diff --git "a/64633/metadata.json" "b/64633/metadata.json" new file mode 100644--- /dev/null +++ "b/64633/metadata.json" @@ -0,0 +1,11112 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "64633", + "quality_score": 0.9065, + "per_segment_quality_scores": [ + { + "start": 67.98, + "end": 69.32, + "probability": 0.0397 + }, + { + "start": 71.59, + "end": 75.5, + "probability": 0.0171 + }, + { + "start": 77.25, + "end": 77.96, + "probability": 0.0115 + }, + { + "start": 85.38, + "end": 87.66, + "probability": 0.0831 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.32, + "end": 123.0, + "probability": 0.4031 + }, + { + "start": 123.56, + "end": 125.34, + "probability": 0.7812 + }, + { + "start": 125.58, + "end": 126.14, + "probability": 0.8037 + }, + { + "start": 126.22, + "end": 127.96, + "probability": 0.9214 + }, + { + "start": 128.76, + "end": 132.52, + "probability": 0.7236 + }, + { + "start": 132.7, + "end": 134.8, + "probability": 0.7703 + }, + { + "start": 135.32, + "end": 137.4, + "probability": 0.629 + }, + { + "start": 137.96, + "end": 143.0, + "probability": 0.9541 + }, + { + "start": 143.32, + "end": 144.46, + "probability": 0.7384 + }, + { + "start": 144.52, + "end": 149.02, + "probability": 0.9639 + }, + { + "start": 149.28, + "end": 149.6, + "probability": 0.8521 + }, + { + "start": 150.6, + "end": 155.16, + "probability": 0.9868 + }, + { + "start": 155.48, + "end": 158.31, + "probability": 0.7957 + }, + { + "start": 158.74, + "end": 161.46, + "probability": 0.9726 + }, + { + "start": 161.96, + "end": 164.58, + "probability": 0.7424 + }, + { + "start": 164.88, + "end": 165.52, + "probability": 0.863 + }, + { + "start": 165.62, + "end": 165.98, + "probability": 0.8212 + }, + { + "start": 166.82, + "end": 169.18, + "probability": 0.9329 + }, + { + "start": 169.44, + "end": 172.14, + "probability": 0.7823 + }, + { + "start": 172.86, + "end": 174.82, + "probability": 0.8568 + }, + { + "start": 178.32, + "end": 181.38, + "probability": 0.7291 + }, + { + "start": 182.22, + "end": 183.34, + "probability": 0.8027 + }, + { + "start": 184.58, + "end": 186.68, + "probability": 0.861 + }, + { + "start": 187.74, + "end": 188.72, + "probability": 0.2718 + }, + { + "start": 191.18, + "end": 196.58, + "probability": 0.8005 + }, + { + "start": 197.88, + "end": 201.22, + "probability": 0.626 + }, + { + "start": 202.18, + "end": 204.52, + "probability": 0.7778 + }, + { + "start": 205.78, + "end": 209.54, + "probability": 0.8727 + }, + { + "start": 210.76, + "end": 212.64, + "probability": 0.9321 + }, + { + "start": 213.08, + "end": 215.42, + "probability": 0.7398 + }, + { + "start": 216.74, + "end": 218.96, + "probability": 0.5203 + }, + { + "start": 219.64, + "end": 224.04, + "probability": 0.9036 + }, + { + "start": 225.58, + "end": 227.62, + "probability": 0.7916 + }, + { + "start": 227.66, + "end": 233.28, + "probability": 0.9771 + }, + { + "start": 233.4, + "end": 235.56, + "probability": 0.7355 + }, + { + "start": 236.5, + "end": 237.44, + "probability": 0.3466 + }, + { + "start": 238.34, + "end": 245.08, + "probability": 0.6814 + }, + { + "start": 245.76, + "end": 250.24, + "probability": 0.9198 + }, + { + "start": 251.42, + "end": 255.74, + "probability": 0.575 + }, + { + "start": 256.16, + "end": 261.23, + "probability": 0.8949 + }, + { + "start": 261.68, + "end": 262.84, + "probability": 0.7858 + }, + { + "start": 262.94, + "end": 263.28, + "probability": 0.7844 + }, + { + "start": 263.84, + "end": 267.72, + "probability": 0.7872 + }, + { + "start": 267.86, + "end": 269.34, + "probability": 0.9194 + }, + { + "start": 269.42, + "end": 269.78, + "probability": 0.4612 + }, + { + "start": 269.8, + "end": 270.22, + "probability": 0.7676 + }, + { + "start": 270.34, + "end": 270.76, + "probability": 0.5864 + }, + { + "start": 270.92, + "end": 272.42, + "probability": 0.9443 + }, + { + "start": 273.08, + "end": 273.76, + "probability": 0.6571 + }, + { + "start": 274.06, + "end": 275.14, + "probability": 0.7873 + }, + { + "start": 275.26, + "end": 276.1, + "probability": 0.8965 + }, + { + "start": 276.36, + "end": 277.22, + "probability": 0.53 + }, + { + "start": 277.7, + "end": 279.8, + "probability": 0.835 + }, + { + "start": 280.64, + "end": 282.32, + "probability": 0.8811 + }, + { + "start": 283.24, + "end": 286.72, + "probability": 0.9972 + }, + { + "start": 287.48, + "end": 290.1, + "probability": 0.7494 + }, + { + "start": 290.82, + "end": 293.58, + "probability": 0.9022 + }, + { + "start": 294.34, + "end": 296.16, + "probability": 0.9117 + }, + { + "start": 297.1, + "end": 300.68, + "probability": 0.9799 + }, + { + "start": 301.18, + "end": 303.94, + "probability": 0.9866 + }, + { + "start": 304.58, + "end": 305.92, + "probability": 0.95 + }, + { + "start": 306.1, + "end": 308.1, + "probability": 0.9814 + }, + { + "start": 308.48, + "end": 309.92, + "probability": 0.8928 + }, + { + "start": 310.74, + "end": 314.58, + "probability": 0.8882 + }, + { + "start": 315.24, + "end": 316.28, + "probability": 0.9343 + }, + { + "start": 317.36, + "end": 319.45, + "probability": 0.9239 + }, + { + "start": 320.64, + "end": 322.34, + "probability": 0.7692 + }, + { + "start": 322.62, + "end": 323.28, + "probability": 0.7302 + }, + { + "start": 323.54, + "end": 326.02, + "probability": 0.7892 + }, + { + "start": 326.34, + "end": 327.26, + "probability": 0.9125 + }, + { + "start": 328.12, + "end": 329.6, + "probability": 0.9517 + }, + { + "start": 329.66, + "end": 332.24, + "probability": 0.9994 + }, + { + "start": 332.78, + "end": 335.74, + "probability": 0.9997 + }, + { + "start": 336.02, + "end": 337.66, + "probability": 0.9833 + }, + { + "start": 338.1, + "end": 340.02, + "probability": 0.9855 + }, + { + "start": 340.48, + "end": 345.86, + "probability": 0.9728 + }, + { + "start": 346.5, + "end": 352.34, + "probability": 0.9868 + }, + { + "start": 352.98, + "end": 357.14, + "probability": 0.9895 + }, + { + "start": 357.3, + "end": 358.1, + "probability": 0.7645 + }, + { + "start": 358.68, + "end": 361.76, + "probability": 0.7043 + }, + { + "start": 362.34, + "end": 364.32, + "probability": 0.9746 + }, + { + "start": 364.86, + "end": 366.7, + "probability": 0.9973 + }, + { + "start": 367.52, + "end": 367.94, + "probability": 0.4329 + }, + { + "start": 368.06, + "end": 372.74, + "probability": 0.99 + }, + { + "start": 373.6, + "end": 375.6, + "probability": 0.8264 + }, + { + "start": 377.94, + "end": 380.24, + "probability": 0.8203 + }, + { + "start": 380.34, + "end": 380.7, + "probability": 0.7537 + }, + { + "start": 380.74, + "end": 381.04, + "probability": 0.8044 + }, + { + "start": 381.04, + "end": 381.7, + "probability": 0.7666 + }, + { + "start": 382.24, + "end": 384.62, + "probability": 0.8938 + }, + { + "start": 385.74, + "end": 386.62, + "probability": 0.5655 + }, + { + "start": 386.74, + "end": 387.57, + "probability": 0.8783 + }, + { + "start": 387.8, + "end": 388.3, + "probability": 0.7587 + }, + { + "start": 388.58, + "end": 389.5, + "probability": 0.5554 + }, + { + "start": 391.52, + "end": 393.94, + "probability": 0.8893 + }, + { + "start": 394.28, + "end": 394.8, + "probability": 0.6243 + }, + { + "start": 395.14, + "end": 396.22, + "probability": 0.5188 + }, + { + "start": 397.96, + "end": 402.6, + "probability": 0.8973 + }, + { + "start": 403.4, + "end": 405.94, + "probability": 0.9141 + }, + { + "start": 406.6, + "end": 409.84, + "probability": 0.9846 + }, + { + "start": 411.34, + "end": 412.62, + "probability": 0.7887 + }, + { + "start": 413.26, + "end": 417.06, + "probability": 0.8907 + }, + { + "start": 417.86, + "end": 422.18, + "probability": 0.8669 + }, + { + "start": 423.24, + "end": 424.58, + "probability": 0.9585 + }, + { + "start": 425.28, + "end": 426.34, + "probability": 0.9782 + }, + { + "start": 427.14, + "end": 427.98, + "probability": 0.7806 + }, + { + "start": 429.48, + "end": 430.04, + "probability": 0.2769 + }, + { + "start": 431.18, + "end": 432.86, + "probability": 0.9244 + }, + { + "start": 433.92, + "end": 436.14, + "probability": 0.8946 + }, + { + "start": 436.84, + "end": 437.64, + "probability": 0.5933 + }, + { + "start": 438.08, + "end": 440.04, + "probability": 0.9565 + }, + { + "start": 440.52, + "end": 442.6, + "probability": 0.3927 + }, + { + "start": 442.66, + "end": 443.54, + "probability": 0.4814 + }, + { + "start": 444.5, + "end": 448.92, + "probability": 0.8268 + }, + { + "start": 449.6, + "end": 452.04, + "probability": 0.883 + }, + { + "start": 452.82, + "end": 453.7, + "probability": 0.8543 + }, + { + "start": 454.48, + "end": 455.7, + "probability": 0.541 + }, + { + "start": 455.7, + "end": 458.42, + "probability": 0.6004 + }, + { + "start": 458.6, + "end": 459.54, + "probability": 0.8162 + }, + { + "start": 460.42, + "end": 461.38, + "probability": 0.8524 + }, + { + "start": 462.14, + "end": 462.88, + "probability": 0.803 + }, + { + "start": 463.96, + "end": 468.06, + "probability": 0.9829 + }, + { + "start": 469.54, + "end": 472.88, + "probability": 0.8167 + }, + { + "start": 473.64, + "end": 476.12, + "probability": 0.9883 + }, + { + "start": 477.24, + "end": 478.96, + "probability": 0.9648 + }, + { + "start": 480.08, + "end": 485.0, + "probability": 0.777 + }, + { + "start": 486.54, + "end": 487.66, + "probability": 0.6958 + }, + { + "start": 489.17, + "end": 492.18, + "probability": 0.9932 + }, + { + "start": 492.86, + "end": 496.72, + "probability": 0.9517 + }, + { + "start": 497.34, + "end": 497.77, + "probability": 0.3299 + }, + { + "start": 499.24, + "end": 499.7, + "probability": 0.9381 + }, + { + "start": 500.44, + "end": 503.52, + "probability": 0.8115 + }, + { + "start": 503.82, + "end": 505.88, + "probability": 0.8437 + }, + { + "start": 506.5, + "end": 509.78, + "probability": 0.7194 + }, + { + "start": 510.4, + "end": 511.46, + "probability": 0.5959 + }, + { + "start": 512.16, + "end": 514.48, + "probability": 0.9671 + }, + { + "start": 514.86, + "end": 516.88, + "probability": 0.832 + }, + { + "start": 517.3, + "end": 520.94, + "probability": 0.8896 + }, + { + "start": 521.84, + "end": 524.38, + "probability": 0.796 + }, + { + "start": 524.58, + "end": 527.48, + "probability": 0.8889 + }, + { + "start": 527.98, + "end": 528.58, + "probability": 0.5359 + }, + { + "start": 529.34, + "end": 531.56, + "probability": 0.8135 + }, + { + "start": 531.96, + "end": 533.37, + "probability": 0.7182 + }, + { + "start": 534.98, + "end": 537.7, + "probability": 0.9699 + }, + { + "start": 538.74, + "end": 543.08, + "probability": 0.9911 + }, + { + "start": 543.3, + "end": 544.22, + "probability": 0.9116 + }, + { + "start": 546.04, + "end": 548.24, + "probability": 0.6749 + }, + { + "start": 548.92, + "end": 553.88, + "probability": 0.9698 + }, + { + "start": 554.9, + "end": 557.88, + "probability": 0.9725 + }, + { + "start": 558.42, + "end": 559.72, + "probability": 0.9719 + }, + { + "start": 560.48, + "end": 561.04, + "probability": 0.4666 + }, + { + "start": 561.18, + "end": 565.64, + "probability": 0.9924 + }, + { + "start": 566.32, + "end": 568.05, + "probability": 0.7114 + }, + { + "start": 568.8, + "end": 572.74, + "probability": 0.993 + }, + { + "start": 573.3, + "end": 575.18, + "probability": 0.9763 + }, + { + "start": 575.74, + "end": 576.94, + "probability": 0.9338 + }, + { + "start": 577.87, + "end": 580.0, + "probability": 0.8834 + }, + { + "start": 580.26, + "end": 580.76, + "probability": 0.1335 + }, + { + "start": 581.38, + "end": 585.54, + "probability": 0.8714 + }, + { + "start": 586.02, + "end": 589.94, + "probability": 0.7522 + }, + { + "start": 590.44, + "end": 591.8, + "probability": 0.5349 + }, + { + "start": 592.22, + "end": 593.88, + "probability": 0.7233 + }, + { + "start": 594.04, + "end": 596.72, + "probability": 0.5745 + }, + { + "start": 596.76, + "end": 597.84, + "probability": 0.3778 + }, + { + "start": 597.92, + "end": 601.86, + "probability": 0.9449 + }, + { + "start": 602.58, + "end": 605.3, + "probability": 0.9903 + }, + { + "start": 605.3, + "end": 608.28, + "probability": 0.5998 + }, + { + "start": 608.82, + "end": 611.38, + "probability": 0.9976 + }, + { + "start": 611.88, + "end": 613.58, + "probability": 0.9678 + }, + { + "start": 614.18, + "end": 617.12, + "probability": 0.9373 + }, + { + "start": 617.12, + "end": 620.82, + "probability": 0.9449 + }, + { + "start": 621.24, + "end": 621.46, + "probability": 0.7743 + }, + { + "start": 622.02, + "end": 624.16, + "probability": 0.8122 + }, + { + "start": 624.8, + "end": 627.3, + "probability": 0.6327 + }, + { + "start": 627.36, + "end": 628.78, + "probability": 0.8228 + }, + { + "start": 639.98, + "end": 640.76, + "probability": 0.4219 + }, + { + "start": 641.04, + "end": 642.53, + "probability": 0.6458 + }, + { + "start": 642.78, + "end": 648.6, + "probability": 0.8927 + }, + { + "start": 649.62, + "end": 651.74, + "probability": 0.9723 + }, + { + "start": 652.28, + "end": 653.26, + "probability": 0.8617 + }, + { + "start": 654.22, + "end": 656.72, + "probability": 0.8542 + }, + { + "start": 657.46, + "end": 660.47, + "probability": 0.9364 + }, + { + "start": 662.42, + "end": 663.76, + "probability": 0.6826 + }, + { + "start": 665.02, + "end": 666.74, + "probability": 0.7231 + }, + { + "start": 667.86, + "end": 670.54, + "probability": 0.9585 + }, + { + "start": 671.96, + "end": 673.68, + "probability": 0.9657 + }, + { + "start": 674.24, + "end": 675.08, + "probability": 0.9131 + }, + { + "start": 675.84, + "end": 678.82, + "probability": 0.967 + }, + { + "start": 679.82, + "end": 682.66, + "probability": 0.8884 + }, + { + "start": 683.18, + "end": 688.16, + "probability": 0.9956 + }, + { + "start": 688.64, + "end": 689.36, + "probability": 0.7563 + }, + { + "start": 689.82, + "end": 694.03, + "probability": 0.905 + }, + { + "start": 695.78, + "end": 698.88, + "probability": 0.9569 + }, + { + "start": 699.44, + "end": 701.1, + "probability": 0.5247 + }, + { + "start": 702.3, + "end": 703.66, + "probability": 0.8447 + }, + { + "start": 704.34, + "end": 707.16, + "probability": 0.1398 + }, + { + "start": 707.16, + "end": 713.24, + "probability": 0.8019 + }, + { + "start": 714.98, + "end": 717.39, + "probability": 0.4265 + }, + { + "start": 718.36, + "end": 719.86, + "probability": 0.6653 + }, + { + "start": 720.9, + "end": 722.02, + "probability": 0.8122 + }, + { + "start": 722.06, + "end": 724.0, + "probability": 0.9565 + }, + { + "start": 724.5, + "end": 728.02, + "probability": 0.8773 + }, + { + "start": 728.42, + "end": 733.34, + "probability": 0.8676 + }, + { + "start": 733.84, + "end": 734.52, + "probability": 0.7636 + }, + { + "start": 735.12, + "end": 735.12, + "probability": 0.3159 + }, + { + "start": 735.12, + "end": 735.14, + "probability": 0.3042 + }, + { + "start": 735.14, + "end": 735.88, + "probability": 0.7612 + }, + { + "start": 736.06, + "end": 737.34, + "probability": 0.8234 + }, + { + "start": 737.54, + "end": 738.3, + "probability": 0.6384 + }, + { + "start": 738.4, + "end": 739.62, + "probability": 0.9388 + }, + { + "start": 740.56, + "end": 742.32, + "probability": 0.8638 + }, + { + "start": 742.46, + "end": 743.72, + "probability": 0.8681 + }, + { + "start": 744.28, + "end": 747.16, + "probability": 0.6635 + }, + { + "start": 747.82, + "end": 750.54, + "probability": 0.7014 + }, + { + "start": 751.32, + "end": 754.94, + "probability": 0.9131 + }, + { + "start": 755.5, + "end": 758.8, + "probability": 0.6684 + }, + { + "start": 759.46, + "end": 762.78, + "probability": 0.9792 + }, + { + "start": 763.34, + "end": 765.52, + "probability": 0.9839 + }, + { + "start": 766.2, + "end": 768.14, + "probability": 0.9926 + }, + { + "start": 768.8, + "end": 771.24, + "probability": 0.9627 + }, + { + "start": 771.34, + "end": 773.56, + "probability": 0.9766 + }, + { + "start": 773.58, + "end": 776.88, + "probability": 0.9512 + }, + { + "start": 776.94, + "end": 777.68, + "probability": 0.6713 + }, + { + "start": 778.3, + "end": 779.84, + "probability": 0.957 + }, + { + "start": 780.46, + "end": 784.82, + "probability": 0.9104 + }, + { + "start": 785.34, + "end": 787.14, + "probability": 0.821 + }, + { + "start": 787.54, + "end": 788.76, + "probability": 0.8162 + }, + { + "start": 789.18, + "end": 790.6, + "probability": 0.9851 + }, + { + "start": 791.18, + "end": 794.44, + "probability": 0.8884 + }, + { + "start": 795.0, + "end": 797.44, + "probability": 0.7427 + }, + { + "start": 797.96, + "end": 798.82, + "probability": 0.9087 + }, + { + "start": 799.38, + "end": 800.16, + "probability": 0.6068 + }, + { + "start": 800.54, + "end": 803.02, + "probability": 0.7683 + }, + { + "start": 805.62, + "end": 808.02, + "probability": 0.686 + }, + { + "start": 812.32, + "end": 816.08, + "probability": 0.9627 + }, + { + "start": 817.02, + "end": 826.08, + "probability": 0.9912 + }, + { + "start": 826.46, + "end": 826.92, + "probability": 0.2301 + }, + { + "start": 827.84, + "end": 828.4, + "probability": 0.6954 + }, + { + "start": 828.54, + "end": 829.16, + "probability": 0.7622 + }, + { + "start": 829.32, + "end": 830.88, + "probability": 0.3782 + }, + { + "start": 831.06, + "end": 831.62, + "probability": 0.4743 + }, + { + "start": 832.48, + "end": 837.6, + "probability": 0.8762 + }, + { + "start": 837.72, + "end": 845.36, + "probability": 0.8168 + }, + { + "start": 846.16, + "end": 846.7, + "probability": 0.384 + }, + { + "start": 847.48, + "end": 849.44, + "probability": 0.4714 + }, + { + "start": 851.16, + "end": 851.94, + "probability": 0.6057 + }, + { + "start": 852.3, + "end": 853.2, + "probability": 0.3912 + }, + { + "start": 853.28, + "end": 855.46, + "probability": 0.9955 + }, + { + "start": 855.68, + "end": 856.34, + "probability": 0.5996 + }, + { + "start": 856.46, + "end": 856.98, + "probability": 0.6071 + }, + { + "start": 857.04, + "end": 857.62, + "probability": 0.8605 + }, + { + "start": 857.78, + "end": 865.36, + "probability": 0.8471 + }, + { + "start": 866.54, + "end": 874.01, + "probability": 0.954 + }, + { + "start": 875.56, + "end": 876.84, + "probability": 0.4412 + }, + { + "start": 878.18, + "end": 883.14, + "probability": 0.7654 + }, + { + "start": 883.86, + "end": 884.9, + "probability": 0.7082 + }, + { + "start": 885.42, + "end": 887.18, + "probability": 0.9678 + }, + { + "start": 887.86, + "end": 892.34, + "probability": 0.7801 + }, + { + "start": 893.42, + "end": 894.6, + "probability": 0.3863 + }, + { + "start": 896.1, + "end": 897.28, + "probability": 0.297 + }, + { + "start": 897.46, + "end": 898.82, + "probability": 0.7092 + }, + { + "start": 899.34, + "end": 903.68, + "probability": 0.6644 + }, + { + "start": 903.72, + "end": 905.92, + "probability": 0.9294 + }, + { + "start": 906.34, + "end": 907.14, + "probability": 0.7846 + }, + { + "start": 907.84, + "end": 912.67, + "probability": 0.9391 + }, + { + "start": 913.18, + "end": 916.19, + "probability": 0.836 + }, + { + "start": 916.42, + "end": 917.52, + "probability": 0.9573 + }, + { + "start": 918.22, + "end": 920.1, + "probability": 0.5771 + }, + { + "start": 920.8, + "end": 923.47, + "probability": 0.9966 + }, + { + "start": 924.9, + "end": 927.86, + "probability": 0.9912 + }, + { + "start": 928.0, + "end": 928.86, + "probability": 0.6589 + }, + { + "start": 929.08, + "end": 931.56, + "probability": 0.94 + }, + { + "start": 931.74, + "end": 932.32, + "probability": 0.6144 + }, + { + "start": 932.94, + "end": 937.44, + "probability": 0.8014 + }, + { + "start": 937.82, + "end": 938.9, + "probability": 0.7188 + }, + { + "start": 938.94, + "end": 941.58, + "probability": 0.8708 + }, + { + "start": 942.24, + "end": 943.94, + "probability": 0.7886 + }, + { + "start": 944.4, + "end": 945.92, + "probability": 0.7933 + }, + { + "start": 946.02, + "end": 947.54, + "probability": 0.943 + }, + { + "start": 947.84, + "end": 950.74, + "probability": 0.9808 + }, + { + "start": 952.18, + "end": 953.74, + "probability": 0.5869 + }, + { + "start": 953.82, + "end": 955.54, + "probability": 0.7796 + }, + { + "start": 955.68, + "end": 957.16, + "probability": 0.8241 + }, + { + "start": 964.68, + "end": 965.44, + "probability": 0.1491 + }, + { + "start": 965.56, + "end": 965.78, + "probability": 0.6427 + }, + { + "start": 966.3, + "end": 968.02, + "probability": 0.8333 + }, + { + "start": 968.98, + "end": 973.44, + "probability": 0.7518 + }, + { + "start": 975.02, + "end": 977.64, + "probability": 0.9387 + }, + { + "start": 979.1, + "end": 981.28, + "probability": 0.6601 + }, + { + "start": 982.04, + "end": 983.74, + "probability": 0.7266 + }, + { + "start": 985.1, + "end": 988.12, + "probability": 0.9089 + }, + { + "start": 991.27, + "end": 993.5, + "probability": 0.2715 + }, + { + "start": 993.84, + "end": 995.74, + "probability": 0.9372 + }, + { + "start": 996.94, + "end": 997.7, + "probability": 0.7673 + }, + { + "start": 997.8, + "end": 1001.3, + "probability": 0.6825 + }, + { + "start": 1001.3, + "end": 1001.74, + "probability": 0.0678 + }, + { + "start": 1002.0, + "end": 1002.98, + "probability": 0.6804 + }, + { + "start": 1004.28, + "end": 1004.28, + "probability": 0.1392 + }, + { + "start": 1004.3, + "end": 1004.74, + "probability": 0.5668 + }, + { + "start": 1005.36, + "end": 1007.6, + "probability": 0.9717 + }, + { + "start": 1008.56, + "end": 1013.28, + "probability": 0.9904 + }, + { + "start": 1014.3, + "end": 1015.42, + "probability": 0.6426 + }, + { + "start": 1015.62, + "end": 1018.84, + "probability": 0.5361 + }, + { + "start": 1020.08, + "end": 1021.62, + "probability": 0.9785 + }, + { + "start": 1022.22, + "end": 1025.66, + "probability": 0.9648 + }, + { + "start": 1026.96, + "end": 1030.84, + "probability": 0.8457 + }, + { + "start": 1032.1, + "end": 1034.84, + "probability": 0.956 + }, + { + "start": 1035.24, + "end": 1037.78, + "probability": 0.5114 + }, + { + "start": 1038.34, + "end": 1040.84, + "probability": 0.9102 + }, + { + "start": 1041.22, + "end": 1041.8, + "probability": 0.6929 + }, + { + "start": 1042.34, + "end": 1044.2, + "probability": 0.9668 + }, + { + "start": 1044.32, + "end": 1046.2, + "probability": 0.9327 + }, + { + "start": 1047.02, + "end": 1049.46, + "probability": 0.7789 + }, + { + "start": 1049.82, + "end": 1054.12, + "probability": 0.8151 + }, + { + "start": 1054.58, + "end": 1058.88, + "probability": 0.953 + }, + { + "start": 1058.88, + "end": 1062.9, + "probability": 0.9754 + }, + { + "start": 1063.48, + "end": 1065.0, + "probability": 0.9532 + }, + { + "start": 1065.4, + "end": 1067.7, + "probability": 0.9974 + }, + { + "start": 1068.06, + "end": 1073.42, + "probability": 0.9755 + }, + { + "start": 1073.42, + "end": 1079.6, + "probability": 0.9988 + }, + { + "start": 1080.24, + "end": 1080.94, + "probability": 0.8356 + }, + { + "start": 1081.08, + "end": 1083.86, + "probability": 0.9863 + }, + { + "start": 1083.88, + "end": 1084.18, + "probability": 0.5215 + }, + { + "start": 1084.48, + "end": 1084.72, + "probability": 0.5438 + }, + { + "start": 1085.12, + "end": 1087.5, + "probability": 0.6703 + }, + { + "start": 1087.58, + "end": 1089.74, + "probability": 0.8994 + }, + { + "start": 1089.86, + "end": 1091.42, + "probability": 0.9593 + }, + { + "start": 1093.86, + "end": 1096.5, + "probability": 0.7254 + }, + { + "start": 1097.16, + "end": 1099.76, + "probability": 0.9628 + }, + { + "start": 1099.94, + "end": 1105.92, + "probability": 0.8572 + }, + { + "start": 1106.56, + "end": 1107.58, + "probability": 0.9395 + }, + { + "start": 1108.12, + "end": 1111.32, + "probability": 0.9604 + }, + { + "start": 1111.88, + "end": 1114.44, + "probability": 0.9824 + }, + { + "start": 1114.6, + "end": 1115.62, + "probability": 0.9883 + }, + { + "start": 1116.2, + "end": 1120.76, + "probability": 0.7517 + }, + { + "start": 1121.36, + "end": 1123.06, + "probability": 0.9818 + }, + { + "start": 1123.24, + "end": 1124.56, + "probability": 0.927 + }, + { + "start": 1125.72, + "end": 1127.28, + "probability": 0.9973 + }, + { + "start": 1127.34, + "end": 1131.16, + "probability": 0.9607 + }, + { + "start": 1131.38, + "end": 1135.94, + "probability": 0.9972 + }, + { + "start": 1137.18, + "end": 1141.28, + "probability": 0.9799 + }, + { + "start": 1141.7, + "end": 1142.76, + "probability": 0.9279 + }, + { + "start": 1143.3, + "end": 1145.3, + "probability": 0.9292 + }, + { + "start": 1145.84, + "end": 1147.66, + "probability": 0.9111 + }, + { + "start": 1148.12, + "end": 1149.9, + "probability": 0.9272 + }, + { + "start": 1150.36, + "end": 1153.38, + "probability": 0.9919 + }, + { + "start": 1153.94, + "end": 1159.92, + "probability": 0.9978 + }, + { + "start": 1160.58, + "end": 1161.36, + "probability": 0.7831 + }, + { + "start": 1161.54, + "end": 1162.5, + "probability": 0.6975 + }, + { + "start": 1162.98, + "end": 1164.04, + "probability": 0.928 + }, + { + "start": 1164.46, + "end": 1167.34, + "probability": 0.8929 + }, + { + "start": 1167.9, + "end": 1169.64, + "probability": 0.9949 + }, + { + "start": 1169.66, + "end": 1171.56, + "probability": 0.9941 + }, + { + "start": 1172.0, + "end": 1172.72, + "probability": 0.771 + }, + { + "start": 1173.36, + "end": 1173.84, + "probability": 0.9382 + }, + { + "start": 1174.08, + "end": 1174.72, + "probability": 0.3174 + }, + { + "start": 1174.78, + "end": 1175.64, + "probability": 0.8361 + }, + { + "start": 1176.06, + "end": 1177.88, + "probability": 0.967 + }, + { + "start": 1178.34, + "end": 1179.96, + "probability": 0.7725 + }, + { + "start": 1180.06, + "end": 1181.28, + "probability": 0.9655 + }, + { + "start": 1182.3, + "end": 1182.92, + "probability": 0.8086 + }, + { + "start": 1183.0, + "end": 1186.14, + "probability": 0.9877 + }, + { + "start": 1186.82, + "end": 1188.3, + "probability": 0.8392 + }, + { + "start": 1188.74, + "end": 1192.58, + "probability": 0.9326 + }, + { + "start": 1193.0, + "end": 1193.18, + "probability": 0.8165 + }, + { + "start": 1193.86, + "end": 1196.3, + "probability": 0.5995 + }, + { + "start": 1196.42, + "end": 1198.6, + "probability": 0.7743 + }, + { + "start": 1199.2, + "end": 1200.38, + "probability": 0.6935 + }, + { + "start": 1201.08, + "end": 1202.04, + "probability": 0.9274 + }, + { + "start": 1203.54, + "end": 1204.62, + "probability": 0.7346 + }, + { + "start": 1204.7, + "end": 1207.0, + "probability": 0.8083 + }, + { + "start": 1209.68, + "end": 1209.68, + "probability": 0.0458 + }, + { + "start": 1209.68, + "end": 1210.08, + "probability": 0.9295 + }, + { + "start": 1210.6, + "end": 1213.14, + "probability": 0.908 + }, + { + "start": 1214.3, + "end": 1215.78, + "probability": 0.9142 + }, + { + "start": 1215.92, + "end": 1219.42, + "probability": 0.6523 + }, + { + "start": 1219.86, + "end": 1220.54, + "probability": 0.981 + }, + { + "start": 1220.58, + "end": 1221.54, + "probability": 0.681 + }, + { + "start": 1222.0, + "end": 1224.18, + "probability": 0.8763 + }, + { + "start": 1224.28, + "end": 1225.54, + "probability": 0.8776 + }, + { + "start": 1225.68, + "end": 1226.62, + "probability": 0.7323 + }, + { + "start": 1226.68, + "end": 1229.08, + "probability": 0.869 + }, + { + "start": 1230.0, + "end": 1230.8, + "probability": 0.6197 + }, + { + "start": 1231.56, + "end": 1233.82, + "probability": 0.9501 + }, + { + "start": 1233.84, + "end": 1236.92, + "probability": 0.7657 + }, + { + "start": 1237.58, + "end": 1238.74, + "probability": 0.5113 + }, + { + "start": 1238.84, + "end": 1241.16, + "probability": 0.6964 + }, + { + "start": 1241.22, + "end": 1242.48, + "probability": 0.9489 + }, + { + "start": 1242.48, + "end": 1243.34, + "probability": 0.8812 + }, + { + "start": 1243.48, + "end": 1244.46, + "probability": 0.9547 + }, + { + "start": 1244.88, + "end": 1248.5, + "probability": 0.7497 + }, + { + "start": 1248.84, + "end": 1249.72, + "probability": 0.967 + }, + { + "start": 1250.6, + "end": 1251.26, + "probability": 0.6569 + }, + { + "start": 1251.28, + "end": 1252.06, + "probability": 0.8989 + }, + { + "start": 1252.22, + "end": 1257.21, + "probability": 0.988 + }, + { + "start": 1257.76, + "end": 1258.1, + "probability": 0.3769 + }, + { + "start": 1258.18, + "end": 1258.84, + "probability": 0.9204 + }, + { + "start": 1259.04, + "end": 1259.4, + "probability": 0.8241 + }, + { + "start": 1259.7, + "end": 1262.44, + "probability": 0.9106 + }, + { + "start": 1262.72, + "end": 1263.48, + "probability": 0.9052 + }, + { + "start": 1263.76, + "end": 1266.36, + "probability": 0.9791 + }, + { + "start": 1267.64, + "end": 1271.8, + "probability": 0.978 + }, + { + "start": 1271.9, + "end": 1273.83, + "probability": 0.9956 + }, + { + "start": 1274.32, + "end": 1276.26, + "probability": 0.9818 + }, + { + "start": 1276.34, + "end": 1280.26, + "probability": 0.9453 + }, + { + "start": 1280.42, + "end": 1284.6, + "probability": 0.9798 + }, + { + "start": 1284.6, + "end": 1287.16, + "probability": 0.9987 + }, + { + "start": 1287.54, + "end": 1288.04, + "probability": 0.635 + }, + { + "start": 1288.46, + "end": 1290.06, + "probability": 0.8176 + }, + { + "start": 1290.2, + "end": 1291.46, + "probability": 0.8858 + }, + { + "start": 1291.64, + "end": 1292.02, + "probability": 0.8613 + }, + { + "start": 1292.06, + "end": 1292.3, + "probability": 0.8422 + }, + { + "start": 1292.36, + "end": 1292.74, + "probability": 0.8209 + }, + { + "start": 1292.84, + "end": 1293.6, + "probability": 0.9779 + }, + { + "start": 1294.24, + "end": 1294.44, + "probability": 0.8819 + }, + { + "start": 1296.97, + "end": 1300.54, + "probability": 0.7665 + }, + { + "start": 1301.58, + "end": 1302.44, + "probability": 0.7297 + }, + { + "start": 1303.7, + "end": 1305.92, + "probability": 0.9884 + }, + { + "start": 1306.0, + "end": 1309.84, + "probability": 0.9933 + }, + { + "start": 1310.14, + "end": 1310.84, + "probability": 0.8005 + }, + { + "start": 1312.3, + "end": 1313.5, + "probability": 0.9436 + }, + { + "start": 1313.62, + "end": 1315.64, + "probability": 0.8781 + }, + { + "start": 1316.86, + "end": 1320.16, + "probability": 0.9834 + }, + { + "start": 1320.86, + "end": 1322.54, + "probability": 0.5488 + }, + { + "start": 1323.04, + "end": 1325.24, + "probability": 0.8442 + }, + { + "start": 1325.92, + "end": 1327.2, + "probability": 0.9556 + }, + { + "start": 1328.24, + "end": 1330.96, + "probability": 0.9886 + }, + { + "start": 1331.28, + "end": 1332.32, + "probability": 0.969 + }, + { + "start": 1333.0, + "end": 1334.26, + "probability": 0.715 + }, + { + "start": 1334.6, + "end": 1334.72, + "probability": 0.5744 + }, + { + "start": 1335.0, + "end": 1336.24, + "probability": 0.7437 + }, + { + "start": 1336.46, + "end": 1337.02, + "probability": 0.2986 + }, + { + "start": 1337.48, + "end": 1337.94, + "probability": 0.3592 + }, + { + "start": 1338.04, + "end": 1339.18, + "probability": 0.9844 + }, + { + "start": 1339.3, + "end": 1340.1, + "probability": 0.9685 + }, + { + "start": 1340.54, + "end": 1341.74, + "probability": 0.9946 + }, + { + "start": 1341.94, + "end": 1342.76, + "probability": 0.9546 + }, + { + "start": 1342.84, + "end": 1343.56, + "probability": 0.8258 + }, + { + "start": 1343.88, + "end": 1347.94, + "probability": 0.9928 + }, + { + "start": 1348.44, + "end": 1348.86, + "probability": 0.4003 + }, + { + "start": 1348.96, + "end": 1350.22, + "probability": 0.5999 + }, + { + "start": 1350.4, + "end": 1353.54, + "probability": 0.9059 + }, + { + "start": 1354.08, + "end": 1354.28, + "probability": 0.8872 + }, + { + "start": 1354.44, + "end": 1356.08, + "probability": 0.9861 + }, + { + "start": 1356.46, + "end": 1358.14, + "probability": 0.9855 + }, + { + "start": 1358.48, + "end": 1361.54, + "probability": 0.8818 + }, + { + "start": 1362.1, + "end": 1364.84, + "probability": 0.9844 + }, + { + "start": 1365.16, + "end": 1366.7, + "probability": 0.9709 + }, + { + "start": 1367.2, + "end": 1367.9, + "probability": 0.8154 + }, + { + "start": 1368.04, + "end": 1368.74, + "probability": 0.7332 + }, + { + "start": 1369.08, + "end": 1370.56, + "probability": 0.8629 + }, + { + "start": 1370.6, + "end": 1372.56, + "probability": 0.9646 + }, + { + "start": 1372.88, + "end": 1373.74, + "probability": 0.9616 + }, + { + "start": 1373.84, + "end": 1374.88, + "probability": 0.8895 + }, + { + "start": 1375.0, + "end": 1375.68, + "probability": 0.8516 + }, + { + "start": 1376.06, + "end": 1379.38, + "probability": 0.8822 + }, + { + "start": 1379.42, + "end": 1379.82, + "probability": 0.7432 + }, + { + "start": 1380.56, + "end": 1381.98, + "probability": 0.572 + }, + { + "start": 1382.12, + "end": 1383.54, + "probability": 0.6826 + }, + { + "start": 1384.52, + "end": 1385.9, + "probability": 0.8274 + }, + { + "start": 1388.12, + "end": 1389.62, + "probability": 0.8934 + }, + { + "start": 1390.84, + "end": 1391.82, + "probability": 0.4072 + }, + { + "start": 1392.78, + "end": 1394.92, + "probability": 0.8678 + }, + { + "start": 1395.78, + "end": 1397.82, + "probability": 0.9648 + }, + { + "start": 1399.04, + "end": 1399.49, + "probability": 0.9616 + }, + { + "start": 1401.24, + "end": 1405.58, + "probability": 0.8669 + }, + { + "start": 1406.32, + "end": 1407.46, + "probability": 0.6565 + }, + { + "start": 1407.52, + "end": 1414.06, + "probability": 0.9791 + }, + { + "start": 1415.44, + "end": 1419.5, + "probability": 0.9789 + }, + { + "start": 1420.46, + "end": 1422.98, + "probability": 0.9875 + }, + { + "start": 1423.84, + "end": 1426.14, + "probability": 0.996 + }, + { + "start": 1426.14, + "end": 1430.16, + "probability": 0.9586 + }, + { + "start": 1430.22, + "end": 1430.92, + "probability": 0.783 + }, + { + "start": 1431.7, + "end": 1434.78, + "probability": 0.9762 + }, + { + "start": 1435.7, + "end": 1438.5, + "probability": 0.9448 + }, + { + "start": 1439.6, + "end": 1441.23, + "probability": 0.5746 + }, + { + "start": 1441.94, + "end": 1445.3, + "probability": 0.9937 + }, + { + "start": 1445.3, + "end": 1448.92, + "probability": 0.9992 + }, + { + "start": 1449.48, + "end": 1450.06, + "probability": 0.8813 + }, + { + "start": 1450.62, + "end": 1453.64, + "probability": 0.9222 + }, + { + "start": 1454.08, + "end": 1455.88, + "probability": 0.9778 + }, + { + "start": 1456.0, + "end": 1456.38, + "probability": 0.7426 + }, + { + "start": 1457.06, + "end": 1457.58, + "probability": 0.8626 + }, + { + "start": 1458.48, + "end": 1460.22, + "probability": 0.914 + }, + { + "start": 1461.16, + "end": 1466.64, + "probability": 0.9826 + }, + { + "start": 1467.5, + "end": 1470.58, + "probability": 0.9826 + }, + { + "start": 1471.32, + "end": 1474.02, + "probability": 0.9402 + }, + { + "start": 1474.18, + "end": 1474.58, + "probability": 0.7974 + }, + { + "start": 1475.0, + "end": 1476.94, + "probability": 0.8448 + }, + { + "start": 1479.28, + "end": 1481.06, + "probability": 0.6474 + }, + { + "start": 1481.54, + "end": 1487.24, + "probability": 0.8939 + }, + { + "start": 1487.38, + "end": 1488.6, + "probability": 0.8089 + }, + { + "start": 1489.14, + "end": 1492.0, + "probability": 0.8075 + }, + { + "start": 1492.76, + "end": 1493.56, + "probability": 0.8077 + }, + { + "start": 1493.86, + "end": 1494.56, + "probability": 0.5704 + }, + { + "start": 1495.92, + "end": 1496.8, + "probability": 0.8772 + }, + { + "start": 1496.92, + "end": 1500.58, + "probability": 0.9971 + }, + { + "start": 1501.22, + "end": 1502.72, + "probability": 0.9909 + }, + { + "start": 1503.78, + "end": 1506.6, + "probability": 0.9855 + }, + { + "start": 1506.6, + "end": 1509.34, + "probability": 0.9964 + }, + { + "start": 1509.94, + "end": 1514.3, + "probability": 0.913 + }, + { + "start": 1515.38, + "end": 1519.54, + "probability": 0.9983 + }, + { + "start": 1520.22, + "end": 1522.4, + "probability": 0.8852 + }, + { + "start": 1522.84, + "end": 1524.24, + "probability": 0.8923 + }, + { + "start": 1525.38, + "end": 1525.88, + "probability": 0.6503 + }, + { + "start": 1526.46, + "end": 1529.66, + "probability": 0.922 + }, + { + "start": 1530.78, + "end": 1532.58, + "probability": 0.9863 + }, + { + "start": 1533.5, + "end": 1535.76, + "probability": 0.9429 + }, + { + "start": 1535.76, + "end": 1538.24, + "probability": 0.999 + }, + { + "start": 1539.3, + "end": 1543.82, + "probability": 0.9883 + }, + { + "start": 1544.1, + "end": 1547.74, + "probability": 0.9768 + }, + { + "start": 1547.94, + "end": 1548.86, + "probability": 0.8707 + }, + { + "start": 1549.9, + "end": 1554.56, + "probability": 0.936 + }, + { + "start": 1554.56, + "end": 1558.26, + "probability": 0.9908 + }, + { + "start": 1559.14, + "end": 1561.9, + "probability": 0.9929 + }, + { + "start": 1562.5, + "end": 1565.04, + "probability": 0.9971 + }, + { + "start": 1565.04, + "end": 1568.94, + "probability": 0.9893 + }, + { + "start": 1570.08, + "end": 1572.84, + "probability": 0.874 + }, + { + "start": 1573.46, + "end": 1574.62, + "probability": 0.964 + }, + { + "start": 1576.02, + "end": 1579.42, + "probability": 0.2528 + }, + { + "start": 1580.7, + "end": 1583.64, + "probability": 0.9365 + }, + { + "start": 1584.8, + "end": 1588.1, + "probability": 0.9849 + }, + { + "start": 1588.82, + "end": 1591.42, + "probability": 0.8105 + }, + { + "start": 1593.22, + "end": 1594.44, + "probability": 0.174 + }, + { + "start": 1594.48, + "end": 1600.18, + "probability": 0.7376 + }, + { + "start": 1600.26, + "end": 1602.12, + "probability": 0.7292 + }, + { + "start": 1602.58, + "end": 1603.42, + "probability": 0.4432 + }, + { + "start": 1603.96, + "end": 1605.02, + "probability": 0.9963 + }, + { + "start": 1606.86, + "end": 1609.2, + "probability": 0.9865 + }, + { + "start": 1609.86, + "end": 1612.72, + "probability": 0.9419 + }, + { + "start": 1613.38, + "end": 1619.24, + "probability": 0.9828 + }, + { + "start": 1620.78, + "end": 1621.5, + "probability": 0.7762 + }, + { + "start": 1622.16, + "end": 1623.84, + "probability": 0.9892 + }, + { + "start": 1625.24, + "end": 1627.16, + "probability": 0.9849 + }, + { + "start": 1627.9, + "end": 1632.42, + "probability": 0.9897 + }, + { + "start": 1633.32, + "end": 1637.5, + "probability": 0.9964 + }, + { + "start": 1639.0, + "end": 1642.4, + "probability": 0.9892 + }, + { + "start": 1643.22, + "end": 1643.96, + "probability": 0.9896 + }, + { + "start": 1645.48, + "end": 1649.84, + "probability": 0.9714 + }, + { + "start": 1650.64, + "end": 1652.22, + "probability": 0.9964 + }, + { + "start": 1653.16, + "end": 1654.42, + "probability": 0.9855 + }, + { + "start": 1654.94, + "end": 1657.94, + "probability": 0.9971 + }, + { + "start": 1658.5, + "end": 1661.76, + "probability": 0.999 + }, + { + "start": 1662.36, + "end": 1663.14, + "probability": 0.8434 + }, + { + "start": 1663.48, + "end": 1665.06, + "probability": 0.9728 + }, + { + "start": 1665.32, + "end": 1669.46, + "probability": 0.6303 + }, + { + "start": 1669.92, + "end": 1672.56, + "probability": 0.7531 + }, + { + "start": 1673.6, + "end": 1679.46, + "probability": 0.9905 + }, + { + "start": 1680.74, + "end": 1681.58, + "probability": 0.8955 + }, + { + "start": 1683.24, + "end": 1687.62, + "probability": 0.9932 + }, + { + "start": 1688.28, + "end": 1689.72, + "probability": 0.9301 + }, + { + "start": 1690.26, + "end": 1691.74, + "probability": 0.5767 + }, + { + "start": 1692.38, + "end": 1695.1, + "probability": 0.9944 + }, + { + "start": 1696.0, + "end": 1701.34, + "probability": 0.8835 + }, + { + "start": 1702.12, + "end": 1704.44, + "probability": 0.9661 + }, + { + "start": 1705.9, + "end": 1709.96, + "probability": 0.9958 + }, + { + "start": 1709.96, + "end": 1715.26, + "probability": 0.9945 + }, + { + "start": 1716.0, + "end": 1716.34, + "probability": 0.9973 + }, + { + "start": 1717.82, + "end": 1720.34, + "probability": 0.9728 + }, + { + "start": 1720.86, + "end": 1722.62, + "probability": 0.9837 + }, + { + "start": 1723.14, + "end": 1725.96, + "probability": 0.9971 + }, + { + "start": 1726.48, + "end": 1727.78, + "probability": 0.9035 + }, + { + "start": 1728.66, + "end": 1729.08, + "probability": 0.7706 + }, + { + "start": 1729.66, + "end": 1731.88, + "probability": 0.9905 + }, + { + "start": 1732.62, + "end": 1733.66, + "probability": 0.8132 + }, + { + "start": 1734.28, + "end": 1736.24, + "probability": 0.8238 + }, + { + "start": 1736.9, + "end": 1738.48, + "probability": 0.9507 + }, + { + "start": 1739.24, + "end": 1742.84, + "probability": 0.9922 + }, + { + "start": 1743.32, + "end": 1744.36, + "probability": 0.993 + }, + { + "start": 1744.98, + "end": 1748.1, + "probability": 0.8833 + }, + { + "start": 1749.58, + "end": 1750.14, + "probability": 0.8293 + }, + { + "start": 1750.94, + "end": 1753.48, + "probability": 0.9955 + }, + { + "start": 1753.78, + "end": 1757.28, + "probability": 0.9733 + }, + { + "start": 1758.06, + "end": 1758.84, + "probability": 0.8428 + }, + { + "start": 1759.22, + "end": 1762.26, + "probability": 0.993 + }, + { + "start": 1762.9, + "end": 1766.28, + "probability": 0.9796 + }, + { + "start": 1767.46, + "end": 1769.0, + "probability": 0.939 + }, + { + "start": 1769.2, + "end": 1771.58, + "probability": 0.9905 + }, + { + "start": 1773.6, + "end": 1774.28, + "probability": 0.6501 + }, + { + "start": 1774.4, + "end": 1779.86, + "probability": 0.9058 + }, + { + "start": 1780.72, + "end": 1783.44, + "probability": 0.9801 + }, + { + "start": 1783.54, + "end": 1784.86, + "probability": 0.8994 + }, + { + "start": 1785.36, + "end": 1785.86, + "probability": 0.5718 + }, + { + "start": 1786.72, + "end": 1787.96, + "probability": 0.9885 + }, + { + "start": 1805.6, + "end": 1806.72, + "probability": 0.6449 + }, + { + "start": 1807.88, + "end": 1808.52, + "probability": 0.8616 + }, + { + "start": 1808.68, + "end": 1809.08, + "probability": 0.8194 + }, + { + "start": 1809.18, + "end": 1810.1, + "probability": 0.9515 + }, + { + "start": 1810.4, + "end": 1811.26, + "probability": 0.7799 + }, + { + "start": 1813.02, + "end": 1814.47, + "probability": 0.9938 + }, + { + "start": 1815.98, + "end": 1816.74, + "probability": 0.961 + }, + { + "start": 1818.18, + "end": 1819.43, + "probability": 0.9995 + }, + { + "start": 1819.54, + "end": 1823.32, + "probability": 0.9901 + }, + { + "start": 1823.88, + "end": 1826.04, + "probability": 0.9976 + }, + { + "start": 1826.64, + "end": 1828.02, + "probability": 0.9873 + }, + { + "start": 1828.56, + "end": 1829.06, + "probability": 0.5337 + }, + { + "start": 1829.2, + "end": 1831.02, + "probability": 0.9094 + }, + { + "start": 1831.02, + "end": 1834.26, + "probability": 0.991 + }, + { + "start": 1834.92, + "end": 1835.48, + "probability": 0.0012 + }, + { + "start": 1835.62, + "end": 1837.1, + "probability": 0.8545 + }, + { + "start": 1837.16, + "end": 1837.58, + "probability": 0.845 + }, + { + "start": 1837.7, + "end": 1838.1, + "probability": 0.9259 + }, + { + "start": 1838.2, + "end": 1838.64, + "probability": 0.7518 + }, + { + "start": 1838.74, + "end": 1841.38, + "probability": 0.9886 + }, + { + "start": 1841.44, + "end": 1841.72, + "probability": 0.7434 + }, + { + "start": 1842.34, + "end": 1843.98, + "probability": 0.8808 + }, + { + "start": 1844.4, + "end": 1845.48, + "probability": 0.891 + }, + { + "start": 1845.54, + "end": 1846.48, + "probability": 0.9512 + }, + { + "start": 1846.84, + "end": 1847.26, + "probability": 0.427 + }, + { + "start": 1848.78, + "end": 1852.59, + "probability": 0.9939 + }, + { + "start": 1852.84, + "end": 1854.8, + "probability": 0.9971 + }, + { + "start": 1854.9, + "end": 1856.01, + "probability": 0.9893 + }, + { + "start": 1856.16, + "end": 1857.3, + "probability": 0.9565 + }, + { + "start": 1858.56, + "end": 1860.2, + "probability": 0.9307 + }, + { + "start": 1861.4, + "end": 1862.7, + "probability": 0.7906 + }, + { + "start": 1864.2, + "end": 1865.38, + "probability": 0.6649 + }, + { + "start": 1865.46, + "end": 1867.9, + "probability": 0.9961 + }, + { + "start": 1868.68, + "end": 1869.72, + "probability": 0.8853 + }, + { + "start": 1869.86, + "end": 1870.12, + "probability": 0.9347 + }, + { + "start": 1870.22, + "end": 1874.26, + "probability": 0.9883 + }, + { + "start": 1874.88, + "end": 1877.08, + "probability": 0.998 + }, + { + "start": 1877.08, + "end": 1879.26, + "probability": 0.9968 + }, + { + "start": 1879.44, + "end": 1879.82, + "probability": 0.7211 + }, + { + "start": 1880.5, + "end": 1884.98, + "probability": 0.9946 + }, + { + "start": 1885.1, + "end": 1885.74, + "probability": 0.6073 + }, + { + "start": 1885.82, + "end": 1886.7, + "probability": 0.9883 + }, + { + "start": 1887.42, + "end": 1888.94, + "probability": 0.8397 + }, + { + "start": 1890.36, + "end": 1891.71, + "probability": 0.8887 + }, + { + "start": 1892.96, + "end": 1895.86, + "probability": 0.7689 + }, + { + "start": 1895.98, + "end": 1897.9, + "probability": 0.9961 + }, + { + "start": 1898.82, + "end": 1902.86, + "probability": 0.9701 + }, + { + "start": 1902.92, + "end": 1905.28, + "probability": 0.9951 + }, + { + "start": 1905.28, + "end": 1908.12, + "probability": 0.9739 + }, + { + "start": 1911.3, + "end": 1912.96, + "probability": 0.9772 + }, + { + "start": 1913.6, + "end": 1915.34, + "probability": 0.8162 + }, + { + "start": 1915.58, + "end": 1917.94, + "probability": 0.8102 + }, + { + "start": 1917.94, + "end": 1918.38, + "probability": 0.9313 + }, + { + "start": 1918.46, + "end": 1919.34, + "probability": 0.8552 + }, + { + "start": 1919.46, + "end": 1920.28, + "probability": 0.6683 + }, + { + "start": 1921.08, + "end": 1922.5, + "probability": 0.8775 + }, + { + "start": 1922.62, + "end": 1925.5, + "probability": 0.9403 + }, + { + "start": 1925.56, + "end": 1925.94, + "probability": 0.5237 + }, + { + "start": 1926.04, + "end": 1926.83, + "probability": 0.9521 + }, + { + "start": 1927.4, + "end": 1928.32, + "probability": 0.8749 + }, + { + "start": 1928.92, + "end": 1929.7, + "probability": 0.8238 + }, + { + "start": 1930.46, + "end": 1933.04, + "probability": 0.7399 + }, + { + "start": 1933.04, + "end": 1934.42, + "probability": 0.8348 + }, + { + "start": 1935.4, + "end": 1940.1, + "probability": 0.9598 + }, + { + "start": 1940.96, + "end": 1941.88, + "probability": 0.9585 + }, + { + "start": 1941.98, + "end": 1943.72, + "probability": 0.9978 + }, + { + "start": 1943.76, + "end": 1943.84, + "probability": 0.1282 + }, + { + "start": 1943.92, + "end": 1947.16, + "probability": 0.9585 + }, + { + "start": 1948.22, + "end": 1949.42, + "probability": 0.9988 + }, + { + "start": 1949.46, + "end": 1950.66, + "probability": 0.9966 + }, + { + "start": 1951.0, + "end": 1951.64, + "probability": 0.9895 + }, + { + "start": 1951.72, + "end": 1953.0, + "probability": 0.9789 + }, + { + "start": 1953.34, + "end": 1955.36, + "probability": 0.9967 + }, + { + "start": 1956.1, + "end": 1958.5, + "probability": 0.9218 + }, + { + "start": 1959.02, + "end": 1961.64, + "probability": 0.9878 + }, + { + "start": 1961.74, + "end": 1965.12, + "probability": 0.9944 + }, + { + "start": 1965.78, + "end": 1967.5, + "probability": 0.9973 + }, + { + "start": 1968.1, + "end": 1969.22, + "probability": 0.788 + }, + { + "start": 1969.26, + "end": 1969.6, + "probability": 0.7511 + }, + { + "start": 1969.68, + "end": 1972.5, + "probability": 0.9964 + }, + { + "start": 1973.18, + "end": 1974.22, + "probability": 0.6858 + }, + { + "start": 1974.82, + "end": 1977.24, + "probability": 0.9618 + }, + { + "start": 1978.62, + "end": 1979.24, + "probability": 0.8375 + }, + { + "start": 1980.26, + "end": 1982.28, + "probability": 0.9929 + }, + { + "start": 1982.28, + "end": 1984.06, + "probability": 0.7555 + }, + { + "start": 1984.22, + "end": 1984.84, + "probability": 0.6279 + }, + { + "start": 1985.0, + "end": 1985.6, + "probability": 0.858 + }, + { + "start": 1985.98, + "end": 1987.1, + "probability": 0.9927 + }, + { + "start": 1988.0, + "end": 1989.44, + "probability": 0.9364 + }, + { + "start": 1989.5, + "end": 1990.68, + "probability": 0.9722 + }, + { + "start": 1991.42, + "end": 1991.8, + "probability": 0.918 + }, + { + "start": 1991.94, + "end": 1993.62, + "probability": 0.8323 + }, + { + "start": 1993.72, + "end": 1994.98, + "probability": 0.9943 + }, + { + "start": 1995.76, + "end": 1997.98, + "probability": 0.9322 + }, + { + "start": 1998.1, + "end": 1998.7, + "probability": 0.5894 + }, + { + "start": 1998.78, + "end": 1999.68, + "probability": 0.816 + }, + { + "start": 1999.74, + "end": 2000.62, + "probability": 0.9832 + }, + { + "start": 2001.28, + "end": 2002.54, + "probability": 0.8001 + }, + { + "start": 2002.98, + "end": 2003.96, + "probability": 0.7571 + }, + { + "start": 2004.0, + "end": 2004.94, + "probability": 0.9609 + }, + { + "start": 2005.46, + "end": 2007.2, + "probability": 0.9894 + }, + { + "start": 2007.34, + "end": 2008.76, + "probability": 0.9985 + }, + { + "start": 2008.98, + "end": 2010.77, + "probability": 0.9976 + }, + { + "start": 2011.28, + "end": 2011.76, + "probability": 0.803 + }, + { + "start": 2011.88, + "end": 2012.48, + "probability": 0.8059 + }, + { + "start": 2012.54, + "end": 2013.44, + "probability": 0.8986 + }, + { + "start": 2013.68, + "end": 2014.74, + "probability": 0.9918 + }, + { + "start": 2015.48, + "end": 2017.37, + "probability": 0.9987 + }, + { + "start": 2017.8, + "end": 2019.38, + "probability": 0.8931 + }, + { + "start": 2019.96, + "end": 2021.56, + "probability": 0.9281 + }, + { + "start": 2022.42, + "end": 2024.14, + "probability": 0.8062 + }, + { + "start": 2024.96, + "end": 2025.96, + "probability": 0.8642 + }, + { + "start": 2026.08, + "end": 2028.16, + "probability": 0.9559 + }, + { + "start": 2029.1, + "end": 2031.58, + "probability": 0.997 + }, + { + "start": 2031.74, + "end": 2033.68, + "probability": 0.8728 + }, + { + "start": 2033.72, + "end": 2034.0, + "probability": 0.795 + }, + { + "start": 2034.06, + "end": 2034.38, + "probability": 0.7702 + }, + { + "start": 2034.48, + "end": 2034.76, + "probability": 0.7265 + }, + { + "start": 2035.16, + "end": 2036.02, + "probability": 0.9785 + }, + { + "start": 2036.92, + "end": 2037.84, + "probability": 0.8054 + }, + { + "start": 2037.88, + "end": 2039.26, + "probability": 0.9822 + }, + { + "start": 2039.3, + "end": 2041.28, + "probability": 0.9824 + }, + { + "start": 2041.76, + "end": 2042.9, + "probability": 0.8246 + }, + { + "start": 2044.0, + "end": 2045.48, + "probability": 0.9283 + }, + { + "start": 2046.94, + "end": 2048.36, + "probability": 0.9972 + }, + { + "start": 2048.4, + "end": 2051.36, + "probability": 0.9881 + }, + { + "start": 2052.26, + "end": 2054.3, + "probability": 0.9152 + }, + { + "start": 2055.6, + "end": 2056.34, + "probability": 0.9259 + }, + { + "start": 2056.44, + "end": 2057.16, + "probability": 0.7435 + }, + { + "start": 2057.26, + "end": 2057.86, + "probability": 0.962 + }, + { + "start": 2059.1, + "end": 2060.92, + "probability": 0.9958 + }, + { + "start": 2061.04, + "end": 2063.34, + "probability": 0.928 + }, + { + "start": 2063.42, + "end": 2064.06, + "probability": 0.8255 + }, + { + "start": 2064.06, + "end": 2064.9, + "probability": 0.9832 + }, + { + "start": 2065.5, + "end": 2067.54, + "probability": 0.6738 + }, + { + "start": 2067.6, + "end": 2068.36, + "probability": 0.976 + }, + { + "start": 2068.46, + "end": 2069.18, + "probability": 0.7441 + }, + { + "start": 2069.24, + "end": 2071.92, + "probability": 0.7378 + }, + { + "start": 2073.46, + "end": 2075.0, + "probability": 0.9893 + }, + { + "start": 2075.04, + "end": 2077.26, + "probability": 0.9534 + }, + { + "start": 2078.1, + "end": 2079.74, + "probability": 0.9659 + }, + { + "start": 2080.4, + "end": 2081.64, + "probability": 0.9929 + }, + { + "start": 2081.7, + "end": 2083.32, + "probability": 0.9727 + }, + { + "start": 2083.49, + "end": 2085.42, + "probability": 0.9861 + }, + { + "start": 2085.54, + "end": 2087.5, + "probability": 0.9824 + }, + { + "start": 2087.6, + "end": 2088.8, + "probability": 0.9146 + }, + { + "start": 2088.88, + "end": 2090.42, + "probability": 0.8947 + }, + { + "start": 2090.84, + "end": 2093.0, + "probability": 0.9049 + }, + { + "start": 2093.14, + "end": 2093.34, + "probability": 0.688 + }, + { + "start": 2094.6, + "end": 2096.88, + "probability": 0.8817 + }, + { + "start": 2097.72, + "end": 2098.62, + "probability": 0.9963 + }, + { + "start": 2099.0, + "end": 2099.8, + "probability": 0.9843 + }, + { + "start": 2099.96, + "end": 2100.1, + "probability": 0.7907 + }, + { + "start": 2100.18, + "end": 2101.12, + "probability": 0.8529 + }, + { + "start": 2101.34, + "end": 2102.31, + "probability": 0.8947 + }, + { + "start": 2102.88, + "end": 2105.62, + "probability": 0.9518 + }, + { + "start": 2106.22, + "end": 2107.2, + "probability": 0.9114 + }, + { + "start": 2107.24, + "end": 2108.64, + "probability": 0.9788 + }, + { + "start": 2108.66, + "end": 2108.92, + "probability": 0.9078 + }, + { + "start": 2109.04, + "end": 2109.42, + "probability": 0.2454 + }, + { + "start": 2109.48, + "end": 2109.84, + "probability": 0.8026 + }, + { + "start": 2109.86, + "end": 2111.24, + "probability": 0.843 + }, + { + "start": 2111.28, + "end": 2111.76, + "probability": 0.7492 + }, + { + "start": 2113.36, + "end": 2115.24, + "probability": 0.9718 + }, + { + "start": 2116.0, + "end": 2117.74, + "probability": 0.9932 + }, + { + "start": 2118.94, + "end": 2121.06, + "probability": 0.9929 + }, + { + "start": 2121.6, + "end": 2123.58, + "probability": 0.9832 + }, + { + "start": 2124.6, + "end": 2127.34, + "probability": 0.9759 + }, + { + "start": 2127.4, + "end": 2127.92, + "probability": 0.4907 + }, + { + "start": 2129.14, + "end": 2130.0, + "probability": 0.6467 + }, + { + "start": 2130.14, + "end": 2130.26, + "probability": 0.8297 + }, + { + "start": 2130.4, + "end": 2132.92, + "probability": 0.9778 + }, + { + "start": 2133.38, + "end": 2136.34, + "probability": 0.9955 + }, + { + "start": 2136.52, + "end": 2137.26, + "probability": 0.6628 + }, + { + "start": 2137.36, + "end": 2138.0, + "probability": 0.6814 + }, + { + "start": 2138.54, + "end": 2140.36, + "probability": 0.9871 + }, + { + "start": 2141.04, + "end": 2142.3, + "probability": 0.9575 + }, + { + "start": 2142.98, + "end": 2143.91, + "probability": 0.6678 + }, + { + "start": 2144.92, + "end": 2145.8, + "probability": 0.9409 + }, + { + "start": 2145.94, + "end": 2146.56, + "probability": 0.7009 + }, + { + "start": 2146.64, + "end": 2147.29, + "probability": 0.8315 + }, + { + "start": 2147.8, + "end": 2148.82, + "probability": 0.6061 + }, + { + "start": 2149.14, + "end": 2150.22, + "probability": 0.978 + }, + { + "start": 2150.36, + "end": 2150.76, + "probability": 0.8287 + }, + { + "start": 2151.48, + "end": 2154.34, + "probability": 0.979 + }, + { + "start": 2154.5, + "end": 2155.55, + "probability": 0.8733 + }, + { + "start": 2156.02, + "end": 2158.86, + "probability": 0.9952 + }, + { + "start": 2159.36, + "end": 2161.46, + "probability": 0.96 + }, + { + "start": 2162.06, + "end": 2164.09, + "probability": 0.9907 + }, + { + "start": 2164.68, + "end": 2165.9, + "probability": 0.8188 + }, + { + "start": 2166.18, + "end": 2168.58, + "probability": 0.9785 + }, + { + "start": 2168.66, + "end": 2170.46, + "probability": 0.9048 + }, + { + "start": 2170.56, + "end": 2170.94, + "probability": 0.8473 + }, + { + "start": 2171.58, + "end": 2173.5, + "probability": 0.6902 + }, + { + "start": 2174.08, + "end": 2175.18, + "probability": 0.9747 + }, + { + "start": 2175.28, + "end": 2175.66, + "probability": 0.6503 + }, + { + "start": 2175.74, + "end": 2176.0, + "probability": 0.8281 + }, + { + "start": 2176.1, + "end": 2176.64, + "probability": 0.608 + }, + { + "start": 2176.66, + "end": 2178.34, + "probability": 0.9468 + }, + { + "start": 2186.26, + "end": 2188.78, + "probability": 0.8384 + }, + { + "start": 2189.38, + "end": 2193.2, + "probability": 0.9905 + }, + { + "start": 2194.32, + "end": 2197.9, + "probability": 0.9122 + }, + { + "start": 2198.76, + "end": 2200.22, + "probability": 0.9409 + }, + { + "start": 2200.5, + "end": 2203.06, + "probability": 0.961 + }, + { + "start": 2204.04, + "end": 2205.5, + "probability": 0.7655 + }, + { + "start": 2205.74, + "end": 2209.48, + "probability": 0.8965 + }, + { + "start": 2210.06, + "end": 2212.54, + "probability": 0.8529 + }, + { + "start": 2213.3, + "end": 2216.66, + "probability": 0.9955 + }, + { + "start": 2217.06, + "end": 2217.78, + "probability": 0.8623 + }, + { + "start": 2218.62, + "end": 2220.68, + "probability": 0.958 + }, + { + "start": 2221.02, + "end": 2225.02, + "probability": 0.9552 + }, + { + "start": 2226.86, + "end": 2227.28, + "probability": 0.0221 + }, + { + "start": 2227.28, + "end": 2227.46, + "probability": 0.4919 + }, + { + "start": 2227.54, + "end": 2228.34, + "probability": 0.7785 + }, + { + "start": 2228.56, + "end": 2229.98, + "probability": 0.8627 + }, + { + "start": 2231.16, + "end": 2231.76, + "probability": 0.9219 + }, + { + "start": 2231.84, + "end": 2232.42, + "probability": 0.6634 + }, + { + "start": 2232.58, + "end": 2235.74, + "probability": 0.9941 + }, + { + "start": 2235.8, + "end": 2238.34, + "probability": 0.9894 + }, + { + "start": 2239.28, + "end": 2243.5, + "probability": 0.7584 + }, + { + "start": 2244.44, + "end": 2245.76, + "probability": 0.978 + }, + { + "start": 2246.04, + "end": 2249.22, + "probability": 0.7714 + }, + { + "start": 2250.44, + "end": 2253.24, + "probability": 0.9971 + }, + { + "start": 2253.3, + "end": 2256.74, + "probability": 0.9549 + }, + { + "start": 2256.94, + "end": 2260.12, + "probability": 0.9944 + }, + { + "start": 2260.2, + "end": 2265.08, + "probability": 0.9904 + }, + { + "start": 2266.28, + "end": 2266.98, + "probability": 0.8111 + }, + { + "start": 2267.1, + "end": 2268.78, + "probability": 0.972 + }, + { + "start": 2268.92, + "end": 2270.74, + "probability": 0.9915 + }, + { + "start": 2271.06, + "end": 2271.16, + "probability": 0.4498 + }, + { + "start": 2272.5, + "end": 2273.54, + "probability": 0.6652 + }, + { + "start": 2273.66, + "end": 2275.82, + "probability": 0.9843 + }, + { + "start": 2276.52, + "end": 2279.34, + "probability": 0.9526 + }, + { + "start": 2280.16, + "end": 2282.32, + "probability": 0.9986 + }, + { + "start": 2282.72, + "end": 2286.04, + "probability": 0.9988 + }, + { + "start": 2286.32, + "end": 2286.72, + "probability": 0.5062 + }, + { + "start": 2287.64, + "end": 2291.58, + "probability": 0.9767 + }, + { + "start": 2292.54, + "end": 2294.4, + "probability": 0.9789 + }, + { + "start": 2295.34, + "end": 2296.5, + "probability": 0.975 + }, + { + "start": 2296.54, + "end": 2298.8, + "probability": 0.9693 + }, + { + "start": 2299.22, + "end": 2299.74, + "probability": 0.6655 + }, + { + "start": 2300.42, + "end": 2303.68, + "probability": 0.7616 + }, + { + "start": 2304.38, + "end": 2305.28, + "probability": 0.8568 + }, + { + "start": 2305.56, + "end": 2308.44, + "probability": 0.9855 + }, + { + "start": 2308.68, + "end": 2309.34, + "probability": 0.2145 + }, + { + "start": 2309.38, + "end": 2310.78, + "probability": 0.9472 + }, + { + "start": 2310.86, + "end": 2311.28, + "probability": 0.6467 + }, + { + "start": 2311.74, + "end": 2314.5, + "probability": 0.9872 + }, + { + "start": 2314.58, + "end": 2315.56, + "probability": 0.8693 + }, + { + "start": 2316.0, + "end": 2318.04, + "probability": 0.9695 + }, + { + "start": 2318.6, + "end": 2320.26, + "probability": 0.9948 + }, + { + "start": 2321.02, + "end": 2325.26, + "probability": 0.967 + }, + { + "start": 2325.74, + "end": 2325.82, + "probability": 0.9619 + }, + { + "start": 2326.52, + "end": 2327.14, + "probability": 0.8273 + }, + { + "start": 2327.64, + "end": 2328.2, + "probability": 0.5993 + }, + { + "start": 2328.24, + "end": 2328.76, + "probability": 0.7713 + }, + { + "start": 2328.84, + "end": 2331.98, + "probability": 0.9943 + }, + { + "start": 2332.4, + "end": 2335.38, + "probability": 0.8796 + }, + { + "start": 2336.02, + "end": 2339.1, + "probability": 0.8943 + }, + { + "start": 2339.62, + "end": 2340.72, + "probability": 0.9228 + }, + { + "start": 2340.8, + "end": 2342.72, + "probability": 0.9329 + }, + { + "start": 2343.12, + "end": 2344.56, + "probability": 0.8659 + }, + { + "start": 2345.14, + "end": 2346.38, + "probability": 0.9946 + }, + { + "start": 2346.86, + "end": 2348.1, + "probability": 0.9827 + }, + { + "start": 2348.24, + "end": 2351.38, + "probability": 0.761 + }, + { + "start": 2351.9, + "end": 2353.22, + "probability": 0.9933 + }, + { + "start": 2353.32, + "end": 2356.16, + "probability": 0.944 + }, + { + "start": 2356.68, + "end": 2359.48, + "probability": 0.9766 + }, + { + "start": 2360.32, + "end": 2363.64, + "probability": 0.9043 + }, + { + "start": 2363.64, + "end": 2367.82, + "probability": 0.9421 + }, + { + "start": 2367.9, + "end": 2368.4, + "probability": 0.6696 + }, + { + "start": 2369.12, + "end": 2371.54, + "probability": 0.9883 + }, + { + "start": 2372.0, + "end": 2373.54, + "probability": 0.9808 + }, + { + "start": 2373.98, + "end": 2376.88, + "probability": 0.9845 + }, + { + "start": 2377.32, + "end": 2379.32, + "probability": 0.8728 + }, + { + "start": 2379.4, + "end": 2381.28, + "probability": 0.967 + }, + { + "start": 2382.2, + "end": 2385.98, + "probability": 0.9902 + }, + { + "start": 2387.08, + "end": 2390.34, + "probability": 0.9922 + }, + { + "start": 2390.34, + "end": 2395.18, + "probability": 0.9548 + }, + { + "start": 2396.2, + "end": 2397.2, + "probability": 0.7069 + }, + { + "start": 2397.44, + "end": 2398.42, + "probability": 0.9722 + }, + { + "start": 2398.74, + "end": 2402.02, + "probability": 0.9399 + }, + { + "start": 2402.34, + "end": 2405.34, + "probability": 0.8789 + }, + { + "start": 2406.06, + "end": 2408.32, + "probability": 0.9575 + }, + { + "start": 2409.1, + "end": 2411.68, + "probability": 0.9914 + }, + { + "start": 2411.8, + "end": 2414.36, + "probability": 0.9819 + }, + { + "start": 2414.78, + "end": 2415.36, + "probability": 0.9019 + }, + { + "start": 2415.5, + "end": 2416.42, + "probability": 0.948 + }, + { + "start": 2416.48, + "end": 2418.2, + "probability": 0.9476 + }, + { + "start": 2418.38, + "end": 2423.82, + "probability": 0.9182 + }, + { + "start": 2424.0, + "end": 2426.14, + "probability": 0.8195 + }, + { + "start": 2426.24, + "end": 2426.82, + "probability": 0.7721 + }, + { + "start": 2427.5, + "end": 2430.18, + "probability": 0.8564 + }, + { + "start": 2430.82, + "end": 2433.04, + "probability": 0.9137 + }, + { + "start": 2433.78, + "end": 2438.04, + "probability": 0.9817 + }, + { + "start": 2438.16, + "end": 2442.34, + "probability": 0.983 + }, + { + "start": 2443.26, + "end": 2446.26, + "probability": 0.949 + }, + { + "start": 2446.46, + "end": 2447.52, + "probability": 0.7116 + }, + { + "start": 2448.32, + "end": 2452.62, + "probability": 0.997 + }, + { + "start": 2453.1, + "end": 2456.14, + "probability": 0.9493 + }, + { + "start": 2456.64, + "end": 2457.54, + "probability": 0.8489 + }, + { + "start": 2457.66, + "end": 2458.18, + "probability": 0.7729 + }, + { + "start": 2458.32, + "end": 2459.0, + "probability": 0.9205 + }, + { + "start": 2459.06, + "end": 2459.6, + "probability": 0.841 + }, + { + "start": 2459.72, + "end": 2460.6, + "probability": 0.9658 + }, + { + "start": 2460.94, + "end": 2461.66, + "probability": 0.7824 + }, + { + "start": 2462.18, + "end": 2463.24, + "probability": 0.9788 + }, + { + "start": 2463.36, + "end": 2466.52, + "probability": 0.6644 + }, + { + "start": 2467.38, + "end": 2468.58, + "probability": 0.9762 + }, + { + "start": 2468.94, + "end": 2470.4, + "probability": 0.6304 + }, + { + "start": 2470.44, + "end": 2472.16, + "probability": 0.5207 + }, + { + "start": 2472.36, + "end": 2474.02, + "probability": 0.8294 + }, + { + "start": 2474.48, + "end": 2475.22, + "probability": 0.7382 + }, + { + "start": 2475.8, + "end": 2479.0, + "probability": 0.9854 + }, + { + "start": 2479.46, + "end": 2481.24, + "probability": 0.5159 + }, + { + "start": 2481.44, + "end": 2482.0, + "probability": 0.7225 + }, + { + "start": 2483.12, + "end": 2484.2, + "probability": 0.7883 + }, + { + "start": 2484.32, + "end": 2487.22, + "probability": 0.979 + }, + { + "start": 2487.88, + "end": 2492.06, + "probability": 0.9875 + }, + { + "start": 2492.22, + "end": 2495.5, + "probability": 0.9514 + }, + { + "start": 2495.6, + "end": 2499.58, + "probability": 0.8659 + }, + { + "start": 2500.14, + "end": 2503.26, + "probability": 0.948 + }, + { + "start": 2503.5, + "end": 2504.52, + "probability": 0.8809 + }, + { + "start": 2505.56, + "end": 2505.74, + "probability": 0.4855 + }, + { + "start": 2506.04, + "end": 2508.22, + "probability": 0.8604 + }, + { + "start": 2508.36, + "end": 2508.64, + "probability": 0.5895 + }, + { + "start": 2509.42, + "end": 2510.34, + "probability": 0.9006 + }, + { + "start": 2510.88, + "end": 2513.62, + "probability": 0.9948 + }, + { + "start": 2514.28, + "end": 2516.96, + "probability": 0.9401 + }, + { + "start": 2517.06, + "end": 2518.18, + "probability": 0.975 + }, + { + "start": 2518.62, + "end": 2520.16, + "probability": 0.8148 + }, + { + "start": 2520.2, + "end": 2521.82, + "probability": 0.9897 + }, + { + "start": 2522.4, + "end": 2524.86, + "probability": 0.9454 + }, + { + "start": 2525.04, + "end": 2526.96, + "probability": 0.761 + }, + { + "start": 2527.02, + "end": 2527.78, + "probability": 0.5553 + }, + { + "start": 2527.78, + "end": 2528.86, + "probability": 0.8994 + }, + { + "start": 2529.24, + "end": 2531.48, + "probability": 0.7621 + }, + { + "start": 2532.86, + "end": 2533.4, + "probability": 0.9352 + }, + { + "start": 2534.34, + "end": 2536.06, + "probability": 0.6534 + }, + { + "start": 2536.14, + "end": 2537.96, + "probability": 0.98 + }, + { + "start": 2538.14, + "end": 2538.86, + "probability": 0.9307 + }, + { + "start": 2539.54, + "end": 2540.16, + "probability": 0.9456 + }, + { + "start": 2540.88, + "end": 2541.78, + "probability": 0.974 + }, + { + "start": 2542.3, + "end": 2545.12, + "probability": 0.9326 + }, + { + "start": 2545.26, + "end": 2545.88, + "probability": 0.8276 + }, + { + "start": 2546.14, + "end": 2550.4, + "probability": 0.3522 + }, + { + "start": 2550.48, + "end": 2550.76, + "probability": 0.4678 + }, + { + "start": 2551.36, + "end": 2554.12, + "probability": 0.9115 + }, + { + "start": 2554.12, + "end": 2556.96, + "probability": 0.9922 + }, + { + "start": 2557.54, + "end": 2560.18, + "probability": 0.947 + }, + { + "start": 2560.66, + "end": 2562.48, + "probability": 0.9834 + }, + { + "start": 2563.18, + "end": 2565.26, + "probability": 0.8887 + }, + { + "start": 2565.8, + "end": 2568.74, + "probability": 0.8087 + }, + { + "start": 2569.06, + "end": 2570.56, + "probability": 0.9424 + }, + { + "start": 2571.34, + "end": 2572.4, + "probability": 0.8329 + }, + { + "start": 2573.24, + "end": 2575.3, + "probability": 0.9609 + }, + { + "start": 2575.42, + "end": 2576.48, + "probability": 0.8148 + }, + { + "start": 2577.12, + "end": 2579.04, + "probability": 0.5187 + }, + { + "start": 2579.06, + "end": 2581.22, + "probability": 0.8662 + }, + { + "start": 2595.09, + "end": 2597.58, + "probability": 0.7726 + }, + { + "start": 2598.34, + "end": 2600.46, + "probability": 0.826 + }, + { + "start": 2601.66, + "end": 2603.54, + "probability": 0.9972 + }, + { + "start": 2604.92, + "end": 2606.82, + "probability": 0.9937 + }, + { + "start": 2606.9, + "end": 2611.32, + "probability": 0.9207 + }, + { + "start": 2612.16, + "end": 2613.66, + "probability": 0.991 + }, + { + "start": 2614.16, + "end": 2615.04, + "probability": 0.7477 + }, + { + "start": 2615.74, + "end": 2616.68, + "probability": 0.8257 + }, + { + "start": 2617.9, + "end": 2620.02, + "probability": 0.9695 + }, + { + "start": 2620.6, + "end": 2623.64, + "probability": 0.8416 + }, + { + "start": 2624.22, + "end": 2624.65, + "probability": 0.8818 + }, + { + "start": 2625.74, + "end": 2626.64, + "probability": 0.9459 + }, + { + "start": 2627.42, + "end": 2629.36, + "probability": 0.9551 + }, + { + "start": 2629.66, + "end": 2630.48, + "probability": 0.8495 + }, + { + "start": 2630.76, + "end": 2632.28, + "probability": 0.8828 + }, + { + "start": 2632.44, + "end": 2633.2, + "probability": 0.814 + }, + { + "start": 2634.54, + "end": 2638.92, + "probability": 0.9238 + }, + { + "start": 2639.18, + "end": 2642.02, + "probability": 0.9725 + }, + { + "start": 2643.02, + "end": 2644.98, + "probability": 0.981 + }, + { + "start": 2646.02, + "end": 2650.24, + "probability": 0.7216 + }, + { + "start": 2651.4, + "end": 2653.62, + "probability": 0.9219 + }, + { + "start": 2653.94, + "end": 2656.15, + "probability": 0.9668 + }, + { + "start": 2656.38, + "end": 2657.18, + "probability": 0.9543 + }, + { + "start": 2657.44, + "end": 2658.04, + "probability": 0.9469 + }, + { + "start": 2658.08, + "end": 2658.56, + "probability": 0.7135 + }, + { + "start": 2659.52, + "end": 2660.84, + "probability": 0.9849 + }, + { + "start": 2661.46, + "end": 2663.42, + "probability": 0.6925 + }, + { + "start": 2664.22, + "end": 2666.4, + "probability": 0.8801 + }, + { + "start": 2667.86, + "end": 2669.88, + "probability": 0.8406 + }, + { + "start": 2670.06, + "end": 2672.28, + "probability": 0.9667 + }, + { + "start": 2673.36, + "end": 2675.04, + "probability": 0.6654 + }, + { + "start": 2676.34, + "end": 2677.94, + "probability": 0.9014 + }, + { + "start": 2678.14, + "end": 2678.6, + "probability": 0.6666 + }, + { + "start": 2678.84, + "end": 2679.36, + "probability": 0.8631 + }, + { + "start": 2679.44, + "end": 2680.56, + "probability": 0.8958 + }, + { + "start": 2680.7, + "end": 2681.08, + "probability": 0.3094 + }, + { + "start": 2681.46, + "end": 2682.76, + "probability": 0.955 + }, + { + "start": 2684.6, + "end": 2685.22, + "probability": 0.9237 + }, + { + "start": 2686.1, + "end": 2689.26, + "probability": 0.9144 + }, + { + "start": 2690.32, + "end": 2692.72, + "probability": 0.7892 + }, + { + "start": 2693.82, + "end": 2697.58, + "probability": 0.9598 + }, + { + "start": 2697.76, + "end": 2699.5, + "probability": 0.9565 + }, + { + "start": 2700.3, + "end": 2701.6, + "probability": 0.7034 + }, + { + "start": 2701.88, + "end": 2702.78, + "probability": 0.9347 + }, + { + "start": 2702.98, + "end": 2704.21, + "probability": 0.9852 + }, + { + "start": 2705.68, + "end": 2709.86, + "probability": 0.9053 + }, + { + "start": 2709.98, + "end": 2710.56, + "probability": 0.8223 + }, + { + "start": 2710.88, + "end": 2711.98, + "probability": 0.7018 + }, + { + "start": 2713.36, + "end": 2714.22, + "probability": 0.9674 + }, + { + "start": 2714.9, + "end": 2716.34, + "probability": 0.9114 + }, + { + "start": 2717.4, + "end": 2718.78, + "probability": 0.7726 + }, + { + "start": 2719.58, + "end": 2720.38, + "probability": 0.9808 + }, + { + "start": 2720.6, + "end": 2721.42, + "probability": 0.7707 + }, + { + "start": 2721.86, + "end": 2723.4, + "probability": 0.9314 + }, + { + "start": 2723.46, + "end": 2724.04, + "probability": 0.9789 + }, + { + "start": 2724.06, + "end": 2724.66, + "probability": 0.8438 + }, + { + "start": 2725.5, + "end": 2725.8, + "probability": 0.4615 + }, + { + "start": 2725.94, + "end": 2727.38, + "probability": 0.8575 + }, + { + "start": 2727.86, + "end": 2728.84, + "probability": 0.7924 + }, + { + "start": 2729.32, + "end": 2729.96, + "probability": 0.9373 + }, + { + "start": 2731.54, + "end": 2734.3, + "probability": 0.9465 + }, + { + "start": 2734.82, + "end": 2738.02, + "probability": 0.3221 + }, + { + "start": 2738.8, + "end": 2739.46, + "probability": 0.4849 + }, + { + "start": 2740.18, + "end": 2740.66, + "probability": 0.8584 + }, + { + "start": 2741.84, + "end": 2742.56, + "probability": 0.5222 + }, + { + "start": 2743.6, + "end": 2745.86, + "probability": 0.833 + }, + { + "start": 2746.58, + "end": 2747.2, + "probability": 0.7021 + }, + { + "start": 2747.96, + "end": 2749.44, + "probability": 0.9705 + }, + { + "start": 2749.96, + "end": 2752.43, + "probability": 0.5668 + }, + { + "start": 2753.04, + "end": 2755.68, + "probability": 0.9567 + }, + { + "start": 2756.26, + "end": 2759.06, + "probability": 0.8936 + }, + { + "start": 2759.76, + "end": 2760.54, + "probability": 0.6298 + }, + { + "start": 2761.32, + "end": 2763.16, + "probability": 0.976 + }, + { + "start": 2763.4, + "end": 2763.8, + "probability": 0.7726 + }, + { + "start": 2764.02, + "end": 2764.64, + "probability": 0.4827 + }, + { + "start": 2764.8, + "end": 2765.54, + "probability": 0.9209 + }, + { + "start": 2766.4, + "end": 2768.1, + "probability": 0.9634 + }, + { + "start": 2769.18, + "end": 2772.3, + "probability": 0.9824 + }, + { + "start": 2774.24, + "end": 2776.12, + "probability": 0.8357 + }, + { + "start": 2777.0, + "end": 2779.9, + "probability": 0.9777 + }, + { + "start": 2780.42, + "end": 2781.28, + "probability": 0.9277 + }, + { + "start": 2783.18, + "end": 2783.94, + "probability": 0.6779 + }, + { + "start": 2784.16, + "end": 2784.58, + "probability": 0.9015 + }, + { + "start": 2786.74, + "end": 2788.22, + "probability": 0.9958 + }, + { + "start": 2789.2, + "end": 2790.41, + "probability": 0.9941 + }, + { + "start": 2792.44, + "end": 2793.06, + "probability": 0.1183 + }, + { + "start": 2793.06, + "end": 2795.58, + "probability": 0.9354 + }, + { + "start": 2796.94, + "end": 2798.66, + "probability": 0.9434 + }, + { + "start": 2798.96, + "end": 2802.84, + "probability": 0.994 + }, + { + "start": 2803.22, + "end": 2806.18, + "probability": 0.9807 + }, + { + "start": 2806.5, + "end": 2807.6, + "probability": 0.9795 + }, + { + "start": 2807.9, + "end": 2808.81, + "probability": 0.9589 + }, + { + "start": 2809.04, + "end": 2810.66, + "probability": 0.9781 + }, + { + "start": 2811.36, + "end": 2813.86, + "probability": 0.8029 + }, + { + "start": 2814.38, + "end": 2816.3, + "probability": 0.9948 + }, + { + "start": 2817.04, + "end": 2818.18, + "probability": 0.8899 + }, + { + "start": 2818.78, + "end": 2820.08, + "probability": 0.9723 + }, + { + "start": 2821.4, + "end": 2824.92, + "probability": 0.7664 + }, + { + "start": 2825.26, + "end": 2826.1, + "probability": 0.7772 + }, + { + "start": 2827.0, + "end": 2827.98, + "probability": 0.9649 + }, + { + "start": 2829.2, + "end": 2830.38, + "probability": 0.9033 + }, + { + "start": 2831.1, + "end": 2833.22, + "probability": 0.8474 + }, + { + "start": 2833.68, + "end": 2835.1, + "probability": 0.9678 + }, + { + "start": 2835.18, + "end": 2837.04, + "probability": 0.8955 + }, + { + "start": 2838.38, + "end": 2842.24, + "probability": 0.9653 + }, + { + "start": 2842.94, + "end": 2844.42, + "probability": 0.9869 + }, + { + "start": 2845.54, + "end": 2848.86, + "probability": 0.9136 + }, + { + "start": 2849.16, + "end": 2851.56, + "probability": 0.6998 + }, + { + "start": 2852.48, + "end": 2855.32, + "probability": 0.6377 + }, + { + "start": 2855.32, + "end": 2856.08, + "probability": 0.5951 + }, + { + "start": 2856.8, + "end": 2859.86, + "probability": 0.8038 + }, + { + "start": 2860.6, + "end": 2861.0, + "probability": 0.7649 + }, + { + "start": 2861.38, + "end": 2863.06, + "probability": 0.9888 + }, + { + "start": 2863.36, + "end": 2865.34, + "probability": 0.9747 + }, + { + "start": 2865.68, + "end": 2867.06, + "probability": 0.9309 + }, + { + "start": 2867.8, + "end": 2872.18, + "probability": 0.8724 + }, + { + "start": 2872.98, + "end": 2874.46, + "probability": 0.9949 + }, + { + "start": 2874.98, + "end": 2877.04, + "probability": 0.9287 + }, + { + "start": 2877.18, + "end": 2878.84, + "probability": 0.9383 + }, + { + "start": 2879.16, + "end": 2883.38, + "probability": 0.9715 + }, + { + "start": 2883.76, + "end": 2885.78, + "probability": 0.9902 + }, + { + "start": 2886.12, + "end": 2886.42, + "probability": 0.8083 + }, + { + "start": 2887.34, + "end": 2891.22, + "probability": 0.9397 + }, + { + "start": 2891.92, + "end": 2895.62, + "probability": 0.8472 + }, + { + "start": 2909.46, + "end": 2909.88, + "probability": 0.5696 + }, + { + "start": 2909.98, + "end": 2910.88, + "probability": 0.7007 + }, + { + "start": 2910.96, + "end": 2912.6, + "probability": 0.8568 + }, + { + "start": 2912.68, + "end": 2914.54, + "probability": 0.9783 + }, + { + "start": 2914.64, + "end": 2915.26, + "probability": 0.8368 + }, + { + "start": 2915.76, + "end": 2918.66, + "probability": 0.8534 + }, + { + "start": 2918.8, + "end": 2919.16, + "probability": 0.4695 + }, + { + "start": 2919.5, + "end": 2920.66, + "probability": 0.5022 + }, + { + "start": 2921.16, + "end": 2925.76, + "probability": 0.9767 + }, + { + "start": 2927.14, + "end": 2929.28, + "probability": 0.7609 + }, + { + "start": 2929.28, + "end": 2930.7, + "probability": 0.8257 + }, + { + "start": 2931.79, + "end": 2937.9, + "probability": 0.9744 + }, + { + "start": 2938.98, + "end": 2943.42, + "probability": 0.8818 + }, + { + "start": 2943.42, + "end": 2947.74, + "probability": 0.9478 + }, + { + "start": 2948.36, + "end": 2950.44, + "probability": 0.7418 + }, + { + "start": 2950.56, + "end": 2950.8, + "probability": 0.7134 + }, + { + "start": 2950.96, + "end": 2952.98, + "probability": 0.7374 + }, + { + "start": 2953.2, + "end": 2954.8, + "probability": 0.8792 + }, + { + "start": 2954.82, + "end": 2957.1, + "probability": 0.9791 + }, + { + "start": 2957.2, + "end": 2958.6, + "probability": 0.9907 + }, + { + "start": 2959.58, + "end": 2964.36, + "probability": 0.8562 + }, + { + "start": 2965.1, + "end": 2968.02, + "probability": 0.9976 + }, + { + "start": 2968.2, + "end": 2970.02, + "probability": 0.9888 + }, + { + "start": 2970.82, + "end": 2973.6, + "probability": 0.996 + }, + { + "start": 2973.98, + "end": 2974.92, + "probability": 0.8712 + }, + { + "start": 2975.58, + "end": 2978.98, + "probability": 0.9138 + }, + { + "start": 2979.04, + "end": 2980.12, + "probability": 0.9451 + }, + { + "start": 2981.75, + "end": 2982.84, + "probability": 0.9172 + }, + { + "start": 2982.84, + "end": 2984.16, + "probability": 0.3607 + }, + { + "start": 2984.88, + "end": 2987.1, + "probability": 0.9961 + }, + { + "start": 2987.28, + "end": 2989.78, + "probability": 0.9813 + }, + { + "start": 2989.94, + "end": 2991.36, + "probability": 0.9785 + }, + { + "start": 2991.62, + "end": 2993.86, + "probability": 0.9811 + }, + { + "start": 2993.94, + "end": 2994.52, + "probability": 0.8206 + }, + { + "start": 2995.68, + "end": 2998.44, + "probability": 0.8002 + }, + { + "start": 2998.94, + "end": 3001.26, + "probability": 0.9625 + }, + { + "start": 3002.02, + "end": 3003.88, + "probability": 0.7449 + }, + { + "start": 3004.88, + "end": 3007.94, + "probability": 0.9911 + }, + { + "start": 3008.18, + "end": 3010.08, + "probability": 0.862 + }, + { + "start": 3010.84, + "end": 3013.48, + "probability": 0.8318 + }, + { + "start": 3014.1, + "end": 3015.52, + "probability": 0.8821 + }, + { + "start": 3015.64, + "end": 3017.56, + "probability": 0.9754 + }, + { + "start": 3018.08, + "end": 3019.06, + "probability": 0.9137 + }, + { + "start": 3019.62, + "end": 3021.86, + "probability": 0.9037 + }, + { + "start": 3021.9, + "end": 3023.82, + "probability": 0.9961 + }, + { + "start": 3024.88, + "end": 3026.68, + "probability": 0.9985 + }, + { + "start": 3027.92, + "end": 3030.88, + "probability": 0.7939 + }, + { + "start": 3031.28, + "end": 3032.2, + "probability": 0.691 + }, + { + "start": 3032.32, + "end": 3033.92, + "probability": 0.9977 + }, + { + "start": 3034.68, + "end": 3037.22, + "probability": 0.8042 + }, + { + "start": 3037.92, + "end": 3040.16, + "probability": 0.77 + }, + { + "start": 3041.16, + "end": 3043.28, + "probability": 0.9941 + }, + { + "start": 3043.48, + "end": 3044.58, + "probability": 0.8632 + }, + { + "start": 3044.66, + "end": 3045.02, + "probability": 0.7493 + }, + { + "start": 3045.08, + "end": 3046.3, + "probability": 0.6592 + }, + { + "start": 3046.86, + "end": 3047.24, + "probability": 0.8735 + }, + { + "start": 3047.38, + "end": 3048.06, + "probability": 0.9883 + }, + { + "start": 3048.22, + "end": 3048.6, + "probability": 0.9738 + }, + { + "start": 3048.68, + "end": 3049.24, + "probability": 0.8525 + }, + { + "start": 3049.64, + "end": 3050.32, + "probability": 0.8889 + }, + { + "start": 3050.36, + "end": 3052.92, + "probability": 0.5041 + }, + { + "start": 3052.92, + "end": 3053.1, + "probability": 0.1778 + }, + { + "start": 3053.28, + "end": 3053.9, + "probability": 0.7576 + }, + { + "start": 3054.36, + "end": 3056.04, + "probability": 0.981 + }, + { + "start": 3056.48, + "end": 3057.46, + "probability": 0.841 + }, + { + "start": 3058.0, + "end": 3060.12, + "probability": 0.9688 + }, + { + "start": 3060.2, + "end": 3060.94, + "probability": 0.9258 + }, + { + "start": 3061.72, + "end": 3063.22, + "probability": 0.5305 + }, + { + "start": 3063.82, + "end": 3064.9, + "probability": 0.7326 + }, + { + "start": 3064.96, + "end": 3067.2, + "probability": 0.9907 + }, + { + "start": 3067.76, + "end": 3068.66, + "probability": 0.9392 + }, + { + "start": 3068.76, + "end": 3069.54, + "probability": 0.9357 + }, + { + "start": 3069.86, + "end": 3071.78, + "probability": 0.9658 + }, + { + "start": 3073.38, + "end": 3073.46, + "probability": 0.9194 + }, + { + "start": 3073.52, + "end": 3076.38, + "probability": 0.8936 + }, + { + "start": 3076.42, + "end": 3076.86, + "probability": 0.9321 + }, + { + "start": 3077.5, + "end": 3078.22, + "probability": 0.9626 + }, + { + "start": 3078.74, + "end": 3082.5, + "probability": 0.8127 + }, + { + "start": 3082.84, + "end": 3084.08, + "probability": 0.9825 + }, + { + "start": 3084.34, + "end": 3086.76, + "probability": 0.937 + }, + { + "start": 3086.84, + "end": 3088.0, + "probability": 0.3778 + }, + { + "start": 3089.12, + "end": 3092.34, + "probability": 0.8561 + }, + { + "start": 3092.5, + "end": 3094.14, + "probability": 0.813 + }, + { + "start": 3094.2, + "end": 3095.04, + "probability": 0.8987 + }, + { + "start": 3095.1, + "end": 3095.4, + "probability": 0.7975 + }, + { + "start": 3095.94, + "end": 3096.42, + "probability": 0.9199 + }, + { + "start": 3097.06, + "end": 3097.86, + "probability": 0.7693 + }, + { + "start": 3098.08, + "end": 3098.84, + "probability": 0.8487 + }, + { + "start": 3099.12, + "end": 3101.18, + "probability": 0.9865 + }, + { + "start": 3103.18, + "end": 3105.32, + "probability": 0.9985 + }, + { + "start": 3105.48, + "end": 3106.62, + "probability": 0.911 + }, + { + "start": 3106.76, + "end": 3109.16, + "probability": 0.9663 + }, + { + "start": 3109.4, + "end": 3110.68, + "probability": 0.9294 + }, + { + "start": 3110.68, + "end": 3111.28, + "probability": 0.4807 + }, + { + "start": 3111.4, + "end": 3111.52, + "probability": 0.4554 + }, + { + "start": 3111.92, + "end": 3113.08, + "probability": 0.9331 + }, + { + "start": 3113.68, + "end": 3114.88, + "probability": 0.9956 + }, + { + "start": 3115.88, + "end": 3119.14, + "probability": 0.8333 + }, + { + "start": 3119.86, + "end": 3122.14, + "probability": 0.9891 + }, + { + "start": 3122.58, + "end": 3123.44, + "probability": 0.926 + }, + { + "start": 3123.5, + "end": 3124.14, + "probability": 0.8315 + }, + { + "start": 3124.56, + "end": 3127.84, + "probability": 0.9961 + }, + { + "start": 3127.88, + "end": 3130.06, + "probability": 0.9768 + }, + { + "start": 3131.08, + "end": 3132.94, + "probability": 0.9966 + }, + { + "start": 3133.16, + "end": 3133.42, + "probability": 0.8569 + }, + { + "start": 3133.5, + "end": 3137.8, + "probability": 0.9907 + }, + { + "start": 3139.12, + "end": 3141.42, + "probability": 0.8256 + }, + { + "start": 3142.36, + "end": 3144.68, + "probability": 0.8612 + }, + { + "start": 3145.08, + "end": 3148.52, + "probability": 0.9974 + }, + { + "start": 3148.52, + "end": 3151.36, + "probability": 0.9885 + }, + { + "start": 3152.6, + "end": 3155.44, + "probability": 0.84 + }, + { + "start": 3156.46, + "end": 3160.04, + "probability": 0.9764 + }, + { + "start": 3160.04, + "end": 3163.02, + "probability": 0.9641 + }, + { + "start": 3164.3, + "end": 3165.53, + "probability": 0.9614 + }, + { + "start": 3166.28, + "end": 3167.25, + "probability": 0.9838 + }, + { + "start": 3167.92, + "end": 3168.96, + "probability": 0.8708 + }, + { + "start": 3169.1, + "end": 3169.3, + "probability": 0.7147 + }, + { + "start": 3169.38, + "end": 3171.26, + "probability": 0.9185 + }, + { + "start": 3171.74, + "end": 3173.34, + "probability": 0.8354 + }, + { + "start": 3173.54, + "end": 3175.02, + "probability": 0.9984 + }, + { + "start": 3175.82, + "end": 3179.73, + "probability": 0.9775 + }, + { + "start": 3180.5, + "end": 3182.66, + "probability": 0.9722 + }, + { + "start": 3183.48, + "end": 3184.95, + "probability": 0.9302 + }, + { + "start": 3185.6, + "end": 3187.88, + "probability": 0.9774 + }, + { + "start": 3187.96, + "end": 3189.04, + "probability": 0.9574 + }, + { + "start": 3189.22, + "end": 3192.84, + "probability": 0.9688 + }, + { + "start": 3192.84, + "end": 3194.94, + "probability": 0.9964 + }, + { + "start": 3195.84, + "end": 3197.34, + "probability": 0.9761 + }, + { + "start": 3198.16, + "end": 3199.74, + "probability": 0.7203 + }, + { + "start": 3199.9, + "end": 3201.99, + "probability": 0.8686 + }, + { + "start": 3202.8, + "end": 3203.74, + "probability": 0.9792 + }, + { + "start": 3203.86, + "end": 3205.3, + "probability": 0.9545 + }, + { + "start": 3205.96, + "end": 3209.56, + "probability": 0.8836 + }, + { + "start": 3209.62, + "end": 3214.42, + "probability": 0.9907 + }, + { + "start": 3215.52, + "end": 3218.52, + "probability": 0.9924 + }, + { + "start": 3219.12, + "end": 3220.94, + "probability": 0.9921 + }, + { + "start": 3221.3, + "end": 3223.36, + "probability": 0.8742 + }, + { + "start": 3224.48, + "end": 3226.2, + "probability": 0.9525 + }, + { + "start": 3226.28, + "end": 3228.22, + "probability": 0.9969 + }, + { + "start": 3228.76, + "end": 3229.78, + "probability": 0.9194 + }, + { + "start": 3229.8, + "end": 3230.92, + "probability": 0.8539 + }, + { + "start": 3231.0, + "end": 3231.78, + "probability": 0.9877 + }, + { + "start": 3232.24, + "end": 3233.06, + "probability": 0.9208 + }, + { + "start": 3233.12, + "end": 3233.88, + "probability": 0.9592 + }, + { + "start": 3233.9, + "end": 3234.24, + "probability": 0.7983 + }, + { + "start": 3234.92, + "end": 3235.42, + "probability": 0.9561 + }, + { + "start": 3236.28, + "end": 3240.4, + "probability": 0.981 + }, + { + "start": 3241.22, + "end": 3244.88, + "probability": 0.9794 + }, + { + "start": 3244.98, + "end": 3246.1, + "probability": 0.9929 + }, + { + "start": 3246.76, + "end": 3250.42, + "probability": 0.9807 + }, + { + "start": 3250.54, + "end": 3250.78, + "probability": 0.7438 + }, + { + "start": 3250.9, + "end": 3251.52, + "probability": 0.5707 + }, + { + "start": 3251.82, + "end": 3252.16, + "probability": 0.7252 + }, + { + "start": 3252.54, + "end": 3254.06, + "probability": 0.6496 + }, + { + "start": 3275.4, + "end": 3277.6, + "probability": 0.6965 + }, + { + "start": 3278.32, + "end": 3278.92, + "probability": 0.7036 + }, + { + "start": 3281.14, + "end": 3281.9, + "probability": 0.9578 + }, + { + "start": 3282.6, + "end": 3284.86, + "probability": 0.9935 + }, + { + "start": 3285.74, + "end": 3286.1, + "probability": 0.5747 + }, + { + "start": 3287.5, + "end": 3288.08, + "probability": 0.7424 + }, + { + "start": 3289.86, + "end": 3290.5, + "probability": 0.9709 + }, + { + "start": 3292.44, + "end": 3293.86, + "probability": 0.9395 + }, + { + "start": 3295.28, + "end": 3295.6, + "probability": 0.868 + }, + { + "start": 3297.26, + "end": 3298.06, + "probability": 0.9153 + }, + { + "start": 3299.86, + "end": 3300.7, + "probability": 0.7771 + }, + { + "start": 3303.66, + "end": 3305.86, + "probability": 0.7923 + }, + { + "start": 3307.24, + "end": 3310.64, + "probability": 0.9694 + }, + { + "start": 3313.3, + "end": 3314.46, + "probability": 0.9711 + }, + { + "start": 3316.16, + "end": 3317.52, + "probability": 0.8609 + }, + { + "start": 3318.78, + "end": 3320.28, + "probability": 0.9964 + }, + { + "start": 3321.42, + "end": 3321.92, + "probability": 0.8141 + }, + { + "start": 3323.18, + "end": 3324.22, + "probability": 0.8631 + }, + { + "start": 3325.82, + "end": 3330.36, + "probability": 0.9298 + }, + { + "start": 3332.7, + "end": 3333.84, + "probability": 0.9624 + }, + { + "start": 3335.78, + "end": 3337.1, + "probability": 0.9778 + }, + { + "start": 3338.12, + "end": 3338.92, + "probability": 0.9872 + }, + { + "start": 3339.54, + "end": 3340.9, + "probability": 0.9831 + }, + { + "start": 3343.8, + "end": 3345.84, + "probability": 0.9541 + }, + { + "start": 3348.44, + "end": 3351.2, + "probability": 0.7724 + }, + { + "start": 3352.04, + "end": 3354.68, + "probability": 0.9954 + }, + { + "start": 3357.8, + "end": 3359.78, + "probability": 0.8574 + }, + { + "start": 3360.46, + "end": 3361.04, + "probability": 0.9873 + }, + { + "start": 3362.38, + "end": 3363.72, + "probability": 0.9285 + }, + { + "start": 3364.86, + "end": 3365.66, + "probability": 0.9591 + }, + { + "start": 3368.5, + "end": 3368.86, + "probability": 0.0242 + }, + { + "start": 3371.02, + "end": 3371.78, + "probability": 0.5514 + }, + { + "start": 3375.9, + "end": 3376.56, + "probability": 0.5815 + }, + { + "start": 3378.62, + "end": 3379.0, + "probability": 0.7171 + }, + { + "start": 3379.84, + "end": 3381.22, + "probability": 0.8116 + }, + { + "start": 3383.38, + "end": 3383.9, + "probability": 0.4876 + }, + { + "start": 3388.0, + "end": 3388.46, + "probability": 0.4104 + }, + { + "start": 3389.5, + "end": 3390.9, + "probability": 0.6634 + }, + { + "start": 3392.28, + "end": 3393.76, + "probability": 0.9948 + }, + { + "start": 3395.5, + "end": 3397.62, + "probability": 0.9172 + }, + { + "start": 3400.8, + "end": 3402.12, + "probability": 0.8281 + }, + { + "start": 3402.88, + "end": 3403.6, + "probability": 0.9961 + }, + { + "start": 3405.76, + "end": 3407.42, + "probability": 0.9915 + }, + { + "start": 3408.42, + "end": 3410.38, + "probability": 0.986 + }, + { + "start": 3411.46, + "end": 3411.9, + "probability": 0.969 + }, + { + "start": 3415.48, + "end": 3418.74, + "probability": 0.6662 + }, + { + "start": 3420.64, + "end": 3422.24, + "probability": 0.985 + }, + { + "start": 3422.36, + "end": 3423.34, + "probability": 0.6171 + }, + { + "start": 3423.82, + "end": 3424.78, + "probability": 0.999 + }, + { + "start": 3427.38, + "end": 3428.67, + "probability": 0.9771 + }, + { + "start": 3429.7, + "end": 3431.7, + "probability": 0.9041 + }, + { + "start": 3432.3, + "end": 3433.16, + "probability": 0.907 + }, + { + "start": 3433.8, + "end": 3437.22, + "probability": 0.9968 + }, + { + "start": 3438.36, + "end": 3439.34, + "probability": 0.7242 + }, + { + "start": 3439.98, + "end": 3441.4, + "probability": 0.9812 + }, + { + "start": 3443.66, + "end": 3445.26, + "probability": 0.8202 + }, + { + "start": 3448.34, + "end": 3450.04, + "probability": 0.9287 + }, + { + "start": 3451.42, + "end": 3455.36, + "probability": 0.9932 + }, + { + "start": 3457.44, + "end": 3457.98, + "probability": 0.7726 + }, + { + "start": 3459.54, + "end": 3460.42, + "probability": 0.9736 + }, + { + "start": 3461.44, + "end": 3464.96, + "probability": 0.8285 + }, + { + "start": 3465.7, + "end": 3468.04, + "probability": 0.7562 + }, + { + "start": 3470.18, + "end": 3474.72, + "probability": 0.9955 + }, + { + "start": 3475.18, + "end": 3475.92, + "probability": 0.8279 + }, + { + "start": 3476.68, + "end": 3477.34, + "probability": 0.7813 + }, + { + "start": 3477.5, + "end": 3478.0, + "probability": 0.5671 + }, + { + "start": 3478.44, + "end": 3480.28, + "probability": 0.8892 + }, + { + "start": 3480.7, + "end": 3482.82, + "probability": 0.8713 + }, + { + "start": 3483.66, + "end": 3484.62, + "probability": 0.7603 + }, + { + "start": 3485.2, + "end": 3487.1, + "probability": 0.8932 + }, + { + "start": 3487.84, + "end": 3489.22, + "probability": 0.8742 + }, + { + "start": 3490.38, + "end": 3493.26, + "probability": 0.9912 + }, + { + "start": 3494.54, + "end": 3495.64, + "probability": 0.6702 + }, + { + "start": 3495.78, + "end": 3496.58, + "probability": 0.9063 + }, + { + "start": 3496.68, + "end": 3497.66, + "probability": 0.857 + }, + { + "start": 3498.2, + "end": 3498.79, + "probability": 0.207 + }, + { + "start": 3500.79, + "end": 3504.24, + "probability": 0.9475 + }, + { + "start": 3504.74, + "end": 3507.11, + "probability": 0.989 + }, + { + "start": 3507.36, + "end": 3508.48, + "probability": 0.3913 + }, + { + "start": 3508.54, + "end": 3510.5, + "probability": 0.4745 + }, + { + "start": 3510.5, + "end": 3512.7, + "probability": 0.4581 + }, + { + "start": 3515.72, + "end": 3517.38, + "probability": 0.8311 + }, + { + "start": 3517.46, + "end": 3518.92, + "probability": 0.7653 + }, + { + "start": 3518.94, + "end": 3519.32, + "probability": 0.3856 + }, + { + "start": 3519.32, + "end": 3519.78, + "probability": 0.7292 + }, + { + "start": 3520.2, + "end": 3520.72, + "probability": 0.9839 + }, + { + "start": 3521.92, + "end": 3525.78, + "probability": 0.9797 + }, + { + "start": 3526.22, + "end": 3527.69, + "probability": 0.6799 + }, + { + "start": 3528.18, + "end": 3532.13, + "probability": 0.9165 + }, + { + "start": 3533.44, + "end": 3535.91, + "probability": 0.9976 + }, + { + "start": 3536.84, + "end": 3538.16, + "probability": 0.9263 + }, + { + "start": 3539.42, + "end": 3544.94, + "probability": 0.6814 + }, + { + "start": 3546.14, + "end": 3547.2, + "probability": 0.8183 + }, + { + "start": 3549.44, + "end": 3551.68, + "probability": 0.8987 + }, + { + "start": 3552.46, + "end": 3553.04, + "probability": 0.9619 + }, + { + "start": 3555.12, + "end": 3556.86, + "probability": 0.7962 + }, + { + "start": 3559.08, + "end": 3560.0, + "probability": 0.4616 + }, + { + "start": 3561.1, + "end": 3561.94, + "probability": 0.8625 + }, + { + "start": 3562.96, + "end": 3567.82, + "probability": 0.9666 + }, + { + "start": 3569.4, + "end": 3570.14, + "probability": 0.5468 + }, + { + "start": 3570.88, + "end": 3572.83, + "probability": 0.8994 + }, + { + "start": 3573.72, + "end": 3577.48, + "probability": 0.9662 + }, + { + "start": 3579.98, + "end": 3580.8, + "probability": 0.9454 + }, + { + "start": 3582.06, + "end": 3584.0, + "probability": 0.9163 + }, + { + "start": 3585.22, + "end": 3585.98, + "probability": 0.7474 + }, + { + "start": 3586.7, + "end": 3587.68, + "probability": 0.91 + }, + { + "start": 3588.4, + "end": 3589.79, + "probability": 0.8576 + }, + { + "start": 3591.42, + "end": 3593.82, + "probability": 0.96 + }, + { + "start": 3594.74, + "end": 3596.82, + "probability": 0.7006 + }, + { + "start": 3598.7, + "end": 3599.94, + "probability": 0.9977 + }, + { + "start": 3601.5, + "end": 3603.68, + "probability": 0.9947 + }, + { + "start": 3606.2, + "end": 3607.98, + "probability": 0.4604 + }, + { + "start": 3608.02, + "end": 3614.64, + "probability": 0.974 + }, + { + "start": 3616.82, + "end": 3618.78, + "probability": 0.9797 + }, + { + "start": 3619.54, + "end": 3621.9, + "probability": 0.996 + }, + { + "start": 3623.34, + "end": 3624.44, + "probability": 0.9887 + }, + { + "start": 3624.56, + "end": 3624.74, + "probability": 0.726 + }, + { + "start": 3624.96, + "end": 3625.68, + "probability": 0.6574 + }, + { + "start": 3625.9, + "end": 3629.1, + "probability": 0.861 + }, + { + "start": 3632.4, + "end": 3636.32, + "probability": 0.7167 + }, + { + "start": 3637.7, + "end": 3638.1, + "probability": 0.9202 + }, + { + "start": 3651.5, + "end": 3651.5, + "probability": 0.2467 + }, + { + "start": 3651.5, + "end": 3652.34, + "probability": 0.6038 + }, + { + "start": 3653.0, + "end": 3655.78, + "probability": 0.6983 + }, + { + "start": 3656.9, + "end": 3659.38, + "probability": 0.979 + }, + { + "start": 3660.48, + "end": 3661.62, + "probability": 0.8841 + }, + { + "start": 3662.28, + "end": 3663.08, + "probability": 0.9699 + }, + { + "start": 3663.7, + "end": 3665.28, + "probability": 0.5281 + }, + { + "start": 3666.28, + "end": 3668.14, + "probability": 0.7905 + }, + { + "start": 3668.28, + "end": 3670.62, + "probability": 0.9294 + }, + { + "start": 3670.78, + "end": 3671.2, + "probability": 0.9548 + }, + { + "start": 3671.42, + "end": 3671.96, + "probability": 0.8157 + }, + { + "start": 3673.24, + "end": 3674.58, + "probability": 0.9797 + }, + { + "start": 3674.82, + "end": 3677.08, + "probability": 0.9604 + }, + { + "start": 3678.8, + "end": 3680.76, + "probability": 0.9928 + }, + { + "start": 3681.78, + "end": 3683.52, + "probability": 0.9787 + }, + { + "start": 3684.9, + "end": 3685.53, + "probability": 0.9922 + }, + { + "start": 3686.68, + "end": 3688.96, + "probability": 0.9141 + }, + { + "start": 3691.18, + "end": 3694.22, + "probability": 0.9946 + }, + { + "start": 3694.72, + "end": 3696.46, + "probability": 0.8882 + }, + { + "start": 3698.18, + "end": 3702.6, + "probability": 0.9773 + }, + { + "start": 3703.66, + "end": 3704.4, + "probability": 0.9435 + }, + { + "start": 3705.68, + "end": 3706.52, + "probability": 0.9911 + }, + { + "start": 3708.26, + "end": 3709.18, + "probability": 0.9386 + }, + { + "start": 3710.28, + "end": 3712.3, + "probability": 0.9083 + }, + { + "start": 3713.0, + "end": 3715.9, + "probability": 0.9385 + }, + { + "start": 3716.24, + "end": 3718.22, + "probability": 0.9584 + }, + { + "start": 3718.32, + "end": 3719.94, + "probability": 0.9957 + }, + { + "start": 3720.08, + "end": 3724.08, + "probability": 0.9978 + }, + { + "start": 3724.16, + "end": 3725.22, + "probability": 0.9705 + }, + { + "start": 3726.46, + "end": 3729.5, + "probability": 0.9401 + }, + { + "start": 3729.86, + "end": 3731.31, + "probability": 0.9844 + }, + { + "start": 3731.68, + "end": 3732.52, + "probability": 0.8142 + }, + { + "start": 3732.66, + "end": 3734.14, + "probability": 0.9508 + }, + { + "start": 3734.96, + "end": 3737.84, + "probability": 0.9932 + }, + { + "start": 3738.24, + "end": 3739.26, + "probability": 0.9811 + }, + { + "start": 3740.5, + "end": 3741.88, + "probability": 0.907 + }, + { + "start": 3742.04, + "end": 3743.4, + "probability": 0.9943 + }, + { + "start": 3744.22, + "end": 3746.96, + "probability": 0.9289 + }, + { + "start": 3748.1, + "end": 3748.82, + "probability": 0.4707 + }, + { + "start": 3749.0, + "end": 3752.22, + "probability": 0.905 + }, + { + "start": 3752.98, + "end": 3755.18, + "probability": 0.984 + }, + { + "start": 3756.14, + "end": 3758.42, + "probability": 0.9976 + }, + { + "start": 3759.02, + "end": 3760.46, + "probability": 0.8126 + }, + { + "start": 3760.8, + "end": 3762.44, + "probability": 0.9329 + }, + { + "start": 3764.36, + "end": 3768.34, + "probability": 0.9424 + }, + { + "start": 3768.44, + "end": 3768.88, + "probability": 0.8414 + }, + { + "start": 3768.96, + "end": 3770.18, + "probability": 0.96 + }, + { + "start": 3771.3, + "end": 3772.82, + "probability": 0.9745 + }, + { + "start": 3773.0, + "end": 3773.76, + "probability": 0.6924 + }, + { + "start": 3774.22, + "end": 3776.67, + "probability": 0.9878 + }, + { + "start": 3777.4, + "end": 3777.84, + "probability": 0.741 + }, + { + "start": 3778.02, + "end": 3779.73, + "probability": 0.9368 + }, + { + "start": 3779.86, + "end": 3781.58, + "probability": 0.9717 + }, + { + "start": 3781.68, + "end": 3783.48, + "probability": 0.8377 + }, + { + "start": 3784.3, + "end": 3787.72, + "probability": 0.9263 + }, + { + "start": 3787.98, + "end": 3790.96, + "probability": 0.9614 + }, + { + "start": 3791.86, + "end": 3794.99, + "probability": 0.9932 + }, + { + "start": 3795.34, + "end": 3798.32, + "probability": 0.9861 + }, + { + "start": 3798.44, + "end": 3799.87, + "probability": 0.9995 + }, + { + "start": 3801.36, + "end": 3804.68, + "probability": 0.8656 + }, + { + "start": 3805.34, + "end": 3805.83, + "probability": 0.9727 + }, + { + "start": 3806.3, + "end": 3808.16, + "probability": 0.96 + }, + { + "start": 3809.16, + "end": 3811.54, + "probability": 0.7835 + }, + { + "start": 3811.56, + "end": 3812.3, + "probability": 0.791 + }, + { + "start": 3812.62, + "end": 3814.1, + "probability": 0.6307 + }, + { + "start": 3814.44, + "end": 3815.38, + "probability": 0.7858 + }, + { + "start": 3815.42, + "end": 3818.26, + "probability": 0.9973 + }, + { + "start": 3818.86, + "end": 3820.38, + "probability": 0.8935 + }, + { + "start": 3821.06, + "end": 3822.04, + "probability": 0.9817 + }, + { + "start": 3822.66, + "end": 3825.62, + "probability": 0.9894 + }, + { + "start": 3826.16, + "end": 3827.08, + "probability": 0.832 + }, + { + "start": 3827.2, + "end": 3828.68, + "probability": 0.9803 + }, + { + "start": 3828.74, + "end": 3830.88, + "probability": 0.665 + }, + { + "start": 3830.96, + "end": 3832.24, + "probability": 0.8606 + }, + { + "start": 3832.36, + "end": 3834.58, + "probability": 0.9697 + }, + { + "start": 3835.12, + "end": 3836.34, + "probability": 0.8542 + }, + { + "start": 3837.02, + "end": 3839.56, + "probability": 0.9714 + }, + { + "start": 3840.28, + "end": 3842.28, + "probability": 0.9819 + }, + { + "start": 3843.22, + "end": 3846.52, + "probability": 0.9922 + }, + { + "start": 3846.62, + "end": 3848.82, + "probability": 0.9956 + }, + { + "start": 3848.88, + "end": 3852.32, + "probability": 0.9972 + }, + { + "start": 3852.38, + "end": 3853.6, + "probability": 0.5743 + }, + { + "start": 3853.64, + "end": 3858.62, + "probability": 0.9928 + }, + { + "start": 3859.46, + "end": 3861.86, + "probability": 0.995 + }, + { + "start": 3862.3, + "end": 3865.08, + "probability": 0.9917 + }, + { + "start": 3865.42, + "end": 3865.82, + "probability": 0.7876 + }, + { + "start": 3866.08, + "end": 3867.18, + "probability": 0.7816 + }, + { + "start": 3867.22, + "end": 3867.94, + "probability": 0.2736 + }, + { + "start": 3868.7, + "end": 3870.4, + "probability": 0.778 + }, + { + "start": 3872.3, + "end": 3873.46, + "probability": 0.7649 + }, + { + "start": 3880.12, + "end": 3880.3, + "probability": 0.3702 + }, + { + "start": 3909.3, + "end": 3915.37, + "probability": 0.7601 + }, + { + "start": 3916.82, + "end": 3922.06, + "probability": 0.9827 + }, + { + "start": 3922.42, + "end": 3923.0, + "probability": 0.8897 + }, + { + "start": 3923.76, + "end": 3925.54, + "probability": 0.9972 + }, + { + "start": 3926.6, + "end": 3928.54, + "probability": 0.996 + }, + { + "start": 3928.64, + "end": 3930.78, + "probability": 0.8758 + }, + { + "start": 3931.24, + "end": 3932.36, + "probability": 0.7632 + }, + { + "start": 3933.68, + "end": 3938.7, + "probability": 0.9787 + }, + { + "start": 3938.9, + "end": 3939.78, + "probability": 0.9335 + }, + { + "start": 3940.74, + "end": 3941.54, + "probability": 0.7784 + }, + { + "start": 3942.92, + "end": 3946.82, + "probability": 0.9897 + }, + { + "start": 3947.72, + "end": 3949.32, + "probability": 0.854 + }, + { + "start": 3949.98, + "end": 3951.4, + "probability": 0.9826 + }, + { + "start": 3952.64, + "end": 3956.38, + "probability": 0.8177 + }, + { + "start": 3956.58, + "end": 3960.94, + "probability": 0.9673 + }, + { + "start": 3961.06, + "end": 3965.02, + "probability": 0.9879 + }, + { + "start": 3965.84, + "end": 3968.32, + "probability": 0.901 + }, + { + "start": 3969.3, + "end": 3972.14, + "probability": 0.9918 + }, + { + "start": 3972.82, + "end": 3973.24, + "probability": 0.9854 + }, + { + "start": 3973.94, + "end": 3974.42, + "probability": 0.8794 + }, + { + "start": 3975.38, + "end": 3981.22, + "probability": 0.9328 + }, + { + "start": 3981.96, + "end": 3984.78, + "probability": 0.74 + }, + { + "start": 3985.98, + "end": 3990.1, + "probability": 0.9935 + }, + { + "start": 3990.2, + "end": 3994.96, + "probability": 0.9936 + }, + { + "start": 3995.52, + "end": 3997.28, + "probability": 0.8832 + }, + { + "start": 3998.34, + "end": 4002.32, + "probability": 0.8373 + }, + { + "start": 4002.82, + "end": 4005.4, + "probability": 0.9992 + }, + { + "start": 4005.4, + "end": 4009.32, + "probability": 0.9938 + }, + { + "start": 4010.54, + "end": 4012.9, + "probability": 0.7087 + }, + { + "start": 4013.76, + "end": 4017.38, + "probability": 0.84 + }, + { + "start": 4017.98, + "end": 4018.84, + "probability": 0.9767 + }, + { + "start": 4021.08, + "end": 4024.16, + "probability": 0.946 + }, + { + "start": 4024.16, + "end": 4026.54, + "probability": 0.9247 + }, + { + "start": 4027.18, + "end": 4029.78, + "probability": 0.9971 + }, + { + "start": 4029.86, + "end": 4031.86, + "probability": 0.9134 + }, + { + "start": 4032.0, + "end": 4032.84, + "probability": 0.8844 + }, + { + "start": 4033.12, + "end": 4033.86, + "probability": 0.8649 + }, + { + "start": 4033.98, + "end": 4035.16, + "probability": 0.9855 + }, + { + "start": 4035.66, + "end": 4036.96, + "probability": 0.9546 + }, + { + "start": 4038.36, + "end": 4042.36, + "probability": 0.9404 + }, + { + "start": 4042.36, + "end": 4046.36, + "probability": 0.981 + }, + { + "start": 4047.42, + "end": 4052.16, + "probability": 0.9418 + }, + { + "start": 4052.72, + "end": 4053.54, + "probability": 0.976 + }, + { + "start": 4055.28, + "end": 4057.52, + "probability": 0.9672 + }, + { + "start": 4057.52, + "end": 4060.04, + "probability": 0.9698 + }, + { + "start": 4060.58, + "end": 4062.0, + "probability": 0.9797 + }, + { + "start": 4062.82, + "end": 4066.4, + "probability": 0.7121 + }, + { + "start": 4067.18, + "end": 4068.1, + "probability": 0.9834 + }, + { + "start": 4069.44, + "end": 4072.64, + "probability": 0.7413 + }, + { + "start": 4073.18, + "end": 4077.94, + "probability": 0.987 + }, + { + "start": 4079.22, + "end": 4083.22, + "probability": 0.9541 + }, + { + "start": 4083.34, + "end": 4083.84, + "probability": 0.6529 + }, + { + "start": 4084.52, + "end": 4085.6, + "probability": 0.6315 + }, + { + "start": 4086.18, + "end": 4088.58, + "probability": 0.9697 + }, + { + "start": 4089.52, + "end": 4091.76, + "probability": 0.9465 + }, + { + "start": 4092.44, + "end": 4096.68, + "probability": 0.9567 + }, + { + "start": 4096.74, + "end": 4099.17, + "probability": 0.8307 + }, + { + "start": 4100.14, + "end": 4101.08, + "probability": 0.7269 + }, + { + "start": 4101.92, + "end": 4104.54, + "probability": 0.9032 + }, + { + "start": 4104.54, + "end": 4107.34, + "probability": 0.9897 + }, + { + "start": 4107.56, + "end": 4109.0, + "probability": 0.5913 + }, + { + "start": 4109.76, + "end": 4109.86, + "probability": 0.7329 + }, + { + "start": 4110.4, + "end": 4113.7, + "probability": 0.7042 + }, + { + "start": 4114.14, + "end": 4117.36, + "probability": 0.9578 + }, + { + "start": 4118.04, + "end": 4119.62, + "probability": 0.7994 + }, + { + "start": 4119.7, + "end": 4123.68, + "probability": 0.8097 + }, + { + "start": 4124.12, + "end": 4125.08, + "probability": 0.8313 + }, + { + "start": 4126.06, + "end": 4127.74, + "probability": 0.6492 + }, + { + "start": 4128.5, + "end": 4130.5, + "probability": 0.8787 + }, + { + "start": 4131.86, + "end": 4132.62, + "probability": 0.7796 + }, + { + "start": 4132.68, + "end": 4137.14, + "probability": 0.8406 + }, + { + "start": 4137.7, + "end": 4142.44, + "probability": 0.9554 + }, + { + "start": 4142.44, + "end": 4146.22, + "probability": 0.8994 + }, + { + "start": 4147.08, + "end": 4149.68, + "probability": 0.9727 + }, + { + "start": 4150.28, + "end": 4152.44, + "probability": 0.856 + }, + { + "start": 4153.16, + "end": 4155.76, + "probability": 0.7537 + }, + { + "start": 4156.84, + "end": 4161.12, + "probability": 0.7496 + }, + { + "start": 4161.12, + "end": 4163.76, + "probability": 0.9676 + }, + { + "start": 4164.38, + "end": 4167.36, + "probability": 0.8985 + }, + { + "start": 4168.58, + "end": 4171.12, + "probability": 0.9951 + }, + { + "start": 4171.12, + "end": 4174.2, + "probability": 0.9688 + }, + { + "start": 4175.14, + "end": 4176.38, + "probability": 0.704 + }, + { + "start": 4177.42, + "end": 4178.52, + "probability": 0.8049 + }, + { + "start": 4179.18, + "end": 4182.24, + "probability": 0.7885 + }, + { + "start": 4182.84, + "end": 4183.64, + "probability": 0.4123 + }, + { + "start": 4184.62, + "end": 4186.06, + "probability": 0.7415 + }, + { + "start": 4186.26, + "end": 4187.1, + "probability": 0.3473 + }, + { + "start": 4187.14, + "end": 4189.98, + "probability": 0.8803 + }, + { + "start": 4190.14, + "end": 4192.0, + "probability": 0.9919 + }, + { + "start": 4192.76, + "end": 4194.14, + "probability": 0.9657 + }, + { + "start": 4194.14, + "end": 4197.44, + "probability": 0.943 + }, + { + "start": 4198.52, + "end": 4200.98, + "probability": 0.787 + }, + { + "start": 4201.52, + "end": 4203.66, + "probability": 0.9498 + }, + { + "start": 4204.8, + "end": 4210.14, + "probability": 0.8752 + }, + { + "start": 4210.78, + "end": 4214.92, + "probability": 0.9839 + }, + { + "start": 4214.92, + "end": 4218.52, + "probability": 0.9901 + }, + { + "start": 4218.52, + "end": 4219.14, + "probability": 0.4746 + }, + { + "start": 4221.84, + "end": 4222.3, + "probability": 0.3614 + }, + { + "start": 4222.38, + "end": 4222.66, + "probability": 0.7481 + }, + { + "start": 4222.72, + "end": 4223.3, + "probability": 0.7053 + }, + { + "start": 4223.32, + "end": 4224.64, + "probability": 0.767 + }, + { + "start": 4225.14, + "end": 4227.4, + "probability": 0.9489 + }, + { + "start": 4227.6, + "end": 4228.46, + "probability": 0.8504 + }, + { + "start": 4228.98, + "end": 4231.1, + "probability": 0.9018 + }, + { + "start": 4232.0, + "end": 4232.72, + "probability": 0.8526 + }, + { + "start": 4233.6, + "end": 4235.84, + "probability": 0.9389 + }, + { + "start": 4236.04, + "end": 4241.46, + "probability": 0.946 + }, + { + "start": 4242.16, + "end": 4245.54, + "probability": 0.9778 + }, + { + "start": 4246.08, + "end": 4246.52, + "probability": 0.8292 + }, + { + "start": 4247.36, + "end": 4250.04, + "probability": 0.7698 + }, + { + "start": 4251.0, + "end": 4253.1, + "probability": 0.9188 + }, + { + "start": 4254.1, + "end": 4257.18, + "probability": 0.9839 + }, + { + "start": 4258.34, + "end": 4259.24, + "probability": 0.9137 + }, + { + "start": 4259.4, + "end": 4264.42, + "probability": 0.6997 + }, + { + "start": 4264.52, + "end": 4264.96, + "probability": 0.8256 + }, + { + "start": 4265.48, + "end": 4268.04, + "probability": 0.8914 + }, + { + "start": 4268.2, + "end": 4269.8, + "probability": 0.989 + }, + { + "start": 4270.04, + "end": 4270.48, + "probability": 0.5996 + }, + { + "start": 4271.02, + "end": 4272.78, + "probability": 0.7275 + }, + { + "start": 4273.42, + "end": 4275.24, + "probability": 0.1744 + }, + { + "start": 4280.04, + "end": 4281.28, + "probability": 0.5074 + }, + { + "start": 4288.7, + "end": 4289.18, + "probability": 0.5834 + }, + { + "start": 4291.6, + "end": 4292.92, + "probability": 0.9434 + }, + { + "start": 4293.2, + "end": 4296.14, + "probability": 0.7853 + }, + { + "start": 4297.5, + "end": 4299.52, + "probability": 0.9344 + }, + { + "start": 4300.08, + "end": 4301.52, + "probability": 0.9899 + }, + { + "start": 4302.12, + "end": 4302.32, + "probability": 0.2733 + }, + { + "start": 4302.98, + "end": 4303.36, + "probability": 0.0191 + }, + { + "start": 4304.0, + "end": 4306.4, + "probability": 0.7144 + }, + { + "start": 4306.92, + "end": 4308.9, + "probability": 0.9919 + }, + { + "start": 4309.56, + "end": 4312.3, + "probability": 0.5713 + }, + { + "start": 4313.08, + "end": 4313.91, + "probability": 0.7339 + }, + { + "start": 4316.24, + "end": 4318.8, + "probability": 0.9969 + }, + { + "start": 4322.04, + "end": 4322.78, + "probability": 0.5002 + }, + { + "start": 4323.46, + "end": 4327.58, + "probability": 0.9808 + }, + { + "start": 4327.78, + "end": 4331.36, + "probability": 0.9995 + }, + { + "start": 4331.9, + "end": 4334.98, + "probability": 0.8165 + }, + { + "start": 4335.58, + "end": 4339.16, + "probability": 0.9896 + }, + { + "start": 4339.34, + "end": 4341.94, + "probability": 0.6714 + }, + { + "start": 4346.32, + "end": 4350.02, + "probability": 0.6409 + }, + { + "start": 4350.02, + "end": 4352.66, + "probability": 0.9017 + }, + { + "start": 4353.7, + "end": 4355.26, + "probability": 0.3954 + }, + { + "start": 4356.62, + "end": 4357.32, + "probability": 0.5323 + }, + { + "start": 4357.74, + "end": 4358.98, + "probability": 0.7509 + }, + { + "start": 4359.56, + "end": 4361.5, + "probability": 0.6882 + }, + { + "start": 4362.12, + "end": 4363.72, + "probability": 0.7524 + }, + { + "start": 4365.55, + "end": 4367.98, + "probability": 0.8373 + }, + { + "start": 4368.68, + "end": 4369.74, + "probability": 0.5083 + }, + { + "start": 4369.92, + "end": 4370.3, + "probability": 0.8831 + }, + { + "start": 4370.38, + "end": 4373.52, + "probability": 0.925 + }, + { + "start": 4374.48, + "end": 4376.8, + "probability": 0.9775 + }, + { + "start": 4376.9, + "end": 4377.12, + "probability": 0.2452 + }, + { + "start": 4377.56, + "end": 4380.5, + "probability": 0.851 + }, + { + "start": 4380.54, + "end": 4381.02, + "probability": 0.8148 + }, + { + "start": 4381.24, + "end": 4381.5, + "probability": 0.1159 + }, + { + "start": 4381.52, + "end": 4383.44, + "probability": 0.2127 + }, + { + "start": 4384.06, + "end": 4386.34, + "probability": 0.9617 + }, + { + "start": 4386.4, + "end": 4387.32, + "probability": 0.891 + }, + { + "start": 4391.44, + "end": 4393.7, + "probability": 0.4909 + }, + { + "start": 4393.9, + "end": 4396.0, + "probability": 0.5898 + }, + { + "start": 4396.12, + "end": 4398.82, + "probability": 0.7261 + }, + { + "start": 4398.88, + "end": 4402.42, + "probability": 0.9404 + }, + { + "start": 4403.52, + "end": 4404.64, + "probability": 0.7479 + }, + { + "start": 4405.52, + "end": 4408.36, + "probability": 0.7737 + }, + { + "start": 4408.42, + "end": 4408.58, + "probability": 0.0978 + }, + { + "start": 4408.64, + "end": 4410.64, + "probability": 0.9785 + }, + { + "start": 4411.16, + "end": 4413.02, + "probability": 0.0238 + }, + { + "start": 4414.52, + "end": 4415.78, + "probability": 0.616 + }, + { + "start": 4416.02, + "end": 4418.4, + "probability": 0.8107 + }, + { + "start": 4419.3, + "end": 4421.23, + "probability": 0.7012 + }, + { + "start": 4421.6, + "end": 4423.48, + "probability": 0.9853 + }, + { + "start": 4423.86, + "end": 4426.42, + "probability": 0.8572 + }, + { + "start": 4427.04, + "end": 4427.08, + "probability": 0.0039 + }, + { + "start": 4428.02, + "end": 4428.32, + "probability": 0.8591 + }, + { + "start": 4428.32, + "end": 4428.96, + "probability": 0.9253 + }, + { + "start": 4429.22, + "end": 4430.18, + "probability": 0.7012 + }, + { + "start": 4430.52, + "end": 4431.72, + "probability": 0.8472 + }, + { + "start": 4432.5, + "end": 4435.15, + "probability": 0.9946 + }, + { + "start": 4436.22, + "end": 4437.74, + "probability": 0.9454 + }, + { + "start": 4437.86, + "end": 4438.82, + "probability": 0.8389 + }, + { + "start": 4439.46, + "end": 4439.64, + "probability": 0.7869 + }, + { + "start": 4439.64, + "end": 4440.06, + "probability": 0.2796 + }, + { + "start": 4440.36, + "end": 4442.9, + "probability": 0.6513 + }, + { + "start": 4443.34, + "end": 4443.7, + "probability": 0.9556 + }, + { + "start": 4444.02, + "end": 4444.65, + "probability": 0.9165 + }, + { + "start": 4445.86, + "end": 4446.84, + "probability": 0.8135 + }, + { + "start": 4447.54, + "end": 4448.5, + "probability": 0.7529 + }, + { + "start": 4448.68, + "end": 4449.62, + "probability": 0.8391 + }, + { + "start": 4449.68, + "end": 4450.74, + "probability": 0.6664 + }, + { + "start": 4450.86, + "end": 4451.02, + "probability": 0.3948 + }, + { + "start": 4451.02, + "end": 4451.44, + "probability": 0.9308 + }, + { + "start": 4452.28, + "end": 4453.98, + "probability": 0.5814 + }, + { + "start": 4454.04, + "end": 4454.96, + "probability": 0.5272 + }, + { + "start": 4454.96, + "end": 4455.7, + "probability": 0.8173 + }, + { + "start": 4455.8, + "end": 4459.12, + "probability": 0.3367 + }, + { + "start": 4460.24, + "end": 4461.66, + "probability": 0.4865 + }, + { + "start": 4461.82, + "end": 4462.18, + "probability": 0.0085 + }, + { + "start": 4463.1, + "end": 4464.22, + "probability": 0.7749 + }, + { + "start": 4465.18, + "end": 4469.24, + "probability": 0.2535 + }, + { + "start": 4469.42, + "end": 4471.74, + "probability": 0.917 + }, + { + "start": 4472.32, + "end": 4472.44, + "probability": 0.2848 + }, + { + "start": 4472.44, + "end": 4472.44, + "probability": 0.5053 + }, + { + "start": 4472.44, + "end": 4472.44, + "probability": 0.0201 + }, + { + "start": 4472.44, + "end": 4472.99, + "probability": 0.2918 + }, + { + "start": 4473.26, + "end": 4473.56, + "probability": 0.3282 + }, + { + "start": 4473.66, + "end": 4474.48, + "probability": 0.2617 + }, + { + "start": 4474.64, + "end": 4477.11, + "probability": 0.7896 + }, + { + "start": 4478.5, + "end": 4478.92, + "probability": 0.7429 + }, + { + "start": 4479.0, + "end": 4479.12, + "probability": 0.2916 + }, + { + "start": 4479.7, + "end": 4481.2, + "probability": 0.6953 + }, + { + "start": 4481.2, + "end": 4481.2, + "probability": 0.1199 + }, + { + "start": 4481.2, + "end": 4485.22, + "probability": 0.906 + }, + { + "start": 4485.84, + "end": 4486.84, + "probability": 0.9019 + }, + { + "start": 4487.34, + "end": 4487.66, + "probability": 0.2911 + }, + { + "start": 4487.76, + "end": 4488.0, + "probability": 0.0558 + }, + { + "start": 4488.0, + "end": 4488.08, + "probability": 0.7191 + }, + { + "start": 4488.2, + "end": 4493.32, + "probability": 0.9915 + }, + { + "start": 4493.74, + "end": 4494.54, + "probability": 0.655 + }, + { + "start": 4494.62, + "end": 4494.96, + "probability": 0.8706 + }, + { + "start": 4494.98, + "end": 4496.42, + "probability": 0.9135 + }, + { + "start": 4496.52, + "end": 4497.52, + "probability": 0.6569 + }, + { + "start": 4497.96, + "end": 4499.22, + "probability": 0.8012 + }, + { + "start": 4500.16, + "end": 4506.4, + "probability": 0.8328 + }, + { + "start": 4507.04, + "end": 4511.6, + "probability": 0.9788 + }, + { + "start": 4511.82, + "end": 4514.98, + "probability": 0.933 + }, + { + "start": 4515.48, + "end": 4520.74, + "probability": 0.988 + }, + { + "start": 4521.46, + "end": 4523.66, + "probability": 0.9502 + }, + { + "start": 4524.02, + "end": 4524.84, + "probability": 0.7193 + }, + { + "start": 4525.98, + "end": 4527.76, + "probability": 0.7946 + }, + { + "start": 4528.98, + "end": 4529.24, + "probability": 0.4029 + }, + { + "start": 4529.98, + "end": 4530.94, + "probability": 0.6137 + }, + { + "start": 4530.96, + "end": 4532.48, + "probability": 0.6304 + }, + { + "start": 4532.81, + "end": 4534.34, + "probability": 0.7633 + }, + { + "start": 4534.6, + "end": 4534.98, + "probability": 0.6072 + }, + { + "start": 4535.48, + "end": 4538.74, + "probability": 0.8827 + }, + { + "start": 4539.48, + "end": 4545.34, + "probability": 0.9821 + }, + { + "start": 4545.72, + "end": 4548.8, + "probability": 0.9767 + }, + { + "start": 4549.62, + "end": 4551.98, + "probability": 0.9973 + }, + { + "start": 4553.09, + "end": 4557.64, + "probability": 0.9664 + }, + { + "start": 4558.92, + "end": 4563.5, + "probability": 0.9123 + }, + { + "start": 4564.18, + "end": 4570.32, + "probability": 0.6631 + }, + { + "start": 4570.82, + "end": 4571.2, + "probability": 0.7338 + }, + { + "start": 4573.4, + "end": 4575.46, + "probability": 0.8673 + }, + { + "start": 4575.46, + "end": 4577.94, + "probability": 0.9915 + }, + { + "start": 4578.46, + "end": 4581.62, + "probability": 0.9122 + }, + { + "start": 4582.24, + "end": 4586.65, + "probability": 0.9783 + }, + { + "start": 4587.28, + "end": 4590.5, + "probability": 0.7115 + }, + { + "start": 4591.46, + "end": 4591.92, + "probability": 0.4801 + }, + { + "start": 4592.08, + "end": 4595.18, + "probability": 0.747 + }, + { + "start": 4595.7, + "end": 4596.94, + "probability": 0.7592 + }, + { + "start": 4597.12, + "end": 4597.42, + "probability": 0.7939 + }, + { + "start": 4597.56, + "end": 4599.28, + "probability": 0.9225 + }, + { + "start": 4599.28, + "end": 4601.1, + "probability": 0.8532 + }, + { + "start": 4602.12, + "end": 4604.82, + "probability": 0.3061 + }, + { + "start": 4606.42, + "end": 4606.82, + "probability": 0.8707 + }, + { + "start": 4607.02, + "end": 4608.92, + "probability": 0.8187 + }, + { + "start": 4609.02, + "end": 4611.1, + "probability": 0.7222 + }, + { + "start": 4611.4, + "end": 4612.91, + "probability": 0.9583 + }, + { + "start": 4613.76, + "end": 4617.7, + "probability": 0.9816 + }, + { + "start": 4618.4, + "end": 4624.34, + "probability": 0.9656 + }, + { + "start": 4624.54, + "end": 4624.97, + "probability": 0.627 + }, + { + "start": 4625.86, + "end": 4626.72, + "probability": 0.6329 + }, + { + "start": 4626.82, + "end": 4629.0, + "probability": 0.9488 + }, + { + "start": 4629.06, + "end": 4629.46, + "probability": 0.6178 + }, + { + "start": 4629.66, + "end": 4630.1, + "probability": 0.8862 + }, + { + "start": 4630.16, + "end": 4632.26, + "probability": 0.8705 + }, + { + "start": 4633.88, + "end": 4634.26, + "probability": 0.7758 + }, + { + "start": 4634.5, + "end": 4640.32, + "probability": 0.8399 + }, + { + "start": 4640.46, + "end": 4642.1, + "probability": 0.9385 + }, + { + "start": 4642.26, + "end": 4643.22, + "probability": 0.8071 + }, + { + "start": 4643.52, + "end": 4643.72, + "probability": 0.5083 + }, + { + "start": 4643.84, + "end": 4646.86, + "probability": 0.9668 + }, + { + "start": 4647.12, + "end": 4647.12, + "probability": 0.0383 + }, + { + "start": 4647.6, + "end": 4649.7, + "probability": 0.9909 + }, + { + "start": 4650.32, + "end": 4651.9, + "probability": 0.6809 + }, + { + "start": 4652.46, + "end": 4653.54, + "probability": 0.4912 + }, + { + "start": 4653.94, + "end": 4654.36, + "probability": 0.6736 + }, + { + "start": 4656.9, + "end": 4657.48, + "probability": 0.7362 + }, + { + "start": 4657.54, + "end": 4659.06, + "probability": 0.7056 + }, + { + "start": 4659.88, + "end": 4661.0, + "probability": 0.4601 + }, + { + "start": 4661.02, + "end": 4665.06, + "probability": 0.882 + }, + { + "start": 4665.42, + "end": 4667.78, + "probability": 0.9951 + }, + { + "start": 4668.18, + "end": 4670.7, + "probability": 0.9633 + }, + { + "start": 4670.74, + "end": 4671.88, + "probability": 0.3752 + }, + { + "start": 4671.88, + "end": 4672.84, + "probability": 0.8046 + }, + { + "start": 4673.0, + "end": 4673.84, + "probability": 0.5075 + }, + { + "start": 4673.84, + "end": 4675.9, + "probability": 0.6985 + }, + { + "start": 4676.06, + "end": 4677.17, + "probability": 0.4413 + }, + { + "start": 4677.62, + "end": 4679.56, + "probability": 0.701 + }, + { + "start": 4679.56, + "end": 4680.88, + "probability": 0.937 + }, + { + "start": 4681.22, + "end": 4681.88, + "probability": 0.9175 + }, + { + "start": 4682.8, + "end": 4683.72, + "probability": 0.855 + }, + { + "start": 4685.04, + "end": 4688.92, + "probability": 0.9902 + }, + { + "start": 4689.58, + "end": 4694.14, + "probability": 0.9882 + }, + { + "start": 4695.14, + "end": 4697.86, + "probability": 0.9383 + }, + { + "start": 4698.24, + "end": 4698.94, + "probability": 0.8285 + }, + { + "start": 4699.46, + "end": 4701.42, + "probability": 0.7798 + }, + { + "start": 4701.72, + "end": 4702.26, + "probability": 0.566 + }, + { + "start": 4703.56, + "end": 4704.94, + "probability": 0.9911 + }, + { + "start": 4705.9, + "end": 4708.92, + "probability": 0.9321 + }, + { + "start": 4709.48, + "end": 4713.16, + "probability": 0.9894 + }, + { + "start": 4713.66, + "end": 4716.22, + "probability": 0.5148 + }, + { + "start": 4716.76, + "end": 4718.58, + "probability": 0.7639 + }, + { + "start": 4719.32, + "end": 4719.52, + "probability": 0.0046 + }, + { + "start": 4720.52, + "end": 4720.66, + "probability": 0.3179 + }, + { + "start": 4720.66, + "end": 4721.3, + "probability": 0.3596 + }, + { + "start": 4721.48, + "end": 4722.76, + "probability": 0.6846 + }, + { + "start": 4722.86, + "end": 4723.66, + "probability": 0.6646 + }, + { + "start": 4724.22, + "end": 4727.62, + "probability": 0.9045 + }, + { + "start": 4729.3, + "end": 4732.04, + "probability": 0.9225 + }, + { + "start": 4732.92, + "end": 4735.48, + "probability": 0.9858 + }, + { + "start": 4735.48, + "end": 4738.3, + "probability": 0.9844 + }, + { + "start": 4739.3, + "end": 4742.5, + "probability": 0.905 + }, + { + "start": 4743.1, + "end": 4744.92, + "probability": 0.8893 + }, + { + "start": 4746.16, + "end": 4746.46, + "probability": 0.0093 + }, + { + "start": 4747.06, + "end": 4748.6, + "probability": 0.5252 + }, + { + "start": 4749.34, + "end": 4750.38, + "probability": 0.8433 + }, + { + "start": 4750.96, + "end": 4752.22, + "probability": 0.9874 + }, + { + "start": 4753.1, + "end": 4758.42, + "probability": 0.895 + }, + { + "start": 4758.42, + "end": 4760.94, + "probability": 0.965 + }, + { + "start": 4761.68, + "end": 4766.46, + "probability": 0.8556 + }, + { + "start": 4766.62, + "end": 4769.32, + "probability": 0.9847 + }, + { + "start": 4769.4, + "end": 4770.86, + "probability": 0.8647 + }, + { + "start": 4771.62, + "end": 4773.35, + "probability": 0.9124 + }, + { + "start": 4774.24, + "end": 4776.64, + "probability": 0.5134 + }, + { + "start": 4776.78, + "end": 4779.06, + "probability": 0.8202 + }, + { + "start": 4779.5, + "end": 4781.14, + "probability": 0.7139 + }, + { + "start": 4781.22, + "end": 4781.82, + "probability": 0.7808 + }, + { + "start": 4781.88, + "end": 4782.88, + "probability": 0.8033 + }, + { + "start": 4783.46, + "end": 4784.12, + "probability": 0.7992 + }, + { + "start": 4785.26, + "end": 4785.68, + "probability": 0.5573 + }, + { + "start": 4786.52, + "end": 4786.86, + "probability": 0.76 + }, + { + "start": 4786.96, + "end": 4787.56, + "probability": 0.9161 + }, + { + "start": 4789.82, + "end": 4790.56, + "probability": 0.1455 + }, + { + "start": 4791.24, + "end": 4793.26, + "probability": 0.7487 + }, + { + "start": 4793.64, + "end": 4794.9, + "probability": 0.3705 + }, + { + "start": 4795.1, + "end": 4795.74, + "probability": 0.8523 + }, + { + "start": 4799.88, + "end": 4801.9, + "probability": 0.9226 + }, + { + "start": 4802.24, + "end": 4803.4, + "probability": 0.4785 + }, + { + "start": 4803.6, + "end": 4805.2, + "probability": 0.3753 + }, + { + "start": 4805.4, + "end": 4805.94, + "probability": 0.7581 + }, + { + "start": 4806.6, + "end": 4807.12, + "probability": 0.6011 + }, + { + "start": 4808.0, + "end": 4811.3, + "probability": 0.7928 + }, + { + "start": 4812.16, + "end": 4814.66, + "probability": 0.9104 + }, + { + "start": 4814.66, + "end": 4817.18, + "probability": 0.9461 + }, + { + "start": 4817.38, + "end": 4818.6, + "probability": 0.8979 + }, + { + "start": 4819.38, + "end": 4823.46, + "probability": 0.9389 + }, + { + "start": 4824.1, + "end": 4826.24, + "probability": 0.953 + }, + { + "start": 4827.04, + "end": 4828.46, + "probability": 0.871 + }, + { + "start": 4828.7, + "end": 4833.44, + "probability": 0.8213 + }, + { + "start": 4835.74, + "end": 4836.24, + "probability": 0.5074 + }, + { + "start": 4836.3, + "end": 4837.38, + "probability": 0.6676 + }, + { + "start": 4837.6, + "end": 4838.56, + "probability": 0.7852 + }, + { + "start": 4839.56, + "end": 4842.34, + "probability": 0.8727 + }, + { + "start": 4842.9, + "end": 4846.04, + "probability": 0.9802 + }, + { + "start": 4847.42, + "end": 4847.85, + "probability": 0.9941 + }, + { + "start": 4848.94, + "end": 4850.08, + "probability": 0.9989 + }, + { + "start": 4851.5, + "end": 4855.8, + "probability": 0.9948 + }, + { + "start": 4856.06, + "end": 4858.38, + "probability": 0.8513 + }, + { + "start": 4859.18, + "end": 4860.14, + "probability": 0.5658 + }, + { + "start": 4861.02, + "end": 4863.52, + "probability": 0.89 + }, + { + "start": 4863.62, + "end": 4864.14, + "probability": 0.5882 + }, + { + "start": 4864.72, + "end": 4867.18, + "probability": 0.9704 + }, + { + "start": 4867.24, + "end": 4868.5, + "probability": 0.8663 + }, + { + "start": 4868.78, + "end": 4871.22, + "probability": 0.9541 + }, + { + "start": 4871.46, + "end": 4876.06, + "probability": 0.883 + }, + { + "start": 4877.42, + "end": 4878.06, + "probability": 0.792 + }, + { + "start": 4878.32, + "end": 4884.1, + "probability": 0.9466 + }, + { + "start": 4884.74, + "end": 4890.6, + "probability": 0.9595 + }, + { + "start": 4891.12, + "end": 4898.22, + "probability": 0.9367 + }, + { + "start": 4898.36, + "end": 4901.42, + "probability": 0.8992 + }, + { + "start": 4901.54, + "end": 4903.14, + "probability": 0.9011 + }, + { + "start": 4904.4, + "end": 4906.48, + "probability": 0.9976 + }, + { + "start": 4908.66, + "end": 4913.54, + "probability": 0.9434 + }, + { + "start": 4914.18, + "end": 4914.72, + "probability": 0.5118 + }, + { + "start": 4914.86, + "end": 4916.68, + "probability": 0.9858 + }, + { + "start": 4916.8, + "end": 4922.88, + "probability": 0.9841 + }, + { + "start": 4923.2, + "end": 4924.98, + "probability": 0.8544 + }, + { + "start": 4925.08, + "end": 4926.4, + "probability": 0.6536 + }, + { + "start": 4926.68, + "end": 4929.52, + "probability": 0.9654 + }, + { + "start": 4930.02, + "end": 4933.5, + "probability": 0.9685 + }, + { + "start": 4933.58, + "end": 4934.4, + "probability": 0.4281 + }, + { + "start": 4936.46, + "end": 4940.22, + "probability": 0.6833 + }, + { + "start": 4940.34, + "end": 4940.64, + "probability": 0.6133 + }, + { + "start": 4940.92, + "end": 4941.28, + "probability": 0.5579 + }, + { + "start": 4941.3, + "end": 4941.69, + "probability": 0.2421 + }, + { + "start": 4941.8, + "end": 4942.35, + "probability": 0.8408 + }, + { + "start": 4942.42, + "end": 4942.52, + "probability": 0.5454 + }, + { + "start": 4943.06, + "end": 4946.56, + "probability": 0.8804 + }, + { + "start": 4946.7, + "end": 4947.42, + "probability": 0.8256 + }, + { + "start": 4947.58, + "end": 4950.32, + "probability": 0.5699 + }, + { + "start": 4950.32, + "end": 4951.0, + "probability": 0.9929 + }, + { + "start": 4951.5, + "end": 4953.02, + "probability": 0.9846 + }, + { + "start": 4953.3, + "end": 4953.38, + "probability": 0.4199 + }, + { + "start": 4953.38, + "end": 4956.22, + "probability": 0.8539 + }, + { + "start": 4956.58, + "end": 4957.73, + "probability": 0.8966 + }, + { + "start": 4957.92, + "end": 4959.26, + "probability": 0.4227 + }, + { + "start": 4959.28, + "end": 4961.78, + "probability": 0.9863 + }, + { + "start": 4962.52, + "end": 4966.8, + "probability": 0.9064 + }, + { + "start": 4967.14, + "end": 4971.6, + "probability": 0.9967 + }, + { + "start": 4971.6, + "end": 4972.58, + "probability": 0.7229 + }, + { + "start": 4972.68, + "end": 4973.5, + "probability": 0.5064 + }, + { + "start": 4973.52, + "end": 4974.28, + "probability": 0.5243 + }, + { + "start": 4974.3, + "end": 4976.22, + "probability": 0.9758 + }, + { + "start": 4976.64, + "end": 4978.52, + "probability": 0.9729 + }, + { + "start": 4979.44, + "end": 4982.96, + "probability": 0.9357 + }, + { + "start": 4984.04, + "end": 4986.28, + "probability": 0.7468 + }, + { + "start": 4986.61, + "end": 4988.96, + "probability": 0.7048 + }, + { + "start": 4989.0, + "end": 4990.52, + "probability": 0.6156 + }, + { + "start": 4990.52, + "end": 4992.9, + "probability": 0.9624 + }, + { + "start": 4993.3, + "end": 4994.02, + "probability": 0.71 + }, + { + "start": 4994.04, + "end": 4995.84, + "probability": 0.8853 + }, + { + "start": 4995.86, + "end": 4996.86, + "probability": 0.9046 + }, + { + "start": 4997.3, + "end": 4998.1, + "probability": 0.5175 + }, + { + "start": 4998.3, + "end": 4999.64, + "probability": 0.7601 + }, + { + "start": 5000.38, + "end": 5004.44, + "probability": 0.7951 + }, + { + "start": 5006.36, + "end": 5008.62, + "probability": 0.6741 + }, + { + "start": 5010.22, + "end": 5010.82, + "probability": 0.647 + }, + { + "start": 5011.12, + "end": 5011.56, + "probability": 0.7448 + }, + { + "start": 5011.68, + "end": 5015.48, + "probability": 0.8136 + }, + { + "start": 5016.64, + "end": 5019.72, + "probability": 0.9709 + }, + { + "start": 5020.26, + "end": 5021.1, + "probability": 0.6504 + }, + { + "start": 5021.8, + "end": 5024.32, + "probability": 0.9849 + }, + { + "start": 5024.9, + "end": 5027.38, + "probability": 0.2781 + }, + { + "start": 5027.48, + "end": 5028.1, + "probability": 0.5153 + }, + { + "start": 5030.58, + "end": 5034.06, + "probability": 0.7113 + }, + { + "start": 5034.28, + "end": 5035.08, + "probability": 0.7902 + }, + { + "start": 5035.2, + "end": 5035.94, + "probability": 0.9502 + }, + { + "start": 5036.78, + "end": 5038.36, + "probability": 0.8583 + }, + { + "start": 5039.18, + "end": 5042.76, + "probability": 0.7115 + }, + { + "start": 5043.6, + "end": 5050.06, + "probability": 0.8283 + }, + { + "start": 5052.28, + "end": 5054.64, + "probability": 0.7931 + }, + { + "start": 5055.24, + "end": 5056.12, + "probability": 0.7024 + }, + { + "start": 5057.14, + "end": 5059.9, + "probability": 0.9835 + }, + { + "start": 5060.14, + "end": 5062.14, + "probability": 0.8874 + }, + { + "start": 5062.88, + "end": 5064.48, + "probability": 0.8186 + }, + { + "start": 5064.62, + "end": 5068.24, + "probability": 0.8125 + }, + { + "start": 5068.32, + "end": 5071.64, + "probability": 0.4352 + }, + { + "start": 5071.7, + "end": 5072.8, + "probability": 0.903 + }, + { + "start": 5073.88, + "end": 5076.54, + "probability": 0.7488 + }, + { + "start": 5079.06, + "end": 5081.04, + "probability": 0.8962 + }, + { + "start": 5081.84, + "end": 5086.54, + "probability": 0.9078 + }, + { + "start": 5087.46, + "end": 5089.1, + "probability": 0.6452 + }, + { + "start": 5090.14, + "end": 5095.96, + "probability": 0.9919 + }, + { + "start": 5098.08, + "end": 5103.66, + "probability": 0.9666 + }, + { + "start": 5104.42, + "end": 5106.02, + "probability": 0.9917 + }, + { + "start": 5106.71, + "end": 5111.1, + "probability": 0.9995 + }, + { + "start": 5111.66, + "end": 5115.74, + "probability": 0.9875 + }, + { + "start": 5118.16, + "end": 5118.84, + "probability": 0.3207 + }, + { + "start": 5120.3, + "end": 5124.88, + "probability": 0.9827 + }, + { + "start": 5125.94, + "end": 5132.48, + "probability": 0.9623 + }, + { + "start": 5133.5, + "end": 5135.5, + "probability": 0.9949 + }, + { + "start": 5138.06, + "end": 5139.28, + "probability": 0.6803 + }, + { + "start": 5139.36, + "end": 5140.82, + "probability": 0.9963 + }, + { + "start": 5140.9, + "end": 5142.3, + "probability": 0.9346 + }, + { + "start": 5143.2, + "end": 5145.22, + "probability": 0.9154 + }, + { + "start": 5145.28, + "end": 5147.24, + "probability": 0.6504 + }, + { + "start": 5148.12, + "end": 5150.41, + "probability": 0.6384 + }, + { + "start": 5150.76, + "end": 5152.26, + "probability": 0.9472 + }, + { + "start": 5152.38, + "end": 5152.82, + "probability": 0.6895 + }, + { + "start": 5153.42, + "end": 5155.98, + "probability": 0.9637 + }, + { + "start": 5157.16, + "end": 5158.63, + "probability": 0.9882 + }, + { + "start": 5159.08, + "end": 5159.7, + "probability": 0.6104 + }, + { + "start": 5160.62, + "end": 5161.8, + "probability": 0.8628 + }, + { + "start": 5162.0, + "end": 5166.4, + "probability": 0.9623 + }, + { + "start": 5166.56, + "end": 5171.56, + "probability": 0.9551 + }, + { + "start": 5171.66, + "end": 5172.34, + "probability": 0.8531 + }, + { + "start": 5172.92, + "end": 5173.94, + "probability": 0.9082 + }, + { + "start": 5174.1, + "end": 5178.44, + "probability": 0.9863 + }, + { + "start": 5178.62, + "end": 5179.46, + "probability": 0.9277 + }, + { + "start": 5179.7, + "end": 5184.22, + "probability": 0.9733 + }, + { + "start": 5184.54, + "end": 5185.22, + "probability": 0.5275 + }, + { + "start": 5185.5, + "end": 5187.8, + "probability": 0.2778 + }, + { + "start": 5187.88, + "end": 5190.36, + "probability": 0.8857 + }, + { + "start": 5190.96, + "end": 5192.26, + "probability": 0.8454 + }, + { + "start": 5198.0, + "end": 5198.2, + "probability": 0.5301 + }, + { + "start": 5199.92, + "end": 5200.86, + "probability": 0.7125 + }, + { + "start": 5201.1, + "end": 5202.42, + "probability": 0.9553 + }, + { + "start": 5202.86, + "end": 5205.52, + "probability": 0.9845 + }, + { + "start": 5205.52, + "end": 5208.26, + "probability": 0.5919 + }, + { + "start": 5209.14, + "end": 5211.7, + "probability": 0.8839 + }, + { + "start": 5212.16, + "end": 5212.82, + "probability": 0.6546 + }, + { + "start": 5213.62, + "end": 5215.0, + "probability": 0.5144 + }, + { + "start": 5215.34, + "end": 5216.04, + "probability": 0.4629 + }, + { + "start": 5216.56, + "end": 5220.32, + "probability": 0.8795 + }, + { + "start": 5220.6, + "end": 5225.78, + "probability": 0.7943 + }, + { + "start": 5228.9, + "end": 5229.7, + "probability": 0.4966 + }, + { + "start": 5230.14, + "end": 5230.92, + "probability": 0.8333 + }, + { + "start": 5231.24, + "end": 5232.32, + "probability": 0.7951 + }, + { + "start": 5232.92, + "end": 5234.32, + "probability": 0.7287 + }, + { + "start": 5235.4, + "end": 5236.6, + "probability": 0.5704 + }, + { + "start": 5236.68, + "end": 5237.0, + "probability": 0.6778 + }, + { + "start": 5237.26, + "end": 5239.24, + "probability": 0.8345 + }, + { + "start": 5240.14, + "end": 5242.93, + "probability": 0.9495 + }, + { + "start": 5243.74, + "end": 5246.42, + "probability": 0.9175 + }, + { + "start": 5246.64, + "end": 5247.72, + "probability": 0.5664 + }, + { + "start": 5247.94, + "end": 5250.02, + "probability": 0.9032 + }, + { + "start": 5251.12, + "end": 5254.66, + "probability": 0.5918 + }, + { + "start": 5255.46, + "end": 5256.62, + "probability": 0.9301 + }, + { + "start": 5258.76, + "end": 5262.66, + "probability": 0.8748 + }, + { + "start": 5263.08, + "end": 5266.34, + "probability": 0.5757 + }, + { + "start": 5267.82, + "end": 5268.18, + "probability": 0.1394 + }, + { + "start": 5268.22, + "end": 5272.68, + "probability": 0.978 + }, + { + "start": 5273.98, + "end": 5274.68, + "probability": 0.6239 + }, + { + "start": 5275.6, + "end": 5275.74, + "probability": 0.7482 + }, + { + "start": 5277.74, + "end": 5279.92, + "probability": 0.1232 + }, + { + "start": 5280.74, + "end": 5284.44, + "probability": 0.7625 + }, + { + "start": 5285.12, + "end": 5287.1, + "probability": 0.8936 + }, + { + "start": 5288.4, + "end": 5290.6, + "probability": 0.6506 + }, + { + "start": 5290.6, + "end": 5292.7, + "probability": 0.9309 + }, + { + "start": 5293.66, + "end": 5295.53, + "probability": 0.7041 + }, + { + "start": 5296.24, + "end": 5298.64, + "probability": 0.8465 + }, + { + "start": 5299.52, + "end": 5306.88, + "probability": 0.4838 + }, + { + "start": 5308.62, + "end": 5313.1, + "probability": 0.4783 + }, + { + "start": 5313.22, + "end": 5314.52, + "probability": 0.1163 + }, + { + "start": 5314.68, + "end": 5317.86, + "probability": 0.5609 + }, + { + "start": 5318.24, + "end": 5321.54, + "probability": 0.9954 + }, + { + "start": 5321.54, + "end": 5325.12, + "probability": 0.9976 + }, + { + "start": 5326.22, + "end": 5326.92, + "probability": 0.7404 + }, + { + "start": 5326.98, + "end": 5328.76, + "probability": 0.7309 + }, + { + "start": 5328.94, + "end": 5331.46, + "probability": 0.9629 + }, + { + "start": 5331.54, + "end": 5335.96, + "probability": 0.99 + }, + { + "start": 5336.76, + "end": 5340.98, + "probability": 0.973 + }, + { + "start": 5340.98, + "end": 5345.08, + "probability": 0.9722 + }, + { + "start": 5345.08, + "end": 5347.62, + "probability": 0.8445 + }, + { + "start": 5347.62, + "end": 5347.72, + "probability": 0.6821 + }, + { + "start": 5348.26, + "end": 5348.82, + "probability": 0.6296 + }, + { + "start": 5350.17, + "end": 5353.81, + "probability": 0.6064 + }, + { + "start": 5354.26, + "end": 5360.09, + "probability": 0.6464 + }, + { + "start": 5360.96, + "end": 5364.4, + "probability": 0.9843 + }, + { + "start": 5364.5, + "end": 5365.68, + "probability": 0.7993 + }, + { + "start": 5365.72, + "end": 5366.76, + "probability": 0.4195 + }, + { + "start": 5366.86, + "end": 5368.06, + "probability": 0.6721 + }, + { + "start": 5368.12, + "end": 5373.1, + "probability": 0.927 + }, + { + "start": 5373.82, + "end": 5374.52, + "probability": 0.8184 + }, + { + "start": 5374.78, + "end": 5375.39, + "probability": 0.7837 + }, + { + "start": 5375.44, + "end": 5378.16, + "probability": 0.9971 + }, + { + "start": 5378.88, + "end": 5381.1, + "probability": 0.8387 + }, + { + "start": 5381.28, + "end": 5381.56, + "probability": 0.703 + }, + { + "start": 5381.62, + "end": 5382.24, + "probability": 0.5822 + }, + { + "start": 5382.24, + "end": 5382.38, + "probability": 0.4115 + }, + { + "start": 5382.38, + "end": 5385.06, + "probability": 0.4826 + }, + { + "start": 5385.4, + "end": 5385.8, + "probability": 0.4678 + }, + { + "start": 5386.34, + "end": 5396.18, + "probability": 0.8695 + }, + { + "start": 5396.2, + "end": 5397.8, + "probability": 0.8373 + }, + { + "start": 5398.1, + "end": 5398.94, + "probability": 0.5146 + }, + { + "start": 5399.7, + "end": 5402.36, + "probability": 0.9595 + }, + { + "start": 5402.44, + "end": 5403.92, + "probability": 0.8184 + }, + { + "start": 5404.32, + "end": 5406.78, + "probability": 0.9672 + }, + { + "start": 5407.04, + "end": 5408.6, + "probability": 0.9863 + }, + { + "start": 5409.3, + "end": 5410.66, + "probability": 0.7808 + }, + { + "start": 5413.3, + "end": 5413.8, + "probability": 0.3963 + }, + { + "start": 5413.92, + "end": 5418.08, + "probability": 0.8963 + }, + { + "start": 5418.36, + "end": 5419.72, + "probability": 0.98 + }, + { + "start": 5420.34, + "end": 5421.5, + "probability": 0.5195 + }, + { + "start": 5421.96, + "end": 5422.96, + "probability": 0.9253 + }, + { + "start": 5423.56, + "end": 5424.19, + "probability": 0.7222 + }, + { + "start": 5424.46, + "end": 5428.14, + "probability": 0.785 + }, + { + "start": 5428.28, + "end": 5432.62, + "probability": 0.8948 + }, + { + "start": 5433.22, + "end": 5434.3, + "probability": 0.5519 + }, + { + "start": 5434.38, + "end": 5437.0, + "probability": 0.9383 + }, + { + "start": 5438.14, + "end": 5439.48, + "probability": 0.419 + }, + { + "start": 5439.74, + "end": 5440.08, + "probability": 0.1486 + }, + { + "start": 5440.22, + "end": 5442.32, + "probability": 0.3268 + }, + { + "start": 5442.32, + "end": 5443.54, + "probability": 0.3345 + }, + { + "start": 5444.06, + "end": 5447.18, + "probability": 0.8 + }, + { + "start": 5447.18, + "end": 5451.02, + "probability": 0.8672 + }, + { + "start": 5451.5, + "end": 5453.18, + "probability": 0.9944 + }, + { + "start": 5453.58, + "end": 5459.22, + "probability": 0.843 + }, + { + "start": 5460.5, + "end": 5461.02, + "probability": 0.0303 + }, + { + "start": 5461.2, + "end": 5463.7, + "probability": 0.9883 + }, + { + "start": 5463.82, + "end": 5464.02, + "probability": 0.5882 + }, + { + "start": 5464.04, + "end": 5464.04, + "probability": 0.268 + }, + { + "start": 5464.04, + "end": 5465.42, + "probability": 0.824 + }, + { + "start": 5465.58, + "end": 5466.38, + "probability": 0.6559 + }, + { + "start": 5466.56, + "end": 5468.48, + "probability": 0.8904 + }, + { + "start": 5469.02, + "end": 5470.96, + "probability": 0.0861 + }, + { + "start": 5471.88, + "end": 5473.14, + "probability": 0.9941 + }, + { + "start": 5479.14, + "end": 5481.08, + "probability": 0.994 + }, + { + "start": 5481.08, + "end": 5484.7, + "probability": 0.9956 + }, + { + "start": 5485.0, + "end": 5488.0, + "probability": 0.7926 + }, + { + "start": 5488.96, + "end": 5493.34, + "probability": 0.912 + }, + { + "start": 5493.54, + "end": 5496.0, + "probability": 0.9385 + }, + { + "start": 5497.56, + "end": 5500.5, + "probability": 0.7331 + }, + { + "start": 5501.44, + "end": 5506.26, + "probability": 0.912 + }, + { + "start": 5506.26, + "end": 5509.98, + "probability": 0.8533 + }, + { + "start": 5510.96, + "end": 5511.68, + "probability": 0.8308 + }, + { + "start": 5511.8, + "end": 5514.66, + "probability": 0.852 + }, + { + "start": 5514.9, + "end": 5519.0, + "probability": 0.609 + }, + { + "start": 5520.16, + "end": 5522.26, + "probability": 0.7169 + }, + { + "start": 5523.26, + "end": 5525.13, + "probability": 0.9658 + }, + { + "start": 5525.54, + "end": 5528.8, + "probability": 0.9657 + }, + { + "start": 5529.34, + "end": 5530.28, + "probability": 0.9305 + }, + { + "start": 5531.4, + "end": 5532.24, + "probability": 0.5229 + }, + { + "start": 5532.86, + "end": 5535.66, + "probability": 0.7194 + }, + { + "start": 5535.8, + "end": 5539.84, + "probability": 0.7491 + }, + { + "start": 5540.28, + "end": 5541.18, + "probability": 0.9809 + }, + { + "start": 5541.32, + "end": 5542.6, + "probability": 0.9892 + }, + { + "start": 5542.74, + "end": 5547.72, + "probability": 0.9484 + }, + { + "start": 5547.72, + "end": 5552.52, + "probability": 0.9092 + }, + { + "start": 5552.94, + "end": 5556.94, + "probability": 0.9849 + }, + { + "start": 5556.94, + "end": 5559.42, + "probability": 0.9544 + }, + { + "start": 5560.86, + "end": 5564.3, + "probability": 0.9979 + }, + { + "start": 5564.52, + "end": 5567.62, + "probability": 0.6618 + }, + { + "start": 5567.86, + "end": 5568.9, + "probability": 0.9425 + }, + { + "start": 5569.82, + "end": 5572.48, + "probability": 0.8218 + }, + { + "start": 5573.08, + "end": 5575.42, + "probability": 0.9741 + }, + { + "start": 5576.04, + "end": 5577.44, + "probability": 0.9989 + }, + { + "start": 5578.06, + "end": 5580.65, + "probability": 0.9741 + }, + { + "start": 5580.94, + "end": 5584.26, + "probability": 0.7514 + }, + { + "start": 5584.34, + "end": 5586.4, + "probability": 0.9548 + }, + { + "start": 5586.96, + "end": 5589.1, + "probability": 0.9829 + }, + { + "start": 5589.28, + "end": 5591.82, + "probability": 0.8912 + }, + { + "start": 5592.32, + "end": 5594.02, + "probability": 0.6815 + }, + { + "start": 5594.64, + "end": 5596.14, + "probability": 0.969 + }, + { + "start": 5597.82, + "end": 5602.24, + "probability": 0.8837 + }, + { + "start": 5602.94, + "end": 5603.72, + "probability": 0.9871 + }, + { + "start": 5605.78, + "end": 5609.24, + "probability": 0.9954 + }, + { + "start": 5610.02, + "end": 5611.8, + "probability": 0.8354 + }, + { + "start": 5612.38, + "end": 5613.74, + "probability": 0.8856 + }, + { + "start": 5614.26, + "end": 5617.08, + "probability": 0.4454 + }, + { + "start": 5617.22, + "end": 5617.88, + "probability": 0.173 + }, + { + "start": 5618.02, + "end": 5620.6, + "probability": 0.9335 + }, + { + "start": 5620.6, + "end": 5623.96, + "probability": 0.7034 + }, + { + "start": 5624.04, + "end": 5626.8, + "probability": 0.9873 + }, + { + "start": 5626.86, + "end": 5627.6, + "probability": 0.359 + }, + { + "start": 5627.72, + "end": 5628.68, + "probability": 0.9844 + }, + { + "start": 5629.42, + "end": 5630.76, + "probability": 0.8942 + }, + { + "start": 5631.52, + "end": 5632.44, + "probability": 0.4754 + }, + { + "start": 5632.94, + "end": 5636.08, + "probability": 0.9217 + }, + { + "start": 5636.32, + "end": 5639.74, + "probability": 0.9821 + }, + { + "start": 5639.84, + "end": 5641.46, + "probability": 0.6332 + }, + { + "start": 5641.5, + "end": 5642.14, + "probability": 0.8367 + }, + { + "start": 5642.22, + "end": 5643.32, + "probability": 0.7472 + }, + { + "start": 5643.34, + "end": 5646.66, + "probability": 0.9405 + }, + { + "start": 5646.68, + "end": 5650.02, + "probability": 0.9792 + }, + { + "start": 5650.02, + "end": 5654.56, + "probability": 0.9268 + }, + { + "start": 5655.3, + "end": 5657.0, + "probability": 0.5777 + }, + { + "start": 5657.28, + "end": 5660.8, + "probability": 0.9939 + }, + { + "start": 5661.1, + "end": 5664.18, + "probability": 0.7797 + }, + { + "start": 5664.76, + "end": 5667.44, + "probability": 0.9747 + }, + { + "start": 5668.08, + "end": 5668.4, + "probability": 0.9663 + }, + { + "start": 5668.98, + "end": 5669.68, + "probability": 0.9347 + }, + { + "start": 5675.97, + "end": 5677.2, + "probability": 0.9601 + }, + { + "start": 5677.74, + "end": 5678.6, + "probability": 0.2777 + }, + { + "start": 5678.93, + "end": 5685.54, + "probability": 0.963 + }, + { + "start": 5686.26, + "end": 5689.72, + "probability": 0.9945 + }, + { + "start": 5689.72, + "end": 5692.48, + "probability": 0.9933 + }, + { + "start": 5694.14, + "end": 5700.08, + "probability": 0.9754 + }, + { + "start": 5700.16, + "end": 5700.82, + "probability": 0.6557 + }, + { + "start": 5700.86, + "end": 5702.36, + "probability": 0.464 + }, + { + "start": 5702.6, + "end": 5703.78, + "probability": 0.5445 + }, + { + "start": 5703.94, + "end": 5705.44, + "probability": 0.3471 + }, + { + "start": 5706.64, + "end": 5708.88, + "probability": 0.3952 + }, + { + "start": 5709.2, + "end": 5712.67, + "probability": 0.9854 + }, + { + "start": 5713.02, + "end": 5717.04, + "probability": 0.8695 + }, + { + "start": 5717.84, + "end": 5719.9, + "probability": 0.979 + }, + { + "start": 5720.4, + "end": 5721.46, + "probability": 0.7095 + }, + { + "start": 5721.78, + "end": 5723.0, + "probability": 0.7922 + }, + { + "start": 5725.04, + "end": 5725.86, + "probability": 0.0964 + }, + { + "start": 5725.86, + "end": 5725.86, + "probability": 0.032 + }, + { + "start": 5725.86, + "end": 5730.4, + "probability": 0.7556 + }, + { + "start": 5730.9, + "end": 5731.86, + "probability": 0.8447 + }, + { + "start": 5732.28, + "end": 5732.88, + "probability": 0.5546 + }, + { + "start": 5733.44, + "end": 5734.58, + "probability": 0.7039 + }, + { + "start": 5734.78, + "end": 5735.86, + "probability": 0.7914 + }, + { + "start": 5736.26, + "end": 5738.8, + "probability": 0.6155 + }, + { + "start": 5739.32, + "end": 5740.58, + "probability": 0.8019 + }, + { + "start": 5740.92, + "end": 5742.14, + "probability": 0.9193 + }, + { + "start": 5742.36, + "end": 5746.62, + "probability": 0.9637 + }, + { + "start": 5746.64, + "end": 5752.4, + "probability": 0.6861 + }, + { + "start": 5752.42, + "end": 5755.74, + "probability": 0.6841 + }, + { + "start": 5756.28, + "end": 5757.68, + "probability": 0.364 + }, + { + "start": 5758.0, + "end": 5758.22, + "probability": 0.5076 + }, + { + "start": 5758.22, + "end": 5761.32, + "probability": 0.798 + }, + { + "start": 5764.36, + "end": 5764.64, + "probability": 0.2038 + }, + { + "start": 5764.64, + "end": 5765.84, + "probability": 0.333 + }, + { + "start": 5765.98, + "end": 5771.02, + "probability": 0.8492 + }, + { + "start": 5771.22, + "end": 5771.56, + "probability": 0.3611 + }, + { + "start": 5771.82, + "end": 5773.91, + "probability": 0.9926 + }, + { + "start": 5774.06, + "end": 5775.24, + "probability": 0.4454 + }, + { + "start": 5775.26, + "end": 5775.3, + "probability": 0.4926 + }, + { + "start": 5775.36, + "end": 5776.74, + "probability": 0.7493 + }, + { + "start": 5776.78, + "end": 5778.42, + "probability": 0.8614 + }, + { + "start": 5778.94, + "end": 5779.98, + "probability": 0.0486 + }, + { + "start": 5780.1, + "end": 5780.92, + "probability": 0.7261 + }, + { + "start": 5780.92, + "end": 5785.46, + "probability": 0.707 + }, + { + "start": 5786.08, + "end": 5786.38, + "probability": 0.0547 + }, + { + "start": 5786.38, + "end": 5790.64, + "probability": 0.958 + }, + { + "start": 5790.64, + "end": 5791.08, + "probability": 0.5505 + }, + { + "start": 5791.18, + "end": 5792.98, + "probability": 0.9271 + }, + { + "start": 5793.02, + "end": 5793.28, + "probability": 0.8395 + }, + { + "start": 5793.6, + "end": 5793.8, + "probability": 0.702 + }, + { + "start": 5794.54, + "end": 5798.18, + "probability": 0.8151 + }, + { + "start": 5798.18, + "end": 5798.96, + "probability": 0.5126 + }, + { + "start": 5799.0, + "end": 5799.78, + "probability": 0.3073 + }, + { + "start": 5799.9, + "end": 5804.6, + "probability": 0.8582 + }, + { + "start": 5804.64, + "end": 5804.66, + "probability": 0.59 + }, + { + "start": 5804.72, + "end": 5808.92, + "probability": 0.9095 + }, + { + "start": 5809.24, + "end": 5812.48, + "probability": 0.784 + }, + { + "start": 5812.48, + "end": 5813.3, + "probability": 0.6705 + }, + { + "start": 5813.52, + "end": 5815.3, + "probability": 0.1005 + }, + { + "start": 5816.82, + "end": 5817.0, + "probability": 0.4634 + }, + { + "start": 5817.0, + "end": 5819.19, + "probability": 0.4848 + }, + { + "start": 5820.12, + "end": 5821.52, + "probability": 0.8317 + }, + { + "start": 5822.0, + "end": 5822.78, + "probability": 0.662 + }, + { + "start": 5823.48, + "end": 5824.17, + "probability": 0.9888 + }, + { + "start": 5825.14, + "end": 5826.6, + "probability": 0.9375 + }, + { + "start": 5826.96, + "end": 5827.22, + "probability": 0.8588 + }, + { + "start": 5827.88, + "end": 5828.22, + "probability": 0.6631 + }, + { + "start": 5828.54, + "end": 5830.36, + "probability": 0.2655 + }, + { + "start": 5830.78, + "end": 5832.32, + "probability": 0.8822 + }, + { + "start": 5835.16, + "end": 5836.18, + "probability": 0.4802 + }, + { + "start": 5836.42, + "end": 5836.52, + "probability": 0.1122 + }, + { + "start": 5836.52, + "end": 5836.52, + "probability": 0.249 + }, + { + "start": 5836.52, + "end": 5838.02, + "probability": 0.9198 + }, + { + "start": 5838.24, + "end": 5839.3, + "probability": 0.6906 + }, + { + "start": 5839.46, + "end": 5841.18, + "probability": 0.9492 + }, + { + "start": 5841.62, + "end": 5843.12, + "probability": 0.8936 + }, + { + "start": 5843.48, + "end": 5846.74, + "probability": 0.8459 + }, + { + "start": 5850.26, + "end": 5852.78, + "probability": 0.8826 + }, + { + "start": 5852.78, + "end": 5854.0, + "probability": 0.7555 + }, + { + "start": 5854.0, + "end": 5854.78, + "probability": 0.3551 + }, + { + "start": 5854.88, + "end": 5855.74, + "probability": 0.5608 + }, + { + "start": 5855.78, + "end": 5857.62, + "probability": 0.8998 + }, + { + "start": 5857.66, + "end": 5858.24, + "probability": 0.7376 + }, + { + "start": 5858.34, + "end": 5858.9, + "probability": 0.5999 + }, + { + "start": 5858.96, + "end": 5861.18, + "probability": 0.1992 + }, + { + "start": 5861.2, + "end": 5863.16, + "probability": 0.8649 + }, + { + "start": 5863.22, + "end": 5864.6, + "probability": 0.7935 + }, + { + "start": 5865.28, + "end": 5865.3, + "probability": 0.0003 + } + ], + "segments_count": 2219, + "words_count": 11019, + "avg_words_per_segment": 4.9658, + "avg_segment_duration": 1.9275, + "avg_words_per_minute": 110.8336, + "plenum_id": "64633", + "duration": 5965.16, + "title": null, + "plenum_date": "2017-06-13" +} \ No newline at end of file