start": 9884.8, + "end": 9886.25, + "probability": 0.9922 + }, + { + "start": 9887.7, + "end": 9887.98, + "probability": 0.3168 + }, + { + "start": 9888.06, + "end": 9888.06, + "probability": 0.3443 + }, + { + "start": 9888.18, + "end": 9890.42, + "probability": 0.5302 + }, + { + "start": 9890.42, + "end": 9891.54, + "probability": 0.1989 + }, + { + "start": 9891.54, + "end": 9892.9, + "probability": 0.7013 + }, + { + "start": 9892.92, + "end": 9892.92, + "probability": 0.01 + }, + { + "start": 9892.92, + "end": 9893.92, + "probability": 0.468 + }, + { + "start": 9897.56, + "end": 9899.74, + "probability": 0.5808 + }, + { + "start": 9899.96, + "end": 9903.0, + "probability": 0.9932 + }, + { + "start": 9903.08, + "end": 9904.52, + "probability": 0.3917 + }, + { + "start": 9906.48, + "end": 9907.42, + "probability": 0.8243 + }, + { + "start": 9907.66, + "end": 9907.66, + "probability": 0.5796 + }, + { + "start": 9907.66, + "end": 9908.38, + "probability": 0.5854 + }, + { + "start": 9908.42, + "end": 9909.12, + "probability": 0.7328 + }, + { + "start": 9909.94, + "end": 9911.12, + "probability": 0.307 + }, + { + "start": 9919.8, + "end": 9923.44, + "probability": 0.3351 + }, + { + "start": 9927.12, + "end": 9931.62, + "probability": 0.5518 + }, + { + "start": 9931.64, + "end": 9931.98, + "probability": 0.1782 + }, + { + "start": 9931.98, + "end": 9933.08, + "probability": 0.6128 + }, + { + "start": 9933.2, + "end": 9937.12, + "probability": 0.8046 + }, + { + "start": 9937.96, + "end": 9940.46, + "probability": 0.7206 + }, + { + "start": 9941.86, + "end": 9943.92, + "probability": 0.7922 + }, + { + "start": 9943.92, + "end": 9945.86, + "probability": 0.7223 + }, + { + "start": 9945.98, + "end": 9946.94, + "probability": 0.2531 + }, + { + "start": 9947.18, + "end": 9949.06, + "probability": 0.9943 + }, + { + "start": 9949.72, + "end": 9950.88, + "probability": 0.5038 + }, + { + "start": 9955.06, + "end": 9955.98, + "probability": 0.7337 + }, + { + "start": 9957.64, + "end": 9958.88, + "probability": 0.8459 + }, + { + "start": 9960.4, + "end": 9961.98, + "probability": 0.9632 + }, + { + "start": 9964.02, + "end": 9964.06, + "probability": 0.1571 + }, + { + "start": 9964.06, + "end": 9966.12, + "probability": 0.8964 + }, + { + "start": 9966.8, + "end": 9972.74, + "probability": 0.8691 + }, + { + "start": 9974.32, + "end": 9979.08, + "probability": 0.8669 + }, + { + "start": 9980.72, + "end": 9981.64, + "probability": 0.6167 + }, + { + "start": 9982.44, + "end": 9984.32, + "probability": 0.9509 + }, + { + "start": 9985.18, + "end": 9986.88, + "probability": 0.7642 + }, + { + "start": 9987.54, + "end": 9987.72, + "probability": 0.6931 + }, + { + "start": 9988.0, + "end": 9994.3, + "probability": 0.9499 + }, + { + "start": 9994.96, + "end": 9998.5, + "probability": 0.8114 + }, + { + "start": 9998.78, + "end": 10000.34, + "probability": 0.5057 + }, + { + "start": 10002.04, + "end": 10005.2, + "probability": 0.9965 + }, + { + "start": 10006.1, + "end": 10010.77, + "probability": 0.898 + }, + { + "start": 10013.3, + "end": 10015.96, + "probability": 0.6525 + }, + { + "start": 10017.26, + "end": 10020.64, + "probability": 0.8599 + }, + { + "start": 10021.16, + "end": 10024.02, + "probability": 0.9702 + }, + { + "start": 10024.2, + "end": 10026.48, + "probability": 0.9834 + }, + { + "start": 10026.62, + "end": 10029.34, + "probability": 0.9609 + }, + { + "start": 10029.72, + "end": 10030.65, + "probability": 0.8796 + }, + { + "start": 10032.18, + "end": 10034.7, + "probability": 0.9758 + }, + { + "start": 10034.92, + "end": 10036.55, + "probability": 0.7563 + }, + { + "start": 10037.56, + "end": 10038.82, + "probability": 0.7489 + }, + { + "start": 10039.02, + "end": 10039.84, + "probability": 0.9648 + }, + { + "start": 10039.96, + "end": 10041.64, + "probability": 0.856 + }, + { + "start": 10042.62, + "end": 10045.34, + "probability": 0.9863 + }, + { + "start": 10045.98, + "end": 10049.36, + "probability": 0.8833 + }, + { + "start": 10049.92, + "end": 10053.58, + "probability": 0.8553 + }, + { + "start": 10054.54, + "end": 10059.0, + "probability": 0.9951 + }, + { + "start": 10059.7, + "end": 10060.56, + "probability": 0.5435 + }, + { + "start": 10061.16, + "end": 10062.56, + "probability": 0.9099 + }, + { + "start": 10063.14, + "end": 10064.44, + "probability": 0.9487 + }, + { + "start": 10065.0, + "end": 10068.54, + "probability": 0.9849 + }, + { + "start": 10069.08, + "end": 10070.42, + "probability": 0.9497 + }, + { + "start": 10071.12, + "end": 10073.58, + "probability": 0.7497 + }, + { + "start": 10073.94, + "end": 10075.48, + "probability": 0.6791 + }, + { + "start": 10076.14, + "end": 10077.12, + "probability": 0.1711 + }, + { + "start": 10077.24, + "end": 10079.44, + "probability": 0.5863 + }, + { + "start": 10079.54, + "end": 10081.74, + "probability": 0.5635 + }, + { + "start": 10081.82, + "end": 10082.38, + "probability": 0.5391 + }, + { + "start": 10082.9, + "end": 10086.0, + "probability": 0.8604 + }, + { + "start": 10086.78, + "end": 10088.71, + "probability": 0.594 + }, + { + "start": 10089.08, + "end": 10090.68, + "probability": 0.6145 + }, + { + "start": 10092.24, + "end": 10093.22, + "probability": 0.1152 + }, + { + "start": 10093.74, + "end": 10100.06, + "probability": 0.0053 + }, + { + "start": 10102.28, + "end": 10103.18, + "probability": 0.1131 + }, + { + "start": 10103.68, + "end": 10103.68, + "probability": 0.2741 + }, + { + "start": 10103.68, + "end": 10103.68, + "probability": 0.4684 + }, + { + "start": 10103.68, + "end": 10104.85, + "probability": 0.3518 + }, + { + "start": 10105.02, + "end": 10105.54, + "probability": 0.4723 + }, + { + "start": 10105.6, + "end": 10105.84, + "probability": 0.4039 + }, + { + "start": 10105.84, + "end": 10110.2, + "probability": 0.8478 + }, + { + "start": 10110.32, + "end": 10111.32, + "probability": 0.7215 + }, + { + "start": 10112.48, + "end": 10115.09, + "probability": 0.6684 + }, + { + "start": 10115.92, + "end": 10118.14, + "probability": 0.9363 + }, + { + "start": 10119.4, + "end": 10120.34, + "probability": 0.8885 + }, + { + "start": 10120.56, + "end": 10125.46, + "probability": 0.9154 + }, + { + "start": 10125.62, + "end": 10129.1, + "probability": 0.9819 + }, + { + "start": 10133.28, + "end": 10133.28, + "probability": 0.1195 + }, + { + "start": 10133.28, + "end": 10133.44, + "probability": 0.0139 + }, + { + "start": 10133.44, + "end": 10134.22, + "probability": 0.4938 + }, + { + "start": 10134.56, + "end": 10135.34, + "probability": 0.4931 + }, + { + "start": 10139.57, + "end": 10141.64, + "probability": 0.8059 + }, + { + "start": 10142.0, + "end": 10142.68, + "probability": 0.3406 + }, + { + "start": 10142.68, + "end": 10143.6, + "probability": 0.9371 + }, + { + "start": 10143.68, + "end": 10145.34, + "probability": 0.0354 + }, + { + "start": 10146.32, + "end": 10148.34, + "probability": 0.8785 + }, + { + "start": 10148.5, + "end": 10149.1, + "probability": 0.8252 + }, + { + "start": 10149.68, + "end": 10150.8, + "probability": 0.6899 + }, + { + "start": 10151.02, + "end": 10152.04, + "probability": 0.9607 + }, + { + "start": 10152.48, + "end": 10153.34, + "probability": 0.4687 + }, + { + "start": 10153.34, + "end": 10157.44, + "probability": 0.9834 + }, + { + "start": 10157.72, + "end": 10160.44, + "probability": 0.2142 + }, + { + "start": 10161.1, + "end": 10161.46, + "probability": 0.1111 + }, + { + "start": 10161.46, + "end": 10162.54, + "probability": 0.4628 + }, + { + "start": 10162.74, + "end": 10168.36, + "probability": 0.6038 + }, + { + "start": 10168.66, + "end": 10170.92, + "probability": 0.1883 + }, + { + "start": 10171.54, + "end": 10172.7, + "probability": 0.8377 + }, + { + "start": 10173.88, + "end": 10180.72, + "probability": 0.9837 + }, + { + "start": 10181.42, + "end": 10187.1, + "probability": 0.9132 + }, + { + "start": 10187.68, + "end": 10195.64, + "probability": 0.9863 + }, + { + "start": 10196.64, + "end": 10197.66, + "probability": 0.9415 + }, + { + "start": 10198.3, + "end": 10205.98, + "probability": 0.9272 + }, + { + "start": 10206.58, + "end": 10210.92, + "probability": 0.996 + }, + { + "start": 10211.7, + "end": 10218.32, + "probability": 0.9982 + }, + { + "start": 10218.58, + "end": 10221.6, + "probability": 0.8287 + }, + { + "start": 10222.3, + "end": 10225.0, + "probability": 0.7443 + }, + { + "start": 10225.84, + "end": 10228.4, + "probability": 0.46 + }, + { + "start": 10228.4, + "end": 10233.38, + "probability": 0.9629 + }, + { + "start": 10233.38, + "end": 10239.2, + "probability": 0.8602 + }, + { + "start": 10240.0, + "end": 10245.9, + "probability": 0.9849 + }, + { + "start": 10246.58, + "end": 10249.45, + "probability": 0.8827 + }, + { + "start": 10250.22, + "end": 10253.74, + "probability": 0.8956 + }, + { + "start": 10254.28, + "end": 10257.1, + "probability": 0.9963 + }, + { + "start": 10257.62, + "end": 10261.28, + "probability": 0.9985 + }, + { + "start": 10261.84, + "end": 10267.36, + "probability": 0.9919 + }, + { + "start": 10268.6, + "end": 10271.2, + "probability": 0.9326 + }, + { + "start": 10271.86, + "end": 10277.46, + "probability": 0.9915 + }, + { + "start": 10278.14, + "end": 10278.56, + "probability": 0.7933 + }, + { + "start": 10279.28, + "end": 10281.48, + "probability": 0.9753 + }, + { + "start": 10282.06, + "end": 10285.14, + "probability": 0.9844 + }, + { + "start": 10286.14, + "end": 10291.46, + "probability": 0.9814 + }, + { + "start": 10291.46, + "end": 10296.86, + "probability": 0.9938 + }, + { + "start": 10297.44, + "end": 10297.82, + "probability": 0.7561 + }, + { + "start": 10298.2, + "end": 10299.4, + "probability": 0.6634 + }, + { + "start": 10300.3, + "end": 10300.92, + "probability": 0.6894 + }, + { + "start": 10301.02, + "end": 10302.82, + "probability": 0.989 + }, + { + "start": 10303.36, + "end": 10304.22, + "probability": 0.4611 + }, + { + "start": 10304.36, + "end": 10305.58, + "probability": 0.7873 + }, + { + "start": 10305.68, + "end": 10307.38, + "probability": 0.9512 + }, + { + "start": 10308.62, + "end": 10310.12, + "probability": 0.7551 + }, + { + "start": 10310.96, + "end": 10312.34, + "probability": 0.9589 + }, + { + "start": 10327.94, + "end": 10331.34, + "probability": 0.186 + }, + { + "start": 10332.9, + "end": 10334.18, + "probability": 0.7114 + }, + { + "start": 10337.66, + "end": 10339.08, + "probability": 0.5326 + }, + { + "start": 10341.68, + "end": 10341.78, + "probability": 0.0392 + }, + { + "start": 10341.78, + "end": 10342.62, + "probability": 0.6281 + }, + { + "start": 10343.12, + "end": 10345.64, + "probability": 0.6965 + }, + { + "start": 10346.12, + "end": 10353.82, + "probability": 0.9284 + }, + { + "start": 10354.52, + "end": 10359.27, + "probability": 0.9653 + }, + { + "start": 10360.38, + "end": 10363.36, + "probability": 0.9823 + }, + { + "start": 10364.42, + "end": 10365.16, + "probability": 0.9426 + }, + { + "start": 10365.76, + "end": 10367.6, + "probability": 0.9102 + }, + { + "start": 10368.14, + "end": 10370.66, + "probability": 0.9797 + }, + { + "start": 10371.24, + "end": 10374.54, + "probability": 0.9302 + }, + { + "start": 10375.32, + "end": 10381.0, + "probability": 0.8052 + }, + { + "start": 10382.34, + "end": 10386.86, + "probability": 0.7511 + }, + { + "start": 10388.18, + "end": 10392.84, + "probability": 0.9971 + }, + { + "start": 10394.18, + "end": 10398.04, + "probability": 0.7843 + }, + { + "start": 10399.02, + "end": 10400.22, + "probability": 0.9485 + }, + { + "start": 10401.2, + "end": 10401.82, + "probability": 0.8243 + }, + { + "start": 10402.4, + "end": 10405.32, + "probability": 0.8706 + }, + { + "start": 10405.36, + "end": 10406.08, + "probability": 0.779 + }, + { + "start": 10406.3, + "end": 10407.66, + "probability": 0.087 + }, + { + "start": 10408.58, + "end": 10410.42, + "probability": 0.5453 + }, + { + "start": 10428.82, + "end": 10434.1, + "probability": 0.2125 + }, + { + "start": 10434.8, + "end": 10437.32, + "probability": 0.0098 + }, + { + "start": 10439.36, + "end": 10441.78, + "probability": 0.21 + }, + { + "start": 10445.82, + "end": 10449.92, + "probability": 0.1122 + }, + { + "start": 10450.64, + "end": 10459.46, + "probability": 0.1032 + }, + { + "start": 10459.54, + "end": 10460.35, + "probability": 0.0299 + }, + { + "start": 10462.48, + "end": 10463.48, + "probability": 0.0615 + }, + { + "start": 10470.28, + "end": 10470.38, + "probability": 0.0027 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.0, + "end": 10488.0, + "probability": 0.0 + }, + { + "start": 10488.62, + "end": 10489.64, + "probability": 0.3635 + }, + { + "start": 10492.12, + "end": 10497.54, + "probability": 0.7662 + }, + { + "start": 10497.7, + "end": 10498.6, + "probability": 0.2775 + }, + { + "start": 10499.3, + "end": 10500.82, + "probability": 0.9464 + }, + { + "start": 10502.16, + "end": 10503.24, + "probability": 0.9215 + }, + { + "start": 10503.46, + "end": 10510.56, + "probability": 0.8081 + }, + { + "start": 10511.1, + "end": 10511.84, + "probability": 0.6864 + }, + { + "start": 10514.28, + "end": 10517.7, + "probability": 0.9934 + }, + { + "start": 10518.38, + "end": 10522.14, + "probability": 0.9211 + }, + { + "start": 10522.86, + "end": 10524.12, + "probability": 0.9238 + }, + { + "start": 10525.12, + "end": 10527.54, + "probability": 0.8248 + }, + { + "start": 10528.82, + "end": 10531.28, + "probability": 0.9408 + }, + { + "start": 10531.4, + "end": 10534.1, + "probability": 0.9419 + }, + { + "start": 10534.64, + "end": 10536.98, + "probability": 0.9769 + }, + { + "start": 10538.88, + "end": 10541.6, + "probability": 0.9731 + }, + { + "start": 10541.66, + "end": 10543.56, + "probability": 0.8282 + }, + { + "start": 10543.64, + "end": 10544.2, + "probability": 0.4565 + }, + { + "start": 10545.34, + "end": 10549.0, + "probability": 0.8661 + }, + { + "start": 10550.62, + "end": 10555.94, + "probability": 0.8788 + }, + { + "start": 10555.94, + "end": 10558.92, + "probability": 0.9836 + }, + { + "start": 10560.16, + "end": 10561.5, + "probability": 0.7816 + }, + { + "start": 10561.62, + "end": 10564.12, + "probability": 0.9969 + }, + { + "start": 10564.12, + "end": 10569.54, + "probability": 0.9292 + }, + { + "start": 10570.32, + "end": 10574.56, + "probability": 0.9912 + }, + { + "start": 10575.48, + "end": 10578.58, + "probability": 0.9949 + }, + { + "start": 10578.58, + "end": 10584.22, + "probability": 0.9946 + }, + { + "start": 10585.24, + "end": 10585.76, + "probability": 0.4885 + }, + { + "start": 10586.76, + "end": 10589.48, + "probability": 0.8836 + }, + { + "start": 10590.68, + "end": 10592.64, + "probability": 0.9966 + }, + { + "start": 10592.64, + "end": 10595.92, + "probability": 0.9871 + }, + { + "start": 10596.72, + "end": 10597.04, + "probability": 0.5371 + }, + { + "start": 10597.16, + "end": 10597.48, + "probability": 0.8219 + }, + { + "start": 10597.62, + "end": 10599.0, + "probability": 0.9379 + }, + { + "start": 10599.2, + "end": 10606.18, + "probability": 0.978 + }, + { + "start": 10606.56, + "end": 10607.41, + "probability": 0.5331 + }, + { + "start": 10608.3, + "end": 10610.4, + "probability": 0.9733 + }, + { + "start": 10610.6, + "end": 10612.84, + "probability": 0.7634 + }, + { + "start": 10613.44, + "end": 10614.28, + "probability": 0.936 + }, + { + "start": 10614.46, + "end": 10622.34, + "probability": 0.9421 + }, + { + "start": 10623.04, + "end": 10626.96, + "probability": 0.9984 + }, + { + "start": 10627.54, + "end": 10631.98, + "probability": 0.9849 + }, + { + "start": 10631.98, + "end": 10635.56, + "probability": 0.9964 + }, + { + "start": 10636.6, + "end": 10637.82, + "probability": 0.8286 + }, + { + "start": 10637.96, + "end": 10640.38, + "probability": 0.8557 + }, + { + "start": 10641.8, + "end": 10643.26, + "probability": 0.8883 + }, + { + "start": 10643.82, + "end": 10645.2, + "probability": 0.7725 + }, + { + "start": 10646.12, + "end": 10648.72, + "probability": 0.9923 + }, + { + "start": 10649.38, + "end": 10651.4, + "probability": 0.9839 + }, + { + "start": 10651.96, + "end": 10652.96, + "probability": 0.9954 + }, + { + "start": 10653.82, + "end": 10657.54, + "probability": 0.7267 + }, + { + "start": 10657.54, + "end": 10660.56, + "probability": 0.9752 + }, + { + "start": 10663.16, + "end": 10665.4, + "probability": 0.8347 + }, + { + "start": 10666.22, + "end": 10667.74, + "probability": 0.89 + }, + { + "start": 10668.32, + "end": 10670.08, + "probability": 0.9396 + }, + { + "start": 10670.76, + "end": 10672.34, + "probability": 0.935 + }, + { + "start": 10673.6, + "end": 10674.38, + "probability": 0.6773 + }, + { + "start": 10675.8, + "end": 10679.24, + "probability": 0.9573 + }, + { + "start": 10680.36, + "end": 10682.76, + "probability": 0.9894 + }, + { + "start": 10683.58, + "end": 10686.02, + "probability": 0.9847 + }, + { + "start": 10687.22, + "end": 10689.16, + "probability": 0.9888 + }, + { + "start": 10689.78, + "end": 10692.7, + "probability": 0.9507 + }, + { + "start": 10693.24, + "end": 10694.64, + "probability": 0.9965 + }, + { + "start": 10695.32, + "end": 10696.84, + "probability": 0.9945 + }, + { + "start": 10698.4, + "end": 10701.78, + "probability": 0.9985 + }, + { + "start": 10703.38, + "end": 10705.14, + "probability": 0.9018 + }, + { + "start": 10706.32, + "end": 10706.98, + "probability": 0.8945 + }, + { + "start": 10707.1, + "end": 10708.16, + "probability": 0.8664 + }, + { + "start": 10708.42, + "end": 10711.32, + "probability": 0.9977 + }, + { + "start": 10711.82, + "end": 10714.42, + "probability": 0.9346 + }, + { + "start": 10715.66, + "end": 10716.44, + "probability": 0.7285 + }, + { + "start": 10717.28, + "end": 10718.68, + "probability": 0.9661 + }, + { + "start": 10719.46, + "end": 10724.16, + "probability": 0.9601 + }, + { + "start": 10724.86, + "end": 10725.76, + "probability": 0.5646 + }, + { + "start": 10726.7, + "end": 10729.14, + "probability": 0.8423 + }, + { + "start": 10729.68, + "end": 10733.3, + "probability": 0.8294 + }, + { + "start": 10734.22, + "end": 10738.24, + "probability": 0.9797 + }, + { + "start": 10739.92, + "end": 10741.48, + "probability": 0.8547 + }, + { + "start": 10742.58, + "end": 10747.26, + "probability": 0.9869 + }, + { + "start": 10747.94, + "end": 10748.96, + "probability": 0.9348 + }, + { + "start": 10751.06, + "end": 10755.05, + "probability": 0.9942 + }, + { + "start": 10755.8, + "end": 10758.0, + "probability": 0.9565 + }, + { + "start": 10758.86, + "end": 10760.74, + "probability": 0.9778 + }, + { + "start": 10761.46, + "end": 10766.14, + "probability": 0.9344 + }, + { + "start": 10767.1, + "end": 10773.54, + "probability": 0.9672 + }, + { + "start": 10774.36, + "end": 10775.72, + "probability": 0.7815 + }, + { + "start": 10776.48, + "end": 10777.34, + "probability": 0.4818 + }, + { + "start": 10777.52, + "end": 10780.12, + "probability": 0.8909 + }, + { + "start": 10780.26, + "end": 10783.48, + "probability": 0.9739 + }, + { + "start": 10783.48, + "end": 10785.84, + "probability": 0.9994 + }, + { + "start": 10786.86, + "end": 10791.24, + "probability": 0.9136 + }, + { + "start": 10791.9, + "end": 10794.5, + "probability": 0.6478 + }, + { + "start": 10796.06, + "end": 10799.16, + "probability": 0.999 + }, + { + "start": 10799.16, + "end": 10802.18, + "probability": 0.9982 + }, + { + "start": 10802.48, + "end": 10804.62, + "probability": 0.9858 + }, + { + "start": 10804.92, + "end": 10805.6, + "probability": 0.9267 + }, + { + "start": 10806.24, + "end": 10807.34, + "probability": 0.9559 + }, + { + "start": 10807.86, + "end": 10809.4, + "probability": 0.9685 + }, + { + "start": 10811.38, + "end": 10813.78, + "probability": 0.9977 + }, + { + "start": 10814.0, + "end": 10814.69, + "probability": 0.9583 + }, + { + "start": 10815.74, + "end": 10817.74, + "probability": 0.9242 + }, + { + "start": 10817.92, + "end": 10820.18, + "probability": 0.9173 + }, + { + "start": 10820.76, + "end": 10824.12, + "probability": 0.9957 + }, + { + "start": 10825.12, + "end": 10829.84, + "probability": 0.9876 + }, + { + "start": 10830.3, + "end": 10832.26, + "probability": 0.9211 + }, + { + "start": 10833.94, + "end": 10835.02, + "probability": 0.8035 + }, + { + "start": 10835.06, + "end": 10838.48, + "probability": 0.7413 + }, + { + "start": 10838.48, + "end": 10841.06, + "probability": 0.9844 + }, + { + "start": 10842.4, + "end": 10846.78, + "probability": 0.8667 + }, + { + "start": 10847.84, + "end": 10850.0, + "probability": 0.6666 + }, + { + "start": 10850.56, + "end": 10852.1, + "probability": 0.9097 + }, + { + "start": 10852.88, + "end": 10853.98, + "probability": 0.9801 + }, + { + "start": 10854.56, + "end": 10857.96, + "probability": 0.9922 + }, + { + "start": 10859.66, + "end": 10863.24, + "probability": 0.8114 + }, + { + "start": 10863.6, + "end": 10867.64, + "probability": 0.9072 + }, + { + "start": 10868.86, + "end": 10872.8, + "probability": 0.9619 + }, + { + "start": 10874.22, + "end": 10875.36, + "probability": 0.4277 + }, + { + "start": 10876.24, + "end": 10877.76, + "probability": 0.9625 + }, + { + "start": 10877.8, + "end": 10881.56, + "probability": 0.9877 + }, + { + "start": 10882.64, + "end": 10888.4, + "probability": 0.9832 + }, + { + "start": 10888.88, + "end": 10892.06, + "probability": 0.8432 + }, + { + "start": 10893.12, + "end": 10899.22, + "probability": 0.9833 + }, + { + "start": 10900.52, + "end": 10901.74, + "probability": 0.9004 + }, + { + "start": 10902.72, + "end": 10906.46, + "probability": 0.9398 + }, + { + "start": 10906.64, + "end": 10908.54, + "probability": 0.989 + }, + { + "start": 10909.0, + "end": 10910.9, + "probability": 0.9308 + }, + { + "start": 10911.7, + "end": 10914.3, + "probability": 0.9785 + }, + { + "start": 10915.06, + "end": 10916.9, + "probability": 0.9781 + }, + { + "start": 10917.78, + "end": 10919.84, + "probability": 0.9788 + }, + { + "start": 10920.68, + "end": 10923.6, + "probability": 0.8787 + }, + { + "start": 10924.9, + "end": 10928.44, + "probability": 0.9788 + }, + { + "start": 10928.56, + "end": 10929.11, + "probability": 0.8638 + }, + { + "start": 10929.38, + "end": 10929.76, + "probability": 0.8813 + }, + { + "start": 10929.92, + "end": 10933.52, + "probability": 0.8337 + }, + { + "start": 10933.6, + "end": 10934.4, + "probability": 0.6581 + }, + { + "start": 10935.42, + "end": 10938.44, + "probability": 0.9655 + }, + { + "start": 10938.44, + "end": 10943.18, + "probability": 0.9899 + }, + { + "start": 10943.8, + "end": 10948.68, + "probability": 0.2006 + }, + { + "start": 10949.64, + "end": 10953.56, + "probability": 0.8264 + }, + { + "start": 10954.6, + "end": 10959.36, + "probability": 0.9922 + }, + { + "start": 10960.1, + "end": 10963.56, + "probability": 0.9837 + }, + { + "start": 10963.82, + "end": 10964.76, + "probability": 0.8784 + }, + { + "start": 10965.82, + "end": 10967.28, + "probability": 0.9783 + }, + { + "start": 10967.4, + "end": 10968.38, + "probability": 0.9901 + }, + { + "start": 10968.76, + "end": 10971.06, + "probability": 0.9824 + }, + { + "start": 10973.46, + "end": 10974.16, + "probability": 0.7079 + }, + { + "start": 10974.58, + "end": 10979.64, + "probability": 0.9957 + }, + { + "start": 10979.94, + "end": 10983.44, + "probability": 0.9681 + }, + { + "start": 10984.16, + "end": 10991.06, + "probability": 0.9957 + }, + { + "start": 10991.78, + "end": 10994.64, + "probability": 0.9987 + }, + { + "start": 10994.98, + "end": 10995.82, + "probability": 0.8426 + }, + { + "start": 10995.86, + "end": 10998.14, + "probability": 0.9607 + }, + { + "start": 10999.56, + "end": 11003.24, + "probability": 0.9961 + }, + { + "start": 11004.08, + "end": 11005.16, + "probability": 0.9771 + }, + { + "start": 11005.76, + "end": 11009.0, + "probability": 0.9744 + }, + { + "start": 11010.0, + "end": 11013.68, + "probability": 0.9961 + }, + { + "start": 11014.22, + "end": 11018.18, + "probability": 0.9665 + }, + { + "start": 11018.98, + "end": 11022.12, + "probability": 0.9979 + }, + { + "start": 11022.2, + "end": 11026.88, + "probability": 0.9551 + }, + { + "start": 11027.76, + "end": 11030.34, + "probability": 0.9291 + }, + { + "start": 11031.32, + "end": 11034.18, + "probability": 0.945 + }, + { + "start": 11034.68, + "end": 11037.24, + "probability": 0.99 + }, + { + "start": 11037.8, + "end": 11040.6, + "probability": 0.9633 + }, + { + "start": 11041.7, + "end": 11044.56, + "probability": 0.9668 + }, + { + "start": 11044.56, + "end": 11047.44, + "probability": 0.9848 + }, + { + "start": 11048.18, + "end": 11052.66, + "probability": 0.9468 + }, + { + "start": 11052.66, + "end": 11057.18, + "probability": 0.9991 + }, + { + "start": 11059.16, + "end": 11060.26, + "probability": 0.7197 + }, + { + "start": 11061.18, + "end": 11065.24, + "probability": 0.9957 + }, + { + "start": 11065.82, + "end": 11067.36, + "probability": 0.9424 + }, + { + "start": 11067.96, + "end": 11069.1, + "probability": 0.8802 + }, + { + "start": 11070.0, + "end": 11071.96, + "probability": 0.9978 + }, + { + "start": 11072.72, + "end": 11073.32, + "probability": 0.7645 + }, + { + "start": 11073.56, + "end": 11078.52, + "probability": 0.9929 + }, + { + "start": 11078.76, + "end": 11080.16, + "probability": 0.8516 + }, + { + "start": 11080.9, + "end": 11084.14, + "probability": 0.9636 + }, + { + "start": 11084.14, + "end": 11086.98, + "probability": 0.7181 + }, + { + "start": 11088.24, + "end": 11089.06, + "probability": 0.8132 + }, + { + "start": 11089.26, + "end": 11090.26, + "probability": 0.6714 + }, + { + "start": 11090.72, + "end": 11091.78, + "probability": 0.8423 + }, + { + "start": 11093.1, + "end": 11094.96, + "probability": 0.9897 + }, + { + "start": 11095.5, + "end": 11098.58, + "probability": 0.726 + }, + { + "start": 11098.88, + "end": 11099.64, + "probability": 0.7329 + }, + { + "start": 11100.0, + "end": 11100.1, + "probability": 0.8704 + }, + { + "start": 11101.74, + "end": 11105.24, + "probability": 0.8037 + }, + { + "start": 11105.72, + "end": 11106.78, + "probability": 0.8975 + }, + { + "start": 11107.12, + "end": 11107.78, + "probability": 0.9319 + }, + { + "start": 11108.7, + "end": 11110.08, + "probability": 0.9434 + }, + { + "start": 11110.84, + "end": 11113.92, + "probability": 0.987 + }, + { + "start": 11114.56, + "end": 11116.16, + "probability": 0.867 + }, + { + "start": 11116.76, + "end": 11119.42, + "probability": 0.7002 + }, + { + "start": 11120.04, + "end": 11120.82, + "probability": 0.8011 + }, + { + "start": 11121.5, + "end": 11124.98, + "probability": 0.8779 + }, + { + "start": 11125.04, + "end": 11127.74, + "probability": 0.9376 + }, + { + "start": 11128.44, + "end": 11129.64, + "probability": 0.7589 + }, + { + "start": 11130.46, + "end": 11133.48, + "probability": 0.9423 + }, + { + "start": 11134.26, + "end": 11137.92, + "probability": 0.996 + }, + { + "start": 11137.98, + "end": 11138.9, + "probability": 0.9378 + }, + { + "start": 11139.14, + "end": 11139.36, + "probability": 0.7985 + }, + { + "start": 11139.68, + "end": 11141.56, + "probability": 0.7469 + }, + { + "start": 11141.68, + "end": 11143.51, + "probability": 0.4948 + }, + { + "start": 11145.02, + "end": 11146.14, + "probability": 0.3174 + }, + { + "start": 11146.54, + "end": 11147.78, + "probability": 0.5885 + }, + { + "start": 11148.78, + "end": 11151.0, + "probability": 0.1936 + }, + { + "start": 11151.0, + "end": 11151.0, + "probability": 0.2653 + }, + { + "start": 11151.0, + "end": 11153.91, + "probability": 0.9102 + }, + { + "start": 11156.38, + "end": 11159.02, + "probability": 0.5893 + }, + { + "start": 11170.84, + "end": 11172.04, + "probability": 0.6932 + }, + { + "start": 11173.26, + "end": 11173.46, + "probability": 0.3077 + }, + { + "start": 11173.46, + "end": 11175.81, + "probability": 0.8282 + }, + { + "start": 11176.1, + "end": 11176.82, + "probability": 0.9125 + }, + { + "start": 11176.82, + "end": 11177.8, + "probability": 0.8816 + }, + { + "start": 11178.36, + "end": 11180.5, + "probability": 0.962 + }, + { + "start": 11181.32, + "end": 11182.2, + "probability": 0.979 + }, + { + "start": 11182.94, + "end": 11183.7, + "probability": 0.9868 + }, + { + "start": 11185.38, + "end": 11187.56, + "probability": 0.7006 + }, + { + "start": 11188.9, + "end": 11191.0, + "probability": 0.98 + }, + { + "start": 11191.64, + "end": 11192.38, + "probability": 0.8323 + }, + { + "start": 11193.3, + "end": 11197.61, + "probability": 0.8982 + }, + { + "start": 11199.26, + "end": 11203.42, + "probability": 0.9917 + }, + { + "start": 11203.42, + "end": 11207.2, + "probability": 0.9991 + }, + { + "start": 11208.6, + "end": 11218.04, + "probability": 0.9966 + }, + { + "start": 11218.38, + "end": 11225.92, + "probability": 0.9132 + }, + { + "start": 11226.52, + "end": 11233.44, + "probability": 0.9932 + }, + { + "start": 11235.42, + "end": 11241.67, + "probability": 0.9793 + }, + { + "start": 11242.84, + "end": 11243.86, + "probability": 0.8319 + }, + { + "start": 11244.14, + "end": 11246.42, + "probability": 0.9585 + }, + { + "start": 11246.6, + "end": 11247.86, + "probability": 0.924 + }, + { + "start": 11248.06, + "end": 11251.88, + "probability": 0.9531 + }, + { + "start": 11252.78, + "end": 11258.94, + "probability": 0.7464 + }, + { + "start": 11259.46, + "end": 11263.68, + "probability": 0.9647 + }, + { + "start": 11264.12, + "end": 11267.74, + "probability": 0.8658 + }, + { + "start": 11267.82, + "end": 11274.22, + "probability": 0.9936 + }, + { + "start": 11274.3, + "end": 11276.04, + "probability": 0.8833 + }, + { + "start": 11276.96, + "end": 11283.68, + "probability": 0.9894 + }, + { + "start": 11283.68, + "end": 11287.36, + "probability": 0.9988 + }, + { + "start": 11287.58, + "end": 11288.88, + "probability": 0.4705 + }, + { + "start": 11288.88, + "end": 11291.24, + "probability": 0.9751 + }, + { + "start": 11291.32, + "end": 11292.98, + "probability": 0.9597 + }, + { + "start": 11294.48, + "end": 11297.68, + "probability": 0.9607 + }, + { + "start": 11297.76, + "end": 11298.8, + "probability": 0.9606 + }, + { + "start": 11299.26, + "end": 11300.98, + "probability": 0.4656 + }, + { + "start": 11301.92, + "end": 11306.32, + "probability": 0.9659 + }, + { + "start": 11306.54, + "end": 11307.36, + "probability": 0.9353 + }, + { + "start": 11307.5, + "end": 11312.1, + "probability": 0.6492 + }, + { + "start": 11312.84, + "end": 11315.74, + "probability": 0.8907 + }, + { + "start": 11315.74, + "end": 11319.98, + "probability": 0.981 + }, + { + "start": 11320.68, + "end": 11321.32, + "probability": 0.9253 + }, + { + "start": 11322.54, + "end": 11325.82, + "probability": 0.9043 + }, + { + "start": 11326.48, + "end": 11331.54, + "probability": 0.9364 + }, + { + "start": 11332.04, + "end": 11338.94, + "probability": 0.9834 + }, + { + "start": 11339.52, + "end": 11344.18, + "probability": 0.9226 + }, + { + "start": 11345.36, + "end": 11351.7, + "probability": 0.9574 + }, + { + "start": 11352.24, + "end": 11352.66, + "probability": 0.2949 + }, + { + "start": 11352.78, + "end": 11359.5, + "probability": 0.8423 + }, + { + "start": 11359.6, + "end": 11360.16, + "probability": 0.9171 + }, + { + "start": 11360.6, + "end": 11363.58, + "probability": 0.9888 + }, + { + "start": 11363.74, + "end": 11367.64, + "probability": 0.887 + }, + { + "start": 11367.76, + "end": 11369.36, + "probability": 0.7074 + }, + { + "start": 11369.44, + "end": 11370.36, + "probability": 0.9853 + }, + { + "start": 11371.32, + "end": 11373.34, + "probability": 0.5613 + }, + { + "start": 11373.94, + "end": 11376.72, + "probability": 0.9028 + }, + { + "start": 11376.9, + "end": 11377.72, + "probability": 0.4654 + }, + { + "start": 11378.42, + "end": 11379.68, + "probability": 0.9543 + }, + { + "start": 11389.22, + "end": 11390.24, + "probability": 0.8789 + }, + { + "start": 11401.28, + "end": 11402.32, + "probability": 0.6954 + }, + { + "start": 11404.64, + "end": 11410.88, + "probability": 0.9811 + }, + { + "start": 11414.14, + "end": 11415.0, + "probability": 0.6382 + }, + { + "start": 11417.08, + "end": 11418.92, + "probability": 0.9972 + }, + { + "start": 11420.88, + "end": 11423.1, + "probability": 0.8504 + }, + { + "start": 11424.84, + "end": 11425.94, + "probability": 0.9479 + }, + { + "start": 11428.2, + "end": 11433.08, + "probability": 0.998 + }, + { + "start": 11434.36, + "end": 11437.94, + "probability": 0.9944 + }, + { + "start": 11439.8, + "end": 11442.12, + "probability": 0.7234 + }, + { + "start": 11442.84, + "end": 11448.41, + "probability": 0.9287 + }, + { + "start": 11449.4, + "end": 11450.06, + "probability": 0.6886 + }, + { + "start": 11451.7, + "end": 11455.48, + "probability": 0.8359 + }, + { + "start": 11457.38, + "end": 11460.29, + "probability": 0.9855 + }, + { + "start": 11462.88, + "end": 11463.06, + "probability": 0.842 + }, + { + "start": 11464.1, + "end": 11464.98, + "probability": 0.7552 + }, + { + "start": 11466.6, + "end": 11468.78, + "probability": 0.9566 + }, + { + "start": 11469.66, + "end": 11472.34, + "probability": 0.8644 + }, + { + "start": 11476.8, + "end": 11478.66, + "probability": 0.8551 + }, + { + "start": 11483.5, + "end": 11484.3, + "probability": 0.684 + }, + { + "start": 11487.76, + "end": 11489.42, + "probability": 0.9614 + }, + { + "start": 11490.64, + "end": 11494.26, + "probability": 0.9854 + }, + { + "start": 11494.86, + "end": 11496.86, + "probability": 0.875 + }, + { + "start": 11497.92, + "end": 11499.68, + "probability": 0.7096 + }, + { + "start": 11503.18, + "end": 11504.7, + "probability": 0.7388 + }, + { + "start": 11505.86, + "end": 11508.13, + "probability": 0.7555 + }, + { + "start": 11509.68, + "end": 11511.04, + "probability": 0.9372 + }, + { + "start": 11511.7, + "end": 11513.52, + "probability": 0.7661 + }, + { + "start": 11514.76, + "end": 11516.18, + "probability": 0.7304 + }, + { + "start": 11517.6, + "end": 11520.78, + "probability": 0.8372 + }, + { + "start": 11521.16, + "end": 11522.24, + "probability": 0.9418 + }, + { + "start": 11522.34, + "end": 11523.12, + "probability": 0.9197 + }, + { + "start": 11523.24, + "end": 11523.98, + "probability": 0.5331 + }, + { + "start": 11524.04, + "end": 11524.9, + "probability": 0.93 + }, + { + "start": 11525.16, + "end": 11526.5, + "probability": 0.9401 + }, + { + "start": 11526.78, + "end": 11528.92, + "probability": 0.886 + }, + { + "start": 11531.24, + "end": 11538.62, + "probability": 0.9365 + }, + { + "start": 11538.8, + "end": 11542.68, + "probability": 0.9626 + }, + { + "start": 11542.84, + "end": 11543.58, + "probability": 0.8744 + }, + { + "start": 11544.62, + "end": 11545.84, + "probability": 0.9187 + }, + { + "start": 11547.62, + "end": 11549.94, + "probability": 0.6346 + }, + { + "start": 11552.5, + "end": 11555.42, + "probability": 0.9689 + }, + { + "start": 11556.98, + "end": 11560.2, + "probability": 0.8914 + }, + { + "start": 11562.28, + "end": 11566.03, + "probability": 0.9976 + }, + { + "start": 11568.28, + "end": 11569.86, + "probability": 0.8579 + }, + { + "start": 11571.08, + "end": 11572.58, + "probability": 0.9629 + }, + { + "start": 11573.58, + "end": 11576.52, + "probability": 0.9848 + }, + { + "start": 11578.48, + "end": 11580.7, + "probability": 0.8832 + }, + { + "start": 11581.58, + "end": 11583.68, + "probability": 0.9658 + }, + { + "start": 11584.94, + "end": 11585.92, + "probability": 0.9704 + }, + { + "start": 11588.7, + "end": 11589.8, + "probability": 0.9588 + }, + { + "start": 11590.34, + "end": 11595.18, + "probability": 0.6852 + }, + { + "start": 11597.38, + "end": 11600.3, + "probability": 0.5133 + }, + { + "start": 11600.3, + "end": 11603.62, + "probability": 0.5925 + }, + { + "start": 11604.56, + "end": 11606.92, + "probability": 0.9355 + }, + { + "start": 11607.38, + "end": 11608.42, + "probability": 0.978 + }, + { + "start": 11609.06, + "end": 11609.48, + "probability": 0.6041 + }, + { + "start": 11610.2, + "end": 11612.64, + "probability": 0.8979 + }, + { + "start": 11612.98, + "end": 11615.6, + "probability": 0.5152 + }, + { + "start": 11616.18, + "end": 11619.66, + "probability": 0.6099 + }, + { + "start": 11622.02, + "end": 11623.86, + "probability": 0.9205 + }, + { + "start": 11631.36, + "end": 11633.61, + "probability": 0.7217 + }, + { + "start": 11635.08, + "end": 11637.42, + "probability": 0.899 + }, + { + "start": 11638.6, + "end": 11642.62, + "probability": 0.6157 + }, + { + "start": 11644.46, + "end": 11647.32, + "probability": 0.6662 + }, + { + "start": 11647.92, + "end": 11650.3, + "probability": 0.2249 + }, + { + "start": 11650.98, + "end": 11651.52, + "probability": 0.8026 + }, + { + "start": 11652.04, + "end": 11654.58, + "probability": 0.633 + }, + { + "start": 11655.68, + "end": 11658.5, + "probability": 0.9836 + }, + { + "start": 11658.7, + "end": 11661.84, + "probability": 0.9847 + }, + { + "start": 11662.54, + "end": 11664.9, + "probability": 0.8764 + }, + { + "start": 11665.0, + "end": 11668.94, + "probability": 0.9858 + }, + { + "start": 11669.14, + "end": 11671.42, + "probability": 0.9614 + }, + { + "start": 11671.8, + "end": 11674.64, + "probability": 0.9743 + }, + { + "start": 11674.64, + "end": 11677.78, + "probability": 0.9969 + }, + { + "start": 11678.56, + "end": 11679.08, + "probability": 0.6766 + }, + { + "start": 11679.3, + "end": 11682.54, + "probability": 0.9538 + }, + { + "start": 11682.64, + "end": 11683.18, + "probability": 0.8173 + }, + { + "start": 11683.28, + "end": 11687.04, + "probability": 0.8953 + }, + { + "start": 11687.5, + "end": 11688.94, + "probability": 0.9616 + }, + { + "start": 11689.82, + "end": 11692.22, + "probability": 0.7551 + }, + { + "start": 11692.32, + "end": 11694.42, + "probability": 0.7895 + }, + { + "start": 11694.48, + "end": 11695.52, + "probability": 0.9246 + }, + { + "start": 11695.64, + "end": 11699.34, + "probability": 0.5833 + }, + { + "start": 11699.4, + "end": 11702.08, + "probability": 0.9385 + }, + { + "start": 11703.28, + "end": 11708.34, + "probability": 0.9941 + }, + { + "start": 11708.42, + "end": 11712.47, + "probability": 0.9812 + }, + { + "start": 11713.5, + "end": 11720.92, + "probability": 0.7762 + }, + { + "start": 11720.92, + "end": 11723.42, + "probability": 0.999 + }, + { + "start": 11724.48, + "end": 11729.48, + "probability": 0.9828 + }, + { + "start": 11729.86, + "end": 11730.04, + "probability": 0.6051 + }, + { + "start": 11730.2, + "end": 11730.98, + "probability": 0.8248 + }, + { + "start": 11731.6, + "end": 11735.34, + "probability": 0.9884 + }, + { + "start": 11735.34, + "end": 11740.08, + "probability": 0.998 + }, + { + "start": 11741.68, + "end": 11742.5, + "probability": 0.123 + }, + { + "start": 11744.4, + "end": 11746.46, + "probability": 0.6399 + }, + { + "start": 11747.3, + "end": 11748.24, + "probability": 0.0184 + }, + { + "start": 11748.3, + "end": 11749.1, + "probability": 0.9261 + }, + { + "start": 11749.28, + "end": 11749.84, + "probability": 0.1566 + }, + { + "start": 11750.84, + "end": 11754.8, + "probability": 0.9538 + }, + { + "start": 11754.98, + "end": 11758.67, + "probability": 0.9863 + }, + { + "start": 11759.28, + "end": 11762.4, + "probability": 0.9651 + }, + { + "start": 11762.74, + "end": 11763.23, + "probability": 0.8984 + }, + { + "start": 11763.36, + "end": 11765.18, + "probability": 0.9741 + }, + { + "start": 11765.32, + "end": 11770.88, + "probability": 0.7707 + }, + { + "start": 11771.06, + "end": 11772.18, + "probability": 0.8809 + }, + { + "start": 11772.42, + "end": 11778.26, + "probability": 0.9563 + }, + { + "start": 11778.44, + "end": 11780.16, + "probability": 0.7333 + }, + { + "start": 11780.22, + "end": 11782.56, + "probability": 0.8638 + }, + { + "start": 11783.46, + "end": 11785.78, + "probability": 0.9469 + }, + { + "start": 11786.92, + "end": 11787.94, + "probability": 0.9211 + }, + { + "start": 11788.72, + "end": 11789.38, + "probability": 0.0529 + }, + { + "start": 11789.38, + "end": 11790.46, + "probability": 0.702 + }, + { + "start": 11790.54, + "end": 11791.3, + "probability": 0.5013 + }, + { + "start": 11791.44, + "end": 11793.12, + "probability": 0.9006 + }, + { + "start": 11793.92, + "end": 11794.32, + "probability": 0.3689 + }, + { + "start": 11794.32, + "end": 11794.56, + "probability": 0.4279 + }, + { + "start": 11794.74, + "end": 11799.58, + "probability": 0.9209 + }, + { + "start": 11799.96, + "end": 11801.24, + "probability": 0.8175 + }, + { + "start": 11801.42, + "end": 11802.8, + "probability": 0.576 + }, + { + "start": 11802.98, + "end": 11804.46, + "probability": 0.6757 + }, + { + "start": 11804.76, + "end": 11808.18, + "probability": 0.9954 + }, + { + "start": 11808.86, + "end": 11812.4, + "probability": 0.92 + }, + { + "start": 11813.08, + "end": 11815.54, + "probability": 0.9255 + }, + { + "start": 11815.6, + "end": 11818.02, + "probability": 0.7097 + }, + { + "start": 11818.06, + "end": 11819.4, + "probability": 0.8877 + }, + { + "start": 11819.7, + "end": 11822.12, + "probability": 0.8817 + }, + { + "start": 11822.64, + "end": 11826.38, + "probability": 0.6973 + }, + { + "start": 11826.38, + "end": 11828.64, + "probability": 0.9983 + }, + { + "start": 11828.84, + "end": 11830.32, + "probability": 0.9824 + }, + { + "start": 11831.96, + "end": 11839.68, + "probability": 0.8747 + }, + { + "start": 11840.06, + "end": 11841.16, + "probability": 0.9648 + }, + { + "start": 11841.76, + "end": 11844.44, + "probability": 0.9857 + }, + { + "start": 11844.86, + "end": 11848.58, + "probability": 0.9077 + }, + { + "start": 11849.7, + "end": 11854.32, + "probability": 0.9964 + }, + { + "start": 11854.4, + "end": 11857.66, + "probability": 0.9902 + }, + { + "start": 11857.86, + "end": 11862.33, + "probability": 0.991 + }, + { + "start": 11863.22, + "end": 11866.84, + "probability": 0.9951 + }, + { + "start": 11866.94, + "end": 11868.42, + "probability": 0.7236 + }, + { + "start": 11869.38, + "end": 11872.92, + "probability": 0.96 + }, + { + "start": 11873.8, + "end": 11874.52, + "probability": 0.9241 + }, + { + "start": 11875.42, + "end": 11876.92, + "probability": 0.9749 + }, + { + "start": 11877.18, + "end": 11882.04, + "probability": 0.8299 + }, + { + "start": 11882.74, + "end": 11886.0, + "probability": 0.9857 + }, + { + "start": 11886.16, + "end": 11887.66, + "probability": 0.9918 + }, + { + "start": 11887.72, + "end": 11889.48, + "probability": 0.9985 + }, + { + "start": 11889.76, + "end": 11893.18, + "probability": 0.9409 + }, + { + "start": 11894.0, + "end": 11898.86, + "probability": 0.6798 + }, + { + "start": 11898.94, + "end": 11899.72, + "probability": 0.677 + }, + { + "start": 11899.78, + "end": 11902.08, + "probability": 0.9453 + }, + { + "start": 11902.78, + "end": 11907.74, + "probability": 0.9852 + }, + { + "start": 11907.96, + "end": 11910.54, + "probability": 0.7709 + }, + { + "start": 11910.82, + "end": 11914.72, + "probability": 0.9115 + }, + { + "start": 11915.08, + "end": 11915.26, + "probability": 0.7527 + }, + { + "start": 11915.28, + "end": 11916.8, + "probability": 0.7017 + }, + { + "start": 11917.32, + "end": 11920.48, + "probability": 0.6176 + }, + { + "start": 11921.6, + "end": 11923.66, + "probability": 0.7997 + }, + { + "start": 11937.84, + "end": 11938.46, + "probability": 0.3412 + }, + { + "start": 11938.76, + "end": 11940.51, + "probability": 0.7135 + }, + { + "start": 11941.81, + "end": 11946.96, + "probability": 0.9813 + }, + { + "start": 11947.8, + "end": 11953.42, + "probability": 0.9656 + }, + { + "start": 11955.2, + "end": 11960.42, + "probability": 0.9472 + }, + { + "start": 11961.04, + "end": 11962.74, + "probability": 0.9962 + }, + { + "start": 11963.38, + "end": 11966.32, + "probability": 0.9832 + }, + { + "start": 11967.86, + "end": 11970.06, + "probability": 0.998 + }, + { + "start": 11970.6, + "end": 11972.22, + "probability": 0.6995 + }, + { + "start": 11972.82, + "end": 11974.88, + "probability": 0.9444 + }, + { + "start": 11975.62, + "end": 11977.6, + "probability": 0.9954 + }, + { + "start": 11978.2, + "end": 11980.01, + "probability": 0.5234 + }, + { + "start": 11980.84, + "end": 11983.4, + "probability": 0.9965 + }, + { + "start": 11984.12, + "end": 11987.04, + "probability": 0.9863 + }, + { + "start": 11992.36, + "end": 11995.6, + "probability": 0.9972 + }, + { + "start": 11996.42, + "end": 11997.0, + "probability": 0.8315 + }, + { + "start": 11999.6, + "end": 12001.08, + "probability": 0.9951 + }, + { + "start": 12001.62, + "end": 12001.86, + "probability": 0.9993 + }, + { + "start": 12002.5, + "end": 12003.78, + "probability": 0.7119 + }, + { + "start": 12013.38, + "end": 12014.84, + "probability": 0.54 + }, + { + "start": 12015.44, + "end": 12020.08, + "probability": 0.9801 + }, + { + "start": 12020.9, + "end": 12025.97, + "probability": 0.9722 + }, + { + "start": 12027.26, + "end": 12031.4, + "probability": 0.8601 + }, + { + "start": 12032.02, + "end": 12035.54, + "probability": 0.9082 + }, + { + "start": 12036.16, + "end": 12037.46, + "probability": 0.877 + }, + { + "start": 12038.74, + "end": 12042.98, + "probability": 0.9959 + }, + { + "start": 12042.98, + "end": 12045.4, + "probability": 0.9844 + }, + { + "start": 12045.94, + "end": 12048.6, + "probability": 0.9937 + }, + { + "start": 12049.16, + "end": 12052.4, + "probability": 0.9769 + }, + { + "start": 12052.76, + "end": 12058.1, + "probability": 0.9771 + }, + { + "start": 12058.54, + "end": 12061.34, + "probability": 0.9836 + }, + { + "start": 12061.94, + "end": 12064.54, + "probability": 0.982 + }, + { + "start": 12064.62, + "end": 12069.1, + "probability": 0.9694 + }, + { + "start": 12069.54, + "end": 12073.0, + "probability": 0.9865 + }, + { + "start": 12073.08, + "end": 12075.1, + "probability": 0.9988 + }, + { + "start": 12075.54, + "end": 12076.04, + "probability": 0.5388 + }, + { + "start": 12076.36, + "end": 12080.88, + "probability": 0.9735 + }, + { + "start": 12081.56, + "end": 12084.1, + "probability": 0.9198 + }, + { + "start": 12084.5, + "end": 12086.22, + "probability": 0.9883 + }, + { + "start": 12087.42, + "end": 12090.92, + "probability": 0.6488 + }, + { + "start": 12090.94, + "end": 12092.4, + "probability": 0.7804 + }, + { + "start": 12092.48, + "end": 12092.58, + "probability": 0.2827 + }, + { + "start": 12093.76, + "end": 12097.6, + "probability": 0.991 + }, + { + "start": 12098.28, + "end": 12098.42, + "probability": 0.8601 + }, + { + "start": 12099.42, + "end": 12099.74, + "probability": 0.6842 + }, + { + "start": 12100.24, + "end": 12102.66, + "probability": 0.011 + }, + { + "start": 12102.94, + "end": 12104.02, + "probability": 0.0174 + }, + { + "start": 12104.72, + "end": 12105.46, + "probability": 0.1211 + }, + { + "start": 12107.18, + "end": 12107.18, + "probability": 0.1105 + }, + { + "start": 12107.18, + "end": 12109.36, + "probability": 0.135 + }, + { + "start": 12111.06, + "end": 12111.62, + "probability": 0.1734 + }, + { + "start": 12111.92, + "end": 12113.36, + "probability": 0.3324 + }, + { + "start": 12113.5, + "end": 12115.39, + "probability": 0.9155 + }, + { + "start": 12116.14, + "end": 12118.04, + "probability": 0.918 + }, + { + "start": 12120.83, + "end": 12124.56, + "probability": 0.7223 + }, + { + "start": 12124.7, + "end": 12125.82, + "probability": 0.8893 + }, + { + "start": 12126.54, + "end": 12127.3, + "probability": 0.2841 + }, + { + "start": 12128.22, + "end": 12129.68, + "probability": 0.895 + }, + { + "start": 12130.2, + "end": 12133.32, + "probability": 0.6156 + }, + { + "start": 12133.9, + "end": 12134.08, + "probability": 0.2221 + }, + { + "start": 12135.82, + "end": 12135.94, + "probability": 0.0273 + }, + { + "start": 12137.86, + "end": 12139.5, + "probability": 0.3112 + }, + { + "start": 12139.68, + "end": 12141.5, + "probability": 0.5312 + }, + { + "start": 12141.58, + "end": 12142.68, + "probability": 0.9347 + }, + { + "start": 12143.06, + "end": 12143.46, + "probability": 0.5249 + }, + { + "start": 12143.66, + "end": 12146.82, + "probability": 0.7533 + }, + { + "start": 12147.38, + "end": 12152.2, + "probability": 0.8416 + }, + { + "start": 12153.12, + "end": 12154.98, + "probability": 0.9301 + }, + { + "start": 12155.88, + "end": 12158.06, + "probability": 0.2305 + }, + { + "start": 12158.06, + "end": 12160.46, + "probability": 0.808 + }, + { + "start": 12160.54, + "end": 12160.89, + "probability": 0.8639 + }, + { + "start": 12161.8, + "end": 12163.6, + "probability": 0.9848 + }, + { + "start": 12164.34, + "end": 12167.66, + "probability": 0.97 + }, + { + "start": 12168.22, + "end": 12171.36, + "probability": 0.987 + }, + { + "start": 12171.44, + "end": 12173.12, + "probability": 0.8452 + }, + { + "start": 12173.5, + "end": 12177.3, + "probability": 0.9863 + }, + { + "start": 12178.18, + "end": 12182.6, + "probability": 0.8512 + }, + { + "start": 12183.14, + "end": 12186.98, + "probability": 0.861 + }, + { + "start": 12187.24, + "end": 12190.46, + "probability": 0.9473 + }, + { + "start": 12190.86, + "end": 12193.0, + "probability": 0.9933 + }, + { + "start": 12193.78, + "end": 12194.84, + "probability": 0.4227 + }, + { + "start": 12194.84, + "end": 12195.22, + "probability": 0.544 + }, + { + "start": 12195.56, + "end": 12197.72, + "probability": 0.6299 + }, + { + "start": 12197.82, + "end": 12199.44, + "probability": 0.5226 + }, + { + "start": 12200.22, + "end": 12202.06, + "probability": 0.949 + }, + { + "start": 12202.32, + "end": 12203.42, + "probability": 0.9273 + }, + { + "start": 12203.5, + "end": 12203.96, + "probability": 0.4623 + }, + { + "start": 12204.46, + "end": 12205.6, + "probability": 0.5869 + }, + { + "start": 12206.42, + "end": 12206.42, + "probability": 0.0098 + }, + { + "start": 12206.42, + "end": 12207.64, + "probability": 0.4869 + }, + { + "start": 12208.18, + "end": 12208.5, + "probability": 0.4495 + }, + { + "start": 12208.5, + "end": 12209.24, + "probability": 0.7496 + }, + { + "start": 12209.68, + "end": 12210.72, + "probability": 0.6657 + }, + { + "start": 12210.82, + "end": 12210.82, + "probability": 0.1339 + }, + { + "start": 12210.82, + "end": 12211.06, + "probability": 0.5249 + }, + { + "start": 12211.18, + "end": 12212.98, + "probability": 0.4995 + }, + { + "start": 12213.64, + "end": 12216.96, + "probability": 0.7049 + }, + { + "start": 12217.02, + "end": 12218.38, + "probability": 0.5594 + }, + { + "start": 12218.58, + "end": 12220.6, + "probability": 0.684 + }, + { + "start": 12221.1, + "end": 12222.0, + "probability": 0.728 + }, + { + "start": 12222.06, + "end": 12222.52, + "probability": 0.6953 + }, + { + "start": 12222.64, + "end": 12223.22, + "probability": 0.8244 + }, + { + "start": 12239.7, + "end": 12239.8, + "probability": 0.3226 + }, + { + "start": 12239.8, + "end": 12239.82, + "probability": 0.0801 + }, + { + "start": 12239.82, + "end": 12244.8, + "probability": 0.4311 + }, + { + "start": 12245.06, + "end": 12245.84, + "probability": 0.6038 + }, + { + "start": 12246.9, + "end": 12248.99, + "probability": 0.5935 + }, + { + "start": 12250.3, + "end": 12250.3, + "probability": 0.1194 + }, + { + "start": 12250.3, + "end": 12252.7, + "probability": 0.0808 + }, + { + "start": 12252.7, + "end": 12252.7, + "probability": 0.2432 + }, + { + "start": 12252.7, + "end": 12252.7, + "probability": 0.2823 + }, + { + "start": 12252.7, + "end": 12252.7, + "probability": 0.2906 + }, + { + "start": 12252.7, + "end": 12254.88, + "probability": 0.5987 + }, + { + "start": 12256.16, + "end": 12257.16, + "probability": 0.8047 + }, + { + "start": 12260.4, + "end": 12262.92, + "probability": 0.6292 + }, + { + "start": 12264.94, + "end": 12266.7, + "probability": 0.8453 + }, + { + "start": 12268.2, + "end": 12270.27, + "probability": 0.7308 + }, + { + "start": 12277.36, + "end": 12278.26, + "probability": 0.7327 + }, + { + "start": 12278.86, + "end": 12278.86, + "probability": 0.4042 + }, + { + "start": 12278.86, + "end": 12279.4, + "probability": 0.8416 + }, + { + "start": 12279.6, + "end": 12281.08, + "probability": 0.701 + }, + { + "start": 12282.06, + "end": 12284.94, + "probability": 0.9507 + }, + { + "start": 12285.32, + "end": 12287.34, + "probability": 0.9751 + }, + { + "start": 12288.14, + "end": 12292.96, + "probability": 0.9461 + }, + { + "start": 12294.0, + "end": 12295.1, + "probability": 0.868 + }, + { + "start": 12295.88, + "end": 12297.28, + "probability": 0.8666 + }, + { + "start": 12298.28, + "end": 12299.24, + "probability": 0.965 + }, + { + "start": 12300.02, + "end": 12300.24, + "probability": 0.9361 + }, + { + "start": 12301.96, + "end": 12303.82, + "probability": 0.9651 + }, + { + "start": 12305.18, + "end": 12309.32, + "probability": 0.9869 + }, + { + "start": 12310.54, + "end": 12311.48, + "probability": 0.8178 + }, + { + "start": 12311.64, + "end": 12312.38, + "probability": 0.9111 + }, + { + "start": 12312.56, + "end": 12314.88, + "probability": 0.8173 + }, + { + "start": 12315.7, + "end": 12320.26, + "probability": 0.8013 + }, + { + "start": 12320.98, + "end": 12323.88, + "probability": 0.9791 + }, + { + "start": 12325.28, + "end": 12326.12, + "probability": 0.6326 + }, + { + "start": 12327.58, + "end": 12331.08, + "probability": 0.8886 + }, + { + "start": 12331.7, + "end": 12332.78, + "probability": 0.8322 + }, + { + "start": 12333.9, + "end": 12336.12, + "probability": 0.9729 + }, + { + "start": 12336.12, + "end": 12340.54, + "probability": 0.9893 + }, + { + "start": 12340.62, + "end": 12341.62, + "probability": 0.9099 + }, + { + "start": 12341.9, + "end": 12343.36, + "probability": 0.8497 + }, + { + "start": 12343.44, + "end": 12345.52, + "probability": 0.8499 + }, + { + "start": 12345.86, + "end": 12346.74, + "probability": 0.7223 + }, + { + "start": 12346.82, + "end": 12348.38, + "probability": 0.8091 + }, + { + "start": 12349.44, + "end": 12351.02, + "probability": 0.5867 + }, + { + "start": 12351.56, + "end": 12352.94, + "probability": 0.8614 + }, + { + "start": 12353.48, + "end": 12356.54, + "probability": 0.9302 + }, + { + "start": 12357.6, + "end": 12360.48, + "probability": 0.8361 + }, + { + "start": 12360.98, + "end": 12364.87, + "probability": 0.998 + }, + { + "start": 12365.56, + "end": 12367.78, + "probability": 0.9908 + }, + { + "start": 12368.86, + "end": 12370.64, + "probability": 0.666 + }, + { + "start": 12370.7, + "end": 12373.34, + "probability": 0.987 + }, + { + "start": 12375.2, + "end": 12376.1, + "probability": 0.6475 + }, + { + "start": 12376.82, + "end": 12380.02, + "probability": 0.9866 + }, + { + "start": 12380.54, + "end": 12383.5, + "probability": 0.9934 + }, + { + "start": 12383.94, + "end": 12384.8, + "probability": 0.9575 + }, + { + "start": 12385.82, + "end": 12389.48, + "probability": 0.9819 + }, + { + "start": 12390.18, + "end": 12394.98, + "probability": 0.9846 + }, + { + "start": 12395.26, + "end": 12396.56, + "probability": 0.766 + }, + { + "start": 12397.22, + "end": 12400.0, + "probability": 0.6737 + }, + { + "start": 12401.0, + "end": 12405.36, + "probability": 0.9856 + }, + { + "start": 12405.92, + "end": 12409.88, + "probability": 0.9546 + }, + { + "start": 12410.94, + "end": 12412.24, + "probability": 0.8151 + }, + { + "start": 12413.45, + "end": 12415.54, + "probability": 0.9902 + }, + { + "start": 12416.06, + "end": 12418.74, + "probability": 0.9792 + }, + { + "start": 12419.24, + "end": 12420.8, + "probability": 0.9835 + }, + { + "start": 12421.94, + "end": 12423.09, + "probability": 0.9888 + }, + { + "start": 12424.04, + "end": 12430.44, + "probability": 0.9873 + }, + { + "start": 12430.72, + "end": 12432.92, + "probability": 0.9957 + }, + { + "start": 12433.86, + "end": 12435.74, + "probability": 0.9252 + }, + { + "start": 12436.36, + "end": 12437.0, + "probability": 0.6077 + }, + { + "start": 12437.64, + "end": 12438.14, + "probability": 0.9658 + }, + { + "start": 12438.86, + "end": 12441.58, + "probability": 0.8484 + }, + { + "start": 12442.3, + "end": 12442.54, + "probability": 0.8398 + }, + { + "start": 12443.4, + "end": 12445.83, + "probability": 0.9344 + }, + { + "start": 12446.08, + "end": 12447.36, + "probability": 0.8223 + }, + { + "start": 12447.52, + "end": 12449.44, + "probability": 0.9385 + }, + { + "start": 12449.5, + "end": 12452.54, + "probability": 0.9002 + }, + { + "start": 12453.58, + "end": 12455.52, + "probability": 0.8656 + }, + { + "start": 12457.12, + "end": 12458.54, + "probability": 0.2602 + }, + { + "start": 12459.34, + "end": 12463.18, + "probability": 0.6736 + }, + { + "start": 12465.76, + "end": 12475.76, + "probability": 0.7332 + }, + { + "start": 12476.58, + "end": 12477.96, + "probability": 0.6375 + }, + { + "start": 12480.44, + "end": 12484.26, + "probability": 0.98 + }, + { + "start": 12484.92, + "end": 12488.52, + "probability": 0.9624 + }, + { + "start": 12489.82, + "end": 12492.02, + "probability": 0.9415 + }, + { + "start": 12494.64, + "end": 12499.02, + "probability": 0.9992 + }, + { + "start": 12500.16, + "end": 12504.27, + "probability": 0.9622 + }, + { + "start": 12505.84, + "end": 12507.74, + "probability": 0.9926 + }, + { + "start": 12508.5, + "end": 12511.88, + "probability": 0.9946 + }, + { + "start": 12513.22, + "end": 12514.94, + "probability": 0.9863 + }, + { + "start": 12516.12, + "end": 12517.62, + "probability": 0.9988 + }, + { + "start": 12519.36, + "end": 12521.08, + "probability": 0.9982 + }, + { + "start": 12524.5, + "end": 12525.26, + "probability": 0.7155 + }, + { + "start": 12526.56, + "end": 12527.6, + "probability": 0.7526 + }, + { + "start": 12528.24, + "end": 12531.36, + "probability": 0.9997 + }, + { + "start": 12533.24, + "end": 12535.64, + "probability": 0.9785 + }, + { + "start": 12537.06, + "end": 12541.04, + "probability": 0.9836 + }, + { + "start": 12543.18, + "end": 12544.82, + "probability": 0.9155 + }, + { + "start": 12546.36, + "end": 12547.4, + "probability": 0.7276 + }, + { + "start": 12548.06, + "end": 12548.92, + "probability": 0.7144 + }, + { + "start": 12550.08, + "end": 12551.06, + "probability": 0.8669 + }, + { + "start": 12552.58, + "end": 12554.8, + "probability": 0.9575 + }, + { + "start": 12556.0, + "end": 12559.74, + "probability": 0.9779 + }, + { + "start": 12564.0, + "end": 12567.0, + "probability": 0.8221 + }, + { + "start": 12568.3, + "end": 12571.7, + "probability": 0.9878 + }, + { + "start": 12571.84, + "end": 12573.76, + "probability": 0.9963 + }, + { + "start": 12574.2, + "end": 12577.5, + "probability": 0.9764 + }, + { + "start": 12580.02, + "end": 12580.58, + "probability": 0.8705 + }, + { + "start": 12581.24, + "end": 12585.5, + "probability": 0.9839 + }, + { + "start": 12588.92, + "end": 12590.12, + "probability": 0.8568 + }, + { + "start": 12591.24, + "end": 12596.5, + "probability": 0.9977 + }, + { + "start": 12598.62, + "end": 12601.06, + "probability": 0.9978 + }, + { + "start": 12602.14, + "end": 12605.42, + "probability": 0.9893 + }, + { + "start": 12606.94, + "end": 12608.84, + "probability": 0.9008 + }, + { + "start": 12613.26, + "end": 12614.66, + "probability": 0.9213 + }, + { + "start": 12615.52, + "end": 12616.22, + "probability": 0.7479 + }, + { + "start": 12617.9, + "end": 12621.14, + "probability": 0.9938 + }, + { + "start": 12621.96, + "end": 12624.3, + "probability": 0.9939 + }, + { + "start": 12625.38, + "end": 12628.32, + "probability": 0.9682 + }, + { + "start": 12629.78, + "end": 12633.14, + "probability": 0.9556 + }, + { + "start": 12634.28, + "end": 12634.68, + "probability": 0.6585 + }, + { + "start": 12636.6, + "end": 12639.14, + "probability": 0.9891 + }, + { + "start": 12639.14, + "end": 12641.52, + "probability": 0.994 + }, + { + "start": 12642.56, + "end": 12645.48, + "probability": 0.9847 + }, + { + "start": 12647.64, + "end": 12653.32, + "probability": 0.8572 + }, + { + "start": 12654.76, + "end": 12659.6, + "probability": 0.9969 + }, + { + "start": 12660.68, + "end": 12662.02, + "probability": 0.802 + }, + { + "start": 12663.84, + "end": 12666.92, + "probability": 0.9691 + }, + { + "start": 12671.58, + "end": 12675.9, + "probability": 0.9985 + }, + { + "start": 12677.1, + "end": 12679.3, + "probability": 0.7515 + }, + { + "start": 12679.88, + "end": 12683.56, + "probability": 0.9897 + }, + { + "start": 12684.4, + "end": 12689.36, + "probability": 0.9573 + }, + { + "start": 12690.64, + "end": 12695.42, + "probability": 0.9572 + }, + { + "start": 12697.86, + "end": 12698.82, + "probability": 0.8325 + }, + { + "start": 12700.24, + "end": 12702.72, + "probability": 0.9076 + }, + { + "start": 12703.72, + "end": 12705.02, + "probability": 0.9956 + }, + { + "start": 12706.64, + "end": 12708.4, + "probability": 0.4322 + }, + { + "start": 12709.66, + "end": 12711.02, + "probability": 0.9841 + }, + { + "start": 12712.1, + "end": 12714.28, + "probability": 0.9946 + }, + { + "start": 12716.26, + "end": 12718.14, + "probability": 0.9878 + }, + { + "start": 12719.6, + "end": 12722.74, + "probability": 0.9521 + }, + { + "start": 12726.86, + "end": 12727.9, + "probability": 0.9629 + }, + { + "start": 12730.94, + "end": 12732.04, + "probability": 0.939 + }, + { + "start": 12734.88, + "end": 12741.26, + "probability": 0.9745 + }, + { + "start": 12741.3, + "end": 12741.52, + "probability": 0.8076 + }, + { + "start": 12741.62, + "end": 12744.5, + "probability": 0.9909 + }, + { + "start": 12744.56, + "end": 12744.74, + "probability": 0.4317 + }, + { + "start": 12744.78, + "end": 12745.12, + "probability": 0.4745 + }, + { + "start": 12745.26, + "end": 12745.5, + "probability": 0.6799 + }, + { + "start": 12745.96, + "end": 12746.34, + "probability": 0.8025 + }, + { + "start": 12746.5, + "end": 12749.41, + "probability": 0.8023 + }, + { + "start": 12749.67, + "end": 12750.4, + "probability": 0.6096 + }, + { + "start": 12752.84, + "end": 12758.34, + "probability": 0.9272 + }, + { + "start": 12758.94, + "end": 12761.36, + "probability": 0.8543 + }, + { + "start": 12761.78, + "end": 12762.78, + "probability": 0.7817 + }, + { + "start": 12762.92, + "end": 12765.78, + "probability": 0.9373 + }, + { + "start": 12767.0, + "end": 12768.0, + "probability": 0.6716 + }, + { + "start": 12770.88, + "end": 12773.3, + "probability": 0.5659 + }, + { + "start": 12775.1, + "end": 12777.94, + "probability": 0.8225 + }, + { + "start": 12779.08, + "end": 12780.01, + "probability": 0.9556 + }, + { + "start": 12782.24, + "end": 12785.56, + "probability": 0.7264 + }, + { + "start": 12786.96, + "end": 12788.74, + "probability": 0.8988 + }, + { + "start": 12789.58, + "end": 12790.22, + "probability": 0.5742 + }, + { + "start": 12792.18, + "end": 12793.38, + "probability": 0.6763 + }, + { + "start": 12794.58, + "end": 12795.42, + "probability": 0.9133 + }, + { + "start": 12796.32, + "end": 12796.74, + "probability": 0.9171 + }, + { + "start": 12797.82, + "end": 12798.36, + "probability": 0.7591 + }, + { + "start": 12798.82, + "end": 12802.14, + "probability": 0.8465 + }, + { + "start": 12802.86, + "end": 12804.12, + "probability": 0.6154 + }, + { + "start": 12804.82, + "end": 12807.32, + "probability": 0.9489 + }, + { + "start": 12807.78, + "end": 12809.91, + "probability": 0.8926 + }, + { + "start": 12810.82, + "end": 12812.66, + "probability": 0.9058 + }, + { + "start": 12812.82, + "end": 12814.16, + "probability": 0.5128 + }, + { + "start": 12816.96, + "end": 12817.78, + "probability": 0.704 + }, + { + "start": 12818.74, + "end": 12819.14, + "probability": 0.4539 + }, + { + "start": 12819.22, + "end": 12821.14, + "probability": 0.8699 + }, + { + "start": 12821.66, + "end": 12823.19, + "probability": 0.9729 + }, + { + "start": 12835.89, + "end": 12838.58, + "probability": 0.843 + }, + { + "start": 12839.94, + "end": 12843.44, + "probability": 0.9947 + }, + { + "start": 12844.96, + "end": 12846.71, + "probability": 0.9962 + }, + { + "start": 12848.78, + "end": 12853.16, + "probability": 0.9133 + }, + { + "start": 12854.46, + "end": 12856.3, + "probability": 0.8901 + }, + { + "start": 12857.44, + "end": 12858.34, + "probability": 0.9943 + }, + { + "start": 12858.9, + "end": 12859.56, + "probability": 0.7693 + }, + { + "start": 12860.48, + "end": 12864.26, + "probability": 0.8419 + }, + { + "start": 12864.26, + "end": 12867.34, + "probability": 0.9915 + }, + { + "start": 12868.76, + "end": 12871.46, + "probability": 0.9406 + }, + { + "start": 12872.7, + "end": 12876.48, + "probability": 0.9827 + }, + { + "start": 12877.56, + "end": 12879.52, + "probability": 0.6521 + }, + { + "start": 12880.1, + "end": 12883.46, + "probability": 0.9493 + }, + { + "start": 12883.46, + "end": 12886.68, + "probability": 0.983 + }, + { + "start": 12888.88, + "end": 12889.94, + "probability": 0.5988 + }, + { + "start": 12890.12, + "end": 12893.28, + "probability": 0.9836 + }, + { + "start": 12894.0, + "end": 12898.25, + "probability": 0.9863 + }, + { + "start": 12899.0, + "end": 12900.46, + "probability": 0.9993 + }, + { + "start": 12900.98, + "end": 12901.56, + "probability": 0.6186 + }, + { + "start": 12902.18, + "end": 12904.66, + "probability": 0.9957 + }, + { + "start": 12904.96, + "end": 12905.72, + "probability": 0.9292 + }, + { + "start": 12906.78, + "end": 12908.44, + "probability": 0.9064 + }, + { + "start": 12909.22, + "end": 12912.14, + "probability": 0.9677 + }, + { + "start": 12912.8, + "end": 12913.82, + "probability": 0.939 + }, + { + "start": 12915.2, + "end": 12916.62, + "probability": 0.9971 + }, + { + "start": 12916.92, + "end": 12920.0, + "probability": 0.9596 + }, + { + "start": 12921.22, + "end": 12921.72, + "probability": 0.7988 + }, + { + "start": 12922.04, + "end": 12923.68, + "probability": 0.7797 + }, + { + "start": 12924.0, + "end": 12924.9, + "probability": 0.8705 + }, + { + "start": 12925.88, + "end": 12926.62, + "probability": 0.869 + }, + { + "start": 12927.1, + "end": 12930.92, + "probability": 0.993 + }, + { + "start": 12932.0, + "end": 12933.9, + "probability": 0.9937 + }, + { + "start": 12934.4, + "end": 12937.92, + "probability": 0.9896 + }, + { + "start": 12938.62, + "end": 12944.1, + "probability": 0.9606 + }, + { + "start": 12945.5, + "end": 12951.5, + "probability": 0.9892 + }, + { + "start": 12952.18, + "end": 12955.12, + "probability": 0.9208 + }, + { + "start": 12955.92, + "end": 12958.94, + "probability": 0.9138 + }, + { + "start": 12958.94, + "end": 12962.28, + "probability": 0.9911 + }, + { + "start": 12963.7, + "end": 12964.4, + "probability": 0.8963 + }, + { + "start": 12964.9, + "end": 12969.0, + "probability": 0.929 + }, + { + "start": 12970.24, + "end": 12970.78, + "probability": 0.8375 + }, + { + "start": 12971.48, + "end": 12973.78, + "probability": 0.9507 + }, + { + "start": 12975.4, + "end": 12977.78, + "probability": 0.9226 + }, + { + "start": 12978.18, + "end": 12981.66, + "probability": 0.9787 + }, + { + "start": 12981.82, + "end": 12983.5, + "probability": 0.9944 + }, + { + "start": 12983.86, + "end": 12986.3, + "probability": 0.9989 + }, + { + "start": 12986.84, + "end": 12989.62, + "probability": 0.9971 + }, + { + "start": 12990.5, + "end": 12993.26, + "probability": 0.9903 + }, + { + "start": 12994.58, + "end": 12997.38, + "probability": 0.9919 + }, + { + "start": 12998.08, + "end": 13003.54, + "probability": 0.9312 + }, + { + "start": 13004.46, + "end": 13006.82, + "probability": 0.9499 + }, + { + "start": 13007.56, + "end": 13008.1, + "probability": 0.9567 + }, + { + "start": 13008.7, + "end": 13012.64, + "probability": 0.9455 + }, + { + "start": 13013.24, + "end": 13013.88, + "probability": 0.9796 + }, + { + "start": 13014.4, + "end": 13014.78, + "probability": 0.9412 + }, + { + "start": 13015.7, + "end": 13016.04, + "probability": 0.6469 + }, + { + "start": 13016.26, + "end": 13019.28, + "probability": 0.9963 + }, + { + "start": 13019.9, + "end": 13021.0, + "probability": 0.7865 + }, + { + "start": 13021.78, + "end": 13024.12, + "probability": 0.9896 + }, + { + "start": 13024.38, + "end": 13027.8, + "probability": 0.9972 + }, + { + "start": 13028.01, + "end": 13032.3, + "probability": 0.987 + }, + { + "start": 13032.9, + "end": 13033.96, + "probability": 0.4878 + }, + { + "start": 13034.06, + "end": 13036.44, + "probability": 0.5688 + }, + { + "start": 13037.24, + "end": 13039.62, + "probability": 0.8595 + }, + { + "start": 13049.5, + "end": 13051.0, + "probability": 0.4991 + }, + { + "start": 13052.88, + "end": 13054.56, + "probability": 0.4083 + }, + { + "start": 13055.08, + "end": 13057.88, + "probability": 0.8853 + }, + { + "start": 13059.37, + "end": 13061.98, + "probability": 0.9821 + }, + { + "start": 13064.76, + "end": 13067.8, + "probability": 0.7472 + }, + { + "start": 13069.2, + "end": 13076.1, + "probability": 0.978 + }, + { + "start": 13077.62, + "end": 13078.8, + "probability": 0.5719 + }, + { + "start": 13078.96, + "end": 13081.06, + "probability": 0.9077 + }, + { + "start": 13081.12, + "end": 13085.92, + "probability": 0.9922 + }, + { + "start": 13087.06, + "end": 13089.5, + "probability": 0.9507 + }, + { + "start": 13090.28, + "end": 13090.46, + "probability": 0.6698 + }, + { + "start": 13090.98, + "end": 13094.66, + "probability": 0.9197 + }, + { + "start": 13097.42, + "end": 13099.22, + "probability": 0.713 + }, + { + "start": 13100.5, + "end": 13103.4, + "probability": 0.9899 + }, + { + "start": 13104.64, + "end": 13111.1, + "probability": 0.5944 + }, + { + "start": 13112.04, + "end": 13114.9, + "probability": 0.9582 + }, + { + "start": 13115.58, + "end": 13119.95, + "probability": 0.9902 + }, + { + "start": 13120.9, + "end": 13125.28, + "probability": 0.6652 + }, + { + "start": 13126.92, + "end": 13133.48, + "probability": 0.9033 + }, + { + "start": 13134.92, + "end": 13137.2, + "probability": 0.7524 + }, + { + "start": 13138.24, + "end": 13143.88, + "probability": 0.9596 + }, + { + "start": 13144.2, + "end": 13146.3, + "probability": 0.9668 + }, + { + "start": 13148.62, + "end": 13153.76, + "probability": 0.9082 + }, + { + "start": 13154.66, + "end": 13159.64, + "probability": 0.9177 + }, + { + "start": 13159.76, + "end": 13164.96, + "probability": 0.9668 + }, + { + "start": 13165.84, + "end": 13169.5, + "probability": 0.8955 + }, + { + "start": 13170.34, + "end": 13174.02, + "probability": 0.8947 + }, + { + "start": 13174.62, + "end": 13175.34, + "probability": 0.4234 + }, + { + "start": 13175.58, + "end": 13177.96, + "probability": 0.9474 + }, + { + "start": 13178.82, + "end": 13180.18, + "probability": 0.7385 + }, + { + "start": 13180.42, + "end": 13182.84, + "probability": 0.8418 + }, + { + "start": 13183.08, + "end": 13183.96, + "probability": 0.6245 + }, + { + "start": 13184.2, + "end": 13190.73, + "probability": 0.6632 + }, + { + "start": 13192.1, + "end": 13194.62, + "probability": 0.9777 + }, + { + "start": 13195.88, + "end": 13199.34, + "probability": 0.8846 + }, + { + "start": 13200.79, + "end": 13203.18, + "probability": 0.8752 + }, + { + "start": 13204.36, + "end": 13207.16, + "probability": 0.9888 + }, + { + "start": 13208.16, + "end": 13209.4, + "probability": 0.8359 + }, + { + "start": 13209.58, + "end": 13210.64, + "probability": 0.9709 + }, + { + "start": 13210.88, + "end": 13211.88, + "probability": 0.8843 + }, + { + "start": 13212.66, + "end": 13216.06, + "probability": 0.9048 + }, + { + "start": 13217.3, + "end": 13220.22, + "probability": 0.9348 + }, + { + "start": 13221.56, + "end": 13222.18, + "probability": 0.9605 + }, + { + "start": 13223.18, + "end": 13226.62, + "probability": 0.9551 + }, + { + "start": 13228.86, + "end": 13232.22, + "probability": 0.822 + }, + { + "start": 13233.54, + "end": 13235.88, + "probability": 0.9724 + }, + { + "start": 13237.5, + "end": 13241.94, + "probability": 0.9701 + }, + { + "start": 13242.0, + "end": 13247.5, + "probability": 0.9935 + }, + { + "start": 13249.04, + "end": 13249.34, + "probability": 0.8743 + }, + { + "start": 13252.22, + "end": 13253.13, + "probability": 0.6199 + }, + { + "start": 13253.74, + "end": 13256.04, + "probability": 0.5908 + }, + { + "start": 13256.32, + "end": 13260.14, + "probability": 0.9597 + }, + { + "start": 13260.62, + "end": 13264.19, + "probability": 0.7453 + }, + { + "start": 13265.38, + "end": 13267.84, + "probability": 0.9819 + }, + { + "start": 13268.44, + "end": 13269.99, + "probability": 0.9922 + }, + { + "start": 13271.7, + "end": 13274.36, + "probability": 0.95 + }, + { + "start": 13274.96, + "end": 13276.3, + "probability": 0.965 + }, + { + "start": 13276.88, + "end": 13278.22, + "probability": 0.9989 + }, + { + "start": 13279.58, + "end": 13285.88, + "probability": 0.9039 + }, + { + "start": 13286.08, + "end": 13287.08, + "probability": 0.965 + }, + { + "start": 13288.44, + "end": 13292.14, + "probability": 0.8423 + }, + { + "start": 13292.7, + "end": 13293.66, + "probability": 0.9658 + }, + { + "start": 13294.38, + "end": 13294.87, + "probability": 0.8389 + }, + { + "start": 13296.56, + "end": 13297.4, + "probability": 0.7936 + }, + { + "start": 13297.46, + "end": 13299.42, + "probability": 0.9533 + }, + { + "start": 13299.52, + "end": 13300.78, + "probability": 0.8144 + }, + { + "start": 13301.98, + "end": 13306.6, + "probability": 0.9725 + }, + { + "start": 13307.66, + "end": 13309.06, + "probability": 0.9634 + }, + { + "start": 13309.64, + "end": 13311.0, + "probability": 0.9683 + }, + { + "start": 13311.6, + "end": 13316.96, + "probability": 0.9572 + }, + { + "start": 13317.72, + "end": 13319.98, + "probability": 0.9773 + }, + { + "start": 13321.24, + "end": 13323.58, + "probability": 0.7303 + }, + { + "start": 13323.78, + "end": 13331.16, + "probability": 0.9199 + }, + { + "start": 13331.32, + "end": 13333.98, + "probability": 0.9307 + }, + { + "start": 13335.34, + "end": 13337.74, + "probability": 0.7497 + }, + { + "start": 13338.58, + "end": 13341.14, + "probability": 0.9164 + }, + { + "start": 13342.36, + "end": 13343.87, + "probability": 0.9857 + }, + { + "start": 13347.28, + "end": 13350.68, + "probability": 0.9975 + }, + { + "start": 13351.38, + "end": 13352.22, + "probability": 0.9989 + }, + { + "start": 13353.76, + "end": 13356.28, + "probability": 0.9156 + }, + { + "start": 13356.92, + "end": 13359.92, + "probability": 0.8039 + }, + { + "start": 13360.96, + "end": 13364.34, + "probability": 0.9224 + }, + { + "start": 13365.3, + "end": 13369.9, + "probability": 0.7609 + }, + { + "start": 13371.16, + "end": 13373.34, + "probability": 0.9872 + }, + { + "start": 13373.96, + "end": 13379.32, + "probability": 0.8188 + }, + { + "start": 13380.56, + "end": 13385.44, + "probability": 0.9668 + }, + { + "start": 13386.24, + "end": 13389.81, + "probability": 0.9685 + }, + { + "start": 13390.8, + "end": 13393.09, + "probability": 0.9819 + }, + { + "start": 13394.64, + "end": 13396.18, + "probability": 0.9864 + }, + { + "start": 13397.54, + "end": 13402.24, + "probability": 0.9476 + }, + { + "start": 13402.82, + "end": 13406.18, + "probability": 0.7895 + }, + { + "start": 13407.16, + "end": 13410.88, + "probability": 0.9058 + }, + { + "start": 13411.52, + "end": 13412.58, + "probability": 0.9651 + }, + { + "start": 13413.32, + "end": 13414.52, + "probability": 0.8973 + }, + { + "start": 13415.24, + "end": 13417.82, + "probability": 0.9552 + }, + { + "start": 13418.54, + "end": 13422.36, + "probability": 0.995 + }, + { + "start": 13423.56, + "end": 13427.02, + "probability": 0.9411 + }, + { + "start": 13427.8, + "end": 13431.06, + "probability": 0.9845 + }, + { + "start": 13432.2, + "end": 13437.46, + "probability": 0.9805 + }, + { + "start": 13437.6, + "end": 13439.17, + "probability": 0.9785 + }, + { + "start": 13439.8, + "end": 13440.76, + "probability": 0.8415 + }, + { + "start": 13441.14, + "end": 13442.98, + "probability": 0.7805 + }, + { + "start": 13444.08, + "end": 13449.58, + "probability": 0.9788 + }, + { + "start": 13450.92, + "end": 13453.1, + "probability": 0.7864 + }, + { + "start": 13454.0, + "end": 13456.88, + "probability": 0.9716 + }, + { + "start": 13457.74, + "end": 13462.0, + "probability": 0.7607 + }, + { + "start": 13463.0, + "end": 13464.42, + "probability": 0.6141 + }, + { + "start": 13464.9, + "end": 13468.46, + "probability": 0.9882 + }, + { + "start": 13468.46, + "end": 13473.4, + "probability": 0.9546 + }, + { + "start": 13474.76, + "end": 13476.2, + "probability": 0.8847 + }, + { + "start": 13476.9, + "end": 13478.64, + "probability": 0.9971 + }, + { + "start": 13478.98, + "end": 13479.16, + "probability": 0.2799 + }, + { + "start": 13479.4, + "end": 13480.18, + "probability": 0.8731 + }, + { + "start": 13481.28, + "end": 13485.86, + "probability": 0.9614 + }, + { + "start": 13486.98, + "end": 13490.02, + "probability": 0.9406 + }, + { + "start": 13491.66, + "end": 13495.55, + "probability": 0.998 + }, + { + "start": 13496.34, + "end": 13499.08, + "probability": 0.9867 + }, + { + "start": 13499.08, + "end": 13503.5, + "probability": 0.979 + }, + { + "start": 13504.82, + "end": 13508.44, + "probability": 0.9758 + }, + { + "start": 13509.34, + "end": 13510.96, + "probability": 0.8259 + }, + { + "start": 13511.5, + "end": 13513.18, + "probability": 0.7245 + }, + { + "start": 13514.82, + "end": 13517.4, + "probability": 0.7808 + }, + { + "start": 13518.54, + "end": 13520.76, + "probability": 0.7473 + }, + { + "start": 13520.76, + "end": 13523.38, + "probability": 0.9878 + }, + { + "start": 13524.42, + "end": 13527.1, + "probability": 0.9956 + }, + { + "start": 13527.86, + "end": 13529.96, + "probability": 0.986 + }, + { + "start": 13530.94, + "end": 13534.56, + "probability": 0.4954 + }, + { + "start": 13535.22, + "end": 13536.68, + "probability": 0.8575 + }, + { + "start": 13537.32, + "end": 13539.22, + "probability": 0.7392 + }, + { + "start": 13539.94, + "end": 13541.74, + "probability": 0.7588 + }, + { + "start": 13543.1, + "end": 13546.36, + "probability": 0.3938 + }, + { + "start": 13549.48, + "end": 13550.16, + "probability": 0.6595 + }, + { + "start": 13550.24, + "end": 13550.8, + "probability": 0.8173 + }, + { + "start": 13550.92, + "end": 13552.11, + "probability": 0.5094 + }, + { + "start": 13552.72, + "end": 13558.42, + "probability": 0.8829 + }, + { + "start": 13559.96, + "end": 13565.48, + "probability": 0.6522 + }, + { + "start": 13565.48, + "end": 13567.38, + "probability": 0.8823 + }, + { + "start": 13569.0, + "end": 13574.04, + "probability": 0.9381 + }, + { + "start": 13575.54, + "end": 13576.3, + "probability": 0.7732 + }, + { + "start": 13577.42, + "end": 13577.7, + "probability": 0.8054 + }, + { + "start": 13578.28, + "end": 13580.28, + "probability": 0.9641 + }, + { + "start": 13580.72, + "end": 13586.88, + "probability": 0.9935 + }, + { + "start": 13587.04, + "end": 13588.18, + "probability": 0.9844 + }, + { + "start": 13589.56, + "end": 13593.86, + "probability": 0.9956 + }, + { + "start": 13594.54, + "end": 13595.38, + "probability": 0.9202 + }, + { + "start": 13596.12, + "end": 13600.7, + "probability": 0.9609 + }, + { + "start": 13601.64, + "end": 13603.12, + "probability": 0.5942 + }, + { + "start": 13603.42, + "end": 13605.58, + "probability": 0.6297 + }, + { + "start": 13605.58, + "end": 13608.52, + "probability": 0.7717 + }, + { + "start": 13609.1, + "end": 13612.18, + "probability": 0.617 + }, + { + "start": 13613.2, + "end": 13620.66, + "probability": 0.9375 + }, + { + "start": 13621.06, + "end": 13621.87, + "probability": 0.764 + }, + { + "start": 13622.6, + "end": 13624.46, + "probability": 0.6603 + }, + { + "start": 13624.92, + "end": 13626.7, + "probability": 0.8583 + }, + { + "start": 13627.24, + "end": 13628.84, + "probability": 0.875 + }, + { + "start": 13629.48, + "end": 13633.2, + "probability": 0.9491 + }, + { + "start": 13633.8, + "end": 13634.0, + "probability": 0.783 + }, + { + "start": 13634.32, + "end": 13636.94, + "probability": 0.8243 + }, + { + "start": 13637.58, + "end": 13638.3, + "probability": 0.5819 + }, + { + "start": 13638.9, + "end": 13640.48, + "probability": 0.2541 + }, + { + "start": 13641.68, + "end": 13644.56, + "probability": 0.6647 + }, + { + "start": 13646.02, + "end": 13646.9, + "probability": 0.9434 + }, + { + "start": 13646.98, + "end": 13650.12, + "probability": 0.2708 + }, + { + "start": 13650.88, + "end": 13652.52, + "probability": 0.5086 + }, + { + "start": 13653.22, + "end": 13654.32, + "probability": 0.6814 + }, + { + "start": 13654.5, + "end": 13655.32, + "probability": 0.4585 + }, + { + "start": 13656.48, + "end": 13664.28, + "probability": 0.4134 + }, + { + "start": 13664.28, + "end": 13665.1, + "probability": 0.3764 + }, + { + "start": 13672.48, + "end": 13672.64, + "probability": 0.0261 + }, + { + "start": 13672.64, + "end": 13674.76, + "probability": 0.7024 + }, + { + "start": 13674.86, + "end": 13679.46, + "probability": 0.8006 + }, + { + "start": 13681.3, + "end": 13682.51, + "probability": 0.3981 + }, + { + "start": 13683.28, + "end": 13689.08, + "probability": 0.6265 + }, + { + "start": 13689.66, + "end": 13690.1, + "probability": 0.0038 + }, + { + "start": 13690.12, + "end": 13693.04, + "probability": 0.5237 + }, + { + "start": 13703.7, + "end": 13704.56, + "probability": 0.6401 + }, + { + "start": 13706.08, + "end": 13708.82, + "probability": 0.745 + }, + { + "start": 13713.3, + "end": 13718.18, + "probability": 0.7979 + }, + { + "start": 13719.88, + "end": 13720.08, + "probability": 0.7213 + }, + { + "start": 13722.46, + "end": 13725.58, + "probability": 0.9973 + }, + { + "start": 13726.68, + "end": 13728.05, + "probability": 0.9973 + }, + { + "start": 13729.08, + "end": 13731.0, + "probability": 0.9948 + }, + { + "start": 13732.88, + "end": 13737.02, + "probability": 0.587 + }, + { + "start": 13737.58, + "end": 13737.98, + "probability": 0.6581 + }, + { + "start": 13738.52, + "end": 13741.42, + "probability": 0.7327 + }, + { + "start": 13744.08, + "end": 13747.8, + "probability": 0.9805 + }, + { + "start": 13749.58, + "end": 13750.9, + "probability": 0.8368 + }, + { + "start": 13752.82, + "end": 13753.83, + "probability": 0.9567 + }, + { + "start": 13755.57, + "end": 13758.96, + "probability": 0.8301 + }, + { + "start": 13760.84, + "end": 13764.08, + "probability": 0.7076 + }, + { + "start": 13764.68, + "end": 13766.86, + "probability": 0.9695 + }, + { + "start": 13767.32, + "end": 13769.16, + "probability": 0.8469 + }, + { + "start": 13770.48, + "end": 13778.58, + "probability": 0.9897 + }, + { + "start": 13779.88, + "end": 13782.76, + "probability": 0.9149 + }, + { + "start": 13784.48, + "end": 13789.9, + "probability": 0.9976 + }, + { + "start": 13791.86, + "end": 13794.58, + "probability": 0.9943 + }, + { + "start": 13795.96, + "end": 13796.74, + "probability": 0.8127 + }, + { + "start": 13797.4, + "end": 13797.84, + "probability": 0.5504 + }, + { + "start": 13799.24, + "end": 13800.58, + "probability": 0.9898 + }, + { + "start": 13801.48, + "end": 13802.52, + "probability": 0.9989 + }, + { + "start": 13803.38, + "end": 13806.32, + "probability": 0.9946 + }, + { + "start": 13808.42, + "end": 13813.42, + "probability": 0.7749 + }, + { + "start": 13814.56, + "end": 13817.24, + "probability": 0.8141 + }, + { + "start": 13818.66, + "end": 13824.12, + "probability": 0.9938 + }, + { + "start": 13826.2, + "end": 13827.92, + "probability": 0.8445 + }, + { + "start": 13828.86, + "end": 13833.12, + "probability": 0.9907 + }, + { + "start": 13834.96, + "end": 13840.84, + "probability": 0.9905 + }, + { + "start": 13841.52, + "end": 13843.82, + "probability": 0.8081 + }, + { + "start": 13844.44, + "end": 13845.76, + "probability": 0.9801 + }, + { + "start": 13846.48, + "end": 13847.64, + "probability": 0.9954 + }, + { + "start": 13848.28, + "end": 13851.58, + "probability": 0.9923 + }, + { + "start": 13852.6, + "end": 13855.4, + "probability": 0.999 + }, + { + "start": 13855.98, + "end": 13858.1, + "probability": 0.9993 + }, + { + "start": 13860.42, + "end": 13864.13, + "probability": 0.9966 + }, + { + "start": 13864.62, + "end": 13866.88, + "probability": 0.9309 + }, + { + "start": 13867.28, + "end": 13869.76, + "probability": 0.7873 + }, + { + "start": 13872.21, + "end": 13874.98, + "probability": 0.9548 + }, + { + "start": 13875.08, + "end": 13877.82, + "probability": 0.9922 + }, + { + "start": 13879.5, + "end": 13881.88, + "probability": 0.7404 + }, + { + "start": 13882.5, + "end": 13885.42, + "probability": 0.9804 + }, + { + "start": 13887.64, + "end": 13890.36, + "probability": 0.9876 + }, + { + "start": 13891.38, + "end": 13896.6, + "probability": 0.958 + }, + { + "start": 13897.3, + "end": 13898.5, + "probability": 0.9307 + }, + { + "start": 13899.42, + "end": 13902.18, + "probability": 0.7579 + }, + { + "start": 13904.48, + "end": 13906.18, + "probability": 0.6867 + }, + { + "start": 13907.1, + "end": 13909.05, + "probability": 0.9979 + }, + { + "start": 13909.86, + "end": 13910.7, + "probability": 0.9824 + }, + { + "start": 13911.22, + "end": 13912.86, + "probability": 0.6449 + }, + { + "start": 13913.68, + "end": 13915.88, + "probability": 0.5969 + }, + { + "start": 13917.04, + "end": 13919.54, + "probability": 0.5591 + }, + { + "start": 13920.42, + "end": 13925.06, + "probability": 0.9854 + }, + { + "start": 13925.88, + "end": 13930.88, + "probability": 0.9562 + }, + { + "start": 13931.98, + "end": 13932.04, + "probability": 0.48 + }, + { + "start": 13932.04, + "end": 13932.28, + "probability": 0.5649 + }, + { + "start": 13932.28, + "end": 13934.7, + "probability": 0.6519 + }, + { + "start": 13935.4, + "end": 13936.62, + "probability": 0.9758 + }, + { + "start": 13937.7, + "end": 13938.36, + "probability": 0.8044 + }, + { + "start": 13944.34, + "end": 13945.08, + "probability": 0.8704 + }, + { + "start": 13947.86, + "end": 13950.58, + "probability": 0.4759 + }, + { + "start": 13952.88, + "end": 13955.98, + "probability": 0.9556 + }, + { + "start": 13958.98, + "end": 13959.36, + "probability": 0.9803 + }, + { + "start": 13959.92, + "end": 13960.88, + "probability": 0.9836 + }, + { + "start": 13962.18, + "end": 13963.68, + "probability": 0.9914 + }, + { + "start": 13964.28, + "end": 13967.58, + "probability": 0.9081 + }, + { + "start": 13969.82, + "end": 13972.4, + "probability": 0.8807 + }, + { + "start": 13973.54, + "end": 13975.8, + "probability": 0.9641 + }, + { + "start": 13976.74, + "end": 13978.44, + "probability": 0.9993 + }, + { + "start": 13978.88, + "end": 13979.7, + "probability": 0.7921 + }, + { + "start": 13980.52, + "end": 13981.74, + "probability": 0.9394 + }, + { + "start": 13983.88, + "end": 13987.76, + "probability": 0.8221 + }, + { + "start": 13988.36, + "end": 13989.56, + "probability": 0.9594 + }, + { + "start": 13990.4, + "end": 13992.66, + "probability": 0.9764 + }, + { + "start": 13993.76, + "end": 13996.24, + "probability": 0.9678 + }, + { + "start": 13996.6, + "end": 14000.36, + "probability": 0.6945 + }, + { + "start": 14001.22, + "end": 14004.08, + "probability": 0.98 + }, + { + "start": 14004.94, + "end": 14005.48, + "probability": 0.9469 + }, + { + "start": 14006.32, + "end": 14009.2, + "probability": 0.9761 + }, + { + "start": 14011.68, + "end": 14015.56, + "probability": 0.9907 + }, + { + "start": 14016.38, + "end": 14017.3, + "probability": 0.9186 + }, + { + "start": 14018.32, + "end": 14020.0, + "probability": 0.9995 + }, + { + "start": 14020.72, + "end": 14025.1, + "probability": 0.9124 + }, + { + "start": 14026.44, + "end": 14030.34, + "probability": 0.9788 + }, + { + "start": 14032.8, + "end": 14032.8, + "probability": 0.8271 + }, + { + "start": 14033.58, + "end": 14036.36, + "probability": 0.9175 + }, + { + "start": 14037.26, + "end": 14038.62, + "probability": 0.9697 + }, + { + "start": 14040.02, + "end": 14043.5, + "probability": 0.8188 + }, + { + "start": 14045.16, + "end": 14049.5, + "probability": 0.8868 + }, + { + "start": 14049.68, + "end": 14054.54, + "probability": 0.99 + }, + { + "start": 14056.52, + "end": 14057.82, + "probability": 0.7575 + }, + { + "start": 14058.68, + "end": 14059.36, + "probability": 0.9713 + }, + { + "start": 14060.76, + "end": 14062.02, + "probability": 0.8449 + }, + { + "start": 14063.44, + "end": 14066.3, + "probability": 0.9283 + }, + { + "start": 14066.98, + "end": 14068.14, + "probability": 0.7542 + }, + { + "start": 14068.9, + "end": 14074.93, + "probability": 0.9685 + }, + { + "start": 14076.12, + "end": 14076.88, + "probability": 0.9086 + }, + { + "start": 14077.06, + "end": 14078.9, + "probability": 0.9378 + }, + { + "start": 14078.98, + "end": 14079.62, + "probability": 0.7688 + }, + { + "start": 14081.46, + "end": 14087.62, + "probability": 0.4966 + }, + { + "start": 14087.94, + "end": 14088.3, + "probability": 0.3102 + }, + { + "start": 14089.46, + "end": 14091.76, + "probability": 0.9383 + }, + { + "start": 14092.54, + "end": 14093.76, + "probability": 0.9899 + }, + { + "start": 14094.36, + "end": 14095.34, + "probability": 0.9783 + }, + { + "start": 14096.36, + "end": 14098.88, + "probability": 0.8774 + }, + { + "start": 14099.22, + "end": 14099.84, + "probability": 0.7435 + }, + { + "start": 14100.62, + "end": 14101.12, + "probability": 0.889 + }, + { + "start": 14102.58, + "end": 14105.2, + "probability": 0.6304 + }, + { + "start": 14105.6, + "end": 14106.0, + "probability": 0.426 + }, + { + "start": 14106.06, + "end": 14106.94, + "probability": 0.8193 + }, + { + "start": 14109.84, + "end": 14111.6, + "probability": 0.9458 + }, + { + "start": 14112.0, + "end": 14112.64, + "probability": 0.9629 + }, + { + "start": 14113.76, + "end": 14114.5, + "probability": 0.9131 + }, + { + "start": 14114.78, + "end": 14119.18, + "probability": 0.9924 + }, + { + "start": 14119.96, + "end": 14121.78, + "probability": 0.8786 + }, + { + "start": 14122.56, + "end": 14123.54, + "probability": 0.7363 + }, + { + "start": 14124.38, + "end": 14126.96, + "probability": 0.9871 + }, + { + "start": 14128.02, + "end": 14132.44, + "probability": 0.9905 + }, + { + "start": 14133.06, + "end": 14133.44, + "probability": 0.6935 + }, + { + "start": 14134.96, + "end": 14137.8, + "probability": 0.9939 + }, + { + "start": 14140.06, + "end": 14141.08, + "probability": 0.8762 + }, + { + "start": 14141.24, + "end": 14146.14, + "probability": 0.9853 + }, + { + "start": 14146.66, + "end": 14147.06, + "probability": 0.6393 + }, + { + "start": 14147.46, + "end": 14148.68, + "probability": 0.9199 + }, + { + "start": 14149.14, + "end": 14150.2, + "probability": 0.9954 + }, + { + "start": 14150.64, + "end": 14153.13, + "probability": 0.9927 + }, + { + "start": 14154.78, + "end": 14155.9, + "probability": 0.6905 + }, + { + "start": 14156.46, + "end": 14158.96, + "probability": 0.9438 + }, + { + "start": 14159.52, + "end": 14164.1, + "probability": 0.9991 + }, + { + "start": 14164.46, + "end": 14170.0, + "probability": 0.9976 + }, + { + "start": 14171.74, + "end": 14172.48, + "probability": 0.9417 + }, + { + "start": 14173.12, + "end": 14174.52, + "probability": 0.3113 + }, + { + "start": 14175.2, + "end": 14177.24, + "probability": 0.9787 + }, + { + "start": 14177.78, + "end": 14178.04, + "probability": 0.9912 + }, + { + "start": 14178.6, + "end": 14179.34, + "probability": 0.9626 + }, + { + "start": 14180.12, + "end": 14181.86, + "probability": 0.8506 + }, + { + "start": 14182.86, + "end": 14185.3, + "probability": 0.996 + }, + { + "start": 14186.12, + "end": 14192.42, + "probability": 0.9836 + }, + { + "start": 14193.48, + "end": 14194.6, + "probability": 0.6792 + }, + { + "start": 14195.06, + "end": 14196.28, + "probability": 0.9705 + }, + { + "start": 14196.98, + "end": 14198.36, + "probability": 0.8356 + }, + { + "start": 14199.84, + "end": 14201.34, + "probability": 0.8159 + }, + { + "start": 14201.88, + "end": 14203.02, + "probability": 0.9304 + }, + { + "start": 14203.98, + "end": 14205.1, + "probability": 0.8025 + }, + { + "start": 14214.3, + "end": 14216.32, + "probability": 0.578 + }, + { + "start": 14216.32, + "end": 14218.22, + "probability": 0.9894 + }, + { + "start": 14219.12, + "end": 14219.6, + "probability": 0.8976 + }, + { + "start": 14220.14, + "end": 14222.56, + "probability": 0.9575 + }, + { + "start": 14223.8, + "end": 14227.94, + "probability": 0.9463 + }, + { + "start": 14227.94, + "end": 14234.38, + "probability": 0.7362 + }, + { + "start": 14235.2, + "end": 14238.52, + "probability": 0.8304 + }, + { + "start": 14239.32, + "end": 14243.02, + "probability": 0.9922 + }, + { + "start": 14243.28, + "end": 14245.22, + "probability": 0.8812 + }, + { + "start": 14246.1, + "end": 14247.36, + "probability": 0.9921 + }, + { + "start": 14248.52, + "end": 14253.68, + "probability": 0.9904 + }, + { + "start": 14253.86, + "end": 14255.44, + "probability": 0.9956 + }, + { + "start": 14256.2, + "end": 14258.66, + "probability": 0.9941 + }, + { + "start": 14259.32, + "end": 14261.0, + "probability": 0.9341 + }, + { + "start": 14261.3, + "end": 14265.34, + "probability": 0.988 + }, + { + "start": 14266.16, + "end": 14268.56, + "probability": 0.9968 + }, + { + "start": 14268.72, + "end": 14269.38, + "probability": 0.9327 + }, + { + "start": 14269.48, + "end": 14270.08, + "probability": 0.9334 + }, + { + "start": 14270.2, + "end": 14270.86, + "probability": 0.8594 + }, + { + "start": 14271.42, + "end": 14276.92, + "probability": 0.9589 + }, + { + "start": 14277.62, + "end": 14280.6, + "probability": 0.9507 + }, + { + "start": 14281.34, + "end": 14283.24, + "probability": 0.8411 + }, + { + "start": 14284.1, + "end": 14285.1, + "probability": 0.7809 + }, + { + "start": 14285.6, + "end": 14286.1, + "probability": 0.5746 + }, + { + "start": 14286.54, + "end": 14288.18, + "probability": 0.6697 + }, + { + "start": 14289.06, + "end": 14291.28, + "probability": 0.5092 + }, + { + "start": 14291.56, + "end": 14292.76, + "probability": 0.9229 + }, + { + "start": 14292.84, + "end": 14294.14, + "probability": 0.3802 + }, + { + "start": 14294.74, + "end": 14297.64, + "probability": 0.7144 + }, + { + "start": 14298.32, + "end": 14298.82, + "probability": 0.3535 + }, + { + "start": 14299.34, + "end": 14299.58, + "probability": 0.5372 + }, + { + "start": 14300.74, + "end": 14301.82, + "probability": 0.515 + }, + { + "start": 14302.66, + "end": 14306.02, + "probability": 0.8912 + }, + { + "start": 14306.02, + "end": 14306.58, + "probability": 0.9113 + }, + { + "start": 14306.8, + "end": 14308.62, + "probability": 0.1285 + }, + { + "start": 14309.14, + "end": 14309.52, + "probability": 0.4877 + }, + { + "start": 14310.12, + "end": 14311.18, + "probability": 0.9901 + }, + { + "start": 14312.84, + "end": 14317.94, + "probability": 0.9865 + }, + { + "start": 14318.66, + "end": 14321.76, + "probability": 0.9975 + }, + { + "start": 14322.3, + "end": 14324.64, + "probability": 0.9186 + }, + { + "start": 14325.52, + "end": 14326.74, + "probability": 0.664 + }, + { + "start": 14326.84, + "end": 14332.62, + "probability": 0.9741 + }, + { + "start": 14332.62, + "end": 14338.0, + "probability": 0.7554 + }, + { + "start": 14338.52, + "end": 14341.7, + "probability": 0.9884 + }, + { + "start": 14341.9, + "end": 14349.52, + "probability": 0.9886 + }, + { + "start": 14351.06, + "end": 14351.94, + "probability": 0.9122 + }, + { + "start": 14352.48, + "end": 14353.22, + "probability": 0.8737 + }, + { + "start": 14353.9, + "end": 14355.24, + "probability": 0.9159 + }, + { + "start": 14355.58, + "end": 14355.98, + "probability": 0.8542 + }, + { + "start": 14356.68, + "end": 14357.9, + "probability": 0.659 + }, + { + "start": 14359.88, + "end": 14360.95, + "probability": 0.6495 + }, + { + "start": 14361.72, + "end": 14364.38, + "probability": 0.8693 + }, + { + "start": 14365.54, + "end": 14368.32, + "probability": 0.8583 + }, + { + "start": 14368.52, + "end": 14370.6, + "probability": 0.973 + }, + { + "start": 14370.96, + "end": 14372.38, + "probability": 0.9697 + }, + { + "start": 14373.18, + "end": 14374.22, + "probability": 0.9805 + }, + { + "start": 14375.0, + "end": 14375.84, + "probability": 0.5047 + }, + { + "start": 14376.28, + "end": 14378.38, + "probability": 0.8093 + }, + { + "start": 14379.12, + "end": 14379.8, + "probability": 0.8527 + }, + { + "start": 14380.16, + "end": 14380.38, + "probability": 0.8101 + }, + { + "start": 14381.1, + "end": 14381.1, + "probability": 0.6905 + }, + { + "start": 14381.28, + "end": 14383.56, + "probability": 0.4783 + }, + { + "start": 14383.88, + "end": 14385.3, + "probability": 0.7314 + }, + { + "start": 14385.64, + "end": 14387.36, + "probability": 0.814 + }, + { + "start": 14387.92, + "end": 14388.74, + "probability": 0.6869 + }, + { + "start": 14388.82, + "end": 14389.6, + "probability": 0.8247 + }, + { + "start": 14390.58, + "end": 14393.32, + "probability": 0.7522 + }, + { + "start": 14396.98, + "end": 14399.12, + "probability": 0.407 + }, + { + "start": 14399.26, + "end": 14402.92, + "probability": 0.6975 + }, + { + "start": 14403.48, + "end": 14405.42, + "probability": 0.8979 + }, + { + "start": 14405.82, + "end": 14405.82, + "probability": 0.3981 + }, + { + "start": 14405.82, + "end": 14407.08, + "probability": 0.6671 + }, + { + "start": 14408.0, + "end": 14409.08, + "probability": 0.6245 + }, + { + "start": 14409.34, + "end": 14409.5, + "probability": 0.2488 + }, + { + "start": 14417.04, + "end": 14417.2, + "probability": 0.2114 + }, + { + "start": 14417.2, + "end": 14418.72, + "probability": 0.366 + }, + { + "start": 14418.96, + "end": 14419.65, + "probability": 0.4966 + }, + { + "start": 14422.73, + "end": 14426.96, + "probability": 0.1408 + }, + { + "start": 14427.66, + "end": 14430.46, + "probability": 0.3261 + }, + { + "start": 14431.98, + "end": 14433.82, + "probability": 0.9481 + }, + { + "start": 14434.6, + "end": 14435.35, + "probability": 0.8042 + }, + { + "start": 14436.86, + "end": 14438.98, + "probability": 0.8722 + }, + { + "start": 14438.98, + "end": 14441.66, + "probability": 0.95 + }, + { + "start": 14444.19, + "end": 14445.52, + "probability": 0.0329 + }, + { + "start": 14445.72, + "end": 14446.52, + "probability": 0.7287 + }, + { + "start": 14446.96, + "end": 14449.82, + "probability": 0.9691 + }, + { + "start": 14449.84, + "end": 14450.52, + "probability": 0.5263 + }, + { + "start": 14450.6, + "end": 14452.08, + "probability": 0.863 + }, + { + "start": 14459.64, + "end": 14460.6, + "probability": 0.6364 + }, + { + "start": 14463.42, + "end": 14467.78, + "probability": 0.8331 + }, + { + "start": 14469.84, + "end": 14472.94, + "probability": 0.9551 + }, + { + "start": 14473.84, + "end": 14474.78, + "probability": 0.7892 + }, + { + "start": 14476.04, + "end": 14477.02, + "probability": 0.7946 + }, + { + "start": 14477.7, + "end": 14478.91, + "probability": 0.6584 + }, + { + "start": 14480.26, + "end": 14486.53, + "probability": 0.9972 + }, + { + "start": 14487.16, + "end": 14487.78, + "probability": 0.8395 + }, + { + "start": 14487.96, + "end": 14490.86, + "probability": 0.8366 + }, + { + "start": 14491.66, + "end": 14492.43, + "probability": 0.992 + }, + { + "start": 14493.62, + "end": 14495.77, + "probability": 0.8195 + }, + { + "start": 14497.32, + "end": 14499.28, + "probability": 0.8806 + }, + { + "start": 14500.72, + "end": 14503.7, + "probability": 0.8789 + }, + { + "start": 14505.3, + "end": 14506.78, + "probability": 0.9087 + }, + { + "start": 14507.94, + "end": 14509.2, + "probability": 0.9281 + }, + { + "start": 14510.5, + "end": 14511.18, + "probability": 0.9563 + }, + { + "start": 14513.24, + "end": 14514.94, + "probability": 0.9882 + }, + { + "start": 14516.04, + "end": 14517.59, + "probability": 0.7831 + }, + { + "start": 14518.64, + "end": 14519.0, + "probability": 0.6869 + }, + { + "start": 14519.42, + "end": 14520.26, + "probability": 0.86 + }, + { + "start": 14520.3, + "end": 14523.3, + "probability": 0.9414 + }, + { + "start": 14524.58, + "end": 14525.34, + "probability": 0.9807 + }, + { + "start": 14526.14, + "end": 14526.64, + "probability": 0.9132 + }, + { + "start": 14528.38, + "end": 14529.54, + "probability": 0.7147 + }, + { + "start": 14530.96, + "end": 14531.6, + "probability": 0.8629 + }, + { + "start": 14533.02, + "end": 14534.14, + "probability": 0.7832 + }, + { + "start": 14535.42, + "end": 14536.66, + "probability": 0.9828 + }, + { + "start": 14537.32, + "end": 14541.72, + "probability": 0.9416 + }, + { + "start": 14543.74, + "end": 14544.78, + "probability": 0.9523 + }, + { + "start": 14544.84, + "end": 14545.72, + "probability": 0.8394 + }, + { + "start": 14546.0, + "end": 14550.48, + "probability": 0.9927 + }, + { + "start": 14551.18, + "end": 14552.82, + "probability": 0.7506 + }, + { + "start": 14553.58, + "end": 14554.66, + "probability": 0.9426 + }, + { + "start": 14554.76, + "end": 14556.62, + "probability": 0.8466 + }, + { + "start": 14557.84, + "end": 14559.97, + "probability": 0.8553 + }, + { + "start": 14560.74, + "end": 14562.98, + "probability": 0.9475 + }, + { + "start": 14565.14, + "end": 14568.28, + "probability": 0.8758 + }, + { + "start": 14568.84, + "end": 14569.94, + "probability": 0.9816 + }, + { + "start": 14570.84, + "end": 14571.6, + "probability": 0.9623 + }, + { + "start": 14572.3, + "end": 14572.78, + "probability": 0.6466 + }, + { + "start": 14573.38, + "end": 14573.84, + "probability": 0.9963 + }, + { + "start": 14574.32, + "end": 14575.18, + "probability": 0.437 + }, + { + "start": 14575.92, + "end": 14577.4, + "probability": 0.9318 + }, + { + "start": 14578.16, + "end": 14579.24, + "probability": 0.7153 + }, + { + "start": 14579.54, + "end": 14582.12, + "probability": 0.9639 + }, + { + "start": 14583.14, + "end": 14586.0, + "probability": 0.9858 + }, + { + "start": 14586.86, + "end": 14589.78, + "probability": 0.8657 + }, + { + "start": 14590.62, + "end": 14591.86, + "probability": 0.8089 + }, + { + "start": 14593.08, + "end": 14593.68, + "probability": 0.8411 + }, + { + "start": 14595.08, + "end": 14596.26, + "probability": 0.9897 + }, + { + "start": 14597.08, + "end": 14597.48, + "probability": 0.8511 + }, + { + "start": 14598.6, + "end": 14599.82, + "probability": 0.9514 + }, + { + "start": 14600.82, + "end": 14603.1, + "probability": 0.9342 + }, + { + "start": 14603.42, + "end": 14604.02, + "probability": 0.8961 + }, + { + "start": 14604.14, + "end": 14604.28, + "probability": 0.654 + }, + { + "start": 14604.32, + "end": 14604.56, + "probability": 0.5897 + }, + { + "start": 14605.0, + "end": 14606.88, + "probability": 0.9679 + }, + { + "start": 14607.2, + "end": 14609.12, + "probability": 0.9603 + }, + { + "start": 14611.88, + "end": 14613.06, + "probability": 0.9492 + }, + { + "start": 14613.24, + "end": 14613.4, + "probability": 0.7006 + }, + { + "start": 14613.52, + "end": 14614.2, + "probability": 0.9519 + }, + { + "start": 14615.62, + "end": 14616.18, + "probability": 0.702 + }, + { + "start": 14616.2, + "end": 14618.85, + "probability": 0.9858 + }, + { + "start": 14619.34, + "end": 14619.7, + "probability": 0.7611 + }, + { + "start": 14619.82, + "end": 14619.98, + "probability": 0.8094 + }, + { + "start": 14620.82, + "end": 14622.84, + "probability": 0.9883 + }, + { + "start": 14623.0, + "end": 14624.31, + "probability": 0.8223 + }, + { + "start": 14624.32, + "end": 14624.88, + "probability": 0.7695 + }, + { + "start": 14625.32, + "end": 14626.2, + "probability": 0.9701 + }, + { + "start": 14626.96, + "end": 14627.48, + "probability": 0.929 + }, + { + "start": 14627.54, + "end": 14629.72, + "probability": 0.9089 + }, + { + "start": 14630.14, + "end": 14631.54, + "probability": 0.8678 + }, + { + "start": 14631.62, + "end": 14632.64, + "probability": 0.9383 + }, + { + "start": 14633.0, + "end": 14633.64, + "probability": 0.8742 + }, + { + "start": 14634.26, + "end": 14635.34, + "probability": 0.8892 + }, + { + "start": 14635.48, + "end": 14636.4, + "probability": 0.9631 + }, + { + "start": 14636.48, + "end": 14637.04, + "probability": 0.6327 + }, + { + "start": 14637.62, + "end": 14638.04, + "probability": 0.5731 + }, + { + "start": 14639.34, + "end": 14640.12, + "probability": 0.9201 + }, + { + "start": 14640.38, + "end": 14641.42, + "probability": 0.8991 + }, + { + "start": 14641.66, + "end": 14644.24, + "probability": 0.9835 + }, + { + "start": 14644.68, + "end": 14645.24, + "probability": 0.92 + }, + { + "start": 14647.24, + "end": 14648.32, + "probability": 0.6233 + }, + { + "start": 14650.46, + "end": 14650.68, + "probability": 0.0142 + }, + { + "start": 14651.12, + "end": 14651.12, + "probability": 0.1514 + }, + { + "start": 14651.12, + "end": 14652.86, + "probability": 0.968 + }, + { + "start": 14653.34, + "end": 14653.92, + "probability": 0.929 + }, + { + "start": 14654.04, + "end": 14655.75, + "probability": 0.9974 + }, + { + "start": 14656.6, + "end": 14658.54, + "probability": 0.8866 + }, + { + "start": 14658.72, + "end": 14660.3, + "probability": 0.9374 + }, + { + "start": 14660.54, + "end": 14660.86, + "probability": 0.6467 + }, + { + "start": 14661.06, + "end": 14661.42, + "probability": 0.8644 + }, + { + "start": 14662.0, + "end": 14664.04, + "probability": 0.9421 + }, + { + "start": 14664.24, + "end": 14665.64, + "probability": 0.8902 + }, + { + "start": 14667.82, + "end": 14670.32, + "probability": 0.9966 + }, + { + "start": 14670.72, + "end": 14674.84, + "probability": 0.9008 + }, + { + "start": 14675.88, + "end": 14677.98, + "probability": 0.9961 + }, + { + "start": 14678.78, + "end": 14679.24, + "probability": 0.9612 + }, + { + "start": 14680.22, + "end": 14680.74, + "probability": 0.9844 + }, + { + "start": 14682.14, + "end": 14682.32, + "probability": 0.6023 + }, + { + "start": 14683.29, + "end": 14685.92, + "probability": 0.9834 + }, + { + "start": 14686.74, + "end": 14688.68, + "probability": 0.9988 + }, + { + "start": 14689.82, + "end": 14692.42, + "probability": 0.5353 + }, + { + "start": 14702.08, + "end": 14704.04, + "probability": 0.5731 + }, + { + "start": 14705.2, + "end": 14706.24, + "probability": 0.6781 + }, + { + "start": 14706.44, + "end": 14708.82, + "probability": 0.9755 + }, + { + "start": 14710.34, + "end": 14712.86, + "probability": 0.8535 + }, + { + "start": 14713.5, + "end": 14714.9, + "probability": 0.5724 + }, + { + "start": 14715.78, + "end": 14717.78, + "probability": 0.7583 + }, + { + "start": 14718.32, + "end": 14721.02, + "probability": 0.9858 + }, + { + "start": 14721.82, + "end": 14725.78, + "probability": 0.8921 + }, + { + "start": 14726.68, + "end": 14727.94, + "probability": 0.9929 + }, + { + "start": 14728.92, + "end": 14731.22, + "probability": 0.9927 + }, + { + "start": 14731.54, + "end": 14732.54, + "probability": 0.5705 + }, + { + "start": 14732.9, + "end": 14733.38, + "probability": 0.7556 + }, + { + "start": 14733.46, + "end": 14735.11, + "probability": 0.8142 + }, + { + "start": 14735.4, + "end": 14737.24, + "probability": 0.9707 + }, + { + "start": 14737.52, + "end": 14737.84, + "probability": 0.9637 + }, + { + "start": 14738.74, + "end": 14740.28, + "probability": 0.9933 + }, + { + "start": 14740.84, + "end": 14742.82, + "probability": 0.6438 + }, + { + "start": 14743.02, + "end": 14744.86, + "probability": 0.0088 + }, + { + "start": 14745.16, + "end": 14745.16, + "probability": 0.1625 + }, + { + "start": 14745.16, + "end": 14745.32, + "probability": 0.1614 + }, + { + "start": 14745.96, + "end": 14746.3, + "probability": 0.3077 + }, + { + "start": 14746.84, + "end": 14749.19, + "probability": 0.3146 + }, + { + "start": 14749.6, + "end": 14751.22, + "probability": 0.5905 + }, + { + "start": 14751.76, + "end": 14754.18, + "probability": 0.7352 + }, + { + "start": 14754.32, + "end": 14754.76, + "probability": 0.4459 + }, + { + "start": 14755.14, + "end": 14760.48, + "probability": 0.9839 + }, + { + "start": 14760.52, + "end": 14761.34, + "probability": 0.8029 + }, + { + "start": 14761.98, + "end": 14762.44, + "probability": 0.7729 + }, + { + "start": 14763.24, + "end": 14764.74, + "probability": 0.752 + }, + { + "start": 14765.3, + "end": 14768.94, + "probability": 0.99 + }, + { + "start": 14769.76, + "end": 14771.74, + "probability": 0.8168 + }, + { + "start": 14771.92, + "end": 14773.34, + "probability": 0.8848 + }, + { + "start": 14773.56, + "end": 14774.8, + "probability": 0.9528 + }, + { + "start": 14775.66, + "end": 14777.26, + "probability": 0.6883 + }, + { + "start": 14777.86, + "end": 14780.98, + "probability": 0.8503 + }, + { + "start": 14781.62, + "end": 14782.98, + "probability": 0.9891 + }, + { + "start": 14783.7, + "end": 14787.02, + "probability": 0.9453 + }, + { + "start": 14787.62, + "end": 14788.66, + "probability": 0.882 + }, + { + "start": 14788.92, + "end": 14789.92, + "probability": 0.0605 + }, + { + "start": 14790.36, + "end": 14791.6, + "probability": 0.9919 + }, + { + "start": 14791.7, + "end": 14792.12, + "probability": 0.2538 + }, + { + "start": 14793.2, + "end": 14796.14, + "probability": 0.9757 + }, + { + "start": 14796.7, + "end": 14797.67, + "probability": 0.9576 + }, + { + "start": 14797.82, + "end": 14798.99, + "probability": 0.9414 + }, + { + "start": 14799.18, + "end": 14800.66, + "probability": 0.9873 + }, + { + "start": 14803.81, + "end": 14807.04, + "probability": 0.9966 + }, + { + "start": 14807.62, + "end": 14808.57, + "probability": 0.9828 + }, + { + "start": 14809.54, + "end": 14809.58, + "probability": 0.0111 + }, + { + "start": 14809.58, + "end": 14809.9, + "probability": 0.5767 + }, + { + "start": 14809.98, + "end": 14810.47, + "probability": 0.5027 + }, + { + "start": 14810.8, + "end": 14813.46, + "probability": 0.7327 + }, + { + "start": 14814.8, + "end": 14816.38, + "probability": 0.6486 + }, + { + "start": 14816.66, + "end": 14818.38, + "probability": 0.9976 + }, + { + "start": 14819.32, + "end": 14822.08, + "probability": 0.9851 + }, + { + "start": 14823.12, + "end": 14823.32, + "probability": 0.964 + }, + { + "start": 14824.72, + "end": 14826.82, + "probability": 0.6672 + }, + { + "start": 14828.54, + "end": 14829.66, + "probability": 0.9629 + }, + { + "start": 14829.98, + "end": 14830.28, + "probability": 0.5031 + }, + { + "start": 14831.64, + "end": 14834.08, + "probability": 0.8191 + }, + { + "start": 14835.18, + "end": 14837.48, + "probability": 0.9749 + }, + { + "start": 14838.4, + "end": 14839.3, + "probability": 0.9704 + }, + { + "start": 14839.96, + "end": 14841.34, + "probability": 0.8022 + }, + { + "start": 14842.98, + "end": 14844.16, + "probability": 0.9529 + }, + { + "start": 14844.58, + "end": 14845.56, + "probability": 0.5476 + }, + { + "start": 14846.26, + "end": 14847.52, + "probability": 0.7942 + }, + { + "start": 14847.72, + "end": 14848.44, + "probability": 0.9246 + }, + { + "start": 14848.54, + "end": 14850.64, + "probability": 0.9625 + }, + { + "start": 14850.8, + "end": 14852.4, + "probability": 0.9054 + }, + { + "start": 14852.62, + "end": 14854.84, + "probability": 0.8324 + }, + { + "start": 14856.0, + "end": 14856.0, + "probability": 0.137 + }, + { + "start": 14856.0, + "end": 14856.56, + "probability": 0.7278 + }, + { + "start": 14856.78, + "end": 14859.42, + "probability": 0.9083 + }, + { + "start": 14860.86, + "end": 14863.32, + "probability": 0.7947 + }, + { + "start": 14863.32, + "end": 14864.23, + "probability": 0.7109 + }, + { + "start": 14865.2, + "end": 14867.58, + "probability": 0.0377 + }, + { + "start": 14874.24, + "end": 14876.9, + "probability": 0.1014 + }, + { + "start": 14876.9, + "end": 14876.9, + "probability": 0.1473 + }, + { + "start": 14876.9, + "end": 14876.9, + "probability": 0.081 + }, + { + "start": 14876.9, + "end": 14877.8, + "probability": 0.1724 + }, + { + "start": 14879.0, + "end": 14884.2, + "probability": 0.5978 + }, + { + "start": 14884.9, + "end": 14887.88, + "probability": 0.9954 + }, + { + "start": 14888.08, + "end": 14889.48, + "probability": 0.7146 + }, + { + "start": 14890.14, + "end": 14894.13, + "probability": 0.9985 + }, + { + "start": 14894.74, + "end": 14895.4, + "probability": 0.9777 + }, + { + "start": 14896.08, + "end": 14900.04, + "probability": 0.9624 + }, + { + "start": 14900.96, + "end": 14904.53, + "probability": 0.9982 + }, + { + "start": 14905.06, + "end": 14906.28, + "probability": 0.9972 + }, + { + "start": 14906.64, + "end": 14907.16, + "probability": 0.9143 + }, + { + "start": 14907.78, + "end": 14909.26, + "probability": 0.9629 + }, + { + "start": 14909.58, + "end": 14910.64, + "probability": 0.9459 + }, + { + "start": 14911.48, + "end": 14912.02, + "probability": 0.9313 + }, + { + "start": 14912.76, + "end": 14914.74, + "probability": 0.9932 + }, + { + "start": 14915.64, + "end": 14919.06, + "probability": 0.9749 + }, + { + "start": 14919.26, + "end": 14921.34, + "probability": 0.8921 + }, + { + "start": 14922.08, + "end": 14924.76, + "probability": 0.9971 + }, + { + "start": 14925.54, + "end": 14926.34, + "probability": 0.7426 + }, + { + "start": 14926.5, + "end": 14927.18, + "probability": 0.706 + }, + { + "start": 14928.12, + "end": 14928.98, + "probability": 0.0008 + }, + { + "start": 14930.24, + "end": 14930.78, + "probability": 0.0435 + }, + { + "start": 14930.78, + "end": 14932.98, + "probability": 0.7819 + }, + { + "start": 14933.56, + "end": 14935.44, + "probability": 0.825 + }, + { + "start": 14936.24, + "end": 14938.46, + "probability": 0.9771 + }, + { + "start": 14938.68, + "end": 14940.93, + "probability": 0.9448 + }, + { + "start": 14942.22, + "end": 14945.6, + "probability": 0.7712 + }, + { + "start": 14946.9, + "end": 14949.0, + "probability": 0.0331 + }, + { + "start": 14949.54, + "end": 14953.02, + "probability": 0.9233 + }, + { + "start": 14953.66, + "end": 14955.18, + "probability": 0.0436 + }, + { + "start": 14955.18, + "end": 14956.42, + "probability": 0.8955 + }, + { + "start": 14957.84, + "end": 14960.56, + "probability": 0.9958 + }, + { + "start": 14963.52, + "end": 14965.44, + "probability": 0.8999 + }, + { + "start": 14965.82, + "end": 14966.73, + "probability": 0.8927 + }, + { + "start": 14968.32, + "end": 14970.88, + "probability": 0.9468 + }, + { + "start": 14971.0, + "end": 14974.26, + "probability": 0.9958 + }, + { + "start": 14975.16, + "end": 14977.96, + "probability": 0.9718 + }, + { + "start": 14979.14, + "end": 14982.07, + "probability": 0.9534 + }, + { + "start": 14983.32, + "end": 14985.04, + "probability": 0.6674 + }, + { + "start": 14986.38, + "end": 14987.52, + "probability": 0.9694 + }, + { + "start": 14988.06, + "end": 14993.06, + "probability": 0.9858 + }, + { + "start": 14993.52, + "end": 14995.21, + "probability": 0.7737 + }, + { + "start": 14996.0, + "end": 14997.04, + "probability": 0.8866 + }, + { + "start": 14998.08, + "end": 15000.84, + "probability": 0.8048 + }, + { + "start": 15001.44, + "end": 15003.32, + "probability": 0.8517 + }, + { + "start": 15003.96, + "end": 15006.66, + "probability": 0.9612 + }, + { + "start": 15007.4, + "end": 15009.4, + "probability": 0.8895 + }, + { + "start": 15010.06, + "end": 15014.56, + "probability": 0.9784 + }, + { + "start": 15015.18, + "end": 15018.88, + "probability": 0.9848 + }, + { + "start": 15019.1, + "end": 15020.0, + "probability": 0.6899 + }, + { + "start": 15020.12, + "end": 15023.28, + "probability": 0.9902 + }, + { + "start": 15023.32, + "end": 15023.82, + "probability": 0.6772 + }, + { + "start": 15024.14, + "end": 15025.26, + "probability": 0.9407 + }, + { + "start": 15025.68, + "end": 15026.72, + "probability": 0.9349 + }, + { + "start": 15027.94, + "end": 15030.22, + "probability": 0.3624 + }, + { + "start": 15030.44, + "end": 15031.3, + "probability": 0.5643 + }, + { + "start": 15032.72, + "end": 15035.84, + "probability": 0.7188 + }, + { + "start": 15036.66, + "end": 15040.18, + "probability": 0.9557 + }, + { + "start": 15040.88, + "end": 15044.12, + "probability": 0.9607 + }, + { + "start": 15045.06, + "end": 15046.3, + "probability": 0.8722 + }, + { + "start": 15046.4, + "end": 15050.42, + "probability": 0.9944 + }, + { + "start": 15051.24, + "end": 15055.28, + "probability": 0.8867 + }, + { + "start": 15055.38, + "end": 15056.56, + "probability": 0.9679 + }, + { + "start": 15057.06, + "end": 15059.88, + "probability": 0.9966 + }, + { + "start": 15059.98, + "end": 15060.97, + "probability": 0.9761 + }, + { + "start": 15061.68, + "end": 15063.34, + "probability": 0.7983 + }, + { + "start": 15063.42, + "end": 15067.44, + "probability": 0.9857 + }, + { + "start": 15068.28, + "end": 15069.09, + "probability": 0.9028 + }, + { + "start": 15070.38, + "end": 15072.06, + "probability": 0.8943 + }, + { + "start": 15072.34, + "end": 15073.14, + "probability": 0.8973 + }, + { + "start": 15074.86, + "end": 15075.58, + "probability": 0.7165 + }, + { + "start": 15075.86, + "end": 15079.56, + "probability": 0.96 + }, + { + "start": 15080.52, + "end": 15082.08, + "probability": 0.9559 + }, + { + "start": 15082.28, + "end": 15082.98, + "probability": 0.9795 + }, + { + "start": 15083.64, + "end": 15088.69, + "probability": 0.941 + }, + { + "start": 15089.8, + "end": 15092.44, + "probability": 0.9813 + }, + { + "start": 15093.22, + "end": 15097.66, + "probability": 0.988 + }, + { + "start": 15097.66, + "end": 15102.18, + "probability": 0.9867 + }, + { + "start": 15102.5, + "end": 15104.14, + "probability": 0.8343 + }, + { + "start": 15104.62, + "end": 15105.2, + "probability": 0.8387 + }, + { + "start": 15105.32, + "end": 15105.6, + "probability": 0.5384 + }, + { + "start": 15105.86, + "end": 15106.7, + "probability": 0.9006 + }, + { + "start": 15107.42, + "end": 15111.02, + "probability": 0.8968 + }, + { + "start": 15111.54, + "end": 15115.82, + "probability": 0.8715 + }, + { + "start": 15116.58, + "end": 15119.72, + "probability": 0.7676 + }, + { + "start": 15119.72, + "end": 15120.34, + "probability": 0.6456 + }, + { + "start": 15120.84, + "end": 15124.5, + "probability": 0.98 + }, + { + "start": 15124.6, + "end": 15124.8, + "probability": 0.9098 + }, + { + "start": 15125.12, + "end": 15127.42, + "probability": 0.9303 + }, + { + "start": 15128.06, + "end": 15129.28, + "probability": 0.7081 + }, + { + "start": 15129.46, + "end": 15135.38, + "probability": 0.9832 + }, + { + "start": 15135.4, + "end": 15136.3, + "probability": 0.7855 + }, + { + "start": 15136.4, + "end": 15140.06, + "probability": 0.9944 + }, + { + "start": 15140.24, + "end": 15140.56, + "probability": 0.6991 + }, + { + "start": 15140.58, + "end": 15140.9, + "probability": 0.8372 + }, + { + "start": 15141.48, + "end": 15144.6, + "probability": 0.9945 + }, + { + "start": 15144.74, + "end": 15151.78, + "probability": 0.9573 + }, + { + "start": 15152.74, + "end": 15156.8, + "probability": 0.9593 + }, + { + "start": 15157.5, + "end": 15164.08, + "probability": 0.991 + }, + { + "start": 15164.9, + "end": 15174.22, + "probability": 0.9729 + }, + { + "start": 15174.9, + "end": 15180.44, + "probability": 0.9722 + }, + { + "start": 15180.68, + "end": 15183.66, + "probability": 0.8765 + }, + { + "start": 15184.62, + "end": 15185.14, + "probability": 0.6683 + }, + { + "start": 15185.26, + "end": 15185.68, + "probability": 0.7821 + }, + { + "start": 15186.22, + "end": 15190.58, + "probability": 0.8616 + }, + { + "start": 15190.72, + "end": 15194.3, + "probability": 0.9772 + }, + { + "start": 15194.36, + "end": 15194.84, + "probability": 0.809 + }, + { + "start": 15194.86, + "end": 15195.28, + "probability": 0.4265 + }, + { + "start": 15195.64, + "end": 15196.64, + "probability": 0.9102 + }, + { + "start": 15197.16, + "end": 15199.82, + "probability": 0.933 + }, + { + "start": 15200.28, + "end": 15202.7, + "probability": 0.9589 + }, + { + "start": 15203.18, + "end": 15203.98, + "probability": 0.8741 + }, + { + "start": 15204.56, + "end": 15207.86, + "probability": 0.7727 + }, + { + "start": 15208.74, + "end": 15211.86, + "probability": 0.9897 + }, + { + "start": 15212.58, + "end": 15215.06, + "probability": 0.9866 + }, + { + "start": 15216.26, + "end": 15221.5, + "probability": 0.948 + }, + { + "start": 15221.88, + "end": 15222.1, + "probability": 0.3909 + }, + { + "start": 15222.16, + "end": 15224.04, + "probability": 0.3905 + }, + { + "start": 15224.56, + "end": 15224.94, + "probability": 0.3414 + }, + { + "start": 15224.94, + "end": 15228.7, + "probability": 0.9775 + }, + { + "start": 15229.28, + "end": 15232.2, + "probability": 0.9924 + }, + { + "start": 15232.32, + "end": 15236.72, + "probability": 0.9894 + }, + { + "start": 15236.98, + "end": 15239.56, + "probability": 0.9802 + }, + { + "start": 15240.92, + "end": 15244.68, + "probability": 0.9977 + }, + { + "start": 15244.68, + "end": 15249.72, + "probability": 0.9989 + }, + { + "start": 15250.3, + "end": 15252.88, + "probability": 1.0 + }, + { + "start": 15253.08, + "end": 15254.14, + "probability": 0.9457 + }, + { + "start": 15255.08, + "end": 15257.41, + "probability": 0.999 + }, + { + "start": 15257.88, + "end": 15263.74, + "probability": 0.9912 + }, + { + "start": 15263.74, + "end": 15268.94, + "probability": 0.8765 + }, + { + "start": 15270.4, + "end": 15275.74, + "probability": 0.9657 + }, + { + "start": 15275.84, + "end": 15277.02, + "probability": 0.8188 + }, + { + "start": 15277.18, + "end": 15280.1, + "probability": 0.9938 + }, + { + "start": 15280.26, + "end": 15280.86, + "probability": 0.6173 + }, + { + "start": 15281.4, + "end": 15286.74, + "probability": 0.974 + }, + { + "start": 15286.74, + "end": 15289.4, + "probability": 0.9983 + }, + { + "start": 15289.8, + "end": 15293.56, + "probability": 0.8171 + }, + { + "start": 15294.72, + "end": 15302.46, + "probability": 0.9574 + }, + { + "start": 15302.58, + "end": 15305.63, + "probability": 0.9963 + }, + { + "start": 15306.3, + "end": 15309.84, + "probability": 0.9967 + }, + { + "start": 15309.84, + "end": 15313.98, + "probability": 0.998 + }, + { + "start": 15314.1, + "end": 15317.98, + "probability": 0.9916 + }, + { + "start": 15318.02, + "end": 15320.76, + "probability": 0.999 + }, + { + "start": 15320.84, + "end": 15321.16, + "probability": 0.5854 + }, + { + "start": 15321.3, + "end": 15327.14, + "probability": 0.9911 + }, + { + "start": 15328.1, + "end": 15330.2, + "probability": 0.9049 + }, + { + "start": 15330.78, + "end": 15333.54, + "probability": 0.89 + }, + { + "start": 15334.06, + "end": 15336.86, + "probability": 0.9697 + }, + { + "start": 15337.04, + "end": 15337.94, + "probability": 0.8577 + }, + { + "start": 15338.34, + "end": 15341.46, + "probability": 0.995 + }, + { + "start": 15341.6, + "end": 15346.84, + "probability": 0.9932 + }, + { + "start": 15347.96, + "end": 15353.84, + "probability": 0.9533 + }, + { + "start": 15354.64, + "end": 15359.96, + "probability": 0.9977 + }, + { + "start": 15360.04, + "end": 15362.42, + "probability": 0.9877 + }, + { + "start": 15362.98, + "end": 15363.86, + "probability": 0.8422 + }, + { + "start": 15364.98, + "end": 15366.38, + "probability": 0.7846 + }, + { + "start": 15367.04, + "end": 15369.1, + "probability": 0.9815 + }, + { + "start": 15369.3, + "end": 15369.52, + "probability": 0.8074 + }, + { + "start": 15371.06, + "end": 15371.78, + "probability": 0.6219 + }, + { + "start": 15372.44, + "end": 15374.2, + "probability": 0.9308 + }, + { + "start": 15375.26, + "end": 15376.76, + "probability": 0.9268 + }, + { + "start": 15377.54, + "end": 15383.08, + "probability": 0.808 + }, + { + "start": 15383.8, + "end": 15386.58, + "probability": 0.4669 + }, + { + "start": 15392.26, + "end": 15392.34, + "probability": 0.2469 + }, + { + "start": 15392.34, + "end": 15394.55, + "probability": 0.4629 + }, + { + "start": 15395.48, + "end": 15396.8, + "probability": 0.4824 + }, + { + "start": 15397.94, + "end": 15400.32, + "probability": 0.805 + }, + { + "start": 15400.38, + "end": 15401.6, + "probability": 0.5698 + }, + { + "start": 15401.72, + "end": 15404.46, + "probability": 0.5614 + }, + { + "start": 15404.54, + "end": 15405.02, + "probability": 0.6637 + }, + { + "start": 15405.46, + "end": 15408.04, + "probability": 0.6527 + }, + { + "start": 15408.76, + "end": 15409.25, + "probability": 0.6573 + }, + { + "start": 15409.7, + "end": 15411.86, + "probability": 0.9114 + }, + { + "start": 15411.98, + "end": 15415.38, + "probability": 0.8874 + }, + { + "start": 15415.9, + "end": 15416.3, + "probability": 0.9218 + }, + { + "start": 15417.46, + "end": 15418.98, + "probability": 0.8126 + }, + { + "start": 15420.26, + "end": 15424.38, + "probability": 0.8061 + }, + { + "start": 15424.86, + "end": 15426.32, + "probability": 0.9204 + }, + { + "start": 15426.88, + "end": 15428.24, + "probability": 0.9849 + }, + { + "start": 15428.96, + "end": 15429.3, + "probability": 0.3007 + }, + { + "start": 15430.02, + "end": 15432.98, + "probability": 0.9731 + }, + { + "start": 15435.44, + "end": 15437.18, + "probability": 0.965 + }, + { + "start": 15439.5, + "end": 15441.08, + "probability": 0.6616 + }, + { + "start": 15441.64, + "end": 15444.26, + "probability": 0.9861 + }, + { + "start": 15445.56, + "end": 15450.72, + "probability": 0.9855 + }, + { + "start": 15451.34, + "end": 15452.04, + "probability": 0.3904 + }, + { + "start": 15452.88, + "end": 15457.74, + "probability": 0.9707 + }, + { + "start": 15458.78, + "end": 15460.48, + "probability": 0.5273 + }, + { + "start": 15461.54, + "end": 15464.24, + "probability": 0.7311 + }, + { + "start": 15464.92, + "end": 15467.08, + "probability": 0.624 + }, + { + "start": 15467.2, + "end": 15468.42, + "probability": 0.6907 + }, + { + "start": 15469.78, + "end": 15472.3, + "probability": 0.891 + }, + { + "start": 15473.32, + "end": 15474.58, + "probability": 0.3577 + }, + { + "start": 15475.6, + "end": 15476.84, + "probability": 0.8638 + }, + { + "start": 15477.82, + "end": 15478.2, + "probability": 0.3528 + }, + { + "start": 15478.48, + "end": 15480.62, + "probability": 0.9956 + }, + { + "start": 15481.74, + "end": 15481.88, + "probability": 0.3623 + }, + { + "start": 15481.88, + "end": 15484.32, + "probability": 0.5034 + }, + { + "start": 15485.48, + "end": 15485.48, + "probability": 0.8555 + }, + { + "start": 15487.06, + "end": 15489.04, + "probability": 0.9187 + }, + { + "start": 15490.0, + "end": 15491.56, + "probability": 0.9917 + }, + { + "start": 15492.1, + "end": 15493.5, + "probability": 0.9795 + }, + { + "start": 15494.02, + "end": 15496.1, + "probability": 0.8679 + }, + { + "start": 15496.62, + "end": 15497.24, + "probability": 0.9963 + }, + { + "start": 15498.2, + "end": 15502.14, + "probability": 0.9069 + }, + { + "start": 15502.22, + "end": 15503.22, + "probability": 0.7142 + }, + { + "start": 15503.74, + "end": 15505.98, + "probability": 0.9539 + }, + { + "start": 15506.62, + "end": 15509.88, + "probability": 0.9313 + }, + { + "start": 15509.88, + "end": 15510.44, + "probability": 0.7503 + }, + { + "start": 15510.86, + "end": 15511.06, + "probability": 0.6367 + }, + { + "start": 15511.48, + "end": 15512.94, + "probability": 0.6516 + }, + { + "start": 15513.02, + "end": 15513.78, + "probability": 0.8247 + }, + { + "start": 15514.32, + "end": 15515.08, + "probability": 0.7294 + }, + { + "start": 15518.88, + "end": 15519.62, + "probability": 0.4888 + }, + { + "start": 15520.68, + "end": 15521.78, + "probability": 0.9785 + }, + { + "start": 15522.38, + "end": 15522.62, + "probability": 0.7437 + }, + { + "start": 15523.38, + "end": 15527.74, + "probability": 0.9653 + }, + { + "start": 15527.8, + "end": 15528.74, + "probability": 0.4966 + }, + { + "start": 15530.71, + "end": 15532.54, + "probability": 0.9697 + }, + { + "start": 15532.82, + "end": 15540.5, + "probability": 0.9888 + }, + { + "start": 15541.92, + "end": 15543.86, + "probability": 0.8271 + }, + { + "start": 15544.9, + "end": 15547.66, + "probability": 0.8962 + }, + { + "start": 15548.46, + "end": 15550.34, + "probability": 0.5195 + }, + { + "start": 15551.0, + "end": 15553.04, + "probability": 0.7286 + }, + { + "start": 15553.98, + "end": 15554.38, + "probability": 0.8831 + }, + { + "start": 15555.36, + "end": 15555.96, + "probability": 0.68 + }, + { + "start": 15556.4, + "end": 15557.61, + "probability": 0.9497 + }, + { + "start": 15558.74, + "end": 15561.68, + "probability": 0.9747 + }, + { + "start": 15562.76, + "end": 15564.16, + "probability": 0.4662 + }, + { + "start": 15564.68, + "end": 15567.38, + "probability": 0.9015 + }, + { + "start": 15567.96, + "end": 15571.08, + "probability": 0.5767 + }, + { + "start": 15571.08, + "end": 15571.95, + "probability": 0.3392 + }, + { + "start": 15573.3, + "end": 15574.78, + "probability": 0.9971 + }, + { + "start": 15575.42, + "end": 15576.58, + "probability": 0.9124 + }, + { + "start": 15576.8, + "end": 15580.44, + "probability": 0.9927 + }, + { + "start": 15581.0, + "end": 15581.34, + "probability": 0.8923 + }, + { + "start": 15582.8, + "end": 15585.68, + "probability": 0.8395 + }, + { + "start": 15587.06, + "end": 15589.52, + "probability": 0.584 + }, + { + "start": 15592.28, + "end": 15593.6, + "probability": 0.6365 + }, + { + "start": 15594.85, + "end": 15595.92, + "probability": 0.5401 + }, + { + "start": 15599.5, + "end": 15600.76, + "probability": 0.2125 + }, + { + "start": 15602.24, + "end": 15604.82, + "probability": 0.7955 + }, + { + "start": 15604.94, + "end": 15605.92, + "probability": 0.7013 + }, + { + "start": 15605.96, + "end": 15606.78, + "probability": 0.6406 + }, + { + "start": 15607.88, + "end": 15608.02, + "probability": 0.0407 + }, + { + "start": 15608.02, + "end": 15608.54, + "probability": 0.3203 + }, + { + "start": 15609.14, + "end": 15609.7, + "probability": 0.5811 + }, + { + "start": 15619.38, + "end": 15620.14, + "probability": 0.1793 + }, + { + "start": 15621.26, + "end": 15622.76, + "probability": 0.7721 + }, + { + "start": 15623.92, + "end": 15624.68, + "probability": 0.8481 + }, + { + "start": 15625.52, + "end": 15627.16, + "probability": 0.6437 + }, + { + "start": 15628.58, + "end": 15632.54, + "probability": 0.6251 + }, + { + "start": 15634.28, + "end": 15636.78, + "probability": 0.7473 + }, + { + "start": 15637.1, + "end": 15638.38, + "probability": 0.283 + }, + { + "start": 15640.66, + "end": 15642.28, + "probability": 0.0767 + }, + { + "start": 15642.5, + "end": 15642.96, + "probability": 0.0739 + }, + { + "start": 15644.04, + "end": 15647.46, + "probability": 0.2894 + }, + { + "start": 15649.16, + "end": 15650.52, + "probability": 0.0703 + }, + { + "start": 15650.52, + "end": 15650.74, + "probability": 0.3562 + }, + { + "start": 15651.34, + "end": 15652.08, + "probability": 0.5507 + }, + { + "start": 15653.32, + "end": 15655.66, + "probability": 0.3119 + }, + { + "start": 15656.84, + "end": 15657.32, + "probability": 0.5602 + }, + { + "start": 15657.44, + "end": 15661.3, + "probability": 0.9883 + }, + { + "start": 15661.4, + "end": 15662.72, + "probability": 0.9868 + }, + { + "start": 15663.18, + "end": 15664.12, + "probability": 0.9491 + }, + { + "start": 15664.82, + "end": 15666.26, + "probability": 0.8947 + }, + { + "start": 15667.14, + "end": 15668.36, + "probability": 0.8926 + }, + { + "start": 15685.2, + "end": 15686.02, + "probability": 0.0863 + }, + { + "start": 15686.02, + "end": 15686.02, + "probability": 0.0345 + }, + { + "start": 15686.08, + "end": 15686.54, + "probability": 0.1423 + }, + { + "start": 15686.54, + "end": 15686.96, + "probability": 0.0745 + }, + { + "start": 15687.0, + "end": 15687.26, + "probability": 0.3302 + }, + { + "start": 15709.4, + "end": 15711.9, + "probability": 0.5291 + }, + { + "start": 15712.76, + "end": 15714.68, + "probability": 0.6745 + }, + { + "start": 15715.66, + "end": 15717.42, + "probability": 0.6741 + }, + { + "start": 15719.28, + "end": 15722.86, + "probability": 0.9517 + }, + { + "start": 15723.9, + "end": 15724.16, + "probability": 0.7499 + }, + { + "start": 15726.16, + "end": 15728.36, + "probability": 0.9762 + }, + { + "start": 15728.88, + "end": 15734.22, + "probability": 0.0568 + }, + { + "start": 15736.58, + "end": 15737.92, + "probability": 0.2353 + }, + { + "start": 15738.56, + "end": 15738.64, + "probability": 0.0748 + }, + { + "start": 15738.64, + "end": 15738.64, + "probability": 0.0081 + }, + { + "start": 15738.64, + "end": 15738.64, + "probability": 0.3501 + }, + { + "start": 15738.64, + "end": 15739.32, + "probability": 0.1105 + }, + { + "start": 15740.18, + "end": 15743.14, + "probability": 0.6698 + }, + { + "start": 15743.66, + "end": 15744.22, + "probability": 0.576 + }, + { + "start": 15745.36, + "end": 15749.26, + "probability": 0.6721 + }, + { + "start": 15771.34, + "end": 15771.8, + "probability": 0.7331 + }, + { + "start": 15773.34, + "end": 15775.9, + "probability": 0.7532 + }, + { + "start": 15776.16, + "end": 15776.52, + "probability": 0.4691 + }, + { + "start": 15776.52, + "end": 15777.8, + "probability": 0.856 + }, + { + "start": 15777.9, + "end": 15778.98, + "probability": 0.6983 + }, + { + "start": 15780.14, + "end": 15788.06, + "probability": 0.9038 + }, + { + "start": 15788.38, + "end": 15788.96, + "probability": 0.8854 + }, + { + "start": 15789.92, + "end": 15791.1, + "probability": 0.9739 + }, + { + "start": 15793.12, + "end": 15794.5, + "probability": 0.9373 + }, + { + "start": 15794.58, + "end": 15796.68, + "probability": 0.6665 + }, + { + "start": 15797.2, + "end": 15799.9, + "probability": 0.9417 + }, + { + "start": 15800.14, + "end": 15801.12, + "probability": 0.8544 + }, + { + "start": 15802.66, + "end": 15806.3, + "probability": 0.751 + }, + { + "start": 15806.86, + "end": 15807.98, + "probability": 0.7153 + }, + { + "start": 15810.12, + "end": 15810.92, + "probability": 0.7239 + }, + { + "start": 15812.44, + "end": 15815.24, + "probability": 0.7302 + }, + { + "start": 15816.54, + "end": 15819.84, + "probability": 0.9907 + }, + { + "start": 15821.58, + "end": 15822.6, + "probability": 0.2566 + }, + { + "start": 15824.78, + "end": 15828.18, + "probability": 0.9111 + }, + { + "start": 15829.38, + "end": 15830.82, + "probability": 0.8176 + }, + { + "start": 15832.0, + "end": 15834.32, + "probability": 0.9956 + }, + { + "start": 15835.06, + "end": 15837.26, + "probability": 0.947 + }, + { + "start": 15837.9, + "end": 15839.78, + "probability": 0.9707 + }, + { + "start": 15841.44, + "end": 15844.4, + "probability": 0.9951 + }, + { + "start": 15846.34, + "end": 15849.26, + "probability": 0.9964 + }, + { + "start": 15849.32, + "end": 15850.86, + "probability": 0.8392 + }, + { + "start": 15851.0, + "end": 15851.32, + "probability": 0.8858 + }, + { + "start": 15852.14, + "end": 15855.44, + "probability": 0.9847 + }, + { + "start": 15856.24, + "end": 15858.48, + "probability": 0.7813 + }, + { + "start": 15858.76, + "end": 15859.28, + "probability": 0.9492 + }, + { + "start": 15859.84, + "end": 15860.52, + "probability": 0.9787 + }, + { + "start": 15861.06, + "end": 15863.44, + "probability": 0.9167 + }, + { + "start": 15864.6, + "end": 15866.51, + "probability": 0.8982 + }, + { + "start": 15867.84, + "end": 15868.58, + "probability": 0.7328 + }, + { + "start": 15870.44, + "end": 15873.3, + "probability": 0.9935 + }, + { + "start": 15873.46, + "end": 15875.14, + "probability": 0.9173 + }, + { + "start": 15875.14, + "end": 15876.28, + "probability": 0.957 + }, + { + "start": 15878.34, + "end": 15881.12, + "probability": 0.7393 + }, + { + "start": 15881.86, + "end": 15886.68, + "probability": 0.9958 + }, + { + "start": 15887.88, + "end": 15889.22, + "probability": 0.8193 + }, + { + "start": 15889.98, + "end": 15891.94, + "probability": 0.9113 + }, + { + "start": 15893.24, + "end": 15895.8, + "probability": 0.9476 + }, + { + "start": 15899.0, + "end": 15899.72, + "probability": 0.4902 + }, + { + "start": 15902.66, + "end": 15904.12, + "probability": 0.6202 + }, + { + "start": 15904.9, + "end": 15905.9, + "probability": 0.6555 + }, + { + "start": 15907.14, + "end": 15912.1, + "probability": 0.928 + }, + { + "start": 15913.0, + "end": 15913.84, + "probability": 0.9547 + }, + { + "start": 15914.48, + "end": 15916.22, + "probability": 0.9951 + }, + { + "start": 15916.98, + "end": 15920.3, + "probability": 0.9686 + }, + { + "start": 15921.34, + "end": 15923.34, + "probability": 0.7783 + }, + { + "start": 15924.4, + "end": 15925.65, + "probability": 0.9752 + }, + { + "start": 15926.54, + "end": 15929.28, + "probability": 0.9681 + }, + { + "start": 15930.5, + "end": 15930.6, + "probability": 0.3037 + }, + { + "start": 15930.6, + "end": 15933.84, + "probability": 0.9389 + }, + { + "start": 15934.54, + "end": 15937.04, + "probability": 0.9967 + }, + { + "start": 15937.82, + "end": 15940.54, + "probability": 0.9695 + }, + { + "start": 15940.58, + "end": 15942.56, + "probability": 0.9968 + }, + { + "start": 15942.94, + "end": 15943.14, + "probability": 0.4159 + }, + { + "start": 15943.3, + "end": 15943.94, + "probability": 0.6868 + }, + { + "start": 15944.72, + "end": 15946.7, + "probability": 0.9872 + }, + { + "start": 15947.5, + "end": 15949.26, + "probability": 0.9643 + }, + { + "start": 15949.68, + "end": 15952.66, + "probability": 0.9989 + }, + { + "start": 15953.54, + "end": 15956.04, + "probability": 0.8878 + }, + { + "start": 15957.0, + "end": 15957.43, + "probability": 0.8177 + }, + { + "start": 15958.36, + "end": 15958.83, + "probability": 0.8104 + }, + { + "start": 15960.6, + "end": 15961.58, + "probability": 0.9268 + }, + { + "start": 15962.14, + "end": 15963.74, + "probability": 0.9322 + }, + { + "start": 15964.76, + "end": 15967.8, + "probability": 0.8907 + }, + { + "start": 15968.9, + "end": 15972.68, + "probability": 0.974 + }, + { + "start": 15974.18, + "end": 15977.5, + "probability": 0.9878 + }, + { + "start": 15977.6, + "end": 15979.68, + "probability": 0.9978 + }, + { + "start": 15979.8, + "end": 15980.94, + "probability": 0.9466 + }, + { + "start": 15981.1, + "end": 15981.96, + "probability": 0.9549 + }, + { + "start": 15982.78, + "end": 15984.12, + "probability": 0.9951 + }, + { + "start": 15984.78, + "end": 15986.5, + "probability": 0.9819 + }, + { + "start": 15987.38, + "end": 15989.62, + "probability": 0.9897 + }, + { + "start": 15989.84, + "end": 15990.64, + "probability": 0.9126 + }, + { + "start": 15991.14, + "end": 15992.12, + "probability": 0.905 + }, + { + "start": 15993.68, + "end": 15995.78, + "probability": 0.988 + }, + { + "start": 15996.46, + "end": 15997.2, + "probability": 0.9823 + }, + { + "start": 15997.82, + "end": 15999.74, + "probability": 0.2605 + }, + { + "start": 16000.18, + "end": 16002.78, + "probability": 0.915 + }, + { + "start": 16003.34, + "end": 16004.34, + "probability": 0.7022 + }, + { + "start": 16005.5, + "end": 16008.02, + "probability": 0.926 + }, + { + "start": 16008.58, + "end": 16008.88, + "probability": 0.7877 + }, + { + "start": 16010.02, + "end": 16011.64, + "probability": 0.6337 + }, + { + "start": 16023.68, + "end": 16025.1, + "probability": 0.8936 + }, + { + "start": 16025.86, + "end": 16026.34, + "probability": 0.1746 + }, + { + "start": 16037.54, + "end": 16038.91, + "probability": 0.2241 + }, + { + "start": 16041.22, + "end": 16043.18, + "probability": 0.7687 + }, + { + "start": 16044.32, + "end": 16049.76, + "probability": 0.9956 + }, + { + "start": 16049.92, + "end": 16051.1, + "probability": 0.9398 + }, + { + "start": 16052.14, + "end": 16052.5, + "probability": 0.7435 + }, + { + "start": 16053.82, + "end": 16058.26, + "probability": 0.9951 + }, + { + "start": 16059.08, + "end": 16062.88, + "probability": 0.9618 + }, + { + "start": 16064.78, + "end": 16067.09, + "probability": 0.7954 + }, + { + "start": 16068.94, + "end": 16074.32, + "probability": 0.99 + }, + { + "start": 16075.6, + "end": 16077.82, + "probability": 0.8541 + }, + { + "start": 16078.08, + "end": 16078.82, + "probability": 0.6575 + }, + { + "start": 16078.88, + "end": 16086.92, + "probability": 0.9901 + }, + { + "start": 16087.02, + "end": 16089.56, + "probability": 0.8687 + }, + { + "start": 16090.14, + "end": 16091.38, + "probability": 0.844 + }, + { + "start": 16092.34, + "end": 16093.2, + "probability": 0.9693 + }, + { + "start": 16094.4, + "end": 16095.0, + "probability": 0.6678 + }, + { + "start": 16095.36, + "end": 16098.24, + "probability": 0.9982 + }, + { + "start": 16098.44, + "end": 16105.7, + "probability": 0.9627 + }, + { + "start": 16106.4, + "end": 16109.28, + "probability": 0.9571 + }, + { + "start": 16109.46, + "end": 16111.64, + "probability": 0.9926 + }, + { + "start": 16112.18, + "end": 16114.12, + "probability": 0.9974 + }, + { + "start": 16114.38, + "end": 16115.44, + "probability": 0.4766 + }, + { + "start": 16117.8, + "end": 16122.24, + "probability": 0.9644 + }, + { + "start": 16123.24, + "end": 16128.28, + "probability": 0.9976 + }, + { + "start": 16128.38, + "end": 16128.9, + "probability": 0.733 + }, + { + "start": 16129.1, + "end": 16130.66, + "probability": 0.4866 + }, + { + "start": 16132.0, + "end": 16133.42, + "probability": 0.9029 + }, + { + "start": 16133.58, + "end": 16133.82, + "probability": 0.9001 + }, + { + "start": 16134.0, + "end": 16134.98, + "probability": 0.7341 + }, + { + "start": 16135.1, + "end": 16135.6, + "probability": 0.8472 + }, + { + "start": 16135.62, + "end": 16136.74, + "probability": 0.7815 + }, + { + "start": 16137.54, + "end": 16138.06, + "probability": 0.9111 + }, + { + "start": 16138.2, + "end": 16138.82, + "probability": 0.9821 + }, + { + "start": 16139.38, + "end": 16140.54, + "probability": 0.9757 + }, + { + "start": 16140.7, + "end": 16146.42, + "probability": 0.9779 + }, + { + "start": 16147.02, + "end": 16148.54, + "probability": 0.9823 + }, + { + "start": 16150.0, + "end": 16154.62, + "probability": 0.9389 + }, + { + "start": 16155.14, + "end": 16157.18, + "probability": 0.1879 + }, + { + "start": 16158.24, + "end": 16163.28, + "probability": 0.9724 + }, + { + "start": 16163.58, + "end": 16164.88, + "probability": 0.842 + }, + { + "start": 16165.54, + "end": 16170.38, + "probability": 0.9888 + }, + { + "start": 16170.52, + "end": 16171.18, + "probability": 0.6694 + }, + { + "start": 16172.34, + "end": 16173.94, + "probability": 0.9939 + }, + { + "start": 16174.32, + "end": 16176.88, + "probability": 0.9963 + }, + { + "start": 16177.4, + "end": 16181.9, + "probability": 0.9968 + }, + { + "start": 16183.18, + "end": 16184.36, + "probability": 0.9295 + }, + { + "start": 16186.74, + "end": 16192.24, + "probability": 0.9951 + }, + { + "start": 16192.74, + "end": 16196.6, + "probability": 0.9961 + }, + { + "start": 16196.8, + "end": 16199.02, + "probability": 0.9774 + }, + { + "start": 16199.9, + "end": 16201.78, + "probability": 0.9881 + }, + { + "start": 16202.5, + "end": 16205.44, + "probability": 0.9716 + }, + { + "start": 16205.94, + "end": 16208.46, + "probability": 0.9988 + }, + { + "start": 16209.08, + "end": 16211.4, + "probability": 0.949 + }, + { + "start": 16212.2, + "end": 16215.48, + "probability": 0.9554 + }, + { + "start": 16216.08, + "end": 16216.84, + "probability": 0.8295 + }, + { + "start": 16217.12, + "end": 16217.84, + "probability": 0.5861 + }, + { + "start": 16217.94, + "end": 16219.06, + "probability": 0.7641 + }, + { + "start": 16219.48, + "end": 16221.64, + "probability": 0.9811 + }, + { + "start": 16222.3, + "end": 16225.74, + "probability": 0.9854 + }, + { + "start": 16225.74, + "end": 16228.22, + "probability": 0.9843 + }, + { + "start": 16229.76, + "end": 16232.44, + "probability": 0.9958 + }, + { + "start": 16232.6, + "end": 16235.58, + "probability": 0.9105 + }, + { + "start": 16237.16, + "end": 16239.26, + "probability": 0.9971 + }, + { + "start": 16239.72, + "end": 16241.7, + "probability": 0.8848 + }, + { + "start": 16242.22, + "end": 16244.68, + "probability": 0.9543 + }, + { + "start": 16245.2, + "end": 16246.92, + "probability": 0.2412 + }, + { + "start": 16247.04, + "end": 16247.04, + "probability": 0.479 + }, + { + "start": 16247.04, + "end": 16247.42, + "probability": 0.3932 + }, + { + "start": 16247.42, + "end": 16248.16, + "probability": 0.9621 + }, + { + "start": 16249.32, + "end": 16254.94, + "probability": 0.8245 + }, + { + "start": 16255.76, + "end": 16257.16, + "probability": 0.8898 + }, + { + "start": 16258.28, + "end": 16259.3, + "probability": 0.7045 + }, + { + "start": 16259.5, + "end": 16261.52, + "probability": 0.6065 + }, + { + "start": 16261.58, + "end": 16262.98, + "probability": 0.9912 + }, + { + "start": 16263.42, + "end": 16264.86, + "probability": 0.9697 + }, + { + "start": 16265.1, + "end": 16266.12, + "probability": 0.9321 + }, + { + "start": 16266.86, + "end": 16268.34, + "probability": 0.9722 + }, + { + "start": 16268.48, + "end": 16268.62, + "probability": 0.079 + }, + { + "start": 16269.32, + "end": 16270.18, + "probability": 0.5054 + }, + { + "start": 16270.4, + "end": 16271.46, + "probability": 0.9923 + }, + { + "start": 16271.52, + "end": 16272.46, + "probability": 0.8643 + }, + { + "start": 16272.58, + "end": 16274.06, + "probability": 0.9557 + }, + { + "start": 16274.12, + "end": 16275.78, + "probability": 0.6778 + }, + { + "start": 16276.36, + "end": 16278.16, + "probability": 0.9952 + }, + { + "start": 16278.92, + "end": 16282.74, + "probability": 0.9628 + }, + { + "start": 16282.74, + "end": 16287.1, + "probability": 0.9937 + }, + { + "start": 16287.6, + "end": 16290.0, + "probability": 0.7588 + }, + { + "start": 16290.42, + "end": 16291.84, + "probability": 0.6173 + }, + { + "start": 16291.92, + "end": 16292.86, + "probability": 0.5012 + }, + { + "start": 16292.88, + "end": 16294.3, + "probability": 0.8716 + }, + { + "start": 16294.92, + "end": 16296.08, + "probability": 0.842 + }, + { + "start": 16296.9, + "end": 16301.7, + "probability": 0.7977 + }, + { + "start": 16302.84, + "end": 16304.64, + "probability": 0.9282 + }, + { + "start": 16305.12, + "end": 16305.66, + "probability": 0.4169 + }, + { + "start": 16305.72, + "end": 16306.5, + "probability": 0.8645 + }, + { + "start": 16306.66, + "end": 16307.18, + "probability": 0.8415 + }, + { + "start": 16307.34, + "end": 16307.74, + "probability": 0.3638 + }, + { + "start": 16307.78, + "end": 16308.44, + "probability": 0.7986 + }, + { + "start": 16309.06, + "end": 16312.86, + "probability": 0.9336 + }, + { + "start": 16313.26, + "end": 16313.52, + "probability": 0.743 + }, + { + "start": 16313.9, + "end": 16315.5, + "probability": 0.8655 + }, + { + "start": 16316.6, + "end": 16321.6, + "probability": 0.6045 + }, + { + "start": 16332.7, + "end": 16332.7, + "probability": 0.0675 + }, + { + "start": 16332.7, + "end": 16333.42, + "probability": 0.6346 + }, + { + "start": 16334.74, + "end": 16337.34, + "probability": 0.9203 + }, + { + "start": 16338.83, + "end": 16341.51, + "probability": 0.884 + }, + { + "start": 16343.06, + "end": 16344.7, + "probability": 0.9541 + }, + { + "start": 16345.26, + "end": 16352.98, + "probability": 0.9885 + }, + { + "start": 16353.66, + "end": 16358.52, + "probability": 0.9928 + }, + { + "start": 16358.72, + "end": 16359.66, + "probability": 0.7592 + }, + { + "start": 16359.82, + "end": 16363.04, + "probability": 0.9542 + }, + { + "start": 16363.38, + "end": 16369.22, + "probability": 0.9058 + }, + { + "start": 16370.48, + "end": 16373.56, + "probability": 0.9951 + }, + { + "start": 16374.46, + "end": 16377.16, + "probability": 0.9976 + }, + { + "start": 16377.16, + "end": 16381.1, + "probability": 0.9758 + }, + { + "start": 16381.2, + "end": 16384.84, + "probability": 0.99 + }, + { + "start": 16384.84, + "end": 16387.14, + "probability": 0.9956 + }, + { + "start": 16387.26, + "end": 16390.44, + "probability": 0.9934 + }, + { + "start": 16391.7, + "end": 16396.52, + "probability": 0.9981 + }, + { + "start": 16396.82, + "end": 16403.44, + "probability": 0.9941 + }, + { + "start": 16404.2, + "end": 16408.16, + "probability": 0.9918 + }, + { + "start": 16408.34, + "end": 16411.24, + "probability": 0.9821 + }, + { + "start": 16411.96, + "end": 16414.86, + "probability": 0.9034 + }, + { + "start": 16415.84, + "end": 16418.74, + "probability": 0.9967 + }, + { + "start": 16418.92, + "end": 16424.06, + "probability": 0.9915 + }, + { + "start": 16424.54, + "end": 16427.42, + "probability": 0.9391 + }, + { + "start": 16427.58, + "end": 16428.44, + "probability": 0.9809 + }, + { + "start": 16429.16, + "end": 16430.88, + "probability": 0.9561 + }, + { + "start": 16431.66, + "end": 16436.4, + "probability": 0.8108 + }, + { + "start": 16436.4, + "end": 16440.42, + "probability": 0.9932 + }, + { + "start": 16440.7, + "end": 16446.3, + "probability": 0.9963 + }, + { + "start": 16446.86, + "end": 16449.16, + "probability": 0.9265 + }, + { + "start": 16449.7, + "end": 16452.28, + "probability": 0.998 + }, + { + "start": 16452.28, + "end": 16455.06, + "probability": 0.9974 + }, + { + "start": 16456.44, + "end": 16458.76, + "probability": 0.9435 + }, + { + "start": 16458.86, + "end": 16462.58, + "probability": 0.981 + }, + { + "start": 16463.66, + "end": 16466.04, + "probability": 0.9951 + }, + { + "start": 16466.04, + "end": 16469.42, + "probability": 0.9961 + }, + { + "start": 16470.12, + "end": 16472.54, + "probability": 0.9994 + }, + { + "start": 16472.54, + "end": 16475.88, + "probability": 0.9553 + }, + { + "start": 16476.54, + "end": 16478.02, + "probability": 0.9688 + }, + { + "start": 16479.04, + "end": 16483.26, + "probability": 0.9897 + }, + { + "start": 16483.76, + "end": 16485.82, + "probability": 0.9878 + }, + { + "start": 16485.82, + "end": 16488.26, + "probability": 0.9977 + }, + { + "start": 16488.8, + "end": 16491.86, + "probability": 0.9937 + }, + { + "start": 16492.56, + "end": 16493.16, + "probability": 0.942 + }, + { + "start": 16493.7, + "end": 16496.32, + "probability": 0.9484 + }, + { + "start": 16496.8, + "end": 16498.98, + "probability": 0.9911 + }, + { + "start": 16498.98, + "end": 16501.18, + "probability": 0.9971 + }, + { + "start": 16502.1, + "end": 16504.46, + "probability": 0.9474 + }, + { + "start": 16504.46, + "end": 16506.6, + "probability": 0.9991 + }, + { + "start": 16507.58, + "end": 16507.66, + "probability": 0.0035 + }, + { + "start": 16507.8, + "end": 16511.18, + "probability": 0.996 + }, + { + "start": 16511.48, + "end": 16515.36, + "probability": 0.9604 + }, + { + "start": 16515.48, + "end": 16517.8, + "probability": 0.8439 + }, + { + "start": 16518.26, + "end": 16521.4, + "probability": 0.9995 + }, + { + "start": 16522.12, + "end": 16525.78, + "probability": 0.9987 + }, + { + "start": 16525.78, + "end": 16530.46, + "probability": 0.9989 + }, + { + "start": 16530.7, + "end": 16534.64, + "probability": 0.9955 + }, + { + "start": 16534.64, + "end": 16539.1, + "probability": 0.9932 + }, + { + "start": 16539.1, + "end": 16542.16, + "probability": 0.9741 + }, + { + "start": 16542.16, + "end": 16545.41, + "probability": 0.8247 + }, + { + "start": 16546.66, + "end": 16551.44, + "probability": 0.9338 + }, + { + "start": 16551.44, + "end": 16555.5, + "probability": 0.9967 + }, + { + "start": 16556.02, + "end": 16557.72, + "probability": 0.917 + }, + { + "start": 16558.28, + "end": 16562.22, + "probability": 0.9553 + }, + { + "start": 16562.7, + "end": 16566.54, + "probability": 0.9965 + }, + { + "start": 16568.24, + "end": 16569.3, + "probability": 0.0358 + }, + { + "start": 16569.3, + "end": 16572.34, + "probability": 0.9944 + }, + { + "start": 16572.54, + "end": 16574.4, + "probability": 0.7656 + }, + { + "start": 16575.88, + "end": 16580.62, + "probability": 0.6967 + }, + { + "start": 16580.62, + "end": 16584.82, + "probability": 0.9897 + }, + { + "start": 16585.78, + "end": 16590.16, + "probability": 0.9209 + }, + { + "start": 16590.22, + "end": 16595.9, + "probability": 0.9396 + }, + { + "start": 16596.8, + "end": 16600.56, + "probability": 0.9989 + }, + { + "start": 16601.24, + "end": 16603.68, + "probability": 0.9873 + }, + { + "start": 16603.68, + "end": 16606.0, + "probability": 0.9959 + }, + { + "start": 16607.74, + "end": 16611.46, + "probability": 0.9906 + }, + { + "start": 16611.48, + "end": 16614.34, + "probability": 0.9558 + }, + { + "start": 16615.9, + "end": 16618.7, + "probability": 0.8658 + }, + { + "start": 16619.28, + "end": 16623.24, + "probability": 0.9486 + }, + { + "start": 16623.28, + "end": 16626.88, + "probability": 0.9901 + }, + { + "start": 16628.29, + "end": 16634.18, + "probability": 0.9825 + }, + { + "start": 16634.22, + "end": 16638.8, + "probability": 0.9977 + }, + { + "start": 16639.38, + "end": 16644.74, + "probability": 0.9756 + }, + { + "start": 16645.64, + "end": 16650.5, + "probability": 0.9977 + }, + { + "start": 16650.5, + "end": 16654.94, + "probability": 0.9989 + }, + { + "start": 16655.58, + "end": 16657.74, + "probability": 0.8734 + }, + { + "start": 16658.54, + "end": 16661.16, + "probability": 0.9948 + }, + { + "start": 16661.16, + "end": 16664.74, + "probability": 0.9993 + }, + { + "start": 16665.8, + "end": 16669.2, + "probability": 0.9832 + }, + { + "start": 16669.64, + "end": 16672.46, + "probability": 0.9078 + }, + { + "start": 16674.34, + "end": 16675.06, + "probability": 0.7831 + }, + { + "start": 16675.6, + "end": 16677.38, + "probability": 0.0579 + }, + { + "start": 16677.98, + "end": 16679.32, + "probability": 0.2682 + }, + { + "start": 16679.58, + "end": 16679.58, + "probability": 0.6257 + }, + { + "start": 16679.58, + "end": 16679.58, + "probability": 0.1121 + }, + { + "start": 16679.58, + "end": 16680.52, + "probability": 0.3726 + }, + { + "start": 16680.74, + "end": 16681.76, + "probability": 0.2981 + }, + { + "start": 16682.56, + "end": 16685.67, + "probability": 0.7914 + }, + { + "start": 16689.18, + "end": 16690.06, + "probability": 0.7519 + }, + { + "start": 16691.82, + "end": 16695.96, + "probability": 0.9285 + }, + { + "start": 16696.62, + "end": 16697.66, + "probability": 0.9326 + }, + { + "start": 16697.78, + "end": 16698.3, + "probability": 0.9462 + }, + { + "start": 16699.66, + "end": 16700.78, + "probability": 0.9797 + }, + { + "start": 16702.26, + "end": 16703.48, + "probability": 0.7758 + }, + { + "start": 16704.52, + "end": 16705.2, + "probability": 0.7688 + }, + { + "start": 16706.38, + "end": 16708.42, + "probability": 0.9772 + }, + { + "start": 16708.56, + "end": 16710.27, + "probability": 0.9404 + }, + { + "start": 16710.94, + "end": 16711.66, + "probability": 0.9742 + }, + { + "start": 16712.32, + "end": 16713.13, + "probability": 0.9985 + }, + { + "start": 16714.1, + "end": 16716.42, + "probability": 0.7905 + }, + { + "start": 16717.26, + "end": 16720.08, + "probability": 0.9312 + }, + { + "start": 16720.82, + "end": 16722.44, + "probability": 0.9282 + }, + { + "start": 16723.84, + "end": 16725.78, + "probability": 0.9917 + }, + { + "start": 16726.36, + "end": 16727.28, + "probability": 0.7405 + }, + { + "start": 16728.18, + "end": 16729.36, + "probability": 0.9531 + }, + { + "start": 16730.02, + "end": 16730.6, + "probability": 0.9559 + }, + { + "start": 16731.44, + "end": 16734.07, + "probability": 0.999 + }, + { + "start": 16735.08, + "end": 16736.94, + "probability": 0.9731 + }, + { + "start": 16737.66, + "end": 16739.5, + "probability": 0.7948 + }, + { + "start": 16739.68, + "end": 16741.12, + "probability": 0.9697 + }, + { + "start": 16741.96, + "end": 16743.3, + "probability": 0.9897 + }, + { + "start": 16743.86, + "end": 16745.72, + "probability": 0.9776 + }, + { + "start": 16746.04, + "end": 16753.0, + "probability": 0.9546 + }, + { + "start": 16753.78, + "end": 16756.44, + "probability": 0.8512 + }, + { + "start": 16757.28, + "end": 16757.74, + "probability": 0.671 + }, + { + "start": 16758.26, + "end": 16761.88, + "probability": 0.88 + }, + { + "start": 16763.28, + "end": 16765.32, + "probability": 0.9846 + }, + { + "start": 16765.52, + "end": 16768.36, + "probability": 0.9067 + }, + { + "start": 16769.2, + "end": 16770.76, + "probability": 0.4942 + }, + { + "start": 16771.32, + "end": 16772.96, + "probability": 0.9968 + }, + { + "start": 16773.34, + "end": 16775.04, + "probability": 0.6543 + }, + { + "start": 16776.02, + "end": 16779.23, + "probability": 0.6156 + }, + { + "start": 16779.5, + "end": 16781.5, + "probability": 0.4602 + }, + { + "start": 16781.6, + "end": 16782.2, + "probability": 0.9178 + }, + { + "start": 16782.74, + "end": 16783.26, + "probability": 0.1035 + }, + { + "start": 16784.92, + "end": 16786.35, + "probability": 0.5638 + }, + { + "start": 16809.06, + "end": 16809.06, + "probability": 0.1484 + }, + { + "start": 16809.22, + "end": 16809.76, + "probability": 0.2114 + }, + { + "start": 16810.3, + "end": 16813.5, + "probability": 0.2969 + }, + { + "start": 16814.02, + "end": 16817.14, + "probability": 0.5539 + }, + { + "start": 16818.3, + "end": 16819.84, + "probability": 0.7791 + }, + { + "start": 16821.94, + "end": 16825.9, + "probability": 0.7647 + }, + { + "start": 16827.16, + "end": 16829.08, + "probability": 0.7498 + }, + { + "start": 16829.62, + "end": 16830.32, + "probability": 0.9016 + }, + { + "start": 16830.68, + "end": 16831.82, + "probability": 0.7702 + }, + { + "start": 16831.9, + "end": 16832.9, + "probability": 0.5945 + }, + { + "start": 16833.0, + "end": 16834.76, + "probability": 0.8102 + }, + { + "start": 16834.92, + "end": 16835.42, + "probability": 0.6672 + }, + { + "start": 16835.72, + "end": 16836.22, + "probability": 0.3004 + }, + { + "start": 16836.78, + "end": 16839.84, + "probability": 0.6206 + }, + { + "start": 16840.42, + "end": 16841.22, + "probability": 0.8632 + }, + { + "start": 16841.34, + "end": 16845.4, + "probability": 0.7805 + }, + { + "start": 16845.92, + "end": 16849.66, + "probability": 0.9938 + }, + { + "start": 16850.34, + "end": 16850.6, + "probability": 0.4492 + }, + { + "start": 16851.7, + "end": 16852.38, + "probability": 0.373 + }, + { + "start": 16853.08, + "end": 16854.81, + "probability": 0.8203 + }, + { + "start": 16855.58, + "end": 16857.12, + "probability": 0.5707 + }, + { + "start": 16857.54, + "end": 16859.06, + "probability": 0.8133 + }, + { + "start": 16859.6, + "end": 16861.28, + "probability": 0.7344 + }, + { + "start": 16861.86, + "end": 16863.18, + "probability": 0.3853 + }, + { + "start": 16863.7, + "end": 16869.18, + "probability": 0.952 + }, + { + "start": 16869.76, + "end": 16871.58, + "probability": 0.9419 + }, + { + "start": 16872.22, + "end": 16873.91, + "probability": 0.9492 + }, + { + "start": 16874.58, + "end": 16875.46, + "probability": 0.5095 + }, + { + "start": 16876.66, + "end": 16877.2, + "probability": 0.8986 + }, + { + "start": 16884.96, + "end": 16885.84, + "probability": 0.5679 + }, + { + "start": 16886.68, + "end": 16891.04, + "probability": 0.6874 + }, + { + "start": 16893.26, + "end": 16894.94, + "probability": 0.9983 + }, + { + "start": 16895.62, + "end": 16898.48, + "probability": 0.7715 + }, + { + "start": 16899.04, + "end": 16899.54, + "probability": 0.7555 + }, + { + "start": 16900.74, + "end": 16903.26, + "probability": 0.5994 + }, + { + "start": 16904.93, + "end": 16907.63, + "probability": 0.7217 + }, + { + "start": 16909.56, + "end": 16910.6, + "probability": 0.9535 + }, + { + "start": 16910.72, + "end": 16914.46, + "probability": 0.9355 + }, + { + "start": 16916.7, + "end": 16919.54, + "probability": 0.9955 + }, + { + "start": 16919.54, + "end": 16922.29, + "probability": 0.9978 + }, + { + "start": 16923.3, + "end": 16923.68, + "probability": 0.7632 + }, + { + "start": 16926.02, + "end": 16930.88, + "probability": 0.9148 + }, + { + "start": 16932.4, + "end": 16935.64, + "probability": 0.747 + }, + { + "start": 16935.92, + "end": 16937.16, + "probability": 0.9716 + }, + { + "start": 16938.7, + "end": 16940.64, + "probability": 0.7531 + }, + { + "start": 16942.48, + "end": 16947.0, + "probability": 0.9954 + }, + { + "start": 16949.22, + "end": 16951.96, + "probability": 0.9792 + }, + { + "start": 16952.94, + "end": 16953.57, + "probability": 0.8983 + }, + { + "start": 16954.52, + "end": 16955.81, + "probability": 0.876 + }, + { + "start": 16956.66, + "end": 16960.28, + "probability": 0.8538 + }, + { + "start": 16961.02, + "end": 16963.3, + "probability": 0.6761 + }, + { + "start": 16963.54, + "end": 16964.2, + "probability": 0.4667 + }, + { + "start": 16964.2, + "end": 16965.31, + "probability": 0.684 + }, + { + "start": 16965.84, + "end": 16967.62, + "probability": 0.9737 + }, + { + "start": 16967.84, + "end": 16969.26, + "probability": 0.9961 + }, + { + "start": 16969.8, + "end": 16971.62, + "probability": 0.9417 + }, + { + "start": 16973.76, + "end": 16976.36, + "probability": 0.9727 + }, + { + "start": 16978.1, + "end": 16978.72, + "probability": 0.8562 + }, + { + "start": 16979.14, + "end": 16980.56, + "probability": 0.6409 + }, + { + "start": 16980.98, + "end": 16982.76, + "probability": 0.7606 + }, + { + "start": 16983.08, + "end": 16985.18, + "probability": 0.9056 + }, + { + "start": 16985.62, + "end": 16988.6, + "probability": 0.795 + }, + { + "start": 16988.66, + "end": 16993.94, + "probability": 0.8089 + }, + { + "start": 16994.04, + "end": 16994.72, + "probability": 0.6439 + }, + { + "start": 16996.54, + "end": 16997.94, + "probability": 0.7446 + }, + { + "start": 16999.96, + "end": 17003.68, + "probability": 0.7474 + }, + { + "start": 17004.1, + "end": 17006.44, + "probability": 0.9728 + }, + { + "start": 17007.22, + "end": 17010.4, + "probability": 0.8441 + }, + { + "start": 17010.88, + "end": 17013.9, + "probability": 0.9808 + }, + { + "start": 17014.52, + "end": 17017.86, + "probability": 0.892 + }, + { + "start": 17018.04, + "end": 17019.78, + "probability": 0.4831 + }, + { + "start": 17020.18, + "end": 17021.42, + "probability": 0.6099 + }, + { + "start": 17021.48, + "end": 17022.23, + "probability": 0.8157 + }, + { + "start": 17022.38, + "end": 17022.7, + "probability": 0.9011 + }, + { + "start": 17022.96, + "end": 17024.42, + "probability": 0.8889 + }, + { + "start": 17025.56, + "end": 17026.12, + "probability": 0.7551 + }, + { + "start": 17027.48, + "end": 17031.6, + "probability": 0.6168 + }, + { + "start": 17031.66, + "end": 17032.3, + "probability": 0.8354 + }, + { + "start": 17032.32, + "end": 17034.84, + "probability": 0.4993 + }, + { + "start": 17035.24, + "end": 17035.46, + "probability": 0.4388 + }, + { + "start": 17035.58, + "end": 17036.28, + "probability": 0.7046 + }, + { + "start": 17038.58, + "end": 17042.06, + "probability": 0.9819 + }, + { + "start": 17043.16, + "end": 17044.54, + "probability": 0.5427 + }, + { + "start": 17044.56, + "end": 17048.08, + "probability": 0.2111 + }, + { + "start": 17049.7, + "end": 17050.18, + "probability": 0.6749 + }, + { + "start": 17050.26, + "end": 17054.3, + "probability": 0.9373 + }, + { + "start": 17054.88, + "end": 17058.46, + "probability": 0.983 + }, + { + "start": 17059.22, + "end": 17063.24, + "probability": 0.9968 + }, + { + "start": 17065.28, + "end": 17067.28, + "probability": 0.9863 + }, + { + "start": 17067.96, + "end": 17071.04, + "probability": 0.9942 + }, + { + "start": 17072.78, + "end": 17073.44, + "probability": 0.7534 + }, + { + "start": 17073.96, + "end": 17074.64, + "probability": 0.8682 + }, + { + "start": 17075.18, + "end": 17078.0, + "probability": 0.9139 + }, + { + "start": 17078.76, + "end": 17083.76, + "probability": 0.9412 + }, + { + "start": 17084.22, + "end": 17089.02, + "probability": 0.918 + }, + { + "start": 17089.1, + "end": 17089.68, + "probability": 0.6093 + }, + { + "start": 17089.76, + "end": 17090.34, + "probability": 0.8126 + }, + { + "start": 17090.4, + "end": 17091.04, + "probability": 0.7972 + }, + { + "start": 17091.52, + "end": 17092.52, + "probability": 0.9971 + }, + { + "start": 17092.68, + "end": 17095.16, + "probability": 0.6687 + }, + { + "start": 17095.82, + "end": 17102.14, + "probability": 0.9943 + }, + { + "start": 17102.66, + "end": 17108.62, + "probability": 0.9976 + }, + { + "start": 17108.9, + "end": 17110.5, + "probability": 0.9871 + }, + { + "start": 17111.56, + "end": 17113.12, + "probability": 0.9077 + }, + { + "start": 17113.94, + "end": 17117.18, + "probability": 0.9681 + }, + { + "start": 17119.26, + "end": 17120.64, + "probability": 0.7834 + }, + { + "start": 17121.92, + "end": 17125.16, + "probability": 0.7282 + }, + { + "start": 17125.26, + "end": 17125.9, + "probability": 0.9558 + }, + { + "start": 17126.0, + "end": 17126.76, + "probability": 0.8649 + }, + { + "start": 17126.96, + "end": 17127.72, + "probability": 0.9071 + }, + { + "start": 17128.6, + "end": 17129.86, + "probability": 0.6961 + }, + { + "start": 17131.1, + "end": 17133.86, + "probability": 0.9715 + }, + { + "start": 17133.86, + "end": 17136.04, + "probability": 0.9674 + }, + { + "start": 17136.1, + "end": 17138.1, + "probability": 0.9683 + }, + { + "start": 17138.22, + "end": 17139.28, + "probability": 0.999 + }, + { + "start": 17139.44, + "end": 17140.14, + "probability": 0.5495 + }, + { + "start": 17140.3, + "end": 17140.8, + "probability": 0.7303 + }, + { + "start": 17140.84, + "end": 17142.8, + "probability": 0.9678 + }, + { + "start": 17143.6, + "end": 17145.64, + "probability": 0.986 + }, + { + "start": 17146.7, + "end": 17149.42, + "probability": 0.6996 + }, + { + "start": 17149.88, + "end": 17151.0, + "probability": 0.9476 + }, + { + "start": 17151.58, + "end": 17152.44, + "probability": 0.8667 + }, + { + "start": 17154.12, + "end": 17155.76, + "probability": 0.9166 + }, + { + "start": 17156.8, + "end": 17158.3, + "probability": 0.8063 + }, + { + "start": 17159.72, + "end": 17160.08, + "probability": 0.9453 + }, + { + "start": 17160.18, + "end": 17160.56, + "probability": 0.3727 + }, + { + "start": 17160.66, + "end": 17160.98, + "probability": 0.7329 + }, + { + "start": 17161.08, + "end": 17163.37, + "probability": 0.8088 + }, + { + "start": 17164.06, + "end": 17165.12, + "probability": 0.9719 + }, + { + "start": 17167.32, + "end": 17168.24, + "probability": 0.7335 + }, + { + "start": 17168.74, + "end": 17170.7, + "probability": 0.9906 + }, + { + "start": 17172.02, + "end": 17175.04, + "probability": 0.9756 + }, + { + "start": 17175.04, + "end": 17179.62, + "probability": 0.459 + }, + { + "start": 17179.62, + "end": 17179.62, + "probability": 0.0304 + }, + { + "start": 17179.62, + "end": 17181.98, + "probability": 0.9839 + }, + { + "start": 17182.9, + "end": 17184.22, + "probability": 0.7216 + }, + { + "start": 17184.46, + "end": 17185.26, + "probability": 0.8666 + }, + { + "start": 17185.3, + "end": 17186.55, + "probability": 0.8621 + }, + { + "start": 17186.86, + "end": 17189.14, + "probability": 0.8694 + }, + { + "start": 17189.2, + "end": 17191.08, + "probability": 0.9459 + }, + { + "start": 17191.08, + "end": 17194.74, + "probability": 0.9211 + }, + { + "start": 17195.14, + "end": 17195.82, + "probability": 0.394 + }, + { + "start": 17196.72, + "end": 17199.12, + "probability": 0.8434 + }, + { + "start": 17200.0, + "end": 17203.08, + "probability": 0.8787 + }, + { + "start": 17203.14, + "end": 17203.87, + "probability": 0.7344 + }, + { + "start": 17205.06, + "end": 17209.84, + "probability": 0.5673 + }, + { + "start": 17214.09, + "end": 17217.76, + "probability": 0.9819 + }, + { + "start": 17218.24, + "end": 17219.7, + "probability": 0.9756 + }, + { + "start": 17220.72, + "end": 17224.32, + "probability": 0.9592 + }, + { + "start": 17224.4, + "end": 17225.28, + "probability": 0.985 + }, + { + "start": 17226.6, + "end": 17228.56, + "probability": 0.8515 + }, + { + "start": 17230.46, + "end": 17231.6, + "probability": 0.9907 + }, + { + "start": 17231.8, + "end": 17233.59, + "probability": 0.9954 + }, + { + "start": 17234.0, + "end": 17234.64, + "probability": 0.7444 + }, + { + "start": 17235.16, + "end": 17236.52, + "probability": 0.9785 + }, + { + "start": 17237.06, + "end": 17239.76, + "probability": 0.755 + }, + { + "start": 17240.82, + "end": 17243.28, + "probability": 0.6808 + }, + { + "start": 17245.5, + "end": 17246.73, + "probability": 0.4542 + }, + { + "start": 17247.36, + "end": 17249.62, + "probability": 0.8953 + }, + { + "start": 17250.08, + "end": 17251.56, + "probability": 0.9184 + }, + { + "start": 17252.0, + "end": 17252.98, + "probability": 0.935 + }, + { + "start": 17253.58, + "end": 17254.88, + "probability": 0.5833 + }, + { + "start": 17255.0, + "end": 17257.66, + "probability": 0.5978 + }, + { + "start": 17257.72, + "end": 17258.02, + "probability": 0.8569 + }, + { + "start": 17258.5, + "end": 17264.64, + "probability": 0.8084 + }, + { + "start": 17264.74, + "end": 17265.98, + "probability": 0.5799 + }, + { + "start": 17266.14, + "end": 17270.34, + "probability": 0.7959 + }, + { + "start": 17271.96, + "end": 17272.84, + "probability": 0.8291 + }, + { + "start": 17273.98, + "end": 17276.38, + "probability": 0.8361 + }, + { + "start": 17277.02, + "end": 17278.44, + "probability": 0.9908 + }, + { + "start": 17279.04, + "end": 17280.9, + "probability": 0.7323 + }, + { + "start": 17282.26, + "end": 17283.94, + "probability": 0.8398 + }, + { + "start": 17285.42, + "end": 17288.74, + "probability": 0.9648 + }, + { + "start": 17290.06, + "end": 17291.02, + "probability": 0.67 + }, + { + "start": 17291.44, + "end": 17292.12, + "probability": 0.7117 + }, + { + "start": 17293.32, + "end": 17294.56, + "probability": 0.9485 + }, + { + "start": 17294.9, + "end": 17295.66, + "probability": 0.5352 + }, + { + "start": 17296.24, + "end": 17298.04, + "probability": 0.9874 + }, + { + "start": 17298.96, + "end": 17301.54, + "probability": 0.9358 + }, + { + "start": 17301.7, + "end": 17304.6, + "probability": 0.9207 + }, + { + "start": 17306.04, + "end": 17306.52, + "probability": 0.5531 + }, + { + "start": 17307.46, + "end": 17309.26, + "probability": 0.9254 + }, + { + "start": 17309.34, + "end": 17310.28, + "probability": 0.9951 + }, + { + "start": 17311.62, + "end": 17315.14, + "probability": 0.933 + }, + { + "start": 17315.42, + "end": 17315.68, + "probability": 0.6192 + }, + { + "start": 17315.74, + "end": 17316.38, + "probability": 0.5814 + }, + { + "start": 17317.02, + "end": 17319.86, + "probability": 0.5966 + }, + { + "start": 17319.94, + "end": 17320.86, + "probability": 0.7063 + }, + { + "start": 17321.5, + "end": 17323.54, + "probability": 0.9468 + }, + { + "start": 17323.56, + "end": 17324.3, + "probability": 0.7086 + }, + { + "start": 17325.0, + "end": 17326.92, + "probability": 0.9417 + }, + { + "start": 17327.52, + "end": 17328.08, + "probability": 0.7954 + }, + { + "start": 17328.12, + "end": 17329.58, + "probability": 0.9624 + }, + { + "start": 17330.06, + "end": 17330.92, + "probability": 0.9833 + }, + { + "start": 17331.2, + "end": 17331.88, + "probability": 0.3056 + }, + { + "start": 17331.94, + "end": 17334.68, + "probability": 0.8412 + }, + { + "start": 17336.66, + "end": 17341.46, + "probability": 0.9784 + }, + { + "start": 17342.18, + "end": 17344.1, + "probability": 0.9958 + }, + { + "start": 17344.74, + "end": 17345.46, + "probability": 0.9785 + }, + { + "start": 17345.88, + "end": 17348.58, + "probability": 0.9119 + }, + { + "start": 17349.14, + "end": 17353.7, + "probability": 0.9815 + }, + { + "start": 17353.84, + "end": 17354.88, + "probability": 0.8043 + }, + { + "start": 17355.08, + "end": 17358.72, + "probability": 0.9969 + }, + { + "start": 17359.18, + "end": 17362.15, + "probability": 0.8864 + }, + { + "start": 17362.6, + "end": 17363.18, + "probability": 0.491 + }, + { + "start": 17363.36, + "end": 17364.14, + "probability": 0.8169 + }, + { + "start": 17364.68, + "end": 17365.4, + "probability": 0.8127 + }, + { + "start": 17365.5, + "end": 17366.64, + "probability": 0.679 + }, + { + "start": 17366.7, + "end": 17367.46, + "probability": 0.9338 + }, + { + "start": 17367.58, + "end": 17370.44, + "probability": 0.9587 + }, + { + "start": 17370.44, + "end": 17373.22, + "probability": 0.9775 + }, + { + "start": 17373.82, + "end": 17374.33, + "probability": 0.3892 + }, + { + "start": 17374.46, + "end": 17375.5, + "probability": 0.9688 + }, + { + "start": 17375.56, + "end": 17378.64, + "probability": 0.978 + }, + { + "start": 17379.2, + "end": 17379.9, + "probability": 0.8989 + }, + { + "start": 17380.58, + "end": 17384.88, + "probability": 0.9473 + }, + { + "start": 17384.92, + "end": 17387.42, + "probability": 0.9336 + }, + { + "start": 17387.42, + "end": 17390.57, + "probability": 0.9535 + }, + { + "start": 17391.26, + "end": 17394.3, + "probability": 0.9775 + }, + { + "start": 17394.48, + "end": 17398.9, + "probability": 0.9113 + }, + { + "start": 17402.44, + "end": 17405.72, + "probability": 0.5648 + }, + { + "start": 17406.66, + "end": 17409.16, + "probability": 0.7457 + }, + { + "start": 17410.74, + "end": 17411.64, + "probability": 0.8702 + }, + { + "start": 17412.68, + "end": 17413.49, + "probability": 0.9766 + }, + { + "start": 17414.24, + "end": 17414.98, + "probability": 0.9978 + }, + { + "start": 17415.26, + "end": 17416.36, + "probability": 0.9971 + }, + { + "start": 17417.12, + "end": 17419.36, + "probability": 0.9823 + }, + { + "start": 17420.06, + "end": 17424.08, + "probability": 0.9917 + }, + { + "start": 17425.08, + "end": 17427.44, + "probability": 0.8443 + }, + { + "start": 17427.68, + "end": 17430.22, + "probability": 0.8519 + }, + { + "start": 17431.5, + "end": 17435.94, + "probability": 0.9604 + }, + { + "start": 17436.94, + "end": 17440.42, + "probability": 0.9536 + }, + { + "start": 17440.64, + "end": 17444.56, + "probability": 0.9844 + }, + { + "start": 17444.88, + "end": 17449.06, + "probability": 0.8658 + }, + { + "start": 17449.76, + "end": 17452.84, + "probability": 0.8 + }, + { + "start": 17453.44, + "end": 17460.06, + "probability": 0.5217 + }, + { + "start": 17460.14, + "end": 17462.56, + "probability": 0.3145 + }, + { + "start": 17463.22, + "end": 17463.5, + "probability": 0.4153 + }, + { + "start": 17464.04, + "end": 17468.25, + "probability": 0.8883 + }, + { + "start": 17469.24, + "end": 17469.74, + "probability": 0.9516 + }, + { + "start": 17470.6, + "end": 17472.04, + "probability": 0.9146 + }, + { + "start": 17472.04, + "end": 17472.74, + "probability": 0.5073 + }, + { + "start": 17472.86, + "end": 17473.94, + "probability": 0.8718 + }, + { + "start": 17474.08, + "end": 17475.08, + "probability": 0.7756 + }, + { + "start": 17475.14, + "end": 17481.22, + "probability": 0.9856 + }, + { + "start": 17481.36, + "end": 17485.04, + "probability": 0.9712 + }, + { + "start": 17485.16, + "end": 17485.46, + "probability": 0.5765 + }, + { + "start": 17487.14, + "end": 17494.26, + "probability": 0.7713 + }, + { + "start": 17494.86, + "end": 17501.7, + "probability": 0.9676 + }, + { + "start": 17502.34, + "end": 17504.42, + "probability": 0.7134 + }, + { + "start": 17506.08, + "end": 17508.16, + "probability": 0.7207 + }, + { + "start": 17508.86, + "end": 17509.74, + "probability": 0.6904 + }, + { + "start": 17510.92, + "end": 17511.62, + "probability": 0.8959 + }, + { + "start": 17513.2, + "end": 17514.24, + "probability": 0.8386 + }, + { + "start": 17516.32, + "end": 17517.34, + "probability": 0.4396 + }, + { + "start": 17519.24, + "end": 17520.98, + "probability": 0.8015 + }, + { + "start": 17524.24, + "end": 17526.72, + "probability": 0.9486 + }, + { + "start": 17529.1, + "end": 17529.72, + "probability": 0.8972 + }, + { + "start": 17531.38, + "end": 17532.82, + "probability": 0.9312 + }, + { + "start": 17533.9, + "end": 17536.9, + "probability": 0.7224 + }, + { + "start": 17538.52, + "end": 17540.36, + "probability": 0.9975 + }, + { + "start": 17541.34, + "end": 17542.76, + "probability": 0.7432 + }, + { + "start": 17545.1, + "end": 17545.62, + "probability": 0.9688 + }, + { + "start": 17546.7, + "end": 17549.84, + "probability": 0.8866 + }, + { + "start": 17550.76, + "end": 17552.75, + "probability": 0.9891 + }, + { + "start": 17553.04, + "end": 17555.94, + "probability": 0.98 + }, + { + "start": 17556.5, + "end": 17557.72, + "probability": 0.6838 + }, + { + "start": 17558.28, + "end": 17559.42, + "probability": 0.5826 + }, + { + "start": 17564.08, + "end": 17564.8, + "probability": 0.9855 + }, + { + "start": 17564.94, + "end": 17565.04, + "probability": 0.5422 + }, + { + "start": 17567.32, + "end": 17569.3, + "probability": 0.6964 + }, + { + "start": 17571.24, + "end": 17574.34, + "probability": 0.9341 + }, + { + "start": 17575.76, + "end": 17576.8, + "probability": 0.9606 + }, + { + "start": 17578.42, + "end": 17581.58, + "probability": 0.8322 + }, + { + "start": 17581.86, + "end": 17583.96, + "probability": 0.8703 + }, + { + "start": 17584.7, + "end": 17585.08, + "probability": 0.5911 + }, + { + "start": 17585.92, + "end": 17586.66, + "probability": 0.399 + }, + { + "start": 17587.68, + "end": 17588.78, + "probability": 0.6401 + }, + { + "start": 17590.18, + "end": 17592.64, + "probability": 0.9725 + }, + { + "start": 17593.76, + "end": 17595.3, + "probability": 0.8672 + }, + { + "start": 17596.54, + "end": 17598.35, + "probability": 0.9951 + }, + { + "start": 17599.36, + "end": 17601.54, + "probability": 0.9889 + }, + { + "start": 17602.94, + "end": 17603.5, + "probability": 0.7521 + }, + { + "start": 17604.46, + "end": 17604.5, + "probability": 0.7578 + }, + { + "start": 17605.94, + "end": 17607.82, + "probability": 0.8413 + }, + { + "start": 17609.2, + "end": 17609.62, + "probability": 0.9492 + }, + { + "start": 17610.24, + "end": 17612.24, + "probability": 0.9048 + }, + { + "start": 17613.89, + "end": 17615.9, + "probability": 0.9203 + }, + { + "start": 17617.28, + "end": 17619.04, + "probability": 0.6672 + }, + { + "start": 17621.64, + "end": 17621.8, + "probability": 0.017 + }, + { + "start": 17621.8, + "end": 17623.22, + "probability": 0.8989 + }, + { + "start": 17623.22, + "end": 17626.58, + "probability": 0.9734 + }, + { + "start": 17627.8, + "end": 17629.93, + "probability": 0.9646 + }, + { + "start": 17633.46, + "end": 17635.14, + "probability": 0.9897 + }, + { + "start": 17635.24, + "end": 17636.58, + "probability": 0.8643 + }, + { + "start": 17636.66, + "end": 17638.96, + "probability": 0.9658 + }, + { + "start": 17642.36, + "end": 17644.96, + "probability": 0.873 + }, + { + "start": 17647.38, + "end": 17649.34, + "probability": 0.9731 + }, + { + "start": 17652.52, + "end": 17654.38, + "probability": 0.9854 + }, + { + "start": 17654.52, + "end": 17658.49, + "probability": 0.8263 + }, + { + "start": 17659.94, + "end": 17660.1, + "probability": 0.6602 + }, + { + "start": 17661.3, + "end": 17664.18, + "probability": 0.9668 + }, + { + "start": 17665.96, + "end": 17668.92, + "probability": 0.9785 + }, + { + "start": 17669.88, + "end": 17673.56, + "probability": 0.9953 + }, + { + "start": 17673.64, + "end": 17676.1, + "probability": 0.981 + }, + { + "start": 17676.1, + "end": 17678.66, + "probability": 0.9871 + }, + { + "start": 17679.32, + "end": 17680.52, + "probability": 0.8246 + }, + { + "start": 17681.86, + "end": 17682.94, + "probability": 0.6048 + }, + { + "start": 17684.02, + "end": 17686.54, + "probability": 0.9893 + }, + { + "start": 17689.08, + "end": 17691.82, + "probability": 0.7692 + }, + { + "start": 17693.06, + "end": 17694.08, + "probability": 0.7645 + }, + { + "start": 17695.54, + "end": 17697.82, + "probability": 0.9445 + }, + { + "start": 17698.94, + "end": 17701.96, + "probability": 0.662 + }, + { + "start": 17702.52, + "end": 17703.12, + "probability": 0.8938 + }, + { + "start": 17703.36, + "end": 17704.14, + "probability": 0.9181 + }, + { + "start": 17704.24, + "end": 17705.94, + "probability": 0.98 + }, + { + "start": 17707.98, + "end": 17709.66, + "probability": 0.5672 + }, + { + "start": 17709.82, + "end": 17711.32, + "probability": 0.9349 + }, + { + "start": 17713.86, + "end": 17719.16, + "probability": 0.9478 + }, + { + "start": 17719.16, + "end": 17719.88, + "probability": 0.918 + }, + { + "start": 17720.42, + "end": 17721.04, + "probability": 0.7229 + }, + { + "start": 17721.04, + "end": 17721.16, + "probability": 0.7616 + }, + { + "start": 17721.52, + "end": 17722.8, + "probability": 0.9863 + }, + { + "start": 17724.68, + "end": 17727.62, + "probability": 0.9575 + }, + { + "start": 17727.76, + "end": 17728.26, + "probability": 0.7761 + }, + { + "start": 17728.34, + "end": 17729.78, + "probability": 0.8494 + }, + { + "start": 17731.04, + "end": 17732.58, + "probability": 0.7977 + }, + { + "start": 17732.86, + "end": 17734.72, + "probability": 0.9858 + }, + { + "start": 17735.22, + "end": 17736.22, + "probability": 0.9496 + }, + { + "start": 17738.32, + "end": 17739.18, + "probability": 0.9694 + }, + { + "start": 17740.78, + "end": 17741.94, + "probability": 0.0567 + }, + { + "start": 17742.44, + "end": 17743.88, + "probability": 0.5586 + }, + { + "start": 17744.62, + "end": 17744.62, + "probability": 0.0408 + }, + { + "start": 17744.62, + "end": 17744.72, + "probability": 0.0199 + }, + { + "start": 17744.74, + "end": 17745.08, + "probability": 0.2182 + }, + { + "start": 17745.1, + "end": 17746.92, + "probability": 0.9049 + }, + { + "start": 17747.02, + "end": 17749.16, + "probability": 0.9777 + }, + { + "start": 17749.74, + "end": 17751.6, + "probability": 0.6635 + }, + { + "start": 17751.66, + "end": 17752.52, + "probability": 0.695 + }, + { + "start": 17752.6, + "end": 17754.18, + "probability": 0.9012 + }, + { + "start": 17754.68, + "end": 17755.66, + "probability": 0.5828 + }, + { + "start": 17755.8, + "end": 17756.76, + "probability": 0.7739 + }, + { + "start": 17759.42, + "end": 17759.86, + "probability": 0.3965 + }, + { + "start": 17760.0, + "end": 17763.74, + "probability": 0.661 + }, + { + "start": 17764.02, + "end": 17766.42, + "probability": 0.3958 + }, + { + "start": 17767.86, + "end": 17770.22, + "probability": 0.6607 + }, + { + "start": 17770.34, + "end": 17773.08, + "probability": 0.6752 + }, + { + "start": 17775.44, + "end": 17779.32, + "probability": 0.9897 + }, + { + "start": 17779.32, + "end": 17783.96, + "probability": 0.9029 + }, + { + "start": 17785.38, + "end": 17785.52, + "probability": 0.6137 + }, + { + "start": 17785.6, + "end": 17785.98, + "probability": 0.8897 + }, + { + "start": 17786.04, + "end": 17790.29, + "probability": 0.8555 + }, + { + "start": 17790.3, + "end": 17794.2, + "probability": 0.9004 + }, + { + "start": 17795.36, + "end": 17797.6, + "probability": 0.6924 + }, + { + "start": 17797.66, + "end": 17801.22, + "probability": 0.949 + }, + { + "start": 17802.36, + "end": 17803.98, + "probability": 0.9577 + }, + { + "start": 17805.36, + "end": 17805.62, + "probability": 0.9476 + }, + { + "start": 17805.7, + "end": 17808.92, + "probability": 0.989 + }, + { + "start": 17808.92, + "end": 17811.84, + "probability": 0.7956 + }, + { + "start": 17812.86, + "end": 17813.56, + "probability": 0.6562 + }, + { + "start": 17813.76, + "end": 17817.06, + "probability": 0.9429 + }, + { + "start": 17818.26, + "end": 17821.04, + "probability": 0.6078 + }, + { + "start": 17821.3, + "end": 17821.46, + "probability": 0.7543 + }, + { + "start": 17821.9, + "end": 17822.58, + "probability": 0.8606 + }, + { + "start": 17822.7, + "end": 17824.14, + "probability": 0.9833 + }, + { + "start": 17825.48, + "end": 17825.88, + "probability": 0.9303 + }, + { + "start": 17825.96, + "end": 17828.76, + "probability": 0.6539 + }, + { + "start": 17829.28, + "end": 17832.22, + "probability": 0.8737 + }, + { + "start": 17833.82, + "end": 17835.52, + "probability": 0.9263 + }, + { + "start": 17836.34, + "end": 17838.79, + "probability": 0.9398 + }, + { + "start": 17840.78, + "end": 17843.88, + "probability": 0.9926 + }, + { + "start": 17845.18, + "end": 17847.88, + "probability": 0.9185 + }, + { + "start": 17848.48, + "end": 17851.94, + "probability": 0.9969 + }, + { + "start": 17852.48, + "end": 17854.68, + "probability": 0.8759 + }, + { + "start": 17855.62, + "end": 17858.46, + "probability": 0.9908 + }, + { + "start": 17859.76, + "end": 17863.08, + "probability": 0.9672 + }, + { + "start": 17863.3, + "end": 17869.4, + "probability": 0.9777 + }, + { + "start": 17869.4, + "end": 17874.54, + "probability": 0.7277 + }, + { + "start": 17876.18, + "end": 17876.68, + "probability": 0.7263 + }, + { + "start": 17877.95, + "end": 17878.96, + "probability": 0.4614 + }, + { + "start": 17880.52, + "end": 17883.14, + "probability": 0.9678 + }, + { + "start": 17884.62, + "end": 17885.64, + "probability": 0.9492 + }, + { + "start": 17885.68, + "end": 17886.5, + "probability": 0.944 + }, + { + "start": 17886.6, + "end": 17887.46, + "probability": 0.76 + }, + { + "start": 17888.48, + "end": 17889.96, + "probability": 0.9297 + }, + { + "start": 17890.34, + "end": 17891.96, + "probability": 0.9004 + }, + { + "start": 17892.92, + "end": 17893.62, + "probability": 0.8929 + }, + { + "start": 17894.52, + "end": 17895.54, + "probability": 0.8534 + }, + { + "start": 17896.14, + "end": 17896.96, + "probability": 0.7232 + }, + { + "start": 17898.02, + "end": 17902.1, + "probability": 0.9681 + }, + { + "start": 17902.52, + "end": 17905.24, + "probability": 0.9913 + }, + { + "start": 17905.24, + "end": 17907.22, + "probability": 0.9693 + }, + { + "start": 17908.06, + "end": 17908.84, + "probability": 0.7187 + }, + { + "start": 17908.92, + "end": 17913.52, + "probability": 0.9896 + }, + { + "start": 17914.16, + "end": 17916.26, + "probability": 0.913 + }, + { + "start": 17917.06, + "end": 17919.82, + "probability": 0.9182 + }, + { + "start": 17920.66, + "end": 17923.04, + "probability": 0.9944 + }, + { + "start": 17924.04, + "end": 17928.52, + "probability": 0.9774 + }, + { + "start": 17929.6, + "end": 17930.28, + "probability": 0.7201 + }, + { + "start": 17930.42, + "end": 17934.02, + "probability": 0.9849 + }, + { + "start": 17934.5, + "end": 17938.4, + "probability": 0.9659 + }, + { + "start": 17938.82, + "end": 17939.72, + "probability": 0.4686 + }, + { + "start": 17940.6, + "end": 17940.96, + "probability": 0.4379 + }, + { + "start": 17941.34, + "end": 17942.5, + "probability": 0.8491 + }, + { + "start": 17943.04, + "end": 17946.04, + "probability": 0.9893 + }, + { + "start": 17946.46, + "end": 17946.72, + "probability": 0.065 + }, + { + "start": 17946.84, + "end": 17947.9, + "probability": 0.421 + }, + { + "start": 17947.96, + "end": 17949.72, + "probability": 0.4472 + }, + { + "start": 17949.82, + "end": 17951.98, + "probability": 0.7711 + }, + { + "start": 17951.98, + "end": 17952.96, + "probability": 0.4619 + }, + { + "start": 17953.1, + "end": 17954.32, + "probability": 0.9601 + }, + { + "start": 17954.38, + "end": 17954.74, + "probability": 0.6898 + }, + { + "start": 17955.4, + "end": 17956.16, + "probability": 0.4764 + }, + { + "start": 17956.3, + "end": 17956.84, + "probability": 0.8809 + }, + { + "start": 17956.86, + "end": 17957.52, + "probability": 0.5476 + }, + { + "start": 17957.82, + "end": 17960.42, + "probability": 0.3695 + }, + { + "start": 17961.64, + "end": 17963.58, + "probability": 0.7256 + }, + { + "start": 17964.16, + "end": 17964.88, + "probability": 0.838 + }, + { + "start": 17972.72, + "end": 17973.46, + "probability": 0.595 + }, + { + "start": 17973.52, + "end": 17974.08, + "probability": 0.4849 + }, + { + "start": 17974.16, + "end": 17975.27, + "probability": 0.9954 + }, + { + "start": 17975.6, + "end": 17976.02, + "probability": 0.1104 + }, + { + "start": 17977.02, + "end": 17979.5, + "probability": 0.8965 + }, + { + "start": 17980.68, + "end": 17984.06, + "probability": 0.6838 + }, + { + "start": 17984.9, + "end": 17986.18, + "probability": 0.6401 + }, + { + "start": 17986.56, + "end": 17987.76, + "probability": 0.9745 + }, + { + "start": 17988.9, + "end": 17990.0, + "probability": 0.8463 + }, + { + "start": 17990.42, + "end": 17992.96, + "probability": 0.744 + }, + { + "start": 17993.8, + "end": 17994.88, + "probability": 0.426 + }, + { + "start": 17996.28, + "end": 17998.42, + "probability": 0.5023 + }, + { + "start": 17999.2, + "end": 17999.56, + "probability": 0.7328 + }, + { + "start": 18000.4, + "end": 18000.5, + "probability": 0.4485 + }, + { + "start": 18000.5, + "end": 18001.94, + "probability": 0.7896 + }, + { + "start": 18002.14, + "end": 18002.88, + "probability": 0.8595 + }, + { + "start": 18003.28, + "end": 18005.16, + "probability": 0.8229 + }, + { + "start": 18005.98, + "end": 18007.52, + "probability": 0.7861 + }, + { + "start": 18008.5, + "end": 18010.84, + "probability": 0.9052 + }, + { + "start": 18011.68, + "end": 18013.82, + "probability": 0.985 + }, + { + "start": 18014.36, + "end": 18015.1, + "probability": 0.6699 + }, + { + "start": 18015.48, + "end": 18016.43, + "probability": 0.9023 + }, + { + "start": 18017.34, + "end": 18017.9, + "probability": 0.728 + }, + { + "start": 18019.0, + "end": 18022.48, + "probability": 0.9786 + }, + { + "start": 18023.34, + "end": 18025.34, + "probability": 0.6641 + }, + { + "start": 18026.3, + "end": 18028.56, + "probability": 0.7203 + }, + { + "start": 18029.5, + "end": 18031.85, + "probability": 0.9707 + }, + { + "start": 18032.54, + "end": 18033.6, + "probability": 0.5969 + }, + { + "start": 18034.26, + "end": 18037.12, + "probability": 0.8613 + }, + { + "start": 18038.16, + "end": 18039.56, + "probability": 0.5222 + }, + { + "start": 18040.28, + "end": 18041.56, + "probability": 0.99 + }, + { + "start": 18042.42, + "end": 18044.2, + "probability": 0.7503 + }, + { + "start": 18044.9, + "end": 18047.0, + "probability": 0.8223 + }, + { + "start": 18047.46, + "end": 18049.52, + "probability": 0.9456 + }, + { + "start": 18050.1, + "end": 18051.0, + "probability": 0.8776 + }, + { + "start": 18051.54, + "end": 18054.14, + "probability": 0.4928 + }, + { + "start": 18055.06, + "end": 18056.34, + "probability": 0.7361 + }, + { + "start": 18060.48, + "end": 18061.52, + "probability": 0.1426 + }, + { + "start": 18076.76, + "end": 18077.06, + "probability": 0.383 + }, + { + "start": 18077.06, + "end": 18077.52, + "probability": 0.0588 + }, + { + "start": 18078.24, + "end": 18079.7, + "probability": 0.4185 + }, + { + "start": 18079.9, + "end": 18083.44, + "probability": 0.5855 + }, + { + "start": 18084.18, + "end": 18084.66, + "probability": 0.8384 + }, + { + "start": 18086.66, + "end": 18088.42, + "probability": 0.71 + }, + { + "start": 18089.68, + "end": 18090.78, + "probability": 0.3117 + }, + { + "start": 18093.76, + "end": 18097.96, + "probability": 0.8967 + }, + { + "start": 18098.7, + "end": 18100.01, + "probability": 0.9954 + }, + { + "start": 18100.8, + "end": 18101.82, + "probability": 0.6614 + }, + { + "start": 18109.26, + "end": 18110.68, + "probability": 0.6627 + }, + { + "start": 18113.78, + "end": 18115.32, + "probability": 0.6283 + }, + { + "start": 18128.37, + "end": 18131.78, + "probability": 0.8269 + }, + { + "start": 18132.54, + "end": 18133.32, + "probability": 0.672 + }, + { + "start": 18134.54, + "end": 18136.65, + "probability": 0.7785 + }, + { + "start": 18137.48, + "end": 18138.18, + "probability": 0.9105 + }, + { + "start": 18138.82, + "end": 18139.94, + "probability": 0.8885 + }, + { + "start": 18140.78, + "end": 18145.24, + "probability": 0.2774 + }, + { + "start": 18146.32, + "end": 18146.34, + "probability": 0.0067 + }, + { + "start": 18148.7, + "end": 18149.72, + "probability": 0.0034 + }, + { + "start": 18152.01, + "end": 18156.73, + "probability": 0.0223 + }, + { + "start": 18157.1, + "end": 18159.08, + "probability": 0.024 + }, + { + "start": 18162.0, + "end": 18164.38, + "probability": 0.0395 + }, + { + "start": 18164.38, + "end": 18168.18, + "probability": 0.0387 + }, + { + "start": 18169.13, + "end": 18171.3, + "probability": 0.0822 + }, + { + "start": 18171.3, + "end": 18172.68, + "probability": 0.0689 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.0, + "end": 18176.0, + "probability": 0.0 + }, + { + "start": 18176.2, + "end": 18176.28, + "probability": 0.0016 + }, + { + "start": 18176.28, + "end": 18176.28, + "probability": 0.0222 + }, + { + "start": 18176.28, + "end": 18178.26, + "probability": 0.7314 + }, + { + "start": 18178.88, + "end": 18179.84, + "probability": 0.8042 + }, + { + "start": 18180.12, + "end": 18182.82, + "probability": 0.798 + }, + { + "start": 18183.86, + "end": 18184.06, + "probability": 0.0121 + }, + { + "start": 18184.22, + "end": 18188.38, + "probability": 0.9918 + }, + { + "start": 18188.38, + "end": 18195.18, + "probability": 0.9933 + }, + { + "start": 18195.32, + "end": 18197.0, + "probability": 0.9858 + }, + { + "start": 18197.72, + "end": 18197.86, + "probability": 0.5494 + }, + { + "start": 18198.48, + "end": 18199.98, + "probability": 0.9473 + }, + { + "start": 18200.76, + "end": 18204.36, + "probability": 0.4907 + }, + { + "start": 18204.96, + "end": 18208.16, + "probability": 0.8234 + }, + { + "start": 18210.92, + "end": 18216.46, + "probability": 0.0426 + }, + { + "start": 18221.19, + "end": 18223.59, + "probability": 0.0023 + }, + { + "start": 18223.66, + "end": 18228.68, + "probability": 0.0568 + }, + { + "start": 18229.56, + "end": 18236.04, + "probability": 0.0386 + }, + { + "start": 18237.12, + "end": 18238.94, + "probability": 0.0903 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18335.0, + "end": 18335.0, + "probability": 0.0 + }, + { + "start": 18337.1, + "end": 18339.54, + "probability": 0.4051 + }, + { + "start": 18340.6, + "end": 18342.02, + "probability": 0.6317 + }, + { + "start": 18348.94, + "end": 18349.94, + "probability": 0.2843 + }, + { + "start": 18352.68, + "end": 18353.28, + "probability": 0.2569 + }, + { + "start": 18353.36, + "end": 18355.98, + "probability": 0.0086 + }, + { + "start": 18357.21, + "end": 18357.78, + "probability": 0.0224 + }, + { + "start": 18360.98, + "end": 18366.84, + "probability": 0.0738 + }, + { + "start": 18366.84, + "end": 18371.05, + "probability": 0.0304 + }, + { + "start": 18372.36, + "end": 18373.18, + "probability": 0.3053 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.0, + "end": 18457.0, + "probability": 0.0 + }, + { + "start": 18457.14, + "end": 18457.86, + "probability": 0.3034 + }, + { + "start": 18459.24, + "end": 18462.8, + "probability": 0.9185 + }, + { + "start": 18463.36, + "end": 18464.66, + "probability": 0.9922 + }, + { + "start": 18464.78, + "end": 18465.78, + "probability": 0.9978 + }, + { + "start": 18466.46, + "end": 18471.32, + "probability": 0.9948 + }, + { + "start": 18471.5, + "end": 18472.2, + "probability": 0.5447 + }, + { + "start": 18472.34, + "end": 18472.68, + "probability": 0.1094 + }, + { + "start": 18472.68, + "end": 18478.48, + "probability": 0.8176 + }, + { + "start": 18479.22, + "end": 18479.98, + "probability": 0.8246 + }, + { + "start": 18480.44, + "end": 18484.42, + "probability": 0.8844 + }, + { + "start": 18484.82, + "end": 18486.0, + "probability": 0.9637 + }, + { + "start": 18486.3, + "end": 18489.58, + "probability": 0.7497 + }, + { + "start": 18489.98, + "end": 18492.46, + "probability": 0.9101 + }, + { + "start": 18492.56, + "end": 18494.42, + "probability": 0.6855 + }, + { + "start": 18494.96, + "end": 18498.12, + "probability": 0.9797 + }, + { + "start": 18498.22, + "end": 18502.02, + "probability": 0.002 + }, + { + "start": 18502.14, + "end": 18503.98, + "probability": 0.3899 + }, + { + "start": 18504.18, + "end": 18509.9, + "probability": 0.9832 + }, + { + "start": 18510.8, + "end": 18515.89, + "probability": 0.9746 + }, + { + "start": 18521.7, + "end": 18524.26, + "probability": 0.5832 + }, + { + "start": 18524.36, + "end": 18528.28, + "probability": 0.9653 + }, + { + "start": 18528.82, + "end": 18530.26, + "probability": 0.702 + }, + { + "start": 18530.8, + "end": 18533.37, + "probability": 0.9025 + }, + { + "start": 18535.8, + "end": 18537.04, + "probability": 0.9955 + }, + { + "start": 18537.96, + "end": 18538.48, + "probability": 0.7867 + }, + { + "start": 18538.94, + "end": 18541.09, + "probability": 0.9905 + }, + { + "start": 18542.68, + "end": 18545.16, + "probability": 0.9792 + }, + { + "start": 18547.36, + "end": 18550.44, + "probability": 0.7223 + }, + { + "start": 18551.38, + "end": 18551.68, + "probability": 0.419 + }, + { + "start": 18552.62, + "end": 18554.8, + "probability": 0.0085 + }, + { + "start": 18557.58, + "end": 18559.92, + "probability": 0.0414 + }, + { + "start": 18560.62, + "end": 18563.5, + "probability": 0.0041 + }, + { + "start": 18571.62, + "end": 18576.56, + "probability": 0.0288 + }, + { + "start": 18579.18, + "end": 18580.74, + "probability": 0.0539 + }, + { + "start": 18580.74, + "end": 18582.5, + "probability": 0.0774 + }, + { + "start": 18583.98, + "end": 18585.96, + "probability": 0.0232 + }, + { + "start": 18586.04, + "end": 18587.86, + "probability": 0.2687 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18624.0, + "end": 18624.0, + "probability": 0.0 + }, + { + "start": 18655.06, + "end": 18656.08, + "probability": 0.2911 + }, + { + "start": 18666.16, + "end": 18667.5, + "probability": 0.0386 + }, + { + "start": 18668.28, + "end": 18674.2, + "probability": 0.0577 + }, + { + "start": 18674.6, + "end": 18675.92, + "probability": 0.0865 + }, + { + "start": 18675.92, + "end": 18679.56, + "probability": 0.0758 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18744.0, + "end": 18744.0, + "probability": 0.0 + }, + { + "start": 18754.56, + "end": 18754.66, + "probability": 0.1782 + }, + { + "start": 18754.66, + "end": 18754.66, + "probability": 0.1719 + }, + { + "start": 18754.66, + "end": 18755.22, + "probability": 0.4523 + }, + { + "start": 18755.94, + "end": 18756.84, + "probability": 0.9882 + }, + { + "start": 18757.94, + "end": 18759.4, + "probability": 0.8961 + }, + { + "start": 18760.26, + "end": 18763.76, + "probability": 0.9796 + }, + { + "start": 18764.32, + "end": 18765.89, + "probability": 0.5059 + }, + { + "start": 18766.58, + "end": 18767.74, + "probability": 0.1339 + }, + { + "start": 18767.74, + "end": 18769.79, + "probability": 0.6092 + }, + { + "start": 18771.34, + "end": 18772.26, + "probability": 0.9865 + }, + { + "start": 18773.42, + "end": 18778.56, + "probability": 0.9595 + }, + { + "start": 18779.46, + "end": 18782.52, + "probability": 0.6804 + }, + { + "start": 18783.6, + "end": 18784.64, + "probability": 0.9722 + }, + { + "start": 18785.86, + "end": 18789.98, + "probability": 0.7497 + }, + { + "start": 18791.48, + "end": 18793.82, + "probability": 0.7799 + }, + { + "start": 18794.66, + "end": 18796.06, + "probability": 0.998 + }, + { + "start": 18796.92, + "end": 18799.74, + "probability": 0.7265 + }, + { + "start": 18800.72, + "end": 18806.04, + "probability": 0.9731 + }, + { + "start": 18807.08, + "end": 18809.92, + "probability": 0.9696 + }, + { + "start": 18810.82, + "end": 18811.36, + "probability": 0.9289 + }, + { + "start": 18812.18, + "end": 18815.84, + "probability": 0.9941 + }, + { + "start": 18816.34, + "end": 18817.3, + "probability": 0.7278 + }, + { + "start": 18817.3, + "end": 18821.26, + "probability": 0.9664 + }, + { + "start": 18821.28, + "end": 18824.8, + "probability": 0.9209 + }, + { + "start": 18826.74, + "end": 18827.36, + "probability": 0.57 + }, + { + "start": 18827.52, + "end": 18828.32, + "probability": 0.1626 + }, + { + "start": 18829.5, + "end": 18829.78, + "probability": 0.2947 + }, + { + "start": 18830.74, + "end": 18832.16, + "probability": 0.9758 + }, + { + "start": 18833.94, + "end": 18836.56, + "probability": 0.6858 + }, + { + "start": 18842.28, + "end": 18843.4, + "probability": 0.063 + }, + { + "start": 18844.2, + "end": 18848.76, + "probability": 0.027 + }, + { + "start": 18848.76, + "end": 18850.42, + "probability": 0.0282 + }, + { + "start": 18873.68, + "end": 18874.72, + "probability": 0.0567 + }, + { + "start": 18877.2, + "end": 18878.46, + "probability": 0.0511 + }, + { + "start": 18878.46, + "end": 18879.9, + "probability": 0.0504 + }, + { + "start": 18879.92, + "end": 18881.04, + "probability": 0.1698 + }, + { + "start": 18901.4, + "end": 18902.28, + "probability": 0.3043 + }, + { + "start": 18902.62, + "end": 18904.0, + "probability": 0.0148 + }, + { + "start": 18904.78, + "end": 18910.66, + "probability": 0.2198 + }, + { + "start": 18911.54, + "end": 18912.86, + "probability": 0.2637 + }, + { + "start": 18913.08, + "end": 18913.72, + "probability": 0.0436 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.0, + "end": 18921.0, + "probability": 0.0 + }, + { + "start": 18921.38, + "end": 18922.86, + "probability": 0.5539 + }, + { + "start": 18922.96, + "end": 18926.44, + "probability": 0.8202 + }, + { + "start": 18927.12, + "end": 18929.14, + "probability": 0.8035 + }, + { + "start": 18929.22, + "end": 18932.18, + "probability": 0.9202 + }, + { + "start": 18932.18, + "end": 18936.58, + "probability": 0.9216 + }, + { + "start": 18936.68, + "end": 18937.17, + "probability": 0.3831 + }, + { + "start": 18939.79, + "end": 18940.86, + "probability": 0.8072 + }, + { + "start": 18941.26, + "end": 18943.1, + "probability": 0.7049 + }, + { + "start": 18944.08, + "end": 18947.34, + "probability": 0.7264 + }, + { + "start": 18947.84, + "end": 18950.6, + "probability": 0.504 + }, + { + "start": 18950.6, + "end": 18954.2, + "probability": 0.8488 + }, + { + "start": 18954.7, + "end": 18960.52, + "probability": 0.8766 + }, + { + "start": 18960.82, + "end": 18962.94, + "probability": 0.9624 + }, + { + "start": 18963.62, + "end": 18964.39, + "probability": 0.9111 + }, + { + "start": 18964.68, + "end": 18967.07, + "probability": 0.6228 + }, + { + "start": 18967.3, + "end": 18968.95, + "probability": 0.7532 + }, + { + "start": 18969.12, + "end": 18972.66, + "probability": 0.9542 + }, + { + "start": 18973.7, + "end": 18975.7, + "probability": 0.8948 + }, + { + "start": 18975.84, + "end": 18978.18, + "probability": 0.9888 + }, + { + "start": 18979.69, + "end": 18981.4, + "probability": 0.9423 + }, + { + "start": 18983.66, + "end": 18985.6, + "probability": 0.9934 + }, + { + "start": 18987.3, + "end": 18989.17, + "probability": 0.6561 + }, + { + "start": 18990.3, + "end": 18991.04, + "probability": 0.7098 + }, + { + "start": 18992.54, + "end": 18993.3, + "probability": 0.7635 + }, + { + "start": 18993.42, + "end": 18994.1, + "probability": 0.9785 + }, + { + "start": 18994.86, + "end": 18997.7, + "probability": 0.9902 + }, + { + "start": 18998.68, + "end": 18999.62, + "probability": 0.9536 + }, + { + "start": 19000.0, + "end": 19001.08, + "probability": 0.7031 + }, + { + "start": 19001.98, + "end": 19002.8, + "probability": 0.552 + }, + { + "start": 19003.62, + "end": 19004.86, + "probability": 0.5983 + }, + { + "start": 19005.25, + "end": 19008.96, + "probability": 0.5762 + }, + { + "start": 19009.38, + "end": 19011.03, + "probability": 0.965 + }, + { + "start": 19012.18, + "end": 19013.12, + "probability": 0.0184 + }, + { + "start": 19013.4, + "end": 19014.65, + "probability": 0.8735 + }, + { + "start": 19014.86, + "end": 19016.82, + "probability": 0.8163 + }, + { + "start": 19016.9, + "end": 19021.14, + "probability": 0.9829 + }, + { + "start": 19021.26, + "end": 19021.76, + "probability": 0.6592 + }, + { + "start": 19022.4, + "end": 19022.86, + "probability": 0.3726 + }, + { + "start": 19022.86, + "end": 19025.44, + "probability": 0.5047 + }, + { + "start": 19028.94, + "end": 19029.6, + "probability": 0.4079 + }, + { + "start": 19029.64, + "end": 19032.53, + "probability": 0.8438 + }, + { + "start": 19032.84, + "end": 19033.56, + "probability": 0.7725 + }, + { + "start": 19034.18, + "end": 19035.5, + "probability": 0.7815 + }, + { + "start": 19036.02, + "end": 19038.04, + "probability": 0.7104 + }, + { + "start": 19038.7, + "end": 19041.56, + "probability": 0.3986 + }, + { + "start": 19041.8, + "end": 19042.58, + "probability": 0.5177 + }, + { + "start": 19042.84, + "end": 19044.46, + "probability": 0.759 + }, + { + "start": 19044.54, + "end": 19046.06, + "probability": 0.8634 + }, + { + "start": 19047.44, + "end": 19049.34, + "probability": 0.9291 + }, + { + "start": 19049.36, + "end": 19050.36, + "probability": 0.832 + }, + { + "start": 19050.36, + "end": 19055.64, + "probability": 0.849 + }, + { + "start": 19055.88, + "end": 19056.98, + "probability": 0.3291 + }, + { + "start": 19057.78, + "end": 19060.62, + "probability": 0.9398 + }, + { + "start": 19061.28, + "end": 19065.06, + "probability": 0.7119 + }, + { + "start": 19066.12, + "end": 19068.64, + "probability": 0.6248 + }, + { + "start": 19070.88, + "end": 19071.88, + "probability": 0.9032 + }, + { + "start": 19072.24, + "end": 19073.62, + "probability": 0.9609 + }, + { + "start": 19074.92, + "end": 19077.82, + "probability": 0.5753 + }, + { + "start": 19078.1, + "end": 19078.97, + "probability": 0.8594 + }, + { + "start": 19079.32, + "end": 19080.29, + "probability": 0.9038 + }, + { + "start": 19080.9, + "end": 19085.0, + "probability": 0.8159 + }, + { + "start": 19085.1, + "end": 19088.54, + "probability": 0.5334 + }, + { + "start": 19088.64, + "end": 19090.28, + "probability": 0.3572 + }, + { + "start": 19090.28, + "end": 19096.38, + "probability": 0.9483 + }, + { + "start": 19097.24, + "end": 19100.48, + "probability": 0.4404 + }, + { + "start": 19101.82, + "end": 19106.52, + "probability": 0.8674 + }, + { + "start": 19107.34, + "end": 19111.24, + "probability": 0.9771 + }, + { + "start": 19111.48, + "end": 19113.1, + "probability": 0.9986 + }, + { + "start": 19113.9, + "end": 19120.0, + "probability": 0.9138 + }, + { + "start": 19120.1, + "end": 19125.38, + "probability": 0.9546 + }, + { + "start": 19126.74, + "end": 19133.08, + "probability": 0.5979 + }, + { + "start": 19134.0, + "end": 19134.1, + "probability": 0.001 + }, + { + "start": 19138.14, + "end": 19143.74, + "probability": 0.5195 + }, + { + "start": 19143.84, + "end": 19144.86, + "probability": 0.8953 + }, + { + "start": 19144.92, + "end": 19145.9, + "probability": 0.7041 + }, + { + "start": 19146.42, + "end": 19148.62, + "probability": 0.9575 + }, + { + "start": 19148.68, + "end": 19151.62, + "probability": 0.9172 + }, + { + "start": 19152.18, + "end": 19154.38, + "probability": 0.8104 + }, + { + "start": 19155.42, + "end": 19157.52, + "probability": 0.4914 + }, + { + "start": 19158.74, + "end": 19159.72, + "probability": 0.5922 + }, + { + "start": 19160.38, + "end": 19164.36, + "probability": 0.9833 + }, + { + "start": 19165.18, + "end": 19166.9, + "probability": 0.6445 + }, + { + "start": 19167.3, + "end": 19169.83, + "probability": 0.7916 + }, + { + "start": 19170.8, + "end": 19176.2, + "probability": 0.9075 + }, + { + "start": 19177.36, + "end": 19177.84, + "probability": 0.0494 + }, + { + "start": 19177.84, + "end": 19179.03, + "probability": 0.2967 + }, + { + "start": 19180.66, + "end": 19181.24, + "probability": 0.0188 + }, + { + "start": 19182.76, + "end": 19183.86, + "probability": 0.4162 + }, + { + "start": 19185.08, + "end": 19185.5, + "probability": 0.1997 + }, + { + "start": 19186.74, + "end": 19188.08, + "probability": 0.0342 + }, + { + "start": 19188.58, + "end": 19190.84, + "probability": 0.4086 + }, + { + "start": 19191.36, + "end": 19192.42, + "probability": 0.6614 + }, + { + "start": 19193.18, + "end": 19196.18, + "probability": 0.0205 + }, + { + "start": 19201.74, + "end": 19203.94, + "probability": 0.0353 + }, + { + "start": 19205.94, + "end": 19207.62, + "probability": 0.0205 + }, + { + "start": 19208.34, + "end": 19210.98, + "probability": 0.038 + }, + { + "start": 19210.98, + "end": 19211.94, + "probability": 0.0327 + }, + { + "start": 19219.2, + "end": 19219.72, + "probability": 0.1618 + }, + { + "start": 19219.72, + "end": 19222.06, + "probability": 0.074 + }, + { + "start": 19222.06, + "end": 19223.38, + "probability": 0.0314 + }, + { + "start": 19223.68, + "end": 19238.14, + "probability": 0.0346 + }, + { + "start": 19238.14, + "end": 19240.52, + "probability": 0.076 + }, + { + "start": 19240.52, + "end": 19240.98, + "probability": 0.0736 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.0, + "end": 19241.0, + "probability": 0.0 + }, + { + "start": 19241.34, + "end": 19242.18, + "probability": 0.1546 + }, + { + "start": 19243.76, + "end": 19246.96, + "probability": 0.7668 + }, + { + "start": 19250.42, + "end": 19250.98, + "probability": 0.3354 + }, + { + "start": 19251.0, + "end": 19251.58, + "probability": 0.6172 + }, + { + "start": 19251.66, + "end": 19253.14, + "probability": 0.9502 + }, + { + "start": 19253.24, + "end": 19257.02, + "probability": 0.9067 + }, + { + "start": 19257.68, + "end": 19262.38, + "probability": 0.9958 + }, + { + "start": 19262.86, + "end": 19263.44, + "probability": 0.685 + }, + { + "start": 19263.62, + "end": 19264.84, + "probability": 0.3695 + }, + { + "start": 19264.9, + "end": 19267.9, + "probability": 0.9309 + }, + { + "start": 19268.4, + "end": 19271.62, + "probability": 0.9789 + }, + { + "start": 19272.24, + "end": 19273.56, + "probability": 0.9466 + }, + { + "start": 19273.58, + "end": 19274.73, + "probability": 0.9977 + }, + { + "start": 19275.04, + "end": 19275.97, + "probability": 0.5181 + }, + { + "start": 19276.3, + "end": 19279.44, + "probability": 0.9639 + }, + { + "start": 19279.7, + "end": 19282.44, + "probability": 0.7884 + }, + { + "start": 19283.0, + "end": 19283.86, + "probability": 0.4106 + }, + { + "start": 19283.92, + "end": 19285.04, + "probability": 0.4608 + }, + { + "start": 19285.62, + "end": 19289.64, + "probability": 0.7859 + }, + { + "start": 19289.64, + "end": 19289.64, + "probability": 0.114 + }, + { + "start": 19289.64, + "end": 19292.82, + "probability": 0.7844 + }, + { + "start": 19293.38, + "end": 19293.94, + "probability": 0.5189 + }, + { + "start": 19293.98, + "end": 19297.1, + "probability": 0.7633 + }, + { + "start": 19298.06, + "end": 19300.44, + "probability": 0.5097 + }, + { + "start": 19300.52, + "end": 19301.1, + "probability": 0.4741 + }, + { + "start": 19301.18, + "end": 19302.62, + "probability": 0.8291 + }, + { + "start": 19302.74, + "end": 19308.16, + "probability": 0.9683 + }, + { + "start": 19308.36, + "end": 19309.22, + "probability": 0.8419 + }, + { + "start": 19309.94, + "end": 19311.02, + "probability": 0.913 + }, + { + "start": 19311.18, + "end": 19314.66, + "probability": 0.9772 + }, + { + "start": 19315.14, + "end": 19315.5, + "probability": 0.9531 + }, + { + "start": 19316.28, + "end": 19318.38, + "probability": 0.5823 + }, + { + "start": 19318.9, + "end": 19321.78, + "probability": 0.4911 + }, + { + "start": 19322.5, + "end": 19323.62, + "probability": 0.0472 + }, + { + "start": 19324.38, + "end": 19324.48, + "probability": 0.5586 + }, + { + "start": 19325.4, + "end": 19327.5, + "probability": 0.7411 + }, + { + "start": 19328.67, + "end": 19331.8, + "probability": 0.4155 + }, + { + "start": 19333.06, + "end": 19333.06, + "probability": 0.006 + }, + { + "start": 19339.0, + "end": 19341.18, + "probability": 0.0015 + }, + { + "start": 19351.06, + "end": 19352.24, + "probability": 0.0034 + }, + { + "start": 19356.2, + "end": 19357.2, + "probability": 0.0185 + }, + { + "start": 19357.2, + "end": 19359.1, + "probability": 0.0604 + }, + { + "start": 19359.48, + "end": 19360.2, + "probability": 0.1061 + }, + { + "start": 19362.14, + "end": 19364.38, + "probability": 0.0421 + }, + { + "start": 19368.06, + "end": 19368.8, + "probability": 0.1097 + }, + { + "start": 19369.18, + "end": 19372.32, + "probability": 0.0517 + }, + { + "start": 19372.94, + "end": 19393.12, + "probability": 0.0957 + }, + { + "start": 19393.12, + "end": 19394.6, + "probability": 0.0148 + }, + { + "start": 19394.72, + "end": 19395.36, + "probability": 0.0268 + }, + { + "start": 19395.52, + "end": 19398.48, + "probability": 0.0785 + }, + { + "start": 19398.48, + "end": 19398.76, + "probability": 0.0815 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19399.0, + "end": 19399.0, + "probability": 0.0 + }, + { + "start": 19404.38, + "end": 19407.5, + "probability": 0.9758 + }, + { + "start": 19409.64, + "end": 19411.35, + "probability": 0.9409 + }, + { + "start": 19411.98, + "end": 19414.62, + "probability": 0.9937 + }, + { + "start": 19414.88, + "end": 19416.82, + "probability": 0.9565 + }, + { + "start": 19418.22, + "end": 19421.46, + "probability": 0.8672 + }, + { + "start": 19422.0, + "end": 19423.59, + "probability": 0.7466 + }, + { + "start": 19425.8, + "end": 19425.8, + "probability": 0.1336 + }, + { + "start": 19425.8, + "end": 19426.2, + "probability": 0.5937 + }, + { + "start": 19426.58, + "end": 19427.84, + "probability": 0.835 + }, + { + "start": 19428.36, + "end": 19434.28, + "probability": 0.9764 + }, + { + "start": 19435.46, + "end": 19435.7, + "probability": 0.7307 + }, + { + "start": 19435.92, + "end": 19437.18, + "probability": 0.6731 + }, + { + "start": 19437.24, + "end": 19440.92, + "probability": 0.9894 + }, + { + "start": 19441.86, + "end": 19442.5, + "probability": 0.8405 + }, + { + "start": 19442.58, + "end": 19447.68, + "probability": 0.8924 + }, + { + "start": 19447.68, + "end": 19453.82, + "probability": 0.9986 + }, + { + "start": 19455.2, + "end": 19458.52, + "probability": 0.9732 + }, + { + "start": 19459.34, + "end": 19461.1, + "probability": 0.9807 + }, + { + "start": 19461.22, + "end": 19462.28, + "probability": 0.7753 + }, + { + "start": 19462.48, + "end": 19464.82, + "probability": 0.9619 + }, + { + "start": 19464.88, + "end": 19470.94, + "probability": 0.9529 + }, + { + "start": 19471.25, + "end": 19476.68, + "probability": 0.9392 + }, + { + "start": 19476.78, + "end": 19477.14, + "probability": 0.7872 + }, + { + "start": 19477.28, + "end": 19479.66, + "probability": 0.7439 + }, + { + "start": 19480.78, + "end": 19485.42, + "probability": 0.9958 + }, + { + "start": 19485.44, + "end": 19489.8, + "probability": 0.9798 + }, + { + "start": 19490.06, + "end": 19490.26, + "probability": 0.2246 + }, + { + "start": 19490.32, + "end": 19490.44, + "probability": 0.9294 + }, + { + "start": 19490.62, + "end": 19492.32, + "probability": 0.9847 + }, + { + "start": 19492.72, + "end": 19499.28, + "probability": 0.9917 + }, + { + "start": 19499.46, + "end": 19502.3, + "probability": 0.9951 + }, + { + "start": 19503.58, + "end": 19504.3, + "probability": 0.0133 + }, + { + "start": 19505.46, + "end": 19506.18, + "probability": 0.5623 + }, + { + "start": 19506.3, + "end": 19507.26, + "probability": 0.8117 + }, + { + "start": 19507.5, + "end": 19508.4, + "probability": 0.5024 + }, + { + "start": 19508.52, + "end": 19509.35, + "probability": 0.5496 + }, + { + "start": 19509.72, + "end": 19511.4, + "probability": 0.5135 + }, + { + "start": 19511.46, + "end": 19514.24, + "probability": 0.8683 + }, + { + "start": 19514.28, + "end": 19515.36, + "probability": 0.9922 + }, + { + "start": 19515.5, + "end": 19517.17, + "probability": 0.4597 + }, + { + "start": 19517.34, + "end": 19518.08, + "probability": 0.0952 + }, + { + "start": 19518.4, + "end": 19519.02, + "probability": 0.4322 + }, + { + "start": 19519.22, + "end": 19521.12, + "probability": 0.5757 + }, + { + "start": 19521.36, + "end": 19524.94, + "probability": 0.8458 + }, + { + "start": 19528.48, + "end": 19532.54, + "probability": 0.7646 + }, + { + "start": 19533.1, + "end": 19535.94, + "probability": 0.1667 + }, + { + "start": 19536.42, + "end": 19537.91, + "probability": 0.5235 + }, + { + "start": 19537.98, + "end": 19538.14, + "probability": 0.0161 + }, + { + "start": 19538.14, + "end": 19538.86, + "probability": 0.5057 + }, + { + "start": 19539.24, + "end": 19546.18, + "probability": 0.3069 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19680.46, + "end": 19680.72, + "probability": 0.1359 + }, + { + "start": 19682.37, + "end": 19686.84, + "probability": 0.9277 + }, + { + "start": 19688.14, + "end": 19692.06, + "probability": 0.9503 + }, + { + "start": 19693.28, + "end": 19696.6, + "probability": 0.9265 + }, + { + "start": 19696.6, + "end": 19699.08, + "probability": 0.9943 + }, + { + "start": 19700.14, + "end": 19702.04, + "probability": 0.8543 + }, + { + "start": 19702.66, + "end": 19704.16, + "probability": 0.8514 + }, + { + "start": 19704.24, + "end": 19706.26, + "probability": 0.9172 + }, + { + "start": 19708.18, + "end": 19710.84, + "probability": 0.9816 + }, + { + "start": 19710.94, + "end": 19715.14, + "probability": 0.9777 + }, + { + "start": 19715.88, + "end": 19718.54, + "probability": 0.9982 + }, + { + "start": 19719.54, + "end": 19719.92, + "probability": 0.3643 + }, + { + "start": 19720.0, + "end": 19723.73, + "probability": 0.9961 + }, + { + "start": 19723.74, + "end": 19726.9, + "probability": 0.9808 + }, + { + "start": 19727.8, + "end": 19730.52, + "probability": 0.998 + }, + { + "start": 19731.36, + "end": 19734.91, + "probability": 0.986 + }, + { + "start": 19736.12, + "end": 19738.22, + "probability": 0.9825 + }, + { + "start": 19739.16, + "end": 19741.28, + "probability": 0.5254 + }, + { + "start": 19742.24, + "end": 19745.52, + "probability": 0.9337 + }, + { + "start": 19746.52, + "end": 19749.02, + "probability": 0.8055 + }, + { + "start": 19749.84, + "end": 19753.26, + "probability": 0.9943 + }, + { + "start": 19753.46, + "end": 19755.06, + "probability": 0.9116 + }, + { + "start": 19755.84, + "end": 19757.92, + "probability": 0.8354 + }, + { + "start": 19758.8, + "end": 19762.28, + "probability": 0.9331 + }, + { + "start": 19762.4, + "end": 19764.58, + "probability": 0.9861 + }, + { + "start": 19765.32, + "end": 19767.9, + "probability": 0.9591 + }, + { + "start": 19768.78, + "end": 19769.24, + "probability": 0.5225 + }, + { + "start": 19770.06, + "end": 19774.56, + "probability": 0.9805 + }, + { + "start": 19775.24, + "end": 19778.08, + "probability": 0.9929 + }, + { + "start": 19778.76, + "end": 19779.48, + "probability": 0.9949 + }, + { + "start": 19779.88, + "end": 19781.1, + "probability": 0.7752 + }, + { + "start": 19781.74, + "end": 19783.88, + "probability": 0.9816 + }, + { + "start": 19784.68, + "end": 19788.3, + "probability": 0.9845 + }, + { + "start": 19789.28, + "end": 19791.78, + "probability": 0.913 + }, + { + "start": 19792.3, + "end": 19795.6, + "probability": 0.848 + }, + { + "start": 19796.34, + "end": 19797.08, + "probability": 0.546 + }, + { + "start": 19798.04, + "end": 19803.38, + "probability": 0.9862 + }, + { + "start": 19803.92, + "end": 19805.02, + "probability": 0.8858 + }, + { + "start": 19805.84, + "end": 19808.66, + "probability": 0.9418 + }, + { + "start": 19809.28, + "end": 19810.48, + "probability": 0.6744 + }, + { + "start": 19811.36, + "end": 19816.26, + "probability": 0.9837 + }, + { + "start": 19817.04, + "end": 19819.06, + "probability": 0.9662 + }, + { + "start": 19819.6, + "end": 19820.28, + "probability": 0.7662 + }, + { + "start": 19821.14, + "end": 19824.12, + "probability": 0.9782 + }, + { + "start": 19824.18, + "end": 19826.4, + "probability": 0.9958 + }, + { + "start": 19826.4, + "end": 19829.18, + "probability": 0.9983 + }, + { + "start": 19829.8, + "end": 19831.96, + "probability": 0.7661 + }, + { + "start": 19832.52, + "end": 19833.26, + "probability": 0.9154 + }, + { + "start": 19835.42, + "end": 19836.12, + "probability": 0.4958 + }, + { + "start": 19836.24, + "end": 19836.6, + "probability": 0.3787 + }, + { + "start": 19836.62, + "end": 19837.58, + "probability": 0.8484 + }, + { + "start": 19837.66, + "end": 19837.96, + "probability": 0.7068 + }, + { + "start": 19837.98, + "end": 19839.76, + "probability": 0.9219 + }, + { + "start": 19839.82, + "end": 19841.76, + "probability": 0.9548 + }, + { + "start": 19841.92, + "end": 19843.26, + "probability": 0.9661 + }, + { + "start": 19843.34, + "end": 19843.62, + "probability": 0.4194 + }, + { + "start": 19844.28, + "end": 19846.0, + "probability": 0.9683 + }, + { + "start": 19846.08, + "end": 19847.3, + "probability": 0.9296 + }, + { + "start": 19847.36, + "end": 19848.2, + "probability": 0.904 + }, + { + "start": 19848.26, + "end": 19848.64, + "probability": 0.9289 + }, + { + "start": 19849.14, + "end": 19851.46, + "probability": 0.8671 + }, + { + "start": 19851.64, + "end": 19854.34, + "probability": 0.7581 + }, + { + "start": 19854.7, + "end": 19855.34, + "probability": 0.8202 + }, + { + "start": 19855.44, + "end": 19857.0, + "probability": 0.9807 + }, + { + "start": 19857.74, + "end": 19860.64, + "probability": 0.7588 + }, + { + "start": 19861.1, + "end": 19861.64, + "probability": 0.3352 + }, + { + "start": 19862.02, + "end": 19867.64, + "probability": 0.7649 + }, + { + "start": 19868.04, + "end": 19871.02, + "probability": 0.9756 + }, + { + "start": 19871.32, + "end": 19875.02, + "probability": 0.8901 + }, + { + "start": 19876.02, + "end": 19878.62, + "probability": 0.7979 + }, + { + "start": 19878.64, + "end": 19883.52, + "probability": 0.9556 + }, + { + "start": 19883.7, + "end": 19885.7, + "probability": 0.9787 + }, + { + "start": 19886.5, + "end": 19887.72, + "probability": 0.1274 + }, + { + "start": 19887.86, + "end": 19893.46, + "probability": 0.9925 + }, + { + "start": 19893.6, + "end": 19897.67, + "probability": 0.9969 + }, + { + "start": 19897.89, + "end": 19898.77, + "probability": 0.6172 + }, + { + "start": 19898.81, + "end": 19901.97, + "probability": 0.989 + }, + { + "start": 19902.09, + "end": 19905.19, + "probability": 0.9985 + }, + { + "start": 19905.19, + "end": 19907.67, + "probability": 0.9979 + }, + { + "start": 19908.09, + "end": 19908.37, + "probability": 0.7344 + }, + { + "start": 19909.87, + "end": 19911.46, + "probability": 0.9746 + }, + { + "start": 19914.28, + "end": 19916.53, + "probability": 0.9962 + }, + { + "start": 19918.55, + "end": 19918.71, + "probability": 0.1218 + }, + { + "start": 19918.71, + "end": 19920.23, + "probability": 0.6967 + }, + { + "start": 19921.15, + "end": 19923.93, + "probability": 0.9646 + }, + { + "start": 19924.83, + "end": 19928.93, + "probability": 0.6083 + }, + { + "start": 19928.97, + "end": 19932.21, + "probability": 0.9152 + }, + { + "start": 19932.37, + "end": 19937.51, + "probability": 0.9105 + }, + { + "start": 19938.35, + "end": 19942.53, + "probability": 0.9043 + }, + { + "start": 19943.51, + "end": 19945.97, + "probability": 0.9233 + }, + { + "start": 19947.99, + "end": 19950.79, + "probability": 0.6996 + }, + { + "start": 19951.35, + "end": 19954.49, + "probability": 0.9828 + }, + { + "start": 19955.15, + "end": 19958.25, + "probability": 0.8733 + }, + { + "start": 19959.73, + "end": 19961.29, + "probability": 0.5629 + }, + { + "start": 19961.87, + "end": 19962.55, + "probability": 0.4842 + }, + { + "start": 19963.05, + "end": 19965.21, + "probability": 0.1567 + }, + { + "start": 19965.81, + "end": 19969.07, + "probability": 0.7568 + }, + { + "start": 19970.29, + "end": 19973.37, + "probability": 0.714 + }, + { + "start": 19976.21, + "end": 19980.84, + "probability": 0.0298 + }, + { + "start": 19981.23, + "end": 19984.51, + "probability": 0.0483 + }, + { + "start": 19986.5, + "end": 19987.93, + "probability": 0.0385 + }, + { + "start": 19990.05, + "end": 19992.87, + "probability": 0.1897 + }, + { + "start": 19994.09, + "end": 19995.41, + "probability": 0.0391 + }, + { + "start": 19995.51, + "end": 19996.65, + "probability": 0.225 + }, + { + "start": 19997.35, + "end": 20000.31, + "probability": 0.0838 + }, + { + "start": 20002.83, + "end": 20003.65, + "probability": 0.0178 + }, + { + "start": 20006.05, + "end": 20007.49, + "probability": 0.0256 + }, + { + "start": 20007.49, + "end": 20007.75, + "probability": 0.0385 + }, + { + "start": 20008.29, + "end": 20011.83, + "probability": 0.0239 + }, + { + "start": 20012.17, + "end": 20013.51, + "probability": 0.2059 + }, + { + "start": 20015.39, + "end": 20021.25, + "probability": 0.1115 + }, + { + "start": 20021.25, + "end": 20025.17, + "probability": 0.0936 + }, + { + "start": 20028.25, + "end": 20028.45, + "probability": 0.1288 + }, + { + "start": 20031.27, + "end": 20032.79, + "probability": 0.033 + }, + { + "start": 20032.79, + "end": 20034.7, + "probability": 0.0138 + }, + { + "start": 20034.93, + "end": 20035.25, + "probability": 0.2449 + }, + { + "start": 20035.25, + "end": 20037.65, + "probability": 0.0428 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.0, + "end": 20039.0, + "probability": 0.0 + }, + { + "start": 20039.2, + "end": 20039.72, + "probability": 0.0211 + }, + { + "start": 20039.72, + "end": 20039.72, + "probability": 0.068 + }, + { + "start": 20039.72, + "end": 20039.72, + "probability": 0.0286 + }, + { + "start": 20039.72, + "end": 20041.92, + "probability": 0.7939 + }, + { + "start": 20042.68, + "end": 20044.79, + "probability": 0.7972 + }, + { + "start": 20045.16, + "end": 20045.74, + "probability": 0.3987 + }, + { + "start": 20047.4, + "end": 20052.5, + "probability": 0.8027 + }, + { + "start": 20054.38, + "end": 20055.53, + "probability": 0.2673 + }, + { + "start": 20056.38, + "end": 20058.52, + "probability": 0.7764 + }, + { + "start": 20060.14, + "end": 20062.88, + "probability": 0.5832 + }, + { + "start": 20063.04, + "end": 20065.44, + "probability": 0.71 + }, + { + "start": 20067.34, + "end": 20069.06, + "probability": 0.7477 + }, + { + "start": 20069.48, + "end": 20074.62, + "probability": 0.9124 + }, + { + "start": 20080.76, + "end": 20086.36, + "probability": 0.7398 + }, + { + "start": 20086.98, + "end": 20088.32, + "probability": 0.6092 + }, + { + "start": 20088.6, + "end": 20091.34, + "probability": 0.616 + }, + { + "start": 20092.12, + "end": 20093.72, + "probability": 0.8656 + }, + { + "start": 20093.94, + "end": 20098.28, + "probability": 0.6201 + }, + { + "start": 20099.04, + "end": 20101.36, + "probability": 0.9318 + }, + { + "start": 20101.7, + "end": 20102.9, + "probability": 0.9985 + }, + { + "start": 20103.8, + "end": 20106.68, + "probability": 0.9272 + }, + { + "start": 20107.4, + "end": 20110.88, + "probability": 0.9529 + }, + { + "start": 20111.5, + "end": 20113.38, + "probability": 0.8549 + }, + { + "start": 20114.34, + "end": 20121.46, + "probability": 0.9757 + }, + { + "start": 20121.64, + "end": 20122.18, + "probability": 0.6388 + }, + { + "start": 20122.98, + "end": 20126.6, + "probability": 0.9909 + }, + { + "start": 20126.6, + "end": 20130.54, + "probability": 0.9965 + }, + { + "start": 20130.58, + "end": 20133.2, + "probability": 0.9219 + }, + { + "start": 20134.56, + "end": 20135.48, + "probability": 0.8623 + }, + { + "start": 20136.68, + "end": 20138.3, + "probability": 0.7492 + }, + { + "start": 20138.86, + "end": 20139.72, + "probability": 0.5555 + }, + { + "start": 20140.66, + "end": 20142.7, + "probability": 0.8286 + }, + { + "start": 20142.76, + "end": 20143.7, + "probability": 0.3805 + }, + { + "start": 20143.8, + "end": 20143.87, + "probability": 0.1761 + }, + { + "start": 20144.08, + "end": 20145.42, + "probability": 0.5155 + }, + { + "start": 20146.0, + "end": 20147.34, + "probability": 0.6544 + }, + { + "start": 20148.1, + "end": 20149.86, + "probability": 0.7056 + }, + { + "start": 20149.96, + "end": 20152.8, + "probability": 0.8984 + }, + { + "start": 20153.36, + "end": 20156.0, + "probability": 0.8881 + }, + { + "start": 20160.42, + "end": 20163.82, + "probability": 0.6979 + }, + { + "start": 20164.46, + "end": 20165.02, + "probability": 0.8542 + }, + { + "start": 20166.12, + "end": 20168.52, + "probability": 0.7467 + }, + { + "start": 20168.96, + "end": 20170.34, + "probability": 0.9789 + }, + { + "start": 20171.52, + "end": 20173.86, + "probability": 0.9888 + }, + { + "start": 20173.9, + "end": 20174.46, + "probability": 0.4934 + }, + { + "start": 20174.54, + "end": 20176.94, + "probability": 0.7274 + }, + { + "start": 20177.26, + "end": 20178.68, + "probability": 0.1828 + }, + { + "start": 20178.78, + "end": 20179.18, + "probability": 0.9368 + }, + { + "start": 20180.98, + "end": 20182.82, + "probability": 0.8051 + }, + { + "start": 20183.98, + "end": 20186.32, + "probability": 0.791 + }, + { + "start": 20186.6, + "end": 20187.38, + "probability": 0.7032 + }, + { + "start": 20187.56, + "end": 20188.44, + "probability": 0.9371 + }, + { + "start": 20189.5, + "end": 20190.56, + "probability": 0.5086 + }, + { + "start": 20191.3, + "end": 20193.28, + "probability": 0.7953 + }, + { + "start": 20194.22, + "end": 20198.88, + "probability": 0.9082 + }, + { + "start": 20199.38, + "end": 20202.94, + "probability": 0.906 + }, + { + "start": 20203.04, + "end": 20204.92, + "probability": 0.932 + }, + { + "start": 20205.98, + "end": 20208.36, + "probability": 0.8595 + }, + { + "start": 20209.16, + "end": 20210.92, + "probability": 0.9325 + }, + { + "start": 20212.18, + "end": 20213.5, + "probability": 0.9448 + }, + { + "start": 20214.97, + "end": 20217.46, + "probability": 0.9234 + }, + { + "start": 20218.2, + "end": 20219.92, + "probability": 0.9458 + }, + { + "start": 20221.02, + "end": 20223.1, + "probability": 0.9097 + }, + { + "start": 20223.18, + "end": 20225.2, + "probability": 0.3367 + }, + { + "start": 20225.94, + "end": 20227.86, + "probability": 0.8776 + }, + { + "start": 20228.16, + "end": 20230.08, + "probability": 0.9971 + }, + { + "start": 20231.06, + "end": 20233.18, + "probability": 0.7494 + }, + { + "start": 20236.13, + "end": 20240.08, + "probability": 0.7155 + }, + { + "start": 20240.82, + "end": 20244.84, + "probability": 0.9513 + }, + { + "start": 20245.44, + "end": 20247.96, + "probability": 0.6138 + }, + { + "start": 20248.38, + "end": 20250.18, + "probability": 0.9922 + }, + { + "start": 20251.24, + "end": 20251.55, + "probability": 0.1661 + }, + { + "start": 20251.96, + "end": 20255.38, + "probability": 0.999 + }, + { + "start": 20255.44, + "end": 20256.28, + "probability": 0.5737 + }, + { + "start": 20257.04, + "end": 20258.06, + "probability": 0.9037 + }, + { + "start": 20258.2, + "end": 20263.8, + "probability": 0.9739 + }, + { + "start": 20264.62, + "end": 20265.18, + "probability": 0.9246 + }, + { + "start": 20266.12, + "end": 20267.62, + "probability": 0.9191 + }, + { + "start": 20268.44, + "end": 20269.54, + "probability": 0.3409 + }, + { + "start": 20270.5, + "end": 20274.88, + "probability": 0.7586 + }, + { + "start": 20275.66, + "end": 20279.4, + "probability": 0.7264 + }, + { + "start": 20279.96, + "end": 20282.26, + "probability": 0.9414 + }, + { + "start": 20283.69, + "end": 20286.74, + "probability": 0.9709 + }, + { + "start": 20286.84, + "end": 20288.73, + "probability": 0.6289 + }, + { + "start": 20289.44, + "end": 20290.02, + "probability": 0.2888 + }, + { + "start": 20290.22, + "end": 20291.46, + "probability": 0.7961 + }, + { + "start": 20292.32, + "end": 20292.88, + "probability": 0.6254 + }, + { + "start": 20292.96, + "end": 20295.5, + "probability": 0.8226 + }, + { + "start": 20295.94, + "end": 20297.2, + "probability": 0.9422 + }, + { + "start": 20298.32, + "end": 20301.72, + "probability": 0.7164 + }, + { + "start": 20302.28, + "end": 20303.7, + "probability": 0.7337 + }, + { + "start": 20303.88, + "end": 20304.99, + "probability": 0.8457 + }, + { + "start": 20305.54, + "end": 20306.1, + "probability": 0.4162 + }, + { + "start": 20306.2, + "end": 20308.66, + "probability": 0.0756 + }, + { + "start": 20308.76, + "end": 20310.72, + "probability": 0.8184 + }, + { + "start": 20311.25, + "end": 20314.37, + "probability": 0.6031 + }, + { + "start": 20314.64, + "end": 20317.58, + "probability": 0.6638 + }, + { + "start": 20318.16, + "end": 20322.94, + "probability": 0.6558 + }, + { + "start": 20325.37, + "end": 20332.22, + "probability": 0.9607 + }, + { + "start": 20332.36, + "end": 20333.46, + "probability": 0.7656 + }, + { + "start": 20333.54, + "end": 20335.7, + "probability": 0.8806 + }, + { + "start": 20335.98, + "end": 20339.5, + "probability": 0.897 + }, + { + "start": 20342.4, + "end": 20343.5, + "probability": 0.6469 + }, + { + "start": 20344.92, + "end": 20344.92, + "probability": 0.0435 + }, + { + "start": 20344.92, + "end": 20346.02, + "probability": 0.3695 + }, + { + "start": 20346.18, + "end": 20347.96, + "probability": 0.6184 + }, + { + "start": 20348.58, + "end": 20354.94, + "probability": 0.0868 + }, + { + "start": 20357.88, + "end": 20359.28, + "probability": 0.0205 + }, + { + "start": 20360.26, + "end": 20361.32, + "probability": 0.0044 + }, + { + "start": 20363.0, + "end": 20366.42, + "probability": 0.0186 + }, + { + "start": 20366.48, + "end": 20366.48, + "probability": 0.0742 + }, + { + "start": 20366.52, + "end": 20366.76, + "probability": 0.0345 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.0, + "end": 20459.0, + "probability": 0.0 + }, + { + "start": 20459.68, + "end": 20460.38, + "probability": 0.0249 + }, + { + "start": 20460.38, + "end": 20460.38, + "probability": 0.076 + }, + { + "start": 20460.38, + "end": 20460.38, + "probability": 0.0219 + }, + { + "start": 20460.38, + "end": 20462.96, + "probability": 0.4906 + }, + { + "start": 20463.06, + "end": 20465.02, + "probability": 0.9902 + }, + { + "start": 20465.76, + "end": 20466.67, + "probability": 0.9723 + }, + { + "start": 20467.14, + "end": 20468.78, + "probability": 0.7925 + }, + { + "start": 20469.56, + "end": 20472.88, + "probability": 0.9781 + }, + { + "start": 20473.0, + "end": 20473.8, + "probability": 0.797 + }, + { + "start": 20473.92, + "end": 20474.12, + "probability": 0.8398 + }, + { + "start": 20474.22, + "end": 20475.2, + "probability": 0.9023 + }, + { + "start": 20475.86, + "end": 20479.95, + "probability": 0.8364 + }, + { + "start": 20481.1, + "end": 20482.7, + "probability": 0.9526 + }, + { + "start": 20483.4, + "end": 20484.39, + "probability": 0.7775 + }, + { + "start": 20485.1, + "end": 20485.66, + "probability": 0.601 + }, + { + "start": 20485.72, + "end": 20489.62, + "probability": 0.9771 + }, + { + "start": 20490.14, + "end": 20491.0, + "probability": 0.6922 + }, + { + "start": 20491.62, + "end": 20493.91, + "probability": 0.7334 + }, + { + "start": 20495.7, + "end": 20498.7, + "probability": 0.9937 + }, + { + "start": 20498.82, + "end": 20499.4, + "probability": 0.8657 + }, + { + "start": 20500.18, + "end": 20500.68, + "probability": 0.4615 + }, + { + "start": 20501.16, + "end": 20506.94, + "probability": 0.9927 + }, + { + "start": 20507.42, + "end": 20508.7, + "probability": 0.9957 + }, + { + "start": 20509.04, + "end": 20510.16, + "probability": 0.7488 + }, + { + "start": 20513.53, + "end": 20516.7, + "probability": 0.2074 + }, + { + "start": 20516.7, + "end": 20517.7, + "probability": 0.0197 + }, + { + "start": 20518.68, + "end": 20520.18, + "probability": 0.7184 + }, + { + "start": 20521.06, + "end": 20522.16, + "probability": 0.5905 + }, + { + "start": 20522.34, + "end": 20523.82, + "probability": 0.6707 + }, + { + "start": 20523.94, + "end": 20527.1, + "probability": 0.9775 + }, + { + "start": 20527.9, + "end": 20531.12, + "probability": 0.7031 + }, + { + "start": 20532.32, + "end": 20535.16, + "probability": 0.8204 + }, + { + "start": 20535.3, + "end": 20536.97, + "probability": 0.701 + }, + { + "start": 20538.38, + "end": 20540.36, + "probability": 0.8802 + }, + { + "start": 20542.04, + "end": 20543.48, + "probability": 0.8609 + }, + { + "start": 20543.48, + "end": 20545.9, + "probability": 0.9979 + }, + { + "start": 20546.82, + "end": 20549.36, + "probability": 0.8819 + }, + { + "start": 20550.4, + "end": 20552.46, + "probability": 0.9704 + }, + { + "start": 20553.18, + "end": 20555.98, + "probability": 0.7126 + }, + { + "start": 20556.2, + "end": 20559.76, + "probability": 0.978 + }, + { + "start": 20560.72, + "end": 20562.16, + "probability": 0.8823 + }, + { + "start": 20562.26, + "end": 20564.7, + "probability": 0.9868 + }, + { + "start": 20565.62, + "end": 20568.22, + "probability": 0.7184 + }, + { + "start": 20569.34, + "end": 20573.32, + "probability": 0.7921 + }, + { + "start": 20574.2, + "end": 20576.72, + "probability": 0.955 + }, + { + "start": 20577.58, + "end": 20582.34, + "probability": 0.9976 + }, + { + "start": 20582.98, + "end": 20585.74, + "probability": 0.9594 + }, + { + "start": 20586.39, + "end": 20587.76, + "probability": 0.8667 + }, + { + "start": 20587.92, + "end": 20590.4, + "probability": 0.9749 + }, + { + "start": 20590.66, + "end": 20590.88, + "probability": 0.6245 + }, + { + "start": 20590.98, + "end": 20591.44, + "probability": 0.0334 + }, + { + "start": 20592.1, + "end": 20594.06, + "probability": 0.9367 + }, + { + "start": 20594.84, + "end": 20597.34, + "probability": 0.5349 + }, + { + "start": 20598.58, + "end": 20599.82, + "probability": 0.7236 + }, + { + "start": 20601.5, + "end": 20603.36, + "probability": 0.883 + }, + { + "start": 20604.12, + "end": 20604.7, + "probability": 0.7421 + }, + { + "start": 20607.42, + "end": 20608.14, + "probability": 0.461 + }, + { + "start": 20608.9, + "end": 20609.28, + "probability": 0.6767 + }, + { + "start": 20609.36, + "end": 20610.21, + "probability": 0.7429 + }, + { + "start": 20610.74, + "end": 20610.94, + "probability": 0.5692 + }, + { + "start": 20610.96, + "end": 20611.78, + "probability": 0.8385 + }, + { + "start": 20612.34, + "end": 20614.18, + "probability": 0.8643 + }, + { + "start": 20614.3, + "end": 20615.16, + "probability": 0.979 + }, + { + "start": 20615.62, + "end": 20617.48, + "probability": 0.988 + }, + { + "start": 20618.1, + "end": 20624.5, + "probability": 0.9846 + }, + { + "start": 20624.5, + "end": 20630.72, + "probability": 0.9473 + }, + { + "start": 20631.13, + "end": 20632.9, + "probability": 0.6985 + }, + { + "start": 20632.98, + "end": 20633.86, + "probability": 0.7621 + }, + { + "start": 20635.2, + "end": 20636.44, + "probability": 0.6975 + }, + { + "start": 20636.5, + "end": 20639.6, + "probability": 0.7388 + }, + { + "start": 20640.29, + "end": 20644.62, + "probability": 0.6142 + }, + { + "start": 20644.88, + "end": 20646.48, + "probability": 0.7596 + }, + { + "start": 20647.42, + "end": 20647.76, + "probability": 0.6726 + }, + { + "start": 20647.86, + "end": 20649.82, + "probability": 0.7303 + }, + { + "start": 20649.88, + "end": 20651.98, + "probability": 0.8643 + }, + { + "start": 20653.94, + "end": 20655.9, + "probability": 0.9157 + }, + { + "start": 20656.0, + "end": 20658.2, + "probability": 0.9926 + }, + { + "start": 20658.36, + "end": 20659.8, + "probability": 0.6768 + }, + { + "start": 20659.88, + "end": 20662.51, + "probability": 0.9946 + }, + { + "start": 20662.79, + "end": 20664.77, + "probability": 0.7555 + }, + { + "start": 20664.91, + "end": 20668.89, + "probability": 0.9566 + }, + { + "start": 20669.83, + "end": 20671.51, + "probability": 0.6237 + }, + { + "start": 20671.67, + "end": 20671.95, + "probability": 0.9274 + }, + { + "start": 20672.35, + "end": 20674.21, + "probability": 0.8496 + }, + { + "start": 20674.21, + "end": 20676.77, + "probability": 0.99 + }, + { + "start": 20677.45, + "end": 20677.98, + "probability": 0.3141 + }, + { + "start": 20679.17, + "end": 20682.45, + "probability": 0.6967 + }, + { + "start": 20682.51, + "end": 20684.83, + "probability": 0.9793 + }, + { + "start": 20684.93, + "end": 20686.89, + "probability": 0.613 + }, + { + "start": 20687.79, + "end": 20690.01, + "probability": 0.558 + }, + { + "start": 20690.29, + "end": 20691.97, + "probability": 0.7897 + }, + { + "start": 20692.73, + "end": 20693.97, + "probability": 0.6516 + }, + { + "start": 20694.76, + "end": 20696.87, + "probability": 0.9792 + }, + { + "start": 20696.95, + "end": 20697.71, + "probability": 0.6157 + }, + { + "start": 20698.95, + "end": 20700.25, + "probability": 0.8761 + }, + { + "start": 20700.35, + "end": 20703.25, + "probability": 0.9587 + }, + { + "start": 20703.91, + "end": 20705.05, + "probability": 0.678 + }, + { + "start": 20706.53, + "end": 20708.49, + "probability": 0.7866 + }, + { + "start": 20709.03, + "end": 20710.71, + "probability": 0.7906 + }, + { + "start": 20714.71, + "end": 20716.73, + "probability": 0.9888 + }, + { + "start": 20720.25, + "end": 20720.85, + "probability": 0.4051 + }, + { + "start": 20722.49, + "end": 20725.49, + "probability": 0.2868 + }, + { + "start": 20734.41, + "end": 20744.01, + "probability": 0.238 + }, + { + "start": 20745.29, + "end": 20748.05, + "probability": 0.014 + }, + { + "start": 20748.05, + "end": 20751.43, + "probability": 0.1783 + }, + { + "start": 20751.51, + "end": 20753.72, + "probability": 0.046 + }, + { + "start": 20755.11, + "end": 20758.53, + "probability": 0.2222 + }, + { + "start": 20764.73, + "end": 20767.35, + "probability": 0.0633 + }, + { + "start": 20769.77, + "end": 20769.91, + "probability": 0.3063 + }, + { + "start": 20771.89, + "end": 20773.09, + "probability": 0.0166 + }, + { + "start": 20773.53, + "end": 20775.99, + "probability": 0.0715 + }, + { + "start": 20776.58, + "end": 20777.49, + "probability": 0.0271 + }, + { + "start": 20778.49, + "end": 20779.73, + "probability": 0.2946 + }, + { + "start": 20779.73, + "end": 20780.05, + "probability": 0.1174 + }, + { + "start": 20780.21, + "end": 20781.03, + "probability": 0.1225 + }, + { + "start": 20782.58, + "end": 20783.95, + "probability": 0.2045 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20786.0, + "end": 20786.0, + "probability": 0.0 + }, + { + "start": 20787.77, + "end": 20791.34, + "probability": 0.9541 + }, + { + "start": 20791.44, + "end": 20792.32, + "probability": 0.999 + }, + { + "start": 20792.9, + "end": 20794.26, + "probability": 0.9164 + }, + { + "start": 20794.5, + "end": 20794.76, + "probability": 0.3872 + }, + { + "start": 20794.92, + "end": 20797.88, + "probability": 0.8085 + }, + { + "start": 20798.52, + "end": 20801.74, + "probability": 0.66 + }, + { + "start": 20802.84, + "end": 20802.84, + "probability": 0.0528 + }, + { + "start": 20802.84, + "end": 20803.54, + "probability": 0.6023 + }, + { + "start": 20804.22, + "end": 20807.66, + "probability": 0.8388 + }, + { + "start": 20808.72, + "end": 20809.84, + "probability": 0.8302 + }, + { + "start": 20810.06, + "end": 20810.95, + "probability": 0.8577 + }, + { + "start": 20811.7, + "end": 20811.8, + "probability": 0.4958 + }, + { + "start": 20811.8, + "end": 20812.86, + "probability": 0.2965 + }, + { + "start": 20812.92, + "end": 20813.6, + "probability": 0.4667 + }, + { + "start": 20814.46, + "end": 20815.38, + "probability": 0.9329 + }, + { + "start": 20815.98, + "end": 20818.0, + "probability": 0.9956 + }, + { + "start": 20818.34, + "end": 20821.8, + "probability": 0.8665 + }, + { + "start": 20822.83, + "end": 20824.27, + "probability": 0.7398 + }, + { + "start": 20824.74, + "end": 20828.82, + "probability": 0.8546 + }, + { + "start": 20829.88, + "end": 20831.82, + "probability": 0.5794 + }, + { + "start": 20832.02, + "end": 20832.2, + "probability": 0.2717 + }, + { + "start": 20832.3, + "end": 20835.24, + "probability": 0.3911 + }, + { + "start": 20835.96, + "end": 20838.66, + "probability": 0.8489 + }, + { + "start": 20839.36, + "end": 20840.18, + "probability": 0.5899 + }, + { + "start": 20840.28, + "end": 20841.16, + "probability": 0.708 + }, + { + "start": 20842.0, + "end": 20844.58, + "probability": 0.9908 + }, + { + "start": 20845.34, + "end": 20847.16, + "probability": 0.9595 + }, + { + "start": 20847.68, + "end": 20849.16, + "probability": 0.8794 + }, + { + "start": 20849.26, + "end": 20852.02, + "probability": 0.9135 + }, + { + "start": 20852.92, + "end": 20855.42, + "probability": 0.9667 + }, + { + "start": 20856.14, + "end": 20859.24, + "probability": 0.1998 + }, + { + "start": 20859.36, + "end": 20861.94, + "probability": 0.3738 + }, + { + "start": 20862.56, + "end": 20864.32, + "probability": 0.8373 + }, + { + "start": 20865.3, + "end": 20865.7, + "probability": 0.4992 + }, + { + "start": 20867.74, + "end": 20869.22, + "probability": 0.0842 + }, + { + "start": 20869.22, + "end": 20871.36, + "probability": 0.896 + }, + { + "start": 20872.52, + "end": 20873.68, + "probability": 0.8049 + }, + { + "start": 20874.1, + "end": 20877.16, + "probability": 0.0244 + }, + { + "start": 20877.48, + "end": 20879.94, + "probability": 0.8395 + }, + { + "start": 20880.0, + "end": 20881.7, + "probability": 0.3467 + }, + { + "start": 20882.24, + "end": 20885.82, + "probability": 0.605 + }, + { + "start": 20886.16, + "end": 20888.62, + "probability": 0.7851 + }, + { + "start": 20889.53, + "end": 20892.1, + "probability": 0.9318 + }, + { + "start": 20892.5, + "end": 20896.32, + "probability": 0.3479 + }, + { + "start": 20896.88, + "end": 20901.02, + "probability": 0.0334 + }, + { + "start": 20915.84, + "end": 20916.04, + "probability": 0.0057 + }, + { + "start": 20916.76, + "end": 20919.86, + "probability": 0.4515 + }, + { + "start": 20924.31, + "end": 20925.58, + "probability": 0.0168 + }, + { + "start": 20926.64, + "end": 20926.98, + "probability": 0.1787 + }, + { + "start": 20929.1, + "end": 20932.5, + "probability": 0.029 + }, + { + "start": 20932.5, + "end": 20934.08, + "probability": 0.0409 + }, + { + "start": 20934.54, + "end": 20935.36, + "probability": 0.3248 + }, + { + "start": 20936.9, + "end": 20938.78, + "probability": 0.0538 + }, + { + "start": 20940.84, + "end": 20942.12, + "probability": 0.0407 + }, + { + "start": 20942.46, + "end": 20943.16, + "probability": 0.0891 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + }, + { + "start": 20944.838, + "end": 20944.838, + "probability": 0.0 + } + ], + "segments_count": 7457, + "words_count": 38838, + "avg_words_per_segment": 5.2083, + "avg_segment_duration": 1.9288, + "avg_words_per_minute": 111.2581, + "plenum_id": "6182", + "duration": 20944.82, + "title": null, + "plenum_date": "2010-01-27" +} \ No newline at end of file