diff --git "a/30636/metadata.json" "b/30636/metadata.json" new file mode 100644--- /dev/null +++ "b/30636/metadata.json" @@ -0,0 +1,62322 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "30636", + "quality_score": 0.9294, + "per_segment_quality_scores": [ + { + "start": 15.96, + "end": 17.52, + "probability": 0.7427 + }, + { + "start": 18.06, + "end": 20.58, + "probability": 0.6268 + }, + { + "start": 20.9, + "end": 26.5, + "probability": 0.9036 + }, + { + "start": 27.22, + "end": 27.64, + "probability": 0.7896 + }, + { + "start": 27.96, + "end": 36.18, + "probability": 0.9771 + }, + { + "start": 36.18, + "end": 42.25, + "probability": 0.9648 + }, + { + "start": 44.3, + "end": 47.82, + "probability": 0.9796 + }, + { + "start": 48.44, + "end": 50.46, + "probability": 0.9653 + }, + { + "start": 50.6, + "end": 51.78, + "probability": 0.825 + }, + { + "start": 51.96, + "end": 55.02, + "probability": 0.9972 + }, + { + "start": 55.14, + "end": 58.64, + "probability": 0.995 + }, + { + "start": 59.14, + "end": 60.74, + "probability": 0.7692 + }, + { + "start": 61.98, + "end": 64.12, + "probability": 0.7655 + }, + { + "start": 64.28, + "end": 66.46, + "probability": 0.8164 + }, + { + "start": 66.62, + "end": 67.81, + "probability": 0.8074 + }, + { + "start": 68.12, + "end": 68.64, + "probability": 0.668 + }, + { + "start": 68.7, + "end": 69.12, + "probability": 0.3939 + }, + { + "start": 69.8, + "end": 70.44, + "probability": 0.7996 + }, + { + "start": 71.98, + "end": 77.62, + "probability": 0.7686 + }, + { + "start": 80.27, + "end": 82.96, + "probability": 0.6168 + }, + { + "start": 85.18, + "end": 86.86, + "probability": 0.6797 + }, + { + "start": 87.68, + "end": 88.86, + "probability": 0.5951 + }, + { + "start": 89.38, + "end": 90.38, + "probability": 0.7646 + }, + { + "start": 91.4, + "end": 93.88, + "probability": 0.945 + }, + { + "start": 94.64, + "end": 95.24, + "probability": 0.9355 + }, + { + "start": 96.42, + "end": 100.28, + "probability": 0.9822 + }, + { + "start": 103.34, + "end": 104.38, + "probability": 0.9727 + }, + { + "start": 105.46, + "end": 110.04, + "probability": 0.9727 + }, + { + "start": 110.66, + "end": 113.78, + "probability": 0.9874 + }, + { + "start": 115.26, + "end": 116.6, + "probability": 0.7658 + }, + { + "start": 117.88, + "end": 119.2, + "probability": 0.9989 + }, + { + "start": 120.99, + "end": 123.4, + "probability": 0.7993 + }, + { + "start": 124.48, + "end": 128.04, + "probability": 0.9983 + }, + { + "start": 129.0, + "end": 134.86, + "probability": 0.9973 + }, + { + "start": 134.86, + "end": 140.04, + "probability": 0.9976 + }, + { + "start": 141.14, + "end": 144.16, + "probability": 0.9946 + }, + { + "start": 144.46, + "end": 149.52, + "probability": 0.7173 + }, + { + "start": 149.52, + "end": 155.96, + "probability": 0.9968 + }, + { + "start": 157.08, + "end": 159.6, + "probability": 0.9916 + }, + { + "start": 160.88, + "end": 164.06, + "probability": 0.9937 + }, + { + "start": 165.28, + "end": 167.26, + "probability": 0.9946 + }, + { + "start": 167.86, + "end": 172.28, + "probability": 0.9919 + }, + { + "start": 173.0, + "end": 178.42, + "probability": 0.9777 + }, + { + "start": 179.12, + "end": 181.1, + "probability": 0.962 + }, + { + "start": 181.1, + "end": 186.4, + "probability": 0.777 + }, + { + "start": 187.62, + "end": 188.78, + "probability": 0.5804 + }, + { + "start": 189.44, + "end": 193.92, + "probability": 0.9928 + }, + { + "start": 193.92, + "end": 197.48, + "probability": 0.9937 + }, + { + "start": 198.12, + "end": 199.98, + "probability": 0.8726 + }, + { + "start": 200.64, + "end": 201.88, + "probability": 0.9456 + }, + { + "start": 202.58, + "end": 208.44, + "probability": 0.9854 + }, + { + "start": 209.8, + "end": 212.5, + "probability": 0.9421 + }, + { + "start": 213.32, + "end": 216.0, + "probability": 0.9626 + }, + { + "start": 216.36, + "end": 221.58, + "probability": 0.9974 + }, + { + "start": 222.4, + "end": 225.56, + "probability": 0.9159 + }, + { + "start": 225.82, + "end": 230.42, + "probability": 0.9978 + }, + { + "start": 230.42, + "end": 235.32, + "probability": 0.9997 + }, + { + "start": 236.4, + "end": 239.16, + "probability": 0.892 + }, + { + "start": 239.98, + "end": 241.84, + "probability": 0.9349 + }, + { + "start": 241.94, + "end": 245.54, + "probability": 0.99 + }, + { + "start": 245.54, + "end": 251.36, + "probability": 0.6532 + }, + { + "start": 252.44, + "end": 254.36, + "probability": 0.8005 + }, + { + "start": 254.52, + "end": 258.66, + "probability": 0.8676 + }, + { + "start": 259.98, + "end": 262.88, + "probability": 0.9134 + }, + { + "start": 263.0, + "end": 264.68, + "probability": 0.7132 + }, + { + "start": 264.72, + "end": 266.28, + "probability": 0.8902 + }, + { + "start": 267.14, + "end": 272.19, + "probability": 0.9939 + }, + { + "start": 272.7, + "end": 273.74, + "probability": 0.8603 + }, + { + "start": 274.62, + "end": 277.8, + "probability": 0.7737 + }, + { + "start": 278.12, + "end": 279.22, + "probability": 0.6883 + }, + { + "start": 279.74, + "end": 281.96, + "probability": 0.8171 + }, + { + "start": 282.5, + "end": 284.92, + "probability": 0.923 + }, + { + "start": 285.8, + "end": 291.08, + "probability": 0.9883 + }, + { + "start": 292.52, + "end": 297.34, + "probability": 0.931 + }, + { + "start": 297.5, + "end": 298.24, + "probability": 0.8663 + }, + { + "start": 299.26, + "end": 305.2, + "probability": 0.7624 + }, + { + "start": 305.2, + "end": 310.3, + "probability": 0.985 + }, + { + "start": 310.96, + "end": 311.98, + "probability": 0.9747 + }, + { + "start": 312.6, + "end": 315.36, + "probability": 0.9979 + }, + { + "start": 316.84, + "end": 321.38, + "probability": 0.8001 + }, + { + "start": 321.56, + "end": 324.96, + "probability": 0.9977 + }, + { + "start": 325.7, + "end": 326.28, + "probability": 0.7728 + }, + { + "start": 327.08, + "end": 328.14, + "probability": 0.7222 + }, + { + "start": 328.32, + "end": 330.82, + "probability": 0.8676 + }, + { + "start": 330.92, + "end": 331.08, + "probability": 0.5338 + }, + { + "start": 331.22, + "end": 335.3, + "probability": 0.3333 + }, + { + "start": 339.84, + "end": 341.52, + "probability": 0.7858 + }, + { + "start": 342.28, + "end": 343.9, + "probability": 0.9896 + }, + { + "start": 344.78, + "end": 346.12, + "probability": 0.7938 + }, + { + "start": 346.52, + "end": 347.9, + "probability": 0.7963 + }, + { + "start": 348.04, + "end": 349.5, + "probability": 0.9664 + }, + { + "start": 350.04, + "end": 354.98, + "probability": 0.9943 + }, + { + "start": 355.62, + "end": 360.66, + "probability": 0.9974 + }, + { + "start": 361.22, + "end": 363.1, + "probability": 0.9937 + }, + { + "start": 363.9, + "end": 368.14, + "probability": 0.8956 + }, + { + "start": 369.28, + "end": 371.98, + "probability": 0.8364 + }, + { + "start": 373.38, + "end": 374.24, + "probability": 0.9137 + }, + { + "start": 374.24, + "end": 376.04, + "probability": 0.7317 + }, + { + "start": 376.6, + "end": 382.84, + "probability": 0.9497 + }, + { + "start": 383.42, + "end": 383.58, + "probability": 0.714 + }, + { + "start": 383.72, + "end": 385.14, + "probability": 0.7403 + }, + { + "start": 385.52, + "end": 391.06, + "probability": 0.9788 + }, + { + "start": 392.2, + "end": 396.07, + "probability": 0.9204 + }, + { + "start": 396.74, + "end": 400.78, + "probability": 0.996 + }, + { + "start": 401.52, + "end": 401.98, + "probability": 0.8005 + }, + { + "start": 402.86, + "end": 407.74, + "probability": 0.9981 + }, + { + "start": 407.9, + "end": 409.72, + "probability": 0.6354 + }, + { + "start": 410.18, + "end": 412.28, + "probability": 0.8143 + }, + { + "start": 413.06, + "end": 415.34, + "probability": 0.9039 + }, + { + "start": 415.34, + "end": 418.7, + "probability": 0.9961 + }, + { + "start": 420.28, + "end": 421.25, + "probability": 0.9082 + }, + { + "start": 422.04, + "end": 423.7, + "probability": 0.5173 + }, + { + "start": 423.92, + "end": 430.72, + "probability": 0.8359 + }, + { + "start": 431.52, + "end": 433.21, + "probability": 0.9941 + }, + { + "start": 433.5, + "end": 434.13, + "probability": 0.9094 + }, + { + "start": 434.22, + "end": 435.26, + "probability": 0.4333 + }, + { + "start": 437.26, + "end": 438.34, + "probability": 0.9408 + }, + { + "start": 438.86, + "end": 442.28, + "probability": 0.9976 + }, + { + "start": 443.9, + "end": 446.08, + "probability": 0.4968 + }, + { + "start": 446.18, + "end": 447.12, + "probability": 0.9806 + }, + { + "start": 447.18, + "end": 450.56, + "probability": 0.938 + }, + { + "start": 451.04, + "end": 454.1, + "probability": 0.9927 + }, + { + "start": 454.84, + "end": 459.06, + "probability": 0.9756 + }, + { + "start": 459.82, + "end": 460.1, + "probability": 0.3577 + }, + { + "start": 460.18, + "end": 463.24, + "probability": 0.9922 + }, + { + "start": 463.34, + "end": 468.2, + "probability": 0.8972 + }, + { + "start": 468.84, + "end": 471.78, + "probability": 0.9985 + }, + { + "start": 472.54, + "end": 478.42, + "probability": 0.9935 + }, + { + "start": 478.84, + "end": 482.12, + "probability": 0.9993 + }, + { + "start": 482.12, + "end": 485.38, + "probability": 0.995 + }, + { + "start": 486.12, + "end": 489.16, + "probability": 0.9937 + }, + { + "start": 489.38, + "end": 490.2, + "probability": 0.6855 + }, + { + "start": 491.12, + "end": 492.86, + "probability": 0.9937 + }, + { + "start": 493.66, + "end": 495.28, + "probability": 0.9749 + }, + { + "start": 495.34, + "end": 497.01, + "probability": 0.9955 + }, + { + "start": 498.04, + "end": 499.35, + "probability": 0.9206 + }, + { + "start": 500.46, + "end": 502.02, + "probability": 0.9753 + }, + { + "start": 502.72, + "end": 504.36, + "probability": 0.9927 + }, + { + "start": 504.48, + "end": 505.48, + "probability": 0.8672 + }, + { + "start": 505.66, + "end": 506.32, + "probability": 0.7593 + }, + { + "start": 506.78, + "end": 508.44, + "probability": 0.712 + }, + { + "start": 508.6, + "end": 509.5, + "probability": 0.9788 + }, + { + "start": 509.88, + "end": 510.46, + "probability": 0.9155 + }, + { + "start": 511.82, + "end": 514.84, + "probability": 0.9025 + }, + { + "start": 514.94, + "end": 516.5, + "probability": 0.9976 + }, + { + "start": 517.96, + "end": 518.38, + "probability": 0.4821 + }, + { + "start": 519.22, + "end": 521.98, + "probability": 0.6738 + }, + { + "start": 522.66, + "end": 528.42, + "probability": 0.7116 + }, + { + "start": 529.12, + "end": 530.28, + "probability": 0.7155 + }, + { + "start": 530.34, + "end": 533.9, + "probability": 0.9922 + }, + { + "start": 534.4, + "end": 535.19, + "probability": 0.4064 + }, + { + "start": 535.58, + "end": 536.64, + "probability": 0.24 + }, + { + "start": 536.82, + "end": 537.66, + "probability": 0.5428 + }, + { + "start": 538.28, + "end": 538.62, + "probability": 0.3949 + }, + { + "start": 538.66, + "end": 542.82, + "probability": 0.9652 + }, + { + "start": 542.82, + "end": 547.68, + "probability": 0.5991 + }, + { + "start": 547.76, + "end": 548.84, + "probability": 0.9671 + }, + { + "start": 549.42, + "end": 551.3, + "probability": 0.9648 + }, + { + "start": 551.44, + "end": 553.24, + "probability": 0.8276 + }, + { + "start": 554.0, + "end": 556.93, + "probability": 0.9934 + }, + { + "start": 557.5, + "end": 560.48, + "probability": 0.9897 + }, + { + "start": 561.56, + "end": 564.92, + "probability": 0.9951 + }, + { + "start": 565.66, + "end": 566.2, + "probability": 0.9219 + }, + { + "start": 567.5, + "end": 570.42, + "probability": 0.822 + }, + { + "start": 571.0, + "end": 573.92, + "probability": 0.9797 + }, + { + "start": 574.52, + "end": 576.06, + "probability": 0.6573 + }, + { + "start": 577.95, + "end": 580.23, + "probability": 0.6775 + }, + { + "start": 580.74, + "end": 582.36, + "probability": 0.9863 + }, + { + "start": 582.48, + "end": 585.26, + "probability": 0.4492 + }, + { + "start": 585.26, + "end": 588.34, + "probability": 0.8836 + }, + { + "start": 589.78, + "end": 593.54, + "probability": 0.561 + }, + { + "start": 594.14, + "end": 597.9, + "probability": 0.8826 + }, + { + "start": 598.5, + "end": 601.02, + "probability": 0.9168 + }, + { + "start": 601.28, + "end": 604.58, + "probability": 0.9966 + }, + { + "start": 605.2, + "end": 607.64, + "probability": 0.985 + }, + { + "start": 608.26, + "end": 608.74, + "probability": 0.0207 + }, + { + "start": 609.12, + "end": 612.16, + "probability": 0.9496 + }, + { + "start": 612.6, + "end": 615.24, + "probability": 0.8857 + }, + { + "start": 615.92, + "end": 618.96, + "probability": 0.99 + }, + { + "start": 619.84, + "end": 620.72, + "probability": 0.4255 + }, + { + "start": 620.78, + "end": 623.24, + "probability": 0.9423 + }, + { + "start": 623.96, + "end": 626.4, + "probability": 0.9559 + }, + { + "start": 628.77, + "end": 634.28, + "probability": 0.7444 + }, + { + "start": 635.04, + "end": 641.98, + "probability": 0.9879 + }, + { + "start": 642.96, + "end": 644.48, + "probability": 0.9258 + }, + { + "start": 644.72, + "end": 649.72, + "probability": 0.9946 + }, + { + "start": 651.08, + "end": 653.7, + "probability": 0.4993 + }, + { + "start": 653.96, + "end": 657.78, + "probability": 0.9961 + }, + { + "start": 658.7, + "end": 659.61, + "probability": 0.8875 + }, + { + "start": 660.08, + "end": 664.93, + "probability": 0.7674 + }, + { + "start": 665.74, + "end": 669.72, + "probability": 0.9933 + }, + { + "start": 670.32, + "end": 673.06, + "probability": 0.9793 + }, + { + "start": 673.06, + "end": 676.2, + "probability": 0.9674 + }, + { + "start": 676.56, + "end": 677.84, + "probability": 0.9266 + }, + { + "start": 678.2, + "end": 680.92, + "probability": 0.9679 + }, + { + "start": 681.7, + "end": 684.82, + "probability": 0.9897 + }, + { + "start": 684.94, + "end": 688.54, + "probability": 0.9983 + }, + { + "start": 689.06, + "end": 694.48, + "probability": 0.9936 + }, + { + "start": 694.98, + "end": 700.26, + "probability": 0.9983 + }, + { + "start": 701.14, + "end": 702.04, + "probability": 0.1456 + }, + { + "start": 702.54, + "end": 704.86, + "probability": 0.9985 + }, + { + "start": 705.32, + "end": 709.34, + "probability": 0.8954 + }, + { + "start": 709.34, + "end": 715.68, + "probability": 0.999 + }, + { + "start": 716.44, + "end": 719.9, + "probability": 0.9944 + }, + { + "start": 720.56, + "end": 723.32, + "probability": 0.9949 + }, + { + "start": 723.32, + "end": 726.7, + "probability": 0.9898 + }, + { + "start": 727.18, + "end": 728.56, + "probability": 0.9966 + }, + { + "start": 729.16, + "end": 731.7, + "probability": 0.9941 + }, + { + "start": 732.22, + "end": 736.12, + "probability": 0.958 + }, + { + "start": 736.68, + "end": 739.34, + "probability": 0.8325 + }, + { + "start": 739.84, + "end": 741.58, + "probability": 0.815 + }, + { + "start": 741.84, + "end": 742.6, + "probability": 0.8213 + }, + { + "start": 742.72, + "end": 743.78, + "probability": 0.8939 + }, + { + "start": 744.14, + "end": 745.44, + "probability": 0.9238 + }, + { + "start": 745.94, + "end": 748.84, + "probability": 0.9683 + }, + { + "start": 748.86, + "end": 749.42, + "probability": 0.3876 + }, + { + "start": 750.98, + "end": 754.06, + "probability": 0.9913 + }, + { + "start": 754.54, + "end": 758.42, + "probability": 0.9852 + }, + { + "start": 759.04, + "end": 762.14, + "probability": 0.9796 + }, + { + "start": 762.26, + "end": 763.52, + "probability": 0.9932 + }, + { + "start": 763.98, + "end": 765.04, + "probability": 0.6277 + }, + { + "start": 765.44, + "end": 766.65, + "probability": 0.9473 + }, + { + "start": 767.28, + "end": 768.9, + "probability": 0.8702 + }, + { + "start": 769.44, + "end": 773.9, + "probability": 0.9072 + }, + { + "start": 773.9, + "end": 776.3, + "probability": 0.9995 + }, + { + "start": 776.36, + "end": 777.74, + "probability": 0.923 + }, + { + "start": 778.2, + "end": 779.32, + "probability": 0.7783 + }, + { + "start": 779.38, + "end": 780.08, + "probability": 0.6009 + }, + { + "start": 780.48, + "end": 781.91, + "probability": 0.8091 + }, + { + "start": 783.02, + "end": 790.6, + "probability": 0.8602 + }, + { + "start": 791.0, + "end": 792.14, + "probability": 0.998 + }, + { + "start": 792.36, + "end": 795.84, + "probability": 0.9901 + }, + { + "start": 796.02, + "end": 799.72, + "probability": 0.7944 + }, + { + "start": 800.52, + "end": 803.92, + "probability": 0.9987 + }, + { + "start": 804.34, + "end": 807.18, + "probability": 0.9741 + }, + { + "start": 808.0, + "end": 809.36, + "probability": 0.952 + }, + { + "start": 809.54, + "end": 810.98, + "probability": 0.847 + }, + { + "start": 811.08, + "end": 813.14, + "probability": 0.6627 + }, + { + "start": 814.06, + "end": 815.5, + "probability": 0.7286 + }, + { + "start": 816.08, + "end": 816.66, + "probability": 0.8749 + }, + { + "start": 816.82, + "end": 817.72, + "probability": 0.8073 + }, + { + "start": 817.78, + "end": 819.96, + "probability": 0.9583 + }, + { + "start": 820.58, + "end": 821.52, + "probability": 0.9119 + }, + { + "start": 821.6, + "end": 823.78, + "probability": 0.9937 + }, + { + "start": 824.36, + "end": 826.82, + "probability": 0.8561 + }, + { + "start": 826.94, + "end": 827.92, + "probability": 0.703 + }, + { + "start": 827.94, + "end": 829.84, + "probability": 0.9232 + }, + { + "start": 830.56, + "end": 834.62, + "probability": 0.9775 + }, + { + "start": 835.32, + "end": 835.88, + "probability": 0.8298 + }, + { + "start": 836.64, + "end": 839.56, + "probability": 0.9924 + }, + { + "start": 839.64, + "end": 845.36, + "probability": 0.9912 + }, + { + "start": 846.18, + "end": 849.14, + "probability": 0.9835 + }, + { + "start": 849.2, + "end": 850.06, + "probability": 0.9249 + }, + { + "start": 850.2, + "end": 852.74, + "probability": 0.9478 + }, + { + "start": 853.28, + "end": 858.18, + "probability": 0.9944 + }, + { + "start": 858.9, + "end": 862.12, + "probability": 0.8866 + }, + { + "start": 862.72, + "end": 863.48, + "probability": 0.926 + }, + { + "start": 864.06, + "end": 864.72, + "probability": 0.9799 + }, + { + "start": 864.96, + "end": 865.6, + "probability": 0.9865 + }, + { + "start": 865.9, + "end": 866.74, + "probability": 0.9782 + }, + { + "start": 866.88, + "end": 867.92, + "probability": 0.8914 + }, + { + "start": 868.34, + "end": 871.8, + "probability": 0.9961 + }, + { + "start": 871.8, + "end": 874.34, + "probability": 0.9986 + }, + { + "start": 874.82, + "end": 875.6, + "probability": 0.5368 + }, + { + "start": 876.0, + "end": 876.86, + "probability": 0.97 + }, + { + "start": 877.58, + "end": 882.84, + "probability": 0.6729 + }, + { + "start": 882.86, + "end": 883.92, + "probability": 0.9482 + }, + { + "start": 884.68, + "end": 888.86, + "probability": 0.988 + }, + { + "start": 888.92, + "end": 889.48, + "probability": 0.8628 + }, + { + "start": 889.92, + "end": 892.14, + "probability": 0.9825 + }, + { + "start": 892.86, + "end": 897.6, + "probability": 0.9791 + }, + { + "start": 898.0, + "end": 901.18, + "probability": 0.9867 + }, + { + "start": 901.68, + "end": 904.06, + "probability": 0.9896 + }, + { + "start": 904.76, + "end": 907.3, + "probability": 0.7544 + }, + { + "start": 907.36, + "end": 909.0, + "probability": 0.842 + }, + { + "start": 909.44, + "end": 910.28, + "probability": 0.7855 + }, + { + "start": 910.48, + "end": 912.92, + "probability": 0.9187 + }, + { + "start": 913.04, + "end": 914.92, + "probability": 0.8417 + }, + { + "start": 915.32, + "end": 917.62, + "probability": 0.9685 + }, + { + "start": 919.08, + "end": 919.08, + "probability": 0.5807 + }, + { + "start": 919.18, + "end": 926.26, + "probability": 0.9634 + }, + { + "start": 926.26, + "end": 931.8, + "probability": 0.998 + }, + { + "start": 932.68, + "end": 938.66, + "probability": 0.9854 + }, + { + "start": 939.04, + "end": 940.76, + "probability": 0.8738 + }, + { + "start": 941.12, + "end": 944.26, + "probability": 0.9143 + }, + { + "start": 944.7, + "end": 946.98, + "probability": 0.9946 + }, + { + "start": 947.56, + "end": 949.58, + "probability": 0.9626 + }, + { + "start": 950.3, + "end": 953.58, + "probability": 0.9252 + }, + { + "start": 954.04, + "end": 955.58, + "probability": 0.8957 + }, + { + "start": 956.22, + "end": 957.7, + "probability": 0.9442 + }, + { + "start": 957.8, + "end": 959.88, + "probability": 0.9883 + }, + { + "start": 960.36, + "end": 960.66, + "probability": 0.7373 + }, + { + "start": 960.86, + "end": 961.82, + "probability": 0.9938 + }, + { + "start": 962.02, + "end": 962.88, + "probability": 0.9636 + }, + { + "start": 963.28, + "end": 964.54, + "probability": 0.9897 + }, + { + "start": 964.84, + "end": 966.88, + "probability": 0.9934 + }, + { + "start": 967.38, + "end": 970.36, + "probability": 0.9253 + }, + { + "start": 970.78, + "end": 972.24, + "probability": 0.9937 + }, + { + "start": 972.78, + "end": 973.86, + "probability": 0.7784 + }, + { + "start": 974.06, + "end": 975.54, + "probability": 0.9577 + }, + { + "start": 975.64, + "end": 976.36, + "probability": 0.9151 + }, + { + "start": 976.84, + "end": 979.04, + "probability": 0.5634 + }, + { + "start": 979.76, + "end": 982.06, + "probability": 0.8453 + }, + { + "start": 982.66, + "end": 986.9, + "probability": 0.979 + }, + { + "start": 987.9, + "end": 989.02, + "probability": 0.9386 + }, + { + "start": 989.56, + "end": 990.3, + "probability": 0.9495 + }, + { + "start": 990.72, + "end": 996.26, + "probability": 0.9468 + }, + { + "start": 996.76, + "end": 997.56, + "probability": 0.8025 + }, + { + "start": 998.14, + "end": 999.7, + "probability": 0.92 + }, + { + "start": 1000.08, + "end": 1000.46, + "probability": 0.7771 + }, + { + "start": 1002.74, + "end": 1004.76, + "probability": 0.7756 + }, + { + "start": 1005.46, + "end": 1008.72, + "probability": 0.9819 + }, + { + "start": 1008.78, + "end": 1011.5, + "probability": 0.7863 + }, + { + "start": 1012.26, + "end": 1013.58, + "probability": 0.6413 + }, + { + "start": 1013.68, + "end": 1014.34, + "probability": 0.4025 + }, + { + "start": 1014.38, + "end": 1016.64, + "probability": 0.9175 + }, + { + "start": 1016.72, + "end": 1018.28, + "probability": 0.9714 + }, + { + "start": 1018.6, + "end": 1022.54, + "probability": 0.9703 + }, + { + "start": 1023.7, + "end": 1026.04, + "probability": 0.6862 + }, + { + "start": 1026.04, + "end": 1026.53, + "probability": 0.6579 + }, + { + "start": 1026.96, + "end": 1027.76, + "probability": 0.9272 + }, + { + "start": 1028.78, + "end": 1029.24, + "probability": 0.1389 + }, + { + "start": 1029.54, + "end": 1030.72, + "probability": 0.735 + }, + { + "start": 1032.36, + "end": 1034.02, + "probability": 0.7516 + }, + { + "start": 1035.52, + "end": 1037.02, + "probability": 0.8965 + }, + { + "start": 1037.92, + "end": 1040.78, + "probability": 0.7518 + }, + { + "start": 1042.74, + "end": 1044.1, + "probability": 0.97 + }, + { + "start": 1046.2, + "end": 1048.32, + "probability": 0.9647 + }, + { + "start": 1048.98, + "end": 1050.26, + "probability": 0.994 + }, + { + "start": 1050.6, + "end": 1052.76, + "probability": 0.9838 + }, + { + "start": 1053.48, + "end": 1056.96, + "probability": 0.6735 + }, + { + "start": 1057.64, + "end": 1058.52, + "probability": 0.9998 + }, + { + "start": 1060.42, + "end": 1066.0, + "probability": 0.9966 + }, + { + "start": 1067.56, + "end": 1071.14, + "probability": 0.9944 + }, + { + "start": 1071.14, + "end": 1074.22, + "probability": 0.9985 + }, + { + "start": 1076.1, + "end": 1080.12, + "probability": 0.9985 + }, + { + "start": 1081.26, + "end": 1084.58, + "probability": 0.9973 + }, + { + "start": 1085.68, + "end": 1088.18, + "probability": 0.9382 + }, + { + "start": 1089.7, + "end": 1094.36, + "probability": 0.9972 + }, + { + "start": 1096.66, + "end": 1097.46, + "probability": 0.9909 + }, + { + "start": 1099.9, + "end": 1102.62, + "probability": 0.9283 + }, + { + "start": 1103.82, + "end": 1106.72, + "probability": 0.9956 + }, + { + "start": 1108.0, + "end": 1112.44, + "probability": 0.9731 + }, + { + "start": 1112.48, + "end": 1115.72, + "probability": 0.9368 + }, + { + "start": 1116.2, + "end": 1119.72, + "probability": 0.981 + }, + { + "start": 1121.84, + "end": 1123.94, + "probability": 0.9898 + }, + { + "start": 1124.62, + "end": 1127.36, + "probability": 0.7186 + }, + { + "start": 1127.82, + "end": 1129.66, + "probability": 0.9639 + }, + { + "start": 1131.7, + "end": 1136.56, + "probability": 0.9948 + }, + { + "start": 1137.76, + "end": 1141.88, + "probability": 0.894 + }, + { + "start": 1142.16, + "end": 1145.61, + "probability": 0.9924 + }, + { + "start": 1145.96, + "end": 1147.34, + "probability": 0.9833 + }, + { + "start": 1147.6, + "end": 1148.78, + "probability": 0.9769 + }, + { + "start": 1150.92, + "end": 1154.16, + "probability": 0.8528 + }, + { + "start": 1154.68, + "end": 1155.28, + "probability": 0.4596 + }, + { + "start": 1155.84, + "end": 1157.94, + "probability": 0.9647 + }, + { + "start": 1158.38, + "end": 1161.52, + "probability": 0.9952 + }, + { + "start": 1162.7, + "end": 1165.3, + "probability": 0.979 + }, + { + "start": 1165.74, + "end": 1170.14, + "probability": 0.995 + }, + { + "start": 1170.4, + "end": 1171.68, + "probability": 0.8332 + }, + { + "start": 1172.1, + "end": 1173.34, + "probability": 0.9587 + }, + { + "start": 1174.38, + "end": 1176.18, + "probability": 0.6653 + }, + { + "start": 1177.42, + "end": 1179.74, + "probability": 0.9983 + }, + { + "start": 1181.68, + "end": 1184.38, + "probability": 0.9749 + }, + { + "start": 1185.88, + "end": 1189.04, + "probability": 0.9759 + }, + { + "start": 1189.5, + "end": 1191.22, + "probability": 0.9736 + }, + { + "start": 1194.57, + "end": 1198.46, + "probability": 0.8716 + }, + { + "start": 1199.26, + "end": 1200.12, + "probability": 0.8306 + }, + { + "start": 1201.16, + "end": 1205.9, + "probability": 0.9707 + }, + { + "start": 1205.9, + "end": 1211.16, + "probability": 0.9995 + }, + { + "start": 1211.42, + "end": 1212.16, + "probability": 0.8238 + }, + { + "start": 1212.96, + "end": 1213.84, + "probability": 0.9353 + }, + { + "start": 1214.62, + "end": 1215.78, + "probability": 0.9382 + }, + { + "start": 1216.36, + "end": 1218.47, + "probability": 0.9786 + }, + { + "start": 1219.52, + "end": 1221.46, + "probability": 0.8386 + }, + { + "start": 1221.8, + "end": 1222.8, + "probability": 0.9239 + }, + { + "start": 1223.36, + "end": 1224.26, + "probability": 0.7057 + }, + { + "start": 1224.5, + "end": 1225.12, + "probability": 0.9598 + }, + { + "start": 1225.16, + "end": 1225.98, + "probability": 0.9302 + }, + { + "start": 1226.18, + "end": 1229.04, + "probability": 0.9732 + }, + { + "start": 1230.66, + "end": 1233.5, + "probability": 0.808 + }, + { + "start": 1235.14, + "end": 1236.78, + "probability": 0.9307 + }, + { + "start": 1237.2, + "end": 1239.48, + "probability": 0.5979 + }, + { + "start": 1240.04, + "end": 1243.68, + "probability": 0.986 + }, + { + "start": 1245.82, + "end": 1248.9, + "probability": 0.9915 + }, + { + "start": 1249.64, + "end": 1250.22, + "probability": 0.2743 + }, + { + "start": 1250.32, + "end": 1254.55, + "probability": 0.999 + }, + { + "start": 1255.3, + "end": 1256.54, + "probability": 0.9476 + }, + { + "start": 1257.44, + "end": 1258.74, + "probability": 0.9208 + }, + { + "start": 1258.98, + "end": 1259.9, + "probability": 0.8205 + }, + { + "start": 1260.0, + "end": 1260.8, + "probability": 0.6026 + }, + { + "start": 1260.94, + "end": 1261.38, + "probability": 0.6536 + }, + { + "start": 1261.44, + "end": 1261.98, + "probability": 0.8682 + }, + { + "start": 1262.12, + "end": 1263.02, + "probability": 0.5661 + }, + { + "start": 1263.2, + "end": 1264.7, + "probability": 0.9663 + }, + { + "start": 1265.92, + "end": 1266.53, + "probability": 0.9629 + }, + { + "start": 1267.52, + "end": 1271.34, + "probability": 0.966 + }, + { + "start": 1271.8, + "end": 1273.26, + "probability": 0.891 + }, + { + "start": 1273.94, + "end": 1278.62, + "probability": 0.9462 + }, + { + "start": 1279.54, + "end": 1280.56, + "probability": 0.9787 + }, + { + "start": 1281.68, + "end": 1284.86, + "probability": 0.9246 + }, + { + "start": 1285.34, + "end": 1288.2, + "probability": 0.7595 + }, + { + "start": 1288.54, + "end": 1294.08, + "probability": 0.8311 + }, + { + "start": 1294.08, + "end": 1298.18, + "probability": 0.9871 + }, + { + "start": 1298.38, + "end": 1299.36, + "probability": 0.6867 + }, + { + "start": 1299.62, + "end": 1300.9, + "probability": 0.9912 + }, + { + "start": 1300.98, + "end": 1302.44, + "probability": 0.9773 + }, + { + "start": 1302.62, + "end": 1304.38, + "probability": 0.7178 + }, + { + "start": 1304.98, + "end": 1305.79, + "probability": 0.9507 + }, + { + "start": 1306.86, + "end": 1308.46, + "probability": 0.7819 + }, + { + "start": 1308.82, + "end": 1311.7, + "probability": 0.9108 + }, + { + "start": 1312.6, + "end": 1315.26, + "probability": 0.9336 + }, + { + "start": 1316.38, + "end": 1321.34, + "probability": 0.9449 + }, + { + "start": 1322.78, + "end": 1325.46, + "probability": 0.9963 + }, + { + "start": 1325.48, + "end": 1329.24, + "probability": 0.891 + }, + { + "start": 1329.3, + "end": 1330.76, + "probability": 0.9115 + }, + { + "start": 1331.14, + "end": 1331.92, + "probability": 0.9074 + }, + { + "start": 1332.02, + "end": 1332.64, + "probability": 0.9132 + }, + { + "start": 1333.16, + "end": 1333.74, + "probability": 0.8574 + }, + { + "start": 1333.88, + "end": 1336.32, + "probability": 0.9246 + }, + { + "start": 1336.32, + "end": 1339.56, + "probability": 0.8352 + }, + { + "start": 1340.52, + "end": 1340.88, + "probability": 0.292 + }, + { + "start": 1342.12, + "end": 1347.44, + "probability": 0.9254 + }, + { + "start": 1347.6, + "end": 1347.76, + "probability": 0.8156 + }, + { + "start": 1347.86, + "end": 1350.94, + "probability": 0.9517 + }, + { + "start": 1350.94, + "end": 1353.84, + "probability": 0.9914 + }, + { + "start": 1354.6, + "end": 1358.34, + "probability": 0.9949 + }, + { + "start": 1358.98, + "end": 1359.76, + "probability": 0.8731 + }, + { + "start": 1360.66, + "end": 1365.84, + "probability": 0.9855 + }, + { + "start": 1367.48, + "end": 1368.0, + "probability": 0.5581 + }, + { + "start": 1370.12, + "end": 1375.88, + "probability": 0.9962 + }, + { + "start": 1377.76, + "end": 1379.76, + "probability": 0.6836 + }, + { + "start": 1383.64, + "end": 1388.58, + "probability": 0.9849 + }, + { + "start": 1389.82, + "end": 1390.46, + "probability": 0.7255 + }, + { + "start": 1392.62, + "end": 1394.5, + "probability": 0.9767 + }, + { + "start": 1396.12, + "end": 1399.54, + "probability": 0.998 + }, + { + "start": 1399.98, + "end": 1403.55, + "probability": 0.9562 + }, + { + "start": 1404.42, + "end": 1407.42, + "probability": 0.9973 + }, + { + "start": 1409.84, + "end": 1412.22, + "probability": 0.9318 + }, + { + "start": 1412.3, + "end": 1414.6, + "probability": 0.999 + }, + { + "start": 1414.96, + "end": 1418.46, + "probability": 0.9004 + }, + { + "start": 1418.46, + "end": 1421.16, + "probability": 0.9845 + }, + { + "start": 1423.0, + "end": 1424.04, + "probability": 0.7514 + }, + { + "start": 1424.6, + "end": 1427.94, + "probability": 0.9878 + }, + { + "start": 1428.62, + "end": 1429.6, + "probability": 0.909 + }, + { + "start": 1430.1, + "end": 1436.26, + "probability": 0.9684 + }, + { + "start": 1436.56, + "end": 1439.16, + "probability": 0.9644 + }, + { + "start": 1439.22, + "end": 1445.68, + "probability": 0.9362 + }, + { + "start": 1445.9, + "end": 1450.12, + "probability": 0.9244 + }, + { + "start": 1450.62, + "end": 1455.14, + "probability": 0.99 + }, + { + "start": 1455.7, + "end": 1458.52, + "probability": 0.9902 + }, + { + "start": 1458.92, + "end": 1459.8, + "probability": 0.8184 + }, + { + "start": 1460.78, + "end": 1466.22, + "probability": 0.9735 + }, + { + "start": 1466.82, + "end": 1468.33, + "probability": 0.9834 + }, + { + "start": 1468.72, + "end": 1469.62, + "probability": 0.926 + }, + { + "start": 1469.72, + "end": 1470.81, + "probability": 0.9556 + }, + { + "start": 1471.28, + "end": 1473.7, + "probability": 0.9741 + }, + { + "start": 1475.84, + "end": 1480.1, + "probability": 0.9591 + }, + { + "start": 1481.58, + "end": 1482.06, + "probability": 0.8468 + }, + { + "start": 1485.2, + "end": 1489.1, + "probability": 0.998 + }, + { + "start": 1489.92, + "end": 1491.82, + "probability": 0.7781 + }, + { + "start": 1492.52, + "end": 1494.6, + "probability": 0.9629 + }, + { + "start": 1494.64, + "end": 1496.98, + "probability": 0.9599 + }, + { + "start": 1497.8, + "end": 1499.71, + "probability": 0.991 + }, + { + "start": 1500.78, + "end": 1501.98, + "probability": 0.9941 + }, + { + "start": 1502.62, + "end": 1508.44, + "probability": 0.9949 + }, + { + "start": 1509.5, + "end": 1511.72, + "probability": 0.9981 + }, + { + "start": 1512.44, + "end": 1515.52, + "probability": 0.7892 + }, + { + "start": 1517.18, + "end": 1518.46, + "probability": 0.5308 + }, + { + "start": 1518.46, + "end": 1519.65, + "probability": 0.4828 + }, + { + "start": 1520.42, + "end": 1521.72, + "probability": 0.8248 + }, + { + "start": 1522.12, + "end": 1523.44, + "probability": 0.522 + }, + { + "start": 1523.7, + "end": 1525.7, + "probability": 0.822 + }, + { + "start": 1526.14, + "end": 1527.64, + "probability": 0.9221 + }, + { + "start": 1527.76, + "end": 1532.02, + "probability": 0.8598 + }, + { + "start": 1533.34, + "end": 1533.78, + "probability": 0.7209 + }, + { + "start": 1534.44, + "end": 1536.68, + "probability": 0.9907 + }, + { + "start": 1538.26, + "end": 1540.18, + "probability": 0.9573 + }, + { + "start": 1540.98, + "end": 1543.44, + "probability": 0.9984 + }, + { + "start": 1543.44, + "end": 1546.12, + "probability": 0.9919 + }, + { + "start": 1546.66, + "end": 1548.34, + "probability": 0.9471 + }, + { + "start": 1548.8, + "end": 1551.82, + "probability": 0.9234 + }, + { + "start": 1553.08, + "end": 1554.68, + "probability": 0.981 + }, + { + "start": 1554.72, + "end": 1558.48, + "probability": 0.907 + }, + { + "start": 1558.6, + "end": 1561.74, + "probability": 0.9275 + }, + { + "start": 1562.02, + "end": 1564.76, + "probability": 0.9677 + }, + { + "start": 1565.0, + "end": 1565.96, + "probability": 0.8748 + }, + { + "start": 1567.78, + "end": 1569.36, + "probability": 0.9948 + }, + { + "start": 1570.44, + "end": 1573.2, + "probability": 0.9963 + }, + { + "start": 1574.6, + "end": 1576.28, + "probability": 0.8369 + }, + { + "start": 1577.42, + "end": 1577.94, + "probability": 0.2773 + }, + { + "start": 1578.0, + "end": 1583.48, + "probability": 0.9966 + }, + { + "start": 1583.84, + "end": 1588.16, + "probability": 0.9666 + }, + { + "start": 1589.0, + "end": 1594.26, + "probability": 0.9841 + }, + { + "start": 1595.46, + "end": 1599.68, + "probability": 0.9948 + }, + { + "start": 1600.26, + "end": 1602.0, + "probability": 0.9946 + }, + { + "start": 1602.3, + "end": 1606.48, + "probability": 0.9937 + }, + { + "start": 1606.9, + "end": 1607.4, + "probability": 0.9497 + }, + { + "start": 1608.82, + "end": 1611.88, + "probability": 0.9936 + }, + { + "start": 1612.78, + "end": 1615.88, + "probability": 0.9915 + }, + { + "start": 1616.46, + "end": 1616.98, + "probability": 0.8987 + }, + { + "start": 1617.14, + "end": 1617.78, + "probability": 0.9662 + }, + { + "start": 1617.86, + "end": 1620.58, + "probability": 0.9967 + }, + { + "start": 1620.58, + "end": 1623.37, + "probability": 0.9982 + }, + { + "start": 1623.86, + "end": 1625.68, + "probability": 0.9961 + }, + { + "start": 1626.02, + "end": 1628.3, + "probability": 0.7996 + }, + { + "start": 1630.94, + "end": 1631.96, + "probability": 0.8711 + }, + { + "start": 1632.18, + "end": 1638.6, + "probability": 0.9751 + }, + { + "start": 1638.78, + "end": 1641.98, + "probability": 0.9875 + }, + { + "start": 1644.46, + "end": 1645.94, + "probability": 0.7964 + }, + { + "start": 1646.24, + "end": 1648.9, + "probability": 0.9787 + }, + { + "start": 1649.38, + "end": 1652.88, + "probability": 0.9921 + }, + { + "start": 1653.52, + "end": 1657.08, + "probability": 0.99 + }, + { + "start": 1658.44, + "end": 1659.69, + "probability": 0.9961 + }, + { + "start": 1661.12, + "end": 1663.64, + "probability": 0.9798 + }, + { + "start": 1665.38, + "end": 1668.56, + "probability": 0.9943 + }, + { + "start": 1670.08, + "end": 1671.58, + "probability": 0.9949 + }, + { + "start": 1672.98, + "end": 1674.3, + "probability": 0.8525 + }, + { + "start": 1674.82, + "end": 1676.46, + "probability": 0.9272 + }, + { + "start": 1676.66, + "end": 1678.12, + "probability": 0.9433 + }, + { + "start": 1678.26, + "end": 1679.14, + "probability": 0.8335 + }, + { + "start": 1679.38, + "end": 1681.02, + "probability": 0.8709 + }, + { + "start": 1681.94, + "end": 1683.54, + "probability": 0.6291 + }, + { + "start": 1683.98, + "end": 1686.92, + "probability": 0.9363 + }, + { + "start": 1687.04, + "end": 1688.19, + "probability": 0.981 + }, + { + "start": 1688.86, + "end": 1690.36, + "probability": 0.9286 + }, + { + "start": 1690.58, + "end": 1694.76, + "probability": 0.9763 + }, + { + "start": 1696.0, + "end": 1697.68, + "probability": 0.9481 + }, + { + "start": 1699.4, + "end": 1703.46, + "probability": 0.9769 + }, + { + "start": 1704.22, + "end": 1708.34, + "probability": 0.972 + }, + { + "start": 1708.84, + "end": 1711.22, + "probability": 0.9443 + }, + { + "start": 1713.12, + "end": 1715.8, + "probability": 0.8395 + }, + { + "start": 1716.34, + "end": 1720.32, + "probability": 0.923 + }, + { + "start": 1720.84, + "end": 1721.42, + "probability": 0.9818 + }, + { + "start": 1721.5, + "end": 1722.2, + "probability": 0.9605 + }, + { + "start": 1722.4, + "end": 1724.16, + "probability": 0.986 + }, + { + "start": 1724.2, + "end": 1725.08, + "probability": 0.8671 + }, + { + "start": 1725.34, + "end": 1726.94, + "probability": 0.9543 + }, + { + "start": 1727.8, + "end": 1731.88, + "probability": 0.9832 + }, + { + "start": 1732.44, + "end": 1733.88, + "probability": 0.9583 + }, + { + "start": 1734.68, + "end": 1736.51, + "probability": 0.988 + }, + { + "start": 1737.06, + "end": 1738.76, + "probability": 0.9836 + }, + { + "start": 1739.06, + "end": 1743.74, + "probability": 0.9771 + }, + { + "start": 1746.56, + "end": 1748.76, + "probability": 0.8927 + }, + { + "start": 1749.68, + "end": 1754.86, + "probability": 0.9047 + }, + { + "start": 1756.12, + "end": 1758.76, + "probability": 0.9855 + }, + { + "start": 1759.58, + "end": 1764.82, + "probability": 0.9766 + }, + { + "start": 1764.82, + "end": 1767.78, + "probability": 0.9715 + }, + { + "start": 1768.94, + "end": 1775.86, + "probability": 0.9661 + }, + { + "start": 1777.0, + "end": 1780.54, + "probability": 0.9574 + }, + { + "start": 1781.16, + "end": 1783.46, + "probability": 0.9891 + }, + { + "start": 1783.46, + "end": 1786.02, + "probability": 0.8866 + }, + { + "start": 1786.1, + "end": 1788.58, + "probability": 0.9938 + }, + { + "start": 1788.58, + "end": 1790.68, + "probability": 0.9991 + }, + { + "start": 1791.04, + "end": 1797.16, + "probability": 0.9904 + }, + { + "start": 1797.4, + "end": 1799.76, + "probability": 0.9796 + }, + { + "start": 1800.14, + "end": 1801.56, + "probability": 0.9231 + }, + { + "start": 1803.5, + "end": 1805.4, + "probability": 0.9335 + }, + { + "start": 1805.62, + "end": 1807.94, + "probability": 0.8044 + }, + { + "start": 1808.91, + "end": 1812.0, + "probability": 0.9212 + }, + { + "start": 1812.82, + "end": 1815.2, + "probability": 0.945 + }, + { + "start": 1815.44, + "end": 1817.84, + "probability": 0.9911 + }, + { + "start": 1818.32, + "end": 1818.88, + "probability": 0.83 + }, + { + "start": 1819.34, + "end": 1819.44, + "probability": 0.592 + }, + { + "start": 1820.46, + "end": 1823.38, + "probability": 0.7089 + }, + { + "start": 1823.7, + "end": 1825.28, + "probability": 0.98 + }, + { + "start": 1826.2, + "end": 1828.45, + "probability": 0.9813 + }, + { + "start": 1828.7, + "end": 1831.44, + "probability": 0.9952 + }, + { + "start": 1831.68, + "end": 1837.54, + "probability": 0.9931 + }, + { + "start": 1838.04, + "end": 1841.84, + "probability": 0.9849 + }, + { + "start": 1842.86, + "end": 1843.4, + "probability": 0.7998 + }, + { + "start": 1845.16, + "end": 1848.9, + "probability": 0.9745 + }, + { + "start": 1850.08, + "end": 1851.28, + "probability": 0.964 + }, + { + "start": 1852.32, + "end": 1853.08, + "probability": 0.9678 + }, + { + "start": 1853.12, + "end": 1856.12, + "probability": 0.985 + }, + { + "start": 1856.96, + "end": 1861.6, + "probability": 0.9935 + }, + { + "start": 1862.06, + "end": 1862.98, + "probability": 0.8344 + }, + { + "start": 1863.24, + "end": 1865.36, + "probability": 0.9899 + }, + { + "start": 1865.64, + "end": 1867.64, + "probability": 0.9059 + }, + { + "start": 1867.96, + "end": 1869.34, + "probability": 0.9565 + }, + { + "start": 1869.52, + "end": 1876.36, + "probability": 0.9949 + }, + { + "start": 1876.56, + "end": 1881.46, + "probability": 0.9931 + }, + { + "start": 1882.7, + "end": 1885.04, + "probability": 0.9248 + }, + { + "start": 1885.68, + "end": 1888.6, + "probability": 0.9943 + }, + { + "start": 1889.4, + "end": 1890.5, + "probability": 0.9917 + }, + { + "start": 1890.88, + "end": 1891.76, + "probability": 0.9365 + }, + { + "start": 1892.04, + "end": 1893.56, + "probability": 0.9508 + }, + { + "start": 1893.9, + "end": 1895.84, + "probability": 0.9897 + }, + { + "start": 1896.42, + "end": 1896.6, + "probability": 0.6876 + }, + { + "start": 1897.7, + "end": 1902.88, + "probability": 0.9323 + }, + { + "start": 1903.66, + "end": 1904.86, + "probability": 0.9618 + }, + { + "start": 1905.56, + "end": 1906.18, + "probability": 0.4758 + }, + { + "start": 1907.12, + "end": 1909.7, + "probability": 0.7739 + }, + { + "start": 1910.6, + "end": 1911.24, + "probability": 0.5634 + }, + { + "start": 1911.28, + "end": 1913.3, + "probability": 0.8059 + }, + { + "start": 1913.6, + "end": 1915.88, + "probability": 0.8858 + }, + { + "start": 1917.02, + "end": 1920.26, + "probability": 0.8026 + }, + { + "start": 1924.64, + "end": 1925.22, + "probability": 0.6118 + }, + { + "start": 1925.52, + "end": 1925.52, + "probability": 0.6784 + }, + { + "start": 1925.56, + "end": 1926.34, + "probability": 0.8274 + }, + { + "start": 1926.46, + "end": 1928.08, + "probability": 0.6054 + }, + { + "start": 1930.18, + "end": 1935.98, + "probability": 0.9854 + }, + { + "start": 1936.24, + "end": 1943.88, + "probability": 0.9628 + }, + { + "start": 1943.96, + "end": 1944.7, + "probability": 0.7533 + }, + { + "start": 1944.78, + "end": 1947.28, + "probability": 0.8479 + }, + { + "start": 1948.44, + "end": 1955.92, + "probability": 0.9708 + }, + { + "start": 1956.68, + "end": 1961.0, + "probability": 0.8849 + }, + { + "start": 1962.18, + "end": 1963.1, + "probability": 0.7758 + }, + { + "start": 1964.48, + "end": 1969.58, + "probability": 0.6327 + }, + { + "start": 1970.92, + "end": 1973.42, + "probability": 0.9905 + }, + { + "start": 1973.6, + "end": 1974.86, + "probability": 0.8154 + }, + { + "start": 1975.48, + "end": 1978.77, + "probability": 0.9912 + }, + { + "start": 1979.04, + "end": 1982.14, + "probability": 0.9458 + }, + { + "start": 1983.04, + "end": 1986.42, + "probability": 0.985 + }, + { + "start": 1987.7, + "end": 1988.14, + "probability": 0.7061 + }, + { + "start": 1988.24, + "end": 1988.92, + "probability": 0.6721 + }, + { + "start": 1989.12, + "end": 1992.16, + "probability": 0.7714 + }, + { + "start": 1993.0, + "end": 2000.04, + "probability": 0.8728 + }, + { + "start": 2001.46, + "end": 2007.02, + "probability": 0.9922 + }, + { + "start": 2007.6, + "end": 2010.5, + "probability": 0.9134 + }, + { + "start": 2010.66, + "end": 2014.88, + "probability": 0.999 + }, + { + "start": 2016.5, + "end": 2020.02, + "probability": 0.998 + }, + { + "start": 2022.2, + "end": 2023.16, + "probability": 0.8448 + }, + { + "start": 2023.54, + "end": 2026.86, + "probability": 0.9662 + }, + { + "start": 2027.56, + "end": 2029.38, + "probability": 0.9215 + }, + { + "start": 2030.08, + "end": 2031.98, + "probability": 0.8291 + }, + { + "start": 2032.78, + "end": 2032.98, + "probability": 0.5392 + }, + { + "start": 2033.08, + "end": 2036.8, + "probability": 0.9951 + }, + { + "start": 2036.94, + "end": 2040.16, + "probability": 0.9883 + }, + { + "start": 2041.12, + "end": 2044.88, + "probability": 0.9984 + }, + { + "start": 2045.9, + "end": 2046.89, + "probability": 0.9042 + }, + { + "start": 2047.28, + "end": 2050.58, + "probability": 0.8935 + }, + { + "start": 2050.92, + "end": 2051.84, + "probability": 0.8344 + }, + { + "start": 2052.64, + "end": 2055.8, + "probability": 0.9932 + }, + { + "start": 2056.48, + "end": 2059.16, + "probability": 0.9175 + }, + { + "start": 2059.92, + "end": 2063.98, + "probability": 0.9309 + }, + { + "start": 2065.28, + "end": 2066.74, + "probability": 0.9966 + }, + { + "start": 2067.82, + "end": 2070.62, + "probability": 0.9965 + }, + { + "start": 2070.62, + "end": 2073.96, + "probability": 0.9945 + }, + { + "start": 2075.04, + "end": 2077.1, + "probability": 0.7512 + }, + { + "start": 2077.74, + "end": 2080.8, + "probability": 0.9891 + }, + { + "start": 2081.5, + "end": 2084.88, + "probability": 0.9893 + }, + { + "start": 2086.5, + "end": 2088.36, + "probability": 0.6827 + }, + { + "start": 2089.46, + "end": 2093.86, + "probability": 0.9022 + }, + { + "start": 2094.58, + "end": 2097.44, + "probability": 0.9966 + }, + { + "start": 2098.84, + "end": 2100.3, + "probability": 0.9131 + }, + { + "start": 2101.02, + "end": 2104.62, + "probability": 0.9501 + }, + { + "start": 2105.24, + "end": 2107.42, + "probability": 0.999 + }, + { + "start": 2108.28, + "end": 2111.82, + "probability": 0.9908 + }, + { + "start": 2112.62, + "end": 2114.98, + "probability": 0.9951 + }, + { + "start": 2115.42, + "end": 2117.24, + "probability": 0.929 + }, + { + "start": 2118.12, + "end": 2120.7, + "probability": 0.9823 + }, + { + "start": 2121.64, + "end": 2124.48, + "probability": 0.8022 + }, + { + "start": 2125.16, + "end": 2125.76, + "probability": 0.4946 + }, + { + "start": 2127.12, + "end": 2130.42, + "probability": 0.9889 + }, + { + "start": 2131.3, + "end": 2133.48, + "probability": 0.7837 + }, + { + "start": 2134.18, + "end": 2135.58, + "probability": 0.9954 + }, + { + "start": 2135.68, + "end": 2136.58, + "probability": 0.7863 + }, + { + "start": 2137.08, + "end": 2137.98, + "probability": 0.9507 + }, + { + "start": 2138.42, + "end": 2139.1, + "probability": 0.2825 + }, + { + "start": 2140.08, + "end": 2144.5, + "probability": 0.9971 + }, + { + "start": 2145.1, + "end": 2146.16, + "probability": 0.7467 + }, + { + "start": 2146.8, + "end": 2147.42, + "probability": 0.864 + }, + { + "start": 2147.48, + "end": 2148.56, + "probability": 0.8438 + }, + { + "start": 2149.0, + "end": 2154.1, + "probability": 0.9679 + }, + { + "start": 2154.62, + "end": 2156.2, + "probability": 0.9663 + }, + { + "start": 2156.78, + "end": 2163.58, + "probability": 0.9666 + }, + { + "start": 2164.34, + "end": 2167.14, + "probability": 0.9835 + }, + { + "start": 2168.34, + "end": 2171.1, + "probability": 0.9937 + }, + { + "start": 2171.58, + "end": 2176.38, + "probability": 0.9898 + }, + { + "start": 2176.9, + "end": 2178.82, + "probability": 0.9984 + }, + { + "start": 2179.46, + "end": 2180.52, + "probability": 0.9177 + }, + { + "start": 2181.36, + "end": 2181.72, + "probability": 0.5719 + }, + { + "start": 2181.78, + "end": 2185.96, + "probability": 0.998 + }, + { + "start": 2187.22, + "end": 2190.82, + "probability": 0.9966 + }, + { + "start": 2190.82, + "end": 2194.5, + "probability": 0.99 + }, + { + "start": 2195.82, + "end": 2198.52, + "probability": 0.9783 + }, + { + "start": 2199.34, + "end": 2201.28, + "probability": 0.9455 + }, + { + "start": 2202.02, + "end": 2203.52, + "probability": 0.9902 + }, + { + "start": 2203.96, + "end": 2207.22, + "probability": 0.5701 + }, + { + "start": 2207.22, + "end": 2209.8, + "probability": 0.9954 + }, + { + "start": 2210.56, + "end": 2212.66, + "probability": 0.9905 + }, + { + "start": 2212.86, + "end": 2216.68, + "probability": 0.9921 + }, + { + "start": 2217.34, + "end": 2221.2, + "probability": 0.9946 + }, + { + "start": 2221.74, + "end": 2223.28, + "probability": 0.9592 + }, + { + "start": 2224.22, + "end": 2224.3, + "probability": 0.7825 + }, + { + "start": 2224.4, + "end": 2225.46, + "probability": 0.8224 + }, + { + "start": 2225.78, + "end": 2227.88, + "probability": 0.964 + }, + { + "start": 2228.56, + "end": 2229.62, + "probability": 0.9596 + }, + { + "start": 2230.06, + "end": 2232.54, + "probability": 0.9956 + }, + { + "start": 2233.64, + "end": 2235.26, + "probability": 0.9737 + }, + { + "start": 2235.82, + "end": 2238.81, + "probability": 0.9663 + }, + { + "start": 2239.62, + "end": 2241.26, + "probability": 0.9539 + }, + { + "start": 2242.84, + "end": 2244.18, + "probability": 0.9803 + }, + { + "start": 2244.7, + "end": 2248.42, + "probability": 0.9837 + }, + { + "start": 2248.76, + "end": 2253.02, + "probability": 0.7329 + }, + { + "start": 2253.86, + "end": 2257.16, + "probability": 0.9883 + }, + { + "start": 2258.46, + "end": 2260.8, + "probability": 0.9934 + }, + { + "start": 2261.54, + "end": 2265.56, + "probability": 0.9929 + }, + { + "start": 2266.56, + "end": 2267.32, + "probability": 0.7455 + }, + { + "start": 2267.4, + "end": 2268.28, + "probability": 0.9006 + }, + { + "start": 2268.74, + "end": 2270.7, + "probability": 0.9866 + }, + { + "start": 2271.3, + "end": 2272.14, + "probability": 0.7178 + }, + { + "start": 2272.78, + "end": 2275.28, + "probability": 0.9918 + }, + { + "start": 2275.8, + "end": 2285.5, + "probability": 0.9583 + }, + { + "start": 2286.02, + "end": 2287.12, + "probability": 0.8884 + }, + { + "start": 2289.16, + "end": 2293.0, + "probability": 0.9785 + }, + { + "start": 2293.0, + "end": 2296.06, + "probability": 0.9996 + }, + { + "start": 2297.06, + "end": 2300.12, + "probability": 0.9199 + }, + { + "start": 2300.12, + "end": 2303.56, + "probability": 0.9978 + }, + { + "start": 2304.46, + "end": 2307.32, + "probability": 0.9658 + }, + { + "start": 2308.2, + "end": 2310.7, + "probability": 0.9728 + }, + { + "start": 2310.7, + "end": 2315.44, + "probability": 0.9872 + }, + { + "start": 2316.42, + "end": 2320.12, + "probability": 0.9725 + }, + { + "start": 2321.6, + "end": 2325.08, + "probability": 0.9892 + }, + { + "start": 2325.08, + "end": 2330.82, + "probability": 0.9667 + }, + { + "start": 2330.94, + "end": 2331.76, + "probability": 0.7251 + }, + { + "start": 2332.7, + "end": 2336.04, + "probability": 0.9982 + }, + { + "start": 2336.72, + "end": 2337.96, + "probability": 0.9306 + }, + { + "start": 2338.68, + "end": 2341.56, + "probability": 0.9956 + }, + { + "start": 2342.1, + "end": 2342.96, + "probability": 0.8209 + }, + { + "start": 2343.56, + "end": 2347.12, + "probability": 0.9884 + }, + { + "start": 2347.66, + "end": 2348.86, + "probability": 0.9775 + }, + { + "start": 2349.9, + "end": 2352.26, + "probability": 0.9761 + }, + { + "start": 2352.26, + "end": 2355.5, + "probability": 0.9988 + }, + { + "start": 2356.28, + "end": 2359.28, + "probability": 0.9968 + }, + { + "start": 2359.28, + "end": 2363.56, + "probability": 0.9938 + }, + { + "start": 2364.6, + "end": 2366.54, + "probability": 0.9277 + }, + { + "start": 2367.1, + "end": 2368.78, + "probability": 0.974 + }, + { + "start": 2369.4, + "end": 2371.24, + "probability": 0.5799 + }, + { + "start": 2371.84, + "end": 2377.56, + "probability": 0.994 + }, + { + "start": 2377.74, + "end": 2378.42, + "probability": 0.9818 + }, + { + "start": 2378.62, + "end": 2379.04, + "probability": 0.9823 + }, + { + "start": 2379.62, + "end": 2380.56, + "probability": 0.9669 + }, + { + "start": 2381.62, + "end": 2386.04, + "probability": 0.9662 + }, + { + "start": 2386.96, + "end": 2389.2, + "probability": 0.9482 + }, + { + "start": 2389.92, + "end": 2394.7, + "probability": 0.8735 + }, + { + "start": 2395.38, + "end": 2400.78, + "probability": 0.9933 + }, + { + "start": 2401.42, + "end": 2404.06, + "probability": 0.9951 + }, + { + "start": 2405.58, + "end": 2408.08, + "probability": 0.8861 + }, + { + "start": 2408.86, + "end": 2414.46, + "probability": 0.9904 + }, + { + "start": 2414.84, + "end": 2415.6, + "probability": 0.9396 + }, + { + "start": 2416.72, + "end": 2421.4, + "probability": 0.9456 + }, + { + "start": 2421.96, + "end": 2422.36, + "probability": 0.966 + }, + { + "start": 2423.04, + "end": 2424.36, + "probability": 0.9743 + }, + { + "start": 2425.02, + "end": 2430.26, + "probability": 0.9846 + }, + { + "start": 2432.08, + "end": 2435.82, + "probability": 0.9971 + }, + { + "start": 2435.98, + "end": 2436.42, + "probability": 0.5258 + }, + { + "start": 2436.98, + "end": 2441.28, + "probability": 0.9857 + }, + { + "start": 2441.84, + "end": 2442.46, + "probability": 0.8848 + }, + { + "start": 2443.26, + "end": 2444.78, + "probability": 0.6996 + }, + { + "start": 2444.78, + "end": 2446.46, + "probability": 0.7036 + }, + { + "start": 2447.1, + "end": 2448.96, + "probability": 0.9908 + }, + { + "start": 2449.66, + "end": 2452.68, + "probability": 0.9971 + }, + { + "start": 2453.3, + "end": 2453.78, + "probability": 0.9819 + }, + { + "start": 2454.38, + "end": 2455.34, + "probability": 0.7864 + }, + { + "start": 2455.88, + "end": 2459.38, + "probability": 0.9739 + }, + { + "start": 2460.36, + "end": 2463.78, + "probability": 0.988 + }, + { + "start": 2464.46, + "end": 2468.16, + "probability": 0.9943 + }, + { + "start": 2468.92, + "end": 2470.73, + "probability": 0.9464 + }, + { + "start": 2473.3, + "end": 2475.79, + "probability": 0.9826 + }, + { + "start": 2476.34, + "end": 2477.52, + "probability": 0.8184 + }, + { + "start": 2477.98, + "end": 2479.02, + "probability": 0.9556 + }, + { + "start": 2479.6, + "end": 2480.72, + "probability": 0.9156 + }, + { + "start": 2480.88, + "end": 2483.24, + "probability": 0.9315 + }, + { + "start": 2483.56, + "end": 2485.82, + "probability": 0.9761 + }, + { + "start": 2486.44, + "end": 2488.12, + "probability": 0.8867 + }, + { + "start": 2488.82, + "end": 2491.91, + "probability": 0.9933 + }, + { + "start": 2492.7, + "end": 2495.06, + "probability": 0.9958 + }, + { + "start": 2495.52, + "end": 2496.34, + "probability": 0.6168 + }, + { + "start": 2496.76, + "end": 2500.24, + "probability": 0.9115 + }, + { + "start": 2500.8, + "end": 2503.64, + "probability": 0.8419 + }, + { + "start": 2504.3, + "end": 2504.74, + "probability": 0.8237 + }, + { + "start": 2505.48, + "end": 2507.9, + "probability": 0.9713 + }, + { + "start": 2508.4, + "end": 2509.42, + "probability": 0.8745 + }, + { + "start": 2509.86, + "end": 2512.0, + "probability": 0.795 + }, + { + "start": 2512.7, + "end": 2516.18, + "probability": 0.9971 + }, + { + "start": 2516.84, + "end": 2519.38, + "probability": 0.9927 + }, + { + "start": 2520.3, + "end": 2521.38, + "probability": 0.819 + }, + { + "start": 2522.14, + "end": 2525.44, + "probability": 0.9988 + }, + { + "start": 2525.98, + "end": 2529.18, + "probability": 0.9958 + }, + { + "start": 2530.1, + "end": 2536.32, + "probability": 0.9987 + }, + { + "start": 2536.98, + "end": 2540.12, + "probability": 0.9509 + }, + { + "start": 2540.98, + "end": 2543.76, + "probability": 0.9607 + }, + { + "start": 2544.68, + "end": 2545.86, + "probability": 0.9655 + }, + { + "start": 2546.52, + "end": 2547.94, + "probability": 0.9915 + }, + { + "start": 2548.78, + "end": 2553.1, + "probability": 0.9911 + }, + { + "start": 2553.1, + "end": 2556.36, + "probability": 0.9995 + }, + { + "start": 2557.32, + "end": 2561.26, + "probability": 0.9974 + }, + { + "start": 2561.94, + "end": 2564.64, + "probability": 0.9984 + }, + { + "start": 2565.74, + "end": 2569.34, + "probability": 0.8771 + }, + { + "start": 2569.98, + "end": 2573.66, + "probability": 0.9974 + }, + { + "start": 2574.34, + "end": 2579.05, + "probability": 0.8349 + }, + { + "start": 2580.06, + "end": 2583.34, + "probability": 0.8098 + }, + { + "start": 2584.42, + "end": 2585.66, + "probability": 0.8325 + }, + { + "start": 2585.78, + "end": 2586.68, + "probability": 0.5621 + }, + { + "start": 2588.14, + "end": 2592.26, + "probability": 0.9919 + }, + { + "start": 2593.16, + "end": 2595.4, + "probability": 0.999 + }, + { + "start": 2596.56, + "end": 2602.68, + "probability": 0.9962 + }, + { + "start": 2602.82, + "end": 2603.6, + "probability": 0.9958 + }, + { + "start": 2604.2, + "end": 2608.08, + "probability": 0.981 + }, + { + "start": 2608.56, + "end": 2612.14, + "probability": 0.9624 + }, + { + "start": 2612.14, + "end": 2616.24, + "probability": 0.9943 + }, + { + "start": 2616.42, + "end": 2618.02, + "probability": 0.908 + }, + { + "start": 2619.38, + "end": 2621.58, + "probability": 0.9832 + }, + { + "start": 2622.22, + "end": 2626.44, + "probability": 0.9541 + }, + { + "start": 2627.52, + "end": 2629.74, + "probability": 0.9871 + }, + { + "start": 2630.36, + "end": 2631.74, + "probability": 0.9403 + }, + { + "start": 2632.26, + "end": 2635.0, + "probability": 0.8605 + }, + { + "start": 2635.68, + "end": 2638.14, + "probability": 0.9743 + }, + { + "start": 2639.18, + "end": 2645.08, + "probability": 0.9904 + }, + { + "start": 2645.16, + "end": 2646.44, + "probability": 0.9983 + }, + { + "start": 2647.24, + "end": 2649.8, + "probability": 0.8569 + }, + { + "start": 2651.98, + "end": 2655.08, + "probability": 0.8915 + }, + { + "start": 2655.82, + "end": 2661.16, + "probability": 0.994 + }, + { + "start": 2662.14, + "end": 2664.46, + "probability": 0.8811 + }, + { + "start": 2665.24, + "end": 2668.81, + "probability": 0.9799 + }, + { + "start": 2669.14, + "end": 2672.34, + "probability": 0.9977 + }, + { + "start": 2673.7, + "end": 2675.5, + "probability": 0.7466 + }, + { + "start": 2676.16, + "end": 2680.3, + "probability": 0.9892 + }, + { + "start": 2681.02, + "end": 2684.14, + "probability": 0.937 + }, + { + "start": 2685.36, + "end": 2686.7, + "probability": 0.9827 + }, + { + "start": 2686.72, + "end": 2687.58, + "probability": 0.6437 + }, + { + "start": 2687.58, + "end": 2689.26, + "probability": 0.9136 + }, + { + "start": 2690.08, + "end": 2692.4, + "probability": 0.9966 + }, + { + "start": 2692.96, + "end": 2695.82, + "probability": 0.9681 + }, + { + "start": 2696.62, + "end": 2697.12, + "probability": 0.8641 + }, + { + "start": 2697.74, + "end": 2699.22, + "probability": 0.9224 + }, + { + "start": 2699.96, + "end": 2704.28, + "probability": 0.9624 + }, + { + "start": 2705.1, + "end": 2706.56, + "probability": 0.7786 + }, + { + "start": 2707.4, + "end": 2708.15, + "probability": 0.9793 + }, + { + "start": 2708.92, + "end": 2711.26, + "probability": 0.8806 + }, + { + "start": 2711.88, + "end": 2713.5, + "probability": 0.9778 + }, + { + "start": 2716.06, + "end": 2716.38, + "probability": 0.9137 + }, + { + "start": 2716.52, + "end": 2722.8, + "probability": 0.9165 + }, + { + "start": 2723.74, + "end": 2726.14, + "probability": 0.9529 + }, + { + "start": 2727.32, + "end": 2728.78, + "probability": 0.9956 + }, + { + "start": 2728.92, + "end": 2729.66, + "probability": 0.8965 + }, + { + "start": 2729.72, + "end": 2730.68, + "probability": 0.9209 + }, + { + "start": 2731.34, + "end": 2733.04, + "probability": 0.6298 + }, + { + "start": 2733.1, + "end": 2734.28, + "probability": 0.9348 + }, + { + "start": 2734.74, + "end": 2736.58, + "probability": 0.8953 + }, + { + "start": 2737.28, + "end": 2738.92, + "probability": 0.9956 + }, + { + "start": 2739.82, + "end": 2741.11, + "probability": 0.9941 + }, + { + "start": 2741.68, + "end": 2744.88, + "probability": 0.997 + }, + { + "start": 2746.24, + "end": 2747.84, + "probability": 0.9311 + }, + { + "start": 2748.62, + "end": 2749.36, + "probability": 0.9932 + }, + { + "start": 2750.16, + "end": 2753.48, + "probability": 0.9334 + }, + { + "start": 2754.52, + "end": 2757.42, + "probability": 0.9834 + }, + { + "start": 2758.38, + "end": 2760.64, + "probability": 0.9469 + }, + { + "start": 2761.28, + "end": 2765.14, + "probability": 0.9878 + }, + { + "start": 2766.54, + "end": 2770.42, + "probability": 0.9632 + }, + { + "start": 2771.34, + "end": 2775.52, + "probability": 0.9827 + }, + { + "start": 2776.78, + "end": 2777.96, + "probability": 0.953 + }, + { + "start": 2779.72, + "end": 2783.02, + "probability": 0.8801 + }, + { + "start": 2783.96, + "end": 2785.86, + "probability": 0.8096 + }, + { + "start": 2786.6, + "end": 2789.2, + "probability": 0.9865 + }, + { + "start": 2789.7, + "end": 2795.68, + "probability": 0.9959 + }, + { + "start": 2796.54, + "end": 2798.34, + "probability": 0.9538 + }, + { + "start": 2798.96, + "end": 2799.62, + "probability": 0.9968 + }, + { + "start": 2800.72, + "end": 2803.72, + "probability": 0.9731 + }, + { + "start": 2805.36, + "end": 2806.24, + "probability": 0.9203 + }, + { + "start": 2806.76, + "end": 2808.52, + "probability": 0.8836 + }, + { + "start": 2809.12, + "end": 2810.08, + "probability": 0.8579 + }, + { + "start": 2810.66, + "end": 2815.66, + "probability": 0.9718 + }, + { + "start": 2816.18, + "end": 2817.36, + "probability": 0.8218 + }, + { + "start": 2817.98, + "end": 2820.02, + "probability": 0.9507 + }, + { + "start": 2821.48, + "end": 2824.86, + "probability": 0.9912 + }, + { + "start": 2827.2, + "end": 2828.3, + "probability": 0.8093 + }, + { + "start": 2828.36, + "end": 2831.76, + "probability": 0.9961 + }, + { + "start": 2832.38, + "end": 2834.68, + "probability": 0.9946 + }, + { + "start": 2835.36, + "end": 2837.92, + "probability": 0.9961 + }, + { + "start": 2839.66, + "end": 2841.66, + "probability": 0.9985 + }, + { + "start": 2842.3, + "end": 2844.28, + "probability": 0.998 + }, + { + "start": 2844.98, + "end": 2848.08, + "probability": 0.988 + }, + { + "start": 2848.74, + "end": 2852.64, + "probability": 0.9634 + }, + { + "start": 2855.65, + "end": 2856.38, + "probability": 0.124 + }, + { + "start": 2856.38, + "end": 2858.86, + "probability": 0.9668 + }, + { + "start": 2859.76, + "end": 2862.34, + "probability": 0.9745 + }, + { + "start": 2863.2, + "end": 2865.42, + "probability": 0.9966 + }, + { + "start": 2866.16, + "end": 2867.26, + "probability": 0.7406 + }, + { + "start": 2867.84, + "end": 2868.36, + "probability": 0.964 + }, + { + "start": 2869.0, + "end": 2870.24, + "probability": 0.9961 + }, + { + "start": 2871.06, + "end": 2874.0, + "probability": 0.9922 + }, + { + "start": 2874.0, + "end": 2879.06, + "probability": 0.9983 + }, + { + "start": 2879.4, + "end": 2881.06, + "probability": 0.9592 + }, + { + "start": 2881.34, + "end": 2882.46, + "probability": 0.9988 + }, + { + "start": 2883.2, + "end": 2886.6, + "probability": 0.7512 + }, + { + "start": 2886.92, + "end": 2893.96, + "probability": 0.9943 + }, + { + "start": 2894.68, + "end": 2898.66, + "probability": 0.9883 + }, + { + "start": 2899.92, + "end": 2903.02, + "probability": 0.9363 + }, + { + "start": 2905.54, + "end": 2908.78, + "probability": 0.9909 + }, + { + "start": 2909.74, + "end": 2911.92, + "probability": 0.9552 + }, + { + "start": 2912.58, + "end": 2915.14, + "probability": 0.9211 + }, + { + "start": 2915.78, + "end": 2917.46, + "probability": 0.879 + }, + { + "start": 2918.28, + "end": 2922.0, + "probability": 0.9534 + }, + { + "start": 2922.98, + "end": 2928.44, + "probability": 0.991 + }, + { + "start": 2929.02, + "end": 2932.16, + "probability": 0.993 + }, + { + "start": 2932.84, + "end": 2934.52, + "probability": 0.9918 + }, + { + "start": 2935.22, + "end": 2935.64, + "probability": 0.7674 + }, + { + "start": 2937.92, + "end": 2939.96, + "probability": 0.8925 + }, + { + "start": 2941.1, + "end": 2945.38, + "probability": 0.834 + }, + { + "start": 2946.32, + "end": 2948.02, + "probability": 0.842 + }, + { + "start": 2948.7, + "end": 2950.54, + "probability": 0.6918 + }, + { + "start": 2951.52, + "end": 2953.46, + "probability": 0.9174 + }, + { + "start": 2963.06, + "end": 2963.44, + "probability": 0.5815 + }, + { + "start": 2965.82, + "end": 2969.04, + "probability": 0.7439 + }, + { + "start": 2970.6, + "end": 2973.88, + "probability": 0.9028 + }, + { + "start": 2975.04, + "end": 2976.78, + "probability": 0.8201 + }, + { + "start": 2978.16, + "end": 2982.34, + "probability": 0.8333 + }, + { + "start": 2983.34, + "end": 2987.0, + "probability": 0.967 + }, + { + "start": 2988.12, + "end": 2989.6, + "probability": 0.9388 + }, + { + "start": 2991.28, + "end": 2993.88, + "probability": 0.8124 + }, + { + "start": 2994.26, + "end": 2994.7, + "probability": 0.9874 + }, + { + "start": 2995.12, + "end": 2997.3, + "probability": 0.9777 + }, + { + "start": 2998.2, + "end": 3000.4, + "probability": 0.9932 + }, + { + "start": 3002.32, + "end": 3007.02, + "probability": 0.5018 + }, + { + "start": 3007.02, + "end": 3012.7, + "probability": 0.9113 + }, + { + "start": 3012.84, + "end": 3015.98, + "probability": 0.9951 + }, + { + "start": 3017.1, + "end": 3020.02, + "probability": 0.9634 + }, + { + "start": 3020.2, + "end": 3020.46, + "probability": 0.4991 + }, + { + "start": 3021.74, + "end": 3028.68, + "probability": 0.7491 + }, + { + "start": 3028.8, + "end": 3029.86, + "probability": 0.9839 + }, + { + "start": 3030.0, + "end": 3032.48, + "probability": 0.9883 + }, + { + "start": 3033.3, + "end": 3034.86, + "probability": 0.9551 + }, + { + "start": 3037.06, + "end": 3037.56, + "probability": 0.3739 + }, + { + "start": 3038.9, + "end": 3040.92, + "probability": 0.435 + }, + { + "start": 3041.5, + "end": 3047.14, + "probability": 0.929 + }, + { + "start": 3048.56, + "end": 3050.54, + "probability": 0.8357 + }, + { + "start": 3052.28, + "end": 3058.98, + "probability": 0.9927 + }, + { + "start": 3058.98, + "end": 3060.58, + "probability": 0.5447 + }, + { + "start": 3062.0, + "end": 3063.8, + "probability": 0.9604 + }, + { + "start": 3063.94, + "end": 3065.16, + "probability": 0.8654 + }, + { + "start": 3066.46, + "end": 3071.46, + "probability": 0.9921 + }, + { + "start": 3072.12, + "end": 3076.86, + "probability": 0.9957 + }, + { + "start": 3077.28, + "end": 3079.96, + "probability": 0.8939 + }, + { + "start": 3080.74, + "end": 3082.5, + "probability": 0.9184 + }, + { + "start": 3083.26, + "end": 3087.04, + "probability": 0.9604 + }, + { + "start": 3088.0, + "end": 3089.32, + "probability": 0.9357 + }, + { + "start": 3090.78, + "end": 3092.29, + "probability": 0.8822 + }, + { + "start": 3092.62, + "end": 3093.89, + "probability": 0.8672 + }, + { + "start": 3094.5, + "end": 3097.14, + "probability": 0.9867 + }, + { + "start": 3097.8, + "end": 3100.16, + "probability": 0.9436 + }, + { + "start": 3101.54, + "end": 3102.12, + "probability": 0.9366 + }, + { + "start": 3102.24, + "end": 3106.2, + "probability": 0.9603 + }, + { + "start": 3106.28, + "end": 3109.3, + "probability": 0.833 + }, + { + "start": 3109.36, + "end": 3110.33, + "probability": 0.4994 + }, + { + "start": 3111.56, + "end": 3114.1, + "probability": 0.9866 + }, + { + "start": 3115.32, + "end": 3117.74, + "probability": 0.9893 + }, + { + "start": 3119.54, + "end": 3121.9, + "probability": 0.9512 + }, + { + "start": 3123.56, + "end": 3126.5, + "probability": 0.8147 + }, + { + "start": 3128.18, + "end": 3130.52, + "probability": 0.9688 + }, + { + "start": 3130.88, + "end": 3133.28, + "probability": 0.9901 + }, + { + "start": 3133.82, + "end": 3135.46, + "probability": 0.9867 + }, + { + "start": 3135.5, + "end": 3137.26, + "probability": 0.9967 + }, + { + "start": 3137.38, + "end": 3138.9, + "probability": 0.9893 + }, + { + "start": 3139.24, + "end": 3140.06, + "probability": 0.96 + }, + { + "start": 3140.84, + "end": 3141.22, + "probability": 0.5793 + }, + { + "start": 3141.68, + "end": 3144.26, + "probability": 0.9839 + }, + { + "start": 3145.1, + "end": 3145.92, + "probability": 0.8776 + }, + { + "start": 3146.4, + "end": 3147.56, + "probability": 0.952 + }, + { + "start": 3148.0, + "end": 3148.78, + "probability": 0.9953 + }, + { + "start": 3149.66, + "end": 3151.26, + "probability": 0.9814 + }, + { + "start": 3152.1, + "end": 3153.64, + "probability": 0.8793 + }, + { + "start": 3154.6, + "end": 3158.48, + "probability": 0.9954 + }, + { + "start": 3158.5, + "end": 3161.66, + "probability": 0.9932 + }, + { + "start": 3162.44, + "end": 3165.82, + "probability": 0.9894 + }, + { + "start": 3166.3, + "end": 3168.68, + "probability": 0.9581 + }, + { + "start": 3169.08, + "end": 3171.46, + "probability": 0.9922 + }, + { + "start": 3172.58, + "end": 3175.24, + "probability": 0.9666 + }, + { + "start": 3176.5, + "end": 3178.98, + "probability": 0.9805 + }, + { + "start": 3179.08, + "end": 3180.32, + "probability": 0.9775 + }, + { + "start": 3181.16, + "end": 3181.46, + "probability": 0.8169 + }, + { + "start": 3182.4, + "end": 3185.58, + "probability": 0.9905 + }, + { + "start": 3186.16, + "end": 3187.1, + "probability": 0.9805 + }, + { + "start": 3187.5, + "end": 3189.12, + "probability": 0.9915 + }, + { + "start": 3189.94, + "end": 3190.72, + "probability": 0.9258 + }, + { + "start": 3191.16, + "end": 3193.78, + "probability": 0.7555 + }, + { + "start": 3194.08, + "end": 3196.78, + "probability": 0.9174 + }, + { + "start": 3197.16, + "end": 3199.25, + "probability": 0.9961 + }, + { + "start": 3200.08, + "end": 3200.74, + "probability": 0.9869 + }, + { + "start": 3200.98, + "end": 3202.61, + "probability": 0.8774 + }, + { + "start": 3205.32, + "end": 3206.38, + "probability": 0.8845 + }, + { + "start": 3206.38, + "end": 3207.7, + "probability": 0.9286 + }, + { + "start": 3207.8, + "end": 3208.82, + "probability": 0.9966 + }, + { + "start": 3208.96, + "end": 3210.24, + "probability": 0.7084 + }, + { + "start": 3210.92, + "end": 3212.0, + "probability": 0.8159 + }, + { + "start": 3212.32, + "end": 3212.44, + "probability": 0.5798 + }, + { + "start": 3212.5, + "end": 3212.58, + "probability": 0.6666 + }, + { + "start": 3212.64, + "end": 3215.6, + "probability": 0.9926 + }, + { + "start": 3215.7, + "end": 3217.52, + "probability": 0.8611 + }, + { + "start": 3217.58, + "end": 3219.32, + "probability": 0.867 + }, + { + "start": 3219.48, + "end": 3223.3, + "probability": 0.9521 + }, + { + "start": 3223.46, + "end": 3224.84, + "probability": 0.9856 + }, + { + "start": 3225.04, + "end": 3225.74, + "probability": 0.9808 + }, + { + "start": 3227.36, + "end": 3229.36, + "probability": 0.9121 + }, + { + "start": 3230.4, + "end": 3233.54, + "probability": 0.9761 + }, + { + "start": 3234.24, + "end": 3235.5, + "probability": 0.6829 + }, + { + "start": 3236.32, + "end": 3237.46, + "probability": 0.7493 + }, + { + "start": 3238.36, + "end": 3240.52, + "probability": 0.9529 + }, + { + "start": 3241.88, + "end": 3243.31, + "probability": 0.9331 + }, + { + "start": 3244.2, + "end": 3246.8, + "probability": 0.8123 + }, + { + "start": 3246.98, + "end": 3247.92, + "probability": 0.9551 + }, + { + "start": 3248.6, + "end": 3249.02, + "probability": 0.9437 + }, + { + "start": 3249.82, + "end": 3252.56, + "probability": 0.9981 + }, + { + "start": 3253.32, + "end": 3256.98, + "probability": 0.9995 + }, + { + "start": 3257.62, + "end": 3259.82, + "probability": 0.9604 + }, + { + "start": 3259.84, + "end": 3260.04, + "probability": 0.7647 + }, + { + "start": 3260.14, + "end": 3261.56, + "probability": 0.7186 + }, + { + "start": 3262.44, + "end": 3264.4, + "probability": 0.9719 + }, + { + "start": 3265.66, + "end": 3267.74, + "probability": 0.7738 + }, + { + "start": 3267.82, + "end": 3269.9, + "probability": 0.9111 + }, + { + "start": 3270.02, + "end": 3272.12, + "probability": 0.9978 + }, + { + "start": 3272.4, + "end": 3277.54, + "probability": 0.9895 + }, + { + "start": 3278.28, + "end": 3279.78, + "probability": 0.8665 + }, + { + "start": 3280.32, + "end": 3281.46, + "probability": 0.9899 + }, + { + "start": 3282.38, + "end": 3284.18, + "probability": 0.9679 + }, + { + "start": 3284.34, + "end": 3284.96, + "probability": 0.5856 + }, + { + "start": 3285.04, + "end": 3285.63, + "probability": 0.7587 + }, + { + "start": 3285.84, + "end": 3286.6, + "probability": 0.9072 + }, + { + "start": 3287.18, + "end": 3289.14, + "probability": 0.9919 + }, + { + "start": 3289.22, + "end": 3290.5, + "probability": 0.9987 + }, + { + "start": 3291.46, + "end": 3292.16, + "probability": 0.9222 + }, + { + "start": 3292.32, + "end": 3295.04, + "probability": 0.9771 + }, + { + "start": 3295.94, + "end": 3299.76, + "probability": 0.9593 + }, + { + "start": 3301.26, + "end": 3303.32, + "probability": 0.8649 + }, + { + "start": 3303.32, + "end": 3304.58, + "probability": 0.8711 + }, + { + "start": 3304.64, + "end": 3305.73, + "probability": 0.8416 + }, + { + "start": 3306.94, + "end": 3308.21, + "probability": 0.9961 + }, + { + "start": 3308.66, + "end": 3310.54, + "probability": 0.9615 + }, + { + "start": 3312.1, + "end": 3313.2, + "probability": 0.9971 + }, + { + "start": 3314.0, + "end": 3315.32, + "probability": 0.7824 + }, + { + "start": 3316.14, + "end": 3319.0, + "probability": 0.8735 + }, + { + "start": 3320.34, + "end": 3322.72, + "probability": 0.9907 + }, + { + "start": 3323.42, + "end": 3323.5, + "probability": 0.9446 + }, + { + "start": 3323.52, + "end": 3325.22, + "probability": 0.9913 + }, + { + "start": 3325.32, + "end": 3326.0, + "probability": 0.9474 + }, + { + "start": 3326.08, + "end": 3326.84, + "probability": 0.6825 + }, + { + "start": 3340.12, + "end": 3341.88, + "probability": 0.022 + }, + { + "start": 3341.88, + "end": 3342.8, + "probability": 0.052 + }, + { + "start": 3343.44, + "end": 3343.44, + "probability": 0.0442 + }, + { + "start": 3343.44, + "end": 3343.44, + "probability": 0.1194 + }, + { + "start": 3343.44, + "end": 3343.44, + "probability": 0.0244 + }, + { + "start": 3343.44, + "end": 3343.44, + "probability": 0.1417 + }, + { + "start": 3343.44, + "end": 3343.44, + "probability": 0.0209 + }, + { + "start": 3343.44, + "end": 3345.68, + "probability": 0.5244 + }, + { + "start": 3346.7, + "end": 3347.48, + "probability": 0.3285 + }, + { + "start": 3348.46, + "end": 3349.68, + "probability": 0.4449 + }, + { + "start": 3350.42, + "end": 3352.84, + "probability": 0.5122 + }, + { + "start": 3352.96, + "end": 3354.38, + "probability": 0.7842 + }, + { + "start": 3355.06, + "end": 3355.52, + "probability": 0.7341 + }, + { + "start": 3356.54, + "end": 3359.83, + "probability": 0.892 + }, + { + "start": 3360.18, + "end": 3365.86, + "probability": 0.9542 + }, + { + "start": 3366.84, + "end": 3369.7, + "probability": 0.933 + }, + { + "start": 3370.54, + "end": 3371.14, + "probability": 0.5301 + }, + { + "start": 3372.16, + "end": 3373.44, + "probability": 0.9373 + }, + { + "start": 3374.38, + "end": 3377.04, + "probability": 0.9756 + }, + { + "start": 3377.2, + "end": 3380.28, + "probability": 0.9946 + }, + { + "start": 3381.1, + "end": 3384.05, + "probability": 0.9211 + }, + { + "start": 3384.52, + "end": 3385.52, + "probability": 0.9467 + }, + { + "start": 3385.84, + "end": 3387.33, + "probability": 0.9961 + }, + { + "start": 3388.04, + "end": 3389.44, + "probability": 0.8289 + }, + { + "start": 3390.48, + "end": 3391.28, + "probability": 0.8534 + }, + { + "start": 3392.1, + "end": 3395.92, + "probability": 0.9162 + }, + { + "start": 3396.48, + "end": 3397.24, + "probability": 0.868 + }, + { + "start": 3398.2, + "end": 3400.62, + "probability": 0.9951 + }, + { + "start": 3401.78, + "end": 3407.7, + "probability": 0.9839 + }, + { + "start": 3407.7, + "end": 3408.5, + "probability": 0.8566 + }, + { + "start": 3408.54, + "end": 3410.66, + "probability": 0.8008 + }, + { + "start": 3410.74, + "end": 3411.54, + "probability": 0.8995 + }, + { + "start": 3411.78, + "end": 3413.04, + "probability": 0.7404 + }, + { + "start": 3413.92, + "end": 3416.18, + "probability": 0.7632 + }, + { + "start": 3416.48, + "end": 3418.62, + "probability": 0.7379 + }, + { + "start": 3419.44, + "end": 3420.5, + "probability": 0.7023 + }, + { + "start": 3421.34, + "end": 3425.96, + "probability": 0.9559 + }, + { + "start": 3427.03, + "end": 3428.74, + "probability": 0.8341 + }, + { + "start": 3428.78, + "end": 3429.46, + "probability": 0.5648 + }, + { + "start": 3429.66, + "end": 3431.32, + "probability": 0.5769 + }, + { + "start": 3433.82, + "end": 3435.12, + "probability": 0.8886 + }, + { + "start": 3435.76, + "end": 3436.86, + "probability": 0.9806 + }, + { + "start": 3437.88, + "end": 3438.72, + "probability": 0.8278 + }, + { + "start": 3439.52, + "end": 3440.87, + "probability": 0.9917 + }, + { + "start": 3441.14, + "end": 3443.4, + "probability": 0.9984 + }, + { + "start": 3443.98, + "end": 3445.66, + "probability": 0.9941 + }, + { + "start": 3446.78, + "end": 3451.82, + "probability": 0.8804 + }, + { + "start": 3452.62, + "end": 3455.08, + "probability": 0.8157 + }, + { + "start": 3456.08, + "end": 3458.84, + "probability": 0.95 + }, + { + "start": 3458.98, + "end": 3459.7, + "probability": 0.8153 + }, + { + "start": 3459.86, + "end": 3463.46, + "probability": 0.9747 + }, + { + "start": 3463.46, + "end": 3464.14, + "probability": 0.6297 + }, + { + "start": 3465.02, + "end": 3466.26, + "probability": 0.892 + }, + { + "start": 3466.98, + "end": 3467.84, + "probability": 0.8774 + }, + { + "start": 3469.12, + "end": 3470.6, + "probability": 0.9622 + }, + { + "start": 3471.14, + "end": 3473.8, + "probability": 0.9418 + }, + { + "start": 3474.6, + "end": 3475.69, + "probability": 0.986 + }, + { + "start": 3476.56, + "end": 3477.94, + "probability": 0.7003 + }, + { + "start": 3478.08, + "end": 3479.1, + "probability": 0.6968 + }, + { + "start": 3479.52, + "end": 3482.52, + "probability": 0.8549 + }, + { + "start": 3482.7, + "end": 3483.78, + "probability": 0.8307 + }, + { + "start": 3484.76, + "end": 3485.36, + "probability": 0.6179 + }, + { + "start": 3485.48, + "end": 3485.76, + "probability": 0.9058 + }, + { + "start": 3485.82, + "end": 3487.22, + "probability": 0.9419 + }, + { + "start": 3487.83, + "end": 3489.76, + "probability": 0.9937 + }, + { + "start": 3489.88, + "end": 3491.13, + "probability": 0.8404 + }, + { + "start": 3492.5, + "end": 3495.58, + "probability": 0.9205 + }, + { + "start": 3496.28, + "end": 3499.58, + "probability": 0.9689 + }, + { + "start": 3500.04, + "end": 3502.92, + "probability": 0.9955 + }, + { + "start": 3503.5, + "end": 3505.6, + "probability": 0.9967 + }, + { + "start": 3505.7, + "end": 3506.26, + "probability": 0.8824 + }, + { + "start": 3506.56, + "end": 3507.3, + "probability": 0.9431 + }, + { + "start": 3507.34, + "end": 3508.0, + "probability": 0.9397 + }, + { + "start": 3508.9, + "end": 3510.32, + "probability": 0.8453 + }, + { + "start": 3511.28, + "end": 3512.7, + "probability": 0.9907 + }, + { + "start": 3513.04, + "end": 3514.12, + "probability": 0.9258 + }, + { + "start": 3515.08, + "end": 3516.64, + "probability": 0.9824 + }, + { + "start": 3516.7, + "end": 3518.11, + "probability": 0.9901 + }, + { + "start": 3518.78, + "end": 3520.44, + "probability": 0.946 + }, + { + "start": 3521.6, + "end": 3527.16, + "probability": 0.9968 + }, + { + "start": 3528.46, + "end": 3531.72, + "probability": 0.998 + }, + { + "start": 3532.48, + "end": 3533.68, + "probability": 0.8898 + }, + { + "start": 3533.76, + "end": 3534.66, + "probability": 0.76 + }, + { + "start": 3535.02, + "end": 3535.86, + "probability": 0.985 + }, + { + "start": 3536.92, + "end": 3537.84, + "probability": 0.7801 + }, + { + "start": 3537.94, + "end": 3538.89, + "probability": 0.8149 + }, + { + "start": 3539.3, + "end": 3540.62, + "probability": 0.9907 + }, + { + "start": 3541.56, + "end": 3543.04, + "probability": 0.7368 + }, + { + "start": 3543.92, + "end": 3545.62, + "probability": 0.9559 + }, + { + "start": 3546.1, + "end": 3548.08, + "probability": 0.9965 + }, + { + "start": 3552.98, + "end": 3554.98, + "probability": 0.8573 + }, + { + "start": 3555.86, + "end": 3557.0, + "probability": 0.7833 + }, + { + "start": 3558.0, + "end": 3560.68, + "probability": 0.998 + }, + { + "start": 3560.76, + "end": 3563.98, + "probability": 0.998 + }, + { + "start": 3564.46, + "end": 3565.74, + "probability": 0.9885 + }, + { + "start": 3565.9, + "end": 3566.56, + "probability": 0.3046 + }, + { + "start": 3567.06, + "end": 3568.12, + "probability": 0.7925 + }, + { + "start": 3570.12, + "end": 3571.38, + "probability": 0.9482 + }, + { + "start": 3571.48, + "end": 3572.48, + "probability": 0.9799 + }, + { + "start": 3573.66, + "end": 3574.26, + "probability": 0.9621 + }, + { + "start": 3574.36, + "end": 3575.38, + "probability": 0.9902 + }, + { + "start": 3575.52, + "end": 3577.12, + "probability": 0.9943 + }, + { + "start": 3577.96, + "end": 3578.9, + "probability": 0.9509 + }, + { + "start": 3579.48, + "end": 3580.64, + "probability": 0.8072 + }, + { + "start": 3581.18, + "end": 3583.46, + "probability": 0.755 + }, + { + "start": 3583.48, + "end": 3584.18, + "probability": 0.7651 + }, + { + "start": 3584.34, + "end": 3587.88, + "probability": 0.914 + }, + { + "start": 3589.48, + "end": 3592.26, + "probability": 0.9893 + }, + { + "start": 3592.44, + "end": 3594.22, + "probability": 0.9851 + }, + { + "start": 3595.54, + "end": 3597.6, + "probability": 0.9954 + }, + { + "start": 3597.6, + "end": 3600.62, + "probability": 0.9316 + }, + { + "start": 3601.42, + "end": 3605.02, + "probability": 0.8749 + }, + { + "start": 3605.6, + "end": 3607.88, + "probability": 0.9966 + }, + { + "start": 3609.16, + "end": 3613.92, + "probability": 0.7731 + }, + { + "start": 3615.46, + "end": 3616.4, + "probability": 0.9559 + }, + { + "start": 3616.94, + "end": 3618.24, + "probability": 0.9153 + }, + { + "start": 3618.92, + "end": 3619.2, + "probability": 0.9378 + }, + { + "start": 3619.3, + "end": 3619.64, + "probability": 0.2948 + }, + { + "start": 3619.68, + "end": 3620.57, + "probability": 0.5495 + }, + { + "start": 3620.84, + "end": 3621.74, + "probability": 0.2687 + }, + { + "start": 3621.84, + "end": 3623.74, + "probability": 0.9709 + }, + { + "start": 3625.48, + "end": 3626.35, + "probability": 0.9828 + }, + { + "start": 3627.74, + "end": 3629.64, + "probability": 0.8931 + }, + { + "start": 3630.04, + "end": 3632.18, + "probability": 0.978 + }, + { + "start": 3632.24, + "end": 3633.04, + "probability": 0.9192 + }, + { + "start": 3635.44, + "end": 3641.4, + "probability": 0.9789 + }, + { + "start": 3641.58, + "end": 3642.34, + "probability": 0.9838 + }, + { + "start": 3642.76, + "end": 3643.4, + "probability": 0.9662 + }, + { + "start": 3644.96, + "end": 3645.96, + "probability": 0.8472 + }, + { + "start": 3646.76, + "end": 3647.56, + "probability": 0.9208 + }, + { + "start": 3648.22, + "end": 3650.98, + "probability": 0.8719 + }, + { + "start": 3651.72, + "end": 3653.72, + "probability": 0.9111 + }, + { + "start": 3654.76, + "end": 3656.72, + "probability": 0.9556 + }, + { + "start": 3657.92, + "end": 3660.98, + "probability": 0.9719 + }, + { + "start": 3661.76, + "end": 3662.36, + "probability": 0.5832 + }, + { + "start": 3662.56, + "end": 3663.38, + "probability": 0.5773 + }, + { + "start": 3663.44, + "end": 3664.04, + "probability": 0.7885 + }, + { + "start": 3665.24, + "end": 3666.37, + "probability": 0.9902 + }, + { + "start": 3667.48, + "end": 3669.38, + "probability": 0.9866 + }, + { + "start": 3669.78, + "end": 3672.68, + "probability": 0.9907 + }, + { + "start": 3672.72, + "end": 3673.88, + "probability": 0.9439 + }, + { + "start": 3674.34, + "end": 3676.24, + "probability": 0.9855 + }, + { + "start": 3676.92, + "end": 3677.8, + "probability": 0.9995 + }, + { + "start": 3678.82, + "end": 3679.84, + "probability": 0.9323 + }, + { + "start": 3681.06, + "end": 3684.64, + "probability": 0.9359 + }, + { + "start": 3684.84, + "end": 3685.32, + "probability": 0.9823 + }, + { + "start": 3686.28, + "end": 3687.46, + "probability": 0.8779 + }, + { + "start": 3687.48, + "end": 3689.6, + "probability": 0.8646 + }, + { + "start": 3690.02, + "end": 3690.56, + "probability": 0.983 + }, + { + "start": 3691.64, + "end": 3693.8, + "probability": 0.9696 + }, + { + "start": 3694.8, + "end": 3695.86, + "probability": 0.6935 + }, + { + "start": 3696.4, + "end": 3697.94, + "probability": 0.9714 + }, + { + "start": 3697.94, + "end": 3699.9, + "probability": 0.8665 + }, + { + "start": 3701.44, + "end": 3702.28, + "probability": 0.6003 + }, + { + "start": 3703.14, + "end": 3706.34, + "probability": 0.8974 + }, + { + "start": 3707.66, + "end": 3708.7, + "probability": 0.8562 + }, + { + "start": 3708.96, + "end": 3710.76, + "probability": 0.9845 + }, + { + "start": 3710.84, + "end": 3712.68, + "probability": 0.9602 + }, + { + "start": 3712.76, + "end": 3714.0, + "probability": 0.8491 + }, + { + "start": 3714.8, + "end": 3715.82, + "probability": 0.8777 + }, + { + "start": 3716.94, + "end": 3717.66, + "probability": 0.7431 + }, + { + "start": 3718.96, + "end": 3719.06, + "probability": 0.3695 + }, + { + "start": 3719.06, + "end": 3720.74, + "probability": 0.7672 + }, + { + "start": 3721.12, + "end": 3721.66, + "probability": 0.7192 + }, + { + "start": 3721.8, + "end": 3722.74, + "probability": 0.9795 + }, + { + "start": 3723.7, + "end": 3724.58, + "probability": 0.8525 + }, + { + "start": 3724.78, + "end": 3726.9, + "probability": 0.2536 + }, + { + "start": 3726.9, + "end": 3729.56, + "probability": 0.423 + }, + { + "start": 3729.76, + "end": 3730.24, + "probability": 0.5587 + }, + { + "start": 3730.6, + "end": 3734.42, + "probability": 0.997 + }, + { + "start": 3734.42, + "end": 3737.56, + "probability": 0.9984 + }, + { + "start": 3738.04, + "end": 3741.18, + "probability": 0.9722 + }, + { + "start": 3741.38, + "end": 3742.3, + "probability": 0.6115 + }, + { + "start": 3742.44, + "end": 3744.28, + "probability": 0.9686 + }, + { + "start": 3745.48, + "end": 3746.9, + "probability": 0.822 + }, + { + "start": 3747.62, + "end": 3749.9, + "probability": 0.8656 + }, + { + "start": 3751.26, + "end": 3753.74, + "probability": 0.7713 + }, + { + "start": 3754.32, + "end": 3758.02, + "probability": 0.7632 + }, + { + "start": 3758.02, + "end": 3761.34, + "probability": 0.9643 + }, + { + "start": 3761.4, + "end": 3762.7, + "probability": 0.9878 + }, + { + "start": 3763.26, + "end": 3766.18, + "probability": 0.9775 + }, + { + "start": 3766.34, + "end": 3767.06, + "probability": 0.9027 + }, + { + "start": 3767.14, + "end": 3768.5, + "probability": 0.9724 + }, + { + "start": 3769.34, + "end": 3774.44, + "probability": 0.9986 + }, + { + "start": 3774.6, + "end": 3775.38, + "probability": 0.8982 + }, + { + "start": 3775.5, + "end": 3776.76, + "probability": 0.9101 + }, + { + "start": 3777.44, + "end": 3778.5, + "probability": 0.9949 + }, + { + "start": 3779.16, + "end": 3780.88, + "probability": 0.9972 + }, + { + "start": 3782.42, + "end": 3784.02, + "probability": 0.9971 + }, + { + "start": 3784.14, + "end": 3787.54, + "probability": 0.9946 + }, + { + "start": 3788.18, + "end": 3789.32, + "probability": 0.9946 + }, + { + "start": 3789.64, + "end": 3791.24, + "probability": 0.9456 + }, + { + "start": 3791.3, + "end": 3791.62, + "probability": 0.5318 + }, + { + "start": 3792.54, + "end": 3799.42, + "probability": 0.9933 + }, + { + "start": 3799.48, + "end": 3800.09, + "probability": 0.69 + }, + { + "start": 3800.66, + "end": 3802.2, + "probability": 0.7706 + }, + { + "start": 3802.3, + "end": 3804.32, + "probability": 0.9645 + }, + { + "start": 3805.5, + "end": 3806.82, + "probability": 0.9912 + }, + { + "start": 3808.66, + "end": 3810.12, + "probability": 0.9952 + }, + { + "start": 3810.22, + "end": 3812.0, + "probability": 0.8227 + }, + { + "start": 3813.4, + "end": 3813.56, + "probability": 0.1987 + }, + { + "start": 3813.56, + "end": 3814.3, + "probability": 0.8187 + }, + { + "start": 3814.38, + "end": 3815.9, + "probability": 0.9939 + }, + { + "start": 3815.98, + "end": 3817.29, + "probability": 0.9497 + }, + { + "start": 3818.08, + "end": 3820.72, + "probability": 0.9541 + }, + { + "start": 3820.72, + "end": 3823.72, + "probability": 0.9989 + }, + { + "start": 3823.84, + "end": 3824.29, + "probability": 0.879 + }, + { + "start": 3825.44, + "end": 3828.5, + "probability": 0.9215 + }, + { + "start": 3829.0, + "end": 3829.22, + "probability": 0.0847 + }, + { + "start": 3829.22, + "end": 3831.42, + "probability": 0.9685 + }, + { + "start": 3831.48, + "end": 3834.5, + "probability": 0.8111 + }, + { + "start": 3835.04, + "end": 3836.66, + "probability": 0.4593 + }, + { + "start": 3836.66, + "end": 3837.52, + "probability": 0.5397 + }, + { + "start": 3837.54, + "end": 3840.22, + "probability": 0.967 + }, + { + "start": 3840.36, + "end": 3842.06, + "probability": 0.9134 + }, + { + "start": 3842.6, + "end": 3842.82, + "probability": 0.9658 + }, + { + "start": 3843.46, + "end": 3845.13, + "probability": 0.7436 + }, + { + "start": 3846.2, + "end": 3846.78, + "probability": 0.8087 + }, + { + "start": 3847.88, + "end": 3849.74, + "probability": 0.962 + }, + { + "start": 3851.4, + "end": 3852.9, + "probability": 0.8261 + }, + { + "start": 3853.76, + "end": 3855.38, + "probability": 0.9723 + }, + { + "start": 3855.66, + "end": 3856.88, + "probability": 0.9287 + }, + { + "start": 3857.1, + "end": 3859.9, + "probability": 0.9673 + }, + { + "start": 3860.62, + "end": 3863.02, + "probability": 0.8711 + }, + { + "start": 3864.6, + "end": 3867.0, + "probability": 0.9902 + }, + { + "start": 3867.16, + "end": 3868.56, + "probability": 0.9481 + }, + { + "start": 3868.86, + "end": 3870.9, + "probability": 0.9418 + }, + { + "start": 3871.5, + "end": 3872.68, + "probability": 0.9982 + }, + { + "start": 3873.42, + "end": 3879.32, + "probability": 0.9892 + }, + { + "start": 3880.42, + "end": 3884.26, + "probability": 0.5859 + }, + { + "start": 3885.12, + "end": 3885.48, + "probability": 0.5668 + }, + { + "start": 3885.6, + "end": 3886.46, + "probability": 0.947 + }, + { + "start": 3886.56, + "end": 3889.08, + "probability": 0.9387 + }, + { + "start": 3889.26, + "end": 3890.02, + "probability": 0.9568 + }, + { + "start": 3890.62, + "end": 3891.58, + "probability": 0.9696 + }, + { + "start": 3891.66, + "end": 3893.41, + "probability": 0.9985 + }, + { + "start": 3893.68, + "end": 3894.79, + "probability": 0.9848 + }, + { + "start": 3896.02, + "end": 3896.6, + "probability": 0.6627 + }, + { + "start": 3896.76, + "end": 3898.7, + "probability": 0.8174 + }, + { + "start": 3900.02, + "end": 3901.0, + "probability": 0.683 + }, + { + "start": 3901.2, + "end": 3901.22, + "probability": 0.1868 + }, + { + "start": 3902.12, + "end": 3902.12, + "probability": 0.1451 + }, + { + "start": 3902.12, + "end": 3904.56, + "probability": 0.8179 + }, + { + "start": 3905.06, + "end": 3909.48, + "probability": 0.9965 + }, + { + "start": 3909.82, + "end": 3913.44, + "probability": 0.9971 + }, + { + "start": 3913.9, + "end": 3915.34, + "probability": 0.8791 + }, + { + "start": 3915.72, + "end": 3916.98, + "probability": 0.9857 + }, + { + "start": 3917.56, + "end": 3918.9, + "probability": 0.5936 + }, + { + "start": 3919.3, + "end": 3920.34, + "probability": 0.7484 + }, + { + "start": 3920.44, + "end": 3922.96, + "probability": 0.9066 + }, + { + "start": 3922.96, + "end": 3927.52, + "probability": 0.9757 + }, + { + "start": 3927.96, + "end": 3932.42, + "probability": 0.9971 + }, + { + "start": 3932.54, + "end": 3933.32, + "probability": 0.7589 + }, + { + "start": 3933.42, + "end": 3935.58, + "probability": 0.9878 + }, + { + "start": 3935.72, + "end": 3937.82, + "probability": 0.9087 + }, + { + "start": 3944.02, + "end": 3947.48, + "probability": 0.7239 + }, + { + "start": 3948.34, + "end": 3950.74, + "probability": 0.6096 + }, + { + "start": 3955.18, + "end": 3956.2, + "probability": 0.6622 + }, + { + "start": 3957.68, + "end": 3959.94, + "probability": 0.8145 + }, + { + "start": 3961.2, + "end": 3964.32, + "probability": 0.8577 + }, + { + "start": 3966.56, + "end": 3970.8, + "probability": 0.9563 + }, + { + "start": 3972.24, + "end": 3974.34, + "probability": 0.9632 + }, + { + "start": 3976.74, + "end": 3984.24, + "probability": 0.9838 + }, + { + "start": 3986.46, + "end": 3987.64, + "probability": 0.7351 + }, + { + "start": 3990.26, + "end": 3993.94, + "probability": 0.9746 + }, + { + "start": 3995.48, + "end": 3997.0, + "probability": 0.9998 + }, + { + "start": 3998.2, + "end": 3999.88, + "probability": 0.157 + }, + { + "start": 4003.02, + "end": 4003.88, + "probability": 0.3639 + }, + { + "start": 4004.44, + "end": 4007.7, + "probability": 0.9945 + }, + { + "start": 4009.75, + "end": 4012.3, + "probability": 0.8374 + }, + { + "start": 4015.44, + "end": 4015.98, + "probability": 0.3901 + }, + { + "start": 4016.16, + "end": 4017.28, + "probability": 0.8901 + }, + { + "start": 4017.9, + "end": 4018.98, + "probability": 0.9569 + }, + { + "start": 4019.86, + "end": 4021.62, + "probability": 0.9875 + }, + { + "start": 4023.14, + "end": 4025.62, + "probability": 0.8011 + }, + { + "start": 4027.42, + "end": 4030.66, + "probability": 0.7616 + }, + { + "start": 4033.16, + "end": 4035.82, + "probability": 0.6884 + }, + { + "start": 4037.6, + "end": 4039.24, + "probability": 0.6238 + }, + { + "start": 4040.44, + "end": 4043.9, + "probability": 0.8988 + }, + { + "start": 4045.12, + "end": 4049.0, + "probability": 0.8943 + }, + { + "start": 4050.44, + "end": 4052.13, + "probability": 0.7605 + }, + { + "start": 4054.06, + "end": 4055.38, + "probability": 0.8808 + }, + { + "start": 4057.7, + "end": 4060.78, + "probability": 0.9757 + }, + { + "start": 4063.8, + "end": 4067.92, + "probability": 0.75 + }, + { + "start": 4069.22, + "end": 4072.76, + "probability": 0.9475 + }, + { + "start": 4074.18, + "end": 4074.72, + "probability": 0.7365 + }, + { + "start": 4075.96, + "end": 4077.0, + "probability": 0.9037 + }, + { + "start": 4079.0, + "end": 4087.02, + "probability": 0.9951 + }, + { + "start": 4088.46, + "end": 4095.26, + "probability": 0.915 + }, + { + "start": 4097.9, + "end": 4103.76, + "probability": 0.906 + }, + { + "start": 4105.02, + "end": 4107.02, + "probability": 0.6685 + }, + { + "start": 4108.5, + "end": 4108.98, + "probability": 0.2984 + }, + { + "start": 4109.42, + "end": 4111.39, + "probability": 0.8652 + }, + { + "start": 4112.0, + "end": 4112.72, + "probability": 0.7885 + }, + { + "start": 4113.26, + "end": 4113.52, + "probability": 0.2752 + }, + { + "start": 4114.06, + "end": 4114.66, + "probability": 0.9373 + }, + { + "start": 4118.14, + "end": 4118.58, + "probability": 0.8131 + }, + { + "start": 4118.6, + "end": 4119.86, + "probability": 0.8686 + }, + { + "start": 4121.25, + "end": 4125.74, + "probability": 0.9783 + }, + { + "start": 4127.26, + "end": 4130.66, + "probability": 0.9414 + }, + { + "start": 4133.38, + "end": 4136.94, + "probability": 0.7924 + }, + { + "start": 4138.2, + "end": 4144.98, + "probability": 0.9236 + }, + { + "start": 4147.06, + "end": 4151.78, + "probability": 0.9747 + }, + { + "start": 4152.82, + "end": 4154.0, + "probability": 0.9582 + }, + { + "start": 4154.08, + "end": 4156.0, + "probability": 0.5809 + }, + { + "start": 4159.04, + "end": 4164.3, + "probability": 0.9824 + }, + { + "start": 4164.88, + "end": 4166.66, + "probability": 0.9438 + }, + { + "start": 4167.56, + "end": 4168.0, + "probability": 0.9041 + }, + { + "start": 4169.8, + "end": 4172.72, + "probability": 0.9155 + }, + { + "start": 4173.32, + "end": 4177.38, + "probability": 0.9789 + }, + { + "start": 4178.22, + "end": 4179.76, + "probability": 0.9934 + }, + { + "start": 4180.16, + "end": 4185.62, + "probability": 0.9521 + }, + { + "start": 4187.26, + "end": 4191.02, + "probability": 0.9878 + }, + { + "start": 4193.14, + "end": 4195.32, + "probability": 0.9682 + }, + { + "start": 4196.3, + "end": 4197.84, + "probability": 0.9366 + }, + { + "start": 4200.76, + "end": 4207.18, + "probability": 0.9291 + }, + { + "start": 4209.4, + "end": 4211.51, + "probability": 0.8536 + }, + { + "start": 4213.94, + "end": 4215.38, + "probability": 0.6836 + }, + { + "start": 4216.48, + "end": 4218.93, + "probability": 0.7791 + }, + { + "start": 4221.3, + "end": 4223.94, + "probability": 0.9954 + }, + { + "start": 4224.68, + "end": 4226.06, + "probability": 0.8994 + }, + { + "start": 4227.1, + "end": 4232.72, + "probability": 0.9668 + }, + { + "start": 4233.24, + "end": 4236.2, + "probability": 0.8228 + }, + { + "start": 4237.08, + "end": 4238.82, + "probability": 0.8813 + }, + { + "start": 4239.36, + "end": 4242.42, + "probability": 0.9813 + }, + { + "start": 4243.26, + "end": 4245.14, + "probability": 0.8184 + }, + { + "start": 4246.12, + "end": 4248.64, + "probability": 0.9731 + }, + { + "start": 4249.38, + "end": 4252.32, + "probability": 0.9576 + }, + { + "start": 4254.16, + "end": 4256.72, + "probability": 0.6794 + }, + { + "start": 4257.28, + "end": 4258.78, + "probability": 0.6545 + }, + { + "start": 4260.0, + "end": 4261.28, + "probability": 0.9185 + }, + { + "start": 4262.5, + "end": 4263.16, + "probability": 0.3886 + }, + { + "start": 4264.06, + "end": 4266.1, + "probability": 0.9677 + }, + { + "start": 4266.18, + "end": 4269.02, + "probability": 0.8845 + }, + { + "start": 4269.26, + "end": 4271.94, + "probability": 0.8483 + }, + { + "start": 4272.08, + "end": 4273.71, + "probability": 0.8787 + }, + { + "start": 4274.26, + "end": 4275.0, + "probability": 0.4731 + }, + { + "start": 4275.06, + "end": 4275.48, + "probability": 0.5094 + }, + { + "start": 4275.6, + "end": 4278.94, + "probability": 0.7031 + }, + { + "start": 4278.98, + "end": 4279.84, + "probability": 0.8217 + }, + { + "start": 4280.88, + "end": 4286.0, + "probability": 0.9722 + }, + { + "start": 4286.62, + "end": 4287.5, + "probability": 0.9611 + }, + { + "start": 4288.8, + "end": 4293.7, + "probability": 0.9154 + }, + { + "start": 4294.94, + "end": 4295.85, + "probability": 0.8469 + }, + { + "start": 4297.18, + "end": 4299.32, + "probability": 0.7147 + }, + { + "start": 4300.42, + "end": 4302.44, + "probability": 0.8776 + }, + { + "start": 4303.04, + "end": 4305.16, + "probability": 0.799 + }, + { + "start": 4306.24, + "end": 4307.26, + "probability": 0.9467 + }, + { + "start": 4308.54, + "end": 4309.2, + "probability": 0.6871 + }, + { + "start": 4311.16, + "end": 4313.22, + "probability": 0.9435 + }, + { + "start": 4313.36, + "end": 4318.02, + "probability": 0.6712 + }, + { + "start": 4318.08, + "end": 4318.92, + "probability": 0.8642 + }, + { + "start": 4318.92, + "end": 4322.3, + "probability": 0.8604 + }, + { + "start": 4323.1, + "end": 4326.84, + "probability": 0.8912 + }, + { + "start": 4326.98, + "end": 4328.86, + "probability": 0.6653 + }, + { + "start": 4329.48, + "end": 4330.84, + "probability": 0.751 + }, + { + "start": 4331.54, + "end": 4334.56, + "probability": 0.9154 + }, + { + "start": 4336.0, + "end": 4338.18, + "probability": 0.6372 + }, + { + "start": 4338.94, + "end": 4340.36, + "probability": 0.9338 + }, + { + "start": 4341.14, + "end": 4343.38, + "probability": 0.7498 + }, + { + "start": 4344.5, + "end": 4346.22, + "probability": 0.756 + }, + { + "start": 4347.82, + "end": 4350.16, + "probability": 0.984 + }, + { + "start": 4350.84, + "end": 4351.56, + "probability": 0.3261 + }, + { + "start": 4352.16, + "end": 4352.36, + "probability": 0.3155 + }, + { + "start": 4352.36, + "end": 4353.18, + "probability": 0.8757 + }, + { + "start": 4353.28, + "end": 4354.0, + "probability": 0.9349 + }, + { + "start": 4354.08, + "end": 4354.64, + "probability": 0.9785 + }, + { + "start": 4354.7, + "end": 4355.56, + "probability": 0.842 + }, + { + "start": 4355.94, + "end": 4357.72, + "probability": 0.6393 + }, + { + "start": 4359.7, + "end": 4360.48, + "probability": 0.979 + }, + { + "start": 4360.64, + "end": 4362.36, + "probability": 0.7693 + }, + { + "start": 4363.22, + "end": 4365.48, + "probability": 0.6326 + }, + { + "start": 4365.78, + "end": 4367.86, + "probability": 0.9497 + }, + { + "start": 4368.12, + "end": 4368.76, + "probability": 0.7612 + }, + { + "start": 4368.82, + "end": 4369.99, + "probability": 0.5331 + }, + { + "start": 4371.04, + "end": 4372.28, + "probability": 0.8513 + }, + { + "start": 4372.34, + "end": 4373.5, + "probability": 0.8588 + }, + { + "start": 4373.68, + "end": 4374.78, + "probability": 0.9384 + }, + { + "start": 4375.74, + "end": 4377.68, + "probability": 0.925 + }, + { + "start": 4378.08, + "end": 4380.16, + "probability": 0.9531 + }, + { + "start": 4380.34, + "end": 4383.2, + "probability": 0.9289 + }, + { + "start": 4385.04, + "end": 4386.06, + "probability": 0.6924 + }, + { + "start": 4386.58, + "end": 4387.96, + "probability": 0.5694 + }, + { + "start": 4390.46, + "end": 4393.72, + "probability": 0.9883 + }, + { + "start": 4394.04, + "end": 4394.96, + "probability": 0.5104 + }, + { + "start": 4395.16, + "end": 4401.68, + "probability": 0.8623 + }, + { + "start": 4401.8, + "end": 4403.32, + "probability": 0.7887 + }, + { + "start": 4403.58, + "end": 4405.0, + "probability": 0.8691 + }, + { + "start": 4405.68, + "end": 4406.8, + "probability": 0.8626 + }, + { + "start": 4406.92, + "end": 4407.92, + "probability": 0.7844 + }, + { + "start": 4408.22, + "end": 4408.98, + "probability": 0.3489 + }, + { + "start": 4409.04, + "end": 4411.38, + "probability": 0.8331 + }, + { + "start": 4411.72, + "end": 4412.26, + "probability": 0.3534 + }, + { + "start": 4413.4, + "end": 4416.72, + "probability": 0.9115 + }, + { + "start": 4417.68, + "end": 4419.5, + "probability": 0.5978 + }, + { + "start": 4420.46, + "end": 4421.86, + "probability": 0.7448 + }, + { + "start": 4422.02, + "end": 4424.7, + "probability": 0.9902 + }, + { + "start": 4425.44, + "end": 4429.42, + "probability": 0.9257 + }, + { + "start": 4429.96, + "end": 4430.42, + "probability": 0.6978 + }, + { + "start": 4431.54, + "end": 4432.74, + "probability": 0.9927 + }, + { + "start": 4433.36, + "end": 4435.24, + "probability": 0.943 + }, + { + "start": 4435.32, + "end": 4436.34, + "probability": 0.778 + }, + { + "start": 4436.48, + "end": 4437.18, + "probability": 0.8711 + }, + { + "start": 4437.28, + "end": 4438.66, + "probability": 0.5665 + }, + { + "start": 4439.14, + "end": 4439.92, + "probability": 0.6866 + }, + { + "start": 4440.78, + "end": 4442.02, + "probability": 0.9297 + }, + { + "start": 4446.4, + "end": 4448.66, + "probability": 0.8673 + }, + { + "start": 4449.38, + "end": 4452.56, + "probability": 0.9534 + }, + { + "start": 4453.88, + "end": 4454.9, + "probability": 0.8459 + }, + { + "start": 4455.64, + "end": 4459.86, + "probability": 0.4189 + }, + { + "start": 4460.08, + "end": 4462.54, + "probability": 0.9941 + }, + { + "start": 4464.14, + "end": 4465.18, + "probability": 0.4996 + }, + { + "start": 4465.62, + "end": 4472.8, + "probability": 0.9759 + }, + { + "start": 4473.08, + "end": 4474.06, + "probability": 0.9244 + }, + { + "start": 4474.58, + "end": 4478.42, + "probability": 0.9814 + }, + { + "start": 4479.24, + "end": 4482.4, + "probability": 0.9951 + }, + { + "start": 4483.2, + "end": 4483.92, + "probability": 0.6191 + }, + { + "start": 4484.18, + "end": 4484.42, + "probability": 0.7915 + }, + { + "start": 4484.5, + "end": 4485.26, + "probability": 0.7371 + }, + { + "start": 4485.54, + "end": 4490.48, + "probability": 0.8815 + }, + { + "start": 4491.2, + "end": 4494.0, + "probability": 0.9977 + }, + { + "start": 4494.04, + "end": 4496.56, + "probability": 0.7706 + }, + { + "start": 4497.9, + "end": 4498.6, + "probability": 0.8623 + }, + { + "start": 4498.66, + "end": 4504.04, + "probability": 0.9058 + }, + { + "start": 4504.04, + "end": 4504.42, + "probability": 0.3616 + }, + { + "start": 4506.18, + "end": 4507.44, + "probability": 0.9935 + }, + { + "start": 4507.52, + "end": 4509.75, + "probability": 0.9714 + }, + { + "start": 4510.56, + "end": 4512.79, + "probability": 0.5969 + }, + { + "start": 4513.48, + "end": 4514.42, + "probability": 0.649 + }, + { + "start": 4515.92, + "end": 4516.8, + "probability": 0.949 + }, + { + "start": 4517.52, + "end": 4520.4, + "probability": 0.8636 + }, + { + "start": 4521.38, + "end": 4522.24, + "probability": 0.9939 + }, + { + "start": 4522.38, + "end": 4523.84, + "probability": 0.8413 + }, + { + "start": 4531.96, + "end": 4534.66, + "probability": 0.7009 + }, + { + "start": 4534.74, + "end": 4535.66, + "probability": 0.9745 + }, + { + "start": 4535.8, + "end": 4537.0, + "probability": 0.9374 + }, + { + "start": 4540.84, + "end": 4542.02, + "probability": 0.8992 + }, + { + "start": 4544.74, + "end": 4547.1, + "probability": 0.7825 + }, + { + "start": 4547.7, + "end": 4552.76, + "probability": 0.9411 + }, + { + "start": 4553.98, + "end": 4554.96, + "probability": 0.4935 + }, + { + "start": 4555.1, + "end": 4557.52, + "probability": 0.7578 + }, + { + "start": 4559.28, + "end": 4562.42, + "probability": 0.7819 + }, + { + "start": 4562.5, + "end": 4563.02, + "probability": 0.8009 + }, + { + "start": 4563.14, + "end": 4563.66, + "probability": 0.7427 + }, + { + "start": 4564.14, + "end": 4565.62, + "probability": 0.8865 + }, + { + "start": 4565.7, + "end": 4566.1, + "probability": 0.8127 + }, + { + "start": 4566.16, + "end": 4572.9, + "probability": 0.9553 + }, + { + "start": 4573.12, + "end": 4577.0, + "probability": 0.9769 + }, + { + "start": 4577.24, + "end": 4577.94, + "probability": 0.9469 + }, + { + "start": 4578.12, + "end": 4579.46, + "probability": 0.6168 + }, + { + "start": 4581.64, + "end": 4582.99, + "probability": 0.9199 + }, + { + "start": 4583.62, + "end": 4586.02, + "probability": 0.859 + }, + { + "start": 4586.32, + "end": 4587.16, + "probability": 0.7725 + }, + { + "start": 4587.92, + "end": 4592.9, + "probability": 0.8233 + }, + { + "start": 4593.4, + "end": 4596.46, + "probability": 0.855 + }, + { + "start": 4597.62, + "end": 4601.38, + "probability": 0.8917 + }, + { + "start": 4602.86, + "end": 4604.56, + "probability": 0.9931 + }, + { + "start": 4605.72, + "end": 4608.28, + "probability": 0.981 + }, + { + "start": 4609.02, + "end": 4610.1, + "probability": 0.8591 + }, + { + "start": 4610.94, + "end": 4613.1, + "probability": 0.875 + }, + { + "start": 4613.62, + "end": 4615.06, + "probability": 0.7885 + }, + { + "start": 4615.64, + "end": 4616.04, + "probability": 0.8411 + }, + { + "start": 4616.1, + "end": 4617.98, + "probability": 0.9483 + }, + { + "start": 4618.18, + "end": 4621.88, + "probability": 0.9175 + }, + { + "start": 4622.0, + "end": 4622.3, + "probability": 0.8725 + }, + { + "start": 4622.36, + "end": 4624.12, + "probability": 0.556 + }, + { + "start": 4624.58, + "end": 4625.26, + "probability": 0.6316 + }, + { + "start": 4625.52, + "end": 4626.52, + "probability": 0.3205 + }, + { + "start": 4627.16, + "end": 4629.56, + "probability": 0.7527 + }, + { + "start": 4629.62, + "end": 4630.54, + "probability": 0.6876 + }, + { + "start": 4631.32, + "end": 4632.46, + "probability": 0.8995 + }, + { + "start": 4632.72, + "end": 4636.0, + "probability": 0.9722 + }, + { + "start": 4637.58, + "end": 4638.54, + "probability": 0.9101 + }, + { + "start": 4639.58, + "end": 4642.8, + "probability": 0.7895 + }, + { + "start": 4643.16, + "end": 4643.7, + "probability": 0.8414 + }, + { + "start": 4644.5, + "end": 4648.3, + "probability": 0.8787 + }, + { + "start": 4648.86, + "end": 4650.42, + "probability": 0.4157 + }, + { + "start": 4651.46, + "end": 4655.22, + "probability": 0.9957 + }, + { + "start": 4657.1, + "end": 4658.88, + "probability": 0.6749 + }, + { + "start": 4658.96, + "end": 4659.76, + "probability": 0.6565 + }, + { + "start": 4659.76, + "end": 4662.8, + "probability": 0.8995 + }, + { + "start": 4663.7, + "end": 4664.78, + "probability": 0.9761 + }, + { + "start": 4665.7, + "end": 4665.94, + "probability": 0.7435 + }, + { + "start": 4666.0, + "end": 4666.46, + "probability": 0.8132 + }, + { + "start": 4666.5, + "end": 4669.38, + "probability": 0.9277 + }, + { + "start": 4670.3, + "end": 4672.06, + "probability": 0.7549 + }, + { + "start": 4674.08, + "end": 4674.48, + "probability": 0.3337 + }, + { + "start": 4674.7, + "end": 4677.42, + "probability": 0.9853 + }, + { + "start": 4677.94, + "end": 4680.78, + "probability": 0.9233 + }, + { + "start": 4682.06, + "end": 4682.74, + "probability": 0.7852 + }, + { + "start": 4691.52, + "end": 4694.84, + "probability": 0.924 + }, + { + "start": 4696.08, + "end": 4696.98, + "probability": 0.8984 + }, + { + "start": 4698.64, + "end": 4701.26, + "probability": 0.9186 + }, + { + "start": 4702.02, + "end": 4703.08, + "probability": 0.9282 + }, + { + "start": 4704.74, + "end": 4709.08, + "probability": 0.9432 + }, + { + "start": 4714.96, + "end": 4715.22, + "probability": 0.1218 + }, + { + "start": 4715.64, + "end": 4715.92, + "probability": 0.2927 + }, + { + "start": 4716.74, + "end": 4718.12, + "probability": 0.9019 + }, + { + "start": 4718.18, + "end": 4719.52, + "probability": 0.9016 + }, + { + "start": 4721.48, + "end": 4724.52, + "probability": 0.9722 + }, + { + "start": 4727.18, + "end": 4728.4, + "probability": 0.9684 + }, + { + "start": 4728.54, + "end": 4729.92, + "probability": 0.5977 + }, + { + "start": 4730.16, + "end": 4730.86, + "probability": 0.7427 + }, + { + "start": 4732.2, + "end": 4735.42, + "probability": 0.8501 + }, + { + "start": 4737.6, + "end": 4741.5, + "probability": 0.9517 + }, + { + "start": 4744.72, + "end": 4747.2, + "probability": 0.9694 + }, + { + "start": 4748.28, + "end": 4749.22, + "probability": 0.7086 + }, + { + "start": 4750.96, + "end": 4755.22, + "probability": 0.9184 + }, + { + "start": 4755.84, + "end": 4756.3, + "probability": 0.7286 + }, + { + "start": 4756.88, + "end": 4759.4, + "probability": 0.7923 + }, + { + "start": 4760.02, + "end": 4761.68, + "probability": 0.8475 + }, + { + "start": 4762.5, + "end": 4764.17, + "probability": 0.7402 + }, + { + "start": 4765.76, + "end": 4766.82, + "probability": 0.9265 + }, + { + "start": 4767.48, + "end": 4767.92, + "probability": 0.8514 + }, + { + "start": 4767.98, + "end": 4770.14, + "probability": 0.9909 + }, + { + "start": 4770.8, + "end": 4772.0, + "probability": 0.2355 + }, + { + "start": 4772.42, + "end": 4775.84, + "probability": 0.9899 + }, + { + "start": 4777.54, + "end": 4780.68, + "probability": 0.9198 + }, + { + "start": 4780.74, + "end": 4784.28, + "probability": 0.7947 + }, + { + "start": 4785.5, + "end": 4787.3, + "probability": 0.5801 + }, + { + "start": 4788.96, + "end": 4791.98, + "probability": 0.5139 + }, + { + "start": 4793.52, + "end": 4794.35, + "probability": 0.9478 + }, + { + "start": 4795.94, + "end": 4798.3, + "probability": 0.9286 + }, + { + "start": 4799.18, + "end": 4800.34, + "probability": 0.9251 + }, + { + "start": 4801.28, + "end": 4805.0, + "probability": 0.896 + }, + { + "start": 4805.52, + "end": 4809.62, + "probability": 0.6237 + }, + { + "start": 4810.0, + "end": 4810.68, + "probability": 0.7361 + }, + { + "start": 4810.78, + "end": 4811.72, + "probability": 0.7775 + }, + { + "start": 4812.08, + "end": 4814.47, + "probability": 0.9424 + }, + { + "start": 4814.7, + "end": 4815.96, + "probability": 0.8726 + }, + { + "start": 4817.02, + "end": 4818.62, + "probability": 0.9718 + }, + { + "start": 4819.82, + "end": 4820.92, + "probability": 0.9385 + }, + { + "start": 4822.08, + "end": 4824.02, + "probability": 0.9816 + }, + { + "start": 4824.1, + "end": 4826.64, + "probability": 0.7815 + }, + { + "start": 4826.68, + "end": 4826.84, + "probability": 0.5348 + }, + { + "start": 4827.84, + "end": 4828.43, + "probability": 0.7569 + }, + { + "start": 4830.82, + "end": 4831.96, + "probability": 0.7612 + }, + { + "start": 4832.88, + "end": 4836.62, + "probability": 0.9414 + }, + { + "start": 4836.74, + "end": 4837.28, + "probability": 0.9307 + }, + { + "start": 4838.32, + "end": 4839.44, + "probability": 0.5445 + }, + { + "start": 4840.54, + "end": 4841.52, + "probability": 0.9297 + }, + { + "start": 4841.98, + "end": 4843.8, + "probability": 0.9958 + }, + { + "start": 4843.84, + "end": 4844.54, + "probability": 0.9761 + }, + { + "start": 4845.68, + "end": 4848.84, + "probability": 0.9274 + }, + { + "start": 4851.52, + "end": 4851.74, + "probability": 0.5562 + }, + { + "start": 4851.84, + "end": 4856.92, + "probability": 0.962 + }, + { + "start": 4857.6, + "end": 4861.14, + "probability": 0.8341 + }, + { + "start": 4862.28, + "end": 4864.16, + "probability": 0.9873 + }, + { + "start": 4864.28, + "end": 4865.98, + "probability": 0.9718 + }, + { + "start": 4866.2, + "end": 4869.16, + "probability": 0.8528 + }, + { + "start": 4869.16, + "end": 4869.86, + "probability": 0.569 + }, + { + "start": 4870.2, + "end": 4870.58, + "probability": 0.4696 + }, + { + "start": 4871.22, + "end": 4871.88, + "probability": 0.8707 + }, + { + "start": 4873.62, + "end": 4874.96, + "probability": 0.9467 + }, + { + "start": 4875.9, + "end": 4876.2, + "probability": 0.9453 + }, + { + "start": 4877.54, + "end": 4878.44, + "probability": 0.7893 + }, + { + "start": 4879.12, + "end": 4879.98, + "probability": 0.8578 + }, + { + "start": 4880.76, + "end": 4881.46, + "probability": 0.9297 + }, + { + "start": 4882.58, + "end": 4885.68, + "probability": 0.965 + }, + { + "start": 4885.74, + "end": 4886.58, + "probability": 0.965 + }, + { + "start": 4886.7, + "end": 4887.58, + "probability": 0.8829 + }, + { + "start": 4888.28, + "end": 4891.1, + "probability": 0.4567 + }, + { + "start": 4891.26, + "end": 4893.4, + "probability": 0.4614 + }, + { + "start": 4894.02, + "end": 4897.38, + "probability": 0.6497 + }, + { + "start": 4897.86, + "end": 4899.16, + "probability": 0.7728 + }, + { + "start": 4899.36, + "end": 4900.4, + "probability": 0.7878 + }, + { + "start": 4901.16, + "end": 4902.16, + "probability": 0.978 + }, + { + "start": 4903.06, + "end": 4905.54, + "probability": 0.93 + }, + { + "start": 4906.24, + "end": 4908.16, + "probability": 0.9989 + }, + { + "start": 4909.12, + "end": 4909.88, + "probability": 0.7035 + }, + { + "start": 4910.06, + "end": 4910.76, + "probability": 0.959 + }, + { + "start": 4910.9, + "end": 4913.92, + "probability": 0.9394 + }, + { + "start": 4914.52, + "end": 4914.74, + "probability": 0.777 + }, + { + "start": 4915.18, + "end": 4917.38, + "probability": 0.9919 + }, + { + "start": 4917.56, + "end": 4919.66, + "probability": 0.868 + }, + { + "start": 4923.84, + "end": 4925.46, + "probability": 0.9523 + }, + { + "start": 4929.78, + "end": 4930.34, + "probability": 0.6407 + }, + { + "start": 4940.98, + "end": 4941.98, + "probability": 0.3814 + }, + { + "start": 4943.26, + "end": 4945.3, + "probability": 0.7557 + }, + { + "start": 4947.44, + "end": 4949.52, + "probability": 0.7109 + }, + { + "start": 4949.62, + "end": 4950.18, + "probability": 0.3347 + }, + { + "start": 4950.18, + "end": 4951.44, + "probability": 0.9154 + }, + { + "start": 4951.6, + "end": 4953.24, + "probability": 0.9161 + }, + { + "start": 4955.17, + "end": 4956.93, + "probability": 0.9995 + }, + { + "start": 4957.18, + "end": 4960.18, + "probability": 0.8433 + }, + { + "start": 4960.42, + "end": 4962.5, + "probability": 0.934 + }, + { + "start": 4964.12, + "end": 4967.58, + "probability": 0.9329 + }, + { + "start": 4967.78, + "end": 4969.08, + "probability": 0.9573 + }, + { + "start": 4969.24, + "end": 4970.04, + "probability": 0.8344 + }, + { + "start": 4971.24, + "end": 4976.22, + "probability": 0.9806 + }, + { + "start": 4977.16, + "end": 4979.06, + "probability": 0.9895 + }, + { + "start": 4979.18, + "end": 4981.48, + "probability": 0.9678 + }, + { + "start": 4981.6, + "end": 4982.46, + "probability": 0.8457 + }, + { + "start": 4982.58, + "end": 4985.1, + "probability": 0.8818 + }, + { + "start": 4985.68, + "end": 4986.94, + "probability": 0.8684 + }, + { + "start": 4987.0, + "end": 4987.32, + "probability": 0.5463 + }, + { + "start": 4987.64, + "end": 4992.76, + "probability": 0.9783 + }, + { + "start": 4993.02, + "end": 4994.52, + "probability": 0.6979 + }, + { + "start": 4994.96, + "end": 4995.62, + "probability": 0.9983 + }, + { + "start": 4996.38, + "end": 4998.44, + "probability": 0.9207 + }, + { + "start": 4998.56, + "end": 5000.8, + "probability": 0.9781 + }, + { + "start": 5001.42, + "end": 5003.68, + "probability": 0.8995 + }, + { + "start": 5003.74, + "end": 5005.0, + "probability": 0.9829 + }, + { + "start": 5005.04, + "end": 5005.63, + "probability": 0.9679 + }, + { + "start": 5006.52, + "end": 5007.34, + "probability": 0.7426 + }, + { + "start": 5008.4, + "end": 5009.18, + "probability": 0.948 + }, + { + "start": 5009.22, + "end": 5013.64, + "probability": 0.9163 + }, + { + "start": 5014.0, + "end": 5017.0, + "probability": 0.9782 + }, + { + "start": 5017.36, + "end": 5018.2, + "probability": 0.5086 + }, + { + "start": 5018.56, + "end": 5019.53, + "probability": 0.9912 + }, + { + "start": 5020.2, + "end": 5021.64, + "probability": 0.8501 + }, + { + "start": 5022.5, + "end": 5027.08, + "probability": 0.9963 + }, + { + "start": 5028.1, + "end": 5031.06, + "probability": 0.9798 + }, + { + "start": 5032.54, + "end": 5040.74, + "probability": 0.7027 + }, + { + "start": 5042.12, + "end": 5042.42, + "probability": 0.4075 + }, + { + "start": 5042.42, + "end": 5042.42, + "probability": 0.3628 + }, + { + "start": 5042.42, + "end": 5044.92, + "probability": 0.8214 + }, + { + "start": 5045.16, + "end": 5046.34, + "probability": 0.9391 + }, + { + "start": 5046.38, + "end": 5048.9, + "probability": 0.961 + }, + { + "start": 5049.52, + "end": 5051.12, + "probability": 0.6565 + }, + { + "start": 5051.58, + "end": 5053.16, + "probability": 0.9829 + }, + { + "start": 5053.22, + "end": 5054.06, + "probability": 0.868 + }, + { + "start": 5054.1, + "end": 5054.6, + "probability": 0.6816 + }, + { + "start": 5054.66, + "end": 5056.5, + "probability": 0.8574 + }, + { + "start": 5056.94, + "end": 5058.43, + "probability": 0.6104 + }, + { + "start": 5059.56, + "end": 5060.9, + "probability": 0.6364 + }, + { + "start": 5060.98, + "end": 5064.4, + "probability": 0.7336 + }, + { + "start": 5064.52, + "end": 5066.88, + "probability": 0.8182 + }, + { + "start": 5067.2, + "end": 5067.66, + "probability": 0.4127 + }, + { + "start": 5068.82, + "end": 5071.02, + "probability": 0.9512 + }, + { + "start": 5071.7, + "end": 5074.84, + "probability": 0.7639 + }, + { + "start": 5075.62, + "end": 5076.4, + "probability": 0.6639 + }, + { + "start": 5077.1, + "end": 5079.84, + "probability": 0.9175 + }, + { + "start": 5081.18, + "end": 5083.33, + "probability": 0.9539 + }, + { + "start": 5084.42, + "end": 5087.48, + "probability": 0.9847 + }, + { + "start": 5088.9, + "end": 5090.44, + "probability": 0.6743 + }, + { + "start": 5090.78, + "end": 5093.32, + "probability": 0.988 + }, + { + "start": 5093.84, + "end": 5095.08, + "probability": 0.7082 + }, + { + "start": 5095.82, + "end": 5097.16, + "probability": 0.6141 + }, + { + "start": 5097.26, + "end": 5098.96, + "probability": 0.9226 + }, + { + "start": 5099.0, + "end": 5100.52, + "probability": 0.9409 + }, + { + "start": 5101.64, + "end": 5102.0, + "probability": 0.548 + }, + { + "start": 5102.04, + "end": 5104.36, + "probability": 0.854 + }, + { + "start": 5105.24, + "end": 5106.41, + "probability": 0.9587 + }, + { + "start": 5106.84, + "end": 5108.3, + "probability": 0.8695 + }, + { + "start": 5108.46, + "end": 5112.84, + "probability": 0.9532 + }, + { + "start": 5113.88, + "end": 5114.74, + "probability": 0.8005 + }, + { + "start": 5114.82, + "end": 5118.54, + "probability": 0.9497 + }, + { + "start": 5119.18, + "end": 5119.94, + "probability": 0.8191 + }, + { + "start": 5120.1, + "end": 5121.9, + "probability": 0.9401 + }, + { + "start": 5122.26, + "end": 5123.4, + "probability": 0.9178 + }, + { + "start": 5123.52, + "end": 5125.52, + "probability": 0.9719 + }, + { + "start": 5126.28, + "end": 5127.16, + "probability": 0.9226 + }, + { + "start": 5127.66, + "end": 5129.02, + "probability": 0.9683 + }, + { + "start": 5129.7, + "end": 5130.33, + "probability": 0.937 + }, + { + "start": 5130.64, + "end": 5135.68, + "probability": 0.762 + }, + { + "start": 5135.68, + "end": 5138.2, + "probability": 0.9899 + }, + { + "start": 5140.06, + "end": 5144.32, + "probability": 0.9943 + }, + { + "start": 5145.0, + "end": 5146.08, + "probability": 0.969 + }, + { + "start": 5148.5, + "end": 5150.38, + "probability": 0.8822 + }, + { + "start": 5151.26, + "end": 5152.14, + "probability": 0.8558 + }, + { + "start": 5152.24, + "end": 5155.3, + "probability": 0.9912 + }, + { + "start": 5155.92, + "end": 5162.8, + "probability": 0.9684 + }, + { + "start": 5163.58, + "end": 5164.19, + "probability": 0.9351 + }, + { + "start": 5165.52, + "end": 5169.76, + "probability": 0.9526 + }, + { + "start": 5169.96, + "end": 5170.56, + "probability": 0.6667 + }, + { + "start": 5171.06, + "end": 5172.7, + "probability": 0.8991 + }, + { + "start": 5172.88, + "end": 5173.76, + "probability": 0.8447 + }, + { + "start": 5173.8, + "end": 5174.94, + "probability": 0.9109 + }, + { + "start": 5176.0, + "end": 5178.04, + "probability": 0.8341 + }, + { + "start": 5178.68, + "end": 5179.88, + "probability": 0.9222 + }, + { + "start": 5181.16, + "end": 5182.08, + "probability": 0.9895 + }, + { + "start": 5182.18, + "end": 5182.78, + "probability": 0.9627 + }, + { + "start": 5182.84, + "end": 5184.54, + "probability": 0.9752 + }, + { + "start": 5185.6, + "end": 5188.18, + "probability": 0.7099 + }, + { + "start": 5188.34, + "end": 5189.08, + "probability": 0.7085 + }, + { + "start": 5190.56, + "end": 5190.88, + "probability": 0.5729 + }, + { + "start": 5191.32, + "end": 5193.92, + "probability": 0.9788 + }, + { + "start": 5194.97, + "end": 5197.94, + "probability": 0.8696 + }, + { + "start": 5198.64, + "end": 5199.62, + "probability": 0.7518 + }, + { + "start": 5200.42, + "end": 5201.74, + "probability": 0.9526 + }, + { + "start": 5201.86, + "end": 5203.9, + "probability": 0.5601 + }, + { + "start": 5204.74, + "end": 5205.68, + "probability": 0.4656 + }, + { + "start": 5205.96, + "end": 5206.95, + "probability": 0.9546 + }, + { + "start": 5208.24, + "end": 5209.82, + "probability": 0.6353 + }, + { + "start": 5210.28, + "end": 5211.2, + "probability": 0.8269 + }, + { + "start": 5211.92, + "end": 5214.48, + "probability": 0.65 + }, + { + "start": 5214.48, + "end": 5215.16, + "probability": 0.7792 + }, + { + "start": 5216.56, + "end": 5217.0, + "probability": 0.8005 + }, + { + "start": 5217.52, + "end": 5219.44, + "probability": 0.9088 + }, + { + "start": 5220.7, + "end": 5221.84, + "probability": 0.4864 + }, + { + "start": 5221.98, + "end": 5222.66, + "probability": 0.695 + }, + { + "start": 5222.72, + "end": 5224.32, + "probability": 0.9604 + }, + { + "start": 5224.42, + "end": 5224.81, + "probability": 0.9851 + }, + { + "start": 5226.42, + "end": 5227.98, + "probability": 0.7171 + }, + { + "start": 5227.98, + "end": 5229.0, + "probability": 0.7712 + }, + { + "start": 5229.52, + "end": 5232.08, + "probability": 0.666 + }, + { + "start": 5232.54, + "end": 5233.24, + "probability": 0.7678 + }, + { + "start": 5234.0, + "end": 5237.78, + "probability": 0.6007 + }, + { + "start": 5237.86, + "end": 5241.04, + "probability": 0.7446 + }, + { + "start": 5241.52, + "end": 5241.94, + "probability": 0.6906 + }, + { + "start": 5242.04, + "end": 5243.66, + "probability": 0.9865 + }, + { + "start": 5244.3, + "end": 5246.1, + "probability": 0.9451 + }, + { + "start": 5246.52, + "end": 5247.84, + "probability": 0.7954 + }, + { + "start": 5248.9, + "end": 5251.04, + "probability": 0.0853 + }, + { + "start": 5251.04, + "end": 5251.36, + "probability": 0.0943 + }, + { + "start": 5251.42, + "end": 5253.58, + "probability": 0.6917 + }, + { + "start": 5254.18, + "end": 5257.0, + "probability": 0.1934 + }, + { + "start": 5257.44, + "end": 5258.08, + "probability": 0.1416 + }, + { + "start": 5258.08, + "end": 5258.92, + "probability": 0.142 + }, + { + "start": 5259.1, + "end": 5259.64, + "probability": 0.9709 + }, + { + "start": 5259.72, + "end": 5260.2, + "probability": 0.8975 + }, + { + "start": 5262.61, + "end": 5266.76, + "probability": 0.0061 + }, + { + "start": 5266.76, + "end": 5266.76, + "probability": 0.0319 + }, + { + "start": 5266.76, + "end": 5266.76, + "probability": 0.0465 + }, + { + "start": 5266.76, + "end": 5267.84, + "probability": 0.2962 + }, + { + "start": 5267.86, + "end": 5269.26, + "probability": 0.9233 + }, + { + "start": 5269.38, + "end": 5272.8, + "probability": 0.9639 + }, + { + "start": 5273.0, + "end": 5275.96, + "probability": 0.7797 + }, + { + "start": 5276.52, + "end": 5279.92, + "probability": 0.7949 + }, + { + "start": 5280.7, + "end": 5281.8, + "probability": 0.7983 + }, + { + "start": 5282.44, + "end": 5282.9, + "probability": 0.8585 + }, + { + "start": 5283.0, + "end": 5285.88, + "probability": 0.9446 + }, + { + "start": 5285.94, + "end": 5288.74, + "probability": 0.9771 + }, + { + "start": 5288.76, + "end": 5289.32, + "probability": 0.5622 + }, + { + "start": 5289.68, + "end": 5290.44, + "probability": 0.0395 + }, + { + "start": 5290.8, + "end": 5292.7, + "probability": 0.7216 + }, + { + "start": 5292.74, + "end": 5294.22, + "probability": 0.9892 + }, + { + "start": 5295.78, + "end": 5298.64, + "probability": 0.7387 + }, + { + "start": 5298.72, + "end": 5300.28, + "probability": 0.8786 + }, + { + "start": 5300.34, + "end": 5301.64, + "probability": 0.9705 + }, + { + "start": 5302.02, + "end": 5303.1, + "probability": 0.7451 + }, + { + "start": 5303.26, + "end": 5305.46, + "probability": 0.8286 + }, + { + "start": 5305.58, + "end": 5306.77, + "probability": 0.808 + }, + { + "start": 5307.14, + "end": 5309.06, + "probability": 0.666 + }, + { + "start": 5309.36, + "end": 5311.09, + "probability": 0.9834 + }, + { + "start": 5312.78, + "end": 5314.16, + "probability": 0.9477 + }, + { + "start": 5315.3, + "end": 5315.96, + "probability": 0.6838 + }, + { + "start": 5316.88, + "end": 5317.86, + "probability": 0.8513 + }, + { + "start": 5318.8, + "end": 5319.48, + "probability": 0.9585 + }, + { + "start": 5319.58, + "end": 5321.08, + "probability": 0.9644 + }, + { + "start": 5321.56, + "end": 5322.14, + "probability": 0.7427 + }, + { + "start": 5323.16, + "end": 5329.54, + "probability": 0.9728 + }, + { + "start": 5329.54, + "end": 5334.54, + "probability": 0.9985 + }, + { + "start": 5335.64, + "end": 5340.46, + "probability": 0.9963 + }, + { + "start": 5341.76, + "end": 5343.18, + "probability": 0.7859 + }, + { + "start": 5344.37, + "end": 5346.12, + "probability": 0.8059 + }, + { + "start": 5347.4, + "end": 5348.84, + "probability": 0.8111 + }, + { + "start": 5349.62, + "end": 5350.68, + "probability": 0.839 + }, + { + "start": 5350.84, + "end": 5351.22, + "probability": 0.7305 + }, + { + "start": 5351.66, + "end": 5352.96, + "probability": 0.4546 + }, + { + "start": 5353.78, + "end": 5355.1, + "probability": 0.739 + }, + { + "start": 5355.32, + "end": 5356.44, + "probability": 0.9661 + }, + { + "start": 5356.64, + "end": 5358.08, + "probability": 0.5283 + }, + { + "start": 5358.08, + "end": 5358.2, + "probability": 0.0745 + }, + { + "start": 5358.2, + "end": 5358.42, + "probability": 0.4083 + }, + { + "start": 5358.74, + "end": 5358.74, + "probability": 0.5865 + }, + { + "start": 5359.0, + "end": 5359.0, + "probability": 0.7045 + }, + { + "start": 5359.68, + "end": 5361.46, + "probability": 0.6908 + }, + { + "start": 5361.72, + "end": 5362.76, + "probability": 0.9548 + }, + { + "start": 5363.04, + "end": 5363.34, + "probability": 0.45 + }, + { + "start": 5363.58, + "end": 5366.2, + "probability": 0.8448 + }, + { + "start": 5366.84, + "end": 5368.46, + "probability": 0.9437 + }, + { + "start": 5368.94, + "end": 5370.52, + "probability": 0.971 + }, + { + "start": 5370.64, + "end": 5371.22, + "probability": 0.5427 + }, + { + "start": 5371.62, + "end": 5372.62, + "probability": 0.9316 + }, + { + "start": 5373.62, + "end": 5376.72, + "probability": 0.8347 + }, + { + "start": 5376.76, + "end": 5378.68, + "probability": 0.8906 + }, + { + "start": 5379.3, + "end": 5380.68, + "probability": 0.8622 + }, + { + "start": 5381.16, + "end": 5382.58, + "probability": 0.8626 + }, + { + "start": 5382.72, + "end": 5384.4, + "probability": 0.9795 + }, + { + "start": 5384.44, + "end": 5385.22, + "probability": 0.868 + }, + { + "start": 5386.16, + "end": 5388.76, + "probability": 0.87 + }, + { + "start": 5389.28, + "end": 5392.28, + "probability": 0.848 + }, + { + "start": 5393.98, + "end": 5399.34, + "probability": 0.9951 + }, + { + "start": 5402.44, + "end": 5405.34, + "probability": 0.8777 + }, + { + "start": 5405.56, + "end": 5406.4, + "probability": 0.0705 + }, + { + "start": 5407.52, + "end": 5409.02, + "probability": 0.7449 + }, + { + "start": 5409.02, + "end": 5413.56, + "probability": 0.4182 + }, + { + "start": 5413.72, + "end": 5414.7, + "probability": 0.4756 + }, + { + "start": 5416.16, + "end": 5416.4, + "probability": 0.1518 + }, + { + "start": 5416.4, + "end": 5416.4, + "probability": 0.313 + }, + { + "start": 5416.4, + "end": 5417.91, + "probability": 0.9907 + }, + { + "start": 5419.26, + "end": 5420.08, + "probability": 0.6909 + }, + { + "start": 5420.18, + "end": 5421.83, + "probability": 0.7883 + }, + { + "start": 5422.02, + "end": 5423.1, + "probability": 0.7079 + }, + { + "start": 5423.3, + "end": 5424.92, + "probability": 0.5515 + }, + { + "start": 5425.0, + "end": 5427.74, + "probability": 0.5455 + }, + { + "start": 5428.0, + "end": 5429.94, + "probability": 0.7167 + }, + { + "start": 5430.44, + "end": 5434.46, + "probability": 0.8119 + }, + { + "start": 5435.28, + "end": 5437.12, + "probability": 0.6143 + }, + { + "start": 5437.2, + "end": 5442.16, + "probability": 0.9967 + }, + { + "start": 5442.28, + "end": 5443.64, + "probability": 0.9372 + }, + { + "start": 5443.76, + "end": 5445.58, + "probability": 0.9365 + }, + { + "start": 5446.62, + "end": 5447.9, + "probability": 0.8635 + }, + { + "start": 5447.96, + "end": 5449.7, + "probability": 0.7016 + }, + { + "start": 5450.04, + "end": 5451.3, + "probability": 0.8892 + }, + { + "start": 5451.4, + "end": 5453.7, + "probability": 0.9138 + }, + { + "start": 5453.74, + "end": 5455.38, + "probability": 0.9657 + }, + { + "start": 5455.92, + "end": 5457.14, + "probability": 0.7317 + }, + { + "start": 5457.6, + "end": 5459.98, + "probability": 0.9596 + }, + { + "start": 5460.04, + "end": 5461.89, + "probability": 0.9841 + }, + { + "start": 5462.4, + "end": 5464.45, + "probability": 0.9824 + }, + { + "start": 5466.02, + "end": 5468.08, + "probability": 0.9772 + }, + { + "start": 5468.18, + "end": 5468.96, + "probability": 0.9289 + }, + { + "start": 5469.94, + "end": 5471.92, + "probability": 0.9775 + }, + { + "start": 5471.98, + "end": 5473.08, + "probability": 0.6348 + }, + { + "start": 5473.14, + "end": 5474.92, + "probability": 0.7166 + }, + { + "start": 5474.92, + "end": 5476.5, + "probability": 0.812 + }, + { + "start": 5477.62, + "end": 5480.02, + "probability": 0.6437 + }, + { + "start": 5481.56, + "end": 5483.36, + "probability": 0.8597 + }, + { + "start": 5484.14, + "end": 5485.58, + "probability": 0.9813 + }, + { + "start": 5486.4, + "end": 5486.82, + "probability": 0.1505 + }, + { + "start": 5487.84, + "end": 5489.22, + "probability": 0.566 + }, + { + "start": 5490.48, + "end": 5492.32, + "probability": 0.9885 + }, + { + "start": 5493.54, + "end": 5495.36, + "probability": 0.7248 + }, + { + "start": 5495.46, + "end": 5495.64, + "probability": 0.3534 + }, + { + "start": 5495.66, + "end": 5496.42, + "probability": 0.5313 + }, + { + "start": 5496.52, + "end": 5498.28, + "probability": 0.9336 + }, + { + "start": 5499.68, + "end": 5501.2, + "probability": 0.6566 + }, + { + "start": 5501.22, + "end": 5501.7, + "probability": 0.4297 + }, + { + "start": 5502.1, + "end": 5503.32, + "probability": 0.9945 + }, + { + "start": 5503.44, + "end": 5507.1, + "probability": 0.9677 + }, + { + "start": 5507.24, + "end": 5508.64, + "probability": 0.8707 + }, + { + "start": 5509.36, + "end": 5512.28, + "probability": 0.9959 + }, + { + "start": 5512.92, + "end": 5514.8, + "probability": 0.9436 + }, + { + "start": 5515.08, + "end": 5515.74, + "probability": 0.8579 + }, + { + "start": 5516.48, + "end": 5519.1, + "probability": 0.9563 + }, + { + "start": 5520.18, + "end": 5522.76, + "probability": 0.9755 + }, + { + "start": 5523.78, + "end": 5526.28, + "probability": 0.8826 + }, + { + "start": 5526.38, + "end": 5527.2, + "probability": 0.6354 + }, + { + "start": 5528.12, + "end": 5531.14, + "probability": 0.8085 + }, + { + "start": 5532.18, + "end": 5533.86, + "probability": 0.8866 + }, + { + "start": 5533.98, + "end": 5534.8, + "probability": 0.7003 + }, + { + "start": 5534.9, + "end": 5535.48, + "probability": 0.7322 + }, + { + "start": 5535.66, + "end": 5536.4, + "probability": 0.6826 + }, + { + "start": 5536.98, + "end": 5539.08, + "probability": 0.6201 + }, + { + "start": 5539.84, + "end": 5540.18, + "probability": 0.2926 + }, + { + "start": 5540.52, + "end": 5541.84, + "probability": 0.9813 + }, + { + "start": 5543.18, + "end": 5545.77, + "probability": 0.8571 + }, + { + "start": 5547.8, + "end": 5549.7, + "probability": 0.9613 + }, + { + "start": 5550.92, + "end": 5552.44, + "probability": 0.6974 + }, + { + "start": 5553.14, + "end": 5553.58, + "probability": 0.5945 + }, + { + "start": 5554.8, + "end": 5556.16, + "probability": 0.835 + }, + { + "start": 5556.82, + "end": 5557.62, + "probability": 0.733 + }, + { + "start": 5557.7, + "end": 5562.54, + "probability": 0.991 + }, + { + "start": 5563.18, + "end": 5564.32, + "probability": 0.9206 + }, + { + "start": 5564.54, + "end": 5565.67, + "probability": 0.9402 + }, + { + "start": 5566.26, + "end": 5567.24, + "probability": 0.7544 + }, + { + "start": 5567.38, + "end": 5570.08, + "probability": 0.9339 + }, + { + "start": 5570.5, + "end": 5571.58, + "probability": 0.5874 + }, + { + "start": 5572.7, + "end": 5573.84, + "probability": 0.9752 + }, + { + "start": 5574.64, + "end": 5578.92, + "probability": 0.9321 + }, + { + "start": 5579.28, + "end": 5580.74, + "probability": 0.6041 + }, + { + "start": 5581.82, + "end": 5584.1, + "probability": 0.9108 + }, + { + "start": 5584.18, + "end": 5584.4, + "probability": 0.6493 + }, + { + "start": 5584.48, + "end": 5584.74, + "probability": 0.6017 + }, + { + "start": 5585.58, + "end": 5587.04, + "probability": 0.9276 + }, + { + "start": 5587.08, + "end": 5588.74, + "probability": 0.9069 + }, + { + "start": 5588.96, + "end": 5591.7, + "probability": 0.832 + }, + { + "start": 5591.86, + "end": 5593.3, + "probability": 0.7532 + }, + { + "start": 5594.58, + "end": 5596.1, + "probability": 0.9841 + }, + { + "start": 5597.12, + "end": 5597.78, + "probability": 0.6513 + }, + { + "start": 5598.74, + "end": 5599.82, + "probability": 0.9298 + }, + { + "start": 5600.4, + "end": 5601.98, + "probability": 0.7615 + }, + { + "start": 5602.44, + "end": 5603.76, + "probability": 0.769 + }, + { + "start": 5604.22, + "end": 5604.74, + "probability": 0.8322 + }, + { + "start": 5605.68, + "end": 5606.0, + "probability": 0.9555 + }, + { + "start": 5606.5, + "end": 5607.4, + "probability": 0.9587 + }, + { + "start": 5608.42, + "end": 5610.82, + "probability": 0.9443 + }, + { + "start": 5612.0, + "end": 5613.7, + "probability": 0.7625 + }, + { + "start": 5614.92, + "end": 5617.3, + "probability": 0.9381 + }, + { + "start": 5617.46, + "end": 5618.64, + "probability": 0.7927 + }, + { + "start": 5618.82, + "end": 5619.64, + "probability": 0.8783 + }, + { + "start": 5619.96, + "end": 5620.48, + "probability": 0.6012 + }, + { + "start": 5622.14, + "end": 5623.9, + "probability": 0.9948 + }, + { + "start": 5623.92, + "end": 5625.46, + "probability": 0.873 + }, + { + "start": 5625.76, + "end": 5629.08, + "probability": 0.8756 + }, + { + "start": 5629.18, + "end": 5631.06, + "probability": 0.9877 + }, + { + "start": 5631.54, + "end": 5632.16, + "probability": 0.9293 + }, + { + "start": 5632.26, + "end": 5633.92, + "probability": 0.9336 + }, + { + "start": 5634.74, + "end": 5637.2, + "probability": 0.9611 + }, + { + "start": 5638.5, + "end": 5638.9, + "probability": 0.0885 + }, + { + "start": 5638.9, + "end": 5639.84, + "probability": 0.5498 + }, + { + "start": 5640.92, + "end": 5642.86, + "probability": 0.481 + }, + { + "start": 5643.84, + "end": 5644.44, + "probability": 0.9394 + }, + { + "start": 5645.58, + "end": 5648.24, + "probability": 0.9937 + }, + { + "start": 5648.38, + "end": 5649.72, + "probability": 0.9463 + }, + { + "start": 5650.5, + "end": 5650.94, + "probability": 0.4785 + }, + { + "start": 5651.12, + "end": 5651.96, + "probability": 0.8488 + }, + { + "start": 5652.0, + "end": 5652.4, + "probability": 0.5198 + }, + { + "start": 5652.44, + "end": 5653.3, + "probability": 0.7572 + }, + { + "start": 5653.74, + "end": 5654.86, + "probability": 0.7493 + }, + { + "start": 5654.92, + "end": 5658.42, + "probability": 0.9459 + }, + { + "start": 5658.6, + "end": 5659.0, + "probability": 0.8444 + }, + { + "start": 5659.04, + "end": 5659.7, + "probability": 0.9531 + }, + { + "start": 5660.2, + "end": 5662.62, + "probability": 0.929 + }, + { + "start": 5663.74, + "end": 5665.62, + "probability": 0.8802 + }, + { + "start": 5665.72, + "end": 5666.24, + "probability": 0.7538 + }, + { + "start": 5666.6, + "end": 5667.4, + "probability": 0.4908 + }, + { + "start": 5667.98, + "end": 5669.25, + "probability": 0.9862 + }, + { + "start": 5670.44, + "end": 5672.08, + "probability": 0.9722 + }, + { + "start": 5672.2, + "end": 5674.74, + "probability": 0.9614 + }, + { + "start": 5675.46, + "end": 5677.76, + "probability": 0.9614 + }, + { + "start": 5679.36, + "end": 5682.48, + "probability": 0.8413 + }, + { + "start": 5683.52, + "end": 5684.92, + "probability": 0.7143 + }, + { + "start": 5685.04, + "end": 5686.24, + "probability": 0.8379 + }, + { + "start": 5686.32, + "end": 5687.56, + "probability": 0.906 + }, + { + "start": 5688.22, + "end": 5689.05, + "probability": 0.9771 + }, + { + "start": 5690.0, + "end": 5693.28, + "probability": 0.9889 + }, + { + "start": 5694.86, + "end": 5696.12, + "probability": 0.391 + }, + { + "start": 5697.06, + "end": 5699.28, + "probability": 0.1294 + }, + { + "start": 5701.04, + "end": 5703.52, + "probability": 0.8149 + }, + { + "start": 5703.58, + "end": 5705.24, + "probability": 0.8718 + }, + { + "start": 5706.24, + "end": 5708.94, + "probability": 0.9788 + }, + { + "start": 5709.4, + "end": 5710.87, + "probability": 0.8828 + }, + { + "start": 5711.02, + "end": 5712.72, + "probability": 0.67 + }, + { + "start": 5712.96, + "end": 5714.04, + "probability": 0.7543 + }, + { + "start": 5715.02, + "end": 5715.58, + "probability": 0.5221 + }, + { + "start": 5715.66, + "end": 5717.98, + "probability": 0.7474 + }, + { + "start": 5718.64, + "end": 5719.82, + "probability": 0.859 + }, + { + "start": 5721.74, + "end": 5722.82, + "probability": 0.8436 + }, + { + "start": 5723.22, + "end": 5725.8, + "probability": 0.8223 + }, + { + "start": 5725.94, + "end": 5727.52, + "probability": 0.956 + }, + { + "start": 5727.6, + "end": 5729.46, + "probability": 0.7054 + }, + { + "start": 5729.92, + "end": 5730.54, + "probability": 0.6426 + }, + { + "start": 5730.66, + "end": 5731.94, + "probability": 0.8602 + }, + { + "start": 5732.08, + "end": 5733.43, + "probability": 0.9443 + }, + { + "start": 5734.18, + "end": 5735.5, + "probability": 0.8633 + }, + { + "start": 5736.08, + "end": 5738.84, + "probability": 0.9056 + }, + { + "start": 5738.94, + "end": 5742.46, + "probability": 0.8292 + }, + { + "start": 5742.5, + "end": 5745.32, + "probability": 0.9393 + }, + { + "start": 5746.02, + "end": 5749.06, + "probability": 0.9319 + }, + { + "start": 5749.74, + "end": 5750.78, + "probability": 0.9525 + }, + { + "start": 5751.3, + "end": 5754.62, + "probability": 0.9419 + }, + { + "start": 5754.8, + "end": 5755.23, + "probability": 0.4813 + }, + { + "start": 5755.3, + "end": 5756.3, + "probability": 0.9059 + }, + { + "start": 5756.84, + "end": 5757.9, + "probability": 0.8345 + }, + { + "start": 5758.36, + "end": 5759.46, + "probability": 0.8823 + }, + { + "start": 5760.92, + "end": 5762.54, + "probability": 0.8364 + }, + { + "start": 5762.56, + "end": 5763.58, + "probability": 0.9473 + }, + { + "start": 5764.33, + "end": 5767.28, + "probability": 0.9025 + }, + { + "start": 5767.4, + "end": 5768.1, + "probability": 0.9814 + }, + { + "start": 5768.18, + "end": 5773.5, + "probability": 0.9679 + }, + { + "start": 5773.6, + "end": 5774.56, + "probability": 0.9419 + }, + { + "start": 5774.56, + "end": 5775.58, + "probability": 0.6075 + }, + { + "start": 5778.54, + "end": 5780.1, + "probability": 0.9899 + }, + { + "start": 5780.2, + "end": 5781.1, + "probability": 0.7823 + }, + { + "start": 5781.16, + "end": 5785.1, + "probability": 0.9967 + }, + { + "start": 5785.32, + "end": 5785.92, + "probability": 0.8125 + }, + { + "start": 5786.0, + "end": 5786.32, + "probability": 0.5407 + }, + { + "start": 5786.74, + "end": 5788.04, + "probability": 0.9783 + }, + { + "start": 5788.36, + "end": 5789.64, + "probability": 0.7466 + }, + { + "start": 5790.0, + "end": 5791.0, + "probability": 0.839 + }, + { + "start": 5792.7, + "end": 5793.32, + "probability": 0.116 + }, + { + "start": 5793.44, + "end": 5794.48, + "probability": 0.8717 + }, + { + "start": 5794.9, + "end": 5798.54, + "probability": 0.7219 + }, + { + "start": 5799.02, + "end": 5802.16, + "probability": 0.9492 + }, + { + "start": 5803.54, + "end": 5804.44, + "probability": 0.8268 + }, + { + "start": 5805.24, + "end": 5807.68, + "probability": 0.9922 + }, + { + "start": 5808.06, + "end": 5810.76, + "probability": 0.9926 + }, + { + "start": 5810.76, + "end": 5813.74, + "probability": 0.9977 + }, + { + "start": 5815.32, + "end": 5818.2, + "probability": 0.9915 + }, + { + "start": 5819.38, + "end": 5822.16, + "probability": 0.9761 + }, + { + "start": 5823.74, + "end": 5828.52, + "probability": 0.944 + }, + { + "start": 5829.08, + "end": 5832.38, + "probability": 0.9715 + }, + { + "start": 5833.04, + "end": 5834.34, + "probability": 0.6711 + }, + { + "start": 5834.44, + "end": 5836.04, + "probability": 0.898 + }, + { + "start": 5836.46, + "end": 5838.56, + "probability": 0.766 + }, + { + "start": 5838.66, + "end": 5839.66, + "probability": 0.9913 + }, + { + "start": 5839.8, + "end": 5842.42, + "probability": 0.1305 + }, + { + "start": 5842.82, + "end": 5843.92, + "probability": 0.5201 + }, + { + "start": 5843.96, + "end": 5844.34, + "probability": 0.687 + }, + { + "start": 5844.38, + "end": 5845.06, + "probability": 0.8974 + }, + { + "start": 5845.52, + "end": 5849.78, + "probability": 0.9604 + }, + { + "start": 5851.32, + "end": 5852.4, + "probability": 0.9958 + }, + { + "start": 5852.58, + "end": 5853.76, + "probability": 0.8431 + }, + { + "start": 5853.96, + "end": 5854.62, + "probability": 0.9763 + }, + { + "start": 5854.7, + "end": 5855.66, + "probability": 0.9768 + }, + { + "start": 5855.94, + "end": 5857.27, + "probability": 0.9747 + }, + { + "start": 5857.82, + "end": 5858.62, + "probability": 0.8779 + }, + { + "start": 5858.62, + "end": 5859.22, + "probability": 0.8718 + }, + { + "start": 5859.32, + "end": 5860.78, + "probability": 0.919 + }, + { + "start": 5860.88, + "end": 5863.96, + "probability": 0.4626 + }, + { + "start": 5863.96, + "end": 5863.96, + "probability": 0.1006 + }, + { + "start": 5863.96, + "end": 5865.34, + "probability": 0.5038 + }, + { + "start": 5865.34, + "end": 5865.96, + "probability": 0.3418 + }, + { + "start": 5865.98, + "end": 5867.58, + "probability": 0.6436 + }, + { + "start": 5868.16, + "end": 5871.0, + "probability": 0.913 + }, + { + "start": 5872.0, + "end": 5874.12, + "probability": 0.2742 + }, + { + "start": 5874.26, + "end": 5878.28, + "probability": 0.3206 + }, + { + "start": 5878.3, + "end": 5880.48, + "probability": 0.0382 + }, + { + "start": 5881.01, + "end": 5881.98, + "probability": 0.2973 + }, + { + "start": 5882.46, + "end": 5884.96, + "probability": 0.6417 + }, + { + "start": 5885.12, + "end": 5891.36, + "probability": 0.9926 + }, + { + "start": 5891.84, + "end": 5892.78, + "probability": 0.6484 + }, + { + "start": 5893.62, + "end": 5894.04, + "probability": 0.521 + }, + { + "start": 5894.26, + "end": 5894.96, + "probability": 0.8245 + }, + { + "start": 5895.46, + "end": 5896.18, + "probability": 0.9289 + }, + { + "start": 5897.8, + "end": 5899.16, + "probability": 0.5688 + }, + { + "start": 5899.28, + "end": 5900.44, + "probability": 0.905 + }, + { + "start": 5900.76, + "end": 5904.24, + "probability": 0.8462 + }, + { + "start": 5905.18, + "end": 5907.3, + "probability": 0.9229 + }, + { + "start": 5907.94, + "end": 5908.7, + "probability": 0.4717 + }, + { + "start": 5909.76, + "end": 5912.96, + "probability": 0.7979 + }, + { + "start": 5913.32, + "end": 5918.22, + "probability": 0.9941 + }, + { + "start": 5918.32, + "end": 5919.82, + "probability": 0.822 + }, + { + "start": 5920.66, + "end": 5921.58, + "probability": 0.9846 + }, + { + "start": 5921.92, + "end": 5923.96, + "probability": 0.9982 + }, + { + "start": 5924.1, + "end": 5925.55, + "probability": 0.8477 + }, + { + "start": 5926.44, + "end": 5927.8, + "probability": 0.9164 + }, + { + "start": 5928.8, + "end": 5929.48, + "probability": 0.6968 + }, + { + "start": 5929.92, + "end": 5930.66, + "probability": 0.8631 + }, + { + "start": 5930.78, + "end": 5932.94, + "probability": 0.3926 + }, + { + "start": 5932.94, + "end": 5932.94, + "probability": 0.1145 + }, + { + "start": 5932.94, + "end": 5934.62, + "probability": 0.7533 + }, + { + "start": 5934.72, + "end": 5936.44, + "probability": 0.9182 + }, + { + "start": 5936.62, + "end": 5937.98, + "probability": 0.8496 + }, + { + "start": 5937.98, + "end": 5938.8, + "probability": 0.5953 + }, + { + "start": 5939.1, + "end": 5939.9, + "probability": 0.949 + }, + { + "start": 5940.06, + "end": 5941.3, + "probability": 0.96 + }, + { + "start": 5941.66, + "end": 5943.74, + "probability": 0.9884 + }, + { + "start": 5944.24, + "end": 5949.1, + "probability": 0.9004 + }, + { + "start": 5950.14, + "end": 5950.61, + "probability": 0.5557 + }, + { + "start": 5950.76, + "end": 5951.34, + "probability": 0.7315 + }, + { + "start": 5951.7, + "end": 5954.54, + "probability": 0.9323 + }, + { + "start": 5955.18, + "end": 5961.2, + "probability": 0.9616 + }, + { + "start": 5962.16, + "end": 5963.16, + "probability": 0.3085 + }, + { + "start": 5963.26, + "end": 5964.32, + "probability": 0.8989 + }, + { + "start": 5964.48, + "end": 5965.84, + "probability": 0.8872 + }, + { + "start": 5966.92, + "end": 5967.62, + "probability": 0.8931 + }, + { + "start": 5967.76, + "end": 5969.72, + "probability": 0.7964 + }, + { + "start": 5970.12, + "end": 5971.86, + "probability": 0.9704 + }, + { + "start": 5972.14, + "end": 5973.1, + "probability": 0.8577 + }, + { + "start": 5973.5, + "end": 5974.94, + "probability": 0.9883 + }, + { + "start": 5976.04, + "end": 5977.72, + "probability": 0.8455 + }, + { + "start": 5978.36, + "end": 5981.3, + "probability": 0.9788 + }, + { + "start": 5982.02, + "end": 5983.5, + "probability": 0.798 + }, + { + "start": 5984.02, + "end": 5989.1, + "probability": 0.949 + }, + { + "start": 5989.66, + "end": 5990.64, + "probability": 0.4786 + }, + { + "start": 5991.42, + "end": 5992.26, + "probability": 0.8269 + }, + { + "start": 5992.44, + "end": 5993.6, + "probability": 0.6644 + }, + { + "start": 5993.84, + "end": 5996.22, + "probability": 0.9724 + }, + { + "start": 5997.42, + "end": 6007.4, + "probability": 0.9507 + }, + { + "start": 6007.98, + "end": 6009.56, + "probability": 0.9057 + }, + { + "start": 6010.48, + "end": 6014.58, + "probability": 0.7533 + }, + { + "start": 6014.58, + "end": 6015.96, + "probability": 0.7081 + }, + { + "start": 6016.54, + "end": 6018.38, + "probability": 0.6299 + }, + { + "start": 6018.6, + "end": 6020.32, + "probability": 0.6155 + }, + { + "start": 6020.6, + "end": 6024.9, + "probability": 0.9513 + }, + { + "start": 6024.9, + "end": 6030.34, + "probability": 0.9733 + }, + { + "start": 6030.94, + "end": 6036.2, + "probability": 0.804 + }, + { + "start": 6037.08, + "end": 6040.36, + "probability": 0.8153 + }, + { + "start": 6040.68, + "end": 6044.82, + "probability": 0.9819 + }, + { + "start": 6045.18, + "end": 6046.9, + "probability": 0.9636 + }, + { + "start": 6047.44, + "end": 6051.56, + "probability": 0.9193 + }, + { + "start": 6052.34, + "end": 6055.84, + "probability": 0.9085 + }, + { + "start": 6056.06, + "end": 6056.52, + "probability": 0.5641 + }, + { + "start": 6056.66, + "end": 6060.78, + "probability": 0.9492 + }, + { + "start": 6061.46, + "end": 6064.02, + "probability": 0.913 + }, + { + "start": 6064.12, + "end": 6066.26, + "probability": 0.8141 + }, + { + "start": 6066.38, + "end": 6066.42, + "probability": 0.5031 + }, + { + "start": 6066.42, + "end": 6067.74, + "probability": 0.9569 + }, + { + "start": 6067.78, + "end": 6068.92, + "probability": 0.8063 + }, + { + "start": 6069.06, + "end": 6069.52, + "probability": 0.5386 + }, + { + "start": 6069.62, + "end": 6070.42, + "probability": 0.7837 + }, + { + "start": 6070.42, + "end": 6071.2, + "probability": 0.7222 + }, + { + "start": 6071.26, + "end": 6074.42, + "probability": 0.9395 + }, + { + "start": 6074.64, + "end": 6074.96, + "probability": 0.9216 + }, + { + "start": 6075.3, + "end": 6077.64, + "probability": 0.9823 + }, + { + "start": 6077.66, + "end": 6077.96, + "probability": 0.0237 + }, + { + "start": 6077.96, + "end": 6080.08, + "probability": 0.2845 + }, + { + "start": 6080.64, + "end": 6085.2, + "probability": 0.5281 + }, + { + "start": 6085.94, + "end": 6087.38, + "probability": 0.6496 + }, + { + "start": 6087.9, + "end": 6088.28, + "probability": 0.748 + }, + { + "start": 6088.44, + "end": 6089.26, + "probability": 0.7335 + }, + { + "start": 6090.02, + "end": 6090.86, + "probability": 0.217 + }, + { + "start": 6090.86, + "end": 6092.36, + "probability": 0.4893 + }, + { + "start": 6092.7, + "end": 6093.26, + "probability": 0.0993 + }, + { + "start": 6095.59, + "end": 6098.92, + "probability": 0.414 + }, + { + "start": 6100.59, + "end": 6104.22, + "probability": 0.4562 + }, + { + "start": 6105.7, + "end": 6106.06, + "probability": 0.7902 + }, + { + "start": 6106.2, + "end": 6110.24, + "probability": 0.8745 + }, + { + "start": 6110.32, + "end": 6112.12, + "probability": 0.3472 + }, + { + "start": 6112.76, + "end": 6114.1, + "probability": 0.886 + }, + { + "start": 6114.16, + "end": 6115.38, + "probability": 0.787 + }, + { + "start": 6115.58, + "end": 6116.91, + "probability": 0.8412 + }, + { + "start": 6117.44, + "end": 6118.96, + "probability": 0.9162 + }, + { + "start": 6119.56, + "end": 6122.54, + "probability": 0.6961 + }, + { + "start": 6122.6, + "end": 6123.9, + "probability": 0.689 + }, + { + "start": 6124.28, + "end": 6125.46, + "probability": 0.9682 + }, + { + "start": 6125.54, + "end": 6126.5, + "probability": 0.7564 + }, + { + "start": 6127.04, + "end": 6131.72, + "probability": 0.6646 + }, + { + "start": 6132.04, + "end": 6132.74, + "probability": 0.7214 + }, + { + "start": 6132.84, + "end": 6134.16, + "probability": 0.6573 + }, + { + "start": 6134.58, + "end": 6135.78, + "probability": 0.9243 + }, + { + "start": 6135.86, + "end": 6136.64, + "probability": 0.9331 + }, + { + "start": 6136.74, + "end": 6136.94, + "probability": 0.7552 + }, + { + "start": 6137.76, + "end": 6138.58, + "probability": 0.8062 + }, + { + "start": 6138.74, + "end": 6140.38, + "probability": 0.7887 + }, + { + "start": 6142.84, + "end": 6145.16, + "probability": 0.4839 + }, + { + "start": 6153.24, + "end": 6155.34, + "probability": 0.9972 + }, + { + "start": 6157.02, + "end": 6159.14, + "probability": 0.9056 + }, + { + "start": 6159.32, + "end": 6161.04, + "probability": 0.9811 + }, + { + "start": 6161.26, + "end": 6161.9, + "probability": 0.77 + }, + { + "start": 6163.26, + "end": 6165.48, + "probability": 0.9547 + }, + { + "start": 6168.1, + "end": 6169.58, + "probability": 0.6586 + }, + { + "start": 6171.12, + "end": 6171.3, + "probability": 0.0587 + }, + { + "start": 6171.3, + "end": 6174.8, + "probability": 0.9407 + }, + { + "start": 6174.88, + "end": 6175.38, + "probability": 0.1462 + }, + { + "start": 6176.22, + "end": 6176.76, + "probability": 0.9558 + }, + { + "start": 6176.84, + "end": 6178.29, + "probability": 0.5263 + }, + { + "start": 6178.5, + "end": 6178.9, + "probability": 0.0742 + }, + { + "start": 6179.38, + "end": 6185.44, + "probability": 0.9653 + }, + { + "start": 6186.54, + "end": 6190.44, + "probability": 0.0697 + }, + { + "start": 6190.44, + "end": 6190.77, + "probability": 0.1755 + }, + { + "start": 6191.42, + "end": 6194.1, + "probability": 0.85 + }, + { + "start": 6195.76, + "end": 6197.48, + "probability": 0.9448 + }, + { + "start": 6198.88, + "end": 6203.58, + "probability": 0.7713 + }, + { + "start": 6205.5, + "end": 6210.5, + "probability": 0.5242 + }, + { + "start": 6212.68, + "end": 6215.92, + "probability": 0.9388 + }, + { + "start": 6216.9, + "end": 6220.82, + "probability": 0.9882 + }, + { + "start": 6223.28, + "end": 6227.4, + "probability": 0.841 + }, + { + "start": 6228.44, + "end": 6234.98, + "probability": 0.9883 + }, + { + "start": 6240.04, + "end": 6241.17, + "probability": 0.5131 + }, + { + "start": 6244.44, + "end": 6247.2, + "probability": 0.9614 + }, + { + "start": 6248.94, + "end": 6251.22, + "probability": 0.9342 + }, + { + "start": 6251.28, + "end": 6256.34, + "probability": 0.9937 + }, + { + "start": 6256.5, + "end": 6257.71, + "probability": 0.9907 + }, + { + "start": 6258.48, + "end": 6261.4, + "probability": 0.9914 + }, + { + "start": 6263.74, + "end": 6264.68, + "probability": 0.6971 + }, + { + "start": 6264.9, + "end": 6265.94, + "probability": 0.6781 + }, + { + "start": 6266.16, + "end": 6267.88, + "probability": 0.7596 + }, + { + "start": 6267.98, + "end": 6269.62, + "probability": 0.5483 + }, + { + "start": 6271.16, + "end": 6274.66, + "probability": 0.8362 + }, + { + "start": 6276.22, + "end": 6280.06, + "probability": 0.9683 + }, + { + "start": 6281.08, + "end": 6282.64, + "probability": 0.4977 + }, + { + "start": 6282.72, + "end": 6286.28, + "probability": 0.9442 + }, + { + "start": 6289.48, + "end": 6293.66, + "probability": 0.9785 + }, + { + "start": 6293.82, + "end": 6294.78, + "probability": 0.9855 + }, + { + "start": 6294.86, + "end": 6299.3, + "probability": 0.9501 + }, + { + "start": 6299.3, + "end": 6301.61, + "probability": 0.9707 + }, + { + "start": 6302.76, + "end": 6308.34, + "probability": 0.955 + }, + { + "start": 6309.76, + "end": 6313.04, + "probability": 0.9253 + }, + { + "start": 6314.06, + "end": 6316.28, + "probability": 0.9715 + }, + { + "start": 6317.0, + "end": 6318.04, + "probability": 0.906 + }, + { + "start": 6318.98, + "end": 6324.3, + "probability": 0.9965 + }, + { + "start": 6328.96, + "end": 6330.22, + "probability": 0.9542 + }, + { + "start": 6331.06, + "end": 6333.02, + "probability": 0.8228 + }, + { + "start": 6333.74, + "end": 6338.46, + "probability": 0.9812 + }, + { + "start": 6338.54, + "end": 6340.16, + "probability": 0.9528 + }, + { + "start": 6342.02, + "end": 6343.24, + "probability": 0.4717 + }, + { + "start": 6343.42, + "end": 6347.96, + "probability": 0.8962 + }, + { + "start": 6349.12, + "end": 6352.32, + "probability": 0.9882 + }, + { + "start": 6353.22, + "end": 6355.74, + "probability": 0.8293 + }, + { + "start": 6356.68, + "end": 6360.12, + "probability": 0.9094 + }, + { + "start": 6360.68, + "end": 6363.44, + "probability": 0.9532 + }, + { + "start": 6364.08, + "end": 6366.22, + "probability": 0.9658 + }, + { + "start": 6368.1, + "end": 6369.12, + "probability": 0.8706 + }, + { + "start": 6369.54, + "end": 6373.02, + "probability": 0.9087 + }, + { + "start": 6373.8, + "end": 6376.0, + "probability": 0.9667 + }, + { + "start": 6376.54, + "end": 6379.46, + "probability": 0.9541 + }, + { + "start": 6379.96, + "end": 6381.86, + "probability": 0.749 + }, + { + "start": 6383.22, + "end": 6387.52, + "probability": 0.9354 + }, + { + "start": 6388.16, + "end": 6389.36, + "probability": 0.9287 + }, + { + "start": 6390.0, + "end": 6392.28, + "probability": 0.8921 + }, + { + "start": 6392.74, + "end": 6395.02, + "probability": 0.6231 + }, + { + "start": 6395.68, + "end": 6397.78, + "probability": 0.6875 + }, + { + "start": 6406.6, + "end": 6407.76, + "probability": 0.1843 + }, + { + "start": 6407.94, + "end": 6408.62, + "probability": 0.4258 + }, + { + "start": 6408.9, + "end": 6409.58, + "probability": 0.7074 + }, + { + "start": 6410.54, + "end": 6411.94, + "probability": 0.9894 + }, + { + "start": 6412.78, + "end": 6414.58, + "probability": 0.9612 + }, + { + "start": 6414.66, + "end": 6416.28, + "probability": 0.8501 + }, + { + "start": 6417.38, + "end": 6418.9, + "probability": 0.5921 + }, + { + "start": 6419.44, + "end": 6425.12, + "probability": 0.9507 + }, + { + "start": 6425.58, + "end": 6429.72, + "probability": 0.7422 + }, + { + "start": 6430.34, + "end": 6431.72, + "probability": 0.8527 + }, + { + "start": 6432.8, + "end": 6436.6, + "probability": 0.8911 + }, + { + "start": 6436.6, + "end": 6442.84, + "probability": 0.9946 + }, + { + "start": 6443.04, + "end": 6443.43, + "probability": 0.7902 + }, + { + "start": 6443.78, + "end": 6444.54, + "probability": 0.9556 + }, + { + "start": 6447.46, + "end": 6448.52, + "probability": 0.9803 + }, + { + "start": 6448.8, + "end": 6449.74, + "probability": 0.7365 + }, + { + "start": 6449.88, + "end": 6450.89, + "probability": 0.9668 + }, + { + "start": 6451.72, + "end": 6452.84, + "probability": 0.856 + }, + { + "start": 6453.06, + "end": 6459.12, + "probability": 0.9562 + }, + { + "start": 6459.74, + "end": 6461.08, + "probability": 0.652 + }, + { + "start": 6462.24, + "end": 6465.5, + "probability": 0.8792 + }, + { + "start": 6466.88, + "end": 6468.06, + "probability": 0.7555 + }, + { + "start": 6468.68, + "end": 6471.12, + "probability": 0.9876 + }, + { + "start": 6473.48, + "end": 6475.22, + "probability": 0.9043 + }, + { + "start": 6477.12, + "end": 6484.78, + "probability": 0.8044 + }, + { + "start": 6485.0, + "end": 6488.24, + "probability": 0.8914 + }, + { + "start": 6489.56, + "end": 6492.38, + "probability": 0.9587 + }, + { + "start": 6493.48, + "end": 6495.88, + "probability": 0.8775 + }, + { + "start": 6496.04, + "end": 6497.84, + "probability": 0.4946 + }, + { + "start": 6499.96, + "end": 6502.91, + "probability": 0.9875 + }, + { + "start": 6504.32, + "end": 6506.24, + "probability": 0.9946 + }, + { + "start": 6507.04, + "end": 6507.2, + "probability": 0.5526 + }, + { + "start": 6507.82, + "end": 6509.83, + "probability": 0.9715 + }, + { + "start": 6511.6, + "end": 6517.42, + "probability": 0.9854 + }, + { + "start": 6518.96, + "end": 6518.98, + "probability": 0.2002 + }, + { + "start": 6518.98, + "end": 6519.58, + "probability": 0.7231 + }, + { + "start": 6520.28, + "end": 6521.88, + "probability": 0.6661 + }, + { + "start": 6522.72, + "end": 6526.1, + "probability": 0.908 + }, + { + "start": 6526.1, + "end": 6530.94, + "probability": 0.952 + }, + { + "start": 6531.48, + "end": 6535.26, + "probability": 0.9584 + }, + { + "start": 6540.94, + "end": 6543.06, + "probability": 0.6853 + }, + { + "start": 6544.52, + "end": 6549.24, + "probability": 0.9314 + }, + { + "start": 6550.16, + "end": 6551.68, + "probability": 0.9983 + }, + { + "start": 6552.58, + "end": 6555.16, + "probability": 0.8226 + }, + { + "start": 6555.8, + "end": 6561.24, + "probability": 0.7384 + }, + { + "start": 6561.74, + "end": 6567.4, + "probability": 0.984 + }, + { + "start": 6568.7, + "end": 6570.6, + "probability": 0.8214 + }, + { + "start": 6571.48, + "end": 6573.88, + "probability": 0.9944 + }, + { + "start": 6574.46, + "end": 6580.32, + "probability": 0.9673 + }, + { + "start": 6580.84, + "end": 6586.75, + "probability": 0.9854 + }, + { + "start": 6587.2, + "end": 6588.16, + "probability": 0.7668 + }, + { + "start": 6588.88, + "end": 6591.08, + "probability": 0.8207 + }, + { + "start": 6592.02, + "end": 6596.64, + "probability": 0.8088 + }, + { + "start": 6597.12, + "end": 6598.48, + "probability": 0.6614 + }, + { + "start": 6598.56, + "end": 6600.32, + "probability": 0.8534 + }, + { + "start": 6600.68, + "end": 6605.78, + "probability": 0.7049 + }, + { + "start": 6605.94, + "end": 6606.16, + "probability": 0.7334 + }, + { + "start": 6606.24, + "end": 6608.36, + "probability": 0.8014 + }, + { + "start": 6608.72, + "end": 6614.52, + "probability": 0.8548 + }, + { + "start": 6615.22, + "end": 6615.9, + "probability": 0.6354 + }, + { + "start": 6616.52, + "end": 6617.38, + "probability": 0.8549 + }, + { + "start": 6617.66, + "end": 6619.9, + "probability": 0.9197 + }, + { + "start": 6620.9, + "end": 6623.12, + "probability": 0.7616 + }, + { + "start": 6623.66, + "end": 6625.94, + "probability": 0.7173 + }, + { + "start": 6626.62, + "end": 6628.0, + "probability": 0.9537 + }, + { + "start": 6628.62, + "end": 6630.52, + "probability": 0.5051 + }, + { + "start": 6630.9, + "end": 6631.93, + "probability": 0.9217 + }, + { + "start": 6632.5, + "end": 6632.74, + "probability": 0.8683 + }, + { + "start": 6632.86, + "end": 6634.02, + "probability": 0.7969 + }, + { + "start": 6634.1, + "end": 6634.82, + "probability": 0.8214 + }, + { + "start": 6635.82, + "end": 6636.33, + "probability": 0.8818 + }, + { + "start": 6637.34, + "end": 6643.46, + "probability": 0.8279 + }, + { + "start": 6643.98, + "end": 6649.2, + "probability": 0.9231 + }, + { + "start": 6649.8, + "end": 6652.6, + "probability": 0.9856 + }, + { + "start": 6652.74, + "end": 6655.9, + "probability": 0.9794 + }, + { + "start": 6657.52, + "end": 6659.34, + "probability": 0.9794 + }, + { + "start": 6660.7, + "end": 6663.66, + "probability": 0.9689 + }, + { + "start": 6664.02, + "end": 6665.0, + "probability": 0.7019 + }, + { + "start": 6665.8, + "end": 6666.3, + "probability": 0.8684 + }, + { + "start": 6667.96, + "end": 6669.82, + "probability": 0.783 + }, + { + "start": 6671.06, + "end": 6678.6, + "probability": 0.9967 + }, + { + "start": 6678.6, + "end": 6683.5, + "probability": 0.9485 + }, + { + "start": 6684.84, + "end": 6685.48, + "probability": 0.4983 + }, + { + "start": 6685.68, + "end": 6686.48, + "probability": 0.8242 + }, + { + "start": 6687.16, + "end": 6689.98, + "probability": 0.9097 + }, + { + "start": 6690.52, + "end": 6692.11, + "probability": 0.9914 + }, + { + "start": 6692.64, + "end": 6694.04, + "probability": 0.9686 + }, + { + "start": 6694.48, + "end": 6697.8, + "probability": 0.9897 + }, + { + "start": 6699.94, + "end": 6702.54, + "probability": 0.9619 + }, + { + "start": 6703.4, + "end": 6704.04, + "probability": 0.5264 + }, + { + "start": 6706.1, + "end": 6709.96, + "probability": 0.8813 + }, + { + "start": 6710.5, + "end": 6711.3, + "probability": 0.5233 + }, + { + "start": 6712.3, + "end": 6714.2, + "probability": 0.7506 + }, + { + "start": 6719.4, + "end": 6721.9, + "probability": 0.68 + }, + { + "start": 6721.98, + "end": 6724.32, + "probability": 0.8882 + }, + { + "start": 6725.44, + "end": 6729.04, + "probability": 0.7727 + }, + { + "start": 6729.98, + "end": 6731.42, + "probability": 0.863 + }, + { + "start": 6733.02, + "end": 6735.62, + "probability": 0.9883 + }, + { + "start": 6736.04, + "end": 6737.22, + "probability": 0.9663 + }, + { + "start": 6737.42, + "end": 6738.24, + "probability": 0.4435 + }, + { + "start": 6738.66, + "end": 6742.55, + "probability": 0.5326 + }, + { + "start": 6743.44, + "end": 6744.68, + "probability": 0.7287 + }, + { + "start": 6744.9, + "end": 6747.8, + "probability": 0.6165 + }, + { + "start": 6748.82, + "end": 6753.4, + "probability": 0.8864 + }, + { + "start": 6754.06, + "end": 6756.16, + "probability": 0.9863 + }, + { + "start": 6756.9, + "end": 6758.2, + "probability": 0.7304 + }, + { + "start": 6758.9, + "end": 6759.74, + "probability": 0.574 + }, + { + "start": 6761.96, + "end": 6763.32, + "probability": 0.9805 + }, + { + "start": 6763.44, + "end": 6764.1, + "probability": 0.5197 + }, + { + "start": 6764.4, + "end": 6765.5, + "probability": 0.8807 + }, + { + "start": 6766.52, + "end": 6771.48, + "probability": 0.971 + }, + { + "start": 6772.52, + "end": 6774.5, + "probability": 0.6407 + }, + { + "start": 6775.2, + "end": 6778.2, + "probability": 0.7422 + }, + { + "start": 6782.59, + "end": 6784.64, + "probability": 0.9993 + }, + { + "start": 6786.06, + "end": 6788.44, + "probability": 0.947 + }, + { + "start": 6788.58, + "end": 6792.42, + "probability": 0.8728 + }, + { + "start": 6793.04, + "end": 6798.16, + "probability": 0.9417 + }, + { + "start": 6799.44, + "end": 6803.38, + "probability": 0.6387 + }, + { + "start": 6804.1, + "end": 6805.04, + "probability": 0.9556 + }, + { + "start": 6811.38, + "end": 6811.48, + "probability": 0.7335 + }, + { + "start": 6812.82, + "end": 6815.9, + "probability": 0.835 + }, + { + "start": 6815.9, + "end": 6820.74, + "probability": 0.9899 + }, + { + "start": 6820.9, + "end": 6822.3, + "probability": 0.954 + }, + { + "start": 6825.76, + "end": 6830.14, + "probability": 0.975 + }, + { + "start": 6831.54, + "end": 6837.46, + "probability": 0.9683 + }, + { + "start": 6838.06, + "end": 6841.1, + "probability": 0.8721 + }, + { + "start": 6842.38, + "end": 6847.34, + "probability": 0.9927 + }, + { + "start": 6848.55, + "end": 6855.58, + "probability": 0.9502 + }, + { + "start": 6856.26, + "end": 6858.06, + "probability": 0.9669 + }, + { + "start": 6858.58, + "end": 6859.54, + "probability": 0.9651 + }, + { + "start": 6861.46, + "end": 6863.74, + "probability": 0.9846 + }, + { + "start": 6864.72, + "end": 6867.32, + "probability": 0.6142 + }, + { + "start": 6868.12, + "end": 6869.12, + "probability": 0.9763 + }, + { + "start": 6869.88, + "end": 6871.24, + "probability": 0.9956 + }, + { + "start": 6872.0, + "end": 6875.2, + "probability": 0.6054 + }, + { + "start": 6875.9, + "end": 6879.46, + "probability": 0.411 + }, + { + "start": 6880.22, + "end": 6881.38, + "probability": 0.6917 + }, + { + "start": 6881.48, + "end": 6882.07, + "probability": 0.7965 + }, + { + "start": 6882.86, + "end": 6883.92, + "probability": 0.8477 + }, + { + "start": 6884.08, + "end": 6887.54, + "probability": 0.9543 + }, + { + "start": 6887.7, + "end": 6889.12, + "probability": 0.9631 + }, + { + "start": 6891.8, + "end": 6892.94, + "probability": 0.8335 + }, + { + "start": 6896.08, + "end": 6897.58, + "probability": 0.9948 + }, + { + "start": 6899.52, + "end": 6900.58, + "probability": 0.75 + }, + { + "start": 6906.7, + "end": 6909.48, + "probability": 0.5014 + }, + { + "start": 6910.78, + "end": 6911.51, + "probability": 0.9342 + }, + { + "start": 6912.3, + "end": 6914.8, + "probability": 0.6011 + }, + { + "start": 6915.68, + "end": 6918.84, + "probability": 0.8898 + }, + { + "start": 6920.4, + "end": 6924.64, + "probability": 0.6005 + }, + { + "start": 6924.74, + "end": 6925.28, + "probability": 0.7334 + }, + { + "start": 6925.8, + "end": 6926.68, + "probability": 0.5628 + }, + { + "start": 6928.28, + "end": 6931.93, + "probability": 0.8607 + }, + { + "start": 6933.2, + "end": 6936.54, + "probability": 0.8018 + }, + { + "start": 6937.4, + "end": 6939.36, + "probability": 0.8311 + }, + { + "start": 6939.78, + "end": 6943.58, + "probability": 0.9282 + }, + { + "start": 6943.96, + "end": 6945.9, + "probability": 0.9514 + }, + { + "start": 6946.08, + "end": 6948.3, + "probability": 0.9854 + }, + { + "start": 6948.98, + "end": 6951.1, + "probability": 0.7919 + }, + { + "start": 6951.96, + "end": 6952.98, + "probability": 0.8532 + }, + { + "start": 6953.52, + "end": 6956.92, + "probability": 0.9724 + }, + { + "start": 6957.54, + "end": 6961.26, + "probability": 0.9946 + }, + { + "start": 6962.26, + "end": 6967.04, + "probability": 0.775 + }, + { + "start": 6967.56, + "end": 6969.88, + "probability": 0.9683 + }, + { + "start": 6972.14, + "end": 6972.72, + "probability": 0.7908 + }, + { + "start": 6973.46, + "end": 6976.1, + "probability": 0.9467 + }, + { + "start": 6976.32, + "end": 6981.28, + "probability": 0.8843 + }, + { + "start": 6981.86, + "end": 6983.58, + "probability": 0.9521 + }, + { + "start": 6983.84, + "end": 6985.14, + "probability": 0.9795 + }, + { + "start": 6986.46, + "end": 6988.44, + "probability": 0.6707 + }, + { + "start": 6989.42, + "end": 6991.36, + "probability": 0.8687 + }, + { + "start": 6991.4, + "end": 6993.34, + "probability": 0.9416 + }, + { + "start": 6993.8, + "end": 6995.44, + "probability": 0.2189 + }, + { + "start": 6996.58, + "end": 7002.56, + "probability": 0.6525 + }, + { + "start": 7003.6, + "end": 7005.08, + "probability": 0.9042 + }, + { + "start": 7005.18, + "end": 7006.76, + "probability": 0.9314 + }, + { + "start": 7007.62, + "end": 7008.9, + "probability": 0.9719 + }, + { + "start": 7009.1, + "end": 7010.96, + "probability": 0.9864 + }, + { + "start": 7011.8, + "end": 7013.22, + "probability": 0.9294 + }, + { + "start": 7013.38, + "end": 7016.38, + "probability": 0.9384 + }, + { + "start": 7017.2, + "end": 7021.93, + "probability": 0.976 + }, + { + "start": 7023.14, + "end": 7024.66, + "probability": 0.8753 + }, + { + "start": 7025.6, + "end": 7027.68, + "probability": 0.939 + }, + { + "start": 7027.86, + "end": 7029.06, + "probability": 0.3046 + }, + { + "start": 7029.32, + "end": 7029.94, + "probability": 0.322 + }, + { + "start": 7030.36, + "end": 7031.52, + "probability": 0.8546 + }, + { + "start": 7032.24, + "end": 7035.14, + "probability": 0.9415 + }, + { + "start": 7035.34, + "end": 7037.52, + "probability": 0.9666 + }, + { + "start": 7038.66, + "end": 7039.58, + "probability": 0.4921 + }, + { + "start": 7040.18, + "end": 7043.4, + "probability": 0.7321 + }, + { + "start": 7044.12, + "end": 7046.8, + "probability": 0.4809 + }, + { + "start": 7047.58, + "end": 7050.84, + "probability": 0.8503 + }, + { + "start": 7052.04, + "end": 7056.98, + "probability": 0.7126 + }, + { + "start": 7058.56, + "end": 7060.64, + "probability": 0.987 + }, + { + "start": 7061.84, + "end": 7063.86, + "probability": 0.9335 + }, + { + "start": 7064.42, + "end": 7066.92, + "probability": 0.9982 + }, + { + "start": 7067.98, + "end": 7071.12, + "probability": 0.8825 + }, + { + "start": 7071.84, + "end": 7076.74, + "probability": 0.8702 + }, + { + "start": 7076.78, + "end": 7078.36, + "probability": 0.6732 + }, + { + "start": 7078.74, + "end": 7080.1, + "probability": 0.8097 + }, + { + "start": 7081.26, + "end": 7085.34, + "probability": 0.9641 + }, + { + "start": 7086.58, + "end": 7088.38, + "probability": 0.9294 + }, + { + "start": 7088.5, + "end": 7091.02, + "probability": 0.9712 + }, + { + "start": 7091.1, + "end": 7095.98, + "probability": 0.8975 + }, + { + "start": 7097.0, + "end": 7098.2, + "probability": 0.8176 + }, + { + "start": 7099.04, + "end": 7101.24, + "probability": 0.8094 + }, + { + "start": 7102.46, + "end": 7105.26, + "probability": 0.9507 + }, + { + "start": 7105.68, + "end": 7107.7, + "probability": 0.8962 + }, + { + "start": 7107.96, + "end": 7109.24, + "probability": 0.8058 + }, + { + "start": 7109.94, + "end": 7112.32, + "probability": 0.9438 + }, + { + "start": 7112.88, + "end": 7115.3, + "probability": 0.9891 + }, + { + "start": 7115.84, + "end": 7119.36, + "probability": 0.9932 + }, + { + "start": 7119.4, + "end": 7119.68, + "probability": 0.0591 + }, + { + "start": 7119.68, + "end": 7119.76, + "probability": 0.1577 + }, + { + "start": 7119.92, + "end": 7121.04, + "probability": 0.6838 + }, + { + "start": 7121.14, + "end": 7124.08, + "probability": 0.9858 + }, + { + "start": 7124.34, + "end": 7125.54, + "probability": 0.8506 + }, + { + "start": 7126.02, + "end": 7131.2, + "probability": 0.9239 + }, + { + "start": 7131.96, + "end": 7135.94, + "probability": 0.8451 + }, + { + "start": 7136.16, + "end": 7138.46, + "probability": 0.958 + }, + { + "start": 7138.94, + "end": 7140.59, + "probability": 0.9678 + }, + { + "start": 7141.3, + "end": 7145.02, + "probability": 0.672 + }, + { + "start": 7145.72, + "end": 7145.72, + "probability": 0.668 + }, + { + "start": 7145.72, + "end": 7147.56, + "probability": 0.588 + }, + { + "start": 7147.6, + "end": 7148.04, + "probability": 0.8472 + }, + { + "start": 7148.1, + "end": 7148.7, + "probability": 0.7534 + }, + { + "start": 7148.74, + "end": 7150.64, + "probability": 0.6068 + }, + { + "start": 7163.41, + "end": 7166.48, + "probability": 0.6397 + }, + { + "start": 7166.96, + "end": 7167.86, + "probability": 0.6772 + }, + { + "start": 7168.66, + "end": 7169.18, + "probability": 0.572 + }, + { + "start": 7177.64, + "end": 7180.86, + "probability": 0.7585 + }, + { + "start": 7181.76, + "end": 7182.83, + "probability": 0.928 + }, + { + "start": 7183.36, + "end": 7185.66, + "probability": 0.952 + }, + { + "start": 7186.44, + "end": 7188.38, + "probability": 0.9169 + }, + { + "start": 7189.48, + "end": 7190.82, + "probability": 0.9863 + }, + { + "start": 7191.78, + "end": 7192.92, + "probability": 0.5824 + }, + { + "start": 7193.62, + "end": 7196.52, + "probability": 0.9296 + }, + { + "start": 7197.74, + "end": 7198.38, + "probability": 0.9469 + }, + { + "start": 7198.5, + "end": 7203.62, + "probability": 0.9062 + }, + { + "start": 7204.74, + "end": 7207.66, + "probability": 0.7283 + }, + { + "start": 7208.7, + "end": 7209.78, + "probability": 0.8087 + }, + { + "start": 7210.84, + "end": 7214.42, + "probability": 0.887 + }, + { + "start": 7214.46, + "end": 7214.94, + "probability": 0.7559 + }, + { + "start": 7215.38, + "end": 7217.08, + "probability": 0.8996 + }, + { + "start": 7217.36, + "end": 7219.32, + "probability": 0.9891 + }, + { + "start": 7219.72, + "end": 7222.54, + "probability": 0.9136 + }, + { + "start": 7222.6, + "end": 7223.02, + "probability": 0.0091 + }, + { + "start": 7224.02, + "end": 7226.0, + "probability": 0.7791 + }, + { + "start": 7226.4, + "end": 7226.64, + "probability": 0.0809 + }, + { + "start": 7226.7, + "end": 7227.76, + "probability": 0.7351 + }, + { + "start": 7228.24, + "end": 7232.8, + "probability": 0.7133 + }, + { + "start": 7232.92, + "end": 7237.28, + "probability": 0.7795 + }, + { + "start": 7237.72, + "end": 7239.0, + "probability": 0.8954 + }, + { + "start": 7239.7, + "end": 7243.2, + "probability": 0.8137 + }, + { + "start": 7243.86, + "end": 7245.22, + "probability": 0.3581 + }, + { + "start": 7245.96, + "end": 7248.1, + "probability": 0.7062 + }, + { + "start": 7248.26, + "end": 7250.84, + "probability": 0.8232 + }, + { + "start": 7251.12, + "end": 7252.72, + "probability": 0.7189 + }, + { + "start": 7253.62, + "end": 7255.96, + "probability": 0.9001 + }, + { + "start": 7256.44, + "end": 7257.14, + "probability": 0.7047 + }, + { + "start": 7258.84, + "end": 7262.46, + "probability": 0.6531 + }, + { + "start": 7263.44, + "end": 7264.86, + "probability": 0.8972 + }, + { + "start": 7265.42, + "end": 7268.28, + "probability": 0.908 + }, + { + "start": 7269.04, + "end": 7272.78, + "probability": 0.9783 + }, + { + "start": 7273.38, + "end": 7276.38, + "probability": 0.9393 + }, + { + "start": 7277.12, + "end": 7279.5, + "probability": 0.8608 + }, + { + "start": 7280.58, + "end": 7282.72, + "probability": 0.9903 + }, + { + "start": 7283.38, + "end": 7286.96, + "probability": 0.9754 + }, + { + "start": 7287.88, + "end": 7289.28, + "probability": 0.8989 + }, + { + "start": 7290.18, + "end": 7291.06, + "probability": 0.8708 + }, + { + "start": 7292.2, + "end": 7293.94, + "probability": 0.9639 + }, + { + "start": 7294.8, + "end": 7298.56, + "probability": 0.4607 + }, + { + "start": 7299.0, + "end": 7303.08, + "probability": 0.8649 + }, + { + "start": 7303.96, + "end": 7308.14, + "probability": 0.9817 + }, + { + "start": 7308.74, + "end": 7309.48, + "probability": 0.9296 + }, + { + "start": 7310.28, + "end": 7311.48, + "probability": 0.5854 + }, + { + "start": 7311.86, + "end": 7316.82, + "probability": 0.9524 + }, + { + "start": 7317.72, + "end": 7318.35, + "probability": 0.0264 + }, + { + "start": 7319.8, + "end": 7322.06, + "probability": 0.8177 + }, + { + "start": 7322.54, + "end": 7323.96, + "probability": 0.9901 + }, + { + "start": 7324.28, + "end": 7328.72, + "probability": 0.9924 + }, + { + "start": 7329.02, + "end": 7332.2, + "probability": 0.9184 + }, + { + "start": 7332.98, + "end": 7335.37, + "probability": 0.9504 + }, + { + "start": 7335.88, + "end": 7337.72, + "probability": 0.6189 + }, + { + "start": 7338.54, + "end": 7339.74, + "probability": 0.7247 + }, + { + "start": 7340.46, + "end": 7341.4, + "probability": 0.8887 + }, + { + "start": 7342.22, + "end": 7344.72, + "probability": 0.9363 + }, + { + "start": 7345.34, + "end": 7349.22, + "probability": 0.9333 + }, + { + "start": 7349.5, + "end": 7352.78, + "probability": 0.9623 + }, + { + "start": 7352.78, + "end": 7355.46, + "probability": 0.9324 + }, + { + "start": 7357.24, + "end": 7359.26, + "probability": 0.8685 + }, + { + "start": 7360.3, + "end": 7364.88, + "probability": 0.8508 + }, + { + "start": 7365.78, + "end": 7368.92, + "probability": 0.7891 + }, + { + "start": 7369.22, + "end": 7370.9, + "probability": 0.1655 + }, + { + "start": 7370.9, + "end": 7370.98, + "probability": 0.1124 + }, + { + "start": 7371.12, + "end": 7371.18, + "probability": 0.2026 + }, + { + "start": 7371.18, + "end": 7372.54, + "probability": 0.1643 + }, + { + "start": 7374.68, + "end": 7377.32, + "probability": 0.6686 + }, + { + "start": 7377.52, + "end": 7382.46, + "probability": 0.8851 + }, + { + "start": 7382.56, + "end": 7384.14, + "probability": 0.8188 + }, + { + "start": 7384.26, + "end": 7388.6, + "probability": 0.8361 + }, + { + "start": 7388.7, + "end": 7389.22, + "probability": 0.5968 + }, + { + "start": 7389.6, + "end": 7392.54, + "probability": 0.9824 + }, + { + "start": 7392.78, + "end": 7393.34, + "probability": 0.4396 + }, + { + "start": 7393.62, + "end": 7395.54, + "probability": 0.8274 + }, + { + "start": 7396.7, + "end": 7397.49, + "probability": 0.9102 + }, + { + "start": 7398.54, + "end": 7400.7, + "probability": 0.7888 + }, + { + "start": 7400.92, + "end": 7402.8, + "probability": 0.9778 + }, + { + "start": 7402.86, + "end": 7404.52, + "probability": 0.804 + }, + { + "start": 7404.72, + "end": 7408.04, + "probability": 0.802 + }, + { + "start": 7408.4, + "end": 7412.4, + "probability": 0.9813 + }, + { + "start": 7415.6, + "end": 7420.08, + "probability": 0.7178 + }, + { + "start": 7420.36, + "end": 7425.7, + "probability": 0.8116 + }, + { + "start": 7426.1, + "end": 7429.9, + "probability": 0.8277 + }, + { + "start": 7430.6, + "end": 7434.03, + "probability": 0.6165 + }, + { + "start": 7434.62, + "end": 7440.18, + "probability": 0.6462 + }, + { + "start": 7440.84, + "end": 7445.12, + "probability": 0.966 + }, + { + "start": 7445.5, + "end": 7446.64, + "probability": 0.9698 + }, + { + "start": 7447.12, + "end": 7447.44, + "probability": 0.9386 + }, + { + "start": 7448.06, + "end": 7449.12, + "probability": 0.4258 + }, + { + "start": 7449.78, + "end": 7451.28, + "probability": 0.8391 + }, + { + "start": 7451.5, + "end": 7452.42, + "probability": 0.6986 + }, + { + "start": 7452.54, + "end": 7456.06, + "probability": 0.9832 + }, + { + "start": 7456.44, + "end": 7460.08, + "probability": 0.9909 + }, + { + "start": 7460.08, + "end": 7464.58, + "probability": 0.7881 + }, + { + "start": 7465.68, + "end": 7469.16, + "probability": 0.877 + }, + { + "start": 7469.82, + "end": 7472.48, + "probability": 0.8234 + }, + { + "start": 7473.34, + "end": 7474.3, + "probability": 0.6282 + }, + { + "start": 7474.86, + "end": 7477.26, + "probability": 0.7389 + }, + { + "start": 7477.74, + "end": 7478.36, + "probability": 0.171 + }, + { + "start": 7478.36, + "end": 7479.16, + "probability": 0.5073 + }, + { + "start": 7480.82, + "end": 7482.72, + "probability": 0.5491 + }, + { + "start": 7482.86, + "end": 7485.74, + "probability": 0.7023 + }, + { + "start": 7486.28, + "end": 7487.26, + "probability": 0.7632 + }, + { + "start": 7488.32, + "end": 7492.88, + "probability": 0.813 + }, + { + "start": 7493.5, + "end": 7495.42, + "probability": 0.9833 + }, + { + "start": 7496.85, + "end": 7500.02, + "probability": 0.9878 + }, + { + "start": 7500.3, + "end": 7501.52, + "probability": 0.8316 + }, + { + "start": 7502.02, + "end": 7502.81, + "probability": 0.0029 + }, + { + "start": 7503.52, + "end": 7504.24, + "probability": 0.7485 + }, + { + "start": 7505.06, + "end": 7505.36, + "probability": 0.6786 + }, + { + "start": 7505.36, + "end": 7505.74, + "probability": 0.8006 + }, + { + "start": 7505.96, + "end": 7509.66, + "probability": 0.9709 + }, + { + "start": 7509.94, + "end": 7511.24, + "probability": 0.8262 + }, + { + "start": 7511.4, + "end": 7512.06, + "probability": 0.4476 + }, + { + "start": 7513.2, + "end": 7514.3, + "probability": 0.7385 + }, + { + "start": 7515.08, + "end": 7522.76, + "probability": 0.9839 + }, + { + "start": 7523.14, + "end": 7523.74, + "probability": 0.6787 + }, + { + "start": 7524.76, + "end": 7530.24, + "probability": 0.8184 + }, + { + "start": 7530.96, + "end": 7533.58, + "probability": 0.989 + }, + { + "start": 7534.32, + "end": 7537.3, + "probability": 0.9766 + }, + { + "start": 7537.74, + "end": 7540.68, + "probability": 0.9609 + }, + { + "start": 7540.68, + "end": 7543.36, + "probability": 0.6062 + }, + { + "start": 7543.62, + "end": 7548.96, + "probability": 0.989 + }, + { + "start": 7551.7, + "end": 7553.45, + "probability": 0.6657 + }, + { + "start": 7553.62, + "end": 7554.74, + "probability": 0.5702 + }, + { + "start": 7554.76, + "end": 7556.76, + "probability": 0.8121 + }, + { + "start": 7557.74, + "end": 7558.2, + "probability": 0.6438 + }, + { + "start": 7559.1, + "end": 7563.14, + "probability": 0.5758 + }, + { + "start": 7564.78, + "end": 7569.36, + "probability": 0.9679 + }, + { + "start": 7570.28, + "end": 7572.5, + "probability": 0.8997 + }, + { + "start": 7573.02, + "end": 7573.58, + "probability": 0.6872 + }, + { + "start": 7574.36, + "end": 7575.5, + "probability": 0.6897 + }, + { + "start": 7576.56, + "end": 7580.7, + "probability": 0.9146 + }, + { + "start": 7581.98, + "end": 7582.46, + "probability": 0.4699 + }, + { + "start": 7582.62, + "end": 7589.2, + "probability": 0.9236 + }, + { + "start": 7589.42, + "end": 7590.14, + "probability": 0.7752 + }, + { + "start": 7590.82, + "end": 7593.66, + "probability": 0.9969 + }, + { + "start": 7594.48, + "end": 7595.74, + "probability": 0.7672 + }, + { + "start": 7596.78, + "end": 7600.56, + "probability": 0.9106 + }, + { + "start": 7601.94, + "end": 7607.28, + "probability": 0.46 + }, + { + "start": 7608.7, + "end": 7610.86, + "probability": 0.9566 + }, + { + "start": 7611.76, + "end": 7614.38, + "probability": 0.7032 + }, + { + "start": 7615.7, + "end": 7619.42, + "probability": 0.5691 + }, + { + "start": 7620.0, + "end": 7622.08, + "probability": 0.7856 + }, + { + "start": 7622.74, + "end": 7626.28, + "probability": 0.9511 + }, + { + "start": 7628.1, + "end": 7633.6, + "probability": 0.9216 + }, + { + "start": 7634.4, + "end": 7639.02, + "probability": 0.7238 + }, + { + "start": 7640.03, + "end": 7644.18, + "probability": 0.8816 + }, + { + "start": 7645.04, + "end": 7647.3, + "probability": 0.7836 + }, + { + "start": 7648.24, + "end": 7652.56, + "probability": 0.9585 + }, + { + "start": 7653.16, + "end": 7656.5, + "probability": 0.8861 + }, + { + "start": 7658.16, + "end": 7659.9, + "probability": 0.9415 + }, + { + "start": 7661.3, + "end": 7663.56, + "probability": 0.836 + }, + { + "start": 7664.28, + "end": 7665.06, + "probability": 0.8453 + }, + { + "start": 7665.12, + "end": 7665.26, + "probability": 0.7454 + }, + { + "start": 7666.84, + "end": 7670.18, + "probability": 0.9547 + }, + { + "start": 7670.22, + "end": 7671.82, + "probability": 0.9782 + }, + { + "start": 7672.82, + "end": 7673.9, + "probability": 0.7573 + }, + { + "start": 7674.82, + "end": 7677.38, + "probability": 0.6966 + }, + { + "start": 7678.38, + "end": 7678.9, + "probability": 0.4668 + }, + { + "start": 7680.16, + "end": 7682.92, + "probability": 0.9872 + }, + { + "start": 7683.24, + "end": 7686.54, + "probability": 0.7916 + }, + { + "start": 7687.86, + "end": 7690.0, + "probability": 0.7897 + }, + { + "start": 7690.82, + "end": 7697.08, + "probability": 0.7992 + }, + { + "start": 7697.28, + "end": 7703.96, + "probability": 0.8678 + }, + { + "start": 7705.88, + "end": 7708.34, + "probability": 0.5432 + }, + { + "start": 7708.88, + "end": 7711.38, + "probability": 0.9924 + }, + { + "start": 7712.34, + "end": 7716.76, + "probability": 0.7122 + }, + { + "start": 7717.58, + "end": 7719.4, + "probability": 0.9038 + }, + { + "start": 7719.54, + "end": 7720.71, + "probability": 0.9386 + }, + { + "start": 7721.0, + "end": 7726.16, + "probability": 0.9294 + }, + { + "start": 7726.9, + "end": 7729.44, + "probability": 0.8707 + }, + { + "start": 7730.32, + "end": 7734.07, + "probability": 0.974 + }, + { + "start": 7736.02, + "end": 7737.52, + "probability": 0.6755 + }, + { + "start": 7737.66, + "end": 7737.76, + "probability": 0.3736 + }, + { + "start": 7738.22, + "end": 7739.62, + "probability": 0.8164 + }, + { + "start": 7740.04, + "end": 7741.4, + "probability": 0.9114 + }, + { + "start": 7741.6, + "end": 7742.74, + "probability": 0.8336 + }, + { + "start": 7743.14, + "end": 7743.48, + "probability": 0.8134 + }, + { + "start": 7743.56, + "end": 7744.02, + "probability": 0.589 + }, + { + "start": 7744.36, + "end": 7746.54, + "probability": 0.99 + }, + { + "start": 7747.66, + "end": 7752.88, + "probability": 0.8936 + }, + { + "start": 7753.14, + "end": 7754.96, + "probability": 0.9737 + }, + { + "start": 7755.7, + "end": 7758.78, + "probability": 0.8105 + }, + { + "start": 7758.84, + "end": 7759.3, + "probability": 0.3901 + }, + { + "start": 7759.36, + "end": 7760.0, + "probability": 0.6148 + }, + { + "start": 7760.1, + "end": 7760.54, + "probability": 0.3094 + }, + { + "start": 7761.06, + "end": 7763.28, + "probability": 0.9126 + }, + { + "start": 7764.2, + "end": 7766.88, + "probability": 0.7526 + }, + { + "start": 7767.58, + "end": 7770.92, + "probability": 0.8862 + }, + { + "start": 7771.5, + "end": 7773.0, + "probability": 0.8732 + }, + { + "start": 7773.88, + "end": 7777.0, + "probability": 0.991 + }, + { + "start": 7777.1, + "end": 7778.18, + "probability": 0.6916 + }, + { + "start": 7778.48, + "end": 7779.32, + "probability": 0.9504 + }, + { + "start": 7779.72, + "end": 7780.75, + "probability": 0.9583 + }, + { + "start": 7782.38, + "end": 7784.42, + "probability": 0.8734 + }, + { + "start": 7784.56, + "end": 7787.24, + "probability": 0.9389 + }, + { + "start": 7787.34, + "end": 7788.08, + "probability": 0.8999 + }, + { + "start": 7788.42, + "end": 7789.34, + "probability": 0.8416 + }, + { + "start": 7789.9, + "end": 7793.22, + "probability": 0.9635 + }, + { + "start": 7794.3, + "end": 7795.52, + "probability": 0.893 + }, + { + "start": 7796.58, + "end": 7799.14, + "probability": 0.8733 + }, + { + "start": 7801.48, + "end": 7801.72, + "probability": 0.8872 + }, + { + "start": 7802.82, + "end": 7804.74, + "probability": 0.995 + }, + { + "start": 7805.4, + "end": 7808.78, + "probability": 0.9915 + }, + { + "start": 7808.86, + "end": 7810.48, + "probability": 0.7107 + }, + { + "start": 7810.52, + "end": 7812.08, + "probability": 0.733 + }, + { + "start": 7812.8, + "end": 7818.34, + "probability": 0.939 + }, + { + "start": 7818.9, + "end": 7819.0, + "probability": 0.7434 + }, + { + "start": 7819.42, + "end": 7822.66, + "probability": 0.9914 + }, + { + "start": 7823.5, + "end": 7826.56, + "probability": 0.9805 + }, + { + "start": 7827.42, + "end": 7830.76, + "probability": 0.7403 + }, + { + "start": 7831.68, + "end": 7836.4, + "probability": 0.7102 + }, + { + "start": 7836.4, + "end": 7842.72, + "probability": 0.77 + }, + { + "start": 7843.6, + "end": 7844.0, + "probability": 0.7577 + }, + { + "start": 7844.84, + "end": 7848.6, + "probability": 0.9539 + }, + { + "start": 7849.22, + "end": 7852.3, + "probability": 0.8608 + }, + { + "start": 7852.84, + "end": 7853.5, + "probability": 0.9525 + }, + { + "start": 7853.72, + "end": 7856.62, + "probability": 0.9927 + }, + { + "start": 7856.9, + "end": 7859.02, + "probability": 0.8959 + }, + { + "start": 7859.74, + "end": 7862.8, + "probability": 0.6046 + }, + { + "start": 7863.76, + "end": 7867.62, + "probability": 0.8073 + }, + { + "start": 7867.88, + "end": 7869.86, + "probability": 0.8492 + }, + { + "start": 7870.06, + "end": 7871.1, + "probability": 0.5907 + }, + { + "start": 7871.46, + "end": 7875.04, + "probability": 0.8675 + }, + { + "start": 7875.12, + "end": 7877.08, + "probability": 0.7069 + }, + { + "start": 7878.64, + "end": 7879.9, + "probability": 0.5661 + }, + { + "start": 7880.46, + "end": 7880.82, + "probability": 0.3638 + }, + { + "start": 7880.9, + "end": 7883.2, + "probability": 0.9446 + }, + { + "start": 7883.24, + "end": 7885.18, + "probability": 0.9285 + }, + { + "start": 7885.64, + "end": 7886.96, + "probability": 0.841 + }, + { + "start": 7887.36, + "end": 7889.9, + "probability": 0.934 + }, + { + "start": 7889.9, + "end": 7890.64, + "probability": 0.7446 + }, + { + "start": 7891.02, + "end": 7895.76, + "probability": 0.8986 + }, + { + "start": 7896.62, + "end": 7898.08, + "probability": 0.7724 + }, + { + "start": 7898.38, + "end": 7906.44, + "probability": 0.9364 + }, + { + "start": 7907.04, + "end": 7910.62, + "probability": 0.8204 + }, + { + "start": 7911.1, + "end": 7911.3, + "probability": 0.8555 + }, + { + "start": 7913.44, + "end": 7917.08, + "probability": 0.818 + }, + { + "start": 7917.5, + "end": 7920.24, + "probability": 0.9527 + }, + { + "start": 7931.82, + "end": 7934.12, + "probability": 0.7375 + }, + { + "start": 7934.44, + "end": 7936.34, + "probability": 0.3924 + }, + { + "start": 7938.62, + "end": 7938.94, + "probability": 0.7299 + }, + { + "start": 7938.94, + "end": 7942.5, + "probability": 0.6606 + }, + { + "start": 7942.7, + "end": 7943.18, + "probability": 0.7797 + }, + { + "start": 7943.24, + "end": 7945.04, + "probability": 0.8789 + }, + { + "start": 7945.84, + "end": 7946.76, + "probability": 0.8726 + }, + { + "start": 7947.52, + "end": 7950.84, + "probability": 0.8647 + }, + { + "start": 7951.42, + "end": 7952.38, + "probability": 0.4909 + }, + { + "start": 7952.44, + "end": 7953.78, + "probability": 0.9741 + }, + { + "start": 7954.83, + "end": 7956.78, + "probability": 0.5507 + }, + { + "start": 7956.86, + "end": 7958.38, + "probability": 0.6266 + }, + { + "start": 7959.3, + "end": 7960.64, + "probability": 0.9816 + }, + { + "start": 7961.86, + "end": 7962.92, + "probability": 0.0315 + }, + { + "start": 7964.14, + "end": 7967.02, + "probability": 0.896 + }, + { + "start": 7967.06, + "end": 7968.1, + "probability": 0.6312 + }, + { + "start": 7968.16, + "end": 7969.2, + "probability": 0.6097 + }, + { + "start": 7969.48, + "end": 7971.12, + "probability": 0.784 + }, + { + "start": 7971.18, + "end": 7971.46, + "probability": 0.5615 + }, + { + "start": 7971.5, + "end": 7971.98, + "probability": 0.7795 + }, + { + "start": 7972.1, + "end": 7974.12, + "probability": 0.98 + }, + { + "start": 7975.82, + "end": 7976.3, + "probability": 0.0043 + }, + { + "start": 7976.96, + "end": 7978.48, + "probability": 0.4076 + }, + { + "start": 7978.62, + "end": 7981.6, + "probability": 0.9878 + }, + { + "start": 7981.74, + "end": 7983.4, + "probability": 0.6085 + }, + { + "start": 7983.6, + "end": 7985.0, + "probability": 0.4927 + }, + { + "start": 7985.38, + "end": 7987.66, + "probability": 0.8164 + }, + { + "start": 7988.74, + "end": 7989.9, + "probability": 0.8855 + }, + { + "start": 7990.06, + "end": 7994.2, + "probability": 0.8615 + }, + { + "start": 7994.3, + "end": 7995.24, + "probability": 0.9534 + }, + { + "start": 7995.52, + "end": 7997.54, + "probability": 0.9146 + }, + { + "start": 7999.14, + "end": 8002.62, + "probability": 0.9321 + }, + { + "start": 8002.74, + "end": 8004.92, + "probability": 0.9937 + }, + { + "start": 8005.0, + "end": 8007.56, + "probability": 0.959 + }, + { + "start": 8008.04, + "end": 8008.22, + "probability": 0.9641 + }, + { + "start": 8008.98, + "end": 8011.9, + "probability": 0.9543 + }, + { + "start": 8012.06, + "end": 8012.66, + "probability": 0.8149 + }, + { + "start": 8013.64, + "end": 8016.54, + "probability": 0.8927 + }, + { + "start": 8017.76, + "end": 8020.34, + "probability": 0.9087 + }, + { + "start": 8021.32, + "end": 8025.18, + "probability": 0.9923 + }, + { + "start": 8026.59, + "end": 8029.34, + "probability": 0.6392 + }, + { + "start": 8029.34, + "end": 8031.78, + "probability": 0.2926 + }, + { + "start": 8031.88, + "end": 8033.1, + "probability": 0.7149 + }, + { + "start": 8033.58, + "end": 8039.52, + "probability": 0.9947 + }, + { + "start": 8039.98, + "end": 8041.56, + "probability": 0.9976 + }, + { + "start": 8042.76, + "end": 8043.4, + "probability": 0.5743 + }, + { + "start": 8044.66, + "end": 8046.82, + "probability": 0.673 + }, + { + "start": 8046.92, + "end": 8050.86, + "probability": 0.9927 + }, + { + "start": 8052.48, + "end": 8053.66, + "probability": 0.7702 + }, + { + "start": 8053.7, + "end": 8054.0, + "probability": 0.7543 + }, + { + "start": 8054.16, + "end": 8058.74, + "probability": 0.9924 + }, + { + "start": 8059.56, + "end": 8059.8, + "probability": 0.5697 + }, + { + "start": 8059.82, + "end": 8060.72, + "probability": 0.9338 + }, + { + "start": 8060.8, + "end": 8061.21, + "probability": 0.6985 + }, + { + "start": 8062.22, + "end": 8063.94, + "probability": 0.9329 + }, + { + "start": 8064.4, + "end": 8067.1, + "probability": 0.8788 + }, + { + "start": 8067.2, + "end": 8068.28, + "probability": 0.8932 + }, + { + "start": 8068.98, + "end": 8072.68, + "probability": 0.9752 + }, + { + "start": 8073.06, + "end": 8074.32, + "probability": 0.8477 + }, + { + "start": 8074.38, + "end": 8075.26, + "probability": 0.8735 + }, + { + "start": 8075.28, + "end": 8076.44, + "probability": 0.9675 + }, + { + "start": 8077.04, + "end": 8079.12, + "probability": 0.6707 + }, + { + "start": 8079.9, + "end": 8081.45, + "probability": 0.9316 + }, + { + "start": 8082.16, + "end": 8086.66, + "probability": 0.9971 + }, + { + "start": 8087.18, + "end": 8087.66, + "probability": 0.9354 + }, + { + "start": 8089.02, + "end": 8091.46, + "probability": 0.7569 + }, + { + "start": 8091.46, + "end": 8095.22, + "probability": 0.9836 + }, + { + "start": 8095.3, + "end": 8095.98, + "probability": 0.5355 + }, + { + "start": 8096.3, + "end": 8096.82, + "probability": 0.8198 + }, + { + "start": 8096.88, + "end": 8097.48, + "probability": 0.5687 + }, + { + "start": 8097.94, + "end": 8099.2, + "probability": 0.9835 + }, + { + "start": 8099.66, + "end": 8102.16, + "probability": 0.9912 + }, + { + "start": 8103.18, + "end": 8104.42, + "probability": 0.9061 + }, + { + "start": 8104.48, + "end": 8107.04, + "probability": 0.9704 + }, + { + "start": 8107.44, + "end": 8108.67, + "probability": 0.8465 + }, + { + "start": 8109.24, + "end": 8109.42, + "probability": 0.7931 + }, + { + "start": 8109.58, + "end": 8110.42, + "probability": 0.9827 + }, + { + "start": 8110.86, + "end": 8113.42, + "probability": 0.9888 + }, + { + "start": 8113.42, + "end": 8117.26, + "probability": 0.9769 + }, + { + "start": 8117.66, + "end": 8119.78, + "probability": 0.9698 + }, + { + "start": 8121.08, + "end": 8123.76, + "probability": 0.9154 + }, + { + "start": 8124.38, + "end": 8127.16, + "probability": 0.9043 + }, + { + "start": 8127.66, + "end": 8129.04, + "probability": 0.9438 + }, + { + "start": 8129.24, + "end": 8130.0, + "probability": 0.833 + }, + { + "start": 8130.92, + "end": 8132.47, + "probability": 0.9827 + }, + { + "start": 8132.84, + "end": 8133.96, + "probability": 0.9579 + }, + { + "start": 8134.16, + "end": 8135.82, + "probability": 0.8111 + }, + { + "start": 8135.9, + "end": 8138.74, + "probability": 0.8729 + }, + { + "start": 8138.8, + "end": 8139.74, + "probability": 0.9056 + }, + { + "start": 8140.32, + "end": 8143.86, + "probability": 0.9779 + }, + { + "start": 8144.44, + "end": 8146.58, + "probability": 0.799 + }, + { + "start": 8147.1, + "end": 8149.92, + "probability": 0.9903 + }, + { + "start": 8150.0, + "end": 8151.92, + "probability": 0.9912 + }, + { + "start": 8153.18, + "end": 8154.64, + "probability": 0.8041 + }, + { + "start": 8154.78, + "end": 8156.46, + "probability": 0.9279 + }, + { + "start": 8156.62, + "end": 8157.24, + "probability": 0.9672 + }, + { + "start": 8157.36, + "end": 8157.84, + "probability": 0.9118 + }, + { + "start": 8157.96, + "end": 8158.44, + "probability": 0.9723 + }, + { + "start": 8158.52, + "end": 8159.61, + "probability": 0.895 + }, + { + "start": 8159.84, + "end": 8164.74, + "probability": 0.9945 + }, + { + "start": 8164.9, + "end": 8165.52, + "probability": 0.3662 + }, + { + "start": 8165.86, + "end": 8166.59, + "probability": 0.7684 + }, + { + "start": 8166.66, + "end": 8169.62, + "probability": 0.8321 + }, + { + "start": 8170.78, + "end": 8171.38, + "probability": 0.3085 + }, + { + "start": 8171.38, + "end": 8174.78, + "probability": 0.976 + }, + { + "start": 8175.16, + "end": 8176.92, + "probability": 0.9618 + }, + { + "start": 8177.02, + "end": 8178.12, + "probability": 0.9961 + }, + { + "start": 8180.08, + "end": 8181.04, + "probability": 0.5522 + }, + { + "start": 8184.96, + "end": 8187.1, + "probability": 0.8642 + }, + { + "start": 8188.26, + "end": 8188.5, + "probability": 0.1788 + }, + { + "start": 8188.84, + "end": 8189.52, + "probability": 0.7789 + }, + { + "start": 8189.92, + "end": 8194.24, + "probability": 0.9258 + }, + { + "start": 8194.7, + "end": 8195.48, + "probability": 0.9432 + }, + { + "start": 8195.66, + "end": 8196.08, + "probability": 0.5452 + }, + { + "start": 8196.18, + "end": 8197.44, + "probability": 0.9272 + }, + { + "start": 8199.14, + "end": 8201.42, + "probability": 0.988 + }, + { + "start": 8201.44, + "end": 8202.94, + "probability": 0.9844 + }, + { + "start": 8203.38, + "end": 8204.3, + "probability": 0.746 + }, + { + "start": 8205.3, + "end": 8206.0, + "probability": 0.9213 + }, + { + "start": 8207.32, + "end": 8207.68, + "probability": 0.1311 + }, + { + "start": 8209.18, + "end": 8213.0, + "probability": 0.7114 + }, + { + "start": 8213.94, + "end": 8214.64, + "probability": 0.915 + }, + { + "start": 8215.18, + "end": 8216.74, + "probability": 0.9409 + }, + { + "start": 8217.24, + "end": 8221.81, + "probability": 0.9741 + }, + { + "start": 8222.52, + "end": 8223.16, + "probability": 0.8681 + }, + { + "start": 8223.56, + "end": 8228.59, + "probability": 0.9393 + }, + { + "start": 8228.74, + "end": 8229.7, + "probability": 0.8416 + }, + { + "start": 8230.38, + "end": 8231.1, + "probability": 0.7761 + }, + { + "start": 8231.8, + "end": 8234.72, + "probability": 0.8232 + }, + { + "start": 8235.84, + "end": 8236.9, + "probability": 0.8515 + }, + { + "start": 8237.16, + "end": 8239.0, + "probability": 0.9928 + }, + { + "start": 8239.14, + "end": 8240.74, + "probability": 0.9624 + }, + { + "start": 8241.12, + "end": 8242.68, + "probability": 0.8306 + }, + { + "start": 8242.84, + "end": 8244.84, + "probability": 0.8902 + }, + { + "start": 8245.62, + "end": 8248.4, + "probability": 0.7463 + }, + { + "start": 8249.28, + "end": 8249.88, + "probability": 0.7021 + }, + { + "start": 8250.18, + "end": 8253.24, + "probability": 0.9775 + }, + { + "start": 8253.84, + "end": 8255.64, + "probability": 0.5606 + }, + { + "start": 8256.26, + "end": 8259.08, + "probability": 0.9327 + }, + { + "start": 8259.38, + "end": 8262.5, + "probability": 0.7966 + }, + { + "start": 8263.12, + "end": 8266.84, + "probability": 0.8529 + }, + { + "start": 8267.38, + "end": 8268.02, + "probability": 0.5272 + }, + { + "start": 8268.1, + "end": 8268.46, + "probability": 0.6457 + }, + { + "start": 8268.48, + "end": 8269.1, + "probability": 0.8324 + }, + { + "start": 8269.14, + "end": 8270.2, + "probability": 0.9215 + }, + { + "start": 8270.34, + "end": 8271.22, + "probability": 0.7559 + }, + { + "start": 8271.42, + "end": 8272.54, + "probability": 0.9181 + }, + { + "start": 8273.94, + "end": 8276.84, + "probability": 0.9564 + }, + { + "start": 8276.94, + "end": 8278.46, + "probability": 0.9922 + }, + { + "start": 8279.16, + "end": 8279.68, + "probability": 0.9836 + }, + { + "start": 8281.18, + "end": 8284.44, + "probability": 0.8309 + }, + { + "start": 8284.54, + "end": 8286.46, + "probability": 0.9609 + }, + { + "start": 8286.7, + "end": 8287.74, + "probability": 0.8188 + }, + { + "start": 8288.4, + "end": 8289.1, + "probability": 0.8975 + }, + { + "start": 8289.16, + "end": 8290.54, + "probability": 0.8843 + }, + { + "start": 8290.68, + "end": 8290.9, + "probability": 0.9119 + }, + { + "start": 8292.7, + "end": 8293.5, + "probability": 0.6922 + }, + { + "start": 8294.66, + "end": 8299.14, + "probability": 0.7756 + }, + { + "start": 8299.84, + "end": 8305.78, + "probability": 0.9956 + }, + { + "start": 8307.64, + "end": 8308.12, + "probability": 0.6019 + }, + { + "start": 8309.12, + "end": 8309.88, + "probability": 0.8311 + }, + { + "start": 8310.68, + "end": 8312.8, + "probability": 0.9717 + }, + { + "start": 8312.8, + "end": 8314.48, + "probability": 0.6971 + }, + { + "start": 8314.58, + "end": 8315.35, + "probability": 0.7426 + }, + { + "start": 8316.1, + "end": 8319.62, + "probability": 0.9615 + }, + { + "start": 8320.72, + "end": 8321.34, + "probability": 0.7727 + }, + { + "start": 8322.7, + "end": 8323.92, + "probability": 0.7976 + }, + { + "start": 8324.52, + "end": 8327.08, + "probability": 0.9882 + }, + { + "start": 8328.18, + "end": 8333.8, + "probability": 0.9767 + }, + { + "start": 8336.38, + "end": 8339.68, + "probability": 0.9877 + }, + { + "start": 8341.86, + "end": 8343.26, + "probability": 0.8573 + }, + { + "start": 8343.34, + "end": 8348.24, + "probability": 0.7169 + }, + { + "start": 8348.24, + "end": 8348.24, + "probability": 0.1539 + }, + { + "start": 8348.88, + "end": 8350.48, + "probability": 0.7937 + }, + { + "start": 8350.62, + "end": 8352.56, + "probability": 0.915 + }, + { + "start": 8353.64, + "end": 8355.84, + "probability": 0.8322 + }, + { + "start": 8356.44, + "end": 8358.58, + "probability": 0.9795 + }, + { + "start": 8358.66, + "end": 8359.48, + "probability": 0.614 + }, + { + "start": 8359.54, + "end": 8360.02, + "probability": 0.6226 + }, + { + "start": 8360.74, + "end": 8366.74, + "probability": 0.9091 + }, + { + "start": 8367.4, + "end": 8368.24, + "probability": 0.8028 + }, + { + "start": 8368.86, + "end": 8369.5, + "probability": 0.7528 + }, + { + "start": 8370.34, + "end": 8372.28, + "probability": 0.8759 + }, + { + "start": 8372.3, + "end": 8374.1, + "probability": 0.8891 + }, + { + "start": 8374.22, + "end": 8375.06, + "probability": 0.8325 + }, + { + "start": 8375.16, + "end": 8376.18, + "probability": 0.918 + }, + { + "start": 8377.36, + "end": 8378.62, + "probability": 0.9238 + }, + { + "start": 8378.72, + "end": 8379.02, + "probability": 0.8209 + }, + { + "start": 8379.06, + "end": 8379.2, + "probability": 0.8304 + }, + { + "start": 8379.3, + "end": 8381.94, + "probability": 0.9911 + }, + { + "start": 8382.04, + "end": 8383.92, + "probability": 0.8586 + }, + { + "start": 8384.32, + "end": 8385.86, + "probability": 0.9743 + }, + { + "start": 8387.04, + "end": 8389.68, + "probability": 0.8569 + }, + { + "start": 8390.64, + "end": 8391.3, + "probability": 0.8732 + }, + { + "start": 8394.5, + "end": 8394.88, + "probability": 0.4828 + }, + { + "start": 8398.86, + "end": 8399.92, + "probability": 0.1509 + }, + { + "start": 8399.92, + "end": 8401.16, + "probability": 0.7312 + }, + { + "start": 8401.26, + "end": 8405.54, + "probability": 0.9937 + }, + { + "start": 8405.58, + "end": 8406.9, + "probability": 0.8469 + }, + { + "start": 8407.5, + "end": 8409.42, + "probability": 0.9524 + }, + { + "start": 8409.58, + "end": 8411.34, + "probability": 0.7885 + }, + { + "start": 8411.6, + "end": 8412.24, + "probability": 0.7663 + }, + { + "start": 8412.44, + "end": 8412.6, + "probability": 0.5188 + }, + { + "start": 8412.7, + "end": 8413.46, + "probability": 0.0022 + }, + { + "start": 8413.62, + "end": 8414.72, + "probability": 0.1061 + }, + { + "start": 8414.86, + "end": 8415.76, + "probability": 0.7889 + }, + { + "start": 8416.12, + "end": 8417.44, + "probability": 0.742 + }, + { + "start": 8418.5, + "end": 8420.58, + "probability": 0.7484 + }, + { + "start": 8420.76, + "end": 8422.36, + "probability": 0.9771 + }, + { + "start": 8422.48, + "end": 8424.58, + "probability": 0.9896 + }, + { + "start": 8425.48, + "end": 8426.42, + "probability": 0.9777 + }, + { + "start": 8429.58, + "end": 8432.58, + "probability": 0.2009 + }, + { + "start": 8432.62, + "end": 8433.65, + "probability": 0.9215 + }, + { + "start": 8434.2, + "end": 8435.2, + "probability": 0.8548 + }, + { + "start": 8435.28, + "end": 8436.02, + "probability": 0.8503 + }, + { + "start": 8436.1, + "end": 8437.6, + "probability": 0.989 + }, + { + "start": 8437.94, + "end": 8439.04, + "probability": 0.8209 + }, + { + "start": 8439.42, + "end": 8440.64, + "probability": 0.5406 + }, + { + "start": 8440.64, + "end": 8444.14, + "probability": 0.9609 + }, + { + "start": 8444.62, + "end": 8445.28, + "probability": 0.6199 + }, + { + "start": 8445.4, + "end": 8447.4, + "probability": 0.9097 + }, + { + "start": 8448.06, + "end": 8449.46, + "probability": 0.9712 + }, + { + "start": 8450.24, + "end": 8451.16, + "probability": 0.9194 + }, + { + "start": 8451.3, + "end": 8453.1, + "probability": 0.9597 + }, + { + "start": 8453.8, + "end": 8455.92, + "probability": 0.6505 + }, + { + "start": 8456.58, + "end": 8458.18, + "probability": 0.705 + }, + { + "start": 8458.18, + "end": 8459.59, + "probability": 0.8195 + }, + { + "start": 8460.04, + "end": 8461.06, + "probability": 0.7386 + }, + { + "start": 8461.44, + "end": 8463.64, + "probability": 0.9847 + }, + { + "start": 8464.28, + "end": 8465.64, + "probability": 0.9834 + }, + { + "start": 8466.76, + "end": 8467.9, + "probability": 0.7569 + }, + { + "start": 8468.32, + "end": 8471.48, + "probability": 0.9148 + }, + { + "start": 8472.42, + "end": 8474.22, + "probability": 0.9377 + }, + { + "start": 8474.88, + "end": 8477.02, + "probability": 0.9635 + }, + { + "start": 8477.68, + "end": 8480.16, + "probability": 0.9121 + }, + { + "start": 8480.72, + "end": 8484.36, + "probability": 0.9188 + }, + { + "start": 8484.7, + "end": 8489.0, + "probability": 0.9585 + }, + { + "start": 8489.36, + "end": 8490.68, + "probability": 0.9165 + }, + { + "start": 8491.34, + "end": 8492.33, + "probability": 0.8647 + }, + { + "start": 8493.94, + "end": 8497.06, + "probability": 0.9149 + }, + { + "start": 8497.92, + "end": 8499.23, + "probability": 0.5742 + }, + { + "start": 8499.98, + "end": 8501.48, + "probability": 0.9463 + }, + { + "start": 8502.2, + "end": 8502.91, + "probability": 0.6389 + }, + { + "start": 8503.66, + "end": 8507.0, + "probability": 0.838 + }, + { + "start": 8507.54, + "end": 8509.4, + "probability": 0.9312 + }, + { + "start": 8511.16, + "end": 8516.28, + "probability": 0.9243 + }, + { + "start": 8517.78, + "end": 8520.44, + "probability": 0.998 + }, + { + "start": 8521.36, + "end": 8523.64, + "probability": 0.87 + }, + { + "start": 8523.7, + "end": 8525.62, + "probability": 0.9776 + }, + { + "start": 8525.96, + "end": 8527.34, + "probability": 0.9915 + }, + { + "start": 8527.44, + "end": 8528.26, + "probability": 0.9915 + }, + { + "start": 8528.38, + "end": 8530.22, + "probability": 0.9976 + }, + { + "start": 8531.08, + "end": 8532.94, + "probability": 0.9026 + }, + { + "start": 8532.98, + "end": 8534.18, + "probability": 0.9722 + }, + { + "start": 8535.36, + "end": 8536.4, + "probability": 0.96 + }, + { + "start": 8537.14, + "end": 8537.58, + "probability": 0.9492 + }, + { + "start": 8537.96, + "end": 8538.96, + "probability": 0.9624 + }, + { + "start": 8539.04, + "end": 8542.2, + "probability": 0.8191 + }, + { + "start": 8542.32, + "end": 8545.3, + "probability": 0.9602 + }, + { + "start": 8546.36, + "end": 8550.94, + "probability": 0.9862 + }, + { + "start": 8552.56, + "end": 8554.39, + "probability": 0.9838 + }, + { + "start": 8555.32, + "end": 8555.86, + "probability": 0.1211 + }, + { + "start": 8556.58, + "end": 8557.44, + "probability": 0.9448 + }, + { + "start": 8557.64, + "end": 8559.82, + "probability": 0.6814 + }, + { + "start": 8560.72, + "end": 8562.84, + "probability": 0.9498 + }, + { + "start": 8562.98, + "end": 8565.82, + "probability": 0.9192 + }, + { + "start": 8571.94, + "end": 8577.0, + "probability": 0.9883 + }, + { + "start": 8577.08, + "end": 8577.76, + "probability": 0.5462 + }, + { + "start": 8578.2, + "end": 8579.24, + "probability": 0.4469 + }, + { + "start": 8579.8, + "end": 8582.84, + "probability": 0.3735 + }, + { + "start": 8584.56, + "end": 8586.32, + "probability": 0.9171 + }, + { + "start": 8587.5, + "end": 8588.66, + "probability": 0.8083 + }, + { + "start": 8589.52, + "end": 8592.92, + "probability": 0.9971 + }, + { + "start": 8593.16, + "end": 8594.02, + "probability": 0.7704 + }, + { + "start": 8598.66, + "end": 8602.22, + "probability": 0.7085 + }, + { + "start": 8602.26, + "end": 8602.61, + "probability": 0.5839 + }, + { + "start": 8603.7, + "end": 8605.66, + "probability": 0.8274 + }, + { + "start": 8606.7, + "end": 8608.82, + "probability": 0.9028 + }, + { + "start": 8609.66, + "end": 8613.3, + "probability": 0.9558 + }, + { + "start": 8614.8, + "end": 8617.66, + "probability": 0.7533 + }, + { + "start": 8619.38, + "end": 8622.22, + "probability": 0.9897 + }, + { + "start": 8622.22, + "end": 8624.96, + "probability": 0.9979 + }, + { + "start": 8625.38, + "end": 8627.42, + "probability": 0.9985 + }, + { + "start": 8627.52, + "end": 8629.38, + "probability": 0.9876 + }, + { + "start": 8632.3, + "end": 8632.3, + "probability": 0.0169 + }, + { + "start": 8632.3, + "end": 8634.5, + "probability": 0.9534 + }, + { + "start": 8634.76, + "end": 8638.12, + "probability": 0.9509 + }, + { + "start": 8638.54, + "end": 8640.28, + "probability": 0.8513 + }, + { + "start": 8640.6, + "end": 8642.78, + "probability": 0.9914 + }, + { + "start": 8642.78, + "end": 8646.1, + "probability": 0.9014 + }, + { + "start": 8647.08, + "end": 8649.7, + "probability": 0.9941 + }, + { + "start": 8650.26, + "end": 8651.72, + "probability": 0.8263 + }, + { + "start": 8652.46, + "end": 8655.56, + "probability": 0.8087 + }, + { + "start": 8657.9, + "end": 8660.28, + "probability": 0.9956 + }, + { + "start": 8663.86, + "end": 8665.06, + "probability": 0.998 + }, + { + "start": 8666.32, + "end": 8666.6, + "probability": 0.6576 + }, + { + "start": 8666.7, + "end": 8675.17, + "probability": 0.9732 + }, + { + "start": 8677.4, + "end": 8680.94, + "probability": 0.9934 + }, + { + "start": 8680.94, + "end": 8683.6, + "probability": 0.9932 + }, + { + "start": 8684.72, + "end": 8685.52, + "probability": 0.6139 + }, + { + "start": 8686.46, + "end": 8690.32, + "probability": 0.8635 + }, + { + "start": 8690.44, + "end": 8691.76, + "probability": 0.7716 + }, + { + "start": 8691.84, + "end": 8694.06, + "probability": 0.9902 + }, + { + "start": 8694.16, + "end": 8695.16, + "probability": 0.8276 + }, + { + "start": 8698.14, + "end": 8700.2, + "probability": 0.9947 + }, + { + "start": 8700.9, + "end": 8702.06, + "probability": 0.982 + }, + { + "start": 8703.12, + "end": 8704.42, + "probability": 0.8798 + }, + { + "start": 8704.86, + "end": 8708.7, + "probability": 0.9885 + }, + { + "start": 8709.0, + "end": 8712.6, + "probability": 0.978 + }, + { + "start": 8713.44, + "end": 8715.04, + "probability": 0.9963 + }, + { + "start": 8716.48, + "end": 8719.62, + "probability": 0.9888 + }, + { + "start": 8720.72, + "end": 8722.26, + "probability": 0.9889 + }, + { + "start": 8722.56, + "end": 8723.82, + "probability": 0.8461 + }, + { + "start": 8724.32, + "end": 8726.08, + "probability": 0.9667 + }, + { + "start": 8726.08, + "end": 8727.6, + "probability": 0.9968 + }, + { + "start": 8729.62, + "end": 8732.4, + "probability": 0.9971 + }, + { + "start": 8734.12, + "end": 8734.98, + "probability": 0.7793 + }, + { + "start": 8736.26, + "end": 8738.42, + "probability": 0.9902 + }, + { + "start": 8739.06, + "end": 8741.82, + "probability": 0.7821 + }, + { + "start": 8741.9, + "end": 8742.04, + "probability": 0.4847 + }, + { + "start": 8742.16, + "end": 8744.74, + "probability": 0.9332 + }, + { + "start": 8744.84, + "end": 8745.14, + "probability": 0.96 + }, + { + "start": 8745.26, + "end": 8747.58, + "probability": 0.7505 + }, + { + "start": 8748.82, + "end": 8751.0, + "probability": 0.8556 + }, + { + "start": 8751.76, + "end": 8753.86, + "probability": 0.9885 + }, + { + "start": 8754.4, + "end": 8754.91, + "probability": 0.8848 + }, + { + "start": 8755.78, + "end": 8758.84, + "probability": 0.975 + }, + { + "start": 8759.72, + "end": 8763.22, + "probability": 0.9592 + }, + { + "start": 8765.14, + "end": 8770.52, + "probability": 0.9854 + }, + { + "start": 8771.48, + "end": 8773.54, + "probability": 0.9365 + }, + { + "start": 8773.58, + "end": 8774.5, + "probability": 0.8636 + }, + { + "start": 8775.04, + "end": 8777.1, + "probability": 0.7551 + }, + { + "start": 8777.56, + "end": 8780.08, + "probability": 0.9838 + }, + { + "start": 8781.2, + "end": 8781.56, + "probability": 0.626 + }, + { + "start": 8781.62, + "end": 8782.22, + "probability": 0.7222 + }, + { + "start": 8782.36, + "end": 8783.1, + "probability": 0.7418 + }, + { + "start": 8783.22, + "end": 8784.14, + "probability": 0.7146 + }, + { + "start": 8784.24, + "end": 8784.3, + "probability": 0.4138 + }, + { + "start": 8784.34, + "end": 8784.9, + "probability": 0.5742 + }, + { + "start": 8784.96, + "end": 8786.42, + "probability": 0.6756 + }, + { + "start": 8786.9, + "end": 8787.82, + "probability": 0.9921 + }, + { + "start": 8788.96, + "end": 8792.12, + "probability": 0.9379 + }, + { + "start": 8793.78, + "end": 8797.76, + "probability": 0.9956 + }, + { + "start": 8798.58, + "end": 8802.04, + "probability": 0.9897 + }, + { + "start": 8802.68, + "end": 8807.54, + "probability": 0.9935 + }, + { + "start": 8808.9, + "end": 8809.88, + "probability": 0.9941 + }, + { + "start": 8810.44, + "end": 8810.54, + "probability": 0.9993 + }, + { + "start": 8811.12, + "end": 8812.54, + "probability": 0.7968 + }, + { + "start": 8813.32, + "end": 8815.46, + "probability": 0.9963 + }, + { + "start": 8816.08, + "end": 8816.7, + "probability": 0.7358 + }, + { + "start": 8817.28, + "end": 8818.6, + "probability": 0.9448 + }, + { + "start": 8818.9, + "end": 8820.62, + "probability": 0.8711 + }, + { + "start": 8821.0, + "end": 8822.46, + "probability": 0.9825 + }, + { + "start": 8822.86, + "end": 8824.37, + "probability": 0.9622 + }, + { + "start": 8825.1, + "end": 8828.56, + "probability": 0.979 + }, + { + "start": 8828.64, + "end": 8829.37, + "probability": 0.6558 + }, + { + "start": 8830.16, + "end": 8832.48, + "probability": 0.8876 + }, + { + "start": 8832.58, + "end": 8834.2, + "probability": 0.8962 + }, + { + "start": 8834.68, + "end": 8836.42, + "probability": 0.994 + }, + { + "start": 8836.42, + "end": 8839.34, + "probability": 0.9623 + }, + { + "start": 8839.42, + "end": 8843.54, + "probability": 0.9672 + }, + { + "start": 8844.86, + "end": 8845.66, + "probability": 0.6575 + }, + { + "start": 8846.34, + "end": 8847.2, + "probability": 0.5946 + }, + { + "start": 8847.42, + "end": 8850.64, + "probability": 0.9878 + }, + { + "start": 8851.66, + "end": 8853.04, + "probability": 0.4132 + }, + { + "start": 8853.48, + "end": 8856.06, + "probability": 0.9401 + }, + { + "start": 8857.24, + "end": 8858.06, + "probability": 0.9333 + }, + { + "start": 8858.58, + "end": 8862.76, + "probability": 0.9919 + }, + { + "start": 8863.32, + "end": 8865.58, + "probability": 0.9453 + }, + { + "start": 8866.92, + "end": 8868.28, + "probability": 0.8168 + }, + { + "start": 8868.38, + "end": 8870.22, + "probability": 0.9824 + }, + { + "start": 8871.16, + "end": 8872.08, + "probability": 0.8712 + }, + { + "start": 8872.84, + "end": 8878.06, + "probability": 0.7764 + }, + { + "start": 8878.78, + "end": 8880.46, + "probability": 0.6607 + }, + { + "start": 8880.78, + "end": 8882.46, + "probability": 0.9984 + }, + { + "start": 8883.84, + "end": 8887.98, + "probability": 0.9994 + }, + { + "start": 8889.22, + "end": 8893.86, + "probability": 0.998 + }, + { + "start": 8894.94, + "end": 8897.98, + "probability": 0.9974 + }, + { + "start": 8898.22, + "end": 8902.08, + "probability": 0.9946 + }, + { + "start": 8902.5, + "end": 8902.72, + "probability": 0.685 + }, + { + "start": 8903.56, + "end": 8904.28, + "probability": 0.867 + }, + { + "start": 8904.88, + "end": 8907.2, + "probability": 0.6036 + }, + { + "start": 8908.4, + "end": 8909.2, + "probability": 0.8529 + }, + { + "start": 8912.26, + "end": 8913.14, + "probability": 0.4576 + }, + { + "start": 8915.7, + "end": 8915.82, + "probability": 0.1127 + }, + { + "start": 8917.2, + "end": 8919.6, + "probability": 0.0618 + }, + { + "start": 8932.8, + "end": 8934.36, + "probability": 0.6455 + }, + { + "start": 8935.22, + "end": 8936.6, + "probability": 0.6931 + }, + { + "start": 8937.38, + "end": 8938.18, + "probability": 0.7336 + }, + { + "start": 8939.46, + "end": 8945.14, + "probability": 0.9862 + }, + { + "start": 8946.22, + "end": 8948.88, + "probability": 0.9764 + }, + { + "start": 8950.28, + "end": 8958.94, + "probability": 0.9132 + }, + { + "start": 8959.4, + "end": 8961.0, + "probability": 0.9683 + }, + { + "start": 8962.14, + "end": 8962.34, + "probability": 0.7988 + }, + { + "start": 8963.82, + "end": 8965.92, + "probability": 0.9832 + }, + { + "start": 8966.78, + "end": 8972.92, + "probability": 0.1453 + }, + { + "start": 8973.74, + "end": 8974.66, + "probability": 0.8794 + }, + { + "start": 8975.02, + "end": 8982.5, + "probability": 0.9978 + }, + { + "start": 8984.14, + "end": 8986.9, + "probability": 0.9885 + }, + { + "start": 8986.96, + "end": 8988.26, + "probability": 0.84 + }, + { + "start": 8988.86, + "end": 8990.68, + "probability": 0.9729 + }, + { + "start": 8990.76, + "end": 8993.86, + "probability": 0.972 + }, + { + "start": 8995.06, + "end": 8996.34, + "probability": 0.5587 + }, + { + "start": 8996.86, + "end": 8999.62, + "probability": 0.9202 + }, + { + "start": 9000.7, + "end": 9004.56, + "probability": 0.9304 + }, + { + "start": 9005.22, + "end": 9009.78, + "probability": 0.9762 + }, + { + "start": 9009.98, + "end": 9011.5, + "probability": 0.761 + }, + { + "start": 9012.1, + "end": 9016.44, + "probability": 0.9909 + }, + { + "start": 9017.88, + "end": 9022.02, + "probability": 0.9201 + }, + { + "start": 9022.56, + "end": 9024.72, + "probability": 0.9657 + }, + { + "start": 9026.0, + "end": 9030.08, + "probability": 0.9928 + }, + { + "start": 9030.6, + "end": 9031.5, + "probability": 0.9507 + }, + { + "start": 9031.5, + "end": 9035.6, + "probability": 0.7341 + }, + { + "start": 9035.74, + "end": 9037.1, + "probability": 0.9834 + }, + { + "start": 9038.44, + "end": 9043.29, + "probability": 0.9093 + }, + { + "start": 9045.3, + "end": 9048.04, + "probability": 0.9513 + }, + { + "start": 9048.54, + "end": 9049.38, + "probability": 0.7644 + }, + { + "start": 9049.56, + "end": 9051.14, + "probability": 0.7863 + }, + { + "start": 9051.54, + "end": 9053.4, + "probability": 0.9616 + }, + { + "start": 9053.56, + "end": 9054.1, + "probability": 0.9366 + }, + { + "start": 9054.48, + "end": 9057.72, + "probability": 0.8654 + }, + { + "start": 9058.92, + "end": 9062.08, + "probability": 0.9114 + }, + { + "start": 9063.0, + "end": 9069.0, + "probability": 0.9888 + }, + { + "start": 9071.14, + "end": 9074.12, + "probability": 0.9866 + }, + { + "start": 9074.72, + "end": 9076.7, + "probability": 0.9602 + }, + { + "start": 9077.34, + "end": 9079.7, + "probability": 0.9144 + }, + { + "start": 9080.56, + "end": 9083.42, + "probability": 0.8513 + }, + { + "start": 9083.74, + "end": 9086.24, + "probability": 0.6794 + }, + { + "start": 9086.96, + "end": 9087.62, + "probability": 0.7525 + }, + { + "start": 9088.24, + "end": 9093.26, + "probability": 0.9906 + }, + { + "start": 9093.78, + "end": 9097.03, + "probability": 0.9591 + }, + { + "start": 9098.66, + "end": 9099.46, + "probability": 0.9637 + }, + { + "start": 9100.8, + "end": 9103.66, + "probability": 0.8336 + }, + { + "start": 9104.18, + "end": 9107.56, + "probability": 0.9418 + }, + { + "start": 9107.86, + "end": 9110.84, + "probability": 0.6546 + }, + { + "start": 9112.14, + "end": 9114.64, + "probability": 0.9601 + }, + { + "start": 9115.54, + "end": 9119.78, + "probability": 0.8433 + }, + { + "start": 9121.22, + "end": 9122.52, + "probability": 0.6339 + }, + { + "start": 9123.92, + "end": 9124.74, + "probability": 0.8899 + }, + { + "start": 9125.9, + "end": 9127.34, + "probability": 0.7116 + }, + { + "start": 9127.88, + "end": 9131.08, + "probability": 0.972 + }, + { + "start": 9132.36, + "end": 9133.58, + "probability": 0.7443 + }, + { + "start": 9133.66, + "end": 9135.3, + "probability": 0.9476 + }, + { + "start": 9135.56, + "end": 9139.98, + "probability": 0.8458 + }, + { + "start": 9140.82, + "end": 9144.82, + "probability": 0.6653 + }, + { + "start": 9145.8, + "end": 9147.32, + "probability": 0.924 + }, + { + "start": 9147.92, + "end": 9152.24, + "probability": 0.8619 + }, + { + "start": 9153.48, + "end": 9154.32, + "probability": 0.6715 + }, + { + "start": 9155.12, + "end": 9156.48, + "probability": 0.6368 + }, + { + "start": 9156.96, + "end": 9159.7, + "probability": 0.9408 + }, + { + "start": 9159.78, + "end": 9160.3, + "probability": 0.7064 + }, + { + "start": 9160.72, + "end": 9165.26, + "probability": 0.9513 + }, + { + "start": 9166.04, + "end": 9170.26, + "probability": 0.8348 + }, + { + "start": 9171.6, + "end": 9173.7, + "probability": 0.7961 + }, + { + "start": 9173.74, + "end": 9179.82, + "probability": 0.8912 + }, + { + "start": 9180.72, + "end": 9181.82, + "probability": 0.8942 + }, + { + "start": 9182.0, + "end": 9182.88, + "probability": 0.7567 + }, + { + "start": 9182.96, + "end": 9185.28, + "probability": 0.9822 + }, + { + "start": 9185.6, + "end": 9186.14, + "probability": 0.5235 + }, + { + "start": 9187.0, + "end": 9193.6, + "probability": 0.7905 + }, + { + "start": 9197.96, + "end": 9199.43, + "probability": 0.98 + }, + { + "start": 9201.44, + "end": 9205.98, + "probability": 0.9352 + }, + { + "start": 9206.14, + "end": 9207.56, + "probability": 0.8588 + }, + { + "start": 9207.74, + "end": 9211.58, + "probability": 0.9566 + }, + { + "start": 9212.22, + "end": 9217.64, + "probability": 0.9883 + }, + { + "start": 9220.06, + "end": 9222.28, + "probability": 0.121 + }, + { + "start": 9222.28, + "end": 9222.28, + "probability": 0.0229 + }, + { + "start": 9222.28, + "end": 9224.68, + "probability": 0.7942 + }, + { + "start": 9224.7, + "end": 9225.1, + "probability": 0.8232 + }, + { + "start": 9225.18, + "end": 9226.86, + "probability": 0.7468 + }, + { + "start": 9227.98, + "end": 9228.94, + "probability": 0.7745 + }, + { + "start": 9229.02, + "end": 9233.74, + "probability": 0.9834 + }, + { + "start": 9233.84, + "end": 9235.08, + "probability": 0.8503 + }, + { + "start": 9235.16, + "end": 9236.7, + "probability": 0.8073 + }, + { + "start": 9236.78, + "end": 9237.82, + "probability": 0.939 + }, + { + "start": 9239.2, + "end": 9242.0, + "probability": 0.8049 + }, + { + "start": 9242.48, + "end": 9244.08, + "probability": 0.9801 + }, + { + "start": 9244.28, + "end": 9248.74, + "probability": 0.8709 + }, + { + "start": 9249.26, + "end": 9250.48, + "probability": 0.8874 + }, + { + "start": 9251.1, + "end": 9252.2, + "probability": 0.9789 + }, + { + "start": 9253.06, + "end": 9253.74, + "probability": 0.9385 + }, + { + "start": 9254.62, + "end": 9255.26, + "probability": 0.9263 + }, + { + "start": 9256.16, + "end": 9261.64, + "probability": 0.2617 + }, + { + "start": 9262.2, + "end": 9264.98, + "probability": 0.8356 + }, + { + "start": 9265.04, + "end": 9267.54, + "probability": 0.6757 + }, + { + "start": 9267.7, + "end": 9269.19, + "probability": 0.3889 + }, + { + "start": 9269.78, + "end": 9271.2, + "probability": 0.7278 + }, + { + "start": 9271.38, + "end": 9272.24, + "probability": 0.6608 + }, + { + "start": 9272.4, + "end": 9273.44, + "probability": 0.7167 + }, + { + "start": 9273.56, + "end": 9279.08, + "probability": 0.9963 + }, + { + "start": 9279.7, + "end": 9283.04, + "probability": 0.8359 + }, + { + "start": 9283.64, + "end": 9288.59, + "probability": 0.9316 + }, + { + "start": 9289.22, + "end": 9292.12, + "probability": 0.9724 + }, + { + "start": 9293.26, + "end": 9294.04, + "probability": 0.8716 + }, + { + "start": 9295.36, + "end": 9296.84, + "probability": 0.7702 + }, + { + "start": 9296.9, + "end": 9298.67, + "probability": 0.6897 + }, + { + "start": 9299.78, + "end": 9301.52, + "probability": 0.67 + }, + { + "start": 9301.9, + "end": 9305.38, + "probability": 0.8896 + }, + { + "start": 9306.32, + "end": 9307.96, + "probability": 0.765 + }, + { + "start": 9308.4, + "end": 9313.52, + "probability": 0.8621 + }, + { + "start": 9314.02, + "end": 9315.94, + "probability": 0.7925 + }, + { + "start": 9316.66, + "end": 9317.58, + "probability": 0.5088 + }, + { + "start": 9318.12, + "end": 9321.74, + "probability": 0.4794 + }, + { + "start": 9324.58, + "end": 9325.8, + "probability": 0.6386 + }, + { + "start": 9327.08, + "end": 9329.14, + "probability": 0.9283 + }, + { + "start": 9329.24, + "end": 9329.72, + "probability": 0.5341 + }, + { + "start": 9330.06, + "end": 9331.02, + "probability": 0.8055 + }, + { + "start": 9331.06, + "end": 9332.78, + "probability": 0.9904 + }, + { + "start": 9333.04, + "end": 9334.16, + "probability": 0.6836 + }, + { + "start": 9334.2, + "end": 9335.56, + "probability": 0.908 + }, + { + "start": 9336.08, + "end": 9338.28, + "probability": 0.668 + }, + { + "start": 9338.7, + "end": 9342.24, + "probability": 0.8407 + }, + { + "start": 9343.06, + "end": 9343.76, + "probability": 0.8248 + }, + { + "start": 9343.82, + "end": 9344.56, + "probability": 0.9165 + }, + { + "start": 9344.66, + "end": 9346.82, + "probability": 0.9653 + }, + { + "start": 9346.86, + "end": 9347.88, + "probability": 0.5711 + }, + { + "start": 9347.96, + "end": 9348.48, + "probability": 0.4892 + }, + { + "start": 9348.86, + "end": 9349.28, + "probability": 0.6613 + }, + { + "start": 9349.62, + "end": 9350.42, + "probability": 0.4588 + }, + { + "start": 9353.3, + "end": 9355.38, + "probability": 0.4151 + }, + { + "start": 9356.42, + "end": 9358.36, + "probability": 0.0518 + }, + { + "start": 9358.48, + "end": 9362.55, + "probability": 0.558 + }, + { + "start": 9364.2, + "end": 9366.42, + "probability": 0.7086 + }, + { + "start": 9366.42, + "end": 9372.56, + "probability": 0.6177 + }, + { + "start": 9372.64, + "end": 9373.22, + "probability": 0.25 + }, + { + "start": 9376.46, + "end": 9378.58, + "probability": 0.8401 + }, + { + "start": 9378.66, + "end": 9386.86, + "probability": 0.8912 + }, + { + "start": 9386.96, + "end": 9387.48, + "probability": 0.6501 + }, + { + "start": 9390.7, + "end": 9391.52, + "probability": 0.9656 + }, + { + "start": 9391.68, + "end": 9392.24, + "probability": 0.4879 + }, + { + "start": 9392.58, + "end": 9395.06, + "probability": 0.5754 + }, + { + "start": 9395.34, + "end": 9400.06, + "probability": 0.8279 + }, + { + "start": 9400.68, + "end": 9403.42, + "probability": 0.2734 + }, + { + "start": 9403.74, + "end": 9404.22, + "probability": 0.4088 + }, + { + "start": 9404.68, + "end": 9407.0, + "probability": 0.2766 + }, + { + "start": 9407.32, + "end": 9408.37, + "probability": 0.6812 + }, + { + "start": 9409.34, + "end": 9414.22, + "probability": 0.9521 + }, + { + "start": 9414.46, + "end": 9415.56, + "probability": 0.915 + }, + { + "start": 9415.6, + "end": 9417.76, + "probability": 0.98 + }, + { + "start": 9417.82, + "end": 9424.32, + "probability": 0.6471 + }, + { + "start": 9424.56, + "end": 9425.58, + "probability": 0.9946 + }, + { + "start": 9426.62, + "end": 9430.9, + "probability": 0.6241 + }, + { + "start": 9431.54, + "end": 9433.14, + "probability": 0.8035 + }, + { + "start": 9433.9, + "end": 9438.61, + "probability": 0.9957 + }, + { + "start": 9439.62, + "end": 9443.22, + "probability": 0.8978 + }, + { + "start": 9443.9, + "end": 9445.19, + "probability": 0.9497 + }, + { + "start": 9445.74, + "end": 9447.6, + "probability": 0.9899 + }, + { + "start": 9448.12, + "end": 9449.1, + "probability": 0.7351 + }, + { + "start": 9449.68, + "end": 9451.24, + "probability": 0.3128 + }, + { + "start": 9451.98, + "end": 9455.16, + "probability": 0.6717 + }, + { + "start": 9455.46, + "end": 9457.01, + "probability": 0.3813 + }, + { + "start": 9457.28, + "end": 9457.72, + "probability": 0.1857 + }, + { + "start": 9457.74, + "end": 9458.58, + "probability": 0.6522 + }, + { + "start": 9458.68, + "end": 9461.46, + "probability": 0.9971 + }, + { + "start": 9465.12, + "end": 9465.7, + "probability": 0.1307 + }, + { + "start": 9465.7, + "end": 9465.7, + "probability": 0.0771 + }, + { + "start": 9465.7, + "end": 9473.04, + "probability": 0.9881 + }, + { + "start": 9473.18, + "end": 9473.74, + "probability": 0.8628 + }, + { + "start": 9475.0, + "end": 9475.5, + "probability": 0.7913 + }, + { + "start": 9476.1, + "end": 9478.4, + "probability": 0.9473 + }, + { + "start": 9478.7, + "end": 9482.18, + "probability": 0.98 + }, + { + "start": 9482.46, + "end": 9486.34, + "probability": 0.9928 + }, + { + "start": 9486.46, + "end": 9492.4, + "probability": 0.9856 + }, + { + "start": 9492.6, + "end": 9497.9, + "probability": 0.8613 + }, + { + "start": 9498.22, + "end": 9499.82, + "probability": 0.7114 + }, + { + "start": 9501.0, + "end": 9503.82, + "probability": 0.9868 + }, + { + "start": 9504.94, + "end": 9507.36, + "probability": 0.7204 + }, + { + "start": 9507.56, + "end": 9508.0, + "probability": 0.5392 + }, + { + "start": 9508.26, + "end": 9511.32, + "probability": 0.8849 + }, + { + "start": 9511.52, + "end": 9514.96, + "probability": 0.861 + }, + { + "start": 9516.22, + "end": 9520.4, + "probability": 0.9914 + }, + { + "start": 9520.74, + "end": 9523.8, + "probability": 0.9889 + }, + { + "start": 9523.98, + "end": 9525.16, + "probability": 0.7882 + }, + { + "start": 9525.28, + "end": 9525.96, + "probability": 0.8396 + }, + { + "start": 9526.44, + "end": 9529.66, + "probability": 0.8842 + }, + { + "start": 9529.72, + "end": 9531.16, + "probability": 0.7987 + }, + { + "start": 9531.56, + "end": 9535.68, + "probability": 0.9895 + }, + { + "start": 9536.56, + "end": 9538.72, + "probability": 0.9199 + }, + { + "start": 9539.56, + "end": 9543.3, + "probability": 0.96 + }, + { + "start": 9544.02, + "end": 9544.38, + "probability": 0.4617 + }, + { + "start": 9544.42, + "end": 9545.78, + "probability": 0.9862 + }, + { + "start": 9546.08, + "end": 9548.86, + "probability": 0.9312 + }, + { + "start": 9549.4, + "end": 9552.3, + "probability": 0.8508 + }, + { + "start": 9553.54, + "end": 9557.06, + "probability": 0.8691 + }, + { + "start": 9558.48, + "end": 9561.22, + "probability": 0.8221 + }, + { + "start": 9561.38, + "end": 9563.32, + "probability": 0.9242 + }, + { + "start": 9563.62, + "end": 9564.64, + "probability": 0.7281 + }, + { + "start": 9565.04, + "end": 9569.06, + "probability": 0.8965 + }, + { + "start": 9570.24, + "end": 9570.84, + "probability": 0.851 + }, + { + "start": 9571.72, + "end": 9573.99, + "probability": 0.3771 + }, + { + "start": 9574.08, + "end": 9575.1, + "probability": 0.642 + }, + { + "start": 9575.72, + "end": 9576.76, + "probability": 0.8352 + }, + { + "start": 9577.2, + "end": 9579.58, + "probability": 0.9749 + }, + { + "start": 9579.76, + "end": 9584.54, + "probability": 0.2163 + }, + { + "start": 9584.54, + "end": 9590.76, + "probability": 0.7428 + }, + { + "start": 9591.16, + "end": 9593.86, + "probability": 0.9929 + }, + { + "start": 9594.38, + "end": 9595.36, + "probability": 0.5908 + }, + { + "start": 9595.9, + "end": 9596.18, + "probability": 0.6528 + }, + { + "start": 9596.26, + "end": 9598.4, + "probability": 0.9526 + }, + { + "start": 9598.72, + "end": 9598.86, + "probability": 0.2392 + }, + { + "start": 9599.78, + "end": 9603.32, + "probability": 0.6753 + }, + { + "start": 9603.5, + "end": 9604.68, + "probability": 0.7399 + }, + { + "start": 9604.8, + "end": 9608.26, + "probability": 0.8569 + }, + { + "start": 9609.0, + "end": 9610.64, + "probability": 0.9578 + }, + { + "start": 9611.16, + "end": 9615.92, + "probability": 0.6437 + }, + { + "start": 9616.58, + "end": 9622.72, + "probability": 0.9968 + }, + { + "start": 9623.02, + "end": 9623.58, + "probability": 0.8022 + }, + { + "start": 9625.16, + "end": 9627.8, + "probability": 0.975 + }, + { + "start": 9628.04, + "end": 9629.68, + "probability": 0.9374 + }, + { + "start": 9630.26, + "end": 9633.4, + "probability": 0.9969 + }, + { + "start": 9633.42, + "end": 9633.66, + "probability": 0.15 + }, + { + "start": 9634.86, + "end": 9635.16, + "probability": 0.0901 + }, + { + "start": 9635.16, + "end": 9638.02, + "probability": 0.5063 + }, + { + "start": 9638.44, + "end": 9639.75, + "probability": 0.8561 + }, + { + "start": 9640.06, + "end": 9642.32, + "probability": 0.4014 + }, + { + "start": 9642.8, + "end": 9646.34, + "probability": 0.3765 + }, + { + "start": 9646.46, + "end": 9649.4, + "probability": 0.927 + }, + { + "start": 9649.44, + "end": 9651.06, + "probability": 0.9713 + }, + { + "start": 9652.36, + "end": 9654.34, + "probability": 0.5036 + }, + { + "start": 9654.7, + "end": 9655.86, + "probability": 0.0432 + }, + { + "start": 9656.52, + "end": 9658.24, + "probability": 0.3474 + }, + { + "start": 9658.8, + "end": 9661.84, + "probability": 0.4407 + }, + { + "start": 9662.94, + "end": 9663.48, + "probability": 0.5459 + }, + { + "start": 9663.48, + "end": 9666.6, + "probability": 0.9141 + }, + { + "start": 9666.74, + "end": 9667.64, + "probability": 0.8053 + }, + { + "start": 9668.07, + "end": 9671.59, + "probability": 0.3671 + }, + { + "start": 9672.12, + "end": 9673.09, + "probability": 0.3261 + }, + { + "start": 9673.42, + "end": 9674.38, + "probability": 0.8612 + }, + { + "start": 9674.8, + "end": 9677.28, + "probability": 0.1522 + }, + { + "start": 9680.94, + "end": 9681.72, + "probability": 0.5862 + }, + { + "start": 9682.6, + "end": 9682.6, + "probability": 0.1677 + }, + { + "start": 9682.6, + "end": 9682.6, + "probability": 0.0467 + }, + { + "start": 9682.6, + "end": 9683.1, + "probability": 0.1932 + }, + { + "start": 9683.1, + "end": 9684.02, + "probability": 0.231 + }, + { + "start": 9684.16, + "end": 9687.72, + "probability": 0.3606 + }, + { + "start": 9688.44, + "end": 9689.68, + "probability": 0.6229 + }, + { + "start": 9690.12, + "end": 9693.56, + "probability": 0.0381 + }, + { + "start": 9694.7, + "end": 9695.6, + "probability": 0.339 + }, + { + "start": 9695.86, + "end": 9696.42, + "probability": 0.0304 + }, + { + "start": 9696.42, + "end": 9697.52, + "probability": 0.4076 + }, + { + "start": 9698.16, + "end": 9705.02, + "probability": 0.9521 + }, + { + "start": 9707.64, + "end": 9709.32, + "probability": 0.8833 + }, + { + "start": 9709.5, + "end": 9713.08, + "probability": 0.9119 + }, + { + "start": 9714.0, + "end": 9718.08, + "probability": 0.9951 + }, + { + "start": 9718.24, + "end": 9719.66, + "probability": 0.9788 + }, + { + "start": 9720.24, + "end": 9721.24, + "probability": 0.9232 + }, + { + "start": 9721.58, + "end": 9727.26, + "probability": 0.9929 + }, + { + "start": 9727.26, + "end": 9732.38, + "probability": 0.9863 + }, + { + "start": 9732.48, + "end": 9734.02, + "probability": 0.7581 + }, + { + "start": 9735.3, + "end": 9738.88, + "probability": 0.9634 + }, + { + "start": 9740.04, + "end": 9742.54, + "probability": 0.7361 + }, + { + "start": 9742.86, + "end": 9745.16, + "probability": 0.9372 + }, + { + "start": 9745.44, + "end": 9745.7, + "probability": 0.6976 + }, + { + "start": 9745.88, + "end": 9746.48, + "probability": 0.7133 + }, + { + "start": 9746.52, + "end": 9748.86, + "probability": 0.6212 + }, + { + "start": 9749.08, + "end": 9751.08, + "probability": 0.9805 + }, + { + "start": 9751.16, + "end": 9752.58, + "probability": 0.9806 + }, + { + "start": 9754.08, + "end": 9760.04, + "probability": 0.8203 + }, + { + "start": 9760.04, + "end": 9764.74, + "probability": 0.9344 + }, + { + "start": 9765.42, + "end": 9766.28, + "probability": 0.2518 + }, + { + "start": 9766.38, + "end": 9766.96, + "probability": 0.1721 + }, + { + "start": 9767.2, + "end": 9769.34, + "probability": 0.6828 + }, + { + "start": 9769.42, + "end": 9770.3, + "probability": 0.6429 + }, + { + "start": 9770.64, + "end": 9770.88, + "probability": 0.6504 + }, + { + "start": 9770.98, + "end": 9772.32, + "probability": 0.9478 + }, + { + "start": 9772.5, + "end": 9774.22, + "probability": 0.9438 + }, + { + "start": 9774.96, + "end": 9775.34, + "probability": 0.3312 + }, + { + "start": 9776.36, + "end": 9776.36, + "probability": 0.1756 + }, + { + "start": 9776.36, + "end": 9779.48, + "probability": 0.8426 + }, + { + "start": 9779.48, + "end": 9783.2, + "probability": 0.8278 + }, + { + "start": 9783.68, + "end": 9787.04, + "probability": 0.9712 + }, + { + "start": 9787.44, + "end": 9789.62, + "probability": 0.958 + }, + { + "start": 9790.8, + "end": 9791.5, + "probability": 0.1297 + }, + { + "start": 9792.26, + "end": 9795.52, + "probability": 0.6064 + }, + { + "start": 9795.7, + "end": 9797.28, + "probability": 0.4784 + }, + { + "start": 9797.66, + "end": 9799.1, + "probability": 0.5225 + }, + { + "start": 9799.12, + "end": 9800.96, + "probability": 0.0768 + }, + { + "start": 9800.96, + "end": 9800.96, + "probability": 0.2014 + }, + { + "start": 9800.96, + "end": 9801.46, + "probability": 0.2542 + }, + { + "start": 9801.54, + "end": 9803.24, + "probability": 0.7741 + }, + { + "start": 9803.34, + "end": 9803.56, + "probability": 0.5646 + }, + { + "start": 9803.56, + "end": 9804.34, + "probability": 0.2521 + }, + { + "start": 9804.36, + "end": 9804.9, + "probability": 0.4718 + }, + { + "start": 9804.92, + "end": 9805.24, + "probability": 0.71 + }, + { + "start": 9805.3, + "end": 9806.12, + "probability": 0.4371 + }, + { + "start": 9806.34, + "end": 9806.34, + "probability": 0.3925 + }, + { + "start": 9806.34, + "end": 9807.32, + "probability": 0.4889 + }, + { + "start": 9807.86, + "end": 9808.54, + "probability": 0.9084 + }, + { + "start": 9808.68, + "end": 9809.6, + "probability": 0.859 + }, + { + "start": 9809.64, + "end": 9810.64, + "probability": 0.8942 + }, + { + "start": 9810.78, + "end": 9811.2, + "probability": 0.8882 + }, + { + "start": 9811.26, + "end": 9813.48, + "probability": 0.5687 + }, + { + "start": 9813.52, + "end": 9814.36, + "probability": 0.7787 + }, + { + "start": 9814.76, + "end": 9818.72, + "probability": 0.98 + }, + { + "start": 9819.2, + "end": 9822.26, + "probability": 0.9598 + }, + { + "start": 9822.32, + "end": 9823.23, + "probability": 0.7276 + }, + { + "start": 9823.66, + "end": 9824.32, + "probability": 0.0867 + }, + { + "start": 9824.4, + "end": 9826.5, + "probability": 0.01 + }, + { + "start": 9827.38, + "end": 9828.88, + "probability": 0.5448 + }, + { + "start": 9828.88, + "end": 9830.44, + "probability": 0.3516 + }, + { + "start": 9832.48, + "end": 9832.6, + "probability": 0.0959 + }, + { + "start": 9832.6, + "end": 9832.6, + "probability": 0.1779 + }, + { + "start": 9832.6, + "end": 9833.94, + "probability": 0.4387 + }, + { + "start": 9833.94, + "end": 9836.04, + "probability": 0.5822 + }, + { + "start": 9836.46, + "end": 9836.48, + "probability": 0.0967 + }, + { + "start": 9836.48, + "end": 9838.14, + "probability": 0.9169 + }, + { + "start": 9838.52, + "end": 9840.28, + "probability": 0.8736 + }, + { + "start": 9840.42, + "end": 9841.44, + "probability": 0.3652 + }, + { + "start": 9841.58, + "end": 9842.34, + "probability": 0.7425 + }, + { + "start": 9842.52, + "end": 9843.36, + "probability": 0.5921 + }, + { + "start": 9843.6, + "end": 9844.32, + "probability": 0.2272 + }, + { + "start": 9844.32, + "end": 9844.32, + "probability": 0.5453 + }, + { + "start": 9844.32, + "end": 9846.37, + "probability": 0.179 + }, + { + "start": 9850.68, + "end": 9853.29, + "probability": 0.9333 + }, + { + "start": 9854.64, + "end": 9857.46, + "probability": 0.3908 + }, + { + "start": 9857.46, + "end": 9859.58, + "probability": 0.4527 + }, + { + "start": 9859.76, + "end": 9861.08, + "probability": 0.5129 + }, + { + "start": 9861.2, + "end": 9861.97, + "probability": 0.0246 + }, + { + "start": 9862.14, + "end": 9863.86, + "probability": 0.5301 + }, + { + "start": 9863.86, + "end": 9867.08, + "probability": 0.974 + }, + { + "start": 9867.13, + "end": 9869.48, + "probability": 0.9761 + }, + { + "start": 9869.48, + "end": 9875.28, + "probability": 0.8626 + }, + { + "start": 9875.32, + "end": 9876.32, + "probability": 0.6525 + }, + { + "start": 9876.32, + "end": 9877.76, + "probability": 0.5767 + }, + { + "start": 9877.86, + "end": 9880.72, + "probability": 0.6796 + }, + { + "start": 9881.02, + "end": 9883.1, + "probability": 0.9604 + }, + { + "start": 9883.18, + "end": 9885.12, + "probability": 0.9781 + }, + { + "start": 9885.46, + "end": 9887.72, + "probability": 0.9951 + }, + { + "start": 9888.54, + "end": 9889.88, + "probability": 0.1544 + }, + { + "start": 9890.06, + "end": 9890.74, + "probability": 0.6786 + }, + { + "start": 9891.0, + "end": 9891.08, + "probability": 0.6936 + }, + { + "start": 9891.24, + "end": 9891.82, + "probability": 0.5315 + }, + { + "start": 9892.34, + "end": 9893.82, + "probability": 0.5852 + }, + { + "start": 9894.94, + "end": 9900.76, + "probability": 0.8862 + }, + { + "start": 9900.8, + "end": 9902.6, + "probability": 0.0022 + }, + { + "start": 9905.82, + "end": 9906.04, + "probability": 0.1464 + }, + { + "start": 9906.04, + "end": 9907.8, + "probability": 0.7365 + }, + { + "start": 9907.86, + "end": 9910.48, + "probability": 0.5333 + }, + { + "start": 9911.02, + "end": 9914.78, + "probability": 0.658 + }, + { + "start": 9914.78, + "end": 9915.14, + "probability": 0.7538 + }, + { + "start": 9915.14, + "end": 9918.25, + "probability": 0.9243 + }, + { + "start": 9918.58, + "end": 9920.74, + "probability": 0.5049 + }, + { + "start": 9920.82, + "end": 9922.5, + "probability": 0.7886 + }, + { + "start": 9922.98, + "end": 9925.14, + "probability": 0.9808 + }, + { + "start": 9925.37, + "end": 9927.06, + "probability": 0.7939 + }, + { + "start": 9927.1, + "end": 9927.56, + "probability": 0.372 + }, + { + "start": 9927.6, + "end": 9928.24, + "probability": 0.4977 + }, + { + "start": 9928.4, + "end": 9933.18, + "probability": 0.9821 + }, + { + "start": 9933.44, + "end": 9934.66, + "probability": 0.7697 + }, + { + "start": 9934.72, + "end": 9935.49, + "probability": 0.9767 + }, + { + "start": 9935.9, + "end": 9937.96, + "probability": 0.991 + }, + { + "start": 9938.08, + "end": 9939.36, + "probability": 0.7744 + }, + { + "start": 9940.62, + "end": 9943.38, + "probability": 0.9255 + }, + { + "start": 9945.06, + "end": 9946.55, + "probability": 0.3176 + }, + { + "start": 9947.98, + "end": 9950.22, + "probability": 0.5064 + }, + { + "start": 9950.34, + "end": 9951.86, + "probability": 0.7239 + }, + { + "start": 9952.2, + "end": 9953.23, + "probability": 0.5635 + }, + { + "start": 9954.34, + "end": 9955.28, + "probability": 0.8787 + }, + { + "start": 9955.46, + "end": 9956.34, + "probability": 0.4339 + }, + { + "start": 9956.58, + "end": 9956.98, + "probability": 0.4941 + }, + { + "start": 9957.14, + "end": 9957.7, + "probability": 0.2486 + }, + { + "start": 9957.88, + "end": 9959.74, + "probability": 0.2 + }, + { + "start": 9959.92, + "end": 9959.92, + "probability": 0.068 + }, + { + "start": 9959.92, + "end": 9963.3, + "probability": 0.2598 + }, + { + "start": 9963.54, + "end": 9963.96, + "probability": 0.105 + }, + { + "start": 9964.06, + "end": 9964.34, + "probability": 0.7051 + }, + { + "start": 9964.46, + "end": 9965.62, + "probability": 0.7717 + }, + { + "start": 9965.72, + "end": 9969.52, + "probability": 0.8132 + }, + { + "start": 9969.54, + "end": 9970.63, + "probability": 0.7954 + }, + { + "start": 9971.4, + "end": 9974.36, + "probability": 0.4728 + }, + { + "start": 9975.22, + "end": 9975.32, + "probability": 0.4803 + }, + { + "start": 9975.98, + "end": 9976.38, + "probability": 0.3618 + }, + { + "start": 9976.64, + "end": 9978.02, + "probability": 0.0703 + }, + { + "start": 9979.0, + "end": 9981.38, + "probability": 0.408 + }, + { + "start": 9981.54, + "end": 9982.89, + "probability": 0.1512 + }, + { + "start": 9983.3, + "end": 9985.12, + "probability": 0.4944 + }, + { + "start": 9985.96, + "end": 9986.24, + "probability": 0.1486 + }, + { + "start": 9986.24, + "end": 9986.24, + "probability": 0.1402 + }, + { + "start": 9986.24, + "end": 9986.24, + "probability": 0.0218 + }, + { + "start": 9986.24, + "end": 9988.42, + "probability": 0.1494 + }, + { + "start": 9989.02, + "end": 9989.76, + "probability": 0.3825 + }, + { + "start": 9989.76, + "end": 9994.82, + "probability": 0.204 + }, + { + "start": 9995.42, + "end": 9997.52, + "probability": 0.0527 + }, + { + "start": 9998.06, + "end": 9998.06, + "probability": 0.2018 + }, + { + "start": 9998.06, + "end": 9998.06, + "probability": 0.0564 + }, + { + "start": 9998.06, + "end": 9999.7, + "probability": 0.5918 + }, + { + "start": 9999.72, + "end": 10000.62, + "probability": 0.0887 + }, + { + "start": 10000.82, + "end": 10002.66, + "probability": 0.5414 + }, + { + "start": 10004.36, + "end": 10006.62, + "probability": 0.8721 + }, + { + "start": 10006.68, + "end": 10007.18, + "probability": 0.4508 + }, + { + "start": 10007.32, + "end": 10009.3, + "probability": 0.448 + }, + { + "start": 10009.3, + "end": 10011.24, + "probability": 0.516 + }, + { + "start": 10014.84, + "end": 10019.96, + "probability": 0.8177 + }, + { + "start": 10020.68, + "end": 10021.66, + "probability": 0.963 + }, + { + "start": 10022.86, + "end": 10027.4, + "probability": 0.9863 + }, + { + "start": 10029.3, + "end": 10032.1, + "probability": 0.9736 + }, + { + "start": 10033.44, + "end": 10035.66, + "probability": 0.9746 + }, + { + "start": 10037.74, + "end": 10041.84, + "probability": 0.981 + }, + { + "start": 10041.84, + "end": 10045.86, + "probability": 0.9575 + }, + { + "start": 10047.26, + "end": 10052.52, + "probability": 0.9857 + }, + { + "start": 10054.22, + "end": 10058.56, + "probability": 0.9883 + }, + { + "start": 10059.6, + "end": 10060.5, + "probability": 0.5307 + }, + { + "start": 10061.5, + "end": 10063.3, + "probability": 0.9491 + }, + { + "start": 10064.16, + "end": 10066.2, + "probability": 0.9761 + }, + { + "start": 10069.32, + "end": 10075.78, + "probability": 0.9513 + }, + { + "start": 10075.78, + "end": 10080.0, + "probability": 0.4887 + }, + { + "start": 10080.84, + "end": 10082.15, + "probability": 0.8472 + }, + { + "start": 10083.06, + "end": 10084.08, + "probability": 0.7101 + }, + { + "start": 10086.64, + "end": 10090.98, + "probability": 0.9095 + }, + { + "start": 10092.48, + "end": 10098.14, + "probability": 0.8281 + }, + { + "start": 10099.08, + "end": 10102.62, + "probability": 0.9388 + }, + { + "start": 10103.4, + "end": 10105.22, + "probability": 0.7877 + }, + { + "start": 10106.56, + "end": 10107.84, + "probability": 0.9159 + }, + { + "start": 10108.6, + "end": 10112.22, + "probability": 0.7707 + }, + { + "start": 10113.64, + "end": 10116.52, + "probability": 0.5126 + }, + { + "start": 10116.84, + "end": 10117.4, + "probability": 0.3847 + }, + { + "start": 10117.46, + "end": 10118.96, + "probability": 0.7938 + }, + { + "start": 10120.14, + "end": 10123.6, + "probability": 0.9862 + }, + { + "start": 10124.74, + "end": 10125.4, + "probability": 0.8378 + }, + { + "start": 10125.5, + "end": 10128.06, + "probability": 0.9038 + }, + { + "start": 10128.54, + "end": 10129.92, + "probability": 0.8821 + }, + { + "start": 10131.42, + "end": 10132.68, + "probability": 0.8923 + }, + { + "start": 10135.4, + "end": 10136.14, + "probability": 0.7253 + }, + { + "start": 10136.18, + "end": 10138.52, + "probability": 0.6893 + }, + { + "start": 10138.92, + "end": 10141.92, + "probability": 0.9408 + }, + { + "start": 10143.28, + "end": 10144.74, + "probability": 0.854 + }, + { + "start": 10146.36, + "end": 10146.46, + "probability": 0.4459 + }, + { + "start": 10146.54, + "end": 10146.9, + "probability": 0.9211 + }, + { + "start": 10146.9, + "end": 10150.88, + "probability": 0.9924 + }, + { + "start": 10150.88, + "end": 10153.42, + "probability": 0.9561 + }, + { + "start": 10155.28, + "end": 10158.74, + "probability": 0.7662 + }, + { + "start": 10160.02, + "end": 10162.91, + "probability": 0.7916 + }, + { + "start": 10163.92, + "end": 10169.14, + "probability": 0.9685 + }, + { + "start": 10171.02, + "end": 10174.46, + "probability": 0.9943 + }, + { + "start": 10175.12, + "end": 10177.42, + "probability": 0.6595 + }, + { + "start": 10179.22, + "end": 10183.08, + "probability": 0.8289 + }, + { + "start": 10185.42, + "end": 10189.12, + "probability": 0.9012 + }, + { + "start": 10190.22, + "end": 10192.94, + "probability": 0.9335 + }, + { + "start": 10193.66, + "end": 10195.42, + "probability": 0.8413 + }, + { + "start": 10196.8, + "end": 10200.46, + "probability": 0.9644 + }, + { + "start": 10201.28, + "end": 10203.82, + "probability": 0.8716 + }, + { + "start": 10205.58, + "end": 10210.41, + "probability": 0.7923 + }, + { + "start": 10211.12, + "end": 10214.64, + "probability": 0.9947 + }, + { + "start": 10214.64, + "end": 10219.4, + "probability": 0.8139 + }, + { + "start": 10219.92, + "end": 10224.7, + "probability": 0.8515 + }, + { + "start": 10226.24, + "end": 10227.67, + "probability": 0.7488 + }, + { + "start": 10228.86, + "end": 10231.5, + "probability": 0.8295 + }, + { + "start": 10232.12, + "end": 10235.98, + "probability": 0.6522 + }, + { + "start": 10236.18, + "end": 10238.44, + "probability": 0.698 + }, + { + "start": 10238.82, + "end": 10239.82, + "probability": 0.6866 + }, + { + "start": 10239.82, + "end": 10241.56, + "probability": 0.9751 + }, + { + "start": 10241.56, + "end": 10243.26, + "probability": 0.1877 + }, + { + "start": 10243.56, + "end": 10245.34, + "probability": 0.9819 + }, + { + "start": 10246.66, + "end": 10249.12, + "probability": 0.8865 + }, + { + "start": 10249.22, + "end": 10252.94, + "probability": 0.908 + }, + { + "start": 10253.54, + "end": 10253.88, + "probability": 0.2774 + }, + { + "start": 10253.88, + "end": 10253.96, + "probability": 0.3407 + }, + { + "start": 10253.96, + "end": 10253.96, + "probability": 0.4419 + }, + { + "start": 10253.96, + "end": 10257.34, + "probability": 0.9378 + }, + { + "start": 10258.52, + "end": 10258.96, + "probability": 0.8002 + }, + { + "start": 10260.92, + "end": 10264.08, + "probability": 0.7481 + }, + { + "start": 10266.16, + "end": 10272.44, + "probability": 0.9758 + }, + { + "start": 10274.02, + "end": 10275.94, + "probability": 0.8286 + }, + { + "start": 10277.12, + "end": 10279.91, + "probability": 0.821 + }, + { + "start": 10281.12, + "end": 10283.38, + "probability": 0.8468 + }, + { + "start": 10284.14, + "end": 10285.56, + "probability": 0.9032 + }, + { + "start": 10286.36, + "end": 10288.06, + "probability": 0.9299 + }, + { + "start": 10289.7, + "end": 10292.72, + "probability": 0.8969 + }, + { + "start": 10293.6, + "end": 10294.88, + "probability": 0.9188 + }, + { + "start": 10297.1, + "end": 10298.36, + "probability": 0.8687 + }, + { + "start": 10299.02, + "end": 10301.22, + "probability": 0.6886 + }, + { + "start": 10302.32, + "end": 10303.63, + "probability": 0.9616 + }, + { + "start": 10304.9, + "end": 10306.54, + "probability": 0.9532 + }, + { + "start": 10307.9, + "end": 10308.92, + "probability": 0.8315 + }, + { + "start": 10311.42, + "end": 10315.1, + "probability": 0.819 + }, + { + "start": 10316.16, + "end": 10320.36, + "probability": 0.7917 + }, + { + "start": 10321.68, + "end": 10324.08, + "probability": 0.9618 + }, + { + "start": 10325.6, + "end": 10327.62, + "probability": 0.9525 + }, + { + "start": 10328.82, + "end": 10330.28, + "probability": 0.9797 + }, + { + "start": 10332.44, + "end": 10334.44, + "probability": 0.8877 + }, + { + "start": 10337.46, + "end": 10341.4, + "probability": 0.9917 + }, + { + "start": 10344.86, + "end": 10347.88, + "probability": 0.8472 + }, + { + "start": 10348.0, + "end": 10350.88, + "probability": 0.9839 + }, + { + "start": 10350.92, + "end": 10351.74, + "probability": 0.6381 + }, + { + "start": 10352.08, + "end": 10352.92, + "probability": 0.8601 + }, + { + "start": 10354.68, + "end": 10358.98, + "probability": 0.9545 + }, + { + "start": 10359.02, + "end": 10360.46, + "probability": 0.8532 + }, + { + "start": 10361.54, + "end": 10366.92, + "probability": 0.9219 + }, + { + "start": 10367.84, + "end": 10370.86, + "probability": 0.8656 + }, + { + "start": 10371.7, + "end": 10376.14, + "probability": 0.8976 + }, + { + "start": 10377.68, + "end": 10383.96, + "probability": 0.9552 + }, + { + "start": 10384.36, + "end": 10387.82, + "probability": 0.9915 + }, + { + "start": 10389.34, + "end": 10391.7, + "probability": 0.7888 + }, + { + "start": 10391.98, + "end": 10393.98, + "probability": 0.7558 + }, + { + "start": 10395.36, + "end": 10402.46, + "probability": 0.9641 + }, + { + "start": 10403.32, + "end": 10403.8, + "probability": 0.6546 + }, + { + "start": 10404.2, + "end": 10408.54, + "probability": 0.915 + }, + { + "start": 10410.06, + "end": 10413.96, + "probability": 0.8798 + }, + { + "start": 10414.78, + "end": 10417.7, + "probability": 0.853 + }, + { + "start": 10421.66, + "end": 10425.06, + "probability": 0.8676 + }, + { + "start": 10425.96, + "end": 10426.66, + "probability": 0.7319 + }, + { + "start": 10428.22, + "end": 10431.64, + "probability": 0.7518 + }, + { + "start": 10432.76, + "end": 10436.24, + "probability": 0.9167 + }, + { + "start": 10437.54, + "end": 10438.42, + "probability": 0.0172 + }, + { + "start": 10438.42, + "end": 10439.9, + "probability": 0.7299 + }, + { + "start": 10440.78, + "end": 10442.52, + "probability": 0.7463 + }, + { + "start": 10443.42, + "end": 10445.2, + "probability": 0.4129 + }, + { + "start": 10446.58, + "end": 10448.74, + "probability": 0.7355 + }, + { + "start": 10449.86, + "end": 10453.78, + "probability": 0.9037 + }, + { + "start": 10455.58, + "end": 10460.84, + "probability": 0.9952 + }, + { + "start": 10461.18, + "end": 10462.3, + "probability": 0.9545 + }, + { + "start": 10463.24, + "end": 10465.08, + "probability": 0.9626 + }, + { + "start": 10467.94, + "end": 10469.08, + "probability": 0.7559 + }, + { + "start": 10469.52, + "end": 10473.68, + "probability": 0.969 + }, + { + "start": 10473.68, + "end": 10477.86, + "probability": 0.7001 + }, + { + "start": 10477.86, + "end": 10480.4, + "probability": 0.8883 + }, + { + "start": 10481.72, + "end": 10483.72, + "probability": 0.8115 + }, + { + "start": 10484.34, + "end": 10486.26, + "probability": 0.7077 + }, + { + "start": 10487.06, + "end": 10488.78, + "probability": 0.8174 + }, + { + "start": 10489.98, + "end": 10492.08, + "probability": 0.9785 + }, + { + "start": 10492.08, + "end": 10494.88, + "probability": 0.9915 + }, + { + "start": 10496.22, + "end": 10499.64, + "probability": 0.8466 + }, + { + "start": 10500.86, + "end": 10505.46, + "probability": 0.9647 + }, + { + "start": 10506.1, + "end": 10508.18, + "probability": 0.2507 + }, + { + "start": 10509.7, + "end": 10511.64, + "probability": 0.7671 + }, + { + "start": 10512.4, + "end": 10515.98, + "probability": 0.5615 + }, + { + "start": 10517.34, + "end": 10518.56, + "probability": 0.5006 + }, + { + "start": 10519.24, + "end": 10519.52, + "probability": 0.0177 + }, + { + "start": 10521.5, + "end": 10522.86, + "probability": 0.8168 + }, + { + "start": 10522.9, + "end": 10524.4, + "probability": 0.5832 + }, + { + "start": 10524.56, + "end": 10525.72, + "probability": 0.1477 + }, + { + "start": 10526.0, + "end": 10527.69, + "probability": 0.3166 + }, + { + "start": 10529.8, + "end": 10532.26, + "probability": 0.7985 + }, + { + "start": 10532.32, + "end": 10533.77, + "probability": 0.5525 + }, + { + "start": 10534.7, + "end": 10538.72, + "probability": 0.989 + }, + { + "start": 10540.02, + "end": 10544.2, + "probability": 0.7457 + }, + { + "start": 10545.44, + "end": 10547.84, + "probability": 0.9351 + }, + { + "start": 10550.34, + "end": 10553.22, + "probability": 0.9554 + }, + { + "start": 10553.52, + "end": 10555.88, + "probability": 0.7927 + }, + { + "start": 10557.42, + "end": 10559.64, + "probability": 0.7889 + }, + { + "start": 10560.16, + "end": 10562.14, + "probability": 0.9207 + }, + { + "start": 10563.12, + "end": 10564.52, + "probability": 0.348 + }, + { + "start": 10564.6, + "end": 10567.09, + "probability": 0.8762 + }, + { + "start": 10568.48, + "end": 10568.62, + "probability": 0.4228 + }, + { + "start": 10568.66, + "end": 10569.02, + "probability": 0.7303 + }, + { + "start": 10569.12, + "end": 10572.66, + "probability": 0.9597 + }, + { + "start": 10572.82, + "end": 10574.38, + "probability": 0.8868 + }, + { + "start": 10576.22, + "end": 10577.66, + "probability": 0.6712 + }, + { + "start": 10578.14, + "end": 10580.98, + "probability": 0.799 + }, + { + "start": 10582.18, + "end": 10587.08, + "probability": 0.9836 + }, + { + "start": 10588.16, + "end": 10592.28, + "probability": 0.7444 + }, + { + "start": 10594.54, + "end": 10597.08, + "probability": 0.955 + }, + { + "start": 10598.14, + "end": 10603.44, + "probability": 0.9598 + }, + { + "start": 10605.48, + "end": 10606.74, + "probability": 0.7342 + }, + { + "start": 10607.54, + "end": 10610.9, + "probability": 0.819 + }, + { + "start": 10611.06, + "end": 10612.38, + "probability": 0.8368 + }, + { + "start": 10613.12, + "end": 10614.72, + "probability": 0.9172 + }, + { + "start": 10616.46, + "end": 10619.38, + "probability": 0.9602 + }, + { + "start": 10620.1, + "end": 10621.92, + "probability": 0.6977 + }, + { + "start": 10622.24, + "end": 10624.16, + "probability": 0.5294 + }, + { + "start": 10624.24, + "end": 10629.3, + "probability": 0.9247 + }, + { + "start": 10629.62, + "end": 10630.74, + "probability": 0.7687 + }, + { + "start": 10632.32, + "end": 10637.4, + "probability": 0.7449 + }, + { + "start": 10638.92, + "end": 10639.58, + "probability": 0.9895 + }, + { + "start": 10640.46, + "end": 10643.5, + "probability": 0.9719 + }, + { + "start": 10644.86, + "end": 10646.6, + "probability": 0.7996 + }, + { + "start": 10647.66, + "end": 10653.26, + "probability": 0.8133 + }, + { + "start": 10654.68, + "end": 10657.4, + "probability": 0.9248 + }, + { + "start": 10658.46, + "end": 10659.58, + "probability": 0.9263 + }, + { + "start": 10660.42, + "end": 10661.62, + "probability": 0.9689 + }, + { + "start": 10661.62, + "end": 10665.2, + "probability": 0.9123 + }, + { + "start": 10666.74, + "end": 10667.54, + "probability": 0.7924 + }, + { + "start": 10668.32, + "end": 10672.02, + "probability": 0.8561 + }, + { + "start": 10672.08, + "end": 10676.84, + "probability": 0.8481 + }, + { + "start": 10677.58, + "end": 10682.02, + "probability": 0.8668 + }, + { + "start": 10685.82, + "end": 10688.24, + "probability": 0.9277 + }, + { + "start": 10689.36, + "end": 10701.64, + "probability": 0.8143 + }, + { + "start": 10702.06, + "end": 10703.16, + "probability": 0.7568 + }, + { + "start": 10703.64, + "end": 10706.16, + "probability": 0.724 + }, + { + "start": 10707.34, + "end": 10708.26, + "probability": 0.6893 + }, + { + "start": 10710.44, + "end": 10714.74, + "probability": 0.975 + }, + { + "start": 10715.76, + "end": 10718.36, + "probability": 0.9044 + }, + { + "start": 10719.08, + "end": 10719.98, + "probability": 0.9445 + }, + { + "start": 10720.04, + "end": 10721.3, + "probability": 0.0753 + }, + { + "start": 10721.96, + "end": 10722.28, + "probability": 0.1116 + }, + { + "start": 10723.1, + "end": 10723.1, + "probability": 0.2132 + }, + { + "start": 10723.1, + "end": 10723.1, + "probability": 0.0792 + }, + { + "start": 10723.1, + "end": 10726.38, + "probability": 0.676 + }, + { + "start": 10727.52, + "end": 10729.98, + "probability": 0.953 + }, + { + "start": 10731.18, + "end": 10734.56, + "probability": 0.7775 + }, + { + "start": 10737.08, + "end": 10742.44, + "probability": 0.9675 + }, + { + "start": 10743.62, + "end": 10744.94, + "probability": 0.458 + }, + { + "start": 10745.9, + "end": 10749.05, + "probability": 0.8674 + }, + { + "start": 10749.86, + "end": 10754.12, + "probability": 0.9448 + }, + { + "start": 10754.76, + "end": 10755.9, + "probability": 0.9653 + }, + { + "start": 10756.6, + "end": 10759.62, + "probability": 0.8978 + }, + { + "start": 10760.3, + "end": 10762.98, + "probability": 0.8801 + }, + { + "start": 10763.54, + "end": 10770.8, + "probability": 0.8062 + }, + { + "start": 10771.76, + "end": 10774.1, + "probability": 0.9618 + }, + { + "start": 10775.34, + "end": 10776.12, + "probability": 0.9604 + }, + { + "start": 10776.22, + "end": 10777.08, + "probability": 0.5152 + }, + { + "start": 10777.23, + "end": 10777.84, + "probability": 0.5053 + }, + { + "start": 10778.0, + "end": 10778.58, + "probability": 0.8401 + }, + { + "start": 10778.84, + "end": 10782.2, + "probability": 0.9437 + }, + { + "start": 10782.92, + "end": 10785.66, + "probability": 0.4289 + }, + { + "start": 10787.32, + "end": 10794.98, + "probability": 0.9379 + }, + { + "start": 10796.72, + "end": 10797.52, + "probability": 0.5215 + }, + { + "start": 10798.02, + "end": 10798.7, + "probability": 0.7605 + }, + { + "start": 10798.94, + "end": 10802.12, + "probability": 0.8543 + }, + { + "start": 10802.36, + "end": 10805.12, + "probability": 0.911 + }, + { + "start": 10805.12, + "end": 10805.76, + "probability": 0.4743 + }, + { + "start": 10806.1, + "end": 10809.44, + "probability": 0.7185 + }, + { + "start": 10811.2, + "end": 10818.38, + "probability": 0.9587 + }, + { + "start": 10819.54, + "end": 10822.08, + "probability": 0.6596 + }, + { + "start": 10822.68, + "end": 10824.48, + "probability": 0.9209 + }, + { + "start": 10826.1, + "end": 10829.56, + "probability": 0.4962 + }, + { + "start": 10830.26, + "end": 10832.56, + "probability": 0.8613 + }, + { + "start": 10833.26, + "end": 10838.78, + "probability": 0.8131 + }, + { + "start": 10839.66, + "end": 10841.06, + "probability": 0.5762 + }, + { + "start": 10841.9, + "end": 10842.68, + "probability": 0.7698 + }, + { + "start": 10843.32, + "end": 10846.58, + "probability": 0.7141 + }, + { + "start": 10847.44, + "end": 10847.48, + "probability": 0.936 + }, + { + "start": 10849.14, + "end": 10851.98, + "probability": 0.6528 + }, + { + "start": 10854.74, + "end": 10856.12, + "probability": 0.9012 + }, + { + "start": 10856.96, + "end": 10858.7, + "probability": 0.8365 + }, + { + "start": 10859.5, + "end": 10864.04, + "probability": 0.9253 + }, + { + "start": 10864.46, + "end": 10865.9, + "probability": 0.5565 + }, + { + "start": 10866.02, + "end": 10866.98, + "probability": 0.9338 + }, + { + "start": 10867.8, + "end": 10869.4, + "probability": 0.7371 + }, + { + "start": 10869.98, + "end": 10871.28, + "probability": 0.7628 + }, + { + "start": 10871.47, + "end": 10874.04, + "probability": 0.7036 + }, + { + "start": 10874.1, + "end": 10875.56, + "probability": 0.8557 + }, + { + "start": 10875.76, + "end": 10877.7, + "probability": 0.7672 + }, + { + "start": 10877.76, + "end": 10878.42, + "probability": 0.4535 + }, + { + "start": 10878.5, + "end": 10878.5, + "probability": 0.0053 + }, + { + "start": 10878.5, + "end": 10879.28, + "probability": 0.2507 + }, + { + "start": 10879.34, + "end": 10879.34, + "probability": 0.0004 + }, + { + "start": 10880.0, + "end": 10880.18, + "probability": 0.0813 + }, + { + "start": 10880.18, + "end": 10881.16, + "probability": 0.903 + }, + { + "start": 10881.32, + "end": 10884.98, + "probability": 0.3455 + }, + { + "start": 10885.36, + "end": 10890.04, + "probability": 0.711 + }, + { + "start": 10890.7, + "end": 10892.34, + "probability": 0.9072 + }, + { + "start": 10893.52, + "end": 10895.18, + "probability": 0.9474 + }, + { + "start": 10895.94, + "end": 10898.56, + "probability": 0.7995 + }, + { + "start": 10899.06, + "end": 10900.5, + "probability": 0.6031 + }, + { + "start": 10900.68, + "end": 10901.72, + "probability": 0.4894 + }, + { + "start": 10907.36, + "end": 10911.24, + "probability": 0.6965 + }, + { + "start": 10911.24, + "end": 10914.26, + "probability": 0.6548 + }, + { + "start": 10915.36, + "end": 10916.66, + "probability": 0.5518 + }, + { + "start": 10917.24, + "end": 10920.0, + "probability": 0.9827 + }, + { + "start": 10920.62, + "end": 10923.18, + "probability": 0.8389 + }, + { + "start": 10923.82, + "end": 10925.5, + "probability": 0.7602 + }, + { + "start": 10926.66, + "end": 10929.7, + "probability": 0.6621 + }, + { + "start": 10929.9, + "end": 10931.14, + "probability": 0.6523 + }, + { + "start": 10931.42, + "end": 10937.14, + "probability": 0.6602 + }, + { + "start": 10937.74, + "end": 10938.64, + "probability": 0.8282 + }, + { + "start": 10939.0, + "end": 10939.3, + "probability": 0.6855 + }, + { + "start": 10939.42, + "end": 10940.06, + "probability": 0.8997 + }, + { + "start": 10940.2, + "end": 10945.32, + "probability": 0.904 + }, + { + "start": 10945.72, + "end": 10949.44, + "probability": 0.8808 + }, + { + "start": 10949.82, + "end": 10950.82, + "probability": 0.6604 + }, + { + "start": 10951.3, + "end": 10953.78, + "probability": 0.9572 + }, + { + "start": 10954.04, + "end": 10954.84, + "probability": 0.7651 + }, + { + "start": 10955.9, + "end": 10958.5, + "probability": 0.8372 + }, + { + "start": 10958.84, + "end": 10958.98, + "probability": 0.7974 + }, + { + "start": 10959.54, + "end": 10961.66, + "probability": 0.6968 + }, + { + "start": 10961.74, + "end": 10964.94, + "probability": 0.9489 + }, + { + "start": 10966.12, + "end": 10967.48, + "probability": 0.7051 + }, + { + "start": 10967.62, + "end": 10968.96, + "probability": 0.6287 + }, + { + "start": 10969.04, + "end": 10972.22, + "probability": 0.8026 + }, + { + "start": 10972.22, + "end": 10975.34, + "probability": 0.6761 + }, + { + "start": 10975.34, + "end": 10977.68, + "probability": 0.8726 + }, + { + "start": 10977.92, + "end": 10979.72, + "probability": 0.4007 + }, + { + "start": 10982.14, + "end": 10982.72, + "probability": 0.6089 + }, + { + "start": 10982.9, + "end": 10985.52, + "probability": 0.6877 + }, + { + "start": 10990.12, + "end": 10992.1, + "probability": 0.363 + }, + { + "start": 10994.16, + "end": 10995.4, + "probability": 0.7018 + }, + { + "start": 10997.7, + "end": 10999.28, + "probability": 0.7772 + }, + { + "start": 11000.34, + "end": 11003.8, + "probability": 0.9901 + }, + { + "start": 11004.88, + "end": 11015.32, + "probability": 0.971 + }, + { + "start": 11016.46, + "end": 11020.7, + "probability": 0.9312 + }, + { + "start": 11021.14, + "end": 11021.96, + "probability": 0.8485 + }, + { + "start": 11023.34, + "end": 11030.02, + "probability": 0.9802 + }, + { + "start": 11031.0, + "end": 11033.86, + "probability": 0.9993 + }, + { + "start": 11034.86, + "end": 11036.42, + "probability": 0.5033 + }, + { + "start": 11036.6, + "end": 11039.62, + "probability": 0.9436 + }, + { + "start": 11039.82, + "end": 11041.92, + "probability": 0.9843 + }, + { + "start": 11042.02, + "end": 11042.66, + "probability": 0.8506 + }, + { + "start": 11043.24, + "end": 11045.53, + "probability": 0.9928 + }, + { + "start": 11046.72, + "end": 11047.16, + "probability": 0.9258 + }, + { + "start": 11047.58, + "end": 11051.84, + "probability": 0.9821 + }, + { + "start": 11051.84, + "end": 11055.96, + "probability": 0.9924 + }, + { + "start": 11056.28, + "end": 11058.8, + "probability": 0.9902 + }, + { + "start": 11058.82, + "end": 11059.93, + "probability": 0.8404 + }, + { + "start": 11061.0, + "end": 11064.52, + "probability": 0.9835 + }, + { + "start": 11064.58, + "end": 11068.04, + "probability": 0.6759 + }, + { + "start": 11068.04, + "end": 11068.7, + "probability": 0.6011 + }, + { + "start": 11068.72, + "end": 11072.52, + "probability": 0.8001 + }, + { + "start": 11072.6, + "end": 11077.48, + "probability": 0.9825 + }, + { + "start": 11078.42, + "end": 11081.58, + "probability": 0.9927 + }, + { + "start": 11082.12, + "end": 11086.98, + "probability": 0.9701 + }, + { + "start": 11087.14, + "end": 11089.48, + "probability": 0.7946 + }, + { + "start": 11089.78, + "end": 11093.34, + "probability": 0.2019 + }, + { + "start": 11093.34, + "end": 11096.26, + "probability": 0.6234 + }, + { + "start": 11096.64, + "end": 11098.69, + "probability": 0.9504 + }, + { + "start": 11099.46, + "end": 11100.18, + "probability": 0.7358 + }, + { + "start": 11100.9, + "end": 11101.14, + "probability": 0.3995 + }, + { + "start": 11101.46, + "end": 11105.4, + "probability": 0.7906 + }, + { + "start": 11105.5, + "end": 11107.14, + "probability": 0.9199 + }, + { + "start": 11107.74, + "end": 11110.52, + "probability": 0.9605 + }, + { + "start": 11110.58, + "end": 11111.93, + "probability": 0.833 + }, + { + "start": 11112.18, + "end": 11114.1, + "probability": 0.9632 + }, + { + "start": 11114.24, + "end": 11115.7, + "probability": 0.9652 + }, + { + "start": 11116.42, + "end": 11119.36, + "probability": 0.9775 + }, + { + "start": 11119.42, + "end": 11122.62, + "probability": 0.9905 + }, + { + "start": 11122.62, + "end": 11125.58, + "probability": 0.9983 + }, + { + "start": 11125.74, + "end": 11128.56, + "probability": 0.7168 + }, + { + "start": 11128.94, + "end": 11129.91, + "probability": 0.8512 + }, + { + "start": 11130.82, + "end": 11132.78, + "probability": 0.9497 + }, + { + "start": 11133.16, + "end": 11135.26, + "probability": 0.9841 + }, + { + "start": 11135.26, + "end": 11139.1, + "probability": 0.8587 + }, + { + "start": 11139.8, + "end": 11143.32, + "probability": 0.9285 + }, + { + "start": 11143.58, + "end": 11143.7, + "probability": 0.7065 + }, + { + "start": 11143.74, + "end": 11144.8, + "probability": 0.9449 + }, + { + "start": 11144.92, + "end": 11148.64, + "probability": 0.9946 + }, + { + "start": 11148.7, + "end": 11150.14, + "probability": 0.2977 + }, + { + "start": 11150.64, + "end": 11155.68, + "probability": 0.9979 + }, + { + "start": 11155.68, + "end": 11159.66, + "probability": 0.998 + }, + { + "start": 11160.0, + "end": 11160.76, + "probability": 0.6886 + }, + { + "start": 11160.94, + "end": 11161.74, + "probability": 0.689 + }, + { + "start": 11161.82, + "end": 11166.98, + "probability": 0.9553 + }, + { + "start": 11167.68, + "end": 11168.73, + "probability": 0.5587 + }, + { + "start": 11169.04, + "end": 11170.48, + "probability": 0.9002 + }, + { + "start": 11170.64, + "end": 11175.88, + "probability": 0.9483 + }, + { + "start": 11176.18, + "end": 11177.8, + "probability": 0.7771 + }, + { + "start": 11178.58, + "end": 11179.66, + "probability": 0.9362 + }, + { + "start": 11179.72, + "end": 11184.02, + "probability": 0.9396 + }, + { + "start": 11184.12, + "end": 11186.6, + "probability": 0.9863 + }, + { + "start": 11186.8, + "end": 11190.6, + "probability": 0.997 + }, + { + "start": 11190.6, + "end": 11195.34, + "probability": 0.9453 + }, + { + "start": 11195.86, + "end": 11199.34, + "probability": 0.9529 + }, + { + "start": 11199.54, + "end": 11201.06, + "probability": 0.7025 + }, + { + "start": 11201.36, + "end": 11201.82, + "probability": 0.5199 + }, + { + "start": 11201.9, + "end": 11203.2, + "probability": 0.8753 + }, + { + "start": 11203.3, + "end": 11205.04, + "probability": 0.4692 + }, + { + "start": 11205.82, + "end": 11207.4, + "probability": 0.8799 + }, + { + "start": 11207.46, + "end": 11208.7, + "probability": 0.6296 + }, + { + "start": 11208.88, + "end": 11209.22, + "probability": 0.7536 + }, + { + "start": 11209.36, + "end": 11210.06, + "probability": 0.7848 + }, + { + "start": 11210.32, + "end": 11211.34, + "probability": 0.9331 + }, + { + "start": 11211.92, + "end": 11216.32, + "probability": 0.8818 + }, + { + "start": 11216.44, + "end": 11217.88, + "probability": 0.9233 + }, + { + "start": 11217.96, + "end": 11219.7, + "probability": 0.7688 + }, + { + "start": 11219.82, + "end": 11223.4, + "probability": 0.8576 + }, + { + "start": 11223.5, + "end": 11229.1, + "probability": 0.9581 + }, + { + "start": 11229.8, + "end": 11230.4, + "probability": 0.4358 + }, + { + "start": 11230.46, + "end": 11232.48, + "probability": 0.9924 + }, + { + "start": 11232.92, + "end": 11234.22, + "probability": 0.9837 + }, + { + "start": 11234.38, + "end": 11235.7, + "probability": 0.7839 + }, + { + "start": 11236.12, + "end": 11237.08, + "probability": 0.742 + }, + { + "start": 11237.36, + "end": 11238.4, + "probability": 0.6592 + }, + { + "start": 11238.64, + "end": 11242.32, + "probability": 0.9776 + }, + { + "start": 11243.2, + "end": 11247.48, + "probability": 0.9353 + }, + { + "start": 11247.8, + "end": 11248.52, + "probability": 0.6117 + }, + { + "start": 11249.34, + "end": 11250.95, + "probability": 0.9843 + }, + { + "start": 11251.08, + "end": 11251.74, + "probability": 0.8709 + }, + { + "start": 11251.8, + "end": 11252.5, + "probability": 0.9571 + }, + { + "start": 11252.58, + "end": 11253.4, + "probability": 0.9535 + }, + { + "start": 11253.52, + "end": 11254.6, + "probability": 0.4189 + }, + { + "start": 11255.32, + "end": 11256.3, + "probability": 0.7476 + }, + { + "start": 11257.1, + "end": 11257.36, + "probability": 0.7009 + }, + { + "start": 11257.52, + "end": 11261.04, + "probability": 0.9448 + }, + { + "start": 11261.14, + "end": 11261.52, + "probability": 0.4295 + }, + { + "start": 11261.54, + "end": 11262.14, + "probability": 0.3815 + }, + { + "start": 11262.14, + "end": 11263.3, + "probability": 0.5021 + }, + { + "start": 11263.7, + "end": 11265.46, + "probability": 0.2048 + }, + { + "start": 11265.58, + "end": 11266.64, + "probability": 0.7204 + }, + { + "start": 11266.98, + "end": 11268.36, + "probability": 0.9539 + }, + { + "start": 11268.46, + "end": 11274.52, + "probability": 0.8622 + }, + { + "start": 11274.64, + "end": 11274.84, + "probability": 0.0191 + }, + { + "start": 11275.18, + "end": 11275.72, + "probability": 0.2898 + }, + { + "start": 11275.72, + "end": 11277.74, + "probability": 0.7854 + }, + { + "start": 11278.22, + "end": 11282.04, + "probability": 0.981 + }, + { + "start": 11282.34, + "end": 11283.72, + "probability": 0.9575 + }, + { + "start": 11283.86, + "end": 11285.08, + "probability": 0.8575 + }, + { + "start": 11285.52, + "end": 11288.58, + "probability": 0.8446 + }, + { + "start": 11288.68, + "end": 11290.5, + "probability": 0.87 + }, + { + "start": 11290.62, + "end": 11291.24, + "probability": 0.7554 + }, + { + "start": 11291.48, + "end": 11293.7, + "probability": 0.9902 + }, + { + "start": 11294.3, + "end": 11297.4, + "probability": 0.8029 + }, + { + "start": 11298.02, + "end": 11300.54, + "probability": 0.7951 + }, + { + "start": 11302.2, + "end": 11303.2, + "probability": 0.4163 + }, + { + "start": 11303.76, + "end": 11305.6, + "probability": 0.049 + }, + { + "start": 11305.6, + "end": 11306.0, + "probability": 0.0672 + }, + { + "start": 11306.06, + "end": 11309.72, + "probability": 0.9336 + }, + { + "start": 11309.72, + "end": 11314.44, + "probability": 0.9868 + }, + { + "start": 11315.2, + "end": 11316.24, + "probability": 0.9158 + }, + { + "start": 11316.42, + "end": 11317.18, + "probability": 0.6379 + }, + { + "start": 11317.24, + "end": 11317.8, + "probability": 0.4714 + }, + { + "start": 11317.92, + "end": 11319.81, + "probability": 0.7744 + }, + { + "start": 11319.9, + "end": 11320.32, + "probability": 0.2802 + }, + { + "start": 11320.88, + "end": 11321.92, + "probability": 0.692 + }, + { + "start": 11322.0, + "end": 11322.82, + "probability": 0.7172 + }, + { + "start": 11323.04, + "end": 11323.38, + "probability": 0.4189 + }, + { + "start": 11323.44, + "end": 11325.06, + "probability": 0.9031 + }, + { + "start": 11325.77, + "end": 11327.7, + "probability": 0.7853 + }, + { + "start": 11329.5, + "end": 11329.68, + "probability": 0.1426 + }, + { + "start": 11329.68, + "end": 11329.68, + "probability": 0.2763 + }, + { + "start": 11329.68, + "end": 11330.02, + "probability": 0.3223 + }, + { + "start": 11330.12, + "end": 11330.99, + "probability": 0.9437 + }, + { + "start": 11331.48, + "end": 11333.38, + "probability": 0.9885 + }, + { + "start": 11333.48, + "end": 11334.12, + "probability": 0.7638 + }, + { + "start": 11334.5, + "end": 11337.34, + "probability": 0.9622 + }, + { + "start": 11337.48, + "end": 11338.88, + "probability": 0.866 + }, + { + "start": 11339.06, + "end": 11339.7, + "probability": 0.7083 + }, + { + "start": 11340.08, + "end": 11341.56, + "probability": 0.8961 + }, + { + "start": 11341.66, + "end": 11344.4, + "probability": 0.8174 + }, + { + "start": 11344.48, + "end": 11345.76, + "probability": 0.925 + }, + { + "start": 11345.88, + "end": 11346.08, + "probability": 0.9288 + }, + { + "start": 11346.12, + "end": 11347.5, + "probability": 0.894 + }, + { + "start": 11347.62, + "end": 11349.4, + "probability": 0.9975 + }, + { + "start": 11349.48, + "end": 11351.18, + "probability": 0.9257 + }, + { + "start": 11351.34, + "end": 11352.42, + "probability": 0.9127 + }, + { + "start": 11352.96, + "end": 11354.82, + "probability": 0.9829 + }, + { + "start": 11354.94, + "end": 11356.61, + "probability": 0.9976 + }, + { + "start": 11357.02, + "end": 11358.52, + "probability": 0.8403 + }, + { + "start": 11359.12, + "end": 11360.14, + "probability": 0.9834 + }, + { + "start": 11360.24, + "end": 11362.05, + "probability": 0.9932 + }, + { + "start": 11362.14, + "end": 11363.22, + "probability": 0.9956 + }, + { + "start": 11363.8, + "end": 11364.88, + "probability": 0.7051 + }, + { + "start": 11364.94, + "end": 11367.56, + "probability": 0.6273 + }, + { + "start": 11367.66, + "end": 11369.5, + "probability": 0.1993 + }, + { + "start": 11370.1, + "end": 11370.38, + "probability": 0.7623 + }, + { + "start": 11370.56, + "end": 11373.14, + "probability": 0.6774 + }, + { + "start": 11373.4, + "end": 11374.12, + "probability": 0.5661 + }, + { + "start": 11374.14, + "end": 11375.12, + "probability": 0.666 + }, + { + "start": 11375.26, + "end": 11376.1, + "probability": 0.7285 + }, + { + "start": 11376.48, + "end": 11378.38, + "probability": 0.4762 + }, + { + "start": 11378.38, + "end": 11381.48, + "probability": 0.8902 + }, + { + "start": 11381.56, + "end": 11383.56, + "probability": 0.7412 + }, + { + "start": 11383.86, + "end": 11385.02, + "probability": 0.9752 + }, + { + "start": 11385.76, + "end": 11387.36, + "probability": 0.9591 + }, + { + "start": 11387.66, + "end": 11389.18, + "probability": 0.7211 + }, + { + "start": 11389.6, + "end": 11393.7, + "probability": 0.668 + }, + { + "start": 11393.86, + "end": 11397.44, + "probability": 0.994 + }, + { + "start": 11397.84, + "end": 11402.32, + "probability": 0.992 + }, + { + "start": 11402.54, + "end": 11405.6, + "probability": 0.9683 + }, + { + "start": 11405.8, + "end": 11407.16, + "probability": 0.8803 + }, + { + "start": 11407.18, + "end": 11413.68, + "probability": 0.9856 + }, + { + "start": 11414.06, + "end": 11418.66, + "probability": 0.6834 + }, + { + "start": 11418.92, + "end": 11419.3, + "probability": 0.7427 + }, + { + "start": 11419.42, + "end": 11422.68, + "probability": 0.907 + }, + { + "start": 11422.78, + "end": 11423.62, + "probability": 0.6575 + }, + { + "start": 11423.92, + "end": 11426.24, + "probability": 0.8987 + }, + { + "start": 11426.38, + "end": 11428.68, + "probability": 0.9176 + }, + { + "start": 11428.76, + "end": 11430.84, + "probability": 0.9973 + }, + { + "start": 11430.9, + "end": 11432.7, + "probability": 0.9954 + }, + { + "start": 11432.82, + "end": 11436.56, + "probability": 0.9956 + }, + { + "start": 11436.78, + "end": 11437.98, + "probability": 0.567 + }, + { + "start": 11438.08, + "end": 11439.04, + "probability": 0.8474 + }, + { + "start": 11439.5, + "end": 11445.76, + "probability": 0.9738 + }, + { + "start": 11446.76, + "end": 11449.72, + "probability": 0.5253 + }, + { + "start": 11449.76, + "end": 11450.74, + "probability": 0.9277 + }, + { + "start": 11451.44, + "end": 11453.56, + "probability": 0.5753 + }, + { + "start": 11454.38, + "end": 11456.46, + "probability": 0.8425 + }, + { + "start": 11457.1, + "end": 11458.82, + "probability": 0.9084 + }, + { + "start": 11459.92, + "end": 11465.06, + "probability": 0.977 + }, + { + "start": 11465.2, + "end": 11465.92, + "probability": 0.6572 + }, + { + "start": 11467.02, + "end": 11467.76, + "probability": 0.9464 + }, + { + "start": 11468.14, + "end": 11468.72, + "probability": 0.941 + }, + { + "start": 11468.84, + "end": 11469.4, + "probability": 0.8157 + }, + { + "start": 11469.5, + "end": 11472.02, + "probability": 0.9378 + }, + { + "start": 11472.84, + "end": 11474.36, + "probability": 0.9863 + }, + { + "start": 11475.22, + "end": 11477.36, + "probability": 0.9761 + }, + { + "start": 11477.4, + "end": 11479.66, + "probability": 0.8433 + }, + { + "start": 11479.84, + "end": 11480.42, + "probability": 0.8107 + }, + { + "start": 11481.96, + "end": 11482.36, + "probability": 0.5246 + }, + { + "start": 11483.32, + "end": 11483.82, + "probability": 0.3557 + }, + { + "start": 11483.86, + "end": 11484.74, + "probability": 0.9827 + }, + { + "start": 11484.78, + "end": 11486.18, + "probability": 0.9441 + }, + { + "start": 11486.62, + "end": 11489.1, + "probability": 0.9473 + }, + { + "start": 11490.32, + "end": 11491.96, + "probability": 0.9044 + }, + { + "start": 11492.02, + "end": 11494.98, + "probability": 0.9686 + }, + { + "start": 11497.46, + "end": 11498.12, + "probability": 0.3903 + }, + { + "start": 11498.12, + "end": 11499.12, + "probability": 0.6965 + }, + { + "start": 11499.48, + "end": 11501.06, + "probability": 0.8618 + }, + { + "start": 11501.36, + "end": 11508.8, + "probability": 0.9732 + }, + { + "start": 11509.02, + "end": 11509.4, + "probability": 0.5577 + }, + { + "start": 11510.24, + "end": 11511.56, + "probability": 0.9707 + }, + { + "start": 11511.64, + "end": 11514.98, + "probability": 0.9937 + }, + { + "start": 11516.6, + "end": 11518.76, + "probability": 0.6405 + }, + { + "start": 11519.4, + "end": 11520.36, + "probability": 0.5153 + }, + { + "start": 11520.94, + "end": 11521.28, + "probability": 0.9742 + }, + { + "start": 11521.58, + "end": 11523.64, + "probability": 0.9921 + }, + { + "start": 11524.22, + "end": 11527.6, + "probability": 0.9326 + }, + { + "start": 11528.96, + "end": 11531.78, + "probability": 0.9006 + }, + { + "start": 11531.84, + "end": 11532.79, + "probability": 0.8748 + }, + { + "start": 11532.94, + "end": 11535.68, + "probability": 0.9807 + }, + { + "start": 11535.88, + "end": 11536.96, + "probability": 0.8987 + }, + { + "start": 11537.24, + "end": 11539.2, + "probability": 0.9917 + }, + { + "start": 11539.3, + "end": 11540.34, + "probability": 0.9692 + }, + { + "start": 11540.88, + "end": 11542.8, + "probability": 0.9868 + }, + { + "start": 11543.28, + "end": 11548.74, + "probability": 0.7739 + }, + { + "start": 11548.84, + "end": 11550.47, + "probability": 0.9425 + }, + { + "start": 11551.04, + "end": 11552.5, + "probability": 0.8515 + }, + { + "start": 11554.02, + "end": 11555.46, + "probability": 0.6576 + }, + { + "start": 11556.02, + "end": 11558.06, + "probability": 0.9938 + }, + { + "start": 11558.7, + "end": 11560.56, + "probability": 0.701 + }, + { + "start": 11560.82, + "end": 11562.39, + "probability": 0.9941 + }, + { + "start": 11562.74, + "end": 11564.64, + "probability": 0.9834 + }, + { + "start": 11564.92, + "end": 11566.26, + "probability": 0.7558 + }, + { + "start": 11566.36, + "end": 11569.36, + "probability": 0.9622 + }, + { + "start": 11570.5, + "end": 11572.48, + "probability": 0.9608 + }, + { + "start": 11573.24, + "end": 11573.58, + "probability": 0.5019 + }, + { + "start": 11573.82, + "end": 11574.16, + "probability": 0.7621 + }, + { + "start": 11574.26, + "end": 11574.58, + "probability": 0.6337 + }, + { + "start": 11574.64, + "end": 11574.88, + "probability": 0.6504 + }, + { + "start": 11574.98, + "end": 11578.42, + "probability": 0.9886 + }, + { + "start": 11579.14, + "end": 11581.08, + "probability": 0.8237 + }, + { + "start": 11581.94, + "end": 11588.86, + "probability": 0.8755 + }, + { + "start": 11588.98, + "end": 11589.48, + "probability": 0.6642 + }, + { + "start": 11589.54, + "end": 11594.6, + "probability": 0.9799 + }, + { + "start": 11594.8, + "end": 11595.26, + "probability": 0.6812 + }, + { + "start": 11595.42, + "end": 11599.9, + "probability": 0.8878 + }, + { + "start": 11600.1, + "end": 11600.8, + "probability": 0.922 + }, + { + "start": 11601.78, + "end": 11603.1, + "probability": 0.842 + }, + { + "start": 11603.48, + "end": 11605.68, + "probability": 0.73 + }, + { + "start": 11606.1, + "end": 11607.14, + "probability": 0.8999 + }, + { + "start": 11607.26, + "end": 11612.34, + "probability": 0.9726 + }, + { + "start": 11612.76, + "end": 11613.08, + "probability": 0.7724 + }, + { + "start": 11614.18, + "end": 11618.62, + "probability": 0.9759 + }, + { + "start": 11618.68, + "end": 11622.9, + "probability": 0.9391 + }, + { + "start": 11623.22, + "end": 11625.02, + "probability": 0.943 + }, + { + "start": 11625.06, + "end": 11625.96, + "probability": 0.7394 + }, + { + "start": 11626.08, + "end": 11627.2, + "probability": 0.9924 + }, + { + "start": 11627.3, + "end": 11627.72, + "probability": 0.9567 + }, + { + "start": 11628.76, + "end": 11633.3, + "probability": 0.8701 + }, + { + "start": 11633.5, + "end": 11633.78, + "probability": 0.3661 + }, + { + "start": 11633.82, + "end": 11634.92, + "probability": 0.8908 + }, + { + "start": 11635.34, + "end": 11638.14, + "probability": 0.9191 + }, + { + "start": 11638.44, + "end": 11640.28, + "probability": 0.9437 + }, + { + "start": 11641.06, + "end": 11644.1, + "probability": 0.7258 + }, + { + "start": 11644.74, + "end": 11649.18, + "probability": 0.9841 + }, + { + "start": 11650.5, + "end": 11653.32, + "probability": 0.7485 + }, + { + "start": 11653.68, + "end": 11654.34, + "probability": 0.8783 + }, + { + "start": 11654.36, + "end": 11656.54, + "probability": 0.9527 + }, + { + "start": 11656.88, + "end": 11658.36, + "probability": 0.9802 + }, + { + "start": 11658.54, + "end": 11659.28, + "probability": 0.8083 + }, + { + "start": 11660.16, + "end": 11662.56, + "probability": 0.9406 + }, + { + "start": 11662.8, + "end": 11663.24, + "probability": 0.6905 + }, + { + "start": 11664.14, + "end": 11667.48, + "probability": 0.9695 + }, + { + "start": 11667.9, + "end": 11671.34, + "probability": 0.9928 + }, + { + "start": 11671.4, + "end": 11673.46, + "probability": 0.9855 + }, + { + "start": 11673.86, + "end": 11674.6, + "probability": 0.9822 + }, + { + "start": 11674.96, + "end": 11678.62, + "probability": 0.9959 + }, + { + "start": 11679.42, + "end": 11680.4, + "probability": 0.7198 + }, + { + "start": 11680.86, + "end": 11681.32, + "probability": 0.873 + }, + { + "start": 11682.2, + "end": 11685.29, + "probability": 0.9443 + }, + { + "start": 11685.78, + "end": 11686.82, + "probability": 0.9771 + }, + { + "start": 11686.9, + "end": 11689.89, + "probability": 0.9004 + }, + { + "start": 11690.08, + "end": 11692.52, + "probability": 0.5977 + }, + { + "start": 11692.56, + "end": 11693.96, + "probability": 0.8921 + }, + { + "start": 11695.06, + "end": 11697.6, + "probability": 0.9459 + }, + { + "start": 11698.16, + "end": 11699.78, + "probability": 0.8709 + }, + { + "start": 11699.8, + "end": 11702.34, + "probability": 0.6572 + }, + { + "start": 11703.28, + "end": 11705.22, + "probability": 0.9567 + }, + { + "start": 11706.02, + "end": 11711.6, + "probability": 0.9225 + }, + { + "start": 11711.68, + "end": 11713.58, + "probability": 0.9409 + }, + { + "start": 11714.64, + "end": 11715.12, + "probability": 0.3917 + }, + { + "start": 11715.52, + "end": 11716.9, + "probability": 0.8039 + }, + { + "start": 11717.4, + "end": 11718.64, + "probability": 0.9668 + }, + { + "start": 11718.86, + "end": 11720.58, + "probability": 0.9758 + }, + { + "start": 11721.1, + "end": 11721.32, + "probability": 0.7871 + }, + { + "start": 11721.44, + "end": 11723.12, + "probability": 0.9383 + }, + { + "start": 11723.98, + "end": 11726.62, + "probability": 0.8423 + }, + { + "start": 11727.24, + "end": 11729.3, + "probability": 0.9522 + }, + { + "start": 11729.4, + "end": 11733.3, + "probability": 0.8276 + }, + { + "start": 11733.4, + "end": 11736.19, + "probability": 0.9019 + }, + { + "start": 11736.82, + "end": 11740.64, + "probability": 0.9739 + }, + { + "start": 11740.8, + "end": 11741.78, + "probability": 0.6553 + }, + { + "start": 11742.62, + "end": 11747.56, + "probability": 0.9987 + }, + { + "start": 11747.84, + "end": 11751.2, + "probability": 0.7097 + }, + { + "start": 11751.68, + "end": 11753.62, + "probability": 0.5812 + }, + { + "start": 11754.06, + "end": 11754.8, + "probability": 0.9406 + }, + { + "start": 11754.86, + "end": 11757.68, + "probability": 0.9598 + }, + { + "start": 11757.82, + "end": 11760.62, + "probability": 0.9833 + }, + { + "start": 11761.7, + "end": 11766.18, + "probability": 0.9248 + }, + { + "start": 11766.18, + "end": 11769.24, + "probability": 0.9348 + }, + { + "start": 11769.98, + "end": 11773.48, + "probability": 0.9825 + }, + { + "start": 11773.62, + "end": 11777.8, + "probability": 0.9894 + }, + { + "start": 11778.3, + "end": 11779.64, + "probability": 0.6765 + }, + { + "start": 11780.5, + "end": 11784.5, + "probability": 0.9731 + }, + { + "start": 11784.56, + "end": 11787.24, + "probability": 0.9917 + }, + { + "start": 11787.82, + "end": 11789.82, + "probability": 0.9674 + }, + { + "start": 11790.32, + "end": 11791.46, + "probability": 0.9301 + }, + { + "start": 11792.08, + "end": 11792.24, + "probability": 0.4979 + }, + { + "start": 11793.82, + "end": 11794.72, + "probability": 0.7572 + }, + { + "start": 11795.76, + "end": 11799.76, + "probability": 0.8165 + }, + { + "start": 11800.1, + "end": 11800.72, + "probability": 0.5149 + }, + { + "start": 11801.74, + "end": 11808.68, + "probability": 0.892 + }, + { + "start": 11809.62, + "end": 11811.44, + "probability": 0.9802 + }, + { + "start": 11811.72, + "end": 11815.16, + "probability": 0.9834 + }, + { + "start": 11815.8, + "end": 11820.9, + "probability": 0.8028 + }, + { + "start": 11821.36, + "end": 11824.08, + "probability": 0.5838 + }, + { + "start": 11824.48, + "end": 11825.74, + "probability": 0.7494 + }, + { + "start": 11825.98, + "end": 11826.66, + "probability": 0.9399 + }, + { + "start": 11827.1, + "end": 11829.46, + "probability": 0.9819 + }, + { + "start": 11830.1, + "end": 11831.64, + "probability": 0.7436 + }, + { + "start": 11831.76, + "end": 11833.98, + "probability": 0.9387 + }, + { + "start": 11834.1, + "end": 11835.68, + "probability": 0.9907 + }, + { + "start": 11835.98, + "end": 11836.5, + "probability": 0.9325 + }, + { + "start": 11836.7, + "end": 11837.8, + "probability": 0.8731 + }, + { + "start": 11838.06, + "end": 11838.86, + "probability": 0.9272 + }, + { + "start": 11839.56, + "end": 11840.21, + "probability": 0.9854 + }, + { + "start": 11840.56, + "end": 11841.14, + "probability": 0.6841 + }, + { + "start": 11841.18, + "end": 11843.48, + "probability": 0.9761 + }, + { + "start": 11843.56, + "end": 11844.04, + "probability": 0.4387 + }, + { + "start": 11844.42, + "end": 11846.3, + "probability": 0.7423 + }, + { + "start": 11846.38, + "end": 11847.36, + "probability": 0.6054 + }, + { + "start": 11847.36, + "end": 11848.56, + "probability": 0.7305 + }, + { + "start": 11848.88, + "end": 11851.32, + "probability": 0.993 + }, + { + "start": 11851.64, + "end": 11853.04, + "probability": 0.946 + }, + { + "start": 11853.28, + "end": 11854.1, + "probability": 0.8695 + }, + { + "start": 11854.72, + "end": 11858.54, + "probability": 0.7482 + }, + { + "start": 11859.06, + "end": 11861.42, + "probability": 0.4767 + }, + { + "start": 11861.46, + "end": 11862.36, + "probability": 0.8191 + }, + { + "start": 11862.44, + "end": 11863.08, + "probability": 0.7811 + }, + { + "start": 11863.44, + "end": 11864.64, + "probability": 0.9741 + }, + { + "start": 11865.54, + "end": 11868.6, + "probability": 0.9831 + }, + { + "start": 11868.64, + "end": 11869.14, + "probability": 0.829 + }, + { + "start": 11869.2, + "end": 11871.98, + "probability": 0.8951 + }, + { + "start": 11872.46, + "end": 11873.89, + "probability": 0.5909 + }, + { + "start": 11874.38, + "end": 11878.62, + "probability": 0.9606 + }, + { + "start": 11879.32, + "end": 11881.68, + "probability": 0.9602 + }, + { + "start": 11881.96, + "end": 11882.96, + "probability": 0.9287 + }, + { + "start": 11883.38, + "end": 11888.34, + "probability": 0.9832 + }, + { + "start": 11888.74, + "end": 11890.96, + "probability": 0.7506 + }, + { + "start": 11891.16, + "end": 11891.74, + "probability": 0.5272 + }, + { + "start": 11892.0, + "end": 11896.28, + "probability": 0.9819 + }, + { + "start": 11896.44, + "end": 11897.54, + "probability": 0.8472 + }, + { + "start": 11897.8, + "end": 11900.06, + "probability": 0.9199 + }, + { + "start": 11900.34, + "end": 11900.43, + "probability": 0.2461 + }, + { + "start": 11901.16, + "end": 11903.38, + "probability": 0.9793 + }, + { + "start": 11903.92, + "end": 11904.5, + "probability": 0.6512 + }, + { + "start": 11905.54, + "end": 11906.04, + "probability": 0.3167 + }, + { + "start": 11906.56, + "end": 11909.14, + "probability": 0.9388 + }, + { + "start": 11909.58, + "end": 11912.6, + "probability": 0.7058 + }, + { + "start": 11914.28, + "end": 11916.24, + "probability": 0.8075 + }, + { + "start": 11916.88, + "end": 11919.66, + "probability": 0.9847 + }, + { + "start": 11919.72, + "end": 11921.23, + "probability": 0.867 + }, + { + "start": 11924.24, + "end": 11927.12, + "probability": 0.5947 + }, + { + "start": 11928.32, + "end": 11932.88, + "probability": 0.9928 + }, + { + "start": 11934.28, + "end": 11938.46, + "probability": 0.6933 + }, + { + "start": 11939.18, + "end": 11939.46, + "probability": 0.1401 + }, + { + "start": 11939.5, + "end": 11941.42, + "probability": 0.7828 + }, + { + "start": 11942.42, + "end": 11946.72, + "probability": 0.9863 + }, + { + "start": 11947.48, + "end": 11952.46, + "probability": 0.8327 + }, + { + "start": 11953.86, + "end": 11957.18, + "probability": 0.7467 + }, + { + "start": 11957.34, + "end": 11963.04, + "probability": 0.9947 + }, + { + "start": 11963.66, + "end": 11965.4, + "probability": 0.9987 + }, + { + "start": 11966.14, + "end": 11969.15, + "probability": 0.9879 + }, + { + "start": 11969.54, + "end": 11970.54, + "probability": 0.907 + }, + { + "start": 11971.16, + "end": 11973.3, + "probability": 0.8939 + }, + { + "start": 11974.1, + "end": 11974.84, + "probability": 0.7098 + }, + { + "start": 11977.94, + "end": 11978.36, + "probability": 0.1348 + }, + { + "start": 11979.4, + "end": 11980.02, + "probability": 0.7384 + }, + { + "start": 11980.1, + "end": 11982.68, + "probability": 0.7947 + }, + { + "start": 11983.1, + "end": 11984.78, + "probability": 0.8595 + }, + { + "start": 11985.54, + "end": 11987.54, + "probability": 0.7758 + }, + { + "start": 11988.06, + "end": 11989.96, + "probability": 0.9844 + }, + { + "start": 11990.76, + "end": 11996.88, + "probability": 0.9825 + }, + { + "start": 11997.16, + "end": 12001.0, + "probability": 0.8597 + }, + { + "start": 12001.62, + "end": 12004.32, + "probability": 0.9505 + }, + { + "start": 12005.14, + "end": 12007.42, + "probability": 0.9941 + }, + { + "start": 12008.22, + "end": 12013.8, + "probability": 0.8377 + }, + { + "start": 12015.0, + "end": 12020.8, + "probability": 0.9941 + }, + { + "start": 12021.86, + "end": 12023.96, + "probability": 0.9081 + }, + { + "start": 12024.3, + "end": 12027.58, + "probability": 0.7192 + }, + { + "start": 12027.64, + "end": 12029.9, + "probability": 0.9517 + }, + { + "start": 12030.82, + "end": 12032.4, + "probability": 0.9318 + }, + { + "start": 12032.56, + "end": 12033.66, + "probability": 0.9622 + }, + { + "start": 12033.72, + "end": 12034.34, + "probability": 0.5966 + }, + { + "start": 12034.36, + "end": 12034.74, + "probability": 0.9002 + }, + { + "start": 12034.78, + "end": 12034.96, + "probability": 0.771 + }, + { + "start": 12035.02, + "end": 12035.76, + "probability": 0.8984 + }, + { + "start": 12036.18, + "end": 12039.7, + "probability": 0.9773 + }, + { + "start": 12040.7, + "end": 12042.24, + "probability": 0.9946 + }, + { + "start": 12044.1, + "end": 12047.1, + "probability": 0.943 + }, + { + "start": 12047.96, + "end": 12049.18, + "probability": 0.8234 + }, + { + "start": 12050.08, + "end": 12053.34, + "probability": 0.9156 + }, + { + "start": 12054.24, + "end": 12056.5, + "probability": 0.8952 + }, + { + "start": 12057.16, + "end": 12058.62, + "probability": 0.9632 + }, + { + "start": 12059.52, + "end": 12059.74, + "probability": 0.1537 + }, + { + "start": 12059.8, + "end": 12061.74, + "probability": 0.8909 + }, + { + "start": 12062.48, + "end": 12063.66, + "probability": 0.8504 + }, + { + "start": 12063.72, + "end": 12070.72, + "probability": 0.8579 + }, + { + "start": 12071.4, + "end": 12074.16, + "probability": 0.9759 + }, + { + "start": 12075.6, + "end": 12080.06, + "probability": 0.9824 + }, + { + "start": 12081.28, + "end": 12081.94, + "probability": 0.4226 + }, + { + "start": 12083.3, + "end": 12088.9, + "probability": 0.9903 + }, + { + "start": 12089.0, + "end": 12089.84, + "probability": 0.934 + }, + { + "start": 12090.38, + "end": 12092.75, + "probability": 0.8608 + }, + { + "start": 12093.74, + "end": 12094.92, + "probability": 0.722 + }, + { + "start": 12095.54, + "end": 12099.34, + "probability": 0.9747 + }, + { + "start": 12100.5, + "end": 12100.96, + "probability": 0.0078 + }, + { + "start": 12101.2, + "end": 12107.22, + "probability": 0.9871 + }, + { + "start": 12108.12, + "end": 12111.3, + "probability": 0.9362 + }, + { + "start": 12111.3, + "end": 12115.12, + "probability": 0.9715 + }, + { + "start": 12116.58, + "end": 12120.7, + "probability": 0.8888 + }, + { + "start": 12121.08, + "end": 12121.85, + "probability": 0.8315 + }, + { + "start": 12121.96, + "end": 12123.74, + "probability": 0.9797 + }, + { + "start": 12125.66, + "end": 12129.24, + "probability": 0.9463 + }, + { + "start": 12129.52, + "end": 12133.48, + "probability": 0.942 + }, + { + "start": 12133.68, + "end": 12137.7, + "probability": 0.9858 + }, + { + "start": 12138.94, + "end": 12141.98, + "probability": 0.7631 + }, + { + "start": 12143.22, + "end": 12144.52, + "probability": 0.8825 + }, + { + "start": 12146.72, + "end": 12151.2, + "probability": 0.6655 + }, + { + "start": 12152.76, + "end": 12153.62, + "probability": 0.6544 + }, + { + "start": 12154.26, + "end": 12154.92, + "probability": 0.8756 + }, + { + "start": 12155.94, + "end": 12159.04, + "probability": 0.9226 + }, + { + "start": 12160.42, + "end": 12165.3, + "probability": 0.9681 + }, + { + "start": 12166.98, + "end": 12172.46, + "probability": 0.8297 + }, + { + "start": 12172.46, + "end": 12176.48, + "probability": 0.95 + }, + { + "start": 12177.02, + "end": 12178.04, + "probability": 0.705 + }, + { + "start": 12178.1, + "end": 12182.58, + "probability": 0.9873 + }, + { + "start": 12182.58, + "end": 12184.5, + "probability": 0.9983 + }, + { + "start": 12185.98, + "end": 12188.64, + "probability": 0.7448 + }, + { + "start": 12189.44, + "end": 12192.88, + "probability": 0.9116 + }, + { + "start": 12195.6, + "end": 12197.7, + "probability": 0.9227 + }, + { + "start": 12198.44, + "end": 12204.4, + "probability": 0.9856 + }, + { + "start": 12204.4, + "end": 12207.66, + "probability": 0.9795 + }, + { + "start": 12208.71, + "end": 12215.16, + "probability": 0.9628 + }, + { + "start": 12215.66, + "end": 12219.05, + "probability": 0.8071 + }, + { + "start": 12220.48, + "end": 12225.94, + "probability": 0.8174 + }, + { + "start": 12226.06, + "end": 12226.68, + "probability": 0.5262 + }, + { + "start": 12226.76, + "end": 12228.23, + "probability": 0.7119 + }, + { + "start": 12228.74, + "end": 12234.66, + "probability": 0.9617 + }, + { + "start": 12235.8, + "end": 12237.28, + "probability": 0.7537 + }, + { + "start": 12237.52, + "end": 12241.84, + "probability": 0.9941 + }, + { + "start": 12242.34, + "end": 12244.6, + "probability": 0.9744 + }, + { + "start": 12244.6, + "end": 12246.62, + "probability": 0.9977 + }, + { + "start": 12248.12, + "end": 12252.02, + "probability": 0.9976 + }, + { + "start": 12252.34, + "end": 12253.52, + "probability": 0.9036 + }, + { + "start": 12253.74, + "end": 12254.34, + "probability": 0.7353 + }, + { + "start": 12255.58, + "end": 12256.56, + "probability": 0.343 + }, + { + "start": 12256.66, + "end": 12257.18, + "probability": 0.905 + }, + { + "start": 12257.28, + "end": 12260.36, + "probability": 0.6569 + }, + { + "start": 12261.94, + "end": 12263.16, + "probability": 0.5281 + }, + { + "start": 12264.66, + "end": 12266.12, + "probability": 0.9077 + }, + { + "start": 12266.74, + "end": 12269.1, + "probability": 0.9736 + }, + { + "start": 12269.1, + "end": 12272.08, + "probability": 0.862 + }, + { + "start": 12272.88, + "end": 12274.94, + "probability": 0.6761 + }, + { + "start": 12276.06, + "end": 12282.1, + "probability": 0.9019 + }, + { + "start": 12282.1, + "end": 12288.66, + "probability": 0.8747 + }, + { + "start": 12289.44, + "end": 12290.44, + "probability": 0.9175 + }, + { + "start": 12290.68, + "end": 12291.32, + "probability": 0.9507 + }, + { + "start": 12291.46, + "end": 12291.86, + "probability": 0.8583 + }, + { + "start": 12291.96, + "end": 12292.48, + "probability": 0.9436 + }, + { + "start": 12292.58, + "end": 12293.24, + "probability": 0.941 + }, + { + "start": 12293.4, + "end": 12294.02, + "probability": 0.96 + }, + { + "start": 12294.38, + "end": 12295.94, + "probability": 0.455 + }, + { + "start": 12296.3, + "end": 12298.66, + "probability": 0.998 + }, + { + "start": 12298.86, + "end": 12299.49, + "probability": 0.9523 + }, + { + "start": 12300.22, + "end": 12306.48, + "probability": 0.9722 + }, + { + "start": 12306.58, + "end": 12309.06, + "probability": 0.9712 + }, + { + "start": 12309.6, + "end": 12311.66, + "probability": 0.7452 + }, + { + "start": 12312.88, + "end": 12313.82, + "probability": 0.9198 + }, + { + "start": 12315.12, + "end": 12320.2, + "probability": 0.8541 + }, + { + "start": 12320.2, + "end": 12324.12, + "probability": 0.9933 + }, + { + "start": 12324.74, + "end": 12325.04, + "probability": 0.1512 + }, + { + "start": 12326.06, + "end": 12329.12, + "probability": 0.9893 + }, + { + "start": 12329.64, + "end": 12330.54, + "probability": 0.863 + }, + { + "start": 12331.14, + "end": 12335.96, + "probability": 0.8816 + }, + { + "start": 12337.08, + "end": 12337.22, + "probability": 0.0184 + }, + { + "start": 12337.3, + "end": 12340.54, + "probability": 0.9444 + }, + { + "start": 12341.34, + "end": 12346.2, + "probability": 0.783 + }, + { + "start": 12347.26, + "end": 12347.4, + "probability": 0.2953 + }, + { + "start": 12347.84, + "end": 12355.0, + "probability": 0.8085 + }, + { + "start": 12355.48, + "end": 12356.18, + "probability": 0.9561 + }, + { + "start": 12357.02, + "end": 12358.44, + "probability": 0.9665 + }, + { + "start": 12359.7, + "end": 12360.08, + "probability": 0.4989 + }, + { + "start": 12361.4, + "end": 12363.78, + "probability": 0.7882 + }, + { + "start": 12364.82, + "end": 12372.14, + "probability": 0.9796 + }, + { + "start": 12373.94, + "end": 12374.12, + "probability": 0.0176 + }, + { + "start": 12374.94, + "end": 12381.46, + "probability": 0.6994 + }, + { + "start": 12382.26, + "end": 12385.36, + "probability": 0.8656 + }, + { + "start": 12386.82, + "end": 12387.82, + "probability": 0.2872 + }, + { + "start": 12388.16, + "end": 12393.12, + "probability": 0.8644 + }, + { + "start": 12394.7, + "end": 12394.94, + "probability": 0.0099 + }, + { + "start": 12395.7, + "end": 12399.56, + "probability": 0.8059 + }, + { + "start": 12399.76, + "end": 12400.34, + "probability": 0.7392 + }, + { + "start": 12400.4, + "end": 12401.5, + "probability": 0.9699 + }, + { + "start": 12401.72, + "end": 12402.54, + "probability": 0.9324 + }, + { + "start": 12402.92, + "end": 12404.56, + "probability": 0.891 + }, + { + "start": 12407.88, + "end": 12408.36, + "probability": 0.4824 + }, + { + "start": 12408.58, + "end": 12410.26, + "probability": 0.8304 + }, + { + "start": 12410.34, + "end": 12410.92, + "probability": 0.7393 + }, + { + "start": 12412.58, + "end": 12417.56, + "probability": 0.9944 + }, + { + "start": 12418.24, + "end": 12419.14, + "probability": 0.9399 + }, + { + "start": 12419.2, + "end": 12423.28, + "probability": 0.9949 + }, + { + "start": 12423.72, + "end": 12426.88, + "probability": 0.9763 + }, + { + "start": 12427.6, + "end": 12431.74, + "probability": 0.8947 + }, + { + "start": 12431.82, + "end": 12433.14, + "probability": 0.8481 + }, + { + "start": 12433.64, + "end": 12434.78, + "probability": 0.414 + }, + { + "start": 12435.04, + "end": 12441.86, + "probability": 0.9954 + }, + { + "start": 12442.08, + "end": 12444.72, + "probability": 0.9128 + }, + { + "start": 12445.22, + "end": 12447.54, + "probability": 0.8946 + }, + { + "start": 12447.76, + "end": 12448.26, + "probability": 0.5083 + }, + { + "start": 12448.38, + "end": 12450.2, + "probability": 0.804 + }, + { + "start": 12450.34, + "end": 12451.76, + "probability": 0.7591 + }, + { + "start": 12451.92, + "end": 12453.42, + "probability": 0.8708 + }, + { + "start": 12453.86, + "end": 12455.92, + "probability": 0.8271 + }, + { + "start": 12457.4, + "end": 12459.02, + "probability": 0.9152 + }, + { + "start": 12460.0, + "end": 12462.92, + "probability": 0.961 + }, + { + "start": 12463.78, + "end": 12464.34, + "probability": 0.8325 + }, + { + "start": 12466.12, + "end": 12467.24, + "probability": 0.1653 + }, + { + "start": 12468.16, + "end": 12469.42, + "probability": 0.6701 + }, + { + "start": 12470.16, + "end": 12473.76, + "probability": 0.9811 + }, + { + "start": 12474.48, + "end": 12481.4, + "probability": 0.9629 + }, + { + "start": 12481.82, + "end": 12483.12, + "probability": 0.735 + }, + { + "start": 12483.16, + "end": 12484.26, + "probability": 0.8999 + }, + { + "start": 12484.9, + "end": 12489.26, + "probability": 0.8237 + }, + { + "start": 12489.78, + "end": 12497.28, + "probability": 0.9922 + }, + { + "start": 12497.96, + "end": 12501.06, + "probability": 0.9954 + }, + { + "start": 12501.96, + "end": 12503.44, + "probability": 0.8144 + }, + { + "start": 12503.46, + "end": 12506.76, + "probability": 0.9797 + }, + { + "start": 12508.04, + "end": 12510.58, + "probability": 0.9326 + }, + { + "start": 12510.64, + "end": 12511.32, + "probability": 0.8902 + }, + { + "start": 12511.34, + "end": 12511.8, + "probability": 0.9104 + }, + { + "start": 12512.44, + "end": 12515.58, + "probability": 0.9697 + }, + { + "start": 12516.12, + "end": 12519.38, + "probability": 0.561 + }, + { + "start": 12520.26, + "end": 12523.6, + "probability": 0.87 + }, + { + "start": 12524.22, + "end": 12525.38, + "probability": 0.8572 + }, + { + "start": 12526.36, + "end": 12528.18, + "probability": 0.7113 + }, + { + "start": 12529.34, + "end": 12530.02, + "probability": 0.9694 + }, + { + "start": 12530.16, + "end": 12530.94, + "probability": 0.8165 + }, + { + "start": 12531.1, + "end": 12533.44, + "probability": 0.9712 + }, + { + "start": 12533.5, + "end": 12535.02, + "probability": 0.9267 + }, + { + "start": 12535.24, + "end": 12536.31, + "probability": 0.9893 + }, + { + "start": 12536.5, + "end": 12543.42, + "probability": 0.9417 + }, + { + "start": 12544.0, + "end": 12546.22, + "probability": 0.8445 + }, + { + "start": 12547.28, + "end": 12547.96, + "probability": 0.4704 + }, + { + "start": 12548.52, + "end": 12551.42, + "probability": 0.9673 + }, + { + "start": 12551.68, + "end": 12552.74, + "probability": 0.85 + }, + { + "start": 12552.8, + "end": 12553.62, + "probability": 0.769 + }, + { + "start": 12553.78, + "end": 12555.62, + "probability": 0.8758 + }, + { + "start": 12556.0, + "end": 12559.24, + "probability": 0.9912 + }, + { + "start": 12559.82, + "end": 12561.64, + "probability": 0.9175 + }, + { + "start": 12562.66, + "end": 12567.06, + "probability": 0.9852 + }, + { + "start": 12567.52, + "end": 12568.24, + "probability": 0.7939 + }, + { + "start": 12569.18, + "end": 12570.2, + "probability": 0.8354 + }, + { + "start": 12570.96, + "end": 12575.94, + "probability": 0.9589 + }, + { + "start": 12575.94, + "end": 12579.36, + "probability": 0.9963 + }, + { + "start": 12580.1, + "end": 12586.28, + "probability": 0.875 + }, + { + "start": 12586.36, + "end": 12586.92, + "probability": 0.6315 + }, + { + "start": 12588.42, + "end": 12591.08, + "probability": 0.8846 + }, + { + "start": 12591.12, + "end": 12593.6, + "probability": 0.842 + }, + { + "start": 12595.62, + "end": 12598.04, + "probability": 0.7822 + }, + { + "start": 12613.5, + "end": 12615.68, + "probability": 0.6295 + }, + { + "start": 12621.74, + "end": 12625.42, + "probability": 0.8612 + }, + { + "start": 12626.9, + "end": 12630.28, + "probability": 0.9841 + }, + { + "start": 12631.56, + "end": 12633.26, + "probability": 0.9902 + }, + { + "start": 12634.08, + "end": 12636.48, + "probability": 0.9683 + }, + { + "start": 12637.34, + "end": 12638.24, + "probability": 0.9845 + }, + { + "start": 12641.18, + "end": 12643.74, + "probability": 0.978 + }, + { + "start": 12644.62, + "end": 12645.34, + "probability": 0.9926 + }, + { + "start": 12646.86, + "end": 12649.94, + "probability": 0.8974 + }, + { + "start": 12653.58, + "end": 12657.54, + "probability": 0.9845 + }, + { + "start": 12660.34, + "end": 12664.0, + "probability": 0.9755 + }, + { + "start": 12664.12, + "end": 12665.5, + "probability": 0.9824 + }, + { + "start": 12665.72, + "end": 12666.94, + "probability": 0.6284 + }, + { + "start": 12668.52, + "end": 12670.94, + "probability": 0.7162 + }, + { + "start": 12672.2, + "end": 12679.16, + "probability": 0.8397 + }, + { + "start": 12679.92, + "end": 12684.76, + "probability": 0.9904 + }, + { + "start": 12684.76, + "end": 12688.56, + "probability": 0.942 + }, + { + "start": 12688.66, + "end": 12690.52, + "probability": 0.5875 + }, + { + "start": 12691.22, + "end": 12694.0, + "probability": 0.9713 + }, + { + "start": 12694.1, + "end": 12694.68, + "probability": 0.9175 + }, + { + "start": 12694.88, + "end": 12695.52, + "probability": 0.991 + }, + { + "start": 12696.22, + "end": 12704.84, + "probability": 0.9922 + }, + { + "start": 12711.08, + "end": 12712.08, + "probability": 0.7223 + }, + { + "start": 12712.2, + "end": 12713.72, + "probability": 0.524 + }, + { + "start": 12714.16, + "end": 12717.98, + "probability": 0.7829 + }, + { + "start": 12719.54, + "end": 12726.36, + "probability": 0.8075 + }, + { + "start": 12728.04, + "end": 12729.02, + "probability": 0.9931 + }, + { + "start": 12729.18, + "end": 12729.3, + "probability": 0.7462 + }, + { + "start": 12729.38, + "end": 12730.68, + "probability": 0.9043 + }, + { + "start": 12731.08, + "end": 12731.78, + "probability": 0.7569 + }, + { + "start": 12731.9, + "end": 12733.12, + "probability": 0.6713 + }, + { + "start": 12733.84, + "end": 12737.8, + "probability": 0.1522 + }, + { + "start": 12739.48, + "end": 12742.32, + "probability": 0.813 + }, + { + "start": 12742.82, + "end": 12744.54, + "probability": 0.8654 + }, + { + "start": 12744.72, + "end": 12746.04, + "probability": 0.7229 + }, + { + "start": 12746.44, + "end": 12751.45, + "probability": 0.999 + }, + { + "start": 12751.5, + "end": 12755.02, + "probability": 0.9978 + }, + { + "start": 12756.54, + "end": 12757.98, + "probability": 0.993 + }, + { + "start": 12758.6, + "end": 12759.36, + "probability": 0.4911 + }, + { + "start": 12760.08, + "end": 12762.48, + "probability": 0.7761 + }, + { + "start": 12763.8, + "end": 12766.06, + "probability": 0.9985 + }, + { + "start": 12766.76, + "end": 12769.14, + "probability": 0.855 + }, + { + "start": 12769.34, + "end": 12770.35, + "probability": 0.9476 + }, + { + "start": 12770.72, + "end": 12772.32, + "probability": 0.5922 + }, + { + "start": 12773.06, + "end": 12777.48, + "probability": 0.9967 + }, + { + "start": 12777.48, + "end": 12783.44, + "probability": 0.9915 + }, + { + "start": 12783.54, + "end": 12785.64, + "probability": 0.826 + }, + { + "start": 12786.58, + "end": 12787.46, + "probability": 0.8257 + }, + { + "start": 12787.56, + "end": 12788.24, + "probability": 0.8177 + }, + { + "start": 12788.32, + "end": 12788.98, + "probability": 0.8852 + }, + { + "start": 12789.04, + "end": 12789.84, + "probability": 0.6983 + }, + { + "start": 12791.28, + "end": 12796.06, + "probability": 0.9462 + }, + { + "start": 12798.38, + "end": 12799.7, + "probability": 0.9346 + }, + { + "start": 12800.42, + "end": 12801.68, + "probability": 0.9746 + }, + { + "start": 12803.24, + "end": 12809.0, + "probability": 0.981 + }, + { + "start": 12810.56, + "end": 12814.06, + "probability": 0.8669 + }, + { + "start": 12815.44, + "end": 12816.74, + "probability": 0.9463 + }, + { + "start": 12817.48, + "end": 12818.52, + "probability": 0.737 + }, + { + "start": 12821.56, + "end": 12822.92, + "probability": 0.9973 + }, + { + "start": 12827.22, + "end": 12828.76, + "probability": 0.614 + }, + { + "start": 12829.0, + "end": 12831.38, + "probability": 0.9542 + }, + { + "start": 12831.46, + "end": 12834.48, + "probability": 0.9226 + }, + { + "start": 12835.34, + "end": 12837.86, + "probability": 0.9676 + }, + { + "start": 12840.86, + "end": 12846.84, + "probability": 0.9317 + }, + { + "start": 12846.9, + "end": 12847.62, + "probability": 0.947 + }, + { + "start": 12847.78, + "end": 12851.74, + "probability": 0.9963 + }, + { + "start": 12851.82, + "end": 12860.8, + "probability": 0.9719 + }, + { + "start": 12860.8, + "end": 12866.84, + "probability": 0.9665 + }, + { + "start": 12866.98, + "end": 12874.6, + "probability": 0.7202 + }, + { + "start": 12874.64, + "end": 12875.7, + "probability": 0.695 + }, + { + "start": 12876.12, + "end": 12878.4, + "probability": 0.9891 + }, + { + "start": 12878.58, + "end": 12880.27, + "probability": 0.9908 + }, + { + "start": 12880.64, + "end": 12884.42, + "probability": 0.9542 + }, + { + "start": 12886.12, + "end": 12893.42, + "probability": 0.8741 + }, + { + "start": 12895.32, + "end": 12896.33, + "probability": 0.9722 + }, + { + "start": 12896.54, + "end": 12899.28, + "probability": 0.9702 + }, + { + "start": 12899.94, + "end": 12902.06, + "probability": 0.9808 + }, + { + "start": 12902.24, + "end": 12904.76, + "probability": 0.9956 + }, + { + "start": 12905.6, + "end": 12907.82, + "probability": 0.9935 + }, + { + "start": 12907.92, + "end": 12908.56, + "probability": 0.6788 + }, + { + "start": 12908.66, + "end": 12911.08, + "probability": 0.9521 + }, + { + "start": 12911.88, + "end": 12914.82, + "probability": 0.9739 + }, + { + "start": 12918.1, + "end": 12919.86, + "probability": 0.8794 + }, + { + "start": 12920.52, + "end": 12921.36, + "probability": 0.9179 + }, + { + "start": 12921.8, + "end": 12925.2, + "probability": 0.8831 + }, + { + "start": 12927.14, + "end": 12929.62, + "probability": 0.9828 + }, + { + "start": 12929.68, + "end": 12930.54, + "probability": 0.7311 + }, + { + "start": 12930.62, + "end": 12932.08, + "probability": 0.8422 + }, + { + "start": 12932.58, + "end": 12936.54, + "probability": 0.902 + }, + { + "start": 12937.14, + "end": 12941.6, + "probability": 0.9978 + }, + { + "start": 12942.98, + "end": 12948.3, + "probability": 0.8979 + }, + { + "start": 12949.62, + "end": 12951.2, + "probability": 0.9807 + }, + { + "start": 12951.72, + "end": 12952.46, + "probability": 0.389 + }, + { + "start": 12953.33, + "end": 12957.94, + "probability": 0.932 + }, + { + "start": 12959.0, + "end": 12962.34, + "probability": 0.8812 + }, + { + "start": 12962.84, + "end": 12968.26, + "probability": 0.989 + }, + { + "start": 12971.42, + "end": 12978.92, + "probability": 0.9728 + }, + { + "start": 12980.7, + "end": 12982.36, + "probability": 0.8584 + }, + { + "start": 12986.34, + "end": 12990.96, + "probability": 0.8995 + }, + { + "start": 12992.32, + "end": 12994.85, + "probability": 0.7618 + }, + { + "start": 12995.68, + "end": 12997.7, + "probability": 0.9567 + }, + { + "start": 12998.16, + "end": 13000.98, + "probability": 0.9885 + }, + { + "start": 13000.98, + "end": 13004.62, + "probability": 0.8803 + }, + { + "start": 13005.08, + "end": 13007.3, + "probability": 0.7348 + }, + { + "start": 13007.98, + "end": 13008.86, + "probability": 0.821 + }, + { + "start": 13011.66, + "end": 13013.04, + "probability": 0.5002 + }, + { + "start": 13013.06, + "end": 13017.42, + "probability": 0.7138 + }, + { + "start": 13018.82, + "end": 13021.68, + "probability": 0.8758 + }, + { + "start": 13021.8, + "end": 13023.94, + "probability": 0.949 + }, + { + "start": 13025.08, + "end": 13029.38, + "probability": 0.982 + }, + { + "start": 13030.04, + "end": 13031.54, + "probability": 0.5015 + }, + { + "start": 13032.1, + "end": 13035.84, + "probability": 0.9836 + }, + { + "start": 13036.22, + "end": 13037.46, + "probability": 0.9293 + }, + { + "start": 13037.84, + "end": 13038.74, + "probability": 0.7331 + }, + { + "start": 13038.8, + "end": 13041.48, + "probability": 0.9486 + }, + { + "start": 13041.94, + "end": 13045.5, + "probability": 0.9819 + }, + { + "start": 13045.88, + "end": 13047.96, + "probability": 0.5349 + }, + { + "start": 13049.78, + "end": 13049.96, + "probability": 0.2047 + }, + { + "start": 13050.12, + "end": 13059.76, + "probability": 0.9591 + }, + { + "start": 13059.84, + "end": 13060.52, + "probability": 0.4593 + }, + { + "start": 13061.28, + "end": 13064.14, + "probability": 0.9785 + }, + { + "start": 13064.34, + "end": 13065.62, + "probability": 0.7133 + }, + { + "start": 13067.06, + "end": 13074.54, + "probability": 0.9453 + }, + { + "start": 13076.52, + "end": 13080.46, + "probability": 0.9097 + }, + { + "start": 13081.98, + "end": 13083.2, + "probability": 0.8259 + }, + { + "start": 13083.74, + "end": 13085.57, + "probability": 0.8567 + }, + { + "start": 13086.06, + "end": 13091.84, + "probability": 0.9493 + }, + { + "start": 13093.62, + "end": 13095.58, + "probability": 0.8475 + }, + { + "start": 13097.72, + "end": 13102.12, + "probability": 0.9515 + }, + { + "start": 13102.44, + "end": 13107.38, + "probability": 0.8068 + }, + { + "start": 13107.38, + "end": 13112.7, + "probability": 0.8581 + }, + { + "start": 13116.64, + "end": 13117.13, + "probability": 0.9041 + }, + { + "start": 13117.3, + "end": 13119.6, + "probability": 0.8677 + }, + { + "start": 13126.16, + "end": 13129.74, + "probability": 0.8517 + }, + { + "start": 13130.26, + "end": 13131.64, + "probability": 0.6365 + }, + { + "start": 13131.78, + "end": 13133.72, + "probability": 0.9945 + }, + { + "start": 13134.54, + "end": 13137.34, + "probability": 0.9951 + }, + { + "start": 13137.34, + "end": 13140.84, + "probability": 0.7537 + }, + { + "start": 13141.16, + "end": 13145.22, + "probability": 0.9113 + }, + { + "start": 13145.3, + "end": 13153.64, + "probability": 0.9678 + }, + { + "start": 13153.98, + "end": 13155.44, + "probability": 0.8035 + }, + { + "start": 13158.19, + "end": 13160.48, + "probability": 0.101 + }, + { + "start": 13161.6, + "end": 13162.42, + "probability": 0.0041 + }, + { + "start": 13163.36, + "end": 13165.02, + "probability": 0.9762 + }, + { + "start": 13165.66, + "end": 13170.42, + "probability": 0.8009 + }, + { + "start": 13171.16, + "end": 13171.5, + "probability": 0.704 + }, + { + "start": 13172.74, + "end": 13174.82, + "probability": 0.9858 + }, + { + "start": 13175.88, + "end": 13176.58, + "probability": 0.3774 + }, + { + "start": 13177.44, + "end": 13177.98, + "probability": 0.9523 + }, + { + "start": 13178.8, + "end": 13181.28, + "probability": 0.9634 + }, + { + "start": 13181.28, + "end": 13184.3, + "probability": 0.9507 + }, + { + "start": 13184.7, + "end": 13185.48, + "probability": 0.6886 + }, + { + "start": 13185.78, + "end": 13186.66, + "probability": 0.2095 + }, + { + "start": 13186.76, + "end": 13188.12, + "probability": 0.7569 + }, + { + "start": 13190.64, + "end": 13191.62, + "probability": 0.8679 + }, + { + "start": 13193.82, + "end": 13196.56, + "probability": 0.9976 + }, + { + "start": 13199.52, + "end": 13200.18, + "probability": 0.2666 + }, + { + "start": 13200.18, + "end": 13202.54, + "probability": 0.9946 + }, + { + "start": 13203.35, + "end": 13205.86, + "probability": 0.9992 + }, + { + "start": 13205.9, + "end": 13206.2, + "probability": 0.9418 + }, + { + "start": 13206.26, + "end": 13208.34, + "probability": 0.9491 + }, + { + "start": 13209.38, + "end": 13213.12, + "probability": 0.7714 + }, + { + "start": 13214.04, + "end": 13215.05, + "probability": 0.9077 + }, + { + "start": 13215.34, + "end": 13217.28, + "probability": 0.9458 + }, + { + "start": 13217.28, + "end": 13219.6, + "probability": 0.496 + }, + { + "start": 13220.48, + "end": 13223.06, + "probability": 0.9868 + }, + { + "start": 13223.22, + "end": 13225.62, + "probability": 0.9943 + }, + { + "start": 13227.0, + "end": 13228.88, + "probability": 0.9724 + }, + { + "start": 13228.96, + "end": 13231.56, + "probability": 0.9773 + }, + { + "start": 13231.92, + "end": 13233.48, + "probability": 0.9883 + }, + { + "start": 13233.56, + "end": 13235.42, + "probability": 0.617 + }, + { + "start": 13237.4, + "end": 13238.36, + "probability": 0.411 + }, + { + "start": 13238.82, + "end": 13242.28, + "probability": 0.9148 + }, + { + "start": 13242.38, + "end": 13244.84, + "probability": 0.9926 + }, + { + "start": 13245.94, + "end": 13247.94, + "probability": 0.8828 + }, + { + "start": 13248.88, + "end": 13249.6, + "probability": 0.8935 + }, + { + "start": 13250.06, + "end": 13251.44, + "probability": 0.9669 + }, + { + "start": 13251.56, + "end": 13256.32, + "probability": 0.988 + }, + { + "start": 13257.42, + "end": 13259.14, + "probability": 0.6753 + }, + { + "start": 13259.89, + "end": 13263.24, + "probability": 0.991 + }, + { + "start": 13265.36, + "end": 13266.83, + "probability": 0.8729 + }, + { + "start": 13267.62, + "end": 13271.98, + "probability": 0.8686 + }, + { + "start": 13272.08, + "end": 13272.9, + "probability": 0.9367 + }, + { + "start": 13272.96, + "end": 13274.14, + "probability": 0.9785 + }, + { + "start": 13274.2, + "end": 13274.87, + "probability": 0.6857 + }, + { + "start": 13275.74, + "end": 13278.62, + "probability": 0.9546 + }, + { + "start": 13278.68, + "end": 13283.14, + "probability": 0.9959 + }, + { + "start": 13285.14, + "end": 13288.38, + "probability": 0.9916 + }, + { + "start": 13294.92, + "end": 13300.03, + "probability": 0.9795 + }, + { + "start": 13300.42, + "end": 13301.44, + "probability": 0.6652 + }, + { + "start": 13301.48, + "end": 13307.14, + "probability": 0.9038 + }, + { + "start": 13308.0, + "end": 13312.8, + "probability": 0.9949 + }, + { + "start": 13314.54, + "end": 13315.96, + "probability": 0.9807 + }, + { + "start": 13320.88, + "end": 13324.48, + "probability": 0.6132 + }, + { + "start": 13324.76, + "end": 13325.02, + "probability": 0.6486 + }, + { + "start": 13325.1, + "end": 13326.16, + "probability": 0.337 + }, + { + "start": 13326.42, + "end": 13328.18, + "probability": 0.9339 + }, + { + "start": 13329.28, + "end": 13329.56, + "probability": 0.4927 + }, + { + "start": 13329.58, + "end": 13331.44, + "probability": 0.9438 + }, + { + "start": 13331.64, + "end": 13334.02, + "probability": 0.9759 + }, + { + "start": 13334.72, + "end": 13335.26, + "probability": 0.6684 + }, + { + "start": 13336.12, + "end": 13336.92, + "probability": 0.9966 + }, + { + "start": 13338.0, + "end": 13339.8, + "probability": 0.8905 + }, + { + "start": 13340.4, + "end": 13344.66, + "probability": 0.9111 + }, + { + "start": 13344.72, + "end": 13348.96, + "probability": 0.9508 + }, + { + "start": 13349.8, + "end": 13351.74, + "probability": 0.9878 + }, + { + "start": 13352.88, + "end": 13355.46, + "probability": 0.9041 + }, + { + "start": 13356.04, + "end": 13359.72, + "probability": 0.892 + }, + { + "start": 13360.1, + "end": 13364.74, + "probability": 0.9829 + }, + { + "start": 13364.74, + "end": 13371.74, + "probability": 0.9279 + }, + { + "start": 13372.76, + "end": 13374.4, + "probability": 0.8805 + }, + { + "start": 13374.44, + "end": 13374.9, + "probability": 0.8115 + }, + { + "start": 13375.92, + "end": 13377.28, + "probability": 0.865 + }, + { + "start": 13377.6, + "end": 13379.42, + "probability": 0.9117 + }, + { + "start": 13379.46, + "end": 13379.74, + "probability": 0.6977 + }, + { + "start": 13379.81, + "end": 13385.54, + "probability": 0.9421 + }, + { + "start": 13385.76, + "end": 13388.52, + "probability": 0.9338 + }, + { + "start": 13389.68, + "end": 13390.1, + "probability": 0.9437 + }, + { + "start": 13390.22, + "end": 13390.96, + "probability": 0.4881 + }, + { + "start": 13391.08, + "end": 13391.92, + "probability": 0.8457 + }, + { + "start": 13391.96, + "end": 13392.76, + "probability": 0.6618 + }, + { + "start": 13392.82, + "end": 13395.18, + "probability": 0.8173 + }, + { + "start": 13395.82, + "end": 13399.2, + "probability": 0.993 + }, + { + "start": 13399.34, + "end": 13401.3, + "probability": 0.9825 + }, + { + "start": 13401.64, + "end": 13402.84, + "probability": 0.5135 + }, + { + "start": 13402.92, + "end": 13404.8, + "probability": 0.7948 + }, + { + "start": 13405.12, + "end": 13407.26, + "probability": 0.8064 + }, + { + "start": 13407.38, + "end": 13408.8, + "probability": 0.8371 + }, + { + "start": 13409.1, + "end": 13411.06, + "probability": 0.9666 + }, + { + "start": 13411.36, + "end": 13414.3, + "probability": 0.9424 + }, + { + "start": 13414.42, + "end": 13414.6, + "probability": 0.6766 + }, + { + "start": 13414.62, + "end": 13418.4, + "probability": 0.9772 + }, + { + "start": 13418.62, + "end": 13420.61, + "probability": 0.9959 + }, + { + "start": 13421.78, + "end": 13422.52, + "probability": 0.9732 + }, + { + "start": 13423.16, + "end": 13424.08, + "probability": 0.9814 + }, + { + "start": 13424.34, + "end": 13426.14, + "probability": 0.9806 + }, + { + "start": 13428.0, + "end": 13429.24, + "probability": 0.9178 + }, + { + "start": 13429.6, + "end": 13431.32, + "probability": 0.98 + }, + { + "start": 13431.38, + "end": 13435.44, + "probability": 0.9738 + }, + { + "start": 13441.02, + "end": 13443.38, + "probability": 0.9036 + }, + { + "start": 13445.11, + "end": 13448.6, + "probability": 0.9724 + }, + { + "start": 13451.62, + "end": 13455.76, + "probability": 0.993 + }, + { + "start": 13457.1, + "end": 13461.76, + "probability": 0.9785 + }, + { + "start": 13462.76, + "end": 13468.12, + "probability": 0.9847 + }, + { + "start": 13469.16, + "end": 13476.84, + "probability": 0.8745 + }, + { + "start": 13476.96, + "end": 13477.89, + "probability": 0.7803 + }, + { + "start": 13480.66, + "end": 13482.66, + "probability": 0.9865 + }, + { + "start": 13483.36, + "end": 13485.86, + "probability": 0.9656 + }, + { + "start": 13487.22, + "end": 13487.42, + "probability": 0.546 + }, + { + "start": 13487.46, + "end": 13488.6, + "probability": 0.9711 + }, + { + "start": 13488.62, + "end": 13494.74, + "probability": 0.7915 + }, + { + "start": 13495.4, + "end": 13496.92, + "probability": 0.8201 + }, + { + "start": 13498.52, + "end": 13499.9, + "probability": 0.6499 + }, + { + "start": 13499.92, + "end": 13500.4, + "probability": 0.7095 + }, + { + "start": 13501.09, + "end": 13505.16, + "probability": 0.9852 + }, + { + "start": 13505.5, + "end": 13510.28, + "probability": 0.8994 + }, + { + "start": 13510.5, + "end": 13511.4, + "probability": 0.7056 + }, + { + "start": 13511.46, + "end": 13512.94, + "probability": 0.4916 + }, + { + "start": 13513.0, + "end": 13513.74, + "probability": 0.9716 + }, + { + "start": 13513.82, + "end": 13516.6, + "probability": 0.9595 + }, + { + "start": 13517.7, + "end": 13517.88, + "probability": 0.297 + }, + { + "start": 13517.94, + "end": 13521.0, + "probability": 0.9147 + }, + { + "start": 13521.04, + "end": 13523.44, + "probability": 0.5997 + }, + { + "start": 13524.14, + "end": 13524.5, + "probability": 0.9584 + }, + { + "start": 13526.26, + "end": 13527.54, + "probability": 0.9631 + }, + { + "start": 13528.9, + "end": 13529.26, + "probability": 0.95 + }, + { + "start": 13530.04, + "end": 13531.02, + "probability": 0.7094 + }, + { + "start": 13531.78, + "end": 13532.96, + "probability": 0.6303 + }, + { + "start": 13535.88, + "end": 13536.3, + "probability": 0.8027 + }, + { + "start": 13537.02, + "end": 13542.72, + "probability": 0.972 + }, + { + "start": 13543.2, + "end": 13544.22, + "probability": 0.8575 + }, + { + "start": 13549.22, + "end": 13553.62, + "probability": 0.9582 + }, + { + "start": 13555.76, + "end": 13558.06, + "probability": 0.7356 + }, + { + "start": 13559.78, + "end": 13561.78, + "probability": 0.8246 + }, + { + "start": 13561.86, + "end": 13569.1, + "probability": 0.8962 + }, + { + "start": 13570.0, + "end": 13571.62, + "probability": 0.9497 + }, + { + "start": 13572.22, + "end": 13572.74, + "probability": 0.869 + }, + { + "start": 13572.92, + "end": 13575.28, + "probability": 0.8133 + }, + { + "start": 13575.58, + "end": 13578.76, + "probability": 0.9871 + }, + { + "start": 13579.02, + "end": 13580.27, + "probability": 0.9218 + }, + { + "start": 13580.6, + "end": 13581.78, + "probability": 0.8706 + }, + { + "start": 13583.96, + "end": 13587.46, + "probability": 0.9038 + }, + { + "start": 13587.72, + "end": 13590.24, + "probability": 0.5337 + }, + { + "start": 13590.92, + "end": 13592.48, + "probability": 0.8192 + }, + { + "start": 13592.48, + "end": 13593.08, + "probability": 0.6792 + }, + { + "start": 13593.18, + "end": 13597.56, + "probability": 0.9675 + }, + { + "start": 13599.36, + "end": 13601.16, + "probability": 0.9341 + }, + { + "start": 13602.18, + "end": 13606.36, + "probability": 0.9866 + }, + { + "start": 13606.92, + "end": 13613.34, + "probability": 0.893 + }, + { + "start": 13613.36, + "end": 13617.3, + "probability": 0.8552 + }, + { + "start": 13617.82, + "end": 13618.24, + "probability": 0.9696 + }, + { + "start": 13618.72, + "end": 13622.02, + "probability": 0.9065 + }, + { + "start": 13623.74, + "end": 13626.4, + "probability": 0.3422 + }, + { + "start": 13628.34, + "end": 13630.14, + "probability": 0.2504 + }, + { + "start": 13630.56, + "end": 13631.06, + "probability": 0.3647 + }, + { + "start": 13631.16, + "end": 13631.8, + "probability": 0.564 + }, + { + "start": 13632.58, + "end": 13635.8, + "probability": 0.915 + }, + { + "start": 13636.18, + "end": 13640.08, + "probability": 0.7711 + }, + { + "start": 13640.7, + "end": 13642.16, + "probability": 0.9025 + }, + { + "start": 13642.66, + "end": 13644.34, + "probability": 0.846 + }, + { + "start": 13644.64, + "end": 13648.16, + "probability": 0.9922 + }, + { + "start": 13648.44, + "end": 13651.5, + "probability": 0.9651 + }, + { + "start": 13651.6, + "end": 13651.86, + "probability": 0.7988 + }, + { + "start": 13652.14, + "end": 13655.12, + "probability": 0.9114 + }, + { + "start": 13655.66, + "end": 13658.32, + "probability": 0.9728 + }, + { + "start": 13658.4, + "end": 13660.36, + "probability": 0.8243 + }, + { + "start": 13677.82, + "end": 13678.34, + "probability": 0.3446 + }, + { + "start": 13678.66, + "end": 13681.44, + "probability": 0.6091 + }, + { + "start": 13682.16, + "end": 13688.18, + "probability": 0.9467 + }, + { + "start": 13688.26, + "end": 13689.7, + "probability": 0.8884 + }, + { + "start": 13690.28, + "end": 13693.8, + "probability": 0.9947 + }, + { + "start": 13693.8, + "end": 13698.0, + "probability": 0.9702 + }, + { + "start": 13698.18, + "end": 13700.08, + "probability": 0.8773 + }, + { + "start": 13700.32, + "end": 13701.0, + "probability": 0.1608 + }, + { + "start": 13701.1, + "end": 13701.7, + "probability": 0.8875 + }, + { + "start": 13701.8, + "end": 13706.24, + "probability": 0.9967 + }, + { + "start": 13706.24, + "end": 13710.13, + "probability": 0.9954 + }, + { + "start": 13711.11, + "end": 13714.6, + "probability": 0.5784 + }, + { + "start": 13715.02, + "end": 13721.68, + "probability": 0.9829 + }, + { + "start": 13721.82, + "end": 13724.96, + "probability": 0.9986 + }, + { + "start": 13725.6, + "end": 13726.84, + "probability": 0.8646 + }, + { + "start": 13726.88, + "end": 13729.44, + "probability": 0.5153 + }, + { + "start": 13730.02, + "end": 13731.9, + "probability": 0.9902 + }, + { + "start": 13732.4, + "end": 13735.56, + "probability": 0.9001 + }, + { + "start": 13735.64, + "end": 13738.54, + "probability": 0.9921 + }, + { + "start": 13738.6, + "end": 13739.86, + "probability": 0.9222 + }, + { + "start": 13740.82, + "end": 13744.68, + "probability": 0.9985 + }, + { + "start": 13745.36, + "end": 13749.22, + "probability": 0.9966 + }, + { + "start": 13749.82, + "end": 13755.62, + "probability": 0.9976 + }, + { + "start": 13756.02, + "end": 13759.52, + "probability": 0.998 + }, + { + "start": 13759.84, + "end": 13764.26, + "probability": 0.999 + }, + { + "start": 13765.06, + "end": 13769.78, + "probability": 0.9951 + }, + { + "start": 13770.56, + "end": 13773.04, + "probability": 0.9985 + }, + { + "start": 13773.1, + "end": 13773.78, + "probability": 0.5672 + }, + { + "start": 13773.84, + "end": 13774.72, + "probability": 0.931 + }, + { + "start": 13775.12, + "end": 13780.64, + "probability": 0.9752 + }, + { + "start": 13781.28, + "end": 13785.06, + "probability": 0.9355 + }, + { + "start": 13785.94, + "end": 13786.62, + "probability": 0.8599 + }, + { + "start": 13786.7, + "end": 13788.98, + "probability": 0.8412 + }, + { + "start": 13789.46, + "end": 13793.48, + "probability": 0.9655 + }, + { + "start": 13793.48, + "end": 13797.82, + "probability": 0.9892 + }, + { + "start": 13798.36, + "end": 13801.82, + "probability": 0.7315 + }, + { + "start": 13801.82, + "end": 13805.46, + "probability": 0.9524 + }, + { + "start": 13805.52, + "end": 13805.96, + "probability": 0.9136 + }, + { + "start": 13806.04, + "end": 13808.4, + "probability": 0.9494 + }, + { + "start": 13809.58, + "end": 13811.1, + "probability": 0.5003 + }, + { + "start": 13811.62, + "end": 13815.3, + "probability": 0.9482 + }, + { + "start": 13815.54, + "end": 13820.18, + "probability": 0.9938 + }, + { + "start": 13820.18, + "end": 13824.06, + "probability": 0.9976 + }, + { + "start": 13824.64, + "end": 13829.04, + "probability": 0.9966 + }, + { + "start": 13829.12, + "end": 13833.58, + "probability": 0.9976 + }, + { + "start": 13834.12, + "end": 13835.1, + "probability": 0.8198 + }, + { + "start": 13835.18, + "end": 13836.72, + "probability": 0.8083 + }, + { + "start": 13836.82, + "end": 13839.74, + "probability": 0.9806 + }, + { + "start": 13839.8, + "end": 13841.24, + "probability": 0.8169 + }, + { + "start": 13841.62, + "end": 13843.5, + "probability": 0.9489 + }, + { + "start": 13844.16, + "end": 13846.14, + "probability": 0.932 + }, + { + "start": 13846.22, + "end": 13850.52, + "probability": 0.9966 + }, + { + "start": 13850.62, + "end": 13851.42, + "probability": 0.8516 + }, + { + "start": 13851.82, + "end": 13853.42, + "probability": 0.8793 + }, + { + "start": 13853.46, + "end": 13857.24, + "probability": 0.9951 + }, + { + "start": 13857.96, + "end": 13858.62, + "probability": 0.742 + }, + { + "start": 13858.92, + "end": 13860.86, + "probability": 0.9915 + }, + { + "start": 13861.18, + "end": 13862.68, + "probability": 0.9744 + }, + { + "start": 13863.72, + "end": 13868.32, + "probability": 0.994 + }, + { + "start": 13868.5, + "end": 13870.18, + "probability": 0.6087 + }, + { + "start": 13870.38, + "end": 13871.3, + "probability": 0.8007 + }, + { + "start": 13871.42, + "end": 13871.94, + "probability": 0.6036 + }, + { + "start": 13872.42, + "end": 13874.06, + "probability": 0.9168 + }, + { + "start": 13874.28, + "end": 13877.51, + "probability": 0.6969 + }, + { + "start": 13879.5, + "end": 13880.52, + "probability": 0.8923 + }, + { + "start": 13881.44, + "end": 13881.82, + "probability": 0.7489 + }, + { + "start": 13882.3, + "end": 13883.76, + "probability": 0.9591 + }, + { + "start": 13883.82, + "end": 13885.32, + "probability": 0.9201 + }, + { + "start": 13885.36, + "end": 13886.08, + "probability": 0.8758 + }, + { + "start": 13886.2, + "end": 13886.58, + "probability": 0.8109 + }, + { + "start": 13887.16, + "end": 13890.64, + "probability": 0.8438 + }, + { + "start": 13891.0, + "end": 13895.44, + "probability": 0.8131 + }, + { + "start": 13895.86, + "end": 13899.86, + "probability": 0.9805 + }, + { + "start": 13900.24, + "end": 13902.96, + "probability": 0.9563 + }, + { + "start": 13903.54, + "end": 13906.1, + "probability": 0.8635 + }, + { + "start": 13906.6, + "end": 13910.48, + "probability": 0.9723 + }, + { + "start": 13910.7, + "end": 13913.42, + "probability": 0.9705 + }, + { + "start": 13913.94, + "end": 13915.46, + "probability": 0.957 + }, + { + "start": 13915.76, + "end": 13917.77, + "probability": 0.9728 + }, + { + "start": 13918.24, + "end": 13918.8, + "probability": 0.7106 + }, + { + "start": 13919.56, + "end": 13924.32, + "probability": 0.9191 + }, + { + "start": 13924.46, + "end": 13930.3, + "probability": 0.9915 + }, + { + "start": 13930.62, + "end": 13934.26, + "probability": 0.9956 + }, + { + "start": 13934.52, + "end": 13935.32, + "probability": 0.8166 + }, + { + "start": 13935.46, + "end": 13940.12, + "probability": 0.9067 + }, + { + "start": 13940.44, + "end": 13941.6, + "probability": 0.8158 + }, + { + "start": 13941.64, + "end": 13943.24, + "probability": 0.9349 + }, + { + "start": 13943.34, + "end": 13944.41, + "probability": 0.9145 + }, + { + "start": 13944.72, + "end": 13947.02, + "probability": 0.9954 + }, + { + "start": 13947.02, + "end": 13949.86, + "probability": 0.9655 + }, + { + "start": 13950.62, + "end": 13953.2, + "probability": 0.7827 + }, + { + "start": 13953.58, + "end": 13953.98, + "probability": 0.9329 + }, + { + "start": 13957.22, + "end": 13961.54, + "probability": 0.9517 + }, + { + "start": 13961.54, + "end": 13966.54, + "probability": 0.9369 + }, + { + "start": 13967.34, + "end": 13969.4, + "probability": 0.9963 + }, + { + "start": 13969.46, + "end": 13972.92, + "probability": 0.9296 + }, + { + "start": 13973.22, + "end": 13974.08, + "probability": 0.677 + }, + { + "start": 13974.92, + "end": 13975.56, + "probability": 0.8088 + }, + { + "start": 13977.56, + "end": 13977.98, + "probability": 0.2666 + }, + { + "start": 13977.98, + "end": 13977.98, + "probability": 0.3929 + }, + { + "start": 13978.36, + "end": 13980.78, + "probability": 0.992 + }, + { + "start": 13980.98, + "end": 13983.9, + "probability": 0.9443 + }, + { + "start": 13984.16, + "end": 13987.54, + "probability": 0.9288 + }, + { + "start": 13988.44, + "end": 13989.56, + "probability": 0.5208 + }, + { + "start": 13989.98, + "end": 13993.22, + "probability": 0.9866 + }, + { + "start": 13993.22, + "end": 13995.84, + "probability": 0.8116 + }, + { + "start": 13996.0, + "end": 13999.66, + "probability": 0.9767 + }, + { + "start": 14000.2, + "end": 14003.58, + "probability": 0.9735 + }, + { + "start": 14003.92, + "end": 14008.62, + "probability": 0.9941 + }, + { + "start": 14008.7, + "end": 14009.34, + "probability": 0.7542 + }, + { + "start": 14010.5, + "end": 14014.02, + "probability": 0.9521 + }, + { + "start": 14014.12, + "end": 14015.54, + "probability": 0.9878 + }, + { + "start": 14015.78, + "end": 14016.46, + "probability": 0.8071 + }, + { + "start": 14016.94, + "end": 14018.32, + "probability": 0.978 + }, + { + "start": 14018.38, + "end": 14019.04, + "probability": 0.9443 + }, + { + "start": 14019.74, + "end": 14026.0, + "probability": 0.9837 + }, + { + "start": 14026.18, + "end": 14028.74, + "probability": 0.7827 + }, + { + "start": 14028.86, + "end": 14030.1, + "probability": 0.883 + }, + { + "start": 14030.48, + "end": 14032.7, + "probability": 0.9989 + }, + { + "start": 14032.78, + "end": 14033.16, + "probability": 0.9384 + }, + { + "start": 14033.22, + "end": 14035.64, + "probability": 0.9697 + }, + { + "start": 14036.06, + "end": 14039.24, + "probability": 0.9976 + }, + { + "start": 14039.42, + "end": 14042.01, + "probability": 0.8448 + }, + { + "start": 14043.04, + "end": 14044.38, + "probability": 0.9101 + }, + { + "start": 14044.56, + "end": 14045.82, + "probability": 0.978 + }, + { + "start": 14046.2, + "end": 14049.85, + "probability": 0.967 + }, + { + "start": 14050.08, + "end": 14051.52, + "probability": 0.9194 + }, + { + "start": 14051.88, + "end": 14052.62, + "probability": 0.6413 + }, + { + "start": 14052.92, + "end": 14055.56, + "probability": 0.6773 + }, + { + "start": 14055.9, + "end": 14059.42, + "probability": 0.9817 + }, + { + "start": 14059.48, + "end": 14060.96, + "probability": 0.9887 + }, + { + "start": 14061.34, + "end": 14064.4, + "probability": 0.9943 + }, + { + "start": 14064.6, + "end": 14065.48, + "probability": 0.4303 + }, + { + "start": 14065.92, + "end": 14067.48, + "probability": 0.969 + }, + { + "start": 14067.56, + "end": 14070.8, + "probability": 0.9761 + }, + { + "start": 14071.2, + "end": 14074.02, + "probability": 0.9487 + }, + { + "start": 14074.06, + "end": 14076.38, + "probability": 0.9825 + }, + { + "start": 14077.64, + "end": 14078.42, + "probability": 0.7158 + }, + { + "start": 14078.88, + "end": 14080.43, + "probability": 0.9555 + }, + { + "start": 14080.68, + "end": 14084.74, + "probability": 0.9843 + }, + { + "start": 14085.12, + "end": 14085.98, + "probability": 0.9812 + }, + { + "start": 14087.16, + "end": 14090.32, + "probability": 0.981 + }, + { + "start": 14090.46, + "end": 14090.78, + "probability": 0.7981 + }, + { + "start": 14090.82, + "end": 14091.56, + "probability": 0.9412 + }, + { + "start": 14091.74, + "end": 14096.92, + "probability": 0.9985 + }, + { + "start": 14096.98, + "end": 14098.48, + "probability": 0.9112 + }, + { + "start": 14098.98, + "end": 14099.44, + "probability": 0.8469 + }, + { + "start": 14099.54, + "end": 14100.04, + "probability": 0.9702 + }, + { + "start": 14100.38, + "end": 14103.3, + "probability": 0.9914 + }, + { + "start": 14103.3, + "end": 14106.98, + "probability": 0.9901 + }, + { + "start": 14107.34, + "end": 14112.02, + "probability": 0.9353 + }, + { + "start": 14112.26, + "end": 14113.9, + "probability": 0.7061 + }, + { + "start": 14114.3, + "end": 14122.6, + "probability": 0.8906 + }, + { + "start": 14122.76, + "end": 14123.78, + "probability": 0.8919 + }, + { + "start": 14123.82, + "end": 14125.7, + "probability": 0.8917 + }, + { + "start": 14126.34, + "end": 14129.4, + "probability": 0.963 + }, + { + "start": 14129.68, + "end": 14133.58, + "probability": 0.9639 + }, + { + "start": 14133.88, + "end": 14135.86, + "probability": 0.9648 + }, + { + "start": 14136.02, + "end": 14136.7, + "probability": 0.9112 + }, + { + "start": 14137.0, + "end": 14137.48, + "probability": 0.5916 + }, + { + "start": 14137.9, + "end": 14138.58, + "probability": 0.5436 + }, + { + "start": 14138.58, + "end": 14139.02, + "probability": 0.4714 + }, + { + "start": 14139.06, + "end": 14139.78, + "probability": 0.7046 + }, + { + "start": 14140.22, + "end": 14141.12, + "probability": 0.7243 + }, + { + "start": 14141.18, + "end": 14142.08, + "probability": 0.8506 + }, + { + "start": 14142.14, + "end": 14142.66, + "probability": 0.8477 + }, + { + "start": 14142.74, + "end": 14144.18, + "probability": 0.8688 + }, + { + "start": 14144.6, + "end": 14147.9, + "probability": 0.9471 + }, + { + "start": 14148.14, + "end": 14150.4, + "probability": 0.9904 + }, + { + "start": 14150.82, + "end": 14153.32, + "probability": 0.9954 + }, + { + "start": 14153.7, + "end": 14154.5, + "probability": 0.9713 + }, + { + "start": 14154.78, + "end": 14155.59, + "probability": 0.7118 + }, + { + "start": 14155.98, + "end": 14159.68, + "probability": 0.9625 + }, + { + "start": 14159.68, + "end": 14163.1, + "probability": 0.9985 + }, + { + "start": 14163.2, + "end": 14165.86, + "probability": 0.932 + }, + { + "start": 14165.98, + "end": 14169.82, + "probability": 0.9878 + }, + { + "start": 14170.0, + "end": 14172.22, + "probability": 0.9507 + }, + { + "start": 14172.42, + "end": 14174.78, + "probability": 0.9849 + }, + { + "start": 14175.1, + "end": 14177.0, + "probability": 0.6424 + }, + { + "start": 14177.0, + "end": 14179.24, + "probability": 0.9868 + }, + { + "start": 14179.66, + "end": 14180.78, + "probability": 0.8289 + }, + { + "start": 14180.92, + "end": 14184.22, + "probability": 0.9934 + }, + { + "start": 14184.32, + "end": 14187.72, + "probability": 0.9595 + }, + { + "start": 14188.38, + "end": 14191.62, + "probability": 0.999 + }, + { + "start": 14191.7, + "end": 14192.86, + "probability": 0.9976 + }, + { + "start": 14192.98, + "end": 14194.44, + "probability": 0.9976 + }, + { + "start": 14195.14, + "end": 14199.58, + "probability": 0.9604 + }, + { + "start": 14199.8, + "end": 14201.5, + "probability": 0.9574 + }, + { + "start": 14201.9, + "end": 14206.36, + "probability": 0.9888 + }, + { + "start": 14206.58, + "end": 14209.14, + "probability": 0.946 + }, + { + "start": 14209.58, + "end": 14211.44, + "probability": 0.9339 + }, + { + "start": 14211.5, + "end": 14212.88, + "probability": 0.887 + }, + { + "start": 14213.32, + "end": 14214.9, + "probability": 0.8099 + }, + { + "start": 14215.54, + "end": 14218.12, + "probability": 0.9912 + }, + { + "start": 14218.2, + "end": 14218.7, + "probability": 0.686 + }, + { + "start": 14218.78, + "end": 14219.5, + "probability": 0.5396 + }, + { + "start": 14219.62, + "end": 14221.56, + "probability": 0.9023 + }, + { + "start": 14221.7, + "end": 14224.14, + "probability": 0.9835 + }, + { + "start": 14224.18, + "end": 14226.3, + "probability": 0.9381 + }, + { + "start": 14226.36, + "end": 14228.68, + "probability": 0.9688 + }, + { + "start": 14229.04, + "end": 14230.68, + "probability": 0.9959 + }, + { + "start": 14230.84, + "end": 14231.32, + "probability": 0.5808 + }, + { + "start": 14231.4, + "end": 14232.0, + "probability": 0.8829 + }, + { + "start": 14232.4, + "end": 14233.58, + "probability": 0.7443 + }, + { + "start": 14233.68, + "end": 14234.82, + "probability": 0.7266 + }, + { + "start": 14234.96, + "end": 14236.34, + "probability": 0.9077 + }, + { + "start": 14236.7, + "end": 14238.76, + "probability": 0.942 + }, + { + "start": 14239.06, + "end": 14240.08, + "probability": 0.9734 + }, + { + "start": 14240.46, + "end": 14242.56, + "probability": 0.9695 + }, + { + "start": 14242.62, + "end": 14243.82, + "probability": 0.9908 + }, + { + "start": 14243.88, + "end": 14244.96, + "probability": 0.8488 + }, + { + "start": 14245.1, + "end": 14248.65, + "probability": 0.8784 + }, + { + "start": 14250.02, + "end": 14250.78, + "probability": 0.8461 + }, + { + "start": 14251.08, + "end": 14251.86, + "probability": 0.7637 + }, + { + "start": 14251.94, + "end": 14254.42, + "probability": 0.9186 + }, + { + "start": 14254.48, + "end": 14254.58, + "probability": 0.9667 + }, + { + "start": 14255.56, + "end": 14256.84, + "probability": 0.9833 + }, + { + "start": 14257.2, + "end": 14261.08, + "probability": 0.8955 + }, + { + "start": 14261.65, + "end": 14264.48, + "probability": 0.8832 + }, + { + "start": 14264.96, + "end": 14266.44, + "probability": 0.8703 + }, + { + "start": 14267.12, + "end": 14269.66, + "probability": 0.9587 + }, + { + "start": 14269.74, + "end": 14270.34, + "probability": 0.9561 + }, + { + "start": 14271.3, + "end": 14271.82, + "probability": 0.7902 + }, + { + "start": 14272.14, + "end": 14273.02, + "probability": 0.8515 + }, + { + "start": 14273.24, + "end": 14276.04, + "probability": 0.9759 + }, + { + "start": 14276.94, + "end": 14278.3, + "probability": 0.8094 + }, + { + "start": 14278.64, + "end": 14279.52, + "probability": 0.7786 + }, + { + "start": 14280.12, + "end": 14281.22, + "probability": 0.869 + }, + { + "start": 14281.32, + "end": 14281.98, + "probability": 0.9051 + }, + { + "start": 14282.14, + "end": 14284.0, + "probability": 0.9498 + }, + { + "start": 14284.12, + "end": 14284.6, + "probability": 0.9551 + }, + { + "start": 14286.62, + "end": 14287.51, + "probability": 0.9407 + }, + { + "start": 14287.82, + "end": 14288.7, + "probability": 0.9553 + }, + { + "start": 14289.14, + "end": 14292.42, + "probability": 0.9885 + }, + { + "start": 14292.42, + "end": 14293.56, + "probability": 0.8703 + }, + { + "start": 14293.76, + "end": 14294.6, + "probability": 0.5846 + }, + { + "start": 14294.72, + "end": 14295.76, + "probability": 0.5519 + }, + { + "start": 14296.14, + "end": 14296.5, + "probability": 0.7617 + }, + { + "start": 14296.52, + "end": 14297.54, + "probability": 0.906 + }, + { + "start": 14297.84, + "end": 14301.48, + "probability": 0.8777 + }, + { + "start": 14301.48, + "end": 14305.42, + "probability": 0.9817 + }, + { + "start": 14305.5, + "end": 14306.82, + "probability": 0.9135 + }, + { + "start": 14307.12, + "end": 14308.64, + "probability": 0.8308 + }, + { + "start": 14308.72, + "end": 14309.72, + "probability": 0.7897 + }, + { + "start": 14309.78, + "end": 14312.32, + "probability": 0.766 + }, + { + "start": 14312.48, + "end": 14316.44, + "probability": 0.9191 + }, + { + "start": 14317.8, + "end": 14319.24, + "probability": 0.9941 + }, + { + "start": 14319.46, + "end": 14322.6, + "probability": 0.8621 + }, + { + "start": 14322.82, + "end": 14324.38, + "probability": 0.9238 + }, + { + "start": 14324.74, + "end": 14327.36, + "probability": 0.984 + }, + { + "start": 14327.64, + "end": 14331.72, + "probability": 0.959 + }, + { + "start": 14332.1, + "end": 14333.78, + "probability": 0.9927 + }, + { + "start": 14334.22, + "end": 14336.87, + "probability": 0.9653 + }, + { + "start": 14337.18, + "end": 14338.42, + "probability": 0.9932 + }, + { + "start": 14338.86, + "end": 14339.84, + "probability": 0.9889 + }, + { + "start": 14340.1, + "end": 14341.04, + "probability": 0.9741 + }, + { + "start": 14341.28, + "end": 14342.86, + "probability": 0.9968 + }, + { + "start": 14343.06, + "end": 14344.68, + "probability": 0.9802 + }, + { + "start": 14344.74, + "end": 14349.12, + "probability": 0.953 + }, + { + "start": 14349.14, + "end": 14350.4, + "probability": 0.778 + }, + { + "start": 14350.5, + "end": 14353.92, + "probability": 0.836 + }, + { + "start": 14354.04, + "end": 14355.08, + "probability": 0.6378 + }, + { + "start": 14355.18, + "end": 14355.54, + "probability": 0.6074 + }, + { + "start": 14355.6, + "end": 14359.68, + "probability": 0.9603 + }, + { + "start": 14360.0, + "end": 14361.26, + "probability": 0.7331 + }, + { + "start": 14362.4, + "end": 14367.76, + "probability": 0.9863 + }, + { + "start": 14367.92, + "end": 14369.2, + "probability": 0.9118 + }, + { + "start": 14369.32, + "end": 14370.4, + "probability": 0.9177 + }, + { + "start": 14370.66, + "end": 14371.34, + "probability": 0.5455 + }, + { + "start": 14371.52, + "end": 14372.22, + "probability": 0.8951 + }, + { + "start": 14372.52, + "end": 14375.64, + "probability": 0.9913 + }, + { + "start": 14375.64, + "end": 14378.45, + "probability": 1.0 + }, + { + "start": 14379.12, + "end": 14383.14, + "probability": 0.999 + }, + { + "start": 14383.2, + "end": 14387.38, + "probability": 0.9768 + }, + { + "start": 14387.58, + "end": 14388.66, + "probability": 0.7124 + }, + { + "start": 14389.82, + "end": 14392.04, + "probability": 0.929 + }, + { + "start": 14392.78, + "end": 14394.66, + "probability": 0.8467 + }, + { + "start": 14394.98, + "end": 14398.72, + "probability": 0.9467 + }, + { + "start": 14399.02, + "end": 14404.0, + "probability": 0.9406 + }, + { + "start": 14404.32, + "end": 14407.36, + "probability": 0.9814 + }, + { + "start": 14407.62, + "end": 14409.44, + "probability": 0.9938 + }, + { + "start": 14409.7, + "end": 14411.1, + "probability": 0.9837 + }, + { + "start": 14411.28, + "end": 14414.0, + "probability": 0.9717 + }, + { + "start": 14414.14, + "end": 14418.96, + "probability": 0.991 + }, + { + "start": 14419.16, + "end": 14419.98, + "probability": 0.9867 + }, + { + "start": 14420.48, + "end": 14421.2, + "probability": 0.8226 + }, + { + "start": 14421.34, + "end": 14422.16, + "probability": 0.7886 + }, + { + "start": 14422.48, + "end": 14423.04, + "probability": 0.5927 + }, + { + "start": 14423.34, + "end": 14427.14, + "probability": 0.9515 + }, + { + "start": 14427.78, + "end": 14431.26, + "probability": 0.6804 + }, + { + "start": 14431.86, + "end": 14436.36, + "probability": 0.9569 + }, + { + "start": 14436.4, + "end": 14437.24, + "probability": 0.9926 + }, + { + "start": 14437.66, + "end": 14439.69, + "probability": 0.9883 + }, + { + "start": 14440.2, + "end": 14442.54, + "probability": 0.9946 + }, + { + "start": 14442.96, + "end": 14445.49, + "probability": 0.8751 + }, + { + "start": 14446.02, + "end": 14449.14, + "probability": 0.9668 + }, + { + "start": 14449.18, + "end": 14451.8, + "probability": 0.9873 + }, + { + "start": 14452.24, + "end": 14452.88, + "probability": 0.7062 + }, + { + "start": 14452.94, + "end": 14454.06, + "probability": 0.9555 + }, + { + "start": 14454.36, + "end": 14457.42, + "probability": 0.829 + }, + { + "start": 14457.42, + "end": 14460.02, + "probability": 0.9954 + }, + { + "start": 14460.66, + "end": 14466.44, + "probability": 0.9943 + }, + { + "start": 14466.94, + "end": 14469.31, + "probability": 0.9735 + }, + { + "start": 14469.5, + "end": 14471.46, + "probability": 0.929 + }, + { + "start": 14471.76, + "end": 14473.3, + "probability": 0.8086 + }, + { + "start": 14473.6, + "end": 14477.7, + "probability": 0.944 + }, + { + "start": 14478.22, + "end": 14479.04, + "probability": 0.8089 + }, + { + "start": 14479.1, + "end": 14479.96, + "probability": 0.7468 + }, + { + "start": 14480.08, + "end": 14481.9, + "probability": 0.9881 + }, + { + "start": 14482.18, + "end": 14483.76, + "probability": 0.9076 + }, + { + "start": 14483.78, + "end": 14485.52, + "probability": 0.9919 + }, + { + "start": 14485.66, + "end": 14487.62, + "probability": 0.9868 + }, + { + "start": 14488.1, + "end": 14490.26, + "probability": 0.8746 + }, + { + "start": 14490.34, + "end": 14492.86, + "probability": 0.6398 + }, + { + "start": 14492.86, + "end": 14493.96, + "probability": 0.6888 + }, + { + "start": 14494.48, + "end": 14496.38, + "probability": 0.987 + }, + { + "start": 14496.38, + "end": 14499.14, + "probability": 0.9536 + }, + { + "start": 14499.38, + "end": 14500.0, + "probability": 0.732 + }, + { + "start": 14500.98, + "end": 14503.04, + "probability": 0.9477 + }, + { + "start": 14503.14, + "end": 14504.9, + "probability": 0.9139 + }, + { + "start": 14504.96, + "end": 14511.3, + "probability": 0.9779 + }, + { + "start": 14511.9, + "end": 14517.39, + "probability": 0.9797 + }, + { + "start": 14518.0, + "end": 14519.38, + "probability": 0.9735 + }, + { + "start": 14520.08, + "end": 14522.18, + "probability": 0.8841 + }, + { + "start": 14522.86, + "end": 14527.54, + "probability": 0.9831 + }, + { + "start": 14527.74, + "end": 14529.24, + "probability": 0.8394 + }, + { + "start": 14529.42, + "end": 14531.28, + "probability": 0.9825 + }, + { + "start": 14531.64, + "end": 14532.9, + "probability": 0.674 + }, + { + "start": 14532.96, + "end": 14536.96, + "probability": 0.9292 + }, + { + "start": 14536.96, + "end": 14540.1, + "probability": 0.9676 + }, + { + "start": 14540.4, + "end": 14544.51, + "probability": 0.9982 + }, + { + "start": 14545.76, + "end": 14549.06, + "probability": 0.9734 + }, + { + "start": 14549.5, + "end": 14552.74, + "probability": 0.9818 + }, + { + "start": 14553.04, + "end": 14557.06, + "probability": 0.9866 + }, + { + "start": 14557.1, + "end": 14560.42, + "probability": 0.9753 + }, + { + "start": 14560.86, + "end": 14563.6, + "probability": 0.9167 + }, + { + "start": 14565.52, + "end": 14567.64, + "probability": 0.9387 + }, + { + "start": 14568.3, + "end": 14571.86, + "probability": 0.993 + }, + { + "start": 14572.22, + "end": 14576.7, + "probability": 0.9875 + }, + { + "start": 14577.0, + "end": 14581.3, + "probability": 0.9504 + }, + { + "start": 14581.6, + "end": 14585.1, + "probability": 0.9972 + }, + { + "start": 14585.1, + "end": 14589.56, + "probability": 0.9665 + }, + { + "start": 14590.16, + "end": 14592.88, + "probability": 0.9951 + }, + { + "start": 14593.46, + "end": 14599.38, + "probability": 0.9942 + }, + { + "start": 14599.8, + "end": 14604.4, + "probability": 0.9709 + }, + { + "start": 14604.68, + "end": 14607.78, + "probability": 0.9883 + }, + { + "start": 14608.16, + "end": 14609.7, + "probability": 0.9741 + }, + { + "start": 14610.0, + "end": 14614.02, + "probability": 0.989 + }, + { + "start": 14614.28, + "end": 14616.74, + "probability": 0.9345 + }, + { + "start": 14616.74, + "end": 14620.48, + "probability": 0.9727 + }, + { + "start": 14621.02, + "end": 14626.6, + "probability": 0.9529 + }, + { + "start": 14626.98, + "end": 14630.36, + "probability": 0.9989 + }, + { + "start": 14630.6, + "end": 14634.98, + "probability": 0.9972 + }, + { + "start": 14635.28, + "end": 14637.54, + "probability": 0.9976 + }, + { + "start": 14637.74, + "end": 14638.74, + "probability": 0.7517 + }, + { + "start": 14638.88, + "end": 14643.02, + "probability": 0.9785 + }, + { + "start": 14643.72, + "end": 14647.18, + "probability": 0.9904 + }, + { + "start": 14647.5, + "end": 14648.46, + "probability": 0.6606 + }, + { + "start": 14648.72, + "end": 14651.62, + "probability": 0.9681 + }, + { + "start": 14651.82, + "end": 14654.9, + "probability": 0.9927 + }, + { + "start": 14655.16, + "end": 14655.4, + "probability": 0.7637 + }, + { + "start": 14656.76, + "end": 14658.6, + "probability": 0.8693 + }, + { + "start": 14659.04, + "end": 14660.98, + "probability": 0.8467 + }, + { + "start": 14661.48, + "end": 14662.04, + "probability": 0.4399 + }, + { + "start": 14662.06, + "end": 14663.22, + "probability": 0.6258 + }, + { + "start": 14671.36, + "end": 14673.62, + "probability": 0.5085 + }, + { + "start": 14684.8, + "end": 14686.38, + "probability": 0.1961 + }, + { + "start": 14687.1, + "end": 14689.31, + "probability": 0.8896 + }, + { + "start": 14691.04, + "end": 14691.78, + "probability": 0.7934 + }, + { + "start": 14692.76, + "end": 14693.74, + "probability": 0.8686 + }, + { + "start": 14694.18, + "end": 14695.62, + "probability": 0.9258 + }, + { + "start": 14696.06, + "end": 14697.26, + "probability": 0.8741 + }, + { + "start": 14697.76, + "end": 14698.96, + "probability": 0.8922 + }, + { + "start": 14699.5, + "end": 14701.17, + "probability": 0.8075 + }, + { + "start": 14701.98, + "end": 14707.08, + "probability": 0.9082 + }, + { + "start": 14707.88, + "end": 14710.48, + "probability": 0.8195 + }, + { + "start": 14710.74, + "end": 14712.26, + "probability": 0.7778 + }, + { + "start": 14712.58, + "end": 14714.72, + "probability": 0.9447 + }, + { + "start": 14715.92, + "end": 14718.76, + "probability": 0.9976 + }, + { + "start": 14719.46, + "end": 14720.76, + "probability": 0.8167 + }, + { + "start": 14721.48, + "end": 14721.6, + "probability": 0.5083 + }, + { + "start": 14722.0, + "end": 14723.08, + "probability": 0.9001 + }, + { + "start": 14723.68, + "end": 14726.42, + "probability": 0.8759 + }, + { + "start": 14727.34, + "end": 14729.4, + "probability": 0.9692 + }, + { + "start": 14729.86, + "end": 14732.0, + "probability": 0.8594 + }, + { + "start": 14733.06, + "end": 14734.34, + "probability": 0.9834 + }, + { + "start": 14735.82, + "end": 14737.08, + "probability": 0.9332 + }, + { + "start": 14737.88, + "end": 14738.36, + "probability": 0.9337 + }, + { + "start": 14738.88, + "end": 14741.3, + "probability": 0.9776 + }, + { + "start": 14742.0, + "end": 14744.54, + "probability": 0.9882 + }, + { + "start": 14745.68, + "end": 14750.16, + "probability": 0.922 + }, + { + "start": 14750.84, + "end": 14755.36, + "probability": 0.9969 + }, + { + "start": 14755.38, + "end": 14760.22, + "probability": 0.9598 + }, + { + "start": 14760.68, + "end": 14761.38, + "probability": 0.788 + }, + { + "start": 14762.02, + "end": 14763.11, + "probability": 0.9817 + }, + { + "start": 14764.3, + "end": 14767.12, + "probability": 0.8374 + }, + { + "start": 14767.58, + "end": 14768.3, + "probability": 0.9836 + }, + { + "start": 14768.44, + "end": 14771.34, + "probability": 0.95 + }, + { + "start": 14771.8, + "end": 14774.44, + "probability": 0.8644 + }, + { + "start": 14774.44, + "end": 14777.6, + "probability": 0.9676 + }, + { + "start": 14778.26, + "end": 14779.5, + "probability": 0.6 + }, + { + "start": 14779.92, + "end": 14781.84, + "probability": 0.9611 + }, + { + "start": 14782.9, + "end": 14784.22, + "probability": 0.9814 + }, + { + "start": 14784.34, + "end": 14786.04, + "probability": 0.9573 + }, + { + "start": 14786.38, + "end": 14787.54, + "probability": 0.8367 + }, + { + "start": 14787.92, + "end": 14788.66, + "probability": 0.7273 + }, + { + "start": 14788.94, + "end": 14790.48, + "probability": 0.9731 + }, + { + "start": 14790.92, + "end": 14794.84, + "probability": 0.9472 + }, + { + "start": 14795.52, + "end": 14797.68, + "probability": 0.9014 + }, + { + "start": 14798.06, + "end": 14801.34, + "probability": 0.9572 + }, + { + "start": 14801.9, + "end": 14804.36, + "probability": 0.9961 + }, + { + "start": 14805.8, + "end": 14808.62, + "probability": 0.86 + }, + { + "start": 14808.82, + "end": 14809.46, + "probability": 0.8711 + }, + { + "start": 14809.82, + "end": 14811.78, + "probability": 0.9591 + }, + { + "start": 14812.2, + "end": 14814.68, + "probability": 0.8772 + }, + { + "start": 14814.86, + "end": 14815.5, + "probability": 0.8983 + }, + { + "start": 14815.7, + "end": 14816.38, + "probability": 0.6405 + }, + { + "start": 14817.0, + "end": 14819.7, + "probability": 0.8679 + }, + { + "start": 14820.42, + "end": 14822.66, + "probability": 0.9718 + }, + { + "start": 14823.46, + "end": 14823.82, + "probability": 0.9863 + }, + { + "start": 14824.38, + "end": 14827.5, + "probability": 0.9892 + }, + { + "start": 14827.92, + "end": 14830.88, + "probability": 0.9766 + }, + { + "start": 14831.12, + "end": 14832.04, + "probability": 0.6811 + }, + { + "start": 14832.7, + "end": 14835.18, + "probability": 0.9944 + }, + { + "start": 14835.38, + "end": 14838.88, + "probability": 0.9922 + }, + { + "start": 14839.12, + "end": 14839.92, + "probability": 0.891 + }, + { + "start": 14840.28, + "end": 14841.27, + "probability": 0.7102 + }, + { + "start": 14842.08, + "end": 14845.86, + "probability": 0.8338 + }, + { + "start": 14847.54, + "end": 14850.58, + "probability": 0.9455 + }, + { + "start": 14851.18, + "end": 14852.56, + "probability": 0.9821 + }, + { + "start": 14852.7, + "end": 14856.1, + "probability": 0.8887 + }, + { + "start": 14856.4, + "end": 14857.02, + "probability": 0.9687 + }, + { + "start": 14857.26, + "end": 14857.82, + "probability": 0.8516 + }, + { + "start": 14858.72, + "end": 14860.4, + "probability": 0.9722 + }, + { + "start": 14860.92, + "end": 14862.72, + "probability": 0.981 + }, + { + "start": 14862.8, + "end": 14864.46, + "probability": 0.9537 + }, + { + "start": 14864.62, + "end": 14866.22, + "probability": 0.9576 + }, + { + "start": 14866.26, + "end": 14867.36, + "probability": 0.8091 + }, + { + "start": 14867.7, + "end": 14868.18, + "probability": 0.5232 + }, + { + "start": 14868.2, + "end": 14872.34, + "probability": 0.9904 + }, + { + "start": 14872.54, + "end": 14873.52, + "probability": 0.9718 + }, + { + "start": 14874.24, + "end": 14875.94, + "probability": 0.9394 + }, + { + "start": 14876.5, + "end": 14878.06, + "probability": 0.9072 + }, + { + "start": 14878.94, + "end": 14880.76, + "probability": 0.9824 + }, + { + "start": 14880.82, + "end": 14884.24, + "probability": 0.9902 + }, + { + "start": 14884.24, + "end": 14888.08, + "probability": 0.9967 + }, + { + "start": 14888.66, + "end": 14890.88, + "probability": 0.9253 + }, + { + "start": 14891.34, + "end": 14892.9, + "probability": 0.8859 + }, + { + "start": 14893.32, + "end": 14896.04, + "probability": 0.9412 + }, + { + "start": 14896.08, + "end": 14897.44, + "probability": 0.9845 + }, + { + "start": 14898.34, + "end": 14899.2, + "probability": 0.9551 + }, + { + "start": 14899.7, + "end": 14901.94, + "probability": 0.9657 + }, + { + "start": 14901.94, + "end": 14904.26, + "probability": 0.985 + }, + { + "start": 14904.62, + "end": 14906.14, + "probability": 0.694 + }, + { + "start": 14906.24, + "end": 14908.44, + "probability": 0.9215 + }, + { + "start": 14909.48, + "end": 14913.66, + "probability": 0.8624 + }, + { + "start": 14913.78, + "end": 14914.22, + "probability": 0.9003 + }, + { + "start": 14914.56, + "end": 14916.44, + "probability": 0.9824 + }, + { + "start": 14916.78, + "end": 14918.8, + "probability": 0.9049 + }, + { + "start": 14919.22, + "end": 14920.44, + "probability": 0.9016 + }, + { + "start": 14921.32, + "end": 14924.68, + "probability": 0.998 + }, + { + "start": 14925.12, + "end": 14928.08, + "probability": 0.904 + }, + { + "start": 14928.08, + "end": 14929.26, + "probability": 0.967 + }, + { + "start": 14929.72, + "end": 14930.81, + "probability": 0.7978 + }, + { + "start": 14931.24, + "end": 14933.66, + "probability": 0.8394 + }, + { + "start": 14934.28, + "end": 14936.5, + "probability": 0.9856 + }, + { + "start": 14936.88, + "end": 14939.84, + "probability": 0.7563 + }, + { + "start": 14940.22, + "end": 14942.54, + "probability": 0.9366 + }, + { + "start": 14942.86, + "end": 14945.94, + "probability": 0.6865 + }, + { + "start": 14945.94, + "end": 14950.46, + "probability": 0.974 + }, + { + "start": 14951.02, + "end": 14953.1, + "probability": 0.9713 + }, + { + "start": 14953.34, + "end": 14954.52, + "probability": 0.9701 + }, + { + "start": 14954.6, + "end": 14956.54, + "probability": 0.9948 + }, + { + "start": 14960.1, + "end": 14960.76, + "probability": 0.4743 + }, + { + "start": 14960.94, + "end": 14962.94, + "probability": 0.977 + }, + { + "start": 14962.94, + "end": 14965.4, + "probability": 0.9114 + }, + { + "start": 14965.72, + "end": 14967.02, + "probability": 0.9054 + }, + { + "start": 14967.8, + "end": 14970.54, + "probability": 0.9711 + }, + { + "start": 14970.86, + "end": 14973.06, + "probability": 0.9696 + }, + { + "start": 14973.1, + "end": 14974.72, + "probability": 0.9371 + }, + { + "start": 14975.24, + "end": 14979.0, + "probability": 0.9097 + }, + { + "start": 14979.32, + "end": 14980.86, + "probability": 0.948 + }, + { + "start": 14981.34, + "end": 14984.78, + "probability": 0.9896 + }, + { + "start": 14985.22, + "end": 14988.22, + "probability": 0.9279 + }, + { + "start": 14988.62, + "end": 14992.08, + "probability": 0.9805 + }, + { + "start": 14992.38, + "end": 14993.34, + "probability": 0.9557 + }, + { + "start": 14993.46, + "end": 14995.02, + "probability": 0.9842 + }, + { + "start": 14995.5, + "end": 14997.42, + "probability": 0.9856 + }, + { + "start": 14997.96, + "end": 15000.18, + "probability": 0.9602 + }, + { + "start": 15000.68, + "end": 15006.2, + "probability": 0.9592 + }, + { + "start": 15008.08, + "end": 15009.56, + "probability": 0.7886 + }, + { + "start": 15009.94, + "end": 15012.24, + "probability": 0.9969 + }, + { + "start": 15012.58, + "end": 15016.32, + "probability": 0.9964 + }, + { + "start": 15017.04, + "end": 15020.14, + "probability": 0.8594 + }, + { + "start": 15020.64, + "end": 15022.18, + "probability": 0.6887 + }, + { + "start": 15022.24, + "end": 15024.18, + "probability": 0.8043 + }, + { + "start": 15025.02, + "end": 15025.96, + "probability": 0.9317 + }, + { + "start": 15026.38, + "end": 15030.04, + "probability": 0.9732 + }, + { + "start": 15030.66, + "end": 15033.04, + "probability": 0.8353 + }, + { + "start": 15033.44, + "end": 15033.82, + "probability": 0.8528 + }, + { + "start": 15033.86, + "end": 15035.64, + "probability": 0.9697 + }, + { + "start": 15035.78, + "end": 15036.92, + "probability": 0.9788 + }, + { + "start": 15037.46, + "end": 15037.6, + "probability": 0.9299 + }, + { + "start": 15037.9, + "end": 15039.44, + "probability": 0.7216 + }, + { + "start": 15039.5, + "end": 15040.26, + "probability": 0.851 + }, + { + "start": 15040.44, + "end": 15042.92, + "probability": 0.9874 + }, + { + "start": 15044.18, + "end": 15046.62, + "probability": 0.9824 + }, + { + "start": 15047.54, + "end": 15051.34, + "probability": 0.9132 + }, + { + "start": 15052.84, + "end": 15059.24, + "probability": 0.9397 + }, + { + "start": 15059.42, + "end": 15060.62, + "probability": 0.7803 + }, + { + "start": 15061.96, + "end": 15064.22, + "probability": 0.9912 + }, + { + "start": 15064.3, + "end": 15065.28, + "probability": 0.8703 + }, + { + "start": 15065.5, + "end": 15067.02, + "probability": 0.9559 + }, + { + "start": 15067.08, + "end": 15067.68, + "probability": 0.9751 + }, + { + "start": 15067.8, + "end": 15068.58, + "probability": 0.8754 + }, + { + "start": 15069.12, + "end": 15072.94, + "probability": 0.9962 + }, + { + "start": 15073.18, + "end": 15075.38, + "probability": 0.9731 + }, + { + "start": 15076.02, + "end": 15078.52, + "probability": 0.9897 + }, + { + "start": 15078.72, + "end": 15082.44, + "probability": 0.9671 + }, + { + "start": 15082.68, + "end": 15084.9, + "probability": 0.9911 + }, + { + "start": 15085.12, + "end": 15087.02, + "probability": 0.9751 + }, + { + "start": 15087.64, + "end": 15090.26, + "probability": 0.9917 + }, + { + "start": 15090.82, + "end": 15092.39, + "probability": 0.9938 + }, + { + "start": 15093.28, + "end": 15097.12, + "probability": 0.9869 + }, + { + "start": 15097.56, + "end": 15100.68, + "probability": 0.895 + }, + { + "start": 15101.2, + "end": 15103.64, + "probability": 0.9328 + }, + { + "start": 15104.16, + "end": 15107.54, + "probability": 0.8303 + }, + { + "start": 15108.26, + "end": 15114.0, + "probability": 0.98 + }, + { + "start": 15114.8, + "end": 15115.69, + "probability": 0.9552 + }, + { + "start": 15116.42, + "end": 15119.18, + "probability": 0.9912 + }, + { + "start": 15120.12, + "end": 15121.74, + "probability": 0.8751 + }, + { + "start": 15122.4, + "end": 15124.64, + "probability": 0.7565 + }, + { + "start": 15125.02, + "end": 15130.2, + "probability": 0.9948 + }, + { + "start": 15130.42, + "end": 15130.64, + "probability": 0.7787 + }, + { + "start": 15131.5, + "end": 15134.35, + "probability": 0.8779 + }, + { + "start": 15136.0, + "end": 15137.21, + "probability": 0.9958 + }, + { + "start": 15137.8, + "end": 15140.78, + "probability": 0.9152 + }, + { + "start": 15147.18, + "end": 15148.58, + "probability": 0.3183 + }, + { + "start": 15158.52, + "end": 15162.44, + "probability": 0.5023 + }, + { + "start": 15162.92, + "end": 15164.24, + "probability": 0.5842 + }, + { + "start": 15164.28, + "end": 15164.54, + "probability": 0.7803 + }, + { + "start": 15164.6, + "end": 15165.4, + "probability": 0.597 + }, + { + "start": 15165.7, + "end": 15165.92, + "probability": 0.3676 + }, + { + "start": 15165.94, + "end": 15168.0, + "probability": 0.4258 + }, + { + "start": 15168.38, + "end": 15169.56, + "probability": 0.9308 + }, + { + "start": 15170.5, + "end": 15172.66, + "probability": 0.6525 + }, + { + "start": 15173.24, + "end": 15176.68, + "probability": 0.7487 + }, + { + "start": 15177.22, + "end": 15179.88, + "probability": 0.9156 + }, + { + "start": 15182.26, + "end": 15182.8, + "probability": 0.5764 + }, + { + "start": 15184.92, + "end": 15189.02, + "probability": 0.8456 + }, + { + "start": 15189.84, + "end": 15193.68, + "probability": 0.8979 + }, + { + "start": 15195.38, + "end": 15198.28, + "probability": 0.9941 + }, + { + "start": 15198.39, + "end": 15201.01, + "probability": 0.897 + }, + { + "start": 15202.3, + "end": 15209.04, + "probability": 0.9008 + }, + { + "start": 15210.68, + "end": 15217.42, + "probability": 0.7154 + }, + { + "start": 15217.52, + "end": 15218.94, + "probability": 0.6458 + }, + { + "start": 15219.02, + "end": 15219.56, + "probability": 0.4453 + }, + { + "start": 15220.15, + "end": 15223.98, + "probability": 0.9734 + }, + { + "start": 15225.3, + "end": 15228.48, + "probability": 0.943 + }, + { + "start": 15229.54, + "end": 15232.5, + "probability": 0.8158 + }, + { + "start": 15233.4, + "end": 15235.28, + "probability": 0.7309 + }, + { + "start": 15235.5, + "end": 15239.0, + "probability": 0.7291 + }, + { + "start": 15240.14, + "end": 15245.56, + "probability": 0.907 + }, + { + "start": 15245.8, + "end": 15246.64, + "probability": 0.6395 + }, + { + "start": 15247.6, + "end": 15253.56, + "probability": 0.9766 + }, + { + "start": 15254.42, + "end": 15256.26, + "probability": 0.9732 + }, + { + "start": 15257.1, + "end": 15258.46, + "probability": 0.7972 + }, + { + "start": 15259.06, + "end": 15262.34, + "probability": 0.8882 + }, + { + "start": 15262.94, + "end": 15266.52, + "probability": 0.9891 + }, + { + "start": 15267.06, + "end": 15268.18, + "probability": 0.8579 + }, + { + "start": 15268.64, + "end": 15269.04, + "probability": 0.7697 + }, + { + "start": 15269.72, + "end": 15270.18, + "probability": 0.8421 + }, + { + "start": 15270.64, + "end": 15272.2, + "probability": 0.6046 + }, + { + "start": 15272.3, + "end": 15273.34, + "probability": 0.8386 + }, + { + "start": 15273.36, + "end": 15274.52, + "probability": 0.993 + }, + { + "start": 15275.52, + "end": 15278.38, + "probability": 0.9851 + }, + { + "start": 15278.52, + "end": 15281.66, + "probability": 0.9575 + }, + { + "start": 15281.94, + "end": 15284.12, + "probability": 0.9603 + }, + { + "start": 15284.32, + "end": 15285.2, + "probability": 0.9351 + }, + { + "start": 15285.52, + "end": 15285.98, + "probability": 0.2725 + }, + { + "start": 15286.06, + "end": 15287.36, + "probability": 0.8691 + }, + { + "start": 15287.4, + "end": 15287.8, + "probability": 0.6431 + }, + { + "start": 15287.84, + "end": 15288.5, + "probability": 0.8884 + }, + { + "start": 15290.8, + "end": 15290.92, + "probability": 0.627 + }, + { + "start": 15291.04, + "end": 15291.94, + "probability": 0.9579 + }, + { + "start": 15292.38, + "end": 15296.64, + "probability": 0.9826 + }, + { + "start": 15297.64, + "end": 15298.44, + "probability": 0.9652 + }, + { + "start": 15298.66, + "end": 15299.68, + "probability": 0.7277 + }, + { + "start": 15300.02, + "end": 15303.68, + "probability": 0.8427 + }, + { + "start": 15303.88, + "end": 15305.26, + "probability": 0.7288 + }, + { + "start": 15306.42, + "end": 15309.88, + "probability": 0.9592 + }, + { + "start": 15311.86, + "end": 15316.7, + "probability": 0.8639 + }, + { + "start": 15316.82, + "end": 15317.68, + "probability": 0.5613 + }, + { + "start": 15317.74, + "end": 15318.86, + "probability": 0.7709 + }, + { + "start": 15321.18, + "end": 15322.52, + "probability": 0.7692 + }, + { + "start": 15322.76, + "end": 15330.88, + "probability": 0.9437 + }, + { + "start": 15331.08, + "end": 15332.46, + "probability": 0.9642 + }, + { + "start": 15333.18, + "end": 15334.04, + "probability": 0.4987 + }, + { + "start": 15335.24, + "end": 15336.68, + "probability": 0.9529 + }, + { + "start": 15336.7, + "end": 15340.96, + "probability": 0.9444 + }, + { + "start": 15342.0, + "end": 15348.5, + "probability": 0.6234 + }, + { + "start": 15349.38, + "end": 15353.32, + "probability": 0.9402 + }, + { + "start": 15353.86, + "end": 15357.44, + "probability": 0.9722 + }, + { + "start": 15357.78, + "end": 15358.54, + "probability": 0.5277 + }, + { + "start": 15358.8, + "end": 15360.2, + "probability": 0.5914 + }, + { + "start": 15360.26, + "end": 15361.32, + "probability": 0.979 + }, + { + "start": 15362.34, + "end": 15364.0, + "probability": 0.8232 + }, + { + "start": 15364.76, + "end": 15365.84, + "probability": 0.2276 + }, + { + "start": 15366.02, + "end": 15366.92, + "probability": 0.6304 + }, + { + "start": 15367.04, + "end": 15370.36, + "probability": 0.7378 + }, + { + "start": 15371.6, + "end": 15371.6, + "probability": 0.1787 + }, + { + "start": 15373.18, + "end": 15373.4, + "probability": 0.0344 + }, + { + "start": 15373.4, + "end": 15373.4, + "probability": 0.1218 + }, + { + "start": 15373.4, + "end": 15375.26, + "probability": 0.6165 + }, + { + "start": 15375.88, + "end": 15376.92, + "probability": 0.4446 + }, + { + "start": 15378.04, + "end": 15381.64, + "probability": 0.8999 + }, + { + "start": 15381.82, + "end": 15385.24, + "probability": 0.9076 + }, + { + "start": 15385.4, + "end": 15387.06, + "probability": 0.6233 + }, + { + "start": 15387.18, + "end": 15387.62, + "probability": 0.2713 + }, + { + "start": 15387.68, + "end": 15387.96, + "probability": 0.5294 + }, + { + "start": 15389.48, + "end": 15390.76, + "probability": 0.778 + }, + { + "start": 15391.66, + "end": 15393.26, + "probability": 0.9711 + }, + { + "start": 15394.86, + "end": 15399.78, + "probability": 0.9939 + }, + { + "start": 15400.68, + "end": 15401.46, + "probability": 0.8742 + }, + { + "start": 15402.08, + "end": 15402.64, + "probability": 0.1674 + }, + { + "start": 15404.84, + "end": 15405.18, + "probability": 0.0309 + }, + { + "start": 15405.18, + "end": 15406.44, + "probability": 0.538 + }, + { + "start": 15406.52, + "end": 15406.84, + "probability": 0.4661 + }, + { + "start": 15406.92, + "end": 15408.0, + "probability": 0.7271 + }, + { + "start": 15408.1, + "end": 15408.5, + "probability": 0.9644 + }, + { + "start": 15408.8, + "end": 15413.58, + "probability": 0.945 + }, + { + "start": 15414.06, + "end": 15416.48, + "probability": 0.824 + }, + { + "start": 15416.58, + "end": 15418.62, + "probability": 0.4583 + }, + { + "start": 15418.78, + "end": 15420.24, + "probability": 0.8298 + }, + { + "start": 15420.32, + "end": 15422.84, + "probability": 0.7294 + }, + { + "start": 15422.94, + "end": 15428.96, + "probability": 0.9407 + }, + { + "start": 15429.48, + "end": 15433.84, + "probability": 0.9727 + }, + { + "start": 15434.06, + "end": 15435.24, + "probability": 0.1646 + }, + { + "start": 15435.24, + "end": 15436.56, + "probability": 0.5476 + }, + { + "start": 15436.7, + "end": 15437.74, + "probability": 0.6195 + }, + { + "start": 15438.38, + "end": 15439.88, + "probability": 0.5217 + }, + { + "start": 15440.3, + "end": 15446.56, + "probability": 0.9574 + }, + { + "start": 15446.86, + "end": 15449.08, + "probability": 0.9219 + }, + { + "start": 15449.5, + "end": 15451.8, + "probability": 0.9245 + }, + { + "start": 15452.3, + "end": 15454.72, + "probability": 0.8128 + }, + { + "start": 15456.22, + "end": 15457.8, + "probability": 0.3907 + }, + { + "start": 15458.16, + "end": 15462.6, + "probability": 0.9707 + }, + { + "start": 15463.12, + "end": 15464.12, + "probability": 0.9357 + }, + { + "start": 15465.34, + "end": 15465.92, + "probability": 0.9553 + }, + { + "start": 15466.3, + "end": 15467.98, + "probability": 0.8853 + }, + { + "start": 15468.08, + "end": 15470.04, + "probability": 0.7595 + }, + { + "start": 15470.24, + "end": 15470.96, + "probability": 0.4841 + }, + { + "start": 15471.1, + "end": 15472.58, + "probability": 0.7903 + }, + { + "start": 15472.66, + "end": 15473.56, + "probability": 0.7161 + }, + { + "start": 15474.44, + "end": 15475.86, + "probability": 0.9557 + }, + { + "start": 15476.26, + "end": 15477.06, + "probability": 0.4377 + }, + { + "start": 15477.38, + "end": 15484.68, + "probability": 0.8359 + }, + { + "start": 15485.86, + "end": 15487.26, + "probability": 0.788 + }, + { + "start": 15487.28, + "end": 15488.46, + "probability": 0.9574 + }, + { + "start": 15488.66, + "end": 15492.12, + "probability": 0.9803 + }, + { + "start": 15492.5, + "end": 15494.86, + "probability": 0.9956 + }, + { + "start": 15495.18, + "end": 15501.78, + "probability": 0.9982 + }, + { + "start": 15502.04, + "end": 15508.88, + "probability": 0.9723 + }, + { + "start": 15509.6, + "end": 15512.78, + "probability": 0.7961 + }, + { + "start": 15513.4, + "end": 15514.98, + "probability": 0.9948 + }, + { + "start": 15515.22, + "end": 15516.13, + "probability": 0.9902 + }, + { + "start": 15516.52, + "end": 15520.05, + "probability": 0.6693 + }, + { + "start": 15520.58, + "end": 15522.54, + "probability": 0.5976 + }, + { + "start": 15523.04, + "end": 15526.16, + "probability": 0.9175 + }, + { + "start": 15526.18, + "end": 15528.0, + "probability": 0.9744 + }, + { + "start": 15528.5, + "end": 15529.76, + "probability": 0.5653 + }, + { + "start": 15530.42, + "end": 15533.3, + "probability": 0.9409 + }, + { + "start": 15533.4, + "end": 15534.3, + "probability": 0.7755 + }, + { + "start": 15534.76, + "end": 15540.12, + "probability": 0.9827 + }, + { + "start": 15541.18, + "end": 15544.82, + "probability": 0.9961 + }, + { + "start": 15545.84, + "end": 15546.78, + "probability": 0.9124 + }, + { + "start": 15546.94, + "end": 15548.62, + "probability": 0.7413 + }, + { + "start": 15549.02, + "end": 15550.58, + "probability": 0.9683 + }, + { + "start": 15550.74, + "end": 15551.3, + "probability": 0.8206 + }, + { + "start": 15551.58, + "end": 15551.74, + "probability": 0.2068 + }, + { + "start": 15552.82, + "end": 15554.06, + "probability": 0.7771 + }, + { + "start": 15555.22, + "end": 15556.46, + "probability": 0.8567 + }, + { + "start": 15558.12, + "end": 15560.62, + "probability": 0.9926 + }, + { + "start": 15561.1, + "end": 15565.22, + "probability": 0.9694 + }, + { + "start": 15565.66, + "end": 15566.84, + "probability": 0.9844 + }, + { + "start": 15567.32, + "end": 15567.66, + "probability": 0.0555 + }, + { + "start": 15567.68, + "end": 15569.0, + "probability": 0.6767 + }, + { + "start": 15569.7, + "end": 15570.92, + "probability": 0.0115 + }, + { + "start": 15572.08, + "end": 15572.66, + "probability": 0.4036 + }, + { + "start": 15573.92, + "end": 15575.06, + "probability": 0.2203 + }, + { + "start": 15575.84, + "end": 15576.7, + "probability": 0.051 + }, + { + "start": 15576.82, + "end": 15576.82, + "probability": 0.0245 + }, + { + "start": 15576.82, + "end": 15579.18, + "probability": 0.1823 + }, + { + "start": 15579.7, + "end": 15582.14, + "probability": 0.9358 + }, + { + "start": 15582.5, + "end": 15586.9, + "probability": 0.9627 + }, + { + "start": 15587.02, + "end": 15587.82, + "probability": 0.7547 + }, + { + "start": 15587.94, + "end": 15590.42, + "probability": 0.9609 + }, + { + "start": 15591.26, + "end": 15592.32, + "probability": 0.8166 + }, + { + "start": 15592.9, + "end": 15594.7, + "probability": 0.7949 + }, + { + "start": 15595.22, + "end": 15598.8, + "probability": 0.9904 + }, + { + "start": 15600.66, + "end": 15602.06, + "probability": 0.915 + }, + { + "start": 15602.78, + "end": 15603.76, + "probability": 0.8606 + }, + { + "start": 15603.98, + "end": 15604.56, + "probability": 0.6329 + }, + { + "start": 15604.74, + "end": 15605.84, + "probability": 0.8952 + }, + { + "start": 15605.88, + "end": 15607.18, + "probability": 0.9632 + }, + { + "start": 15607.46, + "end": 15608.26, + "probability": 0.5349 + }, + { + "start": 15609.04, + "end": 15616.1, + "probability": 0.8265 + }, + { + "start": 15616.94, + "end": 15620.45, + "probability": 0.9756 + }, + { + "start": 15622.0, + "end": 15623.82, + "probability": 0.8681 + }, + { + "start": 15624.18, + "end": 15628.98, + "probability": 0.8913 + }, + { + "start": 15629.24, + "end": 15630.12, + "probability": 0.4012 + }, + { + "start": 15630.62, + "end": 15631.88, + "probability": 0.8051 + }, + { + "start": 15631.96, + "end": 15633.0, + "probability": 0.7032 + }, + { + "start": 15633.08, + "end": 15633.88, + "probability": 0.7938 + }, + { + "start": 15634.1, + "end": 15635.16, + "probability": 0.9729 + }, + { + "start": 15635.24, + "end": 15635.9, + "probability": 0.8963 + }, + { + "start": 15636.48, + "end": 15638.06, + "probability": 0.9951 + }, + { + "start": 15638.76, + "end": 15640.16, + "probability": 0.9922 + }, + { + "start": 15642.34, + "end": 15642.92, + "probability": 0.1707 + }, + { + "start": 15643.06, + "end": 15643.17, + "probability": 0.3203 + }, + { + "start": 15645.06, + "end": 15646.7, + "probability": 0.9482 + }, + { + "start": 15648.88, + "end": 15649.94, + "probability": 0.8789 + }, + { + "start": 15650.54, + "end": 15653.84, + "probability": 0.9839 + }, + { + "start": 15654.48, + "end": 15655.62, + "probability": 0.6608 + }, + { + "start": 15656.14, + "end": 15656.94, + "probability": 0.9055 + }, + { + "start": 15657.06, + "end": 15657.62, + "probability": 0.8085 + }, + { + "start": 15658.1, + "end": 15660.68, + "probability": 0.8163 + }, + { + "start": 15661.12, + "end": 15663.26, + "probability": 0.9509 + }, + { + "start": 15664.27, + "end": 15666.22, + "probability": 0.7518 + }, + { + "start": 15666.74, + "end": 15668.98, + "probability": 0.9907 + }, + { + "start": 15670.42, + "end": 15674.5, + "probability": 0.9523 + }, + { + "start": 15674.7, + "end": 15675.9, + "probability": 0.9771 + }, + { + "start": 15676.4, + "end": 15678.78, + "probability": 0.9454 + }, + { + "start": 15679.12, + "end": 15681.38, + "probability": 0.8867 + }, + { + "start": 15681.8, + "end": 15682.38, + "probability": 0.4633 + }, + { + "start": 15682.82, + "end": 15684.3, + "probability": 0.9338 + }, + { + "start": 15684.74, + "end": 15685.74, + "probability": 0.9813 + }, + { + "start": 15685.84, + "end": 15686.92, + "probability": 0.9588 + }, + { + "start": 15687.0, + "end": 15690.34, + "probability": 0.8614 + }, + { + "start": 15691.04, + "end": 15692.3, + "probability": 0.9633 + }, + { + "start": 15692.88, + "end": 15694.5, + "probability": 0.9956 + }, + { + "start": 15695.28, + "end": 15696.18, + "probability": 0.6253 + }, + { + "start": 15697.18, + "end": 15698.14, + "probability": 0.6077 + }, + { + "start": 15698.26, + "end": 15699.44, + "probability": 0.918 + }, + { + "start": 15699.56, + "end": 15700.14, + "probability": 0.7401 + }, + { + "start": 15700.26, + "end": 15701.38, + "probability": 0.9575 + }, + { + "start": 15701.6, + "end": 15702.16, + "probability": 0.6221 + }, + { + "start": 15702.34, + "end": 15707.56, + "probability": 0.8754 + }, + { + "start": 15708.78, + "end": 15710.56, + "probability": 0.9209 + }, + { + "start": 15711.2, + "end": 15714.54, + "probability": 0.7433 + }, + { + "start": 15714.72, + "end": 15716.8, + "probability": 0.8229 + }, + { + "start": 15717.9, + "end": 15719.01, + "probability": 0.994 + }, + { + "start": 15719.86, + "end": 15726.32, + "probability": 0.9153 + }, + { + "start": 15727.64, + "end": 15730.78, + "probability": 0.9806 + }, + { + "start": 15731.16, + "end": 15731.78, + "probability": 0.8061 + }, + { + "start": 15732.08, + "end": 15735.9, + "probability": 0.9929 + }, + { + "start": 15736.38, + "end": 15738.94, + "probability": 0.7371 + }, + { + "start": 15740.88, + "end": 15743.9, + "probability": 0.9504 + }, + { + "start": 15745.36, + "end": 15746.42, + "probability": 0.9263 + }, + { + "start": 15746.72, + "end": 15747.42, + "probability": 0.5576 + }, + { + "start": 15747.9, + "end": 15752.46, + "probability": 0.9775 + }, + { + "start": 15753.48, + "end": 15757.18, + "probability": 0.9529 + }, + { + "start": 15757.3, + "end": 15758.72, + "probability": 0.5511 + }, + { + "start": 15759.18, + "end": 15764.48, + "probability": 0.9763 + }, + { + "start": 15765.1, + "end": 15765.84, + "probability": 0.851 + }, + { + "start": 15766.0, + "end": 15768.7, + "probability": 0.9739 + }, + { + "start": 15769.0, + "end": 15770.0, + "probability": 0.8787 + }, + { + "start": 15770.08, + "end": 15771.04, + "probability": 0.8593 + }, + { + "start": 15772.14, + "end": 15775.16, + "probability": 0.8732 + }, + { + "start": 15775.58, + "end": 15778.34, + "probability": 0.5333 + }, + { + "start": 15778.84, + "end": 15779.28, + "probability": 0.5055 + }, + { + "start": 15779.3, + "end": 15782.76, + "probability": 0.6152 + }, + { + "start": 15782.82, + "end": 15782.9, + "probability": 0.5303 + }, + { + "start": 15783.5, + "end": 15785.18, + "probability": 0.4435 + }, + { + "start": 15785.42, + "end": 15786.24, + "probability": 0.873 + }, + { + "start": 15786.44, + "end": 15787.08, + "probability": 0.272 + }, + { + "start": 15787.1, + "end": 15787.14, + "probability": 0.5354 + }, + { + "start": 15787.16, + "end": 15788.04, + "probability": 0.4016 + }, + { + "start": 15788.1, + "end": 15788.82, + "probability": 0.9001 + }, + { + "start": 15788.98, + "end": 15790.71, + "probability": 0.0744 + }, + { + "start": 15791.58, + "end": 15791.64, + "probability": 0.0612 + }, + { + "start": 15791.64, + "end": 15796.24, + "probability": 0.7326 + }, + { + "start": 15796.38, + "end": 15796.86, + "probability": 0.0059 + }, + { + "start": 15797.24, + "end": 15797.97, + "probability": 0.2359 + }, + { + "start": 15801.24, + "end": 15801.24, + "probability": 0.1487 + }, + { + "start": 15801.24, + "end": 15801.24, + "probability": 0.0948 + }, + { + "start": 15801.26, + "end": 15802.38, + "probability": 0.7604 + }, + { + "start": 15803.1, + "end": 15804.14, + "probability": 0.4234 + }, + { + "start": 15804.38, + "end": 15808.94, + "probability": 0.5961 + }, + { + "start": 15809.14, + "end": 15811.0, + "probability": 0.958 + }, + { + "start": 15811.16, + "end": 15813.48, + "probability": 0.9419 + }, + { + "start": 15813.88, + "end": 15815.79, + "probability": 0.9785 + }, + { + "start": 15816.24, + "end": 15817.98, + "probability": 0.556 + }, + { + "start": 15818.08, + "end": 15819.96, + "probability": 0.9923 + }, + { + "start": 15821.08, + "end": 15821.68, + "probability": 0.734 + }, + { + "start": 15821.72, + "end": 15822.26, + "probability": 0.6021 + }, + { + "start": 15822.48, + "end": 15824.76, + "probability": 0.9357 + }, + { + "start": 15825.08, + "end": 15826.8, + "probability": 0.927 + }, + { + "start": 15826.94, + "end": 15830.42, + "probability": 0.9944 + }, + { + "start": 15830.66, + "end": 15833.22, + "probability": 0.9771 + }, + { + "start": 15833.6, + "end": 15837.98, + "probability": 0.9661 + }, + { + "start": 15838.5, + "end": 15841.42, + "probability": 0.9839 + }, + { + "start": 15841.6, + "end": 15843.26, + "probability": 0.882 + }, + { + "start": 15843.58, + "end": 15844.62, + "probability": 0.9912 + }, + { + "start": 15844.92, + "end": 15848.36, + "probability": 0.9814 + }, + { + "start": 15848.7, + "end": 15852.52, + "probability": 0.0111 + }, + { + "start": 15852.6, + "end": 15854.84, + "probability": 0.031 + }, + { + "start": 15854.84, + "end": 15855.02, + "probability": 0.2667 + }, + { + "start": 15855.68, + "end": 15856.92, + "probability": 0.1091 + }, + { + "start": 15857.46, + "end": 15858.72, + "probability": 0.0966 + }, + { + "start": 15858.8, + "end": 15859.62, + "probability": 0.0166 + }, + { + "start": 15859.62, + "end": 15862.4, + "probability": 0.0477 + }, + { + "start": 15862.94, + "end": 15863.02, + "probability": 0.2444 + }, + { + "start": 15863.02, + "end": 15864.82, + "probability": 0.094 + }, + { + "start": 15868.2, + "end": 15869.62, + "probability": 0.2139 + }, + { + "start": 15871.54, + "end": 15872.66, + "probability": 0.3648 + }, + { + "start": 15872.98, + "end": 15875.46, + "probability": 0.4662 + }, + { + "start": 15875.62, + "end": 15876.34, + "probability": 0.4854 + }, + { + "start": 15876.56, + "end": 15876.72, + "probability": 0.0775 + }, + { + "start": 15876.72, + "end": 15877.1, + "probability": 0.6859 + }, + { + "start": 15877.22, + "end": 15877.62, + "probability": 0.6026 + }, + { + "start": 15877.76, + "end": 15878.36, + "probability": 0.617 + }, + { + "start": 15878.36, + "end": 15879.43, + "probability": 0.8098 + }, + { + "start": 15879.56, + "end": 15880.66, + "probability": 0.9277 + }, + { + "start": 15880.66, + "end": 15881.98, + "probability": 0.8635 + }, + { + "start": 15882.06, + "end": 15882.74, + "probability": 0.6973 + }, + { + "start": 15883.26, + "end": 15884.26, + "probability": 0.7303 + }, + { + "start": 15884.28, + "end": 15887.2, + "probability": 0.8348 + }, + { + "start": 15887.78, + "end": 15888.82, + "probability": 0.9984 + }, + { + "start": 15890.16, + "end": 15895.38, + "probability": 0.998 + }, + { + "start": 15896.14, + "end": 15897.3, + "probability": 0.1874 + }, + { + "start": 15898.96, + "end": 15899.64, + "probability": 0.1416 + }, + { + "start": 15900.56, + "end": 15901.2, + "probability": 0.834 + }, + { + "start": 15902.8, + "end": 15903.14, + "probability": 0.0762 + }, + { + "start": 15903.14, + "end": 15904.02, + "probability": 0.3247 + }, + { + "start": 15904.42, + "end": 15909.48, + "probability": 0.8781 + }, + { + "start": 15910.08, + "end": 15912.62, + "probability": 0.9448 + }, + { + "start": 15913.48, + "end": 15917.54, + "probability": 0.7293 + }, + { + "start": 15917.86, + "end": 15921.08, + "probability": 0.9062 + }, + { + "start": 15922.12, + "end": 15925.36, + "probability": 0.6076 + }, + { + "start": 15925.44, + "end": 15927.96, + "probability": 0.9904 + }, + { + "start": 15928.5, + "end": 15928.52, + "probability": 0.7642 + }, + { + "start": 15929.52, + "end": 15930.88, + "probability": 0.8485 + }, + { + "start": 15931.1, + "end": 15933.7, + "probability": 0.8936 + }, + { + "start": 15933.86, + "end": 15940.22, + "probability": 0.9766 + }, + { + "start": 15940.36, + "end": 15947.28, + "probability": 0.9681 + }, + { + "start": 15948.14, + "end": 15951.98, + "probability": 0.6729 + }, + { + "start": 15952.06, + "end": 15952.62, + "probability": 0.8262 + }, + { + "start": 15952.7, + "end": 15954.58, + "probability": 0.7658 + }, + { + "start": 15954.68, + "end": 15956.34, + "probability": 0.9807 + }, + { + "start": 15956.84, + "end": 15957.28, + "probability": 0.2475 + }, + { + "start": 15957.3, + "end": 15958.46, + "probability": 0.9124 + }, + { + "start": 15961.44, + "end": 15967.72, + "probability": 0.7683 + }, + { + "start": 15970.92, + "end": 15971.34, + "probability": 0.553 + }, + { + "start": 15971.92, + "end": 15972.12, + "probability": 0.7312 + }, + { + "start": 15973.46, + "end": 15975.48, + "probability": 0.6785 + }, + { + "start": 15976.72, + "end": 15977.7, + "probability": 0.9048 + }, + { + "start": 15978.92, + "end": 15981.72, + "probability": 0.9438 + }, + { + "start": 15982.34, + "end": 15984.84, + "probability": 0.9809 + }, + { + "start": 15985.52, + "end": 15987.08, + "probability": 0.9863 + }, + { + "start": 15988.98, + "end": 15990.55, + "probability": 0.9595 + }, + { + "start": 15991.56, + "end": 15993.56, + "probability": 0.9834 + }, + { + "start": 15993.98, + "end": 15996.66, + "probability": 0.9348 + }, + { + "start": 15996.66, + "end": 15999.24, + "probability": 0.9533 + }, + { + "start": 16000.98, + "end": 16005.48, + "probability": 0.9762 + }, + { + "start": 16006.0, + "end": 16008.68, + "probability": 0.9733 + }, + { + "start": 16010.0, + "end": 16013.12, + "probability": 0.8507 + }, + { + "start": 16013.12, + "end": 16015.32, + "probability": 0.9919 + }, + { + "start": 16016.48, + "end": 16023.32, + "probability": 0.8524 + }, + { + "start": 16025.0, + "end": 16026.36, + "probability": 0.7774 + }, + { + "start": 16027.0, + "end": 16029.14, + "probability": 0.9924 + }, + { + "start": 16030.28, + "end": 16032.96, + "probability": 0.9365 + }, + { + "start": 16033.46, + "end": 16035.0, + "probability": 0.6966 + }, + { + "start": 16035.78, + "end": 16039.34, + "probability": 0.8729 + }, + { + "start": 16039.88, + "end": 16043.72, + "probability": 0.8794 + }, + { + "start": 16044.48, + "end": 16047.7, + "probability": 0.9951 + }, + { + "start": 16047.94, + "end": 16048.58, + "probability": 0.5304 + }, + { + "start": 16049.92, + "end": 16053.36, + "probability": 0.9829 + }, + { + "start": 16053.76, + "end": 16055.64, + "probability": 0.9747 + }, + { + "start": 16057.3, + "end": 16058.24, + "probability": 0.8267 + }, + { + "start": 16059.34, + "end": 16061.36, + "probability": 0.9966 + }, + { + "start": 16061.48, + "end": 16064.1, + "probability": 0.9664 + }, + { + "start": 16064.78, + "end": 16066.88, + "probability": 0.8634 + }, + { + "start": 16068.5, + "end": 16069.92, + "probability": 0.8102 + }, + { + "start": 16070.04, + "end": 16074.46, + "probability": 0.7703 + }, + { + "start": 16075.38, + "end": 16078.56, + "probability": 0.8224 + }, + { + "start": 16079.12, + "end": 16085.48, + "probability": 0.9873 + }, + { + "start": 16085.48, + "end": 16091.1, + "probability": 0.8587 + }, + { + "start": 16092.52, + "end": 16093.64, + "probability": 0.7943 + }, + { + "start": 16094.8, + "end": 16099.0, + "probability": 0.9775 + }, + { + "start": 16099.44, + "end": 16100.56, + "probability": 0.9448 + }, + { + "start": 16100.74, + "end": 16103.19, + "probability": 0.8943 + }, + { + "start": 16104.08, + "end": 16106.02, + "probability": 0.8672 + }, + { + "start": 16106.06, + "end": 16106.92, + "probability": 0.7417 + }, + { + "start": 16107.52, + "end": 16113.72, + "probability": 0.9107 + }, + { + "start": 16113.82, + "end": 16115.54, + "probability": 0.9878 + }, + { + "start": 16116.18, + "end": 16116.5, + "probability": 0.5619 + }, + { + "start": 16116.66, + "end": 16121.28, + "probability": 0.7069 + }, + { + "start": 16121.28, + "end": 16124.24, + "probability": 0.8433 + }, + { + "start": 16126.4, + "end": 16131.06, + "probability": 0.8606 + }, + { + "start": 16132.22, + "end": 16135.1, + "probability": 0.8274 + }, + { + "start": 16136.46, + "end": 16140.72, + "probability": 0.6438 + }, + { + "start": 16141.72, + "end": 16145.16, + "probability": 0.9744 + }, + { + "start": 16145.52, + "end": 16146.92, + "probability": 0.7009 + }, + { + "start": 16147.3, + "end": 16147.88, + "probability": 0.7003 + }, + { + "start": 16147.9, + "end": 16149.76, + "probability": 0.8997 + }, + { + "start": 16150.06, + "end": 16153.76, + "probability": 0.9048 + }, + { + "start": 16154.56, + "end": 16156.48, + "probability": 0.6085 + }, + { + "start": 16157.36, + "end": 16160.28, + "probability": 0.8611 + }, + { + "start": 16161.32, + "end": 16162.52, + "probability": 0.7496 + }, + { + "start": 16163.16, + "end": 16164.18, + "probability": 0.0168 + }, + { + "start": 16164.18, + "end": 16164.28, + "probability": 0.4274 + }, + { + "start": 16164.74, + "end": 16165.6, + "probability": 0.4787 + }, + { + "start": 16165.74, + "end": 16166.86, + "probability": 0.8549 + }, + { + "start": 16166.92, + "end": 16168.08, + "probability": 0.9529 + }, + { + "start": 16168.7, + "end": 16170.01, + "probability": 0.9824 + }, + { + "start": 16171.26, + "end": 16172.34, + "probability": 0.9824 + }, + { + "start": 16173.1, + "end": 16175.16, + "probability": 0.8317 + }, + { + "start": 16175.36, + "end": 16177.16, + "probability": 0.9694 + }, + { + "start": 16177.54, + "end": 16180.38, + "probability": 0.975 + }, + { + "start": 16180.4, + "end": 16181.3, + "probability": 0.9398 + }, + { + "start": 16181.38, + "end": 16182.94, + "probability": 0.6822 + }, + { + "start": 16183.0, + "end": 16184.88, + "probability": 0.9653 + }, + { + "start": 16184.96, + "end": 16186.06, + "probability": 0.9807 + }, + { + "start": 16186.14, + "end": 16190.6, + "probability": 0.9556 + }, + { + "start": 16190.6, + "end": 16191.38, + "probability": 0.6881 + }, + { + "start": 16191.44, + "end": 16192.28, + "probability": 0.9541 + }, + { + "start": 16192.78, + "end": 16194.08, + "probability": 0.0695 + }, + { + "start": 16194.86, + "end": 16196.72, + "probability": 0.03 + }, + { + "start": 16196.72, + "end": 16196.98, + "probability": 0.0374 + }, + { + "start": 16197.68, + "end": 16198.18, + "probability": 0.7847 + }, + { + "start": 16198.52, + "end": 16200.17, + "probability": 0.8882 + }, + { + "start": 16201.04, + "end": 16201.8, + "probability": 0.9675 + }, + { + "start": 16201.94, + "end": 16205.54, + "probability": 0.9507 + }, + { + "start": 16206.06, + "end": 16206.97, + "probability": 0.4091 + }, + { + "start": 16207.94, + "end": 16209.06, + "probability": 0.6565 + }, + { + "start": 16209.18, + "end": 16210.4, + "probability": 0.8601 + }, + { + "start": 16210.82, + "end": 16212.35, + "probability": 0.9533 + }, + { + "start": 16212.6, + "end": 16217.76, + "probability": 0.9407 + }, + { + "start": 16218.86, + "end": 16224.42, + "probability": 0.9521 + }, + { + "start": 16225.0, + "end": 16227.26, + "probability": 0.9439 + }, + { + "start": 16228.08, + "end": 16230.06, + "probability": 0.968 + }, + { + "start": 16230.12, + "end": 16232.22, + "probability": 0.9819 + }, + { + "start": 16232.52, + "end": 16236.14, + "probability": 0.992 + }, + { + "start": 16236.98, + "end": 16237.14, + "probability": 0.4536 + }, + { + "start": 16237.24, + "end": 16240.64, + "probability": 0.8386 + }, + { + "start": 16241.88, + "end": 16242.76, + "probability": 0.7478 + }, + { + "start": 16243.08, + "end": 16244.16, + "probability": 0.7166 + }, + { + "start": 16244.18, + "end": 16245.86, + "probability": 0.9884 + }, + { + "start": 16246.78, + "end": 16247.42, + "probability": 0.7345 + }, + { + "start": 16247.64, + "end": 16249.72, + "probability": 0.991 + }, + { + "start": 16249.78, + "end": 16253.94, + "probability": 0.9778 + }, + { + "start": 16255.08, + "end": 16259.78, + "probability": 0.7738 + }, + { + "start": 16260.48, + "end": 16262.54, + "probability": 0.5636 + }, + { + "start": 16263.12, + "end": 16264.14, + "probability": 0.9038 + }, + { + "start": 16264.82, + "end": 16266.52, + "probability": 0.8608 + }, + { + "start": 16267.82, + "end": 16269.3, + "probability": 0.8831 + }, + { + "start": 16271.06, + "end": 16273.12, + "probability": 0.9051 + }, + { + "start": 16273.76, + "end": 16274.74, + "probability": 0.4641 + }, + { + "start": 16274.96, + "end": 16275.86, + "probability": 0.6619 + }, + { + "start": 16276.06, + "end": 16277.08, + "probability": 0.7368 + }, + { + "start": 16277.96, + "end": 16278.64, + "probability": 0.7334 + }, + { + "start": 16279.28, + "end": 16280.64, + "probability": 0.9907 + }, + { + "start": 16282.08, + "end": 16284.3, + "probability": 0.9779 + }, + { + "start": 16285.55, + "end": 16287.92, + "probability": 0.9491 + }, + { + "start": 16288.0, + "end": 16288.26, + "probability": 0.749 + }, + { + "start": 16289.02, + "end": 16290.86, + "probability": 0.9332 + }, + { + "start": 16291.72, + "end": 16293.54, + "probability": 0.9512 + }, + { + "start": 16294.16, + "end": 16298.46, + "probability": 0.9457 + }, + { + "start": 16299.12, + "end": 16301.2, + "probability": 0.7969 + }, + { + "start": 16303.2, + "end": 16304.52, + "probability": 0.9848 + }, + { + "start": 16304.7, + "end": 16306.28, + "probability": 0.8408 + }, + { + "start": 16306.38, + "end": 16307.3, + "probability": 0.8909 + }, + { + "start": 16307.34, + "end": 16307.7, + "probability": 0.776 + }, + { + "start": 16307.74, + "end": 16309.26, + "probability": 0.9808 + }, + { + "start": 16309.42, + "end": 16309.54, + "probability": 0.7636 + }, + { + "start": 16311.42, + "end": 16312.9, + "probability": 0.6974 + }, + { + "start": 16314.56, + "end": 16316.08, + "probability": 0.9884 + }, + { + "start": 16317.06, + "end": 16318.94, + "probability": 0.9977 + }, + { + "start": 16319.24, + "end": 16320.42, + "probability": 0.7828 + }, + { + "start": 16321.56, + "end": 16322.67, + "probability": 0.6135 + }, + { + "start": 16323.78, + "end": 16324.41, + "probability": 0.6074 + }, + { + "start": 16325.12, + "end": 16328.16, + "probability": 0.9057 + }, + { + "start": 16328.48, + "end": 16329.34, + "probability": 0.6478 + }, + { + "start": 16330.18, + "end": 16331.8, + "probability": 0.9146 + }, + { + "start": 16332.86, + "end": 16333.74, + "probability": 0.9387 + }, + { + "start": 16334.94, + "end": 16338.68, + "probability": 0.9473 + }, + { + "start": 16340.3, + "end": 16342.32, + "probability": 0.9546 + }, + { + "start": 16342.64, + "end": 16343.7, + "probability": 0.9648 + }, + { + "start": 16343.8, + "end": 16347.98, + "probability": 0.98 + }, + { + "start": 16348.06, + "end": 16348.46, + "probability": 0.821 + }, + { + "start": 16348.54, + "end": 16348.86, + "probability": 0.4113 + }, + { + "start": 16348.86, + "end": 16349.42, + "probability": 0.6537 + }, + { + "start": 16349.52, + "end": 16350.32, + "probability": 0.3635 + }, + { + "start": 16350.9, + "end": 16351.66, + "probability": 0.6447 + }, + { + "start": 16351.74, + "end": 16352.44, + "probability": 0.9226 + }, + { + "start": 16352.82, + "end": 16356.2, + "probability": 0.9523 + }, + { + "start": 16359.28, + "end": 16362.24, + "probability": 0.6802 + }, + { + "start": 16363.08, + "end": 16366.12, + "probability": 0.9491 + }, + { + "start": 16367.04, + "end": 16367.7, + "probability": 0.9771 + }, + { + "start": 16367.8, + "end": 16370.96, + "probability": 0.9829 + }, + { + "start": 16370.96, + "end": 16373.48, + "probability": 0.7542 + }, + { + "start": 16373.64, + "end": 16376.98, + "probability": 0.8677 + }, + { + "start": 16377.72, + "end": 16378.78, + "probability": 0.8015 + }, + { + "start": 16379.38, + "end": 16380.3, + "probability": 0.8576 + }, + { + "start": 16380.44, + "end": 16381.17, + "probability": 0.9824 + }, + { + "start": 16382.73, + "end": 16387.04, + "probability": 0.9486 + }, + { + "start": 16387.52, + "end": 16388.36, + "probability": 0.9822 + }, + { + "start": 16388.46, + "end": 16389.45, + "probability": 0.7415 + }, + { + "start": 16389.86, + "end": 16391.26, + "probability": 0.8639 + }, + { + "start": 16392.76, + "end": 16393.96, + "probability": 0.9595 + }, + { + "start": 16394.04, + "end": 16396.2, + "probability": 0.8449 + }, + { + "start": 16398.14, + "end": 16399.34, + "probability": 0.9427 + }, + { + "start": 16402.28, + "end": 16403.22, + "probability": 0.5163 + }, + { + "start": 16404.42, + "end": 16405.04, + "probability": 0.6157 + }, + { + "start": 16405.66, + "end": 16408.16, + "probability": 0.9539 + }, + { + "start": 16408.62, + "end": 16410.1, + "probability": 0.8035 + }, + { + "start": 16412.52, + "end": 16414.0, + "probability": 0.9742 + }, + { + "start": 16415.64, + "end": 16416.42, + "probability": 0.7965 + }, + { + "start": 16416.78, + "end": 16420.94, + "probability": 0.8611 + }, + { + "start": 16421.02, + "end": 16421.32, + "probability": 0.8585 + }, + { + "start": 16421.38, + "end": 16421.62, + "probability": 0.3617 + }, + { + "start": 16421.72, + "end": 16423.5, + "probability": 0.6555 + }, + { + "start": 16426.38, + "end": 16429.14, + "probability": 0.8751 + }, + { + "start": 16430.06, + "end": 16434.78, + "probability": 0.9632 + }, + { + "start": 16439.62, + "end": 16443.42, + "probability": 0.6939 + }, + { + "start": 16444.08, + "end": 16444.68, + "probability": 0.7293 + }, + { + "start": 16445.12, + "end": 16446.38, + "probability": 0.9609 + }, + { + "start": 16447.98, + "end": 16450.92, + "probability": 0.9733 + }, + { + "start": 16451.02, + "end": 16451.46, + "probability": 0.9751 + }, + { + "start": 16453.04, + "end": 16454.12, + "probability": 0.957 + }, + { + "start": 16455.54, + "end": 16458.4, + "probability": 0.6907 + }, + { + "start": 16458.98, + "end": 16460.92, + "probability": 0.7619 + }, + { + "start": 16461.62, + "end": 16463.84, + "probability": 0.9708 + }, + { + "start": 16463.9, + "end": 16464.26, + "probability": 0.7471 + }, + { + "start": 16464.68, + "end": 16465.94, + "probability": 0.9413 + }, + { + "start": 16466.9, + "end": 16467.28, + "probability": 0.8185 + }, + { + "start": 16467.46, + "end": 16468.34, + "probability": 0.7575 + }, + { + "start": 16468.42, + "end": 16470.82, + "probability": 0.9963 + }, + { + "start": 16471.0, + "end": 16472.2, + "probability": 0.7159 + }, + { + "start": 16473.0, + "end": 16474.07, + "probability": 0.9946 + }, + { + "start": 16475.72, + "end": 16476.72, + "probability": 0.8096 + }, + { + "start": 16477.86, + "end": 16479.08, + "probability": 0.9961 + }, + { + "start": 16479.62, + "end": 16480.02, + "probability": 0.7227 + }, + { + "start": 16480.28, + "end": 16480.7, + "probability": 0.9642 + }, + { + "start": 16482.14, + "end": 16482.74, + "probability": 0.7725 + }, + { + "start": 16485.14, + "end": 16493.92, + "probability": 0.967 + }, + { + "start": 16496.02, + "end": 16496.78, + "probability": 0.5589 + }, + { + "start": 16498.1, + "end": 16501.24, + "probability": 0.9261 + }, + { + "start": 16502.16, + "end": 16504.48, + "probability": 0.7198 + }, + { + "start": 16505.22, + "end": 16506.24, + "probability": 0.969 + }, + { + "start": 16507.02, + "end": 16508.18, + "probability": 0.9746 + }, + { + "start": 16508.72, + "end": 16509.92, + "probability": 0.6538 + }, + { + "start": 16510.52, + "end": 16511.18, + "probability": 0.9299 + }, + { + "start": 16511.52, + "end": 16516.16, + "probability": 0.8527 + }, + { + "start": 16517.06, + "end": 16517.46, + "probability": 0.8877 + }, + { + "start": 16518.02, + "end": 16521.16, + "probability": 0.8953 + }, + { + "start": 16522.28, + "end": 16523.6, + "probability": 0.9326 + }, + { + "start": 16523.7, + "end": 16527.34, + "probability": 0.9967 + }, + { + "start": 16527.56, + "end": 16527.77, + "probability": 0.5941 + }, + { + "start": 16528.82, + "end": 16529.33, + "probability": 0.9746 + }, + { + "start": 16530.54, + "end": 16532.38, + "probability": 0.9629 + }, + { + "start": 16534.74, + "end": 16537.26, + "probability": 0.7692 + }, + { + "start": 16538.12, + "end": 16540.56, + "probability": 0.9312 + }, + { + "start": 16542.58, + "end": 16545.33, + "probability": 0.9247 + }, + { + "start": 16546.76, + "end": 16547.88, + "probability": 0.9536 + }, + { + "start": 16550.12, + "end": 16551.12, + "probability": 0.8811 + }, + { + "start": 16551.9, + "end": 16552.3, + "probability": 0.7841 + }, + { + "start": 16553.04, + "end": 16555.62, + "probability": 0.9419 + }, + { + "start": 16557.26, + "end": 16557.88, + "probability": 0.989 + }, + { + "start": 16560.92, + "end": 16563.62, + "probability": 0.7871 + }, + { + "start": 16564.3, + "end": 16565.12, + "probability": 0.7087 + }, + { + "start": 16565.84, + "end": 16566.92, + "probability": 0.9817 + }, + { + "start": 16567.84, + "end": 16569.16, + "probability": 0.9544 + }, + { + "start": 16570.28, + "end": 16572.4, + "probability": 0.8902 + }, + { + "start": 16574.18, + "end": 16576.6, + "probability": 0.7112 + }, + { + "start": 16577.42, + "end": 16580.36, + "probability": 0.9562 + }, + { + "start": 16580.94, + "end": 16584.0, + "probability": 0.6992 + }, + { + "start": 16586.1, + "end": 16588.48, + "probability": 0.9014 + }, + { + "start": 16588.58, + "end": 16589.65, + "probability": 0.948 + }, + { + "start": 16590.14, + "end": 16590.98, + "probability": 0.8939 + }, + { + "start": 16591.0, + "end": 16593.12, + "probability": 0.9926 + }, + { + "start": 16593.68, + "end": 16595.34, + "probability": 0.9384 + }, + { + "start": 16597.2, + "end": 16597.54, + "probability": 0.7353 + }, + { + "start": 16597.64, + "end": 16598.34, + "probability": 0.8486 + }, + { + "start": 16598.72, + "end": 16600.86, + "probability": 0.9053 + }, + { + "start": 16602.18, + "end": 16605.08, + "probability": 0.9717 + }, + { + "start": 16605.12, + "end": 16606.94, + "probability": 0.9417 + }, + { + "start": 16608.34, + "end": 16610.06, + "probability": 0.8413 + }, + { + "start": 16610.68, + "end": 16611.64, + "probability": 0.7496 + }, + { + "start": 16611.78, + "end": 16612.96, + "probability": 0.9615 + }, + { + "start": 16613.06, + "end": 16613.86, + "probability": 0.6946 + }, + { + "start": 16615.36, + "end": 16617.44, + "probability": 0.9546 + }, + { + "start": 16622.06, + "end": 16622.68, + "probability": 0.5951 + }, + { + "start": 16622.78, + "end": 16626.76, + "probability": 0.9728 + }, + { + "start": 16628.1, + "end": 16629.52, + "probability": 0.9382 + }, + { + "start": 16630.52, + "end": 16631.22, + "probability": 0.8417 + }, + { + "start": 16631.82, + "end": 16634.94, + "probability": 0.7191 + }, + { + "start": 16635.24, + "end": 16638.9, + "probability": 0.9794 + }, + { + "start": 16641.24, + "end": 16643.42, + "probability": 0.8743 + }, + { + "start": 16644.18, + "end": 16645.16, + "probability": 0.6179 + }, + { + "start": 16646.04, + "end": 16647.16, + "probability": 0.8726 + }, + { + "start": 16647.22, + "end": 16648.5, + "probability": 0.9521 + }, + { + "start": 16648.76, + "end": 16649.02, + "probability": 0.5152 + }, + { + "start": 16649.06, + "end": 16650.22, + "probability": 0.7739 + }, + { + "start": 16652.7, + "end": 16655.88, + "probability": 0.9118 + }, + { + "start": 16656.7, + "end": 16657.78, + "probability": 0.8649 + }, + { + "start": 16659.16, + "end": 16661.7, + "probability": 0.9279 + }, + { + "start": 16662.5, + "end": 16664.78, + "probability": 0.9966 + }, + { + "start": 16669.4, + "end": 16670.24, + "probability": 0.7099 + }, + { + "start": 16671.16, + "end": 16672.62, + "probability": 0.9956 + }, + { + "start": 16673.84, + "end": 16677.24, + "probability": 0.929 + }, + { + "start": 16678.52, + "end": 16680.42, + "probability": 0.9648 + }, + { + "start": 16682.12, + "end": 16683.28, + "probability": 0.8364 + }, + { + "start": 16684.72, + "end": 16685.52, + "probability": 0.7812 + }, + { + "start": 16687.58, + "end": 16688.56, + "probability": 0.8318 + }, + { + "start": 16689.28, + "end": 16691.88, + "probability": 0.989 + }, + { + "start": 16692.78, + "end": 16693.98, + "probability": 0.8298 + }, + { + "start": 16694.76, + "end": 16695.9, + "probability": 0.9912 + }, + { + "start": 16696.42, + "end": 16697.64, + "probability": 0.6449 + }, + { + "start": 16698.24, + "end": 16700.44, + "probability": 0.995 + }, + { + "start": 16701.7, + "end": 16702.04, + "probability": 0.6018 + }, + { + "start": 16702.56, + "end": 16703.36, + "probability": 0.985 + }, + { + "start": 16706.98, + "end": 16709.86, + "probability": 0.9985 + }, + { + "start": 16709.86, + "end": 16714.54, + "probability": 0.9467 + }, + { + "start": 16714.74, + "end": 16715.46, + "probability": 0.537 + }, + { + "start": 16716.28, + "end": 16716.94, + "probability": 0.4546 + }, + { + "start": 16717.46, + "end": 16718.04, + "probability": 0.9013 + }, + { + "start": 16718.72, + "end": 16719.5, + "probability": 0.9514 + }, + { + "start": 16720.36, + "end": 16723.25, + "probability": 0.9629 + }, + { + "start": 16723.72, + "end": 16725.34, + "probability": 0.938 + }, + { + "start": 16726.08, + "end": 16727.4, + "probability": 0.9687 + }, + { + "start": 16727.52, + "end": 16728.62, + "probability": 0.814 + }, + { + "start": 16728.72, + "end": 16729.2, + "probability": 0.8717 + }, + { + "start": 16730.5, + "end": 16732.6, + "probability": 0.8948 + }, + { + "start": 16733.12, + "end": 16735.08, + "probability": 0.8677 + }, + { + "start": 16736.54, + "end": 16738.7, + "probability": 0.7462 + }, + { + "start": 16739.74, + "end": 16740.44, + "probability": 0.5841 + }, + { + "start": 16740.56, + "end": 16742.0, + "probability": 0.8199 + }, + { + "start": 16742.78, + "end": 16744.56, + "probability": 0.9431 + }, + { + "start": 16746.28, + "end": 16749.6, + "probability": 0.9726 + }, + { + "start": 16751.2, + "end": 16754.42, + "probability": 0.9489 + }, + { + "start": 16755.66, + "end": 16759.18, + "probability": 0.9819 + }, + { + "start": 16760.68, + "end": 16763.62, + "probability": 0.8166 + }, + { + "start": 16764.2, + "end": 16765.0, + "probability": 0.9221 + }, + { + "start": 16766.16, + "end": 16768.26, + "probability": 0.979 + }, + { + "start": 16769.44, + "end": 16774.14, + "probability": 0.9618 + }, + { + "start": 16775.94, + "end": 16777.69, + "probability": 0.9063 + }, + { + "start": 16778.98, + "end": 16782.24, + "probability": 0.9484 + }, + { + "start": 16783.26, + "end": 16785.22, + "probability": 0.7139 + }, + { + "start": 16785.3, + "end": 16785.84, + "probability": 0.9727 + }, + { + "start": 16787.24, + "end": 16791.0, + "probability": 0.8995 + }, + { + "start": 16791.52, + "end": 16792.26, + "probability": 0.9267 + }, + { + "start": 16793.14, + "end": 16793.73, + "probability": 0.771 + }, + { + "start": 16793.96, + "end": 16796.78, + "probability": 0.9493 + }, + { + "start": 16797.32, + "end": 16799.72, + "probability": 0.9668 + }, + { + "start": 16800.14, + "end": 16803.17, + "probability": 0.9685 + }, + { + "start": 16803.44, + "end": 16804.46, + "probability": 0.5762 + }, + { + "start": 16805.66, + "end": 16810.44, + "probability": 0.7664 + }, + { + "start": 16811.14, + "end": 16813.0, + "probability": 0.9447 + }, + { + "start": 16814.26, + "end": 16814.8, + "probability": 0.969 + }, + { + "start": 16814.96, + "end": 16815.8, + "probability": 0.8318 + }, + { + "start": 16815.94, + "end": 16816.14, + "probability": 0.8972 + }, + { + "start": 16816.2, + "end": 16816.92, + "probability": 0.9494 + }, + { + "start": 16816.96, + "end": 16817.62, + "probability": 0.969 + }, + { + "start": 16818.08, + "end": 16818.94, + "probability": 0.7744 + }, + { + "start": 16833.78, + "end": 16833.82, + "probability": 0.9734 + }, + { + "start": 16834.46, + "end": 16834.46, + "probability": 0.0309 + }, + { + "start": 16834.46, + "end": 16834.46, + "probability": 0.017 + }, + { + "start": 16834.46, + "end": 16834.46, + "probability": 0.1796 + }, + { + "start": 16834.46, + "end": 16834.46, + "probability": 0.0534 + }, + { + "start": 16834.46, + "end": 16837.42, + "probability": 0.3306 + }, + { + "start": 16838.28, + "end": 16841.32, + "probability": 0.665 + }, + { + "start": 16843.66, + "end": 16844.2, + "probability": 0.1608 + }, + { + "start": 16844.2, + "end": 16844.92, + "probability": 0.3987 + }, + { + "start": 16845.64, + "end": 16846.4, + "probability": 0.5888 + }, + { + "start": 16847.31, + "end": 16847.38, + "probability": 0.4915 + }, + { + "start": 16847.5, + "end": 16850.3, + "probability": 0.7624 + }, + { + "start": 16850.82, + "end": 16851.56, + "probability": 0.9198 + }, + { + "start": 16852.8, + "end": 16854.56, + "probability": 0.9521 + }, + { + "start": 16855.56, + "end": 16856.3, + "probability": 0.8617 + }, + { + "start": 16858.46, + "end": 16859.44, + "probability": 0.7262 + }, + { + "start": 16859.54, + "end": 16862.5, + "probability": 0.9741 + }, + { + "start": 16863.34, + "end": 16863.9, + "probability": 0.9689 + }, + { + "start": 16864.64, + "end": 16865.94, + "probability": 0.8822 + }, + { + "start": 16866.08, + "end": 16867.72, + "probability": 0.9613 + }, + { + "start": 16869.8, + "end": 16871.74, + "probability": 0.9179 + }, + { + "start": 16871.86, + "end": 16873.32, + "probability": 0.9793 + }, + { + "start": 16873.4, + "end": 16874.7, + "probability": 0.7546 + }, + { + "start": 16874.82, + "end": 16877.02, + "probability": 0.9576 + }, + { + "start": 16877.18, + "end": 16877.72, + "probability": 0.7531 + }, + { + "start": 16878.92, + "end": 16879.56, + "probability": 0.912 + }, + { + "start": 16879.7, + "end": 16881.18, + "probability": 0.8296 + }, + { + "start": 16881.38, + "end": 16884.14, + "probability": 0.6857 + }, + { + "start": 16884.54, + "end": 16886.52, + "probability": 0.8805 + }, + { + "start": 16887.52, + "end": 16890.1, + "probability": 0.8732 + }, + { + "start": 16890.92, + "end": 16893.3, + "probability": 0.9792 + }, + { + "start": 16893.5, + "end": 16896.16, + "probability": 0.9359 + }, + { + "start": 16897.34, + "end": 16900.26, + "probability": 0.9523 + }, + { + "start": 16900.88, + "end": 16902.12, + "probability": 0.8958 + }, + { + "start": 16902.52, + "end": 16904.58, + "probability": 0.983 + }, + { + "start": 16905.26, + "end": 16906.08, + "probability": 0.9407 + }, + { + "start": 16906.84, + "end": 16908.28, + "probability": 0.9857 + }, + { + "start": 16909.04, + "end": 16913.24, + "probability": 0.8039 + }, + { + "start": 16914.04, + "end": 16914.98, + "probability": 0.8314 + }, + { + "start": 16915.14, + "end": 16917.62, + "probability": 0.8171 + }, + { + "start": 16917.84, + "end": 16919.48, + "probability": 0.9492 + }, + { + "start": 16920.44, + "end": 16921.74, + "probability": 0.931 + }, + { + "start": 16922.78, + "end": 16925.84, + "probability": 0.9574 + }, + { + "start": 16926.38, + "end": 16926.86, + "probability": 0.7291 + }, + { + "start": 16927.74, + "end": 16928.96, + "probability": 0.9915 + }, + { + "start": 16930.62, + "end": 16931.78, + "probability": 0.7468 + }, + { + "start": 16931.86, + "end": 16932.4, + "probability": 0.6599 + }, + { + "start": 16932.7, + "end": 16935.04, + "probability": 0.9473 + }, + { + "start": 16936.7, + "end": 16938.54, + "probability": 0.9745 + }, + { + "start": 16938.58, + "end": 16943.46, + "probability": 0.8011 + }, + { + "start": 16943.54, + "end": 16944.26, + "probability": 0.9373 + }, + { + "start": 16944.68, + "end": 16945.92, + "probability": 0.7885 + }, + { + "start": 16946.5, + "end": 16947.5, + "probability": 0.7696 + }, + { + "start": 16948.32, + "end": 16949.88, + "probability": 0.991 + }, + { + "start": 16950.68, + "end": 16951.74, + "probability": 0.8527 + }, + { + "start": 16952.22, + "end": 16954.5, + "probability": 0.9526 + }, + { + "start": 16954.9, + "end": 16955.26, + "probability": 0.9097 + }, + { + "start": 16955.34, + "end": 16955.66, + "probability": 0.5226 + }, + { + "start": 16955.72, + "end": 16958.18, + "probability": 0.7437 + }, + { + "start": 16958.98, + "end": 16961.96, + "probability": 0.8897 + }, + { + "start": 16962.76, + "end": 16964.56, + "probability": 0.9934 + }, + { + "start": 16964.56, + "end": 16967.82, + "probability": 0.9854 + }, + { + "start": 16968.32, + "end": 16971.08, + "probability": 0.9702 + }, + { + "start": 16973.02, + "end": 16975.4, + "probability": 0.9829 + }, + { + "start": 16975.9, + "end": 16977.36, + "probability": 0.7238 + }, + { + "start": 16977.6, + "end": 16978.74, + "probability": 0.8434 + }, + { + "start": 16979.02, + "end": 16981.66, + "probability": 0.9178 + }, + { + "start": 16981.78, + "end": 16983.52, + "probability": 0.3623 + }, + { + "start": 16984.06, + "end": 16987.94, + "probability": 0.996 + }, + { + "start": 16987.94, + "end": 16990.34, + "probability": 0.8963 + }, + { + "start": 16990.56, + "end": 16994.44, + "probability": 0.9644 + }, + { + "start": 16994.58, + "end": 16994.86, + "probability": 0.7431 + }, + { + "start": 16995.02, + "end": 16996.78, + "probability": 0.5468 + }, + { + "start": 16996.8, + "end": 16998.98, + "probability": 0.9055 + }, + { + "start": 16999.86, + "end": 17001.48, + "probability": 0.4035 + }, + { + "start": 17010.82, + "end": 17013.14, + "probability": 0.8966 + }, + { + "start": 17013.28, + "end": 17013.96, + "probability": 0.7205 + }, + { + "start": 17014.18, + "end": 17015.26, + "probability": 0.7668 + }, + { + "start": 17015.34, + "end": 17016.52, + "probability": 0.8655 + }, + { + "start": 17016.6, + "end": 17018.34, + "probability": 0.8831 + }, + { + "start": 17018.76, + "end": 17022.28, + "probability": 0.8103 + }, + { + "start": 17026.12, + "end": 17029.34, + "probability": 0.4744 + }, + { + "start": 17029.76, + "end": 17033.22, + "probability": 0.602 + }, + { + "start": 17033.3, + "end": 17037.4, + "probability": 0.784 + }, + { + "start": 17037.4, + "end": 17040.48, + "probability": 0.9094 + }, + { + "start": 17040.58, + "end": 17042.06, + "probability": 0.598 + }, + { + "start": 17042.2, + "end": 17042.3, + "probability": 0.6805 + }, + { + "start": 17043.06, + "end": 17043.78, + "probability": 0.7256 + }, + { + "start": 17044.24, + "end": 17045.56, + "probability": 0.9011 + }, + { + "start": 17045.6, + "end": 17046.78, + "probability": 0.5948 + }, + { + "start": 17050.88, + "end": 17052.42, + "probability": 0.7795 + }, + { + "start": 17054.16, + "end": 17055.44, + "probability": 0.7022 + }, + { + "start": 17057.24, + "end": 17060.32, + "probability": 0.7405 + }, + { + "start": 17062.48, + "end": 17062.98, + "probability": 0.8161 + }, + { + "start": 17065.06, + "end": 17068.64, + "probability": 0.9678 + }, + { + "start": 17071.02, + "end": 17073.12, + "probability": 0.8682 + }, + { + "start": 17073.24, + "end": 17075.52, + "probability": 0.9881 + }, + { + "start": 17075.68, + "end": 17077.42, + "probability": 0.9763 + }, + { + "start": 17077.64, + "end": 17078.94, + "probability": 0.9748 + }, + { + "start": 17080.56, + "end": 17083.0, + "probability": 0.9983 + }, + { + "start": 17083.06, + "end": 17088.1, + "probability": 0.8728 + }, + { + "start": 17088.62, + "end": 17091.26, + "probability": 0.9606 + }, + { + "start": 17091.38, + "end": 17092.52, + "probability": 0.9658 + }, + { + "start": 17092.66, + "end": 17093.9, + "probability": 0.9885 + }, + { + "start": 17096.24, + "end": 17097.1, + "probability": 0.5574 + }, + { + "start": 17098.1, + "end": 17099.86, + "probability": 0.9988 + }, + { + "start": 17102.87, + "end": 17104.85, + "probability": 0.4979 + }, + { + "start": 17106.74, + "end": 17111.02, + "probability": 0.9422 + }, + { + "start": 17111.02, + "end": 17113.66, + "probability": 0.9995 + }, + { + "start": 17115.84, + "end": 17117.96, + "probability": 0.7229 + }, + { + "start": 17118.98, + "end": 17125.4, + "probability": 0.8733 + }, + { + "start": 17128.26, + "end": 17130.34, + "probability": 0.7143 + }, + { + "start": 17131.38, + "end": 17132.3, + "probability": 0.8451 + }, + { + "start": 17132.5, + "end": 17133.05, + "probability": 0.9248 + }, + { + "start": 17133.6, + "end": 17135.14, + "probability": 0.9796 + }, + { + "start": 17136.04, + "end": 17140.2, + "probability": 0.9951 + }, + { + "start": 17141.44, + "end": 17143.9, + "probability": 0.9478 + }, + { + "start": 17144.38, + "end": 17145.88, + "probability": 0.8333 + }, + { + "start": 17146.52, + "end": 17148.64, + "probability": 0.9987 + }, + { + "start": 17149.86, + "end": 17151.0, + "probability": 0.9717 + }, + { + "start": 17151.7, + "end": 17153.78, + "probability": 0.8367 + }, + { + "start": 17153.98, + "end": 17155.64, + "probability": 0.974 + }, + { + "start": 17156.6, + "end": 17158.28, + "probability": 0.9885 + }, + { + "start": 17159.62, + "end": 17161.66, + "probability": 0.9692 + }, + { + "start": 17161.96, + "end": 17163.7, + "probability": 0.7786 + }, + { + "start": 17163.82, + "end": 17167.32, + "probability": 0.7196 + }, + { + "start": 17168.68, + "end": 17170.12, + "probability": 0.7759 + }, + { + "start": 17170.18, + "end": 17171.12, + "probability": 0.8053 + }, + { + "start": 17172.78, + "end": 17175.0, + "probability": 0.9555 + }, + { + "start": 17175.24, + "end": 17179.62, + "probability": 0.9973 + }, + { + "start": 17180.44, + "end": 17184.9, + "probability": 0.9938 + }, + { + "start": 17185.54, + "end": 17187.96, + "probability": 0.9924 + }, + { + "start": 17189.08, + "end": 17192.18, + "probability": 0.9937 + }, + { + "start": 17193.14, + "end": 17193.72, + "probability": 0.6377 + }, + { + "start": 17194.78, + "end": 17196.94, + "probability": 0.9646 + }, + { + "start": 17197.44, + "end": 17198.2, + "probability": 0.555 + }, + { + "start": 17198.44, + "end": 17200.4, + "probability": 0.5551 + }, + { + "start": 17200.82, + "end": 17202.06, + "probability": 0.7715 + }, + { + "start": 17202.46, + "end": 17204.44, + "probability": 0.9813 + }, + { + "start": 17204.48, + "end": 17207.72, + "probability": 0.9926 + }, + { + "start": 17208.44, + "end": 17211.46, + "probability": 0.9115 + }, + { + "start": 17213.38, + "end": 17214.46, + "probability": 0.5697 + }, + { + "start": 17216.36, + "end": 17217.24, + "probability": 0.8859 + }, + { + "start": 17218.04, + "end": 17219.39, + "probability": 0.9968 + }, + { + "start": 17220.9, + "end": 17222.62, + "probability": 0.9696 + }, + { + "start": 17223.44, + "end": 17227.2, + "probability": 0.9945 + }, + { + "start": 17228.18, + "end": 17229.58, + "probability": 0.6262 + }, + { + "start": 17230.26, + "end": 17234.14, + "probability": 0.9834 + }, + { + "start": 17234.84, + "end": 17236.5, + "probability": 0.6693 + }, + { + "start": 17238.18, + "end": 17238.5, + "probability": 0.6128 + }, + { + "start": 17239.18, + "end": 17241.92, + "probability": 0.9512 + }, + { + "start": 17243.36, + "end": 17244.94, + "probability": 0.87 + }, + { + "start": 17245.82, + "end": 17247.34, + "probability": 0.9976 + }, + { + "start": 17247.62, + "end": 17251.0, + "probability": 0.9906 + }, + { + "start": 17251.36, + "end": 17251.78, + "probability": 0.8916 + }, + { + "start": 17252.08, + "end": 17253.98, + "probability": 0.8279 + }, + { + "start": 17254.76, + "end": 17261.1, + "probability": 0.9971 + }, + { + "start": 17262.3, + "end": 17264.82, + "probability": 0.8986 + }, + { + "start": 17265.7, + "end": 17267.14, + "probability": 0.9704 + }, + { + "start": 17268.68, + "end": 17270.08, + "probability": 0.9167 + }, + { + "start": 17270.9, + "end": 17274.34, + "probability": 0.9376 + }, + { + "start": 17274.88, + "end": 17275.62, + "probability": 0.7164 + }, + { + "start": 17276.18, + "end": 17279.66, + "probability": 0.9847 + }, + { + "start": 17280.44, + "end": 17281.82, + "probability": 0.9188 + }, + { + "start": 17282.76, + "end": 17283.54, + "probability": 0.654 + }, + { + "start": 17285.62, + "end": 17290.6, + "probability": 0.9966 + }, + { + "start": 17295.8, + "end": 17297.23, + "probability": 0.9844 + }, + { + "start": 17297.54, + "end": 17300.28, + "probability": 0.9958 + }, + { + "start": 17300.68, + "end": 17302.54, + "probability": 0.9607 + }, + { + "start": 17303.44, + "end": 17305.4, + "probability": 0.998 + }, + { + "start": 17310.0, + "end": 17310.98, + "probability": 0.3844 + }, + { + "start": 17311.58, + "end": 17313.1, + "probability": 0.9056 + }, + { + "start": 17313.98, + "end": 17317.36, + "probability": 0.9552 + }, + { + "start": 17318.14, + "end": 17320.15, + "probability": 0.8787 + }, + { + "start": 17321.68, + "end": 17322.42, + "probability": 0.9787 + }, + { + "start": 17322.5, + "end": 17324.0, + "probability": 0.921 + }, + { + "start": 17324.06, + "end": 17324.32, + "probability": 0.6799 + }, + { + "start": 17324.7, + "end": 17325.41, + "probability": 0.0165 + }, + { + "start": 17326.46, + "end": 17328.0, + "probability": 0.6218 + }, + { + "start": 17328.86, + "end": 17330.2, + "probability": 0.0895 + }, + { + "start": 17331.32, + "end": 17331.44, + "probability": 0.6406 + }, + { + "start": 17331.44, + "end": 17331.56, + "probability": 0.3917 + }, + { + "start": 17331.56, + "end": 17331.94, + "probability": 0.5707 + }, + { + "start": 17332.54, + "end": 17333.48, + "probability": 0.8347 + }, + { + "start": 17333.88, + "end": 17335.28, + "probability": 0.901 + }, + { + "start": 17335.72, + "end": 17337.5, + "probability": 0.9439 + }, + { + "start": 17337.66, + "end": 17338.87, + "probability": 0.9668 + }, + { + "start": 17340.24, + "end": 17341.92, + "probability": 0.886 + }, + { + "start": 17343.38, + "end": 17344.38, + "probability": 0.7559 + }, + { + "start": 17345.98, + "end": 17348.04, + "probability": 0.9202 + }, + { + "start": 17350.02, + "end": 17351.34, + "probability": 0.8379 + }, + { + "start": 17352.42, + "end": 17355.76, + "probability": 0.9883 + }, + { + "start": 17357.52, + "end": 17359.99, + "probability": 0.9938 + }, + { + "start": 17363.16, + "end": 17365.7, + "probability": 0.9001 + }, + { + "start": 17367.08, + "end": 17370.68, + "probability": 0.9745 + }, + { + "start": 17372.18, + "end": 17374.59, + "probability": 0.7022 + }, + { + "start": 17376.08, + "end": 17377.46, + "probability": 0.7085 + }, + { + "start": 17378.1, + "end": 17378.98, + "probability": 0.9863 + }, + { + "start": 17380.28, + "end": 17381.48, + "probability": 0.9304 + }, + { + "start": 17383.46, + "end": 17384.96, + "probability": 0.7454 + }, + { + "start": 17385.16, + "end": 17386.02, + "probability": 0.7722 + }, + { + "start": 17386.42, + "end": 17387.4, + "probability": 0.9849 + }, + { + "start": 17389.02, + "end": 17393.1, + "probability": 0.9919 + }, + { + "start": 17394.78, + "end": 17395.8, + "probability": 0.8238 + }, + { + "start": 17395.86, + "end": 17398.56, + "probability": 0.9979 + }, + { + "start": 17398.68, + "end": 17399.24, + "probability": 0.7818 + }, + { + "start": 17399.98, + "end": 17401.69, + "probability": 0.9937 + }, + { + "start": 17402.26, + "end": 17403.03, + "probability": 0.9336 + }, + { + "start": 17404.56, + "end": 17404.88, + "probability": 0.868 + }, + { + "start": 17404.96, + "end": 17408.24, + "probability": 0.9951 + }, + { + "start": 17411.14, + "end": 17417.48, + "probability": 0.9982 + }, + { + "start": 17418.6, + "end": 17421.0, + "probability": 0.9668 + }, + { + "start": 17423.28, + "end": 17426.74, + "probability": 0.9971 + }, + { + "start": 17427.16, + "end": 17432.7, + "probability": 0.0205 + }, + { + "start": 17432.7, + "end": 17432.7, + "probability": 0.0107 + }, + { + "start": 17432.7, + "end": 17434.3, + "probability": 0.429 + }, + { + "start": 17435.0, + "end": 17435.98, + "probability": 0.9536 + }, + { + "start": 17437.28, + "end": 17439.7, + "probability": 0.9954 + }, + { + "start": 17440.28, + "end": 17440.7, + "probability": 0.5097 + }, + { + "start": 17441.34, + "end": 17443.46, + "probability": 0.9751 + }, + { + "start": 17445.12, + "end": 17446.76, + "probability": 0.8723 + }, + { + "start": 17448.76, + "end": 17452.9, + "probability": 0.9982 + }, + { + "start": 17454.68, + "end": 17456.86, + "probability": 0.9409 + }, + { + "start": 17457.6, + "end": 17458.38, + "probability": 0.9954 + }, + { + "start": 17459.72, + "end": 17461.44, + "probability": 0.9797 + }, + { + "start": 17463.08, + "end": 17464.1, + "probability": 0.7979 + }, + { + "start": 17465.64, + "end": 17466.52, + "probability": 0.8589 + }, + { + "start": 17468.14, + "end": 17469.6, + "probability": 0.9038 + }, + { + "start": 17469.7, + "end": 17469.98, + "probability": 0.7215 + }, + { + "start": 17470.0, + "end": 17475.44, + "probability": 0.8913 + }, + { + "start": 17475.7, + "end": 17477.66, + "probability": 0.6759 + }, + { + "start": 17477.72, + "end": 17479.3, + "probability": 0.9004 + }, + { + "start": 17482.14, + "end": 17483.32, + "probability": 0.9728 + }, + { + "start": 17483.4, + "end": 17484.65, + "probability": 0.9968 + }, + { + "start": 17485.62, + "end": 17486.34, + "probability": 0.9902 + }, + { + "start": 17486.72, + "end": 17487.24, + "probability": 0.468 + }, + { + "start": 17489.24, + "end": 17493.22, + "probability": 0.7434 + }, + { + "start": 17494.84, + "end": 17496.81, + "probability": 0.9983 + }, + { + "start": 17497.38, + "end": 17499.38, + "probability": 0.9927 + }, + { + "start": 17499.44, + "end": 17502.18, + "probability": 0.499 + }, + { + "start": 17502.32, + "end": 17503.36, + "probability": 0.8605 + }, + { + "start": 17504.46, + "end": 17506.48, + "probability": 0.9929 + }, + { + "start": 17507.42, + "end": 17509.0, + "probability": 0.8933 + }, + { + "start": 17509.48, + "end": 17511.0, + "probability": 0.936 + }, + { + "start": 17511.2, + "end": 17513.82, + "probability": 0.9306 + }, + { + "start": 17514.12, + "end": 17518.32, + "probability": 0.9731 + }, + { + "start": 17519.0, + "end": 17519.46, + "probability": 0.4547 + }, + { + "start": 17519.72, + "end": 17523.26, + "probability": 0.9679 + }, + { + "start": 17523.34, + "end": 17523.76, + "probability": 0.5105 + }, + { + "start": 17524.78, + "end": 17525.64, + "probability": 0.9697 + }, + { + "start": 17525.96, + "end": 17527.24, + "probability": 0.9776 + }, + { + "start": 17533.26, + "end": 17535.02, + "probability": 0.9951 + }, + { + "start": 17537.38, + "end": 17538.26, + "probability": 0.8931 + }, + { + "start": 17539.32, + "end": 17540.56, + "probability": 0.9852 + }, + { + "start": 17541.56, + "end": 17542.84, + "probability": 0.9941 + }, + { + "start": 17543.62, + "end": 17546.44, + "probability": 0.9842 + }, + { + "start": 17547.14, + "end": 17550.6, + "probability": 0.9719 + }, + { + "start": 17551.48, + "end": 17555.86, + "probability": 0.6889 + }, + { + "start": 17556.52, + "end": 17558.64, + "probability": 0.9765 + }, + { + "start": 17558.96, + "end": 17563.64, + "probability": 0.9655 + }, + { + "start": 17564.02, + "end": 17566.26, + "probability": 0.5036 + }, + { + "start": 17566.52, + "end": 17568.66, + "probability": 0.9139 + }, + { + "start": 17568.96, + "end": 17569.84, + "probability": 0.6312 + }, + { + "start": 17569.88, + "end": 17570.96, + "probability": 0.8832 + }, + { + "start": 17571.08, + "end": 17571.78, + "probability": 0.3058 + }, + { + "start": 17571.82, + "end": 17572.52, + "probability": 0.6222 + }, + { + "start": 17573.16, + "end": 17574.88, + "probability": 0.9671 + }, + { + "start": 17575.22, + "end": 17576.86, + "probability": 0.9048 + }, + { + "start": 17577.62, + "end": 17585.14, + "probability": 0.9793 + }, + { + "start": 17587.3, + "end": 17589.51, + "probability": 0.5005 + }, + { + "start": 17592.22, + "end": 17593.0, + "probability": 0.9414 + }, + { + "start": 17596.26, + "end": 17598.52, + "probability": 0.962 + }, + { + "start": 17600.56, + "end": 17608.62, + "probability": 0.9937 + }, + { + "start": 17609.5, + "end": 17610.98, + "probability": 0.5992 + }, + { + "start": 17613.34, + "end": 17615.24, + "probability": 0.9779 + }, + { + "start": 17616.4, + "end": 17618.0, + "probability": 0.9893 + }, + { + "start": 17619.1, + "end": 17620.0, + "probability": 0.7445 + }, + { + "start": 17620.5, + "end": 17622.38, + "probability": 0.9113 + }, + { + "start": 17622.8, + "end": 17623.44, + "probability": 0.7266 + }, + { + "start": 17623.84, + "end": 17624.62, + "probability": 0.8515 + }, + { + "start": 17625.26, + "end": 17626.78, + "probability": 0.9731 + }, + { + "start": 17626.9, + "end": 17627.69, + "probability": 0.9951 + }, + { + "start": 17629.94, + "end": 17631.1, + "probability": 0.9775 + }, + { + "start": 17631.5, + "end": 17636.87, + "probability": 0.9922 + }, + { + "start": 17637.98, + "end": 17643.66, + "probability": 0.9921 + }, + { + "start": 17643.94, + "end": 17646.74, + "probability": 0.997 + }, + { + "start": 17647.68, + "end": 17649.1, + "probability": 0.8196 + }, + { + "start": 17649.98, + "end": 17653.54, + "probability": 0.9961 + }, + { + "start": 17653.54, + "end": 17658.68, + "probability": 0.9146 + }, + { + "start": 17658.72, + "end": 17659.64, + "probability": 0.7281 + }, + { + "start": 17659.74, + "end": 17660.5, + "probability": 0.8167 + }, + { + "start": 17660.84, + "end": 17661.62, + "probability": 0.8061 + }, + { + "start": 17661.9, + "end": 17663.2, + "probability": 0.5789 + }, + { + "start": 17663.32, + "end": 17665.06, + "probability": 0.814 + }, + { + "start": 17665.72, + "end": 17667.58, + "probability": 0.9628 + }, + { + "start": 17669.5, + "end": 17671.98, + "probability": 0.896 + }, + { + "start": 17673.6, + "end": 17676.76, + "probability": 0.9961 + }, + { + "start": 17678.24, + "end": 17684.22, + "probability": 0.8021 + }, + { + "start": 17684.6, + "end": 17685.9, + "probability": 0.8786 + }, + { + "start": 17686.22, + "end": 17687.1, + "probability": 0.892 + }, + { + "start": 17687.36, + "end": 17689.68, + "probability": 0.989 + }, + { + "start": 17690.66, + "end": 17694.32, + "probability": 0.963 + }, + { + "start": 17694.32, + "end": 17697.48, + "probability": 0.936 + }, + { + "start": 17698.72, + "end": 17699.06, + "probability": 0.7803 + }, + { + "start": 17701.38, + "end": 17702.32, + "probability": 0.9932 + }, + { + "start": 17703.7, + "end": 17705.52, + "probability": 0.891 + }, + { + "start": 17706.06, + "end": 17707.64, + "probability": 0.8374 + }, + { + "start": 17707.98, + "end": 17708.86, + "probability": 0.9088 + }, + { + "start": 17709.0, + "end": 17710.32, + "probability": 0.8293 + }, + { + "start": 17711.16, + "end": 17713.66, + "probability": 0.8755 + }, + { + "start": 17713.74, + "end": 17715.12, + "probability": 0.9941 + }, + { + "start": 17715.56, + "end": 17718.64, + "probability": 0.9948 + }, + { + "start": 17719.16, + "end": 17720.58, + "probability": 0.6735 + }, + { + "start": 17721.54, + "end": 17723.36, + "probability": 0.0026 + }, + { + "start": 17726.1, + "end": 17726.1, + "probability": 0.1395 + }, + { + "start": 17726.1, + "end": 17726.1, + "probability": 0.0495 + }, + { + "start": 17726.1, + "end": 17726.52, + "probability": 0.707 + }, + { + "start": 17727.0, + "end": 17729.9, + "probability": 0.8184 + }, + { + "start": 17731.68, + "end": 17733.6, + "probability": 0.8872 + }, + { + "start": 17733.6, + "end": 17735.42, + "probability": 0.96 + }, + { + "start": 17737.36, + "end": 17739.42, + "probability": 0.6821 + }, + { + "start": 17740.42, + "end": 17742.36, + "probability": 0.899 + }, + { + "start": 17742.8, + "end": 17744.74, + "probability": 0.9883 + }, + { + "start": 17745.76, + "end": 17746.16, + "probability": 0.7952 + }, + { + "start": 17746.32, + "end": 17749.26, + "probability": 0.9858 + }, + { + "start": 17750.34, + "end": 17751.52, + "probability": 0.9781 + }, + { + "start": 17751.64, + "end": 17754.34, + "probability": 0.9784 + }, + { + "start": 17755.8, + "end": 17758.12, + "probability": 0.9944 + }, + { + "start": 17759.68, + "end": 17761.46, + "probability": 0.9474 + }, + { + "start": 17761.7, + "end": 17766.28, + "probability": 0.8435 + }, + { + "start": 17767.36, + "end": 17768.34, + "probability": 0.9606 + }, + { + "start": 17771.88, + "end": 17774.0, + "probability": 0.6957 + }, + { + "start": 17775.34, + "end": 17776.5, + "probability": 0.9031 + }, + { + "start": 17777.32, + "end": 17779.24, + "probability": 0.7325 + }, + { + "start": 17780.52, + "end": 17782.99, + "probability": 0.9873 + }, + { + "start": 17783.24, + "end": 17785.04, + "probability": 0.9973 + }, + { + "start": 17786.98, + "end": 17787.8, + "probability": 0.851 + }, + { + "start": 17788.74, + "end": 17791.36, + "probability": 0.9874 + }, + { + "start": 17792.16, + "end": 17795.26, + "probability": 0.9895 + }, + { + "start": 17795.28, + "end": 17799.28, + "probability": 0.9678 + }, + { + "start": 17799.28, + "end": 17804.92, + "probability": 0.8612 + }, + { + "start": 17805.04, + "end": 17805.28, + "probability": 0.6778 + }, + { + "start": 17805.42, + "end": 17809.8, + "probability": 0.605 + }, + { + "start": 17810.24, + "end": 17811.64, + "probability": 0.9863 + }, + { + "start": 17812.84, + "end": 17814.24, + "probability": 0.8513 + }, + { + "start": 17827.74, + "end": 17828.43, + "probability": 0.8916 + }, + { + "start": 17830.26, + "end": 17830.26, + "probability": 0.0732 + }, + { + "start": 17830.26, + "end": 17830.26, + "probability": 0.016 + }, + { + "start": 17830.26, + "end": 17830.26, + "probability": 0.0475 + }, + { + "start": 17830.26, + "end": 17830.26, + "probability": 0.1393 + }, + { + "start": 17830.26, + "end": 17830.26, + "probability": 0.1408 + }, + { + "start": 17830.26, + "end": 17832.54, + "probability": 0.3408 + }, + { + "start": 17833.38, + "end": 17834.62, + "probability": 0.8249 + }, + { + "start": 17835.18, + "end": 17840.12, + "probability": 0.9901 + }, + { + "start": 17843.46, + "end": 17844.42, + "probability": 0.9833 + }, + { + "start": 17848.16, + "end": 17849.3, + "probability": 0.981 + }, + { + "start": 17850.66, + "end": 17851.64, + "probability": 0.7081 + }, + { + "start": 17851.86, + "end": 17853.34, + "probability": 0.9922 + }, + { + "start": 17853.44, + "end": 17854.6, + "probability": 0.9181 + }, + { + "start": 17854.64, + "end": 17855.66, + "probability": 0.98 + }, + { + "start": 17856.78, + "end": 17860.78, + "probability": 0.9451 + }, + { + "start": 17860.86, + "end": 17861.06, + "probability": 0.5005 + }, + { + "start": 17861.16, + "end": 17862.0, + "probability": 0.6878 + }, + { + "start": 17863.12, + "end": 17866.14, + "probability": 0.8569 + }, + { + "start": 17867.5, + "end": 17868.42, + "probability": 0.7824 + }, + { + "start": 17868.78, + "end": 17870.72, + "probability": 0.8739 + }, + { + "start": 17871.12, + "end": 17873.74, + "probability": 0.9434 + }, + { + "start": 17874.82, + "end": 17877.92, + "probability": 0.9553 + }, + { + "start": 17878.44, + "end": 17879.26, + "probability": 0.9512 + }, + { + "start": 17880.14, + "end": 17882.22, + "probability": 0.5959 + }, + { + "start": 17882.38, + "end": 17883.42, + "probability": 0.8785 + }, + { + "start": 17883.8, + "end": 17885.74, + "probability": 0.9641 + }, + { + "start": 17887.48, + "end": 17890.9, + "probability": 0.9438 + }, + { + "start": 17891.46, + "end": 17893.14, + "probability": 0.6748 + }, + { + "start": 17893.6, + "end": 17897.42, + "probability": 0.7811 + }, + { + "start": 17898.58, + "end": 17900.54, + "probability": 0.972 + }, + { + "start": 17901.2, + "end": 17902.36, + "probability": 0.949 + }, + { + "start": 17904.56, + "end": 17907.9, + "probability": 0.8159 + }, + { + "start": 17908.58, + "end": 17912.34, + "probability": 0.9936 + }, + { + "start": 17912.92, + "end": 17916.7, + "probability": 0.9845 + }, + { + "start": 17918.0, + "end": 17919.2, + "probability": 0.7316 + }, + { + "start": 17920.18, + "end": 17921.42, + "probability": 0.8926 + }, + { + "start": 17922.82, + "end": 17924.36, + "probability": 0.8911 + }, + { + "start": 17925.24, + "end": 17927.86, + "probability": 0.9076 + }, + { + "start": 17929.04, + "end": 17930.68, + "probability": 0.8426 + }, + { + "start": 17932.4, + "end": 17933.4, + "probability": 0.2247 + }, + { + "start": 17934.38, + "end": 17936.62, + "probability": 0.7009 + }, + { + "start": 17936.78, + "end": 17938.4, + "probability": 0.12 + }, + { + "start": 17941.64, + "end": 17943.22, + "probability": 0.9966 + }, + { + "start": 17946.56, + "end": 17949.45, + "probability": 0.8345 + }, + { + "start": 17950.6, + "end": 17951.24, + "probability": 0.922 + }, + { + "start": 17951.36, + "end": 17954.28, + "probability": 0.9106 + }, + { + "start": 17954.74, + "end": 17956.38, + "probability": 0.9878 + }, + { + "start": 17957.32, + "end": 17958.62, + "probability": 0.7778 + }, + { + "start": 17959.82, + "end": 17961.12, + "probability": 0.9595 + }, + { + "start": 17961.76, + "end": 17966.4, + "probability": 0.9969 + }, + { + "start": 17966.82, + "end": 17968.16, + "probability": 0.9907 + }, + { + "start": 17970.16, + "end": 17972.1, + "probability": 0.8923 + }, + { + "start": 17972.16, + "end": 17972.65, + "probability": 0.9889 + }, + { + "start": 17973.64, + "end": 17978.1, + "probability": 0.9197 + }, + { + "start": 17978.94, + "end": 17984.26, + "probability": 0.9423 + }, + { + "start": 17984.4, + "end": 17985.28, + "probability": 0.9556 + }, + { + "start": 17985.8, + "end": 17986.72, + "probability": 0.9913 + }, + { + "start": 17987.16, + "end": 17988.08, + "probability": 0.9924 + }, + { + "start": 17988.82, + "end": 17990.28, + "probability": 0.8685 + }, + { + "start": 17990.58, + "end": 17992.82, + "probability": 0.9735 + }, + { + "start": 17994.26, + "end": 17994.86, + "probability": 0.8264 + }, + { + "start": 17994.92, + "end": 17995.62, + "probability": 0.5311 + }, + { + "start": 17995.72, + "end": 17997.38, + "probability": 0.8163 + }, + { + "start": 17997.54, + "end": 18001.0, + "probability": 0.5045 + }, + { + "start": 18001.9, + "end": 18003.34, + "probability": 0.9666 + }, + { + "start": 18005.62, + "end": 18006.76, + "probability": 0.9596 + }, + { + "start": 18008.2, + "end": 18009.32, + "probability": 0.8149 + }, + { + "start": 18010.12, + "end": 18014.3, + "probability": 0.8433 + }, + { + "start": 18015.7, + "end": 18017.46, + "probability": 0.9377 + }, + { + "start": 18018.18, + "end": 18020.24, + "probability": 0.9949 + }, + { + "start": 18020.62, + "end": 18021.99, + "probability": 0.8019 + }, + { + "start": 18023.0, + "end": 18024.4, + "probability": 0.9811 + }, + { + "start": 18025.96, + "end": 18029.94, + "probability": 0.9758 + }, + { + "start": 18033.64, + "end": 18035.16, + "probability": 0.7553 + }, + { + "start": 18035.32, + "end": 18036.1, + "probability": 0.6864 + }, + { + "start": 18036.38, + "end": 18037.36, + "probability": 0.8752 + }, + { + "start": 18037.48, + "end": 18039.48, + "probability": 0.9753 + }, + { + "start": 18041.38, + "end": 18042.44, + "probability": 0.9546 + }, + { + "start": 18042.52, + "end": 18044.96, + "probability": 0.96 + }, + { + "start": 18046.18, + "end": 18048.62, + "probability": 0.6005 + }, + { + "start": 18051.22, + "end": 18052.94, + "probability": 0.9966 + }, + { + "start": 18054.6, + "end": 18057.92, + "probability": 0.9955 + }, + { + "start": 18057.92, + "end": 18060.84, + "probability": 0.9854 + }, + { + "start": 18061.82, + "end": 18062.4, + "probability": 0.7746 + }, + { + "start": 18063.44, + "end": 18066.38, + "probability": 0.8948 + }, + { + "start": 18066.6, + "end": 18071.26, + "probability": 0.996 + }, + { + "start": 18072.12, + "end": 18072.74, + "probability": 0.7839 + }, + { + "start": 18073.3, + "end": 18077.96, + "probability": 0.9938 + }, + { + "start": 18078.6, + "end": 18081.33, + "probability": 0.9941 + }, + { + "start": 18082.66, + "end": 18086.76, + "probability": 0.9066 + }, + { + "start": 18087.02, + "end": 18088.42, + "probability": 0.6211 + }, + { + "start": 18090.34, + "end": 18091.48, + "probability": 0.475 + }, + { + "start": 18092.52, + "end": 18092.92, + "probability": 0.6521 + }, + { + "start": 18094.04, + "end": 18094.74, + "probability": 0.9491 + }, + { + "start": 18095.72, + "end": 18097.72, + "probability": 0.9961 + }, + { + "start": 18098.78, + "end": 18102.36, + "probability": 0.9196 + }, + { + "start": 18102.88, + "end": 18108.52, + "probability": 0.9863 + }, + { + "start": 18108.82, + "end": 18114.26, + "probability": 0.9922 + }, + { + "start": 18114.68, + "end": 18119.3, + "probability": 0.7557 + }, + { + "start": 18119.3, + "end": 18124.02, + "probability": 0.9958 + }, + { + "start": 18125.56, + "end": 18127.74, + "probability": 0.8509 + }, + { + "start": 18128.36, + "end": 18129.56, + "probability": 0.9037 + }, + { + "start": 18129.62, + "end": 18132.12, + "probability": 0.9827 + }, + { + "start": 18132.3, + "end": 18133.62, + "probability": 0.9079 + }, + { + "start": 18133.76, + "end": 18134.98, + "probability": 0.5368 + }, + { + "start": 18135.54, + "end": 18136.9, + "probability": 0.9797 + }, + { + "start": 18138.06, + "end": 18138.72, + "probability": 0.9897 + }, + { + "start": 18139.58, + "end": 18144.56, + "probability": 0.9692 + }, + { + "start": 18144.66, + "end": 18147.06, + "probability": 0.9461 + }, + { + "start": 18147.38, + "end": 18148.18, + "probability": 0.721 + }, + { + "start": 18148.86, + "end": 18150.66, + "probability": 0.9807 + }, + { + "start": 18150.74, + "end": 18152.46, + "probability": 0.6993 + }, + { + "start": 18156.94, + "end": 18159.04, + "probability": 0.616 + }, + { + "start": 18167.26, + "end": 18167.34, + "probability": 0.0915 + }, + { + "start": 18167.34, + "end": 18167.62, + "probability": 0.1619 + }, + { + "start": 18167.7, + "end": 18167.82, + "probability": 0.3023 + }, + { + "start": 18167.82, + "end": 18168.22, + "probability": 0.4835 + }, + { + "start": 18168.22, + "end": 18168.22, + "probability": 0.0245 + }, + { + "start": 18172.08, + "end": 18173.16, + "probability": 0.2665 + }, + { + "start": 18173.16, + "end": 18176.32, + "probability": 0.1321 + }, + { + "start": 18177.24, + "end": 18179.26, + "probability": 0.0199 + }, + { + "start": 18181.4, + "end": 18181.42, + "probability": 0.3626 + }, + { + "start": 18182.0, + "end": 18183.63, + "probability": 0.0487 + }, + { + "start": 18188.66, + "end": 18190.1, + "probability": 0.6555 + }, + { + "start": 18192.42, + "end": 18194.34, + "probability": 0.008 + }, + { + "start": 18197.16, + "end": 18199.56, + "probability": 0.0466 + }, + { + "start": 18214.02, + "end": 18215.36, + "probability": 0.0526 + }, + { + "start": 18233.18, + "end": 18235.98, + "probability": 0.9698 + }, + { + "start": 18238.6, + "end": 18244.58, + "probability": 0.9901 + }, + { + "start": 18244.9, + "end": 18249.48, + "probability": 0.9985 + }, + { + "start": 18251.78, + "end": 18255.82, + "probability": 0.7888 + }, + { + "start": 18257.52, + "end": 18261.06, + "probability": 0.9946 + }, + { + "start": 18262.84, + "end": 18264.24, + "probability": 0.8551 + }, + { + "start": 18266.24, + "end": 18269.3, + "probability": 0.9951 + }, + { + "start": 18271.14, + "end": 18274.58, + "probability": 0.8193 + }, + { + "start": 18277.48, + "end": 18281.38, + "probability": 0.9226 + }, + { + "start": 18282.93, + "end": 18288.4, + "probability": 0.9797 + }, + { + "start": 18291.14, + "end": 18292.68, + "probability": 0.8038 + }, + { + "start": 18292.86, + "end": 18301.32, + "probability": 0.6732 + }, + { + "start": 18306.68, + "end": 18307.58, + "probability": 0.7377 + }, + { + "start": 18307.8, + "end": 18315.16, + "probability": 0.8214 + }, + { + "start": 18315.72, + "end": 18319.46, + "probability": 0.686 + }, + { + "start": 18320.42, + "end": 18327.04, + "probability": 0.9797 + }, + { + "start": 18327.04, + "end": 18332.06, + "probability": 0.999 + }, + { + "start": 18334.88, + "end": 18335.32, + "probability": 0.5515 + }, + { + "start": 18335.46, + "end": 18339.72, + "probability": 0.9351 + }, + { + "start": 18339.8, + "end": 18340.84, + "probability": 0.9624 + }, + { + "start": 18340.88, + "end": 18342.36, + "probability": 0.9797 + }, + { + "start": 18342.7, + "end": 18348.36, + "probability": 0.9866 + }, + { + "start": 18351.42, + "end": 18355.1, + "probability": 0.9966 + }, + { + "start": 18355.38, + "end": 18357.56, + "probability": 0.9268 + }, + { + "start": 18359.08, + "end": 18360.3, + "probability": 0.1175 + }, + { + "start": 18362.51, + "end": 18368.22, + "probability": 0.9857 + }, + { + "start": 18369.36, + "end": 18373.6, + "probability": 0.9867 + }, + { + "start": 18374.4, + "end": 18376.5, + "probability": 0.8594 + }, + { + "start": 18376.64, + "end": 18379.22, + "probability": 0.8841 + }, + { + "start": 18379.24, + "end": 18380.22, + "probability": 0.7959 + }, + { + "start": 18382.04, + "end": 18382.86, + "probability": 0.5508 + }, + { + "start": 18383.98, + "end": 18387.14, + "probability": 0.9039 + }, + { + "start": 18387.28, + "end": 18389.6, + "probability": 0.282 + }, + { + "start": 18389.76, + "end": 18392.5, + "probability": 0.9708 + }, + { + "start": 18393.14, + "end": 18395.62, + "probability": 0.9594 + }, + { + "start": 18396.46, + "end": 18399.42, + "probability": 0.6501 + }, + { + "start": 18400.48, + "end": 18403.04, + "probability": 0.8473 + }, + { + "start": 18403.14, + "end": 18404.44, + "probability": 0.9508 + }, + { + "start": 18405.64, + "end": 18406.24, + "probability": 0.5857 + }, + { + "start": 18407.98, + "end": 18410.7, + "probability": 0.8764 + }, + { + "start": 18411.42, + "end": 18414.24, + "probability": 0.8633 + }, + { + "start": 18416.47, + "end": 18418.82, + "probability": 0.9335 + }, + { + "start": 18419.22, + "end": 18419.98, + "probability": 0.6906 + }, + { + "start": 18420.16, + "end": 18421.3, + "probability": 0.8222 + }, + { + "start": 18421.82, + "end": 18423.56, + "probability": 0.9268 + }, + { + "start": 18424.02, + "end": 18426.6, + "probability": 0.965 + }, + { + "start": 18426.64, + "end": 18427.36, + "probability": 0.9177 + }, + { + "start": 18427.48, + "end": 18430.52, + "probability": 0.6969 + }, + { + "start": 18430.52, + "end": 18435.36, + "probability": 0.8733 + }, + { + "start": 18435.74, + "end": 18437.0, + "probability": 0.7346 + }, + { + "start": 18437.3, + "end": 18440.18, + "probability": 0.8033 + }, + { + "start": 18440.96, + "end": 18445.28, + "probability": 0.9597 + }, + { + "start": 18446.9, + "end": 18448.56, + "probability": 0.9559 + }, + { + "start": 18449.24, + "end": 18450.64, + "probability": 0.7195 + }, + { + "start": 18452.64, + "end": 18455.2, + "probability": 0.8069 + }, + { + "start": 18455.34, + "end": 18467.56, + "probability": 0.7008 + }, + { + "start": 18468.7, + "end": 18469.96, + "probability": 0.8742 + }, + { + "start": 18470.68, + "end": 18473.34, + "probability": 0.916 + }, + { + "start": 18473.48, + "end": 18474.2, + "probability": 0.9159 + }, + { + "start": 18474.46, + "end": 18479.82, + "probability": 0.9956 + }, + { + "start": 18480.12, + "end": 18481.02, + "probability": 0.8431 + }, + { + "start": 18481.16, + "end": 18484.08, + "probability": 0.9431 + }, + { + "start": 18484.08, + "end": 18487.34, + "probability": 0.8908 + }, + { + "start": 18488.38, + "end": 18489.26, + "probability": 0.7708 + }, + { + "start": 18489.92, + "end": 18491.16, + "probability": 0.9424 + }, + { + "start": 18491.26, + "end": 18497.48, + "probability": 0.9795 + }, + { + "start": 18497.98, + "end": 18498.54, + "probability": 0.7323 + }, + { + "start": 18499.1, + "end": 18502.22, + "probability": 0.8997 + }, + { + "start": 18502.38, + "end": 18506.36, + "probability": 0.9982 + }, + { + "start": 18509.02, + "end": 18512.32, + "probability": 0.8994 + }, + { + "start": 18514.23, + "end": 18517.46, + "probability": 0.8595 + }, + { + "start": 18517.6, + "end": 18517.84, + "probability": 0.6019 + }, + { + "start": 18518.2, + "end": 18519.24, + "probability": 0.6155 + }, + { + "start": 18519.38, + "end": 18521.72, + "probability": 0.7971 + }, + { + "start": 18522.54, + "end": 18523.66, + "probability": 0.9917 + }, + { + "start": 18524.74, + "end": 18531.66, + "probability": 0.9778 + }, + { + "start": 18533.38, + "end": 18535.76, + "probability": 0.9333 + }, + { + "start": 18536.18, + "end": 18539.22, + "probability": 0.9097 + }, + { + "start": 18540.04, + "end": 18541.02, + "probability": 0.7791 + }, + { + "start": 18541.84, + "end": 18543.68, + "probability": 0.548 + }, + { + "start": 18544.68, + "end": 18548.96, + "probability": 0.9073 + }, + { + "start": 18549.52, + "end": 18551.9, + "probability": 0.9255 + }, + { + "start": 18553.6, + "end": 18554.58, + "probability": 0.9524 + }, + { + "start": 18554.66, + "end": 18556.83, + "probability": 0.9138 + }, + { + "start": 18557.1, + "end": 18558.74, + "probability": 0.9919 + }, + { + "start": 18559.84, + "end": 18560.3, + "probability": 0.9463 + }, + { + "start": 18562.78, + "end": 18566.16, + "probability": 0.8347 + }, + { + "start": 18568.48, + "end": 18574.48, + "probability": 0.9026 + }, + { + "start": 18575.66, + "end": 18577.16, + "probability": 0.86 + }, + { + "start": 18580.66, + "end": 18583.32, + "probability": 0.7306 + }, + { + "start": 18584.22, + "end": 18587.44, + "probability": 0.9897 + }, + { + "start": 18587.8, + "end": 18589.56, + "probability": 0.9695 + }, + { + "start": 18590.62, + "end": 18591.36, + "probability": 0.8033 + }, + { + "start": 18592.7, + "end": 18598.73, + "probability": 0.9282 + }, + { + "start": 18599.67, + "end": 18602.48, + "probability": 0.3618 + }, + { + "start": 18603.4, + "end": 18604.58, + "probability": 0.8454 + }, + { + "start": 18606.74, + "end": 18607.52, + "probability": 0.7412 + }, + { + "start": 18609.42, + "end": 18610.58, + "probability": 0.9561 + }, + { + "start": 18610.72, + "end": 18614.34, + "probability": 0.9644 + }, + { + "start": 18615.38, + "end": 18616.58, + "probability": 0.895 + }, + { + "start": 18618.02, + "end": 18619.36, + "probability": 0.9707 + }, + { + "start": 18619.38, + "end": 18622.18, + "probability": 0.9253 + }, + { + "start": 18623.56, + "end": 18629.62, + "probability": 0.9852 + }, + { + "start": 18630.44, + "end": 18631.06, + "probability": 0.7434 + }, + { + "start": 18631.9, + "end": 18639.38, + "probability": 0.9391 + }, + { + "start": 18640.14, + "end": 18646.32, + "probability": 0.9125 + }, + { + "start": 18651.8, + "end": 18654.61, + "probability": 0.9574 + }, + { + "start": 18655.48, + "end": 18656.26, + "probability": 0.8535 + }, + { + "start": 18656.28, + "end": 18660.9, + "probability": 0.854 + }, + { + "start": 18662.4, + "end": 18664.38, + "probability": 0.8822 + }, + { + "start": 18665.42, + "end": 18666.6, + "probability": 0.8629 + }, + { + "start": 18667.32, + "end": 18669.2, + "probability": 0.9832 + }, + { + "start": 18671.58, + "end": 18675.36, + "probability": 0.9856 + }, + { + "start": 18676.18, + "end": 18677.48, + "probability": 0.7437 + }, + { + "start": 18678.66, + "end": 18680.94, + "probability": 0.9941 + }, + { + "start": 18681.2, + "end": 18682.37, + "probability": 0.8783 + }, + { + "start": 18686.58, + "end": 18689.48, + "probability": 0.9636 + }, + { + "start": 18689.48, + "end": 18689.88, + "probability": 0.7925 + }, + { + "start": 18689.94, + "end": 18693.68, + "probability": 0.9227 + }, + { + "start": 18695.4, + "end": 18699.71, + "probability": 0.9526 + }, + { + "start": 18701.24, + "end": 18702.82, + "probability": 0.999 + }, + { + "start": 18704.8, + "end": 18709.96, + "probability": 0.9841 + }, + { + "start": 18710.68, + "end": 18712.62, + "probability": 0.6938 + }, + { + "start": 18715.16, + "end": 18719.74, + "probability": 0.949 + }, + { + "start": 18720.4, + "end": 18722.12, + "probability": 0.8656 + }, + { + "start": 18723.52, + "end": 18724.08, + "probability": 0.7065 + }, + { + "start": 18725.16, + "end": 18725.96, + "probability": 0.7511 + }, + { + "start": 18726.5, + "end": 18727.3, + "probability": 0.7571 + }, + { + "start": 18728.8, + "end": 18730.32, + "probability": 0.9146 + }, + { + "start": 18731.62, + "end": 18735.26, + "probability": 0.75 + }, + { + "start": 18735.62, + "end": 18736.02, + "probability": 0.8036 + }, + { + "start": 18736.08, + "end": 18737.16, + "probability": 0.9581 + }, + { + "start": 18737.62, + "end": 18741.3, + "probability": 0.9746 + }, + { + "start": 18741.52, + "end": 18742.38, + "probability": 0.9865 + }, + { + "start": 18742.84, + "end": 18743.66, + "probability": 0.869 + }, + { + "start": 18744.28, + "end": 18746.1, + "probability": 0.925 + }, + { + "start": 18747.24, + "end": 18748.4, + "probability": 0.513 + }, + { + "start": 18749.8, + "end": 18751.32, + "probability": 0.9858 + }, + { + "start": 18752.26, + "end": 18755.42, + "probability": 0.8584 + }, + { + "start": 18756.62, + "end": 18758.04, + "probability": 0.7525 + }, + { + "start": 18758.12, + "end": 18759.16, + "probability": 0.7275 + }, + { + "start": 18759.32, + "end": 18759.76, + "probability": 0.9015 + }, + { + "start": 18759.8, + "end": 18760.2, + "probability": 0.4492 + }, + { + "start": 18760.26, + "end": 18761.44, + "probability": 0.8424 + }, + { + "start": 18761.44, + "end": 18762.8, + "probability": 0.9695 + }, + { + "start": 18763.48, + "end": 18764.98, + "probability": 0.9933 + }, + { + "start": 18765.66, + "end": 18768.96, + "probability": 0.9422 + }, + { + "start": 18770.68, + "end": 18775.04, + "probability": 0.9743 + }, + { + "start": 18775.14, + "end": 18776.2, + "probability": 0.7823 + }, + { + "start": 18777.84, + "end": 18779.49, + "probability": 0.9126 + }, + { + "start": 18780.92, + "end": 18782.46, + "probability": 0.7979 + }, + { + "start": 18783.42, + "end": 18786.54, + "probability": 0.9594 + }, + { + "start": 18790.54, + "end": 18792.2, + "probability": 0.5106 + }, + { + "start": 18792.96, + "end": 18795.54, + "probability": 0.9616 + }, + { + "start": 18797.74, + "end": 18799.38, + "probability": 0.9614 + }, + { + "start": 18800.2, + "end": 18802.96, + "probability": 0.9083 + }, + { + "start": 18806.88, + "end": 18807.6, + "probability": 0.5787 + }, + { + "start": 18810.02, + "end": 18811.68, + "probability": 0.818 + }, + { + "start": 18812.8, + "end": 18815.12, + "probability": 0.8774 + }, + { + "start": 18816.98, + "end": 18820.94, + "probability": 0.9469 + }, + { + "start": 18821.06, + "end": 18821.69, + "probability": 0.8961 + }, + { + "start": 18825.12, + "end": 18826.27, + "probability": 0.7468 + }, + { + "start": 18826.4, + "end": 18831.24, + "probability": 0.4534 + }, + { + "start": 18831.4, + "end": 18831.96, + "probability": 0.5367 + }, + { + "start": 18832.3, + "end": 18834.48, + "probability": 0.6358 + }, + { + "start": 18835.18, + "end": 18837.44, + "probability": 0.8787 + }, + { + "start": 18838.14, + "end": 18838.58, + "probability": 0.9126 + }, + { + "start": 18838.78, + "end": 18839.84, + "probability": 0.7463 + }, + { + "start": 18840.28, + "end": 18841.12, + "probability": 0.7637 + }, + { + "start": 18841.32, + "end": 18843.14, + "probability": 0.9051 + }, + { + "start": 18843.56, + "end": 18845.74, + "probability": 0.9773 + }, + { + "start": 18845.96, + "end": 18849.58, + "probability": 0.9827 + }, + { + "start": 18850.94, + "end": 18855.96, + "probability": 0.9619 + }, + { + "start": 18856.04, + "end": 18860.64, + "probability": 0.9891 + }, + { + "start": 18860.68, + "end": 18864.2, + "probability": 0.9671 + }, + { + "start": 18864.4, + "end": 18866.38, + "probability": 0.9011 + }, + { + "start": 18867.48, + "end": 18868.9, + "probability": 0.9651 + }, + { + "start": 18869.2, + "end": 18869.98, + "probability": 0.6716 + }, + { + "start": 18870.04, + "end": 18871.38, + "probability": 0.8108 + }, + { + "start": 18871.72, + "end": 18873.13, + "probability": 0.7284 + }, + { + "start": 18873.3, + "end": 18879.2, + "probability": 0.9756 + }, + { + "start": 18883.64, + "end": 18885.76, + "probability": 0.8105 + }, + { + "start": 18886.84, + "end": 18888.76, + "probability": 0.6591 + }, + { + "start": 18888.96, + "end": 18890.08, + "probability": 0.8407 + }, + { + "start": 18890.4, + "end": 18891.52, + "probability": 0.3695 + }, + { + "start": 18892.02, + "end": 18892.94, + "probability": 0.3677 + }, + { + "start": 18893.16, + "end": 18894.7, + "probability": 0.9666 + }, + { + "start": 18895.64, + "end": 18895.9, + "probability": 0.5171 + }, + { + "start": 18897.14, + "end": 18897.38, + "probability": 0.8289 + }, + { + "start": 18897.9, + "end": 18898.62, + "probability": 0.734 + }, + { + "start": 18898.72, + "end": 18899.3, + "probability": 0.7866 + }, + { + "start": 18899.88, + "end": 18901.74, + "probability": 0.8838 + }, + { + "start": 18901.84, + "end": 18902.86, + "probability": 0.7314 + }, + { + "start": 18904.38, + "end": 18906.0, + "probability": 0.943 + }, + { + "start": 18906.16, + "end": 18906.64, + "probability": 0.5251 + }, + { + "start": 18906.94, + "end": 18908.12, + "probability": 0.8911 + }, + { + "start": 18908.32, + "end": 18909.58, + "probability": 0.8661 + }, + { + "start": 18910.84, + "end": 18912.46, + "probability": 0.938 + }, + { + "start": 18913.42, + "end": 18918.75, + "probability": 0.6596 + }, + { + "start": 18919.04, + "end": 18919.72, + "probability": 0.4222 + }, + { + "start": 18919.94, + "end": 18921.58, + "probability": 0.8011 + }, + { + "start": 18922.08, + "end": 18922.87, + "probability": 0.9714 + }, + { + "start": 18923.82, + "end": 18924.84, + "probability": 0.9772 + }, + { + "start": 18925.42, + "end": 18926.18, + "probability": 0.9392 + }, + { + "start": 18926.54, + "end": 18930.12, + "probability": 0.9632 + }, + { + "start": 18930.72, + "end": 18932.9, + "probability": 0.9857 + }, + { + "start": 18935.74, + "end": 18936.68, + "probability": 0.988 + }, + { + "start": 18938.94, + "end": 18945.36, + "probability": 0.9515 + }, + { + "start": 18945.62, + "end": 18953.7, + "probability": 0.7905 + }, + { + "start": 18954.3, + "end": 18959.72, + "probability": 0.9185 + }, + { + "start": 18960.8, + "end": 18961.5, + "probability": 0.478 + }, + { + "start": 18963.64, + "end": 18967.68, + "probability": 0.8953 + }, + { + "start": 18968.88, + "end": 18970.02, + "probability": 0.5923 + }, + { + "start": 18970.88, + "end": 18972.16, + "probability": 0.9502 + }, + { + "start": 18973.7, + "end": 18977.4, + "probability": 0.8127 + }, + { + "start": 18978.22, + "end": 18981.24, + "probability": 0.9811 + }, + { + "start": 18981.5, + "end": 18984.68, + "probability": 0.9431 + }, + { + "start": 18984.68, + "end": 18991.22, + "probability": 0.8729 + }, + { + "start": 18993.16, + "end": 18994.04, + "probability": 0.7792 + }, + { + "start": 18995.26, + "end": 18997.44, + "probability": 0.8495 + }, + { + "start": 18998.82, + "end": 19004.92, + "probability": 0.6063 + }, + { + "start": 19006.3, + "end": 19007.62, + "probability": 0.4575 + }, + { + "start": 19008.0, + "end": 19009.34, + "probability": 0.8328 + }, + { + "start": 19009.5, + "end": 19010.12, + "probability": 0.6893 + }, + { + "start": 19010.12, + "end": 19014.06, + "probability": 0.4868 + }, + { + "start": 19018.98, + "end": 19023.72, + "probability": 0.7976 + }, + { + "start": 19027.87, + "end": 19031.82, + "probability": 0.9967 + }, + { + "start": 19032.36, + "end": 19034.28, + "probability": 0.9492 + }, + { + "start": 19035.06, + "end": 19039.3, + "probability": 0.9854 + }, + { + "start": 19039.7, + "end": 19041.12, + "probability": 0.6165 + }, + { + "start": 19042.84, + "end": 19045.62, + "probability": 0.993 + }, + { + "start": 19046.14, + "end": 19048.8, + "probability": 0.9783 + }, + { + "start": 19049.38, + "end": 19049.48, + "probability": 0.4969 + }, + { + "start": 19051.16, + "end": 19057.46, + "probability": 0.7784 + }, + { + "start": 19057.88, + "end": 19060.76, + "probability": 0.9163 + }, + { + "start": 19063.02, + "end": 19064.44, + "probability": 0.9011 + }, + { + "start": 19064.92, + "end": 19066.13, + "probability": 0.9431 + }, + { + "start": 19066.62, + "end": 19071.94, + "probability": 0.959 + }, + { + "start": 19074.58, + "end": 19076.9, + "probability": 0.8803 + }, + { + "start": 19077.64, + "end": 19078.26, + "probability": 0.5161 + }, + { + "start": 19079.52, + "end": 19080.42, + "probability": 0.9171 + }, + { + "start": 19083.46, + "end": 19084.5, + "probability": 0.8342 + }, + { + "start": 19087.6, + "end": 19089.0, + "probability": 0.6127 + }, + { + "start": 19089.08, + "end": 19090.68, + "probability": 0.7886 + }, + { + "start": 19090.74, + "end": 19098.08, + "probability": 0.864 + }, + { + "start": 19098.08, + "end": 19102.8, + "probability": 0.9435 + }, + { + "start": 19103.5, + "end": 19105.04, + "probability": 0.8602 + }, + { + "start": 19106.98, + "end": 19111.64, + "probability": 0.4277 + }, + { + "start": 19113.02, + "end": 19113.44, + "probability": 0.8916 + }, + { + "start": 19114.64, + "end": 19118.12, + "probability": 0.956 + }, + { + "start": 19119.4, + "end": 19121.8, + "probability": 0.9692 + }, + { + "start": 19122.08, + "end": 19126.78, + "probability": 0.8778 + }, + { + "start": 19129.84, + "end": 19131.2, + "probability": 0.998 + }, + { + "start": 19133.92, + "end": 19135.06, + "probability": 0.7155 + }, + { + "start": 19135.26, + "end": 19137.94, + "probability": 0.8661 + }, + { + "start": 19138.34, + "end": 19139.6, + "probability": 0.864 + }, + { + "start": 19140.04, + "end": 19141.24, + "probability": 0.9818 + }, + { + "start": 19143.08, + "end": 19145.14, + "probability": 0.5948 + }, + { + "start": 19145.32, + "end": 19146.46, + "probability": 0.7809 + }, + { + "start": 19146.62, + "end": 19147.28, + "probability": 0.8128 + }, + { + "start": 19147.42, + "end": 19149.22, + "probability": 0.7401 + }, + { + "start": 19150.52, + "end": 19153.44, + "probability": 0.9632 + }, + { + "start": 19154.0, + "end": 19154.98, + "probability": 0.7148 + }, + { + "start": 19155.88, + "end": 19160.9, + "probability": 0.9237 + }, + { + "start": 19161.9, + "end": 19163.88, + "probability": 0.7977 + }, + { + "start": 19164.74, + "end": 19165.32, + "probability": 0.4497 + }, + { + "start": 19165.9, + "end": 19166.96, + "probability": 0.9082 + }, + { + "start": 19168.68, + "end": 19170.68, + "probability": 0.9177 + }, + { + "start": 19172.92, + "end": 19173.12, + "probability": 0.4043 + }, + { + "start": 19173.2, + "end": 19173.78, + "probability": 0.7254 + }, + { + "start": 19174.2, + "end": 19176.91, + "probability": 0.8728 + }, + { + "start": 19177.46, + "end": 19178.84, + "probability": 0.8935 + }, + { + "start": 19179.88, + "end": 19183.74, + "probability": 0.9252 + }, + { + "start": 19184.02, + "end": 19189.38, + "probability": 0.9764 + }, + { + "start": 19190.78, + "end": 19195.22, + "probability": 0.9891 + }, + { + "start": 19197.26, + "end": 19199.24, + "probability": 0.96 + }, + { + "start": 19200.26, + "end": 19201.32, + "probability": 0.7762 + }, + { + "start": 19204.76, + "end": 19208.54, + "probability": 0.9661 + }, + { + "start": 19209.94, + "end": 19211.66, + "probability": 0.6294 + }, + { + "start": 19213.38, + "end": 19218.52, + "probability": 0.8272 + }, + { + "start": 19218.7, + "end": 19222.46, + "probability": 0.7056 + }, + { + "start": 19222.8, + "end": 19224.78, + "probability": 0.6545 + }, + { + "start": 19225.28, + "end": 19229.02, + "probability": 0.9478 + }, + { + "start": 19230.44, + "end": 19231.86, + "probability": 0.624 + }, + { + "start": 19231.96, + "end": 19233.32, + "probability": 0.9781 + }, + { + "start": 19236.18, + "end": 19240.96, + "probability": 0.6753 + }, + { + "start": 19243.0, + "end": 19244.5, + "probability": 0.9674 + }, + { + "start": 19246.0, + "end": 19248.94, + "probability": 0.9971 + }, + { + "start": 19249.78, + "end": 19257.0, + "probability": 0.9939 + }, + { + "start": 19263.7, + "end": 19264.86, + "probability": 0.9871 + }, + { + "start": 19267.24, + "end": 19268.36, + "probability": 0.4943 + }, + { + "start": 19269.42, + "end": 19273.52, + "probability": 0.9968 + }, + { + "start": 19274.52, + "end": 19276.92, + "probability": 0.8025 + }, + { + "start": 19277.96, + "end": 19280.58, + "probability": 0.3085 + }, + { + "start": 19280.76, + "end": 19282.8, + "probability": 0.6636 + }, + { + "start": 19284.86, + "end": 19286.42, + "probability": 0.9038 + }, + { + "start": 19287.12, + "end": 19290.38, + "probability": 0.8584 + }, + { + "start": 19290.48, + "end": 19294.9, + "probability": 0.631 + }, + { + "start": 19295.12, + "end": 19295.74, + "probability": 0.251 + }, + { + "start": 19295.82, + "end": 19296.8, + "probability": 0.486 + }, + { + "start": 19296.95, + "end": 19297.96, + "probability": 0.9447 + }, + { + "start": 19299.4, + "end": 19301.38, + "probability": 0.8003 + }, + { + "start": 19301.5, + "end": 19302.2, + "probability": 0.971 + }, + { + "start": 19306.32, + "end": 19310.24, + "probability": 0.6771 + }, + { + "start": 19310.72, + "end": 19316.62, + "probability": 0.8621 + }, + { + "start": 19316.94, + "end": 19320.9, + "probability": 0.9106 + }, + { + "start": 19321.08, + "end": 19322.22, + "probability": 0.7641 + }, + { + "start": 19323.04, + "end": 19323.44, + "probability": 0.5225 + }, + { + "start": 19324.28, + "end": 19328.1, + "probability": 0.7084 + }, + { + "start": 19328.7, + "end": 19329.44, + "probability": 0.6005 + }, + { + "start": 19329.62, + "end": 19329.72, + "probability": 0.3137 + }, + { + "start": 19329.72, + "end": 19331.14, + "probability": 0.9671 + }, + { + "start": 19331.56, + "end": 19334.28, + "probability": 0.9658 + }, + { + "start": 19334.28, + "end": 19335.74, + "probability": 0.8523 + }, + { + "start": 19336.2, + "end": 19344.3, + "probability": 0.9789 + }, + { + "start": 19344.4, + "end": 19345.2, + "probability": 0.6553 + }, + { + "start": 19345.58, + "end": 19347.46, + "probability": 0.8711 + }, + { + "start": 19348.26, + "end": 19355.0, + "probability": 0.8928 + }, + { + "start": 19355.5, + "end": 19356.44, + "probability": 0.9237 + }, + { + "start": 19356.62, + "end": 19358.36, + "probability": 0.7835 + }, + { + "start": 19358.54, + "end": 19360.3, + "probability": 0.7908 + }, + { + "start": 19360.42, + "end": 19361.4, + "probability": 0.8282 + }, + { + "start": 19362.8, + "end": 19366.5, + "probability": 0.9933 + }, + { + "start": 19367.46, + "end": 19367.76, + "probability": 0.6497 + }, + { + "start": 19367.88, + "end": 19368.16, + "probability": 0.4799 + }, + { + "start": 19368.22, + "end": 19371.68, + "probability": 0.9447 + }, + { + "start": 19372.1, + "end": 19373.97, + "probability": 0.9312 + }, + { + "start": 19374.82, + "end": 19376.13, + "probability": 0.8042 + }, + { + "start": 19377.22, + "end": 19379.04, + "probability": 0.8331 + }, + { + "start": 19379.1, + "end": 19379.96, + "probability": 0.6749 + }, + { + "start": 19380.3, + "end": 19381.26, + "probability": 0.7193 + }, + { + "start": 19382.42, + "end": 19383.42, + "probability": 0.8313 + }, + { + "start": 19383.82, + "end": 19384.58, + "probability": 0.8358 + }, + { + "start": 19384.66, + "end": 19385.46, + "probability": 0.9047 + }, + { + "start": 19385.6, + "end": 19386.58, + "probability": 0.9128 + }, + { + "start": 19388.12, + "end": 19388.56, + "probability": 0.8868 + }, + { + "start": 19388.96, + "end": 19391.68, + "probability": 0.9458 + }, + { + "start": 19393.46, + "end": 19393.82, + "probability": 0.2821 + }, + { + "start": 19394.3, + "end": 19395.18, + "probability": 0.9604 + }, + { + "start": 19395.62, + "end": 19397.8, + "probability": 0.915 + }, + { + "start": 19398.56, + "end": 19402.38, + "probability": 0.9707 + }, + { + "start": 19402.54, + "end": 19403.2, + "probability": 0.9519 + }, + { + "start": 19403.88, + "end": 19404.4, + "probability": 0.9037 + }, + { + "start": 19405.84, + "end": 19408.26, + "probability": 0.8438 + }, + { + "start": 19408.88, + "end": 19410.52, + "probability": 0.9644 + }, + { + "start": 19410.66, + "end": 19411.74, + "probability": 0.8257 + }, + { + "start": 19412.22, + "end": 19412.84, + "probability": 0.8077 + }, + { + "start": 19413.32, + "end": 19415.24, + "probability": 0.9743 + }, + { + "start": 19415.3, + "end": 19415.8, + "probability": 0.9124 + }, + { + "start": 19417.0, + "end": 19419.32, + "probability": 0.9793 + }, + { + "start": 19419.48, + "end": 19424.78, + "probability": 0.9906 + }, + { + "start": 19424.78, + "end": 19429.64, + "probability": 0.7252 + }, + { + "start": 19430.5, + "end": 19431.86, + "probability": 0.7741 + }, + { + "start": 19432.72, + "end": 19434.44, + "probability": 0.9595 + }, + { + "start": 19435.24, + "end": 19437.56, + "probability": 0.9035 + }, + { + "start": 19438.22, + "end": 19442.06, + "probability": 0.9871 + }, + { + "start": 19442.46, + "end": 19444.68, + "probability": 0.9369 + }, + { + "start": 19445.66, + "end": 19448.64, + "probability": 0.7967 + }, + { + "start": 19448.78, + "end": 19453.26, + "probability": 0.6445 + }, + { + "start": 19453.34, + "end": 19454.64, + "probability": 0.8197 + }, + { + "start": 19455.34, + "end": 19456.56, + "probability": 0.9839 + }, + { + "start": 19457.34, + "end": 19459.4, + "probability": 0.7414 + }, + { + "start": 19459.98, + "end": 19460.04, + "probability": 0.8032 + }, + { + "start": 19461.58, + "end": 19462.84, + "probability": 0.616 + }, + { + "start": 19464.1, + "end": 19466.78, + "probability": 0.9443 + }, + { + "start": 19469.02, + "end": 19471.58, + "probability": 0.8901 + }, + { + "start": 19471.68, + "end": 19472.52, + "probability": 0.9475 + }, + { + "start": 19473.08, + "end": 19473.96, + "probability": 0.8794 + }, + { + "start": 19474.04, + "end": 19476.1, + "probability": 0.978 + }, + { + "start": 19476.74, + "end": 19477.76, + "probability": 0.558 + }, + { + "start": 19480.32, + "end": 19481.94, + "probability": 0.8293 + }, + { + "start": 19482.8, + "end": 19484.74, + "probability": 0.5666 + }, + { + "start": 19486.24, + "end": 19489.4, + "probability": 0.9151 + }, + { + "start": 19490.48, + "end": 19492.52, + "probability": 0.9424 + }, + { + "start": 19492.86, + "end": 19495.16, + "probability": 0.919 + }, + { + "start": 19495.5, + "end": 19496.46, + "probability": 0.9691 + }, + { + "start": 19496.72, + "end": 19497.18, + "probability": 0.3116 + }, + { + "start": 19497.32, + "end": 19498.34, + "probability": 0.7225 + }, + { + "start": 19499.52, + "end": 19501.1, + "probability": 0.909 + }, + { + "start": 19507.06, + "end": 19508.14, + "probability": 0.9307 + }, + { + "start": 19509.8, + "end": 19511.02, + "probability": 0.9198 + }, + { + "start": 19511.3, + "end": 19514.46, + "probability": 0.9722 + }, + { + "start": 19514.56, + "end": 19516.86, + "probability": 0.988 + }, + { + "start": 19517.42, + "end": 19519.28, + "probability": 0.8777 + }, + { + "start": 19520.06, + "end": 19522.92, + "probability": 0.9927 + }, + { + "start": 19523.68, + "end": 19527.14, + "probability": 0.8228 + }, + { + "start": 19527.34, + "end": 19530.38, + "probability": 0.9941 + }, + { + "start": 19530.56, + "end": 19531.72, + "probability": 0.8925 + }, + { + "start": 19532.16, + "end": 19535.26, + "probability": 0.8794 + }, + { + "start": 19535.44, + "end": 19536.14, + "probability": 0.8389 + }, + { + "start": 19536.7, + "end": 19539.46, + "probability": 0.9805 + }, + { + "start": 19539.92, + "end": 19540.02, + "probability": 0.6847 + }, + { + "start": 19540.26, + "end": 19542.56, + "probability": 0.2697 + }, + { + "start": 19542.84, + "end": 19544.36, + "probability": 0.9761 + }, + { + "start": 19544.96, + "end": 19545.9, + "probability": 0.6836 + }, + { + "start": 19546.88, + "end": 19548.26, + "probability": 0.6972 + }, + { + "start": 19548.84, + "end": 19552.88, + "probability": 0.9814 + }, + { + "start": 19552.98, + "end": 19554.42, + "probability": 0.5021 + }, + { + "start": 19555.38, + "end": 19556.64, + "probability": 0.9626 + }, + { + "start": 19559.02, + "end": 19561.06, + "probability": 0.6383 + }, + { + "start": 19561.92, + "end": 19563.1, + "probability": 0.7291 + }, + { + "start": 19563.98, + "end": 19564.94, + "probability": 0.7575 + }, + { + "start": 19565.92, + "end": 19570.04, + "probability": 0.825 + }, + { + "start": 19570.44, + "end": 19570.8, + "probability": 0.4471 + }, + { + "start": 19571.36, + "end": 19572.26, + "probability": 0.5802 + }, + { + "start": 19573.8, + "end": 19574.68, + "probability": 0.1336 + }, + { + "start": 19575.16, + "end": 19580.06, + "probability": 0.9385 + }, + { + "start": 19581.92, + "end": 19584.44, + "probability": 0.9519 + }, + { + "start": 19584.5, + "end": 19589.22, + "probability": 0.9893 + }, + { + "start": 19589.5, + "end": 19592.21, + "probability": 0.6164 + }, + { + "start": 19595.26, + "end": 19599.34, + "probability": 0.9073 + }, + { + "start": 19599.54, + "end": 19600.2, + "probability": 0.7298 + }, + { + "start": 19602.08, + "end": 19604.98, + "probability": 0.9644 + }, + { + "start": 19607.04, + "end": 19608.54, + "probability": 0.9877 + }, + { + "start": 19609.16, + "end": 19612.62, + "probability": 0.8186 + }, + { + "start": 19613.1, + "end": 19615.16, + "probability": 0.4406 + }, + { + "start": 19616.6, + "end": 19618.43, + "probability": 0.9414 + }, + { + "start": 19618.86, + "end": 19621.84, + "probability": 0.8777 + }, + { + "start": 19622.12, + "end": 19626.2, + "probability": 0.9888 + }, + { + "start": 19626.94, + "end": 19632.42, + "probability": 0.8832 + }, + { + "start": 19635.16, + "end": 19637.76, + "probability": 0.7485 + }, + { + "start": 19638.44, + "end": 19640.66, + "probability": 0.8781 + }, + { + "start": 19640.96, + "end": 19642.68, + "probability": 0.8254 + }, + { + "start": 19642.82, + "end": 19643.72, + "probability": 0.902 + }, + { + "start": 19644.06, + "end": 19645.91, + "probability": 0.8645 + }, + { + "start": 19646.38, + "end": 19647.2, + "probability": 0.7334 + }, + { + "start": 19648.36, + "end": 19654.08, + "probability": 0.9895 + }, + { + "start": 19654.84, + "end": 19657.98, + "probability": 0.9976 + }, + { + "start": 19658.32, + "end": 19661.3, + "probability": 0.9943 + }, + { + "start": 19662.58, + "end": 19664.28, + "probability": 0.8068 + }, + { + "start": 19665.6, + "end": 19667.36, + "probability": 0.4483 + }, + { + "start": 19670.22, + "end": 19671.24, + "probability": 0.8302 + }, + { + "start": 19672.96, + "end": 19673.96, + "probability": 0.8915 + }, + { + "start": 19675.1, + "end": 19675.84, + "probability": 0.8586 + }, + { + "start": 19676.82, + "end": 19677.84, + "probability": 0.9834 + }, + { + "start": 19678.78, + "end": 19683.06, + "probability": 0.8027 + }, + { + "start": 19684.32, + "end": 19686.1, + "probability": 0.591 + }, + { + "start": 19686.56, + "end": 19691.12, + "probability": 0.991 + }, + { + "start": 19692.12, + "end": 19693.9, + "probability": 0.8081 + }, + { + "start": 19695.94, + "end": 19698.84, + "probability": 0.8304 + }, + { + "start": 19699.52, + "end": 19700.08, + "probability": 0.3352 + }, + { + "start": 19700.86, + "end": 19708.3, + "probability": 0.9891 + }, + { + "start": 19709.46, + "end": 19709.96, + "probability": 0.2356 + }, + { + "start": 19709.98, + "end": 19712.18, + "probability": 0.9724 + }, + { + "start": 19712.28, + "end": 19713.16, + "probability": 0.6291 + }, + { + "start": 19713.24, + "end": 19714.48, + "probability": 0.8388 + }, + { + "start": 19714.8, + "end": 19715.56, + "probability": 0.8983 + }, + { + "start": 19715.62, + "end": 19716.84, + "probability": 0.7776 + }, + { + "start": 19717.42, + "end": 19723.28, + "probability": 0.8814 + }, + { + "start": 19723.56, + "end": 19726.22, + "probability": 0.569 + }, + { + "start": 19726.4, + "end": 19728.79, + "probability": 0.3455 + }, + { + "start": 19729.28, + "end": 19730.66, + "probability": 0.9568 + }, + { + "start": 19731.06, + "end": 19731.72, + "probability": 0.469 + }, + { + "start": 19731.88, + "end": 19731.88, + "probability": 0.5387 + }, + { + "start": 19731.88, + "end": 19732.02, + "probability": 0.5015 + }, + { + "start": 19732.14, + "end": 19735.16, + "probability": 0.8574 + }, + { + "start": 19735.34, + "end": 19735.76, + "probability": 0.0022 + }, + { + "start": 19735.76, + "end": 19735.76, + "probability": 0.2522 + }, + { + "start": 19735.76, + "end": 19735.76, + "probability": 0.3714 + }, + { + "start": 19735.86, + "end": 19735.88, + "probability": 0.4409 + }, + { + "start": 19736.02, + "end": 19738.12, + "probability": 0.936 + }, + { + "start": 19738.64, + "end": 19740.36, + "probability": 0.8108 + }, + { + "start": 19740.52, + "end": 19742.16, + "probability": 0.1222 + }, + { + "start": 19742.44, + "end": 19742.96, + "probability": 0.7097 + }, + { + "start": 19744.76, + "end": 19751.86, + "probability": 0.974 + }, + { + "start": 19753.5, + "end": 19757.18, + "probability": 0.9188 + }, + { + "start": 19757.98, + "end": 19758.54, + "probability": 0.6557 + }, + { + "start": 19759.48, + "end": 19760.16, + "probability": 0.7912 + }, + { + "start": 19760.78, + "end": 19763.3, + "probability": 0.9321 + }, + { + "start": 19765.22, + "end": 19766.7, + "probability": 0.8743 + }, + { + "start": 19767.62, + "end": 19768.97, + "probability": 0.9976 + }, + { + "start": 19772.82, + "end": 19774.68, + "probability": 0.2565 + }, + { + "start": 19774.72, + "end": 19775.18, + "probability": 0.2906 + }, + { + "start": 19775.24, + "end": 19775.6, + "probability": 0.4768 + }, + { + "start": 19775.7, + "end": 19776.9, + "probability": 0.8223 + }, + { + "start": 19777.66, + "end": 19784.12, + "probability": 0.9708 + }, + { + "start": 19784.86, + "end": 19791.64, + "probability": 0.8365 + }, + { + "start": 19792.26, + "end": 19796.78, + "probability": 0.9302 + }, + { + "start": 19797.68, + "end": 19798.78, + "probability": 0.8994 + }, + { + "start": 19798.86, + "end": 19804.08, + "probability": 0.8396 + }, + { + "start": 19804.76, + "end": 19807.16, + "probability": 0.6754 + }, + { + "start": 19808.56, + "end": 19808.88, + "probability": 0.3522 + }, + { + "start": 19808.96, + "end": 19809.6, + "probability": 0.6798 + }, + { + "start": 19809.68, + "end": 19812.48, + "probability": 0.8113 + }, + { + "start": 19813.32, + "end": 19814.78, + "probability": 0.7494 + }, + { + "start": 19815.52, + "end": 19815.96, + "probability": 0.9298 + }, + { + "start": 19816.04, + "end": 19820.36, + "probability": 0.9938 + }, + { + "start": 19820.36, + "end": 19825.18, + "probability": 0.9959 + }, + { + "start": 19826.3, + "end": 19828.56, + "probability": 0.6646 + }, + { + "start": 19829.3, + "end": 19832.5, + "probability": 0.5628 + }, + { + "start": 19833.38, + "end": 19834.1, + "probability": 0.8783 + }, + { + "start": 19836.66, + "end": 19839.66, + "probability": 0.8895 + }, + { + "start": 19839.88, + "end": 19841.07, + "probability": 0.8452 + }, + { + "start": 19842.12, + "end": 19842.66, + "probability": 0.9217 + }, + { + "start": 19844.06, + "end": 19847.2, + "probability": 0.9925 + }, + { + "start": 19847.98, + "end": 19849.2, + "probability": 0.8823 + }, + { + "start": 19849.28, + "end": 19854.92, + "probability": 0.9243 + }, + { + "start": 19855.16, + "end": 19856.9, + "probability": 0.9352 + }, + { + "start": 19857.46, + "end": 19858.36, + "probability": 0.6702 + }, + { + "start": 19858.56, + "end": 19864.22, + "probability": 0.9932 + }, + { + "start": 19864.6, + "end": 19867.86, + "probability": 0.9904 + }, + { + "start": 19867.86, + "end": 19874.62, + "probability": 0.9796 + }, + { + "start": 19876.36, + "end": 19876.36, + "probability": 0.415 + }, + { + "start": 19876.36, + "end": 19878.46, + "probability": 0.5596 + }, + { + "start": 19878.56, + "end": 19882.82, + "probability": 0.8779 + }, + { + "start": 19884.1, + "end": 19887.72, + "probability": 0.938 + }, + { + "start": 19888.64, + "end": 19892.09, + "probability": 0.9418 + }, + { + "start": 19892.94, + "end": 19893.78, + "probability": 0.8798 + }, + { + "start": 19894.19, + "end": 19898.54, + "probability": 0.9837 + }, + { + "start": 19898.54, + "end": 19903.48, + "probability": 0.9922 + }, + { + "start": 19903.84, + "end": 19904.34, + "probability": 0.9937 + }, + { + "start": 19906.18, + "end": 19909.36, + "probability": 0.9731 + }, + { + "start": 19909.42, + "end": 19909.74, + "probability": 0.6829 + }, + { + "start": 19909.76, + "end": 19910.8, + "probability": 0.8109 + }, + { + "start": 19910.86, + "end": 19913.45, + "probability": 0.9547 + }, + { + "start": 19915.76, + "end": 19918.74, + "probability": 0.981 + }, + { + "start": 19919.38, + "end": 19919.94, + "probability": 0.7093 + }, + { + "start": 19920.6, + "end": 19927.54, + "probability": 0.991 + }, + { + "start": 19928.06, + "end": 19928.86, + "probability": 0.674 + }, + { + "start": 19929.34, + "end": 19930.0, + "probability": 0.5761 + }, + { + "start": 19935.2, + "end": 19938.5, + "probability": 0.9325 + }, + { + "start": 19938.5, + "end": 19943.36, + "probability": 0.9884 + }, + { + "start": 19944.2, + "end": 19949.26, + "probability": 0.9741 + }, + { + "start": 19950.5, + "end": 19952.44, + "probability": 0.9405 + }, + { + "start": 19954.04, + "end": 19956.64, + "probability": 0.922 + }, + { + "start": 19956.7, + "end": 19958.68, + "probability": 0.9169 + }, + { + "start": 19959.53, + "end": 19965.48, + "probability": 0.8644 + }, + { + "start": 19966.72, + "end": 19967.66, + "probability": 0.8943 + }, + { + "start": 19968.88, + "end": 19970.42, + "probability": 0.9341 + }, + { + "start": 19970.6, + "end": 19974.72, + "probability": 0.9667 + }, + { + "start": 19974.8, + "end": 19980.36, + "probability": 0.8792 + }, + { + "start": 19981.18, + "end": 19986.74, + "probability": 0.8706 + }, + { + "start": 19988.18, + "end": 19992.22, + "probability": 0.9631 + }, + { + "start": 19993.0, + "end": 19997.24, + "probability": 0.9717 + }, + { + "start": 19998.3, + "end": 20002.22, + "probability": 0.9161 + }, + { + "start": 20002.46, + "end": 20006.26, + "probability": 0.8089 + }, + { + "start": 20006.26, + "end": 20006.3, + "probability": 0.4102 + }, + { + "start": 20006.3, + "end": 20007.2, + "probability": 0.485 + }, + { + "start": 20007.28, + "end": 20007.71, + "probability": 0.2361 + }, + { + "start": 20008.52, + "end": 20010.1, + "probability": 0.6935 + }, + { + "start": 20010.42, + "end": 20010.6, + "probability": 0.1194 + }, + { + "start": 20010.62, + "end": 20012.28, + "probability": 0.8722 + }, + { + "start": 20013.94, + "end": 20021.98, + "probability": 0.8495 + }, + { + "start": 20023.54, + "end": 20029.16, + "probability": 0.9297 + }, + { + "start": 20029.16, + "end": 20036.46, + "probability": 0.8877 + }, + { + "start": 20037.36, + "end": 20040.62, + "probability": 0.8564 + }, + { + "start": 20041.98, + "end": 20043.74, + "probability": 0.4841 + }, + { + "start": 20043.76, + "end": 20043.88, + "probability": 0.6264 + }, + { + "start": 20043.9, + "end": 20044.72, + "probability": 0.4436 + }, + { + "start": 20045.06, + "end": 20045.36, + "probability": 0.6736 + }, + { + "start": 20046.14, + "end": 20047.64, + "probability": 0.4686 + }, + { + "start": 20047.72, + "end": 20048.18, + "probability": 0.693 + }, + { + "start": 20048.42, + "end": 20056.32, + "probability": 0.8684 + }, + { + "start": 20056.32, + "end": 20063.54, + "probability": 0.9914 + }, + { + "start": 20064.16, + "end": 20067.46, + "probability": 0.97 + }, + { + "start": 20068.14, + "end": 20069.5, + "probability": 0.8393 + }, + { + "start": 20071.8, + "end": 20074.86, + "probability": 0.7765 + }, + { + "start": 20075.4, + "end": 20079.94, + "probability": 0.8061 + }, + { + "start": 20080.1, + "end": 20080.76, + "probability": 0.9165 + }, + { + "start": 20080.9, + "end": 20082.64, + "probability": 0.9113 + }, + { + "start": 20082.78, + "end": 20085.58, + "probability": 0.8766 + }, + { + "start": 20086.02, + "end": 20087.78, + "probability": 0.719 + }, + { + "start": 20087.8, + "end": 20092.7, + "probability": 0.9747 + }, + { + "start": 20092.7, + "end": 20097.06, + "probability": 0.9828 + }, + { + "start": 20097.32, + "end": 20097.44, + "probability": 0.4245 + }, + { + "start": 20097.44, + "end": 20097.74, + "probability": 0.5054 + }, + { + "start": 20097.92, + "end": 20100.7, + "probability": 0.6162 + }, + { + "start": 20100.86, + "end": 20102.3, + "probability": 0.6475 + }, + { + "start": 20102.38, + "end": 20102.78, + "probability": 0.3642 + }, + { + "start": 20102.8, + "end": 20104.02, + "probability": 0.9731 + }, + { + "start": 20111.34, + "end": 20112.56, + "probability": 0.8879 + }, + { + "start": 20114.62, + "end": 20114.82, + "probability": 0.28 + }, + { + "start": 20122.52, + "end": 20123.36, + "probability": 0.6967 + }, + { + "start": 20125.38, + "end": 20126.56, + "probability": 0.6823 + }, + { + "start": 20127.7, + "end": 20128.88, + "probability": 0.3097 + }, + { + "start": 20130.18, + "end": 20132.26, + "probability": 0.9828 + }, + { + "start": 20133.04, + "end": 20136.6, + "probability": 0.9899 + }, + { + "start": 20138.0, + "end": 20141.48, + "probability": 0.9142 + }, + { + "start": 20142.04, + "end": 20144.3, + "probability": 0.9187 + }, + { + "start": 20145.58, + "end": 20147.1, + "probability": 0.8214 + }, + { + "start": 20149.42, + "end": 20150.84, + "probability": 0.9789 + }, + { + "start": 20151.96, + "end": 20156.22, + "probability": 0.9971 + }, + { + "start": 20156.22, + "end": 20161.04, + "probability": 0.9753 + }, + { + "start": 20163.2, + "end": 20165.54, + "probability": 0.9642 + }, + { + "start": 20166.8, + "end": 20172.3, + "probability": 0.9768 + }, + { + "start": 20173.04, + "end": 20177.3, + "probability": 0.9609 + }, + { + "start": 20178.12, + "end": 20180.5, + "probability": 0.9421 + }, + { + "start": 20181.34, + "end": 20184.46, + "probability": 0.7353 + }, + { + "start": 20185.48, + "end": 20186.1, + "probability": 0.7287 + }, + { + "start": 20186.12, + "end": 20191.68, + "probability": 0.9861 + }, + { + "start": 20191.76, + "end": 20193.76, + "probability": 0.9982 + }, + { + "start": 20194.6, + "end": 20197.24, + "probability": 0.9402 + }, + { + "start": 20197.3, + "end": 20198.54, + "probability": 0.9808 + }, + { + "start": 20198.7, + "end": 20205.42, + "probability": 0.9698 + }, + { + "start": 20205.5, + "end": 20207.24, + "probability": 0.9297 + }, + { + "start": 20207.44, + "end": 20207.54, + "probability": 0.9561 + }, + { + "start": 20208.38, + "end": 20209.12, + "probability": 0.7553 + }, + { + "start": 20209.16, + "end": 20211.96, + "probability": 0.9811 + }, + { + "start": 20212.84, + "end": 20218.22, + "probability": 0.9858 + }, + { + "start": 20219.4, + "end": 20222.76, + "probability": 0.9943 + }, + { + "start": 20222.92, + "end": 20226.68, + "probability": 0.995 + }, + { + "start": 20228.52, + "end": 20230.46, + "probability": 0.9605 + }, + { + "start": 20231.16, + "end": 20233.66, + "probability": 0.9851 + }, + { + "start": 20233.78, + "end": 20236.34, + "probability": 0.8502 + }, + { + "start": 20236.66, + "end": 20241.52, + "probability": 0.9246 + }, + { + "start": 20242.66, + "end": 20247.7, + "probability": 0.97 + }, + { + "start": 20247.78, + "end": 20248.62, + "probability": 0.8295 + }, + { + "start": 20248.74, + "end": 20250.1, + "probability": 0.9092 + }, + { + "start": 20250.44, + "end": 20252.18, + "probability": 0.9971 + }, + { + "start": 20254.6, + "end": 20255.58, + "probability": 0.8211 + }, + { + "start": 20255.74, + "end": 20256.44, + "probability": 0.8611 + }, + { + "start": 20256.56, + "end": 20258.1, + "probability": 0.8586 + }, + { + "start": 20258.22, + "end": 20258.99, + "probability": 0.7985 + }, + { + "start": 20259.28, + "end": 20262.1, + "probability": 0.9581 + }, + { + "start": 20263.88, + "end": 20267.0, + "probability": 0.8824 + }, + { + "start": 20267.28, + "end": 20268.06, + "probability": 0.1054 + }, + { + "start": 20268.14, + "end": 20269.38, + "probability": 0.8074 + }, + { + "start": 20269.46, + "end": 20270.92, + "probability": 0.9805 + }, + { + "start": 20272.14, + "end": 20273.82, + "probability": 0.9164 + }, + { + "start": 20275.18, + "end": 20277.68, + "probability": 0.7764 + }, + { + "start": 20277.7, + "end": 20284.68, + "probability": 0.9909 + }, + { + "start": 20284.68, + "end": 20291.34, + "probability": 0.9914 + }, + { + "start": 20292.44, + "end": 20296.14, + "probability": 0.988 + }, + { + "start": 20296.14, + "end": 20297.24, + "probability": 0.4596 + }, + { + "start": 20298.2, + "end": 20300.94, + "probability": 0.8335 + }, + { + "start": 20301.74, + "end": 20303.48, + "probability": 0.9888 + }, + { + "start": 20304.66, + "end": 20306.98, + "probability": 0.9758 + }, + { + "start": 20308.08, + "end": 20311.22, + "probability": 0.166 + }, + { + "start": 20311.26, + "end": 20312.48, + "probability": 0.8443 + }, + { + "start": 20314.6, + "end": 20319.48, + "probability": 0.9858 + }, + { + "start": 20320.64, + "end": 20323.38, + "probability": 0.988 + }, + { + "start": 20324.26, + "end": 20325.86, + "probability": 0.6701 + }, + { + "start": 20325.9, + "end": 20331.52, + "probability": 0.9429 + }, + { + "start": 20331.52, + "end": 20338.24, + "probability": 0.8828 + }, + { + "start": 20338.86, + "end": 20345.5, + "probability": 0.7125 + }, + { + "start": 20346.14, + "end": 20346.82, + "probability": 0.9315 + }, + { + "start": 20347.62, + "end": 20348.25, + "probability": 0.9891 + }, + { + "start": 20349.08, + "end": 20349.95, + "probability": 0.9481 + }, + { + "start": 20350.48, + "end": 20352.06, + "probability": 0.9066 + }, + { + "start": 20353.24, + "end": 20354.16, + "probability": 0.8653 + }, + { + "start": 20354.5, + "end": 20355.7, + "probability": 0.9263 + }, + { + "start": 20358.62, + "end": 20362.3, + "probability": 0.9974 + }, + { + "start": 20363.0, + "end": 20365.66, + "probability": 0.7896 + }, + { + "start": 20367.26, + "end": 20370.41, + "probability": 0.9634 + }, + { + "start": 20371.6, + "end": 20376.3, + "probability": 0.9863 + }, + { + "start": 20376.38, + "end": 20379.96, + "probability": 0.8071 + }, + { + "start": 20380.52, + "end": 20384.14, + "probability": 0.9885 + }, + { + "start": 20384.22, + "end": 20388.22, + "probability": 0.917 + }, + { + "start": 20388.42, + "end": 20391.8, + "probability": 0.7886 + }, + { + "start": 20391.96, + "end": 20393.4, + "probability": 0.7519 + }, + { + "start": 20393.56, + "end": 20395.78, + "probability": 0.8107 + }, + { + "start": 20395.94, + "end": 20396.74, + "probability": 0.9193 + }, + { + "start": 20396.84, + "end": 20398.22, + "probability": 0.9104 + }, + { + "start": 20398.22, + "end": 20408.62, + "probability": 0.8843 + }, + { + "start": 20410.2, + "end": 20411.1, + "probability": 0.9149 + }, + { + "start": 20412.06, + "end": 20417.04, + "probability": 0.9424 + }, + { + "start": 20417.48, + "end": 20424.16, + "probability": 0.9906 + }, + { + "start": 20425.62, + "end": 20426.68, + "probability": 0.8713 + }, + { + "start": 20427.14, + "end": 20428.04, + "probability": 0.9712 + }, + { + "start": 20428.08, + "end": 20430.24, + "probability": 0.9756 + }, + { + "start": 20430.36, + "end": 20434.54, + "probability": 0.9459 + }, + { + "start": 20434.68, + "end": 20437.64, + "probability": 0.8965 + }, + { + "start": 20437.92, + "end": 20439.64, + "probability": 0.9963 + }, + { + "start": 20439.64, + "end": 20442.8, + "probability": 0.9858 + }, + { + "start": 20443.26, + "end": 20444.74, + "probability": 0.8699 + }, + { + "start": 20444.8, + "end": 20448.08, + "probability": 0.9818 + }, + { + "start": 20448.38, + "end": 20454.26, + "probability": 0.9944 + }, + { + "start": 20454.68, + "end": 20456.22, + "probability": 0.9746 + }, + { + "start": 20456.3, + "end": 20458.74, + "probability": 0.6331 + }, + { + "start": 20459.88, + "end": 20460.52, + "probability": 0.8318 + }, + { + "start": 20462.06, + "end": 20463.06, + "probability": 0.6506 + }, + { + "start": 20464.2, + "end": 20465.6, + "probability": 0.5235 + }, + { + "start": 20468.18, + "end": 20469.88, + "probability": 0.4277 + }, + { + "start": 20470.62, + "end": 20475.0, + "probability": 0.7025 + }, + { + "start": 20475.18, + "end": 20478.16, + "probability": 0.8785 + }, + { + "start": 20478.88, + "end": 20481.44, + "probability": 0.9264 + }, + { + "start": 20481.52, + "end": 20483.02, + "probability": 0.9746 + }, + { + "start": 20486.24, + "end": 20487.9, + "probability": 0.9701 + }, + { + "start": 20488.44, + "end": 20491.24, + "probability": 0.8187 + }, + { + "start": 20492.5, + "end": 20496.44, + "probability": 0.9934 + }, + { + "start": 20497.56, + "end": 20500.2, + "probability": 0.96 + }, + { + "start": 20501.2, + "end": 20504.1, + "probability": 0.9946 + }, + { + "start": 20508.02, + "end": 20510.46, + "probability": 0.9842 + }, + { + "start": 20510.58, + "end": 20514.38, + "probability": 0.9973 + }, + { + "start": 20514.58, + "end": 20520.5, + "probability": 0.9676 + }, + { + "start": 20520.7, + "end": 20523.84, + "probability": 0.9666 + }, + { + "start": 20524.94, + "end": 20525.98, + "probability": 0.6927 + }, + { + "start": 20526.62, + "end": 20528.8, + "probability": 0.8182 + }, + { + "start": 20528.84, + "end": 20530.04, + "probability": 0.8054 + }, + { + "start": 20530.12, + "end": 20533.76, + "probability": 0.9888 + }, + { + "start": 20534.34, + "end": 20537.22, + "probability": 0.9595 + }, + { + "start": 20538.28, + "end": 20539.4, + "probability": 0.9878 + }, + { + "start": 20539.76, + "end": 20542.72, + "probability": 0.8878 + }, + { + "start": 20543.6, + "end": 20546.86, + "probability": 0.9066 + }, + { + "start": 20548.18, + "end": 20549.38, + "probability": 0.939 + }, + { + "start": 20549.46, + "end": 20553.26, + "probability": 0.9926 + }, + { + "start": 20553.46, + "end": 20556.3, + "probability": 0.9829 + }, + { + "start": 20556.44, + "end": 20557.16, + "probability": 0.9963 + }, + { + "start": 20559.0, + "end": 20560.54, + "probability": 0.9862 + }, + { + "start": 20560.6, + "end": 20564.46, + "probability": 0.9922 + }, + { + "start": 20564.62, + "end": 20565.54, + "probability": 0.8193 + }, + { + "start": 20566.26, + "end": 20568.3, + "probability": 0.9866 + }, + { + "start": 20570.34, + "end": 20571.97, + "probability": 0.9132 + }, + { + "start": 20573.3, + "end": 20574.8, + "probability": 0.7895 + }, + { + "start": 20576.0, + "end": 20577.12, + "probability": 0.856 + }, + { + "start": 20577.32, + "end": 20577.92, + "probability": 0.3067 + }, + { + "start": 20578.04, + "end": 20578.5, + "probability": 0.72 + }, + { + "start": 20578.58, + "end": 20579.92, + "probability": 0.7563 + }, + { + "start": 20580.02, + "end": 20584.28, + "probability": 0.8763 + }, + { + "start": 20585.28, + "end": 20586.74, + "probability": 0.8984 + }, + { + "start": 20587.02, + "end": 20587.14, + "probability": 0.7317 + }, + { + "start": 20587.22, + "end": 20590.38, + "probability": 0.9221 + }, + { + "start": 20590.76, + "end": 20592.52, + "probability": 0.8822 + }, + { + "start": 20592.56, + "end": 20593.78, + "probability": 0.6807 + }, + { + "start": 20594.12, + "end": 20595.8, + "probability": 0.8781 + }, + { + "start": 20595.96, + "end": 20597.62, + "probability": 0.6877 + }, + { + "start": 20598.12, + "end": 20598.74, + "probability": 0.8716 + }, + { + "start": 20598.88, + "end": 20599.78, + "probability": 0.8025 + }, + { + "start": 20600.52, + "end": 20601.48, + "probability": 0.9849 + }, + { + "start": 20602.02, + "end": 20603.18, + "probability": 0.9337 + }, + { + "start": 20604.22, + "end": 20607.54, + "probability": 0.9375 + }, + { + "start": 20607.62, + "end": 20612.36, + "probability": 0.9914 + }, + { + "start": 20612.36, + "end": 20615.08, + "probability": 0.9931 + }, + { + "start": 20619.0, + "end": 20620.16, + "probability": 0.9956 + }, + { + "start": 20620.94, + "end": 20622.92, + "probability": 0.8774 + }, + { + "start": 20623.02, + "end": 20625.1, + "probability": 0.9709 + }, + { + "start": 20625.36, + "end": 20626.12, + "probability": 0.9565 + }, + { + "start": 20626.22, + "end": 20627.58, + "probability": 0.6907 + }, + { + "start": 20627.88, + "end": 20628.96, + "probability": 0.592 + }, + { + "start": 20629.48, + "end": 20631.14, + "probability": 0.9966 + }, + { + "start": 20631.98, + "end": 20634.72, + "probability": 0.9751 + }, + { + "start": 20635.06, + "end": 20636.66, + "probability": 0.8948 + }, + { + "start": 20636.98, + "end": 20638.28, + "probability": 0.998 + }, + { + "start": 20639.64, + "end": 20643.2, + "probability": 0.9907 + }, + { + "start": 20643.82, + "end": 20644.78, + "probability": 0.907 + }, + { + "start": 20645.6, + "end": 20650.58, + "probability": 0.9637 + }, + { + "start": 20650.6, + "end": 20658.5, + "probability": 0.991 + }, + { + "start": 20659.04, + "end": 20661.54, + "probability": 0.7325 + }, + { + "start": 20662.46, + "end": 20662.62, + "probability": 0.2544 + }, + { + "start": 20662.66, + "end": 20665.08, + "probability": 0.3901 + }, + { + "start": 20665.08, + "end": 20667.02, + "probability": 0.5342 + }, + { + "start": 20667.8, + "end": 20668.72, + "probability": 0.6741 + }, + { + "start": 20669.08, + "end": 20669.58, + "probability": 0.6244 + }, + { + "start": 20669.64, + "end": 20672.4, + "probability": 0.9906 + }, + { + "start": 20672.48, + "end": 20674.34, + "probability": 0.5955 + }, + { + "start": 20674.4, + "end": 20677.72, + "probability": 0.8657 + }, + { + "start": 20678.26, + "end": 20680.22, + "probability": 0.9985 + }, + { + "start": 20681.28, + "end": 20686.16, + "probability": 0.9834 + }, + { + "start": 20686.3, + "end": 20689.18, + "probability": 0.9718 + }, + { + "start": 20689.36, + "end": 20689.74, + "probability": 0.571 + }, + { + "start": 20689.86, + "end": 20690.6, + "probability": 0.7682 + }, + { + "start": 20690.68, + "end": 20691.41, + "probability": 0.9355 + }, + { + "start": 20692.64, + "end": 20693.42, + "probability": 0.7812 + }, + { + "start": 20694.02, + "end": 20696.78, + "probability": 0.9871 + }, + { + "start": 20696.82, + "end": 20700.6, + "probability": 0.9211 + }, + { + "start": 20700.72, + "end": 20701.2, + "probability": 0.6492 + }, + { + "start": 20701.28, + "end": 20701.79, + "probability": 0.502 + }, + { + "start": 20702.28, + "end": 20702.86, + "probability": 0.6983 + }, + { + "start": 20702.96, + "end": 20703.24, + "probability": 0.8317 + }, + { + "start": 20703.34, + "end": 20706.64, + "probability": 0.9712 + }, + { + "start": 20706.76, + "end": 20707.22, + "probability": 0.8124 + }, + { + "start": 20707.9, + "end": 20710.98, + "probability": 0.9183 + }, + { + "start": 20711.46, + "end": 20714.56, + "probability": 0.9318 + }, + { + "start": 20715.22, + "end": 20717.28, + "probability": 0.7916 + }, + { + "start": 20717.8, + "end": 20720.12, + "probability": 0.8176 + }, + { + "start": 20720.9, + "end": 20725.66, + "probability": 0.9941 + }, + { + "start": 20726.6, + "end": 20729.7, + "probability": 0.9897 + }, + { + "start": 20729.86, + "end": 20732.04, + "probability": 0.998 + }, + { + "start": 20732.16, + "end": 20734.1, + "probability": 0.924 + }, + { + "start": 20734.46, + "end": 20735.76, + "probability": 0.8753 + }, + { + "start": 20735.88, + "end": 20737.18, + "probability": 0.8139 + }, + { + "start": 20738.2, + "end": 20740.26, + "probability": 0.6766 + }, + { + "start": 20740.58, + "end": 20748.52, + "probability": 0.9015 + }, + { + "start": 20748.68, + "end": 20750.06, + "probability": 0.9941 + }, + { + "start": 20751.55, + "end": 20756.52, + "probability": 0.979 + }, + { + "start": 20757.16, + "end": 20757.62, + "probability": 0.8769 + }, + { + "start": 20758.64, + "end": 20760.32, + "probability": 0.92 + }, + { + "start": 20762.16, + "end": 20765.52, + "probability": 0.9604 + }, + { + "start": 20765.66, + "end": 20767.86, + "probability": 0.9664 + }, + { + "start": 20768.46, + "end": 20769.66, + "probability": 0.8434 + }, + { + "start": 20770.46, + "end": 20771.2, + "probability": 0.9287 + }, + { + "start": 20771.38, + "end": 20772.9, + "probability": 0.9281 + }, + { + "start": 20773.0, + "end": 20775.2, + "probability": 0.9832 + }, + { + "start": 20776.5, + "end": 20781.1, + "probability": 0.9717 + }, + { + "start": 20781.38, + "end": 20783.46, + "probability": 0.9499 + }, + { + "start": 20783.5, + "end": 20785.56, + "probability": 0.9974 + }, + { + "start": 20786.36, + "end": 20789.7, + "probability": 0.6411 + }, + { + "start": 20789.88, + "end": 20791.38, + "probability": 0.9482 + }, + { + "start": 20792.08, + "end": 20795.18, + "probability": 0.8928 + }, + { + "start": 20795.8, + "end": 20796.66, + "probability": 0.7471 + }, + { + "start": 20796.78, + "end": 20798.0, + "probability": 0.8588 + }, + { + "start": 20798.1, + "end": 20798.99, + "probability": 0.8514 + }, + { + "start": 20799.2, + "end": 20801.02, + "probability": 0.9515 + }, + { + "start": 20801.14, + "end": 20802.2, + "probability": 0.9406 + }, + { + "start": 20802.34, + "end": 20803.4, + "probability": 0.9663 + }, + { + "start": 20804.42, + "end": 20806.42, + "probability": 0.9829 + }, + { + "start": 20806.5, + "end": 20807.96, + "probability": 0.8523 + }, + { + "start": 20808.3, + "end": 20809.79, + "probability": 0.9766 + }, + { + "start": 20810.46, + "end": 20811.72, + "probability": 0.9695 + }, + { + "start": 20812.04, + "end": 20812.28, + "probability": 0.9497 + }, + { + "start": 20812.32, + "end": 20814.96, + "probability": 0.9617 + }, + { + "start": 20815.3, + "end": 20817.02, + "probability": 0.8983 + }, + { + "start": 20817.66, + "end": 20818.52, + "probability": 0.7567 + }, + { + "start": 20818.66, + "end": 20820.23, + "probability": 0.9803 + }, + { + "start": 20820.74, + "end": 20822.02, + "probability": 0.9473 + }, + { + "start": 20822.56, + "end": 20825.36, + "probability": 0.9556 + }, + { + "start": 20825.42, + "end": 20827.85, + "probability": 0.8773 + }, + { + "start": 20828.6, + "end": 20830.46, + "probability": 0.6549 + }, + { + "start": 20830.52, + "end": 20833.8, + "probability": 0.9818 + }, + { + "start": 20833.8, + "end": 20837.37, + "probability": 0.9997 + }, + { + "start": 20838.28, + "end": 20838.84, + "probability": 0.5417 + }, + { + "start": 20838.84, + "end": 20839.46, + "probability": 0.8672 + }, + { + "start": 20839.5, + "end": 20843.66, + "probability": 0.923 + }, + { + "start": 20845.3, + "end": 20846.9, + "probability": 0.9795 + }, + { + "start": 20847.04, + "end": 20848.74, + "probability": 0.6666 + }, + { + "start": 20849.28, + "end": 20849.78, + "probability": 0.7418 + }, + { + "start": 20849.8, + "end": 20853.78, + "probability": 0.8457 + }, + { + "start": 20853.78, + "end": 20857.46, + "probability": 0.9691 + }, + { + "start": 20857.84, + "end": 20859.26, + "probability": 0.9985 + }, + { + "start": 20859.86, + "end": 20863.2, + "probability": 0.9492 + }, + { + "start": 20863.5, + "end": 20867.14, + "probability": 0.9777 + }, + { + "start": 20867.54, + "end": 20870.44, + "probability": 0.9059 + }, + { + "start": 20870.58, + "end": 20873.04, + "probability": 0.7085 + }, + { + "start": 20873.86, + "end": 20876.64, + "probability": 0.9076 + }, + { + "start": 20877.26, + "end": 20878.92, + "probability": 0.4548 + }, + { + "start": 20878.92, + "end": 20880.24, + "probability": 0.4261 + }, + { + "start": 20880.24, + "end": 20883.38, + "probability": 0.947 + }, + { + "start": 20883.56, + "end": 20884.92, + "probability": 0.4939 + }, + { + "start": 20885.12, + "end": 20888.06, + "probability": 0.9954 + }, + { + "start": 20888.16, + "end": 20888.78, + "probability": 0.5386 + }, + { + "start": 20889.36, + "end": 20892.58, + "probability": 0.9463 + }, + { + "start": 20894.02, + "end": 20895.04, + "probability": 0.9346 + }, + { + "start": 20895.28, + "end": 20900.82, + "probability": 0.9506 + }, + { + "start": 20901.78, + "end": 20906.72, + "probability": 0.9985 + }, + { + "start": 20906.84, + "end": 20909.44, + "probability": 0.994 + }, + { + "start": 20910.08, + "end": 20913.56, + "probability": 0.9874 + }, + { + "start": 20913.84, + "end": 20915.7, + "probability": 0.9799 + }, + { + "start": 20916.16, + "end": 20919.2, + "probability": 0.972 + }, + { + "start": 20919.8, + "end": 20921.98, + "probability": 0.9094 + }, + { + "start": 20922.74, + "end": 20928.06, + "probability": 0.7671 + }, + { + "start": 20928.96, + "end": 20931.74, + "probability": 0.9562 + }, + { + "start": 20932.42, + "end": 20936.85, + "probability": 0.9285 + }, + { + "start": 20937.04, + "end": 20938.68, + "probability": 0.8502 + }, + { + "start": 20939.5, + "end": 20940.62, + "probability": 0.8618 + }, + { + "start": 20940.94, + "end": 20943.3, + "probability": 0.9873 + }, + { + "start": 20945.18, + "end": 20946.82, + "probability": 0.892 + }, + { + "start": 20950.02, + "end": 20951.74, + "probability": 0.9708 + }, + { + "start": 20951.88, + "end": 20952.64, + "probability": 0.5201 + }, + { + "start": 20952.66, + "end": 20954.02, + "probability": 0.9968 + }, + { + "start": 20954.32, + "end": 20954.54, + "probability": 0.3843 + }, + { + "start": 20954.68, + "end": 20955.4, + "probability": 0.8765 + }, + { + "start": 20955.68, + "end": 20959.07, + "probability": 0.9463 + }, + { + "start": 20959.48, + "end": 20961.8, + "probability": 0.9825 + }, + { + "start": 20962.86, + "end": 20964.32, + "probability": 0.9202 + }, + { + "start": 20968.37, + "end": 20969.8, + "probability": 0.9937 + }, + { + "start": 20969.94, + "end": 20971.52, + "probability": 0.9972 + }, + { + "start": 20971.88, + "end": 20973.04, + "probability": 0.7978 + }, + { + "start": 20973.33, + "end": 20978.56, + "probability": 0.8462 + }, + { + "start": 20978.68, + "end": 20979.32, + "probability": 0.7811 + }, + { + "start": 20981.24, + "end": 20984.54, + "probability": 0.5049 + }, + { + "start": 20985.08, + "end": 20989.64, + "probability": 0.9701 + }, + { + "start": 20992.08, + "end": 20995.26, + "probability": 0.9569 + }, + { + "start": 20995.4, + "end": 20995.98, + "probability": 0.5672 + }, + { + "start": 20996.08, + "end": 21001.42, + "probability": 0.8993 + }, + { + "start": 21001.74, + "end": 21003.14, + "probability": 0.9204 + }, + { + "start": 21003.18, + "end": 21007.56, + "probability": 0.9199 + }, + { + "start": 21007.56, + "end": 21008.58, + "probability": 0.6381 + }, + { + "start": 21008.72, + "end": 21008.9, + "probability": 0.226 + }, + { + "start": 21010.52, + "end": 21014.0, + "probability": 0.9987 + }, + { + "start": 21014.26, + "end": 21018.2, + "probability": 0.911 + }, + { + "start": 21018.22, + "end": 21019.3, + "probability": 0.8547 + }, + { + "start": 21019.76, + "end": 21020.32, + "probability": 0.7617 + }, + { + "start": 21020.48, + "end": 21021.42, + "probability": 0.9854 + }, + { + "start": 21022.12, + "end": 21024.86, + "probability": 0.8745 + }, + { + "start": 21026.48, + "end": 21027.9, + "probability": 0.8811 + }, + { + "start": 21027.96, + "end": 21028.76, + "probability": 0.3945 + }, + { + "start": 21028.8, + "end": 21029.3, + "probability": 0.4836 + }, + { + "start": 21029.4, + "end": 21029.7, + "probability": 0.6652 + }, + { + "start": 21029.74, + "end": 21030.83, + "probability": 0.6752 + }, + { + "start": 21031.0, + "end": 21031.63, + "probability": 0.9711 + }, + { + "start": 21032.26, + "end": 21034.9, + "probability": 0.9854 + }, + { + "start": 21036.12, + "end": 21037.02, + "probability": 0.6715 + }, + { + "start": 21037.06, + "end": 21038.26, + "probability": 0.7862 + }, + { + "start": 21038.32, + "end": 21040.68, + "probability": 0.7764 + }, + { + "start": 21041.68, + "end": 21043.18, + "probability": 0.7845 + }, + { + "start": 21043.38, + "end": 21044.24, + "probability": 0.9775 + }, + { + "start": 21044.96, + "end": 21046.28, + "probability": 0.9588 + }, + { + "start": 21047.4, + "end": 21047.6, + "probability": 0.4875 + }, + { + "start": 21047.6, + "end": 21048.02, + "probability": 0.7699 + }, + { + "start": 21048.12, + "end": 21052.38, + "probability": 0.9603 + }, + { + "start": 21052.52, + "end": 21053.26, + "probability": 0.7126 + }, + { + "start": 21053.32, + "end": 21054.58, + "probability": 0.8193 + }, + { + "start": 21055.02, + "end": 21056.54, + "probability": 0.7732 + }, + { + "start": 21056.68, + "end": 21057.16, + "probability": 0.8156 + }, + { + "start": 21057.18, + "end": 21058.36, + "probability": 0.9331 + }, + { + "start": 21058.96, + "end": 21059.72, + "probability": 0.8145 + }, + { + "start": 21059.78, + "end": 21061.24, + "probability": 0.8707 + }, + { + "start": 21061.52, + "end": 21063.36, + "probability": 0.8946 + }, + { + "start": 21063.42, + "end": 21067.54, + "probability": 0.9993 + }, + { + "start": 21067.56, + "end": 21068.46, + "probability": 0.9523 + }, + { + "start": 21068.64, + "end": 21070.42, + "probability": 0.9783 + }, + { + "start": 21070.86, + "end": 21073.82, + "probability": 0.9707 + }, + { + "start": 21074.54, + "end": 21076.24, + "probability": 0.9582 + }, + { + "start": 21076.86, + "end": 21079.72, + "probability": 0.7812 + }, + { + "start": 21081.4, + "end": 21082.12, + "probability": 0.928 + }, + { + "start": 21082.2, + "end": 21085.42, + "probability": 0.9503 + }, + { + "start": 21085.5, + "end": 21087.36, + "probability": 0.9751 + }, + { + "start": 21087.7, + "end": 21089.8, + "probability": 0.921 + }, + { + "start": 21090.14, + "end": 21091.66, + "probability": 0.9267 + }, + { + "start": 21092.2, + "end": 21097.68, + "probability": 0.7473 + }, + { + "start": 21098.36, + "end": 21100.22, + "probability": 0.9426 + }, + { + "start": 21100.44, + "end": 21101.76, + "probability": 0.8288 + }, + { + "start": 21102.02, + "end": 21106.04, + "probability": 0.7568 + }, + { + "start": 21106.12, + "end": 21106.7, + "probability": 0.9465 + }, + { + "start": 21107.38, + "end": 21107.74, + "probability": 0.4326 + }, + { + "start": 21107.78, + "end": 21108.32, + "probability": 0.8579 + }, + { + "start": 21108.44, + "end": 21109.2, + "probability": 0.7065 + }, + { + "start": 21109.26, + "end": 21112.38, + "probability": 0.9853 + }, + { + "start": 21112.38, + "end": 21116.02, + "probability": 0.9966 + }, + { + "start": 21116.7, + "end": 21118.96, + "probability": 0.8158 + }, + { + "start": 21120.72, + "end": 21120.74, + "probability": 0.2604 + }, + { + "start": 21120.74, + "end": 21126.08, + "probability": 0.9907 + }, + { + "start": 21126.48, + "end": 21130.56, + "probability": 0.9755 + }, + { + "start": 21130.98, + "end": 21131.44, + "probability": 0.755 + }, + { + "start": 21131.5, + "end": 21133.3, + "probability": 0.8279 + }, + { + "start": 21133.44, + "end": 21136.84, + "probability": 0.9953 + }, + { + "start": 21136.96, + "end": 21137.96, + "probability": 0.7555 + }, + { + "start": 21138.7, + "end": 21140.18, + "probability": 0.7979 + }, + { + "start": 21141.32, + "end": 21143.34, + "probability": 0.9219 + }, + { + "start": 21168.18, + "end": 21168.52, + "probability": 0.2513 + }, + { + "start": 21168.58, + "end": 21168.72, + "probability": 0.8648 + }, + { + "start": 21172.04, + "end": 21175.2, + "probability": 0.8667 + }, + { + "start": 21178.14, + "end": 21181.34, + "probability": 0.8674 + }, + { + "start": 21182.94, + "end": 21186.04, + "probability": 0.815 + }, + { + "start": 21186.22, + "end": 21196.18, + "probability": 0.9971 + }, + { + "start": 21196.4, + "end": 21197.58, + "probability": 0.7898 + }, + { + "start": 21199.04, + "end": 21201.5, + "probability": 0.9316 + }, + { + "start": 21201.64, + "end": 21202.8, + "probability": 0.9797 + }, + { + "start": 21204.0, + "end": 21205.9, + "probability": 0.9988 + }, + { + "start": 21207.24, + "end": 21211.78, + "probability": 0.9886 + }, + { + "start": 21213.26, + "end": 21213.96, + "probability": 0.4529 + }, + { + "start": 21216.0, + "end": 21218.5, + "probability": 0.8756 + }, + { + "start": 21218.7, + "end": 21220.74, + "probability": 0.9937 + }, + { + "start": 21220.88, + "end": 21225.3, + "probability": 0.9586 + }, + { + "start": 21225.38, + "end": 21225.82, + "probability": 0.8834 + }, + { + "start": 21225.82, + "end": 21227.4, + "probability": 0.9795 + }, + { + "start": 21227.44, + "end": 21228.1, + "probability": 0.7813 + }, + { + "start": 21229.68, + "end": 21231.26, + "probability": 0.7792 + }, + { + "start": 21231.68, + "end": 21233.72, + "probability": 0.9775 + }, + { + "start": 21233.86, + "end": 21234.28, + "probability": 0.6426 + }, + { + "start": 21235.28, + "end": 21240.33, + "probability": 0.9507 + }, + { + "start": 21240.48, + "end": 21246.38, + "probability": 0.9862 + }, + { + "start": 21246.94, + "end": 21249.36, + "probability": 0.9437 + }, + { + "start": 21249.44, + "end": 21250.46, + "probability": 0.9634 + }, + { + "start": 21250.7, + "end": 21253.48, + "probability": 0.9924 + }, + { + "start": 21253.48, + "end": 21257.9, + "probability": 0.9424 + }, + { + "start": 21258.08, + "end": 21260.22, + "probability": 0.9882 + }, + { + "start": 21261.7, + "end": 21263.78, + "probability": 0.9715 + }, + { + "start": 21263.98, + "end": 21267.46, + "probability": 0.9175 + }, + { + "start": 21267.54, + "end": 21270.52, + "probability": 0.9884 + }, + { + "start": 21271.56, + "end": 21274.38, + "probability": 0.998 + }, + { + "start": 21274.52, + "end": 21279.18, + "probability": 0.9951 + }, + { + "start": 21279.32, + "end": 21282.88, + "probability": 0.9657 + }, + { + "start": 21282.88, + "end": 21284.56, + "probability": 0.5688 + }, + { + "start": 21284.68, + "end": 21286.14, + "probability": 0.9869 + }, + { + "start": 21286.22, + "end": 21286.72, + "probability": 0.9832 + }, + { + "start": 21287.42, + "end": 21289.68, + "probability": 0.9547 + }, + { + "start": 21290.68, + "end": 21292.26, + "probability": 0.821 + }, + { + "start": 21292.62, + "end": 21293.54, + "probability": 0.8959 + }, + { + "start": 21293.94, + "end": 21295.34, + "probability": 0.9929 + }, + { + "start": 21295.4, + "end": 21296.68, + "probability": 0.9468 + }, + { + "start": 21297.22, + "end": 21297.56, + "probability": 0.3508 + }, + { + "start": 21297.58, + "end": 21300.4, + "probability": 0.3856 + }, + { + "start": 21300.4, + "end": 21301.58, + "probability": 0.8024 + }, + { + "start": 21301.68, + "end": 21302.38, + "probability": 0.8806 + }, + { + "start": 21302.58, + "end": 21303.38, + "probability": 0.9387 + }, + { + "start": 21303.88, + "end": 21308.02, + "probability": 0.9152 + }, + { + "start": 21309.68, + "end": 21309.7, + "probability": 0.9409 + }, + { + "start": 21311.02, + "end": 21313.52, + "probability": 0.9612 + }, + { + "start": 21314.44, + "end": 21315.68, + "probability": 0.9806 + }, + { + "start": 21316.94, + "end": 21317.56, + "probability": 0.972 + }, + { + "start": 21318.6, + "end": 21319.55, + "probability": 0.5343 + }, + { + "start": 21321.38, + "end": 21323.76, + "probability": 0.9671 + }, + { + "start": 21323.76, + "end": 21327.94, + "probability": 0.9684 + }, + { + "start": 21328.02, + "end": 21333.42, + "probability": 0.9941 + }, + { + "start": 21334.64, + "end": 21340.76, + "probability": 0.974 + }, + { + "start": 21341.28, + "end": 21344.3, + "probability": 0.9878 + }, + { + "start": 21344.82, + "end": 21345.4, + "probability": 0.616 + }, + { + "start": 21346.6, + "end": 21348.52, + "probability": 0.651 + }, + { + "start": 21349.76, + "end": 21351.78, + "probability": 0.989 + }, + { + "start": 21351.9, + "end": 21353.9, + "probability": 0.9316 + }, + { + "start": 21354.66, + "end": 21359.3, + "probability": 0.9542 + }, + { + "start": 21360.68, + "end": 21362.1, + "probability": 0.9404 + }, + { + "start": 21362.12, + "end": 21362.62, + "probability": 0.4539 + }, + { + "start": 21363.06, + "end": 21364.08, + "probability": 0.8267 + }, + { + "start": 21364.1, + "end": 21366.96, + "probability": 0.7319 + }, + { + "start": 21367.6, + "end": 21369.73, + "probability": 0.9609 + }, + { + "start": 21370.46, + "end": 21372.72, + "probability": 0.946 + }, + { + "start": 21372.76, + "end": 21374.2, + "probability": 0.9944 + }, + { + "start": 21374.92, + "end": 21376.34, + "probability": 0.7088 + }, + { + "start": 21377.46, + "end": 21385.12, + "probability": 0.983 + }, + { + "start": 21385.76, + "end": 21386.8, + "probability": 0.634 + }, + { + "start": 21386.98, + "end": 21388.6, + "probability": 0.907 + }, + { + "start": 21388.7, + "end": 21390.02, + "probability": 0.8145 + }, + { + "start": 21390.5, + "end": 21390.92, + "probability": 0.7236 + }, + { + "start": 21391.0, + "end": 21392.0, + "probability": 0.9907 + }, + { + "start": 21393.76, + "end": 21394.64, + "probability": 0.9431 + }, + { + "start": 21395.58, + "end": 21396.88, + "probability": 0.7112 + }, + { + "start": 21397.0, + "end": 21400.7, + "probability": 0.9803 + }, + { + "start": 21401.6, + "end": 21404.14, + "probability": 0.8366 + }, + { + "start": 21404.78, + "end": 21405.6, + "probability": 0.808 + }, + { + "start": 21406.14, + "end": 21408.13, + "probability": 0.927 + }, + { + "start": 21408.32, + "end": 21408.5, + "probability": 0.4563 + }, + { + "start": 21408.58, + "end": 21409.22, + "probability": 0.9101 + }, + { + "start": 21409.3, + "end": 21409.96, + "probability": 0.905 + }, + { + "start": 21410.08, + "end": 21410.58, + "probability": 0.8264 + }, + { + "start": 21410.98, + "end": 21411.32, + "probability": 0.9407 + }, + { + "start": 21411.46, + "end": 21415.54, + "probability": 0.9581 + }, + { + "start": 21415.54, + "end": 21417.38, + "probability": 0.8404 + }, + { + "start": 21418.7, + "end": 21419.4, + "probability": 0.6967 + }, + { + "start": 21420.42, + "end": 21424.48, + "probability": 0.9102 + }, + { + "start": 21425.04, + "end": 21426.3, + "probability": 0.7042 + }, + { + "start": 21426.88, + "end": 21428.56, + "probability": 0.9265 + }, + { + "start": 21428.8, + "end": 21433.06, + "probability": 0.9968 + }, + { + "start": 21433.26, + "end": 21434.38, + "probability": 0.8387 + }, + { + "start": 21434.48, + "end": 21436.82, + "probability": 0.8379 + }, + { + "start": 21437.88, + "end": 21440.58, + "probability": 0.7939 + }, + { + "start": 21441.74, + "end": 21443.46, + "probability": 0.856 + }, + { + "start": 21443.62, + "end": 21445.84, + "probability": 0.9941 + }, + { + "start": 21445.94, + "end": 21447.02, + "probability": 0.9333 + }, + { + "start": 21447.74, + "end": 21449.68, + "probability": 0.9937 + }, + { + "start": 21451.52, + "end": 21452.94, + "probability": 0.515 + }, + { + "start": 21452.94, + "end": 21455.02, + "probability": 0.9248 + }, + { + "start": 21455.14, + "end": 21456.2, + "probability": 0.5747 + }, + { + "start": 21457.4, + "end": 21459.24, + "probability": 0.8502 + }, + { + "start": 21459.38, + "end": 21460.82, + "probability": 0.9683 + }, + { + "start": 21461.24, + "end": 21463.04, + "probability": 0.728 + }, + { + "start": 21463.62, + "end": 21465.2, + "probability": 0.8439 + }, + { + "start": 21466.4, + "end": 21467.74, + "probability": 0.6322 + }, + { + "start": 21468.24, + "end": 21468.92, + "probability": 0.8237 + }, + { + "start": 21469.34, + "end": 21469.88, + "probability": 0.5646 + }, + { + "start": 21470.2, + "end": 21473.16, + "probability": 0.9064 + }, + { + "start": 21473.24, + "end": 21474.38, + "probability": 0.8138 + }, + { + "start": 21474.92, + "end": 21475.36, + "probability": 0.8496 + }, + { + "start": 21475.36, + "end": 21477.42, + "probability": 0.9341 + }, + { + "start": 21477.54, + "end": 21478.0, + "probability": 0.7614 + }, + { + "start": 21478.1, + "end": 21480.68, + "probability": 0.9706 + }, + { + "start": 21480.78, + "end": 21482.66, + "probability": 0.8646 + }, + { + "start": 21482.8, + "end": 21484.42, + "probability": 0.5697 + }, + { + "start": 21484.92, + "end": 21487.0, + "probability": 0.9958 + }, + { + "start": 21487.86, + "end": 21490.62, + "probability": 0.8792 + }, + { + "start": 21490.76, + "end": 21492.06, + "probability": 0.9547 + }, + { + "start": 21492.14, + "end": 21497.38, + "probability": 0.9692 + }, + { + "start": 21498.24, + "end": 21499.62, + "probability": 0.9631 + }, + { + "start": 21500.84, + "end": 21503.46, + "probability": 0.8826 + }, + { + "start": 21504.04, + "end": 21505.7, + "probability": 0.9948 + }, + { + "start": 21506.32, + "end": 21507.12, + "probability": 0.3837 + }, + { + "start": 21507.92, + "end": 21508.62, + "probability": 0.8177 + }, + { + "start": 21508.74, + "end": 21509.42, + "probability": 0.8124 + }, + { + "start": 21509.56, + "end": 21512.58, + "probability": 0.6719 + }, + { + "start": 21513.02, + "end": 21513.28, + "probability": 0.5713 + }, + { + "start": 21513.32, + "end": 21513.84, + "probability": 0.5963 + }, + { + "start": 21513.86, + "end": 21514.18, + "probability": 0.8196 + }, + { + "start": 21514.26, + "end": 21515.14, + "probability": 0.9079 + }, + { + "start": 21515.8, + "end": 21522.0, + "probability": 0.7617 + }, + { + "start": 21522.16, + "end": 21528.34, + "probability": 0.969 + }, + { + "start": 21528.38, + "end": 21529.3, + "probability": 0.9507 + }, + { + "start": 21529.64, + "end": 21532.89, + "probability": 0.992 + }, + { + "start": 21533.36, + "end": 21533.64, + "probability": 0.3914 + }, + { + "start": 21533.7, + "end": 21536.06, + "probability": 0.709 + }, + { + "start": 21536.44, + "end": 21537.58, + "probability": 0.9917 + }, + { + "start": 21538.54, + "end": 21538.74, + "probability": 0.5375 + }, + { + "start": 21538.84, + "end": 21539.74, + "probability": 0.8676 + }, + { + "start": 21539.92, + "end": 21542.74, + "probability": 0.8507 + }, + { + "start": 21542.8, + "end": 21544.12, + "probability": 0.8865 + }, + { + "start": 21544.26, + "end": 21548.74, + "probability": 0.7324 + }, + { + "start": 21549.1, + "end": 21550.68, + "probability": 0.7634 + }, + { + "start": 21550.7, + "end": 21552.34, + "probability": 0.8783 + }, + { + "start": 21552.74, + "end": 21556.2, + "probability": 0.9204 + }, + { + "start": 21556.8, + "end": 21560.18, + "probability": 0.9298 + }, + { + "start": 21560.4, + "end": 21563.16, + "probability": 0.991 + }, + { + "start": 21563.84, + "end": 21565.14, + "probability": 0.9351 + }, + { + "start": 21565.36, + "end": 21567.42, + "probability": 0.9568 + }, + { + "start": 21568.2, + "end": 21572.02, + "probability": 0.8862 + }, + { + "start": 21572.12, + "end": 21575.88, + "probability": 0.9818 + }, + { + "start": 21576.0, + "end": 21577.12, + "probability": 0.475 + }, + { + "start": 21577.16, + "end": 21580.18, + "probability": 0.9629 + }, + { + "start": 21580.24, + "end": 21581.24, + "probability": 0.7361 + }, + { + "start": 21581.28, + "end": 21582.78, + "probability": 0.8134 + }, + { + "start": 21582.92, + "end": 21584.84, + "probability": 0.8709 + }, + { + "start": 21585.26, + "end": 21586.68, + "probability": 0.8948 + }, + { + "start": 21586.74, + "end": 21587.32, + "probability": 0.8002 + }, + { + "start": 21587.48, + "end": 21587.94, + "probability": 0.4615 + }, + { + "start": 21588.32, + "end": 21589.69, + "probability": 0.5819 + }, + { + "start": 21591.24, + "end": 21592.6, + "probability": 0.2196 + }, + { + "start": 21592.64, + "end": 21592.94, + "probability": 0.7645 + }, + { + "start": 21593.12, + "end": 21594.03, + "probability": 0.5149 + }, + { + "start": 21594.3, + "end": 21596.58, + "probability": 0.7889 + }, + { + "start": 21596.62, + "end": 21597.15, + "probability": 0.7556 + }, + { + "start": 21597.92, + "end": 21599.2, + "probability": 0.9754 + }, + { + "start": 21600.04, + "end": 21601.02, + "probability": 0.6101 + }, + { + "start": 21601.68, + "end": 21606.5, + "probability": 0.8722 + }, + { + "start": 21607.22, + "end": 21609.12, + "probability": 0.9827 + }, + { + "start": 21609.18, + "end": 21611.44, + "probability": 0.8083 + }, + { + "start": 21611.56, + "end": 21612.94, + "probability": 0.7457 + }, + { + "start": 21612.94, + "end": 21613.54, + "probability": 0.7443 + }, + { + "start": 21614.48, + "end": 21614.8, + "probability": 0.6244 + }, + { + "start": 21614.86, + "end": 21620.74, + "probability": 0.7655 + }, + { + "start": 21620.9, + "end": 21623.02, + "probability": 0.8051 + }, + { + "start": 21624.2, + "end": 21626.24, + "probability": 0.8986 + }, + { + "start": 21626.5, + "end": 21628.67, + "probability": 0.9899 + }, + { + "start": 21628.82, + "end": 21632.04, + "probability": 0.9839 + }, + { + "start": 21632.62, + "end": 21633.62, + "probability": 0.7862 + }, + { + "start": 21633.62, + "end": 21634.88, + "probability": 0.9546 + }, + { + "start": 21635.18, + "end": 21635.44, + "probability": 0.5107 + }, + { + "start": 21635.46, + "end": 21638.56, + "probability": 0.9007 + }, + { + "start": 21639.02, + "end": 21642.3, + "probability": 0.93 + }, + { + "start": 21642.74, + "end": 21643.96, + "probability": 0.5793 + }, + { + "start": 21644.72, + "end": 21646.08, + "probability": 0.9474 + }, + { + "start": 21646.8, + "end": 21648.58, + "probability": 0.7009 + }, + { + "start": 21648.62, + "end": 21650.92, + "probability": 0.9688 + }, + { + "start": 21651.1, + "end": 21651.78, + "probability": 0.8704 + }, + { + "start": 21652.14, + "end": 21656.54, + "probability": 0.9371 + }, + { + "start": 21656.7, + "end": 21657.6, + "probability": 0.8394 + }, + { + "start": 21658.12, + "end": 21661.14, + "probability": 0.988 + }, + { + "start": 21661.14, + "end": 21663.2, + "probability": 0.7586 + }, + { + "start": 21664.4, + "end": 21668.52, + "probability": 0.936 + }, + { + "start": 21668.94, + "end": 21674.26, + "probability": 0.9893 + }, + { + "start": 21675.5, + "end": 21676.48, + "probability": 0.7844 + }, + { + "start": 21677.04, + "end": 21680.56, + "probability": 0.9797 + }, + { + "start": 21680.64, + "end": 21682.6, + "probability": 0.9331 + }, + { + "start": 21683.56, + "end": 21687.56, + "probability": 0.6552 + }, + { + "start": 21687.58, + "end": 21690.16, + "probability": 0.6085 + }, + { + "start": 21690.56, + "end": 21691.18, + "probability": 0.4477 + }, + { + "start": 21692.46, + "end": 21696.0, + "probability": 0.8674 + }, + { + "start": 21696.16, + "end": 21697.3, + "probability": 0.6724 + }, + { + "start": 21697.36, + "end": 21698.76, + "probability": 0.8264 + }, + { + "start": 21698.8, + "end": 21698.98, + "probability": 0.5451 + }, + { + "start": 21698.98, + "end": 21700.14, + "probability": 0.9744 + }, + { + "start": 21701.18, + "end": 21702.98, + "probability": 0.9209 + }, + { + "start": 21703.1, + "end": 21705.62, + "probability": 0.8717 + }, + { + "start": 21705.76, + "end": 21708.08, + "probability": 0.7362 + }, + { + "start": 21708.76, + "end": 21711.64, + "probability": 0.6342 + }, + { + "start": 21711.66, + "end": 21713.06, + "probability": 0.9297 + }, + { + "start": 21713.36, + "end": 21714.2, + "probability": 0.8578 + }, + { + "start": 21714.28, + "end": 21718.44, + "probability": 0.9417 + }, + { + "start": 21718.52, + "end": 21719.48, + "probability": 0.6122 + }, + { + "start": 21719.86, + "end": 21721.3, + "probability": 0.5202 + }, + { + "start": 21722.5, + "end": 21723.16, + "probability": 0.7375 + }, + { + "start": 21723.34, + "end": 21727.18, + "probability": 0.9443 + }, + { + "start": 21727.34, + "end": 21730.82, + "probability": 0.8473 + }, + { + "start": 21731.5, + "end": 21732.28, + "probability": 0.7328 + }, + { + "start": 21732.58, + "end": 21736.76, + "probability": 0.978 + }, + { + "start": 21736.76, + "end": 21738.96, + "probability": 0.9816 + }, + { + "start": 21741.28, + "end": 21745.28, + "probability": 0.9914 + }, + { + "start": 21745.28, + "end": 21748.04, + "probability": 0.9995 + }, + { + "start": 21749.3, + "end": 21753.9, + "probability": 0.999 + }, + { + "start": 21755.08, + "end": 21757.48, + "probability": 0.9673 + }, + { + "start": 21758.26, + "end": 21760.4, + "probability": 0.7725 + }, + { + "start": 21760.94, + "end": 21762.28, + "probability": 0.9932 + }, + { + "start": 21763.91, + "end": 21765.57, + "probability": 0.3284 + }, + { + "start": 21766.72, + "end": 21767.96, + "probability": 0.9312 + }, + { + "start": 21768.54, + "end": 21771.92, + "probability": 0.9845 + }, + { + "start": 21772.24, + "end": 21774.56, + "probability": 0.5026 + }, + { + "start": 21774.56, + "end": 21775.08, + "probability": 0.8428 + }, + { + "start": 21775.38, + "end": 21778.04, + "probability": 0.9459 + }, + { + "start": 21778.36, + "end": 21779.68, + "probability": 0.7571 + }, + { + "start": 21779.76, + "end": 21781.06, + "probability": 0.9863 + }, + { + "start": 21781.62, + "end": 21786.84, + "probability": 0.9898 + }, + { + "start": 21786.92, + "end": 21787.9, + "probability": 0.533 + }, + { + "start": 21788.24, + "end": 21789.52, + "probability": 0.7667 + }, + { + "start": 21790.34, + "end": 21793.38, + "probability": 0.8604 + }, + { + "start": 21793.86, + "end": 21796.9, + "probability": 0.7907 + }, + { + "start": 21797.28, + "end": 21798.58, + "probability": 0.8167 + }, + { + "start": 21798.7, + "end": 21799.12, + "probability": 0.4824 + }, + { + "start": 21799.36, + "end": 21800.78, + "probability": 0.9257 + }, + { + "start": 21801.22, + "end": 21806.58, + "probability": 0.7553 + }, + { + "start": 21806.94, + "end": 21809.06, + "probability": 0.8692 + }, + { + "start": 21809.72, + "end": 21812.42, + "probability": 0.9969 + }, + { + "start": 21812.64, + "end": 21812.94, + "probability": 0.5618 + }, + { + "start": 21813.06, + "end": 21813.84, + "probability": 0.8569 + }, + { + "start": 21813.94, + "end": 21820.84, + "probability": 0.9385 + }, + { + "start": 21820.84, + "end": 21824.68, + "probability": 0.9716 + }, + { + "start": 21824.8, + "end": 21831.88, + "probability": 0.9901 + }, + { + "start": 21832.04, + "end": 21835.38, + "probability": 0.936 + }, + { + "start": 21835.78, + "end": 21839.58, + "probability": 0.9925 + }, + { + "start": 21840.02, + "end": 21842.9, + "probability": 0.9927 + }, + { + "start": 21842.9, + "end": 21847.9, + "probability": 0.9531 + }, + { + "start": 21848.08, + "end": 21848.57, + "probability": 0.8064 + }, + { + "start": 21849.1, + "end": 21851.7, + "probability": 0.975 + }, + { + "start": 21852.02, + "end": 21853.32, + "probability": 0.6653 + }, + { + "start": 21853.58, + "end": 21855.34, + "probability": 0.4699 + }, + { + "start": 21855.48, + "end": 21855.9, + "probability": 0.3321 + }, + { + "start": 21855.94, + "end": 21859.6, + "probability": 0.7358 + }, + { + "start": 21860.1, + "end": 21863.9, + "probability": 0.9925 + }, + { + "start": 21864.34, + "end": 21867.58, + "probability": 0.9385 + }, + { + "start": 21867.66, + "end": 21868.36, + "probability": 0.8726 + }, + { + "start": 21868.9, + "end": 21872.44, + "probability": 0.9751 + }, + { + "start": 21872.56, + "end": 21875.12, + "probability": 0.964 + }, + { + "start": 21875.36, + "end": 21876.4, + "probability": 0.4476 + }, + { + "start": 21876.78, + "end": 21878.39, + "probability": 0.9326 + }, + { + "start": 21879.02, + "end": 21881.16, + "probability": 0.9667 + }, + { + "start": 21881.34, + "end": 21882.54, + "probability": 0.7591 + }, + { + "start": 21883.28, + "end": 21884.68, + "probability": 0.7795 + }, + { + "start": 21885.12, + "end": 21886.36, + "probability": 0.912 + }, + { + "start": 21886.5, + "end": 21887.34, + "probability": 0.8892 + }, + { + "start": 21887.78, + "end": 21891.02, + "probability": 0.9956 + }, + { + "start": 21891.14, + "end": 21892.8, + "probability": 0.9367 + }, + { + "start": 21893.36, + "end": 21894.28, + "probability": 0.9076 + }, + { + "start": 21894.66, + "end": 21895.62, + "probability": 0.9927 + }, + { + "start": 21895.78, + "end": 21899.9, + "probability": 0.9531 + }, + { + "start": 21900.82, + "end": 21905.02, + "probability": 0.8447 + }, + { + "start": 21905.96, + "end": 21910.54, + "probability": 0.9753 + }, + { + "start": 21910.82, + "end": 21912.58, + "probability": 0.9341 + }, + { + "start": 21912.88, + "end": 21914.62, + "probability": 0.9858 + }, + { + "start": 21914.9, + "end": 21916.16, + "probability": 0.962 + }, + { + "start": 21916.24, + "end": 21917.4, + "probability": 0.9775 + }, + { + "start": 21917.4, + "end": 21921.18, + "probability": 0.8406 + }, + { + "start": 21921.84, + "end": 21923.03, + "probability": 0.7882 + }, + { + "start": 21923.12, + "end": 21928.92, + "probability": 0.4445 + }, + { + "start": 21928.98, + "end": 21930.92, + "probability": 0.9238 + }, + { + "start": 21931.04, + "end": 21934.46, + "probability": 0.9792 + }, + { + "start": 21935.18, + "end": 21935.82, + "probability": 0.6629 + }, + { + "start": 21935.92, + "end": 21939.34, + "probability": 0.8854 + }, + { + "start": 21939.8, + "end": 21941.0, + "probability": 0.9282 + }, + { + "start": 21941.26, + "end": 21943.18, + "probability": 0.8672 + }, + { + "start": 21943.5, + "end": 21946.34, + "probability": 0.9802 + }, + { + "start": 21946.54, + "end": 21947.78, + "probability": 0.9437 + }, + { + "start": 21948.04, + "end": 21948.1, + "probability": 0.5261 + }, + { + "start": 21948.14, + "end": 21948.5, + "probability": 0.7614 + }, + { + "start": 21948.56, + "end": 21950.52, + "probability": 0.9045 + }, + { + "start": 21950.58, + "end": 21951.26, + "probability": 0.5723 + }, + { + "start": 21951.38, + "end": 21956.34, + "probability": 0.9741 + }, + { + "start": 21956.88, + "end": 21958.56, + "probability": 0.7221 + }, + { + "start": 21959.38, + "end": 21961.74, + "probability": 0.811 + }, + { + "start": 21961.94, + "end": 21964.24, + "probability": 0.6269 + }, + { + "start": 21964.7, + "end": 21971.24, + "probability": 0.7925 + }, + { + "start": 21971.34, + "end": 21973.3, + "probability": 0.556 + }, + { + "start": 21973.76, + "end": 21976.02, + "probability": 0.9915 + }, + { + "start": 21976.26, + "end": 21976.72, + "probability": 0.6242 + }, + { + "start": 21976.72, + "end": 21978.84, + "probability": 0.8997 + }, + { + "start": 21978.9, + "end": 21979.77, + "probability": 0.9159 + }, + { + "start": 21980.16, + "end": 21984.08, + "probability": 0.7899 + }, + { + "start": 21984.72, + "end": 21985.92, + "probability": 0.8917 + }, + { + "start": 21986.0, + "end": 21986.72, + "probability": 0.8971 + }, + { + "start": 21986.92, + "end": 21990.86, + "probability": 0.9869 + }, + { + "start": 21990.92, + "end": 21991.83, + "probability": 0.998 + }, + { + "start": 21992.22, + "end": 21993.54, + "probability": 0.9794 + }, + { + "start": 21993.82, + "end": 21995.66, + "probability": 0.8892 + }, + { + "start": 21995.88, + "end": 21996.64, + "probability": 0.9073 + }, + { + "start": 21997.46, + "end": 22000.1, + "probability": 0.975 + }, + { + "start": 22001.2, + "end": 22003.16, + "probability": 0.8238 + }, + { + "start": 22003.34, + "end": 22004.9, + "probability": 0.9341 + }, + { + "start": 22004.98, + "end": 22008.32, + "probability": 0.9631 + }, + { + "start": 22008.38, + "end": 22009.2, + "probability": 0.9305 + }, + { + "start": 22009.42, + "end": 22010.46, + "probability": 0.9851 + }, + { + "start": 22010.58, + "end": 22011.92, + "probability": 0.7434 + }, + { + "start": 22012.2, + "end": 22013.62, + "probability": 0.8799 + }, + { + "start": 22014.1, + "end": 22017.76, + "probability": 0.4965 + }, + { + "start": 22018.08, + "end": 22018.6, + "probability": 0.8478 + }, + { + "start": 22018.64, + "end": 22021.68, + "probability": 0.9597 + }, + { + "start": 22021.74, + "end": 22022.85, + "probability": 0.9482 + }, + { + "start": 22023.5, + "end": 22024.26, + "probability": 0.9039 + }, + { + "start": 22024.34, + "end": 22025.12, + "probability": 0.8763 + }, + { + "start": 22025.46, + "end": 22026.48, + "probability": 0.7679 + }, + { + "start": 22026.7, + "end": 22028.26, + "probability": 0.5784 + }, + { + "start": 22028.4, + "end": 22029.31, + "probability": 0.7945 + }, + { + "start": 22029.68, + "end": 22030.86, + "probability": 0.9669 + }, + { + "start": 22031.08, + "end": 22033.3, + "probability": 0.8897 + }, + { + "start": 22034.2, + "end": 22036.94, + "probability": 0.7994 + }, + { + "start": 22036.96, + "end": 22038.1, + "probability": 0.893 + }, + { + "start": 22038.16, + "end": 22038.38, + "probability": 0.507 + }, + { + "start": 22038.42, + "end": 22040.86, + "probability": 0.9586 + }, + { + "start": 22041.14, + "end": 22042.94, + "probability": 0.6821 + }, + { + "start": 22043.2, + "end": 22047.3, + "probability": 0.7446 + }, + { + "start": 22047.34, + "end": 22048.03, + "probability": 0.9237 + }, + { + "start": 22048.4, + "end": 22048.64, + "probability": 0.5344 + }, + { + "start": 22048.66, + "end": 22049.19, + "probability": 0.9744 + }, + { + "start": 22050.38, + "end": 22052.76, + "probability": 0.9781 + }, + { + "start": 22053.22, + "end": 22053.98, + "probability": 0.9855 + }, + { + "start": 22053.98, + "end": 22056.24, + "probability": 0.9702 + }, + { + "start": 22056.32, + "end": 22057.54, + "probability": 0.3799 + }, + { + "start": 22057.58, + "end": 22061.72, + "probability": 0.9858 + }, + { + "start": 22062.12, + "end": 22063.93, + "probability": 0.9405 + }, + { + "start": 22064.52, + "end": 22064.76, + "probability": 0.074 + }, + { + "start": 22064.76, + "end": 22065.72, + "probability": 0.4024 + }, + { + "start": 22065.9, + "end": 22068.68, + "probability": 0.923 + }, + { + "start": 22068.98, + "end": 22070.0, + "probability": 0.8771 + }, + { + "start": 22070.18, + "end": 22073.38, + "probability": 0.9956 + }, + { + "start": 22074.6, + "end": 22077.02, + "probability": 0.9638 + }, + { + "start": 22077.3, + "end": 22078.88, + "probability": 0.9775 + }, + { + "start": 22078.92, + "end": 22079.32, + "probability": 0.8013 + }, + { + "start": 22079.36, + "end": 22080.16, + "probability": 0.8098 + }, + { + "start": 22080.52, + "end": 22081.52, + "probability": 0.9321 + }, + { + "start": 22081.72, + "end": 22082.08, + "probability": 0.943 + }, + { + "start": 22082.28, + "end": 22083.4, + "probability": 0.9502 + }, + { + "start": 22083.98, + "end": 22088.74, + "probability": 0.9766 + }, + { + "start": 22088.74, + "end": 22091.46, + "probability": 0.9919 + }, + { + "start": 22092.1, + "end": 22095.44, + "probability": 0.9966 + }, + { + "start": 22095.52, + "end": 22096.72, + "probability": 0.7853 + }, + { + "start": 22097.22, + "end": 22098.13, + "probability": 0.8184 + }, + { + "start": 22098.58, + "end": 22100.88, + "probability": 0.938 + }, + { + "start": 22101.1, + "end": 22101.4, + "probability": 0.4953 + }, + { + "start": 22101.52, + "end": 22104.46, + "probability": 0.9565 + }, + { + "start": 22104.68, + "end": 22105.88, + "probability": 0.999 + }, + { + "start": 22106.4, + "end": 22108.1, + "probability": 0.7521 + }, + { + "start": 22108.82, + "end": 22110.02, + "probability": 0.706 + }, + { + "start": 22110.2, + "end": 22112.18, + "probability": 0.963 + }, + { + "start": 22112.44, + "end": 22114.56, + "probability": 0.8935 + }, + { + "start": 22114.8, + "end": 22116.72, + "probability": 0.9878 + }, + { + "start": 22116.72, + "end": 22118.99, + "probability": 0.5732 + }, + { + "start": 22119.42, + "end": 22120.31, + "probability": 0.8394 + }, + { + "start": 22120.66, + "end": 22121.97, + "probability": 0.7476 + }, + { + "start": 22122.26, + "end": 22123.8, + "probability": 0.917 + }, + { + "start": 22124.34, + "end": 22126.58, + "probability": 0.8545 + }, + { + "start": 22126.68, + "end": 22127.84, + "probability": 0.126 + }, + { + "start": 22128.36, + "end": 22128.36, + "probability": 0.0837 + }, + { + "start": 22128.36, + "end": 22132.66, + "probability": 0.6772 + }, + { + "start": 22133.62, + "end": 22136.22, + "probability": 0.9614 + }, + { + "start": 22136.24, + "end": 22137.5, + "probability": 0.9893 + }, + { + "start": 22138.04, + "end": 22139.94, + "probability": 0.9906 + }, + { + "start": 22140.32, + "end": 22142.8, + "probability": 0.9661 + }, + { + "start": 22143.06, + "end": 22144.16, + "probability": 0.7307 + }, + { + "start": 22144.56, + "end": 22144.82, + "probability": 0.742 + }, + { + "start": 22145.26, + "end": 22146.92, + "probability": 0.7971 + }, + { + "start": 22147.04, + "end": 22148.98, + "probability": 0.5794 + }, + { + "start": 22149.38, + "end": 22150.2, + "probability": 0.3814 + }, + { + "start": 22150.22, + "end": 22151.42, + "probability": 0.7812 + }, + { + "start": 22165.7, + "end": 22166.56, + "probability": 0.7173 + }, + { + "start": 22167.08, + "end": 22167.62, + "probability": 0.5099 + }, + { + "start": 22167.62, + "end": 22167.76, + "probability": 0.6559 + }, + { + "start": 22167.94, + "end": 22169.34, + "probability": 0.8769 + }, + { + "start": 22169.94, + "end": 22170.34, + "probability": 0.7491 + }, + { + "start": 22171.54, + "end": 22172.64, + "probability": 0.9817 + }, + { + "start": 22173.66, + "end": 22174.16, + "probability": 0.917 + }, + { + "start": 22174.22, + "end": 22174.92, + "probability": 0.7938 + }, + { + "start": 22175.5, + "end": 22177.59, + "probability": 0.9612 + }, + { + "start": 22179.32, + "end": 22181.44, + "probability": 0.68 + }, + { + "start": 22184.42, + "end": 22186.02, + "probability": 0.9181 + }, + { + "start": 22186.36, + "end": 22186.62, + "probability": 0.5183 + }, + { + "start": 22186.66, + "end": 22189.02, + "probability": 0.9753 + }, + { + "start": 22190.62, + "end": 22194.08, + "probability": 0.9725 + }, + { + "start": 22194.14, + "end": 22199.0, + "probability": 0.9761 + }, + { + "start": 22199.82, + "end": 22203.02, + "probability": 0.7366 + }, + { + "start": 22204.6, + "end": 22213.2, + "probability": 0.9716 + }, + { + "start": 22213.84, + "end": 22214.58, + "probability": 0.9727 + }, + { + "start": 22216.32, + "end": 22220.68, + "probability": 0.9784 + }, + { + "start": 22221.52, + "end": 22222.32, + "probability": 0.5952 + }, + { + "start": 22222.84, + "end": 22223.65, + "probability": 0.9665 + }, + { + "start": 22226.16, + "end": 22230.36, + "probability": 0.9827 + }, + { + "start": 22231.68, + "end": 22235.02, + "probability": 0.9909 + }, + { + "start": 22235.02, + "end": 22239.82, + "probability": 0.9976 + }, + { + "start": 22241.42, + "end": 22246.01, + "probability": 0.997 + }, + { + "start": 22248.24, + "end": 22252.94, + "probability": 0.8277 + }, + { + "start": 22253.98, + "end": 22256.24, + "probability": 0.7898 + }, + { + "start": 22257.92, + "end": 22261.32, + "probability": 0.9904 + }, + { + "start": 22261.32, + "end": 22266.28, + "probability": 0.9825 + }, + { + "start": 22267.14, + "end": 22269.04, + "probability": 0.9588 + }, + { + "start": 22270.74, + "end": 22272.0, + "probability": 0.9964 + }, + { + "start": 22275.18, + "end": 22281.46, + "probability": 0.9971 + }, + { + "start": 22282.06, + "end": 22284.36, + "probability": 0.9975 + }, + { + "start": 22285.28, + "end": 22288.84, + "probability": 0.9824 + }, + { + "start": 22290.24, + "end": 22293.9, + "probability": 0.9832 + }, + { + "start": 22295.0, + "end": 22296.82, + "probability": 0.9599 + }, + { + "start": 22297.62, + "end": 22302.04, + "probability": 0.9976 + }, + { + "start": 22302.04, + "end": 22306.36, + "probability": 0.9919 + }, + { + "start": 22306.62, + "end": 22309.76, + "probability": 0.9984 + }, + { + "start": 22311.32, + "end": 22313.74, + "probability": 0.6598 + }, + { + "start": 22314.82, + "end": 22315.96, + "probability": 0.8659 + }, + { + "start": 22316.34, + "end": 22319.18, + "probability": 0.9258 + }, + { + "start": 22321.38, + "end": 22327.88, + "probability": 0.8904 + }, + { + "start": 22328.52, + "end": 22330.88, + "probability": 0.858 + }, + { + "start": 22333.12, + "end": 22337.4, + "probability": 0.9591 + }, + { + "start": 22338.08, + "end": 22340.56, + "probability": 0.8757 + }, + { + "start": 22342.52, + "end": 22346.08, + "probability": 0.9964 + }, + { + "start": 22346.08, + "end": 22349.62, + "probability": 0.975 + }, + { + "start": 22351.34, + "end": 22352.98, + "probability": 0.9648 + }, + { + "start": 22355.64, + "end": 22356.58, + "probability": 0.8685 + }, + { + "start": 22358.32, + "end": 22359.68, + "probability": 0.9908 + }, + { + "start": 22360.18, + "end": 22363.0, + "probability": 0.9305 + }, + { + "start": 22363.66, + "end": 22365.16, + "probability": 0.7386 + }, + { + "start": 22365.68, + "end": 22368.74, + "probability": 0.9749 + }, + { + "start": 22369.04, + "end": 22371.16, + "probability": 0.9917 + }, + { + "start": 22371.34, + "end": 22371.86, + "probability": 0.7142 + }, + { + "start": 22373.06, + "end": 22373.82, + "probability": 0.526 + }, + { + "start": 22374.7, + "end": 22375.98, + "probability": 0.9874 + }, + { + "start": 22377.48, + "end": 22382.96, + "probability": 0.9698 + }, + { + "start": 22383.32, + "end": 22384.26, + "probability": 0.8599 + }, + { + "start": 22384.34, + "end": 22392.18, + "probability": 0.9941 + }, + { + "start": 22392.38, + "end": 22394.08, + "probability": 0.6831 + }, + { + "start": 22394.26, + "end": 22394.86, + "probability": 0.8504 + }, + { + "start": 22395.2, + "end": 22398.18, + "probability": 0.9678 + }, + { + "start": 22400.0, + "end": 22401.32, + "probability": 0.8753 + }, + { + "start": 22402.44, + "end": 22403.76, + "probability": 0.7615 + }, + { + "start": 22404.9, + "end": 22409.24, + "probability": 0.9632 + }, + { + "start": 22410.08, + "end": 22413.74, + "probability": 0.9913 + }, + { + "start": 22414.12, + "end": 22417.84, + "probability": 0.925 + }, + { + "start": 22418.16, + "end": 22427.3, + "probability": 0.836 + }, + { + "start": 22427.72, + "end": 22432.66, + "probability": 0.9824 + }, + { + "start": 22432.72, + "end": 22437.6, + "probability": 0.9873 + }, + { + "start": 22439.68, + "end": 22441.7, + "probability": 0.9206 + }, + { + "start": 22443.78, + "end": 22448.4, + "probability": 0.8102 + }, + { + "start": 22450.12, + "end": 22455.68, + "probability": 0.9995 + }, + { + "start": 22456.68, + "end": 22459.1, + "probability": 0.9454 + }, + { + "start": 22459.72, + "end": 22462.7, + "probability": 0.9921 + }, + { + "start": 22462.72, + "end": 22463.72, + "probability": 0.7798 + }, + { + "start": 22464.04, + "end": 22466.72, + "probability": 0.9941 + }, + { + "start": 22468.0, + "end": 22469.1, + "probability": 0.8939 + }, + { + "start": 22472.1, + "end": 22473.41, + "probability": 0.9912 + }, + { + "start": 22473.6, + "end": 22474.58, + "probability": 0.9266 + }, + { + "start": 22474.64, + "end": 22477.06, + "probability": 0.9604 + }, + { + "start": 22477.46, + "end": 22479.72, + "probability": 0.9934 + }, + { + "start": 22480.46, + "end": 22484.1, + "probability": 0.6596 + }, + { + "start": 22484.68, + "end": 22485.02, + "probability": 0.0235 + }, + { + "start": 22487.44, + "end": 22488.86, + "probability": 0.8612 + }, + { + "start": 22490.22, + "end": 22491.98, + "probability": 0.9651 + }, + { + "start": 22492.9, + "end": 22495.68, + "probability": 0.9581 + }, + { + "start": 22497.92, + "end": 22500.88, + "probability": 0.9942 + }, + { + "start": 22502.34, + "end": 22506.58, + "probability": 0.9782 + }, + { + "start": 22507.54, + "end": 22509.86, + "probability": 0.978 + }, + { + "start": 22510.76, + "end": 22511.87, + "probability": 0.9737 + }, + { + "start": 22512.76, + "end": 22515.34, + "probability": 0.9431 + }, + { + "start": 22516.2, + "end": 22525.78, + "probability": 0.9831 + }, + { + "start": 22527.34, + "end": 22528.54, + "probability": 0.8604 + }, + { + "start": 22529.74, + "end": 22530.7, + "probability": 0.605 + }, + { + "start": 22531.2, + "end": 22535.96, + "probability": 0.9951 + }, + { + "start": 22535.96, + "end": 22539.64, + "probability": 0.9816 + }, + { + "start": 22540.34, + "end": 22541.02, + "probability": 0.6994 + }, + { + "start": 22541.5, + "end": 22543.52, + "probability": 0.9502 + }, + { + "start": 22543.52, + "end": 22548.04, + "probability": 0.9431 + }, + { + "start": 22550.34, + "end": 22551.22, + "probability": 0.8253 + }, + { + "start": 22551.6, + "end": 22552.62, + "probability": 0.7747 + }, + { + "start": 22552.76, + "end": 22553.28, + "probability": 0.7299 + }, + { + "start": 22553.32, + "end": 22554.44, + "probability": 0.9395 + }, + { + "start": 22554.6, + "end": 22555.6, + "probability": 0.8438 + }, + { + "start": 22555.6, + "end": 22556.32, + "probability": 0.8188 + }, + { + "start": 22556.56, + "end": 22557.28, + "probability": 0.3738 + }, + { + "start": 22558.34, + "end": 22560.0, + "probability": 0.9128 + }, + { + "start": 22562.78, + "end": 22567.72, + "probability": 0.9065 + }, + { + "start": 22568.32, + "end": 22569.24, + "probability": 0.7195 + }, + { + "start": 22570.52, + "end": 22570.8, + "probability": 0.8236 + }, + { + "start": 22574.48, + "end": 22575.48, + "probability": 0.5881 + }, + { + "start": 22576.48, + "end": 22579.04, + "probability": 0.9484 + }, + { + "start": 22579.24, + "end": 22582.14, + "probability": 0.8824 + }, + { + "start": 22583.18, + "end": 22587.46, + "probability": 0.9731 + }, + { + "start": 22588.24, + "end": 22590.76, + "probability": 0.9883 + }, + { + "start": 22591.86, + "end": 22597.84, + "probability": 0.9667 + }, + { + "start": 22599.24, + "end": 22602.14, + "probability": 0.9925 + }, + { + "start": 22604.44, + "end": 22607.16, + "probability": 0.8749 + }, + { + "start": 22608.56, + "end": 22610.42, + "probability": 0.9869 + }, + { + "start": 22612.08, + "end": 22613.38, + "probability": 0.9672 + }, + { + "start": 22614.04, + "end": 22614.9, + "probability": 0.755 + }, + { + "start": 22615.56, + "end": 22617.08, + "probability": 0.9786 + }, + { + "start": 22617.9, + "end": 22619.76, + "probability": 0.9695 + }, + { + "start": 22623.04, + "end": 22624.36, + "probability": 0.9199 + }, + { + "start": 22625.3, + "end": 22626.6, + "probability": 0.7867 + }, + { + "start": 22627.38, + "end": 22631.8, + "probability": 0.967 + }, + { + "start": 22634.05, + "end": 22635.08, + "probability": 0.934 + }, + { + "start": 22635.2, + "end": 22638.18, + "probability": 0.7671 + }, + { + "start": 22638.28, + "end": 22639.3, + "probability": 0.8721 + }, + { + "start": 22639.44, + "end": 22640.08, + "probability": 0.9858 + }, + { + "start": 22640.74, + "end": 22641.14, + "probability": 0.6677 + }, + { + "start": 22644.3, + "end": 22647.86, + "probability": 0.6621 + }, + { + "start": 22648.44, + "end": 22650.12, + "probability": 0.9468 + }, + { + "start": 22650.34, + "end": 22651.72, + "probability": 0.9214 + }, + { + "start": 22651.98, + "end": 22654.16, + "probability": 0.8504 + }, + { + "start": 22654.4, + "end": 22655.6, + "probability": 0.9412 + }, + { + "start": 22655.78, + "end": 22657.44, + "probability": 0.812 + }, + { + "start": 22657.72, + "end": 22661.4, + "probability": 0.9481 + }, + { + "start": 22661.4, + "end": 22664.1, + "probability": 0.6854 + }, + { + "start": 22664.54, + "end": 22666.46, + "probability": 0.8852 + }, + { + "start": 22667.12, + "end": 22668.08, + "probability": 0.9271 + }, + { + "start": 22668.18, + "end": 22672.0, + "probability": 0.8628 + }, + { + "start": 22672.42, + "end": 22674.36, + "probability": 0.5142 + }, + { + "start": 22674.62, + "end": 22675.98, + "probability": 0.6395 + }, + { + "start": 22676.1, + "end": 22676.42, + "probability": 0.4563 + }, + { + "start": 22676.62, + "end": 22676.96, + "probability": 0.0712 + }, + { + "start": 22676.98, + "end": 22677.64, + "probability": 0.8438 + }, + { + "start": 22677.86, + "end": 22679.06, + "probability": 0.919 + }, + { + "start": 22679.06, + "end": 22682.8, + "probability": 0.3802 + }, + { + "start": 22682.8, + "end": 22683.98, + "probability": 0.3478 + }, + { + "start": 22685.04, + "end": 22685.62, + "probability": 0.8614 + }, + { + "start": 22685.76, + "end": 22692.46, + "probability": 0.9795 + }, + { + "start": 22693.2, + "end": 22695.0, + "probability": 0.6004 + }, + { + "start": 22695.22, + "end": 22695.92, + "probability": 0.8336 + }, + { + "start": 22696.1, + "end": 22696.38, + "probability": 0.6348 + }, + { + "start": 22696.46, + "end": 22701.72, + "probability": 0.9274 + }, + { + "start": 22702.08, + "end": 22703.74, + "probability": 0.9924 + }, + { + "start": 22707.4, + "end": 22709.92, + "probability": 0.4757 + }, + { + "start": 22711.54, + "end": 22713.94, + "probability": 0.6897 + }, + { + "start": 22713.94, + "end": 22714.22, + "probability": 0.0262 + }, + { + "start": 22714.74, + "end": 22716.42, + "probability": 0.9083 + }, + { + "start": 22716.96, + "end": 22720.84, + "probability": 0.468 + }, + { + "start": 22721.82, + "end": 22723.44, + "probability": 0.3544 + }, + { + "start": 22723.44, + "end": 22724.69, + "probability": 0.614 + }, + { + "start": 22726.06, + "end": 22727.8, + "probability": 0.8446 + }, + { + "start": 22727.86, + "end": 22731.8, + "probability": 0.886 + }, + { + "start": 22732.44, + "end": 22735.06, + "probability": 0.908 + }, + { + "start": 22735.58, + "end": 22738.96, + "probability": 0.8327 + }, + { + "start": 22739.08, + "end": 22740.1, + "probability": 0.6903 + }, + { + "start": 22740.9, + "end": 22744.99, + "probability": 0.9846 + }, + { + "start": 22745.94, + "end": 22746.84, + "probability": 0.7483 + }, + { + "start": 22746.86, + "end": 22747.48, + "probability": 0.8608 + }, + { + "start": 22747.6, + "end": 22752.1, + "probability": 0.9953 + }, + { + "start": 22752.28, + "end": 22752.7, + "probability": 0.9297 + }, + { + "start": 22753.54, + "end": 22754.28, + "probability": 0.8575 + }, + { + "start": 22754.3, + "end": 22757.64, + "probability": 0.9961 + }, + { + "start": 22758.94, + "end": 22760.24, + "probability": 0.9745 + }, + { + "start": 22761.04, + "end": 22762.89, + "probability": 0.988 + }, + { + "start": 22764.68, + "end": 22766.0, + "probability": 0.8406 + }, + { + "start": 22767.2, + "end": 22768.74, + "probability": 0.9624 + }, + { + "start": 22769.12, + "end": 22770.96, + "probability": 0.8574 + }, + { + "start": 22771.06, + "end": 22773.98, + "probability": 0.9242 + }, + { + "start": 22774.58, + "end": 22776.12, + "probability": 0.8374 + }, + { + "start": 22777.04, + "end": 22780.16, + "probability": 0.9209 + }, + { + "start": 22782.42, + "end": 22786.44, + "probability": 0.9922 + }, + { + "start": 22786.78, + "end": 22787.18, + "probability": 0.7722 + }, + { + "start": 22787.26, + "end": 22788.46, + "probability": 0.3483 + }, + { + "start": 22789.54, + "end": 22790.72, + "probability": 0.8491 + }, + { + "start": 22791.62, + "end": 22796.82, + "probability": 0.9762 + }, + { + "start": 22796.82, + "end": 22800.22, + "probability": 0.9838 + }, + { + "start": 22800.68, + "end": 22801.44, + "probability": 0.9077 + }, + { + "start": 22801.6, + "end": 22803.66, + "probability": 0.9958 + }, + { + "start": 22804.02, + "end": 22804.93, + "probability": 0.9978 + }, + { + "start": 22809.08, + "end": 22810.12, + "probability": 0.5506 + }, + { + "start": 22810.72, + "end": 22812.36, + "probability": 0.9956 + }, + { + "start": 22812.46, + "end": 22814.42, + "probability": 0.8888 + }, + { + "start": 22814.68, + "end": 22816.16, + "probability": 0.9873 + }, + { + "start": 22817.76, + "end": 22821.76, + "probability": 0.9971 + }, + { + "start": 22822.3, + "end": 22822.9, + "probability": 0.8046 + }, + { + "start": 22822.98, + "end": 22824.04, + "probability": 0.9159 + }, + { + "start": 22827.42, + "end": 22833.04, + "probability": 0.7438 + }, + { + "start": 22834.3, + "end": 22837.52, + "probability": 0.9902 + }, + { + "start": 22838.88, + "end": 22841.76, + "probability": 0.9976 + }, + { + "start": 22843.84, + "end": 22847.0, + "probability": 0.9958 + }, + { + "start": 22849.4, + "end": 22851.36, + "probability": 0.9277 + }, + { + "start": 22852.42, + "end": 22855.48, + "probability": 0.9924 + }, + { + "start": 22856.36, + "end": 22860.04, + "probability": 0.8333 + }, + { + "start": 22861.3, + "end": 22862.38, + "probability": 0.9058 + }, + { + "start": 22862.58, + "end": 22865.42, + "probability": 0.9283 + }, + { + "start": 22865.52, + "end": 22867.16, + "probability": 0.7969 + }, + { + "start": 22867.24, + "end": 22867.74, + "probability": 0.7979 + }, + { + "start": 22867.84, + "end": 22871.2, + "probability": 0.8376 + }, + { + "start": 22871.76, + "end": 22873.0, + "probability": 0.9808 + }, + { + "start": 22873.88, + "end": 22877.06, + "probability": 0.8843 + }, + { + "start": 22879.5, + "end": 22882.68, + "probability": 0.9875 + }, + { + "start": 22882.86, + "end": 22885.72, + "probability": 0.9263 + }, + { + "start": 22886.9, + "end": 22889.66, + "probability": 0.9706 + }, + { + "start": 22890.68, + "end": 22893.26, + "probability": 0.996 + }, + { + "start": 22894.66, + "end": 22899.54, + "probability": 0.9971 + }, + { + "start": 22900.84, + "end": 22904.52, + "probability": 0.802 + }, + { + "start": 22905.86, + "end": 22909.12, + "probability": 0.9828 + }, + { + "start": 22910.78, + "end": 22911.67, + "probability": 0.934 + }, + { + "start": 22913.3, + "end": 22920.9, + "probability": 0.9844 + }, + { + "start": 22920.9, + "end": 22923.86, + "probability": 0.9741 + }, + { + "start": 22925.08, + "end": 22928.25, + "probability": 0.9888 + }, + { + "start": 22928.72, + "end": 22930.22, + "probability": 0.7999 + }, + { + "start": 22930.34, + "end": 22931.42, + "probability": 0.7484 + }, + { + "start": 22931.76, + "end": 22933.48, + "probability": 0.9727 + }, + { + "start": 22938.2, + "end": 22938.64, + "probability": 0.9832 + }, + { + "start": 22939.66, + "end": 22940.2, + "probability": 0.0 + }, + { + "start": 22943.5, + "end": 22948.96, + "probability": 0.9993 + }, + { + "start": 22950.4, + "end": 22955.14, + "probability": 0.9921 + }, + { + "start": 22955.24, + "end": 22957.28, + "probability": 0.9926 + }, + { + "start": 22957.52, + "end": 22960.28, + "probability": 0.9956 + }, + { + "start": 22961.78, + "end": 22964.78, + "probability": 0.9449 + }, + { + "start": 22968.16, + "end": 22969.42, + "probability": 0.873 + }, + { + "start": 22970.5, + "end": 22971.69, + "probability": 0.5023 + }, + { + "start": 22973.68, + "end": 22974.78, + "probability": 0.9117 + }, + { + "start": 22974.98, + "end": 22975.68, + "probability": 0.8053 + }, + { + "start": 22975.8, + "end": 22976.54, + "probability": 0.9722 + }, + { + "start": 22977.06, + "end": 22977.82, + "probability": 0.5212 + }, + { + "start": 22978.0, + "end": 22979.24, + "probability": 0.9919 + }, + { + "start": 22980.42, + "end": 22985.8, + "probability": 0.8343 + }, + { + "start": 22986.52, + "end": 22992.26, + "probability": 0.9775 + }, + { + "start": 22993.6, + "end": 22994.84, + "probability": 0.8629 + }, + { + "start": 22995.28, + "end": 22996.5, + "probability": 0.8223 + }, + { + "start": 22997.44, + "end": 22997.86, + "probability": 0.9245 + }, + { + "start": 22998.08, + "end": 23004.12, + "probability": 0.9974 + }, + { + "start": 23004.78, + "end": 23006.54, + "probability": 0.996 + }, + { + "start": 23006.7, + "end": 23009.44, + "probability": 0.8203 + }, + { + "start": 23009.48, + "end": 23014.76, + "probability": 0.9912 + }, + { + "start": 23017.4, + "end": 23019.12, + "probability": 0.4221 + }, + { + "start": 23020.44, + "end": 23021.18, + "probability": 0.6038 + }, + { + "start": 23023.3, + "end": 23029.02, + "probability": 0.9952 + }, + { + "start": 23030.62, + "end": 23033.86, + "probability": 0.874 + }, + { + "start": 23035.36, + "end": 23036.52, + "probability": 0.8271 + }, + { + "start": 23037.38, + "end": 23040.56, + "probability": 0.8961 + }, + { + "start": 23041.4, + "end": 23043.44, + "probability": 0.8028 + }, + { + "start": 23046.04, + "end": 23048.16, + "probability": 0.8562 + }, + { + "start": 23048.72, + "end": 23049.78, + "probability": 0.7297 + }, + { + "start": 23050.48, + "end": 23051.96, + "probability": 0.9692 + }, + { + "start": 23052.28, + "end": 23053.58, + "probability": 0.8224 + }, + { + "start": 23053.76, + "end": 23055.51, + "probability": 0.8258 + }, + { + "start": 23057.34, + "end": 23060.18, + "probability": 0.9879 + }, + { + "start": 23060.46, + "end": 23061.68, + "probability": 0.2711 + }, + { + "start": 23061.78, + "end": 23062.42, + "probability": 0.6906 + }, + { + "start": 23063.26, + "end": 23064.3, + "probability": 0.7253 + }, + { + "start": 23064.32, + "end": 23065.88, + "probability": 0.9978 + }, + { + "start": 23066.78, + "end": 23068.14, + "probability": 0.6401 + }, + { + "start": 23069.8, + "end": 23070.42, + "probability": 0.747 + }, + { + "start": 23072.52, + "end": 23074.42, + "probability": 0.6554 + }, + { + "start": 23075.44, + "end": 23076.28, + "probability": 0.7528 + }, + { + "start": 23076.44, + "end": 23079.92, + "probability": 0.9506 + }, + { + "start": 23080.94, + "end": 23081.82, + "probability": 0.8599 + }, + { + "start": 23082.42, + "end": 23083.08, + "probability": 0.8898 + }, + { + "start": 23083.14, + "end": 23086.62, + "probability": 0.9891 + }, + { + "start": 23090.46, + "end": 23091.58, + "probability": 0.9697 + }, + { + "start": 23093.92, + "end": 23094.88, + "probability": 0.9727 + }, + { + "start": 23095.0, + "end": 23096.1, + "probability": 0.8055 + }, + { + "start": 23096.68, + "end": 23098.44, + "probability": 0.8105 + }, + { + "start": 23099.34, + "end": 23101.95, + "probability": 0.8755 + }, + { + "start": 23104.96, + "end": 23110.16, + "probability": 0.9914 + }, + { + "start": 23111.68, + "end": 23117.02, + "probability": 0.9845 + }, + { + "start": 23117.02, + "end": 23119.6, + "probability": 0.9951 + }, + { + "start": 23120.68, + "end": 23121.8, + "probability": 0.4291 + }, + { + "start": 23123.24, + "end": 23124.4, + "probability": 0.9539 + }, + { + "start": 23127.86, + "end": 23129.7, + "probability": 0.9932 + }, + { + "start": 23131.8, + "end": 23134.2, + "probability": 0.8701 + }, + { + "start": 23136.04, + "end": 23138.12, + "probability": 0.8513 + }, + { + "start": 23139.02, + "end": 23140.61, + "probability": 0.8486 + }, + { + "start": 23141.42, + "end": 23143.42, + "probability": 0.7818 + }, + { + "start": 23144.06, + "end": 23146.41, + "probability": 0.9709 + }, + { + "start": 23147.86, + "end": 23148.6, + "probability": 0.0234 + }, + { + "start": 23150.76, + "end": 23151.66, + "probability": 0.8614 + }, + { + "start": 23152.14, + "end": 23155.66, + "probability": 0.9861 + }, + { + "start": 23157.0, + "end": 23160.24, + "probability": 0.9946 + }, + { + "start": 23160.36, + "end": 23161.82, + "probability": 0.8767 + }, + { + "start": 23161.88, + "end": 23163.31, + "probability": 0.9165 + }, + { + "start": 23166.34, + "end": 23174.1, + "probability": 0.9809 + }, + { + "start": 23177.38, + "end": 23179.0, + "probability": 0.8522 + }, + { + "start": 23181.3, + "end": 23184.36, + "probability": 0.9013 + }, + { + "start": 23185.02, + "end": 23185.86, + "probability": 0.5182 + }, + { + "start": 23186.83, + "end": 23191.76, + "probability": 0.9916 + }, + { + "start": 23194.1, + "end": 23195.32, + "probability": 0.7547 + }, + { + "start": 23195.86, + "end": 23196.28, + "probability": 0.9312 + }, + { + "start": 23196.6, + "end": 23201.6, + "probability": 0.9888 + }, + { + "start": 23205.86, + "end": 23207.34, + "probability": 0.7836 + }, + { + "start": 23207.42, + "end": 23208.4, + "probability": 0.9854 + }, + { + "start": 23208.52, + "end": 23211.38, + "probability": 0.8787 + }, + { + "start": 23212.68, + "end": 23213.88, + "probability": 0.704 + }, + { + "start": 23214.58, + "end": 23217.0, + "probability": 0.992 + }, + { + "start": 23218.42, + "end": 23220.84, + "probability": 0.9712 + }, + { + "start": 23221.0, + "end": 23222.38, + "probability": 0.512 + }, + { + "start": 23222.54, + "end": 23227.42, + "probability": 0.9787 + }, + { + "start": 23227.48, + "end": 23231.86, + "probability": 0.9785 + }, + { + "start": 23232.46, + "end": 23235.62, + "probability": 0.9952 + }, + { + "start": 23235.74, + "end": 23236.42, + "probability": 0.6686 + }, + { + "start": 23237.24, + "end": 23239.84, + "probability": 0.903 + }, + { + "start": 23240.98, + "end": 23243.66, + "probability": 0.9424 + }, + { + "start": 23245.0, + "end": 23246.22, + "probability": 0.9294 + }, + { + "start": 23246.34, + "end": 23248.5, + "probability": 0.9958 + }, + { + "start": 23249.22, + "end": 23252.78, + "probability": 0.9399 + }, + { + "start": 23253.36, + "end": 23257.68, + "probability": 0.9566 + }, + { + "start": 23257.82, + "end": 23259.4, + "probability": 0.6941 + }, + { + "start": 23260.4, + "end": 23264.76, + "probability": 0.9981 + }, + { + "start": 23264.8, + "end": 23265.76, + "probability": 0.8128 + }, + { + "start": 23265.98, + "end": 23268.02, + "probability": 0.9799 + }, + { + "start": 23269.46, + "end": 23271.44, + "probability": 0.9705 + }, + { + "start": 23271.58, + "end": 23272.52, + "probability": 0.7707 + }, + { + "start": 23273.48, + "end": 23274.68, + "probability": 0.9699 + }, + { + "start": 23275.44, + "end": 23276.78, + "probability": 0.9751 + }, + { + "start": 23277.4, + "end": 23280.54, + "probability": 0.9726 + }, + { + "start": 23282.06, + "end": 23283.34, + "probability": 0.999 + }, + { + "start": 23284.28, + "end": 23285.96, + "probability": 0.8053 + }, + { + "start": 23287.34, + "end": 23288.38, + "probability": 0.828 + }, + { + "start": 23289.96, + "end": 23290.56, + "probability": 0.8078 + }, + { + "start": 23291.4, + "end": 23292.58, + "probability": 0.8048 + }, + { + "start": 23297.44, + "end": 23299.38, + "probability": 0.8914 + }, + { + "start": 23300.0, + "end": 23302.12, + "probability": 0.9844 + }, + { + "start": 23305.5, + "end": 23306.28, + "probability": 0.7369 + }, + { + "start": 23306.94, + "end": 23308.3, + "probability": 0.9309 + }, + { + "start": 23308.38, + "end": 23310.86, + "probability": 0.9501 + }, + { + "start": 23312.18, + "end": 23315.76, + "probability": 0.9941 + }, + { + "start": 23315.9, + "end": 23316.26, + "probability": 0.6732 + }, + { + "start": 23317.54, + "end": 23318.38, + "probability": 0.5928 + }, + { + "start": 23319.68, + "end": 23323.4, + "probability": 0.9585 + }, + { + "start": 23324.42, + "end": 23326.58, + "probability": 0.9949 + }, + { + "start": 23326.72, + "end": 23327.36, + "probability": 0.9571 + }, + { + "start": 23329.76, + "end": 23331.73, + "probability": 0.8716 + }, + { + "start": 23333.1, + "end": 23334.32, + "probability": 0.96 + }, + { + "start": 23334.4, + "end": 23338.44, + "probability": 0.5067 + }, + { + "start": 23339.42, + "end": 23339.48, + "probability": 0.3107 + }, + { + "start": 23339.48, + "end": 23340.53, + "probability": 0.9343 + }, + { + "start": 23342.02, + "end": 23342.64, + "probability": 0.3289 + }, + { + "start": 23342.78, + "end": 23345.58, + "probability": 0.9888 + }, + { + "start": 23345.72, + "end": 23346.87, + "probability": 0.9968 + }, + { + "start": 23349.7, + "end": 23354.06, + "probability": 0.9876 + }, + { + "start": 23354.22, + "end": 23356.12, + "probability": 0.8937 + }, + { + "start": 23357.88, + "end": 23359.28, + "probability": 0.8096 + }, + { + "start": 23361.28, + "end": 23364.14, + "probability": 0.9036 + }, + { + "start": 23364.6, + "end": 23365.04, + "probability": 0.9275 + }, + { + "start": 23365.66, + "end": 23369.2, + "probability": 0.978 + }, + { + "start": 23370.4, + "end": 23371.65, + "probability": 0.4825 + }, + { + "start": 23371.78, + "end": 23371.88, + "probability": 0.4369 + }, + { + "start": 23372.2, + "end": 23372.41, + "probability": 0.034 + }, + { + "start": 23372.64, + "end": 23372.66, + "probability": 0.5863 + }, + { + "start": 23372.68, + "end": 23373.0, + "probability": 0.0329 + }, + { + "start": 23373.06, + "end": 23375.2, + "probability": 0.7053 + }, + { + "start": 23375.36, + "end": 23376.9, + "probability": 0.0677 + }, + { + "start": 23376.92, + "end": 23379.42, + "probability": 0.9433 + }, + { + "start": 23379.6, + "end": 23381.1, + "probability": 0.7596 + }, + { + "start": 23381.84, + "end": 23383.44, + "probability": 0.7953 + }, + { + "start": 23384.28, + "end": 23387.78, + "probability": 0.9976 + }, + { + "start": 23388.48, + "end": 23390.92, + "probability": 0.9941 + }, + { + "start": 23391.98, + "end": 23393.6, + "probability": 0.9917 + }, + { + "start": 23394.26, + "end": 23394.98, + "probability": 0.9127 + }, + { + "start": 23396.2, + "end": 23399.54, + "probability": 0.9342 + }, + { + "start": 23399.74, + "end": 23400.74, + "probability": 0.9414 + }, + { + "start": 23400.82, + "end": 23403.54, + "probability": 0.9923 + }, + { + "start": 23405.28, + "end": 23411.24, + "probability": 0.9917 + }, + { + "start": 23411.24, + "end": 23414.9, + "probability": 0.9992 + }, + { + "start": 23416.14, + "end": 23420.4, + "probability": 0.9451 + }, + { + "start": 23420.56, + "end": 23421.12, + "probability": 0.7873 + }, + { + "start": 23421.22, + "end": 23422.6, + "probability": 0.9712 + }, + { + "start": 23424.34, + "end": 23426.4, + "probability": 0.9168 + }, + { + "start": 23430.34, + "end": 23432.26, + "probability": 0.822 + }, + { + "start": 23433.18, + "end": 23433.88, + "probability": 0.7993 + }, + { + "start": 23434.56, + "end": 23437.36, + "probability": 0.8004 + }, + { + "start": 23437.74, + "end": 23439.38, + "probability": 0.9861 + }, + { + "start": 23440.98, + "end": 23442.28, + "probability": 0.989 + }, + { + "start": 23443.2, + "end": 23446.5, + "probability": 0.9662 + }, + { + "start": 23447.52, + "end": 23453.06, + "probability": 0.9922 + }, + { + "start": 23453.14, + "end": 23457.64, + "probability": 0.9951 + }, + { + "start": 23458.8, + "end": 23460.06, + "probability": 0.9932 + }, + { + "start": 23461.3, + "end": 23461.78, + "probability": 0.9557 + }, + { + "start": 23461.88, + "end": 23465.06, + "probability": 0.9967 + }, + { + "start": 23465.06, + "end": 23467.04, + "probability": 0.9958 + }, + { + "start": 23469.46, + "end": 23470.2, + "probability": 0.3196 + }, + { + "start": 23471.02, + "end": 23471.32, + "probability": 0.8123 + }, + { + "start": 23474.21, + "end": 23476.9, + "probability": 0.4825 + }, + { + "start": 23477.98, + "end": 23482.28, + "probability": 0.9898 + }, + { + "start": 23482.28, + "end": 23487.3, + "probability": 0.9969 + }, + { + "start": 23487.86, + "end": 23488.95, + "probability": 0.7521 + }, + { + "start": 23490.32, + "end": 23495.72, + "probability": 0.9508 + }, + { + "start": 23496.6, + "end": 23497.0, + "probability": 0.9358 + }, + { + "start": 23497.18, + "end": 23501.5, + "probability": 0.9782 + }, + { + "start": 23502.56, + "end": 23503.34, + "probability": 0.8893 + }, + { + "start": 23506.6, + "end": 23508.77, + "probability": 0.8973 + }, + { + "start": 23510.58, + "end": 23511.3, + "probability": 0.874 + }, + { + "start": 23512.04, + "end": 23513.58, + "probability": 0.9819 + }, + { + "start": 23514.54, + "end": 23517.38, + "probability": 0.9847 + }, + { + "start": 23517.84, + "end": 23518.5, + "probability": 0.6228 + }, + { + "start": 23520.37, + "end": 23521.94, + "probability": 0.9448 + }, + { + "start": 23521.94, + "end": 23522.26, + "probability": 0.8257 + }, + { + "start": 23522.36, + "end": 23523.82, + "probability": 0.9875 + }, + { + "start": 23524.48, + "end": 23526.78, + "probability": 0.985 + }, + { + "start": 23527.1, + "end": 23528.02, + "probability": 0.9846 + }, + { + "start": 23529.16, + "end": 23530.14, + "probability": 0.9829 + }, + { + "start": 23533.32, + "end": 23534.28, + "probability": 0.5692 + }, + { + "start": 23536.54, + "end": 23539.67, + "probability": 0.9957 + }, + { + "start": 23541.4, + "end": 23543.88, + "probability": 0.9973 + }, + { + "start": 23543.92, + "end": 23544.18, + "probability": 0.8254 + }, + { + "start": 23544.18, + "end": 23546.36, + "probability": 0.9578 + }, + { + "start": 23546.86, + "end": 23548.28, + "probability": 0.9692 + }, + { + "start": 23549.04, + "end": 23551.72, + "probability": 0.9937 + }, + { + "start": 23552.32, + "end": 23558.44, + "probability": 0.8366 + }, + { + "start": 23558.62, + "end": 23561.22, + "probability": 0.585 + }, + { + "start": 23561.76, + "end": 23562.79, + "probability": 0.4824 + }, + { + "start": 23563.84, + "end": 23564.56, + "probability": 0.2111 + }, + { + "start": 23565.5, + "end": 23567.18, + "probability": 0.9452 + }, + { + "start": 23567.92, + "end": 23571.1, + "probability": 0.7124 + }, + { + "start": 23571.18, + "end": 23573.76, + "probability": 0.9832 + }, + { + "start": 23574.64, + "end": 23577.44, + "probability": 0.9854 + }, + { + "start": 23577.62, + "end": 23579.98, + "probability": 0.9956 + }, + { + "start": 23580.08, + "end": 23583.02, + "probability": 0.9502 + }, + { + "start": 23584.42, + "end": 23585.34, + "probability": 0.9076 + }, + { + "start": 23585.88, + "end": 23586.64, + "probability": 0.828 + }, + { + "start": 23587.86, + "end": 23592.98, + "probability": 0.9926 + }, + { + "start": 23593.04, + "end": 23596.6, + "probability": 0.9988 + }, + { + "start": 23597.88, + "end": 23600.2, + "probability": 0.9993 + }, + { + "start": 23602.36, + "end": 23605.86, + "probability": 0.8706 + }, + { + "start": 23607.14, + "end": 23607.74, + "probability": 0.9814 + }, + { + "start": 23608.62, + "end": 23610.6, + "probability": 0.9961 + }, + { + "start": 23612.34, + "end": 23613.08, + "probability": 0.6651 + }, + { + "start": 23613.4, + "end": 23614.02, + "probability": 0.9769 + }, + { + "start": 23614.46, + "end": 23615.28, + "probability": 0.8331 + }, + { + "start": 23616.12, + "end": 23620.02, + "probability": 0.7162 + }, + { + "start": 23620.46, + "end": 23622.36, + "probability": 0.45 + }, + { + "start": 23622.38, + "end": 23627.32, + "probability": 0.6844 + }, + { + "start": 23627.66, + "end": 23628.62, + "probability": 0.6426 + }, + { + "start": 23628.76, + "end": 23629.76, + "probability": 0.7896 + }, + { + "start": 23629.76, + "end": 23630.78, + "probability": 0.5907 + }, + { + "start": 23630.78, + "end": 23633.67, + "probability": 0.9863 + }, + { + "start": 23633.86, + "end": 23634.84, + "probability": 0.7701 + }, + { + "start": 23635.34, + "end": 23636.76, + "probability": 0.8081 + }, + { + "start": 23637.0, + "end": 23637.98, + "probability": 0.7595 + }, + { + "start": 23638.12, + "end": 23640.2, + "probability": 0.709 + }, + { + "start": 23640.84, + "end": 23642.88, + "probability": 0.9488 + }, + { + "start": 23643.08, + "end": 23646.24, + "probability": 0.9246 + }, + { + "start": 23646.28, + "end": 23647.18, + "probability": 0.9554 + }, + { + "start": 23647.7, + "end": 23650.78, + "probability": 0.9604 + }, + { + "start": 23651.46, + "end": 23652.38, + "probability": 0.5473 + }, + { + "start": 23653.24, + "end": 23653.74, + "probability": 0.8142 + }, + { + "start": 23654.4, + "end": 23660.22, + "probability": 0.9675 + }, + { + "start": 23661.54, + "end": 23664.36, + "probability": 0.9587 + }, + { + "start": 23665.32, + "end": 23666.34, + "probability": 0.9396 + }, + { + "start": 23668.2, + "end": 23675.9, + "probability": 0.9977 + }, + { + "start": 23676.08, + "end": 23679.62, + "probability": 0.9808 + }, + { + "start": 23680.08, + "end": 23680.36, + "probability": 0.5323 + }, + { + "start": 23680.46, + "end": 23681.8, + "probability": 0.9187 + }, + { + "start": 23682.06, + "end": 23682.9, + "probability": 0.6226 + }, + { + "start": 23683.92, + "end": 23685.14, + "probability": 0.7626 + }, + { + "start": 23685.96, + "end": 23687.04, + "probability": 0.8174 + }, + { + "start": 23687.42, + "end": 23690.07, + "probability": 0.9151 + }, + { + "start": 23690.76, + "end": 23692.52, + "probability": 0.9344 + }, + { + "start": 23692.64, + "end": 23695.12, + "probability": 0.9746 + }, + { + "start": 23695.12, + "end": 23697.66, + "probability": 0.7172 + }, + { + "start": 23698.38, + "end": 23700.96, + "probability": 0.9028 + }, + { + "start": 23701.98, + "end": 23704.14, + "probability": 0.9399 + }, + { + "start": 23705.22, + "end": 23706.8, + "probability": 0.761 + }, + { + "start": 23707.76, + "end": 23708.74, + "probability": 0.9863 + }, + { + "start": 23708.86, + "end": 23710.1, + "probability": 0.9484 + }, + { + "start": 23710.18, + "end": 23711.04, + "probability": 0.8083 + }, + { + "start": 23711.1, + "end": 23713.52, + "probability": 0.9465 + }, + { + "start": 23716.48, + "end": 23718.02, + "probability": 0.9985 + }, + { + "start": 23720.34, + "end": 23723.26, + "probability": 0.9904 + }, + { + "start": 23723.6, + "end": 23726.22, + "probability": 0.9735 + }, + { + "start": 23726.9, + "end": 23728.58, + "probability": 0.9773 + }, + { + "start": 23729.12, + "end": 23729.94, + "probability": 0.9455 + }, + { + "start": 23730.5, + "end": 23731.1, + "probability": 0.9058 + }, + { + "start": 23731.28, + "end": 23731.7, + "probability": 0.8134 + }, + { + "start": 23731.8, + "end": 23732.58, + "probability": 0.9445 + }, + { + "start": 23732.86, + "end": 23733.76, + "probability": 0.6872 + }, + { + "start": 23734.08, + "end": 23734.5, + "probability": 0.6955 + }, + { + "start": 23737.1, + "end": 23739.18, + "probability": 0.9766 + }, + { + "start": 23740.18, + "end": 23740.66, + "probability": 0.6962 + }, + { + "start": 23740.72, + "end": 23742.0, + "probability": 0.9051 + }, + { + "start": 23742.2, + "end": 23742.72, + "probability": 0.7636 + }, + { + "start": 23742.82, + "end": 23743.92, + "probability": 0.5556 + }, + { + "start": 23743.96, + "end": 23744.26, + "probability": 0.4021 + }, + { + "start": 23744.72, + "end": 23746.4, + "probability": 0.8243 + }, + { + "start": 23747.52, + "end": 23750.4, + "probability": 0.9584 + }, + { + "start": 23751.78, + "end": 23755.06, + "probability": 0.9977 + }, + { + "start": 23755.06, + "end": 23757.36, + "probability": 0.9927 + }, + { + "start": 23759.0, + "end": 23761.58, + "probability": 0.9822 + }, + { + "start": 23761.94, + "end": 23762.7, + "probability": 0.9646 + }, + { + "start": 23762.78, + "end": 23763.36, + "probability": 0.8595 + }, + { + "start": 23763.62, + "end": 23765.2, + "probability": 0.8066 + }, + { + "start": 23766.1, + "end": 23768.54, + "probability": 0.9969 + }, + { + "start": 23769.22, + "end": 23772.88, + "probability": 0.9984 + }, + { + "start": 23774.64, + "end": 23777.82, + "probability": 0.9932 + }, + { + "start": 23778.64, + "end": 23779.76, + "probability": 0.8909 + }, + { + "start": 23780.48, + "end": 23781.16, + "probability": 0.9896 + }, + { + "start": 23781.8, + "end": 23782.48, + "probability": 0.7208 + }, + { + "start": 23783.66, + "end": 23785.12, + "probability": 0.9904 + }, + { + "start": 23785.72, + "end": 23786.56, + "probability": 0.8366 + }, + { + "start": 23787.42, + "end": 23788.14, + "probability": 0.9766 + }, + { + "start": 23788.7, + "end": 23792.1, + "probability": 0.9485 + }, + { + "start": 23792.38, + "end": 23793.02, + "probability": 0.8463 + }, + { + "start": 23793.38, + "end": 23794.5, + "probability": 0.9749 + }, + { + "start": 23795.12, + "end": 23800.42, + "probability": 0.9941 + }, + { + "start": 23803.68, + "end": 23804.42, + "probability": 0.6669 + }, + { + "start": 23804.96, + "end": 23805.62, + "probability": 0.9904 + }, + { + "start": 23807.32, + "end": 23811.44, + "probability": 0.9937 + }, + { + "start": 23811.44, + "end": 23814.12, + "probability": 0.9956 + }, + { + "start": 23814.78, + "end": 23816.22, + "probability": 0.8474 + }, + { + "start": 23817.34, + "end": 23820.68, + "probability": 0.9614 + }, + { + "start": 23821.26, + "end": 23824.54, + "probability": 0.9956 + }, + { + "start": 23824.58, + "end": 23825.76, + "probability": 0.7325 + }, + { + "start": 23826.6, + "end": 23828.16, + "probability": 0.9436 + }, + { + "start": 23829.5, + "end": 23833.82, + "probability": 0.8134 + }, + { + "start": 23834.7, + "end": 23840.28, + "probability": 0.9075 + }, + { + "start": 23841.02, + "end": 23842.8, + "probability": 0.9409 + }, + { + "start": 23843.06, + "end": 23846.72, + "probability": 0.9732 + }, + { + "start": 23846.72, + "end": 23849.94, + "probability": 0.9914 + }, + { + "start": 23850.96, + "end": 23851.36, + "probability": 0.3693 + }, + { + "start": 23851.58, + "end": 23854.42, + "probability": 0.9595 + }, + { + "start": 23855.14, + "end": 23861.44, + "probability": 0.9904 + }, + { + "start": 23862.18, + "end": 23865.0, + "probability": 0.9194 + }, + { + "start": 23865.76, + "end": 23866.58, + "probability": 0.9631 + }, + { + "start": 23867.16, + "end": 23867.44, + "probability": 0.8702 + }, + { + "start": 23868.36, + "end": 23869.99, + "probability": 0.5817 + }, + { + "start": 23870.46, + "end": 23872.18, + "probability": 0.9142 + }, + { + "start": 23873.72, + "end": 23874.96, + "probability": 0.7459 + }, + { + "start": 23875.02, + "end": 23876.16, + "probability": 0.5657 + }, + { + "start": 23876.26, + "end": 23877.96, + "probability": 0.5417 + }, + { + "start": 23878.22, + "end": 23879.68, + "probability": 0.9033 + }, + { + "start": 23880.34, + "end": 23883.14, + "probability": 0.7307 + }, + { + "start": 23883.7, + "end": 23887.06, + "probability": 0.9648 + }, + { + "start": 23888.44, + "end": 23890.84, + "probability": 0.9077 + }, + { + "start": 23890.94, + "end": 23892.76, + "probability": 0.2756 + }, + { + "start": 23893.1, + "end": 23895.54, + "probability": 0.7312 + }, + { + "start": 23895.72, + "end": 23895.88, + "probability": 0.7459 + }, + { + "start": 23897.04, + "end": 23897.38, + "probability": 0.7426 + }, + { + "start": 23898.56, + "end": 23899.84, + "probability": 0.8868 + }, + { + "start": 23912.6, + "end": 23913.88, + "probability": 0.2404 + }, + { + "start": 23918.7, + "end": 23919.05, + "probability": 0.7808 + }, + { + "start": 23919.38, + "end": 23920.48, + "probability": 0.781 + }, + { + "start": 23921.26, + "end": 23923.52, + "probability": 0.9882 + }, + { + "start": 23924.74, + "end": 23925.78, + "probability": 0.91 + }, + { + "start": 23931.6, + "end": 23932.12, + "probability": 0.5149 + }, + { + "start": 23932.12, + "end": 23934.18, + "probability": 0.6842 + }, + { + "start": 23936.96, + "end": 23939.0, + "probability": 0.917 + }, + { + "start": 23939.84, + "end": 23943.12, + "probability": 0.9204 + }, + { + "start": 23945.02, + "end": 23946.06, + "probability": 0.8239 + }, + { + "start": 23947.28, + "end": 23950.22, + "probability": 0.9456 + }, + { + "start": 23951.02, + "end": 23953.94, + "probability": 0.9895 + }, + { + "start": 23956.4, + "end": 23960.16, + "probability": 0.9812 + }, + { + "start": 23961.9, + "end": 23965.56, + "probability": 0.1641 + }, + { + "start": 23965.56, + "end": 23969.4, + "probability": 0.9854 + }, + { + "start": 23970.46, + "end": 23971.48, + "probability": 0.7982 + }, + { + "start": 23972.18, + "end": 23975.74, + "probability": 0.9928 + }, + { + "start": 23975.74, + "end": 23980.05, + "probability": 0.9992 + }, + { + "start": 23982.74, + "end": 23985.3, + "probability": 0.9986 + }, + { + "start": 23985.3, + "end": 23988.5, + "probability": 0.9958 + }, + { + "start": 23989.94, + "end": 23993.56, + "probability": 0.999 + }, + { + "start": 23993.56, + "end": 23997.3, + "probability": 0.9995 + }, + { + "start": 23998.46, + "end": 24005.74, + "probability": 0.9937 + }, + { + "start": 24007.06, + "end": 24009.98, + "probability": 0.9338 + }, + { + "start": 24010.5, + "end": 24011.38, + "probability": 0.8629 + }, + { + "start": 24012.4, + "end": 24015.82, + "probability": 0.9826 + }, + { + "start": 24017.02, + "end": 24018.2, + "probability": 0.9465 + }, + { + "start": 24019.04, + "end": 24022.42, + "probability": 0.8504 + }, + { + "start": 24023.24, + "end": 24027.84, + "probability": 0.8948 + }, + { + "start": 24028.9, + "end": 24032.02, + "probability": 0.9795 + }, + { + "start": 24033.42, + "end": 24035.1, + "probability": 0.9512 + }, + { + "start": 24036.28, + "end": 24037.96, + "probability": 0.9627 + }, + { + "start": 24038.96, + "end": 24040.1, + "probability": 0.7141 + }, + { + "start": 24041.48, + "end": 24044.4, + "probability": 0.9915 + }, + { + "start": 24045.68, + "end": 24046.34, + "probability": 0.6346 + }, + { + "start": 24048.38, + "end": 24055.52, + "probability": 0.998 + }, + { + "start": 24056.22, + "end": 24059.02, + "probability": 0.9688 + }, + { + "start": 24060.34, + "end": 24065.98, + "probability": 0.9915 + }, + { + "start": 24066.72, + "end": 24067.6, + "probability": 0.5975 + }, + { + "start": 24067.94, + "end": 24068.24, + "probability": 0.5719 + }, + { + "start": 24068.32, + "end": 24069.06, + "probability": 0.8618 + }, + { + "start": 24069.1, + "end": 24071.9, + "probability": 0.9656 + }, + { + "start": 24073.36, + "end": 24076.66, + "probability": 0.9865 + }, + { + "start": 24077.88, + "end": 24079.52, + "probability": 0.9565 + }, + { + "start": 24079.92, + "end": 24086.46, + "probability": 0.9951 + }, + { + "start": 24087.52, + "end": 24090.88, + "probability": 0.9961 + }, + { + "start": 24092.78, + "end": 24093.84, + "probability": 0.9899 + }, + { + "start": 24094.96, + "end": 24099.58, + "probability": 0.8325 + }, + { + "start": 24101.12, + "end": 24104.2, + "probability": 0.9143 + }, + { + "start": 24105.66, + "end": 24109.92, + "probability": 0.9985 + }, + { + "start": 24109.92, + "end": 24116.28, + "probability": 0.9987 + }, + { + "start": 24117.86, + "end": 24119.26, + "probability": 0.9774 + }, + { + "start": 24120.28, + "end": 24123.46, + "probability": 0.9968 + }, + { + "start": 24124.6, + "end": 24126.5, + "probability": 0.995 + }, + { + "start": 24127.94, + "end": 24130.46, + "probability": 0.988 + }, + { + "start": 24131.1, + "end": 24132.68, + "probability": 0.9835 + }, + { + "start": 24135.5, + "end": 24139.68, + "probability": 0.969 + }, + { + "start": 24140.06, + "end": 24141.88, + "probability": 0.9629 + }, + { + "start": 24142.72, + "end": 24148.64, + "probability": 0.9857 + }, + { + "start": 24149.16, + "end": 24152.54, + "probability": 0.9937 + }, + { + "start": 24154.12, + "end": 24157.92, + "probability": 0.9977 + }, + { + "start": 24158.9, + "end": 24165.26, + "probability": 0.999 + }, + { + "start": 24166.2, + "end": 24168.52, + "probability": 0.9957 + }, + { + "start": 24169.32, + "end": 24170.74, + "probability": 0.9941 + }, + { + "start": 24173.18, + "end": 24174.14, + "probability": 0.8903 + }, + { + "start": 24175.14, + "end": 24178.0, + "probability": 0.9976 + }, + { + "start": 24179.04, + "end": 24180.64, + "probability": 0.9817 + }, + { + "start": 24182.2, + "end": 24183.2, + "probability": 0.6821 + }, + { + "start": 24183.76, + "end": 24184.98, + "probability": 0.7709 + }, + { + "start": 24185.64, + "end": 24189.88, + "probability": 0.8621 + }, + { + "start": 24190.28, + "end": 24192.28, + "probability": 0.9881 + }, + { + "start": 24194.52, + "end": 24195.3, + "probability": 0.015 + }, + { + "start": 24195.98, + "end": 24197.66, + "probability": 0.98 + }, + { + "start": 24197.76, + "end": 24197.8, + "probability": 0.6736 + }, + { + "start": 24198.32, + "end": 24199.06, + "probability": 0.7186 + }, + { + "start": 24199.9, + "end": 24203.0, + "probability": 0.9553 + }, + { + "start": 24203.56, + "end": 24204.78, + "probability": 0.4272 + }, + { + "start": 24204.9, + "end": 24205.56, + "probability": 0.3699 + }, + { + "start": 24205.62, + "end": 24208.76, + "probability": 0.6605 + }, + { + "start": 24209.0, + "end": 24209.5, + "probability": 0.5366 + }, + { + "start": 24209.54, + "end": 24211.76, + "probability": 0.8716 + }, + { + "start": 24211.88, + "end": 24213.44, + "probability": 0.4205 + }, + { + "start": 24213.66, + "end": 24215.62, + "probability": 0.2287 + }, + { + "start": 24215.96, + "end": 24217.38, + "probability": 0.6881 + }, + { + "start": 24217.42, + "end": 24218.04, + "probability": 0.547 + }, + { + "start": 24218.1, + "end": 24220.82, + "probability": 0.7865 + }, + { + "start": 24221.34, + "end": 24221.98, + "probability": 0.2338 + }, + { + "start": 24222.36, + "end": 24224.54, + "probability": 0.457 + }, + { + "start": 24225.26, + "end": 24225.52, + "probability": 0.5389 + }, + { + "start": 24225.6, + "end": 24227.16, + "probability": 0.9693 + }, + { + "start": 24227.98, + "end": 24232.5, + "probability": 0.981 + }, + { + "start": 24233.46, + "end": 24233.76, + "probability": 0.5955 + }, + { + "start": 24234.18, + "end": 24236.0, + "probability": 0.7927 + }, + { + "start": 24236.12, + "end": 24239.5, + "probability": 0.8438 + }, + { + "start": 24240.54, + "end": 24245.88, + "probability": 0.9983 + }, + { + "start": 24246.14, + "end": 24246.32, + "probability": 0.0904 + }, + { + "start": 24246.78, + "end": 24247.5, + "probability": 0.9456 + }, + { + "start": 24248.6, + "end": 24251.85, + "probability": 0.9966 + }, + { + "start": 24252.38, + "end": 24253.9, + "probability": 0.9497 + }, + { + "start": 24254.98, + "end": 24255.74, + "probability": 0.9839 + }, + { + "start": 24257.04, + "end": 24257.62, + "probability": 0.9186 + }, + { + "start": 24257.72, + "end": 24258.9, + "probability": 0.6899 + }, + { + "start": 24258.9, + "end": 24260.45, + "probability": 0.9732 + }, + { + "start": 24260.68, + "end": 24261.44, + "probability": 0.8063 + }, + { + "start": 24261.46, + "end": 24262.2, + "probability": 0.9074 + }, + { + "start": 24262.52, + "end": 24265.4, + "probability": 0.7319 + }, + { + "start": 24265.78, + "end": 24267.31, + "probability": 0.8511 + }, + { + "start": 24268.72, + "end": 24269.7, + "probability": 0.8928 + }, + { + "start": 24270.9, + "end": 24272.68, + "probability": 0.7301 + }, + { + "start": 24273.22, + "end": 24274.3, + "probability": 0.8994 + }, + { + "start": 24274.72, + "end": 24275.96, + "probability": 0.8956 + }, + { + "start": 24276.72, + "end": 24278.7, + "probability": 0.6531 + }, + { + "start": 24279.48, + "end": 24282.82, + "probability": 0.9395 + }, + { + "start": 24283.34, + "end": 24289.22, + "probability": 0.918 + }, + { + "start": 24289.82, + "end": 24294.02, + "probability": 0.9795 + }, + { + "start": 24294.46, + "end": 24295.74, + "probability": 0.8503 + }, + { + "start": 24296.44, + "end": 24297.38, + "probability": 0.6861 + }, + { + "start": 24298.04, + "end": 24302.14, + "probability": 0.8211 + }, + { + "start": 24302.2, + "end": 24305.82, + "probability": 0.9712 + }, + { + "start": 24306.02, + "end": 24307.72, + "probability": 0.9225 + }, + { + "start": 24308.2, + "end": 24309.14, + "probability": 0.8734 + }, + { + "start": 24311.44, + "end": 24311.88, + "probability": 0.4784 + }, + { + "start": 24311.88, + "end": 24314.76, + "probability": 0.7495 + }, + { + "start": 24316.42, + "end": 24321.4, + "probability": 0.9917 + }, + { + "start": 24323.54, + "end": 24328.7, + "probability": 0.9993 + }, + { + "start": 24329.3, + "end": 24331.14, + "probability": 0.9128 + }, + { + "start": 24331.72, + "end": 24333.16, + "probability": 0.8337 + }, + { + "start": 24333.5, + "end": 24336.88, + "probability": 0.9885 + }, + { + "start": 24336.96, + "end": 24338.76, + "probability": 0.9455 + }, + { + "start": 24338.76, + "end": 24342.1, + "probability": 0.9949 + }, + { + "start": 24342.22, + "end": 24343.36, + "probability": 0.8575 + }, + { + "start": 24345.18, + "end": 24349.84, + "probability": 0.9875 + }, + { + "start": 24350.08, + "end": 24352.44, + "probability": 0.9636 + }, + { + "start": 24353.84, + "end": 24355.73, + "probability": 0.6367 + }, + { + "start": 24357.1, + "end": 24359.48, + "probability": 0.7442 + }, + { + "start": 24361.3, + "end": 24362.86, + "probability": 0.8062 + }, + { + "start": 24363.62, + "end": 24367.32, + "probability": 0.8763 + }, + { + "start": 24367.42, + "end": 24368.19, + "probability": 0.6786 + }, + { + "start": 24368.32, + "end": 24368.64, + "probability": 0.4194 + }, + { + "start": 24368.68, + "end": 24368.74, + "probability": 0.4104 + }, + { + "start": 24368.74, + "end": 24368.86, + "probability": 0.106 + }, + { + "start": 24368.94, + "end": 24371.28, + "probability": 0.3768 + }, + { + "start": 24371.44, + "end": 24372.18, + "probability": 0.3284 + }, + { + "start": 24372.2, + "end": 24374.08, + "probability": 0.9912 + }, + { + "start": 24374.16, + "end": 24374.56, + "probability": 0.7916 + }, + { + "start": 24374.64, + "end": 24376.7, + "probability": 0.939 + }, + { + "start": 24376.8, + "end": 24380.68, + "probability": 0.9968 + }, + { + "start": 24380.9, + "end": 24383.62, + "probability": 0.9968 + }, + { + "start": 24384.5, + "end": 24387.88, + "probability": 0.9919 + }, + { + "start": 24389.38, + "end": 24389.58, + "probability": 0.6949 + }, + { + "start": 24390.06, + "end": 24392.48, + "probability": 0.9515 + }, + { + "start": 24392.76, + "end": 24398.08, + "probability": 0.9902 + }, + { + "start": 24398.22, + "end": 24398.9, + "probability": 0.8421 + }, + { + "start": 24398.98, + "end": 24400.62, + "probability": 0.9395 + }, + { + "start": 24400.8, + "end": 24401.6, + "probability": 0.7983 + }, + { + "start": 24401.7, + "end": 24402.4, + "probability": 0.4914 + }, + { + "start": 24402.68, + "end": 24404.31, + "probability": 0.9803 + }, + { + "start": 24405.8, + "end": 24408.84, + "probability": 0.9624 + }, + { + "start": 24410.4, + "end": 24412.7, + "probability": 0.9875 + }, + { + "start": 24414.12, + "end": 24416.66, + "probability": 0.7388 + }, + { + "start": 24417.0, + "end": 24417.55, + "probability": 0.7847 + }, + { + "start": 24417.9, + "end": 24420.43, + "probability": 0.9128 + }, + { + "start": 24421.68, + "end": 24426.74, + "probability": 0.9949 + }, + { + "start": 24426.88, + "end": 24428.64, + "probability": 0.5007 + }, + { + "start": 24429.04, + "end": 24430.62, + "probability": 0.9982 + }, + { + "start": 24432.6, + "end": 24433.24, + "probability": 0.6884 + }, + { + "start": 24433.34, + "end": 24433.8, + "probability": 0.6025 + }, + { + "start": 24433.88, + "end": 24438.44, + "probability": 0.9912 + }, + { + "start": 24439.6, + "end": 24439.66, + "probability": 0.1341 + }, + { + "start": 24439.66, + "end": 24439.98, + "probability": 0.8823 + }, + { + "start": 24440.28, + "end": 24442.24, + "probability": 0.9324 + }, + { + "start": 24442.82, + "end": 24445.24, + "probability": 0.9981 + }, + { + "start": 24445.24, + "end": 24449.2, + "probability": 0.9885 + }, + { + "start": 24449.86, + "end": 24450.48, + "probability": 0.6873 + }, + { + "start": 24451.02, + "end": 24456.66, + "probability": 0.9966 + }, + { + "start": 24458.3, + "end": 24462.1, + "probability": 0.9836 + }, + { + "start": 24462.82, + "end": 24465.02, + "probability": 0.9846 + }, + { + "start": 24465.72, + "end": 24467.22, + "probability": 0.7215 + }, + { + "start": 24467.66, + "end": 24474.96, + "probability": 0.9158 + }, + { + "start": 24475.22, + "end": 24476.18, + "probability": 0.8989 + }, + { + "start": 24476.58, + "end": 24479.6, + "probability": 0.9808 + }, + { + "start": 24481.68, + "end": 24487.86, + "probability": 0.9775 + }, + { + "start": 24490.14, + "end": 24492.72, + "probability": 0.9896 + }, + { + "start": 24493.66, + "end": 24498.9, + "probability": 0.998 + }, + { + "start": 24499.1, + "end": 24500.84, + "probability": 0.8988 + }, + { + "start": 24502.98, + "end": 24504.62, + "probability": 0.9631 + }, + { + "start": 24505.26, + "end": 24506.82, + "probability": 0.9763 + }, + { + "start": 24507.68, + "end": 24507.98, + "probability": 0.9066 + }, + { + "start": 24508.04, + "end": 24509.0, + "probability": 0.6898 + }, + { + "start": 24509.0, + "end": 24510.2, + "probability": 0.9802 + }, + { + "start": 24510.3, + "end": 24511.18, + "probability": 0.7731 + }, + { + "start": 24511.76, + "end": 24512.48, + "probability": 0.9159 + }, + { + "start": 24512.58, + "end": 24514.42, + "probability": 0.9519 + }, + { + "start": 24514.6, + "end": 24515.82, + "probability": 0.9842 + }, + { + "start": 24515.86, + "end": 24517.1, + "probability": 0.5951 + }, + { + "start": 24517.4, + "end": 24517.78, + "probability": 0.8217 + }, + { + "start": 24517.94, + "end": 24518.76, + "probability": 0.8635 + }, + { + "start": 24519.06, + "end": 24520.76, + "probability": 0.9882 + }, + { + "start": 24520.92, + "end": 24521.84, + "probability": 0.6613 + }, + { + "start": 24522.32, + "end": 24522.52, + "probability": 0.6566 + }, + { + "start": 24522.58, + "end": 24524.54, + "probability": 0.9287 + }, + { + "start": 24524.54, + "end": 24527.28, + "probability": 0.9313 + }, + { + "start": 24528.16, + "end": 24529.7, + "probability": 0.5981 + }, + { + "start": 24529.88, + "end": 24531.92, + "probability": 0.9823 + }, + { + "start": 24532.1, + "end": 24533.1, + "probability": 0.9362 + }, + { + "start": 24534.0, + "end": 24534.36, + "probability": 0.7093 + }, + { + "start": 24534.44, + "end": 24534.98, + "probability": 0.6064 + }, + { + "start": 24535.28, + "end": 24536.16, + "probability": 0.879 + }, + { + "start": 24536.34, + "end": 24537.06, + "probability": 0.8418 + }, + { + "start": 24537.22, + "end": 24537.42, + "probability": 0.3113 + }, + { + "start": 24537.42, + "end": 24538.6, + "probability": 0.6722 + }, + { + "start": 24539.56, + "end": 24541.32, + "probability": 0.9771 + }, + { + "start": 24541.52, + "end": 24545.52, + "probability": 0.9969 + }, + { + "start": 24546.34, + "end": 24549.2, + "probability": 0.9868 + }, + { + "start": 24550.6, + "end": 24553.71, + "probability": 0.8618 + }, + { + "start": 24554.3, + "end": 24560.52, + "probability": 0.9751 + }, + { + "start": 24560.52, + "end": 24561.22, + "probability": 0.9526 + }, + { + "start": 24562.16, + "end": 24563.52, + "probability": 0.9852 + }, + { + "start": 24563.8, + "end": 24565.08, + "probability": 0.9916 + }, + { + "start": 24565.84, + "end": 24570.16, + "probability": 0.9919 + }, + { + "start": 24572.1, + "end": 24575.58, + "probability": 0.9899 + }, + { + "start": 24577.72, + "end": 24579.0, + "probability": 0.9468 + }, + { + "start": 24579.48, + "end": 24582.23, + "probability": 0.9911 + }, + { + "start": 24582.66, + "end": 24583.98, + "probability": 0.9919 + }, + { + "start": 24585.02, + "end": 24586.73, + "probability": 0.9866 + }, + { + "start": 24587.8, + "end": 24589.08, + "probability": 0.9565 + }, + { + "start": 24589.16, + "end": 24590.5, + "probability": 0.8718 + }, + { + "start": 24590.6, + "end": 24592.24, + "probability": 0.9614 + }, + { + "start": 24593.74, + "end": 24594.48, + "probability": 0.7957 + }, + { + "start": 24595.98, + "end": 24597.6, + "probability": 0.9888 + }, + { + "start": 24597.96, + "end": 24598.06, + "probability": 0.6246 + }, + { + "start": 24598.18, + "end": 24599.55, + "probability": 0.7951 + }, + { + "start": 24600.7, + "end": 24605.14, + "probability": 0.9282 + }, + { + "start": 24606.4, + "end": 24607.34, + "probability": 0.8467 + }, + { + "start": 24607.38, + "end": 24608.4, + "probability": 0.9596 + }, + { + "start": 24608.42, + "end": 24608.94, + "probability": 0.579 + }, + { + "start": 24609.0, + "end": 24610.12, + "probability": 0.9812 + }, + { + "start": 24610.28, + "end": 24610.96, + "probability": 0.8288 + }, + { + "start": 24612.34, + "end": 24616.12, + "probability": 0.2919 + }, + { + "start": 24617.18, + "end": 24617.84, + "probability": 0.1299 + }, + { + "start": 24618.28, + "end": 24618.46, + "probability": 0.0109 + }, + { + "start": 24618.74, + "end": 24619.0, + "probability": 0.061 + }, + { + "start": 24619.0, + "end": 24619.08, + "probability": 0.1006 + }, + { + "start": 24619.08, + "end": 24620.02, + "probability": 0.1977 + }, + { + "start": 24620.24, + "end": 24621.02, + "probability": 0.1816 + }, + { + "start": 24621.32, + "end": 24623.64, + "probability": 0.176 + }, + { + "start": 24623.9, + "end": 24624.44, + "probability": 0.7673 + }, + { + "start": 24624.88, + "end": 24627.1, + "probability": 0.3375 + }, + { + "start": 24628.1, + "end": 24629.94, + "probability": 0.7021 + }, + { + "start": 24630.96, + "end": 24632.32, + "probability": 0.6101 + }, + { + "start": 24632.98, + "end": 24636.54, + "probability": 0.652 + }, + { + "start": 24638.04, + "end": 24639.28, + "probability": 0.9004 + }, + { + "start": 24640.28, + "end": 24642.0, + "probability": 0.9459 + }, + { + "start": 24643.86, + "end": 24648.16, + "probability": 0.9556 + }, + { + "start": 24649.12, + "end": 24651.95, + "probability": 0.9187 + }, + { + "start": 24652.7, + "end": 24654.19, + "probability": 0.8726 + }, + { + "start": 24655.02, + "end": 24659.26, + "probability": 0.9941 + }, + { + "start": 24659.38, + "end": 24663.6, + "probability": 0.9951 + }, + { + "start": 24665.26, + "end": 24666.96, + "probability": 0.9645 + }, + { + "start": 24667.9, + "end": 24671.06, + "probability": 0.9433 + }, + { + "start": 24672.02, + "end": 24675.46, + "probability": 0.9965 + }, + { + "start": 24675.46, + "end": 24679.05, + "probability": 0.9879 + }, + { + "start": 24680.04, + "end": 24681.81, + "probability": 0.836 + }, + { + "start": 24684.24, + "end": 24685.32, + "probability": 0.6212 + }, + { + "start": 24685.44, + "end": 24687.3, + "probability": 0.8767 + }, + { + "start": 24687.62, + "end": 24688.06, + "probability": 0.5383 + }, + { + "start": 24688.14, + "end": 24688.76, + "probability": 0.7018 + }, + { + "start": 24689.44, + "end": 24692.72, + "probability": 0.839 + }, + { + "start": 24694.18, + "end": 24697.79, + "probability": 0.995 + }, + { + "start": 24699.24, + "end": 24701.58, + "probability": 0.9846 + }, + { + "start": 24703.18, + "end": 24704.52, + "probability": 0.9951 + }, + { + "start": 24706.36, + "end": 24710.04, + "probability": 0.9204 + }, + { + "start": 24711.58, + "end": 24715.06, + "probability": 0.9728 + }, + { + "start": 24716.26, + "end": 24717.62, + "probability": 0.7528 + }, + { + "start": 24719.36, + "end": 24721.14, + "probability": 0.9723 + }, + { + "start": 24722.42, + "end": 24727.6, + "probability": 0.9941 + }, + { + "start": 24729.0, + "end": 24730.4, + "probability": 0.9725 + }, + { + "start": 24730.86, + "end": 24736.78, + "probability": 0.998 + }, + { + "start": 24738.44, + "end": 24742.4, + "probability": 0.9897 + }, + { + "start": 24742.56, + "end": 24743.12, + "probability": 0.8076 + }, + { + "start": 24743.22, + "end": 24743.74, + "probability": 0.9246 + }, + { + "start": 24743.78, + "end": 24744.34, + "probability": 0.8504 + }, + { + "start": 24746.56, + "end": 24747.14, + "probability": 0.9316 + }, + { + "start": 24749.24, + "end": 24753.46, + "probability": 0.8927 + }, + { + "start": 24754.1, + "end": 24756.98, + "probability": 0.9863 + }, + { + "start": 24759.4, + "end": 24762.48, + "probability": 0.9233 + }, + { + "start": 24763.12, + "end": 24766.4, + "probability": 0.9893 + }, + { + "start": 24767.22, + "end": 24767.86, + "probability": 0.9166 + }, + { + "start": 24768.4, + "end": 24770.86, + "probability": 0.9971 + }, + { + "start": 24772.66, + "end": 24775.06, + "probability": 0.9425 + }, + { + "start": 24775.56, + "end": 24777.28, + "probability": 0.9927 + }, + { + "start": 24778.2, + "end": 24778.97, + "probability": 0.8503 + }, + { + "start": 24779.46, + "end": 24780.36, + "probability": 0.7715 + }, + { + "start": 24780.74, + "end": 24783.28, + "probability": 0.9811 + }, + { + "start": 24783.8, + "end": 24784.96, + "probability": 0.9357 + }, + { + "start": 24788.36, + "end": 24792.12, + "probability": 0.6617 + }, + { + "start": 24793.44, + "end": 24794.86, + "probability": 0.987 + }, + { + "start": 24795.64, + "end": 24797.34, + "probability": 0.9015 + }, + { + "start": 24797.42, + "end": 24801.1, + "probability": 0.9447 + }, + { + "start": 24801.96, + "end": 24802.5, + "probability": 0.7416 + }, + { + "start": 24803.02, + "end": 24804.66, + "probability": 0.9489 + }, + { + "start": 24804.94, + "end": 24807.39, + "probability": 0.9785 + }, + { + "start": 24808.58, + "end": 24811.46, + "probability": 0.9295 + }, + { + "start": 24813.16, + "end": 24818.7, + "probability": 0.9891 + }, + { + "start": 24819.18, + "end": 24822.04, + "probability": 0.9272 + }, + { + "start": 24822.1, + "end": 24823.26, + "probability": 0.7202 + }, + { + "start": 24824.48, + "end": 24826.94, + "probability": 0.7837 + }, + { + "start": 24828.52, + "end": 24830.88, + "probability": 0.9883 + }, + { + "start": 24831.02, + "end": 24833.72, + "probability": 0.8793 + }, + { + "start": 24834.42, + "end": 24838.76, + "probability": 0.9925 + }, + { + "start": 24839.14, + "end": 24839.38, + "probability": 0.6143 + }, + { + "start": 24842.04, + "end": 24843.52, + "probability": 0.4916 + }, + { + "start": 24844.28, + "end": 24845.38, + "probability": 0.8247 + }, + { + "start": 24861.74, + "end": 24862.76, + "probability": 0.5186 + }, + { + "start": 24863.04, + "end": 24864.49, + "probability": 0.7176 + }, + { + "start": 24865.36, + "end": 24873.08, + "probability": 0.9531 + }, + { + "start": 24874.3, + "end": 24879.8, + "probability": 0.9552 + }, + { + "start": 24880.04, + "end": 24883.76, + "probability": 0.8324 + }, + { + "start": 24885.58, + "end": 24890.06, + "probability": 0.93 + }, + { + "start": 24890.94, + "end": 24896.12, + "probability": 0.9783 + }, + { + "start": 24896.28, + "end": 24903.64, + "probability": 0.9612 + }, + { + "start": 24904.34, + "end": 24905.76, + "probability": 0.8228 + }, + { + "start": 24906.54, + "end": 24908.7, + "probability": 0.8552 + }, + { + "start": 24910.0, + "end": 24914.66, + "probability": 0.8841 + }, + { + "start": 24915.08, + "end": 24919.76, + "probability": 0.8206 + }, + { + "start": 24919.82, + "end": 24923.8, + "probability": 0.9969 + }, + { + "start": 24925.08, + "end": 24927.88, + "probability": 0.999 + }, + { + "start": 24930.96, + "end": 24932.98, + "probability": 0.9917 + }, + { + "start": 24934.22, + "end": 24939.18, + "probability": 0.8921 + }, + { + "start": 24940.0, + "end": 24943.82, + "probability": 0.9625 + }, + { + "start": 24945.0, + "end": 24947.38, + "probability": 0.9706 + }, + { + "start": 24947.48, + "end": 24948.78, + "probability": 0.8356 + }, + { + "start": 24951.26, + "end": 24955.6, + "probability": 0.9873 + }, + { + "start": 24956.4, + "end": 24960.44, + "probability": 0.9884 + }, + { + "start": 24960.54, + "end": 24961.16, + "probability": 0.8367 + }, + { + "start": 24961.74, + "end": 24965.64, + "probability": 0.9259 + }, + { + "start": 24966.04, + "end": 24967.62, + "probability": 0.8035 + }, + { + "start": 24968.38, + "end": 24969.2, + "probability": 0.4644 + }, + { + "start": 24969.78, + "end": 24970.74, + "probability": 0.635 + }, + { + "start": 24970.96, + "end": 24974.06, + "probability": 0.3615 + }, + { + "start": 24974.52, + "end": 24975.3, + "probability": 0.9814 + }, + { + "start": 24975.38, + "end": 24975.82, + "probability": 0.5564 + }, + { + "start": 24975.88, + "end": 24978.66, + "probability": 0.4971 + }, + { + "start": 24979.54, + "end": 24983.28, + "probability": 0.7309 + }, + { + "start": 24983.5, + "end": 24983.82, + "probability": 0.0324 + }, + { + "start": 24984.4, + "end": 24984.7, + "probability": 0.168 + }, + { + "start": 24984.7, + "end": 24985.74, + "probability": 0.5428 + }, + { + "start": 24986.92, + "end": 24987.32, + "probability": 0.0325 + }, + { + "start": 24987.34, + "end": 24988.7, + "probability": 0.9714 + }, + { + "start": 24989.46, + "end": 24993.28, + "probability": 0.9536 + }, + { + "start": 24993.28, + "end": 24994.34, + "probability": 0.0947 + }, + { + "start": 24994.7, + "end": 24995.1, + "probability": 0.2515 + }, + { + "start": 24995.28, + "end": 24999.57, + "probability": 0.9757 + }, + { + "start": 25000.64, + "end": 25002.86, + "probability": 0.8965 + }, + { + "start": 25003.7, + "end": 25004.6, + "probability": 0.6594 + }, + { + "start": 25004.7, + "end": 25005.14, + "probability": 0.8625 + }, + { + "start": 25005.24, + "end": 25009.08, + "probability": 0.9893 + }, + { + "start": 25009.48, + "end": 25013.62, + "probability": 0.9661 + }, + { + "start": 25014.0, + "end": 25018.76, + "probability": 0.9814 + }, + { + "start": 25019.2, + "end": 25021.2, + "probability": 0.7565 + }, + { + "start": 25021.68, + "end": 25023.18, + "probability": 0.835 + }, + { + "start": 25023.3, + "end": 25024.42, + "probability": 0.9563 + }, + { + "start": 25024.76, + "end": 25027.6, + "probability": 0.9102 + }, + { + "start": 25027.92, + "end": 25030.5, + "probability": 0.9982 + }, + { + "start": 25030.5, + "end": 25033.8, + "probability": 0.8888 + }, + { + "start": 25034.3, + "end": 25038.14, + "probability": 0.8969 + }, + { + "start": 25038.62, + "end": 25040.3, + "probability": 0.9838 + }, + { + "start": 25040.92, + "end": 25041.74, + "probability": 0.9779 + }, + { + "start": 25042.6, + "end": 25043.38, + "probability": 0.5942 + }, + { + "start": 25043.84, + "end": 25045.9, + "probability": 0.8859 + }, + { + "start": 25046.72, + "end": 25049.36, + "probability": 0.988 + }, + { + "start": 25049.9, + "end": 25050.0, + "probability": 0.0278 + }, + { + "start": 25050.32, + "end": 25050.82, + "probability": 0.3609 + }, + { + "start": 25051.18, + "end": 25052.76, + "probability": 0.5054 + }, + { + "start": 25053.0, + "end": 25055.0, + "probability": 0.9841 + }, + { + "start": 25055.8, + "end": 25057.58, + "probability": 0.9572 + }, + { + "start": 25058.04, + "end": 25062.48, + "probability": 0.8162 + }, + { + "start": 25062.96, + "end": 25065.18, + "probability": 0.9712 + }, + { + "start": 25066.28, + "end": 25071.18, + "probability": 0.8182 + }, + { + "start": 25071.46, + "end": 25073.34, + "probability": 0.8026 + }, + { + "start": 25073.36, + "end": 25073.72, + "probability": 0.4901 + }, + { + "start": 25074.08, + "end": 25076.74, + "probability": 0.9597 + }, + { + "start": 25076.86, + "end": 25078.54, + "probability": 0.8174 + }, + { + "start": 25079.1, + "end": 25082.7, + "probability": 0.7915 + }, + { + "start": 25083.22, + "end": 25085.96, + "probability": 0.7599 + }, + { + "start": 25086.46, + "end": 25087.55, + "probability": 0.0675 + }, + { + "start": 25087.64, + "end": 25094.01, + "probability": 0.8451 + }, + { + "start": 25095.72, + "end": 25097.26, + "probability": 0.0226 + }, + { + "start": 25097.98, + "end": 25099.16, + "probability": 0.2031 + }, + { + "start": 25099.36, + "end": 25100.06, + "probability": 0.0338 + }, + { + "start": 25100.22, + "end": 25101.54, + "probability": 0.0563 + }, + { + "start": 25101.9, + "end": 25101.9, + "probability": 0.1315 + }, + { + "start": 25102.11, + "end": 25102.86, + "probability": 0.0931 + }, + { + "start": 25103.02, + "end": 25103.02, + "probability": 0.2023 + }, + { + "start": 25103.02, + "end": 25104.64, + "probability": 0.3695 + }, + { + "start": 25104.7, + "end": 25105.79, + "probability": 0.3916 + }, + { + "start": 25107.46, + "end": 25108.74, + "probability": 0.2414 + }, + { + "start": 25109.1, + "end": 25109.42, + "probability": 0.0271 + }, + { + "start": 25110.18, + "end": 25111.31, + "probability": 0.2404 + }, + { + "start": 25111.52, + "end": 25113.0, + "probability": 0.4593 + }, + { + "start": 25114.12, + "end": 25114.8, + "probability": 0.0856 + }, + { + "start": 25115.42, + "end": 25117.02, + "probability": 0.1789 + }, + { + "start": 25117.44, + "end": 25118.24, + "probability": 0.3112 + }, + { + "start": 25119.1, + "end": 25121.0, + "probability": 0.4082 + }, + { + "start": 25121.16, + "end": 25122.04, + "probability": 0.0652 + }, + { + "start": 25122.3, + "end": 25122.8, + "probability": 0.2319 + }, + { + "start": 25122.86, + "end": 25123.5, + "probability": 0.3763 + }, + { + "start": 25123.7, + "end": 25125.1, + "probability": 0.4219 + }, + { + "start": 25125.14, + "end": 25127.72, + "probability": 0.585 + }, + { + "start": 25128.26, + "end": 25129.02, + "probability": 0.4017 + }, + { + "start": 25129.18, + "end": 25130.02, + "probability": 0.8059 + }, + { + "start": 25130.26, + "end": 25132.9, + "probability": 0.767 + }, + { + "start": 25132.9, + "end": 25133.36, + "probability": 0.84 + }, + { + "start": 25133.9, + "end": 25135.06, + "probability": 0.6626 + }, + { + "start": 25135.2, + "end": 25138.18, + "probability": 0.9183 + }, + { + "start": 25138.64, + "end": 25140.53, + "probability": 0.9897 + }, + { + "start": 25140.68, + "end": 25143.96, + "probability": 0.9793 + }, + { + "start": 25144.38, + "end": 25144.7, + "probability": 0.2275 + }, + { + "start": 25145.26, + "end": 25146.42, + "probability": 0.7433 + }, + { + "start": 25146.44, + "end": 25149.42, + "probability": 0.7372 + }, + { + "start": 25149.46, + "end": 25150.7, + "probability": 0.4886 + }, + { + "start": 25150.88, + "end": 25151.9, + "probability": 0.8038 + }, + { + "start": 25153.66, + "end": 25154.04, + "probability": 0.1574 + }, + { + "start": 25154.2, + "end": 25155.9, + "probability": 0.898 + }, + { + "start": 25156.38, + "end": 25159.0, + "probability": 0.9954 + }, + { + "start": 25159.74, + "end": 25160.36, + "probability": 0.0647 + }, + { + "start": 25160.68, + "end": 25162.62, + "probability": 0.2258 + }, + { + "start": 25163.08, + "end": 25164.96, + "probability": 0.949 + }, + { + "start": 25165.24, + "end": 25169.8, + "probability": 0.8394 + }, + { + "start": 25171.06, + "end": 25182.44, + "probability": 0.9766 + }, + { + "start": 25183.86, + "end": 25184.84, + "probability": 0.9915 + }, + { + "start": 25185.2, + "end": 25186.1, + "probability": 0.6988 + }, + { + "start": 25186.2, + "end": 25189.04, + "probability": 0.9643 + }, + { + "start": 25191.04, + "end": 25197.4, + "probability": 0.8079 + }, + { + "start": 25197.42, + "end": 25200.98, + "probability": 0.8622 + }, + { + "start": 25202.54, + "end": 25202.98, + "probability": 0.7122 + }, + { + "start": 25203.22, + "end": 25209.38, + "probability": 0.9956 + }, + { + "start": 25211.42, + "end": 25212.0, + "probability": 0.8553 + }, + { + "start": 25212.58, + "end": 25213.4, + "probability": 0.6117 + }, + { + "start": 25213.42, + "end": 25215.19, + "probability": 0.7229 + }, + { + "start": 25215.46, + "end": 25216.66, + "probability": 0.7037 + }, + { + "start": 25217.06, + "end": 25218.08, + "probability": 0.7659 + }, + { + "start": 25218.28, + "end": 25219.33, + "probability": 0.3208 + }, + { + "start": 25219.86, + "end": 25222.8, + "probability": 0.307 + }, + { + "start": 25223.04, + "end": 25223.54, + "probability": 0.2134 + }, + { + "start": 25223.76, + "end": 25224.7, + "probability": 0.0814 + }, + { + "start": 25224.84, + "end": 25225.08, + "probability": 0.2746 + }, + { + "start": 25225.18, + "end": 25225.32, + "probability": 0.0007 + }, + { + "start": 25225.32, + "end": 25227.6, + "probability": 0.2574 + }, + { + "start": 25228.1, + "end": 25231.06, + "probability": 0.7409 + }, + { + "start": 25231.1, + "end": 25232.76, + "probability": 0.0495 + }, + { + "start": 25232.76, + "end": 25233.85, + "probability": 0.5552 + }, + { + "start": 25234.54, + "end": 25236.48, + "probability": 0.7213 + }, + { + "start": 25236.76, + "end": 25237.82, + "probability": 0.7921 + }, + { + "start": 25237.94, + "end": 25237.96, + "probability": 0.0143 + }, + { + "start": 25237.98, + "end": 25239.66, + "probability": 0.927 + }, + { + "start": 25239.78, + "end": 25240.56, + "probability": 0.3791 + }, + { + "start": 25240.88, + "end": 25242.44, + "probability": 0.9609 + }, + { + "start": 25242.6, + "end": 25242.88, + "probability": 0.2219 + }, + { + "start": 25243.32, + "end": 25247.46, + "probability": 0.7971 + }, + { + "start": 25247.54, + "end": 25247.96, + "probability": 0.2625 + }, + { + "start": 25248.4, + "end": 25248.58, + "probability": 0.0435 + }, + { + "start": 25248.92, + "end": 25249.38, + "probability": 0.2712 + }, + { + "start": 25250.38, + "end": 25252.88, + "probability": 0.6597 + }, + { + "start": 25252.88, + "end": 25255.1, + "probability": 0.9418 + }, + { + "start": 25255.2, + "end": 25255.72, + "probability": 0.021 + }, + { + "start": 25256.1, + "end": 25256.2, + "probability": 0.1274 + }, + { + "start": 25256.46, + "end": 25256.76, + "probability": 0.5199 + }, + { + "start": 25256.76, + "end": 25256.76, + "probability": 0.2589 + }, + { + "start": 25256.76, + "end": 25256.76, + "probability": 0.1186 + }, + { + "start": 25256.84, + "end": 25257.66, + "probability": 0.7429 + }, + { + "start": 25257.74, + "end": 25258.6, + "probability": 0.4294 + }, + { + "start": 25259.1, + "end": 25260.56, + "probability": 0.3639 + }, + { + "start": 25260.96, + "end": 25261.58, + "probability": 0.3796 + }, + { + "start": 25261.78, + "end": 25263.77, + "probability": 0.8192 + }, + { + "start": 25264.5, + "end": 25266.14, + "probability": 0.3516 + }, + { + "start": 25267.04, + "end": 25268.68, + "probability": 0.6992 + }, + { + "start": 25270.96, + "end": 25271.18, + "probability": 0.4627 + }, + { + "start": 25272.18, + "end": 25273.52, + "probability": 0.151 + }, + { + "start": 25273.52, + "end": 25273.52, + "probability": 0.0621 + }, + { + "start": 25273.52, + "end": 25281.76, + "probability": 0.8551 + }, + { + "start": 25282.06, + "end": 25282.76, + "probability": 0.671 + }, + { + "start": 25283.04, + "end": 25284.78, + "probability": 0.8968 + }, + { + "start": 25286.5, + "end": 25288.68, + "probability": 0.6674 + }, + { + "start": 25289.88, + "end": 25290.96, + "probability": 0.6989 + }, + { + "start": 25291.62, + "end": 25292.56, + "probability": 0.5131 + }, + { + "start": 25294.36, + "end": 25297.84, + "probability": 0.7869 + }, + { + "start": 25297.92, + "end": 25301.58, + "probability": 0.7034 + }, + { + "start": 25301.62, + "end": 25302.46, + "probability": 0.9565 + }, + { + "start": 25303.3, + "end": 25304.92, + "probability": 0.4886 + }, + { + "start": 25306.26, + "end": 25306.86, + "probability": 0.0013 + }, + { + "start": 25306.86, + "end": 25311.62, + "probability": 0.6043 + }, + { + "start": 25313.49, + "end": 25315.78, + "probability": 0.8006 + }, + { + "start": 25316.6, + "end": 25319.0, + "probability": 0.811 + }, + { + "start": 25319.62, + "end": 25322.24, + "probability": 0.8333 + }, + { + "start": 25323.0, + "end": 25323.54, + "probability": 0.7307 + }, + { + "start": 25323.56, + "end": 25327.88, + "probability": 0.9572 + }, + { + "start": 25330.04, + "end": 25330.74, + "probability": 0.4803 + }, + { + "start": 25331.28, + "end": 25334.16, + "probability": 0.0042 + }, + { + "start": 25334.46, + "end": 25337.1, + "probability": 0.3513 + }, + { + "start": 25337.78, + "end": 25338.66, + "probability": 0.4383 + }, + { + "start": 25339.56, + "end": 25342.22, + "probability": 0.6206 + }, + { + "start": 25342.4, + "end": 25345.41, + "probability": 0.8826 + }, + { + "start": 25347.06, + "end": 25350.6, + "probability": 0.7558 + }, + { + "start": 25352.48, + "end": 25355.94, + "probability": 0.566 + }, + { + "start": 25356.74, + "end": 25356.74, + "probability": 0.7629 + }, + { + "start": 25356.76, + "end": 25357.62, + "probability": 0.5729 + }, + { + "start": 25357.84, + "end": 25358.18, + "probability": 0.3333 + }, + { + "start": 25358.24, + "end": 25359.5, + "probability": 0.5595 + }, + { + "start": 25359.9, + "end": 25361.54, + "probability": 0.097 + }, + { + "start": 25362.16, + "end": 25364.02, + "probability": 0.9414 + }, + { + "start": 25364.56, + "end": 25367.16, + "probability": 0.9004 + }, + { + "start": 25367.24, + "end": 25368.0, + "probability": 0.7576 + }, + { + "start": 25372.47, + "end": 25375.64, + "probability": 0.8827 + }, + { + "start": 25375.74, + "end": 25376.38, + "probability": 0.3657 + }, + { + "start": 25376.92, + "end": 25377.62, + "probability": 0.9417 + }, + { + "start": 25377.72, + "end": 25378.28, + "probability": 0.9678 + }, + { + "start": 25378.36, + "end": 25379.42, + "probability": 0.9846 + }, + { + "start": 25379.54, + "end": 25381.9, + "probability": 0.9285 + }, + { + "start": 25382.26, + "end": 25384.62, + "probability": 0.8816 + }, + { + "start": 25385.2, + "end": 25386.4, + "probability": 0.5265 + }, + { + "start": 25388.48, + "end": 25391.8, + "probability": 0.7856 + }, + { + "start": 25391.98, + "end": 25393.58, + "probability": 0.6606 + }, + { + "start": 25394.86, + "end": 25400.34, + "probability": 0.8509 + }, + { + "start": 25400.42, + "end": 25401.5, + "probability": 0.6202 + }, + { + "start": 25401.76, + "end": 25403.14, + "probability": 0.625 + }, + { + "start": 25403.52, + "end": 25404.94, + "probability": 0.4734 + }, + { + "start": 25405.06, + "end": 25405.46, + "probability": 0.7622 + }, + { + "start": 25405.56, + "end": 25405.82, + "probability": 0.8617 + }, + { + "start": 25405.94, + "end": 25407.76, + "probability": 0.8567 + }, + { + "start": 25407.92, + "end": 25409.58, + "probability": 0.3958 + }, + { + "start": 25410.2, + "end": 25411.38, + "probability": 0.9495 + }, + { + "start": 25412.0, + "end": 25412.76, + "probability": 0.6419 + }, + { + "start": 25413.08, + "end": 25415.48, + "probability": 0.7767 + }, + { + "start": 25416.0, + "end": 25420.38, + "probability": 0.9689 + }, + { + "start": 25420.38, + "end": 25423.26, + "probability": 0.9963 + }, + { + "start": 25423.92, + "end": 25429.68, + "probability": 0.9956 + }, + { + "start": 25430.72, + "end": 25432.0, + "probability": 0.6995 + }, + { + "start": 25432.16, + "end": 25434.75, + "probability": 0.9883 + }, + { + "start": 25436.06, + "end": 25438.46, + "probability": 0.9911 + }, + { + "start": 25439.62, + "end": 25440.6, + "probability": 0.9147 + }, + { + "start": 25441.46, + "end": 25444.9, + "probability": 0.8807 + }, + { + "start": 25446.14, + "end": 25447.18, + "probability": 0.9707 + }, + { + "start": 25447.46, + "end": 25447.94, + "probability": 0.9122 + }, + { + "start": 25448.04, + "end": 25449.2, + "probability": 0.9639 + }, + { + "start": 25449.32, + "end": 25450.88, + "probability": 0.8543 + }, + { + "start": 25450.92, + "end": 25452.68, + "probability": 0.5669 + }, + { + "start": 25453.94, + "end": 25455.36, + "probability": 0.5797 + }, + { + "start": 25456.74, + "end": 25462.92, + "probability": 0.8354 + }, + { + "start": 25463.48, + "end": 25465.1, + "probability": 0.8976 + }, + { + "start": 25465.32, + "end": 25469.66, + "probability": 0.979 + }, + { + "start": 25470.92, + "end": 25473.59, + "probability": 0.96 + }, + { + "start": 25474.48, + "end": 25475.22, + "probability": 0.7759 + }, + { + "start": 25477.22, + "end": 25479.68, + "probability": 0.9581 + }, + { + "start": 25481.4, + "end": 25483.78, + "probability": 0.4257 + }, + { + "start": 25483.78, + "end": 25485.8, + "probability": 0.8726 + }, + { + "start": 25487.58, + "end": 25488.52, + "probability": 0.4808 + }, + { + "start": 25488.68, + "end": 25488.74, + "probability": 0.3477 + }, + { + "start": 25488.74, + "end": 25488.88, + "probability": 0.0605 + }, + { + "start": 25488.88, + "end": 25489.36, + "probability": 0.3525 + }, + { + "start": 25489.44, + "end": 25492.09, + "probability": 0.6569 + }, + { + "start": 25492.34, + "end": 25493.63, + "probability": 0.6205 + }, + { + "start": 25494.4, + "end": 25495.9, + "probability": 0.9758 + }, + { + "start": 25496.56, + "end": 25497.22, + "probability": 0.4064 + }, + { + "start": 25497.92, + "end": 25503.52, + "probability": 0.9774 + }, + { + "start": 25504.98, + "end": 25506.14, + "probability": 0.2559 + }, + { + "start": 25506.14, + "end": 25506.49, + "probability": 0.4902 + }, + { + "start": 25506.88, + "end": 25508.16, + "probability": 0.7203 + }, + { + "start": 25508.26, + "end": 25511.36, + "probability": 0.3301 + }, + { + "start": 25511.72, + "end": 25511.76, + "probability": 0.5552 + }, + { + "start": 25511.82, + "end": 25512.02, + "probability": 0.5174 + }, + { + "start": 25512.02, + "end": 25513.98, + "probability": 0.865 + }, + { + "start": 25514.12, + "end": 25514.72, + "probability": 0.2138 + }, + { + "start": 25515.6, + "end": 25515.64, + "probability": 0.1354 + }, + { + "start": 25515.64, + "end": 25522.6, + "probability": 0.9907 + }, + { + "start": 25523.74, + "end": 25525.66, + "probability": 0.8442 + }, + { + "start": 25525.72, + "end": 25529.22, + "probability": 0.9966 + }, + { + "start": 25530.58, + "end": 25531.24, + "probability": 0.7551 + }, + { + "start": 25531.52, + "end": 25532.64, + "probability": 0.7464 + }, + { + "start": 25532.76, + "end": 25536.78, + "probability": 0.9728 + }, + { + "start": 25536.82, + "end": 25537.78, + "probability": 0.994 + }, + { + "start": 25538.38, + "end": 25539.92, + "probability": 0.927 + }, + { + "start": 25540.9, + "end": 25545.34, + "probability": 0.732 + }, + { + "start": 25545.46, + "end": 25546.38, + "probability": 0.9224 + }, + { + "start": 25547.58, + "end": 25549.22, + "probability": 0.8799 + }, + { + "start": 25549.46, + "end": 25554.2, + "probability": 0.9888 + }, + { + "start": 25556.58, + "end": 25559.14, + "probability": 0.8747 + }, + { + "start": 25559.28, + "end": 25566.42, + "probability": 0.9807 + }, + { + "start": 25566.88, + "end": 25568.0, + "probability": 0.7229 + }, + { + "start": 25570.02, + "end": 25572.88, + "probability": 0.5988 + }, + { + "start": 25573.6, + "end": 25574.22, + "probability": 0.5202 + }, + { + "start": 25575.06, + "end": 25579.12, + "probability": 0.8762 + }, + { + "start": 25579.68, + "end": 25580.06, + "probability": 0.471 + }, + { + "start": 25581.28, + "end": 25581.84, + "probability": 0.5012 + }, + { + "start": 25583.76, + "end": 25586.62, + "probability": 0.8923 + }, + { + "start": 25587.56, + "end": 25587.94, + "probability": 0.6577 + }, + { + "start": 25589.04, + "end": 25594.36, + "probability": 0.8805 + }, + { + "start": 25595.24, + "end": 25597.5, + "probability": 0.8924 + }, + { + "start": 25598.02, + "end": 25602.78, + "probability": 0.9235 + }, + { + "start": 25605.04, + "end": 25607.94, + "probability": 0.674 + }, + { + "start": 25608.96, + "end": 25611.7, + "probability": 0.9686 + }, + { + "start": 25612.3, + "end": 25613.28, + "probability": 0.7959 + }, + { + "start": 25614.06, + "end": 25614.64, + "probability": 0.8584 + }, + { + "start": 25615.16, + "end": 25616.36, + "probability": 0.9576 + }, + { + "start": 25616.88, + "end": 25617.64, + "probability": 0.8618 + }, + { + "start": 25618.62, + "end": 25619.58, + "probability": 0.8954 + }, + { + "start": 25621.2, + "end": 25623.0, + "probability": 0.561 + }, + { + "start": 25623.38, + "end": 25628.92, + "probability": 0.9147 + }, + { + "start": 25629.24, + "end": 25630.54, + "probability": 0.9715 + }, + { + "start": 25631.78, + "end": 25632.5, + "probability": 0.6898 + }, + { + "start": 25633.38, + "end": 25635.04, + "probability": 0.9016 + }, + { + "start": 25635.96, + "end": 25637.02, + "probability": 0.8335 + }, + { + "start": 25637.68, + "end": 25637.82, + "probability": 0.6577 + }, + { + "start": 25638.36, + "end": 25639.67, + "probability": 0.4259 + }, + { + "start": 25640.9, + "end": 25643.06, + "probability": 0.4319 + }, + { + "start": 25643.3, + "end": 25643.42, + "probability": 0.0238 + }, + { + "start": 25643.42, + "end": 25646.18, + "probability": 0.9164 + }, + { + "start": 25646.94, + "end": 25648.16, + "probability": 0.3928 + }, + { + "start": 25648.6, + "end": 25649.98, + "probability": 0.904 + }, + { + "start": 25650.5, + "end": 25653.86, + "probability": 0.5762 + }, + { + "start": 25654.6, + "end": 25657.36, + "probability": 0.8632 + }, + { + "start": 25658.6, + "end": 25659.2, + "probability": 0.6676 + }, + { + "start": 25660.16, + "end": 25661.08, + "probability": 0.095 + }, + { + "start": 25661.8, + "end": 25664.0, + "probability": 0.8178 + }, + { + "start": 25664.64, + "end": 25667.02, + "probability": 0.9355 + }, + { + "start": 25667.6, + "end": 25668.04, + "probability": 0.3464 + }, + { + "start": 25668.04, + "end": 25671.36, + "probability": 0.8142 + }, + { + "start": 25672.42, + "end": 25673.88, + "probability": 0.775 + }, + { + "start": 25674.72, + "end": 25675.76, + "probability": 0.8871 + }, + { + "start": 25676.72, + "end": 25678.3, + "probability": 0.8839 + }, + { + "start": 25679.52, + "end": 25681.08, + "probability": 0.2825 + }, + { + "start": 25681.42, + "end": 25683.66, + "probability": 0.6562 + }, + { + "start": 25684.52, + "end": 25690.14, + "probability": 0.9637 + }, + { + "start": 25691.64, + "end": 25692.34, + "probability": 0.4189 + }, + { + "start": 25695.0, + "end": 25696.46, + "probability": 0.9681 + }, + { + "start": 25697.9, + "end": 25699.98, + "probability": 0.9038 + }, + { + "start": 25702.16, + "end": 25707.1, + "probability": 0.9177 + }, + { + "start": 25707.1, + "end": 25711.86, + "probability": 0.9504 + }, + { + "start": 25714.6, + "end": 25715.46, + "probability": 0.6971 + }, + { + "start": 25715.46, + "end": 25717.42, + "probability": 0.9529 + }, + { + "start": 25717.52, + "end": 25719.32, + "probability": 0.8779 + }, + { + "start": 25720.06, + "end": 25721.06, + "probability": 0.9941 + }, + { + "start": 25723.14, + "end": 25723.56, + "probability": 0.5753 + }, + { + "start": 25723.84, + "end": 25725.46, + "probability": 0.9478 + }, + { + "start": 25725.54, + "end": 25727.7, + "probability": 0.8424 + }, + { + "start": 25728.08, + "end": 25729.87, + "probability": 0.9828 + }, + { + "start": 25732.56, + "end": 25737.64, + "probability": 0.9622 + }, + { + "start": 25737.96, + "end": 25739.04, + "probability": 0.7567 + }, + { + "start": 25740.08, + "end": 25742.58, + "probability": 0.9914 + }, + { + "start": 25743.92, + "end": 25750.36, + "probability": 0.9827 + }, + { + "start": 25751.48, + "end": 25758.78, + "probability": 0.9424 + }, + { + "start": 25759.34, + "end": 25763.88, + "probability": 0.9902 + }, + { + "start": 25764.34, + "end": 25766.84, + "probability": 0.5919 + }, + { + "start": 25766.88, + "end": 25767.34, + "probability": 0.3439 + }, + { + "start": 25768.04, + "end": 25769.16, + "probability": 0.4824 + }, + { + "start": 25769.4, + "end": 25769.7, + "probability": 0.8101 + }, + { + "start": 25770.0, + "end": 25771.68, + "probability": 0.5945 + }, + { + "start": 25771.78, + "end": 25772.66, + "probability": 0.6606 + }, + { + "start": 25772.82, + "end": 25773.86, + "probability": 0.5396 + }, + { + "start": 25774.18, + "end": 25775.24, + "probability": 0.1259 + }, + { + "start": 25775.46, + "end": 25775.78, + "probability": 0.5674 + }, + { + "start": 25782.06, + "end": 25782.16, + "probability": 0.6475 + }, + { + "start": 25784.2, + "end": 25786.14, + "probability": 0.0927 + }, + { + "start": 25802.2, + "end": 25803.34, + "probability": 0.5637 + }, + { + "start": 25804.26, + "end": 25805.36, + "probability": 0.6088 + }, + { + "start": 25810.1, + "end": 25812.24, + "probability": 0.9971 + }, + { + "start": 25815.36, + "end": 25817.05, + "probability": 0.7059 + }, + { + "start": 25818.52, + "end": 25820.8, + "probability": 0.8432 + }, + { + "start": 25822.85, + "end": 25826.3, + "probability": 0.9146 + }, + { + "start": 25826.88, + "end": 25831.1, + "probability": 0.9976 + }, + { + "start": 25832.28, + "end": 25833.89, + "probability": 0.959 + }, + { + "start": 25834.48, + "end": 25834.87, + "probability": 0.532 + }, + { + "start": 25835.22, + "end": 25835.44, + "probability": 0.4021 + }, + { + "start": 25835.6, + "end": 25838.42, + "probability": 0.9722 + }, + { + "start": 25839.22, + "end": 25841.58, + "probability": 0.9064 + }, + { + "start": 25841.76, + "end": 25842.48, + "probability": 0.9062 + }, + { + "start": 25843.18, + "end": 25845.64, + "probability": 0.8714 + }, + { + "start": 25846.54, + "end": 25848.14, + "probability": 0.9437 + }, + { + "start": 25848.68, + "end": 25851.06, + "probability": 0.9301 + }, + { + "start": 25852.4, + "end": 25853.98, + "probability": 0.8873 + }, + { + "start": 25854.1, + "end": 25855.36, + "probability": 0.8521 + }, + { + "start": 25855.4, + "end": 25858.66, + "probability": 0.9685 + }, + { + "start": 25859.98, + "end": 25862.42, + "probability": 0.9719 + }, + { + "start": 25865.58, + "end": 25870.49, + "probability": 0.9514 + }, + { + "start": 25871.3, + "end": 25873.83, + "probability": 0.9955 + }, + { + "start": 25874.42, + "end": 25877.26, + "probability": 0.6135 + }, + { + "start": 25878.72, + "end": 25881.34, + "probability": 0.7755 + }, + { + "start": 25881.42, + "end": 25882.86, + "probability": 0.8977 + }, + { + "start": 25883.2, + "end": 25884.8, + "probability": 0.867 + }, + { + "start": 25885.0, + "end": 25889.54, + "probability": 0.915 + }, + { + "start": 25890.9, + "end": 25893.58, + "probability": 0.98 + }, + { + "start": 25894.13, + "end": 25897.52, + "probability": 0.8475 + }, + { + "start": 25897.82, + "end": 25899.14, + "probability": 0.5876 + }, + { + "start": 25899.58, + "end": 25900.68, + "probability": 0.6567 + }, + { + "start": 25901.06, + "end": 25905.12, + "probability": 0.9812 + }, + { + "start": 25905.34, + "end": 25907.02, + "probability": 0.2618 + }, + { + "start": 25907.02, + "end": 25909.38, + "probability": 0.9016 + }, + { + "start": 25909.38, + "end": 25909.84, + "probability": 0.4688 + }, + { + "start": 25910.44, + "end": 25911.86, + "probability": 0.6765 + }, + { + "start": 25913.94, + "end": 25916.26, + "probability": 0.9391 + }, + { + "start": 25916.36, + "end": 25917.94, + "probability": 0.8823 + }, + { + "start": 25918.54, + "end": 25920.7, + "probability": 0.9766 + }, + { + "start": 25920.84, + "end": 25923.36, + "probability": 0.947 + }, + { + "start": 25923.84, + "end": 25925.94, + "probability": 0.9868 + }, + { + "start": 25926.26, + "end": 25929.28, + "probability": 0.993 + }, + { + "start": 25929.94, + "end": 25930.94, + "probability": 0.9604 + }, + { + "start": 25931.22, + "end": 25933.8, + "probability": 0.8296 + }, + { + "start": 25934.32, + "end": 25938.22, + "probability": 0.9373 + }, + { + "start": 25940.46, + "end": 25943.02, + "probability": 0.9815 + }, + { + "start": 25943.22, + "end": 25943.84, + "probability": 0.7315 + }, + { + "start": 25944.92, + "end": 25947.16, + "probability": 0.7457 + }, + { + "start": 25947.24, + "end": 25951.66, + "probability": 0.9942 + }, + { + "start": 25951.66, + "end": 25954.56, + "probability": 0.9973 + }, + { + "start": 25956.04, + "end": 25956.48, + "probability": 0.9855 + }, + { + "start": 25959.44, + "end": 25960.4, + "probability": 0.762 + }, + { + "start": 25962.58, + "end": 25963.62, + "probability": 0.6134 + }, + { + "start": 25965.42, + "end": 25969.28, + "probability": 0.7336 + }, + { + "start": 25970.2, + "end": 25971.21, + "probability": 0.9213 + }, + { + "start": 25972.1, + "end": 25975.26, + "probability": 0.7919 + }, + { + "start": 25975.64, + "end": 25978.92, + "probability": 0.7251 + }, + { + "start": 25978.96, + "end": 25981.16, + "probability": 0.9172 + }, + { + "start": 25982.19, + "end": 25986.14, + "probability": 0.9022 + }, + { + "start": 25986.78, + "end": 25988.76, + "probability": 0.9456 + }, + { + "start": 25990.6, + "end": 25993.64, + "probability": 0.4695 + }, + { + "start": 25995.1, + "end": 25996.54, + "probability": 0.8977 + }, + { + "start": 25996.6, + "end": 25999.88, + "probability": 0.9507 + }, + { + "start": 26000.02, + "end": 26003.5, + "probability": 0.8558 + }, + { + "start": 26005.6, + "end": 26005.6, + "probability": 0.0139 + }, + { + "start": 26006.28, + "end": 26008.92, + "probability": 0.8846 + }, + { + "start": 26009.96, + "end": 26013.72, + "probability": 0.9232 + }, + { + "start": 26013.94, + "end": 26014.6, + "probability": 0.2893 + }, + { + "start": 26014.68, + "end": 26015.2, + "probability": 0.7955 + }, + { + "start": 26015.34, + "end": 26015.98, + "probability": 0.6819 + }, + { + "start": 26016.14, + "end": 26021.02, + "probability": 0.9823 + }, + { + "start": 26021.1, + "end": 26025.98, + "probability": 0.8642 + }, + { + "start": 26026.44, + "end": 26028.84, + "probability": 0.8708 + }, + { + "start": 26031.78, + "end": 26032.58, + "probability": 0.7814 + }, + { + "start": 26032.66, + "end": 26034.14, + "probability": 0.6458 + }, + { + "start": 26034.62, + "end": 26037.28, + "probability": 0.7579 + }, + { + "start": 26037.98, + "end": 26040.86, + "probability": 0.9101 + }, + { + "start": 26040.86, + "end": 26041.24, + "probability": 0.463 + }, + { + "start": 26041.36, + "end": 26045.54, + "probability": 0.8589 + }, + { + "start": 26046.34, + "end": 26049.8, + "probability": 0.6928 + }, + { + "start": 26050.02, + "end": 26051.86, + "probability": 0.8429 + }, + { + "start": 26052.48, + "end": 26057.02, + "probability": 0.7563 + }, + { + "start": 26058.42, + "end": 26060.46, + "probability": 0.7571 + }, + { + "start": 26060.96, + "end": 26064.68, + "probability": 0.869 + }, + { + "start": 26064.82, + "end": 26068.68, + "probability": 0.9314 + }, + { + "start": 26068.72, + "end": 26072.12, + "probability": 0.8186 + }, + { + "start": 26073.26, + "end": 26074.86, + "probability": 0.8801 + }, + { + "start": 26075.52, + "end": 26077.62, + "probability": 0.3829 + }, + { + "start": 26079.62, + "end": 26080.52, + "probability": 0.9073 + }, + { + "start": 26081.38, + "end": 26085.54, + "probability": 0.9536 + }, + { + "start": 26085.82, + "end": 26087.18, + "probability": 0.6893 + }, + { + "start": 26087.32, + "end": 26089.42, + "probability": 0.7092 + }, + { + "start": 26089.88, + "end": 26091.98, + "probability": 0.8671 + }, + { + "start": 26092.06, + "end": 26094.88, + "probability": 0.8167 + }, + { + "start": 26096.54, + "end": 26097.79, + "probability": 0.9724 + }, + { + "start": 26098.84, + "end": 26101.88, + "probability": 0.8633 + }, + { + "start": 26102.92, + "end": 26106.86, + "probability": 0.6821 + }, + { + "start": 26107.16, + "end": 26113.82, + "probability": 0.8239 + }, + { + "start": 26114.02, + "end": 26114.72, + "probability": 0.8562 + }, + { + "start": 26115.26, + "end": 26121.14, + "probability": 0.9701 + }, + { + "start": 26121.22, + "end": 26122.32, + "probability": 0.9719 + }, + { + "start": 26124.46, + "end": 26129.56, + "probability": 0.7382 + }, + { + "start": 26131.6, + "end": 26132.64, + "probability": 0.4591 + }, + { + "start": 26133.06, + "end": 26138.24, + "probability": 0.9494 + }, + { + "start": 26139.1, + "end": 26139.85, + "probability": 0.9574 + }, + { + "start": 26140.24, + "end": 26145.2, + "probability": 0.8612 + }, + { + "start": 26145.2, + "end": 26145.76, + "probability": 0.5582 + }, + { + "start": 26147.34, + "end": 26151.84, + "probability": 0.9792 + }, + { + "start": 26151.84, + "end": 26155.66, + "probability": 0.8309 + }, + { + "start": 26157.78, + "end": 26162.36, + "probability": 0.9563 + }, + { + "start": 26162.82, + "end": 26168.38, + "probability": 0.8289 + }, + { + "start": 26169.64, + "end": 26173.18, + "probability": 0.7233 + }, + { + "start": 26173.5, + "end": 26177.1, + "probability": 0.9395 + }, + { + "start": 26178.46, + "end": 26182.28, + "probability": 0.991 + }, + { + "start": 26183.8, + "end": 26186.2, + "probability": 0.9328 + }, + { + "start": 26186.2, + "end": 26188.82, + "probability": 0.9726 + }, + { + "start": 26189.72, + "end": 26192.52, + "probability": 0.6079 + }, + { + "start": 26193.12, + "end": 26194.8, + "probability": 0.6495 + }, + { + "start": 26196.52, + "end": 26200.68, + "probability": 0.8682 + }, + { + "start": 26202.18, + "end": 26204.98, + "probability": 0.9836 + }, + { + "start": 26205.02, + "end": 26208.18, + "probability": 0.9912 + }, + { + "start": 26209.0, + "end": 26212.48, + "probability": 0.9658 + }, + { + "start": 26212.48, + "end": 26216.12, + "probability": 0.9882 + }, + { + "start": 26216.4, + "end": 26218.94, + "probability": 0.9649 + }, + { + "start": 26219.46, + "end": 26226.28, + "probability": 0.9902 + }, + { + "start": 26226.32, + "end": 26227.6, + "probability": 0.8228 + }, + { + "start": 26227.76, + "end": 26229.88, + "probability": 0.2279 + }, + { + "start": 26230.88, + "end": 26232.64, + "probability": 0.8264 + }, + { + "start": 26233.58, + "end": 26236.74, + "probability": 0.9932 + }, + { + "start": 26238.62, + "end": 26242.84, + "probability": 0.9856 + }, + { + "start": 26243.48, + "end": 26248.8, + "probability": 0.9453 + }, + { + "start": 26250.54, + "end": 26252.7, + "probability": 0.9155 + }, + { + "start": 26253.26, + "end": 26258.08, + "probability": 0.9911 + }, + { + "start": 26261.98, + "end": 26263.28, + "probability": 0.9122 + }, + { + "start": 26265.2, + "end": 26265.9, + "probability": 0.6524 + }, + { + "start": 26267.88, + "end": 26272.0, + "probability": 0.8667 + }, + { + "start": 26272.22, + "end": 26276.16, + "probability": 0.9258 + }, + { + "start": 26276.46, + "end": 26279.16, + "probability": 0.9661 + }, + { + "start": 26279.4, + "end": 26282.18, + "probability": 0.9426 + }, + { + "start": 26283.7, + "end": 26286.4, + "probability": 0.9993 + }, + { + "start": 26286.4, + "end": 26289.6, + "probability": 0.9958 + }, + { + "start": 26289.9, + "end": 26290.84, + "probability": 0.9915 + }, + { + "start": 26291.42, + "end": 26292.92, + "probability": 0.9946 + }, + { + "start": 26292.98, + "end": 26298.38, + "probability": 0.9832 + }, + { + "start": 26299.48, + "end": 26303.14, + "probability": 0.8201 + }, + { + "start": 26306.5, + "end": 26309.92, + "probability": 0.9969 + }, + { + "start": 26311.74, + "end": 26316.68, + "probability": 0.7805 + }, + { + "start": 26318.74, + "end": 26321.54, + "probability": 0.939 + }, + { + "start": 26322.18, + "end": 26324.68, + "probability": 0.9193 + }, + { + "start": 26326.68, + "end": 26328.58, + "probability": 0.9856 + }, + { + "start": 26329.6, + "end": 26335.86, + "probability": 0.99 + }, + { + "start": 26336.28, + "end": 26337.0, + "probability": 0.9575 + }, + { + "start": 26337.56, + "end": 26338.3, + "probability": 0.5383 + }, + { + "start": 26338.42, + "end": 26343.76, + "probability": 0.7751 + }, + { + "start": 26345.04, + "end": 26346.52, + "probability": 0.8117 + }, + { + "start": 26346.84, + "end": 26350.34, + "probability": 0.9712 + }, + { + "start": 26350.44, + "end": 26352.22, + "probability": 0.9091 + }, + { + "start": 26355.04, + "end": 26357.36, + "probability": 0.921 + }, + { + "start": 26358.02, + "end": 26361.98, + "probability": 0.8791 + }, + { + "start": 26362.56, + "end": 26364.18, + "probability": 0.6246 + }, + { + "start": 26364.82, + "end": 26365.84, + "probability": 0.9197 + }, + { + "start": 26366.4, + "end": 26368.38, + "probability": 0.9888 + }, + { + "start": 26368.44, + "end": 26370.98, + "probability": 0.8682 + }, + { + "start": 26372.14, + "end": 26374.24, + "probability": 0.9863 + }, + { + "start": 26376.04, + "end": 26378.54, + "probability": 0.9792 + }, + { + "start": 26379.24, + "end": 26379.54, + "probability": 0.4044 + }, + { + "start": 26379.76, + "end": 26380.64, + "probability": 0.9788 + }, + { + "start": 26380.82, + "end": 26384.76, + "probability": 0.9927 + }, + { + "start": 26385.9, + "end": 26389.2, + "probability": 0.9388 + }, + { + "start": 26389.94, + "end": 26391.44, + "probability": 0.9158 + }, + { + "start": 26391.92, + "end": 26392.8, + "probability": 0.6067 + }, + { + "start": 26393.34, + "end": 26400.14, + "probability": 0.9128 + }, + { + "start": 26400.78, + "end": 26402.1, + "probability": 0.8101 + }, + { + "start": 26403.34, + "end": 26404.2, + "probability": 0.771 + }, + { + "start": 26404.36, + "end": 26409.94, + "probability": 0.9914 + }, + { + "start": 26410.14, + "end": 26412.1, + "probability": 0.9614 + }, + { + "start": 26412.32, + "end": 26413.14, + "probability": 0.7529 + }, + { + "start": 26413.24, + "end": 26414.43, + "probability": 0.9766 + }, + { + "start": 26414.78, + "end": 26415.88, + "probability": 0.854 + }, + { + "start": 26415.92, + "end": 26416.2, + "probability": 0.6856 + }, + { + "start": 26416.28, + "end": 26416.88, + "probability": 0.9603 + }, + { + "start": 26417.9, + "end": 26420.3, + "probability": 0.9772 + }, + { + "start": 26420.36, + "end": 26421.26, + "probability": 0.9385 + }, + { + "start": 26421.66, + "end": 26422.7, + "probability": 0.9729 + }, + { + "start": 26423.44, + "end": 26426.02, + "probability": 0.5161 + }, + { + "start": 26426.2, + "end": 26427.36, + "probability": 0.5119 + }, + { + "start": 26428.1, + "end": 26430.62, + "probability": 0.9823 + }, + { + "start": 26431.54, + "end": 26432.78, + "probability": 0.7193 + }, + { + "start": 26432.92, + "end": 26437.48, + "probability": 0.9956 + }, + { + "start": 26438.44, + "end": 26440.26, + "probability": 0.9715 + }, + { + "start": 26440.32, + "end": 26443.38, + "probability": 0.9727 + }, + { + "start": 26443.44, + "end": 26444.56, + "probability": 0.8586 + }, + { + "start": 26444.82, + "end": 26445.43, + "probability": 0.9148 + }, + { + "start": 26445.55, + "end": 26445.91, + "probability": 0.7169 + }, + { + "start": 26446.81, + "end": 26452.81, + "probability": 0.994 + }, + { + "start": 26452.87, + "end": 26453.36, + "probability": 0.8536 + }, + { + "start": 26454.01, + "end": 26456.88, + "probability": 0.9653 + }, + { + "start": 26458.11, + "end": 26460.67, + "probability": 0.2411 + }, + { + "start": 26461.25, + "end": 26467.13, + "probability": 0.8896 + }, + { + "start": 26467.77, + "end": 26473.33, + "probability": 0.9505 + }, + { + "start": 26474.07, + "end": 26477.21, + "probability": 0.9863 + }, + { + "start": 26477.21, + "end": 26480.79, + "probability": 0.785 + }, + { + "start": 26481.19, + "end": 26484.67, + "probability": 0.9541 + }, + { + "start": 26486.01, + "end": 26488.67, + "probability": 0.9606 + }, + { + "start": 26489.73, + "end": 26491.95, + "probability": 0.4709 + }, + { + "start": 26492.53, + "end": 26493.77, + "probability": 0.0573 + }, + { + "start": 26493.77, + "end": 26494.17, + "probability": 0.4299 + }, + { + "start": 26494.35, + "end": 26495.85, + "probability": 0.2527 + }, + { + "start": 26496.45, + "end": 26498.65, + "probability": 0.2133 + }, + { + "start": 26499.35, + "end": 26499.61, + "probability": 0.3358 + }, + { + "start": 26499.91, + "end": 26502.33, + "probability": 0.3115 + }, + { + "start": 26503.4, + "end": 26506.73, + "probability": 0.1202 + }, + { + "start": 26507.95, + "end": 26511.57, + "probability": 0.7686 + }, + { + "start": 26511.65, + "end": 26513.03, + "probability": 0.0881 + }, + { + "start": 26513.13, + "end": 26513.85, + "probability": 0.7375 + }, + { + "start": 26513.93, + "end": 26515.31, + "probability": 0.4685 + }, + { + "start": 26515.43, + "end": 26516.43, + "probability": 0.7526 + }, + { + "start": 26516.67, + "end": 26517.55, + "probability": 0.0038 + }, + { + "start": 26519.83, + "end": 26519.97, + "probability": 0.1135 + }, + { + "start": 26520.18, + "end": 26520.25, + "probability": 0.146 + }, + { + "start": 26520.31, + "end": 26521.83, + "probability": 0.2681 + }, + { + "start": 26522.19, + "end": 26523.93, + "probability": 0.2883 + }, + { + "start": 26523.95, + "end": 26523.95, + "probability": 0.4331 + }, + { + "start": 26523.99, + "end": 26525.87, + "probability": 0.6301 + }, + { + "start": 26528.17, + "end": 26529.27, + "probability": 0.462 + }, + { + "start": 26529.27, + "end": 26529.47, + "probability": 0.3769 + }, + { + "start": 26529.47, + "end": 26529.47, + "probability": 0.7368 + }, + { + "start": 26529.47, + "end": 26529.96, + "probability": 0.1973 + }, + { + "start": 26530.61, + "end": 26531.43, + "probability": 0.4051 + }, + { + "start": 26531.87, + "end": 26532.97, + "probability": 0.7029 + }, + { + "start": 26533.05, + "end": 26533.73, + "probability": 0.7472 + }, + { + "start": 26534.19, + "end": 26535.57, + "probability": 0.7671 + }, + { + "start": 26536.25, + "end": 26539.85, + "probability": 0.6807 + }, + { + "start": 26540.33, + "end": 26543.66, + "probability": 0.8883 + }, + { + "start": 26544.26, + "end": 26546.25, + "probability": 0.0184 + }, + { + "start": 26546.25, + "end": 26546.37, + "probability": 0.0729 + }, + { + "start": 26546.37, + "end": 26547.65, + "probability": 0.8665 + }, + { + "start": 26547.95, + "end": 26549.99, + "probability": 0.7988 + }, + { + "start": 26550.67, + "end": 26552.69, + "probability": 0.8101 + }, + { + "start": 26552.87, + "end": 26558.19, + "probability": 0.8799 + }, + { + "start": 26558.27, + "end": 26558.85, + "probability": 0.7332 + }, + { + "start": 26558.93, + "end": 26559.35, + "probability": 0.0939 + }, + { + "start": 26559.39, + "end": 26560.09, + "probability": 0.7357 + }, + { + "start": 26560.35, + "end": 26560.81, + "probability": 0.7611 + }, + { + "start": 26561.29, + "end": 26563.53, + "probability": 0.8808 + }, + { + "start": 26564.39, + "end": 26564.39, + "probability": 0.2328 + }, + { + "start": 26564.39, + "end": 26566.49, + "probability": 0.6672 + }, + { + "start": 26567.01, + "end": 26569.11, + "probability": 0.4982 + }, + { + "start": 26569.29, + "end": 26569.67, + "probability": 0.8241 + }, + { + "start": 26570.03, + "end": 26571.03, + "probability": 0.5128 + }, + { + "start": 26571.07, + "end": 26572.03, + "probability": 0.0216 + }, + { + "start": 26572.09, + "end": 26573.37, + "probability": 0.7969 + }, + { + "start": 26574.11, + "end": 26575.65, + "probability": 0.677 + }, + { + "start": 26576.07, + "end": 26576.77, + "probability": 0.7277 + }, + { + "start": 26577.12, + "end": 26577.47, + "probability": 0.1512 + }, + { + "start": 26578.17, + "end": 26581.73, + "probability": 0.7215 + }, + { + "start": 26581.83, + "end": 26583.47, + "probability": 0.6652 + }, + { + "start": 26583.97, + "end": 26586.72, + "probability": 0.8647 + }, + { + "start": 26587.71, + "end": 26588.91, + "probability": 0.8457 + }, + { + "start": 26589.29, + "end": 26590.53, + "probability": 0.9309 + }, + { + "start": 26590.67, + "end": 26593.81, + "probability": 0.9774 + }, + { + "start": 26594.01, + "end": 26595.07, + "probability": 0.9722 + }, + { + "start": 26596.65, + "end": 26599.83, + "probability": 0.979 + }, + { + "start": 26601.11, + "end": 26602.21, + "probability": 0.9663 + }, + { + "start": 26602.41, + "end": 26603.39, + "probability": 0.7495 + }, + { + "start": 26603.75, + "end": 26604.69, + "probability": 0.9646 + }, + { + "start": 26605.25, + "end": 26607.1, + "probability": 0.9843 + }, + { + "start": 26607.35, + "end": 26608.47, + "probability": 0.9445 + }, + { + "start": 26608.49, + "end": 26608.85, + "probability": 0.2577 + }, + { + "start": 26609.7, + "end": 26611.61, + "probability": 0.2802 + }, + { + "start": 26612.67, + "end": 26613.07, + "probability": 0.0378 + }, + { + "start": 26613.07, + "end": 26613.43, + "probability": 0.4915 + }, + { + "start": 26613.43, + "end": 26614.03, + "probability": 0.5208 + }, + { + "start": 26614.03, + "end": 26614.53, + "probability": 0.4883 + }, + { + "start": 26615.13, + "end": 26615.13, + "probability": 0.7631 + }, + { + "start": 26615.29, + "end": 26617.69, + "probability": 0.9693 + }, + { + "start": 26618.35, + "end": 26619.77, + "probability": 0.9445 + }, + { + "start": 26620.63, + "end": 26625.37, + "probability": 0.9667 + }, + { + "start": 26626.49, + "end": 26628.55, + "probability": 0.6398 + }, + { + "start": 26628.63, + "end": 26629.57, + "probability": 0.9895 + }, + { + "start": 26631.49, + "end": 26631.67, + "probability": 0.2208 + }, + { + "start": 26632.3, + "end": 26633.67, + "probability": 0.8799 + }, + { + "start": 26634.39, + "end": 26636.27, + "probability": 0.9141 + }, + { + "start": 26636.89, + "end": 26638.67, + "probability": 0.8913 + }, + { + "start": 26639.71, + "end": 26640.67, + "probability": 0.6183 + }, + { + "start": 26641.67, + "end": 26642.71, + "probability": 0.1091 + }, + { + "start": 26644.08, + "end": 26647.37, + "probability": 0.9193 + }, + { + "start": 26647.79, + "end": 26649.29, + "probability": 0.9251 + }, + { + "start": 26649.67, + "end": 26650.83, + "probability": 0.967 + }, + { + "start": 26651.05, + "end": 26651.63, + "probability": 0.7892 + }, + { + "start": 26651.69, + "end": 26652.13, + "probability": 0.841 + }, + { + "start": 26652.19, + "end": 26652.67, + "probability": 0.9299 + }, + { + "start": 26654.29, + "end": 26656.45, + "probability": 0.8177 + }, + { + "start": 26657.23, + "end": 26659.15, + "probability": 0.9045 + }, + { + "start": 26659.39, + "end": 26660.03, + "probability": 0.6405 + }, + { + "start": 26660.23, + "end": 26660.87, + "probability": 0.7316 + }, + { + "start": 26661.25, + "end": 26662.51, + "probability": 0.9441 + }, + { + "start": 26662.57, + "end": 26663.29, + "probability": 0.7264 + }, + { + "start": 26664.35, + "end": 26666.17, + "probability": 0.9238 + }, + { + "start": 26667.83, + "end": 26668.73, + "probability": 0.9834 + }, + { + "start": 26668.81, + "end": 26670.0, + "probability": 0.9849 + }, + { + "start": 26671.83, + "end": 26672.45, + "probability": 0.6497 + }, + { + "start": 26672.53, + "end": 26679.01, + "probability": 0.9827 + }, + { + "start": 26681.09, + "end": 26685.41, + "probability": 0.9556 + }, + { + "start": 26687.53, + "end": 26691.87, + "probability": 0.9199 + }, + { + "start": 26692.03, + "end": 26692.71, + "probability": 0.8176 + }, + { + "start": 26693.15, + "end": 26694.99, + "probability": 0.8399 + }, + { + "start": 26696.01, + "end": 26699.97, + "probability": 0.8361 + }, + { + "start": 26700.39, + "end": 26701.63, + "probability": 0.5484 + }, + { + "start": 26702.39, + "end": 26703.89, + "probability": 0.6689 + }, + { + "start": 26705.1, + "end": 26710.05, + "probability": 0.842 + }, + { + "start": 26710.39, + "end": 26713.03, + "probability": 0.9971 + }, + { + "start": 26713.41, + "end": 26713.89, + "probability": 0.8223 + }, + { + "start": 26714.19, + "end": 26715.57, + "probability": 0.9147 + }, + { + "start": 26715.63, + "end": 26716.57, + "probability": 0.7017 + }, + { + "start": 26716.91, + "end": 26717.91, + "probability": 0.9155 + }, + { + "start": 26718.07, + "end": 26718.07, + "probability": 0.6445 + }, + { + "start": 26718.92, + "end": 26720.65, + "probability": 0.5613 + }, + { + "start": 26720.81, + "end": 26722.75, + "probability": 0.9287 + }, + { + "start": 26725.45, + "end": 26727.37, + "probability": 0.5801 + }, + { + "start": 26727.47, + "end": 26727.89, + "probability": 0.5518 + }, + { + "start": 26729.69, + "end": 26731.83, + "probability": 0.6874 + }, + { + "start": 26732.81, + "end": 26734.27, + "probability": 0.9527 + }, + { + "start": 26734.45, + "end": 26736.15, + "probability": 0.7714 + }, + { + "start": 26736.91, + "end": 26739.27, + "probability": 0.9945 + }, + { + "start": 26739.99, + "end": 26740.81, + "probability": 0.9971 + }, + { + "start": 26741.21, + "end": 26742.07, + "probability": 0.9386 + }, + { + "start": 26743.75, + "end": 26743.97, + "probability": 0.0515 + }, + { + "start": 26743.97, + "end": 26745.73, + "probability": 0.7738 + }, + { + "start": 26746.53, + "end": 26747.39, + "probability": 0.7728 + }, + { + "start": 26747.59, + "end": 26749.79, + "probability": 0.967 + }, + { + "start": 26750.17, + "end": 26751.25, + "probability": 0.9688 + }, + { + "start": 26751.87, + "end": 26755.34, + "probability": 0.9795 + }, + { + "start": 26755.55, + "end": 26756.49, + "probability": 0.9841 + }, + { + "start": 26757.09, + "end": 26757.09, + "probability": 0.256 + }, + { + "start": 26757.09, + "end": 26757.93, + "probability": 0.5298 + }, + { + "start": 26760.77, + "end": 26761.33, + "probability": 0.3829 + }, + { + "start": 26761.33, + "end": 26762.35, + "probability": 0.6546 + }, + { + "start": 26763.09, + "end": 26765.31, + "probability": 0.978 + }, + { + "start": 26765.43, + "end": 26766.25, + "probability": 0.1497 + }, + { + "start": 26766.83, + "end": 26768.41, + "probability": 0.9938 + }, + { + "start": 26768.47, + "end": 26768.77, + "probability": 0.0062 + }, + { + "start": 26769.27, + "end": 26769.99, + "probability": 0.5772 + }, + { + "start": 26770.55, + "end": 26772.29, + "probability": 0.9232 + }, + { + "start": 26773.81, + "end": 26775.84, + "probability": 0.7836 + }, + { + "start": 26777.01, + "end": 26778.59, + "probability": 0.9966 + }, + { + "start": 26779.15, + "end": 26779.98, + "probability": 0.7657 + }, + { + "start": 26780.81, + "end": 26781.89, + "probability": 0.9429 + }, + { + "start": 26781.97, + "end": 26783.45, + "probability": 0.9027 + }, + { + "start": 26783.51, + "end": 26783.89, + "probability": 0.9377 + }, + { + "start": 26784.37, + "end": 26784.47, + "probability": 0.0011 + }, + { + "start": 26788.28, + "end": 26788.49, + "probability": 0.288 + }, + { + "start": 26788.49, + "end": 26789.85, + "probability": 0.5815 + }, + { + "start": 26792.91, + "end": 26794.37, + "probability": 0.672 + }, + { + "start": 26794.73, + "end": 26795.53, + "probability": 0.9211 + }, + { + "start": 26796.69, + "end": 26798.04, + "probability": 0.9702 + }, + { + "start": 26798.15, + "end": 26799.51, + "probability": 0.9641 + }, + { + "start": 26799.77, + "end": 26802.29, + "probability": 0.9958 + }, + { + "start": 26802.39, + "end": 26802.79, + "probability": 0.8009 + }, + { + "start": 26802.91, + "end": 26803.79, + "probability": 0.7827 + }, + { + "start": 26804.19, + "end": 26806.81, + "probability": 0.7905 + }, + { + "start": 26806.87, + "end": 26809.37, + "probability": 0.9915 + }, + { + "start": 26809.91, + "end": 26811.53, + "probability": 0.9702 + }, + { + "start": 26812.85, + "end": 26813.27, + "probability": 0.6397 + }, + { + "start": 26813.27, + "end": 26814.58, + "probability": 0.8635 + }, + { + "start": 26815.63, + "end": 26819.83, + "probability": 0.9624 + }, + { + "start": 26820.25, + "end": 26822.47, + "probability": 0.9465 + }, + { + "start": 26822.47, + "end": 26823.58, + "probability": 0.6012 + }, + { + "start": 26823.77, + "end": 26824.57, + "probability": 0.7225 + }, + { + "start": 26825.05, + "end": 26827.61, + "probability": 0.6693 + }, + { + "start": 26827.73, + "end": 26830.25, + "probability": 0.7769 + }, + { + "start": 26830.73, + "end": 26834.45, + "probability": 0.834 + }, + { + "start": 26835.05, + "end": 26835.47, + "probability": 0.5338 + }, + { + "start": 26835.55, + "end": 26836.05, + "probability": 0.8241 + }, + { + "start": 26836.39, + "end": 26838.63, + "probability": 0.8948 + }, + { + "start": 26838.69, + "end": 26839.29, + "probability": 0.6404 + }, + { + "start": 26839.47, + "end": 26839.95, + "probability": 0.6902 + }, + { + "start": 26840.57, + "end": 26841.97, + "probability": 0.9844 + }, + { + "start": 26842.15, + "end": 26843.53, + "probability": 0.9674 + }, + { + "start": 26844.01, + "end": 26844.73, + "probability": 0.8965 + }, + { + "start": 26844.73, + "end": 26846.37, + "probability": 0.8467 + }, + { + "start": 26846.45, + "end": 26846.77, + "probability": 0.9484 + }, + { + "start": 26846.95, + "end": 26847.59, + "probability": 0.7024 + }, + { + "start": 26851.85, + "end": 26853.73, + "probability": 0.9753 + }, + { + "start": 26855.85, + "end": 26857.05, + "probability": 0.7709 + }, + { + "start": 26857.19, + "end": 26858.31, + "probability": 0.4715 + }, + { + "start": 26858.39, + "end": 26860.11, + "probability": 0.8362 + }, + { + "start": 26861.21, + "end": 26864.27, + "probability": 0.9296 + }, + { + "start": 26864.27, + "end": 26868.19, + "probability": 0.7413 + }, + { + "start": 26868.67, + "end": 26870.97, + "probability": 0.1381 + }, + { + "start": 26871.33, + "end": 26872.79, + "probability": 0.9696 + }, + { + "start": 26875.84, + "end": 26879.49, + "probability": 0.597 + }, + { + "start": 26880.01, + "end": 26883.97, + "probability": 0.5313 + }, + { + "start": 26884.37, + "end": 26884.47, + "probability": 0.7092 + }, + { + "start": 26885.59, + "end": 26886.07, + "probability": 0.6854 + }, + { + "start": 26886.35, + "end": 26887.59, + "probability": 0.7381 + }, + { + "start": 26906.57, + "end": 26908.35, + "probability": 0.6034 + }, + { + "start": 26911.65, + "end": 26913.73, + "probability": 0.9975 + }, + { + "start": 26915.03, + "end": 26917.21, + "probability": 0.9925 + }, + { + "start": 26918.61, + "end": 26920.07, + "probability": 0.9421 + }, + { + "start": 26921.77, + "end": 26927.73, + "probability": 0.8637 + }, + { + "start": 26927.89, + "end": 26929.15, + "probability": 0.55 + }, + { + "start": 26929.89, + "end": 26931.59, + "probability": 0.7437 + }, + { + "start": 26931.81, + "end": 26935.27, + "probability": 0.7356 + }, + { + "start": 26935.33, + "end": 26937.73, + "probability": 0.9165 + }, + { + "start": 26938.43, + "end": 26940.63, + "probability": 0.37 + }, + { + "start": 26941.23, + "end": 26942.45, + "probability": 0.8994 + }, + { + "start": 26943.79, + "end": 26947.47, + "probability": 0.62 + }, + { + "start": 26948.69, + "end": 26951.57, + "probability": 0.7386 + }, + { + "start": 26952.87, + "end": 26954.43, + "probability": 0.8079 + }, + { + "start": 26954.99, + "end": 26957.39, + "probability": 0.3774 + }, + { + "start": 26958.45, + "end": 26961.11, + "probability": 0.7656 + }, + { + "start": 26961.73, + "end": 26962.51, + "probability": 0.174 + }, + { + "start": 26963.19, + "end": 26964.65, + "probability": 0.4484 + }, + { + "start": 26965.93, + "end": 26973.31, + "probability": 0.9834 + }, + { + "start": 26973.73, + "end": 26974.61, + "probability": 0.6282 + }, + { + "start": 26975.69, + "end": 26979.96, + "probability": 0.9125 + }, + { + "start": 26981.51, + "end": 26982.23, + "probability": 0.3522 + }, + { + "start": 26982.45, + "end": 26986.75, + "probability": 0.8963 + }, + { + "start": 26987.33, + "end": 26989.72, + "probability": 0.9171 + }, + { + "start": 26990.63, + "end": 26991.89, + "probability": 0.6803 + }, + { + "start": 26993.81, + "end": 26995.43, + "probability": 0.9032 + }, + { + "start": 26996.75, + "end": 26999.55, + "probability": 0.9065 + }, + { + "start": 26999.99, + "end": 27000.63, + "probability": 0.7314 + }, + { + "start": 27000.75, + "end": 27001.91, + "probability": 0.697 + }, + { + "start": 27003.89, + "end": 27004.8, + "probability": 0.7537 + }, + { + "start": 27005.49, + "end": 27006.61, + "probability": 0.8828 + }, + { + "start": 27007.49, + "end": 27008.21, + "probability": 0.8933 + }, + { + "start": 27009.15, + "end": 27010.51, + "probability": 0.5522 + }, + { + "start": 27010.61, + "end": 27014.23, + "probability": 0.4978 + }, + { + "start": 27014.33, + "end": 27015.47, + "probability": 0.8111 + }, + { + "start": 27016.55, + "end": 27018.03, + "probability": 0.9923 + }, + { + "start": 27019.11, + "end": 27021.49, + "probability": 0.9941 + }, + { + "start": 27022.81, + "end": 27024.49, + "probability": 0.9137 + }, + { + "start": 27025.35, + "end": 27027.39, + "probability": 0.98 + }, + { + "start": 27028.17, + "end": 27030.49, + "probability": 0.8119 + }, + { + "start": 27031.47, + "end": 27035.35, + "probability": 0.8947 + }, + { + "start": 27036.01, + "end": 27036.69, + "probability": 0.8427 + }, + { + "start": 27036.83, + "end": 27038.71, + "probability": 0.7875 + }, + { + "start": 27039.85, + "end": 27041.59, + "probability": 0.822 + }, + { + "start": 27042.71, + "end": 27043.83, + "probability": 0.7875 + }, + { + "start": 27044.47, + "end": 27045.49, + "probability": 0.6637 + }, + { + "start": 27046.53, + "end": 27047.11, + "probability": 0.8098 + }, + { + "start": 27048.39, + "end": 27054.11, + "probability": 0.986 + }, + { + "start": 27056.25, + "end": 27056.75, + "probability": 0.9098 + }, + { + "start": 27058.77, + "end": 27059.91, + "probability": 0.9827 + }, + { + "start": 27061.37, + "end": 27063.07, + "probability": 0.9197 + }, + { + "start": 27063.31, + "end": 27065.41, + "probability": 0.9983 + }, + { + "start": 27065.85, + "end": 27067.22, + "probability": 0.7178 + }, + { + "start": 27068.41, + "end": 27070.91, + "probability": 0.9604 + }, + { + "start": 27071.59, + "end": 27073.19, + "probability": 0.7835 + }, + { + "start": 27074.29, + "end": 27074.89, + "probability": 0.6324 + }, + { + "start": 27075.79, + "end": 27080.79, + "probability": 0.8983 + }, + { + "start": 27081.43, + "end": 27081.85, + "probability": 0.7728 + }, + { + "start": 27081.89, + "end": 27082.59, + "probability": 0.702 + }, + { + "start": 27083.59, + "end": 27088.21, + "probability": 0.9951 + }, + { + "start": 27089.71, + "end": 27094.08, + "probability": 0.7678 + }, + { + "start": 27095.17, + "end": 27096.69, + "probability": 0.596 + }, + { + "start": 27097.53, + "end": 27099.79, + "probability": 0.99 + }, + { + "start": 27100.85, + "end": 27101.81, + "probability": 0.4993 + }, + { + "start": 27102.73, + "end": 27104.33, + "probability": 0.9789 + }, + { + "start": 27105.63, + "end": 27106.43, + "probability": 0.9591 + }, + { + "start": 27107.63, + "end": 27109.63, + "probability": 0.9974 + }, + { + "start": 27110.65, + "end": 27112.78, + "probability": 0.4873 + }, + { + "start": 27114.21, + "end": 27116.67, + "probability": 0.5821 + }, + { + "start": 27117.93, + "end": 27120.19, + "probability": 0.9688 + }, + { + "start": 27121.13, + "end": 27122.47, + "probability": 0.9705 + }, + { + "start": 27124.47, + "end": 27125.15, + "probability": 0.4631 + }, + { + "start": 27125.87, + "end": 27126.85, + "probability": 0.6679 + }, + { + "start": 27128.53, + "end": 27130.15, + "probability": 0.8406 + }, + { + "start": 27130.71, + "end": 27133.39, + "probability": 0.7467 + }, + { + "start": 27134.11, + "end": 27135.77, + "probability": 0.8072 + }, + { + "start": 27136.61, + "end": 27138.81, + "probability": 0.763 + }, + { + "start": 27139.87, + "end": 27142.01, + "probability": 0.9675 + }, + { + "start": 27143.75, + "end": 27147.29, + "probability": 0.592 + }, + { + "start": 27147.97, + "end": 27148.21, + "probability": 0.5162 + }, + { + "start": 27148.23, + "end": 27153.51, + "probability": 0.8442 + }, + { + "start": 27154.41, + "end": 27156.41, + "probability": 0.7521 + }, + { + "start": 27157.13, + "end": 27160.19, + "probability": 0.9149 + }, + { + "start": 27161.11, + "end": 27162.87, + "probability": 0.9736 + }, + { + "start": 27163.77, + "end": 27165.59, + "probability": 0.9179 + }, + { + "start": 27166.31, + "end": 27169.33, + "probability": 0.9121 + }, + { + "start": 27170.05, + "end": 27170.85, + "probability": 0.9819 + }, + { + "start": 27172.31, + "end": 27173.31, + "probability": 0.7456 + }, + { + "start": 27174.05, + "end": 27177.05, + "probability": 0.8281 + }, + { + "start": 27177.93, + "end": 27180.83, + "probability": 0.8472 + }, + { + "start": 27181.47, + "end": 27183.19, + "probability": 0.9428 + }, + { + "start": 27184.81, + "end": 27186.47, + "probability": 0.6969 + }, + { + "start": 27189.49, + "end": 27190.15, + "probability": 0.8707 + }, + { + "start": 27191.19, + "end": 27192.11, + "probability": 0.9875 + }, + { + "start": 27194.05, + "end": 27194.83, + "probability": 0.5145 + }, + { + "start": 27195.87, + "end": 27197.43, + "probability": 0.8564 + }, + { + "start": 27199.07, + "end": 27203.41, + "probability": 0.9835 + }, + { + "start": 27204.43, + "end": 27209.19, + "probability": 0.8683 + }, + { + "start": 27211.13, + "end": 27218.37, + "probability": 0.8717 + }, + { + "start": 27219.31, + "end": 27221.33, + "probability": 0.678 + }, + { + "start": 27222.77, + "end": 27225.39, + "probability": 0.6865 + }, + { + "start": 27226.09, + "end": 27228.01, + "probability": 0.5766 + }, + { + "start": 27228.17, + "end": 27229.23, + "probability": 0.4043 + }, + { + "start": 27229.81, + "end": 27237.15, + "probability": 0.9707 + }, + { + "start": 27237.55, + "end": 27238.07, + "probability": 0.4764 + }, + { + "start": 27239.11, + "end": 27240.49, + "probability": 0.9318 + }, + { + "start": 27242.35, + "end": 27244.89, + "probability": 0.4246 + }, + { + "start": 27245.71, + "end": 27247.22, + "probability": 0.9941 + }, + { + "start": 27248.33, + "end": 27253.35, + "probability": 0.9399 + }, + { + "start": 27255.99, + "end": 27260.65, + "probability": 0.9044 + }, + { + "start": 27262.09, + "end": 27266.37, + "probability": 0.6377 + }, + { + "start": 27267.87, + "end": 27272.11, + "probability": 0.9676 + }, + { + "start": 27274.55, + "end": 27278.37, + "probability": 0.7241 + }, + { + "start": 27279.21, + "end": 27280.27, + "probability": 0.561 + }, + { + "start": 27280.35, + "end": 27287.55, + "probability": 0.8814 + }, + { + "start": 27288.71, + "end": 27291.89, + "probability": 0.4472 + }, + { + "start": 27292.75, + "end": 27295.85, + "probability": 0.9436 + }, + { + "start": 27297.13, + "end": 27297.95, + "probability": 0.9377 + }, + { + "start": 27299.23, + "end": 27300.28, + "probability": 0.9946 + }, + { + "start": 27300.91, + "end": 27303.29, + "probability": 0.8832 + }, + { + "start": 27303.93, + "end": 27304.57, + "probability": 0.6653 + }, + { + "start": 27305.71, + "end": 27306.13, + "probability": 0.692 + }, + { + "start": 27307.27, + "end": 27309.21, + "probability": 0.981 + }, + { + "start": 27310.01, + "end": 27311.71, + "probability": 0.8955 + }, + { + "start": 27312.79, + "end": 27314.11, + "probability": 0.9521 + }, + { + "start": 27317.73, + "end": 27323.61, + "probability": 0.8721 + }, + { + "start": 27324.17, + "end": 27325.28, + "probability": 0.8172 + }, + { + "start": 27327.13, + "end": 27327.89, + "probability": 0.8756 + }, + { + "start": 27328.81, + "end": 27331.23, + "probability": 0.567 + }, + { + "start": 27332.63, + "end": 27333.61, + "probability": 0.739 + }, + { + "start": 27334.33, + "end": 27337.31, + "probability": 0.6066 + }, + { + "start": 27340.73, + "end": 27343.23, + "probability": 0.7754 + }, + { + "start": 27343.91, + "end": 27344.69, + "probability": 0.4333 + }, + { + "start": 27346.45, + "end": 27350.03, + "probability": 0.9697 + }, + { + "start": 27351.19, + "end": 27352.35, + "probability": 0.9497 + }, + { + "start": 27355.43, + "end": 27355.94, + "probability": 0.9249 + }, + { + "start": 27356.83, + "end": 27358.33, + "probability": 0.9585 + }, + { + "start": 27358.47, + "end": 27359.65, + "probability": 0.4868 + }, + { + "start": 27359.83, + "end": 27360.19, + "probability": 0.7146 + }, + { + "start": 27360.33, + "end": 27360.61, + "probability": 0.7986 + }, + { + "start": 27360.69, + "end": 27361.15, + "probability": 0.8702 + }, + { + "start": 27362.11, + "end": 27364.33, + "probability": 0.9808 + }, + { + "start": 27365.39, + "end": 27367.75, + "probability": 0.9763 + }, + { + "start": 27368.71, + "end": 27370.03, + "probability": 0.8391 + }, + { + "start": 27370.77, + "end": 27371.83, + "probability": 0.9606 + }, + { + "start": 27372.93, + "end": 27374.11, + "probability": 0.8683 + }, + { + "start": 27375.37, + "end": 27376.05, + "probability": 0.9582 + }, + { + "start": 27377.15, + "end": 27382.33, + "probability": 0.8523 + }, + { + "start": 27382.55, + "end": 27385.31, + "probability": 0.8015 + }, + { + "start": 27388.11, + "end": 27388.6, + "probability": 0.8351 + }, + { + "start": 27389.03, + "end": 27389.27, + "probability": 0.8433 + }, + { + "start": 27389.35, + "end": 27390.01, + "probability": 0.7884 + }, + { + "start": 27390.11, + "end": 27394.03, + "probability": 0.9757 + }, + { + "start": 27396.63, + "end": 27397.19, + "probability": 0.0418 + }, + { + "start": 27397.19, + "end": 27399.57, + "probability": 0.6656 + }, + { + "start": 27400.57, + "end": 27403.71, + "probability": 0.8493 + }, + { + "start": 27404.63, + "end": 27407.05, + "probability": 0.905 + }, + { + "start": 27407.53, + "end": 27410.15, + "probability": 0.9106 + }, + { + "start": 27411.19, + "end": 27413.89, + "probability": 0.6537 + }, + { + "start": 27414.47, + "end": 27417.63, + "probability": 0.9531 + }, + { + "start": 27419.17, + "end": 27423.19, + "probability": 0.9878 + }, + { + "start": 27424.17, + "end": 27426.59, + "probability": 0.957 + }, + { + "start": 27427.03, + "end": 27428.97, + "probability": 0.536 + }, + { + "start": 27429.75, + "end": 27431.19, + "probability": 0.6051 + }, + { + "start": 27432.13, + "end": 27436.23, + "probability": 0.9263 + }, + { + "start": 27437.49, + "end": 27437.85, + "probability": 0.5733 + }, + { + "start": 27438.77, + "end": 27439.53, + "probability": 0.7943 + }, + { + "start": 27440.31, + "end": 27441.77, + "probability": 0.9004 + }, + { + "start": 27443.21, + "end": 27444.01, + "probability": 0.6743 + }, + { + "start": 27444.85, + "end": 27447.09, + "probability": 0.7837 + }, + { + "start": 27448.01, + "end": 27449.45, + "probability": 0.7067 + }, + { + "start": 27450.05, + "end": 27451.69, + "probability": 0.9983 + }, + { + "start": 27451.81, + "end": 27453.67, + "probability": 0.7891 + }, + { + "start": 27454.25, + "end": 27454.77, + "probability": 0.9187 + }, + { + "start": 27454.85, + "end": 27458.33, + "probability": 0.8021 + }, + { + "start": 27459.61, + "end": 27459.87, + "probability": 0.5433 + }, + { + "start": 27459.93, + "end": 27460.37, + "probability": 0.9014 + }, + { + "start": 27460.63, + "end": 27461.71, + "probability": 0.9684 + }, + { + "start": 27461.93, + "end": 27464.61, + "probability": 0.8688 + }, + { + "start": 27464.97, + "end": 27465.39, + "probability": 0.8153 + }, + { + "start": 27467.17, + "end": 27470.31, + "probability": 0.9212 + }, + { + "start": 27470.69, + "end": 27475.05, + "probability": 0.9865 + }, + { + "start": 27476.01, + "end": 27477.17, + "probability": 0.9622 + }, + { + "start": 27477.69, + "end": 27478.91, + "probability": 0.729 + }, + { + "start": 27480.63, + "end": 27484.99, + "probability": 0.9262 + }, + { + "start": 27486.21, + "end": 27488.37, + "probability": 0.9377 + }, + { + "start": 27489.17, + "end": 27490.27, + "probability": 0.97 + }, + { + "start": 27494.41, + "end": 27495.29, + "probability": 0.9401 + }, + { + "start": 27495.47, + "end": 27496.23, + "probability": 0.8885 + }, + { + "start": 27496.33, + "end": 27497.49, + "probability": 0.9442 + }, + { + "start": 27497.55, + "end": 27498.79, + "probability": 0.9927 + }, + { + "start": 27499.51, + "end": 27500.27, + "probability": 0.7063 + }, + { + "start": 27504.29, + "end": 27505.87, + "probability": 0.9952 + }, + { + "start": 27505.93, + "end": 27507.01, + "probability": 0.9971 + }, + { + "start": 27507.95, + "end": 27508.79, + "probability": 0.8176 + }, + { + "start": 27509.29, + "end": 27510.77, + "probability": 0.9191 + }, + { + "start": 27511.01, + "end": 27512.63, + "probability": 0.3862 + }, + { + "start": 27513.11, + "end": 27514.11, + "probability": 0.195 + }, + { + "start": 27515.05, + "end": 27516.31, + "probability": 0.5729 + }, + { + "start": 27516.53, + "end": 27516.53, + "probability": 0.5053 + }, + { + "start": 27516.67, + "end": 27517.47, + "probability": 0.9575 + }, + { + "start": 27519.13, + "end": 27520.05, + "probability": 0.9799 + }, + { + "start": 27521.77, + "end": 27525.27, + "probability": 0.9258 + }, + { + "start": 27525.45, + "end": 27526.31, + "probability": 0.5179 + }, + { + "start": 27526.31, + "end": 27527.03, + "probability": 0.8975 + }, + { + "start": 27527.13, + "end": 27528.05, + "probability": 0.6797 + }, + { + "start": 27528.49, + "end": 27529.15, + "probability": 0.4807 + }, + { + "start": 27530.47, + "end": 27531.87, + "probability": 0.9557 + }, + { + "start": 27533.33, + "end": 27540.31, + "probability": 0.6762 + }, + { + "start": 27541.81, + "end": 27542.85, + "probability": 0.5922 + }, + { + "start": 27543.29, + "end": 27546.15, + "probability": 0.1943 + }, + { + "start": 27546.15, + "end": 27546.15, + "probability": 0.0519 + }, + { + "start": 27546.15, + "end": 27547.49, + "probability": 0.6531 + }, + { + "start": 27548.01, + "end": 27555.55, + "probability": 0.8557 + }, + { + "start": 27555.75, + "end": 27556.17, + "probability": 0.6512 + }, + { + "start": 27557.79, + "end": 27564.75, + "probability": 0.8542 + }, + { + "start": 27565.37, + "end": 27570.35, + "probability": 0.7101 + }, + { + "start": 27570.79, + "end": 27572.37, + "probability": 0.7825 + }, + { + "start": 27573.55, + "end": 27580.87, + "probability": 0.9832 + }, + { + "start": 27583.15, + "end": 27584.73, + "probability": 0.4744 + }, + { + "start": 27585.41, + "end": 27591.33, + "probability": 0.8877 + }, + { + "start": 27591.33, + "end": 27595.05, + "probability": 0.9418 + }, + { + "start": 27596.69, + "end": 27598.41, + "probability": 0.8471 + }, + { + "start": 27599.27, + "end": 27604.93, + "probability": 0.8521 + }, + { + "start": 27605.65, + "end": 27607.19, + "probability": 0.6064 + }, + { + "start": 27607.87, + "end": 27611.63, + "probability": 0.7475 + }, + { + "start": 27612.37, + "end": 27613.86, + "probability": 0.5439 + }, + { + "start": 27614.63, + "end": 27615.07, + "probability": 0.7548 + }, + { + "start": 27615.13, + "end": 27616.18, + "probability": 0.9312 + }, + { + "start": 27616.89, + "end": 27618.37, + "probability": 0.9393 + }, + { + "start": 27618.49, + "end": 27618.83, + "probability": 0.4996 + }, + { + "start": 27619.15, + "end": 27620.81, + "probability": 0.941 + }, + { + "start": 27621.65, + "end": 27622.65, + "probability": 0.8956 + }, + { + "start": 27623.49, + "end": 27629.81, + "probability": 0.9669 + }, + { + "start": 27630.81, + "end": 27637.79, + "probability": 0.9765 + }, + { + "start": 27639.65, + "end": 27640.89, + "probability": 0.8597 + }, + { + "start": 27641.13, + "end": 27646.01, + "probability": 0.9214 + }, + { + "start": 27646.51, + "end": 27647.97, + "probability": 0.8892 + }, + { + "start": 27648.59, + "end": 27650.17, + "probability": 0.8665 + }, + { + "start": 27650.83, + "end": 27651.65, + "probability": 0.9243 + }, + { + "start": 27652.47, + "end": 27653.87, + "probability": 0.6955 + }, + { + "start": 27654.03, + "end": 27657.93, + "probability": 0.9643 + }, + { + "start": 27658.03, + "end": 27658.71, + "probability": 0.6687 + }, + { + "start": 27658.85, + "end": 27659.88, + "probability": 0.9878 + }, + { + "start": 27661.67, + "end": 27663.49, + "probability": 0.9862 + }, + { + "start": 27665.87, + "end": 27672.95, + "probability": 0.9899 + }, + { + "start": 27674.75, + "end": 27675.24, + "probability": 0.8896 + }, + { + "start": 27676.89, + "end": 27679.73, + "probability": 0.9152 + }, + { + "start": 27680.25, + "end": 27680.83, + "probability": 0.8867 + }, + { + "start": 27681.41, + "end": 27684.53, + "probability": 0.9701 + }, + { + "start": 27685.57, + "end": 27687.15, + "probability": 0.9847 + }, + { + "start": 27690.85, + "end": 27692.45, + "probability": 0.7217 + }, + { + "start": 27692.55, + "end": 27693.27, + "probability": 0.7514 + }, + { + "start": 27694.87, + "end": 27695.81, + "probability": 0.9816 + }, + { + "start": 27696.67, + "end": 27698.05, + "probability": 0.9729 + }, + { + "start": 27698.29, + "end": 27698.81, + "probability": 0.8008 + }, + { + "start": 27699.35, + "end": 27701.29, + "probability": 0.8544 + }, + { + "start": 27702.57, + "end": 27705.01, + "probability": 0.9244 + }, + { + "start": 27705.87, + "end": 27707.57, + "probability": 0.9733 + }, + { + "start": 27708.55, + "end": 27709.65, + "probability": 0.7552 + }, + { + "start": 27710.95, + "end": 27715.91, + "probability": 0.931 + }, + { + "start": 27717.09, + "end": 27719.42, + "probability": 0.965 + }, + { + "start": 27720.19, + "end": 27721.13, + "probability": 0.8885 + }, + { + "start": 27721.53, + "end": 27722.63, + "probability": 0.958 + }, + { + "start": 27723.37, + "end": 27724.29, + "probability": 0.6592 + }, + { + "start": 27724.41, + "end": 27725.02, + "probability": 0.9849 + }, + { + "start": 27726.65, + "end": 27728.13, + "probability": 0.9849 + }, + { + "start": 27728.81, + "end": 27733.81, + "probability": 0.9194 + }, + { + "start": 27733.99, + "end": 27735.19, + "probability": 0.6019 + }, + { + "start": 27735.95, + "end": 27736.53, + "probability": 0.4153 + }, + { + "start": 27737.35, + "end": 27745.75, + "probability": 0.9614 + }, + { + "start": 27746.51, + "end": 27748.43, + "probability": 0.9312 + }, + { + "start": 27749.41, + "end": 27752.71, + "probability": 0.8091 + }, + { + "start": 27753.55, + "end": 27754.73, + "probability": 0.9191 + }, + { + "start": 27755.77, + "end": 27756.85, + "probability": 0.9751 + }, + { + "start": 27757.67, + "end": 27760.73, + "probability": 0.9773 + }, + { + "start": 27762.41, + "end": 27767.01, + "probability": 0.8653 + }, + { + "start": 27768.13, + "end": 27769.43, + "probability": 0.9786 + }, + { + "start": 27770.87, + "end": 27774.15, + "probability": 0.9878 + }, + { + "start": 27774.23, + "end": 27775.41, + "probability": 0.8826 + }, + { + "start": 27776.29, + "end": 27781.89, + "probability": 0.9608 + }, + { + "start": 27784.25, + "end": 27785.23, + "probability": 0.7527 + }, + { + "start": 27786.17, + "end": 27790.42, + "probability": 0.9336 + }, + { + "start": 27793.11, + "end": 27796.81, + "probability": 0.9704 + }, + { + "start": 27797.25, + "end": 27797.79, + "probability": 0.5736 + }, + { + "start": 27799.19, + "end": 27801.07, + "probability": 0.8834 + }, + { + "start": 27802.23, + "end": 27802.93, + "probability": 0.916 + }, + { + "start": 27804.03, + "end": 27804.75, + "probability": 0.98 + }, + { + "start": 27805.45, + "end": 27806.16, + "probability": 0.9863 + }, + { + "start": 27807.03, + "end": 27809.43, + "probability": 0.9834 + }, + { + "start": 27813.43, + "end": 27814.95, + "probability": 0.9165 + }, + { + "start": 27817.81, + "end": 27820.81, + "probability": 0.8334 + }, + { + "start": 27820.87, + "end": 27823.97, + "probability": 0.9673 + }, + { + "start": 27824.91, + "end": 27828.41, + "probability": 0.79 + }, + { + "start": 27829.15, + "end": 27831.57, + "probability": 0.9889 + }, + { + "start": 27832.59, + "end": 27835.63, + "probability": 0.9917 + }, + { + "start": 27837.23, + "end": 27840.81, + "probability": 0.9772 + }, + { + "start": 27841.91, + "end": 27843.31, + "probability": 0.9934 + }, + { + "start": 27845.23, + "end": 27845.61, + "probability": 0.3403 + }, + { + "start": 27846.34, + "end": 27851.99, + "probability": 0.9902 + }, + { + "start": 27852.79, + "end": 27859.71, + "probability": 0.9852 + }, + { + "start": 27861.01, + "end": 27863.59, + "probability": 0.9162 + }, + { + "start": 27864.07, + "end": 27865.33, + "probability": 0.872 + }, + { + "start": 27865.61, + "end": 27867.11, + "probability": 0.7916 + }, + { + "start": 27867.17, + "end": 27868.03, + "probability": 0.5498 + }, + { + "start": 27868.11, + "end": 27871.22, + "probability": 0.7193 + }, + { + "start": 27871.87, + "end": 27872.73, + "probability": 0.9785 + }, + { + "start": 27873.21, + "end": 27873.85, + "probability": 0.6512 + }, + { + "start": 27873.89, + "end": 27878.47, + "probability": 0.9523 + }, + { + "start": 27879.59, + "end": 27880.97, + "probability": 0.4756 + }, + { + "start": 27882.01, + "end": 27883.29, + "probability": 0.8092 + }, + { + "start": 27883.75, + "end": 27883.89, + "probability": 0.8811 + }, + { + "start": 27883.91, + "end": 27885.63, + "probability": 0.7007 + }, + { + "start": 27886.31, + "end": 27887.31, + "probability": 0.811 + }, + { + "start": 27902.09, + "end": 27903.11, + "probability": 0.7673 + }, + { + "start": 27903.73, + "end": 27905.41, + "probability": 0.6641 + }, + { + "start": 27906.55, + "end": 27908.19, + "probability": 0.9663 + }, + { + "start": 27908.37, + "end": 27912.63, + "probability": 0.9902 + }, + { + "start": 27913.41, + "end": 27914.69, + "probability": 0.9868 + }, + { + "start": 27915.37, + "end": 27918.17, + "probability": 0.8545 + }, + { + "start": 27919.43, + "end": 27921.63, + "probability": 0.9224 + }, + { + "start": 27922.41, + "end": 27924.59, + "probability": 0.9365 + }, + { + "start": 27924.71, + "end": 27924.73, + "probability": 0.1792 + }, + { + "start": 27924.73, + "end": 27924.75, + "probability": 0.0782 + }, + { + "start": 27924.75, + "end": 27925.43, + "probability": 0.343 + }, + { + "start": 27926.19, + "end": 27930.45, + "probability": 0.5769 + }, + { + "start": 27930.69, + "end": 27931.91, + "probability": 0.6915 + }, + { + "start": 27932.07, + "end": 27935.93, + "probability": 0.9669 + }, + { + "start": 27936.99, + "end": 27938.39, + "probability": 0.837 + }, + { + "start": 27939.55, + "end": 27940.51, + "probability": 0.6257 + }, + { + "start": 27941.47, + "end": 27943.83, + "probability": 0.9589 + }, + { + "start": 27944.29, + "end": 27945.95, + "probability": 0.9934 + }, + { + "start": 27946.81, + "end": 27951.29, + "probability": 0.9992 + }, + { + "start": 27951.29, + "end": 27954.57, + "probability": 0.9993 + }, + { + "start": 27955.41, + "end": 27958.97, + "probability": 0.998 + }, + { + "start": 27959.59, + "end": 27960.91, + "probability": 0.9006 + }, + { + "start": 27961.13, + "end": 27962.21, + "probability": 0.3193 + }, + { + "start": 27962.49, + "end": 27964.05, + "probability": 0.5129 + }, + { + "start": 27964.05, + "end": 27966.55, + "probability": 0.9604 + }, + { + "start": 27966.85, + "end": 27971.19, + "probability": 0.9953 + }, + { + "start": 27972.41, + "end": 27975.47, + "probability": 0.996 + }, + { + "start": 27975.89, + "end": 27979.04, + "probability": 0.9323 + }, + { + "start": 27979.43, + "end": 27980.25, + "probability": 0.8146 + }, + { + "start": 27980.99, + "end": 27982.99, + "probability": 0.9958 + }, + { + "start": 27983.85, + "end": 27984.29, + "probability": 0.7463 + }, + { + "start": 27984.43, + "end": 27985.31, + "probability": 0.6071 + }, + { + "start": 27985.49, + "end": 27989.01, + "probability": 0.9978 + }, + { + "start": 27989.01, + "end": 27991.55, + "probability": 0.9965 + }, + { + "start": 27991.69, + "end": 27991.91, + "probability": 0.5252 + }, + { + "start": 27991.97, + "end": 27992.19, + "probability": 0.7811 + }, + { + "start": 27992.27, + "end": 27996.94, + "probability": 0.989 + }, + { + "start": 27997.05, + "end": 28000.31, + "probability": 0.9425 + }, + { + "start": 28001.33, + "end": 28005.61, + "probability": 0.9681 + }, + { + "start": 28006.79, + "end": 28009.03, + "probability": 0.9948 + }, + { + "start": 28010.57, + "end": 28013.85, + "probability": 0.979 + }, + { + "start": 28013.85, + "end": 28014.49, + "probability": 0.3038 + }, + { + "start": 28015.21, + "end": 28019.25, + "probability": 0.9104 + }, + { + "start": 28019.57, + "end": 28020.59, + "probability": 0.9951 + }, + { + "start": 28020.67, + "end": 28023.49, + "probability": 0.877 + }, + { + "start": 28023.63, + "end": 28027.92, + "probability": 0.9529 + }, + { + "start": 28028.37, + "end": 28030.58, + "probability": 0.7634 + }, + { + "start": 28031.27, + "end": 28032.79, + "probability": 0.9421 + }, + { + "start": 28032.91, + "end": 28034.5, + "probability": 0.9347 + }, + { + "start": 28034.93, + "end": 28034.95, + "probability": 0.5145 + }, + { + "start": 28035.11, + "end": 28036.59, + "probability": 0.9306 + }, + { + "start": 28037.41, + "end": 28040.03, + "probability": 0.9541 + }, + { + "start": 28040.65, + "end": 28041.19, + "probability": 0.6379 + }, + { + "start": 28041.75, + "end": 28045.83, + "probability": 0.905 + }, + { + "start": 28046.05, + "end": 28049.77, + "probability": 0.9885 + }, + { + "start": 28050.93, + "end": 28051.15, + "probability": 0.0607 + }, + { + "start": 28051.15, + "end": 28053.39, + "probability": 0.5472 + }, + { + "start": 28053.51, + "end": 28053.89, + "probability": 0.554 + }, + { + "start": 28054.07, + "end": 28054.55, + "probability": 0.5807 + }, + { + "start": 28054.79, + "end": 28055.21, + "probability": 0.1738 + }, + { + "start": 28055.21, + "end": 28055.47, + "probability": 0.1473 + }, + { + "start": 28055.53, + "end": 28056.07, + "probability": 0.6301 + }, + { + "start": 28056.17, + "end": 28056.77, + "probability": 0.7245 + }, + { + "start": 28056.95, + "end": 28059.77, + "probability": 0.8804 + }, + { + "start": 28059.91, + "end": 28059.91, + "probability": 0.1126 + }, + { + "start": 28059.93, + "end": 28059.93, + "probability": 0.1451 + }, + { + "start": 28059.97, + "end": 28059.99, + "probability": 0.1335 + }, + { + "start": 28060.01, + "end": 28063.51, + "probability": 0.7384 + }, + { + "start": 28063.51, + "end": 28065.55, + "probability": 0.2037 + }, + { + "start": 28066.53, + "end": 28066.91, + "probability": 0.105 + }, + { + "start": 28066.91, + "end": 28071.03, + "probability": 0.6039 + }, + { + "start": 28071.11, + "end": 28072.57, + "probability": 0.9793 + }, + { + "start": 28073.27, + "end": 28073.83, + "probability": 0.2196 + }, + { + "start": 28074.27, + "end": 28076.09, + "probability": 0.2076 + }, + { + "start": 28076.19, + "end": 28076.87, + "probability": 0.8893 + }, + { + "start": 28076.95, + "end": 28078.07, + "probability": 0.8766 + }, + { + "start": 28078.11, + "end": 28079.81, + "probability": 0.6001 + }, + { + "start": 28079.87, + "end": 28080.07, + "probability": 0.0891 + }, + { + "start": 28080.07, + "end": 28080.07, + "probability": 0.0553 + }, + { + "start": 28080.07, + "end": 28080.71, + "probability": 0.4476 + }, + { + "start": 28080.91, + "end": 28080.91, + "probability": 0.5139 + }, + { + "start": 28080.91, + "end": 28083.52, + "probability": 0.2708 + }, + { + "start": 28084.23, + "end": 28084.35, + "probability": 0.0143 + }, + { + "start": 28084.35, + "end": 28085.85, + "probability": 0.4285 + }, + { + "start": 28086.75, + "end": 28088.07, + "probability": 0.9991 + }, + { + "start": 28088.27, + "end": 28090.29, + "probability": 0.9921 + }, + { + "start": 28091.15, + "end": 28092.31, + "probability": 0.949 + }, + { + "start": 28092.79, + "end": 28096.99, + "probability": 0.9839 + }, + { + "start": 28097.99, + "end": 28098.71, + "probability": 0.6804 + }, + { + "start": 28098.83, + "end": 28099.03, + "probability": 0.3168 + }, + { + "start": 28099.11, + "end": 28099.97, + "probability": 0.8586 + }, + { + "start": 28100.15, + "end": 28103.89, + "probability": 0.9164 + }, + { + "start": 28103.95, + "end": 28104.54, + "probability": 0.9608 + }, + { + "start": 28105.01, + "end": 28107.15, + "probability": 0.9689 + }, + { + "start": 28107.49, + "end": 28109.33, + "probability": 0.9092 + }, + { + "start": 28109.65, + "end": 28110.97, + "probability": 0.9333 + }, + { + "start": 28111.29, + "end": 28113.33, + "probability": 0.6772 + }, + { + "start": 28113.33, + "end": 28114.93, + "probability": 0.7753 + }, + { + "start": 28115.05, + "end": 28115.83, + "probability": 0.2247 + }, + { + "start": 28115.83, + "end": 28116.23, + "probability": 0.1801 + }, + { + "start": 28116.33, + "end": 28117.39, + "probability": 0.6227 + }, + { + "start": 28117.63, + "end": 28118.07, + "probability": 0.3913 + }, + { + "start": 28118.21, + "end": 28118.55, + "probability": 0.6277 + }, + { + "start": 28119.21, + "end": 28120.67, + "probability": 0.5225 + }, + { + "start": 28121.03, + "end": 28122.73, + "probability": 0.5085 + }, + { + "start": 28123.03, + "end": 28124.05, + "probability": 0.9819 + }, + { + "start": 28124.23, + "end": 28124.49, + "probability": 0.7126 + }, + { + "start": 28124.55, + "end": 28125.31, + "probability": 0.9861 + }, + { + "start": 28125.41, + "end": 28128.77, + "probability": 0.9466 + }, + { + "start": 28129.03, + "end": 28130.45, + "probability": 0.4956 + }, + { + "start": 28130.67, + "end": 28131.05, + "probability": 0.5745 + }, + { + "start": 28131.09, + "end": 28131.58, + "probability": 0.9277 + }, + { + "start": 28131.95, + "end": 28132.83, + "probability": 0.9417 + }, + { + "start": 28133.11, + "end": 28138.29, + "probability": 0.9445 + }, + { + "start": 28138.57, + "end": 28139.79, + "probability": 0.0039 + }, + { + "start": 28141.67, + "end": 28142.53, + "probability": 0.4304 + }, + { + "start": 28142.53, + "end": 28142.53, + "probability": 0.0893 + }, + { + "start": 28142.53, + "end": 28142.91, + "probability": 0.5565 + }, + { + "start": 28142.97, + "end": 28145.25, + "probability": 0.9146 + }, + { + "start": 28145.67, + "end": 28146.55, + "probability": 0.8722 + }, + { + "start": 28146.61, + "end": 28147.13, + "probability": 0.7419 + }, + { + "start": 28148.37, + "end": 28149.93, + "probability": 0.9144 + }, + { + "start": 28150.03, + "end": 28157.15, + "probability": 0.9307 + }, + { + "start": 28157.29, + "end": 28158.25, + "probability": 0.7621 + }, + { + "start": 28159.35, + "end": 28160.61, + "probability": 0.9123 + }, + { + "start": 28160.65, + "end": 28161.85, + "probability": 0.7791 + }, + { + "start": 28161.93, + "end": 28162.62, + "probability": 0.858 + }, + { + "start": 28162.89, + "end": 28164.43, + "probability": 0.9775 + }, + { + "start": 28165.49, + "end": 28166.91, + "probability": 0.9556 + }, + { + "start": 28167.03, + "end": 28170.07, + "probability": 0.9974 + }, + { + "start": 28171.85, + "end": 28175.17, + "probability": 0.9309 + }, + { + "start": 28175.51, + "end": 28176.01, + "probability": 0.6611 + }, + { + "start": 28176.09, + "end": 28178.37, + "probability": 0.9009 + }, + { + "start": 28178.69, + "end": 28181.35, + "probability": 0.9976 + }, + { + "start": 28181.75, + "end": 28183.96, + "probability": 0.7893 + }, + { + "start": 28184.03, + "end": 28186.29, + "probability": 0.8139 + }, + { + "start": 28186.83, + "end": 28187.99, + "probability": 0.6458 + }, + { + "start": 28188.07, + "end": 28188.51, + "probability": 0.7631 + }, + { + "start": 28188.61, + "end": 28189.72, + "probability": 0.9694 + }, + { + "start": 28189.97, + "end": 28190.15, + "probability": 0.5269 + }, + { + "start": 28190.23, + "end": 28191.27, + "probability": 0.5649 + }, + { + "start": 28191.73, + "end": 28192.81, + "probability": 0.8472 + }, + { + "start": 28193.21, + "end": 28193.49, + "probability": 0.6982 + }, + { + "start": 28193.55, + "end": 28194.19, + "probability": 0.8911 + }, + { + "start": 28194.27, + "end": 28195.35, + "probability": 0.8644 + }, + { + "start": 28195.81, + "end": 28196.83, + "probability": 0.9137 + }, + { + "start": 28196.93, + "end": 28199.15, + "probability": 0.8119 + }, + { + "start": 28199.49, + "end": 28200.85, + "probability": 0.9622 + }, + { + "start": 28200.91, + "end": 28201.47, + "probability": 0.8945 + }, + { + "start": 28202.37, + "end": 28203.49, + "probability": 0.9192 + }, + { + "start": 28204.07, + "end": 28205.23, + "probability": 0.983 + }, + { + "start": 28205.39, + "end": 28207.81, + "probability": 0.9116 + }, + { + "start": 28208.93, + "end": 28210.51, + "probability": 0.9908 + }, + { + "start": 28210.65, + "end": 28211.33, + "probability": 0.4661 + }, + { + "start": 28211.35, + "end": 28211.93, + "probability": 0.5396 + }, + { + "start": 28212.03, + "end": 28215.07, + "probability": 0.9258 + }, + { + "start": 28215.33, + "end": 28219.55, + "probability": 0.9881 + }, + { + "start": 28221.41, + "end": 28225.17, + "probability": 0.9121 + }, + { + "start": 28225.25, + "end": 28225.89, + "probability": 0.8267 + }, + { + "start": 28226.13, + "end": 28226.41, + "probability": 0.0767 + }, + { + "start": 28227.37, + "end": 28230.47, + "probability": 0.9947 + }, + { + "start": 28230.81, + "end": 28233.63, + "probability": 0.7194 + }, + { + "start": 28233.77, + "end": 28234.97, + "probability": 0.9967 + }, + { + "start": 28235.63, + "end": 28236.75, + "probability": 0.9611 + }, + { + "start": 28237.19, + "end": 28241.83, + "probability": 0.9932 + }, + { + "start": 28242.75, + "end": 28246.01, + "probability": 0.9539 + }, + { + "start": 28247.03, + "end": 28250.47, + "probability": 0.9873 + }, + { + "start": 28250.81, + "end": 28251.73, + "probability": 0.9447 + }, + { + "start": 28252.87, + "end": 28256.71, + "probability": 0.9966 + }, + { + "start": 28256.79, + "end": 28260.15, + "probability": 0.9978 + }, + { + "start": 28260.15, + "end": 28263.09, + "probability": 0.9962 + }, + { + "start": 28263.35, + "end": 28266.07, + "probability": 0.9758 + }, + { + "start": 28266.73, + "end": 28267.73, + "probability": 0.844 + }, + { + "start": 28268.43, + "end": 28269.99, + "probability": 0.9445 + }, + { + "start": 28270.37, + "end": 28271.39, + "probability": 0.9046 + }, + { + "start": 28271.83, + "end": 28272.47, + "probability": 0.6516 + }, + { + "start": 28272.53, + "end": 28273.43, + "probability": 0.805 + }, + { + "start": 28273.49, + "end": 28276.51, + "probability": 0.9922 + }, + { + "start": 28276.73, + "end": 28278.88, + "probability": 0.9861 + }, + { + "start": 28279.29, + "end": 28281.51, + "probability": 0.9966 + }, + { + "start": 28283.13, + "end": 28285.57, + "probability": 0.9927 + }, + { + "start": 28286.11, + "end": 28286.59, + "probability": 0.4227 + }, + { + "start": 28286.59, + "end": 28287.53, + "probability": 0.8575 + }, + { + "start": 28287.59, + "end": 28290.01, + "probability": 0.8953 + }, + { + "start": 28290.75, + "end": 28292.79, + "probability": 0.9946 + }, + { + "start": 28293.51, + "end": 28294.73, + "probability": 0.394 + }, + { + "start": 28295.63, + "end": 28296.31, + "probability": 0.6055 + }, + { + "start": 28296.69, + "end": 28300.32, + "probability": 0.991 + }, + { + "start": 28300.71, + "end": 28303.85, + "probability": 0.9979 + }, + { + "start": 28303.91, + "end": 28305.77, + "probability": 0.1361 + }, + { + "start": 28305.77, + "end": 28305.77, + "probability": 0.2389 + }, + { + "start": 28305.97, + "end": 28310.72, + "probability": 0.4495 + }, + { + "start": 28312.47, + "end": 28313.0, + "probability": 0.4417 + }, + { + "start": 28313.55, + "end": 28313.55, + "probability": 0.1938 + }, + { + "start": 28313.55, + "end": 28314.16, + "probability": 0.7805 + }, + { + "start": 28314.35, + "end": 28315.41, + "probability": 0.9683 + }, + { + "start": 28315.53, + "end": 28316.57, + "probability": 0.9805 + }, + { + "start": 28316.95, + "end": 28319.83, + "probability": 0.9211 + }, + { + "start": 28319.97, + "end": 28321.15, + "probability": 0.742 + }, + { + "start": 28321.49, + "end": 28322.41, + "probability": 0.8884 + }, + { + "start": 28322.81, + "end": 28324.06, + "probability": 0.9293 + }, + { + "start": 28324.43, + "end": 28325.27, + "probability": 0.7358 + }, + { + "start": 28325.57, + "end": 28332.57, + "probability": 0.9521 + }, + { + "start": 28333.15, + "end": 28333.57, + "probability": 0.8405 + }, + { + "start": 28333.67, + "end": 28336.43, + "probability": 0.9742 + }, + { + "start": 28336.43, + "end": 28339.73, + "probability": 0.995 + }, + { + "start": 28340.61, + "end": 28341.87, + "probability": 0.9644 + }, + { + "start": 28341.93, + "end": 28343.09, + "probability": 0.9946 + }, + { + "start": 28343.43, + "end": 28343.59, + "probability": 0.6758 + }, + { + "start": 28343.67, + "end": 28345.53, + "probability": 0.9787 + }, + { + "start": 28347.27, + "end": 28347.41, + "probability": 0.4849 + }, + { + "start": 28347.53, + "end": 28347.83, + "probability": 0.8435 + }, + { + "start": 28347.83, + "end": 28349.31, + "probability": 0.9834 + }, + { + "start": 28349.37, + "end": 28351.49, + "probability": 0.7876 + }, + { + "start": 28351.97, + "end": 28355.77, + "probability": 0.99 + }, + { + "start": 28356.73, + "end": 28361.53, + "probability": 0.9861 + }, + { + "start": 28361.57, + "end": 28364.45, + "probability": 0.7402 + }, + { + "start": 28364.51, + "end": 28366.65, + "probability": 0.9949 + }, + { + "start": 28367.3, + "end": 28371.33, + "probability": 0.9923 + }, + { + "start": 28371.33, + "end": 28373.45, + "probability": 0.989 + }, + { + "start": 28374.55, + "end": 28374.75, + "probability": 0.7958 + }, + { + "start": 28374.87, + "end": 28375.75, + "probability": 0.9903 + }, + { + "start": 28375.91, + "end": 28377.2, + "probability": 0.9741 + }, + { + "start": 28377.39, + "end": 28378.84, + "probability": 0.992 + }, + { + "start": 28378.97, + "end": 28379.33, + "probability": 0.6709 + }, + { + "start": 28380.13, + "end": 28384.25, + "probability": 0.9885 + }, + { + "start": 28384.37, + "end": 28386.61, + "probability": 0.9669 + }, + { + "start": 28388.62, + "end": 28390.65, + "probability": 0.986 + }, + { + "start": 28392.33, + "end": 28393.17, + "probability": 0.7281 + }, + { + "start": 28393.23, + "end": 28393.37, + "probability": 0.793 + }, + { + "start": 28393.49, + "end": 28394.15, + "probability": 0.9141 + }, + { + "start": 28394.19, + "end": 28395.43, + "probability": 0.9797 + }, + { + "start": 28395.45, + "end": 28398.32, + "probability": 0.9833 + }, + { + "start": 28399.19, + "end": 28399.64, + "probability": 0.8999 + }, + { + "start": 28400.45, + "end": 28403.33, + "probability": 0.6518 + }, + { + "start": 28404.09, + "end": 28405.55, + "probability": 0.8872 + }, + { + "start": 28405.55, + "end": 28405.75, + "probability": 0.7449 + }, + { + "start": 28405.81, + "end": 28408.35, + "probability": 0.9698 + }, + { + "start": 28408.35, + "end": 28410.33, + "probability": 0.9655 + }, + { + "start": 28411.59, + "end": 28413.84, + "probability": 0.917 + }, + { + "start": 28414.31, + "end": 28415.08, + "probability": 0.946 + }, + { + "start": 28415.37, + "end": 28415.71, + "probability": 0.6381 + }, + { + "start": 28415.79, + "end": 28416.25, + "probability": 0.8676 + }, + { + "start": 28416.69, + "end": 28418.75, + "probability": 0.979 + }, + { + "start": 28419.09, + "end": 28419.87, + "probability": 0.67 + }, + { + "start": 28419.93, + "end": 28422.31, + "probability": 0.9938 + }, + { + "start": 28422.53, + "end": 28423.35, + "probability": 0.7423 + }, + { + "start": 28423.89, + "end": 28425.53, + "probability": 0.8995 + }, + { + "start": 28425.95, + "end": 28427.13, + "probability": 0.9624 + }, + { + "start": 28427.53, + "end": 28428.59, + "probability": 0.7398 + }, + { + "start": 28428.67, + "end": 28429.63, + "probability": 0.9906 + }, + { + "start": 28429.81, + "end": 28431.77, + "probability": 0.796 + }, + { + "start": 28432.83, + "end": 28437.27, + "probability": 0.9882 + }, + { + "start": 28438.09, + "end": 28438.99, + "probability": 0.8288 + }, + { + "start": 28439.71, + "end": 28440.93, + "probability": 0.9998 + }, + { + "start": 28441.49, + "end": 28446.49, + "probability": 0.9953 + }, + { + "start": 28446.49, + "end": 28451.21, + "probability": 0.9933 + }, + { + "start": 28451.85, + "end": 28452.27, + "probability": 0.1022 + }, + { + "start": 28452.41, + "end": 28453.45, + "probability": 0.5885 + }, + { + "start": 28453.83, + "end": 28455.27, + "probability": 0.9968 + }, + { + "start": 28455.33, + "end": 28460.05, + "probability": 0.9881 + }, + { + "start": 28460.71, + "end": 28463.56, + "probability": 0.9907 + }, + { + "start": 28464.13, + "end": 28465.21, + "probability": 0.9805 + }, + { + "start": 28465.57, + "end": 28466.81, + "probability": 0.9902 + }, + { + "start": 28467.47, + "end": 28469.19, + "probability": 0.9829 + }, + { + "start": 28469.41, + "end": 28470.73, + "probability": 0.7144 + }, + { + "start": 28471.31, + "end": 28472.43, + "probability": 0.8423 + }, + { + "start": 28472.49, + "end": 28475.95, + "probability": 0.9943 + }, + { + "start": 28476.09, + "end": 28477.77, + "probability": 0.9538 + }, + { + "start": 28477.85, + "end": 28480.61, + "probability": 0.9442 + }, + { + "start": 28481.13, + "end": 28483.41, + "probability": 0.8836 + }, + { + "start": 28483.97, + "end": 28487.95, + "probability": 0.9702 + }, + { + "start": 28488.63, + "end": 28489.17, + "probability": 0.4701 + }, + { + "start": 28489.83, + "end": 28490.59, + "probability": 0.5672 + }, + { + "start": 28490.63, + "end": 28491.53, + "probability": 0.7163 + }, + { + "start": 28491.77, + "end": 28493.23, + "probability": 0.9885 + }, + { + "start": 28493.87, + "end": 28496.12, + "probability": 0.8476 + }, + { + "start": 28497.65, + "end": 28502.27, + "probability": 0.9937 + }, + { + "start": 28504.17, + "end": 28507.67, + "probability": 0.5301 + }, + { + "start": 28507.69, + "end": 28508.71, + "probability": 0.2925 + }, + { + "start": 28508.85, + "end": 28510.39, + "probability": 0.809 + }, + { + "start": 28510.39, + "end": 28512.71, + "probability": 0.8839 + }, + { + "start": 28512.99, + "end": 28513.63, + "probability": 0.3886 + }, + { + "start": 28514.09, + "end": 28514.17, + "probability": 0.3037 + }, + { + "start": 28514.17, + "end": 28518.29, + "probability": 0.3962 + }, + { + "start": 28518.35, + "end": 28519.26, + "probability": 0.1134 + }, + { + "start": 28519.39, + "end": 28521.35, + "probability": 0.8871 + }, + { + "start": 28521.39, + "end": 28522.47, + "probability": 0.662 + }, + { + "start": 28522.93, + "end": 28525.31, + "probability": 0.9808 + }, + { + "start": 28525.31, + "end": 28529.82, + "probability": 0.9258 + }, + { + "start": 28530.59, + "end": 28532.27, + "probability": 0.9462 + }, + { + "start": 28533.41, + "end": 28536.07, + "probability": 0.9978 + }, + { + "start": 28536.87, + "end": 28540.15, + "probability": 0.9454 + }, + { + "start": 28540.77, + "end": 28542.99, + "probability": 0.718 + }, + { + "start": 28543.71, + "end": 28544.51, + "probability": 0.9128 + }, + { + "start": 28544.79, + "end": 28549.17, + "probability": 0.9766 + }, + { + "start": 28549.29, + "end": 28551.15, + "probability": 0.9702 + }, + { + "start": 28551.43, + "end": 28554.17, + "probability": 0.991 + }, + { + "start": 28554.27, + "end": 28554.73, + "probability": 0.8635 + }, + { + "start": 28554.81, + "end": 28555.35, + "probability": 0.8502 + }, + { + "start": 28555.69, + "end": 28557.33, + "probability": 0.9879 + }, + { + "start": 28558.09, + "end": 28564.27, + "probability": 0.9976 + }, + { + "start": 28564.43, + "end": 28565.43, + "probability": 0.9757 + }, + { + "start": 28565.55, + "end": 28568.23, + "probability": 0.9314 + }, + { + "start": 28568.37, + "end": 28570.11, + "probability": 0.8752 + }, + { + "start": 28570.53, + "end": 28573.47, + "probability": 0.9974 + }, + { + "start": 28573.47, + "end": 28576.69, + "probability": 0.998 + }, + { + "start": 28579.23, + "end": 28581.85, + "probability": 0.9873 + }, + { + "start": 28582.15, + "end": 28584.03, + "probability": 0.7239 + }, + { + "start": 28585.01, + "end": 28585.87, + "probability": 0.7762 + }, + { + "start": 28586.47, + "end": 28590.05, + "probability": 0.9941 + }, + { + "start": 28590.37, + "end": 28591.18, + "probability": 0.9912 + }, + { + "start": 28592.21, + "end": 28597.07, + "probability": 0.9855 + }, + { + "start": 28597.59, + "end": 28599.05, + "probability": 0.7885 + }, + { + "start": 28599.77, + "end": 28603.61, + "probability": 0.833 + }, + { + "start": 28604.41, + "end": 28605.71, + "probability": 0.9054 + }, + { + "start": 28606.67, + "end": 28609.91, + "probability": 0.9932 + }, + { + "start": 28610.55, + "end": 28611.68, + "probability": 0.9972 + }, + { + "start": 28612.05, + "end": 28612.33, + "probability": 0.7984 + }, + { + "start": 28612.41, + "end": 28613.25, + "probability": 0.9827 + }, + { + "start": 28613.37, + "end": 28614.36, + "probability": 0.9556 + }, + { + "start": 28615.05, + "end": 28618.9, + "probability": 0.9257 + }, + { + "start": 28620.27, + "end": 28622.87, + "probability": 0.9897 + }, + { + "start": 28622.99, + "end": 28624.47, + "probability": 0.9995 + }, + { + "start": 28625.43, + "end": 28628.47, + "probability": 0.9491 + }, + { + "start": 28628.63, + "end": 28629.35, + "probability": 0.8649 + }, + { + "start": 28629.43, + "end": 28631.53, + "probability": 0.9131 + }, + { + "start": 28631.87, + "end": 28634.59, + "probability": 0.993 + }, + { + "start": 28634.59, + "end": 28636.69, + "probability": 0.9946 + }, + { + "start": 28636.75, + "end": 28639.97, + "probability": 0.9966 + }, + { + "start": 28640.85, + "end": 28641.91, + "probability": 0.9534 + }, + { + "start": 28642.55, + "end": 28643.21, + "probability": 0.6676 + }, + { + "start": 28643.21, + "end": 28643.69, + "probability": 0.8885 + }, + { + "start": 28643.71, + "end": 28645.29, + "probability": 0.9806 + }, + { + "start": 28646.05, + "end": 28649.07, + "probability": 0.9317 + }, + { + "start": 28649.07, + "end": 28651.75, + "probability": 0.8981 + }, + { + "start": 28652.33, + "end": 28652.99, + "probability": 0.8896 + }, + { + "start": 28653.11, + "end": 28654.03, + "probability": 0.9039 + }, + { + "start": 28654.21, + "end": 28657.17, + "probability": 0.9874 + }, + { + "start": 28657.57, + "end": 28660.67, + "probability": 0.9702 + }, + { + "start": 28661.39, + "end": 28663.61, + "probability": 0.9969 + }, + { + "start": 28663.73, + "end": 28667.57, + "probability": 0.981 + }, + { + "start": 28668.35, + "end": 28670.57, + "probability": 0.8553 + }, + { + "start": 28670.67, + "end": 28671.67, + "probability": 0.7307 + }, + { + "start": 28671.71, + "end": 28673.03, + "probability": 0.9343 + }, + { + "start": 28673.17, + "end": 28673.95, + "probability": 0.9629 + }, + { + "start": 28674.97, + "end": 28675.97, + "probability": 0.3945 + }, + { + "start": 28676.05, + "end": 28676.09, + "probability": 0.479 + }, + { + "start": 28676.09, + "end": 28676.09, + "probability": 0.5817 + }, + { + "start": 28676.09, + "end": 28676.65, + "probability": 0.7748 + }, + { + "start": 28676.79, + "end": 28679.31, + "probability": 0.9879 + }, + { + "start": 28679.45, + "end": 28680.35, + "probability": 0.9077 + }, + { + "start": 28680.45, + "end": 28681.53, + "probability": 0.7054 + }, + { + "start": 28682.31, + "end": 28688.63, + "probability": 0.9966 + }, + { + "start": 28688.91, + "end": 28692.51, + "probability": 0.9941 + }, + { + "start": 28693.55, + "end": 28695.27, + "probability": 0.9949 + }, + { + "start": 28695.27, + "end": 28698.93, + "probability": 0.9989 + }, + { + "start": 28699.01, + "end": 28699.21, + "probability": 0.512 + }, + { + "start": 28699.29, + "end": 28701.94, + "probability": 0.9883 + }, + { + "start": 28702.13, + "end": 28704.33, + "probability": 0.9915 + }, + { + "start": 28704.33, + "end": 28708.09, + "probability": 0.9805 + }, + { + "start": 28708.83, + "end": 28710.31, + "probability": 0.9844 + }, + { + "start": 28710.39, + "end": 28711.25, + "probability": 0.999 + }, + { + "start": 28711.81, + "end": 28713.09, + "probability": 0.8152 + }, + { + "start": 28713.27, + "end": 28713.97, + "probability": 0.7812 + }, + { + "start": 28714.15, + "end": 28715.5, + "probability": 0.9943 + }, + { + "start": 28715.69, + "end": 28718.39, + "probability": 0.7381 + }, + { + "start": 28718.39, + "end": 28720.65, + "probability": 0.8045 + }, + { + "start": 28721.47, + "end": 28726.05, + "probability": 0.8996 + }, + { + "start": 28726.23, + "end": 28726.63, + "probability": 0.7657 + }, + { + "start": 28727.03, + "end": 28728.08, + "probability": 0.8975 + }, + { + "start": 28728.67, + "end": 28731.11, + "probability": 0.9888 + }, + { + "start": 28731.21, + "end": 28731.61, + "probability": 0.5015 + }, + { + "start": 28731.75, + "end": 28732.33, + "probability": 0.713 + }, + { + "start": 28732.33, + "end": 28732.79, + "probability": 0.4757 + }, + { + "start": 28732.93, + "end": 28735.13, + "probability": 0.9177 + }, + { + "start": 28736.23, + "end": 28738.83, + "probability": 0.9496 + }, + { + "start": 28738.83, + "end": 28741.79, + "probability": 0.9966 + }, + { + "start": 28741.85, + "end": 28743.29, + "probability": 0.9421 + }, + { + "start": 28744.61, + "end": 28749.89, + "probability": 0.9835 + }, + { + "start": 28750.47, + "end": 28753.89, + "probability": 0.8818 + }, + { + "start": 28754.71, + "end": 28757.31, + "probability": 0.9776 + }, + { + "start": 28757.83, + "end": 28758.45, + "probability": 0.675 + }, + { + "start": 28759.55, + "end": 28761.59, + "probability": 0.996 + }, + { + "start": 28762.15, + "end": 28764.35, + "probability": 0.9795 + }, + { + "start": 28764.89, + "end": 28767.61, + "probability": 0.9922 + }, + { + "start": 28767.67, + "end": 28769.04, + "probability": 0.9844 + }, + { + "start": 28769.73, + "end": 28772.05, + "probability": 0.8985 + }, + { + "start": 28772.11, + "end": 28775.62, + "probability": 0.9795 + }, + { + "start": 28775.91, + "end": 28776.19, + "probability": 0.6078 + }, + { + "start": 28776.23, + "end": 28778.55, + "probability": 0.9957 + }, + { + "start": 28778.63, + "end": 28779.19, + "probability": 0.5997 + }, + { + "start": 28779.33, + "end": 28781.25, + "probability": 0.96 + }, + { + "start": 28781.53, + "end": 28781.89, + "probability": 0.8135 + }, + { + "start": 28782.46, + "end": 28784.53, + "probability": 0.9604 + }, + { + "start": 28784.73, + "end": 28787.33, + "probability": 0.865 + }, + { + "start": 28788.25, + "end": 28788.66, + "probability": 0.8936 + }, + { + "start": 28789.09, + "end": 28794.01, + "probability": 0.9224 + }, + { + "start": 28794.55, + "end": 28795.85, + "probability": 0.9908 + }, + { + "start": 28796.19, + "end": 28798.39, + "probability": 0.936 + }, + { + "start": 28798.53, + "end": 28799.86, + "probability": 0.9902 + }, + { + "start": 28800.31, + "end": 28802.61, + "probability": 0.9797 + }, + { + "start": 28803.59, + "end": 28804.33, + "probability": 0.8935 + }, + { + "start": 28805.71, + "end": 28806.91, + "probability": 0.8849 + }, + { + "start": 28807.51, + "end": 28811.47, + "probability": 0.978 + }, + { + "start": 28811.55, + "end": 28815.49, + "probability": 0.7992 + }, + { + "start": 28815.99, + "end": 28817.23, + "probability": 0.9505 + }, + { + "start": 28817.43, + "end": 28818.2, + "probability": 0.9871 + }, + { + "start": 28818.35, + "end": 28819.27, + "probability": 0.8545 + }, + { + "start": 28819.85, + "end": 28822.59, + "probability": 0.8733 + }, + { + "start": 28822.63, + "end": 28823.17, + "probability": 0.4195 + }, + { + "start": 28823.91, + "end": 28826.03, + "probability": 0.9958 + }, + { + "start": 28826.33, + "end": 28828.25, + "probability": 0.9973 + }, + { + "start": 28828.91, + "end": 28830.91, + "probability": 0.6368 + }, + { + "start": 28831.01, + "end": 28832.73, + "probability": 0.9072 + }, + { + "start": 28833.53, + "end": 28835.45, + "probability": 0.9524 + }, + { + "start": 28835.53, + "end": 28837.91, + "probability": 0.9535 + }, + { + "start": 28838.45, + "end": 28842.05, + "probability": 0.9956 + }, + { + "start": 28842.45, + "end": 28844.15, + "probability": 0.9966 + }, + { + "start": 28844.19, + "end": 28844.65, + "probability": 0.7602 + }, + { + "start": 28845.07, + "end": 28845.85, + "probability": 0.9581 + }, + { + "start": 28846.21, + "end": 28846.45, + "probability": 0.803 + }, + { + "start": 28846.97, + "end": 28848.82, + "probability": 0.832 + }, + { + "start": 28850.59, + "end": 28851.67, + "probability": 0.9856 + }, + { + "start": 28857.05, + "end": 28857.13, + "probability": 0.2681 + }, + { + "start": 28874.47, + "end": 28875.95, + "probability": 0.5525 + }, + { + "start": 28878.15, + "end": 28880.63, + "probability": 0.7427 + }, + { + "start": 28882.31, + "end": 28884.93, + "probability": 0.9876 + }, + { + "start": 28885.81, + "end": 28888.15, + "probability": 0.8504 + }, + { + "start": 28889.13, + "end": 28893.97, + "probability": 0.9189 + }, + { + "start": 28894.09, + "end": 28895.15, + "probability": 0.7747 + }, + { + "start": 28896.27, + "end": 28899.83, + "probability": 0.7411 + }, + { + "start": 28900.87, + "end": 28903.83, + "probability": 0.968 + }, + { + "start": 28904.61, + "end": 28908.83, + "probability": 0.9784 + }, + { + "start": 28909.07, + "end": 28912.25, + "probability": 0.933 + }, + { + "start": 28912.89, + "end": 28919.35, + "probability": 0.8309 + }, + { + "start": 28919.89, + "end": 28922.43, + "probability": 0.7661 + }, + { + "start": 28922.97, + "end": 28925.55, + "probability": 0.987 + }, + { + "start": 28926.47, + "end": 28930.63, + "probability": 0.9958 + }, + { + "start": 28930.85, + "end": 28931.77, + "probability": 0.9855 + }, + { + "start": 28931.97, + "end": 28932.81, + "probability": 0.8436 + }, + { + "start": 28933.35, + "end": 28935.87, + "probability": 0.9875 + }, + { + "start": 28936.33, + "end": 28938.09, + "probability": 0.7264 + }, + { + "start": 28938.89, + "end": 28942.55, + "probability": 0.8464 + }, + { + "start": 28942.63, + "end": 28943.31, + "probability": 0.6793 + }, + { + "start": 28944.25, + "end": 28944.79, + "probability": 0.8702 + }, + { + "start": 28944.99, + "end": 28947.05, + "probability": 0.967 + }, + { + "start": 28947.17, + "end": 28948.05, + "probability": 0.7825 + }, + { + "start": 28948.43, + "end": 28950.39, + "probability": 0.9071 + }, + { + "start": 28951.43, + "end": 28954.01, + "probability": 0.9531 + }, + { + "start": 28954.93, + "end": 28955.69, + "probability": 0.5599 + }, + { + "start": 28958.15, + "end": 28963.55, + "probability": 0.8308 + }, + { + "start": 28964.27, + "end": 28966.25, + "probability": 0.9797 + }, + { + "start": 28967.07, + "end": 28970.33, + "probability": 0.8767 + }, + { + "start": 28971.45, + "end": 28972.96, + "probability": 0.9875 + }, + { + "start": 28975.07, + "end": 28977.43, + "probability": 0.988 + }, + { + "start": 28980.43, + "end": 28983.53, + "probability": 0.985 + }, + { + "start": 28984.93, + "end": 28992.53, + "probability": 0.9819 + }, + { + "start": 28992.95, + "end": 28996.19, + "probability": 0.9395 + }, + { + "start": 28996.55, + "end": 28998.97, + "probability": 0.4888 + }, + { + "start": 28999.13, + "end": 29003.25, + "probability": 0.9874 + }, + { + "start": 29003.37, + "end": 29006.11, + "probability": 0.8954 + }, + { + "start": 29006.43, + "end": 29006.55, + "probability": 0.3719 + }, + { + "start": 29006.75, + "end": 29007.61, + "probability": 0.4877 + }, + { + "start": 29007.93, + "end": 29009.69, + "probability": 0.8315 + }, + { + "start": 29009.73, + "end": 29011.77, + "probability": 0.9568 + }, + { + "start": 29012.19, + "end": 29013.65, + "probability": 0.8522 + }, + { + "start": 29014.21, + "end": 29019.17, + "probability": 0.84 + }, + { + "start": 29019.61, + "end": 29021.01, + "probability": 0.9978 + }, + { + "start": 29022.17, + "end": 29025.91, + "probability": 0.9113 + }, + { + "start": 29026.15, + "end": 29026.77, + "probability": 0.9746 + }, + { + "start": 29026.85, + "end": 29027.77, + "probability": 0.8941 + }, + { + "start": 29028.27, + "end": 29029.47, + "probability": 0.842 + }, + { + "start": 29030.39, + "end": 29036.25, + "probability": 0.895 + }, + { + "start": 29036.35, + "end": 29041.83, + "probability": 0.9827 + }, + { + "start": 29042.66, + "end": 29045.19, + "probability": 0.5772 + }, + { + "start": 29045.45, + "end": 29050.49, + "probability": 0.9663 + }, + { + "start": 29050.87, + "end": 29052.65, + "probability": 0.9097 + }, + { + "start": 29052.89, + "end": 29058.31, + "probability": 0.9396 + }, + { + "start": 29059.13, + "end": 29061.07, + "probability": 0.9141 + }, + { + "start": 29061.61, + "end": 29064.25, + "probability": 0.9472 + }, + { + "start": 29064.85, + "end": 29065.59, + "probability": 0.7029 + }, + { + "start": 29065.69, + "end": 29065.99, + "probability": 0.6781 + }, + { + "start": 29066.13, + "end": 29066.79, + "probability": 0.7312 + }, + { + "start": 29066.91, + "end": 29068.09, + "probability": 0.7024 + }, + { + "start": 29070.57, + "end": 29070.99, + "probability": 0.7001 + }, + { + "start": 29071.95, + "end": 29072.89, + "probability": 0.9465 + }, + { + "start": 29073.69, + "end": 29077.61, + "probability": 0.8001 + }, + { + "start": 29078.0, + "end": 29081.67, + "probability": 0.669 + }, + { + "start": 29082.27, + "end": 29085.31, + "probability": 0.9498 + }, + { + "start": 29086.17, + "end": 29087.09, + "probability": 0.8278 + }, + { + "start": 29087.17, + "end": 29088.73, + "probability": 0.7479 + }, + { + "start": 29089.21, + "end": 29090.89, + "probability": 0.9622 + }, + { + "start": 29092.33, + "end": 29096.05, + "probability": 0.7446 + }, + { + "start": 29096.99, + "end": 29100.51, + "probability": 0.9469 + }, + { + "start": 29101.45, + "end": 29105.2, + "probability": 0.6409 + }, + { + "start": 29106.93, + "end": 29109.81, + "probability": 0.5776 + }, + { + "start": 29110.47, + "end": 29113.33, + "probability": 0.9336 + }, + { + "start": 29113.37, + "end": 29117.49, + "probability": 0.9956 + }, + { + "start": 29117.59, + "end": 29120.43, + "probability": 0.8692 + }, + { + "start": 29120.93, + "end": 29121.43, + "probability": 0.8251 + }, + { + "start": 29121.61, + "end": 29125.91, + "probability": 0.7673 + }, + { + "start": 29126.05, + "end": 29128.37, + "probability": 0.9925 + }, + { + "start": 29129.23, + "end": 29132.01, + "probability": 0.821 + }, + { + "start": 29132.21, + "end": 29132.65, + "probability": 0.8527 + }, + { + "start": 29132.95, + "end": 29133.95, + "probability": 0.6833 + }, + { + "start": 29134.03, + "end": 29134.61, + "probability": 0.9469 + }, + { + "start": 29134.91, + "end": 29135.87, + "probability": 0.8464 + }, + { + "start": 29136.53, + "end": 29138.83, + "probability": 0.9456 + }, + { + "start": 29140.17, + "end": 29144.13, + "probability": 0.9797 + }, + { + "start": 29144.17, + "end": 29145.25, + "probability": 0.5498 + }, + { + "start": 29145.67, + "end": 29146.87, + "probability": 0.8195 + }, + { + "start": 29146.93, + "end": 29147.11, + "probability": 0.4016 + }, + { + "start": 29147.15, + "end": 29147.79, + "probability": 0.7789 + }, + { + "start": 29148.15, + "end": 29149.05, + "probability": 0.9286 + }, + { + "start": 29149.09, + "end": 29149.91, + "probability": 0.9692 + }, + { + "start": 29149.91, + "end": 29150.07, + "probability": 0.7866 + }, + { + "start": 29150.17, + "end": 29151.41, + "probability": 0.8529 + }, + { + "start": 29151.51, + "end": 29154.29, + "probability": 0.6813 + }, + { + "start": 29154.47, + "end": 29156.87, + "probability": 0.7953 + }, + { + "start": 29158.45, + "end": 29162.51, + "probability": 0.8705 + }, + { + "start": 29162.55, + "end": 29164.3, + "probability": 0.9746 + }, + { + "start": 29164.47, + "end": 29166.17, + "probability": 0.9495 + }, + { + "start": 29166.95, + "end": 29167.59, + "probability": 0.3045 + }, + { + "start": 29168.53, + "end": 29169.63, + "probability": 0.9589 + }, + { + "start": 29169.71, + "end": 29175.59, + "probability": 0.8613 + }, + { + "start": 29176.27, + "end": 29180.39, + "probability": 0.7816 + }, + { + "start": 29181.56, + "end": 29183.83, + "probability": 0.9105 + }, + { + "start": 29183.91, + "end": 29185.35, + "probability": 0.891 + }, + { + "start": 29185.41, + "end": 29186.95, + "probability": 0.9136 + }, + { + "start": 29187.01, + "end": 29189.27, + "probability": 0.8789 + }, + { + "start": 29189.43, + "end": 29191.01, + "probability": 0.9849 + }, + { + "start": 29191.41, + "end": 29194.55, + "probability": 0.99 + }, + { + "start": 29194.79, + "end": 29196.61, + "probability": 0.9947 + }, + { + "start": 29196.61, + "end": 29197.07, + "probability": 0.6294 + }, + { + "start": 29197.33, + "end": 29197.65, + "probability": 0.6935 + }, + { + "start": 29197.89, + "end": 29198.87, + "probability": 0.9914 + }, + { + "start": 29199.03, + "end": 29200.37, + "probability": 0.7251 + }, + { + "start": 29200.49, + "end": 29201.37, + "probability": 0.7502 + }, + { + "start": 29201.73, + "end": 29202.77, + "probability": 0.9657 + }, + { + "start": 29203.05, + "end": 29203.63, + "probability": 0.8903 + }, + { + "start": 29203.75, + "end": 29206.91, + "probability": 0.9401 + }, + { + "start": 29207.07, + "end": 29210.33, + "probability": 0.7936 + }, + { + "start": 29211.68, + "end": 29212.31, + "probability": 0.0057 + }, + { + "start": 29212.31, + "end": 29214.87, + "probability": 0.5938 + }, + { + "start": 29214.87, + "end": 29216.61, + "probability": 0.9065 + }, + { + "start": 29217.37, + "end": 29219.51, + "probability": 0.4126 + }, + { + "start": 29219.59, + "end": 29220.33, + "probability": 0.9076 + }, + { + "start": 29220.41, + "end": 29221.43, + "probability": 0.7645 + }, + { + "start": 29221.49, + "end": 29223.03, + "probability": 0.841 + }, + { + "start": 29223.25, + "end": 29224.19, + "probability": 0.3761 + }, + { + "start": 29225.15, + "end": 29226.85, + "probability": 0.4954 + }, + { + "start": 29227.11, + "end": 29232.81, + "probability": 0.6416 + }, + { + "start": 29232.93, + "end": 29235.13, + "probability": 0.8891 + }, + { + "start": 29235.13, + "end": 29238.21, + "probability": 0.9931 + }, + { + "start": 29238.57, + "end": 29240.67, + "probability": 0.9348 + }, + { + "start": 29241.31, + "end": 29247.01, + "probability": 0.8398 + }, + { + "start": 29247.07, + "end": 29249.67, + "probability": 0.9864 + }, + { + "start": 29250.19, + "end": 29250.99, + "probability": 0.707 + }, + { + "start": 29252.05, + "end": 29252.73, + "probability": 0.9446 + }, + { + "start": 29253.23, + "end": 29254.09, + "probability": 0.8226 + }, + { + "start": 29255.51, + "end": 29258.25, + "probability": 0.6741 + }, + { + "start": 29258.91, + "end": 29267.29, + "probability": 0.7253 + }, + { + "start": 29267.79, + "end": 29271.93, + "probability": 0.9414 + }, + { + "start": 29272.29, + "end": 29274.45, + "probability": 0.9697 + }, + { + "start": 29275.23, + "end": 29278.05, + "probability": 0.1076 + }, + { + "start": 29278.05, + "end": 29278.05, + "probability": 0.0326 + }, + { + "start": 29278.05, + "end": 29278.61, + "probability": 0.2516 + }, + { + "start": 29278.79, + "end": 29280.73, + "probability": 0.9371 + }, + { + "start": 29280.83, + "end": 29281.61, + "probability": 0.8525 + }, + { + "start": 29281.83, + "end": 29284.77, + "probability": 0.9755 + }, + { + "start": 29285.25, + "end": 29288.31, + "probability": 0.8691 + }, + { + "start": 29288.61, + "end": 29289.57, + "probability": 0.2363 + }, + { + "start": 29289.73, + "end": 29292.19, + "probability": 0.9447 + }, + { + "start": 29292.47, + "end": 29293.29, + "probability": 0.2831 + }, + { + "start": 29293.93, + "end": 29295.13, + "probability": 0.7816 + }, + { + "start": 29295.35, + "end": 29295.77, + "probability": 0.4036 + }, + { + "start": 29295.85, + "end": 29296.51, + "probability": 0.8207 + }, + { + "start": 29296.83, + "end": 29301.99, + "probability": 0.8767 + }, + { + "start": 29302.25, + "end": 29303.69, + "probability": 0.5314 + }, + { + "start": 29303.71, + "end": 29305.67, + "probability": 0.7114 + }, + { + "start": 29306.23, + "end": 29307.37, + "probability": 0.9032 + }, + { + "start": 29307.43, + "end": 29310.69, + "probability": 0.9468 + }, + { + "start": 29311.11, + "end": 29315.74, + "probability": 0.4999 + }, + { + "start": 29317.57, + "end": 29317.59, + "probability": 0.1391 + }, + { + "start": 29317.59, + "end": 29320.27, + "probability": 0.9568 + }, + { + "start": 29321.07, + "end": 29322.91, + "probability": 0.9307 + }, + { + "start": 29323.11, + "end": 29328.31, + "probability": 0.8337 + }, + { + "start": 29328.43, + "end": 29331.36, + "probability": 0.9482 + }, + { + "start": 29332.53, + "end": 29338.07, + "probability": 0.9619 + }, + { + "start": 29338.07, + "end": 29341.39, + "probability": 0.9771 + }, + { + "start": 29341.55, + "end": 29348.87, + "probability": 0.7965 + }, + { + "start": 29349.11, + "end": 29350.65, + "probability": 0.686 + }, + { + "start": 29351.09, + "end": 29355.05, + "probability": 0.953 + }, + { + "start": 29355.27, + "end": 29356.61, + "probability": 0.595 + }, + { + "start": 29356.65, + "end": 29359.87, + "probability": 0.8748 + }, + { + "start": 29359.87, + "end": 29368.51, + "probability": 0.8335 + }, + { + "start": 29370.79, + "end": 29375.27, + "probability": 0.8215 + }, + { + "start": 29375.47, + "end": 29380.19, + "probability": 0.9341 + }, + { + "start": 29381.35, + "end": 29382.91, + "probability": 0.5016 + }, + { + "start": 29383.33, + "end": 29386.39, + "probability": 0.9452 + }, + { + "start": 29386.63, + "end": 29389.21, + "probability": 0.9905 + }, + { + "start": 29389.53, + "end": 29390.11, + "probability": 0.4216 + }, + { + "start": 29390.15, + "end": 29390.57, + "probability": 0.5815 + }, + { + "start": 29390.61, + "end": 29391.49, + "probability": 0.364 + }, + { + "start": 29391.55, + "end": 29391.98, + "probability": 0.531 + }, + { + "start": 29392.15, + "end": 29393.47, + "probability": 0.589 + }, + { + "start": 29393.75, + "end": 29394.53, + "probability": 0.7783 + }, + { + "start": 29394.85, + "end": 29397.59, + "probability": 0.7509 + }, + { + "start": 29397.63, + "end": 29400.75, + "probability": 0.7042 + }, + { + "start": 29401.59, + "end": 29402.57, + "probability": 0.6823 + }, + { + "start": 29402.61, + "end": 29407.61, + "probability": 0.9407 + }, + { + "start": 29407.61, + "end": 29412.09, + "probability": 0.9917 + }, + { + "start": 29412.29, + "end": 29414.73, + "probability": 0.8591 + }, + { + "start": 29415.17, + "end": 29415.87, + "probability": 0.7699 + }, + { + "start": 29416.17, + "end": 29417.01, + "probability": 0.5504 + }, + { + "start": 29417.17, + "end": 29420.31, + "probability": 0.8616 + }, + { + "start": 29420.31, + "end": 29421.51, + "probability": 0.4976 + }, + { + "start": 29422.25, + "end": 29428.41, + "probability": 0.4531 + }, + { + "start": 29428.93, + "end": 29431.21, + "probability": 0.8365 + }, + { + "start": 29431.23, + "end": 29434.83, + "probability": 0.625 + }, + { + "start": 29436.37, + "end": 29437.85, + "probability": 0.9087 + }, + { + "start": 29438.23, + "end": 29443.27, + "probability": 0.9724 + }, + { + "start": 29443.33, + "end": 29445.87, + "probability": 0.5898 + }, + { + "start": 29446.03, + "end": 29447.39, + "probability": 0.9429 + }, + { + "start": 29449.13, + "end": 29451.47, + "probability": 0.978 + }, + { + "start": 29451.65, + "end": 29452.33, + "probability": 0.7469 + }, + { + "start": 29452.73, + "end": 29454.31, + "probability": 0.8589 + }, + { + "start": 29454.59, + "end": 29455.98, + "probability": 0.8262 + }, + { + "start": 29456.69, + "end": 29460.67, + "probability": 0.8691 + }, + { + "start": 29460.77, + "end": 29461.35, + "probability": 0.5404 + }, + { + "start": 29461.41, + "end": 29461.9, + "probability": 0.8235 + }, + { + "start": 29462.77, + "end": 29464.19, + "probability": 0.9781 + }, + { + "start": 29464.33, + "end": 29466.59, + "probability": 0.5926 + }, + { + "start": 29466.61, + "end": 29467.15, + "probability": 0.3861 + }, + { + "start": 29467.25, + "end": 29467.89, + "probability": 0.5245 + }, + { + "start": 29467.89, + "end": 29469.43, + "probability": 0.7859 + }, + { + "start": 29469.89, + "end": 29473.93, + "probability": 0.8489 + }, + { + "start": 29473.97, + "end": 29475.02, + "probability": 0.8398 + }, + { + "start": 29476.42, + "end": 29479.51, + "probability": 0.946 + }, + { + "start": 29480.65, + "end": 29485.43, + "probability": 0.9819 + }, + { + "start": 29485.57, + "end": 29487.29, + "probability": 0.86 + }, + { + "start": 29487.37, + "end": 29490.47, + "probability": 0.8674 + }, + { + "start": 29490.51, + "end": 29491.61, + "probability": 0.6334 + }, + { + "start": 29491.91, + "end": 29493.09, + "probability": 0.855 + }, + { + "start": 29493.81, + "end": 29495.83, + "probability": 0.6572 + }, + { + "start": 29496.45, + "end": 29496.87, + "probability": 0.1229 + }, + { + "start": 29496.87, + "end": 29497.91, + "probability": 0.3982 + }, + { + "start": 29498.41, + "end": 29499.65, + "probability": 0.7202 + }, + { + "start": 29499.79, + "end": 29505.89, + "probability": 0.786 + }, + { + "start": 29506.15, + "end": 29509.75, + "probability": 0.9624 + }, + { + "start": 29510.23, + "end": 29511.33, + "probability": 0.5195 + }, + { + "start": 29511.81, + "end": 29514.21, + "probability": 0.5392 + }, + { + "start": 29515.71, + "end": 29517.09, + "probability": 0.5058 + }, + { + "start": 29517.75, + "end": 29518.94, + "probability": 0.7386 + }, + { + "start": 29519.31, + "end": 29523.53, + "probability": 0.8823 + }, + { + "start": 29524.33, + "end": 29524.55, + "probability": 0.3215 + }, + { + "start": 29525.21, + "end": 29526.27, + "probability": 0.8801 + }, + { + "start": 29526.49, + "end": 29527.36, + "probability": 0.9705 + }, + { + "start": 29527.49, + "end": 29528.28, + "probability": 0.9159 + }, + { + "start": 29529.51, + "end": 29530.47, + "probability": 0.8094 + }, + { + "start": 29530.55, + "end": 29532.43, + "probability": 0.8273 + }, + { + "start": 29532.49, + "end": 29532.99, + "probability": 0.9012 + }, + { + "start": 29533.15, + "end": 29533.69, + "probability": 0.6625 + }, + { + "start": 29533.96, + "end": 29539.78, + "probability": 0.9777 + }, + { + "start": 29539.97, + "end": 29540.61, + "probability": 0.9725 + }, + { + "start": 29540.71, + "end": 29543.33, + "probability": 0.7425 + }, + { + "start": 29545.47, + "end": 29548.67, + "probability": 0.0392 + }, + { + "start": 29549.37, + "end": 29549.37, + "probability": 0.0748 + }, + { + "start": 29549.37, + "end": 29551.97, + "probability": 0.6015 + }, + { + "start": 29552.13, + "end": 29552.55, + "probability": 0.5411 + }, + { + "start": 29552.63, + "end": 29553.31, + "probability": 0.7307 + }, + { + "start": 29553.43, + "end": 29554.11, + "probability": 0.7309 + }, + { + "start": 29554.15, + "end": 29554.89, + "probability": 0.8523 + }, + { + "start": 29555.71, + "end": 29557.0, + "probability": 0.5803 + }, + { + "start": 29557.75, + "end": 29563.75, + "probability": 0.7856 + }, + { + "start": 29564.49, + "end": 29567.17, + "probability": 0.9076 + }, + { + "start": 29567.37, + "end": 29571.89, + "probability": 0.9847 + }, + { + "start": 29571.99, + "end": 29573.35, + "probability": 0.3184 + }, + { + "start": 29573.55, + "end": 29573.65, + "probability": 0.6915 + }, + { + "start": 29575.93, + "end": 29576.59, + "probability": 0.9723 + }, + { + "start": 29577.59, + "end": 29581.43, + "probability": 0.9295 + }, + { + "start": 29582.05, + "end": 29587.07, + "probability": 0.7569 + }, + { + "start": 29587.53, + "end": 29590.15, + "probability": 0.9287 + }, + { + "start": 29590.15, + "end": 29592.57, + "probability": 0.806 + }, + { + "start": 29592.69, + "end": 29594.03, + "probability": 0.6783 + }, + { + "start": 29596.95, + "end": 29597.71, + "probability": 0.7651 + }, + { + "start": 29598.98, + "end": 29601.33, + "probability": 0.5611 + }, + { + "start": 29601.85, + "end": 29604.87, + "probability": 0.6673 + }, + { + "start": 29605.21, + "end": 29608.29, + "probability": 0.98 + }, + { + "start": 29609.97, + "end": 29613.53, + "probability": 0.5522 + }, + { + "start": 29614.05, + "end": 29618.17, + "probability": 0.9531 + }, + { + "start": 29618.23, + "end": 29618.23, + "probability": 0.2618 + }, + { + "start": 29618.23, + "end": 29619.14, + "probability": 0.8633 + }, + { + "start": 29619.83, + "end": 29622.11, + "probability": 0.838 + }, + { + "start": 29622.55, + "end": 29625.01, + "probability": 0.7815 + }, + { + "start": 29626.41, + "end": 29626.83, + "probability": 0.3653 + }, + { + "start": 29626.83, + "end": 29628.91, + "probability": 0.659 + }, + { + "start": 29629.29, + "end": 29630.87, + "probability": 0.7038 + }, + { + "start": 29631.47, + "end": 29632.67, + "probability": 0.764 + }, + { + "start": 29633.31, + "end": 29636.23, + "probability": 0.7243 + }, + { + "start": 29636.33, + "end": 29636.7, + "probability": 0.8257 + }, + { + "start": 29637.65, + "end": 29638.67, + "probability": 0.8011 + }, + { + "start": 29640.55, + "end": 29641.53, + "probability": 0.9801 + }, + { + "start": 29642.09, + "end": 29643.99, + "probability": 0.9929 + }, + { + "start": 29644.39, + "end": 29647.11, + "probability": 0.9939 + }, + { + "start": 29647.21, + "end": 29648.97, + "probability": 0.7229 + }, + { + "start": 29649.49, + "end": 29650.77, + "probability": 0.6835 + }, + { + "start": 29650.81, + "end": 29653.57, + "probability": 0.7865 + }, + { + "start": 29653.63, + "end": 29654.19, + "probability": 0.7954 + }, + { + "start": 29654.27, + "end": 29655.67, + "probability": 0.8565 + }, + { + "start": 29655.75, + "end": 29657.83, + "probability": 0.9766 + }, + { + "start": 29658.85, + "end": 29659.09, + "probability": 0.4501 + }, + { + "start": 29659.19, + "end": 29662.41, + "probability": 0.5611 + }, + { + "start": 29662.59, + "end": 29666.55, + "probability": 0.7966 + }, + { + "start": 29667.29, + "end": 29671.01, + "probability": 0.6104 + }, + { + "start": 29671.13, + "end": 29672.46, + "probability": 0.8893 + }, + { + "start": 29672.61, + "end": 29673.55, + "probability": 0.3576 + }, + { + "start": 29673.89, + "end": 29674.65, + "probability": 0.642 + }, + { + "start": 29674.99, + "end": 29676.55, + "probability": 0.9951 + }, + { + "start": 29676.93, + "end": 29678.73, + "probability": 0.9062 + }, + { + "start": 29680.63, + "end": 29681.57, + "probability": 0.7645 + }, + { + "start": 29682.09, + "end": 29686.35, + "probability": 0.61 + }, + { + "start": 29686.35, + "end": 29687.6, + "probability": 0.4567 + }, + { + "start": 29687.77, + "end": 29688.47, + "probability": 0.5016 + }, + { + "start": 29688.63, + "end": 29689.61, + "probability": 0.4608 + }, + { + "start": 29690.59, + "end": 29693.17, + "probability": 0.9429 + }, + { + "start": 29693.63, + "end": 29695.69, + "probability": 0.9268 + }, + { + "start": 29696.27, + "end": 29697.79, + "probability": 0.9989 + }, + { + "start": 29697.85, + "end": 29698.39, + "probability": 0.544 + }, + { + "start": 29698.55, + "end": 29701.25, + "probability": 0.6798 + }, + { + "start": 29701.49, + "end": 29704.47, + "probability": 0.9897 + }, + { + "start": 29705.11, + "end": 29706.37, + "probability": 0.7644 + }, + { + "start": 29706.43, + "end": 29707.99, + "probability": 0.9207 + }, + { + "start": 29708.09, + "end": 29708.9, + "probability": 0.5114 + }, + { + "start": 29709.35, + "end": 29710.29, + "probability": 0.6595 + }, + { + "start": 29710.43, + "end": 29711.55, + "probability": 0.9482 + }, + { + "start": 29711.65, + "end": 29712.81, + "probability": 0.745 + }, + { + "start": 29712.89, + "end": 29714.67, + "probability": 0.9481 + }, + { + "start": 29714.77, + "end": 29715.77, + "probability": 0.4323 + }, + { + "start": 29716.53, + "end": 29716.67, + "probability": 0.0355 + }, + { + "start": 29716.67, + "end": 29717.55, + "probability": 0.6543 + }, + { + "start": 29717.99, + "end": 29719.03, + "probability": 0.7101 + }, + { + "start": 29719.41, + "end": 29720.98, + "probability": 0.9023 + }, + { + "start": 29721.19, + "end": 29721.93, + "probability": 0.7585 + }, + { + "start": 29722.03, + "end": 29723.15, + "probability": 0.9462 + }, + { + "start": 29723.21, + "end": 29724.29, + "probability": 0.8989 + }, + { + "start": 29724.35, + "end": 29729.21, + "probability": 0.936 + }, + { + "start": 29729.53, + "end": 29729.79, + "probability": 0.3943 + }, + { + "start": 29729.87, + "end": 29731.83, + "probability": 0.6547 + }, + { + "start": 29731.95, + "end": 29732.71, + "probability": 0.9231 + }, + { + "start": 29733.41, + "end": 29736.83, + "probability": 0.6492 + }, + { + "start": 29736.83, + "end": 29738.85, + "probability": 0.9409 + }, + { + "start": 29738.91, + "end": 29742.07, + "probability": 0.6169 + }, + { + "start": 29742.67, + "end": 29745.87, + "probability": 0.9885 + }, + { + "start": 29745.95, + "end": 29747.2, + "probability": 0.2821 + }, + { + "start": 29748.41, + "end": 29750.83, + "probability": 0.808 + }, + { + "start": 29750.95, + "end": 29754.23, + "probability": 0.8296 + }, + { + "start": 29754.35, + "end": 29756.81, + "probability": 0.8853 + }, + { + "start": 29757.97, + "end": 29760.67, + "probability": 0.9672 + }, + { + "start": 29760.81, + "end": 29761.91, + "probability": 0.6667 + }, + { + "start": 29762.25, + "end": 29764.17, + "probability": 0.983 + }, + { + "start": 29764.17, + "end": 29766.61, + "probability": 0.9956 + }, + { + "start": 29766.71, + "end": 29766.89, + "probability": 0.4275 + }, + { + "start": 29766.93, + "end": 29767.7, + "probability": 0.5495 + }, + { + "start": 29768.45, + "end": 29769.39, + "probability": 0.7725 + }, + { + "start": 29769.47, + "end": 29771.55, + "probability": 0.9723 + }, + { + "start": 29771.91, + "end": 29772.76, + "probability": 0.8066 + }, + { + "start": 29773.11, + "end": 29775.25, + "probability": 0.9192 + }, + { + "start": 29775.39, + "end": 29775.99, + "probability": 0.5347 + }, + { + "start": 29776.07, + "end": 29776.15, + "probability": 0.4604 + }, + { + "start": 29776.25, + "end": 29777.15, + "probability": 0.5582 + }, + { + "start": 29779.93, + "end": 29783.95, + "probability": 0.7925 + }, + { + "start": 29784.01, + "end": 29785.01, + "probability": 0.9648 + }, + { + "start": 29785.23, + "end": 29786.09, + "probability": 0.78 + }, + { + "start": 29788.13, + "end": 29789.17, + "probability": 0.6042 + }, + { + "start": 29789.97, + "end": 29790.81, + "probability": 0.7588 + }, + { + "start": 29791.03, + "end": 29792.93, + "probability": 0.743 + }, + { + "start": 29793.43, + "end": 29794.8, + "probability": 0.9074 + }, + { + "start": 29795.19, + "end": 29796.89, + "probability": 0.405 + }, + { + "start": 29797.27, + "end": 29797.71, + "probability": 0.6111 + }, + { + "start": 29797.75, + "end": 29798.4, + "probability": 0.9896 + }, + { + "start": 29799.05, + "end": 29800.47, + "probability": 0.7332 + }, + { + "start": 29800.75, + "end": 29802.73, + "probability": 0.7938 + }, + { + "start": 29802.85, + "end": 29804.81, + "probability": 0.6748 + }, + { + "start": 29805.71, + "end": 29806.59, + "probability": 0.5833 + }, + { + "start": 29808.88, + "end": 29812.87, + "probability": 0.5163 + }, + { + "start": 29812.91, + "end": 29814.39, + "probability": 0.9294 + }, + { + "start": 29815.09, + "end": 29816.04, + "probability": 0.9805 + }, + { + "start": 29816.65, + "end": 29818.29, + "probability": 0.7355 + }, + { + "start": 29818.45, + "end": 29819.49, + "probability": 0.674 + }, + { + "start": 29820.97, + "end": 29823.89, + "probability": 0.9868 + }, + { + "start": 29825.27, + "end": 29826.07, + "probability": 0.6489 + }, + { + "start": 29826.29, + "end": 29826.63, + "probability": 0.1346 + }, + { + "start": 29826.87, + "end": 29828.25, + "probability": 0.9365 + }, + { + "start": 29828.33, + "end": 29829.35, + "probability": 0.6429 + }, + { + "start": 29829.45, + "end": 29830.46, + "probability": 0.9417 + }, + { + "start": 29830.71, + "end": 29832.52, + "probability": 0.6664 + }, + { + "start": 29832.85, + "end": 29833.43, + "probability": 0.744 + }, + { + "start": 29833.49, + "end": 29835.93, + "probability": 0.6539 + }, + { + "start": 29836.65, + "end": 29838.47, + "probability": 0.8427 + }, + { + "start": 29838.55, + "end": 29841.23, + "probability": 0.5876 + }, + { + "start": 29841.65, + "end": 29843.39, + "probability": 0.6035 + }, + { + "start": 29843.81, + "end": 29845.11, + "probability": 0.7619 + }, + { + "start": 29845.77, + "end": 29847.37, + "probability": 0.8694 + }, + { + "start": 29847.45, + "end": 29848.13, + "probability": 0.753 + }, + { + "start": 29848.23, + "end": 29848.91, + "probability": 0.7326 + }, + { + "start": 29849.49, + "end": 29851.91, + "probability": 0.741 + }, + { + "start": 29852.07, + "end": 29856.13, + "probability": 0.2998 + }, + { + "start": 29856.49, + "end": 29856.77, + "probability": 0.0426 + }, + { + "start": 29857.57, + "end": 29858.65, + "probability": 0.7164 + }, + { + "start": 29859.61, + "end": 29860.33, + "probability": 0.5994 + }, + { + "start": 29860.47, + "end": 29860.88, + "probability": 0.2423 + }, + { + "start": 29861.07, + "end": 29862.13, + "probability": 0.4388 + }, + { + "start": 29862.51, + "end": 29864.61, + "probability": 0.7778 + }, + { + "start": 29864.93, + "end": 29866.95, + "probability": 0.5855 + }, + { + "start": 29866.97, + "end": 29869.21, + "probability": 0.4619 + }, + { + "start": 29869.89, + "end": 29871.65, + "probability": 0.835 + }, + { + "start": 29871.71, + "end": 29872.11, + "probability": 0.6562 + }, + { + "start": 29872.23, + "end": 29872.79, + "probability": 0.254 + }, + { + "start": 29873.21, + "end": 29875.29, + "probability": 0.968 + }, + { + "start": 29875.69, + "end": 29879.53, + "probability": 0.8335 + }, + { + "start": 29879.63, + "end": 29882.58, + "probability": 0.9771 + }, + { + "start": 29883.57, + "end": 29884.79, + "probability": 0.8413 + }, + { + "start": 29885.19, + "end": 29885.87, + "probability": 0.9048 + }, + { + "start": 29886.69, + "end": 29887.21, + "probability": 0.5227 + }, + { + "start": 29888.27, + "end": 29889.17, + "probability": 0.711 + }, + { + "start": 29889.92, + "end": 29892.39, + "probability": 0.9827 + }, + { + "start": 29893.21, + "end": 29897.15, + "probability": 0.8806 + }, + { + "start": 29897.57, + "end": 29899.15, + "probability": 0.9956 + }, + { + "start": 29899.29, + "end": 29899.99, + "probability": 0.8342 + }, + { + "start": 29900.41, + "end": 29903.57, + "probability": 0.9722 + }, + { + "start": 29904.19, + "end": 29906.35, + "probability": 0.9918 + }, + { + "start": 29907.17, + "end": 29907.69, + "probability": 0.4572 + }, + { + "start": 29909.22, + "end": 29912.71, + "probability": 0.7818 + }, + { + "start": 29913.21, + "end": 29920.13, + "probability": 0.9775 + }, + { + "start": 29920.81, + "end": 29923.37, + "probability": 0.9951 + }, + { + "start": 29923.71, + "end": 29924.47, + "probability": 0.5028 + }, + { + "start": 29924.53, + "end": 29927.89, + "probability": 0.9795 + }, + { + "start": 29928.12, + "end": 29930.81, + "probability": 0.7533 + }, + { + "start": 29930.99, + "end": 29932.93, + "probability": 0.8701 + }, + { + "start": 29932.99, + "end": 29933.49, + "probability": 0.7735 + }, + { + "start": 29933.81, + "end": 29935.41, + "probability": 0.6148 + }, + { + "start": 29936.05, + "end": 29936.29, + "probability": 0.5901 + }, + { + "start": 29936.81, + "end": 29937.83, + "probability": 0.7599 + }, + { + "start": 29960.41, + "end": 29961.43, + "probability": 0.5277 + }, + { + "start": 29962.13, + "end": 29966.45, + "probability": 0.7563 + }, + { + "start": 29967.87, + "end": 29968.09, + "probability": 0.6829 + }, + { + "start": 29968.19, + "end": 29973.97, + "probability": 0.9952 + }, + { + "start": 29974.83, + "end": 29979.57, + "probability": 0.9485 + }, + { + "start": 29980.49, + "end": 29983.45, + "probability": 0.9956 + }, + { + "start": 29984.47, + "end": 29989.31, + "probability": 0.994 + }, + { + "start": 29990.17, + "end": 29992.99, + "probability": 0.763 + }, + { + "start": 29993.73, + "end": 29998.33, + "probability": 0.9767 + }, + { + "start": 29999.11, + "end": 29999.81, + "probability": 0.9296 + }, + { + "start": 29999.91, + "end": 30000.93, + "probability": 0.7006 + }, + { + "start": 30001.41, + "end": 30003.81, + "probability": 0.9792 + }, + { + "start": 30003.95, + "end": 30004.79, + "probability": 0.7486 + }, + { + "start": 30005.43, + "end": 30009.07, + "probability": 0.9459 + }, + { + "start": 30009.07, + "end": 30014.41, + "probability": 0.9282 + }, + { + "start": 30016.01, + "end": 30017.87, + "probability": 0.7122 + }, + { + "start": 30018.21, + "end": 30020.17, + "probability": 0.9382 + }, + { + "start": 30020.69, + "end": 30023.25, + "probability": 0.8354 + }, + { + "start": 30023.83, + "end": 30027.05, + "probability": 0.9668 + }, + { + "start": 30027.71, + "end": 30029.49, + "probability": 0.9902 + }, + { + "start": 30029.57, + "end": 30032.85, + "probability": 0.863 + }, + { + "start": 30033.41, + "end": 30034.29, + "probability": 0.9346 + }, + { + "start": 30034.83, + "end": 30038.45, + "probability": 0.9406 + }, + { + "start": 30038.93, + "end": 30040.83, + "probability": 0.9797 + }, + { + "start": 30041.97, + "end": 30046.77, + "probability": 0.9927 + }, + { + "start": 30047.93, + "end": 30053.95, + "probability": 0.9852 + }, + { + "start": 30055.15, + "end": 30059.63, + "probability": 0.998 + }, + { + "start": 30060.27, + "end": 30063.91, + "probability": 0.9069 + }, + { + "start": 30064.77, + "end": 30066.11, + "probability": 0.9268 + }, + { + "start": 30066.39, + "end": 30067.15, + "probability": 0.9727 + }, + { + "start": 30067.53, + "end": 30068.43, + "probability": 0.9804 + }, + { + "start": 30068.69, + "end": 30069.45, + "probability": 0.9555 + }, + { + "start": 30069.81, + "end": 30071.19, + "probability": 0.9604 + }, + { + "start": 30071.61, + "end": 30073.45, + "probability": 0.9542 + }, + { + "start": 30074.17, + "end": 30075.75, + "probability": 0.8476 + }, + { + "start": 30076.19, + "end": 30080.45, + "probability": 0.8249 + }, + { + "start": 30081.29, + "end": 30082.57, + "probability": 0.7921 + }, + { + "start": 30082.87, + "end": 30084.25, + "probability": 0.9591 + }, + { + "start": 30084.61, + "end": 30089.49, + "probability": 0.9555 + }, + { + "start": 30089.75, + "end": 30091.35, + "probability": 0.8006 + }, + { + "start": 30092.39, + "end": 30096.15, + "probability": 0.9866 + }, + { + "start": 30096.51, + "end": 30098.63, + "probability": 0.7858 + }, + { + "start": 30098.97, + "end": 30100.19, + "probability": 0.9764 + }, + { + "start": 30101.59, + "end": 30105.15, + "probability": 0.9344 + }, + { + "start": 30105.33, + "end": 30111.07, + "probability": 0.9777 + }, + { + "start": 30111.35, + "end": 30115.47, + "probability": 0.9648 + }, + { + "start": 30116.25, + "end": 30122.25, + "probability": 0.9133 + }, + { + "start": 30122.89, + "end": 30125.89, + "probability": 0.7656 + }, + { + "start": 30126.69, + "end": 30129.23, + "probability": 0.9826 + }, + { + "start": 30129.65, + "end": 30131.33, + "probability": 0.9024 + }, + { + "start": 30131.83, + "end": 30134.45, + "probability": 0.9971 + }, + { + "start": 30134.45, + "end": 30138.71, + "probability": 0.992 + }, + { + "start": 30139.87, + "end": 30140.29, + "probability": 0.5295 + }, + { + "start": 30140.95, + "end": 30145.35, + "probability": 0.9937 + }, + { + "start": 30145.87, + "end": 30147.61, + "probability": 0.9958 + }, + { + "start": 30148.15, + "end": 30149.86, + "probability": 0.6304 + }, + { + "start": 30150.35, + "end": 30150.77, + "probability": 0.347 + }, + { + "start": 30150.93, + "end": 30152.69, + "probability": 0.9783 + }, + { + "start": 30153.45, + "end": 30158.45, + "probability": 0.9978 + }, + { + "start": 30158.45, + "end": 30164.99, + "probability": 0.9919 + }, + { + "start": 30165.35, + "end": 30167.05, + "probability": 0.7805 + }, + { + "start": 30168.45, + "end": 30170.55, + "probability": 0.9574 + }, + { + "start": 30171.01, + "end": 30175.07, + "probability": 0.9776 + }, + { + "start": 30175.85, + "end": 30179.13, + "probability": 0.9962 + }, + { + "start": 30179.13, + "end": 30182.37, + "probability": 0.9983 + }, + { + "start": 30182.95, + "end": 30189.37, + "probability": 0.9976 + }, + { + "start": 30189.79, + "end": 30195.75, + "probability": 0.9934 + }, + { + "start": 30195.75, + "end": 30201.53, + "probability": 0.9946 + }, + { + "start": 30202.57, + "end": 30204.93, + "probability": 0.9375 + }, + { + "start": 30205.41, + "end": 30208.35, + "probability": 0.9052 + }, + { + "start": 30208.83, + "end": 30210.87, + "probability": 0.7791 + }, + { + "start": 30211.27, + "end": 30215.97, + "probability": 0.9854 + }, + { + "start": 30216.41, + "end": 30217.49, + "probability": 0.958 + }, + { + "start": 30217.87, + "end": 30219.57, + "probability": 0.9619 + }, + { + "start": 30219.87, + "end": 30223.99, + "probability": 0.9974 + }, + { + "start": 30224.35, + "end": 30225.83, + "probability": 0.6542 + }, + { + "start": 30226.81, + "end": 30230.53, + "probability": 0.9695 + }, + { + "start": 30231.03, + "end": 30232.41, + "probability": 0.6818 + }, + { + "start": 30232.79, + "end": 30236.69, + "probability": 0.9783 + }, + { + "start": 30236.69, + "end": 30241.43, + "probability": 0.8732 + }, + { + "start": 30241.53, + "end": 30242.57, + "probability": 0.7485 + }, + { + "start": 30242.75, + "end": 30243.27, + "probability": 0.7944 + }, + { + "start": 30243.89, + "end": 30248.51, + "probability": 0.9722 + }, + { + "start": 30249.55, + "end": 30253.61, + "probability": 0.9988 + }, + { + "start": 30253.61, + "end": 30256.51, + "probability": 0.9905 + }, + { + "start": 30257.19, + "end": 30262.75, + "probability": 0.9766 + }, + { + "start": 30263.21, + "end": 30263.83, + "probability": 0.9628 + }, + { + "start": 30263.91, + "end": 30264.71, + "probability": 0.8942 + }, + { + "start": 30265.25, + "end": 30269.73, + "probability": 0.9237 + }, + { + "start": 30270.73, + "end": 30277.71, + "probability": 0.9826 + }, + { + "start": 30277.71, + "end": 30283.63, + "probability": 0.9889 + }, + { + "start": 30285.59, + "end": 30290.11, + "probability": 0.9924 + }, + { + "start": 30291.31, + "end": 30294.99, + "probability": 0.7223 + }, + { + "start": 30295.83, + "end": 30296.83, + "probability": 0.7435 + }, + { + "start": 30296.99, + "end": 30300.45, + "probability": 0.8684 + }, + { + "start": 30300.53, + "end": 30306.03, + "probability": 0.9912 + }, + { + "start": 30306.65, + "end": 30309.99, + "probability": 0.9647 + }, + { + "start": 30310.51, + "end": 30312.95, + "probability": 0.8302 + }, + { + "start": 30313.31, + "end": 30314.65, + "probability": 0.946 + }, + { + "start": 30315.27, + "end": 30316.01, + "probability": 0.8634 + }, + { + "start": 30316.61, + "end": 30322.87, + "probability": 0.9898 + }, + { + "start": 30323.97, + "end": 30327.49, + "probability": 0.9924 + }, + { + "start": 30328.03, + "end": 30332.15, + "probability": 0.8646 + }, + { + "start": 30332.31, + "end": 30334.03, + "probability": 0.9561 + }, + { + "start": 30334.89, + "end": 30339.05, + "probability": 0.9125 + }, + { + "start": 30339.05, + "end": 30345.65, + "probability": 0.9646 + }, + { + "start": 30347.09, + "end": 30353.51, + "probability": 0.9946 + }, + { + "start": 30354.03, + "end": 30355.93, + "probability": 0.8599 + }, + { + "start": 30356.75, + "end": 30361.97, + "probability": 0.9468 + }, + { + "start": 30363.55, + "end": 30365.39, + "probability": 0.8942 + }, + { + "start": 30365.63, + "end": 30366.21, + "probability": 0.9536 + }, + { + "start": 30366.35, + "end": 30367.35, + "probability": 0.8791 + }, + { + "start": 30367.47, + "end": 30367.95, + "probability": 0.8869 + }, + { + "start": 30368.01, + "end": 30368.45, + "probability": 0.7503 + }, + { + "start": 30369.35, + "end": 30376.45, + "probability": 0.9721 + }, + { + "start": 30376.61, + "end": 30377.19, + "probability": 0.8858 + }, + { + "start": 30377.25, + "end": 30379.05, + "probability": 0.96 + }, + { + "start": 30379.93, + "end": 30382.49, + "probability": 0.9214 + }, + { + "start": 30383.07, + "end": 30385.07, + "probability": 0.8915 + }, + { + "start": 30385.35, + "end": 30386.62, + "probability": 0.9419 + }, + { + "start": 30387.09, + "end": 30389.29, + "probability": 0.9509 + }, + { + "start": 30389.83, + "end": 30392.63, + "probability": 0.9002 + }, + { + "start": 30393.23, + "end": 30399.65, + "probability": 0.9133 + }, + { + "start": 30400.09, + "end": 30404.73, + "probability": 0.97 + }, + { + "start": 30405.41, + "end": 30410.55, + "probability": 0.9364 + }, + { + "start": 30410.81, + "end": 30413.87, + "probability": 0.8403 + }, + { + "start": 30415.01, + "end": 30416.3, + "probability": 0.9617 + }, + { + "start": 30417.45, + "end": 30421.35, + "probability": 0.9961 + }, + { + "start": 30421.35, + "end": 30425.93, + "probability": 0.9982 + }, + { + "start": 30426.55, + "end": 30428.45, + "probability": 0.9837 + }, + { + "start": 30429.15, + "end": 30431.01, + "probability": 0.5485 + }, + { + "start": 30431.59, + "end": 30440.83, + "probability": 0.9917 + }, + { + "start": 30441.45, + "end": 30442.69, + "probability": 0.7701 + }, + { + "start": 30443.35, + "end": 30445.63, + "probability": 0.9697 + }, + { + "start": 30445.97, + "end": 30447.39, + "probability": 0.9274 + }, + { + "start": 30447.57, + "end": 30449.31, + "probability": 0.9465 + }, + { + "start": 30449.85, + "end": 30451.55, + "probability": 0.9869 + }, + { + "start": 30451.89, + "end": 30456.65, + "probability": 0.9849 + }, + { + "start": 30457.49, + "end": 30459.91, + "probability": 0.9887 + }, + { + "start": 30460.79, + "end": 30460.89, + "probability": 0.5178 + }, + { + "start": 30460.99, + "end": 30461.43, + "probability": 0.793 + }, + { + "start": 30461.51, + "end": 30463.17, + "probability": 0.9749 + }, + { + "start": 30463.63, + "end": 30464.15, + "probability": 0.6374 + }, + { + "start": 30464.23, + "end": 30466.37, + "probability": 0.992 + }, + { + "start": 30466.71, + "end": 30468.73, + "probability": 0.9952 + }, + { + "start": 30469.39, + "end": 30473.21, + "probability": 0.9469 + }, + { + "start": 30473.79, + "end": 30478.07, + "probability": 0.9709 + }, + { + "start": 30478.07, + "end": 30482.61, + "probability": 0.996 + }, + { + "start": 30482.81, + "end": 30486.73, + "probability": 0.9954 + }, + { + "start": 30487.19, + "end": 30490.37, + "probability": 0.9978 + }, + { + "start": 30490.37, + "end": 30494.41, + "probability": 0.9941 + }, + { + "start": 30495.15, + "end": 30497.49, + "probability": 0.6967 + }, + { + "start": 30497.83, + "end": 30500.67, + "probability": 0.9839 + }, + { + "start": 30500.67, + "end": 30502.57, + "probability": 0.717 + }, + { + "start": 30503.41, + "end": 30508.47, + "probability": 0.9514 + }, + { + "start": 30508.47, + "end": 30512.73, + "probability": 0.9944 + }, + { + "start": 30513.25, + "end": 30515.17, + "probability": 0.1704 + }, + { + "start": 30515.91, + "end": 30517.61, + "probability": 0.8072 + }, + { + "start": 30518.35, + "end": 30519.21, + "probability": 0.775 + }, + { + "start": 30519.29, + "end": 30523.38, + "probability": 0.9089 + }, + { + "start": 30524.29, + "end": 30527.69, + "probability": 0.9958 + }, + { + "start": 30527.75, + "end": 30528.21, + "probability": 0.9188 + }, + { + "start": 30528.29, + "end": 30529.57, + "probability": 0.957 + }, + { + "start": 30530.23, + "end": 30531.35, + "probability": 0.7936 + }, + { + "start": 30531.89, + "end": 30534.21, + "probability": 0.9777 + }, + { + "start": 30534.45, + "end": 30535.85, + "probability": 0.9198 + }, + { + "start": 30535.89, + "end": 30536.55, + "probability": 0.9186 + }, + { + "start": 30536.73, + "end": 30536.91, + "probability": 0.2484 + }, + { + "start": 30536.99, + "end": 30537.87, + "probability": 0.5942 + }, + { + "start": 30538.21, + "end": 30542.09, + "probability": 0.9835 + }, + { + "start": 30542.09, + "end": 30547.15, + "probability": 0.8485 + }, + { + "start": 30547.59, + "end": 30549.95, + "probability": 0.9946 + }, + { + "start": 30550.35, + "end": 30552.13, + "probability": 0.9984 + }, + { + "start": 30552.55, + "end": 30556.35, + "probability": 0.802 + }, + { + "start": 30556.35, + "end": 30560.02, + "probability": 0.9927 + }, + { + "start": 30560.15, + "end": 30562.53, + "probability": 0.8851 + }, + { + "start": 30563.33, + "end": 30566.97, + "probability": 0.9816 + }, + { + "start": 30567.27, + "end": 30569.71, + "probability": 0.9674 + }, + { + "start": 30569.77, + "end": 30573.17, + "probability": 0.8494 + }, + { + "start": 30574.05, + "end": 30575.35, + "probability": 0.6141 + }, + { + "start": 30575.77, + "end": 30578.81, + "probability": 0.9198 + }, + { + "start": 30580.97, + "end": 30583.87, + "probability": 0.6321 + }, + { + "start": 30584.65, + "end": 30588.77, + "probability": 0.9238 + }, + { + "start": 30588.87, + "end": 30589.55, + "probability": 0.3792 + }, + { + "start": 30589.87, + "end": 30594.03, + "probability": 0.9966 + }, + { + "start": 30594.17, + "end": 30596.83, + "probability": 0.9699 + }, + { + "start": 30597.09, + "end": 30597.77, + "probability": 0.8396 + }, + { + "start": 30597.81, + "end": 30598.49, + "probability": 0.7497 + }, + { + "start": 30598.65, + "end": 30601.51, + "probability": 0.9863 + }, + { + "start": 30601.93, + "end": 30606.25, + "probability": 0.981 + }, + { + "start": 30606.29, + "end": 30606.73, + "probability": 0.506 + }, + { + "start": 30607.21, + "end": 30611.77, + "probability": 0.9161 + }, + { + "start": 30612.27, + "end": 30613.49, + "probability": 0.9622 + }, + { + "start": 30614.27, + "end": 30614.97, + "probability": 0.5811 + }, + { + "start": 30615.37, + "end": 30618.09, + "probability": 0.9766 + }, + { + "start": 30618.19, + "end": 30618.71, + "probability": 0.9672 + }, + { + "start": 30619.19, + "end": 30620.99, + "probability": 0.8525 + }, + { + "start": 30621.67, + "end": 30622.73, + "probability": 0.9351 + }, + { + "start": 30623.27, + "end": 30624.04, + "probability": 0.6651 + }, + { + "start": 30624.27, + "end": 30625.45, + "probability": 0.9109 + }, + { + "start": 30625.55, + "end": 30629.77, + "probability": 0.9647 + }, + { + "start": 30629.91, + "end": 30633.47, + "probability": 0.9862 + }, + { + "start": 30633.85, + "end": 30636.23, + "probability": 0.9524 + }, + { + "start": 30636.73, + "end": 30637.49, + "probability": 0.8983 + }, + { + "start": 30637.77, + "end": 30639.13, + "probability": 0.7549 + }, + { + "start": 30639.61, + "end": 30641.03, + "probability": 0.847 + }, + { + "start": 30641.77, + "end": 30646.71, + "probability": 0.988 + }, + { + "start": 30647.29, + "end": 30649.37, + "probability": 0.8898 + }, + { + "start": 30649.75, + "end": 30652.11, + "probability": 0.5184 + }, + { + "start": 30652.15, + "end": 30652.75, + "probability": 0.7907 + }, + { + "start": 30653.21, + "end": 30655.07, + "probability": 0.984 + }, + { + "start": 30655.57, + "end": 30656.99, + "probability": 0.8917 + }, + { + "start": 30657.25, + "end": 30660.67, + "probability": 0.9139 + }, + { + "start": 30661.11, + "end": 30662.39, + "probability": 0.824 + }, + { + "start": 30662.55, + "end": 30664.07, + "probability": 0.9468 + }, + { + "start": 30664.15, + "end": 30667.01, + "probability": 0.8893 + }, + { + "start": 30667.43, + "end": 30671.67, + "probability": 0.9188 + }, + { + "start": 30672.25, + "end": 30674.96, + "probability": 0.8406 + }, + { + "start": 30675.57, + "end": 30677.63, + "probability": 0.9009 + }, + { + "start": 30677.95, + "end": 30680.39, + "probability": 0.7026 + }, + { + "start": 30681.51, + "end": 30682.67, + "probability": 0.8651 + }, + { + "start": 30682.69, + "end": 30684.53, + "probability": 0.8964 + }, + { + "start": 30685.13, + "end": 30686.37, + "probability": 0.4898 + }, + { + "start": 30686.59, + "end": 30689.23, + "probability": 0.9756 + }, + { + "start": 30689.63, + "end": 30690.51, + "probability": 0.7387 + }, + { + "start": 30690.73, + "end": 30693.03, + "probability": 0.8407 + }, + { + "start": 30693.49, + "end": 30695.09, + "probability": 0.8841 + }, + { + "start": 30695.21, + "end": 30696.47, + "probability": 0.8677 + }, + { + "start": 30696.73, + "end": 30698.13, + "probability": 0.7452 + }, + { + "start": 30698.25, + "end": 30699.15, + "probability": 0.757 + }, + { + "start": 30699.51, + "end": 30700.73, + "probability": 0.7756 + }, + { + "start": 30701.03, + "end": 30702.21, + "probability": 0.6787 + }, + { + "start": 30702.49, + "end": 30704.17, + "probability": 0.4175 + }, + { + "start": 30704.35, + "end": 30705.07, + "probability": 0.0029 + }, + { + "start": 30705.45, + "end": 30711.45, + "probability": 0.9877 + }, + { + "start": 30711.45, + "end": 30716.47, + "probability": 0.9992 + }, + { + "start": 30717.09, + "end": 30718.75, + "probability": 0.9909 + }, + { + "start": 30718.91, + "end": 30719.71, + "probability": 0.8208 + }, + { + "start": 30719.93, + "end": 30720.95, + "probability": 0.8853 + }, + { + "start": 30721.07, + "end": 30721.17, + "probability": 0.422 + }, + { + "start": 30721.25, + "end": 30724.17, + "probability": 0.9534 + }, + { + "start": 30725.29, + "end": 30726.83, + "probability": 0.9683 + }, + { + "start": 30726.99, + "end": 30728.67, + "probability": 0.768 + }, + { + "start": 30728.85, + "end": 30729.89, + "probability": 0.6882 + }, + { + "start": 30730.29, + "end": 30731.85, + "probability": 0.5101 + }, + { + "start": 30731.93, + "end": 30732.99, + "probability": 0.9004 + }, + { + "start": 30733.29, + "end": 30734.08, + "probability": 0.9373 + }, + { + "start": 30734.33, + "end": 30736.57, + "probability": 0.957 + }, + { + "start": 30736.69, + "end": 30737.89, + "probability": 0.8216 + }, + { + "start": 30738.39, + "end": 30740.47, + "probability": 0.9001 + }, + { + "start": 30740.59, + "end": 30742.41, + "probability": 0.9544 + }, + { + "start": 30742.53, + "end": 30743.69, + "probability": 0.9785 + }, + { + "start": 30744.59, + "end": 30749.01, + "probability": 0.9872 + }, + { + "start": 30749.01, + "end": 30753.27, + "probability": 0.9543 + }, + { + "start": 30753.69, + "end": 30756.21, + "probability": 0.998 + }, + { + "start": 30756.65, + "end": 30757.23, + "probability": 0.7639 + }, + { + "start": 30757.59, + "end": 30758.55, + "probability": 0.9242 + }, + { + "start": 30758.69, + "end": 30760.67, + "probability": 0.8457 + }, + { + "start": 30760.71, + "end": 30764.01, + "probability": 0.9847 + }, + { + "start": 30764.11, + "end": 30765.71, + "probability": 0.8737 + }, + { + "start": 30765.97, + "end": 30767.21, + "probability": 0.678 + }, + { + "start": 30767.37, + "end": 30767.71, + "probability": 0.6139 + }, + { + "start": 30767.81, + "end": 30769.35, + "probability": 0.9925 + }, + { + "start": 30769.35, + "end": 30771.49, + "probability": 0.3105 + }, + { + "start": 30771.49, + "end": 30772.46, + "probability": 0.8482 + }, + { + "start": 30773.11, + "end": 30776.05, + "probability": 0.8732 + }, + { + "start": 30776.17, + "end": 30777.39, + "probability": 0.9045 + }, + { + "start": 30778.27, + "end": 30781.95, + "probability": 0.972 + }, + { + "start": 30781.97, + "end": 30782.53, + "probability": 0.4811 + }, + { + "start": 30782.97, + "end": 30784.11, + "probability": 0.7297 + }, + { + "start": 30784.57, + "end": 30786.63, + "probability": 0.7588 + }, + { + "start": 30786.87, + "end": 30787.53, + "probability": 0.932 + }, + { + "start": 30787.69, + "end": 30790.07, + "probability": 0.8246 + }, + { + "start": 30790.85, + "end": 30790.91, + "probability": 0.5874 + }, + { + "start": 30791.09, + "end": 30795.05, + "probability": 0.8344 + }, + { + "start": 30795.49, + "end": 30798.73, + "probability": 0.9935 + }, + { + "start": 30798.89, + "end": 30800.01, + "probability": 0.8362 + }, + { + "start": 30801.09, + "end": 30801.91, + "probability": 0.7691 + }, + { + "start": 30801.91, + "end": 30803.83, + "probability": 0.9958 + }, + { + "start": 30804.15, + "end": 30806.24, + "probability": 0.9988 + }, + { + "start": 30806.53, + "end": 30810.05, + "probability": 0.97 + }, + { + "start": 30810.57, + "end": 30814.41, + "probability": 0.9973 + }, + { + "start": 30814.41, + "end": 30817.39, + "probability": 0.9906 + }, + { + "start": 30817.89, + "end": 30820.99, + "probability": 0.8159 + }, + { + "start": 30821.49, + "end": 30825.21, + "probability": 0.9641 + }, + { + "start": 30825.21, + "end": 30828.71, + "probability": 0.991 + }, + { + "start": 30829.09, + "end": 30831.83, + "probability": 0.9775 + }, + { + "start": 30832.41, + "end": 30834.79, + "probability": 0.985 + }, + { + "start": 30835.63, + "end": 30837.53, + "probability": 0.733 + }, + { + "start": 30837.69, + "end": 30838.89, + "probability": 0.7956 + }, + { + "start": 30860.19, + "end": 30861.29, + "probability": 0.6654 + }, + { + "start": 30862.73, + "end": 30864.41, + "probability": 0.8248 + }, + { + "start": 30864.71, + "end": 30866.03, + "probability": 0.673 + }, + { + "start": 30866.19, + "end": 30869.97, + "probability": 0.9622 + }, + { + "start": 30870.11, + "end": 30871.35, + "probability": 0.9884 + }, + { + "start": 30871.51, + "end": 30873.07, + "probability": 0.8994 + }, + { + "start": 30873.27, + "end": 30873.75, + "probability": 0.8957 + }, + { + "start": 30875.61, + "end": 30877.21, + "probability": 0.8877 + }, + { + "start": 30878.93, + "end": 30880.91, + "probability": 0.5979 + }, + { + "start": 30882.01, + "end": 30889.05, + "probability": 0.9649 + }, + { + "start": 30889.89, + "end": 30892.73, + "probability": 0.9971 + }, + { + "start": 30892.73, + "end": 30897.21, + "probability": 0.9572 + }, + { + "start": 30897.69, + "end": 30899.63, + "probability": 0.3613 + }, + { + "start": 30900.63, + "end": 30902.67, + "probability": 0.9829 + }, + { + "start": 30903.49, + "end": 30906.83, + "probability": 0.9602 + }, + { + "start": 30908.05, + "end": 30909.75, + "probability": 0.9979 + }, + { + "start": 30910.89, + "end": 30915.07, + "probability": 0.8595 + }, + { + "start": 30915.97, + "end": 30919.11, + "probability": 0.9753 + }, + { + "start": 30919.11, + "end": 30925.65, + "probability": 0.9751 + }, + { + "start": 30926.31, + "end": 30926.79, + "probability": 0.645 + }, + { + "start": 30928.45, + "end": 30934.29, + "probability": 0.8417 + }, + { + "start": 30935.57, + "end": 30939.37, + "probability": 0.9673 + }, + { + "start": 30939.37, + "end": 30944.39, + "probability": 0.9552 + }, + { + "start": 30944.89, + "end": 30947.01, + "probability": 0.9639 + }, + { + "start": 30948.81, + "end": 30950.45, + "probability": 0.5858 + }, + { + "start": 30951.29, + "end": 30954.31, + "probability": 0.9963 + }, + { + "start": 30954.97, + "end": 30956.23, + "probability": 0.6778 + }, + { + "start": 30957.49, + "end": 30964.43, + "probability": 0.973 + }, + { + "start": 30964.89, + "end": 30967.21, + "probability": 0.9255 + }, + { + "start": 30968.43, + "end": 30972.87, + "probability": 0.8342 + }, + { + "start": 30973.99, + "end": 30974.47, + "probability": 0.7382 + }, + { + "start": 30975.51, + "end": 30977.65, + "probability": 0.9671 + }, + { + "start": 30978.87, + "end": 30982.91, + "probability": 0.9878 + }, + { + "start": 30982.99, + "end": 30986.85, + "probability": 0.9306 + }, + { + "start": 30988.07, + "end": 30990.51, + "probability": 0.9607 + }, + { + "start": 30991.53, + "end": 30995.43, + "probability": 0.9958 + }, + { + "start": 30995.43, + "end": 30998.69, + "probability": 0.9923 + }, + { + "start": 30999.89, + "end": 31000.89, + "probability": 0.8094 + }, + { + "start": 31001.17, + "end": 31005.19, + "probability": 0.9987 + }, + { + "start": 31005.19, + "end": 31007.73, + "probability": 0.8628 + }, + { + "start": 31008.37, + "end": 31010.03, + "probability": 0.5073 + }, + { + "start": 31013.43, + "end": 31018.87, + "probability": 0.9954 + }, + { + "start": 31019.33, + "end": 31022.41, + "probability": 0.736 + }, + { + "start": 31022.61, + "end": 31023.03, + "probability": 0.5897 + }, + { + "start": 31023.13, + "end": 31030.45, + "probability": 0.9888 + }, + { + "start": 31031.43, + "end": 31035.24, + "probability": 0.9519 + }, + { + "start": 31035.83, + "end": 31040.79, + "probability": 0.9912 + }, + { + "start": 31041.63, + "end": 31042.41, + "probability": 0.7532 + }, + { + "start": 31042.57, + "end": 31046.41, + "probability": 0.8958 + }, + { + "start": 31046.63, + "end": 31049.29, + "probability": 0.8272 + }, + { + "start": 31050.45, + "end": 31051.73, + "probability": 0.9587 + }, + { + "start": 31051.83, + "end": 31056.15, + "probability": 0.9637 + }, + { + "start": 31056.85, + "end": 31057.37, + "probability": 0.7265 + }, + { + "start": 31058.41, + "end": 31059.87, + "probability": 0.9829 + }, + { + "start": 31060.09, + "end": 31061.29, + "probability": 0.9396 + }, + { + "start": 31061.79, + "end": 31065.73, + "probability": 0.9911 + }, + { + "start": 31065.81, + "end": 31070.33, + "probability": 0.94 + }, + { + "start": 31070.87, + "end": 31076.75, + "probability": 0.9941 + }, + { + "start": 31076.87, + "end": 31077.37, + "probability": 0.7474 + }, + { + "start": 31078.91, + "end": 31082.91, + "probability": 0.9935 + }, + { + "start": 31083.61, + "end": 31087.95, + "probability": 0.9977 + }, + { + "start": 31087.95, + "end": 31093.29, + "probability": 0.986 + }, + { + "start": 31093.39, + "end": 31095.29, + "probability": 0.999 + }, + { + "start": 31095.29, + "end": 31097.97, + "probability": 0.9996 + }, + { + "start": 31098.57, + "end": 31100.89, + "probability": 0.8665 + }, + { + "start": 31101.75, + "end": 31103.19, + "probability": 0.8947 + }, + { + "start": 31103.43, + "end": 31105.67, + "probability": 0.9731 + }, + { + "start": 31107.47, + "end": 31107.87, + "probability": 0.2032 + }, + { + "start": 31107.87, + "end": 31109.69, + "probability": 0.7476 + }, + { + "start": 31110.59, + "end": 31115.73, + "probability": 0.9028 + }, + { + "start": 31116.25, + "end": 31119.85, + "probability": 0.8074 + }, + { + "start": 31120.71, + "end": 31124.03, + "probability": 0.9921 + }, + { + "start": 31124.23, + "end": 31130.37, + "probability": 0.9719 + }, + { + "start": 31131.03, + "end": 31138.25, + "probability": 0.9833 + }, + { + "start": 31138.91, + "end": 31141.11, + "probability": 0.9622 + }, + { + "start": 31141.87, + "end": 31143.63, + "probability": 0.9949 + }, + { + "start": 31144.53, + "end": 31145.11, + "probability": 0.2703 + }, + { + "start": 31145.97, + "end": 31148.91, + "probability": 0.8459 + }, + { + "start": 31149.63, + "end": 31150.89, + "probability": 0.8956 + }, + { + "start": 31151.55, + "end": 31153.17, + "probability": 0.7294 + }, + { + "start": 31153.55, + "end": 31155.95, + "probability": 0.9626 + }, + { + "start": 31156.39, + "end": 31160.81, + "probability": 0.9652 + }, + { + "start": 31160.99, + "end": 31161.91, + "probability": 0.7623 + }, + { + "start": 31162.59, + "end": 31164.39, + "probability": 0.9925 + }, + { + "start": 31164.45, + "end": 31166.95, + "probability": 0.7445 + }, + { + "start": 31167.33, + "end": 31168.09, + "probability": 0.8129 + }, + { + "start": 31168.19, + "end": 31170.24, + "probability": 0.8726 + }, + { + "start": 31171.18, + "end": 31173.69, + "probability": 0.92 + }, + { + "start": 31175.78, + "end": 31181.09, + "probability": 0.9945 + }, + { + "start": 31181.99, + "end": 31182.97, + "probability": 0.9204 + }, + { + "start": 31184.13, + "end": 31185.71, + "probability": 0.7797 + }, + { + "start": 31186.67, + "end": 31193.71, + "probability": 0.7016 + }, + { + "start": 31194.55, + "end": 31200.07, + "probability": 0.9699 + }, + { + "start": 31201.21, + "end": 31204.91, + "probability": 0.9702 + }, + { + "start": 31204.99, + "end": 31211.45, + "probability": 0.9797 + }, + { + "start": 31212.01, + "end": 31212.45, + "probability": 0.2858 + }, + { + "start": 31212.67, + "end": 31217.11, + "probability": 0.9766 + }, + { + "start": 31218.05, + "end": 31219.49, + "probability": 0.965 + }, + { + "start": 31220.21, + "end": 31221.33, + "probability": 0.989 + }, + { + "start": 31222.35, + "end": 31224.15, + "probability": 0.9985 + }, + { + "start": 31224.85, + "end": 31225.31, + "probability": 0.9122 + }, + { + "start": 31225.99, + "end": 31226.57, + "probability": 0.7296 + }, + { + "start": 31227.47, + "end": 31228.93, + "probability": 0.9025 + }, + { + "start": 31230.21, + "end": 31235.95, + "probability": 0.981 + }, + { + "start": 31236.85, + "end": 31238.13, + "probability": 0.993 + }, + { + "start": 31239.31, + "end": 31240.11, + "probability": 0.9256 + }, + { + "start": 31241.31, + "end": 31243.27, + "probability": 0.7702 + }, + { + "start": 31244.45, + "end": 31244.45, + "probability": 0.1541 + }, + { + "start": 31244.45, + "end": 31245.87, + "probability": 0.4277 + }, + { + "start": 31245.87, + "end": 31246.69, + "probability": 0.7668 + }, + { + "start": 31247.03, + "end": 31248.69, + "probability": 0.9644 + }, + { + "start": 31249.15, + "end": 31252.05, + "probability": 0.9979 + }, + { + "start": 31252.67, + "end": 31255.47, + "probability": 0.9922 + }, + { + "start": 31255.81, + "end": 31260.49, + "probability": 0.9709 + }, + { + "start": 31261.27, + "end": 31264.81, + "probability": 0.9773 + }, + { + "start": 31264.81, + "end": 31267.75, + "probability": 0.9922 + }, + { + "start": 31268.43, + "end": 31272.77, + "probability": 0.9939 + }, + { + "start": 31273.47, + "end": 31275.39, + "probability": 0.7263 + }, + { + "start": 31276.01, + "end": 31276.13, + "probability": 0.1396 + }, + { + "start": 31276.13, + "end": 31276.35, + "probability": 0.4904 + }, + { + "start": 31276.41, + "end": 31277.51, + "probability": 0.8794 + }, + { + "start": 31277.75, + "end": 31279.71, + "probability": 0.9351 + }, + { + "start": 31279.99, + "end": 31282.01, + "probability": 0.9743 + }, + { + "start": 31282.19, + "end": 31282.67, + "probability": 0.8027 + }, + { + "start": 31283.15, + "end": 31288.77, + "probability": 0.9937 + }, + { + "start": 31288.83, + "end": 31293.91, + "probability": 0.9887 + }, + { + "start": 31294.05, + "end": 31294.69, + "probability": 0.5147 + }, + { + "start": 31294.89, + "end": 31295.73, + "probability": 0.8311 + }, + { + "start": 31296.01, + "end": 31298.27, + "probability": 0.9358 + }, + { + "start": 31298.49, + "end": 31299.59, + "probability": 0.925 + }, + { + "start": 31299.87, + "end": 31300.77, + "probability": 0.956 + }, + { + "start": 31301.17, + "end": 31302.15, + "probability": 0.7497 + }, + { + "start": 31302.97, + "end": 31303.95, + "probability": 0.8103 + }, + { + "start": 31304.99, + "end": 31306.07, + "probability": 0.9762 + }, + { + "start": 31306.67, + "end": 31308.09, + "probability": 0.9073 + }, + { + "start": 31308.83, + "end": 31317.41, + "probability": 0.9617 + }, + { + "start": 31317.41, + "end": 31324.29, + "probability": 0.994 + }, + { + "start": 31325.67, + "end": 31327.39, + "probability": 0.5991 + }, + { + "start": 31328.35, + "end": 31331.63, + "probability": 0.9445 + }, + { + "start": 31331.99, + "end": 31333.57, + "probability": 0.9551 + }, + { + "start": 31333.87, + "end": 31334.55, + "probability": 0.6501 + }, + { + "start": 31335.97, + "end": 31340.73, + "probability": 0.9199 + }, + { + "start": 31341.39, + "end": 31342.41, + "probability": 0.8924 + }, + { + "start": 31344.05, + "end": 31345.55, + "probability": 0.6957 + }, + { + "start": 31345.91, + "end": 31347.05, + "probability": 0.8271 + }, + { + "start": 31347.45, + "end": 31351.07, + "probability": 0.9932 + }, + { + "start": 31352.27, + "end": 31353.19, + "probability": 0.7517 + }, + { + "start": 31354.41, + "end": 31357.33, + "probability": 0.9922 + }, + { + "start": 31357.33, + "end": 31361.67, + "probability": 0.9727 + }, + { + "start": 31362.49, + "end": 31363.99, + "probability": 0.627 + }, + { + "start": 31364.63, + "end": 31369.39, + "probability": 0.9099 + }, + { + "start": 31369.71, + "end": 31372.69, + "probability": 0.9444 + }, + { + "start": 31373.05, + "end": 31374.61, + "probability": 0.8954 + }, + { + "start": 31375.05, + "end": 31376.89, + "probability": 0.8828 + }, + { + "start": 31377.49, + "end": 31382.77, + "probability": 0.9932 + }, + { + "start": 31383.13, + "end": 31386.15, + "probability": 0.9571 + }, + { + "start": 31386.87, + "end": 31387.71, + "probability": 0.9463 + }, + { + "start": 31388.37, + "end": 31389.27, + "probability": 0.9753 + }, + { + "start": 31389.95, + "end": 31394.81, + "probability": 0.9814 + }, + { + "start": 31395.03, + "end": 31397.75, + "probability": 0.8293 + }, + { + "start": 31397.87, + "end": 31399.45, + "probability": 0.9438 + }, + { + "start": 31399.99, + "end": 31402.69, + "probability": 0.8924 + }, + { + "start": 31403.05, + "end": 31405.07, + "probability": 0.991 + }, + { + "start": 31405.51, + "end": 31406.55, + "probability": 0.8956 + }, + { + "start": 31406.59, + "end": 31409.19, + "probability": 0.8875 + }, + { + "start": 31409.37, + "end": 31410.61, + "probability": 0.7348 + }, + { + "start": 31411.27, + "end": 31419.37, + "probability": 0.99 + }, + { + "start": 31419.75, + "end": 31421.33, + "probability": 0.8938 + }, + { + "start": 31421.93, + "end": 31426.31, + "probability": 0.972 + }, + { + "start": 31427.17, + "end": 31428.75, + "probability": 0.9274 + }, + { + "start": 31429.11, + "end": 31433.31, + "probability": 0.9704 + }, + { + "start": 31433.31, + "end": 31439.13, + "probability": 0.9664 + }, + { + "start": 31439.73, + "end": 31442.71, + "probability": 0.8955 + }, + { + "start": 31443.27, + "end": 31446.81, + "probability": 0.6099 + }, + { + "start": 31446.93, + "end": 31447.79, + "probability": 0.877 + }, + { + "start": 31448.79, + "end": 31450.19, + "probability": 0.8975 + }, + { + "start": 31450.29, + "end": 31453.17, + "probability": 0.8027 + }, + { + "start": 31454.27, + "end": 31459.71, + "probability": 0.878 + }, + { + "start": 31460.21, + "end": 31461.45, + "probability": 0.6132 + }, + { + "start": 31461.63, + "end": 31461.85, + "probability": 0.4693 + }, + { + "start": 31463.03, + "end": 31463.73, + "probability": 0.936 + }, + { + "start": 31464.03, + "end": 31465.21, + "probability": 0.4705 + }, + { + "start": 31465.67, + "end": 31466.33, + "probability": 0.5793 + }, + { + "start": 31467.53, + "end": 31470.59, + "probability": 0.1136 + }, + { + "start": 31470.83, + "end": 31471.05, + "probability": 0.2837 + }, + { + "start": 31471.85, + "end": 31473.51, + "probability": 0.4127 + }, + { + "start": 31473.97, + "end": 31474.81, + "probability": 0.9688 + }, + { + "start": 31475.23, + "end": 31475.77, + "probability": 0.0431 + }, + { + "start": 31475.77, + "end": 31475.93, + "probability": 0.2149 + }, + { + "start": 31475.93, + "end": 31480.53, + "probability": 0.9908 + }, + { + "start": 31481.59, + "end": 31482.55, + "probability": 0.5622 + }, + { + "start": 31482.89, + "end": 31485.75, + "probability": 0.996 + }, + { + "start": 31486.43, + "end": 31489.47, + "probability": 0.943 + }, + { + "start": 31489.77, + "end": 31491.79, + "probability": 0.9912 + }, + { + "start": 31492.59, + "end": 31497.67, + "probability": 0.9858 + }, + { + "start": 31498.27, + "end": 31500.53, + "probability": 0.993 + }, + { + "start": 31501.09, + "end": 31501.91, + "probability": 0.8752 + }, + { + "start": 31502.63, + "end": 31504.32, + "probability": 0.9664 + }, + { + "start": 31505.21, + "end": 31512.63, + "probability": 0.9873 + }, + { + "start": 31513.49, + "end": 31514.67, + "probability": 0.4815 + }, + { + "start": 31515.01, + "end": 31516.33, + "probability": 0.934 + }, + { + "start": 31516.71, + "end": 31518.15, + "probability": 0.9607 + }, + { + "start": 31518.51, + "end": 31526.71, + "probability": 0.9902 + }, + { + "start": 31527.13, + "end": 31531.43, + "probability": 0.8936 + }, + { + "start": 31533.45, + "end": 31533.65, + "probability": 0.2729 + }, + { + "start": 31533.65, + "end": 31533.65, + "probability": 0.3572 + }, + { + "start": 31536.33, + "end": 31543.59, + "probability": 0.9808 + }, + { + "start": 31543.59, + "end": 31549.21, + "probability": 0.9982 + }, + { + "start": 31549.53, + "end": 31552.87, + "probability": 0.7732 + }, + { + "start": 31553.65, + "end": 31557.35, + "probability": 0.9456 + }, + { + "start": 31557.97, + "end": 31560.39, + "probability": 0.333 + }, + { + "start": 31560.39, + "end": 31563.45, + "probability": 0.5104 + }, + { + "start": 31563.93, + "end": 31567.85, + "probability": 0.9927 + }, + { + "start": 31568.83, + "end": 31572.43, + "probability": 0.9707 + }, + { + "start": 31572.81, + "end": 31574.61, + "probability": 0.8829 + }, + { + "start": 31574.91, + "end": 31578.71, + "probability": 0.9949 + }, + { + "start": 31578.81, + "end": 31579.95, + "probability": 0.8513 + }, + { + "start": 31580.01, + "end": 31581.93, + "probability": 0.8332 + }, + { + "start": 31582.63, + "end": 31583.89, + "probability": 0.9797 + }, + { + "start": 31584.47, + "end": 31586.67, + "probability": 0.8924 + }, + { + "start": 31587.13, + "end": 31591.97, + "probability": 0.9064 + }, + { + "start": 31592.65, + "end": 31595.61, + "probability": 0.9583 + }, + { + "start": 31596.29, + "end": 31596.73, + "probability": 0.6643 + }, + { + "start": 31597.27, + "end": 31600.25, + "probability": 0.9907 + }, + { + "start": 31601.33, + "end": 31606.01, + "probability": 0.9613 + }, + { + "start": 31606.55, + "end": 31611.55, + "probability": 0.9953 + }, + { + "start": 31612.03, + "end": 31615.89, + "probability": 0.9941 + }, + { + "start": 31615.99, + "end": 31619.49, + "probability": 0.9983 + }, + { + "start": 31620.31, + "end": 31622.73, + "probability": 0.9873 + }, + { + "start": 31623.07, + "end": 31623.93, + "probability": 0.8673 + }, + { + "start": 31624.43, + "end": 31631.83, + "probability": 0.9845 + }, + { + "start": 31632.31, + "end": 31633.95, + "probability": 0.9158 + }, + { + "start": 31634.15, + "end": 31636.27, + "probability": 0.947 + }, + { + "start": 31637.13, + "end": 31637.87, + "probability": 0.9351 + }, + { + "start": 31637.93, + "end": 31638.65, + "probability": 0.772 + }, + { + "start": 31638.73, + "end": 31639.2, + "probability": 0.9097 + }, + { + "start": 31640.27, + "end": 31645.19, + "probability": 0.9487 + }, + { + "start": 31645.23, + "end": 31647.87, + "probability": 0.9602 + }, + { + "start": 31648.69, + "end": 31649.99, + "probability": 0.8403 + }, + { + "start": 31650.85, + "end": 31654.25, + "probability": 0.9659 + }, + { + "start": 31654.57, + "end": 31656.13, + "probability": 0.5326 + }, + { + "start": 31656.73, + "end": 31661.41, + "probability": 0.7375 + }, + { + "start": 31661.51, + "end": 31663.05, + "probability": 0.824 + }, + { + "start": 31663.47, + "end": 31665.41, + "probability": 0.9771 + }, + { + "start": 31665.45, + "end": 31667.79, + "probability": 0.9115 + }, + { + "start": 31667.91, + "end": 31668.45, + "probability": 0.6441 + }, + { + "start": 31668.99, + "end": 31671.45, + "probability": 0.7305 + }, + { + "start": 31671.97, + "end": 31672.73, + "probability": 0.9792 + }, + { + "start": 31674.33, + "end": 31676.57, + "probability": 0.8765 + }, + { + "start": 31677.13, + "end": 31679.59, + "probability": 0.9531 + }, + { + "start": 31679.95, + "end": 31685.37, + "probability": 0.8739 + }, + { + "start": 31685.37, + "end": 31689.31, + "probability": 0.9937 + }, + { + "start": 31689.93, + "end": 31690.35, + "probability": 0.7211 + }, + { + "start": 31690.51, + "end": 31693.97, + "probability": 0.939 + }, + { + "start": 31694.37, + "end": 31700.11, + "probability": 0.9922 + }, + { + "start": 31700.41, + "end": 31703.03, + "probability": 0.8588 + }, + { + "start": 31703.39, + "end": 31706.07, + "probability": 0.9773 + }, + { + "start": 31706.47, + "end": 31707.71, + "probability": 0.6134 + }, + { + "start": 31708.19, + "end": 31712.17, + "probability": 0.965 + }, + { + "start": 31712.27, + "end": 31713.93, + "probability": 0.8131 + }, + { + "start": 31714.47, + "end": 31723.23, + "probability": 0.9949 + }, + { + "start": 31723.73, + "end": 31730.89, + "probability": 0.9987 + }, + { + "start": 31731.45, + "end": 31738.57, + "probability": 0.9969 + }, + { + "start": 31739.13, + "end": 31743.57, + "probability": 0.9829 + }, + { + "start": 31743.71, + "end": 31748.95, + "probability": 0.9567 + }, + { + "start": 31749.25, + "end": 31751.67, + "probability": 0.8513 + }, + { + "start": 31752.15, + "end": 31757.53, + "probability": 0.9895 + }, + { + "start": 31758.09, + "end": 31758.61, + "probability": 0.5985 + }, + { + "start": 31759.27, + "end": 31764.97, + "probability": 0.9932 + }, + { + "start": 31764.97, + "end": 31771.45, + "probability": 0.998 + }, + { + "start": 31771.95, + "end": 31776.35, + "probability": 0.9211 + }, + { + "start": 31779.39, + "end": 31783.67, + "probability": 0.8948 + }, + { + "start": 31784.19, + "end": 31785.63, + "probability": 0.9917 + }, + { + "start": 31786.23, + "end": 31789.71, + "probability": 0.9974 + }, + { + "start": 31790.57, + "end": 31790.77, + "probability": 0.4359 + }, + { + "start": 31790.77, + "end": 31792.63, + "probability": 0.8735 + }, + { + "start": 31793.11, + "end": 31796.85, + "probability": 0.9341 + }, + { + "start": 31796.91, + "end": 31800.43, + "probability": 0.9909 + }, + { + "start": 31800.83, + "end": 31803.17, + "probability": 0.9837 + }, + { + "start": 31803.45, + "end": 31805.59, + "probability": 0.5756 + }, + { + "start": 31805.89, + "end": 31806.27, + "probability": 0.8926 + }, + { + "start": 31806.35, + "end": 31809.03, + "probability": 0.9331 + }, + { + "start": 31809.17, + "end": 31809.43, + "probability": 0.3505 + }, + { + "start": 31809.93, + "end": 31812.55, + "probability": 0.9502 + }, + { + "start": 31813.6, + "end": 31815.03, + "probability": 0.2615 + }, + { + "start": 31815.03, + "end": 31815.03, + "probability": 0.0708 + }, + { + "start": 31815.03, + "end": 31815.31, + "probability": 0.0845 + }, + { + "start": 31816.34, + "end": 31819.19, + "probability": 0.7061 + }, + { + "start": 31819.43, + "end": 31821.25, + "probability": 0.8899 + }, + { + "start": 31821.71, + "end": 31823.25, + "probability": 0.9608 + }, + { + "start": 31825.75, + "end": 31833.35, + "probability": 0.9907 + }, + { + "start": 31834.23, + "end": 31836.49, + "probability": 0.9624 + }, + { + "start": 31837.59, + "end": 31839.96, + "probability": 0.9861 + }, + { + "start": 31840.81, + "end": 31845.91, + "probability": 0.9651 + }, + { + "start": 31846.49, + "end": 31851.51, + "probability": 0.761 + }, + { + "start": 31851.51, + "end": 31855.23, + "probability": 0.9619 + }, + { + "start": 31855.99, + "end": 31856.27, + "probability": 0.2958 + }, + { + "start": 31856.39, + "end": 31857.69, + "probability": 0.9397 + }, + { + "start": 31857.77, + "end": 31860.59, + "probability": 0.9709 + }, + { + "start": 31861.63, + "end": 31864.97, + "probability": 0.9601 + }, + { + "start": 31864.97, + "end": 31869.45, + "probability": 0.9928 + }, + { + "start": 31869.45, + "end": 31874.29, + "probability": 0.8473 + }, + { + "start": 31874.87, + "end": 31878.91, + "probability": 0.9381 + }, + { + "start": 31879.71, + "end": 31884.01, + "probability": 0.9845 + }, + { + "start": 31884.35, + "end": 31889.35, + "probability": 0.9964 + }, + { + "start": 31889.53, + "end": 31890.91, + "probability": 0.9711 + }, + { + "start": 31891.01, + "end": 31891.89, + "probability": 0.4583 + }, + { + "start": 31892.15, + "end": 31893.05, + "probability": 0.755 + }, + { + "start": 31893.11, + "end": 31894.57, + "probability": 0.8849 + }, + { + "start": 31894.79, + "end": 31896.11, + "probability": 0.7686 + }, + { + "start": 31896.33, + "end": 31896.69, + "probability": 0.8281 + }, + { + "start": 31897.53, + "end": 31899.41, + "probability": 0.8739 + }, + { + "start": 31899.83, + "end": 31900.39, + "probability": 0.9526 + }, + { + "start": 31901.49, + "end": 31903.73, + "probability": 0.4406 + }, + { + "start": 31904.21, + "end": 31905.19, + "probability": 0.5185 + }, + { + "start": 31910.99, + "end": 31912.79, + "probability": 0.8065 + }, + { + "start": 31913.39, + "end": 31915.87, + "probability": 0.7527 + }, + { + "start": 31916.77, + "end": 31917.71, + "probability": 0.5345 + }, + { + "start": 31918.27, + "end": 31919.69, + "probability": 0.8354 + }, + { + "start": 31920.73, + "end": 31923.43, + "probability": 0.9957 + }, + { + "start": 31924.95, + "end": 31926.21, + "probability": 0.6463 + }, + { + "start": 31927.37, + "end": 31928.27, + "probability": 0.7832 + }, + { + "start": 31928.89, + "end": 31931.01, + "probability": 0.995 + }, + { + "start": 31932.43, + "end": 31934.71, + "probability": 0.952 + }, + { + "start": 31935.85, + "end": 31940.53, + "probability": 0.9749 + }, + { + "start": 31941.97, + "end": 31944.91, + "probability": 0.8843 + }, + { + "start": 31946.91, + "end": 31949.37, + "probability": 0.9045 + }, + { + "start": 31950.73, + "end": 31951.63, + "probability": 0.575 + }, + { + "start": 31952.37, + "end": 31954.81, + "probability": 0.7922 + }, + { + "start": 31955.75, + "end": 31959.75, + "probability": 0.9337 + }, + { + "start": 31961.35, + "end": 31963.33, + "probability": 0.4427 + }, + { + "start": 31965.91, + "end": 31971.49, + "probability": 0.9702 + }, + { + "start": 31972.23, + "end": 31973.41, + "probability": 0.5982 + }, + { + "start": 31974.45, + "end": 31975.25, + "probability": 0.5822 + }, + { + "start": 31975.55, + "end": 31978.19, + "probability": 0.9294 + }, + { + "start": 31978.37, + "end": 31981.57, + "probability": 0.8772 + }, + { + "start": 31982.99, + "end": 31984.39, + "probability": 0.8697 + }, + { + "start": 31985.21, + "end": 31993.11, + "probability": 0.9721 + }, + { + "start": 31993.11, + "end": 32000.85, + "probability": 0.995 + }, + { + "start": 32001.09, + "end": 32005.57, + "probability": 0.9991 + }, + { + "start": 32006.41, + "end": 32009.03, + "probability": 0.9831 + }, + { + "start": 32009.97, + "end": 32013.47, + "probability": 0.8193 + }, + { + "start": 32014.15, + "end": 32017.13, + "probability": 0.8929 + }, + { + "start": 32017.75, + "end": 32022.89, + "probability": 0.933 + }, + { + "start": 32023.15, + "end": 32025.93, + "probability": 0.7191 + }, + { + "start": 32025.93, + "end": 32026.51, + "probability": 0.7238 + }, + { + "start": 32026.57, + "end": 32026.97, + "probability": 0.5462 + }, + { + "start": 32027.13, + "end": 32028.87, + "probability": 0.0752 + }, + { + "start": 32029.53, + "end": 32032.69, + "probability": 0.9814 + }, + { + "start": 32034.83, + "end": 32040.77, + "probability": 0.8887 + }, + { + "start": 32041.23, + "end": 32043.59, + "probability": 0.533 + }, + { + "start": 32043.91, + "end": 32047.63, + "probability": 0.9808 + }, + { + "start": 32048.15, + "end": 32051.03, + "probability": 0.9431 + }, + { + "start": 32051.33, + "end": 32053.43, + "probability": 0.9042 + }, + { + "start": 32053.71, + "end": 32055.05, + "probability": 0.9447 + }, + { + "start": 32055.41, + "end": 32056.45, + "probability": 0.998 + }, + { + "start": 32057.79, + "end": 32059.91, + "probability": 0.4133 + }, + { + "start": 32060.13, + "end": 32060.58, + "probability": 0.7253 + }, + { + "start": 32061.91, + "end": 32062.73, + "probability": 0.8937 + }, + { + "start": 32063.29, + "end": 32064.69, + "probability": 0.8328 + }, + { + "start": 32065.03, + "end": 32065.75, + "probability": 0.9572 + }, + { + "start": 32065.89, + "end": 32066.87, + "probability": 0.9533 + }, + { + "start": 32067.01, + "end": 32069.09, + "probability": 0.9954 + }, + { + "start": 32069.73, + "end": 32071.29, + "probability": 0.8469 + }, + { + "start": 32071.99, + "end": 32075.62, + "probability": 0.9932 + }, + { + "start": 32076.97, + "end": 32083.31, + "probability": 0.9961 + }, + { + "start": 32083.91, + "end": 32088.99, + "probability": 0.9719 + }, + { + "start": 32089.93, + "end": 32091.83, + "probability": 0.9973 + }, + { + "start": 32092.45, + "end": 32095.03, + "probability": 0.9937 + }, + { + "start": 32095.09, + "end": 32097.61, + "probability": 0.8407 + }, + { + "start": 32097.89, + "end": 32101.73, + "probability": 0.9824 + }, + { + "start": 32101.95, + "end": 32106.15, + "probability": 0.9886 + }, + { + "start": 32106.21, + "end": 32109.95, + "probability": 0.9288 + }, + { + "start": 32110.31, + "end": 32111.37, + "probability": 0.6975 + }, + { + "start": 32111.93, + "end": 32113.93, + "probability": 0.9182 + }, + { + "start": 32114.11, + "end": 32121.23, + "probability": 0.9144 + }, + { + "start": 32121.51, + "end": 32122.47, + "probability": 0.9012 + }, + { + "start": 32122.61, + "end": 32124.89, + "probability": 0.9574 + }, + { + "start": 32125.07, + "end": 32127.65, + "probability": 0.8318 + }, + { + "start": 32127.69, + "end": 32128.73, + "probability": 0.9834 + }, + { + "start": 32129.09, + "end": 32130.13, + "probability": 0.8518 + }, + { + "start": 32130.17, + "end": 32130.87, + "probability": 0.8033 + }, + { + "start": 32131.23, + "end": 32132.04, + "probability": 0.9293 + }, + { + "start": 32133.15, + "end": 32136.29, + "probability": 0.9951 + }, + { + "start": 32136.57, + "end": 32143.65, + "probability": 0.979 + }, + { + "start": 32143.77, + "end": 32148.55, + "probability": 0.9935 + }, + { + "start": 32150.03, + "end": 32150.13, + "probability": 0.8497 + }, + { + "start": 32151.99, + "end": 32152.81, + "probability": 0.7058 + }, + { + "start": 32153.39, + "end": 32155.19, + "probability": 0.702 + }, + { + "start": 32155.63, + "end": 32158.89, + "probability": 0.9598 + }, + { + "start": 32159.35, + "end": 32163.99, + "probability": 0.9512 + }, + { + "start": 32164.43, + "end": 32170.81, + "probability": 0.9635 + }, + { + "start": 32170.81, + "end": 32177.47, + "probability": 0.9488 + }, + { + "start": 32177.89, + "end": 32181.49, + "probability": 0.971 + }, + { + "start": 32181.73, + "end": 32186.89, + "probability": 0.8792 + }, + { + "start": 32187.39, + "end": 32189.53, + "probability": 0.9926 + }, + { + "start": 32189.67, + "end": 32190.53, + "probability": 0.9547 + }, + { + "start": 32190.61, + "end": 32191.25, + "probability": 0.6888 + }, + { + "start": 32191.55, + "end": 32193.53, + "probability": 0.6288 + }, + { + "start": 32196.19, + "end": 32197.65, + "probability": 0.9353 + }, + { + "start": 32217.03, + "end": 32217.67, + "probability": 0.6831 + }, + { + "start": 32217.83, + "end": 32220.63, + "probability": 0.8379 + }, + { + "start": 32221.31, + "end": 32221.91, + "probability": 0.6266 + }, + { + "start": 32223.09, + "end": 32227.23, + "probability": 0.9897 + }, + { + "start": 32228.96, + "end": 32230.54, + "probability": 0.9854 + }, + { + "start": 32231.63, + "end": 32233.13, + "probability": 0.4896 + }, + { + "start": 32233.13, + "end": 32234.31, + "probability": 0.9783 + }, + { + "start": 32234.43, + "end": 32237.15, + "probability": 0.9711 + }, + { + "start": 32237.27, + "end": 32240.51, + "probability": 0.9945 + }, + { + "start": 32241.51, + "end": 32245.92, + "probability": 0.9985 + }, + { + "start": 32246.89, + "end": 32251.13, + "probability": 0.8917 + }, + { + "start": 32251.51, + "end": 32255.51, + "probability": 0.9837 + }, + { + "start": 32255.51, + "end": 32259.93, + "probability": 0.9985 + }, + { + "start": 32260.67, + "end": 32264.19, + "probability": 0.9368 + }, + { + "start": 32264.79, + "end": 32270.47, + "probability": 0.9294 + }, + { + "start": 32271.19, + "end": 32273.97, + "probability": 0.916 + }, + { + "start": 32274.17, + "end": 32277.25, + "probability": 0.906 + }, + { + "start": 32277.25, + "end": 32281.37, + "probability": 0.9884 + }, + { + "start": 32281.51, + "end": 32283.59, + "probability": 0.9606 + }, + { + "start": 32284.45, + "end": 32287.63, + "probability": 0.9862 + }, + { + "start": 32287.63, + "end": 32290.03, + "probability": 0.9972 + }, + { + "start": 32290.79, + "end": 32294.61, + "probability": 0.988 + }, + { + "start": 32295.49, + "end": 32299.61, + "probability": 0.9552 + }, + { + "start": 32300.91, + "end": 32304.25, + "probability": 0.9802 + }, + { + "start": 32304.25, + "end": 32309.49, + "probability": 0.9982 + }, + { + "start": 32310.55, + "end": 32318.27, + "probability": 0.9921 + }, + { + "start": 32319.05, + "end": 32321.97, + "probability": 0.9805 + }, + { + "start": 32322.07, + "end": 32324.53, + "probability": 0.9266 + }, + { + "start": 32325.07, + "end": 32328.67, + "probability": 0.986 + }, + { + "start": 32330.43, + "end": 32331.97, + "probability": 0.747 + }, + { + "start": 32332.03, + "end": 32335.59, + "probability": 0.9699 + }, + { + "start": 32336.41, + "end": 32336.99, + "probability": 0.6616 + }, + { + "start": 32337.29, + "end": 32340.43, + "probability": 0.9169 + }, + { + "start": 32340.47, + "end": 32342.37, + "probability": 0.8694 + }, + { + "start": 32342.39, + "end": 32345.91, + "probability": 0.9905 + }, + { + "start": 32346.07, + "end": 32349.8, + "probability": 0.9977 + }, + { + "start": 32350.71, + "end": 32354.09, + "probability": 0.9761 + }, + { + "start": 32354.13, + "end": 32355.13, + "probability": 0.5532 + }, + { + "start": 32355.19, + "end": 32355.49, + "probability": 0.1995 + }, + { + "start": 32355.51, + "end": 32356.14, + "probability": 0.6973 + }, + { + "start": 32356.47, + "end": 32357.91, + "probability": 0.7806 + }, + { + "start": 32358.03, + "end": 32360.67, + "probability": 0.9865 + }, + { + "start": 32360.89, + "end": 32362.27, + "probability": 0.6738 + }, + { + "start": 32362.27, + "end": 32364.91, + "probability": 0.8387 + }, + { + "start": 32365.09, + "end": 32365.65, + "probability": 0.4648 + }, + { + "start": 32365.69, + "end": 32372.77, + "probability": 0.9924 + }, + { + "start": 32372.85, + "end": 32379.45, + "probability": 0.9834 + }, + { + "start": 32380.15, + "end": 32380.77, + "probability": 0.9055 + }, + { + "start": 32380.97, + "end": 32384.11, + "probability": 0.9962 + }, + { + "start": 32384.19, + "end": 32384.19, + "probability": 0.2598 + }, + { + "start": 32384.19, + "end": 32385.89, + "probability": 0.8113 + }, + { + "start": 32386.21, + "end": 32387.31, + "probability": 0.7644 + }, + { + "start": 32387.41, + "end": 32390.89, + "probability": 0.9808 + }, + { + "start": 32391.51, + "end": 32394.71, + "probability": 0.8726 + }, + { + "start": 32394.89, + "end": 32399.43, + "probability": 0.9681 + }, + { + "start": 32399.65, + "end": 32405.03, + "probability": 0.9816 + }, + { + "start": 32405.93, + "end": 32410.43, + "probability": 0.9922 + }, + { + "start": 32410.43, + "end": 32415.13, + "probability": 0.9973 + }, + { + "start": 32415.77, + "end": 32416.89, + "probability": 0.4446 + }, + { + "start": 32416.93, + "end": 32419.37, + "probability": 0.9892 + }, + { + "start": 32419.45, + "end": 32420.67, + "probability": 0.9179 + }, + { + "start": 32421.27, + "end": 32422.71, + "probability": 0.9237 + }, + { + "start": 32422.89, + "end": 32425.43, + "probability": 0.9531 + }, + { + "start": 32426.46, + "end": 32431.43, + "probability": 0.9921 + }, + { + "start": 32432.07, + "end": 32435.89, + "probability": 0.9277 + }, + { + "start": 32436.55, + "end": 32438.33, + "probability": 0.9757 + }, + { + "start": 32438.55, + "end": 32444.59, + "probability": 0.9977 + }, + { + "start": 32444.59, + "end": 32449.13, + "probability": 0.892 + }, + { + "start": 32450.85, + "end": 32453.71, + "probability": 0.8528 + }, + { + "start": 32453.75, + "end": 32454.45, + "probability": 0.7763 + }, + { + "start": 32454.55, + "end": 32455.25, + "probability": 0.9498 + }, + { + "start": 32455.31, + "end": 32456.89, + "probability": 0.9915 + }, + { + "start": 32458.07, + "end": 32460.49, + "probability": 0.9904 + }, + { + "start": 32460.85, + "end": 32464.85, + "probability": 0.9969 + }, + { + "start": 32464.85, + "end": 32469.27, + "probability": 0.9154 + }, + { + "start": 32469.71, + "end": 32470.79, + "probability": 0.9586 + }, + { + "start": 32471.09, + "end": 32476.27, + "probability": 0.9863 + }, + { + "start": 32476.77, + "end": 32478.47, + "probability": 0.9811 + }, + { + "start": 32479.07, + "end": 32483.53, + "probability": 0.9977 + }, + { + "start": 32483.71, + "end": 32484.45, + "probability": 0.934 + }, + { + "start": 32484.67, + "end": 32487.62, + "probability": 0.9968 + }, + { + "start": 32487.77, + "end": 32490.77, + "probability": 0.987 + }, + { + "start": 32490.99, + "end": 32492.51, + "probability": 0.9824 + }, + { + "start": 32492.67, + "end": 32495.49, + "probability": 0.9941 + }, + { + "start": 32495.49, + "end": 32498.83, + "probability": 0.9973 + }, + { + "start": 32499.31, + "end": 32504.71, + "probability": 0.9354 + }, + { + "start": 32504.89, + "end": 32509.41, + "probability": 0.9949 + }, + { + "start": 32510.37, + "end": 32514.85, + "probability": 0.9792 + }, + { + "start": 32514.85, + "end": 32519.47, + "probability": 0.9985 + }, + { + "start": 32520.41, + "end": 32521.09, + "probability": 0.5909 + }, + { + "start": 32521.11, + "end": 32524.91, + "probability": 0.9954 + }, + { + "start": 32526.09, + "end": 32528.4, + "probability": 0.9995 + }, + { + "start": 32529.29, + "end": 32531.15, + "probability": 0.9869 + }, + { + "start": 32531.51, + "end": 32535.87, + "probability": 0.8648 + }, + { + "start": 32536.11, + "end": 32538.09, + "probability": 0.9827 + }, + { + "start": 32538.25, + "end": 32540.68, + "probability": 0.9402 + }, + { + "start": 32541.15, + "end": 32548.23, + "probability": 0.9871 + }, + { + "start": 32549.24, + "end": 32551.63, + "probability": 0.9677 + }, + { + "start": 32552.19, + "end": 32562.33, + "probability": 0.9785 + }, + { + "start": 32563.79, + "end": 32568.73, + "probability": 0.9941 + }, + { + "start": 32568.73, + "end": 32572.11, + "probability": 0.9077 + }, + { + "start": 32573.45, + "end": 32574.65, + "probability": 0.7856 + }, + { + "start": 32575.01, + "end": 32576.55, + "probability": 0.9991 + }, + { + "start": 32576.77, + "end": 32578.35, + "probability": 0.9937 + }, + { + "start": 32578.45, + "end": 32581.39, + "probability": 0.9934 + }, + { + "start": 32581.79, + "end": 32588.11, + "probability": 0.9863 + }, + { + "start": 32588.77, + "end": 32593.05, + "probability": 0.9727 + }, + { + "start": 32594.01, + "end": 32598.87, + "probability": 0.9502 + }, + { + "start": 32599.05, + "end": 32601.25, + "probability": 0.9774 + }, + { + "start": 32601.39, + "end": 32604.23, + "probability": 0.9782 + }, + { + "start": 32604.33, + "end": 32606.17, + "probability": 0.9913 + }, + { + "start": 32606.65, + "end": 32609.03, + "probability": 0.6075 + }, + { + "start": 32609.33, + "end": 32613.15, + "probability": 0.7163 + }, + { + "start": 32613.71, + "end": 32616.21, + "probability": 0.9462 + }, + { + "start": 32616.31, + "end": 32619.67, + "probability": 0.9961 + }, + { + "start": 32619.67, + "end": 32626.03, + "probability": 0.9909 + }, + { + "start": 32626.27, + "end": 32630.69, + "probability": 0.9979 + }, + { + "start": 32631.49, + "end": 32632.92, + "probability": 0.9277 + }, + { + "start": 32633.51, + "end": 32636.05, + "probability": 0.9973 + }, + { + "start": 32636.25, + "end": 32638.43, + "probability": 0.8185 + }, + { + "start": 32638.63, + "end": 32638.93, + "probability": 0.9567 + }, + { + "start": 32638.99, + "end": 32640.91, + "probability": 0.9744 + }, + { + "start": 32641.11, + "end": 32643.03, + "probability": 0.9961 + }, + { + "start": 32643.09, + "end": 32644.87, + "probability": 0.9927 + }, + { + "start": 32644.99, + "end": 32646.19, + "probability": 0.9579 + }, + { + "start": 32646.53, + "end": 32649.99, + "probability": 0.9781 + }, + { + "start": 32650.19, + "end": 32654.27, + "probability": 0.9923 + }, + { + "start": 32654.33, + "end": 32655.99, + "probability": 0.9792 + }, + { + "start": 32656.41, + "end": 32659.77, + "probability": 0.984 + }, + { + "start": 32659.77, + "end": 32662.49, + "probability": 0.999 + }, + { + "start": 32663.69, + "end": 32668.91, + "probability": 0.9847 + }, + { + "start": 32669.03, + "end": 32669.75, + "probability": 0.6157 + }, + { + "start": 32670.11, + "end": 32671.63, + "probability": 0.9983 + }, + { + "start": 32672.11, + "end": 32674.47, + "probability": 0.9972 + }, + { + "start": 32674.69, + "end": 32675.97, + "probability": 0.8508 + }, + { + "start": 32676.39, + "end": 32677.79, + "probability": 0.9412 + }, + { + "start": 32678.01, + "end": 32679.97, + "probability": 0.9814 + }, + { + "start": 32680.01, + "end": 32684.03, + "probability": 0.993 + }, + { + "start": 32684.71, + "end": 32685.89, + "probability": 0.9661 + }, + { + "start": 32685.99, + "end": 32686.19, + "probability": 0.6967 + }, + { + "start": 32686.25, + "end": 32687.85, + "probability": 0.9868 + }, + { + "start": 32688.41, + "end": 32690.31, + "probability": 0.9614 + }, + { + "start": 32690.45, + "end": 32691.63, + "probability": 0.5608 + }, + { + "start": 32691.65, + "end": 32694.72, + "probability": 0.9922 + }, + { + "start": 32695.03, + "end": 32700.29, + "probability": 0.991 + }, + { + "start": 32701.35, + "end": 32704.61, + "probability": 0.9996 + }, + { + "start": 32704.61, + "end": 32708.57, + "probability": 0.9951 + }, + { + "start": 32708.63, + "end": 32709.73, + "probability": 0.7013 + }, + { + "start": 32710.75, + "end": 32714.22, + "probability": 0.9983 + }, + { + "start": 32714.23, + "end": 32717.57, + "probability": 0.9971 + }, + { + "start": 32717.65, + "end": 32719.67, + "probability": 0.9078 + }, + { + "start": 32719.81, + "end": 32726.35, + "probability": 0.9958 + }, + { + "start": 32726.41, + "end": 32729.37, + "probability": 0.9902 + }, + { + "start": 32729.69, + "end": 32730.99, + "probability": 0.9928 + }, + { + "start": 32731.11, + "end": 32733.57, + "probability": 0.9476 + }, + { + "start": 32733.63, + "end": 32735.77, + "probability": 0.959 + }, + { + "start": 32736.15, + "end": 32740.93, + "probability": 0.944 + }, + { + "start": 32741.19, + "end": 32744.41, + "probability": 0.9594 + }, + { + "start": 32745.33, + "end": 32746.77, + "probability": 0.938 + }, + { + "start": 32747.91, + "end": 32750.37, + "probability": 0.8827 + }, + { + "start": 32751.07, + "end": 32755.08, + "probability": 0.9946 + }, + { + "start": 32755.43, + "end": 32758.21, + "probability": 0.9863 + }, + { + "start": 32758.45, + "end": 32759.86, + "probability": 0.9932 + }, + { + "start": 32760.31, + "end": 32762.21, + "probability": 0.9884 + }, + { + "start": 32762.47, + "end": 32763.63, + "probability": 0.9917 + }, + { + "start": 32763.81, + "end": 32765.0, + "probability": 0.9798 + }, + { + "start": 32765.47, + "end": 32768.41, + "probability": 0.9863 + }, + { + "start": 32768.53, + "end": 32769.77, + "probability": 0.981 + }, + { + "start": 32769.87, + "end": 32770.87, + "probability": 0.9773 + }, + { + "start": 32771.67, + "end": 32773.1, + "probability": 0.9018 + }, + { + "start": 32773.69, + "end": 32776.77, + "probability": 0.851 + }, + { + "start": 32777.29, + "end": 32781.97, + "probability": 0.9767 + }, + { + "start": 32782.27, + "end": 32785.11, + "probability": 0.9757 + }, + { + "start": 32785.15, + "end": 32787.33, + "probability": 0.9972 + }, + { + "start": 32787.33, + "end": 32789.55, + "probability": 0.999 + }, + { + "start": 32790.13, + "end": 32791.75, + "probability": 0.9667 + }, + { + "start": 32792.19, + "end": 32794.53, + "probability": 0.9954 + }, + { + "start": 32795.23, + "end": 32797.35, + "probability": 0.996 + }, + { + "start": 32797.53, + "end": 32798.53, + "probability": 0.9711 + }, + { + "start": 32798.83, + "end": 32800.87, + "probability": 0.9823 + }, + { + "start": 32800.91, + "end": 32804.19, + "probability": 0.9873 + }, + { + "start": 32804.29, + "end": 32807.51, + "probability": 0.8765 + }, + { + "start": 32808.03, + "end": 32809.37, + "probability": 0.9565 + }, + { + "start": 32810.11, + "end": 32814.01, + "probability": 0.9889 + }, + { + "start": 32815.07, + "end": 32816.59, + "probability": 0.9768 + }, + { + "start": 32817.27, + "end": 32818.21, + "probability": 0.9949 + }, + { + "start": 32818.29, + "end": 32821.31, + "probability": 0.9972 + }, + { + "start": 32821.31, + "end": 32823.83, + "probability": 0.9882 + }, + { + "start": 32824.25, + "end": 32826.37, + "probability": 0.9884 + }, + { + "start": 32826.37, + "end": 32828.89, + "probability": 0.9897 + }, + { + "start": 32830.09, + "end": 32832.85, + "probability": 0.999 + }, + { + "start": 32833.05, + "end": 32834.13, + "probability": 0.9538 + }, + { + "start": 32834.19, + "end": 32835.13, + "probability": 0.7947 + }, + { + "start": 32835.23, + "end": 32836.29, + "probability": 0.9663 + }, + { + "start": 32836.71, + "end": 32838.37, + "probability": 0.9653 + }, + { + "start": 32838.39, + "end": 32839.97, + "probability": 0.9416 + }, + { + "start": 32839.99, + "end": 32843.15, + "probability": 0.9847 + }, + { + "start": 32843.57, + "end": 32845.03, + "probability": 0.936 + }, + { + "start": 32845.93, + "end": 32847.93, + "probability": 0.8071 + }, + { + "start": 32848.01, + "end": 32848.92, + "probability": 0.8666 + }, + { + "start": 32849.19, + "end": 32852.63, + "probability": 0.9775 + }, + { + "start": 32852.75, + "end": 32853.29, + "probability": 0.9586 + }, + { + "start": 32853.67, + "end": 32855.21, + "probability": 0.9683 + }, + { + "start": 32856.27, + "end": 32859.67, + "probability": 0.9982 + }, + { + "start": 32859.67, + "end": 32863.07, + "probability": 0.9969 + }, + { + "start": 32863.13, + "end": 32863.77, + "probability": 0.917 + }, + { + "start": 32863.87, + "end": 32865.17, + "probability": 0.9501 + }, + { + "start": 32865.27, + "end": 32867.45, + "probability": 0.9917 + }, + { + "start": 32868.51, + "end": 32868.89, + "probability": 0.6802 + }, + { + "start": 32869.07, + "end": 32872.45, + "probability": 0.8301 + }, + { + "start": 32872.45, + "end": 32874.99, + "probability": 0.9934 + }, + { + "start": 32875.45, + "end": 32877.83, + "probability": 0.9971 + }, + { + "start": 32878.45, + "end": 32879.43, + "probability": 0.9362 + }, + { + "start": 32880.09, + "end": 32882.93, + "probability": 0.9746 + }, + { + "start": 32882.93, + "end": 32883.95, + "probability": 0.8025 + }, + { + "start": 32884.11, + "end": 32887.29, + "probability": 0.9934 + }, + { + "start": 32887.29, + "end": 32890.35, + "probability": 0.9925 + }, + { + "start": 32890.65, + "end": 32893.61, + "probability": 0.9926 + }, + { + "start": 32893.73, + "end": 32894.83, + "probability": 0.6619 + }, + { + "start": 32897.75, + "end": 32900.17, + "probability": 0.9488 + }, + { + "start": 32900.17, + "end": 32902.63, + "probability": 0.9988 + }, + { + "start": 32902.73, + "end": 32904.89, + "probability": 0.9893 + }, + { + "start": 32904.89, + "end": 32907.25, + "probability": 0.9722 + }, + { + "start": 32907.63, + "end": 32911.67, + "probability": 0.9607 + }, + { + "start": 32912.19, + "end": 32915.89, + "probability": 0.8195 + }, + { + "start": 32916.41, + "end": 32919.02, + "probability": 0.9922 + }, + { + "start": 32919.59, + "end": 32924.45, + "probability": 0.9888 + }, + { + "start": 32926.55, + "end": 32928.93, + "probability": 0.959 + }, + { + "start": 32928.97, + "end": 32929.71, + "probability": 0.4418 + }, + { + "start": 32930.05, + "end": 32930.39, + "probability": 0.5813 + }, + { + "start": 32930.45, + "end": 32933.01, + "probability": 0.98 + }, + { + "start": 32933.01, + "end": 32935.41, + "probability": 0.9938 + }, + { + "start": 32938.08, + "end": 32941.39, + "probability": 0.8153 + }, + { + "start": 32942.35, + "end": 32943.17, + "probability": 0.238 + }, + { + "start": 32943.87, + "end": 32944.17, + "probability": 0.0149 + }, + { + "start": 32944.17, + "end": 32946.97, + "probability": 0.2071 + }, + { + "start": 32947.71, + "end": 32950.49, + "probability": 0.8349 + }, + { + "start": 32951.41, + "end": 32954.57, + "probability": 0.9762 + }, + { + "start": 32955.05, + "end": 32959.55, + "probability": 0.9407 + }, + { + "start": 32960.09, + "end": 32963.27, + "probability": 0.7767 + }, + { + "start": 32963.61, + "end": 32969.07, + "probability": 0.9062 + }, + { + "start": 32969.07, + "end": 32973.79, + "probability": 0.9912 + }, + { + "start": 32973.79, + "end": 32977.63, + "probability": 0.9609 + }, + { + "start": 32977.83, + "end": 32978.43, + "probability": 0.8408 + }, + { + "start": 32978.53, + "end": 32981.21, + "probability": 0.6842 + }, + { + "start": 32981.37, + "end": 32982.27, + "probability": 0.8734 + }, + { + "start": 32983.49, + "end": 32986.09, + "probability": 0.9875 + }, + { + "start": 32987.03, + "end": 32990.93, + "probability": 0.995 + }, + { + "start": 32991.69, + "end": 32996.41, + "probability": 0.9922 + }, + { + "start": 32996.41, + "end": 32997.83, + "probability": 0.2608 + }, + { + "start": 32998.87, + "end": 33001.17, + "probability": 0.9904 + }, + { + "start": 33001.61, + "end": 33003.79, + "probability": 0.9973 + }, + { + "start": 33003.87, + "end": 33006.45, + "probability": 0.8933 + }, + { + "start": 33006.91, + "end": 33009.91, + "probability": 0.9601 + }, + { + "start": 33009.97, + "end": 33010.49, + "probability": 0.5396 + }, + { + "start": 33010.59, + "end": 33012.55, + "probability": 0.902 + }, + { + "start": 33013.69, + "end": 33014.19, + "probability": 0.969 + }, + { + "start": 33015.33, + "end": 33020.05, + "probability": 0.9834 + }, + { + "start": 33021.15, + "end": 33022.79, + "probability": 0.9795 + }, + { + "start": 33024.27, + "end": 33026.97, + "probability": 0.63 + }, + { + "start": 33027.89, + "end": 33029.71, + "probability": 0.0496 + }, + { + "start": 33029.71, + "end": 33034.25, + "probability": 0.9994 + }, + { + "start": 33035.77, + "end": 33039.21, + "probability": 0.9974 + }, + { + "start": 33039.43, + "end": 33039.85, + "probability": 0.7036 + }, + { + "start": 33039.97, + "end": 33041.67, + "probability": 0.9483 + }, + { + "start": 33042.31, + "end": 33045.93, + "probability": 0.9963 + }, + { + "start": 33046.07, + "end": 33046.83, + "probability": 0.7406 + }, + { + "start": 33046.99, + "end": 33048.25, + "probability": 0.9835 + }, + { + "start": 33048.35, + "end": 33050.51, + "probability": 0.9608 + }, + { + "start": 33052.73, + "end": 33055.75, + "probability": 0.9932 + }, + { + "start": 33056.17, + "end": 33058.85, + "probability": 0.8512 + }, + { + "start": 33059.57, + "end": 33061.99, + "probability": 0.8361 + }, + { + "start": 33063.05, + "end": 33064.57, + "probability": 0.8921 + }, + { + "start": 33064.87, + "end": 33066.99, + "probability": 0.842 + }, + { + "start": 33067.25, + "end": 33068.91, + "probability": 0.9944 + }, + { + "start": 33069.45, + "end": 33070.5, + "probability": 0.9637 + }, + { + "start": 33071.27, + "end": 33074.51, + "probability": 0.9028 + }, + { + "start": 33075.71, + "end": 33080.97, + "probability": 0.9953 + }, + { + "start": 33081.03, + "end": 33083.41, + "probability": 0.9944 + }, + { + "start": 33083.53, + "end": 33085.83, + "probability": 0.874 + }, + { + "start": 33085.93, + "end": 33086.69, + "probability": 0.9871 + }, + { + "start": 33088.19, + "end": 33089.89, + "probability": 0.9502 + }, + { + "start": 33090.69, + "end": 33095.0, + "probability": 0.9268 + }, + { + "start": 33095.13, + "end": 33096.89, + "probability": 0.6344 + }, + { + "start": 33097.67, + "end": 33099.23, + "probability": 0.958 + }, + { + "start": 33099.69, + "end": 33100.81, + "probability": 0.9609 + }, + { + "start": 33100.87, + "end": 33102.08, + "probability": 0.8518 + }, + { + "start": 33102.21, + "end": 33104.11, + "probability": 0.9778 + }, + { + "start": 33104.27, + "end": 33107.67, + "probability": 0.9731 + }, + { + "start": 33107.71, + "end": 33108.73, + "probability": 0.7398 + }, + { + "start": 33108.81, + "end": 33109.95, + "probability": 0.8503 + }, + { + "start": 33111.57, + "end": 33115.77, + "probability": 0.9373 + }, + { + "start": 33115.77, + "end": 33119.51, + "probability": 0.9948 + }, + { + "start": 33120.17, + "end": 33122.89, + "probability": 0.9561 + }, + { + "start": 33123.43, + "end": 33127.73, + "probability": 0.9913 + }, + { + "start": 33128.19, + "end": 33131.29, + "probability": 0.9601 + }, + { + "start": 33132.11, + "end": 33133.31, + "probability": 0.6561 + }, + { + "start": 33133.73, + "end": 33137.93, + "probability": 0.9915 + }, + { + "start": 33138.11, + "end": 33140.57, + "probability": 0.9958 + }, + { + "start": 33141.43, + "end": 33145.03, + "probability": 0.9666 + }, + { + "start": 33145.07, + "end": 33147.7, + "probability": 0.9958 + }, + { + "start": 33148.15, + "end": 33151.51, + "probability": 0.998 + }, + { + "start": 33151.57, + "end": 33154.51, + "probability": 0.9949 + }, + { + "start": 33154.97, + "end": 33158.05, + "probability": 0.9961 + }, + { + "start": 33158.17, + "end": 33162.97, + "probability": 0.9897 + }, + { + "start": 33163.23, + "end": 33165.71, + "probability": 0.9891 + }, + { + "start": 33166.65, + "end": 33169.49, + "probability": 0.9961 + }, + { + "start": 33169.63, + "end": 33170.57, + "probability": 0.973 + }, + { + "start": 33171.07, + "end": 33173.31, + "probability": 0.9538 + }, + { + "start": 33173.39, + "end": 33178.09, + "probability": 0.9933 + }, + { + "start": 33178.85, + "end": 33182.35, + "probability": 0.9937 + }, + { + "start": 33182.43, + "end": 33183.91, + "probability": 0.9773 + }, + { + "start": 33184.97, + "end": 33190.29, + "probability": 0.981 + }, + { + "start": 33190.67, + "end": 33196.93, + "probability": 0.9684 + }, + { + "start": 33197.05, + "end": 33200.39, + "probability": 0.9956 + }, + { + "start": 33200.91, + "end": 33202.99, + "probability": 0.9766 + }, + { + "start": 33203.31, + "end": 33203.45, + "probability": 0.8066 + }, + { + "start": 33204.33, + "end": 33205.83, + "probability": 0.8516 + }, + { + "start": 33206.95, + "end": 33208.21, + "probability": 0.7853 + }, + { + "start": 33214.05, + "end": 33216.67, + "probability": 0.7039 + }, + { + "start": 33216.87, + "end": 33217.65, + "probability": 0.0021 + }, + { + "start": 33224.27, + "end": 33226.29, + "probability": 0.0941 + }, + { + "start": 33229.39, + "end": 33233.59, + "probability": 0.5932 + }, + { + "start": 33234.45, + "end": 33236.13, + "probability": 0.9694 + }, + { + "start": 33236.21, + "end": 33238.13, + "probability": 0.6973 + }, + { + "start": 33238.31, + "end": 33239.09, + "probability": 0.5158 + }, + { + "start": 33239.21, + "end": 33240.5, + "probability": 0.7742 + }, + { + "start": 33240.61, + "end": 33242.29, + "probability": 0.8566 + }, + { + "start": 33242.65, + "end": 33243.96, + "probability": 0.5498 + }, + { + "start": 33244.25, + "end": 33245.29, + "probability": 0.9767 + }, + { + "start": 33245.37, + "end": 33246.0, + "probability": 0.8001 + }, + { + "start": 33246.63, + "end": 33247.97, + "probability": 0.9644 + }, + { + "start": 33250.99, + "end": 33254.73, + "probability": 0.9884 + }, + { + "start": 33255.87, + "end": 33259.37, + "probability": 0.9951 + }, + { + "start": 33260.55, + "end": 33262.09, + "probability": 0.9597 + }, + { + "start": 33262.49, + "end": 33263.88, + "probability": 0.9955 + }, + { + "start": 33264.19, + "end": 33267.07, + "probability": 0.9347 + }, + { + "start": 33267.91, + "end": 33268.55, + "probability": 0.7303 + }, + { + "start": 33269.07, + "end": 33274.37, + "probability": 0.7968 + }, + { + "start": 33275.27, + "end": 33277.73, + "probability": 0.9961 + }, + { + "start": 33277.73, + "end": 33279.77, + "probability": 0.9827 + }, + { + "start": 33280.61, + "end": 33289.05, + "probability": 0.9497 + }, + { + "start": 33289.33, + "end": 33295.57, + "probability": 0.8318 + }, + { + "start": 33295.77, + "end": 33296.39, + "probability": 0.6917 + }, + { + "start": 33297.61, + "end": 33301.61, + "probability": 0.9957 + }, + { + "start": 33302.31, + "end": 33303.39, + "probability": 0.8077 + }, + { + "start": 33303.89, + "end": 33306.67, + "probability": 0.8482 + }, + { + "start": 33307.17, + "end": 33308.19, + "probability": 0.7709 + }, + { + "start": 33308.29, + "end": 33309.17, + "probability": 0.7543 + }, + { + "start": 33313.11, + "end": 33315.87, + "probability": 0.7507 + }, + { + "start": 33316.31, + "end": 33317.03, + "probability": 0.5196 + }, + { + "start": 33317.65, + "end": 33322.37, + "probability": 0.8394 + }, + { + "start": 33322.55, + "end": 33327.87, + "probability": 0.9939 + }, + { + "start": 33329.37, + "end": 33329.99, + "probability": 0.8341 + }, + { + "start": 33330.17, + "end": 33332.79, + "probability": 0.7641 + }, + { + "start": 33334.15, + "end": 33336.55, + "probability": 0.8621 + }, + { + "start": 33336.63, + "end": 33343.43, + "probability": 0.9421 + }, + { + "start": 33343.77, + "end": 33344.61, + "probability": 0.6685 + }, + { + "start": 33345.27, + "end": 33346.83, + "probability": 0.9961 + }, + { + "start": 33347.89, + "end": 33350.77, + "probability": 0.9182 + }, + { + "start": 33354.21, + "end": 33356.67, + "probability": 0.533 + }, + { + "start": 33356.77, + "end": 33360.61, + "probability": 0.9835 + }, + { + "start": 33361.01, + "end": 33361.39, + "probability": 0.5038 + }, + { + "start": 33361.47, + "end": 33367.31, + "probability": 0.965 + }, + { + "start": 33371.89, + "end": 33381.65, + "probability": 0.9972 + }, + { + "start": 33381.85, + "end": 33382.83, + "probability": 0.8145 + }, + { + "start": 33384.37, + "end": 33388.15, + "probability": 0.872 + }, + { + "start": 33391.17, + "end": 33394.67, + "probability": 0.9229 + }, + { + "start": 33395.59, + "end": 33396.33, + "probability": 0.6773 + }, + { + "start": 33397.45, + "end": 33400.33, + "probability": 0.8251 + }, + { + "start": 33400.33, + "end": 33402.95, + "probability": 0.9299 + }, + { + "start": 33404.11, + "end": 33405.59, + "probability": 0.7878 + }, + { + "start": 33405.75, + "end": 33406.63, + "probability": 0.7469 + }, + { + "start": 33406.63, + "end": 33410.21, + "probability": 0.9676 + }, + { + "start": 33411.13, + "end": 33413.66, + "probability": 0.9281 + }, + { + "start": 33414.77, + "end": 33416.05, + "probability": 0.7465 + }, + { + "start": 33417.05, + "end": 33419.29, + "probability": 0.8438 + }, + { + "start": 33420.01, + "end": 33422.35, + "probability": 0.9956 + }, + { + "start": 33422.47, + "end": 33423.47, + "probability": 0.88 + }, + { + "start": 33423.95, + "end": 33425.33, + "probability": 0.8911 + }, + { + "start": 33425.43, + "end": 33426.79, + "probability": 0.6742 + }, + { + "start": 33427.45, + "end": 33429.93, + "probability": 0.4819 + }, + { + "start": 33430.03, + "end": 33436.35, + "probability": 0.9602 + }, + { + "start": 33436.83, + "end": 33437.13, + "probability": 0.4834 + }, + { + "start": 33437.13, + "end": 33438.99, + "probability": 0.6466 + }, + { + "start": 33439.15, + "end": 33439.85, + "probability": 0.9762 + }, + { + "start": 33440.11, + "end": 33441.89, + "probability": 0.8767 + }, + { + "start": 33442.55, + "end": 33443.35, + "probability": 0.539 + }, + { + "start": 33444.29, + "end": 33447.33, + "probability": 0.9948 + }, + { + "start": 33447.79, + "end": 33451.01, + "probability": 0.9698 + }, + { + "start": 33451.09, + "end": 33452.19, + "probability": 0.9797 + }, + { + "start": 33452.85, + "end": 33455.97, + "probability": 0.9274 + }, + { + "start": 33456.97, + "end": 33457.93, + "probability": 0.9453 + }, + { + "start": 33459.07, + "end": 33459.19, + "probability": 0.4503 + }, + { + "start": 33459.31, + "end": 33460.79, + "probability": 0.9926 + }, + { + "start": 33460.83, + "end": 33461.73, + "probability": 0.9971 + }, + { + "start": 33462.11, + "end": 33464.01, + "probability": 0.9265 + }, + { + "start": 33466.15, + "end": 33470.13, + "probability": 0.9677 + }, + { + "start": 33470.49, + "end": 33472.31, + "probability": 0.9478 + }, + { + "start": 33474.67, + "end": 33476.87, + "probability": 0.8684 + }, + { + "start": 33477.03, + "end": 33480.39, + "probability": 0.9087 + }, + { + "start": 33482.19, + "end": 33484.69, + "probability": 0.8692 + }, + { + "start": 33488.17, + "end": 33492.03, + "probability": 0.994 + }, + { + "start": 33492.03, + "end": 33494.31, + "probability": 0.6519 + }, + { + "start": 33495.32, + "end": 33498.87, + "probability": 0.9723 + }, + { + "start": 33498.89, + "end": 33500.29, + "probability": 0.8533 + }, + { + "start": 33500.42, + "end": 33505.03, + "probability": 0.8547 + }, + { + "start": 33505.63, + "end": 33511.68, + "probability": 0.9922 + }, + { + "start": 33511.99, + "end": 33514.49, + "probability": 0.9976 + }, + { + "start": 33517.37, + "end": 33518.03, + "probability": 0.9065 + }, + { + "start": 33519.95, + "end": 33522.41, + "probability": 0.9574 + }, + { + "start": 33523.39, + "end": 33527.6, + "probability": 0.9957 + }, + { + "start": 33528.73, + "end": 33532.45, + "probability": 0.9926 + }, + { + "start": 33532.87, + "end": 33534.43, + "probability": 0.808 + }, + { + "start": 33535.61, + "end": 33538.65, + "probability": 0.9629 + }, + { + "start": 33538.71, + "end": 33539.17, + "probability": 0.6333 + }, + { + "start": 33539.75, + "end": 33541.63, + "probability": 0.7253 + }, + { + "start": 33542.09, + "end": 33543.33, + "probability": 0.973 + }, + { + "start": 33543.97, + "end": 33547.33, + "probability": 0.8932 + }, + { + "start": 33547.67, + "end": 33547.67, + "probability": 0.4108 + }, + { + "start": 33547.85, + "end": 33552.01, + "probability": 0.9653 + }, + { + "start": 33552.11, + "end": 33552.84, + "probability": 0.9471 + }, + { + "start": 33553.47, + "end": 33555.19, + "probability": 0.669 + }, + { + "start": 33557.07, + "end": 33558.73, + "probability": 0.5282 + }, + { + "start": 33559.47, + "end": 33561.03, + "probability": 0.8971 + }, + { + "start": 33562.07, + "end": 33566.75, + "probability": 0.9818 + }, + { + "start": 33566.83, + "end": 33567.63, + "probability": 0.9888 + }, + { + "start": 33567.91, + "end": 33568.95, + "probability": 0.9245 + }, + { + "start": 33569.05, + "end": 33569.68, + "probability": 0.6969 + }, + { + "start": 33572.25, + "end": 33576.87, + "probability": 0.9919 + }, + { + "start": 33577.59, + "end": 33579.71, + "probability": 0.9481 + }, + { + "start": 33580.85, + "end": 33582.93, + "probability": 0.9515 + }, + { + "start": 33586.11, + "end": 33590.61, + "probability": 0.9149 + }, + { + "start": 33590.73, + "end": 33593.35, + "probability": 0.952 + }, + { + "start": 33593.49, + "end": 33596.25, + "probability": 0.9862 + }, + { + "start": 33597.65, + "end": 33600.13, + "probability": 0.8244 + }, + { + "start": 33600.25, + "end": 33602.11, + "probability": 0.8562 + }, + { + "start": 33602.17, + "end": 33604.19, + "probability": 0.6657 + }, + { + "start": 33604.75, + "end": 33607.89, + "probability": 0.9725 + }, + { + "start": 33607.97, + "end": 33608.99, + "probability": 0.6957 + }, + { + "start": 33609.49, + "end": 33611.31, + "probability": 0.6626 + }, + { + "start": 33611.75, + "end": 33612.4, + "probability": 0.7708 + }, + { + "start": 33613.48, + "end": 33617.79, + "probability": 0.9807 + }, + { + "start": 33618.8, + "end": 33622.11, + "probability": 0.8207 + }, + { + "start": 33622.19, + "end": 33622.89, + "probability": 0.7479 + }, + { + "start": 33623.01, + "end": 33625.23, + "probability": 0.579 + }, + { + "start": 33625.31, + "end": 33625.85, + "probability": 0.7201 + }, + { + "start": 33626.25, + "end": 33627.75, + "probability": 0.7779 + }, + { + "start": 33627.77, + "end": 33629.21, + "probability": 0.9379 + }, + { + "start": 33629.67, + "end": 33631.65, + "probability": 0.9566 + }, + { + "start": 33632.31, + "end": 33640.43, + "probability": 0.819 + }, + { + "start": 33640.57, + "end": 33641.35, + "probability": 0.757 + }, + { + "start": 33641.45, + "end": 33644.21, + "probability": 0.7897 + }, + { + "start": 33644.39, + "end": 33650.67, + "probability": 0.9856 + }, + { + "start": 33651.05, + "end": 33652.01, + "probability": 0.8621 + }, + { + "start": 33652.39, + "end": 33654.77, + "probability": 0.554 + }, + { + "start": 33654.87, + "end": 33657.69, + "probability": 0.99 + }, + { + "start": 33658.25, + "end": 33660.93, + "probability": 0.9945 + }, + { + "start": 33661.05, + "end": 33662.01, + "probability": 0.6237 + }, + { + "start": 33663.05, + "end": 33665.69, + "probability": 0.844 + }, + { + "start": 33666.17, + "end": 33669.51, + "probability": 0.8428 + }, + { + "start": 33670.45, + "end": 33672.89, + "probability": 0.986 + }, + { + "start": 33672.89, + "end": 33675.11, + "probability": 0.9989 + }, + { + "start": 33675.21, + "end": 33676.31, + "probability": 0.7785 + }, + { + "start": 33676.79, + "end": 33679.87, + "probability": 0.9867 + }, + { + "start": 33681.75, + "end": 33683.25, + "probability": 0.7775 + }, + { + "start": 33683.31, + "end": 33684.39, + "probability": 0.955 + }, + { + "start": 33684.39, + "end": 33685.73, + "probability": 0.8991 + }, + { + "start": 33685.79, + "end": 33687.73, + "probability": 0.8829 + }, + { + "start": 33688.13, + "end": 33688.39, + "probability": 0.8213 + }, + { + "start": 33688.43, + "end": 33690.33, + "probability": 0.9577 + }, + { + "start": 33691.37, + "end": 33692.71, + "probability": 0.8079 + }, + { + "start": 33692.85, + "end": 33695.33, + "probability": 0.9899 + }, + { + "start": 33695.33, + "end": 33697.33, + "probability": 0.9979 + }, + { + "start": 33699.25, + "end": 33706.35, + "probability": 0.9213 + }, + { + "start": 33706.57, + "end": 33707.55, + "probability": 0.7222 + }, + { + "start": 33707.59, + "end": 33708.13, + "probability": 0.7354 + }, + { + "start": 33708.23, + "end": 33708.43, + "probability": 0.687 + }, + { + "start": 33708.43, + "end": 33708.96, + "probability": 0.7949 + }, + { + "start": 33709.57, + "end": 33710.37, + "probability": 0.8735 + }, + { + "start": 33712.75, + "end": 33716.43, + "probability": 0.9983 + }, + { + "start": 33716.55, + "end": 33719.41, + "probability": 0.8951 + }, + { + "start": 33719.67, + "end": 33720.63, + "probability": 0.8729 + }, + { + "start": 33721.45, + "end": 33722.61, + "probability": 0.9351 + }, + { + "start": 33723.05, + "end": 33726.15, + "probability": 0.995 + }, + { + "start": 33727.39, + "end": 33728.97, + "probability": 0.1574 + }, + { + "start": 33729.31, + "end": 33731.47, + "probability": 0.9804 + }, + { + "start": 33732.55, + "end": 33734.07, + "probability": 0.6941 + }, + { + "start": 33734.27, + "end": 33735.19, + "probability": 0.2611 + }, + { + "start": 33735.49, + "end": 33738.89, + "probability": 0.7185 + }, + { + "start": 33739.01, + "end": 33741.77, + "probability": 0.9217 + }, + { + "start": 33742.11, + "end": 33744.33, + "probability": 0.8274 + }, + { + "start": 33744.93, + "end": 33747.11, + "probability": 0.7966 + }, + { + "start": 33747.35, + "end": 33747.45, + "probability": 0.4401 + }, + { + "start": 33748.73, + "end": 33752.31, + "probability": 0.986 + }, + { + "start": 33752.79, + "end": 33757.34, + "probability": 0.9763 + }, + { + "start": 33759.09, + "end": 33761.17, + "probability": 0.575 + }, + { + "start": 33761.53, + "end": 33763.6, + "probability": 0.6956 + }, + { + "start": 33764.17, + "end": 33766.19, + "probability": 0.6396 + }, + { + "start": 33766.29, + "end": 33767.85, + "probability": 0.976 + }, + { + "start": 33768.31, + "end": 33771.39, + "probability": 0.9974 + }, + { + "start": 33773.23, + "end": 33775.65, + "probability": 0.8318 + }, + { + "start": 33776.81, + "end": 33781.23, + "probability": 0.7833 + }, + { + "start": 33781.41, + "end": 33785.75, + "probability": 0.9954 + }, + { + "start": 33786.19, + "end": 33787.96, + "probability": 0.9718 + }, + { + "start": 33789.45, + "end": 33792.65, + "probability": 0.939 + }, + { + "start": 33793.75, + "end": 33797.75, + "probability": 0.9268 + }, + { + "start": 33798.23, + "end": 33800.21, + "probability": 0.88 + }, + { + "start": 33800.29, + "end": 33801.21, + "probability": 0.9977 + }, + { + "start": 33801.77, + "end": 33803.29, + "probability": 0.9795 + }, + { + "start": 33803.37, + "end": 33809.51, + "probability": 0.8199 + }, + { + "start": 33809.77, + "end": 33813.35, + "probability": 0.9874 + }, + { + "start": 33813.39, + "end": 33815.21, + "probability": 0.9912 + }, + { + "start": 33815.83, + "end": 33817.07, + "probability": 0.8962 + }, + { + "start": 33817.19, + "end": 33820.51, + "probability": 0.9801 + }, + { + "start": 33821.01, + "end": 33823.83, + "probability": 0.8996 + }, + { + "start": 33825.79, + "end": 33830.35, + "probability": 0.9798 + }, + { + "start": 33832.13, + "end": 33834.31, + "probability": 0.9331 + }, + { + "start": 33835.63, + "end": 33836.69, + "probability": 0.6733 + }, + { + "start": 33836.77, + "end": 33839.39, + "probability": 0.9937 + }, + { + "start": 33839.59, + "end": 33840.55, + "probability": 0.8499 + }, + { + "start": 33840.69, + "end": 33844.81, + "probability": 0.7787 + }, + { + "start": 33845.23, + "end": 33847.27, + "probability": 0.8608 + }, + { + "start": 33848.99, + "end": 33850.65, + "probability": 0.9938 + }, + { + "start": 33851.61, + "end": 33854.39, + "probability": 0.9413 + }, + { + "start": 33858.33, + "end": 33860.79, + "probability": 0.9437 + }, + { + "start": 33864.71, + "end": 33867.71, + "probability": 0.979 + }, + { + "start": 33867.79, + "end": 33868.37, + "probability": 0.8454 + }, + { + "start": 33868.47, + "end": 33869.95, + "probability": 0.667 + }, + { + "start": 33870.15, + "end": 33871.85, + "probability": 0.8928 + }, + { + "start": 33871.93, + "end": 33872.5, + "probability": 0.9776 + }, + { + "start": 33874.57, + "end": 33875.17, + "probability": 0.6073 + }, + { + "start": 33875.27, + "end": 33877.1, + "probability": 0.8132 + }, + { + "start": 33877.33, + "end": 33879.27, + "probability": 0.8784 + }, + { + "start": 33879.37, + "end": 33881.11, + "probability": 0.9609 + }, + { + "start": 33881.39, + "end": 33883.53, + "probability": 0.9196 + }, + { + "start": 33885.27, + "end": 33885.77, + "probability": 0.1975 + }, + { + "start": 33885.77, + "end": 33886.13, + "probability": 0.5502 + }, + { + "start": 33886.33, + "end": 33888.79, + "probability": 0.9666 + }, + { + "start": 33888.83, + "end": 33890.73, + "probability": 0.9485 + }, + { + "start": 33890.83, + "end": 33891.99, + "probability": 0.9648 + }, + { + "start": 33892.17, + "end": 33895.06, + "probability": 0.0778 + }, + { + "start": 33896.79, + "end": 33901.39, + "probability": 0.8258 + }, + { + "start": 33901.95, + "end": 33903.57, + "probability": 0.7203 + }, + { + "start": 33904.63, + "end": 33905.59, + "probability": 0.8051 + }, + { + "start": 33905.77, + "end": 33908.09, + "probability": 0.8688 + }, + { + "start": 33908.29, + "end": 33915.79, + "probability": 0.8737 + }, + { + "start": 33917.35, + "end": 33919.81, + "probability": 0.9932 + }, + { + "start": 33919.89, + "end": 33925.37, + "probability": 0.9605 + }, + { + "start": 33926.05, + "end": 33928.39, + "probability": 0.9726 + }, + { + "start": 33931.63, + "end": 33933.57, + "probability": 0.756 + }, + { + "start": 33935.25, + "end": 33939.41, + "probability": 0.9753 + }, + { + "start": 33940.41, + "end": 33941.63, + "probability": 0.6338 + }, + { + "start": 33945.21, + "end": 33945.87, + "probability": 0.7717 + }, + { + "start": 33946.15, + "end": 33946.81, + "probability": 0.1809 + }, + { + "start": 33946.95, + "end": 33947.47, + "probability": 0.6097 + }, + { + "start": 33947.61, + "end": 33950.88, + "probability": 0.8395 + }, + { + "start": 33951.15, + "end": 33953.19, + "probability": 0.9213 + }, + { + "start": 33953.91, + "end": 33955.01, + "probability": 0.9709 + }, + { + "start": 33955.11, + "end": 33955.67, + "probability": 0.8713 + }, + { + "start": 33956.19, + "end": 33958.65, + "probability": 0.9244 + }, + { + "start": 33958.97, + "end": 33961.23, + "probability": 0.7694 + }, + { + "start": 33962.09, + "end": 33965.73, + "probability": 0.7741 + }, + { + "start": 33967.85, + "end": 33972.39, + "probability": 0.9927 + }, + { + "start": 33976.73, + "end": 33981.03, + "probability": 0.9951 + }, + { + "start": 33981.07, + "end": 33981.8, + "probability": 0.8374 + }, + { + "start": 33982.07, + "end": 33983.21, + "probability": 0.8012 + }, + { + "start": 33983.25, + "end": 33984.27, + "probability": 0.7078 + }, + { + "start": 33984.39, + "end": 33985.27, + "probability": 0.8419 + }, + { + "start": 33985.57, + "end": 33986.43, + "probability": 0.9204 + }, + { + "start": 33986.49, + "end": 33987.49, + "probability": 0.9542 + }, + { + "start": 33987.61, + "end": 33988.58, + "probability": 0.7679 + }, + { + "start": 33991.36, + "end": 33994.41, + "probability": 0.9912 + }, + { + "start": 33995.77, + "end": 33997.93, + "probability": 0.7818 + }, + { + "start": 33998.87, + "end": 34002.99, + "probability": 0.998 + }, + { + "start": 34004.23, + "end": 34006.59, + "probability": 0.7973 + }, + { + "start": 34008.68, + "end": 34011.59, + "probability": 0.9924 + }, + { + "start": 34012.19, + "end": 34013.15, + "probability": 0.9927 + }, + { + "start": 34013.27, + "end": 34014.37, + "probability": 0.9946 + }, + { + "start": 34015.65, + "end": 34016.05, + "probability": 0.877 + }, + { + "start": 34017.15, + "end": 34020.27, + "probability": 0.9264 + }, + { + "start": 34020.67, + "end": 34024.17, + "probability": 0.879 + }, + { + "start": 34025.93, + "end": 34030.93, + "probability": 0.9966 + }, + { + "start": 34031.01, + "end": 34032.03, + "probability": 0.8426 + }, + { + "start": 34032.23, + "end": 34034.13, + "probability": 0.7747 + }, + { + "start": 34034.27, + "end": 34035.87, + "probability": 0.8061 + }, + { + "start": 34035.89, + "end": 34036.86, + "probability": 0.8281 + }, + { + "start": 34040.57, + "end": 34042.35, + "probability": 0.7271 + }, + { + "start": 34042.43, + "end": 34042.63, + "probability": 0.601 + }, + { + "start": 34042.63, + "end": 34044.11, + "probability": 0.8791 + }, + { + "start": 34044.19, + "end": 34044.23, + "probability": 0.6236 + }, + { + "start": 34044.29, + "end": 34045.87, + "probability": 0.9976 + }, + { + "start": 34046.75, + "end": 34049.61, + "probability": 0.978 + }, + { + "start": 34049.91, + "end": 34051.33, + "probability": 0.6987 + }, + { + "start": 34051.95, + "end": 34054.15, + "probability": 0.6562 + }, + { + "start": 34054.91, + "end": 34057.69, + "probability": 0.8396 + }, + { + "start": 34057.95, + "end": 34059.59, + "probability": 0.9894 + }, + { + "start": 34059.99, + "end": 34066.99, + "probability": 0.9849 + }, + { + "start": 34067.91, + "end": 34070.99, + "probability": 0.9543 + }, + { + "start": 34071.09, + "end": 34074.27, + "probability": 0.9967 + }, + { + "start": 34074.57, + "end": 34076.13, + "probability": 0.9983 + }, + { + "start": 34076.29, + "end": 34079.01, + "probability": 0.7605 + }, + { + "start": 34079.39, + "end": 34080.69, + "probability": 0.9812 + }, + { + "start": 34081.15, + "end": 34082.57, + "probability": 0.9552 + }, + { + "start": 34082.61, + "end": 34083.91, + "probability": 0.7524 + }, + { + "start": 34084.73, + "end": 34087.13, + "probability": 0.8727 + }, + { + "start": 34087.25, + "end": 34088.42, + "probability": 0.9233 + }, + { + "start": 34088.99, + "end": 34092.31, + "probability": 0.9812 + }, + { + "start": 34092.55, + "end": 34095.83, + "probability": 0.9481 + }, + { + "start": 34096.31, + "end": 34100.19, + "probability": 0.8203 + }, + { + "start": 34100.63, + "end": 34102.21, + "probability": 0.9834 + }, + { + "start": 34103.13, + "end": 34104.25, + "probability": 0.6743 + }, + { + "start": 34105.21, + "end": 34106.65, + "probability": 0.8341 + }, + { + "start": 34106.91, + "end": 34109.39, + "probability": 0.8978 + }, + { + "start": 34109.39, + "end": 34113.67, + "probability": 0.9739 + }, + { + "start": 34113.81, + "end": 34116.25, + "probability": 0.9915 + }, + { + "start": 34116.33, + "end": 34117.15, + "probability": 0.407 + }, + { + "start": 34117.15, + "end": 34119.23, + "probability": 0.7517 + }, + { + "start": 34119.39, + "end": 34120.09, + "probability": 0.9604 + }, + { + "start": 34122.01, + "end": 34123.4, + "probability": 0.9839 + }, + { + "start": 34123.47, + "end": 34124.33, + "probability": 0.6472 + }, + { + "start": 34124.39, + "end": 34124.71, + "probability": 0.4926 + }, + { + "start": 34124.91, + "end": 34130.21, + "probability": 0.9923 + }, + { + "start": 34130.57, + "end": 34131.46, + "probability": 0.9661 + }, + { + "start": 34131.83, + "end": 34132.65, + "probability": 0.874 + }, + { + "start": 34132.85, + "end": 34134.25, + "probability": 0.9417 + }, + { + "start": 34135.13, + "end": 34135.69, + "probability": 0.7125 + }, + { + "start": 34137.1, + "end": 34142.75, + "probability": 0.9324 + }, + { + "start": 34142.75, + "end": 34144.81, + "probability": 0.8903 + }, + { + "start": 34144.85, + "end": 34146.51, + "probability": 0.9909 + }, + { + "start": 34148.25, + "end": 34150.01, + "probability": 0.7524 + }, + { + "start": 34150.67, + "end": 34152.97, + "probability": 0.9385 + }, + { + "start": 34153.87, + "end": 34156.85, + "probability": 0.9912 + }, + { + "start": 34157.71, + "end": 34161.17, + "probability": 0.9971 + }, + { + "start": 34162.0, + "end": 34163.63, + "probability": 0.6581 + }, + { + "start": 34163.63, + "end": 34164.01, + "probability": 0.4045 + }, + { + "start": 34164.13, + "end": 34165.61, + "probability": 0.878 + }, + { + "start": 34166.19, + "end": 34169.69, + "probability": 0.4155 + }, + { + "start": 34170.31, + "end": 34173.41, + "probability": 0.9097 + }, + { + "start": 34173.57, + "end": 34175.51, + "probability": 0.5737 + }, + { + "start": 34175.65, + "end": 34176.43, + "probability": 0.3643 + }, + { + "start": 34176.95, + "end": 34177.77, + "probability": 0.5908 + }, + { + "start": 34177.87, + "end": 34178.07, + "probability": 0.3653 + }, + { + "start": 34178.17, + "end": 34180.17, + "probability": 0.8118 + }, + { + "start": 34180.37, + "end": 34181.75, + "probability": 0.8857 + }, + { + "start": 34182.29, + "end": 34185.23, + "probability": 0.837 + }, + { + "start": 34185.35, + "end": 34190.77, + "probability": 0.9783 + }, + { + "start": 34191.27, + "end": 34191.69, + "probability": 0.4748 + }, + { + "start": 34191.77, + "end": 34192.33, + "probability": 0.8101 + }, + { + "start": 34192.39, + "end": 34192.75, + "probability": 0.7897 + }, + { + "start": 34192.75, + "end": 34193.29, + "probability": 0.7349 + }, + { + "start": 34193.89, + "end": 34195.69, + "probability": 0.993 + }, + { + "start": 34195.79, + "end": 34197.2, + "probability": 0.942 + }, + { + "start": 34197.39, + "end": 34199.77, + "probability": 0.8151 + }, + { + "start": 34200.27, + "end": 34200.27, + "probability": 0.0116 + }, + { + "start": 34200.27, + "end": 34202.11, + "probability": 0.7917 + }, + { + "start": 34202.19, + "end": 34203.31, + "probability": 0.6803 + }, + { + "start": 34203.47, + "end": 34205.11, + "probability": 0.8231 + }, + { + "start": 34205.29, + "end": 34207.03, + "probability": 0.1874 + }, + { + "start": 34207.05, + "end": 34210.51, + "probability": 0.8338 + }, + { + "start": 34210.81, + "end": 34212.34, + "probability": 0.8477 + }, + { + "start": 34212.95, + "end": 34214.13, + "probability": 0.6104 + }, + { + "start": 34214.67, + "end": 34215.51, + "probability": 0.5194 + }, + { + "start": 34215.65, + "end": 34216.93, + "probability": 0.4618 + }, + { + "start": 34216.93, + "end": 34218.32, + "probability": 0.9961 + }, + { + "start": 34218.81, + "end": 34219.51, + "probability": 0.176 + }, + { + "start": 34220.81, + "end": 34221.05, + "probability": 0.6743 + }, + { + "start": 34221.09, + "end": 34223.01, + "probability": 0.985 + }, + { + "start": 34223.05, + "end": 34224.93, + "probability": 0.6859 + }, + { + "start": 34225.59, + "end": 34228.37, + "probability": 0.75 + }, + { + "start": 34229.31, + "end": 34230.29, + "probability": 0.8232 + }, + { + "start": 34230.37, + "end": 34233.79, + "probability": 0.9329 + }, + { + "start": 34234.15, + "end": 34235.27, + "probability": 0.7803 + }, + { + "start": 34235.47, + "end": 34237.17, + "probability": 0.8825 + }, + { + "start": 34237.85, + "end": 34240.21, + "probability": 0.9098 + }, + { + "start": 34241.19, + "end": 34243.85, + "probability": 0.9849 + }, + { + "start": 34243.93, + "end": 34244.75, + "probability": 0.7075 + }, + { + "start": 34245.37, + "end": 34246.77, + "probability": 0.9217 + }, + { + "start": 34247.09, + "end": 34249.21, + "probability": 0.8407 + }, + { + "start": 34249.53, + "end": 34253.57, + "probability": 0.7283 + }, + { + "start": 34254.21, + "end": 34257.47, + "probability": 0.9215 + }, + { + "start": 34258.13, + "end": 34259.85, + "probability": 0.9846 + }, + { + "start": 34260.51, + "end": 34265.49, + "probability": 0.9736 + }, + { + "start": 34266.01, + "end": 34267.53, + "probability": 0.7331 + }, + { + "start": 34267.65, + "end": 34269.63, + "probability": 0.7689 + }, + { + "start": 34269.73, + "end": 34270.55, + "probability": 0.6998 + }, + { + "start": 34271.01, + "end": 34271.45, + "probability": 0.3728 + }, + { + "start": 34272.25, + "end": 34273.67, + "probability": 0.9639 + }, + { + "start": 34274.03, + "end": 34274.47, + "probability": 0.9337 + }, + { + "start": 34275.91, + "end": 34277.52, + "probability": 0.5967 + }, + { + "start": 34280.31, + "end": 34282.43, + "probability": 0.8063 + }, + { + "start": 34283.19, + "end": 34283.33, + "probability": 0.2956 + }, + { + "start": 34288.71, + "end": 34289.33, + "probability": 0.0173 + }, + { + "start": 34289.55, + "end": 34291.45, + "probability": 0.0667 + }, + { + "start": 34291.45, + "end": 34291.91, + "probability": 0.2174 + }, + { + "start": 34291.91, + "end": 34292.11, + "probability": 0.1898 + }, + { + "start": 34292.11, + "end": 34292.11, + "probability": 0.1452 + }, + { + "start": 34292.11, + "end": 34292.35, + "probability": 0.1245 + }, + { + "start": 34318.59, + "end": 34319.99, + "probability": 0.017 + }, + { + "start": 34321.39, + "end": 34326.29, + "probability": 0.4716 + }, + { + "start": 34327.11, + "end": 34329.91, + "probability": 0.8395 + }, + { + "start": 34330.63, + "end": 34332.95, + "probability": 0.797 + }, + { + "start": 34334.79, + "end": 34343.33, + "probability": 0.9878 + }, + { + "start": 34344.25, + "end": 34347.29, + "probability": 0.9919 + }, + { + "start": 34347.37, + "end": 34348.57, + "probability": 0.88 + }, + { + "start": 34349.19, + "end": 34350.75, + "probability": 0.891 + }, + { + "start": 34351.55, + "end": 34355.41, + "probability": 0.9891 + }, + { + "start": 34355.63, + "end": 34356.47, + "probability": 0.9277 + }, + { + "start": 34356.57, + "end": 34357.27, + "probability": 0.8439 + }, + { + "start": 34357.47, + "end": 34360.59, + "probability": 0.9866 + }, + { + "start": 34360.75, + "end": 34362.91, + "probability": 0.8391 + }, + { + "start": 34363.59, + "end": 34364.93, + "probability": 0.7999 + }, + { + "start": 34365.01, + "end": 34366.15, + "probability": 0.8247 + }, + { + "start": 34366.75, + "end": 34367.69, + "probability": 0.642 + }, + { + "start": 34369.37, + "end": 34374.33, + "probability": 0.7929 + }, + { + "start": 34375.43, + "end": 34378.28, + "probability": 0.9797 + }, + { + "start": 34379.09, + "end": 34386.01, + "probability": 0.7896 + }, + { + "start": 34386.09, + "end": 34386.47, + "probability": 0.7744 + }, + { + "start": 34388.53, + "end": 34391.81, + "probability": 0.7766 + }, + { + "start": 34391.87, + "end": 34392.99, + "probability": 0.9656 + }, + { + "start": 34393.07, + "end": 34394.15, + "probability": 0.8008 + }, + { + "start": 34395.95, + "end": 34399.07, + "probability": 0.9965 + }, + { + "start": 34399.07, + "end": 34402.37, + "probability": 0.9453 + }, + { + "start": 34402.75, + "end": 34404.13, + "probability": 0.8748 + }, + { + "start": 34404.23, + "end": 34405.09, + "probability": 0.6165 + }, + { + "start": 34405.23, + "end": 34405.75, + "probability": 0.4945 + }, + { + "start": 34405.85, + "end": 34411.13, + "probability": 0.8524 + }, + { + "start": 34411.13, + "end": 34415.99, + "probability": 0.9839 + }, + { + "start": 34417.53, + "end": 34421.53, + "probability": 0.9307 + }, + { + "start": 34422.77, + "end": 34425.87, + "probability": 0.8405 + }, + { + "start": 34426.87, + "end": 34429.49, + "probability": 0.974 + }, + { + "start": 34430.01, + "end": 34431.47, + "probability": 0.9667 + }, + { + "start": 34432.17, + "end": 34435.51, + "probability": 0.9442 + }, + { + "start": 34436.27, + "end": 34437.61, + "probability": 0.9256 + }, + { + "start": 34437.73, + "end": 34442.05, + "probability": 0.9858 + }, + { + "start": 34442.49, + "end": 34443.87, + "probability": 0.6063 + }, + { + "start": 34444.69, + "end": 34447.55, + "probability": 0.9916 + }, + { + "start": 34447.99, + "end": 34450.29, + "probability": 0.8716 + }, + { + "start": 34451.13, + "end": 34453.61, + "probability": 0.8812 + }, + { + "start": 34454.55, + "end": 34461.01, + "probability": 0.9431 + }, + { + "start": 34463.13, + "end": 34464.41, + "probability": 0.9951 + }, + { + "start": 34466.91, + "end": 34469.95, + "probability": 0.9249 + }, + { + "start": 34470.73, + "end": 34471.55, + "probability": 0.7651 + }, + { + "start": 34471.71, + "end": 34477.89, + "probability": 0.7085 + }, + { + "start": 34477.93, + "end": 34479.67, + "probability": 0.4961 + }, + { + "start": 34479.97, + "end": 34482.25, + "probability": 0.9708 + }, + { + "start": 34482.67, + "end": 34485.43, + "probability": 0.7578 + }, + { + "start": 34485.53, + "end": 34486.93, + "probability": 0.6453 + }, + { + "start": 34488.04, + "end": 34489.16, + "probability": 0.9835 + }, + { + "start": 34489.93, + "end": 34492.41, + "probability": 0.8371 + }, + { + "start": 34493.17, + "end": 34496.37, + "probability": 0.9468 + }, + { + "start": 34496.95, + "end": 34500.32, + "probability": 0.9868 + }, + { + "start": 34501.15, + "end": 34502.13, + "probability": 0.7353 + }, + { + "start": 34502.21, + "end": 34507.28, + "probability": 0.9907 + }, + { + "start": 34508.11, + "end": 34509.57, + "probability": 0.8174 + }, + { + "start": 34509.69, + "end": 34512.85, + "probability": 0.9844 + }, + { + "start": 34513.93, + "end": 34518.79, + "probability": 0.9583 + }, + { + "start": 34519.21, + "end": 34523.23, + "probability": 0.7783 + }, + { + "start": 34523.33, + "end": 34524.14, + "probability": 0.5032 + }, + { + "start": 34525.67, + "end": 34527.45, + "probability": 0.9777 + }, + { + "start": 34528.01, + "end": 34530.95, + "probability": 0.9892 + }, + { + "start": 34531.57, + "end": 34533.86, + "probability": 0.9912 + }, + { + "start": 34534.83, + "end": 34536.24, + "probability": 0.9595 + }, + { + "start": 34537.27, + "end": 34540.41, + "probability": 0.9725 + }, + { + "start": 34540.41, + "end": 34544.49, + "probability": 0.9958 + }, + { + "start": 34544.77, + "end": 34545.85, + "probability": 0.9019 + }, + { + "start": 34545.97, + "end": 34549.59, + "probability": 0.9708 + }, + { + "start": 34549.65, + "end": 34553.63, + "probability": 0.9816 + }, + { + "start": 34554.65, + "end": 34557.05, + "probability": 0.7492 + }, + { + "start": 34558.55, + "end": 34561.87, + "probability": 0.9989 + }, + { + "start": 34562.89, + "end": 34564.15, + "probability": 0.9501 + }, + { + "start": 34564.45, + "end": 34565.32, + "probability": 0.9158 + }, + { + "start": 34566.51, + "end": 34571.15, + "probability": 0.8932 + }, + { + "start": 34571.85, + "end": 34574.55, + "probability": 0.9917 + }, + { + "start": 34574.87, + "end": 34575.03, + "probability": 0.8677 + }, + { + "start": 34576.45, + "end": 34583.21, + "probability": 0.9902 + }, + { + "start": 34583.53, + "end": 34585.49, + "probability": 0.9034 + }, + { + "start": 34585.65, + "end": 34586.83, + "probability": 0.6366 + }, + { + "start": 34586.91, + "end": 34588.03, + "probability": 0.9873 + }, + { + "start": 34588.19, + "end": 34595.31, + "probability": 0.9849 + }, + { + "start": 34595.49, + "end": 34596.59, + "probability": 0.6843 + }, + { + "start": 34597.07, + "end": 34599.07, + "probability": 0.9887 + }, + { + "start": 34599.15, + "end": 34599.67, + "probability": 0.4325 + }, + { + "start": 34599.73, + "end": 34602.77, + "probability": 0.9619 + }, + { + "start": 34604.49, + "end": 34605.57, + "probability": 0.9062 + }, + { + "start": 34607.91, + "end": 34610.08, + "probability": 0.9688 + }, + { + "start": 34611.07, + "end": 34613.73, + "probability": 0.9341 + }, + { + "start": 34614.71, + "end": 34615.99, + "probability": 0.9668 + }, + { + "start": 34617.33, + "end": 34624.55, + "probability": 0.9912 + }, + { + "start": 34626.17, + "end": 34627.05, + "probability": 0.8766 + }, + { + "start": 34627.21, + "end": 34628.41, + "probability": 0.8935 + }, + { + "start": 34628.49, + "end": 34629.95, + "probability": 0.9971 + }, + { + "start": 34630.45, + "end": 34632.33, + "probability": 0.7519 + }, + { + "start": 34632.53, + "end": 34636.37, + "probability": 0.8811 + }, + { + "start": 34637.17, + "end": 34639.63, + "probability": 0.9558 + }, + { + "start": 34640.97, + "end": 34644.17, + "probability": 0.9083 + }, + { + "start": 34644.27, + "end": 34646.79, + "probability": 0.9641 + }, + { + "start": 34647.39, + "end": 34648.61, + "probability": 0.9807 + }, + { + "start": 34648.65, + "end": 34650.95, + "probability": 0.4319 + }, + { + "start": 34651.17, + "end": 34654.39, + "probability": 0.8504 + }, + { + "start": 34654.79, + "end": 34655.79, + "probability": 0.7416 + }, + { + "start": 34655.85, + "end": 34662.09, + "probability": 0.7211 + }, + { + "start": 34662.57, + "end": 34665.03, + "probability": 0.9938 + }, + { + "start": 34666.53, + "end": 34671.05, + "probability": 0.6947 + }, + { + "start": 34671.67, + "end": 34673.28, + "probability": 0.9785 + }, + { + "start": 34674.59, + "end": 34678.59, + "probability": 0.8372 + }, + { + "start": 34679.33, + "end": 34680.05, + "probability": 0.1782 + }, + { + "start": 34682.71, + "end": 34683.83, + "probability": 0.9363 + }, + { + "start": 34684.35, + "end": 34687.95, + "probability": 0.9915 + }, + { + "start": 34689.49, + "end": 34692.55, + "probability": 0.9445 + }, + { + "start": 34692.65, + "end": 34694.15, + "probability": 0.8559 + }, + { + "start": 34695.03, + "end": 34697.67, + "probability": 0.9977 + }, + { + "start": 34699.01, + "end": 34703.03, + "probability": 0.9941 + }, + { + "start": 34703.83, + "end": 34705.74, + "probability": 0.9183 + }, + { + "start": 34706.91, + "end": 34708.27, + "probability": 0.6719 + }, + { + "start": 34708.95, + "end": 34711.47, + "probability": 0.962 + }, + { + "start": 34712.43, + "end": 34713.51, + "probability": 0.6907 + }, + { + "start": 34715.01, + "end": 34717.59, + "probability": 0.7928 + }, + { + "start": 34718.45, + "end": 34720.49, + "probability": 0.792 + }, + { + "start": 34721.31, + "end": 34722.57, + "probability": 0.8811 + }, + { + "start": 34724.89, + "end": 34727.57, + "probability": 0.998 + }, + { + "start": 34727.73, + "end": 34729.11, + "probability": 0.5392 + }, + { + "start": 34729.53, + "end": 34733.81, + "probability": 0.8444 + }, + { + "start": 34733.81, + "end": 34738.55, + "probability": 0.9855 + }, + { + "start": 34739.37, + "end": 34741.99, + "probability": 0.9788 + }, + { + "start": 34742.01, + "end": 34744.59, + "probability": 0.8457 + }, + { + "start": 34745.03, + "end": 34746.67, + "probability": 0.8879 + }, + { + "start": 34747.43, + "end": 34751.85, + "probability": 0.9762 + }, + { + "start": 34752.49, + "end": 34754.85, + "probability": 0.9091 + }, + { + "start": 34755.45, + "end": 34761.51, + "probability": 0.9781 + }, + { + "start": 34761.83, + "end": 34765.91, + "probability": 0.8735 + }, + { + "start": 34766.43, + "end": 34770.15, + "probability": 0.7516 + }, + { + "start": 34771.09, + "end": 34777.31, + "probability": 0.9654 + }, + { + "start": 34777.41, + "end": 34779.53, + "probability": 0.9938 + }, + { + "start": 34779.97, + "end": 34781.99, + "probability": 0.9779 + }, + { + "start": 34782.85, + "end": 34784.71, + "probability": 0.8445 + }, + { + "start": 34785.87, + "end": 34792.33, + "probability": 0.9854 + }, + { + "start": 34793.99, + "end": 34794.93, + "probability": 0.6246 + }, + { + "start": 34795.47, + "end": 34797.85, + "probability": 0.994 + }, + { + "start": 34799.31, + "end": 34800.05, + "probability": 0.7386 + }, + { + "start": 34800.29, + "end": 34804.99, + "probability": 0.8459 + }, + { + "start": 34805.65, + "end": 34806.71, + "probability": 0.6862 + }, + { + "start": 34806.89, + "end": 34807.79, + "probability": 0.8459 + }, + { + "start": 34807.85, + "end": 34811.47, + "probability": 0.9906 + }, + { + "start": 34811.93, + "end": 34813.23, + "probability": 0.707 + }, + { + "start": 34813.31, + "end": 34814.55, + "probability": 0.8081 + }, + { + "start": 34814.93, + "end": 34815.95, + "probability": 0.7586 + }, + { + "start": 34816.27, + "end": 34819.29, + "probability": 0.7482 + }, + { + "start": 34819.65, + "end": 34821.65, + "probability": 0.9043 + }, + { + "start": 34821.85, + "end": 34823.31, + "probability": 0.9938 + }, + { + "start": 34826.43, + "end": 34827.43, + "probability": 0.6818 + }, + { + "start": 34828.17, + "end": 34830.87, + "probability": 0.9902 + }, + { + "start": 34831.33, + "end": 34833.85, + "probability": 0.8833 + }, + { + "start": 34833.89, + "end": 34834.55, + "probability": 0.6445 + }, + { + "start": 34834.95, + "end": 34836.1, + "probability": 0.7396 + }, + { + "start": 34837.17, + "end": 34841.91, + "probability": 0.8235 + }, + { + "start": 34842.33, + "end": 34843.85, + "probability": 0.7257 + }, + { + "start": 34844.41, + "end": 34850.45, + "probability": 0.5744 + }, + { + "start": 34850.59, + "end": 34851.61, + "probability": 0.7581 + }, + { + "start": 34852.55, + "end": 34857.09, + "probability": 0.9827 + }, + { + "start": 34857.09, + "end": 34862.23, + "probability": 0.9229 + }, + { + "start": 34862.37, + "end": 34863.47, + "probability": 0.8608 + }, + { + "start": 34863.47, + "end": 34866.11, + "probability": 0.9949 + }, + { + "start": 34866.67, + "end": 34867.25, + "probability": 0.5374 + }, + { + "start": 34867.35, + "end": 34869.73, + "probability": 0.9854 + }, + { + "start": 34869.93, + "end": 34873.39, + "probability": 0.5812 + }, + { + "start": 34873.51, + "end": 34874.83, + "probability": 0.9955 + }, + { + "start": 34876.31, + "end": 34878.91, + "probability": 0.9761 + }, + { + "start": 34879.81, + "end": 34881.87, + "probability": 0.9878 + }, + { + "start": 34883.77, + "end": 34885.35, + "probability": 0.732 + }, + { + "start": 34888.67, + "end": 34890.25, + "probability": 0.9931 + }, + { + "start": 34890.83, + "end": 34894.29, + "probability": 0.9843 + }, + { + "start": 34896.51, + "end": 34899.05, + "probability": 0.9924 + }, + { + "start": 34899.23, + "end": 34900.95, + "probability": 0.9719 + }, + { + "start": 34901.07, + "end": 34903.15, + "probability": 0.8604 + }, + { + "start": 34903.29, + "end": 34905.55, + "probability": 0.8514 + }, + { + "start": 34905.99, + "end": 34907.33, + "probability": 0.7538 + }, + { + "start": 34907.43, + "end": 34908.21, + "probability": 0.9283 + }, + { + "start": 34908.25, + "end": 34909.05, + "probability": 0.7922 + }, + { + "start": 34911.19, + "end": 34915.07, + "probability": 0.915 + }, + { + "start": 34915.27, + "end": 34916.18, + "probability": 0.8868 + }, + { + "start": 34916.41, + "end": 34918.95, + "probability": 0.9717 + }, + { + "start": 34919.59, + "end": 34920.53, + "probability": 0.9935 + }, + { + "start": 34921.45, + "end": 34922.47, + "probability": 0.8677 + }, + { + "start": 34923.47, + "end": 34926.39, + "probability": 0.8934 + }, + { + "start": 34926.49, + "end": 34927.47, + "probability": 0.3209 + }, + { + "start": 34927.53, + "end": 34928.45, + "probability": 0.6321 + }, + { + "start": 34928.61, + "end": 34936.07, + "probability": 0.9788 + }, + { + "start": 34937.47, + "end": 34938.7, + "probability": 0.21 + }, + { + "start": 34940.79, + "end": 34945.83, + "probability": 0.7239 + }, + { + "start": 34945.85, + "end": 34947.53, + "probability": 0.8418 + }, + { + "start": 34947.63, + "end": 34948.27, + "probability": 0.8526 + }, + { + "start": 34948.37, + "end": 34949.59, + "probability": 0.8779 + }, + { + "start": 34950.15, + "end": 34951.85, + "probability": 0.8021 + }, + { + "start": 34952.39, + "end": 34953.24, + "probability": 0.8217 + }, + { + "start": 34954.29, + "end": 34958.63, + "probability": 0.8467 + }, + { + "start": 34959.13, + "end": 34959.81, + "probability": 0.7316 + }, + { + "start": 34960.31, + "end": 34961.41, + "probability": 0.9108 + }, + { + "start": 34961.47, + "end": 34961.73, + "probability": 0.884 + }, + { + "start": 34961.75, + "end": 34963.03, + "probability": 0.5448 + }, + { + "start": 34963.37, + "end": 34964.33, + "probability": 0.6905 + }, + { + "start": 34964.71, + "end": 34965.77, + "probability": 0.7594 + }, + { + "start": 34966.11, + "end": 34968.51, + "probability": 0.8572 + }, + { + "start": 34968.77, + "end": 34970.49, + "probability": 0.6677 + }, + { + "start": 34970.49, + "end": 34972.29, + "probability": 0.5649 + }, + { + "start": 34972.65, + "end": 34974.39, + "probability": 0.8604 + }, + { + "start": 34975.39, + "end": 34976.31, + "probability": 0.8975 + }, + { + "start": 34976.53, + "end": 34977.85, + "probability": 0.8687 + }, + { + "start": 34978.23, + "end": 34979.75, + "probability": 0.8527 + }, + { + "start": 34979.81, + "end": 34981.55, + "probability": 0.7666 + }, + { + "start": 34981.59, + "end": 34982.25, + "probability": 0.5927 + }, + { + "start": 34982.33, + "end": 34984.13, + "probability": 0.427 + }, + { + "start": 34984.29, + "end": 34986.11, + "probability": 0.6277 + }, + { + "start": 34986.71, + "end": 34990.05, + "probability": 0.9151 + }, + { + "start": 34990.67, + "end": 34994.5, + "probability": 0.8311 + }, + { + "start": 34995.75, + "end": 34997.17, + "probability": 0.6883 + }, + { + "start": 34998.01, + "end": 34998.01, + "probability": 0.1472 + }, + { + "start": 34998.01, + "end": 35003.83, + "probability": 0.988 + }, + { + "start": 35003.83, + "end": 35005.41, + "probability": 0.9941 + }, + { + "start": 35006.29, + "end": 35010.19, + "probability": 0.0086 + }, + { + "start": 35011.28, + "end": 35011.63, + "probability": 0.0976 + }, + { + "start": 35011.63, + "end": 35015.59, + "probability": 0.8936 + }, + { + "start": 35015.67, + "end": 35016.95, + "probability": 0.6567 + }, + { + "start": 35017.03, + "end": 35018.29, + "probability": 0.6883 + }, + { + "start": 35018.79, + "end": 35021.99, + "probability": 0.887 + }, + { + "start": 35022.85, + "end": 35024.65, + "probability": 0.7315 + }, + { + "start": 35024.97, + "end": 35025.23, + "probability": 0.6943 + }, + { + "start": 35025.27, + "end": 35027.09, + "probability": 0.9136 + }, + { + "start": 35027.09, + "end": 35027.19, + "probability": 0.3833 + }, + { + "start": 35028.89, + "end": 35031.21, + "probability": 0.9917 + }, + { + "start": 35031.25, + "end": 35032.51, + "probability": 0.5852 + }, + { + "start": 35033.05, + "end": 35033.39, + "probability": 0.5872 + }, + { + "start": 35033.63, + "end": 35039.03, + "probability": 0.5588 + }, + { + "start": 35039.03, + "end": 35043.13, + "probability": 0.8805 + }, + { + "start": 35043.13, + "end": 35045.96, + "probability": 0.9795 + }, + { + "start": 35049.71, + "end": 35053.37, + "probability": 0.9904 + }, + { + "start": 35053.39, + "end": 35056.07, + "probability": 0.9941 + }, + { + "start": 35056.63, + "end": 35057.75, + "probability": 0.6725 + }, + { + "start": 35060.49, + "end": 35066.19, + "probability": 0.9346 + }, + { + "start": 35067.51, + "end": 35070.61, + "probability": 0.9482 + }, + { + "start": 35070.63, + "end": 35071.52, + "probability": 0.8656 + }, + { + "start": 35072.39, + "end": 35073.99, + "probability": 0.9925 + }, + { + "start": 35074.37, + "end": 35077.53, + "probability": 0.8893 + }, + { + "start": 35078.17, + "end": 35080.61, + "probability": 0.9753 + }, + { + "start": 35082.27, + "end": 35086.45, + "probability": 0.9978 + }, + { + "start": 35086.45, + "end": 35089.09, + "probability": 0.9993 + }, + { + "start": 35089.23, + "end": 35089.23, + "probability": 0.1422 + }, + { + "start": 35090.93, + "end": 35092.73, + "probability": 0.9631 + }, + { + "start": 35093.93, + "end": 35096.93, + "probability": 0.9147 + }, + { + "start": 35097.47, + "end": 35103.88, + "probability": 0.9651 + }, + { + "start": 35103.97, + "end": 35109.37, + "probability": 0.8557 + }, + { + "start": 35109.67, + "end": 35110.67, + "probability": 0.7926 + }, + { + "start": 35111.39, + "end": 35113.07, + "probability": 0.8918 + }, + { + "start": 35113.29, + "end": 35115.2, + "probability": 0.804 + }, + { + "start": 35115.97, + "end": 35119.69, + "probability": 0.9648 + }, + { + "start": 35119.69, + "end": 35124.77, + "probability": 0.9886 + }, + { + "start": 35124.79, + "end": 35125.83, + "probability": 0.9446 + }, + { + "start": 35125.91, + "end": 35129.85, + "probability": 0.9841 + }, + { + "start": 35130.65, + "end": 35132.23, + "probability": 0.8554 + }, + { + "start": 35132.41, + "end": 35132.99, + "probability": 0.9589 + }, + { + "start": 35133.07, + "end": 35133.83, + "probability": 0.7425 + }, + { + "start": 35133.99, + "end": 35134.45, + "probability": 0.683 + }, + { + "start": 35134.51, + "end": 35136.33, + "probability": 0.9985 + }, + { + "start": 35137.19, + "end": 35140.99, + "probability": 0.6694 + }, + { + "start": 35141.43, + "end": 35144.47, + "probability": 0.747 + }, + { + "start": 35144.99, + "end": 35147.06, + "probability": 0.5157 + }, + { + "start": 35147.41, + "end": 35148.35, + "probability": 0.9382 + }, + { + "start": 35148.43, + "end": 35149.75, + "probability": 0.9532 + }, + { + "start": 35150.07, + "end": 35151.59, + "probability": 0.9829 + }, + { + "start": 35152.43, + "end": 35156.75, + "probability": 0.6659 + }, + { + "start": 35156.87, + "end": 35159.34, + "probability": 0.7373 + }, + { + "start": 35160.71, + "end": 35161.12, + "probability": 0.5898 + }, + { + "start": 35161.87, + "end": 35162.57, + "probability": 0.7641 + }, + { + "start": 35162.77, + "end": 35163.15, + "probability": 0.755 + }, + { + "start": 35163.23, + "end": 35164.45, + "probability": 0.866 + }, + { + "start": 35164.71, + "end": 35167.17, + "probability": 0.9395 + }, + { + "start": 35167.29, + "end": 35168.51, + "probability": 0.854 + }, + { + "start": 35168.67, + "end": 35169.53, + "probability": 0.7134 + }, + { + "start": 35169.65, + "end": 35172.59, + "probability": 0.6992 + }, + { + "start": 35172.59, + "end": 35174.71, + "probability": 0.8964 + }, + { + "start": 35175.03, + "end": 35178.83, + "probability": 0.9183 + }, + { + "start": 35179.39, + "end": 35181.41, + "probability": 0.5189 + }, + { + "start": 35182.51, + "end": 35185.79, + "probability": 0.9841 + }, + { + "start": 35187.07, + "end": 35189.91, + "probability": 0.8315 + }, + { + "start": 35190.39, + "end": 35191.95, + "probability": 0.8661 + }, + { + "start": 35192.19, + "end": 35193.53, + "probability": 0.9214 + }, + { + "start": 35194.29, + "end": 35197.35, + "probability": 0.7529 + }, + { + "start": 35197.57, + "end": 35198.78, + "probability": 0.8838 + }, + { + "start": 35198.85, + "end": 35201.01, + "probability": 0.8861 + }, + { + "start": 35201.15, + "end": 35206.69, + "probability": 0.9755 + }, + { + "start": 35206.93, + "end": 35211.43, + "probability": 0.9243 + }, + { + "start": 35211.77, + "end": 35213.67, + "probability": 0.9888 + }, + { + "start": 35213.85, + "end": 35218.83, + "probability": 0.9543 + }, + { + "start": 35218.83, + "end": 35223.75, + "probability": 0.4416 + }, + { + "start": 35223.87, + "end": 35225.13, + "probability": 0.8353 + }, + { + "start": 35226.87, + "end": 35229.51, + "probability": 0.9104 + }, + { + "start": 35229.87, + "end": 35235.09, + "probability": 0.9757 + }, + { + "start": 35235.09, + "end": 35239.73, + "probability": 0.9865 + }, + { + "start": 35239.73, + "end": 35244.03, + "probability": 0.82 + }, + { + "start": 35245.61, + "end": 35247.17, + "probability": 0.5762 + }, + { + "start": 35247.21, + "end": 35249.77, + "probability": 0.873 + }, + { + "start": 35250.07, + "end": 35252.47, + "probability": 0.5902 + }, + { + "start": 35253.11, + "end": 35254.95, + "probability": 0.9784 + }, + { + "start": 35255.21, + "end": 35256.22, + "probability": 0.9976 + }, + { + "start": 35258.95, + "end": 35261.99, + "probability": 0.9431 + }, + { + "start": 35262.11, + "end": 35265.47, + "probability": 0.6311 + }, + { + "start": 35265.47, + "end": 35266.23, + "probability": 0.6699 + }, + { + "start": 35267.13, + "end": 35270.35, + "probability": 0.7878 + }, + { + "start": 35270.63, + "end": 35272.69, + "probability": 0.4205 + }, + { + "start": 35273.33, + "end": 35276.59, + "probability": 0.882 + }, + { + "start": 35277.53, + "end": 35280.79, + "probability": 0.9568 + }, + { + "start": 35280.79, + "end": 35282.71, + "probability": 0.4241 + }, + { + "start": 35282.77, + "end": 35284.21, + "probability": 0.8616 + }, + { + "start": 35284.59, + "end": 35285.59, + "probability": 0.1163 + }, + { + "start": 35286.21, + "end": 35291.35, + "probability": 0.9658 + }, + { + "start": 35292.59, + "end": 35294.73, + "probability": 0.9143 + }, + { + "start": 35295.03, + "end": 35296.57, + "probability": 0.9033 + }, + { + "start": 35297.15, + "end": 35298.23, + "probability": 0.7791 + }, + { + "start": 35298.71, + "end": 35299.59, + "probability": 0.2228 + }, + { + "start": 35299.69, + "end": 35301.71, + "probability": 0.7645 + }, + { + "start": 35302.29, + "end": 35306.33, + "probability": 0.8765 + }, + { + "start": 35306.69, + "end": 35308.29, + "probability": 0.8932 + }, + { + "start": 35309.31, + "end": 35310.69, + "probability": 0.936 + }, + { + "start": 35311.31, + "end": 35316.01, + "probability": 0.9966 + }, + { + "start": 35316.11, + "end": 35317.41, + "probability": 0.947 + }, + { + "start": 35317.81, + "end": 35320.75, + "probability": 0.9846 + }, + { + "start": 35320.99, + "end": 35323.65, + "probability": 0.9437 + }, + { + "start": 35324.09, + "end": 35329.49, + "probability": 0.877 + }, + { + "start": 35329.49, + "end": 35330.79, + "probability": 0.7778 + }, + { + "start": 35331.47, + "end": 35332.67, + "probability": 0.018 + }, + { + "start": 35332.89, + "end": 35334.61, + "probability": 0.9275 + }, + { + "start": 35334.93, + "end": 35337.37, + "probability": 0.9806 + }, + { + "start": 35337.41, + "end": 35338.13, + "probability": 0.9454 + }, + { + "start": 35338.17, + "end": 35339.29, + "probability": 0.9338 + }, + { + "start": 35339.61, + "end": 35340.35, + "probability": 0.2736 + }, + { + "start": 35340.49, + "end": 35341.89, + "probability": 0.9336 + }, + { + "start": 35342.03, + "end": 35344.37, + "probability": 0.8937 + }, + { + "start": 35346.01, + "end": 35352.07, + "probability": 0.9717 + }, + { + "start": 35352.15, + "end": 35353.73, + "probability": 0.7563 + }, + { + "start": 35354.23, + "end": 35357.45, + "probability": 0.9951 + }, + { + "start": 35357.51, + "end": 35358.01, + "probability": 0.8099 + }, + { + "start": 35358.09, + "end": 35358.69, + "probability": 0.6271 + }, + { + "start": 35359.37, + "end": 35360.45, + "probability": 0.9119 + }, + { + "start": 35361.15, + "end": 35362.29, + "probability": 0.9853 + }, + { + "start": 35362.97, + "end": 35366.77, + "probability": 0.9625 + }, + { + "start": 35366.87, + "end": 35368.51, + "probability": 0.813 + }, + { + "start": 35368.99, + "end": 35372.69, + "probability": 0.8032 + }, + { + "start": 35373.45, + "end": 35376.77, + "probability": 0.9345 + }, + { + "start": 35376.89, + "end": 35379.31, + "probability": 0.918 + }, + { + "start": 35379.67, + "end": 35384.31, + "probability": 0.9896 + }, + { + "start": 35384.43, + "end": 35386.27, + "probability": 0.9458 + }, + { + "start": 35386.85, + "end": 35389.02, + "probability": 0.9927 + }, + { + "start": 35389.15, + "end": 35390.48, + "probability": 0.7251 + }, + { + "start": 35391.03, + "end": 35393.09, + "probability": 0.5706 + }, + { + "start": 35395.15, + "end": 35397.63, + "probability": 0.7978 + }, + { + "start": 35398.53, + "end": 35400.01, + "probability": 0.9071 + }, + { + "start": 35400.05, + "end": 35401.29, + "probability": 0.8445 + }, + { + "start": 35401.41, + "end": 35402.37, + "probability": 0.5713 + }, + { + "start": 35402.91, + "end": 35404.15, + "probability": 0.3335 + }, + { + "start": 35404.19, + "end": 35407.49, + "probability": 0.9847 + }, + { + "start": 35407.49, + "end": 35413.29, + "probability": 0.9983 + }, + { + "start": 35413.43, + "end": 35413.99, + "probability": 0.4804 + }, + { + "start": 35414.09, + "end": 35414.93, + "probability": 0.8687 + }, + { + "start": 35415.41, + "end": 35416.06, + "probability": 0.8418 + }, + { + "start": 35416.51, + "end": 35420.17, + "probability": 0.8653 + }, + { + "start": 35421.31, + "end": 35422.26, + "probability": 0.7913 + }, + { + "start": 35422.55, + "end": 35424.11, + "probability": 0.9945 + }, + { + "start": 35424.17, + "end": 35427.93, + "probability": 0.9769 + }, + { + "start": 35428.29, + "end": 35430.09, + "probability": 0.6981 + }, + { + "start": 35430.45, + "end": 35431.69, + "probability": 0.9907 + }, + { + "start": 35432.31, + "end": 35435.01, + "probability": 0.9756 + }, + { + "start": 35435.01, + "end": 35438.71, + "probability": 0.9758 + }, + { + "start": 35438.79, + "end": 35441.09, + "probability": 0.9795 + }, + { + "start": 35441.55, + "end": 35443.35, + "probability": 0.9741 + }, + { + "start": 35443.45, + "end": 35446.58, + "probability": 0.8845 + }, + { + "start": 35447.31, + "end": 35449.02, + "probability": 0.9945 + }, + { + "start": 35449.63, + "end": 35450.28, + "probability": 0.9766 + }, + { + "start": 35450.58, + "end": 35452.4, + "probability": 0.8539 + }, + { + "start": 35452.62, + "end": 35454.8, + "probability": 0.8628 + }, + { + "start": 35455.26, + "end": 35457.3, + "probability": 0.9712 + }, + { + "start": 35457.48, + "end": 35458.66, + "probability": 0.6517 + }, + { + "start": 35458.76, + "end": 35460.26, + "probability": 0.6288 + }, + { + "start": 35460.26, + "end": 35462.2, + "probability": 0.9763 + }, + { + "start": 35462.5, + "end": 35464.44, + "probability": 0.958 + }, + { + "start": 35464.48, + "end": 35467.44, + "probability": 0.9814 + }, + { + "start": 35467.58, + "end": 35468.98, + "probability": 0.9601 + }, + { + "start": 35469.42, + "end": 35470.86, + "probability": 0.7692 + }, + { + "start": 35471.0, + "end": 35472.46, + "probability": 0.7521 + }, + { + "start": 35472.66, + "end": 35473.42, + "probability": 0.7828 + }, + { + "start": 35473.46, + "end": 35474.07, + "probability": 0.7264 + }, + { + "start": 35474.46, + "end": 35475.59, + "probability": 0.8616 + }, + { + "start": 35476.08, + "end": 35478.86, + "probability": 0.8695 + }, + { + "start": 35478.86, + "end": 35480.22, + "probability": 0.8497 + }, + { + "start": 35480.32, + "end": 35481.0, + "probability": 0.9735 + }, + { + "start": 35481.92, + "end": 35483.8, + "probability": 0.9971 + }, + { + "start": 35484.52, + "end": 35489.28, + "probability": 0.8128 + }, + { + "start": 35489.36, + "end": 35491.28, + "probability": 0.9248 + }, + { + "start": 35491.6, + "end": 35493.5, + "probability": 0.9894 + }, + { + "start": 35493.86, + "end": 35495.39, + "probability": 0.9984 + }, + { + "start": 35496.28, + "end": 35498.18, + "probability": 0.5659 + }, + { + "start": 35498.22, + "end": 35498.88, + "probability": 0.8208 + }, + { + "start": 35500.04, + "end": 35502.08, + "probability": 0.7959 + }, + { + "start": 35502.72, + "end": 35504.34, + "probability": 0.9369 + }, + { + "start": 35504.72, + "end": 35505.54, + "probability": 0.8959 + }, + { + "start": 35506.22, + "end": 35509.2, + "probability": 0.3654 + }, + { + "start": 35509.28, + "end": 35515.02, + "probability": 0.385 + }, + { + "start": 35515.02, + "end": 35515.16, + "probability": 0.0773 + }, + { + "start": 35515.8, + "end": 35518.2, + "probability": 0.7399 + }, + { + "start": 35518.26, + "end": 35518.94, + "probability": 0.803 + }, + { + "start": 35519.14, + "end": 35522.14, + "probability": 0.8682 + }, + { + "start": 35522.18, + "end": 35525.56, + "probability": 0.0514 + }, + { + "start": 35526.36, + "end": 35526.42, + "probability": 0.2511 + }, + { + "start": 35526.42, + "end": 35527.82, + "probability": 0.082 + }, + { + "start": 35528.06, + "end": 35530.02, + "probability": 0.5992 + }, + { + "start": 35530.18, + "end": 35530.66, + "probability": 0.1662 + }, + { + "start": 35531.2, + "end": 35532.44, + "probability": 0.2665 + }, + { + "start": 35532.96, + "end": 35536.1, + "probability": 0.2021 + }, + { + "start": 35536.1, + "end": 35540.26, + "probability": 0.0789 + }, + { + "start": 35540.26, + "end": 35541.85, + "probability": 0.4293 + }, + { + "start": 35542.68, + "end": 35544.1, + "probability": 0.183 + }, + { + "start": 35544.1, + "end": 35545.02, + "probability": 0.2451 + }, + { + "start": 35545.18, + "end": 35545.62, + "probability": 0.1726 + }, + { + "start": 35546.06, + "end": 35546.96, + "probability": 0.2794 + }, + { + "start": 35546.96, + "end": 35547.66, + "probability": 0.3266 + }, + { + "start": 35550.52, + "end": 35552.62, + "probability": 0.3707 + }, + { + "start": 35563.12, + "end": 35564.16, + "probability": 0.1257 + }, + { + "start": 35564.16, + "end": 35564.16, + "probability": 0.1417 + }, + { + "start": 35564.16, + "end": 35564.16, + "probability": 0.0707 + }, + { + "start": 35564.16, + "end": 35564.16, + "probability": 0.3659 + }, + { + "start": 35564.16, + "end": 35566.99, + "probability": 0.0651 + }, + { + "start": 35570.24, + "end": 35572.5, + "probability": 0.9394 + }, + { + "start": 35572.54, + "end": 35574.22, + "probability": 0.9064 + }, + { + "start": 35577.0, + "end": 35578.92, + "probability": 0.9575 + }, + { + "start": 35580.52, + "end": 35582.85, + "probability": 0.992 + }, + { + "start": 35584.26, + "end": 35589.9, + "probability": 0.9941 + }, + { + "start": 35589.9, + "end": 35595.5, + "probability": 0.9548 + }, + { + "start": 35596.26, + "end": 35598.64, + "probability": 0.9546 + }, + { + "start": 35599.32, + "end": 35604.22, + "probability": 0.9863 + }, + { + "start": 35604.82, + "end": 35608.38, + "probability": 0.9788 + }, + { + "start": 35608.92, + "end": 35612.02, + "probability": 0.8977 + }, + { + "start": 35612.64, + "end": 35617.76, + "probability": 0.9759 + }, + { + "start": 35617.76, + "end": 35623.52, + "probability": 0.9928 + }, + { + "start": 35624.56, + "end": 35630.52, + "probability": 0.9969 + }, + { + "start": 35631.08, + "end": 35632.04, + "probability": 0.8287 + }, + { + "start": 35632.78, + "end": 35633.62, + "probability": 0.7269 + }, + { + "start": 35634.76, + "end": 35635.48, + "probability": 0.8175 + }, + { + "start": 35636.44, + "end": 35643.16, + "probability": 0.9888 + }, + { + "start": 35644.3, + "end": 35646.06, + "probability": 0.9954 + }, + { + "start": 35647.1, + "end": 35653.4, + "probability": 0.9733 + }, + { + "start": 35654.44, + "end": 35656.8, + "probability": 0.9494 + }, + { + "start": 35658.46, + "end": 35659.51, + "probability": 0.5569 + }, + { + "start": 35661.5, + "end": 35663.26, + "probability": 0.9652 + }, + { + "start": 35666.14, + "end": 35666.87, + "probability": 0.8096 + }, + { + "start": 35668.68, + "end": 35673.6, + "probability": 0.9778 + }, + { + "start": 35675.12, + "end": 35676.86, + "probability": 0.9539 + }, + { + "start": 35680.04, + "end": 35681.3, + "probability": 0.9977 + }, + { + "start": 35683.3, + "end": 35685.24, + "probability": 0.9721 + }, + { + "start": 35686.1, + "end": 35690.92, + "probability": 0.996 + }, + { + "start": 35692.32, + "end": 35696.06, + "probability": 0.9203 + }, + { + "start": 35697.92, + "end": 35699.38, + "probability": 0.8589 + }, + { + "start": 35706.48, + "end": 35708.5, + "probability": 0.9979 + }, + { + "start": 35710.14, + "end": 35712.96, + "probability": 0.9872 + }, + { + "start": 35713.36, + "end": 35717.3, + "probability": 0.9908 + }, + { + "start": 35718.42, + "end": 35720.04, + "probability": 0.9373 + }, + { + "start": 35720.88, + "end": 35721.96, + "probability": 0.6969 + }, + { + "start": 35722.86, + "end": 35727.14, + "probability": 0.9877 + }, + { + "start": 35728.16, + "end": 35730.34, + "probability": 0.9895 + }, + { + "start": 35730.92, + "end": 35733.76, + "probability": 0.9774 + }, + { + "start": 35733.76, + "end": 35737.66, + "probability": 0.8788 + }, + { + "start": 35738.66, + "end": 35741.3, + "probability": 0.9946 + }, + { + "start": 35742.56, + "end": 35749.4, + "probability": 0.9845 + }, + { + "start": 35750.94, + "end": 35751.9, + "probability": 0.7224 + }, + { + "start": 35752.74, + "end": 35753.46, + "probability": 0.7387 + }, + { + "start": 35754.96, + "end": 35756.52, + "probability": 0.8145 + }, + { + "start": 35757.5, + "end": 35759.22, + "probability": 0.8777 + }, + { + "start": 35760.06, + "end": 35762.9, + "probability": 0.9941 + }, + { + "start": 35763.76, + "end": 35765.6, + "probability": 0.8737 + }, + { + "start": 35766.76, + "end": 35769.08, + "probability": 0.9946 + }, + { + "start": 35770.96, + "end": 35771.78, + "probability": 0.936 + }, + { + "start": 35773.22, + "end": 35773.86, + "probability": 0.5707 + }, + { + "start": 35777.36, + "end": 35779.26, + "probability": 0.9476 + }, + { + "start": 35780.68, + "end": 35786.18, + "probability": 0.996 + }, + { + "start": 35787.44, + "end": 35789.94, + "probability": 0.9578 + }, + { + "start": 35791.28, + "end": 35792.68, + "probability": 0.9255 + }, + { + "start": 35793.36, + "end": 35794.48, + "probability": 0.7451 + }, + { + "start": 35796.42, + "end": 35798.1, + "probability": 0.9777 + }, + { + "start": 35798.34, + "end": 35799.82, + "probability": 0.9545 + }, + { + "start": 35800.04, + "end": 35801.62, + "probability": 0.9846 + }, + { + "start": 35802.34, + "end": 35803.94, + "probability": 0.9795 + }, + { + "start": 35804.08, + "end": 35805.42, + "probability": 0.9611 + }, + { + "start": 35807.2, + "end": 35808.78, + "probability": 0.9954 + }, + { + "start": 35809.5, + "end": 35811.28, + "probability": 0.9989 + }, + { + "start": 35812.42, + "end": 35813.66, + "probability": 0.9365 + }, + { + "start": 35814.6, + "end": 35816.46, + "probability": 0.995 + }, + { + "start": 35817.4, + "end": 35818.24, + "probability": 0.8684 + }, + { + "start": 35819.42, + "end": 35826.74, + "probability": 0.9862 + }, + { + "start": 35827.86, + "end": 35832.94, + "probability": 0.863 + }, + { + "start": 35834.14, + "end": 35834.9, + "probability": 0.7828 + }, + { + "start": 35836.04, + "end": 35837.3, + "probability": 0.9673 + }, + { + "start": 35838.88, + "end": 35842.26, + "probability": 0.9531 + }, + { + "start": 35843.94, + "end": 35847.56, + "probability": 0.9423 + }, + { + "start": 35850.46, + "end": 35851.02, + "probability": 0.2941 + }, + { + "start": 35851.54, + "end": 35854.12, + "probability": 0.7821 + }, + { + "start": 35854.72, + "end": 35855.85, + "probability": 0.7905 + }, + { + "start": 35857.18, + "end": 35863.88, + "probability": 0.9906 + }, + { + "start": 35863.98, + "end": 35865.88, + "probability": 0.47 + }, + { + "start": 35867.5, + "end": 35872.66, + "probability": 0.9698 + }, + { + "start": 35872.66, + "end": 35877.58, + "probability": 0.9991 + }, + { + "start": 35878.6, + "end": 35880.84, + "probability": 0.9814 + }, + { + "start": 35881.64, + "end": 35882.86, + "probability": 0.8216 + }, + { + "start": 35883.42, + "end": 35885.66, + "probability": 0.9969 + }, + { + "start": 35885.66, + "end": 35889.52, + "probability": 0.9202 + }, + { + "start": 35889.98, + "end": 35891.4, + "probability": 0.9662 + }, + { + "start": 35893.58, + "end": 35897.56, + "probability": 0.985 + }, + { + "start": 35898.64, + "end": 35901.52, + "probability": 0.8585 + }, + { + "start": 35902.64, + "end": 35906.06, + "probability": 0.9492 + }, + { + "start": 35908.22, + "end": 35910.84, + "probability": 0.9553 + }, + { + "start": 35911.48, + "end": 35913.64, + "probability": 0.7818 + }, + { + "start": 35914.76, + "end": 35916.9, + "probability": 0.6763 + }, + { + "start": 35917.68, + "end": 35923.34, + "probability": 0.9924 + }, + { + "start": 35923.34, + "end": 35929.26, + "probability": 0.9973 + }, + { + "start": 35930.22, + "end": 35934.1, + "probability": 0.9939 + }, + { + "start": 35935.68, + "end": 35938.58, + "probability": 0.8384 + }, + { + "start": 35939.22, + "end": 35940.17, + "probability": 0.6808 + }, + { + "start": 35941.14, + "end": 35946.48, + "probability": 0.9727 + }, + { + "start": 35947.3, + "end": 35953.64, + "probability": 0.8962 + }, + { + "start": 35954.26, + "end": 35955.06, + "probability": 0.4122 + }, + { + "start": 35955.8, + "end": 35958.3, + "probability": 0.8384 + }, + { + "start": 35959.28, + "end": 35960.92, + "probability": 0.9379 + }, + { + "start": 35962.74, + "end": 35965.02, + "probability": 0.9131 + }, + { + "start": 35965.56, + "end": 35968.1, + "probability": 0.8427 + }, + { + "start": 35969.06, + "end": 35971.42, + "probability": 0.9973 + }, + { + "start": 35972.02, + "end": 35974.5, + "probability": 0.9946 + }, + { + "start": 35975.32, + "end": 35976.1, + "probability": 0.5735 + }, + { + "start": 35976.3, + "end": 35980.9, + "probability": 0.9364 + }, + { + "start": 35980.9, + "end": 35984.66, + "probability": 0.9924 + }, + { + "start": 35985.56, + "end": 35986.63, + "probability": 0.915 + }, + { + "start": 35988.32, + "end": 35990.9, + "probability": 0.9106 + }, + { + "start": 35991.06, + "end": 35991.7, + "probability": 0.8255 + }, + { + "start": 35991.82, + "end": 35992.91, + "probability": 0.795 + }, + { + "start": 35993.24, + "end": 35994.94, + "probability": 0.4809 + }, + { + "start": 35996.98, + "end": 36001.34, + "probability": 0.9906 + }, + { + "start": 36001.34, + "end": 36005.46, + "probability": 0.9846 + }, + { + "start": 36006.62, + "end": 36011.12, + "probability": 0.9985 + }, + { + "start": 36011.58, + "end": 36016.16, + "probability": 0.9807 + }, + { + "start": 36018.1, + "end": 36020.66, + "probability": 0.8195 + }, + { + "start": 36021.78, + "end": 36025.72, + "probability": 0.9678 + }, + { + "start": 36026.64, + "end": 36030.62, + "probability": 0.9644 + }, + { + "start": 36031.36, + "end": 36034.51, + "probability": 0.8804 + }, + { + "start": 36035.78, + "end": 36040.5, + "probability": 0.9876 + }, + { + "start": 36040.6, + "end": 36045.32, + "probability": 0.9984 + }, + { + "start": 36046.4, + "end": 36049.62, + "probability": 0.9971 + }, + { + "start": 36049.62, + "end": 36054.14, + "probability": 0.9953 + }, + { + "start": 36055.18, + "end": 36058.32, + "probability": 0.9981 + }, + { + "start": 36059.16, + "end": 36065.18, + "probability": 0.969 + }, + { + "start": 36066.72, + "end": 36069.0, + "probability": 0.9083 + }, + { + "start": 36069.68, + "end": 36072.94, + "probability": 0.9832 + }, + { + "start": 36072.94, + "end": 36077.32, + "probability": 0.987 + }, + { + "start": 36079.28, + "end": 36082.16, + "probability": 0.9994 + }, + { + "start": 36082.8, + "end": 36084.6, + "probability": 0.9961 + }, + { + "start": 36085.78, + "end": 36090.64, + "probability": 0.998 + }, + { + "start": 36092.22, + "end": 36093.28, + "probability": 0.9789 + }, + { + "start": 36094.72, + "end": 36095.42, + "probability": 0.8855 + }, + { + "start": 36096.48, + "end": 36097.66, + "probability": 0.8543 + }, + { + "start": 36098.54, + "end": 36100.02, + "probability": 0.9467 + }, + { + "start": 36101.0, + "end": 36104.72, + "probability": 0.984 + }, + { + "start": 36105.64, + "end": 36108.82, + "probability": 0.9829 + }, + { + "start": 36110.18, + "end": 36111.7, + "probability": 0.9091 + }, + { + "start": 36113.3, + "end": 36114.86, + "probability": 0.8157 + }, + { + "start": 36116.06, + "end": 36118.42, + "probability": 0.9905 + }, + { + "start": 36118.67, + "end": 36121.84, + "probability": 0.9985 + }, + { + "start": 36123.0, + "end": 36125.4, + "probability": 0.9875 + }, + { + "start": 36125.9, + "end": 36128.2, + "probability": 0.981 + }, + { + "start": 36129.84, + "end": 36132.8, + "probability": 0.6777 + }, + { + "start": 36133.36, + "end": 36137.32, + "probability": 0.9944 + }, + { + "start": 36137.88, + "end": 36139.92, + "probability": 0.9741 + }, + { + "start": 36140.54, + "end": 36143.28, + "probability": 0.9919 + }, + { + "start": 36144.38, + "end": 36149.04, + "probability": 0.9571 + }, + { + "start": 36149.04, + "end": 36153.04, + "probability": 0.9968 + }, + { + "start": 36153.52, + "end": 36155.2, + "probability": 0.9849 + }, + { + "start": 36156.74, + "end": 36158.02, + "probability": 0.7596 + }, + { + "start": 36158.58, + "end": 36159.94, + "probability": 0.849 + }, + { + "start": 36160.74, + "end": 36161.32, + "probability": 0.4396 + }, + { + "start": 36161.46, + "end": 36170.26, + "probability": 0.9859 + }, + { + "start": 36171.44, + "end": 36174.1, + "probability": 0.9955 + }, + { + "start": 36174.1, + "end": 36178.42, + "probability": 0.9977 + }, + { + "start": 36179.56, + "end": 36186.0, + "probability": 0.9983 + }, + { + "start": 36187.48, + "end": 36191.98, + "probability": 0.9937 + }, + { + "start": 36191.98, + "end": 36197.42, + "probability": 0.9517 + }, + { + "start": 36198.52, + "end": 36200.34, + "probability": 0.9985 + }, + { + "start": 36201.62, + "end": 36206.62, + "probability": 0.9988 + }, + { + "start": 36207.56, + "end": 36211.24, + "probability": 0.998 + }, + { + "start": 36211.9, + "end": 36214.8, + "probability": 0.995 + }, + { + "start": 36215.98, + "end": 36219.3, + "probability": 0.9565 + }, + { + "start": 36220.04, + "end": 36224.72, + "probability": 0.9758 + }, + { + "start": 36226.04, + "end": 36228.76, + "probability": 0.9978 + }, + { + "start": 36229.64, + "end": 36233.0, + "probability": 0.9978 + }, + { + "start": 36234.02, + "end": 36235.15, + "probability": 0.8933 + }, + { + "start": 36236.0, + "end": 36238.04, + "probability": 0.9342 + }, + { + "start": 36238.82, + "end": 36240.56, + "probability": 0.983 + }, + { + "start": 36241.3, + "end": 36243.82, + "probability": 0.9939 + }, + { + "start": 36244.74, + "end": 36248.58, + "probability": 0.9972 + }, + { + "start": 36249.62, + "end": 36253.68, + "probability": 0.9819 + }, + { + "start": 36254.56, + "end": 36259.32, + "probability": 0.9972 + }, + { + "start": 36259.8, + "end": 36260.92, + "probability": 0.9758 + }, + { + "start": 36261.68, + "end": 36266.22, + "probability": 0.9956 + }, + { + "start": 36267.4, + "end": 36270.48, + "probability": 0.993 + }, + { + "start": 36270.48, + "end": 36274.04, + "probability": 0.9661 + }, + { + "start": 36274.9, + "end": 36282.18, + "probability": 0.9334 + }, + { + "start": 36283.88, + "end": 36285.54, + "probability": 0.8345 + }, + { + "start": 36286.16, + "end": 36287.24, + "probability": 0.8274 + }, + { + "start": 36288.36, + "end": 36290.46, + "probability": 0.9898 + }, + { + "start": 36291.98, + "end": 36293.34, + "probability": 0.9348 + }, + { + "start": 36295.08, + "end": 36297.86, + "probability": 0.9857 + }, + { + "start": 36299.22, + "end": 36302.44, + "probability": 0.9957 + }, + { + "start": 36303.88, + "end": 36308.92, + "probability": 0.8307 + }, + { + "start": 36309.88, + "end": 36315.07, + "probability": 0.643 + }, + { + "start": 36315.3, + "end": 36320.4, + "probability": 0.7355 + }, + { + "start": 36321.24, + "end": 36324.16, + "probability": 0.7897 + }, + { + "start": 36324.82, + "end": 36325.76, + "probability": 0.4261 + }, + { + "start": 36326.52, + "end": 36330.22, + "probability": 0.9814 + }, + { + "start": 36330.92, + "end": 36331.7, + "probability": 0.568 + }, + { + "start": 36332.24, + "end": 36336.46, + "probability": 0.9113 + }, + { + "start": 36337.16, + "end": 36337.89, + "probability": 0.7788 + }, + { + "start": 36338.9, + "end": 36345.78, + "probability": 0.9926 + }, + { + "start": 36346.44, + "end": 36349.7, + "probability": 0.8812 + }, + { + "start": 36350.24, + "end": 36354.42, + "probability": 0.9567 + }, + { + "start": 36355.48, + "end": 36358.62, + "probability": 0.9805 + }, + { + "start": 36359.4, + "end": 36362.38, + "probability": 0.9834 + }, + { + "start": 36362.94, + "end": 36365.66, + "probability": 0.986 + }, + { + "start": 36366.48, + "end": 36369.86, + "probability": 0.8762 + }, + { + "start": 36370.9, + "end": 36373.3, + "probability": 0.9897 + }, + { + "start": 36373.92, + "end": 36376.82, + "probability": 0.9583 + }, + { + "start": 36377.8, + "end": 36380.56, + "probability": 0.7437 + }, + { + "start": 36381.14, + "end": 36384.04, + "probability": 0.9938 + }, + { + "start": 36384.04, + "end": 36389.52, + "probability": 0.9884 + }, + { + "start": 36391.02, + "end": 36391.82, + "probability": 0.7096 + }, + { + "start": 36393.16, + "end": 36394.74, + "probability": 0.9927 + }, + { + "start": 36396.08, + "end": 36396.94, + "probability": 0.8623 + }, + { + "start": 36398.78, + "end": 36405.4, + "probability": 0.9946 + }, + { + "start": 36405.4, + "end": 36411.08, + "probability": 0.9976 + }, + { + "start": 36412.74, + "end": 36416.92, + "probability": 0.9155 + }, + { + "start": 36417.54, + "end": 36421.74, + "probability": 0.9902 + }, + { + "start": 36421.74, + "end": 36426.52, + "probability": 0.9571 + }, + { + "start": 36427.62, + "end": 36433.02, + "probability": 0.9333 + }, + { + "start": 36433.02, + "end": 36438.0, + "probability": 0.7891 + }, + { + "start": 36438.8, + "end": 36441.82, + "probability": 0.9984 + }, + { + "start": 36441.82, + "end": 36446.14, + "probability": 0.9214 + }, + { + "start": 36446.64, + "end": 36449.6, + "probability": 0.9858 + }, + { + "start": 36450.66, + "end": 36452.72, + "probability": 0.9924 + }, + { + "start": 36453.88, + "end": 36456.36, + "probability": 0.9878 + }, + { + "start": 36458.46, + "end": 36461.96, + "probability": 0.9681 + }, + { + "start": 36462.72, + "end": 36465.14, + "probability": 0.9899 + }, + { + "start": 36465.92, + "end": 36468.44, + "probability": 0.7964 + }, + { + "start": 36470.02, + "end": 36472.14, + "probability": 0.8257 + }, + { + "start": 36473.64, + "end": 36473.98, + "probability": 0.1349 + }, + { + "start": 36473.98, + "end": 36477.24, + "probability": 0.7655 + }, + { + "start": 36478.06, + "end": 36481.78, + "probability": 0.9766 + }, + { + "start": 36482.3, + "end": 36486.56, + "probability": 0.9766 + }, + { + "start": 36487.36, + "end": 36490.54, + "probability": 0.9492 + }, + { + "start": 36491.44, + "end": 36495.9, + "probability": 0.967 + }, + { + "start": 36496.46, + "end": 36499.88, + "probability": 0.9747 + }, + { + "start": 36499.88, + "end": 36504.66, + "probability": 0.9505 + }, + { + "start": 36505.5, + "end": 36509.94, + "probability": 0.8666 + }, + { + "start": 36510.8, + "end": 36513.32, + "probability": 0.7332 + }, + { + "start": 36513.34, + "end": 36517.14, + "probability": 0.9369 + }, + { + "start": 36517.41, + "end": 36523.61, + "probability": 0.8712 + }, + { + "start": 36524.42, + "end": 36526.7, + "probability": 0.9868 + }, + { + "start": 36526.8, + "end": 36527.7, + "probability": 0.6554 + }, + { + "start": 36528.14, + "end": 36531.32, + "probability": 0.9443 + }, + { + "start": 36531.84, + "end": 36535.88, + "probability": 0.9563 + }, + { + "start": 36536.3, + "end": 36539.46, + "probability": 0.9961 + }, + { + "start": 36539.96, + "end": 36542.04, + "probability": 0.9692 + }, + { + "start": 36543.68, + "end": 36545.49, + "probability": 0.5043 + }, + { + "start": 36547.28, + "end": 36549.44, + "probability": 0.629 + }, + { + "start": 36550.24, + "end": 36553.2, + "probability": 0.75 + }, + { + "start": 36557.34, + "end": 36559.08, + "probability": 0.4045 + }, + { + "start": 36559.28, + "end": 36561.62, + "probability": 0.6921 + }, + { + "start": 36563.61, + "end": 36566.26, + "probability": 0.6371 + }, + { + "start": 36566.36, + "end": 36567.84, + "probability": 0.7115 + }, + { + "start": 36567.98, + "end": 36570.06, + "probability": 0.9264 + }, + { + "start": 36570.68, + "end": 36572.8, + "probability": 0.9847 + }, + { + "start": 36572.96, + "end": 36575.68, + "probability": 0.9314 + }, + { + "start": 36576.0, + "end": 36577.42, + "probability": 0.538 + }, + { + "start": 36577.56, + "end": 36578.94, + "probability": 0.9847 + }, + { + "start": 36579.22, + "end": 36579.52, + "probability": 0.7986 + }, + { + "start": 36579.92, + "end": 36581.86, + "probability": 0.8172 + }, + { + "start": 36582.32, + "end": 36582.54, + "probability": 0.0053 + } + ], + "segments_count": 12461, + "words_count": 63157, + "avg_words_per_segment": 5.0684, + "avg_segment_duration": 2.2247, + "avg_words_per_minute": 103.4558, + "plenum_id": "30636", + "duration": 36628.41, + "title": null, + "plenum_date": "2013-07-24" +} \ No newline at end of file