diff --git "a/56895/metadata.json" "b/56895/metadata.json" new file mode 100644--- /dev/null +++ "b/56895/metadata.json" @@ -0,0 +1,10232 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "56895", + "quality_score": 0.9266, + "per_segment_quality_scores": [ + { + "start": 30.9, + "end": 32.0, + "probability": 0.3915 + }, + { + "start": 32.2, + "end": 33.52, + "probability": 0.6714 + }, + { + "start": 33.68, + "end": 34.95, + "probability": 0.8314 + }, + { + "start": 35.6, + "end": 36.3, + "probability": 0.6486 + }, + { + "start": 36.34, + "end": 37.14, + "probability": 0.685 + }, + { + "start": 37.98, + "end": 41.52, + "probability": 0.7469 + }, + { + "start": 41.52, + "end": 48.16, + "probability": 0.9397 + }, + { + "start": 48.16, + "end": 51.68, + "probability": 0.9972 + }, + { + "start": 52.4, + "end": 57.46, + "probability": 0.9933 + }, + { + "start": 58.12, + "end": 64.54, + "probability": 0.9915 + }, + { + "start": 64.8, + "end": 65.48, + "probability": 0.8642 + }, + { + "start": 65.88, + "end": 68.8, + "probability": 0.9681 + }, + { + "start": 70.9, + "end": 72.54, + "probability": 0.973 + }, + { + "start": 73.02, + "end": 74.82, + "probability": 0.9926 + }, + { + "start": 78.02, + "end": 79.8, + "probability": 0.6496 + }, + { + "start": 80.0, + "end": 80.7, + "probability": 0.7914 + }, + { + "start": 80.88, + "end": 84.02, + "probability": 0.7585 + }, + { + "start": 84.02, + "end": 88.08, + "probability": 0.9848 + }, + { + "start": 88.08, + "end": 90.14, + "probability": 0.7485 + }, + { + "start": 90.14, + "end": 94.06, + "probability": 0.9972 + }, + { + "start": 94.6, + "end": 96.42, + "probability": 0.4164 + }, + { + "start": 98.78, + "end": 100.12, + "probability": 0.8753 + }, + { + "start": 100.26, + "end": 102.14, + "probability": 0.7225 + }, + { + "start": 102.24, + "end": 104.22, + "probability": 0.9669 + }, + { + "start": 105.26, + "end": 109.16, + "probability": 0.923 + }, + { + "start": 115.04, + "end": 115.04, + "probability": 0.4887 + }, + { + "start": 115.04, + "end": 115.06, + "probability": 0.2056 + }, + { + "start": 129.24, + "end": 131.9, + "probability": 0.2511 + }, + { + "start": 132.82, + "end": 134.44, + "probability": 0.9447 + }, + { + "start": 137.88, + "end": 138.74, + "probability": 0.6095 + }, + { + "start": 139.44, + "end": 140.44, + "probability": 0.8589 + }, + { + "start": 141.68, + "end": 143.12, + "probability": 0.515 + }, + { + "start": 143.92, + "end": 147.34, + "probability": 0.5233 + }, + { + "start": 147.34, + "end": 150.34, + "probability": 0.0973 + }, + { + "start": 150.42, + "end": 150.91, + "probability": 0.1314 + }, + { + "start": 151.46, + "end": 151.92, + "probability": 0.5063 + }, + { + "start": 153.48, + "end": 155.5, + "probability": 0.5173 + }, + { + "start": 156.52, + "end": 156.7, + "probability": 0.4568 + }, + { + "start": 156.9, + "end": 159.38, + "probability": 0.9237 + }, + { + "start": 159.42, + "end": 163.85, + "probability": 0.9739 + }, + { + "start": 164.78, + "end": 166.02, + "probability": 0.9814 + }, + { + "start": 167.06, + "end": 169.64, + "probability": 0.8228 + }, + { + "start": 170.54, + "end": 173.5, + "probability": 0.5717 + }, + { + "start": 173.56, + "end": 176.5, + "probability": 0.7527 + }, + { + "start": 177.42, + "end": 178.06, + "probability": 0.737 + }, + { + "start": 178.74, + "end": 182.94, + "probability": 0.9661 + }, + { + "start": 183.46, + "end": 183.94, + "probability": 0.6908 + }, + { + "start": 184.54, + "end": 185.36, + "probability": 0.9268 + }, + { + "start": 185.46, + "end": 187.86, + "probability": 0.8864 + }, + { + "start": 188.26, + "end": 188.84, + "probability": 0.8418 + }, + { + "start": 189.5, + "end": 191.24, + "probability": 0.4394 + }, + { + "start": 192.16, + "end": 194.86, + "probability": 0.9357 + }, + { + "start": 195.5, + "end": 197.26, + "probability": 0.9883 + }, + { + "start": 198.5, + "end": 205.9, + "probability": 0.9808 + }, + { + "start": 206.5, + "end": 211.28, + "probability": 0.8976 + }, + { + "start": 211.7, + "end": 213.61, + "probability": 0.6331 + }, + { + "start": 214.52, + "end": 219.9, + "probability": 0.7752 + }, + { + "start": 220.44, + "end": 221.5, + "probability": 0.8318 + }, + { + "start": 222.12, + "end": 222.22, + "probability": 0.703 + }, + { + "start": 223.04, + "end": 225.22, + "probability": 0.7776 + }, + { + "start": 225.52, + "end": 227.9, + "probability": 0.8923 + }, + { + "start": 228.66, + "end": 233.04, + "probability": 0.6868 + }, + { + "start": 233.72, + "end": 234.34, + "probability": 0.7832 + }, + { + "start": 234.96, + "end": 236.76, + "probability": 0.7067 + }, + { + "start": 237.7, + "end": 240.46, + "probability": 0.8202 + }, + { + "start": 241.98, + "end": 245.08, + "probability": 0.9209 + }, + { + "start": 245.12, + "end": 245.66, + "probability": 0.4252 + }, + { + "start": 247.04, + "end": 248.32, + "probability": 0.7299 + }, + { + "start": 249.45, + "end": 252.2, + "probability": 0.7657 + }, + { + "start": 252.82, + "end": 255.68, + "probability": 0.9676 + }, + { + "start": 256.28, + "end": 258.06, + "probability": 0.986 + }, + { + "start": 258.9, + "end": 263.8, + "probability": 0.9958 + }, + { + "start": 264.06, + "end": 266.86, + "probability": 0.0505 + }, + { + "start": 266.86, + "end": 267.1, + "probability": 0.2072 + }, + { + "start": 267.86, + "end": 271.5, + "probability": 0.8363 + }, + { + "start": 271.58, + "end": 272.4, + "probability": 0.8956 + }, + { + "start": 273.04, + "end": 275.52, + "probability": 0.996 + }, + { + "start": 275.52, + "end": 278.14, + "probability": 0.8792 + }, + { + "start": 278.82, + "end": 282.48, + "probability": 0.9858 + }, + { + "start": 283.36, + "end": 284.64, + "probability": 0.9746 + }, + { + "start": 285.08, + "end": 285.96, + "probability": 0.938 + }, + { + "start": 286.36, + "end": 287.52, + "probability": 0.904 + }, + { + "start": 287.86, + "end": 289.44, + "probability": 0.9951 + }, + { + "start": 289.86, + "end": 291.96, + "probability": 0.9908 + }, + { + "start": 292.68, + "end": 294.12, + "probability": 0.849 + }, + { + "start": 294.24, + "end": 295.62, + "probability": 0.9102 + }, + { + "start": 295.66, + "end": 298.74, + "probability": 0.9554 + }, + { + "start": 302.7, + "end": 304.76, + "probability": 0.9653 + }, + { + "start": 305.04, + "end": 307.3, + "probability": 0.5675 + }, + { + "start": 307.44, + "end": 307.9, + "probability": 0.8286 + }, + { + "start": 308.46, + "end": 310.29, + "probability": 0.9055 + }, + { + "start": 316.24, + "end": 318.24, + "probability": 0.6782 + }, + { + "start": 319.2, + "end": 322.84, + "probability": 0.9881 + }, + { + "start": 324.0, + "end": 328.42, + "probability": 0.9761 + }, + { + "start": 329.18, + "end": 329.46, + "probability": 0.7495 + }, + { + "start": 330.04, + "end": 332.13, + "probability": 0.9378 + }, + { + "start": 332.9, + "end": 336.32, + "probability": 0.8629 + }, + { + "start": 337.52, + "end": 339.14, + "probability": 0.8343 + }, + { + "start": 340.14, + "end": 340.86, + "probability": 0.8274 + }, + { + "start": 341.66, + "end": 342.36, + "probability": 0.7195 + }, + { + "start": 343.1, + "end": 343.94, + "probability": 0.4656 + }, + { + "start": 344.56, + "end": 346.66, + "probability": 0.8239 + }, + { + "start": 347.18, + "end": 348.06, + "probability": 0.6716 + }, + { + "start": 348.76, + "end": 349.34, + "probability": 0.6721 + }, + { + "start": 350.84, + "end": 352.02, + "probability": 0.9612 + }, + { + "start": 353.42, + "end": 355.06, + "probability": 0.822 + }, + { + "start": 355.92, + "end": 357.18, + "probability": 0.841 + }, + { + "start": 358.24, + "end": 361.64, + "probability": 0.9962 + }, + { + "start": 362.18, + "end": 363.0, + "probability": 0.9841 + }, + { + "start": 363.58, + "end": 365.37, + "probability": 0.9347 + }, + { + "start": 366.18, + "end": 369.26, + "probability": 0.9831 + }, + { + "start": 369.88, + "end": 370.34, + "probability": 0.8264 + }, + { + "start": 371.08, + "end": 373.26, + "probability": 0.69 + }, + { + "start": 373.44, + "end": 375.82, + "probability": 0.7084 + }, + { + "start": 376.48, + "end": 376.98, + "probability": 0.5423 + }, + { + "start": 377.56, + "end": 379.12, + "probability": 0.8907 + }, + { + "start": 380.36, + "end": 381.44, + "probability": 0.6302 + }, + { + "start": 381.64, + "end": 381.74, + "probability": 0.2679 + }, + { + "start": 381.76, + "end": 382.5, + "probability": 0.7248 + }, + { + "start": 382.6, + "end": 383.42, + "probability": 0.7862 + }, + { + "start": 383.58, + "end": 387.86, + "probability": 0.8017 + }, + { + "start": 388.68, + "end": 391.94, + "probability": 0.6945 + }, + { + "start": 392.5, + "end": 394.92, + "probability": 0.5462 + }, + { + "start": 395.08, + "end": 396.82, + "probability": 0.7341 + }, + { + "start": 396.96, + "end": 397.72, + "probability": 0.7549 + }, + { + "start": 398.22, + "end": 399.34, + "probability": 0.6479 + }, + { + "start": 399.86, + "end": 401.2, + "probability": 0.8411 + }, + { + "start": 401.26, + "end": 403.18, + "probability": 0.8923 + }, + { + "start": 403.6, + "end": 403.78, + "probability": 0.7699 + }, + { + "start": 403.88, + "end": 405.0, + "probability": 0.847 + }, + { + "start": 406.18, + "end": 407.62, + "probability": 0.8761 + }, + { + "start": 408.4, + "end": 410.42, + "probability": 0.6026 + }, + { + "start": 410.5, + "end": 412.04, + "probability": 0.7934 + }, + { + "start": 412.56, + "end": 417.26, + "probability": 0.5911 + }, + { + "start": 417.42, + "end": 418.64, + "probability": 0.0596 + }, + { + "start": 419.18, + "end": 420.6, + "probability": 0.7727 + }, + { + "start": 420.7, + "end": 422.36, + "probability": 0.9672 + }, + { + "start": 422.72, + "end": 424.48, + "probability": 0.994 + }, + { + "start": 424.54, + "end": 427.58, + "probability": 0.9793 + }, + { + "start": 428.08, + "end": 432.1, + "probability": 0.97 + }, + { + "start": 432.64, + "end": 435.3, + "probability": 0.9355 + }, + { + "start": 436.08, + "end": 439.1, + "probability": 0.9307 + }, + { + "start": 439.2, + "end": 440.57, + "probability": 0.438 + }, + { + "start": 440.72, + "end": 442.42, + "probability": 0.9558 + }, + { + "start": 442.88, + "end": 447.0, + "probability": 0.999 + }, + { + "start": 447.94, + "end": 448.92, + "probability": 0.9517 + }, + { + "start": 449.92, + "end": 453.42, + "probability": 0.9925 + }, + { + "start": 453.96, + "end": 456.1, + "probability": 0.9648 + }, + { + "start": 456.7, + "end": 459.5, + "probability": 0.9876 + }, + { + "start": 459.78, + "end": 459.94, + "probability": 0.4214 + }, + { + "start": 459.94, + "end": 460.48, + "probability": 0.8817 + }, + { + "start": 460.62, + "end": 465.16, + "probability": 0.9954 + }, + { + "start": 465.92, + "end": 471.42, + "probability": 0.9774 + }, + { + "start": 471.92, + "end": 472.08, + "probability": 0.6582 + }, + { + "start": 472.2, + "end": 474.5, + "probability": 0.877 + }, + { + "start": 475.6, + "end": 477.68, + "probability": 0.9963 + }, + { + "start": 478.02, + "end": 478.78, + "probability": 0.7191 + }, + { + "start": 479.44, + "end": 482.88, + "probability": 0.7829 + }, + { + "start": 483.52, + "end": 486.5, + "probability": 0.889 + }, + { + "start": 487.14, + "end": 488.4, + "probability": 0.8426 + }, + { + "start": 488.44, + "end": 489.5, + "probability": 0.5575 + }, + { + "start": 489.94, + "end": 491.4, + "probability": 0.9744 + }, + { + "start": 491.84, + "end": 492.56, + "probability": 0.8125 + }, + { + "start": 493.34, + "end": 494.76, + "probability": 0.6085 + }, + { + "start": 494.82, + "end": 496.92, + "probability": 0.8865 + }, + { + "start": 496.96, + "end": 499.0, + "probability": 0.7865 + }, + { + "start": 499.64, + "end": 502.56, + "probability": 0.8554 + }, + { + "start": 504.82, + "end": 507.98, + "probability": 0.5658 + }, + { + "start": 508.64, + "end": 513.32, + "probability": 0.9881 + }, + { + "start": 513.9, + "end": 519.44, + "probability": 0.97 + }, + { + "start": 520.2, + "end": 520.54, + "probability": 0.561 + }, + { + "start": 521.22, + "end": 523.66, + "probability": 0.9827 + }, + { + "start": 523.74, + "end": 525.56, + "probability": 0.9552 + }, + { + "start": 526.34, + "end": 527.06, + "probability": 0.5227 + }, + { + "start": 527.66, + "end": 528.29, + "probability": 0.8311 + }, + { + "start": 528.96, + "end": 530.72, + "probability": 0.9867 + }, + { + "start": 531.24, + "end": 534.54, + "probability": 0.9889 + }, + { + "start": 535.16, + "end": 538.72, + "probability": 0.9927 + }, + { + "start": 539.16, + "end": 541.6, + "probability": 0.9902 + }, + { + "start": 542.18, + "end": 543.64, + "probability": 0.8542 + }, + { + "start": 544.14, + "end": 546.96, + "probability": 0.9689 + }, + { + "start": 547.64, + "end": 548.9, + "probability": 0.8666 + }, + { + "start": 549.52, + "end": 551.6, + "probability": 0.8302 + }, + { + "start": 551.82, + "end": 553.64, + "probability": 0.7846 + }, + { + "start": 554.14, + "end": 557.96, + "probability": 0.9734 + }, + { + "start": 558.52, + "end": 560.26, + "probability": 0.4213 + }, + { + "start": 561.02, + "end": 566.7, + "probability": 0.9976 + }, + { + "start": 566.92, + "end": 567.9, + "probability": 0.7303 + }, + { + "start": 568.4, + "end": 571.36, + "probability": 0.9891 + }, + { + "start": 571.36, + "end": 574.64, + "probability": 0.9818 + }, + { + "start": 575.04, + "end": 576.96, + "probability": 0.8368 + }, + { + "start": 577.18, + "end": 577.82, + "probability": 0.8363 + }, + { + "start": 578.04, + "end": 578.58, + "probability": 0.8836 + }, + { + "start": 579.26, + "end": 580.92, + "probability": 0.9336 + }, + { + "start": 581.4, + "end": 583.5, + "probability": 0.9304 + }, + { + "start": 583.98, + "end": 587.12, + "probability": 0.9802 + }, + { + "start": 587.5, + "end": 589.34, + "probability": 0.9945 + }, + { + "start": 589.48, + "end": 590.42, + "probability": 0.5565 + }, + { + "start": 590.54, + "end": 591.46, + "probability": 0.868 + }, + { + "start": 592.2, + "end": 595.6, + "probability": 0.9828 + }, + { + "start": 596.24, + "end": 599.56, + "probability": 0.9534 + }, + { + "start": 599.96, + "end": 601.8, + "probability": 0.7727 + }, + { + "start": 602.32, + "end": 605.46, + "probability": 0.996 + }, + { + "start": 605.92, + "end": 606.82, + "probability": 0.8073 + }, + { + "start": 607.2, + "end": 609.58, + "probability": 0.9901 + }, + { + "start": 609.74, + "end": 610.26, + "probability": 0.8194 + }, + { + "start": 611.08, + "end": 612.84, + "probability": 0.9011 + }, + { + "start": 612.84, + "end": 615.18, + "probability": 0.802 + }, + { + "start": 615.56, + "end": 617.88, + "probability": 0.844 + }, + { + "start": 618.88, + "end": 620.04, + "probability": 0.5151 + }, + { + "start": 621.38, + "end": 625.88, + "probability": 0.9857 + }, + { + "start": 627.04, + "end": 630.22, + "probability": 0.9817 + }, + { + "start": 631.4, + "end": 632.28, + "probability": 0.9866 + }, + { + "start": 632.34, + "end": 633.46, + "probability": 0.9139 + }, + { + "start": 633.6, + "end": 638.06, + "probability": 0.9928 + }, + { + "start": 638.64, + "end": 645.08, + "probability": 0.9971 + }, + { + "start": 645.68, + "end": 647.86, + "probability": 0.797 + }, + { + "start": 648.5, + "end": 652.76, + "probability": 0.9565 + }, + { + "start": 653.92, + "end": 654.78, + "probability": 0.4604 + }, + { + "start": 654.82, + "end": 656.09, + "probability": 0.9446 + }, + { + "start": 656.56, + "end": 661.42, + "probability": 0.9854 + }, + { + "start": 661.82, + "end": 664.3, + "probability": 0.9924 + }, + { + "start": 664.82, + "end": 668.24, + "probability": 0.9986 + }, + { + "start": 668.24, + "end": 671.7, + "probability": 0.9998 + }, + { + "start": 672.36, + "end": 675.5, + "probability": 0.9986 + }, + { + "start": 675.76, + "end": 676.92, + "probability": 0.7576 + }, + { + "start": 677.78, + "end": 682.82, + "probability": 0.8489 + }, + { + "start": 682.82, + "end": 687.34, + "probability": 0.9897 + }, + { + "start": 687.98, + "end": 688.7, + "probability": 0.5946 + }, + { + "start": 688.87, + "end": 691.86, + "probability": 0.9934 + }, + { + "start": 691.86, + "end": 695.3, + "probability": 0.9993 + }, + { + "start": 695.8, + "end": 697.12, + "probability": 0.9447 + }, + { + "start": 697.9, + "end": 702.9, + "probability": 0.9532 + }, + { + "start": 703.34, + "end": 704.06, + "probability": 0.7218 + }, + { + "start": 704.34, + "end": 707.96, + "probability": 0.8432 + }, + { + "start": 708.16, + "end": 709.36, + "probability": 0.7858 + }, + { + "start": 709.42, + "end": 711.34, + "probability": 0.9315 + }, + { + "start": 712.6, + "end": 714.28, + "probability": 0.9994 + }, + { + "start": 715.14, + "end": 718.3, + "probability": 0.9893 + }, + { + "start": 718.3, + "end": 723.54, + "probability": 0.9508 + }, + { + "start": 723.94, + "end": 725.06, + "probability": 0.5309 + }, + { + "start": 725.56, + "end": 725.92, + "probability": 0.4766 + }, + { + "start": 726.04, + "end": 727.78, + "probability": 0.9471 + }, + { + "start": 728.2, + "end": 732.36, + "probability": 0.9974 + }, + { + "start": 732.52, + "end": 732.76, + "probability": 0.4007 + }, + { + "start": 732.76, + "end": 734.02, + "probability": 0.8081 + }, + { + "start": 734.46, + "end": 735.48, + "probability": 0.9333 + }, + { + "start": 735.58, + "end": 736.64, + "probability": 0.9888 + }, + { + "start": 736.96, + "end": 739.12, + "probability": 0.9885 + }, + { + "start": 739.24, + "end": 742.0, + "probability": 0.9974 + }, + { + "start": 742.76, + "end": 744.6, + "probability": 0.9773 + }, + { + "start": 745.94, + "end": 747.78, + "probability": 0.781 + }, + { + "start": 748.34, + "end": 750.2, + "probability": 0.8766 + }, + { + "start": 750.26, + "end": 750.56, + "probability": 0.2645 + }, + { + "start": 750.6, + "end": 751.1, + "probability": 0.7721 + }, + { + "start": 751.14, + "end": 751.78, + "probability": 0.5959 + }, + { + "start": 751.86, + "end": 753.96, + "probability": 0.7107 + }, + { + "start": 759.5, + "end": 761.08, + "probability": 0.6993 + }, + { + "start": 761.96, + "end": 766.72, + "probability": 0.8715 + }, + { + "start": 767.4, + "end": 768.66, + "probability": 0.933 + }, + { + "start": 769.08, + "end": 772.24, + "probability": 0.9932 + }, + { + "start": 772.88, + "end": 777.88, + "probability": 0.8777 + }, + { + "start": 777.88, + "end": 779.58, + "probability": 0.9906 + }, + { + "start": 780.2, + "end": 782.62, + "probability": 0.9438 + }, + { + "start": 782.98, + "end": 785.78, + "probability": 0.9933 + }, + { + "start": 786.18, + "end": 790.0, + "probability": 0.8729 + }, + { + "start": 790.48, + "end": 790.86, + "probability": 0.4389 + }, + { + "start": 791.3, + "end": 795.44, + "probability": 0.9938 + }, + { + "start": 795.9, + "end": 797.2, + "probability": 0.978 + }, + { + "start": 797.94, + "end": 802.42, + "probability": 0.9348 + }, + { + "start": 802.92, + "end": 808.16, + "probability": 0.9918 + }, + { + "start": 808.56, + "end": 809.82, + "probability": 0.9391 + }, + { + "start": 810.36, + "end": 813.12, + "probability": 0.9076 + }, + { + "start": 813.68, + "end": 816.36, + "probability": 0.9114 + }, + { + "start": 816.4, + "end": 818.32, + "probability": 0.5115 + }, + { + "start": 818.38, + "end": 819.84, + "probability": 0.9664 + }, + { + "start": 819.9, + "end": 821.64, + "probability": 0.9492 + }, + { + "start": 821.78, + "end": 822.86, + "probability": 0.9094 + }, + { + "start": 822.96, + "end": 826.22, + "probability": 0.9388 + }, + { + "start": 826.56, + "end": 830.16, + "probability": 0.7602 + }, + { + "start": 830.42, + "end": 832.24, + "probability": 0.9454 + }, + { + "start": 832.36, + "end": 832.7, + "probability": 0.6905 + }, + { + "start": 833.52, + "end": 835.55, + "probability": 0.8312 + }, + { + "start": 836.08, + "end": 840.7, + "probability": 0.9795 + }, + { + "start": 841.04, + "end": 843.02, + "probability": 0.6997 + }, + { + "start": 843.5, + "end": 845.76, + "probability": 0.9777 + }, + { + "start": 846.14, + "end": 848.82, + "probability": 0.9141 + }, + { + "start": 849.1, + "end": 851.52, + "probability": 0.9716 + }, + { + "start": 851.64, + "end": 852.24, + "probability": 0.6396 + }, + { + "start": 852.6, + "end": 853.3, + "probability": 0.9385 + }, + { + "start": 853.44, + "end": 856.56, + "probability": 0.8049 + }, + { + "start": 857.18, + "end": 861.52, + "probability": 0.7383 + }, + { + "start": 861.64, + "end": 863.2, + "probability": 0.9207 + }, + { + "start": 863.6, + "end": 867.7, + "probability": 0.9148 + }, + { + "start": 868.12, + "end": 870.52, + "probability": 0.5425 + }, + { + "start": 870.82, + "end": 873.17, + "probability": 0.7361 + }, + { + "start": 873.26, + "end": 874.96, + "probability": 0.7589 + }, + { + "start": 878.12, + "end": 878.86, + "probability": 0.2726 + }, + { + "start": 879.02, + "end": 879.94, + "probability": 0.5976 + }, + { + "start": 880.52, + "end": 883.9, + "probability": 0.9949 + }, + { + "start": 883.9, + "end": 886.18, + "probability": 0.9972 + }, + { + "start": 887.12, + "end": 889.28, + "probability": 0.7326 + }, + { + "start": 890.2, + "end": 893.0, + "probability": 0.6023 + }, + { + "start": 894.14, + "end": 897.19, + "probability": 0.8664 + }, + { + "start": 897.88, + "end": 899.84, + "probability": 0.896 + }, + { + "start": 900.9, + "end": 909.98, + "probability": 0.96 + }, + { + "start": 910.3, + "end": 913.14, + "probability": 0.6713 + }, + { + "start": 914.38, + "end": 914.84, + "probability": 0.3777 + }, + { + "start": 916.12, + "end": 918.97, + "probability": 0.5586 + }, + { + "start": 921.9, + "end": 924.18, + "probability": 0.8076 + }, + { + "start": 924.9, + "end": 926.8, + "probability": 0.8626 + }, + { + "start": 927.52, + "end": 928.22, + "probability": 0.6284 + }, + { + "start": 929.84, + "end": 934.84, + "probability": 0.8057 + }, + { + "start": 935.4, + "end": 937.62, + "probability": 0.9539 + }, + { + "start": 938.3, + "end": 944.66, + "probability": 0.9504 + }, + { + "start": 945.22, + "end": 947.14, + "probability": 0.9764 + }, + { + "start": 948.4, + "end": 952.84, + "probability": 0.754 + }, + { + "start": 953.3, + "end": 957.8, + "probability": 0.9949 + }, + { + "start": 958.08, + "end": 960.4, + "probability": 0.9748 + }, + { + "start": 963.16, + "end": 966.88, + "probability": 0.9519 + }, + { + "start": 967.3, + "end": 971.94, + "probability": 0.7536 + }, + { + "start": 971.94, + "end": 972.84, + "probability": 0.8122 + }, + { + "start": 973.08, + "end": 976.58, + "probability": 0.9399 + }, + { + "start": 976.74, + "end": 976.96, + "probability": 0.5192 + }, + { + "start": 978.12, + "end": 980.58, + "probability": 0.8408 + }, + { + "start": 980.7, + "end": 983.12, + "probability": 0.7225 + }, + { + "start": 983.68, + "end": 985.73, + "probability": 0.8051 + }, + { + "start": 986.72, + "end": 987.98, + "probability": 0.8714 + }, + { + "start": 988.48, + "end": 989.34, + "probability": 0.9496 + }, + { + "start": 989.42, + "end": 990.94, + "probability": 0.8505 + }, + { + "start": 991.0, + "end": 992.3, + "probability": 0.5658 + }, + { + "start": 992.92, + "end": 998.6, + "probability": 0.9792 + }, + { + "start": 999.08, + "end": 999.85, + "probability": 0.8359 + }, + { + "start": 1000.12, + "end": 1001.99, + "probability": 0.9958 + }, + { + "start": 1002.62, + "end": 1004.14, + "probability": 0.6347 + }, + { + "start": 1004.72, + "end": 1007.64, + "probability": 0.9388 + }, + { + "start": 1008.14, + "end": 1012.82, + "probability": 0.9926 + }, + { + "start": 1014.24, + "end": 1015.1, + "probability": 0.9482 + }, + { + "start": 1015.32, + "end": 1020.52, + "probability": 0.9784 + }, + { + "start": 1020.52, + "end": 1024.06, + "probability": 0.864 + }, + { + "start": 1024.76, + "end": 1027.7, + "probability": 0.9904 + }, + { + "start": 1027.86, + "end": 1028.7, + "probability": 0.7211 + }, + { + "start": 1029.06, + "end": 1029.82, + "probability": 0.8574 + }, + { + "start": 1031.51, + "end": 1033.66, + "probability": 0.9844 + }, + { + "start": 1034.36, + "end": 1037.64, + "probability": 0.9953 + }, + { + "start": 1037.64, + "end": 1040.14, + "probability": 0.9967 + }, + { + "start": 1041.5, + "end": 1041.96, + "probability": 0.3479 + }, + { + "start": 1042.0, + "end": 1042.56, + "probability": 0.972 + }, + { + "start": 1042.64, + "end": 1046.06, + "probability": 0.9888 + }, + { + "start": 1046.06, + "end": 1049.4, + "probability": 0.9837 + }, + { + "start": 1050.22, + "end": 1051.78, + "probability": 0.5829 + }, + { + "start": 1052.12, + "end": 1056.5, + "probability": 0.9352 + }, + { + "start": 1056.5, + "end": 1062.44, + "probability": 0.9935 + }, + { + "start": 1063.1, + "end": 1063.96, + "probability": 0.8934 + }, + { + "start": 1064.82, + "end": 1068.98, + "probability": 0.8799 + }, + { + "start": 1069.14, + "end": 1070.7, + "probability": 0.9131 + }, + { + "start": 1071.1, + "end": 1075.1, + "probability": 0.9373 + }, + { + "start": 1075.62, + "end": 1076.72, + "probability": 0.9333 + }, + { + "start": 1077.1, + "end": 1079.48, + "probability": 0.9852 + }, + { + "start": 1079.52, + "end": 1080.36, + "probability": 0.6405 + }, + { + "start": 1080.9, + "end": 1087.42, + "probability": 0.8512 + }, + { + "start": 1088.08, + "end": 1089.76, + "probability": 0.8867 + }, + { + "start": 1090.18, + "end": 1094.74, + "probability": 0.8899 + }, + { + "start": 1095.4, + "end": 1097.56, + "probability": 0.5232 + }, + { + "start": 1097.56, + "end": 1098.12, + "probability": 0.5096 + }, + { + "start": 1100.63, + "end": 1107.4, + "probability": 0.6018 + }, + { + "start": 1107.94, + "end": 1109.42, + "probability": 0.9115 + }, + { + "start": 1109.54, + "end": 1111.84, + "probability": 0.9341 + }, + { + "start": 1112.18, + "end": 1115.52, + "probability": 0.9885 + }, + { + "start": 1115.56, + "end": 1116.35, + "probability": 0.7979 + }, + { + "start": 1116.66, + "end": 1119.36, + "probability": 0.9783 + }, + { + "start": 1119.82, + "end": 1122.6, + "probability": 0.9899 + }, + { + "start": 1122.7, + "end": 1122.98, + "probability": 0.7646 + }, + { + "start": 1123.64, + "end": 1125.34, + "probability": 0.9442 + }, + { + "start": 1127.69, + "end": 1130.72, + "probability": 0.6414 + }, + { + "start": 1130.8, + "end": 1132.52, + "probability": 0.7114 + }, + { + "start": 1136.74, + "end": 1137.72, + "probability": 0.7099 + }, + { + "start": 1139.2, + "end": 1140.04, + "probability": 0.7244 + }, + { + "start": 1140.18, + "end": 1141.36, + "probability": 0.952 + }, + { + "start": 1141.62, + "end": 1143.3, + "probability": 0.6941 + }, + { + "start": 1144.12, + "end": 1146.8, + "probability": 0.9969 + }, + { + "start": 1146.8, + "end": 1150.04, + "probability": 0.965 + }, + { + "start": 1150.9, + "end": 1154.8, + "probability": 0.984 + }, + { + "start": 1155.38, + "end": 1157.4, + "probability": 0.9442 + }, + { + "start": 1157.94, + "end": 1161.7, + "probability": 0.8406 + }, + { + "start": 1162.24, + "end": 1164.04, + "probability": 0.9707 + }, + { + "start": 1164.6, + "end": 1167.16, + "probability": 0.988 + }, + { + "start": 1167.58, + "end": 1168.62, + "probability": 0.8545 + }, + { + "start": 1169.1, + "end": 1172.7, + "probability": 0.9913 + }, + { + "start": 1173.2, + "end": 1177.62, + "probability": 0.9834 + }, + { + "start": 1178.1, + "end": 1180.68, + "probability": 0.7239 + }, + { + "start": 1181.12, + "end": 1182.02, + "probability": 0.7481 + }, + { + "start": 1182.38, + "end": 1185.16, + "probability": 0.7946 + }, + { + "start": 1185.36, + "end": 1190.62, + "probability": 0.9481 + }, + { + "start": 1191.36, + "end": 1191.88, + "probability": 0.799 + }, + { + "start": 1192.4, + "end": 1196.4, + "probability": 0.8096 + }, + { + "start": 1196.96, + "end": 1201.66, + "probability": 0.9941 + }, + { + "start": 1202.26, + "end": 1205.06, + "probability": 0.8854 + }, + { + "start": 1205.42, + "end": 1206.4, + "probability": 0.9006 + }, + { + "start": 1206.9, + "end": 1207.48, + "probability": 0.8793 + }, + { + "start": 1207.88, + "end": 1209.04, + "probability": 0.9691 + }, + { + "start": 1209.12, + "end": 1209.58, + "probability": 0.9127 + }, + { + "start": 1210.38, + "end": 1211.5, + "probability": 0.9149 + }, + { + "start": 1212.02, + "end": 1215.88, + "probability": 0.9325 + }, + { + "start": 1215.88, + "end": 1219.48, + "probability": 0.9912 + }, + { + "start": 1219.88, + "end": 1220.36, + "probability": 0.7579 + }, + { + "start": 1221.48, + "end": 1223.89, + "probability": 0.6265 + }, + { + "start": 1224.16, + "end": 1226.32, + "probability": 0.8086 + }, + { + "start": 1233.58, + "end": 1240.46, + "probability": 0.9803 + }, + { + "start": 1241.02, + "end": 1243.94, + "probability": 0.9929 + }, + { + "start": 1245.14, + "end": 1248.52, + "probability": 0.9306 + }, + { + "start": 1249.62, + "end": 1253.68, + "probability": 0.9805 + }, + { + "start": 1253.68, + "end": 1258.58, + "probability": 0.9626 + }, + { + "start": 1259.12, + "end": 1260.3, + "probability": 0.9995 + }, + { + "start": 1260.76, + "end": 1262.52, + "probability": 0.9094 + }, + { + "start": 1262.98, + "end": 1267.82, + "probability": 0.9925 + }, + { + "start": 1268.64, + "end": 1270.38, + "probability": 0.8604 + }, + { + "start": 1271.16, + "end": 1277.06, + "probability": 0.9942 + }, + { + "start": 1277.14, + "end": 1278.3, + "probability": 0.9368 + }, + { + "start": 1279.14, + "end": 1283.93, + "probability": 0.843 + }, + { + "start": 1285.3, + "end": 1288.0, + "probability": 0.9449 + }, + { + "start": 1288.44, + "end": 1289.76, + "probability": 0.9581 + }, + { + "start": 1290.02, + "end": 1291.89, + "probability": 0.9907 + }, + { + "start": 1292.34, + "end": 1295.51, + "probability": 0.9137 + }, + { + "start": 1296.6, + "end": 1296.8, + "probability": 0.3932 + }, + { + "start": 1297.22, + "end": 1297.65, + "probability": 0.6729 + }, + { + "start": 1298.06, + "end": 1300.42, + "probability": 0.9971 + }, + { + "start": 1300.76, + "end": 1300.8, + "probability": 0.604 + }, + { + "start": 1300.88, + "end": 1306.92, + "probability": 0.8608 + }, + { + "start": 1307.44, + "end": 1310.68, + "probability": 0.9961 + }, + { + "start": 1310.76, + "end": 1311.02, + "probability": 0.4245 + }, + { + "start": 1311.02, + "end": 1312.3, + "probability": 0.8825 + }, + { + "start": 1313.34, + "end": 1319.08, + "probability": 0.9075 + }, + { + "start": 1319.14, + "end": 1320.78, + "probability": 0.6934 + }, + { + "start": 1321.4, + "end": 1322.08, + "probability": 0.6834 + }, + { + "start": 1322.26, + "end": 1323.12, + "probability": 0.5939 + }, + { + "start": 1323.2, + "end": 1324.78, + "probability": 0.9668 + }, + { + "start": 1324.9, + "end": 1327.1, + "probability": 0.6284 + }, + { + "start": 1327.48, + "end": 1328.6, + "probability": 0.8644 + }, + { + "start": 1329.14, + "end": 1330.22, + "probability": 0.9286 + }, + { + "start": 1330.7, + "end": 1336.03, + "probability": 0.9902 + }, + { + "start": 1336.26, + "end": 1337.26, + "probability": 0.4983 + }, + { + "start": 1337.66, + "end": 1341.12, + "probability": 0.9322 + }, + { + "start": 1341.18, + "end": 1343.48, + "probability": 0.9951 + }, + { + "start": 1343.88, + "end": 1345.42, + "probability": 0.9404 + }, + { + "start": 1345.68, + "end": 1347.28, + "probability": 0.9124 + }, + { + "start": 1348.02, + "end": 1348.96, + "probability": 0.7911 + }, + { + "start": 1349.02, + "end": 1350.66, + "probability": 0.9387 + }, + { + "start": 1351.0, + "end": 1352.48, + "probability": 0.9865 + }, + { + "start": 1352.6, + "end": 1355.54, + "probability": 0.7478 + }, + { + "start": 1355.8, + "end": 1356.78, + "probability": 0.9566 + }, + { + "start": 1357.24, + "end": 1360.76, + "probability": 0.9147 + }, + { + "start": 1360.76, + "end": 1366.64, + "probability": 0.8673 + }, + { + "start": 1366.78, + "end": 1367.0, + "probability": 0.7174 + }, + { + "start": 1368.66, + "end": 1370.56, + "probability": 0.8333 + }, + { + "start": 1370.72, + "end": 1372.3, + "probability": 0.8834 + }, + { + "start": 1372.8, + "end": 1374.74, + "probability": 0.7311 + }, + { + "start": 1379.88, + "end": 1383.4, + "probability": 0.9248 + }, + { + "start": 1386.26, + "end": 1389.5, + "probability": 0.8663 + }, + { + "start": 1390.46, + "end": 1393.12, + "probability": 0.9445 + }, + { + "start": 1394.14, + "end": 1395.74, + "probability": 0.9906 + }, + { + "start": 1396.4, + "end": 1398.58, + "probability": 0.98 + }, + { + "start": 1398.68, + "end": 1400.68, + "probability": 0.9192 + }, + { + "start": 1401.7, + "end": 1405.5, + "probability": 0.7883 + }, + { + "start": 1406.84, + "end": 1409.74, + "probability": 0.8737 + }, + { + "start": 1409.88, + "end": 1412.74, + "probability": 0.9873 + }, + { + "start": 1413.24, + "end": 1414.32, + "probability": 0.8118 + }, + { + "start": 1414.78, + "end": 1416.34, + "probability": 0.5819 + }, + { + "start": 1416.58, + "end": 1419.04, + "probability": 0.995 + }, + { + "start": 1421.54, + "end": 1424.32, + "probability": 0.9797 + }, + { + "start": 1424.42, + "end": 1424.86, + "probability": 0.9822 + }, + { + "start": 1424.96, + "end": 1425.84, + "probability": 0.9461 + }, + { + "start": 1426.66, + "end": 1427.42, + "probability": 0.7809 + }, + { + "start": 1428.08, + "end": 1429.48, + "probability": 0.9927 + }, + { + "start": 1430.64, + "end": 1435.0, + "probability": 0.9802 + }, + { + "start": 1435.78, + "end": 1438.78, + "probability": 0.9381 + }, + { + "start": 1439.76, + "end": 1443.78, + "probability": 0.9028 + }, + { + "start": 1444.32, + "end": 1448.2, + "probability": 0.9919 + }, + { + "start": 1448.78, + "end": 1450.28, + "probability": 0.4709 + }, + { + "start": 1451.86, + "end": 1451.86, + "probability": 0.4616 + }, + { + "start": 1451.86, + "end": 1456.72, + "probability": 0.7512 + }, + { + "start": 1458.08, + "end": 1460.8, + "probability": 0.9938 + }, + { + "start": 1461.74, + "end": 1466.94, + "probability": 0.9748 + }, + { + "start": 1467.76, + "end": 1471.12, + "probability": 0.8286 + }, + { + "start": 1471.94, + "end": 1473.92, + "probability": 0.8564 + }, + { + "start": 1474.32, + "end": 1477.44, + "probability": 0.9766 + }, + { + "start": 1478.86, + "end": 1480.5, + "probability": 0.9912 + }, + { + "start": 1481.08, + "end": 1483.7, + "probability": 0.9085 + }, + { + "start": 1484.44, + "end": 1485.0, + "probability": 0.7343 + }, + { + "start": 1486.02, + "end": 1486.92, + "probability": 0.8176 + }, + { + "start": 1494.98, + "end": 1497.04, + "probability": 0.8877 + }, + { + "start": 1498.48, + "end": 1501.66, + "probability": 0.546 + }, + { + "start": 1502.46, + "end": 1506.0, + "probability": 0.941 + }, + { + "start": 1506.82, + "end": 1509.42, + "probability": 0.9316 + }, + { + "start": 1509.42, + "end": 1513.82, + "probability": 0.9702 + }, + { + "start": 1514.24, + "end": 1514.88, + "probability": 0.805 + }, + { + "start": 1515.74, + "end": 1517.9, + "probability": 0.9814 + }, + { + "start": 1518.54, + "end": 1521.24, + "probability": 0.7583 + }, + { + "start": 1521.94, + "end": 1526.2, + "probability": 0.971 + }, + { + "start": 1526.84, + "end": 1528.04, + "probability": 0.9183 + }, + { + "start": 1528.1, + "end": 1532.5, + "probability": 0.9854 + }, + { + "start": 1532.98, + "end": 1533.78, + "probability": 0.7475 + }, + { + "start": 1534.62, + "end": 1536.64, + "probability": 0.9504 + }, + { + "start": 1537.16, + "end": 1538.5, + "probability": 0.7965 + }, + { + "start": 1539.08, + "end": 1544.32, + "probability": 0.9751 + }, + { + "start": 1545.56, + "end": 1549.64, + "probability": 0.9132 + }, + { + "start": 1550.16, + "end": 1551.06, + "probability": 0.9318 + }, + { + "start": 1551.86, + "end": 1553.9, + "probability": 0.9841 + }, + { + "start": 1555.24, + "end": 1557.18, + "probability": 0.9674 + }, + { + "start": 1557.56, + "end": 1560.98, + "probability": 0.9893 + }, + { + "start": 1561.38, + "end": 1562.84, + "probability": 0.5103 + }, + { + "start": 1562.86, + "end": 1563.44, + "probability": 0.8161 + }, + { + "start": 1563.74, + "end": 1567.28, + "probability": 0.9925 + }, + { + "start": 1567.46, + "end": 1567.98, + "probability": 0.9557 + }, + { + "start": 1569.16, + "end": 1572.16, + "probability": 0.9724 + }, + { + "start": 1572.76, + "end": 1574.42, + "probability": 0.9854 + }, + { + "start": 1575.58, + "end": 1577.38, + "probability": 0.7337 + }, + { + "start": 1577.52, + "end": 1579.98, + "probability": 0.9601 + }, + { + "start": 1579.98, + "end": 1583.36, + "probability": 0.9221 + }, + { + "start": 1584.8, + "end": 1587.14, + "probability": 0.9852 + }, + { + "start": 1594.66, + "end": 1594.76, + "probability": 0.2394 + }, + { + "start": 1595.44, + "end": 1596.72, + "probability": 0.7496 + }, + { + "start": 1599.78, + "end": 1603.06, + "probability": 0.8223 + }, + { + "start": 1603.78, + "end": 1604.36, + "probability": 0.923 + }, + { + "start": 1604.48, + "end": 1605.9, + "probability": 0.9143 + }, + { + "start": 1605.98, + "end": 1606.9, + "probability": 0.8704 + }, + { + "start": 1607.46, + "end": 1608.34, + "probability": 0.8418 + }, + { + "start": 1608.44, + "end": 1609.18, + "probability": 0.9612 + }, + { + "start": 1609.36, + "end": 1611.02, + "probability": 0.7787 + }, + { + "start": 1611.9, + "end": 1613.08, + "probability": 0.837 + }, + { + "start": 1614.38, + "end": 1615.44, + "probability": 0.6373 + }, + { + "start": 1615.56, + "end": 1618.1, + "probability": 0.9844 + }, + { + "start": 1618.54, + "end": 1621.58, + "probability": 0.8439 + }, + { + "start": 1622.3, + "end": 1624.66, + "probability": 0.2033 + }, + { + "start": 1624.84, + "end": 1627.06, + "probability": 0.6479 + }, + { + "start": 1627.52, + "end": 1629.86, + "probability": 0.9908 + }, + { + "start": 1629.94, + "end": 1632.56, + "probability": 0.9474 + }, + { + "start": 1633.02, + "end": 1634.86, + "probability": 0.9762 + }, + { + "start": 1635.58, + "end": 1636.88, + "probability": 0.9204 + }, + { + "start": 1636.96, + "end": 1637.96, + "probability": 0.2431 + }, + { + "start": 1638.54, + "end": 1639.58, + "probability": 0.9871 + }, + { + "start": 1639.68, + "end": 1643.08, + "probability": 0.9857 + }, + { + "start": 1643.12, + "end": 1643.76, + "probability": 0.7082 + }, + { + "start": 1644.16, + "end": 1644.92, + "probability": 0.8813 + }, + { + "start": 1645.06, + "end": 1646.08, + "probability": 0.9315 + }, + { + "start": 1646.22, + "end": 1647.36, + "probability": 0.9479 + }, + { + "start": 1647.74, + "end": 1648.66, + "probability": 0.7214 + }, + { + "start": 1649.12, + "end": 1650.02, + "probability": 0.9006 + }, + { + "start": 1650.38, + "end": 1652.42, + "probability": 0.8344 + }, + { + "start": 1653.28, + "end": 1656.4, + "probability": 0.9661 + }, + { + "start": 1657.24, + "end": 1659.08, + "probability": 0.9277 + }, + { + "start": 1659.7, + "end": 1661.08, + "probability": 0.8831 + }, + { + "start": 1661.4, + "end": 1662.34, + "probability": 0.8976 + }, + { + "start": 1662.38, + "end": 1663.26, + "probability": 0.9021 + }, + { + "start": 1663.66, + "end": 1665.4, + "probability": 0.9047 + }, + { + "start": 1665.86, + "end": 1670.92, + "probability": 0.9966 + }, + { + "start": 1670.92, + "end": 1675.18, + "probability": 0.9968 + }, + { + "start": 1675.38, + "end": 1675.84, + "probability": 0.7521 + }, + { + "start": 1676.42, + "end": 1678.72, + "probability": 0.9878 + }, + { + "start": 1678.78, + "end": 1679.94, + "probability": 0.9922 + }, + { + "start": 1680.5, + "end": 1681.7, + "probability": 0.9851 + }, + { + "start": 1683.45, + "end": 1686.62, + "probability": 0.838 + }, + { + "start": 1687.12, + "end": 1691.2, + "probability": 0.5203 + }, + { + "start": 1691.84, + "end": 1695.68, + "probability": 0.9902 + }, + { + "start": 1696.77, + "end": 1701.28, + "probability": 0.9908 + }, + { + "start": 1704.68, + "end": 1706.76, + "probability": 0.6572 + }, + { + "start": 1708.46, + "end": 1710.2, + "probability": 0.5397 + }, + { + "start": 1714.68, + "end": 1714.86, + "probability": 0.0503 + }, + { + "start": 1714.86, + "end": 1714.86, + "probability": 0.3079 + }, + { + "start": 1714.86, + "end": 1714.86, + "probability": 0.3461 + }, + { + "start": 1714.86, + "end": 1714.86, + "probability": 0.3519 + }, + { + "start": 1714.86, + "end": 1714.86, + "probability": 0.0767 + }, + { + "start": 1714.86, + "end": 1718.8, + "probability": 0.174 + }, + { + "start": 1718.86, + "end": 1723.6, + "probability": 0.9567 + }, + { + "start": 1724.0, + "end": 1724.46, + "probability": 0.4027 + }, + { + "start": 1725.1, + "end": 1728.78, + "probability": 0.9881 + }, + { + "start": 1730.22, + "end": 1733.78, + "probability": 0.9965 + }, + { + "start": 1734.66, + "end": 1739.58, + "probability": 0.9041 + }, + { + "start": 1740.94, + "end": 1745.1, + "probability": 0.9893 + }, + { + "start": 1746.16, + "end": 1746.8, + "probability": 0.7394 + }, + { + "start": 1747.04, + "end": 1748.08, + "probability": 0.9348 + }, + { + "start": 1748.54, + "end": 1755.28, + "probability": 0.985 + }, + { + "start": 1755.78, + "end": 1758.54, + "probability": 0.9985 + }, + { + "start": 1759.3, + "end": 1762.48, + "probability": 0.9964 + }, + { + "start": 1762.54, + "end": 1763.08, + "probability": 0.8978 + }, + { + "start": 1763.54, + "end": 1766.54, + "probability": 0.8997 + }, + { + "start": 1767.6, + "end": 1770.56, + "probability": 0.9868 + }, + { + "start": 1771.08, + "end": 1772.84, + "probability": 0.6305 + }, + { + "start": 1773.62, + "end": 1775.94, + "probability": 0.6813 + }, + { + "start": 1776.8, + "end": 1779.76, + "probability": 0.9386 + }, + { + "start": 1780.26, + "end": 1783.86, + "probability": 0.9488 + }, + { + "start": 1785.04, + "end": 1789.5, + "probability": 0.9474 + }, + { + "start": 1789.72, + "end": 1790.76, + "probability": 0.872 + }, + { + "start": 1791.2, + "end": 1791.72, + "probability": 0.7263 + }, + { + "start": 1793.5, + "end": 1797.7, + "probability": 0.9446 + }, + { + "start": 1798.5, + "end": 1804.48, + "probability": 0.9884 + }, + { + "start": 1805.04, + "end": 1806.2, + "probability": 0.7215 + }, + { + "start": 1807.48, + "end": 1810.56, + "probability": 0.9287 + }, + { + "start": 1811.5, + "end": 1817.42, + "probability": 0.9825 + }, + { + "start": 1818.04, + "end": 1818.8, + "probability": 0.6946 + }, + { + "start": 1819.44, + "end": 1820.32, + "probability": 0.9726 + }, + { + "start": 1822.18, + "end": 1823.8, + "probability": 0.9974 + }, + { + "start": 1824.74, + "end": 1827.32, + "probability": 0.9514 + }, + { + "start": 1828.32, + "end": 1829.08, + "probability": 0.7934 + }, + { + "start": 1830.08, + "end": 1832.78, + "probability": 0.9669 + }, + { + "start": 1833.3, + "end": 1834.58, + "probability": 0.9861 + }, + { + "start": 1835.14, + "end": 1838.06, + "probability": 0.9717 + }, + { + "start": 1838.06, + "end": 1842.04, + "probability": 0.9788 + }, + { + "start": 1843.34, + "end": 1843.52, + "probability": 0.3547 + }, + { + "start": 1843.6, + "end": 1844.0, + "probability": 0.8574 + }, + { + "start": 1844.3, + "end": 1847.34, + "probability": 0.9788 + }, + { + "start": 1847.34, + "end": 1851.38, + "probability": 0.9771 + }, + { + "start": 1852.12, + "end": 1854.56, + "probability": 0.9845 + }, + { + "start": 1856.26, + "end": 1859.68, + "probability": 0.9667 + }, + { + "start": 1860.38, + "end": 1862.84, + "probability": 0.9847 + }, + { + "start": 1862.96, + "end": 1868.46, + "probability": 0.8419 + }, + { + "start": 1869.08, + "end": 1871.6, + "probability": 0.8531 + }, + { + "start": 1872.86, + "end": 1875.2, + "probability": 0.979 + }, + { + "start": 1875.78, + "end": 1881.48, + "probability": 0.9442 + }, + { + "start": 1881.48, + "end": 1886.28, + "probability": 0.999 + }, + { + "start": 1887.28, + "end": 1888.2, + "probability": 0.6001 + }, + { + "start": 1888.96, + "end": 1890.54, + "probability": 0.925 + }, + { + "start": 1891.34, + "end": 1892.94, + "probability": 0.8209 + }, + { + "start": 1893.56, + "end": 1896.17, + "probability": 0.9538 + }, + { + "start": 1897.02, + "end": 1900.26, + "probability": 0.8484 + }, + { + "start": 1902.1, + "end": 1904.34, + "probability": 0.988 + }, + { + "start": 1904.72, + "end": 1907.16, + "probability": 0.9396 + }, + { + "start": 1907.8, + "end": 1912.5, + "probability": 0.9923 + }, + { + "start": 1913.92, + "end": 1917.92, + "probability": 0.9927 + }, + { + "start": 1918.8, + "end": 1920.46, + "probability": 0.7259 + }, + { + "start": 1921.56, + "end": 1922.66, + "probability": 0.9344 + }, + { + "start": 1923.38, + "end": 1925.96, + "probability": 0.9192 + }, + { + "start": 1926.8, + "end": 1930.16, + "probability": 0.9558 + }, + { + "start": 1931.08, + "end": 1933.2, + "probability": 0.9355 + }, + { + "start": 1933.86, + "end": 1934.32, + "probability": 0.9699 + }, + { + "start": 1935.26, + "end": 1938.5, + "probability": 0.9741 + }, + { + "start": 1939.74, + "end": 1943.14, + "probability": 0.9476 + }, + { + "start": 1943.78, + "end": 1947.02, + "probability": 0.9895 + }, + { + "start": 1947.14, + "end": 1948.76, + "probability": 0.677 + }, + { + "start": 1950.96, + "end": 1956.1, + "probability": 0.9959 + }, + { + "start": 1956.5, + "end": 1957.1, + "probability": 0.7728 + }, + { + "start": 1957.24, + "end": 1960.6, + "probability": 0.9444 + }, + { + "start": 1960.92, + "end": 1962.98, + "probability": 0.9558 + }, + { + "start": 1963.12, + "end": 1969.24, + "probability": 0.7664 + }, + { + "start": 1969.68, + "end": 1971.14, + "probability": 0.9778 + }, + { + "start": 1971.68, + "end": 1978.02, + "probability": 0.9635 + }, + { + "start": 1978.78, + "end": 1982.18, + "probability": 0.9555 + }, + { + "start": 1982.34, + "end": 1984.8, + "probability": 0.8659 + }, + { + "start": 1985.36, + "end": 1986.18, + "probability": 0.3929 + }, + { + "start": 1986.36, + "end": 1988.0, + "probability": 0.6941 + }, + { + "start": 1988.76, + "end": 1990.5, + "probability": 0.9143 + }, + { + "start": 1991.32, + "end": 1994.18, + "probability": 0.7736 + }, + { + "start": 1994.28, + "end": 1997.66, + "probability": 0.9435 + }, + { + "start": 2010.76, + "end": 2013.6, + "probability": 0.9546 + }, + { + "start": 2013.9, + "end": 2015.34, + "probability": 0.5787 + }, + { + "start": 2017.58, + "end": 2017.78, + "probability": 0.5471 + }, + { + "start": 2017.78, + "end": 2021.96, + "probability": 0.9788 + }, + { + "start": 2023.7, + "end": 2025.4, + "probability": 0.8898 + }, + { + "start": 2027.1, + "end": 2029.14, + "probability": 0.8348 + }, + { + "start": 2030.92, + "end": 2032.96, + "probability": 0.4755 + }, + { + "start": 2034.3, + "end": 2035.6, + "probability": 0.8337 + }, + { + "start": 2035.84, + "end": 2037.6, + "probability": 0.7929 + }, + { + "start": 2037.82, + "end": 2041.18, + "probability": 0.8892 + }, + { + "start": 2042.02, + "end": 2044.06, + "probability": 0.7776 + }, + { + "start": 2045.52, + "end": 2048.92, + "probability": 0.9385 + }, + { + "start": 2049.8, + "end": 2052.4, + "probability": 0.9851 + }, + { + "start": 2052.52, + "end": 2056.52, + "probability": 0.4823 + }, + { + "start": 2057.36, + "end": 2060.28, + "probability": 0.9441 + }, + { + "start": 2061.06, + "end": 2064.88, + "probability": 0.8267 + }, + { + "start": 2065.76, + "end": 2067.6, + "probability": 0.7688 + }, + { + "start": 2068.38, + "end": 2070.14, + "probability": 0.8579 + }, + { + "start": 2071.72, + "end": 2074.98, + "probability": 0.9308 + }, + { + "start": 2077.18, + "end": 2079.85, + "probability": 0.9397 + }, + { + "start": 2081.34, + "end": 2083.68, + "probability": 0.7807 + }, + { + "start": 2084.32, + "end": 2085.76, + "probability": 0.9699 + }, + { + "start": 2087.1, + "end": 2092.16, + "probability": 0.9735 + }, + { + "start": 2093.68, + "end": 2094.76, + "probability": 0.799 + }, + { + "start": 2095.08, + "end": 2095.74, + "probability": 0.4163 + }, + { + "start": 2095.84, + "end": 2098.34, + "probability": 0.9429 + }, + { + "start": 2100.62, + "end": 2101.74, + "probability": 0.773 + }, + { + "start": 2103.46, + "end": 2105.28, + "probability": 0.701 + }, + { + "start": 2106.76, + "end": 2111.76, + "probability": 0.9376 + }, + { + "start": 2113.14, + "end": 2115.82, + "probability": 0.8412 + }, + { + "start": 2116.84, + "end": 2119.22, + "probability": 0.9563 + }, + { + "start": 2119.22, + "end": 2124.02, + "probability": 0.9954 + }, + { + "start": 2124.18, + "end": 2125.16, + "probability": 0.5549 + }, + { + "start": 2125.42, + "end": 2125.68, + "probability": 0.9795 + }, + { + "start": 2128.44, + "end": 2132.08, + "probability": 0.9658 + }, + { + "start": 2132.16, + "end": 2133.2, + "probability": 0.9824 + }, + { + "start": 2134.76, + "end": 2135.1, + "probability": 0.829 + }, + { + "start": 2135.24, + "end": 2136.14, + "probability": 0.7805 + }, + { + "start": 2136.32, + "end": 2141.84, + "probability": 0.9314 + }, + { + "start": 2141.9, + "end": 2142.97, + "probability": 0.9704 + }, + { + "start": 2143.0, + "end": 2143.32, + "probability": 0.8175 + }, + { + "start": 2143.6, + "end": 2144.46, + "probability": 0.5862 + }, + { + "start": 2145.02, + "end": 2146.98, + "probability": 0.6865 + }, + { + "start": 2147.8, + "end": 2149.18, + "probability": 0.931 + }, + { + "start": 2149.9, + "end": 2153.04, + "probability": 0.9978 + }, + { + "start": 2153.04, + "end": 2157.64, + "probability": 0.9772 + }, + { + "start": 2157.74, + "end": 2158.76, + "probability": 0.875 + }, + { + "start": 2158.84, + "end": 2158.84, + "probability": 0.8438 + }, + { + "start": 2159.4, + "end": 2160.04, + "probability": 0.8167 + }, + { + "start": 2160.32, + "end": 2161.72, + "probability": 0.7998 + }, + { + "start": 2161.74, + "end": 2163.14, + "probability": 0.9225 + }, + { + "start": 2165.78, + "end": 2168.94, + "probability": 0.9071 + }, + { + "start": 2170.26, + "end": 2173.16, + "probability": 0.9893 + }, + { + "start": 2173.38, + "end": 2175.8, + "probability": 0.9814 + }, + { + "start": 2175.8, + "end": 2178.8, + "probability": 0.6605 + }, + { + "start": 2179.62, + "end": 2180.7, + "probability": 0.7036 + }, + { + "start": 2180.88, + "end": 2182.48, + "probability": 0.883 + }, + { + "start": 2182.64, + "end": 2183.86, + "probability": 0.7247 + }, + { + "start": 2183.92, + "end": 2185.4, + "probability": 0.9279 + }, + { + "start": 2186.98, + "end": 2188.32, + "probability": 0.957 + }, + { + "start": 2188.88, + "end": 2189.4, + "probability": 0.9595 + }, + { + "start": 2189.72, + "end": 2190.5, + "probability": 0.9288 + }, + { + "start": 2190.58, + "end": 2190.8, + "probability": 0.8931 + }, + { + "start": 2190.96, + "end": 2194.06, + "probability": 0.962 + }, + { + "start": 2194.06, + "end": 2194.64, + "probability": 0.823 + }, + { + "start": 2195.66, + "end": 2196.68, + "probability": 0.9526 + }, + { + "start": 2196.7, + "end": 2197.38, + "probability": 0.7523 + }, + { + "start": 2197.56, + "end": 2198.66, + "probability": 0.6755 + }, + { + "start": 2198.74, + "end": 2199.64, + "probability": 0.8488 + }, + { + "start": 2200.14, + "end": 2200.7, + "probability": 0.832 + }, + { + "start": 2200.88, + "end": 2201.51, + "probability": 0.8077 + }, + { + "start": 2202.28, + "end": 2204.4, + "probability": 0.9797 + }, + { + "start": 2205.04, + "end": 2208.56, + "probability": 0.7944 + }, + { + "start": 2208.96, + "end": 2210.78, + "probability": 0.9934 + }, + { + "start": 2210.82, + "end": 2212.08, + "probability": 0.9946 + }, + { + "start": 2213.48, + "end": 2218.11, + "probability": 0.9536 + }, + { + "start": 2218.78, + "end": 2219.18, + "probability": 0.4541 + }, + { + "start": 2219.38, + "end": 2222.18, + "probability": 0.9847 + }, + { + "start": 2222.8, + "end": 2224.76, + "probability": 0.9376 + }, + { + "start": 2226.48, + "end": 2227.28, + "probability": 0.9452 + }, + { + "start": 2227.38, + "end": 2229.1, + "probability": 0.927 + }, + { + "start": 2229.18, + "end": 2231.6, + "probability": 0.9718 + }, + { + "start": 2231.7, + "end": 2232.68, + "probability": 0.9114 + }, + { + "start": 2232.92, + "end": 2233.44, + "probability": 0.7085 + }, + { + "start": 2235.52, + "end": 2238.26, + "probability": 0.9649 + }, + { + "start": 2240.02, + "end": 2241.4, + "probability": 0.9677 + }, + { + "start": 2243.42, + "end": 2246.72, + "probability": 0.9463 + }, + { + "start": 2247.04, + "end": 2247.6, + "probability": 0.9424 + }, + { + "start": 2247.66, + "end": 2249.24, + "probability": 0.6026 + }, + { + "start": 2249.32, + "end": 2250.22, + "probability": 0.8852 + }, + { + "start": 2250.32, + "end": 2251.96, + "probability": 0.9482 + }, + { + "start": 2252.82, + "end": 2255.94, + "probability": 0.9193 + }, + { + "start": 2256.84, + "end": 2257.12, + "probability": 0.9746 + }, + { + "start": 2257.9, + "end": 2259.12, + "probability": 0.8666 + }, + { + "start": 2259.74, + "end": 2261.18, + "probability": 0.8543 + }, + { + "start": 2261.72, + "end": 2263.62, + "probability": 0.9034 + }, + { + "start": 2264.74, + "end": 2266.9, + "probability": 0.649 + }, + { + "start": 2266.96, + "end": 2267.66, + "probability": 0.9819 + }, + { + "start": 2267.82, + "end": 2268.74, + "probability": 0.599 + }, + { + "start": 2269.26, + "end": 2269.64, + "probability": 0.9032 + }, + { + "start": 2270.76, + "end": 2272.22, + "probability": 0.9912 + }, + { + "start": 2272.5, + "end": 2274.8, + "probability": 0.7971 + }, + { + "start": 2274.96, + "end": 2277.3, + "probability": 0.8647 + }, + { + "start": 2278.1, + "end": 2278.46, + "probability": 0.6037 + }, + { + "start": 2279.16, + "end": 2280.06, + "probability": 0.4551 + }, + { + "start": 2280.68, + "end": 2283.06, + "probability": 0.947 + }, + { + "start": 2283.18, + "end": 2283.86, + "probability": 0.8776 + }, + { + "start": 2284.46, + "end": 2286.04, + "probability": 0.9382 + }, + { + "start": 2286.1, + "end": 2287.32, + "probability": 0.9962 + }, + { + "start": 2287.78, + "end": 2288.8, + "probability": 0.9903 + }, + { + "start": 2289.74, + "end": 2291.58, + "probability": 0.97 + }, + { + "start": 2292.9, + "end": 2298.9, + "probability": 0.9927 + }, + { + "start": 2301.26, + "end": 2304.6, + "probability": 0.9927 + }, + { + "start": 2304.82, + "end": 2307.2, + "probability": 0.993 + }, + { + "start": 2309.0, + "end": 2310.42, + "probability": 0.9624 + }, + { + "start": 2310.62, + "end": 2310.88, + "probability": 0.533 + }, + { + "start": 2311.02, + "end": 2312.0, + "probability": 0.7537 + }, + { + "start": 2312.4, + "end": 2315.72, + "probability": 0.9189 + }, + { + "start": 2315.78, + "end": 2319.42, + "probability": 0.9813 + }, + { + "start": 2319.58, + "end": 2319.9, + "probability": 0.2622 + }, + { + "start": 2320.18, + "end": 2321.04, + "probability": 0.7558 + }, + { + "start": 2321.18, + "end": 2322.25, + "probability": 0.8828 + }, + { + "start": 2322.88, + "end": 2325.74, + "probability": 0.9839 + }, + { + "start": 2327.16, + "end": 2328.54, + "probability": 0.764 + }, + { + "start": 2328.58, + "end": 2330.92, + "probability": 0.8967 + }, + { + "start": 2331.9, + "end": 2333.02, + "probability": 0.8498 + }, + { + "start": 2333.56, + "end": 2334.8, + "probability": 0.9175 + }, + { + "start": 2334.88, + "end": 2338.8, + "probability": 0.8144 + }, + { + "start": 2339.42, + "end": 2341.52, + "probability": 0.9821 + }, + { + "start": 2341.62, + "end": 2342.2, + "probability": 0.6434 + }, + { + "start": 2342.26, + "end": 2343.9, + "probability": 0.6343 + }, + { + "start": 2344.7, + "end": 2345.12, + "probability": 0.5733 + }, + { + "start": 2345.3, + "end": 2347.7, + "probability": 0.9951 + }, + { + "start": 2348.28, + "end": 2350.14, + "probability": 0.7604 + }, + { + "start": 2350.56, + "end": 2351.7, + "probability": 0.8316 + }, + { + "start": 2352.72, + "end": 2354.04, + "probability": 0.9841 + }, + { + "start": 2354.72, + "end": 2356.48, + "probability": 0.9478 + }, + { + "start": 2357.92, + "end": 2359.28, + "probability": 0.9663 + }, + { + "start": 2359.54, + "end": 2362.38, + "probability": 0.9966 + }, + { + "start": 2363.22, + "end": 2363.82, + "probability": 0.9971 + }, + { + "start": 2364.7, + "end": 2365.6, + "probability": 0.7924 + }, + { + "start": 2365.72, + "end": 2367.86, + "probability": 0.9956 + }, + { + "start": 2368.16, + "end": 2369.34, + "probability": 0.9282 + }, + { + "start": 2369.92, + "end": 2374.0, + "probability": 0.9575 + }, + { + "start": 2374.42, + "end": 2375.4, + "probability": 0.5901 + }, + { + "start": 2375.52, + "end": 2375.58, + "probability": 0.7739 + }, + { + "start": 2375.58, + "end": 2379.26, + "probability": 0.8586 + }, + { + "start": 2382.0, + "end": 2383.02, + "probability": 0.6892 + }, + { + "start": 2386.56, + "end": 2387.24, + "probability": 0.4814 + }, + { + "start": 2387.86, + "end": 2388.98, + "probability": 0.0446 + }, + { + "start": 2388.98, + "end": 2388.98, + "probability": 0.0705 + }, + { + "start": 2388.98, + "end": 2388.98, + "probability": 0.1182 + }, + { + "start": 2388.98, + "end": 2389.6, + "probability": 0.0126 + }, + { + "start": 2389.6, + "end": 2390.82, + "probability": 0.933 + }, + { + "start": 2391.66, + "end": 2392.1, + "probability": 0.7957 + }, + { + "start": 2392.46, + "end": 2394.93, + "probability": 0.5316 + }, + { + "start": 2395.44, + "end": 2398.04, + "probability": 0.4409 + }, + { + "start": 2398.22, + "end": 2400.08, + "probability": 0.5927 + }, + { + "start": 2408.44, + "end": 2409.36, + "probability": 0.0096 + }, + { + "start": 2414.92, + "end": 2417.68, + "probability": 0.7491 + }, + { + "start": 2418.52, + "end": 2420.08, + "probability": 0.727 + }, + { + "start": 2422.89, + "end": 2425.56, + "probability": 0.9966 + }, + { + "start": 2426.36, + "end": 2429.22, + "probability": 0.9954 + }, + { + "start": 2429.98, + "end": 2432.22, + "probability": 0.9276 + }, + { + "start": 2432.76, + "end": 2435.92, + "probability": 0.8313 + }, + { + "start": 2436.52, + "end": 2438.71, + "probability": 0.8428 + }, + { + "start": 2439.96, + "end": 2442.24, + "probability": 0.9958 + }, + { + "start": 2442.82, + "end": 2446.12, + "probability": 0.9248 + }, + { + "start": 2446.78, + "end": 2449.1, + "probability": 0.8796 + }, + { + "start": 2449.92, + "end": 2450.26, + "probability": 0.8206 + }, + { + "start": 2450.94, + "end": 2455.7, + "probability": 0.8793 + }, + { + "start": 2458.18, + "end": 2459.23, + "probability": 0.4775 + }, + { + "start": 2459.96, + "end": 2462.02, + "probability": 0.8721 + }, + { + "start": 2462.7, + "end": 2463.8, + "probability": 0.9052 + }, + { + "start": 2464.72, + "end": 2469.1, + "probability": 0.9452 + }, + { + "start": 2469.92, + "end": 2471.18, + "probability": 0.9588 + }, + { + "start": 2472.2, + "end": 2473.96, + "probability": 0.9362 + }, + { + "start": 2474.96, + "end": 2476.3, + "probability": 0.9168 + }, + { + "start": 2477.04, + "end": 2478.26, + "probability": 0.9944 + }, + { + "start": 2478.9, + "end": 2480.72, + "probability": 0.9212 + }, + { + "start": 2481.56, + "end": 2483.4, + "probability": 0.9993 + }, + { + "start": 2484.22, + "end": 2485.82, + "probability": 0.9738 + }, + { + "start": 2487.02, + "end": 2489.52, + "probability": 0.9707 + }, + { + "start": 2490.72, + "end": 2490.9, + "probability": 0.1222 + }, + { + "start": 2490.9, + "end": 2491.16, + "probability": 0.8336 + }, + { + "start": 2494.38, + "end": 2498.52, + "probability": 0.7925 + }, + { + "start": 2500.38, + "end": 2501.29, + "probability": 0.9976 + }, + { + "start": 2502.84, + "end": 2503.71, + "probability": 0.9946 + }, + { + "start": 2505.84, + "end": 2507.36, + "probability": 0.7117 + }, + { + "start": 2508.54, + "end": 2511.38, + "probability": 0.9688 + }, + { + "start": 2512.54, + "end": 2516.36, + "probability": 0.9858 + }, + { + "start": 2518.52, + "end": 2519.54, + "probability": 0.9992 + }, + { + "start": 2520.86, + "end": 2523.7, + "probability": 0.99 + }, + { + "start": 2526.98, + "end": 2528.1, + "probability": 0.7434 + }, + { + "start": 2528.84, + "end": 2529.32, + "probability": 0.0185 + }, + { + "start": 2529.96, + "end": 2532.98, + "probability": 0.7338 + }, + { + "start": 2533.72, + "end": 2535.84, + "probability": 0.8258 + }, + { + "start": 2535.92, + "end": 2538.11, + "probability": 0.8569 + }, + { + "start": 2539.52, + "end": 2541.92, + "probability": 0.9066 + }, + { + "start": 2542.76, + "end": 2545.46, + "probability": 0.9575 + }, + { + "start": 2549.14, + "end": 2551.18, + "probability": 0.9746 + }, + { + "start": 2552.16, + "end": 2555.18, + "probability": 0.8007 + }, + { + "start": 2556.22, + "end": 2557.32, + "probability": 0.892 + }, + { + "start": 2558.42, + "end": 2562.32, + "probability": 0.954 + }, + { + "start": 2562.84, + "end": 2564.36, + "probability": 0.9121 + }, + { + "start": 2565.18, + "end": 2566.96, + "probability": 0.9928 + }, + { + "start": 2567.56, + "end": 2568.71, + "probability": 0.6499 + }, + { + "start": 2569.98, + "end": 2571.82, + "probability": 0.9756 + }, + { + "start": 2572.36, + "end": 2575.56, + "probability": 0.9092 + }, + { + "start": 2576.48, + "end": 2577.44, + "probability": 0.9167 + }, + { + "start": 2578.88, + "end": 2580.96, + "probability": 0.8129 + }, + { + "start": 2581.72, + "end": 2584.4, + "probability": 0.9145 + }, + { + "start": 2586.02, + "end": 2588.14, + "probability": 0.549 + }, + { + "start": 2589.28, + "end": 2592.1, + "probability": 0.9058 + }, + { + "start": 2593.2, + "end": 2596.2, + "probability": 0.9181 + }, + { + "start": 2597.12, + "end": 2599.22, + "probability": 0.9541 + }, + { + "start": 2600.82, + "end": 2602.34, + "probability": 0.9336 + }, + { + "start": 2604.18, + "end": 2605.4, + "probability": 0.9712 + }, + { + "start": 2607.26, + "end": 2607.52, + "probability": 0.8606 + }, + { + "start": 2607.6, + "end": 2610.04, + "probability": 0.9865 + }, + { + "start": 2610.2, + "end": 2610.66, + "probability": 0.9731 + }, + { + "start": 2611.68, + "end": 2612.68, + "probability": 0.8452 + }, + { + "start": 2613.44, + "end": 2615.9, + "probability": 0.924 + }, + { + "start": 2617.38, + "end": 2618.72, + "probability": 0.7166 + }, + { + "start": 2620.28, + "end": 2622.04, + "probability": 0.999 + }, + { + "start": 2625.02, + "end": 2627.84, + "probability": 0.9692 + }, + { + "start": 2629.5, + "end": 2630.48, + "probability": 0.9609 + }, + { + "start": 2631.24, + "end": 2633.56, + "probability": 0.8065 + }, + { + "start": 2634.08, + "end": 2636.22, + "probability": 0.9148 + }, + { + "start": 2637.52, + "end": 2639.48, + "probability": 0.916 + }, + { + "start": 2641.28, + "end": 2641.88, + "probability": 0.8389 + }, + { + "start": 2643.12, + "end": 2643.96, + "probability": 0.7823 + }, + { + "start": 2644.42, + "end": 2645.6, + "probability": 0.6035 + }, + { + "start": 2645.64, + "end": 2646.7, + "probability": 0.4086 + }, + { + "start": 2647.62, + "end": 2650.64, + "probability": 0.8569 + }, + { + "start": 2651.72, + "end": 2655.96, + "probability": 0.9497 + }, + { + "start": 2657.18, + "end": 2658.46, + "probability": 0.7306 + }, + { + "start": 2659.08, + "end": 2660.68, + "probability": 0.9393 + }, + { + "start": 2661.24, + "end": 2663.46, + "probability": 0.998 + }, + { + "start": 2664.78, + "end": 2666.1, + "probability": 0.7367 + }, + { + "start": 2667.2, + "end": 2667.68, + "probability": 0.9124 + }, + { + "start": 2668.3, + "end": 2669.18, + "probability": 0.8335 + }, + { + "start": 2670.18, + "end": 2672.72, + "probability": 0.8861 + }, + { + "start": 2673.72, + "end": 2675.14, + "probability": 0.6353 + }, + { + "start": 2676.48, + "end": 2678.5, + "probability": 0.9518 + }, + { + "start": 2680.84, + "end": 2684.32, + "probability": 0.9983 + }, + { + "start": 2685.36, + "end": 2687.62, + "probability": 0.9857 + }, + { + "start": 2689.86, + "end": 2691.86, + "probability": 0.9697 + }, + { + "start": 2694.44, + "end": 2697.36, + "probability": 0.9636 + }, + { + "start": 2698.42, + "end": 2701.04, + "probability": 0.7391 + }, + { + "start": 2702.44, + "end": 2703.61, + "probability": 0.9121 + }, + { + "start": 2705.1, + "end": 2706.9, + "probability": 0.814 + }, + { + "start": 2707.74, + "end": 2710.36, + "probability": 0.9009 + }, + { + "start": 2711.2, + "end": 2713.2, + "probability": 0.9711 + }, + { + "start": 2714.0, + "end": 2716.46, + "probability": 0.9741 + }, + { + "start": 2717.34, + "end": 2719.04, + "probability": 0.4872 + }, + { + "start": 2720.6, + "end": 2721.14, + "probability": 0.6735 + }, + { + "start": 2722.92, + "end": 2723.44, + "probability": 0.7529 + }, + { + "start": 2723.64, + "end": 2724.26, + "probability": 0.8966 + }, + { + "start": 2724.44, + "end": 2725.6, + "probability": 0.7719 + }, + { + "start": 2725.76, + "end": 2726.6, + "probability": 0.975 + }, + { + "start": 2727.12, + "end": 2727.74, + "probability": 0.6326 + }, + { + "start": 2728.3, + "end": 2730.5, + "probability": 0.8364 + }, + { + "start": 2732.7, + "end": 2734.04, + "probability": 0.9826 + }, + { + "start": 2736.66, + "end": 2742.54, + "probability": 0.9734 + }, + { + "start": 2744.28, + "end": 2745.84, + "probability": 0.9915 + }, + { + "start": 2746.92, + "end": 2749.38, + "probability": 0.9956 + }, + { + "start": 2750.72, + "end": 2752.56, + "probability": 0.9651 + }, + { + "start": 2754.34, + "end": 2756.58, + "probability": 0.9482 + }, + { + "start": 2758.16, + "end": 2760.14, + "probability": 0.9827 + }, + { + "start": 2761.34, + "end": 2763.36, + "probability": 0.9974 + }, + { + "start": 2764.76, + "end": 2769.22, + "probability": 0.9971 + }, + { + "start": 2770.06, + "end": 2770.86, + "probability": 0.7441 + }, + { + "start": 2771.88, + "end": 2773.74, + "probability": 0.9846 + }, + { + "start": 2775.0, + "end": 2776.64, + "probability": 0.728 + }, + { + "start": 2778.64, + "end": 2780.58, + "probability": 0.939 + }, + { + "start": 2781.62, + "end": 2783.56, + "probability": 0.9966 + }, + { + "start": 2784.82, + "end": 2787.08, + "probability": 0.699 + }, + { + "start": 2787.9, + "end": 2792.08, + "probability": 0.9263 + }, + { + "start": 2793.14, + "end": 2800.4, + "probability": 0.9705 + }, + { + "start": 2802.42, + "end": 2805.5, + "probability": 0.9941 + }, + { + "start": 2806.54, + "end": 2807.92, + "probability": 0.8225 + }, + { + "start": 2808.64, + "end": 2810.34, + "probability": 0.9625 + }, + { + "start": 2811.28, + "end": 2812.48, + "probability": 0.9164 + }, + { + "start": 2813.08, + "end": 2815.32, + "probability": 0.9569 + }, + { + "start": 2815.94, + "end": 2816.64, + "probability": 0.8167 + }, + { + "start": 2817.92, + "end": 2820.18, + "probability": 0.6887 + }, + { + "start": 2820.42, + "end": 2822.72, + "probability": 0.8212 + }, + { + "start": 2828.74, + "end": 2830.56, + "probability": 0.791 + }, + { + "start": 2842.4, + "end": 2842.92, + "probability": 0.6319 + }, + { + "start": 2843.0, + "end": 2843.86, + "probability": 0.6887 + }, + { + "start": 2843.92, + "end": 2848.34, + "probability": 0.9886 + }, + { + "start": 2849.88, + "end": 2852.47, + "probability": 0.9968 + }, + { + "start": 2852.76, + "end": 2855.14, + "probability": 0.9946 + }, + { + "start": 2855.96, + "end": 2862.86, + "probability": 0.9874 + }, + { + "start": 2863.7, + "end": 2866.0, + "probability": 0.9843 + }, + { + "start": 2866.74, + "end": 2869.3, + "probability": 0.9913 + }, + { + "start": 2870.22, + "end": 2870.78, + "probability": 0.618 + }, + { + "start": 2870.96, + "end": 2874.4, + "probability": 0.9976 + }, + { + "start": 2874.4, + "end": 2879.98, + "probability": 0.9963 + }, + { + "start": 2881.14, + "end": 2882.94, + "probability": 0.6214 + }, + { + "start": 2883.1, + "end": 2886.76, + "probability": 0.9136 + }, + { + "start": 2887.52, + "end": 2891.22, + "probability": 0.9948 + }, + { + "start": 2891.5, + "end": 2892.34, + "probability": 0.8625 + }, + { + "start": 2893.02, + "end": 2894.88, + "probability": 0.9744 + }, + { + "start": 2894.96, + "end": 2897.22, + "probability": 0.2442 + }, + { + "start": 2897.22, + "end": 2898.54, + "probability": 0.238 + }, + { + "start": 2898.66, + "end": 2900.68, + "probability": 0.9977 + }, + { + "start": 2901.36, + "end": 2904.86, + "probability": 0.9982 + }, + { + "start": 2904.98, + "end": 2905.52, + "probability": 0.8907 + }, + { + "start": 2906.24, + "end": 2909.54, + "probability": 0.9734 + }, + { + "start": 2910.56, + "end": 2912.26, + "probability": 0.995 + }, + { + "start": 2913.42, + "end": 2915.01, + "probability": 0.8999 + }, + { + "start": 2915.86, + "end": 2919.14, + "probability": 0.8697 + }, + { + "start": 2919.52, + "end": 2922.04, + "probability": 0.9844 + }, + { + "start": 2922.12, + "end": 2924.24, + "probability": 0.9943 + }, + { + "start": 2925.02, + "end": 2929.34, + "probability": 0.9737 + }, + { + "start": 2930.54, + "end": 2931.32, + "probability": 0.6996 + }, + { + "start": 2931.38, + "end": 2931.7, + "probability": 0.8556 + }, + { + "start": 2931.9, + "end": 2933.94, + "probability": 0.9595 + }, + { + "start": 2934.84, + "end": 2935.4, + "probability": 0.8249 + }, + { + "start": 2935.52, + "end": 2936.48, + "probability": 0.7458 + }, + { + "start": 2936.58, + "end": 2937.98, + "probability": 0.9141 + }, + { + "start": 2938.24, + "end": 2940.98, + "probability": 0.5006 + }, + { + "start": 2941.8, + "end": 2945.14, + "probability": 0.9384 + }, + { + "start": 2945.22, + "end": 2948.94, + "probability": 0.9788 + }, + { + "start": 2949.14, + "end": 2950.7, + "probability": 0.9474 + }, + { + "start": 2951.18, + "end": 2954.0, + "probability": 0.985 + }, + { + "start": 2954.44, + "end": 2957.28, + "probability": 0.9867 + }, + { + "start": 2957.28, + "end": 2959.98, + "probability": 0.9891 + }, + { + "start": 2960.84, + "end": 2961.4, + "probability": 0.6099 + }, + { + "start": 2961.72, + "end": 2968.34, + "probability": 0.9809 + }, + { + "start": 2969.4, + "end": 2975.04, + "probability": 0.9941 + }, + { + "start": 2975.82, + "end": 2979.46, + "probability": 0.7877 + }, + { + "start": 2979.52, + "end": 2981.5, + "probability": 0.9823 + }, + { + "start": 2982.28, + "end": 2985.24, + "probability": 0.9963 + }, + { + "start": 2985.24, + "end": 2989.54, + "probability": 0.9683 + }, + { + "start": 2990.5, + "end": 2994.56, + "probability": 0.9839 + }, + { + "start": 2995.18, + "end": 2998.24, + "probability": 0.9953 + }, + { + "start": 2998.24, + "end": 3001.82, + "probability": 0.9951 + }, + { + "start": 3003.5, + "end": 3008.02, + "probability": 0.9575 + }, + { + "start": 3008.76, + "end": 3010.82, + "probability": 0.9961 + }, + { + "start": 3011.36, + "end": 3011.56, + "probability": 0.1531 + }, + { + "start": 3011.56, + "end": 3012.46, + "probability": 0.6 + }, + { + "start": 3012.54, + "end": 3015.4, + "probability": 0.9785 + }, + { + "start": 3015.82, + "end": 3018.0, + "probability": 0.9826 + }, + { + "start": 3018.06, + "end": 3019.34, + "probability": 0.9309 + }, + { + "start": 3019.36, + "end": 3022.8, + "probability": 0.9761 + }, + { + "start": 3022.86, + "end": 3024.32, + "probability": 0.9391 + }, + { + "start": 3024.92, + "end": 3028.18, + "probability": 0.9863 + }, + { + "start": 3029.02, + "end": 3032.48, + "probability": 0.999 + }, + { + "start": 3033.04, + "end": 3036.7, + "probability": 0.9994 + }, + { + "start": 3037.02, + "end": 3041.7, + "probability": 0.9955 + }, + { + "start": 3041.8, + "end": 3042.54, + "probability": 0.8009 + }, + { + "start": 3042.58, + "end": 3043.57, + "probability": 0.8669 + }, + { + "start": 3044.38, + "end": 3046.28, + "probability": 0.9679 + }, + { + "start": 3047.78, + "end": 3050.92, + "probability": 0.9852 + }, + { + "start": 3051.32, + "end": 3056.06, + "probability": 0.959 + }, + { + "start": 3056.52, + "end": 3061.88, + "probability": 0.991 + }, + { + "start": 3061.92, + "end": 3064.2, + "probability": 0.922 + }, + { + "start": 3064.66, + "end": 3066.22, + "probability": 0.967 + }, + { + "start": 3066.28, + "end": 3067.32, + "probability": 0.9158 + }, + { + "start": 3067.64, + "end": 3068.08, + "probability": 0.8699 + }, + { + "start": 3068.32, + "end": 3070.94, + "probability": 0.9743 + }, + { + "start": 3071.82, + "end": 3074.82, + "probability": 0.9912 + }, + { + "start": 3074.96, + "end": 3076.62, + "probability": 0.8903 + }, + { + "start": 3077.22, + "end": 3082.32, + "probability": 0.8611 + }, + { + "start": 3082.32, + "end": 3087.98, + "probability": 0.9723 + }, + { + "start": 3088.26, + "end": 3092.68, + "probability": 0.9908 + }, + { + "start": 3093.26, + "end": 3097.06, + "probability": 0.9962 + }, + { + "start": 3098.0, + "end": 3101.66, + "probability": 0.8392 + }, + { + "start": 3101.78, + "end": 3105.8, + "probability": 0.989 + }, + { + "start": 3106.22, + "end": 3107.74, + "probability": 0.9971 + }, + { + "start": 3107.92, + "end": 3108.74, + "probability": 0.6368 + }, + { + "start": 3109.14, + "end": 3109.84, + "probability": 0.9645 + }, + { + "start": 3110.06, + "end": 3110.86, + "probability": 0.7338 + }, + { + "start": 3111.66, + "end": 3114.72, + "probability": 0.967 + }, + { + "start": 3115.28, + "end": 3118.26, + "probability": 0.8805 + }, + { + "start": 3119.52, + "end": 3120.8, + "probability": 0.7912 + }, + { + "start": 3120.98, + "end": 3125.08, + "probability": 0.9442 + }, + { + "start": 3125.78, + "end": 3127.06, + "probability": 0.8075 + }, + { + "start": 3127.2, + "end": 3131.72, + "probability": 0.9878 + }, + { + "start": 3132.22, + "end": 3138.28, + "probability": 0.9964 + }, + { + "start": 3139.1, + "end": 3140.34, + "probability": 0.9782 + }, + { + "start": 3140.52, + "end": 3141.46, + "probability": 0.5892 + }, + { + "start": 3141.66, + "end": 3143.94, + "probability": 0.9281 + }, + { + "start": 3144.88, + "end": 3145.98, + "probability": 0.864 + }, + { + "start": 3146.74, + "end": 3148.66, + "probability": 0.8266 + }, + { + "start": 3149.88, + "end": 3153.46, + "probability": 0.9547 + }, + { + "start": 3153.46, + "end": 3158.38, + "probability": 0.988 + }, + { + "start": 3159.2, + "end": 3162.8, + "probability": 0.899 + }, + { + "start": 3162.98, + "end": 3166.42, + "probability": 0.9116 + }, + { + "start": 3166.42, + "end": 3170.24, + "probability": 0.9202 + }, + { + "start": 3170.78, + "end": 3175.24, + "probability": 0.9913 + }, + { + "start": 3175.38, + "end": 3177.22, + "probability": 0.9152 + }, + { + "start": 3177.28, + "end": 3178.56, + "probability": 0.9868 + }, + { + "start": 3178.84, + "end": 3181.22, + "probability": 0.97 + }, + { + "start": 3181.34, + "end": 3184.76, + "probability": 0.9874 + }, + { + "start": 3185.24, + "end": 3188.92, + "probability": 0.9834 + }, + { + "start": 3189.28, + "end": 3189.94, + "probability": 0.8586 + }, + { + "start": 3190.26, + "end": 3193.72, + "probability": 0.9653 + }, + { + "start": 3194.22, + "end": 3196.62, + "probability": 0.7535 + }, + { + "start": 3197.3, + "end": 3201.7, + "probability": 0.9922 + }, + { + "start": 3201.76, + "end": 3204.68, + "probability": 0.855 + }, + { + "start": 3205.0, + "end": 3205.92, + "probability": 0.7959 + }, + { + "start": 3206.16, + "end": 3206.52, + "probability": 0.8117 + }, + { + "start": 3207.42, + "end": 3209.24, + "probability": 0.7163 + }, + { + "start": 3209.8, + "end": 3212.28, + "probability": 0.7314 + }, + { + "start": 3214.66, + "end": 3216.6, + "probability": 0.9863 + }, + { + "start": 3216.86, + "end": 3217.9, + "probability": 0.587 + }, + { + "start": 3220.12, + "end": 3220.64, + "probability": 0.8105 + }, + { + "start": 3222.34, + "end": 3223.56, + "probability": 0.7128 + }, + { + "start": 3223.74, + "end": 3223.8, + "probability": 0.685 + }, + { + "start": 3223.8, + "end": 3224.24, + "probability": 0.8277 + }, + { + "start": 3224.38, + "end": 3225.96, + "probability": 0.7644 + }, + { + "start": 3226.16, + "end": 3226.52, + "probability": 0.3968 + }, + { + "start": 3226.52, + "end": 3228.06, + "probability": 0.8147 + }, + { + "start": 3228.08, + "end": 3232.44, + "probability": 0.8491 + }, + { + "start": 3233.42, + "end": 3237.06, + "probability": 0.9976 + }, + { + "start": 3237.4, + "end": 3237.9, + "probability": 0.9482 + }, + { + "start": 3238.74, + "end": 3241.18, + "probability": 0.9919 + }, + { + "start": 3243.88, + "end": 3246.0, + "probability": 0.995 + }, + { + "start": 3246.98, + "end": 3248.42, + "probability": 0.9824 + }, + { + "start": 3248.74, + "end": 3250.62, + "probability": 0.9716 + }, + { + "start": 3251.62, + "end": 3252.72, + "probability": 0.9727 + }, + { + "start": 3253.94, + "end": 3255.96, + "probability": 0.9749 + }, + { + "start": 3256.72, + "end": 3257.02, + "probability": 0.9073 + }, + { + "start": 3257.1, + "end": 3257.28, + "probability": 0.8283 + }, + { + "start": 3257.28, + "end": 3258.96, + "probability": 0.9642 + }, + { + "start": 3259.44, + "end": 3261.44, + "probability": 0.9627 + }, + { + "start": 3262.1, + "end": 3267.88, + "probability": 0.9947 + }, + { + "start": 3269.04, + "end": 3273.1, + "probability": 0.9977 + }, + { + "start": 3274.86, + "end": 3279.82, + "probability": 0.9299 + }, + { + "start": 3279.9, + "end": 3281.54, + "probability": 0.7966 + }, + { + "start": 3282.22, + "end": 3282.68, + "probability": 0.8492 + }, + { + "start": 3284.02, + "end": 3285.72, + "probability": 0.915 + }, + { + "start": 3287.2, + "end": 3292.38, + "probability": 0.9406 + }, + { + "start": 3294.64, + "end": 3297.62, + "probability": 0.9712 + }, + { + "start": 3299.83, + "end": 3302.78, + "probability": 0.9978 + }, + { + "start": 3302.78, + "end": 3305.9, + "probability": 0.9995 + }, + { + "start": 3306.64, + "end": 3308.88, + "probability": 0.8196 + }, + { + "start": 3309.04, + "end": 3310.6, + "probability": 0.8673 + }, + { + "start": 3311.06, + "end": 3312.6, + "probability": 0.8704 + }, + { + "start": 3313.26, + "end": 3317.78, + "probability": 0.7864 + }, + { + "start": 3318.0, + "end": 3318.4, + "probability": 0.6659 + }, + { + "start": 3319.04, + "end": 3320.06, + "probability": 0.7651 + }, + { + "start": 3320.1, + "end": 3320.58, + "probability": 0.8719 + }, + { + "start": 3320.68, + "end": 3327.44, + "probability": 0.9802 + }, + { + "start": 3328.12, + "end": 3330.38, + "probability": 0.9084 + }, + { + "start": 3330.58, + "end": 3332.84, + "probability": 0.9915 + }, + { + "start": 3333.62, + "end": 3336.24, + "probability": 0.9258 + }, + { + "start": 3336.82, + "end": 3338.02, + "probability": 0.8374 + }, + { + "start": 3338.8, + "end": 3339.46, + "probability": 0.7385 + }, + { + "start": 3339.58, + "end": 3346.16, + "probability": 0.9685 + }, + { + "start": 3346.86, + "end": 3352.18, + "probability": 0.9971 + }, + { + "start": 3352.62, + "end": 3354.3, + "probability": 0.9667 + }, + { + "start": 3355.36, + "end": 3357.9, + "probability": 0.9831 + }, + { + "start": 3358.66, + "end": 3362.94, + "probability": 0.9897 + }, + { + "start": 3362.94, + "end": 3366.0, + "probability": 0.8716 + }, + { + "start": 3366.82, + "end": 3367.02, + "probability": 0.3943 + }, + { + "start": 3367.14, + "end": 3367.44, + "probability": 0.8373 + }, + { + "start": 3367.74, + "end": 3372.16, + "probability": 0.9761 + }, + { + "start": 3372.7, + "end": 3373.74, + "probability": 0.801 + }, + { + "start": 3374.42, + "end": 3374.9, + "probability": 0.6857 + }, + { + "start": 3375.7, + "end": 3380.76, + "probability": 0.6988 + }, + { + "start": 3381.52, + "end": 3388.06, + "probability": 0.774 + }, + { + "start": 3388.78, + "end": 3392.52, + "probability": 0.9399 + }, + { + "start": 3393.08, + "end": 3394.94, + "probability": 0.9191 + }, + { + "start": 3395.5, + "end": 3397.0, + "probability": 0.9099 + }, + { + "start": 3399.03, + "end": 3403.78, + "probability": 0.9935 + }, + { + "start": 3404.0, + "end": 3407.52, + "probability": 0.9622 + }, + { + "start": 3408.0, + "end": 3408.96, + "probability": 0.9353 + }, + { + "start": 3409.5, + "end": 3411.3, + "probability": 0.9362 + }, + { + "start": 3412.22, + "end": 3414.54, + "probability": 0.6729 + }, + { + "start": 3414.8, + "end": 3415.94, + "probability": 0.9766 + }, + { + "start": 3416.58, + "end": 3421.18, + "probability": 0.9039 + }, + { + "start": 3421.74, + "end": 3426.38, + "probability": 0.9571 + }, + { + "start": 3427.04, + "end": 3428.96, + "probability": 0.7889 + }, + { + "start": 3429.94, + "end": 3433.68, + "probability": 0.9521 + }, + { + "start": 3434.8, + "end": 3439.38, + "probability": 0.9325 + }, + { + "start": 3439.38, + "end": 3442.74, + "probability": 0.9611 + }, + { + "start": 3443.0, + "end": 3443.28, + "probability": 0.5005 + }, + { + "start": 3444.52, + "end": 3447.32, + "probability": 0.9966 + }, + { + "start": 3447.32, + "end": 3451.54, + "probability": 0.9816 + }, + { + "start": 3451.86, + "end": 3455.68, + "probability": 0.9955 + }, + { + "start": 3456.56, + "end": 3460.34, + "probability": 0.9946 + }, + { + "start": 3460.44, + "end": 3463.72, + "probability": 0.9825 + }, + { + "start": 3463.94, + "end": 3465.32, + "probability": 0.9978 + }, + { + "start": 3465.9, + "end": 3468.08, + "probability": 0.9871 + }, + { + "start": 3469.08, + "end": 3470.12, + "probability": 0.8749 + }, + { + "start": 3470.84, + "end": 3472.54, + "probability": 0.935 + }, + { + "start": 3472.82, + "end": 3475.16, + "probability": 0.9889 + }, + { + "start": 3476.9, + "end": 3480.24, + "probability": 0.9746 + }, + { + "start": 3480.32, + "end": 3481.33, + "probability": 0.9992 + }, + { + "start": 3482.02, + "end": 3483.36, + "probability": 0.9741 + }, + { + "start": 3484.34, + "end": 3491.56, + "probability": 0.9751 + }, + { + "start": 3491.56, + "end": 3492.3, + "probability": 0.8073 + }, + { + "start": 3492.8, + "end": 3493.94, + "probability": 0.9801 + }, + { + "start": 3495.58, + "end": 3499.28, + "probability": 0.8739 + }, + { + "start": 3500.46, + "end": 3502.18, + "probability": 0.9691 + }, + { + "start": 3503.0, + "end": 3505.18, + "probability": 0.8556 + }, + { + "start": 3506.0, + "end": 3507.46, + "probability": 0.9712 + }, + { + "start": 3508.97, + "end": 3512.86, + "probability": 0.9771 + }, + { + "start": 3513.58, + "end": 3514.9, + "probability": 0.9704 + }, + { + "start": 3515.76, + "end": 3516.49, + "probability": 0.9136 + }, + { + "start": 3517.2, + "end": 3519.9, + "probability": 0.9836 + }, + { + "start": 3522.2, + "end": 3524.12, + "probability": 0.9932 + }, + { + "start": 3525.34, + "end": 3529.72, + "probability": 0.9049 + }, + { + "start": 3530.34, + "end": 3531.68, + "probability": 0.992 + }, + { + "start": 3532.36, + "end": 3533.48, + "probability": 0.865 + }, + { + "start": 3534.68, + "end": 3536.56, + "probability": 0.9939 + }, + { + "start": 3537.24, + "end": 3538.64, + "probability": 0.9849 + }, + { + "start": 3539.3, + "end": 3543.22, + "probability": 0.8554 + }, + { + "start": 3544.02, + "end": 3545.64, + "probability": 0.9956 + }, + { + "start": 3546.18, + "end": 3547.03, + "probability": 0.9937 + }, + { + "start": 3548.46, + "end": 3550.42, + "probability": 0.9814 + }, + { + "start": 3551.0, + "end": 3552.5, + "probability": 0.9971 + }, + { + "start": 3553.02, + "end": 3554.04, + "probability": 0.9694 + }, + { + "start": 3555.26, + "end": 3556.14, + "probability": 0.7143 + }, + { + "start": 3556.28, + "end": 3557.08, + "probability": 0.6435 + }, + { + "start": 3557.56, + "end": 3560.28, + "probability": 0.9961 + }, + { + "start": 3561.06, + "end": 3562.02, + "probability": 0.7642 + }, + { + "start": 3562.7, + "end": 3564.44, + "probability": 0.9847 + }, + { + "start": 3565.4, + "end": 3568.84, + "probability": 0.6854 + }, + { + "start": 3568.9, + "end": 3570.0, + "probability": 0.9509 + }, + { + "start": 3570.1, + "end": 3571.1, + "probability": 0.9097 + }, + { + "start": 3571.94, + "end": 3573.18, + "probability": 0.8233 + }, + { + "start": 3573.46, + "end": 3575.08, + "probability": 0.7123 + }, + { + "start": 3575.26, + "end": 3575.81, + "probability": 0.9595 + }, + { + "start": 3576.14, + "end": 3577.64, + "probability": 0.9129 + }, + { + "start": 3578.34, + "end": 3580.0, + "probability": 0.6992 + }, + { + "start": 3580.96, + "end": 3584.68, + "probability": 0.9927 + }, + { + "start": 3584.78, + "end": 3585.34, + "probability": 0.5877 + }, + { + "start": 3585.36, + "end": 3585.98, + "probability": 0.7405 + }, + { + "start": 3586.02, + "end": 3586.52, + "probability": 0.7985 + }, + { + "start": 3587.26, + "end": 3589.32, + "probability": 0.8022 + }, + { + "start": 3589.64, + "end": 3592.28, + "probability": 0.9742 + }, + { + "start": 3592.82, + "end": 3592.9, + "probability": 0.6178 + }, + { + "start": 3593.02, + "end": 3593.38, + "probability": 0.9681 + }, + { + "start": 3593.46, + "end": 3594.26, + "probability": 0.8251 + }, + { + "start": 3594.36, + "end": 3596.3, + "probability": 0.8137 + }, + { + "start": 3596.36, + "end": 3598.36, + "probability": 0.8741 + }, + { + "start": 3598.86, + "end": 3601.94, + "probability": 0.8472 + }, + { + "start": 3601.96, + "end": 3602.2, + "probability": 0.7667 + }, + { + "start": 3603.24, + "end": 3605.26, + "probability": 0.9951 + }, + { + "start": 3605.86, + "end": 3607.06, + "probability": 0.2208 + }, + { + "start": 3607.92, + "end": 3609.24, + "probability": 0.9149 + }, + { + "start": 3609.48, + "end": 3612.8, + "probability": 0.9847 + }, + { + "start": 3613.96, + "end": 3616.14, + "probability": 0.8689 + }, + { + "start": 3616.42, + "end": 3618.64, + "probability": 0.9329 + }, + { + "start": 3619.22, + "end": 3621.22, + "probability": 0.8098 + }, + { + "start": 3622.32, + "end": 3624.3, + "probability": 0.8566 + }, + { + "start": 3624.84, + "end": 3627.68, + "probability": 0.9588 + }, + { + "start": 3628.02, + "end": 3630.46, + "probability": 0.9897 + }, + { + "start": 3630.9, + "end": 3633.12, + "probability": 0.8589 + }, + { + "start": 3633.3, + "end": 3634.14, + "probability": 0.7077 + }, + { + "start": 3634.22, + "end": 3634.72, + "probability": 0.5793 + }, + { + "start": 3635.04, + "end": 3636.66, + "probability": 0.5718 + }, + { + "start": 3636.92, + "end": 3637.62, + "probability": 0.655 + }, + { + "start": 3638.1, + "end": 3640.5, + "probability": 0.8715 + }, + { + "start": 3640.5, + "end": 3643.4, + "probability": 0.964 + }, + { + "start": 3643.84, + "end": 3644.92, + "probability": 0.8595 + }, + { + "start": 3645.88, + "end": 3649.58, + "probability": 0.9924 + }, + { + "start": 3649.7, + "end": 3651.32, + "probability": 0.9966 + }, + { + "start": 3651.4, + "end": 3655.36, + "probability": 0.9142 + }, + { + "start": 3655.48, + "end": 3657.91, + "probability": 0.9498 + }, + { + "start": 3658.84, + "end": 3659.54, + "probability": 0.4764 + }, + { + "start": 3659.66, + "end": 3660.2, + "probability": 0.6325 + }, + { + "start": 3660.48, + "end": 3664.46, + "probability": 0.3025 + }, + { + "start": 3665.2, + "end": 3667.14, + "probability": 0.4719 + }, + { + "start": 3670.18, + "end": 3670.92, + "probability": 0.0213 + }, + { + "start": 3672.24, + "end": 3677.96, + "probability": 0.9969 + }, + { + "start": 3678.04, + "end": 3681.78, + "probability": 0.9984 + }, + { + "start": 3682.24, + "end": 3684.74, + "probability": 0.9933 + }, + { + "start": 3685.44, + "end": 3685.46, + "probability": 0.5713 + }, + { + "start": 3686.88, + "end": 3688.86, + "probability": 0.5989 + }, + { + "start": 3689.5, + "end": 3690.16, + "probability": 0.7946 + }, + { + "start": 3690.46, + "end": 3693.24, + "probability": 0.7716 + }, + { + "start": 3693.32, + "end": 3694.68, + "probability": 0.9705 + }, + { + "start": 3694.78, + "end": 3698.56, + "probability": 0.949 + }, + { + "start": 3699.4, + "end": 3703.44, + "probability": 0.9724 + }, + { + "start": 3703.5, + "end": 3708.0, + "probability": 0.9885 + }, + { + "start": 3708.48, + "end": 3708.84, + "probability": 0.3888 + }, + { + "start": 3718.14, + "end": 3718.44, + "probability": 0.2587 + }, + { + "start": 3718.44, + "end": 3720.36, + "probability": 0.6372 + }, + { + "start": 3721.06, + "end": 3722.59, + "probability": 0.9932 + }, + { + "start": 3722.7, + "end": 3726.28, + "probability": 0.9307 + }, + { + "start": 3727.08, + "end": 3732.38, + "probability": 0.9616 + }, + { + "start": 3733.0, + "end": 3734.96, + "probability": 0.6208 + }, + { + "start": 3735.06, + "end": 3735.72, + "probability": 0.5324 + }, + { + "start": 3735.74, + "end": 3737.14, + "probability": 0.9466 + }, + { + "start": 3737.62, + "end": 3739.78, + "probability": 0.8844 + }, + { + "start": 3740.44, + "end": 3742.02, + "probability": 0.7933 + }, + { + "start": 3742.86, + "end": 3744.4, + "probability": 0.5423 + }, + { + "start": 3744.58, + "end": 3749.26, + "probability": 0.9309 + }, + { + "start": 3749.3, + "end": 3750.26, + "probability": 0.9977 + }, + { + "start": 3751.56, + "end": 3753.28, + "probability": 0.8576 + }, + { + "start": 3753.4, + "end": 3756.08, + "probability": 0.9144 + }, + { + "start": 3756.8, + "end": 3759.0, + "probability": 0.8858 + }, + { + "start": 3760.5, + "end": 3761.04, + "probability": 0.0441 + }, + { + "start": 3761.04, + "end": 3764.0, + "probability": 0.9097 + }, + { + "start": 3764.64, + "end": 3765.52, + "probability": 0.7993 + }, + { + "start": 3766.0, + "end": 3771.42, + "probability": 0.9958 + }, + { + "start": 3771.9, + "end": 3771.9, + "probability": 0.2301 + }, + { + "start": 3772.64, + "end": 3773.44, + "probability": 0.7243 + }, + { + "start": 3774.18, + "end": 3775.36, + "probability": 0.9883 + }, + { + "start": 3775.52, + "end": 3777.88, + "probability": 0.9967 + }, + { + "start": 3778.0, + "end": 3780.06, + "probability": 0.9423 + }, + { + "start": 3781.54, + "end": 3784.88, + "probability": 0.9492 + }, + { + "start": 3786.94, + "end": 3789.34, + "probability": 0.9009 + }, + { + "start": 3791.04, + "end": 3792.64, + "probability": 0.9647 + }, + { + "start": 3793.66, + "end": 3794.54, + "probability": 0.4749 + }, + { + "start": 3795.66, + "end": 3796.74, + "probability": 0.0248 + }, + { + "start": 3797.0, + "end": 3797.54, + "probability": 0.0439 + }, + { + "start": 3797.54, + "end": 3799.34, + "probability": 0.6295 + }, + { + "start": 3800.28, + "end": 3800.88, + "probability": 0.5412 + }, + { + "start": 3801.48, + "end": 3803.44, + "probability": 0.9857 + }, + { + "start": 3803.62, + "end": 3804.92, + "probability": 0.8939 + }, + { + "start": 3805.8, + "end": 3806.4, + "probability": 0.6665 + }, + { + "start": 3806.8, + "end": 3807.6, + "probability": 0.7798 + }, + { + "start": 3807.8, + "end": 3808.34, + "probability": 0.6947 + }, + { + "start": 3809.96, + "end": 3810.28, + "probability": 0.9684 + }, + { + "start": 3811.56, + "end": 3812.94, + "probability": 0.8853 + }, + { + "start": 3813.94, + "end": 3815.7, + "probability": 0.9746 + }, + { + "start": 3818.7, + "end": 3819.08, + "probability": 0.0114 + }, + { + "start": 3820.4, + "end": 3824.36, + "probability": 0.783 + }, + { + "start": 3825.2, + "end": 3827.2, + "probability": 0.9434 + }, + { + "start": 3828.92, + "end": 3829.84, + "probability": 0.7947 + }, + { + "start": 3831.46, + "end": 3833.84, + "probability": 0.8794 + }, + { + "start": 3836.02, + "end": 3837.46, + "probability": 0.9295 + }, + { + "start": 3837.68, + "end": 3839.9, + "probability": 0.9786 + }, + { + "start": 3840.12, + "end": 3844.66, + "probability": 0.8354 + }, + { + "start": 3845.46, + "end": 3847.28, + "probability": 0.9028 + }, + { + "start": 3847.32, + "end": 3848.54, + "probability": 0.9712 + }, + { + "start": 3849.12, + "end": 3851.42, + "probability": 0.8384 + }, + { + "start": 3852.66, + "end": 3858.08, + "probability": 0.8955 + }, + { + "start": 3858.58, + "end": 3860.44, + "probability": 0.7754 + }, + { + "start": 3860.86, + "end": 3862.8, + "probability": 0.9902 + }, + { + "start": 3866.1, + "end": 3867.72, + "probability": 0.9635 + }, + { + "start": 3869.96, + "end": 3872.1, + "probability": 0.9729 + }, + { + "start": 3873.22, + "end": 3875.26, + "probability": 0.7894 + }, + { + "start": 3877.44, + "end": 3883.55, + "probability": 0.9235 + }, + { + "start": 3883.9, + "end": 3884.66, + "probability": 0.488 + }, + { + "start": 3884.7, + "end": 3885.14, + "probability": 0.922 + }, + { + "start": 3886.34, + "end": 3887.26, + "probability": 0.8097 + }, + { + "start": 3889.98, + "end": 3891.62, + "probability": 0.9218 + }, + { + "start": 3893.74, + "end": 3894.64, + "probability": 0.9334 + }, + { + "start": 3894.7, + "end": 3895.57, + "probability": 0.9685 + }, + { + "start": 3896.26, + "end": 3896.44, + "probability": 0.3405 + }, + { + "start": 3896.44, + "end": 3898.44, + "probability": 0.7122 + }, + { + "start": 3899.94, + "end": 3901.28, + "probability": 0.9294 + }, + { + "start": 3901.42, + "end": 3903.32, + "probability": 0.9839 + }, + { + "start": 3903.32, + "end": 3905.62, + "probability": 0.4339 + }, + { + "start": 3906.24, + "end": 3908.5, + "probability": 0.3168 + }, + { + "start": 3908.5, + "end": 3908.72, + "probability": 0.0759 + }, + { + "start": 3908.76, + "end": 3912.04, + "probability": 0.0444 + }, + { + "start": 3912.04, + "end": 3917.06, + "probability": 0.4855 + }, + { + "start": 3917.2, + "end": 3918.34, + "probability": 0.549 + }, + { + "start": 3920.65, + "end": 3923.18, + "probability": 0.32 + }, + { + "start": 3923.4, + "end": 3923.78, + "probability": 0.6394 + }, + { + "start": 3923.92, + "end": 3924.96, + "probability": 0.4831 + }, + { + "start": 3929.96, + "end": 3934.44, + "probability": 0.7173 + }, + { + "start": 3934.44, + "end": 3937.9, + "probability": 0.3167 + }, + { + "start": 3937.98, + "end": 3939.03, + "probability": 0.0481 + }, + { + "start": 3939.58, + "end": 3940.52, + "probability": 0.0657 + }, + { + "start": 3940.56, + "end": 3942.78, + "probability": 0.0058 + }, + { + "start": 3942.88, + "end": 3944.52, + "probability": 0.0754 + }, + { + "start": 3944.52, + "end": 3946.48, + "probability": 0.3227 + }, + { + "start": 3946.54, + "end": 3946.54, + "probability": 0.0582 + }, + { + "start": 3946.54, + "end": 3946.82, + "probability": 0.3234 + }, + { + "start": 3946.86, + "end": 3947.04, + "probability": 0.2053 + }, + { + "start": 3947.04, + "end": 3947.67, + "probability": 0.542 + }, + { + "start": 3950.58, + "end": 3951.46, + "probability": 0.4712 + }, + { + "start": 3953.16, + "end": 3955.24, + "probability": 0.4264 + }, + { + "start": 3955.42, + "end": 3956.58, + "probability": 0.6951 + }, + { + "start": 3957.0, + "end": 3957.78, + "probability": 0.7433 + }, + { + "start": 3959.38, + "end": 3965.76, + "probability": 0.6775 + }, + { + "start": 3966.1, + "end": 3972.74, + "probability": 0.9961 + }, + { + "start": 3973.06, + "end": 3975.82, + "probability": 0.9247 + }, + { + "start": 3976.46, + "end": 3977.92, + "probability": 0.9956 + }, + { + "start": 3977.98, + "end": 3980.86, + "probability": 0.91 + }, + { + "start": 3981.46, + "end": 3984.16, + "probability": 0.2452 + }, + { + "start": 3985.1, + "end": 3985.74, + "probability": 0.1118 + }, + { + "start": 3986.32, + "end": 3986.48, + "probability": 0.0499 + }, + { + "start": 3986.48, + "end": 3990.82, + "probability": 0.2163 + }, + { + "start": 3991.04, + "end": 3991.18, + "probability": 0.0314 + }, + { + "start": 3991.18, + "end": 3991.4, + "probability": 0.6187 + }, + { + "start": 3991.74, + "end": 3993.66, + "probability": 0.775 + }, + { + "start": 3993.68, + "end": 3995.7, + "probability": 0.9971 + }, + { + "start": 3996.66, + "end": 3997.12, + "probability": 0.5134 + }, + { + "start": 3999.62, + "end": 4001.1, + "probability": 0.1154 + }, + { + "start": 4001.8, + "end": 4004.72, + "probability": 0.7917 + }, + { + "start": 4009.32, + "end": 4013.3, + "probability": 0.9873 + }, + { + "start": 4014.58, + "end": 4015.58, + "probability": 0.3034 + }, + { + "start": 4015.76, + "end": 4017.28, + "probability": 0.2854 + }, + { + "start": 4018.08, + "end": 4019.68, + "probability": 0.8445 + }, + { + "start": 4019.72, + "end": 4019.97, + "probability": 0.812 + }, + { + "start": 4020.72, + "end": 4022.44, + "probability": 0.7034 + }, + { + "start": 4022.56, + "end": 4025.56, + "probability": 0.9955 + }, + { + "start": 4027.24, + "end": 4030.06, + "probability": 0.9476 + }, + { + "start": 4030.94, + "end": 4032.64, + "probability": 0.8667 + }, + { + "start": 4033.46, + "end": 4035.28, + "probability": 0.8492 + }, + { + "start": 4035.76, + "end": 4041.24, + "probability": 0.9461 + }, + { + "start": 4041.6, + "end": 4043.14, + "probability": 0.8551 + }, + { + "start": 4043.54, + "end": 4046.8, + "probability": 0.9028 + }, + { + "start": 4047.44, + "end": 4052.1, + "probability": 0.8712 + }, + { + "start": 4052.1, + "end": 4055.88, + "probability": 0.986 + }, + { + "start": 4056.58, + "end": 4058.14, + "probability": 0.9793 + }, + { + "start": 4059.24, + "end": 4063.26, + "probability": 0.9552 + }, + { + "start": 4063.9, + "end": 4068.06, + "probability": 0.958 + }, + { + "start": 4068.74, + "end": 4072.78, + "probability": 0.9549 + }, + { + "start": 4072.78, + "end": 4078.06, + "probability": 0.8141 + }, + { + "start": 4078.66, + "end": 4083.16, + "probability": 0.9899 + }, + { + "start": 4084.38, + "end": 4086.12, + "probability": 0.7141 + }, + { + "start": 4086.42, + "end": 4087.28, + "probability": 0.7588 + }, + { + "start": 4087.5, + "end": 4089.04, + "probability": 0.9758 + }, + { + "start": 4089.52, + "end": 4092.02, + "probability": 0.4268 + }, + { + "start": 4092.78, + "end": 4093.76, + "probability": 0.9751 + }, + { + "start": 4093.92, + "end": 4098.98, + "probability": 0.9453 + }, + { + "start": 4098.98, + "end": 4102.4, + "probability": 0.9735 + }, + { + "start": 4103.9, + "end": 4105.3, + "probability": 0.6245 + }, + { + "start": 4106.46, + "end": 4108.54, + "probability": 0.9639 + }, + { + "start": 4112.92, + "end": 4117.2, + "probability": 0.8979 + }, + { + "start": 4117.2, + "end": 4121.74, + "probability": 0.9053 + }, + { + "start": 4122.36, + "end": 4123.44, + "probability": 0.6366 + }, + { + "start": 4124.3, + "end": 4129.12, + "probability": 0.9934 + }, + { + "start": 4129.62, + "end": 4131.94, + "probability": 0.6626 + }, + { + "start": 4132.9, + "end": 4136.22, + "probability": 0.9779 + }, + { + "start": 4136.76, + "end": 4138.37, + "probability": 0.8218 + }, + { + "start": 4139.54, + "end": 4143.78, + "probability": 0.9938 + }, + { + "start": 4143.78, + "end": 4148.68, + "probability": 0.9959 + }, + { + "start": 4149.56, + "end": 4150.8, + "probability": 0.6482 + }, + { + "start": 4151.4, + "end": 4151.9, + "probability": 0.5179 + }, + { + "start": 4159.0, + "end": 4162.3, + "probability": 0.9909 + }, + { + "start": 4162.94, + "end": 4166.64, + "probability": 0.8775 + }, + { + "start": 4167.24, + "end": 4167.74, + "probability": 0.4923 + }, + { + "start": 4168.22, + "end": 4170.4, + "probability": 0.9805 + }, + { + "start": 4170.78, + "end": 4174.3, + "probability": 0.9312 + }, + { + "start": 4174.96, + "end": 4177.62, + "probability": 0.9961 + }, + { + "start": 4178.82, + "end": 4180.4, + "probability": 0.98 + }, + { + "start": 4181.3, + "end": 4183.54, + "probability": 0.6384 + }, + { + "start": 4183.54, + "end": 4187.1, + "probability": 0.9025 + }, + { + "start": 4187.28, + "end": 4190.22, + "probability": 0.9951 + }, + { + "start": 4191.12, + "end": 4193.14, + "probability": 0.9617 + }, + { + "start": 4193.6, + "end": 4196.74, + "probability": 0.9912 + }, + { + "start": 4196.74, + "end": 4200.02, + "probability": 0.981 + }, + { + "start": 4202.16, + "end": 4205.56, + "probability": 0.6709 + }, + { + "start": 4206.02, + "end": 4207.44, + "probability": 0.728 + }, + { + "start": 4208.14, + "end": 4211.34, + "probability": 0.7015 + }, + { + "start": 4212.46, + "end": 4216.16, + "probability": 0.5116 + }, + { + "start": 4216.18, + "end": 4219.58, + "probability": 0.9719 + }, + { + "start": 4220.38, + "end": 4225.94, + "probability": 0.9869 + }, + { + "start": 4227.78, + "end": 4228.94, + "probability": 0.9549 + }, + { + "start": 4229.5, + "end": 4230.78, + "probability": 0.9912 + }, + { + "start": 4230.92, + "end": 4232.6, + "probability": 0.9683 + }, + { + "start": 4233.54, + "end": 4236.52, + "probability": 0.8936 + }, + { + "start": 4236.52, + "end": 4239.2, + "probability": 0.9721 + }, + { + "start": 4240.04, + "end": 4242.52, + "probability": 0.9246 + }, + { + "start": 4243.52, + "end": 4245.16, + "probability": 0.91 + }, + { + "start": 4245.24, + "end": 4250.04, + "probability": 0.8774 + }, + { + "start": 4250.56, + "end": 4254.8, + "probability": 0.9751 + }, + { + "start": 4255.24, + "end": 4257.66, + "probability": 0.9666 + }, + { + "start": 4258.18, + "end": 4258.78, + "probability": 0.8938 + }, + { + "start": 4259.7, + "end": 4262.06, + "probability": 0.5863 + }, + { + "start": 4262.46, + "end": 4266.7, + "probability": 0.9904 + }, + { + "start": 4267.34, + "end": 4268.54, + "probability": 0.6298 + }, + { + "start": 4268.96, + "end": 4272.56, + "probability": 0.8757 + }, + { + "start": 4272.56, + "end": 4274.54, + "probability": 0.9963 + }, + { + "start": 4275.58, + "end": 4277.06, + "probability": 0.9341 + }, + { + "start": 4277.68, + "end": 4280.34, + "probability": 0.9736 + }, + { + "start": 4281.2, + "end": 4282.4, + "probability": 0.8182 + }, + { + "start": 4282.46, + "end": 4286.84, + "probability": 0.9845 + }, + { + "start": 4287.48, + "end": 4288.46, + "probability": 0.1767 + }, + { + "start": 4288.84, + "end": 4289.62, + "probability": 0.698 + }, + { + "start": 4290.06, + "end": 4293.96, + "probability": 0.9607 + }, + { + "start": 4294.5, + "end": 4295.88, + "probability": 0.8191 + }, + { + "start": 4296.58, + "end": 4300.72, + "probability": 0.9438 + }, + { + "start": 4301.46, + "end": 4305.0, + "probability": 0.7675 + }, + { + "start": 4305.18, + "end": 4305.76, + "probability": 0.3923 + }, + { + "start": 4306.18, + "end": 4309.52, + "probability": 0.7327 + }, + { + "start": 4309.76, + "end": 4310.0, + "probability": 0.8298 + }, + { + "start": 4312.14, + "end": 4315.66, + "probability": 0.9535 + }, + { + "start": 4315.66, + "end": 4320.08, + "probability": 0.8123 + }, + { + "start": 4320.62, + "end": 4321.88, + "probability": 0.7734 + }, + { + "start": 4322.96, + "end": 4326.96, + "probability": 0.9825 + }, + { + "start": 4328.44, + "end": 4331.0, + "probability": 0.804 + }, + { + "start": 4331.68, + "end": 4332.84, + "probability": 0.9597 + }, + { + "start": 4333.7, + "end": 4336.88, + "probability": 0.8557 + }, + { + "start": 4337.78, + "end": 4338.18, + "probability": 0.7776 + }, + { + "start": 4338.56, + "end": 4340.2, + "probability": 0.473 + }, + { + "start": 4340.26, + "end": 4342.46, + "probability": 0.93 + }, + { + "start": 4342.48, + "end": 4343.24, + "probability": 0.4768 + }, + { + "start": 4344.24, + "end": 4344.34, + "probability": 0.783 + }, + { + "start": 4345.18, + "end": 4345.98, + "probability": 0.9942 + }, + { + "start": 4346.82, + "end": 4347.46, + "probability": 0.8391 + }, + { + "start": 4347.66, + "end": 4348.42, + "probability": 0.1528 + }, + { + "start": 4349.26, + "end": 4349.6, + "probability": 0.3437 + }, + { + "start": 4350.28, + "end": 4350.7, + "probability": 0.0292 + }, + { + "start": 4352.04, + "end": 4352.38, + "probability": 0.7131 + }, + { + "start": 4353.9, + "end": 4354.4, + "probability": 0.2952 + }, + { + "start": 4354.54, + "end": 4354.75, + "probability": 0.523 + }, + { + "start": 4355.6, + "end": 4359.1, + "probability": 0.7959 + }, + { + "start": 4359.24, + "end": 4360.12, + "probability": 0.789 + }, + { + "start": 4360.46, + "end": 4361.76, + "probability": 0.698 + }, + { + "start": 4361.94, + "end": 4363.08, + "probability": 0.3701 + }, + { + "start": 4363.96, + "end": 4364.82, + "probability": 0.0186 + }, + { + "start": 4365.82, + "end": 4366.4, + "probability": 0.5725 + }, + { + "start": 4366.4, + "end": 4369.3, + "probability": 0.7767 + }, + { + "start": 4372.12, + "end": 4376.56, + "probability": 0.9202 + }, + { + "start": 4376.7, + "end": 4377.84, + "probability": 0.7412 + }, + { + "start": 4384.28, + "end": 4386.92, + "probability": 0.1342 + }, + { + "start": 4387.62, + "end": 4390.18, + "probability": 0.7212 + }, + { + "start": 4390.24, + "end": 4390.36, + "probability": 0.0197 + }, + { + "start": 4390.36, + "end": 4390.36, + "probability": 0.0949 + }, + { + "start": 4390.36, + "end": 4391.34, + "probability": 0.5597 + }, + { + "start": 4391.42, + "end": 4394.02, + "probability": 0.8899 + }, + { + "start": 4394.5, + "end": 4394.86, + "probability": 0.7289 + }, + { + "start": 4395.94, + "end": 4396.4, + "probability": 0.6953 + }, + { + "start": 4400.24, + "end": 4400.38, + "probability": 0.0076 + }, + { + "start": 4414.7, + "end": 4415.04, + "probability": 0.2146 + }, + { + "start": 4415.22, + "end": 4415.46, + "probability": 0.3584 + }, + { + "start": 4415.46, + "end": 4417.04, + "probability": 0.7258 + }, + { + "start": 4417.7, + "end": 4417.8, + "probability": 0.639 + }, + { + "start": 4417.8, + "end": 4418.22, + "probability": 0.6086 + }, + { + "start": 4418.24, + "end": 4423.4, + "probability": 0.7944 + }, + { + "start": 4423.58, + "end": 4426.34, + "probability": 0.9705 + }, + { + "start": 4426.82, + "end": 4429.78, + "probability": 0.7791 + }, + { + "start": 4430.36, + "end": 4433.66, + "probability": 0.9692 + }, + { + "start": 4434.34, + "end": 4436.96, + "probability": 0.937 + }, + { + "start": 4437.04, + "end": 4438.82, + "probability": 0.8615 + }, + { + "start": 4438.92, + "end": 4442.52, + "probability": 0.9675 + }, + { + "start": 4442.58, + "end": 4444.56, + "probability": 0.9798 + }, + { + "start": 4444.74, + "end": 4449.58, + "probability": 0.989 + }, + { + "start": 4450.38, + "end": 4450.64, + "probability": 0.8092 + }, + { + "start": 4451.98, + "end": 4455.06, + "probability": 0.8399 + }, + { + "start": 4455.16, + "end": 4456.32, + "probability": 0.768 + }, + { + "start": 4457.02, + "end": 4457.74, + "probability": 0.5116 + }, + { + "start": 4458.38, + "end": 4460.17, + "probability": 0.6578 + }, + { + "start": 4461.08, + "end": 4463.06, + "probability": 0.9765 + }, + { + "start": 4463.66, + "end": 4467.25, + "probability": 0.625 + }, + { + "start": 4467.62, + "end": 4470.16, + "probability": 0.8551 + }, + { + "start": 4470.48, + "end": 4472.06, + "probability": 0.7392 + }, + { + "start": 4472.46, + "end": 4473.04, + "probability": 0.7716 + }, + { + "start": 4473.46, + "end": 4473.76, + "probability": 0.654 + }, + { + "start": 4473.88, + "end": 4474.3, + "probability": 0.7958 + }, + { + "start": 4474.32, + "end": 4479.96, + "probability": 0.7678 + }, + { + "start": 4480.64, + "end": 4483.06, + "probability": 0.718 + }, + { + "start": 4483.26, + "end": 4483.7, + "probability": 0.0571 + }, + { + "start": 4484.12, + "end": 4485.08, + "probability": 0.8746 + }, + { + "start": 4485.84, + "end": 4489.5, + "probability": 0.8562 + }, + { + "start": 4489.58, + "end": 4489.92, + "probability": 0.717 + }, + { + "start": 4490.06, + "end": 4496.84, + "probability": 0.8858 + }, + { + "start": 4497.48, + "end": 4500.16, + "probability": 0.8556 + }, + { + "start": 4501.08, + "end": 4507.86, + "probability": 0.8765 + }, + { + "start": 4508.28, + "end": 4508.88, + "probability": 0.3778 + }, + { + "start": 4509.24, + "end": 4509.92, + "probability": 0.7176 + }, + { + "start": 4510.2, + "end": 4513.42, + "probability": 0.9722 + }, + { + "start": 4514.28, + "end": 4515.62, + "probability": 0.9556 + }, + { + "start": 4516.06, + "end": 4520.82, + "probability": 0.8465 + }, + { + "start": 4521.42, + "end": 4523.72, + "probability": 0.7478 + }, + { + "start": 4524.0, + "end": 4525.54, + "probability": 0.7537 + }, + { + "start": 4525.66, + "end": 4526.5, + "probability": 0.9763 + }, + { + "start": 4526.84, + "end": 4531.84, + "probability": 0.9808 + }, + { + "start": 4532.38, + "end": 4533.24, + "probability": 0.8284 + }, + { + "start": 4533.82, + "end": 4536.74, + "probability": 0.9919 + }, + { + "start": 4537.16, + "end": 4541.18, + "probability": 0.9492 + }, + { + "start": 4541.5, + "end": 4543.4, + "probability": 0.9931 + }, + { + "start": 4543.76, + "end": 4545.58, + "probability": 0.9941 + }, + { + "start": 4546.08, + "end": 4550.42, + "probability": 0.9849 + }, + { + "start": 4550.66, + "end": 4557.48, + "probability": 0.9966 + }, + { + "start": 4558.4, + "end": 4563.7, + "probability": 0.9905 + }, + { + "start": 4564.14, + "end": 4565.14, + "probability": 0.9336 + }, + { + "start": 4565.8, + "end": 4568.18, + "probability": 0.7035 + }, + { + "start": 4568.74, + "end": 4571.3, + "probability": 0.711 + }, + { + "start": 4571.4, + "end": 4573.14, + "probability": 0.6949 + }, + { + "start": 4573.64, + "end": 4576.18, + "probability": 0.9121 + }, + { + "start": 4576.18, + "end": 4579.96, + "probability": 0.9922 + }, + { + "start": 4580.62, + "end": 4581.34, + "probability": 0.7193 + }, + { + "start": 4581.54, + "end": 4584.84, + "probability": 0.2177 + }, + { + "start": 4584.84, + "end": 4584.84, + "probability": 0.1078 + }, + { + "start": 4584.84, + "end": 4586.11, + "probability": 0.5788 + }, + { + "start": 4586.44, + "end": 4587.12, + "probability": 0.5831 + }, + { + "start": 4587.22, + "end": 4588.26, + "probability": 0.7921 + }, + { + "start": 4588.34, + "end": 4592.56, + "probability": 0.9624 + }, + { + "start": 4592.56, + "end": 4595.96, + "probability": 0.9702 + }, + { + "start": 4597.06, + "end": 4598.56, + "probability": 0.9689 + }, + { + "start": 4599.04, + "end": 4599.38, + "probability": 0.3819 + }, + { + "start": 4599.42, + "end": 4603.27, + "probability": 0.9946 + }, + { + "start": 4603.94, + "end": 4606.54, + "probability": 0.9664 + }, + { + "start": 4606.8, + "end": 4610.2, + "probability": 0.9788 + }, + { + "start": 4610.28, + "end": 4613.08, + "probability": 0.9713 + }, + { + "start": 4613.5, + "end": 4613.5, + "probability": 0.2964 + }, + { + "start": 4613.54, + "end": 4616.6, + "probability": 0.9961 + }, + { + "start": 4616.6, + "end": 4621.14, + "probability": 0.9868 + }, + { + "start": 4621.76, + "end": 4622.0, + "probability": 0.7371 + }, + { + "start": 4622.36, + "end": 4624.14, + "probability": 0.6545 + }, + { + "start": 4624.54, + "end": 4626.4, + "probability": 0.9683 + }, + { + "start": 4626.42, + "end": 4628.38, + "probability": 0.6544 + }, + { + "start": 4629.52, + "end": 4630.13, + "probability": 0.8667 + }, + { + "start": 4630.48, + "end": 4631.22, + "probability": 0.8979 + }, + { + "start": 4633.28, + "end": 4633.86, + "probability": 0.7993 + }, + { + "start": 4642.3, + "end": 4643.9, + "probability": 0.6017 + }, + { + "start": 4644.04, + "end": 4644.04, + "probability": 0.3532 + }, + { + "start": 4644.08, + "end": 4644.94, + "probability": 0.7281 + }, + { + "start": 4645.08, + "end": 4645.26, + "probability": 0.5254 + }, + { + "start": 4645.32, + "end": 4649.19, + "probability": 0.9869 + }, + { + "start": 4649.84, + "end": 4653.44, + "probability": 0.977 + }, + { + "start": 4653.58, + "end": 4654.6, + "probability": 0.9665 + }, + { + "start": 4654.66, + "end": 4656.86, + "probability": 0.9492 + }, + { + "start": 4657.92, + "end": 4659.1, + "probability": 0.9968 + }, + { + "start": 4659.54, + "end": 4659.94, + "probability": 0.8143 + }, + { + "start": 4660.3, + "end": 4662.78, + "probability": 0.9347 + }, + { + "start": 4663.06, + "end": 4663.54, + "probability": 0.8245 + }, + { + "start": 4663.74, + "end": 4664.12, + "probability": 0.5362 + }, + { + "start": 4664.38, + "end": 4668.66, + "probability": 0.9929 + }, + { + "start": 4668.86, + "end": 4670.98, + "probability": 0.6216 + }, + { + "start": 4671.46, + "end": 4672.59, + "probability": 0.9197 + }, + { + "start": 4673.82, + "end": 4676.72, + "probability": 0.8021 + }, + { + "start": 4676.86, + "end": 4678.71, + "probability": 0.995 + }, + { + "start": 4679.08, + "end": 4679.72, + "probability": 0.6429 + }, + { + "start": 4680.72, + "end": 4683.48, + "probability": 0.995 + }, + { + "start": 4683.96, + "end": 4684.86, + "probability": 0.7256 + }, + { + "start": 4684.98, + "end": 4686.0, + "probability": 0.9961 + }, + { + "start": 4686.52, + "end": 4687.28, + "probability": 0.969 + }, + { + "start": 4687.76, + "end": 4690.14, + "probability": 0.9494 + }, + { + "start": 4691.0, + "end": 4694.52, + "probability": 0.8769 + }, + { + "start": 4695.08, + "end": 4697.62, + "probability": 0.9891 + }, + { + "start": 4698.52, + "end": 4701.49, + "probability": 0.9917 + }, + { + "start": 4702.08, + "end": 4702.6, + "probability": 0.3094 + }, + { + "start": 4702.8, + "end": 4706.06, + "probability": 0.7975 + }, + { + "start": 4706.46, + "end": 4708.74, + "probability": 0.989 + }, + { + "start": 4708.78, + "end": 4709.72, + "probability": 0.8501 + }, + { + "start": 4710.34, + "end": 4712.54, + "probability": 0.9955 + }, + { + "start": 4712.78, + "end": 4716.24, + "probability": 0.9404 + }, + { + "start": 4716.28, + "end": 4719.04, + "probability": 0.995 + }, + { + "start": 4720.02, + "end": 4725.94, + "probability": 0.9121 + }, + { + "start": 4726.54, + "end": 4728.09, + "probability": 0.8757 + }, + { + "start": 4728.4, + "end": 4730.38, + "probability": 0.9615 + }, + { + "start": 4730.96, + "end": 4732.26, + "probability": 0.9069 + }, + { + "start": 4732.66, + "end": 4734.84, + "probability": 0.9914 + }, + { + "start": 4735.16, + "end": 4737.28, + "probability": 0.992 + }, + { + "start": 4737.84, + "end": 4741.08, + "probability": 0.9907 + }, + { + "start": 4741.44, + "end": 4742.24, + "probability": 0.9909 + }, + { + "start": 4742.64, + "end": 4744.65, + "probability": 0.959 + }, + { + "start": 4745.26, + "end": 4746.08, + "probability": 0.9734 + }, + { + "start": 4746.34, + "end": 4747.12, + "probability": 0.8569 + }, + { + "start": 4747.38, + "end": 4748.84, + "probability": 0.9582 + }, + { + "start": 4748.94, + "end": 4750.06, + "probability": 0.9971 + }, + { + "start": 4750.16, + "end": 4751.08, + "probability": 0.9805 + }, + { + "start": 4751.12, + "end": 4753.44, + "probability": 0.929 + }, + { + "start": 4753.92, + "end": 4757.61, + "probability": 0.9819 + }, + { + "start": 4758.28, + "end": 4759.44, + "probability": 0.8503 + }, + { + "start": 4759.54, + "end": 4765.44, + "probability": 0.8538 + }, + { + "start": 4766.4, + "end": 4766.4, + "probability": 0.0535 + }, + { + "start": 4766.4, + "end": 4767.5, + "probability": 0.6444 + }, + { + "start": 4767.64, + "end": 4769.36, + "probability": 0.5553 + }, + { + "start": 4769.48, + "end": 4770.02, + "probability": 0.7845 + }, + { + "start": 4770.12, + "end": 4772.12, + "probability": 0.8373 + }, + { + "start": 4772.6, + "end": 4775.12, + "probability": 0.9885 + }, + { + "start": 4775.18, + "end": 4778.32, + "probability": 0.9911 + }, + { + "start": 4779.9, + "end": 4779.9, + "probability": 0.0015 + }, + { + "start": 4780.18, + "end": 4781.66, + "probability": 0.8062 + }, + { + "start": 4781.74, + "end": 4782.32, + "probability": 0.893 + }, + { + "start": 4782.36, + "end": 4783.74, + "probability": 0.967 + }, + { + "start": 4784.44, + "end": 4785.31, + "probability": 0.7573 + }, + { + "start": 4785.92, + "end": 4788.26, + "probability": 0.9896 + }, + { + "start": 4788.46, + "end": 4789.1, + "probability": 0.7514 + }, + { + "start": 4789.72, + "end": 4790.52, + "probability": 0.7608 + }, + { + "start": 4791.0, + "end": 4792.2, + "probability": 0.5554 + }, + { + "start": 4792.22, + "end": 4794.14, + "probability": 0.8419 + }, + { + "start": 4794.22, + "end": 4794.9, + "probability": 0.6962 + }, + { + "start": 4795.36, + "end": 4796.65, + "probability": 0.9961 + }, + { + "start": 4796.86, + "end": 4799.04, + "probability": 0.7968 + }, + { + "start": 4799.7, + "end": 4803.24, + "probability": 0.9835 + }, + { + "start": 4803.7, + "end": 4805.1, + "probability": 0.4513 + }, + { + "start": 4805.8, + "end": 4808.6, + "probability": 0.8193 + }, + { + "start": 4808.76, + "end": 4811.8, + "probability": 0.9753 + }, + { + "start": 4811.8, + "end": 4815.6, + "probability": 0.9756 + }, + { + "start": 4816.2, + "end": 4818.46, + "probability": 0.9995 + }, + { + "start": 4818.5, + "end": 4819.78, + "probability": 0.7217 + }, + { + "start": 4819.86, + "end": 4825.66, + "probability": 0.7327 + }, + { + "start": 4825.66, + "end": 4830.96, + "probability": 0.5796 + }, + { + "start": 4831.74, + "end": 4836.14, + "probability": 0.8756 + }, + { + "start": 4836.62, + "end": 4840.75, + "probability": 0.9944 + }, + { + "start": 4841.2, + "end": 4842.34, + "probability": 0.7316 + }, + { + "start": 4842.5, + "end": 4843.5, + "probability": 0.7553 + }, + { + "start": 4843.56, + "end": 4843.56, + "probability": 0.3044 + }, + { + "start": 4843.56, + "end": 4843.97, + "probability": 0.4185 + }, + { + "start": 4844.62, + "end": 4844.96, + "probability": 0.7172 + }, + { + "start": 4845.04, + "end": 4845.2, + "probability": 0.4585 + }, + { + "start": 4845.36, + "end": 4849.46, + "probability": 0.9872 + }, + { + "start": 4850.2, + "end": 4853.5, + "probability": 0.9831 + }, + { + "start": 4854.08, + "end": 4857.44, + "probability": 0.9468 + }, + { + "start": 4857.44, + "end": 4860.66, + "probability": 0.9958 + }, + { + "start": 4860.74, + "end": 4861.12, + "probability": 0.7712 + }, + { + "start": 4861.34, + "end": 4862.86, + "probability": 0.8639 + }, + { + "start": 4863.12, + "end": 4864.44, + "probability": 0.9271 + }, + { + "start": 4865.72, + "end": 4865.94, + "probability": 0.5244 + }, + { + "start": 4866.06, + "end": 4866.24, + "probability": 0.6685 + }, + { + "start": 4866.36, + "end": 4867.68, + "probability": 0.4768 + }, + { + "start": 4867.9, + "end": 4869.36, + "probability": 0.8823 + }, + { + "start": 4870.02, + "end": 4871.12, + "probability": 0.6003 + }, + { + "start": 4890.6, + "end": 4892.7, + "probability": 0.5972 + }, + { + "start": 4894.34, + "end": 4900.1, + "probability": 0.9572 + }, + { + "start": 4901.1, + "end": 4906.14, + "probability": 0.9993 + }, + { + "start": 4906.66, + "end": 4908.58, + "probability": 0.9931 + }, + { + "start": 4909.32, + "end": 4912.98, + "probability": 0.9949 + }, + { + "start": 4913.5, + "end": 4915.84, + "probability": 0.9893 + }, + { + "start": 4916.5, + "end": 4919.92, + "probability": 0.9966 + }, + { + "start": 4920.86, + "end": 4923.8, + "probability": 0.9619 + }, + { + "start": 4924.54, + "end": 4925.02, + "probability": 0.5646 + }, + { + "start": 4925.24, + "end": 4930.7, + "probability": 0.9828 + }, + { + "start": 4931.24, + "end": 4933.92, + "probability": 0.9965 + }, + { + "start": 4937.64, + "end": 4942.6, + "probability": 0.7107 + }, + { + "start": 4943.16, + "end": 4947.84, + "probability": 0.9897 + }, + { + "start": 4949.0, + "end": 4951.94, + "probability": 0.9758 + }, + { + "start": 4951.94, + "end": 4955.98, + "probability": 0.9825 + }, + { + "start": 4956.66, + "end": 4959.82, + "probability": 0.724 + }, + { + "start": 4961.16, + "end": 4962.46, + "probability": 0.6829 + }, + { + "start": 4963.1, + "end": 4970.26, + "probability": 0.9812 + }, + { + "start": 4971.04, + "end": 4974.24, + "probability": 0.9886 + }, + { + "start": 4974.24, + "end": 4977.28, + "probability": 0.9899 + }, + { + "start": 4977.96, + "end": 4982.7, + "probability": 0.8209 + }, + { + "start": 4983.06, + "end": 4985.16, + "probability": 0.7587 + }, + { + "start": 4985.94, + "end": 4990.94, + "probability": 0.9915 + }, + { + "start": 4991.2, + "end": 4993.71, + "probability": 0.993 + }, + { + "start": 4994.22, + "end": 4995.5, + "probability": 0.6367 + }, + { + "start": 4996.32, + "end": 4997.52, + "probability": 0.7672 + }, + { + "start": 4998.08, + "end": 5000.04, + "probability": 0.9849 + }, + { + "start": 5000.82, + "end": 5002.8, + "probability": 0.8093 + }, + { + "start": 5002.84, + "end": 5005.88, + "probability": 0.8821 + }, + { + "start": 5005.88, + "end": 5009.42, + "probability": 0.7247 + }, + { + "start": 5010.04, + "end": 5012.38, + "probability": 0.9069 + }, + { + "start": 5012.9, + "end": 5015.08, + "probability": 0.8956 + }, + { + "start": 5019.4, + "end": 5019.9, + "probability": 0.5002 + }, + { + "start": 5020.8, + "end": 5024.24, + "probability": 0.9966 + }, + { + "start": 5024.64, + "end": 5028.86, + "probability": 0.9851 + }, + { + "start": 5028.94, + "end": 5029.92, + "probability": 0.9819 + }, + { + "start": 5030.44, + "end": 5031.64, + "probability": 0.8286 + }, + { + "start": 5031.86, + "end": 5035.2, + "probability": 0.9231 + }, + { + "start": 5035.22, + "end": 5038.12, + "probability": 0.973 + }, + { + "start": 5038.86, + "end": 5042.78, + "probability": 0.9733 + }, + { + "start": 5043.22, + "end": 5047.72, + "probability": 0.9286 + }, + { + "start": 5048.72, + "end": 5050.4, + "probability": 0.1282 + }, + { + "start": 5050.84, + "end": 5051.8, + "probability": 0.7852 + }, + { + "start": 5052.04, + "end": 5056.66, + "probability": 0.7897 + }, + { + "start": 5058.0, + "end": 5059.52, + "probability": 0.9912 + }, + { + "start": 5060.4, + "end": 5063.7, + "probability": 0.6961 + }, + { + "start": 5065.36, + "end": 5067.68, + "probability": 0.9722 + }, + { + "start": 5067.72, + "end": 5072.1, + "probability": 0.9786 + }, + { + "start": 5072.62, + "end": 5075.82, + "probability": 0.9291 + }, + { + "start": 5076.56, + "end": 5079.66, + "probability": 0.995 + }, + { + "start": 5080.18, + "end": 5088.04, + "probability": 0.9553 + }, + { + "start": 5088.7, + "end": 5090.42, + "probability": 0.4997 + }, + { + "start": 5090.96, + "end": 5093.12, + "probability": 0.9954 + }, + { + "start": 5093.36, + "end": 5093.8, + "probability": 0.7753 + }, + { + "start": 5094.14, + "end": 5095.34, + "probability": 0.9736 + }, + { + "start": 5097.6, + "end": 5098.32, + "probability": 0.7884 + }, + { + "start": 5100.5, + "end": 5104.5, + "probability": 0.9899 + }, + { + "start": 5106.0, + "end": 5107.78, + "probability": 0.5209 + }, + { + "start": 5108.68, + "end": 5111.84, + "probability": 0.4515 + }, + { + "start": 5111.92, + "end": 5114.28, + "probability": 0.6422 + }, + { + "start": 5114.98, + "end": 5116.64, + "probability": 0.9526 + }, + { + "start": 5116.86, + "end": 5117.58, + "probability": 0.4934 + }, + { + "start": 5125.9, + "end": 5126.96, + "probability": 0.3539 + }, + { + "start": 5126.98, + "end": 5132.16, + "probability": 0.2427 + }, + { + "start": 5134.92, + "end": 5136.52, + "probability": 0.6248 + }, + { + "start": 5136.64, + "end": 5140.3, + "probability": 0.9351 + }, + { + "start": 5144.92, + "end": 5147.16, + "probability": 0.7515 + }, + { + "start": 5148.2, + "end": 5149.34, + "probability": 0.7223 + }, + { + "start": 5149.44, + "end": 5150.76, + "probability": 0.6763 + }, + { + "start": 5151.04, + "end": 5153.03, + "probability": 0.9395 + }, + { + "start": 5153.86, + "end": 5155.2, + "probability": 0.9643 + }, + { + "start": 5155.92, + "end": 5161.82, + "probability": 0.9583 + }, + { + "start": 5162.3, + "end": 5164.32, + "probability": 0.3222 + }, + { + "start": 5164.54, + "end": 5165.72, + "probability": 0.862 + }, + { + "start": 5166.14, + "end": 5166.56, + "probability": 0.787 + }, + { + "start": 5167.32, + "end": 5170.42, + "probability": 0.3423 + }, + { + "start": 5172.04, + "end": 5172.04, + "probability": 0.0841 + }, + { + "start": 5172.04, + "end": 5172.04, + "probability": 0.0226 + }, + { + "start": 5172.04, + "end": 5172.8, + "probability": 0.019 + }, + { + "start": 5173.5, + "end": 5176.44, + "probability": 0.3556 + }, + { + "start": 5176.46, + "end": 5176.98, + "probability": 0.7222 + }, + { + "start": 5186.98, + "end": 5187.0, + "probability": 0.2785 + }, + { + "start": 5187.0, + "end": 5190.32, + "probability": 0.186 + }, + { + "start": 5190.5, + "end": 5192.6, + "probability": 0.5132 + }, + { + "start": 5195.38, + "end": 5197.0, + "probability": 0.6495 + }, + { + "start": 5197.84, + "end": 5198.38, + "probability": 0.8768 + }, + { + "start": 5198.48, + "end": 5202.14, + "probability": 0.9401 + }, + { + "start": 5202.84, + "end": 5206.98, + "probability": 0.7383 + }, + { + "start": 5209.12, + "end": 5209.32, + "probability": 0.5494 + }, + { + "start": 5209.5, + "end": 5210.2, + "probability": 0.5774 + }, + { + "start": 5210.3, + "end": 5215.64, + "probability": 0.9346 + }, + { + "start": 5215.68, + "end": 5216.46, + "probability": 0.9299 + }, + { + "start": 5216.54, + "end": 5216.89, + "probability": 0.9668 + }, + { + "start": 5217.4, + "end": 5217.89, + "probability": 0.9497 + }, + { + "start": 5218.92, + "end": 5218.96, + "probability": 0.5093 + }, + { + "start": 5219.06, + "end": 5219.66, + "probability": 0.989 + }, + { + "start": 5219.82, + "end": 5223.42, + "probability": 0.7369 + }, + { + "start": 5223.8, + "end": 5225.58, + "probability": 0.1068 + }, + { + "start": 5226.46, + "end": 5231.62, + "probability": 0.8629 + }, + { + "start": 5232.14, + "end": 5235.48, + "probability": 0.9137 + }, + { + "start": 5237.16, + "end": 5241.16, + "probability": 0.8976 + }, + { + "start": 5241.72, + "end": 5246.13, + "probability": 0.7649 + }, + { + "start": 5247.1, + "end": 5247.2, + "probability": 0.6233 + }, + { + "start": 5247.76, + "end": 5248.52, + "probability": 0.6673 + }, + { + "start": 5248.94, + "end": 5249.48, + "probability": 0.4304 + }, + { + "start": 5249.54, + "end": 5255.12, + "probability": 0.2487 + }, + { + "start": 5255.12, + "end": 5258.08, + "probability": 0.2783 + }, + { + "start": 5258.38, + "end": 5263.62, + "probability": 0.8031 + }, + { + "start": 5264.32, + "end": 5269.58, + "probability": 0.7684 + }, + { + "start": 5269.82, + "end": 5271.06, + "probability": 0.9377 + }, + { + "start": 5271.3, + "end": 5272.44, + "probability": 0.6215 + }, + { + "start": 5272.68, + "end": 5276.44, + "probability": 0.8824 + }, + { + "start": 5276.98, + "end": 5278.34, + "probability": 0.7653 + }, + { + "start": 5278.56, + "end": 5283.16, + "probability": 0.7639 + }, + { + "start": 5283.28, + "end": 5283.64, + "probability": 0.4364 + }, + { + "start": 5283.66, + "end": 5288.02, + "probability": 0.967 + }, + { + "start": 5288.2, + "end": 5289.56, + "probability": 0.5954 + }, + { + "start": 5289.58, + "end": 5292.8, + "probability": 0.8861 + }, + { + "start": 5293.1, + "end": 5294.54, + "probability": 0.8716 + }, + { + "start": 5294.74, + "end": 5295.32, + "probability": 0.7732 + }, + { + "start": 5295.6, + "end": 5297.62, + "probability": 0.6635 + }, + { + "start": 5297.92, + "end": 5301.02, + "probability": 0.9825 + }, + { + "start": 5301.4, + "end": 5303.26, + "probability": 0.928 + }, + { + "start": 5305.0, + "end": 5310.9, + "probability": 0.7768 + }, + { + "start": 5310.9, + "end": 5312.32, + "probability": 0.6562 + }, + { + "start": 5312.78, + "end": 5313.02, + "probability": 0.2338 + }, + { + "start": 5313.14, + "end": 5316.76, + "probability": 0.9624 + }, + { + "start": 5317.02, + "end": 5317.9, + "probability": 0.9098 + }, + { + "start": 5318.58, + "end": 5319.22, + "probability": 0.6695 + }, + { + "start": 5319.46, + "end": 5323.12, + "probability": 0.4907 + }, + { + "start": 5323.12, + "end": 5323.12, + "probability": 0.3423 + }, + { + "start": 5323.12, + "end": 5323.42, + "probability": 0.211 + }, + { + "start": 5323.52, + "end": 5326.8, + "probability": 0.8101 + }, + { + "start": 5327.28, + "end": 5330.2, + "probability": 0.9597 + }, + { + "start": 5330.28, + "end": 5335.12, + "probability": 0.6596 + }, + { + "start": 5335.94, + "end": 5338.94, + "probability": 0.9429 + }, + { + "start": 5339.54, + "end": 5340.36, + "probability": 0.4998 + }, + { + "start": 5340.42, + "end": 5342.8, + "probability": 0.9319 + }, + { + "start": 5343.24, + "end": 5348.88, + "probability": 0.8826 + }, + { + "start": 5349.48, + "end": 5350.98, + "probability": 0.7659 + }, + { + "start": 5351.04, + "end": 5351.58, + "probability": 0.8923 + }, + { + "start": 5352.2, + "end": 5357.36, + "probability": 0.9461 + }, + { + "start": 5357.36, + "end": 5361.97, + "probability": 0.5745 + }, + { + "start": 5362.2, + "end": 5370.44, + "probability": 0.918 + }, + { + "start": 5371.06, + "end": 5372.16, + "probability": 0.8849 + }, + { + "start": 5372.58, + "end": 5373.9, + "probability": 0.7506 + }, + { + "start": 5374.08, + "end": 5379.22, + "probability": 0.9677 + }, + { + "start": 5379.5, + "end": 5379.6, + "probability": 0.426 + }, + { + "start": 5379.88, + "end": 5381.08, + "probability": 0.5903 + }, + { + "start": 5382.76, + "end": 5384.7, + "probability": 0.8126 + }, + { + "start": 5385.08, + "end": 5389.58, + "probability": 0.8835 + }, + { + "start": 5390.0, + "end": 5394.46, + "probability": 0.8702 + }, + { + "start": 5395.16, + "end": 5398.92, + "probability": 0.4592 + }, + { + "start": 5398.92, + "end": 5400.28, + "probability": 0.6708 + }, + { + "start": 5400.82, + "end": 5407.3, + "probability": 0.9352 + }, + { + "start": 5407.7, + "end": 5407.86, + "probability": 0.8003 + }, + { + "start": 5408.76, + "end": 5409.6, + "probability": 0.5347 + }, + { + "start": 5409.76, + "end": 5410.8, + "probability": 0.9001 + }, + { + "start": 5430.56, + "end": 5432.82, + "probability": 0.5034 + }, + { + "start": 5435.46, + "end": 5443.66, + "probability": 0.9615 + }, + { + "start": 5444.82, + "end": 5445.72, + "probability": 0.7984 + }, + { + "start": 5446.74, + "end": 5447.7, + "probability": 0.3592 + }, + { + "start": 5449.46, + "end": 5453.02, + "probability": 0.9746 + }, + { + "start": 5454.92, + "end": 5456.22, + "probability": 0.8855 + }, + { + "start": 5457.06, + "end": 5458.18, + "probability": 0.976 + }, + { + "start": 5459.46, + "end": 5459.94, + "probability": 0.6673 + }, + { + "start": 5460.04, + "end": 5462.48, + "probability": 0.7526 + }, + { + "start": 5462.48, + "end": 5466.18, + "probability": 0.9902 + }, + { + "start": 5466.64, + "end": 5471.26, + "probability": 0.9903 + }, + { + "start": 5472.34, + "end": 5475.08, + "probability": 0.5993 + }, + { + "start": 5475.08, + "end": 5475.64, + "probability": 0.8862 + }, + { + "start": 5475.84, + "end": 5479.96, + "probability": 0.9788 + }, + { + "start": 5480.88, + "end": 5482.88, + "probability": 0.8781 + }, + { + "start": 5484.04, + "end": 5485.12, + "probability": 0.8814 + }, + { + "start": 5485.28, + "end": 5490.02, + "probability": 0.9966 + }, + { + "start": 5490.6, + "end": 5493.04, + "probability": 0.9979 + }, + { + "start": 5493.82, + "end": 5497.84, + "probability": 0.9995 + }, + { + "start": 5498.48, + "end": 5503.02, + "probability": 0.9904 + }, + { + "start": 5503.08, + "end": 5505.3, + "probability": 0.9507 + }, + { + "start": 5506.3, + "end": 5509.8, + "probability": 0.6841 + }, + { + "start": 5509.8, + "end": 5513.14, + "probability": 0.9882 + }, + { + "start": 5513.48, + "end": 5517.42, + "probability": 0.9025 + }, + { + "start": 5517.96, + "end": 5520.92, + "probability": 0.8424 + }, + { + "start": 5521.32, + "end": 5526.2, + "probability": 0.9976 + }, + { + "start": 5526.92, + "end": 5532.68, + "probability": 0.7794 + }, + { + "start": 5533.22, + "end": 5536.54, + "probability": 0.7238 + }, + { + "start": 5538.1, + "end": 5540.3, + "probability": 0.7297 + }, + { + "start": 5541.78, + "end": 5544.74, + "probability": 0.7543 + }, + { + "start": 5546.31, + "end": 5548.34, + "probability": 0.4003 + }, + { + "start": 5549.3, + "end": 5549.75, + "probability": 0.8491 + }, + { + "start": 5550.06, + "end": 5554.16, + "probability": 0.9401 + }, + { + "start": 5555.02, + "end": 5557.24, + "probability": 0.6924 + }, + { + "start": 5557.46, + "end": 5560.48, + "probability": 0.96 + }, + { + "start": 5561.86, + "end": 5562.52, + "probability": 0.8381 + }, + { + "start": 5562.66, + "end": 5563.98, + "probability": 0.6713 + }, + { + "start": 5564.1, + "end": 5566.36, + "probability": 0.8604 + }, + { + "start": 5567.12, + "end": 5569.62, + "probability": 0.8881 + }, + { + "start": 5570.32, + "end": 5572.78, + "probability": 0.9756 + }, + { + "start": 5573.3, + "end": 5574.4, + "probability": 0.9298 + }, + { + "start": 5575.12, + "end": 5576.7, + "probability": 0.7711 + }, + { + "start": 5576.98, + "end": 5579.76, + "probability": 0.9882 + }, + { + "start": 5579.83, + "end": 5582.64, + "probability": 0.9929 + }, + { + "start": 5583.5, + "end": 5587.8, + "probability": 0.9915 + }, + { + "start": 5588.28, + "end": 5591.34, + "probability": 0.4866 + }, + { + "start": 5591.72, + "end": 5594.28, + "probability": 0.7681 + }, + { + "start": 5595.0, + "end": 5595.48, + "probability": 0.5757 + }, + { + "start": 5595.74, + "end": 5598.86, + "probability": 0.7719 + }, + { + "start": 5598.86, + "end": 5604.98, + "probability": 0.8899 + }, + { + "start": 5605.44, + "end": 5611.06, + "probability": 0.9726 + }, + { + "start": 5611.6, + "end": 5617.56, + "probability": 0.501 + }, + { + "start": 5618.36, + "end": 5621.32, + "probability": 0.979 + }, + { + "start": 5621.86, + "end": 5624.02, + "probability": 0.8896 + }, + { + "start": 5624.58, + "end": 5626.48, + "probability": 0.9913 + }, + { + "start": 5627.0, + "end": 5629.52, + "probability": 0.9528 + }, + { + "start": 5631.26, + "end": 5634.96, + "probability": 0.9789 + }, + { + "start": 5634.96, + "end": 5640.42, + "probability": 0.8008 + }, + { + "start": 5640.42, + "end": 5645.38, + "probability": 0.9647 + }, + { + "start": 5646.04, + "end": 5650.5, + "probability": 0.9582 + }, + { + "start": 5650.5, + "end": 5655.62, + "probability": 0.9009 + }, + { + "start": 5656.68, + "end": 5657.31, + "probability": 0.5 + }, + { + "start": 5658.28, + "end": 5660.38, + "probability": 0.9111 + }, + { + "start": 5662.5, + "end": 5662.98, + "probability": 0.9624 + }, + { + "start": 5663.68, + "end": 5666.02, + "probability": 0.7497 + }, + { + "start": 5666.78, + "end": 5669.04, + "probability": 0.9768 + }, + { + "start": 5669.46, + "end": 5670.34, + "probability": 0.9338 + }, + { + "start": 5672.14, + "end": 5673.42, + "probability": 0.9972 + }, + { + "start": 5674.0, + "end": 5674.66, + "probability": 0.5121 + }, + { + "start": 5675.52, + "end": 5675.62, + "probability": 0.0374 + }, + { + "start": 5675.84, + "end": 5678.84, + "probability": 0.996 + }, + { + "start": 5678.92, + "end": 5679.48, + "probability": 0.6041 + }, + { + "start": 5679.78, + "end": 5680.66, + "probability": 0.6954 + }, + { + "start": 5680.92, + "end": 5681.02, + "probability": 0.4097 + }, + { + "start": 5681.02, + "end": 5684.98, + "probability": 0.7147 + }, + { + "start": 5685.06, + "end": 5686.62, + "probability": 0.2187 + }, + { + "start": 5686.62, + "end": 5689.84, + "probability": 0.4269 + }, + { + "start": 5690.22, + "end": 5692.44, + "probability": 0.9846 + }, + { + "start": 5692.98, + "end": 5694.34, + "probability": 0.4976 + }, + { + "start": 5694.56, + "end": 5695.1, + "probability": 0.6434 + }, + { + "start": 5695.1, + "end": 5695.58, + "probability": 0.6877 + }, + { + "start": 5703.64, + "end": 5703.96, + "probability": 0.1914 + }, + { + "start": 5710.04, + "end": 5710.66, + "probability": 0.4969 + }, + { + "start": 5710.96, + "end": 5712.4, + "probability": 0.6237 + }, + { + "start": 5712.5, + "end": 5715.5, + "probability": 0.862 + }, + { + "start": 5715.56, + "end": 5716.78, + "probability": 0.8752 + }, + { + "start": 5717.66, + "end": 5718.0, + "probability": 0.6424 + }, + { + "start": 5718.02, + "end": 5722.16, + "probability": 0.4606 + }, + { + "start": 5722.34, + "end": 5723.9, + "probability": 0.6744 + }, + { + "start": 5724.04, + "end": 5724.76, + "probability": 0.8289 + }, + { + "start": 5726.78, + "end": 5727.68, + "probability": 0.8048 + }, + { + "start": 5729.92, + "end": 5732.48, + "probability": 0.6242 + }, + { + "start": 5733.56, + "end": 5737.4, + "probability": 0.7488 + }, + { + "start": 5738.58, + "end": 5745.36, + "probability": 0.7757 + }, + { + "start": 5746.24, + "end": 5750.82, + "probability": 0.9943 + }, + { + "start": 5751.08, + "end": 5753.92, + "probability": 0.9529 + }, + { + "start": 5754.9, + "end": 5757.3, + "probability": 0.8506 + }, + { + "start": 5759.06, + "end": 5763.94, + "probability": 0.9022 + }, + { + "start": 5764.6, + "end": 5769.6, + "probability": 0.9821 + }, + { + "start": 5770.36, + "end": 5776.58, + "probability": 0.8954 + }, + { + "start": 5776.58, + "end": 5779.74, + "probability": 0.9958 + }, + { + "start": 5780.74, + "end": 5784.18, + "probability": 0.9911 + }, + { + "start": 5785.14, + "end": 5788.24, + "probability": 0.9864 + }, + { + "start": 5788.88, + "end": 5790.52, + "probability": 0.9474 + }, + { + "start": 5790.62, + "end": 5792.74, + "probability": 0.1914 + }, + { + "start": 5792.98, + "end": 5795.44, + "probability": 0.8074 + }, + { + "start": 5796.44, + "end": 5801.38, + "probability": 0.9863 + }, + { + "start": 5801.92, + "end": 5805.04, + "probability": 0.9594 + }, + { + "start": 5805.78, + "end": 5808.9, + "probability": 0.8985 + }, + { + "start": 5809.36, + "end": 5812.24, + "probability": 0.9751 + }, + { + "start": 5812.98, + "end": 5814.48, + "probability": 0.8791 + }, + { + "start": 5814.7, + "end": 5816.22, + "probability": 0.9635 + }, + { + "start": 5816.94, + "end": 5822.96, + "probability": 0.734 + }, + { + "start": 5823.14, + "end": 5824.94, + "probability": 0.8098 + }, + { + "start": 5825.6, + "end": 5827.59, + "probability": 0.9541 + }, + { + "start": 5829.06, + "end": 5832.74, + "probability": 0.9364 + }, + { + "start": 5833.26, + "end": 5836.58, + "probability": 0.8127 + }, + { + "start": 5837.02, + "end": 5841.46, + "probability": 0.9946 + }, + { + "start": 5841.96, + "end": 5842.14, + "probability": 0.9207 + }, + { + "start": 5842.78, + "end": 5848.28, + "probability": 0.9859 + }, + { + "start": 5848.94, + "end": 5857.92, + "probability": 0.8188 + }, + { + "start": 5858.16, + "end": 5859.66, + "probability": 0.9498 + }, + { + "start": 5861.14, + "end": 5864.96, + "probability": 0.7239 + }, + { + "start": 5866.05, + "end": 5869.62, + "probability": 0.715 + }, + { + "start": 5870.6, + "end": 5875.66, + "probability": 0.997 + }, + { + "start": 5875.66, + "end": 5880.58, + "probability": 0.9795 + }, + { + "start": 5883.02, + "end": 5889.72, + "probability": 0.7927 + }, + { + "start": 5890.92, + "end": 5894.4, + "probability": 0.9077 + }, + { + "start": 5894.9, + "end": 5898.95, + "probability": 0.8764 + }, + { + "start": 5899.82, + "end": 5902.04, + "probability": 0.8071 + }, + { + "start": 5902.56, + "end": 5906.14, + "probability": 0.9946 + }, + { + "start": 5906.7, + "end": 5909.98, + "probability": 0.9926 + }, + { + "start": 5910.54, + "end": 5913.74, + "probability": 0.9507 + }, + { + "start": 5914.54, + "end": 5917.52, + "probability": 0.991 + }, + { + "start": 5918.14, + "end": 5921.7, + "probability": 0.9901 + }, + { + "start": 5921.7, + "end": 5925.98, + "probability": 0.9335 + }, + { + "start": 5926.3, + "end": 5931.4, + "probability": 0.986 + }, + { + "start": 5931.4, + "end": 5939.76, + "probability": 0.9932 + }, + { + "start": 5940.02, + "end": 5944.9, + "probability": 0.9776 + }, + { + "start": 5945.34, + "end": 5945.92, + "probability": 0.6127 + }, + { + "start": 5946.38, + "end": 5947.42, + "probability": 0.6344 + }, + { + "start": 5947.78, + "end": 5949.04, + "probability": 0.3793 + }, + { + "start": 5949.28, + "end": 5949.92, + "probability": 0.487 + }, + { + "start": 5950.88, + "end": 5950.9, + "probability": 0.1294 + }, + { + "start": 5950.9, + "end": 5952.63, + "probability": 0.8474 + }, + { + "start": 5954.0, + "end": 5954.1, + "probability": 0.8616 + }, + { + "start": 5955.48, + "end": 5956.86, + "probability": 0.7123 + }, + { + "start": 5957.18, + "end": 5959.12, + "probability": 0.7057 + }, + { + "start": 5960.08, + "end": 5960.96, + "probability": 0.868 + }, + { + "start": 5962.08, + "end": 5963.62, + "probability": 0.5526 + }, + { + "start": 5964.74, + "end": 5966.02, + "probability": 0.899 + }, + { + "start": 5966.94, + "end": 5967.64, + "probability": 0.9168 + }, + { + "start": 5968.18, + "end": 5968.76, + "probability": 0.9377 + }, + { + "start": 5968.92, + "end": 5969.84, + "probability": 0.6927 + }, + { + "start": 5970.14, + "end": 5970.82, + "probability": 0.9738 + }, + { + "start": 5970.86, + "end": 5971.6, + "probability": 0.8101 + }, + { + "start": 5972.06, + "end": 5972.16, + "probability": 0.7552 + }, + { + "start": 5973.6, + "end": 5974.16, + "probability": 0.8808 + }, + { + "start": 5974.58, + "end": 5975.02, + "probability": 0.1343 + }, + { + "start": 5975.12, + "end": 5975.5, + "probability": 0.7762 + }, + { + "start": 5986.72, + "end": 5989.0, + "probability": 0.8116 + }, + { + "start": 5989.12, + "end": 5989.76, + "probability": 0.681 + }, + { + "start": 5989.84, + "end": 5993.4, + "probability": 0.9316 + }, + { + "start": 5994.46, + "end": 5996.34, + "probability": 0.9766 + }, + { + "start": 5997.26, + "end": 5999.59, + "probability": 0.9868 + }, + { + "start": 6000.3, + "end": 6002.24, + "probability": 0.6886 + }, + { + "start": 6002.4, + "end": 6004.44, + "probability": 0.6653 + }, + { + "start": 6004.88, + "end": 6008.32, + "probability": 0.8293 + }, + { + "start": 6009.66, + "end": 6009.76, + "probability": 0.5002 + }, + { + "start": 6011.8, + "end": 6017.9, + "probability": 0.7159 + }, + { + "start": 6018.32, + "end": 6023.28, + "probability": 0.9596 + }, + { + "start": 6023.7, + "end": 6029.7, + "probability": 0.9941 + }, + { + "start": 6030.1, + "end": 6032.38, + "probability": 0.8333 + }, + { + "start": 6033.04, + "end": 6034.26, + "probability": 0.836 + }, + { + "start": 6034.86, + "end": 6038.02, + "probability": 0.9439 + }, + { + "start": 6038.2, + "end": 6038.38, + "probability": 0.5829 + }, + { + "start": 6039.04, + "end": 6039.48, + "probability": 0.4852 + }, + { + "start": 6039.52, + "end": 6042.18, + "probability": 0.7847 + }, + { + "start": 6042.46, + "end": 6043.0, + "probability": 0.9608 + }, + { + "start": 6043.18, + "end": 6044.22, + "probability": 0.8295 + }, + { + "start": 6044.92, + "end": 6048.6, + "probability": 0.5598 + }, + { + "start": 6049.64, + "end": 6051.02, + "probability": 0.9908 + }, + { + "start": 6052.82, + "end": 6052.92, + "probability": 0.0466 + }, + { + "start": 6052.92, + "end": 6053.94, + "probability": 0.6102 + }, + { + "start": 6055.42, + "end": 6058.84, + "probability": 0.8837 + }, + { + "start": 6060.54, + "end": 6061.18, + "probability": 0.9415 + }, + { + "start": 6063.16, + "end": 6065.8, + "probability": 0.8646 + }, + { + "start": 6066.94, + "end": 6067.18, + "probability": 0.7689 + }, + { + "start": 6067.74, + "end": 6068.84, + "probability": 0.873 + }, + { + "start": 6069.92, + "end": 6070.76, + "probability": 0.9046 + }, + { + "start": 6070.92, + "end": 6071.4, + "probability": 0.9894 + }, + { + "start": 6071.62, + "end": 6072.18, + "probability": 0.9803 + }, + { + "start": 6072.24, + "end": 6072.86, + "probability": 0.911 + }, + { + "start": 6072.9, + "end": 6073.34, + "probability": 0.9316 + }, + { + "start": 6073.46, + "end": 6073.96, + "probability": 0.8703 + }, + { + "start": 6074.08, + "end": 6074.6, + "probability": 0.6574 + }, + { + "start": 6074.72, + "end": 6075.18, + "probability": 0.9803 + }, + { + "start": 6075.86, + "end": 6079.6, + "probability": 0.9503 + }, + { + "start": 6080.6, + "end": 6083.4, + "probability": 0.9432 + }, + { + "start": 6084.2, + "end": 6087.12, + "probability": 0.9116 + }, + { + "start": 6087.24, + "end": 6090.6, + "probability": 0.9321 + }, + { + "start": 6091.14, + "end": 6093.49, + "probability": 0.3843 + }, + { + "start": 6094.18, + "end": 6094.92, + "probability": 0.5135 + }, + { + "start": 6095.04, + "end": 6095.7, + "probability": 0.6374 + }, + { + "start": 6095.72, + "end": 6096.18, + "probability": 0.3674 + }, + { + "start": 6096.18, + "end": 6096.4, + "probability": 0.4111 + }, + { + "start": 6103.92, + "end": 6103.92, + "probability": 0.0191 + }, + { + "start": 6103.92, + "end": 6103.92, + "probability": 0.0314 + }, + { + "start": 6103.92, + "end": 6103.92, + "probability": 0.0983 + }, + { + "start": 6103.92, + "end": 6103.92, + "probability": 0.0284 + }, + { + "start": 6103.92, + "end": 6103.92, + "probability": 0.0356 + }, + { + "start": 6111.72, + "end": 6116.7, + "probability": 0.3806 + }, + { + "start": 6119.3, + "end": 6122.14, + "probability": 0.227 + }, + { + "start": 6122.22, + "end": 6123.46, + "probability": 0.9577 + }, + { + "start": 6124.74, + "end": 6126.86, + "probability": 0.3784 + }, + { + "start": 6126.94, + "end": 6127.8, + "probability": 0.5127 + }, + { + "start": 6127.9, + "end": 6129.04, + "probability": 0.9541 + }, + { + "start": 6129.12, + "end": 6133.9, + "probability": 0.9639 + }, + { + "start": 6134.14, + "end": 6135.8, + "probability": 0.8218 + }, + { + "start": 6136.14, + "end": 6137.24, + "probability": 0.6277 + }, + { + "start": 6137.34, + "end": 6138.38, + "probability": 0.5721 + }, + { + "start": 6138.46, + "end": 6140.01, + "probability": 0.6796 + }, + { + "start": 6140.36, + "end": 6141.8, + "probability": 0.874 + }, + { + "start": 6142.52, + "end": 6145.44, + "probability": 0.8206 + }, + { + "start": 6145.5, + "end": 6150.06, + "probability": 0.8407 + }, + { + "start": 6150.28, + "end": 6152.12, + "probability": 0.1771 + }, + { + "start": 6152.36, + "end": 6153.5, + "probability": 0.5743 + }, + { + "start": 6153.5, + "end": 6153.72, + "probability": 0.7918 + }, + { + "start": 6154.74, + "end": 6156.1, + "probability": 0.566 + }, + { + "start": 6156.44, + "end": 6156.56, + "probability": 0.0088 + } + ], + "segments_count": 2043, + "words_count": 10422, + "avg_words_per_segment": 5.1013, + "avg_segment_duration": 2.2482, + "avg_words_per_minute": 98.5815, + "plenum_id": "56895", + "duration": 6343.18, + "title": null, + "plenum_date": "2016-12-06" +} \ No newline at end of file