diff --git "a/23275/metadata.json" "b/23275/metadata.json" new file mode 100644--- /dev/null +++ "b/23275/metadata.json" @@ -0,0 +1,13987 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "23275", + "quality_score": 0.9365, + "per_segment_quality_scores": [ + { + "start": 68.93, + "end": 70.5, + "probability": 0.6106 + }, + { + "start": 71.3, + "end": 76.54, + "probability": 0.4587 + }, + { + "start": 77.34, + "end": 80.72, + "probability": 0.8366 + }, + { + "start": 81.24, + "end": 84.14, + "probability": 0.9949 + }, + { + "start": 84.66, + "end": 86.78, + "probability": 0.7957 + }, + { + "start": 87.28, + "end": 87.64, + "probability": 0.6197 + }, + { + "start": 89.04, + "end": 89.82, + "probability": 0.7839 + }, + { + "start": 90.42, + "end": 92.3, + "probability": 0.7736 + }, + { + "start": 92.42, + "end": 94.02, + "probability": 0.9352 + }, + { + "start": 94.28, + "end": 94.92, + "probability": 0.7319 + }, + { + "start": 95.14, + "end": 95.36, + "probability": 0.8285 + }, + { + "start": 96.52, + "end": 97.1, + "probability": 0.94 + }, + { + "start": 97.98, + "end": 98.54, + "probability": 0.9857 + }, + { + "start": 99.08, + "end": 100.12, + "probability": 0.2868 + }, + { + "start": 100.78, + "end": 104.88, + "probability": 0.939 + }, + { + "start": 105.56, + "end": 106.84, + "probability": 0.1791 + }, + { + "start": 106.98, + "end": 109.48, + "probability": 0.9587 + }, + { + "start": 109.6, + "end": 109.94, + "probability": 0.7445 + }, + { + "start": 110.28, + "end": 110.88, + "probability": 0.6229 + }, + { + "start": 110.9, + "end": 111.7, + "probability": 0.7614 + }, + { + "start": 111.82, + "end": 114.82, + "probability": 0.9602 + }, + { + "start": 115.48, + "end": 117.92, + "probability": 0.6132 + }, + { + "start": 118.28, + "end": 120.64, + "probability": 0.8103 + }, + { + "start": 121.24, + "end": 122.92, + "probability": 0.4827 + }, + { + "start": 122.92, + "end": 123.16, + "probability": 0.7505 + }, + { + "start": 123.34, + "end": 124.06, + "probability": 0.5659 + }, + { + "start": 124.1, + "end": 126.82, + "probability": 0.9746 + }, + { + "start": 127.38, + "end": 128.46, + "probability": 0.9804 + }, + { + "start": 128.86, + "end": 130.71, + "probability": 0.6537 + }, + { + "start": 131.26, + "end": 134.76, + "probability": 0.9972 + }, + { + "start": 135.72, + "end": 136.0, + "probability": 0.6333 + }, + { + "start": 136.08, + "end": 136.3, + "probability": 0.6934 + }, + { + "start": 136.42, + "end": 138.84, + "probability": 0.9867 + }, + { + "start": 139.76, + "end": 141.5, + "probability": 0.5536 + }, + { + "start": 141.52, + "end": 142.5, + "probability": 0.6046 + }, + { + "start": 143.24, + "end": 144.24, + "probability": 0.8793 + }, + { + "start": 144.36, + "end": 145.74, + "probability": 0.8223 + }, + { + "start": 145.98, + "end": 148.14, + "probability": 0.9912 + }, + { + "start": 148.7, + "end": 151.34, + "probability": 0.9958 + }, + { + "start": 152.02, + "end": 156.78, + "probability": 0.8886 + }, + { + "start": 157.54, + "end": 159.46, + "probability": 0.8414 + }, + { + "start": 160.54, + "end": 166.02, + "probability": 0.9715 + }, + { + "start": 166.94, + "end": 170.8, + "probability": 0.728 + }, + { + "start": 171.32, + "end": 173.14, + "probability": 0.6817 + }, + { + "start": 174.36, + "end": 178.0, + "probability": 0.9081 + }, + { + "start": 178.82, + "end": 179.98, + "probability": 0.9633 + }, + { + "start": 181.12, + "end": 183.38, + "probability": 0.9912 + }, + { + "start": 184.48, + "end": 186.1, + "probability": 0.6973 + }, + { + "start": 186.46, + "end": 193.1, + "probability": 0.9467 + }, + { + "start": 193.1, + "end": 197.68, + "probability": 0.9694 + }, + { + "start": 197.76, + "end": 200.4, + "probability": 0.9954 + }, + { + "start": 201.42, + "end": 206.58, + "probability": 0.8316 + }, + { + "start": 207.26, + "end": 208.1, + "probability": 0.9651 + }, + { + "start": 208.36, + "end": 213.3, + "probability": 0.973 + }, + { + "start": 213.98, + "end": 218.64, + "probability": 0.9797 + }, + { + "start": 219.32, + "end": 221.0, + "probability": 0.8786 + }, + { + "start": 221.2, + "end": 222.0, + "probability": 0.7248 + }, + { + "start": 222.38, + "end": 223.22, + "probability": 0.8983 + }, + { + "start": 223.62, + "end": 226.08, + "probability": 0.9827 + }, + { + "start": 226.62, + "end": 227.44, + "probability": 0.7529 + }, + { + "start": 227.52, + "end": 228.92, + "probability": 0.6919 + }, + { + "start": 228.96, + "end": 230.44, + "probability": 0.9674 + }, + { + "start": 230.74, + "end": 232.36, + "probability": 0.9876 + }, + { + "start": 233.06, + "end": 235.12, + "probability": 0.725 + }, + { + "start": 235.92, + "end": 236.52, + "probability": 0.597 + }, + { + "start": 236.56, + "end": 237.66, + "probability": 0.9118 + }, + { + "start": 238.08, + "end": 238.66, + "probability": 0.4835 + }, + { + "start": 238.9, + "end": 239.8, + "probability": 0.9404 + }, + { + "start": 246.66, + "end": 246.66, + "probability": 0.56 + }, + { + "start": 246.66, + "end": 247.62, + "probability": 0.4285 + }, + { + "start": 247.72, + "end": 248.8, + "probability": 0.4027 + }, + { + "start": 248.9, + "end": 249.88, + "probability": 0.5763 + }, + { + "start": 250.8, + "end": 251.46, + "probability": 0.9577 + }, + { + "start": 251.58, + "end": 252.18, + "probability": 0.9458 + }, + { + "start": 252.34, + "end": 255.92, + "probability": 0.8992 + }, + { + "start": 256.58, + "end": 257.18, + "probability": 0.8284 + }, + { + "start": 257.3, + "end": 261.16, + "probability": 0.9152 + }, + { + "start": 261.92, + "end": 269.48, + "probability": 0.9496 + }, + { + "start": 270.7, + "end": 272.88, + "probability": 0.9548 + }, + { + "start": 272.9, + "end": 273.4, + "probability": 0.7423 + }, + { + "start": 273.58, + "end": 274.56, + "probability": 0.8344 + }, + { + "start": 274.74, + "end": 278.92, + "probability": 0.9199 + }, + { + "start": 278.92, + "end": 283.32, + "probability": 0.9873 + }, + { + "start": 284.56, + "end": 287.98, + "probability": 0.9821 + }, + { + "start": 289.14, + "end": 291.0, + "probability": 0.8737 + }, + { + "start": 291.18, + "end": 294.78, + "probability": 0.9944 + }, + { + "start": 295.86, + "end": 300.02, + "probability": 0.9897 + }, + { + "start": 300.26, + "end": 303.86, + "probability": 0.9985 + }, + { + "start": 304.74, + "end": 309.24, + "probability": 0.7961 + }, + { + "start": 309.48, + "end": 311.9, + "probability": 0.9664 + }, + { + "start": 312.52, + "end": 315.56, + "probability": 0.9554 + }, + { + "start": 316.98, + "end": 321.12, + "probability": 0.9525 + }, + { + "start": 321.48, + "end": 322.6, + "probability": 0.8662 + }, + { + "start": 323.34, + "end": 329.38, + "probability": 0.8755 + }, + { + "start": 329.6, + "end": 331.9, + "probability": 0.8527 + }, + { + "start": 332.04, + "end": 333.66, + "probability": 0.8428 + }, + { + "start": 334.22, + "end": 336.72, + "probability": 0.9655 + }, + { + "start": 337.76, + "end": 344.52, + "probability": 0.9858 + }, + { + "start": 345.08, + "end": 345.48, + "probability": 0.4815 + }, + { + "start": 345.48, + "end": 345.98, + "probability": 0.5977 + }, + { + "start": 346.14, + "end": 348.1, + "probability": 0.8562 + }, + { + "start": 348.62, + "end": 349.43, + "probability": 0.6129 + }, + { + "start": 350.54, + "end": 354.24, + "probability": 0.8145 + }, + { + "start": 354.36, + "end": 354.4, + "probability": 0.543 + }, + { + "start": 355.04, + "end": 356.56, + "probability": 0.9964 + }, + { + "start": 357.36, + "end": 358.25, + "probability": 0.6841 + }, + { + "start": 359.78, + "end": 361.26, + "probability": 0.7509 + }, + { + "start": 362.8, + "end": 363.0, + "probability": 0.9004 + }, + { + "start": 365.0, + "end": 368.2, + "probability": 0.9848 + }, + { + "start": 369.24, + "end": 371.84, + "probability": 0.8836 + }, + { + "start": 372.56, + "end": 378.4, + "probability": 0.994 + }, + { + "start": 379.06, + "end": 380.64, + "probability": 0.8564 + }, + { + "start": 380.64, + "end": 382.2, + "probability": 0.8799 + }, + { + "start": 382.76, + "end": 385.54, + "probability": 0.9978 + }, + { + "start": 386.02, + "end": 388.58, + "probability": 0.5794 + }, + { + "start": 389.04, + "end": 395.76, + "probability": 0.9863 + }, + { + "start": 396.26, + "end": 399.02, + "probability": 0.9746 + }, + { + "start": 399.6, + "end": 400.2, + "probability": 0.5327 + }, + { + "start": 400.84, + "end": 401.61, + "probability": 0.9403 + }, + { + "start": 402.34, + "end": 402.64, + "probability": 0.752 + }, + { + "start": 403.12, + "end": 404.0, + "probability": 0.9211 + }, + { + "start": 404.06, + "end": 408.36, + "probability": 0.9357 + }, + { + "start": 409.1, + "end": 410.02, + "probability": 0.9552 + }, + { + "start": 410.78, + "end": 412.54, + "probability": 0.9806 + }, + { + "start": 413.2, + "end": 417.3, + "probability": 0.9785 + }, + { + "start": 417.68, + "end": 421.0, + "probability": 0.9463 + }, + { + "start": 422.62, + "end": 425.46, + "probability": 0.6354 + }, + { + "start": 425.7, + "end": 427.64, + "probability": 0.8916 + }, + { + "start": 428.36, + "end": 429.2, + "probability": 0.998 + }, + { + "start": 431.38, + "end": 432.66, + "probability": 0.861 + }, + { + "start": 432.88, + "end": 434.34, + "probability": 0.9612 + }, + { + "start": 434.38, + "end": 436.13, + "probability": 0.9584 + }, + { + "start": 436.92, + "end": 437.76, + "probability": 0.9897 + }, + { + "start": 438.5, + "end": 444.52, + "probability": 0.9753 + }, + { + "start": 445.86, + "end": 446.98, + "probability": 0.7402 + }, + { + "start": 447.8, + "end": 451.36, + "probability": 0.9805 + }, + { + "start": 451.36, + "end": 454.06, + "probability": 0.9884 + }, + { + "start": 454.56, + "end": 456.8, + "probability": 0.993 + }, + { + "start": 456.96, + "end": 460.7, + "probability": 0.9523 + }, + { + "start": 460.82, + "end": 463.26, + "probability": 0.9517 + }, + { + "start": 463.32, + "end": 465.7, + "probability": 0.9868 + }, + { + "start": 466.48, + "end": 468.42, + "probability": 0.99 + }, + { + "start": 468.88, + "end": 470.42, + "probability": 0.9751 + }, + { + "start": 470.78, + "end": 471.86, + "probability": 0.9272 + }, + { + "start": 472.64, + "end": 472.94, + "probability": 0.7212 + }, + { + "start": 473.88, + "end": 474.1, + "probability": 0.3668 + }, + { + "start": 474.18, + "end": 477.38, + "probability": 0.9875 + }, + { + "start": 478.64, + "end": 480.97, + "probability": 0.7185 + }, + { + "start": 481.2, + "end": 481.6, + "probability": 0.2772 + }, + { + "start": 481.7, + "end": 482.2, + "probability": 0.734 + }, + { + "start": 482.28, + "end": 483.44, + "probability": 0.6859 + }, + { + "start": 483.72, + "end": 484.24, + "probability": 0.7207 + }, + { + "start": 484.28, + "end": 487.84, + "probability": 0.6036 + }, + { + "start": 487.84, + "end": 494.96, + "probability": 0.8332 + }, + { + "start": 495.26, + "end": 495.26, + "probability": 0.4975 + }, + { + "start": 495.26, + "end": 496.98, + "probability": 0.5335 + }, + { + "start": 497.08, + "end": 497.71, + "probability": 0.569 + }, + { + "start": 498.44, + "end": 499.6, + "probability": 0.9548 + }, + { + "start": 499.66, + "end": 500.38, + "probability": 0.7533 + }, + { + "start": 500.64, + "end": 500.84, + "probability": 0.3361 + }, + { + "start": 500.86, + "end": 501.52, + "probability": 0.834 + }, + { + "start": 501.72, + "end": 502.5, + "probability": 0.7306 + }, + { + "start": 504.34, + "end": 505.28, + "probability": 0.7827 + }, + { + "start": 506.2, + "end": 508.5, + "probability": 0.9137 + }, + { + "start": 508.74, + "end": 509.52, + "probability": 0.8381 + }, + { + "start": 509.58, + "end": 512.96, + "probability": 0.8071 + }, + { + "start": 513.02, + "end": 514.64, + "probability": 0.9619 + }, + { + "start": 515.16, + "end": 519.18, + "probability": 0.9841 + }, + { + "start": 519.18, + "end": 524.44, + "probability": 0.9957 + }, + { + "start": 525.02, + "end": 527.82, + "probability": 0.9072 + }, + { + "start": 527.88, + "end": 528.88, + "probability": 0.9455 + }, + { + "start": 529.4, + "end": 530.82, + "probability": 0.998 + }, + { + "start": 533.95, + "end": 535.32, + "probability": 0.6802 + }, + { + "start": 535.32, + "end": 536.68, + "probability": 0.2259 + }, + { + "start": 536.74, + "end": 538.52, + "probability": 0.8084 + }, + { + "start": 539.08, + "end": 541.67, + "probability": 0.9717 + }, + { + "start": 542.88, + "end": 545.06, + "probability": 0.9858 + }, + { + "start": 545.72, + "end": 547.18, + "probability": 0.9914 + }, + { + "start": 548.44, + "end": 551.4, + "probability": 0.9736 + }, + { + "start": 551.58, + "end": 552.52, + "probability": 0.6188 + }, + { + "start": 552.64, + "end": 553.86, + "probability": 0.9922 + }, + { + "start": 553.94, + "end": 555.62, + "probability": 0.9727 + }, + { + "start": 556.48, + "end": 559.17, + "probability": 0.9956 + }, + { + "start": 559.96, + "end": 564.16, + "probability": 0.8335 + }, + { + "start": 565.12, + "end": 570.42, + "probability": 0.979 + }, + { + "start": 570.54, + "end": 571.42, + "probability": 0.8337 + }, + { + "start": 571.54, + "end": 572.31, + "probability": 0.9971 + }, + { + "start": 572.88, + "end": 576.38, + "probability": 0.8979 + }, + { + "start": 577.08, + "end": 579.64, + "probability": 0.8082 + }, + { + "start": 579.92, + "end": 581.16, + "probability": 0.9738 + }, + { + "start": 581.3, + "end": 582.88, + "probability": 0.8265 + }, + { + "start": 583.04, + "end": 583.58, + "probability": 0.9468 + }, + { + "start": 584.28, + "end": 588.36, + "probability": 0.9398 + }, + { + "start": 588.84, + "end": 590.95, + "probability": 0.9791 + }, + { + "start": 591.28, + "end": 592.98, + "probability": 0.9768 + }, + { + "start": 593.5, + "end": 598.36, + "probability": 0.994 + }, + { + "start": 598.82, + "end": 601.5, + "probability": 0.9633 + }, + { + "start": 601.78, + "end": 602.26, + "probability": 0.696 + }, + { + "start": 602.72, + "end": 606.82, + "probability": 0.6652 + }, + { + "start": 607.2, + "end": 607.74, + "probability": 0.4566 + }, + { + "start": 608.0, + "end": 609.28, + "probability": 0.708 + }, + { + "start": 609.58, + "end": 610.6, + "probability": 0.3246 + }, + { + "start": 611.06, + "end": 612.0, + "probability": 0.6001 + }, + { + "start": 612.52, + "end": 615.72, + "probability": 0.8028 + }, + { + "start": 616.28, + "end": 617.06, + "probability": 0.7543 + }, + { + "start": 619.38, + "end": 621.5, + "probability": 0.4711 + }, + { + "start": 622.1, + "end": 625.84, + "probability": 0.9662 + }, + { + "start": 626.72, + "end": 630.96, + "probability": 0.9276 + }, + { + "start": 631.36, + "end": 635.1, + "probability": 0.9897 + }, + { + "start": 635.58, + "end": 638.04, + "probability": 0.9961 + }, + { + "start": 638.58, + "end": 642.08, + "probability": 0.9766 + }, + { + "start": 642.74, + "end": 644.0, + "probability": 0.9985 + }, + { + "start": 644.26, + "end": 645.39, + "probability": 0.9794 + }, + { + "start": 646.76, + "end": 647.72, + "probability": 0.5951 + }, + { + "start": 648.38, + "end": 649.96, + "probability": 0.9922 + }, + { + "start": 651.04, + "end": 653.56, + "probability": 0.9167 + }, + { + "start": 655.2, + "end": 661.36, + "probability": 0.897 + }, + { + "start": 662.02, + "end": 665.14, + "probability": 0.973 + }, + { + "start": 666.1, + "end": 668.13, + "probability": 0.9541 + }, + { + "start": 669.04, + "end": 672.9, + "probability": 0.9644 + }, + { + "start": 672.9, + "end": 677.32, + "probability": 0.9527 + }, + { + "start": 677.92, + "end": 682.71, + "probability": 0.9971 + }, + { + "start": 683.34, + "end": 686.96, + "probability": 0.9673 + }, + { + "start": 687.56, + "end": 689.88, + "probability": 0.9917 + }, + { + "start": 690.34, + "end": 691.29, + "probability": 0.8623 + }, + { + "start": 691.82, + "end": 693.14, + "probability": 0.9174 + }, + { + "start": 693.58, + "end": 694.42, + "probability": 0.9893 + }, + { + "start": 695.48, + "end": 699.1, + "probability": 0.8698 + }, + { + "start": 699.22, + "end": 701.24, + "probability": 0.4854 + }, + { + "start": 701.74, + "end": 702.6, + "probability": 0.4375 + }, + { + "start": 702.86, + "end": 704.74, + "probability": 0.8184 + }, + { + "start": 705.68, + "end": 708.68, + "probability": 0.9441 + }, + { + "start": 709.48, + "end": 710.44, + "probability": 0.7265 + }, + { + "start": 710.58, + "end": 711.74, + "probability": 0.7573 + }, + { + "start": 711.94, + "end": 713.86, + "probability": 0.8853 + }, + { + "start": 713.96, + "end": 714.36, + "probability": 0.7169 + }, + { + "start": 714.38, + "end": 714.88, + "probability": 0.7295 + }, + { + "start": 715.58, + "end": 719.08, + "probability": 0.8507 + }, + { + "start": 719.22, + "end": 721.44, + "probability": 0.9067 + }, + { + "start": 721.72, + "end": 723.36, + "probability": 0.9242 + }, + { + "start": 724.36, + "end": 728.84, + "probability": 0.6 + }, + { + "start": 729.6, + "end": 732.78, + "probability": 0.9845 + }, + { + "start": 733.36, + "end": 734.76, + "probability": 0.5961 + }, + { + "start": 735.3, + "end": 742.08, + "probability": 0.9424 + }, + { + "start": 742.74, + "end": 745.64, + "probability": 0.9919 + }, + { + "start": 746.04, + "end": 749.2, + "probability": 0.9878 + }, + { + "start": 749.5, + "end": 750.38, + "probability": 0.8522 + }, + { + "start": 750.64, + "end": 751.82, + "probability": 0.8383 + }, + { + "start": 752.3, + "end": 755.34, + "probability": 0.9047 + }, + { + "start": 755.5, + "end": 758.7, + "probability": 0.9921 + }, + { + "start": 758.7, + "end": 762.02, + "probability": 0.9626 + }, + { + "start": 762.18, + "end": 763.06, + "probability": 0.7613 + }, + { + "start": 764.52, + "end": 764.58, + "probability": 0.4407 + }, + { + "start": 764.66, + "end": 765.4, + "probability": 0.9658 + }, + { + "start": 765.66, + "end": 769.62, + "probability": 0.9915 + }, + { + "start": 769.8, + "end": 770.52, + "probability": 0.6569 + }, + { + "start": 771.08, + "end": 772.44, + "probability": 0.8618 + }, + { + "start": 772.48, + "end": 773.18, + "probability": 0.8973 + }, + { + "start": 773.34, + "end": 777.02, + "probability": 0.7966 + }, + { + "start": 777.4, + "end": 777.68, + "probability": 0.4943 + }, + { + "start": 777.84, + "end": 779.04, + "probability": 0.7424 + }, + { + "start": 779.66, + "end": 781.95, + "probability": 0.8962 + }, + { + "start": 782.5, + "end": 783.9, + "probability": 0.9839 + }, + { + "start": 784.46, + "end": 787.42, + "probability": 0.9951 + }, + { + "start": 787.88, + "end": 790.58, + "probability": 0.8977 + }, + { + "start": 791.52, + "end": 797.32, + "probability": 0.8178 + }, + { + "start": 797.82, + "end": 798.76, + "probability": 0.7969 + }, + { + "start": 799.12, + "end": 801.56, + "probability": 0.9983 + }, + { + "start": 801.6, + "end": 802.3, + "probability": 0.8607 + }, + { + "start": 802.66, + "end": 803.82, + "probability": 0.6157 + }, + { + "start": 804.2, + "end": 804.94, + "probability": 0.8796 + }, + { + "start": 805.54, + "end": 805.7, + "probability": 0.813 + }, + { + "start": 806.2, + "end": 806.8, + "probability": 0.6499 + }, + { + "start": 807.02, + "end": 808.48, + "probability": 0.8208 + }, + { + "start": 809.34, + "end": 812.12, + "probability": 0.9469 + }, + { + "start": 814.14, + "end": 814.3, + "probability": 0.7728 + }, + { + "start": 814.52, + "end": 815.26, + "probability": 0.673 + }, + { + "start": 816.12, + "end": 817.46, + "probability": 0.8435 + }, + { + "start": 818.46, + "end": 819.48, + "probability": 0.833 + }, + { + "start": 819.62, + "end": 821.02, + "probability": 0.8611 + }, + { + "start": 821.06, + "end": 823.86, + "probability": 0.8885 + }, + { + "start": 824.06, + "end": 828.82, + "probability": 0.9892 + }, + { + "start": 828.92, + "end": 829.56, + "probability": 0.5557 + }, + { + "start": 829.68, + "end": 833.0, + "probability": 0.9429 + }, + { + "start": 833.28, + "end": 833.76, + "probability": 0.8323 + }, + { + "start": 834.7, + "end": 838.48, + "probability": 0.7783 + }, + { + "start": 838.54, + "end": 840.34, + "probability": 0.5568 + }, + { + "start": 840.96, + "end": 842.48, + "probability": 0.6883 + }, + { + "start": 842.92, + "end": 844.44, + "probability": 0.8724 + }, + { + "start": 845.82, + "end": 847.02, + "probability": 0.8744 + }, + { + "start": 847.9, + "end": 850.3, + "probability": 0.8439 + }, + { + "start": 851.2, + "end": 854.18, + "probability": 0.9716 + }, + { + "start": 855.0, + "end": 856.38, + "probability": 0.9772 + }, + { + "start": 856.94, + "end": 861.88, + "probability": 0.9725 + }, + { + "start": 862.44, + "end": 867.29, + "probability": 0.9407 + }, + { + "start": 867.76, + "end": 867.82, + "probability": 0.4135 + }, + { + "start": 867.9, + "end": 868.66, + "probability": 0.8787 + }, + { + "start": 868.76, + "end": 871.74, + "probability": 0.9854 + }, + { + "start": 872.02, + "end": 872.54, + "probability": 0.7937 + }, + { + "start": 872.7, + "end": 873.78, + "probability": 0.8463 + }, + { + "start": 874.26, + "end": 875.88, + "probability": 0.9856 + }, + { + "start": 876.12, + "end": 877.96, + "probability": 0.7511 + }, + { + "start": 878.42, + "end": 879.16, + "probability": 0.7757 + }, + { + "start": 879.62, + "end": 883.6, + "probability": 0.969 + }, + { + "start": 883.82, + "end": 889.84, + "probability": 0.9659 + }, + { + "start": 890.34, + "end": 890.4, + "probability": 0.519 + }, + { + "start": 890.5, + "end": 891.3, + "probability": 0.9377 + }, + { + "start": 891.56, + "end": 894.2, + "probability": 0.9355 + }, + { + "start": 894.5, + "end": 899.94, + "probability": 0.9768 + }, + { + "start": 900.06, + "end": 900.38, + "probability": 0.7644 + }, + { + "start": 901.04, + "end": 902.78, + "probability": 0.7433 + }, + { + "start": 903.34, + "end": 906.7, + "probability": 0.9464 + }, + { + "start": 907.14, + "end": 908.98, + "probability": 0.8742 + }, + { + "start": 910.12, + "end": 910.81, + "probability": 0.7464 + }, + { + "start": 911.4, + "end": 914.44, + "probability": 0.9868 + }, + { + "start": 914.6, + "end": 915.52, + "probability": 0.5868 + }, + { + "start": 915.52, + "end": 917.2, + "probability": 0.8841 + }, + { + "start": 917.48, + "end": 917.74, + "probability": 0.8902 + }, + { + "start": 919.02, + "end": 919.12, + "probability": 0.4451 + }, + { + "start": 919.64, + "end": 921.1, + "probability": 0.3234 + }, + { + "start": 922.34, + "end": 923.86, + "probability": 0.6196 + }, + { + "start": 925.32, + "end": 925.64, + "probability": 0.8737 + }, + { + "start": 926.34, + "end": 927.92, + "probability": 0.9931 + }, + { + "start": 928.08, + "end": 930.64, + "probability": 0.8055 + }, + { + "start": 931.08, + "end": 932.52, + "probability": 0.996 + }, + { + "start": 933.14, + "end": 934.06, + "probability": 0.4633 + }, + { + "start": 934.82, + "end": 935.82, + "probability": 0.8613 + }, + { + "start": 936.9, + "end": 938.38, + "probability": 0.7657 + }, + { + "start": 939.56, + "end": 941.08, + "probability": 0.8779 + }, + { + "start": 941.8, + "end": 943.13, + "probability": 0.6639 + }, + { + "start": 944.64, + "end": 950.04, + "probability": 0.9492 + }, + { + "start": 951.48, + "end": 954.49, + "probability": 0.8485 + }, + { + "start": 956.86, + "end": 957.26, + "probability": 0.739 + }, + { + "start": 957.3, + "end": 958.0, + "probability": 0.5841 + }, + { + "start": 958.1, + "end": 960.1, + "probability": 0.9135 + }, + { + "start": 961.24, + "end": 965.16, + "probability": 0.9945 + }, + { + "start": 965.98, + "end": 968.4, + "probability": 0.8422 + }, + { + "start": 968.72, + "end": 969.7, + "probability": 0.8901 + }, + { + "start": 969.74, + "end": 973.6, + "probability": 0.9841 + }, + { + "start": 974.9, + "end": 976.06, + "probability": 0.8966 + }, + { + "start": 977.88, + "end": 980.08, + "probability": 0.9407 + }, + { + "start": 981.48, + "end": 986.62, + "probability": 0.9561 + }, + { + "start": 987.68, + "end": 989.34, + "probability": 0.8615 + }, + { + "start": 990.26, + "end": 994.5, + "probability": 0.9928 + }, + { + "start": 995.28, + "end": 1000.24, + "probability": 0.9751 + }, + { + "start": 1001.06, + "end": 1003.0, + "probability": 0.9922 + }, + { + "start": 1003.4, + "end": 1005.58, + "probability": 0.4921 + }, + { + "start": 1006.88, + "end": 1008.46, + "probability": 0.8922 + }, + { + "start": 1008.54, + "end": 1011.32, + "probability": 0.8623 + }, + { + "start": 1011.76, + "end": 1014.48, + "probability": 0.7361 + }, + { + "start": 1015.64, + "end": 1017.76, + "probability": 0.4959 + }, + { + "start": 1017.82, + "end": 1020.69, + "probability": 0.8787 + }, + { + "start": 1021.2, + "end": 1022.76, + "probability": 0.3548 + }, + { + "start": 1033.21, + "end": 1034.96, + "probability": 0.171 + }, + { + "start": 1034.96, + "end": 1034.96, + "probability": 0.0882 + }, + { + "start": 1034.96, + "end": 1034.96, + "probability": 0.0382 + }, + { + "start": 1034.96, + "end": 1035.5, + "probability": 0.0543 + }, + { + "start": 1036.2, + "end": 1038.44, + "probability": 0.9601 + }, + { + "start": 1039.0, + "end": 1039.12, + "probability": 0.291 + }, + { + "start": 1039.24, + "end": 1041.52, + "probability": 0.9281 + }, + { + "start": 1041.64, + "end": 1044.92, + "probability": 0.487 + }, + { + "start": 1046.06, + "end": 1050.86, + "probability": 0.9575 + }, + { + "start": 1051.52, + "end": 1052.76, + "probability": 0.9395 + }, + { + "start": 1052.78, + "end": 1054.22, + "probability": 0.7782 + }, + { + "start": 1054.26, + "end": 1055.98, + "probability": 0.7695 + }, + { + "start": 1056.02, + "end": 1056.7, + "probability": 0.7434 + }, + { + "start": 1057.38, + "end": 1060.38, + "probability": 0.9702 + }, + { + "start": 1060.58, + "end": 1061.5, + "probability": 0.6133 + }, + { + "start": 1061.84, + "end": 1064.0, + "probability": 0.7566 + }, + { + "start": 1064.0, + "end": 1065.58, + "probability": 0.9496 + }, + { + "start": 1066.0, + "end": 1066.66, + "probability": 0.8211 + }, + { + "start": 1066.76, + "end": 1069.36, + "probability": 0.9827 + }, + { + "start": 1069.42, + "end": 1070.16, + "probability": 0.7642 + }, + { + "start": 1070.6, + "end": 1072.74, + "probability": 0.9885 + }, + { + "start": 1073.64, + "end": 1074.14, + "probability": 0.5499 + }, + { + "start": 1074.36, + "end": 1074.7, + "probability": 0.3609 + }, + { + "start": 1074.76, + "end": 1075.32, + "probability": 0.8997 + }, + { + "start": 1075.44, + "end": 1080.04, + "probability": 0.9269 + }, + { + "start": 1080.36, + "end": 1081.28, + "probability": 0.7252 + }, + { + "start": 1081.76, + "end": 1083.16, + "probability": 0.5311 + }, + { + "start": 1085.6, + "end": 1088.98, + "probability": 0.5027 + }, + { + "start": 1089.62, + "end": 1091.7, + "probability": 0.8875 + }, + { + "start": 1091.7, + "end": 1093.96, + "probability": 0.7318 + }, + { + "start": 1094.24, + "end": 1095.1, + "probability": 0.8052 + }, + { + "start": 1095.2, + "end": 1095.86, + "probability": 0.9785 + }, + { + "start": 1096.44, + "end": 1097.04, + "probability": 0.5155 + }, + { + "start": 1097.4, + "end": 1099.58, + "probability": 0.6898 + }, + { + "start": 1104.34, + "end": 1105.52, + "probability": 0.7533 + }, + { + "start": 1106.18, + "end": 1107.1, + "probability": 0.9485 + }, + { + "start": 1107.82, + "end": 1108.96, + "probability": 0.9199 + }, + { + "start": 1109.7, + "end": 1113.5, + "probability": 0.9971 + }, + { + "start": 1114.38, + "end": 1119.9, + "probability": 0.7249 + }, + { + "start": 1120.44, + "end": 1122.02, + "probability": 0.9316 + }, + { + "start": 1122.6, + "end": 1125.36, + "probability": 0.9941 + }, + { + "start": 1125.88, + "end": 1128.9, + "probability": 0.7156 + }, + { + "start": 1129.58, + "end": 1134.46, + "probability": 0.7504 + }, + { + "start": 1135.36, + "end": 1141.44, + "probability": 0.9763 + }, + { + "start": 1142.54, + "end": 1143.76, + "probability": 0.5591 + }, + { + "start": 1144.46, + "end": 1147.82, + "probability": 0.8649 + }, + { + "start": 1148.44, + "end": 1151.76, + "probability": 0.988 + }, + { + "start": 1152.38, + "end": 1155.78, + "probability": 0.884 + }, + { + "start": 1157.24, + "end": 1161.26, + "probability": 0.8541 + }, + { + "start": 1161.44, + "end": 1168.06, + "probability": 0.9168 + }, + { + "start": 1168.3, + "end": 1169.42, + "probability": 0.9246 + }, + { + "start": 1170.32, + "end": 1172.54, + "probability": 0.9507 + }, + { + "start": 1173.2, + "end": 1174.96, + "probability": 0.9137 + }, + { + "start": 1175.76, + "end": 1177.04, + "probability": 0.7599 + }, + { + "start": 1177.1, + "end": 1178.72, + "probability": 0.9656 + }, + { + "start": 1179.04, + "end": 1181.1, + "probability": 0.9268 + }, + { + "start": 1183.76, + "end": 1184.92, + "probability": 0.6827 + }, + { + "start": 1185.14, + "end": 1187.32, + "probability": 0.8998 + }, + { + "start": 1187.66, + "end": 1189.88, + "probability": 0.8947 + }, + { + "start": 1189.98, + "end": 1190.64, + "probability": 0.8934 + }, + { + "start": 1190.96, + "end": 1193.0, + "probability": 0.9887 + }, + { + "start": 1193.18, + "end": 1193.78, + "probability": 0.9173 + }, + { + "start": 1193.88, + "end": 1194.82, + "probability": 0.9878 + }, + { + "start": 1195.4, + "end": 1197.42, + "probability": 0.9806 + }, + { + "start": 1197.48, + "end": 1198.7, + "probability": 0.9396 + }, + { + "start": 1200.0, + "end": 1202.36, + "probability": 0.8679 + }, + { + "start": 1202.48, + "end": 1204.96, + "probability": 0.773 + }, + { + "start": 1205.44, + "end": 1207.3, + "probability": 0.9834 + }, + { + "start": 1207.34, + "end": 1209.04, + "probability": 0.864 + }, + { + "start": 1209.58, + "end": 1211.34, + "probability": 0.9301 + }, + { + "start": 1212.38, + "end": 1213.58, + "probability": 0.7869 + }, + { + "start": 1214.18, + "end": 1215.0, + "probability": 0.8627 + }, + { + "start": 1215.56, + "end": 1220.16, + "probability": 0.8882 + }, + { + "start": 1220.18, + "end": 1221.22, + "probability": 0.7075 + }, + { + "start": 1221.24, + "end": 1222.26, + "probability": 0.9673 + }, + { + "start": 1222.86, + "end": 1225.4, + "probability": 0.8144 + }, + { + "start": 1225.58, + "end": 1226.98, + "probability": 0.9922 + }, + { + "start": 1227.02, + "end": 1229.14, + "probability": 0.9485 + }, + { + "start": 1229.84, + "end": 1230.16, + "probability": 0.1662 + }, + { + "start": 1230.16, + "end": 1233.64, + "probability": 0.9626 + }, + { + "start": 1233.64, + "end": 1239.06, + "probability": 0.9641 + }, + { + "start": 1239.56, + "end": 1242.96, + "probability": 0.7935 + }, + { + "start": 1243.42, + "end": 1244.88, + "probability": 0.7157 + }, + { + "start": 1245.32, + "end": 1246.94, + "probability": 0.5526 + }, + { + "start": 1247.52, + "end": 1247.9, + "probability": 0.5741 + }, + { + "start": 1253.08, + "end": 1256.1, + "probability": 0.9916 + }, + { + "start": 1256.4, + "end": 1257.52, + "probability": 0.6121 + }, + { + "start": 1257.98, + "end": 1258.72, + "probability": 0.0464 + }, + { + "start": 1259.22, + "end": 1259.84, + "probability": 0.1091 + }, + { + "start": 1259.86, + "end": 1260.28, + "probability": 0.66 + }, + { + "start": 1260.4, + "end": 1260.64, + "probability": 0.7906 + }, + { + "start": 1261.6, + "end": 1263.62, + "probability": 0.9313 + }, + { + "start": 1263.96, + "end": 1264.1, + "probability": 0.1786 + }, + { + "start": 1264.76, + "end": 1266.14, + "probability": 0.8853 + }, + { + "start": 1266.26, + "end": 1269.82, + "probability": 0.9971 + }, + { + "start": 1270.66, + "end": 1271.54, + "probability": 0.6649 + }, + { + "start": 1272.44, + "end": 1273.94, + "probability": 0.8115 + }, + { + "start": 1274.68, + "end": 1279.06, + "probability": 0.9925 + }, + { + "start": 1279.06, + "end": 1283.34, + "probability": 0.9195 + }, + { + "start": 1284.08, + "end": 1285.96, + "probability": 0.9614 + }, + { + "start": 1286.5, + "end": 1288.38, + "probability": 0.8127 + }, + { + "start": 1289.18, + "end": 1290.1, + "probability": 0.7708 + }, + { + "start": 1290.32, + "end": 1292.48, + "probability": 0.9814 + }, + { + "start": 1292.56, + "end": 1295.16, + "probability": 0.8525 + }, + { + "start": 1295.3, + "end": 1297.44, + "probability": 0.9473 + }, + { + "start": 1297.44, + "end": 1300.06, + "probability": 0.9704 + }, + { + "start": 1301.4, + "end": 1306.2, + "probability": 0.9359 + }, + { + "start": 1307.22, + "end": 1312.72, + "probability": 0.7844 + }, + { + "start": 1312.84, + "end": 1315.02, + "probability": 0.7683 + }, + { + "start": 1315.56, + "end": 1319.22, + "probability": 0.9958 + }, + { + "start": 1319.8, + "end": 1320.86, + "probability": 0.7248 + }, + { + "start": 1321.4, + "end": 1322.52, + "probability": 0.6299 + }, + { + "start": 1322.58, + "end": 1322.9, + "probability": 0.6536 + }, + { + "start": 1323.26, + "end": 1329.46, + "probability": 0.9915 + }, + { + "start": 1330.0, + "end": 1330.4, + "probability": 0.6208 + }, + { + "start": 1330.46, + "end": 1331.06, + "probability": 0.8317 + }, + { + "start": 1331.1, + "end": 1332.06, + "probability": 0.9146 + }, + { + "start": 1332.5, + "end": 1335.1, + "probability": 0.9679 + }, + { + "start": 1335.4, + "end": 1338.74, + "probability": 0.8121 + }, + { + "start": 1339.24, + "end": 1341.46, + "probability": 0.8619 + }, + { + "start": 1342.04, + "end": 1342.88, + "probability": 0.7182 + }, + { + "start": 1343.4, + "end": 1347.62, + "probability": 0.9891 + }, + { + "start": 1348.1, + "end": 1349.96, + "probability": 0.9503 + }, + { + "start": 1350.7, + "end": 1353.44, + "probability": 0.9701 + }, + { + "start": 1353.86, + "end": 1356.08, + "probability": 0.97 + }, + { + "start": 1356.46, + "end": 1360.8, + "probability": 0.9507 + }, + { + "start": 1361.38, + "end": 1364.74, + "probability": 0.9202 + }, + { + "start": 1365.2, + "end": 1365.64, + "probability": 0.6055 + }, + { + "start": 1365.66, + "end": 1366.88, + "probability": 0.7546 + }, + { + "start": 1367.86, + "end": 1368.69, + "probability": 0.5336 + }, + { + "start": 1369.36, + "end": 1372.18, + "probability": 0.9673 + }, + { + "start": 1374.12, + "end": 1374.9, + "probability": 0.4446 + }, + { + "start": 1376.98, + "end": 1377.7, + "probability": 0.8357 + }, + { + "start": 1377.76, + "end": 1378.94, + "probability": 0.8178 + }, + { + "start": 1379.2, + "end": 1385.92, + "probability": 0.7346 + }, + { + "start": 1385.92, + "end": 1391.92, + "probability": 0.8626 + }, + { + "start": 1392.6, + "end": 1394.3, + "probability": 0.9434 + }, + { + "start": 1395.39, + "end": 1398.98, + "probability": 0.7721 + }, + { + "start": 1398.98, + "end": 1401.8, + "probability": 0.9962 + }, + { + "start": 1401.88, + "end": 1404.3, + "probability": 0.9656 + }, + { + "start": 1404.4, + "end": 1407.54, + "probability": 0.9915 + }, + { + "start": 1407.54, + "end": 1411.4, + "probability": 0.9227 + }, + { + "start": 1411.46, + "end": 1412.06, + "probability": 0.8087 + }, + { + "start": 1412.22, + "end": 1412.68, + "probability": 0.4867 + }, + { + "start": 1413.06, + "end": 1414.1, + "probability": 0.9149 + }, + { + "start": 1414.24, + "end": 1414.96, + "probability": 0.6695 + }, + { + "start": 1415.56, + "end": 1418.8, + "probability": 0.9424 + }, + { + "start": 1419.14, + "end": 1419.96, + "probability": 0.6278 + }, + { + "start": 1420.06, + "end": 1422.1, + "probability": 0.9849 + }, + { + "start": 1422.28, + "end": 1424.62, + "probability": 0.9932 + }, + { + "start": 1425.24, + "end": 1427.06, + "probability": 0.9976 + }, + { + "start": 1427.24, + "end": 1429.84, + "probability": 0.8438 + }, + { + "start": 1430.02, + "end": 1431.38, + "probability": 0.9638 + }, + { + "start": 1431.74, + "end": 1434.56, + "probability": 0.9211 + }, + { + "start": 1435.58, + "end": 1437.56, + "probability": 0.7271 + }, + { + "start": 1437.64, + "end": 1440.48, + "probability": 0.9946 + }, + { + "start": 1440.48, + "end": 1443.26, + "probability": 0.9965 + }, + { + "start": 1444.26, + "end": 1447.66, + "probability": 0.9189 + }, + { + "start": 1447.74, + "end": 1448.86, + "probability": 0.999 + }, + { + "start": 1449.3, + "end": 1451.38, + "probability": 0.9963 + }, + { + "start": 1451.38, + "end": 1455.2, + "probability": 0.9889 + }, + { + "start": 1455.54, + "end": 1456.4, + "probability": 0.8704 + }, + { + "start": 1456.6, + "end": 1457.64, + "probability": 0.7095 + }, + { + "start": 1457.72, + "end": 1462.28, + "probability": 0.9927 + }, + { + "start": 1462.62, + "end": 1464.72, + "probability": 0.9773 + }, + { + "start": 1465.12, + "end": 1466.32, + "probability": 0.9758 + }, + { + "start": 1466.54, + "end": 1468.02, + "probability": 0.9758 + }, + { + "start": 1468.3, + "end": 1470.82, + "probability": 0.9874 + }, + { + "start": 1471.08, + "end": 1472.16, + "probability": 0.9911 + }, + { + "start": 1472.26, + "end": 1472.88, + "probability": 0.5381 + }, + { + "start": 1473.06, + "end": 1474.68, + "probability": 0.7942 + }, + { + "start": 1475.24, + "end": 1476.84, + "probability": 0.486 + }, + { + "start": 1477.92, + "end": 1478.12, + "probability": 0.6746 + }, + { + "start": 1479.0, + "end": 1479.78, + "probability": 0.8647 + }, + { + "start": 1480.34, + "end": 1480.54, + "probability": 0.0092 + }, + { + "start": 1480.96, + "end": 1484.75, + "probability": 0.8841 + }, + { + "start": 1485.68, + "end": 1486.32, + "probability": 0.4082 + }, + { + "start": 1486.32, + "end": 1488.64, + "probability": 0.4833 + }, + { + "start": 1489.04, + "end": 1490.08, + "probability": 0.2659 + }, + { + "start": 1490.52, + "end": 1491.42, + "probability": 0.6268 + }, + { + "start": 1492.72, + "end": 1495.84, + "probability": 0.9915 + }, + { + "start": 1496.82, + "end": 1503.22, + "probability": 0.9422 + }, + { + "start": 1503.84, + "end": 1506.32, + "probability": 0.9311 + }, + { + "start": 1506.92, + "end": 1508.84, + "probability": 0.8823 + }, + { + "start": 1509.38, + "end": 1511.18, + "probability": 0.9338 + }, + { + "start": 1512.86, + "end": 1514.12, + "probability": 0.9433 + }, + { + "start": 1515.08, + "end": 1515.92, + "probability": 0.8945 + }, + { + "start": 1516.72, + "end": 1522.54, + "probability": 0.997 + }, + { + "start": 1523.4, + "end": 1527.58, + "probability": 0.9462 + }, + { + "start": 1528.6, + "end": 1531.1, + "probability": 0.9394 + }, + { + "start": 1531.8, + "end": 1533.88, + "probability": 0.9757 + }, + { + "start": 1534.52, + "end": 1536.2, + "probability": 0.9186 + }, + { + "start": 1536.92, + "end": 1539.64, + "probability": 0.9797 + }, + { + "start": 1540.26, + "end": 1541.56, + "probability": 0.9931 + }, + { + "start": 1542.2, + "end": 1543.32, + "probability": 0.9861 + }, + { + "start": 1543.4, + "end": 1547.46, + "probability": 0.9937 + }, + { + "start": 1548.1, + "end": 1549.36, + "probability": 0.7395 + }, + { + "start": 1550.46, + "end": 1551.28, + "probability": 0.8274 + }, + { + "start": 1552.2, + "end": 1552.8, + "probability": 0.7586 + }, + { + "start": 1552.9, + "end": 1554.33, + "probability": 0.8252 + }, + { + "start": 1554.9, + "end": 1559.88, + "probability": 0.8611 + }, + { + "start": 1560.58, + "end": 1562.74, + "probability": 0.7446 + }, + { + "start": 1563.38, + "end": 1565.08, + "probability": 0.8095 + }, + { + "start": 1566.44, + "end": 1567.43, + "probability": 0.6014 + }, + { + "start": 1567.76, + "end": 1570.76, + "probability": 0.8069 + }, + { + "start": 1571.76, + "end": 1575.58, + "probability": 0.8023 + }, + { + "start": 1575.76, + "end": 1579.28, + "probability": 0.9325 + }, + { + "start": 1579.72, + "end": 1581.74, + "probability": 0.9634 + }, + { + "start": 1582.72, + "end": 1585.38, + "probability": 0.9087 + }, + { + "start": 1586.06, + "end": 1588.1, + "probability": 0.6938 + }, + { + "start": 1588.9, + "end": 1592.0, + "probability": 0.9891 + }, + { + "start": 1592.54, + "end": 1593.76, + "probability": 0.9404 + }, + { + "start": 1594.28, + "end": 1595.24, + "probability": 0.8167 + }, + { + "start": 1595.84, + "end": 1598.96, + "probability": 0.9905 + }, + { + "start": 1599.5, + "end": 1601.04, + "probability": 0.7734 + }, + { + "start": 1601.48, + "end": 1604.82, + "probability": 0.9144 + }, + { + "start": 1605.12, + "end": 1605.36, + "probability": 0.7654 + }, + { + "start": 1606.02, + "end": 1606.56, + "probability": 0.561 + }, + { + "start": 1606.58, + "end": 1608.8, + "probability": 0.6333 + }, + { + "start": 1609.44, + "end": 1610.94, + "probability": 0.7278 + }, + { + "start": 1611.88, + "end": 1614.66, + "probability": 0.6691 + }, + { + "start": 1615.58, + "end": 1616.3, + "probability": 0.805 + }, + { + "start": 1616.4, + "end": 1616.9, + "probability": 0.9106 + }, + { + "start": 1617.0, + "end": 1618.12, + "probability": 0.7809 + }, + { + "start": 1618.62, + "end": 1624.46, + "probability": 0.7979 + }, + { + "start": 1624.46, + "end": 1627.92, + "probability": 0.9297 + }, + { + "start": 1627.98, + "end": 1630.18, + "probability": 0.9801 + }, + { + "start": 1630.62, + "end": 1633.52, + "probability": 0.8448 + }, + { + "start": 1634.06, + "end": 1636.08, + "probability": 0.9387 + }, + { + "start": 1636.62, + "end": 1638.4, + "probability": 0.9893 + }, + { + "start": 1638.9, + "end": 1640.76, + "probability": 0.7827 + }, + { + "start": 1641.34, + "end": 1645.74, + "probability": 0.9649 + }, + { + "start": 1646.32, + "end": 1647.96, + "probability": 0.7838 + }, + { + "start": 1648.14, + "end": 1649.92, + "probability": 0.9967 + }, + { + "start": 1650.3, + "end": 1652.96, + "probability": 0.9764 + }, + { + "start": 1653.56, + "end": 1658.84, + "probability": 0.9891 + }, + { + "start": 1658.98, + "end": 1659.76, + "probability": 0.601 + }, + { + "start": 1659.84, + "end": 1660.22, + "probability": 0.8584 + }, + { + "start": 1660.3, + "end": 1661.54, + "probability": 0.8971 + }, + { + "start": 1662.12, + "end": 1662.71, + "probability": 0.6877 + }, + { + "start": 1662.98, + "end": 1663.16, + "probability": 0.7647 + }, + { + "start": 1663.2, + "end": 1667.82, + "probability": 0.9451 + }, + { + "start": 1668.54, + "end": 1670.99, + "probability": 0.985 + }, + { + "start": 1671.2, + "end": 1672.34, + "probability": 0.7252 + }, + { + "start": 1673.13, + "end": 1675.08, + "probability": 0.8914 + }, + { + "start": 1675.18, + "end": 1677.5, + "probability": 0.9656 + }, + { + "start": 1678.02, + "end": 1680.92, + "probability": 0.6636 + }, + { + "start": 1681.32, + "end": 1683.12, + "probability": 0.8789 + }, + { + "start": 1683.46, + "end": 1688.2, + "probability": 0.8191 + }, + { + "start": 1688.28, + "end": 1688.96, + "probability": 0.6722 + }, + { + "start": 1689.0, + "end": 1691.14, + "probability": 0.9934 + }, + { + "start": 1691.64, + "end": 1693.04, + "probability": 0.9763 + }, + { + "start": 1693.22, + "end": 1695.8, + "probability": 0.9119 + }, + { + "start": 1696.04, + "end": 1697.97, + "probability": 0.9341 + }, + { + "start": 1698.28, + "end": 1701.64, + "probability": 0.9875 + }, + { + "start": 1701.78, + "end": 1702.74, + "probability": 0.7015 + }, + { + "start": 1702.94, + "end": 1704.78, + "probability": 0.9683 + }, + { + "start": 1704.98, + "end": 1706.38, + "probability": 0.6824 + }, + { + "start": 1706.76, + "end": 1711.56, + "probability": 0.9749 + }, + { + "start": 1711.7, + "end": 1713.24, + "probability": 0.7664 + }, + { + "start": 1713.32, + "end": 1713.82, + "probability": 0.8846 + }, + { + "start": 1714.22, + "end": 1718.72, + "probability": 0.9513 + }, + { + "start": 1719.76, + "end": 1720.84, + "probability": 0.7831 + }, + { + "start": 1721.22, + "end": 1724.14, + "probability": 0.9825 + }, + { + "start": 1724.44, + "end": 1724.9, + "probability": 0.7414 + }, + { + "start": 1725.66, + "end": 1726.16, + "probability": 0.633 + }, + { + "start": 1726.16, + "end": 1727.36, + "probability": 0.8348 + }, + { + "start": 1731.78, + "end": 1733.14, + "probability": 0.3365 + }, + { + "start": 1733.72, + "end": 1735.04, + "probability": 0.8323 + }, + { + "start": 1735.34, + "end": 1736.04, + "probability": 0.7063 + }, + { + "start": 1736.16, + "end": 1736.6, + "probability": 0.7203 + }, + { + "start": 1736.66, + "end": 1737.5, + "probability": 0.8822 + }, + { + "start": 1737.76, + "end": 1739.46, + "probability": 0.9636 + }, + { + "start": 1740.24, + "end": 1743.24, + "probability": 0.9314 + }, + { + "start": 1743.68, + "end": 1744.56, + "probability": 0.8637 + }, + { + "start": 1744.62, + "end": 1745.6, + "probability": 0.8301 + }, + { + "start": 1746.18, + "end": 1749.08, + "probability": 0.9881 + }, + { + "start": 1749.08, + "end": 1752.26, + "probability": 0.9988 + }, + { + "start": 1752.94, + "end": 1756.18, + "probability": 0.9325 + }, + { + "start": 1756.18, + "end": 1759.02, + "probability": 0.887 + }, + { + "start": 1759.02, + "end": 1763.58, + "probability": 0.5878 + }, + { + "start": 1763.98, + "end": 1766.96, + "probability": 0.9614 + }, + { + "start": 1767.56, + "end": 1768.7, + "probability": 0.9456 + }, + { + "start": 1768.74, + "end": 1771.12, + "probability": 0.9625 + }, + { + "start": 1771.64, + "end": 1772.35, + "probability": 0.8578 + }, + { + "start": 1773.3, + "end": 1774.1, + "probability": 0.6602 + }, + { + "start": 1775.36, + "end": 1777.4, + "probability": 0.9706 + }, + { + "start": 1777.6, + "end": 1779.76, + "probability": 0.9853 + }, + { + "start": 1779.78, + "end": 1780.54, + "probability": 0.9342 + }, + { + "start": 1780.68, + "end": 1783.32, + "probability": 0.9913 + }, + { + "start": 1784.0, + "end": 1786.65, + "probability": 0.9466 + }, + { + "start": 1787.12, + "end": 1787.64, + "probability": 0.8688 + }, + { + "start": 1787.7, + "end": 1788.7, + "probability": 0.9047 + }, + { + "start": 1789.04, + "end": 1790.44, + "probability": 0.8624 + }, + { + "start": 1790.96, + "end": 1794.78, + "probability": 0.875 + }, + { + "start": 1795.26, + "end": 1796.78, + "probability": 0.9845 + }, + { + "start": 1797.56, + "end": 1800.18, + "probability": 0.7597 + }, + { + "start": 1800.58, + "end": 1802.72, + "probability": 0.9941 + }, + { + "start": 1802.96, + "end": 1804.34, + "probability": 0.9639 + }, + { + "start": 1804.88, + "end": 1808.88, + "probability": 0.9544 + }, + { + "start": 1809.1, + "end": 1811.7, + "probability": 0.9912 + }, + { + "start": 1811.76, + "end": 1813.1, + "probability": 0.7769 + }, + { + "start": 1813.54, + "end": 1816.74, + "probability": 0.9288 + }, + { + "start": 1817.32, + "end": 1819.52, + "probability": 0.8515 + }, + { + "start": 1819.9, + "end": 1821.86, + "probability": 0.9033 + }, + { + "start": 1821.86, + "end": 1822.54, + "probability": 0.9604 + }, + { + "start": 1823.1, + "end": 1824.01, + "probability": 0.9907 + }, + { + "start": 1824.98, + "end": 1826.14, + "probability": 0.9922 + }, + { + "start": 1826.78, + "end": 1829.1, + "probability": 0.7497 + }, + { + "start": 1829.12, + "end": 1831.18, + "probability": 0.8745 + }, + { + "start": 1831.3, + "end": 1832.32, + "probability": 0.6371 + }, + { + "start": 1832.84, + "end": 1836.22, + "probability": 0.7827 + }, + { + "start": 1836.64, + "end": 1838.8, + "probability": 0.9401 + }, + { + "start": 1838.96, + "end": 1839.4, + "probability": 0.3685 + }, + { + "start": 1839.5, + "end": 1839.88, + "probability": 0.439 + }, + { + "start": 1840.26, + "end": 1840.98, + "probability": 0.6479 + }, + { + "start": 1841.22, + "end": 1843.22, + "probability": 0.8328 + }, + { + "start": 1843.52, + "end": 1844.7, + "probability": 0.9702 + }, + { + "start": 1844.74, + "end": 1845.14, + "probability": 0.9011 + }, + { + "start": 1845.84, + "end": 1851.9, + "probability": 0.9888 + }, + { + "start": 1852.4, + "end": 1854.06, + "probability": 0.6676 + }, + { + "start": 1855.16, + "end": 1860.08, + "probability": 0.9785 + }, + { + "start": 1860.32, + "end": 1861.26, + "probability": 0.7517 + }, + { + "start": 1861.53, + "end": 1865.02, + "probability": 0.9816 + }, + { + "start": 1865.02, + "end": 1867.94, + "probability": 0.9645 + }, + { + "start": 1868.82, + "end": 1869.34, + "probability": 0.7015 + }, + { + "start": 1869.46, + "end": 1871.43, + "probability": 0.5271 + }, + { + "start": 1871.58, + "end": 1873.92, + "probability": 0.9393 + }, + { + "start": 1873.94, + "end": 1874.34, + "probability": 0.6326 + }, + { + "start": 1874.34, + "end": 1875.08, + "probability": 0.8795 + }, + { + "start": 1875.26, + "end": 1875.98, + "probability": 0.9424 + }, + { + "start": 1876.52, + "end": 1878.16, + "probability": 0.7832 + }, + { + "start": 1878.22, + "end": 1879.38, + "probability": 0.7967 + }, + { + "start": 1879.68, + "end": 1881.06, + "probability": 0.9763 + }, + { + "start": 1881.06, + "end": 1881.64, + "probability": 0.9233 + }, + { + "start": 1882.16, + "end": 1883.0, + "probability": 0.7329 + }, + { + "start": 1883.4, + "end": 1883.98, + "probability": 0.6464 + }, + { + "start": 1884.22, + "end": 1887.14, + "probability": 0.617 + }, + { + "start": 1887.54, + "end": 1887.9, + "probability": 0.4115 + }, + { + "start": 1890.58, + "end": 1891.68, + "probability": 0.7208 + }, + { + "start": 1892.82, + "end": 1894.96, + "probability": 0.8697 + }, + { + "start": 1895.6, + "end": 1902.94, + "probability": 0.935 + }, + { + "start": 1903.92, + "end": 1907.58, + "probability": 0.9963 + }, + { + "start": 1908.4, + "end": 1914.5, + "probability": 0.9525 + }, + { + "start": 1915.1, + "end": 1918.32, + "probability": 0.7466 + }, + { + "start": 1918.6, + "end": 1921.36, + "probability": 0.9756 + }, + { + "start": 1922.16, + "end": 1924.3, + "probability": 0.7529 + }, + { + "start": 1924.88, + "end": 1928.14, + "probability": 0.6273 + }, + { + "start": 1928.72, + "end": 1930.54, + "probability": 0.6212 + }, + { + "start": 1930.84, + "end": 1935.52, + "probability": 0.9487 + }, + { + "start": 1935.56, + "end": 1937.16, + "probability": 0.8713 + }, + { + "start": 1937.72, + "end": 1942.66, + "probability": 0.8789 + }, + { + "start": 1943.26, + "end": 1949.56, + "probability": 0.99 + }, + { + "start": 1950.0, + "end": 1951.74, + "probability": 0.9746 + }, + { + "start": 1952.52, + "end": 1954.66, + "probability": 0.7073 + }, + { + "start": 1955.4, + "end": 1958.6, + "probability": 0.9635 + }, + { + "start": 1958.9, + "end": 1960.4, + "probability": 0.6762 + }, + { + "start": 1960.86, + "end": 1968.92, + "probability": 0.9302 + }, + { + "start": 1969.24, + "end": 1972.2, + "probability": 0.973 + }, + { + "start": 1972.5, + "end": 1975.34, + "probability": 0.9919 + }, + { + "start": 1975.54, + "end": 1978.5, + "probability": 0.9012 + }, + { + "start": 1979.2, + "end": 1979.64, + "probability": 0.843 + }, + { + "start": 1981.84, + "end": 1984.92, + "probability": 0.8097 + }, + { + "start": 1992.06, + "end": 1992.54, + "probability": 0.2417 + }, + { + "start": 1993.58, + "end": 1996.18, + "probability": 0.8283 + }, + { + "start": 1996.26, + "end": 2003.24, + "probability": 0.9376 + }, + { + "start": 2004.14, + "end": 2010.08, + "probability": 0.5054 + }, + { + "start": 2010.86, + "end": 2014.58, + "probability": 0.999 + }, + { + "start": 2015.08, + "end": 2020.02, + "probability": 0.8454 + }, + { + "start": 2020.44, + "end": 2021.96, + "probability": 0.9421 + }, + { + "start": 2022.12, + "end": 2026.32, + "probability": 0.7068 + }, + { + "start": 2026.96, + "end": 2030.18, + "probability": 0.8779 + }, + { + "start": 2030.4, + "end": 2033.06, + "probability": 0.8492 + }, + { + "start": 2033.18, + "end": 2033.88, + "probability": 0.9567 + }, + { + "start": 2034.5, + "end": 2038.76, + "probability": 0.9708 + }, + { + "start": 2039.18, + "end": 2040.88, + "probability": 0.7389 + }, + { + "start": 2040.98, + "end": 2044.6, + "probability": 0.9919 + }, + { + "start": 2045.14, + "end": 2048.58, + "probability": 0.9913 + }, + { + "start": 2048.58, + "end": 2054.32, + "probability": 0.7448 + }, + { + "start": 2054.78, + "end": 2060.26, + "probability": 0.8593 + }, + { + "start": 2060.4, + "end": 2063.19, + "probability": 0.6898 + }, + { + "start": 2063.9, + "end": 2064.56, + "probability": 0.8327 + }, + { + "start": 2064.62, + "end": 2065.46, + "probability": 0.7876 + }, + { + "start": 2066.3, + "end": 2070.28, + "probability": 0.8235 + }, + { + "start": 2071.1, + "end": 2073.84, + "probability": 0.8071 + }, + { + "start": 2074.38, + "end": 2079.56, + "probability": 0.9744 + }, + { + "start": 2080.0, + "end": 2082.66, + "probability": 0.986 + }, + { + "start": 2083.0, + "end": 2083.34, + "probability": 0.7833 + }, + { + "start": 2084.54, + "end": 2085.14, + "probability": 0.7597 + }, + { + "start": 2086.48, + "end": 2087.58, + "probability": 0.6818 + }, + { + "start": 2087.92, + "end": 2089.54, + "probability": 0.6256 + }, + { + "start": 2090.86, + "end": 2093.7, + "probability": 0.8989 + }, + { + "start": 2094.6, + "end": 2094.7, + "probability": 0.0164 + }, + { + "start": 2094.7, + "end": 2097.28, + "probability": 0.8238 + }, + { + "start": 2097.34, + "end": 2097.46, + "probability": 0.7267 + }, + { + "start": 2109.1, + "end": 2111.78, + "probability": 0.7313 + }, + { + "start": 2112.86, + "end": 2114.48, + "probability": 0.9622 + }, + { + "start": 2118.1, + "end": 2118.58, + "probability": 0.5422 + }, + { + "start": 2118.58, + "end": 2119.76, + "probability": 0.7138 + }, + { + "start": 2119.94, + "end": 2121.34, + "probability": 0.708 + }, + { + "start": 2121.7, + "end": 2123.48, + "probability": 0.98 + }, + { + "start": 2124.98, + "end": 2128.48, + "probability": 0.9819 + }, + { + "start": 2129.24, + "end": 2132.64, + "probability": 0.9939 + }, + { + "start": 2134.26, + "end": 2136.36, + "probability": 0.6993 + }, + { + "start": 2137.22, + "end": 2142.0, + "probability": 0.8533 + }, + { + "start": 2142.44, + "end": 2147.02, + "probability": 0.94 + }, + { + "start": 2147.02, + "end": 2150.52, + "probability": 0.9891 + }, + { + "start": 2151.1, + "end": 2153.02, + "probability": 0.9844 + }, + { + "start": 2153.82, + "end": 2157.86, + "probability": 0.9934 + }, + { + "start": 2157.86, + "end": 2163.22, + "probability": 0.9844 + }, + { + "start": 2164.56, + "end": 2167.84, + "probability": 0.9531 + }, + { + "start": 2168.1, + "end": 2176.54, + "probability": 0.9922 + }, + { + "start": 2177.14, + "end": 2179.28, + "probability": 0.9875 + }, + { + "start": 2180.1, + "end": 2181.64, + "probability": 0.8884 + }, + { + "start": 2181.82, + "end": 2182.3, + "probability": 0.8553 + }, + { + "start": 2182.7, + "end": 2186.16, + "probability": 0.9287 + }, + { + "start": 2187.48, + "end": 2192.52, + "probability": 0.9882 + }, + { + "start": 2193.2, + "end": 2198.32, + "probability": 0.9695 + }, + { + "start": 2199.03, + "end": 2200.91, + "probability": 0.9868 + }, + { + "start": 2201.04, + "end": 2202.38, + "probability": 0.8704 + }, + { + "start": 2202.94, + "end": 2205.54, + "probability": 0.9935 + }, + { + "start": 2205.6, + "end": 2207.34, + "probability": 0.868 + }, + { + "start": 2207.62, + "end": 2208.42, + "probability": 0.9929 + }, + { + "start": 2209.04, + "end": 2210.36, + "probability": 0.9835 + }, + { + "start": 2211.08, + "end": 2216.24, + "probability": 0.9749 + }, + { + "start": 2217.26, + "end": 2220.92, + "probability": 0.8068 + }, + { + "start": 2221.46, + "end": 2228.04, + "probability": 0.9276 + }, + { + "start": 2229.52, + "end": 2230.68, + "probability": 0.8487 + }, + { + "start": 2231.48, + "end": 2236.4, + "probability": 0.9897 + }, + { + "start": 2236.62, + "end": 2239.14, + "probability": 0.9927 + }, + { + "start": 2239.62, + "end": 2241.56, + "probability": 0.8537 + }, + { + "start": 2242.12, + "end": 2248.68, + "probability": 0.9917 + }, + { + "start": 2249.64, + "end": 2254.28, + "probability": 0.7194 + }, + { + "start": 2254.46, + "end": 2258.38, + "probability": 0.9194 + }, + { + "start": 2258.92, + "end": 2260.08, + "probability": 0.5693 + }, + { + "start": 2260.6, + "end": 2261.96, + "probability": 0.9946 + }, + { + "start": 2262.12, + "end": 2270.02, + "probability": 0.9628 + }, + { + "start": 2270.04, + "end": 2271.78, + "probability": 0.9666 + }, + { + "start": 2272.96, + "end": 2277.8, + "probability": 0.9747 + }, + { + "start": 2278.6, + "end": 2282.22, + "probability": 0.9706 + }, + { + "start": 2282.84, + "end": 2285.68, + "probability": 0.9648 + }, + { + "start": 2285.68, + "end": 2289.66, + "probability": 0.7882 + }, + { + "start": 2289.78, + "end": 2294.62, + "probability": 0.9853 + }, + { + "start": 2295.46, + "end": 2300.56, + "probability": 0.9978 + }, + { + "start": 2301.34, + "end": 2305.74, + "probability": 0.9966 + }, + { + "start": 2305.74, + "end": 2310.24, + "probability": 0.987 + }, + { + "start": 2310.74, + "end": 2314.92, + "probability": 0.995 + }, + { + "start": 2315.02, + "end": 2315.44, + "probability": 0.4978 + }, + { + "start": 2315.78, + "end": 2316.4, + "probability": 0.9768 + }, + { + "start": 2317.0, + "end": 2321.06, + "probability": 0.9222 + }, + { + "start": 2321.3, + "end": 2322.34, + "probability": 0.9836 + }, + { + "start": 2323.4, + "end": 2326.72, + "probability": 0.9659 + }, + { + "start": 2327.32, + "end": 2332.62, + "probability": 0.9904 + }, + { + "start": 2333.08, + "end": 2336.98, + "probability": 0.9349 + }, + { + "start": 2337.1, + "end": 2343.66, + "probability": 0.7598 + }, + { + "start": 2344.48, + "end": 2347.28, + "probability": 0.6813 + }, + { + "start": 2347.68, + "end": 2353.1, + "probability": 0.9818 + }, + { + "start": 2354.06, + "end": 2358.14, + "probability": 0.9758 + }, + { + "start": 2358.14, + "end": 2362.06, + "probability": 0.9985 + }, + { + "start": 2362.8, + "end": 2367.16, + "probability": 0.8423 + }, + { + "start": 2367.42, + "end": 2370.36, + "probability": 0.909 + }, + { + "start": 2370.54, + "end": 2373.46, + "probability": 0.9566 + }, + { + "start": 2374.12, + "end": 2375.22, + "probability": 0.9692 + }, + { + "start": 2375.62, + "end": 2376.74, + "probability": 0.9918 + }, + { + "start": 2377.24, + "end": 2379.24, + "probability": 0.9844 + }, + { + "start": 2379.62, + "end": 2380.76, + "probability": 0.9111 + }, + { + "start": 2381.22, + "end": 2381.92, + "probability": 0.9078 + }, + { + "start": 2382.82, + "end": 2383.24, + "probability": 0.9744 + }, + { + "start": 2384.0, + "end": 2385.88, + "probability": 0.9429 + }, + { + "start": 2386.78, + "end": 2393.58, + "probability": 0.9406 + }, + { + "start": 2394.14, + "end": 2398.4, + "probability": 0.9673 + }, + { + "start": 2398.88, + "end": 2404.34, + "probability": 0.9961 + }, + { + "start": 2404.42, + "end": 2409.02, + "probability": 0.9204 + }, + { + "start": 2410.16, + "end": 2413.48, + "probability": 0.8092 + }, + { + "start": 2414.28, + "end": 2416.64, + "probability": 0.7752 + }, + { + "start": 2417.14, + "end": 2418.1, + "probability": 0.7144 + }, + { + "start": 2419.32, + "end": 2424.48, + "probability": 0.9676 + }, + { + "start": 2425.36, + "end": 2430.16, + "probability": 0.9824 + }, + { + "start": 2430.84, + "end": 2436.24, + "probability": 0.9666 + }, + { + "start": 2437.08, + "end": 2437.9, + "probability": 0.7884 + }, + { + "start": 2438.84, + "end": 2442.44, + "probability": 0.9866 + }, + { + "start": 2442.44, + "end": 2446.08, + "probability": 0.9702 + }, + { + "start": 2446.84, + "end": 2448.4, + "probability": 0.8729 + }, + { + "start": 2448.56, + "end": 2450.1, + "probability": 0.8101 + }, + { + "start": 2450.58, + "end": 2456.66, + "probability": 0.9891 + }, + { + "start": 2457.74, + "end": 2459.36, + "probability": 0.7383 + }, + { + "start": 2460.28, + "end": 2464.98, + "probability": 0.9873 + }, + { + "start": 2465.44, + "end": 2465.9, + "probability": 0.7031 + }, + { + "start": 2466.8, + "end": 2471.0, + "probability": 0.9921 + }, + { + "start": 2471.36, + "end": 2474.28, + "probability": 0.9028 + }, + { + "start": 2474.8, + "end": 2476.32, + "probability": 0.8905 + }, + { + "start": 2476.86, + "end": 2480.52, + "probability": 0.9979 + }, + { + "start": 2481.04, + "end": 2482.52, + "probability": 0.9905 + }, + { + "start": 2483.7, + "end": 2486.14, + "probability": 0.8377 + }, + { + "start": 2487.18, + "end": 2491.96, + "probability": 0.9952 + }, + { + "start": 2492.5, + "end": 2492.96, + "probability": 0.8893 + }, + { + "start": 2494.36, + "end": 2495.27, + "probability": 0.9288 + }, + { + "start": 2495.8, + "end": 2503.9, + "probability": 0.9863 + }, + { + "start": 2504.52, + "end": 2507.9, + "probability": 0.9544 + }, + { + "start": 2507.96, + "end": 2508.92, + "probability": 0.9237 + }, + { + "start": 2509.36, + "end": 2512.68, + "probability": 0.9738 + }, + { + "start": 2514.32, + "end": 2520.0, + "probability": 0.9861 + }, + { + "start": 2520.7, + "end": 2524.32, + "probability": 0.9059 + }, + { + "start": 2524.52, + "end": 2526.74, + "probability": 0.8823 + }, + { + "start": 2527.46, + "end": 2535.88, + "probability": 0.9851 + }, + { + "start": 2535.9, + "end": 2538.02, + "probability": 0.918 + }, + { + "start": 2539.58, + "end": 2547.08, + "probability": 0.9971 + }, + { + "start": 2547.62, + "end": 2549.28, + "probability": 0.8017 + }, + { + "start": 2549.7, + "end": 2553.88, + "probability": 0.9265 + }, + { + "start": 2555.0, + "end": 2559.08, + "probability": 0.9973 + }, + { + "start": 2559.08, + "end": 2562.18, + "probability": 0.9971 + }, + { + "start": 2562.66, + "end": 2567.16, + "probability": 0.9785 + }, + { + "start": 2568.14, + "end": 2572.66, + "probability": 0.9894 + }, + { + "start": 2573.1, + "end": 2579.42, + "probability": 0.9924 + }, + { + "start": 2580.74, + "end": 2582.66, + "probability": 0.9188 + }, + { + "start": 2583.0, + "end": 2588.6, + "probability": 0.9364 + }, + { + "start": 2589.2, + "end": 2593.88, + "probability": 0.9277 + }, + { + "start": 2594.9, + "end": 2602.4, + "probability": 0.9626 + }, + { + "start": 2602.56, + "end": 2603.18, + "probability": 0.8558 + }, + { + "start": 2604.2, + "end": 2605.44, + "probability": 0.9124 + }, + { + "start": 2606.52, + "end": 2609.58, + "probability": 0.9714 + }, + { + "start": 2609.74, + "end": 2611.44, + "probability": 0.9966 + }, + { + "start": 2612.36, + "end": 2614.82, + "probability": 0.9943 + }, + { + "start": 2615.62, + "end": 2617.42, + "probability": 0.8481 + }, + { + "start": 2618.06, + "end": 2621.78, + "probability": 0.616 + }, + { + "start": 2623.22, + "end": 2626.8, + "probability": 0.9842 + }, + { + "start": 2627.78, + "end": 2629.04, + "probability": 0.8886 + }, + { + "start": 2629.42, + "end": 2632.1, + "probability": 0.9568 + }, + { + "start": 2632.42, + "end": 2637.5, + "probability": 0.9036 + }, + { + "start": 2637.96, + "end": 2640.12, + "probability": 0.9846 + }, + { + "start": 2640.96, + "end": 2641.26, + "probability": 0.8272 + }, + { + "start": 2642.32, + "end": 2648.48, + "probability": 0.9758 + }, + { + "start": 2648.56, + "end": 2654.04, + "probability": 0.9685 + }, + { + "start": 2654.52, + "end": 2660.28, + "probability": 0.9276 + }, + { + "start": 2660.94, + "end": 2668.56, + "probability": 0.9663 + }, + { + "start": 2668.98, + "end": 2670.44, + "probability": 0.8473 + }, + { + "start": 2670.82, + "end": 2676.9, + "probability": 0.9885 + }, + { + "start": 2677.12, + "end": 2680.06, + "probability": 0.9284 + }, + { + "start": 2681.22, + "end": 2683.68, + "probability": 0.9928 + }, + { + "start": 2683.98, + "end": 2688.16, + "probability": 0.988 + }, + { + "start": 2689.7, + "end": 2694.88, + "probability": 0.9939 + }, + { + "start": 2695.58, + "end": 2696.92, + "probability": 0.6875 + }, + { + "start": 2697.42, + "end": 2698.64, + "probability": 0.6735 + }, + { + "start": 2699.1, + "end": 2702.36, + "probability": 0.9521 + }, + { + "start": 2702.5, + "end": 2702.58, + "probability": 0.3381 + }, + { + "start": 2702.68, + "end": 2704.22, + "probability": 0.8667 + }, + { + "start": 2704.84, + "end": 2706.2, + "probability": 0.5515 + }, + { + "start": 2706.94, + "end": 2709.5, + "probability": 0.797 + }, + { + "start": 2709.78, + "end": 2710.08, + "probability": 0.5616 + }, + { + "start": 2710.56, + "end": 2711.84, + "probability": 0.8303 + }, + { + "start": 2711.96, + "end": 2714.32, + "probability": 0.9824 + }, + { + "start": 2714.76, + "end": 2716.46, + "probability": 0.955 + }, + { + "start": 2716.86, + "end": 2718.62, + "probability": 0.5612 + }, + { + "start": 2719.04, + "end": 2721.74, + "probability": 0.9983 + }, + { + "start": 2722.28, + "end": 2725.16, + "probability": 0.9922 + }, + { + "start": 2725.56, + "end": 2727.42, + "probability": 0.8797 + }, + { + "start": 2727.82, + "end": 2730.58, + "probability": 0.8579 + }, + { + "start": 2731.46, + "end": 2734.16, + "probability": 0.9976 + }, + { + "start": 2734.82, + "end": 2737.48, + "probability": 0.8872 + }, + { + "start": 2737.64, + "end": 2738.98, + "probability": 0.7975 + }, + { + "start": 2739.48, + "end": 2740.36, + "probability": 0.7658 + }, + { + "start": 2740.5, + "end": 2741.64, + "probability": 0.5479 + }, + { + "start": 2742.24, + "end": 2743.5, + "probability": 0.8595 + }, + { + "start": 2743.58, + "end": 2748.54, + "probability": 0.9868 + }, + { + "start": 2748.62, + "end": 2750.52, + "probability": 0.9945 + }, + { + "start": 2751.94, + "end": 2757.68, + "probability": 0.9906 + }, + { + "start": 2758.46, + "end": 2763.72, + "probability": 0.7965 + }, + { + "start": 2763.72, + "end": 2768.04, + "probability": 0.9373 + }, + { + "start": 2770.68, + "end": 2774.5, + "probability": 0.9987 + }, + { + "start": 2774.74, + "end": 2778.34, + "probability": 0.9989 + }, + { + "start": 2779.12, + "end": 2780.15, + "probability": 0.9747 + }, + { + "start": 2781.73, + "end": 2786.09, + "probability": 0.9946 + }, + { + "start": 2786.34, + "end": 2790.14, + "probability": 0.9912 + }, + { + "start": 2790.22, + "end": 2790.98, + "probability": 0.7387 + }, + { + "start": 2791.9, + "end": 2793.18, + "probability": 0.6805 + }, + { + "start": 2794.2, + "end": 2799.06, + "probability": 0.9944 + }, + { + "start": 2799.06, + "end": 2802.82, + "probability": 0.949 + }, + { + "start": 2803.24, + "end": 2810.4, + "probability": 0.9841 + }, + { + "start": 2811.36, + "end": 2815.42, + "probability": 0.991 + }, + { + "start": 2816.02, + "end": 2817.06, + "probability": 0.9678 + }, + { + "start": 2817.62, + "end": 2818.2, + "probability": 0.9357 + }, + { + "start": 2818.6, + "end": 2823.6, + "probability": 0.9975 + }, + { + "start": 2823.6, + "end": 2827.2, + "probability": 0.993 + }, + { + "start": 2827.42, + "end": 2829.56, + "probability": 0.8055 + }, + { + "start": 2829.58, + "end": 2833.18, + "probability": 0.9716 + }, + { + "start": 2834.53, + "end": 2836.28, + "probability": 0.4786 + }, + { + "start": 2836.9, + "end": 2837.58, + "probability": 0.8053 + }, + { + "start": 2838.2, + "end": 2842.78, + "probability": 0.9734 + }, + { + "start": 2842.78, + "end": 2847.62, + "probability": 0.9862 + }, + { + "start": 2848.16, + "end": 2855.58, + "probability": 0.9822 + }, + { + "start": 2856.0, + "end": 2856.91, + "probability": 0.9327 + }, + { + "start": 2857.48, + "end": 2858.46, + "probability": 0.9738 + }, + { + "start": 2858.98, + "end": 2860.54, + "probability": 0.8938 + }, + { + "start": 2860.82, + "end": 2861.82, + "probability": 0.581 + }, + { + "start": 2862.14, + "end": 2863.46, + "probability": 0.8558 + }, + { + "start": 2863.56, + "end": 2864.78, + "probability": 0.9519 + }, + { + "start": 2865.32, + "end": 2865.8, + "probability": 0.9651 + }, + { + "start": 2866.7, + "end": 2867.14, + "probability": 0.9366 + }, + { + "start": 2867.2, + "end": 2870.55, + "probability": 0.9897 + }, + { + "start": 2870.72, + "end": 2871.02, + "probability": 0.7741 + }, + { + "start": 2871.62, + "end": 2876.7, + "probability": 0.5424 + }, + { + "start": 2876.7, + "end": 2877.34, + "probability": 0.4836 + }, + { + "start": 2878.3, + "end": 2880.76, + "probability": 0.9172 + }, + { + "start": 2880.84, + "end": 2882.06, + "probability": 0.9719 + }, + { + "start": 2882.72, + "end": 2884.58, + "probability": 0.9958 + }, + { + "start": 2885.44, + "end": 2888.06, + "probability": 0.9782 + }, + { + "start": 2889.94, + "end": 2895.0, + "probability": 0.7944 + }, + { + "start": 2896.7, + "end": 2899.48, + "probability": 0.9761 + }, + { + "start": 2899.48, + "end": 2901.76, + "probability": 0.7452 + }, + { + "start": 2902.82, + "end": 2908.3, + "probability": 0.8562 + }, + { + "start": 2912.24, + "end": 2918.54, + "probability": 0.7811 + }, + { + "start": 2919.72, + "end": 2920.76, + "probability": 0.819 + }, + { + "start": 2921.52, + "end": 2922.24, + "probability": 0.7703 + }, + { + "start": 2923.08, + "end": 2923.52, + "probability": 0.4712 + }, + { + "start": 2927.3, + "end": 2928.06, + "probability": 0.1348 + }, + { + "start": 2928.06, + "end": 2929.46, + "probability": 0.6966 + }, + { + "start": 2930.14, + "end": 2931.4, + "probability": 0.955 + }, + { + "start": 2931.44, + "end": 2932.3, + "probability": 0.9105 + }, + { + "start": 2932.6, + "end": 2933.08, + "probability": 0.3816 + }, + { + "start": 2933.16, + "end": 2937.46, + "probability": 0.9927 + }, + { + "start": 2938.14, + "end": 2939.12, + "probability": 0.8543 + }, + { + "start": 2940.4, + "end": 2942.48, + "probability": 0.9118 + }, + { + "start": 2945.6, + "end": 2946.68, + "probability": 0.8162 + }, + { + "start": 2947.88, + "end": 2948.98, + "probability": 0.1736 + }, + { + "start": 2948.98, + "end": 2948.98, + "probability": 0.1521 + }, + { + "start": 2948.98, + "end": 2949.68, + "probability": 0.8412 + }, + { + "start": 2950.88, + "end": 2954.4, + "probability": 0.9273 + }, + { + "start": 2955.12, + "end": 2956.92, + "probability": 0.9054 + }, + { + "start": 2958.74, + "end": 2959.48, + "probability": 0.8926 + }, + { + "start": 2960.58, + "end": 2964.8, + "probability": 0.9615 + }, + { + "start": 2965.54, + "end": 2970.58, + "probability": 0.807 + }, + { + "start": 2970.6, + "end": 2971.3, + "probability": 0.6103 + }, + { + "start": 2972.06, + "end": 2972.68, + "probability": 0.86 + }, + { + "start": 2972.84, + "end": 2974.1, + "probability": 0.8196 + }, + { + "start": 2974.36, + "end": 2976.76, + "probability": 0.6204 + }, + { + "start": 2976.9, + "end": 2977.0, + "probability": 0.118 + }, + { + "start": 2978.2, + "end": 2979.58, + "probability": 0.6668 + }, + { + "start": 2980.38, + "end": 2980.52, + "probability": 0.6742 + }, + { + "start": 2980.66, + "end": 2982.77, + "probability": 0.8813 + }, + { + "start": 2983.7, + "end": 2985.52, + "probability": 0.51 + }, + { + "start": 2986.18, + "end": 2987.15, + "probability": 0.9677 + }, + { + "start": 2988.12, + "end": 2991.1, + "probability": 0.9541 + }, + { + "start": 2991.78, + "end": 2993.18, + "probability": 0.9966 + }, + { + "start": 2993.92, + "end": 2997.42, + "probability": 0.9922 + }, + { + "start": 2998.44, + "end": 2999.52, + "probability": 0.9971 + }, + { + "start": 3000.32, + "end": 3004.42, + "probability": 0.9852 + }, + { + "start": 3005.34, + "end": 3007.5, + "probability": 0.9801 + }, + { + "start": 3008.44, + "end": 3009.96, + "probability": 0.7402 + }, + { + "start": 3010.82, + "end": 3013.48, + "probability": 0.9946 + }, + { + "start": 3016.44, + "end": 3017.62, + "probability": 0.8841 + }, + { + "start": 3018.4, + "end": 3019.6, + "probability": 0.9702 + }, + { + "start": 3020.62, + "end": 3021.02, + "probability": 0.8129 + }, + { + "start": 3021.76, + "end": 3023.72, + "probability": 0.999 + }, + { + "start": 3023.76, + "end": 3025.96, + "probability": 0.7981 + }, + { + "start": 3027.1, + "end": 3027.9, + "probability": 0.343 + }, + { + "start": 3027.94, + "end": 3028.6, + "probability": 0.8128 + }, + { + "start": 3028.68, + "end": 3031.6, + "probability": 0.9702 + }, + { + "start": 3032.08, + "end": 3034.58, + "probability": 0.7202 + }, + { + "start": 3035.44, + "end": 3042.68, + "probability": 0.8509 + }, + { + "start": 3043.62, + "end": 3045.74, + "probability": 0.722 + }, + { + "start": 3046.42, + "end": 3048.26, + "probability": 0.9967 + }, + { + "start": 3049.64, + "end": 3053.76, + "probability": 0.767 + }, + { + "start": 3053.8, + "end": 3057.02, + "probability": 0.9993 + }, + { + "start": 3057.06, + "end": 3057.78, + "probability": 0.4463 + }, + { + "start": 3058.0, + "end": 3060.58, + "probability": 0.929 + }, + { + "start": 3061.16, + "end": 3062.54, + "probability": 0.9639 + }, + { + "start": 3064.07, + "end": 3068.16, + "probability": 0.9609 + }, + { + "start": 3068.8, + "end": 3070.3, + "probability": 0.997 + }, + { + "start": 3072.33, + "end": 3074.02, + "probability": 0.6016 + }, + { + "start": 3074.24, + "end": 3076.47, + "probability": 0.9912 + }, + { + "start": 3076.58, + "end": 3080.54, + "probability": 0.9943 + }, + { + "start": 3080.76, + "end": 3083.4, + "probability": 0.8389 + }, + { + "start": 3083.4, + "end": 3088.84, + "probability": 0.9795 + }, + { + "start": 3090.24, + "end": 3092.46, + "probability": 0.4962 + }, + { + "start": 3093.08, + "end": 3093.72, + "probability": 0.6331 + }, + { + "start": 3093.78, + "end": 3096.88, + "probability": 0.9473 + }, + { + "start": 3097.56, + "end": 3098.22, + "probability": 0.7289 + }, + { + "start": 3098.8, + "end": 3100.94, + "probability": 0.9819 + }, + { + "start": 3101.64, + "end": 3104.06, + "probability": 0.9135 + }, + { + "start": 3107.44, + "end": 3112.74, + "probability": 0.9972 + }, + { + "start": 3113.38, + "end": 3114.94, + "probability": 0.9117 + }, + { + "start": 3116.44, + "end": 3117.02, + "probability": 0.7498 + }, + { + "start": 3117.68, + "end": 3124.58, + "probability": 0.9493 + }, + { + "start": 3125.1, + "end": 3128.6, + "probability": 0.9325 + }, + { + "start": 3129.82, + "end": 3132.6, + "probability": 0.9983 + }, + { + "start": 3133.64, + "end": 3134.86, + "probability": 0.9974 + }, + { + "start": 3135.72, + "end": 3139.76, + "probability": 0.9932 + }, + { + "start": 3140.46, + "end": 3146.32, + "probability": 0.9929 + }, + { + "start": 3146.44, + "end": 3147.9, + "probability": 0.9829 + }, + { + "start": 3148.68, + "end": 3152.33, + "probability": 0.9945 + }, + { + "start": 3153.36, + "end": 3159.06, + "probability": 0.8439 + }, + { + "start": 3159.56, + "end": 3160.82, + "probability": 0.9991 + }, + { + "start": 3164.0, + "end": 3164.92, + "probability": 0.7712 + }, + { + "start": 3165.18, + "end": 3166.04, + "probability": 0.9757 + }, + { + "start": 3167.0, + "end": 3170.3, + "probability": 0.8522 + }, + { + "start": 3171.84, + "end": 3174.96, + "probability": 0.9947 + }, + { + "start": 3174.96, + "end": 3179.12, + "probability": 0.9377 + }, + { + "start": 3180.12, + "end": 3182.34, + "probability": 0.9483 + }, + { + "start": 3182.5, + "end": 3182.84, + "probability": 0.1564 + }, + { + "start": 3182.84, + "end": 3183.48, + "probability": 0.9619 + }, + { + "start": 3183.7, + "end": 3185.62, + "probability": 0.8634 + }, + { + "start": 3186.12, + "end": 3189.48, + "probability": 0.9812 + }, + { + "start": 3190.16, + "end": 3191.64, + "probability": 0.7428 + }, + { + "start": 3192.98, + "end": 3196.48, + "probability": 0.9803 + }, + { + "start": 3196.68, + "end": 3197.82, + "probability": 0.7773 + }, + { + "start": 3198.44, + "end": 3200.36, + "probability": 0.9894 + }, + { + "start": 3201.02, + "end": 3202.1, + "probability": 0.5733 + }, + { + "start": 3202.14, + "end": 3202.84, + "probability": 0.7945 + }, + { + "start": 3202.98, + "end": 3204.5, + "probability": 0.9875 + }, + { + "start": 3204.64, + "end": 3206.8, + "probability": 0.707 + }, + { + "start": 3206.88, + "end": 3208.3, + "probability": 0.9958 + }, + { + "start": 3209.12, + "end": 3209.72, + "probability": 0.7663 + }, + { + "start": 3210.36, + "end": 3213.28, + "probability": 0.709 + }, + { + "start": 3213.92, + "end": 3217.16, + "probability": 0.9459 + }, + { + "start": 3217.26, + "end": 3217.78, + "probability": 0.7373 + }, + { + "start": 3217.88, + "end": 3220.0, + "probability": 0.8547 + }, + { + "start": 3220.9, + "end": 3221.66, + "probability": 0.7655 + }, + { + "start": 3222.16, + "end": 3222.78, + "probability": 0.0529 + }, + { + "start": 3223.28, + "end": 3223.38, + "probability": 0.0209 + }, + { + "start": 3223.46, + "end": 3225.92, + "probability": 0.7288 + }, + { + "start": 3226.06, + "end": 3230.72, + "probability": 0.998 + }, + { + "start": 3231.28, + "end": 3233.32, + "probability": 0.9276 + }, + { + "start": 3233.5, + "end": 3236.04, + "probability": 0.9136 + }, + { + "start": 3236.04, + "end": 3239.6, + "probability": 0.9844 + }, + { + "start": 3240.16, + "end": 3243.08, + "probability": 0.922 + }, + { + "start": 3243.26, + "end": 3245.26, + "probability": 0.9969 + }, + { + "start": 3245.4, + "end": 3246.96, + "probability": 0.98 + }, + { + "start": 3247.52, + "end": 3248.37, + "probability": 0.8127 + }, + { + "start": 3250.5, + "end": 3250.96, + "probability": 0.7708 + }, + { + "start": 3251.02, + "end": 3251.72, + "probability": 0.9596 + }, + { + "start": 3251.84, + "end": 3252.46, + "probability": 0.7305 + }, + { + "start": 3252.52, + "end": 3253.64, + "probability": 0.9951 + }, + { + "start": 3255.66, + "end": 3257.94, + "probability": 0.8759 + }, + { + "start": 3258.78, + "end": 3262.0, + "probability": 0.9948 + }, + { + "start": 3263.0, + "end": 3266.48, + "probability": 0.5063 + }, + { + "start": 3266.78, + "end": 3267.76, + "probability": 0.9553 + }, + { + "start": 3268.0, + "end": 3268.78, + "probability": 0.4776 + }, + { + "start": 3268.96, + "end": 3269.12, + "probability": 0.4186 + }, + { + "start": 3269.32, + "end": 3269.98, + "probability": 0.809 + }, + { + "start": 3270.1, + "end": 3272.42, + "probability": 0.5927 + }, + { + "start": 3272.46, + "end": 3273.02, + "probability": 0.7782 + }, + { + "start": 3273.06, + "end": 3273.7, + "probability": 0.6988 + }, + { + "start": 3273.82, + "end": 3274.64, + "probability": 0.8979 + }, + { + "start": 3275.32, + "end": 3276.8, + "probability": 0.959 + }, + { + "start": 3276.84, + "end": 3280.34, + "probability": 0.7397 + }, + { + "start": 3281.12, + "end": 3285.78, + "probability": 0.9146 + }, + { + "start": 3285.92, + "end": 3287.58, + "probability": 0.7785 + }, + { + "start": 3288.24, + "end": 3288.92, + "probability": 0.5421 + }, + { + "start": 3289.1, + "end": 3293.14, + "probability": 0.942 + }, + { + "start": 3293.22, + "end": 3296.04, + "probability": 0.9697 + }, + { + "start": 3296.44, + "end": 3297.36, + "probability": 0.6757 + }, + { + "start": 3297.74, + "end": 3298.18, + "probability": 0.9594 + }, + { + "start": 3298.26, + "end": 3298.36, + "probability": 0.9266 + }, + { + "start": 3299.0, + "end": 3299.42, + "probability": 0.7687 + }, + { + "start": 3299.8, + "end": 3301.08, + "probability": 0.9625 + }, + { + "start": 3301.88, + "end": 3305.72, + "probability": 0.9709 + }, + { + "start": 3306.42, + "end": 3308.12, + "probability": 0.9951 + }, + { + "start": 3308.2, + "end": 3310.24, + "probability": 0.9856 + }, + { + "start": 3311.12, + "end": 3313.28, + "probability": 0.8784 + }, + { + "start": 3313.94, + "end": 3314.72, + "probability": 0.7708 + }, + { + "start": 3314.82, + "end": 3316.3, + "probability": 0.9637 + }, + { + "start": 3316.34, + "end": 3318.52, + "probability": 0.9985 + }, + { + "start": 3319.06, + "end": 3320.14, + "probability": 0.9901 + }, + { + "start": 3320.26, + "end": 3320.88, + "probability": 0.5245 + }, + { + "start": 3321.38, + "end": 3322.36, + "probability": 0.9829 + }, + { + "start": 3322.64, + "end": 3323.62, + "probability": 0.7305 + }, + { + "start": 3324.38, + "end": 3325.8, + "probability": 0.9901 + }, + { + "start": 3326.06, + "end": 3327.18, + "probability": 0.6812 + }, + { + "start": 3327.22, + "end": 3328.96, + "probability": 0.7051 + }, + { + "start": 3329.68, + "end": 3331.96, + "probability": 0.6367 + }, + { + "start": 3332.74, + "end": 3332.86, + "probability": 0.0576 + }, + { + "start": 3333.0, + "end": 3335.88, + "probability": 0.9381 + }, + { + "start": 3336.12, + "end": 3338.47, + "probability": 0.592 + }, + { + "start": 3339.22, + "end": 3340.48, + "probability": 0.9355 + }, + { + "start": 3341.4, + "end": 3342.58, + "probability": 0.9895 + }, + { + "start": 3342.7, + "end": 3345.2, + "probability": 0.1536 + }, + { + "start": 3345.2, + "end": 3347.54, + "probability": 0.1524 + }, + { + "start": 3348.08, + "end": 3348.56, + "probability": 0.8035 + }, + { + "start": 3348.7, + "end": 3349.26, + "probability": 0.845 + }, + { + "start": 3349.74, + "end": 3351.52, + "probability": 0.8086 + }, + { + "start": 3351.76, + "end": 3352.74, + "probability": 0.9597 + }, + { + "start": 3353.32, + "end": 3354.34, + "probability": 0.9274 + }, + { + "start": 3355.14, + "end": 3355.48, + "probability": 0.5032 + }, + { + "start": 3355.54, + "end": 3356.42, + "probability": 0.9573 + }, + { + "start": 3356.56, + "end": 3360.4, + "probability": 0.9913 + }, + { + "start": 3360.56, + "end": 3360.72, + "probability": 0.2373 + }, + { + "start": 3361.68, + "end": 3362.46, + "probability": 0.5639 + }, + { + "start": 3362.56, + "end": 3363.44, + "probability": 0.7501 + }, + { + "start": 3363.88, + "end": 3365.0, + "probability": 0.6846 + }, + { + "start": 3365.54, + "end": 3366.04, + "probability": 0.8581 + }, + { + "start": 3366.42, + "end": 3369.06, + "probability": 0.9855 + }, + { + "start": 3369.66, + "end": 3370.64, + "probability": 0.9927 + }, + { + "start": 3371.28, + "end": 3372.48, + "probability": 0.7812 + }, + { + "start": 3373.16, + "end": 3375.24, + "probability": 0.989 + }, + { + "start": 3375.38, + "end": 3375.58, + "probability": 0.9669 + }, + { + "start": 3376.44, + "end": 3377.82, + "probability": 0.357 + }, + { + "start": 3378.74, + "end": 3381.6, + "probability": 0.6169 + }, + { + "start": 3382.48, + "end": 3387.46, + "probability": 0.8 + }, + { + "start": 3387.46, + "end": 3390.44, + "probability": 0.9897 + }, + { + "start": 3390.94, + "end": 3392.5, + "probability": 0.861 + }, + { + "start": 3393.34, + "end": 3395.2, + "probability": 0.9138 + }, + { + "start": 3396.04, + "end": 3396.84, + "probability": 0.8311 + }, + { + "start": 3396.98, + "end": 3398.64, + "probability": 0.9806 + }, + { + "start": 3398.9, + "end": 3399.76, + "probability": 0.685 + }, + { + "start": 3401.02, + "end": 3404.56, + "probability": 0.8544 + }, + { + "start": 3405.92, + "end": 3406.48, + "probability": 0.6933 + }, + { + "start": 3406.54, + "end": 3408.22, + "probability": 0.9392 + }, + { + "start": 3408.28, + "end": 3408.68, + "probability": 0.5845 + }, + { + "start": 3410.12, + "end": 3411.96, + "probability": 0.9801 + }, + { + "start": 3413.3, + "end": 3415.93, + "probability": 0.8789 + }, + { + "start": 3416.04, + "end": 3416.86, + "probability": 0.5556 + }, + { + "start": 3416.86, + "end": 3417.74, + "probability": 0.8285 + }, + { + "start": 3418.44, + "end": 3419.14, + "probability": 0.9259 + }, + { + "start": 3419.88, + "end": 3420.94, + "probability": 0.978 + }, + { + "start": 3421.02, + "end": 3421.96, + "probability": 0.9973 + }, + { + "start": 3422.9, + "end": 3423.64, + "probability": 0.9712 + }, + { + "start": 3423.96, + "end": 3424.5, + "probability": 0.6624 + }, + { + "start": 3424.52, + "end": 3426.26, + "probability": 0.4418 + }, + { + "start": 3426.32, + "end": 3426.62, + "probability": 0.3033 + }, + { + "start": 3426.84, + "end": 3427.86, + "probability": 0.9993 + }, + { + "start": 3428.22, + "end": 3429.02, + "probability": 0.7663 + }, + { + "start": 3429.86, + "end": 3431.34, + "probability": 0.9604 + }, + { + "start": 3431.44, + "end": 3432.1, + "probability": 0.9453 + }, + { + "start": 3432.32, + "end": 3432.94, + "probability": 0.6054 + }, + { + "start": 3433.04, + "end": 3435.64, + "probability": 0.9645 + }, + { + "start": 3436.28, + "end": 3438.56, + "probability": 0.968 + }, + { + "start": 3439.24, + "end": 3439.8, + "probability": 0.9052 + }, + { + "start": 3439.98, + "end": 3440.48, + "probability": 0.7554 + }, + { + "start": 3440.54, + "end": 3441.8, + "probability": 0.833 + }, + { + "start": 3442.24, + "end": 3446.07, + "probability": 0.9895 + }, + { + "start": 3446.9, + "end": 3448.52, + "probability": 0.9866 + }, + { + "start": 3449.54, + "end": 3454.64, + "probability": 0.7096 + }, + { + "start": 3454.72, + "end": 3455.68, + "probability": 0.6602 + }, + { + "start": 3456.9, + "end": 3460.4, + "probability": 0.9385 + }, + { + "start": 3460.42, + "end": 3460.64, + "probability": 0.3498 + }, + { + "start": 3461.98, + "end": 3462.86, + "probability": 0.946 + }, + { + "start": 3463.08, + "end": 3463.68, + "probability": 0.6685 + }, + { + "start": 3463.72, + "end": 3464.14, + "probability": 0.4396 + }, + { + "start": 3464.69, + "end": 3465.32, + "probability": 0.134 + }, + { + "start": 3465.32, + "end": 3465.7, + "probability": 0.7867 + }, + { + "start": 3466.34, + "end": 3468.96, + "probability": 0.9713 + }, + { + "start": 3469.9, + "end": 3472.46, + "probability": 0.9977 + }, + { + "start": 3472.52, + "end": 3473.98, + "probability": 0.9484 + }, + { + "start": 3474.06, + "end": 3475.06, + "probability": 0.7874 + }, + { + "start": 3475.12, + "end": 3476.82, + "probability": 0.9212 + }, + { + "start": 3476.92, + "end": 3477.68, + "probability": 0.7559 + }, + { + "start": 3478.7, + "end": 3481.34, + "probability": 0.8442 + }, + { + "start": 3481.34, + "end": 3483.39, + "probability": 0.3174 + }, + { + "start": 3484.44, + "end": 3487.48, + "probability": 0.9653 + }, + { + "start": 3488.06, + "end": 3490.7, + "probability": 0.9717 + }, + { + "start": 3491.64, + "end": 3493.06, + "probability": 0.9741 + }, + { + "start": 3493.5, + "end": 3494.7, + "probability": 0.8464 + }, + { + "start": 3494.78, + "end": 3496.28, + "probability": 0.9199 + }, + { + "start": 3496.32, + "end": 3496.98, + "probability": 0.585 + }, + { + "start": 3496.98, + "end": 3498.24, + "probability": 0.6789 + }, + { + "start": 3498.38, + "end": 3500.28, + "probability": 0.6732 + }, + { + "start": 3500.84, + "end": 3502.62, + "probability": 0.9611 + }, + { + "start": 3502.98, + "end": 3503.14, + "probability": 0.8252 + }, + { + "start": 3503.24, + "end": 3505.04, + "probability": 0.9878 + }, + { + "start": 3505.04, + "end": 3508.1, + "probability": 0.993 + }, + { + "start": 3508.24, + "end": 3509.14, + "probability": 0.9481 + }, + { + "start": 3509.84, + "end": 3513.6, + "probability": 0.5405 + }, + { + "start": 3513.82, + "end": 3514.12, + "probability": 0.4261 + }, + { + "start": 3514.16, + "end": 3515.26, + "probability": 0.3079 + }, + { + "start": 3515.38, + "end": 3516.78, + "probability": 0.4783 + }, + { + "start": 3518.0, + "end": 3518.52, + "probability": 0.6968 + }, + { + "start": 3519.28, + "end": 3519.44, + "probability": 0.1777 + }, + { + "start": 3519.76, + "end": 3521.62, + "probability": 0.7433 + }, + { + "start": 3522.04, + "end": 3523.9, + "probability": 0.3057 + }, + { + "start": 3524.48, + "end": 3525.24, + "probability": 0.4895 + }, + { + "start": 3525.3, + "end": 3525.7, + "probability": 0.8908 + }, + { + "start": 3525.98, + "end": 3526.55, + "probability": 0.9025 + }, + { + "start": 3527.78, + "end": 3530.52, + "probability": 0.5185 + }, + { + "start": 3530.52, + "end": 3531.14, + "probability": 0.5969 + }, + { + "start": 3531.26, + "end": 3532.3, + "probability": 0.9048 + }, + { + "start": 3533.1, + "end": 3533.72, + "probability": 0.9481 + }, + { + "start": 3534.44, + "end": 3535.76, + "probability": 0.6549 + }, + { + "start": 3536.34, + "end": 3537.38, + "probability": 0.9649 + }, + { + "start": 3538.1, + "end": 3540.02, + "probability": 0.9856 + }, + { + "start": 3540.16, + "end": 3541.61, + "probability": 0.9958 + }, + { + "start": 3542.36, + "end": 3543.62, + "probability": 0.962 + }, + { + "start": 3543.9, + "end": 3544.3, + "probability": 0.8566 + }, + { + "start": 3544.74, + "end": 3545.34, + "probability": 0.7404 + }, + { + "start": 3545.56, + "end": 3546.22, + "probability": 0.9912 + }, + { + "start": 3547.14, + "end": 3550.82, + "probability": 0.9858 + }, + { + "start": 3550.82, + "end": 3553.14, + "probability": 0.9903 + }, + { + "start": 3554.26, + "end": 3554.78, + "probability": 0.7189 + }, + { + "start": 3554.84, + "end": 3558.7, + "probability": 0.8562 + }, + { + "start": 3558.9, + "end": 3562.56, + "probability": 0.9547 + }, + { + "start": 3563.4, + "end": 3563.5, + "probability": 0.1335 + }, + { + "start": 3564.24, + "end": 3564.3, + "probability": 0.097 + }, + { + "start": 3564.3, + "end": 3564.3, + "probability": 0.0175 + }, + { + "start": 3564.3, + "end": 3564.3, + "probability": 0.2317 + }, + { + "start": 3564.3, + "end": 3564.3, + "probability": 0.3516 + }, + { + "start": 3564.3, + "end": 3564.3, + "probability": 0.0775 + }, + { + "start": 3564.3, + "end": 3565.26, + "probability": 0.1981 + }, + { + "start": 3578.18, + "end": 3578.34, + "probability": 0.7188 + }, + { + "start": 3578.62, + "end": 3580.14, + "probability": 0.5915 + }, + { + "start": 3581.04, + "end": 3581.54, + "probability": 0.5794 + }, + { + "start": 3581.6, + "end": 3582.66, + "probability": 0.6924 + }, + { + "start": 3583.18, + "end": 3588.58, + "probability": 0.9773 + }, + { + "start": 3589.66, + "end": 3593.7, + "probability": 0.8743 + }, + { + "start": 3593.98, + "end": 3595.22, + "probability": 0.8779 + }, + { + "start": 3595.7, + "end": 3600.34, + "probability": 0.8506 + }, + { + "start": 3601.44, + "end": 3605.78, + "probability": 0.9951 + }, + { + "start": 3605.78, + "end": 3611.14, + "probability": 0.8869 + }, + { + "start": 3611.44, + "end": 3615.34, + "probability": 0.9941 + }, + { + "start": 3616.2, + "end": 3616.8, + "probability": 0.4315 + }, + { + "start": 3616.88, + "end": 3617.56, + "probability": 0.7371 + }, + { + "start": 3617.64, + "end": 3621.64, + "probability": 0.9967 + }, + { + "start": 3621.82, + "end": 3623.66, + "probability": 0.9825 + }, + { + "start": 3624.12, + "end": 3625.18, + "probability": 0.9765 + }, + { + "start": 3626.0, + "end": 3631.2, + "probability": 0.9933 + }, + { + "start": 3631.34, + "end": 3632.7, + "probability": 0.9783 + }, + { + "start": 3633.12, + "end": 3634.84, + "probability": 0.8724 + }, + { + "start": 3634.94, + "end": 3636.22, + "probability": 0.9236 + }, + { + "start": 3636.9, + "end": 3640.02, + "probability": 0.9908 + }, + { + "start": 3641.02, + "end": 3643.62, + "probability": 0.9801 + }, + { + "start": 3643.72, + "end": 3644.2, + "probability": 0.5946 + }, + { + "start": 3644.3, + "end": 3648.8, + "probability": 0.9551 + }, + { + "start": 3648.86, + "end": 3652.1, + "probability": 0.9594 + }, + { + "start": 3652.26, + "end": 3654.06, + "probability": 0.7086 + }, + { + "start": 3654.08, + "end": 3656.74, + "probability": 0.9289 + }, + { + "start": 3657.3, + "end": 3658.5, + "probability": 0.9827 + }, + { + "start": 3658.68, + "end": 3661.0, + "probability": 0.9923 + }, + { + "start": 3661.46, + "end": 3664.68, + "probability": 0.9941 + }, + { + "start": 3664.78, + "end": 3665.78, + "probability": 0.9501 + }, + { + "start": 3665.84, + "end": 3666.9, + "probability": 0.7989 + }, + { + "start": 3667.02, + "end": 3667.96, + "probability": 0.8629 + }, + { + "start": 3668.9, + "end": 3672.68, + "probability": 0.9967 + }, + { + "start": 3672.68, + "end": 3676.4, + "probability": 0.9963 + }, + { + "start": 3677.86, + "end": 3681.56, + "probability": 0.9976 + }, + { + "start": 3682.34, + "end": 3683.04, + "probability": 0.6962 + }, + { + "start": 3683.66, + "end": 3687.86, + "probability": 0.96 + }, + { + "start": 3688.6, + "end": 3690.5, + "probability": 0.9878 + }, + { + "start": 3691.34, + "end": 3694.24, + "probability": 0.8718 + }, + { + "start": 3695.02, + "end": 3699.9, + "probability": 0.9849 + }, + { + "start": 3700.68, + "end": 3705.44, + "probability": 0.9574 + }, + { + "start": 3706.32, + "end": 3710.92, + "probability": 0.9465 + }, + { + "start": 3711.76, + "end": 3713.12, + "probability": 0.7813 + }, + { + "start": 3713.72, + "end": 3715.56, + "probability": 0.8967 + }, + { + "start": 3715.66, + "end": 3718.12, + "probability": 0.9797 + }, + { + "start": 3718.62, + "end": 3719.92, + "probability": 0.9285 + }, + { + "start": 3720.38, + "end": 3721.7, + "probability": 0.4425 + }, + { + "start": 3723.04, + "end": 3723.92, + "probability": 0.0279 + }, + { + "start": 3724.62, + "end": 3724.76, + "probability": 0.1178 + }, + { + "start": 3724.76, + "end": 3725.3, + "probability": 0.2865 + }, + { + "start": 3725.46, + "end": 3726.46, + "probability": 0.3152 + }, + { + "start": 3726.7, + "end": 3726.74, + "probability": 0.4057 + }, + { + "start": 3726.96, + "end": 3727.46, + "probability": 0.0959 + }, + { + "start": 3727.56, + "end": 3728.26, + "probability": 0.3676 + }, + { + "start": 3728.42, + "end": 3728.88, + "probability": 0.9378 + }, + { + "start": 3728.98, + "end": 3729.68, + "probability": 0.8799 + }, + { + "start": 3729.76, + "end": 3731.24, + "probability": 0.7737 + }, + { + "start": 3731.7, + "end": 3731.98, + "probability": 0.7985 + }, + { + "start": 3733.42, + "end": 3734.46, + "probability": 0.0079 + }, + { + "start": 3734.46, + "end": 3734.72, + "probability": 0.1131 + }, + { + "start": 3734.72, + "end": 3739.14, + "probability": 0.9822 + }, + { + "start": 3740.54, + "end": 3744.54, + "probability": 0.8497 + }, + { + "start": 3744.82, + "end": 3750.12, + "probability": 0.9763 + }, + { + "start": 3750.28, + "end": 3751.06, + "probability": 0.9007 + }, + { + "start": 3751.18, + "end": 3752.78, + "probability": 0.7815 + }, + { + "start": 3753.64, + "end": 3757.62, + "probability": 0.9763 + }, + { + "start": 3758.08, + "end": 3759.36, + "probability": 0.7999 + }, + { + "start": 3762.58, + "end": 3765.64, + "probability": 0.9401 + }, + { + "start": 3766.28, + "end": 3767.34, + "probability": 0.9413 + }, + { + "start": 3767.5, + "end": 3770.58, + "probability": 0.9976 + }, + { + "start": 3771.1, + "end": 3773.64, + "probability": 0.9971 + }, + { + "start": 3773.78, + "end": 3774.44, + "probability": 0.9386 + }, + { + "start": 3774.96, + "end": 3777.3, + "probability": 0.9878 + }, + { + "start": 3778.0, + "end": 3779.16, + "probability": 0.8855 + }, + { + "start": 3779.32, + "end": 3782.78, + "probability": 0.9985 + }, + { + "start": 3783.36, + "end": 3784.36, + "probability": 0.9462 + }, + { + "start": 3785.46, + "end": 3787.56, + "probability": 0.995 + }, + { + "start": 3787.96, + "end": 3790.1, + "probability": 0.9935 + }, + { + "start": 3790.44, + "end": 3794.1, + "probability": 0.9868 + }, + { + "start": 3795.18, + "end": 3797.84, + "probability": 0.9986 + }, + { + "start": 3798.4, + "end": 3801.96, + "probability": 0.9995 + }, + { + "start": 3802.66, + "end": 3805.08, + "probability": 0.9994 + }, + { + "start": 3805.62, + "end": 3810.42, + "probability": 0.9718 + }, + { + "start": 3810.64, + "end": 3810.64, + "probability": 0.0794 + }, + { + "start": 3810.64, + "end": 3811.14, + "probability": 0.3737 + }, + { + "start": 3811.64, + "end": 3812.9, + "probability": 0.8332 + }, + { + "start": 3813.66, + "end": 3816.6, + "probability": 0.9768 + }, + { + "start": 3817.0, + "end": 3821.96, + "probability": 0.9867 + }, + { + "start": 3823.2, + "end": 3826.36, + "probability": 0.9673 + }, + { + "start": 3827.04, + "end": 3829.72, + "probability": 0.9596 + }, + { + "start": 3830.16, + "end": 3834.94, + "probability": 0.9675 + }, + { + "start": 3835.74, + "end": 3836.86, + "probability": 0.8639 + }, + { + "start": 3837.0, + "end": 3840.02, + "probability": 0.9951 + }, + { + "start": 3840.18, + "end": 3843.26, + "probability": 0.9981 + }, + { + "start": 3843.68, + "end": 3845.82, + "probability": 0.9969 + }, + { + "start": 3846.6, + "end": 3847.82, + "probability": 0.9272 + }, + { + "start": 3848.38, + "end": 3851.14, + "probability": 0.9688 + }, + { + "start": 3851.88, + "end": 3852.78, + "probability": 0.744 + }, + { + "start": 3853.2, + "end": 3855.28, + "probability": 0.9919 + }, + { + "start": 3855.58, + "end": 3856.66, + "probability": 0.7779 + }, + { + "start": 3856.84, + "end": 3857.56, + "probability": 0.8744 + }, + { + "start": 3857.62, + "end": 3859.82, + "probability": 0.8011 + }, + { + "start": 3860.72, + "end": 3866.18, + "probability": 0.9948 + }, + { + "start": 3866.74, + "end": 3870.56, + "probability": 0.9928 + }, + { + "start": 3871.18, + "end": 3875.04, + "probability": 0.9949 + }, + { + "start": 3875.04, + "end": 3877.44, + "probability": 0.9973 + }, + { + "start": 3878.04, + "end": 3882.5, + "probability": 0.9977 + }, + { + "start": 3882.9, + "end": 3883.64, + "probability": 0.8109 + }, + { + "start": 3883.78, + "end": 3884.74, + "probability": 0.9343 + }, + { + "start": 3885.22, + "end": 3888.84, + "probability": 0.986 + }, + { + "start": 3889.44, + "end": 3891.76, + "probability": 0.8141 + }, + { + "start": 3892.44, + "end": 3894.12, + "probability": 0.9951 + }, + { + "start": 3894.58, + "end": 3895.34, + "probability": 0.7529 + }, + { + "start": 3895.4, + "end": 3897.36, + "probability": 0.949 + }, + { + "start": 3897.9, + "end": 3901.78, + "probability": 0.9725 + }, + { + "start": 3902.36, + "end": 3906.68, + "probability": 0.9721 + }, + { + "start": 3906.68, + "end": 3910.58, + "probability": 0.9993 + }, + { + "start": 3911.4, + "end": 3915.36, + "probability": 0.9513 + }, + { + "start": 3915.74, + "end": 3916.72, + "probability": 0.9212 + }, + { + "start": 3917.4, + "end": 3917.46, + "probability": 0.8071 + }, + { + "start": 3918.2, + "end": 3919.96, + "probability": 0.8041 + }, + { + "start": 3920.22, + "end": 3921.86, + "probability": 0.9689 + }, + { + "start": 3921.94, + "end": 3923.64, + "probability": 0.9529 + }, + { + "start": 3924.28, + "end": 3925.5, + "probability": 0.9597 + }, + { + "start": 3925.74, + "end": 3926.64, + "probability": 0.8864 + }, + { + "start": 3926.68, + "end": 3932.02, + "probability": 0.9961 + }, + { + "start": 3933.3, + "end": 3934.21, + "probability": 0.6668 + }, + { + "start": 3934.62, + "end": 3935.06, + "probability": 0.9449 + }, + { + "start": 3935.22, + "end": 3935.82, + "probability": 0.966 + }, + { + "start": 3935.98, + "end": 3937.38, + "probability": 0.9504 + }, + { + "start": 3937.5, + "end": 3939.08, + "probability": 0.9708 + }, + { + "start": 3940.08, + "end": 3941.84, + "probability": 0.9959 + }, + { + "start": 3942.0, + "end": 3943.02, + "probability": 0.9813 + }, + { + "start": 3943.16, + "end": 3944.42, + "probability": 0.9453 + }, + { + "start": 3945.44, + "end": 3948.22, + "probability": 0.9611 + }, + { + "start": 3949.1, + "end": 3950.96, + "probability": 0.9692 + }, + { + "start": 3951.12, + "end": 3954.84, + "probability": 0.9966 + }, + { + "start": 3955.02, + "end": 3955.52, + "probability": 0.9739 + }, + { + "start": 3956.2, + "end": 3957.78, + "probability": 0.9981 + }, + { + "start": 3958.44, + "end": 3963.32, + "probability": 0.9757 + }, + { + "start": 3963.52, + "end": 3963.94, + "probability": 0.8435 + }, + { + "start": 3965.32, + "end": 3965.98, + "probability": 0.5804 + }, + { + "start": 3968.98, + "end": 3970.06, + "probability": 0.9376 + }, + { + "start": 3971.1, + "end": 3973.42, + "probability": 0.8095 + }, + { + "start": 3983.54, + "end": 3984.4, + "probability": 0.6763 + }, + { + "start": 3985.58, + "end": 3987.4, + "probability": 0.916 + }, + { + "start": 3988.74, + "end": 3989.8, + "probability": 0.9487 + }, + { + "start": 3990.78, + "end": 3992.08, + "probability": 0.9187 + }, + { + "start": 3992.28, + "end": 3993.28, + "probability": 0.9566 + }, + { + "start": 3993.3, + "end": 3994.7, + "probability": 0.8926 + }, + { + "start": 3995.82, + "end": 3999.04, + "probability": 0.6177 + }, + { + "start": 3999.38, + "end": 4000.79, + "probability": 0.885 + }, + { + "start": 4002.86, + "end": 4005.3, + "probability": 0.9375 + }, + { + "start": 4005.56, + "end": 4007.08, + "probability": 0.8631 + }, + { + "start": 4007.3, + "end": 4007.84, + "probability": 0.95 + }, + { + "start": 4008.58, + "end": 4012.56, + "probability": 0.8815 + }, + { + "start": 4013.14, + "end": 4018.32, + "probability": 0.9031 + }, + { + "start": 4019.04, + "end": 4021.42, + "probability": 0.938 + }, + { + "start": 4021.98, + "end": 4024.6, + "probability": 0.8804 + }, + { + "start": 4027.12, + "end": 4028.76, + "probability": 0.9906 + }, + { + "start": 4029.28, + "end": 4032.06, + "probability": 0.9928 + }, + { + "start": 4032.12, + "end": 4033.98, + "probability": 0.9797 + }, + { + "start": 4035.28, + "end": 4037.66, + "probability": 0.9761 + }, + { + "start": 4038.28, + "end": 4039.36, + "probability": 0.9419 + }, + { + "start": 4039.94, + "end": 4041.22, + "probability": 0.9807 + }, + { + "start": 4042.16, + "end": 4042.44, + "probability": 0.8434 + }, + { + "start": 4043.44, + "end": 4048.42, + "probability": 0.9118 + }, + { + "start": 4049.34, + "end": 4050.84, + "probability": 0.9242 + }, + { + "start": 4050.96, + "end": 4051.58, + "probability": 0.6491 + }, + { + "start": 4051.68, + "end": 4052.9, + "probability": 0.8653 + }, + { + "start": 4052.9, + "end": 4054.24, + "probability": 0.9758 + }, + { + "start": 4054.9, + "end": 4058.4, + "probability": 0.9961 + }, + { + "start": 4059.32, + "end": 4066.22, + "probability": 0.9948 + }, + { + "start": 4066.94, + "end": 4068.68, + "probability": 0.9592 + }, + { + "start": 4070.18, + "end": 4070.84, + "probability": 0.9338 + }, + { + "start": 4071.88, + "end": 4072.46, + "probability": 0.5698 + }, + { + "start": 4072.6, + "end": 4073.4, + "probability": 0.9017 + }, + { + "start": 4073.88, + "end": 4074.82, + "probability": 0.9664 + }, + { + "start": 4074.9, + "end": 4075.96, + "probability": 0.967 + }, + { + "start": 4076.52, + "end": 4081.7, + "probability": 0.9845 + }, + { + "start": 4082.22, + "end": 4082.54, + "probability": 0.9199 + }, + { + "start": 4083.06, + "end": 4085.22, + "probability": 0.9813 + }, + { + "start": 4085.66, + "end": 4087.94, + "probability": 0.9836 + }, + { + "start": 4087.94, + "end": 4091.88, + "probability": 0.9995 + }, + { + "start": 4092.96, + "end": 4096.46, + "probability": 0.999 + }, + { + "start": 4096.66, + "end": 4097.98, + "probability": 0.5555 + }, + { + "start": 4098.52, + "end": 4100.18, + "probability": 0.8592 + }, + { + "start": 4100.26, + "end": 4103.58, + "probability": 0.96 + }, + { + "start": 4104.2, + "end": 4104.81, + "probability": 0.9381 + }, + { + "start": 4105.38, + "end": 4105.54, + "probability": 0.56 + }, + { + "start": 4105.6, + "end": 4109.08, + "probability": 0.8193 + }, + { + "start": 4110.06, + "end": 4110.78, + "probability": 0.9772 + }, + { + "start": 4111.0, + "end": 4114.92, + "probability": 0.6171 + }, + { + "start": 4116.5, + "end": 4121.34, + "probability": 0.9907 + }, + { + "start": 4121.96, + "end": 4124.82, + "probability": 0.9174 + }, + { + "start": 4124.92, + "end": 4125.82, + "probability": 0.7652 + }, + { + "start": 4126.2, + "end": 4127.2, + "probability": 0.8879 + }, + { + "start": 4127.76, + "end": 4128.6, + "probability": 0.7988 + }, + { + "start": 4130.0, + "end": 4131.1, + "probability": 0.9529 + }, + { + "start": 4131.9, + "end": 4132.5, + "probability": 0.98 + }, + { + "start": 4132.5, + "end": 4133.22, + "probability": 0.9448 + }, + { + "start": 4133.54, + "end": 4134.84, + "probability": 0.9777 + }, + { + "start": 4134.94, + "end": 4137.02, + "probability": 0.7584 + }, + { + "start": 4137.6, + "end": 4139.06, + "probability": 0.8041 + }, + { + "start": 4140.26, + "end": 4140.66, + "probability": 0.0674 + }, + { + "start": 4140.71, + "end": 4140.78, + "probability": 0.1283 + }, + { + "start": 4140.8, + "end": 4141.9, + "probability": 0.8892 + }, + { + "start": 4142.16, + "end": 4142.6, + "probability": 0.8625 + }, + { + "start": 4142.7, + "end": 4143.51, + "probability": 0.696 + }, + { + "start": 4144.32, + "end": 4145.22, + "probability": 0.9399 + }, + { + "start": 4146.42, + "end": 4148.34, + "probability": 0.8375 + }, + { + "start": 4148.38, + "end": 4149.63, + "probability": 0.8785 + }, + { + "start": 4151.4, + "end": 4151.68, + "probability": 0.1433 + }, + { + "start": 4153.76, + "end": 4153.76, + "probability": 0.3955 + }, + { + "start": 4153.76, + "end": 4155.48, + "probability": 0.6203 + }, + { + "start": 4156.41, + "end": 4157.97, + "probability": 0.9461 + }, + { + "start": 4160.85, + "end": 4163.92, + "probability": 0.6677 + }, + { + "start": 4164.62, + "end": 4171.42, + "probability": 0.946 + }, + { + "start": 4171.56, + "end": 4172.68, + "probability": 0.894 + }, + { + "start": 4173.48, + "end": 4175.6, + "probability": 0.9904 + }, + { + "start": 4176.16, + "end": 4178.1, + "probability": 0.8606 + }, + { + "start": 4179.1, + "end": 4179.4, + "probability": 0.6105 + }, + { + "start": 4181.08, + "end": 4181.62, + "probability": 0.9735 + }, + { + "start": 4183.06, + "end": 4185.2, + "probability": 0.995 + }, + { + "start": 4185.24, + "end": 4185.9, + "probability": 0.8399 + }, + { + "start": 4186.5, + "end": 4190.3, + "probability": 0.8185 + }, + { + "start": 4190.86, + "end": 4194.44, + "probability": 0.8044 + }, + { + "start": 4194.7, + "end": 4195.84, + "probability": 0.9962 + }, + { + "start": 4196.14, + "end": 4198.88, + "probability": 0.9743 + }, + { + "start": 4199.18, + "end": 4203.98, + "probability": 0.9924 + }, + { + "start": 4204.0, + "end": 4209.2, + "probability": 0.9872 + }, + { + "start": 4209.28, + "end": 4211.5, + "probability": 0.8431 + }, + { + "start": 4211.96, + "end": 4213.14, + "probability": 0.954 + }, + { + "start": 4214.16, + "end": 4217.26, + "probability": 0.9952 + }, + { + "start": 4218.16, + "end": 4221.52, + "probability": 0.5781 + }, + { + "start": 4222.9, + "end": 4223.78, + "probability": 0.9836 + }, + { + "start": 4223.86, + "end": 4225.92, + "probability": 0.7964 + }, + { + "start": 4225.96, + "end": 4228.42, + "probability": 0.9459 + }, + { + "start": 4228.72, + "end": 4229.38, + "probability": 0.8746 + }, + { + "start": 4229.64, + "end": 4231.5, + "probability": 0.9925 + }, + { + "start": 4231.92, + "end": 4233.42, + "probability": 0.8026 + }, + { + "start": 4233.6, + "end": 4236.58, + "probability": 0.9977 + }, + { + "start": 4237.92, + "end": 4239.54, + "probability": 0.8008 + }, + { + "start": 4241.0, + "end": 4242.72, + "probability": 0.9927 + }, + { + "start": 4244.1, + "end": 4245.24, + "probability": 0.9943 + }, + { + "start": 4245.6, + "end": 4245.97, + "probability": 0.7689 + }, + { + "start": 4246.2, + "end": 4247.4, + "probability": 0.7472 + }, + { + "start": 4248.62, + "end": 4251.22, + "probability": 0.6118 + }, + { + "start": 4253.54, + "end": 4256.66, + "probability": 0.947 + }, + { + "start": 4257.92, + "end": 4258.6, + "probability": 0.5402 + }, + { + "start": 4259.76, + "end": 4261.52, + "probability": 0.9817 + }, + { + "start": 4265.02, + "end": 4266.98, + "probability": 0.815 + }, + { + "start": 4269.36, + "end": 4271.64, + "probability": 0.687 + }, + { + "start": 4272.98, + "end": 4276.38, + "probability": 0.9983 + }, + { + "start": 4279.16, + "end": 4283.88, + "probability": 0.998 + }, + { + "start": 4285.3, + "end": 4290.08, + "probability": 0.7063 + }, + { + "start": 4291.1, + "end": 4292.68, + "probability": 0.9325 + }, + { + "start": 4293.62, + "end": 4296.22, + "probability": 0.9883 + }, + { + "start": 4298.5, + "end": 4299.7, + "probability": 0.5514 + }, + { + "start": 4300.9, + "end": 4302.12, + "probability": 0.6176 + }, + { + "start": 4303.18, + "end": 4304.1, + "probability": 0.7867 + }, + { + "start": 4304.84, + "end": 4307.78, + "probability": 0.9661 + }, + { + "start": 4308.64, + "end": 4310.06, + "probability": 0.9569 + }, + { + "start": 4310.86, + "end": 4313.32, + "probability": 0.9949 + }, + { + "start": 4313.32, + "end": 4317.08, + "probability": 0.9976 + }, + { + "start": 4318.94, + "end": 4319.0, + "probability": 0.4519 + }, + { + "start": 4320.12, + "end": 4322.44, + "probability": 0.9887 + }, + { + "start": 4324.4, + "end": 4325.68, + "probability": 0.994 + }, + { + "start": 4326.96, + "end": 4328.42, + "probability": 0.9829 + }, + { + "start": 4329.48, + "end": 4331.94, + "probability": 0.5108 + }, + { + "start": 4332.48, + "end": 4334.88, + "probability": 0.9968 + }, + { + "start": 4336.66, + "end": 4338.12, + "probability": 0.9568 + }, + { + "start": 4339.3, + "end": 4341.24, + "probability": 0.9852 + }, + { + "start": 4341.5, + "end": 4342.14, + "probability": 0.7656 + }, + { + "start": 4342.24, + "end": 4344.04, + "probability": 0.948 + }, + { + "start": 4345.62, + "end": 4347.6, + "probability": 0.954 + }, + { + "start": 4348.74, + "end": 4350.4, + "probability": 0.9951 + }, + { + "start": 4350.74, + "end": 4353.22, + "probability": 0.9938 + }, + { + "start": 4354.86, + "end": 4358.74, + "probability": 0.9863 + }, + { + "start": 4360.04, + "end": 4360.82, + "probability": 0.9148 + }, + { + "start": 4361.46, + "end": 4362.96, + "probability": 0.9534 + }, + { + "start": 4363.52, + "end": 4365.4, + "probability": 0.9717 + }, + { + "start": 4366.04, + "end": 4370.44, + "probability": 0.9805 + }, + { + "start": 4370.52, + "end": 4371.58, + "probability": 0.8027 + }, + { + "start": 4372.14, + "end": 4372.8, + "probability": 0.8647 + }, + { + "start": 4375.92, + "end": 4377.2, + "probability": 0.6207 + }, + { + "start": 4387.76, + "end": 4387.76, + "probability": 0.4211 + }, + { + "start": 4405.16, + "end": 4406.7, + "probability": 0.5857 + }, + { + "start": 4407.44, + "end": 4408.84, + "probability": 0.9553 + }, + { + "start": 4409.92, + "end": 4411.3, + "probability": 0.6975 + }, + { + "start": 4412.54, + "end": 4414.94, + "probability": 0.9884 + }, + { + "start": 4415.82, + "end": 4418.24, + "probability": 0.6845 + }, + { + "start": 4420.1, + "end": 4424.74, + "probability": 0.973 + }, + { + "start": 4425.72, + "end": 4431.08, + "probability": 0.9521 + }, + { + "start": 4432.84, + "end": 4434.63, + "probability": 0.9956 + }, + { + "start": 4436.18, + "end": 4440.84, + "probability": 0.9097 + }, + { + "start": 4441.82, + "end": 4445.96, + "probability": 0.7535 + }, + { + "start": 4446.46, + "end": 4454.16, + "probability": 0.9972 + }, + { + "start": 4455.14, + "end": 4455.68, + "probability": 0.7554 + }, + { + "start": 4455.84, + "end": 4456.62, + "probability": 0.7477 + }, + { + "start": 4456.7, + "end": 4461.68, + "probability": 0.9727 + }, + { + "start": 4462.58, + "end": 4465.18, + "probability": 0.9829 + }, + { + "start": 4466.92, + "end": 4473.06, + "probability": 0.9691 + }, + { + "start": 4474.34, + "end": 4477.46, + "probability": 0.8452 + }, + { + "start": 4478.76, + "end": 4479.48, + "probability": 0.9525 + }, + { + "start": 4480.48, + "end": 4487.48, + "probability": 0.7804 + }, + { + "start": 4488.12, + "end": 4489.62, + "probability": 0.9805 + }, + { + "start": 4490.94, + "end": 4493.08, + "probability": 0.9946 + }, + { + "start": 4494.4, + "end": 4495.76, + "probability": 0.6912 + }, + { + "start": 4496.46, + "end": 4497.72, + "probability": 0.9955 + }, + { + "start": 4500.64, + "end": 4504.26, + "probability": 0.8072 + }, + { + "start": 4505.52, + "end": 4506.94, + "probability": 0.9766 + }, + { + "start": 4507.14, + "end": 4507.48, + "probability": 0.8134 + }, + { + "start": 4507.6, + "end": 4512.68, + "probability": 0.6642 + }, + { + "start": 4513.68, + "end": 4517.1, + "probability": 0.9809 + }, + { + "start": 4517.96, + "end": 4519.72, + "probability": 0.8842 + }, + { + "start": 4521.06, + "end": 4529.06, + "probability": 0.9789 + }, + { + "start": 4530.34, + "end": 4537.76, + "probability": 0.9857 + }, + { + "start": 4538.28, + "end": 4539.76, + "probability": 0.9735 + }, + { + "start": 4539.88, + "end": 4548.14, + "probability": 0.6809 + }, + { + "start": 4550.0, + "end": 4554.54, + "probability": 0.9958 + }, + { + "start": 4555.18, + "end": 4560.9, + "probability": 0.9611 + }, + { + "start": 4563.82, + "end": 4566.4, + "probability": 0.5661 + }, + { + "start": 4566.4, + "end": 4567.24, + "probability": 0.836 + }, + { + "start": 4567.4, + "end": 4567.94, + "probability": 0.5244 + }, + { + "start": 4568.0, + "end": 4571.46, + "probability": 0.8508 + }, + { + "start": 4571.46, + "end": 4574.54, + "probability": 0.9985 + }, + { + "start": 4575.64, + "end": 4577.78, + "probability": 0.9417 + }, + { + "start": 4578.52, + "end": 4580.52, + "probability": 0.786 + }, + { + "start": 4580.8, + "end": 4581.48, + "probability": 0.5294 + }, + { + "start": 4581.52, + "end": 4583.76, + "probability": 0.8537 + }, + { + "start": 4584.8, + "end": 4585.34, + "probability": 0.7538 + }, + { + "start": 4585.76, + "end": 4586.44, + "probability": 0.8441 + }, + { + "start": 4586.52, + "end": 4588.64, + "probability": 0.9272 + }, + { + "start": 4588.84, + "end": 4589.82, + "probability": 0.6984 + }, + { + "start": 4590.22, + "end": 4591.58, + "probability": 0.8488 + }, + { + "start": 4592.5, + "end": 4593.44, + "probability": 0.9896 + }, + { + "start": 4593.5, + "end": 4594.1, + "probability": 0.8932 + }, + { + "start": 4594.12, + "end": 4596.76, + "probability": 0.9932 + }, + { + "start": 4597.76, + "end": 4601.4, + "probability": 0.9871 + }, + { + "start": 4602.04, + "end": 4605.98, + "probability": 0.9942 + }, + { + "start": 4606.6, + "end": 4608.38, + "probability": 0.9619 + }, + { + "start": 4608.6, + "end": 4609.46, + "probability": 0.8326 + }, + { + "start": 4609.84, + "end": 4610.26, + "probability": 0.8822 + }, + { + "start": 4610.3, + "end": 4611.06, + "probability": 0.5172 + }, + { + "start": 4611.1, + "end": 4613.16, + "probability": 0.9971 + }, + { + "start": 4613.7, + "end": 4615.94, + "probability": 0.491 + }, + { + "start": 4615.94, + "end": 4618.9, + "probability": 0.9697 + }, + { + "start": 4619.82, + "end": 4622.66, + "probability": 0.7306 + }, + { + "start": 4622.78, + "end": 4625.06, + "probability": 0.9874 + }, + { + "start": 4625.5, + "end": 4628.88, + "probability": 0.9734 + }, + { + "start": 4629.46, + "end": 4633.66, + "probability": 0.7718 + }, + { + "start": 4634.0, + "end": 4634.56, + "probability": 0.6006 + }, + { + "start": 4634.64, + "end": 4635.82, + "probability": 0.9666 + }, + { + "start": 4635.96, + "end": 4637.4, + "probability": 0.9791 + }, + { + "start": 4637.58, + "end": 4639.16, + "probability": 0.8923 + }, + { + "start": 4639.92, + "end": 4643.24, + "probability": 0.9886 + }, + { + "start": 4644.52, + "end": 4645.78, + "probability": 0.776 + }, + { + "start": 4646.02, + "end": 4647.16, + "probability": 0.4458 + }, + { + "start": 4647.22, + "end": 4648.24, + "probability": 0.9255 + }, + { + "start": 4648.36, + "end": 4649.52, + "probability": 0.9757 + }, + { + "start": 4650.3, + "end": 4650.95, + "probability": 0.8145 + }, + { + "start": 4652.16, + "end": 4656.08, + "probability": 0.9675 + }, + { + "start": 4657.24, + "end": 4660.2, + "probability": 0.611 + }, + { + "start": 4660.3, + "end": 4665.34, + "probability": 0.8698 + }, + { + "start": 4665.34, + "end": 4668.2, + "probability": 0.9939 + }, + { + "start": 4669.98, + "end": 4671.12, + "probability": 0.9064 + }, + { + "start": 4671.24, + "end": 4672.32, + "probability": 0.8154 + }, + { + "start": 4672.48, + "end": 4672.68, + "probability": 0.8802 + }, + { + "start": 4673.06, + "end": 4674.22, + "probability": 0.7015 + }, + { + "start": 4674.36, + "end": 4678.98, + "probability": 0.9395 + }, + { + "start": 4679.2, + "end": 4680.2, + "probability": 0.8592 + }, + { + "start": 4680.36, + "end": 4685.12, + "probability": 0.959 + }, + { + "start": 4685.82, + "end": 4689.74, + "probability": 0.9672 + }, + { + "start": 4690.42, + "end": 4691.84, + "probability": 0.9094 + }, + { + "start": 4691.96, + "end": 4695.56, + "probability": 0.9836 + }, + { + "start": 4695.56, + "end": 4698.92, + "probability": 0.994 + }, + { + "start": 4699.96, + "end": 4700.71, + "probability": 0.7931 + }, + { + "start": 4701.2, + "end": 4704.78, + "probability": 0.9591 + }, + { + "start": 4704.9, + "end": 4712.78, + "probability": 0.8225 + }, + { + "start": 4712.99, + "end": 4714.02, + "probability": 0.9756 + }, + { + "start": 4714.74, + "end": 4716.83, + "probability": 0.5977 + }, + { + "start": 4717.92, + "end": 4725.37, + "probability": 0.8521 + }, + { + "start": 4725.86, + "end": 4727.3, + "probability": 0.6714 + }, + { + "start": 4727.38, + "end": 4728.04, + "probability": 0.7575 + }, + { + "start": 4728.2, + "end": 4728.74, + "probability": 0.796 + }, + { + "start": 4729.3, + "end": 4732.76, + "probability": 0.9535 + }, + { + "start": 4733.42, + "end": 4739.5, + "probability": 0.9792 + }, + { + "start": 4739.58, + "end": 4741.88, + "probability": 0.5026 + }, + { + "start": 4742.28, + "end": 4751.78, + "probability": 0.9749 + }, + { + "start": 4752.92, + "end": 4756.04, + "probability": 0.8525 + }, + { + "start": 4756.92, + "end": 4759.5, + "probability": 0.8992 + }, + { + "start": 4759.64, + "end": 4761.51, + "probability": 0.9747 + }, + { + "start": 4762.28, + "end": 4762.66, + "probability": 0.5033 + }, + { + "start": 4762.78, + "end": 4765.94, + "probability": 0.9891 + }, + { + "start": 4766.02, + "end": 4769.68, + "probability": 0.9837 + }, + { + "start": 4770.9, + "end": 4775.28, + "probability": 0.9009 + }, + { + "start": 4775.98, + "end": 4777.22, + "probability": 0.9441 + }, + { + "start": 4777.76, + "end": 4780.52, + "probability": 0.9615 + }, + { + "start": 4781.02, + "end": 4782.5, + "probability": 0.9675 + }, + { + "start": 4782.6, + "end": 4784.92, + "probability": 0.7031 + }, + { + "start": 4785.5, + "end": 4789.84, + "probability": 0.9543 + }, + { + "start": 4790.72, + "end": 4794.82, + "probability": 0.8174 + }, + { + "start": 4795.58, + "end": 4799.1, + "probability": 0.9739 + }, + { + "start": 4799.76, + "end": 4801.2, + "probability": 0.7771 + }, + { + "start": 4801.44, + "end": 4802.68, + "probability": 0.762 + }, + { + "start": 4802.68, + "end": 4804.34, + "probability": 0.977 + }, + { + "start": 4804.8, + "end": 4809.78, + "probability": 0.8507 + }, + { + "start": 4810.34, + "end": 4814.32, + "probability": 0.9927 + }, + { + "start": 4814.88, + "end": 4816.43, + "probability": 0.98 + }, + { + "start": 4816.86, + "end": 4819.8, + "probability": 0.8336 + }, + { + "start": 4820.7, + "end": 4822.68, + "probability": 0.8562 + }, + { + "start": 4823.02, + "end": 4823.5, + "probability": 0.4577 + }, + { + "start": 4823.5, + "end": 4824.64, + "probability": 0.7985 + }, + { + "start": 4825.64, + "end": 4829.02, + "probability": 0.9355 + }, + { + "start": 4830.16, + "end": 4831.36, + "probability": 0.9095 + }, + { + "start": 4847.32, + "end": 4848.7, + "probability": 0.5762 + }, + { + "start": 4849.14, + "end": 4849.24, + "probability": 0.7822 + }, + { + "start": 4849.24, + "end": 4849.58, + "probability": 0.6806 + }, + { + "start": 4849.7, + "end": 4851.42, + "probability": 0.7555 + }, + { + "start": 4852.18, + "end": 4855.28, + "probability": 0.9976 + }, + { + "start": 4855.28, + "end": 4860.22, + "probability": 0.9914 + }, + { + "start": 4861.28, + "end": 4866.1, + "probability": 0.9847 + }, + { + "start": 4866.1, + "end": 4870.02, + "probability": 0.9972 + }, + { + "start": 4870.24, + "end": 4872.52, + "probability": 0.7169 + }, + { + "start": 4873.54, + "end": 4876.86, + "probability": 0.9976 + }, + { + "start": 4877.3, + "end": 4885.02, + "probability": 0.979 + }, + { + "start": 4885.02, + "end": 4889.56, + "probability": 0.9932 + }, + { + "start": 4891.08, + "end": 4895.6, + "probability": 0.9995 + }, + { + "start": 4895.6, + "end": 4898.56, + "probability": 0.9985 + }, + { + "start": 4899.32, + "end": 4903.4, + "probability": 0.946 + }, + { + "start": 4903.96, + "end": 4906.0, + "probability": 0.9775 + }, + { + "start": 4906.24, + "end": 4907.1, + "probability": 0.9672 + }, + { + "start": 4907.76, + "end": 4911.84, + "probability": 0.9989 + }, + { + "start": 4913.54, + "end": 4918.78, + "probability": 0.9978 + }, + { + "start": 4919.34, + "end": 4920.78, + "probability": 0.9863 + }, + { + "start": 4921.72, + "end": 4923.2, + "probability": 0.9998 + }, + { + "start": 4923.8, + "end": 4925.86, + "probability": 0.9827 + }, + { + "start": 4926.06, + "end": 4926.32, + "probability": 0.5795 + }, + { + "start": 4926.44, + "end": 4931.58, + "probability": 0.9958 + }, + { + "start": 4931.58, + "end": 4936.6, + "probability": 0.9966 + }, + { + "start": 4937.24, + "end": 4940.16, + "probability": 0.9517 + }, + { + "start": 4940.78, + "end": 4942.48, + "probability": 0.9562 + }, + { + "start": 4942.66, + "end": 4943.81, + "probability": 0.9956 + }, + { + "start": 4944.76, + "end": 4946.17, + "probability": 0.9975 + }, + { + "start": 4946.58, + "end": 4947.3, + "probability": 0.8208 + }, + { + "start": 4948.32, + "end": 4950.64, + "probability": 0.9912 + }, + { + "start": 4951.56, + "end": 4955.98, + "probability": 0.9978 + }, + { + "start": 4956.92, + "end": 4959.96, + "probability": 0.9938 + }, + { + "start": 4960.66, + "end": 4960.8, + "probability": 0.7193 + }, + { + "start": 4960.9, + "end": 4963.96, + "probability": 0.9274 + }, + { + "start": 4964.62, + "end": 4968.9, + "probability": 0.9548 + }, + { + "start": 4969.4, + "end": 4971.8, + "probability": 0.9756 + }, + { + "start": 4972.88, + "end": 4980.56, + "probability": 0.999 + }, + { + "start": 4981.08, + "end": 4982.6, + "probability": 0.9917 + }, + { + "start": 4982.72, + "end": 4985.22, + "probability": 0.9976 + }, + { + "start": 4986.3, + "end": 4987.0, + "probability": 0.7549 + }, + { + "start": 4987.1, + "end": 4987.46, + "probability": 0.8559 + }, + { + "start": 4988.34, + "end": 4990.7, + "probability": 0.9972 + }, + { + "start": 4991.64, + "end": 4992.68, + "probability": 0.5105 + }, + { + "start": 4992.82, + "end": 4995.84, + "probability": 0.9886 + }, + { + "start": 4996.62, + "end": 5000.02, + "probability": 0.98 + }, + { + "start": 5000.8, + "end": 5003.52, + "probability": 0.9645 + }, + { + "start": 5004.78, + "end": 5010.88, + "probability": 0.9984 + }, + { + "start": 5010.98, + "end": 5011.5, + "probability": 0.8619 + }, + { + "start": 5011.92, + "end": 5015.62, + "probability": 0.9959 + }, + { + "start": 5017.72, + "end": 5021.8, + "probability": 0.9521 + }, + { + "start": 5022.86, + "end": 5026.02, + "probability": 0.9954 + }, + { + "start": 5026.54, + "end": 5027.06, + "probability": 0.4662 + }, + { + "start": 5027.06, + "end": 5031.76, + "probability": 0.9822 + }, + { + "start": 5031.76, + "end": 5036.08, + "probability": 0.9788 + }, + { + "start": 5036.78, + "end": 5040.06, + "probability": 0.9915 + }, + { + "start": 5041.14, + "end": 5045.5, + "probability": 0.9958 + }, + { + "start": 5046.06, + "end": 5050.22, + "probability": 0.988 + }, + { + "start": 5050.88, + "end": 5057.88, + "probability": 0.9966 + }, + { + "start": 5058.46, + "end": 5059.34, + "probability": 0.9771 + }, + { + "start": 5059.48, + "end": 5064.44, + "probability": 0.995 + }, + { + "start": 5065.44, + "end": 5067.0, + "probability": 0.9923 + }, + { + "start": 5068.08, + "end": 5071.54, + "probability": 0.9912 + }, + { + "start": 5072.58, + "end": 5075.08, + "probability": 0.8296 + }, + { + "start": 5075.88, + "end": 5077.76, + "probability": 0.9595 + }, + { + "start": 5077.98, + "end": 5081.18, + "probability": 0.9958 + }, + { + "start": 5081.18, + "end": 5085.6, + "probability": 0.9845 + }, + { + "start": 5086.04, + "end": 5087.54, + "probability": 0.9682 + }, + { + "start": 5088.0, + "end": 5089.26, + "probability": 0.8273 + }, + { + "start": 5089.62, + "end": 5091.56, + "probability": 0.9913 + }, + { + "start": 5091.74, + "end": 5093.02, + "probability": 0.9843 + }, + { + "start": 5093.5, + "end": 5096.66, + "probability": 0.9512 + }, + { + "start": 5097.24, + "end": 5099.1, + "probability": 0.9971 + }, + { + "start": 5099.58, + "end": 5100.16, + "probability": 0.4963 + }, + { + "start": 5100.64, + "end": 5103.04, + "probability": 0.9946 + }, + { + "start": 5103.6, + "end": 5105.02, + "probability": 0.9689 + }, + { + "start": 5105.98, + "end": 5106.92, + "probability": 0.9985 + }, + { + "start": 5107.48, + "end": 5108.68, + "probability": 0.6915 + }, + { + "start": 5108.86, + "end": 5112.44, + "probability": 0.8311 + }, + { + "start": 5112.8, + "end": 5116.46, + "probability": 0.9862 + }, + { + "start": 5116.58, + "end": 5117.72, + "probability": 0.9824 + }, + { + "start": 5117.98, + "end": 5119.08, + "probability": 0.9594 + }, + { + "start": 5119.52, + "end": 5121.82, + "probability": 0.9951 + }, + { + "start": 5122.62, + "end": 5123.62, + "probability": 0.7474 + }, + { + "start": 5124.3, + "end": 5125.78, + "probability": 0.7492 + }, + { + "start": 5125.8, + "end": 5126.48, + "probability": 0.6619 + }, + { + "start": 5126.54, + "end": 5128.3, + "probability": 0.9219 + }, + { + "start": 5128.5, + "end": 5128.88, + "probability": 0.7701 + }, + { + "start": 5129.62, + "end": 5132.79, + "probability": 0.9823 + }, + { + "start": 5133.18, + "end": 5133.72, + "probability": 0.8303 + }, + { + "start": 5133.98, + "end": 5135.64, + "probability": 0.9339 + }, + { + "start": 5136.2, + "end": 5138.04, + "probability": 0.9833 + }, + { + "start": 5138.64, + "end": 5141.08, + "probability": 0.9762 + }, + { + "start": 5141.62, + "end": 5143.26, + "probability": 0.9914 + }, + { + "start": 5143.62, + "end": 5147.7, + "probability": 0.9993 + }, + { + "start": 5148.06, + "end": 5151.88, + "probability": 0.9956 + }, + { + "start": 5151.92, + "end": 5154.56, + "probability": 0.9933 + }, + { + "start": 5154.8, + "end": 5155.16, + "probability": 0.7435 + }, + { + "start": 5155.98, + "end": 5156.58, + "probability": 0.6864 + }, + { + "start": 5156.68, + "end": 5158.24, + "probability": 0.7128 + }, + { + "start": 5158.28, + "end": 5158.9, + "probability": 0.8736 + }, + { + "start": 5178.2, + "end": 5178.42, + "probability": 0.1653 + }, + { + "start": 5178.42, + "end": 5182.12, + "probability": 0.7034 + }, + { + "start": 5183.86, + "end": 5185.92, + "probability": 0.7346 + }, + { + "start": 5185.96, + "end": 5187.04, + "probability": 0.8833 + }, + { + "start": 5187.14, + "end": 5189.22, + "probability": 0.9834 + }, + { + "start": 5189.78, + "end": 5190.3, + "probability": 0.9281 + }, + { + "start": 5191.58, + "end": 5195.94, + "probability": 0.9808 + }, + { + "start": 5196.1, + "end": 5198.66, + "probability": 0.9797 + }, + { + "start": 5199.66, + "end": 5203.28, + "probability": 0.9031 + }, + { + "start": 5203.38, + "end": 5205.02, + "probability": 0.7768 + }, + { + "start": 5206.16, + "end": 5207.06, + "probability": 0.6963 + }, + { + "start": 5207.84, + "end": 5211.12, + "probability": 0.9138 + }, + { + "start": 5211.98, + "end": 5213.96, + "probability": 0.9757 + }, + { + "start": 5214.3, + "end": 5215.04, + "probability": 0.7727 + }, + { + "start": 5215.16, + "end": 5215.96, + "probability": 0.8911 + }, + { + "start": 5216.04, + "end": 5218.94, + "probability": 0.8525 + }, + { + "start": 5220.88, + "end": 5223.62, + "probability": 0.7894 + }, + { + "start": 5224.76, + "end": 5228.96, + "probability": 0.8831 + }, + { + "start": 5229.78, + "end": 5231.9, + "probability": 0.9812 + }, + { + "start": 5232.2, + "end": 5233.76, + "probability": 0.8203 + }, + { + "start": 5234.0, + "end": 5235.06, + "probability": 0.8044 + }, + { + "start": 5236.2, + "end": 5238.18, + "probability": 0.7324 + }, + { + "start": 5238.36, + "end": 5240.0, + "probability": 0.8884 + }, + { + "start": 5240.2, + "end": 5243.16, + "probability": 0.9675 + }, + { + "start": 5245.56, + "end": 5251.22, + "probability": 0.9375 + }, + { + "start": 5253.06, + "end": 5257.64, + "probability": 0.8993 + }, + { + "start": 5258.54, + "end": 5263.46, + "probability": 0.9929 + }, + { + "start": 5264.46, + "end": 5265.98, + "probability": 0.9976 + }, + { + "start": 5267.54, + "end": 5270.82, + "probability": 0.9517 + }, + { + "start": 5270.98, + "end": 5272.22, + "probability": 0.9445 + }, + { + "start": 5272.56, + "end": 5273.88, + "probability": 0.9556 + }, + { + "start": 5275.16, + "end": 5281.72, + "probability": 0.9884 + }, + { + "start": 5282.66, + "end": 5287.0, + "probability": 0.9237 + }, + { + "start": 5287.88, + "end": 5292.86, + "probability": 0.9415 + }, + { + "start": 5292.92, + "end": 5294.32, + "probability": 0.846 + }, + { + "start": 5294.86, + "end": 5295.9, + "probability": 0.7837 + }, + { + "start": 5296.1, + "end": 5299.96, + "probability": 0.998 + }, + { + "start": 5300.08, + "end": 5300.52, + "probability": 0.8747 + }, + { + "start": 5301.42, + "end": 5303.14, + "probability": 0.9023 + }, + { + "start": 5304.18, + "end": 5307.42, + "probability": 0.9924 + }, + { + "start": 5308.08, + "end": 5309.68, + "probability": 0.999 + }, + { + "start": 5310.72, + "end": 5311.4, + "probability": 0.7828 + }, + { + "start": 5311.56, + "end": 5312.18, + "probability": 0.5619 + }, + { + "start": 5312.6, + "end": 5315.56, + "probability": 0.9924 + }, + { + "start": 5315.56, + "end": 5321.04, + "probability": 0.8516 + }, + { + "start": 5322.14, + "end": 5323.8, + "probability": 0.7513 + }, + { + "start": 5323.92, + "end": 5324.9, + "probability": 0.8136 + }, + { + "start": 5325.06, + "end": 5327.16, + "probability": 0.9186 + }, + { + "start": 5328.12, + "end": 5330.5, + "probability": 0.9585 + }, + { + "start": 5330.8, + "end": 5331.9, + "probability": 0.6662 + }, + { + "start": 5332.36, + "end": 5334.84, + "probability": 0.7393 + }, + { + "start": 5334.9, + "end": 5335.74, + "probability": 0.5057 + }, + { + "start": 5337.94, + "end": 5341.12, + "probability": 0.8476 + }, + { + "start": 5341.38, + "end": 5344.3, + "probability": 0.9587 + }, + { + "start": 5345.3, + "end": 5347.46, + "probability": 0.9209 + }, + { + "start": 5348.14, + "end": 5349.18, + "probability": 0.6456 + }, + { + "start": 5349.82, + "end": 5352.63, + "probability": 0.9389 + }, + { + "start": 5354.1, + "end": 5354.72, + "probability": 0.877 + }, + { + "start": 5354.9, + "end": 5356.56, + "probability": 0.9575 + }, + { + "start": 5356.76, + "end": 5357.2, + "probability": 0.766 + }, + { + "start": 5357.62, + "end": 5358.2, + "probability": 0.9634 + }, + { + "start": 5358.32, + "end": 5362.1, + "probability": 0.985 + }, + { + "start": 5364.04, + "end": 5366.74, + "probability": 0.9741 + }, + { + "start": 5366.8, + "end": 5367.26, + "probability": 0.9546 + }, + { + "start": 5367.46, + "end": 5368.9, + "probability": 0.9494 + }, + { + "start": 5369.14, + "end": 5370.38, + "probability": 0.8972 + }, + { + "start": 5371.38, + "end": 5372.62, + "probability": 0.9805 + }, + { + "start": 5372.66, + "end": 5373.52, + "probability": 0.9709 + }, + { + "start": 5373.64, + "end": 5374.46, + "probability": 0.868 + }, + { + "start": 5374.48, + "end": 5375.88, + "probability": 0.7589 + }, + { + "start": 5377.42, + "end": 5378.93, + "probability": 0.9973 + }, + { + "start": 5379.32, + "end": 5381.12, + "probability": 0.9014 + }, + { + "start": 5382.08, + "end": 5382.88, + "probability": 0.2335 + }, + { + "start": 5383.56, + "end": 5384.04, + "probability": 0.7258 + }, + { + "start": 5384.88, + "end": 5387.54, + "probability": 0.7418 + }, + { + "start": 5388.4, + "end": 5389.76, + "probability": 0.8994 + }, + { + "start": 5389.86, + "end": 5391.6, + "probability": 0.9766 + }, + { + "start": 5391.66, + "end": 5395.58, + "probability": 0.9556 + }, + { + "start": 5396.76, + "end": 5399.96, + "probability": 0.9607 + }, + { + "start": 5401.14, + "end": 5402.76, + "probability": 0.9742 + }, + { + "start": 5403.94, + "end": 5407.38, + "probability": 0.9852 + }, + { + "start": 5407.52, + "end": 5408.28, + "probability": 0.8621 + }, + { + "start": 5408.74, + "end": 5410.8, + "probability": 0.7491 + }, + { + "start": 5411.52, + "end": 5418.24, + "probability": 0.9761 + }, + { + "start": 5418.5, + "end": 5422.48, + "probability": 0.8568 + }, + { + "start": 5423.04, + "end": 5425.62, + "probability": 0.9522 + }, + { + "start": 5426.44, + "end": 5429.62, + "probability": 0.716 + }, + { + "start": 5429.62, + "end": 5431.46, + "probability": 0.9535 + }, + { + "start": 5435.94, + "end": 5436.44, + "probability": 0.7207 + }, + { + "start": 5436.68, + "end": 5437.34, + "probability": 0.6823 + }, + { + "start": 5437.38, + "end": 5439.3, + "probability": 0.9631 + }, + { + "start": 5439.4, + "end": 5443.04, + "probability": 0.9531 + }, + { + "start": 5443.2, + "end": 5448.96, + "probability": 0.963 + }, + { + "start": 5450.04, + "end": 5454.08, + "probability": 0.9966 + }, + { + "start": 5454.84, + "end": 5458.68, + "probability": 0.9125 + }, + { + "start": 5459.7, + "end": 5464.18, + "probability": 0.9911 + }, + { + "start": 5465.02, + "end": 5470.06, + "probability": 0.9928 + }, + { + "start": 5470.18, + "end": 5471.84, + "probability": 0.982 + }, + { + "start": 5472.16, + "end": 5478.13, + "probability": 0.9689 + }, + { + "start": 5478.76, + "end": 5480.62, + "probability": 0.8482 + }, + { + "start": 5481.32, + "end": 5484.7, + "probability": 0.9023 + }, + { + "start": 5485.18, + "end": 5485.96, + "probability": 0.5142 + }, + { + "start": 5486.54, + "end": 5489.88, + "probability": 0.9926 + }, + { + "start": 5490.24, + "end": 5491.14, + "probability": 0.711 + }, + { + "start": 5491.7, + "end": 5495.64, + "probability": 0.978 + }, + { + "start": 5495.74, + "end": 5501.54, + "probability": 0.9766 + }, + { + "start": 5502.66, + "end": 5505.96, + "probability": 0.9056 + }, + { + "start": 5506.12, + "end": 5508.62, + "probability": 0.9836 + }, + { + "start": 5509.64, + "end": 5515.04, + "probability": 0.9598 + }, + { + "start": 5515.16, + "end": 5516.14, + "probability": 0.8204 + }, + { + "start": 5516.8, + "end": 5518.34, + "probability": 0.9281 + }, + { + "start": 5518.5, + "end": 5519.98, + "probability": 0.607 + }, + { + "start": 5521.48, + "end": 5525.94, + "probability": 0.9966 + }, + { + "start": 5526.06, + "end": 5527.72, + "probability": 0.996 + }, + { + "start": 5528.36, + "end": 5531.98, + "probability": 0.8477 + }, + { + "start": 5532.52, + "end": 5535.28, + "probability": 0.9668 + }, + { + "start": 5535.5, + "end": 5535.7, + "probability": 0.7373 + }, + { + "start": 5537.68, + "end": 5538.16, + "probability": 0.7654 + }, + { + "start": 5539.16, + "end": 5543.36, + "probability": 0.9198 + }, + { + "start": 5543.54, + "end": 5544.24, + "probability": 0.7681 + }, + { + "start": 5544.34, + "end": 5545.06, + "probability": 0.8219 + }, + { + "start": 5546.1, + "end": 5547.06, + "probability": 0.591 + }, + { + "start": 5562.58, + "end": 5566.42, + "probability": 0.5682 + }, + { + "start": 5566.92, + "end": 5569.38, + "probability": 0.9883 + }, + { + "start": 5570.24, + "end": 5571.22, + "probability": 0.9532 + }, + { + "start": 5572.06, + "end": 5575.68, + "probability": 0.8513 + }, + { + "start": 5575.9, + "end": 5579.28, + "probability": 0.9949 + }, + { + "start": 5579.92, + "end": 5581.84, + "probability": 0.9773 + }, + { + "start": 5582.12, + "end": 5587.7, + "probability": 0.9429 + }, + { + "start": 5587.94, + "end": 5590.58, + "probability": 0.9878 + }, + { + "start": 5590.88, + "end": 5594.28, + "probability": 0.9728 + }, + { + "start": 5595.42, + "end": 5601.28, + "probability": 0.9965 + }, + { + "start": 5602.22, + "end": 5610.3, + "probability": 0.9897 + }, + { + "start": 5610.3, + "end": 5615.06, + "probability": 0.9993 + }, + { + "start": 5615.64, + "end": 5617.68, + "probability": 0.7813 + }, + { + "start": 5617.8, + "end": 5619.94, + "probability": 0.9787 + }, + { + "start": 5620.28, + "end": 5620.96, + "probability": 0.6644 + }, + { + "start": 5621.48, + "end": 5623.84, + "probability": 0.9583 + }, + { + "start": 5623.96, + "end": 5624.98, + "probability": 0.921 + }, + { + "start": 5625.1, + "end": 5626.52, + "probability": 0.9202 + }, + { + "start": 5626.7, + "end": 5628.0, + "probability": 0.9172 + }, + { + "start": 5628.18, + "end": 5630.3, + "probability": 0.5387 + }, + { + "start": 5631.08, + "end": 5632.62, + "probability": 0.9884 + }, + { + "start": 5632.74, + "end": 5633.64, + "probability": 0.8615 + }, + { + "start": 5634.12, + "end": 5637.36, + "probability": 0.9644 + }, + { + "start": 5637.52, + "end": 5641.22, + "probability": 0.8525 + }, + { + "start": 5641.4, + "end": 5643.9, + "probability": 0.6338 + }, + { + "start": 5644.76, + "end": 5648.86, + "probability": 0.9238 + }, + { + "start": 5649.04, + "end": 5651.54, + "probability": 0.9963 + }, + { + "start": 5651.74, + "end": 5653.28, + "probability": 0.9984 + }, + { + "start": 5653.88, + "end": 5659.38, + "probability": 0.9979 + }, + { + "start": 5659.58, + "end": 5662.44, + "probability": 0.9965 + }, + { + "start": 5662.44, + "end": 5665.5, + "probability": 0.9984 + }, + { + "start": 5665.68, + "end": 5673.26, + "probability": 0.9946 + }, + { + "start": 5673.84, + "end": 5676.2, + "probability": 0.9988 + }, + { + "start": 5676.94, + "end": 5680.14, + "probability": 0.9263 + }, + { + "start": 5680.33, + "end": 5685.78, + "probability": 0.9839 + }, + { + "start": 5685.78, + "end": 5691.3, + "probability": 0.6615 + }, + { + "start": 5691.82, + "end": 5693.88, + "probability": 0.9912 + }, + { + "start": 5693.94, + "end": 5698.08, + "probability": 0.9847 + }, + { + "start": 5698.34, + "end": 5699.3, + "probability": 0.4991 + }, + { + "start": 5700.14, + "end": 5703.36, + "probability": 0.9866 + }, + { + "start": 5703.48, + "end": 5704.58, + "probability": 0.9879 + }, + { + "start": 5704.68, + "end": 5705.9, + "probability": 0.9258 + }, + { + "start": 5706.02, + "end": 5707.3, + "probability": 0.8921 + }, + { + "start": 5707.66, + "end": 5712.34, + "probability": 0.9823 + }, + { + "start": 5712.8, + "end": 5718.06, + "probability": 0.9976 + }, + { + "start": 5718.2, + "end": 5722.22, + "probability": 0.7873 + }, + { + "start": 5722.28, + "end": 5722.99, + "probability": 0.9597 + }, + { + "start": 5723.16, + "end": 5724.92, + "probability": 0.8225 + }, + { + "start": 5725.76, + "end": 5731.94, + "probability": 0.9019 + }, + { + "start": 5732.48, + "end": 5734.62, + "probability": 0.9952 + }, + { + "start": 5734.86, + "end": 5737.88, + "probability": 0.7009 + }, + { + "start": 5738.44, + "end": 5741.28, + "probability": 0.885 + }, + { + "start": 5741.82, + "end": 5743.23, + "probability": 0.5146 + }, + { + "start": 5743.84, + "end": 5746.76, + "probability": 0.9611 + }, + { + "start": 5747.36, + "end": 5752.79, + "probability": 0.9938 + }, + { + "start": 5754.0, + "end": 5756.96, + "probability": 0.6358 + }, + { + "start": 5757.58, + "end": 5760.12, + "probability": 0.236 + }, + { + "start": 5760.36, + "end": 5762.12, + "probability": 0.9135 + }, + { + "start": 5762.7, + "end": 5767.8, + "probability": 0.9058 + }, + { + "start": 5768.64, + "end": 5772.52, + "probability": 0.9468 + }, + { + "start": 5772.84, + "end": 5773.66, + "probability": 0.8804 + }, + { + "start": 5773.7, + "end": 5778.68, + "probability": 0.9092 + }, + { + "start": 5779.74, + "end": 5781.64, + "probability": 0.6782 + }, + { + "start": 5781.78, + "end": 5786.26, + "probability": 0.9911 + }, + { + "start": 5786.34, + "end": 5790.3, + "probability": 0.7912 + }, + { + "start": 5790.8, + "end": 5792.2, + "probability": 0.8795 + }, + { + "start": 5792.84, + "end": 5796.64, + "probability": 0.9875 + }, + { + "start": 5796.74, + "end": 5803.04, + "probability": 0.9816 + }, + { + "start": 5804.04, + "end": 5807.46, + "probability": 0.9956 + }, + { + "start": 5807.72, + "end": 5809.96, + "probability": 0.8441 + }, + { + "start": 5810.7, + "end": 5814.72, + "probability": 0.9144 + }, + { + "start": 5814.94, + "end": 5817.8, + "probability": 0.9674 + }, + { + "start": 5818.3, + "end": 5822.36, + "probability": 0.9307 + }, + { + "start": 5822.6, + "end": 5826.02, + "probability": 0.8911 + }, + { + "start": 5826.1, + "end": 5828.58, + "probability": 0.9565 + }, + { + "start": 5829.0, + "end": 5834.38, + "probability": 0.9629 + }, + { + "start": 5834.44, + "end": 5835.64, + "probability": 0.9336 + }, + { + "start": 5836.0, + "end": 5841.12, + "probability": 0.9751 + }, + { + "start": 5841.3, + "end": 5844.02, + "probability": 0.9961 + }, + { + "start": 5846.12, + "end": 5849.7, + "probability": 0.8226 + }, + { + "start": 5850.02, + "end": 5851.14, + "probability": 0.9607 + }, + { + "start": 5851.38, + "end": 5856.8, + "probability": 0.9762 + }, + { + "start": 5857.2, + "end": 5859.96, + "probability": 0.9902 + }, + { + "start": 5859.96, + "end": 5863.54, + "probability": 0.9994 + }, + { + "start": 5863.72, + "end": 5870.02, + "probability": 0.814 + }, + { + "start": 5870.18, + "end": 5875.3, + "probability": 0.9927 + }, + { + "start": 5875.74, + "end": 5878.02, + "probability": 0.9814 + }, + { + "start": 5878.62, + "end": 5880.8, + "probability": 0.9302 + }, + { + "start": 5881.02, + "end": 5882.7, + "probability": 0.9142 + }, + { + "start": 5883.18, + "end": 5884.1, + "probability": 0.8794 + }, + { + "start": 5884.42, + "end": 5887.62, + "probability": 0.9941 + }, + { + "start": 5888.24, + "end": 5888.64, + "probability": 0.7619 + }, + { + "start": 5889.26, + "end": 5889.44, + "probability": 0.6591 + }, + { + "start": 5889.5, + "end": 5893.2, + "probability": 0.9912 + }, + { + "start": 5893.72, + "end": 5895.42, + "probability": 0.8197 + }, + { + "start": 5897.28, + "end": 5900.34, + "probability": 0.9626 + }, + { + "start": 5900.6, + "end": 5901.68, + "probability": 0.9611 + }, + { + "start": 5901.88, + "end": 5905.08, + "probability": 0.9867 + }, + { + "start": 5905.32, + "end": 5910.16, + "probability": 0.9773 + }, + { + "start": 5910.28, + "end": 5914.24, + "probability": 0.8106 + }, + { + "start": 5914.52, + "end": 5915.62, + "probability": 0.7469 + }, + { + "start": 5915.76, + "end": 5922.44, + "probability": 0.8488 + }, + { + "start": 5923.3, + "end": 5927.47, + "probability": 0.9875 + }, + { + "start": 5928.72, + "end": 5933.88, + "probability": 0.9882 + }, + { + "start": 5933.98, + "end": 5936.34, + "probability": 0.9941 + }, + { + "start": 5936.66, + "end": 5941.84, + "probability": 0.9965 + }, + { + "start": 5942.12, + "end": 5943.14, + "probability": 0.8887 + }, + { + "start": 5943.14, + "end": 5944.84, + "probability": 0.7573 + }, + { + "start": 5944.9, + "end": 5945.6, + "probability": 0.6135 + }, + { + "start": 5946.0, + "end": 5947.47, + "probability": 0.9111 + }, + { + "start": 5948.04, + "end": 5949.86, + "probability": 0.9905 + }, + { + "start": 5950.12, + "end": 5952.15, + "probability": 0.9948 + }, + { + "start": 5953.14, + "end": 5956.96, + "probability": 0.9889 + }, + { + "start": 5956.96, + "end": 5961.4, + "probability": 0.9888 + }, + { + "start": 5961.56, + "end": 5965.08, + "probability": 0.975 + }, + { + "start": 5965.28, + "end": 5966.47, + "probability": 0.9946 + }, + { + "start": 5968.06, + "end": 5971.94, + "probability": 0.947 + }, + { + "start": 5972.58, + "end": 5973.34, + "probability": 0.7379 + }, + { + "start": 5973.7, + "end": 5979.3, + "probability": 0.9937 + }, + { + "start": 5980.04, + "end": 5984.0, + "probability": 0.9946 + }, + { + "start": 5984.32, + "end": 5987.72, + "probability": 0.994 + }, + { + "start": 5988.08, + "end": 5991.12, + "probability": 0.9907 + }, + { + "start": 5991.72, + "end": 5993.2, + "probability": 0.6746 + }, + { + "start": 5993.3, + "end": 5997.02, + "probability": 0.9815 + }, + { + "start": 5997.56, + "end": 6000.06, + "probability": 0.9976 + }, + { + "start": 6000.56, + "end": 6004.84, + "probability": 0.9957 + }, + { + "start": 6004.92, + "end": 6007.42, + "probability": 0.9771 + }, + { + "start": 6008.52, + "end": 6011.18, + "probability": 0.9422 + }, + { + "start": 6012.0, + "end": 6018.7, + "probability": 0.9158 + }, + { + "start": 6019.22, + "end": 6023.84, + "probability": 0.9807 + }, + { + "start": 6025.18, + "end": 6030.64, + "probability": 0.9817 + }, + { + "start": 6030.64, + "end": 6032.98, + "probability": 0.9154 + }, + { + "start": 6033.12, + "end": 6036.82, + "probability": 0.9767 + }, + { + "start": 6037.36, + "end": 6039.82, + "probability": 0.9951 + }, + { + "start": 6040.3, + "end": 6041.39, + "probability": 0.9194 + }, + { + "start": 6041.54, + "end": 6044.24, + "probability": 0.9897 + }, + { + "start": 6044.54, + "end": 6046.32, + "probability": 0.9949 + }, + { + "start": 6046.78, + "end": 6049.0, + "probability": 0.9943 + }, + { + "start": 6049.28, + "end": 6054.1, + "probability": 0.9959 + }, + { + "start": 6054.1, + "end": 6059.62, + "probability": 0.9975 + }, + { + "start": 6059.66, + "end": 6061.74, + "probability": 0.999 + }, + { + "start": 6062.52, + "end": 6065.94, + "probability": 0.9961 + }, + { + "start": 6066.12, + "end": 6067.16, + "probability": 0.7462 + }, + { + "start": 6067.6, + "end": 6069.8, + "probability": 0.9707 + }, + { + "start": 6069.8, + "end": 6072.84, + "probability": 0.8872 + }, + { + "start": 6073.2, + "end": 6076.5, + "probability": 0.9685 + }, + { + "start": 6076.7, + "end": 6081.14, + "probability": 0.9531 + }, + { + "start": 6081.54, + "end": 6083.18, + "probability": 0.8445 + }, + { + "start": 6083.48, + "end": 6085.9, + "probability": 0.9976 + }, + { + "start": 6086.76, + "end": 6089.06, + "probability": 0.9962 + }, + { + "start": 6089.06, + "end": 6094.22, + "probability": 0.9948 + }, + { + "start": 6094.38, + "end": 6095.72, + "probability": 0.9026 + }, + { + "start": 6096.28, + "end": 6097.86, + "probability": 0.7495 + }, + { + "start": 6097.92, + "end": 6103.52, + "probability": 0.9894 + }, + { + "start": 6103.54, + "end": 6106.32, + "probability": 0.9966 + }, + { + "start": 6106.4, + "end": 6107.9, + "probability": 0.9695 + }, + { + "start": 6108.5, + "end": 6115.1, + "probability": 0.9831 + }, + { + "start": 6115.62, + "end": 6119.73, + "probability": 0.9764 + }, + { + "start": 6120.34, + "end": 6121.92, + "probability": 0.6634 + }, + { + "start": 6122.02, + "end": 6123.7, + "probability": 0.9727 + }, + { + "start": 6124.12, + "end": 6125.91, + "probability": 0.9779 + }, + { + "start": 6126.28, + "end": 6126.86, + "probability": 0.6663 + }, + { + "start": 6127.34, + "end": 6127.4, + "probability": 0.8865 + }, + { + "start": 6127.54, + "end": 6131.42, + "probability": 0.9968 + }, + { + "start": 6131.42, + "end": 6135.58, + "probability": 0.9493 + }, + { + "start": 6135.9, + "end": 6136.32, + "probability": 0.7144 + }, + { + "start": 6136.46, + "end": 6137.72, + "probability": 0.9532 + }, + { + "start": 6137.76, + "end": 6139.14, + "probability": 0.9383 + }, + { + "start": 6139.7, + "end": 6140.78, + "probability": 0.8608 + }, + { + "start": 6141.28, + "end": 6142.68, + "probability": 0.9867 + }, + { + "start": 6142.82, + "end": 6145.6, + "probability": 0.8918 + }, + { + "start": 6145.66, + "end": 6146.3, + "probability": 0.497 + }, + { + "start": 6146.66, + "end": 6147.88, + "probability": 0.9547 + }, + { + "start": 6148.34, + "end": 6149.54, + "probability": 0.9717 + }, + { + "start": 6150.34, + "end": 6150.96, + "probability": 0.5381 + }, + { + "start": 6151.06, + "end": 6151.44, + "probability": 0.3827 + }, + { + "start": 6151.64, + "end": 6153.56, + "probability": 0.8994 + }, + { + "start": 6153.58, + "end": 6154.4, + "probability": 0.7029 + }, + { + "start": 6154.52, + "end": 6155.72, + "probability": 0.9542 + }, + { + "start": 6156.14, + "end": 6158.48, + "probability": 0.9875 + }, + { + "start": 6158.9, + "end": 6161.84, + "probability": 0.9954 + }, + { + "start": 6161.96, + "end": 6163.14, + "probability": 0.9869 + }, + { + "start": 6163.54, + "end": 6164.64, + "probability": 0.7971 + }, + { + "start": 6165.7, + "end": 6168.14, + "probability": 0.842 + }, + { + "start": 6168.14, + "end": 6171.66, + "probability": 0.9898 + }, + { + "start": 6172.2, + "end": 6173.82, + "probability": 0.9594 + }, + { + "start": 6174.12, + "end": 6178.64, + "probability": 0.9979 + }, + { + "start": 6178.68, + "end": 6180.18, + "probability": 0.8832 + }, + { + "start": 6180.64, + "end": 6185.92, + "probability": 0.9949 + }, + { + "start": 6186.02, + "end": 6189.86, + "probability": 0.9992 + }, + { + "start": 6190.36, + "end": 6193.82, + "probability": 0.9985 + }, + { + "start": 6193.82, + "end": 6196.22, + "probability": 0.9995 + }, + { + "start": 6196.42, + "end": 6201.06, + "probability": 0.9978 + }, + { + "start": 6201.6, + "end": 6202.6, + "probability": 0.7995 + }, + { + "start": 6202.72, + "end": 6207.88, + "probability": 0.9891 + }, + { + "start": 6208.28, + "end": 6210.9, + "probability": 0.9905 + }, + { + "start": 6212.48, + "end": 6214.54, + "probability": 0.749 + }, + { + "start": 6218.38, + "end": 6223.8, + "probability": 0.8911 + }, + { + "start": 6224.02, + "end": 6228.0, + "probability": 0.8821 + }, + { + "start": 6228.0, + "end": 6232.2, + "probability": 0.9861 + }, + { + "start": 6232.3, + "end": 6235.96, + "probability": 0.9943 + }, + { + "start": 6236.46, + "end": 6240.32, + "probability": 0.9889 + }, + { + "start": 6241.0, + "end": 6245.47, + "probability": 0.937 + }, + { + "start": 6245.72, + "end": 6249.42, + "probability": 0.981 + }, + { + "start": 6249.58, + "end": 6253.18, + "probability": 0.9985 + }, + { + "start": 6253.66, + "end": 6255.8, + "probability": 0.9991 + }, + { + "start": 6255.98, + "end": 6257.34, + "probability": 0.4041 + }, + { + "start": 6258.06, + "end": 6259.76, + "probability": 0.964 + }, + { + "start": 6260.48, + "end": 6261.98, + "probability": 0.9485 + }, + { + "start": 6262.24, + "end": 6265.46, + "probability": 0.9476 + }, + { + "start": 6265.56, + "end": 6266.62, + "probability": 0.9365 + }, + { + "start": 6266.7, + "end": 6267.58, + "probability": 0.9866 + }, + { + "start": 6268.6, + "end": 6268.94, + "probability": 0.5746 + }, + { + "start": 6269.08, + "end": 6274.4, + "probability": 0.9868 + }, + { + "start": 6274.5, + "end": 6278.02, + "probability": 0.9822 + }, + { + "start": 6278.1, + "end": 6283.92, + "probability": 0.871 + }, + { + "start": 6284.04, + "end": 6287.38, + "probability": 0.9862 + }, + { + "start": 6287.44, + "end": 6291.58, + "probability": 0.9884 + }, + { + "start": 6291.96, + "end": 6297.7, + "probability": 0.9367 + }, + { + "start": 6297.7, + "end": 6302.26, + "probability": 0.9985 + }, + { + "start": 6302.96, + "end": 6306.78, + "probability": 0.9691 + }, + { + "start": 6306.86, + "end": 6309.12, + "probability": 0.9968 + }, + { + "start": 6309.16, + "end": 6313.02, + "probability": 0.9975 + }, + { + "start": 6313.08, + "end": 6314.66, + "probability": 0.7107 + }, + { + "start": 6315.58, + "end": 6318.9, + "probability": 0.966 + }, + { + "start": 6319.64, + "end": 6323.3, + "probability": 0.8405 + }, + { + "start": 6323.82, + "end": 6324.52, + "probability": 0.8318 + }, + { + "start": 6324.56, + "end": 6327.68, + "probability": 0.9897 + }, + { + "start": 6327.72, + "end": 6333.7, + "probability": 0.9604 + }, + { + "start": 6334.26, + "end": 6336.9, + "probability": 0.9985 + }, + { + "start": 6337.54, + "end": 6344.74, + "probability": 0.9709 + }, + { + "start": 6345.72, + "end": 6350.0, + "probability": 0.995 + }, + { + "start": 6350.3, + "end": 6350.93, + "probability": 0.9373 + }, + { + "start": 6351.3, + "end": 6351.92, + "probability": 0.735 + }, + { + "start": 6352.54, + "end": 6359.18, + "probability": 0.873 + }, + { + "start": 6359.18, + "end": 6365.92, + "probability": 0.9956 + }, + { + "start": 6366.92, + "end": 6367.92, + "probability": 0.5164 + }, + { + "start": 6368.0, + "end": 6371.04, + "probability": 0.9722 + }, + { + "start": 6371.2, + "end": 6372.0, + "probability": 0.8644 + }, + { + "start": 6372.28, + "end": 6380.02, + "probability": 0.947 + }, + { + "start": 6380.9, + "end": 6382.44, + "probability": 0.737 + }, + { + "start": 6382.58, + "end": 6384.66, + "probability": 0.978 + }, + { + "start": 6384.76, + "end": 6388.02, + "probability": 0.9446 + }, + { + "start": 6388.52, + "end": 6392.02, + "probability": 0.9565 + }, + { + "start": 6392.52, + "end": 6398.58, + "probability": 0.9448 + }, + { + "start": 6399.31, + "end": 6404.05, + "probability": 0.9777 + }, + { + "start": 6404.18, + "end": 6407.86, + "probability": 0.9969 + }, + { + "start": 6409.76, + "end": 6411.56, + "probability": 0.8274 + }, + { + "start": 6412.18, + "end": 6417.7, + "probability": 0.9842 + }, + { + "start": 6418.38, + "end": 6418.86, + "probability": 0.4521 + }, + { + "start": 6418.96, + "end": 6420.64, + "probability": 0.8174 + }, + { + "start": 6420.7, + "end": 6425.04, + "probability": 0.9956 + }, + { + "start": 6425.18, + "end": 6426.41, + "probability": 0.9517 + }, + { + "start": 6427.14, + "end": 6428.74, + "probability": 0.9498 + }, + { + "start": 6429.0, + "end": 6430.2, + "probability": 0.8556 + }, + { + "start": 6430.3, + "end": 6436.02, + "probability": 0.9624 + }, + { + "start": 6436.52, + "end": 6439.88, + "probability": 0.897 + }, + { + "start": 6439.92, + "end": 6443.08, + "probability": 0.9219 + }, + { + "start": 6443.54, + "end": 6445.66, + "probability": 0.9893 + }, + { + "start": 6446.14, + "end": 6450.7, + "probability": 0.9941 + }, + { + "start": 6450.82, + "end": 6451.92, + "probability": 0.8757 + }, + { + "start": 6452.2, + "end": 6455.52, + "probability": 0.9783 + }, + { + "start": 6455.62, + "end": 6459.58, + "probability": 0.9459 + }, + { + "start": 6459.76, + "end": 6464.38, + "probability": 0.9935 + }, + { + "start": 6464.52, + "end": 6467.36, + "probability": 0.9939 + }, + { + "start": 6467.36, + "end": 6471.76, + "probability": 0.9785 + }, + { + "start": 6472.14, + "end": 6473.32, + "probability": 0.9679 + }, + { + "start": 6473.46, + "end": 6476.14, + "probability": 0.702 + }, + { + "start": 6476.2, + "end": 6477.06, + "probability": 0.484 + }, + { + "start": 6477.66, + "end": 6482.1, + "probability": 0.9929 + }, + { + "start": 6482.24, + "end": 6485.03, + "probability": 0.8716 + }, + { + "start": 6485.08, + "end": 6489.15, + "probability": 0.9847 + }, + { + "start": 6489.56, + "end": 6491.48, + "probability": 0.9985 + }, + { + "start": 6492.14, + "end": 6494.34, + "probability": 0.7777 + }, + { + "start": 6494.88, + "end": 6498.06, + "probability": 0.7615 + }, + { + "start": 6499.38, + "end": 6502.56, + "probability": 0.998 + }, + { + "start": 6502.8, + "end": 6508.7, + "probability": 0.9937 + }, + { + "start": 6509.3, + "end": 6509.82, + "probability": 0.738 + }, + { + "start": 6509.82, + "end": 6512.32, + "probability": 0.9098 + }, + { + "start": 6513.16, + "end": 6515.54, + "probability": 0.752 + }, + { + "start": 6515.72, + "end": 6516.95, + "probability": 0.8178 + }, + { + "start": 6522.1, + "end": 6525.82, + "probability": 0.9533 + }, + { + "start": 6528.1, + "end": 6528.62, + "probability": 0.7758 + }, + { + "start": 6531.9, + "end": 6534.04, + "probability": 0.6138 + }, + { + "start": 6551.5, + "end": 6552.57, + "probability": 0.5787 + }, + { + "start": 6553.88, + "end": 6554.2, + "probability": 0.333 + }, + { + "start": 6561.58, + "end": 6565.76, + "probability": 0.7765 + }, + { + "start": 6566.48, + "end": 6570.94, + "probability": 0.6217 + }, + { + "start": 6571.5, + "end": 6575.14, + "probability": 0.4761 + }, + { + "start": 6575.16, + "end": 6576.4, + "probability": 0.7929 + }, + { + "start": 6603.7, + "end": 6603.94, + "probability": 0.307 + }, + { + "start": 6604.18, + "end": 6605.46, + "probability": 0.5402 + }, + { + "start": 6606.1, + "end": 6607.98, + "probability": 0.7632 + }, + { + "start": 6608.94, + "end": 6610.86, + "probability": 0.8343 + }, + { + "start": 6612.04, + "end": 6615.42, + "probability": 0.9668 + }, + { + "start": 6615.7, + "end": 6616.7, + "probability": 0.9041 + }, + { + "start": 6616.9, + "end": 6618.62, + "probability": 0.6267 + }, + { + "start": 6618.68, + "end": 6624.76, + "probability": 0.9376 + }, + { + "start": 6625.54, + "end": 6626.82, + "probability": 0.8461 + }, + { + "start": 6627.64, + "end": 6631.32, + "probability": 0.924 + }, + { + "start": 6632.76, + "end": 6633.34, + "probability": 0.3386 + }, + { + "start": 6633.42, + "end": 6634.88, + "probability": 0.6006 + }, + { + "start": 6634.88, + "end": 6636.5, + "probability": 0.9858 + }, + { + "start": 6636.74, + "end": 6642.18, + "probability": 0.9653 + }, + { + "start": 6642.92, + "end": 6646.22, + "probability": 0.9513 + }, + { + "start": 6647.34, + "end": 6649.92, + "probability": 0.8817 + }, + { + "start": 6650.18, + "end": 6652.44, + "probability": 0.8875 + }, + { + "start": 6653.28, + "end": 6659.72, + "probability": 0.967 + }, + { + "start": 6659.82, + "end": 6662.06, + "probability": 0.9995 + }, + { + "start": 6663.56, + "end": 6666.08, + "probability": 0.9797 + }, + { + "start": 6667.12, + "end": 6670.3, + "probability": 0.9631 + }, + { + "start": 6671.4, + "end": 6676.52, + "probability": 0.9287 + }, + { + "start": 6677.48, + "end": 6678.14, + "probability": 0.8102 + }, + { + "start": 6678.28, + "end": 6681.14, + "probability": 0.4026 + }, + { + "start": 6681.14, + "end": 6686.68, + "probability": 0.9691 + }, + { + "start": 6686.8, + "end": 6687.84, + "probability": 0.9208 + }, + { + "start": 6688.32, + "end": 6689.12, + "probability": 0.718 + }, + { + "start": 6689.7, + "end": 6691.22, + "probability": 0.9565 + }, + { + "start": 6694.14, + "end": 6696.14, + "probability": 0.9676 + }, + { + "start": 6697.43, + "end": 6701.56, + "probability": 0.9656 + }, + { + "start": 6702.18, + "end": 6703.56, + "probability": 0.4052 + }, + { + "start": 6704.5, + "end": 6705.62, + "probability": 0.8519 + }, + { + "start": 6706.54, + "end": 6708.24, + "probability": 0.2716 + }, + { + "start": 6708.48, + "end": 6710.14, + "probability": 0.9343 + }, + { + "start": 6710.22, + "end": 6714.44, + "probability": 0.9916 + }, + { + "start": 6715.08, + "end": 6717.14, + "probability": 0.9924 + }, + { + "start": 6717.38, + "end": 6722.0, + "probability": 0.9804 + }, + { + "start": 6722.12, + "end": 6724.86, + "probability": 0.8853 + }, + { + "start": 6729.48, + "end": 6735.6, + "probability": 0.9956 + }, + { + "start": 6736.74, + "end": 6740.4, + "probability": 0.8948 + }, + { + "start": 6740.4, + "end": 6743.8, + "probability": 0.7904 + }, + { + "start": 6744.8, + "end": 6748.82, + "probability": 0.9932 + }, + { + "start": 6749.42, + "end": 6749.5, + "probability": 0.6877 + }, + { + "start": 6749.66, + "end": 6752.5, + "probability": 0.999 + }, + { + "start": 6753.8, + "end": 6757.12, + "probability": 0.9194 + }, + { + "start": 6757.12, + "end": 6760.86, + "probability": 0.9468 + }, + { + "start": 6761.4, + "end": 6763.64, + "probability": 0.9486 + }, + { + "start": 6764.4, + "end": 6767.42, + "probability": 0.995 + }, + { + "start": 6768.38, + "end": 6771.46, + "probability": 0.8942 + }, + { + "start": 6773.26, + "end": 6773.54, + "probability": 0.2671 + }, + { + "start": 6773.76, + "end": 6776.98, + "probability": 0.9526 + }, + { + "start": 6777.24, + "end": 6778.92, + "probability": 0.9922 + }, + { + "start": 6779.04, + "end": 6779.72, + "probability": 0.6854 + }, + { + "start": 6779.84, + "end": 6783.34, + "probability": 0.9578 + }, + { + "start": 6783.98, + "end": 6787.02, + "probability": 0.9833 + }, + { + "start": 6787.62, + "end": 6788.76, + "probability": 0.9471 + }, + { + "start": 6788.88, + "end": 6790.32, + "probability": 0.5717 + }, + { + "start": 6791.31, + "end": 6797.3, + "probability": 0.9738 + }, + { + "start": 6797.46, + "end": 6797.64, + "probability": 0.7828 + }, + { + "start": 6797.84, + "end": 6800.56, + "probability": 0.9907 + }, + { + "start": 6801.88, + "end": 6808.52, + "probability": 0.9797 + }, + { + "start": 6809.26, + "end": 6811.44, + "probability": 0.9475 + }, + { + "start": 6811.54, + "end": 6816.24, + "probability": 0.9725 + }, + { + "start": 6816.64, + "end": 6817.08, + "probability": 0.8545 + }, + { + "start": 6817.24, + "end": 6821.08, + "probability": 0.9804 + }, + { + "start": 6821.2, + "end": 6821.46, + "probability": 0.798 + }, + { + "start": 6821.56, + "end": 6822.82, + "probability": 0.8209 + }, + { + "start": 6824.02, + "end": 6826.23, + "probability": 0.9166 + }, + { + "start": 6826.52, + "end": 6827.86, + "probability": 0.9917 + }, + { + "start": 6827.94, + "end": 6830.6, + "probability": 0.9827 + }, + { + "start": 6831.3, + "end": 6835.26, + "probability": 0.9946 + }, + { + "start": 6837.0, + "end": 6841.96, + "probability": 0.9873 + }, + { + "start": 6841.96, + "end": 6847.14, + "probability": 0.998 + }, + { + "start": 6848.22, + "end": 6853.22, + "probability": 0.8698 + }, + { + "start": 6853.38, + "end": 6857.06, + "probability": 0.9913 + }, + { + "start": 6857.3, + "end": 6858.34, + "probability": 0.9081 + }, + { + "start": 6859.2, + "end": 6861.04, + "probability": 0.9333 + }, + { + "start": 6861.96, + "end": 6868.06, + "probability": 0.9651 + }, + { + "start": 6868.9, + "end": 6870.98, + "probability": 0.9968 + }, + { + "start": 6871.24, + "end": 6872.65, + "probability": 0.9937 + }, + { + "start": 6872.84, + "end": 6873.32, + "probability": 0.5275 + }, + { + "start": 6873.42, + "end": 6875.0, + "probability": 0.8775 + }, + { + "start": 6875.58, + "end": 6879.14, + "probability": 0.8023 + }, + { + "start": 6880.0, + "end": 6883.68, + "probability": 0.9685 + }, + { + "start": 6884.28, + "end": 6887.3, + "probability": 0.9701 + }, + { + "start": 6887.76, + "end": 6888.94, + "probability": 0.8846 + }, + { + "start": 6890.06, + "end": 6891.6, + "probability": 0.807 + }, + { + "start": 6892.18, + "end": 6893.86, + "probability": 0.9987 + }, + { + "start": 6894.92, + "end": 6896.62, + "probability": 0.8137 + }, + { + "start": 6896.86, + "end": 6898.4, + "probability": 0.9543 + }, + { + "start": 6898.68, + "end": 6899.12, + "probability": 0.8424 + }, + { + "start": 6899.26, + "end": 6899.58, + "probability": 0.9351 + }, + { + "start": 6899.7, + "end": 6899.98, + "probability": 0.9053 + }, + { + "start": 6900.08, + "end": 6900.58, + "probability": 0.8278 + }, + { + "start": 6901.56, + "end": 6904.2, + "probability": 0.9331 + }, + { + "start": 6904.2, + "end": 6905.28, + "probability": 0.8438 + }, + { + "start": 6905.48, + "end": 6906.14, + "probability": 0.7217 + }, + { + "start": 6906.2, + "end": 6906.64, + "probability": 0.9071 + }, + { + "start": 6906.72, + "end": 6907.96, + "probability": 0.7211 + }, + { + "start": 6908.96, + "end": 6911.88, + "probability": 0.9434 + }, + { + "start": 6912.44, + "end": 6915.5, + "probability": 0.8187 + }, + { + "start": 6916.26, + "end": 6918.88, + "probability": 0.9237 + }, + { + "start": 6919.1, + "end": 6921.2, + "probability": 0.7883 + }, + { + "start": 6921.84, + "end": 6922.78, + "probability": 0.9951 + }, + { + "start": 6923.34, + "end": 6926.88, + "probability": 0.9878 + }, + { + "start": 6927.92, + "end": 6932.16, + "probability": 0.8247 + }, + { + "start": 6932.64, + "end": 6934.18, + "probability": 0.9992 + }, + { + "start": 6934.44, + "end": 6937.46, + "probability": 0.9878 + }, + { + "start": 6937.54, + "end": 6940.54, + "probability": 0.994 + }, + { + "start": 6941.46, + "end": 6942.14, + "probability": 0.6505 + }, + { + "start": 6942.24, + "end": 6945.02, + "probability": 0.9208 + }, + { + "start": 6945.46, + "end": 6947.04, + "probability": 0.7446 + }, + { + "start": 6947.26, + "end": 6952.28, + "probability": 0.9855 + }, + { + "start": 6952.94, + "end": 6954.29, + "probability": 0.8674 + }, + { + "start": 6954.86, + "end": 6959.46, + "probability": 0.9508 + }, + { + "start": 6960.2, + "end": 6960.7, + "probability": 0.4352 + }, + { + "start": 6960.9, + "end": 6967.32, + "probability": 0.99 + }, + { + "start": 6968.18, + "end": 6973.96, + "probability": 0.9787 + }, + { + "start": 6974.7, + "end": 6976.76, + "probability": 0.9783 + }, + { + "start": 6976.86, + "end": 6979.86, + "probability": 0.9059 + }, + { + "start": 6980.44, + "end": 6983.66, + "probability": 0.9241 + }, + { + "start": 6983.92, + "end": 6984.14, + "probability": 0.6376 + }, + { + "start": 6984.16, + "end": 6984.78, + "probability": 0.6728 + }, + { + "start": 6985.9, + "end": 6986.98, + "probability": 0.8009 + }, + { + "start": 6988.84, + "end": 6991.5, + "probability": 0.319 + }, + { + "start": 6991.5, + "end": 6991.5, + "probability": 0.3247 + }, + { + "start": 6991.5, + "end": 6991.5, + "probability": 0.1391 + }, + { + "start": 6991.5, + "end": 6991.64, + "probability": 0.3168 + }, + { + "start": 6993.0, + "end": 6996.06, + "probability": 0.1731 + }, + { + "start": 6998.72, + "end": 6999.14, + "probability": 0.7664 + }, + { + "start": 7010.64, + "end": 7011.76, + "probability": 0.8622 + }, + { + "start": 7013.18, + "end": 7014.2, + "probability": 0.9172 + }, + { + "start": 7015.54, + "end": 7017.26, + "probability": 0.6575 + }, + { + "start": 7017.28, + "end": 7018.0, + "probability": 0.8781 + }, + { + "start": 7018.9, + "end": 7019.84, + "probability": 0.9987 + }, + { + "start": 7021.06, + "end": 7022.42, + "probability": 0.9941 + }, + { + "start": 7024.58, + "end": 7026.46, + "probability": 0.9833 + }, + { + "start": 7026.48, + "end": 7028.29, + "probability": 0.9948 + }, + { + "start": 7029.78, + "end": 7032.38, + "probability": 0.1498 + }, + { + "start": 7033.62, + "end": 7033.62, + "probability": 0.0714 + }, + { + "start": 7033.62, + "end": 7034.5, + "probability": 0.6069 + }, + { + "start": 7037.08, + "end": 7037.78, + "probability": 0.7679 + }, + { + "start": 7038.42, + "end": 7039.42, + "probability": 0.8067 + }, + { + "start": 7040.8, + "end": 7044.66, + "probability": 0.9707 + }, + { + "start": 7045.8, + "end": 7047.66, + "probability": 0.8531 + }, + { + "start": 7048.74, + "end": 7049.9, + "probability": 0.5002 + }, + { + "start": 7050.7, + "end": 7052.58, + "probability": 0.9213 + }, + { + "start": 7053.46, + "end": 7054.8, + "probability": 0.9801 + }, + { + "start": 7056.16, + "end": 7057.14, + "probability": 0.8913 + }, + { + "start": 7058.26, + "end": 7059.14, + "probability": 0.9983 + }, + { + "start": 7059.78, + "end": 7060.48, + "probability": 0.9815 + }, + { + "start": 7061.3, + "end": 7064.63, + "probability": 0.998 + }, + { + "start": 7065.4, + "end": 7065.74, + "probability": 0.7362 + }, + { + "start": 7066.6, + "end": 7066.76, + "probability": 0.4806 + }, + { + "start": 7068.24, + "end": 7069.64, + "probability": 0.9666 + }, + { + "start": 7070.98, + "end": 7071.46, + "probability": 0.9402 + }, + { + "start": 7072.44, + "end": 7074.5, + "probability": 0.9505 + }, + { + "start": 7074.78, + "end": 7076.28, + "probability": 0.8237 + }, + { + "start": 7078.0, + "end": 7079.14, + "probability": 0.7813 + }, + { + "start": 7079.2, + "end": 7083.4, + "probability": 0.9831 + }, + { + "start": 7086.8, + "end": 7087.08, + "probability": 0.4653 + }, + { + "start": 7088.36, + "end": 7091.32, + "probability": 0.8786 + }, + { + "start": 7092.26, + "end": 7093.1, + "probability": 0.2873 + }, + { + "start": 7094.32, + "end": 7101.02, + "probability": 0.8842 + }, + { + "start": 7101.16, + "end": 7102.64, + "probability": 0.978 + }, + { + "start": 7102.74, + "end": 7103.54, + "probability": 0.5676 + }, + { + "start": 7104.44, + "end": 7106.24, + "probability": 0.9333 + }, + { + "start": 7107.06, + "end": 7108.14, + "probability": 0.7008 + }, + { + "start": 7109.46, + "end": 7111.24, + "probability": 0.9568 + }, + { + "start": 7112.36, + "end": 7114.88, + "probability": 0.8776 + }, + { + "start": 7115.82, + "end": 7116.68, + "probability": 0.9023 + }, + { + "start": 7117.36, + "end": 7118.24, + "probability": 0.9705 + }, + { + "start": 7120.6, + "end": 7121.38, + "probability": 0.8639 + }, + { + "start": 7121.95, + "end": 7123.4, + "probability": 0.1046 + }, + { + "start": 7124.32, + "end": 7125.18, + "probability": 0.0401 + }, + { + "start": 7125.18, + "end": 7125.7, + "probability": 0.1357 + }, + { + "start": 7126.18, + "end": 7126.94, + "probability": 0.4461 + }, + { + "start": 7127.14, + "end": 7128.02, + "probability": 0.1902 + }, + { + "start": 7128.18, + "end": 7128.72, + "probability": 0.1217 + }, + { + "start": 7128.8, + "end": 7130.72, + "probability": 0.8046 + }, + { + "start": 7130.94, + "end": 7131.88, + "probability": 0.7616 + }, + { + "start": 7132.42, + "end": 7133.92, + "probability": 0.9009 + }, + { + "start": 7135.36, + "end": 7137.34, + "probability": 0.748 + }, + { + "start": 7138.2, + "end": 7138.62, + "probability": 0.6092 + }, + { + "start": 7138.74, + "end": 7139.6, + "probability": 0.686 + }, + { + "start": 7140.24, + "end": 7141.54, + "probability": 0.7964 + }, + { + "start": 7142.68, + "end": 7143.56, + "probability": 0.8609 + }, + { + "start": 7144.26, + "end": 7145.98, + "probability": 0.8592 + }, + { + "start": 7146.74, + "end": 7150.04, + "probability": 0.9829 + }, + { + "start": 7151.22, + "end": 7152.88, + "probability": 0.7712 + }, + { + "start": 7154.12, + "end": 7154.16, + "probability": 0.0079 + }, + { + "start": 7154.16, + "end": 7155.4, + "probability": 0.7786 + }, + { + "start": 7155.94, + "end": 7157.44, + "probability": 0.8744 + }, + { + "start": 7158.14, + "end": 7159.26, + "probability": 0.6594 + }, + { + "start": 7159.6, + "end": 7160.44, + "probability": 0.9462 + }, + { + "start": 7161.0, + "end": 7162.84, + "probability": 0.8911 + }, + { + "start": 7176.04, + "end": 7179.32, + "probability": 0.94 + }, + { + "start": 7188.4, + "end": 7188.6, + "probability": 0.0734 + }, + { + "start": 7188.6, + "end": 7188.62, + "probability": 0.0174 + }, + { + "start": 7190.13, + "end": 7190.2, + "probability": 0.1426 + }, + { + "start": 7190.2, + "end": 7192.26, + "probability": 0.0086 + }, + { + "start": 7193.3, + "end": 7194.84, + "probability": 0.016 + }, + { + "start": 7196.28, + "end": 7199.2, + "probability": 0.0576 + }, + { + "start": 7200.92, + "end": 7202.14, + "probability": 0.0661 + }, + { + "start": 7205.63, + "end": 7206.04, + "probability": 0.0808 + }, + { + "start": 7207.06, + "end": 7207.48, + "probability": 0.0345 + }, + { + "start": 7207.48, + "end": 7209.56, + "probability": 0.0324 + }, + { + "start": 7210.16, + "end": 7210.26, + "probability": 0.0686 + }, + { + "start": 7210.26, + "end": 7211.62, + "probability": 0.2253 + }, + { + "start": 7211.8, + "end": 7214.62, + "probability": 0.0569 + }, + { + "start": 7215.88, + "end": 7215.96, + "probability": 0.0849 + }, + { + "start": 7215.96, + "end": 7215.96, + "probability": 0.1825 + }, + { + "start": 7215.96, + "end": 7218.44, + "probability": 0.228 + }, + { + "start": 7218.76, + "end": 7220.22, + "probability": 0.0291 + }, + { + "start": 7221.33, + "end": 7222.44, + "probability": 0.0542 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7234.27, + "end": 7237.24, + "probability": 0.1954 + }, + { + "start": 7237.58, + "end": 7237.94, + "probability": 0.3835 + }, + { + "start": 7240.24, + "end": 7242.32, + "probability": 0.9626 + }, + { + "start": 7244.1, + "end": 7245.84, + "probability": 0.6128 + }, + { + "start": 7247.72, + "end": 7250.42, + "probability": 0.9268 + }, + { + "start": 7251.86, + "end": 7252.74, + "probability": 0.7875 + }, + { + "start": 7253.94, + "end": 7256.28, + "probability": 0.9932 + }, + { + "start": 7257.34, + "end": 7258.02, + "probability": 0.6453 + }, + { + "start": 7258.14, + "end": 7258.4, + "probability": 0.8984 + }, + { + "start": 7258.5, + "end": 7259.99, + "probability": 0.7658 + }, + { + "start": 7260.48, + "end": 7263.68, + "probability": 0.8877 + }, + { + "start": 7263.9, + "end": 7264.98, + "probability": 0.8857 + }, + { + "start": 7265.02, + "end": 7265.8, + "probability": 0.8967 + }, + { + "start": 7266.6, + "end": 7267.88, + "probability": 0.9723 + }, + { + "start": 7268.8, + "end": 7269.74, + "probability": 0.9653 + }, + { + "start": 7270.06, + "end": 7271.38, + "probability": 0.916 + }, + { + "start": 7272.34, + "end": 7276.58, + "probability": 0.8113 + }, + { + "start": 7277.14, + "end": 7278.33, + "probability": 0.4913 + }, + { + "start": 7279.0, + "end": 7282.34, + "probability": 0.9087 + }, + { + "start": 7282.44, + "end": 7283.76, + "probability": 0.924 + }, + { + "start": 7284.0, + "end": 7286.04, + "probability": 0.8901 + }, + { + "start": 7288.06, + "end": 7292.18, + "probability": 0.9132 + }, + { + "start": 7292.62, + "end": 7293.3, + "probability": 0.6732 + }, + { + "start": 7293.44, + "end": 7296.24, + "probability": 0.9501 + }, + { + "start": 7296.52, + "end": 7297.34, + "probability": 0.848 + }, + { + "start": 7297.4, + "end": 7298.12, + "probability": 0.9683 + }, + { + "start": 7298.92, + "end": 7299.74, + "probability": 0.9017 + }, + { + "start": 7299.78, + "end": 7301.78, + "probability": 0.9784 + }, + { + "start": 7302.46, + "end": 7305.0, + "probability": 0.9824 + }, + { + "start": 7305.74, + "end": 7313.18, + "probability": 0.9257 + }, + { + "start": 7314.36, + "end": 7317.78, + "probability": 0.9799 + }, + { + "start": 7318.64, + "end": 7319.94, + "probability": 0.9918 + }, + { + "start": 7320.02, + "end": 7320.24, + "probability": 0.7717 + }, + { + "start": 7320.46, + "end": 7321.38, + "probability": 0.7996 + }, + { + "start": 7322.1, + "end": 7323.24, + "probability": 0.981 + }, + { + "start": 7323.34, + "end": 7325.28, + "probability": 0.9755 + }, + { + "start": 7325.9, + "end": 7330.62, + "probability": 0.9808 + }, + { + "start": 7330.68, + "end": 7331.2, + "probability": 0.826 + }, + { + "start": 7331.76, + "end": 7335.92, + "probability": 0.9909 + }, + { + "start": 7336.1, + "end": 7339.1, + "probability": 0.9411 + }, + { + "start": 7339.18, + "end": 7339.64, + "probability": 0.6693 + }, + { + "start": 7339.72, + "end": 7343.08, + "probability": 0.8738 + }, + { + "start": 7344.06, + "end": 7347.7, + "probability": 0.9693 + }, + { + "start": 7348.56, + "end": 7351.26, + "probability": 0.9925 + }, + { + "start": 7352.12, + "end": 7353.66, + "probability": 0.9766 + }, + { + "start": 7354.26, + "end": 7356.44, + "probability": 0.9104 + }, + { + "start": 7357.34, + "end": 7360.78, + "probability": 0.9765 + }, + { + "start": 7360.86, + "end": 7362.42, + "probability": 0.8779 + }, + { + "start": 7363.18, + "end": 7365.18, + "probability": 0.9762 + }, + { + "start": 7365.92, + "end": 7367.72, + "probability": 0.9321 + }, + { + "start": 7367.88, + "end": 7371.66, + "probability": 0.9361 + }, + { + "start": 7371.66, + "end": 7375.08, + "probability": 0.885 + }, + { + "start": 7375.8, + "end": 7377.38, + "probability": 0.5846 + }, + { + "start": 7377.6, + "end": 7379.98, + "probability": 0.9215 + }, + { + "start": 7380.7, + "end": 7381.92, + "probability": 0.9581 + }, + { + "start": 7382.6, + "end": 7382.98, + "probability": 0.7579 + }, + { + "start": 7383.22, + "end": 7384.7, + "probability": 0.9871 + }, + { + "start": 7385.16, + "end": 7387.01, + "probability": 0.986 + }, + { + "start": 7387.06, + "end": 7388.48, + "probability": 0.9103 + }, + { + "start": 7389.68, + "end": 7392.28, + "probability": 0.9878 + }, + { + "start": 7392.98, + "end": 7393.86, + "probability": 0.8271 + }, + { + "start": 7394.86, + "end": 7396.9, + "probability": 0.9988 + }, + { + "start": 7397.5, + "end": 7401.18, + "probability": 0.8706 + }, + { + "start": 7401.66, + "end": 7405.52, + "probability": 0.7355 + }, + { + "start": 7405.78, + "end": 7409.2, + "probability": 0.8782 + }, + { + "start": 7409.8, + "end": 7410.32, + "probability": 0.7802 + }, + { + "start": 7410.4, + "end": 7411.32, + "probability": 0.9865 + }, + { + "start": 7411.42, + "end": 7413.54, + "probability": 0.9897 + }, + { + "start": 7414.08, + "end": 7416.12, + "probability": 0.9893 + }, + { + "start": 7416.92, + "end": 7418.21, + "probability": 0.9985 + }, + { + "start": 7418.95, + "end": 7422.31, + "probability": 0.9987 + }, + { + "start": 7422.89, + "end": 7424.51, + "probability": 0.9805 + }, + { + "start": 7425.05, + "end": 7426.45, + "probability": 0.8024 + }, + { + "start": 7426.55, + "end": 7428.21, + "probability": 0.832 + }, + { + "start": 7428.59, + "end": 7429.69, + "probability": 0.8654 + }, + { + "start": 7430.31, + "end": 7432.35, + "probability": 0.9625 + }, + { + "start": 7432.91, + "end": 7438.47, + "probability": 0.8862 + }, + { + "start": 7439.83, + "end": 7442.83, + "probability": 0.9009 + }, + { + "start": 7442.93, + "end": 7444.25, + "probability": 0.5258 + }, + { + "start": 7445.75, + "end": 7449.15, + "probability": 0.988 + }, + { + "start": 7450.15, + "end": 7452.71, + "probability": 0.9976 + }, + { + "start": 7453.27, + "end": 7455.73, + "probability": 0.9849 + }, + { + "start": 7456.19, + "end": 7456.79, + "probability": 0.6068 + }, + { + "start": 7456.91, + "end": 7457.25, + "probability": 0.7874 + }, + { + "start": 7457.63, + "end": 7458.23, + "probability": 0.7261 + }, + { + "start": 7459.45, + "end": 7462.07, + "probability": 0.98 + }, + { + "start": 7462.85, + "end": 7463.45, + "probability": 0.483 + }, + { + "start": 7464.91, + "end": 7465.87, + "probability": 0.8967 + }, + { + "start": 7468.85, + "end": 7471.41, + "probability": 0.6724 + }, + { + "start": 7471.87, + "end": 7474.53, + "probability": 0.9609 + }, + { + "start": 7474.75, + "end": 7476.43, + "probability": 0.1086 + }, + { + "start": 7477.19, + "end": 7479.42, + "probability": 0.9382 + }, + { + "start": 7479.63, + "end": 7480.63, + "probability": 0.9198 + }, + { + "start": 7481.11, + "end": 7483.21, + "probability": 0.8751 + }, + { + "start": 7483.53, + "end": 7486.13, + "probability": 0.274 + }, + { + "start": 7486.49, + "end": 7491.84, + "probability": 0.2501 + }, + { + "start": 7494.91, + "end": 7497.11, + "probability": 0.0051 + }, + { + "start": 7498.13, + "end": 7498.81, + "probability": 0.1415 + }, + { + "start": 7499.47, + "end": 7499.73, + "probability": 0.0256 + }, + { + "start": 7499.73, + "end": 7499.73, + "probability": 0.0263 + }, + { + "start": 7499.73, + "end": 7500.29, + "probability": 0.238 + }, + { + "start": 7500.29, + "end": 7502.03, + "probability": 0.365 + }, + { + "start": 7503.67, + "end": 7504.15, + "probability": 0.108 + }, + { + "start": 7506.37, + "end": 7507.03, + "probability": 0.0306 + }, + { + "start": 7516.52, + "end": 7519.59, + "probability": 0.0809 + }, + { + "start": 7521.31, + "end": 7524.91, + "probability": 0.1497 + }, + { + "start": 7525.07, + "end": 7527.05, + "probability": 0.1702 + }, + { + "start": 7528.01, + "end": 7530.41, + "probability": 0.0143 + }, + { + "start": 7532.41, + "end": 7533.05, + "probability": 0.0689 + }, + { + "start": 7534.63, + "end": 7534.87, + "probability": 0.0745 + }, + { + "start": 7534.87, + "end": 7535.41, + "probability": 0.3436 + }, + { + "start": 7535.99, + "end": 7536.95, + "probability": 0.1131 + }, + { + "start": 7538.35, + "end": 7538.85, + "probability": 0.2523 + }, + { + "start": 7540.33, + "end": 7540.99, + "probability": 0.1748 + }, + { + "start": 7541.73, + "end": 7541.93, + "probability": 0.115 + }, + { + "start": 7541.93, + "end": 7542.41, + "probability": 0.0216 + }, + { + "start": 7542.99, + "end": 7543.51, + "probability": 0.0398 + }, + { + "start": 7543.51, + "end": 7543.51, + "probability": 0.0955 + }, + { + "start": 7543.51, + "end": 7543.63, + "probability": 0.0238 + }, + { + "start": 7543.63, + "end": 7543.63, + "probability": 0.0291 + }, + { + "start": 7543.63, + "end": 7543.97, + "probability": 0.3262 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7544.0, + "end": 7544.0, + "probability": 0.0 + }, + { + "start": 7545.02, + "end": 7550.26, + "probability": 0.7256 + }, + { + "start": 7550.34, + "end": 7552.62, + "probability": 0.6923 + }, + { + "start": 7553.2, + "end": 7557.04, + "probability": 0.9817 + }, + { + "start": 7557.2, + "end": 7561.96, + "probability": 0.9971 + }, + { + "start": 7562.24, + "end": 7564.62, + "probability": 0.9976 + }, + { + "start": 7565.94, + "end": 7568.48, + "probability": 0.9753 + }, + { + "start": 7568.48, + "end": 7572.1, + "probability": 0.9945 + }, + { + "start": 7572.54, + "end": 7575.02, + "probability": 0.9479 + }, + { + "start": 7575.44, + "end": 7579.4, + "probability": 0.9751 + }, + { + "start": 7580.02, + "end": 7580.46, + "probability": 0.6646 + }, + { + "start": 7580.64, + "end": 7583.02, + "probability": 0.9454 + }, + { + "start": 7583.06, + "end": 7586.3, + "probability": 0.2794 + }, + { + "start": 7586.9, + "end": 7588.58, + "probability": 0.9462 + }, + { + "start": 7589.1, + "end": 7590.56, + "probability": 0.9992 + }, + { + "start": 7591.08, + "end": 7593.24, + "probability": 0.9945 + }, + { + "start": 7593.8, + "end": 7595.7, + "probability": 0.7059 + }, + { + "start": 7596.62, + "end": 7599.12, + "probability": 0.9336 + }, + { + "start": 7599.44, + "end": 7600.02, + "probability": 0.7746 + }, + { + "start": 7600.36, + "end": 7603.84, + "probability": 0.9363 + }, + { + "start": 7603.84, + "end": 7607.42, + "probability": 0.9956 + }, + { + "start": 7608.58, + "end": 7613.0, + "probability": 0.9863 + }, + { + "start": 7613.0, + "end": 7618.02, + "probability": 0.9956 + }, + { + "start": 7618.42, + "end": 7621.42, + "probability": 0.9487 + }, + { + "start": 7621.9, + "end": 7623.84, + "probability": 0.8413 + }, + { + "start": 7624.6, + "end": 7625.28, + "probability": 0.6699 + }, + { + "start": 7627.46, + "end": 7630.0, + "probability": 0.88 + }, + { + "start": 7630.12, + "end": 7631.14, + "probability": 0.523 + }, + { + "start": 7641.08, + "end": 7641.5, + "probability": 0.6449 + }, + { + "start": 7641.88, + "end": 7642.02, + "probability": 0.24 + }, + { + "start": 7642.02, + "end": 7643.72, + "probability": 0.6378 + }, + { + "start": 7647.8, + "end": 7651.04, + "probability": 0.6268 + }, + { + "start": 7651.16, + "end": 7652.31, + "probability": 0.9854 + }, + { + "start": 7654.6, + "end": 7654.92, + "probability": 0.9695 + }, + { + "start": 7655.68, + "end": 7657.46, + "probability": 0.696 + }, + { + "start": 7660.16, + "end": 7665.32, + "probability": 0.9873 + }, + { + "start": 7666.78, + "end": 7669.16, + "probability": 0.7898 + }, + { + "start": 7670.2, + "end": 7676.4, + "probability": 0.9416 + }, + { + "start": 7677.4, + "end": 7679.52, + "probability": 0.98 + }, + { + "start": 7680.58, + "end": 7681.66, + "probability": 0.8123 + }, + { + "start": 7683.72, + "end": 7686.6, + "probability": 0.9958 + }, + { + "start": 7687.54, + "end": 7688.4, + "probability": 0.9447 + }, + { + "start": 7689.88, + "end": 7691.32, + "probability": 0.9101 + }, + { + "start": 7692.38, + "end": 7694.38, + "probability": 0.9258 + }, + { + "start": 7695.16, + "end": 7696.02, + "probability": 0.9456 + }, + { + "start": 7696.76, + "end": 7696.9, + "probability": 0.6682 + }, + { + "start": 7696.96, + "end": 7697.24, + "probability": 0.3335 + }, + { + "start": 7697.26, + "end": 7700.58, + "probability": 0.6642 + }, + { + "start": 7700.74, + "end": 7702.52, + "probability": 0.5343 + }, + { + "start": 7703.06, + "end": 7704.86, + "probability": 0.6786 + }, + { + "start": 7704.88, + "end": 7705.12, + "probability": 0.8647 + }, + { + "start": 7705.42, + "end": 7705.74, + "probability": 0.8172 + }, + { + "start": 7705.76, + "end": 7706.32, + "probability": 0.7311 + }, + { + "start": 7706.54, + "end": 7708.08, + "probability": 0.6053 + }, + { + "start": 7708.26, + "end": 7709.44, + "probability": 0.9686 + }, + { + "start": 7709.82, + "end": 7713.92, + "probability": 0.9489 + }, + { + "start": 7714.36, + "end": 7714.5, + "probability": 0.8118 + }, + { + "start": 7714.88, + "end": 7716.02, + "probability": 0.5361 + }, + { + "start": 7716.36, + "end": 7718.68, + "probability": 0.7301 + }, + { + "start": 7719.28, + "end": 7720.57, + "probability": 0.8369 + }, + { + "start": 7721.5, + "end": 7723.96, + "probability": 0.6161 + }, + { + "start": 7724.1, + "end": 7725.46, + "probability": 0.8548 + }, + { + "start": 7725.9, + "end": 7725.98, + "probability": 0.223 + }, + { + "start": 7726.06, + "end": 7726.76, + "probability": 0.3516 + }, + { + "start": 7727.0, + "end": 7728.04, + "probability": 0.4923 + }, + { + "start": 7728.22, + "end": 7729.06, + "probability": 0.5961 + }, + { + "start": 7730.12, + "end": 7730.94, + "probability": 0.5135 + }, + { + "start": 7731.09, + "end": 7733.94, + "probability": 0.8784 + }, + { + "start": 7734.64, + "end": 7735.92, + "probability": 0.9768 + }, + { + "start": 7737.08, + "end": 7737.6, + "probability": 0.8991 + }, + { + "start": 7738.5, + "end": 7739.8, + "probability": 0.9705 + }, + { + "start": 7740.14, + "end": 7740.88, + "probability": 0.9468 + }, + { + "start": 7741.28, + "end": 7743.17, + "probability": 0.9918 + }, + { + "start": 7743.88, + "end": 7746.4, + "probability": 0.9911 + }, + { + "start": 7747.4, + "end": 7747.88, + "probability": 0.5831 + }, + { + "start": 7748.14, + "end": 7749.3, + "probability": 0.7911 + }, + { + "start": 7749.42, + "end": 7750.92, + "probability": 0.9551 + }, + { + "start": 7751.3, + "end": 7755.36, + "probability": 0.9956 + }, + { + "start": 7755.96, + "end": 7756.7, + "probability": 0.5389 + }, + { + "start": 7757.46, + "end": 7760.7, + "probability": 0.9251 + }, + { + "start": 7761.2, + "end": 7766.34, + "probability": 0.9788 + }, + { + "start": 7766.82, + "end": 7768.84, + "probability": 0.9932 + }, + { + "start": 7770.46, + "end": 7772.86, + "probability": 0.9794 + }, + { + "start": 7773.54, + "end": 7774.85, + "probability": 0.9928 + }, + { + "start": 7776.18, + "end": 7777.24, + "probability": 0.6948 + }, + { + "start": 7778.64, + "end": 7779.08, + "probability": 0.7988 + }, + { + "start": 7780.12, + "end": 7782.4, + "probability": 0.6313 + }, + { + "start": 7782.48, + "end": 7783.14, + "probability": 0.8552 + }, + { + "start": 7784.22, + "end": 7786.52, + "probability": 0.9877 + }, + { + "start": 7787.64, + "end": 7789.72, + "probability": 0.9932 + }, + { + "start": 7790.34, + "end": 7792.56, + "probability": 0.5757 + }, + { + "start": 7794.28, + "end": 7795.84, + "probability": 0.9768 + }, + { + "start": 7795.92, + "end": 7798.32, + "probability": 0.905 + }, + { + "start": 7798.4, + "end": 7798.92, + "probability": 0.8483 + }, + { + "start": 7800.7, + "end": 7803.56, + "probability": 0.9131 + }, + { + "start": 7804.34, + "end": 7805.2, + "probability": 0.391 + }, + { + "start": 7805.28, + "end": 7805.92, + "probability": 0.8711 + }, + { + "start": 7806.9, + "end": 7807.73, + "probability": 0.9524 + }, + { + "start": 7808.18, + "end": 7808.44, + "probability": 0.9235 + }, + { + "start": 7808.5, + "end": 7809.36, + "probability": 0.8843 + }, + { + "start": 7809.76, + "end": 7810.64, + "probability": 0.7512 + }, + { + "start": 7811.3, + "end": 7812.7, + "probability": 0.2932 + }, + { + "start": 7812.82, + "end": 7820.12, + "probability": 0.8396 + }, + { + "start": 7820.38, + "end": 7823.7, + "probability": 0.8013 + }, + { + "start": 7824.4, + "end": 7826.27, + "probability": 0.9803 + }, + { + "start": 7827.32, + "end": 7828.62, + "probability": 0.9522 + }, + { + "start": 7828.68, + "end": 7833.56, + "probability": 0.9696 + }, + { + "start": 7834.2, + "end": 7834.84, + "probability": 0.7326 + }, + { + "start": 7835.08, + "end": 7837.26, + "probability": 0.9146 + }, + { + "start": 7838.34, + "end": 7839.02, + "probability": 0.9181 + }, + { + "start": 7839.76, + "end": 7840.69, + "probability": 0.7064 + }, + { + "start": 7841.88, + "end": 7843.44, + "probability": 0.9795 + }, + { + "start": 7844.46, + "end": 7846.26, + "probability": 0.8301 + }, + { + "start": 7847.14, + "end": 7848.08, + "probability": 0.7448 + }, + { + "start": 7849.78, + "end": 7850.76, + "probability": 0.9598 + }, + { + "start": 7851.86, + "end": 7854.02, + "probability": 0.8238 + }, + { + "start": 7854.86, + "end": 7857.65, + "probability": 0.9463 + }, + { + "start": 7858.26, + "end": 7860.34, + "probability": 0.9481 + }, + { + "start": 7860.66, + "end": 7861.96, + "probability": 0.8797 + }, + { + "start": 7862.18, + "end": 7865.38, + "probability": 0.5012 + }, + { + "start": 7865.38, + "end": 7866.6, + "probability": 0.6958 + }, + { + "start": 7866.66, + "end": 7869.3, + "probability": 0.8958 + }, + { + "start": 7870.22, + "end": 7870.52, + "probability": 0.8823 + }, + { + "start": 7870.56, + "end": 7871.02, + "probability": 0.9507 + }, + { + "start": 7871.36, + "end": 7875.34, + "probability": 0.8105 + }, + { + "start": 7875.96, + "end": 7877.42, + "probability": 0.7569 + }, + { + "start": 7877.94, + "end": 7882.72, + "probability": 0.7288 + }, + { + "start": 7883.18, + "end": 7889.46, + "probability": 0.8501 + }, + { + "start": 7889.54, + "end": 7891.04, + "probability": 0.9905 + }, + { + "start": 7891.64, + "end": 7895.92, + "probability": 0.9565 + }, + { + "start": 7896.08, + "end": 7896.7, + "probability": 0.8875 + }, + { + "start": 7897.14, + "end": 7897.44, + "probability": 0.7069 + }, + { + "start": 7897.5, + "end": 7900.52, + "probability": 0.861 + }, + { + "start": 7900.98, + "end": 7901.0, + "probability": 0.1445 + }, + { + "start": 7901.0, + "end": 7901.88, + "probability": 0.8827 + }, + { + "start": 7902.76, + "end": 7904.2, + "probability": 0.89 + }, + { + "start": 7904.86, + "end": 7905.5, + "probability": 0.6489 + }, + { + "start": 7905.7, + "end": 7908.08, + "probability": 0.9287 + }, + { + "start": 7908.94, + "end": 7911.34, + "probability": 0.8143 + }, + { + "start": 7911.98, + "end": 7914.84, + "probability": 0.7965 + }, + { + "start": 7915.28, + "end": 7918.76, + "probability": 0.5403 + }, + { + "start": 7919.44, + "end": 7921.04, + "probability": 0.5119 + }, + { + "start": 7921.34, + "end": 7923.8, + "probability": 0.3585 + }, + { + "start": 7924.46, + "end": 7927.16, + "probability": 0.4575 + }, + { + "start": 7927.38, + "end": 7927.8, + "probability": 0.4535 + }, + { + "start": 7928.26, + "end": 7929.24, + "probability": 0.423 + }, + { + "start": 7929.74, + "end": 7931.5, + "probability": 0.6267 + }, + { + "start": 7931.6, + "end": 7932.22, + "probability": 0.8469 + }, + { + "start": 7932.48, + "end": 7935.76, + "probability": 0.9834 + }, + { + "start": 7935.76, + "end": 7939.22, + "probability": 0.733 + }, + { + "start": 7939.84, + "end": 7940.7, + "probability": 0.8081 + }, + { + "start": 7941.58, + "end": 7943.62, + "probability": 0.6793 + }, + { + "start": 7943.92, + "end": 7944.9, + "probability": 0.3368 + }, + { + "start": 7945.02, + "end": 7947.38, + "probability": 0.7593 + }, + { + "start": 7947.68, + "end": 7948.3, + "probability": 0.7873 + }, + { + "start": 7949.3, + "end": 7950.12, + "probability": 0.7438 + }, + { + "start": 7950.22, + "end": 7950.5, + "probability": 0.8177 + }, + { + "start": 7950.88, + "end": 7951.48, + "probability": 0.5233 + }, + { + "start": 7951.72, + "end": 7952.46, + "probability": 0.6873 + }, + { + "start": 7952.76, + "end": 7954.08, + "probability": 0.8413 + }, + { + "start": 7954.84, + "end": 7956.9, + "probability": 0.9274 + }, + { + "start": 7957.16, + "end": 7958.1, + "probability": 0.7057 + }, + { + "start": 7958.48, + "end": 7959.88, + "probability": 0.927 + }, + { + "start": 7959.96, + "end": 7960.46, + "probability": 0.9212 + }, + { + "start": 7961.04, + "end": 7962.46, + "probability": 0.504 + }, + { + "start": 7962.9, + "end": 7963.26, + "probability": 0.8879 + }, + { + "start": 7964.24, + "end": 7965.82, + "probability": 0.8145 + }, + { + "start": 7965.96, + "end": 7966.23, + "probability": 0.7298 + }, + { + "start": 7967.16, + "end": 7969.2, + "probability": 0.7463 + }, + { + "start": 7969.56, + "end": 7970.02, + "probability": 0.373 + }, + { + "start": 7970.14, + "end": 7971.54, + "probability": 0.743 + }, + { + "start": 7971.78, + "end": 7972.54, + "probability": 0.4172 + }, + { + "start": 7972.62, + "end": 7973.52, + "probability": 0.9539 + }, + { + "start": 7973.58, + "end": 7976.96, + "probability": 0.6859 + }, + { + "start": 7976.96, + "end": 7977.3, + "probability": 0.5058 + }, + { + "start": 7977.94, + "end": 7978.22, + "probability": 0.4866 + }, + { + "start": 7978.32, + "end": 7979.1, + "probability": 0.722 + }, + { + "start": 7980.26, + "end": 7980.84, + "probability": 0.7801 + }, + { + "start": 7981.02, + "end": 7983.32, + "probability": 0.9387 + }, + { + "start": 7983.72, + "end": 7986.28, + "probability": 0.7284 + }, + { + "start": 7986.64, + "end": 7987.8, + "probability": 0.9341 + }, + { + "start": 7987.86, + "end": 7987.86, + "probability": 0.3084 + }, + { + "start": 7988.08, + "end": 7989.38, + "probability": 0.4688 + }, + { + "start": 7989.38, + "end": 7990.55, + "probability": 0.9731 + }, + { + "start": 7990.92, + "end": 7992.45, + "probability": 0.8403 + }, + { + "start": 7992.62, + "end": 7993.46, + "probability": 0.8553 + }, + { + "start": 7993.6, + "end": 7994.62, + "probability": 0.8794 + }, + { + "start": 7994.82, + "end": 7995.5, + "probability": 0.4413 + }, + { + "start": 7995.5, + "end": 7996.08, + "probability": 0.1719 + }, + { + "start": 7996.08, + "end": 7996.34, + "probability": 0.5947 + }, + { + "start": 7996.4, + "end": 7997.14, + "probability": 0.4093 + }, + { + "start": 7997.28, + "end": 7998.06, + "probability": 0.0422 + }, + { + "start": 7998.56, + "end": 8000.04, + "probability": 0.8187 + }, + { + "start": 8000.28, + "end": 8004.06, + "probability": 0.7363 + }, + { + "start": 8004.08, + "end": 8004.2, + "probability": 0.0183 + }, + { + "start": 8005.4, + "end": 8005.96, + "probability": 0.0214 + }, + { + "start": 8005.96, + "end": 8006.84, + "probability": 0.696 + }, + { + "start": 8007.72, + "end": 8011.48, + "probability": 0.9478 + }, + { + "start": 8012.41, + "end": 8012.46, + "probability": 0.1319 + }, + { + "start": 8012.9, + "end": 8013.18, + "probability": 0.5518 + }, + { + "start": 8013.24, + "end": 8014.0, + "probability": 0.6024 + }, + { + "start": 8014.16, + "end": 8017.94, + "probability": 0.9825 + }, + { + "start": 8018.02, + "end": 8020.38, + "probability": 0.9469 + }, + { + "start": 8020.8, + "end": 8023.76, + "probability": 0.5284 + }, + { + "start": 8023.9, + "end": 8023.96, + "probability": 0.2481 + }, + { + "start": 8023.98, + "end": 8027.66, + "probability": 0.926 + }, + { + "start": 8028.22, + "end": 8029.34, + "probability": 0.832 + }, + { + "start": 8029.84, + "end": 8031.58, + "probability": 0.987 + }, + { + "start": 8031.8, + "end": 8032.4, + "probability": 0.8652 + }, + { + "start": 8032.74, + "end": 8033.22, + "probability": 0.9486 + }, + { + "start": 8033.8, + "end": 8035.54, + "probability": 0.8365 + }, + { + "start": 8035.76, + "end": 8041.62, + "probability": 0.4128 + }, + { + "start": 8049.44, + "end": 8050.34, + "probability": 0.4428 + }, + { + "start": 8050.34, + "end": 8054.26, + "probability": 0.205 + }, + { + "start": 8055.08, + "end": 8055.7, + "probability": 0.0228 + }, + { + "start": 8056.74, + "end": 8058.94, + "probability": 0.1585 + }, + { + "start": 8059.36, + "end": 8060.4, + "probability": 0.0197 + }, + { + "start": 8061.34, + "end": 8061.7, + "probability": 0.1007 + }, + { + "start": 8062.04, + "end": 8062.04, + "probability": 0.1516 + }, + { + "start": 8062.7, + "end": 8063.3, + "probability": 0.132 + }, + { + "start": 8063.98, + "end": 8065.76, + "probability": 0.023 + }, + { + "start": 8066.64, + "end": 8068.8, + "probability": 0.0361 + }, + { + "start": 8071.05, + "end": 8071.26, + "probability": 0.056 + }, + { + "start": 8071.5, + "end": 8073.76, + "probability": 0.0406 + }, + { + "start": 8081.14, + "end": 8081.82, + "probability": 0.3644 + }, + { + "start": 8082.42, + "end": 8083.26, + "probability": 0.093 + }, + { + "start": 8083.26, + "end": 8085.22, + "probability": 0.0415 + }, + { + "start": 8086.44, + "end": 8087.24, + "probability": 0.1787 + }, + { + "start": 8087.24, + "end": 8089.06, + "probability": 0.0819 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + }, + { + "start": 8204.72, + "end": 8204.72, + "probability": 0.0 + } + ], + "segments_count": 2794, + "words_count": 14065, + "avg_words_per_segment": 5.034, + "avg_segment_duration": 2.2146, + "avg_words_per_minute": 102.8554, + "plenum_id": "23275", + "duration": 8204.72, + "title": null, + "plenum_date": "2012-06-05" +} \ No newline at end of file