diff --git "a/111353/metadata.json" "b/111353/metadata.json" new file mode 100644--- /dev/null +++ "b/111353/metadata.json" @@ -0,0 +1,34172 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "111353", + "quality_score": 0.9021, + "per_segment_quality_scores": [ + { + "start": 0.16, + "end": 1.56, + "probability": 0.149 + }, + { + "start": 2.52, + "end": 4.28, + "probability": 0.0776 + }, + { + "start": 4.28, + "end": 5.2, + "probability": 0.0759 + }, + { + "start": 46.18, + "end": 54.84, + "probability": 0.9877 + }, + { + "start": 55.88, + "end": 56.66, + "probability": 0.3821 + }, + { + "start": 57.8, + "end": 59.5, + "probability": 0.6682 + }, + { + "start": 60.22, + "end": 64.16, + "probability": 0.994 + }, + { + "start": 65.22, + "end": 71.8, + "probability": 0.954 + }, + { + "start": 72.48, + "end": 75.82, + "probability": 0.891 + }, + { + "start": 76.42, + "end": 80.22, + "probability": 0.9948 + }, + { + "start": 80.92, + "end": 81.74, + "probability": 0.5098 + }, + { + "start": 82.04, + "end": 83.82, + "probability": 0.9905 + }, + { + "start": 85.46, + "end": 86.96, + "probability": 0.8679 + }, + { + "start": 93.5, + "end": 94.34, + "probability": 0.1894 + }, + { + "start": 95.1, + "end": 95.96, + "probability": 0.6527 + }, + { + "start": 97.78, + "end": 98.76, + "probability": 0.3163 + }, + { + "start": 101.0, + "end": 103.8, + "probability": 0.7341 + }, + { + "start": 105.04, + "end": 106.1, + "probability": 0.9617 + }, + { + "start": 106.52, + "end": 107.46, + "probability": 0.7616 + }, + { + "start": 107.78, + "end": 108.54, + "probability": 0.9124 + }, + { + "start": 110.3, + "end": 110.86, + "probability": 0.8465 + }, + { + "start": 112.2, + "end": 114.56, + "probability": 0.7176 + }, + { + "start": 115.72, + "end": 120.74, + "probability": 0.9916 + }, + { + "start": 121.94, + "end": 123.4, + "probability": 0.8893 + }, + { + "start": 124.82, + "end": 129.34, + "probability": 0.9802 + }, + { + "start": 129.8, + "end": 131.5, + "probability": 0.999 + }, + { + "start": 132.54, + "end": 137.16, + "probability": 0.967 + }, + { + "start": 138.98, + "end": 140.72, + "probability": 0.8443 + }, + { + "start": 141.74, + "end": 144.88, + "probability": 0.8092 + }, + { + "start": 145.52, + "end": 146.58, + "probability": 0.9797 + }, + { + "start": 147.5, + "end": 148.76, + "probability": 0.9238 + }, + { + "start": 148.94, + "end": 152.54, + "probability": 0.9937 + }, + { + "start": 153.34, + "end": 155.96, + "probability": 0.9667 + }, + { + "start": 157.4, + "end": 158.18, + "probability": 0.4737 + }, + { + "start": 159.42, + "end": 167.18, + "probability": 0.9864 + }, + { + "start": 167.74, + "end": 171.04, + "probability": 0.7991 + }, + { + "start": 171.24, + "end": 173.08, + "probability": 0.972 + }, + { + "start": 174.92, + "end": 178.5, + "probability": 0.8781 + }, + { + "start": 179.56, + "end": 181.6, + "probability": 0.8245 + }, + { + "start": 181.76, + "end": 183.32, + "probability": 0.9563 + }, + { + "start": 183.46, + "end": 185.96, + "probability": 0.7738 + }, + { + "start": 186.02, + "end": 189.06, + "probability": 0.9844 + }, + { + "start": 190.44, + "end": 193.3, + "probability": 0.8604 + }, + { + "start": 193.36, + "end": 194.08, + "probability": 0.6081 + }, + { + "start": 194.18, + "end": 194.8, + "probability": 0.6291 + }, + { + "start": 195.78, + "end": 198.74, + "probability": 0.8875 + }, + { + "start": 198.92, + "end": 204.56, + "probability": 0.8521 + }, + { + "start": 204.66, + "end": 207.3, + "probability": 0.9424 + }, + { + "start": 208.22, + "end": 211.18, + "probability": 0.9173 + }, + { + "start": 211.3, + "end": 212.4, + "probability": 0.9269 + }, + { + "start": 212.56, + "end": 214.46, + "probability": 0.366 + }, + { + "start": 215.02, + "end": 216.16, + "probability": 0.7671 + }, + { + "start": 216.76, + "end": 219.0, + "probability": 0.8551 + }, + { + "start": 219.58, + "end": 221.9, + "probability": 0.9727 + }, + { + "start": 222.1, + "end": 222.9, + "probability": 0.8562 + }, + { + "start": 223.6, + "end": 224.74, + "probability": 0.9554 + }, + { + "start": 224.82, + "end": 225.92, + "probability": 0.7401 + }, + { + "start": 226.0, + "end": 228.58, + "probability": 0.9973 + }, + { + "start": 229.22, + "end": 231.48, + "probability": 0.9888 + }, + { + "start": 231.92, + "end": 235.4, + "probability": 0.8292 + }, + { + "start": 235.96, + "end": 241.28, + "probability": 0.9958 + }, + { + "start": 241.78, + "end": 245.34, + "probability": 0.9459 + }, + { + "start": 245.48, + "end": 246.26, + "probability": 0.8855 + }, + { + "start": 247.2, + "end": 249.32, + "probability": 0.9009 + }, + { + "start": 250.24, + "end": 251.8, + "probability": 0.8979 + }, + { + "start": 252.14, + "end": 256.3, + "probability": 0.9964 + }, + { + "start": 256.72, + "end": 260.92, + "probability": 0.9521 + }, + { + "start": 260.92, + "end": 261.08, + "probability": 0.3208 + }, + { + "start": 261.82, + "end": 269.82, + "probability": 0.9743 + }, + { + "start": 271.56, + "end": 272.92, + "probability": 0.7394 + }, + { + "start": 273.7, + "end": 275.14, + "probability": 0.6801 + }, + { + "start": 275.78, + "end": 278.48, + "probability": 0.8135 + }, + { + "start": 278.6, + "end": 284.14, + "probability": 0.9651 + }, + { + "start": 284.78, + "end": 285.52, + "probability": 0.4958 + }, + { + "start": 285.92, + "end": 291.09, + "probability": 0.9447 + }, + { + "start": 291.64, + "end": 295.82, + "probability": 0.6031 + }, + { + "start": 297.3, + "end": 297.86, + "probability": 0.866 + }, + { + "start": 297.94, + "end": 300.64, + "probability": 0.9765 + }, + { + "start": 301.16, + "end": 302.98, + "probability": 0.9871 + }, + { + "start": 303.08, + "end": 304.76, + "probability": 0.7168 + }, + { + "start": 305.32, + "end": 309.9, + "probability": 0.9697 + }, + { + "start": 310.12, + "end": 311.52, + "probability": 0.5642 + }, + { + "start": 311.66, + "end": 315.16, + "probability": 0.7731 + }, + { + "start": 315.72, + "end": 315.78, + "probability": 0.364 + }, + { + "start": 315.8, + "end": 316.54, + "probability": 0.7399 + }, + { + "start": 317.56, + "end": 319.28, + "probability": 0.8523 + }, + { + "start": 319.38, + "end": 324.78, + "probability": 0.985 + }, + { + "start": 325.04, + "end": 327.74, + "probability": 0.9867 + }, + { + "start": 329.11, + "end": 331.32, + "probability": 0.9951 + }, + { + "start": 331.4, + "end": 332.82, + "probability": 0.9951 + }, + { + "start": 333.48, + "end": 333.88, + "probability": 0.7904 + }, + { + "start": 335.08, + "end": 335.84, + "probability": 0.3218 + }, + { + "start": 335.92, + "end": 337.74, + "probability": 0.9956 + }, + { + "start": 337.94, + "end": 340.32, + "probability": 0.9837 + }, + { + "start": 340.92, + "end": 341.96, + "probability": 0.8371 + }, + { + "start": 342.12, + "end": 343.38, + "probability": 0.7935 + }, + { + "start": 343.56, + "end": 343.96, + "probability": 0.5723 + }, + { + "start": 344.04, + "end": 346.86, + "probability": 0.8425 + }, + { + "start": 346.86, + "end": 348.94, + "probability": 0.9609 + }, + { + "start": 349.0, + "end": 350.38, + "probability": 0.936 + }, + { + "start": 350.86, + "end": 352.54, + "probability": 0.8849 + }, + { + "start": 352.78, + "end": 353.86, + "probability": 0.0484 + }, + { + "start": 353.9, + "end": 354.58, + "probability": 0.3462 + }, + { + "start": 354.7, + "end": 358.38, + "probability": 0.982 + }, + { + "start": 358.56, + "end": 359.92, + "probability": 0.8905 + }, + { + "start": 360.32, + "end": 363.82, + "probability": 0.379 + }, + { + "start": 363.82, + "end": 364.08, + "probability": 0.0352 + }, + { + "start": 365.6, + "end": 367.38, + "probability": 0.9546 + }, + { + "start": 367.6, + "end": 368.2, + "probability": 0.8928 + }, + { + "start": 368.96, + "end": 370.22, + "probability": 0.8843 + }, + { + "start": 370.56, + "end": 372.76, + "probability": 0.8861 + }, + { + "start": 373.36, + "end": 375.24, + "probability": 0.9898 + }, + { + "start": 376.04, + "end": 378.04, + "probability": 0.9917 + }, + { + "start": 378.5, + "end": 383.37, + "probability": 0.991 + }, + { + "start": 383.66, + "end": 385.14, + "probability": 0.6498 + }, + { + "start": 385.82, + "end": 388.06, + "probability": 0.6469 + }, + { + "start": 388.98, + "end": 392.08, + "probability": 0.2435 + }, + { + "start": 392.62, + "end": 393.84, + "probability": 0.9524 + }, + { + "start": 393.88, + "end": 399.14, + "probability": 0.8079 + }, + { + "start": 399.18, + "end": 402.14, + "probability": 0.8945 + }, + { + "start": 402.36, + "end": 403.38, + "probability": 0.7795 + }, + { + "start": 404.02, + "end": 406.2, + "probability": 0.9945 + }, + { + "start": 407.88, + "end": 410.93, + "probability": 0.9498 + }, + { + "start": 412.18, + "end": 416.46, + "probability": 0.9248 + }, + { + "start": 416.46, + "end": 417.92, + "probability": 0.6252 + }, + { + "start": 419.0, + "end": 426.78, + "probability": 0.9718 + }, + { + "start": 427.96, + "end": 430.16, + "probability": 0.7965 + }, + { + "start": 431.12, + "end": 434.08, + "probability": 0.9744 + }, + { + "start": 434.68, + "end": 435.54, + "probability": 0.5117 + }, + { + "start": 435.62, + "end": 437.68, + "probability": 0.5498 + }, + { + "start": 437.78, + "end": 438.74, + "probability": 0.7244 + }, + { + "start": 439.34, + "end": 442.33, + "probability": 0.9336 + }, + { + "start": 443.32, + "end": 445.4, + "probability": 0.9468 + }, + { + "start": 446.44, + "end": 449.62, + "probability": 0.9606 + }, + { + "start": 450.26, + "end": 451.48, + "probability": 0.6981 + }, + { + "start": 451.58, + "end": 454.98, + "probability": 0.95 + }, + { + "start": 456.12, + "end": 460.98, + "probability": 0.9574 + }, + { + "start": 461.84, + "end": 462.92, + "probability": 0.9556 + }, + { + "start": 463.62, + "end": 466.84, + "probability": 0.6346 + }, + { + "start": 467.42, + "end": 468.04, + "probability": 0.2801 + }, + { + "start": 468.28, + "end": 471.82, + "probability": 0.6514 + }, + { + "start": 472.7, + "end": 475.32, + "probability": 0.6368 + }, + { + "start": 475.92, + "end": 478.72, + "probability": 0.9363 + }, + { + "start": 479.06, + "end": 483.32, + "probability": 0.8815 + }, + { + "start": 485.64, + "end": 487.18, + "probability": 0.7202 + }, + { + "start": 487.94, + "end": 491.56, + "probability": 0.912 + }, + { + "start": 491.56, + "end": 494.3, + "probability": 0.9976 + }, + { + "start": 495.14, + "end": 496.58, + "probability": 0.9987 + }, + { + "start": 497.64, + "end": 499.08, + "probability": 0.9159 + }, + { + "start": 499.68, + "end": 501.54, + "probability": 0.6834 + }, + { + "start": 502.22, + "end": 504.44, + "probability": 0.7633 + }, + { + "start": 505.22, + "end": 508.22, + "probability": 0.985 + }, + { + "start": 509.16, + "end": 511.88, + "probability": 0.7776 + }, + { + "start": 513.28, + "end": 514.2, + "probability": 0.9781 + }, + { + "start": 515.16, + "end": 517.2, + "probability": 0.9899 + }, + { + "start": 518.6, + "end": 522.24, + "probability": 0.8616 + }, + { + "start": 522.44, + "end": 523.5, + "probability": 0.9634 + }, + { + "start": 523.54, + "end": 524.32, + "probability": 0.7928 + }, + { + "start": 524.84, + "end": 527.3, + "probability": 0.9744 + }, + { + "start": 528.0, + "end": 532.42, + "probability": 0.9902 + }, + { + "start": 532.56, + "end": 533.26, + "probability": 0.4668 + }, + { + "start": 534.68, + "end": 535.68, + "probability": 0.7677 + }, + { + "start": 535.76, + "end": 539.82, + "probability": 0.9727 + }, + { + "start": 541.02, + "end": 541.98, + "probability": 0.5611 + }, + { + "start": 543.02, + "end": 547.96, + "probability": 0.9561 + }, + { + "start": 548.56, + "end": 550.64, + "probability": 0.9624 + }, + { + "start": 551.3, + "end": 552.42, + "probability": 0.4613 + }, + { + "start": 553.42, + "end": 555.98, + "probability": 0.8458 + }, + { + "start": 556.88, + "end": 558.18, + "probability": 0.9673 + }, + { + "start": 559.3, + "end": 563.36, + "probability": 0.9688 + }, + { + "start": 563.36, + "end": 566.96, + "probability": 0.9801 + }, + { + "start": 567.76, + "end": 570.22, + "probability": 0.9344 + }, + { + "start": 571.38, + "end": 571.54, + "probability": 0.7434 + }, + { + "start": 571.66, + "end": 572.5, + "probability": 0.9184 + }, + { + "start": 572.64, + "end": 573.32, + "probability": 0.961 + }, + { + "start": 573.38, + "end": 576.1, + "probability": 0.9498 + }, + { + "start": 576.54, + "end": 577.92, + "probability": 0.8763 + }, + { + "start": 578.06, + "end": 581.16, + "probability": 0.8032 + }, + { + "start": 581.74, + "end": 582.84, + "probability": 0.9007 + }, + { + "start": 583.98, + "end": 584.88, + "probability": 0.8137 + }, + { + "start": 585.84, + "end": 586.78, + "probability": 0.9453 + }, + { + "start": 586.98, + "end": 588.26, + "probability": 0.7455 + }, + { + "start": 588.4, + "end": 589.24, + "probability": 0.7701 + }, + { + "start": 589.82, + "end": 593.66, + "probability": 0.957 + }, + { + "start": 594.68, + "end": 595.48, + "probability": 0.7503 + }, + { + "start": 596.04, + "end": 599.84, + "probability": 0.9912 + }, + { + "start": 600.8, + "end": 602.88, + "probability": 0.9963 + }, + { + "start": 603.66, + "end": 606.38, + "probability": 0.9875 + }, + { + "start": 607.36, + "end": 608.88, + "probability": 0.7524 + }, + { + "start": 609.06, + "end": 609.76, + "probability": 0.9253 + }, + { + "start": 610.64, + "end": 611.48, + "probability": 0.4405 + }, + { + "start": 611.64, + "end": 615.72, + "probability": 0.714 + }, + { + "start": 616.08, + "end": 616.88, + "probability": 0.9527 + }, + { + "start": 616.96, + "end": 617.7, + "probability": 0.8399 + }, + { + "start": 619.74, + "end": 621.64, + "probability": 0.6232 + }, + { + "start": 621.74, + "end": 624.52, + "probability": 0.9889 + }, + { + "start": 625.18, + "end": 627.52, + "probability": 0.9968 + }, + { + "start": 627.52, + "end": 630.32, + "probability": 0.923 + }, + { + "start": 631.0, + "end": 631.34, + "probability": 0.8151 + }, + { + "start": 632.68, + "end": 635.1, + "probability": 0.2999 + }, + { + "start": 635.76, + "end": 640.0, + "probability": 0.9625 + }, + { + "start": 640.78, + "end": 641.16, + "probability": 0.0764 + }, + { + "start": 641.24, + "end": 645.1, + "probability": 0.9829 + }, + { + "start": 645.16, + "end": 646.66, + "probability": 0.9736 + }, + { + "start": 647.34, + "end": 650.88, + "probability": 0.8848 + }, + { + "start": 651.0, + "end": 655.16, + "probability": 0.993 + }, + { + "start": 655.82, + "end": 658.6, + "probability": 0.9918 + }, + { + "start": 659.1, + "end": 662.44, + "probability": 0.8563 + }, + { + "start": 663.04, + "end": 666.5, + "probability": 0.3634 + }, + { + "start": 667.12, + "end": 667.6, + "probability": 0.1552 + }, + { + "start": 667.62, + "end": 668.7, + "probability": 0.5915 + }, + { + "start": 668.92, + "end": 671.22, + "probability": 0.9487 + }, + { + "start": 671.88, + "end": 674.12, + "probability": 0.7712 + }, + { + "start": 674.34, + "end": 674.8, + "probability": 0.8245 + }, + { + "start": 675.28, + "end": 676.56, + "probability": 0.9533 + }, + { + "start": 677.12, + "end": 679.48, + "probability": 0.6956 + }, + { + "start": 679.58, + "end": 683.3, + "probability": 0.9927 + }, + { + "start": 684.38, + "end": 684.46, + "probability": 0.2909 + }, + { + "start": 684.48, + "end": 687.96, + "probability": 0.7471 + }, + { + "start": 688.08, + "end": 690.54, + "probability": 0.9777 + }, + { + "start": 692.26, + "end": 694.54, + "probability": 0.6762 + }, + { + "start": 695.96, + "end": 696.76, + "probability": 0.9571 + }, + { + "start": 697.84, + "end": 700.44, + "probability": 0.9886 + }, + { + "start": 700.44, + "end": 705.1, + "probability": 0.9956 + }, + { + "start": 705.32, + "end": 707.14, + "probability": 0.6722 + }, + { + "start": 707.66, + "end": 708.32, + "probability": 0.3083 + }, + { + "start": 709.16, + "end": 712.14, + "probability": 0.9661 + }, + { + "start": 712.86, + "end": 717.45, + "probability": 0.9871 + }, + { + "start": 717.94, + "end": 718.44, + "probability": 0.8117 + }, + { + "start": 718.9, + "end": 721.6, + "probability": 0.6509 + }, + { + "start": 722.76, + "end": 724.72, + "probability": 0.77 + }, + { + "start": 724.78, + "end": 725.12, + "probability": 0.9369 + }, + { + "start": 726.8, + "end": 730.0, + "probability": 0.9352 + }, + { + "start": 730.26, + "end": 732.4, + "probability": 0.9888 + }, + { + "start": 733.3, + "end": 736.08, + "probability": 0.992 + }, + { + "start": 736.32, + "end": 739.28, + "probability": 0.9956 + }, + { + "start": 739.92, + "end": 745.78, + "probability": 0.9798 + }, + { + "start": 746.7, + "end": 747.62, + "probability": 0.6329 + }, + { + "start": 747.78, + "end": 749.84, + "probability": 0.9938 + }, + { + "start": 750.84, + "end": 754.16, + "probability": 0.9918 + }, + { + "start": 754.48, + "end": 755.88, + "probability": 0.996 + }, + { + "start": 756.44, + "end": 760.68, + "probability": 0.9793 + }, + { + "start": 762.22, + "end": 765.14, + "probability": 0.8994 + }, + { + "start": 765.38, + "end": 768.52, + "probability": 0.9956 + }, + { + "start": 769.26, + "end": 770.52, + "probability": 0.7424 + }, + { + "start": 771.9, + "end": 775.28, + "probability": 0.9851 + }, + { + "start": 775.92, + "end": 778.36, + "probability": 0.9811 + }, + { + "start": 779.98, + "end": 783.96, + "probability": 0.9862 + }, + { + "start": 785.4, + "end": 789.38, + "probability": 0.9688 + }, + { + "start": 791.2, + "end": 794.54, + "probability": 0.9366 + }, + { + "start": 794.78, + "end": 797.32, + "probability": 0.9777 + }, + { + "start": 798.74, + "end": 801.44, + "probability": 0.8574 + }, + { + "start": 802.62, + "end": 805.0, + "probability": 0.9779 + }, + { + "start": 807.12, + "end": 809.34, + "probability": 0.8357 + }, + { + "start": 809.4, + "end": 811.94, + "probability": 0.6202 + }, + { + "start": 812.08, + "end": 813.36, + "probability": 0.7837 + }, + { + "start": 813.36, + "end": 814.48, + "probability": 0.8634 + }, + { + "start": 814.6, + "end": 816.14, + "probability": 0.5423 + }, + { + "start": 816.2, + "end": 817.34, + "probability": 0.9114 + }, + { + "start": 818.88, + "end": 824.32, + "probability": 0.976 + }, + { + "start": 825.32, + "end": 826.64, + "probability": 0.9774 + }, + { + "start": 827.9, + "end": 832.5, + "probability": 0.9907 + }, + { + "start": 833.48, + "end": 834.36, + "probability": 0.8058 + }, + { + "start": 834.88, + "end": 835.52, + "probability": 0.8375 + }, + { + "start": 836.39, + "end": 838.88, + "probability": 0.9023 + }, + { + "start": 838.94, + "end": 840.52, + "probability": 0.9772 + }, + { + "start": 841.76, + "end": 843.06, + "probability": 0.7129 + }, + { + "start": 844.95, + "end": 848.4, + "probability": 0.9761 + }, + { + "start": 850.02, + "end": 851.82, + "probability": 0.8583 + }, + { + "start": 852.64, + "end": 854.76, + "probability": 0.7917 + }, + { + "start": 856.47, + "end": 859.28, + "probability": 0.8861 + }, + { + "start": 861.02, + "end": 861.97, + "probability": 0.8672 + }, + { + "start": 862.26, + "end": 863.32, + "probability": 0.9426 + }, + { + "start": 863.74, + "end": 864.22, + "probability": 0.9073 + }, + { + "start": 866.46, + "end": 867.24, + "probability": 0.6333 + }, + { + "start": 868.26, + "end": 869.36, + "probability": 0.7514 + }, + { + "start": 870.42, + "end": 871.5, + "probability": 0.6984 + }, + { + "start": 872.48, + "end": 874.24, + "probability": 0.8536 + }, + { + "start": 875.38, + "end": 876.2, + "probability": 0.9856 + }, + { + "start": 876.94, + "end": 877.96, + "probability": 0.9458 + }, + { + "start": 879.18, + "end": 879.98, + "probability": 0.9961 + }, + { + "start": 880.56, + "end": 882.38, + "probability": 0.9583 + }, + { + "start": 882.9, + "end": 883.86, + "probability": 0.9963 + }, + { + "start": 885.06, + "end": 890.76, + "probability": 0.9714 + }, + { + "start": 891.28, + "end": 892.64, + "probability": 0.7963 + }, + { + "start": 893.62, + "end": 897.9, + "probability": 0.8705 + }, + { + "start": 899.3, + "end": 900.26, + "probability": 0.9608 + }, + { + "start": 902.54, + "end": 904.56, + "probability": 0.961 + }, + { + "start": 905.12, + "end": 906.92, + "probability": 0.9893 + }, + { + "start": 907.92, + "end": 908.5, + "probability": 0.6188 + }, + { + "start": 910.9, + "end": 912.6, + "probability": 0.9799 + }, + { + "start": 914.18, + "end": 916.28, + "probability": 0.986 + }, + { + "start": 916.38, + "end": 916.66, + "probability": 0.8449 + }, + { + "start": 916.72, + "end": 917.82, + "probability": 0.9623 + }, + { + "start": 918.96, + "end": 920.54, + "probability": 0.7472 + }, + { + "start": 921.62, + "end": 923.66, + "probability": 0.7767 + }, + { + "start": 925.36, + "end": 929.0, + "probability": 0.998 + }, + { + "start": 929.0, + "end": 933.3, + "probability": 0.9517 + }, + { + "start": 933.78, + "end": 936.12, + "probability": 0.9976 + }, + { + "start": 937.28, + "end": 938.84, + "probability": 0.8153 + }, + { + "start": 939.92, + "end": 944.68, + "probability": 0.9948 + }, + { + "start": 946.92, + "end": 947.68, + "probability": 0.7458 + }, + { + "start": 947.82, + "end": 948.72, + "probability": 0.9687 + }, + { + "start": 948.82, + "end": 949.7, + "probability": 0.9518 + }, + { + "start": 949.8, + "end": 951.05, + "probability": 0.9656 + }, + { + "start": 952.44, + "end": 953.44, + "probability": 0.9855 + }, + { + "start": 953.54, + "end": 954.78, + "probability": 0.9449 + }, + { + "start": 954.84, + "end": 955.92, + "probability": 0.9786 + }, + { + "start": 956.4, + "end": 957.26, + "probability": 0.6352 + }, + { + "start": 971.1, + "end": 971.66, + "probability": 0.0123 + }, + { + "start": 971.66, + "end": 971.66, + "probability": 0.074 + }, + { + "start": 971.66, + "end": 971.66, + "probability": 0.076 + }, + { + "start": 971.66, + "end": 971.66, + "probability": 0.0139 + }, + { + "start": 971.66, + "end": 974.88, + "probability": 0.3302 + }, + { + "start": 975.02, + "end": 977.32, + "probability": 0.9556 + }, + { + "start": 978.58, + "end": 980.36, + "probability": 0.4208 + }, + { + "start": 980.36, + "end": 980.96, + "probability": 0.6251 + }, + { + "start": 981.04, + "end": 981.78, + "probability": 0.8384 + }, + { + "start": 984.0, + "end": 987.96, + "probability": 0.7122 + }, + { + "start": 988.02, + "end": 992.76, + "probability": 0.9824 + }, + { + "start": 994.44, + "end": 996.52, + "probability": 0.992 + }, + { + "start": 996.56, + "end": 1001.84, + "probability": 0.467 + }, + { + "start": 1001.84, + "end": 1002.3, + "probability": 0.3338 + }, + { + "start": 1002.62, + "end": 1004.41, + "probability": 0.4025 + }, + { + "start": 1004.6, + "end": 1006.62, + "probability": 0.5614 + }, + { + "start": 1006.84, + "end": 1009.5, + "probability": 0.979 + }, + { + "start": 1011.6, + "end": 1017.8, + "probability": 0.5402 + }, + { + "start": 1018.42, + "end": 1020.72, + "probability": 0.4939 + }, + { + "start": 1022.02, + "end": 1023.84, + "probability": 0.9842 + }, + { + "start": 1024.92, + "end": 1027.16, + "probability": 0.6468 + }, + { + "start": 1028.52, + "end": 1031.48, + "probability": 0.8024 + }, + { + "start": 1033.28, + "end": 1036.9, + "probability": 0.9921 + }, + { + "start": 1037.58, + "end": 1039.46, + "probability": 0.922 + }, + { + "start": 1039.72, + "end": 1040.6, + "probability": 0.8521 + }, + { + "start": 1041.54, + "end": 1043.48, + "probability": 0.9429 + }, + { + "start": 1044.26, + "end": 1045.0, + "probability": 0.5056 + }, + { + "start": 1045.14, + "end": 1046.08, + "probability": 0.9827 + }, + { + "start": 1047.2, + "end": 1051.76, + "probability": 0.5805 + }, + { + "start": 1053.44, + "end": 1053.66, + "probability": 0.1436 + }, + { + "start": 1053.68, + "end": 1055.6, + "probability": 0.749 + }, + { + "start": 1056.86, + "end": 1063.7, + "probability": 0.7536 + }, + { + "start": 1064.66, + "end": 1065.46, + "probability": 0.8234 + }, + { + "start": 1066.02, + "end": 1068.56, + "probability": 0.9956 + }, + { + "start": 1069.26, + "end": 1071.18, + "probability": 0.966 + }, + { + "start": 1072.6, + "end": 1074.62, + "probability": 0.7087 + }, + { + "start": 1076.1, + "end": 1079.98, + "probability": 0.9763 + }, + { + "start": 1082.72, + "end": 1083.44, + "probability": 0.967 + }, + { + "start": 1084.18, + "end": 1085.78, + "probability": 0.813 + }, + { + "start": 1086.46, + "end": 1088.44, + "probability": 0.8614 + }, + { + "start": 1090.02, + "end": 1091.1, + "probability": 0.8779 + }, + { + "start": 1092.6, + "end": 1095.54, + "probability": 0.9618 + }, + { + "start": 1095.98, + "end": 1096.36, + "probability": 0.5804 + }, + { + "start": 1096.42, + "end": 1097.06, + "probability": 0.2538 + }, + { + "start": 1097.14, + "end": 1099.55, + "probability": 0.9302 + }, + { + "start": 1100.06, + "end": 1103.76, + "probability": 0.9861 + }, + { + "start": 1104.04, + "end": 1104.12, + "probability": 0.3761 + }, + { + "start": 1104.84, + "end": 1106.52, + "probability": 0.1406 + }, + { + "start": 1106.52, + "end": 1107.98, + "probability": 0.803 + }, + { + "start": 1109.76, + "end": 1110.96, + "probability": 0.1653 + }, + { + "start": 1111.16, + "end": 1112.98, + "probability": 0.7339 + }, + { + "start": 1113.24, + "end": 1117.42, + "probability": 0.9756 + }, + { + "start": 1117.58, + "end": 1118.63, + "probability": 0.8983 + }, + { + "start": 1121.36, + "end": 1122.88, + "probability": 0.9669 + }, + { + "start": 1129.06, + "end": 1129.06, + "probability": 0.3347 + }, + { + "start": 1129.06, + "end": 1129.72, + "probability": 0.7785 + }, + { + "start": 1133.22, + "end": 1134.2, + "probability": 0.6594 + }, + { + "start": 1134.96, + "end": 1137.5, + "probability": 0.9595 + }, + { + "start": 1137.7, + "end": 1139.86, + "probability": 0.9336 + }, + { + "start": 1140.68, + "end": 1144.36, + "probability": 0.9836 + }, + { + "start": 1144.5, + "end": 1145.34, + "probability": 0.7037 + }, + { + "start": 1146.52, + "end": 1147.74, + "probability": 0.9159 + }, + { + "start": 1148.68, + "end": 1150.4, + "probability": 0.9955 + }, + { + "start": 1155.68, + "end": 1156.66, + "probability": 0.7 + }, + { + "start": 1159.12, + "end": 1159.98, + "probability": 0.6632 + }, + { + "start": 1161.54, + "end": 1162.9, + "probability": 0.9307 + }, + { + "start": 1163.62, + "end": 1166.54, + "probability": 0.9927 + }, + { + "start": 1168.84, + "end": 1169.88, + "probability": 0.7332 + }, + { + "start": 1170.18, + "end": 1173.42, + "probability": 0.9768 + }, + { + "start": 1175.28, + "end": 1176.46, + "probability": 0.8933 + }, + { + "start": 1177.3, + "end": 1179.66, + "probability": 0.9873 + }, + { + "start": 1180.28, + "end": 1181.16, + "probability": 0.6695 + }, + { + "start": 1183.64, + "end": 1188.04, + "probability": 0.2767 + }, + { + "start": 1188.24, + "end": 1189.56, + "probability": 0.7942 + }, + { + "start": 1189.64, + "end": 1191.42, + "probability": 0.7749 + }, + { + "start": 1193.18, + "end": 1195.16, + "probability": 0.7208 + }, + { + "start": 1195.42, + "end": 1199.46, + "probability": 0.7562 + }, + { + "start": 1200.0, + "end": 1202.5, + "probability": 0.7612 + }, + { + "start": 1205.9, + "end": 1206.48, + "probability": 0.5327 + }, + { + "start": 1206.54, + "end": 1209.18, + "probability": 0.9663 + }, + { + "start": 1209.42, + "end": 1210.6, + "probability": 0.909 + }, + { + "start": 1211.68, + "end": 1213.52, + "probability": 0.9467 + }, + { + "start": 1214.84, + "end": 1220.1, + "probability": 0.965 + }, + { + "start": 1220.92, + "end": 1222.0, + "probability": 0.9912 + }, + { + "start": 1222.28, + "end": 1223.54, + "probability": 0.9784 + }, + { + "start": 1225.12, + "end": 1225.38, + "probability": 0.494 + }, + { + "start": 1225.6, + "end": 1226.72, + "probability": 0.9776 + }, + { + "start": 1226.84, + "end": 1228.3, + "probability": 0.9275 + }, + { + "start": 1228.4, + "end": 1229.12, + "probability": 0.7136 + }, + { + "start": 1229.2, + "end": 1230.32, + "probability": 0.6509 + }, + { + "start": 1231.06, + "end": 1232.74, + "probability": 0.976 + }, + { + "start": 1234.88, + "end": 1236.3, + "probability": 0.9576 + }, + { + "start": 1237.74, + "end": 1240.02, + "probability": 0.9956 + }, + { + "start": 1240.36, + "end": 1242.32, + "probability": 0.9912 + }, + { + "start": 1243.2, + "end": 1247.1, + "probability": 0.9899 + }, + { + "start": 1249.44, + "end": 1250.12, + "probability": 0.98 + }, + { + "start": 1251.78, + "end": 1253.62, + "probability": 0.7605 + }, + { + "start": 1254.34, + "end": 1255.54, + "probability": 0.7876 + }, + { + "start": 1256.36, + "end": 1257.1, + "probability": 0.0788 + }, + { + "start": 1258.62, + "end": 1261.16, + "probability": 0.8602 + }, + { + "start": 1262.04, + "end": 1263.28, + "probability": 0.6956 + }, + { + "start": 1264.76, + "end": 1265.98, + "probability": 0.8969 + }, + { + "start": 1266.62, + "end": 1270.0, + "probability": 0.9893 + }, + { + "start": 1270.28, + "end": 1271.2, + "probability": 0.1394 + }, + { + "start": 1272.04, + "end": 1272.64, + "probability": 0.142 + }, + { + "start": 1272.86, + "end": 1276.32, + "probability": 0.7302 + }, + { + "start": 1276.36, + "end": 1277.3, + "probability": 0.6754 + }, + { + "start": 1278.24, + "end": 1278.94, + "probability": 0.9211 + }, + { + "start": 1279.14, + "end": 1281.24, + "probability": 0.8984 + }, + { + "start": 1281.5, + "end": 1283.78, + "probability": 0.8677 + }, + { + "start": 1283.92, + "end": 1285.06, + "probability": 0.0186 + }, + { + "start": 1286.8, + "end": 1288.06, + "probability": 0.5445 + }, + { + "start": 1289.44, + "end": 1290.82, + "probability": 0.8478 + }, + { + "start": 1291.2, + "end": 1291.58, + "probability": 0.7831 + }, + { + "start": 1291.7, + "end": 1292.78, + "probability": 0.9421 + }, + { + "start": 1293.1, + "end": 1294.1, + "probability": 0.7836 + }, + { + "start": 1294.22, + "end": 1295.02, + "probability": 0.9614 + }, + { + "start": 1296.72, + "end": 1299.36, + "probability": 0.9454 + }, + { + "start": 1302.12, + "end": 1303.32, + "probability": 0.504 + }, + { + "start": 1304.68, + "end": 1305.42, + "probability": 0.973 + }, + { + "start": 1306.94, + "end": 1308.34, + "probability": 0.6363 + }, + { + "start": 1310.32, + "end": 1311.96, + "probability": 0.5025 + }, + { + "start": 1312.47, + "end": 1315.43, + "probability": 0.2164 + }, + { + "start": 1316.26, + "end": 1317.22, + "probability": 0.9897 + }, + { + "start": 1319.12, + "end": 1320.62, + "probability": 0.8167 + }, + { + "start": 1322.58, + "end": 1323.26, + "probability": 0.5839 + }, + { + "start": 1324.12, + "end": 1325.74, + "probability": 0.9371 + }, + { + "start": 1326.8, + "end": 1328.84, + "probability": 0.988 + }, + { + "start": 1330.46, + "end": 1332.9, + "probability": 0.5937 + }, + { + "start": 1334.68, + "end": 1334.68, + "probability": 0.0883 + }, + { + "start": 1334.68, + "end": 1334.68, + "probability": 0.1291 + }, + { + "start": 1334.68, + "end": 1336.62, + "probability": 0.7633 + }, + { + "start": 1336.74, + "end": 1337.67, + "probability": 0.9844 + }, + { + "start": 1337.98, + "end": 1339.22, + "probability": 0.9167 + }, + { + "start": 1340.3, + "end": 1341.16, + "probability": 0.8424 + }, + { + "start": 1342.22, + "end": 1343.12, + "probability": 0.9048 + }, + { + "start": 1344.14, + "end": 1344.14, + "probability": 0.0751 + }, + { + "start": 1344.88, + "end": 1347.18, + "probability": 0.6964 + }, + { + "start": 1347.18, + "end": 1348.12, + "probability": 0.7399 + }, + { + "start": 1350.88, + "end": 1353.54, + "probability": 0.7496 + }, + { + "start": 1354.46, + "end": 1355.72, + "probability": 0.6207 + }, + { + "start": 1357.24, + "end": 1359.58, + "probability": 0.9624 + }, + { + "start": 1361.2, + "end": 1362.8, + "probability": 0.9928 + }, + { + "start": 1363.6, + "end": 1364.63, + "probability": 0.9858 + }, + { + "start": 1365.56, + "end": 1367.64, + "probability": 0.9919 + }, + { + "start": 1368.06, + "end": 1369.9, + "probability": 0.7219 + }, + { + "start": 1370.12, + "end": 1370.26, + "probability": 0.4548 + }, + { + "start": 1370.26, + "end": 1372.7, + "probability": 0.9937 + }, + { + "start": 1373.5, + "end": 1377.14, + "probability": 0.9929 + }, + { + "start": 1377.2, + "end": 1378.2, + "probability": 0.924 + }, + { + "start": 1378.3, + "end": 1378.78, + "probability": 0.9897 + }, + { + "start": 1379.44, + "end": 1382.44, + "probability": 0.9611 + }, + { + "start": 1382.82, + "end": 1383.76, + "probability": 0.9983 + }, + { + "start": 1384.82, + "end": 1385.66, + "probability": 0.5511 + }, + { + "start": 1386.86, + "end": 1390.0, + "probability": 0.4919 + }, + { + "start": 1390.62, + "end": 1392.2, + "probability": 0.8905 + }, + { + "start": 1394.34, + "end": 1395.66, + "probability": 0.8069 + }, + { + "start": 1397.64, + "end": 1398.14, + "probability": 0.9871 + }, + { + "start": 1399.74, + "end": 1400.84, + "probability": 0.9897 + }, + { + "start": 1401.9, + "end": 1403.96, + "probability": 0.9307 + }, + { + "start": 1405.2, + "end": 1406.88, + "probability": 0.9635 + }, + { + "start": 1409.2, + "end": 1414.82, + "probability": 0.9906 + }, + { + "start": 1415.92, + "end": 1416.98, + "probability": 0.887 + }, + { + "start": 1417.36, + "end": 1418.66, + "probability": 0.7769 + }, + { + "start": 1418.86, + "end": 1420.26, + "probability": 0.7059 + }, + { + "start": 1420.62, + "end": 1421.68, + "probability": 0.9553 + }, + { + "start": 1424.04, + "end": 1425.26, + "probability": 0.9727 + }, + { + "start": 1426.6, + "end": 1427.89, + "probability": 0.9937 + }, + { + "start": 1429.32, + "end": 1430.32, + "probability": 0.701 + }, + { + "start": 1430.46, + "end": 1431.04, + "probability": 0.8589 + }, + { + "start": 1432.04, + "end": 1433.94, + "probability": 0.039 + }, + { + "start": 1434.1, + "end": 1435.98, + "probability": 0.7536 + }, + { + "start": 1436.64, + "end": 1438.17, + "probability": 0.8956 + }, + { + "start": 1439.3, + "end": 1439.3, + "probability": 0.161 + }, + { + "start": 1439.3, + "end": 1440.82, + "probability": 0.8881 + }, + { + "start": 1441.42, + "end": 1442.59, + "probability": 0.7154 + }, + { + "start": 1443.44, + "end": 1446.14, + "probability": 0.9458 + }, + { + "start": 1447.26, + "end": 1448.96, + "probability": 0.8545 + }, + { + "start": 1449.84, + "end": 1454.14, + "probability": 0.9897 + }, + { + "start": 1456.24, + "end": 1456.44, + "probability": 0.0198 + }, + { + "start": 1456.44, + "end": 1458.22, + "probability": 0.9663 + }, + { + "start": 1458.62, + "end": 1463.6, + "probability": 0.973 + }, + { + "start": 1464.3, + "end": 1465.84, + "probability": 0.8524 + }, + { + "start": 1465.94, + "end": 1466.46, + "probability": 0.9414 + }, + { + "start": 1467.98, + "end": 1468.72, + "probability": 0.8639 + }, + { + "start": 1469.42, + "end": 1471.28, + "probability": 0.667 + }, + { + "start": 1471.98, + "end": 1473.18, + "probability": 0.8291 + }, + { + "start": 1474.26, + "end": 1475.52, + "probability": 0.9849 + }, + { + "start": 1477.02, + "end": 1479.72, + "probability": 0.8568 + }, + { + "start": 1481.28, + "end": 1481.28, + "probability": 0.0145 + }, + { + "start": 1482.68, + "end": 1482.82, + "probability": 0.1808 + }, + { + "start": 1482.82, + "end": 1482.92, + "probability": 0.138 + }, + { + "start": 1483.2, + "end": 1485.16, + "probability": 0.4919 + }, + { + "start": 1486.12, + "end": 1487.46, + "probability": 0.2276 + }, + { + "start": 1487.54, + "end": 1489.39, + "probability": 0.6859 + }, + { + "start": 1489.5, + "end": 1489.8, + "probability": 0.7515 + }, + { + "start": 1491.8, + "end": 1492.88, + "probability": 0.8092 + }, + { + "start": 1493.46, + "end": 1496.7, + "probability": 0.8742 + }, + { + "start": 1505.84, + "end": 1507.68, + "probability": 0.4279 + }, + { + "start": 1508.22, + "end": 1508.72, + "probability": 0.2884 + }, + { + "start": 1511.56, + "end": 1512.86, + "probability": 0.3845 + }, + { + "start": 1517.4, + "end": 1519.96, + "probability": 0.8204 + }, + { + "start": 1520.66, + "end": 1521.7, + "probability": 0.9731 + }, + { + "start": 1522.56, + "end": 1523.46, + "probability": 0.8643 + }, + { + "start": 1525.32, + "end": 1527.02, + "probability": 0.9966 + }, + { + "start": 1528.34, + "end": 1530.46, + "probability": 0.943 + }, + { + "start": 1531.34, + "end": 1531.54, + "probability": 0.8846 + }, + { + "start": 1532.12, + "end": 1532.66, + "probability": 0.0196 + }, + { + "start": 1532.74, + "end": 1534.44, + "probability": 0.8528 + }, + { + "start": 1535.14, + "end": 1537.7, + "probability": 0.8506 + }, + { + "start": 1539.04, + "end": 1541.88, + "probability": 0.9814 + }, + { + "start": 1544.14, + "end": 1546.04, + "probability": 0.8975 + }, + { + "start": 1546.88, + "end": 1549.26, + "probability": 0.8087 + }, + { + "start": 1551.24, + "end": 1554.0, + "probability": 0.9266 + }, + { + "start": 1565.98, + "end": 1566.22, + "probability": 0.1273 + }, + { + "start": 1566.22, + "end": 1566.22, + "probability": 0.072 + }, + { + "start": 1566.22, + "end": 1567.22, + "probability": 0.8215 + }, + { + "start": 1567.86, + "end": 1570.12, + "probability": 0.9849 + }, + { + "start": 1572.72, + "end": 1575.88, + "probability": 0.8302 + }, + { + "start": 1576.02, + "end": 1577.44, + "probability": 0.9116 + }, + { + "start": 1579.64, + "end": 1579.7, + "probability": 0.1663 + }, + { + "start": 1579.7, + "end": 1580.66, + "probability": 0.6975 + }, + { + "start": 1580.76, + "end": 1581.74, + "probability": 0.9701 + }, + { + "start": 1584.72, + "end": 1588.0, + "probability": 0.5501 + }, + { + "start": 1589.2, + "end": 1591.3, + "probability": 0.9832 + }, + { + "start": 1592.06, + "end": 1594.58, + "probability": 0.984 + }, + { + "start": 1595.14, + "end": 1595.95, + "probability": 0.9956 + }, + { + "start": 1596.56, + "end": 1597.06, + "probability": 0.9225 + }, + { + "start": 1598.22, + "end": 1601.76, + "probability": 0.8352 + }, + { + "start": 1602.76, + "end": 1603.08, + "probability": 0.3164 + }, + { + "start": 1605.28, + "end": 1606.1, + "probability": 0.9414 + }, + { + "start": 1607.2, + "end": 1608.74, + "probability": 0.998 + }, + { + "start": 1610.64, + "end": 1611.78, + "probability": 0.6934 + }, + { + "start": 1613.22, + "end": 1614.02, + "probability": 0.988 + }, + { + "start": 1617.08, + "end": 1618.1, + "probability": 0.7451 + }, + { + "start": 1618.58, + "end": 1618.88, + "probability": 0.9583 + }, + { + "start": 1620.16, + "end": 1621.26, + "probability": 0.8207 + }, + { + "start": 1621.82, + "end": 1622.94, + "probability": 0.9976 + }, + { + "start": 1623.28, + "end": 1623.86, + "probability": 0.6717 + }, + { + "start": 1624.78, + "end": 1626.14, + "probability": 0.9059 + }, + { + "start": 1627.82, + "end": 1628.24, + "probability": 0.9385 + }, + { + "start": 1628.32, + "end": 1629.36, + "probability": 0.8105 + }, + { + "start": 1630.72, + "end": 1632.6, + "probability": 0.95 + }, + { + "start": 1632.84, + "end": 1633.46, + "probability": 0.9299 + }, + { + "start": 1633.66, + "end": 1635.26, + "probability": 0.9924 + }, + { + "start": 1636.76, + "end": 1637.32, + "probability": 0.9631 + }, + { + "start": 1641.1, + "end": 1641.5, + "probability": 0.9098 + }, + { + "start": 1642.72, + "end": 1643.2, + "probability": 0.6654 + }, + { + "start": 1643.98, + "end": 1645.72, + "probability": 0.5936 + }, + { + "start": 1645.96, + "end": 1647.62, + "probability": 0.2514 + }, + { + "start": 1650.22, + "end": 1651.38, + "probability": 0.5018 + }, + { + "start": 1652.68, + "end": 1653.16, + "probability": 0.304 + }, + { + "start": 1655.7, + "end": 1656.84, + "probability": 0.6908 + }, + { + "start": 1658.7, + "end": 1659.62, + "probability": 0.9849 + }, + { + "start": 1660.94, + "end": 1662.18, + "probability": 0.9875 + }, + { + "start": 1662.32, + "end": 1663.1, + "probability": 0.9773 + }, + { + "start": 1663.9, + "end": 1664.72, + "probability": 0.9902 + }, + { + "start": 1665.94, + "end": 1666.56, + "probability": 0.509 + }, + { + "start": 1668.34, + "end": 1671.86, + "probability": 0.9969 + }, + { + "start": 1672.62, + "end": 1674.4, + "probability": 0.8733 + }, + { + "start": 1675.42, + "end": 1676.04, + "probability": 0.5651 + }, + { + "start": 1682.18, + "end": 1683.94, + "probability": 0.9531 + }, + { + "start": 1685.32, + "end": 1686.62, + "probability": 0.9912 + }, + { + "start": 1686.9, + "end": 1688.4, + "probability": 0.2324 + }, + { + "start": 1688.6, + "end": 1688.6, + "probability": 0.5397 + }, + { + "start": 1688.6, + "end": 1689.28, + "probability": 0.751 + }, + { + "start": 1690.98, + "end": 1693.42, + "probability": 0.6419 + }, + { + "start": 1695.4, + "end": 1697.42, + "probability": 0.9758 + }, + { + "start": 1698.36, + "end": 1700.18, + "probability": 0.9973 + }, + { + "start": 1702.0, + "end": 1702.3, + "probability": 0.1184 + }, + { + "start": 1705.02, + "end": 1706.0, + "probability": 0.9868 + }, + { + "start": 1707.18, + "end": 1709.32, + "probability": 0.9402 + }, + { + "start": 1709.74, + "end": 1710.56, + "probability": 0.95 + }, + { + "start": 1710.64, + "end": 1711.44, + "probability": 0.7865 + }, + { + "start": 1711.62, + "end": 1712.84, + "probability": 0.9168 + }, + { + "start": 1714.18, + "end": 1715.66, + "probability": 0.9888 + }, + { + "start": 1717.12, + "end": 1722.3, + "probability": 0.9876 + }, + { + "start": 1722.4, + "end": 1723.4, + "probability": 0.9702 + }, + { + "start": 1724.08, + "end": 1726.3, + "probability": 0.9844 + }, + { + "start": 1726.72, + "end": 1728.6, + "probability": 0.9928 + }, + { + "start": 1729.26, + "end": 1730.67, + "probability": 0.8844 + }, + { + "start": 1733.7, + "end": 1735.82, + "probability": 0.3769 + }, + { + "start": 1735.9, + "end": 1737.4, + "probability": 0.8087 + }, + { + "start": 1739.14, + "end": 1739.96, + "probability": 0.9119 + }, + { + "start": 1740.58, + "end": 1744.18, + "probability": 0.9973 + }, + { + "start": 1745.44, + "end": 1746.7, + "probability": 0.9199 + }, + { + "start": 1749.34, + "end": 1751.84, + "probability": 0.8436 + }, + { + "start": 1752.58, + "end": 1757.6, + "probability": 0.9565 + }, + { + "start": 1758.66, + "end": 1759.82, + "probability": 0.9974 + }, + { + "start": 1761.22, + "end": 1762.34, + "probability": 0.8833 + }, + { + "start": 1762.4, + "end": 1764.12, + "probability": 0.6392 + }, + { + "start": 1764.8, + "end": 1769.02, + "probability": 0.9049 + }, + { + "start": 1770.38, + "end": 1773.26, + "probability": 0.981 + }, + { + "start": 1773.32, + "end": 1776.84, + "probability": 0.9062 + }, + { + "start": 1777.7, + "end": 1779.86, + "probability": 0.4774 + }, + { + "start": 1779.98, + "end": 1780.26, + "probability": 0.2485 + }, + { + "start": 1783.46, + "end": 1785.22, + "probability": 0.9922 + }, + { + "start": 1787.22, + "end": 1788.69, + "probability": 0.9883 + }, + { + "start": 1788.86, + "end": 1793.72, + "probability": 0.9124 + }, + { + "start": 1794.4, + "end": 1796.18, + "probability": 0.9937 + }, + { + "start": 1798.08, + "end": 1799.82, + "probability": 0.9878 + }, + { + "start": 1801.62, + "end": 1803.18, + "probability": 0.7765 + }, + { + "start": 1805.56, + "end": 1808.06, + "probability": 0.9316 + }, + { + "start": 1808.76, + "end": 1809.8, + "probability": 0.6985 + }, + { + "start": 1810.0, + "end": 1812.42, + "probability": 0.7975 + }, + { + "start": 1813.52, + "end": 1814.3, + "probability": 0.7502 + }, + { + "start": 1818.46, + "end": 1825.68, + "probability": 0.9952 + }, + { + "start": 1826.54, + "end": 1829.78, + "probability": 0.9774 + }, + { + "start": 1830.62, + "end": 1833.59, + "probability": 0.9756 + }, + { + "start": 1834.14, + "end": 1834.3, + "probability": 0.0844 + }, + { + "start": 1834.44, + "end": 1836.36, + "probability": 0.201 + }, + { + "start": 1836.66, + "end": 1838.5, + "probability": 0.5813 + }, + { + "start": 1838.92, + "end": 1840.02, + "probability": 0.5919 + }, + { + "start": 1841.44, + "end": 1842.9, + "probability": 0.3578 + }, + { + "start": 1844.16, + "end": 1846.56, + "probability": 0.4914 + }, + { + "start": 1846.66, + "end": 1849.54, + "probability": 0.9825 + }, + { + "start": 1850.42, + "end": 1851.52, + "probability": 0.8311 + }, + { + "start": 1851.62, + "end": 1851.94, + "probability": 0.8695 + }, + { + "start": 1852.52, + "end": 1853.84, + "probability": 0.5336 + }, + { + "start": 1854.82, + "end": 1858.32, + "probability": 0.868 + }, + { + "start": 1859.02, + "end": 1860.08, + "probability": 0.7505 + }, + { + "start": 1860.8, + "end": 1863.72, + "probability": 0.998 + }, + { + "start": 1864.16, + "end": 1867.56, + "probability": 0.8375 + }, + { + "start": 1870.86, + "end": 1872.52, + "probability": 0.703 + }, + { + "start": 1872.74, + "end": 1875.04, + "probability": 0.9781 + }, + { + "start": 1875.04, + "end": 1878.94, + "probability": 0.992 + }, + { + "start": 1879.36, + "end": 1880.38, + "probability": 0.9601 + }, + { + "start": 1881.1, + "end": 1881.9, + "probability": 0.851 + }, + { + "start": 1882.82, + "end": 1883.96, + "probability": 0.9966 + }, + { + "start": 1884.46, + "end": 1886.13, + "probability": 0.9559 + }, + { + "start": 1886.44, + "end": 1887.01, + "probability": 0.9266 + }, + { + "start": 1887.9, + "end": 1890.18, + "probability": 0.8235 + }, + { + "start": 1890.82, + "end": 1893.1, + "probability": 0.9609 + }, + { + "start": 1893.54, + "end": 1894.74, + "probability": 0.9854 + }, + { + "start": 1895.08, + "end": 1896.12, + "probability": 0.9741 + }, + { + "start": 1896.24, + "end": 1897.58, + "probability": 0.9712 + }, + { + "start": 1898.28, + "end": 1900.5, + "probability": 0.7092 + }, + { + "start": 1901.26, + "end": 1904.68, + "probability": 0.9949 + }, + { + "start": 1904.78, + "end": 1907.91, + "probability": 0.98 + }, + { + "start": 1908.74, + "end": 1910.4, + "probability": 0.9853 + }, + { + "start": 1910.94, + "end": 1911.46, + "probability": 0.7279 + }, + { + "start": 1911.6, + "end": 1912.24, + "probability": 0.6598 + }, + { + "start": 1912.42, + "end": 1914.46, + "probability": 0.9881 + }, + { + "start": 1914.84, + "end": 1915.24, + "probability": 0.752 + }, + { + "start": 1916.26, + "end": 1920.34, + "probability": 0.84 + }, + { + "start": 1921.46, + "end": 1927.85, + "probability": 0.9844 + }, + { + "start": 1930.76, + "end": 1930.76, + "probability": 0.1226 + }, + { + "start": 1930.76, + "end": 1932.2, + "probability": 0.8623 + }, + { + "start": 1932.96, + "end": 1933.1, + "probability": 0.0233 + }, + { + "start": 1935.62, + "end": 1937.92, + "probability": 0.5006 + }, + { + "start": 1938.84, + "end": 1942.16, + "probability": 0.6505 + }, + { + "start": 1942.44, + "end": 1946.28, + "probability": 0.9448 + }, + { + "start": 1948.64, + "end": 1952.52, + "probability": 0.8029 + }, + { + "start": 1961.48, + "end": 1964.42, + "probability": 0.8001 + }, + { + "start": 1965.42, + "end": 1966.0, + "probability": 0.7945 + }, + { + "start": 1967.1, + "end": 1969.24, + "probability": 0.9706 + }, + { + "start": 1971.76, + "end": 1973.28, + "probability": 0.9094 + }, + { + "start": 1978.38, + "end": 1981.66, + "probability": 0.9987 + }, + { + "start": 1982.9, + "end": 1983.76, + "probability": 0.4596 + }, + { + "start": 1985.5, + "end": 1989.26, + "probability": 0.993 + }, + { + "start": 1990.68, + "end": 1992.14, + "probability": 0.9521 + }, + { + "start": 1993.56, + "end": 1995.12, + "probability": 0.9442 + }, + { + "start": 1996.06, + "end": 1998.06, + "probability": 0.8329 + }, + { + "start": 2000.34, + "end": 2001.58, + "probability": 0.685 + }, + { + "start": 2002.96, + "end": 2003.9, + "probability": 0.7827 + }, + { + "start": 2005.36, + "end": 2010.14, + "probability": 0.9484 + }, + { + "start": 2011.54, + "end": 2013.8, + "probability": 0.9448 + }, + { + "start": 2015.6, + "end": 2017.26, + "probability": 0.7729 + }, + { + "start": 2018.02, + "end": 2020.6, + "probability": 0.9593 + }, + { + "start": 2021.5, + "end": 2022.62, + "probability": 0.7561 + }, + { + "start": 2022.78, + "end": 2028.52, + "probability": 0.8059 + }, + { + "start": 2028.62, + "end": 2033.86, + "probability": 0.8875 + }, + { + "start": 2035.14, + "end": 2035.92, + "probability": 0.9708 + }, + { + "start": 2036.54, + "end": 2040.84, + "probability": 0.8462 + }, + { + "start": 2042.42, + "end": 2044.62, + "probability": 0.5046 + }, + { + "start": 2046.04, + "end": 2049.22, + "probability": 0.957 + }, + { + "start": 2050.32, + "end": 2052.96, + "probability": 0.9899 + }, + { + "start": 2054.04, + "end": 2054.88, + "probability": 0.9675 + }, + { + "start": 2056.22, + "end": 2057.52, + "probability": 0.9359 + }, + { + "start": 2058.46, + "end": 2060.12, + "probability": 0.9258 + }, + { + "start": 2060.82, + "end": 2066.6, + "probability": 0.9867 + }, + { + "start": 2068.04, + "end": 2070.95, + "probability": 0.9957 + }, + { + "start": 2072.48, + "end": 2074.98, + "probability": 0.9946 + }, + { + "start": 2076.2, + "end": 2079.74, + "probability": 0.957 + }, + { + "start": 2080.32, + "end": 2084.12, + "probability": 0.9173 + }, + { + "start": 2085.0, + "end": 2087.56, + "probability": 0.991 + }, + { + "start": 2088.18, + "end": 2092.48, + "probability": 0.9836 + }, + { + "start": 2093.56, + "end": 2097.8, + "probability": 0.9919 + }, + { + "start": 2098.58, + "end": 2099.68, + "probability": 0.7997 + }, + { + "start": 2099.9, + "end": 2103.64, + "probability": 0.9962 + }, + { + "start": 2104.96, + "end": 2110.1, + "probability": 0.9414 + }, + { + "start": 2110.3, + "end": 2114.18, + "probability": 0.7568 + }, + { + "start": 2115.2, + "end": 2118.2, + "probability": 0.9879 + }, + { + "start": 2118.28, + "end": 2121.22, + "probability": 0.8462 + }, + { + "start": 2122.14, + "end": 2125.84, + "probability": 0.9611 + }, + { + "start": 2127.5, + "end": 2129.84, + "probability": 0.6476 + }, + { + "start": 2130.36, + "end": 2133.46, + "probability": 0.9879 + }, + { + "start": 2133.98, + "end": 2135.92, + "probability": 0.9858 + }, + { + "start": 2135.92, + "end": 2138.58, + "probability": 0.9765 + }, + { + "start": 2139.1, + "end": 2144.46, + "probability": 0.9199 + }, + { + "start": 2144.94, + "end": 2148.24, + "probability": 0.8872 + }, + { + "start": 2148.32, + "end": 2151.38, + "probability": 0.9931 + }, + { + "start": 2151.9, + "end": 2153.94, + "probability": 0.9912 + }, + { + "start": 2154.68, + "end": 2157.0, + "probability": 0.8022 + }, + { + "start": 2157.18, + "end": 2158.86, + "probability": 0.937 + }, + { + "start": 2159.38, + "end": 2162.34, + "probability": 0.7153 + }, + { + "start": 2163.84, + "end": 2167.76, + "probability": 0.9683 + }, + { + "start": 2169.42, + "end": 2170.38, + "probability": 0.9951 + }, + { + "start": 2171.44, + "end": 2175.1, + "probability": 0.6981 + }, + { + "start": 2176.64, + "end": 2178.28, + "probability": 0.8642 + }, + { + "start": 2178.44, + "end": 2179.84, + "probability": 0.8401 + }, + { + "start": 2180.94, + "end": 2182.98, + "probability": 0.0205 + }, + { + "start": 2184.2, + "end": 2185.4, + "probability": 0.0556 + }, + { + "start": 2185.72, + "end": 2186.32, + "probability": 0.2387 + }, + { + "start": 2187.02, + "end": 2187.02, + "probability": 0.0018 + }, + { + "start": 2188.2, + "end": 2189.24, + "probability": 0.0795 + }, + { + "start": 2189.24, + "end": 2189.66, + "probability": 0.3442 + }, + { + "start": 2190.64, + "end": 2191.62, + "probability": 0.8482 + }, + { + "start": 2192.32, + "end": 2194.26, + "probability": 0.8452 + }, + { + "start": 2194.72, + "end": 2198.92, + "probability": 0.8691 + }, + { + "start": 2199.12, + "end": 2200.9, + "probability": 0.8113 + }, + { + "start": 2201.9, + "end": 2205.56, + "probability": 0.9971 + }, + { + "start": 2206.24, + "end": 2208.6, + "probability": 0.6926 + }, + { + "start": 2208.7, + "end": 2210.2, + "probability": 0.9457 + }, + { + "start": 2211.3, + "end": 2211.42, + "probability": 0.1532 + }, + { + "start": 2211.42, + "end": 2212.81, + "probability": 0.5812 + }, + { + "start": 2212.96, + "end": 2217.44, + "probability": 0.9894 + }, + { + "start": 2218.14, + "end": 2219.16, + "probability": 0.1873 + }, + { + "start": 2222.06, + "end": 2226.28, + "probability": 0.9805 + }, + { + "start": 2227.02, + "end": 2233.3, + "probability": 0.9945 + }, + { + "start": 2233.46, + "end": 2234.46, + "probability": 0.6724 + }, + { + "start": 2235.0, + "end": 2237.16, + "probability": 0.7278 + }, + { + "start": 2237.26, + "end": 2240.88, + "probability": 0.9832 + }, + { + "start": 2241.66, + "end": 2243.88, + "probability": 0.8596 + }, + { + "start": 2245.12, + "end": 2248.7, + "probability": 0.9984 + }, + { + "start": 2249.22, + "end": 2250.84, + "probability": 0.9934 + }, + { + "start": 2250.96, + "end": 2252.3, + "probability": 0.9101 + }, + { + "start": 2252.78, + "end": 2255.38, + "probability": 0.9914 + }, + { + "start": 2256.52, + "end": 2258.42, + "probability": 0.789 + }, + { + "start": 2259.3, + "end": 2261.44, + "probability": 0.9829 + }, + { + "start": 2262.58, + "end": 2263.87, + "probability": 0.978 + }, + { + "start": 2264.94, + "end": 2268.64, + "probability": 0.8417 + }, + { + "start": 2269.3, + "end": 2271.2, + "probability": 0.595 + }, + { + "start": 2271.84, + "end": 2273.4, + "probability": 0.9448 + }, + { + "start": 2273.54, + "end": 2274.22, + "probability": 0.4395 + }, + { + "start": 2274.62, + "end": 2278.76, + "probability": 0.9305 + }, + { + "start": 2280.38, + "end": 2284.24, + "probability": 0.8811 + }, + { + "start": 2284.32, + "end": 2285.74, + "probability": 0.7135 + }, + { + "start": 2285.92, + "end": 2290.6, + "probability": 0.9505 + }, + { + "start": 2292.24, + "end": 2292.81, + "probability": 0.9987 + }, + { + "start": 2294.2, + "end": 2298.8, + "probability": 0.9003 + }, + { + "start": 2299.8, + "end": 2301.24, + "probability": 0.9937 + }, + { + "start": 2302.32, + "end": 2304.3, + "probability": 0.9924 + }, + { + "start": 2304.82, + "end": 2308.56, + "probability": 0.9922 + }, + { + "start": 2308.7, + "end": 2312.42, + "probability": 0.9953 + }, + { + "start": 2313.68, + "end": 2314.38, + "probability": 0.6451 + }, + { + "start": 2315.44, + "end": 2318.07, + "probability": 0.8889 + }, + { + "start": 2318.24, + "end": 2321.5, + "probability": 0.2036 + }, + { + "start": 2321.52, + "end": 2321.52, + "probability": 0.0423 + }, + { + "start": 2321.88, + "end": 2323.28, + "probability": 0.6341 + }, + { + "start": 2324.37, + "end": 2328.92, + "probability": 0.9925 + }, + { + "start": 2329.1, + "end": 2332.4, + "probability": 0.8568 + }, + { + "start": 2332.4, + "end": 2335.02, + "probability": 0.6501 + }, + { + "start": 2335.02, + "end": 2336.51, + "probability": 0.8674 + }, + { + "start": 2336.8, + "end": 2337.22, + "probability": 0.2533 + }, + { + "start": 2337.28, + "end": 2338.24, + "probability": 0.7408 + }, + { + "start": 2338.34, + "end": 2341.36, + "probability": 0.958 + }, + { + "start": 2343.2, + "end": 2343.54, + "probability": 0.0111 + }, + { + "start": 2343.54, + "end": 2343.54, + "probability": 0.0062 + }, + { + "start": 2343.6, + "end": 2344.58, + "probability": 0.6667 + }, + { + "start": 2344.68, + "end": 2345.32, + "probability": 0.8711 + }, + { + "start": 2345.4, + "end": 2346.2, + "probability": 0.8773 + }, + { + "start": 2346.26, + "end": 2348.82, + "probability": 0.9897 + }, + { + "start": 2348.82, + "end": 2351.0, + "probability": 0.9763 + }, + { + "start": 2353.32, + "end": 2355.84, + "probability": 0.9673 + }, + { + "start": 2356.62, + "end": 2360.36, + "probability": 0.9954 + }, + { + "start": 2361.16, + "end": 2364.48, + "probability": 0.9062 + }, + { + "start": 2365.1, + "end": 2368.16, + "probability": 0.9111 + }, + { + "start": 2369.28, + "end": 2373.7, + "probability": 0.9131 + }, + { + "start": 2375.38, + "end": 2377.94, + "probability": 0.7793 + }, + { + "start": 2378.74, + "end": 2380.16, + "probability": 0.8904 + }, + { + "start": 2380.72, + "end": 2384.82, + "probability": 0.7571 + }, + { + "start": 2385.84, + "end": 2386.58, + "probability": 0.5212 + }, + { + "start": 2386.62, + "end": 2389.92, + "probability": 0.9937 + }, + { + "start": 2391.96, + "end": 2393.52, + "probability": 0.7993 + }, + { + "start": 2394.32, + "end": 2396.79, + "probability": 0.9631 + }, + { + "start": 2397.44, + "end": 2400.56, + "probability": 0.9354 + }, + { + "start": 2401.1, + "end": 2401.84, + "probability": 0.7339 + }, + { + "start": 2401.96, + "end": 2403.68, + "probability": 0.7876 + }, + { + "start": 2404.22, + "end": 2405.03, + "probability": 0.9844 + }, + { + "start": 2405.76, + "end": 2407.88, + "probability": 0.8975 + }, + { + "start": 2409.08, + "end": 2411.72, + "probability": 0.9443 + }, + { + "start": 2413.24, + "end": 2414.96, + "probability": 0.9614 + }, + { + "start": 2415.2, + "end": 2415.64, + "probability": 0.5426 + }, + { + "start": 2415.66, + "end": 2416.94, + "probability": 0.9883 + }, + { + "start": 2417.94, + "end": 2419.1, + "probability": 0.9743 + }, + { + "start": 2420.64, + "end": 2422.44, + "probability": 0.9463 + }, + { + "start": 2424.38, + "end": 2424.48, + "probability": 0.1861 + }, + { + "start": 2424.48, + "end": 2425.62, + "probability": 0.7607 + }, + { + "start": 2426.22, + "end": 2427.26, + "probability": 0.8723 + }, + { + "start": 2427.44, + "end": 2428.82, + "probability": 0.9731 + }, + { + "start": 2429.6, + "end": 2430.23, + "probability": 0.9174 + }, + { + "start": 2431.62, + "end": 2431.78, + "probability": 0.0663 + }, + { + "start": 2431.78, + "end": 2434.16, + "probability": 0.9852 + }, + { + "start": 2434.26, + "end": 2435.66, + "probability": 0.9713 + }, + { + "start": 2436.32, + "end": 2438.84, + "probability": 0.9647 + }, + { + "start": 2439.16, + "end": 2440.04, + "probability": 0.7918 + }, + { + "start": 2440.08, + "end": 2440.9, + "probability": 0.6544 + }, + { + "start": 2440.96, + "end": 2441.52, + "probability": 0.9737 + }, + { + "start": 2442.78, + "end": 2443.84, + "probability": 0.9305 + }, + { + "start": 2445.16, + "end": 2447.82, + "probability": 0.2798 + }, + { + "start": 2447.82, + "end": 2451.36, + "probability": 0.7137 + }, + { + "start": 2451.7, + "end": 2452.7, + "probability": 0.9553 + }, + { + "start": 2453.76, + "end": 2454.76, + "probability": 0.9812 + }, + { + "start": 2455.08, + "end": 2457.3, + "probability": 0.8671 + }, + { + "start": 2457.44, + "end": 2460.56, + "probability": 0.8652 + }, + { + "start": 2460.58, + "end": 2461.2, + "probability": 0.8982 + }, + { + "start": 2461.7, + "end": 2466.18, + "probability": 0.9785 + }, + { + "start": 2466.18, + "end": 2466.9, + "probability": 0.4397 + }, + { + "start": 2467.56, + "end": 2467.78, + "probability": 0.6146 + }, + { + "start": 2467.94, + "end": 2470.76, + "probability": 0.6528 + }, + { + "start": 2470.82, + "end": 2472.58, + "probability": 0.8589 + }, + { + "start": 2472.66, + "end": 2473.41, + "probability": 0.9623 + }, + { + "start": 2474.28, + "end": 2476.4, + "probability": 0.6191 + }, + { + "start": 2478.94, + "end": 2479.72, + "probability": 0.4502 + }, + { + "start": 2480.5, + "end": 2481.32, + "probability": 0.7485 + }, + { + "start": 2482.02, + "end": 2486.1, + "probability": 0.9722 + }, + { + "start": 2486.6, + "end": 2489.16, + "probability": 0.9564 + }, + { + "start": 2489.78, + "end": 2490.52, + "probability": 0.9637 + }, + { + "start": 2492.66, + "end": 2494.56, + "probability": 0.9155 + }, + { + "start": 2495.94, + "end": 2496.98, + "probability": 0.1276 + }, + { + "start": 2498.88, + "end": 2504.86, + "probability": 0.0293 + }, + { + "start": 2505.2, + "end": 2506.18, + "probability": 0.0059 + }, + { + "start": 2506.18, + "end": 2506.18, + "probability": 0.0147 + }, + { + "start": 2506.18, + "end": 2506.18, + "probability": 0.0733 + }, + { + "start": 2506.18, + "end": 2506.18, + "probability": 0.0336 + }, + { + "start": 2506.18, + "end": 2508.36, + "probability": 0.3038 + }, + { + "start": 2509.2, + "end": 2509.96, + "probability": 0.821 + }, + { + "start": 2510.4, + "end": 2511.66, + "probability": 0.6216 + }, + { + "start": 2511.66, + "end": 2512.16, + "probability": 0.672 + }, + { + "start": 2512.4, + "end": 2513.76, + "probability": 0.7955 + }, + { + "start": 2514.4, + "end": 2518.1, + "probability": 0.9203 + }, + { + "start": 2518.7, + "end": 2521.64, + "probability": 0.7734 + }, + { + "start": 2522.26, + "end": 2525.6, + "probability": 0.9718 + }, + { + "start": 2526.48, + "end": 2528.58, + "probability": 0.9343 + }, + { + "start": 2528.66, + "end": 2530.26, + "probability": 0.827 + }, + { + "start": 2530.78, + "end": 2531.82, + "probability": 0.6966 + }, + { + "start": 2532.76, + "end": 2534.2, + "probability": 0.9899 + }, + { + "start": 2536.18, + "end": 2537.18, + "probability": 0.9644 + }, + { + "start": 2537.66, + "end": 2542.8, + "probability": 0.9642 + }, + { + "start": 2543.6, + "end": 2546.54, + "probability": 0.9938 + }, + { + "start": 2547.22, + "end": 2549.5, + "probability": 0.8708 + }, + { + "start": 2550.68, + "end": 2552.72, + "probability": 0.1133 + }, + { + "start": 2553.06, + "end": 2553.6, + "probability": 0.6978 + }, + { + "start": 2554.88, + "end": 2556.8, + "probability": 0.9761 + }, + { + "start": 2556.92, + "end": 2559.58, + "probability": 0.9848 + }, + { + "start": 2560.3, + "end": 2561.86, + "probability": 0.9106 + }, + { + "start": 2563.74, + "end": 2565.82, + "probability": 0.6486 + }, + { + "start": 2566.52, + "end": 2570.08, + "probability": 0.7979 + }, + { + "start": 2571.34, + "end": 2573.82, + "probability": 0.9832 + }, + { + "start": 2574.96, + "end": 2576.08, + "probability": 0.9847 + }, + { + "start": 2576.68, + "end": 2578.34, + "probability": 0.8851 + }, + { + "start": 2579.28, + "end": 2580.68, + "probability": 0.9509 + }, + { + "start": 2582.3, + "end": 2583.19, + "probability": 0.9849 + }, + { + "start": 2584.16, + "end": 2584.8, + "probability": 0.4855 + }, + { + "start": 2586.0, + "end": 2588.97, + "probability": 0.9233 + }, + { + "start": 2589.8, + "end": 2592.72, + "probability": 0.9814 + }, + { + "start": 2594.22, + "end": 2596.44, + "probability": 0.7433 + }, + { + "start": 2596.54, + "end": 2597.82, + "probability": 0.9399 + }, + { + "start": 2598.5, + "end": 2599.72, + "probability": 0.5027 + }, + { + "start": 2599.72, + "end": 2600.82, + "probability": 0.9795 + }, + { + "start": 2600.98, + "end": 2602.02, + "probability": 0.5698 + }, + { + "start": 2602.88, + "end": 2605.2, + "probability": 0.8738 + }, + { + "start": 2605.38, + "end": 2606.68, + "probability": 0.9565 + }, + { + "start": 2606.82, + "end": 2608.44, + "probability": 0.9858 + }, + { + "start": 2608.5, + "end": 2609.64, + "probability": 0.9067 + }, + { + "start": 2610.38, + "end": 2612.2, + "probability": 0.9834 + }, + { + "start": 2613.32, + "end": 2615.44, + "probability": 0.7966 + }, + { + "start": 2615.7, + "end": 2616.76, + "probability": 0.4995 + }, + { + "start": 2616.82, + "end": 2620.46, + "probability": 0.8106 + }, + { + "start": 2621.2, + "end": 2622.06, + "probability": 0.8019 + }, + { + "start": 2622.68, + "end": 2623.5, + "probability": 0.9797 + }, + { + "start": 2623.66, + "end": 2625.42, + "probability": 0.9349 + }, + { + "start": 2625.54, + "end": 2626.16, + "probability": 0.8889 + }, + { + "start": 2627.02, + "end": 2628.17, + "probability": 0.9268 + }, + { + "start": 2628.82, + "end": 2630.8, + "probability": 0.9661 + }, + { + "start": 2631.78, + "end": 2635.92, + "probability": 0.9904 + }, + { + "start": 2636.52, + "end": 2637.14, + "probability": 0.5292 + }, + { + "start": 2638.08, + "end": 2640.24, + "probability": 0.876 + }, + { + "start": 2640.42, + "end": 2643.26, + "probability": 0.9436 + }, + { + "start": 2644.02, + "end": 2649.74, + "probability": 0.9941 + }, + { + "start": 2650.78, + "end": 2654.3, + "probability": 0.7467 + }, + { + "start": 2654.96, + "end": 2657.18, + "probability": 0.9958 + }, + { + "start": 2657.76, + "end": 2660.54, + "probability": 0.9952 + }, + { + "start": 2661.56, + "end": 2665.06, + "probability": 0.9885 + }, + { + "start": 2665.06, + "end": 2668.5, + "probability": 0.9171 + }, + { + "start": 2668.96, + "end": 2671.4, + "probability": 0.9995 + }, + { + "start": 2671.4, + "end": 2673.92, + "probability": 0.9899 + }, + { + "start": 2674.4, + "end": 2676.02, + "probability": 0.9984 + }, + { + "start": 2676.64, + "end": 2677.86, + "probability": 0.7286 + }, + { + "start": 2678.56, + "end": 2679.84, + "probability": 0.7308 + }, + { + "start": 2680.28, + "end": 2681.66, + "probability": 0.9863 + }, + { + "start": 2681.76, + "end": 2682.92, + "probability": 0.9231 + }, + { + "start": 2683.02, + "end": 2683.36, + "probability": 0.934 + }, + { + "start": 2684.24, + "end": 2685.48, + "probability": 0.987 + }, + { + "start": 2685.68, + "end": 2686.16, + "probability": 0.6517 + }, + { + "start": 2686.98, + "end": 2687.14, + "probability": 0.544 + }, + { + "start": 2687.68, + "end": 2688.12, + "probability": 0.8745 + }, + { + "start": 2688.84, + "end": 2690.84, + "probability": 0.9683 + }, + { + "start": 2691.7, + "end": 2692.08, + "probability": 0.5795 + }, + { + "start": 2692.44, + "end": 2693.24, + "probability": 0.886 + }, + { + "start": 2693.42, + "end": 2694.42, + "probability": 0.8149 + }, + { + "start": 2694.42, + "end": 2695.5, + "probability": 0.9324 + }, + { + "start": 2695.62, + "end": 2697.44, + "probability": 0.9917 + }, + { + "start": 2697.98, + "end": 2701.52, + "probability": 0.8907 + }, + { + "start": 2701.98, + "end": 2704.18, + "probability": 0.9986 + }, + { + "start": 2705.0, + "end": 2706.16, + "probability": 0.9969 + }, + { + "start": 2707.08, + "end": 2708.24, + "probability": 0.9687 + }, + { + "start": 2708.92, + "end": 2710.18, + "probability": 0.9852 + }, + { + "start": 2710.56, + "end": 2711.28, + "probability": 0.9215 + }, + { + "start": 2711.74, + "end": 2714.26, + "probability": 0.9927 + }, + { + "start": 2714.9, + "end": 2716.4, + "probability": 0.6834 + }, + { + "start": 2716.9, + "end": 2719.1, + "probability": 0.9217 + }, + { + "start": 2719.74, + "end": 2720.82, + "probability": 0.9549 + }, + { + "start": 2721.52, + "end": 2722.42, + "probability": 0.9753 + }, + { + "start": 2722.84, + "end": 2724.0, + "probability": 0.9946 + }, + { + "start": 2724.46, + "end": 2725.22, + "probability": 0.8367 + }, + { + "start": 2726.3, + "end": 2727.18, + "probability": 0.9453 + }, + { + "start": 2727.26, + "end": 2729.66, + "probability": 0.9585 + }, + { + "start": 2730.48, + "end": 2733.2, + "probability": 0.9928 + }, + { + "start": 2734.22, + "end": 2735.25, + "probability": 0.6146 + }, + { + "start": 2735.8, + "end": 2736.96, + "probability": 0.9313 + }, + { + "start": 2737.54, + "end": 2739.14, + "probability": 0.9817 + }, + { + "start": 2740.02, + "end": 2740.56, + "probability": 0.661 + }, + { + "start": 2740.92, + "end": 2747.94, + "probability": 0.9688 + }, + { + "start": 2748.54, + "end": 2751.92, + "probability": 0.9972 + }, + { + "start": 2752.76, + "end": 2755.12, + "probability": 0.9977 + }, + { + "start": 2756.3, + "end": 2759.72, + "probability": 0.9924 + }, + { + "start": 2760.2, + "end": 2760.56, + "probability": 0.2845 + }, + { + "start": 2760.62, + "end": 2762.27, + "probability": 0.9653 + }, + { + "start": 2763.08, + "end": 2767.7, + "probability": 0.9835 + }, + { + "start": 2768.08, + "end": 2770.26, + "probability": 0.9868 + }, + { + "start": 2771.8, + "end": 2773.2, + "probability": 0.964 + }, + { + "start": 2774.04, + "end": 2774.94, + "probability": 0.6318 + }, + { + "start": 2775.58, + "end": 2777.68, + "probability": 0.9946 + }, + { + "start": 2778.42, + "end": 2780.68, + "probability": 0.8777 + }, + { + "start": 2780.8, + "end": 2782.9, + "probability": 0.999 + }, + { + "start": 2783.44, + "end": 2786.26, + "probability": 0.842 + }, + { + "start": 2786.94, + "end": 2789.84, + "probability": 0.9958 + }, + { + "start": 2790.3, + "end": 2792.52, + "probability": 0.9883 + }, + { + "start": 2792.92, + "end": 2794.38, + "probability": 0.8994 + }, + { + "start": 2795.6, + "end": 2799.79, + "probability": 0.9583 + }, + { + "start": 2801.26, + "end": 2803.1, + "probability": 0.8413 + }, + { + "start": 2803.24, + "end": 2807.0, + "probability": 0.9972 + }, + { + "start": 2807.0, + "end": 2810.28, + "probability": 0.983 + }, + { + "start": 2810.48, + "end": 2812.42, + "probability": 0.9165 + }, + { + "start": 2813.18, + "end": 2814.84, + "probability": 0.7586 + }, + { + "start": 2815.52, + "end": 2817.22, + "probability": 0.9896 + }, + { + "start": 2817.78, + "end": 2821.34, + "probability": 0.999 + }, + { + "start": 2821.52, + "end": 2823.08, + "probability": 0.9513 + }, + { + "start": 2824.16, + "end": 2828.1, + "probability": 0.9956 + }, + { + "start": 2828.78, + "end": 2830.7, + "probability": 0.9763 + }, + { + "start": 2831.22, + "end": 2835.84, + "probability": 0.9774 + }, + { + "start": 2835.92, + "end": 2836.86, + "probability": 0.894 + }, + { + "start": 2838.2, + "end": 2842.86, + "probability": 0.9984 + }, + { + "start": 2843.1, + "end": 2846.82, + "probability": 0.9983 + }, + { + "start": 2846.82, + "end": 2850.84, + "probability": 0.8539 + }, + { + "start": 2851.72, + "end": 2852.92, + "probability": 0.8175 + }, + { + "start": 2853.52, + "end": 2857.9, + "probability": 0.9751 + }, + { + "start": 2858.5, + "end": 2858.7, + "probability": 0.0546 + }, + { + "start": 2858.82, + "end": 2862.22, + "probability": 0.9951 + }, + { + "start": 2862.98, + "end": 2863.26, + "probability": 0.1644 + }, + { + "start": 2863.4, + "end": 2867.4, + "probability": 0.9968 + }, + { + "start": 2868.06, + "end": 2868.76, + "probability": 0.614 + }, + { + "start": 2870.0, + "end": 2871.22, + "probability": 0.9238 + }, + { + "start": 2871.38, + "end": 2871.76, + "probability": 0.6922 + }, + { + "start": 2872.22, + "end": 2872.78, + "probability": 0.9321 + }, + { + "start": 2872.82, + "end": 2876.28, + "probability": 0.9899 + }, + { + "start": 2877.7, + "end": 2878.92, + "probability": 0.9957 + }, + { + "start": 2879.04, + "end": 2880.98, + "probability": 0.5043 + }, + { + "start": 2881.64, + "end": 2881.8, + "probability": 0.7089 + }, + { + "start": 2882.36, + "end": 2883.52, + "probability": 0.3451 + }, + { + "start": 2883.62, + "end": 2886.24, + "probability": 0.9753 + }, + { + "start": 2886.72, + "end": 2888.46, + "probability": 0.8894 + }, + { + "start": 2888.56, + "end": 2889.74, + "probability": 0.7201 + }, + { + "start": 2889.88, + "end": 2890.18, + "probability": 0.6298 + }, + { + "start": 2890.72, + "end": 2894.12, + "probability": 0.9941 + }, + { + "start": 2894.91, + "end": 2895.46, + "probability": 0.8323 + }, + { + "start": 2895.74, + "end": 2897.0, + "probability": 0.9839 + }, + { + "start": 2897.86, + "end": 2900.18, + "probability": 0.9316 + }, + { + "start": 2901.2, + "end": 2906.08, + "probability": 0.9912 + }, + { + "start": 2906.98, + "end": 2908.98, + "probability": 0.9893 + }, + { + "start": 2909.14, + "end": 2909.44, + "probability": 0.5373 + }, + { + "start": 2910.28, + "end": 2912.38, + "probability": 0.8866 + }, + { + "start": 2912.48, + "end": 2914.1, + "probability": 0.9305 + }, + { + "start": 2914.82, + "end": 2917.48, + "probability": 0.9637 + }, + { + "start": 2919.64, + "end": 2919.64, + "probability": 0.4579 + }, + { + "start": 2919.64, + "end": 2920.46, + "probability": 0.8923 + }, + { + "start": 2920.52, + "end": 2921.96, + "probability": 0.9875 + }, + { + "start": 2922.68, + "end": 2923.72, + "probability": 0.6966 + }, + { + "start": 2924.54, + "end": 2926.28, + "probability": 0.4048 + }, + { + "start": 2927.34, + "end": 2928.36, + "probability": 0.9284 + }, + { + "start": 2928.5, + "end": 2932.32, + "probability": 0.9409 + }, + { + "start": 2932.4, + "end": 2933.54, + "probability": 0.853 + }, + { + "start": 2934.36, + "end": 2935.82, + "probability": 0.9689 + }, + { + "start": 2936.36, + "end": 2937.56, + "probability": 0.9925 + }, + { + "start": 2938.24, + "end": 2939.92, + "probability": 0.9959 + }, + { + "start": 2940.24, + "end": 2941.28, + "probability": 0.944 + }, + { + "start": 2941.46, + "end": 2941.88, + "probability": 0.8482 + }, + { + "start": 2942.12, + "end": 2942.38, + "probability": 0.7206 + }, + { + "start": 2942.56, + "end": 2943.04, + "probability": 0.6722 + }, + { + "start": 2943.58, + "end": 2944.94, + "probability": 0.991 + }, + { + "start": 2945.52, + "end": 2946.96, + "probability": 0.7659 + }, + { + "start": 2947.02, + "end": 2947.96, + "probability": 0.9656 + }, + { + "start": 2948.62, + "end": 2951.62, + "probability": 0.9984 + }, + { + "start": 2952.62, + "end": 2953.46, + "probability": 0.862 + }, + { + "start": 2954.02, + "end": 2956.32, + "probability": 0.7637 + }, + { + "start": 2956.48, + "end": 2961.28, + "probability": 0.9795 + }, + { + "start": 2961.34, + "end": 2961.69, + "probability": 0.7153 + }, + { + "start": 2962.68, + "end": 2964.94, + "probability": 0.9888 + }, + { + "start": 2965.12, + "end": 2967.26, + "probability": 0.97 + }, + { + "start": 2968.58, + "end": 2970.4, + "probability": 0.4893 + }, + { + "start": 2970.5, + "end": 2971.38, + "probability": 0.237 + }, + { + "start": 2971.46, + "end": 2972.74, + "probability": 0.7013 + }, + { + "start": 2973.0, + "end": 2973.38, + "probability": 0.2172 + }, + { + "start": 2973.66, + "end": 2974.12, + "probability": 0.1656 + }, + { + "start": 2974.12, + "end": 2976.47, + "probability": 0.691 + }, + { + "start": 2977.82, + "end": 2978.52, + "probability": 0.7043 + }, + { + "start": 2979.44, + "end": 2980.16, + "probability": 0.4987 + }, + { + "start": 2980.3, + "end": 2981.0, + "probability": 0.362 + }, + { + "start": 2981.26, + "end": 2981.66, + "probability": 0.4365 + }, + { + "start": 2982.29, + "end": 2982.92, + "probability": 0.3532 + }, + { + "start": 2983.14, + "end": 2986.8, + "probability": 0.4973 + }, + { + "start": 2987.4, + "end": 2988.24, + "probability": 0.8125 + }, + { + "start": 2988.68, + "end": 2990.58, + "probability": 0.8466 + }, + { + "start": 2990.68, + "end": 2990.98, + "probability": 0.3547 + }, + { + "start": 2990.98, + "end": 2991.24, + "probability": 0.1611 + }, + { + "start": 2992.18, + "end": 2996.51, + "probability": 0.4402 + }, + { + "start": 2996.68, + "end": 2997.4, + "probability": 0.0864 + }, + { + "start": 2997.66, + "end": 2998.98, + "probability": 0.4104 + }, + { + "start": 2999.5, + "end": 3001.24, + "probability": 0.4411 + }, + { + "start": 3001.46, + "end": 3004.52, + "probability": 0.8446 + }, + { + "start": 3009.12, + "end": 3012.04, + "probability": 0.5049 + }, + { + "start": 3012.86, + "end": 3013.6, + "probability": 0.9742 + }, + { + "start": 3013.84, + "end": 3016.08, + "probability": 0.9827 + }, + { + "start": 3016.58, + "end": 3017.5, + "probability": 0.795 + }, + { + "start": 3017.6, + "end": 3018.18, + "probability": 0.5704 + }, + { + "start": 3018.5, + "end": 3019.16, + "probability": 0.3519 + }, + { + "start": 3019.16, + "end": 3019.62, + "probability": 0.137 + }, + { + "start": 3019.62, + "end": 3020.33, + "probability": 0.5691 + }, + { + "start": 3021.61, + "end": 3025.32, + "probability": 0.0904 + }, + { + "start": 3025.32, + "end": 3027.46, + "probability": 0.3041 + }, + { + "start": 3027.74, + "end": 3028.62, + "probability": 0.1694 + }, + { + "start": 3028.72, + "end": 3028.86, + "probability": 0.0051 + }, + { + "start": 3028.92, + "end": 3029.04, + "probability": 0.6318 + }, + { + "start": 3029.26, + "end": 3030.96, + "probability": 0.9463 + }, + { + "start": 3031.02, + "end": 3031.68, + "probability": 0.7569 + }, + { + "start": 3033.78, + "end": 3036.86, + "probability": 0.9889 + }, + { + "start": 3036.86, + "end": 3040.18, + "probability": 0.9702 + }, + { + "start": 3040.24, + "end": 3041.46, + "probability": 0.6877 + }, + { + "start": 3042.02, + "end": 3047.0, + "probability": 0.7983 + }, + { + "start": 3047.92, + "end": 3051.88, + "probability": 0.9633 + }, + { + "start": 3051.94, + "end": 3054.5, + "probability": 0.8834 + }, + { + "start": 3054.62, + "end": 3059.64, + "probability": 0.9658 + }, + { + "start": 3060.04, + "end": 3061.2, + "probability": 0.8297 + }, + { + "start": 3061.34, + "end": 3062.24, + "probability": 0.7027 + }, + { + "start": 3063.6, + "end": 3064.56, + "probability": 0.4584 + }, + { + "start": 3065.4, + "end": 3069.06, + "probability": 0.8927 + }, + { + "start": 3069.7, + "end": 3074.78, + "probability": 0.979 + }, + { + "start": 3075.54, + "end": 3079.94, + "probability": 0.6661 + }, + { + "start": 3080.1, + "end": 3081.83, + "probability": 0.9674 + }, + { + "start": 3083.42, + "end": 3084.08, + "probability": 0.7628 + }, + { + "start": 3084.88, + "end": 3086.08, + "probability": 0.9283 + }, + { + "start": 3086.28, + "end": 3090.48, + "probability": 0.9863 + }, + { + "start": 3091.26, + "end": 3092.38, + "probability": 0.896 + }, + { + "start": 3092.52, + "end": 3096.8, + "probability": 0.9919 + }, + { + "start": 3096.8, + "end": 3099.72, + "probability": 0.9976 + }, + { + "start": 3100.22, + "end": 3102.88, + "probability": 0.5649 + }, + { + "start": 3103.0, + "end": 3103.66, + "probability": 0.8901 + }, + { + "start": 3103.88, + "end": 3105.26, + "probability": 0.6625 + }, + { + "start": 3105.46, + "end": 3109.0, + "probability": 0.9813 + }, + { + "start": 3110.64, + "end": 3114.76, + "probability": 0.9894 + }, + { + "start": 3115.72, + "end": 3119.22, + "probability": 0.993 + }, + { + "start": 3119.3, + "end": 3122.44, + "probability": 0.8157 + }, + { + "start": 3122.98, + "end": 3127.12, + "probability": 0.9764 + }, + { + "start": 3127.82, + "end": 3131.2, + "probability": 0.9935 + }, + { + "start": 3131.72, + "end": 3133.02, + "probability": 0.4194 + }, + { + "start": 3133.74, + "end": 3136.28, + "probability": 0.9345 + }, + { + "start": 3137.02, + "end": 3138.3, + "probability": 0.779 + }, + { + "start": 3138.4, + "end": 3140.12, + "probability": 0.972 + }, + { + "start": 3140.34, + "end": 3141.5, + "probability": 0.8574 + }, + { + "start": 3141.5, + "end": 3141.86, + "probability": 0.4748 + }, + { + "start": 3142.42, + "end": 3143.1, + "probability": 0.9511 + }, + { + "start": 3143.88, + "end": 3145.42, + "probability": 0.9595 + }, + { + "start": 3145.62, + "end": 3146.32, + "probability": 0.7278 + }, + { + "start": 3146.32, + "end": 3148.66, + "probability": 0.1866 + }, + { + "start": 3148.7, + "end": 3149.62, + "probability": 0.8775 + }, + { + "start": 3149.74, + "end": 3149.74, + "probability": 0.6476 + }, + { + "start": 3149.74, + "end": 3152.52, + "probability": 0.9978 + }, + { + "start": 3152.84, + "end": 3153.74, + "probability": 0.7638 + }, + { + "start": 3154.46, + "end": 3154.56, + "probability": 0.8722 + }, + { + "start": 3154.78, + "end": 3155.96, + "probability": 0.7093 + }, + { + "start": 3156.22, + "end": 3158.8, + "probability": 0.9951 + }, + { + "start": 3159.02, + "end": 3160.74, + "probability": 0.9976 + }, + { + "start": 3160.92, + "end": 3163.16, + "probability": 0.9943 + }, + { + "start": 3163.92, + "end": 3166.14, + "probability": 0.9971 + }, + { + "start": 3166.76, + "end": 3168.65, + "probability": 0.9917 + }, + { + "start": 3169.5, + "end": 3171.46, + "probability": 0.833 + }, + { + "start": 3172.28, + "end": 3174.9, + "probability": 0.9832 + }, + { + "start": 3175.54, + "end": 3177.22, + "probability": 0.7224 + }, + { + "start": 3177.3, + "end": 3179.99, + "probability": 0.981 + }, + { + "start": 3180.98, + "end": 3182.06, + "probability": 0.6421 + }, + { + "start": 3182.78, + "end": 3183.72, + "probability": 0.793 + }, + { + "start": 3183.76, + "end": 3186.42, + "probability": 0.9569 + }, + { + "start": 3186.68, + "end": 3188.66, + "probability": 0.9095 + }, + { + "start": 3189.4, + "end": 3191.86, + "probability": 0.9933 + }, + { + "start": 3193.04, + "end": 3196.32, + "probability": 0.968 + }, + { + "start": 3197.18, + "end": 3197.88, + "probability": 0.3545 + }, + { + "start": 3198.02, + "end": 3201.04, + "probability": 0.7864 + }, + { + "start": 3202.38, + "end": 3205.46, + "probability": 0.9902 + }, + { + "start": 3207.14, + "end": 3210.68, + "probability": 0.9969 + }, + { + "start": 3210.84, + "end": 3211.4, + "probability": 0.9053 + }, + { + "start": 3211.52, + "end": 3213.46, + "probability": 0.9711 + }, + { + "start": 3214.22, + "end": 3216.16, + "probability": 0.9672 + }, + { + "start": 3217.0, + "end": 3217.52, + "probability": 0.8501 + }, + { + "start": 3217.7, + "end": 3218.69, + "probability": 0.9871 + }, + { + "start": 3219.2, + "end": 3219.9, + "probability": 0.9029 + }, + { + "start": 3221.07, + "end": 3221.42, + "probability": 0.3938 + }, + { + "start": 3221.42, + "end": 3223.45, + "probability": 0.9299 + }, + { + "start": 3224.24, + "end": 3225.62, + "probability": 0.9897 + }, + { + "start": 3226.34, + "end": 3227.96, + "probability": 0.7483 + }, + { + "start": 3228.48, + "end": 3233.58, + "probability": 0.983 + }, + { + "start": 3233.84, + "end": 3235.66, + "probability": 0.9928 + }, + { + "start": 3235.84, + "end": 3236.36, + "probability": 0.739 + }, + { + "start": 3237.28, + "end": 3239.72, + "probability": 0.9925 + }, + { + "start": 3239.72, + "end": 3242.98, + "probability": 0.8114 + }, + { + "start": 3244.14, + "end": 3249.04, + "probability": 0.9661 + }, + { + "start": 3265.38, + "end": 3265.64, + "probability": 0.534 + }, + { + "start": 3265.7, + "end": 3268.22, + "probability": 0.9664 + }, + { + "start": 3268.4, + "end": 3270.5, + "probability": 0.6936 + }, + { + "start": 3270.58, + "end": 3272.02, + "probability": 0.8184 + }, + { + "start": 3272.3, + "end": 3274.26, + "probability": 0.9973 + }, + { + "start": 3274.26, + "end": 3275.0, + "probability": 0.716 + }, + { + "start": 3275.06, + "end": 3278.08, + "probability": 0.8288 + }, + { + "start": 3282.14, + "end": 3286.75, + "probability": 0.9731 + }, + { + "start": 3287.6, + "end": 3289.28, + "probability": 0.9767 + }, + { + "start": 3289.46, + "end": 3290.56, + "probability": 0.9697 + }, + { + "start": 3295.62, + "end": 3296.7, + "probability": 0.7883 + }, + { + "start": 3296.88, + "end": 3299.7, + "probability": 0.9666 + }, + { + "start": 3300.4, + "end": 3302.68, + "probability": 0.9601 + }, + { + "start": 3302.8, + "end": 3303.84, + "probability": 0.706 + }, + { + "start": 3304.12, + "end": 3311.3, + "probability": 0.9881 + }, + { + "start": 3311.62, + "end": 3313.14, + "probability": 0.8848 + }, + { + "start": 3314.28, + "end": 3317.38, + "probability": 0.9954 + }, + { + "start": 3318.06, + "end": 3319.4, + "probability": 0.9604 + }, + { + "start": 3319.52, + "end": 3324.08, + "probability": 0.9776 + }, + { + "start": 3324.18, + "end": 3325.66, + "probability": 0.9852 + }, + { + "start": 3326.08, + "end": 3329.22, + "probability": 0.9917 + }, + { + "start": 3329.68, + "end": 3332.38, + "probability": 0.9912 + }, + { + "start": 3332.38, + "end": 3335.9, + "probability": 0.9976 + }, + { + "start": 3336.7, + "end": 3338.24, + "probability": 0.7658 + }, + { + "start": 3339.16, + "end": 3339.7, + "probability": 0.8883 + }, + { + "start": 3340.28, + "end": 3341.84, + "probability": 0.9644 + }, + { + "start": 3342.52, + "end": 3345.68, + "probability": 0.8322 + }, + { + "start": 3346.24, + "end": 3349.92, + "probability": 0.9853 + }, + { + "start": 3350.82, + "end": 3352.12, + "probability": 0.4872 + }, + { + "start": 3352.58, + "end": 3353.9, + "probability": 0.9932 + }, + { + "start": 3354.58, + "end": 3357.2, + "probability": 0.9295 + }, + { + "start": 3357.64, + "end": 3359.24, + "probability": 0.9787 + }, + { + "start": 3359.6, + "end": 3365.3, + "probability": 0.9884 + }, + { + "start": 3365.84, + "end": 3369.38, + "probability": 0.9258 + }, + { + "start": 3370.64, + "end": 3373.22, + "probability": 0.9893 + }, + { + "start": 3373.9, + "end": 3376.98, + "probability": 0.9818 + }, + { + "start": 3377.5, + "end": 3379.04, + "probability": 0.976 + }, + { + "start": 3380.32, + "end": 3382.66, + "probability": 0.9478 + }, + { + "start": 3385.88, + "end": 3388.58, + "probability": 0.9849 + }, + { + "start": 3389.32, + "end": 3391.64, + "probability": 0.9435 + }, + { + "start": 3391.68, + "end": 3394.82, + "probability": 0.999 + }, + { + "start": 3395.24, + "end": 3400.46, + "probability": 0.9966 + }, + { + "start": 3400.62, + "end": 3402.14, + "probability": 0.9803 + }, + { + "start": 3402.88, + "end": 3407.12, + "probability": 0.9937 + }, + { + "start": 3407.8, + "end": 3409.44, + "probability": 0.7512 + }, + { + "start": 3410.82, + "end": 3411.31, + "probability": 0.915 + }, + { + "start": 3411.98, + "end": 3413.94, + "probability": 0.9093 + }, + { + "start": 3415.02, + "end": 3419.5, + "probability": 0.739 + }, + { + "start": 3419.96, + "end": 3421.98, + "probability": 0.9577 + }, + { + "start": 3422.9, + "end": 3424.64, + "probability": 0.9973 + }, + { + "start": 3426.08, + "end": 3431.38, + "probability": 0.9969 + }, + { + "start": 3432.02, + "end": 3432.64, + "probability": 0.5277 + }, + { + "start": 3432.84, + "end": 3440.1, + "probability": 0.9835 + }, + { + "start": 3441.66, + "end": 3441.7, + "probability": 0.0689 + }, + { + "start": 3441.7, + "end": 3443.68, + "probability": 0.9686 + }, + { + "start": 3444.14, + "end": 3446.08, + "probability": 0.9989 + }, + { + "start": 3448.98, + "end": 3449.18, + "probability": 0.0657 + }, + { + "start": 3449.8, + "end": 3453.72, + "probability": 0.9011 + }, + { + "start": 3454.74, + "end": 3455.38, + "probability": 0.8546 + }, + { + "start": 3455.44, + "end": 3457.96, + "probability": 0.9685 + }, + { + "start": 3457.96, + "end": 3461.74, + "probability": 0.9013 + }, + { + "start": 3461.82, + "end": 3463.38, + "probability": 0.9944 + }, + { + "start": 3463.46, + "end": 3464.28, + "probability": 0.8289 + }, + { + "start": 3464.84, + "end": 3466.46, + "probability": 0.9708 + }, + { + "start": 3466.58, + "end": 3468.16, + "probability": 0.859 + }, + { + "start": 3468.16, + "end": 3475.68, + "probability": 0.9932 + }, + { + "start": 3475.9, + "end": 3476.1, + "probability": 0.0852 + }, + { + "start": 3476.3, + "end": 3476.96, + "probability": 0.8134 + }, + { + "start": 3480.06, + "end": 3484.58, + "probability": 0.9917 + }, + { + "start": 3485.12, + "end": 3485.56, + "probability": 0.6114 + }, + { + "start": 3485.62, + "end": 3486.94, + "probability": 0.7269 + }, + { + "start": 3487.0, + "end": 3488.22, + "probability": 0.9413 + }, + { + "start": 3489.04, + "end": 3492.78, + "probability": 0.9741 + }, + { + "start": 3493.32, + "end": 3497.46, + "probability": 0.9972 + }, + { + "start": 3497.46, + "end": 3502.91, + "probability": 0.9989 + }, + { + "start": 3505.06, + "end": 3507.1, + "probability": 0.8315 + }, + { + "start": 3507.32, + "end": 3512.76, + "probability": 0.9834 + }, + { + "start": 3512.76, + "end": 3516.4, + "probability": 0.9932 + }, + { + "start": 3517.18, + "end": 3520.86, + "probability": 0.9957 + }, + { + "start": 3520.86, + "end": 3524.06, + "probability": 0.8354 + }, + { + "start": 3525.22, + "end": 3529.9, + "probability": 0.9963 + }, + { + "start": 3530.74, + "end": 3532.66, + "probability": 0.7617 + }, + { + "start": 3534.07, + "end": 3535.36, + "probability": 0.9915 + }, + { + "start": 3535.42, + "end": 3536.66, + "probability": 0.9222 + }, + { + "start": 3536.76, + "end": 3537.5, + "probability": 0.7071 + }, + { + "start": 3537.76, + "end": 3539.96, + "probability": 0.8695 + }, + { + "start": 3540.2, + "end": 3543.78, + "probability": 0.9948 + }, + { + "start": 3544.34, + "end": 3549.26, + "probability": 0.9956 + }, + { + "start": 3550.0, + "end": 3553.74, + "probability": 0.9495 + }, + { + "start": 3553.92, + "end": 3556.4, + "probability": 0.9955 + }, + { + "start": 3556.6, + "end": 3558.6, + "probability": 0.9777 + }, + { + "start": 3559.22, + "end": 3563.9, + "probability": 0.9977 + }, + { + "start": 3564.06, + "end": 3565.08, + "probability": 0.7969 + }, + { + "start": 3566.22, + "end": 3566.7, + "probability": 0.4992 + }, + { + "start": 3567.0, + "end": 3571.74, + "probability": 0.9893 + }, + { + "start": 3571.88, + "end": 3573.22, + "probability": 0.9282 + }, + { + "start": 3573.22, + "end": 3573.82, + "probability": 0.4937 + }, + { + "start": 3573.86, + "end": 3578.28, + "probability": 0.9587 + }, + { + "start": 3578.36, + "end": 3578.44, + "probability": 0.5878 + }, + { + "start": 3578.44, + "end": 3580.56, + "probability": 0.917 + }, + { + "start": 3580.74, + "end": 3581.06, + "probability": 0.8072 + }, + { + "start": 3581.24, + "end": 3582.5, + "probability": 0.8029 + }, + { + "start": 3582.92, + "end": 3585.24, + "probability": 0.97 + }, + { + "start": 3585.32, + "end": 3587.98, + "probability": 0.8662 + }, + { + "start": 3588.06, + "end": 3589.4, + "probability": 0.9826 + }, + { + "start": 3590.22, + "end": 3595.12, + "probability": 0.9938 + }, + { + "start": 3595.54, + "end": 3600.42, + "probability": 0.9415 + }, + { + "start": 3600.84, + "end": 3605.52, + "probability": 0.9768 + }, + { + "start": 3605.58, + "end": 3606.04, + "probability": 0.3989 + }, + { + "start": 3606.06, + "end": 3610.4, + "probability": 0.9978 + }, + { + "start": 3610.4, + "end": 3613.1, + "probability": 0.8364 + }, + { + "start": 3613.8, + "end": 3613.8, + "probability": 0.1454 + }, + { + "start": 3613.8, + "end": 3614.8, + "probability": 0.6988 + }, + { + "start": 3614.82, + "end": 3616.34, + "probability": 0.979 + }, + { + "start": 3616.38, + "end": 3616.94, + "probability": 0.7581 + }, + { + "start": 3616.94, + "end": 3619.44, + "probability": 0.8948 + }, + { + "start": 3619.98, + "end": 3622.14, + "probability": 0.9878 + }, + { + "start": 3622.58, + "end": 3625.56, + "probability": 0.9198 + }, + { + "start": 3625.6, + "end": 3627.56, + "probability": 0.6932 + }, + { + "start": 3627.86, + "end": 3628.22, + "probability": 0.8705 + }, + { + "start": 3628.32, + "end": 3631.2, + "probability": 0.5934 + }, + { + "start": 3631.68, + "end": 3632.66, + "probability": 0.9175 + }, + { + "start": 3633.28, + "end": 3634.76, + "probability": 0.9766 + }, + { + "start": 3635.02, + "end": 3636.36, + "probability": 0.9705 + }, + { + "start": 3636.36, + "end": 3636.42, + "probability": 0.7636 + }, + { + "start": 3636.42, + "end": 3637.68, + "probability": 0.616 + }, + { + "start": 3637.86, + "end": 3638.62, + "probability": 0.363 + }, + { + "start": 3638.78, + "end": 3639.9, + "probability": 0.7939 + }, + { + "start": 3639.9, + "end": 3641.56, + "probability": 0.9409 + }, + { + "start": 3641.64, + "end": 3643.12, + "probability": 0.9946 + }, + { + "start": 3643.7, + "end": 3648.38, + "probability": 0.984 + }, + { + "start": 3648.64, + "end": 3651.16, + "probability": 0.8422 + }, + { + "start": 3651.18, + "end": 3652.08, + "probability": 0.0555 + }, + { + "start": 3652.08, + "end": 3652.08, + "probability": 0.1028 + }, + { + "start": 3652.08, + "end": 3652.08, + "probability": 0.1432 + }, + { + "start": 3652.08, + "end": 3652.08, + "probability": 0.3503 + }, + { + "start": 3652.08, + "end": 3652.57, + "probability": 0.3812 + }, + { + "start": 3652.98, + "end": 3655.94, + "probability": 0.9767 + }, + { + "start": 3656.02, + "end": 3657.14, + "probability": 0.6725 + }, + { + "start": 3657.72, + "end": 3660.68, + "probability": 0.9392 + }, + { + "start": 3660.68, + "end": 3660.74, + "probability": 0.5591 + }, + { + "start": 3660.74, + "end": 3663.32, + "probability": 0.9927 + }, + { + "start": 3663.78, + "end": 3666.36, + "probability": 0.8086 + }, + { + "start": 3666.36, + "end": 3667.82, + "probability": 0.8297 + }, + { + "start": 3668.14, + "end": 3669.74, + "probability": 0.6971 + }, + { + "start": 3669.94, + "end": 3670.56, + "probability": 0.9688 + }, + { + "start": 3670.74, + "end": 3671.54, + "probability": 0.8706 + }, + { + "start": 3671.6, + "end": 3674.22, + "probability": 0.9888 + }, + { + "start": 3674.42, + "end": 3675.2, + "probability": 0.8438 + }, + { + "start": 3675.98, + "end": 3678.34, + "probability": 0.9932 + }, + { + "start": 3678.34, + "end": 3680.56, + "probability": 0.9875 + }, + { + "start": 3680.56, + "end": 3682.2, + "probability": 0.9881 + }, + { + "start": 3682.26, + "end": 3683.46, + "probability": 0.9279 + }, + { + "start": 3683.82, + "end": 3684.48, + "probability": 0.5056 + }, + { + "start": 3685.04, + "end": 3688.24, + "probability": 0.9858 + }, + { + "start": 3688.24, + "end": 3690.46, + "probability": 0.9924 + }, + { + "start": 3690.78, + "end": 3691.86, + "probability": 0.9907 + }, + { + "start": 3691.92, + "end": 3692.84, + "probability": 0.9961 + }, + { + "start": 3694.5, + "end": 3695.2, + "probability": 0.7335 + }, + { + "start": 3695.68, + "end": 3698.2, + "probability": 0.8429 + }, + { + "start": 3698.58, + "end": 3699.9, + "probability": 0.4212 + }, + { + "start": 3700.0, + "end": 3700.78, + "probability": 0.3614 + }, + { + "start": 3701.08, + "end": 3704.82, + "probability": 0.6097 + }, + { + "start": 3704.86, + "end": 3707.06, + "probability": 0.5113 + }, + { + "start": 3707.2, + "end": 3707.9, + "probability": 0.0007 + }, + { + "start": 3708.94, + "end": 3710.42, + "probability": 0.1722 + }, + { + "start": 3710.42, + "end": 3710.42, + "probability": 0.2615 + }, + { + "start": 3710.42, + "end": 3712.58, + "probability": 0.7449 + }, + { + "start": 3713.1, + "end": 3717.4, + "probability": 0.8735 + }, + { + "start": 3717.62, + "end": 3719.62, + "probability": 0.9797 + }, + { + "start": 3720.36, + "end": 3720.36, + "probability": 0.1698 + }, + { + "start": 3720.36, + "end": 3720.36, + "probability": 0.0896 + }, + { + "start": 3720.36, + "end": 3720.36, + "probability": 0.0392 + }, + { + "start": 3720.36, + "end": 3721.28, + "probability": 0.5889 + }, + { + "start": 3721.28, + "end": 3722.6, + "probability": 0.7795 + }, + { + "start": 3723.04, + "end": 3727.66, + "probability": 0.9256 + }, + { + "start": 3727.96, + "end": 3730.98, + "probability": 0.9935 + }, + { + "start": 3731.06, + "end": 3732.5, + "probability": 0.9993 + }, + { + "start": 3733.18, + "end": 3734.48, + "probability": 0.9838 + }, + { + "start": 3734.98, + "end": 3737.92, + "probability": 0.85 + }, + { + "start": 3738.42, + "end": 3741.34, + "probability": 0.0855 + }, + { + "start": 3741.42, + "end": 3746.63, + "probability": 0.0634 + }, + { + "start": 3748.2, + "end": 3749.24, + "probability": 0.9677 + }, + { + "start": 3749.5, + "end": 3749.5, + "probability": 0.1089 + }, + { + "start": 3749.54, + "end": 3749.54, + "probability": 0.4554 + }, + { + "start": 3749.54, + "end": 3752.12, + "probability": 0.9963 + }, + { + "start": 3752.26, + "end": 3756.42, + "probability": 0.8977 + }, + { + "start": 3757.54, + "end": 3761.28, + "probability": 0.9728 + }, + { + "start": 3761.48, + "end": 3763.96, + "probability": 0.4312 + }, + { + "start": 3764.06, + "end": 3764.66, + "probability": 0.4964 + }, + { + "start": 3764.94, + "end": 3765.9, + "probability": 0.6235 + }, + { + "start": 3765.92, + "end": 3766.9, + "probability": 0.4251 + }, + { + "start": 3766.9, + "end": 3768.78, + "probability": 0.3181 + }, + { + "start": 3768.88, + "end": 3770.0, + "probability": 0.8299 + }, + { + "start": 3770.24, + "end": 3771.21, + "probability": 0.8505 + }, + { + "start": 3772.83, + "end": 3773.85, + "probability": 0.9961 + }, + { + "start": 3774.08, + "end": 3778.02, + "probability": 0.9952 + }, + { + "start": 3778.92, + "end": 3783.36, + "probability": 0.9971 + }, + { + "start": 3783.48, + "end": 3785.58, + "probability": 0.9993 + }, + { + "start": 3785.68, + "end": 3787.54, + "probability": 0.9225 + }, + { + "start": 3788.22, + "end": 3789.08, + "probability": 0.8801 + }, + { + "start": 3789.6, + "end": 3793.86, + "probability": 0.9823 + }, + { + "start": 3794.32, + "end": 3794.82, + "probability": 0.1877 + }, + { + "start": 3794.82, + "end": 3794.84, + "probability": 0.6349 + }, + { + "start": 3794.84, + "end": 3797.62, + "probability": 0.88 + }, + { + "start": 3797.98, + "end": 3799.74, + "probability": 0.9968 + }, + { + "start": 3799.74, + "end": 3799.91, + "probability": 0.6035 + }, + { + "start": 3801.2, + "end": 3805.34, + "probability": 0.953 + }, + { + "start": 3805.9, + "end": 3809.28, + "probability": 0.9273 + }, + { + "start": 3809.72, + "end": 3810.46, + "probability": 0.8716 + }, + { + "start": 3810.52, + "end": 3811.94, + "probability": 0.9008 + }, + { + "start": 3812.34, + "end": 3813.8, + "probability": 0.954 + }, + { + "start": 3814.62, + "end": 3814.76, + "probability": 0.4182 + }, + { + "start": 3814.76, + "end": 3814.86, + "probability": 0.9116 + }, + { + "start": 3815.2, + "end": 3815.4, + "probability": 0.2022 + }, + { + "start": 3815.42, + "end": 3818.14, + "probability": 0.7645 + }, + { + "start": 3818.54, + "end": 3822.54, + "probability": 0.996 + }, + { + "start": 3822.9, + "end": 3825.82, + "probability": 0.9975 + }, + { + "start": 3826.46, + "end": 3828.7, + "probability": 0.998 + }, + { + "start": 3828.86, + "end": 3831.92, + "probability": 0.9915 + }, + { + "start": 3832.3, + "end": 3835.24, + "probability": 0.989 + }, + { + "start": 3836.06, + "end": 3837.02, + "probability": 0.8555 + }, + { + "start": 3837.02, + "end": 3838.37, + "probability": 0.5713 + }, + { + "start": 3838.66, + "end": 3840.51, + "probability": 0.7905 + }, + { + "start": 3840.76, + "end": 3841.18, + "probability": 0.58 + }, + { + "start": 3841.28, + "end": 3844.12, + "probability": 0.8772 + }, + { + "start": 3844.12, + "end": 3844.12, + "probability": 0.5021 + }, + { + "start": 3844.12, + "end": 3845.7, + "probability": 0.8143 + }, + { + "start": 3846.08, + "end": 3848.44, + "probability": 0.9518 + }, + { + "start": 3848.86, + "end": 3850.46, + "probability": 0.8044 + }, + { + "start": 3850.46, + "end": 3852.04, + "probability": 0.7954 + }, + { + "start": 3852.12, + "end": 3853.06, + "probability": 0.7602 + }, + { + "start": 3853.72, + "end": 3855.72, + "probability": 0.9866 + }, + { + "start": 3855.76, + "end": 3855.76, + "probability": 0.0526 + }, + { + "start": 3855.76, + "end": 3856.6, + "probability": 0.0228 + }, + { + "start": 3856.6, + "end": 3856.7, + "probability": 0.0314 + }, + { + "start": 3857.12, + "end": 3858.26, + "probability": 0.2409 + }, + { + "start": 3858.88, + "end": 3859.26, + "probability": 0.0465 + }, + { + "start": 3859.26, + "end": 3859.26, + "probability": 0.084 + }, + { + "start": 3859.26, + "end": 3859.26, + "probability": 0.0912 + }, + { + "start": 3859.26, + "end": 3861.28, + "probability": 0.1647 + }, + { + "start": 3862.08, + "end": 3863.98, + "probability": 0.7527 + }, + { + "start": 3866.92, + "end": 3868.56, + "probability": 0.338 + }, + { + "start": 3869.26, + "end": 3870.68, + "probability": 0.0483 + }, + { + "start": 3870.68, + "end": 3870.68, + "probability": 0.0731 + }, + { + "start": 3870.68, + "end": 3870.68, + "probability": 0.0016 + }, + { + "start": 3870.68, + "end": 3871.91, + "probability": 0.5301 + }, + { + "start": 3872.4, + "end": 3872.5, + "probability": 0.0418 + }, + { + "start": 3872.62, + "end": 3873.04, + "probability": 0.5018 + }, + { + "start": 3874.92, + "end": 3875.88, + "probability": 0.3092 + }, + { + "start": 3875.88, + "end": 3877.04, + "probability": 0.1058 + }, + { + "start": 3877.04, + "end": 3877.82, + "probability": 0.2428 + }, + { + "start": 3877.82, + "end": 3878.34, + "probability": 0.4055 + }, + { + "start": 3878.38, + "end": 3880.2, + "probability": 0.8831 + }, + { + "start": 3880.24, + "end": 3881.92, + "probability": 0.3076 + }, + { + "start": 3882.14, + "end": 3883.08, + "probability": 0.318 + }, + { + "start": 3883.08, + "end": 3887.81, + "probability": 0.9853 + }, + { + "start": 3888.86, + "end": 3890.15, + "probability": 0.8744 + }, + { + "start": 3890.16, + "end": 3890.92, + "probability": 0.6406 + }, + { + "start": 3890.96, + "end": 3894.74, + "probability": 0.9167 + }, + { + "start": 3894.74, + "end": 3895.1, + "probability": 0.5026 + }, + { + "start": 3896.7, + "end": 3897.46, + "probability": 0.9149 + }, + { + "start": 3901.82, + "end": 3905.62, + "probability": 0.6589 + }, + { + "start": 3906.34, + "end": 3909.58, + "probability": 0.8186 + }, + { + "start": 3909.66, + "end": 3914.44, + "probability": 0.989 + }, + { + "start": 3914.9, + "end": 3916.32, + "probability": 0.9915 + }, + { + "start": 3916.52, + "end": 3917.78, + "probability": 0.9941 + }, + { + "start": 3918.51, + "end": 3921.12, + "probability": 0.9409 + }, + { + "start": 3921.16, + "end": 3922.18, + "probability": 0.9971 + }, + { + "start": 3922.92, + "end": 3923.3, + "probability": 0.5286 + }, + { + "start": 3923.42, + "end": 3926.9, + "probability": 0.9825 + }, + { + "start": 3927.6, + "end": 3931.92, + "probability": 0.9573 + }, + { + "start": 3932.56, + "end": 3935.46, + "probability": 0.9907 + }, + { + "start": 3936.98, + "end": 3939.06, + "probability": 0.8179 + }, + { + "start": 3941.16, + "end": 3941.6, + "probability": 0.8906 + }, + { + "start": 3942.7, + "end": 3943.16, + "probability": 0.701 + }, + { + "start": 3943.62, + "end": 3945.23, + "probability": 0.8994 + }, + { + "start": 3946.2, + "end": 3947.38, + "probability": 0.8051 + }, + { + "start": 3948.04, + "end": 3951.16, + "probability": 0.6973 + }, + { + "start": 3951.56, + "end": 3951.66, + "probability": 0.1994 + }, + { + "start": 3952.58, + "end": 3954.8, + "probability": 0.9985 + }, + { + "start": 3955.06, + "end": 3956.72, + "probability": 0.9153 + }, + { + "start": 3957.66, + "end": 3961.26, + "probability": 0.9956 + }, + { + "start": 3961.76, + "end": 3963.6, + "probability": 0.9857 + }, + { + "start": 3964.82, + "end": 3966.2, + "probability": 0.6174 + }, + { + "start": 3966.36, + "end": 3968.28, + "probability": 0.9484 + }, + { + "start": 3968.9, + "end": 3969.22, + "probability": 0.8584 + }, + { + "start": 3970.1, + "end": 3971.6, + "probability": 0.9962 + }, + { + "start": 3971.66, + "end": 3973.4, + "probability": 0.9929 + }, + { + "start": 3974.5, + "end": 3978.82, + "probability": 0.9663 + }, + { + "start": 3979.5, + "end": 3980.92, + "probability": 0.9573 + }, + { + "start": 3983.6, + "end": 3986.72, + "probability": 0.9615 + }, + { + "start": 3986.72, + "end": 3990.08, + "probability": 0.9954 + }, + { + "start": 3990.26, + "end": 3991.34, + "probability": 0.9907 + }, + { + "start": 3991.84, + "end": 3993.14, + "probability": 0.9669 + }, + { + "start": 3994.22, + "end": 3996.52, + "probability": 0.8438 + }, + { + "start": 3998.06, + "end": 4000.86, + "probability": 0.9937 + }, + { + "start": 4001.38, + "end": 4002.42, + "probability": 0.9922 + }, + { + "start": 4003.38, + "end": 4007.3, + "probability": 0.9977 + }, + { + "start": 4007.3, + "end": 4011.3, + "probability": 0.9889 + }, + { + "start": 4012.08, + "end": 4012.66, + "probability": 0.8459 + }, + { + "start": 4013.32, + "end": 4015.24, + "probability": 0.8232 + }, + { + "start": 4015.86, + "end": 4017.24, + "probability": 0.8981 + }, + { + "start": 4018.96, + "end": 4020.44, + "probability": 0.6129 + }, + { + "start": 4021.26, + "end": 4022.06, + "probability": 0.9364 + }, + { + "start": 4023.24, + "end": 4025.62, + "probability": 0.9754 + }, + { + "start": 4026.38, + "end": 4027.46, + "probability": 0.999 + }, + { + "start": 4028.12, + "end": 4029.98, + "probability": 0.7726 + }, + { + "start": 4030.6, + "end": 4034.45, + "probability": 0.9972 + }, + { + "start": 4035.8, + "end": 4037.0, + "probability": 0.8016 + }, + { + "start": 4038.14, + "end": 4040.08, + "probability": 0.9459 + }, + { + "start": 4040.82, + "end": 4041.64, + "probability": 0.7921 + }, + { + "start": 4042.86, + "end": 4045.6, + "probability": 0.9907 + }, + { + "start": 4046.4, + "end": 4047.14, + "probability": 0.8746 + }, + { + "start": 4048.12, + "end": 4050.02, + "probability": 0.9096 + }, + { + "start": 4050.18, + "end": 4051.6, + "probability": 0.9738 + }, + { + "start": 4052.34, + "end": 4052.7, + "probability": 0.8054 + }, + { + "start": 4053.2, + "end": 4057.06, + "probability": 0.8442 + }, + { + "start": 4057.84, + "end": 4061.48, + "probability": 0.9922 + }, + { + "start": 4062.84, + "end": 4064.04, + "probability": 0.9839 + }, + { + "start": 4065.3, + "end": 4067.32, + "probability": 0.7933 + }, + { + "start": 4069.3, + "end": 4072.66, + "probability": 0.9957 + }, + { + "start": 4073.12, + "end": 4075.04, + "probability": 0.8076 + }, + { + "start": 4076.3, + "end": 4078.88, + "probability": 0.9978 + }, + { + "start": 4079.66, + "end": 4083.32, + "probability": 0.9972 + }, + { + "start": 4084.22, + "end": 4086.16, + "probability": 0.9875 + }, + { + "start": 4086.78, + "end": 4088.42, + "probability": 0.8729 + }, + { + "start": 4088.96, + "end": 4090.46, + "probability": 0.8135 + }, + { + "start": 4091.5, + "end": 4095.5, + "probability": 0.9902 + }, + { + "start": 4097.12, + "end": 4098.52, + "probability": 0.9996 + }, + { + "start": 4099.7, + "end": 4102.1, + "probability": 0.9606 + }, + { + "start": 4102.26, + "end": 4105.62, + "probability": 0.8907 + }, + { + "start": 4106.5, + "end": 4107.76, + "probability": 0.9449 + }, + { + "start": 4108.32, + "end": 4109.96, + "probability": 0.9994 + }, + { + "start": 4110.48, + "end": 4111.44, + "probability": 0.9768 + }, + { + "start": 4112.56, + "end": 4118.26, + "probability": 0.9941 + }, + { + "start": 4118.96, + "end": 4120.1, + "probability": 0.998 + }, + { + "start": 4121.32, + "end": 4124.98, + "probability": 0.9298 + }, + { + "start": 4127.04, + "end": 4127.34, + "probability": 0.8487 + }, + { + "start": 4128.44, + "end": 4129.6, + "probability": 0.9919 + }, + { + "start": 4130.44, + "end": 4131.86, + "probability": 0.9906 + }, + { + "start": 4132.26, + "end": 4136.58, + "probability": 0.9935 + }, + { + "start": 4136.58, + "end": 4143.12, + "probability": 0.9977 + }, + { + "start": 4143.46, + "end": 4145.54, + "probability": 0.998 + }, + { + "start": 4146.24, + "end": 4147.9, + "probability": 0.8716 + }, + { + "start": 4149.42, + "end": 4149.64, + "probability": 0.591 + }, + { + "start": 4150.24, + "end": 4151.78, + "probability": 0.9443 + }, + { + "start": 4152.36, + "end": 4152.7, + "probability": 0.8005 + }, + { + "start": 4153.78, + "end": 4156.9, + "probability": 0.989 + }, + { + "start": 4158.28, + "end": 4162.68, + "probability": 0.9747 + }, + { + "start": 4163.16, + "end": 4163.84, + "probability": 0.9961 + }, + { + "start": 4164.52, + "end": 4166.68, + "probability": 0.9834 + }, + { + "start": 4166.78, + "end": 4167.62, + "probability": 0.9204 + }, + { + "start": 4168.1, + "end": 4170.7, + "probability": 0.6137 + }, + { + "start": 4170.84, + "end": 4173.59, + "probability": 0.9461 + }, + { + "start": 4174.72, + "end": 4177.14, + "probability": 0.9599 + }, + { + "start": 4177.26, + "end": 4178.1, + "probability": 0.5766 + }, + { + "start": 4178.18, + "end": 4178.36, + "probability": 0.8561 + }, + { + "start": 4178.6, + "end": 4184.02, + "probability": 0.8877 + }, + { + "start": 4184.56, + "end": 4185.5, + "probability": 0.8999 + }, + { + "start": 4185.84, + "end": 4191.1, + "probability": 0.9969 + }, + { + "start": 4191.7, + "end": 4194.34, + "probability": 0.9359 + }, + { + "start": 4194.42, + "end": 4196.56, + "probability": 0.9382 + }, + { + "start": 4197.04, + "end": 4198.18, + "probability": 0.7913 + }, + { + "start": 4198.6, + "end": 4203.18, + "probability": 0.9922 + }, + { + "start": 4203.3, + "end": 4204.18, + "probability": 0.6838 + }, + { + "start": 4205.32, + "end": 4206.4, + "probability": 0.7114 + }, + { + "start": 4206.92, + "end": 4207.88, + "probability": 0.8813 + }, + { + "start": 4209.82, + "end": 4212.98, + "probability": 0.9893 + }, + { + "start": 4213.08, + "end": 4216.04, + "probability": 0.9868 + }, + { + "start": 4216.4, + "end": 4218.54, + "probability": 0.9941 + }, + { + "start": 4219.58, + "end": 4222.84, + "probability": 0.9951 + }, + { + "start": 4223.7, + "end": 4225.46, + "probability": 0.8717 + }, + { + "start": 4226.26, + "end": 4233.94, + "probability": 0.9729 + }, + { + "start": 4235.38, + "end": 4238.89, + "probability": 0.6706 + }, + { + "start": 4239.62, + "end": 4239.88, + "probability": 0.5282 + }, + { + "start": 4239.9, + "end": 4240.9, + "probability": 0.909 + }, + { + "start": 4241.28, + "end": 4242.44, + "probability": 0.9095 + }, + { + "start": 4243.04, + "end": 4243.84, + "probability": 0.6388 + }, + { + "start": 4243.86, + "end": 4244.24, + "probability": 0.7358 + }, + { + "start": 4244.96, + "end": 4245.8, + "probability": 0.73 + }, + { + "start": 4245.9, + "end": 4247.2, + "probability": 0.9806 + }, + { + "start": 4247.32, + "end": 4249.84, + "probability": 0.9862 + }, + { + "start": 4250.62, + "end": 4251.7, + "probability": 0.761 + }, + { + "start": 4252.9, + "end": 4257.78, + "probability": 0.9006 + }, + { + "start": 4258.14, + "end": 4260.1, + "probability": 0.9495 + }, + { + "start": 4260.9, + "end": 4262.38, + "probability": 0.9604 + }, + { + "start": 4263.14, + "end": 4265.4, + "probability": 0.8976 + }, + { + "start": 4267.02, + "end": 4270.14, + "probability": 0.7818 + }, + { + "start": 4270.14, + "end": 4270.84, + "probability": 0.7778 + }, + { + "start": 4271.5, + "end": 4274.54, + "probability": 0.9966 + }, + { + "start": 4275.68, + "end": 4279.12, + "probability": 0.9977 + }, + { + "start": 4280.02, + "end": 4281.9, + "probability": 0.8434 + }, + { + "start": 4282.54, + "end": 4286.16, + "probability": 0.9902 + }, + { + "start": 4286.96, + "end": 4290.84, + "probability": 0.998 + }, + { + "start": 4291.6, + "end": 4294.34, + "probability": 0.9769 + }, + { + "start": 4295.16, + "end": 4298.86, + "probability": 0.9902 + }, + { + "start": 4299.28, + "end": 4304.08, + "probability": 0.9944 + }, + { + "start": 4304.22, + "end": 4305.58, + "probability": 0.551 + }, + { + "start": 4305.98, + "end": 4307.04, + "probability": 0.9316 + }, + { + "start": 4307.76, + "end": 4310.04, + "probability": 0.8268 + }, + { + "start": 4310.62, + "end": 4312.92, + "probability": 0.9946 + }, + { + "start": 4313.72, + "end": 4314.28, + "probability": 0.936 + }, + { + "start": 4314.8, + "end": 4318.36, + "probability": 0.9564 + }, + { + "start": 4319.44, + "end": 4319.78, + "probability": 0.6433 + }, + { + "start": 4319.86, + "end": 4320.44, + "probability": 0.7699 + }, + { + "start": 4320.94, + "end": 4325.48, + "probability": 0.936 + }, + { + "start": 4326.32, + "end": 4328.34, + "probability": 0.6947 + }, + { + "start": 4329.12, + "end": 4330.24, + "probability": 0.929 + }, + { + "start": 4330.92, + "end": 4331.06, + "probability": 0.1549 + }, + { + "start": 4332.28, + "end": 4333.72, + "probability": 0.6884 + }, + { + "start": 4334.24, + "end": 4336.1, + "probability": 0.8693 + }, + { + "start": 4336.5, + "end": 4339.38, + "probability": 0.9889 + }, + { + "start": 4339.76, + "end": 4341.94, + "probability": 0.8882 + }, + { + "start": 4342.06, + "end": 4343.28, + "probability": 0.973 + }, + { + "start": 4343.68, + "end": 4346.62, + "probability": 0.9797 + }, + { + "start": 4347.86, + "end": 4349.78, + "probability": 0.847 + }, + { + "start": 4350.42, + "end": 4354.36, + "probability": 0.988 + }, + { + "start": 4354.84, + "end": 4358.2, + "probability": 0.9645 + }, + { + "start": 4358.78, + "end": 4362.18, + "probability": 0.7632 + }, + { + "start": 4362.56, + "end": 4363.84, + "probability": 0.6733 + }, + { + "start": 4364.4, + "end": 4364.66, + "probability": 0.4176 + }, + { + "start": 4365.1, + "end": 4366.6, + "probability": 0.9871 + }, + { + "start": 4367.0, + "end": 4370.14, + "probability": 0.9533 + }, + { + "start": 4370.74, + "end": 4375.92, + "probability": 0.9899 + }, + { + "start": 4376.12, + "end": 4377.14, + "probability": 0.4603 + }, + { + "start": 4377.52, + "end": 4379.74, + "probability": 0.8583 + }, + { + "start": 4380.38, + "end": 4382.38, + "probability": 0.9404 + }, + { + "start": 4384.38, + "end": 4386.38, + "probability": 0.99 + }, + { + "start": 4386.58, + "end": 4388.64, + "probability": 0.9676 + }, + { + "start": 4389.04, + "end": 4389.77, + "probability": 0.9797 + }, + { + "start": 4391.58, + "end": 4391.84, + "probability": 0.9905 + }, + { + "start": 4393.32, + "end": 4396.42, + "probability": 0.8911 + }, + { + "start": 4396.94, + "end": 4397.86, + "probability": 0.9729 + }, + { + "start": 4398.58, + "end": 4400.17, + "probability": 0.9146 + }, + { + "start": 4401.22, + "end": 4402.78, + "probability": 0.4964 + }, + { + "start": 4402.94, + "end": 4405.4, + "probability": 0.9619 + }, + { + "start": 4405.92, + "end": 4407.48, + "probability": 0.9792 + }, + { + "start": 4408.06, + "end": 4413.58, + "probability": 0.9913 + }, + { + "start": 4414.16, + "end": 4417.0, + "probability": 0.6851 + }, + { + "start": 4417.0, + "end": 4420.1, + "probability": 0.9983 + }, + { + "start": 4420.84, + "end": 4421.2, + "probability": 0.9143 + }, + { + "start": 4421.4, + "end": 4422.94, + "probability": 0.7498 + }, + { + "start": 4424.34, + "end": 4425.14, + "probability": 0.9939 + }, + { + "start": 4429.1, + "end": 4433.78, + "probability": 0.9325 + }, + { + "start": 4434.5, + "end": 4436.7, + "probability": 0.9889 + }, + { + "start": 4437.24, + "end": 4437.66, + "probability": 0.8022 + }, + { + "start": 4439.8, + "end": 4440.28, + "probability": 0.7524 + }, + { + "start": 4442.96, + "end": 4444.16, + "probability": 0.7574 + }, + { + "start": 4445.06, + "end": 4445.88, + "probability": 0.9803 + }, + { + "start": 4446.62, + "end": 4451.5, + "probability": 0.8224 + }, + { + "start": 4451.56, + "end": 4452.22, + "probability": 0.6116 + }, + { + "start": 4453.22, + "end": 4455.88, + "probability": 0.998 + }, + { + "start": 4456.04, + "end": 4456.36, + "probability": 0.3916 + }, + { + "start": 4456.5, + "end": 4457.04, + "probability": 0.8204 + }, + { + "start": 4457.22, + "end": 4460.7, + "probability": 0.9914 + }, + { + "start": 4460.7, + "end": 4463.52, + "probability": 0.9924 + }, + { + "start": 4463.64, + "end": 4464.06, + "probability": 0.8905 + }, + { + "start": 4464.12, + "end": 4464.48, + "probability": 0.7444 + }, + { + "start": 4464.56, + "end": 4465.88, + "probability": 0.9484 + }, + { + "start": 4466.28, + "end": 4470.88, + "probability": 0.9989 + }, + { + "start": 4473.78, + "end": 4475.7, + "probability": 0.9961 + }, + { + "start": 4476.54, + "end": 4477.8, + "probability": 0.9969 + }, + { + "start": 4478.4, + "end": 4480.66, + "probability": 0.9937 + }, + { + "start": 4480.78, + "end": 4481.6, + "probability": 0.7559 + }, + { + "start": 4482.08, + "end": 4483.98, + "probability": 0.9988 + }, + { + "start": 4484.18, + "end": 4485.1, + "probability": 0.9329 + }, + { + "start": 4485.94, + "end": 4490.36, + "probability": 0.991 + }, + { + "start": 4490.48, + "end": 4491.94, + "probability": 0.9917 + }, + { + "start": 4492.6, + "end": 4494.22, + "probability": 0.9663 + }, + { + "start": 4494.6, + "end": 4496.14, + "probability": 0.9928 + }, + { + "start": 4496.72, + "end": 4497.12, + "probability": 0.9241 + }, + { + "start": 4498.72, + "end": 4501.36, + "probability": 0.9884 + }, + { + "start": 4502.36, + "end": 4503.74, + "probability": 0.9865 + }, + { + "start": 4504.36, + "end": 4506.48, + "probability": 0.8639 + }, + { + "start": 4507.94, + "end": 4510.2, + "probability": 0.869 + }, + { + "start": 4511.4, + "end": 4514.36, + "probability": 0.9736 + }, + { + "start": 4515.06, + "end": 4519.3, + "probability": 0.9961 + }, + { + "start": 4519.38, + "end": 4523.16, + "probability": 0.9966 + }, + { + "start": 4525.14, + "end": 4526.32, + "probability": 0.7498 + }, + { + "start": 4527.02, + "end": 4530.02, + "probability": 0.4579 + }, + { + "start": 4530.7, + "end": 4533.04, + "probability": 0.8639 + }, + { + "start": 4533.42, + "end": 4535.6, + "probability": 0.8618 + }, + { + "start": 4535.72, + "end": 4537.12, + "probability": 0.7837 + }, + { + "start": 4537.28, + "end": 4538.54, + "probability": 0.9858 + }, + { + "start": 4539.24, + "end": 4541.16, + "probability": 0.8888 + }, + { + "start": 4541.58, + "end": 4543.5, + "probability": 0.9467 + }, + { + "start": 4544.68, + "end": 4547.56, + "probability": 0.9594 + }, + { + "start": 4548.46, + "end": 4549.36, + "probability": 0.5654 + }, + { + "start": 4550.0, + "end": 4551.98, + "probability": 0.9973 + }, + { + "start": 4552.8, + "end": 4553.62, + "probability": 0.7682 + }, + { + "start": 4554.4, + "end": 4554.74, + "probability": 0.6744 + }, + { + "start": 4554.84, + "end": 4556.38, + "probability": 0.7795 + }, + { + "start": 4556.56, + "end": 4558.0, + "probability": 0.7434 + }, + { + "start": 4558.1, + "end": 4559.58, + "probability": 0.4614 + }, + { + "start": 4560.2, + "end": 4561.36, + "probability": 0.912 + }, + { + "start": 4561.56, + "end": 4562.08, + "probability": 0.8142 + }, + { + "start": 4562.82, + "end": 4564.6, + "probability": 0.9534 + }, + { + "start": 4564.76, + "end": 4565.86, + "probability": 0.944 + }, + { + "start": 4566.14, + "end": 4566.74, + "probability": 0.6609 + }, + { + "start": 4567.52, + "end": 4568.3, + "probability": 0.6369 + }, + { + "start": 4568.38, + "end": 4569.14, + "probability": 0.7487 + }, + { + "start": 4569.54, + "end": 4572.04, + "probability": 0.9655 + }, + { + "start": 4572.92, + "end": 4575.26, + "probability": 0.8599 + }, + { + "start": 4575.38, + "end": 4576.72, + "probability": 0.9004 + }, + { + "start": 4576.84, + "end": 4579.86, + "probability": 0.9316 + }, + { + "start": 4580.38, + "end": 4583.78, + "probability": 0.7337 + }, + { + "start": 4584.32, + "end": 4587.84, + "probability": 0.9795 + }, + { + "start": 4588.48, + "end": 4590.42, + "probability": 0.9927 + }, + { + "start": 4590.52, + "end": 4591.0, + "probability": 0.8855 + }, + { + "start": 4593.0, + "end": 4594.48, + "probability": 0.9929 + }, + { + "start": 4595.14, + "end": 4600.22, + "probability": 0.9954 + }, + { + "start": 4600.98, + "end": 4601.44, + "probability": 0.3758 + }, + { + "start": 4602.1, + "end": 4603.82, + "probability": 0.7432 + }, + { + "start": 4604.42, + "end": 4606.56, + "probability": 0.9977 + }, + { + "start": 4607.72, + "end": 4610.0, + "probability": 0.978 + }, + { + "start": 4610.74, + "end": 4611.7, + "probability": 0.9125 + }, + { + "start": 4612.14, + "end": 4613.84, + "probability": 0.8772 + }, + { + "start": 4614.26, + "end": 4618.48, + "probability": 0.9604 + }, + { + "start": 4619.16, + "end": 4620.86, + "probability": 0.5885 + }, + { + "start": 4621.58, + "end": 4623.74, + "probability": 0.8696 + }, + { + "start": 4624.28, + "end": 4626.64, + "probability": 0.9946 + }, + { + "start": 4627.2, + "end": 4629.78, + "probability": 0.9854 + }, + { + "start": 4631.28, + "end": 4635.58, + "probability": 0.9313 + }, + { + "start": 4637.32, + "end": 4638.08, + "probability": 0.8939 + }, + { + "start": 4639.22, + "end": 4641.68, + "probability": 0.9984 + }, + { + "start": 4642.62, + "end": 4643.86, + "probability": 0.7442 + }, + { + "start": 4644.4, + "end": 4647.27, + "probability": 0.9976 + }, + { + "start": 4647.64, + "end": 4651.44, + "probability": 0.9986 + }, + { + "start": 4651.98, + "end": 4652.86, + "probability": 0.9883 + }, + { + "start": 4653.38, + "end": 4657.94, + "probability": 0.998 + }, + { + "start": 4658.58, + "end": 4663.02, + "probability": 0.9874 + }, + { + "start": 4663.62, + "end": 4667.28, + "probability": 0.9988 + }, + { + "start": 4667.8, + "end": 4670.08, + "probability": 0.9979 + }, + { + "start": 4670.8, + "end": 4674.82, + "probability": 0.9153 + }, + { + "start": 4675.44, + "end": 4677.32, + "probability": 0.9956 + }, + { + "start": 4677.84, + "end": 4678.68, + "probability": 0.7205 + }, + { + "start": 4679.04, + "end": 4683.64, + "probability": 0.9938 + }, + { + "start": 4684.16, + "end": 4686.66, + "probability": 0.8524 + }, + { + "start": 4687.42, + "end": 4690.46, + "probability": 0.9955 + }, + { + "start": 4691.26, + "end": 4693.64, + "probability": 0.9541 + }, + { + "start": 4694.42, + "end": 4697.38, + "probability": 0.8311 + }, + { + "start": 4698.6, + "end": 4701.78, + "probability": 0.9531 + }, + { + "start": 4701.96, + "end": 4702.96, + "probability": 0.9 + }, + { + "start": 4703.5, + "end": 4705.84, + "probability": 0.9944 + }, + { + "start": 4706.68, + "end": 4707.34, + "probability": 0.9749 + }, + { + "start": 4707.88, + "end": 4711.18, + "probability": 0.9922 + }, + { + "start": 4711.18, + "end": 4714.1, + "probability": 0.9989 + }, + { + "start": 4714.92, + "end": 4717.8, + "probability": 0.9951 + }, + { + "start": 4718.3, + "end": 4720.78, + "probability": 0.9795 + }, + { + "start": 4721.34, + "end": 4721.7, + "probability": 0.9708 + }, + { + "start": 4722.14, + "end": 4726.26, + "probability": 0.9666 + }, + { + "start": 4726.6, + "end": 4728.69, + "probability": 0.9951 + }, + { + "start": 4730.3, + "end": 4732.06, + "probability": 0.8717 + }, + { + "start": 4732.66, + "end": 4733.28, + "probability": 0.7124 + }, + { + "start": 4733.76, + "end": 4734.36, + "probability": 0.7965 + }, + { + "start": 4734.86, + "end": 4737.02, + "probability": 0.9412 + }, + { + "start": 4738.68, + "end": 4741.28, + "probability": 0.9993 + }, + { + "start": 4742.72, + "end": 4746.52, + "probability": 0.9869 + }, + { + "start": 4746.52, + "end": 4750.68, + "probability": 0.9996 + }, + { + "start": 4751.94, + "end": 4752.82, + "probability": 0.7617 + }, + { + "start": 4753.32, + "end": 4756.34, + "probability": 0.9886 + }, + { + "start": 4756.42, + "end": 4757.5, + "probability": 0.6876 + }, + { + "start": 4758.14, + "end": 4760.92, + "probability": 0.9707 + }, + { + "start": 4761.66, + "end": 4764.28, + "probability": 0.5699 + }, + { + "start": 4765.38, + "end": 4765.9, + "probability": 0.9896 + }, + { + "start": 4766.84, + "end": 4769.36, + "probability": 0.8208 + }, + { + "start": 4770.22, + "end": 4772.58, + "probability": 0.7192 + }, + { + "start": 4773.34, + "end": 4774.92, + "probability": 0.5752 + }, + { + "start": 4775.56, + "end": 4777.62, + "probability": 0.996 + }, + { + "start": 4778.26, + "end": 4781.36, + "probability": 0.9971 + }, + { + "start": 4781.48, + "end": 4782.12, + "probability": 0.4415 + }, + { + "start": 4782.5, + "end": 4784.64, + "probability": 0.9844 + }, + { + "start": 4786.36, + "end": 4791.04, + "probability": 0.9944 + }, + { + "start": 4791.86, + "end": 4792.64, + "probability": 0.6091 + }, + { + "start": 4794.06, + "end": 4798.78, + "probability": 0.9921 + }, + { + "start": 4799.54, + "end": 4801.72, + "probability": 0.9872 + }, + { + "start": 4802.86, + "end": 4804.96, + "probability": 0.962 + }, + { + "start": 4805.96, + "end": 4811.82, + "probability": 0.9927 + }, + { + "start": 4812.6, + "end": 4813.86, + "probability": 0.6694 + }, + { + "start": 4814.46, + "end": 4817.46, + "probability": 0.9943 + }, + { + "start": 4818.38, + "end": 4820.36, + "probability": 0.9949 + }, + { + "start": 4821.7, + "end": 4825.7, + "probability": 0.9852 + }, + { + "start": 4826.62, + "end": 4828.32, + "probability": 0.9966 + }, + { + "start": 4829.96, + "end": 4830.5, + "probability": 0.6337 + }, + { + "start": 4830.68, + "end": 4831.66, + "probability": 0.8533 + }, + { + "start": 4831.82, + "end": 4833.6, + "probability": 0.6386 + }, + { + "start": 4833.88, + "end": 4834.86, + "probability": 0.9786 + }, + { + "start": 4835.34, + "end": 4836.28, + "probability": 0.9935 + }, + { + "start": 4837.0, + "end": 4839.62, + "probability": 0.9941 + }, + { + "start": 4840.16, + "end": 4841.48, + "probability": 0.8531 + }, + { + "start": 4842.32, + "end": 4842.8, + "probability": 0.6236 + }, + { + "start": 4844.6, + "end": 4847.24, + "probability": 0.9868 + }, + { + "start": 4847.62, + "end": 4847.8, + "probability": 0.5482 + }, + { + "start": 4848.1, + "end": 4849.34, + "probability": 0.9678 + }, + { + "start": 4849.46, + "end": 4849.78, + "probability": 0.842 + }, + { + "start": 4850.28, + "end": 4851.06, + "probability": 0.7738 + }, + { + "start": 4851.3, + "end": 4852.52, + "probability": 0.9829 + }, + { + "start": 4853.54, + "end": 4854.54, + "probability": 0.9282 + }, + { + "start": 4855.46, + "end": 4859.2, + "probability": 0.9867 + }, + { + "start": 4859.9, + "end": 4861.46, + "probability": 0.9401 + }, + { + "start": 4862.4, + "end": 4863.52, + "probability": 0.6534 + }, + { + "start": 4864.18, + "end": 4867.24, + "probability": 0.8382 + }, + { + "start": 4867.56, + "end": 4869.14, + "probability": 0.9956 + }, + { + "start": 4869.84, + "end": 4872.3, + "probability": 0.9854 + }, + { + "start": 4874.14, + "end": 4875.42, + "probability": 0.9991 + }, + { + "start": 4875.54, + "end": 4876.0, + "probability": 0.7577 + }, + { + "start": 4876.56, + "end": 4877.24, + "probability": 0.9819 + }, + { + "start": 4878.16, + "end": 4884.68, + "probability": 0.9824 + }, + { + "start": 4885.84, + "end": 4888.5, + "probability": 0.9924 + }, + { + "start": 4889.22, + "end": 4889.82, + "probability": 0.9844 + }, + { + "start": 4889.92, + "end": 4890.46, + "probability": 0.4501 + }, + { + "start": 4890.54, + "end": 4892.64, + "probability": 0.8094 + }, + { + "start": 4893.36, + "end": 4895.24, + "probability": 0.996 + }, + { + "start": 4895.28, + "end": 4896.1, + "probability": 0.95 + }, + { + "start": 4896.46, + "end": 4897.36, + "probability": 0.9457 + }, + { + "start": 4898.0, + "end": 4898.72, + "probability": 0.7645 + }, + { + "start": 4899.54, + "end": 4901.82, + "probability": 0.9856 + }, + { + "start": 4902.6, + "end": 4903.8, + "probability": 0.8937 + }, + { + "start": 4905.26, + "end": 4907.3, + "probability": 0.3731 + }, + { + "start": 4908.7, + "end": 4910.76, + "probability": 0.8075 + }, + { + "start": 4910.92, + "end": 4912.24, + "probability": 0.9119 + }, + { + "start": 4914.28, + "end": 4917.3, + "probability": 0.8942 + }, + { + "start": 4918.0, + "end": 4920.32, + "probability": 0.98 + }, + { + "start": 4921.06, + "end": 4923.4, + "probability": 0.7911 + }, + { + "start": 4923.8, + "end": 4925.36, + "probability": 0.9917 + }, + { + "start": 4926.08, + "end": 4927.64, + "probability": 0.9918 + }, + { + "start": 4927.72, + "end": 4931.22, + "probability": 0.9966 + }, + { + "start": 4933.3, + "end": 4934.24, + "probability": 0.3288 + }, + { + "start": 4936.02, + "end": 4938.74, + "probability": 0.9856 + }, + { + "start": 4940.08, + "end": 4942.56, + "probability": 0.9847 + }, + { + "start": 4943.24, + "end": 4945.5, + "probability": 0.9819 + }, + { + "start": 4946.12, + "end": 4947.49, + "probability": 0.9294 + }, + { + "start": 4949.4, + "end": 4953.5, + "probability": 0.9572 + }, + { + "start": 4954.42, + "end": 4956.34, + "probability": 0.9937 + }, + { + "start": 4956.96, + "end": 4958.7, + "probability": 0.7661 + }, + { + "start": 4958.8, + "end": 4962.75, + "probability": 0.581 + }, + { + "start": 4963.22, + "end": 4964.38, + "probability": 0.7494 + }, + { + "start": 4965.26, + "end": 4968.68, + "probability": 0.9668 + }, + { + "start": 4969.3, + "end": 4971.58, + "probability": 0.8439 + }, + { + "start": 4972.42, + "end": 4974.24, + "probability": 0.8122 + }, + { + "start": 4974.76, + "end": 4974.96, + "probability": 0.9924 + }, + { + "start": 4975.5, + "end": 4976.74, + "probability": 0.9599 + }, + { + "start": 4978.44, + "end": 4980.38, + "probability": 0.8992 + }, + { + "start": 4982.03, + "end": 4985.1, + "probability": 0.8254 + }, + { + "start": 4985.7, + "end": 4986.76, + "probability": 0.9727 + }, + { + "start": 4986.86, + "end": 4988.58, + "probability": 0.8044 + }, + { + "start": 4989.02, + "end": 4990.54, + "probability": 0.9778 + }, + { + "start": 4990.9, + "end": 4992.08, + "probability": 0.9989 + }, + { + "start": 4993.12, + "end": 4993.3, + "probability": 0.3739 + }, + { + "start": 4993.48, + "end": 4993.66, + "probability": 0.44 + }, + { + "start": 4994.0, + "end": 4997.02, + "probability": 0.8984 + }, + { + "start": 4997.82, + "end": 4998.84, + "probability": 0.9323 + }, + { + "start": 4998.9, + "end": 5000.08, + "probability": 0.8793 + }, + { + "start": 5000.52, + "end": 5001.74, + "probability": 0.9677 + }, + { + "start": 5002.44, + "end": 5004.54, + "probability": 0.946 + }, + { + "start": 5005.88, + "end": 5008.68, + "probability": 0.3258 + }, + { + "start": 5008.86, + "end": 5010.14, + "probability": 0.8862 + }, + { + "start": 5010.3, + "end": 5011.15, + "probability": 0.6323 + }, + { + "start": 5011.54, + "end": 5012.58, + "probability": 0.5933 + }, + { + "start": 5012.64, + "end": 5014.0, + "probability": 0.8413 + }, + { + "start": 5014.74, + "end": 5016.92, + "probability": 0.9695 + }, + { + "start": 5018.82, + "end": 5019.36, + "probability": 0.616 + }, + { + "start": 5020.62, + "end": 5023.24, + "probability": 0.9924 + }, + { + "start": 5024.0, + "end": 5025.5, + "probability": 0.9641 + }, + { + "start": 5026.14, + "end": 5028.94, + "probability": 0.9899 + }, + { + "start": 5029.0, + "end": 5029.62, + "probability": 0.7001 + }, + { + "start": 5029.7, + "end": 5032.37, + "probability": 0.978 + }, + { + "start": 5033.34, + "end": 5034.88, + "probability": 0.9969 + }, + { + "start": 5035.54, + "end": 5039.26, + "probability": 0.9977 + }, + { + "start": 5039.6, + "end": 5040.24, + "probability": 0.826 + }, + { + "start": 5041.22, + "end": 5044.5, + "probability": 0.98 + }, + { + "start": 5045.14, + "end": 5045.54, + "probability": 0.6038 + }, + { + "start": 5045.98, + "end": 5048.26, + "probability": 0.9977 + }, + { + "start": 5048.94, + "end": 5051.32, + "probability": 0.9966 + }, + { + "start": 5051.92, + "end": 5053.04, + "probability": 0.9927 + }, + { + "start": 5054.26, + "end": 5055.32, + "probability": 0.7922 + }, + { + "start": 5056.72, + "end": 5060.06, + "probability": 0.9572 + }, + { + "start": 5060.2, + "end": 5060.6, + "probability": 0.966 + }, + { + "start": 5061.5, + "end": 5067.72, + "probability": 0.9987 + }, + { + "start": 5068.38, + "end": 5072.1, + "probability": 0.9977 + }, + { + "start": 5072.86, + "end": 5074.94, + "probability": 0.9966 + }, + { + "start": 5075.4, + "end": 5078.36, + "probability": 0.8132 + }, + { + "start": 5078.88, + "end": 5081.66, + "probability": 0.998 + }, + { + "start": 5082.94, + "end": 5083.88, + "probability": 0.7715 + }, + { + "start": 5084.42, + "end": 5086.31, + "probability": 0.9917 + }, + { + "start": 5087.08, + "end": 5088.0, + "probability": 0.9717 + }, + { + "start": 5088.34, + "end": 5089.1, + "probability": 0.9856 + }, + { + "start": 5089.52, + "end": 5090.3, + "probability": 0.9613 + }, + { + "start": 5090.56, + "end": 5092.0, + "probability": 0.9951 + }, + { + "start": 5094.22, + "end": 5098.32, + "probability": 0.9392 + }, + { + "start": 5098.96, + "end": 5100.78, + "probability": 0.9332 + }, + { + "start": 5101.84, + "end": 5104.5, + "probability": 0.9968 + }, + { + "start": 5105.22, + "end": 5113.62, + "probability": 0.9966 + }, + { + "start": 5113.66, + "end": 5114.4, + "probability": 0.7835 + }, + { + "start": 5115.24, + "end": 5117.2, + "probability": 0.6615 + }, + { + "start": 5118.56, + "end": 5123.14, + "probability": 0.9826 + }, + { + "start": 5123.34, + "end": 5124.24, + "probability": 0.6567 + }, + { + "start": 5124.28, + "end": 5125.0, + "probability": 0.783 + }, + { + "start": 5125.1, + "end": 5126.72, + "probability": 0.7646 + }, + { + "start": 5127.52, + "end": 5130.02, + "probability": 0.9875 + }, + { + "start": 5130.54, + "end": 5132.58, + "probability": 0.9322 + }, + { + "start": 5133.08, + "end": 5137.54, + "probability": 0.9301 + }, + { + "start": 5137.62, + "end": 5138.37, + "probability": 0.7699 + }, + { + "start": 5138.52, + "end": 5139.1, + "probability": 0.8002 + }, + { + "start": 5139.2, + "end": 5139.74, + "probability": 0.9834 + }, + { + "start": 5139.88, + "end": 5140.56, + "probability": 0.8579 + }, + { + "start": 5141.36, + "end": 5143.52, + "probability": 0.9704 + }, + { + "start": 5144.18, + "end": 5149.3, + "probability": 0.9883 + }, + { + "start": 5150.16, + "end": 5151.94, + "probability": 0.913 + }, + { + "start": 5152.54, + "end": 5153.08, + "probability": 0.9774 + }, + { + "start": 5154.04, + "end": 5155.26, + "probability": 0.9484 + }, + { + "start": 5157.01, + "end": 5159.28, + "probability": 0.9866 + }, + { + "start": 5159.7, + "end": 5159.84, + "probability": 0.4092 + }, + { + "start": 5159.86, + "end": 5161.4, + "probability": 0.6551 + }, + { + "start": 5162.02, + "end": 5166.18, + "probability": 0.9293 + }, + { + "start": 5166.36, + "end": 5167.78, + "probability": 0.7229 + }, + { + "start": 5168.16, + "end": 5168.7, + "probability": 0.8533 + }, + { + "start": 5169.0, + "end": 5171.32, + "probability": 0.9797 + }, + { + "start": 5171.8, + "end": 5174.22, + "probability": 0.8556 + }, + { + "start": 5174.78, + "end": 5178.26, + "probability": 0.9313 + }, + { + "start": 5178.74, + "end": 5182.5, + "probability": 0.9069 + }, + { + "start": 5183.18, + "end": 5184.92, + "probability": 0.9894 + }, + { + "start": 5185.38, + "end": 5189.3, + "probability": 0.997 + }, + { + "start": 5190.2, + "end": 5192.52, + "probability": 0.9824 + }, + { + "start": 5192.62, + "end": 5193.78, + "probability": 0.6553 + }, + { + "start": 5193.92, + "end": 5197.72, + "probability": 0.8597 + }, + { + "start": 5197.72, + "end": 5198.6, + "probability": 0.5924 + }, + { + "start": 5199.58, + "end": 5200.52, + "probability": 0.8739 + }, + { + "start": 5201.71, + "end": 5203.75, + "probability": 0.8589 + }, + { + "start": 5204.66, + "end": 5205.36, + "probability": 0.9481 + }, + { + "start": 5205.44, + "end": 5208.34, + "probability": 0.9954 + }, + { + "start": 5208.34, + "end": 5212.32, + "probability": 0.9979 + }, + { + "start": 5213.38, + "end": 5214.2, + "probability": 0.693 + }, + { + "start": 5214.9, + "end": 5216.6, + "probability": 0.606 + }, + { + "start": 5217.22, + "end": 5218.56, + "probability": 0.9898 + }, + { + "start": 5218.64, + "end": 5225.26, + "probability": 0.9992 + }, + { + "start": 5225.54, + "end": 5227.84, + "probability": 0.2116 + }, + { + "start": 5228.04, + "end": 5230.2, + "probability": 0.443 + }, + { + "start": 5230.32, + "end": 5231.04, + "probability": 0.7562 + }, + { + "start": 5231.08, + "end": 5233.52, + "probability": 0.6923 + }, + { + "start": 5233.66, + "end": 5239.66, + "probability": 0.8528 + }, + { + "start": 5240.1, + "end": 5247.64, + "probability": 0.9548 + }, + { + "start": 5247.7, + "end": 5249.22, + "probability": 0.9117 + }, + { + "start": 5249.42, + "end": 5250.86, + "probability": 0.8367 + }, + { + "start": 5251.2, + "end": 5252.28, + "probability": 0.5671 + }, + { + "start": 5252.36, + "end": 5254.26, + "probability": 0.8519 + }, + { + "start": 5254.82, + "end": 5256.16, + "probability": 0.8982 + }, + { + "start": 5256.24, + "end": 5256.66, + "probability": 0.0421 + }, + { + "start": 5256.98, + "end": 5261.56, + "probability": 0.9905 + }, + { + "start": 5262.96, + "end": 5264.78, + "probability": 0.7601 + }, + { + "start": 5264.78, + "end": 5266.3, + "probability": 0.756 + }, + { + "start": 5266.34, + "end": 5267.08, + "probability": 0.8044 + }, + { + "start": 5267.08, + "end": 5267.86, + "probability": 0.9627 + }, + { + "start": 5268.98, + "end": 5271.38, + "probability": 0.9841 + }, + { + "start": 5274.02, + "end": 5276.9, + "probability": 0.9875 + }, + { + "start": 5276.95, + "end": 5280.78, + "probability": 0.999 + }, + { + "start": 5281.38, + "end": 5284.28, + "probability": 0.806 + }, + { + "start": 5284.82, + "end": 5287.16, + "probability": 0.9914 + }, + { + "start": 5287.24, + "end": 5287.84, + "probability": 0.689 + }, + { + "start": 5287.92, + "end": 5288.72, + "probability": 0.8094 + }, + { + "start": 5289.22, + "end": 5290.0, + "probability": 0.9105 + }, + { + "start": 5290.14, + "end": 5292.94, + "probability": 0.9962 + }, + { + "start": 5292.94, + "end": 5295.7, + "probability": 0.9989 + }, + { + "start": 5296.08, + "end": 5298.24, + "probability": 0.9786 + }, + { + "start": 5298.28, + "end": 5303.16, + "probability": 0.9697 + }, + { + "start": 5304.22, + "end": 5305.18, + "probability": 0.9924 + }, + { + "start": 5305.98, + "end": 5308.38, + "probability": 0.999 + }, + { + "start": 5308.62, + "end": 5311.2, + "probability": 0.9787 + }, + { + "start": 5311.58, + "end": 5314.24, + "probability": 0.9644 + }, + { + "start": 5315.28, + "end": 5315.44, + "probability": 0.4034 + }, + { + "start": 5315.68, + "end": 5317.68, + "probability": 0.8403 + }, + { + "start": 5317.9, + "end": 5318.46, + "probability": 0.8716 + }, + { + "start": 5318.58, + "end": 5323.32, + "probability": 0.7315 + }, + { + "start": 5324.96, + "end": 5326.24, + "probability": 0.6189 + }, + { + "start": 5326.94, + "end": 5331.0, + "probability": 0.741 + }, + { + "start": 5331.12, + "end": 5332.96, + "probability": 0.6211 + }, + { + "start": 5333.58, + "end": 5336.12, + "probability": 0.9146 + }, + { + "start": 5336.6, + "end": 5337.04, + "probability": 0.8728 + }, + { + "start": 5337.08, + "end": 5339.55, + "probability": 0.7176 + }, + { + "start": 5340.14, + "end": 5344.2, + "probability": 0.9968 + }, + { + "start": 5344.86, + "end": 5347.16, + "probability": 0.8566 + }, + { + "start": 5347.68, + "end": 5347.96, + "probability": 0.8386 + }, + { + "start": 5348.04, + "end": 5349.54, + "probability": 0.8632 + }, + { + "start": 5349.68, + "end": 5351.56, + "probability": 0.9974 + }, + { + "start": 5351.86, + "end": 5353.78, + "probability": 0.6924 + }, + { + "start": 5354.38, + "end": 5355.5, + "probability": 0.8853 + }, + { + "start": 5356.14, + "end": 5357.8, + "probability": 0.7795 + }, + { + "start": 5358.0, + "end": 5358.36, + "probability": 0.947 + }, + { + "start": 5358.4, + "end": 5358.78, + "probability": 0.8031 + }, + { + "start": 5358.88, + "end": 5360.86, + "probability": 0.9639 + }, + { + "start": 5361.2, + "end": 5362.03, + "probability": 0.8933 + }, + { + "start": 5362.66, + "end": 5368.88, + "probability": 0.9612 + }, + { + "start": 5369.02, + "end": 5369.76, + "probability": 0.9917 + }, + { + "start": 5370.7, + "end": 5371.26, + "probability": 0.6937 + }, + { + "start": 5372.0, + "end": 5372.91, + "probability": 0.937 + }, + { + "start": 5373.62, + "end": 5375.34, + "probability": 0.9075 + }, + { + "start": 5375.7, + "end": 5376.78, + "probability": 0.9747 + }, + { + "start": 5377.42, + "end": 5380.4, + "probability": 0.9976 + }, + { + "start": 5380.84, + "end": 5382.48, + "probability": 0.9977 + }, + { + "start": 5384.02, + "end": 5385.64, + "probability": 0.6641 + }, + { + "start": 5385.78, + "end": 5386.94, + "probability": 0.8442 + }, + { + "start": 5387.34, + "end": 5388.4, + "probability": 0.6553 + }, + { + "start": 5388.98, + "end": 5390.64, + "probability": 0.853 + }, + { + "start": 5391.4, + "end": 5392.28, + "probability": 0.8657 + }, + { + "start": 5392.32, + "end": 5392.68, + "probability": 0.7157 + }, + { + "start": 5392.76, + "end": 5393.06, + "probability": 0.8415 + }, + { + "start": 5393.18, + "end": 5393.9, + "probability": 0.9852 + }, + { + "start": 5394.1, + "end": 5395.53, + "probability": 0.979 + }, + { + "start": 5395.7, + "end": 5396.83, + "probability": 0.9792 + }, + { + "start": 5398.03, + "end": 5402.24, + "probability": 0.9749 + }, + { + "start": 5402.24, + "end": 5405.54, + "probability": 0.9883 + }, + { + "start": 5406.12, + "end": 5408.42, + "probability": 0.9636 + }, + { + "start": 5409.84, + "end": 5412.62, + "probability": 0.9363 + }, + { + "start": 5413.16, + "end": 5414.52, + "probability": 0.8851 + }, + { + "start": 5415.56, + "end": 5416.94, + "probability": 0.9593 + }, + { + "start": 5417.04, + "end": 5417.58, + "probability": 0.7148 + }, + { + "start": 5418.2, + "end": 5418.8, + "probability": 0.6431 + }, + { + "start": 5419.76, + "end": 5421.2, + "probability": 0.9058 + }, + { + "start": 5421.6, + "end": 5423.02, + "probability": 0.9929 + }, + { + "start": 5423.76, + "end": 5426.54, + "probability": 0.9954 + }, + { + "start": 5427.2, + "end": 5428.36, + "probability": 0.7521 + }, + { + "start": 5429.28, + "end": 5430.44, + "probability": 0.8348 + }, + { + "start": 5430.76, + "end": 5430.96, + "probability": 0.2997 + }, + { + "start": 5431.0, + "end": 5431.46, + "probability": 0.8373 + }, + { + "start": 5431.54, + "end": 5432.4, + "probability": 0.9111 + }, + { + "start": 5433.02, + "end": 5435.28, + "probability": 0.8782 + }, + { + "start": 5435.32, + "end": 5436.06, + "probability": 0.7268 + }, + { + "start": 5436.16, + "end": 5437.58, + "probability": 0.9387 + }, + { + "start": 5438.22, + "end": 5442.64, + "probability": 0.9178 + }, + { + "start": 5442.8, + "end": 5444.04, + "probability": 0.9927 + }, + { + "start": 5444.6, + "end": 5444.98, + "probability": 0.5742 + }, + { + "start": 5445.5, + "end": 5447.04, + "probability": 0.9891 + }, + { + "start": 5447.36, + "end": 5451.9, + "probability": 0.9595 + }, + { + "start": 5452.0, + "end": 5454.2, + "probability": 0.9846 + }, + { + "start": 5454.98, + "end": 5456.78, + "probability": 0.9915 + }, + { + "start": 5457.34, + "end": 5458.4, + "probability": 0.5791 + }, + { + "start": 5458.82, + "end": 5460.78, + "probability": 0.988 + }, + { + "start": 5461.54, + "end": 5464.18, + "probability": 0.9283 + }, + { + "start": 5464.7, + "end": 5467.92, + "probability": 0.9944 + }, + { + "start": 5467.92, + "end": 5471.88, + "probability": 0.9987 + }, + { + "start": 5472.44, + "end": 5475.5, + "probability": 0.8091 + }, + { + "start": 5476.1, + "end": 5479.76, + "probability": 0.9962 + }, + { + "start": 5479.8, + "end": 5483.24, + "probability": 0.9445 + }, + { + "start": 5483.42, + "end": 5484.16, + "probability": 0.4987 + }, + { + "start": 5485.16, + "end": 5486.68, + "probability": 0.9411 + }, + { + "start": 5487.0, + "end": 5487.49, + "probability": 0.9851 + }, + { + "start": 5488.24, + "end": 5489.1, + "probability": 0.9767 + }, + { + "start": 5489.42, + "end": 5490.2, + "probability": 0.8406 + }, + { + "start": 5490.58, + "end": 5492.56, + "probability": 0.8081 + }, + { + "start": 5493.32, + "end": 5497.02, + "probability": 0.9686 + }, + { + "start": 5497.6, + "end": 5498.52, + "probability": 0.8118 + }, + { + "start": 5498.62, + "end": 5500.14, + "probability": 0.9537 + }, + { + "start": 5500.96, + "end": 5505.9, + "probability": 0.8211 + }, + { + "start": 5507.22, + "end": 5509.04, + "probability": 0.9599 + }, + { + "start": 5509.18, + "end": 5509.76, + "probability": 0.9255 + }, + { + "start": 5509.84, + "end": 5510.3, + "probability": 0.9143 + }, + { + "start": 5510.68, + "end": 5511.54, + "probability": 0.5486 + }, + { + "start": 5512.04, + "end": 5512.74, + "probability": 0.8268 + }, + { + "start": 5513.16, + "end": 5516.44, + "probability": 0.9934 + }, + { + "start": 5517.26, + "end": 5518.04, + "probability": 0.4325 + }, + { + "start": 5518.72, + "end": 5519.84, + "probability": 0.7022 + }, + { + "start": 5520.7, + "end": 5522.1, + "probability": 0.9414 + }, + { + "start": 5523.06, + "end": 5525.54, + "probability": 0.9919 + }, + { + "start": 5526.14, + "end": 5528.94, + "probability": 0.9702 + }, + { + "start": 5529.44, + "end": 5532.68, + "probability": 0.9968 + }, + { + "start": 5533.36, + "end": 5539.2, + "probability": 0.9928 + }, + { + "start": 5539.32, + "end": 5539.76, + "probability": 0.6146 + }, + { + "start": 5540.02, + "end": 5541.19, + "probability": 0.7451 + }, + { + "start": 5541.96, + "end": 5544.04, + "probability": 0.9966 + }, + { + "start": 5544.76, + "end": 5546.66, + "probability": 0.9932 + }, + { + "start": 5546.66, + "end": 5548.44, + "probability": 0.9294 + }, + { + "start": 5548.98, + "end": 5551.16, + "probability": 0.9977 + }, + { + "start": 5551.26, + "end": 5553.2, + "probability": 0.9844 + }, + { + "start": 5553.66, + "end": 5555.86, + "probability": 0.998 + }, + { + "start": 5556.54, + "end": 5559.52, + "probability": 0.9961 + }, + { + "start": 5560.06, + "end": 5562.22, + "probability": 0.9972 + }, + { + "start": 5562.6, + "end": 5564.66, + "probability": 0.9794 + }, + { + "start": 5565.06, + "end": 5567.42, + "probability": 0.9912 + }, + { + "start": 5568.0, + "end": 5568.36, + "probability": 0.8392 + }, + { + "start": 5568.72, + "end": 5574.66, + "probability": 0.987 + }, + { + "start": 5574.78, + "end": 5575.06, + "probability": 0.706 + }, + { + "start": 5575.28, + "end": 5576.84, + "probability": 0.8238 + }, + { + "start": 5576.94, + "end": 5579.08, + "probability": 0.9904 + }, + { + "start": 5579.18, + "end": 5580.09, + "probability": 0.731 + }, + { + "start": 5581.0, + "end": 5582.24, + "probability": 0.7735 + }, + { + "start": 5585.56, + "end": 5586.44, + "probability": 0.8157 + }, + { + "start": 5587.36, + "end": 5588.84, + "probability": 0.9978 + }, + { + "start": 5590.54, + "end": 5591.32, + "probability": 0.4722 + }, + { + "start": 5595.0, + "end": 5595.84, + "probability": 0.9833 + }, + { + "start": 5596.52, + "end": 5597.56, + "probability": 0.9835 + }, + { + "start": 5598.2, + "end": 5600.9, + "probability": 0.9966 + }, + { + "start": 5601.56, + "end": 5602.2, + "probability": 0.9529 + }, + { + "start": 5604.06, + "end": 5605.86, + "probability": 0.5239 + }, + { + "start": 5605.96, + "end": 5608.14, + "probability": 0.9938 + }, + { + "start": 5608.3, + "end": 5610.74, + "probability": 0.9898 + }, + { + "start": 5612.38, + "end": 5614.36, + "probability": 0.8125 + }, + { + "start": 5615.16, + "end": 5616.86, + "probability": 0.9542 + }, + { + "start": 5617.54, + "end": 5618.88, + "probability": 0.8931 + }, + { + "start": 5619.62, + "end": 5619.92, + "probability": 0.9417 + }, + { + "start": 5621.26, + "end": 5623.94, + "probability": 0.926 + }, + { + "start": 5624.04, + "end": 5625.02, + "probability": 0.6221 + }, + { + "start": 5625.46, + "end": 5625.78, + "probability": 0.7761 + }, + { + "start": 5626.0, + "end": 5628.3, + "probability": 0.8947 + }, + { + "start": 5629.08, + "end": 5629.4, + "probability": 0.7806 + }, + { + "start": 5629.4, + "end": 5631.74, + "probability": 0.9075 + }, + { + "start": 5632.16, + "end": 5634.18, + "probability": 0.9817 + }, + { + "start": 5634.7, + "end": 5638.34, + "probability": 0.9502 + }, + { + "start": 5638.7, + "end": 5641.4, + "probability": 0.8689 + }, + { + "start": 5641.98, + "end": 5644.24, + "probability": 0.9823 + }, + { + "start": 5644.32, + "end": 5644.64, + "probability": 0.8988 + }, + { + "start": 5645.12, + "end": 5648.79, + "probability": 0.9927 + }, + { + "start": 5649.66, + "end": 5652.34, + "probability": 0.9772 + }, + { + "start": 5653.74, + "end": 5655.18, + "probability": 0.9601 + }, + { + "start": 5655.18, + "end": 5657.18, + "probability": 0.9985 + }, + { + "start": 5657.82, + "end": 5660.18, + "probability": 0.9231 + }, + { + "start": 5660.72, + "end": 5660.98, + "probability": 0.76 + }, + { + "start": 5662.18, + "end": 5663.3, + "probability": 0.7843 + }, + { + "start": 5663.94, + "end": 5666.66, + "probability": 0.9972 + }, + { + "start": 5667.64, + "end": 5667.98, + "probability": 0.7404 + }, + { + "start": 5668.08, + "end": 5668.74, + "probability": 0.9419 + }, + { + "start": 5668.9, + "end": 5671.2, + "probability": 0.8877 + }, + { + "start": 5671.82, + "end": 5673.08, + "probability": 0.9437 + }, + { + "start": 5673.7, + "end": 5676.66, + "probability": 0.9739 + }, + { + "start": 5676.72, + "end": 5677.62, + "probability": 0.8993 + }, + { + "start": 5678.4, + "end": 5678.76, + "probability": 0.6143 + }, + { + "start": 5678.84, + "end": 5679.9, + "probability": 0.9206 + }, + { + "start": 5680.34, + "end": 5683.1, + "probability": 0.9606 + }, + { + "start": 5683.38, + "end": 5683.74, + "probability": 0.8704 + }, + { + "start": 5683.92, + "end": 5685.82, + "probability": 0.7062 + }, + { + "start": 5685.92, + "end": 5686.4, + "probability": 0.2733 + }, + { + "start": 5686.76, + "end": 5689.28, + "probability": 0.9769 + }, + { + "start": 5689.38, + "end": 5690.34, + "probability": 0.884 + }, + { + "start": 5691.12, + "end": 5692.4, + "probability": 0.9563 + }, + { + "start": 5693.16, + "end": 5693.72, + "probability": 0.9526 + }, + { + "start": 5694.08, + "end": 5698.82, + "probability": 0.9903 + }, + { + "start": 5698.9, + "end": 5700.54, + "probability": 0.9754 + }, + { + "start": 5701.4, + "end": 5704.48, + "probability": 0.7383 + }, + { + "start": 5705.18, + "end": 5706.5, + "probability": 0.8605 + }, + { + "start": 5707.16, + "end": 5708.84, + "probability": 0.8669 + }, + { + "start": 5709.12, + "end": 5711.46, + "probability": 0.774 + }, + { + "start": 5711.92, + "end": 5712.84, + "probability": 0.823 + }, + { + "start": 5713.02, + "end": 5714.28, + "probability": 0.9736 + }, + { + "start": 5714.38, + "end": 5715.02, + "probability": 0.8865 + }, + { + "start": 5715.64, + "end": 5719.12, + "probability": 0.9572 + }, + { + "start": 5719.82, + "end": 5721.74, + "probability": 0.9699 + }, + { + "start": 5722.36, + "end": 5723.18, + "probability": 0.9922 + }, + { + "start": 5723.64, + "end": 5725.3, + "probability": 0.9556 + }, + { + "start": 5725.3, + "end": 5728.64, + "probability": 0.9966 + }, + { + "start": 5730.36, + "end": 5731.4, + "probability": 0.7595 + }, + { + "start": 5731.72, + "end": 5732.76, + "probability": 0.7627 + }, + { + "start": 5733.48, + "end": 5734.94, + "probability": 0.9905 + }, + { + "start": 5735.68, + "end": 5738.24, + "probability": 0.8596 + }, + { + "start": 5738.98, + "end": 5739.96, + "probability": 0.8772 + }, + { + "start": 5740.48, + "end": 5741.42, + "probability": 0.7016 + }, + { + "start": 5742.38, + "end": 5745.5, + "probability": 0.8885 + }, + { + "start": 5746.66, + "end": 5749.56, + "probability": 0.9946 + }, + { + "start": 5750.08, + "end": 5751.38, + "probability": 0.9959 + }, + { + "start": 5752.12, + "end": 5753.84, + "probability": 0.9164 + }, + { + "start": 5754.24, + "end": 5754.86, + "probability": 0.7953 + }, + { + "start": 5755.18, + "end": 5758.2, + "probability": 0.9568 + }, + { + "start": 5760.02, + "end": 5761.44, + "probability": 0.7979 + }, + { + "start": 5762.02, + "end": 5763.78, + "probability": 0.8767 + }, + { + "start": 5763.82, + "end": 5765.48, + "probability": 0.9763 + }, + { + "start": 5766.6, + "end": 5767.66, + "probability": 0.8381 + }, + { + "start": 5768.2, + "end": 5769.56, + "probability": 0.9561 + }, + { + "start": 5770.56, + "end": 5771.48, + "probability": 0.8374 + }, + { + "start": 5772.28, + "end": 5773.9, + "probability": 0.9736 + }, + { + "start": 5774.86, + "end": 5777.56, + "probability": 0.9792 + }, + { + "start": 5777.8, + "end": 5778.4, + "probability": 0.8667 + }, + { + "start": 5778.98, + "end": 5779.96, + "probability": 0.9746 + }, + { + "start": 5780.48, + "end": 5782.88, + "probability": 0.5898 + }, + { + "start": 5783.4, + "end": 5785.79, + "probability": 0.9387 + }, + { + "start": 5786.62, + "end": 5787.0, + "probability": 0.8014 + }, + { + "start": 5787.48, + "end": 5788.22, + "probability": 0.8654 + }, + { + "start": 5788.6, + "end": 5791.26, + "probability": 0.9894 + }, + { + "start": 5791.86, + "end": 5792.94, + "probability": 0.9373 + }, + { + "start": 5792.98, + "end": 5796.34, + "probability": 0.99 + }, + { + "start": 5797.34, + "end": 5800.54, + "probability": 0.9968 + }, + { + "start": 5800.54, + "end": 5804.08, + "probability": 0.9957 + }, + { + "start": 5804.74, + "end": 5806.62, + "probability": 0.9968 + }, + { + "start": 5806.7, + "end": 5810.12, + "probability": 0.999 + }, + { + "start": 5810.12, + "end": 5813.24, + "probability": 0.9995 + }, + { + "start": 5813.7, + "end": 5814.98, + "probability": 0.7548 + }, + { + "start": 5815.66, + "end": 5816.56, + "probability": 0.8154 + }, + { + "start": 5817.18, + "end": 5820.96, + "probability": 0.9804 + }, + { + "start": 5822.9, + "end": 5825.08, + "probability": 0.8363 + }, + { + "start": 5826.48, + "end": 5832.94, + "probability": 0.9858 + }, + { + "start": 5833.76, + "end": 5838.08, + "probability": 0.9948 + }, + { + "start": 5839.62, + "end": 5842.66, + "probability": 0.9949 + }, + { + "start": 5844.6, + "end": 5849.5, + "probability": 0.979 + }, + { + "start": 5850.4, + "end": 5852.92, + "probability": 0.5648 + }, + { + "start": 5853.52, + "end": 5856.0, + "probability": 0.8444 + }, + { + "start": 5858.06, + "end": 5860.66, + "probability": 0.9951 + }, + { + "start": 5860.76, + "end": 5862.08, + "probability": 0.8348 + }, + { + "start": 5862.82, + "end": 5863.9, + "probability": 0.888 + }, + { + "start": 5863.92, + "end": 5870.16, + "probability": 0.9902 + }, + { + "start": 5870.68, + "end": 5872.3, + "probability": 0.7465 + }, + { + "start": 5872.98, + "end": 5873.62, + "probability": 0.7052 + }, + { + "start": 5873.64, + "end": 5875.16, + "probability": 0.9522 + }, + { + "start": 5876.02, + "end": 5878.8, + "probability": 0.6622 + }, + { + "start": 5879.36, + "end": 5881.38, + "probability": 0.7831 + }, + { + "start": 5882.38, + "end": 5885.0, + "probability": 0.8153 + }, + { + "start": 5885.46, + "end": 5891.34, + "probability": 0.9904 + }, + { + "start": 5892.86, + "end": 5894.2, + "probability": 0.9568 + }, + { + "start": 5895.2, + "end": 5896.54, + "probability": 0.89 + }, + { + "start": 5897.1, + "end": 5899.74, + "probability": 0.9314 + }, + { + "start": 5900.7, + "end": 5901.8, + "probability": 0.9377 + }, + { + "start": 5902.91, + "end": 5906.78, + "probability": 0.885 + }, + { + "start": 5907.44, + "end": 5908.5, + "probability": 0.9142 + }, + { + "start": 5909.58, + "end": 5909.94, + "probability": 0.8156 + }, + { + "start": 5910.56, + "end": 5911.78, + "probability": 0.9778 + }, + { + "start": 5912.44, + "end": 5915.8, + "probability": 0.9207 + }, + { + "start": 5916.32, + "end": 5919.36, + "probability": 0.9796 + }, + { + "start": 5919.7, + "end": 5922.42, + "probability": 0.9955 + }, + { + "start": 5922.76, + "end": 5924.74, + "probability": 0.9961 + }, + { + "start": 5925.68, + "end": 5926.48, + "probability": 0.8255 + }, + { + "start": 5927.14, + "end": 5929.14, + "probability": 0.9295 + }, + { + "start": 5930.22, + "end": 5931.56, + "probability": 0.9974 + }, + { + "start": 5932.32, + "end": 5933.64, + "probability": 0.9989 + }, + { + "start": 5934.34, + "end": 5937.16, + "probability": 0.9991 + }, + { + "start": 5937.66, + "end": 5941.0, + "probability": 0.9969 + }, + { + "start": 5941.42, + "end": 5943.94, + "probability": 0.9959 + }, + { + "start": 5944.74, + "end": 5947.6, + "probability": 0.9873 + }, + { + "start": 5947.72, + "end": 5947.86, + "probability": 0.9011 + }, + { + "start": 5948.4, + "end": 5950.94, + "probability": 0.9481 + }, + { + "start": 5951.54, + "end": 5952.54, + "probability": 0.9829 + }, + { + "start": 5954.36, + "end": 5957.28, + "probability": 0.9008 + }, + { + "start": 5958.78, + "end": 5963.8, + "probability": 0.9884 + }, + { + "start": 5964.54, + "end": 5964.86, + "probability": 0.8721 + }, + { + "start": 5966.14, + "end": 5966.36, + "probability": 0.9744 + }, + { + "start": 5966.94, + "end": 5969.4, + "probability": 0.9963 + }, + { + "start": 5969.52, + "end": 5971.08, + "probability": 0.9586 + }, + { + "start": 5971.84, + "end": 5977.4, + "probability": 0.9937 + }, + { + "start": 5978.56, + "end": 5978.74, + "probability": 0.4012 + }, + { + "start": 5979.5, + "end": 5981.9, + "probability": 0.9985 + }, + { + "start": 5983.06, + "end": 5983.44, + "probability": 0.482 + }, + { + "start": 5983.52, + "end": 5985.06, + "probability": 0.9536 + }, + { + "start": 5985.08, + "end": 5986.8, + "probability": 0.913 + }, + { + "start": 5986.8, + "end": 5987.92, + "probability": 0.8058 + }, + { + "start": 5988.22, + "end": 5988.7, + "probability": 0.0129 + }, + { + "start": 5989.46, + "end": 5990.96, + "probability": 0.6243 + }, + { + "start": 5991.02, + "end": 5992.02, + "probability": 0.3173 + }, + { + "start": 5992.02, + "end": 5992.54, + "probability": 0.8714 + }, + { + "start": 5993.1, + "end": 5994.2, + "probability": 0.9641 + }, + { + "start": 5996.16, + "end": 5999.16, + "probability": 0.9916 + }, + { + "start": 5999.42, + "end": 6000.46, + "probability": 0.9165 + }, + { + "start": 6000.6, + "end": 6002.34, + "probability": 0.9976 + }, + { + "start": 6002.8, + "end": 6004.54, + "probability": 0.9132 + }, + { + "start": 6005.54, + "end": 6008.24, + "probability": 0.9666 + }, + { + "start": 6008.64, + "end": 6010.18, + "probability": 0.8337 + }, + { + "start": 6010.96, + "end": 6013.12, + "probability": 0.9871 + }, + { + "start": 6013.68, + "end": 6016.06, + "probability": 0.9937 + }, + { + "start": 6016.58, + "end": 6018.08, + "probability": 0.6627 + }, + { + "start": 6018.08, + "end": 6019.8, + "probability": 0.9932 + }, + { + "start": 6021.2, + "end": 6024.14, + "probability": 0.9951 + }, + { + "start": 6025.2, + "end": 6025.88, + "probability": 0.7529 + }, + { + "start": 6025.9, + "end": 6028.12, + "probability": 0.976 + }, + { + "start": 6028.84, + "end": 6030.5, + "probability": 0.5166 + }, + { + "start": 6031.06, + "end": 6032.91, + "probability": 0.9857 + }, + { + "start": 6033.88, + "end": 6034.22, + "probability": 0.0231 + }, + { + "start": 6034.76, + "end": 6037.14, + "probability": 0.9269 + }, + { + "start": 6038.08, + "end": 6042.02, + "probability": 0.9211 + }, + { + "start": 6042.78, + "end": 6047.24, + "probability": 0.9033 + }, + { + "start": 6048.42, + "end": 6051.94, + "probability": 0.5021 + }, + { + "start": 6053.36, + "end": 6054.06, + "probability": 0.7349 + }, + { + "start": 6054.06, + "end": 6055.22, + "probability": 0.8986 + }, + { + "start": 6055.74, + "end": 6058.04, + "probability": 0.9611 + }, + { + "start": 6059.04, + "end": 6060.54, + "probability": 0.9984 + }, + { + "start": 6060.62, + "end": 6061.44, + "probability": 0.6373 + }, + { + "start": 6061.96, + "end": 6064.88, + "probability": 0.9835 + }, + { + "start": 6066.42, + "end": 6067.38, + "probability": 0.5 + }, + { + "start": 6067.38, + "end": 6067.82, + "probability": 0.4633 + }, + { + "start": 6068.26, + "end": 6068.5, + "probability": 0.4553 + }, + { + "start": 6068.64, + "end": 6070.78, + "probability": 0.9396 + }, + { + "start": 6070.78, + "end": 6070.78, + "probability": 0.0151 + }, + { + "start": 6070.9, + "end": 6071.74, + "probability": 0.5601 + }, + { + "start": 6071.88, + "end": 6072.76, + "probability": 0.6532 + }, + { + "start": 6072.96, + "end": 6074.88, + "probability": 0.8452 + }, + { + "start": 6075.46, + "end": 6077.82, + "probability": 0.9954 + }, + { + "start": 6078.34, + "end": 6081.47, + "probability": 0.9968 + }, + { + "start": 6082.3, + "end": 6085.7, + "probability": 0.9761 + }, + { + "start": 6086.02, + "end": 6087.28, + "probability": 0.6734 + }, + { + "start": 6088.26, + "end": 6092.16, + "probability": 0.9963 + }, + { + "start": 6093.08, + "end": 6095.9, + "probability": 0.5451 + }, + { + "start": 6096.3, + "end": 6099.08, + "probability": 0.8118 + }, + { + "start": 6099.6, + "end": 6099.9, + "probability": 0.8111 + }, + { + "start": 6100.3, + "end": 6103.28, + "probability": 0.9386 + }, + { + "start": 6104.14, + "end": 6106.14, + "probability": 0.9814 + }, + { + "start": 6106.94, + "end": 6111.24, + "probability": 0.9985 + }, + { + "start": 6111.34, + "end": 6112.74, + "probability": 0.8251 + }, + { + "start": 6113.2, + "end": 6117.04, + "probability": 0.9886 + }, + { + "start": 6118.56, + "end": 6120.74, + "probability": 0.727 + }, + { + "start": 6121.36, + "end": 6123.68, + "probability": 0.9993 + }, + { + "start": 6123.7, + "end": 6124.08, + "probability": 0.5883 + }, + { + "start": 6124.1, + "end": 6124.1, + "probability": 0.7826 + }, + { + "start": 6124.18, + "end": 6124.92, + "probability": 0.6157 + }, + { + "start": 6125.08, + "end": 6126.36, + "probability": 0.7893 + }, + { + "start": 6126.36, + "end": 6129.04, + "probability": 0.8411 + }, + { + "start": 6129.76, + "end": 6130.84, + "probability": 0.6467 + }, + { + "start": 6131.95, + "end": 6135.86, + "probability": 0.9626 + }, + { + "start": 6136.2, + "end": 6136.2, + "probability": 0.5659 + }, + { + "start": 6136.32, + "end": 6138.22, + "probability": 0.5517 + }, + { + "start": 6138.28, + "end": 6139.13, + "probability": 0.9333 + }, + { + "start": 6139.58, + "end": 6140.74, + "probability": 0.9121 + }, + { + "start": 6140.94, + "end": 6142.05, + "probability": 0.5289 + }, + { + "start": 6142.18, + "end": 6144.62, + "probability": 0.9704 + }, + { + "start": 6144.64, + "end": 6144.64, + "probability": 0.6335 + }, + { + "start": 6144.72, + "end": 6145.04, + "probability": 0.7686 + }, + { + "start": 6145.14, + "end": 6147.84, + "probability": 0.984 + }, + { + "start": 6148.78, + "end": 6152.74, + "probability": 0.9823 + }, + { + "start": 6152.84, + "end": 6154.08, + "probability": 0.6962 + }, + { + "start": 6155.3, + "end": 6156.02, + "probability": 0.1259 + }, + { + "start": 6156.22, + "end": 6156.94, + "probability": 0.5282 + }, + { + "start": 6157.12, + "end": 6159.56, + "probability": 0.866 + }, + { + "start": 6161.86, + "end": 6163.8, + "probability": 0.752 + }, + { + "start": 6164.26, + "end": 6165.1, + "probability": 0.5659 + }, + { + "start": 6165.18, + "end": 6165.78, + "probability": 0.72 + }, + { + "start": 6167.78, + "end": 6167.78, + "probability": 0.1646 + }, + { + "start": 6167.78, + "end": 6170.18, + "probability": 0.7019 + }, + { + "start": 6170.58, + "end": 6171.98, + "probability": 0.9721 + }, + { + "start": 6172.4, + "end": 6176.24, + "probability": 0.9731 + }, + { + "start": 6177.08, + "end": 6178.7, + "probability": 0.9219 + }, + { + "start": 6180.42, + "end": 6181.3, + "probability": 0.1794 + }, + { + "start": 6181.3, + "end": 6181.7, + "probability": 0.2231 + }, + { + "start": 6182.08, + "end": 6183.0, + "probability": 0.39 + }, + { + "start": 6183.06, + "end": 6183.8, + "probability": 0.1507 + }, + { + "start": 6183.8, + "end": 6185.98, + "probability": 0.1335 + }, + { + "start": 6186.38, + "end": 6191.44, + "probability": 0.7738 + }, + { + "start": 6191.76, + "end": 6192.06, + "probability": 0.1093 + }, + { + "start": 6192.58, + "end": 6196.32, + "probability": 0.8686 + }, + { + "start": 6197.46, + "end": 6197.46, + "probability": 0.0004 + }, + { + "start": 6197.98, + "end": 6198.12, + "probability": 0.1655 + }, + { + "start": 6198.34, + "end": 6199.86, + "probability": 0.499 + }, + { + "start": 6200.1, + "end": 6200.78, + "probability": 0.8978 + }, + { + "start": 6202.94, + "end": 6205.86, + "probability": 0.9407 + }, + { + "start": 6209.24, + "end": 6210.28, + "probability": 0.9077 + }, + { + "start": 6210.72, + "end": 6211.18, + "probability": 0.7316 + }, + { + "start": 6211.64, + "end": 6212.46, + "probability": 0.7681 + }, + { + "start": 6212.62, + "end": 6213.28, + "probability": 0.8926 + }, + { + "start": 6214.14, + "end": 6219.1, + "probability": 0.9572 + }, + { + "start": 6220.84, + "end": 6224.92, + "probability": 0.9404 + }, + { + "start": 6226.02, + "end": 6228.96, + "probability": 0.9854 + }, + { + "start": 6229.62, + "end": 6230.04, + "probability": 0.9514 + }, + { + "start": 6230.14, + "end": 6231.6, + "probability": 0.6728 + }, + { + "start": 6232.6, + "end": 6239.34, + "probability": 0.8851 + }, + { + "start": 6239.54, + "end": 6240.75, + "probability": 0.8766 + }, + { + "start": 6241.28, + "end": 6241.92, + "probability": 0.2093 + }, + { + "start": 6242.58, + "end": 6245.44, + "probability": 0.9639 + }, + { + "start": 6245.54, + "end": 6248.42, + "probability": 0.9889 + }, + { + "start": 6248.7, + "end": 6250.6, + "probability": 0.8015 + }, + { + "start": 6252.44, + "end": 6256.96, + "probability": 0.9906 + }, + { + "start": 6257.28, + "end": 6262.39, + "probability": 0.9976 + }, + { + "start": 6262.56, + "end": 6266.06, + "probability": 0.9948 + }, + { + "start": 6267.18, + "end": 6270.14, + "probability": 0.9989 + }, + { + "start": 6270.24, + "end": 6271.15, + "probability": 0.9438 + }, + { + "start": 6272.06, + "end": 6274.64, + "probability": 0.9917 + }, + { + "start": 6277.02, + "end": 6278.86, + "probability": 0.9927 + }, + { + "start": 6278.94, + "end": 6282.38, + "probability": 0.9659 + }, + { + "start": 6282.56, + "end": 6282.92, + "probability": 0.5513 + }, + { + "start": 6284.44, + "end": 6286.92, + "probability": 0.9458 + }, + { + "start": 6287.46, + "end": 6288.96, + "probability": 0.9318 + }, + { + "start": 6289.76, + "end": 6292.42, + "probability": 0.9961 + }, + { + "start": 6292.96, + "end": 6297.32, + "probability": 0.8779 + }, + { + "start": 6298.08, + "end": 6301.78, + "probability": 0.986 + }, + { + "start": 6302.18, + "end": 6303.56, + "probability": 0.9661 + }, + { + "start": 6303.62, + "end": 6305.14, + "probability": 0.9368 + }, + { + "start": 6305.88, + "end": 6309.5, + "probability": 0.9766 + }, + { + "start": 6309.76, + "end": 6310.71, + "probability": 0.6632 + }, + { + "start": 6310.98, + "end": 6314.74, + "probability": 0.8539 + }, + { + "start": 6315.68, + "end": 6316.18, + "probability": 0.7566 + }, + { + "start": 6318.16, + "end": 6320.54, + "probability": 0.4652 + }, + { + "start": 6321.78, + "end": 6323.18, + "probability": 0.8148 + }, + { + "start": 6323.58, + "end": 6324.4, + "probability": 0.9367 + }, + { + "start": 6324.9, + "end": 6325.8, + "probability": 0.8853 + }, + { + "start": 6326.34, + "end": 6327.58, + "probability": 0.5942 + }, + { + "start": 6328.2, + "end": 6329.4, + "probability": 0.5933 + }, + { + "start": 6329.7, + "end": 6329.96, + "probability": 0.8599 + }, + { + "start": 6330.14, + "end": 6331.94, + "probability": 0.9938 + }, + { + "start": 6332.44, + "end": 6333.38, + "probability": 0.8574 + }, + { + "start": 6333.74, + "end": 6335.44, + "probability": 0.9814 + }, + { + "start": 6338.02, + "end": 6341.22, + "probability": 0.8476 + }, + { + "start": 6341.32, + "end": 6342.0, + "probability": 0.7055 + }, + { + "start": 6342.12, + "end": 6343.08, + "probability": 0.5306 + }, + { + "start": 6344.67, + "end": 6347.44, + "probability": 0.2766 + }, + { + "start": 6347.44, + "end": 6347.44, + "probability": 0.2132 + }, + { + "start": 6347.44, + "end": 6347.44, + "probability": 0.0049 + }, + { + "start": 6347.44, + "end": 6347.64, + "probability": 0.4282 + }, + { + "start": 6347.72, + "end": 6348.08, + "probability": 0.9785 + }, + { + "start": 6348.16, + "end": 6350.92, + "probability": 0.9702 + }, + { + "start": 6351.22, + "end": 6351.32, + "probability": 0.8184 + }, + { + "start": 6351.68, + "end": 6355.52, + "probability": 0.9878 + }, + { + "start": 6355.52, + "end": 6358.58, + "probability": 0.9972 + }, + { + "start": 6359.28, + "end": 6362.0, + "probability": 0.9868 + }, + { + "start": 6362.88, + "end": 6364.32, + "probability": 0.7651 + }, + { + "start": 6365.18, + "end": 6369.84, + "probability": 0.92 + }, + { + "start": 6371.04, + "end": 6373.5, + "probability": 0.9854 + }, + { + "start": 6373.72, + "end": 6376.06, + "probability": 0.8827 + }, + { + "start": 6378.24, + "end": 6378.96, + "probability": 0.6993 + }, + { + "start": 6379.86, + "end": 6382.32, + "probability": 0.6836 + }, + { + "start": 6382.84, + "end": 6388.24, + "probability": 0.9961 + }, + { + "start": 6388.84, + "end": 6391.0, + "probability": 0.7817 + }, + { + "start": 6391.56, + "end": 6392.56, + "probability": 0.6607 + }, + { + "start": 6393.62, + "end": 6397.66, + "probability": 0.7164 + }, + { + "start": 6397.66, + "end": 6398.88, + "probability": 0.6106 + }, + { + "start": 6399.2, + "end": 6400.28, + "probability": 0.9703 + }, + { + "start": 6400.42, + "end": 6401.64, + "probability": 0.7029 + }, + { + "start": 6401.96, + "end": 6403.8, + "probability": 0.8939 + }, + { + "start": 6404.66, + "end": 6405.14, + "probability": 0.4227 + }, + { + "start": 6406.42, + "end": 6410.32, + "probability": 0.5503 + }, + { + "start": 6411.0, + "end": 6411.5, + "probability": 0.5651 + }, + { + "start": 6411.94, + "end": 6413.38, + "probability": 0.9462 + }, + { + "start": 6413.48, + "end": 6416.08, + "probability": 0.9507 + }, + { + "start": 6417.16, + "end": 6422.26, + "probability": 0.9578 + }, + { + "start": 6422.72, + "end": 6425.9, + "probability": 0.7723 + }, + { + "start": 6426.02, + "end": 6427.12, + "probability": 0.5369 + }, + { + "start": 6427.28, + "end": 6427.42, + "probability": 0.3021 + }, + { + "start": 6427.5, + "end": 6428.76, + "probability": 0.9664 + }, + { + "start": 6428.88, + "end": 6429.72, + "probability": 0.8964 + }, + { + "start": 6430.64, + "end": 6432.02, + "probability": 0.8719 + }, + { + "start": 6432.24, + "end": 6434.16, + "probability": 0.9162 + }, + { + "start": 6434.56, + "end": 6436.16, + "probability": 0.9656 + }, + { + "start": 6437.51, + "end": 6440.04, + "probability": 0.9845 + }, + { + "start": 6440.3, + "end": 6440.98, + "probability": 0.8762 + }, + { + "start": 6441.72, + "end": 6442.8, + "probability": 0.363 + }, + { + "start": 6442.82, + "end": 6445.92, + "probability": 0.7474 + }, + { + "start": 6447.11, + "end": 6447.99, + "probability": 0.0373 + }, + { + "start": 6449.04, + "end": 6449.79, + "probability": 0.9162 + }, + { + "start": 6450.0, + "end": 6454.04, + "probability": 0.7142 + }, + { + "start": 6455.14, + "end": 6455.8, + "probability": 0.8696 + }, + { + "start": 6455.92, + "end": 6457.22, + "probability": 0.789 + }, + { + "start": 6457.3, + "end": 6460.36, + "probability": 0.7331 + }, + { + "start": 6460.44, + "end": 6461.58, + "probability": 0.6668 + }, + { + "start": 6461.82, + "end": 6462.64, + "probability": 0.8732 + }, + { + "start": 6463.08, + "end": 6463.92, + "probability": 0.9821 + }, + { + "start": 6463.98, + "end": 6465.04, + "probability": 0.9932 + }, + { + "start": 6466.26, + "end": 6466.74, + "probability": 0.5075 + }, + { + "start": 6467.84, + "end": 6471.26, + "probability": 0.9742 + }, + { + "start": 6471.88, + "end": 6473.2, + "probability": 0.7256 + }, + { + "start": 6473.72, + "end": 6476.41, + "probability": 0.7071 + }, + { + "start": 6476.7, + "end": 6478.1, + "probability": 0.9888 + }, + { + "start": 6478.52, + "end": 6479.34, + "probability": 0.9312 + }, + { + "start": 6480.08, + "end": 6481.74, + "probability": 0.9795 + }, + { + "start": 6482.96, + "end": 6486.14, + "probability": 0.8815 + }, + { + "start": 6486.2, + "end": 6488.68, + "probability": 0.7682 + }, + { + "start": 6489.1, + "end": 6489.88, + "probability": 0.9033 + }, + { + "start": 6491.04, + "end": 6491.46, + "probability": 0.3236 + }, + { + "start": 6491.6, + "end": 6492.72, + "probability": 0.8921 + }, + { + "start": 6493.04, + "end": 6493.92, + "probability": 0.5992 + }, + { + "start": 6493.98, + "end": 6494.56, + "probability": 0.9559 + }, + { + "start": 6494.8, + "end": 6500.12, + "probability": 0.9957 + }, + { + "start": 6500.66, + "end": 6502.1, + "probability": 0.4865 + }, + { + "start": 6502.28, + "end": 6503.14, + "probability": 0.7602 + }, + { + "start": 6503.54, + "end": 6505.86, + "probability": 0.6211 + }, + { + "start": 6506.34, + "end": 6508.2, + "probability": 0.8618 + }, + { + "start": 6508.94, + "end": 6513.36, + "probability": 0.6918 + }, + { + "start": 6513.8, + "end": 6516.34, + "probability": 0.9955 + }, + { + "start": 6516.68, + "end": 6518.14, + "probability": 0.9708 + }, + { + "start": 6518.36, + "end": 6519.96, + "probability": 0.9147 + }, + { + "start": 6521.4, + "end": 6523.02, + "probability": 0.8655 + }, + { + "start": 6523.22, + "end": 6523.8, + "probability": 0.948 + }, + { + "start": 6523.84, + "end": 6524.38, + "probability": 0.8107 + }, + { + "start": 6524.82, + "end": 6525.44, + "probability": 0.8687 + }, + { + "start": 6525.68, + "end": 6526.5, + "probability": 0.7687 + }, + { + "start": 6526.56, + "end": 6527.29, + "probability": 0.8613 + }, + { + "start": 6527.64, + "end": 6528.51, + "probability": 0.887 + }, + { + "start": 6528.68, + "end": 6529.26, + "probability": 0.6723 + }, + { + "start": 6529.34, + "end": 6529.44, + "probability": 0.8179 + }, + { + "start": 6529.68, + "end": 6530.7, + "probability": 0.8847 + }, + { + "start": 6531.06, + "end": 6531.42, + "probability": 0.9893 + }, + { + "start": 6532.26, + "end": 6532.88, + "probability": 0.5748 + }, + { + "start": 6533.4, + "end": 6533.74, + "probability": 0.9143 + }, + { + "start": 6533.76, + "end": 6534.48, + "probability": 0.9121 + }, + { + "start": 6534.62, + "end": 6536.96, + "probability": 0.9863 + }, + { + "start": 6537.58, + "end": 6538.32, + "probability": 0.6135 + }, + { + "start": 6538.82, + "end": 6540.22, + "probability": 0.9941 + }, + { + "start": 6540.62, + "end": 6541.96, + "probability": 0.6212 + }, + { + "start": 6542.1, + "end": 6543.37, + "probability": 0.8202 + }, + { + "start": 6543.78, + "end": 6544.51, + "probability": 0.7599 + }, + { + "start": 6545.52, + "end": 6546.4, + "probability": 0.7019 + }, + { + "start": 6546.46, + "end": 6548.64, + "probability": 0.9097 + }, + { + "start": 6549.98, + "end": 6550.82, + "probability": 0.6025 + }, + { + "start": 6551.06, + "end": 6552.7, + "probability": 0.7984 + }, + { + "start": 6553.34, + "end": 6558.08, + "probability": 0.9819 + }, + { + "start": 6558.12, + "end": 6558.51, + "probability": 0.8501 + }, + { + "start": 6559.04, + "end": 6560.32, + "probability": 0.9199 + }, + { + "start": 6560.66, + "end": 6562.84, + "probability": 0.7951 + }, + { + "start": 6563.02, + "end": 6563.7, + "probability": 0.6886 + }, + { + "start": 6564.08, + "end": 6565.2, + "probability": 0.8264 + }, + { + "start": 6565.81, + "end": 6572.4, + "probability": 0.4737 + }, + { + "start": 6573.53, + "end": 6575.66, + "probability": 0.804 + }, + { + "start": 6577.68, + "end": 6578.34, + "probability": 0.9751 + }, + { + "start": 6578.52, + "end": 6579.42, + "probability": 0.7229 + }, + { + "start": 6579.6, + "end": 6580.58, + "probability": 0.7846 + }, + { + "start": 6580.98, + "end": 6584.1, + "probability": 0.9797 + }, + { + "start": 6586.03, + "end": 6589.14, + "probability": 0.9662 + }, + { + "start": 6590.3, + "end": 6591.82, + "probability": 0.587 + }, + { + "start": 6592.68, + "end": 6595.6, + "probability": 0.758 + }, + { + "start": 6596.24, + "end": 6599.0, + "probability": 0.9784 + }, + { + "start": 6599.48, + "end": 6600.68, + "probability": 0.967 + }, + { + "start": 6600.86, + "end": 6602.44, + "probability": 0.9608 + }, + { + "start": 6603.28, + "end": 6603.44, + "probability": 0.5557 + }, + { + "start": 6604.7, + "end": 6605.16, + "probability": 0.8414 + }, + { + "start": 6605.68, + "end": 6606.66, + "probability": 0.7643 + }, + { + "start": 6607.56, + "end": 6607.74, + "probability": 0.855 + }, + { + "start": 6608.72, + "end": 6611.2, + "probability": 0.9912 + }, + { + "start": 6611.78, + "end": 6613.62, + "probability": 0.7074 + }, + { + "start": 6613.78, + "end": 6615.2, + "probability": 0.9708 + }, + { + "start": 6617.76, + "end": 6621.2, + "probability": 0.8675 + }, + { + "start": 6621.76, + "end": 6628.24, + "probability": 0.9547 + }, + { + "start": 6629.86, + "end": 6632.22, + "probability": 0.9038 + }, + { + "start": 6632.35, + "end": 6634.18, + "probability": 0.9961 + }, + { + "start": 6634.96, + "end": 6637.18, + "probability": 0.7629 + }, + { + "start": 6637.28, + "end": 6640.34, + "probability": 0.7721 + }, + { + "start": 6640.56, + "end": 6641.3, + "probability": 0.8151 + }, + { + "start": 6642.2, + "end": 6644.5, + "probability": 0.7259 + }, + { + "start": 6644.74, + "end": 6647.26, + "probability": 0.9554 + }, + { + "start": 6647.58, + "end": 6649.72, + "probability": 0.9825 + }, + { + "start": 6650.16, + "end": 6653.6, + "probability": 0.05 + }, + { + "start": 6653.76, + "end": 6654.78, + "probability": 0.1208 + }, + { + "start": 6654.98, + "end": 6655.34, + "probability": 0.6877 + }, + { + "start": 6655.54, + "end": 6655.64, + "probability": 0.0187 + }, + { + "start": 6658.12, + "end": 6660.48, + "probability": 0.3704 + }, + { + "start": 6661.98, + "end": 6664.24, + "probability": 0.8267 + }, + { + "start": 6664.38, + "end": 6665.64, + "probability": 0.8058 + }, + { + "start": 6666.16, + "end": 6667.36, + "probability": 0.9502 + }, + { + "start": 6667.4, + "end": 6668.03, + "probability": 0.7329 + }, + { + "start": 6668.18, + "end": 6673.3, + "probability": 0.99 + }, + { + "start": 6674.72, + "end": 6676.94, + "probability": 0.9917 + }, + { + "start": 6678.54, + "end": 6679.88, + "probability": 0.8083 + }, + { + "start": 6680.04, + "end": 6680.84, + "probability": 0.7466 + }, + { + "start": 6680.9, + "end": 6683.96, + "probability": 0.7879 + }, + { + "start": 6684.52, + "end": 6687.2, + "probability": 0.6448 + }, + { + "start": 6698.38, + "end": 6698.82, + "probability": 0.0341 + }, + { + "start": 6698.82, + "end": 6698.82, + "probability": 0.1131 + }, + { + "start": 6698.82, + "end": 6698.82, + "probability": 0.085 + }, + { + "start": 6698.82, + "end": 6698.82, + "probability": 0.0572 + }, + { + "start": 6698.82, + "end": 6698.82, + "probability": 0.1167 + }, + { + "start": 6698.82, + "end": 6698.82, + "probability": 0.1029 + }, + { + "start": 6698.82, + "end": 6700.14, + "probability": 0.7619 + }, + { + "start": 6700.14, + "end": 6702.37, + "probability": 0.9961 + }, + { + "start": 6704.67, + "end": 6709.86, + "probability": 0.9762 + }, + { + "start": 6710.74, + "end": 6714.28, + "probability": 0.9884 + }, + { + "start": 6715.56, + "end": 6716.18, + "probability": 0.9365 + }, + { + "start": 6722.3, + "end": 6728.48, + "probability": 0.9971 + }, + { + "start": 6729.3, + "end": 6731.04, + "probability": 0.9851 + }, + { + "start": 6731.3, + "end": 6732.52, + "probability": 0.7051 + }, + { + "start": 6732.54, + "end": 6735.84, + "probability": 0.8302 + }, + { + "start": 6736.5, + "end": 6737.84, + "probability": 0.5519 + }, + { + "start": 6738.76, + "end": 6739.54, + "probability": 0.7468 + }, + { + "start": 6739.88, + "end": 6740.54, + "probability": 0.8699 + }, + { + "start": 6740.58, + "end": 6740.78, + "probability": 0.8292 + }, + { + "start": 6740.86, + "end": 6742.28, + "probability": 0.79 + }, + { + "start": 6742.74, + "end": 6743.68, + "probability": 0.748 + }, + { + "start": 6743.76, + "end": 6745.38, + "probability": 0.8813 + }, + { + "start": 6745.52, + "end": 6746.44, + "probability": 0.8975 + }, + { + "start": 6747.11, + "end": 6747.46, + "probability": 0.4553 + }, + { + "start": 6747.6, + "end": 6748.26, + "probability": 0.5082 + }, + { + "start": 6748.32, + "end": 6750.28, + "probability": 0.6149 + }, + { + "start": 6750.4, + "end": 6750.84, + "probability": 0.4627 + }, + { + "start": 6750.88, + "end": 6751.66, + "probability": 0.726 + }, + { + "start": 6752.42, + "end": 6753.5, + "probability": 0.9836 + }, + { + "start": 6753.72, + "end": 6754.0, + "probability": 0.9398 + }, + { + "start": 6754.93, + "end": 6758.28, + "probability": 0.9904 + }, + { + "start": 6758.8, + "end": 6761.14, + "probability": 0.9747 + }, + { + "start": 6761.64, + "end": 6762.92, + "probability": 0.965 + }, + { + "start": 6763.12, + "end": 6763.22, + "probability": 0.2646 + }, + { + "start": 6763.56, + "end": 6764.9, + "probability": 0.8207 + }, + { + "start": 6765.86, + "end": 6766.56, + "probability": 0.8807 + }, + { + "start": 6767.44, + "end": 6769.38, + "probability": 0.8683 + }, + { + "start": 6769.7, + "end": 6770.18, + "probability": 0.8136 + }, + { + "start": 6771.18, + "end": 6772.9, + "probability": 0.946 + }, + { + "start": 6773.52, + "end": 6779.5, + "probability": 0.6329 + }, + { + "start": 6779.52, + "end": 6781.0, + "probability": 0.783 + }, + { + "start": 6781.96, + "end": 6784.08, + "probability": 0.9746 + }, + { + "start": 6784.36, + "end": 6785.54, + "probability": 0.7297 + }, + { + "start": 6785.82, + "end": 6786.32, + "probability": 0.5007 + }, + { + "start": 6786.44, + "end": 6786.54, + "probability": 0.8193 + }, + { + "start": 6786.92, + "end": 6787.86, + "probability": 0.9223 + }, + { + "start": 6787.88, + "end": 6789.54, + "probability": 0.9321 + }, + { + "start": 6789.94, + "end": 6790.88, + "probability": 0.812 + }, + { + "start": 6791.5, + "end": 6793.24, + "probability": 0.7593 + }, + { + "start": 6793.3, + "end": 6793.68, + "probability": 0.4341 + }, + { + "start": 6793.8, + "end": 6794.06, + "probability": 0.4387 + }, + { + "start": 6794.12, + "end": 6794.46, + "probability": 0.7996 + }, + { + "start": 6795.07, + "end": 6797.7, + "probability": 0.808 + }, + { + "start": 6797.86, + "end": 6800.12, + "probability": 0.8925 + }, + { + "start": 6801.06, + "end": 6803.96, + "probability": 0.9595 + }, + { + "start": 6804.2, + "end": 6804.64, + "probability": 0.6674 + }, + { + "start": 6805.19, + "end": 6807.0, + "probability": 0.8624 + }, + { + "start": 6807.86, + "end": 6811.92, + "probability": 0.9788 + }, + { + "start": 6811.92, + "end": 6816.54, + "probability": 0.9424 + }, + { + "start": 6816.88, + "end": 6818.58, + "probability": 0.6763 + }, + { + "start": 6819.66, + "end": 6824.14, + "probability": 0.966 + }, + { + "start": 6824.72, + "end": 6828.86, + "probability": 0.9883 + }, + { + "start": 6829.56, + "end": 6830.82, + "probability": 0.6592 + }, + { + "start": 6831.52, + "end": 6834.86, + "probability": 0.9111 + }, + { + "start": 6835.66, + "end": 6837.28, + "probability": 0.9922 + }, + { + "start": 6837.8, + "end": 6840.42, + "probability": 0.8484 + }, + { + "start": 6840.42, + "end": 6842.94, + "probability": 0.7641 + }, + { + "start": 6843.66, + "end": 6848.16, + "probability": 0.7304 + }, + { + "start": 6848.96, + "end": 6855.5, + "probability": 0.8349 + }, + { + "start": 6856.34, + "end": 6859.06, + "probability": 0.8571 + }, + { + "start": 6861.78, + "end": 6861.82, + "probability": 0.089 + }, + { + "start": 6861.82, + "end": 6862.82, + "probability": 0.8351 + }, + { + "start": 6863.9, + "end": 6864.34, + "probability": 0.4319 + }, + { + "start": 6864.4, + "end": 6867.24, + "probability": 0.8423 + }, + { + "start": 6867.88, + "end": 6868.78, + "probability": 0.8936 + }, + { + "start": 6869.34, + "end": 6871.24, + "probability": 0.8902 + }, + { + "start": 6871.94, + "end": 6875.52, + "probability": 0.9302 + }, + { + "start": 6877.04, + "end": 6879.98, + "probability": 0.7988 + }, + { + "start": 6881.22, + "end": 6885.7, + "probability": 0.9877 + }, + { + "start": 6886.7, + "end": 6888.1, + "probability": 0.9631 + }, + { + "start": 6888.24, + "end": 6891.26, + "probability": 0.9012 + }, + { + "start": 6892.02, + "end": 6894.06, + "probability": 0.8588 + }, + { + "start": 6894.98, + "end": 6897.38, + "probability": 0.8381 + }, + { + "start": 6898.16, + "end": 6900.96, + "probability": 0.9587 + }, + { + "start": 6901.86, + "end": 6905.42, + "probability": 0.9415 + }, + { + "start": 6905.42, + "end": 6906.64, + "probability": 0.7489 + }, + { + "start": 6907.56, + "end": 6911.04, + "probability": 0.9778 + }, + { + "start": 6912.34, + "end": 6914.88, + "probability": 0.9421 + }, + { + "start": 6914.88, + "end": 6918.76, + "probability": 0.9543 + }, + { + "start": 6918.76, + "end": 6922.9, + "probability": 0.994 + }, + { + "start": 6926.21, + "end": 6929.58, + "probability": 0.8729 + }, + { + "start": 6930.14, + "end": 6932.04, + "probability": 0.9736 + }, + { + "start": 6932.32, + "end": 6933.52, + "probability": 0.2539 + }, + { + "start": 6933.52, + "end": 6935.85, + "probability": 0.7891 + }, + { + "start": 6937.48, + "end": 6937.52, + "probability": 0.0362 + }, + { + "start": 6937.52, + "end": 6938.22, + "probability": 0.409 + }, + { + "start": 6938.62, + "end": 6942.96, + "probability": 0.9187 + }, + { + "start": 6943.64, + "end": 6944.52, + "probability": 0.6138 + }, + { + "start": 6945.5, + "end": 6945.94, + "probability": 0.2856 + }, + { + "start": 6946.64, + "end": 6950.64, + "probability": 0.8817 + }, + { + "start": 6952.1, + "end": 6955.38, + "probability": 0.992 + }, + { + "start": 6955.94, + "end": 6958.98, + "probability": 0.996 + }, + { + "start": 6958.98, + "end": 6962.12, + "probability": 0.9833 + }, + { + "start": 6964.34, + "end": 6965.88, + "probability": 0.774 + }, + { + "start": 6967.14, + "end": 6968.74, + "probability": 0.8178 + }, + { + "start": 6968.92, + "end": 6970.36, + "probability": 0.9969 + }, + { + "start": 6971.0, + "end": 6972.12, + "probability": 0.7912 + }, + { + "start": 6973.7, + "end": 6974.36, + "probability": 0.8826 + }, + { + "start": 6975.66, + "end": 6980.76, + "probability": 0.899 + }, + { + "start": 6981.42, + "end": 6984.98, + "probability": 0.9474 + }, + { + "start": 6984.98, + "end": 6988.06, + "probability": 0.9866 + }, + { + "start": 6989.18, + "end": 6992.78, + "probability": 0.9984 + }, + { + "start": 6993.58, + "end": 6998.1, + "probability": 0.95 + }, + { + "start": 6998.72, + "end": 7001.48, + "probability": 0.9948 + }, + { + "start": 7002.24, + "end": 7005.42, + "probability": 0.736 + }, + { + "start": 7005.8, + "end": 7008.48, + "probability": 0.9497 + }, + { + "start": 7008.48, + "end": 7010.6, + "probability": 0.9053 + }, + { + "start": 7011.26, + "end": 7014.08, + "probability": 0.9717 + }, + { + "start": 7014.8, + "end": 7016.04, + "probability": 0.6921 + }, + { + "start": 7016.68, + "end": 7017.58, + "probability": 0.9822 + }, + { + "start": 7018.88, + "end": 7019.72, + "probability": 0.9698 + }, + { + "start": 7020.92, + "end": 7022.82, + "probability": 0.9862 + }, + { + "start": 7025.1, + "end": 7027.76, + "probability": 0.9866 + }, + { + "start": 7027.92, + "end": 7032.78, + "probability": 0.9968 + }, + { + "start": 7033.42, + "end": 7035.38, + "probability": 0.9544 + }, + { + "start": 7035.48, + "end": 7039.6, + "probability": 0.9785 + }, + { + "start": 7040.68, + "end": 7042.34, + "probability": 0.7867 + }, + { + "start": 7042.42, + "end": 7043.9, + "probability": 0.8498 + }, + { + "start": 7044.04, + "end": 7045.34, + "probability": 0.924 + }, + { + "start": 7046.26, + "end": 7047.1, + "probability": 0.7241 + }, + { + "start": 7047.54, + "end": 7050.76, + "probability": 0.9285 + }, + { + "start": 7051.14, + "end": 7051.46, + "probability": 0.7673 + }, + { + "start": 7052.44, + "end": 7054.48, + "probability": 0.9905 + }, + { + "start": 7054.62, + "end": 7055.36, + "probability": 0.9289 + }, + { + "start": 7055.72, + "end": 7057.46, + "probability": 0.9964 + }, + { + "start": 7057.92, + "end": 7060.22, + "probability": 0.997 + }, + { + "start": 7060.74, + "end": 7061.38, + "probability": 0.9178 + }, + { + "start": 7062.52, + "end": 7063.54, + "probability": 0.8906 + }, + { + "start": 7064.3, + "end": 7065.5, + "probability": 0.6489 + }, + { + "start": 7066.7, + "end": 7067.68, + "probability": 0.9363 + }, + { + "start": 7068.5, + "end": 7070.14, + "probability": 0.9949 + }, + { + "start": 7071.02, + "end": 7072.36, + "probability": 0.6429 + }, + { + "start": 7073.68, + "end": 7076.28, + "probability": 0.9791 + }, + { + "start": 7077.12, + "end": 7077.96, + "probability": 0.9774 + }, + { + "start": 7078.14, + "end": 7079.85, + "probability": 0.7695 + }, + { + "start": 7080.82, + "end": 7084.76, + "probability": 0.9406 + }, + { + "start": 7085.64, + "end": 7087.44, + "probability": 0.9773 + }, + { + "start": 7088.24, + "end": 7090.1, + "probability": 0.7586 + }, + { + "start": 7090.54, + "end": 7091.92, + "probability": 0.9683 + }, + { + "start": 7092.02, + "end": 7093.36, + "probability": 0.7651 + }, + { + "start": 7094.52, + "end": 7095.74, + "probability": 0.5007 + }, + { + "start": 7097.24, + "end": 7098.82, + "probability": 0.9824 + }, + { + "start": 7100.24, + "end": 7102.36, + "probability": 0.8113 + }, + { + "start": 7102.6, + "end": 7104.4, + "probability": 0.935 + }, + { + "start": 7104.46, + "end": 7105.76, + "probability": 0.3883 + }, + { + "start": 7105.76, + "end": 7107.78, + "probability": 0.5303 + }, + { + "start": 7108.22, + "end": 7108.54, + "probability": 0.8759 + }, + { + "start": 7109.04, + "end": 7110.06, + "probability": 0.7795 + }, + { + "start": 7110.64, + "end": 7110.74, + "probability": 0.5008 + }, + { + "start": 7112.78, + "end": 7112.9, + "probability": 0.0389 + }, + { + "start": 7112.9, + "end": 7113.72, + "probability": 0.4114 + }, + { + "start": 7113.78, + "end": 7117.18, + "probability": 0.9922 + }, + { + "start": 7117.36, + "end": 7118.25, + "probability": 0.9158 + }, + { + "start": 7118.86, + "end": 7119.96, + "probability": 0.9984 + }, + { + "start": 7120.66, + "end": 7122.48, + "probability": 0.812 + }, + { + "start": 7123.38, + "end": 7126.02, + "probability": 0.9771 + }, + { + "start": 7126.98, + "end": 7129.64, + "probability": 0.6949 + }, + { + "start": 7130.66, + "end": 7132.8, + "probability": 0.9238 + }, + { + "start": 7133.36, + "end": 7135.44, + "probability": 0.9628 + }, + { + "start": 7135.96, + "end": 7136.76, + "probability": 0.9817 + }, + { + "start": 7136.94, + "end": 7138.84, + "probability": 0.626 + }, + { + "start": 7139.3, + "end": 7141.78, + "probability": 0.4254 + }, + { + "start": 7141.92, + "end": 7142.7, + "probability": 0.8937 + }, + { + "start": 7142.8, + "end": 7145.6, + "probability": 0.9951 + }, + { + "start": 7146.44, + "end": 7147.26, + "probability": 0.6268 + }, + { + "start": 7147.36, + "end": 7149.24, + "probability": 0.901 + }, + { + "start": 7149.42, + "end": 7150.52, + "probability": 0.5543 + }, + { + "start": 7151.32, + "end": 7153.76, + "probability": 0.8353 + }, + { + "start": 7154.84, + "end": 7155.72, + "probability": 0.8418 + }, + { + "start": 7155.78, + "end": 7158.52, + "probability": 0.5729 + }, + { + "start": 7159.4, + "end": 7160.94, + "probability": 0.8326 + }, + { + "start": 7161.48, + "end": 7161.94, + "probability": 0.8051 + }, + { + "start": 7162.94, + "end": 7165.18, + "probability": 0.9818 + }, + { + "start": 7165.78, + "end": 7168.56, + "probability": 0.9729 + }, + { + "start": 7168.8, + "end": 7171.3, + "probability": 0.9954 + }, + { + "start": 7172.34, + "end": 7174.88, + "probability": 0.8384 + }, + { + "start": 7175.5, + "end": 7180.68, + "probability": 0.9983 + }, + { + "start": 7181.62, + "end": 7182.46, + "probability": 0.6792 + }, + { + "start": 7182.82, + "end": 7184.33, + "probability": 0.9704 + }, + { + "start": 7184.44, + "end": 7184.8, + "probability": 0.8893 + }, + { + "start": 7185.24, + "end": 7185.46, + "probability": 0.3888 + }, + { + "start": 7185.56, + "end": 7186.54, + "probability": 0.5507 + }, + { + "start": 7186.88, + "end": 7187.1, + "probability": 0.5382 + }, + { + "start": 7187.18, + "end": 7187.44, + "probability": 0.8342 + }, + { + "start": 7187.6, + "end": 7187.86, + "probability": 0.7302 + }, + { + "start": 7187.9, + "end": 7189.3, + "probability": 0.9754 + }, + { + "start": 7189.38, + "end": 7190.1, + "probability": 0.9752 + }, + { + "start": 7190.7, + "end": 7192.72, + "probability": 0.9521 + }, + { + "start": 7193.9, + "end": 7195.32, + "probability": 0.7344 + }, + { + "start": 7196.08, + "end": 7196.9, + "probability": 0.9417 + }, + { + "start": 7198.12, + "end": 7200.96, + "probability": 0.9932 + }, + { + "start": 7201.58, + "end": 7204.1, + "probability": 0.9979 + }, + { + "start": 7204.82, + "end": 7206.44, + "probability": 0.991 + }, + { + "start": 7208.2, + "end": 7210.56, + "probability": 0.921 + }, + { + "start": 7210.72, + "end": 7213.06, + "probability": 0.8434 + }, + { + "start": 7215.52, + "end": 7216.32, + "probability": 0.6557 + }, + { + "start": 7216.86, + "end": 7219.06, + "probability": 0.9214 + }, + { + "start": 7220.04, + "end": 7221.54, + "probability": 0.9883 + }, + { + "start": 7222.48, + "end": 7226.7, + "probability": 0.8943 + }, + { + "start": 7227.32, + "end": 7229.8, + "probability": 0.9339 + }, + { + "start": 7230.52, + "end": 7234.38, + "probability": 0.5938 + }, + { + "start": 7234.96, + "end": 7236.14, + "probability": 0.9565 + }, + { + "start": 7236.58, + "end": 7237.28, + "probability": 0.8145 + }, + { + "start": 7237.78, + "end": 7238.12, + "probability": 0.3986 + }, + { + "start": 7239.18, + "end": 7240.66, + "probability": 0.9952 + }, + { + "start": 7240.88, + "end": 7241.84, + "probability": 0.937 + }, + { + "start": 7243.14, + "end": 7245.58, + "probability": 0.9907 + }, + { + "start": 7246.54, + "end": 7247.99, + "probability": 0.9185 + }, + { + "start": 7248.62, + "end": 7252.02, + "probability": 0.9817 + }, + { + "start": 7252.7, + "end": 7254.72, + "probability": 0.8879 + }, + { + "start": 7256.1, + "end": 7259.0, + "probability": 0.8409 + }, + { + "start": 7259.8, + "end": 7261.9, + "probability": 0.9762 + }, + { + "start": 7261.9, + "end": 7265.32, + "probability": 0.9918 + }, + { + "start": 7266.2, + "end": 7269.32, + "probability": 0.9272 + }, + { + "start": 7270.0, + "end": 7271.48, + "probability": 0.6034 + }, + { + "start": 7272.2, + "end": 7273.02, + "probability": 0.9315 + }, + { + "start": 7273.64, + "end": 7277.66, + "probability": 0.9933 + }, + { + "start": 7277.7, + "end": 7278.46, + "probability": 0.6878 + }, + { + "start": 7278.54, + "end": 7280.58, + "probability": 0.8462 + }, + { + "start": 7282.26, + "end": 7287.12, + "probability": 0.9722 + }, + { + "start": 7288.08, + "end": 7291.04, + "probability": 0.9181 + }, + { + "start": 7291.72, + "end": 7296.22, + "probability": 0.8518 + }, + { + "start": 7296.44, + "end": 7299.18, + "probability": 0.9385 + }, + { + "start": 7300.0, + "end": 7301.26, + "probability": 0.6535 + }, + { + "start": 7301.82, + "end": 7303.2, + "probability": 0.7961 + }, + { + "start": 7303.6, + "end": 7304.4, + "probability": 0.9141 + }, + { + "start": 7304.94, + "end": 7309.46, + "probability": 0.9976 + }, + { + "start": 7310.06, + "end": 7311.84, + "probability": 0.8556 + }, + { + "start": 7312.72, + "end": 7314.22, + "probability": 0.9973 + }, + { + "start": 7314.86, + "end": 7316.28, + "probability": 0.9972 + }, + { + "start": 7316.36, + "end": 7316.96, + "probability": 0.9547 + }, + { + "start": 7317.56, + "end": 7318.08, + "probability": 0.6197 + }, + { + "start": 7319.42, + "end": 7320.58, + "probability": 0.6958 + }, + { + "start": 7320.92, + "end": 7321.95, + "probability": 0.8145 + }, + { + "start": 7322.36, + "end": 7323.82, + "probability": 0.7625 + }, + { + "start": 7324.46, + "end": 7330.04, + "probability": 0.9957 + }, + { + "start": 7330.82, + "end": 7335.78, + "probability": 0.9087 + }, + { + "start": 7336.74, + "end": 7337.94, + "probability": 0.8709 + }, + { + "start": 7338.74, + "end": 7340.88, + "probability": 0.6411 + }, + { + "start": 7341.87, + "end": 7343.98, + "probability": 0.7937 + }, + { + "start": 7345.36, + "end": 7346.5, + "probability": 0.9878 + }, + { + "start": 7347.54, + "end": 7348.7, + "probability": 0.9816 + }, + { + "start": 7350.38, + "end": 7355.3, + "probability": 0.4882 + }, + { + "start": 7355.9, + "end": 7356.12, + "probability": 0.0029 + }, + { + "start": 7357.08, + "end": 7362.44, + "probability": 0.9819 + }, + { + "start": 7362.64, + "end": 7364.92, + "probability": 0.5911 + }, + { + "start": 7365.04, + "end": 7366.22, + "probability": 0.9346 + }, + { + "start": 7366.3, + "end": 7367.32, + "probability": 0.9619 + }, + { + "start": 7367.4, + "end": 7369.36, + "probability": 0.8141 + }, + { + "start": 7370.6, + "end": 7373.14, + "probability": 0.9932 + }, + { + "start": 7373.22, + "end": 7375.06, + "probability": 0.8196 + }, + { + "start": 7375.58, + "end": 7377.24, + "probability": 0.8304 + }, + { + "start": 7377.72, + "end": 7378.0, + "probability": 0.2779 + }, + { + "start": 7378.56, + "end": 7382.34, + "probability": 0.094 + }, + { + "start": 7383.22, + "end": 7385.64, + "probability": 0.15 + }, + { + "start": 7386.56, + "end": 7387.52, + "probability": 0.0316 + }, + { + "start": 7387.9, + "end": 7388.32, + "probability": 0.4359 + }, + { + "start": 7388.64, + "end": 7392.18, + "probability": 0.8725 + }, + { + "start": 7392.62, + "end": 7393.1, + "probability": 0.8721 + }, + { + "start": 7393.16, + "end": 7394.1, + "probability": 0.6461 + }, + { + "start": 7394.18, + "end": 7395.48, + "probability": 0.5144 + }, + { + "start": 7395.5, + "end": 7396.1, + "probability": 0.9585 + }, + { + "start": 7397.32, + "end": 7398.0, + "probability": 0.9771 + }, + { + "start": 7398.66, + "end": 7401.5, + "probability": 0.8732 + }, + { + "start": 7403.6, + "end": 7404.84, + "probability": 0.5942 + }, + { + "start": 7405.9, + "end": 7406.64, + "probability": 0.7671 + }, + { + "start": 7407.4, + "end": 7408.5, + "probability": 0.9668 + }, + { + "start": 7408.78, + "end": 7410.74, + "probability": 0.9344 + }, + { + "start": 7411.14, + "end": 7411.28, + "probability": 0.8693 + }, + { + "start": 7412.9, + "end": 7414.22, + "probability": 0.9967 + }, + { + "start": 7414.72, + "end": 7417.74, + "probability": 0.9929 + }, + { + "start": 7418.6, + "end": 7418.9, + "probability": 0.7715 + }, + { + "start": 7419.9, + "end": 7420.84, + "probability": 0.9019 + }, + { + "start": 7421.1, + "end": 7423.14, + "probability": 0.9839 + }, + { + "start": 7423.96, + "end": 7425.02, + "probability": 0.7376 + }, + { + "start": 7425.82, + "end": 7427.08, + "probability": 0.954 + }, + { + "start": 7428.4, + "end": 7429.92, + "probability": 0.7168 + }, + { + "start": 7433.12, + "end": 7434.72, + "probability": 0.6042 + }, + { + "start": 7435.18, + "end": 7436.92, + "probability": 0.9888 + }, + { + "start": 7437.56, + "end": 7439.5, + "probability": 0.7 + }, + { + "start": 7440.52, + "end": 7441.18, + "probability": 0.9949 + }, + { + "start": 7444.08, + "end": 7445.08, + "probability": 0.8107 + }, + { + "start": 7445.94, + "end": 7446.66, + "probability": 0.2824 + }, + { + "start": 7446.7, + "end": 7447.38, + "probability": 0.7163 + }, + { + "start": 7447.48, + "end": 7450.54, + "probability": 0.9512 + }, + { + "start": 7450.62, + "end": 7451.04, + "probability": 0.4117 + }, + { + "start": 7452.14, + "end": 7453.7, + "probability": 0.9724 + }, + { + "start": 7454.12, + "end": 7454.38, + "probability": 0.5529 + }, + { + "start": 7454.6, + "end": 7455.58, + "probability": 0.9782 + }, + { + "start": 7455.66, + "end": 7456.11, + "probability": 0.8646 + }, + { + "start": 7456.42, + "end": 7456.96, + "probability": 0.9105 + }, + { + "start": 7457.4, + "end": 7457.98, + "probability": 0.3684 + }, + { + "start": 7458.84, + "end": 7462.14, + "probability": 0.9778 + }, + { + "start": 7462.72, + "end": 7463.34, + "probability": 0.6885 + }, + { + "start": 7464.26, + "end": 7465.4, + "probability": 0.8825 + }, + { + "start": 7465.44, + "end": 7465.6, + "probability": 0.7892 + }, + { + "start": 7465.66, + "end": 7467.22, + "probability": 0.9976 + }, + { + "start": 7468.16, + "end": 7470.94, + "probability": 0.7322 + }, + { + "start": 7471.72, + "end": 7472.0, + "probability": 0.6209 + }, + { + "start": 7472.7, + "end": 7475.24, + "probability": 0.9904 + }, + { + "start": 7475.82, + "end": 7478.38, + "probability": 0.9365 + }, + { + "start": 7478.96, + "end": 7480.6, + "probability": 0.83 + }, + { + "start": 7481.26, + "end": 7484.98, + "probability": 0.9552 + }, + { + "start": 7485.8, + "end": 7488.1, + "probability": 0.7979 + }, + { + "start": 7488.42, + "end": 7491.17, + "probability": 0.8375 + }, + { + "start": 7491.3, + "end": 7492.58, + "probability": 0.8908 + }, + { + "start": 7492.98, + "end": 7496.82, + "probability": 0.9506 + }, + { + "start": 7497.3, + "end": 7499.88, + "probability": 0.6886 + }, + { + "start": 7500.54, + "end": 7502.42, + "probability": 0.7463 + }, + { + "start": 7503.04, + "end": 7508.04, + "probability": 0.9333 + }, + { + "start": 7508.48, + "end": 7509.38, + "probability": 0.9586 + }, + { + "start": 7509.96, + "end": 7512.82, + "probability": 0.9208 + }, + { + "start": 7513.42, + "end": 7516.06, + "probability": 0.9856 + }, + { + "start": 7516.64, + "end": 7518.54, + "probability": 0.936 + }, + { + "start": 7519.54, + "end": 7522.44, + "probability": 0.9891 + }, + { + "start": 7522.94, + "end": 7524.42, + "probability": 0.9599 + }, + { + "start": 7525.62, + "end": 7527.13, + "probability": 0.9966 + }, + { + "start": 7527.6, + "end": 7532.38, + "probability": 0.9854 + }, + { + "start": 7533.08, + "end": 7535.9, + "probability": 0.6436 + }, + { + "start": 7536.62, + "end": 7542.7, + "probability": 0.9679 + }, + { + "start": 7542.7, + "end": 7547.08, + "probability": 0.9504 + }, + { + "start": 7547.9, + "end": 7549.34, + "probability": 0.9877 + }, + { + "start": 7549.96, + "end": 7553.28, + "probability": 0.99 + }, + { + "start": 7554.08, + "end": 7554.6, + "probability": 0.9222 + }, + { + "start": 7555.06, + "end": 7557.24, + "probability": 0.941 + }, + { + "start": 7557.58, + "end": 7559.36, + "probability": 0.9679 + }, + { + "start": 7559.72, + "end": 7561.3, + "probability": 0.8275 + }, + { + "start": 7562.24, + "end": 7563.6, + "probability": 0.6802 + }, + { + "start": 7564.24, + "end": 7564.98, + "probability": 0.803 + }, + { + "start": 7569.86, + "end": 7572.08, + "probability": 0.6623 + }, + { + "start": 7572.14, + "end": 7573.4, + "probability": 0.9375 + }, + { + "start": 7573.5, + "end": 7574.66, + "probability": 0.9504 + }, + { + "start": 7575.88, + "end": 7576.48, + "probability": 0.4484 + }, + { + "start": 7577.14, + "end": 7578.36, + "probability": 0.7823 + }, + { + "start": 7579.26, + "end": 7579.98, + "probability": 0.4137 + }, + { + "start": 7580.26, + "end": 7581.94, + "probability": 0.5035 + }, + { + "start": 7583.6, + "end": 7586.88, + "probability": 0.6715 + }, + { + "start": 7587.1, + "end": 7587.88, + "probability": 0.9054 + }, + { + "start": 7588.0, + "end": 7589.58, + "probability": 0.9019 + }, + { + "start": 7589.72, + "end": 7593.74, + "probability": 0.3948 + }, + { + "start": 7593.74, + "end": 7594.56, + "probability": 0.8469 + }, + { + "start": 7595.06, + "end": 7595.82, + "probability": 0.3391 + }, + { + "start": 7595.9, + "end": 7596.24, + "probability": 0.1747 + }, + { + "start": 7596.26, + "end": 7598.34, + "probability": 0.8615 + }, + { + "start": 7598.82, + "end": 7599.18, + "probability": 0.6431 + }, + { + "start": 7599.44, + "end": 7601.48, + "probability": 0.4314 + }, + { + "start": 7601.92, + "end": 7603.06, + "probability": 0.731 + }, + { + "start": 7605.8, + "end": 7606.92, + "probability": 0.3829 + }, + { + "start": 7606.92, + "end": 7606.92, + "probability": 0.2523 + }, + { + "start": 7606.92, + "end": 7608.56, + "probability": 0.672 + }, + { + "start": 7609.3, + "end": 7609.84, + "probability": 0.8214 + }, + { + "start": 7610.08, + "end": 7610.98, + "probability": 0.5517 + }, + { + "start": 7611.14, + "end": 7612.06, + "probability": 0.7649 + }, + { + "start": 7612.74, + "end": 7613.14, + "probability": 0.7332 + }, + { + "start": 7614.82, + "end": 7615.46, + "probability": 0.3322 + }, + { + "start": 7615.86, + "end": 7615.94, + "probability": 0.0833 + }, + { + "start": 7615.94, + "end": 7615.94, + "probability": 0.0211 + }, + { + "start": 7615.94, + "end": 7616.15, + "probability": 0.8135 + }, + { + "start": 7618.12, + "end": 7618.94, + "probability": 0.791 + }, + { + "start": 7619.66, + "end": 7621.74, + "probability": 0.9346 + }, + { + "start": 7621.8, + "end": 7624.96, + "probability": 0.9787 + }, + { + "start": 7625.2, + "end": 7625.46, + "probability": 0.476 + }, + { + "start": 7625.76, + "end": 7627.78, + "probability": 0.9165 + }, + { + "start": 7628.04, + "end": 7629.06, + "probability": 0.4487 + }, + { + "start": 7629.16, + "end": 7631.14, + "probability": 0.6091 + }, + { + "start": 7631.24, + "end": 7631.6, + "probability": 0.6172 + }, + { + "start": 7632.06, + "end": 7632.32, + "probability": 0.7219 + }, + { + "start": 7632.58, + "end": 7632.99, + "probability": 0.9307 + }, + { + "start": 7633.34, + "end": 7633.97, + "probability": 0.9086 + }, + { + "start": 7634.56, + "end": 7635.58, + "probability": 0.8175 + }, + { + "start": 7635.58, + "end": 7636.44, + "probability": 0.8051 + }, + { + "start": 7636.8, + "end": 7636.8, + "probability": 0.0705 + }, + { + "start": 7636.8, + "end": 7636.8, + "probability": 0.2198 + }, + { + "start": 7636.8, + "end": 7637.21, + "probability": 0.4996 + }, + { + "start": 7637.64, + "end": 7638.94, + "probability": 0.7027 + }, + { + "start": 7639.88, + "end": 7641.44, + "probability": 0.7688 + }, + { + "start": 7642.8, + "end": 7644.98, + "probability": 0.7224 + }, + { + "start": 7647.12, + "end": 7651.34, + "probability": 0.4563 + }, + { + "start": 7651.5, + "end": 7653.14, + "probability": 0.969 + }, + { + "start": 7653.64, + "end": 7655.32, + "probability": 0.9607 + }, + { + "start": 7655.5, + "end": 7661.64, + "probability": 0.8433 + }, + { + "start": 7661.64, + "end": 7662.06, + "probability": 0.7795 + }, + { + "start": 7662.38, + "end": 7663.7, + "probability": 0.7481 + }, + { + "start": 7663.7, + "end": 7664.18, + "probability": 0.0915 + }, + { + "start": 7664.18, + "end": 7666.12, + "probability": 0.5751 + }, + { + "start": 7668.2, + "end": 7669.0, + "probability": 0.14 + }, + { + "start": 7669.3, + "end": 7669.44, + "probability": 0.3859 + }, + { + "start": 7671.02, + "end": 7674.92, + "probability": 0.7404 + }, + { + "start": 7675.82, + "end": 7679.46, + "probability": 0.9925 + }, + { + "start": 7679.5, + "end": 7683.1, + "probability": 0.9946 + }, + { + "start": 7683.66, + "end": 7688.84, + "probability": 0.9806 + }, + { + "start": 7689.64, + "end": 7694.74, + "probability": 0.9988 + }, + { + "start": 7695.48, + "end": 7699.34, + "probability": 0.9925 + }, + { + "start": 7701.02, + "end": 7704.88, + "probability": 0.9968 + }, + { + "start": 7705.0, + "end": 7708.28, + "probability": 0.9912 + }, + { + "start": 7709.22, + "end": 7709.85, + "probability": 0.8735 + }, + { + "start": 7712.18, + "end": 7712.74, + "probability": 0.8931 + }, + { + "start": 7713.58, + "end": 7719.02, + "probability": 0.9897 + }, + { + "start": 7720.02, + "end": 7721.1, + "probability": 0.7613 + }, + { + "start": 7721.92, + "end": 7725.04, + "probability": 0.8359 + }, + { + "start": 7725.84, + "end": 7728.18, + "probability": 0.9782 + }, + { + "start": 7728.98, + "end": 7729.92, + "probability": 0.9528 + }, + { + "start": 7730.28, + "end": 7733.26, + "probability": 0.9941 + }, + { + "start": 7733.92, + "end": 7736.54, + "probability": 0.9905 + }, + { + "start": 7737.54, + "end": 7738.3, + "probability": 0.839 + }, + { + "start": 7738.72, + "end": 7739.3, + "probability": 0.9622 + }, + { + "start": 7739.82, + "end": 7740.42, + "probability": 0.7584 + }, + { + "start": 7740.48, + "end": 7742.5, + "probability": 0.9824 + }, + { + "start": 7743.2, + "end": 7745.96, + "probability": 0.9834 + }, + { + "start": 7746.62, + "end": 7749.32, + "probability": 0.9858 + }, + { + "start": 7749.94, + "end": 7752.28, + "probability": 0.992 + }, + { + "start": 7753.38, + "end": 7756.38, + "probability": 0.9705 + }, + { + "start": 7757.42, + "end": 7758.4, + "probability": 0.7699 + }, + { + "start": 7758.88, + "end": 7760.22, + "probability": 0.9363 + }, + { + "start": 7760.62, + "end": 7761.74, + "probability": 0.9827 + }, + { + "start": 7762.28, + "end": 7765.28, + "probability": 0.9817 + }, + { + "start": 7765.98, + "end": 7767.66, + "probability": 0.9333 + }, + { + "start": 7768.92, + "end": 7771.92, + "probability": 0.8711 + }, + { + "start": 7772.52, + "end": 7774.42, + "probability": 0.8629 + }, + { + "start": 7774.76, + "end": 7777.5, + "probability": 0.9471 + }, + { + "start": 7777.98, + "end": 7778.92, + "probability": 0.9524 + }, + { + "start": 7779.5, + "end": 7785.27, + "probability": 0.8817 + }, + { + "start": 7786.08, + "end": 7786.64, + "probability": 0.7516 + }, + { + "start": 7787.16, + "end": 7791.12, + "probability": 0.9911 + }, + { + "start": 7791.94, + "end": 7794.38, + "probability": 0.8308 + }, + { + "start": 7794.88, + "end": 7798.76, + "probability": 0.9951 + }, + { + "start": 7798.76, + "end": 7802.34, + "probability": 0.9902 + }, + { + "start": 7802.82, + "end": 7808.32, + "probability": 0.9834 + }, + { + "start": 7809.66, + "end": 7810.9, + "probability": 0.8239 + }, + { + "start": 7811.0, + "end": 7816.42, + "probability": 0.9893 + }, + { + "start": 7816.54, + "end": 7818.68, + "probability": 0.9854 + }, + { + "start": 7819.16, + "end": 7824.44, + "probability": 0.9933 + }, + { + "start": 7824.44, + "end": 7828.48, + "probability": 0.8798 + }, + { + "start": 7829.64, + "end": 7830.47, + "probability": 0.928 + }, + { + "start": 7831.56, + "end": 7832.54, + "probability": 0.847 + }, + { + "start": 7833.64, + "end": 7835.16, + "probability": 0.8157 + }, + { + "start": 7835.6, + "end": 7840.28, + "probability": 0.7397 + }, + { + "start": 7841.9, + "end": 7843.5, + "probability": 0.6927 + }, + { + "start": 7843.94, + "end": 7846.28, + "probability": 0.7551 + }, + { + "start": 7846.98, + "end": 7849.24, + "probability": 0.9929 + }, + { + "start": 7849.82, + "end": 7851.7, + "probability": 0.9413 + }, + { + "start": 7852.18, + "end": 7857.38, + "probability": 0.9738 + }, + { + "start": 7857.96, + "end": 7858.54, + "probability": 0.8382 + }, + { + "start": 7859.06, + "end": 7859.84, + "probability": 0.7507 + }, + { + "start": 7860.52, + "end": 7863.74, + "probability": 0.9853 + }, + { + "start": 7865.16, + "end": 7868.74, + "probability": 0.979 + }, + { + "start": 7869.3, + "end": 7869.94, + "probability": 0.8945 + }, + { + "start": 7870.52, + "end": 7874.78, + "probability": 0.9803 + }, + { + "start": 7875.56, + "end": 7876.54, + "probability": 0.7577 + }, + { + "start": 7877.44, + "end": 7882.62, + "probability": 0.9845 + }, + { + "start": 7883.12, + "end": 7884.38, + "probability": 0.7411 + }, + { + "start": 7884.92, + "end": 7885.58, + "probability": 0.9808 + }, + { + "start": 7885.86, + "end": 7888.37, + "probability": 0.837 + }, + { + "start": 7888.52, + "end": 7889.84, + "probability": 0.7297 + }, + { + "start": 7890.36, + "end": 7890.68, + "probability": 0.1626 + }, + { + "start": 7890.68, + "end": 7892.2, + "probability": 0.7011 + }, + { + "start": 7892.9, + "end": 7895.7, + "probability": 0.9395 + }, + { + "start": 7896.3, + "end": 7898.02, + "probability": 0.9294 + }, + { + "start": 7903.1, + "end": 7904.17, + "probability": 0.9657 + }, + { + "start": 7904.78, + "end": 7906.2, + "probability": 0.8092 + }, + { + "start": 7907.2, + "end": 7908.06, + "probability": 0.7773 + }, + { + "start": 7908.22, + "end": 7908.6, + "probability": 0.9371 + }, + { + "start": 7908.68, + "end": 7909.78, + "probability": 0.7922 + }, + { + "start": 7909.82, + "end": 7913.3, + "probability": 0.9884 + }, + { + "start": 7913.68, + "end": 7914.76, + "probability": 0.7869 + }, + { + "start": 7915.24, + "end": 7918.28, + "probability": 0.9977 + }, + { + "start": 7918.28, + "end": 7921.3, + "probability": 0.9983 + }, + { + "start": 7922.58, + "end": 7923.46, + "probability": 0.9583 + }, + { + "start": 7923.76, + "end": 7927.22, + "probability": 0.9943 + }, + { + "start": 7927.24, + "end": 7930.16, + "probability": 0.8872 + }, + { + "start": 7931.0, + "end": 7932.48, + "probability": 0.996 + }, + { + "start": 7933.42, + "end": 7936.44, + "probability": 0.6584 + }, + { + "start": 7937.18, + "end": 7939.41, + "probability": 0.9725 + }, + { + "start": 7940.16, + "end": 7942.3, + "probability": 0.9801 + }, + { + "start": 7942.64, + "end": 7946.96, + "probability": 0.9896 + }, + { + "start": 7947.76, + "end": 7950.08, + "probability": 0.9818 + }, + { + "start": 7950.86, + "end": 7955.78, + "probability": 0.9958 + }, + { + "start": 7956.94, + "end": 7957.48, + "probability": 0.9016 + }, + { + "start": 7958.32, + "end": 7961.11, + "probability": 0.872 + }, + { + "start": 7961.46, + "end": 7962.52, + "probability": 0.9747 + }, + { + "start": 7962.6, + "end": 7963.22, + "probability": 0.8834 + }, + { + "start": 7963.26, + "end": 7963.98, + "probability": 0.9353 + }, + { + "start": 7964.06, + "end": 7965.28, + "probability": 0.9614 + }, + { + "start": 7966.08, + "end": 7967.1, + "probability": 0.8407 + }, + { + "start": 7968.68, + "end": 7970.02, + "probability": 0.957 + }, + { + "start": 7970.34, + "end": 7976.02, + "probability": 0.9948 + }, + { + "start": 7976.18, + "end": 7977.5, + "probability": 0.9232 + }, + { + "start": 7977.92, + "end": 7980.82, + "probability": 0.8071 + }, + { + "start": 7981.2, + "end": 7984.98, + "probability": 0.9945 + }, + { + "start": 7986.58, + "end": 7987.0, + "probability": 0.8413 + }, + { + "start": 7987.1, + "end": 7987.84, + "probability": 0.7754 + }, + { + "start": 7987.92, + "end": 7988.94, + "probability": 0.8755 + }, + { + "start": 7989.02, + "end": 7989.6, + "probability": 0.7367 + }, + { + "start": 7990.26, + "end": 7990.76, + "probability": 0.809 + }, + { + "start": 7991.86, + "end": 7993.36, + "probability": 0.9916 + }, + { + "start": 7994.08, + "end": 8000.24, + "probability": 0.9601 + }, + { + "start": 8000.3, + "end": 8000.94, + "probability": 0.9604 + }, + { + "start": 8001.04, + "end": 8003.36, + "probability": 0.6267 + }, + { + "start": 8004.48, + "end": 8005.28, + "probability": 0.7745 + }, + { + "start": 8005.94, + "end": 8007.18, + "probability": 0.9818 + }, + { + "start": 8007.74, + "end": 8008.06, + "probability": 0.711 + }, + { + "start": 8009.14, + "end": 8010.12, + "probability": 0.4865 + }, + { + "start": 8011.22, + "end": 8015.86, + "probability": 0.9254 + }, + { + "start": 8016.26, + "end": 8017.54, + "probability": 0.8073 + }, + { + "start": 8018.04, + "end": 8019.06, + "probability": 0.7981 + }, + { + "start": 8019.38, + "end": 8019.96, + "probability": 0.8001 + }, + { + "start": 8020.8, + "end": 8023.28, + "probability": 0.9963 + }, + { + "start": 8024.38, + "end": 8029.37, + "probability": 0.988 + }, + { + "start": 8029.84, + "end": 8030.56, + "probability": 0.8776 + }, + { + "start": 8031.0, + "end": 8031.72, + "probability": 0.5859 + }, + { + "start": 8032.58, + "end": 8034.86, + "probability": 0.9084 + }, + { + "start": 8034.9, + "end": 8037.1, + "probability": 0.4535 + }, + { + "start": 8037.6, + "end": 8038.42, + "probability": 0.82 + }, + { + "start": 8039.08, + "end": 8039.94, + "probability": 0.8174 + }, + { + "start": 8040.86, + "end": 8044.22, + "probability": 0.8188 + }, + { + "start": 8045.64, + "end": 8047.88, + "probability": 0.9632 + }, + { + "start": 8049.12, + "end": 8050.06, + "probability": 0.9662 + }, + { + "start": 8050.7, + "end": 8053.32, + "probability": 0.967 + }, + { + "start": 8054.44, + "end": 8056.4, + "probability": 0.9097 + }, + { + "start": 8057.26, + "end": 8061.18, + "probability": 0.9784 + }, + { + "start": 8061.74, + "end": 8066.2, + "probability": 0.9811 + }, + { + "start": 8066.76, + "end": 8070.96, + "probability": 0.9247 + }, + { + "start": 8071.74, + "end": 8073.98, + "probability": 0.9762 + }, + { + "start": 8074.96, + "end": 8076.62, + "probability": 0.9292 + }, + { + "start": 8077.3, + "end": 8078.84, + "probability": 0.9958 + }, + { + "start": 8079.64, + "end": 8082.82, + "probability": 0.9944 + }, + { + "start": 8082.82, + "end": 8087.42, + "probability": 0.9803 + }, + { + "start": 8087.6, + "end": 8088.74, + "probability": 0.9925 + }, + { + "start": 8089.18, + "end": 8091.06, + "probability": 0.8955 + }, + { + "start": 8092.06, + "end": 8093.0, + "probability": 0.8201 + }, + { + "start": 8093.08, + "end": 8093.72, + "probability": 0.7056 + }, + { + "start": 8093.92, + "end": 8094.49, + "probability": 0.9895 + }, + { + "start": 8095.56, + "end": 8096.88, + "probability": 0.9926 + }, + { + "start": 8097.94, + "end": 8101.54, + "probability": 0.8613 + }, + { + "start": 8102.76, + "end": 8104.02, + "probability": 0.6941 + }, + { + "start": 8104.88, + "end": 8106.84, + "probability": 0.5717 + }, + { + "start": 8107.84, + "end": 8108.66, + "probability": 0.7438 + }, + { + "start": 8109.04, + "end": 8109.96, + "probability": 0.9722 + }, + { + "start": 8110.3, + "end": 8111.74, + "probability": 0.6227 + }, + { + "start": 8112.18, + "end": 8114.24, + "probability": 0.8481 + }, + { + "start": 8115.62, + "end": 8119.04, + "probability": 0.9855 + }, + { + "start": 8120.06, + "end": 8124.48, + "probability": 0.9973 + }, + { + "start": 8124.96, + "end": 8127.44, + "probability": 0.9961 + }, + { + "start": 8128.5, + "end": 8132.4, + "probability": 0.9956 + }, + { + "start": 8132.98, + "end": 8133.76, + "probability": 0.9485 + }, + { + "start": 8134.58, + "end": 8135.7, + "probability": 0.9703 + }, + { + "start": 8135.84, + "end": 8138.58, + "probability": 0.9318 + }, + { + "start": 8139.18, + "end": 8140.08, + "probability": 0.9692 + }, + { + "start": 8140.5, + "end": 8142.28, + "probability": 0.9857 + }, + { + "start": 8142.36, + "end": 8144.14, + "probability": 0.996 + }, + { + "start": 8144.92, + "end": 8150.78, + "probability": 0.9827 + }, + { + "start": 8151.58, + "end": 8154.34, + "probability": 0.9894 + }, + { + "start": 8155.48, + "end": 8155.58, + "probability": 0.8855 + }, + { + "start": 8156.24, + "end": 8160.44, + "probability": 0.8835 + }, + { + "start": 8161.68, + "end": 8162.5, + "probability": 0.9224 + }, + { + "start": 8163.3, + "end": 8165.58, + "probability": 0.9746 + }, + { + "start": 8165.7, + "end": 8166.92, + "probability": 0.9945 + }, + { + "start": 8167.24, + "end": 8168.98, + "probability": 0.9254 + }, + { + "start": 8169.82, + "end": 8174.4, + "probability": 0.932 + }, + { + "start": 8176.4, + "end": 8180.62, + "probability": 0.998 + }, + { + "start": 8180.82, + "end": 8185.28, + "probability": 0.9912 + }, + { + "start": 8186.54, + "end": 8189.94, + "probability": 0.9445 + }, + { + "start": 8190.5, + "end": 8194.24, + "probability": 0.9777 + }, + { + "start": 8195.34, + "end": 8196.28, + "probability": 0.5697 + }, + { + "start": 8197.14, + "end": 8198.28, + "probability": 0.9703 + }, + { + "start": 8199.64, + "end": 8202.96, + "probability": 0.9819 + }, + { + "start": 8203.54, + "end": 8205.54, + "probability": 0.9844 + }, + { + "start": 8206.48, + "end": 8208.0, + "probability": 0.9138 + }, + { + "start": 8208.6, + "end": 8210.9, + "probability": 0.9741 + }, + { + "start": 8211.66, + "end": 8214.18, + "probability": 0.9993 + }, + { + "start": 8214.76, + "end": 8216.36, + "probability": 0.9048 + }, + { + "start": 8217.56, + "end": 8220.2, + "probability": 0.952 + }, + { + "start": 8220.94, + "end": 8223.61, + "probability": 0.9932 + }, + { + "start": 8224.24, + "end": 8225.98, + "probability": 0.9827 + }, + { + "start": 8226.38, + "end": 8228.4, + "probability": 0.9884 + }, + { + "start": 8229.0, + "end": 8232.45, + "probability": 0.9703 + }, + { + "start": 8234.76, + "end": 8236.08, + "probability": 0.8423 + }, + { + "start": 8236.34, + "end": 8241.5, + "probability": 0.937 + }, + { + "start": 8242.62, + "end": 8243.5, + "probability": 0.699 + }, + { + "start": 8244.64, + "end": 8246.94, + "probability": 0.991 + }, + { + "start": 8248.44, + "end": 8249.75, + "probability": 0.9973 + }, + { + "start": 8250.06, + "end": 8251.08, + "probability": 0.8117 + }, + { + "start": 8251.16, + "end": 8252.78, + "probability": 0.9934 + }, + { + "start": 8253.62, + "end": 8254.94, + "probability": 0.9026 + }, + { + "start": 8255.06, + "end": 8257.64, + "probability": 0.9907 + }, + { + "start": 8258.16, + "end": 8259.7, + "probability": 0.8674 + }, + { + "start": 8260.1, + "end": 8261.0, + "probability": 0.9779 + }, + { + "start": 8263.96, + "end": 8265.42, + "probability": 0.6989 + }, + { + "start": 8265.7, + "end": 8266.26, + "probability": 0.7273 + }, + { + "start": 8266.52, + "end": 8269.84, + "probability": 0.8337 + }, + { + "start": 8270.56, + "end": 8271.92, + "probability": 0.998 + }, + { + "start": 8272.54, + "end": 8274.5, + "probability": 0.8658 + }, + { + "start": 8276.12, + "end": 8277.84, + "probability": 0.9364 + }, + { + "start": 8278.66, + "end": 8280.6, + "probability": 0.6114 + }, + { + "start": 8281.48, + "end": 8283.98, + "probability": 0.8155 + }, + { + "start": 8284.86, + "end": 8289.6, + "probability": 0.9972 + }, + { + "start": 8290.5, + "end": 8298.02, + "probability": 0.9971 + }, + { + "start": 8298.08, + "end": 8298.58, + "probability": 0.7313 + }, + { + "start": 8299.4, + "end": 8299.9, + "probability": 0.9482 + }, + { + "start": 8300.84, + "end": 8301.04, + "probability": 0.3557 + }, + { + "start": 8301.04, + "end": 8303.48, + "probability": 0.9377 + }, + { + "start": 8303.58, + "end": 8304.92, + "probability": 0.982 + }, + { + "start": 8305.14, + "end": 8305.86, + "probability": 0.9816 + }, + { + "start": 8306.54, + "end": 8308.42, + "probability": 0.9263 + }, + { + "start": 8308.48, + "end": 8309.78, + "probability": 0.5263 + }, + { + "start": 8309.78, + "end": 8310.28, + "probability": 0.916 + }, + { + "start": 8313.12, + "end": 8320.36, + "probability": 0.9939 + }, + { + "start": 8320.84, + "end": 8322.64, + "probability": 0.5164 + }, + { + "start": 8323.2, + "end": 8323.86, + "probability": 0.886 + }, + { + "start": 8324.52, + "end": 8328.3, + "probability": 0.9824 + }, + { + "start": 8328.3, + "end": 8332.74, + "probability": 0.9492 + }, + { + "start": 8333.34, + "end": 8335.94, + "probability": 0.9883 + }, + { + "start": 8336.0, + "end": 8336.54, + "probability": 0.5986 + }, + { + "start": 8336.56, + "end": 8338.74, + "probability": 0.4869 + }, + { + "start": 8338.8, + "end": 8342.34, + "probability": 0.864 + }, + { + "start": 8349.42, + "end": 8349.42, + "probability": 0.0374 + }, + { + "start": 8349.44, + "end": 8349.48, + "probability": 0.0323 + }, + { + "start": 8367.52, + "end": 8371.5, + "probability": 0.5221 + }, + { + "start": 8372.88, + "end": 8373.98, + "probability": 0.6758 + }, + { + "start": 8374.82, + "end": 8376.4, + "probability": 0.6959 + }, + { + "start": 8378.0, + "end": 8379.68, + "probability": 0.409 + }, + { + "start": 8381.02, + "end": 8382.44, + "probability": 0.7641 + }, + { + "start": 8383.74, + "end": 8386.42, + "probability": 0.6812 + }, + { + "start": 8387.9, + "end": 8389.68, + "probability": 0.7449 + }, + { + "start": 8392.69, + "end": 8394.48, + "probability": 0.3934 + }, + { + "start": 8395.26, + "end": 8397.82, + "probability": 0.7482 + }, + { + "start": 8397.94, + "end": 8402.78, + "probability": 0.7457 + }, + { + "start": 8402.86, + "end": 8403.04, + "probability": 0.3028 + }, + { + "start": 8403.74, + "end": 8405.04, + "probability": 0.5686 + }, + { + "start": 8405.36, + "end": 8405.92, + "probability": 0.6045 + }, + { + "start": 8407.72, + "end": 8412.1, + "probability": 0.7864 + }, + { + "start": 8413.2, + "end": 8413.2, + "probability": 0.2206 + }, + { + "start": 8413.2, + "end": 8414.84, + "probability": 0.4517 + }, + { + "start": 8414.94, + "end": 8415.88, + "probability": 0.9393 + }, + { + "start": 8418.34, + "end": 8420.72, + "probability": 0.9941 + }, + { + "start": 8422.32, + "end": 8426.5, + "probability": 0.7295 + }, + { + "start": 8428.94, + "end": 8430.66, + "probability": 0.8928 + }, + { + "start": 8431.8, + "end": 8434.44, + "probability": 0.8514 + }, + { + "start": 8435.48, + "end": 8437.52, + "probability": 0.9974 + }, + { + "start": 8437.52, + "end": 8440.78, + "probability": 0.962 + }, + { + "start": 8442.02, + "end": 8446.28, + "probability": 0.8715 + }, + { + "start": 8446.48, + "end": 8447.38, + "probability": 0.9399 + }, + { + "start": 8447.7, + "end": 8448.44, + "probability": 0.4676 + }, + { + "start": 8448.72, + "end": 8449.9, + "probability": 0.7098 + }, + { + "start": 8451.04, + "end": 8451.52, + "probability": 0.6835 + }, + { + "start": 8451.84, + "end": 8457.3, + "probability": 0.9865 + }, + { + "start": 8458.0, + "end": 8460.27, + "probability": 0.9956 + }, + { + "start": 8461.34, + "end": 8462.92, + "probability": 0.9672 + }, + { + "start": 8463.82, + "end": 8466.64, + "probability": 0.4893 + }, + { + "start": 8466.98, + "end": 8468.18, + "probability": 0.4944 + }, + { + "start": 8468.64, + "end": 8469.08, + "probability": 0.0981 + }, + { + "start": 8470.32, + "end": 8473.48, + "probability": 0.9862 + }, + { + "start": 8474.06, + "end": 8475.96, + "probability": 0.9804 + }, + { + "start": 8476.58, + "end": 8477.36, + "probability": 0.8349 + }, + { + "start": 8478.28, + "end": 8479.26, + "probability": 0.8564 + }, + { + "start": 8488.46, + "end": 8489.18, + "probability": 0.0171 + }, + { + "start": 8489.18, + "end": 8489.18, + "probability": 0.0167 + }, + { + "start": 8489.18, + "end": 8489.58, + "probability": 0.1116 + }, + { + "start": 8490.1, + "end": 8492.01, + "probability": 0.6666 + }, + { + "start": 8493.88, + "end": 8496.84, + "probability": 0.8284 + }, + { + "start": 8496.9, + "end": 8498.78, + "probability": 0.9117 + }, + { + "start": 8500.02, + "end": 8501.2, + "probability": 0.4804 + }, + { + "start": 8501.92, + "end": 8505.28, + "probability": 0.6642 + }, + { + "start": 8505.36, + "end": 8509.89, + "probability": 0.9934 + }, + { + "start": 8511.14, + "end": 8511.72, + "probability": 0.5982 + }, + { + "start": 8512.48, + "end": 8513.26, + "probability": 0.9072 + }, + { + "start": 8514.72, + "end": 8516.66, + "probability": 0.9937 + }, + { + "start": 8517.12, + "end": 8518.24, + "probability": 0.7381 + }, + { + "start": 8518.76, + "end": 8519.42, + "probability": 0.9314 + }, + { + "start": 8519.96, + "end": 8522.5, + "probability": 0.9567 + }, + { + "start": 8523.04, + "end": 8523.36, + "probability": 0.9298 + }, + { + "start": 8523.98, + "end": 8526.52, + "probability": 0.9939 + }, + { + "start": 8527.66, + "end": 8529.76, + "probability": 0.3704 + }, + { + "start": 8530.92, + "end": 8531.98, + "probability": 0.5383 + }, + { + "start": 8532.96, + "end": 8533.06, + "probability": 0.0713 + }, + { + "start": 8533.2, + "end": 8533.2, + "probability": 0.1496 + }, + { + "start": 8533.2, + "end": 8533.2, + "probability": 0.0379 + }, + { + "start": 8533.2, + "end": 8533.2, + "probability": 0.0738 + }, + { + "start": 8533.2, + "end": 8533.26, + "probability": 0.4621 + }, + { + "start": 8533.36, + "end": 8533.78, + "probability": 0.4317 + }, + { + "start": 8533.8, + "end": 8535.12, + "probability": 0.7478 + }, + { + "start": 8535.62, + "end": 8539.7, + "probability": 0.8888 + }, + { + "start": 8540.16, + "end": 8540.78, + "probability": 0.5451 + }, + { + "start": 8540.88, + "end": 8541.62, + "probability": 0.8937 + }, + { + "start": 8541.7, + "end": 8541.7, + "probability": 0.4349 + }, + { + "start": 8542.22, + "end": 8542.46, + "probability": 0.3155 + }, + { + "start": 8542.52, + "end": 8542.68, + "probability": 0.8422 + }, + { + "start": 8542.68, + "end": 8546.48, + "probability": 0.9304 + }, + { + "start": 8546.64, + "end": 8547.7, + "probability": 0.9209 + }, + { + "start": 8547.98, + "end": 8549.04, + "probability": 0.5683 + }, + { + "start": 8549.58, + "end": 8550.29, + "probability": 0.7059 + }, + { + "start": 8551.08, + "end": 8551.62, + "probability": 0.3702 + }, + { + "start": 8551.78, + "end": 8554.32, + "probability": 0.237 + }, + { + "start": 8554.5, + "end": 8555.5, + "probability": 0.2866 + }, + { + "start": 8555.9, + "end": 8556.88, + "probability": 0.4636 + }, + { + "start": 8557.04, + "end": 8557.82, + "probability": 0.9003 + }, + { + "start": 8557.88, + "end": 8558.7, + "probability": 0.7925 + }, + { + "start": 8558.9, + "end": 8560.76, + "probability": 0.925 + }, + { + "start": 8560.98, + "end": 8562.24, + "probability": 0.2713 + }, + { + "start": 8563.3, + "end": 8564.76, + "probability": 0.3522 + }, + { + "start": 8564.84, + "end": 8565.6, + "probability": 0.7252 + }, + { + "start": 8565.7, + "end": 8568.36, + "probability": 0.9305 + }, + { + "start": 8568.46, + "end": 8568.66, + "probability": 0.2329 + }, + { + "start": 8568.94, + "end": 8568.96, + "probability": 0.1103 + }, + { + "start": 8568.96, + "end": 8571.22, + "probability": 0.6719 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.04, + "end": 8605.08, + "probability": 0.0252 + }, + { + "start": 8605.08, + "end": 8605.1, + "probability": 0.349 + }, + { + "start": 8605.1, + "end": 8605.26, + "probability": 0.0495 + }, + { + "start": 8605.26, + "end": 8605.64, + "probability": 0.5213 + }, + { + "start": 8606.36, + "end": 8606.8, + "probability": 0.553 + }, + { + "start": 8607.04, + "end": 8607.44, + "probability": 0.8486 + }, + { + "start": 8607.96, + "end": 8609.5, + "probability": 0.0905 + }, + { + "start": 8609.5, + "end": 8610.54, + "probability": 0.6365 + }, + { + "start": 8611.92, + "end": 8616.32, + "probability": 0.8774 + }, + { + "start": 8616.66, + "end": 8618.28, + "probability": 0.3437 + }, + { + "start": 8618.28, + "end": 8618.28, + "probability": 0.1185 + }, + { + "start": 8618.28, + "end": 8618.58, + "probability": 0.3337 + }, + { + "start": 8618.6, + "end": 8619.62, + "probability": 0.4075 + }, + { + "start": 8619.74, + "end": 8622.84, + "probability": 0.2055 + }, + { + "start": 8622.9, + "end": 8627.5, + "probability": 0.6408 + }, + { + "start": 8627.7, + "end": 8630.66, + "probability": 0.2383 + }, + { + "start": 8630.79, + "end": 8631.36, + "probability": 0.0505 + }, + { + "start": 8631.36, + "end": 8632.9, + "probability": 0.0246 + }, + { + "start": 8633.44, + "end": 8633.46, + "probability": 0.0973 + }, + { + "start": 8634.7, + "end": 8636.8, + "probability": 0.463 + }, + { + "start": 8637.62, + "end": 8637.64, + "probability": 0.0073 + }, + { + "start": 8637.64, + "end": 8639.61, + "probability": 0.9869 + }, + { + "start": 8639.66, + "end": 8640.14, + "probability": 0.4753 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.0, + "end": 8732.0, + "probability": 0.0 + }, + { + "start": 8732.34, + "end": 8734.54, + "probability": 0.9164 + }, + { + "start": 8735.14, + "end": 8736.65, + "probability": 0.9448 + }, + { + "start": 8737.04, + "end": 8738.8, + "probability": 0.9937 + }, + { + "start": 8739.52, + "end": 8740.75, + "probability": 0.9784 + }, + { + "start": 8741.48, + "end": 8743.86, + "probability": 0.9894 + }, + { + "start": 8745.4, + "end": 8745.92, + "probability": 0.8718 + }, + { + "start": 8746.34, + "end": 8748.04, + "probability": 0.9464 + }, + { + "start": 8748.16, + "end": 8749.62, + "probability": 0.9382 + }, + { + "start": 8750.2, + "end": 8752.22, + "probability": 0.488 + }, + { + "start": 8752.48, + "end": 8752.98, + "probability": 0.4205 + }, + { + "start": 8753.28, + "end": 8754.12, + "probability": 0.2012 + }, + { + "start": 8754.12, + "end": 8756.0, + "probability": 0.3027 + }, + { + "start": 8756.08, + "end": 8756.08, + "probability": 0.185 + }, + { + "start": 8756.08, + "end": 8756.08, + "probability": 0.288 + }, + { + "start": 8756.08, + "end": 8760.54, + "probability": 0.9431 + }, + { + "start": 8760.96, + "end": 8762.74, + "probability": 0.6327 + }, + { + "start": 8763.22, + "end": 8763.24, + "probability": 0.0546 + }, + { + "start": 8763.24, + "end": 8763.24, + "probability": 0.1627 + }, + { + "start": 8763.24, + "end": 8768.24, + "probability": 0.9929 + }, + { + "start": 8768.24, + "end": 8768.98, + "probability": 0.3179 + }, + { + "start": 8769.06, + "end": 8771.6, + "probability": 0.4883 + }, + { + "start": 8772.04, + "end": 8772.58, + "probability": 0.7418 + }, + { + "start": 8772.6, + "end": 8774.65, + "probability": 0.9481 + }, + { + "start": 8775.52, + "end": 8778.97, + "probability": 0.9468 + }, + { + "start": 8779.46, + "end": 8782.14, + "probability": 0.8011 + }, + { + "start": 8782.68, + "end": 8783.7, + "probability": 0.0078 + }, + { + "start": 8784.44, + "end": 8785.86, + "probability": 0.0836 + }, + { + "start": 8785.86, + "end": 8785.86, + "probability": 0.1766 + }, + { + "start": 8785.86, + "end": 8789.16, + "probability": 0.9568 + }, + { + "start": 8790.52, + "end": 8792.48, + "probability": 0.6199 + }, + { + "start": 8792.56, + "end": 8794.7, + "probability": 0.9927 + }, + { + "start": 8794.7, + "end": 8795.5, + "probability": 0.0618 + }, + { + "start": 8795.6, + "end": 8799.54, + "probability": 0.6374 + }, + { + "start": 8800.1, + "end": 8801.16, + "probability": 0.8524 + }, + { + "start": 8801.28, + "end": 8801.28, + "probability": 0.09 + }, + { + "start": 8801.28, + "end": 8803.74, + "probability": 0.3127 + }, + { + "start": 8804.14, + "end": 8805.06, + "probability": 0.6061 + }, + { + "start": 8805.5, + "end": 8807.3, + "probability": 0.5578 + }, + { + "start": 8807.6, + "end": 8808.28, + "probability": 0.4957 + }, + { + "start": 8808.58, + "end": 8810.1, + "probability": 0.5281 + }, + { + "start": 8810.1, + "end": 8810.1, + "probability": 0.0156 + }, + { + "start": 8810.1, + "end": 8811.61, + "probability": 0.231 + }, + { + "start": 8811.76, + "end": 8813.06, + "probability": 0.5215 + }, + { + "start": 8813.28, + "end": 8813.96, + "probability": 0.0726 + }, + { + "start": 8814.18, + "end": 8815.16, + "probability": 0.143 + }, + { + "start": 8817.58, + "end": 8817.98, + "probability": 0.0505 + }, + { + "start": 8818.02, + "end": 8818.02, + "probability": 0.1793 + }, + { + "start": 8818.02, + "end": 8818.02, + "probability": 0.4861 + }, + { + "start": 8818.02, + "end": 8818.02, + "probability": 0.3419 + }, + { + "start": 8818.02, + "end": 8818.02, + "probability": 0.0577 + }, + { + "start": 8818.12, + "end": 8821.28, + "probability": 0.5804 + }, + { + "start": 8821.46, + "end": 8822.34, + "probability": 0.5222 + }, + { + "start": 8825.06, + "end": 8825.3, + "probability": 0.0376 + }, + { + "start": 8825.3, + "end": 8827.76, + "probability": 0.5916 + }, + { + "start": 8827.96, + "end": 8828.66, + "probability": 0.6596 + }, + { + "start": 8828.88, + "end": 8831.96, + "probability": 0.3683 + }, + { + "start": 8831.96, + "end": 8833.5, + "probability": 0.4309 + }, + { + "start": 8834.18, + "end": 8835.64, + "probability": 0.1813 + }, + { + "start": 8836.28, + "end": 8837.35, + "probability": 0.4957 + }, + { + "start": 8837.52, + "end": 8837.74, + "probability": 0.0048 + }, + { + "start": 8837.74, + "end": 8841.7, + "probability": 0.6959 + }, + { + "start": 8842.32, + "end": 8844.74, + "probability": 0.9458 + }, + { + "start": 8845.44, + "end": 8847.57, + "probability": 0.9277 + }, + { + "start": 8848.24, + "end": 8849.5, + "probability": 0.596 + }, + { + "start": 8850.84, + "end": 8852.1, + "probability": 0.8914 + }, + { + "start": 8853.46, + "end": 8855.16, + "probability": 0.9629 + }, + { + "start": 8855.78, + "end": 8859.26, + "probability": 0.9544 + }, + { + "start": 8859.8, + "end": 8862.12, + "probability": 0.868 + }, + { + "start": 8862.2, + "end": 8863.78, + "probability": 0.9783 + }, + { + "start": 8864.38, + "end": 8866.52, + "probability": 0.6147 + }, + { + "start": 8866.52, + "end": 8866.66, + "probability": 0.1219 + }, + { + "start": 8866.66, + "end": 8868.12, + "probability": 0.4879 + }, + { + "start": 8868.12, + "end": 8868.6, + "probability": 0.3578 + }, + { + "start": 8868.92, + "end": 8870.3, + "probability": 0.5555 + }, + { + "start": 8870.4, + "end": 8872.56, + "probability": 0.987 + }, + { + "start": 8873.1, + "end": 8874.03, + "probability": 0.5231 + }, + { + "start": 8874.26, + "end": 8875.24, + "probability": 0.8091 + }, + { + "start": 8875.24, + "end": 8876.52, + "probability": 0.1511 + }, + { + "start": 8878.6, + "end": 8878.88, + "probability": 0.5694 + }, + { + "start": 8880.44, + "end": 8881.78, + "probability": 0.0678 + }, + { + "start": 8881.88, + "end": 8882.1, + "probability": 0.2516 + }, + { + "start": 8882.1, + "end": 8882.6, + "probability": 0.3769 + }, + { + "start": 8882.6, + "end": 8882.6, + "probability": 0.3748 + }, + { + "start": 8882.6, + "end": 8882.6, + "probability": 0.016 + }, + { + "start": 8882.6, + "end": 8883.66, + "probability": 0.5552 + }, + { + "start": 8884.02, + "end": 8885.7, + "probability": 0.4142 + }, + { + "start": 8885.98, + "end": 8886.6, + "probability": 0.531 + }, + { + "start": 8886.6, + "end": 8886.81, + "probability": 0.2735 + }, + { + "start": 8887.12, + "end": 8888.98, + "probability": 0.8591 + }, + { + "start": 8889.06, + "end": 8890.76, + "probability": 0.668 + }, + { + "start": 8890.78, + "end": 8892.56, + "probability": 0.7594 + }, + { + "start": 8893.24, + "end": 8896.48, + "probability": 0.3159 + }, + { + "start": 8896.48, + "end": 8896.48, + "probability": 0.1178 + }, + { + "start": 8896.48, + "end": 8896.48, + "probability": 0.0228 + }, + { + "start": 8896.48, + "end": 8898.1, + "probability": 0.3449 + }, + { + "start": 8898.34, + "end": 8899.66, + "probability": 0.4133 + }, + { + "start": 8900.18, + "end": 8900.39, + "probability": 0.0427 + }, + { + "start": 8901.38, + "end": 8901.88, + "probability": 0.1512 + }, + { + "start": 8901.88, + "end": 8902.3, + "probability": 0.0107 + }, + { + "start": 8903.02, + "end": 8903.02, + "probability": 0.1418 + }, + { + "start": 8903.04, + "end": 8904.6, + "probability": 0.5929 + }, + { + "start": 8904.84, + "end": 8905.56, + "probability": 0.6917 + }, + { + "start": 8905.82, + "end": 8907.16, + "probability": 0.6657 + }, + { + "start": 8907.28, + "end": 8909.92, + "probability": 0.9865 + }, + { + "start": 8910.26, + "end": 8912.18, + "probability": 0.9961 + }, + { + "start": 8912.84, + "end": 8914.48, + "probability": 0.9714 + }, + { + "start": 8914.56, + "end": 8916.54, + "probability": 0.9481 + }, + { + "start": 8916.92, + "end": 8917.2, + "probability": 0.2854 + }, + { + "start": 8918.08, + "end": 8918.24, + "probability": 0.0004 + }, + { + "start": 8918.88, + "end": 8919.36, + "probability": 0.0965 + }, + { + "start": 8919.36, + "end": 8919.9, + "probability": 0.3885 + }, + { + "start": 8920.48, + "end": 8921.62, + "probability": 0.562 + }, + { + "start": 8921.78, + "end": 8924.18, + "probability": 0.9429 + }, + { + "start": 8924.74, + "end": 8926.34, + "probability": 0.9644 + }, + { + "start": 8928.46, + "end": 8930.9, + "probability": 0.2825 + }, + { + "start": 8933.08, + "end": 8933.1, + "probability": 0.3827 + }, + { + "start": 8933.1, + "end": 8933.1, + "probability": 0.0164 + }, + { + "start": 8933.1, + "end": 8933.1, + "probability": 0.2105 + }, + { + "start": 8933.1, + "end": 8933.1, + "probability": 0.0175 + }, + { + "start": 8933.1, + "end": 8933.1, + "probability": 0.0379 + }, + { + "start": 8933.1, + "end": 8935.8, + "probability": 0.9821 + }, + { + "start": 8936.54, + "end": 8937.84, + "probability": 0.9436 + }, + { + "start": 8937.86, + "end": 8939.36, + "probability": 0.9685 + }, + { + "start": 8940.1, + "end": 8942.62, + "probability": 0.9937 + }, + { + "start": 8943.56, + "end": 8944.16, + "probability": 0.5587 + }, + { + "start": 8945.1, + "end": 8946.5, + "probability": 0.9978 + }, + { + "start": 8946.6, + "end": 8947.8, + "probability": 0.9707 + }, + { + "start": 8948.24, + "end": 8949.09, + "probability": 0.9888 + }, + { + "start": 8949.3, + "end": 8952.6, + "probability": 0.9807 + }, + { + "start": 8952.8, + "end": 8953.64, + "probability": 0.9212 + }, + { + "start": 8955.48, + "end": 8955.52, + "probability": 0.0138 + }, + { + "start": 8955.52, + "end": 8955.66, + "probability": 0.373 + }, + { + "start": 8956.56, + "end": 8956.84, + "probability": 0.3816 + }, + { + "start": 8956.98, + "end": 8957.74, + "probability": 0.7289 + }, + { + "start": 8958.0, + "end": 8959.92, + "probability": 0.8634 + }, + { + "start": 8960.18, + "end": 8960.66, + "probability": 0.5034 + }, + { + "start": 8960.72, + "end": 8962.02, + "probability": 0.9092 + }, + { + "start": 8963.9, + "end": 8966.85, + "probability": 0.5307 + }, + { + "start": 8967.94, + "end": 8969.08, + "probability": 0.9639 + }, + { + "start": 8969.88, + "end": 8972.44, + "probability": 0.8113 + }, + { + "start": 8973.16, + "end": 8975.49, + "probability": 0.8917 + }, + { + "start": 8976.82, + "end": 8979.26, + "probability": 0.7261 + }, + { + "start": 8979.7, + "end": 8985.36, + "probability": 0.9839 + }, + { + "start": 8985.4, + "end": 8985.64, + "probability": 0.4081 + }, + { + "start": 8985.72, + "end": 8985.9, + "probability": 0.5998 + }, + { + "start": 8986.42, + "end": 8989.16, + "probability": 0.884 + }, + { + "start": 8990.34, + "end": 8991.6, + "probability": 0.9399 + }, + { + "start": 8994.16, + "end": 8994.46, + "probability": 0.0247 + }, + { + "start": 8995.42, + "end": 8996.04, + "probability": 0.7631 + }, + { + "start": 8996.12, + "end": 8999.06, + "probability": 0.938 + }, + { + "start": 8999.34, + "end": 9001.96, + "probability": 0.9922 + }, + { + "start": 9002.52, + "end": 9008.22, + "probability": 0.9987 + }, + { + "start": 9009.12, + "end": 9011.22, + "probability": 0.9985 + }, + { + "start": 9011.5, + "end": 9014.96, + "probability": 0.9895 + }, + { + "start": 9015.1, + "end": 9018.46, + "probability": 0.9854 + }, + { + "start": 9018.98, + "end": 9020.5, + "probability": 0.9958 + }, + { + "start": 9021.2, + "end": 9022.84, + "probability": 0.9971 + }, + { + "start": 9023.06, + "end": 9025.18, + "probability": 0.8002 + }, + { + "start": 9026.64, + "end": 9027.32, + "probability": 0.74 + }, + { + "start": 9027.44, + "end": 9029.7, + "probability": 0.5516 + }, + { + "start": 9030.04, + "end": 9032.28, + "probability": 0.9841 + }, + { + "start": 9032.7, + "end": 9034.74, + "probability": 0.9111 + }, + { + "start": 9035.56, + "end": 9036.0, + "probability": 0.1227 + }, + { + "start": 9036.0, + "end": 9037.28, + "probability": 0.0948 + }, + { + "start": 9037.42, + "end": 9040.54, + "probability": 0.9741 + }, + { + "start": 9040.64, + "end": 9042.0, + "probability": 0.6876 + }, + { + "start": 9042.1, + "end": 9042.94, + "probability": 0.6723 + }, + { + "start": 9042.98, + "end": 9043.42, + "probability": 0.9054 + }, + { + "start": 9044.08, + "end": 9044.38, + "probability": 0.0376 + }, + { + "start": 9044.38, + "end": 9045.3, + "probability": 0.7261 + }, + { + "start": 9045.62, + "end": 9049.1, + "probability": 0.9905 + }, + { + "start": 9049.32, + "end": 9051.38, + "probability": 0.9639 + }, + { + "start": 9052.02, + "end": 9054.9, + "probability": 0.9702 + }, + { + "start": 9068.64, + "end": 9069.69, + "probability": 0.1181 + }, + { + "start": 9070.46, + "end": 9071.46, + "probability": 0.1008 + }, + { + "start": 9071.48, + "end": 9073.62, + "probability": 0.0596 + }, + { + "start": 9074.08, + "end": 9074.98, + "probability": 0.0184 + }, + { + "start": 9077.96, + "end": 9078.37, + "probability": 0.0034 + }, + { + "start": 9079.78, + "end": 9080.2, + "probability": 0.0482 + }, + { + "start": 9080.3, + "end": 9080.5, + "probability": 0.3179 + }, + { + "start": 9081.25, + "end": 9083.34, + "probability": 0.1483 + }, + { + "start": 9091.06, + "end": 9091.66, + "probability": 0.0134 + }, + { + "start": 9091.66, + "end": 9091.66, + "probability": 0.4283 + }, + { + "start": 9091.66, + "end": 9091.66, + "probability": 0.0426 + }, + { + "start": 9091.66, + "end": 9093.42, + "probability": 0.4981 + }, + { + "start": 9094.16, + "end": 9098.52, + "probability": 0.9815 + }, + { + "start": 9099.22, + "end": 9102.32, + "probability": 0.8716 + }, + { + "start": 9102.78, + "end": 9104.32, + "probability": 0.0053 + }, + { + "start": 9104.32, + "end": 9104.58, + "probability": 0.4617 + }, + { + "start": 9105.2, + "end": 9105.84, + "probability": 0.3713 + }, + { + "start": 9105.96, + "end": 9107.16, + "probability": 0.6338 + }, + { + "start": 9108.28, + "end": 9108.6, + "probability": 0.6767 + }, + { + "start": 9110.48, + "end": 9114.28, + "probability": 0.9958 + }, + { + "start": 9115.1, + "end": 9119.64, + "probability": 0.9846 + }, + { + "start": 9120.84, + "end": 9124.44, + "probability": 0.989 + }, + { + "start": 9125.0, + "end": 9126.68, + "probability": 0.9852 + }, + { + "start": 9127.24, + "end": 9132.26, + "probability": 0.9938 + }, + { + "start": 9132.96, + "end": 9138.46, + "probability": 0.9874 + }, + { + "start": 9140.98, + "end": 9142.36, + "probability": 0.5574 + }, + { + "start": 9142.74, + "end": 9144.82, + "probability": 0.8715 + }, + { + "start": 9145.08, + "end": 9146.74, + "probability": 0.9417 + }, + { + "start": 9147.68, + "end": 9149.44, + "probability": 0.9152 + }, + { + "start": 9149.72, + "end": 9152.76, + "probability": 0.8684 + }, + { + "start": 9153.34, + "end": 9157.9, + "probability": 0.9915 + }, + { + "start": 9158.82, + "end": 9159.38, + "probability": 0.4064 + }, + { + "start": 9160.0, + "end": 9165.94, + "probability": 0.919 + }, + { + "start": 9168.66, + "end": 9171.34, + "probability": 0.9951 + }, + { + "start": 9172.48, + "end": 9174.32, + "probability": 0.9388 + }, + { + "start": 9174.56, + "end": 9177.42, + "probability": 0.9907 + }, + { + "start": 9178.06, + "end": 9183.6, + "probability": 0.9773 + }, + { + "start": 9184.62, + "end": 9186.69, + "probability": 0.8824 + }, + { + "start": 9188.3, + "end": 9189.7, + "probability": 0.7962 + }, + { + "start": 9190.72, + "end": 9194.6, + "probability": 0.988 + }, + { + "start": 9195.16, + "end": 9197.82, + "probability": 0.9965 + }, + { + "start": 9198.4, + "end": 9198.78, + "probability": 0.7386 + }, + { + "start": 9199.36, + "end": 9199.88, + "probability": 0.9459 + }, + { + "start": 9200.68, + "end": 9201.9, + "probability": 0.9902 + }, + { + "start": 9203.2, + "end": 9206.06, + "probability": 0.9924 + }, + { + "start": 9206.74, + "end": 9208.54, + "probability": 0.9626 + }, + { + "start": 9209.34, + "end": 9212.36, + "probability": 0.9866 + }, + { + "start": 9213.54, + "end": 9215.02, + "probability": 0.6634 + }, + { + "start": 9215.56, + "end": 9217.18, + "probability": 0.8087 + }, + { + "start": 9217.72, + "end": 9220.44, + "probability": 0.9059 + }, + { + "start": 9220.96, + "end": 9222.22, + "probability": 0.6253 + }, + { + "start": 9222.5, + "end": 9224.12, + "probability": 0.9897 + }, + { + "start": 9224.24, + "end": 9225.4, + "probability": 0.9945 + }, + { + "start": 9225.88, + "end": 9226.4, + "probability": 0.9782 + }, + { + "start": 9227.48, + "end": 9229.78, + "probability": 0.8296 + }, + { + "start": 9230.66, + "end": 9232.78, + "probability": 0.998 + }, + { + "start": 9233.7, + "end": 9234.76, + "probability": 0.3976 + }, + { + "start": 9236.38, + "end": 9237.86, + "probability": 0.8695 + }, + { + "start": 9238.44, + "end": 9240.82, + "probability": 0.9879 + }, + { + "start": 9242.32, + "end": 9244.64, + "probability": 0.9988 + }, + { + "start": 9244.84, + "end": 9247.04, + "probability": 0.9829 + }, + { + "start": 9247.52, + "end": 9249.46, + "probability": 0.8013 + }, + { + "start": 9250.74, + "end": 9253.12, + "probability": 0.9985 + }, + { + "start": 9253.54, + "end": 9254.72, + "probability": 0.9707 + }, + { + "start": 9255.52, + "end": 9260.0, + "probability": 0.9747 + }, + { + "start": 9261.18, + "end": 9265.68, + "probability": 0.9939 + }, + { + "start": 9266.68, + "end": 9269.22, + "probability": 0.839 + }, + { + "start": 9269.5, + "end": 9270.44, + "probability": 0.9824 + }, + { + "start": 9270.66, + "end": 9271.92, + "probability": 0.9571 + }, + { + "start": 9272.72, + "end": 9274.22, + "probability": 0.969 + }, + { + "start": 9274.86, + "end": 9279.9, + "probability": 0.9901 + }, + { + "start": 9280.54, + "end": 9283.1, + "probability": 0.9511 + }, + { + "start": 9284.02, + "end": 9288.88, + "probability": 0.9844 + }, + { + "start": 9289.52, + "end": 9289.72, + "probability": 0.7659 + }, + { + "start": 9289.78, + "end": 9291.94, + "probability": 0.9227 + }, + { + "start": 9292.12, + "end": 9294.94, + "probability": 0.994 + }, + { + "start": 9295.08, + "end": 9295.64, + "probability": 0.4398 + }, + { + "start": 9296.02, + "end": 9297.26, + "probability": 0.9958 + }, + { + "start": 9298.04, + "end": 9300.38, + "probability": 0.9268 + }, + { + "start": 9302.62, + "end": 9307.14, + "probability": 0.9973 + }, + { + "start": 9307.24, + "end": 9312.64, + "probability": 0.9982 + }, + { + "start": 9313.26, + "end": 9313.96, + "probability": 0.7697 + }, + { + "start": 9314.1, + "end": 9315.21, + "probability": 0.9941 + }, + { + "start": 9316.7, + "end": 9317.68, + "probability": 0.7641 + }, + { + "start": 9318.62, + "end": 9320.65, + "probability": 0.9688 + }, + { + "start": 9321.28, + "end": 9324.74, + "probability": 0.9771 + }, + { + "start": 9325.62, + "end": 9329.84, + "probability": 0.8626 + }, + { + "start": 9329.96, + "end": 9336.12, + "probability": 0.8067 + }, + { + "start": 9337.62, + "end": 9340.38, + "probability": 0.763 + }, + { + "start": 9340.5, + "end": 9343.86, + "probability": 0.9878 + }, + { + "start": 9344.82, + "end": 9347.3, + "probability": 0.9795 + }, + { + "start": 9348.2, + "end": 9350.4, + "probability": 0.9836 + }, + { + "start": 9350.66, + "end": 9351.52, + "probability": 0.8571 + }, + { + "start": 9352.4, + "end": 9353.22, + "probability": 0.4053 + }, + { + "start": 9353.98, + "end": 9356.6, + "probability": 0.9577 + }, + { + "start": 9356.74, + "end": 9357.84, + "probability": 0.8867 + }, + { + "start": 9359.1, + "end": 9360.26, + "probability": 0.9608 + }, + { + "start": 9360.36, + "end": 9360.98, + "probability": 0.9875 + }, + { + "start": 9361.06, + "end": 9362.9, + "probability": 0.9969 + }, + { + "start": 9363.04, + "end": 9363.8, + "probability": 0.632 + }, + { + "start": 9364.2, + "end": 9365.82, + "probability": 0.8338 + }, + { + "start": 9366.28, + "end": 9369.3, + "probability": 0.9751 + }, + { + "start": 9369.4, + "end": 9369.78, + "probability": 0.8391 + }, + { + "start": 9369.94, + "end": 9370.18, + "probability": 0.3406 + }, + { + "start": 9370.84, + "end": 9372.6, + "probability": 0.6673 + }, + { + "start": 9372.82, + "end": 9374.72, + "probability": 0.9217 + }, + { + "start": 9376.9, + "end": 9378.4, + "probability": 0.8921 + }, + { + "start": 9379.86, + "end": 9381.66, + "probability": 0.8848 + }, + { + "start": 9383.12, + "end": 9384.94, + "probability": 0.9823 + }, + { + "start": 9386.3, + "end": 9389.46, + "probability": 0.9795 + }, + { + "start": 9390.46, + "end": 9395.94, + "probability": 0.9956 + }, + { + "start": 9396.46, + "end": 9397.18, + "probability": 0.9637 + }, + { + "start": 9397.78, + "end": 9399.54, + "probability": 0.9852 + }, + { + "start": 9400.48, + "end": 9401.68, + "probability": 0.9728 + }, + { + "start": 9403.8, + "end": 9408.28, + "probability": 0.9924 + }, + { + "start": 9409.76, + "end": 9411.89, + "probability": 0.9269 + }, + { + "start": 9413.34, + "end": 9416.0, + "probability": 0.915 + }, + { + "start": 9416.82, + "end": 9419.16, + "probability": 0.9697 + }, + { + "start": 9420.04, + "end": 9422.7, + "probability": 0.7615 + }, + { + "start": 9423.6, + "end": 9424.82, + "probability": 0.9609 + }, + { + "start": 9426.48, + "end": 9428.72, + "probability": 0.892 + }, + { + "start": 9428.76, + "end": 9432.88, + "probability": 0.978 + }, + { + "start": 9434.52, + "end": 9436.06, + "probability": 0.9973 + }, + { + "start": 9436.06, + "end": 9438.9, + "probability": 0.9782 + }, + { + "start": 9439.98, + "end": 9443.6, + "probability": 0.8837 + }, + { + "start": 9444.66, + "end": 9447.48, + "probability": 0.8835 + }, + { + "start": 9448.06, + "end": 9454.68, + "probability": 0.9735 + }, + { + "start": 9454.82, + "end": 9456.49, + "probability": 0.83 + }, + { + "start": 9457.2, + "end": 9460.0, + "probability": 0.7486 + }, + { + "start": 9460.28, + "end": 9461.52, + "probability": 0.8292 + }, + { + "start": 9461.8, + "end": 9462.96, + "probability": 0.6326 + }, + { + "start": 9463.76, + "end": 9467.0, + "probability": 0.9956 + }, + { + "start": 9467.52, + "end": 9469.84, + "probability": 0.9587 + }, + { + "start": 9470.28, + "end": 9471.88, + "probability": 0.7478 + }, + { + "start": 9473.5, + "end": 9474.66, + "probability": 0.8372 + }, + { + "start": 9475.54, + "end": 9479.94, + "probability": 0.9759 + }, + { + "start": 9480.62, + "end": 9486.62, + "probability": 0.976 + }, + { + "start": 9488.2, + "end": 9489.0, + "probability": 0.7332 + }, + { + "start": 9489.52, + "end": 9490.36, + "probability": 0.7601 + }, + { + "start": 9491.26, + "end": 9491.7, + "probability": 0.657 + }, + { + "start": 9493.68, + "end": 9495.16, + "probability": 0.9976 + }, + { + "start": 9495.2, + "end": 9498.4, + "probability": 0.9905 + }, + { + "start": 9498.4, + "end": 9503.4, + "probability": 0.8872 + }, + { + "start": 9503.52, + "end": 9506.14, + "probability": 0.9819 + }, + { + "start": 9506.64, + "end": 9510.34, + "probability": 0.9715 + }, + { + "start": 9511.2, + "end": 9515.3, + "probability": 0.9448 + }, + { + "start": 9515.4, + "end": 9516.94, + "probability": 0.9556 + }, + { + "start": 9517.86, + "end": 9520.94, + "probability": 0.8803 + }, + { + "start": 9521.46, + "end": 9525.66, + "probability": 0.99 + }, + { + "start": 9525.96, + "end": 9527.76, + "probability": 0.9938 + }, + { + "start": 9528.3, + "end": 9532.8, + "probability": 0.9947 + }, + { + "start": 9532.98, + "end": 9533.32, + "probability": 0.9063 + }, + { + "start": 9533.46, + "end": 9534.26, + "probability": 0.793 + }, + { + "start": 9534.6, + "end": 9538.89, + "probability": 0.9934 + }, + { + "start": 9540.0, + "end": 9541.13, + "probability": 0.9919 + }, + { + "start": 9541.88, + "end": 9544.32, + "probability": 0.7339 + }, + { + "start": 9545.46, + "end": 9548.78, + "probability": 0.9908 + }, + { + "start": 9549.48, + "end": 9551.7, + "probability": 0.9275 + }, + { + "start": 9552.02, + "end": 9554.6, + "probability": 0.9429 + }, + { + "start": 9554.68, + "end": 9558.04, + "probability": 0.973 + }, + { + "start": 9558.84, + "end": 9559.66, + "probability": 0.7173 + }, + { + "start": 9560.98, + "end": 9562.82, + "probability": 0.758 + }, + { + "start": 9563.06, + "end": 9563.6, + "probability": 0.8514 + }, + { + "start": 9564.1, + "end": 9565.68, + "probability": 0.9357 + }, + { + "start": 9566.98, + "end": 9569.42, + "probability": 0.9614 + }, + { + "start": 9569.94, + "end": 9571.32, + "probability": 0.8214 + }, + { + "start": 9572.28, + "end": 9573.52, + "probability": 0.9878 + }, + { + "start": 9573.58, + "end": 9575.32, + "probability": 0.7451 + }, + { + "start": 9575.46, + "end": 9578.36, + "probability": 0.9797 + }, + { + "start": 9578.7, + "end": 9582.92, + "probability": 0.9929 + }, + { + "start": 9583.08, + "end": 9583.14, + "probability": 0.3554 + }, + { + "start": 9583.22, + "end": 9584.38, + "probability": 0.915 + }, + { + "start": 9584.44, + "end": 9585.24, + "probability": 0.6595 + }, + { + "start": 9586.06, + "end": 9592.28, + "probability": 0.9828 + }, + { + "start": 9592.44, + "end": 9593.82, + "probability": 0.994 + }, + { + "start": 9593.96, + "end": 9594.44, + "probability": 0.662 + }, + { + "start": 9594.52, + "end": 9598.58, + "probability": 0.9867 + }, + { + "start": 9598.7, + "end": 9599.28, + "probability": 0.6659 + }, + { + "start": 9599.4, + "end": 9600.3, + "probability": 0.925 + }, + { + "start": 9601.62, + "end": 9606.3, + "probability": 0.9946 + }, + { + "start": 9607.38, + "end": 9609.06, + "probability": 0.8735 + }, + { + "start": 9610.4, + "end": 9613.36, + "probability": 0.8132 + }, + { + "start": 9614.96, + "end": 9616.66, + "probability": 0.9426 + }, + { + "start": 9616.76, + "end": 9617.0, + "probability": 0.7679 + }, + { + "start": 9617.36, + "end": 9619.48, + "probability": 0.9307 + }, + { + "start": 9621.06, + "end": 9621.74, + "probability": 0.9854 + }, + { + "start": 9623.54, + "end": 9624.18, + "probability": 0.8268 + }, + { + "start": 9625.08, + "end": 9628.14, + "probability": 0.9986 + }, + { + "start": 9629.1, + "end": 9631.37, + "probability": 0.9965 + }, + { + "start": 9632.06, + "end": 9634.0, + "probability": 0.9932 + }, + { + "start": 9635.44, + "end": 9635.68, + "probability": 0.8569 + }, + { + "start": 9636.26, + "end": 9637.02, + "probability": 0.9659 + }, + { + "start": 9637.68, + "end": 9639.74, + "probability": 0.9915 + }, + { + "start": 9640.48, + "end": 9644.2, + "probability": 0.9775 + }, + { + "start": 9645.08, + "end": 9648.8, + "probability": 0.9807 + }, + { + "start": 9649.84, + "end": 9655.82, + "probability": 0.9966 + }, + { + "start": 9656.18, + "end": 9661.78, + "probability": 0.9873 + }, + { + "start": 9662.02, + "end": 9663.02, + "probability": 0.9282 + }, + { + "start": 9663.12, + "end": 9663.3, + "probability": 0.901 + }, + { + "start": 9663.62, + "end": 9665.56, + "probability": 0.9338 + }, + { + "start": 9666.46, + "end": 9667.8, + "probability": 0.9915 + }, + { + "start": 9667.88, + "end": 9668.82, + "probability": 0.717 + }, + { + "start": 9668.96, + "end": 9670.44, + "probability": 0.902 + }, + { + "start": 9670.94, + "end": 9675.58, + "probability": 0.9417 + }, + { + "start": 9676.36, + "end": 9680.64, + "probability": 0.958 + }, + { + "start": 9681.26, + "end": 9685.32, + "probability": 0.9922 + }, + { + "start": 9685.7, + "end": 9686.1, + "probability": 0.7555 + }, + { + "start": 9687.36, + "end": 9689.88, + "probability": 0.8983 + }, + { + "start": 9690.42, + "end": 9691.94, + "probability": 0.9084 + }, + { + "start": 9692.7, + "end": 9693.74, + "probability": 0.5243 + }, + { + "start": 9695.04, + "end": 9695.32, + "probability": 0.8601 + }, + { + "start": 9697.46, + "end": 9698.22, + "probability": 0.5575 + }, + { + "start": 9715.84, + "end": 9716.88, + "probability": 0.6831 + }, + { + "start": 9717.5, + "end": 9719.22, + "probability": 0.8185 + }, + { + "start": 9720.08, + "end": 9720.92, + "probability": 0.7494 + }, + { + "start": 9722.74, + "end": 9723.24, + "probability": 0.864 + }, + { + "start": 9723.3, + "end": 9723.96, + "probability": 0.8885 + }, + { + "start": 9725.56, + "end": 9733.1, + "probability": 0.9845 + }, + { + "start": 9734.4, + "end": 9740.36, + "probability": 0.9917 + }, + { + "start": 9740.38, + "end": 9743.44, + "probability": 0.7729 + }, + { + "start": 9744.8, + "end": 9745.82, + "probability": 0.9937 + }, + { + "start": 9746.98, + "end": 9748.34, + "probability": 0.878 + }, + { + "start": 9748.94, + "end": 9752.36, + "probability": 0.9949 + }, + { + "start": 9753.34, + "end": 9754.28, + "probability": 0.922 + }, + { + "start": 9756.0, + "end": 9756.28, + "probability": 0.8989 + }, + { + "start": 9757.68, + "end": 9758.5, + "probability": 0.9113 + }, + { + "start": 9759.08, + "end": 9760.86, + "probability": 0.4305 + }, + { + "start": 9761.12, + "end": 9763.38, + "probability": 0.9969 + }, + { + "start": 9764.06, + "end": 9766.0, + "probability": 0.6906 + }, + { + "start": 9766.98, + "end": 9768.38, + "probability": 0.9585 + }, + { + "start": 9769.56, + "end": 9770.2, + "probability": 0.896 + }, + { + "start": 9770.2, + "end": 9775.56, + "probability": 0.9855 + }, + { + "start": 9776.72, + "end": 9780.14, + "probability": 0.9849 + }, + { + "start": 9780.32, + "end": 9782.03, + "probability": 0.8447 + }, + { + "start": 9782.78, + "end": 9784.58, + "probability": 0.9069 + }, + { + "start": 9785.1, + "end": 9788.46, + "probability": 0.9146 + }, + { + "start": 9789.96, + "end": 9791.92, + "probability": 0.9619 + }, + { + "start": 9793.36, + "end": 9796.3, + "probability": 0.9964 + }, + { + "start": 9797.36, + "end": 9799.54, + "probability": 0.682 + }, + { + "start": 9800.38, + "end": 9801.62, + "probability": 0.8411 + }, + { + "start": 9802.4, + "end": 9803.68, + "probability": 0.8888 + }, + { + "start": 9803.84, + "end": 9804.36, + "probability": 0.8242 + }, + { + "start": 9804.7, + "end": 9808.82, + "probability": 0.9937 + }, + { + "start": 9808.82, + "end": 9812.34, + "probability": 0.9888 + }, + { + "start": 9813.34, + "end": 9817.78, + "probability": 0.9941 + }, + { + "start": 9821.88, + "end": 9823.48, + "probability": 0.9167 + }, + { + "start": 9824.2, + "end": 9827.44, + "probability": 0.9941 + }, + { + "start": 9828.64, + "end": 9830.5, + "probability": 0.9758 + }, + { + "start": 9832.96, + "end": 9838.32, + "probability": 0.9976 + }, + { + "start": 9839.04, + "end": 9840.98, + "probability": 0.9666 + }, + { + "start": 9841.96, + "end": 9846.38, + "probability": 0.995 + }, + { + "start": 9847.5, + "end": 9852.6, + "probability": 0.9894 + }, + { + "start": 9853.68, + "end": 9854.36, + "probability": 0.9514 + }, + { + "start": 9854.46, + "end": 9855.18, + "probability": 0.7986 + }, + { + "start": 9855.32, + "end": 9856.72, + "probability": 0.5448 + }, + { + "start": 9857.62, + "end": 9860.5, + "probability": 0.9977 + }, + { + "start": 9860.5, + "end": 9865.92, + "probability": 0.7159 + }, + { + "start": 9865.96, + "end": 9866.4, + "probability": 0.9233 + }, + { + "start": 9867.22, + "end": 9869.44, + "probability": 0.9824 + }, + { + "start": 9869.94, + "end": 9871.04, + "probability": 0.8305 + }, + { + "start": 9871.8, + "end": 9874.36, + "probability": 0.9592 + }, + { + "start": 9874.92, + "end": 9875.92, + "probability": 0.9907 + }, + { + "start": 9876.04, + "end": 9876.94, + "probability": 0.9301 + }, + { + "start": 9877.06, + "end": 9878.8, + "probability": 0.8665 + }, + { + "start": 9879.54, + "end": 9880.32, + "probability": 0.9785 + }, + { + "start": 9881.6, + "end": 9884.54, + "probability": 0.9772 + }, + { + "start": 9885.06, + "end": 9886.7, + "probability": 0.9939 + }, + { + "start": 9886.78, + "end": 9887.68, + "probability": 0.9824 + }, + { + "start": 9888.64, + "end": 9890.94, + "probability": 0.972 + }, + { + "start": 9891.82, + "end": 9895.9, + "probability": 0.9229 + }, + { + "start": 9896.0, + "end": 9896.74, + "probability": 0.9941 + }, + { + "start": 9897.66, + "end": 9898.7, + "probability": 0.5338 + }, + { + "start": 9898.7, + "end": 9899.66, + "probability": 0.91 + }, + { + "start": 9900.1, + "end": 9900.52, + "probability": 0.0275 + }, + { + "start": 9901.93, + "end": 9902.16, + "probability": 0.0317 + }, + { + "start": 9902.4, + "end": 9902.9, + "probability": 0.4189 + }, + { + "start": 9904.66, + "end": 9906.74, + "probability": 0.9513 + }, + { + "start": 9907.66, + "end": 9908.6, + "probability": 0.5687 + }, + { + "start": 9910.3, + "end": 9913.12, + "probability": 0.8189 + }, + { + "start": 9915.06, + "end": 9918.42, + "probability": 0.9771 + }, + { + "start": 9920.3, + "end": 9923.52, + "probability": 0.6764 + }, + { + "start": 9923.62, + "end": 9923.98, + "probability": 0.7528 + }, + { + "start": 9924.04, + "end": 9924.54, + "probability": 0.9236 + }, + { + "start": 9924.6, + "end": 9925.52, + "probability": 0.7363 + }, + { + "start": 9925.96, + "end": 9928.26, + "probability": 0.9653 + }, + { + "start": 9929.02, + "end": 9930.22, + "probability": 0.947 + }, + { + "start": 9930.74, + "end": 9931.84, + "probability": 0.8597 + }, + { + "start": 9932.26, + "end": 9933.46, + "probability": 0.9771 + }, + { + "start": 9933.78, + "end": 9934.78, + "probability": 0.969 + }, + { + "start": 9935.12, + "end": 9936.94, + "probability": 0.9901 + }, + { + "start": 9938.06, + "end": 9939.7, + "probability": 0.8353 + }, + { + "start": 9940.38, + "end": 9941.08, + "probability": 0.9987 + }, + { + "start": 9941.42, + "end": 9941.72, + "probability": 0.634 + }, + { + "start": 9942.38, + "end": 9943.44, + "probability": 0.8628 + }, + { + "start": 9944.82, + "end": 9945.52, + "probability": 0.9976 + }, + { + "start": 9946.6, + "end": 9948.4, + "probability": 0.9949 + }, + { + "start": 9949.02, + "end": 9950.84, + "probability": 0.9951 + }, + { + "start": 9951.38, + "end": 9952.32, + "probability": 0.998 + }, + { + "start": 9952.76, + "end": 9953.92, + "probability": 0.5707 + }, + { + "start": 9954.0, + "end": 9955.72, + "probability": 0.9969 + }, + { + "start": 9956.84, + "end": 9957.88, + "probability": 0.9976 + }, + { + "start": 9960.18, + "end": 9962.28, + "probability": 0.9585 + }, + { + "start": 9963.52, + "end": 9964.76, + "probability": 0.7631 + }, + { + "start": 9965.8, + "end": 9966.46, + "probability": 0.9827 + }, + { + "start": 9967.24, + "end": 9972.32, + "probability": 0.9891 + }, + { + "start": 9973.26, + "end": 9974.18, + "probability": 0.8903 + }, + { + "start": 9976.58, + "end": 9978.58, + "probability": 0.9761 + }, + { + "start": 9978.66, + "end": 9980.68, + "probability": 0.9917 + }, + { + "start": 9981.42, + "end": 9981.92, + "probability": 0.7997 + }, + { + "start": 9984.88, + "end": 9985.96, + "probability": 0.6677 + }, + { + "start": 9987.28, + "end": 9987.92, + "probability": 0.744 + }, + { + "start": 9987.98, + "end": 9989.0, + "probability": 0.546 + }, + { + "start": 9989.1, + "end": 9992.16, + "probability": 0.9972 + }, + { + "start": 9992.8, + "end": 9993.8, + "probability": 0.3618 + }, + { + "start": 9994.12, + "end": 9995.08, + "probability": 0.0886 + }, + { + "start": 9995.4, + "end": 9995.5, + "probability": 0.3004 + }, + { + "start": 9995.56, + "end": 9996.39, + "probability": 0.088 + }, + { + "start": 9996.82, + "end": 9997.52, + "probability": 0.1189 + }, + { + "start": 9997.58, + "end": 9997.79, + "probability": 0.0826 + }, + { + "start": 9997.96, + "end": 10000.14, + "probability": 0.1078 + }, + { + "start": 10001.21, + "end": 10001.98, + "probability": 0.1641 + }, + { + "start": 10001.98, + "end": 10004.74, + "probability": 0.7665 + }, + { + "start": 10005.58, + "end": 10006.3, + "probability": 0.7576 + }, + { + "start": 10007.06, + "end": 10009.06, + "probability": 0.991 + }, + { + "start": 10009.66, + "end": 10010.94, + "probability": 0.9371 + }, + { + "start": 10011.1, + "end": 10012.2, + "probability": 0.99 + }, + { + "start": 10012.26, + "end": 10013.42, + "probability": 0.904 + }, + { + "start": 10014.36, + "end": 10016.74, + "probability": 0.9884 + }, + { + "start": 10017.4, + "end": 10021.14, + "probability": 0.9972 + }, + { + "start": 10022.04, + "end": 10022.85, + "probability": 0.9404 + }, + { + "start": 10023.7, + "end": 10024.54, + "probability": 0.9294 + }, + { + "start": 10024.74, + "end": 10026.32, + "probability": 0.5774 + }, + { + "start": 10026.36, + "end": 10027.2, + "probability": 0.9362 + }, + { + "start": 10027.36, + "end": 10028.8, + "probability": 0.9595 + }, + { + "start": 10029.6, + "end": 10032.72, + "probability": 0.8049 + }, + { + "start": 10033.04, + "end": 10034.18, + "probability": 0.8972 + }, + { + "start": 10034.38, + "end": 10035.12, + "probability": 0.8082 + }, + { + "start": 10035.52, + "end": 10036.22, + "probability": 0.7427 + }, + { + "start": 10036.68, + "end": 10038.14, + "probability": 0.9289 + }, + { + "start": 10040.46, + "end": 10043.04, + "probability": 0.9794 + }, + { + "start": 10044.42, + "end": 10046.2, + "probability": 0.9961 + }, + { + "start": 10047.0, + "end": 10051.12, + "probability": 0.9983 + }, + { + "start": 10051.64, + "end": 10056.1, + "probability": 0.9734 + }, + { + "start": 10056.68, + "end": 10060.46, + "probability": 0.8536 + }, + { + "start": 10061.12, + "end": 10062.1, + "probability": 0.9913 + }, + { + "start": 10062.88, + "end": 10067.5, + "probability": 0.9739 + }, + { + "start": 10067.5, + "end": 10072.2, + "probability": 0.999 + }, + { + "start": 10072.32, + "end": 10076.94, + "probability": 0.9991 + }, + { + "start": 10077.28, + "end": 10079.32, + "probability": 0.9634 + }, + { + "start": 10079.86, + "end": 10081.84, + "probability": 0.9624 + }, + { + "start": 10082.2, + "end": 10082.3, + "probability": 0.6172 + }, + { + "start": 10083.66, + "end": 10085.06, + "probability": 0.9902 + }, + { + "start": 10086.48, + "end": 10088.22, + "probability": 0.5044 + }, + { + "start": 10088.3, + "end": 10089.26, + "probability": 0.9702 + }, + { + "start": 10089.38, + "end": 10090.48, + "probability": 0.9339 + }, + { + "start": 10091.42, + "end": 10092.08, + "probability": 0.9825 + }, + { + "start": 10093.16, + "end": 10095.72, + "probability": 0.9959 + }, + { + "start": 10096.78, + "end": 10098.2, + "probability": 0.9927 + }, + { + "start": 10098.4, + "end": 10100.3, + "probability": 0.9946 + }, + { + "start": 10100.9, + "end": 10102.38, + "probability": 0.9695 + }, + { + "start": 10103.18, + "end": 10105.66, + "probability": 0.9394 + }, + { + "start": 10106.14, + "end": 10108.94, + "probability": 0.9848 + }, + { + "start": 10109.4, + "end": 10113.3, + "probability": 0.827 + }, + { + "start": 10113.84, + "end": 10114.58, + "probability": 0.4358 + }, + { + "start": 10114.96, + "end": 10116.98, + "probability": 0.5969 + }, + { + "start": 10117.54, + "end": 10118.76, + "probability": 0.9068 + }, + { + "start": 10119.34, + "end": 10122.48, + "probability": 0.8901 + }, + { + "start": 10123.02, + "end": 10125.98, + "probability": 0.8325 + }, + { + "start": 10126.34, + "end": 10126.58, + "probability": 0.5241 + }, + { + "start": 10126.86, + "end": 10128.86, + "probability": 0.7438 + }, + { + "start": 10129.44, + "end": 10132.78, + "probability": 0.7849 + }, + { + "start": 10139.98, + "end": 10140.0, + "probability": 0.1189 + }, + { + "start": 10140.0, + "end": 10140.0, + "probability": 0.153 + }, + { + "start": 10140.0, + "end": 10140.02, + "probability": 0.4661 + }, + { + "start": 10140.02, + "end": 10140.34, + "probability": 0.0611 + }, + { + "start": 10160.38, + "end": 10161.22, + "probability": 0.243 + }, + { + "start": 10161.92, + "end": 10164.44, + "probability": 0.6705 + }, + { + "start": 10165.3, + "end": 10169.1, + "probability": 0.9561 + }, + { + "start": 10170.88, + "end": 10170.98, + "probability": 0.5462 + }, + { + "start": 10171.36, + "end": 10174.62, + "probability": 0.9759 + }, + { + "start": 10174.82, + "end": 10177.08, + "probability": 0.8721 + }, + { + "start": 10178.08, + "end": 10180.32, + "probability": 0.7847 + }, + { + "start": 10180.4, + "end": 10184.61, + "probability": 0.9743 + }, + { + "start": 10185.76, + "end": 10186.1, + "probability": 0.9401 + }, + { + "start": 10186.86, + "end": 10188.64, + "probability": 0.7775 + }, + { + "start": 10190.52, + "end": 10194.56, + "probability": 0.9874 + }, + { + "start": 10194.96, + "end": 10199.02, + "probability": 0.9805 + }, + { + "start": 10200.32, + "end": 10205.43, + "probability": 0.9915 + }, + { + "start": 10205.9, + "end": 10209.18, + "probability": 0.8862 + }, + { + "start": 10210.88, + "end": 10213.86, + "probability": 0.9115 + }, + { + "start": 10214.74, + "end": 10215.96, + "probability": 0.9204 + }, + { + "start": 10216.26, + "end": 10219.18, + "probability": 0.9868 + }, + { + "start": 10219.72, + "end": 10221.32, + "probability": 0.8374 + }, + { + "start": 10222.26, + "end": 10224.06, + "probability": 0.9813 + }, + { + "start": 10224.18, + "end": 10228.98, + "probability": 0.9371 + }, + { + "start": 10229.18, + "end": 10232.28, + "probability": 0.9845 + }, + { + "start": 10233.08, + "end": 10235.4, + "probability": 0.9902 + }, + { + "start": 10236.54, + "end": 10237.04, + "probability": 0.9039 + }, + { + "start": 10237.58, + "end": 10238.42, + "probability": 0.5783 + }, + { + "start": 10239.56, + "end": 10239.82, + "probability": 0.1551 + }, + { + "start": 10240.06, + "end": 10240.68, + "probability": 0.4408 + }, + { + "start": 10241.42, + "end": 10243.84, + "probability": 0.8771 + }, + { + "start": 10244.36, + "end": 10247.78, + "probability": 0.5859 + }, + { + "start": 10248.62, + "end": 10250.51, + "probability": 0.8037 + }, + { + "start": 10251.18, + "end": 10252.4, + "probability": 0.9868 + }, + { + "start": 10253.16, + "end": 10255.82, + "probability": 0.9908 + }, + { + "start": 10256.42, + "end": 10257.48, + "probability": 0.3356 + }, + { + "start": 10259.46, + "end": 10259.53, + "probability": 0.7575 + }, + { + "start": 10260.32, + "end": 10262.96, + "probability": 0.9639 + }, + { + "start": 10263.02, + "end": 10264.02, + "probability": 0.775 + }, + { + "start": 10265.16, + "end": 10266.5, + "probability": 0.9272 + }, + { + "start": 10266.82, + "end": 10267.69, + "probability": 0.8843 + }, + { + "start": 10268.18, + "end": 10269.05, + "probability": 0.9316 + }, + { + "start": 10270.62, + "end": 10271.84, + "probability": 0.9408 + }, + { + "start": 10273.22, + "end": 10274.9, + "probability": 0.9209 + }, + { + "start": 10275.72, + "end": 10277.16, + "probability": 0.931 + }, + { + "start": 10279.04, + "end": 10279.46, + "probability": 0.8313 + }, + { + "start": 10279.92, + "end": 10285.86, + "probability": 0.9887 + }, + { + "start": 10287.7, + "end": 10289.84, + "probability": 0.6083 + }, + { + "start": 10289.84, + "end": 10297.14, + "probability": 0.8569 + }, + { + "start": 10298.22, + "end": 10301.62, + "probability": 0.8045 + }, + { + "start": 10301.74, + "end": 10303.02, + "probability": 0.9333 + }, + { + "start": 10303.68, + "end": 10304.88, + "probability": 0.9834 + }, + { + "start": 10305.08, + "end": 10308.22, + "probability": 0.958 + }, + { + "start": 10308.82, + "end": 10313.12, + "probability": 0.8406 + }, + { + "start": 10313.14, + "end": 10313.24, + "probability": 0.1005 + }, + { + "start": 10313.38, + "end": 10314.9, + "probability": 0.0427 + }, + { + "start": 10317.06, + "end": 10317.41, + "probability": 0.0165 + }, + { + "start": 10320.94, + "end": 10321.04, + "probability": 0.0577 + }, + { + "start": 10321.62, + "end": 10321.62, + "probability": 0.1116 + }, + { + "start": 10321.62, + "end": 10321.62, + "probability": 0.0729 + }, + { + "start": 10321.62, + "end": 10327.62, + "probability": 0.5571 + }, + { + "start": 10328.4, + "end": 10333.58, + "probability": 0.6572 + }, + { + "start": 10335.3, + "end": 10338.82, + "probability": 0.9685 + }, + { + "start": 10339.68, + "end": 10343.04, + "probability": 0.8887 + }, + { + "start": 10344.6, + "end": 10345.9, + "probability": 0.9647 + }, + { + "start": 10346.58, + "end": 10347.34, + "probability": 0.9368 + }, + { + "start": 10348.28, + "end": 10350.28, + "probability": 0.9584 + }, + { + "start": 10351.08, + "end": 10351.84, + "probability": 0.7651 + }, + { + "start": 10352.06, + "end": 10355.52, + "probability": 0.9772 + }, + { + "start": 10356.16, + "end": 10357.72, + "probability": 0.7616 + }, + { + "start": 10359.96, + "end": 10363.26, + "probability": 0.0151 + }, + { + "start": 10363.26, + "end": 10364.28, + "probability": 0.1196 + }, + { + "start": 10364.28, + "end": 10366.12, + "probability": 0.3115 + }, + { + "start": 10367.0, + "end": 10367.12, + "probability": 0.0519 + }, + { + "start": 10367.12, + "end": 10367.12, + "probability": 0.0504 + }, + { + "start": 10367.12, + "end": 10367.12, + "probability": 0.0773 + }, + { + "start": 10367.12, + "end": 10367.12, + "probability": 0.0976 + }, + { + "start": 10367.12, + "end": 10370.6, + "probability": 0.2834 + }, + { + "start": 10371.3, + "end": 10373.64, + "probability": 0.4207 + }, + { + "start": 10375.02, + "end": 10376.64, + "probability": 0.1293 + }, + { + "start": 10376.68, + "end": 10376.68, + "probability": 0.4449 + }, + { + "start": 10376.68, + "end": 10376.68, + "probability": 0.0491 + }, + { + "start": 10377.02, + "end": 10381.04, + "probability": 0.722 + }, + { + "start": 10381.18, + "end": 10381.48, + "probability": 0.8989 + }, + { + "start": 10381.86, + "end": 10387.56, + "probability": 0.9793 + }, + { + "start": 10387.94, + "end": 10389.18, + "probability": 0.8868 + }, + { + "start": 10389.82, + "end": 10392.54, + "probability": 0.8529 + }, + { + "start": 10394.66, + "end": 10394.96, + "probability": 0.9319 + }, + { + "start": 10396.26, + "end": 10396.92, + "probability": 0.3491 + }, + { + "start": 10398.84, + "end": 10400.52, + "probability": 0.8326 + }, + { + "start": 10401.68, + "end": 10402.58, + "probability": 0.0192 + }, + { + "start": 10402.78, + "end": 10403.46, + "probability": 0.8253 + }, + { + "start": 10404.02, + "end": 10408.66, + "probability": 0.9381 + }, + { + "start": 10409.2, + "end": 10409.52, + "probability": 0.6214 + }, + { + "start": 10410.52, + "end": 10410.86, + "probability": 0.7572 + }, + { + "start": 10412.58, + "end": 10416.66, + "probability": 0.6635 + }, + { + "start": 10417.06, + "end": 10418.91, + "probability": 0.9185 + }, + { + "start": 10419.0, + "end": 10420.14, + "probability": 0.772 + }, + { + "start": 10420.9, + "end": 10423.26, + "probability": 0.9572 + }, + { + "start": 10424.48, + "end": 10424.94, + "probability": 0.7764 + }, + { + "start": 10425.94, + "end": 10426.64, + "probability": 0.858 + }, + { + "start": 10428.28, + "end": 10430.06, + "probability": 0.9517 + }, + { + "start": 10431.78, + "end": 10433.08, + "probability": 0.6569 + }, + { + "start": 10434.4, + "end": 10434.88, + "probability": 0.9082 + }, + { + "start": 10435.58, + "end": 10436.06, + "probability": 0.3701 + }, + { + "start": 10436.64, + "end": 10437.64, + "probability": 0.8835 + }, + { + "start": 10438.7, + "end": 10440.38, + "probability": 0.9963 + }, + { + "start": 10441.56, + "end": 10443.34, + "probability": 0.9665 + }, + { + "start": 10444.32, + "end": 10445.2, + "probability": 0.9685 + }, + { + "start": 10445.88, + "end": 10452.42, + "probability": 0.8907 + }, + { + "start": 10453.44, + "end": 10455.22, + "probability": 0.9788 + }, + { + "start": 10456.52, + "end": 10461.16, + "probability": 0.7756 + }, + { + "start": 10461.96, + "end": 10462.92, + "probability": 0.9248 + }, + { + "start": 10463.72, + "end": 10464.42, + "probability": 0.7363 + }, + { + "start": 10465.12, + "end": 10467.22, + "probability": 0.9411 + }, + { + "start": 10467.98, + "end": 10470.78, + "probability": 0.7524 + }, + { + "start": 10471.18, + "end": 10472.72, + "probability": 0.9258 + }, + { + "start": 10473.68, + "end": 10475.43, + "probability": 0.8545 + }, + { + "start": 10476.9, + "end": 10479.64, + "probability": 0.9273 + }, + { + "start": 10480.6, + "end": 10482.1, + "probability": 0.5042 + }, + { + "start": 10482.24, + "end": 10483.3, + "probability": 0.7488 + }, + { + "start": 10483.68, + "end": 10484.45, + "probability": 0.887 + }, + { + "start": 10484.92, + "end": 10485.87, + "probability": 0.5996 + }, + { + "start": 10486.14, + "end": 10486.8, + "probability": 0.2075 + }, + { + "start": 10487.42, + "end": 10487.44, + "probability": 0.0643 + }, + { + "start": 10487.44, + "end": 10487.76, + "probability": 0.0751 + }, + { + "start": 10487.82, + "end": 10489.02, + "probability": 0.2823 + }, + { + "start": 10489.64, + "end": 10490.56, + "probability": 0.1676 + }, + { + "start": 10490.8, + "end": 10491.46, + "probability": 0.5535 + }, + { + "start": 10491.64, + "end": 10492.48, + "probability": 0.3824 + }, + { + "start": 10492.68, + "end": 10493.08, + "probability": 0.4542 + }, + { + "start": 10493.38, + "end": 10495.2, + "probability": 0.1283 + }, + { + "start": 10495.2, + "end": 10495.2, + "probability": 0.2364 + }, + { + "start": 10497.37, + "end": 10498.14, + "probability": 0.8743 + }, + { + "start": 10498.76, + "end": 10502.36, + "probability": 0.5762 + }, + { + "start": 10502.54, + "end": 10504.74, + "probability": 0.8954 + }, + { + "start": 10504.78, + "end": 10506.1, + "probability": 0.8962 + }, + { + "start": 10507.5, + "end": 10507.84, + "probability": 0.8295 + }, + { + "start": 10509.02, + "end": 10510.26, + "probability": 0.9775 + }, + { + "start": 10511.18, + "end": 10511.72, + "probability": 0.6274 + }, + { + "start": 10512.08, + "end": 10514.14, + "probability": 0.171 + }, + { + "start": 10514.56, + "end": 10515.2, + "probability": 0.7768 + }, + { + "start": 10515.46, + "end": 10516.24, + "probability": 0.0784 + }, + { + "start": 10516.46, + "end": 10516.52, + "probability": 0.0171 + }, + { + "start": 10516.52, + "end": 10516.52, + "probability": 0.0858 + }, + { + "start": 10516.52, + "end": 10516.52, + "probability": 0.1153 + }, + { + "start": 10516.52, + "end": 10516.52, + "probability": 0.3359 + }, + { + "start": 10516.52, + "end": 10516.52, + "probability": 0.1564 + }, + { + "start": 10516.52, + "end": 10516.52, + "probability": 0.1361 + }, + { + "start": 10516.52, + "end": 10517.74, + "probability": 0.6421 + }, + { + "start": 10518.5, + "end": 10520.28, + "probability": 0.9433 + }, + { + "start": 10521.12, + "end": 10523.02, + "probability": 0.8643 + }, + { + "start": 10523.62, + "end": 10527.3, + "probability": 0.9749 + }, + { + "start": 10527.3, + "end": 10531.14, + "probability": 0.9 + }, + { + "start": 10531.74, + "end": 10537.66, + "probability": 0.9663 + }, + { + "start": 10538.16, + "end": 10539.1, + "probability": 0.7953 + }, + { + "start": 10539.96, + "end": 10540.48, + "probability": 0.772 + }, + { + "start": 10541.22, + "end": 10542.88, + "probability": 0.9748 + }, + { + "start": 10543.72, + "end": 10544.68, + "probability": 0.757 + }, + { + "start": 10545.56, + "end": 10550.36, + "probability": 0.7066 + }, + { + "start": 10550.84, + "end": 10552.02, + "probability": 0.7483 + }, + { + "start": 10553.26, + "end": 10554.66, + "probability": 0.4998 + }, + { + "start": 10554.66, + "end": 10555.45, + "probability": 0.4891 + }, + { + "start": 10555.72, + "end": 10555.82, + "probability": 0.5556 + }, + { + "start": 10556.82, + "end": 10557.42, + "probability": 0.4055 + }, + { + "start": 10559.76, + "end": 10561.28, + "probability": 0.658 + }, + { + "start": 10561.36, + "end": 10561.54, + "probability": 0.4866 + }, + { + "start": 10562.0, + "end": 10562.48, + "probability": 0.4106 + }, + { + "start": 10563.38, + "end": 10564.0, + "probability": 0.4217 + }, + { + "start": 10564.18, + "end": 10565.12, + "probability": 0.7449 + }, + { + "start": 10565.14, + "end": 10566.06, + "probability": 0.6524 + }, + { + "start": 10566.16, + "end": 10573.4, + "probability": 0.8628 + }, + { + "start": 10573.98, + "end": 10575.82, + "probability": 0.7471 + }, + { + "start": 10576.68, + "end": 10579.7, + "probability": 0.9639 + }, + { + "start": 10580.5, + "end": 10581.66, + "probability": 0.6619 + }, + { + "start": 10582.76, + "end": 10582.96, + "probability": 0.9521 + }, + { + "start": 10584.2, + "end": 10585.06, + "probability": 0.8241 + }, + { + "start": 10585.62, + "end": 10586.5, + "probability": 0.713 + }, + { + "start": 10589.14, + "end": 10591.48, + "probability": 0.9367 + }, + { + "start": 10592.74, + "end": 10594.36, + "probability": 0.7784 + }, + { + "start": 10595.36, + "end": 10598.36, + "probability": 0.8628 + }, + { + "start": 10599.48, + "end": 10602.32, + "probability": 0.8819 + }, + { + "start": 10603.16, + "end": 10605.3, + "probability": 0.9034 + }, + { + "start": 10605.92, + "end": 10608.04, + "probability": 0.9874 + }, + { + "start": 10608.96, + "end": 10610.08, + "probability": 0.5735 + }, + { + "start": 10611.04, + "end": 10613.14, + "probability": 0.5972 + }, + { + "start": 10615.86, + "end": 10616.68, + "probability": 0.9989 + }, + { + "start": 10618.98, + "end": 10623.26, + "probability": 0.8425 + }, + { + "start": 10624.54, + "end": 10626.5, + "probability": 0.7266 + }, + { + "start": 10627.52, + "end": 10627.62, + "probability": 0.2598 + }, + { + "start": 10628.16, + "end": 10628.88, + "probability": 0.9365 + }, + { + "start": 10630.02, + "end": 10631.54, + "probability": 0.9744 + }, + { + "start": 10632.94, + "end": 10633.36, + "probability": 0.76 + }, + { + "start": 10634.46, + "end": 10637.3, + "probability": 0.8407 + }, + { + "start": 10638.14, + "end": 10639.72, + "probability": 0.7056 + }, + { + "start": 10639.84, + "end": 10643.38, + "probability": 0.9363 + }, + { + "start": 10643.84, + "end": 10644.44, + "probability": 0.8688 + }, + { + "start": 10644.48, + "end": 10645.66, + "probability": 0.9736 + }, + { + "start": 10646.88, + "end": 10648.5, + "probability": 0.9873 + }, + { + "start": 10648.68, + "end": 10650.32, + "probability": 0.9005 + }, + { + "start": 10650.56, + "end": 10650.82, + "probability": 0.4282 + }, + { + "start": 10651.32, + "end": 10651.68, + "probability": 0.9312 + }, + { + "start": 10651.74, + "end": 10654.76, + "probability": 0.9172 + }, + { + "start": 10655.18, + "end": 10657.1, + "probability": 0.6979 + }, + { + "start": 10657.1, + "end": 10657.2, + "probability": 0.0046 + }, + { + "start": 10657.2, + "end": 10660.54, + "probability": 0.8874 + }, + { + "start": 10661.16, + "end": 10668.76, + "probability": 0.9856 + }, + { + "start": 10670.22, + "end": 10670.78, + "probability": 0.6977 + }, + { + "start": 10671.34, + "end": 10672.25, + "probability": 0.8723 + }, + { + "start": 10673.38, + "end": 10674.12, + "probability": 0.6863 + }, + { + "start": 10674.86, + "end": 10677.06, + "probability": 0.9854 + }, + { + "start": 10678.76, + "end": 10682.42, + "probability": 0.9629 + }, + { + "start": 10683.1, + "end": 10684.08, + "probability": 0.8304 + }, + { + "start": 10684.6, + "end": 10685.72, + "probability": 0.9668 + }, + { + "start": 10687.0, + "end": 10691.94, + "probability": 0.9932 + }, + { + "start": 10692.54, + "end": 10697.18, + "probability": 0.9836 + }, + { + "start": 10699.56, + "end": 10704.74, + "probability": 0.972 + }, + { + "start": 10706.52, + "end": 10706.9, + "probability": 0.787 + }, + { + "start": 10707.42, + "end": 10711.3, + "probability": 0.7987 + }, + { + "start": 10712.98, + "end": 10718.82, + "probability": 0.9264 + }, + { + "start": 10720.02, + "end": 10721.12, + "probability": 0.9056 + }, + { + "start": 10723.02, + "end": 10726.0, + "probability": 0.8439 + }, + { + "start": 10726.88, + "end": 10728.1, + "probability": 0.9979 + }, + { + "start": 10728.74, + "end": 10730.6, + "probability": 0.7741 + }, + { + "start": 10732.84, + "end": 10733.94, + "probability": 0.897 + }, + { + "start": 10734.8, + "end": 10736.84, + "probability": 0.9123 + }, + { + "start": 10737.92, + "end": 10741.04, + "probability": 0.7287 + }, + { + "start": 10753.96, + "end": 10756.12, + "probability": 0.0456 + }, + { + "start": 10756.59, + "end": 10761.1, + "probability": 0.1223 + }, + { + "start": 10761.1, + "end": 10761.3, + "probability": 0.3575 + }, + { + "start": 10762.0, + "end": 10763.28, + "probability": 0.0729 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.0, + "end": 10858.0, + "probability": 0.0 + }, + { + "start": 10858.46, + "end": 10858.6, + "probability": 0.1767 + }, + { + "start": 10858.6, + "end": 10858.6, + "probability": 0.0408 + }, + { + "start": 10858.6, + "end": 10858.6, + "probability": 0.1237 + }, + { + "start": 10858.6, + "end": 10860.64, + "probability": 0.3878 + }, + { + "start": 10861.56, + "end": 10862.95, + "probability": 0.873 + }, + { + "start": 10863.16, + "end": 10864.86, + "probability": 0.5119 + }, + { + "start": 10865.68, + "end": 10868.28, + "probability": 0.0679 + }, + { + "start": 10868.28, + "end": 10868.28, + "probability": 0.2381 + }, + { + "start": 10868.32, + "end": 10870.92, + "probability": 0.8997 + }, + { + "start": 10871.1, + "end": 10873.86, + "probability": 0.9888 + }, + { + "start": 10876.08, + "end": 10876.42, + "probability": 0.1072 + }, + { + "start": 10876.42, + "end": 10879.26, + "probability": 0.0603 + }, + { + "start": 10879.94, + "end": 10882.78, + "probability": 0.1718 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.0, + "end": 10984.0, + "probability": 0.0 + }, + { + "start": 10984.5, + "end": 10984.58, + "probability": 0.093 + }, + { + "start": 10984.58, + "end": 10990.06, + "probability": 0.9475 + }, + { + "start": 10991.32, + "end": 10994.96, + "probability": 0.9848 + }, + { + "start": 10995.48, + "end": 10996.54, + "probability": 0.9323 + }, + { + "start": 10997.98, + "end": 11000.54, + "probability": 0.856 + }, + { + "start": 11001.52, + "end": 11003.76, + "probability": 0.994 + }, + { + "start": 11005.82, + "end": 11014.26, + "probability": 0.9843 + }, + { + "start": 11016.46, + "end": 11019.16, + "probability": 0.9902 + }, + { + "start": 11020.8, + "end": 11021.22, + "probability": 0.0953 + }, + { + "start": 11021.78, + "end": 11023.72, + "probability": 0.9953 + }, + { + "start": 11024.66, + "end": 11028.44, + "probability": 0.9367 + }, + { + "start": 11029.38, + "end": 11030.12, + "probability": 0.9331 + }, + { + "start": 11031.88, + "end": 11032.3, + "probability": 0.9524 + }, + { + "start": 11032.82, + "end": 11035.28, + "probability": 0.9977 + }, + { + "start": 11036.0, + "end": 11037.0, + "probability": 0.7312 + }, + { + "start": 11038.04, + "end": 11042.32, + "probability": 0.9776 + }, + { + "start": 11043.42, + "end": 11045.12, + "probability": 0.968 + }, + { + "start": 11046.3, + "end": 11047.86, + "probability": 0.852 + }, + { + "start": 11048.96, + "end": 11049.0, + "probability": 0.2974 + }, + { + "start": 11049.0, + "end": 11050.58, + "probability": 0.8367 + }, + { + "start": 11051.44, + "end": 11052.66, + "probability": 0.9441 + }, + { + "start": 11052.88, + "end": 11053.56, + "probability": 0.7951 + }, + { + "start": 11053.62, + "end": 11054.0, + "probability": 0.8058 + }, + { + "start": 11054.04, + "end": 11055.78, + "probability": 0.9951 + }, + { + "start": 11055.82, + "end": 11056.46, + "probability": 0.9524 + }, + { + "start": 11056.64, + "end": 11057.04, + "probability": 0.551 + }, + { + "start": 11058.3, + "end": 11060.44, + "probability": 0.0809 + }, + { + "start": 11060.44, + "end": 11062.0, + "probability": 0.1565 + }, + { + "start": 11062.98, + "end": 11065.16, + "probability": 0.9885 + }, + { + "start": 11065.74, + "end": 11068.8, + "probability": 0.9883 + }, + { + "start": 11068.96, + "end": 11071.34, + "probability": 0.9933 + }, + { + "start": 11072.1, + "end": 11073.48, + "probability": 0.5615 + }, + { + "start": 11073.88, + "end": 11074.85, + "probability": 0.3074 + }, + { + "start": 11075.08, + "end": 11075.36, + "probability": 0.3361 + }, + { + "start": 11075.6, + "end": 11077.3, + "probability": 0.7706 + }, + { + "start": 11077.76, + "end": 11078.92, + "probability": 0.8982 + }, + { + "start": 11078.92, + "end": 11079.18, + "probability": 0.0718 + }, + { + "start": 11079.72, + "end": 11080.56, + "probability": 0.7749 + }, + { + "start": 11081.38, + "end": 11082.24, + "probability": 0.9412 + }, + { + "start": 11083.38, + "end": 11085.32, + "probability": 0.9873 + }, + { + "start": 11086.74, + "end": 11090.74, + "probability": 0.9876 + }, + { + "start": 11092.24, + "end": 11098.22, + "probability": 0.9883 + }, + { + "start": 11099.06, + "end": 11100.44, + "probability": 0.9843 + }, + { + "start": 11101.54, + "end": 11102.84, + "probability": 0.9988 + }, + { + "start": 11104.18, + "end": 11105.24, + "probability": 0.9731 + }, + { + "start": 11105.92, + "end": 11109.16, + "probability": 0.9939 + }, + { + "start": 11109.98, + "end": 11111.06, + "probability": 0.9919 + }, + { + "start": 11112.12, + "end": 11115.34, + "probability": 0.9465 + }, + { + "start": 11116.16, + "end": 11120.2, + "probability": 0.9111 + }, + { + "start": 11121.72, + "end": 11124.6, + "probability": 0.9954 + }, + { + "start": 11125.22, + "end": 11127.28, + "probability": 0.9808 + }, + { + "start": 11128.16, + "end": 11129.38, + "probability": 0.9603 + }, + { + "start": 11130.48, + "end": 11130.94, + "probability": 0.7675 + }, + { + "start": 11131.56, + "end": 11132.2, + "probability": 0.9663 + }, + { + "start": 11133.32, + "end": 11136.66, + "probability": 0.9794 + }, + { + "start": 11136.86, + "end": 11140.0, + "probability": 0.6937 + }, + { + "start": 11140.64, + "end": 11141.14, + "probability": 0.0047 + }, + { + "start": 11141.14, + "end": 11143.32, + "probability": 0.5346 + }, + { + "start": 11143.42, + "end": 11145.92, + "probability": 0.3695 + }, + { + "start": 11145.98, + "end": 11147.49, + "probability": 0.4952 + }, + { + "start": 11148.2, + "end": 11150.17, + "probability": 0.7026 + }, + { + "start": 11152.26, + "end": 11153.22, + "probability": 0.2634 + }, + { + "start": 11154.08, + "end": 11154.7, + "probability": 0.1042 + }, + { + "start": 11154.94, + "end": 11155.61, + "probability": 0.2659 + }, + { + "start": 11157.14, + "end": 11157.8, + "probability": 0.3767 + }, + { + "start": 11157.8, + "end": 11159.6, + "probability": 0.2194 + }, + { + "start": 11159.82, + "end": 11160.98, + "probability": 0.568 + }, + { + "start": 11161.36, + "end": 11163.35, + "probability": 0.9435 + }, + { + "start": 11164.86, + "end": 11165.9, + "probability": 0.1425 + }, + { + "start": 11166.78, + "end": 11166.9, + "probability": 0.1344 + }, + { + "start": 11166.9, + "end": 11167.88, + "probability": 0.7267 + }, + { + "start": 11168.0, + "end": 11168.58, + "probability": 0.8454 + }, + { + "start": 11168.76, + "end": 11169.9, + "probability": 0.9958 + }, + { + "start": 11170.02, + "end": 11171.86, + "probability": 0.9003 + }, + { + "start": 11172.02, + "end": 11172.14, + "probability": 0.0032 + }, + { + "start": 11172.14, + "end": 11172.75, + "probability": 0.9303 + }, + { + "start": 11173.38, + "end": 11173.96, + "probability": 0.7063 + }, + { + "start": 11173.96, + "end": 11174.42, + "probability": 0.5449 + }, + { + "start": 11175.74, + "end": 11178.06, + "probability": 0.7362 + }, + { + "start": 11179.28, + "end": 11181.86, + "probability": 0.5337 + }, + { + "start": 11182.44, + "end": 11185.2, + "probability": 0.9624 + }, + { + "start": 11186.8, + "end": 11187.82, + "probability": 0.8532 + }, + { + "start": 11188.28, + "end": 11191.11, + "probability": 0.9851 + }, + { + "start": 11192.28, + "end": 11194.3, + "probability": 0.9676 + }, + { + "start": 11194.68, + "end": 11196.11, + "probability": 0.8177 + }, + { + "start": 11196.74, + "end": 11197.54, + "probability": 0.8042 + }, + { + "start": 11197.6, + "end": 11198.2, + "probability": 0.9679 + }, + { + "start": 11198.96, + "end": 11200.44, + "probability": 0.9811 + }, + { + "start": 11201.54, + "end": 11204.32, + "probability": 0.9945 + }, + { + "start": 11205.14, + "end": 11210.04, + "probability": 0.9871 + }, + { + "start": 11210.36, + "end": 11214.18, + "probability": 0.9427 + }, + { + "start": 11215.1, + "end": 11216.08, + "probability": 0.995 + }, + { + "start": 11216.92, + "end": 11218.28, + "probability": 0.7523 + }, + { + "start": 11218.98, + "end": 11219.86, + "probability": 0.9329 + }, + { + "start": 11220.78, + "end": 11223.68, + "probability": 0.9688 + }, + { + "start": 11224.42, + "end": 11227.62, + "probability": 0.9977 + }, + { + "start": 11228.76, + "end": 11230.76, + "probability": 0.9946 + }, + { + "start": 11230.76, + "end": 11234.8, + "probability": 0.9915 + }, + { + "start": 11235.66, + "end": 11239.02, + "probability": 0.9316 + }, + { + "start": 11239.86, + "end": 11242.1, + "probability": 0.7817 + }, + { + "start": 11243.14, + "end": 11244.52, + "probability": 0.9209 + }, + { + "start": 11245.0, + "end": 11246.66, + "probability": 0.9971 + }, + { + "start": 11247.14, + "end": 11247.9, + "probability": 0.7209 + }, + { + "start": 11248.22, + "end": 11248.34, + "probability": 0.2941 + }, + { + "start": 11248.6, + "end": 11248.86, + "probability": 0.3405 + }, + { + "start": 11249.22, + "end": 11249.62, + "probability": 0.466 + }, + { + "start": 11249.94, + "end": 11252.2, + "probability": 0.7588 + }, + { + "start": 11252.2, + "end": 11252.38, + "probability": 0.3965 + }, + { + "start": 11252.52, + "end": 11255.24, + "probability": 0.8731 + }, + { + "start": 11255.56, + "end": 11256.66, + "probability": 0.5353 + }, + { + "start": 11258.07, + "end": 11262.48, + "probability": 0.8481 + }, + { + "start": 11263.0, + "end": 11266.24, + "probability": 0.2485 + }, + { + "start": 11266.56, + "end": 11266.7, + "probability": 0.0528 + }, + { + "start": 11266.78, + "end": 11269.48, + "probability": 0.8746 + }, + { + "start": 11269.68, + "end": 11270.78, + "probability": 0.9988 + }, + { + "start": 11271.24, + "end": 11275.78, + "probability": 0.126 + }, + { + "start": 11276.4, + "end": 11278.28, + "probability": 0.8625 + }, + { + "start": 11279.3, + "end": 11282.82, + "probability": 0.9613 + }, + { + "start": 11283.38, + "end": 11283.54, + "probability": 0.6482 + }, + { + "start": 11284.2, + "end": 11287.02, + "probability": 0.9165 + }, + { + "start": 11287.5, + "end": 11289.5, + "probability": 0.9021 + }, + { + "start": 11289.94, + "end": 11292.46, + "probability": 0.9836 + }, + { + "start": 11293.0, + "end": 11294.06, + "probability": 0.9984 + }, + { + "start": 11296.3, + "end": 11298.16, + "probability": 0.9968 + }, + { + "start": 11299.38, + "end": 11302.02, + "probability": 0.9938 + }, + { + "start": 11302.64, + "end": 11305.9, + "probability": 0.6503 + }, + { + "start": 11306.02, + "end": 11308.94, + "probability": 0.9787 + }, + { + "start": 11308.98, + "end": 11310.32, + "probability": 0.1824 + }, + { + "start": 11310.68, + "end": 11311.36, + "probability": 0.6089 + }, + { + "start": 11312.62, + "end": 11313.64, + "probability": 0.651 + }, + { + "start": 11313.74, + "end": 11315.04, + "probability": 0.7412 + }, + { + "start": 11315.46, + "end": 11316.64, + "probability": 0.403 + }, + { + "start": 11316.8, + "end": 11317.71, + "probability": 0.5574 + }, + { + "start": 11317.95, + "end": 11321.48, + "probability": 0.6514 + }, + { + "start": 11321.5, + "end": 11322.0, + "probability": 0.654 + }, + { + "start": 11322.08, + "end": 11322.9, + "probability": 0.6273 + }, + { + "start": 11322.98, + "end": 11323.66, + "probability": 0.6392 + }, + { + "start": 11323.66, + "end": 11324.4, + "probability": 0.5686 + }, + { + "start": 11324.4, + "end": 11324.74, + "probability": 0.7401 + }, + { + "start": 11324.88, + "end": 11326.48, + "probability": 0.6329 + }, + { + "start": 11326.48, + "end": 11327.19, + "probability": 0.639 + }, + { + "start": 11328.8, + "end": 11332.0, + "probability": 0.0866 + }, + { + "start": 11332.0, + "end": 11333.22, + "probability": 0.4683 + }, + { + "start": 11333.22, + "end": 11334.54, + "probability": 0.7961 + }, + { + "start": 11335.98, + "end": 11336.16, + "probability": 0.232 + }, + { + "start": 11337.48, + "end": 11338.44, + "probability": 0.7545 + }, + { + "start": 11338.52, + "end": 11340.42, + "probability": 0.7955 + }, + { + "start": 11340.98, + "end": 11342.2, + "probability": 0.6292 + }, + { + "start": 11342.34, + "end": 11344.6, + "probability": 0.772 + }, + { + "start": 11344.76, + "end": 11345.96, + "probability": 0.6025 + }, + { + "start": 11346.2, + "end": 11348.28, + "probability": 0.762 + }, + { + "start": 11349.3, + "end": 11350.54, + "probability": 0.7803 + }, + { + "start": 11351.06, + "end": 11351.5, + "probability": 0.4814 + }, + { + "start": 11351.5, + "end": 11352.58, + "probability": 0.4603 + }, + { + "start": 11352.58, + "end": 11354.2, + "probability": 0.5908 + }, + { + "start": 11354.96, + "end": 11357.84, + "probability": 0.5229 + }, + { + "start": 11357.88, + "end": 11360.36, + "probability": 0.4272 + }, + { + "start": 11360.88, + "end": 11361.34, + "probability": 0.0064 + }, + { + "start": 11361.46, + "end": 11361.94, + "probability": 0.5325 + }, + { + "start": 11362.06, + "end": 11362.14, + "probability": 0.1992 + }, + { + "start": 11362.14, + "end": 11362.9, + "probability": 0.3227 + }, + { + "start": 11362.9, + "end": 11363.9, + "probability": 0.4265 + }, + { + "start": 11364.32, + "end": 11366.5, + "probability": 0.7219 + }, + { + "start": 11367.34, + "end": 11369.4, + "probability": 0.3356 + }, + { + "start": 11369.54, + "end": 11370.28, + "probability": 0.8757 + }, + { + "start": 11370.74, + "end": 11371.72, + "probability": 0.9629 + }, + { + "start": 11372.1, + "end": 11372.62, + "probability": 0.6272 + }, + { + "start": 11372.84, + "end": 11376.42, + "probability": 0.7922 + }, + { + "start": 11376.5, + "end": 11377.6, + "probability": 0.5788 + }, + { + "start": 11377.6, + "end": 11377.76, + "probability": 0.2718 + }, + { + "start": 11377.76, + "end": 11377.76, + "probability": 0.0821 + }, + { + "start": 11377.96, + "end": 11378.29, + "probability": 0.3158 + }, + { + "start": 11378.64, + "end": 11379.44, + "probability": 0.5007 + }, + { + "start": 11379.54, + "end": 11380.98, + "probability": 0.1246 + }, + { + "start": 11381.08, + "end": 11381.2, + "probability": 0.4263 + }, + { + "start": 11381.78, + "end": 11383.58, + "probability": 0.9241 + }, + { + "start": 11383.8, + "end": 11387.2, + "probability": 0.9845 + }, + { + "start": 11387.2, + "end": 11387.62, + "probability": 0.2815 + }, + { + "start": 11388.02, + "end": 11388.18, + "probability": 0.0484 + }, + { + "start": 11388.18, + "end": 11388.96, + "probability": 0.6765 + }, + { + "start": 11389.1, + "end": 11390.96, + "probability": 0.9968 + }, + { + "start": 11390.96, + "end": 11393.91, + "probability": 0.3115 + }, + { + "start": 11394.26, + "end": 11394.62, + "probability": 0.3366 + }, + { + "start": 11395.84, + "end": 11399.22, + "probability": 0.286 + }, + { + "start": 11399.62, + "end": 11400.88, + "probability": 0.6804 + }, + { + "start": 11401.2, + "end": 11405.28, + "probability": 0.3932 + }, + { + "start": 11405.38, + "end": 11405.38, + "probability": 0.3153 + }, + { + "start": 11405.42, + "end": 11406.46, + "probability": 0.6611 + }, + { + "start": 11406.46, + "end": 11406.7, + "probability": 0.2537 + }, + { + "start": 11407.12, + "end": 11410.3, + "probability": 0.9984 + }, + { + "start": 11410.34, + "end": 11412.24, + "probability": 0.8939 + }, + { + "start": 11412.72, + "end": 11414.42, + "probability": 0.6851 + }, + { + "start": 11415.62, + "end": 11418.76, + "probability": 0.9844 + }, + { + "start": 11419.34, + "end": 11420.26, + "probability": 0.9463 + }, + { + "start": 11420.3, + "end": 11421.64, + "probability": 0.4797 + }, + { + "start": 11422.44, + "end": 11428.1, + "probability": 0.9694 + }, + { + "start": 11428.66, + "end": 11431.63, + "probability": 0.6558 + }, + { + "start": 11431.88, + "end": 11432.36, + "probability": 0.7029 + }, + { + "start": 11432.46, + "end": 11432.96, + "probability": 0.55 + }, + { + "start": 11432.96, + "end": 11433.82, + "probability": 0.3959 + }, + { + "start": 11434.14, + "end": 11437.52, + "probability": 0.8683 + }, + { + "start": 11437.52, + "end": 11437.66, + "probability": 0.1369 + }, + { + "start": 11438.44, + "end": 11439.76, + "probability": 0.7504 + }, + { + "start": 11439.82, + "end": 11444.78, + "probability": 0.9648 + }, + { + "start": 11445.54, + "end": 11446.86, + "probability": 0.9968 + }, + { + "start": 11447.52, + "end": 11450.18, + "probability": 0.9854 + }, + { + "start": 11451.22, + "end": 11451.54, + "probability": 0.52 + }, + { + "start": 11452.3, + "end": 11453.74, + "probability": 0.9963 + }, + { + "start": 11454.68, + "end": 11457.1, + "probability": 0.9985 + }, + { + "start": 11457.8, + "end": 11461.5, + "probability": 0.9901 + }, + { + "start": 11461.5, + "end": 11465.6, + "probability": 0.9763 + }, + { + "start": 11466.42, + "end": 11467.24, + "probability": 0.4976 + }, + { + "start": 11467.86, + "end": 11471.8, + "probability": 0.8685 + }, + { + "start": 11471.88, + "end": 11473.8, + "probability": 0.8748 + }, + { + "start": 11473.84, + "end": 11475.48, + "probability": 0.9712 + }, + { + "start": 11475.5, + "end": 11476.22, + "probability": 0.8461 + }, + { + "start": 11476.6, + "end": 11477.52, + "probability": 0.9819 + }, + { + "start": 11477.7, + "end": 11479.0, + "probability": 0.9974 + }, + { + "start": 11479.12, + "end": 11479.66, + "probability": 0.9191 + }, + { + "start": 11480.14, + "end": 11480.84, + "probability": 0.9014 + }, + { + "start": 11481.58, + "end": 11484.54, + "probability": 0.8071 + }, + { + "start": 11485.06, + "end": 11487.98, + "probability": 0.0011 + }, + { + "start": 11487.98, + "end": 11488.44, + "probability": 0.2528 + }, + { + "start": 11488.76, + "end": 11491.32, + "probability": 0.8048 + }, + { + "start": 11492.5, + "end": 11495.24, + "probability": 0.8997 + }, + { + "start": 11495.24, + "end": 11496.1, + "probability": 0.0932 + }, + { + "start": 11496.12, + "end": 11498.42, + "probability": 0.0354 + }, + { + "start": 11498.5, + "end": 11498.5, + "probability": 0.0785 + }, + { + "start": 11498.5, + "end": 11499.44, + "probability": 0.6708 + }, + { + "start": 11499.5, + "end": 11501.62, + "probability": 0.1289 + }, + { + "start": 11502.0, + "end": 11504.38, + "probability": 0.9733 + }, + { + "start": 11504.62, + "end": 11506.2, + "probability": 0.9486 + }, + { + "start": 11506.7, + "end": 11507.32, + "probability": 0.6117 + }, + { + "start": 11508.58, + "end": 11509.36, + "probability": 0.3293 + }, + { + "start": 11510.38, + "end": 11511.22, + "probability": 0.3606 + }, + { + "start": 11511.7, + "end": 11512.22, + "probability": 0.9753 + }, + { + "start": 11512.54, + "end": 11513.78, + "probability": 0.8832 + }, + { + "start": 11514.24, + "end": 11516.2, + "probability": 0.9829 + }, + { + "start": 11516.52, + "end": 11518.8, + "probability": 0.9578 + }, + { + "start": 11519.34, + "end": 11520.58, + "probability": 0.9788 + }, + { + "start": 11521.08, + "end": 11522.06, + "probability": 0.6994 + }, + { + "start": 11522.56, + "end": 11523.3, + "probability": 0.8984 + }, + { + "start": 11524.22, + "end": 11526.0, + "probability": 0.6686 + }, + { + "start": 11526.52, + "end": 11527.52, + "probability": 0.9968 + }, + { + "start": 11528.04, + "end": 11530.9, + "probability": 0.7921 + }, + { + "start": 11530.96, + "end": 11531.62, + "probability": 0.6608 + }, + { + "start": 11532.14, + "end": 11533.32, + "probability": 0.9971 + }, + { + "start": 11533.52, + "end": 11534.35, + "probability": 0.9907 + }, + { + "start": 11535.12, + "end": 11535.86, + "probability": 0.9349 + }, + { + "start": 11536.58, + "end": 11537.7, + "probability": 0.9195 + }, + { + "start": 11538.46, + "end": 11540.0, + "probability": 0.9852 + }, + { + "start": 11540.64, + "end": 11541.64, + "probability": 0.8109 + }, + { + "start": 11542.32, + "end": 11543.28, + "probability": 0.8989 + }, + { + "start": 11543.92, + "end": 11544.74, + "probability": 0.9951 + }, + { + "start": 11545.48, + "end": 11546.7, + "probability": 0.7946 + }, + { + "start": 11547.46, + "end": 11548.82, + "probability": 0.9391 + }, + { + "start": 11549.54, + "end": 11550.86, + "probability": 0.8005 + }, + { + "start": 11551.22, + "end": 11553.7, + "probability": 0.9088 + }, + { + "start": 11554.58, + "end": 11557.84, + "probability": 0.9661 + }, + { + "start": 11558.34, + "end": 11563.44, + "probability": 0.9445 + }, + { + "start": 11563.96, + "end": 11566.18, + "probability": 0.9966 + }, + { + "start": 11566.32, + "end": 11566.42, + "probability": 0.3504 + }, + { + "start": 11566.94, + "end": 11569.18, + "probability": 0.9434 + }, + { + "start": 11569.74, + "end": 11571.78, + "probability": 0.9725 + }, + { + "start": 11572.58, + "end": 11573.74, + "probability": 0.814 + }, + { + "start": 11573.86, + "end": 11574.78, + "probability": 0.9932 + }, + { + "start": 11575.62, + "end": 11576.32, + "probability": 0.9944 + }, + { + "start": 11576.96, + "end": 11577.74, + "probability": 0.8996 + }, + { + "start": 11578.32, + "end": 11579.2, + "probability": 0.909 + }, + { + "start": 11580.18, + "end": 11583.04, + "probability": 0.3319 + }, + { + "start": 11583.08, + "end": 11585.96, + "probability": 0.2226 + }, + { + "start": 11585.96, + "end": 11588.16, + "probability": 0.2808 + }, + { + "start": 11589.06, + "end": 11590.95, + "probability": 0.5328 + }, + { + "start": 11592.76, + "end": 11593.04, + "probability": 0.0287 + }, + { + "start": 11597.56, + "end": 11598.72, + "probability": 0.4385 + }, + { + "start": 11599.16, + "end": 11601.88, + "probability": 0.9136 + }, + { + "start": 11601.9, + "end": 11602.44, + "probability": 0.4371 + }, + { + "start": 11602.44, + "end": 11602.51, + "probability": 0.3037 + }, + { + "start": 11603.24, + "end": 11605.16, + "probability": 0.2371 + }, + { + "start": 11605.3, + "end": 11605.74, + "probability": 0.6079 + }, + { + "start": 11605.82, + "end": 11606.14, + "probability": 0.6089 + }, + { + "start": 11606.14, + "end": 11607.2, + "probability": 0.721 + }, + { + "start": 11607.52, + "end": 11610.12, + "probability": 0.8156 + }, + { + "start": 11610.54, + "end": 11611.04, + "probability": 0.8285 + }, + { + "start": 11613.22, + "end": 11613.74, + "probability": 0.9956 + }, + { + "start": 11614.4, + "end": 11616.32, + "probability": 0.984 + }, + { + "start": 11618.12, + "end": 11618.88, + "probability": 0.9834 + }, + { + "start": 11619.56, + "end": 11620.78, + "probability": 0.7105 + }, + { + "start": 11621.34, + "end": 11621.82, + "probability": 0.2172 + }, + { + "start": 11621.82, + "end": 11622.84, + "probability": 0.7074 + }, + { + "start": 11623.52, + "end": 11624.44, + "probability": 0.9226 + }, + { + "start": 11624.54, + "end": 11624.9, + "probability": 0.6164 + }, + { + "start": 11624.92, + "end": 11626.6, + "probability": 0.8809 + }, + { + "start": 11627.06, + "end": 11628.1, + "probability": 0.7612 + }, + { + "start": 11628.5, + "end": 11630.3, + "probability": 0.571 + }, + { + "start": 11630.72, + "end": 11634.68, + "probability": 0.8915 + }, + { + "start": 11635.22, + "end": 11638.58, + "probability": 0.2169 + }, + { + "start": 11639.14, + "end": 11642.92, + "probability": 0.9678 + }, + { + "start": 11643.02, + "end": 11643.86, + "probability": 0.9611 + }, + { + "start": 11644.82, + "end": 11646.92, + "probability": 0.7005 + }, + { + "start": 11647.26, + "end": 11649.14, + "probability": 0.9941 + }, + { + "start": 11649.14, + "end": 11654.62, + "probability": 0.9434 + }, + { + "start": 11655.0, + "end": 11655.59, + "probability": 0.8053 + }, + { + "start": 11656.16, + "end": 11657.54, + "probability": 0.1428 + }, + { + "start": 11657.6, + "end": 11659.06, + "probability": 0.7812 + }, + { + "start": 11659.14, + "end": 11660.18, + "probability": 0.9961 + }, + { + "start": 11661.1, + "end": 11663.42, + "probability": 0.6503 + }, + { + "start": 11663.44, + "end": 11664.18, + "probability": 0.6951 + }, + { + "start": 11664.24, + "end": 11666.16, + "probability": 0.8735 + }, + { + "start": 11666.42, + "end": 11668.7, + "probability": 0.8333 + }, + { + "start": 11668.78, + "end": 11670.48, + "probability": 0.4019 + }, + { + "start": 11671.04, + "end": 11671.84, + "probability": 0.1335 + }, + { + "start": 11671.84, + "end": 11671.84, + "probability": 0.0991 + }, + { + "start": 11671.84, + "end": 11674.02, + "probability": 0.7292 + }, + { + "start": 11675.58, + "end": 11680.78, + "probability": 0.7382 + }, + { + "start": 11681.66, + "end": 11683.92, + "probability": 0.7709 + }, + { + "start": 11684.38, + "end": 11686.54, + "probability": 0.8182 + }, + { + "start": 11687.0, + "end": 11689.16, + "probability": 0.7111 + }, + { + "start": 11689.16, + "end": 11689.23, + "probability": 0.4346 + }, + { + "start": 11689.5, + "end": 11689.62, + "probability": 0.3799 + }, + { + "start": 11689.62, + "end": 11692.52, + "probability": 0.9907 + }, + { + "start": 11692.82, + "end": 11694.28, + "probability": 0.8421 + }, + { + "start": 11694.7, + "end": 11696.0, + "probability": 0.9882 + }, + { + "start": 11696.48, + "end": 11698.38, + "probability": 0.8342 + }, + { + "start": 11698.5, + "end": 11699.42, + "probability": 0.4874 + }, + { + "start": 11699.42, + "end": 11699.74, + "probability": 0.0405 + }, + { + "start": 11699.74, + "end": 11700.16, + "probability": 0.2383 + }, + { + "start": 11700.66, + "end": 11701.78, + "probability": 0.2542 + }, + { + "start": 11702.02, + "end": 11703.92, + "probability": 0.1396 + }, + { + "start": 11707.78, + "end": 11708.64, + "probability": 0.2829 + }, + { + "start": 11709.72, + "end": 11712.58, + "probability": 0.4642 + }, + { + "start": 11712.68, + "end": 11716.32, + "probability": 0.0711 + }, + { + "start": 11718.48, + "end": 11718.48, + "probability": 0.0338 + }, + { + "start": 11718.54, + "end": 11724.22, + "probability": 0.0969 + }, + { + "start": 11724.24, + "end": 11724.96, + "probability": 0.3394 + }, + { + "start": 11725.26, + "end": 11726.74, + "probability": 0.0635 + }, + { + "start": 11728.76, + "end": 11732.28, + "probability": 0.1964 + }, + { + "start": 11733.26, + "end": 11734.84, + "probability": 0.1197 + }, + { + "start": 11735.18, + "end": 11735.68, + "probability": 0.0214 + }, + { + "start": 11735.86, + "end": 11736.4, + "probability": 0.089 + }, + { + "start": 11736.92, + "end": 11740.1, + "probability": 0.0621 + }, + { + "start": 11740.46, + "end": 11740.64, + "probability": 0.0187 + }, + { + "start": 11741.74, + "end": 11742.9, + "probability": 0.2833 + }, + { + "start": 11743.66, + "end": 11744.38, + "probability": 0.0114 + }, + { + "start": 11744.48, + "end": 11746.04, + "probability": 0.0346 + }, + { + "start": 11747.14, + "end": 11750.0, + "probability": 0.602 + }, + { + "start": 11750.08, + "end": 11751.64, + "probability": 0.7668 + }, + { + "start": 11752.04, + "end": 11753.92, + "probability": 0.9774 + }, + { + "start": 11754.04, + "end": 11755.0, + "probability": 0.8527 + }, + { + "start": 11755.04, + "end": 11755.68, + "probability": 0.9056 + }, + { + "start": 11761.42, + "end": 11763.24, + "probability": 0.6744 + }, + { + "start": 11763.82, + "end": 11766.58, + "probability": 0.9824 + }, + { + "start": 11767.36, + "end": 11771.58, + "probability": 0.9985 + }, + { + "start": 11772.26, + "end": 11774.0, + "probability": 0.9865 + }, + { + "start": 11774.72, + "end": 11777.66, + "probability": 0.8892 + }, + { + "start": 11778.68, + "end": 11782.46, + "probability": 0.9945 + }, + { + "start": 11782.46, + "end": 11787.27, + "probability": 0.9974 + }, + { + "start": 11788.14, + "end": 11790.98, + "probability": 0.8774 + }, + { + "start": 11791.66, + "end": 11793.14, + "probability": 0.9505 + }, + { + "start": 11793.72, + "end": 11796.42, + "probability": 0.8751 + }, + { + "start": 11797.26, + "end": 11798.8, + "probability": 0.9919 + }, + { + "start": 11799.64, + "end": 11802.06, + "probability": 0.9963 + }, + { + "start": 11802.84, + "end": 11805.08, + "probability": 0.9849 + }, + { + "start": 11805.96, + "end": 11810.88, + "probability": 0.9906 + }, + { + "start": 11811.72, + "end": 11814.4, + "probability": 0.9966 + }, + { + "start": 11814.96, + "end": 11818.24, + "probability": 0.9668 + }, + { + "start": 11819.02, + "end": 11819.9, + "probability": 0.9062 + }, + { + "start": 11820.0, + "end": 11821.8, + "probability": 0.9946 + }, + { + "start": 11834.24, + "end": 11834.88, + "probability": 0.986 + }, + { + "start": 11835.64, + "end": 11836.64, + "probability": 0.0795 + }, + { + "start": 11836.64, + "end": 11836.64, + "probability": 0.0507 + }, + { + "start": 11836.64, + "end": 11840.4, + "probability": 0.5364 + }, + { + "start": 11841.18, + "end": 11842.42, + "probability": 0.8155 + }, + { + "start": 11842.96, + "end": 11844.67, + "probability": 0.8334 + }, + { + "start": 11845.5, + "end": 11847.28, + "probability": 0.9962 + }, + { + "start": 11848.52, + "end": 11849.56, + "probability": 0.9792 + }, + { + "start": 11850.42, + "end": 11853.6, + "probability": 0.9888 + }, + { + "start": 11854.44, + "end": 11857.18, + "probability": 0.9664 + }, + { + "start": 11857.74, + "end": 11862.48, + "probability": 0.9962 + }, + { + "start": 11863.02, + "end": 11869.62, + "probability": 0.9927 + }, + { + "start": 11870.18, + "end": 11873.74, + "probability": 0.9972 + }, + { + "start": 11875.22, + "end": 11875.96, + "probability": 0.0214 + }, + { + "start": 11875.96, + "end": 11877.34, + "probability": 0.4711 + }, + { + "start": 11877.96, + "end": 11879.24, + "probability": 0.7577 + }, + { + "start": 11879.82, + "end": 11880.72, + "probability": 0.7683 + }, + { + "start": 11881.02, + "end": 11884.7, + "probability": 0.8779 + }, + { + "start": 11885.86, + "end": 11889.3, + "probability": 0.81 + }, + { + "start": 11889.94, + "end": 11892.54, + "probability": 0.9839 + }, + { + "start": 11893.18, + "end": 11897.72, + "probability": 0.9893 + }, + { + "start": 11897.88, + "end": 11898.18, + "probability": 0.7647 + }, + { + "start": 11898.72, + "end": 11902.18, + "probability": 0.9972 + }, + { + "start": 11902.38, + "end": 11902.84, + "probability": 0.4245 + }, + { + "start": 11903.32, + "end": 11906.08, + "probability": 0.9813 + }, + { + "start": 11907.28, + "end": 11911.9, + "probability": 0.9954 + }, + { + "start": 11912.46, + "end": 11915.38, + "probability": 0.9878 + }, + { + "start": 11916.36, + "end": 11921.08, + "probability": 0.9985 + }, + { + "start": 11921.14, + "end": 11927.0, + "probability": 0.9991 + }, + { + "start": 11928.2, + "end": 11930.82, + "probability": 0.8632 + }, + { + "start": 11931.58, + "end": 11933.78, + "probability": 0.9908 + }, + { + "start": 11934.46, + "end": 11935.44, + "probability": 0.7448 + }, + { + "start": 11936.4, + "end": 11938.36, + "probability": 0.9282 + }, + { + "start": 11938.86, + "end": 11940.42, + "probability": 0.9874 + }, + { + "start": 11941.3, + "end": 11943.84, + "probability": 0.9758 + }, + { + "start": 11944.5, + "end": 11949.56, + "probability": 0.8423 + }, + { + "start": 11950.26, + "end": 11953.28, + "probability": 0.9964 + }, + { + "start": 11953.28, + "end": 11956.8, + "probability": 0.9977 + }, + { + "start": 11957.34, + "end": 11960.9, + "probability": 0.9878 + }, + { + "start": 11961.78, + "end": 11967.02, + "probability": 0.9944 + }, + { + "start": 11967.52, + "end": 11968.74, + "probability": 0.988 + }, + { + "start": 11969.56, + "end": 11973.74, + "probability": 0.9098 + }, + { + "start": 11974.22, + "end": 11976.98, + "probability": 0.9948 + }, + { + "start": 11976.98, + "end": 11980.46, + "probability": 0.9767 + }, + { + "start": 11981.22, + "end": 11983.48, + "probability": 0.996 + }, + { + "start": 11985.26, + "end": 11987.18, + "probability": 0.9785 + }, + { + "start": 11987.56, + "end": 11990.76, + "probability": 0.9888 + }, + { + "start": 11992.08, + "end": 11995.16, + "probability": 0.9194 + }, + { + "start": 11995.16, + "end": 11999.34, + "probability": 0.896 + }, + { + "start": 12000.1, + "end": 12003.48, + "probability": 0.9741 + }, + { + "start": 12004.08, + "end": 12005.3, + "probability": 0.6914 + }, + { + "start": 12006.34, + "end": 12007.54, + "probability": 0.7734 + }, + { + "start": 12007.66, + "end": 12011.58, + "probability": 0.946 + }, + { + "start": 12011.58, + "end": 12015.88, + "probability": 0.9639 + }, + { + "start": 12016.74, + "end": 12021.08, + "probability": 0.9875 + }, + { + "start": 12021.08, + "end": 12026.48, + "probability": 0.9985 + }, + { + "start": 12027.12, + "end": 12029.28, + "probability": 0.842 + }, + { + "start": 12029.82, + "end": 12032.56, + "probability": 0.9654 + }, + { + "start": 12033.02, + "end": 12034.1, + "probability": 0.999 + }, + { + "start": 12034.66, + "end": 12038.78, + "probability": 0.8821 + }, + { + "start": 12039.7, + "end": 12042.68, + "probability": 0.9797 + }, + { + "start": 12045.56, + "end": 12049.48, + "probability": 0.9571 + }, + { + "start": 12050.06, + "end": 12053.04, + "probability": 0.983 + }, + { + "start": 12053.92, + "end": 12058.14, + "probability": 0.9575 + }, + { + "start": 12058.42, + "end": 12059.42, + "probability": 0.9047 + }, + { + "start": 12059.96, + "end": 12063.44, + "probability": 0.9893 + }, + { + "start": 12064.1, + "end": 12067.6, + "probability": 0.9932 + }, + { + "start": 12068.46, + "end": 12072.6, + "probability": 0.912 + }, + { + "start": 12072.6, + "end": 12076.62, + "probability": 0.9958 + }, + { + "start": 12077.14, + "end": 12080.8, + "probability": 0.9978 + }, + { + "start": 12081.4, + "end": 12083.64, + "probability": 0.986 + }, + { + "start": 12084.64, + "end": 12085.58, + "probability": 0.7161 + }, + { + "start": 12086.14, + "end": 12086.36, + "probability": 0.8424 + }, + { + "start": 12087.3, + "end": 12089.8, + "probability": 0.9716 + }, + { + "start": 12089.8, + "end": 12092.96, + "probability": 0.9984 + }, + { + "start": 12093.48, + "end": 12095.78, + "probability": 0.9888 + }, + { + "start": 12096.26, + "end": 12098.62, + "probability": 0.985 + }, + { + "start": 12099.16, + "end": 12103.2, + "probability": 0.9996 + }, + { + "start": 12106.34, + "end": 12109.14, + "probability": 0.6765 + }, + { + "start": 12112.4, + "end": 12114.68, + "probability": 0.9317 + }, + { + "start": 12115.52, + "end": 12117.34, + "probability": 0.9136 + }, + { + "start": 12117.88, + "end": 12120.32, + "probability": 0.9924 + }, + { + "start": 12120.9, + "end": 12124.04, + "probability": 0.9648 + }, + { + "start": 12124.78, + "end": 12129.52, + "probability": 0.9953 + }, + { + "start": 12129.52, + "end": 12133.86, + "probability": 0.9997 + }, + { + "start": 12134.64, + "end": 12138.14, + "probability": 0.9978 + }, + { + "start": 12138.14, + "end": 12141.14, + "probability": 0.9979 + }, + { + "start": 12141.76, + "end": 12143.94, + "probability": 0.9885 + }, + { + "start": 12143.94, + "end": 12147.84, + "probability": 0.9864 + }, + { + "start": 12147.96, + "end": 12154.06, + "probability": 0.8911 + }, + { + "start": 12155.34, + "end": 12156.48, + "probability": 0.9824 + }, + { + "start": 12157.16, + "end": 12159.7, + "probability": 0.9729 + }, + { + "start": 12159.7, + "end": 12163.06, + "probability": 0.9827 + }, + { + "start": 12164.1, + "end": 12166.6, + "probability": 0.8991 + }, + { + "start": 12167.36, + "end": 12168.18, + "probability": 0.8984 + }, + { + "start": 12169.38, + "end": 12173.04, + "probability": 0.9966 + }, + { + "start": 12173.96, + "end": 12176.25, + "probability": 0.7972 + }, + { + "start": 12176.84, + "end": 12181.28, + "probability": 0.9832 + }, + { + "start": 12181.28, + "end": 12185.16, + "probability": 0.9962 + }, + { + "start": 12186.1, + "end": 12190.17, + "probability": 0.998 + }, + { + "start": 12190.74, + "end": 12196.72, + "probability": 0.9197 + }, + { + "start": 12197.24, + "end": 12198.44, + "probability": 0.9858 + }, + { + "start": 12200.1, + "end": 12204.04, + "probability": 0.9496 + }, + { + "start": 12204.56, + "end": 12205.42, + "probability": 0.8768 + }, + { + "start": 12206.0, + "end": 12207.38, + "probability": 0.9969 + }, + { + "start": 12208.04, + "end": 12209.16, + "probability": 0.8908 + }, + { + "start": 12209.52, + "end": 12211.44, + "probability": 0.9913 + }, + { + "start": 12211.88, + "end": 12217.1, + "probability": 0.9472 + }, + { + "start": 12217.98, + "end": 12219.1, + "probability": 0.7499 + }, + { + "start": 12219.64, + "end": 12223.1, + "probability": 0.7182 + }, + { + "start": 12224.12, + "end": 12226.44, + "probability": 0.8378 + }, + { + "start": 12227.4, + "end": 12228.74, + "probability": 0.4794 + }, + { + "start": 12229.7, + "end": 12230.32, + "probability": 0.7884 + }, + { + "start": 12231.1, + "end": 12233.26, + "probability": 0.12 + }, + { + "start": 12237.9, + "end": 12240.76, + "probability": 0.1884 + }, + { + "start": 12241.8, + "end": 12245.28, + "probability": 0.5312 + }, + { + "start": 12245.76, + "end": 12248.76, + "probability": 0.6658 + }, + { + "start": 12249.2, + "end": 12249.8, + "probability": 0.8862 + }, + { + "start": 12250.18, + "end": 12251.12, + "probability": 0.8845 + }, + { + "start": 12251.52, + "end": 12253.08, + "probability": 0.9115 + }, + { + "start": 12253.58, + "end": 12253.68, + "probability": 0.0457 + }, + { + "start": 12256.28, + "end": 12259.8, + "probability": 0.764 + }, + { + "start": 12260.46, + "end": 12262.06, + "probability": 0.9185 + }, + { + "start": 12263.08, + "end": 12265.26, + "probability": 0.9013 + }, + { + "start": 12266.26, + "end": 12267.82, + "probability": 0.9561 + }, + { + "start": 12268.98, + "end": 12271.48, + "probability": 0.9174 + }, + { + "start": 12271.5, + "end": 12273.28, + "probability": 0.9799 + }, + { + "start": 12273.36, + "end": 12273.88, + "probability": 0.8468 + }, + { + "start": 12273.96, + "end": 12276.54, + "probability": 0.979 + }, + { + "start": 12277.04, + "end": 12278.3, + "probability": 0.8652 + }, + { + "start": 12279.26, + "end": 12280.04, + "probability": 0.9897 + }, + { + "start": 12281.24, + "end": 12282.89, + "probability": 0.8357 + }, + { + "start": 12284.23, + "end": 12285.93, + "probability": 0.855 + }, + { + "start": 12286.11, + "end": 12289.39, + "probability": 0.9961 + }, + { + "start": 12290.15, + "end": 12292.61, + "probability": 0.9647 + }, + { + "start": 12292.67, + "end": 12294.13, + "probability": 0.8301 + }, + { + "start": 12294.25, + "end": 12294.73, + "probability": 0.7852 + }, + { + "start": 12294.73, + "end": 12295.51, + "probability": 0.4004 + }, + { + "start": 12298.69, + "end": 12299.27, + "probability": 0.2781 + }, + { + "start": 12300.27, + "end": 12302.14, + "probability": 0.6624 + }, + { + "start": 12302.17, + "end": 12305.61, + "probability": 0.9209 + }, + { + "start": 12305.67, + "end": 12306.53, + "probability": 0.695 + }, + { + "start": 12307.65, + "end": 12308.93, + "probability": 0.6574 + }, + { + "start": 12309.21, + "end": 12311.91, + "probability": 0.8573 + }, + { + "start": 12311.99, + "end": 12313.38, + "probability": 0.8787 + }, + { + "start": 12314.51, + "end": 12314.51, + "probability": 0.0362 + }, + { + "start": 12314.51, + "end": 12317.95, + "probability": 0.9911 + }, + { + "start": 12317.95, + "end": 12320.79, + "probability": 0.9993 + }, + { + "start": 12321.33, + "end": 12322.45, + "probability": 0.9976 + }, + { + "start": 12323.35, + "end": 12323.41, + "probability": 0.3339 + }, + { + "start": 12323.61, + "end": 12324.15, + "probability": 0.9233 + }, + { + "start": 12324.21, + "end": 12324.51, + "probability": 0.8151 + }, + { + "start": 12324.55, + "end": 12326.29, + "probability": 0.6662 + }, + { + "start": 12326.53, + "end": 12329.81, + "probability": 0.9858 + }, + { + "start": 12330.47, + "end": 12335.41, + "probability": 0.96 + }, + { + "start": 12335.47, + "end": 12336.17, + "probability": 0.972 + }, + { + "start": 12336.25, + "end": 12337.77, + "probability": 0.9683 + }, + { + "start": 12338.77, + "end": 12342.01, + "probability": 0.8712 + }, + { + "start": 12342.73, + "end": 12343.59, + "probability": 0.5949 + }, + { + "start": 12343.73, + "end": 12344.51, + "probability": 0.9037 + }, + { + "start": 12344.93, + "end": 12346.43, + "probability": 0.9697 + }, + { + "start": 12347.39, + "end": 12349.11, + "probability": 0.8059 + }, + { + "start": 12349.33, + "end": 12354.19, + "probability": 0.9705 + }, + { + "start": 12354.69, + "end": 12356.67, + "probability": 0.9405 + }, + { + "start": 12357.29, + "end": 12360.41, + "probability": 0.9112 + }, + { + "start": 12360.93, + "end": 12362.61, + "probability": 0.9974 + }, + { + "start": 12363.19, + "end": 12365.21, + "probability": 0.792 + }, + { + "start": 12365.39, + "end": 12368.03, + "probability": 0.8675 + }, + { + "start": 12368.81, + "end": 12371.85, + "probability": 0.7832 + }, + { + "start": 12372.57, + "end": 12373.85, + "probability": 0.7341 + }, + { + "start": 12375.53, + "end": 12376.73, + "probability": 0.9268 + }, + { + "start": 12376.89, + "end": 12378.75, + "probability": 0.8694 + }, + { + "start": 12379.25, + "end": 12382.11, + "probability": 0.9795 + }, + { + "start": 12383.76, + "end": 12385.55, + "probability": 0.9858 + }, + { + "start": 12385.65, + "end": 12386.97, + "probability": 0.8684 + }, + { + "start": 12387.53, + "end": 12389.29, + "probability": 0.9409 + }, + { + "start": 12390.61, + "end": 12392.17, + "probability": 0.9972 + }, + { + "start": 12393.13, + "end": 12394.13, + "probability": 0.8968 + }, + { + "start": 12394.33, + "end": 12398.09, + "probability": 0.9692 + }, + { + "start": 12398.41, + "end": 12400.35, + "probability": 0.9501 + }, + { + "start": 12400.41, + "end": 12403.67, + "probability": 0.9411 + }, + { + "start": 12403.69, + "end": 12407.39, + "probability": 0.9746 + }, + { + "start": 12408.21, + "end": 12410.45, + "probability": 0.8035 + }, + { + "start": 12411.11, + "end": 12412.99, + "probability": 0.7951 + }, + { + "start": 12413.97, + "end": 12416.19, + "probability": 0.8303 + }, + { + "start": 12416.71, + "end": 12418.65, + "probability": 0.7367 + }, + { + "start": 12419.81, + "end": 12420.99, + "probability": 0.8783 + }, + { + "start": 12421.07, + "end": 12422.69, + "probability": 0.8718 + }, + { + "start": 12423.05, + "end": 12423.57, + "probability": 0.7424 + }, + { + "start": 12426.21, + "end": 12426.69, + "probability": 0.457 + }, + { + "start": 12427.39, + "end": 12429.18, + "probability": 0.6573 + }, + { + "start": 12429.61, + "end": 12431.81, + "probability": 0.9696 + }, + { + "start": 12431.87, + "end": 12433.73, + "probability": 0.9967 + }, + { + "start": 12433.79, + "end": 12435.65, + "probability": 0.6465 + }, + { + "start": 12435.77, + "end": 12437.29, + "probability": 0.9888 + }, + { + "start": 12437.37, + "end": 12438.37, + "probability": 0.9415 + }, + { + "start": 12439.13, + "end": 12441.11, + "probability": 0.9807 + }, + { + "start": 12441.15, + "end": 12442.61, + "probability": 0.9421 + }, + { + "start": 12443.69, + "end": 12452.69, + "probability": 0.7881 + }, + { + "start": 12453.41, + "end": 12455.41, + "probability": 0.9452 + }, + { + "start": 12456.43, + "end": 12458.79, + "probability": 0.9049 + }, + { + "start": 12458.89, + "end": 12460.45, + "probability": 0.6768 + }, + { + "start": 12461.29, + "end": 12461.83, + "probability": 0.8362 + }, + { + "start": 12462.39, + "end": 12466.89, + "probability": 0.6289 + }, + { + "start": 12469.95, + "end": 12472.43, + "probability": 0.7242 + }, + { + "start": 12474.46, + "end": 12475.35, + "probability": 0.9949 + }, + { + "start": 12476.67, + "end": 12479.97, + "probability": 0.934 + }, + { + "start": 12480.91, + "end": 12482.51, + "probability": 0.9495 + }, + { + "start": 12483.67, + "end": 12486.69, + "probability": 0.9644 + }, + { + "start": 12486.99, + "end": 12488.43, + "probability": 0.7773 + }, + { + "start": 12489.37, + "end": 12495.37, + "probability": 0.9451 + }, + { + "start": 12496.21, + "end": 12498.63, + "probability": 0.8473 + }, + { + "start": 12498.87, + "end": 12500.13, + "probability": 0.8904 + }, + { + "start": 12500.21, + "end": 12505.69, + "probability": 0.7034 + }, + { + "start": 12505.85, + "end": 12506.83, + "probability": 0.9919 + }, + { + "start": 12506.95, + "end": 12508.81, + "probability": 0.9426 + }, + { + "start": 12509.51, + "end": 12510.53, + "probability": 0.8163 + }, + { + "start": 12510.61, + "end": 12511.29, + "probability": 0.8035 + }, + { + "start": 12511.35, + "end": 12511.89, + "probability": 0.7945 + }, + { + "start": 12512.17, + "end": 12513.67, + "probability": 0.9746 + }, + { + "start": 12514.28, + "end": 12517.15, + "probability": 0.9126 + }, + { + "start": 12517.97, + "end": 12521.13, + "probability": 0.9795 + }, + { + "start": 12521.97, + "end": 12523.17, + "probability": 0.7129 + }, + { + "start": 12523.27, + "end": 12526.59, + "probability": 0.9525 + }, + { + "start": 12527.33, + "end": 12527.65, + "probability": 0.7181 + }, + { + "start": 12528.01, + "end": 12532.79, + "probability": 0.851 + }, + { + "start": 12533.91, + "end": 12534.59, + "probability": 0.7991 + }, + { + "start": 12535.51, + "end": 12536.22, + "probability": 0.9946 + }, + { + "start": 12536.45, + "end": 12537.35, + "probability": 0.9745 + }, + { + "start": 12537.51, + "end": 12538.84, + "probability": 0.8621 + }, + { + "start": 12540.03, + "end": 12542.75, + "probability": 0.92 + }, + { + "start": 12543.81, + "end": 12544.25, + "probability": 0.9885 + }, + { + "start": 12545.43, + "end": 12550.77, + "probability": 0.9617 + }, + { + "start": 12550.91, + "end": 12551.79, + "probability": 0.5885 + }, + { + "start": 12552.25, + "end": 12554.15, + "probability": 0.7918 + }, + { + "start": 12555.31, + "end": 12557.61, + "probability": 0.7786 + }, + { + "start": 12558.35, + "end": 12559.33, + "probability": 0.96 + }, + { + "start": 12560.17, + "end": 12562.13, + "probability": 0.9493 + }, + { + "start": 12563.51, + "end": 12566.24, + "probability": 0.9814 + }, + { + "start": 12567.47, + "end": 12568.01, + "probability": 0.8578 + }, + { + "start": 12568.19, + "end": 12569.69, + "probability": 0.0986 + }, + { + "start": 12569.69, + "end": 12574.13, + "probability": 0.859 + }, + { + "start": 12574.23, + "end": 12577.45, + "probability": 0.981 + }, + { + "start": 12577.81, + "end": 12579.71, + "probability": 0.9901 + }, + { + "start": 12579.79, + "end": 12580.07, + "probability": 0.622 + }, + { + "start": 12580.25, + "end": 12582.19, + "probability": 0.7002 + }, + { + "start": 12582.85, + "end": 12582.92, + "probability": 0.1808 + }, + { + "start": 12583.43, + "end": 12584.15, + "probability": 0.6064 + }, + { + "start": 12584.23, + "end": 12584.97, + "probability": 0.7626 + }, + { + "start": 12585.03, + "end": 12585.67, + "probability": 0.9027 + }, + { + "start": 12585.67, + "end": 12587.76, + "probability": 0.777 + }, + { + "start": 12589.23, + "end": 12594.93, + "probability": 0.9339 + }, + { + "start": 12595.41, + "end": 12597.33, + "probability": 0.7915 + }, + { + "start": 12597.49, + "end": 12599.25, + "probability": 0.9784 + }, + { + "start": 12599.43, + "end": 12599.91, + "probability": 0.5852 + }, + { + "start": 12600.29, + "end": 12602.31, + "probability": 0.9858 + }, + { + "start": 12603.47, + "end": 12604.03, + "probability": 0.7222 + }, + { + "start": 12604.91, + "end": 12607.19, + "probability": 0.9309 + }, + { + "start": 12607.89, + "end": 12610.51, + "probability": 0.7042 + }, + { + "start": 12611.17, + "end": 12613.87, + "probability": 0.7543 + }, + { + "start": 12613.91, + "end": 12616.29, + "probability": 0.9054 + }, + { + "start": 12616.63, + "end": 12620.15, + "probability": 0.9581 + }, + { + "start": 12621.83, + "end": 12623.91, + "probability": 0.6681 + }, + { + "start": 12624.49, + "end": 12625.41, + "probability": 0.9116 + }, + { + "start": 12625.51, + "end": 12625.83, + "probability": 0.4127 + }, + { + "start": 12625.91, + "end": 12626.46, + "probability": 0.873 + }, + { + "start": 12626.59, + "end": 12627.51, + "probability": 0.8063 + }, + { + "start": 12627.63, + "end": 12628.47, + "probability": 0.9257 + }, + { + "start": 12628.77, + "end": 12631.97, + "probability": 0.903 + }, + { + "start": 12632.95, + "end": 12634.63, + "probability": 0.989 + }, + { + "start": 12634.63, + "end": 12636.49, + "probability": 0.9963 + }, + { + "start": 12637.45, + "end": 12639.67, + "probability": 0.9934 + }, + { + "start": 12641.29, + "end": 12646.19, + "probability": 0.9392 + }, + { + "start": 12647.09, + "end": 12648.95, + "probability": 0.6277 + }, + { + "start": 12648.99, + "end": 12649.77, + "probability": 0.866 + }, + { + "start": 12649.87, + "end": 12650.37, + "probability": 0.7903 + }, + { + "start": 12651.57, + "end": 12656.53, + "probability": 0.9339 + }, + { + "start": 12658.09, + "end": 12659.67, + "probability": 0.9976 + }, + { + "start": 12659.91, + "end": 12662.81, + "probability": 0.9495 + }, + { + "start": 12663.65, + "end": 12668.33, + "probability": 0.9932 + }, + { + "start": 12669.29, + "end": 12675.33, + "probability": 0.9979 + }, + { + "start": 12676.01, + "end": 12677.25, + "probability": 0.9286 + }, + { + "start": 12677.35, + "end": 12681.14, + "probability": 0.9793 + }, + { + "start": 12682.21, + "end": 12684.57, + "probability": 0.9411 + }, + { + "start": 12685.37, + "end": 12687.61, + "probability": 0.5298 + }, + { + "start": 12688.11, + "end": 12688.27, + "probability": 0.1674 + }, + { + "start": 12688.33, + "end": 12688.7, + "probability": 0.897 + }, + { + "start": 12688.89, + "end": 12689.11, + "probability": 0.6362 + }, + { + "start": 12689.73, + "end": 12694.69, + "probability": 0.9833 + }, + { + "start": 12695.29, + "end": 12696.83, + "probability": 0.9756 + }, + { + "start": 12698.11, + "end": 12701.95, + "probability": 0.9924 + }, + { + "start": 12702.01, + "end": 12703.11, + "probability": 0.9 + }, + { + "start": 12703.49, + "end": 12703.84, + "probability": 0.6456 + }, + { + "start": 12705.07, + "end": 12706.99, + "probability": 0.8076 + }, + { + "start": 12707.47, + "end": 12710.43, + "probability": 0.9888 + }, + { + "start": 12710.43, + "end": 12714.13, + "probability": 0.9439 + }, + { + "start": 12714.81, + "end": 12716.2, + "probability": 0.9943 + }, + { + "start": 12716.73, + "end": 12719.77, + "probability": 0.9611 + }, + { + "start": 12721.17, + "end": 12724.01, + "probability": 0.9163 + }, + { + "start": 12724.07, + "end": 12725.01, + "probability": 0.9365 + }, + { + "start": 12725.13, + "end": 12728.41, + "probability": 0.9789 + }, + { + "start": 12729.01, + "end": 12730.19, + "probability": 0.9824 + }, + { + "start": 12730.33, + "end": 12735.57, + "probability": 0.9841 + }, + { + "start": 12736.49, + "end": 12736.93, + "probability": 0.7369 + }, + { + "start": 12736.97, + "end": 12738.63, + "probability": 0.8539 + }, + { + "start": 12738.81, + "end": 12739.47, + "probability": 0.7507 + }, + { + "start": 12740.53, + "end": 12746.54, + "probability": 0.8423 + }, + { + "start": 12746.95, + "end": 12748.15, + "probability": 0.999 + }, + { + "start": 12749.05, + "end": 12750.81, + "probability": 0.9823 + }, + { + "start": 12751.49, + "end": 12756.49, + "probability": 0.9326 + }, + { + "start": 12756.85, + "end": 12758.13, + "probability": 0.755 + }, + { + "start": 12759.59, + "end": 12762.99, + "probability": 0.9719 + }, + { + "start": 12763.09, + "end": 12765.53, + "probability": 0.9393 + }, + { + "start": 12765.53, + "end": 12766.79, + "probability": 0.9832 + }, + { + "start": 12767.35, + "end": 12768.33, + "probability": 0.9926 + }, + { + "start": 12769.73, + "end": 12771.63, + "probability": 0.8916 + }, + { + "start": 12772.27, + "end": 12773.43, + "probability": 0.9365 + }, + { + "start": 12774.59, + "end": 12777.99, + "probability": 0.8467 + }, + { + "start": 12778.05, + "end": 12779.67, + "probability": 0.9491 + }, + { + "start": 12780.45, + "end": 12783.37, + "probability": 0.895 + }, + { + "start": 12783.87, + "end": 12784.01, + "probability": 0.38 + }, + { + "start": 12784.09, + "end": 12784.97, + "probability": 0.924 + }, + { + "start": 12785.07, + "end": 12787.63, + "probability": 0.7604 + }, + { + "start": 12788.13, + "end": 12790.11, + "probability": 0.9829 + }, + { + "start": 12790.57, + "end": 12793.73, + "probability": 0.9771 + }, + { + "start": 12793.83, + "end": 12796.77, + "probability": 0.8841 + }, + { + "start": 12797.19, + "end": 12798.21, + "probability": 0.9122 + }, + { + "start": 12798.75, + "end": 12803.85, + "probability": 0.9642 + }, + { + "start": 12804.21, + "end": 12806.87, + "probability": 0.9945 + }, + { + "start": 12807.49, + "end": 12808.13, + "probability": 0.7438 + }, + { + "start": 12809.01, + "end": 12810.88, + "probability": 0.9942 + }, + { + "start": 12811.77, + "end": 12814.05, + "probability": 0.9804 + }, + { + "start": 12816.06, + "end": 12817.89, + "probability": 0.8879 + }, + { + "start": 12819.09, + "end": 12823.06, + "probability": 0.9911 + }, + { + "start": 12823.91, + "end": 12826.99, + "probability": 0.8803 + }, + { + "start": 12827.85, + "end": 12832.29, + "probability": 0.5274 + }, + { + "start": 12832.89, + "end": 12834.87, + "probability": 0.9822 + }, + { + "start": 12834.95, + "end": 12835.73, + "probability": 0.8066 + }, + { + "start": 12836.65, + "end": 12840.47, + "probability": 0.8201 + }, + { + "start": 12840.47, + "end": 12844.23, + "probability": 0.9399 + }, + { + "start": 12844.39, + "end": 12846.09, + "probability": 0.825 + }, + { + "start": 12846.99, + "end": 12847.73, + "probability": 0.761 + }, + { + "start": 12848.25, + "end": 12848.81, + "probability": 0.3849 + }, + { + "start": 12849.41, + "end": 12850.25, + "probability": 0.5807 + }, + { + "start": 12850.73, + "end": 12855.05, + "probability": 0.787 + }, + { + "start": 12855.19, + "end": 12860.97, + "probability": 0.8488 + }, + { + "start": 12861.59, + "end": 12862.57, + "probability": 0.8836 + }, + { + "start": 12862.79, + "end": 12863.15, + "probability": 0.6316 + }, + { + "start": 12863.23, + "end": 12865.95, + "probability": 0.9586 + }, + { + "start": 12866.57, + "end": 12868.57, + "probability": 0.9929 + }, + { + "start": 12868.57, + "end": 12872.93, + "probability": 0.8793 + }, + { + "start": 12873.73, + "end": 12875.73, + "probability": 0.9916 + }, + { + "start": 12876.83, + "end": 12879.35, + "probability": 0.9604 + }, + { + "start": 12880.69, + "end": 12882.99, + "probability": 0.8066 + }, + { + "start": 12882.99, + "end": 12886.69, + "probability": 0.9245 + }, + { + "start": 12887.29, + "end": 12892.91, + "probability": 0.9829 + }, + { + "start": 12893.97, + "end": 12895.93, + "probability": 0.9943 + }, + { + "start": 12896.95, + "end": 12900.95, + "probability": 0.9917 + }, + { + "start": 12900.99, + "end": 12905.83, + "probability": 0.9782 + }, + { + "start": 12906.65, + "end": 12907.07, + "probability": 0.8002 + }, + { + "start": 12907.15, + "end": 12913.87, + "probability": 0.9704 + }, + { + "start": 12913.97, + "end": 12916.57, + "probability": 0.9874 + }, + { + "start": 12916.61, + "end": 12917.63, + "probability": 0.5979 + }, + { + "start": 12917.71, + "end": 12920.71, + "probability": 0.9985 + }, + { + "start": 12921.23, + "end": 12922.33, + "probability": 0.8785 + }, + { + "start": 12922.79, + "end": 12925.13, + "probability": 0.9971 + }, + { + "start": 12925.21, + "end": 12925.99, + "probability": 0.4734 + }, + { + "start": 12925.99, + "end": 12927.33, + "probability": 0.9355 + }, + { + "start": 12927.87, + "end": 12929.55, + "probability": 0.8434 + }, + { + "start": 12929.71, + "end": 12930.25, + "probability": 0.3371 + }, + { + "start": 12930.69, + "end": 12931.53, + "probability": 0.5854 + }, + { + "start": 12931.59, + "end": 12932.59, + "probability": 0.8923 + }, + { + "start": 12933.54, + "end": 12937.35, + "probability": 0.8677 + }, + { + "start": 12937.43, + "end": 12942.33, + "probability": 0.8821 + }, + { + "start": 12942.88, + "end": 12943.9, + "probability": 0.9027 + }, + { + "start": 12944.95, + "end": 12947.45, + "probability": 0.9775 + }, + { + "start": 12948.07, + "end": 12950.43, + "probability": 0.9319 + }, + { + "start": 12951.37, + "end": 12953.31, + "probability": 0.8208 + }, + { + "start": 12954.87, + "end": 12956.67, + "probability": 0.7999 + }, + { + "start": 12956.67, + "end": 12960.41, + "probability": 0.8336 + }, + { + "start": 12961.33, + "end": 12962.25, + "probability": 0.9661 + }, + { + "start": 12962.33, + "end": 12962.49, + "probability": 0.6044 + }, + { + "start": 12962.51, + "end": 12965.77, + "probability": 0.9709 + }, + { + "start": 12965.79, + "end": 12967.73, + "probability": 0.984 + }, + { + "start": 12968.27, + "end": 12968.51, + "probability": 0.1432 + }, + { + "start": 12971.41, + "end": 12972.37, + "probability": 0.1444 + }, + { + "start": 12972.37, + "end": 12973.93, + "probability": 0.9782 + }, + { + "start": 12973.93, + "end": 12974.61, + "probability": 0.6723 + }, + { + "start": 12974.63, + "end": 12979.59, + "probability": 0.905 + }, + { + "start": 12980.73, + "end": 12981.77, + "probability": 0.0054 + }, + { + "start": 12982.59, + "end": 12982.59, + "probability": 0.0146 + }, + { + "start": 12982.59, + "end": 12984.3, + "probability": 0.3529 + }, + { + "start": 12984.91, + "end": 12985.35, + "probability": 0.1567 + }, + { + "start": 12985.35, + "end": 12985.64, + "probability": 0.2864 + }, + { + "start": 12986.41, + "end": 12987.83, + "probability": 0.9304 + }, + { + "start": 12987.87, + "end": 12988.43, + "probability": 0.0972 + }, + { + "start": 12988.93, + "end": 12990.07, + "probability": 0.9795 + }, + { + "start": 12990.65, + "end": 12992.67, + "probability": 0.7506 + }, + { + "start": 12992.73, + "end": 12992.93, + "probability": 0.1634 + }, + { + "start": 12992.93, + "end": 12993.45, + "probability": 0.6053 + }, + { + "start": 12993.89, + "end": 12998.81, + "probability": 0.9547 + }, + { + "start": 12999.91, + "end": 12999.91, + "probability": 0.3534 + }, + { + "start": 12999.91, + "end": 13000.15, + "probability": 0.7901 + }, + { + "start": 13000.49, + "end": 13002.57, + "probability": 0.4688 + }, + { + "start": 13002.57, + "end": 13003.17, + "probability": 0.3434 + }, + { + "start": 13004.19, + "end": 13007.21, + "probability": 0.734 + }, + { + "start": 13007.55, + "end": 13010.52, + "probability": 0.9474 + }, + { + "start": 13010.65, + "end": 13012.47, + "probability": 0.6511 + }, + { + "start": 13012.47, + "end": 13015.07, + "probability": 0.3921 + }, + { + "start": 13016.57, + "end": 13019.19, + "probability": 0.0881 + }, + { + "start": 13019.29, + "end": 13021.39, + "probability": 0.2422 + }, + { + "start": 13021.63, + "end": 13022.83, + "probability": 0.3118 + }, + { + "start": 13022.97, + "end": 13022.97, + "probability": 0.0767 + }, + { + "start": 13022.97, + "end": 13022.97, + "probability": 0.0157 + }, + { + "start": 13022.99, + "end": 13023.85, + "probability": 0.4075 + }, + { + "start": 13023.91, + "end": 13024.75, + "probability": 0.7285 + }, + { + "start": 13025.11, + "end": 13026.59, + "probability": 0.6813 + }, + { + "start": 13026.61, + "end": 13033.51, + "probability": 0.9846 + }, + { + "start": 13033.51, + "end": 13035.47, + "probability": 0.3817 + }, + { + "start": 13035.47, + "end": 13037.45, + "probability": 0.8354 + }, + { + "start": 13037.51, + "end": 13038.83, + "probability": 0.8957 + }, + { + "start": 13038.87, + "end": 13040.53, + "probability": 0.8217 + }, + { + "start": 13040.79, + "end": 13042.29, + "probability": 0.169 + }, + { + "start": 13043.05, + "end": 13043.99, + "probability": 0.7979 + }, + { + "start": 13044.03, + "end": 13046.53, + "probability": 0.1841 + }, + { + "start": 13046.83, + "end": 13047.79, + "probability": 0.5349 + }, + { + "start": 13047.89, + "end": 13048.59, + "probability": 0.5272 + }, + { + "start": 13049.03, + "end": 13050.59, + "probability": 0.2428 + }, + { + "start": 13051.63, + "end": 13052.19, + "probability": 0.4756 + }, + { + "start": 13052.35, + "end": 13053.54, + "probability": 0.9075 + }, + { + "start": 13053.81, + "end": 13054.29, + "probability": 0.7737 + }, + { + "start": 13054.35, + "end": 13056.83, + "probability": 0.9603 + }, + { + "start": 13057.43, + "end": 13063.33, + "probability": 0.9949 + }, + { + "start": 13064.1, + "end": 13067.27, + "probability": 0.1423 + }, + { + "start": 13069.07, + "end": 13070.61, + "probability": 0.5634 + }, + { + "start": 13070.71, + "end": 13073.25, + "probability": 0.9356 + }, + { + "start": 13074.11, + "end": 13078.57, + "probability": 0.8721 + }, + { + "start": 13078.91, + "end": 13080.95, + "probability": 0.8645 + }, + { + "start": 13081.11, + "end": 13082.73, + "probability": 0.6721 + }, + { + "start": 13082.85, + "end": 13083.01, + "probability": 0.0101 + }, + { + "start": 13083.01, + "end": 13086.59, + "probability": 0.6191 + }, + { + "start": 13086.81, + "end": 13089.79, + "probability": 0.5419 + }, + { + "start": 13090.11, + "end": 13090.53, + "probability": 0.4844 + }, + { + "start": 13091.89, + "end": 13094.31, + "probability": 0.9543 + }, + { + "start": 13094.31, + "end": 13097.99, + "probability": 0.9758 + }, + { + "start": 13098.47, + "end": 13100.01, + "probability": 0.9919 + }, + { + "start": 13100.57, + "end": 13103.25, + "probability": 0.9383 + }, + { + "start": 13103.29, + "end": 13104.63, + "probability": 0.9267 + }, + { + "start": 13104.77, + "end": 13105.15, + "probability": 0.3948 + }, + { + "start": 13105.41, + "end": 13108.23, + "probability": 0.7864 + }, + { + "start": 13108.69, + "end": 13109.38, + "probability": 0.7398 + }, + { + "start": 13109.53, + "end": 13110.61, + "probability": 0.9648 + }, + { + "start": 13110.94, + "end": 13116.25, + "probability": 0.8264 + }, + { + "start": 13116.35, + "end": 13117.01, + "probability": 0.2112 + }, + { + "start": 13117.05, + "end": 13121.04, + "probability": 0.8936 + }, + { + "start": 13121.23, + "end": 13121.45, + "probability": 0.0074 + }, + { + "start": 13121.45, + "end": 13121.45, + "probability": 0.1935 + }, + { + "start": 13121.45, + "end": 13122.55, + "probability": 0.3656 + }, + { + "start": 13123.11, + "end": 13125.11, + "probability": 0.7188 + }, + { + "start": 13125.17, + "end": 13126.53, + "probability": 0.8275 + }, + { + "start": 13126.77, + "end": 13127.57, + "probability": 0.2034 + }, + { + "start": 13127.85, + "end": 13131.41, + "probability": 0.0663 + }, + { + "start": 13133.09, + "end": 13133.87, + "probability": 0.0753 + }, + { + "start": 13133.89, + "end": 13134.15, + "probability": 0.0363 + }, + { + "start": 13134.51, + "end": 13135.72, + "probability": 0.1536 + }, + { + "start": 13136.23, + "end": 13138.59, + "probability": 0.033 + }, + { + "start": 13139.29, + "end": 13140.99, + "probability": 0.2504 + }, + { + "start": 13140.99, + "end": 13143.69, + "probability": 0.2954 + }, + { + "start": 13143.71, + "end": 13144.52, + "probability": 0.0775 + }, + { + "start": 13144.77, + "end": 13145.03, + "probability": 0.2577 + }, + { + "start": 13145.39, + "end": 13149.81, + "probability": 0.2818 + }, + { + "start": 13150.23, + "end": 13152.27, + "probability": 0.0534 + }, + { + "start": 13152.33, + "end": 13155.97, + "probability": 0.0698 + }, + { + "start": 13156.27, + "end": 13159.77, + "probability": 0.0989 + }, + { + "start": 13159.95, + "end": 13165.31, + "probability": 0.0574 + }, + { + "start": 13165.31, + "end": 13166.15, + "probability": 0.2225 + }, + { + "start": 13166.63, + "end": 13168.67, + "probability": 0.0253 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.0, + "end": 13186.0, + "probability": 0.0 + }, + { + "start": 13186.1, + "end": 13186.22, + "probability": 0.1028 + }, + { + "start": 13186.22, + "end": 13186.22, + "probability": 0.1303 + }, + { + "start": 13186.22, + "end": 13186.92, + "probability": 0.5993 + }, + { + "start": 13190.75, + "end": 13191.84, + "probability": 0.086 + }, + { + "start": 13191.84, + "end": 13198.24, + "probability": 0.2092 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.0, + "end": 13322.0, + "probability": 0.0 + }, + { + "start": 13322.14, + "end": 13326.1, + "probability": 0.3478 + }, + { + "start": 13326.1, + "end": 13326.72, + "probability": 0.2973 + }, + { + "start": 13327.28, + "end": 13327.72, + "probability": 0.0954 + }, + { + "start": 13327.72, + "end": 13327.86, + "probability": 0.037 + }, + { + "start": 13329.75, + "end": 13334.58, + "probability": 0.0699 + }, + { + "start": 13334.58, + "end": 13334.98, + "probability": 0.026 + }, + { + "start": 13336.22, + "end": 13337.08, + "probability": 0.1645 + }, + { + "start": 13337.42, + "end": 13338.06, + "probability": 0.4637 + }, + { + "start": 13338.6, + "end": 13341.0, + "probability": 0.1405 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.0, + "end": 13444.0, + "probability": 0.0 + }, + { + "start": 13444.16, + "end": 13444.16, + "probability": 0.0302 + }, + { + "start": 13444.16, + "end": 13444.16, + "probability": 0.1277 + }, + { + "start": 13444.16, + "end": 13444.16, + "probability": 0.0536 + }, + { + "start": 13444.16, + "end": 13444.22, + "probability": 0.3201 + }, + { + "start": 13444.26, + "end": 13444.78, + "probability": 0.7537 + }, + { + "start": 13444.96, + "end": 13446.68, + "probability": 0.8056 + }, + { + "start": 13446.78, + "end": 13446.78, + "probability": 0.164 + }, + { + "start": 13446.78, + "end": 13447.92, + "probability": 0.8019 + }, + { + "start": 13448.34, + "end": 13451.0, + "probability": 0.5993 + }, + { + "start": 13451.14, + "end": 13451.92, + "probability": 0.7803 + }, + { + "start": 13453.5, + "end": 13455.98, + "probability": 0.5053 + }, + { + "start": 13455.98, + "end": 13456.44, + "probability": 0.5514 + }, + { + "start": 13456.9, + "end": 13459.74, + "probability": 0.822 + }, + { + "start": 13459.74, + "end": 13461.54, + "probability": 0.9668 + }, + { + "start": 13462.1, + "end": 13464.72, + "probability": 0.8244 + }, + { + "start": 13464.72, + "end": 13464.76, + "probability": 0.2336 + }, + { + "start": 13464.76, + "end": 13465.42, + "probability": 0.6318 + }, + { + "start": 13465.44, + "end": 13466.46, + "probability": 0.4864 + }, + { + "start": 13466.7, + "end": 13467.62, + "probability": 0.7762 + }, + { + "start": 13467.92, + "end": 13468.56, + "probability": 0.9827 + }, + { + "start": 13470.04, + "end": 13471.26, + "probability": 0.9414 + }, + { + "start": 13471.32, + "end": 13471.62, + "probability": 0.8546 + }, + { + "start": 13471.68, + "end": 13472.42, + "probability": 0.9841 + }, + { + "start": 13472.56, + "end": 13474.34, + "probability": 0.86 + }, + { + "start": 13474.66, + "end": 13474.94, + "probability": 0.9186 + }, + { + "start": 13476.4, + "end": 13477.94, + "probability": 0.9572 + }, + { + "start": 13478.62, + "end": 13481.5, + "probability": 0.9782 + }, + { + "start": 13482.12, + "end": 13485.26, + "probability": 0.9393 + }, + { + "start": 13485.92, + "end": 13486.92, + "probability": 0.876 + }, + { + "start": 13486.98, + "end": 13487.28, + "probability": 0.5158 + }, + { + "start": 13487.42, + "end": 13489.36, + "probability": 0.9021 + }, + { + "start": 13489.5, + "end": 13489.96, + "probability": 0.5272 + }, + { + "start": 13489.96, + "end": 13489.96, + "probability": 0.2762 + }, + { + "start": 13490.74, + "end": 13490.96, + "probability": 0.0024 + }, + { + "start": 13490.96, + "end": 13491.32, + "probability": 0.7452 + }, + { + "start": 13491.32, + "end": 13491.56, + "probability": 0.7633 + }, + { + "start": 13491.7, + "end": 13492.24, + "probability": 0.0705 + }, + { + "start": 13492.24, + "end": 13494.09, + "probability": 0.5634 + }, + { + "start": 13494.66, + "end": 13494.92, + "probability": 0.3738 + }, + { + "start": 13495.1, + "end": 13495.14, + "probability": 0.2801 + }, + { + "start": 13495.18, + "end": 13498.23, + "probability": 0.5186 + }, + { + "start": 13498.48, + "end": 13500.08, + "probability": 0.3033 + }, + { + "start": 13500.18, + "end": 13501.18, + "probability": 0.735 + }, + { + "start": 13501.48, + "end": 13501.58, + "probability": 0.7464 + }, + { + "start": 13501.58, + "end": 13503.38, + "probability": 0.7644 + }, + { + "start": 13503.46, + "end": 13505.12, + "probability": 0.5414 + }, + { + "start": 13506.34, + "end": 13508.54, + "probability": 0.8503 + }, + { + "start": 13509.16, + "end": 13512.26, + "probability": 0.6265 + }, + { + "start": 13513.14, + "end": 13513.78, + "probability": 0.1715 + }, + { + "start": 13513.78, + "end": 13513.78, + "probability": 0.0445 + }, + { + "start": 13513.78, + "end": 13513.78, + "probability": 0.0131 + }, + { + "start": 13513.78, + "end": 13513.78, + "probability": 0.2563 + }, + { + "start": 13513.78, + "end": 13515.86, + "probability": 0.9517 + }, + { + "start": 13515.98, + "end": 13517.17, + "probability": 0.9808 + }, + { + "start": 13517.98, + "end": 13521.36, + "probability": 0.8301 + }, + { + "start": 13521.98, + "end": 13526.22, + "probability": 0.9946 + }, + { + "start": 13526.84, + "end": 13530.2, + "probability": 0.9803 + }, + { + "start": 13530.6, + "end": 13531.82, + "probability": 0.7661 + }, + { + "start": 13532.06, + "end": 13532.06, + "probability": 0.5942 + }, + { + "start": 13532.08, + "end": 13534.54, + "probability": 0.9385 + }, + { + "start": 13534.6, + "end": 13536.78, + "probability": 0.6904 + }, + { + "start": 13536.88, + "end": 13536.96, + "probability": 0.4127 + }, + { + "start": 13536.96, + "end": 13537.66, + "probability": 0.7226 + }, + { + "start": 13537.92, + "end": 13538.54, + "probability": 0.8993 + }, + { + "start": 13538.6, + "end": 13539.2, + "probability": 0.7909 + }, + { + "start": 13539.22, + "end": 13541.48, + "probability": 0.9396 + }, + { + "start": 13541.58, + "end": 13541.78, + "probability": 0.344 + }, + { + "start": 13541.92, + "end": 13542.32, + "probability": 0.8813 + }, + { + "start": 13542.92, + "end": 13543.62, + "probability": 0.8286 + }, + { + "start": 13544.69, + "end": 13548.96, + "probability": 0.8655 + }, + { + "start": 13548.96, + "end": 13548.98, + "probability": 0.262 + }, + { + "start": 13548.98, + "end": 13551.14, + "probability": 0.9955 + }, + { + "start": 13551.38, + "end": 13553.34, + "probability": 0.8617 + }, + { + "start": 13553.46, + "end": 13554.54, + "probability": 0.7152 + }, + { + "start": 13554.54, + "end": 13555.28, + "probability": 0.5601 + }, + { + "start": 13555.36, + "end": 13555.46, + "probability": 0.4609 + }, + { + "start": 13555.64, + "end": 13556.82, + "probability": 0.722 + }, + { + "start": 13557.04, + "end": 13558.56, + "probability": 0.8548 + }, + { + "start": 13558.94, + "end": 13559.51, + "probability": 0.9785 + }, + { + "start": 13559.88, + "end": 13561.49, + "probability": 0.954 + }, + { + "start": 13562.14, + "end": 13562.9, + "probability": 0.9456 + }, + { + "start": 13562.92, + "end": 13565.26, + "probability": 0.5821 + }, + { + "start": 13565.28, + "end": 13566.74, + "probability": 0.8425 + }, + { + "start": 13566.82, + "end": 13569.02, + "probability": 0.7815 + }, + { + "start": 13569.06, + "end": 13569.28, + "probability": 0.821 + }, + { + "start": 13569.28, + "end": 13569.58, + "probability": 0.3777 + }, + { + "start": 13569.62, + "end": 13571.38, + "probability": 0.9595 + }, + { + "start": 13571.72, + "end": 13572.78, + "probability": 0.7828 + }, + { + "start": 13573.04, + "end": 13574.38, + "probability": 0.672 + }, + { + "start": 13574.4, + "end": 13575.22, + "probability": 0.9157 + }, + { + "start": 13575.26, + "end": 13575.44, + "probability": 0.9082 + }, + { + "start": 13575.58, + "end": 13576.23, + "probability": 0.9863 + }, + { + "start": 13576.78, + "end": 13578.86, + "probability": 0.75 + }, + { + "start": 13579.02, + "end": 13581.6, + "probability": 0.9937 + }, + { + "start": 13581.96, + "end": 13583.06, + "probability": 0.8658 + }, + { + "start": 13583.16, + "end": 13584.1, + "probability": 0.715 + }, + { + "start": 13584.42, + "end": 13587.02, + "probability": 0.3432 + }, + { + "start": 13589.0, + "end": 13589.76, + "probability": 0.6232 + }, + { + "start": 13590.14, + "end": 13590.72, + "probability": 0.118 + }, + { + "start": 13590.72, + "end": 13590.72, + "probability": 0.223 + }, + { + "start": 13590.72, + "end": 13591.96, + "probability": 0.5815 + }, + { + "start": 13592.24, + "end": 13592.66, + "probability": 0.7698 + }, + { + "start": 13592.82, + "end": 13594.46, + "probability": 0.8757 + }, + { + "start": 13594.6, + "end": 13597.44, + "probability": 0.6055 + }, + { + "start": 13598.04, + "end": 13601.02, + "probability": 0.6506 + }, + { + "start": 13601.26, + "end": 13604.94, + "probability": 0.8506 + }, + { + "start": 13605.2, + "end": 13607.56, + "probability": 0.897 + }, + { + "start": 13607.8, + "end": 13609.66, + "probability": 0.917 + }, + { + "start": 13612.37, + "end": 13614.44, + "probability": 0.9464 + }, + { + "start": 13614.74, + "end": 13616.24, + "probability": 0.7123 + }, + { + "start": 13616.66, + "end": 13617.38, + "probability": 0.8717 + }, + { + "start": 13617.48, + "end": 13618.8, + "probability": 0.5503 + }, + { + "start": 13619.02, + "end": 13619.9, + "probability": 0.9141 + }, + { + "start": 13620.12, + "end": 13620.44, + "probability": 0.3768 + }, + { + "start": 13621.98, + "end": 13622.06, + "probability": 0.5646 + }, + { + "start": 13622.06, + "end": 13624.4, + "probability": 0.6317 + }, + { + "start": 13624.78, + "end": 13625.0, + "probability": 0.3129 + }, + { + "start": 13625.48, + "end": 13626.34, + "probability": 0.8711 + }, + { + "start": 13626.72, + "end": 13630.98, + "probability": 0.9214 + }, + { + "start": 13631.48, + "end": 13633.48, + "probability": 0.9946 + }, + { + "start": 13633.6, + "end": 13636.52, + "probability": 0.8885 + }, + { + "start": 13636.96, + "end": 13638.18, + "probability": 0.6711 + }, + { + "start": 13638.26, + "end": 13638.74, + "probability": 0.7308 + }, + { + "start": 13638.84, + "end": 13639.19, + "probability": 0.9666 + }, + { + "start": 13639.68, + "end": 13640.42, + "probability": 0.928 + }, + { + "start": 13641.14, + "end": 13642.2, + "probability": 0.8991 + }, + { + "start": 13642.58, + "end": 13643.1, + "probability": 0.9485 + }, + { + "start": 13643.12, + "end": 13643.62, + "probability": 0.6473 + }, + { + "start": 13643.62, + "end": 13644.72, + "probability": 0.9731 + }, + { + "start": 13645.02, + "end": 13645.58, + "probability": 0.8655 + }, + { + "start": 13645.6, + "end": 13645.78, + "probability": 0.4634 + }, + { + "start": 13646.18, + "end": 13646.3, + "probability": 0.301 + }, + { + "start": 13646.56, + "end": 13646.98, + "probability": 0.3528 + }, + { + "start": 13646.98, + "end": 13650.04, + "probability": 0.723 + }, + { + "start": 13650.18, + "end": 13651.68, + "probability": 0.9805 + }, + { + "start": 13652.24, + "end": 13654.38, + "probability": 0.9764 + }, + { + "start": 13655.2, + "end": 13656.32, + "probability": 0.8138 + }, + { + "start": 13656.66, + "end": 13656.94, + "probability": 0.4165 + }, + { + "start": 13657.66, + "end": 13658.32, + "probability": 0.6748 + }, + { + "start": 13658.4, + "end": 13660.1, + "probability": 0.6134 + }, + { + "start": 13660.52, + "end": 13660.72, + "probability": 0.2194 + }, + { + "start": 13660.84, + "end": 13662.9, + "probability": 0.9297 + }, + { + "start": 13662.96, + "end": 13665.24, + "probability": 0.9563 + }, + { + "start": 13666.12, + "end": 13668.76, + "probability": 0.9578 + }, + { + "start": 13668.82, + "end": 13669.7, + "probability": 0.499 + }, + { + "start": 13670.16, + "end": 13671.16, + "probability": 0.7626 + }, + { + "start": 13671.82, + "end": 13675.44, + "probability": 0.9912 + }, + { + "start": 13676.1, + "end": 13676.7, + "probability": 0.9348 + }, + { + "start": 13676.96, + "end": 13677.94, + "probability": 0.9755 + }, + { + "start": 13678.12, + "end": 13679.98, + "probability": 0.991 + }, + { + "start": 13679.98, + "end": 13682.6, + "probability": 0.9985 + }, + { + "start": 13683.74, + "end": 13685.6, + "probability": 0.743 + }, + { + "start": 13685.74, + "end": 13686.22, + "probability": 0.6614 + }, + { + "start": 13686.38, + "end": 13689.22, + "probability": 0.8237 + }, + { + "start": 13689.68, + "end": 13692.06, + "probability": 0.9104 + }, + { + "start": 13692.8, + "end": 13693.0, + "probability": 0.279 + }, + { + "start": 13719.71, + "end": 13722.04, + "probability": 0.6922 + }, + { + "start": 13723.78, + "end": 13727.52, + "probability": 0.9946 + }, + { + "start": 13728.14, + "end": 13730.04, + "probability": 0.792 + }, + { + "start": 13731.26, + "end": 13735.0, + "probability": 0.811 + }, + { + "start": 13735.74, + "end": 13738.12, + "probability": 0.9611 + }, + { + "start": 13739.8, + "end": 13744.42, + "probability": 0.8127 + }, + { + "start": 13745.16, + "end": 13746.84, + "probability": 0.8981 + }, + { + "start": 13747.42, + "end": 13749.86, + "probability": 0.998 + }, + { + "start": 13750.44, + "end": 13754.08, + "probability": 0.9954 + }, + { + "start": 13754.88, + "end": 13758.84, + "probability": 0.9893 + }, + { + "start": 13759.96, + "end": 13765.92, + "probability": 0.9978 + }, + { + "start": 13766.6, + "end": 13769.82, + "probability": 0.9895 + }, + { + "start": 13771.32, + "end": 13772.4, + "probability": 0.8463 + }, + { + "start": 13773.0, + "end": 13775.6, + "probability": 0.9982 + }, + { + "start": 13776.26, + "end": 13781.26, + "probability": 0.9865 + }, + { + "start": 13782.1, + "end": 13783.22, + "probability": 0.9979 + }, + { + "start": 13783.82, + "end": 13787.94, + "probability": 0.9919 + }, + { + "start": 13788.76, + "end": 13792.6, + "probability": 0.97 + }, + { + "start": 13793.74, + "end": 13798.94, + "probability": 0.9703 + }, + { + "start": 13800.1, + "end": 13801.68, + "probability": 0.9879 + }, + { + "start": 13802.06, + "end": 13807.16, + "probability": 0.9473 + }, + { + "start": 13808.28, + "end": 13810.86, + "probability": 0.9425 + }, + { + "start": 13811.62, + "end": 13816.52, + "probability": 0.9964 + }, + { + "start": 13817.02, + "end": 13821.88, + "probability": 0.9968 + }, + { + "start": 13822.74, + "end": 13829.24, + "probability": 0.9891 + }, + { + "start": 13831.7, + "end": 13833.18, + "probability": 0.6292 + }, + { + "start": 13833.38, + "end": 13834.9, + "probability": 0.8308 + }, + { + "start": 13835.26, + "end": 13836.26, + "probability": 0.9324 + }, + { + "start": 13836.34, + "end": 13838.52, + "probability": 0.9102 + }, + { + "start": 13843.54, + "end": 13845.26, + "probability": 0.669 + }, + { + "start": 13846.36, + "end": 13847.3, + "probability": 0.7183 + }, + { + "start": 13856.64, + "end": 13857.98, + "probability": 0.4946 + }, + { + "start": 13858.04, + "end": 13858.46, + "probability": 0.7684 + }, + { + "start": 13858.56, + "end": 13859.08, + "probability": 0.6183 + }, + { + "start": 13860.62, + "end": 13863.58, + "probability": 0.8288 + }, + { + "start": 13864.16, + "end": 13867.08, + "probability": 0.9272 + }, + { + "start": 13867.2, + "end": 13870.13, + "probability": 0.3061 + }, + { + "start": 13870.78, + "end": 13870.78, + "probability": 0.0369 + }, + { + "start": 13870.78, + "end": 13871.9, + "probability": 0.4279 + }, + { + "start": 13872.22, + "end": 13874.02, + "probability": 0.8766 + }, + { + "start": 13874.44, + "end": 13877.48, + "probability": 0.9771 + }, + { + "start": 13878.28, + "end": 13881.9, + "probability": 0.9836 + }, + { + "start": 13882.96, + "end": 13886.94, + "probability": 0.973 + }, + { + "start": 13887.1, + "end": 13891.18, + "probability": 0.9983 + }, + { + "start": 13891.82, + "end": 13893.26, + "probability": 0.9679 + }, + { + "start": 13893.94, + "end": 13895.86, + "probability": 0.8974 + }, + { + "start": 13896.78, + "end": 13899.68, + "probability": 0.9811 + }, + { + "start": 13900.28, + "end": 13904.66, + "probability": 0.9958 + }, + { + "start": 13904.76, + "end": 13908.9, + "probability": 0.9527 + }, + { + "start": 13909.54, + "end": 13910.62, + "probability": 0.6143 + }, + { + "start": 13910.66, + "end": 13910.82, + "probability": 0.7862 + }, + { + "start": 13910.96, + "end": 13913.8, + "probability": 0.9847 + }, + { + "start": 13914.44, + "end": 13918.08, + "probability": 0.9707 + }, + { + "start": 13919.06, + "end": 13921.1, + "probability": 0.8456 + }, + { + "start": 13921.78, + "end": 13926.36, + "probability": 0.9919 + }, + { + "start": 13926.52, + "end": 13930.76, + "probability": 0.9954 + }, + { + "start": 13932.54, + "end": 13936.66, + "probability": 0.998 + }, + { + "start": 13937.36, + "end": 13944.5, + "probability": 0.9766 + }, + { + "start": 13945.18, + "end": 13948.94, + "probability": 0.9475 + }, + { + "start": 13950.16, + "end": 13950.9, + "probability": 0.9478 + }, + { + "start": 13951.44, + "end": 13955.94, + "probability": 0.9648 + }, + { + "start": 13955.94, + "end": 13959.24, + "probability": 0.9912 + }, + { + "start": 13959.6, + "end": 13960.0, + "probability": 0.8681 + }, + { + "start": 13960.38, + "end": 13961.12, + "probability": 0.7676 + }, + { + "start": 13961.62, + "end": 13965.34, + "probability": 0.9961 + }, + { + "start": 13965.4, + "end": 13966.7, + "probability": 0.8761 + }, + { + "start": 13967.18, + "end": 13967.8, + "probability": 0.8921 + }, + { + "start": 13968.24, + "end": 13972.38, + "probability": 0.9854 + }, + { + "start": 13972.56, + "end": 13977.96, + "probability": 0.9995 + }, + { + "start": 13977.98, + "end": 13979.18, + "probability": 0.7439 + }, + { + "start": 13980.8, + "end": 13982.68, + "probability": 0.7198 + }, + { + "start": 13983.6, + "end": 13988.02, + "probability": 0.9971 + }, + { + "start": 13988.3, + "end": 13991.74, + "probability": 0.999 + }, + { + "start": 13992.28, + "end": 13994.38, + "probability": 0.9969 + }, + { + "start": 13995.38, + "end": 14001.6, + "probability": 0.9969 + }, + { + "start": 14001.74, + "end": 14004.08, + "probability": 0.9915 + }, + { + "start": 14004.52, + "end": 14011.52, + "probability": 0.9847 + }, + { + "start": 14014.02, + "end": 14015.9, + "probability": 0.878 + }, + { + "start": 14016.72, + "end": 14019.56, + "probability": 0.9871 + }, + { + "start": 14019.98, + "end": 14020.24, + "probability": 0.8591 + }, + { + "start": 14020.42, + "end": 14023.58, + "probability": 0.9694 + }, + { + "start": 14023.86, + "end": 14024.66, + "probability": 0.8237 + }, + { + "start": 14024.84, + "end": 14028.92, + "probability": 0.9858 + }, + { + "start": 14029.3, + "end": 14032.22, + "probability": 0.9956 + }, + { + "start": 14033.12, + "end": 14037.3, + "probability": 0.9931 + }, + { + "start": 14038.34, + "end": 14041.3, + "probability": 0.9705 + }, + { + "start": 14041.9, + "end": 14045.8, + "probability": 0.9858 + }, + { + "start": 14045.88, + "end": 14049.5, + "probability": 0.9856 + }, + { + "start": 14051.04, + "end": 14051.5, + "probability": 0.8437 + }, + { + "start": 14052.52, + "end": 14055.1, + "probability": 0.9264 + }, + { + "start": 14056.0, + "end": 14061.36, + "probability": 0.9669 + }, + { + "start": 14061.36, + "end": 14066.97, + "probability": 0.7525 + }, + { + "start": 14068.44, + "end": 14069.74, + "probability": 0.7485 + }, + { + "start": 14070.32, + "end": 14073.36, + "probability": 0.8119 + }, + { + "start": 14074.02, + "end": 14078.74, + "probability": 0.9977 + }, + { + "start": 14079.52, + "end": 14079.86, + "probability": 0.8382 + }, + { + "start": 14079.94, + "end": 14085.16, + "probability": 0.9863 + }, + { + "start": 14086.38, + "end": 14087.82, + "probability": 0.9172 + }, + { + "start": 14089.22, + "end": 14090.88, + "probability": 0.936 + }, + { + "start": 14091.0, + "end": 14091.28, + "probability": 0.736 + }, + { + "start": 14091.3, + "end": 14092.46, + "probability": 0.8252 + }, + { + "start": 14093.1, + "end": 14093.74, + "probability": 0.9668 + }, + { + "start": 14093.88, + "end": 14094.96, + "probability": 0.7644 + }, + { + "start": 14095.16, + "end": 14095.38, + "probability": 0.4081 + }, + { + "start": 14095.62, + "end": 14096.92, + "probability": 0.6161 + }, + { + "start": 14096.92, + "end": 14098.14, + "probability": 0.8246 + }, + { + "start": 14098.28, + "end": 14098.48, + "probability": 0.3521 + }, + { + "start": 14098.64, + "end": 14100.4, + "probability": 0.7014 + }, + { + "start": 14100.74, + "end": 14101.76, + "probability": 0.5239 + }, + { + "start": 14103.14, + "end": 14104.58, + "probability": 0.3884 + }, + { + "start": 14106.38, + "end": 14108.16, + "probability": 0.4908 + }, + { + "start": 14108.18, + "end": 14109.58, + "probability": 0.2901 + }, + { + "start": 14111.24, + "end": 14111.84, + "probability": 0.2164 + }, + { + "start": 14111.84, + "end": 14112.02, + "probability": 0.0703 + }, + { + "start": 14112.02, + "end": 14112.02, + "probability": 0.1698 + }, + { + "start": 14112.02, + "end": 14112.02, + "probability": 0.2496 + }, + { + "start": 14112.02, + "end": 14118.46, + "probability": 0.2902 + }, + { + "start": 14118.48, + "end": 14120.02, + "probability": 0.265 + }, + { + "start": 14120.28, + "end": 14120.36, + "probability": 0.176 + }, + { + "start": 14120.36, + "end": 14120.88, + "probability": 0.4754 + }, + { + "start": 14120.88, + "end": 14122.02, + "probability": 0.262 + }, + { + "start": 14125.72, + "end": 14132.04, + "probability": 0.9902 + }, + { + "start": 14133.44, + "end": 14137.84, + "probability": 0.9992 + }, + { + "start": 14138.52, + "end": 14141.86, + "probability": 0.7844 + }, + { + "start": 14146.16, + "end": 14147.2, + "probability": 0.9673 + }, + { + "start": 14148.88, + "end": 14152.74, + "probability": 0.9976 + }, + { + "start": 14153.44, + "end": 14159.58, + "probability": 0.9758 + }, + { + "start": 14160.7, + "end": 14161.22, + "probability": 0.7891 + }, + { + "start": 14161.74, + "end": 14164.96, + "probability": 0.9936 + }, + { + "start": 14165.84, + "end": 14167.1, + "probability": 0.9989 + }, + { + "start": 14168.3, + "end": 14170.34, + "probability": 0.973 + }, + { + "start": 14171.14, + "end": 14173.2, + "probability": 0.958 + }, + { + "start": 14175.56, + "end": 14176.96, + "probability": 0.6645 + }, + { + "start": 14177.5, + "end": 14178.68, + "probability": 0.6996 + }, + { + "start": 14178.78, + "end": 14179.94, + "probability": 0.8567 + }, + { + "start": 14180.42, + "end": 14182.34, + "probability": 0.6652 + }, + { + "start": 14182.88, + "end": 14184.7, + "probability": 0.8916 + }, + { + "start": 14185.78, + "end": 14186.73, + "probability": 0.6756 + }, + { + "start": 14187.68, + "end": 14189.96, + "probability": 0.9937 + }, + { + "start": 14190.26, + "end": 14193.16, + "probability": 0.8558 + }, + { + "start": 14193.44, + "end": 14194.64, + "probability": 0.5476 + }, + { + "start": 14194.94, + "end": 14196.14, + "probability": 0.1838 + }, + { + "start": 14197.74, + "end": 14205.38, + "probability": 0.9552 + }, + { + "start": 14205.98, + "end": 14208.78, + "probability": 0.8264 + }, + { + "start": 14209.42, + "end": 14210.8, + "probability": 0.9604 + }, + { + "start": 14212.74, + "end": 14215.34, + "probability": 0.9852 + }, + { + "start": 14216.04, + "end": 14219.08, + "probability": 0.9851 + }, + { + "start": 14219.64, + "end": 14221.84, + "probability": 0.751 + }, + { + "start": 14222.34, + "end": 14225.6, + "probability": 0.9964 + }, + { + "start": 14226.18, + "end": 14229.02, + "probability": 0.915 + }, + { + "start": 14229.6, + "end": 14230.5, + "probability": 0.3476 + }, + { + "start": 14231.1, + "end": 14234.02, + "probability": 0.8898 + }, + { + "start": 14234.58, + "end": 14236.82, + "probability": 0.988 + }, + { + "start": 14238.96, + "end": 14240.26, + "probability": 0.8521 + }, + { + "start": 14241.08, + "end": 14242.12, + "probability": 0.9132 + }, + { + "start": 14243.62, + "end": 14245.1, + "probability": 0.9994 + }, + { + "start": 14245.8, + "end": 14249.54, + "probability": 0.9888 + }, + { + "start": 14250.16, + "end": 14252.44, + "probability": 0.8469 + }, + { + "start": 14253.28, + "end": 14254.2, + "probability": 0.9673 + }, + { + "start": 14254.2, + "end": 14255.58, + "probability": 0.9179 + }, + { + "start": 14257.96, + "end": 14260.94, + "probability": 0.9956 + }, + { + "start": 14261.8, + "end": 14265.42, + "probability": 0.9926 + }, + { + "start": 14266.18, + "end": 14270.56, + "probability": 0.9976 + }, + { + "start": 14271.28, + "end": 14274.48, + "probability": 0.9504 + }, + { + "start": 14275.04, + "end": 14277.4, + "probability": 0.9547 + }, + { + "start": 14277.86, + "end": 14278.98, + "probability": 0.9467 + }, + { + "start": 14279.34, + "end": 14281.8, + "probability": 0.9935 + }, + { + "start": 14282.28, + "end": 14283.16, + "probability": 0.9878 + }, + { + "start": 14286.32, + "end": 14290.46, + "probability": 0.9978 + }, + { + "start": 14291.48, + "end": 14291.94, + "probability": 0.6508 + }, + { + "start": 14292.8, + "end": 14295.18, + "probability": 0.8804 + }, + { + "start": 14295.64, + "end": 14298.12, + "probability": 0.9907 + }, + { + "start": 14298.74, + "end": 14301.16, + "probability": 0.9979 + }, + { + "start": 14301.66, + "end": 14303.54, + "probability": 0.9879 + }, + { + "start": 14304.1, + "end": 14306.16, + "probability": 0.9781 + }, + { + "start": 14307.1, + "end": 14310.48, + "probability": 0.9855 + }, + { + "start": 14311.34, + "end": 14315.52, + "probability": 0.986 + }, + { + "start": 14315.52, + "end": 14318.88, + "probability": 0.9995 + }, + { + "start": 14319.6, + "end": 14322.08, + "probability": 0.9094 + }, + { + "start": 14323.04, + "end": 14326.52, + "probability": 0.9894 + }, + { + "start": 14327.18, + "end": 14331.04, + "probability": 0.9988 + }, + { + "start": 14332.8, + "end": 14335.84, + "probability": 0.9045 + }, + { + "start": 14336.56, + "end": 14338.48, + "probability": 0.989 + }, + { + "start": 14339.32, + "end": 14343.46, + "probability": 0.9876 + }, + { + "start": 14345.32, + "end": 14347.38, + "probability": 0.9114 + }, + { + "start": 14348.08, + "end": 14349.4, + "probability": 0.9109 + }, + { + "start": 14349.9, + "end": 14351.59, + "probability": 0.9854 + }, + { + "start": 14351.72, + "end": 14352.08, + "probability": 0.8226 + }, + { + "start": 14352.18, + "end": 14352.98, + "probability": 0.8268 + }, + { + "start": 14354.26, + "end": 14357.28, + "probability": 0.7497 + }, + { + "start": 14357.8, + "end": 14361.46, + "probability": 0.9937 + }, + { + "start": 14361.98, + "end": 14366.0, + "probability": 0.9875 + }, + { + "start": 14367.12, + "end": 14368.46, + "probability": 0.8449 + }, + { + "start": 14369.36, + "end": 14371.86, + "probability": 0.9972 + }, + { + "start": 14372.84, + "end": 14374.94, + "probability": 0.9784 + }, + { + "start": 14374.96, + "end": 14376.22, + "probability": 0.8412 + }, + { + "start": 14376.26, + "end": 14377.2, + "probability": 0.6282 + }, + { + "start": 14377.78, + "end": 14381.32, + "probability": 0.9837 + }, + { + "start": 14381.78, + "end": 14384.36, + "probability": 0.984 + }, + { + "start": 14385.94, + "end": 14387.5, + "probability": 0.9993 + }, + { + "start": 14388.16, + "end": 14390.34, + "probability": 0.9497 + }, + { + "start": 14391.36, + "end": 14393.26, + "probability": 0.8985 + }, + { + "start": 14394.16, + "end": 14397.64, + "probability": 0.9762 + }, + { + "start": 14402.98, + "end": 14409.62, + "probability": 0.9977 + }, + { + "start": 14409.92, + "end": 14413.06, + "probability": 0.9963 + }, + { + "start": 14414.36, + "end": 14418.74, + "probability": 0.897 + }, + { + "start": 14419.66, + "end": 14424.18, + "probability": 0.9407 + }, + { + "start": 14424.72, + "end": 14427.76, + "probability": 0.8759 + }, + { + "start": 14429.14, + "end": 14431.82, + "probability": 0.9681 + }, + { + "start": 14431.94, + "end": 14437.9, + "probability": 0.9248 + }, + { + "start": 14438.68, + "end": 14443.22, + "probability": 0.9674 + }, + { + "start": 14443.22, + "end": 14447.22, + "probability": 0.9948 + }, + { + "start": 14448.3, + "end": 14454.38, + "probability": 0.9869 + }, + { + "start": 14455.72, + "end": 14457.52, + "probability": 0.9842 + }, + { + "start": 14458.0, + "end": 14460.9, + "probability": 0.9985 + }, + { + "start": 14461.5, + "end": 14463.91, + "probability": 0.9479 + }, + { + "start": 14464.64, + "end": 14467.76, + "probability": 0.9538 + }, + { + "start": 14469.08, + "end": 14470.24, + "probability": 0.8306 + }, + { + "start": 14470.82, + "end": 14471.8, + "probability": 0.9647 + }, + { + "start": 14472.34, + "end": 14473.88, + "probability": 0.9677 + }, + { + "start": 14474.82, + "end": 14477.78, + "probability": 0.9959 + }, + { + "start": 14479.0, + "end": 14484.36, + "probability": 0.9856 + }, + { + "start": 14485.38, + "end": 14487.2, + "probability": 0.999 + }, + { + "start": 14494.72, + "end": 14495.76, + "probability": 0.689 + }, + { + "start": 14496.78, + "end": 14500.06, + "probability": 0.9915 + }, + { + "start": 14500.92, + "end": 14502.31, + "probability": 0.9647 + }, + { + "start": 14503.16, + "end": 14504.58, + "probability": 0.9816 + }, + { + "start": 14505.1, + "end": 14505.54, + "probability": 0.9528 + }, + { + "start": 14505.6, + "end": 14506.1, + "probability": 0.9897 + }, + { + "start": 14506.14, + "end": 14507.68, + "probability": 0.9634 + }, + { + "start": 14508.36, + "end": 14512.12, + "probability": 0.9885 + }, + { + "start": 14512.82, + "end": 14515.19, + "probability": 0.9875 + }, + { + "start": 14516.1, + "end": 14520.4, + "probability": 0.9917 + }, + { + "start": 14521.38, + "end": 14525.22, + "probability": 0.9957 + }, + { + "start": 14525.22, + "end": 14529.84, + "probability": 0.9953 + }, + { + "start": 14534.84, + "end": 14535.1, + "probability": 0.6957 + }, + { + "start": 14536.14, + "end": 14539.02, + "probability": 0.975 + }, + { + "start": 14539.82, + "end": 14541.54, + "probability": 0.9319 + }, + { + "start": 14542.9, + "end": 14544.22, + "probability": 0.7646 + }, + { + "start": 14545.98, + "end": 14546.66, + "probability": 0.5444 + }, + { + "start": 14580.74, + "end": 14581.6, + "probability": 0.6916 + }, + { + "start": 14583.0, + "end": 14585.2, + "probability": 0.6963 + }, + { + "start": 14586.36, + "end": 14588.24, + "probability": 0.9587 + }, + { + "start": 14589.06, + "end": 14591.08, + "probability": 0.9819 + }, + { + "start": 14591.64, + "end": 14592.72, + "probability": 0.7652 + }, + { + "start": 14593.72, + "end": 14598.54, + "probability": 0.9709 + }, + { + "start": 14598.82, + "end": 14602.43, + "probability": 0.8159 + }, + { + "start": 14603.42, + "end": 14604.02, + "probability": 0.0564 + }, + { + "start": 14604.02, + "end": 14604.02, + "probability": 0.047 + }, + { + "start": 14604.02, + "end": 14604.7, + "probability": 0.4046 + }, + { + "start": 14605.08, + "end": 14605.68, + "probability": 0.576 + }, + { + "start": 14606.48, + "end": 14608.47, + "probability": 0.8462 + }, + { + "start": 14609.9, + "end": 14611.16, + "probability": 0.9551 + }, + { + "start": 14612.08, + "end": 14614.58, + "probability": 0.9601 + }, + { + "start": 14615.42, + "end": 14618.26, + "probability": 0.7048 + }, + { + "start": 14618.34, + "end": 14618.6, + "probability": 0.4072 + }, + { + "start": 14618.72, + "end": 14619.21, + "probability": 0.7792 + }, + { + "start": 14619.6, + "end": 14621.94, + "probability": 0.8888 + }, + { + "start": 14622.06, + "end": 14622.48, + "probability": 0.708 + }, + { + "start": 14623.6, + "end": 14624.44, + "probability": 0.7592 + }, + { + "start": 14624.54, + "end": 14625.38, + "probability": 0.7433 + }, + { + "start": 14625.52, + "end": 14628.76, + "probability": 0.9917 + }, + { + "start": 14629.8, + "end": 14630.38, + "probability": 0.3605 + }, + { + "start": 14630.54, + "end": 14635.92, + "probability": 0.9699 + }, + { + "start": 14636.72, + "end": 14640.06, + "probability": 0.9834 + }, + { + "start": 14640.06, + "end": 14645.24, + "probability": 0.9955 + }, + { + "start": 14645.66, + "end": 14645.86, + "probability": 0.446 + }, + { + "start": 14646.86, + "end": 14650.7, + "probability": 0.9924 + }, + { + "start": 14651.26, + "end": 14655.46, + "probability": 0.9822 + }, + { + "start": 14655.52, + "end": 14660.14, + "probability": 0.9385 + }, + { + "start": 14660.92, + "end": 14664.18, + "probability": 0.99 + }, + { + "start": 14665.16, + "end": 14667.54, + "probability": 0.8393 + }, + { + "start": 14668.66, + "end": 14672.22, + "probability": 0.8297 + }, + { + "start": 14673.43, + "end": 14675.9, + "probability": 0.4395 + }, + { + "start": 14676.66, + "end": 14681.46, + "probability": 0.7609 + }, + { + "start": 14682.04, + "end": 14687.34, + "probability": 0.6522 + }, + { + "start": 14688.04, + "end": 14689.96, + "probability": 0.8818 + }, + { + "start": 14691.02, + "end": 14697.91, + "probability": 0.944 + }, + { + "start": 14698.74, + "end": 14700.42, + "probability": 0.9962 + }, + { + "start": 14702.14, + "end": 14705.7, + "probability": 0.6646 + }, + { + "start": 14706.44, + "end": 14709.74, + "probability": 0.9826 + }, + { + "start": 14711.22, + "end": 14712.26, + "probability": 0.6954 + }, + { + "start": 14712.68, + "end": 14716.84, + "probability": 0.9873 + }, + { + "start": 14717.54, + "end": 14721.71, + "probability": 0.7764 + }, + { + "start": 14723.78, + "end": 14725.58, + "probability": 0.9831 + }, + { + "start": 14726.76, + "end": 14728.9, + "probability": 0.853 + }, + { + "start": 14729.22, + "end": 14730.42, + "probability": 0.8327 + }, + { + "start": 14731.18, + "end": 14733.94, + "probability": 0.8882 + }, + { + "start": 14735.32, + "end": 14742.18, + "probability": 0.9749 + }, + { + "start": 14743.08, + "end": 14744.64, + "probability": 0.9812 + }, + { + "start": 14745.3, + "end": 14747.4, + "probability": 0.9796 + }, + { + "start": 14747.5, + "end": 14749.28, + "probability": 0.7249 + }, + { + "start": 14749.84, + "end": 14751.52, + "probability": 0.9736 + }, + { + "start": 14752.86, + "end": 14754.72, + "probability": 0.9496 + }, + { + "start": 14754.86, + "end": 14761.52, + "probability": 0.8774 + }, + { + "start": 14761.74, + "end": 14766.4, + "probability": 0.7109 + }, + { + "start": 14767.02, + "end": 14773.96, + "probability": 0.9925 + }, + { + "start": 14774.04, + "end": 14774.68, + "probability": 0.8154 + }, + { + "start": 14776.06, + "end": 14778.19, + "probability": 0.7429 + }, + { + "start": 14778.5, + "end": 14784.2, + "probability": 0.9731 + }, + { + "start": 14784.26, + "end": 14785.6, + "probability": 0.9085 + }, + { + "start": 14785.88, + "end": 14786.39, + "probability": 0.748 + }, + { + "start": 14787.14, + "end": 14788.44, + "probability": 0.9854 + }, + { + "start": 14789.5, + "end": 14791.39, + "probability": 0.0041 + }, + { + "start": 14793.16, + "end": 14794.7, + "probability": 0.8432 + }, + { + "start": 14794.82, + "end": 14797.84, + "probability": 0.7466 + }, + { + "start": 14798.46, + "end": 14800.84, + "probability": 0.8784 + }, + { + "start": 14801.64, + "end": 14803.54, + "probability": 0.8235 + }, + { + "start": 14803.74, + "end": 14805.2, + "probability": 0.5303 + }, + { + "start": 14805.3, + "end": 14808.0, + "probability": 0.87 + }, + { + "start": 14809.12, + "end": 14812.03, + "probability": 0.8301 + }, + { + "start": 14813.1, + "end": 14813.52, + "probability": 0.8184 + }, + { + "start": 14813.52, + "end": 14816.3, + "probability": 0.7741 + }, + { + "start": 14816.8, + "end": 14820.84, + "probability": 0.6073 + }, + { + "start": 14822.7, + "end": 14823.74, + "probability": 0.6995 + }, + { + "start": 14824.7, + "end": 14829.62, + "probability": 0.6667 + }, + { + "start": 14829.84, + "end": 14832.48, + "probability": 0.9763 + }, + { + "start": 14832.48, + "end": 14837.28, + "probability": 0.6803 + }, + { + "start": 14837.92, + "end": 14840.25, + "probability": 0.7493 + }, + { + "start": 14840.74, + "end": 14841.68, + "probability": 0.9277 + }, + { + "start": 14843.28, + "end": 14844.02, + "probability": 0.5635 + }, + { + "start": 14844.8, + "end": 14849.06, + "probability": 0.8254 + }, + { + "start": 14849.76, + "end": 14852.56, + "probability": 0.4076 + }, + { + "start": 14853.84, + "end": 14856.86, + "probability": 0.7494 + }, + { + "start": 14856.98, + "end": 14857.56, + "probability": 0.777 + }, + { + "start": 14858.18, + "end": 14860.55, + "probability": 0.7072 + }, + { + "start": 14861.56, + "end": 14863.24, + "probability": 0.9004 + }, + { + "start": 14863.72, + "end": 14866.62, + "probability": 0.6731 + }, + { + "start": 14867.02, + "end": 14869.74, + "probability": 0.9237 + }, + { + "start": 14869.84, + "end": 14874.36, + "probability": 0.9951 + }, + { + "start": 14875.46, + "end": 14876.28, + "probability": 0.7898 + }, + { + "start": 14877.46, + "end": 14879.48, + "probability": 0.8836 + }, + { + "start": 14879.48, + "end": 14883.38, + "probability": 0.9804 + }, + { + "start": 14883.5, + "end": 14885.06, + "probability": 0.9974 + }, + { + "start": 14885.58, + "end": 14887.1, + "probability": 0.4861 + }, + { + "start": 14888.5, + "end": 14892.06, + "probability": 0.9592 + }, + { + "start": 14892.58, + "end": 14895.8, + "probability": 0.7855 + }, + { + "start": 14895.9, + "end": 14897.1, + "probability": 0.8182 + }, + { + "start": 14898.08, + "end": 14899.05, + "probability": 0.9086 + }, + { + "start": 14900.54, + "end": 14902.18, + "probability": 0.3203 + }, + { + "start": 14902.28, + "end": 14902.36, + "probability": 0.065 + }, + { + "start": 14902.36, + "end": 14902.36, + "probability": 0.3607 + }, + { + "start": 14902.36, + "end": 14903.5, + "probability": 0.8313 + }, + { + "start": 14904.44, + "end": 14907.16, + "probability": 0.501 + }, + { + "start": 14908.86, + "end": 14912.09, + "probability": 0.9692 + }, + { + "start": 14912.26, + "end": 14913.0, + "probability": 0.6818 + }, + { + "start": 14914.22, + "end": 14916.04, + "probability": 0.8616 + }, + { + "start": 14917.08, + "end": 14919.54, + "probability": 0.9563 + }, + { + "start": 14920.02, + "end": 14923.34, + "probability": 0.7337 + }, + { + "start": 14924.22, + "end": 14925.56, + "probability": 0.8123 + }, + { + "start": 14925.78, + "end": 14927.28, + "probability": 0.9928 + }, + { + "start": 14927.64, + "end": 14929.89, + "probability": 0.9768 + }, + { + "start": 14932.04, + "end": 14935.04, + "probability": 0.7665 + }, + { + "start": 14935.86, + "end": 14939.18, + "probability": 0.797 + }, + { + "start": 14940.86, + "end": 14941.9, + "probability": 0.7488 + }, + { + "start": 14944.36, + "end": 14944.8, + "probability": 0.4649 + }, + { + "start": 14945.44, + "end": 14950.68, + "probability": 0.5668 + }, + { + "start": 14950.92, + "end": 14952.8, + "probability": 0.7737 + }, + { + "start": 14952.88, + "end": 14955.06, + "probability": 0.984 + }, + { + "start": 14955.36, + "end": 14956.4, + "probability": 0.5713 + }, + { + "start": 14957.3, + "end": 14957.9, + "probability": 0.7721 + }, + { + "start": 14958.56, + "end": 14959.52, + "probability": 0.9919 + }, + { + "start": 14960.12, + "end": 14960.62, + "probability": 0.9054 + }, + { + "start": 14961.62, + "end": 14964.48, + "probability": 0.8509 + }, + { + "start": 14965.68, + "end": 14969.74, + "probability": 0.7517 + }, + { + "start": 14970.6, + "end": 14973.96, + "probability": 0.8711 + }, + { + "start": 14975.32, + "end": 14980.8, + "probability": 0.9104 + }, + { + "start": 14981.58, + "end": 14983.12, + "probability": 0.9221 + }, + { + "start": 14983.52, + "end": 14984.76, + "probability": 0.6937 + }, + { + "start": 14985.86, + "end": 14990.4, + "probability": 0.7932 + }, + { + "start": 14990.46, + "end": 14991.48, + "probability": 0.8007 + }, + { + "start": 14991.62, + "end": 14992.56, + "probability": 0.3416 + }, + { + "start": 14992.9, + "end": 14996.56, + "probability": 0.8265 + }, + { + "start": 14997.36, + "end": 15001.6, + "probability": 0.8456 + }, + { + "start": 15002.08, + "end": 15003.6, + "probability": 0.9137 + }, + { + "start": 15003.9, + "end": 15007.1, + "probability": 0.5125 + }, + { + "start": 15007.16, + "end": 15007.58, + "probability": 0.6212 + }, + { + "start": 15007.7, + "end": 15008.48, + "probability": 0.4789 + }, + { + "start": 15008.52, + "end": 15009.18, + "probability": 0.9101 + }, + { + "start": 15009.3, + "end": 15010.52, + "probability": 0.715 + }, + { + "start": 15010.74, + "end": 15013.98, + "probability": 0.9868 + }, + { + "start": 15014.06, + "end": 15015.56, + "probability": 0.2673 + }, + { + "start": 15017.62, + "end": 15017.78, + "probability": 0.0734 + }, + { + "start": 15017.9, + "end": 15018.44, + "probability": 0.1356 + }, + { + "start": 15018.5, + "end": 15018.74, + "probability": 0.5921 + }, + { + "start": 15018.78, + "end": 15019.46, + "probability": 0.6063 + }, + { + "start": 15019.5, + "end": 15020.82, + "probability": 0.9523 + }, + { + "start": 15021.36, + "end": 15022.74, + "probability": 0.9009 + }, + { + "start": 15022.96, + "end": 15024.46, + "probability": 0.67 + }, + { + "start": 15025.3, + "end": 15026.5, + "probability": 0.9517 + }, + { + "start": 15026.9, + "end": 15029.02, + "probability": 0.8828 + }, + { + "start": 15029.32, + "end": 15030.22, + "probability": 0.7298 + }, + { + "start": 15030.6, + "end": 15032.72, + "probability": 0.8011 + }, + { + "start": 15032.82, + "end": 15034.78, + "probability": 0.5724 + }, + { + "start": 15035.22, + "end": 15035.62, + "probability": 0.7321 + }, + { + "start": 15035.7, + "end": 15036.88, + "probability": 0.854 + }, + { + "start": 15036.88, + "end": 15037.3, + "probability": 0.1531 + }, + { + "start": 15037.58, + "end": 15038.26, + "probability": 0.6438 + }, + { + "start": 15038.66, + "end": 15041.86, + "probability": 0.691 + }, + { + "start": 15042.2, + "end": 15042.42, + "probability": 0.1682 + }, + { + "start": 15042.42, + "end": 15046.26, + "probability": 0.891 + }, + { + "start": 15049.1, + "end": 15050.9, + "probability": 0.6428 + }, + { + "start": 15052.66, + "end": 15054.34, + "probability": 0.8428 + }, + { + "start": 15054.7, + "end": 15055.2, + "probability": 0.2835 + }, + { + "start": 15055.28, + "end": 15058.66, + "probability": 0.9962 + }, + { + "start": 15059.1, + "end": 15059.96, + "probability": 0.93 + }, + { + "start": 15060.4, + "end": 15061.12, + "probability": 0.8274 + }, + { + "start": 15062.18, + "end": 15063.66, + "probability": 0.9109 + }, + { + "start": 15064.6, + "end": 15065.86, + "probability": 0.9612 + }, + { + "start": 15066.64, + "end": 15067.52, + "probability": 0.6302 + }, + { + "start": 15067.58, + "end": 15067.9, + "probability": 0.588 + }, + { + "start": 15068.04, + "end": 15074.58, + "probability": 0.8762 + }, + { + "start": 15074.6, + "end": 15077.42, + "probability": 0.9653 + }, + { + "start": 15078.06, + "end": 15080.57, + "probability": 0.9204 + }, + { + "start": 15082.06, + "end": 15083.83, + "probability": 0.4873 + }, + { + "start": 15084.0, + "end": 15086.5, + "probability": 0.8927 + }, + { + "start": 15086.92, + "end": 15089.16, + "probability": 0.9338 + }, + { + "start": 15089.38, + "end": 15090.84, + "probability": 0.6633 + }, + { + "start": 15091.44, + "end": 15091.8, + "probability": 0.599 + }, + { + "start": 15092.46, + "end": 15093.78, + "probability": 0.9884 + }, + { + "start": 15094.24, + "end": 15095.9, + "probability": 0.8084 + }, + { + "start": 15095.96, + "end": 15096.94, + "probability": 0.9562 + }, + { + "start": 15098.08, + "end": 15099.5, + "probability": 0.5452 + }, + { + "start": 15099.66, + "end": 15101.92, + "probability": 0.5276 + }, + { + "start": 15102.96, + "end": 15105.28, + "probability": 0.9819 + }, + { + "start": 15106.06, + "end": 15106.78, + "probability": 0.9546 + }, + { + "start": 15107.18, + "end": 15111.54, + "probability": 0.9666 + }, + { + "start": 15112.18, + "end": 15114.16, + "probability": 0.9445 + }, + { + "start": 15114.72, + "end": 15115.9, + "probability": 0.9773 + }, + { + "start": 15117.33, + "end": 15118.6, + "probability": 0.937 + }, + { + "start": 15118.6, + "end": 15119.6, + "probability": 0.6096 + }, + { + "start": 15120.22, + "end": 15123.1, + "probability": 0.8777 + }, + { + "start": 15123.82, + "end": 15125.06, + "probability": 0.9531 + }, + { + "start": 15125.46, + "end": 15125.66, + "probability": 0.7417 + }, + { + "start": 15125.8, + "end": 15128.1, + "probability": 0.9268 + }, + { + "start": 15128.94, + "end": 15129.86, + "probability": 0.331 + }, + { + "start": 15131.1, + "end": 15131.2, + "probability": 0.0255 + }, + { + "start": 15131.74, + "end": 15133.02, + "probability": 0.3738 + }, + { + "start": 15133.52, + "end": 15135.22, + "probability": 0.05 + }, + { + "start": 15135.38, + "end": 15136.68, + "probability": 0.4827 + }, + { + "start": 15136.68, + "end": 15138.26, + "probability": 0.2609 + }, + { + "start": 15138.68, + "end": 15140.46, + "probability": 0.4506 + }, + { + "start": 15140.72, + "end": 15141.08, + "probability": 0.0195 + }, + { + "start": 15141.76, + "end": 15142.65, + "probability": 0.5926 + }, + { + "start": 15142.88, + "end": 15143.78, + "probability": 0.3438 + }, + { + "start": 15149.86, + "end": 15150.04, + "probability": 0.5833 + }, + { + "start": 15150.04, + "end": 15150.04, + "probability": 0.0883 + }, + { + "start": 15150.04, + "end": 15150.04, + "probability": 0.1031 + }, + { + "start": 15150.04, + "end": 15150.04, + "probability": 0.1855 + }, + { + "start": 15150.04, + "end": 15150.04, + "probability": 0.2503 + }, + { + "start": 15150.04, + "end": 15150.04, + "probability": 0.1352 + }, + { + "start": 15150.04, + "end": 15150.3, + "probability": 0.2092 + }, + { + "start": 15151.14, + "end": 15154.4, + "probability": 0.8331 + }, + { + "start": 15155.02, + "end": 15155.46, + "probability": 0.3696 + }, + { + "start": 15156.31, + "end": 15158.68, + "probability": 0.814 + }, + { + "start": 15159.24, + "end": 15160.14, + "probability": 0.7149 + }, + { + "start": 15160.6, + "end": 15162.24, + "probability": 0.9403 + }, + { + "start": 15162.7, + "end": 15166.55, + "probability": 0.6686 + }, + { + "start": 15167.0, + "end": 15170.0, + "probability": 0.7448 + }, + { + "start": 15170.04, + "end": 15172.74, + "probability": 0.5692 + }, + { + "start": 15172.86, + "end": 15174.72, + "probability": 0.7771 + }, + { + "start": 15175.34, + "end": 15178.2, + "probability": 0.8522 + }, + { + "start": 15178.3, + "end": 15178.86, + "probability": 0.0102 + }, + { + "start": 15180.24, + "end": 15182.48, + "probability": 0.6947 + }, + { + "start": 15183.18, + "end": 15188.58, + "probability": 0.9118 + }, + { + "start": 15189.92, + "end": 15190.44, + "probability": 0.8737 + }, + { + "start": 15191.02, + "end": 15193.02, + "probability": 0.7516 + }, + { + "start": 15193.82, + "end": 15196.7, + "probability": 0.9846 + }, + { + "start": 15197.56, + "end": 15202.46, + "probability": 0.8309 + }, + { + "start": 15202.48, + "end": 15203.52, + "probability": 0.6997 + }, + { + "start": 15204.08, + "end": 15205.0, + "probability": 0.5079 + }, + { + "start": 15205.08, + "end": 15207.4, + "probability": 0.985 + }, + { + "start": 15208.58, + "end": 15211.24, + "probability": 0.8601 + }, + { + "start": 15212.3, + "end": 15213.3, + "probability": 0.9424 + }, + { + "start": 15214.22, + "end": 15214.9, + "probability": 0.0002 + }, + { + "start": 15214.9, + "end": 15217.58, + "probability": 0.6813 + }, + { + "start": 15218.62, + "end": 15220.14, + "probability": 0.7731 + }, + { + "start": 15221.3, + "end": 15223.3, + "probability": 0.8419 + }, + { + "start": 15224.42, + "end": 15228.02, + "probability": 0.6657 + }, + { + "start": 15228.88, + "end": 15230.98, + "probability": 0.6366 + }, + { + "start": 15231.04, + "end": 15231.87, + "probability": 0.5143 + }, + { + "start": 15232.26, + "end": 15234.08, + "probability": 0.7856 + }, + { + "start": 15234.12, + "end": 15235.39, + "probability": 0.9912 + }, + { + "start": 15236.56, + "end": 15238.34, + "probability": 0.263 + }, + { + "start": 15238.48, + "end": 15238.99, + "probability": 0.5296 + }, + { + "start": 15239.6, + "end": 15240.28, + "probability": 0.6914 + }, + { + "start": 15240.82, + "end": 15243.94, + "probability": 0.8128 + }, + { + "start": 15244.42, + "end": 15245.22, + "probability": 0.7059 + }, + { + "start": 15245.8, + "end": 15247.2, + "probability": 0.7631 + }, + { + "start": 15248.42, + "end": 15249.5, + "probability": 0.9467 + }, + { + "start": 15249.6, + "end": 15250.62, + "probability": 0.4622 + }, + { + "start": 15250.62, + "end": 15251.84, + "probability": 0.9513 + }, + { + "start": 15252.5, + "end": 15256.6, + "probability": 0.7913 + }, + { + "start": 15256.6, + "end": 15259.04, + "probability": 0.4711 + }, + { + "start": 15259.18, + "end": 15259.94, + "probability": 0.7988 + }, + { + "start": 15260.0, + "end": 15261.04, + "probability": 0.6925 + }, + { + "start": 15261.28, + "end": 15262.52, + "probability": 0.9137 + }, + { + "start": 15263.6, + "end": 15266.6, + "probability": 0.9583 + }, + { + "start": 15266.96, + "end": 15270.42, + "probability": 0.9817 + }, + { + "start": 15271.12, + "end": 15273.35, + "probability": 0.889 + }, + { + "start": 15273.84, + "end": 15274.28, + "probability": 0.7497 + }, + { + "start": 15274.54, + "end": 15274.92, + "probability": 0.7777 + }, + { + "start": 15275.54, + "end": 15277.96, + "probability": 0.9609 + }, + { + "start": 15278.8, + "end": 15281.82, + "probability": 0.9684 + }, + { + "start": 15281.9, + "end": 15282.61, + "probability": 0.8943 + }, + { + "start": 15282.9, + "end": 15283.98, + "probability": 0.9109 + }, + { + "start": 15284.02, + "end": 15285.36, + "probability": 0.8726 + }, + { + "start": 15285.8, + "end": 15289.46, + "probability": 0.8869 + }, + { + "start": 15289.7, + "end": 15290.58, + "probability": 0.6844 + }, + { + "start": 15291.04, + "end": 15293.98, + "probability": 0.9114 + }, + { + "start": 15294.32, + "end": 15297.34, + "probability": 0.9946 + }, + { + "start": 15297.66, + "end": 15298.32, + "probability": 0.5572 + }, + { + "start": 15298.38, + "end": 15299.76, + "probability": 0.575 + }, + { + "start": 15300.8, + "end": 15303.22, + "probability": 0.8915 + }, + { + "start": 15306.02, + "end": 15309.0, + "probability": 0.7194 + }, + { + "start": 15309.72, + "end": 15313.0, + "probability": 0.9341 + }, + { + "start": 15313.16, + "end": 15314.18, + "probability": 0.9486 + }, + { + "start": 15314.68, + "end": 15315.98, + "probability": 0.7522 + }, + { + "start": 15316.76, + "end": 15321.44, + "probability": 0.6543 + }, + { + "start": 15322.08, + "end": 15325.4, + "probability": 0.9767 + }, + { + "start": 15326.06, + "end": 15326.52, + "probability": 0.9625 + }, + { + "start": 15327.2, + "end": 15327.78, + "probability": 0.5745 + }, + { + "start": 15328.3, + "end": 15330.52, + "probability": 0.8179 + }, + { + "start": 15331.14, + "end": 15337.98, + "probability": 0.3959 + }, + { + "start": 15337.98, + "end": 15338.84, + "probability": 0.8975 + }, + { + "start": 15344.7, + "end": 15346.36, + "probability": 0.9718 + }, + { + "start": 15347.02, + "end": 15347.86, + "probability": 0.598 + }, + { + "start": 15348.42, + "end": 15350.46, + "probability": 0.8809 + }, + { + "start": 15351.7, + "end": 15356.4, + "probability": 0.9231 + }, + { + "start": 15356.4, + "end": 15359.76, + "probability": 0.8325 + }, + { + "start": 15360.56, + "end": 15362.6, + "probability": 0.6147 + }, + { + "start": 15363.22, + "end": 15364.2, + "probability": 0.7342 + }, + { + "start": 15365.14, + "end": 15369.76, + "probability": 0.9329 + }, + { + "start": 15370.3, + "end": 15371.56, + "probability": 0.8645 + }, + { + "start": 15372.7, + "end": 15374.58, + "probability": 0.9985 + }, + { + "start": 15374.76, + "end": 15376.08, + "probability": 0.8759 + }, + { + "start": 15376.16, + "end": 15379.5, + "probability": 0.7303 + }, + { + "start": 15380.48, + "end": 15382.98, + "probability": 0.9983 + }, + { + "start": 15384.1, + "end": 15384.26, + "probability": 0.723 + }, + { + "start": 15385.28, + "end": 15389.72, + "probability": 0.98 + }, + { + "start": 15391.36, + "end": 15393.02, + "probability": 0.9669 + }, + { + "start": 15393.28, + "end": 15393.54, + "probability": 0.2045 + }, + { + "start": 15393.66, + "end": 15397.05, + "probability": 0.6488 + }, + { + "start": 15399.0, + "end": 15402.6, + "probability": 0.9683 + }, + { + "start": 15403.34, + "end": 15405.32, + "probability": 0.5187 + }, + { + "start": 15405.48, + "end": 15406.56, + "probability": 0.7185 + }, + { + "start": 15406.7, + "end": 15410.36, + "probability": 0.5641 + }, + { + "start": 15411.48, + "end": 15412.88, + "probability": 0.8442 + }, + { + "start": 15414.38, + "end": 15417.48, + "probability": 0.7787 + }, + { + "start": 15418.28, + "end": 15420.62, + "probability": 0.6315 + }, + { + "start": 15421.08, + "end": 15422.72, + "probability": 0.9243 + }, + { + "start": 15422.9, + "end": 15426.44, + "probability": 0.8387 + }, + { + "start": 15426.82, + "end": 15430.14, + "probability": 0.8843 + }, + { + "start": 15430.48, + "end": 15430.52, + "probability": 0.491 + }, + { + "start": 15430.64, + "end": 15431.64, + "probability": 0.6266 + }, + { + "start": 15431.7, + "end": 15432.0, + "probability": 0.441 + }, + { + "start": 15432.22, + "end": 15432.82, + "probability": 0.8071 + }, + { + "start": 15433.02, + "end": 15434.7, + "probability": 0.4642 + }, + { + "start": 15435.18, + "end": 15436.61, + "probability": 0.7319 + }, + { + "start": 15437.96, + "end": 15439.0, + "probability": 0.3774 + }, + { + "start": 15439.06, + "end": 15440.62, + "probability": 0.4427 + }, + { + "start": 15440.84, + "end": 15444.92, + "probability": 0.7931 + }, + { + "start": 15445.08, + "end": 15447.84, + "probability": 0.671 + }, + { + "start": 15447.94, + "end": 15448.24, + "probability": 0.7671 + }, + { + "start": 15448.24, + "end": 15450.4, + "probability": 0.0542 + }, + { + "start": 15450.68, + "end": 15456.38, + "probability": 0.9793 + }, + { + "start": 15456.46, + "end": 15459.18, + "probability": 0.6112 + }, + { + "start": 15459.18, + "end": 15460.7, + "probability": 0.888 + }, + { + "start": 15460.74, + "end": 15461.62, + "probability": 0.9672 + }, + { + "start": 15462.26, + "end": 15464.4, + "probability": 0.9172 + }, + { + "start": 15465.28, + "end": 15466.12, + "probability": 0.7433 + }, + { + "start": 15466.8, + "end": 15467.78, + "probability": 0.6143 + }, + { + "start": 15468.36, + "end": 15470.76, + "probability": 0.3584 + }, + { + "start": 15470.88, + "end": 15472.4, + "probability": 0.6153 + }, + { + "start": 15472.68, + "end": 15475.1, + "probability": 0.8543 + }, + { + "start": 15475.16, + "end": 15476.58, + "probability": 0.9383 + }, + { + "start": 15476.76, + "end": 15476.94, + "probability": 0.3067 + }, + { + "start": 15477.22, + "end": 15477.84, + "probability": 0.0756 + }, + { + "start": 15477.96, + "end": 15479.66, + "probability": 0.1326 + }, + { + "start": 15479.66, + "end": 15482.16, + "probability": 0.5505 + }, + { + "start": 15482.36, + "end": 15483.78, + "probability": 0.6276 + }, + { + "start": 15483.94, + "end": 15484.66, + "probability": 0.8094 + }, + { + "start": 15485.34, + "end": 15488.88, + "probability": 0.7188 + }, + { + "start": 15490.0, + "end": 15494.0, + "probability": 0.916 + }, + { + "start": 15494.74, + "end": 15496.3, + "probability": 0.8378 + }, + { + "start": 15497.66, + "end": 15499.52, + "probability": 0.3231 + }, + { + "start": 15500.36, + "end": 15503.0, + "probability": 0.9534 + }, + { + "start": 15503.62, + "end": 15506.86, + "probability": 0.7982 + }, + { + "start": 15507.38, + "end": 15510.78, + "probability": 0.8567 + }, + { + "start": 15510.84, + "end": 15513.24, + "probability": 0.8293 + }, + { + "start": 15513.58, + "end": 15517.52, + "probability": 0.8092 + }, + { + "start": 15518.12, + "end": 15522.82, + "probability": 0.7518 + }, + { + "start": 15523.16, + "end": 15523.22, + "probability": 0.1345 + }, + { + "start": 15523.22, + "end": 15525.22, + "probability": 0.2801 + }, + { + "start": 15525.58, + "end": 15530.76, + "probability": 0.9857 + }, + { + "start": 15532.39, + "end": 15538.3, + "probability": 0.0848 + }, + { + "start": 15538.3, + "end": 15538.3, + "probability": 0.0486 + }, + { + "start": 15538.3, + "end": 15538.97, + "probability": 0.4939 + }, + { + "start": 15540.28, + "end": 15541.34, + "probability": 0.1558 + }, + { + "start": 15541.44, + "end": 15541.98, + "probability": 0.1843 + }, + { + "start": 15542.38, + "end": 15544.58, + "probability": 0.2336 + }, + { + "start": 15545.72, + "end": 15546.98, + "probability": 0.7151 + }, + { + "start": 15560.58, + "end": 15562.48, + "probability": 0.5155 + }, + { + "start": 15562.72, + "end": 15564.68, + "probability": 0.3483 + }, + { + "start": 15564.78, + "end": 15565.16, + "probability": 0.5434 + }, + { + "start": 15565.28, + "end": 15566.64, + "probability": 0.9058 + }, + { + "start": 15567.04, + "end": 15568.38, + "probability": 0.8236 + }, + { + "start": 15569.02, + "end": 15571.66, + "probability": 0.8606 + }, + { + "start": 15572.46, + "end": 15573.42, + "probability": 0.0003 + }, + { + "start": 15573.42, + "end": 15573.42, + "probability": 0.0928 + }, + { + "start": 15573.42, + "end": 15573.9, + "probability": 0.1851 + }, + { + "start": 15577.4, + "end": 15579.3, + "probability": 0.4214 + }, + { + "start": 15580.06, + "end": 15580.74, + "probability": 0.1761 + }, + { + "start": 15581.38, + "end": 15581.38, + "probability": 0.214 + }, + { + "start": 15581.38, + "end": 15581.38, + "probability": 0.0879 + }, + { + "start": 15581.38, + "end": 15581.44, + "probability": 0.3359 + }, + { + "start": 15581.5, + "end": 15582.3, + "probability": 0.6636 + }, + { + "start": 15583.4, + "end": 15585.74, + "probability": 0.693 + }, + { + "start": 15586.02, + "end": 15586.39, + "probability": 0.7334 + }, + { + "start": 15587.1, + "end": 15588.26, + "probability": 0.7288 + }, + { + "start": 15589.04, + "end": 15591.4, + "probability": 0.9476 + }, + { + "start": 15591.54, + "end": 15591.86, + "probability": 0.4442 + }, + { + "start": 15593.12, + "end": 15593.44, + "probability": 0.0913 + }, + { + "start": 15593.44, + "end": 15594.02, + "probability": 0.4005 + }, + { + "start": 15594.04, + "end": 15594.58, + "probability": 0.2329 + }, + { + "start": 15594.58, + "end": 15595.96, + "probability": 0.9505 + }, + { + "start": 15595.99, + "end": 15603.44, + "probability": 0.0876 + }, + { + "start": 15603.44, + "end": 15604.84, + "probability": 0.5862 + }, + { + "start": 15605.14, + "end": 15609.14, + "probability": 0.8436 + }, + { + "start": 15609.26, + "end": 15611.94, + "probability": 0.3921 + }, + { + "start": 15612.84, + "end": 15614.1, + "probability": 0.8892 + }, + { + "start": 15614.74, + "end": 15616.2, + "probability": 0.7616 + }, + { + "start": 15616.58, + "end": 15617.06, + "probability": 0.86 + }, + { + "start": 15617.74, + "end": 15619.52, + "probability": 0.8958 + }, + { + "start": 15620.04, + "end": 15622.11, + "probability": 0.981 + }, + { + "start": 15622.42, + "end": 15623.78, + "probability": 0.5129 + }, + { + "start": 15624.24, + "end": 15626.35, + "probability": 0.764 + }, + { + "start": 15627.06, + "end": 15627.98, + "probability": 0.5806 + }, + { + "start": 15628.97, + "end": 15632.72, + "probability": 0.8616 + }, + { + "start": 15633.82, + "end": 15634.19, + "probability": 0.9382 + }, + { + "start": 15634.98, + "end": 15636.56, + "probability": 0.8618 + }, + { + "start": 15637.18, + "end": 15642.84, + "probability": 0.9333 + }, + { + "start": 15643.82, + "end": 15644.44, + "probability": 0.822 + }, + { + "start": 15644.44, + "end": 15646.0, + "probability": 0.9805 + }, + { + "start": 15647.08, + "end": 15648.26, + "probability": 0.8693 + }, + { + "start": 15649.12, + "end": 15649.7, + "probability": 0.9541 + }, + { + "start": 15650.66, + "end": 15651.64, + "probability": 0.9375 + }, + { + "start": 15651.92, + "end": 15652.63, + "probability": 0.9924 + }, + { + "start": 15653.06, + "end": 15654.12, + "probability": 0.9728 + }, + { + "start": 15654.2, + "end": 15654.7, + "probability": 0.8566 + }, + { + "start": 15654.88, + "end": 15655.04, + "probability": 0.9021 + }, + { + "start": 15655.22, + "end": 15655.36, + "probability": 0.4055 + }, + { + "start": 15655.66, + "end": 15656.66, + "probability": 0.728 + }, + { + "start": 15657.18, + "end": 15660.58, + "probability": 0.9815 + }, + { + "start": 15660.58, + "end": 15665.28, + "probability": 0.9447 + }, + { + "start": 15665.9, + "end": 15667.22, + "probability": 0.6527 + }, + { + "start": 15667.66, + "end": 15670.92, + "probability": 0.8456 + }, + { + "start": 15671.84, + "end": 15675.28, + "probability": 0.9361 + }, + { + "start": 15676.28, + "end": 15678.54, + "probability": 0.666 + }, + { + "start": 15679.82, + "end": 15681.2, + "probability": 0.6299 + }, + { + "start": 15682.12, + "end": 15684.74, + "probability": 0.9503 + }, + { + "start": 15685.82, + "end": 15686.24, + "probability": 0.9243 + }, + { + "start": 15687.04, + "end": 15688.48, + "probability": 0.8891 + }, + { + "start": 15688.68, + "end": 15689.96, + "probability": 0.4888 + }, + { + "start": 15690.9, + "end": 15693.68, + "probability": 0.5488 + }, + { + "start": 15693.78, + "end": 15699.44, + "probability": 0.927 + }, + { + "start": 15699.54, + "end": 15700.66, + "probability": 0.7897 + }, + { + "start": 15701.84, + "end": 15702.08, + "probability": 0.713 + }, + { + "start": 15703.18, + "end": 15707.64, + "probability": 0.7231 + }, + { + "start": 15709.26, + "end": 15712.44, + "probability": 0.5157 + }, + { + "start": 15713.1, + "end": 15716.1, + "probability": 0.6751 + }, + { + "start": 15717.24, + "end": 15720.5, + "probability": 0.9178 + }, + { + "start": 15720.84, + "end": 15721.04, + "probability": 0.8469 + }, + { + "start": 15721.14, + "end": 15724.14, + "probability": 0.9363 + }, + { + "start": 15724.58, + "end": 15724.86, + "probability": 0.3815 + }, + { + "start": 15724.98, + "end": 15725.88, + "probability": 0.5994 + }, + { + "start": 15726.34, + "end": 15726.66, + "probability": 0.5886 + }, + { + "start": 15727.52, + "end": 15733.56, + "probability": 0.8397 + }, + { + "start": 15733.6, + "end": 15734.48, + "probability": 0.9044 + }, + { + "start": 15734.56, + "end": 15735.34, + "probability": 0.9097 + }, + { + "start": 15735.88, + "end": 15737.52, + "probability": 0.9203 + }, + { + "start": 15737.88, + "end": 15738.08, + "probability": 0.3249 + }, + { + "start": 15738.08, + "end": 15738.94, + "probability": 0.6318 + }, + { + "start": 15738.96, + "end": 15740.56, + "probability": 0.9285 + }, + { + "start": 15741.56, + "end": 15741.78, + "probability": 0.9277 + }, + { + "start": 15742.6, + "end": 15745.8, + "probability": 0.9698 + }, + { + "start": 15746.32, + "end": 15747.22, + "probability": 0.591 + }, + { + "start": 15747.48, + "end": 15748.64, + "probability": 0.9775 + }, + { + "start": 15749.14, + "end": 15752.46, + "probability": 0.9564 + }, + { + "start": 15753.0, + "end": 15754.46, + "probability": 0.8815 + }, + { + "start": 15754.56, + "end": 15755.6, + "probability": 0.9495 + }, + { + "start": 15757.16, + "end": 15758.62, + "probability": 0.9241 + }, + { + "start": 15758.72, + "end": 15760.24, + "probability": 0.7499 + }, + { + "start": 15760.32, + "end": 15761.64, + "probability": 0.4455 + }, + { + "start": 15762.26, + "end": 15763.68, + "probability": 0.9206 + }, + { + "start": 15764.4, + "end": 15766.78, + "probability": 0.9328 + }, + { + "start": 15767.38, + "end": 15770.74, + "probability": 0.4966 + }, + { + "start": 15771.3, + "end": 15772.48, + "probability": 0.8858 + }, + { + "start": 15773.2, + "end": 15775.08, + "probability": 0.847 + }, + { + "start": 15775.14, + "end": 15777.52, + "probability": 0.82 + }, + { + "start": 15778.04, + "end": 15781.01, + "probability": 0.7404 + }, + { + "start": 15781.5, + "end": 15783.14, + "probability": 0.512 + }, + { + "start": 15783.36, + "end": 15784.46, + "probability": 0.856 + }, + { + "start": 15784.62, + "end": 15786.44, + "probability": 0.9188 + }, + { + "start": 15786.72, + "end": 15787.32, + "probability": 0.3322 + }, + { + "start": 15787.5, + "end": 15788.56, + "probability": 0.8137 + }, + { + "start": 15788.76, + "end": 15791.08, + "probability": 0.9115 + }, + { + "start": 15791.84, + "end": 15792.82, + "probability": 0.8794 + }, + { + "start": 15793.48, + "end": 15795.88, + "probability": 0.9502 + }, + { + "start": 15796.08, + "end": 15796.28, + "probability": 0.8859 + }, + { + "start": 15796.4, + "end": 15798.9, + "probability": 0.7258 + }, + { + "start": 15799.26, + "end": 15799.94, + "probability": 0.7654 + }, + { + "start": 15799.98, + "end": 15804.48, + "probability": 0.9847 + }, + { + "start": 15804.94, + "end": 15806.74, + "probability": 0.928 + }, + { + "start": 15807.04, + "end": 15808.75, + "probability": 0.8109 + }, + { + "start": 15809.88, + "end": 15811.04, + "probability": 0.6718 + }, + { + "start": 15811.22, + "end": 15811.9, + "probability": 0.815 + }, + { + "start": 15812.96, + "end": 15814.34, + "probability": 0.6175 + }, + { + "start": 15815.56, + "end": 15816.48, + "probability": 0.6311 + }, + { + "start": 15817.06, + "end": 15820.74, + "probability": 0.9482 + }, + { + "start": 15820.82, + "end": 15821.8, + "probability": 0.9688 + }, + { + "start": 15823.0, + "end": 15824.06, + "probability": 0.9551 + }, + { + "start": 15824.3, + "end": 15825.74, + "probability": 0.8851 + }, + { + "start": 15826.14, + "end": 15827.6, + "probability": 0.9668 + }, + { + "start": 15828.54, + "end": 15829.1, + "probability": 0.8263 + }, + { + "start": 15829.58, + "end": 15830.21, + "probability": 0.9845 + }, + { + "start": 15830.78, + "end": 15831.32, + "probability": 0.8132 + }, + { + "start": 15831.56, + "end": 15834.06, + "probability": 0.8201 + }, + { + "start": 15834.36, + "end": 15835.66, + "probability": 0.7672 + }, + { + "start": 15835.8, + "end": 15837.34, + "probability": 0.8152 + }, + { + "start": 15837.72, + "end": 15837.98, + "probability": 0.5219 + }, + { + "start": 15838.08, + "end": 15838.54, + "probability": 0.9696 + }, + { + "start": 15839.0, + "end": 15840.16, + "probability": 0.9343 + }, + { + "start": 15840.58, + "end": 15846.14, + "probability": 0.9038 + }, + { + "start": 15847.26, + "end": 15849.64, + "probability": 0.9798 + }, + { + "start": 15849.72, + "end": 15849.92, + "probability": 0.4214 + }, + { + "start": 15849.98, + "end": 15850.88, + "probability": 0.6025 + }, + { + "start": 15851.8, + "end": 15853.16, + "probability": 0.5949 + }, + { + "start": 15853.16, + "end": 15853.26, + "probability": 0.6135 + }, + { + "start": 15853.56, + "end": 15854.14, + "probability": 0.975 + }, + { + "start": 15854.6, + "end": 15855.12, + "probability": 0.4422 + }, + { + "start": 15855.88, + "end": 15857.9, + "probability": 0.7987 + }, + { + "start": 15859.05, + "end": 15860.16, + "probability": 0.578 + }, + { + "start": 15860.28, + "end": 15860.46, + "probability": 0.2585 + }, + { + "start": 15860.46, + "end": 15861.0, + "probability": 0.4086 + }, + { + "start": 15861.56, + "end": 15867.4, + "probability": 0.8738 + }, + { + "start": 15868.1, + "end": 15870.56, + "probability": 0.7478 + }, + { + "start": 15870.8, + "end": 15872.56, + "probability": 0.806 + }, + { + "start": 15872.98, + "end": 15872.98, + "probability": 0.4573 + }, + { + "start": 15873.14, + "end": 15878.34, + "probability": 0.9795 + }, + { + "start": 15878.88, + "end": 15880.19, + "probability": 0.7016 + }, + { + "start": 15880.42, + "end": 15880.58, + "probability": 0.0904 + }, + { + "start": 15880.58, + "end": 15880.58, + "probability": 0.1382 + }, + { + "start": 15880.58, + "end": 15883.76, + "probability": 0.947 + }, + { + "start": 15884.22, + "end": 15884.32, + "probability": 0.5065 + }, + { + "start": 15884.32, + "end": 15885.76, + "probability": 0.7553 + }, + { + "start": 15885.8, + "end": 15888.32, + "probability": 0.6303 + }, + { + "start": 15888.52, + "end": 15890.36, + "probability": 0.8539 + }, + { + "start": 15890.66, + "end": 15891.42, + "probability": 0.8933 + }, + { + "start": 15891.68, + "end": 15893.54, + "probability": 0.2311 + }, + { + "start": 15893.74, + "end": 15894.86, + "probability": 0.5022 + }, + { + "start": 15898.26, + "end": 15899.02, + "probability": 0.3148 + }, + { + "start": 15901.26, + "end": 15901.36, + "probability": 0.0127 + }, + { + "start": 15914.41, + "end": 15916.13, + "probability": 0.9491 + }, + { + "start": 15929.22, + "end": 15930.81, + "probability": 0.763 + }, + { + "start": 15933.21, + "end": 15934.21, + "probability": 0.8847 + }, + { + "start": 15934.81, + "end": 15936.41, + "probability": 0.9147 + }, + { + "start": 15937.29, + "end": 15939.81, + "probability": 0.9717 + }, + { + "start": 15940.33, + "end": 15941.71, + "probability": 0.9139 + }, + { + "start": 15941.87, + "end": 15942.97, + "probability": 0.5763 + }, + { + "start": 15943.91, + "end": 15943.97, + "probability": 0.2036 + }, + { + "start": 15943.97, + "end": 15944.63, + "probability": 0.7585 + }, + { + "start": 15945.39, + "end": 15947.07, + "probability": 0.7382 + }, + { + "start": 15947.21, + "end": 15947.71, + "probability": 0.8933 + }, + { + "start": 15948.59, + "end": 15951.59, + "probability": 0.9367 + }, + { + "start": 15952.03, + "end": 15954.09, + "probability": 0.827 + }, + { + "start": 15954.55, + "end": 15957.33, + "probability": 0.5943 + }, + { + "start": 15957.97, + "end": 15960.15, + "probability": 0.9337 + }, + { + "start": 15960.29, + "end": 15962.07, + "probability": 0.9098 + }, + { + "start": 15962.83, + "end": 15963.15, + "probability": 0.0593 + }, + { + "start": 15963.15, + "end": 15965.03, + "probability": 0.9003 + }, + { + "start": 15965.25, + "end": 15965.67, + "probability": 0.9055 + }, + { + "start": 15966.63, + "end": 15967.45, + "probability": 0.6882 + }, + { + "start": 15967.61, + "end": 15969.51, + "probability": 0.672 + }, + { + "start": 15969.71, + "end": 15971.16, + "probability": 0.0155 + }, + { + "start": 15971.67, + "end": 15974.37, + "probability": 0.7453 + }, + { + "start": 15975.07, + "end": 15975.31, + "probability": 0.5722 + }, + { + "start": 15976.05, + "end": 15979.55, + "probability": 0.9013 + }, + { + "start": 15981.05, + "end": 15984.97, + "probability": 0.9867 + }, + { + "start": 15985.13, + "end": 15986.81, + "probability": 0.9795 + }, + { + "start": 15987.65, + "end": 15990.99, + "probability": 0.9813 + }, + { + "start": 15992.01, + "end": 15994.31, + "probability": 0.9806 + }, + { + "start": 15994.97, + "end": 16000.25, + "probability": 0.9386 + }, + { + "start": 16000.25, + "end": 16003.41, + "probability": 0.9971 + }, + { + "start": 16004.07, + "end": 16011.43, + "probability": 0.9883 + }, + { + "start": 16012.13, + "end": 16016.01, + "probability": 0.9928 + }, + { + "start": 16016.01, + "end": 16020.15, + "probability": 0.9554 + }, + { + "start": 16020.97, + "end": 16023.67, + "probability": 0.9854 + }, + { + "start": 16023.81, + "end": 16028.47, + "probability": 0.9832 + }, + { + "start": 16029.11, + "end": 16034.33, + "probability": 0.988 + }, + { + "start": 16035.23, + "end": 16037.39, + "probability": 0.8575 + }, + { + "start": 16037.47, + "end": 16040.57, + "probability": 0.9889 + }, + { + "start": 16040.65, + "end": 16042.53, + "probability": 0.9591 + }, + { + "start": 16043.17, + "end": 16047.27, + "probability": 0.9724 + }, + { + "start": 16047.43, + "end": 16048.39, + "probability": 0.6214 + }, + { + "start": 16048.41, + "end": 16050.45, + "probability": 0.9191 + }, + { + "start": 16051.85, + "end": 16052.9, + "probability": 0.9966 + }, + { + "start": 16053.81, + "end": 16057.77, + "probability": 0.9931 + }, + { + "start": 16058.95, + "end": 16063.65, + "probability": 0.9008 + }, + { + "start": 16064.31, + "end": 16066.17, + "probability": 0.9694 + }, + { + "start": 16067.25, + "end": 16070.23, + "probability": 0.9885 + }, + { + "start": 16070.99, + "end": 16073.91, + "probability": 0.984 + }, + { + "start": 16074.53, + "end": 16077.77, + "probability": 0.9982 + }, + { + "start": 16078.59, + "end": 16081.73, + "probability": 0.995 + }, + { + "start": 16081.89, + "end": 16083.83, + "probability": 0.7857 + }, + { + "start": 16084.51, + "end": 16084.95, + "probability": 0.9662 + }, + { + "start": 16085.49, + "end": 16088.03, + "probability": 0.707 + }, + { + "start": 16088.11, + "end": 16089.57, + "probability": 0.7181 + }, + { + "start": 16090.69, + "end": 16091.49, + "probability": 0.7919 + }, + { + "start": 16091.55, + "end": 16093.65, + "probability": 0.9889 + }, + { + "start": 16093.75, + "end": 16096.85, + "probability": 0.9926 + }, + { + "start": 16097.87, + "end": 16103.45, + "probability": 0.9925 + }, + { + "start": 16104.77, + "end": 16107.43, + "probability": 0.8505 + }, + { + "start": 16108.21, + "end": 16112.91, + "probability": 0.9557 + }, + { + "start": 16113.53, + "end": 16117.81, + "probability": 0.9529 + }, + { + "start": 16117.99, + "end": 16120.21, + "probability": 0.8401 + }, + { + "start": 16121.11, + "end": 16123.05, + "probability": 0.938 + }, + { + "start": 16124.03, + "end": 16125.69, + "probability": 0.9716 + }, + { + "start": 16126.63, + "end": 16130.09, + "probability": 0.9854 + }, + { + "start": 16130.35, + "end": 16132.03, + "probability": 0.8107 + }, + { + "start": 16132.21, + "end": 16135.59, + "probability": 0.9877 + }, + { + "start": 16135.59, + "end": 16141.61, + "probability": 0.9807 + }, + { + "start": 16142.91, + "end": 16147.21, + "probability": 0.8438 + }, + { + "start": 16148.07, + "end": 16151.25, + "probability": 0.9985 + }, + { + "start": 16152.31, + "end": 16155.05, + "probability": 0.8348 + }, + { + "start": 16155.27, + "end": 16160.95, + "probability": 0.999 + }, + { + "start": 16161.01, + "end": 16161.69, + "probability": 0.946 + }, + { + "start": 16162.31, + "end": 16164.05, + "probability": 0.8792 + }, + { + "start": 16164.75, + "end": 16169.57, + "probability": 0.7231 + }, + { + "start": 16170.33, + "end": 16172.47, + "probability": 0.9954 + }, + { + "start": 16172.63, + "end": 16174.83, + "probability": 0.9418 + }, + { + "start": 16175.63, + "end": 16182.37, + "probability": 0.8267 + }, + { + "start": 16183.03, + "end": 16184.75, + "probability": 0.8921 + }, + { + "start": 16185.19, + "end": 16186.67, + "probability": 0.999 + }, + { + "start": 16187.25, + "end": 16188.35, + "probability": 0.7998 + }, + { + "start": 16188.43, + "end": 16190.07, + "probability": 0.8037 + }, + { + "start": 16191.05, + "end": 16193.67, + "probability": 0.9863 + }, + { + "start": 16194.31, + "end": 16195.65, + "probability": 0.8037 + }, + { + "start": 16196.39, + "end": 16202.01, + "probability": 0.967 + }, + { + "start": 16202.33, + "end": 16203.85, + "probability": 0.9863 + }, + { + "start": 16204.59, + "end": 16208.41, + "probability": 0.9951 + }, + { + "start": 16208.47, + "end": 16211.15, + "probability": 0.932 + }, + { + "start": 16211.55, + "end": 16214.31, + "probability": 0.9819 + }, + { + "start": 16215.05, + "end": 16217.73, + "probability": 0.993 + }, + { + "start": 16218.35, + "end": 16222.87, + "probability": 0.8414 + }, + { + "start": 16223.06, + "end": 16225.71, + "probability": 0.9324 + }, + { + "start": 16225.91, + "end": 16228.11, + "probability": 0.9935 + }, + { + "start": 16228.75, + "end": 16231.85, + "probability": 0.9963 + }, + { + "start": 16232.45, + "end": 16233.55, + "probability": 0.9231 + }, + { + "start": 16233.87, + "end": 16239.29, + "probability": 0.9941 + }, + { + "start": 16240.07, + "end": 16243.59, + "probability": 0.9246 + }, + { + "start": 16243.67, + "end": 16246.89, + "probability": 0.9399 + }, + { + "start": 16247.55, + "end": 16249.45, + "probability": 0.9065 + }, + { + "start": 16250.05, + "end": 16254.07, + "probability": 0.9965 + }, + { + "start": 16254.35, + "end": 16258.59, + "probability": 0.9854 + }, + { + "start": 16259.37, + "end": 16262.37, + "probability": 0.9956 + }, + { + "start": 16264.55, + "end": 16265.23, + "probability": 0.3042 + }, + { + "start": 16265.23, + "end": 16267.07, + "probability": 0.6333 + }, + { + "start": 16268.07, + "end": 16271.61, + "probability": 0.9338 + }, + { + "start": 16272.97, + "end": 16276.03, + "probability": 0.9399 + }, + { + "start": 16276.07, + "end": 16279.15, + "probability": 0.9207 + }, + { + "start": 16280.63, + "end": 16284.55, + "probability": 0.9292 + }, + { + "start": 16284.55, + "end": 16288.09, + "probability": 0.9893 + }, + { + "start": 16288.93, + "end": 16289.17, + "probability": 0.4124 + }, + { + "start": 16289.33, + "end": 16293.05, + "probability": 0.9685 + }, + { + "start": 16293.51, + "end": 16294.59, + "probability": 0.7124 + }, + { + "start": 16295.33, + "end": 16298.55, + "probability": 0.9961 + }, + { + "start": 16299.03, + "end": 16300.77, + "probability": 0.9795 + }, + { + "start": 16301.29, + "end": 16302.07, + "probability": 0.8521 + }, + { + "start": 16303.01, + "end": 16305.81, + "probability": 0.6724 + }, + { + "start": 16305.81, + "end": 16307.09, + "probability": 0.8083 + }, + { + "start": 16307.69, + "end": 16311.12, + "probability": 0.9478 + }, + { + "start": 16311.71, + "end": 16312.07, + "probability": 0.6017 + }, + { + "start": 16312.09, + "end": 16312.97, + "probability": 0.8906 + }, + { + "start": 16313.29, + "end": 16313.47, + "probability": 0.8245 + }, + { + "start": 16313.83, + "end": 16314.01, + "probability": 0.6429 + }, + { + "start": 16314.53, + "end": 16315.87, + "probability": 0.6243 + }, + { + "start": 16315.99, + "end": 16318.35, + "probability": 0.8011 + }, + { + "start": 16320.07, + "end": 16322.63, + "probability": 0.604 + }, + { + "start": 16326.07, + "end": 16327.27, + "probability": 0.6957 + }, + { + "start": 16330.02, + "end": 16333.95, + "probability": 0.6074 + }, + { + "start": 16335.25, + "end": 16338.57, + "probability": 0.3013 + }, + { + "start": 16338.57, + "end": 16339.15, + "probability": 0.6046 + }, + { + "start": 16339.23, + "end": 16340.49, + "probability": 0.6764 + }, + { + "start": 16340.87, + "end": 16343.57, + "probability": 0.9857 + }, + { + "start": 16343.63, + "end": 16344.21, + "probability": 0.9126 + }, + { + "start": 16344.33, + "end": 16345.01, + "probability": 0.9648 + }, + { + "start": 16346.07, + "end": 16349.03, + "probability": 0.9622 + }, + { + "start": 16349.75, + "end": 16351.97, + "probability": 0.9872 + }, + { + "start": 16352.65, + "end": 16353.51, + "probability": 0.9448 + }, + { + "start": 16354.25, + "end": 16354.79, + "probability": 0.8104 + }, + { + "start": 16354.87, + "end": 16357.67, + "probability": 0.6738 + }, + { + "start": 16357.69, + "end": 16360.85, + "probability": 0.917 + }, + { + "start": 16361.31, + "end": 16362.15, + "probability": 0.843 + }, + { + "start": 16362.89, + "end": 16368.43, + "probability": 0.9797 + }, + { + "start": 16368.85, + "end": 16370.45, + "probability": 0.9899 + }, + { + "start": 16371.19, + "end": 16373.61, + "probability": 0.7704 + }, + { + "start": 16374.99, + "end": 16377.79, + "probability": 0.9935 + }, + { + "start": 16377.79, + "end": 16381.25, + "probability": 0.9956 + }, + { + "start": 16381.35, + "end": 16382.49, + "probability": 0.9776 + }, + { + "start": 16382.61, + "end": 16383.31, + "probability": 0.9062 + }, + { + "start": 16383.49, + "end": 16384.59, + "probability": 0.9881 + }, + { + "start": 16385.29, + "end": 16389.61, + "probability": 0.9487 + }, + { + "start": 16390.51, + "end": 16392.77, + "probability": 0.9856 + }, + { + "start": 16392.77, + "end": 16394.16, + "probability": 0.7875 + }, + { + "start": 16395.33, + "end": 16398.19, + "probability": 0.5978 + }, + { + "start": 16398.75, + "end": 16398.99, + "probability": 0.372 + }, + { + "start": 16400.83, + "end": 16403.19, + "probability": 0.9508 + }, + { + "start": 16403.77, + "end": 16404.07, + "probability": 0.0016 + }, + { + "start": 16405.25, + "end": 16406.79, + "probability": 0.8882 + }, + { + "start": 16407.13, + "end": 16408.05, + "probability": 0.9956 + }, + { + "start": 16409.09, + "end": 16410.29, + "probability": 0.9918 + }, + { + "start": 16411.41, + "end": 16412.31, + "probability": 0.9565 + }, + { + "start": 16412.83, + "end": 16414.25, + "probability": 0.4785 + }, + { + "start": 16414.93, + "end": 16416.31, + "probability": 0.969 + }, + { + "start": 16417.09, + "end": 16419.91, + "probability": 0.9867 + }, + { + "start": 16420.47, + "end": 16422.21, + "probability": 0.6793 + }, + { + "start": 16422.45, + "end": 16425.23, + "probability": 0.8904 + }, + { + "start": 16425.79, + "end": 16427.17, + "probability": 0.9341 + }, + { + "start": 16428.02, + "end": 16428.77, + "probability": 0.5366 + }, + { + "start": 16428.83, + "end": 16429.11, + "probability": 0.7751 + }, + { + "start": 16429.11, + "end": 16429.51, + "probability": 0.6545 + }, + { + "start": 16429.65, + "end": 16430.93, + "probability": 0.8737 + }, + { + "start": 16432.17, + "end": 16435.29, + "probability": 0.9164 + }, + { + "start": 16436.45, + "end": 16441.99, + "probability": 0.8467 + }, + { + "start": 16442.17, + "end": 16442.37, + "probability": 0.679 + }, + { + "start": 16443.21, + "end": 16446.13, + "probability": 0.9351 + }, + { + "start": 16446.23, + "end": 16449.71, + "probability": 0.9916 + }, + { + "start": 16450.15, + "end": 16454.81, + "probability": 0.8204 + }, + { + "start": 16455.15, + "end": 16455.63, + "probability": 0.7432 + }, + { + "start": 16456.45, + "end": 16457.64, + "probability": 0.989 + }, + { + "start": 16458.01, + "end": 16460.97, + "probability": 0.902 + }, + { + "start": 16461.61, + "end": 16464.45, + "probability": 0.5549 + }, + { + "start": 16464.85, + "end": 16466.52, + "probability": 0.9458 + }, + { + "start": 16466.73, + "end": 16467.55, + "probability": 0.9636 + }, + { + "start": 16467.67, + "end": 16468.61, + "probability": 0.7601 + }, + { + "start": 16469.15, + "end": 16470.89, + "probability": 0.9266 + }, + { + "start": 16471.41, + "end": 16473.11, + "probability": 0.7339 + }, + { + "start": 16473.17, + "end": 16477.73, + "probability": 0.9767 + }, + { + "start": 16478.55, + "end": 16479.03, + "probability": 0.317 + }, + { + "start": 16479.09, + "end": 16480.01, + "probability": 0.6722 + }, + { + "start": 16480.07, + "end": 16481.91, + "probability": 0.9875 + }, + { + "start": 16481.99, + "end": 16484.2, + "probability": 0.9661 + }, + { + "start": 16484.65, + "end": 16484.97, + "probability": 0.4125 + }, + { + "start": 16485.03, + "end": 16485.81, + "probability": 0.9798 + }, + { + "start": 16486.51, + "end": 16487.79, + "probability": 0.5485 + }, + { + "start": 16488.53, + "end": 16492.11, + "probability": 0.9906 + }, + { + "start": 16492.11, + "end": 16494.89, + "probability": 0.9957 + }, + { + "start": 16495.43, + "end": 16495.71, + "probability": 0.4713 + }, + { + "start": 16495.89, + "end": 16500.55, + "probability": 0.8846 + }, + { + "start": 16500.65, + "end": 16501.75, + "probability": 0.8832 + }, + { + "start": 16501.91, + "end": 16502.13, + "probability": 0.4443 + }, + { + "start": 16502.59, + "end": 16503.99, + "probability": 0.957 + }, + { + "start": 16504.49, + "end": 16507.07, + "probability": 0.9758 + }, + { + "start": 16507.99, + "end": 16509.71, + "probability": 0.94 + }, + { + "start": 16509.95, + "end": 16512.19, + "probability": 0.7534 + }, + { + "start": 16512.33, + "end": 16513.05, + "probability": 0.5138 + }, + { + "start": 16513.19, + "end": 16516.97, + "probability": 0.8881 + }, + { + "start": 16517.23, + "end": 16521.21, + "probability": 0.8799 + }, + { + "start": 16521.25, + "end": 16523.17, + "probability": 0.8655 + }, + { + "start": 16523.39, + "end": 16525.17, + "probability": 0.8163 + }, + { + "start": 16525.81, + "end": 16529.45, + "probability": 0.5206 + }, + { + "start": 16529.57, + "end": 16530.79, + "probability": 0.9399 + }, + { + "start": 16530.87, + "end": 16535.15, + "probability": 0.9889 + }, + { + "start": 16535.69, + "end": 16538.89, + "probability": 0.9972 + }, + { + "start": 16538.95, + "end": 16540.05, + "probability": 0.5219 + }, + { + "start": 16541.15, + "end": 16542.65, + "probability": 0.9304 + }, + { + "start": 16543.65, + "end": 16545.11, + "probability": 0.3825 + }, + { + "start": 16548.13, + "end": 16548.63, + "probability": 0.236 + }, + { + "start": 16548.97, + "end": 16550.39, + "probability": 0.4309 + }, + { + "start": 16550.65, + "end": 16551.85, + "probability": 0.4572 + }, + { + "start": 16552.17, + "end": 16555.49, + "probability": 0.2608 + }, + { + "start": 16555.65, + "end": 16556.17, + "probability": 0.1263 + }, + { + "start": 16556.37, + "end": 16557.31, + "probability": 0.4877 + }, + { + "start": 16557.53, + "end": 16558.31, + "probability": 0.7158 + }, + { + "start": 16559.05, + "end": 16561.55, + "probability": 0.385 + }, + { + "start": 16561.55, + "end": 16562.01, + "probability": 0.4652 + }, + { + "start": 16565.15, + "end": 16568.55, + "probability": 0.9883 + }, + { + "start": 16568.65, + "end": 16569.41, + "probability": 0.6783 + }, + { + "start": 16569.57, + "end": 16574.95, + "probability": 0.9949 + }, + { + "start": 16576.53, + "end": 16579.93, + "probability": 0.8918 + }, + { + "start": 16579.93, + "end": 16582.97, + "probability": 0.9639 + }, + { + "start": 16583.03, + "end": 16587.09, + "probability": 0.832 + }, + { + "start": 16587.33, + "end": 16591.87, + "probability": 0.9969 + }, + { + "start": 16592.6, + "end": 16596.41, + "probability": 0.9929 + }, + { + "start": 16598.03, + "end": 16602.83, + "probability": 0.8365 + }, + { + "start": 16602.93, + "end": 16603.11, + "probability": 0.5783 + }, + { + "start": 16603.21, + "end": 16603.31, + "probability": 0.7996 + }, + { + "start": 16603.83, + "end": 16604.55, + "probability": 0.6697 + }, + { + "start": 16604.91, + "end": 16607.45, + "probability": 0.9776 + }, + { + "start": 16608.23, + "end": 16611.29, + "probability": 0.9844 + }, + { + "start": 16611.29, + "end": 16613.57, + "probability": 0.9973 + }, + { + "start": 16614.23, + "end": 16616.85, + "probability": 0.9908 + }, + { + "start": 16616.95, + "end": 16619.69, + "probability": 0.9805 + }, + { + "start": 16619.81, + "end": 16619.91, + "probability": 0.1708 + }, + { + "start": 16620.33, + "end": 16621.01, + "probability": 0.8863 + }, + { + "start": 16621.27, + "end": 16621.87, + "probability": 0.7718 + }, + { + "start": 16622.01, + "end": 16623.23, + "probability": 0.9282 + }, + { + "start": 16624.03, + "end": 16626.13, + "probability": 0.9812 + }, + { + "start": 16626.61, + "end": 16628.59, + "probability": 0.9437 + }, + { + "start": 16629.47, + "end": 16630.31, + "probability": 0.6006 + }, + { + "start": 16630.77, + "end": 16631.47, + "probability": 0.9557 + }, + { + "start": 16631.63, + "end": 16631.81, + "probability": 0.4447 + }, + { + "start": 16631.91, + "end": 16634.25, + "probability": 0.9946 + }, + { + "start": 16634.95, + "end": 16636.85, + "probability": 0.7581 + }, + { + "start": 16636.85, + "end": 16637.65, + "probability": 0.8604 + }, + { + "start": 16638.98, + "end": 16642.17, + "probability": 0.8453 + }, + { + "start": 16642.91, + "end": 16644.21, + "probability": 0.6569 + }, + { + "start": 16646.67, + "end": 16647.83, + "probability": 0.6577 + }, + { + "start": 16649.25, + "end": 16649.81, + "probability": 0.5271 + }, + { + "start": 16649.87, + "end": 16650.07, + "probability": 0.436 + }, + { + "start": 16650.55, + "end": 16651.33, + "probability": 0.8712 + }, + { + "start": 16652.55, + "end": 16653.67, + "probability": 0.3854 + }, + { + "start": 16654.05, + "end": 16654.17, + "probability": 0.0174 + }, + { + "start": 16655.89, + "end": 16656.63, + "probability": 0.3388 + }, + { + "start": 16656.83, + "end": 16660.05, + "probability": 0.5629 + }, + { + "start": 16660.11, + "end": 16665.15, + "probability": 0.8056 + }, + { + "start": 16666.57, + "end": 16668.33, + "probability": 0.9498 + }, + { + "start": 16668.35, + "end": 16672.03, + "probability": 0.9836 + }, + { + "start": 16672.03, + "end": 16674.17, + "probability": 0.9852 + }, + { + "start": 16674.39, + "end": 16674.75, + "probability": 0.4895 + }, + { + "start": 16676.16, + "end": 16681.85, + "probability": 0.6257 + }, + { + "start": 16682.37, + "end": 16686.73, + "probability": 0.9565 + }, + { + "start": 16687.85, + "end": 16689.77, + "probability": 0.9155 + }, + { + "start": 16690.03, + "end": 16691.57, + "probability": 0.1157 + }, + { + "start": 16692.49, + "end": 16697.77, + "probability": 0.9478 + }, + { + "start": 16697.77, + "end": 16699.59, + "probability": 0.7962 + }, + { + "start": 16700.25, + "end": 16700.77, + "probability": 0.95 + }, + { + "start": 16700.89, + "end": 16701.48, + "probability": 0.5435 + }, + { + "start": 16701.67, + "end": 16704.43, + "probability": 0.9373 + }, + { + "start": 16705.69, + "end": 16708.77, + "probability": 0.8927 + }, + { + "start": 16710.11, + "end": 16710.29, + "probability": 0.0723 + }, + { + "start": 16711.23, + "end": 16713.47, + "probability": 0.7207 + }, + { + "start": 16714.27, + "end": 16716.75, + "probability": 0.7392 + }, + { + "start": 16717.61, + "end": 16718.57, + "probability": 0.1996 + }, + { + "start": 16718.61, + "end": 16720.77, + "probability": 0.9878 + }, + { + "start": 16721.63, + "end": 16722.71, + "probability": 0.4515 + }, + { + "start": 16723.63, + "end": 16723.97, + "probability": 0.7495 + }, + { + "start": 16725.03, + "end": 16726.27, + "probability": 0.8658 + }, + { + "start": 16728.55, + "end": 16729.61, + "probability": 0.9988 + }, + { + "start": 16729.69, + "end": 16732.35, + "probability": 0.9775 + }, + { + "start": 16732.35, + "end": 16733.05, + "probability": 0.7018 + }, + { + "start": 16733.27, + "end": 16733.93, + "probability": 0.6409 + }, + { + "start": 16734.37, + "end": 16735.65, + "probability": 0.9897 + }, + { + "start": 16736.11, + "end": 16736.45, + "probability": 0.4716 + }, + { + "start": 16738.14, + "end": 16740.15, + "probability": 0.7289 + }, + { + "start": 16740.29, + "end": 16745.01, + "probability": 0.9486 + }, + { + "start": 16745.13, + "end": 16751.13, + "probability": 0.8959 + }, + { + "start": 16751.47, + "end": 16752.27, + "probability": 0.9995 + }, + { + "start": 16752.85, + "end": 16754.71, + "probability": 0.998 + }, + { + "start": 16756.71, + "end": 16757.31, + "probability": 0.4256 + }, + { + "start": 16758.36, + "end": 16760.85, + "probability": 0.5195 + }, + { + "start": 16761.01, + "end": 16762.35, + "probability": 0.9736 + }, + { + "start": 16763.15, + "end": 16764.77, + "probability": 0.967 + }, + { + "start": 16764.83, + "end": 16765.57, + "probability": 0.9948 + }, + { + "start": 16765.61, + "end": 16766.35, + "probability": 0.9907 + }, + { + "start": 16767.43, + "end": 16768.99, + "probability": 0.9351 + }, + { + "start": 16768.99, + "end": 16770.15, + "probability": 0.7158 + }, + { + "start": 16770.49, + "end": 16773.75, + "probability": 0.9592 + }, + { + "start": 16774.25, + "end": 16776.85, + "probability": 0.9423 + }, + { + "start": 16776.93, + "end": 16778.15, + "probability": 0.8499 + }, + { + "start": 16780.12, + "end": 16782.73, + "probability": 0.803 + }, + { + "start": 16783.35, + "end": 16786.07, + "probability": 0.9229 + }, + { + "start": 16786.25, + "end": 16789.05, + "probability": 0.3912 + }, + { + "start": 16791.15, + "end": 16792.51, + "probability": 0.5711 + }, + { + "start": 16792.59, + "end": 16795.03, + "probability": 0.931 + }, + { + "start": 16795.91, + "end": 16798.71, + "probability": 0.9831 + }, + { + "start": 16798.75, + "end": 16801.87, + "probability": 0.8913 + }, + { + "start": 16802.19, + "end": 16803.63, + "probability": 0.9731 + }, + { + "start": 16804.77, + "end": 16805.65, + "probability": 0.2215 + }, + { + "start": 16805.65, + "end": 16807.53, + "probability": 0.9668 + }, + { + "start": 16807.63, + "end": 16808.92, + "probability": 0.8396 + }, + { + "start": 16809.08, + "end": 16813.26, + "probability": 0.9856 + }, + { + "start": 16813.92, + "end": 16814.48, + "probability": 0.9001 + }, + { + "start": 16814.52, + "end": 16816.42, + "probability": 0.9906 + }, + { + "start": 16816.46, + "end": 16817.79, + "probability": 0.9956 + }, + { + "start": 16817.94, + "end": 16818.92, + "probability": 0.9545 + }, + { + "start": 16819.06, + "end": 16819.34, + "probability": 0.4071 + }, + { + "start": 16819.36, + "end": 16819.74, + "probability": 0.7392 + }, + { + "start": 16820.06, + "end": 16820.66, + "probability": 0.9222 + }, + { + "start": 16820.96, + "end": 16823.26, + "probability": 0.9683 + }, + { + "start": 16823.98, + "end": 16825.14, + "probability": 0.9902 + }, + { + "start": 16825.96, + "end": 16826.88, + "probability": 0.9922 + }, + { + "start": 16827.58, + "end": 16829.58, + "probability": 0.9541 + }, + { + "start": 16829.58, + "end": 16830.86, + "probability": 0.5916 + }, + { + "start": 16831.4, + "end": 16833.02, + "probability": 0.8909 + }, + { + "start": 16834.4, + "end": 16837.54, + "probability": 0.8107 + }, + { + "start": 16838.92, + "end": 16841.96, + "probability": 0.8477 + }, + { + "start": 16842.54, + "end": 16843.84, + "probability": 0.4555 + }, + { + "start": 16844.08, + "end": 16844.94, + "probability": 0.9694 + }, + { + "start": 16844.98, + "end": 16846.2, + "probability": 0.758 + }, + { + "start": 16846.22, + "end": 16848.02, + "probability": 0.7343 + }, + { + "start": 16848.12, + "end": 16848.4, + "probability": 0.7221 + }, + { + "start": 16848.44, + "end": 16848.44, + "probability": 0.7015 + }, + { + "start": 16848.44, + "end": 16850.7, + "probability": 0.967 + }, + { + "start": 16851.62, + "end": 16852.44, + "probability": 0.9715 + }, + { + "start": 16852.52, + "end": 16853.52, + "probability": 0.9907 + }, + { + "start": 16853.62, + "end": 16854.94, + "probability": 0.8098 + }, + { + "start": 16855.37, + "end": 16858.2, + "probability": 0.6768 + }, + { + "start": 16858.2, + "end": 16858.27, + "probability": 0.989 + }, + { + "start": 16859.72, + "end": 16860.64, + "probability": 0.4575 + }, + { + "start": 16861.16, + "end": 16861.4, + "probability": 0.8171 + }, + { + "start": 16862.48, + "end": 16863.38, + "probability": 0.4047 + }, + { + "start": 16863.64, + "end": 16863.82, + "probability": 0.6483 + }, + { + "start": 16864.36, + "end": 16866.18, + "probability": 0.6835 + }, + { + "start": 16866.28, + "end": 16867.02, + "probability": 0.8488 + }, + { + "start": 16867.08, + "end": 16868.4, + "probability": 0.952 + }, + { + "start": 16868.42, + "end": 16868.92, + "probability": 0.9673 + }, + { + "start": 16868.98, + "end": 16872.04, + "probability": 0.9818 + }, + { + "start": 16872.12, + "end": 16872.8, + "probability": 0.9312 + }, + { + "start": 16873.06, + "end": 16874.48, + "probability": 0.9875 + }, + { + "start": 16875.84, + "end": 16876.52, + "probability": 0.3273 + }, + { + "start": 16876.56, + "end": 16878.32, + "probability": 0.8603 + }, + { + "start": 16878.4, + "end": 16879.72, + "probability": 0.9979 + }, + { + "start": 16880.98, + "end": 16881.76, + "probability": 0.9863 + }, + { + "start": 16882.26, + "end": 16885.24, + "probability": 0.9689 + }, + { + "start": 16886.24, + "end": 16890.12, + "probability": 0.9943 + }, + { + "start": 16890.7, + "end": 16891.72, + "probability": 0.6751 + }, + { + "start": 16892.38, + "end": 16894.64, + "probability": 0.9443 + }, + { + "start": 16895.68, + "end": 16898.6, + "probability": 0.9962 + }, + { + "start": 16899.56, + "end": 16900.3, + "probability": 0.9506 + }, + { + "start": 16900.38, + "end": 16901.68, + "probability": 0.9526 + }, + { + "start": 16902.5, + "end": 16904.22, + "probability": 0.9565 + }, + { + "start": 16904.34, + "end": 16904.96, + "probability": 0.9106 + }, + { + "start": 16905.04, + "end": 16906.12, + "probability": 0.7673 + }, + { + "start": 16906.76, + "end": 16908.24, + "probability": 0.965 + }, + { + "start": 16908.38, + "end": 16909.36, + "probability": 0.8311 + }, + { + "start": 16910.66, + "end": 16915.1, + "probability": 0.9912 + }, + { + "start": 16915.1, + "end": 16917.84, + "probability": 0.9022 + }, + { + "start": 16917.84, + "end": 16919.12, + "probability": 0.8152 + }, + { + "start": 16919.18, + "end": 16919.46, + "probability": 0.6769 + }, + { + "start": 16919.46, + "end": 16919.46, + "probability": 0.3569 + }, + { + "start": 16919.56, + "end": 16922.04, + "probability": 0.8954 + }, + { + "start": 16922.26, + "end": 16923.42, + "probability": 0.9707 + }, + { + "start": 16923.58, + "end": 16924.26, + "probability": 0.639 + }, + { + "start": 16924.28, + "end": 16925.68, + "probability": 0.8296 + }, + { + "start": 16926.52, + "end": 16929.33, + "probability": 0.9896 + }, + { + "start": 16929.94, + "end": 16931.47, + "probability": 0.7166 + }, + { + "start": 16931.5, + "end": 16931.68, + "probability": 0.7466 + }, + { + "start": 16932.1, + "end": 16932.1, + "probability": 0.4963 + }, + { + "start": 16932.32, + "end": 16934.86, + "probability": 0.9521 + }, + { + "start": 16934.92, + "end": 16939.74, + "probability": 0.9546 + }, + { + "start": 16940.0, + "end": 16941.64, + "probability": 0.3355 + }, + { + "start": 16941.82, + "end": 16942.84, + "probability": 0.594 + }, + { + "start": 16942.84, + "end": 16943.3, + "probability": 0.594 + }, + { + "start": 16944.06, + "end": 16944.5, + "probability": 0.6441 + }, + { + "start": 16944.8, + "end": 16946.34, + "probability": 0.6376 + }, + { + "start": 16946.88, + "end": 16946.88, + "probability": 0.1268 + }, + { + "start": 16946.88, + "end": 16948.14, + "probability": 0.9451 + }, + { + "start": 16969.14, + "end": 16969.14, + "probability": 0.5065 + }, + { + "start": 16969.16, + "end": 16970.42, + "probability": 0.7314 + }, + { + "start": 16970.54, + "end": 16970.9, + "probability": 0.8049 + }, + { + "start": 16971.98, + "end": 16973.92, + "probability": 0.7761 + }, + { + "start": 16975.36, + "end": 16979.28, + "probability": 0.7573 + }, + { + "start": 16979.62, + "end": 16980.34, + "probability": 0.9582 + }, + { + "start": 16981.48, + "end": 16984.68, + "probability": 0.9978 + }, + { + "start": 16985.6, + "end": 16987.6, + "probability": 0.9871 + }, + { + "start": 16988.72, + "end": 16993.44, + "probability": 0.9934 + }, + { + "start": 16993.56, + "end": 16994.86, + "probability": 0.7163 + }, + { + "start": 16995.66, + "end": 16998.88, + "probability": 0.6251 + }, + { + "start": 17000.48, + "end": 17000.7, + "probability": 0.0087 + }, + { + "start": 17000.74, + "end": 17005.24, + "probability": 0.7772 + }, + { + "start": 17005.52, + "end": 17005.68, + "probability": 0.7166 + }, + { + "start": 17006.0, + "end": 17006.92, + "probability": 0.7227 + }, + { + "start": 17006.96, + "end": 17007.54, + "probability": 0.9697 + }, + { + "start": 17008.26, + "end": 17012.8, + "probability": 0.7976 + }, + { + "start": 17012.84, + "end": 17015.26, + "probability": 0.744 + }, + { + "start": 17015.82, + "end": 17019.66, + "probability": 0.7893 + }, + { + "start": 17019.74, + "end": 17020.34, + "probability": 0.5703 + }, + { + "start": 17020.76, + "end": 17022.52, + "probability": 0.3666 + }, + { + "start": 17022.7, + "end": 17027.36, + "probability": 0.8477 + }, + { + "start": 17027.86, + "end": 17028.14, + "probability": 0.8003 + }, + { + "start": 17029.14, + "end": 17031.28, + "probability": 0.7515 + }, + { + "start": 17031.58, + "end": 17033.28, + "probability": 0.9245 + }, + { + "start": 17033.78, + "end": 17036.4, + "probability": 0.9748 + }, + { + "start": 17037.36, + "end": 17039.6, + "probability": 0.9954 + }, + { + "start": 17039.8, + "end": 17040.88, + "probability": 0.9946 + }, + { + "start": 17041.8, + "end": 17045.04, + "probability": 0.9663 + }, + { + "start": 17046.05, + "end": 17047.5, + "probability": 0.7932 + }, + { + "start": 17048.14, + "end": 17049.51, + "probability": 0.8989 + }, + { + "start": 17050.38, + "end": 17055.28, + "probability": 0.8696 + }, + { + "start": 17055.62, + "end": 17056.4, + "probability": 0.9896 + }, + { + "start": 17056.6, + "end": 17057.32, + "probability": 0.9951 + }, + { + "start": 17057.98, + "end": 17060.96, + "probability": 0.9832 + }, + { + "start": 17062.86, + "end": 17065.82, + "probability": 0.861 + }, + { + "start": 17065.94, + "end": 17068.86, + "probability": 0.9152 + }, + { + "start": 17069.14, + "end": 17070.66, + "probability": 0.6215 + }, + { + "start": 17071.22, + "end": 17072.18, + "probability": 0.9512 + }, + { + "start": 17072.26, + "end": 17073.56, + "probability": 0.6099 + }, + { + "start": 17073.98, + "end": 17075.6, + "probability": 0.9919 + }, + { + "start": 17076.42, + "end": 17077.56, + "probability": 0.8922 + }, + { + "start": 17079.1, + "end": 17081.3, + "probability": 0.9596 + }, + { + "start": 17082.1, + "end": 17082.94, + "probability": 0.7152 + }, + { + "start": 17083.46, + "end": 17084.38, + "probability": 0.9653 + }, + { + "start": 17084.68, + "end": 17085.24, + "probability": 0.9664 + }, + { + "start": 17085.74, + "end": 17088.2, + "probability": 0.9754 + }, + { + "start": 17088.86, + "end": 17090.2, + "probability": 0.4988 + }, + { + "start": 17092.12, + "end": 17093.58, + "probability": 0.8868 + }, + { + "start": 17094.44, + "end": 17095.26, + "probability": 0.865 + }, + { + "start": 17095.44, + "end": 17098.76, + "probability": 0.8836 + }, + { + "start": 17098.82, + "end": 17100.18, + "probability": 0.9538 + }, + { + "start": 17100.78, + "end": 17101.32, + "probability": 0.9404 + }, + { + "start": 17101.86, + "end": 17103.04, + "probability": 0.9969 + }, + { + "start": 17103.84, + "end": 17106.76, + "probability": 0.9351 + }, + { + "start": 17107.34, + "end": 17108.68, + "probability": 0.9929 + }, + { + "start": 17110.62, + "end": 17112.1, + "probability": 0.9765 + }, + { + "start": 17112.32, + "end": 17113.46, + "probability": 0.8792 + }, + { + "start": 17114.56, + "end": 17116.58, + "probability": 0.9982 + }, + { + "start": 17116.58, + "end": 17119.18, + "probability": 0.9289 + }, + { + "start": 17120.04, + "end": 17121.54, + "probability": 0.7152 + }, + { + "start": 17121.64, + "end": 17121.96, + "probability": 0.8005 + }, + { + "start": 17122.3, + "end": 17123.72, + "probability": 0.7896 + }, + { + "start": 17123.86, + "end": 17125.76, + "probability": 0.9439 + }, + { + "start": 17126.84, + "end": 17127.96, + "probability": 0.9652 + }, + { + "start": 17128.6, + "end": 17131.18, + "probability": 0.9425 + }, + { + "start": 17132.8, + "end": 17135.96, + "probability": 0.9807 + }, + { + "start": 17136.76, + "end": 17139.12, + "probability": 0.9849 + }, + { + "start": 17139.98, + "end": 17141.26, + "probability": 0.9822 + }, + { + "start": 17142.63, + "end": 17145.28, + "probability": 0.6674 + }, + { + "start": 17145.34, + "end": 17149.64, + "probability": 0.9818 + }, + { + "start": 17150.02, + "end": 17151.26, + "probability": 0.5931 + }, + { + "start": 17151.74, + "end": 17156.68, + "probability": 0.9874 + }, + { + "start": 17157.1, + "end": 17158.14, + "probability": 0.9834 + }, + { + "start": 17158.82, + "end": 17159.78, + "probability": 0.932 + }, + { + "start": 17160.1, + "end": 17163.42, + "probability": 0.976 + }, + { + "start": 17163.42, + "end": 17166.92, + "probability": 0.8558 + }, + { + "start": 17167.7, + "end": 17169.16, + "probability": 0.9952 + }, + { + "start": 17169.66, + "end": 17171.09, + "probability": 0.9836 + }, + { + "start": 17172.58, + "end": 17173.84, + "probability": 0.9231 + }, + { + "start": 17174.0, + "end": 17175.62, + "probability": 0.6609 + }, + { + "start": 17175.94, + "end": 17179.28, + "probability": 0.9956 + }, + { + "start": 17179.28, + "end": 17182.54, + "probability": 0.9207 + }, + { + "start": 17182.92, + "end": 17184.48, + "probability": 0.7754 + }, + { + "start": 17185.62, + "end": 17188.74, + "probability": 0.8203 + }, + { + "start": 17188.74, + "end": 17189.32, + "probability": 0.8147 + }, + { + "start": 17189.78, + "end": 17191.1, + "probability": 0.8726 + }, + { + "start": 17191.1, + "end": 17192.44, + "probability": 0.86 + }, + { + "start": 17192.8, + "end": 17193.32, + "probability": 0.879 + }, + { + "start": 17194.28, + "end": 17195.8, + "probability": 0.5332 + }, + { + "start": 17195.84, + "end": 17198.4, + "probability": 0.8708 + }, + { + "start": 17198.94, + "end": 17200.0, + "probability": 0.9089 + }, + { + "start": 17201.18, + "end": 17202.64, + "probability": 0.9318 + }, + { + "start": 17203.16, + "end": 17205.8, + "probability": 0.8811 + }, + { + "start": 17207.31, + "end": 17208.96, + "probability": 0.0752 + }, + { + "start": 17209.26, + "end": 17211.52, + "probability": 0.3017 + }, + { + "start": 17213.84, + "end": 17215.08, + "probability": 0.2336 + }, + { + "start": 17215.24, + "end": 17218.86, + "probability": 0.8265 + }, + { + "start": 17218.96, + "end": 17220.28, + "probability": 0.7514 + }, + { + "start": 17221.9, + "end": 17225.0, + "probability": 0.5903 + }, + { + "start": 17226.06, + "end": 17226.44, + "probability": 0.4491 + }, + { + "start": 17227.74, + "end": 17229.44, + "probability": 0.8982 + }, + { + "start": 17229.56, + "end": 17229.95, + "probability": 0.8921 + }, + { + "start": 17231.3, + "end": 17231.68, + "probability": 0.5966 + }, + { + "start": 17232.66, + "end": 17233.68, + "probability": 0.7528 + }, + { + "start": 17233.72, + "end": 17234.0, + "probability": 0.7142 + }, + { + "start": 17234.1, + "end": 17236.18, + "probability": 0.7391 + }, + { + "start": 17236.32, + "end": 17236.7, + "probability": 0.464 + }, + { + "start": 17236.82, + "end": 17237.1, + "probability": 0.7633 + }, + { + "start": 17237.1, + "end": 17237.48, + "probability": 0.6334 + }, + { + "start": 17237.64, + "end": 17241.56, + "probability": 0.8804 + }, + { + "start": 17241.68, + "end": 17241.86, + "probability": 0.5837 + }, + { + "start": 17242.04, + "end": 17242.56, + "probability": 0.9315 + }, + { + "start": 17243.02, + "end": 17244.26, + "probability": 0.9858 + }, + { + "start": 17247.28, + "end": 17248.08, + "probability": 0.9963 + }, + { + "start": 17248.76, + "end": 17251.16, + "probability": 0.9973 + }, + { + "start": 17251.16, + "end": 17254.52, + "probability": 0.998 + }, + { + "start": 17255.28, + "end": 17255.92, + "probability": 0.5333 + }, + { + "start": 17256.26, + "end": 17256.82, + "probability": 0.7126 + }, + { + "start": 17256.84, + "end": 17258.12, + "probability": 0.8417 + }, + { + "start": 17258.22, + "end": 17263.16, + "probability": 0.9743 + }, + { + "start": 17263.2, + "end": 17264.18, + "probability": 0.9623 + }, + { + "start": 17264.28, + "end": 17266.24, + "probability": 0.6651 + }, + { + "start": 17266.72, + "end": 17270.1, + "probability": 0.8585 + }, + { + "start": 17270.68, + "end": 17271.98, + "probability": 0.8578 + }, + { + "start": 17272.84, + "end": 17274.02, + "probability": 0.9912 + }, + { + "start": 17276.32, + "end": 17280.6, + "probability": 0.8439 + }, + { + "start": 17280.68, + "end": 17286.18, + "probability": 0.9836 + }, + { + "start": 17286.26, + "end": 17286.6, + "probability": 0.8284 + }, + { + "start": 17286.66, + "end": 17287.2, + "probability": 0.5696 + }, + { + "start": 17287.22, + "end": 17289.36, + "probability": 0.9907 + }, + { + "start": 17289.88, + "end": 17291.4, + "probability": 0.8117 + }, + { + "start": 17291.54, + "end": 17291.68, + "probability": 0.7877 + }, + { + "start": 17291.76, + "end": 17293.29, + "probability": 0.9968 + }, + { + "start": 17293.9, + "end": 17294.1, + "probability": 0.5444 + }, + { + "start": 17294.16, + "end": 17296.94, + "probability": 0.9855 + }, + { + "start": 17298.16, + "end": 17298.56, + "probability": 0.8126 + }, + { + "start": 17299.64, + "end": 17300.38, + "probability": 0.724 + }, + { + "start": 17300.68, + "end": 17301.86, + "probability": 0.9858 + }, + { + "start": 17303.1, + "end": 17304.36, + "probability": 0.8102 + }, + { + "start": 17305.22, + "end": 17305.66, + "probability": 0.2158 + }, + { + "start": 17305.7, + "end": 17307.2, + "probability": 0.7192 + }, + { + "start": 17308.16, + "end": 17308.9, + "probability": 0.5571 + }, + { + "start": 17309.76, + "end": 17314.2, + "probability": 0.978 + }, + { + "start": 17314.88, + "end": 17315.59, + "probability": 0.8729 + }, + { + "start": 17317.3, + "end": 17320.22, + "probability": 0.9739 + }, + { + "start": 17321.38, + "end": 17323.12, + "probability": 0.7505 + }, + { + "start": 17323.28, + "end": 17325.14, + "probability": 0.9958 + }, + { + "start": 17326.36, + "end": 17326.86, + "probability": 0.966 + }, + { + "start": 17327.5, + "end": 17331.2, + "probability": 0.9841 + }, + { + "start": 17331.74, + "end": 17332.54, + "probability": 0.7948 + }, + { + "start": 17332.66, + "end": 17334.38, + "probability": 0.9651 + }, + { + "start": 17334.72, + "end": 17335.74, + "probability": 0.693 + }, + { + "start": 17335.9, + "end": 17336.34, + "probability": 0.5223 + }, + { + "start": 17338.6, + "end": 17339.66, + "probability": 0.9246 + }, + { + "start": 17339.7, + "end": 17339.86, + "probability": 0.7408 + }, + { + "start": 17339.88, + "end": 17341.02, + "probability": 0.8006 + }, + { + "start": 17341.3, + "end": 17344.1, + "probability": 0.9349 + }, + { + "start": 17344.52, + "end": 17347.2, + "probability": 0.951 + }, + { + "start": 17348.36, + "end": 17350.18, + "probability": 0.9556 + }, + { + "start": 17350.98, + "end": 17353.02, + "probability": 0.7556 + }, + { + "start": 17353.06, + "end": 17356.18, + "probability": 0.9779 + }, + { + "start": 17358.54, + "end": 17360.6, + "probability": 0.9131 + }, + { + "start": 17361.54, + "end": 17362.78, + "probability": 0.9245 + }, + { + "start": 17362.94, + "end": 17363.22, + "probability": 0.1614 + }, + { + "start": 17364.58, + "end": 17367.8, + "probability": 0.9586 + }, + { + "start": 17368.7, + "end": 17372.36, + "probability": 0.8012 + }, + { + "start": 17373.08, + "end": 17374.2, + "probability": 0.8801 + }, + { + "start": 17374.34, + "end": 17375.22, + "probability": 0.9976 + }, + { + "start": 17375.54, + "end": 17375.7, + "probability": 0.3907 + }, + { + "start": 17375.76, + "end": 17377.5, + "probability": 0.6931 + }, + { + "start": 17377.56, + "end": 17379.75, + "probability": 0.9292 + }, + { + "start": 17381.08, + "end": 17382.34, + "probability": 0.8513 + }, + { + "start": 17383.04, + "end": 17384.34, + "probability": 0.991 + }, + { + "start": 17385.14, + "end": 17385.64, + "probability": 0.3992 + }, + { + "start": 17385.88, + "end": 17387.98, + "probability": 0.9646 + }, + { + "start": 17388.54, + "end": 17388.98, + "probability": 0.793 + }, + { + "start": 17389.44, + "end": 17389.44, + "probability": 0.0505 + }, + { + "start": 17389.44, + "end": 17391.26, + "probability": 0.8354 + }, + { + "start": 17392.1, + "end": 17392.64, + "probability": 0.9568 + }, + { + "start": 17393.92, + "end": 17394.96, + "probability": 0.804 + }, + { + "start": 17396.04, + "end": 17396.24, + "probability": 0.0024 + }, + { + "start": 17397.63, + "end": 17399.64, + "probability": 0.568 + }, + { + "start": 17399.82, + "end": 17400.76, + "probability": 0.5553 + }, + { + "start": 17401.04, + "end": 17401.61, + "probability": 0.5319 + }, + { + "start": 17402.28, + "end": 17405.16, + "probability": 0.6542 + }, + { + "start": 17413.58, + "end": 17414.72, + "probability": 0.5225 + }, + { + "start": 17414.72, + "end": 17415.9, + "probability": 0.7899 + }, + { + "start": 17416.5, + "end": 17417.6, + "probability": 0.5675 + }, + { + "start": 17417.74, + "end": 17419.28, + "probability": 0.9746 + }, + { + "start": 17419.58, + "end": 17419.94, + "probability": 0.738 + }, + { + "start": 17420.4, + "end": 17421.24, + "probability": 0.965 + }, + { + "start": 17421.7, + "end": 17422.28, + "probability": 0.7773 + }, + { + "start": 17422.86, + "end": 17423.0, + "probability": 0.9822 + }, + { + "start": 17424.14, + "end": 17426.32, + "probability": 0.9819 + }, + { + "start": 17426.4, + "end": 17427.3, + "probability": 0.356 + }, + { + "start": 17427.3, + "end": 17429.34, + "probability": 0.5068 + }, + { + "start": 17429.34, + "end": 17430.16, + "probability": 0.5814 + }, + { + "start": 17430.22, + "end": 17431.02, + "probability": 0.6523 + }, + { + "start": 17431.24, + "end": 17432.1, + "probability": 0.8396 + }, + { + "start": 17432.92, + "end": 17434.94, + "probability": 0.7616 + }, + { + "start": 17435.92, + "end": 17436.56, + "probability": 0.5303 + }, + { + "start": 17437.92, + "end": 17441.74, + "probability": 0.7474 + }, + { + "start": 17443.34, + "end": 17446.55, + "probability": 0.9946 + }, + { + "start": 17448.64, + "end": 17450.04, + "probability": 0.8489 + }, + { + "start": 17452.72, + "end": 17455.04, + "probability": 0.9956 + }, + { + "start": 17456.0, + "end": 17457.45, + "probability": 0.998 + }, + { + "start": 17457.76, + "end": 17459.06, + "probability": 0.9829 + }, + { + "start": 17459.7, + "end": 17461.34, + "probability": 0.9382 + }, + { + "start": 17462.16, + "end": 17464.32, + "probability": 0.9771 + }, + { + "start": 17464.84, + "end": 17465.82, + "probability": 0.9883 + }, + { + "start": 17465.96, + "end": 17466.4, + "probability": 0.7389 + }, + { + "start": 17467.64, + "end": 17470.68, + "probability": 0.9985 + }, + { + "start": 17470.84, + "end": 17473.7, + "probability": 0.995 + }, + { + "start": 17473.7, + "end": 17477.2, + "probability": 0.9968 + }, + { + "start": 17478.08, + "end": 17479.56, + "probability": 0.8969 + }, + { + "start": 17480.42, + "end": 17481.69, + "probability": 0.6647 + }, + { + "start": 17482.68, + "end": 17485.36, + "probability": 0.8041 + }, + { + "start": 17485.86, + "end": 17486.68, + "probability": 0.9775 + }, + { + "start": 17487.18, + "end": 17488.02, + "probability": 0.9111 + }, + { + "start": 17488.58, + "end": 17491.34, + "probability": 0.9951 + }, + { + "start": 17492.46, + "end": 17496.3, + "probability": 0.9976 + }, + { + "start": 17496.92, + "end": 17498.46, + "probability": 0.9767 + }, + { + "start": 17499.06, + "end": 17499.98, + "probability": 0.904 + }, + { + "start": 17500.84, + "end": 17502.12, + "probability": 0.9976 + }, + { + "start": 17502.66, + "end": 17503.93, + "probability": 0.9502 + }, + { + "start": 17505.7, + "end": 17507.74, + "probability": 0.9933 + }, + { + "start": 17508.26, + "end": 17509.22, + "probability": 0.6808 + }, + { + "start": 17510.08, + "end": 17514.12, + "probability": 0.998 + }, + { + "start": 17514.66, + "end": 17515.78, + "probability": 0.7242 + }, + { + "start": 17516.44, + "end": 17517.64, + "probability": 0.9233 + }, + { + "start": 17518.3, + "end": 17519.39, + "probability": 0.7789 + }, + { + "start": 17519.98, + "end": 17521.38, + "probability": 0.3377 + }, + { + "start": 17521.44, + "end": 17524.16, + "probability": 0.8506 + }, + { + "start": 17526.12, + "end": 17526.22, + "probability": 0.5731 + }, + { + "start": 17526.9, + "end": 17528.74, + "probability": 0.9941 + }, + { + "start": 17530.3, + "end": 17530.92, + "probability": 0.8945 + }, + { + "start": 17531.62, + "end": 17533.2, + "probability": 0.9878 + }, + { + "start": 17534.62, + "end": 17538.56, + "probability": 0.981 + }, + { + "start": 17540.28, + "end": 17546.78, + "probability": 0.9969 + }, + { + "start": 17547.6, + "end": 17551.28, + "probability": 0.981 + }, + { + "start": 17553.74, + "end": 17556.74, + "probability": 0.7976 + }, + { + "start": 17557.74, + "end": 17562.74, + "probability": 0.9988 + }, + { + "start": 17563.64, + "end": 17567.58, + "probability": 0.9839 + }, + { + "start": 17568.32, + "end": 17570.68, + "probability": 0.9386 + }, + { + "start": 17571.3, + "end": 17573.6, + "probability": 0.9847 + }, + { + "start": 17574.66, + "end": 17575.54, + "probability": 0.7633 + }, + { + "start": 17575.62, + "end": 17576.12, + "probability": 0.64 + }, + { + "start": 17576.38, + "end": 17578.2, + "probability": 0.8013 + }, + { + "start": 17579.04, + "end": 17580.4, + "probability": 0.8617 + }, + { + "start": 17580.52, + "end": 17582.04, + "probability": 0.9777 + }, + { + "start": 17582.96, + "end": 17583.93, + "probability": 0.9255 + }, + { + "start": 17585.82, + "end": 17588.86, + "probability": 0.993 + }, + { + "start": 17589.42, + "end": 17593.8, + "probability": 0.981 + }, + { + "start": 17594.66, + "end": 17595.14, + "probability": 0.945 + }, + { + "start": 17596.04, + "end": 17596.78, + "probability": 0.8168 + }, + { + "start": 17597.64, + "end": 17602.42, + "probability": 0.9784 + }, + { + "start": 17603.38, + "end": 17604.86, + "probability": 0.9932 + }, + { + "start": 17605.84, + "end": 17607.12, + "probability": 0.7863 + }, + { + "start": 17607.76, + "end": 17611.74, + "probability": 0.9839 + }, + { + "start": 17612.3, + "end": 17613.68, + "probability": 0.9983 + }, + { + "start": 17614.44, + "end": 17616.21, + "probability": 0.9988 + }, + { + "start": 17617.16, + "end": 17618.04, + "probability": 0.7072 + }, + { + "start": 17618.62, + "end": 17619.36, + "probability": 0.6022 + }, + { + "start": 17620.56, + "end": 17623.98, + "probability": 0.9973 + }, + { + "start": 17624.76, + "end": 17626.3, + "probability": 0.9592 + }, + { + "start": 17626.46, + "end": 17627.36, + "probability": 0.591 + }, + { + "start": 17627.52, + "end": 17629.1, + "probability": 0.7643 + }, + { + "start": 17630.54, + "end": 17633.52, + "probability": 0.9846 + }, + { + "start": 17636.02, + "end": 17638.67, + "probability": 0.9585 + }, + { + "start": 17640.32, + "end": 17644.4, + "probability": 0.9824 + }, + { + "start": 17645.76, + "end": 17648.32, + "probability": 0.9895 + }, + { + "start": 17649.06, + "end": 17651.1, + "probability": 0.9993 + }, + { + "start": 17651.12, + "end": 17653.06, + "probability": 0.9259 + }, + { + "start": 17653.14, + "end": 17653.94, + "probability": 0.9878 + }, + { + "start": 17654.3, + "end": 17654.6, + "probability": 0.5028 + }, + { + "start": 17656.14, + "end": 17659.28, + "probability": 0.9983 + }, + { + "start": 17659.42, + "end": 17661.88, + "probability": 0.9282 + }, + { + "start": 17663.1, + "end": 17668.5, + "probability": 0.9927 + }, + { + "start": 17668.5, + "end": 17672.08, + "probability": 0.9989 + }, + { + "start": 17673.52, + "end": 17674.26, + "probability": 0.882 + }, + { + "start": 17674.36, + "end": 17677.6, + "probability": 0.9834 + }, + { + "start": 17678.12, + "end": 17678.94, + "probability": 0.6821 + }, + { + "start": 17680.66, + "end": 17682.04, + "probability": 0.5154 + }, + { + "start": 17682.18, + "end": 17682.67, + "probability": 0.7892 + }, + { + "start": 17682.86, + "end": 17684.02, + "probability": 0.4557 + }, + { + "start": 17684.1, + "end": 17686.3, + "probability": 0.9483 + }, + { + "start": 17686.5, + "end": 17688.1, + "probability": 0.9772 + }, + { + "start": 17688.18, + "end": 17690.98, + "probability": 0.9596 + }, + { + "start": 17691.0, + "end": 17693.08, + "probability": 0.9973 + }, + { + "start": 17693.16, + "end": 17693.26, + "probability": 0.5706 + }, + { + "start": 17693.62, + "end": 17694.4, + "probability": 0.781 + }, + { + "start": 17694.5, + "end": 17694.66, + "probability": 0.1897 + }, + { + "start": 17695.32, + "end": 17696.06, + "probability": 0.7433 + }, + { + "start": 17696.06, + "end": 17696.06, + "probability": 0.1667 + }, + { + "start": 17696.06, + "end": 17696.2, + "probability": 0.1309 + }, + { + "start": 17696.2, + "end": 17697.3, + "probability": 0.5024 + }, + { + "start": 17697.46, + "end": 17698.96, + "probability": 0.5156 + }, + { + "start": 17699.78, + "end": 17701.36, + "probability": 0.6095 + }, + { + "start": 17703.12, + "end": 17707.68, + "probability": 0.9711 + }, + { + "start": 17708.28, + "end": 17709.68, + "probability": 0.5797 + }, + { + "start": 17710.3, + "end": 17710.7, + "probability": 0.7492 + }, + { + "start": 17711.02, + "end": 17713.14, + "probability": 0.5741 + }, + { + "start": 17714.36, + "end": 17716.44, + "probability": 0.9814 + }, + { + "start": 17717.16, + "end": 17723.62, + "probability": 0.9913 + }, + { + "start": 17724.42, + "end": 17724.88, + "probability": 0.3786 + }, + { + "start": 17725.4, + "end": 17725.74, + "probability": 0.9067 + }, + { + "start": 17727.02, + "end": 17728.94, + "probability": 0.9552 + }, + { + "start": 17729.36, + "end": 17731.46, + "probability": 0.9944 + }, + { + "start": 17732.0, + "end": 17732.56, + "probability": 0.8571 + }, + { + "start": 17733.46, + "end": 17735.48, + "probability": 0.9731 + }, + { + "start": 17736.14, + "end": 17736.72, + "probability": 0.903 + }, + { + "start": 17738.36, + "end": 17739.76, + "probability": 0.8626 + }, + { + "start": 17739.86, + "end": 17742.52, + "probability": 0.9968 + }, + { + "start": 17744.28, + "end": 17745.56, + "probability": 0.9862 + }, + { + "start": 17746.3, + "end": 17747.36, + "probability": 0.9536 + }, + { + "start": 17748.06, + "end": 17749.58, + "probability": 0.9728 + }, + { + "start": 17750.26, + "end": 17752.72, + "probability": 0.9932 + }, + { + "start": 17753.72, + "end": 17754.06, + "probability": 0.7228 + }, + { + "start": 17754.28, + "end": 17755.62, + "probability": 0.8662 + }, + { + "start": 17756.36, + "end": 17757.46, + "probability": 0.7874 + }, + { + "start": 17757.56, + "end": 17759.36, + "probability": 0.9886 + }, + { + "start": 17759.46, + "end": 17759.84, + "probability": 0.6228 + }, + { + "start": 17760.22, + "end": 17764.08, + "probability": 0.9743 + }, + { + "start": 17764.08, + "end": 17764.32, + "probability": 0.8587 + }, + { + "start": 17764.4, + "end": 17766.64, + "probability": 0.6628 + }, + { + "start": 17766.94, + "end": 17766.96, + "probability": 0.1892 + }, + { + "start": 17766.96, + "end": 17766.96, + "probability": 0.114 + }, + { + "start": 17766.96, + "end": 17767.64, + "probability": 0.4704 + }, + { + "start": 17768.44, + "end": 17769.28, + "probability": 0.5574 + }, + { + "start": 17769.6, + "end": 17771.32, + "probability": 0.5307 + }, + { + "start": 17771.44, + "end": 17772.72, + "probability": 0.8209 + }, + { + "start": 17773.38, + "end": 17774.98, + "probability": 0.9627 + }, + { + "start": 17778.66, + "end": 17779.22, + "probability": 0.0409 + }, + { + "start": 17779.22, + "end": 17779.24, + "probability": 0.132 + }, + { + "start": 17779.76, + "end": 17779.76, + "probability": 0.1454 + }, + { + "start": 17779.76, + "end": 17779.76, + "probability": 0.3213 + }, + { + "start": 17779.76, + "end": 17781.9, + "probability": 0.9175 + }, + { + "start": 17782.94, + "end": 17784.64, + "probability": 0.7721 + }, + { + "start": 17785.94, + "end": 17787.3, + "probability": 0.5995 + }, + { + "start": 17789.98, + "end": 17791.16, + "probability": 0.4416 + }, + { + "start": 17791.36, + "end": 17792.68, + "probability": 0.6934 + }, + { + "start": 17792.82, + "end": 17793.66, + "probability": 0.478 + }, + { + "start": 17794.46, + "end": 17795.18, + "probability": 0.5239 + }, + { + "start": 17796.32, + "end": 17798.87, + "probability": 0.3312 + }, + { + "start": 17799.08, + "end": 17800.66, + "probability": 0.5233 + }, + { + "start": 17806.56, + "end": 17810.64, + "probability": 0.987 + }, + { + "start": 17810.68, + "end": 17811.36, + "probability": 0.733 + }, + { + "start": 17812.26, + "end": 17812.98, + "probability": 0.8228 + }, + { + "start": 17813.08, + "end": 17815.1, + "probability": 0.6616 + }, + { + "start": 17815.2, + "end": 17817.84, + "probability": 0.9111 + }, + { + "start": 17822.72, + "end": 17825.1, + "probability": 0.8177 + }, + { + "start": 17826.9, + "end": 17827.56, + "probability": 0.5864 + }, + { + "start": 17827.78, + "end": 17828.94, + "probability": 0.9302 + }, + { + "start": 17829.28, + "end": 17832.32, + "probability": 0.9701 + }, + { + "start": 17832.34, + "end": 17837.1, + "probability": 0.9453 + }, + { + "start": 17837.1, + "end": 17841.36, + "probability": 0.9949 + }, + { + "start": 17842.26, + "end": 17846.2, + "probability": 0.9742 + }, + { + "start": 17846.28, + "end": 17850.8, + "probability": 0.9362 + }, + { + "start": 17851.9, + "end": 17856.58, + "probability": 0.9151 + }, + { + "start": 17856.7, + "end": 17857.44, + "probability": 0.4377 + }, + { + "start": 17857.54, + "end": 17859.0, + "probability": 0.9705 + }, + { + "start": 17859.04, + "end": 17861.02, + "probability": 0.6353 + }, + { + "start": 17861.72, + "end": 17865.12, + "probability": 0.5662 + } + ], + "segments_count": 6831, + "words_count": 33897, + "avg_words_per_segment": 4.9622, + "avg_segment_duration": 1.8659, + "avg_words_per_minute": 113.4899, + "plenum_id": "111353", + "duration": 17920.72, + "title": null, + "plenum_date": "2022-12-18" +} \ No newline at end of file