diff --git "a/27594/metadata.json" "b/27594/metadata.json" new file mode 100644--- /dev/null +++ "b/27594/metadata.json" @@ -0,0 +1,53772 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27594", + "quality_score": 0.8589, + "per_segment_quality_scores": [ + { + "start": 62.14, + "end": 63.9, + "probability": 0.0005 + }, + { + "start": 63.9, + "end": 65.56, + "probability": 0.803 + }, + { + "start": 71.38, + "end": 73.34, + "probability": 0.7878 + }, + { + "start": 73.6, + "end": 74.6, + "probability": 0.7717 + }, + { + "start": 74.66, + "end": 81.36, + "probability": 0.9607 + }, + { + "start": 81.94, + "end": 86.62, + "probability": 0.8408 + }, + { + "start": 87.28, + "end": 91.96, + "probability": 0.9727 + }, + { + "start": 92.46, + "end": 96.86, + "probability": 0.9538 + }, + { + "start": 97.18, + "end": 100.34, + "probability": 0.9072 + }, + { + "start": 101.92, + "end": 103.46, + "probability": 0.7177 + }, + { + "start": 103.5, + "end": 105.0, + "probability": 0.6747 + }, + { + "start": 107.32, + "end": 108.7, + "probability": 0.7344 + }, + { + "start": 108.88, + "end": 110.56, + "probability": 0.9293 + }, + { + "start": 110.68, + "end": 112.3, + "probability": 0.8497 + }, + { + "start": 112.38, + "end": 113.4, + "probability": 0.692 + }, + { + "start": 114.02, + "end": 117.0, + "probability": 0.8361 + }, + { + "start": 118.8, + "end": 119.22, + "probability": 0.8218 + }, + { + "start": 119.22, + "end": 121.84, + "probability": 0.6641 + }, + { + "start": 122.04, + "end": 124.14, + "probability": 0.7614 + }, + { + "start": 124.72, + "end": 126.54, + "probability": 0.6419 + }, + { + "start": 126.92, + "end": 128.7, + "probability": 0.9961 + }, + { + "start": 128.86, + "end": 131.62, + "probability": 0.8326 + }, + { + "start": 133.19, + "end": 135.74, + "probability": 0.3014 + }, + { + "start": 135.74, + "end": 135.82, + "probability": 0.0463 + }, + { + "start": 135.82, + "end": 135.82, + "probability": 0.0154 + }, + { + "start": 135.82, + "end": 135.84, + "probability": 0.0393 + }, + { + "start": 135.84, + "end": 135.84, + "probability": 0.0108 + }, + { + "start": 135.84, + "end": 135.94, + "probability": 0.0226 + }, + { + "start": 135.94, + "end": 135.96, + "probability": 0.0214 + }, + { + "start": 135.96, + "end": 135.96, + "probability": 0.4252 + }, + { + "start": 135.96, + "end": 135.98, + "probability": 0.0233 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 150.42, + "end": 156.28, + "probability": 0.9481 + }, + { + "start": 156.46, + "end": 156.82, + "probability": 0.6565 + }, + { + "start": 157.52, + "end": 158.92, + "probability": 0.703 + }, + { + "start": 159.06, + "end": 160.85, + "probability": 0.9344 + }, + { + "start": 161.08, + "end": 162.62, + "probability": 0.5991 + }, + { + "start": 164.48, + "end": 165.1, + "probability": 0.4897 + }, + { + "start": 165.32, + "end": 166.98, + "probability": 0.8296 + }, + { + "start": 167.36, + "end": 169.86, + "probability": 0.8704 + }, + { + "start": 170.76, + "end": 173.06, + "probability": 0.8014 + }, + { + "start": 173.24, + "end": 174.86, + "probability": 0.9766 + }, + { + "start": 175.52, + "end": 178.38, + "probability": 0.9756 + }, + { + "start": 178.52, + "end": 181.38, + "probability": 0.9937 + }, + { + "start": 181.8, + "end": 184.2, + "probability": 0.8168 + }, + { + "start": 184.62, + "end": 188.62, + "probability": 0.9854 + }, + { + "start": 189.12, + "end": 191.56, + "probability": 0.9974 + }, + { + "start": 191.7, + "end": 191.86, + "probability": 0.637 + }, + { + "start": 191.92, + "end": 197.46, + "probability": 0.9927 + }, + { + "start": 203.54, + "end": 207.92, + "probability": 0.6286 + }, + { + "start": 208.24, + "end": 210.26, + "probability": 0.6434 + }, + { + "start": 210.72, + "end": 210.96, + "probability": 0.7273 + }, + { + "start": 211.16, + "end": 211.99, + "probability": 0.7236 + }, + { + "start": 225.72, + "end": 226.36, + "probability": 0.7038 + }, + { + "start": 226.44, + "end": 231.86, + "probability": 0.8556 + }, + { + "start": 234.12, + "end": 237.04, + "probability": 0.7456 + }, + { + "start": 239.78, + "end": 242.31, + "probability": 0.9355 + }, + { + "start": 243.04, + "end": 249.24, + "probability": 0.8575 + }, + { + "start": 250.3, + "end": 251.94, + "probability": 0.8785 + }, + { + "start": 253.36, + "end": 256.32, + "probability": 0.8328 + }, + { + "start": 256.78, + "end": 258.88, + "probability": 0.8774 + }, + { + "start": 259.3, + "end": 261.43, + "probability": 0.6792 + }, + { + "start": 262.44, + "end": 266.16, + "probability": 0.9092 + }, + { + "start": 266.16, + "end": 270.12, + "probability": 0.91 + }, + { + "start": 270.84, + "end": 271.58, + "probability": 0.6645 + }, + { + "start": 272.18, + "end": 277.16, + "probability": 0.8125 + }, + { + "start": 277.18, + "end": 279.4, + "probability": 0.9619 + }, + { + "start": 281.68, + "end": 283.92, + "probability": 0.9511 + }, + { + "start": 284.58, + "end": 287.62, + "probability": 0.8518 + }, + { + "start": 287.76, + "end": 289.26, + "probability": 0.8875 + }, + { + "start": 289.32, + "end": 292.5, + "probability": 0.9849 + }, + { + "start": 293.58, + "end": 298.68, + "probability": 0.9875 + }, + { + "start": 298.96, + "end": 301.26, + "probability": 0.9487 + }, + { + "start": 301.34, + "end": 304.28, + "probability": 0.9454 + }, + { + "start": 304.9, + "end": 307.2, + "probability": 0.9652 + }, + { + "start": 307.7, + "end": 310.96, + "probability": 0.8449 + }, + { + "start": 310.96, + "end": 315.68, + "probability": 0.984 + }, + { + "start": 315.9, + "end": 317.9, + "probability": 0.9479 + }, + { + "start": 318.12, + "end": 324.7, + "probability": 0.9048 + }, + { + "start": 325.7, + "end": 328.9, + "probability": 0.9875 + }, + { + "start": 328.98, + "end": 330.98, + "probability": 0.9611 + }, + { + "start": 331.06, + "end": 332.02, + "probability": 0.935 + }, + { + "start": 332.18, + "end": 339.02, + "probability": 0.9883 + }, + { + "start": 340.62, + "end": 343.66, + "probability": 0.8375 + }, + { + "start": 344.32, + "end": 347.94, + "probability": 0.9952 + }, + { + "start": 347.94, + "end": 354.28, + "probability": 0.9816 + }, + { + "start": 356.74, + "end": 359.2, + "probability": 0.9416 + }, + { + "start": 361.0, + "end": 361.56, + "probability": 0.431 + }, + { + "start": 363.2, + "end": 364.0, + "probability": 0.3799 + }, + { + "start": 365.0, + "end": 368.98, + "probability": 0.8422 + }, + { + "start": 369.76, + "end": 376.72, + "probability": 0.9442 + }, + { + "start": 377.52, + "end": 379.52, + "probability": 0.3556 + }, + { + "start": 380.26, + "end": 382.16, + "probability": 0.7081 + }, + { + "start": 383.62, + "end": 387.24, + "probability": 0.671 + }, + { + "start": 387.9, + "end": 390.64, + "probability": 0.7874 + }, + { + "start": 391.5, + "end": 392.42, + "probability": 0.8414 + }, + { + "start": 392.44, + "end": 394.82, + "probability": 0.9294 + }, + { + "start": 395.24, + "end": 397.58, + "probability": 0.9428 + }, + { + "start": 397.72, + "end": 399.12, + "probability": 0.9511 + }, + { + "start": 399.22, + "end": 402.04, + "probability": 0.4646 + }, + { + "start": 402.04, + "end": 407.54, + "probability": 0.9731 + }, + { + "start": 407.84, + "end": 408.82, + "probability": 0.7378 + }, + { + "start": 409.74, + "end": 411.32, + "probability": 0.7203 + }, + { + "start": 411.38, + "end": 413.1, + "probability": 0.8891 + }, + { + "start": 413.44, + "end": 415.04, + "probability": 0.6295 + }, + { + "start": 415.84, + "end": 417.02, + "probability": 0.8477 + }, + { + "start": 417.78, + "end": 421.54, + "probability": 0.9906 + }, + { + "start": 422.5, + "end": 426.96, + "probability": 0.9712 + }, + { + "start": 427.1, + "end": 431.44, + "probability": 0.9746 + }, + { + "start": 433.74, + "end": 436.69, + "probability": 0.9803 + }, + { + "start": 438.84, + "end": 442.12, + "probability": 0.939 + }, + { + "start": 443.1, + "end": 443.38, + "probability": 0.3797 + }, + { + "start": 443.54, + "end": 444.18, + "probability": 0.8118 + }, + { + "start": 445.5, + "end": 449.72, + "probability": 0.9202 + }, + { + "start": 451.12, + "end": 457.3, + "probability": 0.986 + }, + { + "start": 458.12, + "end": 460.86, + "probability": 0.9429 + }, + { + "start": 462.02, + "end": 463.52, + "probability": 0.9451 + }, + { + "start": 464.04, + "end": 466.55, + "probability": 0.8916 + }, + { + "start": 467.18, + "end": 469.64, + "probability": 0.9983 + }, + { + "start": 470.0, + "end": 470.86, + "probability": 0.8796 + }, + { + "start": 472.38, + "end": 475.68, + "probability": 0.9951 + }, + { + "start": 476.08, + "end": 478.57, + "probability": 0.9891 + }, + { + "start": 479.18, + "end": 482.72, + "probability": 0.9755 + }, + { + "start": 483.5, + "end": 485.78, + "probability": 0.7048 + }, + { + "start": 486.26, + "end": 489.92, + "probability": 0.9473 + }, + { + "start": 491.2, + "end": 493.97, + "probability": 0.9724 + }, + { + "start": 494.78, + "end": 499.5, + "probability": 0.9506 + }, + { + "start": 499.84, + "end": 500.82, + "probability": 0.7282 + }, + { + "start": 501.94, + "end": 502.56, + "probability": 0.6945 + }, + { + "start": 502.6, + "end": 503.54, + "probability": 0.9665 + }, + { + "start": 503.74, + "end": 506.2, + "probability": 0.9546 + }, + { + "start": 506.24, + "end": 507.4, + "probability": 0.9711 + }, + { + "start": 507.7, + "end": 510.66, + "probability": 0.9185 + }, + { + "start": 510.86, + "end": 512.2, + "probability": 0.8531 + }, + { + "start": 512.8, + "end": 514.44, + "probability": 0.9958 + }, + { + "start": 515.46, + "end": 517.2, + "probability": 0.9832 + }, + { + "start": 517.3, + "end": 517.98, + "probability": 0.9368 + }, + { + "start": 518.1, + "end": 519.04, + "probability": 0.9574 + }, + { + "start": 519.14, + "end": 520.06, + "probability": 0.8537 + }, + { + "start": 520.44, + "end": 523.68, + "probability": 0.9314 + }, + { + "start": 524.22, + "end": 528.1, + "probability": 0.7601 + }, + { + "start": 529.52, + "end": 530.78, + "probability": 0.9014 + }, + { + "start": 530.92, + "end": 534.88, + "probability": 0.7202 + }, + { + "start": 534.88, + "end": 538.86, + "probability": 0.9918 + }, + { + "start": 539.4, + "end": 541.58, + "probability": 0.7979 + }, + { + "start": 542.4, + "end": 544.84, + "probability": 0.9869 + }, + { + "start": 545.38, + "end": 548.36, + "probability": 0.8384 + }, + { + "start": 548.46, + "end": 551.18, + "probability": 0.9159 + }, + { + "start": 552.42, + "end": 553.89, + "probability": 0.9574 + }, + { + "start": 554.86, + "end": 559.14, + "probability": 0.9826 + }, + { + "start": 559.14, + "end": 564.44, + "probability": 0.9778 + }, + { + "start": 564.92, + "end": 574.86, + "probability": 0.8683 + }, + { + "start": 576.48, + "end": 580.1, + "probability": 0.9102 + }, + { + "start": 580.1, + "end": 582.7, + "probability": 0.765 + }, + { + "start": 583.64, + "end": 586.56, + "probability": 0.9846 + }, + { + "start": 587.26, + "end": 591.48, + "probability": 0.9834 + }, + { + "start": 592.56, + "end": 596.21, + "probability": 0.7156 + }, + { + "start": 596.96, + "end": 600.24, + "probability": 0.8235 + }, + { + "start": 601.0, + "end": 606.94, + "probability": 0.995 + }, + { + "start": 607.2, + "end": 612.36, + "probability": 0.7997 + }, + { + "start": 612.7, + "end": 618.54, + "probability": 0.9971 + }, + { + "start": 621.06, + "end": 627.48, + "probability": 0.9944 + }, + { + "start": 627.48, + "end": 633.48, + "probability": 0.9855 + }, + { + "start": 634.68, + "end": 640.52, + "probability": 0.9124 + }, + { + "start": 641.52, + "end": 643.08, + "probability": 0.6399 + }, + { + "start": 643.18, + "end": 644.3, + "probability": 0.5782 + }, + { + "start": 644.46, + "end": 645.06, + "probability": 0.6964 + }, + { + "start": 645.26, + "end": 645.88, + "probability": 0.3942 + }, + { + "start": 646.4, + "end": 648.26, + "probability": 0.81 + }, + { + "start": 648.76, + "end": 650.32, + "probability": 0.6892 + }, + { + "start": 650.38, + "end": 652.96, + "probability": 0.7291 + }, + { + "start": 654.5, + "end": 655.88, + "probability": 0.9217 + }, + { + "start": 655.94, + "end": 658.72, + "probability": 0.6162 + }, + { + "start": 659.56, + "end": 663.78, + "probability": 0.996 + }, + { + "start": 664.34, + "end": 665.28, + "probability": 0.5216 + }, + { + "start": 665.46, + "end": 665.62, + "probability": 0.4113 + }, + { + "start": 665.68, + "end": 666.52, + "probability": 0.9093 + }, + { + "start": 666.78, + "end": 667.8, + "probability": 0.8766 + }, + { + "start": 668.58, + "end": 674.66, + "probability": 0.9318 + }, + { + "start": 674.76, + "end": 675.92, + "probability": 0.9982 + }, + { + "start": 677.28, + "end": 680.02, + "probability": 0.7464 + }, + { + "start": 680.38, + "end": 689.42, + "probability": 0.9661 + }, + { + "start": 689.94, + "end": 691.32, + "probability": 0.7941 + }, + { + "start": 691.4, + "end": 695.14, + "probability": 0.9159 + }, + { + "start": 695.28, + "end": 700.32, + "probability": 0.6552 + }, + { + "start": 701.3, + "end": 702.13, + "probability": 0.7866 + }, + { + "start": 703.42, + "end": 704.58, + "probability": 0.8511 + }, + { + "start": 704.76, + "end": 706.78, + "probability": 0.751 + }, + { + "start": 706.78, + "end": 709.94, + "probability": 0.9797 + }, + { + "start": 710.24, + "end": 711.92, + "probability": 0.9988 + }, + { + "start": 712.7, + "end": 713.48, + "probability": 0.6088 + }, + { + "start": 713.52, + "end": 718.42, + "probability": 0.9666 + }, + { + "start": 718.98, + "end": 722.8, + "probability": 0.9168 + }, + { + "start": 723.4, + "end": 724.38, + "probability": 0.6566 + }, + { + "start": 725.2, + "end": 729.21, + "probability": 0.9934 + }, + { + "start": 730.0, + "end": 734.62, + "probability": 0.8077 + }, + { + "start": 734.78, + "end": 739.62, + "probability": 0.9827 + }, + { + "start": 741.44, + "end": 743.1, + "probability": 0.567 + }, + { + "start": 743.64, + "end": 744.9, + "probability": 0.8347 + }, + { + "start": 746.0, + "end": 749.82, + "probability": 0.811 + }, + { + "start": 750.36, + "end": 751.44, + "probability": 0.8899 + }, + { + "start": 751.46, + "end": 752.56, + "probability": 0.4577 + }, + { + "start": 753.66, + "end": 758.32, + "probability": 0.8339 + }, + { + "start": 759.14, + "end": 759.42, + "probability": 0.4887 + }, + { + "start": 759.58, + "end": 760.48, + "probability": 0.5918 + }, + { + "start": 760.52, + "end": 765.3, + "probability": 0.9128 + }, + { + "start": 767.14, + "end": 770.08, + "probability": 0.8678 + }, + { + "start": 770.14, + "end": 771.68, + "probability": 0.9138 + }, + { + "start": 772.48, + "end": 776.86, + "probability": 0.914 + }, + { + "start": 776.96, + "end": 777.38, + "probability": 0.5878 + }, + { + "start": 777.82, + "end": 780.58, + "probability": 0.8693 + }, + { + "start": 780.88, + "end": 782.51, + "probability": 0.9263 + }, + { + "start": 783.12, + "end": 789.28, + "probability": 0.9243 + }, + { + "start": 790.78, + "end": 793.03, + "probability": 0.9615 + }, + { + "start": 794.16, + "end": 796.16, + "probability": 0.9694 + }, + { + "start": 796.18, + "end": 797.38, + "probability": 0.8918 + }, + { + "start": 797.5, + "end": 800.82, + "probability": 0.8752 + }, + { + "start": 801.34, + "end": 803.14, + "probability": 0.4827 + }, + { + "start": 803.32, + "end": 805.52, + "probability": 0.9124 + }, + { + "start": 807.84, + "end": 815.16, + "probability": 0.9948 + }, + { + "start": 815.16, + "end": 820.06, + "probability": 0.5745 + }, + { + "start": 820.6, + "end": 823.92, + "probability": 0.7893 + }, + { + "start": 824.46, + "end": 828.64, + "probability": 0.9915 + }, + { + "start": 828.64, + "end": 833.92, + "probability": 0.9867 + }, + { + "start": 835.12, + "end": 836.2, + "probability": 0.9771 + }, + { + "start": 836.24, + "end": 837.38, + "probability": 0.9462 + }, + { + "start": 837.46, + "end": 838.25, + "probability": 0.9143 + }, + { + "start": 839.06, + "end": 840.8, + "probability": 0.8444 + }, + { + "start": 840.8, + "end": 843.84, + "probability": 0.9977 + }, + { + "start": 846.84, + "end": 849.06, + "probability": 0.7114 + }, + { + "start": 849.18, + "end": 852.82, + "probability": 0.9018 + }, + { + "start": 852.92, + "end": 853.7, + "probability": 0.7272 + }, + { + "start": 854.38, + "end": 856.8, + "probability": 0.9275 + }, + { + "start": 857.06, + "end": 857.88, + "probability": 0.5909 + }, + { + "start": 859.0, + "end": 862.9, + "probability": 0.8214 + }, + { + "start": 863.6, + "end": 866.54, + "probability": 0.7207 + }, + { + "start": 868.36, + "end": 870.04, + "probability": 0.4153 + }, + { + "start": 870.12, + "end": 870.9, + "probability": 0.5501 + }, + { + "start": 871.34, + "end": 873.28, + "probability": 0.6866 + }, + { + "start": 873.3, + "end": 874.12, + "probability": 0.453 + }, + { + "start": 875.38, + "end": 877.94, + "probability": 0.9849 + }, + { + "start": 878.65, + "end": 882.54, + "probability": 0.9375 + }, + { + "start": 882.92, + "end": 884.06, + "probability": 0.5333 + }, + { + "start": 886.16, + "end": 886.88, + "probability": 0.8257 + }, + { + "start": 888.62, + "end": 889.76, + "probability": 0.32 + }, + { + "start": 889.78, + "end": 891.06, + "probability": 0.8643 + }, + { + "start": 891.18, + "end": 891.39, + "probability": 0.7705 + }, + { + "start": 891.72, + "end": 896.76, + "probability": 0.9837 + }, + { + "start": 896.76, + "end": 900.1, + "probability": 0.9947 + }, + { + "start": 900.18, + "end": 900.32, + "probability": 0.7139 + }, + { + "start": 900.46, + "end": 901.14, + "probability": 0.401 + }, + { + "start": 901.2, + "end": 904.88, + "probability": 0.9954 + }, + { + "start": 905.1, + "end": 906.5, + "probability": 0.7347 + }, + { + "start": 906.84, + "end": 908.86, + "probability": 0.9879 + }, + { + "start": 908.96, + "end": 912.41, + "probability": 0.73 + }, + { + "start": 914.5, + "end": 915.72, + "probability": 0.8639 + }, + { + "start": 915.82, + "end": 916.4, + "probability": 0.5495 + }, + { + "start": 916.8, + "end": 918.02, + "probability": 0.9312 + }, + { + "start": 918.48, + "end": 922.18, + "probability": 0.7237 + }, + { + "start": 922.18, + "end": 924.78, + "probability": 0.8724 + }, + { + "start": 925.2, + "end": 925.72, + "probability": 0.4891 + }, + { + "start": 925.76, + "end": 929.34, + "probability": 0.9797 + }, + { + "start": 930.08, + "end": 934.48, + "probability": 0.9814 + }, + { + "start": 934.98, + "end": 939.16, + "probability": 0.8674 + }, + { + "start": 939.42, + "end": 939.72, + "probability": 0.6885 + }, + { + "start": 940.0, + "end": 944.82, + "probability": 0.9966 + }, + { + "start": 944.82, + "end": 949.82, + "probability": 0.8877 + }, + { + "start": 950.64, + "end": 954.72, + "probability": 0.81 + }, + { + "start": 955.86, + "end": 958.66, + "probability": 0.9971 + }, + { + "start": 958.92, + "end": 960.46, + "probability": 0.5052 + }, + { + "start": 960.66, + "end": 964.27, + "probability": 0.7642 + }, + { + "start": 965.8, + "end": 970.58, + "probability": 0.9053 + }, + { + "start": 970.7, + "end": 971.78, + "probability": 0.8192 + }, + { + "start": 972.24, + "end": 974.92, + "probability": 0.9869 + }, + { + "start": 975.36, + "end": 976.7, + "probability": 0.6147 + }, + { + "start": 977.16, + "end": 980.78, + "probability": 0.9187 + }, + { + "start": 980.9, + "end": 984.02, + "probability": 0.9321 + }, + { + "start": 984.08, + "end": 984.94, + "probability": 0.6498 + }, + { + "start": 985.58, + "end": 989.94, + "probability": 0.9459 + }, + { + "start": 990.8, + "end": 992.92, + "probability": 0.9807 + }, + { + "start": 993.9, + "end": 995.84, + "probability": 0.8874 + }, + { + "start": 996.38, + "end": 998.76, + "probability": 0.9808 + }, + { + "start": 998.84, + "end": 1003.24, + "probability": 0.9754 + }, + { + "start": 1003.42, + "end": 1005.31, + "probability": 0.8128 + }, + { + "start": 1007.4, + "end": 1010.87, + "probability": 0.9166 + }, + { + "start": 1011.4, + "end": 1013.4, + "probability": 0.6772 + }, + { + "start": 1014.64, + "end": 1015.58, + "probability": 0.1017 + }, + { + "start": 1015.58, + "end": 1015.88, + "probability": 0.7212 + }, + { + "start": 1015.94, + "end": 1016.26, + "probability": 0.4531 + }, + { + "start": 1016.32, + "end": 1016.68, + "probability": 0.5446 + }, + { + "start": 1016.82, + "end": 1018.7, + "probability": 0.3369 + }, + { + "start": 1018.78, + "end": 1024.48, + "probability": 0.4861 + }, + { + "start": 1024.48, + "end": 1029.6, + "probability": 0.6378 + }, + { + "start": 1029.88, + "end": 1030.62, + "probability": 0.4469 + }, + { + "start": 1030.62, + "end": 1031.76, + "probability": 0.6555 + }, + { + "start": 1031.88, + "end": 1036.88, + "probability": 0.3186 + }, + { + "start": 1037.28, + "end": 1037.89, + "probability": 0.6162 + }, + { + "start": 1038.28, + "end": 1042.9, + "probability": 0.6692 + }, + { + "start": 1043.2, + "end": 1043.78, + "probability": 0.2966 + }, + { + "start": 1043.9, + "end": 1046.32, + "probability": 0.1597 + }, + { + "start": 1046.32, + "end": 1048.42, + "probability": 0.5371 + }, + { + "start": 1048.66, + "end": 1053.08, + "probability": 0.1546 + }, + { + "start": 1053.38, + "end": 1053.68, + "probability": 0.6424 + }, + { + "start": 1054.2, + "end": 1054.46, + "probability": 0.0007 + }, + { + "start": 1054.46, + "end": 1055.3, + "probability": 0.8234 + }, + { + "start": 1055.36, + "end": 1057.11, + "probability": 0.3734 + }, + { + "start": 1057.42, + "end": 1063.78, + "probability": 0.8948 + }, + { + "start": 1064.02, + "end": 1069.68, + "probability": 0.967 + }, + { + "start": 1070.32, + "end": 1072.4, + "probability": 0.884 + }, + { + "start": 1073.2, + "end": 1078.99, + "probability": 0.8612 + }, + { + "start": 1079.62, + "end": 1082.8, + "probability": 0.9958 + }, + { + "start": 1083.14, + "end": 1084.78, + "probability": 0.6151 + }, + { + "start": 1084.9, + "end": 1085.5, + "probability": 0.8727 + }, + { + "start": 1085.68, + "end": 1087.66, + "probability": 0.9338 + }, + { + "start": 1087.78, + "end": 1089.05, + "probability": 0.9424 + }, + { + "start": 1089.52, + "end": 1092.0, + "probability": 0.7517 + }, + { + "start": 1092.4, + "end": 1096.74, + "probability": 0.7262 + }, + { + "start": 1096.92, + "end": 1100.0, + "probability": 0.7474 + }, + { + "start": 1100.38, + "end": 1103.44, + "probability": 0.8987 + }, + { + "start": 1103.54, + "end": 1106.55, + "probability": 0.8052 + }, + { + "start": 1106.96, + "end": 1107.68, + "probability": 0.7418 + }, + { + "start": 1107.82, + "end": 1108.82, + "probability": 0.8973 + }, + { + "start": 1108.96, + "end": 1110.16, + "probability": 0.8034 + }, + { + "start": 1110.34, + "end": 1111.04, + "probability": 0.8199 + }, + { + "start": 1111.2, + "end": 1115.2, + "probability": 0.8885 + }, + { + "start": 1115.22, + "end": 1119.04, + "probability": 0.4078 + }, + { + "start": 1121.22, + "end": 1122.64, + "probability": 0.1032 + }, + { + "start": 1122.64, + "end": 1123.64, + "probability": 0.5977 + }, + { + "start": 1123.8, + "end": 1125.6, + "probability": 0.672 + }, + { + "start": 1125.68, + "end": 1127.2, + "probability": 0.9783 + }, + { + "start": 1127.3, + "end": 1128.95, + "probability": 0.9619 + }, + { + "start": 1129.12, + "end": 1131.24, + "probability": 0.9619 + }, + { + "start": 1131.42, + "end": 1134.0, + "probability": 0.0622 + }, + { + "start": 1134.48, + "end": 1135.58, + "probability": 0.9575 + }, + { + "start": 1135.68, + "end": 1137.86, + "probability": 0.8949 + }, + { + "start": 1137.88, + "end": 1139.24, + "probability": 0.688 + }, + { + "start": 1139.28, + "end": 1141.62, + "probability": 0.359 + }, + { + "start": 1141.62, + "end": 1142.52, + "probability": 0.2013 + }, + { + "start": 1147.92, + "end": 1148.78, + "probability": 0.0332 + }, + { + "start": 1148.78, + "end": 1154.34, + "probability": 0.8547 + }, + { + "start": 1155.08, + "end": 1156.4, + "probability": 0.9531 + }, + { + "start": 1156.84, + "end": 1158.36, + "probability": 0.7783 + }, + { + "start": 1158.8, + "end": 1160.54, + "probability": 0.9431 + }, + { + "start": 1160.8, + "end": 1163.9, + "probability": 0.9753 + }, + { + "start": 1164.42, + "end": 1167.02, + "probability": 0.9331 + }, + { + "start": 1167.28, + "end": 1169.0, + "probability": 0.808 + }, + { + "start": 1169.28, + "end": 1171.4, + "probability": 0.96 + }, + { + "start": 1172.66, + "end": 1175.86, + "probability": 0.896 + }, + { + "start": 1176.76, + "end": 1183.6, + "probability": 0.8896 + }, + { + "start": 1183.96, + "end": 1185.3, + "probability": 0.7828 + }, + { + "start": 1185.96, + "end": 1187.68, + "probability": 0.9426 + }, + { + "start": 1188.14, + "end": 1190.08, + "probability": 0.8972 + }, + { + "start": 1190.34, + "end": 1191.68, + "probability": 0.858 + }, + { + "start": 1191.82, + "end": 1192.6, + "probability": 0.3697 + }, + { + "start": 1193.02, + "end": 1193.36, + "probability": 0.3422 + }, + { + "start": 1193.42, + "end": 1196.98, + "probability": 0.7447 + }, + { + "start": 1197.1, + "end": 1198.7, + "probability": 0.9094 + }, + { + "start": 1199.0, + "end": 1200.3, + "probability": 0.8769 + }, + { + "start": 1200.72, + "end": 1202.66, + "probability": 0.817 + }, + { + "start": 1202.72, + "end": 1204.42, + "probability": 0.9275 + }, + { + "start": 1204.78, + "end": 1205.94, + "probability": 0.9377 + }, + { + "start": 1205.96, + "end": 1209.42, + "probability": 0.9751 + }, + { + "start": 1210.26, + "end": 1216.42, + "probability": 0.8286 + }, + { + "start": 1217.08, + "end": 1219.47, + "probability": 0.8223 + }, + { + "start": 1220.78, + "end": 1221.43, + "probability": 0.9033 + }, + { + "start": 1222.0, + "end": 1222.22, + "probability": 0.8915 + }, + { + "start": 1222.46, + "end": 1225.78, + "probability": 0.9945 + }, + { + "start": 1226.0, + "end": 1227.06, + "probability": 0.9242 + }, + { + "start": 1228.12, + "end": 1229.14, + "probability": 0.4911 + }, + { + "start": 1229.7, + "end": 1235.27, + "probability": 0.9314 + }, + { + "start": 1236.58, + "end": 1237.46, + "probability": 0.8487 + }, + { + "start": 1237.52, + "end": 1238.83, + "probability": 0.3359 + }, + { + "start": 1238.92, + "end": 1242.64, + "probability": 0.9952 + }, + { + "start": 1243.74, + "end": 1247.52, + "probability": 0.9856 + }, + { + "start": 1248.3, + "end": 1248.94, + "probability": 0.471 + }, + { + "start": 1249.12, + "end": 1249.92, + "probability": 0.7248 + }, + { + "start": 1250.09, + "end": 1253.72, + "probability": 0.9142 + }, + { + "start": 1254.32, + "end": 1260.28, + "probability": 0.9575 + }, + { + "start": 1261.02, + "end": 1262.32, + "probability": 0.9055 + }, + { + "start": 1263.04, + "end": 1267.12, + "probability": 0.9868 + }, + { + "start": 1267.12, + "end": 1271.6, + "probability": 0.7614 + }, + { + "start": 1272.32, + "end": 1274.46, + "probability": 0.9486 + }, + { + "start": 1274.8, + "end": 1278.34, + "probability": 0.9807 + }, + { + "start": 1278.7, + "end": 1280.02, + "probability": 0.6977 + }, + { + "start": 1280.62, + "end": 1282.04, + "probability": 0.835 + }, + { + "start": 1282.24, + "end": 1283.64, + "probability": 0.808 + }, + { + "start": 1283.9, + "end": 1286.4, + "probability": 0.8469 + }, + { + "start": 1286.84, + "end": 1287.74, + "probability": 0.5546 + }, + { + "start": 1288.06, + "end": 1289.6, + "probability": 0.8989 + }, + { + "start": 1289.68, + "end": 1292.38, + "probability": 0.8823 + }, + { + "start": 1293.06, + "end": 1297.02, + "probability": 0.9431 + }, + { + "start": 1297.32, + "end": 1298.91, + "probability": 0.9877 + }, + { + "start": 1300.02, + "end": 1302.82, + "probability": 0.9739 + }, + { + "start": 1302.96, + "end": 1305.9, + "probability": 0.8311 + }, + { + "start": 1306.18, + "end": 1309.16, + "probability": 0.9161 + }, + { + "start": 1309.16, + "end": 1312.38, + "probability": 0.9902 + }, + { + "start": 1313.02, + "end": 1316.64, + "probability": 0.9585 + }, + { + "start": 1317.32, + "end": 1318.62, + "probability": 0.7614 + }, + { + "start": 1319.32, + "end": 1321.12, + "probability": 0.8875 + }, + { + "start": 1321.44, + "end": 1326.98, + "probability": 0.8831 + }, + { + "start": 1326.98, + "end": 1332.66, + "probability": 0.9429 + }, + { + "start": 1333.32, + "end": 1336.16, + "probability": 0.9957 + }, + { + "start": 1336.16, + "end": 1340.82, + "probability": 0.9818 + }, + { + "start": 1340.92, + "end": 1341.64, + "probability": 0.3481 + }, + { + "start": 1342.64, + "end": 1344.84, + "probability": 0.9336 + }, + { + "start": 1345.6, + "end": 1346.5, + "probability": 0.895 + }, + { + "start": 1347.08, + "end": 1349.58, + "probability": 0.8937 + }, + { + "start": 1350.18, + "end": 1354.56, + "probability": 0.9069 + }, + { + "start": 1354.56, + "end": 1359.2, + "probability": 0.9521 + }, + { + "start": 1360.02, + "end": 1363.84, + "probability": 0.9954 + }, + { + "start": 1363.86, + "end": 1364.6, + "probability": 0.7195 + }, + { + "start": 1365.94, + "end": 1366.78, + "probability": 0.6183 + }, + { + "start": 1367.38, + "end": 1370.86, + "probability": 0.9799 + }, + { + "start": 1371.44, + "end": 1371.82, + "probability": 0.5488 + }, + { + "start": 1372.04, + "end": 1377.12, + "probability": 0.9193 + }, + { + "start": 1377.12, + "end": 1382.52, + "probability": 0.9077 + }, + { + "start": 1382.62, + "end": 1385.54, + "probability": 0.9939 + }, + { + "start": 1385.98, + "end": 1387.26, + "probability": 0.9611 + }, + { + "start": 1388.76, + "end": 1391.2, + "probability": 0.9924 + }, + { + "start": 1391.36, + "end": 1394.16, + "probability": 0.7934 + }, + { + "start": 1394.68, + "end": 1396.36, + "probability": 0.8916 + }, + { + "start": 1397.0, + "end": 1399.38, + "probability": 0.8276 + }, + { + "start": 1400.96, + "end": 1406.0, + "probability": 0.994 + }, + { + "start": 1406.28, + "end": 1407.8, + "probability": 0.9434 + }, + { + "start": 1408.38, + "end": 1409.74, + "probability": 0.9746 + }, + { + "start": 1410.02, + "end": 1412.46, + "probability": 0.9749 + }, + { + "start": 1412.62, + "end": 1413.97, + "probability": 0.9679 + }, + { + "start": 1415.06, + "end": 1416.9, + "probability": 0.9863 + }, + { + "start": 1417.72, + "end": 1420.3, + "probability": 0.996 + }, + { + "start": 1420.3, + "end": 1424.3, + "probability": 0.986 + }, + { + "start": 1424.42, + "end": 1426.44, + "probability": 0.8595 + }, + { + "start": 1427.1, + "end": 1428.9, + "probability": 0.9922 + }, + { + "start": 1429.36, + "end": 1431.76, + "probability": 0.8451 + }, + { + "start": 1432.4, + "end": 1433.76, + "probability": 0.8615 + }, + { + "start": 1433.84, + "end": 1435.26, + "probability": 0.8876 + }, + { + "start": 1435.7, + "end": 1437.4, + "probability": 0.8913 + }, + { + "start": 1437.6, + "end": 1438.8, + "probability": 0.8392 + }, + { + "start": 1439.6, + "end": 1442.26, + "probability": 0.9888 + }, + { + "start": 1443.02, + "end": 1443.3, + "probability": 0.4819 + }, + { + "start": 1443.34, + "end": 1445.7, + "probability": 0.9871 + }, + { + "start": 1445.7, + "end": 1449.14, + "probability": 0.9989 + }, + { + "start": 1449.64, + "end": 1451.6, + "probability": 0.9208 + }, + { + "start": 1451.76, + "end": 1454.88, + "probability": 0.9625 + }, + { + "start": 1454.88, + "end": 1458.12, + "probability": 0.9941 + }, + { + "start": 1458.36, + "end": 1459.42, + "probability": 0.5461 + }, + { + "start": 1459.52, + "end": 1460.14, + "probability": 0.5718 + }, + { + "start": 1460.36, + "end": 1466.22, + "probability": 0.9932 + }, + { + "start": 1466.98, + "end": 1467.48, + "probability": 0.8803 + }, + { + "start": 1467.68, + "end": 1472.22, + "probability": 0.9955 + }, + { + "start": 1472.86, + "end": 1473.4, + "probability": 0.4779 + }, + { + "start": 1474.0, + "end": 1475.84, + "probability": 0.8099 + }, + { + "start": 1476.5, + "end": 1478.06, + "probability": 0.7699 + }, + { + "start": 1478.14, + "end": 1478.86, + "probability": 0.8463 + }, + { + "start": 1478.9, + "end": 1483.46, + "probability": 0.9741 + }, + { + "start": 1484.12, + "end": 1487.12, + "probability": 0.8796 + }, + { + "start": 1487.26, + "end": 1489.02, + "probability": 0.7147 + }, + { + "start": 1489.42, + "end": 1490.56, + "probability": 0.9453 + }, + { + "start": 1491.24, + "end": 1493.62, + "probability": 0.9795 + }, + { + "start": 1493.7, + "end": 1495.74, + "probability": 0.7565 + }, + { + "start": 1496.48, + "end": 1497.36, + "probability": 0.6777 + }, + { + "start": 1497.52, + "end": 1502.08, + "probability": 0.9439 + }, + { + "start": 1502.46, + "end": 1504.9, + "probability": 0.9814 + }, + { + "start": 1506.18, + "end": 1509.42, + "probability": 0.9917 + }, + { + "start": 1511.52, + "end": 1512.26, + "probability": 0.4212 + }, + { + "start": 1512.98, + "end": 1518.22, + "probability": 0.9912 + }, + { + "start": 1518.54, + "end": 1518.94, + "probability": 0.4099 + }, + { + "start": 1519.72, + "end": 1522.06, + "probability": 0.9595 + }, + { + "start": 1523.0, + "end": 1526.7, + "probability": 0.9207 + }, + { + "start": 1527.36, + "end": 1528.18, + "probability": 0.845 + }, + { + "start": 1528.76, + "end": 1533.38, + "probability": 0.9775 + }, + { + "start": 1534.12, + "end": 1536.58, + "probability": 0.957 + }, + { + "start": 1538.54, + "end": 1539.34, + "probability": 0.8173 + }, + { + "start": 1539.5, + "end": 1541.08, + "probability": 0.9362 + }, + { + "start": 1541.28, + "end": 1543.42, + "probability": 0.8768 + }, + { + "start": 1543.8, + "end": 1545.48, + "probability": 0.9352 + }, + { + "start": 1546.38, + "end": 1548.04, + "probability": 0.69 + }, + { + "start": 1548.24, + "end": 1548.92, + "probability": 0.7379 + }, + { + "start": 1549.0, + "end": 1549.58, + "probability": 0.6595 + }, + { + "start": 1549.68, + "end": 1552.38, + "probability": 0.6815 + }, + { + "start": 1552.5, + "end": 1553.24, + "probability": 0.8719 + }, + { + "start": 1554.1, + "end": 1557.32, + "probability": 0.938 + }, + { + "start": 1558.5, + "end": 1563.91, + "probability": 0.8367 + }, + { + "start": 1564.66, + "end": 1565.54, + "probability": 0.805 + }, + { + "start": 1566.2, + "end": 1569.44, + "probability": 0.9911 + }, + { + "start": 1570.08, + "end": 1571.58, + "probability": 0.9421 + }, + { + "start": 1571.72, + "end": 1576.48, + "probability": 0.9956 + }, + { + "start": 1577.1, + "end": 1580.46, + "probability": 0.9981 + }, + { + "start": 1580.46, + "end": 1584.34, + "probability": 0.9916 + }, + { + "start": 1585.04, + "end": 1588.24, + "probability": 0.7656 + }, + { + "start": 1588.4, + "end": 1589.0, + "probability": 0.8292 + }, + { + "start": 1589.48, + "end": 1591.4, + "probability": 0.9796 + }, + { + "start": 1592.2, + "end": 1593.1, + "probability": 0.943 + }, + { + "start": 1593.2, + "end": 1594.75, + "probability": 0.7753 + }, + { + "start": 1595.14, + "end": 1596.92, + "probability": 0.9747 + }, + { + "start": 1596.96, + "end": 1600.38, + "probability": 0.9958 + }, + { + "start": 1601.1, + "end": 1604.48, + "probability": 0.9856 + }, + { + "start": 1605.16, + "end": 1607.88, + "probability": 0.9965 + }, + { + "start": 1608.02, + "end": 1609.8, + "probability": 0.855 + }, + { + "start": 1609.88, + "end": 1610.34, + "probability": 0.5217 + }, + { + "start": 1611.04, + "end": 1614.78, + "probability": 0.9907 + }, + { + "start": 1615.32, + "end": 1620.06, + "probability": 0.9261 + }, + { + "start": 1620.8, + "end": 1621.74, + "probability": 0.8 + }, + { + "start": 1621.96, + "end": 1623.4, + "probability": 0.8561 + }, + { + "start": 1623.74, + "end": 1624.95, + "probability": 0.9595 + }, + { + "start": 1625.74, + "end": 1627.9, + "probability": 0.9332 + }, + { + "start": 1628.54, + "end": 1629.22, + "probability": 0.554 + }, + { + "start": 1629.36, + "end": 1629.94, + "probability": 0.6859 + }, + { + "start": 1629.94, + "end": 1630.5, + "probability": 0.7942 + }, + { + "start": 1630.64, + "end": 1636.78, + "probability": 0.998 + }, + { + "start": 1637.44, + "end": 1640.96, + "probability": 0.9939 + }, + { + "start": 1641.64, + "end": 1642.98, + "probability": 0.815 + }, + { + "start": 1643.54, + "end": 1648.04, + "probability": 0.9701 + }, + { + "start": 1648.34, + "end": 1650.68, + "probability": 0.9377 + }, + { + "start": 1650.82, + "end": 1652.02, + "probability": 0.7887 + }, + { + "start": 1652.92, + "end": 1656.08, + "probability": 0.8711 + }, + { + "start": 1656.76, + "end": 1657.88, + "probability": 0.9648 + }, + { + "start": 1657.98, + "end": 1662.56, + "probability": 0.9881 + }, + { + "start": 1662.56, + "end": 1665.84, + "probability": 0.9907 + }, + { + "start": 1666.42, + "end": 1667.36, + "probability": 0.7567 + }, + { + "start": 1668.08, + "end": 1672.02, + "probability": 0.9938 + }, + { + "start": 1672.72, + "end": 1676.28, + "probability": 0.9829 + }, + { + "start": 1676.42, + "end": 1678.32, + "probability": 0.9582 + }, + { + "start": 1678.78, + "end": 1680.34, + "probability": 0.9834 + }, + { + "start": 1681.24, + "end": 1684.68, + "probability": 0.994 + }, + { + "start": 1685.7, + "end": 1690.52, + "probability": 0.999 + }, + { + "start": 1691.3, + "end": 1692.86, + "probability": 0.9321 + }, + { + "start": 1693.34, + "end": 1698.36, + "probability": 0.9828 + }, + { + "start": 1699.16, + "end": 1700.76, + "probability": 0.917 + }, + { + "start": 1701.48, + "end": 1704.18, + "probability": 0.9482 + }, + { + "start": 1705.28, + "end": 1708.12, + "probability": 0.9553 + }, + { + "start": 1708.12, + "end": 1713.9, + "probability": 0.9497 + }, + { + "start": 1713.98, + "end": 1714.99, + "probability": 0.7876 + }, + { + "start": 1716.42, + "end": 1720.96, + "probability": 0.985 + }, + { + "start": 1721.6, + "end": 1723.72, + "probability": 0.762 + }, + { + "start": 1723.86, + "end": 1725.17, + "probability": 0.8896 + }, + { + "start": 1725.36, + "end": 1730.12, + "probability": 0.9786 + }, + { + "start": 1730.26, + "end": 1731.18, + "probability": 0.8523 + }, + { + "start": 1731.82, + "end": 1733.18, + "probability": 0.8472 + }, + { + "start": 1733.66, + "end": 1735.3, + "probability": 0.9829 + }, + { + "start": 1735.36, + "end": 1737.42, + "probability": 0.8847 + }, + { + "start": 1738.6, + "end": 1740.22, + "probability": 0.8998 + }, + { + "start": 1740.32, + "end": 1741.4, + "probability": 0.9561 + }, + { + "start": 1742.06, + "end": 1746.04, + "probability": 0.8421 + }, + { + "start": 1746.52, + "end": 1753.74, + "probability": 0.9847 + }, + { + "start": 1754.04, + "end": 1756.06, + "probability": 0.6502 + }, + { + "start": 1756.4, + "end": 1761.58, + "probability": 0.8327 + }, + { + "start": 1761.88, + "end": 1762.66, + "probability": 0.7343 + }, + { + "start": 1764.55, + "end": 1767.74, + "probability": 0.8974 + }, + { + "start": 1768.66, + "end": 1771.46, + "probability": 0.9397 + }, + { + "start": 1772.42, + "end": 1775.86, + "probability": 0.9806 + }, + { + "start": 1775.86, + "end": 1779.34, + "probability": 0.9871 + }, + { + "start": 1779.46, + "end": 1780.76, + "probability": 0.7541 + }, + { + "start": 1781.36, + "end": 1784.5, + "probability": 0.9751 + }, + { + "start": 1787.58, + "end": 1789.72, + "probability": 0.8311 + }, + { + "start": 1789.88, + "end": 1790.82, + "probability": 0.2105 + }, + { + "start": 1790.82, + "end": 1791.86, + "probability": 0.6692 + }, + { + "start": 1792.18, + "end": 1793.64, + "probability": 0.93 + }, + { + "start": 1795.86, + "end": 1796.78, + "probability": 0.856 + }, + { + "start": 1796.82, + "end": 1796.82, + "probability": 0.4198 + }, + { + "start": 1796.82, + "end": 1796.94, + "probability": 0.7271 + }, + { + "start": 1796.94, + "end": 1797.7, + "probability": 0.9452 + }, + { + "start": 1798.02, + "end": 1802.0, + "probability": 0.9142 + }, + { + "start": 1802.12, + "end": 1803.26, + "probability": 0.8625 + }, + { + "start": 1803.36, + "end": 1804.44, + "probability": 0.8778 + }, + { + "start": 1805.66, + "end": 1812.66, + "probability": 0.8464 + }, + { + "start": 1813.46, + "end": 1815.3, + "probability": 0.8171 + }, + { + "start": 1815.74, + "end": 1823.18, + "probability": 0.9163 + }, + { + "start": 1823.26, + "end": 1824.68, + "probability": 0.973 + }, + { + "start": 1825.32, + "end": 1830.54, + "probability": 0.9943 + }, + { + "start": 1830.98, + "end": 1834.16, + "probability": 0.93 + }, + { + "start": 1834.38, + "end": 1835.82, + "probability": 0.6162 + }, + { + "start": 1836.32, + "end": 1841.06, + "probability": 0.9523 + }, + { + "start": 1841.54, + "end": 1842.96, + "probability": 0.9888 + }, + { + "start": 1843.58, + "end": 1849.12, + "probability": 0.9476 + }, + { + "start": 1849.12, + "end": 1852.74, + "probability": 0.998 + }, + { + "start": 1853.24, + "end": 1856.02, + "probability": 0.9989 + }, + { + "start": 1856.6, + "end": 1860.46, + "probability": 0.773 + }, + { + "start": 1860.52, + "end": 1864.48, + "probability": 0.9961 + }, + { + "start": 1865.02, + "end": 1865.92, + "probability": 0.819 + }, + { + "start": 1866.24, + "end": 1867.94, + "probability": 0.9179 + }, + { + "start": 1868.32, + "end": 1869.92, + "probability": 0.9233 + }, + { + "start": 1870.24, + "end": 1871.52, + "probability": 0.9455 + }, + { + "start": 1871.86, + "end": 1874.2, + "probability": 0.9778 + }, + { + "start": 1874.42, + "end": 1876.84, + "probability": 0.9652 + }, + { + "start": 1877.06, + "end": 1880.52, + "probability": 0.982 + }, + { + "start": 1881.04, + "end": 1884.8, + "probability": 0.9965 + }, + { + "start": 1885.18, + "end": 1886.02, + "probability": 0.7282 + }, + { + "start": 1886.16, + "end": 1886.93, + "probability": 0.845 + }, + { + "start": 1887.72, + "end": 1890.46, + "probability": 0.9398 + }, + { + "start": 1890.7, + "end": 1891.14, + "probability": 0.7463 + }, + { + "start": 1891.18, + "end": 1892.78, + "probability": 0.8241 + }, + { + "start": 1892.96, + "end": 1897.76, + "probability": 0.9735 + }, + { + "start": 1898.24, + "end": 1901.34, + "probability": 0.9826 + }, + { + "start": 1901.68, + "end": 1907.06, + "probability": 0.98 + }, + { + "start": 1907.48, + "end": 1910.68, + "probability": 0.9905 + }, + { + "start": 1910.68, + "end": 1912.6, + "probability": 0.8849 + }, + { + "start": 1912.94, + "end": 1920.24, + "probability": 0.9922 + }, + { + "start": 1921.6, + "end": 1922.16, + "probability": 0.5462 + }, + { + "start": 1922.16, + "end": 1924.36, + "probability": 0.6214 + }, + { + "start": 1925.1, + "end": 1929.16, + "probability": 0.7453 + }, + { + "start": 1929.72, + "end": 1933.34, + "probability": 0.9963 + }, + { + "start": 1933.42, + "end": 1937.26, + "probability": 0.9897 + }, + { + "start": 1938.48, + "end": 1939.92, + "probability": 0.7475 + }, + { + "start": 1940.6, + "end": 1943.5, + "probability": 0.9609 + }, + { + "start": 1943.64, + "end": 1944.52, + "probability": 0.8365 + }, + { + "start": 1945.26, + "end": 1947.23, + "probability": 0.9968 + }, + { + "start": 1947.9, + "end": 1950.16, + "probability": 0.9643 + }, + { + "start": 1950.62, + "end": 1952.2, + "probability": 0.8123 + }, + { + "start": 1952.46, + "end": 1953.04, + "probability": 0.4327 + }, + { + "start": 1953.06, + "end": 1954.8, + "probability": 0.7359 + }, + { + "start": 1955.12, + "end": 1958.94, + "probability": 0.9792 + }, + { + "start": 1959.2, + "end": 1963.14, + "probability": 0.9907 + }, + { + "start": 1963.62, + "end": 1964.92, + "probability": 0.7913 + }, + { + "start": 1965.24, + "end": 1967.18, + "probability": 0.9956 + }, + { + "start": 1967.46, + "end": 1969.28, + "probability": 0.9778 + }, + { + "start": 1969.5, + "end": 1970.94, + "probability": 0.9779 + }, + { + "start": 1971.64, + "end": 1972.06, + "probability": 0.7346 + }, + { + "start": 1972.16, + "end": 1972.66, + "probability": 0.7883 + }, + { + "start": 1972.78, + "end": 1974.2, + "probability": 0.8613 + }, + { + "start": 1974.3, + "end": 1975.02, + "probability": 0.9849 + }, + { + "start": 1975.72, + "end": 1976.48, + "probability": 0.2931 + }, + { + "start": 1976.48, + "end": 1982.16, + "probability": 0.9954 + }, + { + "start": 1982.16, + "end": 1986.64, + "probability": 0.9736 + }, + { + "start": 1987.08, + "end": 1991.54, + "probability": 0.9224 + }, + { + "start": 1992.78, + "end": 1993.16, + "probability": 0.7407 + }, + { + "start": 1993.2, + "end": 1994.2, + "probability": 0.8458 + }, + { + "start": 1994.58, + "end": 1998.46, + "probability": 0.9972 + }, + { + "start": 1998.94, + "end": 1999.86, + "probability": 0.6951 + }, + { + "start": 1999.98, + "end": 2000.92, + "probability": 0.9056 + }, + { + "start": 2001.66, + "end": 2003.68, + "probability": 0.8475 + }, + { + "start": 2003.82, + "end": 2009.18, + "probability": 0.9572 + }, + { + "start": 2009.7, + "end": 2011.54, + "probability": 0.7783 + }, + { + "start": 2012.26, + "end": 2013.72, + "probability": 0.8232 + }, + { + "start": 2013.86, + "end": 2014.36, + "probability": 0.6385 + }, + { + "start": 2014.64, + "end": 2016.2, + "probability": 0.8956 + }, + { + "start": 2016.3, + "end": 2018.64, + "probability": 0.9167 + }, + { + "start": 2018.98, + "end": 2021.7, + "probability": 0.9663 + }, + { + "start": 2021.92, + "end": 2023.42, + "probability": 0.9333 + }, + { + "start": 2023.88, + "end": 2026.0, + "probability": 0.511 + }, + { + "start": 2026.14, + "end": 2027.48, + "probability": 0.8335 + }, + { + "start": 2028.22, + "end": 2034.22, + "probability": 0.9888 + }, + { + "start": 2034.52, + "end": 2036.28, + "probability": 0.9701 + }, + { + "start": 2036.46, + "end": 2038.82, + "probability": 0.9289 + }, + { + "start": 2039.7, + "end": 2042.32, + "probability": 0.9932 + }, + { + "start": 2042.78, + "end": 2044.6, + "probability": 0.9166 + }, + { + "start": 2044.9, + "end": 2047.8, + "probability": 0.9016 + }, + { + "start": 2048.06, + "end": 2050.98, + "probability": 0.9691 + }, + { + "start": 2051.18, + "end": 2054.5, + "probability": 0.9837 + }, + { + "start": 2054.7, + "end": 2059.02, + "probability": 0.9825 + }, + { + "start": 2059.24, + "end": 2060.56, + "probability": 0.988 + }, + { + "start": 2060.7, + "end": 2061.42, + "probability": 0.6649 + }, + { + "start": 2061.98, + "end": 2066.38, + "probability": 0.9504 + }, + { + "start": 2066.5, + "end": 2067.22, + "probability": 0.4565 + }, + { + "start": 2067.58, + "end": 2067.78, + "probability": 0.0132 + }, + { + "start": 2067.78, + "end": 2069.46, + "probability": 0.8057 + }, + { + "start": 2070.28, + "end": 2070.74, + "probability": 0.8244 + }, + { + "start": 2070.86, + "end": 2071.52, + "probability": 0.7915 + }, + { + "start": 2071.66, + "end": 2072.46, + "probability": 0.7117 + }, + { + "start": 2072.68, + "end": 2075.18, + "probability": 0.9498 + }, + { + "start": 2075.44, + "end": 2076.88, + "probability": 0.9832 + }, + { + "start": 2077.02, + "end": 2080.42, + "probability": 0.9224 + }, + { + "start": 2080.62, + "end": 2085.04, + "probability": 0.6099 + }, + { + "start": 2085.48, + "end": 2089.38, + "probability": 0.9515 + }, + { + "start": 2090.3, + "end": 2092.38, + "probability": 0.9117 + }, + { + "start": 2092.92, + "end": 2097.28, + "probability": 0.9581 + }, + { + "start": 2097.84, + "end": 2099.54, + "probability": 0.8437 + }, + { + "start": 2099.59, + "end": 2103.1, + "probability": 0.9607 + }, + { + "start": 2103.52, + "end": 2105.24, + "probability": 0.8907 + }, + { + "start": 2105.7, + "end": 2112.22, + "probability": 0.949 + }, + { + "start": 2112.5, + "end": 2113.76, + "probability": 0.864 + }, + { + "start": 2114.08, + "end": 2117.92, + "probability": 0.9204 + }, + { + "start": 2118.38, + "end": 2120.46, + "probability": 0.8696 + }, + { + "start": 2121.04, + "end": 2123.66, + "probability": 0.9552 + }, + { + "start": 2124.5, + "end": 2128.74, + "probability": 0.959 + }, + { + "start": 2129.12, + "end": 2130.07, + "probability": 0.9541 + }, + { + "start": 2130.94, + "end": 2135.62, + "probability": 0.9917 + }, + { + "start": 2136.04, + "end": 2140.78, + "probability": 0.9896 + }, + { + "start": 2141.06, + "end": 2145.02, + "probability": 0.9827 + }, + { + "start": 2145.92, + "end": 2146.9, + "probability": 0.5602 + }, + { + "start": 2148.8, + "end": 2154.14, + "probability": 0.9861 + }, + { + "start": 2154.66, + "end": 2161.74, + "probability": 0.9171 + }, + { + "start": 2162.26, + "end": 2166.02, + "probability": 0.9313 + }, + { + "start": 2166.62, + "end": 2170.86, + "probability": 0.9463 + }, + { + "start": 2171.4, + "end": 2174.18, + "probability": 0.8785 + }, + { + "start": 2174.24, + "end": 2175.55, + "probability": 0.8539 + }, + { + "start": 2175.86, + "end": 2177.14, + "probability": 0.9045 + }, + { + "start": 2177.72, + "end": 2178.16, + "probability": 0.8655 + }, + { + "start": 2178.26, + "end": 2180.16, + "probability": 0.9912 + }, + { + "start": 2180.24, + "end": 2181.83, + "probability": 0.8532 + }, + { + "start": 2182.12, + "end": 2185.06, + "probability": 0.5267 + }, + { + "start": 2185.4, + "end": 2186.22, + "probability": 0.9427 + }, + { + "start": 2186.88, + "end": 2188.8, + "probability": 0.7664 + }, + { + "start": 2189.24, + "end": 2192.06, + "probability": 0.9797 + }, + { + "start": 2192.74, + "end": 2194.74, + "probability": 0.7557 + }, + { + "start": 2194.82, + "end": 2197.8, + "probability": 0.9728 + }, + { + "start": 2198.54, + "end": 2199.66, + "probability": 0.6259 + }, + { + "start": 2199.8, + "end": 2203.92, + "probability": 0.9346 + }, + { + "start": 2204.4, + "end": 2206.94, + "probability": 0.999 + }, + { + "start": 2207.16, + "end": 2209.5, + "probability": 0.9647 + }, + { + "start": 2210.0, + "end": 2211.74, + "probability": 0.8859 + }, + { + "start": 2212.34, + "end": 2217.84, + "probability": 0.852 + }, + { + "start": 2217.9, + "end": 2221.18, + "probability": 0.9264 + }, + { + "start": 2221.36, + "end": 2222.48, + "probability": 0.8653 + }, + { + "start": 2222.9, + "end": 2225.28, + "probability": 0.9739 + }, + { + "start": 2225.54, + "end": 2230.12, + "probability": 0.9221 + }, + { + "start": 2230.12, + "end": 2235.7, + "probability": 0.999 + }, + { + "start": 2236.08, + "end": 2241.1, + "probability": 0.9928 + }, + { + "start": 2242.02, + "end": 2243.36, + "probability": 0.6977 + }, + { + "start": 2243.44, + "end": 2244.86, + "probability": 0.9984 + }, + { + "start": 2245.02, + "end": 2245.81, + "probability": 0.9714 + }, + { + "start": 2246.4, + "end": 2247.4, + "probability": 0.8397 + }, + { + "start": 2247.48, + "end": 2248.4, + "probability": 0.9444 + }, + { + "start": 2248.54, + "end": 2252.54, + "probability": 0.7202 + }, + { + "start": 2252.62, + "end": 2253.16, + "probability": 0.743 + }, + { + "start": 2253.52, + "end": 2254.68, + "probability": 0.8882 + }, + { + "start": 2254.76, + "end": 2256.02, + "probability": 0.5948 + }, + { + "start": 2256.1, + "end": 2260.74, + "probability": 0.7722 + }, + { + "start": 2260.96, + "end": 2264.26, + "probability": 0.9841 + }, + { + "start": 2264.56, + "end": 2266.42, + "probability": 0.9944 + }, + { + "start": 2266.76, + "end": 2268.0, + "probability": 0.8008 + }, + { + "start": 2268.5, + "end": 2271.63, + "probability": 0.9507 + }, + { + "start": 2272.24, + "end": 2273.8, + "probability": 0.7285 + }, + { + "start": 2274.04, + "end": 2275.86, + "probability": 0.8789 + }, + { + "start": 2276.28, + "end": 2279.0, + "probability": 0.9613 + }, + { + "start": 2279.8, + "end": 2280.6, + "probability": 0.8008 + }, + { + "start": 2281.3, + "end": 2284.14, + "probability": 0.1658 + }, + { + "start": 2284.14, + "end": 2286.04, + "probability": 0.3874 + }, + { + "start": 2286.54, + "end": 2286.54, + "probability": 0.3148 + }, + { + "start": 2286.54, + "end": 2286.54, + "probability": 0.2197 + }, + { + "start": 2286.54, + "end": 2287.85, + "probability": 0.7567 + }, + { + "start": 2288.0, + "end": 2288.56, + "probability": 0.7296 + }, + { + "start": 2289.58, + "end": 2294.14, + "probability": 0.8981 + }, + { + "start": 2295.48, + "end": 2300.74, + "probability": 0.8292 + }, + { + "start": 2300.9, + "end": 2302.06, + "probability": 0.165 + }, + { + "start": 2302.66, + "end": 2306.0, + "probability": 0.9666 + }, + { + "start": 2306.08, + "end": 2307.02, + "probability": 0.5808 + }, + { + "start": 2307.02, + "end": 2307.86, + "probability": 0.9797 + }, + { + "start": 2308.56, + "end": 2309.14, + "probability": 0.8099 + }, + { + "start": 2312.6, + "end": 2313.44, + "probability": 0.4634 + }, + { + "start": 2313.64, + "end": 2314.38, + "probability": 0.7236 + }, + { + "start": 2314.48, + "end": 2315.36, + "probability": 0.5369 + }, + { + "start": 2315.36, + "end": 2318.38, + "probability": 0.8224 + }, + { + "start": 2318.48, + "end": 2325.14, + "probability": 0.9938 + }, + { + "start": 2326.32, + "end": 2329.72, + "probability": 0.9633 + }, + { + "start": 2329.72, + "end": 2333.78, + "probability": 0.9994 + }, + { + "start": 2334.88, + "end": 2336.3, + "probability": 0.6912 + }, + { + "start": 2336.48, + "end": 2340.32, + "probability": 0.9904 + }, + { + "start": 2341.1, + "end": 2343.84, + "probability": 0.9552 + }, + { + "start": 2345.26, + "end": 2347.96, + "probability": 0.6767 + }, + { + "start": 2348.9, + "end": 2349.9, + "probability": 0.8233 + }, + { + "start": 2349.92, + "end": 2351.96, + "probability": 0.7319 + }, + { + "start": 2352.06, + "end": 2352.94, + "probability": 0.7681 + }, + { + "start": 2353.06, + "end": 2356.68, + "probability": 0.9268 + }, + { + "start": 2356.72, + "end": 2358.36, + "probability": 0.7911 + }, + { + "start": 2358.48, + "end": 2363.08, + "probability": 0.9454 + }, + { + "start": 2363.24, + "end": 2365.28, + "probability": 0.7398 + }, + { + "start": 2366.1, + "end": 2366.86, + "probability": 0.9575 + }, + { + "start": 2366.94, + "end": 2369.58, + "probability": 0.844 + }, + { + "start": 2369.64, + "end": 2370.62, + "probability": 0.9579 + }, + { + "start": 2370.78, + "end": 2372.54, + "probability": 0.7192 + }, + { + "start": 2372.66, + "end": 2374.02, + "probability": 0.8405 + }, + { + "start": 2374.28, + "end": 2374.72, + "probability": 0.9482 + }, + { + "start": 2374.8, + "end": 2379.98, + "probability": 0.7253 + }, + { + "start": 2380.8, + "end": 2383.12, + "probability": 0.9825 + }, + { + "start": 2383.8, + "end": 2384.46, + "probability": 0.9166 + }, + { + "start": 2384.54, + "end": 2388.62, + "probability": 0.9842 + }, + { + "start": 2388.62, + "end": 2392.32, + "probability": 0.9858 + }, + { + "start": 2392.88, + "end": 2394.22, + "probability": 0.8792 + }, + { + "start": 2394.52, + "end": 2398.54, + "probability": 0.9964 + }, + { + "start": 2399.54, + "end": 2399.78, + "probability": 0.351 + }, + { + "start": 2400.02, + "end": 2401.5, + "probability": 0.8262 + }, + { + "start": 2401.6, + "end": 2403.24, + "probability": 0.8267 + }, + { + "start": 2403.44, + "end": 2405.04, + "probability": 0.7008 + }, + { + "start": 2405.14, + "end": 2405.94, + "probability": 0.8389 + }, + { + "start": 2406.64, + "end": 2408.62, + "probability": 0.9619 + }, + { + "start": 2408.78, + "end": 2409.88, + "probability": 0.9263 + }, + { + "start": 2410.3, + "end": 2414.16, + "probability": 0.9663 + }, + { + "start": 2414.26, + "end": 2418.97, + "probability": 0.9768 + }, + { + "start": 2421.9, + "end": 2422.34, + "probability": 0.6711 + }, + { + "start": 2422.92, + "end": 2427.88, + "probability": 0.8875 + }, + { + "start": 2427.92, + "end": 2430.16, + "probability": 0.9805 + }, + { + "start": 2430.9, + "end": 2436.38, + "probability": 0.981 + }, + { + "start": 2436.78, + "end": 2442.68, + "probability": 0.9468 + }, + { + "start": 2442.98, + "end": 2443.52, + "probability": 0.7199 + }, + { + "start": 2443.62, + "end": 2449.92, + "probability": 0.955 + }, + { + "start": 2450.26, + "end": 2454.65, + "probability": 0.9697 + }, + { + "start": 2454.8, + "end": 2459.28, + "probability": 0.9993 + }, + { + "start": 2459.96, + "end": 2461.9, + "probability": 0.906 + }, + { + "start": 2462.5, + "end": 2465.26, + "probability": 0.9611 + }, + { + "start": 2465.44, + "end": 2468.32, + "probability": 0.5096 + }, + { + "start": 2468.78, + "end": 2471.5, + "probability": 0.9 + }, + { + "start": 2471.94, + "end": 2475.92, + "probability": 0.9984 + }, + { + "start": 2476.54, + "end": 2481.42, + "probability": 0.9905 + }, + { + "start": 2481.82, + "end": 2482.96, + "probability": 0.9033 + }, + { + "start": 2483.02, + "end": 2483.52, + "probability": 0.933 + }, + { + "start": 2483.7, + "end": 2488.3, + "probability": 0.9922 + }, + { + "start": 2488.58, + "end": 2492.88, + "probability": 0.9978 + }, + { + "start": 2494.44, + "end": 2497.64, + "probability": 0.8708 + }, + { + "start": 2497.84, + "end": 2499.2, + "probability": 0.9323 + }, + { + "start": 2499.32, + "end": 2503.3, + "probability": 0.9836 + }, + { + "start": 2504.08, + "end": 2505.64, + "probability": 0.9395 + }, + { + "start": 2506.36, + "end": 2508.86, + "probability": 0.725 + }, + { + "start": 2509.58, + "end": 2513.58, + "probability": 0.9618 + }, + { + "start": 2513.58, + "end": 2518.2, + "probability": 0.876 + }, + { + "start": 2518.84, + "end": 2520.56, + "probability": 0.9266 + }, + { + "start": 2520.62, + "end": 2522.62, + "probability": 0.7655 + }, + { + "start": 2522.74, + "end": 2524.66, + "probability": 0.892 + }, + { + "start": 2524.96, + "end": 2530.44, + "probability": 0.6934 + }, + { + "start": 2530.44, + "end": 2532.36, + "probability": 0.7109 + }, + { + "start": 2533.16, + "end": 2538.98, + "probability": 0.9316 + }, + { + "start": 2539.2, + "end": 2542.9, + "probability": 0.8532 + }, + { + "start": 2543.32, + "end": 2545.62, + "probability": 0.8879 + }, + { + "start": 2545.84, + "end": 2546.28, + "probability": 0.7248 + }, + { + "start": 2546.38, + "end": 2554.0, + "probability": 0.9901 + }, + { + "start": 2554.92, + "end": 2555.41, + "probability": 0.9072 + }, + { + "start": 2555.66, + "end": 2557.18, + "probability": 0.8618 + }, + { + "start": 2557.84, + "end": 2563.04, + "probability": 0.9945 + }, + { + "start": 2563.04, + "end": 2566.94, + "probability": 0.9765 + }, + { + "start": 2566.96, + "end": 2568.66, + "probability": 0.8105 + }, + { + "start": 2569.32, + "end": 2570.36, + "probability": 0.5947 + }, + { + "start": 2570.9, + "end": 2572.58, + "probability": 0.983 + }, + { + "start": 2572.62, + "end": 2573.28, + "probability": 0.874 + }, + { + "start": 2573.68, + "end": 2579.36, + "probability": 0.969 + }, + { + "start": 2580.3, + "end": 2582.76, + "probability": 0.9222 + }, + { + "start": 2583.0, + "end": 2584.6, + "probability": 0.978 + }, + { + "start": 2584.6, + "end": 2590.9, + "probability": 0.9832 + }, + { + "start": 2591.16, + "end": 2594.64, + "probability": 0.9729 + }, + { + "start": 2595.32, + "end": 2598.76, + "probability": 0.936 + }, + { + "start": 2599.16, + "end": 2603.76, + "probability": 0.9178 + }, + { + "start": 2604.48, + "end": 2607.94, + "probability": 0.9761 + }, + { + "start": 2608.14, + "end": 2610.82, + "probability": 0.9426 + }, + { + "start": 2612.54, + "end": 2612.68, + "probability": 0.3898 + }, + { + "start": 2612.92, + "end": 2616.26, + "probability": 0.6992 + }, + { + "start": 2616.38, + "end": 2617.02, + "probability": 0.9182 + }, + { + "start": 2617.12, + "end": 2621.12, + "probability": 0.8612 + }, + { + "start": 2621.42, + "end": 2627.7, + "probability": 0.8865 + }, + { + "start": 2627.7, + "end": 2631.84, + "probability": 0.9976 + }, + { + "start": 2633.4, + "end": 2639.92, + "probability": 0.8957 + }, + { + "start": 2640.64, + "end": 2644.62, + "probability": 0.962 + }, + { + "start": 2645.1, + "end": 2652.02, + "probability": 0.9676 + }, + { + "start": 2652.6, + "end": 2656.72, + "probability": 0.7817 + }, + { + "start": 2656.92, + "end": 2659.0, + "probability": 0.9895 + }, + { + "start": 2659.1, + "end": 2659.7, + "probability": 0.9354 + }, + { + "start": 2659.74, + "end": 2664.08, + "probability": 0.9829 + }, + { + "start": 2664.82, + "end": 2667.65, + "probability": 0.86 + }, + { + "start": 2668.24, + "end": 2673.8, + "probability": 0.9785 + }, + { + "start": 2674.5, + "end": 2677.12, + "probability": 0.989 + }, + { + "start": 2677.12, + "end": 2680.4, + "probability": 0.9466 + }, + { + "start": 2680.48, + "end": 2681.4, + "probability": 0.9041 + }, + { + "start": 2681.86, + "end": 2683.36, + "probability": 0.5636 + }, + { + "start": 2683.4, + "end": 2684.24, + "probability": 0.6157 + }, + { + "start": 2684.86, + "end": 2689.82, + "probability": 0.8636 + }, + { + "start": 2690.3, + "end": 2693.66, + "probability": 0.9897 + }, + { + "start": 2696.24, + "end": 2698.1, + "probability": 0.7102 + }, + { + "start": 2698.52, + "end": 2702.22, + "probability": 0.9845 + }, + { + "start": 2702.78, + "end": 2707.8, + "probability": 0.8705 + }, + { + "start": 2707.98, + "end": 2709.85, + "probability": 0.9641 + }, + { + "start": 2710.66, + "end": 2714.86, + "probability": 0.9836 + }, + { + "start": 2714.96, + "end": 2716.55, + "probability": 0.9053 + }, + { + "start": 2717.38, + "end": 2719.43, + "probability": 0.5039 + }, + { + "start": 2720.5, + "end": 2722.76, + "probability": 0.3601 + }, + { + "start": 2722.88, + "end": 2726.3, + "probability": 0.876 + }, + { + "start": 2726.3, + "end": 2732.38, + "probability": 0.6869 + }, + { + "start": 2732.56, + "end": 2733.48, + "probability": 0.7029 + }, + { + "start": 2734.02, + "end": 2736.02, + "probability": 0.8622 + }, + { + "start": 2737.0, + "end": 2737.66, + "probability": 0.6958 + }, + { + "start": 2737.82, + "end": 2740.46, + "probability": 0.3111 + }, + { + "start": 2740.72, + "end": 2742.96, + "probability": 0.1958 + }, + { + "start": 2743.44, + "end": 2746.58, + "probability": 0.5196 + }, + { + "start": 2747.04, + "end": 2748.52, + "probability": 0.7613 + }, + { + "start": 2748.64, + "end": 2750.78, + "probability": 0.9363 + }, + { + "start": 2750.98, + "end": 2756.87, + "probability": 0.8476 + }, + { + "start": 2756.98, + "end": 2761.9, + "probability": 0.9576 + }, + { + "start": 2762.04, + "end": 2768.62, + "probability": 0.9856 + }, + { + "start": 2769.04, + "end": 2773.2, + "probability": 0.9796 + }, + { + "start": 2773.68, + "end": 2778.34, + "probability": 0.9924 + }, + { + "start": 2778.38, + "end": 2779.7, + "probability": 0.7595 + }, + { + "start": 2780.14, + "end": 2784.8, + "probability": 0.9827 + }, + { + "start": 2786.26, + "end": 2788.67, + "probability": 0.536 + }, + { + "start": 2793.38, + "end": 2795.85, + "probability": 0.2495 + }, + { + "start": 2797.14, + "end": 2802.98, + "probability": 0.9248 + }, + { + "start": 2803.1, + "end": 2805.34, + "probability": 0.9466 + }, + { + "start": 2806.12, + "end": 2806.86, + "probability": 0.6868 + }, + { + "start": 2806.96, + "end": 2808.4, + "probability": 0.3968 + }, + { + "start": 2808.52, + "end": 2811.4, + "probability": 0.3299 + }, + { + "start": 2811.56, + "end": 2814.4, + "probability": 0.5177 + }, + { + "start": 2815.24, + "end": 2819.04, + "probability": 0.753 + }, + { + "start": 2819.98, + "end": 2823.28, + "probability": 0.9505 + }, + { + "start": 2823.62, + "end": 2830.36, + "probability": 0.7274 + }, + { + "start": 2830.94, + "end": 2833.17, + "probability": 0.9006 + }, + { + "start": 2833.8, + "end": 2837.24, + "probability": 0.9453 + }, + { + "start": 2837.76, + "end": 2840.58, + "probability": 0.9786 + }, + { + "start": 2840.86, + "end": 2844.28, + "probability": 0.9386 + }, + { + "start": 2844.96, + "end": 2851.68, + "probability": 0.4299 + }, + { + "start": 2852.2, + "end": 2856.56, + "probability": 0.7153 + }, + { + "start": 2856.86, + "end": 2861.78, + "probability": 0.7892 + }, + { + "start": 2863.04, + "end": 2869.14, + "probability": 0.9695 + }, + { + "start": 2869.6, + "end": 2870.28, + "probability": 0.5059 + }, + { + "start": 2870.42, + "end": 2876.8, + "probability": 0.9678 + }, + { + "start": 2879.06, + "end": 2883.24, + "probability": 0.5166 + }, + { + "start": 2884.28, + "end": 2889.76, + "probability": 0.8691 + }, + { + "start": 2889.9, + "end": 2892.12, + "probability": 0.9722 + }, + { + "start": 2892.52, + "end": 2896.18, + "probability": 0.9855 + }, + { + "start": 2896.9, + "end": 2903.16, + "probability": 0.9899 + }, + { + "start": 2903.96, + "end": 2907.16, + "probability": 0.9578 + }, + { + "start": 2907.16, + "end": 2912.36, + "probability": 0.7828 + }, + { + "start": 2912.84, + "end": 2918.58, + "probability": 0.9134 + }, + { + "start": 2918.84, + "end": 2919.76, + "probability": 0.8333 + }, + { + "start": 2920.04, + "end": 2924.54, + "probability": 0.8271 + }, + { + "start": 2925.26, + "end": 2930.14, + "probability": 0.9794 + }, + { + "start": 2930.2, + "end": 2934.16, + "probability": 0.9744 + }, + { + "start": 2934.16, + "end": 2937.36, + "probability": 0.9973 + }, + { + "start": 2937.36, + "end": 2942.62, + "probability": 0.7986 + }, + { + "start": 2943.16, + "end": 2946.1, + "probability": 0.9281 + }, + { + "start": 2946.3, + "end": 2947.1, + "probability": 0.97 + }, + { + "start": 2948.0, + "end": 2950.33, + "probability": 0.7727 + }, + { + "start": 2951.3, + "end": 2954.27, + "probability": 0.8867 + }, + { + "start": 2955.18, + "end": 2956.84, + "probability": 0.7089 + }, + { + "start": 2957.54, + "end": 2962.24, + "probability": 0.9777 + }, + { + "start": 2962.76, + "end": 2964.12, + "probability": 0.9755 + }, + { + "start": 2964.7, + "end": 2968.1, + "probability": 0.9686 + }, + { + "start": 2972.4, + "end": 2973.7, + "probability": 0.811 + }, + { + "start": 2974.76, + "end": 2976.58, + "probability": 0.7975 + }, + { + "start": 2983.06, + "end": 2989.24, + "probability": 0.9881 + }, + { + "start": 2990.9, + "end": 2992.86, + "probability": 0.3776 + }, + { + "start": 2993.1, + "end": 3000.5, + "probability": 0.9738 + }, + { + "start": 3002.06, + "end": 3009.72, + "probability": 0.9324 + }, + { + "start": 3009.8, + "end": 3010.61, + "probability": 0.8848 + }, + { + "start": 3011.76, + "end": 3018.02, + "probability": 0.9217 + }, + { + "start": 3018.22, + "end": 3019.66, + "probability": 0.9138 + }, + { + "start": 3019.96, + "end": 3021.02, + "probability": 0.8722 + }, + { + "start": 3021.74, + "end": 3024.46, + "probability": 0.9668 + }, + { + "start": 3025.38, + "end": 3033.83, + "probability": 0.9771 + }, + { + "start": 3033.98, + "end": 3038.14, + "probability": 0.998 + }, + { + "start": 3038.42, + "end": 3044.16, + "probability": 0.9911 + }, + { + "start": 3045.14, + "end": 3045.42, + "probability": 0.6298 + }, + { + "start": 3045.6, + "end": 3048.47, + "probability": 0.9927 + }, + { + "start": 3048.6, + "end": 3053.38, + "probability": 0.934 + }, + { + "start": 3054.5, + "end": 3061.02, + "probability": 0.9904 + }, + { + "start": 3061.72, + "end": 3066.24, + "probability": 0.9354 + }, + { + "start": 3067.2, + "end": 3070.16, + "probability": 0.9042 + }, + { + "start": 3070.26, + "end": 3075.54, + "probability": 0.9751 + }, + { + "start": 3075.54, + "end": 3079.28, + "probability": 0.6786 + }, + { + "start": 3080.06, + "end": 3081.23, + "probability": 0.5114 + }, + { + "start": 3081.26, + "end": 3082.5, + "probability": 0.7188 + }, + { + "start": 3082.6, + "end": 3085.5, + "probability": 0.9398 + }, + { + "start": 3086.12, + "end": 3090.44, + "probability": 0.98 + }, + { + "start": 3094.36, + "end": 3097.76, + "probability": 0.6803 + }, + { + "start": 3098.68, + "end": 3099.66, + "probability": 0.8063 + }, + { + "start": 3100.04, + "end": 3102.84, + "probability": 0.9719 + }, + { + "start": 3104.08, + "end": 3108.66, + "probability": 0.9742 + }, + { + "start": 3109.54, + "end": 3114.78, + "probability": 0.9836 + }, + { + "start": 3115.12, + "end": 3117.72, + "probability": 0.9923 + }, + { + "start": 3118.28, + "end": 3124.64, + "probability": 0.9381 + }, + { + "start": 3124.84, + "end": 3128.16, + "probability": 0.5224 + }, + { + "start": 3128.72, + "end": 3132.1, + "probability": 0.999 + }, + { + "start": 3132.8, + "end": 3138.1, + "probability": 0.9952 + }, + { + "start": 3138.2, + "end": 3139.04, + "probability": 0.3094 + }, + { + "start": 3139.68, + "end": 3144.58, + "probability": 0.9769 + }, + { + "start": 3144.8, + "end": 3146.8, + "probability": 0.8715 + }, + { + "start": 3147.24, + "end": 3156.4, + "probability": 0.9908 + }, + { + "start": 3156.5, + "end": 3158.14, + "probability": 0.9039 + }, + { + "start": 3159.12, + "end": 3163.12, + "probability": 0.8074 + }, + { + "start": 3163.56, + "end": 3168.38, + "probability": 0.6928 + }, + { + "start": 3168.92, + "end": 3171.76, + "probability": 0.9914 + }, + { + "start": 3171.84, + "end": 3173.48, + "probability": 0.9802 + }, + { + "start": 3173.58, + "end": 3174.8, + "probability": 0.7759 + }, + { + "start": 3175.54, + "end": 3181.0, + "probability": 0.9954 + }, + { + "start": 3181.38, + "end": 3182.34, + "probability": 0.517 + }, + { + "start": 3182.5, + "end": 3185.91, + "probability": 0.9493 + }, + { + "start": 3186.82, + "end": 3191.92, + "probability": 0.8823 + }, + { + "start": 3193.0, + "end": 3196.46, + "probability": 0.9934 + }, + { + "start": 3196.46, + "end": 3201.6, + "probability": 0.7681 + }, + { + "start": 3202.44, + "end": 3206.44, + "probability": 0.9642 + }, + { + "start": 3206.44, + "end": 3209.18, + "probability": 0.9941 + }, + { + "start": 3209.3, + "end": 3211.58, + "probability": 0.9824 + }, + { + "start": 3212.52, + "end": 3215.2, + "probability": 0.8397 + }, + { + "start": 3216.32, + "end": 3217.02, + "probability": 0.9904 + }, + { + "start": 3218.5, + "end": 3219.38, + "probability": 0.8508 + }, + { + "start": 3219.8, + "end": 3221.26, + "probability": 0.5048 + }, + { + "start": 3221.32, + "end": 3222.46, + "probability": 0.7504 + }, + { + "start": 3222.74, + "end": 3224.6, + "probability": 0.9063 + }, + { + "start": 3225.16, + "end": 3231.14, + "probability": 0.9746 + }, + { + "start": 3231.22, + "end": 3232.08, + "probability": 0.8212 + }, + { + "start": 3232.22, + "end": 3234.04, + "probability": 0.8735 + }, + { + "start": 3235.78, + "end": 3240.46, + "probability": 0.871 + }, + { + "start": 3241.96, + "end": 3243.46, + "probability": 0.869 + }, + { + "start": 3243.6, + "end": 3244.26, + "probability": 0.5927 + }, + { + "start": 3244.84, + "end": 3248.06, + "probability": 0.9763 + }, + { + "start": 3249.02, + "end": 3249.3, + "probability": 0.6624 + }, + { + "start": 3249.4, + "end": 3252.26, + "probability": 0.6691 + }, + { + "start": 3252.32, + "end": 3255.32, + "probability": 0.8044 + }, + { + "start": 3256.26, + "end": 3259.98, + "probability": 0.9938 + }, + { + "start": 3260.88, + "end": 3263.56, + "probability": 0.9463 + }, + { + "start": 3263.7, + "end": 3265.04, + "probability": 0.9739 + }, + { + "start": 3267.3, + "end": 3268.86, + "probability": 0.9665 + }, + { + "start": 3270.46, + "end": 3272.7, + "probability": 0.9462 + }, + { + "start": 3273.1, + "end": 3275.55, + "probability": 0.9506 + }, + { + "start": 3275.66, + "end": 3279.26, + "probability": 0.9446 + }, + { + "start": 3279.66, + "end": 3280.53, + "probability": 0.8529 + }, + { + "start": 3282.34, + "end": 3282.84, + "probability": 0.4507 + }, + { + "start": 3284.06, + "end": 3287.42, + "probability": 0.8688 + }, + { + "start": 3287.92, + "end": 3293.14, + "probability": 0.974 + }, + { + "start": 3293.84, + "end": 3294.72, + "probability": 0.667 + }, + { + "start": 3295.88, + "end": 3297.7, + "probability": 0.976 + }, + { + "start": 3298.32, + "end": 3299.94, + "probability": 0.9884 + }, + { + "start": 3300.84, + "end": 3303.08, + "probability": 0.9897 + }, + { + "start": 3303.08, + "end": 3307.0, + "probability": 0.9751 + }, + { + "start": 3307.66, + "end": 3310.54, + "probability": 0.9989 + }, + { + "start": 3310.54, + "end": 3313.1, + "probability": 0.9712 + }, + { + "start": 3313.26, + "end": 3314.42, + "probability": 0.491 + }, + { + "start": 3314.48, + "end": 3315.38, + "probability": 0.7787 + }, + { + "start": 3315.44, + "end": 3316.36, + "probability": 0.872 + }, + { + "start": 3316.8, + "end": 3318.04, + "probability": 0.7478 + }, + { + "start": 3318.24, + "end": 3318.87, + "probability": 0.8618 + }, + { + "start": 3319.2, + "end": 3322.31, + "probability": 0.9897 + }, + { + "start": 3323.3, + "end": 3325.1, + "probability": 0.7983 + }, + { + "start": 3325.58, + "end": 3326.6, + "probability": 0.9707 + }, + { + "start": 3326.64, + "end": 3327.3, + "probability": 0.8369 + }, + { + "start": 3327.38, + "end": 3328.27, + "probability": 0.9139 + }, + { + "start": 3328.74, + "end": 3329.59, + "probability": 0.9385 + }, + { + "start": 3330.4, + "end": 3334.0, + "probability": 0.984 + }, + { + "start": 3335.04, + "end": 3340.16, + "probability": 0.98 + }, + { + "start": 3341.12, + "end": 3342.54, + "probability": 0.4999 + }, + { + "start": 3342.66, + "end": 3346.86, + "probability": 0.681 + }, + { + "start": 3346.96, + "end": 3350.8, + "probability": 0.9758 + }, + { + "start": 3351.46, + "end": 3356.0, + "probability": 0.9663 + }, + { + "start": 3356.7, + "end": 3358.26, + "probability": 0.9636 + }, + { + "start": 3361.68, + "end": 3362.12, + "probability": 0.4124 + }, + { + "start": 3362.14, + "end": 3362.14, + "probability": 0.597 + }, + { + "start": 3362.14, + "end": 3367.5, + "probability": 0.8983 + }, + { + "start": 3367.6, + "end": 3370.02, + "probability": 0.6302 + }, + { + "start": 3370.5, + "end": 3373.0, + "probability": 0.9588 + }, + { + "start": 3373.24, + "end": 3375.86, + "probability": 0.9751 + }, + { + "start": 3376.14, + "end": 3377.76, + "probability": 0.954 + }, + { + "start": 3378.54, + "end": 3381.86, + "probability": 0.9102 + }, + { + "start": 3382.42, + "end": 3384.04, + "probability": 0.9354 + }, + { + "start": 3384.18, + "end": 3385.6, + "probability": 0.9614 + }, + { + "start": 3385.92, + "end": 3387.08, + "probability": 0.9854 + }, + { + "start": 3388.02, + "end": 3388.84, + "probability": 0.7581 + }, + { + "start": 3389.64, + "end": 3395.96, + "probability": 0.9971 + }, + { + "start": 3398.78, + "end": 3402.6, + "probability": 0.9272 + }, + { + "start": 3403.58, + "end": 3405.16, + "probability": 0.9829 + }, + { + "start": 3406.48, + "end": 3410.54, + "probability": 0.9724 + }, + { + "start": 3410.9, + "end": 3412.7, + "probability": 0.9748 + }, + { + "start": 3412.8, + "end": 3413.8, + "probability": 0.9802 + }, + { + "start": 3414.48, + "end": 3416.46, + "probability": 0.7524 + }, + { + "start": 3416.92, + "end": 3419.86, + "probability": 0.9941 + }, + { + "start": 3420.72, + "end": 3421.42, + "probability": 0.8633 + }, + { + "start": 3422.2, + "end": 3422.74, + "probability": 0.838 + }, + { + "start": 3422.82, + "end": 3424.3, + "probability": 0.7268 + }, + { + "start": 3424.54, + "end": 3429.42, + "probability": 0.9556 + }, + { + "start": 3430.1, + "end": 3433.12, + "probability": 0.9959 + }, + { + "start": 3433.64, + "end": 3434.72, + "probability": 0.7476 + }, + { + "start": 3434.84, + "end": 3438.98, + "probability": 0.9547 + }, + { + "start": 3441.25, + "end": 3443.22, + "probability": 0.8999 + }, + { + "start": 3443.92, + "end": 3447.6, + "probability": 0.9695 + }, + { + "start": 3447.94, + "end": 3449.2, + "probability": 0.9128 + }, + { + "start": 3450.08, + "end": 3453.68, + "probability": 0.9106 + }, + { + "start": 3454.58, + "end": 3459.54, + "probability": 0.9885 + }, + { + "start": 3459.54, + "end": 3463.32, + "probability": 0.9429 + }, + { + "start": 3464.12, + "end": 3465.36, + "probability": 0.9621 + }, + { + "start": 3465.84, + "end": 3466.98, + "probability": 0.8727 + }, + { + "start": 3467.56, + "end": 3471.28, + "probability": 0.9757 + }, + { + "start": 3471.64, + "end": 3475.46, + "probability": 0.9832 + }, + { + "start": 3475.5, + "end": 3478.02, + "probability": 0.5735 + }, + { + "start": 3478.04, + "end": 3480.84, + "probability": 0.9525 + }, + { + "start": 3481.18, + "end": 3483.18, + "probability": 0.9736 + }, + { + "start": 3483.66, + "end": 3487.28, + "probability": 0.9927 + }, + { + "start": 3487.58, + "end": 3491.3, + "probability": 0.9557 + }, + { + "start": 3491.86, + "end": 3493.9, + "probability": 0.5978 + }, + { + "start": 3494.0, + "end": 3495.22, + "probability": 0.7773 + }, + { + "start": 3495.46, + "end": 3496.04, + "probability": 0.8837 + }, + { + "start": 3496.16, + "end": 3498.84, + "probability": 0.9103 + }, + { + "start": 3499.2, + "end": 3500.64, + "probability": 0.7129 + }, + { + "start": 3500.72, + "end": 3504.56, + "probability": 0.7771 + }, + { + "start": 3504.64, + "end": 3505.52, + "probability": 0.7452 + }, + { + "start": 3506.34, + "end": 3506.36, + "probability": 0.9814 + }, + { + "start": 3508.8, + "end": 3509.58, + "probability": 0.6326 + }, + { + "start": 3510.6, + "end": 3513.18, + "probability": 0.9603 + }, + { + "start": 3513.62, + "end": 3517.78, + "probability": 0.9664 + }, + { + "start": 3517.78, + "end": 3522.84, + "probability": 0.9677 + }, + { + "start": 3522.9, + "end": 3523.58, + "probability": 0.5558 + }, + { + "start": 3524.04, + "end": 3525.28, + "probability": 0.8149 + }, + { + "start": 3526.62, + "end": 3527.34, + "probability": 0.1708 + }, + { + "start": 3527.34, + "end": 3530.54, + "probability": 0.79 + }, + { + "start": 3530.58, + "end": 3533.1, + "probability": 0.9939 + }, + { + "start": 3537.28, + "end": 3538.68, + "probability": 0.124 + }, + { + "start": 3539.58, + "end": 3541.9, + "probability": 0.6997 + }, + { + "start": 3548.4, + "end": 3550.18, + "probability": 0.842 + }, + { + "start": 3550.66, + "end": 3555.02, + "probability": 0.7937 + }, + { + "start": 3558.34, + "end": 3559.87, + "probability": 0.3236 + }, + { + "start": 3560.54, + "end": 3562.86, + "probability": 0.4805 + }, + { + "start": 3563.48, + "end": 3566.78, + "probability": 0.6476 + }, + { + "start": 3568.48, + "end": 3573.64, + "probability": 0.9805 + }, + { + "start": 3573.64, + "end": 3576.86, + "probability": 0.9962 + }, + { + "start": 3577.42, + "end": 3581.06, + "probability": 0.9425 + }, + { + "start": 3581.92, + "end": 3584.98, + "probability": 0.7505 + }, + { + "start": 3586.95, + "end": 3589.4, + "probability": 0.9357 + }, + { + "start": 3590.4, + "end": 3593.56, + "probability": 0.4194 + }, + { + "start": 3596.2, + "end": 3603.3, + "probability": 0.9975 + }, + { + "start": 3604.7, + "end": 3605.74, + "probability": 0.8336 + }, + { + "start": 3605.82, + "end": 3607.0, + "probability": 0.8444 + }, + { + "start": 3607.1, + "end": 3611.3, + "probability": 0.9677 + }, + { + "start": 3611.38, + "end": 3615.8, + "probability": 0.9716 + }, + { + "start": 3616.92, + "end": 3618.34, + "probability": 0.9631 + }, + { + "start": 3618.76, + "end": 3620.94, + "probability": 0.7747 + }, + { + "start": 3621.34, + "end": 3621.56, + "probability": 0.3808 + }, + { + "start": 3621.74, + "end": 3622.72, + "probability": 0.5853 + }, + { + "start": 3624.64, + "end": 3627.76, + "probability": 0.9098 + }, + { + "start": 3627.76, + "end": 3629.0, + "probability": 0.8659 + }, + { + "start": 3630.02, + "end": 3632.7, + "probability": 0.937 + }, + { + "start": 3633.86, + "end": 3634.12, + "probability": 0.5347 + }, + { + "start": 3635.38, + "end": 3636.32, + "probability": 0.288 + }, + { + "start": 3636.46, + "end": 3636.78, + "probability": 0.4949 + }, + { + "start": 3636.84, + "end": 3637.64, + "probability": 0.978 + }, + { + "start": 3638.12, + "end": 3639.08, + "probability": 0.5804 + }, + { + "start": 3639.52, + "end": 3639.94, + "probability": 0.3717 + }, + { + "start": 3640.22, + "end": 3640.71, + "probability": 0.0421 + }, + { + "start": 3641.14, + "end": 3641.91, + "probability": 0.3419 + }, + { + "start": 3646.06, + "end": 3649.5, + "probability": 0.5682 + }, + { + "start": 3652.1, + "end": 3655.2, + "probability": 0.8748 + }, + { + "start": 3657.38, + "end": 3663.3, + "probability": 0.968 + }, + { + "start": 3664.08, + "end": 3670.22, + "probability": 0.9622 + }, + { + "start": 3671.2, + "end": 3676.76, + "probability": 0.9558 + }, + { + "start": 3677.68, + "end": 3685.46, + "probability": 0.9917 + }, + { + "start": 3685.46, + "end": 3688.28, + "probability": 0.9913 + }, + { + "start": 3689.8, + "end": 3698.28, + "probability": 0.8953 + }, + { + "start": 3698.3, + "end": 3705.66, + "probability": 0.9819 + }, + { + "start": 3709.68, + "end": 3714.8, + "probability": 0.9883 + }, + { + "start": 3715.32, + "end": 3721.32, + "probability": 0.9922 + }, + { + "start": 3722.66, + "end": 3723.44, + "probability": 0.5488 + }, + { + "start": 3724.22, + "end": 3728.86, + "probability": 0.9623 + }, + { + "start": 3729.0, + "end": 3732.98, + "probability": 0.882 + }, + { + "start": 3733.64, + "end": 3737.3, + "probability": 0.9922 + }, + { + "start": 3737.52, + "end": 3738.26, + "probability": 0.84 + }, + { + "start": 3738.42, + "end": 3740.7, + "probability": 0.938 + }, + { + "start": 3743.68, + "end": 3748.58, + "probability": 0.8873 + }, + { + "start": 3749.02, + "end": 3755.36, + "probability": 0.9804 + }, + { + "start": 3755.62, + "end": 3756.7, + "probability": 0.7611 + }, + { + "start": 3757.24, + "end": 3765.66, + "probability": 0.9652 + }, + { + "start": 3765.88, + "end": 3767.86, + "probability": 0.9401 + }, + { + "start": 3768.12, + "end": 3769.54, + "probability": 0.8103 + }, + { + "start": 3769.66, + "end": 3773.2, + "probability": 0.8851 + }, + { + "start": 3773.6, + "end": 3776.8, + "probability": 0.9912 + }, + { + "start": 3776.88, + "end": 3777.98, + "probability": 0.9739 + }, + { + "start": 3778.3, + "end": 3779.12, + "probability": 0.7017 + }, + { + "start": 3779.22, + "end": 3779.64, + "probability": 0.8339 + }, + { + "start": 3782.46, + "end": 3785.64, + "probability": 0.9938 + }, + { + "start": 3788.8, + "end": 3789.32, + "probability": 0.6323 + }, + { + "start": 3789.44, + "end": 3790.44, + "probability": 0.4159 + }, + { + "start": 3790.94, + "end": 3793.32, + "probability": 0.9937 + }, + { + "start": 3793.72, + "end": 3798.16, + "probability": 0.9543 + }, + { + "start": 3798.62, + "end": 3799.92, + "probability": 0.9878 + }, + { + "start": 3802.25, + "end": 3806.45, + "probability": 0.9829 + }, + { + "start": 3806.54, + "end": 3808.18, + "probability": 0.9766 + }, + { + "start": 3810.2, + "end": 3817.0, + "probability": 0.9478 + }, + { + "start": 3817.96, + "end": 3819.59, + "probability": 0.9492 + }, + { + "start": 3819.74, + "end": 3822.4, + "probability": 0.9568 + }, + { + "start": 3822.58, + "end": 3823.32, + "probability": 0.6829 + }, + { + "start": 3823.38, + "end": 3824.02, + "probability": 0.5331 + }, + { + "start": 3824.08, + "end": 3824.59, + "probability": 0.9232 + }, + { + "start": 3824.9, + "end": 3827.36, + "probability": 0.8166 + }, + { + "start": 3828.52, + "end": 3831.68, + "probability": 0.9443 + }, + { + "start": 3832.38, + "end": 3837.1, + "probability": 0.9873 + }, + { + "start": 3837.2, + "end": 3844.0, + "probability": 0.9923 + }, + { + "start": 3844.52, + "end": 3847.24, + "probability": 0.7534 + }, + { + "start": 3847.46, + "end": 3849.62, + "probability": 0.5861 + }, + { + "start": 3850.1, + "end": 3858.48, + "probability": 0.9854 + }, + { + "start": 3858.48, + "end": 3864.3, + "probability": 0.7925 + }, + { + "start": 3864.52, + "end": 3864.7, + "probability": 0.8721 + }, + { + "start": 3865.46, + "end": 3868.28, + "probability": 0.9777 + }, + { + "start": 3868.64, + "end": 3869.82, + "probability": 0.871 + }, + { + "start": 3869.86, + "end": 3870.06, + "probability": 0.3273 + }, + { + "start": 3870.3, + "end": 3870.78, + "probability": 0.254 + }, + { + "start": 3870.88, + "end": 3872.06, + "probability": 0.6021 + }, + { + "start": 3872.06, + "end": 3872.48, + "probability": 0.4221 + }, + { + "start": 3872.56, + "end": 3872.56, + "probability": 0.2423 + }, + { + "start": 3872.96, + "end": 3873.12, + "probability": 0.2918 + }, + { + "start": 3873.22, + "end": 3873.68, + "probability": 0.7348 + }, + { + "start": 3873.68, + "end": 3873.96, + "probability": 0.8733 + }, + { + "start": 3874.0, + "end": 3879.54, + "probability": 0.9909 + }, + { + "start": 3879.54, + "end": 3884.24, + "probability": 0.9462 + }, + { + "start": 3884.6, + "end": 3887.36, + "probability": 0.757 + }, + { + "start": 3887.56, + "end": 3888.06, + "probability": 0.3009 + }, + { + "start": 3888.06, + "end": 3889.64, + "probability": 0.3619 + }, + { + "start": 3889.7, + "end": 3890.14, + "probability": 0.4973 + }, + { + "start": 3890.38, + "end": 3891.5, + "probability": 0.8769 + }, + { + "start": 3891.96, + "end": 3893.17, + "probability": 0.9264 + }, + { + "start": 3893.7, + "end": 3893.8, + "probability": 0.4563 + }, + { + "start": 3894.0, + "end": 3895.24, + "probability": 0.8314 + }, + { + "start": 3895.3, + "end": 3896.68, + "probability": 0.868 + }, + { + "start": 3896.74, + "end": 3897.88, + "probability": 0.756 + }, + { + "start": 3898.16, + "end": 3899.2, + "probability": 0.516 + }, + { + "start": 3899.46, + "end": 3900.02, + "probability": 0.551 + }, + { + "start": 3900.02, + "end": 3900.02, + "probability": 0.3597 + }, + { + "start": 3900.06, + "end": 3901.26, + "probability": 0.9722 + }, + { + "start": 3901.44, + "end": 3901.98, + "probability": 0.785 + }, + { + "start": 3902.02, + "end": 3905.04, + "probability": 0.9463 + }, + { + "start": 3905.56, + "end": 3907.04, + "probability": 0.8177 + }, + { + "start": 3907.12, + "end": 3907.32, + "probability": 0.6184 + }, + { + "start": 3907.46, + "end": 3909.42, + "probability": 0.8975 + }, + { + "start": 3909.5, + "end": 3910.72, + "probability": 0.9651 + }, + { + "start": 3910.76, + "end": 3913.0, + "probability": 0.9242 + }, + { + "start": 3913.1, + "end": 3922.28, + "probability": 0.8337 + }, + { + "start": 3922.44, + "end": 3923.43, + "probability": 0.7454 + }, + { + "start": 3926.28, + "end": 3928.18, + "probability": 0.8066 + }, + { + "start": 3928.94, + "end": 3932.6, + "probability": 0.9244 + }, + { + "start": 3936.6, + "end": 3938.2, + "probability": 0.679 + }, + { + "start": 3940.5, + "end": 3943.28, + "probability": 0.8034 + }, + { + "start": 3944.04, + "end": 3944.32, + "probability": 0.7395 + }, + { + "start": 3944.62, + "end": 3946.7, + "probability": 0.9554 + }, + { + "start": 3946.78, + "end": 3947.44, + "probability": 0.8972 + }, + { + "start": 3947.98, + "end": 3950.5, + "probability": 0.3028 + }, + { + "start": 3950.5, + "end": 3952.36, + "probability": 0.0338 + }, + { + "start": 3952.52, + "end": 3955.85, + "probability": 0.9799 + }, + { + "start": 3956.88, + "end": 3962.16, + "probability": 0.9701 + }, + { + "start": 3962.48, + "end": 3964.66, + "probability": 0.8302 + }, + { + "start": 3964.76, + "end": 3966.12, + "probability": 0.8754 + }, + { + "start": 3966.9, + "end": 3969.64, + "probability": 0.89 + }, + { + "start": 3970.66, + "end": 3972.8, + "probability": 0.9252 + }, + { + "start": 3973.12, + "end": 3979.8, + "probability": 0.9934 + }, + { + "start": 3980.86, + "end": 3981.56, + "probability": 0.9523 + }, + { + "start": 3982.18, + "end": 3987.58, + "probability": 0.968 + }, + { + "start": 3988.14, + "end": 3990.58, + "probability": 0.9732 + }, + { + "start": 3991.24, + "end": 3998.26, + "probability": 0.853 + }, + { + "start": 3998.62, + "end": 3999.54, + "probability": 0.5198 + }, + { + "start": 3999.62, + "end": 4001.6, + "probability": 0.5636 + }, + { + "start": 4001.84, + "end": 4007.54, + "probability": 0.8552 + }, + { + "start": 4007.92, + "end": 4009.13, + "probability": 0.3489 + }, + { + "start": 4009.88, + "end": 4009.98, + "probability": 0.6661 + }, + { + "start": 4010.68, + "end": 4012.65, + "probability": 0.9971 + }, + { + "start": 4016.28, + "end": 4019.74, + "probability": 0.9643 + }, + { + "start": 4020.08, + "end": 4020.95, + "probability": 0.8973 + }, + { + "start": 4022.48, + "end": 4024.76, + "probability": 0.9585 + }, + { + "start": 4025.46, + "end": 4031.72, + "probability": 0.9064 + }, + { + "start": 4032.74, + "end": 4041.44, + "probability": 0.9719 + }, + { + "start": 4041.56, + "end": 4045.6, + "probability": 0.8213 + }, + { + "start": 4045.66, + "end": 4046.1, + "probability": 0.3888 + }, + { + "start": 4046.46, + "end": 4048.76, + "probability": 0.8889 + }, + { + "start": 4049.28, + "end": 4056.68, + "probability": 0.9457 + }, + { + "start": 4057.24, + "end": 4058.34, + "probability": 0.2255 + }, + { + "start": 4058.42, + "end": 4060.36, + "probability": 0.7301 + }, + { + "start": 4060.72, + "end": 4061.18, + "probability": 0.7438 + }, + { + "start": 4061.46, + "end": 4062.32, + "probability": 0.9219 + }, + { + "start": 4062.58, + "end": 4062.58, + "probability": 0.3799 + }, + { + "start": 4062.58, + "end": 4063.05, + "probability": 0.4072 + }, + { + "start": 4063.74, + "end": 4066.04, + "probability": 0.4993 + }, + { + "start": 4066.22, + "end": 4066.32, + "probability": 0.0066 + }, + { + "start": 4066.66, + "end": 4067.4, + "probability": 0.3468 + }, + { + "start": 4067.44, + "end": 4068.82, + "probability": 0.5879 + }, + { + "start": 4068.94, + "end": 4069.74, + "probability": 0.9956 + }, + { + "start": 4070.1, + "end": 4071.02, + "probability": 0.6317 + }, + { + "start": 4071.1, + "end": 4072.98, + "probability": 0.9471 + }, + { + "start": 4073.42, + "end": 4073.8, + "probability": 0.7402 + }, + { + "start": 4074.38, + "end": 4076.86, + "probability": 0.9946 + }, + { + "start": 4077.38, + "end": 4079.42, + "probability": 0.6055 + }, + { + "start": 4080.24, + "end": 4080.92, + "probability": 0.9215 + }, + { + "start": 4081.48, + "end": 4082.17, + "probability": 0.9697 + }, + { + "start": 4082.76, + "end": 4085.12, + "probability": 0.9128 + }, + { + "start": 4085.4, + "end": 4087.36, + "probability": 0.9813 + }, + { + "start": 4087.36, + "end": 4089.66, + "probability": 0.9798 + }, + { + "start": 4090.02, + "end": 4092.64, + "probability": 0.9352 + }, + { + "start": 4094.42, + "end": 4096.16, + "probability": 0.767 + }, + { + "start": 4096.16, + "end": 4096.23, + "probability": 0.5524 + }, + { + "start": 4096.96, + "end": 4097.86, + "probability": 0.9465 + }, + { + "start": 4097.88, + "end": 4103.28, + "probability": 0.9591 + }, + { + "start": 4103.8, + "end": 4110.5, + "probability": 0.9956 + }, + { + "start": 4110.5, + "end": 4117.53, + "probability": 0.9963 + }, + { + "start": 4118.5, + "end": 4119.74, + "probability": 0.9511 + }, + { + "start": 4119.98, + "end": 4121.98, + "probability": 0.7121 + }, + { + "start": 4122.4, + "end": 4124.28, + "probability": 0.9817 + }, + { + "start": 4125.58, + "end": 4134.51, + "probability": 0.9366 + }, + { + "start": 4135.84, + "end": 4137.14, + "probability": 0.7067 + }, + { + "start": 4137.18, + "end": 4139.6, + "probability": 0.8554 + }, + { + "start": 4140.21, + "end": 4143.84, + "probability": 0.7983 + }, + { + "start": 4144.08, + "end": 4149.0, + "probability": 0.9066 + }, + { + "start": 4150.06, + "end": 4151.86, + "probability": 0.9749 + }, + { + "start": 4152.02, + "end": 4153.36, + "probability": 0.6029 + }, + { + "start": 4153.42, + "end": 4154.58, + "probability": 0.9495 + }, + { + "start": 4155.0, + "end": 4155.52, + "probability": 0.6609 + }, + { + "start": 4155.68, + "end": 4158.08, + "probability": 0.9857 + }, + { + "start": 4159.22, + "end": 4161.18, + "probability": 0.8892 + }, + { + "start": 4162.52, + "end": 4167.14, + "probability": 0.9519 + }, + { + "start": 4168.82, + "end": 4175.88, + "probability": 0.8372 + }, + { + "start": 4176.86, + "end": 4181.64, + "probability": 0.8647 + }, + { + "start": 4183.72, + "end": 4184.74, + "probability": 0.8874 + }, + { + "start": 4185.36, + "end": 4186.98, + "probability": 0.8457 + }, + { + "start": 4187.66, + "end": 4188.84, + "probability": 0.7991 + }, + { + "start": 4189.18, + "end": 4194.28, + "probability": 0.9832 + }, + { + "start": 4194.56, + "end": 4196.74, + "probability": 0.822 + }, + { + "start": 4198.4, + "end": 4199.34, + "probability": 0.2675 + }, + { + "start": 4199.4, + "end": 4205.66, + "probability": 0.9395 + }, + { + "start": 4206.04, + "end": 4207.5, + "probability": 0.978 + }, + { + "start": 4211.62, + "end": 4216.06, + "probability": 0.9912 + }, + { + "start": 4216.06, + "end": 4218.96, + "probability": 0.9381 + }, + { + "start": 4220.34, + "end": 4221.9, + "probability": 0.7474 + }, + { + "start": 4222.52, + "end": 4223.32, + "probability": 0.8135 + }, + { + "start": 4226.78, + "end": 4228.1, + "probability": 0.9833 + }, + { + "start": 4231.54, + "end": 4235.44, + "probability": 0.6752 + }, + { + "start": 4237.14, + "end": 4243.26, + "probability": 0.9834 + }, + { + "start": 4243.86, + "end": 4247.82, + "probability": 0.9377 + }, + { + "start": 4248.9, + "end": 4257.56, + "probability": 0.9425 + }, + { + "start": 4258.34, + "end": 4261.76, + "probability": 0.9829 + }, + { + "start": 4261.76, + "end": 4266.42, + "probability": 0.9655 + }, + { + "start": 4267.24, + "end": 4270.58, + "probability": 0.8129 + }, + { + "start": 4273.44, + "end": 4276.98, + "probability": 0.9976 + }, + { + "start": 4278.63, + "end": 4285.34, + "probability": 0.6651 + }, + { + "start": 4286.96, + "end": 4293.72, + "probability": 0.8298 + }, + { + "start": 4293.72, + "end": 4298.08, + "probability": 0.981 + }, + { + "start": 4299.56, + "end": 4305.42, + "probability": 0.9901 + }, + { + "start": 4305.42, + "end": 4313.04, + "probability": 0.9347 + }, + { + "start": 4313.96, + "end": 4317.08, + "probability": 0.8665 + }, + { + "start": 4317.54, + "end": 4318.26, + "probability": 0.949 + }, + { + "start": 4318.34, + "end": 4321.52, + "probability": 0.9746 + }, + { + "start": 4322.38, + "end": 4324.3, + "probability": 0.9557 + }, + { + "start": 4325.02, + "end": 4332.64, + "probability": 0.7632 + }, + { + "start": 4333.3, + "end": 4337.42, + "probability": 0.671 + }, + { + "start": 4338.62, + "end": 4345.4, + "probability": 0.8208 + }, + { + "start": 4345.74, + "end": 4346.37, + "probability": 0.648 + }, + { + "start": 4346.86, + "end": 4354.42, + "probability": 0.9849 + }, + { + "start": 4354.48, + "end": 4355.84, + "probability": 0.9771 + }, + { + "start": 4356.5, + "end": 4356.64, + "probability": 0.0062 + }, + { + "start": 4356.64, + "end": 4357.76, + "probability": 0.4835 + }, + { + "start": 4357.8, + "end": 4358.26, + "probability": 0.8092 + }, + { + "start": 4359.0, + "end": 4362.5, + "probability": 0.5579 + }, + { + "start": 4363.54, + "end": 4364.14, + "probability": 0.1801 + }, + { + "start": 4370.62, + "end": 4371.8, + "probability": 0.9435 + }, + { + "start": 4371.88, + "end": 4373.28, + "probability": 0.6143 + }, + { + "start": 4373.42, + "end": 4373.9, + "probability": 0.2035 + }, + { + "start": 4373.96, + "end": 4376.6, + "probability": 0.9719 + }, + { + "start": 4376.6, + "end": 4379.6, + "probability": 0.9172 + }, + { + "start": 4379.76, + "end": 4380.32, + "probability": 0.1205 + }, + { + "start": 4380.46, + "end": 4382.88, + "probability": 0.6328 + }, + { + "start": 4383.68, + "end": 4385.28, + "probability": 0.6088 + }, + { + "start": 4396.06, + "end": 4396.64, + "probability": 0.6333 + }, + { + "start": 4401.8, + "end": 4403.82, + "probability": 0.8716 + }, + { + "start": 4403.94, + "end": 4404.77, + "probability": 0.1989 + }, + { + "start": 4405.1, + "end": 4408.86, + "probability": 0.8501 + }, + { + "start": 4410.14, + "end": 4410.38, + "probability": 0.6844 + }, + { + "start": 4410.5, + "end": 4413.28, + "probability": 0.9936 + }, + { + "start": 4413.38, + "end": 4416.82, + "probability": 0.9976 + }, + { + "start": 4417.06, + "end": 4417.5, + "probability": 0.236 + }, + { + "start": 4419.2, + "end": 4419.64, + "probability": 0.0387 + }, + { + "start": 4419.98, + "end": 4422.16, + "probability": 0.8926 + }, + { + "start": 4422.24, + "end": 4424.98, + "probability": 0.9686 + }, + { + "start": 4425.56, + "end": 4428.22, + "probability": 0.9131 + }, + { + "start": 4428.96, + "end": 4431.92, + "probability": 0.9927 + }, + { + "start": 4433.45, + "end": 4435.39, + "probability": 0.4535 + }, + { + "start": 4436.22, + "end": 4438.46, + "probability": 0.9972 + }, + { + "start": 4438.54, + "end": 4440.08, + "probability": 0.9565 + }, + { + "start": 4440.82, + "end": 4442.79, + "probability": 0.9871 + }, + { + "start": 4443.7, + "end": 4446.18, + "probability": 0.9929 + }, + { + "start": 4446.24, + "end": 4448.96, + "probability": 0.97 + }, + { + "start": 4448.98, + "end": 4451.42, + "probability": 0.9805 + }, + { + "start": 4451.68, + "end": 4455.6, + "probability": 0.9806 + }, + { + "start": 4455.94, + "end": 4458.92, + "probability": 0.9947 + }, + { + "start": 4459.06, + "end": 4460.06, + "probability": 0.9144 + }, + { + "start": 4460.72, + "end": 4464.38, + "probability": 0.9969 + }, + { + "start": 4464.38, + "end": 4468.42, + "probability": 0.9985 + }, + { + "start": 4468.56, + "end": 4470.56, + "probability": 0.1037 + }, + { + "start": 4471.06, + "end": 4479.76, + "probability": 0.9631 + }, + { + "start": 4479.76, + "end": 4482.64, + "probability": 0.9995 + }, + { + "start": 4482.72, + "end": 4486.08, + "probability": 0.9969 + }, + { + "start": 4487.04, + "end": 4488.76, + "probability": 0.9791 + }, + { + "start": 4488.9, + "end": 4492.05, + "probability": 0.9049 + }, + { + "start": 4492.44, + "end": 4496.8, + "probability": 0.9053 + }, + { + "start": 4497.32, + "end": 4499.48, + "probability": 0.9609 + }, + { + "start": 4499.72, + "end": 4501.76, + "probability": 0.4881 + }, + { + "start": 4501.84, + "end": 4502.3, + "probability": 0.832 + }, + { + "start": 4502.48, + "end": 4503.18, + "probability": 0.2366 + }, + { + "start": 4504.28, + "end": 4504.28, + "probability": 0.2054 + }, + { + "start": 4504.28, + "end": 4504.28, + "probability": 0.2326 + }, + { + "start": 4504.28, + "end": 4507.14, + "probability": 0.7998 + }, + { + "start": 4507.24, + "end": 4510.99, + "probability": 0.9884 + }, + { + "start": 4512.18, + "end": 4513.22, + "probability": 0.4133 + }, + { + "start": 4513.3, + "end": 4514.66, + "probability": 0.9419 + }, + { + "start": 4514.8, + "end": 4518.96, + "probability": 0.9166 + }, + { + "start": 4519.22, + "end": 4522.2, + "probability": 0.6316 + }, + { + "start": 4522.2, + "end": 4524.22, + "probability": 0.7538 + }, + { + "start": 4524.44, + "end": 4526.75, + "probability": 0.9983 + }, + { + "start": 4527.1, + "end": 4528.92, + "probability": 0.9792 + }, + { + "start": 4529.46, + "end": 4531.96, + "probability": 0.9248 + }, + { + "start": 4532.28, + "end": 4533.68, + "probability": 0.9418 + }, + { + "start": 4533.94, + "end": 4539.74, + "probability": 0.9976 + }, + { + "start": 4539.82, + "end": 4542.54, + "probability": 0.9977 + }, + { + "start": 4542.68, + "end": 4544.34, + "probability": 0.9944 + }, + { + "start": 4544.88, + "end": 4546.58, + "probability": 0.9456 + }, + { + "start": 4547.04, + "end": 4549.14, + "probability": 0.9988 + }, + { + "start": 4549.24, + "end": 4553.46, + "probability": 0.9983 + }, + { + "start": 4553.68, + "end": 4555.04, + "probability": 0.5999 + }, + { + "start": 4555.04, + "end": 4557.5, + "probability": 0.9626 + }, + { + "start": 4557.76, + "end": 4560.8, + "probability": 0.7282 + }, + { + "start": 4561.18, + "end": 4562.94, + "probability": 0.9153 + }, + { + "start": 4564.06, + "end": 4567.9, + "probability": 0.8827 + }, + { + "start": 4568.84, + "end": 4571.99, + "probability": 0.9973 + }, + { + "start": 4572.32, + "end": 4574.86, + "probability": 0.9781 + }, + { + "start": 4575.0, + "end": 4578.42, + "probability": 0.9974 + }, + { + "start": 4578.52, + "end": 4581.66, + "probability": 0.9429 + }, + { + "start": 4582.04, + "end": 4584.5, + "probability": 0.9967 + }, + { + "start": 4585.48, + "end": 4585.48, + "probability": 0.134 + }, + { + "start": 4585.48, + "end": 4589.08, + "probability": 0.9926 + }, + { + "start": 4589.56, + "end": 4591.14, + "probability": 0.8201 + }, + { + "start": 4591.14, + "end": 4591.86, + "probability": 0.8721 + }, + { + "start": 4593.62, + "end": 4594.36, + "probability": 0.2959 + }, + { + "start": 4594.5, + "end": 4594.86, + "probability": 0.4443 + }, + { + "start": 4595.02, + "end": 4597.66, + "probability": 0.7665 + }, + { + "start": 4597.74, + "end": 4598.88, + "probability": 0.5819 + }, + { + "start": 4599.36, + "end": 4600.55, + "probability": 0.8782 + }, + { + "start": 4601.11, + "end": 4604.4, + "probability": 0.7616 + }, + { + "start": 4604.42, + "end": 4605.24, + "probability": 0.8833 + }, + { + "start": 4605.52, + "end": 4606.76, + "probability": 0.0686 + }, + { + "start": 4607.37, + "end": 4613.36, + "probability": 0.9722 + }, + { + "start": 4613.4, + "end": 4613.4, + "probability": 0.6714 + }, + { + "start": 4613.4, + "end": 4614.22, + "probability": 0.8217 + }, + { + "start": 4614.24, + "end": 4617.06, + "probability": 0.0311 + }, + { + "start": 4617.06, + "end": 4619.1, + "probability": 0.5481 + }, + { + "start": 4619.22, + "end": 4623.66, + "probability": 0.8159 + }, + { + "start": 4624.3, + "end": 4628.62, + "probability": 0.9946 + }, + { + "start": 4628.64, + "end": 4629.82, + "probability": 0.0624 + }, + { + "start": 4629.86, + "end": 4633.26, + "probability": 0.8551 + }, + { + "start": 4633.5, + "end": 4635.9, + "probability": 0.9018 + }, + { + "start": 4636.48, + "end": 4639.0, + "probability": 0.9911 + }, + { + "start": 4639.12, + "end": 4641.91, + "probability": 0.9982 + }, + { + "start": 4642.1, + "end": 4644.94, + "probability": 0.9971 + }, + { + "start": 4645.54, + "end": 4649.26, + "probability": 0.9946 + }, + { + "start": 4649.8, + "end": 4651.1, + "probability": 0.9428 + }, + { + "start": 4651.34, + "end": 4656.04, + "probability": 0.9384 + }, + { + "start": 4659.76, + "end": 4666.72, + "probability": 0.8773 + }, + { + "start": 4667.0, + "end": 4668.58, + "probability": 0.9318 + }, + { + "start": 4668.96, + "end": 4670.12, + "probability": 0.7556 + }, + { + "start": 4670.2, + "end": 4672.38, + "probability": 0.7832 + }, + { + "start": 4672.68, + "end": 4674.96, + "probability": 0.9654 + }, + { + "start": 4675.14, + "end": 4678.68, + "probability": 0.8593 + }, + { + "start": 4679.2, + "end": 4682.8, + "probability": 0.9912 + }, + { + "start": 4683.66, + "end": 4684.66, + "probability": 0.704 + }, + { + "start": 4684.96, + "end": 4685.16, + "probability": 0.0214 + }, + { + "start": 4685.62, + "end": 4690.68, + "probability": 0.9739 + }, + { + "start": 4690.9, + "end": 4691.88, + "probability": 0.8433 + }, + { + "start": 4692.68, + "end": 4695.13, + "probability": 0.9966 + }, + { + "start": 4695.74, + "end": 4701.6, + "probability": 0.9724 + }, + { + "start": 4702.66, + "end": 4704.34, + "probability": 0.9653 + }, + { + "start": 4704.52, + "end": 4706.92, + "probability": 0.9973 + }, + { + "start": 4707.16, + "end": 4708.26, + "probability": 0.8271 + }, + { + "start": 4708.68, + "end": 4711.04, + "probability": 0.9771 + }, + { + "start": 4711.68, + "end": 4714.15, + "probability": 0.9502 + }, + { + "start": 4714.38, + "end": 4716.16, + "probability": 0.9875 + }, + { + "start": 4716.16, + "end": 4719.7, + "probability": 0.9957 + }, + { + "start": 4719.88, + "end": 4723.68, + "probability": 0.9954 + }, + { + "start": 4723.84, + "end": 4726.94, + "probability": 0.9961 + }, + { + "start": 4727.02, + "end": 4730.6, + "probability": 0.9553 + }, + { + "start": 4731.0, + "end": 4732.1, + "probability": 0.7894 + }, + { + "start": 4732.4, + "end": 4733.98, + "probability": 0.9795 + }, + { + "start": 4734.04, + "end": 4734.98, + "probability": 0.9497 + }, + { + "start": 4735.06, + "end": 4737.48, + "probability": 0.9727 + }, + { + "start": 4737.52, + "end": 4741.8, + "probability": 0.986 + }, + { + "start": 4741.98, + "end": 4743.44, + "probability": 0.9654 + }, + { + "start": 4744.36, + "end": 4746.12, + "probability": 0.9532 + }, + { + "start": 4746.34, + "end": 4746.95, + "probability": 0.9683 + }, + { + "start": 4747.52, + "end": 4750.82, + "probability": 0.9921 + }, + { + "start": 4751.04, + "end": 4754.48, + "probability": 0.9951 + }, + { + "start": 4755.24, + "end": 4758.12, + "probability": 0.6446 + }, + { + "start": 4758.26, + "end": 4761.64, + "probability": 0.8721 + }, + { + "start": 4762.96, + "end": 4764.48, + "probability": 0.0646 + }, + { + "start": 4765.0, + "end": 4765.9, + "probability": 0.5993 + }, + { + "start": 4766.04, + "end": 4769.02, + "probability": 0.992 + }, + { + "start": 4769.3, + "end": 4774.36, + "probability": 0.9572 + }, + { + "start": 4774.58, + "end": 4775.78, + "probability": 0.6691 + }, + { + "start": 4775.78, + "end": 4777.08, + "probability": 0.4273 + }, + { + "start": 4777.3, + "end": 4779.94, + "probability": 0.8327 + }, + { + "start": 4780.2, + "end": 4783.6, + "probability": 0.9643 + }, + { + "start": 4783.94, + "end": 4786.68, + "probability": 0.9814 + }, + { + "start": 4786.84, + "end": 4790.74, + "probability": 0.991 + }, + { + "start": 4790.74, + "end": 4796.52, + "probability": 0.9974 + }, + { + "start": 4796.72, + "end": 4797.72, + "probability": 0.301 + }, + { + "start": 4798.34, + "end": 4800.6, + "probability": 0.3439 + }, + { + "start": 4800.8, + "end": 4801.85, + "probability": 0.2286 + }, + { + "start": 4802.98, + "end": 4803.18, + "probability": 0.183 + }, + { + "start": 4803.42, + "end": 4805.0, + "probability": 0.042 + }, + { + "start": 4805.0, + "end": 4806.48, + "probability": 0.8293 + }, + { + "start": 4806.66, + "end": 4809.32, + "probability": 0.9779 + }, + { + "start": 4809.4, + "end": 4810.58, + "probability": 0.8537 + }, + { + "start": 4811.44, + "end": 4814.44, + "probability": 0.5254 + }, + { + "start": 4815.79, + "end": 4818.88, + "probability": 0.9927 + }, + { + "start": 4819.12, + "end": 4822.82, + "probability": 0.9935 + }, + { + "start": 4823.28, + "end": 4826.36, + "probability": 0.9837 + }, + { + "start": 4827.3, + "end": 4828.88, + "probability": 0.9398 + }, + { + "start": 4829.0, + "end": 4829.1, + "probability": 0.0535 + }, + { + "start": 4829.86, + "end": 4834.68, + "probability": 0.9023 + }, + { + "start": 4834.9, + "end": 4835.7, + "probability": 0.1206 + }, + { + "start": 4837.0, + "end": 4839.8, + "probability": 0.2121 + }, + { + "start": 4841.0, + "end": 4843.24, + "probability": 0.1004 + }, + { + "start": 4846.16, + "end": 4847.92, + "probability": 0.2617 + }, + { + "start": 4847.92, + "end": 4847.92, + "probability": 0.1236 + }, + { + "start": 4847.92, + "end": 4848.92, + "probability": 0.0726 + }, + { + "start": 4849.64, + "end": 4851.3, + "probability": 0.1614 + }, + { + "start": 4852.5, + "end": 4855.64, + "probability": 0.811 + }, + { + "start": 4855.82, + "end": 4856.62, + "probability": 0.6508 + }, + { + "start": 4856.74, + "end": 4857.06, + "probability": 0.9084 + }, + { + "start": 4857.22, + "end": 4858.74, + "probability": 0.8694 + }, + { + "start": 4858.84, + "end": 4862.18, + "probability": 0.975 + }, + { + "start": 4862.28, + "end": 4865.46, + "probability": 0.9961 + }, + { + "start": 4865.46, + "end": 4868.74, + "probability": 0.999 + }, + { + "start": 4869.26, + "end": 4871.42, + "probability": 0.9604 + }, + { + "start": 4871.54, + "end": 4872.44, + "probability": 0.7144 + }, + { + "start": 4872.68, + "end": 4874.38, + "probability": 0.6603 + }, + { + "start": 4874.56, + "end": 4876.64, + "probability": 0.9854 + }, + { + "start": 4876.8, + "end": 4877.5, + "probability": 0.0759 + }, + { + "start": 4877.6, + "end": 4881.06, + "probability": 0.9985 + }, + { + "start": 4881.32, + "end": 4883.19, + "probability": 0.968 + }, + { + "start": 4883.62, + "end": 4883.7, + "probability": 0.086 + }, + { + "start": 4883.78, + "end": 4883.98, + "probability": 0.3919 + }, + { + "start": 4884.08, + "end": 4884.2, + "probability": 0.4811 + }, + { + "start": 4884.2, + "end": 4885.72, + "probability": 0.4202 + }, + { + "start": 4886.41, + "end": 4890.5, + "probability": 0.6476 + }, + { + "start": 4890.7, + "end": 4891.54, + "probability": 0.5293 + }, + { + "start": 4891.62, + "end": 4893.52, + "probability": 0.7738 + }, + { + "start": 4893.56, + "end": 4895.04, + "probability": 0.7679 + }, + { + "start": 4895.1, + "end": 4895.78, + "probability": 0.549 + }, + { + "start": 4895.9, + "end": 4896.58, + "probability": 0.0058 + }, + { + "start": 4896.58, + "end": 4898.26, + "probability": 0.4019 + }, + { + "start": 4898.26, + "end": 4899.9, + "probability": 0.7666 + }, + { + "start": 4900.06, + "end": 4904.28, + "probability": 0.9324 + }, + { + "start": 4904.48, + "end": 4904.86, + "probability": 0.4685 + }, + { + "start": 4904.94, + "end": 4907.88, + "probability": 0.978 + }, + { + "start": 4907.88, + "end": 4909.4, + "probability": 0.2118 + }, + { + "start": 4909.5, + "end": 4910.34, + "probability": 0.2266 + }, + { + "start": 4910.52, + "end": 4911.67, + "probability": 0.7513 + }, + { + "start": 4911.86, + "end": 4914.02, + "probability": 0.957 + }, + { + "start": 4914.2, + "end": 4915.0, + "probability": 0.8855 + }, + { + "start": 4915.24, + "end": 4918.46, + "probability": 0.9907 + }, + { + "start": 4918.6, + "end": 4922.22, + "probability": 0.9978 + }, + { + "start": 4922.52, + "end": 4923.2, + "probability": 0.8947 + }, + { + "start": 4923.26, + "end": 4924.42, + "probability": 0.7371 + }, + { + "start": 4924.54, + "end": 4924.86, + "probability": 0.6103 + }, + { + "start": 4924.9, + "end": 4928.36, + "probability": 0.9827 + }, + { + "start": 4928.74, + "end": 4932.3, + "probability": 0.9878 + }, + { + "start": 4932.62, + "end": 4934.09, + "probability": 0.9976 + }, + { + "start": 4934.72, + "end": 4936.86, + "probability": 0.895 + }, + { + "start": 4936.86, + "end": 4939.76, + "probability": 0.9402 + }, + { + "start": 4940.04, + "end": 4942.66, + "probability": 0.748 + }, + { + "start": 4943.3, + "end": 4944.86, + "probability": 0.8683 + }, + { + "start": 4945.0, + "end": 4949.42, + "probability": 0.8011 + }, + { + "start": 4950.34, + "end": 4952.16, + "probability": 0.999 + }, + { + "start": 4952.34, + "end": 4955.0, + "probability": 0.9734 + }, + { + "start": 4955.32, + "end": 4956.18, + "probability": 0.6638 + }, + { + "start": 4956.32, + "end": 4957.86, + "probability": 0.7095 + }, + { + "start": 4958.16, + "end": 4959.28, + "probability": 0.6489 + }, + { + "start": 4959.28, + "end": 4960.14, + "probability": 0.0763 + }, + { + "start": 4960.2, + "end": 4960.82, + "probability": 0.6522 + }, + { + "start": 4960.82, + "end": 4962.2, + "probability": 0.1772 + }, + { + "start": 4962.34, + "end": 4964.48, + "probability": 0.5755 + }, + { + "start": 4964.62, + "end": 4969.16, + "probability": 0.9918 + }, + { + "start": 4969.46, + "end": 4970.82, + "probability": 0.9857 + }, + { + "start": 4970.96, + "end": 4971.52, + "probability": 0.8617 + }, + { + "start": 4971.6, + "end": 4972.1, + "probability": 0.7467 + }, + { + "start": 4972.24, + "end": 4974.68, + "probability": 0.9973 + }, + { + "start": 4974.9, + "end": 4977.88, + "probability": 0.9949 + }, + { + "start": 4978.5, + "end": 4979.02, + "probability": 0.4459 + }, + { + "start": 4979.12, + "end": 4980.14, + "probability": 0.7928 + }, + { + "start": 4980.22, + "end": 4982.98, + "probability": 0.9214 + }, + { + "start": 4983.54, + "end": 4985.0, + "probability": 0.7139 + }, + { + "start": 4985.26, + "end": 4987.28, + "probability": 0.9939 + }, + { + "start": 4987.88, + "end": 4989.96, + "probability": 0.3146 + }, + { + "start": 4990.82, + "end": 4991.8, + "probability": 0.1509 + }, + { + "start": 4992.04, + "end": 4995.72, + "probability": 0.2752 + }, + { + "start": 4995.72, + "end": 4998.06, + "probability": 0.333 + }, + { + "start": 4998.14, + "end": 4998.8, + "probability": 0.0121 + }, + { + "start": 4999.34, + "end": 5004.32, + "probability": 0.5472 + }, + { + "start": 5004.86, + "end": 5006.08, + "probability": 0.9226 + }, + { + "start": 5006.54, + "end": 5010.12, + "probability": 0.3478 + }, + { + "start": 5012.81, + "end": 5015.44, + "probability": 0.2706 + }, + { + "start": 5016.04, + "end": 5016.66, + "probability": 0.2062 + }, + { + "start": 5017.48, + "end": 5019.76, + "probability": 0.5999 + }, + { + "start": 5020.8, + "end": 5023.2, + "probability": 0.5402 + }, + { + "start": 5023.26, + "end": 5023.83, + "probability": 0.9053 + }, + { + "start": 5024.39, + "end": 5026.96, + "probability": 0.0778 + }, + { + "start": 5027.08, + "end": 5027.84, + "probability": 0.9263 + }, + { + "start": 5028.12, + "end": 5033.28, + "probability": 0.9204 + }, + { + "start": 5033.32, + "end": 5035.8, + "probability": 0.9976 + }, + { + "start": 5035.84, + "end": 5041.18, + "probability": 0.9932 + }, + { + "start": 5041.82, + "end": 5044.6, + "probability": 0.2627 + }, + { + "start": 5046.94, + "end": 5047.5, + "probability": 0.0115 + }, + { + "start": 5047.5, + "end": 5047.7, + "probability": 0.0093 + }, + { + "start": 5047.7, + "end": 5047.7, + "probability": 0.0703 + }, + { + "start": 5047.7, + "end": 5047.7, + "probability": 0.0325 + }, + { + "start": 5047.7, + "end": 5048.4, + "probability": 0.5691 + }, + { + "start": 5048.58, + "end": 5049.91, + "probability": 0.7744 + }, + { + "start": 5051.98, + "end": 5053.34, + "probability": 0.0822 + }, + { + "start": 5053.34, + "end": 5053.84, + "probability": 0.0062 + }, + { + "start": 5055.46, + "end": 5056.28, + "probability": 0.315 + }, + { + "start": 5056.28, + "end": 5056.72, + "probability": 0.0064 + }, + { + "start": 5056.72, + "end": 5056.72, + "probability": 0.1083 + }, + { + "start": 5056.8, + "end": 5057.52, + "probability": 0.7616 + }, + { + "start": 5057.98, + "end": 5058.0, + "probability": 0.3357 + }, + { + "start": 5058.0, + "end": 5058.0, + "probability": 0.4138 + }, + { + "start": 5058.0, + "end": 5059.82, + "probability": 0.7957 + }, + { + "start": 5059.84, + "end": 5060.58, + "probability": 0.7247 + }, + { + "start": 5060.6, + "end": 5063.4, + "probability": 0.6913 + }, + { + "start": 5063.5, + "end": 5065.98, + "probability": 0.7012 + }, + { + "start": 5066.24, + "end": 5066.7, + "probability": 0.5312 + }, + { + "start": 5067.16, + "end": 5071.54, + "probability": 0.9382 + }, + { + "start": 5072.28, + "end": 5074.58, + "probability": 0.0888 + }, + { + "start": 5074.64, + "end": 5076.0, + "probability": 0.6033 + }, + { + "start": 5076.26, + "end": 5076.26, + "probability": 0.4868 + }, + { + "start": 5076.26, + "end": 5076.26, + "probability": 0.1047 + }, + { + "start": 5076.26, + "end": 5076.26, + "probability": 0.5177 + }, + { + "start": 5076.26, + "end": 5076.68, + "probability": 0.3717 + }, + { + "start": 5076.86, + "end": 5077.92, + "probability": 0.5753 + }, + { + "start": 5078.2, + "end": 5081.64, + "probability": 0.867 + }, + { + "start": 5081.84, + "end": 5083.62, + "probability": 0.927 + }, + { + "start": 5084.72, + "end": 5085.28, + "probability": 0.5564 + }, + { + "start": 5085.34, + "end": 5085.6, + "probability": 0.7726 + }, + { + "start": 5085.6, + "end": 5085.94, + "probability": 0.952 + }, + { + "start": 5086.02, + "end": 5087.22, + "probability": 0.6796 + }, + { + "start": 5087.38, + "end": 5089.86, + "probability": 0.9537 + }, + { + "start": 5090.04, + "end": 5092.72, + "probability": 0.8944 + }, + { + "start": 5093.16, + "end": 5093.44, + "probability": 0.1644 + }, + { + "start": 5093.44, + "end": 5094.22, + "probability": 0.7876 + }, + { + "start": 5094.64, + "end": 5097.0, + "probability": 0.9836 + }, + { + "start": 5097.18, + "end": 5100.28, + "probability": 0.5967 + }, + { + "start": 5100.28, + "end": 5102.12, + "probability": 0.6312 + }, + { + "start": 5102.36, + "end": 5105.22, + "probability": 0.9622 + }, + { + "start": 5105.46, + "end": 5108.6, + "probability": 0.9915 + }, + { + "start": 5108.98, + "end": 5110.28, + "probability": 0.9976 + }, + { + "start": 5110.52, + "end": 5112.0, + "probability": 0.9813 + }, + { + "start": 5112.52, + "end": 5112.72, + "probability": 0.0002 + }, + { + "start": 5112.72, + "end": 5115.68, + "probability": 0.9741 + }, + { + "start": 5115.96, + "end": 5118.28, + "probability": 0.98 + }, + { + "start": 5118.34, + "end": 5121.44, + "probability": 0.9714 + }, + { + "start": 5122.16, + "end": 5124.56, + "probability": 0.8289 + }, + { + "start": 5124.58, + "end": 5125.76, + "probability": 0.2308 + }, + { + "start": 5125.88, + "end": 5126.8, + "probability": 0.3482 + }, + { + "start": 5126.8, + "end": 5127.16, + "probability": 0.2693 + }, + { + "start": 5127.16, + "end": 5127.4, + "probability": 0.0535 + }, + { + "start": 5127.6, + "end": 5129.77, + "probability": 0.3804 + }, + { + "start": 5132.3, + "end": 5134.84, + "probability": 0.079 + }, + { + "start": 5134.84, + "end": 5134.84, + "probability": 0.0912 + }, + { + "start": 5134.84, + "end": 5134.84, + "probability": 0.1163 + }, + { + "start": 5134.84, + "end": 5134.84, + "probability": 0.4445 + }, + { + "start": 5134.84, + "end": 5134.84, + "probability": 0.0342 + }, + { + "start": 5134.84, + "end": 5135.33, + "probability": 0.1442 + }, + { + "start": 5136.0, + "end": 5137.42, + "probability": 0.7496 + }, + { + "start": 5137.44, + "end": 5139.31, + "probability": 0.5958 + }, + { + "start": 5140.2, + "end": 5140.62, + "probability": 0.1446 + }, + { + "start": 5140.88, + "end": 5145.34, + "probability": 0.6639 + }, + { + "start": 5145.48, + "end": 5145.99, + "probability": 0.9268 + }, + { + "start": 5146.16, + "end": 5146.6, + "probability": 0.9349 + }, + { + "start": 5146.66, + "end": 5147.16, + "probability": 0.676 + }, + { + "start": 5147.22, + "end": 5148.33, + "probability": 0.6661 + }, + { + "start": 5149.32, + "end": 5149.73, + "probability": 0.2568 + }, + { + "start": 5149.94, + "end": 5150.72, + "probability": 0.2002 + }, + { + "start": 5151.04, + "end": 5153.72, + "probability": 0.2198 + }, + { + "start": 5154.06, + "end": 5155.24, + "probability": 0.837 + }, + { + "start": 5155.88, + "end": 5156.9, + "probability": 0.6779 + }, + { + "start": 5157.16, + "end": 5158.15, + "probability": 0.4171 + }, + { + "start": 5158.52, + "end": 5159.4, + "probability": 0.4555 + }, + { + "start": 5160.6, + "end": 5162.04, + "probability": 0.597 + }, + { + "start": 5162.14, + "end": 5165.29, + "probability": 0.9639 + }, + { + "start": 5165.6, + "end": 5167.52, + "probability": 0.9961 + }, + { + "start": 5167.82, + "end": 5168.9, + "probability": 0.9966 + }, + { + "start": 5168.96, + "end": 5170.3, + "probability": 0.9915 + }, + { + "start": 5170.7, + "end": 5172.16, + "probability": 0.9805 + }, + { + "start": 5172.3, + "end": 5173.48, + "probability": 0.8937 + }, + { + "start": 5173.96, + "end": 5177.56, + "probability": 0.9892 + }, + { + "start": 5177.56, + "end": 5181.58, + "probability": 0.999 + }, + { + "start": 5181.94, + "end": 5183.12, + "probability": 0.955 + }, + { + "start": 5183.22, + "end": 5185.3, + "probability": 0.8159 + }, + { + "start": 5185.34, + "end": 5187.44, + "probability": 0.9951 + }, + { + "start": 5187.5, + "end": 5190.14, + "probability": 0.8163 + }, + { + "start": 5190.22, + "end": 5192.78, + "probability": 0.9854 + }, + { + "start": 5192.94, + "end": 5194.45, + "probability": 0.9971 + }, + { + "start": 5194.98, + "end": 5195.48, + "probability": 0.4926 + }, + { + "start": 5195.6, + "end": 5196.02, + "probability": 0.8165 + }, + { + "start": 5196.44, + "end": 5197.5, + "probability": 0.9084 + }, + { + "start": 5197.7, + "end": 5200.42, + "probability": 0.9118 + }, + { + "start": 5200.52, + "end": 5203.54, + "probability": 0.9849 + }, + { + "start": 5203.76, + "end": 5206.16, + "probability": 0.671 + }, + { + "start": 5206.22, + "end": 5208.22, + "probability": 0.9488 + }, + { + "start": 5208.44, + "end": 5209.8, + "probability": 0.7257 + }, + { + "start": 5209.98, + "end": 5212.48, + "probability": 0.979 + }, + { + "start": 5212.56, + "end": 5213.66, + "probability": 0.8848 + }, + { + "start": 5213.66, + "end": 5214.76, + "probability": 0.7436 + }, + { + "start": 5215.1, + "end": 5215.64, + "probability": 0.8978 + }, + { + "start": 5215.68, + "end": 5218.28, + "probability": 0.9946 + }, + { + "start": 5218.58, + "end": 5220.2, + "probability": 0.933 + }, + { + "start": 5221.38, + "end": 5222.68, + "probability": 0.1091 + }, + { + "start": 5224.16, + "end": 5225.72, + "probability": 0.0849 + }, + { + "start": 5225.72, + "end": 5226.21, + "probability": 0.5962 + }, + { + "start": 5226.64, + "end": 5230.48, + "probability": 0.6278 + }, + { + "start": 5230.7, + "end": 5234.72, + "probability": 0.4784 + }, + { + "start": 5234.8, + "end": 5235.56, + "probability": 0.475 + }, + { + "start": 5235.86, + "end": 5238.12, + "probability": 0.2552 + }, + { + "start": 5238.51, + "end": 5239.26, + "probability": 0.0335 + }, + { + "start": 5239.36, + "end": 5239.9, + "probability": 0.409 + }, + { + "start": 5240.18, + "end": 5242.64, + "probability": 0.5508 + }, + { + "start": 5242.92, + "end": 5244.36, + "probability": 0.2808 + }, + { + "start": 5244.4, + "end": 5246.92, + "probability": 0.9671 + }, + { + "start": 5247.32, + "end": 5248.8, + "probability": 0.978 + }, + { + "start": 5249.5, + "end": 5250.3, + "probability": 0.4226 + }, + { + "start": 5251.0, + "end": 5252.06, + "probability": 0.9901 + }, + { + "start": 5252.32, + "end": 5254.16, + "probability": 0.9355 + }, + { + "start": 5255.18, + "end": 5256.3, + "probability": 0.9575 + }, + { + "start": 5256.64, + "end": 5257.82, + "probability": 0.9764 + }, + { + "start": 5258.16, + "end": 5262.78, + "probability": 0.9805 + }, + { + "start": 5262.78, + "end": 5266.4, + "probability": 0.9976 + }, + { + "start": 5267.02, + "end": 5268.28, + "probability": 0.917 + }, + { + "start": 5268.62, + "end": 5270.32, + "probability": 0.9083 + }, + { + "start": 5270.56, + "end": 5271.54, + "probability": 0.8845 + }, + { + "start": 5271.6, + "end": 5272.38, + "probability": 0.814 + }, + { + "start": 5272.5, + "end": 5273.0, + "probability": 0.7142 + }, + { + "start": 5273.0, + "end": 5274.28, + "probability": 0.9902 + }, + { + "start": 5274.44, + "end": 5276.46, + "probability": 0.9713 + }, + { + "start": 5277.08, + "end": 5277.24, + "probability": 0.5283 + }, + { + "start": 5278.52, + "end": 5279.86, + "probability": 0.9893 + }, + { + "start": 5279.86, + "end": 5280.38, + "probability": 0.6337 + }, + { + "start": 5281.98, + "end": 5281.98, + "probability": 0.0752 + }, + { + "start": 5281.98, + "end": 5284.86, + "probability": 0.5758 + }, + { + "start": 5284.86, + "end": 5285.86, + "probability": 0.4966 + }, + { + "start": 5285.86, + "end": 5289.48, + "probability": 0.7288 + }, + { + "start": 5289.82, + "end": 5291.14, + "probability": 0.8983 + }, + { + "start": 5291.24, + "end": 5292.43, + "probability": 0.7777 + }, + { + "start": 5293.06, + "end": 5297.66, + "probability": 0.956 + }, + { + "start": 5297.92, + "end": 5299.94, + "probability": 0.929 + }, + { + "start": 5300.22, + "end": 5301.96, + "probability": 0.9972 + }, + { + "start": 5302.36, + "end": 5305.22, + "probability": 0.9945 + }, + { + "start": 5305.3, + "end": 5306.4, + "probability": 0.7141 + }, + { + "start": 5306.42, + "end": 5308.18, + "probability": 0.9917 + }, + { + "start": 5308.42, + "end": 5309.3, + "probability": 0.9631 + }, + { + "start": 5309.44, + "end": 5310.98, + "probability": 0.9087 + }, + { + "start": 5311.18, + "end": 5314.24, + "probability": 0.9928 + }, + { + "start": 5314.68, + "end": 5316.26, + "probability": 0.9829 + }, + { + "start": 5317.7, + "end": 5320.38, + "probability": 0.6036 + }, + { + "start": 5320.48, + "end": 5321.82, + "probability": 0.6753 + }, + { + "start": 5321.94, + "end": 5322.78, + "probability": 0.4552 + }, + { + "start": 5323.12, + "end": 5325.58, + "probability": 0.9816 + }, + { + "start": 5325.74, + "end": 5330.44, + "probability": 0.0144 + }, + { + "start": 5330.64, + "end": 5332.66, + "probability": 0.9016 + }, + { + "start": 5333.1, + "end": 5335.22, + "probability": 0.8653 + }, + { + "start": 5335.34, + "end": 5337.18, + "probability": 0.9557 + }, + { + "start": 5337.32, + "end": 5341.42, + "probability": 0.9252 + }, + { + "start": 5341.68, + "end": 5345.14, + "probability": 0.993 + }, + { + "start": 5345.18, + "end": 5346.58, + "probability": 0.9748 + }, + { + "start": 5346.68, + "end": 5348.74, + "probability": 0.9958 + }, + { + "start": 5349.66, + "end": 5350.68, + "probability": 0.9621 + }, + { + "start": 5350.76, + "end": 5351.86, + "probability": 0.7995 + }, + { + "start": 5351.88, + "end": 5352.36, + "probability": 0.8732 + }, + { + "start": 5352.48, + "end": 5353.76, + "probability": 0.786 + }, + { + "start": 5354.08, + "end": 5355.2, + "probability": 0.9871 + }, + { + "start": 5355.38, + "end": 5356.74, + "probability": 0.9242 + }, + { + "start": 5356.94, + "end": 5359.3, + "probability": 0.979 + }, + { + "start": 5359.3, + "end": 5361.58, + "probability": 0.9951 + }, + { + "start": 5361.82, + "end": 5362.87, + "probability": 0.9907 + }, + { + "start": 5364.38, + "end": 5368.34, + "probability": 0.4361 + }, + { + "start": 5369.68, + "end": 5371.32, + "probability": 0.3209 + }, + { + "start": 5371.9, + "end": 5371.98, + "probability": 0.5641 + }, + { + "start": 5371.98, + "end": 5374.68, + "probability": 0.801 + }, + { + "start": 5374.84, + "end": 5375.14, + "probability": 0.4961 + }, + { + "start": 5375.24, + "end": 5377.98, + "probability": 0.9688 + }, + { + "start": 5378.2, + "end": 5379.43, + "probability": 0.9639 + }, + { + "start": 5379.64, + "end": 5381.14, + "probability": 0.9956 + }, + { + "start": 5381.44, + "end": 5383.06, + "probability": 0.8845 + }, + { + "start": 5383.2, + "end": 5383.56, + "probability": 0.5321 + }, + { + "start": 5383.78, + "end": 5384.4, + "probability": 0.2679 + }, + { + "start": 5384.4, + "end": 5384.68, + "probability": 0.6292 + }, + { + "start": 5385.04, + "end": 5387.32, + "probability": 0.8887 + }, + { + "start": 5387.32, + "end": 5388.74, + "probability": 0.1274 + }, + { + "start": 5388.76, + "end": 5390.24, + "probability": 0.5222 + }, + { + "start": 5390.3, + "end": 5390.46, + "probability": 0.1637 + }, + { + "start": 5390.46, + "end": 5391.46, + "probability": 0.5328 + }, + { + "start": 5391.96, + "end": 5392.33, + "probability": 0.4607 + }, + { + "start": 5394.54, + "end": 5395.22, + "probability": 0.1761 + }, + { + "start": 5395.22, + "end": 5397.45, + "probability": 0.7458 + }, + { + "start": 5400.76, + "end": 5402.16, + "probability": 0.6519 + }, + { + "start": 5402.2, + "end": 5403.62, + "probability": 0.5054 + }, + { + "start": 5403.78, + "end": 5404.46, + "probability": 0.4084 + }, + { + "start": 5404.52, + "end": 5406.34, + "probability": 0.0223 + }, + { + "start": 5406.34, + "end": 5406.84, + "probability": 0.661 + }, + { + "start": 5407.32, + "end": 5408.14, + "probability": 0.934 + }, + { + "start": 5408.56, + "end": 5409.98, + "probability": 0.5499 + }, + { + "start": 5409.98, + "end": 5410.28, + "probability": 0.7356 + }, + { + "start": 5410.82, + "end": 5412.28, + "probability": 0.9977 + }, + { + "start": 5414.02, + "end": 5414.28, + "probability": 0.0151 + }, + { + "start": 5415.1, + "end": 5415.1, + "probability": 0.0995 + }, + { + "start": 5415.1, + "end": 5415.98, + "probability": 0.1877 + }, + { + "start": 5416.22, + "end": 5416.22, + "probability": 0.3614 + }, + { + "start": 5416.22, + "end": 5417.7, + "probability": 0.7354 + }, + { + "start": 5417.84, + "end": 5419.0, + "probability": 0.9323 + }, + { + "start": 5419.08, + "end": 5419.42, + "probability": 0.6964 + }, + { + "start": 5419.64, + "end": 5420.04, + "probability": 0.7498 + }, + { + "start": 5420.06, + "end": 5420.42, + "probability": 0.0283 + }, + { + "start": 5420.56, + "end": 5422.08, + "probability": 0.1896 + }, + { + "start": 5422.72, + "end": 5423.56, + "probability": 0.929 + }, + { + "start": 5424.4, + "end": 5428.22, + "probability": 0.7783 + }, + { + "start": 5428.28, + "end": 5429.04, + "probability": 0.506 + }, + { + "start": 5429.2, + "end": 5429.74, + "probability": 0.6136 + }, + { + "start": 5429.86, + "end": 5431.2, + "probability": 0.8794 + }, + { + "start": 5431.22, + "end": 5431.76, + "probability": 0.5341 + }, + { + "start": 5432.12, + "end": 5435.36, + "probability": 0.8844 + }, + { + "start": 5435.8, + "end": 5435.8, + "probability": 0.0509 + }, + { + "start": 5435.8, + "end": 5437.42, + "probability": 0.9829 + }, + { + "start": 5437.6, + "end": 5437.95, + "probability": 0.7247 + }, + { + "start": 5438.24, + "end": 5439.38, + "probability": 0.7475 + }, + { + "start": 5439.76, + "end": 5441.0, + "probability": 0.9766 + }, + { + "start": 5441.36, + "end": 5442.46, + "probability": 0.5748 + }, + { + "start": 5442.98, + "end": 5446.62, + "probability": 0.822 + }, + { + "start": 5447.36, + "end": 5450.62, + "probability": 0.9915 + }, + { + "start": 5451.42, + "end": 5453.38, + "probability": 0.7611 + }, + { + "start": 5453.46, + "end": 5456.68, + "probability": 0.9973 + }, + { + "start": 5456.68, + "end": 5459.32, + "probability": 0.98 + }, + { + "start": 5460.4, + "end": 5461.0, + "probability": 0.6934 + }, + { + "start": 5461.04, + "end": 5463.42, + "probability": 0.9969 + }, + { + "start": 5463.82, + "end": 5465.22, + "probability": 0.8915 + }, + { + "start": 5465.3, + "end": 5466.04, + "probability": 0.0847 + }, + { + "start": 5466.06, + "end": 5467.66, + "probability": 0.2718 + }, + { + "start": 5467.66, + "end": 5471.18, + "probability": 0.7624 + }, + { + "start": 5471.24, + "end": 5473.52, + "probability": 0.7926 + }, + { + "start": 5473.6, + "end": 5476.12, + "probability": 0.9829 + }, + { + "start": 5476.18, + "end": 5476.5, + "probability": 0.7678 + }, + { + "start": 5476.68, + "end": 5482.76, + "probability": 0.9542 + }, + { + "start": 5483.08, + "end": 5483.68, + "probability": 0.601 + }, + { + "start": 5483.96, + "end": 5485.14, + "probability": 0.9816 + }, + { + "start": 5485.24, + "end": 5486.87, + "probability": 0.9985 + }, + { + "start": 5487.14, + "end": 5488.7, + "probability": 0.9853 + }, + { + "start": 5489.12, + "end": 5492.58, + "probability": 0.9788 + }, + { + "start": 5492.62, + "end": 5496.94, + "probability": 0.9851 + }, + { + "start": 5497.3, + "end": 5499.58, + "probability": 0.9962 + }, + { + "start": 5499.74, + "end": 5500.08, + "probability": 0.6287 + }, + { + "start": 5500.12, + "end": 5500.54, + "probability": 0.7293 + }, + { + "start": 5500.58, + "end": 5503.13, + "probability": 0.9935 + }, + { + "start": 5503.82, + "end": 5506.34, + "probability": 0.9045 + }, + { + "start": 5507.42, + "end": 5507.9, + "probability": 0.1031 + }, + { + "start": 5508.18, + "end": 5508.83, + "probability": 0.5729 + }, + { + "start": 5509.2, + "end": 5513.12, + "probability": 0.3334 + }, + { + "start": 5513.12, + "end": 5514.44, + "probability": 0.1747 + }, + { + "start": 5514.44, + "end": 5515.34, + "probability": 0.2375 + }, + { + "start": 5517.53, + "end": 5518.3, + "probability": 0.1021 + }, + { + "start": 5519.02, + "end": 5520.52, + "probability": 0.4715 + }, + { + "start": 5520.72, + "end": 5521.4, + "probability": 0.123 + }, + { + "start": 5522.55, + "end": 5524.54, + "probability": 0.0853 + }, + { + "start": 5524.54, + "end": 5525.74, + "probability": 0.1811 + }, + { + "start": 5525.9, + "end": 5526.81, + "probability": 0.2246 + }, + { + "start": 5527.04, + "end": 5529.46, + "probability": 0.214 + }, + { + "start": 5530.44, + "end": 5532.82, + "probability": 0.8702 + }, + { + "start": 5532.96, + "end": 5533.52, + "probability": 0.8954 + }, + { + "start": 5533.62, + "end": 5535.24, + "probability": 0.9718 + }, + { + "start": 5535.58, + "end": 5537.58, + "probability": 0.8334 + }, + { + "start": 5537.74, + "end": 5539.9, + "probability": 0.9575 + }, + { + "start": 5540.02, + "end": 5541.12, + "probability": 0.8147 + }, + { + "start": 5541.98, + "end": 5544.24, + "probability": 0.0938 + }, + { + "start": 5544.42, + "end": 5545.26, + "probability": 0.2785 + }, + { + "start": 5545.76, + "end": 5547.66, + "probability": 0.6253 + }, + { + "start": 5547.8, + "end": 5549.88, + "probability": 0.9912 + }, + { + "start": 5550.08, + "end": 5550.12, + "probability": 0.0172 + }, + { + "start": 5550.12, + "end": 5552.32, + "probability": 0.9858 + }, + { + "start": 5552.52, + "end": 5554.2, + "probability": 0.8831 + }, + { + "start": 5554.26, + "end": 5556.16, + "probability": 0.9528 + }, + { + "start": 5556.56, + "end": 5559.98, + "probability": 0.984 + }, + { + "start": 5560.1, + "end": 5562.88, + "probability": 0.7639 + }, + { + "start": 5563.52, + "end": 5569.4, + "probability": 0.9131 + }, + { + "start": 5569.72, + "end": 5570.2, + "probability": 0.042 + }, + { + "start": 5573.36, + "end": 5575.12, + "probability": 0.0272 + }, + { + "start": 5576.08, + "end": 5576.94, + "probability": 0.0376 + }, + { + "start": 5576.94, + "end": 5576.94, + "probability": 0.0809 + }, + { + "start": 5576.94, + "end": 5578.46, + "probability": 0.4455 + }, + { + "start": 5579.56, + "end": 5581.3, + "probability": 0.3286 + }, + { + "start": 5581.9, + "end": 5582.5, + "probability": 0.5997 + }, + { + "start": 5582.8, + "end": 5585.2, + "probability": 0.2742 + }, + { + "start": 5587.06, + "end": 5589.44, + "probability": 0.3172 + }, + { + "start": 5589.44, + "end": 5589.44, + "probability": 0.021 + }, + { + "start": 5589.44, + "end": 5589.44, + "probability": 0.261 + }, + { + "start": 5589.44, + "end": 5589.93, + "probability": 0.2084 + }, + { + "start": 5590.48, + "end": 5591.48, + "probability": 0.9766 + }, + { + "start": 5591.66, + "end": 5593.22, + "probability": 0.6944 + }, + { + "start": 5593.46, + "end": 5595.51, + "probability": 0.9868 + }, + { + "start": 5597.74, + "end": 5597.74, + "probability": 0.0525 + }, + { + "start": 5597.74, + "end": 5599.5, + "probability": 0.9003 + }, + { + "start": 5600.54, + "end": 5600.54, + "probability": 0.0246 + }, + { + "start": 5600.54, + "end": 5604.18, + "probability": 0.5633 + }, + { + "start": 5604.74, + "end": 5606.72, + "probability": 0.1495 + }, + { + "start": 5607.54, + "end": 5608.28, + "probability": 0.8032 + }, + { + "start": 5608.56, + "end": 5610.64, + "probability": 0.8822 + }, + { + "start": 5611.14, + "end": 5613.56, + "probability": 0.9906 + }, + { + "start": 5614.76, + "end": 5616.21, + "probability": 0.9995 + }, + { + "start": 5616.92, + "end": 5618.92, + "probability": 0.9975 + }, + { + "start": 5619.46, + "end": 5621.2, + "probability": 0.9843 + }, + { + "start": 5621.28, + "end": 5622.54, + "probability": 0.8204 + }, + { + "start": 5623.3, + "end": 5624.28, + "probability": 0.933 + }, + { + "start": 5624.46, + "end": 5625.88, + "probability": 0.0247 + }, + { + "start": 5626.0, + "end": 5627.46, + "probability": 0.7612 + }, + { + "start": 5627.46, + "end": 5628.46, + "probability": 0.9399 + }, + { + "start": 5628.52, + "end": 5631.94, + "probability": 0.9309 + }, + { + "start": 5632.06, + "end": 5633.62, + "probability": 0.9805 + }, + { + "start": 5633.98, + "end": 5634.68, + "probability": 0.8274 + }, + { + "start": 5634.88, + "end": 5640.32, + "probability": 0.988 + }, + { + "start": 5640.32, + "end": 5644.08, + "probability": 0.9873 + }, + { + "start": 5644.26, + "end": 5646.52, + "probability": 0.7108 + }, + { + "start": 5647.86, + "end": 5647.92, + "probability": 0.0409 + }, + { + "start": 5647.92, + "end": 5649.08, + "probability": 0.5433 + }, + { + "start": 5649.14, + "end": 5650.78, + "probability": 0.9563 + }, + { + "start": 5650.98, + "end": 5653.41, + "probability": 0.9727 + }, + { + "start": 5654.64, + "end": 5658.58, + "probability": 0.9526 + }, + { + "start": 5659.12, + "end": 5659.72, + "probability": 0.5722 + }, + { + "start": 5659.78, + "end": 5662.3, + "probability": 0.9747 + }, + { + "start": 5662.6, + "end": 5663.42, + "probability": 0.3711 + }, + { + "start": 5663.76, + "end": 5664.56, + "probability": 0.8112 + }, + { + "start": 5665.68, + "end": 5668.76, + "probability": 0.9473 + }, + { + "start": 5669.38, + "end": 5670.1, + "probability": 0.1118 + }, + { + "start": 5670.36, + "end": 5673.54, + "probability": 0.9878 + }, + { + "start": 5674.08, + "end": 5675.14, + "probability": 0.8044 + }, + { + "start": 5675.68, + "end": 5676.94, + "probability": 0.8191 + }, + { + "start": 5677.52, + "end": 5678.98, + "probability": 0.9497 + }, + { + "start": 5679.48, + "end": 5682.34, + "probability": 0.982 + }, + { + "start": 5682.7, + "end": 5684.14, + "probability": 0.8756 + }, + { + "start": 5684.88, + "end": 5686.56, + "probability": 0.9919 + }, + { + "start": 5686.88, + "end": 5687.0, + "probability": 0.3551 + }, + { + "start": 5687.12, + "end": 5688.18, + "probability": 0.6906 + }, + { + "start": 5688.34, + "end": 5691.52, + "probability": 0.9902 + }, + { + "start": 5691.82, + "end": 5692.82, + "probability": 0.9794 + }, + { + "start": 5692.96, + "end": 5694.02, + "probability": 0.9746 + }, + { + "start": 5694.98, + "end": 5695.6, + "probability": 0.8432 + }, + { + "start": 5696.36, + "end": 5696.71, + "probability": 0.1912 + }, + { + "start": 5696.76, + "end": 5700.34, + "probability": 0.774 + }, + { + "start": 5700.96, + "end": 5701.65, + "probability": 0.0733 + }, + { + "start": 5701.9, + "end": 5702.32, + "probability": 0.3381 + }, + { + "start": 5702.6, + "end": 5702.68, + "probability": 0.4774 + }, + { + "start": 5702.68, + "end": 5705.58, + "probability": 0.7652 + }, + { + "start": 5706.0, + "end": 5707.22, + "probability": 0.571 + }, + { + "start": 5707.54, + "end": 5708.03, + "probability": 0.1956 + }, + { + "start": 5712.7, + "end": 5713.12, + "probability": 0.0048 + }, + { + "start": 5713.12, + "end": 5713.54, + "probability": 0.1544 + }, + { + "start": 5713.54, + "end": 5713.88, + "probability": 0.1845 + }, + { + "start": 5715.54, + "end": 5715.66, + "probability": 0.0462 + }, + { + "start": 5715.66, + "end": 5715.66, + "probability": 0.1921 + }, + { + "start": 5715.66, + "end": 5715.66, + "probability": 0.0547 + }, + { + "start": 5715.66, + "end": 5715.66, + "probability": 0.053 + }, + { + "start": 5715.66, + "end": 5715.66, + "probability": 0.2931 + }, + { + "start": 5715.66, + "end": 5715.66, + "probability": 0.2129 + }, + { + "start": 5715.74, + "end": 5716.2, + "probability": 0.7245 + }, + { + "start": 5716.2, + "end": 5719.2, + "probability": 0.7243 + }, + { + "start": 5719.32, + "end": 5722.82, + "probability": 0.9688 + }, + { + "start": 5723.12, + "end": 5725.18, + "probability": 0.9473 + }, + { + "start": 5725.22, + "end": 5725.88, + "probability": 0.787 + }, + { + "start": 5725.94, + "end": 5726.66, + "probability": 0.9043 + }, + { + "start": 5726.72, + "end": 5729.04, + "probability": 0.9788 + }, + { + "start": 5729.12, + "end": 5729.38, + "probability": 0.709 + }, + { + "start": 5729.46, + "end": 5733.4, + "probability": 0.9453 + }, + { + "start": 5733.58, + "end": 5734.84, + "probability": 0.8869 + }, + { + "start": 5736.4, + "end": 5737.8, + "probability": 0.7337 + }, + { + "start": 5738.66, + "end": 5739.66, + "probability": 0.798 + }, + { + "start": 5739.78, + "end": 5740.72, + "probability": 0.7371 + }, + { + "start": 5741.14, + "end": 5742.94, + "probability": 0.7593 + }, + { + "start": 5743.72, + "end": 5745.38, + "probability": 0.9639 + }, + { + "start": 5746.12, + "end": 5749.08, + "probability": 0.9316 + }, + { + "start": 5749.38, + "end": 5749.42, + "probability": 0.2111 + }, + { + "start": 5749.42, + "end": 5750.86, + "probability": 0.5448 + }, + { + "start": 5753.06, + "end": 5753.48, + "probability": 0.0003 + }, + { + "start": 5753.48, + "end": 5753.48, + "probability": 0.0957 + }, + { + "start": 5753.48, + "end": 5753.88, + "probability": 0.1466 + }, + { + "start": 5755.06, + "end": 5755.82, + "probability": 0.9337 + }, + { + "start": 5755.82, + "end": 5755.92, + "probability": 0.944 + }, + { + "start": 5756.76, + "end": 5757.14, + "probability": 0.7949 + }, + { + "start": 5757.28, + "end": 5761.6, + "probability": 0.9539 + }, + { + "start": 5762.04, + "end": 5763.82, + "probability": 0.9187 + }, + { + "start": 5764.1, + "end": 5765.12, + "probability": 0.5894 + }, + { + "start": 5765.36, + "end": 5767.42, + "probability": 0.9049 + }, + { + "start": 5767.72, + "end": 5768.54, + "probability": 0.6601 + }, + { + "start": 5768.64, + "end": 5772.04, + "probability": 0.9728 + }, + { + "start": 5772.32, + "end": 5773.58, + "probability": 0.8561 + }, + { + "start": 5773.6, + "end": 5774.42, + "probability": 0.8184 + }, + { + "start": 5774.5, + "end": 5775.1, + "probability": 0.5385 + }, + { + "start": 5775.64, + "end": 5779.02, + "probability": 0.9579 + }, + { + "start": 5779.04, + "end": 5784.26, + "probability": 0.863 + }, + { + "start": 5784.26, + "end": 5786.38, + "probability": 0.7493 + }, + { + "start": 5786.42, + "end": 5788.08, + "probability": 0.0132 + }, + { + "start": 5788.08, + "end": 5788.08, + "probability": 0.2103 + }, + { + "start": 5788.08, + "end": 5788.08, + "probability": 0.0418 + }, + { + "start": 5788.08, + "end": 5789.16, + "probability": 0.7833 + }, + { + "start": 5789.88, + "end": 5791.58, + "probability": 0.4961 + }, + { + "start": 5791.58, + "end": 5791.84, + "probability": 0.6678 + }, + { + "start": 5791.94, + "end": 5792.88, + "probability": 0.9172 + }, + { + "start": 5794.08, + "end": 5795.96, + "probability": 0.8975 + }, + { + "start": 5796.16, + "end": 5796.16, + "probability": 0.2155 + }, + { + "start": 5796.16, + "end": 5796.16, + "probability": 0.247 + }, + { + "start": 5796.16, + "end": 5796.65, + "probability": 0.1186 + }, + { + "start": 5797.02, + "end": 5797.56, + "probability": 0.8149 + }, + { + "start": 5797.62, + "end": 5797.86, + "probability": 0.6849 + }, + { + "start": 5798.26, + "end": 5799.82, + "probability": 0.9575 + }, + { + "start": 5800.08, + "end": 5802.58, + "probability": 0.8906 + }, + { + "start": 5802.62, + "end": 5803.74, + "probability": 0.1339 + }, + { + "start": 5806.23, + "end": 5807.59, + "probability": 0.538 + }, + { + "start": 5809.28, + "end": 5811.08, + "probability": 0.8086 + }, + { + "start": 5811.5, + "end": 5812.81, + "probability": 0.9088 + }, + { + "start": 5812.9, + "end": 5814.06, + "probability": 0.8691 + }, + { + "start": 5814.16, + "end": 5818.88, + "probability": 0.9883 + }, + { + "start": 5819.0, + "end": 5819.3, + "probability": 0.9158 + }, + { + "start": 5819.36, + "end": 5820.86, + "probability": 0.9844 + }, + { + "start": 5821.22, + "end": 5821.92, + "probability": 0.9153 + }, + { + "start": 5821.98, + "end": 5822.28, + "probability": 0.8971 + }, + { + "start": 5822.34, + "end": 5823.79, + "probability": 0.9575 + }, + { + "start": 5824.06, + "end": 5825.02, + "probability": 0.7156 + }, + { + "start": 5825.02, + "end": 5825.58, + "probability": 0.4324 + }, + { + "start": 5825.64, + "end": 5825.88, + "probability": 0.5425 + }, + { + "start": 5826.81, + "end": 5829.22, + "probability": 0.6844 + }, + { + "start": 5829.26, + "end": 5829.88, + "probability": 0.0162 + }, + { + "start": 5830.02, + "end": 5831.34, + "probability": 0.8151 + }, + { + "start": 5832.02, + "end": 5833.1, + "probability": 0.8777 + }, + { + "start": 5836.22, + "end": 5836.28, + "probability": 0.4879 + }, + { + "start": 5836.28, + "end": 5838.18, + "probability": 0.8044 + }, + { + "start": 5838.52, + "end": 5839.78, + "probability": 0.9974 + }, + { + "start": 5840.08, + "end": 5841.64, + "probability": 0.9476 + }, + { + "start": 5841.68, + "end": 5842.92, + "probability": 0.98 + }, + { + "start": 5843.08, + "end": 5843.56, + "probability": 0.7802 + }, + { + "start": 5843.78, + "end": 5844.46, + "probability": 0.9692 + }, + { + "start": 5844.56, + "end": 5844.94, + "probability": 0.7438 + }, + { + "start": 5845.16, + "end": 5846.02, + "probability": 0.9896 + }, + { + "start": 5846.04, + "end": 5847.04, + "probability": 0.7473 + }, + { + "start": 5847.22, + "end": 5848.77, + "probability": 0.8787 + }, + { + "start": 5849.2, + "end": 5849.52, + "probability": 0.4742 + }, + { + "start": 5849.54, + "end": 5850.21, + "probability": 0.8745 + }, + { + "start": 5850.64, + "end": 5852.63, + "probability": 0.9885 + }, + { + "start": 5853.24, + "end": 5853.46, + "probability": 0.6382 + }, + { + "start": 5853.56, + "end": 5853.8, + "probability": 0.6522 + }, + { + "start": 5853.88, + "end": 5857.5, + "probability": 0.7224 + }, + { + "start": 5858.04, + "end": 5858.24, + "probability": 0.037 + }, + { + "start": 5858.24, + "end": 5861.52, + "probability": 0.9917 + }, + { + "start": 5861.66, + "end": 5865.28, + "probability": 0.9976 + }, + { + "start": 5865.48, + "end": 5866.82, + "probability": 0.9399 + }, + { + "start": 5867.24, + "end": 5868.26, + "probability": 0.925 + }, + { + "start": 5868.46, + "end": 5868.91, + "probability": 0.9924 + }, + { + "start": 5869.52, + "end": 5873.42, + "probability": 0.9673 + }, + { + "start": 5873.82, + "end": 5875.42, + "probability": 0.7721 + }, + { + "start": 5875.86, + "end": 5876.54, + "probability": 0.1261 + }, + { + "start": 5876.54, + "end": 5878.16, + "probability": 0.8307 + }, + { + "start": 5878.38, + "end": 5879.66, + "probability": 0.9243 + }, + { + "start": 5879.78, + "end": 5880.28, + "probability": 0.7727 + }, + { + "start": 5880.28, + "end": 5883.94, + "probability": 0.9346 + }, + { + "start": 5884.14, + "end": 5885.24, + "probability": 0.6558 + }, + { + "start": 5885.28, + "end": 5885.78, + "probability": 0.6997 + }, + { + "start": 5886.26, + "end": 5887.84, + "probability": 0.7957 + }, + { + "start": 5888.46, + "end": 5889.16, + "probability": 0.8269 + }, + { + "start": 5889.3, + "end": 5891.42, + "probability": 0.9873 + }, + { + "start": 5891.7, + "end": 5893.98, + "probability": 0.9237 + }, + { + "start": 5894.08, + "end": 5894.72, + "probability": 0.7603 + }, + { + "start": 5895.04, + "end": 5896.72, + "probability": 0.7707 + }, + { + "start": 5897.2, + "end": 5898.82, + "probability": 0.561 + }, + { + "start": 5898.92, + "end": 5900.06, + "probability": 0.5073 + }, + { + "start": 5900.34, + "end": 5904.1, + "probability": 0.9933 + }, + { + "start": 5904.12, + "end": 5904.56, + "probability": 0.6581 + }, + { + "start": 5904.6, + "end": 5904.98, + "probability": 0.8722 + }, + { + "start": 5905.08, + "end": 5905.96, + "probability": 0.8545 + }, + { + "start": 5905.96, + "end": 5906.98, + "probability": 0.9124 + }, + { + "start": 5907.18, + "end": 5909.04, + "probability": 0.9539 + }, + { + "start": 5909.42, + "end": 5909.76, + "probability": 0.6315 + }, + { + "start": 5911.22, + "end": 5913.44, + "probability": 0.882 + }, + { + "start": 5914.06, + "end": 5915.04, + "probability": 0.8562 + }, + { + "start": 5915.08, + "end": 5916.06, + "probability": 0.9901 + }, + { + "start": 5916.08, + "end": 5916.48, + "probability": 0.6027 + }, + { + "start": 5916.82, + "end": 5918.2, + "probability": 0.7383 + }, + { + "start": 5918.54, + "end": 5923.58, + "probability": 0.9906 + }, + { + "start": 5924.48, + "end": 5926.28, + "probability": 0.6535 + }, + { + "start": 5926.44, + "end": 5927.14, + "probability": 0.5218 + }, + { + "start": 5927.16, + "end": 5928.56, + "probability": 0.9018 + }, + { + "start": 5931.37, + "end": 5933.58, + "probability": 0.4464 + }, + { + "start": 5933.68, + "end": 5935.21, + "probability": 0.8776 + }, + { + "start": 5936.84, + "end": 5938.22, + "probability": 0.0004 + }, + { + "start": 5938.22, + "end": 5938.38, + "probability": 0.0376 + }, + { + "start": 5938.38, + "end": 5939.34, + "probability": 0.745 + }, + { + "start": 5939.34, + "end": 5939.44, + "probability": 0.744 + }, + { + "start": 5939.92, + "end": 5940.6, + "probability": 0.8217 + }, + { + "start": 5940.8, + "end": 5942.34, + "probability": 0.9504 + }, + { + "start": 5942.38, + "end": 5943.32, + "probability": 0.9372 + }, + { + "start": 5943.4, + "end": 5944.66, + "probability": 0.9084 + }, + { + "start": 5945.46, + "end": 5946.16, + "probability": 0.7338 + }, + { + "start": 5946.2, + "end": 5946.76, + "probability": 0.784 + }, + { + "start": 5946.94, + "end": 5947.96, + "probability": 0.9386 + }, + { + "start": 5948.0, + "end": 5948.36, + "probability": 0.5974 + }, + { + "start": 5948.88, + "end": 5951.16, + "probability": 0.8208 + }, + { + "start": 5951.2, + "end": 5952.16, + "probability": 0.445 + }, + { + "start": 5952.24, + "end": 5953.08, + "probability": 0.8833 + }, + { + "start": 5953.16, + "end": 5955.48, + "probability": 0.661 + }, + { + "start": 5955.7, + "end": 5955.86, + "probability": 0.4626 + }, + { + "start": 5955.94, + "end": 5956.92, + "probability": 0.9661 + }, + { + "start": 5957.0, + "end": 5957.46, + "probability": 0.8098 + }, + { + "start": 5957.82, + "end": 5960.0, + "probability": 0.6916 + }, + { + "start": 5960.16, + "end": 5962.24, + "probability": 0.5867 + }, + { + "start": 5962.3, + "end": 5962.34, + "probability": 0.3163 + }, + { + "start": 5963.93, + "end": 5965.1, + "probability": 0.3873 + }, + { + "start": 5965.2, + "end": 5965.7, + "probability": 0.5888 + }, + { + "start": 5965.8, + "end": 5970.16, + "probability": 0.9163 + }, + { + "start": 5970.32, + "end": 5972.38, + "probability": 0.9839 + }, + { + "start": 5972.6, + "end": 5975.44, + "probability": 0.9956 + }, + { + "start": 5975.8, + "end": 5978.48, + "probability": 0.9973 + }, + { + "start": 5978.48, + "end": 5979.1, + "probability": 0.3976 + }, + { + "start": 5979.4, + "end": 5980.98, + "probability": 0.7337 + }, + { + "start": 5981.2, + "end": 5981.52, + "probability": 0.1414 + }, + { + "start": 5981.6, + "end": 5982.5, + "probability": 0.7525 + }, + { + "start": 5982.54, + "end": 5982.92, + "probability": 0.3322 + }, + { + "start": 5982.98, + "end": 5983.14, + "probability": 0.2168 + }, + { + "start": 5983.38, + "end": 5984.54, + "probability": 0.6478 + }, + { + "start": 5984.7, + "end": 5988.22, + "probability": 0.9614 + }, + { + "start": 5988.38, + "end": 5988.8, + "probability": 0.4117 + }, + { + "start": 5988.86, + "end": 5990.0, + "probability": 0.8748 + }, + { + "start": 5990.06, + "end": 5992.92, + "probability": 0.9583 + }, + { + "start": 5993.08, + "end": 5994.52, + "probability": 0.9508 + }, + { + "start": 5994.76, + "end": 5995.6, + "probability": 0.9327 + }, + { + "start": 5995.7, + "end": 5996.86, + "probability": 0.8156 + }, + { + "start": 5996.88, + "end": 5999.42, + "probability": 0.9066 + }, + { + "start": 5999.74, + "end": 6003.38, + "probability": 0.8445 + }, + { + "start": 6003.62, + "end": 6005.0, + "probability": 0.9231 + }, + { + "start": 6005.5, + "end": 6005.58, + "probability": 0.0981 + }, + { + "start": 6005.58, + "end": 6009.0, + "probability": 0.824 + }, + { + "start": 6009.0, + "end": 6009.86, + "probability": 0.2692 + }, + { + "start": 6010.42, + "end": 6011.5, + "probability": 0.4388 + }, + { + "start": 6011.5, + "end": 6012.75, + "probability": 0.7326 + }, + { + "start": 6012.92, + "end": 6014.78, + "probability": 0.6777 + }, + { + "start": 6014.96, + "end": 6015.66, + "probability": 0.4468 + }, + { + "start": 6015.66, + "end": 6017.2, + "probability": 0.6367 + }, + { + "start": 6017.6, + "end": 6018.18, + "probability": 0.6737 + }, + { + "start": 6018.28, + "end": 6019.4, + "probability": 0.6926 + }, + { + "start": 6019.48, + "end": 6021.06, + "probability": 0.9769 + }, + { + "start": 6021.3, + "end": 6024.14, + "probability": 0.9715 + }, + { + "start": 6024.28, + "end": 6025.72, + "probability": 0.687 + }, + { + "start": 6025.96, + "end": 6026.78, + "probability": 0.7475 + }, + { + "start": 6026.92, + "end": 6030.76, + "probability": 0.9084 + }, + { + "start": 6031.02, + "end": 6033.88, + "probability": 0.6699 + }, + { + "start": 6034.18, + "end": 6035.54, + "probability": 0.9082 + }, + { + "start": 6035.58, + "end": 6040.04, + "probability": 0.9743 + }, + { + "start": 6040.12, + "end": 6044.28, + "probability": 0.9313 + }, + { + "start": 6045.32, + "end": 6047.72, + "probability": 0.684 + }, + { + "start": 6047.78, + "end": 6049.8, + "probability": 0.9912 + }, + { + "start": 6050.0, + "end": 6051.38, + "probability": 0.7462 + }, + { + "start": 6051.56, + "end": 6054.64, + "probability": 0.8021 + }, + { + "start": 6054.96, + "end": 6056.98, + "probability": 0.6902 + }, + { + "start": 6057.34, + "end": 6057.94, + "probability": 0.9097 + }, + { + "start": 6058.58, + "end": 6060.28, + "probability": 0.8543 + }, + { + "start": 6060.3, + "end": 6061.44, + "probability": 0.9381 + }, + { + "start": 6061.82, + "end": 6062.42, + "probability": 0.1991 + }, + { + "start": 6062.54, + "end": 6062.74, + "probability": 0.6079 + }, + { + "start": 6063.12, + "end": 6064.36, + "probability": 0.8134 + }, + { + "start": 6064.36, + "end": 6064.92, + "probability": 0.8616 + }, + { + "start": 6065.18, + "end": 6067.0, + "probability": 0.9918 + }, + { + "start": 6067.36, + "end": 6067.92, + "probability": 0.7157 + }, + { + "start": 6068.0, + "end": 6068.62, + "probability": 0.7116 + }, + { + "start": 6068.68, + "end": 6069.64, + "probability": 0.6649 + }, + { + "start": 6069.72, + "end": 6070.24, + "probability": 0.7904 + }, + { + "start": 6070.42, + "end": 6070.76, + "probability": 0.1792 + }, + { + "start": 6071.06, + "end": 6072.5, + "probability": 0.9168 + }, + { + "start": 6072.54, + "end": 6073.93, + "probability": 0.8621 + }, + { + "start": 6074.3, + "end": 6074.4, + "probability": 0.0502 + }, + { + "start": 6074.56, + "end": 6074.58, + "probability": 0.0774 + }, + { + "start": 6074.72, + "end": 6075.04, + "probability": 0.8069 + }, + { + "start": 6075.06, + "end": 6076.1, + "probability": 0.9624 + }, + { + "start": 6076.8, + "end": 6077.21, + "probability": 0.9209 + }, + { + "start": 6078.21, + "end": 6079.56, + "probability": 0.96 + }, + { + "start": 6079.68, + "end": 6079.8, + "probability": 0.6917 + }, + { + "start": 6079.98, + "end": 6080.82, + "probability": 0.9209 + }, + { + "start": 6081.24, + "end": 6081.7, + "probability": 0.3608 + }, + { + "start": 6081.8, + "end": 6082.49, + "probability": 0.9907 + }, + { + "start": 6083.4, + "end": 6085.12, + "probability": 0.9793 + }, + { + "start": 6085.58, + "end": 6088.6, + "probability": 0.7969 + }, + { + "start": 6088.66, + "end": 6090.3, + "probability": 0.4701 + }, + { + "start": 6090.3, + "end": 6090.38, + "probability": 0.361 + }, + { + "start": 6090.38, + "end": 6091.08, + "probability": 0.0812 + }, + { + "start": 6091.1, + "end": 6091.48, + "probability": 0.4301 + }, + { + "start": 6091.56, + "end": 6092.22, + "probability": 0.5391 + }, + { + "start": 6092.3, + "end": 6093.52, + "probability": 0.408 + }, + { + "start": 6093.64, + "end": 6094.62, + "probability": 0.5618 + }, + { + "start": 6094.62, + "end": 6096.32, + "probability": 0.9069 + }, + { + "start": 6096.5, + "end": 6096.78, + "probability": 0.7808 + }, + { + "start": 6097.24, + "end": 6099.46, + "probability": 0.7651 + }, + { + "start": 6099.46, + "end": 6099.81, + "probability": 0.753 + }, + { + "start": 6100.28, + "end": 6102.3, + "probability": 0.7581 + }, + { + "start": 6102.44, + "end": 6103.4, + "probability": 0.9814 + }, + { + "start": 6103.4, + "end": 6103.54, + "probability": 0.4719 + }, + { + "start": 6103.58, + "end": 6103.76, + "probability": 0.9234 + }, + { + "start": 6103.82, + "end": 6107.02, + "probability": 0.936 + }, + { + "start": 6107.18, + "end": 6109.14, + "probability": 0.9504 + }, + { + "start": 6109.56, + "end": 6112.7, + "probability": 0.9938 + }, + { + "start": 6112.9, + "end": 6113.74, + "probability": 0.2979 + }, + { + "start": 6113.82, + "end": 6117.08, + "probability": 0.5522 + }, + { + "start": 6119.44, + "end": 6119.44, + "probability": 0.183 + }, + { + "start": 6119.44, + "end": 6119.72, + "probability": 0.2086 + }, + { + "start": 6119.88, + "end": 6120.94, + "probability": 0.6994 + }, + { + "start": 6121.0, + "end": 6121.64, + "probability": 0.6974 + }, + { + "start": 6121.64, + "end": 6122.48, + "probability": 0.0532 + }, + { + "start": 6122.68, + "end": 6124.16, + "probability": 0.6588 + }, + { + "start": 6124.16, + "end": 6125.28, + "probability": 0.7119 + }, + { + "start": 6125.9, + "end": 6126.94, + "probability": 0.7282 + }, + { + "start": 6127.06, + "end": 6127.54, + "probability": 0.7868 + }, + { + "start": 6127.54, + "end": 6128.54, + "probability": 0.5708 + }, + { + "start": 6128.54, + "end": 6133.72, + "probability": 0.9647 + }, + { + "start": 6133.88, + "end": 6135.3, + "probability": 0.9272 + }, + { + "start": 6135.64, + "end": 6139.66, + "probability": 0.9871 + }, + { + "start": 6139.76, + "end": 6142.04, + "probability": 0.9728 + }, + { + "start": 6142.04, + "end": 6143.76, + "probability": 0.8773 + }, + { + "start": 6144.14, + "end": 6145.7, + "probability": 0.9045 + }, + { + "start": 6147.7, + "end": 6148.26, + "probability": 0.7905 + }, + { + "start": 6148.72, + "end": 6149.17, + "probability": 0.6685 + }, + { + "start": 6149.56, + "end": 6149.96, + "probability": 0.9638 + }, + { + "start": 6150.1, + "end": 6150.6, + "probability": 0.6152 + }, + { + "start": 6150.62, + "end": 6151.74, + "probability": 0.9956 + }, + { + "start": 6151.76, + "end": 6152.0, + "probability": 0.6595 + }, + { + "start": 6152.1, + "end": 6152.32, + "probability": 0.8062 + }, + { + "start": 6152.4, + "end": 6153.02, + "probability": 0.7504 + }, + { + "start": 6153.24, + "end": 6154.65, + "probability": 0.4109 + }, + { + "start": 6155.16, + "end": 6155.34, + "probability": 0.4246 + }, + { + "start": 6155.36, + "end": 6156.74, + "probability": 0.6788 + }, + { + "start": 6156.76, + "end": 6157.82, + "probability": 0.3624 + }, + { + "start": 6157.84, + "end": 6157.96, + "probability": 0.3042 + }, + { + "start": 6157.96, + "end": 6158.58, + "probability": 0.6928 + }, + { + "start": 6159.9, + "end": 6160.96, + "probability": 0.832 + }, + { + "start": 6161.46, + "end": 6161.78, + "probability": 0.8765 + }, + { + "start": 6161.8, + "end": 6161.96, + "probability": 0.7214 + }, + { + "start": 6161.96, + "end": 6165.04, + "probability": 0.9748 + }, + { + "start": 6165.42, + "end": 6170.56, + "probability": 0.9756 + }, + { + "start": 6170.76, + "end": 6171.58, + "probability": 0.8693 + }, + { + "start": 6171.96, + "end": 6173.34, + "probability": 0.8759 + }, + { + "start": 6173.46, + "end": 6174.26, + "probability": 0.725 + }, + { + "start": 6174.38, + "end": 6174.66, + "probability": 0.4357 + }, + { + "start": 6174.74, + "end": 6174.9, + "probability": 0.838 + }, + { + "start": 6174.96, + "end": 6178.5, + "probability": 0.9893 + }, + { + "start": 6178.8, + "end": 6180.28, + "probability": 0.9478 + }, + { + "start": 6180.42, + "end": 6181.98, + "probability": 0.8149 + }, + { + "start": 6182.06, + "end": 6184.76, + "probability": 0.9823 + }, + { + "start": 6185.52, + "end": 6186.02, + "probability": 0.6827 + }, + { + "start": 6186.3, + "end": 6189.04, + "probability": 0.8884 + }, + { + "start": 6189.32, + "end": 6194.4, + "probability": 0.9793 + }, + { + "start": 6194.88, + "end": 6199.26, + "probability": 0.9479 + }, + { + "start": 6199.26, + "end": 6204.3, + "probability": 0.9925 + }, + { + "start": 6204.48, + "end": 6206.28, + "probability": 0.7933 + }, + { + "start": 6207.38, + "end": 6208.18, + "probability": 0.9485 + }, + { + "start": 6208.64, + "end": 6210.16, + "probability": 0.9104 + }, + { + "start": 6210.34, + "end": 6212.3, + "probability": 0.9912 + }, + { + "start": 6213.12, + "end": 6215.96, + "probability": 0.9923 + }, + { + "start": 6215.96, + "end": 6219.72, + "probability": 0.9991 + }, + { + "start": 6220.64, + "end": 6224.4, + "probability": 0.9963 + }, + { + "start": 6224.4, + "end": 6227.04, + "probability": 0.7033 + }, + { + "start": 6227.24, + "end": 6228.54, + "probability": 0.8252 + }, + { + "start": 6229.28, + "end": 6230.3, + "probability": 0.7068 + }, + { + "start": 6230.5, + "end": 6231.84, + "probability": 0.989 + }, + { + "start": 6231.98, + "end": 6232.84, + "probability": 0.906 + }, + { + "start": 6233.08, + "end": 6234.54, + "probability": 0.7667 + }, + { + "start": 6235.7, + "end": 6238.3, + "probability": 0.8957 + }, + { + "start": 6238.56, + "end": 6241.52, + "probability": 0.6953 + }, + { + "start": 6242.24, + "end": 6243.36, + "probability": 0.8433 + }, + { + "start": 6243.92, + "end": 6245.72, + "probability": 0.9631 + }, + { + "start": 6246.0, + "end": 6247.04, + "probability": 0.8135 + }, + { + "start": 6247.28, + "end": 6248.25, + "probability": 0.8665 + }, + { + "start": 6248.52, + "end": 6250.95, + "probability": 0.9909 + }, + { + "start": 6251.26, + "end": 6251.87, + "probability": 0.853 + }, + { + "start": 6251.96, + "end": 6252.94, + "probability": 0.9609 + }, + { + "start": 6253.46, + "end": 6254.28, + "probability": 0.9878 + }, + { + "start": 6255.42, + "end": 6256.36, + "probability": 0.9095 + }, + { + "start": 6256.42, + "end": 6258.54, + "probability": 0.9639 + }, + { + "start": 6260.24, + "end": 6262.84, + "probability": 0.9771 + }, + { + "start": 6262.84, + "end": 6265.76, + "probability": 0.9028 + }, + { + "start": 6266.24, + "end": 6268.84, + "probability": 0.9833 + }, + { + "start": 6269.22, + "end": 6270.76, + "probability": 0.8547 + }, + { + "start": 6271.18, + "end": 6274.58, + "probability": 0.9918 + }, + { + "start": 6274.72, + "end": 6277.1, + "probability": 0.904 + }, + { + "start": 6277.42, + "end": 6278.94, + "probability": 0.7332 + }, + { + "start": 6279.16, + "end": 6281.74, + "probability": 0.981 + }, + { + "start": 6282.34, + "end": 6283.16, + "probability": 0.8774 + }, + { + "start": 6283.26, + "end": 6285.74, + "probability": 0.991 + }, + { + "start": 6285.98, + "end": 6289.04, + "probability": 0.8287 + }, + { + "start": 6289.36, + "end": 6291.02, + "probability": 0.9957 + }, + { + "start": 6291.02, + "end": 6294.86, + "probability": 0.9443 + }, + { + "start": 6296.02, + "end": 6298.32, + "probability": 0.9089 + }, + { + "start": 6298.42, + "end": 6302.28, + "probability": 0.9937 + }, + { + "start": 6302.5, + "end": 6305.84, + "probability": 0.9919 + }, + { + "start": 6306.14, + "end": 6307.46, + "probability": 0.8825 + }, + { + "start": 6307.84, + "end": 6308.72, + "probability": 0.9328 + }, + { + "start": 6308.78, + "end": 6309.98, + "probability": 0.8774 + }, + { + "start": 6310.28, + "end": 6314.78, + "probability": 0.9717 + }, + { + "start": 6315.28, + "end": 6320.44, + "probability": 0.968 + }, + { + "start": 6320.88, + "end": 6322.84, + "probability": 0.9829 + }, + { + "start": 6323.3, + "end": 6324.64, + "probability": 0.9775 + }, + { + "start": 6324.92, + "end": 6325.84, + "probability": 0.7676 + }, + { + "start": 6326.54, + "end": 6328.31, + "probability": 0.9945 + }, + { + "start": 6328.96, + "end": 6329.78, + "probability": 0.7662 + }, + { + "start": 6329.92, + "end": 6333.9, + "probability": 0.9444 + }, + { + "start": 6333.98, + "end": 6335.01, + "probability": 0.9636 + }, + { + "start": 6335.88, + "end": 6338.57, + "probability": 0.9603 + }, + { + "start": 6339.16, + "end": 6339.56, + "probability": 0.6812 + }, + { + "start": 6339.74, + "end": 6340.64, + "probability": 0.157 + }, + { + "start": 6341.46, + "end": 6345.16, + "probability": 0.705 + }, + { + "start": 6345.6, + "end": 6348.12, + "probability": 0.3962 + }, + { + "start": 6348.42, + "end": 6351.65, + "probability": 0.8661 + }, + { + "start": 6353.66, + "end": 6354.1, + "probability": 0.4991 + }, + { + "start": 6354.18, + "end": 6355.0, + "probability": 0.7075 + }, + { + "start": 6355.18, + "end": 6357.82, + "probability": 0.9349 + }, + { + "start": 6358.32, + "end": 6359.12, + "probability": 0.1048 + }, + { + "start": 6359.76, + "end": 6361.28, + "probability": 0.5279 + }, + { + "start": 6361.38, + "end": 6363.05, + "probability": 0.9341 + }, + { + "start": 6363.74, + "end": 6364.82, + "probability": 0.8035 + }, + { + "start": 6364.9, + "end": 6367.2, + "probability": 0.9899 + }, + { + "start": 6367.48, + "end": 6368.52, + "probability": 0.9722 + }, + { + "start": 6368.86, + "end": 6370.34, + "probability": 0.8914 + }, + { + "start": 6370.74, + "end": 6372.2, + "probability": 0.7107 + }, + { + "start": 6372.32, + "end": 6376.14, + "probability": 0.9932 + }, + { + "start": 6376.9, + "end": 6377.8, + "probability": 0.9323 + }, + { + "start": 6377.88, + "end": 6379.08, + "probability": 0.9902 + }, + { + "start": 6379.26, + "end": 6381.94, + "probability": 0.9827 + }, + { + "start": 6382.16, + "end": 6382.75, + "probability": 0.9976 + }, + { + "start": 6383.52, + "end": 6385.0, + "probability": 0.9979 + }, + { + "start": 6385.18, + "end": 6386.84, + "probability": 0.998 + }, + { + "start": 6387.08, + "end": 6389.24, + "probability": 0.7999 + }, + { + "start": 6389.34, + "end": 6390.16, + "probability": 0.8875 + }, + { + "start": 6390.2, + "end": 6391.72, + "probability": 0.9666 + }, + { + "start": 6391.78, + "end": 6394.55, + "probability": 0.9761 + }, + { + "start": 6395.1, + "end": 6395.78, + "probability": 0.1653 + }, + { + "start": 6395.78, + "end": 6396.06, + "probability": 0.1399 + }, + { + "start": 6396.54, + "end": 6396.54, + "probability": 0.2272 + }, + { + "start": 6396.54, + "end": 6398.22, + "probability": 0.6966 + }, + { + "start": 6398.4, + "end": 6402.48, + "probability": 0.7142 + }, + { + "start": 6402.54, + "end": 6405.76, + "probability": 0.4513 + }, + { + "start": 6407.64, + "end": 6409.0, + "probability": 0.0299 + }, + { + "start": 6409.18, + "end": 6411.06, + "probability": 0.1975 + }, + { + "start": 6411.3, + "end": 6411.4, + "probability": 0.4572 + }, + { + "start": 6411.4, + "end": 6412.28, + "probability": 0.1652 + }, + { + "start": 6412.42, + "end": 6412.42, + "probability": 0.0622 + }, + { + "start": 6412.42, + "end": 6412.84, + "probability": 0.5468 + }, + { + "start": 6413.46, + "end": 6416.08, + "probability": 0.5239 + }, + { + "start": 6416.34, + "end": 6422.34, + "probability": 0.1231 + }, + { + "start": 6423.62, + "end": 6427.0, + "probability": 0.382 + }, + { + "start": 6427.62, + "end": 6427.78, + "probability": 0.3755 + }, + { + "start": 6428.02, + "end": 6429.38, + "probability": 0.1989 + }, + { + "start": 6429.52, + "end": 6429.76, + "probability": 0.5538 + }, + { + "start": 6429.98, + "end": 6433.04, + "probability": 0.7839 + }, + { + "start": 6433.3, + "end": 6437.74, + "probability": 0.9581 + }, + { + "start": 6438.04, + "end": 6438.86, + "probability": 0.8869 + }, + { + "start": 6439.4, + "end": 6440.8, + "probability": 0.8542 + }, + { + "start": 6440.88, + "end": 6441.76, + "probability": 0.5368 + }, + { + "start": 6441.84, + "end": 6444.7, + "probability": 0.9424 + }, + { + "start": 6444.82, + "end": 6445.62, + "probability": 0.9513 + }, + { + "start": 6446.46, + "end": 6449.12, + "probability": 0.9901 + }, + { + "start": 6449.42, + "end": 6450.62, + "probability": 0.8563 + }, + { + "start": 6450.78, + "end": 6454.14, + "probability": 0.7361 + }, + { + "start": 6454.22, + "end": 6455.76, + "probability": 0.8065 + }, + { + "start": 6455.84, + "end": 6459.56, + "probability": 0.9776 + }, + { + "start": 6459.94, + "end": 6462.16, + "probability": 0.9325 + }, + { + "start": 6462.52, + "end": 6464.18, + "probability": 0.9533 + }, + { + "start": 6464.34, + "end": 6464.98, + "probability": 0.733 + }, + { + "start": 6465.06, + "end": 6466.7, + "probability": 0.9893 + }, + { + "start": 6466.74, + "end": 6469.36, + "probability": 0.8685 + }, + { + "start": 6469.5, + "end": 6470.72, + "probability": 0.9663 + }, + { + "start": 6470.8, + "end": 6471.92, + "probability": 0.8621 + }, + { + "start": 6472.0, + "end": 6473.62, + "probability": 0.7407 + }, + { + "start": 6473.7, + "end": 6475.5, + "probability": 0.9853 + }, + { + "start": 6475.66, + "end": 6476.38, + "probability": 0.8295 + }, + { + "start": 6476.4, + "end": 6477.1, + "probability": 0.8037 + }, + { + "start": 6477.22, + "end": 6479.18, + "probability": 0.9868 + }, + { + "start": 6479.56, + "end": 6481.28, + "probability": 0.9948 + }, + { + "start": 6481.7, + "end": 6487.73, + "probability": 0.8806 + }, + { + "start": 6488.64, + "end": 6491.72, + "probability": 0.993 + }, + { + "start": 6492.56, + "end": 6496.1, + "probability": 0.9807 + }, + { + "start": 6496.1, + "end": 6499.64, + "probability": 0.9685 + }, + { + "start": 6499.78, + "end": 6500.0, + "probability": 0.2908 + }, + { + "start": 6500.12, + "end": 6501.58, + "probability": 0.9387 + }, + { + "start": 6501.58, + "end": 6502.28, + "probability": 0.5211 + }, + { + "start": 6502.54, + "end": 6503.42, + "probability": 0.9436 + }, + { + "start": 6503.46, + "end": 6504.51, + "probability": 0.9054 + }, + { + "start": 6505.0, + "end": 6508.52, + "probability": 0.9774 + }, + { + "start": 6508.6, + "end": 6509.04, + "probability": 0.5612 + }, + { + "start": 6509.44, + "end": 6511.24, + "probability": 0.9288 + }, + { + "start": 6511.36, + "end": 6514.7, + "probability": 0.9855 + }, + { + "start": 6515.22, + "end": 6517.28, + "probability": 0.9473 + }, + { + "start": 6518.22, + "end": 6519.98, + "probability": 0.9964 + }, + { + "start": 6520.9, + "end": 6524.88, + "probability": 0.9622 + }, + { + "start": 6526.38, + "end": 6528.58, + "probability": 0.9844 + }, + { + "start": 6528.96, + "end": 6529.92, + "probability": 0.6682 + }, + { + "start": 6530.2, + "end": 6531.32, + "probability": 0.4948 + }, + { + "start": 6531.46, + "end": 6533.12, + "probability": 0.788 + }, + { + "start": 6535.56, + "end": 6537.8, + "probability": 0.8995 + }, + { + "start": 6537.94, + "end": 6539.24, + "probability": 0.7512 + }, + { + "start": 6539.3, + "end": 6540.72, + "probability": 0.8996 + }, + { + "start": 6540.86, + "end": 6541.56, + "probability": 0.6407 + }, + { + "start": 6541.58, + "end": 6542.58, + "probability": 0.6104 + }, + { + "start": 6543.1, + "end": 6548.38, + "probability": 0.8953 + }, + { + "start": 6548.38, + "end": 6553.02, + "probability": 0.7551 + }, + { + "start": 6553.02, + "end": 6557.42, + "probability": 0.9499 + }, + { + "start": 6558.44, + "end": 6563.44, + "probability": 0.7129 + }, + { + "start": 6565.0, + "end": 6566.58, + "probability": 0.4551 + }, + { + "start": 6567.04, + "end": 6571.38, + "probability": 0.8141 + }, + { + "start": 6571.52, + "end": 6572.88, + "probability": 0.5049 + }, + { + "start": 6573.36, + "end": 6576.94, + "probability": 0.974 + }, + { + "start": 6576.94, + "end": 6580.48, + "probability": 0.7721 + }, + { + "start": 6580.68, + "end": 6582.04, + "probability": 0.8761 + }, + { + "start": 6582.54, + "end": 6585.38, + "probability": 0.7396 + }, + { + "start": 6585.82, + "end": 6587.2, + "probability": 0.6838 + }, + { + "start": 6587.66, + "end": 6591.1, + "probability": 0.7739 + }, + { + "start": 6591.24, + "end": 6592.88, + "probability": 0.9578 + }, + { + "start": 6592.88, + "end": 6597.0, + "probability": 0.9807 + }, + { + "start": 6597.0, + "end": 6600.96, + "probability": 0.4623 + }, + { + "start": 6601.06, + "end": 6602.46, + "probability": 0.5084 + }, + { + "start": 6602.46, + "end": 6605.92, + "probability": 0.7614 + }, + { + "start": 6606.24, + "end": 6608.08, + "probability": 0.8002 + }, + { + "start": 6608.72, + "end": 6609.58, + "probability": 0.667 + }, + { + "start": 6609.7, + "end": 6610.92, + "probability": 0.7287 + }, + { + "start": 6610.92, + "end": 6612.98, + "probability": 0.6809 + }, + { + "start": 6613.42, + "end": 6614.32, + "probability": 0.9136 + }, + { + "start": 6614.9, + "end": 6615.08, + "probability": 0.8524 + }, + { + "start": 6615.33, + "end": 6616.3, + "probability": 0.9828 + }, + { + "start": 6616.4, + "end": 6617.62, + "probability": 0.5885 + }, + { + "start": 6617.74, + "end": 6620.84, + "probability": 0.8826 + }, + { + "start": 6621.34, + "end": 6622.12, + "probability": 0.9242 + }, + { + "start": 6622.18, + "end": 6623.6, + "probability": 0.8772 + }, + { + "start": 6623.7, + "end": 6626.5, + "probability": 0.9507 + }, + { + "start": 6627.3, + "end": 6631.94, + "probability": 0.9838 + }, + { + "start": 6632.3, + "end": 6634.74, + "probability": 0.7877 + }, + { + "start": 6635.42, + "end": 6639.36, + "probability": 0.9243 + }, + { + "start": 6639.98, + "end": 6640.69, + "probability": 0.7653 + }, + { + "start": 6640.96, + "end": 6642.6, + "probability": 0.8124 + }, + { + "start": 6642.72, + "end": 6644.46, + "probability": 0.783 + }, + { + "start": 6644.56, + "end": 6646.56, + "probability": 0.9493 + }, + { + "start": 6646.6, + "end": 6648.34, + "probability": 0.5713 + }, + { + "start": 6648.6, + "end": 6649.19, + "probability": 0.8022 + }, + { + "start": 6649.46, + "end": 6650.42, + "probability": 0.3885 + }, + { + "start": 6650.58, + "end": 6653.48, + "probability": 0.7998 + }, + { + "start": 6656.56, + "end": 6658.74, + "probability": 0.95 + }, + { + "start": 6658.98, + "end": 6661.76, + "probability": 0.9417 + }, + { + "start": 6661.8, + "end": 6662.2, + "probability": 0.758 + }, + { + "start": 6663.46, + "end": 6663.46, + "probability": 0.2149 + }, + { + "start": 6663.46, + "end": 6664.52, + "probability": 0.7962 + }, + { + "start": 6664.64, + "end": 6665.92, + "probability": 0.8334 + }, + { + "start": 6666.08, + "end": 6667.18, + "probability": 0.9779 + }, + { + "start": 6667.28, + "end": 6669.68, + "probability": 0.9897 + }, + { + "start": 6670.38, + "end": 6674.94, + "probability": 0.9946 + }, + { + "start": 6675.04, + "end": 6676.84, + "probability": 0.6618 + }, + { + "start": 6676.96, + "end": 6677.7, + "probability": 0.5291 + }, + { + "start": 6677.74, + "end": 6679.98, + "probability": 0.751 + }, + { + "start": 6680.6, + "end": 6683.26, + "probability": 0.9252 + }, + { + "start": 6683.84, + "end": 6687.44, + "probability": 0.9831 + }, + { + "start": 6688.04, + "end": 6688.22, + "probability": 0.4655 + }, + { + "start": 6688.22, + "end": 6689.48, + "probability": 0.768 + }, + { + "start": 6689.9, + "end": 6691.88, + "probability": 0.9343 + }, + { + "start": 6692.46, + "end": 6693.8, + "probability": 0.8581 + }, + { + "start": 6694.34, + "end": 6696.98, + "probability": 0.8643 + }, + { + "start": 6696.98, + "end": 6700.04, + "probability": 0.9821 + }, + { + "start": 6700.82, + "end": 6700.82, + "probability": 0.0531 + }, + { + "start": 6700.82, + "end": 6703.92, + "probability": 0.9784 + }, + { + "start": 6704.08, + "end": 6709.56, + "probability": 0.9855 + }, + { + "start": 6709.7, + "end": 6712.48, + "probability": 0.9725 + }, + { + "start": 6713.04, + "end": 6713.6, + "probability": 0.8311 + }, + { + "start": 6713.68, + "end": 6716.76, + "probability": 0.9491 + }, + { + "start": 6716.76, + "end": 6720.32, + "probability": 0.9915 + }, + { + "start": 6720.72, + "end": 6725.9, + "probability": 0.999 + }, + { + "start": 6726.46, + "end": 6728.46, + "probability": 0.9951 + }, + { + "start": 6728.46, + "end": 6731.48, + "probability": 0.9978 + }, + { + "start": 6732.0, + "end": 6732.68, + "probability": 0.5799 + }, + { + "start": 6733.2, + "end": 6734.78, + "probability": 0.9882 + }, + { + "start": 6734.78, + "end": 6737.92, + "probability": 0.991 + }, + { + "start": 6738.22, + "end": 6739.64, + "probability": 0.9088 + }, + { + "start": 6739.98, + "end": 6742.94, + "probability": 0.692 + }, + { + "start": 6743.4, + "end": 6747.38, + "probability": 0.8973 + }, + { + "start": 6747.38, + "end": 6750.48, + "probability": 0.9963 + }, + { + "start": 6750.9, + "end": 6751.32, + "probability": 0.4657 + }, + { + "start": 6751.42, + "end": 6751.84, + "probability": 0.6476 + }, + { + "start": 6752.0, + "end": 6755.49, + "probability": 0.9092 + }, + { + "start": 6756.06, + "end": 6758.46, + "probability": 0.9569 + }, + { + "start": 6758.7, + "end": 6760.0, + "probability": 0.8114 + }, + { + "start": 6760.08, + "end": 6760.74, + "probability": 0.9283 + }, + { + "start": 6761.06, + "end": 6762.0, + "probability": 0.9431 + }, + { + "start": 6762.08, + "end": 6763.26, + "probability": 0.9504 + }, + { + "start": 6763.52, + "end": 6770.64, + "probability": 0.9824 + }, + { + "start": 6771.22, + "end": 6773.7, + "probability": 0.9907 + }, + { + "start": 6773.7, + "end": 6777.32, + "probability": 0.9954 + }, + { + "start": 6777.62, + "end": 6779.62, + "probability": 0.9847 + }, + { + "start": 6780.06, + "end": 6782.78, + "probability": 0.9972 + }, + { + "start": 6782.78, + "end": 6786.56, + "probability": 0.9421 + }, + { + "start": 6786.58, + "end": 6792.0, + "probability": 0.9913 + }, + { + "start": 6792.26, + "end": 6792.42, + "probability": 0.5023 + }, + { + "start": 6792.58, + "end": 6793.27, + "probability": 0.4551 + }, + { + "start": 6793.7, + "end": 6795.62, + "probability": 0.9932 + }, + { + "start": 6796.52, + "end": 6799.8, + "probability": 0.991 + }, + { + "start": 6800.18, + "end": 6803.66, + "probability": 0.9988 + }, + { + "start": 6804.24, + "end": 6805.68, + "probability": 0.965 + }, + { + "start": 6806.16, + "end": 6810.84, + "probability": 0.9764 + }, + { + "start": 6811.28, + "end": 6812.38, + "probability": 0.8245 + }, + { + "start": 6812.56, + "end": 6813.58, + "probability": 0.912 + }, + { + "start": 6813.66, + "end": 6815.46, + "probability": 0.958 + }, + { + "start": 6816.18, + "end": 6819.92, + "probability": 0.9877 + }, + { + "start": 6820.12, + "end": 6823.56, + "probability": 0.9125 + }, + { + "start": 6824.08, + "end": 6827.1, + "probability": 0.9937 + }, + { + "start": 6827.1, + "end": 6830.74, + "probability": 0.9951 + }, + { + "start": 6831.32, + "end": 6833.2, + "probability": 0.8727 + }, + { + "start": 6833.28, + "end": 6835.04, + "probability": 0.9738 + }, + { + "start": 6835.3, + "end": 6839.36, + "probability": 0.9985 + }, + { + "start": 6839.44, + "end": 6840.68, + "probability": 0.9873 + }, + { + "start": 6841.16, + "end": 6842.98, + "probability": 0.999 + }, + { + "start": 6843.22, + "end": 6846.87, + "probability": 0.9849 + }, + { + "start": 6850.53, + "end": 6853.18, + "probability": 0.0231 + }, + { + "start": 6853.18, + "end": 6853.18, + "probability": 0.1517 + }, + { + "start": 6853.18, + "end": 6853.18, + "probability": 0.2154 + }, + { + "start": 6853.18, + "end": 6853.22, + "probability": 0.2846 + }, + { + "start": 6853.4, + "end": 6853.7, + "probability": 0.7579 + }, + { + "start": 6853.8, + "end": 6856.6, + "probability": 0.8586 + }, + { + "start": 6856.72, + "end": 6858.4, + "probability": 0.7141 + }, + { + "start": 6858.48, + "end": 6859.56, + "probability": 0.7058 + }, + { + "start": 6860.04, + "end": 6865.14, + "probability": 0.9897 + }, + { + "start": 6865.57, + "end": 6866.18, + "probability": 0.8234 + }, + { + "start": 6866.34, + "end": 6867.94, + "probability": 0.7463 + }, + { + "start": 6868.0, + "end": 6870.4, + "probability": 0.8327 + }, + { + "start": 6870.68, + "end": 6871.74, + "probability": 0.9281 + }, + { + "start": 6871.8, + "end": 6872.86, + "probability": 0.9724 + }, + { + "start": 6873.0, + "end": 6873.78, + "probability": 0.6776 + }, + { + "start": 6873.92, + "end": 6874.72, + "probability": 0.8848 + }, + { + "start": 6874.82, + "end": 6875.42, + "probability": 0.0939 + }, + { + "start": 6875.42, + "end": 6877.1, + "probability": 0.2332 + }, + { + "start": 6877.26, + "end": 6878.78, + "probability": 0.7744 + }, + { + "start": 6878.9, + "end": 6881.18, + "probability": 0.8367 + }, + { + "start": 6881.4, + "end": 6882.86, + "probability": 0.9622 + }, + { + "start": 6883.1, + "end": 6883.38, + "probability": 0.8201 + }, + { + "start": 6883.4, + "end": 6886.96, + "probability": 0.9972 + }, + { + "start": 6887.16, + "end": 6891.68, + "probability": 0.9536 + }, + { + "start": 6891.68, + "end": 6891.74, + "probability": 0.0208 + }, + { + "start": 6891.74, + "end": 6892.14, + "probability": 0.7031 + }, + { + "start": 6892.14, + "end": 6893.18, + "probability": 0.6008 + }, + { + "start": 6898.66, + "end": 6901.46, + "probability": 0.7999 + }, + { + "start": 6904.0, + "end": 6906.32, + "probability": 0.7899 + }, + { + "start": 6906.48, + "end": 6909.46, + "probability": 0.8735 + }, + { + "start": 6909.67, + "end": 6911.28, + "probability": 0.7072 + }, + { + "start": 6911.76, + "end": 6912.48, + "probability": 0.9327 + }, + { + "start": 6913.98, + "end": 6914.78, + "probability": 0.7985 + }, + { + "start": 6915.88, + "end": 6918.76, + "probability": 0.9878 + }, + { + "start": 6918.92, + "end": 6921.2, + "probability": 0.9958 + }, + { + "start": 6921.32, + "end": 6926.59, + "probability": 0.9357 + }, + { + "start": 6928.06, + "end": 6929.2, + "probability": 0.9663 + }, + { + "start": 6929.3, + "end": 6931.84, + "probability": 0.9629 + }, + { + "start": 6931.96, + "end": 6936.16, + "probability": 0.9938 + }, + { + "start": 6936.92, + "end": 6938.08, + "probability": 0.7105 + }, + { + "start": 6938.78, + "end": 6940.27, + "probability": 0.9204 + }, + { + "start": 6942.06, + "end": 6942.78, + "probability": 0.8569 + }, + { + "start": 6942.82, + "end": 6943.39, + "probability": 0.7159 + }, + { + "start": 6944.42, + "end": 6947.8, + "probability": 0.9233 + }, + { + "start": 6948.32, + "end": 6950.44, + "probability": 0.8608 + }, + { + "start": 6950.48, + "end": 6951.64, + "probability": 0.8958 + }, + { + "start": 6951.8, + "end": 6952.08, + "probability": 0.0364 + }, + { + "start": 6952.14, + "end": 6953.98, + "probability": 0.5799 + }, + { + "start": 6954.1, + "end": 6954.72, + "probability": 0.6787 + }, + { + "start": 6954.74, + "end": 6955.5, + "probability": 0.3985 + }, + { + "start": 6956.1, + "end": 6956.2, + "probability": 0.0016 + }, + { + "start": 6956.2, + "end": 6960.12, + "probability": 0.8767 + }, + { + "start": 6960.2, + "end": 6960.34, + "probability": 0.8436 + }, + { + "start": 6960.38, + "end": 6960.96, + "probability": 0.762 + }, + { + "start": 6961.06, + "end": 6962.24, + "probability": 0.9951 + }, + { + "start": 6962.34, + "end": 6963.28, + "probability": 0.9595 + }, + { + "start": 6965.08, + "end": 6970.76, + "probability": 0.9862 + }, + { + "start": 6970.82, + "end": 6971.62, + "probability": 0.6289 + }, + { + "start": 6971.7, + "end": 6972.87, + "probability": 0.907 + }, + { + "start": 6973.6, + "end": 6976.08, + "probability": 0.9769 + }, + { + "start": 6976.88, + "end": 6978.56, + "probability": 0.6526 + }, + { + "start": 6978.64, + "end": 6982.06, + "probability": 0.7485 + }, + { + "start": 6982.06, + "end": 6985.58, + "probability": 0.9696 + }, + { + "start": 6986.44, + "end": 6986.68, + "probability": 0.7009 + }, + { + "start": 6986.72, + "end": 6988.06, + "probability": 0.9956 + }, + { + "start": 6988.44, + "end": 6989.14, + "probability": 0.9501 + }, + { + "start": 6989.24, + "end": 6990.02, + "probability": 0.955 + }, + { + "start": 6990.1, + "end": 6991.0, + "probability": 0.9635 + }, + { + "start": 6991.3, + "end": 6993.52, + "probability": 0.9893 + }, + { + "start": 6994.1, + "end": 6995.66, + "probability": 0.8507 + }, + { + "start": 6996.18, + "end": 6998.74, + "probability": 0.7654 + }, + { + "start": 6999.18, + "end": 7001.8, + "probability": 0.9321 + }, + { + "start": 7001.96, + "end": 7004.05, + "probability": 0.9762 + }, + { + "start": 7004.24, + "end": 7005.52, + "probability": 0.8886 + }, + { + "start": 7005.98, + "end": 7007.2, + "probability": 0.9714 + }, + { + "start": 7007.36, + "end": 7008.08, + "probability": 0.6865 + }, + { + "start": 7008.82, + "end": 7010.36, + "probability": 0.7994 + }, + { + "start": 7010.68, + "end": 7013.34, + "probability": 0.785 + }, + { + "start": 7013.74, + "end": 7017.3, + "probability": 0.9525 + }, + { + "start": 7017.88, + "end": 7019.14, + "probability": 0.9844 + }, + { + "start": 7019.24, + "end": 7024.0, + "probability": 0.9808 + }, + { + "start": 7025.4, + "end": 7028.6, + "probability": 0.8794 + }, + { + "start": 7029.34, + "end": 7031.08, + "probability": 0.8829 + }, + { + "start": 7031.14, + "end": 7035.02, + "probability": 0.7971 + }, + { + "start": 7035.46, + "end": 7037.2, + "probability": 0.9819 + }, + { + "start": 7037.98, + "end": 7039.9, + "probability": 0.7202 + }, + { + "start": 7040.58, + "end": 7041.97, + "probability": 0.9604 + }, + { + "start": 7042.24, + "end": 7043.58, + "probability": 0.6211 + }, + { + "start": 7044.06, + "end": 7045.74, + "probability": 0.8841 + }, + { + "start": 7046.36, + "end": 7048.08, + "probability": 0.7039 + }, + { + "start": 7048.44, + "end": 7049.22, + "probability": 0.8643 + }, + { + "start": 7049.38, + "end": 7049.99, + "probability": 0.9525 + }, + { + "start": 7050.12, + "end": 7051.09, + "probability": 0.8149 + }, + { + "start": 7052.46, + "end": 7055.44, + "probability": 0.8119 + }, + { + "start": 7056.66, + "end": 7058.08, + "probability": 0.8729 + }, + { + "start": 7058.18, + "end": 7059.92, + "probability": 0.8335 + }, + { + "start": 7060.06, + "end": 7060.46, + "probability": 0.8974 + }, + { + "start": 7060.76, + "end": 7061.22, + "probability": 0.5918 + }, + { + "start": 7061.54, + "end": 7062.94, + "probability": 0.9078 + }, + { + "start": 7064.02, + "end": 7069.08, + "probability": 0.847 + }, + { + "start": 7069.16, + "end": 7071.64, + "probability": 0.8403 + }, + { + "start": 7072.35, + "end": 7074.98, + "probability": 0.9131 + }, + { + "start": 7075.16, + "end": 7075.64, + "probability": 0.4846 + }, + { + "start": 7076.02, + "end": 7076.86, + "probability": 0.7253 + }, + { + "start": 7077.0, + "end": 7077.84, + "probability": 0.8105 + }, + { + "start": 7077.88, + "end": 7079.28, + "probability": 0.6705 + }, + { + "start": 7079.3, + "end": 7081.34, + "probability": 0.5656 + }, + { + "start": 7081.42, + "end": 7081.86, + "probability": 0.6298 + }, + { + "start": 7081.96, + "end": 7085.14, + "probability": 0.8325 + }, + { + "start": 7086.3, + "end": 7087.3, + "probability": 0.4043 + }, + { + "start": 7087.9, + "end": 7090.28, + "probability": 0.9896 + }, + { + "start": 7090.76, + "end": 7094.26, + "probability": 0.7837 + }, + { + "start": 7094.64, + "end": 7096.12, + "probability": 0.98 + }, + { + "start": 7097.18, + "end": 7099.22, + "probability": 0.791 + }, + { + "start": 7100.4, + "end": 7101.56, + "probability": 0.0663 + }, + { + "start": 7103.84, + "end": 7107.09, + "probability": 0.9959 + }, + { + "start": 7107.8, + "end": 7113.16, + "probability": 0.7644 + }, + { + "start": 7113.28, + "end": 7114.0, + "probability": 0.8613 + }, + { + "start": 7114.06, + "end": 7116.24, + "probability": 0.6386 + }, + { + "start": 7116.46, + "end": 7118.0, + "probability": 0.929 + }, + { + "start": 7118.74, + "end": 7124.76, + "probability": 0.9912 + }, + { + "start": 7124.9, + "end": 7127.52, + "probability": 0.9759 + }, + { + "start": 7128.3, + "end": 7132.14, + "probability": 0.7818 + }, + { + "start": 7132.86, + "end": 7139.62, + "probability": 0.9314 + }, + { + "start": 7140.24, + "end": 7141.48, + "probability": 0.5017 + }, + { + "start": 7141.56, + "end": 7142.94, + "probability": 0.8675 + }, + { + "start": 7143.12, + "end": 7143.8, + "probability": 0.8276 + }, + { + "start": 7143.9, + "end": 7146.15, + "probability": 0.9434 + }, + { + "start": 7146.84, + "end": 7148.22, + "probability": 0.8037 + }, + { + "start": 7148.34, + "end": 7149.02, + "probability": 0.9186 + }, + { + "start": 7149.06, + "end": 7151.92, + "probability": 0.9741 + }, + { + "start": 7152.18, + "end": 7156.7, + "probability": 0.9375 + }, + { + "start": 7156.98, + "end": 7160.64, + "probability": 0.8177 + }, + { + "start": 7160.76, + "end": 7160.94, + "probability": 0.6461 + }, + { + "start": 7161.04, + "end": 7161.42, + "probability": 0.6749 + }, + { + "start": 7161.5, + "end": 7161.66, + "probability": 0.4141 + }, + { + "start": 7161.68, + "end": 7162.46, + "probability": 0.9512 + }, + { + "start": 7162.5, + "end": 7163.06, + "probability": 0.7375 + }, + { + "start": 7163.12, + "end": 7163.62, + "probability": 0.7921 + }, + { + "start": 7163.7, + "end": 7166.08, + "probability": 0.9047 + }, + { + "start": 7166.5, + "end": 7168.12, + "probability": 0.7949 + }, + { + "start": 7168.52, + "end": 7169.22, + "probability": 0.8946 + }, + { + "start": 7169.6, + "end": 7170.88, + "probability": 0.884 + }, + { + "start": 7171.32, + "end": 7173.16, + "probability": 0.9814 + }, + { + "start": 7173.26, + "end": 7174.22, + "probability": 0.9495 + }, + { + "start": 7175.45, + "end": 7177.16, + "probability": 0.8763 + }, + { + "start": 7178.08, + "end": 7178.4, + "probability": 0.7999 + }, + { + "start": 7179.28, + "end": 7180.43, + "probability": 0.3561 + }, + { + "start": 7181.22, + "end": 7183.4, + "probability": 0.6731 + }, + { + "start": 7186.98, + "end": 7187.44, + "probability": 0.2547 + }, + { + "start": 7189.75, + "end": 7191.14, + "probability": 0.4912 + }, + { + "start": 7194.14, + "end": 7195.36, + "probability": 0.3217 + }, + { + "start": 7197.78, + "end": 7203.2, + "probability": 0.6288 + }, + { + "start": 7204.08, + "end": 7204.26, + "probability": 0.6072 + }, + { + "start": 7206.0, + "end": 7208.64, + "probability": 0.9814 + }, + { + "start": 7209.14, + "end": 7216.28, + "probability": 0.9892 + }, + { + "start": 7216.86, + "end": 7219.44, + "probability": 0.9798 + }, + { + "start": 7219.68, + "end": 7224.18, + "probability": 0.978 + }, + { + "start": 7224.18, + "end": 7227.86, + "probability": 0.9658 + }, + { + "start": 7228.56, + "end": 7232.84, + "probability": 0.8004 + }, + { + "start": 7233.5, + "end": 7238.56, + "probability": 0.9927 + }, + { + "start": 7238.76, + "end": 7242.3, + "probability": 0.8679 + }, + { + "start": 7242.42, + "end": 7243.92, + "probability": 0.7077 + }, + { + "start": 7244.08, + "end": 7244.08, + "probability": 0.3572 + }, + { + "start": 7244.08, + "end": 7245.65, + "probability": 0.9118 + }, + { + "start": 7246.02, + "end": 7248.32, + "probability": 0.698 + }, + { + "start": 7248.92, + "end": 7254.5, + "probability": 0.964 + }, + { + "start": 7254.56, + "end": 7255.96, + "probability": 0.9252 + }, + { + "start": 7258.87, + "end": 7266.46, + "probability": 0.994 + }, + { + "start": 7266.98, + "end": 7266.98, + "probability": 0.061 + }, + { + "start": 7267.32, + "end": 7271.38, + "probability": 0.8796 + }, + { + "start": 7271.7, + "end": 7275.34, + "probability": 0.926 + }, + { + "start": 7275.9, + "end": 7279.3, + "probability": 0.5677 + }, + { + "start": 7279.88, + "end": 7285.34, + "probability": 0.987 + }, + { + "start": 7285.96, + "end": 7289.04, + "probability": 0.9171 + }, + { + "start": 7289.42, + "end": 7292.64, + "probability": 0.9187 + }, + { + "start": 7293.28, + "end": 7299.28, + "probability": 0.8486 + }, + { + "start": 7299.94, + "end": 7303.84, + "probability": 0.9719 + }, + { + "start": 7304.52, + "end": 7308.2, + "probability": 0.7928 + }, + { + "start": 7308.54, + "end": 7311.82, + "probability": 0.5971 + }, + { + "start": 7311.88, + "end": 7316.22, + "probability": 0.6778 + }, + { + "start": 7316.46, + "end": 7316.84, + "probability": 0.8196 + }, + { + "start": 7317.8, + "end": 7319.14, + "probability": 0.0217 + }, + { + "start": 7319.14, + "end": 7322.78, + "probability": 0.589 + }, + { + "start": 7326.5, + "end": 7328.9, + "probability": 0.8241 + }, + { + "start": 7329.32, + "end": 7331.03, + "probability": 0.9541 + }, + { + "start": 7331.44, + "end": 7333.84, + "probability": 0.4973 + }, + { + "start": 7334.94, + "end": 7339.37, + "probability": 0.8854 + }, + { + "start": 7340.1, + "end": 7344.66, + "probability": 0.9544 + }, + { + "start": 7344.74, + "end": 7345.84, + "probability": 0.6131 + }, + { + "start": 7345.98, + "end": 7350.28, + "probability": 0.8799 + }, + { + "start": 7350.74, + "end": 7351.26, + "probability": 0.7603 + }, + { + "start": 7351.52, + "end": 7351.8, + "probability": 0.2915 + }, + { + "start": 7352.3, + "end": 7354.01, + "probability": 0.7874 + }, + { + "start": 7354.52, + "end": 7355.44, + "probability": 0.6229 + }, + { + "start": 7355.46, + "end": 7357.88, + "probability": 0.9455 + }, + { + "start": 7360.58, + "end": 7362.78, + "probability": 0.0495 + }, + { + "start": 7377.08, + "end": 7378.84, + "probability": 0.0756 + }, + { + "start": 7379.76, + "end": 7384.88, + "probability": 0.6942 + }, + { + "start": 7386.94, + "end": 7389.04, + "probability": 0.9932 + }, + { + "start": 7389.87, + "end": 7394.5, + "probability": 0.9723 + }, + { + "start": 7396.16, + "end": 7398.51, + "probability": 0.9426 + }, + { + "start": 7402.24, + "end": 7405.76, + "probability": 0.735 + }, + { + "start": 7407.38, + "end": 7411.18, + "probability": 0.9855 + }, + { + "start": 7411.36, + "end": 7411.92, + "probability": 0.8892 + }, + { + "start": 7412.08, + "end": 7412.74, + "probability": 0.6374 + }, + { + "start": 7412.84, + "end": 7414.02, + "probability": 0.9647 + }, + { + "start": 7414.06, + "end": 7417.22, + "probability": 0.3636 + }, + { + "start": 7420.0, + "end": 7423.1, + "probability": 0.6603 + }, + { + "start": 7423.1, + "end": 7427.32, + "probability": 0.9016 + }, + { + "start": 7428.04, + "end": 7431.48, + "probability": 0.7223 + }, + { + "start": 7433.99, + "end": 7441.22, + "probability": 0.653 + }, + { + "start": 7441.22, + "end": 7447.4, + "probability": 0.8022 + }, + { + "start": 7447.82, + "end": 7449.95, + "probability": 0.9968 + }, + { + "start": 7450.58, + "end": 7452.14, + "probability": 0.995 + }, + { + "start": 7454.02, + "end": 7456.64, + "probability": 0.9285 + }, + { + "start": 7457.4, + "end": 7460.12, + "probability": 0.9785 + }, + { + "start": 7461.24, + "end": 7466.82, + "probability": 0.9476 + }, + { + "start": 7467.86, + "end": 7469.26, + "probability": 0.5876 + }, + { + "start": 7469.94, + "end": 7472.2, + "probability": 0.8015 + }, + { + "start": 7472.76, + "end": 7473.25, + "probability": 0.9097 + }, + { + "start": 7473.42, + "end": 7474.24, + "probability": 0.8941 + }, + { + "start": 7475.36, + "end": 7477.28, + "probability": 0.9051 + }, + { + "start": 7477.34, + "end": 7478.78, + "probability": 0.852 + }, + { + "start": 7479.02, + "end": 7480.9, + "probability": 0.9462 + }, + { + "start": 7481.4, + "end": 7482.44, + "probability": 0.9303 + }, + { + "start": 7482.62, + "end": 7483.66, + "probability": 0.4879 + }, + { + "start": 7484.62, + "end": 7490.92, + "probability": 0.9771 + }, + { + "start": 7491.24, + "end": 7493.56, + "probability": 0.9528 + }, + { + "start": 7493.6, + "end": 7494.34, + "probability": 0.7729 + }, + { + "start": 7495.48, + "end": 7498.86, + "probability": 0.9889 + }, + { + "start": 7499.78, + "end": 7501.78, + "probability": 0.5112 + }, + { + "start": 7506.96, + "end": 7509.3, + "probability": 0.5014 + }, + { + "start": 7511.16, + "end": 7514.78, + "probability": 0.9967 + }, + { + "start": 7515.56, + "end": 7517.22, + "probability": 0.9369 + }, + { + "start": 7518.1, + "end": 7520.3, + "probability": 0.9914 + }, + { + "start": 7522.44, + "end": 7523.48, + "probability": 0.5958 + }, + { + "start": 7524.06, + "end": 7526.88, + "probability": 0.9741 + }, + { + "start": 7529.62, + "end": 7532.82, + "probability": 0.9956 + }, + { + "start": 7534.14, + "end": 7538.8, + "probability": 0.9883 + }, + { + "start": 7539.76, + "end": 7541.2, + "probability": 0.7516 + }, + { + "start": 7541.4, + "end": 7545.74, + "probability": 0.7965 + }, + { + "start": 7547.04, + "end": 7548.59, + "probability": 0.6795 + }, + { + "start": 7549.26, + "end": 7551.49, + "probability": 0.5452 + }, + { + "start": 7551.9, + "end": 7553.87, + "probability": 0.7128 + }, + { + "start": 7554.56, + "end": 7555.42, + "probability": 0.4291 + }, + { + "start": 7555.56, + "end": 7556.7, + "probability": 0.8309 + }, + { + "start": 7557.16, + "end": 7558.18, + "probability": 0.9661 + }, + { + "start": 7558.32, + "end": 7559.14, + "probability": 0.9479 + }, + { + "start": 7559.9, + "end": 7561.48, + "probability": 0.8983 + }, + { + "start": 7561.66, + "end": 7562.43, + "probability": 0.845 + }, + { + "start": 7563.16, + "end": 7563.71, + "probability": 0.6796 + }, + { + "start": 7564.42, + "end": 7565.56, + "probability": 0.7512 + }, + { + "start": 7565.9, + "end": 7569.9, + "probability": 0.9322 + }, + { + "start": 7570.5, + "end": 7574.16, + "probability": 0.8299 + }, + { + "start": 7574.58, + "end": 7579.08, + "probability": 0.9594 + }, + { + "start": 7579.68, + "end": 7585.3, + "probability": 0.7635 + }, + { + "start": 7585.46, + "end": 7586.86, + "probability": 0.984 + }, + { + "start": 7586.98, + "end": 7588.9, + "probability": 0.6398 + }, + { + "start": 7589.42, + "end": 7591.32, + "probability": 0.9373 + }, + { + "start": 7591.78, + "end": 7594.0, + "probability": 0.6715 + }, + { + "start": 7610.52, + "end": 7614.8, + "probability": 0.4655 + }, + { + "start": 7614.8, + "end": 7616.98, + "probability": 0.5948 + }, + { + "start": 7617.5, + "end": 7622.12, + "probability": 0.9808 + }, + { + "start": 7622.92, + "end": 7624.9, + "probability": 0.9557 + }, + { + "start": 7624.9, + "end": 7628.48, + "probability": 0.7124 + }, + { + "start": 7630.28, + "end": 7635.58, + "probability": 0.8431 + }, + { + "start": 7636.44, + "end": 7638.76, + "probability": 0.7418 + }, + { + "start": 7639.02, + "end": 7642.78, + "probability": 0.9264 + }, + { + "start": 7642.84, + "end": 7648.06, + "probability": 0.8986 + }, + { + "start": 7648.2, + "end": 7648.78, + "probability": 0.5522 + }, + { + "start": 7649.02, + "end": 7655.72, + "probability": 0.8706 + }, + { + "start": 7656.34, + "end": 7657.71, + "probability": 0.8621 + }, + { + "start": 7659.64, + "end": 7660.64, + "probability": 0.858 + }, + { + "start": 7660.84, + "end": 7661.98, + "probability": 0.8523 + }, + { + "start": 7662.36, + "end": 7665.32, + "probability": 0.9697 + }, + { + "start": 7665.6, + "end": 7666.28, + "probability": 0.6573 + }, + { + "start": 7666.36, + "end": 7667.56, + "probability": 0.7048 + }, + { + "start": 7667.72, + "end": 7668.44, + "probability": 0.7558 + }, + { + "start": 7669.74, + "end": 7670.54, + "probability": 0.9451 + }, + { + "start": 7673.58, + "end": 7675.5, + "probability": 0.9682 + }, + { + "start": 7677.18, + "end": 7678.94, + "probability": 0.9742 + }, + { + "start": 7680.9, + "end": 7681.76, + "probability": 0.3442 + }, + { + "start": 7682.06, + "end": 7687.22, + "probability": 0.9604 + }, + { + "start": 7688.04, + "end": 7690.34, + "probability": 0.7504 + }, + { + "start": 7692.0, + "end": 7697.08, + "probability": 0.5246 + }, + { + "start": 7697.62, + "end": 7703.34, + "probability": 0.9109 + }, + { + "start": 7703.78, + "end": 7709.72, + "probability": 0.8716 + }, + { + "start": 7710.2, + "end": 7713.62, + "probability": 0.9843 + }, + { + "start": 7714.16, + "end": 7720.1, + "probability": 0.8906 + }, + { + "start": 7720.14, + "end": 7721.16, + "probability": 0.6752 + }, + { + "start": 7721.28, + "end": 7723.2, + "probability": 0.9719 + }, + { + "start": 7726.44, + "end": 7727.14, + "probability": 0.8672 + }, + { + "start": 7727.32, + "end": 7728.14, + "probability": 0.6727 + }, + { + "start": 7728.32, + "end": 7729.46, + "probability": 0.6265 + }, + { + "start": 7729.52, + "end": 7734.74, + "probability": 0.9293 + }, + { + "start": 7735.0, + "end": 7736.46, + "probability": 0.9873 + }, + { + "start": 7737.74, + "end": 7742.88, + "probability": 0.8103 + }, + { + "start": 7743.2, + "end": 7750.28, + "probability": 0.891 + }, + { + "start": 7751.5, + "end": 7751.96, + "probability": 0.4338 + }, + { + "start": 7752.16, + "end": 7753.9, + "probability": 0.8438 + }, + { + "start": 7753.92, + "end": 7755.2, + "probability": 0.7876 + }, + { + "start": 7755.38, + "end": 7759.52, + "probability": 0.9983 + }, + { + "start": 7760.44, + "end": 7762.94, + "probability": 0.8582 + }, + { + "start": 7763.1, + "end": 7766.55, + "probability": 0.9573 + }, + { + "start": 7767.62, + "end": 7771.78, + "probability": 0.9456 + }, + { + "start": 7772.96, + "end": 7776.26, + "probability": 0.9902 + }, + { + "start": 7776.32, + "end": 7777.8, + "probability": 0.7508 + }, + { + "start": 7777.9, + "end": 7779.66, + "probability": 0.951 + }, + { + "start": 7781.08, + "end": 7783.88, + "probability": 0.9773 + }, + { + "start": 7784.1, + "end": 7787.58, + "probability": 0.8512 + }, + { + "start": 7788.14, + "end": 7792.36, + "probability": 0.9699 + }, + { + "start": 7792.64, + "end": 7794.36, + "probability": 0.9988 + }, + { + "start": 7794.78, + "end": 7795.74, + "probability": 0.7461 + }, + { + "start": 7795.86, + "end": 7799.5, + "probability": 0.9458 + }, + { + "start": 7800.08, + "end": 7801.6, + "probability": 0.9696 + }, + { + "start": 7802.02, + "end": 7803.82, + "probability": 0.7187 + }, + { + "start": 7803.82, + "end": 7804.88, + "probability": 0.0242 + }, + { + "start": 7804.88, + "end": 7804.88, + "probability": 0.1587 + }, + { + "start": 7804.88, + "end": 7805.85, + "probability": 0.6233 + }, + { + "start": 7806.18, + "end": 7807.2, + "probability": 0.9175 + }, + { + "start": 7807.26, + "end": 7807.8, + "probability": 0.9883 + }, + { + "start": 7807.94, + "end": 7808.14, + "probability": 0.4235 + }, + { + "start": 7808.14, + "end": 7808.77, + "probability": 0.7949 + }, + { + "start": 7809.24, + "end": 7810.92, + "probability": 0.724 + }, + { + "start": 7811.4, + "end": 7811.88, + "probability": 0.0826 + }, + { + "start": 7812.94, + "end": 7813.2, + "probability": 0.3328 + }, + { + "start": 7813.54, + "end": 7814.24, + "probability": 0.4281 + }, + { + "start": 7816.24, + "end": 7816.36, + "probability": 0.0439 + }, + { + "start": 7816.36, + "end": 7817.24, + "probability": 0.3375 + }, + { + "start": 7817.24, + "end": 7818.84, + "probability": 0.7981 + }, + { + "start": 7818.96, + "end": 7820.72, + "probability": 0.4121 + }, + { + "start": 7821.42, + "end": 7824.27, + "probability": 0.936 + }, + { + "start": 7824.9, + "end": 7827.26, + "probability": 0.804 + }, + { + "start": 7827.26, + "end": 7830.76, + "probability": 0.9263 + }, + { + "start": 7831.08, + "end": 7833.17, + "probability": 0.9811 + }, + { + "start": 7833.94, + "end": 7836.44, + "probability": 0.7855 + }, + { + "start": 7836.88, + "end": 7842.86, + "probability": 0.9731 + }, + { + "start": 7843.2, + "end": 7846.7, + "probability": 0.8191 + }, + { + "start": 7846.88, + "end": 7849.74, + "probability": 0.6641 + }, + { + "start": 7850.16, + "end": 7851.32, + "probability": 0.9478 + }, + { + "start": 7851.44, + "end": 7852.76, + "probability": 0.53 + }, + { + "start": 7853.2, + "end": 7854.06, + "probability": 0.6057 + }, + { + "start": 7854.06, + "end": 7854.88, + "probability": 0.5335 + }, + { + "start": 7854.94, + "end": 7857.76, + "probability": 0.6424 + }, + { + "start": 7858.12, + "end": 7860.84, + "probability": 0.8763 + }, + { + "start": 7861.24, + "end": 7862.4, + "probability": 0.4192 + }, + { + "start": 7862.8, + "end": 7865.76, + "probability": 0.9798 + }, + { + "start": 7866.08, + "end": 7869.88, + "probability": 0.8343 + }, + { + "start": 7870.22, + "end": 7874.18, + "probability": 0.4866 + }, + { + "start": 7874.3, + "end": 7875.76, + "probability": 0.1326 + }, + { + "start": 7875.76, + "end": 7878.1, + "probability": 0.5369 + }, + { + "start": 7878.76, + "end": 7878.94, + "probability": 0.0225 + }, + { + "start": 7878.94, + "end": 7882.02, + "probability": 0.6527 + }, + { + "start": 7882.26, + "end": 7887.72, + "probability": 0.702 + }, + { + "start": 7888.08, + "end": 7888.4, + "probability": 0.2996 + }, + { + "start": 7888.56, + "end": 7889.8, + "probability": 0.8977 + }, + { + "start": 7889.92, + "end": 7893.6, + "probability": 0.8725 + }, + { + "start": 7893.7, + "end": 7894.42, + "probability": 0.4955 + }, + { + "start": 7894.5, + "end": 7894.76, + "probability": 0.4055 + }, + { + "start": 7894.8, + "end": 7895.62, + "probability": 0.7546 + }, + { + "start": 7895.74, + "end": 7897.19, + "probability": 0.715 + }, + { + "start": 7897.72, + "end": 7899.94, + "probability": 0.7318 + }, + { + "start": 7912.02, + "end": 7914.38, + "probability": 0.6557 + }, + { + "start": 7917.48, + "end": 7917.54, + "probability": 0.1621 + }, + { + "start": 7917.54, + "end": 7917.54, + "probability": 0.2295 + }, + { + "start": 7917.54, + "end": 7919.3, + "probability": 0.669 + }, + { + "start": 7919.56, + "end": 7921.62, + "probability": 0.9902 + }, + { + "start": 7922.06, + "end": 7924.0, + "probability": 0.9778 + }, + { + "start": 7924.22, + "end": 7925.88, + "probability": 0.6486 + }, + { + "start": 7926.56, + "end": 7928.15, + "probability": 0.992 + }, + { + "start": 7929.02, + "end": 7935.55, + "probability": 0.9653 + }, + { + "start": 7935.84, + "end": 7937.38, + "probability": 0.5334 + }, + { + "start": 7937.46, + "end": 7940.44, + "probability": 0.9729 + }, + { + "start": 7940.54, + "end": 7941.44, + "probability": 0.9176 + }, + { + "start": 7941.48, + "end": 7942.14, + "probability": 0.7539 + }, + { + "start": 7942.16, + "end": 7946.34, + "probability": 0.9922 + }, + { + "start": 7946.36, + "end": 7949.3, + "probability": 0.9912 + }, + { + "start": 7949.88, + "end": 7950.88, + "probability": 0.5312 + }, + { + "start": 7950.96, + "end": 7951.82, + "probability": 0.9033 + }, + { + "start": 7952.22, + "end": 7957.3, + "probability": 0.9967 + }, + { + "start": 7958.02, + "end": 7959.46, + "probability": 0.9941 + }, + { + "start": 7959.58, + "end": 7967.88, + "probability": 0.9988 + }, + { + "start": 7968.64, + "end": 7970.62, + "probability": 0.7654 + }, + { + "start": 7971.36, + "end": 7974.08, + "probability": 0.8688 + }, + { + "start": 7974.84, + "end": 7977.1, + "probability": 0.8578 + }, + { + "start": 7977.94, + "end": 7983.38, + "probability": 0.9866 + }, + { + "start": 7984.06, + "end": 7985.16, + "probability": 0.614 + }, + { + "start": 7985.41, + "end": 7988.86, + "probability": 0.9949 + }, + { + "start": 7989.1, + "end": 7990.3, + "probability": 0.9526 + }, + { + "start": 7991.0, + "end": 7995.52, + "probability": 0.99 + }, + { + "start": 7995.52, + "end": 8001.62, + "probability": 0.993 + }, + { + "start": 8001.62, + "end": 8009.82, + "probability": 0.9961 + }, + { + "start": 8010.5, + "end": 8012.74, + "probability": 0.6774 + }, + { + "start": 8013.18, + "end": 8018.52, + "probability": 0.9984 + }, + { + "start": 8018.86, + "end": 8020.12, + "probability": 0.5887 + }, + { + "start": 8020.6, + "end": 8021.84, + "probability": 0.8085 + }, + { + "start": 8021.92, + "end": 8025.82, + "probability": 0.9777 + }, + { + "start": 8025.82, + "end": 8030.28, + "probability": 0.9963 + }, + { + "start": 8030.42, + "end": 8030.86, + "probability": 0.6004 + }, + { + "start": 8031.58, + "end": 8034.02, + "probability": 0.918 + }, + { + "start": 8034.68, + "end": 8036.56, + "probability": 0.9627 + }, + { + "start": 8037.2, + "end": 8041.08, + "probability": 0.9862 + }, + { + "start": 8041.98, + "end": 8043.82, + "probability": 0.8151 + }, + { + "start": 8045.0, + "end": 8047.68, + "probability": 0.6779 + }, + { + "start": 8048.3, + "end": 8053.08, + "probability": 0.9418 + }, + { + "start": 8053.4, + "end": 8058.16, + "probability": 0.9854 + }, + { + "start": 8058.7, + "end": 8061.42, + "probability": 0.9744 + }, + { + "start": 8062.14, + "end": 8064.84, + "probability": 0.9956 + }, + { + "start": 8065.24, + "end": 8069.6, + "probability": 0.9776 + }, + { + "start": 8070.06, + "end": 8074.16, + "probability": 0.9912 + }, + { + "start": 8074.16, + "end": 8079.04, + "probability": 0.9976 + }, + { + "start": 8079.64, + "end": 8080.16, + "probability": 0.3597 + }, + { + "start": 8080.22, + "end": 8081.5, + "probability": 0.892 + }, + { + "start": 8082.12, + "end": 8083.18, + "probability": 0.8002 + }, + { + "start": 8083.42, + "end": 8084.56, + "probability": 0.9402 + }, + { + "start": 8085.02, + "end": 8091.9, + "probability": 0.9709 + }, + { + "start": 8092.62, + "end": 8098.72, + "probability": 0.9943 + }, + { + "start": 8099.24, + "end": 8103.7, + "probability": 0.9861 + }, + { + "start": 8104.2, + "end": 8109.96, + "probability": 0.9973 + }, + { + "start": 8109.96, + "end": 8115.78, + "probability": 0.9943 + }, + { + "start": 8115.96, + "end": 8116.36, + "probability": 0.5985 + }, + { + "start": 8116.96, + "end": 8119.74, + "probability": 0.5853 + }, + { + "start": 8119.9, + "end": 8120.25, + "probability": 0.5212 + }, + { + "start": 8121.22, + "end": 8122.76, + "probability": 0.6981 + }, + { + "start": 8124.06, + "end": 8129.22, + "probability": 0.4992 + }, + { + "start": 8134.32, + "end": 8136.38, + "probability": 0.7137 + }, + { + "start": 8137.6, + "end": 8137.68, + "probability": 0.1429 + }, + { + "start": 8137.68, + "end": 8137.68, + "probability": 0.2518 + }, + { + "start": 8137.68, + "end": 8137.78, + "probability": 0.4573 + }, + { + "start": 8137.94, + "end": 8139.38, + "probability": 0.9081 + }, + { + "start": 8139.52, + "end": 8142.53, + "probability": 0.9819 + }, + { + "start": 8142.94, + "end": 8144.62, + "probability": 0.6653 + }, + { + "start": 8144.78, + "end": 8146.92, + "probability": 0.7124 + }, + { + "start": 8147.38, + "end": 8151.94, + "probability": 0.9985 + }, + { + "start": 8151.94, + "end": 8156.46, + "probability": 0.996 + }, + { + "start": 8157.14, + "end": 8158.38, + "probability": 0.8966 + }, + { + "start": 8158.46, + "end": 8159.46, + "probability": 0.8671 + }, + { + "start": 8159.5, + "end": 8160.74, + "probability": 0.9907 + }, + { + "start": 8161.7, + "end": 8162.93, + "probability": 0.9727 + }, + { + "start": 8163.28, + "end": 8164.28, + "probability": 0.8886 + }, + { + "start": 8164.46, + "end": 8167.26, + "probability": 0.9735 + }, + { + "start": 8168.0, + "end": 8171.3, + "probability": 0.9751 + }, + { + "start": 8171.3, + "end": 8174.64, + "probability": 0.891 + }, + { + "start": 8174.9, + "end": 8177.24, + "probability": 0.973 + }, + { + "start": 8177.52, + "end": 8179.88, + "probability": 0.894 + }, + { + "start": 8180.14, + "end": 8183.0, + "probability": 0.8793 + }, + { + "start": 8183.38, + "end": 8184.22, + "probability": 0.7543 + }, + { + "start": 8184.54, + "end": 8185.78, + "probability": 0.9808 + }, + { + "start": 8185.84, + "end": 8188.4, + "probability": 0.9917 + }, + { + "start": 8188.8, + "end": 8190.1, + "probability": 0.9747 + }, + { + "start": 8190.28, + "end": 8193.34, + "probability": 0.9954 + }, + { + "start": 8193.76, + "end": 8195.78, + "probability": 0.5504 + }, + { + "start": 8195.9, + "end": 8199.36, + "probability": 0.9951 + }, + { + "start": 8199.92, + "end": 8204.36, + "probability": 0.9897 + }, + { + "start": 8205.32, + "end": 8209.54, + "probability": 0.9976 + }, + { + "start": 8209.54, + "end": 8213.72, + "probability": 0.998 + }, + { + "start": 8214.52, + "end": 8218.62, + "probability": 0.9114 + }, + { + "start": 8219.44, + "end": 8223.28, + "probability": 0.9661 + }, + { + "start": 8223.66, + "end": 8227.14, + "probability": 0.9333 + }, + { + "start": 8227.84, + "end": 8228.86, + "probability": 0.8457 + }, + { + "start": 8228.96, + "end": 8231.75, + "probability": 0.9956 + }, + { + "start": 8233.26, + "end": 8236.52, + "probability": 0.9348 + }, + { + "start": 8236.52, + "end": 8240.6, + "probability": 0.9862 + }, + { + "start": 8241.24, + "end": 8244.8, + "probability": 0.9843 + }, + { + "start": 8245.78, + "end": 8247.44, + "probability": 0.9871 + }, + { + "start": 8247.66, + "end": 8250.94, + "probability": 0.8352 + }, + { + "start": 8252.1, + "end": 8254.86, + "probability": 0.9899 + }, + { + "start": 8255.6, + "end": 8261.04, + "probability": 0.996 + }, + { + "start": 8261.1, + "end": 8262.52, + "probability": 0.9481 + }, + { + "start": 8263.08, + "end": 8267.26, + "probability": 0.8891 + }, + { + "start": 8267.26, + "end": 8271.4, + "probability": 0.9902 + }, + { + "start": 8271.4, + "end": 8275.62, + "probability": 0.9986 + }, + { + "start": 8276.2, + "end": 8277.02, + "probability": 0.8506 + }, + { + "start": 8277.74, + "end": 8280.9, + "probability": 0.9655 + }, + { + "start": 8281.02, + "end": 8285.88, + "probability": 0.9699 + }, + { + "start": 8285.94, + "end": 8287.46, + "probability": 0.9951 + }, + { + "start": 8288.06, + "end": 8291.32, + "probability": 0.9955 + }, + { + "start": 8291.82, + "end": 8293.24, + "probability": 0.8133 + }, + { + "start": 8293.42, + "end": 8296.02, + "probability": 0.8517 + }, + { + "start": 8296.4, + "end": 8297.4, + "probability": 0.989 + }, + { + "start": 8297.54, + "end": 8299.16, + "probability": 0.9589 + }, + { + "start": 8299.72, + "end": 8300.99, + "probability": 0.8758 + }, + { + "start": 8301.56, + "end": 8304.38, + "probability": 0.9863 + }, + { + "start": 8304.86, + "end": 8305.64, + "probability": 0.7702 + }, + { + "start": 8305.74, + "end": 8307.28, + "probability": 0.9707 + }, + { + "start": 8308.16, + "end": 8310.18, + "probability": 0.9659 + }, + { + "start": 8310.34, + "end": 8311.39, + "probability": 0.8481 + }, + { + "start": 8311.66, + "end": 8312.78, + "probability": 0.9889 + }, + { + "start": 8312.8, + "end": 8314.04, + "probability": 0.9565 + }, + { + "start": 8314.22, + "end": 8315.82, + "probability": 0.9136 + }, + { + "start": 8316.24, + "end": 8316.68, + "probability": 0.8285 + }, + { + "start": 8316.86, + "end": 8318.74, + "probability": 0.9385 + }, + { + "start": 8318.82, + "end": 8322.5, + "probability": 0.9917 + }, + { + "start": 8322.72, + "end": 8323.96, + "probability": 0.7824 + }, + { + "start": 8324.1, + "end": 8324.64, + "probability": 0.8162 + }, + { + "start": 8324.96, + "end": 8327.0, + "probability": 0.9883 + }, + { + "start": 8327.32, + "end": 8330.22, + "probability": 0.9076 + }, + { + "start": 8330.52, + "end": 8332.82, + "probability": 0.9944 + }, + { + "start": 8332.82, + "end": 8336.2, + "probability": 0.9983 + }, + { + "start": 8336.36, + "end": 8337.8, + "probability": 0.938 + }, + { + "start": 8338.14, + "end": 8343.52, + "probability": 0.8726 + }, + { + "start": 8343.52, + "end": 8343.54, + "probability": 0.2318 + }, + { + "start": 8343.54, + "end": 8344.0, + "probability": 0.4278 + }, + { + "start": 8344.08, + "end": 8345.0, + "probability": 0.4797 + }, + { + "start": 8345.34, + "end": 8347.44, + "probability": 0.6582 + }, + { + "start": 8347.78, + "end": 8349.78, + "probability": 0.9951 + }, + { + "start": 8349.78, + "end": 8352.08, + "probability": 0.9937 + }, + { + "start": 8352.42, + "end": 8353.7, + "probability": 0.8978 + }, + { + "start": 8354.14, + "end": 8356.14, + "probability": 0.8385 + }, + { + "start": 8356.24, + "end": 8359.46, + "probability": 0.9749 + }, + { + "start": 8361.14, + "end": 8364.26, + "probability": 0.9995 + }, + { + "start": 8364.36, + "end": 8365.74, + "probability": 0.8983 + }, + { + "start": 8366.16, + "end": 8370.52, + "probability": 0.9931 + }, + { + "start": 8370.82, + "end": 8374.0, + "probability": 0.9924 + }, + { + "start": 8374.76, + "end": 8378.5, + "probability": 0.999 + }, + { + "start": 8378.73, + "end": 8384.08, + "probability": 0.9897 + }, + { + "start": 8384.7, + "end": 8387.96, + "probability": 0.981 + }, + { + "start": 8388.28, + "end": 8389.84, + "probability": 0.9381 + }, + { + "start": 8390.3, + "end": 8392.98, + "probability": 0.9966 + }, + { + "start": 8393.14, + "end": 8393.36, + "probability": 0.255 + }, + { + "start": 8393.36, + "end": 8395.04, + "probability": 0.548 + }, + { + "start": 8395.2, + "end": 8397.27, + "probability": 0.9316 + }, + { + "start": 8398.58, + "end": 8399.58, + "probability": 0.9919 + }, + { + "start": 8400.5, + "end": 8401.14, + "probability": 0.9105 + }, + { + "start": 8401.76, + "end": 8404.46, + "probability": 0.914 + }, + { + "start": 8404.56, + "end": 8407.34, + "probability": 0.6693 + }, + { + "start": 8408.46, + "end": 8409.32, + "probability": 0.6091 + }, + { + "start": 8417.7, + "end": 8417.92, + "probability": 0.3722 + }, + { + "start": 8418.02, + "end": 8419.8, + "probability": 0.8901 + }, + { + "start": 8421.96, + "end": 8424.02, + "probability": 0.6541 + }, + { + "start": 8424.48, + "end": 8425.4, + "probability": 0.3605 + }, + { + "start": 8425.4, + "end": 8426.44, + "probability": 0.7677 + }, + { + "start": 8426.54, + "end": 8429.97, + "probability": 0.9238 + }, + { + "start": 8430.86, + "end": 8434.75, + "probability": 0.9379 + }, + { + "start": 8435.28, + "end": 8438.24, + "probability": 0.9702 + }, + { + "start": 8438.38, + "end": 8438.46, + "probability": 0.2133 + }, + { + "start": 8438.54, + "end": 8439.26, + "probability": 0.8975 + }, + { + "start": 8439.34, + "end": 8439.7, + "probability": 0.8644 + }, + { + "start": 8439.82, + "end": 8440.38, + "probability": 0.8324 + }, + { + "start": 8440.42, + "end": 8441.94, + "probability": 0.9769 + }, + { + "start": 8443.02, + "end": 8444.34, + "probability": 0.7703 + }, + { + "start": 8444.54, + "end": 8448.44, + "probability": 0.9913 + }, + { + "start": 8448.44, + "end": 8454.5, + "probability": 0.9946 + }, + { + "start": 8454.64, + "end": 8458.38, + "probability": 0.9897 + }, + { + "start": 8459.18, + "end": 8465.5, + "probability": 0.9746 + }, + { + "start": 8465.68, + "end": 8468.36, + "probability": 0.9014 + }, + { + "start": 8469.46, + "end": 8471.48, + "probability": 0.9158 + }, + { + "start": 8472.14, + "end": 8474.06, + "probability": 0.7698 + }, + { + "start": 8474.14, + "end": 8475.62, + "probability": 0.6327 + }, + { + "start": 8475.72, + "end": 8478.46, + "probability": 0.9139 + }, + { + "start": 8478.58, + "end": 8481.1, + "probability": 0.9445 + }, + { + "start": 8481.2, + "end": 8484.42, + "probability": 0.9727 + }, + { + "start": 8484.9, + "end": 8489.18, + "probability": 0.924 + }, + { + "start": 8489.86, + "end": 8494.56, + "probability": 0.8436 + }, + { + "start": 8494.98, + "end": 8497.46, + "probability": 0.7682 + }, + { + "start": 8497.66, + "end": 8498.44, + "probability": 0.7743 + }, + { + "start": 8498.48, + "end": 8499.74, + "probability": 0.765 + }, + { + "start": 8499.94, + "end": 8502.84, + "probability": 0.9402 + }, + { + "start": 8503.32, + "end": 8505.86, + "probability": 0.925 + }, + { + "start": 8506.06, + "end": 8507.48, + "probability": 0.9553 + }, + { + "start": 8507.6, + "end": 8511.88, + "probability": 0.9167 + }, + { + "start": 8512.06, + "end": 8516.76, + "probability": 0.9947 + }, + { + "start": 8516.76, + "end": 8521.34, + "probability": 0.9684 + }, + { + "start": 8521.74, + "end": 8522.94, + "probability": 0.9844 + }, + { + "start": 8523.02, + "end": 8528.86, + "probability": 0.9861 + }, + { + "start": 8529.34, + "end": 8530.3, + "probability": 0.9507 + }, + { + "start": 8530.98, + "end": 8534.46, + "probability": 0.9673 + }, + { + "start": 8534.9, + "end": 8539.88, + "probability": 0.9966 + }, + { + "start": 8540.1, + "end": 8543.92, + "probability": 0.9919 + }, + { + "start": 8544.64, + "end": 8546.56, + "probability": 0.9198 + }, + { + "start": 8546.86, + "end": 8550.92, + "probability": 0.9879 + }, + { + "start": 8551.0, + "end": 8557.6, + "probability": 0.9006 + }, + { + "start": 8558.46, + "end": 8559.14, + "probability": 0.6564 + }, + { + "start": 8559.34, + "end": 8560.44, + "probability": 0.7868 + }, + { + "start": 8560.76, + "end": 8566.02, + "probability": 0.9951 + }, + { + "start": 8567.08, + "end": 8571.66, + "probability": 0.9045 + }, + { + "start": 8571.8, + "end": 8576.78, + "probability": 0.998 + }, + { + "start": 8576.78, + "end": 8583.28, + "probability": 0.9818 + }, + { + "start": 8583.56, + "end": 8584.8, + "probability": 0.9469 + }, + { + "start": 8584.96, + "end": 8588.68, + "probability": 0.9928 + }, + { + "start": 8589.18, + "end": 8591.1, + "probability": 0.876 + }, + { + "start": 8591.28, + "end": 8594.74, + "probability": 0.979 + }, + { + "start": 8594.94, + "end": 8595.94, + "probability": 0.7566 + }, + { + "start": 8596.02, + "end": 8597.1, + "probability": 0.7687 + }, + { + "start": 8597.5, + "end": 8598.6, + "probability": 0.957 + }, + { + "start": 8598.94, + "end": 8599.94, + "probability": 0.9646 + }, + { + "start": 8600.06, + "end": 8605.48, + "probability": 0.9611 + }, + { + "start": 8605.56, + "end": 8606.98, + "probability": 0.9441 + }, + { + "start": 8607.28, + "end": 8610.56, + "probability": 0.9712 + }, + { + "start": 8610.56, + "end": 8612.76, + "probability": 0.9605 + }, + { + "start": 8612.96, + "end": 8614.44, + "probability": 0.9481 + }, + { + "start": 8614.6, + "end": 8615.14, + "probability": 0.8673 + }, + { + "start": 8615.3, + "end": 8615.62, + "probability": 0.4338 + }, + { + "start": 8616.04, + "end": 8617.52, + "probability": 0.989 + }, + { + "start": 8617.72, + "end": 8618.35, + "probability": 0.7182 + }, + { + "start": 8618.74, + "end": 8621.68, + "probability": 0.9547 + }, + { + "start": 8622.35, + "end": 8626.5, + "probability": 0.9083 + }, + { + "start": 8626.68, + "end": 8627.21, + "probability": 0.9478 + }, + { + "start": 8627.36, + "end": 8629.66, + "probability": 0.9934 + }, + { + "start": 8629.88, + "end": 8631.96, + "probability": 0.97 + }, + { + "start": 8632.0, + "end": 8633.38, + "probability": 0.9983 + }, + { + "start": 8633.44, + "end": 8633.98, + "probability": 0.864 + }, + { + "start": 8634.2, + "end": 8635.08, + "probability": 0.9437 + }, + { + "start": 8636.26, + "end": 8638.48, + "probability": 0.5607 + }, + { + "start": 8638.54, + "end": 8640.48, + "probability": 0.9528 + }, + { + "start": 8640.48, + "end": 8643.84, + "probability": 0.9705 + }, + { + "start": 8644.22, + "end": 8645.94, + "probability": 0.9795 + }, + { + "start": 8646.52, + "end": 8647.1, + "probability": 0.3961 + }, + { + "start": 8647.3, + "end": 8649.1, + "probability": 0.8652 + }, + { + "start": 8650.22, + "end": 8650.72, + "probability": 0.9531 + }, + { + "start": 8658.12, + "end": 8659.06, + "probability": 0.8036 + }, + { + "start": 8659.88, + "end": 8661.49, + "probability": 0.9609 + }, + { + "start": 8662.16, + "end": 8664.22, + "probability": 0.8231 + }, + { + "start": 8665.1, + "end": 8666.24, + "probability": 0.8473 + }, + { + "start": 8667.3, + "end": 8668.52, + "probability": 0.9754 + }, + { + "start": 8669.34, + "end": 8673.18, + "probability": 0.7886 + }, + { + "start": 8674.16, + "end": 8676.98, + "probability": 0.9241 + }, + { + "start": 8677.08, + "end": 8677.44, + "probability": 0.4257 + }, + { + "start": 8677.56, + "end": 8678.54, + "probability": 0.9055 + }, + { + "start": 8679.02, + "end": 8680.06, + "probability": 0.9197 + }, + { + "start": 8680.62, + "end": 8681.3, + "probability": 0.6674 + }, + { + "start": 8681.86, + "end": 8685.03, + "probability": 0.8359 + }, + { + "start": 8685.62, + "end": 8686.78, + "probability": 0.9796 + }, + { + "start": 8687.34, + "end": 8688.58, + "probability": 0.9615 + }, + { + "start": 8689.1, + "end": 8690.07, + "probability": 0.5452 + }, + { + "start": 8690.4, + "end": 8693.38, + "probability": 0.6796 + }, + { + "start": 8695.24, + "end": 8696.43, + "probability": 0.122 + }, + { + "start": 8696.96, + "end": 8697.14, + "probability": 0.0696 + }, + { + "start": 8697.42, + "end": 8697.42, + "probability": 0.0711 + }, + { + "start": 8697.42, + "end": 8699.58, + "probability": 0.5516 + }, + { + "start": 8699.8, + "end": 8702.02, + "probability": 0.9904 + }, + { + "start": 8703.0, + "end": 8705.12, + "probability": 0.7877 + }, + { + "start": 8705.2, + "end": 8707.54, + "probability": 0.9797 + }, + { + "start": 8709.41, + "end": 8712.04, + "probability": 0.998 + }, + { + "start": 8712.38, + "end": 8713.36, + "probability": 0.8335 + }, + { + "start": 8714.0, + "end": 8715.18, + "probability": 0.5101 + }, + { + "start": 8715.24, + "end": 8715.82, + "probability": 0.7047 + }, + { + "start": 8715.92, + "end": 8716.96, + "probability": 0.9096 + }, + { + "start": 8717.06, + "end": 8717.9, + "probability": 0.8918 + }, + { + "start": 8719.26, + "end": 8723.04, + "probability": 0.941 + }, + { + "start": 8723.72, + "end": 8726.8, + "probability": 0.7903 + }, + { + "start": 8727.06, + "end": 8729.94, + "probability": 0.9839 + }, + { + "start": 8730.54, + "end": 8734.2, + "probability": 0.8494 + }, + { + "start": 8735.12, + "end": 8737.36, + "probability": 0.7032 + }, + { + "start": 8737.62, + "end": 8740.06, + "probability": 0.8626 + }, + { + "start": 8740.4, + "end": 8742.44, + "probability": 0.8882 + }, + { + "start": 8742.7, + "end": 8743.96, + "probability": 0.6871 + }, + { + "start": 8744.6, + "end": 8746.18, + "probability": 0.8139 + }, + { + "start": 8746.7, + "end": 8748.56, + "probability": 0.78 + }, + { + "start": 8748.6, + "end": 8751.1, + "probability": 0.6259 + }, + { + "start": 8751.34, + "end": 8753.79, + "probability": 0.9536 + }, + { + "start": 8754.66, + "end": 8757.09, + "probability": 0.8379 + }, + { + "start": 8757.32, + "end": 8759.68, + "probability": 0.329 + }, + { + "start": 8759.82, + "end": 8759.84, + "probability": 0.223 + }, + { + "start": 8759.84, + "end": 8760.7, + "probability": 0.2395 + }, + { + "start": 8761.08, + "end": 8765.38, + "probability": 0.3113 + }, + { + "start": 8765.54, + "end": 8766.34, + "probability": 0.4424 + }, + { + "start": 8766.64, + "end": 8769.52, + "probability": 0.3362 + }, + { + "start": 8769.64, + "end": 8769.78, + "probability": 0.0682 + }, + { + "start": 8769.78, + "end": 8769.78, + "probability": 0.1993 + }, + { + "start": 8769.78, + "end": 8771.28, + "probability": 0.8105 + }, + { + "start": 8772.34, + "end": 8773.06, + "probability": 0.5322 + }, + { + "start": 8773.14, + "end": 8773.63, + "probability": 0.6531 + }, + { + "start": 8774.54, + "end": 8776.0, + "probability": 0.8506 + }, + { + "start": 8776.04, + "end": 8776.74, + "probability": 0.5097 + }, + { + "start": 8776.9, + "end": 8777.78, + "probability": 0.7637 + }, + { + "start": 8777.82, + "end": 8781.7, + "probability": 0.9937 + }, + { + "start": 8781.78, + "end": 8784.38, + "probability": 0.9346 + }, + { + "start": 8784.8, + "end": 8784.8, + "probability": 0.2109 + }, + { + "start": 8784.8, + "end": 8785.0, + "probability": 0.4391 + }, + { + "start": 8785.2, + "end": 8786.12, + "probability": 0.2536 + }, + { + "start": 8786.2, + "end": 8786.64, + "probability": 0.5009 + }, + { + "start": 8786.74, + "end": 8790.78, + "probability": 0.967 + }, + { + "start": 8791.62, + "end": 8792.69, + "probability": 0.6477 + }, + { + "start": 8792.9, + "end": 8794.44, + "probability": 0.6716 + }, + { + "start": 8794.82, + "end": 8795.68, + "probability": 0.6411 + }, + { + "start": 8795.68, + "end": 8796.18, + "probability": 0.645 + }, + { + "start": 8796.54, + "end": 8797.66, + "probability": 0.0649 + }, + { + "start": 8797.66, + "end": 8798.32, + "probability": 0.7315 + }, + { + "start": 8799.42, + "end": 8799.7, + "probability": 0.1184 + }, + { + "start": 8799.7, + "end": 8800.12, + "probability": 0.668 + }, + { + "start": 8800.24, + "end": 8802.47, + "probability": 0.9755 + }, + { + "start": 8802.84, + "end": 8803.94, + "probability": 0.9147 + }, + { + "start": 8805.55, + "end": 8808.38, + "probability": 0.191 + }, + { + "start": 8808.38, + "end": 8808.38, + "probability": 0.0482 + }, + { + "start": 8808.38, + "end": 8809.56, + "probability": 0.3032 + }, + { + "start": 8809.56, + "end": 8810.22, + "probability": 0.3782 + }, + { + "start": 8810.62, + "end": 8811.16, + "probability": 0.4441 + }, + { + "start": 8811.62, + "end": 8812.66, + "probability": 0.9064 + }, + { + "start": 8813.2, + "end": 8815.32, + "probability": 0.8515 + }, + { + "start": 8816.02, + "end": 8817.02, + "probability": 0.6694 + }, + { + "start": 8817.38, + "end": 8818.22, + "probability": 0.7886 + }, + { + "start": 8818.34, + "end": 8820.82, + "probability": 0.9076 + }, + { + "start": 8820.82, + "end": 8821.12, + "probability": 0.9017 + }, + { + "start": 8822.88, + "end": 8824.9, + "probability": 0.9803 + }, + { + "start": 8825.22, + "end": 8831.06, + "probability": 0.9498 + }, + { + "start": 8831.26, + "end": 8832.38, + "probability": 0.5956 + }, + { + "start": 8832.94, + "end": 8834.32, + "probability": 0.9832 + }, + { + "start": 8834.4, + "end": 8838.0, + "probability": 0.983 + }, + { + "start": 8838.28, + "end": 8839.2, + "probability": 0.8239 + }, + { + "start": 8839.54, + "end": 8842.88, + "probability": 0.9803 + }, + { + "start": 8842.88, + "end": 8843.88, + "probability": 0.8643 + }, + { + "start": 8844.5, + "end": 8845.7, + "probability": 0.9868 + }, + { + "start": 8846.2, + "end": 8849.16, + "probability": 0.9847 + }, + { + "start": 8849.76, + "end": 8850.94, + "probability": 0.7991 + }, + { + "start": 8851.2, + "end": 8851.92, + "probability": 0.864 + }, + { + "start": 8852.06, + "end": 8853.68, + "probability": 0.9839 + }, + { + "start": 8853.78, + "end": 8854.6, + "probability": 0.768 + }, + { + "start": 8854.68, + "end": 8855.1, + "probability": 0.9441 + }, + { + "start": 8855.4, + "end": 8856.86, + "probability": 0.7769 + }, + { + "start": 8857.76, + "end": 8860.42, + "probability": 0.8149 + }, + { + "start": 8860.94, + "end": 8861.96, + "probability": 0.7484 + }, + { + "start": 8862.0, + "end": 8863.64, + "probability": 0.781 + }, + { + "start": 8863.7, + "end": 8866.32, + "probability": 0.8464 + }, + { + "start": 8866.88, + "end": 8868.5, + "probability": 0.4927 + }, + { + "start": 8868.5, + "end": 8870.54, + "probability": 0.941 + }, + { + "start": 8870.88, + "end": 8871.84, + "probability": 0.8162 + }, + { + "start": 8873.94, + "end": 8876.12, + "probability": 0.622 + }, + { + "start": 8878.24, + "end": 8879.14, + "probability": 0.178 + }, + { + "start": 8879.6, + "end": 8881.36, + "probability": 0.2824 + }, + { + "start": 8882.16, + "end": 8882.93, + "probability": 0.688 + }, + { + "start": 8884.26, + "end": 8886.82, + "probability": 0.7898 + }, + { + "start": 8888.46, + "end": 8892.12, + "probability": 0.9756 + }, + { + "start": 8892.12, + "end": 8895.96, + "probability": 0.9993 + }, + { + "start": 8896.14, + "end": 8899.52, + "probability": 0.9912 + }, + { + "start": 8900.24, + "end": 8904.5, + "probability": 0.9979 + }, + { + "start": 8904.9, + "end": 8907.9, + "probability": 0.9982 + }, + { + "start": 8908.26, + "end": 8909.12, + "probability": 0.6972 + }, + { + "start": 8909.16, + "end": 8911.74, + "probability": 0.9224 + }, + { + "start": 8912.26, + "end": 8919.16, + "probability": 0.9879 + }, + { + "start": 8920.34, + "end": 8926.68, + "probability": 0.9463 + }, + { + "start": 8927.12, + "end": 8931.78, + "probability": 0.7092 + }, + { + "start": 8932.36, + "end": 8933.26, + "probability": 0.8465 + }, + { + "start": 8933.66, + "end": 8939.96, + "probability": 0.9757 + }, + { + "start": 8941.12, + "end": 8945.74, + "probability": 0.9967 + }, + { + "start": 8945.74, + "end": 8952.12, + "probability": 0.9976 + }, + { + "start": 8952.12, + "end": 8959.26, + "probability": 0.9829 + }, + { + "start": 8959.48, + "end": 8961.08, + "probability": 0.929 + }, + { + "start": 8961.56, + "end": 8966.3, + "probability": 0.6821 + }, + { + "start": 8966.52, + "end": 8973.2, + "probability": 0.9937 + }, + { + "start": 8973.56, + "end": 8975.86, + "probability": 0.817 + }, + { + "start": 8976.16, + "end": 8976.92, + "probability": 0.63 + }, + { + "start": 8977.36, + "end": 8978.98, + "probability": 0.8073 + }, + { + "start": 8979.14, + "end": 8980.48, + "probability": 0.9727 + }, + { + "start": 8980.6, + "end": 8980.98, + "probability": 0.3389 + }, + { + "start": 8981.1, + "end": 8981.38, + "probability": 0.5945 + }, + { + "start": 8981.78, + "end": 8984.96, + "probability": 0.9619 + }, + { + "start": 8985.24, + "end": 8987.56, + "probability": 0.8947 + }, + { + "start": 8988.36, + "end": 8991.38, + "probability": 0.9928 + }, + { + "start": 8991.38, + "end": 8995.46, + "probability": 0.9932 + }, + { + "start": 8996.24, + "end": 9003.22, + "probability": 0.9974 + }, + { + "start": 9003.38, + "end": 9006.24, + "probability": 0.9979 + }, + { + "start": 9006.24, + "end": 9010.54, + "probability": 0.9847 + }, + { + "start": 9011.0, + "end": 9012.78, + "probability": 0.6432 + }, + { + "start": 9013.36, + "end": 9014.79, + "probability": 0.9841 + }, + { + "start": 9015.44, + "end": 9020.28, + "probability": 0.9819 + }, + { + "start": 9020.28, + "end": 9024.86, + "probability": 0.9012 + }, + { + "start": 9025.58, + "end": 9029.58, + "probability": 0.9956 + }, + { + "start": 9030.18, + "end": 9035.34, + "probability": 0.9385 + }, + { + "start": 9035.76, + "end": 9037.28, + "probability": 0.9279 + }, + { + "start": 9037.78, + "end": 9044.86, + "probability": 0.9893 + }, + { + "start": 9045.48, + "end": 9049.64, + "probability": 0.9942 + }, + { + "start": 9051.26, + "end": 9058.26, + "probability": 0.9775 + }, + { + "start": 9058.72, + "end": 9062.74, + "probability": 0.9977 + }, + { + "start": 9063.28, + "end": 9071.88, + "probability": 0.8525 + }, + { + "start": 9072.76, + "end": 9075.38, + "probability": 0.9597 + }, + { + "start": 9076.16, + "end": 9078.68, + "probability": 0.8854 + }, + { + "start": 9079.12, + "end": 9080.46, + "probability": 0.417 + }, + { + "start": 9080.46, + "end": 9080.96, + "probability": 0.635 + }, + { + "start": 9081.08, + "end": 9081.88, + "probability": 0.9733 + }, + { + "start": 9082.0, + "end": 9082.52, + "probability": 0.7538 + }, + { + "start": 9082.58, + "end": 9083.88, + "probability": 0.8152 + }, + { + "start": 9087.88, + "end": 9088.16, + "probability": 0.2133 + }, + { + "start": 9088.16, + "end": 9091.54, + "probability": 0.5815 + }, + { + "start": 9091.54, + "end": 9093.13, + "probability": 0.7111 + }, + { + "start": 9093.62, + "end": 9094.42, + "probability": 0.6274 + }, + { + "start": 9095.44, + "end": 9097.4, + "probability": 0.6812 + }, + { + "start": 9097.66, + "end": 9099.06, + "probability": 0.4683 + }, + { + "start": 9100.04, + "end": 9100.81, + "probability": 0.2723 + }, + { + "start": 9102.46, + "end": 9106.24, + "probability": 0.7278 + }, + { + "start": 9107.16, + "end": 9107.88, + "probability": 0.3584 + }, + { + "start": 9107.98, + "end": 9112.62, + "probability": 0.9943 + }, + { + "start": 9113.16, + "end": 9119.6, + "probability": 0.8099 + }, + { + "start": 9120.68, + "end": 9124.42, + "probability": 0.6984 + }, + { + "start": 9125.44, + "end": 9128.42, + "probability": 0.9971 + }, + { + "start": 9129.4, + "end": 9134.28, + "probability": 0.9626 + }, + { + "start": 9134.54, + "end": 9137.58, + "probability": 0.7474 + }, + { + "start": 9138.06, + "end": 9139.9, + "probability": 0.9873 + }, + { + "start": 9140.24, + "end": 9146.63, + "probability": 0.9812 + }, + { + "start": 9147.4, + "end": 9153.68, + "probability": 0.9851 + }, + { + "start": 9154.46, + "end": 9155.76, + "probability": 0.7155 + }, + { + "start": 9156.22, + "end": 9161.68, + "probability": 0.9324 + }, + { + "start": 9161.8, + "end": 9162.34, + "probability": 0.6813 + }, + { + "start": 9162.34, + "end": 9163.24, + "probability": 0.6776 + }, + { + "start": 9164.36, + "end": 9167.76, + "probability": 0.94 + }, + { + "start": 9168.22, + "end": 9171.12, + "probability": 0.9286 + }, + { + "start": 9171.62, + "end": 9172.34, + "probability": 0.4068 + }, + { + "start": 9172.46, + "end": 9173.02, + "probability": 0.7981 + }, + { + "start": 9173.1, + "end": 9173.98, + "probability": 0.7122 + }, + { + "start": 9174.2, + "end": 9175.48, + "probability": 0.6345 + }, + { + "start": 9179.7, + "end": 9180.88, + "probability": 0.4421 + }, + { + "start": 9181.18, + "end": 9182.68, + "probability": 0.6022 + }, + { + "start": 9182.9, + "end": 9183.42, + "probability": 0.9573 + }, + { + "start": 9183.64, + "end": 9184.56, + "probability": 0.8275 + }, + { + "start": 9184.62, + "end": 9186.1, + "probability": 0.7506 + }, + { + "start": 9186.46, + "end": 9188.2, + "probability": 0.73 + }, + { + "start": 9188.28, + "end": 9188.72, + "probability": 0.7168 + }, + { + "start": 9188.8, + "end": 9194.74, + "probability": 0.9866 + }, + { + "start": 9194.9, + "end": 9195.4, + "probability": 0.524 + }, + { + "start": 9195.46, + "end": 9196.1, + "probability": 0.8383 + }, + { + "start": 9196.18, + "end": 9199.42, + "probability": 0.9483 + }, + { + "start": 9199.56, + "end": 9203.26, + "probability": 0.9951 + }, + { + "start": 9203.3, + "end": 9205.0, + "probability": 0.9847 + }, + { + "start": 9205.78, + "end": 9206.06, + "probability": 0.428 + }, + { + "start": 9206.14, + "end": 9208.56, + "probability": 0.9267 + }, + { + "start": 9209.02, + "end": 9214.48, + "probability": 0.9707 + }, + { + "start": 9215.02, + "end": 9215.98, + "probability": 0.7769 + }, + { + "start": 9215.98, + "end": 9216.78, + "probability": 0.4905 + }, + { + "start": 9216.88, + "end": 9219.18, + "probability": 0.8618 + }, + { + "start": 9220.83, + "end": 9222.51, + "probability": 0.3714 + }, + { + "start": 9223.94, + "end": 9224.82, + "probability": 0.6228 + }, + { + "start": 9224.88, + "end": 9228.66, + "probability": 0.8219 + }, + { + "start": 9229.0, + "end": 9233.1, + "probability": 0.9614 + }, + { + "start": 9233.28, + "end": 9234.2, + "probability": 0.723 + }, + { + "start": 9234.3, + "end": 9238.86, + "probability": 0.9464 + }, + { + "start": 9239.42, + "end": 9240.76, + "probability": 0.988 + }, + { + "start": 9241.02, + "end": 9241.6, + "probability": 0.6869 + }, + { + "start": 9242.06, + "end": 9242.96, + "probability": 0.7882 + }, + { + "start": 9243.24, + "end": 9246.32, + "probability": 0.9212 + }, + { + "start": 9246.68, + "end": 9250.98, + "probability": 0.9631 + }, + { + "start": 9251.06, + "end": 9252.04, + "probability": 0.8766 + }, + { + "start": 9252.1, + "end": 9252.92, + "probability": 0.9108 + }, + { + "start": 9253.0, + "end": 9254.22, + "probability": 0.5854 + }, + { + "start": 9254.48, + "end": 9257.2, + "probability": 0.9806 + }, + { + "start": 9257.38, + "end": 9258.44, + "probability": 0.7841 + }, + { + "start": 9258.44, + "end": 9258.64, + "probability": 0.6863 + }, + { + "start": 9258.72, + "end": 9260.86, + "probability": 0.923 + }, + { + "start": 9261.24, + "end": 9262.52, + "probability": 0.9419 + }, + { + "start": 9262.94, + "end": 9263.68, + "probability": 0.8275 + }, + { + "start": 9263.9, + "end": 9264.66, + "probability": 0.8764 + }, + { + "start": 9264.74, + "end": 9265.38, + "probability": 0.8163 + }, + { + "start": 9265.42, + "end": 9266.14, + "probability": 0.4912 + }, + { + "start": 9266.24, + "end": 9268.12, + "probability": 0.5362 + }, + { + "start": 9268.12, + "end": 9268.58, + "probability": 0.3033 + }, + { + "start": 9269.1, + "end": 9270.04, + "probability": 0.9147 + }, + { + "start": 9270.04, + "end": 9271.96, + "probability": 0.801 + }, + { + "start": 9272.28, + "end": 9273.34, + "probability": 0.6655 + }, + { + "start": 9275.56, + "end": 9277.82, + "probability": 0.7949 + }, + { + "start": 9277.92, + "end": 9278.86, + "probability": 0.8827 + }, + { + "start": 9279.16, + "end": 9280.36, + "probability": 0.8298 + }, + { + "start": 9280.52, + "end": 9281.06, + "probability": 0.6791 + }, + { + "start": 9281.06, + "end": 9282.06, + "probability": 0.8428 + }, + { + "start": 9282.3, + "end": 9283.12, + "probability": 0.125 + }, + { + "start": 9283.2, + "end": 9283.54, + "probability": 0.3358 + }, + { + "start": 9283.88, + "end": 9284.46, + "probability": 0.875 + }, + { + "start": 9284.82, + "end": 9285.54, + "probability": 0.7009 + }, + { + "start": 9285.58, + "end": 9286.62, + "probability": 0.551 + }, + { + "start": 9286.7, + "end": 9287.92, + "probability": 0.9731 + }, + { + "start": 9287.98, + "end": 9289.56, + "probability": 0.9897 + }, + { + "start": 9289.92, + "end": 9291.12, + "probability": 0.981 + }, + { + "start": 9291.22, + "end": 9292.48, + "probability": 0.9196 + }, + { + "start": 9292.54, + "end": 9294.2, + "probability": 0.9412 + }, + { + "start": 9294.32, + "end": 9295.79, + "probability": 0.4963 + }, + { + "start": 9296.06, + "end": 9298.5, + "probability": 0.8037 + }, + { + "start": 9299.0, + "end": 9302.2, + "probability": 0.7119 + }, + { + "start": 9302.24, + "end": 9306.08, + "probability": 0.9281 + }, + { + "start": 9306.12, + "end": 9312.12, + "probability": 0.9876 + }, + { + "start": 9312.98, + "end": 9316.22, + "probability": 0.8369 + }, + { + "start": 9316.4, + "end": 9322.24, + "probability": 0.8197 + }, + { + "start": 9322.54, + "end": 9327.38, + "probability": 0.8528 + }, + { + "start": 9327.68, + "end": 9330.6, + "probability": 0.9832 + }, + { + "start": 9331.06, + "end": 9333.04, + "probability": 0.7175 + }, + { + "start": 9333.24, + "end": 9337.54, + "probability": 0.9889 + }, + { + "start": 9337.76, + "end": 9339.62, + "probability": 0.9492 + }, + { + "start": 9339.86, + "end": 9343.14, + "probability": 0.7204 + }, + { + "start": 9343.42, + "end": 9346.64, + "probability": 0.692 + }, + { + "start": 9346.72, + "end": 9348.1, + "probability": 0.7309 + }, + { + "start": 9348.84, + "end": 9352.56, + "probability": 0.7858 + }, + { + "start": 9352.92, + "end": 9359.86, + "probability": 0.9802 + }, + { + "start": 9360.24, + "end": 9361.4, + "probability": 0.6002 + }, + { + "start": 9362.44, + "end": 9368.66, + "probability": 0.9212 + }, + { + "start": 9376.52, + "end": 9379.09, + "probability": 0.687 + }, + { + "start": 9380.52, + "end": 9383.52, + "probability": 0.9495 + }, + { + "start": 9383.52, + "end": 9387.78, + "probability": 0.9853 + }, + { + "start": 9387.86, + "end": 9388.54, + "probability": 0.4471 + }, + { + "start": 9388.58, + "end": 9389.9, + "probability": 0.922 + }, + { + "start": 9390.74, + "end": 9391.2, + "probability": 0.8497 + }, + { + "start": 9391.34, + "end": 9393.94, + "probability": 0.9863 + }, + { + "start": 9393.94, + "end": 9396.7, + "probability": 0.9928 + }, + { + "start": 9398.28, + "end": 9400.96, + "probability": 0.9225 + }, + { + "start": 9402.24, + "end": 9406.38, + "probability": 0.8652 + }, + { + "start": 9406.52, + "end": 9409.4, + "probability": 0.9751 + }, + { + "start": 9409.66, + "end": 9413.26, + "probability": 0.9873 + }, + { + "start": 9413.26, + "end": 9417.1, + "probability": 0.9995 + }, + { + "start": 9417.26, + "end": 9419.52, + "probability": 0.666 + }, + { + "start": 9421.16, + "end": 9424.36, + "probability": 0.9785 + }, + { + "start": 9424.96, + "end": 9426.94, + "probability": 0.822 + }, + { + "start": 9428.18, + "end": 9432.98, + "probability": 0.9303 + }, + { + "start": 9433.58, + "end": 9435.36, + "probability": 0.6148 + }, + { + "start": 9437.69, + "end": 9442.18, + "probability": 0.993 + }, + { + "start": 9442.18, + "end": 9445.94, + "probability": 0.9996 + }, + { + "start": 9446.74, + "end": 9447.46, + "probability": 0.5167 + }, + { + "start": 9448.02, + "end": 9448.62, + "probability": 0.7598 + }, + { + "start": 9448.68, + "end": 9453.7, + "probability": 0.9901 + }, + { + "start": 9454.0, + "end": 9454.7, + "probability": 0.7101 + }, + { + "start": 9455.26, + "end": 9456.49, + "probability": 0.6924 + }, + { + "start": 9459.5, + "end": 9461.44, + "probability": 0.8323 + }, + { + "start": 9461.52, + "end": 9469.26, + "probability": 0.8353 + }, + { + "start": 9469.42, + "end": 9470.36, + "probability": 0.8486 + }, + { + "start": 9470.82, + "end": 9472.46, + "probability": 0.7666 + }, + { + "start": 9472.46, + "end": 9473.1, + "probability": 0.8146 + }, + { + "start": 9473.16, + "end": 9474.56, + "probability": 0.9866 + }, + { + "start": 9476.8, + "end": 9479.88, + "probability": 0.9232 + }, + { + "start": 9483.76, + "end": 9489.24, + "probability": 0.998 + }, + { + "start": 9489.24, + "end": 9494.42, + "probability": 0.999 + }, + { + "start": 9494.42, + "end": 9498.2, + "probability": 0.9939 + }, + { + "start": 9499.58, + "end": 9505.12, + "probability": 0.9985 + }, + { + "start": 9505.5, + "end": 9508.1, + "probability": 0.963 + }, + { + "start": 9508.1, + "end": 9509.94, + "probability": 0.9233 + }, + { + "start": 9510.12, + "end": 9511.78, + "probability": 0.9795 + }, + { + "start": 9512.64, + "end": 9515.06, + "probability": 0.9827 + }, + { + "start": 9515.06, + "end": 9519.66, + "probability": 0.99 + }, + { + "start": 9519.94, + "end": 9524.06, + "probability": 0.9539 + }, + { + "start": 9524.64, + "end": 9527.94, + "probability": 0.9725 + }, + { + "start": 9528.3, + "end": 9531.12, + "probability": 0.9348 + }, + { + "start": 9531.2, + "end": 9533.84, + "probability": 0.9531 + }, + { + "start": 9534.22, + "end": 9536.26, + "probability": 0.9818 + }, + { + "start": 9536.44, + "end": 9537.46, + "probability": 0.8662 + }, + { + "start": 9537.6, + "end": 9540.34, + "probability": 0.8134 + }, + { + "start": 9541.48, + "end": 9544.2, + "probability": 0.9664 + }, + { + "start": 9544.2, + "end": 9548.04, + "probability": 0.9915 + }, + { + "start": 9548.44, + "end": 9549.86, + "probability": 0.9971 + }, + { + "start": 9550.48, + "end": 9552.54, + "probability": 0.9802 + }, + { + "start": 9552.76, + "end": 9553.44, + "probability": 0.35 + }, + { + "start": 9553.54, + "end": 9558.66, + "probability": 0.9952 + }, + { + "start": 9558.82, + "end": 9560.72, + "probability": 0.9867 + }, + { + "start": 9560.84, + "end": 9561.74, + "probability": 0.8692 + }, + { + "start": 9562.12, + "end": 9565.26, + "probability": 0.9876 + }, + { + "start": 9565.5, + "end": 9566.02, + "probability": 0.9854 + }, + { + "start": 9568.7, + "end": 9570.9, + "probability": 0.9616 + }, + { + "start": 9571.0, + "end": 9572.58, + "probability": 0.8036 + }, + { + "start": 9572.92, + "end": 9578.84, + "probability": 0.9764 + }, + { + "start": 9578.96, + "end": 9581.5, + "probability": 0.9974 + }, + { + "start": 9581.92, + "end": 9583.64, + "probability": 0.9596 + }, + { + "start": 9583.76, + "end": 9586.66, + "probability": 0.7819 + }, + { + "start": 9586.78, + "end": 9587.6, + "probability": 0.4861 + }, + { + "start": 9587.72, + "end": 9590.08, + "probability": 0.8129 + }, + { + "start": 9590.14, + "end": 9591.58, + "probability": 0.746 + }, + { + "start": 9591.94, + "end": 9594.56, + "probability": 0.9729 + }, + { + "start": 9594.78, + "end": 9595.5, + "probability": 0.8715 + }, + { + "start": 9595.88, + "end": 9598.64, + "probability": 0.9375 + }, + { + "start": 9599.12, + "end": 9604.28, + "probability": 0.9827 + }, + { + "start": 9604.44, + "end": 9605.65, + "probability": 0.765 + }, + { + "start": 9606.22, + "end": 9607.76, + "probability": 0.9514 + }, + { + "start": 9607.86, + "end": 9608.98, + "probability": 0.7225 + }, + { + "start": 9610.42, + "end": 9611.7, + "probability": 0.9413 + }, + { + "start": 9611.78, + "end": 9617.1, + "probability": 0.9845 + }, + { + "start": 9617.1, + "end": 9620.78, + "probability": 0.9977 + }, + { + "start": 9621.94, + "end": 9625.8, + "probability": 0.9664 + }, + { + "start": 9627.22, + "end": 9627.72, + "probability": 0.6516 + }, + { + "start": 9628.34, + "end": 9629.66, + "probability": 0.6813 + }, + { + "start": 9630.24, + "end": 9631.16, + "probability": 0.8704 + }, + { + "start": 9631.54, + "end": 9635.98, + "probability": 0.9526 + }, + { + "start": 9635.98, + "end": 9638.64, + "probability": 0.9455 + }, + { + "start": 9638.84, + "end": 9642.44, + "probability": 0.9808 + }, + { + "start": 9642.96, + "end": 9649.86, + "probability": 0.9922 + }, + { + "start": 9650.4, + "end": 9651.02, + "probability": 0.7969 + }, + { + "start": 9651.14, + "end": 9651.38, + "probability": 0.8744 + }, + { + "start": 9651.44, + "end": 9653.58, + "probability": 0.9502 + }, + { + "start": 9653.76, + "end": 9656.06, + "probability": 0.7886 + }, + { + "start": 9656.18, + "end": 9657.22, + "probability": 0.9698 + }, + { + "start": 9657.3, + "end": 9657.78, + "probability": 0.9355 + }, + { + "start": 9657.86, + "end": 9658.42, + "probability": 0.7547 + }, + { + "start": 9658.6, + "end": 9659.28, + "probability": 0.9148 + }, + { + "start": 9659.42, + "end": 9661.03, + "probability": 0.6283 + }, + { + "start": 9661.84, + "end": 9669.8, + "probability": 0.9926 + }, + { + "start": 9670.34, + "end": 9676.84, + "probability": 0.978 + }, + { + "start": 9677.02, + "end": 9677.6, + "probability": 0.6386 + }, + { + "start": 9677.7, + "end": 9679.94, + "probability": 0.9048 + }, + { + "start": 9680.64, + "end": 9680.82, + "probability": 0.2747 + }, + { + "start": 9680.94, + "end": 9686.04, + "probability": 0.9804 + }, + { + "start": 9686.36, + "end": 9689.24, + "probability": 0.9917 + }, + { + "start": 9689.32, + "end": 9691.42, + "probability": 0.9594 + }, + { + "start": 9692.82, + "end": 9693.34, + "probability": 0.9433 + }, + { + "start": 9693.42, + "end": 9694.76, + "probability": 0.8801 + }, + { + "start": 9694.82, + "end": 9696.58, + "probability": 0.985 + }, + { + "start": 9696.86, + "end": 9698.17, + "probability": 0.8848 + }, + { + "start": 9698.62, + "end": 9700.2, + "probability": 0.9749 + }, + { + "start": 9700.28, + "end": 9700.88, + "probability": 0.976 + }, + { + "start": 9700.94, + "end": 9702.02, + "probability": 0.8394 + }, + { + "start": 9702.34, + "end": 9702.64, + "probability": 0.4227 + }, + { + "start": 9702.66, + "end": 9703.5, + "probability": 0.6873 + }, + { + "start": 9703.54, + "end": 9705.2, + "probability": 0.8942 + }, + { + "start": 9705.44, + "end": 9707.34, + "probability": 0.9257 + }, + { + "start": 9707.46, + "end": 9709.58, + "probability": 0.9526 + }, + { + "start": 9709.72, + "end": 9711.04, + "probability": 0.9731 + }, + { + "start": 9711.6, + "end": 9712.78, + "probability": 0.9512 + }, + { + "start": 9712.8, + "end": 9713.88, + "probability": 0.7401 + }, + { + "start": 9714.28, + "end": 9716.98, + "probability": 0.8059 + }, + { + "start": 9717.54, + "end": 9720.7, + "probability": 0.8542 + }, + { + "start": 9720.98, + "end": 9724.3, + "probability": 0.9966 + }, + { + "start": 9724.36, + "end": 9725.62, + "probability": 0.9544 + }, + { + "start": 9725.9, + "end": 9726.9, + "probability": 0.8802 + }, + { + "start": 9727.34, + "end": 9728.35, + "probability": 0.9153 + }, + { + "start": 9728.7, + "end": 9731.24, + "probability": 0.7833 + }, + { + "start": 9731.46, + "end": 9732.32, + "probability": 0.6673 + }, + { + "start": 9732.34, + "end": 9736.52, + "probability": 0.9255 + }, + { + "start": 9736.8, + "end": 9740.96, + "probability": 0.9731 + }, + { + "start": 9741.52, + "end": 9742.84, + "probability": 0.8983 + }, + { + "start": 9743.18, + "end": 9746.7, + "probability": 0.0299 + }, + { + "start": 9747.0, + "end": 9748.18, + "probability": 0.8149 + }, + { + "start": 9748.46, + "end": 9750.72, + "probability": 0.9921 + }, + { + "start": 9751.18, + "end": 9757.34, + "probability": 0.9781 + }, + { + "start": 9757.62, + "end": 9758.38, + "probability": 0.7865 + }, + { + "start": 9758.42, + "end": 9762.64, + "probability": 0.9968 + }, + { + "start": 9763.1, + "end": 9763.92, + "probability": 0.9093 + }, + { + "start": 9764.06, + "end": 9764.82, + "probability": 0.9708 + }, + { + "start": 9764.86, + "end": 9765.26, + "probability": 0.9198 + }, + { + "start": 9765.36, + "end": 9766.68, + "probability": 0.8418 + }, + { + "start": 9768.12, + "end": 9769.0, + "probability": 0.9902 + }, + { + "start": 9769.1, + "end": 9769.52, + "probability": 0.9717 + }, + { + "start": 9769.84, + "end": 9771.14, + "probability": 0.9971 + }, + { + "start": 9772.32, + "end": 9776.74, + "probability": 0.8979 + }, + { + "start": 9777.44, + "end": 9781.61, + "probability": 0.9858 + }, + { + "start": 9782.22, + "end": 9783.26, + "probability": 0.6896 + }, + { + "start": 9783.8, + "end": 9786.2, + "probability": 0.7577 + }, + { + "start": 9786.36, + "end": 9788.16, + "probability": 0.8018 + }, + { + "start": 9788.46, + "end": 9791.3, + "probability": 0.9025 + }, + { + "start": 9791.34, + "end": 9792.52, + "probability": 0.9144 + }, + { + "start": 9792.76, + "end": 9793.66, + "probability": 0.743 + }, + { + "start": 9793.66, + "end": 9795.82, + "probability": 0.2683 + }, + { + "start": 9795.94, + "end": 9797.63, + "probability": 0.931 + }, + { + "start": 9798.18, + "end": 9799.2, + "probability": 0.8795 + }, + { + "start": 9799.28, + "end": 9800.16, + "probability": 0.9091 + }, + { + "start": 9800.18, + "end": 9801.24, + "probability": 0.8843 + }, + { + "start": 9801.7, + "end": 9803.32, + "probability": 0.9902 + }, + { + "start": 9803.32, + "end": 9806.56, + "probability": 0.9979 + }, + { + "start": 9807.0, + "end": 9807.72, + "probability": 0.8481 + }, + { + "start": 9807.82, + "end": 9809.44, + "probability": 0.8572 + }, + { + "start": 9809.62, + "end": 9812.62, + "probability": 0.9902 + }, + { + "start": 9813.22, + "end": 9813.72, + "probability": 0.999 + }, + { + "start": 9814.9, + "end": 9815.56, + "probability": 0.7935 + }, + { + "start": 9816.38, + "end": 9818.64, + "probability": 0.384 + }, + { + "start": 9818.72, + "end": 9821.48, + "probability": 0.9255 + }, + { + "start": 9821.62, + "end": 9824.06, + "probability": 0.5545 + }, + { + "start": 9824.24, + "end": 9825.1, + "probability": 0.9844 + }, + { + "start": 9825.14, + "end": 9825.9, + "probability": 0.9409 + }, + { + "start": 9825.96, + "end": 9830.7, + "probability": 0.8999 + }, + { + "start": 9831.34, + "end": 9833.1, + "probability": 0.8327 + }, + { + "start": 9833.18, + "end": 9837.06, + "probability": 0.9389 + }, + { + "start": 9837.28, + "end": 9839.86, + "probability": 0.9436 + }, + { + "start": 9839.94, + "end": 9841.54, + "probability": 0.9248 + }, + { + "start": 9841.68, + "end": 9845.81, + "probability": 0.9175 + }, + { + "start": 9846.6, + "end": 9848.92, + "probability": 0.7029 + }, + { + "start": 9849.38, + "end": 9850.28, + "probability": 0.4403 + }, + { + "start": 9850.36, + "end": 9855.04, + "probability": 0.9089 + }, + { + "start": 9855.82, + "end": 9856.34, + "probability": 0.9638 + }, + { + "start": 9856.42, + "end": 9857.7, + "probability": 0.9966 + }, + { + "start": 9857.82, + "end": 9858.92, + "probability": 0.9752 + }, + { + "start": 9858.96, + "end": 9860.42, + "probability": 0.6914 + }, + { + "start": 9860.9, + "end": 9861.86, + "probability": 0.9148 + }, + { + "start": 9861.96, + "end": 9862.72, + "probability": 0.1381 + }, + { + "start": 9863.35, + "end": 9866.58, + "probability": 0.8586 + }, + { + "start": 9866.76, + "end": 9868.0, + "probability": 0.2585 + }, + { + "start": 9868.68, + "end": 9870.8, + "probability": 0.6016 + }, + { + "start": 9871.08, + "end": 9871.38, + "probability": 0.9698 + }, + { + "start": 9871.56, + "end": 9872.64, + "probability": 0.9731 + }, + { + "start": 9872.84, + "end": 9877.16, + "probability": 0.9984 + }, + { + "start": 9877.54, + "end": 9879.72, + "probability": 0.8 + }, + { + "start": 9879.94, + "end": 9882.44, + "probability": 0.9949 + }, + { + "start": 9882.68, + "end": 9885.26, + "probability": 0.5695 + }, + { + "start": 9886.4, + "end": 9889.17, + "probability": 0.6032 + }, + { + "start": 9889.5, + "end": 9891.44, + "probability": 0.9956 + }, + { + "start": 9892.5, + "end": 9894.5, + "probability": 0.1264 + }, + { + "start": 9894.8, + "end": 9894.8, + "probability": 0.0195 + }, + { + "start": 9894.8, + "end": 9895.52, + "probability": 0.7446 + }, + { + "start": 9896.58, + "end": 9899.88, + "probability": 0.8831 + }, + { + "start": 9900.56, + "end": 9903.08, + "probability": 0.6523 + }, + { + "start": 9908.14, + "end": 9914.58, + "probability": 0.9993 + }, + { + "start": 9914.6, + "end": 9915.34, + "probability": 0.7423 + }, + { + "start": 9916.1, + "end": 9920.9, + "probability": 0.9953 + }, + { + "start": 9921.16, + "end": 9921.58, + "probability": 0.5875 + }, + { + "start": 9921.64, + "end": 9921.98, + "probability": 0.7118 + }, + { + "start": 9922.12, + "end": 9922.82, + "probability": 0.5489 + }, + { + "start": 9922.84, + "end": 9926.56, + "probability": 0.9426 + }, + { + "start": 9926.58, + "end": 9926.84, + "probability": 0.7628 + }, + { + "start": 9927.02, + "end": 9931.2, + "probability": 0.9678 + }, + { + "start": 9931.34, + "end": 9933.74, + "probability": 0.9551 + }, + { + "start": 9934.4, + "end": 9936.98, + "probability": 0.8135 + }, + { + "start": 9943.32, + "end": 9944.6, + "probability": 0.7448 + }, + { + "start": 9945.69, + "end": 9951.38, + "probability": 0.9634 + }, + { + "start": 9952.44, + "end": 9958.96, + "probability": 0.9927 + }, + { + "start": 9959.34, + "end": 9964.36, + "probability": 0.8846 + }, + { + "start": 9966.9, + "end": 9968.3, + "probability": 0.5108 + }, + { + "start": 9968.52, + "end": 9972.44, + "probability": 0.9483 + }, + { + "start": 9976.39, + "end": 9979.68, + "probability": 0.0408 + }, + { + "start": 9985.96, + "end": 9986.76, + "probability": 0.0388 + }, + { + "start": 9987.56, + "end": 9988.26, + "probability": 0.4477 + }, + { + "start": 9992.6, + "end": 9993.44, + "probability": 0.5674 + }, + { + "start": 9993.44, + "end": 9994.12, + "probability": 0.6 + }, + { + "start": 9994.48, + "end": 9995.28, + "probability": 0.6705 + }, + { + "start": 9995.36, + "end": 9996.24, + "probability": 0.875 + }, + { + "start": 9996.32, + "end": 10000.3, + "probability": 0.7967 + }, + { + "start": 10000.72, + "end": 10002.86, + "probability": 0.9596 + }, + { + "start": 10004.12, + "end": 10006.66, + "probability": 0.9946 + }, + { + "start": 10006.66, + "end": 10009.76, + "probability": 0.9627 + }, + { + "start": 10010.26, + "end": 10015.81, + "probability": 0.9937 + }, + { + "start": 10016.76, + "end": 10019.32, + "probability": 0.9956 + }, + { + "start": 10019.66, + "end": 10021.92, + "probability": 0.7336 + }, + { + "start": 10022.44, + "end": 10025.84, + "probability": 0.9987 + }, + { + "start": 10027.12, + "end": 10028.18, + "probability": 0.5433 + }, + { + "start": 10028.36, + "end": 10028.8, + "probability": 0.8112 + }, + { + "start": 10029.12, + "end": 10033.9, + "probability": 0.9884 + }, + { + "start": 10034.66, + "end": 10038.65, + "probability": 0.9819 + }, + { + "start": 10038.7, + "end": 10042.38, + "probability": 0.9963 + }, + { + "start": 10043.98, + "end": 10048.84, + "probability": 0.9854 + }, + { + "start": 10049.18, + "end": 10051.14, + "probability": 0.9946 + }, + { + "start": 10051.9, + "end": 10052.64, + "probability": 0.831 + }, + { + "start": 10052.82, + "end": 10056.34, + "probability": 0.9852 + }, + { + "start": 10056.78, + "end": 10059.82, + "probability": 0.9565 + }, + { + "start": 10059.82, + "end": 10063.14, + "probability": 0.984 + }, + { + "start": 10064.72, + "end": 10067.98, + "probability": 0.8185 + }, + { + "start": 10068.1, + "end": 10069.42, + "probability": 0.5274 + }, + { + "start": 10069.58, + "end": 10070.28, + "probability": 0.7426 + }, + { + "start": 10070.64, + "end": 10072.24, + "probability": 0.9631 + }, + { + "start": 10072.48, + "end": 10073.26, + "probability": 0.4467 + }, + { + "start": 10073.38, + "end": 10074.26, + "probability": 0.913 + }, + { + "start": 10074.52, + "end": 10075.5, + "probability": 0.5689 + }, + { + "start": 10076.54, + "end": 10077.56, + "probability": 0.9412 + }, + { + "start": 10079.58, + "end": 10082.2, + "probability": 0.9416 + }, + { + "start": 10082.38, + "end": 10083.24, + "probability": 0.9099 + }, + { + "start": 10083.34, + "end": 10088.88, + "probability": 0.879 + }, + { + "start": 10088.88, + "end": 10094.98, + "probability": 0.9781 + }, + { + "start": 10095.68, + "end": 10099.9, + "probability": 0.9963 + }, + { + "start": 10100.1, + "end": 10101.16, + "probability": 0.8552 + }, + { + "start": 10101.28, + "end": 10102.78, + "probability": 0.7705 + }, + { + "start": 10103.22, + "end": 10108.62, + "probability": 0.9444 + }, + { + "start": 10109.66, + "end": 10113.62, + "probability": 0.9912 + }, + { + "start": 10113.7, + "end": 10115.12, + "probability": 0.9059 + }, + { + "start": 10115.58, + "end": 10119.52, + "probability": 0.9953 + }, + { + "start": 10120.32, + "end": 10123.14, + "probability": 0.9884 + }, + { + "start": 10123.9, + "end": 10125.6, + "probability": 0.9387 + }, + { + "start": 10125.68, + "end": 10129.12, + "probability": 0.9741 + }, + { + "start": 10129.12, + "end": 10132.76, + "probability": 0.8967 + }, + { + "start": 10133.32, + "end": 10136.82, + "probability": 0.9611 + }, + { + "start": 10137.46, + "end": 10139.16, + "probability": 0.9922 + }, + { + "start": 10139.28, + "end": 10140.34, + "probability": 0.8684 + }, + { + "start": 10140.78, + "end": 10142.7, + "probability": 0.8553 + }, + { + "start": 10142.8, + "end": 10144.06, + "probability": 0.8983 + }, + { + "start": 10144.12, + "end": 10145.0, + "probability": 0.7161 + }, + { + "start": 10145.28, + "end": 10145.74, + "probability": 0.9877 + }, + { + "start": 10145.88, + "end": 10146.48, + "probability": 0.9083 + }, + { + "start": 10146.7, + "end": 10147.76, + "probability": 0.7064 + }, + { + "start": 10147.84, + "end": 10150.36, + "probability": 0.9436 + }, + { + "start": 10150.84, + "end": 10151.76, + "probability": 0.9634 + }, + { + "start": 10152.36, + "end": 10152.94, + "probability": 0.7893 + }, + { + "start": 10154.14, + "end": 10157.74, + "probability": 0.2789 + }, + { + "start": 10159.74, + "end": 10160.52, + "probability": 0.6951 + }, + { + "start": 10160.74, + "end": 10167.6, + "probability": 0.6251 + }, + { + "start": 10171.4, + "end": 10174.28, + "probability": 0.9216 + }, + { + "start": 10175.48, + "end": 10177.62, + "probability": 0.7558 + }, + { + "start": 10177.72, + "end": 10181.54, + "probability": 0.9102 + }, + { + "start": 10181.98, + "end": 10184.72, + "probability": 0.9459 + }, + { + "start": 10186.4, + "end": 10187.76, + "probability": 0.5622 + }, + { + "start": 10188.3, + "end": 10189.36, + "probability": 0.7418 + }, + { + "start": 10189.76, + "end": 10191.64, + "probability": 0.7896 + }, + { + "start": 10192.1, + "end": 10195.7, + "probability": 0.0124 + }, + { + "start": 10201.88, + "end": 10203.04, + "probability": 0.0158 + }, + { + "start": 10209.94, + "end": 10210.56, + "probability": 0.1016 + }, + { + "start": 10210.56, + "end": 10213.86, + "probability": 0.463 + }, + { + "start": 10213.94, + "end": 10218.94, + "probability": 0.7884 + }, + { + "start": 10220.68, + "end": 10222.24, + "probability": 0.902 + }, + { + "start": 10222.38, + "end": 10224.66, + "probability": 0.9904 + }, + { + "start": 10225.24, + "end": 10230.36, + "probability": 0.9795 + }, + { + "start": 10237.9, + "end": 10240.16, + "probability": 0.5893 + }, + { + "start": 10240.56, + "end": 10241.64, + "probability": 0.3737 + }, + { + "start": 10242.46, + "end": 10248.0, + "probability": 0.03 + }, + { + "start": 10256.18, + "end": 10256.28, + "probability": 0.1448 + }, + { + "start": 10257.34, + "end": 10258.3, + "probability": 0.4071 + }, + { + "start": 10258.88, + "end": 10261.82, + "probability": 0.7543 + }, + { + "start": 10262.58, + "end": 10268.26, + "probability": 0.9085 + }, + { + "start": 10268.74, + "end": 10269.56, + "probability": 0.86 + }, + { + "start": 10269.6, + "end": 10271.7, + "probability": 0.9489 + }, + { + "start": 10271.82, + "end": 10275.58, + "probability": 0.8952 + }, + { + "start": 10276.54, + "end": 10278.42, + "probability": 0.5656 + }, + { + "start": 10278.52, + "end": 10279.34, + "probability": 0.807 + }, + { + "start": 10280.29, + "end": 10285.46, + "probability": 0.051 + }, + { + "start": 10289.76, + "end": 10291.6, + "probability": 0.0747 + }, + { + "start": 10293.6, + "end": 10298.72, + "probability": 0.6592 + }, + { + "start": 10299.36, + "end": 10302.16, + "probability": 0.7367 + }, + { + "start": 10303.1, + "end": 10307.6, + "probability": 0.9661 + }, + { + "start": 10308.4, + "end": 10311.1, + "probability": 0.9013 + }, + { + "start": 10312.7, + "end": 10315.32, + "probability": 0.7386 + }, + { + "start": 10315.67, + "end": 10316.92, + "probability": 0.0274 + }, + { + "start": 10327.62, + "end": 10327.72, + "probability": 0.2536 + }, + { + "start": 10327.72, + "end": 10332.72, + "probability": 0.5833 + }, + { + "start": 10333.08, + "end": 10337.16, + "probability": 0.9126 + }, + { + "start": 10337.84, + "end": 10343.26, + "probability": 0.8304 + }, + { + "start": 10343.76, + "end": 10345.06, + "probability": 0.5395 + }, + { + "start": 10345.16, + "end": 10345.82, + "probability": 0.4908 + }, + { + "start": 10354.88, + "end": 10357.48, + "probability": 0.1279 + }, + { + "start": 10357.52, + "end": 10359.04, + "probability": 0.7281 + }, + { + "start": 10360.38, + "end": 10363.7, + "probability": 0.5432 + }, + { + "start": 10363.8, + "end": 10368.82, + "probability": 0.9164 + }, + { + "start": 10369.9, + "end": 10373.1, + "probability": 0.9619 + }, + { + "start": 10373.64, + "end": 10374.86, + "probability": 0.5091 + }, + { + "start": 10374.96, + "end": 10376.02, + "probability": 0.7477 + }, + { + "start": 10389.48, + "end": 10389.5, + "probability": 0.326 + }, + { + "start": 10389.5, + "end": 10393.74, + "probability": 0.6298 + }, + { + "start": 10394.24, + "end": 10398.08, + "probability": 0.8465 + }, + { + "start": 10398.58, + "end": 10400.98, + "probability": 0.9867 + }, + { + "start": 10402.26, + "end": 10404.06, + "probability": 0.8165 + }, + { + "start": 10404.26, + "end": 10407.08, + "probability": 0.9316 + }, + { + "start": 10407.26, + "end": 10409.1, + "probability": 0.8447 + }, + { + "start": 10409.1, + "end": 10411.2, + "probability": 0.8139 + }, + { + "start": 10411.5, + "end": 10416.06, + "probability": 0.933 + }, + { + "start": 10419.34, + "end": 10423.2, + "probability": 0.6268 + }, + { + "start": 10423.88, + "end": 10428.2, + "probability": 0.9881 + }, + { + "start": 10428.68, + "end": 10432.52, + "probability": 0.7832 + }, + { + "start": 10432.72, + "end": 10434.22, + "probability": 0.8298 + }, + { + "start": 10434.32, + "end": 10435.7, + "probability": 0.7561 + }, + { + "start": 10436.28, + "end": 10437.3, + "probability": 0.8732 + }, + { + "start": 10437.4, + "end": 10439.02, + "probability": 0.9279 + }, + { + "start": 10439.16, + "end": 10440.72, + "probability": 0.6691 + }, + { + "start": 10441.06, + "end": 10442.28, + "probability": 0.9694 + }, + { + "start": 10442.88, + "end": 10445.6, + "probability": 0.7247 + }, + { + "start": 10445.7, + "end": 10446.56, + "probability": 0.6728 + }, + { + "start": 10446.7, + "end": 10449.2, + "probability": 0.9412 + }, + { + "start": 10449.54, + "end": 10451.86, + "probability": 0.781 + }, + { + "start": 10452.2, + "end": 10453.1, + "probability": 0.5895 + }, + { + "start": 10453.2, + "end": 10455.22, + "probability": 0.9261 + }, + { + "start": 10455.4, + "end": 10455.98, + "probability": 0.5687 + }, + { + "start": 10456.08, + "end": 10456.62, + "probability": 0.9251 + }, + { + "start": 10456.7, + "end": 10458.98, + "probability": 0.9576 + }, + { + "start": 10459.38, + "end": 10460.04, + "probability": 0.7188 + }, + { + "start": 10460.16, + "end": 10460.96, + "probability": 0.9507 + }, + { + "start": 10461.0, + "end": 10462.48, + "probability": 0.9619 + }, + { + "start": 10462.78, + "end": 10464.3, + "probability": 0.881 + }, + { + "start": 10464.38, + "end": 10466.12, + "probability": 0.8629 + }, + { + "start": 10466.2, + "end": 10466.88, + "probability": 0.552 + }, + { + "start": 10466.98, + "end": 10467.8, + "probability": 0.8547 + }, + { + "start": 10467.82, + "end": 10470.74, + "probability": 0.8902 + }, + { + "start": 10471.1, + "end": 10472.44, + "probability": 0.8593 + }, + { + "start": 10472.56, + "end": 10474.48, + "probability": 0.9313 + }, + { + "start": 10474.86, + "end": 10475.36, + "probability": 0.472 + }, + { + "start": 10475.48, + "end": 10476.24, + "probability": 0.8006 + }, + { + "start": 10476.32, + "end": 10478.18, + "probability": 0.6868 + }, + { + "start": 10478.38, + "end": 10479.6, + "probability": 0.9379 + }, + { + "start": 10479.66, + "end": 10481.1, + "probability": 0.9783 + }, + { + "start": 10481.16, + "end": 10482.36, + "probability": 0.9797 + }, + { + "start": 10482.46, + "end": 10483.94, + "probability": 0.9684 + }, + { + "start": 10484.36, + "end": 10485.98, + "probability": 0.9562 + }, + { + "start": 10486.04, + "end": 10487.6, + "probability": 0.9296 + }, + { + "start": 10487.74, + "end": 10488.66, + "probability": 0.8214 + }, + { + "start": 10488.76, + "end": 10490.58, + "probability": 0.6401 + }, + { + "start": 10490.66, + "end": 10492.74, + "probability": 0.8664 + }, + { + "start": 10494.04, + "end": 10496.1, + "probability": 0.768 + }, + { + "start": 10496.18, + "end": 10498.48, + "probability": 0.8936 + }, + { + "start": 10498.6, + "end": 10499.82, + "probability": 0.6891 + }, + { + "start": 10501.26, + "end": 10501.6, + "probability": 0.3038 + }, + { + "start": 10501.6, + "end": 10502.37, + "probability": 0.6938 + }, + { + "start": 10502.6, + "end": 10503.92, + "probability": 0.6605 + }, + { + "start": 10504.08, + "end": 10506.02, + "probability": 0.938 + }, + { + "start": 10507.28, + "end": 10507.7, + "probability": 0.4944 + }, + { + "start": 10508.08, + "end": 10508.16, + "probability": 0.0436 + }, + { + "start": 10508.16, + "end": 10512.08, + "probability": 0.9659 + }, + { + "start": 10512.78, + "end": 10515.41, + "probability": 0.0523 + }, + { + "start": 10516.96, + "end": 10520.96, + "probability": 0.2707 + }, + { + "start": 10523.33, + "end": 10526.26, + "probability": 0.7915 + }, + { + "start": 10526.42, + "end": 10526.44, + "probability": 0.2153 + }, + { + "start": 10526.44, + "end": 10527.54, + "probability": 0.2002 + }, + { + "start": 10527.6, + "end": 10529.76, + "probability": 0.9346 + }, + { + "start": 10529.76, + "end": 10530.16, + "probability": 0.6332 + }, + { + "start": 10530.54, + "end": 10531.5, + "probability": 0.7169 + }, + { + "start": 10531.6, + "end": 10532.36, + "probability": 0.7155 + }, + { + "start": 10532.36, + "end": 10533.44, + "probability": 0.9631 + }, + { + "start": 10533.56, + "end": 10535.0, + "probability": 0.7963 + }, + { + "start": 10535.14, + "end": 10537.3, + "probability": 0.9004 + }, + { + "start": 10538.34, + "end": 10541.62, + "probability": 0.9688 + }, + { + "start": 10541.62, + "end": 10544.44, + "probability": 0.997 + }, + { + "start": 10544.56, + "end": 10548.02, + "probability": 0.8731 + }, + { + "start": 10548.16, + "end": 10552.14, + "probability": 0.6863 + }, + { + "start": 10552.24, + "end": 10553.34, + "probability": 0.8708 + }, + { + "start": 10553.46, + "end": 10557.6, + "probability": 0.9754 + }, + { + "start": 10558.12, + "end": 10559.82, + "probability": 0.9949 + }, + { + "start": 10559.94, + "end": 10561.18, + "probability": 0.7694 + }, + { + "start": 10561.28, + "end": 10562.96, + "probability": 0.662 + }, + { + "start": 10563.3, + "end": 10564.4, + "probability": 0.9854 + }, + { + "start": 10564.5, + "end": 10565.98, + "probability": 0.9412 + }, + { + "start": 10566.12, + "end": 10567.9, + "probability": 0.8197 + }, + { + "start": 10568.0, + "end": 10568.8, + "probability": 0.598 + }, + { + "start": 10570.37, + "end": 10573.34, + "probability": 0.8314 + }, + { + "start": 10573.48, + "end": 10576.9, + "probability": 0.9095 + }, + { + "start": 10577.22, + "end": 10577.78, + "probability": 0.8992 + }, + { + "start": 10577.9, + "end": 10581.0, + "probability": 0.9935 + }, + { + "start": 10581.0, + "end": 10584.0, + "probability": 0.9897 + }, + { + "start": 10584.66, + "end": 10586.78, + "probability": 0.713 + }, + { + "start": 10587.28, + "end": 10590.76, + "probability": 0.9042 + }, + { + "start": 10590.76, + "end": 10592.1, + "probability": 0.8695 + }, + { + "start": 10602.53, + "end": 10606.46, + "probability": 0.777 + }, + { + "start": 10607.04, + "end": 10609.84, + "probability": 0.9924 + }, + { + "start": 10609.84, + "end": 10613.58, + "probability": 0.995 + }, + { + "start": 10614.24, + "end": 10616.82, + "probability": 0.9756 + }, + { + "start": 10617.66, + "end": 10620.52, + "probability": 0.9792 + }, + { + "start": 10620.52, + "end": 10623.14, + "probability": 0.9958 + }, + { + "start": 10623.72, + "end": 10625.94, + "probability": 0.9254 + }, + { + "start": 10626.76, + "end": 10629.0, + "probability": 0.9951 + }, + { + "start": 10629.86, + "end": 10633.62, + "probability": 0.9899 + }, + { + "start": 10634.18, + "end": 10638.24, + "probability": 0.9977 + }, + { + "start": 10638.82, + "end": 10641.96, + "probability": 0.9492 + }, + { + "start": 10643.58, + "end": 10644.52, + "probability": 0.9237 + }, + { + "start": 10644.62, + "end": 10648.8, + "probability": 0.997 + }, + { + "start": 10648.8, + "end": 10654.04, + "probability": 0.9933 + }, + { + "start": 10654.1, + "end": 10654.96, + "probability": 0.8198 + }, + { + "start": 10655.66, + "end": 10657.58, + "probability": 0.8654 + }, + { + "start": 10657.62, + "end": 10661.3, + "probability": 0.9937 + }, + { + "start": 10661.92, + "end": 10664.6, + "probability": 0.9386 + }, + { + "start": 10664.64, + "end": 10665.46, + "probability": 0.9948 + }, + { + "start": 10666.08, + "end": 10669.36, + "probability": 0.8131 + }, + { + "start": 10670.08, + "end": 10671.08, + "probability": 0.9536 + }, + { + "start": 10671.46, + "end": 10674.8, + "probability": 0.9907 + }, + { + "start": 10674.8, + "end": 10678.7, + "probability": 0.9938 + }, + { + "start": 10679.56, + "end": 10681.9, + "probability": 0.9988 + }, + { + "start": 10681.9, + "end": 10685.04, + "probability": 0.9371 + }, + { + "start": 10685.34, + "end": 10687.96, + "probability": 0.9993 + }, + { + "start": 10687.96, + "end": 10691.8, + "probability": 0.962 + }, + { + "start": 10692.96, + "end": 10697.64, + "probability": 0.9991 + }, + { + "start": 10697.82, + "end": 10699.7, + "probability": 0.9274 + }, + { + "start": 10699.78, + "end": 10704.08, + "probability": 0.9556 + }, + { + "start": 10704.78, + "end": 10707.72, + "probability": 0.9819 + }, + { + "start": 10708.2, + "end": 10710.72, + "probability": 0.9964 + }, + { + "start": 10710.72, + "end": 10713.64, + "probability": 0.999 + }, + { + "start": 10714.78, + "end": 10717.34, + "probability": 0.9762 + }, + { + "start": 10717.48, + "end": 10720.62, + "probability": 0.9926 + }, + { + "start": 10720.62, + "end": 10724.52, + "probability": 0.9934 + }, + { + "start": 10725.2, + "end": 10726.56, + "probability": 0.991 + }, + { + "start": 10727.58, + "end": 10730.96, + "probability": 0.9966 + }, + { + "start": 10730.96, + "end": 10735.28, + "probability": 0.9963 + }, + { + "start": 10736.72, + "end": 10737.92, + "probability": 0.2258 + }, + { + "start": 10737.92, + "end": 10741.28, + "probability": 0.9766 + }, + { + "start": 10742.06, + "end": 10744.44, + "probability": 0.8123 + }, + { + "start": 10745.0, + "end": 10746.72, + "probability": 0.9458 + }, + { + "start": 10747.28, + "end": 10748.76, + "probability": 0.7684 + }, + { + "start": 10749.16, + "end": 10750.82, + "probability": 0.7131 + }, + { + "start": 10751.52, + "end": 10754.96, + "probability": 0.9707 + }, + { + "start": 10755.9, + "end": 10759.5, + "probability": 0.9809 + }, + { + "start": 10759.5, + "end": 10763.1, + "probability": 0.9772 + }, + { + "start": 10763.16, + "end": 10767.36, + "probability": 0.9783 + }, + { + "start": 10767.88, + "end": 10771.32, + "probability": 0.9534 + }, + { + "start": 10772.0, + "end": 10775.76, + "probability": 0.9861 + }, + { + "start": 10775.76, + "end": 10778.57, + "probability": 0.9984 + }, + { + "start": 10778.94, + "end": 10781.72, + "probability": 0.7171 + }, + { + "start": 10782.64, + "end": 10785.22, + "probability": 0.9954 + }, + { + "start": 10785.68, + "end": 10787.68, + "probability": 0.9234 + }, + { + "start": 10788.16, + "end": 10789.36, + "probability": 0.9518 + }, + { + "start": 10789.8, + "end": 10792.48, + "probability": 0.987 + }, + { + "start": 10792.84, + "end": 10795.4, + "probability": 0.9601 + }, + { + "start": 10795.58, + "end": 10795.98, + "probability": 0.8417 + }, + { + "start": 10796.12, + "end": 10797.14, + "probability": 0.9933 + }, + { + "start": 10797.62, + "end": 10799.36, + "probability": 0.8076 + }, + { + "start": 10799.8, + "end": 10805.09, + "probability": 0.9873 + }, + { + "start": 10805.78, + "end": 10807.34, + "probability": 0.9295 + }, + { + "start": 10807.42, + "end": 10813.66, + "probability": 0.9774 + }, + { + "start": 10814.46, + "end": 10814.86, + "probability": 0.6425 + }, + { + "start": 10815.0, + "end": 10818.6, + "probability": 0.9899 + }, + { + "start": 10818.84, + "end": 10819.3, + "probability": 0.6285 + }, + { + "start": 10819.3, + "end": 10821.0, + "probability": 0.8125 + }, + { + "start": 10821.52, + "end": 10825.68, + "probability": 0.9906 + }, + { + "start": 10825.84, + "end": 10828.08, + "probability": 0.9372 + }, + { + "start": 10828.08, + "end": 10831.16, + "probability": 0.8687 + }, + { + "start": 10831.16, + "end": 10833.02, + "probability": 0.8878 + }, + { + "start": 10833.94, + "end": 10834.18, + "probability": 0.7135 + }, + { + "start": 10834.22, + "end": 10835.51, + "probability": 0.9487 + }, + { + "start": 10835.94, + "end": 10838.08, + "probability": 0.9902 + }, + { + "start": 10838.74, + "end": 10841.08, + "probability": 0.8757 + }, + { + "start": 10841.42, + "end": 10844.98, + "probability": 0.9932 + }, + { + "start": 10845.62, + "end": 10849.74, + "probability": 0.9591 + }, + { + "start": 10850.44, + "end": 10854.78, + "probability": 0.9935 + }, + { + "start": 10854.78, + "end": 10860.56, + "probability": 0.9863 + }, + { + "start": 10860.94, + "end": 10864.78, + "probability": 0.9962 + }, + { + "start": 10864.78, + "end": 10867.96, + "probability": 0.9911 + }, + { + "start": 10868.68, + "end": 10872.98, + "probability": 0.9958 + }, + { + "start": 10873.3, + "end": 10874.52, + "probability": 0.9386 + }, + { + "start": 10874.92, + "end": 10877.99, + "probability": 0.9933 + }, + { + "start": 10878.5, + "end": 10881.36, + "probability": 0.9865 + }, + { + "start": 10881.36, + "end": 10884.5, + "probability": 0.995 + }, + { + "start": 10885.14, + "end": 10888.78, + "probability": 0.9888 + }, + { + "start": 10888.78, + "end": 10893.4, + "probability": 0.9734 + }, + { + "start": 10893.66, + "end": 10899.48, + "probability": 0.9834 + }, + { + "start": 10900.2, + "end": 10904.94, + "probability": 0.99 + }, + { + "start": 10905.4, + "end": 10907.66, + "probability": 0.7722 + }, + { + "start": 10908.56, + "end": 10913.08, + "probability": 0.9117 + }, + { + "start": 10913.68, + "end": 10915.98, + "probability": 0.9872 + }, + { + "start": 10916.04, + "end": 10920.22, + "probability": 0.9969 + }, + { + "start": 10920.98, + "end": 10925.58, + "probability": 0.7766 + }, + { + "start": 10926.5, + "end": 10927.02, + "probability": 0.3686 + }, + { + "start": 10927.28, + "end": 10928.36, + "probability": 0.849 + }, + { + "start": 10928.56, + "end": 10929.68, + "probability": 0.9398 + }, + { + "start": 10929.88, + "end": 10932.58, + "probability": 0.8758 + }, + { + "start": 10933.04, + "end": 10933.88, + "probability": 0.8799 + }, + { + "start": 10933.94, + "end": 10936.14, + "probability": 0.9941 + }, + { + "start": 10936.22, + "end": 10937.86, + "probability": 0.9877 + }, + { + "start": 10938.82, + "end": 10944.34, + "probability": 0.9785 + }, + { + "start": 10945.28, + "end": 10947.4, + "probability": 0.9766 + }, + { + "start": 10947.96, + "end": 10948.8, + "probability": 0.4265 + }, + { + "start": 10948.86, + "end": 10949.18, + "probability": 0.6017 + }, + { + "start": 10949.18, + "end": 10949.98, + "probability": 0.8639 + }, + { + "start": 10950.08, + "end": 10951.86, + "probability": 0.9661 + }, + { + "start": 10952.01, + "end": 10956.44, + "probability": 0.9542 + }, + { + "start": 10956.54, + "end": 10958.24, + "probability": 0.8294 + }, + { + "start": 10958.9, + "end": 10959.78, + "probability": 0.8955 + }, + { + "start": 10959.9, + "end": 10961.44, + "probability": 0.8646 + }, + { + "start": 10961.66, + "end": 10964.46, + "probability": 0.9219 + }, + { + "start": 10965.12, + "end": 10966.54, + "probability": 0.8507 + }, + { + "start": 10967.36, + "end": 10969.38, + "probability": 0.9961 + }, + { + "start": 10969.94, + "end": 10972.46, + "probability": 0.9824 + }, + { + "start": 10972.66, + "end": 10978.68, + "probability": 0.9932 + }, + { + "start": 10978.68, + "end": 10985.1, + "probability": 0.9979 + }, + { + "start": 10985.52, + "end": 10986.46, + "probability": 0.6721 + }, + { + "start": 10986.58, + "end": 10987.56, + "probability": 0.6235 + }, + { + "start": 10987.68, + "end": 10989.0, + "probability": 0.7767 + }, + { + "start": 10989.4, + "end": 10990.78, + "probability": 0.3472 + }, + { + "start": 10991.26, + "end": 10992.22, + "probability": 0.917 + }, + { + "start": 10994.02, + "end": 10998.18, + "probability": 0.5917 + }, + { + "start": 10998.9, + "end": 11002.54, + "probability": 0.9666 + }, + { + "start": 11003.0, + "end": 11003.42, + "probability": 0.5942 + }, + { + "start": 11003.62, + "end": 11009.7, + "probability": 0.9655 + }, + { + "start": 11009.96, + "end": 11013.17, + "probability": 0.9953 + }, + { + "start": 11013.82, + "end": 11019.18, + "probability": 0.9967 + }, + { + "start": 11019.68, + "end": 11021.31, + "probability": 0.9951 + }, + { + "start": 11021.44, + "end": 11024.38, + "probability": 0.9979 + }, + { + "start": 11024.38, + "end": 11028.64, + "probability": 0.8987 + }, + { + "start": 11028.7, + "end": 11030.7, + "probability": 0.9672 + }, + { + "start": 11031.74, + "end": 11032.54, + "probability": 0.2943 + }, + { + "start": 11032.8, + "end": 11035.1, + "probability": 0.9172 + }, + { + "start": 11035.6, + "end": 11038.9, + "probability": 0.9844 + }, + { + "start": 11039.46, + "end": 11042.2, + "probability": 0.9604 + }, + { + "start": 11042.76, + "end": 11047.32, + "probability": 0.9961 + }, + { + "start": 11047.32, + "end": 11053.12, + "probability": 0.9949 + }, + { + "start": 11053.22, + "end": 11054.02, + "probability": 0.893 + }, + { + "start": 11054.2, + "end": 11057.98, + "probability": 0.9806 + }, + { + "start": 11058.34, + "end": 11060.32, + "probability": 0.9763 + }, + { + "start": 11060.56, + "end": 11061.44, + "probability": 0.2389 + }, + { + "start": 11061.72, + "end": 11064.48, + "probability": 0.8229 + }, + { + "start": 11064.56, + "end": 11066.18, + "probability": 0.7054 + }, + { + "start": 11066.5, + "end": 11072.04, + "probability": 0.9961 + }, + { + "start": 11072.12, + "end": 11073.99, + "probability": 0.9944 + }, + { + "start": 11075.02, + "end": 11076.9, + "probability": 0.8469 + }, + { + "start": 11077.02, + "end": 11080.22, + "probability": 0.9001 + }, + { + "start": 11080.76, + "end": 11082.72, + "probability": 0.7175 + }, + { + "start": 11083.08, + "end": 11085.3, + "probability": 0.9561 + }, + { + "start": 11085.68, + "end": 11087.32, + "probability": 0.873 + }, + { + "start": 11087.62, + "end": 11092.44, + "probability": 0.9863 + }, + { + "start": 11092.44, + "end": 11097.62, + "probability": 0.9994 + }, + { + "start": 11098.3, + "end": 11102.38, + "probability": 0.9107 + }, + { + "start": 11102.86, + "end": 11105.2, + "probability": 0.9943 + }, + { + "start": 11105.56, + "end": 11108.5, + "probability": 0.8774 + }, + { + "start": 11108.6, + "end": 11109.3, + "probability": 0.6977 + }, + { + "start": 11109.4, + "end": 11114.72, + "probability": 0.9905 + }, + { + "start": 11114.88, + "end": 11116.36, + "probability": 0.9651 + }, + { + "start": 11116.72, + "end": 11119.02, + "probability": 0.9607 + }, + { + "start": 11119.4, + "end": 11120.62, + "probability": 0.8636 + }, + { + "start": 11121.24, + "end": 11126.26, + "probability": 0.9931 + }, + { + "start": 11126.32, + "end": 11127.06, + "probability": 0.7387 + }, + { + "start": 11131.12, + "end": 11133.46, + "probability": 0.7533 + }, + { + "start": 11133.56, + "end": 11136.22, + "probability": 0.8492 + }, + { + "start": 11136.58, + "end": 11138.59, + "probability": 0.9681 + }, + { + "start": 11151.02, + "end": 11155.14, + "probability": 0.7902 + }, + { + "start": 11156.2, + "end": 11157.86, + "probability": 0.9116 + }, + { + "start": 11157.94, + "end": 11160.12, + "probability": 0.9639 + }, + { + "start": 11160.18, + "end": 11161.46, + "probability": 0.8073 + }, + { + "start": 11161.58, + "end": 11162.24, + "probability": 0.8715 + }, + { + "start": 11162.34, + "end": 11164.8, + "probability": 0.826 + }, + { + "start": 11164.82, + "end": 11168.5, + "probability": 0.9868 + }, + { + "start": 11170.04, + "end": 11173.1, + "probability": 0.8443 + }, + { + "start": 11173.96, + "end": 11175.24, + "probability": 0.6138 + }, + { + "start": 11175.34, + "end": 11176.36, + "probability": 0.7239 + }, + { + "start": 11176.54, + "end": 11179.48, + "probability": 0.9159 + }, + { + "start": 11179.48, + "end": 11183.14, + "probability": 0.5276 + }, + { + "start": 11183.78, + "end": 11184.34, + "probability": 0.8915 + }, + { + "start": 11184.42, + "end": 11186.42, + "probability": 0.6948 + }, + { + "start": 11186.42, + "end": 11188.32, + "probability": 0.5195 + }, + { + "start": 11188.5, + "end": 11193.92, + "probability": 0.8508 + }, + { + "start": 11194.04, + "end": 11195.34, + "probability": 0.7018 + }, + { + "start": 11195.72, + "end": 11198.1, + "probability": 0.8168 + }, + { + "start": 11198.74, + "end": 11200.14, + "probability": 0.9967 + }, + { + "start": 11201.72, + "end": 11206.42, + "probability": 0.7248 + }, + { + "start": 11207.1, + "end": 11208.98, + "probability": 0.7002 + }, + { + "start": 11210.18, + "end": 11213.06, + "probability": 0.7752 + }, + { + "start": 11213.3, + "end": 11215.12, + "probability": 0.8536 + }, + { + "start": 11216.18, + "end": 11217.9, + "probability": 0.4658 + }, + { + "start": 11218.08, + "end": 11219.99, + "probability": 0.9423 + }, + { + "start": 11221.22, + "end": 11221.5, + "probability": 0.7828 + }, + { + "start": 11221.58, + "end": 11223.78, + "probability": 0.9739 + }, + { + "start": 11223.84, + "end": 11224.54, + "probability": 0.7065 + }, + { + "start": 11224.7, + "end": 11225.28, + "probability": 0.8727 + }, + { + "start": 11225.44, + "end": 11226.1, + "probability": 0.4435 + }, + { + "start": 11226.64, + "end": 11227.92, + "probability": 0.9461 + }, + { + "start": 11228.0, + "end": 11232.54, + "probability": 0.981 + }, + { + "start": 11233.32, + "end": 11233.62, + "probability": 0.8349 + }, + { + "start": 11233.74, + "end": 11238.56, + "probability": 0.9919 + }, + { + "start": 11239.12, + "end": 11242.14, + "probability": 0.9924 + }, + { + "start": 11242.14, + "end": 11246.12, + "probability": 0.9485 + }, + { + "start": 11246.18, + "end": 11249.52, + "probability": 0.9883 + }, + { + "start": 11249.96, + "end": 11250.8, + "probability": 0.6728 + }, + { + "start": 11251.24, + "end": 11251.8, + "probability": 0.527 + }, + { + "start": 11251.94, + "end": 11252.94, + "probability": 0.9116 + }, + { + "start": 11253.24, + "end": 11255.98, + "probability": 0.9964 + }, + { + "start": 11256.2, + "end": 11257.72, + "probability": 0.9396 + }, + { + "start": 11258.04, + "end": 11260.66, + "probability": 0.9442 + }, + { + "start": 11260.78, + "end": 11262.85, + "probability": 0.8604 + }, + { + "start": 11263.16, + "end": 11267.08, + "probability": 0.9977 + }, + { + "start": 11267.08, + "end": 11270.7, + "probability": 0.9866 + }, + { + "start": 11271.12, + "end": 11273.92, + "probability": 0.9161 + }, + { + "start": 11274.14, + "end": 11277.2, + "probability": 0.965 + }, + { + "start": 11277.34, + "end": 11280.62, + "probability": 0.8371 + }, + { + "start": 11280.66, + "end": 11281.28, + "probability": 0.8257 + }, + { + "start": 11281.42, + "end": 11281.8, + "probability": 0.4977 + }, + { + "start": 11281.86, + "end": 11282.4, + "probability": 0.3124 + }, + { + "start": 11282.48, + "end": 11283.26, + "probability": 0.6605 + }, + { + "start": 11283.76, + "end": 11285.94, + "probability": 0.815 + }, + { + "start": 11286.16, + "end": 11286.7, + "probability": 0.3432 + }, + { + "start": 11286.76, + "end": 11287.24, + "probability": 0.5962 + }, + { + "start": 11287.26, + "end": 11289.14, + "probability": 0.6528 + }, + { + "start": 11289.26, + "end": 11290.01, + "probability": 0.6069 + }, + { + "start": 11290.38, + "end": 11293.82, + "probability": 0.7787 + }, + { + "start": 11294.08, + "end": 11298.72, + "probability": 0.9968 + }, + { + "start": 11299.18, + "end": 11301.22, + "probability": 0.9821 + }, + { + "start": 11301.96, + "end": 11304.02, + "probability": 0.8203 + }, + { + "start": 11305.46, + "end": 11309.8, + "probability": 0.9976 + }, + { + "start": 11309.83, + "end": 11314.36, + "probability": 0.938 + }, + { + "start": 11314.4, + "end": 11317.88, + "probability": 0.889 + }, + { + "start": 11318.72, + "end": 11323.42, + "probability": 0.8047 + }, + { + "start": 11323.52, + "end": 11326.82, + "probability": 0.9396 + }, + { + "start": 11326.82, + "end": 11329.04, + "probability": 0.9958 + }, + { + "start": 11329.42, + "end": 11332.96, + "probability": 0.9878 + }, + { + "start": 11333.64, + "end": 11334.32, + "probability": 0.9081 + }, + { + "start": 11335.22, + "end": 11335.82, + "probability": 0.7542 + }, + { + "start": 11336.24, + "end": 11338.46, + "probability": 0.9128 + }, + { + "start": 11338.82, + "end": 11339.84, + "probability": 0.7564 + }, + { + "start": 11340.14, + "end": 11341.52, + "probability": 0.6615 + }, + { + "start": 11341.64, + "end": 11343.34, + "probability": 0.9355 + }, + { + "start": 11343.7, + "end": 11344.16, + "probability": 0.711 + }, + { + "start": 11344.36, + "end": 11346.22, + "probability": 0.9358 + }, + { + "start": 11346.46, + "end": 11353.42, + "probability": 0.8306 + }, + { + "start": 11353.88, + "end": 11355.0, + "probability": 0.3924 + }, + { + "start": 11355.54, + "end": 11356.58, + "probability": 0.8048 + }, + { + "start": 11357.16, + "end": 11359.32, + "probability": 0.8089 + }, + { + "start": 11359.88, + "end": 11360.3, + "probability": 0.6859 + }, + { + "start": 11360.38, + "end": 11361.08, + "probability": 0.972 + }, + { + "start": 11362.74, + "end": 11363.24, + "probability": 0.3806 + }, + { + "start": 11363.28, + "end": 11367.7, + "probability": 0.6605 + }, + { + "start": 11380.98, + "end": 11381.78, + "probability": 0.5529 + }, + { + "start": 11382.08, + "end": 11382.84, + "probability": 0.7286 + }, + { + "start": 11383.04, + "end": 11386.92, + "probability": 0.9349 + }, + { + "start": 11387.54, + "end": 11389.48, + "probability": 0.8682 + }, + { + "start": 11390.02, + "end": 11393.98, + "probability": 0.9921 + }, + { + "start": 11394.7, + "end": 11395.86, + "probability": 0.5511 + }, + { + "start": 11395.96, + "end": 11400.14, + "probability": 0.8625 + }, + { + "start": 11400.26, + "end": 11402.56, + "probability": 0.9951 + }, + { + "start": 11403.44, + "end": 11404.82, + "probability": 0.9198 + }, + { + "start": 11405.58, + "end": 11407.06, + "probability": 0.975 + }, + { + "start": 11407.6, + "end": 11409.98, + "probability": 0.9859 + }, + { + "start": 11410.8, + "end": 11412.7, + "probability": 0.9184 + }, + { + "start": 11412.86, + "end": 11415.14, + "probability": 0.9781 + }, + { + "start": 11415.72, + "end": 11417.59, + "probability": 0.9932 + }, + { + "start": 11418.12, + "end": 11423.32, + "probability": 0.937 + }, + { + "start": 11423.74, + "end": 11424.36, + "probability": 0.8872 + }, + { + "start": 11424.5, + "end": 11426.67, + "probability": 0.9897 + }, + { + "start": 11427.26, + "end": 11428.22, + "probability": 0.9596 + }, + { + "start": 11428.44, + "end": 11429.4, + "probability": 0.9718 + }, + { + "start": 11430.02, + "end": 11431.22, + "probability": 0.7536 + }, + { + "start": 11432.22, + "end": 11436.7, + "probability": 0.9959 + }, + { + "start": 11437.06, + "end": 11439.7, + "probability": 0.998 + }, + { + "start": 11440.42, + "end": 11441.28, + "probability": 0.5501 + }, + { + "start": 11441.66, + "end": 11442.54, + "probability": 0.8882 + }, + { + "start": 11442.7, + "end": 11444.58, + "probability": 0.9143 + }, + { + "start": 11444.76, + "end": 11445.4, + "probability": 0.8134 + }, + { + "start": 11445.46, + "end": 11449.16, + "probability": 0.8501 + }, + { + "start": 11449.52, + "end": 11452.34, + "probability": 0.9513 + }, + { + "start": 11452.38, + "end": 11453.72, + "probability": 0.9922 + }, + { + "start": 11454.08, + "end": 11457.38, + "probability": 0.9031 + }, + { + "start": 11457.42, + "end": 11459.46, + "probability": 0.9031 + }, + { + "start": 11459.78, + "end": 11462.3, + "probability": 0.9486 + }, + { + "start": 11462.94, + "end": 11463.34, + "probability": 0.6879 + }, + { + "start": 11463.44, + "end": 11464.54, + "probability": 0.7362 + }, + { + "start": 11464.68, + "end": 11468.9, + "probability": 0.9906 + }, + { + "start": 11468.96, + "end": 11472.52, + "probability": 0.9741 + }, + { + "start": 11472.78, + "end": 11473.58, + "probability": 0.9245 + }, + { + "start": 11474.12, + "end": 11474.99, + "probability": 0.9762 + }, + { + "start": 11475.68, + "end": 11477.54, + "probability": 0.9822 + }, + { + "start": 11477.76, + "end": 11479.42, + "probability": 0.9845 + }, + { + "start": 11479.82, + "end": 11480.22, + "probability": 0.4889 + }, + { + "start": 11480.3, + "end": 11481.64, + "probability": 0.9806 + }, + { + "start": 11481.72, + "end": 11482.72, + "probability": 0.9819 + }, + { + "start": 11483.48, + "end": 11484.82, + "probability": 0.9885 + }, + { + "start": 11485.0, + "end": 11486.72, + "probability": 0.9639 + }, + { + "start": 11486.88, + "end": 11489.44, + "probability": 0.9932 + }, + { + "start": 11490.02, + "end": 11493.72, + "probability": 0.9648 + }, + { + "start": 11494.06, + "end": 11496.12, + "probability": 0.994 + }, + { + "start": 11496.18, + "end": 11496.82, + "probability": 0.7268 + }, + { + "start": 11496.9, + "end": 11497.08, + "probability": 0.7262 + }, + { + "start": 11497.14, + "end": 11497.84, + "probability": 0.8334 + }, + { + "start": 11497.96, + "end": 11500.62, + "probability": 0.9543 + }, + { + "start": 11500.72, + "end": 11501.9, + "probability": 0.7894 + }, + { + "start": 11501.92, + "end": 11503.01, + "probability": 0.7939 + }, + { + "start": 11503.04, + "end": 11504.64, + "probability": 0.7064 + }, + { + "start": 11504.68, + "end": 11505.66, + "probability": 0.8428 + }, + { + "start": 11505.96, + "end": 11510.26, + "probability": 0.9882 + }, + { + "start": 11510.42, + "end": 11511.5, + "probability": 0.6799 + }, + { + "start": 11511.6, + "end": 11512.6, + "probability": 0.8297 + }, + { + "start": 11513.08, + "end": 11514.56, + "probability": 0.9402 + }, + { + "start": 11515.3, + "end": 11521.12, + "probability": 0.9941 + }, + { + "start": 11521.34, + "end": 11522.64, + "probability": 0.8468 + }, + { + "start": 11522.72, + "end": 11523.44, + "probability": 0.9492 + }, + { + "start": 11523.54, + "end": 11528.21, + "probability": 0.9299 + }, + { + "start": 11528.54, + "end": 11530.1, + "probability": 0.9299 + }, + { + "start": 11530.5, + "end": 11532.24, + "probability": 0.6496 + }, + { + "start": 11532.36, + "end": 11535.76, + "probability": 0.9694 + }, + { + "start": 11536.14, + "end": 11537.2, + "probability": 0.9144 + }, + { + "start": 11537.28, + "end": 11541.13, + "probability": 0.9924 + }, + { + "start": 11541.6, + "end": 11545.02, + "probability": 0.9462 + }, + { + "start": 11545.4, + "end": 11549.68, + "probability": 0.9951 + }, + { + "start": 11549.84, + "end": 11550.9, + "probability": 0.9528 + }, + { + "start": 11551.0, + "end": 11553.14, + "probability": 0.9948 + }, + { + "start": 11553.4, + "end": 11557.76, + "probability": 0.9713 + }, + { + "start": 11558.18, + "end": 11565.64, + "probability": 0.9973 + }, + { + "start": 11566.16, + "end": 11566.3, + "probability": 0.6454 + }, + { + "start": 11566.4, + "end": 11567.24, + "probability": 0.7011 + }, + { + "start": 11567.64, + "end": 11568.14, + "probability": 0.5229 + }, + { + "start": 11568.26, + "end": 11570.04, + "probability": 0.8286 + }, + { + "start": 11570.16, + "end": 11570.68, + "probability": 0.2105 + }, + { + "start": 11571.02, + "end": 11573.22, + "probability": 0.9601 + }, + { + "start": 11573.52, + "end": 11575.36, + "probability": 0.7183 + }, + { + "start": 11575.62, + "end": 11576.54, + "probability": 0.7022 + }, + { + "start": 11576.7, + "end": 11578.34, + "probability": 0.9237 + }, + { + "start": 11578.78, + "end": 11579.22, + "probability": 0.119 + }, + { + "start": 11579.44, + "end": 11581.88, + "probability": 0.9914 + }, + { + "start": 11582.1, + "end": 11582.58, + "probability": 0.3448 + }, + { + "start": 11582.68, + "end": 11583.74, + "probability": 0.9541 + }, + { + "start": 11583.98, + "end": 11584.42, + "probability": 0.6476 + }, + { + "start": 11584.54, + "end": 11585.42, + "probability": 0.8198 + }, + { + "start": 11585.5, + "end": 11586.42, + "probability": 0.9859 + }, + { + "start": 11586.44, + "end": 11587.62, + "probability": 0.998 + }, + { + "start": 11587.94, + "end": 11589.4, + "probability": 0.9536 + }, + { + "start": 11589.82, + "end": 11592.04, + "probability": 0.9913 + }, + { + "start": 11592.36, + "end": 11593.08, + "probability": 0.6343 + }, + { + "start": 11593.12, + "end": 11598.58, + "probability": 0.9875 + }, + { + "start": 11598.8, + "end": 11599.1, + "probability": 0.4424 + }, + { + "start": 11599.12, + "end": 11600.2, + "probability": 0.7968 + }, + { + "start": 11600.34, + "end": 11600.68, + "probability": 0.892 + }, + { + "start": 11601.04, + "end": 11603.22, + "probability": 0.9373 + }, + { + "start": 11603.58, + "end": 11605.7, + "probability": 0.8483 + }, + { + "start": 11606.2, + "end": 11606.88, + "probability": 0.4597 + }, + { + "start": 11607.04, + "end": 11608.76, + "probability": 0.7226 + }, + { + "start": 11624.78, + "end": 11625.48, + "probability": 0.6366 + }, + { + "start": 11625.52, + "end": 11628.68, + "probability": 0.9954 + }, + { + "start": 11629.16, + "end": 11634.04, + "probability": 0.9844 + }, + { + "start": 11634.46, + "end": 11635.92, + "probability": 0.9406 + }, + { + "start": 11635.96, + "end": 11636.98, + "probability": 0.8381 + }, + { + "start": 11637.64, + "end": 11638.26, + "probability": 0.5087 + }, + { + "start": 11638.4, + "end": 11639.7, + "probability": 0.9795 + }, + { + "start": 11639.78, + "end": 11642.62, + "probability": 0.9649 + }, + { + "start": 11642.62, + "end": 11645.2, + "probability": 0.9697 + }, + { + "start": 11645.66, + "end": 11651.8, + "probability": 0.9556 + }, + { + "start": 11652.34, + "end": 11655.68, + "probability": 0.9854 + }, + { + "start": 11655.86, + "end": 11657.3, + "probability": 0.8307 + }, + { + "start": 11657.42, + "end": 11660.45, + "probability": 0.9744 + }, + { + "start": 11660.72, + "end": 11665.02, + "probability": 0.9965 + }, + { + "start": 11665.02, + "end": 11668.44, + "probability": 0.9182 + }, + { + "start": 11669.46, + "end": 11672.6, + "probability": 0.9214 + }, + { + "start": 11673.32, + "end": 11677.64, + "probability": 0.8181 + }, + { + "start": 11677.7, + "end": 11680.54, + "probability": 0.8539 + }, + { + "start": 11680.56, + "end": 11684.2, + "probability": 0.9945 + }, + { + "start": 11684.48, + "end": 11687.04, + "probability": 0.9133 + }, + { + "start": 11687.04, + "end": 11690.0, + "probability": 0.9392 + }, + { + "start": 11690.8, + "end": 11696.48, + "probability": 0.9965 + }, + { + "start": 11696.92, + "end": 11699.04, + "probability": 0.9963 + }, + { + "start": 11699.42, + "end": 11702.4, + "probability": 0.8315 + }, + { + "start": 11702.54, + "end": 11706.4, + "probability": 0.9959 + }, + { + "start": 11706.64, + "end": 11709.76, + "probability": 0.8083 + }, + { + "start": 11709.94, + "end": 11710.52, + "probability": 0.7324 + }, + { + "start": 11710.82, + "end": 11711.76, + "probability": 0.9541 + }, + { + "start": 11712.04, + "end": 11714.84, + "probability": 0.9224 + }, + { + "start": 11714.94, + "end": 11715.14, + "probability": 0.7563 + }, + { + "start": 11716.04, + "end": 11718.78, + "probability": 0.8574 + }, + { + "start": 11719.16, + "end": 11721.66, + "probability": 0.8493 + }, + { + "start": 11723.87, + "end": 11729.84, + "probability": 0.8391 + }, + { + "start": 11738.66, + "end": 11740.8, + "probability": 0.8297 + }, + { + "start": 11741.16, + "end": 11741.3, + "probability": 0.4295 + }, + { + "start": 11741.48, + "end": 11742.44, + "probability": 0.7621 + }, + { + "start": 11742.56, + "end": 11743.54, + "probability": 0.9316 + }, + { + "start": 11743.66, + "end": 11745.08, + "probability": 0.7284 + }, + { + "start": 11746.68, + "end": 11749.62, + "probability": 0.9941 + }, + { + "start": 11749.84, + "end": 11753.68, + "probability": 0.8795 + }, + { + "start": 11753.8, + "end": 11754.04, + "probability": 0.4795 + }, + { + "start": 11754.2, + "end": 11754.34, + "probability": 0.7439 + }, + { + "start": 11754.52, + "end": 11754.88, + "probability": 0.6949 + }, + { + "start": 11755.12, + "end": 11760.36, + "probability": 0.9888 + }, + { + "start": 11761.08, + "end": 11762.72, + "probability": 0.7452 + }, + { + "start": 11763.06, + "end": 11765.32, + "probability": 0.855 + }, + { + "start": 11766.36, + "end": 11769.22, + "probability": 0.6975 + }, + { + "start": 11769.84, + "end": 11775.5, + "probability": 0.9624 + }, + { + "start": 11776.06, + "end": 11782.33, + "probability": 0.8598 + }, + { + "start": 11783.34, + "end": 11786.8, + "probability": 0.7452 + }, + { + "start": 11787.26, + "end": 11789.58, + "probability": 0.6759 + }, + { + "start": 11790.02, + "end": 11791.52, + "probability": 0.806 + }, + { + "start": 11792.24, + "end": 11794.88, + "probability": 0.9897 + }, + { + "start": 11795.82, + "end": 11801.92, + "probability": 0.7151 + }, + { + "start": 11801.98, + "end": 11803.49, + "probability": 0.9905 + }, + { + "start": 11804.26, + "end": 11805.78, + "probability": 0.8615 + }, + { + "start": 11806.84, + "end": 11809.0, + "probability": 0.5941 + }, + { + "start": 11809.98, + "end": 11813.78, + "probability": 0.9051 + }, + { + "start": 11813.8, + "end": 11814.74, + "probability": 0.6788 + }, + { + "start": 11815.16, + "end": 11818.67, + "probability": 0.9882 + }, + { + "start": 11819.36, + "end": 11823.02, + "probability": 0.9346 + }, + { + "start": 11823.96, + "end": 11827.22, + "probability": 0.966 + }, + { + "start": 11828.06, + "end": 11831.4, + "probability": 0.8483 + }, + { + "start": 11833.42, + "end": 11835.3, + "probability": 0.9736 + }, + { + "start": 11835.36, + "end": 11840.18, + "probability": 0.9777 + }, + { + "start": 11841.08, + "end": 11841.32, + "probability": 0.4928 + }, + { + "start": 11841.54, + "end": 11843.3, + "probability": 0.9293 + }, + { + "start": 11843.48, + "end": 11844.7, + "probability": 0.9807 + }, + { + "start": 11844.88, + "end": 11845.86, + "probability": 0.9173 + }, + { + "start": 11846.32, + "end": 11846.85, + "probability": 0.9668 + }, + { + "start": 11848.04, + "end": 11850.4, + "probability": 0.9369 + }, + { + "start": 11850.88, + "end": 11853.54, + "probability": 0.2727 + }, + { + "start": 11855.34, + "end": 11855.34, + "probability": 0.0346 + }, + { + "start": 11855.34, + "end": 11856.72, + "probability": 0.5265 + }, + { + "start": 11858.78, + "end": 11861.36, + "probability": 0.9523 + }, + { + "start": 11862.36, + "end": 11863.66, + "probability": 0.9545 + }, + { + "start": 11863.76, + "end": 11865.88, + "probability": 0.9684 + }, + { + "start": 11867.16, + "end": 11872.2, + "probability": 0.9873 + }, + { + "start": 11872.98, + "end": 11874.92, + "probability": 0.9832 + }, + { + "start": 11875.14, + "end": 11876.18, + "probability": 0.2731 + }, + { + "start": 11876.6, + "end": 11877.24, + "probability": 0.3936 + }, + { + "start": 11877.56, + "end": 11881.2, + "probability": 0.9929 + }, + { + "start": 11881.54, + "end": 11883.96, + "probability": 0.7989 + }, + { + "start": 11884.38, + "end": 11887.22, + "probability": 0.9797 + }, + { + "start": 11887.22, + "end": 11891.3, + "probability": 0.9764 + }, + { + "start": 11892.3, + "end": 11893.08, + "probability": 0.791 + }, + { + "start": 11893.16, + "end": 11894.02, + "probability": 0.9189 + }, + { + "start": 11894.2, + "end": 11894.84, + "probability": 0.7859 + }, + { + "start": 11894.96, + "end": 11896.5, + "probability": 0.9234 + }, + { + "start": 11896.64, + "end": 11897.48, + "probability": 0.5281 + }, + { + "start": 11897.8, + "end": 11900.2, + "probability": 0.7937 + }, + { + "start": 11900.6, + "end": 11902.4, + "probability": 0.9736 + }, + { + "start": 11902.42, + "end": 11905.7, + "probability": 0.9109 + }, + { + "start": 11906.26, + "end": 11911.14, + "probability": 0.9588 + }, + { + "start": 11912.16, + "end": 11913.74, + "probability": 0.7693 + }, + { + "start": 11914.82, + "end": 11917.52, + "probability": 0.5532 + }, + { + "start": 11918.28, + "end": 11920.02, + "probability": 0.8647 + }, + { + "start": 11920.58, + "end": 11925.29, + "probability": 0.9888 + }, + { + "start": 11925.8, + "end": 11931.32, + "probability": 0.9922 + }, + { + "start": 11931.76, + "end": 11934.56, + "probability": 0.9908 + }, + { + "start": 11934.88, + "end": 11934.88, + "probability": 0.1644 + }, + { + "start": 11934.88, + "end": 11938.44, + "probability": 0.6144 + }, + { + "start": 11938.44, + "end": 11941.04, + "probability": 0.7332 + }, + { + "start": 11941.18, + "end": 11941.74, + "probability": 0.8676 + }, + { + "start": 11942.44, + "end": 11945.04, + "probability": 0.8011 + }, + { + "start": 11945.54, + "end": 11947.94, + "probability": 0.9596 + }, + { + "start": 11948.16, + "end": 11948.7, + "probability": 0.5559 + }, + { + "start": 11948.78, + "end": 11950.42, + "probability": 0.9202 + }, + { + "start": 11959.36, + "end": 11961.02, + "probability": 0.7064 + }, + { + "start": 11961.02, + "end": 11963.38, + "probability": 0.906 + }, + { + "start": 11963.74, + "end": 11964.16, + "probability": 0.5117 + }, + { + "start": 11964.8, + "end": 11965.12, + "probability": 0.9325 + }, + { + "start": 11965.52, + "end": 11966.32, + "probability": 0.979 + }, + { + "start": 11966.38, + "end": 11968.57, + "probability": 0.9836 + }, + { + "start": 11969.54, + "end": 11970.47, + "probability": 0.7532 + }, + { + "start": 11971.08, + "end": 11972.06, + "probability": 0.9282 + }, + { + "start": 11972.98, + "end": 11973.06, + "probability": 0.4224 + }, + { + "start": 11973.18, + "end": 11973.44, + "probability": 0.0203 + }, + { + "start": 11973.54, + "end": 11973.6, + "probability": 0.255 + }, + { + "start": 11973.84, + "end": 11975.27, + "probability": 0.9622 + }, + { + "start": 11975.5, + "end": 11976.96, + "probability": 0.8848 + }, + { + "start": 11977.1, + "end": 11977.86, + "probability": 0.834 + }, + { + "start": 11978.5, + "end": 11981.7, + "probability": 0.9707 + }, + { + "start": 11982.1, + "end": 11983.0, + "probability": 0.3312 + }, + { + "start": 11984.44, + "end": 11985.9, + "probability": 0.9711 + }, + { + "start": 11986.08, + "end": 11989.04, + "probability": 0.9989 + }, + { + "start": 11989.1, + "end": 11990.12, + "probability": 0.8207 + }, + { + "start": 11990.16, + "end": 11993.85, + "probability": 0.9966 + }, + { + "start": 11994.28, + "end": 11998.68, + "probability": 0.9908 + }, + { + "start": 11999.34, + "end": 12000.56, + "probability": 0.7405 + }, + { + "start": 12000.64, + "end": 12003.02, + "probability": 0.9868 + }, + { + "start": 12003.02, + "end": 12003.04, + "probability": 0.683 + }, + { + "start": 12003.06, + "end": 12005.5, + "probability": 0.6616 + }, + { + "start": 12005.64, + "end": 12007.0, + "probability": 0.6409 + }, + { + "start": 12007.38, + "end": 12009.96, + "probability": 0.6314 + }, + { + "start": 12010.7, + "end": 12011.92, + "probability": 0.7288 + }, + { + "start": 12013.3, + "end": 12013.3, + "probability": 0.1293 + }, + { + "start": 12013.3, + "end": 12013.84, + "probability": 0.6752 + }, + { + "start": 12014.1, + "end": 12014.5, + "probability": 0.6927 + }, + { + "start": 12014.5, + "end": 12015.74, + "probability": 0.8537 + }, + { + "start": 12015.74, + "end": 12015.76, + "probability": 0.4724 + }, + { + "start": 12015.8, + "end": 12016.56, + "probability": 0.7939 + }, + { + "start": 12016.6, + "end": 12019.98, + "probability": 0.8085 + }, + { + "start": 12020.06, + "end": 12021.38, + "probability": 0.9249 + }, + { + "start": 12021.96, + "end": 12022.9, + "probability": 0.9578 + }, + { + "start": 12023.18, + "end": 12026.56, + "probability": 0.9991 + }, + { + "start": 12026.6, + "end": 12027.9, + "probability": 0.7986 + }, + { + "start": 12028.44, + "end": 12029.74, + "probability": 0.5047 + }, + { + "start": 12030.32, + "end": 12032.1, + "probability": 0.918 + }, + { + "start": 12032.1, + "end": 12034.52, + "probability": 0.9809 + }, + { + "start": 12034.6, + "end": 12036.18, + "probability": 0.7606 + }, + { + "start": 12036.28, + "end": 12040.8, + "probability": 0.9834 + }, + { + "start": 12041.26, + "end": 12041.78, + "probability": 0.416 + }, + { + "start": 12041.9, + "end": 12044.34, + "probability": 0.9858 + }, + { + "start": 12044.34, + "end": 12049.3, + "probability": 0.9724 + }, + { + "start": 12049.6, + "end": 12054.0, + "probability": 0.9947 + }, + { + "start": 12054.08, + "end": 12054.66, + "probability": 0.7658 + }, + { + "start": 12054.76, + "end": 12055.12, + "probability": 0.8897 + }, + { + "start": 12055.18, + "end": 12058.4, + "probability": 0.985 + }, + { + "start": 12058.86, + "end": 12060.92, + "probability": 0.998 + }, + { + "start": 12061.06, + "end": 12063.71, + "probability": 0.9854 + }, + { + "start": 12064.42, + "end": 12068.32, + "probability": 0.9741 + }, + { + "start": 12069.08, + "end": 12070.92, + "probability": 0.9688 + }, + { + "start": 12070.98, + "end": 12074.9, + "probability": 0.996 + }, + { + "start": 12074.94, + "end": 12076.04, + "probability": 0.9872 + }, + { + "start": 12076.64, + "end": 12076.78, + "probability": 0.667 + }, + { + "start": 12076.84, + "end": 12079.52, + "probability": 0.9108 + }, + { + "start": 12079.52, + "end": 12083.32, + "probability": 0.9969 + }, + { + "start": 12083.54, + "end": 12084.66, + "probability": 0.974 + }, + { + "start": 12085.14, + "end": 12089.96, + "probability": 0.9921 + }, + { + "start": 12089.96, + "end": 12095.0, + "probability": 0.9988 + }, + { + "start": 12095.46, + "end": 12096.6, + "probability": 0.8604 + }, + { + "start": 12096.72, + "end": 12098.68, + "probability": 0.9785 + }, + { + "start": 12099.16, + "end": 12102.66, + "probability": 0.9467 + }, + { + "start": 12102.96, + "end": 12104.54, + "probability": 0.9941 + }, + { + "start": 12104.72, + "end": 12106.2, + "probability": 0.7488 + }, + { + "start": 12106.34, + "end": 12108.8, + "probability": 0.7599 + }, + { + "start": 12109.24, + "end": 12110.52, + "probability": 0.9607 + }, + { + "start": 12110.54, + "end": 12114.52, + "probability": 0.8334 + }, + { + "start": 12114.72, + "end": 12116.44, + "probability": 0.8857 + }, + { + "start": 12116.96, + "end": 12119.92, + "probability": 0.9819 + }, + { + "start": 12119.98, + "end": 12121.96, + "probability": 0.8083 + }, + { + "start": 12122.0, + "end": 12124.2, + "probability": 0.9934 + }, + { + "start": 12124.26, + "end": 12125.7, + "probability": 0.6549 + }, + { + "start": 12125.96, + "end": 12128.24, + "probability": 0.9707 + }, + { + "start": 12128.42, + "end": 12128.82, + "probability": 0.7167 + }, + { + "start": 12128.94, + "end": 12133.0, + "probability": 0.9822 + }, + { + "start": 12133.08, + "end": 12135.8, + "probability": 0.9494 + }, + { + "start": 12135.8, + "end": 12138.28, + "probability": 0.9937 + }, + { + "start": 12138.52, + "end": 12142.8, + "probability": 0.9938 + }, + { + "start": 12142.8, + "end": 12146.78, + "probability": 0.9995 + }, + { + "start": 12147.08, + "end": 12149.62, + "probability": 0.9943 + }, + { + "start": 12149.72, + "end": 12152.52, + "probability": 0.9515 + }, + { + "start": 12152.52, + "end": 12154.56, + "probability": 0.9978 + }, + { + "start": 12154.74, + "end": 12156.5, + "probability": 0.9721 + }, + { + "start": 12156.58, + "end": 12157.6, + "probability": 0.8487 + }, + { + "start": 12157.66, + "end": 12159.1, + "probability": 0.8257 + }, + { + "start": 12159.26, + "end": 12159.98, + "probability": 0.8065 + }, + { + "start": 12160.64, + "end": 12163.2, + "probability": 0.7847 + }, + { + "start": 12163.24, + "end": 12165.9, + "probability": 0.8017 + }, + { + "start": 12166.06, + "end": 12169.44, + "probability": 0.9616 + }, + { + "start": 12169.66, + "end": 12170.54, + "probability": 0.8882 + }, + { + "start": 12170.6, + "end": 12171.2, + "probability": 0.5339 + }, + { + "start": 12171.2, + "end": 12171.64, + "probability": 0.1923 + }, + { + "start": 12172.98, + "end": 12175.4, + "probability": 0.1885 + }, + { + "start": 12175.56, + "end": 12175.66, + "probability": 0.2556 + }, + { + "start": 12175.66, + "end": 12176.48, + "probability": 0.6494 + }, + { + "start": 12176.88, + "end": 12177.44, + "probability": 0.403 + }, + { + "start": 12177.44, + "end": 12178.08, + "probability": 0.0632 + }, + { + "start": 12178.3, + "end": 12179.96, + "probability": 0.0412 + }, + { + "start": 12180.12, + "end": 12181.68, + "probability": 0.0154 + }, + { + "start": 12181.68, + "end": 12182.5, + "probability": 0.6535 + }, + { + "start": 12182.76, + "end": 12183.2, + "probability": 0.8425 + }, + { + "start": 12183.3, + "end": 12184.02, + "probability": 0.6843 + }, + { + "start": 12184.34, + "end": 12186.65, + "probability": 0.964 + }, + { + "start": 12186.98, + "end": 12188.14, + "probability": 0.1565 + }, + { + "start": 12188.14, + "end": 12191.72, + "probability": 0.8985 + }, + { + "start": 12191.9, + "end": 12193.12, + "probability": 0.8093 + }, + { + "start": 12193.92, + "end": 12194.1, + "probability": 0.0307 + }, + { + "start": 12195.3, + "end": 12197.36, + "probability": 0.509 + }, + { + "start": 12198.04, + "end": 12200.84, + "probability": 0.1769 + }, + { + "start": 12200.98, + "end": 12202.26, + "probability": 0.0486 + }, + { + "start": 12202.26, + "end": 12203.66, + "probability": 0.7229 + }, + { + "start": 12203.9, + "end": 12205.34, + "probability": 0.7906 + }, + { + "start": 12205.64, + "end": 12209.26, + "probability": 0.9404 + }, + { + "start": 12209.28, + "end": 12212.44, + "probability": 0.9731 + }, + { + "start": 12213.34, + "end": 12213.38, + "probability": 0.0365 + }, + { + "start": 12213.38, + "end": 12216.64, + "probability": 0.9515 + }, + { + "start": 12216.94, + "end": 12219.8, + "probability": 0.9001 + }, + { + "start": 12219.94, + "end": 12222.12, + "probability": 0.9009 + }, + { + "start": 12222.96, + "end": 12225.74, + "probability": 0.7108 + }, + { + "start": 12225.74, + "end": 12226.38, + "probability": 0.0645 + }, + { + "start": 12228.94, + "end": 12230.68, + "probability": 0.7074 + }, + { + "start": 12231.42, + "end": 12231.7, + "probability": 0.6778 + }, + { + "start": 12231.8, + "end": 12233.7, + "probability": 0.9875 + }, + { + "start": 12233.92, + "end": 12234.62, + "probability": 0.636 + }, + { + "start": 12235.46, + "end": 12238.06, + "probability": 0.9331 + }, + { + "start": 12238.16, + "end": 12240.2, + "probability": 0.7148 + }, + { + "start": 12240.58, + "end": 12240.66, + "probability": 0.0132 + }, + { + "start": 12240.66, + "end": 12240.66, + "probability": 0.2973 + }, + { + "start": 12240.66, + "end": 12242.94, + "probability": 0.695 + }, + { + "start": 12244.42, + "end": 12246.24, + "probability": 0.7986 + }, + { + "start": 12247.54, + "end": 12249.56, + "probability": 0.7447 + }, + { + "start": 12250.54, + "end": 12255.54, + "probability": 0.9973 + }, + { + "start": 12256.92, + "end": 12257.0, + "probability": 0.4068 + }, + { + "start": 12257.08, + "end": 12258.34, + "probability": 0.7833 + }, + { + "start": 12258.82, + "end": 12262.42, + "probability": 0.9374 + }, + { + "start": 12262.72, + "end": 12272.06, + "probability": 0.9704 + }, + { + "start": 12274.02, + "end": 12274.48, + "probability": 0.493 + }, + { + "start": 12274.84, + "end": 12281.54, + "probability": 0.9855 + }, + { + "start": 12281.54, + "end": 12288.1, + "probability": 0.9951 + }, + { + "start": 12288.74, + "end": 12288.92, + "probability": 0.3341 + }, + { + "start": 12289.04, + "end": 12291.46, + "probability": 0.8191 + }, + { + "start": 12291.46, + "end": 12294.76, + "probability": 0.8813 + }, + { + "start": 12294.88, + "end": 12298.22, + "probability": 0.9584 + }, + { + "start": 12298.74, + "end": 12300.23, + "probability": 0.9053 + }, + { + "start": 12301.14, + "end": 12303.7, + "probability": 0.9425 + }, + { + "start": 12303.86, + "end": 12311.38, + "probability": 0.9786 + }, + { + "start": 12312.26, + "end": 12319.36, + "probability": 0.9709 + }, + { + "start": 12320.27, + "end": 12322.75, + "probability": 0.6669 + }, + { + "start": 12323.3, + "end": 12324.0, + "probability": 0.6638 + }, + { + "start": 12324.12, + "end": 12325.3, + "probability": 0.605 + }, + { + "start": 12325.46, + "end": 12326.62, + "probability": 0.991 + }, + { + "start": 12326.72, + "end": 12327.72, + "probability": 0.8605 + }, + { + "start": 12328.34, + "end": 12331.5, + "probability": 0.8679 + }, + { + "start": 12331.96, + "end": 12336.78, + "probability": 0.9365 + }, + { + "start": 12337.52, + "end": 12339.92, + "probability": 0.9028 + }, + { + "start": 12340.68, + "end": 12346.54, + "probability": 0.9718 + }, + { + "start": 12346.8, + "end": 12356.7, + "probability": 0.964 + }, + { + "start": 12356.76, + "end": 12360.02, + "probability": 0.9936 + }, + { + "start": 12360.02, + "end": 12362.06, + "probability": 0.8905 + }, + { + "start": 12362.36, + "end": 12363.64, + "probability": 0.3485 + }, + { + "start": 12363.92, + "end": 12366.06, + "probability": 0.9084 + }, + { + "start": 12366.14, + "end": 12367.74, + "probability": 0.779 + }, + { + "start": 12368.72, + "end": 12369.24, + "probability": 0.6149 + }, + { + "start": 12369.78, + "end": 12373.22, + "probability": 0.9238 + }, + { + "start": 12373.3, + "end": 12374.02, + "probability": 0.7961 + }, + { + "start": 12374.47, + "end": 12375.08, + "probability": 0.6389 + }, + { + "start": 12375.16, + "end": 12375.96, + "probability": 0.8756 + }, + { + "start": 12376.04, + "end": 12379.14, + "probability": 0.9501 + }, + { + "start": 12379.22, + "end": 12380.74, + "probability": 0.9073 + }, + { + "start": 12381.36, + "end": 12384.7, + "probability": 0.9327 + }, + { + "start": 12384.86, + "end": 12387.38, + "probability": 0.9968 + }, + { + "start": 12388.5, + "end": 12388.96, + "probability": 0.6995 + }, + { + "start": 12389.14, + "end": 12389.98, + "probability": 0.958 + }, + { + "start": 12390.46, + "end": 12394.06, + "probability": 0.9221 + }, + { + "start": 12394.48, + "end": 12400.28, + "probability": 0.986 + }, + { + "start": 12400.48, + "end": 12401.92, + "probability": 0.956 + }, + { + "start": 12402.38, + "end": 12409.74, + "probability": 0.9554 + }, + { + "start": 12410.2, + "end": 12411.26, + "probability": 0.9062 + }, + { + "start": 12412.16, + "end": 12414.66, + "probability": 0.9641 + }, + { + "start": 12414.66, + "end": 12416.8, + "probability": 0.939 + }, + { + "start": 12417.5, + "end": 12417.82, + "probability": 0.333 + }, + { + "start": 12417.84, + "end": 12423.16, + "probability": 0.9763 + }, + { + "start": 12423.26, + "end": 12425.4, + "probability": 0.9663 + }, + { + "start": 12425.9, + "end": 12429.26, + "probability": 0.9222 + }, + { + "start": 12429.44, + "end": 12432.9, + "probability": 0.9754 + }, + { + "start": 12433.04, + "end": 12434.26, + "probability": 0.9006 + }, + { + "start": 12434.5, + "end": 12440.68, + "probability": 0.9061 + }, + { + "start": 12441.02, + "end": 12445.88, + "probability": 0.952 + }, + { + "start": 12446.48, + "end": 12451.04, + "probability": 0.9394 + }, + { + "start": 12451.62, + "end": 12457.06, + "probability": 0.9871 + }, + { + "start": 12457.16, + "end": 12459.2, + "probability": 0.9126 + }, + { + "start": 12459.36, + "end": 12461.8, + "probability": 0.5011 + }, + { + "start": 12461.94, + "end": 12462.48, + "probability": 0.8435 + }, + { + "start": 12462.68, + "end": 12463.5, + "probability": 0.6796 + }, + { + "start": 12463.9, + "end": 12466.24, + "probability": 0.9893 + }, + { + "start": 12466.56, + "end": 12469.86, + "probability": 0.9406 + }, + { + "start": 12470.32, + "end": 12474.72, + "probability": 0.9939 + }, + { + "start": 12474.94, + "end": 12480.56, + "probability": 0.9237 + }, + { + "start": 12480.66, + "end": 12481.0, + "probability": 0.5882 + }, + { + "start": 12481.12, + "end": 12481.94, + "probability": 0.7865 + }, + { + "start": 12482.0, + "end": 12482.68, + "probability": 0.7243 + }, + { + "start": 12482.78, + "end": 12485.0, + "probability": 0.8597 + }, + { + "start": 12485.18, + "end": 12487.38, + "probability": 0.9956 + }, + { + "start": 12487.44, + "end": 12491.44, + "probability": 0.9971 + }, + { + "start": 12491.46, + "end": 12496.24, + "probability": 0.9154 + }, + { + "start": 12496.26, + "end": 12499.1, + "probability": 0.8293 + }, + { + "start": 12499.4, + "end": 12504.0, + "probability": 0.9843 + }, + { + "start": 12504.24, + "end": 12506.16, + "probability": 0.9882 + }, + { + "start": 12506.34, + "end": 12506.66, + "probability": 0.6562 + }, + { + "start": 12507.1, + "end": 12509.2, + "probability": 0.6674 + }, + { + "start": 12509.36, + "end": 12511.54, + "probability": 0.9744 + }, + { + "start": 12511.86, + "end": 12512.68, + "probability": 0.5214 + }, + { + "start": 12513.12, + "end": 12515.76, + "probability": 0.9033 + }, + { + "start": 12523.04, + "end": 12527.22, + "probability": 0.8284 + }, + { + "start": 12529.56, + "end": 12531.98, + "probability": 0.9496 + }, + { + "start": 12532.36, + "end": 12532.84, + "probability": 0.9195 + }, + { + "start": 12533.99, + "end": 12537.24, + "probability": 0.6156 + }, + { + "start": 12539.0, + "end": 12541.68, + "probability": 0.604 + }, + { + "start": 12541.98, + "end": 12541.98, + "probability": 0.4516 + }, + { + "start": 12541.98, + "end": 12543.45, + "probability": 0.712 + }, + { + "start": 12544.9, + "end": 12546.9, + "probability": 0.8766 + }, + { + "start": 12548.1, + "end": 12551.34, + "probability": 0.9664 + }, + { + "start": 12553.86, + "end": 12555.74, + "probability": 0.9568 + }, + { + "start": 12558.28, + "end": 12561.04, + "probability": 0.6425 + }, + { + "start": 12561.7, + "end": 12563.56, + "probability": 0.6637 + }, + { + "start": 12564.18, + "end": 12567.04, + "probability": 0.9498 + }, + { + "start": 12568.78, + "end": 12570.24, + "probability": 0.9221 + }, + { + "start": 12570.42, + "end": 12574.14, + "probability": 0.8994 + }, + { + "start": 12574.24, + "end": 12576.24, + "probability": 0.9538 + }, + { + "start": 12576.76, + "end": 12579.84, + "probability": 0.8952 + }, + { + "start": 12580.28, + "end": 12583.08, + "probability": 0.8972 + }, + { + "start": 12583.1, + "end": 12585.13, + "probability": 0.9171 + }, + { + "start": 12585.98, + "end": 12590.56, + "probability": 0.9224 + }, + { + "start": 12590.98, + "end": 12592.44, + "probability": 0.9692 + }, + { + "start": 12592.62, + "end": 12593.11, + "probability": 0.6801 + }, + { + "start": 12594.24, + "end": 12596.78, + "probability": 0.9862 + }, + { + "start": 12597.56, + "end": 12599.64, + "probability": 0.4389 + }, + { + "start": 12599.82, + "end": 12600.68, + "probability": 0.9214 + }, + { + "start": 12600.88, + "end": 12606.66, + "probability": 0.8779 + }, + { + "start": 12607.1, + "end": 12609.72, + "probability": 0.8303 + }, + { + "start": 12610.1, + "end": 12615.44, + "probability": 0.9154 + }, + { + "start": 12616.0, + "end": 12619.7, + "probability": 0.9596 + }, + { + "start": 12619.8, + "end": 12620.34, + "probability": 0.7137 + }, + { + "start": 12620.48, + "end": 12625.81, + "probability": 0.9741 + }, + { + "start": 12626.48, + "end": 12627.3, + "probability": 0.3768 + }, + { + "start": 12627.96, + "end": 12629.66, + "probability": 0.934 + }, + { + "start": 12629.78, + "end": 12631.14, + "probability": 0.9561 + }, + { + "start": 12632.18, + "end": 12636.2, + "probability": 0.9922 + }, + { + "start": 12636.78, + "end": 12641.2, + "probability": 0.9034 + }, + { + "start": 12641.2, + "end": 12644.2, + "probability": 0.9936 + }, + { + "start": 12645.92, + "end": 12648.2, + "probability": 0.9932 + }, + { + "start": 12648.86, + "end": 12649.72, + "probability": 0.9023 + }, + { + "start": 12651.02, + "end": 12654.6, + "probability": 0.9248 + }, + { + "start": 12655.22, + "end": 12656.5, + "probability": 0.958 + }, + { + "start": 12657.48, + "end": 12661.18, + "probability": 0.7633 + }, + { + "start": 12661.68, + "end": 12663.02, + "probability": 0.8267 + }, + { + "start": 12663.46, + "end": 12666.3, + "probability": 0.6088 + }, + { + "start": 12666.4, + "end": 12670.48, + "probability": 0.856 + }, + { + "start": 12671.12, + "end": 12672.6, + "probability": 0.7154 + }, + { + "start": 12672.7, + "end": 12676.42, + "probability": 0.8218 + }, + { + "start": 12676.68, + "end": 12677.2, + "probability": 0.8042 + }, + { + "start": 12677.34, + "end": 12678.12, + "probability": 0.6723 + }, + { + "start": 12678.18, + "end": 12679.66, + "probability": 0.5783 + }, + { + "start": 12680.22, + "end": 12680.5, + "probability": 0.9197 + }, + { + "start": 12680.56, + "end": 12685.06, + "probability": 0.9854 + }, + { + "start": 12685.06, + "end": 12690.64, + "probability": 0.9901 + }, + { + "start": 12692.18, + "end": 12693.72, + "probability": 0.9959 + }, + { + "start": 12694.0, + "end": 12697.68, + "probability": 0.9613 + }, + { + "start": 12698.06, + "end": 12699.54, + "probability": 0.8987 + }, + { + "start": 12700.04, + "end": 12700.99, + "probability": 0.9816 + }, + { + "start": 12701.22, + "end": 12704.82, + "probability": 0.8799 + }, + { + "start": 12705.12, + "end": 12707.04, + "probability": 0.8701 + }, + { + "start": 12709.22, + "end": 12712.6, + "probability": 0.9985 + }, + { + "start": 12715.58, + "end": 12715.64, + "probability": 0.8997 + }, + { + "start": 12715.76, + "end": 12718.68, + "probability": 0.9293 + }, + { + "start": 12718.78, + "end": 12720.46, + "probability": 0.9906 + }, + { + "start": 12720.52, + "end": 12722.7, + "probability": 0.9741 + }, + { + "start": 12722.96, + "end": 12724.82, + "probability": 0.9492 + }, + { + "start": 12725.64, + "end": 12728.88, + "probability": 0.9708 + }, + { + "start": 12729.18, + "end": 12732.82, + "probability": 0.8555 + }, + { + "start": 12733.4, + "end": 12737.28, + "probability": 0.9877 + }, + { + "start": 12737.58, + "end": 12739.34, + "probability": 0.4622 + }, + { + "start": 12739.44, + "end": 12740.1, + "probability": 0.8253 + }, + { + "start": 12740.66, + "end": 12743.03, + "probability": 0.9072 + }, + { + "start": 12743.52, + "end": 12745.9, + "probability": 0.9542 + }, + { + "start": 12746.6, + "end": 12746.88, + "probability": 0.5879 + }, + { + "start": 12746.98, + "end": 12750.5, + "probability": 0.851 + }, + { + "start": 12750.66, + "end": 12754.12, + "probability": 0.9136 + }, + { + "start": 12755.18, + "end": 12755.83, + "probability": 0.9976 + }, + { + "start": 12756.84, + "end": 12758.2, + "probability": 0.955 + }, + { + "start": 12758.76, + "end": 12760.34, + "probability": 0.7553 + }, + { + "start": 12761.0, + "end": 12761.34, + "probability": 0.9762 + }, + { + "start": 12762.1, + "end": 12765.32, + "probability": 0.2901 + }, + { + "start": 12766.5, + "end": 12766.64, + "probability": 0.1759 + }, + { + "start": 12766.64, + "end": 12766.99, + "probability": 0.4246 + }, + { + "start": 12769.16, + "end": 12772.08, + "probability": 0.6384 + }, + { + "start": 12778.24, + "end": 12780.3, + "probability": 0.9539 + }, + { + "start": 12780.6, + "end": 12782.22, + "probability": 0.734 + }, + { + "start": 12782.46, + "end": 12782.46, + "probability": 0.3802 + }, + { + "start": 12782.46, + "end": 12783.0, + "probability": 0.558 + }, + { + "start": 12783.1, + "end": 12784.71, + "probability": 0.8846 + }, + { + "start": 12785.66, + "end": 12789.8, + "probability": 0.8944 + }, + { + "start": 12790.86, + "end": 12794.74, + "probability": 0.9762 + }, + { + "start": 12794.88, + "end": 12800.04, + "probability": 0.9683 + }, + { + "start": 12800.16, + "end": 12801.04, + "probability": 0.8297 + }, + { + "start": 12801.42, + "end": 12803.98, + "probability": 0.8781 + }, + { + "start": 12804.9, + "end": 12807.46, + "probability": 0.9966 + }, + { + "start": 12807.46, + "end": 12811.3, + "probability": 0.9951 + }, + { + "start": 12812.14, + "end": 12816.08, + "probability": 0.9198 + }, + { + "start": 12817.3, + "end": 12820.18, + "probability": 0.9889 + }, + { + "start": 12821.56, + "end": 12827.08, + "probability": 0.9987 + }, + { + "start": 12827.08, + "end": 12830.92, + "probability": 0.9989 + }, + { + "start": 12831.92, + "end": 12834.66, + "probability": 0.9976 + }, + { + "start": 12835.32, + "end": 12842.32, + "probability": 0.9953 + }, + { + "start": 12843.22, + "end": 12845.92, + "probability": 0.9192 + }, + { + "start": 12846.6, + "end": 12851.82, + "probability": 0.9917 + }, + { + "start": 12853.82, + "end": 12860.72, + "probability": 0.9974 + }, + { + "start": 12861.04, + "end": 12866.72, + "probability": 0.9951 + }, + { + "start": 12867.42, + "end": 12870.54, + "probability": 0.9976 + }, + { + "start": 12871.3, + "end": 12873.58, + "probability": 0.7729 + }, + { + "start": 12875.58, + "end": 12877.45, + "probability": 0.9381 + }, + { + "start": 12880.8, + "end": 12887.8, + "probability": 0.9754 + }, + { + "start": 12889.0, + "end": 12889.34, + "probability": 0.4684 + }, + { + "start": 12889.46, + "end": 12890.62, + "probability": 0.797 + }, + { + "start": 12890.82, + "end": 12899.66, + "probability": 0.9761 + }, + { + "start": 12900.48, + "end": 12902.18, + "probability": 0.965 + }, + { + "start": 12902.72, + "end": 12903.48, + "probability": 0.7832 + }, + { + "start": 12904.66, + "end": 12911.3, + "probability": 0.9873 + }, + { + "start": 12911.3, + "end": 12915.64, + "probability": 0.9996 + }, + { + "start": 12915.64, + "end": 12920.82, + "probability": 0.9977 + }, + { + "start": 12922.92, + "end": 12925.36, + "probability": 0.835 + }, + { + "start": 12925.42, + "end": 12927.08, + "probability": 0.9634 + }, + { + "start": 12927.26, + "end": 12932.66, + "probability": 0.5604 + }, + { + "start": 12932.66, + "end": 12938.72, + "probability": 0.9683 + }, + { + "start": 12939.38, + "end": 12944.1, + "probability": 0.9934 + }, + { + "start": 12945.56, + "end": 12951.62, + "probability": 0.999 + }, + { + "start": 12951.62, + "end": 12956.08, + "probability": 0.9528 + }, + { + "start": 12956.36, + "end": 12956.76, + "probability": 0.7621 + }, + { + "start": 12957.48, + "end": 12959.36, + "probability": 0.6462 + }, + { + "start": 12959.82, + "end": 12962.24, + "probability": 0.9813 + }, + { + "start": 12962.54, + "end": 12963.5, + "probability": 0.399 + }, + { + "start": 12963.74, + "end": 12966.7, + "probability": 0.9054 + }, + { + "start": 12970.32, + "end": 12971.68, + "probability": 0.9739 + }, + { + "start": 12975.16, + "end": 12976.34, + "probability": 0.7653 + }, + { + "start": 12977.38, + "end": 12981.06, + "probability": 0.8286 + }, + { + "start": 12982.9, + "end": 12985.4, + "probability": 0.9978 + }, + { + "start": 12985.52, + "end": 12988.16, + "probability": 0.9764 + }, + { + "start": 12988.84, + "end": 12991.22, + "probability": 0.9663 + }, + { + "start": 12991.72, + "end": 12994.24, + "probability": 0.9856 + }, + { + "start": 12995.14, + "end": 12998.48, + "probability": 0.8924 + }, + { + "start": 12998.96, + "end": 13004.56, + "probability": 0.9941 + }, + { + "start": 13004.78, + "end": 13005.66, + "probability": 0.693 + }, + { + "start": 13006.16, + "end": 13007.18, + "probability": 0.9866 + }, + { + "start": 13007.38, + "end": 13008.44, + "probability": 0.9856 + }, + { + "start": 13008.52, + "end": 13010.1, + "probability": 0.9043 + }, + { + "start": 13010.54, + "end": 13012.36, + "probability": 0.981 + }, + { + "start": 13012.98, + "end": 13017.87, + "probability": 0.9478 + }, + { + "start": 13018.58, + "end": 13021.8, + "probability": 0.9791 + }, + { + "start": 13022.18, + "end": 13024.83, + "probability": 0.9575 + }, + { + "start": 13025.86, + "end": 13028.6, + "probability": 0.8506 + }, + { + "start": 13028.6, + "end": 13032.1, + "probability": 0.9982 + }, + { + "start": 13032.78, + "end": 13035.7, + "probability": 0.9841 + }, + { + "start": 13036.34, + "end": 13039.84, + "probability": 0.9971 + }, + { + "start": 13039.84, + "end": 13043.28, + "probability": 0.9979 + }, + { + "start": 13044.0, + "end": 13044.4, + "probability": 0.5441 + }, + { + "start": 13044.68, + "end": 13051.62, + "probability": 0.9812 + }, + { + "start": 13051.62, + "end": 13055.9, + "probability": 0.9962 + }, + { + "start": 13056.66, + "end": 13059.52, + "probability": 0.9376 + }, + { + "start": 13060.28, + "end": 13067.82, + "probability": 0.9436 + }, + { + "start": 13068.74, + "end": 13069.82, + "probability": 0.9248 + }, + { + "start": 13070.12, + "end": 13075.84, + "probability": 0.9945 + }, + { + "start": 13075.96, + "end": 13077.28, + "probability": 0.8461 + }, + { + "start": 13077.74, + "end": 13086.02, + "probability": 0.9946 + }, + { + "start": 13087.0, + "end": 13089.16, + "probability": 0.4822 + }, + { + "start": 13089.44, + "end": 13097.94, + "probability": 0.9981 + }, + { + "start": 13098.6, + "end": 13102.98, + "probability": 0.9305 + }, + { + "start": 13103.96, + "end": 13107.6, + "probability": 0.9995 + }, + { + "start": 13108.08, + "end": 13109.56, + "probability": 0.8368 + }, + { + "start": 13110.76, + "end": 13118.26, + "probability": 0.9854 + }, + { + "start": 13119.66, + "end": 13123.22, + "probability": 0.9591 + }, + { + "start": 13123.42, + "end": 13123.78, + "probability": 0.7649 + }, + { + "start": 13123.84, + "end": 13127.06, + "probability": 0.9822 + }, + { + "start": 13127.18, + "end": 13129.76, + "probability": 0.9653 + }, + { + "start": 13130.08, + "end": 13133.8, + "probability": 0.9958 + }, + { + "start": 13134.14, + "end": 13137.96, + "probability": 0.9971 + }, + { + "start": 13138.24, + "end": 13139.82, + "probability": 0.9314 + }, + { + "start": 13140.08, + "end": 13141.72, + "probability": 0.9412 + }, + { + "start": 13142.02, + "end": 13144.52, + "probability": 0.9839 + }, + { + "start": 13144.62, + "end": 13145.34, + "probability": 0.8436 + }, + { + "start": 13145.42, + "end": 13149.62, + "probability": 0.8601 + }, + { + "start": 13149.98, + "end": 13155.26, + "probability": 0.6831 + }, + { + "start": 13156.54, + "end": 13158.12, + "probability": 0.8204 + }, + { + "start": 13158.58, + "end": 13160.22, + "probability": 0.9695 + }, + { + "start": 13160.3, + "end": 13164.26, + "probability": 0.8052 + }, + { + "start": 13164.7, + "end": 13166.3, + "probability": 0.9419 + }, + { + "start": 13166.64, + "end": 13168.3, + "probability": 0.6583 + }, + { + "start": 13168.5, + "end": 13172.94, + "probability": 0.9817 + }, + { + "start": 13173.14, + "end": 13176.82, + "probability": 0.879 + }, + { + "start": 13177.02, + "end": 13181.58, + "probability": 0.9793 + }, + { + "start": 13181.58, + "end": 13185.96, + "probability": 0.9978 + }, + { + "start": 13187.16, + "end": 13188.28, + "probability": 0.9491 + }, + { + "start": 13189.2, + "end": 13191.82, + "probability": 0.9045 + }, + { + "start": 13192.38, + "end": 13194.82, + "probability": 0.4541 + }, + { + "start": 13195.82, + "end": 13199.28, + "probability": 0.7827 + }, + { + "start": 13200.14, + "end": 13201.26, + "probability": 0.9332 + }, + { + "start": 13201.34, + "end": 13201.94, + "probability": 0.9496 + }, + { + "start": 13202.26, + "end": 13202.94, + "probability": 0.3995 + }, + { + "start": 13202.98, + "end": 13203.94, + "probability": 0.9561 + }, + { + "start": 13204.68, + "end": 13205.56, + "probability": 0.667 + }, + { + "start": 13205.88, + "end": 13206.9, + "probability": 0.7723 + }, + { + "start": 13207.12, + "end": 13208.54, + "probability": 0.7189 + }, + { + "start": 13208.6, + "end": 13209.04, + "probability": 0.2384 + }, + { + "start": 13211.24, + "end": 13213.94, + "probability": 0.7639 + }, + { + "start": 13215.72, + "end": 13217.06, + "probability": 0.6291 + }, + { + "start": 13217.8, + "end": 13220.38, + "probability": 0.8795 + }, + { + "start": 13222.46, + "end": 13224.68, + "probability": 0.027 + }, + { + "start": 13234.28, + "end": 13235.78, + "probability": 0.4892 + }, + { + "start": 13238.13, + "end": 13241.46, + "probability": 0.7916 + }, + { + "start": 13241.6, + "end": 13244.26, + "probability": 0.808 + }, + { + "start": 13244.94, + "end": 13247.0, + "probability": 0.6196 + }, + { + "start": 13249.08, + "end": 13251.08, + "probability": 0.5497 + }, + { + "start": 13252.5, + "end": 13254.36, + "probability": 0.7197 + }, + { + "start": 13254.96, + "end": 13256.18, + "probability": 0.4977 + }, + { + "start": 13256.2, + "end": 13259.94, + "probability": 0.885 + }, + { + "start": 13261.04, + "end": 13264.26, + "probability": 0.6124 + }, + { + "start": 13266.08, + "end": 13270.02, + "probability": 0.985 + }, + { + "start": 13270.82, + "end": 13274.74, + "probability": 0.9778 + }, + { + "start": 13275.68, + "end": 13278.16, + "probability": 0.6432 + }, + { + "start": 13278.16, + "end": 13278.58, + "probability": 0.9066 + }, + { + "start": 13278.86, + "end": 13280.82, + "probability": 0.7658 + }, + { + "start": 13281.22, + "end": 13282.48, + "probability": 0.9273 + }, + { + "start": 13282.92, + "end": 13284.11, + "probability": 0.9264 + }, + { + "start": 13284.28, + "end": 13284.96, + "probability": 0.6803 + }, + { + "start": 13285.38, + "end": 13287.24, + "probability": 0.7632 + }, + { + "start": 13287.58, + "end": 13290.5, + "probability": 0.9673 + }, + { + "start": 13291.24, + "end": 13292.96, + "probability": 0.8756 + }, + { + "start": 13293.4, + "end": 13296.78, + "probability": 0.7769 + }, + { + "start": 13298.63, + "end": 13301.7, + "probability": 0.9961 + }, + { + "start": 13302.62, + "end": 13308.14, + "probability": 0.6713 + }, + { + "start": 13309.98, + "end": 13311.64, + "probability": 0.9507 + }, + { + "start": 13312.06, + "end": 13315.78, + "probability": 0.8329 + }, + { + "start": 13317.64, + "end": 13328.38, + "probability": 0.9102 + }, + { + "start": 13330.24, + "end": 13337.58, + "probability": 0.9836 + }, + { + "start": 13338.46, + "end": 13344.18, + "probability": 0.9897 + }, + { + "start": 13344.26, + "end": 13345.16, + "probability": 0.7004 + }, + { + "start": 13347.04, + "end": 13349.04, + "probability": 0.922 + }, + { + "start": 13349.14, + "end": 13350.5, + "probability": 0.8803 + }, + { + "start": 13351.04, + "end": 13353.06, + "probability": 0.9189 + }, + { + "start": 13354.22, + "end": 13355.98, + "probability": 0.858 + }, + { + "start": 13356.58, + "end": 13359.96, + "probability": 0.9819 + }, + { + "start": 13361.02, + "end": 13364.3, + "probability": 0.9653 + }, + { + "start": 13364.78, + "end": 13368.38, + "probability": 0.8984 + }, + { + "start": 13369.42, + "end": 13371.36, + "probability": 0.9939 + }, + { + "start": 13373.04, + "end": 13380.46, + "probability": 0.9617 + }, + { + "start": 13381.44, + "end": 13382.86, + "probability": 0.9949 + }, + { + "start": 13383.52, + "end": 13385.29, + "probability": 0.987 + }, + { + "start": 13386.24, + "end": 13390.64, + "probability": 0.8413 + }, + { + "start": 13392.94, + "end": 13398.98, + "probability": 0.9884 + }, + { + "start": 13399.18, + "end": 13401.24, + "probability": 0.7104 + }, + { + "start": 13402.4, + "end": 13406.24, + "probability": 0.7671 + }, + { + "start": 13407.64, + "end": 13414.56, + "probability": 0.896 + }, + { + "start": 13416.38, + "end": 13424.38, + "probability": 0.8698 + }, + { + "start": 13425.32, + "end": 13426.8, + "probability": 0.5882 + }, + { + "start": 13427.26, + "end": 13432.0, + "probability": 0.9896 + }, + { + "start": 13433.1, + "end": 13436.12, + "probability": 0.8987 + }, + { + "start": 13436.78, + "end": 13440.52, + "probability": 0.9937 + }, + { + "start": 13441.62, + "end": 13442.68, + "probability": 0.7732 + }, + { + "start": 13442.74, + "end": 13444.28, + "probability": 0.6156 + }, + { + "start": 13444.6, + "end": 13448.42, + "probability": 0.9966 + }, + { + "start": 13449.26, + "end": 13454.03, + "probability": 0.8403 + }, + { + "start": 13456.1, + "end": 13459.52, + "probability": 0.8694 + }, + { + "start": 13460.58, + "end": 13460.58, + "probability": 0.0765 + }, + { + "start": 13460.64, + "end": 13463.18, + "probability": 0.811 + }, + { + "start": 13463.98, + "end": 13467.4, + "probability": 0.8174 + }, + { + "start": 13467.82, + "end": 13468.42, + "probability": 0.4897 + }, + { + "start": 13468.52, + "end": 13469.84, + "probability": 0.7094 + }, + { + "start": 13470.38, + "end": 13473.62, + "probability": 0.7495 + }, + { + "start": 13473.62, + "end": 13474.2, + "probability": 0.3171 + }, + { + "start": 13474.2, + "end": 13475.98, + "probability": 0.6817 + }, + { + "start": 13477.6, + "end": 13477.9, + "probability": 0.5601 + }, + { + "start": 13477.9, + "end": 13479.08, + "probability": 0.5726 + }, + { + "start": 13479.34, + "end": 13481.54, + "probability": 0.6523 + }, + { + "start": 13481.6, + "end": 13482.9, + "probability": 0.5933 + }, + { + "start": 13483.52, + "end": 13487.14, + "probability": 0.9155 + }, + { + "start": 13487.78, + "end": 13493.78, + "probability": 0.9079 + }, + { + "start": 13493.8, + "end": 13494.24, + "probability": 0.3772 + }, + { + "start": 13494.34, + "end": 13498.3, + "probability": 0.995 + }, + { + "start": 13498.78, + "end": 13502.72, + "probability": 0.988 + }, + { + "start": 13502.76, + "end": 13503.1, + "probability": 0.3438 + }, + { + "start": 13503.14, + "end": 13507.2, + "probability": 0.6236 + }, + { + "start": 13507.2, + "end": 13507.94, + "probability": 0.5508 + }, + { + "start": 13508.86, + "end": 13511.32, + "probability": 0.9805 + }, + { + "start": 13511.44, + "end": 13514.08, + "probability": 0.9941 + }, + { + "start": 13514.56, + "end": 13515.36, + "probability": 0.4002 + }, + { + "start": 13515.7, + "end": 13518.06, + "probability": 0.9682 + }, + { + "start": 13518.52, + "end": 13519.26, + "probability": 0.4283 + }, + { + "start": 13519.28, + "end": 13523.02, + "probability": 0.6345 + }, + { + "start": 13529.0, + "end": 13531.74, + "probability": 0.9033 + }, + { + "start": 13532.8, + "end": 13536.28, + "probability": 0.9898 + }, + { + "start": 13536.68, + "end": 13538.64, + "probability": 0.2694 + }, + { + "start": 13539.06, + "end": 13541.18, + "probability": 0.9511 + }, + { + "start": 13541.62, + "end": 13542.82, + "probability": 0.5917 + }, + { + "start": 13542.82, + "end": 13544.76, + "probability": 0.9063 + }, + { + "start": 13544.8, + "end": 13545.82, + "probability": 0.6173 + }, + { + "start": 13545.82, + "end": 13547.06, + "probability": 0.0093 + }, + { + "start": 13547.12, + "end": 13548.12, + "probability": 0.4052 + }, + { + "start": 13549.82, + "end": 13552.78, + "probability": 0.0919 + }, + { + "start": 13553.96, + "end": 13554.7, + "probability": 0.0018 + }, + { + "start": 13554.7, + "end": 13554.7, + "probability": 0.1523 + }, + { + "start": 13554.7, + "end": 13556.57, + "probability": 0.3846 + }, + { + "start": 13562.54, + "end": 13565.78, + "probability": 0.6945 + }, + { + "start": 13567.72, + "end": 13569.9, + "probability": 0.7987 + }, + { + "start": 13570.8, + "end": 13573.34, + "probability": 0.9885 + }, + { + "start": 13573.34, + "end": 13576.32, + "probability": 0.8788 + }, + { + "start": 13577.66, + "end": 13582.17, + "probability": 0.9914 + }, + { + "start": 13583.18, + "end": 13588.32, + "probability": 0.9958 + }, + { + "start": 13589.18, + "end": 13594.32, + "probability": 0.9812 + }, + { + "start": 13595.18, + "end": 13598.18, + "probability": 0.9985 + }, + { + "start": 13598.74, + "end": 13603.82, + "probability": 0.9726 + }, + { + "start": 13605.58, + "end": 13607.98, + "probability": 0.9836 + }, + { + "start": 13607.98, + "end": 13611.58, + "probability": 0.9915 + }, + { + "start": 13612.9, + "end": 13616.78, + "probability": 0.999 + }, + { + "start": 13617.56, + "end": 13619.3, + "probability": 0.8533 + }, + { + "start": 13620.12, + "end": 13622.52, + "probability": 0.9251 + }, + { + "start": 13623.44, + "end": 13626.32, + "probability": 0.9962 + }, + { + "start": 13626.32, + "end": 13629.64, + "probability": 0.7519 + }, + { + "start": 13630.74, + "end": 13633.61, + "probability": 0.8743 + }, + { + "start": 13634.24, + "end": 13637.22, + "probability": 0.8034 + }, + { + "start": 13637.86, + "end": 13640.16, + "probability": 0.9695 + }, + { + "start": 13641.78, + "end": 13644.84, + "probability": 0.9898 + }, + { + "start": 13645.7, + "end": 13646.56, + "probability": 0.6848 + }, + { + "start": 13647.86, + "end": 13650.18, + "probability": 0.9813 + }, + { + "start": 13652.1, + "end": 13656.34, + "probability": 0.9617 + }, + { + "start": 13656.7, + "end": 13660.02, + "probability": 0.9838 + }, + { + "start": 13660.68, + "end": 13665.78, + "probability": 0.9712 + }, + { + "start": 13665.78, + "end": 13669.56, + "probability": 0.9973 + }, + { + "start": 13670.82, + "end": 13673.72, + "probability": 0.9676 + }, + { + "start": 13674.1, + "end": 13678.06, + "probability": 0.925 + }, + { + "start": 13678.88, + "end": 13684.4, + "probability": 0.9924 + }, + { + "start": 13684.4, + "end": 13690.52, + "probability": 0.9927 + }, + { + "start": 13690.66, + "end": 13691.72, + "probability": 0.4878 + }, + { + "start": 13691.88, + "end": 13692.76, + "probability": 0.75 + }, + { + "start": 13693.98, + "end": 13695.06, + "probability": 0.8775 + }, + { + "start": 13695.34, + "end": 13700.66, + "probability": 0.9746 + }, + { + "start": 13701.12, + "end": 13704.9, + "probability": 0.9932 + }, + { + "start": 13705.48, + "end": 13707.38, + "probability": 0.9903 + }, + { + "start": 13707.88, + "end": 13711.28, + "probability": 0.8998 + }, + { + "start": 13711.66, + "end": 13714.82, + "probability": 0.9912 + }, + { + "start": 13715.52, + "end": 13716.92, + "probability": 0.8141 + }, + { + "start": 13717.46, + "end": 13720.52, + "probability": 0.8752 + }, + { + "start": 13721.16, + "end": 13721.98, + "probability": 0.8589 + }, + { + "start": 13722.32, + "end": 13722.77, + "probability": 0.8544 + }, + { + "start": 13723.74, + "end": 13725.23, + "probability": 0.9692 + }, + { + "start": 13725.5, + "end": 13728.1, + "probability": 0.9167 + }, + { + "start": 13728.14, + "end": 13729.22, + "probability": 0.7676 + }, + { + "start": 13729.6, + "end": 13732.04, + "probability": 0.9879 + }, + { + "start": 13732.58, + "end": 13734.96, + "probability": 0.4591 + }, + { + "start": 13735.44, + "end": 13737.2, + "probability": 0.915 + }, + { + "start": 13737.86, + "end": 13738.82, + "probability": 0.8127 + }, + { + "start": 13738.98, + "end": 13740.46, + "probability": 0.6843 + }, + { + "start": 13740.58, + "end": 13743.46, + "probability": 0.7116 + }, + { + "start": 13743.64, + "end": 13745.36, + "probability": 0.0254 + }, + { + "start": 13745.54, + "end": 13746.81, + "probability": 0.9728 + }, + { + "start": 13748.4, + "end": 13753.88, + "probability": 0.9894 + }, + { + "start": 13753.88, + "end": 13758.96, + "probability": 0.9989 + }, + { + "start": 13760.1, + "end": 13760.48, + "probability": 0.5952 + }, + { + "start": 13760.56, + "end": 13761.62, + "probability": 0.8351 + }, + { + "start": 13761.96, + "end": 13765.42, + "probability": 0.8583 + }, + { + "start": 13766.56, + "end": 13770.52, + "probability": 0.9741 + }, + { + "start": 13771.5, + "end": 13776.6, + "probability": 0.9884 + }, + { + "start": 13777.6, + "end": 13783.4, + "probability": 0.9936 + }, + { + "start": 13784.14, + "end": 13791.14, + "probability": 0.9799 + }, + { + "start": 13792.24, + "end": 13795.24, + "probability": 0.8736 + }, + { + "start": 13796.08, + "end": 13801.18, + "probability": 0.9937 + }, + { + "start": 13801.78, + "end": 13804.52, + "probability": 0.986 + }, + { + "start": 13806.48, + "end": 13810.6, + "probability": 0.9966 + }, + { + "start": 13811.82, + "end": 13812.42, + "probability": 0.8259 + }, + { + "start": 13813.1, + "end": 13815.52, + "probability": 0.7499 + }, + { + "start": 13815.92, + "end": 13818.84, + "probability": 0.9915 + }, + { + "start": 13818.84, + "end": 13823.58, + "probability": 0.9403 + }, + { + "start": 13824.32, + "end": 13825.94, + "probability": 0.96 + }, + { + "start": 13826.68, + "end": 13831.41, + "probability": 0.9839 + }, + { + "start": 13831.8, + "end": 13837.96, + "probability": 0.9919 + }, + { + "start": 13838.04, + "end": 13838.04, + "probability": 0.5488 + }, + { + "start": 13838.12, + "end": 13838.86, + "probability": 0.3488 + }, + { + "start": 13840.7, + "end": 13841.1, + "probability": 0.3629 + }, + { + "start": 13841.24, + "end": 13842.76, + "probability": 0.798 + }, + { + "start": 13842.76, + "end": 13845.7, + "probability": 0.7306 + }, + { + "start": 13845.74, + "end": 13846.26, + "probability": 0.8712 + }, + { + "start": 13846.28, + "end": 13848.94, + "probability": 0.7713 + }, + { + "start": 13849.36, + "end": 13852.32, + "probability": 0.9821 + }, + { + "start": 13852.32, + "end": 13855.06, + "probability": 0.9744 + }, + { + "start": 13855.58, + "end": 13860.12, + "probability": 0.9727 + }, + { + "start": 13860.52, + "end": 13864.82, + "probability": 0.9917 + }, + { + "start": 13865.2, + "end": 13866.08, + "probability": 0.9365 + }, + { + "start": 13866.5, + "end": 13868.74, + "probability": 0.895 + }, + { + "start": 13868.74, + "end": 13872.4, + "probability": 0.974 + }, + { + "start": 13872.76, + "end": 13876.4, + "probability": 0.9977 + }, + { + "start": 13876.4, + "end": 13880.04, + "probability": 0.9985 + }, + { + "start": 13880.08, + "end": 13881.64, + "probability": 0.5428 + }, + { + "start": 13882.1, + "end": 13884.2, + "probability": 0.9795 + }, + { + "start": 13884.54, + "end": 13887.98, + "probability": 0.9324 + }, + { + "start": 13888.2, + "end": 13888.82, + "probability": 0.9014 + }, + { + "start": 13889.02, + "end": 13891.56, + "probability": 0.7366 + }, + { + "start": 13892.2, + "end": 13894.7, + "probability": 0.8486 + }, + { + "start": 13895.4, + "end": 13897.24, + "probability": 0.7077 + }, + { + "start": 13898.04, + "end": 13899.8, + "probability": 0.983 + }, + { + "start": 13899.92, + "end": 13900.6, + "probability": 0.4372 + }, + { + "start": 13900.62, + "end": 13902.12, + "probability": 0.9935 + }, + { + "start": 13918.02, + "end": 13919.9, + "probability": 0.6678 + }, + { + "start": 13921.22, + "end": 13921.4, + "probability": 0.2661 + }, + { + "start": 13924.72, + "end": 13925.96, + "probability": 0.5797 + }, + { + "start": 13926.7, + "end": 13928.48, + "probability": 0.7027 + }, + { + "start": 13929.76, + "end": 13930.0, + "probability": 0.3449 + }, + { + "start": 13930.08, + "end": 13930.88, + "probability": 0.8261 + }, + { + "start": 13930.98, + "end": 13933.52, + "probability": 0.9549 + }, + { + "start": 13934.44, + "end": 13936.02, + "probability": 0.9427 + }, + { + "start": 13936.7, + "end": 13937.84, + "probability": 0.9753 + }, + { + "start": 13939.04, + "end": 13942.78, + "probability": 0.9896 + }, + { + "start": 13943.44, + "end": 13944.4, + "probability": 0.9197 + }, + { + "start": 13945.52, + "end": 13947.28, + "probability": 0.947 + }, + { + "start": 13947.88, + "end": 13950.44, + "probability": 0.8762 + }, + { + "start": 13950.52, + "end": 13952.78, + "probability": 0.9967 + }, + { + "start": 13953.28, + "end": 13956.28, + "probability": 0.9989 + }, + { + "start": 13956.94, + "end": 13960.36, + "probability": 0.8607 + }, + { + "start": 13960.54, + "end": 13961.6, + "probability": 0.8049 + }, + { + "start": 13961.72, + "end": 13965.34, + "probability": 0.7811 + }, + { + "start": 13965.8, + "end": 13967.4, + "probability": 0.9918 + }, + { + "start": 13968.1, + "end": 13970.28, + "probability": 0.9468 + }, + { + "start": 13970.96, + "end": 13977.32, + "probability": 0.9015 + }, + { + "start": 13977.64, + "end": 13979.22, + "probability": 0.8071 + }, + { + "start": 13979.26, + "end": 13981.3, + "probability": 0.9873 + }, + { + "start": 13981.64, + "end": 13985.12, + "probability": 0.7706 + }, + { + "start": 13985.7, + "end": 13987.22, + "probability": 0.5792 + }, + { + "start": 13988.02, + "end": 13990.59, + "probability": 0.9231 + }, + { + "start": 13991.1, + "end": 13993.62, + "probability": 0.9626 + }, + { + "start": 13994.1, + "end": 13996.9, + "probability": 0.9854 + }, + { + "start": 13996.9, + "end": 14000.4, + "probability": 0.847 + }, + { + "start": 14000.48, + "end": 14001.54, + "probability": 0.6792 + }, + { + "start": 14001.66, + "end": 14002.4, + "probability": 0.827 + }, + { + "start": 14002.46, + "end": 14003.94, + "probability": 0.6984 + }, + { + "start": 14004.06, + "end": 14005.07, + "probability": 0.4459 + }, + { + "start": 14006.06, + "end": 14007.0, + "probability": 0.6985 + }, + { + "start": 14007.16, + "end": 14009.02, + "probability": 0.815 + }, + { + "start": 14009.36, + "end": 14012.24, + "probability": 0.964 + }, + { + "start": 14014.0, + "end": 14015.2, + "probability": 0.9698 + }, + { + "start": 14015.28, + "end": 14016.02, + "probability": 0.8574 + }, + { + "start": 14016.08, + "end": 14016.68, + "probability": 0.9184 + }, + { + "start": 14016.78, + "end": 14017.66, + "probability": 0.9402 + }, + { + "start": 14018.0, + "end": 14020.74, + "probability": 0.8866 + }, + { + "start": 14020.74, + "end": 14025.12, + "probability": 0.9126 + }, + { + "start": 14026.04, + "end": 14030.06, + "probability": 0.9045 + }, + { + "start": 14030.12, + "end": 14032.28, + "probability": 0.8275 + }, + { + "start": 14032.9, + "end": 14037.94, + "probability": 0.8125 + }, + { + "start": 14038.74, + "end": 14041.22, + "probability": 0.8687 + }, + { + "start": 14042.74, + "end": 14043.68, + "probability": 0.8322 + }, + { + "start": 14044.38, + "end": 14048.4, + "probability": 0.9384 + }, + { + "start": 14049.46, + "end": 14053.72, + "probability": 0.9935 + }, + { + "start": 14053.92, + "end": 14055.32, + "probability": 0.9714 + }, + { + "start": 14056.4, + "end": 14057.8, + "probability": 0.6659 + }, + { + "start": 14058.34, + "end": 14063.82, + "probability": 0.981 + }, + { + "start": 14064.02, + "end": 14066.32, + "probability": 0.9448 + }, + { + "start": 14067.12, + "end": 14070.42, + "probability": 0.9573 + }, + { + "start": 14070.58, + "end": 14071.84, + "probability": 0.9438 + }, + { + "start": 14071.96, + "end": 14077.4, + "probability": 0.8993 + }, + { + "start": 14078.12, + "end": 14080.32, + "probability": 0.621 + }, + { + "start": 14080.66, + "end": 14084.02, + "probability": 0.9941 + }, + { + "start": 14084.6, + "end": 14086.36, + "probability": 0.929 + }, + { + "start": 14087.1, + "end": 14090.06, + "probability": 0.9507 + }, + { + "start": 14090.24, + "end": 14093.48, + "probability": 0.8001 + }, + { + "start": 14093.8, + "end": 14094.76, + "probability": 0.8766 + }, + { + "start": 14094.9, + "end": 14095.64, + "probability": 0.8312 + }, + { + "start": 14095.88, + "end": 14097.9, + "probability": 0.972 + }, + { + "start": 14098.7, + "end": 14103.45, + "probability": 0.9447 + }, + { + "start": 14103.82, + "end": 14107.52, + "probability": 0.9886 + }, + { + "start": 14107.64, + "end": 14108.34, + "probability": 0.9011 + }, + { + "start": 14108.34, + "end": 14108.68, + "probability": 0.4464 + }, + { + "start": 14108.68, + "end": 14109.22, + "probability": 0.313 + }, + { + "start": 14110.46, + "end": 14111.58, + "probability": 0.9287 + }, + { + "start": 14111.76, + "end": 14113.15, + "probability": 0.9064 + }, + { + "start": 14113.64, + "end": 14116.52, + "probability": 0.9647 + }, + { + "start": 14117.38, + "end": 14121.1, + "probability": 0.9787 + }, + { + "start": 14121.64, + "end": 14124.18, + "probability": 0.9092 + }, + { + "start": 14124.32, + "end": 14125.0, + "probability": 0.7106 + }, + { + "start": 14126.06, + "end": 14130.16, + "probability": 0.6653 + }, + { + "start": 14131.02, + "end": 14133.54, + "probability": 0.9858 + }, + { + "start": 14134.84, + "end": 14136.65, + "probability": 0.806 + }, + { + "start": 14136.74, + "end": 14137.44, + "probability": 0.775 + }, + { + "start": 14137.52, + "end": 14138.38, + "probability": 0.8763 + }, + { + "start": 14138.54, + "end": 14141.76, + "probability": 0.9876 + }, + { + "start": 14142.02, + "end": 14142.8, + "probability": 0.939 + }, + { + "start": 14143.78, + "end": 14145.14, + "probability": 0.9378 + }, + { + "start": 14145.76, + "end": 14147.66, + "probability": 0.4576 + }, + { + "start": 14147.66, + "end": 14149.68, + "probability": 0.7957 + }, + { + "start": 14150.02, + "end": 14151.4, + "probability": 0.9548 + }, + { + "start": 14151.8, + "end": 14155.62, + "probability": 0.8332 + }, + { + "start": 14155.76, + "end": 14157.0, + "probability": 0.7153 + }, + { + "start": 14157.36, + "end": 14159.22, + "probability": 0.9677 + }, + { + "start": 14159.4, + "end": 14163.46, + "probability": 0.9519 + }, + { + "start": 14163.7, + "end": 14166.8, + "probability": 0.9669 + }, + { + "start": 14167.18, + "end": 14168.3, + "probability": 0.8272 + }, + { + "start": 14168.68, + "end": 14169.5, + "probability": 0.6069 + }, + { + "start": 14169.56, + "end": 14170.33, + "probability": 0.839 + }, + { + "start": 14171.06, + "end": 14172.86, + "probability": 0.8387 + }, + { + "start": 14173.04, + "end": 14173.76, + "probability": 0.8717 + }, + { + "start": 14174.38, + "end": 14176.82, + "probability": 0.9473 + }, + { + "start": 14176.98, + "end": 14178.44, + "probability": 0.9845 + }, + { + "start": 14178.64, + "end": 14179.53, + "probability": 0.9361 + }, + { + "start": 14179.92, + "end": 14179.92, + "probability": 0.4121 + }, + { + "start": 14180.66, + "end": 14180.68, + "probability": 0.1408 + }, + { + "start": 14180.68, + "end": 14183.3, + "probability": 0.7714 + }, + { + "start": 14183.32, + "end": 14186.9, + "probability": 0.8169 + }, + { + "start": 14186.96, + "end": 14189.79, + "probability": 0.9225 + }, + { + "start": 14190.34, + "end": 14194.62, + "probability": 0.6646 + }, + { + "start": 14194.62, + "end": 14194.82, + "probability": 0.0408 + }, + { + "start": 14194.82, + "end": 14195.98, + "probability": 0.5993 + }, + { + "start": 14196.1, + "end": 14196.56, + "probability": 0.5195 + }, + { + "start": 14196.58, + "end": 14198.18, + "probability": 0.4587 + }, + { + "start": 14198.32, + "end": 14200.1, + "probability": 0.9683 + }, + { + "start": 14200.44, + "end": 14204.46, + "probability": 0.5394 + }, + { + "start": 14205.04, + "end": 14205.14, + "probability": 0.6518 + }, + { + "start": 14205.14, + "end": 14205.14, + "probability": 0.0477 + }, + { + "start": 14205.14, + "end": 14205.14, + "probability": 0.016 + }, + { + "start": 14205.14, + "end": 14205.42, + "probability": 0.2123 + }, + { + "start": 14205.52, + "end": 14205.62, + "probability": 0.0418 + }, + { + "start": 14205.62, + "end": 14206.62, + "probability": 0.8182 + }, + { + "start": 14206.74, + "end": 14206.92, + "probability": 0.5297 + }, + { + "start": 14206.92, + "end": 14206.98, + "probability": 0.2817 + }, + { + "start": 14206.98, + "end": 14206.98, + "probability": 0.1692 + }, + { + "start": 14207.04, + "end": 14208.13, + "probability": 0.5784 + }, + { + "start": 14208.78, + "end": 14210.04, + "probability": 0.8993 + }, + { + "start": 14210.08, + "end": 14213.58, + "probability": 0.8432 + }, + { + "start": 14214.0, + "end": 14216.5, + "probability": 0.8849 + }, + { + "start": 14217.5, + "end": 14219.3, + "probability": 0.7891 + }, + { + "start": 14219.66, + "end": 14222.12, + "probability": 0.8938 + }, + { + "start": 14226.7, + "end": 14227.62, + "probability": 0.7026 + }, + { + "start": 14227.82, + "end": 14231.3, + "probability": 0.7614 + }, + { + "start": 14231.94, + "end": 14233.1, + "probability": 0.9023 + }, + { + "start": 14233.14, + "end": 14235.66, + "probability": 0.7775 + }, + { + "start": 14236.92, + "end": 14239.02, + "probability": 0.895 + }, + { + "start": 14239.34, + "end": 14241.68, + "probability": 0.2894 + }, + { + "start": 14247.84, + "end": 14252.82, + "probability": 0.8905 + }, + { + "start": 14253.64, + "end": 14254.42, + "probability": 0.9385 + }, + { + "start": 14254.56, + "end": 14257.0, + "probability": 0.919 + }, + { + "start": 14262.34, + "end": 14265.08, + "probability": 0.7157 + }, + { + "start": 14265.28, + "end": 14266.18, + "probability": 0.8424 + }, + { + "start": 14266.86, + "end": 14267.64, + "probability": 0.6542 + }, + { + "start": 14268.1, + "end": 14269.46, + "probability": 0.6276 + }, + { + "start": 14270.22, + "end": 14277.96, + "probability": 0.9904 + }, + { + "start": 14278.76, + "end": 14282.64, + "probability": 0.865 + }, + { + "start": 14283.54, + "end": 14284.96, + "probability": 0.8502 + }, + { + "start": 14285.88, + "end": 14289.66, + "probability": 0.9803 + }, + { + "start": 14289.66, + "end": 14296.34, + "probability": 0.988 + }, + { + "start": 14296.6, + "end": 14298.54, + "probability": 0.6274 + }, + { + "start": 14299.25, + "end": 14300.1, + "probability": 0.5487 + }, + { + "start": 14300.28, + "end": 14303.08, + "probability": 0.957 + }, + { + "start": 14303.2, + "end": 14305.82, + "probability": 0.9873 + }, + { + "start": 14308.02, + "end": 14315.46, + "probability": 0.8341 + }, + { + "start": 14316.3, + "end": 14318.39, + "probability": 0.9878 + }, + { + "start": 14319.58, + "end": 14321.36, + "probability": 0.7174 + }, + { + "start": 14321.44, + "end": 14322.64, + "probability": 0.8201 + }, + { + "start": 14324.62, + "end": 14325.22, + "probability": 0.4494 + }, + { + "start": 14325.22, + "end": 14327.94, + "probability": 0.8853 + }, + { + "start": 14329.63, + "end": 14330.14, + "probability": 0.0319 + }, + { + "start": 14330.14, + "end": 14335.44, + "probability": 0.7098 + }, + { + "start": 14335.5, + "end": 14337.58, + "probability": 0.8604 + }, + { + "start": 14337.7, + "end": 14338.74, + "probability": 0.942 + }, + { + "start": 14338.82, + "end": 14339.9, + "probability": 0.9675 + }, + { + "start": 14339.94, + "end": 14341.16, + "probability": 0.9702 + }, + { + "start": 14342.52, + "end": 14344.08, + "probability": 0.507 + }, + { + "start": 14344.08, + "end": 14345.28, + "probability": 0.8379 + }, + { + "start": 14345.28, + "end": 14348.18, + "probability": 0.6666 + }, + { + "start": 14348.92, + "end": 14349.66, + "probability": 0.9014 + }, + { + "start": 14349.74, + "end": 14351.34, + "probability": 0.6347 + }, + { + "start": 14351.6, + "end": 14355.2, + "probability": 0.9971 + }, + { + "start": 14356.08, + "end": 14357.72, + "probability": 0.9129 + }, + { + "start": 14357.94, + "end": 14361.54, + "probability": 0.9913 + }, + { + "start": 14362.24, + "end": 14368.38, + "probability": 0.9303 + }, + { + "start": 14368.48, + "end": 14369.58, + "probability": 0.6816 + }, + { + "start": 14369.72, + "end": 14370.18, + "probability": 0.6412 + }, + { + "start": 14370.3, + "end": 14371.2, + "probability": 0.9507 + }, + { + "start": 14371.98, + "end": 14372.67, + "probability": 0.8857 + }, + { + "start": 14376.8, + "end": 14380.7, + "probability": 0.4894 + }, + { + "start": 14381.16, + "end": 14384.14, + "probability": 0.4981 + }, + { + "start": 14384.22, + "end": 14384.54, + "probability": 0.2365 + }, + { + "start": 14384.78, + "end": 14388.16, + "probability": 0.5647 + }, + { + "start": 14389.0, + "end": 14392.6, + "probability": 0.769 + }, + { + "start": 14393.26, + "end": 14394.28, + "probability": 0.4397 + }, + { + "start": 14394.48, + "end": 14394.98, + "probability": 0.5825 + }, + { + "start": 14395.26, + "end": 14398.04, + "probability": 0.6452 + }, + { + "start": 14398.3, + "end": 14401.12, + "probability": 0.9716 + }, + { + "start": 14401.12, + "end": 14404.7, + "probability": 0.9761 + }, + { + "start": 14404.88, + "end": 14408.76, + "probability": 0.8555 + }, + { + "start": 14409.0, + "end": 14412.54, + "probability": 0.994 + }, + { + "start": 14412.82, + "end": 14414.92, + "probability": 0.7612 + }, + { + "start": 14415.46, + "end": 14416.72, + "probability": 0.8235 + }, + { + "start": 14416.94, + "end": 14418.06, + "probability": 0.9583 + }, + { + "start": 14418.14, + "end": 14419.62, + "probability": 0.9836 + }, + { + "start": 14419.88, + "end": 14424.66, + "probability": 0.9861 + }, + { + "start": 14424.7, + "end": 14425.42, + "probability": 0.8169 + }, + { + "start": 14425.56, + "end": 14426.94, + "probability": 0.6194 + }, + { + "start": 14427.0, + "end": 14429.32, + "probability": 0.9948 + }, + { + "start": 14429.32, + "end": 14433.76, + "probability": 0.9528 + }, + { + "start": 14433.96, + "end": 14435.62, + "probability": 0.8755 + }, + { + "start": 14435.86, + "end": 14436.64, + "probability": 0.9655 + }, + { + "start": 14436.76, + "end": 14437.36, + "probability": 0.9205 + }, + { + "start": 14437.48, + "end": 14438.02, + "probability": 0.8128 + }, + { + "start": 14438.12, + "end": 14439.88, + "probability": 0.9022 + }, + { + "start": 14440.02, + "end": 14442.03, + "probability": 0.973 + }, + { + "start": 14442.14, + "end": 14442.72, + "probability": 0.966 + }, + { + "start": 14442.82, + "end": 14443.4, + "probability": 0.9677 + }, + { + "start": 14443.48, + "end": 14444.28, + "probability": 0.6143 + }, + { + "start": 14444.46, + "end": 14446.48, + "probability": 0.8718 + }, + { + "start": 14446.88, + "end": 14449.52, + "probability": 0.9979 + }, + { + "start": 14449.72, + "end": 14453.02, + "probability": 0.8719 + }, + { + "start": 14453.24, + "end": 14454.9, + "probability": 0.781 + }, + { + "start": 14455.1, + "end": 14457.66, + "probability": 0.9714 + }, + { + "start": 14457.98, + "end": 14458.68, + "probability": 0.8232 + }, + { + "start": 14459.02, + "end": 14461.04, + "probability": 0.895 + }, + { + "start": 14461.32, + "end": 14462.2, + "probability": 0.9976 + }, + { + "start": 14462.26, + "end": 14467.2, + "probability": 0.9866 + }, + { + "start": 14467.22, + "end": 14467.79, + "probability": 0.8287 + }, + { + "start": 14469.1, + "end": 14474.1, + "probability": 0.9883 + }, + { + "start": 14474.28, + "end": 14477.4, + "probability": 0.9529 + }, + { + "start": 14477.44, + "end": 14478.66, + "probability": 0.723 + }, + { + "start": 14478.7, + "end": 14478.86, + "probability": 0.3765 + }, + { + "start": 14478.86, + "end": 14482.32, + "probability": 0.5343 + }, + { + "start": 14482.52, + "end": 14486.22, + "probability": 0.992 + }, + { + "start": 14486.34, + "end": 14486.68, + "probability": 0.7239 + }, + { + "start": 14486.92, + "end": 14489.26, + "probability": 0.8267 + }, + { + "start": 14489.62, + "end": 14492.8, + "probability": 0.8751 + }, + { + "start": 14493.58, + "end": 14495.0, + "probability": 0.7116 + }, + { + "start": 14496.0, + "end": 14497.08, + "probability": 0.6758 + }, + { + "start": 14497.2, + "end": 14497.76, + "probability": 0.6975 + }, + { + "start": 14503.02, + "end": 14505.0, + "probability": 0.6073 + }, + { + "start": 14505.34, + "end": 14508.07, + "probability": 0.7672 + }, + { + "start": 14510.66, + "end": 14516.56, + "probability": 0.9911 + }, + { + "start": 14518.44, + "end": 14520.66, + "probability": 0.9821 + }, + { + "start": 14520.84, + "end": 14522.08, + "probability": 0.9059 + }, + { + "start": 14522.14, + "end": 14523.27, + "probability": 0.566 + }, + { + "start": 14523.44, + "end": 14525.28, + "probability": 0.9953 + }, + { + "start": 14526.68, + "end": 14530.74, + "probability": 0.9447 + }, + { + "start": 14532.0, + "end": 14534.23, + "probability": 0.9983 + }, + { + "start": 14538.72, + "end": 14539.2, + "probability": 0.0459 + }, + { + "start": 14541.96, + "end": 14545.3, + "probability": 0.9587 + }, + { + "start": 14546.86, + "end": 14555.38, + "probability": 0.9322 + }, + { + "start": 14557.26, + "end": 14560.32, + "probability": 0.9349 + }, + { + "start": 14562.16, + "end": 14562.92, + "probability": 0.9722 + }, + { + "start": 14563.92, + "end": 14567.82, + "probability": 0.8699 + }, + { + "start": 14568.44, + "end": 14568.9, + "probability": 0.368 + }, + { + "start": 14569.82, + "end": 14571.64, + "probability": 0.6247 + }, + { + "start": 14571.68, + "end": 14572.28, + "probability": 0.7384 + }, + { + "start": 14572.6, + "end": 14574.08, + "probability": 0.9739 + }, + { + "start": 14574.92, + "end": 14579.46, + "probability": 0.969 + }, + { + "start": 14580.12, + "end": 14582.36, + "probability": 0.5774 + }, + { + "start": 14583.76, + "end": 14587.57, + "probability": 0.9756 + }, + { + "start": 14589.3, + "end": 14592.78, + "probability": 0.6573 + }, + { + "start": 14593.54, + "end": 14597.91, + "probability": 0.9683 + }, + { + "start": 14602.28, + "end": 14605.14, + "probability": 0.7675 + }, + { + "start": 14605.2, + "end": 14606.6, + "probability": 0.457 + }, + { + "start": 14606.8, + "end": 14608.44, + "probability": 0.6563 + }, + { + "start": 14609.04, + "end": 14611.98, + "probability": 0.9257 + }, + { + "start": 14614.98, + "end": 14616.9, + "probability": 0.5528 + }, + { + "start": 14617.22, + "end": 14622.48, + "probability": 0.9844 + }, + { + "start": 14622.78, + "end": 14625.2, + "probability": 0.9835 + }, + { + "start": 14625.38, + "end": 14626.6, + "probability": 0.7609 + }, + { + "start": 14627.34, + "end": 14629.62, + "probability": 0.9731 + }, + { + "start": 14630.34, + "end": 14631.54, + "probability": 0.7257 + }, + { + "start": 14632.28, + "end": 14633.22, + "probability": 0.9833 + }, + { + "start": 14633.22, + "end": 14633.8, + "probability": 0.7584 + }, + { + "start": 14634.06, + "end": 14636.32, + "probability": 0.9666 + }, + { + "start": 14636.46, + "end": 14637.86, + "probability": 0.9548 + }, + { + "start": 14638.4, + "end": 14639.27, + "probability": 0.9591 + }, + { + "start": 14640.08, + "end": 14642.06, + "probability": 0.9916 + }, + { + "start": 14653.38, + "end": 14654.54, + "probability": 0.0292 + }, + { + "start": 14654.54, + "end": 14654.54, + "probability": 0.0555 + }, + { + "start": 14654.54, + "end": 14654.54, + "probability": 0.2109 + }, + { + "start": 14654.54, + "end": 14655.68, + "probability": 0.159 + }, + { + "start": 14655.88, + "end": 14657.35, + "probability": 0.6406 + }, + { + "start": 14657.9, + "end": 14659.64, + "probability": 0.4053 + }, + { + "start": 14659.9, + "end": 14661.9, + "probability": 0.5004 + }, + { + "start": 14662.04, + "end": 14665.63, + "probability": 0.9889 + }, + { + "start": 14666.54, + "end": 14672.2, + "probability": 0.9685 + }, + { + "start": 14672.24, + "end": 14672.98, + "probability": 0.9121 + }, + { + "start": 14673.0, + "end": 14676.4, + "probability": 0.9461 + }, + { + "start": 14677.02, + "end": 14677.22, + "probability": 0.3538 + }, + { + "start": 14677.36, + "end": 14679.4, + "probability": 0.5962 + }, + { + "start": 14680.14, + "end": 14682.4, + "probability": 0.9706 + }, + { + "start": 14682.52, + "end": 14685.48, + "probability": 0.7197 + }, + { + "start": 14686.18, + "end": 14689.29, + "probability": 0.9471 + }, + { + "start": 14690.18, + "end": 14691.55, + "probability": 0.9268 + }, + { + "start": 14693.1, + "end": 14695.62, + "probability": 0.9108 + }, + { + "start": 14696.32, + "end": 14697.95, + "probability": 0.9891 + }, + { + "start": 14701.98, + "end": 14706.3, + "probability": 0.9931 + }, + { + "start": 14706.44, + "end": 14706.88, + "probability": 0.0641 + }, + { + "start": 14708.1, + "end": 14708.94, + "probability": 0.1264 + }, + { + "start": 14708.94, + "end": 14709.26, + "probability": 0.7111 + }, + { + "start": 14710.32, + "end": 14710.64, + "probability": 0.4373 + }, + { + "start": 14711.28, + "end": 14712.44, + "probability": 0.1696 + }, + { + "start": 14713.98, + "end": 14715.22, + "probability": 0.5205 + }, + { + "start": 14716.2, + "end": 14718.52, + "probability": 0.7815 + }, + { + "start": 14718.56, + "end": 14722.5, + "probability": 0.0472 + }, + { + "start": 14727.52, + "end": 14727.6, + "probability": 0.0606 + }, + { + "start": 14727.6, + "end": 14727.6, + "probability": 0.1528 + }, + { + "start": 14727.6, + "end": 14727.6, + "probability": 0.2603 + }, + { + "start": 14727.6, + "end": 14727.6, + "probability": 0.0888 + }, + { + "start": 14727.6, + "end": 14732.48, + "probability": 0.7926 + }, + { + "start": 14733.02, + "end": 14735.42, + "probability": 0.7211 + }, + { + "start": 14735.98, + "end": 14738.51, + "probability": 0.9963 + }, + { + "start": 14741.4, + "end": 14742.84, + "probability": 0.6392 + }, + { + "start": 14743.68, + "end": 14744.62, + "probability": 0.803 + }, + { + "start": 14745.52, + "end": 14746.86, + "probability": 0.9218 + }, + { + "start": 14747.46, + "end": 14749.86, + "probability": 0.9162 + }, + { + "start": 14750.14, + "end": 14751.38, + "probability": 0.7725 + }, + { + "start": 14755.94, + "end": 14756.94, + "probability": 0.9521 + }, + { + "start": 14756.94, + "end": 14756.94, + "probability": 0.0538 + }, + { + "start": 14756.94, + "end": 14756.94, + "probability": 0.4537 + }, + { + "start": 14756.94, + "end": 14757.86, + "probability": 0.3912 + }, + { + "start": 14757.92, + "end": 14759.5, + "probability": 0.6826 + }, + { + "start": 14759.86, + "end": 14761.5, + "probability": 0.7708 + }, + { + "start": 14761.84, + "end": 14762.88, + "probability": 0.783 + }, + { + "start": 14763.02, + "end": 14764.02, + "probability": 0.8381 + }, + { + "start": 14764.48, + "end": 14765.54, + "probability": 0.8215 + }, + { + "start": 14765.9, + "end": 14767.36, + "probability": 0.6979 + }, + { + "start": 14767.78, + "end": 14769.64, + "probability": 0.218 + }, + { + "start": 14770.58, + "end": 14773.66, + "probability": 0.7211 + }, + { + "start": 14773.66, + "end": 14773.76, + "probability": 0.2755 + }, + { + "start": 14774.76, + "end": 14775.6, + "probability": 0.3812 + }, + { + "start": 14775.76, + "end": 14776.6, + "probability": 0.7971 + }, + { + "start": 14776.72, + "end": 14779.66, + "probability": 0.9802 + }, + { + "start": 14780.22, + "end": 14782.08, + "probability": 0.8123 + }, + { + "start": 14782.68, + "end": 14783.44, + "probability": 0.8696 + }, + { + "start": 14784.06, + "end": 14786.46, + "probability": 0.7889 + }, + { + "start": 14786.76, + "end": 14787.42, + "probability": 0.3605 + }, + { + "start": 14787.42, + "end": 14788.36, + "probability": 0.8838 + }, + { + "start": 14788.5, + "end": 14791.92, + "probability": 0.8053 + }, + { + "start": 14792.04, + "end": 14793.4, + "probability": 0.8099 + }, + { + "start": 14793.44, + "end": 14794.16, + "probability": 0.7565 + }, + { + "start": 14794.22, + "end": 14795.18, + "probability": 0.9182 + }, + { + "start": 14795.28, + "end": 14798.06, + "probability": 0.9829 + }, + { + "start": 14798.74, + "end": 14800.9, + "probability": 0.7678 + }, + { + "start": 14801.12, + "end": 14802.14, + "probability": 0.9072 + }, + { + "start": 14802.3, + "end": 14802.76, + "probability": 0.744 + }, + { + "start": 14802.92, + "end": 14805.5, + "probability": 0.9052 + }, + { + "start": 14806.2, + "end": 14807.84, + "probability": 0.9938 + }, + { + "start": 14807.96, + "end": 14811.66, + "probability": 0.7452 + }, + { + "start": 14812.2, + "end": 14812.9, + "probability": 0.6558 + }, + { + "start": 14812.96, + "end": 14817.08, + "probability": 0.8609 + }, + { + "start": 14818.06, + "end": 14819.46, + "probability": 0.6756 + }, + { + "start": 14820.16, + "end": 14821.46, + "probability": 0.8911 + }, + { + "start": 14821.54, + "end": 14823.32, + "probability": 0.844 + }, + { + "start": 14823.38, + "end": 14826.1, + "probability": 0.7823 + }, + { + "start": 14826.54, + "end": 14827.76, + "probability": 0.936 + }, + { + "start": 14828.38, + "end": 14831.7, + "probability": 0.1151 + }, + { + "start": 14831.7, + "end": 14835.76, + "probability": 0.7527 + }, + { + "start": 14836.48, + "end": 14837.26, + "probability": 0.7662 + }, + { + "start": 14837.3, + "end": 14838.02, + "probability": 0.813 + }, + { + "start": 14838.08, + "end": 14839.34, + "probability": 0.9573 + }, + { + "start": 14839.7, + "end": 14840.08, + "probability": 0.4269 + }, + { + "start": 14840.08, + "end": 14841.76, + "probability": 0.9315 + }, + { + "start": 14841.82, + "end": 14842.92, + "probability": 0.7102 + }, + { + "start": 14843.08, + "end": 14844.44, + "probability": 0.5419 + }, + { + "start": 14844.89, + "end": 14845.44, + "probability": 0.5676 + }, + { + "start": 14845.44, + "end": 14847.38, + "probability": 0.9385 + }, + { + "start": 14847.56, + "end": 14849.06, + "probability": 0.9949 + }, + { + "start": 14849.42, + "end": 14851.44, + "probability": 0.9812 + }, + { + "start": 14851.66, + "end": 14854.22, + "probability": 0.9197 + }, + { + "start": 14854.8, + "end": 14856.06, + "probability": 0.6152 + }, + { + "start": 14857.24, + "end": 14858.54, + "probability": 0.9447 + }, + { + "start": 14858.68, + "end": 14859.18, + "probability": 0.4978 + }, + { + "start": 14859.38, + "end": 14859.76, + "probability": 0.0118 + }, + { + "start": 14859.98, + "end": 14860.28, + "probability": 0.2741 + }, + { + "start": 14860.4, + "end": 14862.68, + "probability": 0.6042 + }, + { + "start": 14862.74, + "end": 14862.82, + "probability": 0.2369 + }, + { + "start": 14862.82, + "end": 14864.46, + "probability": 0.7207 + }, + { + "start": 14864.5, + "end": 14866.48, + "probability": 0.9246 + }, + { + "start": 14866.48, + "end": 14868.34, + "probability": 0.5304 + }, + { + "start": 14868.62, + "end": 14870.08, + "probability": 0.5974 + }, + { + "start": 14880.82, + "end": 14882.36, + "probability": 0.6754 + }, + { + "start": 14884.56, + "end": 14885.78, + "probability": 0.7816 + }, + { + "start": 14886.44, + "end": 14887.46, + "probability": 0.7976 + }, + { + "start": 14888.88, + "end": 14889.46, + "probability": 0.681 + }, + { + "start": 14889.54, + "end": 14890.42, + "probability": 0.9075 + }, + { + "start": 14890.58, + "end": 14891.82, + "probability": 0.58 + }, + { + "start": 14891.92, + "end": 14893.36, + "probability": 0.7246 + }, + { + "start": 14894.02, + "end": 14899.02, + "probability": 0.9595 + }, + { + "start": 14900.22, + "end": 14903.8, + "probability": 0.959 + }, + { + "start": 14905.08, + "end": 14911.0, + "probability": 0.9558 + }, + { + "start": 14911.08, + "end": 14912.16, + "probability": 0.8131 + }, + { + "start": 14912.92, + "end": 14914.96, + "probability": 0.9949 + }, + { + "start": 14915.06, + "end": 14915.66, + "probability": 0.9817 + }, + { + "start": 14915.8, + "end": 14916.48, + "probability": 0.8024 + }, + { + "start": 14916.94, + "end": 14921.19, + "probability": 0.9808 + }, + { + "start": 14922.18, + "end": 14925.5, + "probability": 0.9829 + }, + { + "start": 14925.5, + "end": 14929.2, + "probability": 0.9941 + }, + { + "start": 14930.32, + "end": 14934.18, + "probability": 0.8325 + }, + { + "start": 14935.24, + "end": 14937.7, + "probability": 0.9909 + }, + { + "start": 14937.92, + "end": 14938.56, + "probability": 0.7984 + }, + { + "start": 14938.92, + "end": 14943.12, + "probability": 0.8656 + }, + { + "start": 14943.56, + "end": 14946.5, + "probability": 0.7517 + }, + { + "start": 14947.5, + "end": 14950.36, + "probability": 0.9225 + }, + { + "start": 14950.36, + "end": 14953.76, + "probability": 0.9946 + }, + { + "start": 14954.32, + "end": 14956.22, + "probability": 0.9646 + }, + { + "start": 14956.44, + "end": 14959.02, + "probability": 0.9839 + }, + { + "start": 14959.36, + "end": 14961.36, + "probability": 0.9808 + }, + { + "start": 14961.46, + "end": 14964.56, + "probability": 0.2669 + }, + { + "start": 14964.86, + "end": 14969.94, + "probability": 0.9312 + }, + { + "start": 14970.76, + "end": 14971.26, + "probability": 0.7559 + }, + { + "start": 14971.86, + "end": 14973.9, + "probability": 0.9653 + }, + { + "start": 14974.18, + "end": 14979.12, + "probability": 0.7537 + }, + { + "start": 14979.56, + "end": 14980.0, + "probability": 0.9281 + }, + { + "start": 14980.02, + "end": 14982.86, + "probability": 0.7882 + }, + { + "start": 14983.06, + "end": 14983.72, + "probability": 0.4736 + }, + { + "start": 14983.76, + "end": 14985.4, + "probability": 0.8406 + }, + { + "start": 14989.4, + "end": 14989.86, + "probability": 0.1603 + }, + { + "start": 14989.86, + "end": 14990.94, + "probability": 0.1133 + }, + { + "start": 14991.18, + "end": 14991.78, + "probability": 0.2098 + }, + { + "start": 14991.78, + "end": 14993.84, + "probability": 0.712 + }, + { + "start": 14998.78, + "end": 15002.2, + "probability": 0.6617 + }, + { + "start": 15002.58, + "end": 15004.19, + "probability": 0.5459 + }, + { + "start": 15004.7, + "end": 15006.48, + "probability": 0.8035 + }, + { + "start": 15012.32, + "end": 15016.38, + "probability": 0.7678 + }, + { + "start": 15023.78, + "end": 15024.84, + "probability": 0.6505 + }, + { + "start": 15025.72, + "end": 15027.6, + "probability": 0.8145 + }, + { + "start": 15029.0, + "end": 15035.86, + "probability": 0.9949 + }, + { + "start": 15038.0, + "end": 15038.68, + "probability": 0.7048 + }, + { + "start": 15038.78, + "end": 15042.06, + "probability": 0.9401 + }, + { + "start": 15042.28, + "end": 15043.32, + "probability": 0.9094 + }, + { + "start": 15043.36, + "end": 15045.12, + "probability": 0.8309 + }, + { + "start": 15046.0, + "end": 15048.84, + "probability": 0.8837 + }, + { + "start": 15050.34, + "end": 15053.8, + "probability": 0.9979 + }, + { + "start": 15055.12, + "end": 15059.96, + "probability": 0.9993 + }, + { + "start": 15059.96, + "end": 15067.3, + "probability": 0.9777 + }, + { + "start": 15067.44, + "end": 15070.96, + "probability": 0.9958 + }, + { + "start": 15071.9, + "end": 15074.66, + "probability": 0.9889 + }, + { + "start": 15076.22, + "end": 15078.0, + "probability": 0.9582 + }, + { + "start": 15078.9, + "end": 15082.18, + "probability": 0.9974 + }, + { + "start": 15082.18, + "end": 15086.92, + "probability": 0.9466 + }, + { + "start": 15087.54, + "end": 15089.94, + "probability": 0.8794 + }, + { + "start": 15090.7, + "end": 15095.06, + "probability": 0.9614 + }, + { + "start": 15095.06, + "end": 15099.1, + "probability": 0.9504 + }, + { + "start": 15100.54, + "end": 15102.12, + "probability": 0.7684 + }, + { + "start": 15102.74, + "end": 15107.76, + "probability": 0.9984 + }, + { + "start": 15108.4, + "end": 15110.8, + "probability": 0.9348 + }, + { + "start": 15111.36, + "end": 15112.14, + "probability": 0.7594 + }, + { + "start": 15113.44, + "end": 15116.2, + "probability": 0.8091 + }, + { + "start": 15117.38, + "end": 15118.32, + "probability": 0.5511 + }, + { + "start": 15119.86, + "end": 15121.86, + "probability": 0.9858 + }, + { + "start": 15122.6, + "end": 15123.92, + "probability": 0.9576 + }, + { + "start": 15124.8, + "end": 15126.52, + "probability": 0.9757 + }, + { + "start": 15127.26, + "end": 15128.42, + "probability": 0.8465 + }, + { + "start": 15129.48, + "end": 15134.02, + "probability": 0.9547 + }, + { + "start": 15135.0, + "end": 15140.94, + "probability": 0.9961 + }, + { + "start": 15142.6, + "end": 15145.3, + "probability": 0.9941 + }, + { + "start": 15146.36, + "end": 15147.72, + "probability": 0.9355 + }, + { + "start": 15148.74, + "end": 15150.88, + "probability": 0.9907 + }, + { + "start": 15151.62, + "end": 15154.3, + "probability": 0.9899 + }, + { + "start": 15156.28, + "end": 15160.34, + "probability": 0.996 + }, + { + "start": 15161.6, + "end": 15166.22, + "probability": 0.9976 + }, + { + "start": 15166.66, + "end": 15167.78, + "probability": 0.9681 + }, + { + "start": 15168.84, + "end": 15169.75, + "probability": 0.5301 + }, + { + "start": 15171.36, + "end": 15172.54, + "probability": 0.8224 + }, + { + "start": 15172.56, + "end": 15175.64, + "probability": 0.9971 + }, + { + "start": 15175.78, + "end": 15178.48, + "probability": 0.6105 + }, + { + "start": 15179.14, + "end": 15180.4, + "probability": 0.9091 + }, + { + "start": 15180.5, + "end": 15181.1, + "probability": 0.9775 + }, + { + "start": 15181.92, + "end": 15183.18, + "probability": 0.7955 + }, + { + "start": 15184.94, + "end": 15189.94, + "probability": 0.9789 + }, + { + "start": 15189.94, + "end": 15193.16, + "probability": 0.9515 + }, + { + "start": 15194.02, + "end": 15195.42, + "probability": 0.9739 + }, + { + "start": 15196.2, + "end": 15197.66, + "probability": 0.8958 + }, + { + "start": 15198.64, + "end": 15199.74, + "probability": 0.9737 + }, + { + "start": 15199.88, + "end": 15201.54, + "probability": 0.8735 + }, + { + "start": 15202.2, + "end": 15206.56, + "probability": 0.9944 + }, + { + "start": 15206.56, + "end": 15209.8, + "probability": 0.998 + }, + { + "start": 15209.92, + "end": 15210.8, + "probability": 0.3875 + }, + { + "start": 15212.04, + "end": 15217.84, + "probability": 0.9797 + }, + { + "start": 15218.56, + "end": 15219.18, + "probability": 0.6528 + }, + { + "start": 15220.74, + "end": 15222.08, + "probability": 0.8398 + }, + { + "start": 15223.58, + "end": 15225.37, + "probability": 0.9487 + }, + { + "start": 15226.98, + "end": 15230.42, + "probability": 0.9919 + }, + { + "start": 15230.42, + "end": 15233.88, + "probability": 0.991 + }, + { + "start": 15234.86, + "end": 15236.5, + "probability": 0.8111 + }, + { + "start": 15237.36, + "end": 15240.2, + "probability": 0.894 + }, + { + "start": 15240.32, + "end": 15243.0, + "probability": 0.9864 + }, + { + "start": 15243.5, + "end": 15246.3, + "probability": 0.9673 + }, + { + "start": 15247.26, + "end": 15249.88, + "probability": 0.9636 + }, + { + "start": 15250.48, + "end": 15252.0, + "probability": 0.9842 + }, + { + "start": 15252.52, + "end": 15253.66, + "probability": 0.7806 + }, + { + "start": 15256.12, + "end": 15256.6, + "probability": 0.1133 + }, + { + "start": 15256.7, + "end": 15257.48, + "probability": 0.7562 + }, + { + "start": 15259.88, + "end": 15260.3, + "probability": 0.1859 + }, + { + "start": 15260.36, + "end": 15262.14, + "probability": 0.8472 + }, + { + "start": 15263.42, + "end": 15265.9, + "probability": 0.9785 + }, + { + "start": 15266.6, + "end": 15270.24, + "probability": 0.9313 + }, + { + "start": 15270.24, + "end": 15274.8, + "probability": 0.9712 + }, + { + "start": 15275.24, + "end": 15275.48, + "probability": 0.1871 + }, + { + "start": 15275.54, + "end": 15276.54, + "probability": 0.591 + }, + { + "start": 15276.62, + "end": 15277.21, + "probability": 0.5812 + }, + { + "start": 15277.26, + "end": 15278.3, + "probability": 0.5029 + }, + { + "start": 15278.52, + "end": 15279.96, + "probability": 0.7477 + }, + { + "start": 15280.64, + "end": 15282.88, + "probability": 0.9668 + }, + { + "start": 15283.72, + "end": 15287.14, + "probability": 0.9912 + }, + { + "start": 15287.92, + "end": 15289.36, + "probability": 0.957 + }, + { + "start": 15296.04, + "end": 15297.56, + "probability": 0.4441 + }, + { + "start": 15298.74, + "end": 15298.74, + "probability": 0.0187 + }, + { + "start": 15298.74, + "end": 15298.74, + "probability": 0.3181 + }, + { + "start": 15298.74, + "end": 15299.46, + "probability": 0.0476 + }, + { + "start": 15303.02, + "end": 15304.38, + "probability": 0.0404 + }, + { + "start": 15304.38, + "end": 15304.48, + "probability": 0.0197 + }, + { + "start": 15304.48, + "end": 15306.48, + "probability": 0.1292 + }, + { + "start": 15307.3, + "end": 15307.46, + "probability": 0.0264 + }, + { + "start": 15307.68, + "end": 15310.62, + "probability": 0.5261 + }, + { + "start": 15311.48, + "end": 15311.52, + "probability": 0.1389 + }, + { + "start": 15311.52, + "end": 15311.52, + "probability": 0.2269 + }, + { + "start": 15311.52, + "end": 15312.5, + "probability": 0.633 + }, + { + "start": 15312.64, + "end": 15314.22, + "probability": 0.9092 + }, + { + "start": 15314.56, + "end": 15316.74, + "probability": 0.8305 + }, + { + "start": 15316.86, + "end": 15321.04, + "probability": 0.8315 + }, + { + "start": 15321.1, + "end": 15325.38, + "probability": 0.9966 + }, + { + "start": 15326.12, + "end": 15326.12, + "probability": 0.2007 + }, + { + "start": 15326.2, + "end": 15330.18, + "probability": 0.9934 + }, + { + "start": 15330.26, + "end": 15333.34, + "probability": 0.9973 + }, + { + "start": 15334.04, + "end": 15334.34, + "probability": 0.234 + }, + { + "start": 15334.34, + "end": 15336.69, + "probability": 0.7353 + }, + { + "start": 15337.36, + "end": 15338.5, + "probability": 0.9777 + }, + { + "start": 15338.64, + "end": 15341.09, + "probability": 0.9831 + }, + { + "start": 15341.7, + "end": 15342.94, + "probability": 0.9814 + }, + { + "start": 15343.34, + "end": 15345.8, + "probability": 0.5021 + }, + { + "start": 15345.88, + "end": 15348.36, + "probability": 0.9761 + }, + { + "start": 15348.84, + "end": 15350.82, + "probability": 0.8966 + }, + { + "start": 15350.98, + "end": 15355.5, + "probability": 0.9957 + }, + { + "start": 15355.5, + "end": 15360.76, + "probability": 0.9748 + }, + { + "start": 15360.8, + "end": 15362.72, + "probability": 0.9934 + }, + { + "start": 15362.72, + "end": 15362.98, + "probability": 0.1067 + }, + { + "start": 15363.04, + "end": 15364.3, + "probability": 0.3561 + }, + { + "start": 15364.46, + "end": 15366.02, + "probability": 0.8984 + }, + { + "start": 15366.2, + "end": 15367.9, + "probability": 0.991 + }, + { + "start": 15368.12, + "end": 15370.92, + "probability": 0.8354 + }, + { + "start": 15371.58, + "end": 15371.7, + "probability": 0.6576 + }, + { + "start": 15372.4, + "end": 15374.05, + "probability": 0.9947 + }, + { + "start": 15374.86, + "end": 15377.48, + "probability": 0.6968 + }, + { + "start": 15377.58, + "end": 15379.16, + "probability": 0.9335 + }, + { + "start": 15379.4, + "end": 15381.38, + "probability": 0.8875 + }, + { + "start": 15381.68, + "end": 15383.26, + "probability": 0.9468 + }, + { + "start": 15383.64, + "end": 15385.6, + "probability": 0.9714 + }, + { + "start": 15385.72, + "end": 15386.08, + "probability": 0.6718 + }, + { + "start": 15386.26, + "end": 15388.5, + "probability": 0.8987 + }, + { + "start": 15388.84, + "end": 15391.9, + "probability": 0.9971 + }, + { + "start": 15392.3, + "end": 15394.4, + "probability": 0.8901 + }, + { + "start": 15394.4, + "end": 15398.52, + "probability": 0.7772 + }, + { + "start": 15399.94, + "end": 15402.0, + "probability": 0.6842 + }, + { + "start": 15403.38, + "end": 15403.48, + "probability": 0.6304 + }, + { + "start": 15421.26, + "end": 15423.1, + "probability": 0.6239 + }, + { + "start": 15423.18, + "end": 15426.48, + "probability": 0.9963 + }, + { + "start": 15426.48, + "end": 15431.62, + "probability": 0.9935 + }, + { + "start": 15432.3, + "end": 15436.44, + "probability": 0.9927 + }, + { + "start": 15436.52, + "end": 15440.38, + "probability": 0.9038 + }, + { + "start": 15442.48, + "end": 15443.04, + "probability": 0.7535 + }, + { + "start": 15444.08, + "end": 15449.6, + "probability": 0.9839 + }, + { + "start": 15449.84, + "end": 15455.58, + "probability": 0.9647 + }, + { + "start": 15456.72, + "end": 15457.4, + "probability": 0.7593 + }, + { + "start": 15457.54, + "end": 15461.86, + "probability": 0.9402 + }, + { + "start": 15462.6, + "end": 15463.86, + "probability": 0.7634 + }, + { + "start": 15463.88, + "end": 15464.9, + "probability": 0.7612 + }, + { + "start": 15465.02, + "end": 15467.94, + "probability": 0.9966 + }, + { + "start": 15468.44, + "end": 15470.22, + "probability": 0.7978 + }, + { + "start": 15470.32, + "end": 15471.5, + "probability": 0.9562 + }, + { + "start": 15471.84, + "end": 15472.6, + "probability": 0.9354 + }, + { + "start": 15472.6, + "end": 15473.54, + "probability": 0.8589 + }, + { + "start": 15473.66, + "end": 15474.26, + "probability": 0.5281 + }, + { + "start": 15474.78, + "end": 15476.8, + "probability": 0.7343 + }, + { + "start": 15476.86, + "end": 15477.84, + "probability": 0.7321 + }, + { + "start": 15478.0, + "end": 15480.82, + "probability": 0.8633 + }, + { + "start": 15481.14, + "end": 15484.06, + "probability": 0.9912 + }, + { + "start": 15484.06, + "end": 15487.9, + "probability": 0.9383 + }, + { + "start": 15488.14, + "end": 15490.28, + "probability": 0.997 + }, + { + "start": 15490.84, + "end": 15494.0, + "probability": 0.8574 + }, + { + "start": 15494.08, + "end": 15494.74, + "probability": 0.5495 + }, + { + "start": 15495.22, + "end": 15496.86, + "probability": 0.9844 + }, + { + "start": 15496.98, + "end": 15499.94, + "probability": 0.9934 + }, + { + "start": 15500.0, + "end": 15504.12, + "probability": 0.9956 + }, + { + "start": 15504.12, + "end": 15509.92, + "probability": 0.9985 + }, + { + "start": 15510.52, + "end": 15513.22, + "probability": 0.8888 + }, + { + "start": 15513.22, + "end": 15515.46, + "probability": 0.9871 + }, + { + "start": 15515.92, + "end": 15517.52, + "probability": 0.7789 + }, + { + "start": 15517.76, + "end": 15521.96, + "probability": 0.995 + }, + { + "start": 15522.1, + "end": 15524.6, + "probability": 0.9443 + }, + { + "start": 15524.64, + "end": 15525.0, + "probability": 0.6783 + }, + { + "start": 15525.7, + "end": 15528.02, + "probability": 0.7699 + }, + { + "start": 15534.04, + "end": 15537.38, + "probability": 0.9375 + }, + { + "start": 15538.12, + "end": 15539.09, + "probability": 0.9663 + }, + { + "start": 15539.9, + "end": 15541.98, + "probability": 0.8974 + }, + { + "start": 15542.76, + "end": 15545.08, + "probability": 0.9503 + }, + { + "start": 15545.88, + "end": 15546.5, + "probability": 0.7892 + }, + { + "start": 15546.58, + "end": 15549.98, + "probability": 0.8453 + }, + { + "start": 15550.2, + "end": 15552.82, + "probability": 0.9226 + }, + { + "start": 15553.58, + "end": 15554.88, + "probability": 0.2729 + }, + { + "start": 15555.08, + "end": 15560.72, + "probability": 0.8437 + }, + { + "start": 15574.66, + "end": 15577.44, + "probability": 0.949 + }, + { + "start": 15578.0, + "end": 15583.5, + "probability": 0.0769 + }, + { + "start": 15583.88, + "end": 15586.74, + "probability": 0.1129 + }, + { + "start": 15587.28, + "end": 15588.31, + "probability": 0.1265 + }, + { + "start": 15590.64, + "end": 15597.1, + "probability": 0.1174 + }, + { + "start": 15601.05, + "end": 15607.42, + "probability": 0.0573 + }, + { + "start": 15610.88, + "end": 15611.46, + "probability": 0.3252 + }, + { + "start": 15611.62, + "end": 15612.26, + "probability": 0.2628 + }, + { + "start": 15612.26, + "end": 15614.92, + "probability": 0.4725 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.0, + "end": 15677.0, + "probability": 0.0 + }, + { + "start": 15677.18, + "end": 15679.68, + "probability": 0.7805 + }, + { + "start": 15681.1, + "end": 15681.84, + "probability": 0.6725 + }, + { + "start": 15685.74, + "end": 15686.56, + "probability": 0.4698 + }, + { + "start": 15686.72, + "end": 15688.02, + "probability": 0.5113 + }, + { + "start": 15688.32, + "end": 15689.78, + "probability": 0.6437 + }, + { + "start": 15690.16, + "end": 15692.48, + "probability": 0.3016 + }, + { + "start": 15692.64, + "end": 15695.16, + "probability": 0.7256 + }, + { + "start": 15696.0, + "end": 15696.0, + "probability": 0.0061 + }, + { + "start": 15697.06, + "end": 15697.24, + "probability": 0.1879 + }, + { + "start": 15697.24, + "end": 15698.82, + "probability": 0.9563 + }, + { + "start": 15698.82, + "end": 15702.06, + "probability": 0.6752 + }, + { + "start": 15702.6, + "end": 15705.12, + "probability": 0.1163 + }, + { + "start": 15705.58, + "end": 15708.08, + "probability": 0.9961 + }, + { + "start": 15708.08, + "end": 15711.84, + "probability": 0.5163 + }, + { + "start": 15712.12, + "end": 15720.3, + "probability": 0.6893 + }, + { + "start": 15720.56, + "end": 15725.8, + "probability": 0.9692 + }, + { + "start": 15725.8, + "end": 15726.04, + "probability": 0.8362 + }, + { + "start": 15727.2, + "end": 15728.54, + "probability": 0.7335 + }, + { + "start": 15728.64, + "end": 15728.9, + "probability": 0.1922 + }, + { + "start": 15729.0, + "end": 15729.18, + "probability": 0.4653 + }, + { + "start": 15729.26, + "end": 15732.82, + "probability": 0.9561 + }, + { + "start": 15732.82, + "end": 15736.9, + "probability": 0.9819 + }, + { + "start": 15736.9, + "end": 15739.46, + "probability": 0.535 + }, + { + "start": 15739.62, + "end": 15740.02, + "probability": 0.9154 + }, + { + "start": 15740.88, + "end": 15741.38, + "probability": 0.6196 + }, + { + "start": 15741.72, + "end": 15744.18, + "probability": 0.8944 + }, + { + "start": 15776.85, + "end": 15780.84, + "probability": 0.856 + }, + { + "start": 15782.6, + "end": 15787.4, + "probability": 0.9593 + }, + { + "start": 15788.02, + "end": 15794.64, + "probability": 0.996 + }, + { + "start": 15795.58, + "end": 15801.06, + "probability": 0.8483 + }, + { + "start": 15801.16, + "end": 15802.88, + "probability": 0.9754 + }, + { + "start": 15803.4, + "end": 15809.24, + "probability": 0.834 + }, + { + "start": 15809.9, + "end": 15810.5, + "probability": 0.4424 + }, + { + "start": 15810.58, + "end": 15812.46, + "probability": 0.8402 + }, + { + "start": 15812.72, + "end": 15815.2, + "probability": 0.8805 + }, + { + "start": 15815.42, + "end": 15821.52, + "probability": 0.9242 + }, + { + "start": 15821.52, + "end": 15826.2, + "probability": 0.9957 + }, + { + "start": 15827.06, + "end": 15830.02, + "probability": 0.9458 + }, + { + "start": 15830.02, + "end": 15833.88, + "probability": 0.8203 + }, + { + "start": 15834.8, + "end": 15837.24, + "probability": 0.8945 + }, + { + "start": 15837.78, + "end": 15841.28, + "probability": 0.9565 + }, + { + "start": 15841.58, + "end": 15847.58, + "probability": 0.9883 + }, + { + "start": 15848.5, + "end": 15850.8, + "probability": 0.8478 + }, + { + "start": 15851.24, + "end": 15854.48, + "probability": 0.8418 + }, + { + "start": 15856.42, + "end": 15858.92, + "probability": 0.9911 + }, + { + "start": 15859.16, + "end": 15860.46, + "probability": 0.9684 + }, + { + "start": 15860.56, + "end": 15861.82, + "probability": 0.8073 + }, + { + "start": 15863.48, + "end": 15864.74, + "probability": 0.8477 + }, + { + "start": 15864.82, + "end": 15865.52, + "probability": 0.8628 + }, + { + "start": 15865.54, + "end": 15870.0, + "probability": 0.9313 + }, + { + "start": 15871.34, + "end": 15872.08, + "probability": 0.9286 + }, + { + "start": 15872.08, + "end": 15877.04, + "probability": 0.856 + }, + { + "start": 15877.04, + "end": 15879.56, + "probability": 0.9392 + }, + { + "start": 15880.12, + "end": 15880.36, + "probability": 0.7119 + }, + { + "start": 15880.44, + "end": 15886.54, + "probability": 0.9906 + }, + { + "start": 15887.66, + "end": 15888.7, + "probability": 0.8653 + }, + { + "start": 15888.86, + "end": 15891.52, + "probability": 0.9518 + }, + { + "start": 15891.86, + "end": 15894.92, + "probability": 0.957 + }, + { + "start": 15895.42, + "end": 15898.96, + "probability": 0.591 + }, + { + "start": 15898.96, + "end": 15902.64, + "probability": 0.9849 + }, + { + "start": 15902.64, + "end": 15905.96, + "probability": 0.9981 + }, + { + "start": 15906.84, + "end": 15909.9, + "probability": 0.847 + }, + { + "start": 15911.64, + "end": 15916.26, + "probability": 0.943 + }, + { + "start": 15916.68, + "end": 15917.9, + "probability": 0.9602 + }, + { + "start": 15918.04, + "end": 15920.26, + "probability": 0.9015 + }, + { + "start": 15920.8, + "end": 15923.76, + "probability": 0.9932 + }, + { + "start": 15924.52, + "end": 15929.42, + "probability": 0.9614 + }, + { + "start": 15930.2, + "end": 15932.76, + "probability": 0.9291 + }, + { + "start": 15933.28, + "end": 15934.06, + "probability": 0.9593 + }, + { + "start": 15934.06, + "end": 15935.58, + "probability": 0.9147 + }, + { + "start": 15935.96, + "end": 15937.45, + "probability": 0.9792 + }, + { + "start": 15938.0, + "end": 15940.98, + "probability": 0.9946 + }, + { + "start": 15942.82, + "end": 15945.58, + "probability": 0.9578 + }, + { + "start": 15945.74, + "end": 15950.38, + "probability": 0.9804 + }, + { + "start": 15950.38, + "end": 15955.56, + "probability": 0.9843 + }, + { + "start": 15955.62, + "end": 15958.98, + "probability": 0.8969 + }, + { + "start": 15958.98, + "end": 15963.74, + "probability": 0.9549 + }, + { + "start": 15964.24, + "end": 15968.92, + "probability": 0.9766 + }, + { + "start": 15969.14, + "end": 15969.44, + "probability": 0.3522 + }, + { + "start": 15969.46, + "end": 15969.86, + "probability": 0.6836 + }, + { + "start": 15969.92, + "end": 15973.2, + "probability": 0.9839 + }, + { + "start": 15973.2, + "end": 15978.42, + "probability": 0.9376 + }, + { + "start": 15978.9, + "end": 15983.92, + "probability": 0.9878 + }, + { + "start": 15984.74, + "end": 15988.6, + "probability": 0.9336 + }, + { + "start": 15988.6, + "end": 15994.54, + "probability": 0.9924 + }, + { + "start": 15995.22, + "end": 15997.52, + "probability": 0.9791 + }, + { + "start": 15997.66, + "end": 15999.4, + "probability": 0.7003 + }, + { + "start": 15999.76, + "end": 16002.68, + "probability": 0.9915 + }, + { + "start": 16003.16, + "end": 16007.58, + "probability": 0.9568 + }, + { + "start": 16009.58, + "end": 16016.26, + "probability": 0.9801 + }, + { + "start": 16016.26, + "end": 16018.94, + "probability": 0.9895 + }, + { + "start": 16019.02, + "end": 16022.72, + "probability": 0.9842 + }, + { + "start": 16023.64, + "end": 16026.34, + "probability": 0.9944 + }, + { + "start": 16026.34, + "end": 16028.72, + "probability": 0.9885 + }, + { + "start": 16029.44, + "end": 16029.82, + "probability": 0.5255 + }, + { + "start": 16029.9, + "end": 16030.94, + "probability": 0.7647 + }, + { + "start": 16031.02, + "end": 16032.4, + "probability": 0.9387 + }, + { + "start": 16032.52, + "end": 16034.9, + "probability": 0.9189 + }, + { + "start": 16034.9, + "end": 16039.24, + "probability": 0.9561 + }, + { + "start": 16040.06, + "end": 16045.56, + "probability": 0.9714 + }, + { + "start": 16046.74, + "end": 16053.34, + "probability": 0.9602 + }, + { + "start": 16054.38, + "end": 16055.66, + "probability": 0.7352 + }, + { + "start": 16056.08, + "end": 16058.82, + "probability": 0.952 + }, + { + "start": 16058.9, + "end": 16062.26, + "probability": 0.9048 + }, + { + "start": 16062.4, + "end": 16064.44, + "probability": 0.7258 + }, + { + "start": 16065.08, + "end": 16066.46, + "probability": 0.8356 + }, + { + "start": 16067.78, + "end": 16071.42, + "probability": 0.7152 + }, + { + "start": 16071.46, + "end": 16075.4, + "probability": 0.6906 + }, + { + "start": 16075.4, + "end": 16079.08, + "probability": 0.993 + }, + { + "start": 16079.6, + "end": 16085.28, + "probability": 0.9589 + }, + { + "start": 16086.2, + "end": 16094.06, + "probability": 0.9971 + }, + { + "start": 16094.16, + "end": 16094.42, + "probability": 0.8419 + }, + { + "start": 16095.6, + "end": 16098.32, + "probability": 0.7367 + }, + { + "start": 16098.46, + "end": 16098.88, + "probability": 0.6315 + }, + { + "start": 16098.96, + "end": 16104.96, + "probability": 0.957 + }, + { + "start": 16105.5, + "end": 16106.42, + "probability": 0.8621 + }, + { + "start": 16106.5, + "end": 16107.0, + "probability": 0.8247 + }, + { + "start": 16107.14, + "end": 16109.46, + "probability": 0.8539 + }, + { + "start": 16109.68, + "end": 16110.5, + "probability": 0.7366 + }, + { + "start": 16110.88, + "end": 16112.48, + "probability": 0.9714 + }, + { + "start": 16113.02, + "end": 16113.72, + "probability": 0.6775 + }, + { + "start": 16115.02, + "end": 16116.94, + "probability": 0.9074 + }, + { + "start": 16117.0, + "end": 16118.4, + "probability": 0.7266 + }, + { + "start": 16119.64, + "end": 16124.14, + "probability": 0.9172 + }, + { + "start": 16124.14, + "end": 16126.62, + "probability": 0.8345 + }, + { + "start": 16126.96, + "end": 16128.13, + "probability": 0.8997 + }, + { + "start": 16128.42, + "end": 16131.55, + "probability": 0.9961 + }, + { + "start": 16132.34, + "end": 16133.72, + "probability": 0.6048 + }, + { + "start": 16134.34, + "end": 16137.16, + "probability": 0.8953 + }, + { + "start": 16137.42, + "end": 16142.18, + "probability": 0.9465 + }, + { + "start": 16142.42, + "end": 16143.8, + "probability": 0.9427 + }, + { + "start": 16144.58, + "end": 16145.2, + "probability": 0.7253 + }, + { + "start": 16145.66, + "end": 16147.04, + "probability": 0.7464 + }, + { + "start": 16147.78, + "end": 16149.28, + "probability": 0.8352 + }, + { + "start": 16149.34, + "end": 16151.1, + "probability": 0.9888 + }, + { + "start": 16151.7, + "end": 16154.08, + "probability": 0.587 + }, + { + "start": 16156.86, + "end": 16157.88, + "probability": 0.5669 + }, + { + "start": 16157.94, + "end": 16159.54, + "probability": 0.8309 + }, + { + "start": 16159.68, + "end": 16161.0, + "probability": 0.9033 + }, + { + "start": 16161.26, + "end": 16163.5, + "probability": 0.3916 + }, + { + "start": 16163.5, + "end": 16165.08, + "probability": 0.9817 + }, + { + "start": 16165.22, + "end": 16166.28, + "probability": 0.6706 + }, + { + "start": 16166.42, + "end": 16168.84, + "probability": 0.9406 + }, + { + "start": 16171.5, + "end": 16174.16, + "probability": 0.9242 + }, + { + "start": 16174.48, + "end": 16177.28, + "probability": 0.6995 + }, + { + "start": 16187.06, + "end": 16187.72, + "probability": 0.4755 + }, + { + "start": 16188.18, + "end": 16196.86, + "probability": 0.975 + }, + { + "start": 16197.14, + "end": 16199.94, + "probability": 0.8495 + }, + { + "start": 16200.26, + "end": 16201.7, + "probability": 0.9932 + }, + { + "start": 16220.86, + "end": 16222.24, + "probability": 0.7372 + }, + { + "start": 16223.04, + "end": 16225.36, + "probability": 0.8171 + }, + { + "start": 16226.94, + "end": 16227.82, + "probability": 0.8621 + }, + { + "start": 16228.0, + "end": 16228.5, + "probability": 0.7789 + }, + { + "start": 16228.62, + "end": 16239.65, + "probability": 0.9968 + }, + { + "start": 16240.22, + "end": 16249.32, + "probability": 0.9969 + }, + { + "start": 16249.66, + "end": 16254.16, + "probability": 0.7612 + }, + { + "start": 16254.48, + "end": 16255.32, + "probability": 0.4836 + }, + { + "start": 16257.02, + "end": 16257.84, + "probability": 0.7081 + }, + { + "start": 16258.76, + "end": 16259.52, + "probability": 0.786 + }, + { + "start": 16259.68, + "end": 16266.8, + "probability": 0.9854 + }, + { + "start": 16270.2, + "end": 16270.96, + "probability": 0.3785 + }, + { + "start": 16271.16, + "end": 16271.84, + "probability": 0.7047 + }, + { + "start": 16271.92, + "end": 16274.64, + "probability": 0.7109 + }, + { + "start": 16275.12, + "end": 16275.58, + "probability": 0.8576 + }, + { + "start": 16275.74, + "end": 16276.22, + "probability": 0.757 + }, + { + "start": 16276.28, + "end": 16277.02, + "probability": 0.8863 + }, + { + "start": 16277.16, + "end": 16277.74, + "probability": 0.9441 + }, + { + "start": 16277.76, + "end": 16280.54, + "probability": 0.9886 + }, + { + "start": 16282.22, + "end": 16284.02, + "probability": 0.7401 + }, + { + "start": 16284.08, + "end": 16288.94, + "probability": 0.9643 + }, + { + "start": 16292.57, + "end": 16295.86, + "probability": 0.6979 + }, + { + "start": 16296.64, + "end": 16299.06, + "probability": 0.9434 + }, + { + "start": 16299.12, + "end": 16299.82, + "probability": 0.7703 + }, + { + "start": 16299.94, + "end": 16301.22, + "probability": 0.9794 + }, + { + "start": 16302.04, + "end": 16306.92, + "probability": 0.9719 + }, + { + "start": 16306.92, + "end": 16310.68, + "probability": 0.748 + }, + { + "start": 16311.76, + "end": 16314.64, + "probability": 0.8296 + }, + { + "start": 16315.44, + "end": 16316.36, + "probability": 0.8804 + }, + { + "start": 16316.4, + "end": 16326.39, + "probability": 0.9648 + }, + { + "start": 16326.76, + "end": 16329.76, + "probability": 0.9714 + }, + { + "start": 16329.78, + "end": 16332.48, + "probability": 0.7064 + }, + { + "start": 16333.4, + "end": 16337.8, + "probability": 0.7129 + }, + { + "start": 16338.38, + "end": 16339.42, + "probability": 0.6713 + }, + { + "start": 16339.5, + "end": 16344.38, + "probability": 0.9824 + }, + { + "start": 16345.16, + "end": 16346.81, + "probability": 0.9617 + }, + { + "start": 16348.2, + "end": 16351.4, + "probability": 0.9342 + }, + { + "start": 16351.7, + "end": 16355.44, + "probability": 0.9636 + }, + { + "start": 16356.34, + "end": 16357.72, + "probability": 0.6235 + }, + { + "start": 16358.24, + "end": 16358.78, + "probability": 0.4742 + }, + { + "start": 16360.5, + "end": 16361.3, + "probability": 0.0009 + }, + { + "start": 16363.54, + "end": 16369.68, + "probability": 0.529 + }, + { + "start": 16370.1, + "end": 16371.86, + "probability": 0.3328 + }, + { + "start": 16372.72, + "end": 16373.98, + "probability": 0.2418 + }, + { + "start": 16381.53, + "end": 16383.74, + "probability": 0.4368 + }, + { + "start": 16384.52, + "end": 16392.28, + "probability": 0.9561 + }, + { + "start": 16392.54, + "end": 16396.36, + "probability": 0.9966 + }, + { + "start": 16396.36, + "end": 16401.26, + "probability": 0.8109 + }, + { + "start": 16401.38, + "end": 16402.46, + "probability": 0.7274 + }, + { + "start": 16402.66, + "end": 16404.54, + "probability": 0.8362 + }, + { + "start": 16404.74, + "end": 16406.37, + "probability": 0.979 + }, + { + "start": 16408.96, + "end": 16412.9, + "probability": 0.9345 + }, + { + "start": 16413.02, + "end": 16413.48, + "probability": 0.682 + }, + { + "start": 16413.58, + "end": 16414.54, + "probability": 0.7358 + }, + { + "start": 16414.74, + "end": 16415.04, + "probability": 0.4702 + }, + { + "start": 16415.22, + "end": 16418.64, + "probability": 0.9866 + }, + { + "start": 16419.06, + "end": 16419.88, + "probability": 0.8679 + }, + { + "start": 16419.94, + "end": 16421.2, + "probability": 0.7734 + }, + { + "start": 16421.3, + "end": 16421.46, + "probability": 0.8463 + }, + { + "start": 16422.58, + "end": 16423.0, + "probability": 0.7277 + }, + { + "start": 16424.8, + "end": 16426.06, + "probability": 0.812 + }, + { + "start": 16426.12, + "end": 16428.1, + "probability": 0.959 + }, + { + "start": 16428.4, + "end": 16429.04, + "probability": 0.396 + }, + { + "start": 16429.1, + "end": 16430.48, + "probability": 0.8664 + }, + { + "start": 16432.72, + "end": 16433.0, + "probability": 0.188 + }, + { + "start": 16434.02, + "end": 16438.12, + "probability": 0.9443 + }, + { + "start": 16440.38, + "end": 16443.72, + "probability": 0.3973 + }, + { + "start": 16445.04, + "end": 16447.0, + "probability": 0.3604 + }, + { + "start": 16447.68, + "end": 16449.2, + "probability": 0.0564 + }, + { + "start": 16449.96, + "end": 16451.54, + "probability": 0.0111 + }, + { + "start": 16453.16, + "end": 16457.56, + "probability": 0.5707 + }, + { + "start": 16457.58, + "end": 16458.84, + "probability": 0.7519 + }, + { + "start": 16459.36, + "end": 16460.06, + "probability": 0.5509 + }, + { + "start": 16460.14, + "end": 16461.14, + "probability": 0.6677 + }, + { + "start": 16461.62, + "end": 16467.82, + "probability": 0.9901 + }, + { + "start": 16472.07, + "end": 16476.5, + "probability": 0.8118 + }, + { + "start": 16476.5, + "end": 16482.27, + "probability": 0.9924 + }, + { + "start": 16484.3, + "end": 16489.52, + "probability": 0.9793 + }, + { + "start": 16491.16, + "end": 16494.64, + "probability": 0.7881 + }, + { + "start": 16495.62, + "end": 16497.36, + "probability": 0.9287 + }, + { + "start": 16498.52, + "end": 16500.02, + "probability": 0.9319 + }, + { + "start": 16501.68, + "end": 16502.84, + "probability": 0.949 + }, + { + "start": 16503.9, + "end": 16510.06, + "probability": 0.9918 + }, + { + "start": 16510.24, + "end": 16512.1, + "probability": 0.8416 + }, + { + "start": 16513.44, + "end": 16521.86, + "probability": 0.9852 + }, + { + "start": 16522.42, + "end": 16525.16, + "probability": 0.9875 + }, + { + "start": 16525.92, + "end": 16531.9, + "probability": 0.937 + }, + { + "start": 16533.04, + "end": 16542.0, + "probability": 0.7944 + }, + { + "start": 16542.96, + "end": 16547.88, + "probability": 0.9442 + }, + { + "start": 16548.68, + "end": 16550.04, + "probability": 0.7599 + }, + { + "start": 16550.66, + "end": 16555.6, + "probability": 0.5607 + }, + { + "start": 16555.92, + "end": 16559.88, + "probability": 0.94 + }, + { + "start": 16563.01, + "end": 16565.56, + "probability": 0.5052 + }, + { + "start": 16565.56, + "end": 16568.62, + "probability": 0.992 + }, + { + "start": 16568.86, + "end": 16570.12, + "probability": 0.8582 + }, + { + "start": 16570.18, + "end": 16574.06, + "probability": 0.8657 + }, + { + "start": 16574.96, + "end": 16575.58, + "probability": 0.8998 + }, + { + "start": 16575.72, + "end": 16580.28, + "probability": 0.5681 + }, + { + "start": 16580.42, + "end": 16581.02, + "probability": 0.8473 + }, + { + "start": 16581.2, + "end": 16582.43, + "probability": 0.8188 + }, + { + "start": 16582.96, + "end": 16583.42, + "probability": 0.8939 + }, + { + "start": 16583.58, + "end": 16584.38, + "probability": 0.9262 + }, + { + "start": 16585.58, + "end": 16592.74, + "probability": 0.9494 + }, + { + "start": 16592.9, + "end": 16596.92, + "probability": 0.8874 + }, + { + "start": 16596.96, + "end": 16600.58, + "probability": 0.5518 + }, + { + "start": 16601.08, + "end": 16602.5, + "probability": 0.495 + }, + { + "start": 16602.74, + "end": 16604.86, + "probability": 0.8104 + }, + { + "start": 16605.72, + "end": 16608.06, + "probability": 0.9982 + }, + { + "start": 16609.2, + "end": 16613.84, + "probability": 0.9814 + }, + { + "start": 16613.92, + "end": 16616.84, + "probability": 0.9866 + }, + { + "start": 16616.96, + "end": 16624.46, + "probability": 0.9919 + }, + { + "start": 16625.6, + "end": 16627.76, + "probability": 0.7441 + }, + { + "start": 16628.5, + "end": 16639.0, + "probability": 0.8696 + }, + { + "start": 16639.3, + "end": 16640.36, + "probability": 0.7284 + }, + { + "start": 16640.36, + "end": 16643.14, + "probability": 0.9826 + }, + { + "start": 16643.82, + "end": 16649.64, + "probability": 0.6736 + }, + { + "start": 16649.78, + "end": 16651.76, + "probability": 0.9833 + }, + { + "start": 16651.92, + "end": 16652.81, + "probability": 0.872 + }, + { + "start": 16653.14, + "end": 16654.34, + "probability": 0.9551 + }, + { + "start": 16654.36, + "end": 16661.48, + "probability": 0.9587 + }, + { + "start": 16661.48, + "end": 16668.28, + "probability": 0.996 + }, + { + "start": 16668.4, + "end": 16669.66, + "probability": 0.7306 + }, + { + "start": 16669.7, + "end": 16672.76, + "probability": 0.8587 + }, + { + "start": 16672.78, + "end": 16673.04, + "probability": 0.2862 + }, + { + "start": 16674.2, + "end": 16677.34, + "probability": 0.6731 + }, + { + "start": 16677.68, + "end": 16682.88, + "probability": 0.5406 + }, + { + "start": 16682.9, + "end": 16684.48, + "probability": 0.8608 + }, + { + "start": 16684.94, + "end": 16685.56, + "probability": 0.4158 + }, + { + "start": 16685.58, + "end": 16687.32, + "probability": 0.6947 + }, + { + "start": 16689.6, + "end": 16691.84, + "probability": 0.8992 + }, + { + "start": 16692.9, + "end": 16694.62, + "probability": 0.6281 + }, + { + "start": 16698.78, + "end": 16702.82, + "probability": 0.9101 + }, + { + "start": 16702.92, + "end": 16704.44, + "probability": 0.2977 + }, + { + "start": 16706.96, + "end": 16708.74, + "probability": 0.5408 + }, + { + "start": 16709.52, + "end": 16713.02, + "probability": 0.5167 + }, + { + "start": 16713.18, + "end": 16716.9, + "probability": 0.4602 + }, + { + "start": 16718.26, + "end": 16720.42, + "probability": 0.6379 + }, + { + "start": 16721.78, + "end": 16723.62, + "probability": 0.0475 + }, + { + "start": 16723.74, + "end": 16724.9, + "probability": 0.8499 + }, + { + "start": 16725.08, + "end": 16726.22, + "probability": 0.6567 + }, + { + "start": 16729.62, + "end": 16732.31, + "probability": 0.3719 + }, + { + "start": 16733.36, + "end": 16735.19, + "probability": 0.2206 + }, + { + "start": 16735.66, + "end": 16737.38, + "probability": 0.2886 + }, + { + "start": 16737.38, + "end": 16740.3, + "probability": 0.3203 + }, + { + "start": 16745.58, + "end": 16746.26, + "probability": 0.1956 + }, + { + "start": 16746.3, + "end": 16748.18, + "probability": 0.2769 + }, + { + "start": 16748.46, + "end": 16750.16, + "probability": 0.5666 + }, + { + "start": 16750.7, + "end": 16750.7, + "probability": 0.5171 + }, + { + "start": 16750.7, + "end": 16752.64, + "probability": 0.7235 + }, + { + "start": 16753.14, + "end": 16758.44, + "probability": 0.9962 + }, + { + "start": 16760.02, + "end": 16763.44, + "probability": 0.9946 + }, + { + "start": 16763.76, + "end": 16765.92, + "probability": 0.9843 + }, + { + "start": 16766.6, + "end": 16769.56, + "probability": 0.8843 + }, + { + "start": 16770.24, + "end": 16775.76, + "probability": 0.8906 + }, + { + "start": 16776.38, + "end": 16779.16, + "probability": 0.9116 + }, + { + "start": 16779.28, + "end": 16779.68, + "probability": 0.183 + }, + { + "start": 16781.16, + "end": 16782.42, + "probability": 0.3547 + }, + { + "start": 16782.42, + "end": 16783.98, + "probability": 0.6364 + }, + { + "start": 16784.16, + "end": 16790.94, + "probability": 0.9623 + }, + { + "start": 16791.04, + "end": 16795.0, + "probability": 0.7322 + }, + { + "start": 16795.42, + "end": 16795.76, + "probability": 0.8248 + }, + { + "start": 16795.86, + "end": 16800.82, + "probability": 0.9292 + }, + { + "start": 16801.18, + "end": 16805.06, + "probability": 0.9987 + }, + { + "start": 16805.86, + "end": 16807.66, + "probability": 0.9154 + }, + { + "start": 16808.1, + "end": 16809.66, + "probability": 0.8428 + }, + { + "start": 16809.82, + "end": 16811.8, + "probability": 0.9911 + }, + { + "start": 16811.94, + "end": 16813.8, + "probability": 0.9938 + }, + { + "start": 16814.24, + "end": 16815.64, + "probability": 0.9229 + }, + { + "start": 16816.66, + "end": 16817.58, + "probability": 0.7913 + }, + { + "start": 16817.96, + "end": 16825.8, + "probability": 0.9592 + }, + { + "start": 16826.0, + "end": 16830.14, + "probability": 0.8853 + }, + { + "start": 16830.64, + "end": 16831.62, + "probability": 0.8265 + }, + { + "start": 16832.32, + "end": 16835.07, + "probability": 0.9043 + }, + { + "start": 16835.78, + "end": 16840.08, + "probability": 0.9971 + }, + { + "start": 16840.08, + "end": 16843.36, + "probability": 0.9982 + }, + { + "start": 16844.12, + "end": 16845.6, + "probability": 0.8823 + }, + { + "start": 16846.06, + "end": 16849.58, + "probability": 0.9689 + }, + { + "start": 16850.02, + "end": 16851.54, + "probability": 0.9077 + }, + { + "start": 16852.0, + "end": 16854.12, + "probability": 0.7071 + }, + { + "start": 16855.62, + "end": 16860.04, + "probability": 0.8588 + }, + { + "start": 16860.32, + "end": 16863.36, + "probability": 0.9756 + }, + { + "start": 16863.8, + "end": 16865.36, + "probability": 0.8534 + }, + { + "start": 16866.8, + "end": 16870.32, + "probability": 0.9482 + }, + { + "start": 16870.32, + "end": 16874.02, + "probability": 0.9966 + }, + { + "start": 16874.54, + "end": 16875.32, + "probability": 0.8298 + }, + { + "start": 16875.72, + "end": 16877.18, + "probability": 0.9932 + }, + { + "start": 16877.34, + "end": 16882.68, + "probability": 0.9891 + }, + { + "start": 16882.8, + "end": 16883.54, + "probability": 0.714 + }, + { + "start": 16883.66, + "end": 16884.24, + "probability": 0.5864 + }, + { + "start": 16884.74, + "end": 16885.7, + "probability": 0.9484 + }, + { + "start": 16886.42, + "end": 16889.28, + "probability": 0.8972 + }, + { + "start": 16889.4, + "end": 16890.46, + "probability": 0.8586 + }, + { + "start": 16890.7, + "end": 16892.26, + "probability": 0.9427 + }, + { + "start": 16892.48, + "end": 16895.88, + "probability": 0.9784 + }, + { + "start": 16896.3, + "end": 16899.22, + "probability": 0.9719 + }, + { + "start": 16899.7, + "end": 16901.12, + "probability": 0.9554 + }, + { + "start": 16901.42, + "end": 16902.32, + "probability": 0.8298 + }, + { + "start": 16902.38, + "end": 16905.1, + "probability": 0.9976 + }, + { + "start": 16905.26, + "end": 16905.88, + "probability": 0.9447 + }, + { + "start": 16905.94, + "end": 16907.32, + "probability": 0.9647 + }, + { + "start": 16907.78, + "end": 16908.46, + "probability": 0.9452 + }, + { + "start": 16908.68, + "end": 16912.0, + "probability": 0.9836 + }, + { + "start": 16912.5, + "end": 16916.72, + "probability": 0.9868 + }, + { + "start": 16916.96, + "end": 16918.01, + "probability": 0.7887 + }, + { + "start": 16918.28, + "end": 16919.86, + "probability": 0.9657 + }, + { + "start": 16920.2, + "end": 16923.94, + "probability": 0.9776 + }, + { + "start": 16923.94, + "end": 16927.22, + "probability": 0.9921 + }, + { + "start": 16927.28, + "end": 16928.24, + "probability": 0.9222 + }, + { + "start": 16928.64, + "end": 16931.5, + "probability": 0.763 + }, + { + "start": 16932.19, + "end": 16936.71, + "probability": 0.899 + }, + { + "start": 16937.6, + "end": 16942.14, + "probability": 0.9753 + }, + { + "start": 16942.98, + "end": 16946.8, + "probability": 0.9741 + }, + { + "start": 16947.52, + "end": 16948.7, + "probability": 0.7356 + }, + { + "start": 16949.22, + "end": 16951.3, + "probability": 0.9873 + }, + { + "start": 16951.36, + "end": 16952.34, + "probability": 0.923 + }, + { + "start": 16952.6, + "end": 16954.0, + "probability": 0.7926 + }, + { + "start": 16954.04, + "end": 16955.78, + "probability": 0.8123 + }, + { + "start": 16957.24, + "end": 16958.52, + "probability": 0.3562 + }, + { + "start": 16958.52, + "end": 16958.94, + "probability": 0.0721 + }, + { + "start": 16960.4, + "end": 16962.42, + "probability": 0.6459 + }, + { + "start": 16962.74, + "end": 16963.18, + "probability": 0.4046 + }, + { + "start": 16963.38, + "end": 16965.72, + "probability": 0.9833 + }, + { + "start": 16966.44, + "end": 16967.28, + "probability": 0.9167 + }, + { + "start": 16967.96, + "end": 16969.54, + "probability": 0.9313 + }, + { + "start": 16970.2, + "end": 16971.38, + "probability": 0.9722 + }, + { + "start": 16972.08, + "end": 16976.06, + "probability": 0.9972 + }, + { + "start": 16976.06, + "end": 16978.98, + "probability": 0.9984 + }, + { + "start": 16979.7, + "end": 16980.56, + "probability": 0.5605 + }, + { + "start": 16981.36, + "end": 16982.18, + "probability": 0.921 + }, + { + "start": 16982.3, + "end": 16983.28, + "probability": 0.7891 + }, + { + "start": 16983.28, + "end": 16985.5, + "probability": 0.9855 + }, + { + "start": 16985.56, + "end": 16987.7, + "probability": 0.9237 + }, + { + "start": 16988.22, + "end": 16989.76, + "probability": 0.9541 + }, + { + "start": 16990.26, + "end": 16991.96, + "probability": 0.9971 + }, + { + "start": 16992.04, + "end": 16993.15, + "probability": 0.9724 + }, + { + "start": 16993.96, + "end": 16997.84, + "probability": 0.9615 + }, + { + "start": 16998.86, + "end": 17000.28, + "probability": 0.9671 + }, + { + "start": 17000.34, + "end": 17000.46, + "probability": 0.4633 + }, + { + "start": 17000.52, + "end": 17002.2, + "probability": 0.998 + }, + { + "start": 17002.34, + "end": 17003.67, + "probability": 0.9871 + }, + { + "start": 17003.98, + "end": 17008.42, + "probability": 0.999 + }, + { + "start": 17008.84, + "end": 17010.2, + "probability": 0.7912 + }, + { + "start": 17010.42, + "end": 17012.36, + "probability": 0.993 + }, + { + "start": 17012.8, + "end": 17014.98, + "probability": 0.5784 + }, + { + "start": 17015.1, + "end": 17018.32, + "probability": 0.897 + }, + { + "start": 17018.52, + "end": 17019.26, + "probability": 0.4197 + }, + { + "start": 17019.28, + "end": 17021.45, + "probability": 0.8065 + }, + { + "start": 17027.99, + "end": 17030.24, + "probability": 0.8662 + }, + { + "start": 17030.62, + "end": 17032.72, + "probability": 0.7402 + }, + { + "start": 17033.36, + "end": 17035.94, + "probability": 0.9307 + }, + { + "start": 17036.52, + "end": 17041.06, + "probability": 0.984 + }, + { + "start": 17041.26, + "end": 17045.32, + "probability": 0.9774 + }, + { + "start": 17045.4, + "end": 17046.92, + "probability": 0.8721 + }, + { + "start": 17047.3, + "end": 17048.62, + "probability": 0.7309 + }, + { + "start": 17050.22, + "end": 17051.43, + "probability": 0.8723 + }, + { + "start": 17051.78, + "end": 17052.46, + "probability": 0.7584 + }, + { + "start": 17052.62, + "end": 17056.08, + "probability": 0.8447 + }, + { + "start": 17056.86, + "end": 17059.54, + "probability": 0.8984 + }, + { + "start": 17060.76, + "end": 17062.26, + "probability": 0.8656 + }, + { + "start": 17062.56, + "end": 17070.74, + "probability": 0.9468 + }, + { + "start": 17072.94, + "end": 17075.6, + "probability": 0.5521 + }, + { + "start": 17076.72, + "end": 17083.02, + "probability": 0.7957 + }, + { + "start": 17083.66, + "end": 17087.93, + "probability": 0.9863 + }, + { + "start": 17088.44, + "end": 17091.08, + "probability": 0.9805 + }, + { + "start": 17091.94, + "end": 17094.08, + "probability": 0.9653 + }, + { + "start": 17096.02, + "end": 17098.12, + "probability": 0.9022 + }, + { + "start": 17098.28, + "end": 17099.83, + "probability": 0.8761 + }, + { + "start": 17100.28, + "end": 17106.14, + "probability": 0.974 + }, + { + "start": 17107.08, + "end": 17112.34, + "probability": 0.959 + }, + { + "start": 17113.12, + "end": 17117.78, + "probability": 0.9924 + }, + { + "start": 17118.86, + "end": 17123.14, + "probability": 0.9314 + }, + { + "start": 17123.18, + "end": 17127.82, + "probability": 0.9923 + }, + { + "start": 17127.86, + "end": 17131.03, + "probability": 0.9878 + }, + { + "start": 17131.96, + "end": 17133.24, + "probability": 0.9095 + }, + { + "start": 17136.08, + "end": 17144.48, + "probability": 0.9905 + }, + { + "start": 17145.32, + "end": 17146.43, + "probability": 0.9792 + }, + { + "start": 17147.5, + "end": 17150.96, + "probability": 0.9723 + }, + { + "start": 17151.34, + "end": 17152.06, + "probability": 0.7635 + }, + { + "start": 17152.16, + "end": 17153.32, + "probability": 0.9841 + }, + { + "start": 17153.38, + "end": 17155.94, + "probability": 0.9886 + }, + { + "start": 17155.94, + "end": 17157.04, + "probability": 0.9174 + }, + { + "start": 17157.12, + "end": 17162.96, + "probability": 0.9731 + }, + { + "start": 17164.14, + "end": 17165.18, + "probability": 0.5874 + }, + { + "start": 17166.0, + "end": 17168.64, + "probability": 0.9433 + }, + { + "start": 17168.72, + "end": 17170.8, + "probability": 0.4707 + }, + { + "start": 17170.92, + "end": 17174.92, + "probability": 0.9761 + }, + { + "start": 17175.32, + "end": 17180.18, + "probability": 0.9817 + }, + { + "start": 17181.16, + "end": 17184.06, + "probability": 0.9817 + }, + { + "start": 17184.44, + "end": 17185.56, + "probability": 0.7862 + }, + { + "start": 17185.92, + "end": 17187.2, + "probability": 0.8636 + }, + { + "start": 17187.46, + "end": 17189.62, + "probability": 0.9741 + }, + { + "start": 17189.92, + "end": 17190.46, + "probability": 0.9434 + }, + { + "start": 17190.84, + "end": 17193.74, + "probability": 0.9686 + }, + { + "start": 17194.9, + "end": 17198.11, + "probability": 0.9976 + }, + { + "start": 17199.26, + "end": 17202.46, + "probability": 0.9916 + }, + { + "start": 17203.02, + "end": 17204.58, + "probability": 0.7316 + }, + { + "start": 17204.68, + "end": 17208.29, + "probability": 0.9661 + }, + { + "start": 17208.96, + "end": 17212.46, + "probability": 0.9604 + }, + { + "start": 17213.96, + "end": 17219.34, + "probability": 0.9865 + }, + { + "start": 17219.78, + "end": 17220.18, + "probability": 0.9114 + }, + { + "start": 17222.38, + "end": 17228.98, + "probability": 0.8402 + }, + { + "start": 17231.06, + "end": 17234.6, + "probability": 0.885 + }, + { + "start": 17235.04, + "end": 17236.7, + "probability": 0.9619 + }, + { + "start": 17236.82, + "end": 17237.88, + "probability": 0.8854 + }, + { + "start": 17238.5, + "end": 17242.3, + "probability": 0.9692 + }, + { + "start": 17243.3, + "end": 17243.3, + "probability": 0.2318 + }, + { + "start": 17243.36, + "end": 17247.16, + "probability": 0.9924 + }, + { + "start": 17248.46, + "end": 17251.0, + "probability": 0.7665 + }, + { + "start": 17251.12, + "end": 17253.8, + "probability": 0.8571 + }, + { + "start": 17254.62, + "end": 17255.54, + "probability": 0.8908 + }, + { + "start": 17256.32, + "end": 17258.96, + "probability": 0.9579 + }, + { + "start": 17259.24, + "end": 17259.48, + "probability": 0.3888 + }, + { + "start": 17259.48, + "end": 17261.52, + "probability": 0.629 + }, + { + "start": 17261.54, + "end": 17263.88, + "probability": 0.7034 + }, + { + "start": 17263.98, + "end": 17264.38, + "probability": 0.3824 + }, + { + "start": 17264.42, + "end": 17266.04, + "probability": 0.9002 + }, + { + "start": 17269.06, + "end": 17269.72, + "probability": 0.8359 + }, + { + "start": 17287.32, + "end": 17289.26, + "probability": 0.7446 + }, + { + "start": 17290.78, + "end": 17293.08, + "probability": 0.7971 + }, + { + "start": 17294.2, + "end": 17294.36, + "probability": 0.3119 + }, + { + "start": 17296.14, + "end": 17296.36, + "probability": 0.508 + }, + { + "start": 17296.52, + "end": 17296.74, + "probability": 0.1326 + }, + { + "start": 17296.82, + "end": 17298.52, + "probability": 0.8202 + }, + { + "start": 17299.5, + "end": 17303.2, + "probability": 0.9205 + }, + { + "start": 17307.92, + "end": 17311.28, + "probability": 0.9553 + }, + { + "start": 17312.68, + "end": 17313.04, + "probability": 0.3601 + }, + { + "start": 17313.3, + "end": 17314.56, + "probability": 0.7081 + }, + { + "start": 17314.66, + "end": 17317.4, + "probability": 0.7482 + }, + { + "start": 17318.78, + "end": 17326.2, + "probability": 0.9466 + }, + { + "start": 17326.32, + "end": 17327.04, + "probability": 0.7599 + }, + { + "start": 17327.88, + "end": 17331.06, + "probability": 0.993 + }, + { + "start": 17331.78, + "end": 17337.1, + "probability": 0.9405 + }, + { + "start": 17337.72, + "end": 17338.74, + "probability": 0.6563 + }, + { + "start": 17340.28, + "end": 17342.1, + "probability": 0.8726 + }, + { + "start": 17342.22, + "end": 17344.82, + "probability": 0.8788 + }, + { + "start": 17345.66, + "end": 17349.94, + "probability": 0.6941 + }, + { + "start": 17350.14, + "end": 17357.82, + "probability": 0.9741 + }, + { + "start": 17357.9, + "end": 17359.42, + "probability": 0.9447 + }, + { + "start": 17360.02, + "end": 17367.85, + "probability": 0.9413 + }, + { + "start": 17368.46, + "end": 17373.44, + "probability": 0.9569 + }, + { + "start": 17373.74, + "end": 17375.28, + "probability": 0.9804 + }, + { + "start": 17375.76, + "end": 17377.74, + "probability": 0.9133 + }, + { + "start": 17378.46, + "end": 17380.78, + "probability": 0.959 + }, + { + "start": 17381.94, + "end": 17382.76, + "probability": 0.9621 + }, + { + "start": 17383.42, + "end": 17384.84, + "probability": 0.9956 + }, + { + "start": 17385.68, + "end": 17392.04, + "probability": 0.9589 + }, + { + "start": 17393.28, + "end": 17395.62, + "probability": 0.9876 + }, + { + "start": 17396.98, + "end": 17406.26, + "probability": 0.894 + }, + { + "start": 17406.56, + "end": 17407.06, + "probability": 0.5275 + }, + { + "start": 17407.1, + "end": 17407.44, + "probability": 0.505 + }, + { + "start": 17408.7, + "end": 17410.84, + "probability": 0.4802 + }, + { + "start": 17411.02, + "end": 17412.44, + "probability": 0.8557 + }, + { + "start": 17412.48, + "end": 17413.54, + "probability": 0.7891 + }, + { + "start": 17413.84, + "end": 17415.74, + "probability": 0.9407 + }, + { + "start": 17416.98, + "end": 17424.45, + "probability": 0.9224 + }, + { + "start": 17425.12, + "end": 17426.46, + "probability": 0.6726 + }, + { + "start": 17426.9, + "end": 17429.92, + "probability": 0.9563 + }, + { + "start": 17430.42, + "end": 17431.36, + "probability": 0.724 + }, + { + "start": 17431.86, + "end": 17434.56, + "probability": 0.9438 + }, + { + "start": 17434.8, + "end": 17435.86, + "probability": 0.6244 + }, + { + "start": 17435.96, + "end": 17438.8, + "probability": 0.8231 + }, + { + "start": 17438.88, + "end": 17439.86, + "probability": 0.9733 + }, + { + "start": 17440.38, + "end": 17442.08, + "probability": 0.7498 + }, + { + "start": 17442.62, + "end": 17449.08, + "probability": 0.9758 + }, + { + "start": 17449.82, + "end": 17453.74, + "probability": 0.998 + }, + { + "start": 17453.74, + "end": 17458.78, + "probability": 0.9399 + }, + { + "start": 17458.98, + "end": 17466.38, + "probability": 0.9946 + }, + { + "start": 17466.46, + "end": 17467.54, + "probability": 0.5122 + }, + { + "start": 17467.74, + "end": 17468.74, + "probability": 0.9545 + }, + { + "start": 17468.8, + "end": 17470.52, + "probability": 0.9106 + }, + { + "start": 17470.84, + "end": 17475.66, + "probability": 0.9849 + }, + { + "start": 17476.32, + "end": 17478.46, + "probability": 0.8574 + }, + { + "start": 17478.6, + "end": 17480.46, + "probability": 0.9325 + }, + { + "start": 17480.5, + "end": 17481.1, + "probability": 0.4047 + }, + { + "start": 17481.14, + "end": 17483.66, + "probability": 0.8244 + }, + { + "start": 17489.56, + "end": 17491.92, + "probability": 0.757 + }, + { + "start": 17493.34, + "end": 17501.48, + "probability": 0.7828 + }, + { + "start": 17502.18, + "end": 17506.34, + "probability": 0.9772 + }, + { + "start": 17506.92, + "end": 17510.26, + "probability": 0.951 + }, + { + "start": 17511.52, + "end": 17512.64, + "probability": 0.8622 + }, + { + "start": 17512.68, + "end": 17513.28, + "probability": 0.8385 + }, + { + "start": 17513.54, + "end": 17518.24, + "probability": 0.9861 + }, + { + "start": 17519.54, + "end": 17525.22, + "probability": 0.9561 + }, + { + "start": 17525.56, + "end": 17529.34, + "probability": 0.9863 + }, + { + "start": 17529.34, + "end": 17534.88, + "probability": 0.9748 + }, + { + "start": 17535.02, + "end": 17536.04, + "probability": 0.8061 + }, + { + "start": 17537.18, + "end": 17543.18, + "probability": 0.9788 + }, + { + "start": 17544.36, + "end": 17544.44, + "probability": 0.0113 + }, + { + "start": 17544.44, + "end": 17545.5, + "probability": 0.1193 + }, + { + "start": 17545.5, + "end": 17546.36, + "probability": 0.4355 + }, + { + "start": 17547.96, + "end": 17548.16, + "probability": 0.2517 + }, + { + "start": 17548.16, + "end": 17548.78, + "probability": 0.4891 + }, + { + "start": 17548.84, + "end": 17549.54, + "probability": 0.4702 + }, + { + "start": 17549.7, + "end": 17553.68, + "probability": 0.6925 + }, + { + "start": 17553.86, + "end": 17555.06, + "probability": 0.9191 + }, + { + "start": 17555.7, + "end": 17557.29, + "probability": 0.8812 + }, + { + "start": 17558.1, + "end": 17559.16, + "probability": 0.8558 + }, + { + "start": 17559.96, + "end": 17560.68, + "probability": 0.7362 + }, + { + "start": 17560.84, + "end": 17562.14, + "probability": 0.8674 + }, + { + "start": 17562.6, + "end": 17568.4, + "probability": 0.9602 + }, + { + "start": 17569.02, + "end": 17572.58, + "probability": 0.9832 + }, + { + "start": 17573.18, + "end": 17581.3, + "probability": 0.989 + }, + { + "start": 17581.3, + "end": 17589.34, + "probability": 0.9962 + }, + { + "start": 17589.34, + "end": 17595.2, + "probability": 0.9996 + }, + { + "start": 17596.25, + "end": 17598.27, + "probability": 0.8931 + }, + { + "start": 17598.6, + "end": 17598.62, + "probability": 0.0246 + }, + { + "start": 17598.86, + "end": 17598.98, + "probability": 0.0171 + }, + { + "start": 17598.98, + "end": 17603.04, + "probability": 0.9555 + }, + { + "start": 17603.12, + "end": 17604.12, + "probability": 0.7605 + }, + { + "start": 17604.48, + "end": 17609.36, + "probability": 0.9971 + }, + { + "start": 17609.7, + "end": 17612.1, + "probability": 0.9722 + }, + { + "start": 17612.74, + "end": 17616.36, + "probability": 0.9671 + }, + { + "start": 17617.32, + "end": 17624.28, + "probability": 0.9665 + }, + { + "start": 17624.74, + "end": 17629.2, + "probability": 0.9856 + }, + { + "start": 17629.28, + "end": 17630.12, + "probability": 0.7626 + }, + { + "start": 17630.72, + "end": 17631.5, + "probability": 0.9139 + }, + { + "start": 17632.84, + "end": 17638.14, + "probability": 0.9792 + }, + { + "start": 17638.74, + "end": 17641.3, + "probability": 0.9425 + }, + { + "start": 17641.88, + "end": 17644.4, + "probability": 0.8956 + }, + { + "start": 17645.28, + "end": 17650.84, + "probability": 0.9664 + }, + { + "start": 17651.12, + "end": 17652.7, + "probability": 0.8923 + }, + { + "start": 17653.2, + "end": 17655.8, + "probability": 0.9665 + }, + { + "start": 17656.18, + "end": 17658.34, + "probability": 0.9985 + }, + { + "start": 17658.88, + "end": 17663.8, + "probability": 0.996 + }, + { + "start": 17663.8, + "end": 17665.38, + "probability": 0.9792 + }, + { + "start": 17666.32, + "end": 17671.85, + "probability": 0.9575 + }, + { + "start": 17672.76, + "end": 17677.26, + "probability": 0.9924 + }, + { + "start": 17677.26, + "end": 17681.93, + "probability": 0.9956 + }, + { + "start": 17684.58, + "end": 17685.7, + "probability": 0.0609 + }, + { + "start": 17686.2, + "end": 17688.08, + "probability": 0.0725 + }, + { + "start": 17688.44, + "end": 17691.32, + "probability": 0.1043 + }, + { + "start": 17691.32, + "end": 17691.44, + "probability": 0.385 + }, + { + "start": 17691.44, + "end": 17694.58, + "probability": 0.5615 + }, + { + "start": 17694.7, + "end": 17697.18, + "probability": 0.6934 + }, + { + "start": 17697.48, + "end": 17697.54, + "probability": 0.065 + }, + { + "start": 17697.58, + "end": 17700.68, + "probability": 0.8121 + }, + { + "start": 17701.24, + "end": 17704.44, + "probability": 0.3455 + }, + { + "start": 17704.44, + "end": 17704.86, + "probability": 0.0128 + }, + { + "start": 17705.36, + "end": 17706.74, + "probability": 0.1469 + }, + { + "start": 17706.96, + "end": 17707.62, + "probability": 0.1275 + }, + { + "start": 17707.62, + "end": 17708.26, + "probability": 0.5034 + }, + { + "start": 17708.34, + "end": 17709.4, + "probability": 0.0012 + }, + { + "start": 17709.77, + "end": 17710.78, + "probability": 0.0629 + }, + { + "start": 17711.48, + "end": 17712.9, + "probability": 0.0471 + }, + { + "start": 17712.9, + "end": 17713.66, + "probability": 0.3844 + }, + { + "start": 17713.76, + "end": 17714.12, + "probability": 0.8206 + }, + { + "start": 17714.16, + "end": 17715.76, + "probability": 0.7378 + }, + { + "start": 17716.08, + "end": 17717.6, + "probability": 0.2532 + }, + { + "start": 17718.06, + "end": 17722.48, + "probability": 0.3133 + }, + { + "start": 17722.6, + "end": 17723.38, + "probability": 0.7223 + }, + { + "start": 17723.68, + "end": 17725.04, + "probability": 0.4333 + }, + { + "start": 17725.84, + "end": 17728.14, + "probability": 0.0545 + }, + { + "start": 17728.44, + "end": 17734.12, + "probability": 0.5826 + }, + { + "start": 17734.54, + "end": 17735.58, + "probability": 0.5507 + }, + { + "start": 17735.64, + "end": 17735.96, + "probability": 0.3495 + }, + { + "start": 17735.98, + "end": 17735.98, + "probability": 0.3806 + }, + { + "start": 17735.98, + "end": 17739.42, + "probability": 0.5764 + }, + { + "start": 17739.48, + "end": 17739.88, + "probability": 0.7834 + }, + { + "start": 17739.88, + "end": 17740.38, + "probability": 0.6224 + }, + { + "start": 17740.38, + "end": 17740.82, + "probability": 0.3979 + }, + { + "start": 17741.08, + "end": 17744.04, + "probability": 0.6563 + }, + { + "start": 17744.22, + "end": 17748.1, + "probability": 0.6111 + }, + { + "start": 17748.28, + "end": 17748.34, + "probability": 0.027 + }, + { + "start": 17748.34, + "end": 17748.34, + "probability": 0.4351 + }, + { + "start": 17748.34, + "end": 17752.4, + "probability": 0.3836 + }, + { + "start": 17752.48, + "end": 17753.18, + "probability": 0.4426 + }, + { + "start": 17753.18, + "end": 17753.82, + "probability": 0.3464 + }, + { + "start": 17753.94, + "end": 17756.44, + "probability": 0.7383 + }, + { + "start": 17756.62, + "end": 17759.49, + "probability": 0.8375 + }, + { + "start": 17759.58, + "end": 17759.58, + "probability": 0.6834 + }, + { + "start": 17759.68, + "end": 17763.18, + "probability": 0.9448 + }, + { + "start": 17764.08, + "end": 17767.0, + "probability": 0.7733 + }, + { + "start": 17767.28, + "end": 17773.06, + "probability": 0.9639 + }, + { + "start": 17773.06, + "end": 17776.4, + "probability": 0.999 + }, + { + "start": 17776.96, + "end": 17782.84, + "probability": 0.982 + }, + { + "start": 17783.02, + "end": 17788.58, + "probability": 0.945 + }, + { + "start": 17789.2, + "end": 17793.66, + "probability": 0.9814 + }, + { + "start": 17793.88, + "end": 17794.86, + "probability": 0.924 + }, + { + "start": 17795.52, + "end": 17800.44, + "probability": 0.9639 + }, + { + "start": 17800.84, + "end": 17804.16, + "probability": 0.8914 + }, + { + "start": 17804.72, + "end": 17809.52, + "probability": 0.9952 + }, + { + "start": 17809.9, + "end": 17813.32, + "probability": 0.9747 + }, + { + "start": 17813.68, + "end": 17815.9, + "probability": 0.9955 + }, + { + "start": 17816.26, + "end": 17816.78, + "probability": 0.7213 + }, + { + "start": 17816.86, + "end": 17822.68, + "probability": 0.9652 + }, + { + "start": 17822.94, + "end": 17826.84, + "probability": 0.9899 + }, + { + "start": 17826.84, + "end": 17830.44, + "probability": 0.9993 + }, + { + "start": 17830.44, + "end": 17830.6, + "probability": 0.5485 + }, + { + "start": 17830.74, + "end": 17833.18, + "probability": 0.9406 + }, + { + "start": 17833.94, + "end": 17838.9, + "probability": 0.9375 + }, + { + "start": 17840.56, + "end": 17842.06, + "probability": 0.7923 + }, + { + "start": 17842.12, + "end": 17842.86, + "probability": 0.4061 + }, + { + "start": 17842.86, + "end": 17845.46, + "probability": 0.9452 + }, + { + "start": 17848.16, + "end": 17850.5, + "probability": 0.7629 + }, + { + "start": 17854.82, + "end": 17858.92, + "probability": 0.7331 + }, + { + "start": 17860.06, + "end": 17861.58, + "probability": 0.8603 + }, + { + "start": 17861.96, + "end": 17866.9, + "probability": 0.9019 + }, + { + "start": 17867.62, + "end": 17868.02, + "probability": 0.4453 + }, + { + "start": 17869.04, + "end": 17869.16, + "probability": 0.33 + }, + { + "start": 17869.16, + "end": 17873.64, + "probability": 0.998 + }, + { + "start": 17873.64, + "end": 17876.58, + "probability": 0.999 + }, + { + "start": 17877.54, + "end": 17880.34, + "probability": 0.9434 + }, + { + "start": 17882.64, + "end": 17883.46, + "probability": 0.8138 + }, + { + "start": 17883.56, + "end": 17885.0, + "probability": 0.6931 + }, + { + "start": 17885.06, + "end": 17887.04, + "probability": 0.9894 + }, + { + "start": 17887.18, + "end": 17889.54, + "probability": 0.9657 + }, + { + "start": 17890.44, + "end": 17893.88, + "probability": 0.9091 + }, + { + "start": 17894.24, + "end": 17897.17, + "probability": 0.917 + }, + { + "start": 17897.74, + "end": 17898.84, + "probability": 0.8494 + }, + { + "start": 17899.18, + "end": 17901.45, + "probability": 0.9596 + }, + { + "start": 17901.9, + "end": 17905.18, + "probability": 0.9971 + }, + { + "start": 17905.74, + "end": 17908.02, + "probability": 0.8771 + }, + { + "start": 17908.1, + "end": 17909.78, + "probability": 0.9718 + }, + { + "start": 17910.16, + "end": 17916.12, + "probability": 0.9661 + }, + { + "start": 17916.18, + "end": 17917.84, + "probability": 0.9915 + }, + { + "start": 17917.98, + "end": 17918.2, + "probability": 0.8146 + }, + { + "start": 17918.28, + "end": 17922.26, + "probability": 0.9342 + }, + { + "start": 17922.66, + "end": 17923.06, + "probability": 0.5146 + }, + { + "start": 17923.28, + "end": 17924.1, + "probability": 0.7758 + }, + { + "start": 17924.66, + "end": 17925.62, + "probability": 0.9346 + }, + { + "start": 17925.98, + "end": 17927.76, + "probability": 0.8764 + }, + { + "start": 17928.76, + "end": 17930.54, + "probability": 0.7857 + }, + { + "start": 17930.7, + "end": 17934.14, + "probability": 0.9876 + }, + { + "start": 17936.18, + "end": 17937.56, + "probability": 0.7205 + }, + { + "start": 17941.12, + "end": 17944.86, + "probability": 0.9558 + }, + { + "start": 17945.08, + "end": 17948.26, + "probability": 0.8152 + }, + { + "start": 17948.36, + "end": 17948.48, + "probability": 0.5791 + }, + { + "start": 17948.58, + "end": 17953.7, + "probability": 0.9955 + }, + { + "start": 17954.84, + "end": 17956.96, + "probability": 0.9916 + }, + { + "start": 17957.62, + "end": 17965.26, + "probability": 0.9704 + }, + { + "start": 17965.44, + "end": 17971.5, + "probability": 0.926 + }, + { + "start": 17971.84, + "end": 17973.22, + "probability": 0.9827 + }, + { + "start": 17973.38, + "end": 17974.72, + "probability": 0.8417 + }, + { + "start": 17976.4, + "end": 17979.18, + "probability": 0.8025 + }, + { + "start": 17979.26, + "end": 17981.08, + "probability": 0.8748 + }, + { + "start": 17981.72, + "end": 17982.68, + "probability": 0.9405 + }, + { + "start": 17983.28, + "end": 17985.76, + "probability": 0.8748 + }, + { + "start": 17986.82, + "end": 17988.64, + "probability": 0.8991 + }, + { + "start": 17988.86, + "end": 17992.04, + "probability": 0.6791 + }, + { + "start": 17992.36, + "end": 17998.48, + "probability": 0.9013 + }, + { + "start": 17999.16, + "end": 18001.84, + "probability": 0.8918 + }, + { + "start": 18003.08, + "end": 18004.18, + "probability": 0.605 + }, + { + "start": 18004.62, + "end": 18008.06, + "probability": 0.9445 + }, + { + "start": 18008.5, + "end": 18011.74, + "probability": 0.6795 + }, + { + "start": 18011.9, + "end": 18014.79, + "probability": 0.9674 + }, + { + "start": 18015.56, + "end": 18017.98, + "probability": 0.9453 + }, + { + "start": 18018.18, + "end": 18019.72, + "probability": 0.8414 + }, + { + "start": 18019.94, + "end": 18022.16, + "probability": 0.9761 + }, + { + "start": 18022.38, + "end": 18025.42, + "probability": 0.8792 + }, + { + "start": 18025.42, + "end": 18028.34, + "probability": 0.9831 + }, + { + "start": 18028.46, + "end": 18028.48, + "probability": 0.0908 + }, + { + "start": 18028.48, + "end": 18029.52, + "probability": 0.8061 + }, + { + "start": 18029.56, + "end": 18033.86, + "probability": 0.6815 + }, + { + "start": 18034.0, + "end": 18036.8, + "probability": 0.8027 + }, + { + "start": 18038.55, + "end": 18041.16, + "probability": 0.9463 + }, + { + "start": 18041.16, + "end": 18041.16, + "probability": 0.1303 + }, + { + "start": 18041.16, + "end": 18042.44, + "probability": 0.644 + }, + { + "start": 18043.04, + "end": 18048.04, + "probability": 0.9783 + }, + { + "start": 18048.04, + "end": 18052.98, + "probability": 0.9892 + }, + { + "start": 18053.56, + "end": 18054.32, + "probability": 0.9141 + }, + { + "start": 18054.37, + "end": 18056.78, + "probability": 0.9996 + }, + { + "start": 18056.9, + "end": 18059.62, + "probability": 0.8494 + }, + { + "start": 18059.76, + "end": 18063.26, + "probability": 0.9604 + }, + { + "start": 18063.38, + "end": 18066.44, + "probability": 0.8574 + }, + { + "start": 18066.44, + "end": 18070.4, + "probability": 0.829 + }, + { + "start": 18070.78, + "end": 18073.9, + "probability": 0.9917 + }, + { + "start": 18073.9, + "end": 18076.48, + "probability": 0.8425 + }, + { + "start": 18077.54, + "end": 18081.02, + "probability": 0.9976 + }, + { + "start": 18081.02, + "end": 18084.04, + "probability": 0.821 + }, + { + "start": 18084.26, + "end": 18085.22, + "probability": 0.9244 + }, + { + "start": 18085.34, + "end": 18087.2, + "probability": 0.6184 + }, + { + "start": 18087.24, + "end": 18088.62, + "probability": 0.6912 + }, + { + "start": 18088.88, + "end": 18091.54, + "probability": 0.6874 + }, + { + "start": 18091.56, + "end": 18092.8, + "probability": 0.9059 + }, + { + "start": 18092.84, + "end": 18093.62, + "probability": 0.6694 + }, + { + "start": 18096.1, + "end": 18097.34, + "probability": 0.6434 + }, + { + "start": 18097.46, + "end": 18102.98, + "probability": 0.9855 + }, + { + "start": 18103.16, + "end": 18105.84, + "probability": 0.9893 + }, + { + "start": 18105.96, + "end": 18106.14, + "probability": 0.1625 + }, + { + "start": 18106.22, + "end": 18106.64, + "probability": 0.6832 + }, + { + "start": 18106.86, + "end": 18107.51, + "probability": 0.8755 + }, + { + "start": 18108.06, + "end": 18109.36, + "probability": 0.4971 + }, + { + "start": 18110.3, + "end": 18111.18, + "probability": 0.5014 + }, + { + "start": 18111.52, + "end": 18113.98, + "probability": 0.6187 + }, + { + "start": 18113.98, + "end": 18118.8, + "probability": 0.5385 + }, + { + "start": 18118.8, + "end": 18121.22, + "probability": 0.8386 + }, + { + "start": 18121.4, + "end": 18121.78, + "probability": 0.7646 + }, + { + "start": 18121.8, + "end": 18123.62, + "probability": 0.9325 + }, + { + "start": 18123.74, + "end": 18125.94, + "probability": 0.9598 + }, + { + "start": 18126.48, + "end": 18126.86, + "probability": 0.5157 + }, + { + "start": 18126.98, + "end": 18131.76, + "probability": 0.9399 + }, + { + "start": 18131.76, + "end": 18136.34, + "probability": 0.9854 + }, + { + "start": 18136.64, + "end": 18139.57, + "probability": 0.9785 + }, + { + "start": 18140.32, + "end": 18142.68, + "probability": 0.5397 + }, + { + "start": 18142.78, + "end": 18145.96, + "probability": 0.6017 + }, + { + "start": 18146.0, + "end": 18147.8, + "probability": 0.8846 + }, + { + "start": 18148.2, + "end": 18154.0, + "probability": 0.9932 + }, + { + "start": 18154.04, + "end": 18154.58, + "probability": 0.9037 + }, + { + "start": 18154.7, + "end": 18154.92, + "probability": 0.7729 + }, + { + "start": 18155.44, + "end": 18156.76, + "probability": 0.4012 + }, + { + "start": 18156.86, + "end": 18159.2, + "probability": 0.9053 + }, + { + "start": 18173.34, + "end": 18175.46, + "probability": 0.9985 + }, + { + "start": 18175.52, + "end": 18176.18, + "probability": 0.7656 + }, + { + "start": 18176.22, + "end": 18177.48, + "probability": 0.8459 + }, + { + "start": 18178.66, + "end": 18181.18, + "probability": 0.9733 + }, + { + "start": 18181.46, + "end": 18182.2, + "probability": 0.5569 + }, + { + "start": 18182.24, + "end": 18183.17, + "probability": 0.5487 + }, + { + "start": 18183.6, + "end": 18185.2, + "probability": 0.771 + }, + { + "start": 18185.6, + "end": 18186.44, + "probability": 0.0126 + }, + { + "start": 18186.62, + "end": 18187.1, + "probability": 0.8353 + }, + { + "start": 18187.18, + "end": 18189.02, + "probability": 0.9492 + }, + { + "start": 18189.32, + "end": 18192.94, + "probability": 0.6106 + }, + { + "start": 18193.68, + "end": 18194.5, + "probability": 0.9158 + }, + { + "start": 18194.68, + "end": 18195.14, + "probability": 0.0147 + }, + { + "start": 18195.74, + "end": 18195.88, + "probability": 0.5138 + }, + { + "start": 18196.26, + "end": 18196.78, + "probability": 0.9445 + }, + { + "start": 18196.78, + "end": 18197.54, + "probability": 0.8082 + }, + { + "start": 18197.62, + "end": 18199.28, + "probability": 0.8971 + }, + { + "start": 18199.46, + "end": 18199.94, + "probability": 0.3927 + }, + { + "start": 18200.06, + "end": 18202.16, + "probability": 0.9922 + }, + { + "start": 18204.22, + "end": 18204.22, + "probability": 0.0032 + }, + { + "start": 18204.22, + "end": 18205.76, + "probability": 0.2169 + }, + { + "start": 18205.78, + "end": 18208.56, + "probability": 0.3032 + }, + { + "start": 18208.74, + "end": 18209.19, + "probability": 0.1374 + }, + { + "start": 18212.42, + "end": 18213.94, + "probability": 0.6267 + }, + { + "start": 18216.22, + "end": 18216.34, + "probability": 0.0979 + }, + { + "start": 18216.34, + "end": 18217.33, + "probability": 0.5554 + }, + { + "start": 18217.52, + "end": 18218.6, + "probability": 0.9394 + }, + { + "start": 18219.42, + "end": 18222.4, + "probability": 0.3202 + }, + { + "start": 18223.28, + "end": 18224.8, + "probability": 0.9971 + }, + { + "start": 18225.3, + "end": 18227.04, + "probability": 0.9943 + }, + { + "start": 18227.06, + "end": 18230.04, + "probability": 0.9884 + }, + { + "start": 18230.86, + "end": 18236.16, + "probability": 0.9861 + }, + { + "start": 18236.66, + "end": 18240.82, + "probability": 0.974 + }, + { + "start": 18240.94, + "end": 18242.34, + "probability": 0.9079 + }, + { + "start": 18242.42, + "end": 18244.27, + "probability": 0.9632 + }, + { + "start": 18245.16, + "end": 18246.72, + "probability": 0.8993 + }, + { + "start": 18247.74, + "end": 18252.34, + "probability": 0.9804 + }, + { + "start": 18253.02, + "end": 18255.4, + "probability": 0.8981 + }, + { + "start": 18255.58, + "end": 18256.92, + "probability": 0.9816 + }, + { + "start": 18258.18, + "end": 18260.26, + "probability": 0.9814 + }, + { + "start": 18260.48, + "end": 18263.78, + "probability": 0.9167 + }, + { + "start": 18263.96, + "end": 18264.38, + "probability": 0.2629 + }, + { + "start": 18264.46, + "end": 18264.8, + "probability": 0.8645 + }, + { + "start": 18264.84, + "end": 18267.58, + "probability": 0.9693 + }, + { + "start": 18268.14, + "end": 18269.12, + "probability": 0.9833 + }, + { + "start": 18269.24, + "end": 18273.24, + "probability": 0.9959 + }, + { + "start": 18273.92, + "end": 18274.56, + "probability": 0.6397 + }, + { + "start": 18274.76, + "end": 18276.02, + "probability": 0.8601 + }, + { + "start": 18276.12, + "end": 18280.02, + "probability": 0.8314 + }, + { + "start": 18280.64, + "end": 18283.76, + "probability": 0.9758 + }, + { + "start": 18285.42, + "end": 18287.7, + "probability": 0.9905 + }, + { + "start": 18288.46, + "end": 18291.96, + "probability": 0.9988 + }, + { + "start": 18292.74, + "end": 18294.66, + "probability": 0.9137 + }, + { + "start": 18295.42, + "end": 18298.06, + "probability": 0.9755 + }, + { + "start": 18298.68, + "end": 18301.5, + "probability": 0.992 + }, + { + "start": 18301.5, + "end": 18305.7, + "probability": 0.9869 + }, + { + "start": 18306.32, + "end": 18307.62, + "probability": 0.984 + }, + { + "start": 18309.12, + "end": 18309.8, + "probability": 0.654 + }, + { + "start": 18309.94, + "end": 18313.22, + "probability": 0.9729 + }, + { + "start": 18313.38, + "end": 18316.54, + "probability": 0.9735 + }, + { + "start": 18317.22, + "end": 18323.14, + "probability": 0.9017 + }, + { + "start": 18323.66, + "end": 18324.52, + "probability": 0.8624 + }, + { + "start": 18326.16, + "end": 18327.59, + "probability": 0.9042 + }, + { + "start": 18328.06, + "end": 18329.8, + "probability": 0.908 + }, + { + "start": 18329.9, + "end": 18332.04, + "probability": 0.7135 + }, + { + "start": 18333.42, + "end": 18334.04, + "probability": 0.564 + }, + { + "start": 18334.14, + "end": 18335.4, + "probability": 0.9832 + }, + { + "start": 18335.46, + "end": 18341.58, + "probability": 0.9811 + }, + { + "start": 18341.94, + "end": 18342.68, + "probability": 0.5105 + }, + { + "start": 18342.84, + "end": 18344.96, + "probability": 0.9963 + }, + { + "start": 18346.04, + "end": 18349.0, + "probability": 0.9988 + }, + { + "start": 18349.0, + "end": 18353.16, + "probability": 0.9958 + }, + { + "start": 18353.66, + "end": 18358.0, + "probability": 0.8888 + }, + { + "start": 18358.44, + "end": 18358.8, + "probability": 0.5403 + }, + { + "start": 18358.88, + "end": 18362.18, + "probability": 0.9086 + }, + { + "start": 18363.04, + "end": 18366.92, + "probability": 0.9917 + }, + { + "start": 18367.38, + "end": 18369.04, + "probability": 0.9702 + }, + { + "start": 18369.26, + "end": 18370.66, + "probability": 0.8297 + }, + { + "start": 18371.1, + "end": 18373.64, + "probability": 0.9805 + }, + { + "start": 18374.2, + "end": 18377.22, + "probability": 0.8991 + }, + { + "start": 18377.44, + "end": 18379.46, + "probability": 0.9972 + }, + { + "start": 18379.6, + "end": 18381.52, + "probability": 0.9755 + }, + { + "start": 18382.1, + "end": 18386.54, + "probability": 0.9981 + }, + { + "start": 18387.16, + "end": 18389.3, + "probability": 0.7865 + }, + { + "start": 18389.92, + "end": 18391.14, + "probability": 0.998 + }, + { + "start": 18392.02, + "end": 18397.08, + "probability": 0.9907 + }, + { + "start": 18397.52, + "end": 18401.64, + "probability": 0.9873 + }, + { + "start": 18401.64, + "end": 18405.74, + "probability": 0.9934 + }, + { + "start": 18406.22, + "end": 18406.7, + "probability": 0.5648 + }, + { + "start": 18406.88, + "end": 18407.68, + "probability": 0.7762 + }, + { + "start": 18408.36, + "end": 18413.84, + "probability": 0.947 + }, + { + "start": 18414.32, + "end": 18415.08, + "probability": 0.6726 + }, + { + "start": 18415.26, + "end": 18416.92, + "probability": 0.837 + }, + { + "start": 18417.4, + "end": 18421.22, + "probability": 0.9971 + }, + { + "start": 18421.32, + "end": 18423.78, + "probability": 0.9933 + }, + { + "start": 18424.2, + "end": 18424.46, + "probability": 0.7437 + }, + { + "start": 18425.2, + "end": 18426.58, + "probability": 0.5091 + }, + { + "start": 18426.68, + "end": 18427.8, + "probability": 0.7621 + }, + { + "start": 18432.06, + "end": 18432.6, + "probability": 0.2329 + }, + { + "start": 18433.16, + "end": 18433.66, + "probability": 0.095 + }, + { + "start": 18433.66, + "end": 18435.09, + "probability": 0.6882 + }, + { + "start": 18436.62, + "end": 18439.23, + "probability": 0.9406 + }, + { + "start": 18441.62, + "end": 18445.74, + "probability": 0.618 + }, + { + "start": 18446.48, + "end": 18447.24, + "probability": 0.9418 + }, + { + "start": 18447.8, + "end": 18448.86, + "probability": 0.5095 + }, + { + "start": 18449.66, + "end": 18451.02, + "probability": 0.7651 + }, + { + "start": 18451.36, + "end": 18453.66, + "probability": 0.793 + }, + { + "start": 18466.42, + "end": 18469.58, + "probability": 0.6125 + }, + { + "start": 18470.36, + "end": 18471.02, + "probability": 0.8075 + }, + { + "start": 18471.9, + "end": 18478.46, + "probability": 0.927 + }, + { + "start": 18479.3, + "end": 18481.58, + "probability": 0.9552 + }, + { + "start": 18481.92, + "end": 18485.24, + "probability": 0.9861 + }, + { + "start": 18485.24, + "end": 18489.14, + "probability": 0.9679 + }, + { + "start": 18490.42, + "end": 18491.46, + "probability": 0.5252 + }, + { + "start": 18491.74, + "end": 18493.92, + "probability": 0.4233 + }, + { + "start": 18494.28, + "end": 18494.28, + "probability": 0.374 + }, + { + "start": 18494.48, + "end": 18494.48, + "probability": 0.2052 + }, + { + "start": 18494.48, + "end": 18495.6, + "probability": 0.8175 + }, + { + "start": 18496.36, + "end": 18502.16, + "probability": 0.9926 + }, + { + "start": 18502.76, + "end": 18503.7, + "probability": 0.6936 + }, + { + "start": 18504.0, + "end": 18504.08, + "probability": 0.0307 + }, + { + "start": 18504.08, + "end": 18504.08, + "probability": 0.0225 + }, + { + "start": 18505.14, + "end": 18506.74, + "probability": 0.3505 + }, + { + "start": 18506.76, + "end": 18510.84, + "probability": 0.2519 + }, + { + "start": 18512.34, + "end": 18519.98, + "probability": 0.9913 + }, + { + "start": 18520.56, + "end": 18523.66, + "probability": 0.9907 + }, + { + "start": 18524.36, + "end": 18529.04, + "probability": 0.943 + }, + { + "start": 18529.54, + "end": 18531.5, + "probability": 0.9724 + }, + { + "start": 18532.02, + "end": 18535.48, + "probability": 0.9975 + }, + { + "start": 18536.14, + "end": 18538.8, + "probability": 0.7985 + }, + { + "start": 18538.9, + "end": 18541.94, + "probability": 0.6171 + }, + { + "start": 18542.22, + "end": 18545.18, + "probability": 0.8075 + }, + { + "start": 18545.42, + "end": 18548.26, + "probability": 0.9644 + }, + { + "start": 18548.26, + "end": 18552.54, + "probability": 0.945 + }, + { + "start": 18552.54, + "end": 18558.16, + "probability": 0.9849 + }, + { + "start": 18558.3, + "end": 18562.22, + "probability": 0.685 + }, + { + "start": 18562.34, + "end": 18563.6, + "probability": 0.5537 + }, + { + "start": 18564.2, + "end": 18564.42, + "probability": 0.0038 + }, + { + "start": 18565.36, + "end": 18566.06, + "probability": 0.1777 + }, + { + "start": 18566.06, + "end": 18566.06, + "probability": 0.0076 + }, + { + "start": 18566.06, + "end": 18568.84, + "probability": 0.127 + }, + { + "start": 18569.46, + "end": 18573.02, + "probability": 0.2119 + }, + { + "start": 18573.04, + "end": 18575.26, + "probability": 0.5823 + }, + { + "start": 18575.64, + "end": 18576.94, + "probability": 0.9136 + }, + { + "start": 18577.18, + "end": 18579.76, + "probability": 0.4214 + }, + { + "start": 18580.54, + "end": 18580.6, + "probability": 0.0404 + }, + { + "start": 18580.74, + "end": 18585.88, + "probability": 0.442 + }, + { + "start": 18586.34, + "end": 18586.9, + "probability": 0.781 + }, + { + "start": 18587.04, + "end": 18587.34, + "probability": 0.7367 + }, + { + "start": 18587.42, + "end": 18589.04, + "probability": 0.7395 + }, + { + "start": 18589.2, + "end": 18590.92, + "probability": 0.9232 + }, + { + "start": 18592.08, + "end": 18593.32, + "probability": 0.8681 + }, + { + "start": 18593.46, + "end": 18595.22, + "probability": 0.2624 + }, + { + "start": 18595.36, + "end": 18597.5, + "probability": 0.5895 + }, + { + "start": 18597.78, + "end": 18598.38, + "probability": 0.5925 + }, + { + "start": 18598.62, + "end": 18600.54, + "probability": 0.9805 + }, + { + "start": 18600.7, + "end": 18602.7, + "probability": 0.928 + }, + { + "start": 18602.82, + "end": 18604.94, + "probability": 0.6934 + }, + { + "start": 18605.06, + "end": 18605.08, + "probability": 0.0798 + }, + { + "start": 18605.08, + "end": 18607.26, + "probability": 0.2701 + }, + { + "start": 18607.34, + "end": 18610.12, + "probability": 0.5087 + }, + { + "start": 18611.47, + "end": 18613.72, + "probability": 0.6711 + }, + { + "start": 18614.26, + "end": 18618.58, + "probability": 0.7897 + }, + { + "start": 18619.28, + "end": 18623.38, + "probability": 0.988 + }, + { + "start": 18623.38, + "end": 18626.82, + "probability": 0.99 + }, + { + "start": 18628.08, + "end": 18628.34, + "probability": 0.719 + }, + { + "start": 18628.88, + "end": 18633.52, + "probability": 0.9876 + }, + { + "start": 18633.52, + "end": 18638.06, + "probability": 0.987 + }, + { + "start": 18638.96, + "end": 18645.28, + "probability": 0.9798 + }, + { + "start": 18645.64, + "end": 18649.98, + "probability": 0.996 + }, + { + "start": 18649.98, + "end": 18654.48, + "probability": 0.9595 + }, + { + "start": 18654.58, + "end": 18655.22, + "probability": 0.3625 + }, + { + "start": 18655.28, + "end": 18658.72, + "probability": 0.8785 + }, + { + "start": 18658.8, + "end": 18661.72, + "probability": 0.9854 + }, + { + "start": 18662.6, + "end": 18663.94, + "probability": 0.7911 + }, + { + "start": 18665.6, + "end": 18670.5, + "probability": 0.989 + }, + { + "start": 18671.1, + "end": 18672.78, + "probability": 0.8664 + }, + { + "start": 18672.9, + "end": 18673.58, + "probability": 0.4846 + }, + { + "start": 18673.62, + "end": 18674.32, + "probability": 0.8661 + }, + { + "start": 18674.5, + "end": 18674.9, + "probability": 0.943 + }, + { + "start": 18674.94, + "end": 18675.68, + "probability": 0.6445 + }, + { + "start": 18676.22, + "end": 18679.04, + "probability": 0.9357 + }, + { + "start": 18679.2, + "end": 18679.98, + "probability": 0.8545 + }, + { + "start": 18680.26, + "end": 18681.36, + "probability": 0.7627 + }, + { + "start": 18681.52, + "end": 18683.4, + "probability": 0.9951 + }, + { + "start": 18683.5, + "end": 18685.52, + "probability": 0.9967 + }, + { + "start": 18685.88, + "end": 18686.81, + "probability": 0.6738 + }, + { + "start": 18687.3, + "end": 18690.1, + "probability": 0.9849 + }, + { + "start": 18690.14, + "end": 18691.13, + "probability": 0.8686 + }, + { + "start": 18691.42, + "end": 18691.68, + "probability": 0.7027 + }, + { + "start": 18691.72, + "end": 18696.8, + "probability": 0.9746 + }, + { + "start": 18696.84, + "end": 18697.62, + "probability": 0.9395 + }, + { + "start": 18697.7, + "end": 18699.22, + "probability": 0.863 + }, + { + "start": 18699.26, + "end": 18701.02, + "probability": 0.8335 + }, + { + "start": 18701.26, + "end": 18704.36, + "probability": 0.9302 + }, + { + "start": 18704.62, + "end": 18707.28, + "probability": 0.9026 + }, + { + "start": 18707.28, + "end": 18711.02, + "probability": 0.9765 + }, + { + "start": 18711.1, + "end": 18712.24, + "probability": 0.5651 + }, + { + "start": 18712.46, + "end": 18712.7, + "probability": 0.4072 + }, + { + "start": 18712.8, + "end": 18713.76, + "probability": 0.4898 + }, + { + "start": 18714.74, + "end": 18717.82, + "probability": 0.8935 + }, + { + "start": 18718.53, + "end": 18720.47, + "probability": 0.6513 + }, + { + "start": 18731.64, + "end": 18731.64, + "probability": 0.0662 + }, + { + "start": 18731.64, + "end": 18734.16, + "probability": 0.583 + }, + { + "start": 18734.78, + "end": 18735.36, + "probability": 0.3305 + }, + { + "start": 18736.42, + "end": 18737.88, + "probability": 0.1515 + }, + { + "start": 18738.76, + "end": 18739.64, + "probability": 0.009 + }, + { + "start": 18742.98, + "end": 18742.98, + "probability": 0.2529 + }, + { + "start": 18742.98, + "end": 18747.04, + "probability": 0.819 + }, + { + "start": 18749.72, + "end": 18751.12, + "probability": 0.2484 + }, + { + "start": 18751.2, + "end": 18752.26, + "probability": 0.124 + }, + { + "start": 18752.67, + "end": 18756.56, + "probability": 0.4256 + }, + { + "start": 18756.7, + "end": 18760.12, + "probability": 0.9802 + }, + { + "start": 18760.4, + "end": 18763.76, + "probability": 0.9912 + }, + { + "start": 18763.84, + "end": 18765.51, + "probability": 0.8375 + }, + { + "start": 18765.8, + "end": 18769.44, + "probability": 0.7091 + }, + { + "start": 18769.46, + "end": 18770.32, + "probability": 0.5579 + }, + { + "start": 18770.4, + "end": 18771.36, + "probability": 0.8147 + }, + { + "start": 18772.06, + "end": 18776.36, + "probability": 0.9969 + }, + { + "start": 18777.5, + "end": 18780.06, + "probability": 0.9902 + }, + { + "start": 18780.1, + "end": 18780.7, + "probability": 0.9509 + }, + { + "start": 18780.76, + "end": 18782.26, + "probability": 0.7647 + }, + { + "start": 18782.68, + "end": 18785.13, + "probability": 0.9966 + }, + { + "start": 18785.86, + "end": 18787.18, + "probability": 0.8051 + }, + { + "start": 18787.58, + "end": 18794.6, + "probability": 0.9497 + }, + { + "start": 18795.32, + "end": 18798.74, + "probability": 0.994 + }, + { + "start": 18799.2, + "end": 18800.24, + "probability": 0.9627 + }, + { + "start": 18800.4, + "end": 18801.06, + "probability": 0.9431 + }, + { + "start": 18802.1, + "end": 18804.95, + "probability": 0.9727 + }, + { + "start": 18805.22, + "end": 18806.82, + "probability": 0.8388 + }, + { + "start": 18807.16, + "end": 18809.06, + "probability": 0.9056 + }, + { + "start": 18809.14, + "end": 18809.88, + "probability": 0.946 + }, + { + "start": 18810.18, + "end": 18811.78, + "probability": 0.9854 + }, + { + "start": 18813.28, + "end": 18815.54, + "probability": 0.7228 + }, + { + "start": 18815.92, + "end": 18819.64, + "probability": 0.9795 + }, + { + "start": 18820.3, + "end": 18823.96, + "probability": 0.9941 + }, + { + "start": 18824.32, + "end": 18829.46, + "probability": 0.8928 + }, + { + "start": 18829.46, + "end": 18833.28, + "probability": 0.9853 + }, + { + "start": 18833.44, + "end": 18835.4, + "probability": 0.7522 + }, + { + "start": 18837.11, + "end": 18840.36, + "probability": 0.9244 + }, + { + "start": 18840.66, + "end": 18842.54, + "probability": 0.769 + }, + { + "start": 18843.56, + "end": 18848.24, + "probability": 0.9809 + }, + { + "start": 18848.24, + "end": 18852.22, + "probability": 0.9967 + }, + { + "start": 18853.64, + "end": 18856.68, + "probability": 0.963 + }, + { + "start": 18856.72, + "end": 18858.3, + "probability": 0.8042 + }, + { + "start": 18858.48, + "end": 18861.7, + "probability": 0.9932 + }, + { + "start": 18861.82, + "end": 18862.84, + "probability": 0.6351 + }, + { + "start": 18863.08, + "end": 18866.38, + "probability": 0.9743 + }, + { + "start": 18867.42, + "end": 18868.88, + "probability": 0.9746 + }, + { + "start": 18868.96, + "end": 18870.88, + "probability": 0.9721 + }, + { + "start": 18871.38, + "end": 18874.12, + "probability": 0.983 + }, + { + "start": 18874.34, + "end": 18874.72, + "probability": 0.634 + }, + { + "start": 18875.02, + "end": 18875.92, + "probability": 0.8714 + }, + { + "start": 18876.06, + "end": 18877.34, + "probability": 0.9467 + }, + { + "start": 18877.78, + "end": 18881.86, + "probability": 0.9801 + }, + { + "start": 18882.02, + "end": 18882.84, + "probability": 0.604 + }, + { + "start": 18883.58, + "end": 18885.56, + "probability": 0.7167 + }, + { + "start": 18885.74, + "end": 18888.04, + "probability": 0.6915 + }, + { + "start": 18888.58, + "end": 18890.88, + "probability": 0.5521 + }, + { + "start": 18891.74, + "end": 18893.72, + "probability": 0.9086 + }, + { + "start": 18894.2, + "end": 18895.82, + "probability": 0.5797 + }, + { + "start": 18895.96, + "end": 18896.5, + "probability": 0.5244 + }, + { + "start": 18903.72, + "end": 18905.44, + "probability": 0.101 + }, + { + "start": 18905.96, + "end": 18905.96, + "probability": 0.1554 + }, + { + "start": 18906.56, + "end": 18906.96, + "probability": 0.0837 + }, + { + "start": 18906.96, + "end": 18906.96, + "probability": 0.0252 + }, + { + "start": 18907.36, + "end": 18907.36, + "probability": 0.0918 + }, + { + "start": 18907.36, + "end": 18910.16, + "probability": 0.4605 + }, + { + "start": 18911.48, + "end": 18912.54, + "probability": 0.9159 + }, + { + "start": 18914.66, + "end": 18916.74, + "probability": 0.9727 + }, + { + "start": 18916.86, + "end": 18918.36, + "probability": 0.9209 + }, + { + "start": 18918.36, + "end": 18918.94, + "probability": 0.0321 + }, + { + "start": 18920.2, + "end": 18926.14, + "probability": 0.8203 + }, + { + "start": 18927.14, + "end": 18929.18, + "probability": 0.881 + }, + { + "start": 18930.4, + "end": 18932.64, + "probability": 0.9248 + }, + { + "start": 18932.82, + "end": 18934.14, + "probability": 0.7591 + }, + { + "start": 18934.28, + "end": 18935.22, + "probability": 0.8864 + }, + { + "start": 18935.36, + "end": 18936.02, + "probability": 0.454 + }, + { + "start": 18936.96, + "end": 18939.46, + "probability": 0.9966 + }, + { + "start": 18940.16, + "end": 18943.3, + "probability": 0.8757 + }, + { + "start": 18944.32, + "end": 18946.6, + "probability": 0.799 + }, + { + "start": 18947.5, + "end": 18948.44, + "probability": 0.6535 + }, + { + "start": 18948.68, + "end": 18951.08, + "probability": 0.9626 + }, + { + "start": 18951.34, + "end": 18951.6, + "probability": 0.8368 + }, + { + "start": 18952.7, + "end": 18953.02, + "probability": 0.3703 + }, + { + "start": 18953.04, + "end": 18953.82, + "probability": 0.9045 + }, + { + "start": 18953.98, + "end": 18959.6, + "probability": 0.9808 + }, + { + "start": 18960.36, + "end": 18961.77, + "probability": 0.8958 + }, + { + "start": 18962.0, + "end": 18963.72, + "probability": 0.9762 + }, + { + "start": 18964.9, + "end": 18966.9, + "probability": 0.8825 + }, + { + "start": 18967.64, + "end": 18970.92, + "probability": 0.7419 + }, + { + "start": 18972.04, + "end": 18972.4, + "probability": 0.8065 + }, + { + "start": 18972.46, + "end": 18974.64, + "probability": 0.5566 + }, + { + "start": 18974.64, + "end": 18974.78, + "probability": 0.3849 + }, + { + "start": 18976.08, + "end": 18980.94, + "probability": 0.9383 + }, + { + "start": 18981.08, + "end": 18981.82, + "probability": 0.8049 + }, + { + "start": 18981.86, + "end": 18982.38, + "probability": 0.9192 + }, + { + "start": 18983.28, + "end": 18985.0, + "probability": 0.8962 + }, + { + "start": 18985.42, + "end": 18987.18, + "probability": 0.9955 + }, + { + "start": 18988.27, + "end": 18990.62, + "probability": 0.6625 + }, + { + "start": 18990.74, + "end": 18991.58, + "probability": 0.8811 + }, + { + "start": 18991.64, + "end": 18992.62, + "probability": 0.943 + }, + { + "start": 18993.26, + "end": 18995.34, + "probability": 0.8333 + }, + { + "start": 18996.1, + "end": 18997.7, + "probability": 0.9958 + }, + { + "start": 18997.78, + "end": 19001.36, + "probability": 0.9127 + }, + { + "start": 19002.32, + "end": 19003.86, + "probability": 0.9906 + }, + { + "start": 19003.94, + "end": 19007.02, + "probability": 0.6701 + }, + { + "start": 19007.32, + "end": 19007.76, + "probability": 0.7744 + }, + { + "start": 19008.08, + "end": 19011.6, + "probability": 0.9058 + }, + { + "start": 19011.6, + "end": 19015.44, + "probability": 0.9967 + }, + { + "start": 19015.66, + "end": 19015.92, + "probability": 0.515 + }, + { + "start": 19016.48, + "end": 19016.64, + "probability": 0.6606 + }, + { + "start": 19017.06, + "end": 19017.64, + "probability": 0.916 + }, + { + "start": 19017.78, + "end": 19019.29, + "probability": 0.4583 + }, + { + "start": 19019.42, + "end": 19020.34, + "probability": 0.7798 + }, + { + "start": 19020.76, + "end": 19021.58, + "probability": 0.8794 + }, + { + "start": 19022.16, + "end": 19024.28, + "probability": 0.988 + }, + { + "start": 19024.42, + "end": 19025.18, + "probability": 0.9518 + }, + { + "start": 19025.62, + "end": 19031.3, + "probability": 0.9623 + }, + { + "start": 19031.7, + "end": 19032.38, + "probability": 0.9517 + }, + { + "start": 19032.82, + "end": 19033.36, + "probability": 0.6434 + }, + { + "start": 19034.94, + "end": 19036.2, + "probability": 0.4108 + }, + { + "start": 19036.98, + "end": 19037.84, + "probability": 0.6405 + }, + { + "start": 19038.28, + "end": 19042.68, + "probability": 0.9599 + }, + { + "start": 19042.82, + "end": 19043.8, + "probability": 0.8312 + }, + { + "start": 19044.1, + "end": 19046.17, + "probability": 0.9909 + }, + { + "start": 19046.56, + "end": 19047.84, + "probability": 0.991 + }, + { + "start": 19047.92, + "end": 19050.3, + "probability": 0.993 + }, + { + "start": 19050.92, + "end": 19056.74, + "probability": 0.8436 + }, + { + "start": 19056.82, + "end": 19057.59, + "probability": 0.5493 + }, + { + "start": 19058.32, + "end": 19059.58, + "probability": 0.832 + }, + { + "start": 19060.2, + "end": 19063.12, + "probability": 0.9083 + }, + { + "start": 19063.32, + "end": 19068.12, + "probability": 0.9926 + }, + { + "start": 19068.84, + "end": 19069.88, + "probability": 0.6176 + }, + { + "start": 19070.04, + "end": 19071.47, + "probability": 0.6947 + }, + { + "start": 19072.6, + "end": 19073.58, + "probability": 0.9466 + }, + { + "start": 19073.66, + "end": 19078.44, + "probability": 0.9901 + }, + { + "start": 19078.78, + "end": 19080.64, + "probability": 0.9601 + }, + { + "start": 19080.98, + "end": 19082.18, + "probability": 0.8154 + }, + { + "start": 19082.7, + "end": 19083.58, + "probability": 0.8785 + }, + { + "start": 19084.2, + "end": 19086.4, + "probability": 0.9655 + }, + { + "start": 19086.42, + "end": 19087.24, + "probability": 0.6462 + }, + { + "start": 19087.54, + "end": 19088.84, + "probability": 0.9797 + }, + { + "start": 19088.94, + "end": 19089.18, + "probability": 0.7451 + }, + { + "start": 19089.22, + "end": 19091.5, + "probability": 0.8998 + }, + { + "start": 19092.32, + "end": 19096.04, + "probability": 0.9165 + }, + { + "start": 19096.28, + "end": 19097.18, + "probability": 0.313 + }, + { + "start": 19097.84, + "end": 19100.2, + "probability": 0.7078 + }, + { + "start": 19100.72, + "end": 19103.32, + "probability": 0.9753 + }, + { + "start": 19103.84, + "end": 19106.94, + "probability": 0.8306 + }, + { + "start": 19107.0, + "end": 19107.26, + "probability": 0.8745 + }, + { + "start": 19107.9, + "end": 19109.04, + "probability": 0.6085 + }, + { + "start": 19109.32, + "end": 19111.9, + "probability": 0.7489 + }, + { + "start": 19111.94, + "end": 19114.46, + "probability": 0.8638 + }, + { + "start": 19114.98, + "end": 19117.58, + "probability": 0.5786 + }, + { + "start": 19117.8, + "end": 19118.62, + "probability": 0.5442 + }, + { + "start": 19120.14, + "end": 19121.72, + "probability": 0.0395 + }, + { + "start": 19136.6, + "end": 19138.6, + "probability": 0.0111 + }, + { + "start": 19142.68, + "end": 19144.34, + "probability": 0.7367 + }, + { + "start": 19145.14, + "end": 19149.62, + "probability": 0.9946 + }, + { + "start": 19149.62, + "end": 19156.02, + "probability": 0.9688 + }, + { + "start": 19156.38, + "end": 19158.24, + "probability": 0.801 + }, + { + "start": 19158.9, + "end": 19161.78, + "probability": 0.9805 + }, + { + "start": 19162.78, + "end": 19164.96, + "probability": 0.8037 + }, + { + "start": 19165.04, + "end": 19166.86, + "probability": 0.9603 + }, + { + "start": 19167.4, + "end": 19172.48, + "probability": 0.9797 + }, + { + "start": 19172.9, + "end": 19177.3, + "probability": 0.7866 + }, + { + "start": 19177.44, + "end": 19178.42, + "probability": 0.6824 + }, + { + "start": 19179.18, + "end": 19185.62, + "probability": 0.9605 + }, + { + "start": 19186.06, + "end": 19188.04, + "probability": 0.9368 + }, + { + "start": 19188.44, + "end": 19191.64, + "probability": 0.8707 + }, + { + "start": 19192.08, + "end": 19196.08, + "probability": 0.9696 + }, + { + "start": 19196.14, + "end": 19199.86, + "probability": 0.8982 + }, + { + "start": 19200.52, + "end": 19206.32, + "probability": 0.967 + }, + { + "start": 19206.82, + "end": 19209.84, + "probability": 0.79 + }, + { + "start": 19210.24, + "end": 19212.06, + "probability": 0.9088 + }, + { + "start": 19212.14, + "end": 19216.48, + "probability": 0.9928 + }, + { + "start": 19216.68, + "end": 19217.4, + "probability": 0.3116 + }, + { + "start": 19217.78, + "end": 19218.5, + "probability": 0.7334 + }, + { + "start": 19218.92, + "end": 19225.48, + "probability": 0.9082 + }, + { + "start": 19225.54, + "end": 19227.18, + "probability": 0.9175 + }, + { + "start": 19228.74, + "end": 19230.72, + "probability": 0.9546 + }, + { + "start": 19231.96, + "end": 19232.74, + "probability": 0.8256 + }, + { + "start": 19232.84, + "end": 19234.38, + "probability": 0.949 + }, + { + "start": 19234.48, + "end": 19235.46, + "probability": 0.9527 + }, + { + "start": 19236.54, + "end": 19238.16, + "probability": 0.9134 + }, + { + "start": 19239.08, + "end": 19239.88, + "probability": 0.6445 + }, + { + "start": 19240.06, + "end": 19246.18, + "probability": 0.9926 + }, + { + "start": 19246.36, + "end": 19247.03, + "probability": 0.5501 + }, + { + "start": 19247.48, + "end": 19247.84, + "probability": 0.8731 + }, + { + "start": 19247.88, + "end": 19248.2, + "probability": 0.9552 + }, + { + "start": 19248.28, + "end": 19248.54, + "probability": 0.8627 + }, + { + "start": 19248.62, + "end": 19250.9, + "probability": 0.8209 + }, + { + "start": 19251.26, + "end": 19252.32, + "probability": 0.6692 + }, + { + "start": 19252.92, + "end": 19257.74, + "probability": 0.6663 + }, + { + "start": 19257.94, + "end": 19258.93, + "probability": 0.9403 + }, + { + "start": 19260.52, + "end": 19261.08, + "probability": 0.8655 + }, + { + "start": 19261.2, + "end": 19262.16, + "probability": 0.6017 + }, + { + "start": 19262.54, + "end": 19263.96, + "probability": 0.9545 + }, + { + "start": 19266.2, + "end": 19268.82, + "probability": 0.8823 + }, + { + "start": 19269.16, + "end": 19269.96, + "probability": 0.2757 + }, + { + "start": 19270.14, + "end": 19272.72, + "probability": 0.9226 + }, + { + "start": 19272.88, + "end": 19274.9, + "probability": 0.8717 + }, + { + "start": 19275.3, + "end": 19277.46, + "probability": 0.9114 + }, + { + "start": 19277.88, + "end": 19278.3, + "probability": 0.3704 + }, + { + "start": 19278.3, + "end": 19278.34, + "probability": 0.2511 + }, + { + "start": 19278.36, + "end": 19280.98, + "probability": 0.801 + }, + { + "start": 19283.25, + "end": 19286.68, + "probability": 0.7784 + }, + { + "start": 19288.44, + "end": 19291.08, + "probability": 0.9561 + }, + { + "start": 19291.3, + "end": 19293.22, + "probability": 0.62 + }, + { + "start": 19293.3, + "end": 19297.18, + "probability": 0.9848 + }, + { + "start": 19297.24, + "end": 19299.58, + "probability": 0.8808 + }, + { + "start": 19300.92, + "end": 19300.92, + "probability": 0.2715 + }, + { + "start": 19300.92, + "end": 19300.98, + "probability": 0.3063 + }, + { + "start": 19301.06, + "end": 19302.74, + "probability": 0.8379 + }, + { + "start": 19302.74, + "end": 19304.36, + "probability": 0.772 + }, + { + "start": 19304.44, + "end": 19307.0, + "probability": 0.5531 + }, + { + "start": 19307.12, + "end": 19309.74, + "probability": 0.002 + }, + { + "start": 19310.38, + "end": 19310.66, + "probability": 0.3424 + }, + { + "start": 19312.0, + "end": 19313.42, + "probability": 0.7471 + }, + { + "start": 19314.84, + "end": 19314.88, + "probability": 0.0771 + }, + { + "start": 19314.88, + "end": 19315.18, + "probability": 0.1747 + }, + { + "start": 19315.18, + "end": 19315.18, + "probability": 0.4377 + }, + { + "start": 19315.18, + "end": 19315.18, + "probability": 0.0052 + }, + { + "start": 19315.18, + "end": 19315.86, + "probability": 0.1172 + }, + { + "start": 19315.86, + "end": 19319.09, + "probability": 0.6603 + }, + { + "start": 19319.56, + "end": 19322.92, + "probability": 0.9961 + }, + { + "start": 19323.3, + "end": 19323.79, + "probability": 0.8669 + }, + { + "start": 19324.26, + "end": 19324.32, + "probability": 0.4769 + }, + { + "start": 19324.5, + "end": 19325.08, + "probability": 0.9152 + }, + { + "start": 19325.22, + "end": 19326.14, + "probability": 0.6965 + }, + { + "start": 19326.44, + "end": 19327.24, + "probability": 0.9116 + }, + { + "start": 19327.48, + "end": 19329.18, + "probability": 0.8576 + }, + { + "start": 19329.3, + "end": 19330.98, + "probability": 0.9258 + }, + { + "start": 19333.38, + "end": 19333.74, + "probability": 0.4974 + }, + { + "start": 19333.74, + "end": 19336.74, + "probability": 0.3213 + }, + { + "start": 19336.88, + "end": 19336.9, + "probability": 0.4992 + }, + { + "start": 19336.96, + "end": 19338.3, + "probability": 0.8765 + }, + { + "start": 19338.98, + "end": 19341.8, + "probability": 0.9419 + }, + { + "start": 19342.73, + "end": 19346.86, + "probability": 0.9226 + }, + { + "start": 19347.36, + "end": 19351.12, + "probability": 0.987 + }, + { + "start": 19351.44, + "end": 19354.08, + "probability": 0.7236 + }, + { + "start": 19354.48, + "end": 19357.54, + "probability": 0.6734 + }, + { + "start": 19358.18, + "end": 19359.7, + "probability": 0.5435 + }, + { + "start": 19360.7, + "end": 19365.3, + "probability": 0.9904 + }, + { + "start": 19365.34, + "end": 19368.06, + "probability": 0.9972 + }, + { + "start": 19368.06, + "end": 19368.62, + "probability": 0.7092 + }, + { + "start": 19368.98, + "end": 19370.88, + "probability": 0.925 + }, + { + "start": 19371.54, + "end": 19373.7, + "probability": 0.6079 + }, + { + "start": 19373.91, + "end": 19377.14, + "probability": 0.9814 + }, + { + "start": 19377.24, + "end": 19377.62, + "probability": 0.6778 + }, + { + "start": 19377.72, + "end": 19381.1, + "probability": 0.8397 + }, + { + "start": 19381.28, + "end": 19383.24, + "probability": 0.9927 + }, + { + "start": 19384.02, + "end": 19384.24, + "probability": 0.2153 + }, + { + "start": 19384.54, + "end": 19385.43, + "probability": 0.4497 + }, + { + "start": 19385.76, + "end": 19387.94, + "probability": 0.7135 + }, + { + "start": 19388.54, + "end": 19389.16, + "probability": 0.9322 + }, + { + "start": 19389.26, + "end": 19389.98, + "probability": 0.8266 + }, + { + "start": 19390.18, + "end": 19393.12, + "probability": 0.8369 + }, + { + "start": 19393.6, + "end": 19397.88, + "probability": 0.9387 + }, + { + "start": 19397.92, + "end": 19398.14, + "probability": 0.4354 + }, + { + "start": 19398.94, + "end": 19401.46, + "probability": 0.8597 + }, + { + "start": 19402.06, + "end": 19404.22, + "probability": 0.4395 + }, + { + "start": 19404.24, + "end": 19405.5, + "probability": 0.1401 + }, + { + "start": 19406.3, + "end": 19409.12, + "probability": 0.9074 + }, + { + "start": 19409.18, + "end": 19409.82, + "probability": 0.6258 + }, + { + "start": 19410.06, + "end": 19410.84, + "probability": 0.48 + }, + { + "start": 19411.28, + "end": 19416.76, + "probability": 0.979 + }, + { + "start": 19417.14, + "end": 19421.38, + "probability": 0.9796 + }, + { + "start": 19421.42, + "end": 19425.96, + "probability": 0.9631 + }, + { + "start": 19426.0, + "end": 19430.1, + "probability": 0.6659 + }, + { + "start": 19432.06, + "end": 19433.47, + "probability": 0.7014 + }, + { + "start": 19435.1, + "end": 19435.92, + "probability": 0.7005 + }, + { + "start": 19436.1, + "end": 19437.54, + "probability": 0.8954 + }, + { + "start": 19437.64, + "end": 19439.99, + "probability": 0.9673 + }, + { + "start": 19440.96, + "end": 19441.94, + "probability": 0.8533 + }, + { + "start": 19443.12, + "end": 19449.28, + "probability": 0.9732 + }, + { + "start": 19450.12, + "end": 19454.92, + "probability": 0.9972 + }, + { + "start": 19455.78, + "end": 19459.06, + "probability": 0.9195 + }, + { + "start": 19460.08, + "end": 19460.84, + "probability": 0.7128 + }, + { + "start": 19460.94, + "end": 19462.32, + "probability": 0.3083 + }, + { + "start": 19462.34, + "end": 19467.64, + "probability": 0.9771 + }, + { + "start": 19467.84, + "end": 19471.4, + "probability": 0.9706 + }, + { + "start": 19472.16, + "end": 19475.76, + "probability": 0.9862 + }, + { + "start": 19477.5, + "end": 19481.4, + "probability": 0.8989 + }, + { + "start": 19482.76, + "end": 19484.38, + "probability": 0.9702 + }, + { + "start": 19484.56, + "end": 19485.58, + "probability": 0.9321 + }, + { + "start": 19485.76, + "end": 19491.32, + "probability": 0.9786 + }, + { + "start": 19491.52, + "end": 19493.57, + "probability": 0.9178 + }, + { + "start": 19495.06, + "end": 19499.28, + "probability": 0.1472 + }, + { + "start": 19499.28, + "end": 19500.36, + "probability": 0.5613 + }, + { + "start": 19501.22, + "end": 19505.12, + "probability": 0.875 + }, + { + "start": 19505.36, + "end": 19506.22, + "probability": 0.7715 + }, + { + "start": 19506.48, + "end": 19506.52, + "probability": 0.0056 + }, + { + "start": 19506.52, + "end": 19507.31, + "probability": 0.5633 + }, + { + "start": 19509.9, + "end": 19512.26, + "probability": 0.7079 + }, + { + "start": 19513.44, + "end": 19516.8, + "probability": 0.9569 + }, + { + "start": 19517.16, + "end": 19518.6, + "probability": 0.6244 + }, + { + "start": 19519.22, + "end": 19519.66, + "probability": 0.7064 + }, + { + "start": 19519.84, + "end": 19521.62, + "probability": 0.8444 + }, + { + "start": 19522.68, + "end": 19526.6, + "probability": 0.8955 + }, + { + "start": 19527.18, + "end": 19528.82, + "probability": 0.8207 + }, + { + "start": 19529.06, + "end": 19532.16, + "probability": 0.9529 + }, + { + "start": 19534.24, + "end": 19534.24, + "probability": 0.2306 + }, + { + "start": 19534.24, + "end": 19535.0, + "probability": 0.2047 + }, + { + "start": 19535.06, + "end": 19538.9, + "probability": 0.6499 + }, + { + "start": 19539.14, + "end": 19540.24, + "probability": 0.8051 + }, + { + "start": 19540.74, + "end": 19541.26, + "probability": 0.5078 + }, + { + "start": 19541.38, + "end": 19541.8, + "probability": 0.9604 + }, + { + "start": 19541.9, + "end": 19542.48, + "probability": 0.9754 + }, + { + "start": 19542.54, + "end": 19543.22, + "probability": 0.429 + }, + { + "start": 19543.24, + "end": 19544.74, + "probability": 0.8776 + }, + { + "start": 19545.42, + "end": 19547.63, + "probability": 0.852 + }, + { + "start": 19549.22, + "end": 19551.98, + "probability": 0.8166 + }, + { + "start": 19553.94, + "end": 19560.02, + "probability": 0.7546 + }, + { + "start": 19561.12, + "end": 19564.8, + "probability": 0.6643 + }, + { + "start": 19565.04, + "end": 19571.16, + "probability": 0.9512 + }, + { + "start": 19571.16, + "end": 19577.88, + "probability": 0.7869 + }, + { + "start": 19578.2, + "end": 19578.94, + "probability": 0.6145 + }, + { + "start": 19579.46, + "end": 19584.76, + "probability": 0.9185 + }, + { + "start": 19588.28, + "end": 19596.48, + "probability": 0.7878 + }, + { + "start": 19596.8, + "end": 19597.52, + "probability": 0.2067 + }, + { + "start": 19598.44, + "end": 19601.52, + "probability": 0.796 + }, + { + "start": 19601.82, + "end": 19605.24, + "probability": 0.4546 + }, + { + "start": 19606.26, + "end": 19608.22, + "probability": 0.6409 + }, + { + "start": 19608.64, + "end": 19608.72, + "probability": 0.1196 + }, + { + "start": 19608.72, + "end": 19610.72, + "probability": 0.6735 + }, + { + "start": 19612.2, + "end": 19613.8, + "probability": 0.7413 + }, + { + "start": 19613.96, + "end": 19614.5, + "probability": 0.2482 + }, + { + "start": 19614.56, + "end": 19615.06, + "probability": 0.2805 + }, + { + "start": 19615.22, + "end": 19616.12, + "probability": 0.1945 + }, + { + "start": 19616.75, + "end": 19617.16, + "probability": 0.1156 + }, + { + "start": 19617.28, + "end": 19623.68, + "probability": 0.9883 + }, + { + "start": 19626.46, + "end": 19631.22, + "probability": 0.9949 + }, + { + "start": 19631.94, + "end": 19636.96, + "probability": 0.9478 + }, + { + "start": 19637.4, + "end": 19639.02, + "probability": 0.9344 + }, + { + "start": 19639.08, + "end": 19639.08, + "probability": 0.2411 + }, + { + "start": 19639.1, + "end": 19640.08, + "probability": 0.9915 + }, + { + "start": 19640.88, + "end": 19644.78, + "probability": 0.9266 + }, + { + "start": 19645.12, + "end": 19647.3, + "probability": 0.8129 + }, + { + "start": 19647.88, + "end": 19650.42, + "probability": 0.8245 + }, + { + "start": 19650.64, + "end": 19652.54, + "probability": 0.9203 + }, + { + "start": 19653.0, + "end": 19659.84, + "probability": 0.9854 + }, + { + "start": 19660.0, + "end": 19660.86, + "probability": 0.6855 + }, + { + "start": 19661.0, + "end": 19661.32, + "probability": 0.4441 + }, + { + "start": 19661.46, + "end": 19662.44, + "probability": 0.7616 + }, + { + "start": 19662.62, + "end": 19666.32, + "probability": 0.8927 + }, + { + "start": 19666.61, + "end": 19669.74, + "probability": 0.9641 + }, + { + "start": 19669.92, + "end": 19671.34, + "probability": 0.9067 + }, + { + "start": 19671.42, + "end": 19671.78, + "probability": 0.7367 + }, + { + "start": 19671.78, + "end": 19672.36, + "probability": 0.3578 + }, + { + "start": 19672.58, + "end": 19674.38, + "probability": 0.5677 + }, + { + "start": 19674.42, + "end": 19675.74, + "probability": 0.9818 + }, + { + "start": 19686.66, + "end": 19689.98, + "probability": 0.9319 + }, + { + "start": 19691.54, + "end": 19692.25, + "probability": 0.73 + }, + { + "start": 19693.8, + "end": 19694.86, + "probability": 0.7225 + }, + { + "start": 19694.96, + "end": 19696.14, + "probability": 0.7963 + }, + { + "start": 19696.54, + "end": 19698.42, + "probability": 0.923 + }, + { + "start": 19698.7, + "end": 19701.3, + "probability": 0.9787 + }, + { + "start": 19701.84, + "end": 19705.8, + "probability": 0.8019 + }, + { + "start": 19706.38, + "end": 19710.14, + "probability": 0.8277 + }, + { + "start": 19710.84, + "end": 19712.6, + "probability": 0.8625 + }, + { + "start": 19713.74, + "end": 19715.62, + "probability": 0.7412 + }, + { + "start": 19717.5, + "end": 19717.64, + "probability": 0.0136 + }, + { + "start": 19717.64, + "end": 19719.92, + "probability": 0.877 + }, + { + "start": 19720.34, + "end": 19726.16, + "probability": 0.8755 + }, + { + "start": 19727.16, + "end": 19728.51, + "probability": 0.9941 + }, + { + "start": 19728.76, + "end": 19731.72, + "probability": 0.962 + }, + { + "start": 19732.04, + "end": 19737.02, + "probability": 0.9329 + }, + { + "start": 19737.5, + "end": 19742.22, + "probability": 0.987 + }, + { + "start": 19742.74, + "end": 19743.3, + "probability": 0.7806 + }, + { + "start": 19743.38, + "end": 19745.24, + "probability": 0.939 + }, + { + "start": 19745.32, + "end": 19746.72, + "probability": 0.0522 + }, + { + "start": 19746.72, + "end": 19746.74, + "probability": 0.0407 + }, + { + "start": 19746.78, + "end": 19752.38, + "probability": 0.9586 + }, + { + "start": 19752.96, + "end": 19758.1, + "probability": 0.9974 + }, + { + "start": 19758.64, + "end": 19763.3, + "probability": 0.9702 + }, + { + "start": 19763.48, + "end": 19763.68, + "probability": 0.7043 + }, + { + "start": 19764.62, + "end": 19766.66, + "probability": 0.8732 + }, + { + "start": 19766.72, + "end": 19769.02, + "probability": 0.843 + }, + { + "start": 19769.7, + "end": 19770.66, + "probability": 0.5202 + }, + { + "start": 19772.06, + "end": 19776.74, + "probability": 0.8756 + }, + { + "start": 19781.2, + "end": 19781.34, + "probability": 0.0718 + }, + { + "start": 19781.54, + "end": 19782.26, + "probability": 0.3909 + }, + { + "start": 19782.6, + "end": 19786.04, + "probability": 0.6611 + }, + { + "start": 19786.04, + "end": 19788.14, + "probability": 0.7356 + }, + { + "start": 19788.32, + "end": 19789.16, + "probability": 0.337 + }, + { + "start": 19789.54, + "end": 19791.08, + "probability": 0.8516 + }, + { + "start": 19792.64, + "end": 19794.08, + "probability": 0.9333 + }, + { + "start": 19794.24, + "end": 19795.86, + "probability": 0.9142 + }, + { + "start": 19795.94, + "end": 19798.76, + "probability": 0.7951 + }, + { + "start": 19798.88, + "end": 19800.88, + "probability": 0.6054 + }, + { + "start": 19801.54, + "end": 19801.54, + "probability": 0.1148 + }, + { + "start": 19801.54, + "end": 19802.64, + "probability": 0.7945 + }, + { + "start": 19802.84, + "end": 19805.14, + "probability": 0.9729 + }, + { + "start": 19805.24, + "end": 19805.96, + "probability": 0.9316 + }, + { + "start": 19807.16, + "end": 19809.86, + "probability": 0.842 + }, + { + "start": 19810.98, + "end": 19812.94, + "probability": 0.7001 + }, + { + "start": 19814.08, + "end": 19814.9, + "probability": 0.886 + }, + { + "start": 19816.22, + "end": 19818.14, + "probability": 0.9413 + }, + { + "start": 19820.18, + "end": 19822.84, + "probability": 0.8819 + }, + { + "start": 19823.52, + "end": 19831.62, + "probability": 0.9546 + }, + { + "start": 19832.48, + "end": 19834.92, + "probability": 0.8047 + }, + { + "start": 19835.54, + "end": 19839.14, + "probability": 0.9264 + }, + { + "start": 19839.62, + "end": 19842.94, + "probability": 0.7975 + }, + { + "start": 19844.34, + "end": 19845.58, + "probability": 0.9574 + }, + { + "start": 19846.52, + "end": 19847.95, + "probability": 0.9862 + }, + { + "start": 19848.4, + "end": 19849.98, + "probability": 0.9883 + }, + { + "start": 19851.88, + "end": 19856.66, + "probability": 0.9548 + }, + { + "start": 19857.26, + "end": 19861.14, + "probability": 0.9785 + }, + { + "start": 19862.12, + "end": 19862.84, + "probability": 0.581 + }, + { + "start": 19863.5, + "end": 19869.38, + "probability": 0.8558 + }, + { + "start": 19870.18, + "end": 19871.0, + "probability": 0.8972 + }, + { + "start": 19872.56, + "end": 19876.34, + "probability": 0.9727 + }, + { + "start": 19876.96, + "end": 19879.84, + "probability": 0.9933 + }, + { + "start": 19880.34, + "end": 19882.13, + "probability": 0.996 + }, + { + "start": 19883.94, + "end": 19884.56, + "probability": 0.8286 + }, + { + "start": 19885.92, + "end": 19888.5, + "probability": 0.9686 + }, + { + "start": 19889.08, + "end": 19891.3, + "probability": 0.9766 + }, + { + "start": 19891.56, + "end": 19892.36, + "probability": 0.9132 + }, + { + "start": 19892.46, + "end": 19893.68, + "probability": 0.9611 + }, + { + "start": 19894.06, + "end": 19895.16, + "probability": 0.6996 + }, + { + "start": 19895.16, + "end": 19896.76, + "probability": 0.7843 + }, + { + "start": 19897.32, + "end": 19904.62, + "probability": 0.9747 + }, + { + "start": 19906.36, + "end": 19908.72, + "probability": 0.8328 + }, + { + "start": 19909.34, + "end": 19912.78, + "probability": 0.5277 + }, + { + "start": 19914.52, + "end": 19915.6, + "probability": 0.9146 + }, + { + "start": 19916.0, + "end": 19916.94, + "probability": 0.9358 + }, + { + "start": 19917.22, + "end": 19918.34, + "probability": 0.6836 + }, + { + "start": 19918.64, + "end": 19920.22, + "probability": 0.7403 + }, + { + "start": 19920.66, + "end": 19925.96, + "probability": 0.9583 + }, + { + "start": 19926.9, + "end": 19931.04, + "probability": 0.9766 + }, + { + "start": 19935.26, + "end": 19938.97, + "probability": 0.9758 + }, + { + "start": 19939.8, + "end": 19944.98, + "probability": 0.9426 + }, + { + "start": 19945.04, + "end": 19946.26, + "probability": 0.8558 + }, + { + "start": 19946.56, + "end": 19949.24, + "probability": 0.9849 + }, + { + "start": 19949.34, + "end": 19950.23, + "probability": 0.916 + }, + { + "start": 19950.88, + "end": 19952.22, + "probability": 0.8919 + }, + { + "start": 19952.34, + "end": 19953.36, + "probability": 0.3773 + }, + { + "start": 19954.02, + "end": 19954.6, + "probability": 0.2398 + }, + { + "start": 19955.72, + "end": 19956.5, + "probability": 0.9363 + }, + { + "start": 19957.84, + "end": 19959.66, + "probability": 0.765 + }, + { + "start": 19960.04, + "end": 19960.82, + "probability": 0.9537 + }, + { + "start": 19960.92, + "end": 19962.1, + "probability": 0.863 + }, + { + "start": 19962.3, + "end": 19966.98, + "probability": 0.9849 + }, + { + "start": 19967.08, + "end": 19967.9, + "probability": 0.739 + }, + { + "start": 19968.44, + "end": 19969.76, + "probability": 0.7642 + }, + { + "start": 19970.52, + "end": 19971.48, + "probability": 0.5536 + }, + { + "start": 19972.08, + "end": 19974.72, + "probability": 0.9679 + }, + { + "start": 19976.04, + "end": 19977.84, + "probability": 0.9971 + }, + { + "start": 19981.16, + "end": 19981.3, + "probability": 0.25 + }, + { + "start": 19983.04, + "end": 19991.3, + "probability": 0.8174 + }, + { + "start": 19992.32, + "end": 19993.02, + "probability": 0.8691 + }, + { + "start": 19993.44, + "end": 19998.82, + "probability": 0.9822 + }, + { + "start": 19998.98, + "end": 19999.5, + "probability": 0.3572 + }, + { + "start": 19999.6, + "end": 19999.72, + "probability": 0.3974 + }, + { + "start": 19999.82, + "end": 20000.32, + "probability": 0.3575 + }, + { + "start": 20000.48, + "end": 20002.6, + "probability": 0.6631 + }, + { + "start": 20003.22, + "end": 20004.2, + "probability": 0.9669 + }, + { + "start": 20004.8, + "end": 20007.0, + "probability": 0.954 + }, + { + "start": 20007.54, + "end": 20011.38, + "probability": 0.7959 + }, + { + "start": 20011.88, + "end": 20015.62, + "probability": 0.9369 + }, + { + "start": 20016.48, + "end": 20019.43, + "probability": 0.9443 + }, + { + "start": 20019.98, + "end": 20020.98, + "probability": 0.7155 + }, + { + "start": 20021.18, + "end": 20021.5, + "probability": 0.7505 + }, + { + "start": 20021.56, + "end": 20022.94, + "probability": 0.872 + }, + { + "start": 20023.06, + "end": 20025.5, + "probability": 0.9297 + }, + { + "start": 20025.72, + "end": 20026.06, + "probability": 0.4076 + }, + { + "start": 20026.12, + "end": 20026.2, + "probability": 0.1895 + }, + { + "start": 20026.2, + "end": 20026.92, + "probability": 0.6158 + }, + { + "start": 20027.92, + "end": 20030.48, + "probability": 0.9797 + }, + { + "start": 20030.96, + "end": 20031.36, + "probability": 0.751 + }, + { + "start": 20031.88, + "end": 20032.48, + "probability": 0.8596 + }, + { + "start": 20033.52, + "end": 20036.7, + "probability": 0.9705 + }, + { + "start": 20036.86, + "end": 20037.46, + "probability": 0.9562 + }, + { + "start": 20037.52, + "end": 20037.72, + "probability": 0.6311 + }, + { + "start": 20037.72, + "end": 20039.16, + "probability": 0.7441 + }, + { + "start": 20039.2, + "end": 20043.34, + "probability": 0.9173 + }, + { + "start": 20044.16, + "end": 20048.42, + "probability": 0.7915 + }, + { + "start": 20049.1, + "end": 20049.4, + "probability": 0.3851 + }, + { + "start": 20049.9, + "end": 20051.44, + "probability": 0.5823 + }, + { + "start": 20052.06, + "end": 20054.7, + "probability": 0.8493 + }, + { + "start": 20055.36, + "end": 20057.04, + "probability": 0.4174 + }, + { + "start": 20057.28, + "end": 20058.48, + "probability": 0.5489 + }, + { + "start": 20061.98, + "end": 20063.26, + "probability": 0.1626 + }, + { + "start": 20073.75, + "end": 20075.66, + "probability": 0.1284 + }, + { + "start": 20077.12, + "end": 20079.4, + "probability": 0.7408 + }, + { + "start": 20079.96, + "end": 20083.08, + "probability": 0.8931 + }, + { + "start": 20083.2, + "end": 20085.08, + "probability": 0.5228 + }, + { + "start": 20085.44, + "end": 20086.66, + "probability": 0.8883 + }, + { + "start": 20087.58, + "end": 20089.58, + "probability": 0.9961 + }, + { + "start": 20089.58, + "end": 20090.51, + "probability": 0.8296 + }, + { + "start": 20091.29, + "end": 20094.06, + "probability": 0.9792 + }, + { + "start": 20094.16, + "end": 20095.28, + "probability": 0.9907 + }, + { + "start": 20095.54, + "end": 20098.0, + "probability": 0.9492 + }, + { + "start": 20098.32, + "end": 20099.92, + "probability": 0.9733 + }, + { + "start": 20100.1, + "end": 20100.76, + "probability": 0.8595 + }, + { + "start": 20101.18, + "end": 20105.26, + "probability": 0.986 + }, + { + "start": 20105.6, + "end": 20106.08, + "probability": 0.9502 + }, + { + "start": 20106.58, + "end": 20107.46, + "probability": 0.9839 + }, + { + "start": 20107.96, + "end": 20109.5, + "probability": 0.768 + }, + { + "start": 20110.35, + "end": 20112.16, + "probability": 0.9872 + }, + { + "start": 20112.7, + "end": 20113.3, + "probability": 0.989 + }, + { + "start": 20114.2, + "end": 20116.7, + "probability": 0.991 + }, + { + "start": 20117.02, + "end": 20119.32, + "probability": 0.9689 + }, + { + "start": 20119.44, + "end": 20120.48, + "probability": 0.5081 + }, + { + "start": 20121.44, + "end": 20122.14, + "probability": 0.6175 + }, + { + "start": 20123.92, + "end": 20124.33, + "probability": 0.0415 + }, + { + "start": 20124.5, + "end": 20129.44, + "probability": 0.3619 + }, + { + "start": 20129.9, + "end": 20131.68, + "probability": 0.7028 + }, + { + "start": 20132.2, + "end": 20133.87, + "probability": 0.8518 + }, + { + "start": 20134.54, + "end": 20135.26, + "probability": 0.3469 + }, + { + "start": 20135.72, + "end": 20139.84, + "probability": 0.6285 + }, + { + "start": 20140.08, + "end": 20142.06, + "probability": 0.9607 + }, + { + "start": 20143.84, + "end": 20144.66, + "probability": 0.0986 + }, + { + "start": 20144.66, + "end": 20146.77, + "probability": 0.4308 + }, + { + "start": 20147.32, + "end": 20148.7, + "probability": 0.795 + }, + { + "start": 20149.14, + "end": 20153.7, + "probability": 0.9478 + }, + { + "start": 20154.04, + "end": 20156.8, + "probability": 0.997 + }, + { + "start": 20157.0, + "end": 20159.16, + "probability": 0.9943 + }, + { + "start": 20159.64, + "end": 20164.52, + "probability": 0.9986 + }, + { + "start": 20164.76, + "end": 20166.8, + "probability": 0.8812 + }, + { + "start": 20166.88, + "end": 20169.12, + "probability": 0.9974 + }, + { + "start": 20169.12, + "end": 20173.24, + "probability": 0.8251 + }, + { + "start": 20174.18, + "end": 20174.86, + "probability": 0.2064 + }, + { + "start": 20174.86, + "end": 20174.86, + "probability": 0.1486 + }, + { + "start": 20175.48, + "end": 20177.9, + "probability": 0.3549 + }, + { + "start": 20177.9, + "end": 20178.0, + "probability": 0.4709 + }, + { + "start": 20178.0, + "end": 20179.14, + "probability": 0.7244 + }, + { + "start": 20179.56, + "end": 20182.02, + "probability": 0.7646 + }, + { + "start": 20182.18, + "end": 20185.84, + "probability": 0.9832 + }, + { + "start": 20185.99, + "end": 20189.78, + "probability": 0.9912 + }, + { + "start": 20189.78, + "end": 20193.72, + "probability": 0.9896 + }, + { + "start": 20194.04, + "end": 20195.12, + "probability": 0.7112 + }, + { + "start": 20195.18, + "end": 20195.64, + "probability": 0.9258 + }, + { + "start": 20195.7, + "end": 20196.26, + "probability": 0.7778 + }, + { + "start": 20196.5, + "end": 20199.22, + "probability": 0.7875 + }, + { + "start": 20199.94, + "end": 20201.66, + "probability": 0.0244 + }, + { + "start": 20201.66, + "end": 20204.78, + "probability": 0.2206 + }, + { + "start": 20205.28, + "end": 20208.92, + "probability": 0.9906 + }, + { + "start": 20208.92, + "end": 20213.36, + "probability": 0.9441 + }, + { + "start": 20213.4, + "end": 20213.68, + "probability": 0.5879 + }, + { + "start": 20214.12, + "end": 20216.14, + "probability": 0.5379 + }, + { + "start": 20216.34, + "end": 20219.34, + "probability": 0.717 + }, + { + "start": 20219.72, + "end": 20222.26, + "probability": 0.9656 + }, + { + "start": 20223.26, + "end": 20225.46, + "probability": 0.013 + }, + { + "start": 20225.48, + "end": 20231.28, + "probability": 0.1644 + }, + { + "start": 20236.38, + "end": 20238.56, + "probability": 0.5964 + }, + { + "start": 20239.9, + "end": 20244.72, + "probability": 0.9639 + }, + { + "start": 20245.16, + "end": 20250.6, + "probability": 0.8438 + }, + { + "start": 20251.56, + "end": 20252.49, + "probability": 0.5264 + }, + { + "start": 20253.52, + "end": 20258.01, + "probability": 0.9829 + }, + { + "start": 20258.04, + "end": 20262.72, + "probability": 0.9932 + }, + { + "start": 20263.56, + "end": 20269.38, + "probability": 0.9219 + }, + { + "start": 20270.58, + "end": 20275.92, + "probability": 0.7761 + }, + { + "start": 20276.24, + "end": 20277.62, + "probability": 0.8146 + }, + { + "start": 20278.58, + "end": 20281.3, + "probability": 0.9858 + }, + { + "start": 20281.8, + "end": 20281.84, + "probability": 0.1924 + }, + { + "start": 20281.84, + "end": 20281.84, + "probability": 0.3178 + }, + { + "start": 20281.84, + "end": 20285.42, + "probability": 0.9006 + }, + { + "start": 20285.92, + "end": 20285.94, + "probability": 0.2906 + }, + { + "start": 20285.94, + "end": 20287.56, + "probability": 0.4298 + }, + { + "start": 20287.72, + "end": 20288.32, + "probability": 0.0445 + }, + { + "start": 20288.32, + "end": 20288.5, + "probability": 0.1352 + }, + { + "start": 20289.75, + "end": 20292.56, + "probability": 0.7283 + }, + { + "start": 20292.78, + "end": 20294.84, + "probability": 0.756 + }, + { + "start": 20295.16, + "end": 20297.48, + "probability": 0.9135 + }, + { + "start": 20297.82, + "end": 20298.16, + "probability": 0.1131 + }, + { + "start": 20298.16, + "end": 20299.96, + "probability": 0.1618 + }, + { + "start": 20300.0, + "end": 20303.2, + "probability": 0.9659 + }, + { + "start": 20303.86, + "end": 20305.78, + "probability": 0.7728 + }, + { + "start": 20306.12, + "end": 20307.62, + "probability": 0.9583 + }, + { + "start": 20308.1, + "end": 20310.78, + "probability": 0.9966 + }, + { + "start": 20311.16, + "end": 20312.48, + "probability": 0.8506 + }, + { + "start": 20312.56, + "end": 20313.24, + "probability": 0.9012 + }, + { + "start": 20314.04, + "end": 20315.66, + "probability": 0.9155 + }, + { + "start": 20316.04, + "end": 20317.29, + "probability": 0.9805 + }, + { + "start": 20317.62, + "end": 20318.88, + "probability": 0.2937 + }, + { + "start": 20318.88, + "end": 20320.3, + "probability": 0.2317 + }, + { + "start": 20320.58, + "end": 20320.86, + "probability": 0.0488 + }, + { + "start": 20320.86, + "end": 20322.7, + "probability": 0.6537 + }, + { + "start": 20323.2, + "end": 20324.06, + "probability": 0.9653 + }, + { + "start": 20324.26, + "end": 20326.22, + "probability": 0.8337 + }, + { + "start": 20326.22, + "end": 20329.08, + "probability": 0.6548 + }, + { + "start": 20330.17, + "end": 20330.66, + "probability": 0.0664 + }, + { + "start": 20330.66, + "end": 20330.68, + "probability": 0.1759 + }, + { + "start": 20330.68, + "end": 20330.68, + "probability": 0.4178 + }, + { + "start": 20330.68, + "end": 20337.22, + "probability": 0.7673 + }, + { + "start": 20337.52, + "end": 20338.9, + "probability": 0.8373 + }, + { + "start": 20339.58, + "end": 20341.7, + "probability": 0.695 + }, + { + "start": 20343.2, + "end": 20344.86, + "probability": 0.8439 + }, + { + "start": 20345.26, + "end": 20347.18, + "probability": 0.9702 + }, + { + "start": 20347.26, + "end": 20348.88, + "probability": 0.9865 + }, + { + "start": 20349.84, + "end": 20351.28, + "probability": 0.4775 + }, + { + "start": 20351.62, + "end": 20352.54, + "probability": 0.1759 + }, + { + "start": 20353.64, + "end": 20354.34, + "probability": 0.2862 + }, + { + "start": 20354.34, + "end": 20354.34, + "probability": 0.0188 + }, + { + "start": 20354.34, + "end": 20354.5, + "probability": 0.0814 + }, + { + "start": 20357.8, + "end": 20358.84, + "probability": 0.1134 + }, + { + "start": 20359.2, + "end": 20359.62, + "probability": 0.0312 + }, + { + "start": 20359.62, + "end": 20362.31, + "probability": 0.8064 + }, + { + "start": 20362.68, + "end": 20363.6, + "probability": 0.8735 + }, + { + "start": 20365.32, + "end": 20367.58, + "probability": 0.9785 + }, + { + "start": 20368.46, + "end": 20369.68, + "probability": 0.6658 + }, + { + "start": 20369.82, + "end": 20370.52, + "probability": 0.5367 + }, + { + "start": 20371.24, + "end": 20373.94, + "probability": 0.8095 + }, + { + "start": 20374.7, + "end": 20378.53, + "probability": 0.998 + }, + { + "start": 20378.72, + "end": 20380.92, + "probability": 0.9958 + }, + { + "start": 20381.4, + "end": 20382.66, + "probability": 0.9962 + }, + { + "start": 20383.52, + "end": 20384.12, + "probability": 0.3517 + }, + { + "start": 20384.24, + "end": 20387.15, + "probability": 0.9639 + }, + { + "start": 20387.6, + "end": 20390.39, + "probability": 0.6989 + }, + { + "start": 20391.36, + "end": 20393.82, + "probability": 0.9858 + }, + { + "start": 20394.0, + "end": 20394.78, + "probability": 0.8997 + }, + { + "start": 20395.06, + "end": 20395.68, + "probability": 0.4297 + }, + { + "start": 20395.96, + "end": 20397.4, + "probability": 0.9874 + }, + { + "start": 20397.9, + "end": 20400.54, + "probability": 0.9635 + }, + { + "start": 20401.26, + "end": 20402.48, + "probability": 0.7811 + }, + { + "start": 20402.56, + "end": 20405.07, + "probability": 0.9604 + }, + { + "start": 20405.36, + "end": 20408.36, + "probability": 0.9397 + }, + { + "start": 20409.02, + "end": 20412.94, + "probability": 0.8589 + }, + { + "start": 20413.3, + "end": 20414.9, + "probability": 0.5237 + }, + { + "start": 20414.98, + "end": 20415.54, + "probability": 0.8506 + }, + { + "start": 20415.84, + "end": 20418.24, + "probability": 0.2659 + }, + { + "start": 20419.38, + "end": 20421.86, + "probability": 0.8049 + }, + { + "start": 20422.0, + "end": 20423.15, + "probability": 0.8651 + }, + { + "start": 20423.9, + "end": 20426.4, + "probability": 0.9148 + }, + { + "start": 20426.56, + "end": 20428.66, + "probability": 0.9189 + }, + { + "start": 20429.86, + "end": 20431.6, + "probability": 0.8345 + }, + { + "start": 20432.54, + "end": 20436.95, + "probability": 0.9906 + }, + { + "start": 20437.46, + "end": 20439.44, + "probability": 0.8917 + }, + { + "start": 20440.24, + "end": 20442.84, + "probability": 0.9482 + }, + { + "start": 20443.98, + "end": 20443.98, + "probability": 0.0921 + }, + { + "start": 20443.98, + "end": 20445.42, + "probability": 0.783 + }, + { + "start": 20446.12, + "end": 20446.86, + "probability": 0.5074 + }, + { + "start": 20447.24, + "end": 20448.42, + "probability": 0.9059 + }, + { + "start": 20448.48, + "end": 20450.4, + "probability": 0.7308 + }, + { + "start": 20450.54, + "end": 20454.8, + "probability": 0.9773 + }, + { + "start": 20454.86, + "end": 20456.0, + "probability": 0.8573 + }, + { + "start": 20456.54, + "end": 20458.31, + "probability": 0.9749 + }, + { + "start": 20459.3, + "end": 20460.0, + "probability": 0.6068 + }, + { + "start": 20460.0, + "end": 20462.24, + "probability": 0.6013 + }, + { + "start": 20462.24, + "end": 20462.9, + "probability": 0.6192 + }, + { + "start": 20462.94, + "end": 20465.55, + "probability": 0.5856 + }, + { + "start": 20466.46, + "end": 20468.0, + "probability": 0.9365 + }, + { + "start": 20468.58, + "end": 20468.9, + "probability": 0.6415 + }, + { + "start": 20470.56, + "end": 20470.56, + "probability": 0.3008 + }, + { + "start": 20470.56, + "end": 20473.32, + "probability": 0.6863 + }, + { + "start": 20473.8, + "end": 20474.3, + "probability": 0.7773 + }, + { + "start": 20474.88, + "end": 20477.52, + "probability": 0.6426 + }, + { + "start": 20478.06, + "end": 20480.04, + "probability": 0.5808 + }, + { + "start": 20480.1, + "end": 20482.82, + "probability": 0.5282 + }, + { + "start": 20483.54, + "end": 20484.8, + "probability": 0.9287 + }, + { + "start": 20485.32, + "end": 20487.4, + "probability": 0.9643 + }, + { + "start": 20487.76, + "end": 20489.18, + "probability": 0.985 + }, + { + "start": 20489.4, + "end": 20490.44, + "probability": 0.9715 + }, + { + "start": 20490.5, + "end": 20491.04, + "probability": 0.4066 + }, + { + "start": 20491.08, + "end": 20493.98, + "probability": 0.7906 + }, + { + "start": 20509.54, + "end": 20510.3, + "probability": 0.6714 + }, + { + "start": 20511.04, + "end": 20512.3, + "probability": 0.7234 + }, + { + "start": 20512.46, + "end": 20513.46, + "probability": 0.918 + }, + { + "start": 20514.44, + "end": 20515.06, + "probability": 0.5464 + }, + { + "start": 20515.12, + "end": 20516.24, + "probability": 0.8752 + }, + { + "start": 20517.45, + "end": 20518.52, + "probability": 0.4461 + }, + { + "start": 20518.64, + "end": 20519.2, + "probability": 0.5915 + }, + { + "start": 20519.26, + "end": 20520.74, + "probability": 0.9591 + }, + { + "start": 20520.82, + "end": 20524.7, + "probability": 0.9304 + }, + { + "start": 20524.7, + "end": 20529.6, + "probability": 0.9877 + }, + { + "start": 20530.82, + "end": 20533.52, + "probability": 0.99 + }, + { + "start": 20533.58, + "end": 20534.4, + "probability": 0.5307 + }, + { + "start": 20534.92, + "end": 20535.46, + "probability": 0.7204 + }, + { + "start": 20536.1, + "end": 20537.08, + "probability": 0.3964 + }, + { + "start": 20538.24, + "end": 20539.34, + "probability": 0.9302 + }, + { + "start": 20539.54, + "end": 20543.32, + "probability": 0.929 + }, + { + "start": 20543.4, + "end": 20544.66, + "probability": 0.7358 + }, + { + "start": 20545.46, + "end": 20546.28, + "probability": 0.6701 + }, + { + "start": 20546.46, + "end": 20549.18, + "probability": 0.795 + }, + { + "start": 20549.62, + "end": 20550.7, + "probability": 0.743 + }, + { + "start": 20550.8, + "end": 20551.32, + "probability": 0.9027 + }, + { + "start": 20551.5, + "end": 20554.1, + "probability": 0.9666 + }, + { + "start": 20554.78, + "end": 20557.57, + "probability": 0.998 + }, + { + "start": 20558.22, + "end": 20559.42, + "probability": 0.9315 + }, + { + "start": 20560.24, + "end": 20560.94, + "probability": 0.4133 + }, + { + "start": 20561.0, + "end": 20563.94, + "probability": 0.9788 + }, + { + "start": 20564.04, + "end": 20564.88, + "probability": 0.9889 + }, + { + "start": 20564.98, + "end": 20566.72, + "probability": 0.873 + }, + { + "start": 20567.58, + "end": 20568.52, + "probability": 0.9344 + }, + { + "start": 20568.6, + "end": 20569.0, + "probability": 0.8795 + }, + { + "start": 20569.0, + "end": 20570.42, + "probability": 0.9943 + }, + { + "start": 20571.38, + "end": 20572.72, + "probability": 0.6024 + }, + { + "start": 20573.58, + "end": 20574.34, + "probability": 0.59 + }, + { + "start": 20574.38, + "end": 20575.94, + "probability": 0.8687 + }, + { + "start": 20576.32, + "end": 20577.57, + "probability": 0.9533 + }, + { + "start": 20578.48, + "end": 20579.18, + "probability": 0.8232 + }, + { + "start": 20579.84, + "end": 20581.24, + "probability": 0.9298 + }, + { + "start": 20581.44, + "end": 20585.54, + "probability": 0.8702 + }, + { + "start": 20586.08, + "end": 20586.91, + "probability": 0.5233 + }, + { + "start": 20587.1, + "end": 20593.56, + "probability": 0.954 + }, + { + "start": 20593.94, + "end": 20595.98, + "probability": 0.9561 + }, + { + "start": 20596.88, + "end": 20597.78, + "probability": 0.854 + }, + { + "start": 20597.8, + "end": 20600.75, + "probability": 0.976 + }, + { + "start": 20601.48, + "end": 20602.9, + "probability": 0.9469 + }, + { + "start": 20602.94, + "end": 20603.86, + "probability": 0.8587 + }, + { + "start": 20603.9, + "end": 20604.83, + "probability": 0.9034 + }, + { + "start": 20605.32, + "end": 20606.1, + "probability": 0.9082 + }, + { + "start": 20606.16, + "end": 20606.88, + "probability": 0.887 + }, + { + "start": 20607.34, + "end": 20609.06, + "probability": 0.9448 + }, + { + "start": 20609.06, + "end": 20610.22, + "probability": 0.6174 + }, + { + "start": 20610.3, + "end": 20611.48, + "probability": 0.7977 + }, + { + "start": 20612.17, + "end": 20614.0, + "probability": 0.4853 + }, + { + "start": 20614.04, + "end": 20615.38, + "probability": 0.9201 + }, + { + "start": 20615.9, + "end": 20619.0, + "probability": 0.9868 + }, + { + "start": 20619.52, + "end": 20620.72, + "probability": 0.8196 + }, + { + "start": 20621.12, + "end": 20623.6, + "probability": 0.5926 + }, + { + "start": 20623.68, + "end": 20625.14, + "probability": 0.8519 + }, + { + "start": 20628.5, + "end": 20628.5, + "probability": 0.082 + }, + { + "start": 20628.5, + "end": 20630.54, + "probability": 0.7224 + }, + { + "start": 20630.9, + "end": 20634.16, + "probability": 0.7359 + }, + { + "start": 20634.94, + "end": 20636.06, + "probability": 0.9465 + }, + { + "start": 20637.58, + "end": 20639.06, + "probability": 0.8634 + }, + { + "start": 20639.58, + "end": 20639.96, + "probability": 0.7509 + }, + { + "start": 20640.04, + "end": 20642.62, + "probability": 0.9364 + }, + { + "start": 20642.84, + "end": 20644.58, + "probability": 0.8482 + }, + { + "start": 20645.08, + "end": 20647.22, + "probability": 0.9753 + }, + { + "start": 20647.8, + "end": 20650.0, + "probability": 0.993 + }, + { + "start": 20650.2, + "end": 20650.54, + "probability": 0.5395 + }, + { + "start": 20651.06, + "end": 20653.27, + "probability": 0.9915 + }, + { + "start": 20653.9, + "end": 20656.2, + "probability": 0.9397 + }, + { + "start": 20656.2, + "end": 20658.84, + "probability": 0.9917 + }, + { + "start": 20659.14, + "end": 20665.24, + "probability": 0.9893 + }, + { + "start": 20665.84, + "end": 20667.5, + "probability": 0.6137 + }, + { + "start": 20668.24, + "end": 20672.42, + "probability": 0.7629 + }, + { + "start": 20672.5, + "end": 20673.7, + "probability": 0.8289 + }, + { + "start": 20675.22, + "end": 20677.0, + "probability": 0.4485 + }, + { + "start": 20677.0, + "end": 20678.88, + "probability": 0.5946 + }, + { + "start": 20679.22, + "end": 20679.22, + "probability": 0.8203 + }, + { + "start": 20679.22, + "end": 20680.68, + "probability": 0.8551 + }, + { + "start": 20680.74, + "end": 20685.4, + "probability": 0.9897 + }, + { + "start": 20685.4, + "end": 20688.46, + "probability": 0.9994 + }, + { + "start": 20689.22, + "end": 20690.74, + "probability": 0.7102 + }, + { + "start": 20690.8, + "end": 20692.92, + "probability": 0.8171 + }, + { + "start": 20693.42, + "end": 20695.26, + "probability": 0.9736 + }, + { + "start": 20695.4, + "end": 20696.51, + "probability": 0.9639 + }, + { + "start": 20697.1, + "end": 20699.84, + "probability": 0.9169 + }, + { + "start": 20700.88, + "end": 20702.04, + "probability": 0.4722 + }, + { + "start": 20702.62, + "end": 20706.36, + "probability": 0.9778 + }, + { + "start": 20707.36, + "end": 20709.7, + "probability": 0.8842 + }, + { + "start": 20710.18, + "end": 20710.6, + "probability": 0.874 + }, + { + "start": 20710.72, + "end": 20712.46, + "probability": 0.9415 + }, + { + "start": 20712.58, + "end": 20713.9, + "probability": 0.7386 + }, + { + "start": 20714.44, + "end": 20716.52, + "probability": 0.8521 + }, + { + "start": 20716.54, + "end": 20717.72, + "probability": 0.8093 + }, + { + "start": 20718.08, + "end": 20719.92, + "probability": 0.9698 + }, + { + "start": 20720.5, + "end": 20721.88, + "probability": 0.9937 + }, + { + "start": 20722.26, + "end": 20725.28, + "probability": 0.9612 + }, + { + "start": 20725.52, + "end": 20728.88, + "probability": 0.9889 + }, + { + "start": 20729.22, + "end": 20731.32, + "probability": 0.9858 + }, + { + "start": 20731.74, + "end": 20734.88, + "probability": 0.8398 + }, + { + "start": 20735.72, + "end": 20735.74, + "probability": 0.1086 + }, + { + "start": 20735.74, + "end": 20735.74, + "probability": 0.0425 + }, + { + "start": 20735.74, + "end": 20737.06, + "probability": 0.7315 + }, + { + "start": 20737.16, + "end": 20738.58, + "probability": 0.9785 + }, + { + "start": 20738.78, + "end": 20739.68, + "probability": 0.7278 + }, + { + "start": 20740.7, + "end": 20740.8, + "probability": 0.1495 + }, + { + "start": 20741.74, + "end": 20742.8, + "probability": 0.0112 + }, + { + "start": 20759.38, + "end": 20763.4, + "probability": 0.5834 + }, + { + "start": 20764.8, + "end": 20766.2, + "probability": 0.8305 + }, + { + "start": 20766.3, + "end": 20768.72, + "probability": 0.8261 + }, + { + "start": 20768.84, + "end": 20769.54, + "probability": 0.8804 + }, + { + "start": 20769.62, + "end": 20773.96, + "probability": 0.9708 + }, + { + "start": 20773.96, + "end": 20775.3, + "probability": 0.9161 + }, + { + "start": 20775.36, + "end": 20775.48, + "probability": 0.1328 + }, + { + "start": 20775.52, + "end": 20776.5, + "probability": 0.9749 + }, + { + "start": 20777.36, + "end": 20778.02, + "probability": 0.6487 + }, + { + "start": 20778.2, + "end": 20778.87, + "probability": 0.9357 + }, + { + "start": 20779.7, + "end": 20784.4, + "probability": 0.9951 + }, + { + "start": 20785.16, + "end": 20786.44, + "probability": 0.9565 + }, + { + "start": 20786.54, + "end": 20787.66, + "probability": 0.7885 + }, + { + "start": 20788.49, + "end": 20791.68, + "probability": 0.9435 + }, + { + "start": 20792.0, + "end": 20794.5, + "probability": 0.9151 + }, + { + "start": 20799.42, + "end": 20803.98, + "probability": 0.9666 + }, + { + "start": 20805.36, + "end": 20805.68, + "probability": 0.0859 + }, + { + "start": 20805.68, + "end": 20806.82, + "probability": 0.6584 + }, + { + "start": 20810.02, + "end": 20817.36, + "probability": 0.932 + }, + { + "start": 20818.5, + "end": 20821.12, + "probability": 0.7148 + }, + { + "start": 20821.7, + "end": 20823.68, + "probability": 0.978 + }, + { + "start": 20823.74, + "end": 20826.58, + "probability": 0.7563 + }, + { + "start": 20827.04, + "end": 20829.87, + "probability": 0.6976 + }, + { + "start": 20830.26, + "end": 20832.82, + "probability": 0.9842 + }, + { + "start": 20834.28, + "end": 20837.24, + "probability": 0.0317 + }, + { + "start": 20837.36, + "end": 20837.96, + "probability": 0.1074 + }, + { + "start": 20838.94, + "end": 20840.02, + "probability": 0.551 + }, + { + "start": 20840.2, + "end": 20841.98, + "probability": 0.9058 + }, + { + "start": 20843.58, + "end": 20847.74, + "probability": 0.9928 + }, + { + "start": 20847.96, + "end": 20849.54, + "probability": 0.9683 + }, + { + "start": 20849.58, + "end": 20851.02, + "probability": 0.7205 + }, + { + "start": 20851.4, + "end": 20854.82, + "probability": 0.7001 + }, + { + "start": 20856.91, + "end": 20859.09, + "probability": 0.9982 + }, + { + "start": 20859.94, + "end": 20866.44, + "probability": 0.9299 + }, + { + "start": 20866.52, + "end": 20867.44, + "probability": 0.5986 + }, + { + "start": 20867.9, + "end": 20871.73, + "probability": 0.981 + }, + { + "start": 20872.08, + "end": 20874.2, + "probability": 0.8807 + }, + { + "start": 20875.76, + "end": 20877.39, + "probability": 0.5156 + }, + { + "start": 20878.76, + "end": 20881.2, + "probability": 0.7897 + }, + { + "start": 20881.52, + "end": 20883.08, + "probability": 0.8539 + }, + { + "start": 20883.14, + "end": 20886.2, + "probability": 0.7931 + }, + { + "start": 20886.6, + "end": 20887.66, + "probability": 0.3629 + }, + { + "start": 20887.66, + "end": 20889.36, + "probability": 0.5896 + }, + { + "start": 20889.48, + "end": 20891.52, + "probability": 0.7002 + }, + { + "start": 20891.57, + "end": 20894.04, + "probability": 0.4657 + }, + { + "start": 20894.08, + "end": 20894.08, + "probability": 0.0049 + }, + { + "start": 20894.14, + "end": 20895.26, + "probability": 0.7156 + }, + { + "start": 20895.36, + "end": 20896.38, + "probability": 0.7796 + }, + { + "start": 20897.28, + "end": 20899.5, + "probability": 0.4621 + }, + { + "start": 20899.58, + "end": 20901.5, + "probability": 0.901 + }, + { + "start": 20901.5, + "end": 20902.32, + "probability": 0.8082 + }, + { + "start": 20902.46, + "end": 20903.68, + "probability": 0.8851 + }, + { + "start": 20903.7, + "end": 20905.68, + "probability": 0.9391 + }, + { + "start": 20905.78, + "end": 20911.64, + "probability": 0.9849 + }, + { + "start": 20912.28, + "end": 20912.34, + "probability": 0.4243 + }, + { + "start": 20912.52, + "end": 20913.6, + "probability": 0.6815 + }, + { + "start": 20913.84, + "end": 20917.16, + "probability": 0.9724 + }, + { + "start": 20917.52, + "end": 20918.3, + "probability": 0.5417 + }, + { + "start": 20918.42, + "end": 20922.34, + "probability": 0.5667 + }, + { + "start": 20922.42, + "end": 20926.64, + "probability": 0.7976 + }, + { + "start": 20927.14, + "end": 20927.69, + "probability": 0.3767 + }, + { + "start": 20928.94, + "end": 20932.22, + "probability": 0.8747 + }, + { + "start": 20932.44, + "end": 20937.14, + "probability": 0.988 + }, + { + "start": 20937.33, + "end": 20937.54, + "probability": 0.4877 + }, + { + "start": 20937.54, + "end": 20941.06, + "probability": 0.965 + }, + { + "start": 20941.06, + "end": 20944.2, + "probability": 0.9836 + }, + { + "start": 20944.66, + "end": 20946.5, + "probability": 0.6384 + }, + { + "start": 20947.86, + "end": 20948.61, + "probability": 0.7732 + }, + { + "start": 20948.88, + "end": 20951.88, + "probability": 0.8701 + }, + { + "start": 20951.96, + "end": 20954.0, + "probability": 0.9915 + }, + { + "start": 20954.44, + "end": 20956.74, + "probability": 0.8005 + }, + { + "start": 20956.96, + "end": 20960.98, + "probability": 0.967 + }, + { + "start": 20961.36, + "end": 20962.4, + "probability": 0.5879 + }, + { + "start": 20962.96, + "end": 20965.04, + "probability": 0.8926 + }, + { + "start": 20966.18, + "end": 20967.2, + "probability": 0.9349 + }, + { + "start": 20967.92, + "end": 20968.56, + "probability": 0.8071 + }, + { + "start": 20968.68, + "end": 20970.28, + "probability": 0.8345 + }, + { + "start": 20970.66, + "end": 20974.06, + "probability": 0.7194 + }, + { + "start": 20974.28, + "end": 20975.5, + "probability": 0.6269 + }, + { + "start": 20975.8, + "end": 20979.98, + "probability": 0.9907 + }, + { + "start": 20980.0, + "end": 20980.44, + "probability": 0.7177 + }, + { + "start": 20980.53, + "end": 20981.96, + "probability": 0.3033 + }, + { + "start": 20981.96, + "end": 20989.2, + "probability": 0.8551 + }, + { + "start": 20990.58, + "end": 20991.74, + "probability": 0.732 + }, + { + "start": 20992.22, + "end": 20992.4, + "probability": 0.0997 + }, + { + "start": 20992.56, + "end": 20992.56, + "probability": 0.2525 + }, + { + "start": 20992.56, + "end": 20995.66, + "probability": 0.9489 + }, + { + "start": 20995.72, + "end": 20997.7, + "probability": 0.7806 + }, + { + "start": 20998.3, + "end": 21000.4, + "probability": 0.875 + }, + { + "start": 21001.33, + "end": 21003.76, + "probability": 0.7243 + }, + { + "start": 21003.76, + "end": 21004.06, + "probability": 0.726 + }, + { + "start": 21004.26, + "end": 21008.16, + "probability": 0.7909 + }, + { + "start": 21008.78, + "end": 21010.77, + "probability": 0.9683 + }, + { + "start": 21012.52, + "end": 21015.9, + "probability": 0.64 + }, + { + "start": 21016.46, + "end": 21017.16, + "probability": 0.4989 + }, + { + "start": 21019.43, + "end": 21019.78, + "probability": 0.0177 + }, + { + "start": 21019.78, + "end": 21020.08, + "probability": 0.0513 + }, + { + "start": 21020.56, + "end": 21021.92, + "probability": 0.6769 + }, + { + "start": 21022.46, + "end": 21023.46, + "probability": 0.745 + }, + { + "start": 21023.78, + "end": 21026.4, + "probability": 0.8599 + }, + { + "start": 21026.58, + "end": 21028.34, + "probability": 0.802 + }, + { + "start": 21028.86, + "end": 21029.74, + "probability": 0.4359 + }, + { + "start": 21032.7, + "end": 21032.9, + "probability": 0.0434 + }, + { + "start": 21032.9, + "end": 21032.9, + "probability": 0.0946 + }, + { + "start": 21032.9, + "end": 21032.9, + "probability": 0.2298 + }, + { + "start": 21032.9, + "end": 21034.25, + "probability": 0.6141 + }, + { + "start": 21034.64, + "end": 21037.84, + "probability": 0.681 + }, + { + "start": 21038.22, + "end": 21044.22, + "probability": 0.9784 + }, + { + "start": 21044.34, + "end": 21046.8, + "probability": 0.9951 + }, + { + "start": 21046.8, + "end": 21050.82, + "probability": 0.8521 + }, + { + "start": 21051.1, + "end": 21051.1, + "probability": 0.195 + }, + { + "start": 21051.74, + "end": 21053.76, + "probability": 0.3469 + }, + { + "start": 21053.84, + "end": 21054.0, + "probability": 0.0306 + }, + { + "start": 21054.04, + "end": 21054.18, + "probability": 0.1486 + }, + { + "start": 21054.18, + "end": 21054.32, + "probability": 0.1358 + }, + { + "start": 21055.86, + "end": 21055.96, + "probability": 0.2964 + }, + { + "start": 21055.96, + "end": 21059.26, + "probability": 0.7438 + }, + { + "start": 21060.98, + "end": 21064.7, + "probability": 0.5765 + }, + { + "start": 21064.82, + "end": 21066.12, + "probability": 0.6956 + }, + { + "start": 21066.22, + "end": 21066.88, + "probability": 0.3746 + }, + { + "start": 21066.88, + "end": 21067.2, + "probability": 0.6011 + }, + { + "start": 21067.3, + "end": 21068.22, + "probability": 0.1557 + }, + { + "start": 21068.52, + "end": 21069.15, + "probability": 0.1955 + }, + { + "start": 21070.1, + "end": 21070.22, + "probability": 0.0334 + }, + { + "start": 21070.22, + "end": 21072.22, + "probability": 0.6367 + }, + { + "start": 21072.54, + "end": 21073.42, + "probability": 0.8589 + }, + { + "start": 21073.58, + "end": 21073.8, + "probability": 0.6601 + }, + { + "start": 21073.86, + "end": 21075.62, + "probability": 0.8538 + }, + { + "start": 21076.22, + "end": 21078.72, + "probability": 0.9744 + }, + { + "start": 21079.15, + "end": 21079.22, + "probability": 0.0554 + }, + { + "start": 21079.22, + "end": 21080.08, + "probability": 0.7736 + }, + { + "start": 21080.16, + "end": 21080.7, + "probability": 0.8073 + }, + { + "start": 21080.92, + "end": 21082.14, + "probability": 0.7793 + }, + { + "start": 21082.26, + "end": 21083.61, + "probability": 0.7281 + }, + { + "start": 21083.76, + "end": 21086.12, + "probability": 0.9607 + }, + { + "start": 21086.3, + "end": 21087.3, + "probability": 0.6871 + }, + { + "start": 21087.44, + "end": 21088.7, + "probability": 0.4301 + }, + { + "start": 21089.0, + "end": 21089.4, + "probability": 0.438 + }, + { + "start": 21089.4, + "end": 21090.98, + "probability": 0.7595 + }, + { + "start": 21090.98, + "end": 21091.68, + "probability": 0.8716 + }, + { + "start": 21091.84, + "end": 21092.68, + "probability": 0.706 + }, + { + "start": 21092.72, + "end": 21093.1, + "probability": 0.8698 + }, + { + "start": 21093.2, + "end": 21094.36, + "probability": 0.7302 + }, + { + "start": 21094.8, + "end": 21096.84, + "probability": 0.9884 + }, + { + "start": 21097.26, + "end": 21098.88, + "probability": 0.8151 + }, + { + "start": 21099.12, + "end": 21103.34, + "probability": 0.8551 + }, + { + "start": 21103.94, + "end": 21110.36, + "probability": 0.9871 + }, + { + "start": 21110.78, + "end": 21111.8, + "probability": 0.8052 + }, + { + "start": 21112.62, + "end": 21117.58, + "probability": 0.9761 + }, + { + "start": 21119.42, + "end": 21121.25, + "probability": 0.005 + }, + { + "start": 21121.82, + "end": 21121.88, + "probability": 0.0146 + }, + { + "start": 21122.64, + "end": 21123.28, + "probability": 0.0148 + }, + { + "start": 21123.28, + "end": 21123.74, + "probability": 0.279 + }, + { + "start": 21123.74, + "end": 21124.3, + "probability": 0.3476 + }, + { + "start": 21124.86, + "end": 21128.78, + "probability": 0.8189 + }, + { + "start": 21128.94, + "end": 21130.88, + "probability": 0.8721 + }, + { + "start": 21131.5, + "end": 21131.78, + "probability": 0.0077 + }, + { + "start": 21132.04, + "end": 21133.92, + "probability": 0.4619 + }, + { + "start": 21134.24, + "end": 21134.24, + "probability": 0.0016 + }, + { + "start": 21135.7, + "end": 21136.38, + "probability": 0.0242 + }, + { + "start": 21136.38, + "end": 21139.58, + "probability": 0.5645 + }, + { + "start": 21139.64, + "end": 21141.94, + "probability": 0.4291 + }, + { + "start": 21142.4, + "end": 21142.6, + "probability": 0.3973 + }, + { + "start": 21142.6, + "end": 21143.37, + "probability": 0.4994 + }, + { + "start": 21145.86, + "end": 21150.54, + "probability": 0.1884 + }, + { + "start": 21152.5, + "end": 21152.94, + "probability": 0.2363 + }, + { + "start": 21152.94, + "end": 21153.66, + "probability": 0.0864 + }, + { + "start": 21154.6, + "end": 21155.76, + "probability": 0.0854 + }, + { + "start": 21155.76, + "end": 21155.76, + "probability": 0.0306 + }, + { + "start": 21155.76, + "end": 21156.16, + "probability": 0.2383 + }, + { + "start": 21156.78, + "end": 21159.04, + "probability": 0.4161 + }, + { + "start": 21159.24, + "end": 21160.42, + "probability": 0.3725 + }, + { + "start": 21160.62, + "end": 21162.57, + "probability": 0.6741 + }, + { + "start": 21163.26, + "end": 21166.22, + "probability": 0.7046 + }, + { + "start": 21166.3, + "end": 21169.45, + "probability": 0.8214 + }, + { + "start": 21169.65, + "end": 21171.84, + "probability": 0.9536 + }, + { + "start": 21172.46, + "end": 21176.02, + "probability": 0.0252 + }, + { + "start": 21176.02, + "end": 21176.88, + "probability": 0.2581 + }, + { + "start": 21177.38, + "end": 21180.22, + "probability": 0.843 + }, + { + "start": 21183.28, + "end": 21185.84, + "probability": 0.9958 + }, + { + "start": 21186.42, + "end": 21189.68, + "probability": 0.8854 + }, + { + "start": 21189.88, + "end": 21193.18, + "probability": 0.0605 + }, + { + "start": 21193.3, + "end": 21193.6, + "probability": 0.2875 + }, + { + "start": 21194.44, + "end": 21197.96, + "probability": 0.6592 + }, + { + "start": 21199.22, + "end": 21199.22, + "probability": 0.1081 + }, + { + "start": 21199.22, + "end": 21199.22, + "probability": 0.3344 + }, + { + "start": 21199.22, + "end": 21199.92, + "probability": 0.6026 + }, + { + "start": 21200.84, + "end": 21204.0, + "probability": 0.9285 + }, + { + "start": 21204.1, + "end": 21204.28, + "probability": 0.2068 + }, + { + "start": 21204.58, + "end": 21205.28, + "probability": 0.0689 + }, + { + "start": 21205.4, + "end": 21209.2, + "probability": 0.8441 + }, + { + "start": 21209.2, + "end": 21214.26, + "probability": 0.9943 + }, + { + "start": 21214.26, + "end": 21215.26, + "probability": 0.726 + }, + { + "start": 21215.6, + "end": 21216.7, + "probability": 0.8575 + }, + { + "start": 21216.84, + "end": 21218.16, + "probability": 0.8286 + }, + { + "start": 21218.24, + "end": 21218.58, + "probability": 0.1358 + }, + { + "start": 21218.84, + "end": 21222.27, + "probability": 0.7842 + }, + { + "start": 21222.62, + "end": 21223.86, + "probability": 0.0037 + }, + { + "start": 21224.28, + "end": 21224.62, + "probability": 0.2576 + }, + { + "start": 21225.28, + "end": 21228.58, + "probability": 0.9939 + }, + { + "start": 21229.18, + "end": 21229.94, + "probability": 0.6851 + }, + { + "start": 21230.22, + "end": 21236.34, + "probability": 0.7842 + }, + { + "start": 21237.71, + "end": 21238.88, + "probability": 0.031 + }, + { + "start": 21238.88, + "end": 21238.88, + "probability": 0.4456 + }, + { + "start": 21238.88, + "end": 21239.62, + "probability": 0.1176 + }, + { + "start": 21239.62, + "end": 21242.44, + "probability": 0.9646 + }, + { + "start": 21243.98, + "end": 21244.16, + "probability": 0.0135 + }, + { + "start": 21244.16, + "end": 21244.16, + "probability": 0.0766 + }, + { + "start": 21244.16, + "end": 21245.86, + "probability": 0.5525 + }, + { + "start": 21246.1, + "end": 21247.62, + "probability": 0.8077 + }, + { + "start": 21248.1, + "end": 21249.08, + "probability": 0.5498 + }, + { + "start": 21249.44, + "end": 21249.92, + "probability": 0.0335 + }, + { + "start": 21249.92, + "end": 21254.96, + "probability": 0.8215 + }, + { + "start": 21255.16, + "end": 21259.92, + "probability": 0.8691 + }, + { + "start": 21260.06, + "end": 21261.66, + "probability": 0.4198 + }, + { + "start": 21261.66, + "end": 21262.62, + "probability": 0.601 + }, + { + "start": 21262.84, + "end": 21267.96, + "probability": 0.7952 + }, + { + "start": 21267.96, + "end": 21271.7, + "probability": 0.9916 + }, + { + "start": 21271.72, + "end": 21276.42, + "probability": 0.9987 + }, + { + "start": 21276.42, + "end": 21281.0, + "probability": 0.9789 + }, + { + "start": 21282.62, + "end": 21284.86, + "probability": 0.9064 + }, + { + "start": 21285.5, + "end": 21287.78, + "probability": 0.7507 + }, + { + "start": 21288.2, + "end": 21294.24, + "probability": 0.9859 + }, + { + "start": 21294.32, + "end": 21299.46, + "probability": 0.9658 + }, + { + "start": 21299.82, + "end": 21302.16, + "probability": 0.9202 + }, + { + "start": 21302.24, + "end": 21302.58, + "probability": 0.7072 + }, + { + "start": 21302.62, + "end": 21303.84, + "probability": 0.9734 + }, + { + "start": 21304.24, + "end": 21304.5, + "probability": 0.0178 + }, + { + "start": 21304.5, + "end": 21305.72, + "probability": 0.6646 + }, + { + "start": 21306.14, + "end": 21307.86, + "probability": 0.9612 + }, + { + "start": 21308.18, + "end": 21313.88, + "probability": 0.9926 + }, + { + "start": 21314.06, + "end": 21315.46, + "probability": 0.9509 + }, + { + "start": 21315.88, + "end": 21319.31, + "probability": 0.8465 + }, + { + "start": 21319.9, + "end": 21320.4, + "probability": 0.345 + }, + { + "start": 21320.52, + "end": 21322.26, + "probability": 0.9946 + }, + { + "start": 21323.06, + "end": 21323.16, + "probability": 0.0145 + }, + { + "start": 21323.16, + "end": 21323.16, + "probability": 0.1465 + }, + { + "start": 21323.16, + "end": 21324.52, + "probability": 0.573 + }, + { + "start": 21324.58, + "end": 21326.82, + "probability": 0.904 + }, + { + "start": 21327.32, + "end": 21331.5, + "probability": 0.6548 + }, + { + "start": 21332.1, + "end": 21334.9, + "probability": 0.9175 + }, + { + "start": 21337.06, + "end": 21338.34, + "probability": 0.0091 + }, + { + "start": 21338.61, + "end": 21342.6, + "probability": 0.6982 + }, + { + "start": 21342.98, + "end": 21343.28, + "probability": 0.574 + }, + { + "start": 21343.32, + "end": 21344.68, + "probability": 0.8752 + }, + { + "start": 21344.68, + "end": 21345.04, + "probability": 0.442 + }, + { + "start": 21345.14, + "end": 21345.98, + "probability": 0.9573 + }, + { + "start": 21346.1, + "end": 21346.94, + "probability": 0.0305 + }, + { + "start": 21346.96, + "end": 21347.98, + "probability": 0.5145 + }, + { + "start": 21348.06, + "end": 21349.26, + "probability": 0.7912 + }, + { + "start": 21349.36, + "end": 21351.88, + "probability": 0.7452 + }, + { + "start": 21352.46, + "end": 21359.36, + "probability": 0.994 + }, + { + "start": 21359.68, + "end": 21362.1, + "probability": 0.9945 + }, + { + "start": 21362.28, + "end": 21364.86, + "probability": 0.9697 + }, + { + "start": 21365.78, + "end": 21366.78, + "probability": 0.0477 + }, + { + "start": 21366.86, + "end": 21370.28, + "probability": 0.0587 + }, + { + "start": 21371.44, + "end": 21372.96, + "probability": 0.1659 + }, + { + "start": 21373.38, + "end": 21374.4, + "probability": 0.603 + }, + { + "start": 21374.46, + "end": 21378.42, + "probability": 0.8417 + }, + { + "start": 21378.64, + "end": 21382.62, + "probability": 0.807 + }, + { + "start": 21382.62, + "end": 21386.5, + "probability": 0.8869 + }, + { + "start": 21386.54, + "end": 21392.22, + "probability": 0.8931 + }, + { + "start": 21392.64, + "end": 21393.56, + "probability": 0.6303 + }, + { + "start": 21393.7, + "end": 21394.6, + "probability": 0.8217 + }, + { + "start": 21394.66, + "end": 21396.22, + "probability": 0.352 + }, + { + "start": 21418.28, + "end": 21422.7, + "probability": 0.6114 + }, + { + "start": 21422.7, + "end": 21425.28, + "probability": 0.8116 + }, + { + "start": 21425.28, + "end": 21428.38, + "probability": 0.2139 + }, + { + "start": 21429.4, + "end": 21432.16, + "probability": 0.0929 + }, + { + "start": 21432.16, + "end": 21432.9, + "probability": 0.02 + }, + { + "start": 21435.24, + "end": 21442.14, + "probability": 0.1825 + }, + { + "start": 21442.84, + "end": 21443.75, + "probability": 0.8577 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21489.5, + "end": 21494.6, + "probability": 0.5269 + }, + { + "start": 21497.86, + "end": 21500.64, + "probability": 0.9424 + }, + { + "start": 21500.84, + "end": 21503.88, + "probability": 0.9713 + }, + { + "start": 21504.08, + "end": 21508.04, + "probability": 0.9974 + }, + { + "start": 21508.5, + "end": 21510.02, + "probability": 0.8594 + }, + { + "start": 21510.18, + "end": 21514.12, + "probability": 0.9951 + }, + { + "start": 21514.48, + "end": 21515.54, + "probability": 0.0902 + }, + { + "start": 21515.54, + "end": 21515.64, + "probability": 0.4198 + }, + { + "start": 21515.94, + "end": 21518.54, + "probability": 0.9172 + }, + { + "start": 21518.72, + "end": 21520.1, + "probability": 0.2681 + }, + { + "start": 21520.34, + "end": 21521.94, + "probability": 0.439 + }, + { + "start": 21522.27, + "end": 21527.12, + "probability": 0.9539 + }, + { + "start": 21527.52, + "end": 21531.26, + "probability": 0.8484 + }, + { + "start": 21532.02, + "end": 21535.7, + "probability": 0.9688 + }, + { + "start": 21536.22, + "end": 21536.78, + "probability": 0.9044 + }, + { + "start": 21536.8, + "end": 21538.0, + "probability": 0.9858 + }, + { + "start": 21538.3, + "end": 21541.25, + "probability": 0.9746 + }, + { + "start": 21541.44, + "end": 21545.62, + "probability": 0.9486 + }, + { + "start": 21545.92, + "end": 21549.92, + "probability": 0.9825 + }, + { + "start": 21550.52, + "end": 21554.24, + "probability": 0.9851 + }, + { + "start": 21554.34, + "end": 21555.4, + "probability": 0.803 + }, + { + "start": 21555.82, + "end": 21556.5, + "probability": 0.4448 + }, + { + "start": 21556.74, + "end": 21557.7, + "probability": 0.8022 + }, + { + "start": 21557.76, + "end": 21561.06, + "probability": 0.9535 + }, + { + "start": 21561.52, + "end": 21567.06, + "probability": 0.9785 + }, + { + "start": 21567.78, + "end": 21570.08, + "probability": 0.9124 + }, + { + "start": 21570.2, + "end": 21574.38, + "probability": 0.9875 + }, + { + "start": 21574.82, + "end": 21576.96, + "probability": 0.7751 + }, + { + "start": 21577.94, + "end": 21581.48, + "probability": 0.8871 + }, + { + "start": 21582.04, + "end": 21585.28, + "probability": 0.8513 + }, + { + "start": 21586.06, + "end": 21587.94, + "probability": 0.9757 + }, + { + "start": 21588.14, + "end": 21589.34, + "probability": 0.8412 + }, + { + "start": 21589.5, + "end": 21589.94, + "probability": 0.792 + }, + { + "start": 21590.02, + "end": 21590.8, + "probability": 0.8511 + }, + { + "start": 21590.96, + "end": 21591.34, + "probability": 0.3792 + }, + { + "start": 21591.4, + "end": 21592.2, + "probability": 0.7757 + }, + { + "start": 21592.26, + "end": 21593.62, + "probability": 0.7371 + }, + { + "start": 21593.86, + "end": 21598.3, + "probability": 0.9398 + }, + { + "start": 21598.3, + "end": 21603.66, + "probability": 0.8735 + }, + { + "start": 21604.22, + "end": 21606.62, + "probability": 0.7733 + }, + { + "start": 21606.64, + "end": 21609.18, + "probability": 0.8951 + }, + { + "start": 21610.14, + "end": 21611.48, + "probability": 0.6956 + }, + { + "start": 21611.6, + "end": 21613.18, + "probability": 0.8027 + }, + { + "start": 21613.82, + "end": 21617.02, + "probability": 0.9957 + }, + { + "start": 21618.62, + "end": 21619.74, + "probability": 0.8242 + }, + { + "start": 21619.92, + "end": 21624.82, + "probability": 0.8807 + }, + { + "start": 21625.26, + "end": 21630.98, + "probability": 0.9746 + }, + { + "start": 21631.46, + "end": 21633.74, + "probability": 0.8527 + }, + { + "start": 21634.0, + "end": 21634.96, + "probability": 0.0114 + }, + { + "start": 21635.44, + "end": 21637.22, + "probability": 0.0544 + }, + { + "start": 21637.86, + "end": 21640.02, + "probability": 0.985 + }, + { + "start": 21640.06, + "end": 21641.06, + "probability": 0.7563 + }, + { + "start": 21641.4, + "end": 21644.14, + "probability": 0.6333 + }, + { + "start": 21644.26, + "end": 21644.62, + "probability": 0.0579 + }, + { + "start": 21648.26, + "end": 21653.34, + "probability": 0.5642 + }, + { + "start": 21653.42, + "end": 21654.6, + "probability": 0.7393 + }, + { + "start": 21654.6, + "end": 21655.98, + "probability": 0.8621 + }, + { + "start": 21656.04, + "end": 21658.88, + "probability": 0.9001 + }, + { + "start": 21659.52, + "end": 21661.89, + "probability": 0.7869 + }, + { + "start": 21662.66, + "end": 21664.52, + "probability": 0.5119 + }, + { + "start": 21664.72, + "end": 21667.68, + "probability": 0.9932 + }, + { + "start": 21667.68, + "end": 21670.98, + "probability": 0.9632 + }, + { + "start": 21671.14, + "end": 21673.0, + "probability": 0.5965 + }, + { + "start": 21673.34, + "end": 21675.44, + "probability": 0.8247 + }, + { + "start": 21675.88, + "end": 21680.38, + "probability": 0.9355 + }, + { + "start": 21680.44, + "end": 21681.22, + "probability": 0.7915 + }, + { + "start": 21681.28, + "end": 21682.36, + "probability": 0.7741 + }, + { + "start": 21682.97, + "end": 21685.24, + "probability": 0.7125 + }, + { + "start": 21685.32, + "end": 21688.1, + "probability": 0.5246 + }, + { + "start": 21688.44, + "end": 21692.22, + "probability": 0.9896 + }, + { + "start": 21692.22, + "end": 21697.0, + "probability": 0.9761 + }, + { + "start": 21697.24, + "end": 21704.62, + "probability": 0.8185 + }, + { + "start": 21704.76, + "end": 21705.94, + "probability": 0.5221 + }, + { + "start": 21706.4, + "end": 21706.9, + "probability": 0.5004 + }, + { + "start": 21706.96, + "end": 21707.7, + "probability": 0.6859 + }, + { + "start": 21707.86, + "end": 21711.3, + "probability": 0.971 + }, + { + "start": 21711.48, + "end": 21713.9, + "probability": 0.9774 + }, + { + "start": 21713.9, + "end": 21717.18, + "probability": 0.9849 + }, + { + "start": 21718.72, + "end": 21720.2, + "probability": 0.8067 + }, + { + "start": 21720.3, + "end": 21722.98, + "probability": 0.8882 + }, + { + "start": 21723.76, + "end": 21724.66, + "probability": 0.7946 + }, + { + "start": 21724.74, + "end": 21727.62, + "probability": 0.8068 + }, + { + "start": 21727.98, + "end": 21730.24, + "probability": 0.9906 + }, + { + "start": 21731.62, + "end": 21734.18, + "probability": 0.979 + }, + { + "start": 21734.48, + "end": 21740.12, + "probability": 0.9809 + }, + { + "start": 21740.26, + "end": 21742.56, + "probability": 0.5106 + }, + { + "start": 21743.3, + "end": 21748.52, + "probability": 0.9946 + }, + { + "start": 21749.46, + "end": 21754.44, + "probability": 0.8806 + }, + { + "start": 21754.78, + "end": 21756.08, + "probability": 0.5292 + }, + { + "start": 21756.74, + "end": 21758.34, + "probability": 0.9526 + }, + { + "start": 21758.64, + "end": 21761.0, + "probability": 0.9891 + }, + { + "start": 21761.5, + "end": 21764.76, + "probability": 0.9675 + }, + { + "start": 21764.76, + "end": 21768.32, + "probability": 0.9978 + }, + { + "start": 21768.72, + "end": 21768.94, + "probability": 0.5635 + }, + { + "start": 21768.96, + "end": 21775.7, + "probability": 0.8042 + }, + { + "start": 21776.62, + "end": 21780.4, + "probability": 0.7761 + }, + { + "start": 21781.0, + "end": 21782.26, + "probability": 0.6265 + }, + { + "start": 21782.52, + "end": 21788.0, + "probability": 0.9592 + }, + { + "start": 21788.22, + "end": 21791.06, + "probability": 0.947 + }, + { + "start": 21791.6, + "end": 21791.74, + "probability": 0.6967 + }, + { + "start": 21792.88, + "end": 21795.76, + "probability": 0.6457 + }, + { + "start": 21796.16, + "end": 21797.1, + "probability": 0.607 + }, + { + "start": 21797.2, + "end": 21802.04, + "probability": 0.9819 + }, + { + "start": 21802.24, + "end": 21804.59, + "probability": 0.9669 + }, + { + "start": 21805.3, + "end": 21809.04, + "probability": 0.9931 + }, + { + "start": 21809.04, + "end": 21814.72, + "probability": 0.9854 + }, + { + "start": 21815.06, + "end": 21815.62, + "probability": 0.6967 + }, + { + "start": 21816.92, + "end": 21818.9, + "probability": 0.9912 + }, + { + "start": 21819.44, + "end": 21822.76, + "probability": 0.7565 + }, + { + "start": 21823.74, + "end": 21824.74, + "probability": 0.7867 + }, + { + "start": 21825.0, + "end": 21827.21, + "probability": 0.991 + }, + { + "start": 21827.6, + "end": 21830.08, + "probability": 0.6592 + }, + { + "start": 21830.44, + "end": 21832.4, + "probability": 0.961 + }, + { + "start": 21833.22, + "end": 21834.38, + "probability": 0.7342 + }, + { + "start": 21834.76, + "end": 21837.14, + "probability": 0.9934 + }, + { + "start": 21837.28, + "end": 21838.32, + "probability": 0.8694 + }, + { + "start": 21838.72, + "end": 21840.4, + "probability": 0.9966 + }, + { + "start": 21841.02, + "end": 21845.68, + "probability": 0.9606 + }, + { + "start": 21846.02, + "end": 21847.74, + "probability": 0.9327 + }, + { + "start": 21848.4, + "end": 21851.22, + "probability": 0.9849 + }, + { + "start": 21851.44, + "end": 21853.2, + "probability": 0.9911 + }, + { + "start": 21853.74, + "end": 21855.5, + "probability": 0.886 + }, + { + "start": 21856.16, + "end": 21859.7, + "probability": 0.5518 + }, + { + "start": 21860.2, + "end": 21861.76, + "probability": 0.7157 + }, + { + "start": 21862.98, + "end": 21864.88, + "probability": 0.8831 + }, + { + "start": 21867.72, + "end": 21872.0, + "probability": 0.9865 + }, + { + "start": 21872.56, + "end": 21878.12, + "probability": 0.9893 + }, + { + "start": 21878.12, + "end": 21884.14, + "probability": 0.8708 + }, + { + "start": 21884.22, + "end": 21885.94, + "probability": 0.9287 + }, + { + "start": 21886.52, + "end": 21887.7, + "probability": 0.9945 + }, + { + "start": 21889.2, + "end": 21890.52, + "probability": 0.8717 + }, + { + "start": 21891.04, + "end": 21892.92, + "probability": 0.3872 + }, + { + "start": 21894.75, + "end": 21896.18, + "probability": 0.7275 + }, + { + "start": 21896.79, + "end": 21903.62, + "probability": 0.9966 + }, + { + "start": 21903.62, + "end": 21911.74, + "probability": 0.9993 + }, + { + "start": 21911.74, + "end": 21917.56, + "probability": 0.9767 + }, + { + "start": 21918.92, + "end": 21919.97, + "probability": 0.7462 + }, + { + "start": 21921.52, + "end": 21927.66, + "probability": 0.9672 + }, + { + "start": 21927.86, + "end": 21931.0, + "probability": 0.9957 + }, + { + "start": 21931.98, + "end": 21936.36, + "probability": 0.9977 + }, + { + "start": 21937.08, + "end": 21941.46, + "probability": 0.9954 + }, + { + "start": 21942.22, + "end": 21944.15, + "probability": 0.9934 + }, + { + "start": 21944.66, + "end": 21947.68, + "probability": 0.9644 + }, + { + "start": 21950.5, + "end": 21952.36, + "probability": 0.9644 + }, + { + "start": 21953.7, + "end": 21958.96, + "probability": 0.9924 + }, + { + "start": 21959.02, + "end": 21960.28, + "probability": 0.8918 + }, + { + "start": 21960.84, + "end": 21962.14, + "probability": 0.7128 + }, + { + "start": 21963.2, + "end": 21965.58, + "probability": 0.9915 + }, + { + "start": 21965.72, + "end": 21966.68, + "probability": 0.5612 + }, + { + "start": 21967.96, + "end": 21976.96, + "probability": 0.9916 + }, + { + "start": 21977.44, + "end": 21981.16, + "probability": 0.9929 + }, + { + "start": 21981.94, + "end": 21986.92, + "probability": 0.9987 + }, + { + "start": 21987.22, + "end": 21988.72, + "probability": 0.9208 + }, + { + "start": 21988.9, + "end": 21990.06, + "probability": 0.9241 + }, + { + "start": 21990.32, + "end": 21992.2, + "probability": 0.8355 + }, + { + "start": 21993.06, + "end": 21993.42, + "probability": 0.8923 + }, + { + "start": 21993.52, + "end": 21994.64, + "probability": 0.7653 + }, + { + "start": 21994.76, + "end": 21996.18, + "probability": 0.9751 + }, + { + "start": 21996.42, + "end": 21998.28, + "probability": 0.9564 + }, + { + "start": 21998.62, + "end": 22000.31, + "probability": 0.9553 + }, + { + "start": 22000.72, + "end": 22009.38, + "probability": 0.9916 + }, + { + "start": 22009.8, + "end": 22011.46, + "probability": 0.9946 + }, + { + "start": 22011.8, + "end": 22013.13, + "probability": 0.986 + }, + { + "start": 22013.6, + "end": 22017.66, + "probability": 0.9916 + }, + { + "start": 22018.3, + "end": 22018.46, + "probability": 0.4842 + }, + { + "start": 22018.58, + "end": 22019.44, + "probability": 0.7557 + }, + { + "start": 22019.62, + "end": 22026.06, + "probability": 0.9875 + }, + { + "start": 22026.88, + "end": 22029.82, + "probability": 0.9674 + }, + { + "start": 22030.5, + "end": 22033.92, + "probability": 0.9169 + }, + { + "start": 22034.02, + "end": 22035.08, + "probability": 0.6765 + }, + { + "start": 22035.28, + "end": 22038.8, + "probability": 0.9646 + }, + { + "start": 22039.06, + "end": 22043.34, + "probability": 0.9854 + }, + { + "start": 22043.34, + "end": 22045.1, + "probability": 0.8355 + }, + { + "start": 22045.54, + "end": 22046.88, + "probability": 0.9531 + }, + { + "start": 22047.92, + "end": 22050.3, + "probability": 0.9707 + }, + { + "start": 22050.56, + "end": 22052.9, + "probability": 0.631 + }, + { + "start": 22052.98, + "end": 22054.68, + "probability": 0.7956 + }, + { + "start": 22055.91, + "end": 22061.14, + "probability": 0.958 + }, + { + "start": 22061.58, + "end": 22064.16, + "probability": 0.9926 + }, + { + "start": 22065.0, + "end": 22066.8, + "probability": 0.7633 + }, + { + "start": 22066.86, + "end": 22068.66, + "probability": 0.827 + }, + { + "start": 22068.84, + "end": 22069.92, + "probability": 0.9541 + }, + { + "start": 22070.52, + "end": 22073.94, + "probability": 0.9614 + }, + { + "start": 22074.12, + "end": 22074.72, + "probability": 0.6788 + }, + { + "start": 22074.78, + "end": 22075.18, + "probability": 0.8555 + }, + { + "start": 22075.3, + "end": 22076.9, + "probability": 0.8152 + }, + { + "start": 22077.02, + "end": 22079.81, + "probability": 0.9893 + }, + { + "start": 22080.2, + "end": 22083.38, + "probability": 0.7367 + }, + { + "start": 22083.96, + "end": 22085.36, + "probability": 0.9108 + }, + { + "start": 22085.38, + "end": 22085.86, + "probability": 0.5949 + }, + { + "start": 22085.9, + "end": 22086.22, + "probability": 0.7855 + }, + { + "start": 22086.24, + "end": 22086.82, + "probability": 0.5765 + }, + { + "start": 22086.86, + "end": 22088.6, + "probability": 0.9708 + }, + { + "start": 22095.56, + "end": 22096.68, + "probability": 0.552 + }, + { + "start": 22096.7, + "end": 22097.6, + "probability": 0.6249 + }, + { + "start": 22098.5, + "end": 22104.86, + "probability": 0.9919 + }, + { + "start": 22105.52, + "end": 22110.54, + "probability": 0.959 + }, + { + "start": 22111.32, + "end": 22115.72, + "probability": 0.9983 + }, + { + "start": 22116.6, + "end": 22121.88, + "probability": 0.9075 + }, + { + "start": 22121.88, + "end": 22127.7, + "probability": 0.9977 + }, + { + "start": 22128.8, + "end": 22130.52, + "probability": 0.6626 + }, + { + "start": 22131.6, + "end": 22137.86, + "probability": 0.9656 + }, + { + "start": 22138.76, + "end": 22143.96, + "probability": 0.7695 + }, + { + "start": 22144.34, + "end": 22146.28, + "probability": 0.5676 + }, + { + "start": 22146.38, + "end": 22149.94, + "probability": 0.9571 + }, + { + "start": 22151.0, + "end": 22153.04, + "probability": 0.8693 + }, + { + "start": 22154.42, + "end": 22158.58, + "probability": 0.9727 + }, + { + "start": 22159.06, + "end": 22165.98, + "probability": 0.9899 + }, + { + "start": 22166.46, + "end": 22168.02, + "probability": 0.9962 + }, + { + "start": 22169.62, + "end": 22173.0, + "probability": 0.9375 + }, + { + "start": 22174.26, + "end": 22178.96, + "probability": 0.9963 + }, + { + "start": 22179.22, + "end": 22183.48, + "probability": 0.9827 + }, + { + "start": 22183.56, + "end": 22184.68, + "probability": 0.9328 + }, + { + "start": 22185.82, + "end": 22190.02, + "probability": 0.942 + }, + { + "start": 22190.8, + "end": 22196.32, + "probability": 0.9945 + }, + { + "start": 22197.04, + "end": 22203.28, + "probability": 0.9962 + }, + { + "start": 22203.28, + "end": 22209.5, + "probability": 0.9946 + }, + { + "start": 22210.7, + "end": 22215.82, + "probability": 0.9967 + }, + { + "start": 22217.31, + "end": 22221.6, + "probability": 0.9993 + }, + { + "start": 22222.82, + "end": 22227.44, + "probability": 0.9989 + }, + { + "start": 22227.44, + "end": 22230.46, + "probability": 0.9979 + }, + { + "start": 22231.46, + "end": 22231.84, + "probability": 0.2601 + }, + { + "start": 22231.9, + "end": 22235.41, + "probability": 0.718 + }, + { + "start": 22235.52, + "end": 22240.18, + "probability": 0.7476 + }, + { + "start": 22240.92, + "end": 22242.92, + "probability": 0.8516 + }, + { + "start": 22243.86, + "end": 22251.68, + "probability": 0.8692 + }, + { + "start": 22251.68, + "end": 22257.2, + "probability": 0.638 + }, + { + "start": 22257.28, + "end": 22258.06, + "probability": 0.7344 + }, + { + "start": 22258.62, + "end": 22261.92, + "probability": 0.6952 + }, + { + "start": 22262.48, + "end": 22264.89, + "probability": 0.9697 + }, + { + "start": 22265.18, + "end": 22268.32, + "probability": 0.8885 + }, + { + "start": 22277.5, + "end": 22280.01, + "probability": 0.7217 + }, + { + "start": 22282.52, + "end": 22285.38, + "probability": 0.4702 + }, + { + "start": 22286.57, + "end": 22290.84, + "probability": 0.9629 + }, + { + "start": 22291.62, + "end": 22294.66, + "probability": 0.7907 + }, + { + "start": 22295.46, + "end": 22296.74, + "probability": 0.8476 + }, + { + "start": 22296.86, + "end": 22300.8, + "probability": 0.9141 + }, + { + "start": 22300.98, + "end": 22308.78, + "probability": 0.903 + }, + { + "start": 22308.82, + "end": 22310.16, + "probability": 0.9103 + }, + { + "start": 22310.94, + "end": 22314.56, + "probability": 0.8403 + }, + { + "start": 22315.26, + "end": 22316.56, + "probability": 0.928 + }, + { + "start": 22317.34, + "end": 22317.96, + "probability": 0.6284 + }, + { + "start": 22318.98, + "end": 22321.62, + "probability": 0.8745 + }, + { + "start": 22322.32, + "end": 22323.93, + "probability": 0.9854 + }, + { + "start": 22324.74, + "end": 22327.9, + "probability": 0.9918 + }, + { + "start": 22328.92, + "end": 22330.32, + "probability": 0.8524 + }, + { + "start": 22331.2, + "end": 22335.1, + "probability": 0.9849 + }, + { + "start": 22335.7, + "end": 22337.24, + "probability": 0.546 + }, + { + "start": 22338.24, + "end": 22342.76, + "probability": 0.9815 + }, + { + "start": 22343.2, + "end": 22344.34, + "probability": 0.7275 + }, + { + "start": 22344.78, + "end": 22347.85, + "probability": 0.9941 + }, + { + "start": 22348.12, + "end": 22349.38, + "probability": 0.7354 + }, + { + "start": 22349.76, + "end": 22350.74, + "probability": 0.8599 + }, + { + "start": 22351.22, + "end": 22352.58, + "probability": 0.9868 + }, + { + "start": 22352.66, + "end": 22354.12, + "probability": 0.7584 + }, + { + "start": 22354.82, + "end": 22361.12, + "probability": 0.9827 + }, + { + "start": 22361.44, + "end": 22362.66, + "probability": 0.9611 + }, + { + "start": 22362.8, + "end": 22364.62, + "probability": 0.8919 + }, + { + "start": 22364.64, + "end": 22369.36, + "probability": 0.4913 + }, + { + "start": 22369.36, + "end": 22371.28, + "probability": 0.7187 + }, + { + "start": 22371.48, + "end": 22375.42, + "probability": 0.9917 + }, + { + "start": 22376.04, + "end": 22376.94, + "probability": 0.9932 + }, + { + "start": 22379.96, + "end": 22386.4, + "probability": 0.9939 + }, + { + "start": 22386.54, + "end": 22387.36, + "probability": 0.9985 + }, + { + "start": 22387.98, + "end": 22389.0, + "probability": 0.868 + }, + { + "start": 22391.26, + "end": 22393.16, + "probability": 0.894 + }, + { + "start": 22393.92, + "end": 22397.84, + "probability": 0.6936 + }, + { + "start": 22399.72, + "end": 22403.4, + "probability": 0.7462 + }, + { + "start": 22403.98, + "end": 22412.64, + "probability": 0.9725 + }, + { + "start": 22412.86, + "end": 22417.12, + "probability": 0.9616 + }, + { + "start": 22418.14, + "end": 22424.08, + "probability": 0.9902 + }, + { + "start": 22424.5, + "end": 22427.8, + "probability": 0.9955 + }, + { + "start": 22428.32, + "end": 22431.8, + "probability": 0.9894 + }, + { + "start": 22432.7, + "end": 22434.98, + "probability": 0.9603 + }, + { + "start": 22435.82, + "end": 22439.56, + "probability": 0.9971 + }, + { + "start": 22440.0, + "end": 22445.52, + "probability": 0.9824 + }, + { + "start": 22446.0, + "end": 22446.38, + "probability": 0.7628 + }, + { + "start": 22447.08, + "end": 22448.56, + "probability": 0.7029 + }, + { + "start": 22449.78, + "end": 22451.94, + "probability": 0.757 + }, + { + "start": 22452.48, + "end": 22454.24, + "probability": 0.8599 + }, + { + "start": 22468.92, + "end": 22470.02, + "probability": 0.7556 + }, + { + "start": 22470.02, + "end": 22472.24, + "probability": 0.8342 + }, + { + "start": 22472.38, + "end": 22474.38, + "probability": 0.6683 + }, + { + "start": 22474.7, + "end": 22476.72, + "probability": 0.5068 + }, + { + "start": 22476.78, + "end": 22480.14, + "probability": 0.7797 + }, + { + "start": 22480.64, + "end": 22480.9, + "probability": 0.8646 + }, + { + "start": 22480.98, + "end": 22482.86, + "probability": 0.9922 + }, + { + "start": 22482.86, + "end": 22486.68, + "probability": 0.9922 + }, + { + "start": 22486.8, + "end": 22489.88, + "probability": 0.9956 + }, + { + "start": 22490.04, + "end": 22490.42, + "probability": 0.3597 + }, + { + "start": 22490.6, + "end": 22491.36, + "probability": 0.6799 + }, + { + "start": 22491.8, + "end": 22493.48, + "probability": 0.9976 + }, + { + "start": 22494.76, + "end": 22498.28, + "probability": 0.7969 + }, + { + "start": 22499.3, + "end": 22499.58, + "probability": 0.9088 + }, + { + "start": 22499.86, + "end": 22504.66, + "probability": 0.7091 + }, + { + "start": 22504.66, + "end": 22504.98, + "probability": 0.0131 + }, + { + "start": 22505.92, + "end": 22506.76, + "probability": 0.6571 + }, + { + "start": 22506.88, + "end": 22509.73, + "probability": 0.8281 + }, + { + "start": 22510.3, + "end": 22513.4, + "probability": 0.8699 + }, + { + "start": 22514.68, + "end": 22517.2, + "probability": 0.9329 + }, + { + "start": 22517.9, + "end": 22519.44, + "probability": 0.764 + }, + { + "start": 22519.6, + "end": 22523.29, + "probability": 0.9851 + }, + { + "start": 22524.48, + "end": 22528.46, + "probability": 0.9709 + }, + { + "start": 22529.22, + "end": 22530.5, + "probability": 0.8825 + }, + { + "start": 22530.62, + "end": 22534.02, + "probability": 0.7127 + }, + { + "start": 22534.52, + "end": 22537.86, + "probability": 0.9727 + }, + { + "start": 22538.64, + "end": 22539.52, + "probability": 0.9306 + }, + { + "start": 22540.14, + "end": 22543.54, + "probability": 0.9902 + }, + { + "start": 22544.3, + "end": 22548.52, + "probability": 0.9957 + }, + { + "start": 22548.54, + "end": 22550.52, + "probability": 0.8678 + }, + { + "start": 22550.6, + "end": 22552.32, + "probability": 0.8738 + }, + { + "start": 22553.26, + "end": 22553.78, + "probability": 0.7036 + }, + { + "start": 22553.88, + "end": 22554.26, + "probability": 0.8478 + }, + { + "start": 22554.34, + "end": 22556.67, + "probability": 0.8619 + }, + { + "start": 22556.84, + "end": 22559.85, + "probability": 0.9866 + }, + { + "start": 22560.48, + "end": 22562.84, + "probability": 0.8247 + }, + { + "start": 22562.96, + "end": 22565.04, + "probability": 0.8444 + }, + { + "start": 22566.16, + "end": 22566.77, + "probability": 0.6021 + }, + { + "start": 22566.94, + "end": 22568.94, + "probability": 0.9762 + }, + { + "start": 22569.24, + "end": 22573.38, + "probability": 0.9368 + }, + { + "start": 22573.38, + "end": 22574.04, + "probability": 0.3011 + }, + { + "start": 22574.2, + "end": 22574.92, + "probability": 0.7389 + }, + { + "start": 22575.02, + "end": 22576.44, + "probability": 0.6343 + }, + { + "start": 22576.64, + "end": 22579.8, + "probability": 0.5284 + }, + { + "start": 22580.52, + "end": 22583.06, + "probability": 0.689 + }, + { + "start": 22583.2, + "end": 22585.92, + "probability": 0.784 + }, + { + "start": 22585.98, + "end": 22586.82, + "probability": 0.6635 + }, + { + "start": 22587.7, + "end": 22594.9, + "probability": 0.885 + }, + { + "start": 22595.1, + "end": 22596.9, + "probability": 0.9478 + }, + { + "start": 22598.2, + "end": 22598.92, + "probability": 0.8 + }, + { + "start": 22600.62, + "end": 22600.66, + "probability": 0.0208 + }, + { + "start": 22600.66, + "end": 22602.42, + "probability": 0.7238 + }, + { + "start": 22602.42, + "end": 22604.6, + "probability": 0.9757 + }, + { + "start": 22605.0, + "end": 22608.7, + "probability": 0.968 + }, + { + "start": 22609.38, + "end": 22614.52, + "probability": 0.966 + }, + { + "start": 22614.58, + "end": 22615.9, + "probability": 0.9593 + }, + { + "start": 22616.34, + "end": 22617.4, + "probability": 0.8475 + }, + { + "start": 22617.84, + "end": 22620.82, + "probability": 0.9269 + }, + { + "start": 22621.5, + "end": 22622.44, + "probability": 0.758 + }, + { + "start": 22622.56, + "end": 22623.16, + "probability": 0.8927 + }, + { + "start": 22623.28, + "end": 22625.3, + "probability": 0.8951 + }, + { + "start": 22625.78, + "end": 22627.9, + "probability": 0.9604 + }, + { + "start": 22627.9, + "end": 22632.72, + "probability": 0.9827 + }, + { + "start": 22633.2, + "end": 22634.1, + "probability": 0.802 + }, + { + "start": 22634.22, + "end": 22635.58, + "probability": 0.9651 + }, + { + "start": 22635.76, + "end": 22639.6, + "probability": 0.9842 + }, + { + "start": 22639.6, + "end": 22642.66, + "probability": 0.5598 + }, + { + "start": 22643.06, + "end": 22645.02, + "probability": 0.9556 + }, + { + "start": 22645.14, + "end": 22646.12, + "probability": 0.6506 + }, + { + "start": 22646.68, + "end": 22648.24, + "probability": 0.637 + }, + { + "start": 22648.52, + "end": 22649.74, + "probability": 0.717 + }, + { + "start": 22650.3, + "end": 22651.72, + "probability": 0.6347 + }, + { + "start": 22664.92, + "end": 22665.58, + "probability": 0.6108 + }, + { + "start": 22668.86, + "end": 22669.94, + "probability": 0.7243 + }, + { + "start": 22672.54, + "end": 22673.88, + "probability": 0.6926 + }, + { + "start": 22676.26, + "end": 22682.48, + "probability": 0.9891 + }, + { + "start": 22682.48, + "end": 22688.68, + "probability": 0.9974 + }, + { + "start": 22688.68, + "end": 22693.0, + "probability": 0.9766 + }, + { + "start": 22693.12, + "end": 22695.6, + "probability": 0.7529 + }, + { + "start": 22695.88, + "end": 22696.72, + "probability": 0.9181 + }, + { + "start": 22696.88, + "end": 22700.04, + "probability": 0.9346 + }, + { + "start": 22700.84, + "end": 22701.26, + "probability": 0.9224 + }, + { + "start": 22702.34, + "end": 22708.04, + "probability": 0.9972 + }, + { + "start": 22708.22, + "end": 22708.48, + "probability": 0.9595 + }, + { + "start": 22709.66, + "end": 22712.62, + "probability": 0.9055 + }, + { + "start": 22712.7, + "end": 22715.2, + "probability": 0.7507 + }, + { + "start": 22715.6, + "end": 22716.2, + "probability": 0.8705 + }, + { + "start": 22716.22, + "end": 22716.62, + "probability": 0.7843 + }, + { + "start": 22716.7, + "end": 22718.36, + "probability": 0.9871 + }, + { + "start": 22718.58, + "end": 22719.02, + "probability": 0.5237 + }, + { + "start": 22719.3, + "end": 22719.86, + "probability": 0.6099 + }, + { + "start": 22720.42, + "end": 22723.06, + "probability": 0.4975 + }, + { + "start": 22723.06, + "end": 22725.54, + "probability": 0.6301 + }, + { + "start": 22725.54, + "end": 22726.04, + "probability": 0.5845 + }, + { + "start": 22726.08, + "end": 22727.82, + "probability": 0.8897 + }, + { + "start": 22727.82, + "end": 22730.08, + "probability": 0.4587 + }, + { + "start": 22730.16, + "end": 22730.16, + "probability": 0.0722 + }, + { + "start": 22730.16, + "end": 22731.06, + "probability": 0.7907 + }, + { + "start": 22731.14, + "end": 22731.8, + "probability": 0.4023 + }, + { + "start": 22731.9, + "end": 22735.16, + "probability": 0.9941 + }, + { + "start": 22735.5, + "end": 22740.1, + "probability": 0.2927 + }, + { + "start": 22740.54, + "end": 22740.68, + "probability": 0.2096 + }, + { + "start": 22741.04, + "end": 22743.1, + "probability": 0.5 + }, + { + "start": 22743.18, + "end": 22745.7, + "probability": 0.8682 + }, + { + "start": 22746.44, + "end": 22747.14, + "probability": 0.4778 + }, + { + "start": 22747.22, + "end": 22749.24, + "probability": 0.8417 + }, + { + "start": 22749.3, + "end": 22751.56, + "probability": 0.9395 + }, + { + "start": 22751.86, + "end": 22754.4, + "probability": 0.9989 + }, + { + "start": 22755.24, + "end": 22759.44, + "probability": 0.9986 + }, + { + "start": 22759.44, + "end": 22764.26, + "probability": 0.8923 + }, + { + "start": 22764.52, + "end": 22767.78, + "probability": 0.8642 + }, + { + "start": 22768.06, + "end": 22771.62, + "probability": 0.8993 + }, + { + "start": 22772.14, + "end": 22775.6, + "probability": 0.9919 + }, + { + "start": 22777.56, + "end": 22781.14, + "probability": 0.9991 + }, + { + "start": 22781.66, + "end": 22787.06, + "probability": 0.9393 + }, + { + "start": 22787.28, + "end": 22788.68, + "probability": 0.9968 + }, + { + "start": 22789.02, + "end": 22789.65, + "probability": 0.811 + }, + { + "start": 22789.82, + "end": 22792.8, + "probability": 0.9683 + }, + { + "start": 22793.44, + "end": 22794.8, + "probability": 0.9976 + }, + { + "start": 22795.12, + "end": 22796.56, + "probability": 0.9561 + }, + { + "start": 22796.66, + "end": 22797.58, + "probability": 0.658 + }, + { + "start": 22797.68, + "end": 22799.38, + "probability": 0.9914 + }, + { + "start": 22799.58, + "end": 22804.82, + "probability": 0.9805 + }, + { + "start": 22804.96, + "end": 22806.48, + "probability": 0.9787 + }, + { + "start": 22806.54, + "end": 22808.9, + "probability": 0.9819 + }, + { + "start": 22809.0, + "end": 22811.18, + "probability": 0.9967 + }, + { + "start": 22811.32, + "end": 22814.4, + "probability": 0.9473 + }, + { + "start": 22814.4, + "end": 22817.3, + "probability": 0.9922 + }, + { + "start": 22817.38, + "end": 22820.82, + "probability": 0.8552 + }, + { + "start": 22820.92, + "end": 22821.58, + "probability": 0.7477 + }, + { + "start": 22821.7, + "end": 22822.32, + "probability": 0.6675 + }, + { + "start": 22822.4, + "end": 22822.94, + "probability": 0.5953 + }, + { + "start": 22823.02, + "end": 22824.74, + "probability": 0.8044 + }, + { + "start": 22825.04, + "end": 22828.04, + "probability": 0.953 + }, + { + "start": 22828.28, + "end": 22829.66, + "probability": 0.9851 + }, + { + "start": 22829.78, + "end": 22830.61, + "probability": 0.6433 + }, + { + "start": 22830.88, + "end": 22833.94, + "probability": 0.9712 + }, + { + "start": 22834.42, + "end": 22838.04, + "probability": 0.8874 + }, + { + "start": 22838.38, + "end": 22841.74, + "probability": 0.9941 + }, + { + "start": 22841.84, + "end": 22842.94, + "probability": 0.9784 + }, + { + "start": 22843.12, + "end": 22844.58, + "probability": 0.8848 + }, + { + "start": 22844.72, + "end": 22845.35, + "probability": 0.9792 + }, + { + "start": 22845.62, + "end": 22846.7, + "probability": 0.9335 + }, + { + "start": 22846.74, + "end": 22847.84, + "probability": 0.756 + }, + { + "start": 22848.22, + "end": 22849.72, + "probability": 0.8509 + }, + { + "start": 22849.82, + "end": 22851.04, + "probability": 0.969 + }, + { + "start": 22851.12, + "end": 22851.68, + "probability": 0.8608 + }, + { + "start": 22852.34, + "end": 22853.12, + "probability": 0.7576 + }, + { + "start": 22853.34, + "end": 22853.34, + "probability": 0.63 + }, + { + "start": 22853.56, + "end": 22854.76, + "probability": 0.6401 + }, + { + "start": 22855.0, + "end": 22855.24, + "probability": 0.3903 + }, + { + "start": 22855.3, + "end": 22856.24, + "probability": 0.6634 + }, + { + "start": 22865.08, + "end": 22865.2, + "probability": 0.2862 + }, + { + "start": 22865.3, + "end": 22867.78, + "probability": 0.5695 + }, + { + "start": 22868.36, + "end": 22869.78, + "probability": 0.8391 + }, + { + "start": 22870.66, + "end": 22872.92, + "probability": 0.9605 + }, + { + "start": 22873.32, + "end": 22874.14, + "probability": 0.8184 + }, + { + "start": 22874.26, + "end": 22878.0, + "probability": 0.9253 + }, + { + "start": 22878.0, + "end": 22883.1, + "probability": 0.9902 + }, + { + "start": 22883.12, + "end": 22883.66, + "probability": 0.637 + }, + { + "start": 22883.74, + "end": 22884.24, + "probability": 0.8725 + }, + { + "start": 22884.38, + "end": 22888.42, + "probability": 0.9009 + }, + { + "start": 22888.64, + "end": 22892.06, + "probability": 0.9673 + }, + { + "start": 22892.3, + "end": 22893.96, + "probability": 0.8809 + }, + { + "start": 22894.06, + "end": 22896.66, + "probability": 0.7647 + }, + { + "start": 22897.54, + "end": 22898.17, + "probability": 0.8814 + }, + { + "start": 22898.44, + "end": 22900.04, + "probability": 0.9956 + }, + { + "start": 22900.9, + "end": 22904.46, + "probability": 0.9937 + }, + { + "start": 22904.52, + "end": 22905.88, + "probability": 0.7684 + }, + { + "start": 22906.36, + "end": 22908.6, + "probability": 0.9167 + }, + { + "start": 22909.12, + "end": 22914.52, + "probability": 0.9789 + }, + { + "start": 22915.3, + "end": 22918.28, + "probability": 0.9239 + }, + { + "start": 22918.78, + "end": 22920.76, + "probability": 0.9927 + }, + { + "start": 22921.56, + "end": 22924.54, + "probability": 0.9922 + }, + { + "start": 22924.64, + "end": 22925.14, + "probability": 0.8408 + }, + { + "start": 22926.14, + "end": 22930.78, + "probability": 0.7402 + }, + { + "start": 22931.32, + "end": 22933.87, + "probability": 0.9946 + }, + { + "start": 22934.02, + "end": 22934.97, + "probability": 0.9507 + }, + { + "start": 22935.94, + "end": 22939.44, + "probability": 0.9321 + }, + { + "start": 22940.0, + "end": 22944.66, + "probability": 0.9648 + }, + { + "start": 22945.0, + "end": 22945.68, + "probability": 0.591 + }, + { + "start": 22946.04, + "end": 22947.06, + "probability": 0.9538 + }, + { + "start": 22947.3, + "end": 22948.56, + "probability": 0.8603 + }, + { + "start": 22948.62, + "end": 22950.02, + "probability": 0.9958 + }, + { + "start": 22950.16, + "end": 22951.3, + "probability": 0.9043 + }, + { + "start": 22951.76, + "end": 22952.86, + "probability": 0.5529 + }, + { + "start": 22952.9, + "end": 22954.3, + "probability": 0.9814 + }, + { + "start": 22954.48, + "end": 22955.0, + "probability": 0.6162 + }, + { + "start": 22955.14, + "end": 22956.72, + "probability": 0.6951 + }, + { + "start": 22957.24, + "end": 22958.84, + "probability": 0.9512 + }, + { + "start": 22959.26, + "end": 22962.46, + "probability": 0.9019 + }, + { + "start": 22962.62, + "end": 22963.68, + "probability": 0.9116 + }, + { + "start": 22963.8, + "end": 22964.7, + "probability": 0.9734 + }, + { + "start": 22964.86, + "end": 22968.04, + "probability": 0.9811 + }, + { + "start": 22968.44, + "end": 22969.28, + "probability": 0.8875 + }, + { + "start": 22969.9, + "end": 22970.78, + "probability": 0.4889 + }, + { + "start": 22971.6, + "end": 22975.32, + "probability": 0.8463 + }, + { + "start": 22975.54, + "end": 22979.86, + "probability": 0.9839 + }, + { + "start": 22979.94, + "end": 22982.14, + "probability": 0.9878 + }, + { + "start": 22982.34, + "end": 22985.2, + "probability": 0.9225 + }, + { + "start": 22985.32, + "end": 22985.62, + "probability": 0.4921 + }, + { + "start": 22986.24, + "end": 22986.78, + "probability": 0.5297 + }, + { + "start": 22986.78, + "end": 22987.9, + "probability": 0.548 + }, + { + "start": 22987.9, + "end": 22988.78, + "probability": 0.2166 + }, + { + "start": 22988.92, + "end": 22990.1, + "probability": 0.7129 + }, + { + "start": 22998.56, + "end": 22999.94, + "probability": 0.6791 + }, + { + "start": 23000.86, + "end": 23002.14, + "probability": 0.8354 + }, + { + "start": 23002.24, + "end": 23003.24, + "probability": 0.8356 + }, + { + "start": 23003.74, + "end": 23005.98, + "probability": 0.9935 + }, + { + "start": 23006.06, + "end": 23010.76, + "probability": 0.97 + }, + { + "start": 23011.22, + "end": 23013.3, + "probability": 0.9804 + }, + { + "start": 23013.64, + "end": 23014.28, + "probability": 0.8145 + }, + { + "start": 23014.48, + "end": 23015.18, + "probability": 0.7375 + }, + { + "start": 23015.6, + "end": 23017.46, + "probability": 0.6701 + }, + { + "start": 23017.46, + "end": 23020.55, + "probability": 0.9383 + }, + { + "start": 23020.88, + "end": 23025.8, + "probability": 0.7712 + }, + { + "start": 23026.18, + "end": 23028.68, + "probability": 0.9552 + }, + { + "start": 23029.16, + "end": 23030.7, + "probability": 0.8164 + }, + { + "start": 23030.84, + "end": 23031.4, + "probability": 0.7872 + }, + { + "start": 23031.54, + "end": 23034.44, + "probability": 0.9955 + }, + { + "start": 23035.14, + "end": 23036.52, + "probability": 0.8389 + }, + { + "start": 23036.6, + "end": 23037.39, + "probability": 0.9854 + }, + { + "start": 23038.3, + "end": 23039.8, + "probability": 0.9188 + }, + { + "start": 23040.32, + "end": 23041.82, + "probability": 0.8307 + }, + { + "start": 23041.94, + "end": 23045.2, + "probability": 0.9597 + }, + { + "start": 23045.46, + "end": 23046.22, + "probability": 0.4997 + }, + { + "start": 23047.14, + "end": 23047.76, + "probability": 0.5053 + }, + { + "start": 23047.86, + "end": 23048.6, + "probability": 0.5901 + }, + { + "start": 23048.76, + "end": 23049.52, + "probability": 0.6556 + }, + { + "start": 23049.66, + "end": 23052.42, + "probability": 0.8681 + }, + { + "start": 23052.72, + "end": 23053.35, + "probability": 0.9354 + }, + { + "start": 23054.18, + "end": 23055.36, + "probability": 0.9258 + }, + { + "start": 23056.04, + "end": 23057.2, + "probability": 0.963 + }, + { + "start": 23057.62, + "end": 23058.12, + "probability": 0.8557 + }, + { + "start": 23058.22, + "end": 23059.8, + "probability": 0.9604 + }, + { + "start": 23060.0, + "end": 23060.76, + "probability": 0.8903 + }, + { + "start": 23060.76, + "end": 23061.94, + "probability": 0.7497 + }, + { + "start": 23062.72, + "end": 23067.8, + "probability": 0.8713 + }, + { + "start": 23068.34, + "end": 23070.1, + "probability": 0.9241 + }, + { + "start": 23070.16, + "end": 23072.22, + "probability": 0.971 + }, + { + "start": 23072.78, + "end": 23073.8, + "probability": 0.8989 + }, + { + "start": 23074.0, + "end": 23074.28, + "probability": 0.8409 + }, + { + "start": 23074.3, + "end": 23076.14, + "probability": 0.9551 + }, + { + "start": 23076.54, + "end": 23076.84, + "probability": 0.6712 + }, + { + "start": 23076.84, + "end": 23077.34, + "probability": 0.8212 + }, + { + "start": 23077.88, + "end": 23078.98, + "probability": 0.8101 + }, + { + "start": 23079.43, + "end": 23081.0, + "probability": 0.941 + }, + { + "start": 23081.1, + "end": 23082.02, + "probability": 0.2929 + }, + { + "start": 23082.36, + "end": 23083.94, + "probability": 0.9868 + }, + { + "start": 23084.18, + "end": 23085.04, + "probability": 0.9318 + }, + { + "start": 23085.66, + "end": 23090.3, + "probability": 0.9873 + }, + { + "start": 23091.34, + "end": 23093.14, + "probability": 0.9833 + }, + { + "start": 23094.92, + "end": 23099.4, + "probability": 0.9248 + }, + { + "start": 23102.47, + "end": 23103.64, + "probability": 0.9121 + }, + { + "start": 23103.8, + "end": 23105.76, + "probability": 0.6869 + }, + { + "start": 23105.82, + "end": 23108.18, + "probability": 0.9521 + }, + { + "start": 23108.4, + "end": 23109.82, + "probability": 0.7962 + }, + { + "start": 23110.38, + "end": 23114.54, + "probability": 0.9977 + }, + { + "start": 23114.94, + "end": 23121.22, + "probability": 0.9564 + }, + { + "start": 23121.4, + "end": 23121.92, + "probability": 0.7078 + }, + { + "start": 23122.06, + "end": 23123.16, + "probability": 0.8613 + }, + { + "start": 23123.66, + "end": 23126.73, + "probability": 0.9951 + }, + { + "start": 23127.32, + "end": 23128.54, + "probability": 0.9634 + }, + { + "start": 23128.6, + "end": 23134.22, + "probability": 0.971 + }, + { + "start": 23134.54, + "end": 23135.0, + "probability": 0.7461 + }, + { + "start": 23135.8, + "end": 23137.06, + "probability": 0.7648 + }, + { + "start": 23137.16, + "end": 23138.9, + "probability": 0.9276 + }, + { + "start": 23138.94, + "end": 23140.8, + "probability": 0.9946 + }, + { + "start": 23141.12, + "end": 23146.96, + "probability": 0.8894 + }, + { + "start": 23147.3, + "end": 23152.32, + "probability": 0.9712 + }, + { + "start": 23152.36, + "end": 23152.66, + "probability": 0.3781 + }, + { + "start": 23153.12, + "end": 23154.64, + "probability": 0.4128 + }, + { + "start": 23154.66, + "end": 23156.0, + "probability": 0.6456 + }, + { + "start": 23156.3, + "end": 23157.32, + "probability": 0.5595 + }, + { + "start": 23157.4, + "end": 23157.8, + "probability": 0.651 + }, + { + "start": 23157.82, + "end": 23158.86, + "probability": 0.9102 + }, + { + "start": 23176.6, + "end": 23178.3, + "probability": 0.8498 + }, + { + "start": 23178.38, + "end": 23181.66, + "probability": 0.438 + }, + { + "start": 23182.0, + "end": 23183.32, + "probability": 0.7329 + }, + { + "start": 23183.32, + "end": 23183.34, + "probability": 0.373 + }, + { + "start": 23183.34, + "end": 23183.64, + "probability": 0.498 + }, + { + "start": 23183.8, + "end": 23185.26, + "probability": 0.6787 + }, + { + "start": 23186.18, + "end": 23190.04, + "probability": 0.9777 + }, + { + "start": 23190.18, + "end": 23191.16, + "probability": 0.9988 + }, + { + "start": 23192.48, + "end": 23195.57, + "probability": 0.9208 + }, + { + "start": 23195.7, + "end": 23200.08, + "probability": 0.9184 + }, + { + "start": 23200.12, + "end": 23200.86, + "probability": 0.7344 + }, + { + "start": 23200.88, + "end": 23202.84, + "probability": 0.7622 + }, + { + "start": 23203.2, + "end": 23204.28, + "probability": 0.798 + }, + { + "start": 23204.92, + "end": 23206.54, + "probability": 0.9694 + }, + { + "start": 23206.66, + "end": 23208.47, + "probability": 0.8937 + }, + { + "start": 23208.88, + "end": 23213.36, + "probability": 0.9891 + }, + { + "start": 23213.84, + "end": 23215.68, + "probability": 0.9115 + }, + { + "start": 23216.4, + "end": 23219.92, + "probability": 0.8413 + }, + { + "start": 23221.72, + "end": 23223.12, + "probability": 0.6447 + }, + { + "start": 23223.36, + "end": 23224.38, + "probability": 0.7098 + }, + { + "start": 23224.62, + "end": 23228.0, + "probability": 0.8546 + }, + { + "start": 23228.72, + "end": 23230.8, + "probability": 0.9098 + }, + { + "start": 23232.1, + "end": 23234.58, + "probability": 0.7569 + }, + { + "start": 23234.6, + "end": 23235.24, + "probability": 0.5225 + }, + { + "start": 23235.28, + "end": 23235.9, + "probability": 0.6588 + }, + { + "start": 23238.08, + "end": 23239.64, + "probability": 0.5383 + }, + { + "start": 23239.7, + "end": 23241.2, + "probability": 0.6544 + }, + { + "start": 23241.34, + "end": 23243.74, + "probability": 0.847 + }, + { + "start": 23243.88, + "end": 23245.4, + "probability": 0.9324 + }, + { + "start": 23246.66, + "end": 23248.42, + "probability": 0.9787 + }, + { + "start": 23248.5, + "end": 23252.88, + "probability": 0.9794 + }, + { + "start": 23254.26, + "end": 23258.52, + "probability": 0.8824 + }, + { + "start": 23258.86, + "end": 23259.84, + "probability": 0.7072 + }, + { + "start": 23260.64, + "end": 23262.02, + "probability": 0.8369 + }, + { + "start": 23262.32, + "end": 23264.44, + "probability": 0.9545 + }, + { + "start": 23264.62, + "end": 23265.93, + "probability": 0.2834 + }, + { + "start": 23266.58, + "end": 23268.2, + "probability": 0.678 + }, + { + "start": 23268.34, + "end": 23270.7, + "probability": 0.9782 + }, + { + "start": 23270.7, + "end": 23273.16, + "probability": 0.9957 + }, + { + "start": 23274.02, + "end": 23275.9, + "probability": 0.958 + }, + { + "start": 23275.92, + "end": 23279.42, + "probability": 0.6677 + }, + { + "start": 23280.36, + "end": 23282.28, + "probability": 0.6094 + }, + { + "start": 23282.42, + "end": 23285.92, + "probability": 0.6265 + }, + { + "start": 23286.96, + "end": 23289.2, + "probability": 0.8677 + }, + { + "start": 23290.24, + "end": 23293.88, + "probability": 0.9565 + }, + { + "start": 23294.36, + "end": 23297.22, + "probability": 0.9919 + }, + { + "start": 23297.8, + "end": 23303.28, + "probability": 0.9541 + }, + { + "start": 23303.8, + "end": 23307.3, + "probability": 0.8728 + }, + { + "start": 23307.8, + "end": 23310.28, + "probability": 0.889 + }, + { + "start": 23311.26, + "end": 23313.14, + "probability": 0.9565 + }, + { + "start": 23313.9, + "end": 23317.0, + "probability": 0.9119 + }, + { + "start": 23317.44, + "end": 23319.2, + "probability": 0.9941 + }, + { + "start": 23320.82, + "end": 23325.26, + "probability": 0.9203 + }, + { + "start": 23326.24, + "end": 23328.3, + "probability": 0.6625 + }, + { + "start": 23328.92, + "end": 23330.58, + "probability": 0.9624 + }, + { + "start": 23330.58, + "end": 23331.76, + "probability": 0.9147 + }, + { + "start": 23332.28, + "end": 23335.6, + "probability": 0.9122 + }, + { + "start": 23336.66, + "end": 23343.22, + "probability": 0.8608 + }, + { + "start": 23343.22, + "end": 23348.76, + "probability": 0.8318 + }, + { + "start": 23349.14, + "end": 23349.49, + "probability": 0.7241 + }, + { + "start": 23350.44, + "end": 23352.06, + "probability": 0.6992 + }, + { + "start": 23353.68, + "end": 23355.3, + "probability": 0.8534 + }, + { + "start": 23355.92, + "end": 23357.62, + "probability": 0.8159 + }, + { + "start": 23357.72, + "end": 23358.5, + "probability": 0.7744 + }, + { + "start": 23359.3, + "end": 23360.12, + "probability": 0.8989 + }, + { + "start": 23360.7, + "end": 23361.04, + "probability": 0.67 + }, + { + "start": 23361.04, + "end": 23363.66, + "probability": 0.9745 + }, + { + "start": 23364.38, + "end": 23366.74, + "probability": 0.9482 + }, + { + "start": 23366.84, + "end": 23367.87, + "probability": 0.9744 + }, + { + "start": 23368.36, + "end": 23371.9, + "probability": 0.9905 + }, + { + "start": 23372.68, + "end": 23375.48, + "probability": 0.8689 + }, + { + "start": 23376.16, + "end": 23382.48, + "probability": 0.6723 + }, + { + "start": 23382.54, + "end": 23386.48, + "probability": 0.3667 + }, + { + "start": 23386.56, + "end": 23390.28, + "probability": 0.5841 + }, + { + "start": 23390.38, + "end": 23390.82, + "probability": 0.845 + }, + { + "start": 23391.48, + "end": 23391.86, + "probability": 0.6975 + }, + { + "start": 23391.92, + "end": 23394.06, + "probability": 0.8376 + }, + { + "start": 23394.32, + "end": 23395.28, + "probability": 0.8887 + }, + { + "start": 23403.16, + "end": 23407.64, + "probability": 0.2164 + }, + { + "start": 23408.42, + "end": 23408.54, + "probability": 0.0376 + }, + { + "start": 23408.64, + "end": 23411.56, + "probability": 0.7502 + }, + { + "start": 23412.64, + "end": 23413.72, + "probability": 0.726 + }, + { + "start": 23414.0, + "end": 23415.4, + "probability": 0.3773 + }, + { + "start": 23417.62, + "end": 23420.13, + "probability": 0.6239 + }, + { + "start": 23421.68, + "end": 23425.08, + "probability": 0.613 + }, + { + "start": 23425.6, + "end": 23429.16, + "probability": 0.8705 + }, + { + "start": 23430.4, + "end": 23437.14, + "probability": 0.9643 + }, + { + "start": 23437.42, + "end": 23443.28, + "probability": 0.9932 + }, + { + "start": 23445.5, + "end": 23446.94, + "probability": 0.4169 + }, + { + "start": 23447.02, + "end": 23451.36, + "probability": 0.9785 + }, + { + "start": 23451.52, + "end": 23452.23, + "probability": 0.9734 + }, + { + "start": 23452.68, + "end": 23454.44, + "probability": 0.9761 + }, + { + "start": 23454.5, + "end": 23455.59, + "probability": 0.5865 + }, + { + "start": 23457.22, + "end": 23460.34, + "probability": 0.8717 + }, + { + "start": 23461.82, + "end": 23465.48, + "probability": 0.8761 + }, + { + "start": 23466.36, + "end": 23467.26, + "probability": 0.9625 + }, + { + "start": 23468.0, + "end": 23468.94, + "probability": 0.8074 + }, + { + "start": 23469.1, + "end": 23469.28, + "probability": 0.8791 + }, + { + "start": 23469.44, + "end": 23470.26, + "probability": 0.9801 + }, + { + "start": 23470.4, + "end": 23471.8, + "probability": 0.9922 + }, + { + "start": 23471.86, + "end": 23473.75, + "probability": 0.9503 + }, + { + "start": 23474.54, + "end": 23475.84, + "probability": 0.8269 + }, + { + "start": 23476.04, + "end": 23476.86, + "probability": 0.8141 + }, + { + "start": 23477.9, + "end": 23479.3, + "probability": 0.8519 + }, + { + "start": 23479.58, + "end": 23479.86, + "probability": 0.157 + }, + { + "start": 23479.96, + "end": 23479.96, + "probability": 0.4766 + }, + { + "start": 23480.04, + "end": 23481.94, + "probability": 0.8147 + }, + { + "start": 23482.56, + "end": 23482.92, + "probability": 0.3624 + }, + { + "start": 23482.94, + "end": 23484.52, + "probability": 0.5761 + }, + { + "start": 23485.42, + "end": 23489.86, + "probability": 0.9489 + }, + { + "start": 23490.36, + "end": 23494.04, + "probability": 0.684 + }, + { + "start": 23494.84, + "end": 23495.78, + "probability": 0.701 + }, + { + "start": 23496.0, + "end": 23496.56, + "probability": 0.6416 + }, + { + "start": 23496.64, + "end": 23498.38, + "probability": 0.9893 + }, + { + "start": 23499.94, + "end": 23502.14, + "probability": 0.0346 + }, + { + "start": 23502.2, + "end": 23502.2, + "probability": 0.4484 + }, + { + "start": 23502.26, + "end": 23502.98, + "probability": 0.6509 + }, + { + "start": 23503.04, + "end": 23507.98, + "probability": 0.9829 + }, + { + "start": 23508.4, + "end": 23511.0, + "probability": 0.9979 + }, + { + "start": 23511.24, + "end": 23514.6, + "probability": 0.8251 + }, + { + "start": 23516.54, + "end": 23521.52, + "probability": 0.9463 + }, + { + "start": 23521.7, + "end": 23523.0, + "probability": 0.9653 + }, + { + "start": 23523.16, + "end": 23523.98, + "probability": 0.9883 + }, + { + "start": 23524.52, + "end": 23525.52, + "probability": 0.7125 + }, + { + "start": 23525.56, + "end": 23527.64, + "probability": 0.2682 + }, + { + "start": 23527.86, + "end": 23529.48, + "probability": 0.6103 + }, + { + "start": 23529.48, + "end": 23530.93, + "probability": 0.7431 + }, + { + "start": 23531.24, + "end": 23531.6, + "probability": 0.7959 + }, + { + "start": 23536.86, + "end": 23537.4, + "probability": 0.4728 + }, + { + "start": 23538.8, + "end": 23539.68, + "probability": 0.8896 + }, + { + "start": 23540.56, + "end": 23544.01, + "probability": 0.9204 + }, + { + "start": 23544.62, + "end": 23545.4, + "probability": 0.4293 + }, + { + "start": 23546.14, + "end": 23549.66, + "probability": 0.999 + }, + { + "start": 23549.86, + "end": 23550.34, + "probability": 0.8235 + }, + { + "start": 23550.52, + "end": 23553.3, + "probability": 0.9763 + }, + { + "start": 23554.7, + "end": 23555.96, + "probability": 0.6382 + }, + { + "start": 23555.96, + "end": 23557.89, + "probability": 0.6391 + }, + { + "start": 23559.15, + "end": 23564.38, + "probability": 0.987 + }, + { + "start": 23565.06, + "end": 23570.14, + "probability": 0.9824 + }, + { + "start": 23571.48, + "end": 23572.52, + "probability": 0.8118 + }, + { + "start": 23573.26, + "end": 23576.56, + "probability": 0.9839 + }, + { + "start": 23577.14, + "end": 23580.86, + "probability": 0.9882 + }, + { + "start": 23581.4, + "end": 23584.18, + "probability": 0.9539 + }, + { + "start": 23585.73, + "end": 23588.8, + "probability": 0.9917 + }, + { + "start": 23589.18, + "end": 23592.96, + "probability": 0.9939 + }, + { + "start": 23593.52, + "end": 23594.88, + "probability": 0.9737 + }, + { + "start": 23594.92, + "end": 23596.8, + "probability": 0.8809 + }, + { + "start": 23598.22, + "end": 23602.22, + "probability": 0.8235 + }, + { + "start": 23603.26, + "end": 23606.02, + "probability": 0.6861 + }, + { + "start": 23606.06, + "end": 23607.6, + "probability": 0.9525 + }, + { + "start": 23608.6, + "end": 23610.12, + "probability": 0.7537 + }, + { + "start": 23610.24, + "end": 23611.6, + "probability": 0.8276 + }, + { + "start": 23612.6, + "end": 23614.36, + "probability": 0.9769 + }, + { + "start": 23615.16, + "end": 23617.42, + "probability": 0.999 + }, + { + "start": 23618.0, + "end": 23623.38, + "probability": 0.999 + }, + { + "start": 23624.12, + "end": 23628.16, + "probability": 0.9798 + }, + { + "start": 23628.3, + "end": 23630.55, + "probability": 0.9961 + }, + { + "start": 23631.98, + "end": 23637.04, + "probability": 0.9983 + }, + { + "start": 23637.58, + "end": 23639.44, + "probability": 0.9666 + }, + { + "start": 23639.8, + "end": 23643.56, + "probability": 0.8776 + }, + { + "start": 23643.66, + "end": 23644.4, + "probability": 0.8012 + }, + { + "start": 23644.48, + "end": 23646.16, + "probability": 0.806 + }, + { + "start": 23646.16, + "end": 23647.91, + "probability": 0.6174 + }, + { + "start": 23648.12, + "end": 23653.98, + "probability": 0.9756 + }, + { + "start": 23654.52, + "end": 23656.42, + "probability": 0.9323 + }, + { + "start": 23656.62, + "end": 23657.66, + "probability": 0.2303 + }, + { + "start": 23657.9, + "end": 23659.08, + "probability": 0.4216 + }, + { + "start": 23659.28, + "end": 23661.74, + "probability": 0.6827 + }, + { + "start": 23662.94, + "end": 23665.96, + "probability": 0.9854 + }, + { + "start": 23666.36, + "end": 23667.02, + "probability": 0.9792 + }, + { + "start": 23668.3, + "end": 23671.4, + "probability": 0.8694 + }, + { + "start": 23671.84, + "end": 23673.76, + "probability": 0.9081 + }, + { + "start": 23674.32, + "end": 23675.51, + "probability": 0.5578 + }, + { + "start": 23675.74, + "end": 23676.51, + "probability": 0.8633 + }, + { + "start": 23677.06, + "end": 23678.0, + "probability": 0.9189 + }, + { + "start": 23678.1, + "end": 23678.18, + "probability": 0.5797 + }, + { + "start": 23678.3, + "end": 23678.6, + "probability": 0.9025 + }, + { + "start": 23678.68, + "end": 23683.56, + "probability": 0.9543 + }, + { + "start": 23684.06, + "end": 23685.58, + "probability": 0.6608 + }, + { + "start": 23685.94, + "end": 23686.52, + "probability": 0.5855 + }, + { + "start": 23686.62, + "end": 23687.25, + "probability": 0.8718 + }, + { + "start": 23687.44, + "end": 23692.88, + "probability": 0.7365 + }, + { + "start": 23693.92, + "end": 23696.78, + "probability": 0.9916 + }, + { + "start": 23696.78, + "end": 23699.06, + "probability": 0.7095 + }, + { + "start": 23699.64, + "end": 23701.98, + "probability": 0.9739 + }, + { + "start": 23702.74, + "end": 23703.0, + "probability": 0.3323 + }, + { + "start": 23703.0, + "end": 23705.88, + "probability": 0.8094 + }, + { + "start": 23706.48, + "end": 23707.52, + "probability": 0.744 + }, + { + "start": 23708.1, + "end": 23711.44, + "probability": 0.565 + }, + { + "start": 23724.92, + "end": 23725.48, + "probability": 0.573 + }, + { + "start": 23725.58, + "end": 23726.06, + "probability": 0.6884 + }, + { + "start": 23726.08, + "end": 23726.62, + "probability": 0.8714 + }, + { + "start": 23726.88, + "end": 23726.88, + "probability": 0.1823 + }, + { + "start": 23733.2, + "end": 23734.76, + "probability": 0.0006 + }, + { + "start": 23736.02, + "end": 23737.54, + "probability": 0.1863 + }, + { + "start": 23738.84, + "end": 23738.94, + "probability": 0.1019 + }, + { + "start": 23738.94, + "end": 23738.98, + "probability": 0.2717 + }, + { + "start": 23739.12, + "end": 23740.16, + "probability": 0.4244 + }, + { + "start": 23740.58, + "end": 23742.36, + "probability": 0.4578 + }, + { + "start": 23742.48, + "end": 23743.82, + "probability": 0.7047 + }, + { + "start": 23744.17, + "end": 23745.82, + "probability": 0.8044 + }, + { + "start": 23745.94, + "end": 23746.78, + "probability": 0.5504 + }, + { + "start": 23747.61, + "end": 23752.7, + "probability": 0.6692 + }, + { + "start": 23753.24, + "end": 23754.53, + "probability": 0.8706 + }, + { + "start": 23754.98, + "end": 23756.12, + "probability": 0.8621 + }, + { + "start": 23756.52, + "end": 23758.42, + "probability": 0.8318 + }, + { + "start": 23758.48, + "end": 23763.2, + "probability": 0.8851 + }, + { + "start": 23763.36, + "end": 23766.56, + "probability": 0.6003 + }, + { + "start": 23767.3, + "end": 23770.16, + "probability": 0.8958 + }, + { + "start": 23770.68, + "end": 23773.11, + "probability": 0.9324 + }, + { + "start": 23777.84, + "end": 23779.22, + "probability": 0.9559 + }, + { + "start": 23779.56, + "end": 23781.24, + "probability": 0.806 + }, + { + "start": 23782.12, + "end": 23784.14, + "probability": 0.8983 + }, + { + "start": 23786.76, + "end": 23789.96, + "probability": 0.6329 + }, + { + "start": 23791.6, + "end": 23795.32, + "probability": 0.5188 + }, + { + "start": 23797.76, + "end": 23798.88, + "probability": 0.8534 + }, + { + "start": 23798.94, + "end": 23799.44, + "probability": 0.9849 + }, + { + "start": 23799.56, + "end": 23800.4, + "probability": 0.9717 + }, + { + "start": 23800.44, + "end": 23800.92, + "probability": 0.8438 + }, + { + "start": 23801.9, + "end": 23804.22, + "probability": 0.8603 + }, + { + "start": 23806.56, + "end": 23810.54, + "probability": 0.6089 + }, + { + "start": 23810.68, + "end": 23813.48, + "probability": 0.8469 + }, + { + "start": 23813.48, + "end": 23817.68, + "probability": 0.9895 + }, + { + "start": 23817.72, + "end": 23819.44, + "probability": 0.9252 + }, + { + "start": 23819.92, + "end": 23821.04, + "probability": 0.3733 + }, + { + "start": 23822.04, + "end": 23822.92, + "probability": 0.7814 + }, + { + "start": 23823.96, + "end": 23825.11, + "probability": 0.6142 + }, + { + "start": 23826.46, + "end": 23827.46, + "probability": 0.7109 + }, + { + "start": 23827.64, + "end": 23829.0, + "probability": 0.9397 + }, + { + "start": 23829.16, + "end": 23831.02, + "probability": 0.9717 + }, + { + "start": 23831.18, + "end": 23835.84, + "probability": 0.9731 + }, + { + "start": 23836.06, + "end": 23836.36, + "probability": 0.0594 + }, + { + "start": 23836.36, + "end": 23837.8, + "probability": 0.8903 + }, + { + "start": 23838.24, + "end": 23843.04, + "probability": 0.9377 + }, + { + "start": 23843.64, + "end": 23845.18, + "probability": 0.817 + }, + { + "start": 23846.68, + "end": 23852.06, + "probability": 0.9963 + }, + { + "start": 23852.06, + "end": 23857.76, + "probability": 0.9913 + }, + { + "start": 23858.52, + "end": 23862.08, + "probability": 0.4308 + }, + { + "start": 23862.42, + "end": 23863.8, + "probability": 0.5286 + }, + { + "start": 23864.14, + "end": 23865.42, + "probability": 0.676 + }, + { + "start": 23865.9, + "end": 23870.46, + "probability": 0.4262 + }, + { + "start": 23871.3, + "end": 23871.7, + "probability": 0.4796 + }, + { + "start": 23871.8, + "end": 23871.98, + "probability": 0.7596 + }, + { + "start": 23872.06, + "end": 23872.4, + "probability": 0.7367 + }, + { + "start": 23872.44, + "end": 23874.6, + "probability": 0.9229 + }, + { + "start": 23875.06, + "end": 23876.12, + "probability": 0.939 + }, + { + "start": 23876.12, + "end": 23877.28, + "probability": 0.6587 + }, + { + "start": 23877.42, + "end": 23880.52, + "probability": 0.6764 + }, + { + "start": 23880.52, + "end": 23883.4, + "probability": 0.695 + }, + { + "start": 23883.4, + "end": 23884.56, + "probability": 0.8769 + }, + { + "start": 23885.24, + "end": 23885.8, + "probability": 0.7332 + }, + { + "start": 23886.85, + "end": 23889.77, + "probability": 0.7519 + }, + { + "start": 23890.16, + "end": 23890.72, + "probability": 0.6709 + }, + { + "start": 23891.76, + "end": 23894.56, + "probability": 0.7951 + }, + { + "start": 23894.8, + "end": 23895.66, + "probability": 0.8873 + }, + { + "start": 23895.88, + "end": 23896.34, + "probability": 0.5717 + }, + { + "start": 23896.44, + "end": 23896.96, + "probability": 0.7876 + }, + { + "start": 23897.02, + "end": 23897.52, + "probability": 0.6367 + }, + { + "start": 23897.6, + "end": 23898.24, + "probability": 0.7667 + }, + { + "start": 23898.3, + "end": 23898.92, + "probability": 0.3749 + }, + { + "start": 23899.44, + "end": 23900.53, + "probability": 0.9095 + }, + { + "start": 23901.02, + "end": 23902.56, + "probability": 0.9464 + }, + { + "start": 23902.64, + "end": 23903.8, + "probability": 0.8581 + }, + { + "start": 23903.96, + "end": 23904.38, + "probability": 0.4063 + }, + { + "start": 23905.38, + "end": 23906.96, + "probability": 0.1469 + }, + { + "start": 23907.54, + "end": 23908.86, + "probability": 0.7617 + }, + { + "start": 23909.28, + "end": 23910.73, + "probability": 0.4234 + }, + { + "start": 23911.12, + "end": 23911.88, + "probability": 0.7308 + }, + { + "start": 23912.98, + "end": 23915.0, + "probability": 0.7186 + }, + { + "start": 23920.34, + "end": 23920.64, + "probability": 0.1484 + }, + { + "start": 23922.98, + "end": 23925.16, + "probability": 0.4086 + }, + { + "start": 23925.76, + "end": 23926.22, + "probability": 0.7977 + }, + { + "start": 23929.02, + "end": 23931.5, + "probability": 0.7388 + }, + { + "start": 23933.14, + "end": 23935.68, + "probability": 0.9977 + }, + { + "start": 23935.68, + "end": 23938.08, + "probability": 0.3275 + }, + { + "start": 23939.82, + "end": 23940.5, + "probability": 0.0096 + }, + { + "start": 23942.12, + "end": 23949.96, + "probability": 0.8138 + }, + { + "start": 23949.96, + "end": 23955.5, + "probability": 0.9995 + }, + { + "start": 23956.7, + "end": 23958.52, + "probability": 0.901 + }, + { + "start": 23958.66, + "end": 23962.88, + "probability": 0.7497 + }, + { + "start": 23964.52, + "end": 23969.06, + "probability": 0.9494 + }, + { + "start": 23969.06, + "end": 23975.56, + "probability": 0.9951 + }, + { + "start": 23975.98, + "end": 23980.04, + "probability": 0.9989 + }, + { + "start": 23985.08, + "end": 23988.46, + "probability": 0.9331 + }, + { + "start": 23988.84, + "end": 23991.32, + "probability": 0.9972 + }, + { + "start": 23992.0, + "end": 23995.88, + "probability": 0.9413 + }, + { + "start": 23995.96, + "end": 23996.56, + "probability": 0.7583 + }, + { + "start": 23996.66, + "end": 24001.3, + "probability": 0.9373 + }, + { + "start": 24001.98, + "end": 24004.54, + "probability": 0.9658 + }, + { + "start": 24004.66, + "end": 24007.5, + "probability": 0.8792 + }, + { + "start": 24010.2, + "end": 24011.88, + "probability": 0.6666 + }, + { + "start": 24013.14, + "end": 24014.18, + "probability": 0.6618 + }, + { + "start": 24014.24, + "end": 24019.22, + "probability": 0.8298 + }, + { + "start": 24019.38, + "end": 24021.48, + "probability": 0.9641 + }, + { + "start": 24022.46, + "end": 24025.34, + "probability": 0.9963 + }, + { + "start": 24025.42, + "end": 24026.8, + "probability": 0.9583 + }, + { + "start": 24027.56, + "end": 24033.5, + "probability": 0.9603 + }, + { + "start": 24034.76, + "end": 24036.92, + "probability": 0.8577 + }, + { + "start": 24038.04, + "end": 24044.92, + "probability": 0.7196 + }, + { + "start": 24045.22, + "end": 24048.4, + "probability": 0.1762 + }, + { + "start": 24048.52, + "end": 24052.92, + "probability": 0.4868 + }, + { + "start": 24053.46, + "end": 24055.78, + "probability": 0.2466 + }, + { + "start": 24056.2, + "end": 24061.71, + "probability": 0.9924 + }, + { + "start": 24062.24, + "end": 24066.42, + "probability": 0.9537 + }, + { + "start": 24066.42, + "end": 24069.72, + "probability": 0.958 + }, + { + "start": 24070.8, + "end": 24074.66, + "probability": 0.9969 + }, + { + "start": 24074.66, + "end": 24080.92, + "probability": 0.9973 + }, + { + "start": 24081.62, + "end": 24086.96, + "probability": 0.9679 + }, + { + "start": 24086.96, + "end": 24092.0, + "probability": 0.9419 + }, + { + "start": 24092.98, + "end": 24093.4, + "probability": 0.5866 + }, + { + "start": 24093.54, + "end": 24096.3, + "probability": 0.9919 + }, + { + "start": 24096.3, + "end": 24099.39, + "probability": 0.722 + }, + { + "start": 24099.88, + "end": 24105.08, + "probability": 0.9688 + }, + { + "start": 24105.68, + "end": 24112.12, + "probability": 0.9988 + }, + { + "start": 24112.98, + "end": 24117.06, + "probability": 0.9707 + }, + { + "start": 24117.06, + "end": 24124.14, + "probability": 0.973 + }, + { + "start": 24124.84, + "end": 24128.02, + "probability": 0.79 + }, + { + "start": 24128.6, + "end": 24131.68, + "probability": 0.9728 + }, + { + "start": 24131.68, + "end": 24136.72, + "probability": 0.99 + }, + { + "start": 24137.4, + "end": 24140.52, + "probability": 0.9708 + }, + { + "start": 24140.52, + "end": 24143.44, + "probability": 0.963 + }, + { + "start": 24147.78, + "end": 24148.7, + "probability": 0.9275 + }, + { + "start": 24149.58, + "end": 24153.79, + "probability": 0.9735 + }, + { + "start": 24154.58, + "end": 24157.96, + "probability": 0.938 + }, + { + "start": 24157.96, + "end": 24163.68, + "probability": 0.8225 + }, + { + "start": 24163.82, + "end": 24168.52, + "probability": 0.9916 + }, + { + "start": 24169.2, + "end": 24169.54, + "probability": 0.2705 + }, + { + "start": 24169.68, + "end": 24172.04, + "probability": 0.8888 + }, + { + "start": 24172.16, + "end": 24177.86, + "probability": 0.882 + }, + { + "start": 24178.4, + "end": 24181.23, + "probability": 0.9478 + }, + { + "start": 24181.64, + "end": 24182.2, + "probability": 0.5275 + }, + { + "start": 24182.26, + "end": 24184.34, + "probability": 0.9867 + }, + { + "start": 24184.86, + "end": 24186.78, + "probability": 0.9369 + }, + { + "start": 24187.4, + "end": 24187.82, + "probability": 0.7636 + }, + { + "start": 24187.88, + "end": 24191.26, + "probability": 0.9543 + }, + { + "start": 24191.82, + "end": 24196.98, + "probability": 0.8013 + }, + { + "start": 24196.98, + "end": 24202.54, + "probability": 0.8719 + }, + { + "start": 24203.51, + "end": 24207.3, + "probability": 0.9744 + }, + { + "start": 24207.96, + "end": 24212.0, + "probability": 0.9509 + }, + { + "start": 24212.56, + "end": 24215.52, + "probability": 0.9139 + }, + { + "start": 24215.66, + "end": 24219.68, + "probability": 0.7452 + }, + { + "start": 24219.68, + "end": 24222.9, + "probability": 0.5717 + }, + { + "start": 24223.08, + "end": 24226.72, + "probability": 0.8722 + }, + { + "start": 24227.18, + "end": 24227.74, + "probability": 0.6855 + }, + { + "start": 24228.56, + "end": 24233.6, + "probability": 0.9243 + }, + { + "start": 24233.6, + "end": 24238.1, + "probability": 0.9937 + }, + { + "start": 24238.18, + "end": 24238.48, + "probability": 0.6876 + }, + { + "start": 24240.04, + "end": 24241.8, + "probability": 0.6219 + }, + { + "start": 24241.86, + "end": 24245.84, + "probability": 0.5829 + }, + { + "start": 24247.48, + "end": 24248.05, + "probability": 0.9688 + }, + { + "start": 24248.48, + "end": 24250.92, + "probability": 0.8507 + }, + { + "start": 24251.5, + "end": 24253.14, + "probability": 0.9052 + }, + { + "start": 24253.66, + "end": 24255.38, + "probability": 0.7637 + }, + { + "start": 24255.92, + "end": 24257.58, + "probability": 0.9682 + }, + { + "start": 24265.16, + "end": 24267.04, + "probability": 0.5018 + }, + { + "start": 24268.48, + "end": 24271.12, + "probability": 0.2831 + }, + { + "start": 24271.12, + "end": 24271.28, + "probability": 0.6656 + }, + { + "start": 24271.28, + "end": 24271.76, + "probability": 0.6525 + }, + { + "start": 24271.92, + "end": 24273.52, + "probability": 0.8756 + }, + { + "start": 24273.68, + "end": 24277.28, + "probability": 0.9806 + }, + { + "start": 24277.42, + "end": 24279.26, + "probability": 0.992 + }, + { + "start": 24282.2, + "end": 24282.86, + "probability": 0.4581 + }, + { + "start": 24282.86, + "end": 24283.42, + "probability": 0.8632 + }, + { + "start": 24284.28, + "end": 24286.56, + "probability": 0.9916 + }, + { + "start": 24286.74, + "end": 24287.5, + "probability": 0.9787 + }, + { + "start": 24287.64, + "end": 24288.36, + "probability": 0.9478 + }, + { + "start": 24288.44, + "end": 24290.4, + "probability": 0.998 + }, + { + "start": 24291.1, + "end": 24294.34, + "probability": 0.943 + }, + { + "start": 24296.0, + "end": 24299.68, + "probability": 0.8864 + }, + { + "start": 24300.4, + "end": 24301.0, + "probability": 0.6703 + }, + { + "start": 24301.16, + "end": 24304.18, + "probability": 0.984 + }, + { + "start": 24304.18, + "end": 24308.06, + "probability": 0.9924 + }, + { + "start": 24308.88, + "end": 24309.8, + "probability": 0.7788 + }, + { + "start": 24310.36, + "end": 24313.68, + "probability": 0.753 + }, + { + "start": 24314.32, + "end": 24315.24, + "probability": 0.9421 + }, + { + "start": 24315.32, + "end": 24316.66, + "probability": 0.6489 + }, + { + "start": 24317.1, + "end": 24320.78, + "probability": 0.9814 + }, + { + "start": 24321.06, + "end": 24322.77, + "probability": 0.935 + }, + { + "start": 24323.86, + "end": 24327.26, + "probability": 0.9801 + }, + { + "start": 24327.38, + "end": 24329.26, + "probability": 0.9945 + }, + { + "start": 24329.44, + "end": 24330.74, + "probability": 0.9014 + }, + { + "start": 24330.78, + "end": 24331.3, + "probability": 0.9211 + }, + { + "start": 24332.02, + "end": 24333.61, + "probability": 0.7457 + }, + { + "start": 24334.16, + "end": 24336.12, + "probability": 0.9196 + }, + { + "start": 24336.46, + "end": 24340.16, + "probability": 0.9789 + }, + { + "start": 24340.22, + "end": 24340.84, + "probability": 0.9143 + }, + { + "start": 24344.02, + "end": 24345.38, + "probability": 0.4137 + }, + { + "start": 24345.38, + "end": 24345.94, + "probability": 0.5376 + }, + { + "start": 24347.14, + "end": 24348.25, + "probability": 0.7988 + }, + { + "start": 24350.14, + "end": 24350.98, + "probability": 0.5982 + }, + { + "start": 24352.26, + "end": 24353.18, + "probability": 0.9312 + }, + { + "start": 24361.52, + "end": 24362.28, + "probability": 0.5996 + }, + { + "start": 24362.38, + "end": 24363.34, + "probability": 0.8251 + }, + { + "start": 24363.48, + "end": 24368.14, + "probability": 0.5216 + }, + { + "start": 24368.2, + "end": 24369.16, + "probability": 0.7246 + }, + { + "start": 24369.52, + "end": 24370.22, + "probability": 0.5481 + }, + { + "start": 24370.28, + "end": 24373.85, + "probability": 0.852 + }, + { + "start": 24374.48, + "end": 24376.52, + "probability": 0.9927 + }, + { + "start": 24377.16, + "end": 24381.62, + "probability": 0.9553 + }, + { + "start": 24382.4, + "end": 24384.82, + "probability": 0.9269 + }, + { + "start": 24385.66, + "end": 24389.23, + "probability": 0.9655 + }, + { + "start": 24390.06, + "end": 24391.68, + "probability": 0.9045 + }, + { + "start": 24392.48, + "end": 24393.74, + "probability": 0.6396 + }, + { + "start": 24394.32, + "end": 24396.46, + "probability": 0.9873 + }, + { + "start": 24396.56, + "end": 24399.86, + "probability": 0.9731 + }, + { + "start": 24399.94, + "end": 24400.36, + "probability": 0.322 + }, + { + "start": 24400.42, + "end": 24402.46, + "probability": 0.5415 + }, + { + "start": 24402.66, + "end": 24403.57, + "probability": 0.0143 + }, + { + "start": 24404.3, + "end": 24405.96, + "probability": 0.6012 + }, + { + "start": 24406.26, + "end": 24409.29, + "probability": 0.6787 + }, + { + "start": 24409.36, + "end": 24409.85, + "probability": 0.8748 + }, + { + "start": 24410.68, + "end": 24410.82, + "probability": 0.5287 + }, + { + "start": 24410.82, + "end": 24411.56, + "probability": 0.4605 + }, + { + "start": 24411.7, + "end": 24413.08, + "probability": 0.8417 + }, + { + "start": 24413.94, + "end": 24415.94, + "probability": 0.9364 + }, + { + "start": 24416.14, + "end": 24417.28, + "probability": 0.6422 + }, + { + "start": 24417.34, + "end": 24418.04, + "probability": 0.6055 + }, + { + "start": 24418.14, + "end": 24419.26, + "probability": 0.9152 + }, + { + "start": 24419.7, + "end": 24421.5, + "probability": 0.8368 + }, + { + "start": 24422.54, + "end": 24423.04, + "probability": 0.4596 + }, + { + "start": 24423.1, + "end": 24424.69, + "probability": 0.9675 + }, + { + "start": 24425.38, + "end": 24427.17, + "probability": 0.9203 + }, + { + "start": 24427.6, + "end": 24428.3, + "probability": 0.3739 + }, + { + "start": 24429.54, + "end": 24432.12, + "probability": 0.9822 + }, + { + "start": 24432.98, + "end": 24434.32, + "probability": 0.8452 + }, + { + "start": 24434.48, + "end": 24440.62, + "probability": 0.748 + }, + { + "start": 24441.82, + "end": 24444.23, + "probability": 0.9537 + }, + { + "start": 24444.41, + "end": 24448.05, + "probability": 0.9165 + }, + { + "start": 24449.0, + "end": 24449.07, + "probability": 0.0043 + }, + { + "start": 24449.07, + "end": 24449.29, + "probability": 0.452 + }, + { + "start": 24450.09, + "end": 24450.11, + "probability": 0.073 + }, + { + "start": 24450.11, + "end": 24450.81, + "probability": 0.6843 + }, + { + "start": 24451.01, + "end": 24453.31, + "probability": 0.9175 + }, + { + "start": 24453.81, + "end": 24454.8, + "probability": 0.752 + }, + { + "start": 24455.43, + "end": 24460.79, + "probability": 0.7844 + }, + { + "start": 24461.69, + "end": 24466.19, + "probability": 0.8618 + }, + { + "start": 24466.39, + "end": 24466.88, + "probability": 0.645 + }, + { + "start": 24466.97, + "end": 24469.29, + "probability": 0.4759 + }, + { + "start": 24469.29, + "end": 24469.39, + "probability": 0.5096 + }, + { + "start": 24469.55, + "end": 24471.92, + "probability": 0.9092 + }, + { + "start": 24472.53, + "end": 24474.47, + "probability": 0.8162 + }, + { + "start": 24475.83, + "end": 24478.17, + "probability": 0.8734 + }, + { + "start": 24478.45, + "end": 24481.73, + "probability": 0.7742 + }, + { + "start": 24482.19, + "end": 24483.32, + "probability": 0.1127 + }, + { + "start": 24483.61, + "end": 24483.95, + "probability": 0.6572 + }, + { + "start": 24484.13, + "end": 24485.55, + "probability": 0.5895 + }, + { + "start": 24485.91, + "end": 24487.17, + "probability": 0.8892 + }, + { + "start": 24487.75, + "end": 24488.78, + "probability": 0.9512 + }, + { + "start": 24489.01, + "end": 24493.19, + "probability": 0.9376 + }, + { + "start": 24493.31, + "end": 24494.61, + "probability": 0.4019 + }, + { + "start": 24494.77, + "end": 24497.01, + "probability": 0.6711 + }, + { + "start": 24497.63, + "end": 24501.15, + "probability": 0.9023 + }, + { + "start": 24501.57, + "end": 24503.51, + "probability": 0.3356 + }, + { + "start": 24503.81, + "end": 24505.83, + "probability": 0.9749 + }, + { + "start": 24506.33, + "end": 24506.89, + "probability": 0.9966 + }, + { + "start": 24507.61, + "end": 24509.27, + "probability": 0.9247 + }, + { + "start": 24510.17, + "end": 24515.73, + "probability": 0.9905 + }, + { + "start": 24516.47, + "end": 24517.17, + "probability": 0.6301 + }, + { + "start": 24517.25, + "end": 24520.07, + "probability": 0.838 + }, + { + "start": 24520.13, + "end": 24521.05, + "probability": 0.8429 + }, + { + "start": 24522.93, + "end": 24523.31, + "probability": 0.3236 + }, + { + "start": 24523.37, + "end": 24526.37, + "probability": 0.9854 + }, + { + "start": 24526.37, + "end": 24529.91, + "probability": 0.9941 + }, + { + "start": 24530.71, + "end": 24535.31, + "probability": 0.6743 + }, + { + "start": 24535.87, + "end": 24537.42, + "probability": 0.5922 + }, + { + "start": 24538.13, + "end": 24539.52, + "probability": 0.714 + }, + { + "start": 24541.02, + "end": 24545.03, + "probability": 0.9048 + }, + { + "start": 24545.25, + "end": 24546.11, + "probability": 0.844 + }, + { + "start": 24546.39, + "end": 24547.97, + "probability": 0.8227 + }, + { + "start": 24548.33, + "end": 24548.96, + "probability": 0.9453 + }, + { + "start": 24549.95, + "end": 24551.87, + "probability": 0.9474 + }, + { + "start": 24552.51, + "end": 24553.19, + "probability": 0.9525 + }, + { + "start": 24553.25, + "end": 24554.39, + "probability": 0.7673 + }, + { + "start": 24554.75, + "end": 24558.47, + "probability": 0.7148 + }, + { + "start": 24558.51, + "end": 24559.65, + "probability": 0.5015 + }, + { + "start": 24560.15, + "end": 24565.97, + "probability": 0.5837 + }, + { + "start": 24566.0, + "end": 24566.0, + "probability": 0.0 + }, + { + "start": 24566.0, + "end": 24566.0, + "probability": 0.0 + }, + { + "start": 24566.22, + "end": 24568.56, + "probability": 0.5576 + }, + { + "start": 24568.56, + "end": 24568.66, + "probability": 0.4762 + }, + { + "start": 24568.66, + "end": 24573.08, + "probability": 0.779 + }, + { + "start": 24573.08, + "end": 24573.54, + "probability": 0.7002 + }, + { + "start": 24573.58, + "end": 24574.66, + "probability": 0.8156 + }, + { + "start": 24574.86, + "end": 24577.24, + "probability": 0.8189 + }, + { + "start": 24580.14, + "end": 24581.12, + "probability": 0.6669 + }, + { + "start": 24581.98, + "end": 24582.2, + "probability": 0.9242 + }, + { + "start": 24582.22, + "end": 24583.4, + "probability": 0.6843 + }, + { + "start": 24583.62, + "end": 24586.58, + "probability": 0.6539 + }, + { + "start": 24586.62, + "end": 24596.39, + "probability": 0.916 + }, + { + "start": 24597.22, + "end": 24598.22, + "probability": 0.879 + }, + { + "start": 24598.32, + "end": 24602.52, + "probability": 0.7885 + }, + { + "start": 24602.74, + "end": 24606.0, + "probability": 0.9951 + }, + { + "start": 24606.44, + "end": 24608.38, + "probability": 0.7487 + }, + { + "start": 24608.42, + "end": 24614.18, + "probability": 0.9918 + }, + { + "start": 24614.54, + "end": 24617.2, + "probability": 0.988 + }, + { + "start": 24618.02, + "end": 24619.28, + "probability": 0.9572 + }, + { + "start": 24619.8, + "end": 24621.74, + "probability": 0.7227 + }, + { + "start": 24622.22, + "end": 24624.64, + "probability": 0.747 + }, + { + "start": 24625.16, + "end": 24626.72, + "probability": 0.9207 + }, + { + "start": 24626.98, + "end": 24628.1, + "probability": 0.9395 + }, + { + "start": 24628.32, + "end": 24632.0, + "probability": 0.9799 + }, + { + "start": 24632.52, + "end": 24637.0, + "probability": 0.887 + }, + { + "start": 24637.64, + "end": 24638.56, + "probability": 0.6533 + }, + { + "start": 24638.56, + "end": 24641.04, + "probability": 0.6218 + }, + { + "start": 24641.2, + "end": 24642.26, + "probability": 0.3118 + }, + { + "start": 24642.36, + "end": 24645.36, + "probability": 0.7871 + }, + { + "start": 24645.5, + "end": 24646.28, + "probability": 0.9893 + }, + { + "start": 24646.38, + "end": 24647.2, + "probability": 0.4909 + }, + { + "start": 24647.36, + "end": 24648.38, + "probability": 0.9491 + }, + { + "start": 24648.48, + "end": 24652.92, + "probability": 0.9407 + }, + { + "start": 24653.78, + "end": 24657.86, + "probability": 0.9982 + }, + { + "start": 24658.5, + "end": 24658.94, + "probability": 0.3027 + }, + { + "start": 24659.28, + "end": 24660.28, + "probability": 0.9755 + }, + { + "start": 24660.72, + "end": 24661.94, + "probability": 0.6757 + }, + { + "start": 24662.24, + "end": 24667.54, + "probability": 0.9917 + }, + { + "start": 24668.06, + "end": 24668.36, + "probability": 0.5695 + }, + { + "start": 24668.64, + "end": 24669.43, + "probability": 0.9594 + }, + { + "start": 24669.82, + "end": 24671.16, + "probability": 0.9612 + }, + { + "start": 24671.32, + "end": 24672.66, + "probability": 0.9443 + }, + { + "start": 24672.86, + "end": 24673.9, + "probability": 0.9096 + }, + { + "start": 24674.16, + "end": 24674.8, + "probability": 0.8315 + }, + { + "start": 24674.86, + "end": 24675.82, + "probability": 0.9773 + }, + { + "start": 24675.98, + "end": 24678.74, + "probability": 0.9893 + }, + { + "start": 24679.04, + "end": 24682.56, + "probability": 0.9516 + }, + { + "start": 24682.76, + "end": 24684.2, + "probability": 0.8025 + }, + { + "start": 24684.38, + "end": 24685.08, + "probability": 0.675 + }, + { + "start": 24685.36, + "end": 24686.6, + "probability": 0.9548 + }, + { + "start": 24686.6, + "end": 24688.75, + "probability": 0.7915 + }, + { + "start": 24692.03, + "end": 24695.72, + "probability": 0.5189 + }, + { + "start": 24696.38, + "end": 24697.22, + "probability": 0.7313 + }, + { + "start": 24697.28, + "end": 24700.52, + "probability": 0.9541 + }, + { + "start": 24702.1, + "end": 24703.56, + "probability": 0.7932 + }, + { + "start": 24703.94, + "end": 24706.06, + "probability": 0.7014 + }, + { + "start": 24706.12, + "end": 24707.04, + "probability": 0.7552 + }, + { + "start": 24707.54, + "end": 24708.1, + "probability": 0.3424 + }, + { + "start": 24708.2, + "end": 24709.64, + "probability": 0.5788 + }, + { + "start": 24710.16, + "end": 24710.7, + "probability": 0.6456 + }, + { + "start": 24710.72, + "end": 24710.98, + "probability": 0.8102 + }, + { + "start": 24729.44, + "end": 24733.74, + "probability": 0.5928 + }, + { + "start": 24734.38, + "end": 24735.4, + "probability": 0.2966 + }, + { + "start": 24741.32, + "end": 24747.28, + "probability": 0.283 + }, + { + "start": 24747.44, + "end": 24749.9, + "probability": 0.1289 + }, + { + "start": 24750.07, + "end": 24751.42, + "probability": 0.1291 + }, + { + "start": 24751.42, + "end": 24755.64, + "probability": 0.2034 + }, + { + "start": 24756.48, + "end": 24758.02, + "probability": 0.0211 + }, + { + "start": 24758.81, + "end": 24759.56, + "probability": 0.0093 + }, + { + "start": 24759.56, + "end": 24760.5, + "probability": 0.0842 + }, + { + "start": 24761.48, + "end": 24764.72, + "probability": 0.0663 + }, + { + "start": 24764.72, + "end": 24765.32, + "probability": 0.098 + }, + { + "start": 24765.78, + "end": 24769.0, + "probability": 0.1072 + }, + { + "start": 24772.62, + "end": 24773.08, + "probability": 0.0364 + }, + { + "start": 24773.08, + "end": 24774.42, + "probability": 0.0342 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.0, + "end": 24800.0, + "probability": 0.0 + }, + { + "start": 24800.32, + "end": 24800.38, + "probability": 0.0875 + }, + { + "start": 24800.38, + "end": 24800.38, + "probability": 0.0294 + }, + { + "start": 24800.38, + "end": 24800.5, + "probability": 0.0517 + }, + { + "start": 24800.9, + "end": 24802.02, + "probability": 0.8696 + }, + { + "start": 24802.2, + "end": 24804.38, + "probability": 0.9944 + }, + { + "start": 24805.3, + "end": 24808.02, + "probability": 0.9933 + }, + { + "start": 24808.02, + "end": 24811.56, + "probability": 0.6383 + }, + { + "start": 24811.68, + "end": 24818.28, + "probability": 0.9707 + }, + { + "start": 24818.28, + "end": 24821.26, + "probability": 0.9654 + }, + { + "start": 24822.12, + "end": 24823.96, + "probability": 0.2692 + }, + { + "start": 24824.46, + "end": 24828.8, + "probability": 0.9966 + }, + { + "start": 24828.8, + "end": 24835.72, + "probability": 0.9702 + }, + { + "start": 24836.4, + "end": 24840.66, + "probability": 0.9397 + }, + { + "start": 24841.14, + "end": 24845.58, + "probability": 0.9736 + }, + { + "start": 24845.58, + "end": 24848.08, + "probability": 0.9796 + }, + { + "start": 24848.74, + "end": 24852.84, + "probability": 0.9273 + }, + { + "start": 24853.74, + "end": 24856.76, + "probability": 0.9424 + }, + { + "start": 24857.42, + "end": 24864.62, + "probability": 0.9095 + }, + { + "start": 24866.12, + "end": 24868.26, + "probability": 0.9259 + }, + { + "start": 24868.26, + "end": 24870.3, + "probability": 0.9935 + }, + { + "start": 24871.16, + "end": 24873.96, + "probability": 0.9917 + }, + { + "start": 24873.96, + "end": 24877.36, + "probability": 0.9318 + }, + { + "start": 24877.82, + "end": 24879.7, + "probability": 0.7238 + }, + { + "start": 24880.22, + "end": 24882.36, + "probability": 0.8943 + }, + { + "start": 24883.14, + "end": 24883.62, + "probability": 0.5669 + }, + { + "start": 24883.7, + "end": 24887.78, + "probability": 0.8614 + }, + { + "start": 24888.68, + "end": 24892.52, + "probability": 0.6935 + }, + { + "start": 24892.52, + "end": 24895.8, + "probability": 0.9292 + }, + { + "start": 24896.56, + "end": 24899.56, + "probability": 0.9741 + }, + { + "start": 24900.56, + "end": 24906.6, + "probability": 0.9507 + }, + { + "start": 24907.52, + "end": 24910.34, + "probability": 0.9774 + }, + { + "start": 24911.02, + "end": 24915.17, + "probability": 0.9622 + }, + { + "start": 24915.18, + "end": 24918.75, + "probability": 0.9639 + }, + { + "start": 24920.38, + "end": 24923.66, + "probability": 0.9907 + }, + { + "start": 24923.98, + "end": 24927.62, + "probability": 0.6826 + }, + { + "start": 24929.0, + "end": 24934.42, + "probability": 0.6863 + }, + { + "start": 24935.28, + "end": 24936.88, + "probability": 0.6392 + }, + { + "start": 24937.06, + "end": 24943.46, + "probability": 0.873 + }, + { + "start": 24943.64, + "end": 24949.5, + "probability": 0.907 + }, + { + "start": 24950.22, + "end": 24952.62, + "probability": 0.6876 + }, + { + "start": 24953.38, + "end": 24957.66, + "probability": 0.8 + }, + { + "start": 24957.96, + "end": 24964.58, + "probability": 0.5971 + }, + { + "start": 24964.8, + "end": 24967.39, + "probability": 0.4957 + }, + { + "start": 24968.24, + "end": 24968.98, + "probability": 0.4488 + }, + { + "start": 24969.78, + "end": 24975.68, + "probability": 0.9006 + }, + { + "start": 24976.22, + "end": 24981.88, + "probability": 0.8243 + }, + { + "start": 24982.04, + "end": 24983.78, + "probability": 0.8659 + }, + { + "start": 24983.8, + "end": 24988.7, + "probability": 0.9712 + }, + { + "start": 24989.14, + "end": 24992.06, + "probability": 0.8428 + }, + { + "start": 24992.64, + "end": 24995.1, + "probability": 0.8302 + }, + { + "start": 24995.76, + "end": 24998.9, + "probability": 0.8079 + }, + { + "start": 24998.9, + "end": 25003.64, + "probability": 0.7836 + }, + { + "start": 25003.8, + "end": 25006.44, + "probability": 0.1628 + }, + { + "start": 25006.44, + "end": 25009.26, + "probability": 0.641 + }, + { + "start": 25009.9, + "end": 25012.64, + "probability": 0.6826 + }, + { + "start": 25012.64, + "end": 25016.08, + "probability": 0.7416 + }, + { + "start": 25016.54, + "end": 25018.84, + "probability": 0.904 + }, + { + "start": 25019.26, + "end": 25021.46, + "probability": 0.9596 + }, + { + "start": 25021.46, + "end": 25024.68, + "probability": 0.988 + }, + { + "start": 25024.86, + "end": 25028.36, + "probability": 0.9614 + }, + { + "start": 25028.36, + "end": 25032.94, + "probability": 0.7761 + }, + { + "start": 25033.1, + "end": 25033.36, + "probability": 0.1407 + }, + { + "start": 25033.78, + "end": 25036.58, + "probability": 0.8612 + }, + { + "start": 25037.06, + "end": 25042.18, + "probability": 0.9633 + }, + { + "start": 25042.72, + "end": 25043.94, + "probability": 0.4073 + }, + { + "start": 25044.02, + "end": 25048.34, + "probability": 0.8338 + }, + { + "start": 25048.56, + "end": 25051.42, + "probability": 0.9606 + }, + { + "start": 25052.22, + "end": 25053.66, + "probability": 0.623 + }, + { + "start": 25053.88, + "end": 25057.39, + "probability": 0.8631 + }, + { + "start": 25059.06, + "end": 25059.06, + "probability": 0.0805 + }, + { + "start": 25059.06, + "end": 25059.06, + "probability": 0.0636 + }, + { + "start": 25059.06, + "end": 25061.72, + "probability": 0.6575 + }, + { + "start": 25061.78, + "end": 25064.14, + "probability": 0.8834 + }, + { + "start": 25064.24, + "end": 25067.48, + "probability": 0.7897 + }, + { + "start": 25067.66, + "end": 25069.16, + "probability": 0.7481 + }, + { + "start": 25069.86, + "end": 25074.16, + "probability": 0.8647 + }, + { + "start": 25074.26, + "end": 25077.94, + "probability": 0.9334 + }, + { + "start": 25078.46, + "end": 25083.12, + "probability": 0.9963 + }, + { + "start": 25083.52, + "end": 25085.0, + "probability": 0.8047 + }, + { + "start": 25085.22, + "end": 25086.62, + "probability": 0.717 + }, + { + "start": 25086.78, + "end": 25087.6, + "probability": 0.4915 + }, + { + "start": 25087.78, + "end": 25089.18, + "probability": 0.7622 + }, + { + "start": 25089.66, + "end": 25091.94, + "probability": 0.5186 + }, + { + "start": 25092.48, + "end": 25093.38, + "probability": 0.6887 + }, + { + "start": 25093.8, + "end": 25095.3, + "probability": 0.9434 + }, + { + "start": 25095.96, + "end": 25096.9, + "probability": 0.5204 + }, + { + "start": 25098.48, + "end": 25100.4, + "probability": 0.7618 + }, + { + "start": 25101.1, + "end": 25102.34, + "probability": 0.955 + }, + { + "start": 25104.32, + "end": 25105.5, + "probability": 0.3949 + }, + { + "start": 25123.62, + "end": 25125.06, + "probability": 0.5187 + }, + { + "start": 25125.26, + "end": 25126.02, + "probability": 0.6019 + }, + { + "start": 25126.14, + "end": 25127.55, + "probability": 0.7252 + }, + { + "start": 25129.16, + "end": 25131.02, + "probability": 0.5205 + }, + { + "start": 25131.46, + "end": 25134.58, + "probability": 0.9077 + }, + { + "start": 25136.14, + "end": 25140.15, + "probability": 0.8218 + }, + { + "start": 25141.0, + "end": 25144.84, + "probability": 0.7166 + }, + { + "start": 25145.04, + "end": 25145.95, + "probability": 0.8523 + }, + { + "start": 25146.74, + "end": 25154.2, + "probability": 0.989 + }, + { + "start": 25154.52, + "end": 25156.16, + "probability": 0.8657 + }, + { + "start": 25156.26, + "end": 25157.28, + "probability": 0.6378 + }, + { + "start": 25157.44, + "end": 25158.16, + "probability": 0.8347 + }, + { + "start": 25159.0, + "end": 25163.64, + "probability": 0.9028 + }, + { + "start": 25164.1, + "end": 25169.03, + "probability": 0.9886 + }, + { + "start": 25170.02, + "end": 25170.62, + "probability": 0.8203 + }, + { + "start": 25170.74, + "end": 25172.36, + "probability": 0.9117 + }, + { + "start": 25172.54, + "end": 25173.06, + "probability": 0.5608 + }, + { + "start": 25173.18, + "end": 25173.74, + "probability": 0.7845 + }, + { + "start": 25174.36, + "end": 25176.3, + "probability": 0.7254 + }, + { + "start": 25176.54, + "end": 25177.14, + "probability": 0.7794 + }, + { + "start": 25177.2, + "end": 25179.64, + "probability": 0.8661 + }, + { + "start": 25179.86, + "end": 25181.46, + "probability": 0.7241 + }, + { + "start": 25182.12, + "end": 25184.06, + "probability": 0.8538 + }, + { + "start": 25184.92, + "end": 25185.66, + "probability": 0.8377 + }, + { + "start": 25185.78, + "end": 25187.81, + "probability": 0.9198 + }, + { + "start": 25188.16, + "end": 25189.6, + "probability": 0.8926 + }, + { + "start": 25189.84, + "end": 25190.32, + "probability": 0.6122 + }, + { + "start": 25190.42, + "end": 25192.8, + "probability": 0.7049 + }, + { + "start": 25192.84, + "end": 25193.78, + "probability": 0.6677 + }, + { + "start": 25193.9, + "end": 25194.84, + "probability": 0.6013 + }, + { + "start": 25194.88, + "end": 25195.36, + "probability": 0.8597 + }, + { + "start": 25195.7, + "end": 25196.38, + "probability": 0.3607 + }, + { + "start": 25197.34, + "end": 25202.06, + "probability": 0.4683 + }, + { + "start": 25202.28, + "end": 25204.02, + "probability": 0.9546 + }, + { + "start": 25204.2, + "end": 25211.3, + "probability": 0.9856 + }, + { + "start": 25211.66, + "end": 25214.02, + "probability": 0.8039 + }, + { + "start": 25214.18, + "end": 25214.82, + "probability": 0.5657 + }, + { + "start": 25214.9, + "end": 25220.96, + "probability": 0.9609 + }, + { + "start": 25220.96, + "end": 25225.5, + "probability": 0.9064 + }, + { + "start": 25225.54, + "end": 25230.1, + "probability": 0.9834 + }, + { + "start": 25230.1, + "end": 25238.48, + "probability": 0.9917 + }, + { + "start": 25238.96, + "end": 25240.7, + "probability": 0.7136 + }, + { + "start": 25241.36, + "end": 25243.16, + "probability": 0.894 + }, + { + "start": 25243.16, + "end": 25245.82, + "probability": 0.6582 + }, + { + "start": 25245.92, + "end": 25248.92, + "probability": 0.5826 + }, + { + "start": 25249.08, + "end": 25252.14, + "probability": 0.734 + }, + { + "start": 25252.58, + "end": 25254.56, + "probability": 0.9616 + }, + { + "start": 25254.96, + "end": 25255.28, + "probability": 0.8291 + }, + { + "start": 25255.88, + "end": 25259.38, + "probability": 0.9648 + }, + { + "start": 25259.66, + "end": 25261.1, + "probability": 0.5131 + }, + { + "start": 25261.18, + "end": 25266.86, + "probability": 0.9883 + }, + { + "start": 25266.94, + "end": 25267.89, + "probability": 0.584 + }, + { + "start": 25269.58, + "end": 25271.52, + "probability": 0.5258 + }, + { + "start": 25271.98, + "end": 25272.4, + "probability": 0.8396 + }, + { + "start": 25272.48, + "end": 25278.58, + "probability": 0.6993 + }, + { + "start": 25279.28, + "end": 25280.86, + "probability": 0.438 + }, + { + "start": 25281.12, + "end": 25281.62, + "probability": 0.0701 + }, + { + "start": 25281.78, + "end": 25283.64, + "probability": 0.7149 + }, + { + "start": 25283.8, + "end": 25284.86, + "probability": 0.8152 + }, + { + "start": 25285.44, + "end": 25288.18, + "probability": 0.6993 + }, + { + "start": 25288.5, + "end": 25291.38, + "probability": 0.6853 + }, + { + "start": 25291.56, + "end": 25292.2, + "probability": 0.7596 + }, + { + "start": 25292.3, + "end": 25292.88, + "probability": 0.5758 + }, + { + "start": 25293.04, + "end": 25294.78, + "probability": 0.9927 + }, + { + "start": 25295.14, + "end": 25296.06, + "probability": 0.3961 + }, + { + "start": 25296.34, + "end": 25298.71, + "probability": 0.9258 + }, + { + "start": 25300.08, + "end": 25300.72, + "probability": 0.7806 + }, + { + "start": 25300.96, + "end": 25303.58, + "probability": 0.6383 + }, + { + "start": 25303.72, + "end": 25306.12, + "probability": 0.6462 + }, + { + "start": 25306.2, + "end": 25306.84, + "probability": 0.7056 + }, + { + "start": 25307.32, + "end": 25310.84, + "probability": 0.8128 + }, + { + "start": 25311.06, + "end": 25314.18, + "probability": 0.7637 + }, + { + "start": 25314.38, + "end": 25315.28, + "probability": 0.7198 + }, + { + "start": 25315.36, + "end": 25315.54, + "probability": 0.3289 + }, + { + "start": 25315.64, + "end": 25316.08, + "probability": 0.5682 + }, + { + "start": 25316.1, + "end": 25317.14, + "probability": 0.7957 + }, + { + "start": 25317.88, + "end": 25318.66, + "probability": 0.4808 + }, + { + "start": 25320.61, + "end": 25323.06, + "probability": 0.738 + }, + { + "start": 25325.24, + "end": 25326.35, + "probability": 0.9639 + }, + { + "start": 25341.68, + "end": 25342.46, + "probability": 0.8127 + }, + { + "start": 25344.0, + "end": 25344.72, + "probability": 0.6078 + }, + { + "start": 25344.88, + "end": 25345.82, + "probability": 0.7352 + }, + { + "start": 25346.32, + "end": 25350.48, + "probability": 0.8889 + }, + { + "start": 25350.54, + "end": 25351.45, + "probability": 0.5647 + }, + { + "start": 25352.7, + "end": 25359.42, + "probability": 0.9109 + }, + { + "start": 25360.94, + "end": 25365.62, + "probability": 0.9594 + }, + { + "start": 25366.78, + "end": 25370.46, + "probability": 0.7543 + }, + { + "start": 25371.94, + "end": 25373.48, + "probability": 0.6991 + }, + { + "start": 25373.6, + "end": 25375.32, + "probability": 0.8777 + }, + { + "start": 25376.28, + "end": 25384.18, + "probability": 0.977 + }, + { + "start": 25386.34, + "end": 25387.2, + "probability": 0.3896 + }, + { + "start": 25388.36, + "end": 25393.2, + "probability": 0.9795 + }, + { + "start": 25393.6, + "end": 25394.72, + "probability": 0.9922 + }, + { + "start": 25395.98, + "end": 25401.38, + "probability": 0.7327 + }, + { + "start": 25402.5, + "end": 25409.14, + "probability": 0.896 + }, + { + "start": 25410.02, + "end": 25411.78, + "probability": 0.7147 + }, + { + "start": 25412.16, + "end": 25417.43, + "probability": 0.9858 + }, + { + "start": 25420.28, + "end": 25422.86, + "probability": 0.8844 + }, + { + "start": 25423.2, + "end": 25425.06, + "probability": 0.8275 + }, + { + "start": 25426.12, + "end": 25432.99, + "probability": 0.989 + }, + { + "start": 25433.24, + "end": 25436.3, + "probability": 0.8071 + }, + { + "start": 25436.42, + "end": 25437.42, + "probability": 0.9556 + }, + { + "start": 25438.1, + "end": 25438.1, + "probability": 0.03 + }, + { + "start": 25438.1, + "end": 25444.02, + "probability": 0.8791 + }, + { + "start": 25445.18, + "end": 25450.34, + "probability": 0.7358 + }, + { + "start": 25450.76, + "end": 25452.39, + "probability": 0.9697 + }, + { + "start": 25453.24, + "end": 25453.94, + "probability": 0.9363 + }, + { + "start": 25454.08, + "end": 25454.96, + "probability": 0.7258 + }, + { + "start": 25455.34, + "end": 25456.51, + "probability": 0.8445 + }, + { + "start": 25456.88, + "end": 25459.56, + "probability": 0.7685 + }, + { + "start": 25459.84, + "end": 25461.62, + "probability": 0.901 + }, + { + "start": 25461.98, + "end": 25463.2, + "probability": 0.9844 + }, + { + "start": 25463.46, + "end": 25464.67, + "probability": 0.763 + }, + { + "start": 25465.28, + "end": 25469.38, + "probability": 0.9213 + }, + { + "start": 25469.8, + "end": 25470.96, + "probability": 0.5497 + }, + { + "start": 25471.14, + "end": 25474.64, + "probability": 0.8281 + }, + { + "start": 25475.12, + "end": 25478.8, + "probability": 0.9431 + }, + { + "start": 25479.02, + "end": 25483.06, + "probability": 0.9087 + }, + { + "start": 25483.78, + "end": 25483.9, + "probability": 0.2578 + }, + { + "start": 25484.0, + "end": 25484.92, + "probability": 0.2777 + }, + { + "start": 25485.06, + "end": 25486.5, + "probability": 0.9132 + }, + { + "start": 25486.8, + "end": 25488.14, + "probability": 0.8186 + }, + { + "start": 25488.26, + "end": 25490.44, + "probability": 0.794 + }, + { + "start": 25491.22, + "end": 25492.4, + "probability": 0.9376 + }, + { + "start": 25493.08, + "end": 25500.16, + "probability": 0.5663 + }, + { + "start": 25500.22, + "end": 25501.22, + "probability": 0.7247 + }, + { + "start": 25501.76, + "end": 25507.29, + "probability": 0.9829 + }, + { + "start": 25508.18, + "end": 25510.14, + "probability": 0.8618 + }, + { + "start": 25511.1, + "end": 25513.37, + "probability": 0.8637 + }, + { + "start": 25515.14, + "end": 25517.58, + "probability": 0.9835 + }, + { + "start": 25517.82, + "end": 25518.08, + "probability": 0.606 + }, + { + "start": 25518.14, + "end": 25518.62, + "probability": 0.7997 + }, + { + "start": 25518.68, + "end": 25519.16, + "probability": 0.4202 + }, + { + "start": 25519.75, + "end": 25523.24, + "probability": 0.6184 + }, + { + "start": 25524.22, + "end": 25526.44, + "probability": 0.7423 + }, + { + "start": 25527.6, + "end": 25528.59, + "probability": 0.949 + }, + { + "start": 25529.36, + "end": 25533.44, + "probability": 0.7519 + }, + { + "start": 25534.02, + "end": 25535.9, + "probability": 0.7333 + }, + { + "start": 25536.16, + "end": 25540.38, + "probability": 0.686 + }, + { + "start": 25540.8, + "end": 25543.76, + "probability": 0.9531 + }, + { + "start": 25544.34, + "end": 25545.18, + "probability": 0.7109 + }, + { + "start": 25546.54, + "end": 25549.14, + "probability": 0.809 + }, + { + "start": 25549.22, + "end": 25549.65, + "probability": 0.0084 + }, + { + "start": 25551.28, + "end": 25553.0, + "probability": 0.5338 + }, + { + "start": 25553.58, + "end": 25555.66, + "probability": 0.7502 + }, + { + "start": 25555.66, + "end": 25560.46, + "probability": 0.4997 + }, + { + "start": 25561.35, + "end": 25564.8, + "probability": 0.9844 + }, + { + "start": 25565.02, + "end": 25565.62, + "probability": 0.5511 + }, + { + "start": 25565.74, + "end": 25566.58, + "probability": 0.674 + }, + { + "start": 25566.74, + "end": 25571.78, + "probability": 0.8486 + }, + { + "start": 25571.88, + "end": 25574.32, + "probability": 0.766 + }, + { + "start": 25574.82, + "end": 25575.56, + "probability": 0.9065 + }, + { + "start": 25575.62, + "end": 25576.14, + "probability": 0.5163 + }, + { + "start": 25576.46, + "end": 25580.06, + "probability": 0.8799 + }, + { + "start": 25580.22, + "end": 25581.45, + "probability": 0.3787 + }, + { + "start": 25582.12, + "end": 25584.62, + "probability": 0.7953 + }, + { + "start": 25584.92, + "end": 25588.7, + "probability": 0.9481 + }, + { + "start": 25592.06, + "end": 25594.18, + "probability": 0.7617 + }, + { + "start": 25594.76, + "end": 25597.24, + "probability": 0.9753 + }, + { + "start": 25597.76, + "end": 25601.3, + "probability": 0.9084 + }, + { + "start": 25601.74, + "end": 25603.12, + "probability": 0.0881 + }, + { + "start": 25603.5, + "end": 25604.6, + "probability": 0.8593 + }, + { + "start": 25605.84, + "end": 25608.14, + "probability": 0.3368 + }, + { + "start": 25608.86, + "end": 25611.34, + "probability": 0.3241 + }, + { + "start": 25614.18, + "end": 25615.9, + "probability": 0.611 + }, + { + "start": 25616.62, + "end": 25618.3, + "probability": 0.939 + }, + { + "start": 25618.48, + "end": 25620.22, + "probability": 0.5686 + }, + { + "start": 25620.26, + "end": 25620.88, + "probability": 0.8825 + }, + { + "start": 25620.96, + "end": 25622.16, + "probability": 0.6662 + }, + { + "start": 25622.6, + "end": 25626.02, + "probability": 0.8127 + }, + { + "start": 25626.62, + "end": 25628.07, + "probability": 0.9782 + }, + { + "start": 25628.62, + "end": 25631.74, + "probability": 0.9744 + }, + { + "start": 25632.34, + "end": 25636.08, + "probability": 0.8836 + }, + { + "start": 25647.22, + "end": 25650.02, + "probability": 0.7598 + }, + { + "start": 25652.59, + "end": 25655.28, + "probability": 0.6047 + }, + { + "start": 25655.7, + "end": 25661.82, + "probability": 0.8726 + }, + { + "start": 25662.52, + "end": 25665.92, + "probability": 0.9473 + }, + { + "start": 25666.52, + "end": 25667.28, + "probability": 0.9219 + }, + { + "start": 25667.8, + "end": 25670.2, + "probability": 0.5348 + }, + { + "start": 25670.76, + "end": 25673.18, + "probability": 0.955 + }, + { + "start": 25673.44, + "end": 25674.36, + "probability": 0.9293 + }, + { + "start": 25674.62, + "end": 25677.21, + "probability": 0.8828 + }, + { + "start": 25677.76, + "end": 25682.44, + "probability": 0.9478 + }, + { + "start": 25683.3, + "end": 25684.66, + "probability": 0.8762 + }, + { + "start": 25684.98, + "end": 25687.84, + "probability": 0.8532 + }, + { + "start": 25688.38, + "end": 25691.75, + "probability": 0.969 + }, + { + "start": 25692.36, + "end": 25696.06, + "probability": 0.7062 + }, + { + "start": 25698.36, + "end": 25700.3, + "probability": 0.9016 + }, + { + "start": 25700.78, + "end": 25702.3, + "probability": 0.9799 + }, + { + "start": 25702.6, + "end": 25704.0, + "probability": 0.5439 + }, + { + "start": 25704.46, + "end": 25705.98, + "probability": 0.8673 + }, + { + "start": 25706.08, + "end": 25708.34, + "probability": 0.9914 + }, + { + "start": 25708.52, + "end": 25709.64, + "probability": 0.6748 + }, + { + "start": 25709.92, + "end": 25712.04, + "probability": 0.8876 + }, + { + "start": 25712.04, + "end": 25714.54, + "probability": 0.8219 + }, + { + "start": 25714.9, + "end": 25715.14, + "probability": 0.6651 + }, + { + "start": 25715.42, + "end": 25716.78, + "probability": 0.5557 + }, + { + "start": 25716.88, + "end": 25719.31, + "probability": 0.7117 + }, + { + "start": 25720.62, + "end": 25722.78, + "probability": 0.6651 + }, + { + "start": 25722.86, + "end": 25724.55, + "probability": 0.3074 + }, + { + "start": 25725.1, + "end": 25725.86, + "probability": 0.5985 + }, + { + "start": 25727.22, + "end": 25727.38, + "probability": 0.1329 + }, + { + "start": 25727.38, + "end": 25730.42, + "probability": 0.686 + }, + { + "start": 25731.04, + "end": 25734.04, + "probability": 0.9912 + }, + { + "start": 25735.18, + "end": 25738.56, + "probability": 0.9754 + }, + { + "start": 25738.84, + "end": 25740.36, + "probability": 0.6676 + }, + { + "start": 25741.0, + "end": 25744.06, + "probability": 0.9244 + }, + { + "start": 25744.82, + "end": 25747.21, + "probability": 0.996 + }, + { + "start": 25748.06, + "end": 25748.48, + "probability": 0.7004 + }, + { + "start": 25749.06, + "end": 25750.24, + "probability": 0.9656 + }, + { + "start": 25750.5, + "end": 25751.72, + "probability": 0.813 + }, + { + "start": 25751.88, + "end": 25755.4, + "probability": 0.8497 + }, + { + "start": 25755.5, + "end": 25756.68, + "probability": 0.5537 + }, + { + "start": 25756.8, + "end": 25758.04, + "probability": 0.9883 + }, + { + "start": 25758.62, + "end": 25759.36, + "probability": 0.9366 + }, + { + "start": 25759.4, + "end": 25759.98, + "probability": 0.4845 + }, + { + "start": 25760.2, + "end": 25761.52, + "probability": 0.8616 + }, + { + "start": 25762.0, + "end": 25764.48, + "probability": 0.9499 + }, + { + "start": 25764.6, + "end": 25765.68, + "probability": 0.8036 + }, + { + "start": 25766.12, + "end": 25767.28, + "probability": 0.9827 + }, + { + "start": 25767.38, + "end": 25770.94, + "probability": 0.959 + }, + { + "start": 25771.04, + "end": 25771.2, + "probability": 0.0247 + }, + { + "start": 25771.2, + "end": 25774.74, + "probability": 0.6091 + }, + { + "start": 25775.32, + "end": 25776.52, + "probability": 0.6766 + }, + { + "start": 25777.94, + "end": 25780.12, + "probability": 0.8254 + }, + { + "start": 25781.87, + "end": 25785.5, + "probability": 0.975 + }, + { + "start": 25785.72, + "end": 25787.38, + "probability": 0.6275 + }, + { + "start": 25787.86, + "end": 25789.32, + "probability": 0.8367 + }, + { + "start": 25789.46, + "end": 25791.0, + "probability": 0.898 + }, + { + "start": 25791.38, + "end": 25793.9, + "probability": 0.9624 + }, + { + "start": 25794.04, + "end": 25795.23, + "probability": 0.6493 + }, + { + "start": 25795.78, + "end": 25797.78, + "probability": 0.8605 + }, + { + "start": 25798.0, + "end": 25798.7, + "probability": 0.4947 + }, + { + "start": 25798.76, + "end": 25799.34, + "probability": 0.4895 + }, + { + "start": 25799.38, + "end": 25800.06, + "probability": 0.6524 + }, + { + "start": 25817.28, + "end": 25817.78, + "probability": 0.6175 + }, + { + "start": 25817.78, + "end": 25820.14, + "probability": 0.3908 + }, + { + "start": 25820.14, + "end": 25822.9, + "probability": 0.3749 + }, + { + "start": 25822.92, + "end": 25824.68, + "probability": 0.1704 + }, + { + "start": 25825.02, + "end": 25830.42, + "probability": 0.1005 + }, + { + "start": 25830.42, + "end": 25830.42, + "probability": 0.128 + }, + { + "start": 25830.42, + "end": 25834.36, + "probability": 0.049 + }, + { + "start": 25834.36, + "end": 25836.12, + "probability": 0.0233 + }, + { + "start": 25836.12, + "end": 25837.96, + "probability": 0.1025 + }, + { + "start": 25838.4, + "end": 25841.1, + "probability": 0.0145 + }, + { + "start": 25841.1, + "end": 25841.16, + "probability": 0.0993 + }, + { + "start": 25841.2, + "end": 25841.54, + "probability": 0.1321 + }, + { + "start": 25841.68, + "end": 25841.68, + "probability": 0.1924 + }, + { + "start": 25841.68, + "end": 25841.68, + "probability": 0.0587 + }, + { + "start": 25844.64, + "end": 25844.94, + "probability": 0.0108 + }, + { + "start": 25844.94, + "end": 25848.2, + "probability": 0.0812 + }, + { + "start": 25849.46, + "end": 25850.72, + "probability": 0.0276 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25891.0, + "end": 25891.0, + "probability": 0.0 + }, + { + "start": 25897.3, + "end": 25899.52, + "probability": 0.8348 + }, + { + "start": 25899.64, + "end": 25904.52, + "probability": 0.8397 + }, + { + "start": 25906.63, + "end": 25910.26, + "probability": 0.9707 + }, + { + "start": 25910.8, + "end": 25911.7, + "probability": 0.9056 + }, + { + "start": 25911.74, + "end": 25914.42, + "probability": 0.98 + }, + { + "start": 25914.5, + "end": 25915.64, + "probability": 0.8183 + }, + { + "start": 25915.76, + "end": 25918.82, + "probability": 0.4427 + }, + { + "start": 25919.57, + "end": 25921.87, + "probability": 0.6575 + }, + { + "start": 25922.52, + "end": 25925.46, + "probability": 0.1573 + }, + { + "start": 25926.04, + "end": 25926.36, + "probability": 0.0774 + }, + { + "start": 25927.08, + "end": 25933.96, + "probability": 0.7894 + }, + { + "start": 25935.17, + "end": 25939.58, + "probability": 0.9969 + }, + { + "start": 25939.58, + "end": 25946.86, + "probability": 0.9946 + }, + { + "start": 25948.98, + "end": 25949.54, + "probability": 0.7358 + }, + { + "start": 25949.6, + "end": 25955.24, + "probability": 0.9715 + }, + { + "start": 25956.19, + "end": 25960.46, + "probability": 0.9858 + }, + { + "start": 25960.7, + "end": 25963.86, + "probability": 0.9141 + }, + { + "start": 25964.26, + "end": 25972.36, + "probability": 0.9678 + }, + { + "start": 25972.44, + "end": 25973.06, + "probability": 0.6421 + }, + { + "start": 25973.12, + "end": 25976.64, + "probability": 0.9938 + }, + { + "start": 25976.68, + "end": 25980.22, + "probability": 0.9259 + }, + { + "start": 25981.12, + "end": 25986.56, + "probability": 0.9181 + }, + { + "start": 25986.76, + "end": 25990.42, + "probability": 0.8822 + }, + { + "start": 25990.6, + "end": 25993.48, + "probability": 0.9164 + }, + { + "start": 25993.68, + "end": 25994.72, + "probability": 0.8428 + }, + { + "start": 25995.17, + "end": 25998.52, + "probability": 0.8618 + }, + { + "start": 25998.72, + "end": 26004.96, + "probability": 0.9971 + }, + { + "start": 26005.6, + "end": 26012.94, + "probability": 0.9933 + }, + { + "start": 26013.86, + "end": 26021.44, + "probability": 0.9847 + }, + { + "start": 26021.44, + "end": 26027.78, + "probability": 0.9984 + }, + { + "start": 26028.88, + "end": 26029.6, + "probability": 0.5114 + }, + { + "start": 26029.78, + "end": 26033.5, + "probability": 0.9938 + }, + { + "start": 26033.5, + "end": 26038.3, + "probability": 0.9989 + }, + { + "start": 26038.68, + "end": 26041.92, + "probability": 0.9975 + }, + { + "start": 26042.38, + "end": 26042.72, + "probability": 0.8145 + }, + { + "start": 26043.58, + "end": 26045.52, + "probability": 0.7399 + }, + { + "start": 26045.72, + "end": 26049.62, + "probability": 0.571 + }, + { + "start": 26050.04, + "end": 26052.8, + "probability": 0.8015 + }, + { + "start": 26053.26, + "end": 26054.04, + "probability": 0.124 + }, + { + "start": 26054.46, + "end": 26056.2, + "probability": 0.803 + }, + { + "start": 26056.24, + "end": 26056.92, + "probability": 0.9893 + }, + { + "start": 26058.02, + "end": 26058.84, + "probability": 0.7466 + }, + { + "start": 26058.84, + "end": 26060.48, + "probability": 0.9973 + }, + { + "start": 26067.62, + "end": 26067.72, + "probability": 0.2668 + }, + { + "start": 26067.76, + "end": 26072.24, + "probability": 0.8595 + }, + { + "start": 26073.22, + "end": 26074.88, + "probability": 0.6273 + }, + { + "start": 26075.0, + "end": 26076.32, + "probability": 0.9649 + }, + { + "start": 26077.6, + "end": 26081.24, + "probability": 0.7259 + }, + { + "start": 26081.94, + "end": 26083.8, + "probability": 0.7865 + }, + { + "start": 26083.8, + "end": 26086.34, + "probability": 0.7698 + }, + { + "start": 26086.51, + "end": 26090.24, + "probability": 0.8366 + }, + { + "start": 26090.7, + "end": 26094.66, + "probability": 0.9064 + }, + { + "start": 26095.0, + "end": 26095.5, + "probability": 0.6792 + }, + { + "start": 26095.74, + "end": 26099.72, + "probability": 0.9604 + }, + { + "start": 26101.56, + "end": 26102.9, + "probability": 0.159 + }, + { + "start": 26103.42, + "end": 26104.34, + "probability": 0.6088 + }, + { + "start": 26104.92, + "end": 26105.72, + "probability": 0.8923 + }, + { + "start": 26105.86, + "end": 26111.0, + "probability": 0.9724 + }, + { + "start": 26111.56, + "end": 26115.9, + "probability": 0.8943 + }, + { + "start": 26116.3, + "end": 26118.12, + "probability": 0.3618 + }, + { + "start": 26118.36, + "end": 26120.0, + "probability": 0.8779 + }, + { + "start": 26121.4, + "end": 26127.68, + "probability": 0.9178 + }, + { + "start": 26128.08, + "end": 26129.6, + "probability": 0.6076 + }, + { + "start": 26129.64, + "end": 26130.02, + "probability": 0.5833 + }, + { + "start": 26130.08, + "end": 26134.04, + "probability": 0.9021 + }, + { + "start": 26134.56, + "end": 26137.48, + "probability": 0.9518 + }, + { + "start": 26138.14, + "end": 26138.36, + "probability": 0.1039 + }, + { + "start": 26138.36, + "end": 26139.06, + "probability": 0.6172 + }, + { + "start": 26139.12, + "end": 26146.2, + "probability": 0.968 + }, + { + "start": 26146.52, + "end": 26149.1, + "probability": 0.8126 + }, + { + "start": 26149.6, + "end": 26156.6, + "probability": 0.9936 + }, + { + "start": 26157.22, + "end": 26161.2, + "probability": 0.7896 + }, + { + "start": 26161.28, + "end": 26161.62, + "probability": 0.7228 + }, + { + "start": 26162.14, + "end": 26164.38, + "probability": 0.967 + }, + { + "start": 26165.1, + "end": 26166.14, + "probability": 0.479 + }, + { + "start": 26166.46, + "end": 26168.06, + "probability": 0.9639 + }, + { + "start": 26168.54, + "end": 26169.42, + "probability": 0.8883 + }, + { + "start": 26169.48, + "end": 26172.3, + "probability": 0.9741 + }, + { + "start": 26172.88, + "end": 26177.36, + "probability": 0.4252 + }, + { + "start": 26177.8, + "end": 26178.56, + "probability": 0.6132 + }, + { + "start": 26178.76, + "end": 26179.44, + "probability": 0.7464 + }, + { + "start": 26179.6, + "end": 26180.32, + "probability": 0.9239 + }, + { + "start": 26200.9, + "end": 26203.6, + "probability": 0.4178 + }, + { + "start": 26203.68, + "end": 26205.5, + "probability": 0.1433 + }, + { + "start": 26209.89, + "end": 26214.2, + "probability": 0.9907 + }, + { + "start": 26215.44, + "end": 26216.38, + "probability": 0.0724 + }, + { + "start": 26216.38, + "end": 26217.44, + "probability": 0.0335 + }, + { + "start": 26218.04, + "end": 26219.12, + "probability": 0.1808 + }, + { + "start": 26220.56, + "end": 26225.72, + "probability": 0.0756 + }, + { + "start": 26232.32, + "end": 26233.88, + "probability": 0.2044 + }, + { + "start": 26238.9, + "end": 26241.78, + "probability": 0.1318 + }, + { + "start": 26242.24, + "end": 26245.68, + "probability": 0.2734 + }, + { + "start": 26247.94, + "end": 26249.72, + "probability": 0.0002 + }, + { + "start": 26250.72, + "end": 26253.44, + "probability": 0.074 + }, + { + "start": 26258.02, + "end": 26259.28, + "probability": 0.1182 + }, + { + "start": 26259.28, + "end": 26259.74, + "probability": 0.2195 + }, + { + "start": 26259.76, + "end": 26260.76, + "probability": 0.1394 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.0, + "end": 26285.0, + "probability": 0.0 + }, + { + "start": 26285.28, + "end": 26285.28, + "probability": 0.0344 + }, + { + "start": 26285.28, + "end": 26285.28, + "probability": 0.0715 + }, + { + "start": 26285.28, + "end": 26289.08, + "probability": 0.5929 + }, + { + "start": 26289.28, + "end": 26289.44, + "probability": 0.3132 + }, + { + "start": 26289.6, + "end": 26292.04, + "probability": 0.8212 + }, + { + "start": 26292.5, + "end": 26294.46, + "probability": 0.9839 + }, + { + "start": 26294.46, + "end": 26299.46, + "probability": 0.8746 + }, + { + "start": 26299.9, + "end": 26301.9, + "probability": 0.9781 + }, + { + "start": 26302.22, + "end": 26303.68, + "probability": 0.8976 + }, + { + "start": 26304.38, + "end": 26309.52, + "probability": 0.9792 + }, + { + "start": 26309.7, + "end": 26310.46, + "probability": 0.5852 + }, + { + "start": 26310.9, + "end": 26311.64, + "probability": 0.9005 + }, + { + "start": 26312.04, + "end": 26315.44, + "probability": 0.9619 + }, + { + "start": 26315.68, + "end": 26319.2, + "probability": 0.9791 + }, + { + "start": 26319.64, + "end": 26321.24, + "probability": 0.9915 + }, + { + "start": 26321.76, + "end": 26323.96, + "probability": 0.874 + }, + { + "start": 26324.54, + "end": 26327.94, + "probability": 0.9719 + }, + { + "start": 26328.62, + "end": 26329.56, + "probability": 0.8191 + }, + { + "start": 26329.68, + "end": 26333.58, + "probability": 0.9834 + }, + { + "start": 26334.4, + "end": 26336.66, + "probability": 0.7167 + }, + { + "start": 26336.82, + "end": 26339.48, + "probability": 0.9503 + }, + { + "start": 26341.08, + "end": 26342.42, + "probability": 0.0797 + }, + { + "start": 26342.42, + "end": 26342.42, + "probability": 0.1586 + }, + { + "start": 26342.42, + "end": 26344.43, + "probability": 0.6787 + }, + { + "start": 26345.06, + "end": 26346.82, + "probability": 0.8658 + }, + { + "start": 26347.3, + "end": 26349.78, + "probability": 0.6495 + }, + { + "start": 26350.0, + "end": 26352.32, + "probability": 0.9631 + }, + { + "start": 26352.82, + "end": 26353.24, + "probability": 0.5888 + }, + { + "start": 26353.3, + "end": 26355.4, + "probability": 0.33 + }, + { + "start": 26356.04, + "end": 26358.78, + "probability": 0.6642 + }, + { + "start": 26359.78, + "end": 26361.18, + "probability": 0.6679 + }, + { + "start": 26361.78, + "end": 26365.4, + "probability": 0.8406 + }, + { + "start": 26365.8, + "end": 26367.12, + "probability": 0.7178 + }, + { + "start": 26367.2, + "end": 26369.43, + "probability": 0.9128 + }, + { + "start": 26369.94, + "end": 26373.18, + "probability": 0.918 + }, + { + "start": 26373.38, + "end": 26377.2, + "probability": 0.9059 + }, + { + "start": 26377.26, + "end": 26381.28, + "probability": 0.9922 + }, + { + "start": 26381.62, + "end": 26384.98, + "probability": 0.9847 + }, + { + "start": 26385.1, + "end": 26388.78, + "probability": 0.9949 + }, + { + "start": 26389.68, + "end": 26392.22, + "probability": 0.9841 + }, + { + "start": 26392.24, + "end": 26393.26, + "probability": 0.7106 + }, + { + "start": 26394.24, + "end": 26395.66, + "probability": 0.9556 + }, + { + "start": 26395.76, + "end": 26399.44, + "probability": 0.9417 + }, + { + "start": 26399.62, + "end": 26400.36, + "probability": 0.4112 + }, + { + "start": 26400.36, + "end": 26402.42, + "probability": 0.9258 + }, + { + "start": 26403.32, + "end": 26403.96, + "probability": 0.908 + }, + { + "start": 26404.4, + "end": 26406.14, + "probability": 0.5033 + }, + { + "start": 26406.46, + "end": 26409.04, + "probability": 0.6733 + }, + { + "start": 26409.68, + "end": 26410.82, + "probability": 0.7842 + }, + { + "start": 26411.46, + "end": 26416.62, + "probability": 0.0786 + }, + { + "start": 26416.76, + "end": 26418.1, + "probability": 0.7451 + }, + { + "start": 26418.24, + "end": 26420.36, + "probability": 0.8496 + }, + { + "start": 26420.98, + "end": 26423.28, + "probability": 0.9023 + }, + { + "start": 26423.54, + "end": 26428.88, + "probability": 0.9976 + }, + { + "start": 26428.88, + "end": 26433.3, + "probability": 0.9914 + }, + { + "start": 26433.66, + "end": 26437.04, + "probability": 0.389 + }, + { + "start": 26437.66, + "end": 26438.16, + "probability": 0.5995 + }, + { + "start": 26438.24, + "end": 26438.74, + "probability": 0.792 + }, + { + "start": 26438.84, + "end": 26439.6, + "probability": 0.7008 + }, + { + "start": 26458.22, + "end": 26460.78, + "probability": 0.195 + }, + { + "start": 26461.42, + "end": 26461.82, + "probability": 0.0362 + }, + { + "start": 26462.86, + "end": 26470.16, + "probability": 0.2874 + }, + { + "start": 26470.16, + "end": 26473.12, + "probability": 0.0261 + }, + { + "start": 26475.72, + "end": 26476.32, + "probability": 0.0589 + }, + { + "start": 26476.32, + "end": 26478.0, + "probability": 0.1431 + }, + { + "start": 26481.62, + "end": 26485.8, + "probability": 0.0223 + }, + { + "start": 26487.6, + "end": 26491.3, + "probability": 0.1055 + }, + { + "start": 26491.3, + "end": 26491.96, + "probability": 0.1184 + }, + { + "start": 26494.55, + "end": 26496.88, + "probability": 0.1174 + }, + { + "start": 26496.88, + "end": 26503.72, + "probability": 0.2109 + }, + { + "start": 26504.3, + "end": 26505.82, + "probability": 0.4035 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.0, + "end": 26524.0, + "probability": 0.0 + }, + { + "start": 26524.18, + "end": 26524.4, + "probability": 0.0419 + }, + { + "start": 26524.4, + "end": 26526.2, + "probability": 0.1137 + }, + { + "start": 26526.2, + "end": 26532.02, + "probability": 0.9804 + }, + { + "start": 26532.82, + "end": 26537.06, + "probability": 0.9873 + }, + { + "start": 26537.74, + "end": 26540.0, + "probability": 0.8735 + }, + { + "start": 26540.12, + "end": 26543.16, + "probability": 0.9301 + }, + { + "start": 26543.16, + "end": 26546.16, + "probability": 0.9929 + }, + { + "start": 26546.3, + "end": 26549.06, + "probability": 0.7115 + }, + { + "start": 26549.62, + "end": 26552.52, + "probability": 0.9358 + }, + { + "start": 26552.64, + "end": 26553.6, + "probability": 0.9078 + }, + { + "start": 26553.68, + "end": 26556.92, + "probability": 0.9706 + }, + { + "start": 26557.24, + "end": 26562.04, + "probability": 0.9692 + }, + { + "start": 26562.04, + "end": 26567.16, + "probability": 0.9786 + }, + { + "start": 26567.66, + "end": 26570.32, + "probability": 0.9001 + }, + { + "start": 26570.32, + "end": 26573.78, + "probability": 0.9969 + }, + { + "start": 26575.24, + "end": 26578.72, + "probability": 0.9573 + }, + { + "start": 26579.34, + "end": 26581.52, + "probability": 0.8387 + }, + { + "start": 26581.72, + "end": 26585.14, + "probability": 0.9761 + }, + { + "start": 26586.46, + "end": 26587.08, + "probability": 0.5917 + }, + { + "start": 26587.18, + "end": 26588.06, + "probability": 0.9929 + }, + { + "start": 26588.16, + "end": 26589.2, + "probability": 0.9502 + }, + { + "start": 26589.32, + "end": 26593.84, + "probability": 0.9838 + }, + { + "start": 26594.66, + "end": 26597.64, + "probability": 0.9853 + }, + { + "start": 26597.64, + "end": 26602.38, + "probability": 0.9917 + }, + { + "start": 26602.7, + "end": 26603.26, + "probability": 0.4716 + }, + { + "start": 26603.32, + "end": 26603.8, + "probability": 0.9066 + }, + { + "start": 26603.94, + "end": 26608.4, + "probability": 0.991 + }, + { + "start": 26608.4, + "end": 26612.5, + "probability": 0.9628 + }, + { + "start": 26613.32, + "end": 26617.48, + "probability": 0.9934 + }, + { + "start": 26618.16, + "end": 26621.72, + "probability": 0.9644 + }, + { + "start": 26621.82, + "end": 26623.2, + "probability": 0.98 + }, + { + "start": 26623.7, + "end": 26626.76, + "probability": 0.8549 + }, + { + "start": 26627.68, + "end": 26629.6, + "probability": 0.8645 + }, + { + "start": 26629.68, + "end": 26632.52, + "probability": 0.4963 + }, + { + "start": 26633.54, + "end": 26636.16, + "probability": 0.5944 + }, + { + "start": 26636.18, + "end": 26636.82, + "probability": 0.7635 + }, + { + "start": 26637.1, + "end": 26637.82, + "probability": 0.8908 + }, + { + "start": 26651.43, + "end": 26654.54, + "probability": 0.9063 + }, + { + "start": 26655.4, + "end": 26657.18, + "probability": 0.3393 + }, + { + "start": 26657.24, + "end": 26661.58, + "probability": 0.7062 + }, + { + "start": 26662.16, + "end": 26667.74, + "probability": 0.9718 + }, + { + "start": 26668.36, + "end": 26669.28, + "probability": 0.5338 + }, + { + "start": 26669.32, + "end": 26673.38, + "probability": 0.9976 + }, + { + "start": 26674.14, + "end": 26676.28, + "probability": 0.9932 + }, + { + "start": 26676.82, + "end": 26680.52, + "probability": 0.8685 + }, + { + "start": 26680.68, + "end": 26681.42, + "probability": 0.6278 + }, + { + "start": 26681.52, + "end": 26688.02, + "probability": 0.9884 + }, + { + "start": 26688.08, + "end": 26691.9, + "probability": 0.8771 + }, + { + "start": 26692.56, + "end": 26694.28, + "probability": 0.864 + }, + { + "start": 26694.38, + "end": 26696.04, + "probability": 0.9204 + }, + { + "start": 26696.14, + "end": 26697.36, + "probability": 0.6126 + }, + { + "start": 26697.99, + "end": 26701.91, + "probability": 0.9976 + }, + { + "start": 26702.52, + "end": 26704.72, + "probability": 0.9952 + }, + { + "start": 26704.9, + "end": 26709.72, + "probability": 0.9798 + }, + { + "start": 26709.92, + "end": 26711.17, + "probability": 0.8799 + }, + { + "start": 26712.1, + "end": 26714.14, + "probability": 0.8472 + }, + { + "start": 26714.16, + "end": 26719.92, + "probability": 0.9714 + }, + { + "start": 26720.26, + "end": 26720.48, + "probability": 0.4313 + }, + { + "start": 26720.6, + "end": 26721.9, + "probability": 0.8807 + }, + { + "start": 26722.42, + "end": 26726.32, + "probability": 0.9818 + }, + { + "start": 26727.16, + "end": 26729.16, + "probability": 0.8311 + }, + { + "start": 26729.32, + "end": 26730.75, + "probability": 0.8826 + }, + { + "start": 26731.78, + "end": 26737.44, + "probability": 0.9607 + }, + { + "start": 26738.16, + "end": 26738.6, + "probability": 0.696 + }, + { + "start": 26738.66, + "end": 26744.08, + "probability": 0.9978 + }, + { + "start": 26744.08, + "end": 26749.5, + "probability": 0.7713 + }, + { + "start": 26750.16, + "end": 26756.24, + "probability": 0.9235 + }, + { + "start": 26756.84, + "end": 26762.18, + "probability": 0.9745 + }, + { + "start": 26762.96, + "end": 26772.44, + "probability": 0.9781 + }, + { + "start": 26772.44, + "end": 26778.68, + "probability": 0.9944 + }, + { + "start": 26780.2, + "end": 26785.78, + "probability": 0.9968 + }, + { + "start": 26785.82, + "end": 26786.46, + "probability": 0.5327 + }, + { + "start": 26786.68, + "end": 26787.02, + "probability": 0.4199 + }, + { + "start": 26787.08, + "end": 26788.44, + "probability": 0.8403 + }, + { + "start": 26788.5, + "end": 26789.08, + "probability": 0.8672 + }, + { + "start": 26789.22, + "end": 26793.02, + "probability": 0.8691 + }, + { + "start": 26793.32, + "end": 26797.16, + "probability": 0.9932 + }, + { + "start": 26797.26, + "end": 26798.76, + "probability": 0.8677 + }, + { + "start": 26798.98, + "end": 26800.08, + "probability": 0.7622 + }, + { + "start": 26800.78, + "end": 26802.34, + "probability": 0.9957 + }, + { + "start": 26802.66, + "end": 26809.08, + "probability": 0.9116 + }, + { + "start": 26810.7, + "end": 26813.84, + "probability": 0.9578 + }, + { + "start": 26813.84, + "end": 26816.94, + "probability": 0.702 + }, + { + "start": 26817.02, + "end": 26817.58, + "probability": 0.5715 + }, + { + "start": 26818.08, + "end": 26822.78, + "probability": 0.8828 + }, + { + "start": 26824.04, + "end": 26828.2, + "probability": 0.9806 + }, + { + "start": 26828.78, + "end": 26830.74, + "probability": 0.8369 + }, + { + "start": 26831.18, + "end": 26835.44, + "probability": 0.9971 + }, + { + "start": 26836.0, + "end": 26842.46, + "probability": 0.9497 + }, + { + "start": 26843.1, + "end": 26844.24, + "probability": 0.8286 + }, + { + "start": 26844.74, + "end": 26851.22, + "probability": 0.9857 + }, + { + "start": 26851.32, + "end": 26851.76, + "probability": 0.4481 + }, + { + "start": 26851.86, + "end": 26852.94, + "probability": 0.5777 + }, + { + "start": 26853.04, + "end": 26853.62, + "probability": 0.864 + }, + { + "start": 26853.72, + "end": 26854.88, + "probability": 0.6293 + }, + { + "start": 26855.08, + "end": 26857.2, + "probability": 0.9946 + }, + { + "start": 26857.94, + "end": 26862.26, + "probability": 0.9945 + }, + { + "start": 26862.36, + "end": 26866.88, + "probability": 0.929 + }, + { + "start": 26867.24, + "end": 26867.86, + "probability": 0.7589 + }, + { + "start": 26868.2, + "end": 26872.48, + "probability": 0.9931 + }, + { + "start": 26872.48, + "end": 26875.58, + "probability": 0.9977 + }, + { + "start": 26875.74, + "end": 26876.2, + "probability": 0.7265 + }, + { + "start": 26876.58, + "end": 26878.38, + "probability": 0.6404 + }, + { + "start": 26879.12, + "end": 26880.86, + "probability": 0.9896 + }, + { + "start": 26881.14, + "end": 26884.74, + "probability": 0.9604 + }, + { + "start": 26884.86, + "end": 26887.52, + "probability": 0.5026 + }, + { + "start": 26888.16, + "end": 26888.98, + "probability": 0.2011 + }, + { + "start": 26889.32, + "end": 26891.74, + "probability": 0.1564 + }, + { + "start": 26892.0, + "end": 26893.1, + "probability": 0.8572 + }, + { + "start": 26893.52, + "end": 26894.16, + "probability": 0.6489 + }, + { + "start": 26894.24, + "end": 26894.84, + "probability": 0.7488 + }, + { + "start": 26894.88, + "end": 26896.26, + "probability": 0.5652 + }, + { + "start": 26910.42, + "end": 26916.18, + "probability": 0.167 + }, + { + "start": 26916.3, + "end": 26918.1, + "probability": 0.1233 + }, + { + "start": 26919.45, + "end": 26920.06, + "probability": 0.0314 + }, + { + "start": 26920.06, + "end": 26920.06, + "probability": 0.048 + }, + { + "start": 26920.06, + "end": 26920.82, + "probability": 0.5686 + }, + { + "start": 26920.92, + "end": 26921.56, + "probability": 0.6858 + }, + { + "start": 26923.56, + "end": 26924.24, + "probability": 0.0285 + }, + { + "start": 26926.55, + "end": 26928.56, + "probability": 0.1049 + }, + { + "start": 26929.74, + "end": 26930.64, + "probability": 0.0659 + }, + { + "start": 26930.81, + "end": 26931.31, + "probability": 0.0415 + }, + { + "start": 26932.08, + "end": 26936.86, + "probability": 0.0496 + }, + { + "start": 26936.86, + "end": 26940.42, + "probability": 0.0196 + }, + { + "start": 26941.72, + "end": 26944.18, + "probability": 0.0247 + }, + { + "start": 26944.32, + "end": 26944.32, + "probability": 0.0487 + }, + { + "start": 26944.32, + "end": 26944.32, + "probability": 0.0908 + }, + { + "start": 26944.34, + "end": 26946.56, + "probability": 0.1581 + }, + { + "start": 26946.56, + "end": 26949.98, + "probability": 0.5359 + }, + { + "start": 26951.68, + "end": 26954.22, + "probability": 0.8521 + }, + { + "start": 26955.22, + "end": 26958.52, + "probability": 0.0544 + }, + { + "start": 26958.52, + "end": 26958.92, + "probability": 0.2841 + }, + { + "start": 26959.34, + "end": 26960.0, + "probability": 0.6665 + }, + { + "start": 26960.56, + "end": 26962.62, + "probability": 0.8328 + }, + { + "start": 26963.42, + "end": 26966.94, + "probability": 0.8355 + }, + { + "start": 26967.12, + "end": 26970.46, + "probability": 0.9947 + }, + { + "start": 26970.68, + "end": 26974.44, + "probability": 0.9823 + }, + { + "start": 26975.34, + "end": 26976.38, + "probability": 0.4799 + }, + { + "start": 26977.77, + "end": 26979.88, + "probability": 0.9097 + }, + { + "start": 26986.62, + "end": 26987.56, + "probability": 0.6448 + }, + { + "start": 26987.74, + "end": 26990.74, + "probability": 0.9811 + }, + { + "start": 26991.34, + "end": 26997.54, + "probability": 0.8994 + }, + { + "start": 26999.86, + "end": 27003.76, + "probability": 0.9468 + }, + { + "start": 27004.7, + "end": 27013.98, + "probability": 0.8589 + }, + { + "start": 27013.98, + "end": 27021.74, + "probability": 0.9835 + }, + { + "start": 27022.06, + "end": 27025.44, + "probability": 0.9987 + }, + { + "start": 27025.6, + "end": 27027.34, + "probability": 0.2379 + }, + { + "start": 27027.52, + "end": 27030.72, + "probability": 0.7438 + }, + { + "start": 27031.82, + "end": 27035.96, + "probability": 0.6876 + }, + { + "start": 27036.72, + "end": 27040.18, + "probability": 0.9789 + }, + { + "start": 27040.32, + "end": 27042.3, + "probability": 0.9504 + }, + { + "start": 27042.94, + "end": 27049.76, + "probability": 0.7326 + }, + { + "start": 27049.8, + "end": 27050.48, + "probability": 0.9098 + }, + { + "start": 27050.54, + "end": 27052.54, + "probability": 0.9449 + }, + { + "start": 27052.96, + "end": 27058.02, + "probability": 0.9333 + }, + { + "start": 27058.42, + "end": 27066.12, + "probability": 0.9677 + }, + { + "start": 27066.12, + "end": 27070.46, + "probability": 0.9435 + }, + { + "start": 27071.66, + "end": 27072.78, + "probability": 0.1461 + }, + { + "start": 27073.68, + "end": 27075.64, + "probability": 0.6001 + }, + { + "start": 27075.64, + "end": 27075.74, + "probability": 0.3636 + }, + { + "start": 27075.74, + "end": 27077.38, + "probability": 0.7935 + }, + { + "start": 27078.24, + "end": 27079.2, + "probability": 0.6985 + }, + { + "start": 27079.42, + "end": 27080.88, + "probability": 0.8027 + }, + { + "start": 27081.0, + "end": 27083.01, + "probability": 0.9263 + }, + { + "start": 27083.6, + "end": 27085.82, + "probability": 0.816 + }, + { + "start": 27086.28, + "end": 27087.96, + "probability": 0.9338 + }, + { + "start": 27088.72, + "end": 27091.76, + "probability": 0.7559 + }, + { + "start": 27091.82, + "end": 27092.76, + "probability": 0.545 + }, + { + "start": 27092.82, + "end": 27095.38, + "probability": 0.7492 + }, + { + "start": 27095.86, + "end": 27097.44, + "probability": 0.9556 + }, + { + "start": 27098.04, + "end": 27104.5, + "probability": 0.7799 + }, + { + "start": 27104.7, + "end": 27105.48, + "probability": 0.6029 + }, + { + "start": 27105.86, + "end": 27112.16, + "probability": 0.7591 + }, + { + "start": 27112.16, + "end": 27117.74, + "probability": 0.8612 + }, + { + "start": 27118.12, + "end": 27121.75, + "probability": 0.9455 + }, + { + "start": 27122.1, + "end": 27122.4, + "probability": 0.284 + }, + { + "start": 27123.14, + "end": 27123.6, + "probability": 0.2332 + }, + { + "start": 27123.76, + "end": 27126.2, + "probability": 0.6855 + }, + { + "start": 27126.48, + "end": 27127.64, + "probability": 0.6452 + }, + { + "start": 27128.1, + "end": 27134.04, + "probability": 0.8926 + }, + { + "start": 27134.52, + "end": 27138.66, + "probability": 0.9736 + }, + { + "start": 27139.08, + "end": 27140.1, + "probability": 0.6782 + }, + { + "start": 27140.24, + "end": 27141.28, + "probability": 0.6948 + }, + { + "start": 27141.46, + "end": 27142.5, + "probability": 0.9431 + }, + { + "start": 27142.8, + "end": 27146.46, + "probability": 0.9858 + }, + { + "start": 27146.86, + "end": 27149.08, + "probability": 0.7183 + }, + { + "start": 27149.56, + "end": 27153.62, + "probability": 0.9717 + }, + { + "start": 27154.52, + "end": 27155.83, + "probability": 0.9092 + }, + { + "start": 27156.76, + "end": 27161.28, + "probability": 0.9585 + }, + { + "start": 27162.4, + "end": 27164.98, + "probability": 0.6413 + }, + { + "start": 27165.1, + "end": 27167.82, + "probability": 0.8486 + }, + { + "start": 27167.98, + "end": 27168.62, + "probability": 0.8334 + }, + { + "start": 27168.98, + "end": 27169.98, + "probability": 0.9855 + }, + { + "start": 27171.02, + "end": 27171.5, + "probability": 0.7614 + }, + { + "start": 27171.58, + "end": 27172.24, + "probability": 0.9651 + }, + { + "start": 27172.3, + "end": 27176.6, + "probability": 0.9478 + }, + { + "start": 27176.7, + "end": 27179.58, + "probability": 0.8418 + }, + { + "start": 27180.14, + "end": 27186.76, + "probability": 0.9972 + }, + { + "start": 27186.76, + "end": 27192.6, + "probability": 0.9742 + }, + { + "start": 27192.84, + "end": 27193.26, + "probability": 0.2696 + }, + { + "start": 27193.84, + "end": 27201.22, + "probability": 0.9961 + }, + { + "start": 27201.62, + "end": 27204.72, + "probability": 0.9838 + }, + { + "start": 27205.36, + "end": 27213.92, + "probability": 0.9486 + }, + { + "start": 27214.44, + "end": 27219.66, + "probability": 0.9802 + }, + { + "start": 27220.4, + "end": 27224.14, + "probability": 0.9951 + }, + { + "start": 27224.32, + "end": 27231.36, + "probability": 0.9023 + }, + { + "start": 27231.42, + "end": 27237.26, + "probability": 0.9927 + }, + { + "start": 27238.14, + "end": 27241.76, + "probability": 0.9578 + }, + { + "start": 27242.26, + "end": 27242.9, + "probability": 0.7554 + }, + { + "start": 27248.1, + "end": 27251.88, + "probability": 0.6835 + }, + { + "start": 27252.5, + "end": 27255.56, + "probability": 0.4333 + }, + { + "start": 27255.62, + "end": 27256.9, + "probability": 0.4974 + }, + { + "start": 27257.14, + "end": 27257.48, + "probability": 0.1173 + }, + { + "start": 27258.14, + "end": 27260.72, + "probability": 0.8472 + }, + { + "start": 27261.4, + "end": 27264.84, + "probability": 0.6287 + }, + { + "start": 27265.7, + "end": 27266.02, + "probability": 0.4843 + }, + { + "start": 27266.28, + "end": 27268.18, + "probability": 0.0685 + }, + { + "start": 27269.94, + "end": 27270.94, + "probability": 0.5749 + }, + { + "start": 27281.74, + "end": 27282.24, + "probability": 0.8175 + }, + { + "start": 27282.4, + "end": 27286.86, + "probability": 0.9911 + }, + { + "start": 27287.72, + "end": 27290.18, + "probability": 0.7267 + }, + { + "start": 27292.9, + "end": 27293.62, + "probability": 0.8455 + }, + { + "start": 27294.04, + "end": 27295.86, + "probability": 0.7249 + }, + { + "start": 27295.94, + "end": 27296.26, + "probability": 0.6569 + }, + { + "start": 27298.01, + "end": 27300.78, + "probability": 0.6452 + }, + { + "start": 27301.18, + "end": 27303.48, + "probability": 0.5866 + }, + { + "start": 27303.52, + "end": 27304.38, + "probability": 0.662 + }, + { + "start": 27304.58, + "end": 27304.96, + "probability": 0.5278 + }, + { + "start": 27304.98, + "end": 27306.02, + "probability": 0.7137 + }, + { + "start": 27307.28, + "end": 27309.39, + "probability": 0.5833 + }, + { + "start": 27310.64, + "end": 27312.36, + "probability": 0.7837 + }, + { + "start": 27312.4, + "end": 27315.48, + "probability": 0.7418 + }, + { + "start": 27315.94, + "end": 27321.48, + "probability": 0.9053 + }, + { + "start": 27321.86, + "end": 27322.6, + "probability": 0.9617 + }, + { + "start": 27322.96, + "end": 27326.32, + "probability": 0.9491 + }, + { + "start": 27326.32, + "end": 27330.52, + "probability": 0.888 + }, + { + "start": 27330.58, + "end": 27331.64, + "probability": 0.9579 + }, + { + "start": 27331.74, + "end": 27332.22, + "probability": 0.6915 + }, + { + "start": 27333.24, + "end": 27337.4, + "probability": 0.8587 + }, + { + "start": 27337.4, + "end": 27341.18, + "probability": 0.6995 + }, + { + "start": 27341.68, + "end": 27342.33, + "probability": 0.9758 + }, + { + "start": 27342.78, + "end": 27345.6, + "probability": 0.8842 + }, + { + "start": 27345.68, + "end": 27350.42, + "probability": 0.9948 + }, + { + "start": 27350.6, + "end": 27352.18, + "probability": 0.9648 + }, + { + "start": 27353.1, + "end": 27359.53, + "probability": 0.9878 + }, + { + "start": 27360.2, + "end": 27360.9, + "probability": 0.767 + }, + { + "start": 27361.1, + "end": 27363.84, + "probability": 0.9135 + }, + { + "start": 27364.44, + "end": 27365.12, + "probability": 0.3487 + }, + { + "start": 27365.74, + "end": 27367.66, + "probability": 0.8818 + }, + { + "start": 27367.78, + "end": 27368.58, + "probability": 0.8335 + }, + { + "start": 27368.86, + "end": 27370.14, + "probability": 0.7704 + }, + { + "start": 27370.2, + "end": 27375.86, + "probability": 0.9692 + }, + { + "start": 27376.26, + "end": 27379.92, + "probability": 0.5303 + }, + { + "start": 27379.92, + "end": 27379.92, + "probability": 0.3653 + }, + { + "start": 27379.92, + "end": 27380.6, + "probability": 0.9323 + }, + { + "start": 27380.7, + "end": 27385.66, + "probability": 0.9345 + }, + { + "start": 27386.16, + "end": 27387.22, + "probability": 0.9399 + }, + { + "start": 27388.1, + "end": 27388.26, + "probability": 0.622 + }, + { + "start": 27388.26, + "end": 27388.94, + "probability": 0.8071 + }, + { + "start": 27388.98, + "end": 27390.28, + "probability": 0.4922 + }, + { + "start": 27391.32, + "end": 27393.42, + "probability": 0.8587 + }, + { + "start": 27393.74, + "end": 27395.1, + "probability": 0.9814 + }, + { + "start": 27396.14, + "end": 27396.92, + "probability": 0.1565 + }, + { + "start": 27396.98, + "end": 27398.5, + "probability": 0.0232 + }, + { + "start": 27398.5, + "end": 27399.62, + "probability": 0.4455 + }, + { + "start": 27399.7, + "end": 27402.32, + "probability": 0.7419 + }, + { + "start": 27403.08, + "end": 27404.74, + "probability": 0.5399 + }, + { + "start": 27404.74, + "end": 27406.02, + "probability": 0.5485 + }, + { + "start": 27422.08, + "end": 27422.46, + "probability": 0.6475 + }, + { + "start": 27424.86, + "end": 27428.0, + "probability": 0.6737 + }, + { + "start": 27429.52, + "end": 27430.68, + "probability": 0.8627 + }, + { + "start": 27430.76, + "end": 27432.26, + "probability": 0.6934 + }, + { + "start": 27432.58, + "end": 27441.3, + "probability": 0.8657 + }, + { + "start": 27442.32, + "end": 27443.8, + "probability": 0.9111 + }, + { + "start": 27444.5, + "end": 27449.24, + "probability": 0.7329 + }, + { + "start": 27449.24, + "end": 27451.98, + "probability": 0.9365 + }, + { + "start": 27452.86, + "end": 27457.52, + "probability": 0.9761 + }, + { + "start": 27457.68, + "end": 27459.28, + "probability": 0.9539 + }, + { + "start": 27459.68, + "end": 27461.68, + "probability": 0.9757 + }, + { + "start": 27462.08, + "end": 27463.52, + "probability": 0.7402 + }, + { + "start": 27463.82, + "end": 27466.2, + "probability": 0.7267 + }, + { + "start": 27466.26, + "end": 27467.04, + "probability": 0.6948 + }, + { + "start": 27467.12, + "end": 27467.68, + "probability": 0.7876 + }, + { + "start": 27468.08, + "end": 27472.1, + "probability": 0.8564 + }, + { + "start": 27472.9, + "end": 27473.76, + "probability": 0.9507 + }, + { + "start": 27473.94, + "end": 27476.08, + "probability": 0.9834 + }, + { + "start": 27476.92, + "end": 27477.36, + "probability": 0.9954 + }, + { + "start": 27477.92, + "end": 27482.66, + "probability": 0.9172 + }, + { + "start": 27483.08, + "end": 27486.58, + "probability": 0.9621 + }, + { + "start": 27486.74, + "end": 27488.54, + "probability": 0.7099 + }, + { + "start": 27488.64, + "end": 27489.58, + "probability": 0.4869 + }, + { + "start": 27489.7, + "end": 27490.78, + "probability": 0.9032 + }, + { + "start": 27491.0, + "end": 27494.82, + "probability": 0.8809 + }, + { + "start": 27494.92, + "end": 27504.14, + "probability": 0.9662 + }, + { + "start": 27504.24, + "end": 27505.28, + "probability": 0.7944 + }, + { + "start": 27505.46, + "end": 27507.1, + "probability": 0.8511 + }, + { + "start": 27507.3, + "end": 27507.86, + "probability": 0.3656 + }, + { + "start": 27508.0, + "end": 27511.45, + "probability": 0.8478 + }, + { + "start": 27512.38, + "end": 27514.38, + "probability": 0.812 + }, + { + "start": 27514.44, + "end": 27517.42, + "probability": 0.7011 + }, + { + "start": 27517.72, + "end": 27522.58, + "probability": 0.9187 + }, + { + "start": 27522.86, + "end": 27524.42, + "probability": 0.96 + }, + { + "start": 27524.7, + "end": 27527.42, + "probability": 0.9772 + }, + { + "start": 27527.48, + "end": 27528.37, + "probability": 0.9296 + }, + { + "start": 27529.12, + "end": 27532.46, + "probability": 0.8152 + }, + { + "start": 27532.56, + "end": 27534.95, + "probability": 0.9824 + }, + { + "start": 27536.3, + "end": 27541.56, + "probability": 0.9359 + }, + { + "start": 27541.92, + "end": 27543.74, + "probability": 0.7282 + }, + { + "start": 27544.1, + "end": 27547.58, + "probability": 0.897 + }, + { + "start": 27547.7, + "end": 27548.7, + "probability": 0.6279 + }, + { + "start": 27549.1, + "end": 27550.64, + "probability": 0.7197 + }, + { + "start": 27550.7, + "end": 27552.64, + "probability": 0.9783 + }, + { + "start": 27552.9, + "end": 27553.39, + "probability": 0.938 + }, + { + "start": 27553.72, + "end": 27557.14, + "probability": 0.7591 + }, + { + "start": 27558.7, + "end": 27562.34, + "probability": 0.9594 + }, + { + "start": 27563.19, + "end": 27565.92, + "probability": 0.725 + }, + { + "start": 27566.1, + "end": 27568.16, + "probability": 0.6444 + }, + { + "start": 27568.72, + "end": 27574.46, + "probability": 0.7365 + }, + { + "start": 27574.46, + "end": 27577.92, + "probability": 0.7825 + }, + { + "start": 27578.86, + "end": 27583.54, + "probability": 0.8695 + }, + { + "start": 27583.66, + "end": 27589.34, + "probability": 0.8423 + }, + { + "start": 27589.34, + "end": 27593.78, + "probability": 0.9194 + }, + { + "start": 27593.8, + "end": 27594.74, + "probability": 0.7391 + }, + { + "start": 27594.9, + "end": 27596.14, + "probability": 0.6541 + }, + { + "start": 27596.24, + "end": 27598.64, + "probability": 0.926 + }, + { + "start": 27599.22, + "end": 27599.22, + "probability": 0.1167 + }, + { + "start": 27599.56, + "end": 27601.28, + "probability": 0.0063 + }, + { + "start": 27602.98, + "end": 27607.56, + "probability": 0.0521 + }, + { + "start": 27608.56, + "end": 27611.2, + "probability": 0.1023 + }, + { + "start": 27611.2, + "end": 27613.46, + "probability": 0.0351 + }, + { + "start": 27613.46, + "end": 27615.04, + "probability": 0.0358 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 27824.61, + "end": 27824.61, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28207.0, + "end": 28207.0, + "probability": 0.0 + }, + { + "start": 28207.0, + "end": 28207.0, + "probability": 0.0 + }, + { + "start": 28207.0, + "end": 28207.0, + "probability": 0.0 + }, + { + "start": 28207.0, + "end": 28207.0, + "probability": 0.0 + }, + { + "start": 28207.0, + "end": 28207.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28226.0, + "end": 28226.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28250.0, + "end": 28250.0, + "probability": 0.0 + }, + { + "start": 28276.0, + "end": 28276.0, + "probability": 0.0 + }, + { + "start": 28276.0, + "end": 28276.0, + "probability": 0.0 + }, + { + "start": 28276.0, + "end": 28276.0, + "probability": 0.0 + }, + { + "start": 28276.0, + "end": 28276.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28292.0, + "end": 28292.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28314.0, + "end": 28314.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + }, + { + "start": 28342.0, + "end": 28342.0, + "probability": 0.0 + } + ], + "segments_count": 10751, + "words_count": 52778, + "avg_words_per_segment": 4.9091, + "avg_segment_duration": 2.0231, + "avg_words_per_minute": 113.8086, + "plenum_id": "27594", + "duration": 27824.61, + "title": null, + "plenum_date": "2013-04-22" +} \ No newline at end of file