diff --git "a/67781/metadata.json" "b/67781/metadata.json" new file mode 100644--- /dev/null +++ "b/67781/metadata.json" @@ -0,0 +1,47722 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "67781", + "quality_score": 0.8799, + "per_segment_quality_scores": [ + { + "start": 61.14, + "end": 63.72, + "probability": 0.0296 + }, + { + "start": 63.72, + "end": 64.52, + "probability": 0.0296 + }, + { + "start": 64.52, + "end": 65.84, + "probability": 0.0189 + }, + { + "start": 65.84, + "end": 66.44, + "probability": 0.1408 + }, + { + "start": 66.68, + "end": 69.98, + "probability": 0.1208 + }, + { + "start": 70.5, + "end": 71.66, + "probability": 0.5336 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.0, + "end": 141.0, + "probability": 0.0 + }, + { + "start": 141.12, + "end": 141.62, + "probability": 0.3457 + }, + { + "start": 143.1, + "end": 143.44, + "probability": 0.3303 + }, + { + "start": 143.56, + "end": 144.38, + "probability": 0.6546 + }, + { + "start": 144.66, + "end": 145.66, + "probability": 0.6438 + }, + { + "start": 145.8, + "end": 147.34, + "probability": 0.9072 + }, + { + "start": 148.44, + "end": 152.92, + "probability": 0.9373 + }, + { + "start": 153.82, + "end": 156.86, + "probability": 0.9968 + }, + { + "start": 159.58, + "end": 162.61, + "probability": 0.8116 + }, + { + "start": 163.52, + "end": 166.66, + "probability": 0.8764 + }, + { + "start": 166.84, + "end": 171.06, + "probability": 0.7521 + }, + { + "start": 171.62, + "end": 174.08, + "probability": 0.8551 + }, + { + "start": 175.66, + "end": 180.58, + "probability": 0.9893 + }, + { + "start": 180.58, + "end": 185.08, + "probability": 0.958 + }, + { + "start": 185.72, + "end": 186.1, + "probability": 0.577 + }, + { + "start": 186.36, + "end": 189.46, + "probability": 0.9353 + }, + { + "start": 190.64, + "end": 193.82, + "probability": 0.5028 + }, + { + "start": 193.82, + "end": 196.7, + "probability": 0.7717 + }, + { + "start": 197.25, + "end": 199.74, + "probability": 0.9904 + }, + { + "start": 201.04, + "end": 203.0, + "probability": 0.9265 + }, + { + "start": 203.84, + "end": 208.16, + "probability": 0.8999 + }, + { + "start": 208.46, + "end": 210.62, + "probability": 0.6275 + }, + { + "start": 211.18, + "end": 212.52, + "probability": 0.693 + }, + { + "start": 212.72, + "end": 216.62, + "probability": 0.793 + }, + { + "start": 217.3, + "end": 219.28, + "probability": 0.8362 + }, + { + "start": 221.42, + "end": 223.72, + "probability": 0.6031 + }, + { + "start": 224.86, + "end": 224.88, + "probability": 0.1662 + }, + { + "start": 224.88, + "end": 228.46, + "probability": 0.7037 + }, + { + "start": 230.18, + "end": 233.68, + "probability": 0.9868 + }, + { + "start": 234.5, + "end": 236.78, + "probability": 0.6792 + }, + { + "start": 237.56, + "end": 241.06, + "probability": 0.8656 + }, + { + "start": 241.6, + "end": 241.98, + "probability": 0.3662 + }, + { + "start": 242.72, + "end": 244.66, + "probability": 0.9131 + }, + { + "start": 245.74, + "end": 248.34, + "probability": 0.7516 + }, + { + "start": 248.42, + "end": 249.76, + "probability": 0.5952 + }, + { + "start": 250.42, + "end": 250.94, + "probability": 0.7048 + }, + { + "start": 251.68, + "end": 253.04, + "probability": 0.9812 + }, + { + "start": 253.78, + "end": 254.58, + "probability": 0.6002 + }, + { + "start": 255.22, + "end": 259.16, + "probability": 0.9289 + }, + { + "start": 259.74, + "end": 263.92, + "probability": 0.7196 + }, + { + "start": 264.48, + "end": 266.63, + "probability": 0.9692 + }, + { + "start": 268.08, + "end": 269.18, + "probability": 0.6525 + }, + { + "start": 274.82, + "end": 276.6, + "probability": 0.822 + }, + { + "start": 276.76, + "end": 278.5, + "probability": 0.5556 + }, + { + "start": 279.22, + "end": 281.57, + "probability": 0.9595 + }, + { + "start": 282.2, + "end": 283.72, + "probability": 0.4964 + }, + { + "start": 284.72, + "end": 288.16, + "probability": 0.8057 + }, + { + "start": 288.78, + "end": 291.51, + "probability": 0.9073 + }, + { + "start": 292.82, + "end": 293.26, + "probability": 0.4968 + }, + { + "start": 293.34, + "end": 293.98, + "probability": 0.7691 + }, + { + "start": 294.08, + "end": 298.38, + "probability": 0.633 + }, + { + "start": 298.62, + "end": 300.2, + "probability": 0.7648 + }, + { + "start": 300.58, + "end": 302.54, + "probability": 0.9507 + }, + { + "start": 303.98, + "end": 305.56, + "probability": 0.9718 + }, + { + "start": 306.12, + "end": 307.48, + "probability": 0.9817 + }, + { + "start": 309.84, + "end": 310.88, + "probability": 0.4448 + }, + { + "start": 311.12, + "end": 314.28, + "probability": 0.9498 + }, + { + "start": 314.4, + "end": 314.82, + "probability": 0.5092 + }, + { + "start": 314.9, + "end": 318.18, + "probability": 0.7842 + }, + { + "start": 318.18, + "end": 320.56, + "probability": 0.7342 + }, + { + "start": 321.38, + "end": 324.86, + "probability": 0.5843 + }, + { + "start": 325.62, + "end": 326.98, + "probability": 0.5376 + }, + { + "start": 327.5, + "end": 333.68, + "probability": 0.9857 + }, + { + "start": 334.5, + "end": 339.0, + "probability": 0.9163 + }, + { + "start": 339.34, + "end": 343.84, + "probability": 0.9589 + }, + { + "start": 344.4, + "end": 347.64, + "probability": 0.9234 + }, + { + "start": 348.38, + "end": 349.84, + "probability": 0.8892 + }, + { + "start": 349.92, + "end": 351.97, + "probability": 0.9099 + }, + { + "start": 352.28, + "end": 354.24, + "probability": 0.9897 + }, + { + "start": 354.46, + "end": 354.58, + "probability": 0.3941 + }, + { + "start": 354.82, + "end": 355.18, + "probability": 0.4899 + }, + { + "start": 355.32, + "end": 359.88, + "probability": 0.9865 + }, + { + "start": 360.12, + "end": 360.8, + "probability": 0.5635 + }, + { + "start": 360.96, + "end": 362.88, + "probability": 0.2274 + }, + { + "start": 363.06, + "end": 364.1, + "probability": 0.6345 + }, + { + "start": 364.2, + "end": 365.88, + "probability": 0.7603 + }, + { + "start": 371.12, + "end": 371.14, + "probability": 0.1448 + }, + { + "start": 371.14, + "end": 372.12, + "probability": 0.3835 + }, + { + "start": 372.36, + "end": 373.1, + "probability": 0.6209 + }, + { + "start": 373.24, + "end": 374.42, + "probability": 0.6482 + }, + { + "start": 375.38, + "end": 377.46, + "probability": 0.9258 + }, + { + "start": 378.3, + "end": 380.7, + "probability": 0.8138 + }, + { + "start": 381.82, + "end": 383.8, + "probability": 0.9461 + }, + { + "start": 384.26, + "end": 384.6, + "probability": 0.375 + }, + { + "start": 384.64, + "end": 385.82, + "probability": 0.9736 + }, + { + "start": 386.46, + "end": 387.66, + "probability": 0.822 + }, + { + "start": 388.66, + "end": 393.32, + "probability": 0.8227 + }, + { + "start": 394.7, + "end": 399.08, + "probability": 0.6664 + }, + { + "start": 399.08, + "end": 401.6, + "probability": 0.6575 + }, + { + "start": 402.76, + "end": 403.8, + "probability": 0.7298 + }, + { + "start": 404.42, + "end": 404.78, + "probability": 0.3831 + }, + { + "start": 404.86, + "end": 408.82, + "probability": 0.8713 + }, + { + "start": 409.3, + "end": 413.54, + "probability": 0.8766 + }, + { + "start": 413.66, + "end": 413.98, + "probability": 0.8533 + }, + { + "start": 414.97, + "end": 417.84, + "probability": 0.3184 + }, + { + "start": 417.84, + "end": 421.02, + "probability": 0.6118 + }, + { + "start": 422.84, + "end": 425.76, + "probability": 0.6387 + }, + { + "start": 425.94, + "end": 426.76, + "probability": 0.8334 + }, + { + "start": 426.92, + "end": 430.32, + "probability": 0.9724 + }, + { + "start": 430.43, + "end": 436.02, + "probability": 0.9902 + }, + { + "start": 437.02, + "end": 438.97, + "probability": 0.9784 + }, + { + "start": 439.6, + "end": 442.12, + "probability": 0.9983 + }, + { + "start": 442.24, + "end": 443.58, + "probability": 0.9851 + }, + { + "start": 444.32, + "end": 447.58, + "probability": 0.9902 + }, + { + "start": 447.58, + "end": 451.98, + "probability": 0.9736 + }, + { + "start": 452.8, + "end": 454.16, + "probability": 0.635 + }, + { + "start": 454.44, + "end": 457.02, + "probability": 0.9821 + }, + { + "start": 457.02, + "end": 459.84, + "probability": 0.9644 + }, + { + "start": 460.72, + "end": 463.72, + "probability": 0.993 + }, + { + "start": 463.72, + "end": 466.46, + "probability": 0.9937 + }, + { + "start": 466.76, + "end": 469.44, + "probability": 0.9958 + }, + { + "start": 469.52, + "end": 469.96, + "probability": 0.9824 + }, + { + "start": 471.12, + "end": 473.24, + "probability": 0.7726 + }, + { + "start": 473.32, + "end": 476.24, + "probability": 0.9928 + }, + { + "start": 476.98, + "end": 481.68, + "probability": 0.9714 + }, + { + "start": 481.68, + "end": 486.64, + "probability": 0.998 + }, + { + "start": 486.64, + "end": 490.3, + "probability": 0.9991 + }, + { + "start": 490.8, + "end": 495.26, + "probability": 0.9907 + }, + { + "start": 495.32, + "end": 495.84, + "probability": 0.6513 + }, + { + "start": 496.28, + "end": 498.34, + "probability": 0.9744 + }, + { + "start": 499.02, + "end": 499.54, + "probability": 0.4029 + }, + { + "start": 499.74, + "end": 500.92, + "probability": 0.8317 + }, + { + "start": 501.54, + "end": 503.08, + "probability": 0.7565 + }, + { + "start": 504.08, + "end": 506.62, + "probability": 0.7279 + }, + { + "start": 507.86, + "end": 508.66, + "probability": 0.8975 + }, + { + "start": 508.82, + "end": 509.82, + "probability": 0.8525 + }, + { + "start": 510.0, + "end": 511.06, + "probability": 0.9412 + }, + { + "start": 511.36, + "end": 512.54, + "probability": 0.5728 + }, + { + "start": 512.66, + "end": 514.16, + "probability": 0.9897 + }, + { + "start": 515.34, + "end": 518.4, + "probability": 0.6472 + }, + { + "start": 519.04, + "end": 519.7, + "probability": 0.4374 + }, + { + "start": 520.5, + "end": 522.12, + "probability": 0.5876 + }, + { + "start": 522.32, + "end": 525.64, + "probability": 0.9767 + }, + { + "start": 527.12, + "end": 527.3, + "probability": 0.3841 + }, + { + "start": 527.3, + "end": 527.4, + "probability": 0.3773 + }, + { + "start": 528.01, + "end": 530.4, + "probability": 0.9888 + }, + { + "start": 531.22, + "end": 534.7, + "probability": 0.8623 + }, + { + "start": 535.12, + "end": 537.92, + "probability": 0.8013 + }, + { + "start": 538.7, + "end": 539.88, + "probability": 0.9082 + }, + { + "start": 540.1, + "end": 545.42, + "probability": 0.8965 + }, + { + "start": 546.0, + "end": 547.56, + "probability": 0.9956 + }, + { + "start": 548.98, + "end": 549.64, + "probability": 0.6993 + }, + { + "start": 550.74, + "end": 551.88, + "probability": 0.7758 + }, + { + "start": 552.7, + "end": 555.6, + "probability": 0.7446 + }, + { + "start": 557.6, + "end": 561.34, + "probability": 0.9107 + }, + { + "start": 562.58, + "end": 563.32, + "probability": 0.0714 + }, + { + "start": 563.72, + "end": 564.06, + "probability": 0.2867 + }, + { + "start": 564.5, + "end": 567.58, + "probability": 0.9497 + }, + { + "start": 567.98, + "end": 568.84, + "probability": 0.8767 + }, + { + "start": 569.02, + "end": 570.06, + "probability": 0.6914 + }, + { + "start": 570.14, + "end": 574.08, + "probability": 0.8882 + }, + { + "start": 575.0, + "end": 577.48, + "probability": 0.9531 + }, + { + "start": 577.84, + "end": 578.88, + "probability": 0.8101 + }, + { + "start": 579.52, + "end": 580.74, + "probability": 0.7476 + }, + { + "start": 583.08, + "end": 585.31, + "probability": 0.5077 + }, + { + "start": 588.17, + "end": 590.36, + "probability": 0.9246 + }, + { + "start": 592.25, + "end": 594.32, + "probability": 0.8503 + }, + { + "start": 595.1, + "end": 595.94, + "probability": 0.6172 + }, + { + "start": 597.3, + "end": 601.26, + "probability": 0.1786 + }, + { + "start": 602.32, + "end": 603.46, + "probability": 0.3668 + }, + { + "start": 603.92, + "end": 604.28, + "probability": 0.588 + }, + { + "start": 604.28, + "end": 607.24, + "probability": 0.6121 + }, + { + "start": 607.7, + "end": 609.12, + "probability": 0.4764 + }, + { + "start": 609.9, + "end": 610.0, + "probability": 0.3055 + }, + { + "start": 610.56, + "end": 614.72, + "probability": 0.8259 + }, + { + "start": 615.34, + "end": 619.2, + "probability": 0.869 + }, + { + "start": 619.68, + "end": 620.81, + "probability": 0.9705 + }, + { + "start": 621.02, + "end": 624.3, + "probability": 0.682 + }, + { + "start": 624.36, + "end": 627.69, + "probability": 0.7553 + }, + { + "start": 628.1, + "end": 628.64, + "probability": 0.6768 + }, + { + "start": 629.12, + "end": 631.04, + "probability": 0.967 + }, + { + "start": 631.12, + "end": 632.12, + "probability": 0.8013 + }, + { + "start": 632.46, + "end": 637.0, + "probability": 0.9353 + }, + { + "start": 638.52, + "end": 639.02, + "probability": 0.9187 + }, + { + "start": 639.6, + "end": 640.72, + "probability": 0.7468 + }, + { + "start": 640.78, + "end": 642.1, + "probability": 0.985 + }, + { + "start": 642.24, + "end": 643.04, + "probability": 0.5026 + }, + { + "start": 644.3, + "end": 648.16, + "probability": 0.9958 + }, + { + "start": 649.06, + "end": 652.38, + "probability": 0.7423 + }, + { + "start": 652.96, + "end": 656.6, + "probability": 0.8879 + }, + { + "start": 657.26, + "end": 659.28, + "probability": 0.8484 + }, + { + "start": 674.04, + "end": 675.37, + "probability": 0.7518 + }, + { + "start": 675.78, + "end": 676.54, + "probability": 0.6891 + }, + { + "start": 676.8, + "end": 677.88, + "probability": 0.925 + }, + { + "start": 677.98, + "end": 678.8, + "probability": 0.9758 + }, + { + "start": 679.18, + "end": 680.48, + "probability": 0.9753 + }, + { + "start": 680.58, + "end": 681.56, + "probability": 0.8832 + }, + { + "start": 681.62, + "end": 683.96, + "probability": 0.9153 + }, + { + "start": 685.1, + "end": 687.88, + "probability": 0.9065 + }, + { + "start": 688.36, + "end": 690.68, + "probability": 0.9925 + }, + { + "start": 691.2, + "end": 693.92, + "probability": 0.998 + }, + { + "start": 694.54, + "end": 697.5, + "probability": 0.9669 + }, + { + "start": 698.52, + "end": 704.24, + "probability": 0.9758 + }, + { + "start": 704.74, + "end": 705.9, + "probability": 0.7559 + }, + { + "start": 706.58, + "end": 708.26, + "probability": 0.4191 + }, + { + "start": 708.48, + "end": 711.24, + "probability": 0.6616 + }, + { + "start": 711.3, + "end": 712.78, + "probability": 0.7935 + }, + { + "start": 713.08, + "end": 715.26, + "probability": 0.8539 + }, + { + "start": 716.66, + "end": 720.06, + "probability": 0.9824 + }, + { + "start": 720.06, + "end": 725.0, + "probability": 0.9842 + }, + { + "start": 725.28, + "end": 726.38, + "probability": 0.7723 + }, + { + "start": 727.62, + "end": 732.94, + "probability": 0.9773 + }, + { + "start": 733.02, + "end": 736.02, + "probability": 0.9813 + }, + { + "start": 736.96, + "end": 740.14, + "probability": 0.9812 + }, + { + "start": 741.48, + "end": 743.14, + "probability": 0.8374 + }, + { + "start": 743.76, + "end": 746.92, + "probability": 0.9873 + }, + { + "start": 747.76, + "end": 750.94, + "probability": 0.8698 + }, + { + "start": 751.0, + "end": 752.04, + "probability": 0.8618 + }, + { + "start": 752.9, + "end": 755.6, + "probability": 0.9912 + }, + { + "start": 756.58, + "end": 758.26, + "probability": 0.755 + }, + { + "start": 760.78, + "end": 763.24, + "probability": 0.2129 + }, + { + "start": 763.86, + "end": 764.18, + "probability": 0.8186 + }, + { + "start": 765.74, + "end": 768.12, + "probability": 0.9303 + }, + { + "start": 768.12, + "end": 770.68, + "probability": 0.9767 + }, + { + "start": 771.0, + "end": 778.54, + "probability": 0.984 + }, + { + "start": 779.22, + "end": 781.42, + "probability": 0.8084 + }, + { + "start": 782.36, + "end": 785.14, + "probability": 0.9754 + }, + { + "start": 785.14, + "end": 789.5, + "probability": 0.978 + }, + { + "start": 790.52, + "end": 795.5, + "probability": 0.8997 + }, + { + "start": 796.6, + "end": 799.9, + "probability": 0.9456 + }, + { + "start": 800.04, + "end": 801.02, + "probability": 0.8614 + }, + { + "start": 802.2, + "end": 808.3, + "probability": 0.825 + }, + { + "start": 808.6, + "end": 812.16, + "probability": 0.9975 + }, + { + "start": 813.32, + "end": 818.74, + "probability": 0.9819 + }, + { + "start": 819.46, + "end": 821.8, + "probability": 0.9979 + }, + { + "start": 822.0, + "end": 825.2, + "probability": 0.6184 + }, + { + "start": 825.36, + "end": 829.62, + "probability": 0.9943 + }, + { + "start": 830.08, + "end": 831.98, + "probability": 0.9895 + }, + { + "start": 833.04, + "end": 833.8, + "probability": 0.1474 + }, + { + "start": 833.88, + "end": 838.1, + "probability": 0.8974 + }, + { + "start": 838.9, + "end": 841.79, + "probability": 0.9856 + }, + { + "start": 842.7, + "end": 846.12, + "probability": 0.9814 + }, + { + "start": 847.54, + "end": 852.14, + "probability": 0.8649 + }, + { + "start": 852.14, + "end": 855.88, + "probability": 0.9702 + }, + { + "start": 856.98, + "end": 859.84, + "probability": 0.999 + }, + { + "start": 860.12, + "end": 864.42, + "probability": 0.9949 + }, + { + "start": 865.1, + "end": 870.38, + "probability": 0.9525 + }, + { + "start": 871.78, + "end": 873.66, + "probability": 0.7365 + }, + { + "start": 875.42, + "end": 877.5, + "probability": 0.8234 + }, + { + "start": 877.64, + "end": 879.4, + "probability": 0.9827 + }, + { + "start": 880.14, + "end": 884.0, + "probability": 0.9666 + }, + { + "start": 884.78, + "end": 889.82, + "probability": 0.9274 + }, + { + "start": 890.0, + "end": 891.96, + "probability": 0.8495 + }, + { + "start": 892.8, + "end": 896.26, + "probability": 0.9803 + }, + { + "start": 897.32, + "end": 897.98, + "probability": 0.9282 + }, + { + "start": 899.18, + "end": 902.24, + "probability": 0.762 + }, + { + "start": 903.16, + "end": 906.98, + "probability": 0.9408 + }, + { + "start": 908.0, + "end": 915.14, + "probability": 0.9867 + }, + { + "start": 916.34, + "end": 918.88, + "probability": 0.9948 + }, + { + "start": 919.0, + "end": 920.12, + "probability": 0.8188 + }, + { + "start": 920.24, + "end": 923.88, + "probability": 0.9349 + }, + { + "start": 924.8, + "end": 926.52, + "probability": 0.5683 + }, + { + "start": 926.66, + "end": 927.46, + "probability": 0.6559 + }, + { + "start": 927.5, + "end": 932.88, + "probability": 0.9724 + }, + { + "start": 933.14, + "end": 934.74, + "probability": 0.8849 + }, + { + "start": 935.64, + "end": 939.44, + "probability": 0.9427 + }, + { + "start": 939.44, + "end": 942.64, + "probability": 0.9974 + }, + { + "start": 943.46, + "end": 947.18, + "probability": 0.9625 + }, + { + "start": 947.26, + "end": 949.64, + "probability": 0.9686 + }, + { + "start": 950.68, + "end": 953.28, + "probability": 0.9471 + }, + { + "start": 953.28, + "end": 956.28, + "probability": 0.9262 + }, + { + "start": 956.42, + "end": 958.6, + "probability": 0.7526 + }, + { + "start": 958.78, + "end": 960.0, + "probability": 0.8882 + }, + { + "start": 960.98, + "end": 964.56, + "probability": 0.957 + }, + { + "start": 965.52, + "end": 966.54, + "probability": 0.6892 + }, + { + "start": 966.96, + "end": 968.1, + "probability": 0.8371 + }, + { + "start": 968.62, + "end": 969.4, + "probability": 0.6711 + }, + { + "start": 969.74, + "end": 972.68, + "probability": 0.749 + }, + { + "start": 973.3, + "end": 977.52, + "probability": 0.9812 + }, + { + "start": 978.68, + "end": 979.06, + "probability": 0.6977 + }, + { + "start": 979.16, + "end": 980.78, + "probability": 0.9186 + }, + { + "start": 980.88, + "end": 983.72, + "probability": 0.9725 + }, + { + "start": 984.92, + "end": 985.28, + "probability": 0.6821 + }, + { + "start": 985.48, + "end": 987.72, + "probability": 0.9594 + }, + { + "start": 987.72, + "end": 991.62, + "probability": 0.8713 + }, + { + "start": 991.78, + "end": 995.3, + "probability": 0.8395 + }, + { + "start": 996.72, + "end": 1001.08, + "probability": 0.9895 + }, + { + "start": 1001.66, + "end": 1002.12, + "probability": 0.6461 + }, + { + "start": 1002.3, + "end": 1003.04, + "probability": 0.754 + }, + { + "start": 1003.66, + "end": 1006.88, + "probability": 0.9625 + }, + { + "start": 1008.02, + "end": 1011.5, + "probability": 0.9456 + }, + { + "start": 1011.56, + "end": 1013.0, + "probability": 0.7408 + }, + { + "start": 1013.92, + "end": 1017.26, + "probability": 0.9945 + }, + { + "start": 1017.42, + "end": 1019.94, + "probability": 0.9735 + }, + { + "start": 1021.88, + "end": 1028.66, + "probability": 0.9124 + }, + { + "start": 1029.56, + "end": 1031.42, + "probability": 0.923 + }, + { + "start": 1031.74, + "end": 1034.93, + "probability": 0.7725 + }, + { + "start": 1037.72, + "end": 1038.94, + "probability": 0.4939 + }, + { + "start": 1039.1, + "end": 1042.94, + "probability": 0.9882 + }, + { + "start": 1043.28, + "end": 1045.4, + "probability": 0.6837 + }, + { + "start": 1046.1, + "end": 1047.08, + "probability": 0.7716 + }, + { + "start": 1048.0, + "end": 1050.24, + "probability": 0.9836 + }, + { + "start": 1050.24, + "end": 1054.5, + "probability": 0.9877 + }, + { + "start": 1055.4, + "end": 1056.2, + "probability": 0.724 + }, + { + "start": 1056.3, + "end": 1059.0, + "probability": 0.8364 + }, + { + "start": 1059.2, + "end": 1062.84, + "probability": 0.9941 + }, + { + "start": 1062.9, + "end": 1063.98, + "probability": 0.9703 + }, + { + "start": 1065.08, + "end": 1068.72, + "probability": 0.9966 + }, + { + "start": 1068.72, + "end": 1072.02, + "probability": 0.937 + }, + { + "start": 1072.9, + "end": 1074.58, + "probability": 0.7626 + }, + { + "start": 1075.22, + "end": 1077.62, + "probability": 0.8885 + }, + { + "start": 1078.7, + "end": 1081.0, + "probability": 0.8027 + }, + { + "start": 1084.32, + "end": 1087.6, + "probability": 0.6936 + }, + { + "start": 1087.68, + "end": 1091.04, + "probability": 0.513 + }, + { + "start": 1091.88, + "end": 1095.46, + "probability": 0.9849 + }, + { + "start": 1096.24, + "end": 1098.0, + "probability": 0.9268 + }, + { + "start": 1099.16, + "end": 1099.94, + "probability": 0.6142 + }, + { + "start": 1100.12, + "end": 1102.2, + "probability": 0.8569 + }, + { + "start": 1102.32, + "end": 1106.3, + "probability": 0.777 + }, + { + "start": 1106.96, + "end": 1107.54, + "probability": 0.6176 + }, + { + "start": 1107.64, + "end": 1109.2, + "probability": 0.9423 + }, + { + "start": 1109.24, + "end": 1113.24, + "probability": 0.9705 + }, + { + "start": 1113.58, + "end": 1114.24, + "probability": 0.7224 + }, + { + "start": 1114.46, + "end": 1115.52, + "probability": 0.9289 + }, + { + "start": 1116.12, + "end": 1119.56, + "probability": 0.8683 + }, + { + "start": 1119.64, + "end": 1120.92, + "probability": 0.9015 + }, + { + "start": 1121.12, + "end": 1124.41, + "probability": 0.9951 + }, + { + "start": 1124.78, + "end": 1125.54, + "probability": 0.8945 + }, + { + "start": 1126.06, + "end": 1128.04, + "probability": 0.981 + }, + { + "start": 1128.94, + "end": 1130.82, + "probability": 0.6898 + }, + { + "start": 1132.26, + "end": 1136.55, + "probability": 0.9826 + }, + { + "start": 1137.32, + "end": 1141.9, + "probability": 0.996 + }, + { + "start": 1142.22, + "end": 1144.34, + "probability": 0.9858 + }, + { + "start": 1144.84, + "end": 1148.4, + "probability": 0.9918 + }, + { + "start": 1149.42, + "end": 1150.7, + "probability": 0.787 + }, + { + "start": 1151.1, + "end": 1157.7, + "probability": 0.9072 + }, + { + "start": 1158.46, + "end": 1162.86, + "probability": 0.9345 + }, + { + "start": 1163.28, + "end": 1165.22, + "probability": 0.8066 + }, + { + "start": 1166.14, + "end": 1166.88, + "probability": 0.4347 + }, + { + "start": 1167.08, + "end": 1169.02, + "probability": 0.6486 + }, + { + "start": 1169.2, + "end": 1170.86, + "probability": 0.8134 + }, + { + "start": 1178.36, + "end": 1178.84, + "probability": 0.6337 + }, + { + "start": 1183.9, + "end": 1186.88, + "probability": 0.9911 + }, + { + "start": 1187.46, + "end": 1190.88, + "probability": 0.9215 + }, + { + "start": 1191.48, + "end": 1194.78, + "probability": 0.852 + }, + { + "start": 1195.56, + "end": 1197.74, + "probability": 0.9688 + }, + { + "start": 1198.52, + "end": 1200.32, + "probability": 0.7477 + }, + { + "start": 1201.0, + "end": 1205.76, + "probability": 0.9862 + }, + { + "start": 1206.04, + "end": 1206.18, + "probability": 0.7092 + }, + { + "start": 1207.78, + "end": 1208.38, + "probability": 0.4637 + }, + { + "start": 1208.46, + "end": 1210.12, + "probability": 0.7417 + }, + { + "start": 1210.26, + "end": 1211.42, + "probability": 0.9725 + }, + { + "start": 1212.44, + "end": 1213.93, + "probability": 0.6793 + }, + { + "start": 1214.9, + "end": 1216.22, + "probability": 0.9471 + }, + { + "start": 1216.6, + "end": 1219.6, + "probability": 0.7552 + }, + { + "start": 1220.72, + "end": 1221.42, + "probability": 0.7383 + }, + { + "start": 1222.72, + "end": 1228.16, + "probability": 0.9635 + }, + { + "start": 1229.76, + "end": 1232.36, + "probability": 0.9467 + }, + { + "start": 1233.46, + "end": 1238.78, + "probability": 0.9421 + }, + { + "start": 1239.98, + "end": 1241.24, + "probability": 0.2683 + }, + { + "start": 1242.06, + "end": 1243.38, + "probability": 0.9097 + }, + { + "start": 1243.68, + "end": 1244.8, + "probability": 0.5264 + }, + { + "start": 1245.54, + "end": 1248.36, + "probability": 0.8377 + }, + { + "start": 1249.34, + "end": 1252.72, + "probability": 0.9591 + }, + { + "start": 1253.32, + "end": 1254.34, + "probability": 0.7036 + }, + { + "start": 1254.6, + "end": 1256.86, + "probability": 0.655 + }, + { + "start": 1257.24, + "end": 1258.94, + "probability": 0.8947 + }, + { + "start": 1259.42, + "end": 1262.72, + "probability": 0.9717 + }, + { + "start": 1262.72, + "end": 1266.52, + "probability": 0.8002 + }, + { + "start": 1267.12, + "end": 1268.44, + "probability": 0.9851 + }, + { + "start": 1268.82, + "end": 1270.46, + "probability": 0.668 + }, + { + "start": 1271.02, + "end": 1273.5, + "probability": 0.9535 + }, + { + "start": 1274.54, + "end": 1274.6, + "probability": 0.049 + }, + { + "start": 1274.6, + "end": 1276.56, + "probability": 0.4606 + }, + { + "start": 1276.78, + "end": 1280.04, + "probability": 0.9712 + }, + { + "start": 1280.8, + "end": 1282.9, + "probability": 0.8945 + }, + { + "start": 1283.6, + "end": 1284.24, + "probability": 0.4746 + }, + { + "start": 1284.54, + "end": 1286.4, + "probability": 0.9176 + }, + { + "start": 1287.84, + "end": 1291.46, + "probability": 0.9026 + }, + { + "start": 1292.2, + "end": 1296.6, + "probability": 0.9757 + }, + { + "start": 1297.78, + "end": 1299.7, + "probability": 0.9896 + }, + { + "start": 1299.84, + "end": 1300.1, + "probability": 0.5515 + }, + { + "start": 1300.22, + "end": 1301.64, + "probability": 0.9067 + }, + { + "start": 1301.84, + "end": 1302.92, + "probability": 0.9816 + }, + { + "start": 1302.96, + "end": 1303.46, + "probability": 0.6137 + }, + { + "start": 1304.28, + "end": 1304.88, + "probability": 0.8064 + }, + { + "start": 1305.02, + "end": 1306.5, + "probability": 0.9993 + }, + { + "start": 1306.7, + "end": 1308.81, + "probability": 0.8816 + }, + { + "start": 1309.24, + "end": 1311.24, + "probability": 0.9927 + }, + { + "start": 1311.88, + "end": 1313.56, + "probability": 0.9556 + }, + { + "start": 1313.68, + "end": 1314.56, + "probability": 0.6623 + }, + { + "start": 1314.58, + "end": 1316.66, + "probability": 0.9512 + }, + { + "start": 1316.66, + "end": 1320.6, + "probability": 0.9863 + }, + { + "start": 1321.66, + "end": 1324.78, + "probability": 0.911 + }, + { + "start": 1325.04, + "end": 1327.22, + "probability": 0.903 + }, + { + "start": 1328.64, + "end": 1330.86, + "probability": 0.7457 + }, + { + "start": 1331.1, + "end": 1333.66, + "probability": 0.9856 + }, + { + "start": 1333.9, + "end": 1338.56, + "probability": 0.8912 + }, + { + "start": 1338.86, + "end": 1340.22, + "probability": 0.606 + }, + { + "start": 1340.28, + "end": 1341.38, + "probability": 0.8336 + }, + { + "start": 1341.98, + "end": 1344.1, + "probability": 0.9028 + }, + { + "start": 1345.64, + "end": 1346.72, + "probability": 0.8004 + }, + { + "start": 1347.34, + "end": 1348.22, + "probability": 0.6739 + }, + { + "start": 1348.28, + "end": 1351.82, + "probability": 0.9875 + }, + { + "start": 1352.36, + "end": 1355.16, + "probability": 0.9623 + }, + { + "start": 1355.3, + "end": 1355.98, + "probability": 0.5955 + }, + { + "start": 1356.84, + "end": 1360.82, + "probability": 0.9958 + }, + { + "start": 1361.7, + "end": 1363.8, + "probability": 0.9825 + }, + { + "start": 1363.92, + "end": 1365.08, + "probability": 0.6556 + }, + { + "start": 1365.2, + "end": 1366.96, + "probability": 0.5016 + }, + { + "start": 1367.0, + "end": 1370.16, + "probability": 0.9831 + }, + { + "start": 1370.22, + "end": 1370.96, + "probability": 0.7378 + }, + { + "start": 1371.02, + "end": 1375.36, + "probability": 0.9578 + }, + { + "start": 1375.44, + "end": 1376.38, + "probability": 0.6323 + }, + { + "start": 1376.7, + "end": 1378.47, + "probability": 0.9924 + }, + { + "start": 1379.74, + "end": 1381.36, + "probability": 0.8844 + }, + { + "start": 1381.98, + "end": 1382.28, + "probability": 0.8484 + }, + { + "start": 1382.34, + "end": 1383.68, + "probability": 0.9956 + }, + { + "start": 1383.84, + "end": 1385.52, + "probability": 0.816 + }, + { + "start": 1385.64, + "end": 1386.18, + "probability": 0.6738 + }, + { + "start": 1386.32, + "end": 1387.04, + "probability": 0.7498 + }, + { + "start": 1387.54, + "end": 1390.34, + "probability": 0.9927 + }, + { + "start": 1390.5, + "end": 1391.88, + "probability": 0.7247 + }, + { + "start": 1392.6, + "end": 1396.66, + "probability": 0.9772 + }, + { + "start": 1397.5, + "end": 1399.78, + "probability": 0.8702 + }, + { + "start": 1400.82, + "end": 1402.58, + "probability": 0.7345 + }, + { + "start": 1402.94, + "end": 1404.56, + "probability": 0.989 + }, + { + "start": 1404.64, + "end": 1406.2, + "probability": 0.9763 + }, + { + "start": 1406.34, + "end": 1407.4, + "probability": 0.4622 + }, + { + "start": 1407.54, + "end": 1410.02, + "probability": 0.9313 + }, + { + "start": 1410.16, + "end": 1413.6, + "probability": 0.9374 + }, + { + "start": 1414.28, + "end": 1417.14, + "probability": 0.8234 + }, + { + "start": 1419.6, + "end": 1421.32, + "probability": 0.9688 + }, + { + "start": 1421.8, + "end": 1425.96, + "probability": 0.8823 + }, + { + "start": 1428.32, + "end": 1428.34, + "probability": 0.7139 + }, + { + "start": 1430.32, + "end": 1431.2, + "probability": 0.6662 + }, + { + "start": 1432.4, + "end": 1434.86, + "probability": 0.9985 + }, + { + "start": 1435.66, + "end": 1437.46, + "probability": 0.998 + }, + { + "start": 1439.38, + "end": 1440.74, + "probability": 0.8153 + }, + { + "start": 1441.72, + "end": 1443.56, + "probability": 0.9404 + }, + { + "start": 1445.26, + "end": 1447.54, + "probability": 0.8719 + }, + { + "start": 1447.8, + "end": 1448.64, + "probability": 0.9759 + }, + { + "start": 1448.7, + "end": 1449.24, + "probability": 0.8807 + }, + { + "start": 1449.34, + "end": 1451.36, + "probability": 0.9138 + }, + { + "start": 1451.74, + "end": 1453.34, + "probability": 0.6838 + }, + { + "start": 1454.04, + "end": 1457.16, + "probability": 0.9905 + }, + { + "start": 1457.8, + "end": 1459.64, + "probability": 0.9214 + }, + { + "start": 1460.22, + "end": 1461.22, + "probability": 0.7972 + }, + { + "start": 1462.26, + "end": 1465.68, + "probability": 0.9954 + }, + { + "start": 1467.48, + "end": 1469.82, + "probability": 0.9929 + }, + { + "start": 1469.82, + "end": 1470.72, + "probability": 0.8429 + }, + { + "start": 1470.84, + "end": 1471.38, + "probability": 0.5652 + }, + { + "start": 1471.66, + "end": 1472.28, + "probability": 0.9318 + }, + { + "start": 1472.42, + "end": 1473.06, + "probability": 0.4923 + }, + { + "start": 1473.76, + "end": 1475.24, + "probability": 0.9406 + }, + { + "start": 1475.74, + "end": 1477.7, + "probability": 0.9296 + }, + { + "start": 1478.24, + "end": 1486.4, + "probability": 0.989 + }, + { + "start": 1487.68, + "end": 1488.68, + "probability": 0.9911 + }, + { + "start": 1490.14, + "end": 1491.26, + "probability": 0.0041 + }, + { + "start": 1491.26, + "end": 1492.2, + "probability": 0.1664 + }, + { + "start": 1492.26, + "end": 1492.26, + "probability": 0.01 + }, + { + "start": 1492.26, + "end": 1493.44, + "probability": 0.7614 + }, + { + "start": 1493.56, + "end": 1494.3, + "probability": 0.0339 + }, + { + "start": 1494.3, + "end": 1496.78, + "probability": 0.6773 + }, + { + "start": 1496.92, + "end": 1498.6, + "probability": 0.6968 + }, + { + "start": 1499.42, + "end": 1502.01, + "probability": 0.8457 + }, + { + "start": 1502.86, + "end": 1503.0, + "probability": 0.0359 + }, + { + "start": 1503.0, + "end": 1504.1, + "probability": 0.7632 + }, + { + "start": 1504.26, + "end": 1506.78, + "probability": 0.827 + }, + { + "start": 1507.74, + "end": 1508.94, + "probability": 0.6919 + }, + { + "start": 1509.7, + "end": 1510.5, + "probability": 0.8707 + }, + { + "start": 1511.74, + "end": 1512.74, + "probability": 0.7558 + }, + { + "start": 1512.92, + "end": 1516.68, + "probability": 0.9689 + }, + { + "start": 1518.68, + "end": 1520.18, + "probability": 0.6871 + }, + { + "start": 1520.62, + "end": 1521.92, + "probability": 0.8613 + }, + { + "start": 1522.16, + "end": 1524.78, + "probability": 0.9319 + }, + { + "start": 1525.52, + "end": 1526.82, + "probability": 0.9971 + }, + { + "start": 1527.24, + "end": 1529.1, + "probability": 0.9633 + }, + { + "start": 1529.66, + "end": 1531.36, + "probability": 0.7201 + }, + { + "start": 1532.24, + "end": 1536.1, + "probability": 0.9386 + }, + { + "start": 1536.44, + "end": 1538.96, + "probability": 0.9888 + }, + { + "start": 1539.38, + "end": 1540.9, + "probability": 0.6943 + }, + { + "start": 1541.84, + "end": 1544.08, + "probability": 0.9656 + }, + { + "start": 1544.72, + "end": 1547.69, + "probability": 0.9055 + }, + { + "start": 1547.92, + "end": 1548.72, + "probability": 0.8198 + }, + { + "start": 1548.86, + "end": 1550.43, + "probability": 0.9873 + }, + { + "start": 1551.38, + "end": 1552.32, + "probability": 0.6691 + }, + { + "start": 1552.56, + "end": 1552.64, + "probability": 0.0147 + }, + { + "start": 1552.64, + "end": 1553.92, + "probability": 0.8364 + }, + { + "start": 1556.08, + "end": 1559.31, + "probability": 0.0096 + }, + { + "start": 1561.34, + "end": 1562.42, + "probability": 0.0841 + }, + { + "start": 1562.58, + "end": 1564.86, + "probability": 0.8082 + }, + { + "start": 1564.86, + "end": 1565.38, + "probability": 0.2907 + }, + { + "start": 1565.46, + "end": 1566.4, + "probability": 0.4962 + }, + { + "start": 1567.18, + "end": 1568.62, + "probability": 0.9062 + }, + { + "start": 1569.52, + "end": 1572.52, + "probability": 0.6873 + }, + { + "start": 1574.04, + "end": 1575.38, + "probability": 0.8165 + }, + { + "start": 1576.0, + "end": 1577.36, + "probability": 0.779 + }, + { + "start": 1577.5, + "end": 1578.96, + "probability": 0.9145 + }, + { + "start": 1579.02, + "end": 1580.34, + "probability": 0.9124 + }, + { + "start": 1581.18, + "end": 1584.18, + "probability": 0.9717 + }, + { + "start": 1584.74, + "end": 1587.08, + "probability": 0.9037 + }, + { + "start": 1588.78, + "end": 1592.26, + "probability": 0.9715 + }, + { + "start": 1593.02, + "end": 1599.4, + "probability": 0.9728 + }, + { + "start": 1599.68, + "end": 1602.0, + "probability": 0.9851 + }, + { + "start": 1602.12, + "end": 1602.52, + "probability": 0.0963 + }, + { + "start": 1602.58, + "end": 1602.96, + "probability": 0.1687 + }, + { + "start": 1602.96, + "end": 1606.42, + "probability": 0.9784 + }, + { + "start": 1606.86, + "end": 1608.02, + "probability": 0.9186 + }, + { + "start": 1608.08, + "end": 1610.06, + "probability": 0.9893 + }, + { + "start": 1610.6, + "end": 1612.22, + "probability": 0.9482 + }, + { + "start": 1612.66, + "end": 1616.14, + "probability": 0.9858 + }, + { + "start": 1616.78, + "end": 1618.34, + "probability": 0.6899 + }, + { + "start": 1619.1, + "end": 1619.1, + "probability": 0.0989 + }, + { + "start": 1619.12, + "end": 1620.76, + "probability": 0.7883 + }, + { + "start": 1620.84, + "end": 1622.36, + "probability": 0.9342 + }, + { + "start": 1622.88, + "end": 1623.98, + "probability": 0.7333 + }, + { + "start": 1624.16, + "end": 1626.26, + "probability": 0.9801 + }, + { + "start": 1626.42, + "end": 1628.05, + "probability": 0.9939 + }, + { + "start": 1629.02, + "end": 1629.62, + "probability": 0.7126 + }, + { + "start": 1630.36, + "end": 1632.3, + "probability": 0.9518 + }, + { + "start": 1633.06, + "end": 1635.62, + "probability": 0.9822 + }, + { + "start": 1636.28, + "end": 1637.94, + "probability": 0.9134 + }, + { + "start": 1638.86, + "end": 1642.84, + "probability": 0.9984 + }, + { + "start": 1643.2, + "end": 1644.74, + "probability": 0.9813 + }, + { + "start": 1645.0, + "end": 1645.66, + "probability": 0.6729 + }, + { + "start": 1645.84, + "end": 1646.36, + "probability": 0.8427 + }, + { + "start": 1647.9, + "end": 1648.8, + "probability": 0.8109 + }, + { + "start": 1648.88, + "end": 1651.26, + "probability": 0.8879 + }, + { + "start": 1652.04, + "end": 1652.82, + "probability": 0.9844 + }, + { + "start": 1653.28, + "end": 1655.38, + "probability": 0.9961 + }, + { + "start": 1655.94, + "end": 1658.5, + "probability": 0.9984 + }, + { + "start": 1658.5, + "end": 1662.24, + "probability": 0.9892 + }, + { + "start": 1662.48, + "end": 1665.06, + "probability": 0.9291 + }, + { + "start": 1665.76, + "end": 1668.06, + "probability": 0.9854 + }, + { + "start": 1668.64, + "end": 1668.74, + "probability": 0.0378 + }, + { + "start": 1668.74, + "end": 1670.04, + "probability": 0.9583 + }, + { + "start": 1671.04, + "end": 1673.48, + "probability": 0.8042 + }, + { + "start": 1673.74, + "end": 1676.62, + "probability": 0.9437 + }, + { + "start": 1677.4, + "end": 1680.4, + "probability": 0.8817 + }, + { + "start": 1680.82, + "end": 1682.7, + "probability": 0.8789 + }, + { + "start": 1683.42, + "end": 1689.86, + "probability": 0.9922 + }, + { + "start": 1690.44, + "end": 1691.8, + "probability": 0.9941 + }, + { + "start": 1691.86, + "end": 1693.28, + "probability": 0.9966 + }, + { + "start": 1693.42, + "end": 1694.58, + "probability": 0.988 + }, + { + "start": 1695.82, + "end": 1697.46, + "probability": 0.9285 + }, + { + "start": 1697.96, + "end": 1699.3, + "probability": 0.9849 + }, + { + "start": 1699.38, + "end": 1700.6, + "probability": 0.9941 + }, + { + "start": 1700.7, + "end": 1702.98, + "probability": 0.8856 + }, + { + "start": 1703.38, + "end": 1706.46, + "probability": 0.7523 + }, + { + "start": 1707.68, + "end": 1715.6, + "probability": 0.9905 + }, + { + "start": 1715.6, + "end": 1720.94, + "probability": 0.9939 + }, + { + "start": 1721.48, + "end": 1722.54, + "probability": 0.7189 + }, + { + "start": 1722.68, + "end": 1724.28, + "probability": 0.7833 + }, + { + "start": 1724.68, + "end": 1726.55, + "probability": 0.9822 + }, + { + "start": 1727.24, + "end": 1729.76, + "probability": 0.9528 + }, + { + "start": 1729.82, + "end": 1731.36, + "probability": 0.9803 + }, + { + "start": 1732.18, + "end": 1734.4, + "probability": 0.6737 + }, + { + "start": 1735.01, + "end": 1736.22, + "probability": 0.1266 + }, + { + "start": 1736.22, + "end": 1736.58, + "probability": 0.3833 + }, + { + "start": 1736.92, + "end": 1738.38, + "probability": 0.7058 + }, + { + "start": 1738.58, + "end": 1739.32, + "probability": 0.188 + }, + { + "start": 1739.32, + "end": 1739.32, + "probability": 0.4142 + }, + { + "start": 1739.32, + "end": 1739.72, + "probability": 0.323 + }, + { + "start": 1739.82, + "end": 1742.18, + "probability": 0.2576 + }, + { + "start": 1742.28, + "end": 1742.64, + "probability": 0.9016 + }, + { + "start": 1742.98, + "end": 1743.64, + "probability": 0.2266 + }, + { + "start": 1743.86, + "end": 1747.06, + "probability": 0.9907 + }, + { + "start": 1747.12, + "end": 1748.14, + "probability": 0.7113 + }, + { + "start": 1749.1, + "end": 1750.22, + "probability": 0.7869 + }, + { + "start": 1750.88, + "end": 1754.44, + "probability": 0.9803 + }, + { + "start": 1755.04, + "end": 1758.16, + "probability": 0.9917 + }, + { + "start": 1758.86, + "end": 1763.24, + "probability": 0.4819 + }, + { + "start": 1763.32, + "end": 1764.9, + "probability": 0.9435 + }, + { + "start": 1765.84, + "end": 1766.1, + "probability": 0.4119 + }, + { + "start": 1766.12, + "end": 1768.44, + "probability": 0.9287 + }, + { + "start": 1768.78, + "end": 1770.16, + "probability": 0.7633 + }, + { + "start": 1771.7, + "end": 1772.58, + "probability": 0.3823 + }, + { + "start": 1772.58, + "end": 1772.86, + "probability": 0.7504 + }, + { + "start": 1774.14, + "end": 1776.72, + "probability": 0.9751 + }, + { + "start": 1778.66, + "end": 1781.16, + "probability": 0.5218 + }, + { + "start": 1781.3, + "end": 1784.08, + "probability": 0.8743 + }, + { + "start": 1784.18, + "end": 1786.1, + "probability": 0.7374 + }, + { + "start": 1786.26, + "end": 1786.58, + "probability": 0.5852 + }, + { + "start": 1786.66, + "end": 1786.76, + "probability": 0.793 + }, + { + "start": 1787.34, + "end": 1790.4, + "probability": 0.6701 + }, + { + "start": 1791.56, + "end": 1795.82, + "probability": 0.994 + }, + { + "start": 1796.02, + "end": 1796.38, + "probability": 0.5044 + }, + { + "start": 1796.68, + "end": 1798.94, + "probability": 0.7278 + }, + { + "start": 1799.36, + "end": 1800.5, + "probability": 0.8746 + }, + { + "start": 1800.88, + "end": 1804.34, + "probability": 0.9944 + }, + { + "start": 1804.92, + "end": 1807.62, + "probability": 0.5059 + }, + { + "start": 1807.64, + "end": 1809.58, + "probability": 0.9308 + }, + { + "start": 1810.58, + "end": 1812.66, + "probability": 0.9767 + }, + { + "start": 1813.78, + "end": 1814.02, + "probability": 0.3337 + }, + { + "start": 1814.16, + "end": 1814.96, + "probability": 0.5234 + }, + { + "start": 1815.08, + "end": 1816.88, + "probability": 0.8903 + }, + { + "start": 1817.2, + "end": 1817.82, + "probability": 0.4751 + }, + { + "start": 1818.46, + "end": 1819.46, + "probability": 0.6156 + }, + { + "start": 1820.28, + "end": 1831.08, + "probability": 0.6161 + }, + { + "start": 1831.08, + "end": 1836.12, + "probability": 0.9759 + }, + { + "start": 1836.18, + "end": 1839.1, + "probability": 0.9795 + }, + { + "start": 1839.52, + "end": 1840.84, + "probability": 0.5878 + }, + { + "start": 1841.3, + "end": 1844.58, + "probability": 0.6518 + }, + { + "start": 1844.92, + "end": 1851.8, + "probability": 0.9889 + }, + { + "start": 1852.62, + "end": 1854.06, + "probability": 0.7635 + }, + { + "start": 1854.36, + "end": 1856.8, + "probability": 0.8499 + }, + { + "start": 1857.12, + "end": 1861.94, + "probability": 0.9907 + }, + { + "start": 1862.96, + "end": 1863.56, + "probability": 0.4913 + }, + { + "start": 1864.84, + "end": 1865.8, + "probability": 0.1605 + }, + { + "start": 1866.54, + "end": 1866.86, + "probability": 0.8235 + }, + { + "start": 1867.64, + "end": 1870.44, + "probability": 0.9637 + }, + { + "start": 1870.66, + "end": 1872.38, + "probability": 0.9212 + }, + { + "start": 1872.6, + "end": 1873.2, + "probability": 0.4897 + }, + { + "start": 1873.48, + "end": 1874.76, + "probability": 0.9098 + }, + { + "start": 1875.5, + "end": 1876.4, + "probability": 0.9072 + }, + { + "start": 1876.94, + "end": 1877.98, + "probability": 0.8709 + }, + { + "start": 1878.04, + "end": 1878.54, + "probability": 0.8188 + }, + { + "start": 1878.66, + "end": 1880.74, + "probability": 0.9385 + }, + { + "start": 1880.84, + "end": 1884.26, + "probability": 0.9951 + }, + { + "start": 1884.72, + "end": 1886.36, + "probability": 0.9381 + }, + { + "start": 1887.08, + "end": 1891.52, + "probability": 0.8513 + }, + { + "start": 1892.06, + "end": 1896.22, + "probability": 0.974 + }, + { + "start": 1896.82, + "end": 1897.61, + "probability": 0.8596 + }, + { + "start": 1898.1, + "end": 1904.14, + "probability": 0.9333 + }, + { + "start": 1904.14, + "end": 1907.92, + "probability": 0.9896 + }, + { + "start": 1908.48, + "end": 1914.38, + "probability": 0.989 + }, + { + "start": 1915.22, + "end": 1917.18, + "probability": 0.7435 + }, + { + "start": 1917.58, + "end": 1918.88, + "probability": 0.9159 + }, + { + "start": 1919.32, + "end": 1921.7, + "probability": 0.9847 + }, + { + "start": 1924.06, + "end": 1924.98, + "probability": 0.9268 + }, + { + "start": 1925.7, + "end": 1929.52, + "probability": 0.7835 + }, + { + "start": 1930.5, + "end": 1934.46, + "probability": 0.9662 + }, + { + "start": 1934.82, + "end": 1943.06, + "probability": 0.9894 + }, + { + "start": 1944.22, + "end": 1947.52, + "probability": 0.9085 + }, + { + "start": 1948.58, + "end": 1950.64, + "probability": 0.2679 + }, + { + "start": 1950.88, + "end": 1954.58, + "probability": 0.6834 + }, + { + "start": 1954.92, + "end": 1955.68, + "probability": 0.6547 + }, + { + "start": 1956.2, + "end": 1958.86, + "probability": 0.9385 + }, + { + "start": 1959.88, + "end": 1961.76, + "probability": 0.9142 + }, + { + "start": 1963.28, + "end": 1970.1, + "probability": 0.9712 + }, + { + "start": 1970.54, + "end": 1972.1, + "probability": 0.9434 + }, + { + "start": 1972.3, + "end": 1972.82, + "probability": 0.5849 + }, + { + "start": 1973.2, + "end": 1977.18, + "probability": 0.9957 + }, + { + "start": 1977.7, + "end": 1979.23, + "probability": 0.9346 + }, + { + "start": 1979.78, + "end": 1982.76, + "probability": 0.9435 + }, + { + "start": 1982.9, + "end": 1983.65, + "probability": 0.8618 + }, + { + "start": 1984.26, + "end": 1986.64, + "probability": 0.8962 + }, + { + "start": 1987.0, + "end": 1989.76, + "probability": 0.8695 + }, + { + "start": 1990.18, + "end": 1995.9, + "probability": 0.9888 + }, + { + "start": 1996.22, + "end": 2000.6, + "probability": 0.9882 + }, + { + "start": 2000.94, + "end": 2004.04, + "probability": 0.9976 + }, + { + "start": 2004.34, + "end": 2007.04, + "probability": 0.9733 + }, + { + "start": 2007.78, + "end": 2009.4, + "probability": 0.8293 + }, + { + "start": 2010.02, + "end": 2014.98, + "probability": 0.9767 + }, + { + "start": 2015.4, + "end": 2017.94, + "probability": 0.8022 + }, + { + "start": 2018.38, + "end": 2022.54, + "probability": 0.9854 + }, + { + "start": 2022.94, + "end": 2027.14, + "probability": 0.9381 + }, + { + "start": 2027.26, + "end": 2028.34, + "probability": 0.6951 + }, + { + "start": 2028.38, + "end": 2031.58, + "probability": 0.4269 + }, + { + "start": 2032.04, + "end": 2036.06, + "probability": 0.9253 + }, + { + "start": 2036.68, + "end": 2040.28, + "probability": 0.7939 + }, + { + "start": 2040.34, + "end": 2041.02, + "probability": 0.8097 + }, + { + "start": 2041.34, + "end": 2048.18, + "probability": 0.9868 + }, + { + "start": 2048.24, + "end": 2052.68, + "probability": 0.897 + }, + { + "start": 2052.98, + "end": 2055.98, + "probability": 0.991 + }, + { + "start": 2057.36, + "end": 2059.4, + "probability": 0.9199 + }, + { + "start": 2059.66, + "end": 2061.74, + "probability": 0.9061 + }, + { + "start": 2061.9, + "end": 2062.2, + "probability": 0.586 + }, + { + "start": 2062.38, + "end": 2067.96, + "probability": 0.9793 + }, + { + "start": 2073.02, + "end": 2075.26, + "probability": 0.7919 + }, + { + "start": 2075.86, + "end": 2076.76, + "probability": 0.8624 + }, + { + "start": 2077.56, + "end": 2079.58, + "probability": 0.9595 + }, + { + "start": 2080.6, + "end": 2081.92, + "probability": 0.9946 + }, + { + "start": 2083.26, + "end": 2089.88, + "probability": 0.9976 + }, + { + "start": 2090.52, + "end": 2092.74, + "probability": 0.9116 + }, + { + "start": 2093.24, + "end": 2097.76, + "probability": 0.8748 + }, + { + "start": 2098.46, + "end": 2099.72, + "probability": 0.9641 + }, + { + "start": 2100.16, + "end": 2105.24, + "probability": 0.9959 + }, + { + "start": 2106.38, + "end": 2107.12, + "probability": 0.857 + }, + { + "start": 2107.28, + "end": 2109.82, + "probability": 0.8874 + }, + { + "start": 2109.94, + "end": 2111.56, + "probability": 0.9765 + }, + { + "start": 2111.94, + "end": 2116.78, + "probability": 0.959 + }, + { + "start": 2116.78, + "end": 2120.86, + "probability": 0.9921 + }, + { + "start": 2121.26, + "end": 2122.64, + "probability": 0.8052 + }, + { + "start": 2122.74, + "end": 2130.26, + "probability": 0.8756 + }, + { + "start": 2130.8, + "end": 2133.86, + "probability": 0.995 + }, + { + "start": 2134.54, + "end": 2136.9, + "probability": 0.9857 + }, + { + "start": 2137.62, + "end": 2141.4, + "probability": 0.9943 + }, + { + "start": 2141.92, + "end": 2146.2, + "probability": 0.9888 + }, + { + "start": 2146.44, + "end": 2146.98, + "probability": 0.7633 + }, + { + "start": 2147.24, + "end": 2148.44, + "probability": 0.605 + }, + { + "start": 2148.54, + "end": 2150.72, + "probability": 0.9069 + }, + { + "start": 2160.16, + "end": 2162.32, + "probability": 0.7354 + }, + { + "start": 2163.61, + "end": 2167.52, + "probability": 0.8757 + }, + { + "start": 2168.36, + "end": 2171.92, + "probability": 0.9482 + }, + { + "start": 2172.44, + "end": 2175.72, + "probability": 0.9619 + }, + { + "start": 2176.48, + "end": 2176.96, + "probability": 0.6558 + }, + { + "start": 2177.18, + "end": 2178.22, + "probability": 0.5837 + }, + { + "start": 2178.26, + "end": 2180.3, + "probability": 0.8049 + }, + { + "start": 2180.46, + "end": 2181.52, + "probability": 0.9209 + }, + { + "start": 2181.56, + "end": 2181.8, + "probability": 0.9797 + }, + { + "start": 2182.54, + "end": 2186.44, + "probability": 0.9963 + }, + { + "start": 2186.9, + "end": 2189.46, + "probability": 0.9929 + }, + { + "start": 2189.86, + "end": 2196.76, + "probability": 0.9974 + }, + { + "start": 2197.52, + "end": 2198.8, + "probability": 0.9327 + }, + { + "start": 2199.66, + "end": 2206.0, + "probability": 0.9938 + }, + { + "start": 2206.48, + "end": 2212.16, + "probability": 0.9932 + }, + { + "start": 2212.48, + "end": 2213.04, + "probability": 0.7298 + }, + { + "start": 2213.14, + "end": 2216.06, + "probability": 0.8184 + }, + { + "start": 2216.4, + "end": 2218.32, + "probability": 0.9516 + }, + { + "start": 2218.84, + "end": 2219.04, + "probability": 0.6358 + }, + { + "start": 2219.94, + "end": 2221.18, + "probability": 0.5698 + }, + { + "start": 2221.24, + "end": 2224.32, + "probability": 0.2399 + }, + { + "start": 2224.32, + "end": 2224.74, + "probability": 0.3912 + }, + { + "start": 2224.8, + "end": 2227.62, + "probability": 0.6826 + }, + { + "start": 2227.9, + "end": 2229.58, + "probability": 0.9825 + }, + { + "start": 2230.12, + "end": 2232.8, + "probability": 0.9937 + }, + { + "start": 2233.5, + "end": 2235.76, + "probability": 0.8792 + }, + { + "start": 2236.18, + "end": 2242.8, + "probability": 0.9694 + }, + { + "start": 2242.82, + "end": 2246.76, + "probability": 0.9589 + }, + { + "start": 2247.82, + "end": 2251.38, + "probability": 0.9313 + }, + { + "start": 2251.92, + "end": 2258.42, + "probability": 0.9624 + }, + { + "start": 2259.04, + "end": 2259.44, + "probability": 0.7095 + }, + { + "start": 2259.6, + "end": 2261.44, + "probability": 0.9869 + }, + { + "start": 2261.44, + "end": 2265.9, + "probability": 0.9954 + }, + { + "start": 2266.44, + "end": 2272.68, + "probability": 0.9365 + }, + { + "start": 2272.76, + "end": 2273.48, + "probability": 0.889 + }, + { + "start": 2274.0, + "end": 2275.04, + "probability": 0.7618 + }, + { + "start": 2275.16, + "end": 2277.26, + "probability": 0.9861 + }, + { + "start": 2277.4, + "end": 2278.1, + "probability": 0.3857 + }, + { + "start": 2278.6, + "end": 2282.16, + "probability": 0.9868 + }, + { + "start": 2282.56, + "end": 2283.14, + "probability": 0.7313 + }, + { + "start": 2283.34, + "end": 2285.8, + "probability": 0.8762 + }, + { + "start": 2286.0, + "end": 2287.86, + "probability": 0.8958 + }, + { + "start": 2288.3, + "end": 2290.82, + "probability": 0.7325 + }, + { + "start": 2291.36, + "end": 2293.1, + "probability": 0.8251 + }, + { + "start": 2293.26, + "end": 2295.22, + "probability": 0.4404 + }, + { + "start": 2295.92, + "end": 2301.02, + "probability": 0.9665 + }, + { + "start": 2301.1, + "end": 2302.92, + "probability": 0.936 + }, + { + "start": 2303.42, + "end": 2306.38, + "probability": 0.9658 + }, + { + "start": 2306.84, + "end": 2308.06, + "probability": 0.6578 + }, + { + "start": 2308.62, + "end": 2311.14, + "probability": 0.9774 + }, + { + "start": 2311.38, + "end": 2314.02, + "probability": 0.5703 + }, + { + "start": 2315.72, + "end": 2317.74, + "probability": 0.8724 + }, + { + "start": 2317.96, + "end": 2318.4, + "probability": 0.5687 + }, + { + "start": 2318.52, + "end": 2322.26, + "probability": 0.979 + }, + { + "start": 2322.44, + "end": 2323.36, + "probability": 0.9561 + }, + { + "start": 2323.64, + "end": 2326.34, + "probability": 0.6075 + }, + { + "start": 2327.0, + "end": 2330.34, + "probability": 0.8191 + }, + { + "start": 2331.22, + "end": 2333.22, + "probability": 0.8708 + }, + { + "start": 2333.56, + "end": 2337.08, + "probability": 0.8954 + }, + { + "start": 2338.28, + "end": 2339.44, + "probability": 0.753 + }, + { + "start": 2340.06, + "end": 2341.36, + "probability": 0.8319 + }, + { + "start": 2343.18, + "end": 2348.12, + "probability": 0.9989 + }, + { + "start": 2348.12, + "end": 2352.66, + "probability": 0.9989 + }, + { + "start": 2353.02, + "end": 2357.66, + "probability": 0.987 + }, + { + "start": 2358.52, + "end": 2362.24, + "probability": 0.9957 + }, + { + "start": 2362.24, + "end": 2364.96, + "probability": 0.9988 + }, + { + "start": 2365.98, + "end": 2368.48, + "probability": 0.8446 + }, + { + "start": 2369.53, + "end": 2372.0, + "probability": 0.0277 + }, + { + "start": 2372.0, + "end": 2375.66, + "probability": 0.7561 + }, + { + "start": 2376.14, + "end": 2379.14, + "probability": 0.9572 + }, + { + "start": 2379.32, + "end": 2379.54, + "probability": 0.7318 + }, + { + "start": 2379.72, + "end": 2380.48, + "probability": 0.5789 + }, + { + "start": 2380.52, + "end": 2382.04, + "probability": 0.8568 + }, + { + "start": 2382.22, + "end": 2382.38, + "probability": 0.2562 + }, + { + "start": 2383.18, + "end": 2384.6, + "probability": 0.7157 + }, + { + "start": 2385.38, + "end": 2388.44, + "probability": 0.9863 + }, + { + "start": 2389.58, + "end": 2392.44, + "probability": 0.6199 + }, + { + "start": 2392.6, + "end": 2393.6, + "probability": 0.8739 + }, + { + "start": 2393.66, + "end": 2394.28, + "probability": 0.6478 + }, + { + "start": 2394.78, + "end": 2398.44, + "probability": 0.9575 + }, + { + "start": 2398.54, + "end": 2399.68, + "probability": 0.2963 + }, + { + "start": 2400.24, + "end": 2404.62, + "probability": 0.9072 + }, + { + "start": 2404.78, + "end": 2405.16, + "probability": 0.7894 + }, + { + "start": 2405.26, + "end": 2408.2, + "probability": 0.8457 + }, + { + "start": 2408.86, + "end": 2411.72, + "probability": 0.9771 + }, + { + "start": 2412.1, + "end": 2412.74, + "probability": 0.6714 + }, + { + "start": 2412.84, + "end": 2414.56, + "probability": 0.7848 + }, + { + "start": 2414.7, + "end": 2415.6, + "probability": 0.7116 + }, + { + "start": 2416.46, + "end": 2420.85, + "probability": 0.8529 + }, + { + "start": 2421.42, + "end": 2429.56, + "probability": 0.9803 + }, + { + "start": 2429.6, + "end": 2431.54, + "probability": 0.9669 + }, + { + "start": 2432.4, + "end": 2441.0, + "probability": 0.9809 + }, + { + "start": 2441.52, + "end": 2446.56, + "probability": 0.9418 + }, + { + "start": 2447.3, + "end": 2448.88, + "probability": 0.6643 + }, + { + "start": 2449.0, + "end": 2449.84, + "probability": 0.8932 + }, + { + "start": 2449.9, + "end": 2454.36, + "probability": 0.9738 + }, + { + "start": 2455.18, + "end": 2458.98, + "probability": 0.8464 + }, + { + "start": 2460.16, + "end": 2466.06, + "probability": 0.9635 + }, + { + "start": 2466.06, + "end": 2470.08, + "probability": 0.995 + }, + { + "start": 2471.52, + "end": 2473.1, + "probability": 0.9909 + }, + { + "start": 2473.24, + "end": 2476.5, + "probability": 0.8918 + }, + { + "start": 2476.62, + "end": 2478.74, + "probability": 0.8497 + }, + { + "start": 2479.2, + "end": 2480.88, + "probability": 0.9919 + }, + { + "start": 2481.12, + "end": 2486.24, + "probability": 0.9776 + }, + { + "start": 2486.54, + "end": 2490.74, + "probability": 0.9251 + }, + { + "start": 2491.0, + "end": 2495.79, + "probability": 0.9426 + }, + { + "start": 2496.62, + "end": 2498.82, + "probability": 0.997 + }, + { + "start": 2498.82, + "end": 2499.58, + "probability": 0.5219 + }, + { + "start": 2499.9, + "end": 2504.48, + "probability": 0.7491 + }, + { + "start": 2504.48, + "end": 2507.9, + "probability": 0.9591 + }, + { + "start": 2508.36, + "end": 2511.84, + "probability": 0.9327 + }, + { + "start": 2511.96, + "end": 2514.92, + "probability": 0.6239 + }, + { + "start": 2515.04, + "end": 2517.3, + "probability": 0.9738 + }, + { + "start": 2517.34, + "end": 2520.88, + "probability": 0.825 + }, + { + "start": 2525.0, + "end": 2528.02, + "probability": 0.9883 + }, + { + "start": 2528.98, + "end": 2533.04, + "probability": 0.8542 + }, + { + "start": 2533.3, + "end": 2536.76, + "probability": 0.9563 + }, + { + "start": 2537.0, + "end": 2540.9, + "probability": 0.9575 + }, + { + "start": 2541.42, + "end": 2543.74, + "probability": 0.6304 + }, + { + "start": 2544.08, + "end": 2553.66, + "probability": 0.8855 + }, + { + "start": 2554.1, + "end": 2555.36, + "probability": 0.9596 + }, + { + "start": 2556.18, + "end": 2556.74, + "probability": 0.7563 + }, + { + "start": 2557.44, + "end": 2558.98, + "probability": 0.9756 + }, + { + "start": 2559.1, + "end": 2560.76, + "probability": 0.7777 + }, + { + "start": 2561.22, + "end": 2562.96, + "probability": 0.8839 + }, + { + "start": 2563.1, + "end": 2563.42, + "probability": 0.4333 + }, + { + "start": 2563.52, + "end": 2563.68, + "probability": 0.7948 + }, + { + "start": 2563.7, + "end": 2572.6, + "probability": 0.9162 + }, + { + "start": 2572.76, + "end": 2573.44, + "probability": 0.9133 + }, + { + "start": 2573.56, + "end": 2575.94, + "probability": 0.7819 + }, + { + "start": 2576.26, + "end": 2580.54, + "probability": 0.9744 + }, + { + "start": 2580.96, + "end": 2581.5, + "probability": 0.4333 + }, + { + "start": 2581.7, + "end": 2582.86, + "probability": 0.4467 + }, + { + "start": 2582.86, + "end": 2585.18, + "probability": 0.7575 + }, + { + "start": 2593.91, + "end": 2596.38, + "probability": 0.6802 + }, + { + "start": 2596.54, + "end": 2599.6, + "probability": 0.8869 + }, + { + "start": 2600.32, + "end": 2601.24, + "probability": 0.944 + }, + { + "start": 2601.82, + "end": 2603.44, + "probability": 0.788 + }, + { + "start": 2604.18, + "end": 2606.18, + "probability": 0.9704 + }, + { + "start": 2606.28, + "end": 2607.76, + "probability": 0.795 + }, + { + "start": 2607.88, + "end": 2609.53, + "probability": 0.896 + }, + { + "start": 2610.32, + "end": 2612.98, + "probability": 0.9816 + }, + { + "start": 2613.06, + "end": 2617.26, + "probability": 0.9435 + }, + { + "start": 2617.42, + "end": 2620.28, + "probability": 0.8258 + }, + { + "start": 2620.84, + "end": 2625.2, + "probability": 0.981 + }, + { + "start": 2625.26, + "end": 2626.78, + "probability": 0.9773 + }, + { + "start": 2627.48, + "end": 2630.44, + "probability": 0.8606 + }, + { + "start": 2631.04, + "end": 2634.14, + "probability": 0.7686 + }, + { + "start": 2634.28, + "end": 2636.82, + "probability": 0.9878 + }, + { + "start": 2637.22, + "end": 2640.7, + "probability": 0.9984 + }, + { + "start": 2641.0, + "end": 2641.2, + "probability": 0.7654 + }, + { + "start": 2641.66, + "end": 2642.6, + "probability": 0.4428 + }, + { + "start": 2642.98, + "end": 2644.24, + "probability": 0.861 + }, + { + "start": 2644.62, + "end": 2647.32, + "probability": 0.95 + }, + { + "start": 2648.76, + "end": 2650.02, + "probability": 0.9531 + }, + { + "start": 2650.54, + "end": 2652.66, + "probability": 0.9688 + }, + { + "start": 2655.44, + "end": 2659.78, + "probability": 0.9372 + }, + { + "start": 2659.82, + "end": 2660.5, + "probability": 0.6787 + }, + { + "start": 2660.52, + "end": 2662.74, + "probability": 0.9554 + }, + { + "start": 2664.96, + "end": 2669.5, + "probability": 0.9592 + }, + { + "start": 2670.26, + "end": 2675.34, + "probability": 0.9672 + }, + { + "start": 2675.4, + "end": 2679.86, + "probability": 0.9033 + }, + { + "start": 2681.0, + "end": 2685.94, + "probability": 0.9346 + }, + { + "start": 2686.72, + "end": 2689.54, + "probability": 0.8402 + }, + { + "start": 2690.18, + "end": 2693.98, + "probability": 0.9771 + }, + { + "start": 2694.46, + "end": 2696.94, + "probability": 0.9985 + }, + { + "start": 2698.08, + "end": 2700.72, + "probability": 0.9934 + }, + { + "start": 2700.94, + "end": 2701.18, + "probability": 0.7469 + }, + { + "start": 2701.8, + "end": 2702.56, + "probability": 0.4051 + }, + { + "start": 2702.64, + "end": 2703.84, + "probability": 0.6479 + }, + { + "start": 2704.42, + "end": 2707.5, + "probability": 0.7076 + }, + { + "start": 2708.1, + "end": 2709.44, + "probability": 0.8356 + }, + { + "start": 2710.04, + "end": 2713.32, + "probability": 0.7828 + }, + { + "start": 2713.7, + "end": 2715.02, + "probability": 0.9256 + }, + { + "start": 2716.62, + "end": 2720.1, + "probability": 0.9189 + }, + { + "start": 2720.46, + "end": 2722.74, + "probability": 0.5908 + }, + { + "start": 2722.88, + "end": 2723.44, + "probability": 0.6008 + }, + { + "start": 2726.46, + "end": 2728.02, + "probability": 0.5808 + }, + { + "start": 2728.42, + "end": 2732.86, + "probability": 0.6124 + }, + { + "start": 2733.36, + "end": 2733.38, + "probability": 0.16 + }, + { + "start": 2733.38, + "end": 2736.76, + "probability": 0.929 + }, + { + "start": 2736.78, + "end": 2739.36, + "probability": 0.9002 + }, + { + "start": 2740.14, + "end": 2743.28, + "probability": 0.9198 + }, + { + "start": 2743.74, + "end": 2748.72, + "probability": 0.9963 + }, + { + "start": 2749.06, + "end": 2751.82, + "probability": 0.8912 + }, + { + "start": 2752.0, + "end": 2755.84, + "probability": 0.8418 + }, + { + "start": 2756.12, + "end": 2757.46, + "probability": 0.1454 + }, + { + "start": 2761.46, + "end": 2762.64, + "probability": 0.1949 + }, + { + "start": 2763.24, + "end": 2764.48, + "probability": 0.5858 + }, + { + "start": 2764.54, + "end": 2767.26, + "probability": 0.8159 + }, + { + "start": 2767.78, + "end": 2768.86, + "probability": 0.8282 + }, + { + "start": 2769.24, + "end": 2771.54, + "probability": 0.9224 + }, + { + "start": 2772.76, + "end": 2775.06, + "probability": 0.9619 + }, + { + "start": 2775.8, + "end": 2777.14, + "probability": 0.8743 + }, + { + "start": 2777.88, + "end": 2779.7, + "probability": 0.5723 + }, + { + "start": 2779.76, + "end": 2783.32, + "probability": 0.9943 + }, + { + "start": 2783.7, + "end": 2789.36, + "probability": 0.5843 + }, + { + "start": 2790.78, + "end": 2793.18, + "probability": 0.9673 + }, + { + "start": 2794.02, + "end": 2794.58, + "probability": 0.8724 + }, + { + "start": 2794.7, + "end": 2796.38, + "probability": 0.9442 + }, + { + "start": 2796.76, + "end": 2799.8, + "probability": 0.9871 + }, + { + "start": 2799.86, + "end": 2804.02, + "probability": 0.9948 + }, + { + "start": 2805.02, + "end": 2810.36, + "probability": 0.9718 + }, + { + "start": 2810.58, + "end": 2813.4, + "probability": 0.9518 + }, + { + "start": 2814.1, + "end": 2815.02, + "probability": 0.7759 + }, + { + "start": 2815.1, + "end": 2815.59, + "probability": 0.3403 + }, + { + "start": 2815.98, + "end": 2817.97, + "probability": 0.4211 + }, + { + "start": 2818.62, + "end": 2820.06, + "probability": 0.7611 + }, + { + "start": 2820.2, + "end": 2821.76, + "probability": 0.5054 + }, + { + "start": 2822.06, + "end": 2824.25, + "probability": 0.9521 + }, + { + "start": 2824.6, + "end": 2826.26, + "probability": 0.3755 + }, + { + "start": 2826.36, + "end": 2826.54, + "probability": 0.7121 + }, + { + "start": 2826.6, + "end": 2827.04, + "probability": 0.2682 + }, + { + "start": 2827.22, + "end": 2828.52, + "probability": 0.9849 + }, + { + "start": 2828.54, + "end": 2834.12, + "probability": 0.9384 + }, + { + "start": 2834.3, + "end": 2835.7, + "probability": 0.7786 + }, + { + "start": 2836.12, + "end": 2841.36, + "probability": 0.9646 + }, + { + "start": 2841.8, + "end": 2845.2, + "probability": 0.8864 + }, + { + "start": 2845.64, + "end": 2846.98, + "probability": 0.9755 + }, + { + "start": 2847.24, + "end": 2848.54, + "probability": 0.8718 + }, + { + "start": 2849.7, + "end": 2856.02, + "probability": 0.9844 + }, + { + "start": 2856.54, + "end": 2862.05, + "probability": 0.9961 + }, + { + "start": 2862.26, + "end": 2862.98, + "probability": 0.5028 + }, + { + "start": 2863.38, + "end": 2864.17, + "probability": 0.5792 + }, + { + "start": 2864.58, + "end": 2865.94, + "probability": 0.9958 + }, + { + "start": 2866.44, + "end": 2872.34, + "probability": 0.8843 + }, + { + "start": 2872.36, + "end": 2876.32, + "probability": 0.9531 + }, + { + "start": 2876.88, + "end": 2878.42, + "probability": 0.5868 + }, + { + "start": 2878.7, + "end": 2882.06, + "probability": 0.9634 + }, + { + "start": 2882.6, + "end": 2885.22, + "probability": 0.9916 + }, + { + "start": 2885.94, + "end": 2886.54, + "probability": 0.6269 + }, + { + "start": 2886.6, + "end": 2892.94, + "probability": 0.9969 + }, + { + "start": 2892.94, + "end": 2897.08, + "probability": 0.9962 + }, + { + "start": 2898.54, + "end": 2903.92, + "probability": 0.9906 + }, + { + "start": 2904.0, + "end": 2905.02, + "probability": 0.6289 + }, + { + "start": 2905.42, + "end": 2908.66, + "probability": 0.954 + }, + { + "start": 2908.82, + "end": 2909.44, + "probability": 0.7796 + }, + { + "start": 2909.82, + "end": 2914.88, + "probability": 0.9273 + }, + { + "start": 2915.04, + "end": 2918.52, + "probability": 0.9607 + }, + { + "start": 2919.02, + "end": 2922.34, + "probability": 0.9757 + }, + { + "start": 2922.8, + "end": 2923.4, + "probability": 0.9442 + }, + { + "start": 2923.62, + "end": 2924.87, + "probability": 0.9131 + }, + { + "start": 2925.38, + "end": 2925.46, + "probability": 0.3556 + }, + { + "start": 2925.56, + "end": 2926.62, + "probability": 0.7422 + }, + { + "start": 2926.64, + "end": 2930.6, + "probability": 0.9847 + }, + { + "start": 2930.6, + "end": 2936.66, + "probability": 0.8875 + }, + { + "start": 2937.36, + "end": 2941.38, + "probability": 0.8176 + }, + { + "start": 2941.6, + "end": 2942.78, + "probability": 0.6165 + }, + { + "start": 2942.86, + "end": 2945.98, + "probability": 0.7474 + }, + { + "start": 2946.14, + "end": 2948.88, + "probability": 0.9395 + }, + { + "start": 2949.14, + "end": 2951.0, + "probability": 0.6752 + }, + { + "start": 2952.01, + "end": 2957.4, + "probability": 0.7446 + }, + { + "start": 2958.24, + "end": 2960.78, + "probability": 0.6447 + }, + { + "start": 2961.14, + "end": 2962.9, + "probability": 0.7034 + }, + { + "start": 2963.0, + "end": 2965.1, + "probability": 0.6704 + }, + { + "start": 2965.46, + "end": 2968.56, + "probability": 0.6341 + }, + { + "start": 2968.7, + "end": 2970.52, + "probability": 0.9883 + }, + { + "start": 2970.98, + "end": 2974.02, + "probability": 0.8304 + }, + { + "start": 2974.84, + "end": 2977.76, + "probability": 0.9846 + }, + { + "start": 2978.1, + "end": 2978.78, + "probability": 0.7104 + }, + { + "start": 2978.9, + "end": 2980.74, + "probability": 0.8976 + }, + { + "start": 2982.54, + "end": 2985.28, + "probability": 0.5438 + }, + { + "start": 2986.19, + "end": 2989.76, + "probability": 0.7344 + }, + { + "start": 2990.96, + "end": 2992.72, + "probability": 0.8231 + }, + { + "start": 2993.44, + "end": 2997.38, + "probability": 0.9506 + }, + { + "start": 2998.16, + "end": 3005.02, + "probability": 0.9888 + }, + { + "start": 3005.56, + "end": 3008.96, + "probability": 0.9962 + }, + { + "start": 3009.48, + "end": 3010.6, + "probability": 0.7694 + }, + { + "start": 3012.6, + "end": 3012.98, + "probability": 0.3708 + }, + { + "start": 3013.04, + "end": 3014.4, + "probability": 0.7013 + }, + { + "start": 3014.44, + "end": 3015.02, + "probability": 0.6832 + }, + { + "start": 3015.62, + "end": 3015.94, + "probability": 0.4957 + }, + { + "start": 3017.13, + "end": 3023.62, + "probability": 0.8621 + }, + { + "start": 3023.62, + "end": 3031.44, + "probability": 0.9898 + }, + { + "start": 3031.96, + "end": 3036.28, + "probability": 0.8789 + }, + { + "start": 3036.74, + "end": 3038.46, + "probability": 0.6698 + }, + { + "start": 3038.54, + "end": 3043.34, + "probability": 0.9729 + }, + { + "start": 3044.0, + "end": 3050.72, + "probability": 0.988 + }, + { + "start": 3051.14, + "end": 3051.5, + "probability": 0.6149 + }, + { + "start": 3051.58, + "end": 3055.18, + "probability": 0.9976 + }, + { + "start": 3056.88, + "end": 3058.5, + "probability": 0.7195 + }, + { + "start": 3059.4, + "end": 3060.46, + "probability": 0.8403 + }, + { + "start": 3060.96, + "end": 3065.68, + "probability": 0.9486 + }, + { + "start": 3066.08, + "end": 3068.69, + "probability": 0.7951 + }, + { + "start": 3070.1, + "end": 3073.92, + "probability": 0.9885 + }, + { + "start": 3074.22, + "end": 3077.82, + "probability": 0.973 + }, + { + "start": 3078.5, + "end": 3082.96, + "probability": 0.9877 + }, + { + "start": 3084.56, + "end": 3088.12, + "probability": 0.6204 + }, + { + "start": 3088.32, + "end": 3088.78, + "probability": 0.8329 + }, + { + "start": 3089.3, + "end": 3090.0, + "probability": 0.7342 + }, + { + "start": 3090.16, + "end": 3091.16, + "probability": 0.8757 + }, + { + "start": 3091.56, + "end": 3097.66, + "probability": 0.9745 + }, + { + "start": 3098.35, + "end": 3102.62, + "probability": 0.933 + }, + { + "start": 3103.62, + "end": 3107.86, + "probability": 0.9878 + }, + { + "start": 3108.38, + "end": 3113.1, + "probability": 0.9666 + }, + { + "start": 3113.58, + "end": 3120.28, + "probability": 0.9663 + }, + { + "start": 3121.97, + "end": 3127.52, + "probability": 0.9709 + }, + { + "start": 3127.76, + "end": 3130.98, + "probability": 0.966 + }, + { + "start": 3131.76, + "end": 3136.86, + "probability": 0.9875 + }, + { + "start": 3137.4, + "end": 3140.02, + "probability": 0.9724 + }, + { + "start": 3140.64, + "end": 3146.94, + "probability": 0.8567 + }, + { + "start": 3147.3, + "end": 3151.23, + "probability": 0.8772 + }, + { + "start": 3151.26, + "end": 3154.62, + "probability": 0.9026 + }, + { + "start": 3154.76, + "end": 3156.82, + "probability": 0.9919 + }, + { + "start": 3156.9, + "end": 3160.48, + "probability": 0.939 + }, + { + "start": 3160.48, + "end": 3166.04, + "probability": 0.9954 + }, + { + "start": 3167.32, + "end": 3169.24, + "probability": 0.5758 + }, + { + "start": 3169.28, + "end": 3170.52, + "probability": 0.3767 + }, + { + "start": 3171.19, + "end": 3172.43, + "probability": 0.1207 + }, + { + "start": 3172.86, + "end": 3175.48, + "probability": 0.8402 + }, + { + "start": 3175.88, + "end": 3180.0, + "probability": 0.9596 + }, + { + "start": 3180.34, + "end": 3181.21, + "probability": 0.7942 + }, + { + "start": 3182.06, + "end": 3188.9, + "probability": 0.9824 + }, + { + "start": 3190.06, + "end": 3191.72, + "probability": 0.5652 + }, + { + "start": 3191.8, + "end": 3194.52, + "probability": 0.8342 + }, + { + "start": 3194.96, + "end": 3197.6, + "probability": 0.7257 + }, + { + "start": 3198.3, + "end": 3201.68, + "probability": 0.9817 + }, + { + "start": 3202.04, + "end": 3205.1, + "probability": 0.9986 + }, + { + "start": 3205.48, + "end": 3207.04, + "probability": 0.7217 + }, + { + "start": 3208.24, + "end": 3209.16, + "probability": 0.7318 + }, + { + "start": 3209.94, + "end": 3211.1, + "probability": 0.8073 + }, + { + "start": 3211.62, + "end": 3216.94, + "probability": 0.9672 + }, + { + "start": 3217.38, + "end": 3218.02, + "probability": 0.9492 + }, + { + "start": 3218.74, + "end": 3221.94, + "probability": 0.9961 + }, + { + "start": 3222.36, + "end": 3223.26, + "probability": 0.863 + }, + { + "start": 3223.82, + "end": 3224.82, + "probability": 0.5293 + }, + { + "start": 3224.98, + "end": 3227.32, + "probability": 0.9539 + }, + { + "start": 3227.4, + "end": 3228.28, + "probability": 0.6672 + }, + { + "start": 3228.38, + "end": 3229.59, + "probability": 0.9742 + }, + { + "start": 3229.92, + "end": 3231.14, + "probability": 0.8664 + }, + { + "start": 3231.26, + "end": 3231.68, + "probability": 0.3644 + }, + { + "start": 3231.72, + "end": 3231.94, + "probability": 0.3445 + }, + { + "start": 3232.02, + "end": 3232.88, + "probability": 0.7894 + }, + { + "start": 3232.92, + "end": 3233.52, + "probability": 0.7741 + }, + { + "start": 3234.4, + "end": 3238.3, + "probability": 0.9911 + }, + { + "start": 3239.0, + "end": 3240.92, + "probability": 0.9366 + }, + { + "start": 3241.0, + "end": 3243.18, + "probability": 0.8247 + }, + { + "start": 3243.54, + "end": 3244.98, + "probability": 0.9368 + }, + { + "start": 3245.2, + "end": 3247.74, + "probability": 0.9587 + }, + { + "start": 3248.08, + "end": 3249.48, + "probability": 0.9971 + }, + { + "start": 3249.54, + "end": 3253.24, + "probability": 0.9263 + }, + { + "start": 3253.54, + "end": 3256.68, + "probability": 0.99 + }, + { + "start": 3256.82, + "end": 3258.0, + "probability": 0.8941 + }, + { + "start": 3258.18, + "end": 3259.64, + "probability": 0.9756 + }, + { + "start": 3259.92, + "end": 3264.84, + "probability": 0.991 + }, + { + "start": 3265.22, + "end": 3265.22, + "probability": 0.5062 + }, + { + "start": 3265.4, + "end": 3268.08, + "probability": 0.9948 + }, + { + "start": 3268.18, + "end": 3268.58, + "probability": 0.7259 + }, + { + "start": 3268.68, + "end": 3272.36, + "probability": 0.9373 + }, + { + "start": 3272.54, + "end": 3275.46, + "probability": 0.987 + }, + { + "start": 3275.46, + "end": 3278.14, + "probability": 0.9963 + }, + { + "start": 3278.28, + "end": 3279.36, + "probability": 0.484 + }, + { + "start": 3279.62, + "end": 3281.98, + "probability": 0.7533 + }, + { + "start": 3282.16, + "end": 3283.98, + "probability": 0.7866 + }, + { + "start": 3288.02, + "end": 3292.33, + "probability": 0.7475 + }, + { + "start": 3292.96, + "end": 3297.47, + "probability": 0.9827 + }, + { + "start": 3297.84, + "end": 3298.02, + "probability": 0.2902 + }, + { + "start": 3298.02, + "end": 3298.48, + "probability": 0.8712 + }, + { + "start": 3298.6, + "end": 3303.28, + "probability": 0.9937 + }, + { + "start": 3304.1, + "end": 3304.1, + "probability": 0.668 + }, + { + "start": 3306.92, + "end": 3311.66, + "probability": 0.9516 + }, + { + "start": 3311.84, + "end": 3314.04, + "probability": 0.5675 + }, + { + "start": 3314.16, + "end": 3315.0, + "probability": 0.2602 + }, + { + "start": 3315.41, + "end": 3318.45, + "probability": 0.9438 + }, + { + "start": 3318.94, + "end": 3322.0, + "probability": 0.9933 + }, + { + "start": 3322.14, + "end": 3323.08, + "probability": 0.6391 + }, + { + "start": 3323.34, + "end": 3325.36, + "probability": 0.4457 + }, + { + "start": 3325.44, + "end": 3328.04, + "probability": 0.958 + }, + { + "start": 3328.2, + "end": 3334.62, + "probability": 0.9966 + }, + { + "start": 3335.18, + "end": 3335.82, + "probability": 0.8424 + }, + { + "start": 3335.98, + "end": 3340.3, + "probability": 0.9927 + }, + { + "start": 3340.36, + "end": 3342.26, + "probability": 0.9982 + }, + { + "start": 3342.46, + "end": 3343.2, + "probability": 0.5899 + }, + { + "start": 3343.58, + "end": 3346.3, + "probability": 0.9702 + }, + { + "start": 3346.74, + "end": 3349.74, + "probability": 0.9111 + }, + { + "start": 3349.86, + "end": 3350.61, + "probability": 0.9963 + }, + { + "start": 3350.74, + "end": 3351.9, + "probability": 0.9718 + }, + { + "start": 3352.2, + "end": 3354.26, + "probability": 0.8311 + }, + { + "start": 3354.66, + "end": 3355.82, + "probability": 0.8306 + }, + { + "start": 3355.96, + "end": 3358.6, + "probability": 0.9836 + }, + { + "start": 3359.24, + "end": 3363.2, + "probability": 0.9971 + }, + { + "start": 3363.38, + "end": 3363.92, + "probability": 0.8066 + }, + { + "start": 3364.86, + "end": 3365.72, + "probability": 0.5701 + }, + { + "start": 3365.82, + "end": 3367.16, + "probability": 0.5128 + }, + { + "start": 3367.24, + "end": 3368.22, + "probability": 0.6743 + }, + { + "start": 3368.96, + "end": 3370.68, + "probability": 0.9456 + }, + { + "start": 3374.14, + "end": 3374.86, + "probability": 0.6388 + }, + { + "start": 3374.9, + "end": 3375.72, + "probability": 0.8593 + }, + { + "start": 3375.94, + "end": 3377.84, + "probability": 0.933 + }, + { + "start": 3377.96, + "end": 3380.98, + "probability": 0.7474 + }, + { + "start": 3381.12, + "end": 3382.22, + "probability": 0.9085 + }, + { + "start": 3382.84, + "end": 3386.8, + "probability": 0.9744 + }, + { + "start": 3387.96, + "end": 3391.06, + "probability": 0.8833 + }, + { + "start": 3391.78, + "end": 3393.42, + "probability": 0.7765 + }, + { + "start": 3393.58, + "end": 3395.54, + "probability": 0.9404 + }, + { + "start": 3395.78, + "end": 3396.32, + "probability": 0.6417 + }, + { + "start": 3396.38, + "end": 3397.88, + "probability": 0.9709 + }, + { + "start": 3398.46, + "end": 3402.75, + "probability": 0.9186 + }, + { + "start": 3403.74, + "end": 3404.64, + "probability": 0.6894 + }, + { + "start": 3404.82, + "end": 3406.02, + "probability": 0.9351 + }, + { + "start": 3406.16, + "end": 3407.06, + "probability": 0.8268 + }, + { + "start": 3407.56, + "end": 3408.4, + "probability": 0.8643 + }, + { + "start": 3408.9, + "end": 3410.66, + "probability": 0.9663 + }, + { + "start": 3413.11, + "end": 3414.73, + "probability": 0.6653 + }, + { + "start": 3414.94, + "end": 3419.76, + "probability": 0.7972 + }, + { + "start": 3420.08, + "end": 3422.08, + "probability": 0.731 + }, + { + "start": 3422.3, + "end": 3422.7, + "probability": 0.5039 + }, + { + "start": 3422.76, + "end": 3423.72, + "probability": 0.8519 + }, + { + "start": 3424.32, + "end": 3429.74, + "probability": 0.9558 + }, + { + "start": 3430.44, + "end": 3432.52, + "probability": 0.9693 + }, + { + "start": 3433.42, + "end": 3435.06, + "probability": 0.6453 + }, + { + "start": 3435.66, + "end": 3436.98, + "probability": 0.8528 + }, + { + "start": 3437.1, + "end": 3438.78, + "probability": 0.5421 + }, + { + "start": 3439.24, + "end": 3441.58, + "probability": 0.9526 + }, + { + "start": 3442.32, + "end": 3444.7, + "probability": 0.8638 + }, + { + "start": 3445.32, + "end": 3450.78, + "probability": 0.9729 + }, + { + "start": 3450.84, + "end": 3454.48, + "probability": 0.4908 + }, + { + "start": 3454.48, + "end": 3459.23, + "probability": 0.9784 + }, + { + "start": 3460.38, + "end": 3462.82, + "probability": 0.69 + }, + { + "start": 3462.88, + "end": 3466.12, + "probability": 0.8228 + }, + { + "start": 3466.12, + "end": 3467.44, + "probability": 0.4976 + }, + { + "start": 3467.84, + "end": 3469.74, + "probability": 0.9937 + }, + { + "start": 3469.82, + "end": 3471.6, + "probability": 0.7858 + }, + { + "start": 3472.66, + "end": 3473.68, + "probability": 0.5881 + }, + { + "start": 3473.72, + "end": 3475.18, + "probability": 0.9144 + }, + { + "start": 3477.61, + "end": 3479.7, + "probability": 0.8531 + }, + { + "start": 3480.56, + "end": 3486.78, + "probability": 0.9075 + }, + { + "start": 3487.24, + "end": 3489.6, + "probability": 0.8552 + }, + { + "start": 3490.46, + "end": 3492.08, + "probability": 0.8486 + }, + { + "start": 3492.4, + "end": 3497.74, + "probability": 0.8184 + }, + { + "start": 3498.12, + "end": 3499.4, + "probability": 0.4574 + }, + { + "start": 3499.58, + "end": 3500.63, + "probability": 0.8547 + }, + { + "start": 3501.38, + "end": 3503.54, + "probability": 0.8832 + }, + { + "start": 3504.0, + "end": 3505.88, + "probability": 0.6783 + }, + { + "start": 3506.12, + "end": 3508.78, + "probability": 0.8861 + }, + { + "start": 3509.22, + "end": 3509.82, + "probability": 0.8105 + }, + { + "start": 3510.08, + "end": 3512.7, + "probability": 0.9814 + }, + { + "start": 3514.32, + "end": 3516.52, + "probability": 0.8464 + }, + { + "start": 3517.04, + "end": 3517.94, + "probability": 0.8125 + }, + { + "start": 3518.34, + "end": 3521.42, + "probability": 0.9834 + }, + { + "start": 3521.66, + "end": 3522.88, + "probability": 0.9961 + }, + { + "start": 3523.38, + "end": 3528.82, + "probability": 0.9585 + }, + { + "start": 3528.96, + "end": 3533.0, + "probability": 0.9825 + }, + { + "start": 3533.1, + "end": 3534.54, + "probability": 0.9938 + }, + { + "start": 3534.78, + "end": 3537.54, + "probability": 0.9089 + }, + { + "start": 3537.74, + "end": 3540.15, + "probability": 0.9604 + }, + { + "start": 3540.83, + "end": 3545.27, + "probability": 0.9483 + }, + { + "start": 3545.55, + "end": 3550.21, + "probability": 0.9917 + }, + { + "start": 3550.21, + "end": 3555.65, + "probability": 0.9761 + }, + { + "start": 3555.65, + "end": 3559.61, + "probability": 0.9944 + }, + { + "start": 3560.29, + "end": 3561.52, + "probability": 0.8691 + }, + { + "start": 3562.07, + "end": 3562.82, + "probability": 0.8242 + }, + { + "start": 3563.33, + "end": 3566.89, + "probability": 0.9351 + }, + { + "start": 3567.55, + "end": 3570.43, + "probability": 0.9686 + }, + { + "start": 3570.85, + "end": 3573.95, + "probability": 0.9968 + }, + { + "start": 3574.31, + "end": 3577.65, + "probability": 0.9873 + }, + { + "start": 3577.73, + "end": 3579.45, + "probability": 0.6825 + }, + { + "start": 3579.51, + "end": 3583.55, + "probability": 0.9105 + }, + { + "start": 3583.79, + "end": 3586.19, + "probability": 0.4627 + }, + { + "start": 3589.51, + "end": 3593.57, + "probability": 0.8081 + }, + { + "start": 3605.07, + "end": 3606.31, + "probability": 0.2346 + }, + { + "start": 3606.43, + "end": 3606.94, + "probability": 0.7741 + }, + { + "start": 3607.51, + "end": 3608.35, + "probability": 0.0717 + }, + { + "start": 3617.19, + "end": 3623.07, + "probability": 0.0528 + }, + { + "start": 3623.07, + "end": 3625.83, + "probability": 0.1869 + }, + { + "start": 3625.93, + "end": 3627.23, + "probability": 0.08 + }, + { + "start": 3627.78, + "end": 3631.23, + "probability": 0.0816 + }, + { + "start": 3633.15, + "end": 3635.07, + "probability": 0.0248 + }, + { + "start": 3635.99, + "end": 3637.13, + "probability": 0.0175 + }, + { + "start": 3638.78, + "end": 3640.11, + "probability": 0.0429 + }, + { + "start": 3640.11, + "end": 3640.15, + "probability": 0.0954 + }, + { + "start": 3640.37, + "end": 3640.73, + "probability": 0.2661 + }, + { + "start": 3640.73, + "end": 3641.67, + "probability": 0.4701 + }, + { + "start": 3645.71, + "end": 3646.75, + "probability": 0.0553 + }, + { + "start": 3646.75, + "end": 3647.67, + "probability": 0.1513 + }, + { + "start": 3657.6, + "end": 3659.02, + "probability": 0.0013 + }, + { + "start": 3660.36, + "end": 3661.76, + "probability": 0.0804 + }, + { + "start": 3665.9, + "end": 3666.4, + "probability": 0.0513 + }, + { + "start": 3668.69, + "end": 3670.16, + "probability": 0.0218 + }, + { + "start": 3671.53, + "end": 3672.18, + "probability": 0.0576 + }, + { + "start": 3672.18, + "end": 3672.82, + "probability": 0.0516 + }, + { + "start": 3675.37, + "end": 3676.0, + "probability": 0.0377 + }, + { + "start": 3676.14, + "end": 3676.98, + "probability": 0.0424 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.16, + "end": 3679.98, + "probability": 0.0065 + }, + { + "start": 3683.92, + "end": 3687.7, + "probability": 0.1708 + }, + { + "start": 3687.7, + "end": 3689.52, + "probability": 0.0488 + }, + { + "start": 3689.76, + "end": 3692.92, + "probability": 0.0141 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3800.0, + "end": 3800.0, + "probability": 0.0 + }, + { + "start": 3804.06, + "end": 3807.34, + "probability": 0.245 + }, + { + "start": 3818.06, + "end": 3819.28, + "probability": 0.0568 + }, + { + "start": 3819.28, + "end": 3822.08, + "probability": 0.3532 + }, + { + "start": 3822.52, + "end": 3823.82, + "probability": 0.102 + }, + { + "start": 3823.82, + "end": 3824.0, + "probability": 0.0293 + }, + { + "start": 3824.0, + "end": 3825.08, + "probability": 0.1418 + }, + { + "start": 3825.08, + "end": 3826.22, + "probability": 0.0586 + }, + { + "start": 3826.56, + "end": 3826.7, + "probability": 0.0299 + }, + { + "start": 3827.94, + "end": 3831.0, + "probability": 0.0418 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.0, + "end": 3924.0, + "probability": 0.0 + }, + { + "start": 3924.18, + "end": 3924.32, + "probability": 0.016 + }, + { + "start": 3924.32, + "end": 3924.72, + "probability": 0.3533 + }, + { + "start": 3925.38, + "end": 3926.76, + "probability": 0.6467 + }, + { + "start": 3927.34, + "end": 3932.42, + "probability": 0.9985 + }, + { + "start": 3932.42, + "end": 3937.54, + "probability": 0.9647 + }, + { + "start": 3939.04, + "end": 3939.54, + "probability": 0.7789 + }, + { + "start": 3940.44, + "end": 3942.26, + "probability": 0.8851 + }, + { + "start": 3943.0, + "end": 3943.9, + "probability": 0.8691 + }, + { + "start": 3944.5, + "end": 3945.22, + "probability": 0.7294 + }, + { + "start": 3946.48, + "end": 3951.54, + "probability": 0.9913 + }, + { + "start": 3951.54, + "end": 3956.02, + "probability": 0.9938 + }, + { + "start": 3957.48, + "end": 3961.54, + "probability": 0.991 + }, + { + "start": 3961.54, + "end": 3965.62, + "probability": 0.9997 + }, + { + "start": 3967.44, + "end": 3969.88, + "probability": 0.9836 + }, + { + "start": 3970.24, + "end": 3971.66, + "probability": 0.9484 + }, + { + "start": 3971.72, + "end": 3972.62, + "probability": 0.8831 + }, + { + "start": 3974.18, + "end": 3974.96, + "probability": 0.825 + }, + { + "start": 3975.06, + "end": 3979.54, + "probability": 0.9718 + }, + { + "start": 3979.58, + "end": 3982.42, + "probability": 0.9833 + }, + { + "start": 3983.04, + "end": 3986.72, + "probability": 0.9956 + }, + { + "start": 3987.92, + "end": 3994.82, + "probability": 0.9585 + }, + { + "start": 3995.0, + "end": 3996.36, + "probability": 0.9888 + }, + { + "start": 3996.46, + "end": 3997.6, + "probability": 0.896 + }, + { + "start": 3998.0, + "end": 3998.84, + "probability": 0.8831 + }, + { + "start": 3998.94, + "end": 4002.36, + "probability": 0.9952 + }, + { + "start": 4003.07, + "end": 4006.42, + "probability": 0.7784 + }, + { + "start": 4007.32, + "end": 4008.36, + "probability": 0.4046 + }, + { + "start": 4008.78, + "end": 4012.22, + "probability": 0.9316 + }, + { + "start": 4012.22, + "end": 4015.04, + "probability": 0.9756 + }, + { + "start": 4015.82, + "end": 4018.82, + "probability": 0.9893 + }, + { + "start": 4018.98, + "end": 4021.44, + "probability": 0.8242 + }, + { + "start": 4022.08, + "end": 4024.92, + "probability": 0.9609 + }, + { + "start": 4025.74, + "end": 4026.4, + "probability": 0.5908 + }, + { + "start": 4026.74, + "end": 4029.7, + "probability": 0.7493 + }, + { + "start": 4029.74, + "end": 4035.52, + "probability": 0.9902 + }, + { + "start": 4042.32, + "end": 4045.3, + "probability": 0.9043 + }, + { + "start": 4045.88, + "end": 4048.7, + "probability": 0.9475 + }, + { + "start": 4048.78, + "end": 4049.32, + "probability": 0.9651 + }, + { + "start": 4049.98, + "end": 4052.48, + "probability": 0.9927 + }, + { + "start": 4052.82, + "end": 4057.28, + "probability": 0.9546 + }, + { + "start": 4058.08, + "end": 4059.36, + "probability": 0.9391 + }, + { + "start": 4059.52, + "end": 4063.72, + "probability": 0.9401 + }, + { + "start": 4064.3, + "end": 4065.6, + "probability": 0.8023 + }, + { + "start": 4066.18, + "end": 4068.58, + "probability": 0.8882 + }, + { + "start": 4069.08, + "end": 4071.78, + "probability": 0.9764 + }, + { + "start": 4074.06, + "end": 4075.88, + "probability": 0.9984 + }, + { + "start": 4076.5, + "end": 4079.06, + "probability": 0.9989 + }, + { + "start": 4079.36, + "end": 4082.24, + "probability": 0.9902 + }, + { + "start": 4082.94, + "end": 4086.58, + "probability": 0.902 + }, + { + "start": 4086.68, + "end": 4093.24, + "probability": 0.9957 + }, + { + "start": 4093.86, + "end": 4094.72, + "probability": 0.5389 + }, + { + "start": 4094.78, + "end": 4096.64, + "probability": 0.7496 + }, + { + "start": 4096.94, + "end": 4097.72, + "probability": 0.8742 + }, + { + "start": 4097.8, + "end": 4098.84, + "probability": 0.9668 + }, + { + "start": 4098.96, + "end": 4102.41, + "probability": 0.9772 + }, + { + "start": 4103.42, + "end": 4106.64, + "probability": 0.989 + }, + { + "start": 4107.82, + "end": 4111.56, + "probability": 0.9944 + }, + { + "start": 4111.56, + "end": 4116.66, + "probability": 0.9983 + }, + { + "start": 4117.6, + "end": 4119.5, + "probability": 0.8208 + }, + { + "start": 4120.14, + "end": 4122.86, + "probability": 0.9969 + }, + { + "start": 4123.32, + "end": 4125.34, + "probability": 0.8089 + }, + { + "start": 4126.7, + "end": 4128.28, + "probability": 0.7793 + }, + { + "start": 4129.08, + "end": 4132.72, + "probability": 0.951 + }, + { + "start": 4133.32, + "end": 4138.03, + "probability": 0.8736 + }, + { + "start": 4140.66, + "end": 4140.72, + "probability": 0.3725 + }, + { + "start": 4140.72, + "end": 4142.5, + "probability": 0.2994 + }, + { + "start": 4143.22, + "end": 4148.32, + "probability": 0.9784 + }, + { + "start": 4148.8, + "end": 4149.74, + "probability": 0.9541 + }, + { + "start": 4149.8, + "end": 4152.1, + "probability": 0.8054 + }, + { + "start": 4152.86, + "end": 4158.1, + "probability": 0.9796 + }, + { + "start": 4158.76, + "end": 4161.26, + "probability": 0.9868 + }, + { + "start": 4162.4, + "end": 4163.96, + "probability": 0.9849 + }, + { + "start": 4164.56, + "end": 4170.14, + "probability": 0.9775 + }, + { + "start": 4170.6, + "end": 4176.36, + "probability": 0.9788 + }, + { + "start": 4177.74, + "end": 4180.9, + "probability": 0.9834 + }, + { + "start": 4181.74, + "end": 4188.1, + "probability": 0.9988 + }, + { + "start": 4188.68, + "end": 4191.12, + "probability": 0.9973 + }, + { + "start": 4191.5, + "end": 4194.56, + "probability": 0.9155 + }, + { + "start": 4195.36, + "end": 4197.4, + "probability": 0.9536 + }, + { + "start": 4197.82, + "end": 4198.48, + "probability": 0.9674 + }, + { + "start": 4198.52, + "end": 4201.17, + "probability": 0.9404 + }, + { + "start": 4201.52, + "end": 4203.5, + "probability": 0.9248 + }, + { + "start": 4213.62, + "end": 4214.6, + "probability": 0.659 + }, + { + "start": 4215.2, + "end": 4216.6, + "probability": 0.1084 + }, + { + "start": 4216.6, + "end": 4216.6, + "probability": 0.0318 + }, + { + "start": 4216.6, + "end": 4217.84, + "probability": 0.1623 + }, + { + "start": 4218.22, + "end": 4223.82, + "probability": 0.9762 + }, + { + "start": 4224.66, + "end": 4227.38, + "probability": 0.7499 + }, + { + "start": 4228.06, + "end": 4229.92, + "probability": 0.5112 + }, + { + "start": 4229.98, + "end": 4230.86, + "probability": 0.8021 + }, + { + "start": 4231.14, + "end": 4233.16, + "probability": 0.9973 + }, + { + "start": 4233.16, + "end": 4237.12, + "probability": 0.8968 + }, + { + "start": 4237.24, + "end": 4241.22, + "probability": 0.9828 + }, + { + "start": 4241.48, + "end": 4241.94, + "probability": 0.8159 + }, + { + "start": 4242.44, + "end": 4244.76, + "probability": 0.9526 + }, + { + "start": 4245.6, + "end": 4247.3, + "probability": 0.7247 + }, + { + "start": 4247.48, + "end": 4253.68, + "probability": 0.8975 + }, + { + "start": 4270.26, + "end": 4273.32, + "probability": 0.7459 + }, + { + "start": 4276.7, + "end": 4280.38, + "probability": 0.9976 + }, + { + "start": 4280.38, + "end": 4285.06, + "probability": 0.9961 + }, + { + "start": 4285.52, + "end": 4286.2, + "probability": 0.8947 + }, + { + "start": 4286.74, + "end": 4289.72, + "probability": 0.9912 + }, + { + "start": 4290.38, + "end": 4295.41, + "probability": 0.985 + }, + { + "start": 4296.24, + "end": 4304.02, + "probability": 0.9984 + }, + { + "start": 4304.02, + "end": 4311.7, + "probability": 0.9957 + }, + { + "start": 4311.96, + "end": 4316.46, + "probability": 0.7935 + }, + { + "start": 4316.76, + "end": 4317.2, + "probability": 0.3822 + }, + { + "start": 4317.48, + "end": 4318.82, + "probability": 0.733 + }, + { + "start": 4319.78, + "end": 4320.78, + "probability": 0.7172 + }, + { + "start": 4322.36, + "end": 4323.94, + "probability": 0.9339 + }, + { + "start": 4324.1, + "end": 4326.8, + "probability": 0.9487 + }, + { + "start": 4327.22, + "end": 4328.8, + "probability": 0.6417 + }, + { + "start": 4329.6, + "end": 4331.84, + "probability": 0.8267 + }, + { + "start": 4332.44, + "end": 4338.84, + "probability": 0.9814 + }, + { + "start": 4339.42, + "end": 4343.06, + "probability": 0.9799 + }, + { + "start": 4343.06, + "end": 4347.56, + "probability": 0.9852 + }, + { + "start": 4348.08, + "end": 4349.66, + "probability": 0.72 + }, + { + "start": 4349.76, + "end": 4355.98, + "probability": 0.9964 + }, + { + "start": 4356.64, + "end": 4363.66, + "probability": 0.9914 + }, + { + "start": 4364.16, + "end": 4368.0, + "probability": 0.9701 + }, + { + "start": 4370.22, + "end": 4374.88, + "probability": 0.9939 + }, + { + "start": 4375.0, + "end": 4376.28, + "probability": 0.8924 + }, + { + "start": 4376.78, + "end": 4379.66, + "probability": 0.8271 + }, + { + "start": 4380.16, + "end": 4381.52, + "probability": 0.9635 + }, + { + "start": 4382.18, + "end": 4384.24, + "probability": 0.9985 + }, + { + "start": 4384.86, + "end": 4387.5, + "probability": 0.9859 + }, + { + "start": 4387.86, + "end": 4388.1, + "probability": 0.8757 + }, + { + "start": 4388.34, + "end": 4394.96, + "probability": 0.9885 + }, + { + "start": 4395.02, + "end": 4395.72, + "probability": 0.5964 + }, + { + "start": 4395.74, + "end": 4397.58, + "probability": 0.4282 + }, + { + "start": 4397.76, + "end": 4398.86, + "probability": 0.6879 + }, + { + "start": 4399.52, + "end": 4406.24, + "probability": 0.9899 + }, + { + "start": 4406.66, + "end": 4406.86, + "probability": 0.6436 + }, + { + "start": 4407.44, + "end": 4412.88, + "probability": 0.9849 + }, + { + "start": 4413.5, + "end": 4417.12, + "probability": 0.8767 + }, + { + "start": 4417.32, + "end": 4421.7, + "probability": 0.9967 + }, + { + "start": 4421.82, + "end": 4425.26, + "probability": 0.9971 + }, + { + "start": 4425.76, + "end": 4427.84, + "probability": 0.999 + }, + { + "start": 4428.3, + "end": 4432.66, + "probability": 0.9668 + }, + { + "start": 4432.86, + "end": 4433.74, + "probability": 0.9276 + }, + { + "start": 4434.58, + "end": 4436.58, + "probability": 0.9739 + }, + { + "start": 4436.82, + "end": 4441.32, + "probability": 0.9844 + }, + { + "start": 4441.52, + "end": 4442.65, + "probability": 0.9854 + }, + { + "start": 4443.5, + "end": 4444.72, + "probability": 0.5232 + }, + { + "start": 4445.06, + "end": 4446.58, + "probability": 0.9077 + }, + { + "start": 4446.9, + "end": 4450.88, + "probability": 0.9673 + }, + { + "start": 4450.88, + "end": 4456.98, + "probability": 0.9954 + }, + { + "start": 4457.36, + "end": 4458.3, + "probability": 0.894 + }, + { + "start": 4458.72, + "end": 4461.4, + "probability": 0.9865 + }, + { + "start": 4461.5, + "end": 4465.16, + "probability": 0.9935 + }, + { + "start": 4465.66, + "end": 4471.02, + "probability": 0.9882 + }, + { + "start": 4471.28, + "end": 4473.26, + "probability": 0.9918 + }, + { + "start": 4473.5, + "end": 4477.2, + "probability": 0.9822 + }, + { + "start": 4477.9, + "end": 4478.18, + "probability": 0.0674 + }, + { + "start": 4478.68, + "end": 4486.02, + "probability": 0.9973 + }, + { + "start": 4486.02, + "end": 4492.72, + "probability": 0.9998 + }, + { + "start": 4492.94, + "end": 4497.62, + "probability": 0.9971 + }, + { + "start": 4497.68, + "end": 4499.88, + "probability": 0.9985 + }, + { + "start": 4500.58, + "end": 4502.64, + "probability": 0.833 + }, + { + "start": 4503.86, + "end": 4510.38, + "probability": 0.9948 + }, + { + "start": 4510.64, + "end": 4511.24, + "probability": 0.7156 + }, + { + "start": 4511.38, + "end": 4512.6, + "probability": 0.9477 + }, + { + "start": 4512.98, + "end": 4515.52, + "probability": 0.9347 + }, + { + "start": 4515.82, + "end": 4518.94, + "probability": 0.9818 + }, + { + "start": 4518.94, + "end": 4524.8, + "probability": 0.9938 + }, + { + "start": 4525.36, + "end": 4527.8, + "probability": 0.6731 + }, + { + "start": 4528.1, + "end": 4528.82, + "probability": 0.964 + }, + { + "start": 4529.14, + "end": 4532.6, + "probability": 0.6261 + }, + { + "start": 4532.8, + "end": 4533.56, + "probability": 0.941 + }, + { + "start": 4533.82, + "end": 4534.74, + "probability": 0.969 + }, + { + "start": 4534.96, + "end": 4535.86, + "probability": 0.9455 + }, + { + "start": 4536.08, + "end": 4537.62, + "probability": 0.9156 + }, + { + "start": 4537.68, + "end": 4538.64, + "probability": 0.9824 + }, + { + "start": 4538.8, + "end": 4541.5, + "probability": 0.8988 + }, + { + "start": 4541.92, + "end": 4546.36, + "probability": 0.6744 + }, + { + "start": 4546.66, + "end": 4546.66, + "probability": 0.4046 + }, + { + "start": 4546.66, + "end": 4554.04, + "probability": 0.9791 + }, + { + "start": 4554.56, + "end": 4559.62, + "probability": 0.9923 + }, + { + "start": 4559.62, + "end": 4566.24, + "probability": 0.9644 + }, + { + "start": 4566.9, + "end": 4573.81, + "probability": 0.9921 + }, + { + "start": 4574.26, + "end": 4579.2, + "probability": 0.9888 + }, + { + "start": 4579.2, + "end": 4588.06, + "probability": 0.9987 + }, + { + "start": 4588.42, + "end": 4590.6, + "probability": 0.7307 + }, + { + "start": 4591.36, + "end": 4594.82, + "probability": 0.9929 + }, + { + "start": 4597.9, + "end": 4604.78, + "probability": 0.9877 + }, + { + "start": 4604.96, + "end": 4605.78, + "probability": 0.6522 + }, + { + "start": 4607.08, + "end": 4614.04, + "probability": 0.9961 + }, + { + "start": 4614.88, + "end": 4619.66, + "probability": 0.9926 + }, + { + "start": 4620.16, + "end": 4622.68, + "probability": 0.9792 + }, + { + "start": 4622.82, + "end": 4624.0, + "probability": 0.9941 + }, + { + "start": 4624.16, + "end": 4628.72, + "probability": 0.998 + }, + { + "start": 4628.72, + "end": 4634.76, + "probability": 0.9993 + }, + { + "start": 4635.02, + "end": 4636.42, + "probability": 0.969 + }, + { + "start": 4636.5, + "end": 4641.58, + "probability": 0.8065 + }, + { + "start": 4642.06, + "end": 4642.36, + "probability": 0.3531 + }, + { + "start": 4642.36, + "end": 4646.36, + "probability": 0.9774 + }, + { + "start": 4646.82, + "end": 4649.8, + "probability": 0.9933 + }, + { + "start": 4650.14, + "end": 4657.34, + "probability": 0.9983 + }, + { + "start": 4657.68, + "end": 4658.0, + "probability": 0.2435 + }, + { + "start": 4658.06, + "end": 4661.74, + "probability": 0.9993 + }, + { + "start": 4662.26, + "end": 4665.15, + "probability": 0.9989 + }, + { + "start": 4666.3, + "end": 4667.82, + "probability": 0.999 + }, + { + "start": 4667.94, + "end": 4669.31, + "probability": 0.9922 + }, + { + "start": 4669.7, + "end": 4677.04, + "probability": 0.9669 + }, + { + "start": 4677.24, + "end": 4683.2, + "probability": 0.9975 + }, + { + "start": 4683.38, + "end": 4687.62, + "probability": 0.9965 + }, + { + "start": 4687.86, + "end": 4688.74, + "probability": 0.8834 + }, + { + "start": 4689.14, + "end": 4690.3, + "probability": 0.9334 + }, + { + "start": 4690.86, + "end": 4697.12, + "probability": 0.9517 + }, + { + "start": 4697.5, + "end": 4698.1, + "probability": 0.7415 + }, + { + "start": 4698.28, + "end": 4699.72, + "probability": 0.9832 + }, + { + "start": 4700.6, + "end": 4705.0, + "probability": 0.9923 + }, + { + "start": 4705.14, + "end": 4707.44, + "probability": 0.979 + }, + { + "start": 4707.66, + "end": 4708.57, + "probability": 0.8994 + }, + { + "start": 4708.8, + "end": 4711.64, + "probability": 0.5993 + }, + { + "start": 4712.26, + "end": 4718.94, + "probability": 0.9751 + }, + { + "start": 4718.94, + "end": 4725.42, + "probability": 0.9909 + }, + { + "start": 4725.96, + "end": 4731.04, + "probability": 0.9594 + }, + { + "start": 4731.4, + "end": 4736.76, + "probability": 0.9981 + }, + { + "start": 4737.08, + "end": 4738.4, + "probability": 0.9692 + }, + { + "start": 4738.58, + "end": 4742.08, + "probability": 0.9952 + }, + { + "start": 4742.08, + "end": 4745.4, + "probability": 0.9974 + }, + { + "start": 4745.46, + "end": 4746.32, + "probability": 0.8593 + }, + { + "start": 4746.56, + "end": 4749.98, + "probability": 0.9888 + }, + { + "start": 4750.28, + "end": 4756.56, + "probability": 0.9887 + }, + { + "start": 4756.56, + "end": 4762.5, + "probability": 0.9953 + }, + { + "start": 4762.92, + "end": 4767.68, + "probability": 0.9971 + }, + { + "start": 4767.68, + "end": 4772.24, + "probability": 0.9979 + }, + { + "start": 4772.32, + "end": 4778.48, + "probability": 0.9551 + }, + { + "start": 4778.66, + "end": 4779.81, + "probability": 0.9924 + }, + { + "start": 4780.08, + "end": 4781.06, + "probability": 0.9798 + }, + { + "start": 4781.24, + "end": 4783.76, + "probability": 0.9005 + }, + { + "start": 4783.96, + "end": 4784.52, + "probability": 0.4911 + }, + { + "start": 4784.68, + "end": 4785.72, + "probability": 0.967 + }, + { + "start": 4786.2, + "end": 4788.96, + "probability": 0.9327 + }, + { + "start": 4789.38, + "end": 4790.51, + "probability": 0.9877 + }, + { + "start": 4790.74, + "end": 4791.36, + "probability": 0.9395 + }, + { + "start": 4791.94, + "end": 4798.88, + "probability": 0.9914 + }, + { + "start": 4799.58, + "end": 4802.54, + "probability": 0.9585 + }, + { + "start": 4802.68, + "end": 4805.24, + "probability": 0.8374 + }, + { + "start": 4805.36, + "end": 4807.1, + "probability": 0.9367 + }, + { + "start": 4807.26, + "end": 4808.02, + "probability": 0.9132 + }, + { + "start": 4808.82, + "end": 4814.28, + "probability": 0.9843 + }, + { + "start": 4814.32, + "end": 4819.92, + "probability": 0.9886 + }, + { + "start": 4820.46, + "end": 4821.74, + "probability": 0.9724 + }, + { + "start": 4822.12, + "end": 4823.08, + "probability": 0.776 + }, + { + "start": 4823.3, + "end": 4824.34, + "probability": 0.939 + }, + { + "start": 4824.46, + "end": 4828.42, + "probability": 0.9961 + }, + { + "start": 4828.78, + "end": 4835.68, + "probability": 0.9823 + }, + { + "start": 4835.94, + "end": 4841.58, + "probability": 0.9969 + }, + { + "start": 4842.12, + "end": 4843.12, + "probability": 0.751 + }, + { + "start": 4844.1, + "end": 4845.02, + "probability": 0.5438 + }, + { + "start": 4846.22, + "end": 4846.86, + "probability": 0.6764 + }, + { + "start": 4846.86, + "end": 4847.56, + "probability": 0.7057 + }, + { + "start": 4847.64, + "end": 4848.14, + "probability": 0.553 + }, + { + "start": 4848.14, + "end": 4849.34, + "probability": 0.9385 + }, + { + "start": 4849.44, + "end": 4850.28, + "probability": 0.9369 + }, + { + "start": 4850.7, + "end": 4854.14, + "probability": 0.9893 + }, + { + "start": 4854.38, + "end": 4854.66, + "probability": 0.5227 + }, + { + "start": 4854.66, + "end": 4857.02, + "probability": 0.7898 + }, + { + "start": 4857.42, + "end": 4860.7, + "probability": 0.9267 + }, + { + "start": 4872.75, + "end": 4876.7, + "probability": 0.8589 + }, + { + "start": 4877.76, + "end": 4882.4, + "probability": 0.705 + }, + { + "start": 4883.04, + "end": 4884.18, + "probability": 0.8803 + }, + { + "start": 4884.38, + "end": 4886.7, + "probability": 0.9795 + }, + { + "start": 4887.1, + "end": 4888.62, + "probability": 0.9692 + }, + { + "start": 4888.82, + "end": 4890.78, + "probability": 0.9762 + }, + { + "start": 4895.9, + "end": 4897.38, + "probability": 0.8976 + }, + { + "start": 4897.46, + "end": 4901.18, + "probability": 0.9968 + }, + { + "start": 4901.86, + "end": 4908.32, + "probability": 0.9879 + }, + { + "start": 4908.4, + "end": 4909.1, + "probability": 0.4805 + }, + { + "start": 4909.16, + "end": 4909.46, + "probability": 0.5791 + }, + { + "start": 4909.5, + "end": 4910.12, + "probability": 0.9118 + }, + { + "start": 4910.74, + "end": 4915.78, + "probability": 0.9579 + }, + { + "start": 4916.96, + "end": 4920.02, + "probability": 0.693 + }, + { + "start": 4920.64, + "end": 4924.48, + "probability": 0.967 + }, + { + "start": 4924.98, + "end": 4926.86, + "probability": 0.9629 + }, + { + "start": 4927.02, + "end": 4933.78, + "probability": 0.8961 + }, + { + "start": 4934.5, + "end": 4938.48, + "probability": 0.9027 + }, + { + "start": 4939.06, + "end": 4943.08, + "probability": 0.9263 + }, + { + "start": 4943.64, + "end": 4948.4, + "probability": 0.9849 + }, + { + "start": 4949.0, + "end": 4955.6, + "probability": 0.9805 + }, + { + "start": 4958.14, + "end": 4961.56, + "probability": 0.895 + }, + { + "start": 4962.04, + "end": 4964.86, + "probability": 0.9109 + }, + { + "start": 4965.24, + "end": 4966.92, + "probability": 0.8133 + }, + { + "start": 4967.04, + "end": 4970.66, + "probability": 0.9951 + }, + { + "start": 4971.52, + "end": 4973.96, + "probability": 0.9737 + }, + { + "start": 4974.24, + "end": 4975.58, + "probability": 0.8175 + }, + { + "start": 4976.14, + "end": 4976.63, + "probability": 0.4456 + }, + { + "start": 4982.9, + "end": 4986.4, + "probability": 0.7982 + }, + { + "start": 4986.6, + "end": 4990.36, + "probability": 0.9502 + }, + { + "start": 4990.82, + "end": 4999.56, + "probability": 0.9717 + }, + { + "start": 4999.66, + "end": 5000.72, + "probability": 0.9598 + }, + { + "start": 5001.12, + "end": 5002.02, + "probability": 0.9498 + }, + { + "start": 5002.42, + "end": 5003.68, + "probability": 0.9775 + }, + { + "start": 5003.86, + "end": 5005.84, + "probability": 0.9814 + }, + { + "start": 5006.18, + "end": 5007.4, + "probability": 0.9649 + }, + { + "start": 5007.64, + "end": 5009.1, + "probability": 0.8848 + }, + { + "start": 5009.52, + "end": 5014.22, + "probability": 0.9836 + }, + { + "start": 5014.62, + "end": 5017.08, + "probability": 0.9971 + }, + { + "start": 5017.36, + "end": 5021.34, + "probability": 0.9627 + }, + { + "start": 5021.42, + "end": 5024.32, + "probability": 0.9627 + }, + { + "start": 5024.58, + "end": 5028.92, + "probability": 0.9902 + }, + { + "start": 5029.44, + "end": 5031.88, + "probability": 0.9915 + }, + { + "start": 5032.26, + "end": 5034.36, + "probability": 0.8798 + }, + { + "start": 5034.66, + "end": 5039.12, + "probability": 0.9681 + }, + { + "start": 5039.56, + "end": 5042.8, + "probability": 0.9907 + }, + { + "start": 5043.22, + "end": 5045.1, + "probability": 0.999 + }, + { + "start": 5045.48, + "end": 5048.34, + "probability": 0.9914 + }, + { + "start": 5048.5, + "end": 5050.6, + "probability": 0.998 + }, + { + "start": 5050.6, + "end": 5052.96, + "probability": 0.999 + }, + { + "start": 5053.18, + "end": 5054.62, + "probability": 0.9795 + }, + { + "start": 5055.58, + "end": 5058.78, + "probability": 0.9992 + }, + { + "start": 5058.78, + "end": 5062.3, + "probability": 0.9989 + }, + { + "start": 5062.72, + "end": 5067.36, + "probability": 0.9521 + }, + { + "start": 5067.7, + "end": 5069.76, + "probability": 0.96 + }, + { + "start": 5070.1, + "end": 5072.26, + "probability": 0.9647 + }, + { + "start": 5072.44, + "end": 5073.24, + "probability": 0.8913 + }, + { + "start": 5073.34, + "end": 5074.52, + "probability": 0.5884 + }, + { + "start": 5074.64, + "end": 5076.86, + "probability": 0.9392 + }, + { + "start": 5077.08, + "end": 5080.6, + "probability": 0.9304 + }, + { + "start": 5080.66, + "end": 5083.08, + "probability": 0.8924 + }, + { + "start": 5083.08, + "end": 5083.18, + "probability": 0.3909 + }, + { + "start": 5083.26, + "end": 5084.94, + "probability": 0.8511 + }, + { + "start": 5085.16, + "end": 5089.92, + "probability": 0.986 + }, + { + "start": 5089.98, + "end": 5091.48, + "probability": 0.8132 + }, + { + "start": 5092.2, + "end": 5095.52, + "probability": 0.9289 + }, + { + "start": 5095.96, + "end": 5099.4, + "probability": 0.7351 + }, + { + "start": 5099.76, + "end": 5104.12, + "probability": 0.9614 + }, + { + "start": 5107.58, + "end": 5110.38, + "probability": 0.6889 + }, + { + "start": 5111.12, + "end": 5115.2, + "probability": 0.8938 + }, + { + "start": 5116.02, + "end": 5117.46, + "probability": 0.7878 + }, + { + "start": 5118.34, + "end": 5119.78, + "probability": 0.5848 + }, + { + "start": 5120.4, + "end": 5121.7, + "probability": 0.9331 + }, + { + "start": 5122.38, + "end": 5122.96, + "probability": 0.596 + }, + { + "start": 5123.26, + "end": 5126.24, + "probability": 0.7386 + }, + { + "start": 5126.34, + "end": 5127.2, + "probability": 0.5668 + }, + { + "start": 5127.42, + "end": 5130.96, + "probability": 0.9933 + }, + { + "start": 5131.2, + "end": 5132.55, + "probability": 0.981 + }, + { + "start": 5132.84, + "end": 5133.68, + "probability": 0.9761 + }, + { + "start": 5133.92, + "end": 5134.58, + "probability": 0.8772 + }, + { + "start": 5134.76, + "end": 5135.8, + "probability": 0.4614 + }, + { + "start": 5136.14, + "end": 5136.88, + "probability": 0.6112 + }, + { + "start": 5136.94, + "end": 5137.66, + "probability": 0.9652 + }, + { + "start": 5137.7, + "end": 5138.3, + "probability": 0.7249 + }, + { + "start": 5138.6, + "end": 5141.68, + "probability": 0.9409 + }, + { + "start": 5141.86, + "end": 5144.84, + "probability": 0.9692 + }, + { + "start": 5145.18, + "end": 5147.72, + "probability": 0.9375 + }, + { + "start": 5147.8, + "end": 5150.84, + "probability": 0.8337 + }, + { + "start": 5150.84, + "end": 5153.84, + "probability": 0.9972 + }, + { + "start": 5154.26, + "end": 5157.38, + "probability": 0.9761 + }, + { + "start": 5157.4, + "end": 5158.1, + "probability": 0.7672 + }, + { + "start": 5158.28, + "end": 5160.01, + "probability": 0.989 + }, + { + "start": 5160.4, + "end": 5161.12, + "probability": 0.6649 + }, + { + "start": 5161.3, + "end": 5165.44, + "probability": 0.9925 + }, + { + "start": 5165.68, + "end": 5167.26, + "probability": 0.7369 + }, + { + "start": 5167.72, + "end": 5169.9, + "probability": 0.9607 + }, + { + "start": 5170.1, + "end": 5170.76, + "probability": 0.7123 + }, + { + "start": 5171.1, + "end": 5173.84, + "probability": 0.949 + }, + { + "start": 5174.14, + "end": 5176.44, + "probability": 0.9766 + }, + { + "start": 5176.62, + "end": 5177.04, + "probability": 0.9144 + }, + { + "start": 5177.92, + "end": 5179.42, + "probability": 0.8616 + }, + { + "start": 5179.88, + "end": 5185.58, + "probability": 0.9175 + }, + { + "start": 5185.84, + "end": 5187.62, + "probability": 0.9629 + }, + { + "start": 5187.92, + "end": 5190.2, + "probability": 0.9375 + }, + { + "start": 5190.58, + "end": 5192.5, + "probability": 0.7142 + }, + { + "start": 5193.26, + "end": 5196.66, + "probability": 0.661 + }, + { + "start": 5196.8, + "end": 5202.16, + "probability": 0.9622 + }, + { + "start": 5202.16, + "end": 5204.12, + "probability": 0.7151 + }, + { + "start": 5204.34, + "end": 5205.94, + "probability": 0.3469 + }, + { + "start": 5208.28, + "end": 5212.84, + "probability": 0.9349 + }, + { + "start": 5212.92, + "end": 5213.78, + "probability": 0.6959 + }, + { + "start": 5214.5, + "end": 5215.2, + "probability": 0.6569 + }, + { + "start": 5215.56, + "end": 5216.24, + "probability": 0.8035 + }, + { + "start": 5227.9, + "end": 5228.08, + "probability": 0.231 + }, + { + "start": 5238.21, + "end": 5241.7, + "probability": 0.2094 + }, + { + "start": 5241.7, + "end": 5241.7, + "probability": 0.0154 + }, + { + "start": 5241.84, + "end": 5242.28, + "probability": 0.0321 + }, + { + "start": 5242.28, + "end": 5243.94, + "probability": 0.6644 + }, + { + "start": 5244.08, + "end": 5246.77, + "probability": 0.4818 + }, + { + "start": 5248.7, + "end": 5251.18, + "probability": 0.4579 + }, + { + "start": 5251.82, + "end": 5252.92, + "probability": 0.3338 + }, + { + "start": 5254.57, + "end": 5259.42, + "probability": 0.0637 + }, + { + "start": 5259.42, + "end": 5261.28, + "probability": 0.0515 + }, + { + "start": 5262.94, + "end": 5264.52, + "probability": 0.0153 + }, + { + "start": 5268.7, + "end": 5270.0, + "probability": 0.0038 + }, + { + "start": 5270.0, + "end": 5270.58, + "probability": 0.0154 + }, + { + "start": 5270.74, + "end": 5270.8, + "probability": 0.1353 + }, + { + "start": 5270.8, + "end": 5271.88, + "probability": 0.0578 + }, + { + "start": 5272.5, + "end": 5272.5, + "probability": 0.1566 + }, + { + "start": 5272.5, + "end": 5272.5, + "probability": 0.2695 + }, + { + "start": 5272.5, + "end": 5272.5, + "probability": 0.0624 + }, + { + "start": 5272.5, + "end": 5272.5, + "probability": 0.3414 + }, + { + "start": 5272.5, + "end": 5273.2, + "probability": 0.5174 + }, + { + "start": 5274.68, + "end": 5275.6, + "probability": 0.7463 + }, + { + "start": 5275.68, + "end": 5276.95, + "probability": 0.6632 + }, + { + "start": 5277.9, + "end": 5279.38, + "probability": 0.8633 + }, + { + "start": 5280.0, + "end": 5282.2, + "probability": 0.6473 + }, + { + "start": 5282.36, + "end": 5285.16, + "probability": 0.9946 + }, + { + "start": 5285.18, + "end": 5288.66, + "probability": 0.9922 + }, + { + "start": 5288.72, + "end": 5292.78, + "probability": 0.9956 + }, + { + "start": 5293.2, + "end": 5294.28, + "probability": 0.8919 + }, + { + "start": 5294.98, + "end": 5297.94, + "probability": 0.9236 + }, + { + "start": 5298.08, + "end": 5300.0, + "probability": 0.9723 + }, + { + "start": 5300.44, + "end": 5306.22, + "probability": 0.9855 + }, + { + "start": 5306.66, + "end": 5308.04, + "probability": 0.9912 + }, + { + "start": 5308.92, + "end": 5311.98, + "probability": 0.9699 + }, + { + "start": 5312.8, + "end": 5318.18, + "probability": 0.9967 + }, + { + "start": 5318.76, + "end": 5321.2, + "probability": 0.998 + }, + { + "start": 5321.66, + "end": 5324.34, + "probability": 0.7403 + }, + { + "start": 5324.82, + "end": 5326.1, + "probability": 0.9111 + }, + { + "start": 5326.18, + "end": 5327.94, + "probability": 0.9928 + }, + { + "start": 5328.3, + "end": 5329.32, + "probability": 0.8882 + }, + { + "start": 5329.58, + "end": 5330.18, + "probability": 0.8145 + }, + { + "start": 5330.28, + "end": 5332.72, + "probability": 0.9637 + }, + { + "start": 5332.8, + "end": 5333.6, + "probability": 0.9236 + }, + { + "start": 5333.68, + "end": 5334.52, + "probability": 0.6007 + }, + { + "start": 5334.78, + "end": 5335.35, + "probability": 0.8853 + }, + { + "start": 5336.0, + "end": 5339.4, + "probability": 0.6436 + }, + { + "start": 5339.92, + "end": 5344.26, + "probability": 0.9751 + }, + { + "start": 5344.56, + "end": 5348.16, + "probability": 0.9477 + }, + { + "start": 5349.1, + "end": 5350.47, + "probability": 0.748 + }, + { + "start": 5351.36, + "end": 5353.06, + "probability": 0.9888 + }, + { + "start": 5353.58, + "end": 5354.0, + "probability": 0.9333 + }, + { + "start": 5354.18, + "end": 5358.12, + "probability": 0.978 + }, + { + "start": 5358.6, + "end": 5359.62, + "probability": 0.6992 + }, + { + "start": 5359.68, + "end": 5362.36, + "probability": 0.8013 + }, + { + "start": 5362.74, + "end": 5364.2, + "probability": 0.9067 + }, + { + "start": 5364.24, + "end": 5365.64, + "probability": 0.9023 + }, + { + "start": 5366.12, + "end": 5369.78, + "probability": 0.9904 + }, + { + "start": 5369.96, + "end": 5372.06, + "probability": 0.8169 + }, + { + "start": 5372.08, + "end": 5372.84, + "probability": 0.9397 + }, + { + "start": 5372.9, + "end": 5374.0, + "probability": 0.4705 + }, + { + "start": 5374.1, + "end": 5374.66, + "probability": 0.9021 + }, + { + "start": 5374.74, + "end": 5376.14, + "probability": 0.6663 + }, + { + "start": 5376.55, + "end": 5381.48, + "probability": 0.9839 + }, + { + "start": 5381.74, + "end": 5384.36, + "probability": 0.9974 + }, + { + "start": 5384.88, + "end": 5385.4, + "probability": 0.6502 + }, + { + "start": 5385.48, + "end": 5387.58, + "probability": 0.9105 + }, + { + "start": 5387.88, + "end": 5388.92, + "probability": 0.9036 + }, + { + "start": 5389.26, + "end": 5392.1, + "probability": 0.9709 + }, + { + "start": 5393.0, + "end": 5395.9, + "probability": 0.9287 + }, + { + "start": 5396.0, + "end": 5397.94, + "probability": 0.9818 + }, + { + "start": 5398.02, + "end": 5399.14, + "probability": 0.9501 + }, + { + "start": 5399.32, + "end": 5402.11, + "probability": 0.993 + }, + { + "start": 5402.62, + "end": 5402.8, + "probability": 0.7593 + }, + { + "start": 5402.84, + "end": 5403.98, + "probability": 0.9588 + }, + { + "start": 5404.2, + "end": 5408.98, + "probability": 0.5023 + }, + { + "start": 5409.54, + "end": 5411.38, + "probability": 0.9819 + }, + { + "start": 5412.02, + "end": 5415.16, + "probability": 0.9863 + }, + { + "start": 5415.3, + "end": 5418.02, + "probability": 0.9938 + }, + { + "start": 5418.02, + "end": 5423.04, + "probability": 0.9984 + }, + { + "start": 5423.9, + "end": 5425.16, + "probability": 0.5287 + }, + { + "start": 5425.28, + "end": 5425.8, + "probability": 0.8302 + }, + { + "start": 5425.84, + "end": 5429.38, + "probability": 0.7475 + }, + { + "start": 5429.46, + "end": 5430.2, + "probability": 0.8984 + }, + { + "start": 5430.76, + "end": 5432.36, + "probability": 0.7422 + }, + { + "start": 5432.54, + "end": 5434.58, + "probability": 0.9795 + }, + { + "start": 5434.66, + "end": 5439.34, + "probability": 0.9951 + }, + { + "start": 5439.62, + "end": 5442.68, + "probability": 0.9853 + }, + { + "start": 5442.7, + "end": 5445.68, + "probability": 0.9817 + }, + { + "start": 5446.38, + "end": 5447.78, + "probability": 0.8695 + }, + { + "start": 5448.8, + "end": 5452.98, + "probability": 0.9877 + }, + { + "start": 5452.98, + "end": 5456.06, + "probability": 0.9819 + }, + { + "start": 5456.5, + "end": 5462.64, + "probability": 0.9028 + }, + { + "start": 5463.26, + "end": 5465.9, + "probability": 0.9104 + }, + { + "start": 5465.92, + "end": 5468.14, + "probability": 0.9979 + }, + { + "start": 5468.48, + "end": 5469.7, + "probability": 0.9186 + }, + { + "start": 5470.24, + "end": 5475.6, + "probability": 0.998 + }, + { + "start": 5475.6, + "end": 5479.4, + "probability": 0.9969 + }, + { + "start": 5479.94, + "end": 5481.28, + "probability": 0.984 + }, + { + "start": 5481.4, + "end": 5487.08, + "probability": 0.9902 + }, + { + "start": 5487.64, + "end": 5490.85, + "probability": 0.9878 + }, + { + "start": 5491.36, + "end": 5492.74, + "probability": 0.949 + }, + { + "start": 5500.14, + "end": 5500.88, + "probability": 0.225 + }, + { + "start": 5501.74, + "end": 5504.78, + "probability": 0.9546 + }, + { + "start": 5505.16, + "end": 5505.8, + "probability": 0.6918 + }, + { + "start": 5505.82, + "end": 5506.8, + "probability": 0.9056 + }, + { + "start": 5506.92, + "end": 5508.08, + "probability": 0.8208 + }, + { + "start": 5508.2, + "end": 5509.4, + "probability": 0.9901 + }, + { + "start": 5509.86, + "end": 5511.66, + "probability": 0.5548 + }, + { + "start": 5512.48, + "end": 5516.56, + "probability": 0.7583 + }, + { + "start": 5516.72, + "end": 5517.57, + "probability": 0.623 + }, + { + "start": 5517.7, + "end": 5522.34, + "probability": 0.9916 + }, + { + "start": 5522.84, + "end": 5525.32, + "probability": 0.9255 + }, + { + "start": 5525.9, + "end": 5528.32, + "probability": 0.8636 + }, + { + "start": 5528.44, + "end": 5529.44, + "probability": 0.9701 + }, + { + "start": 5530.0, + "end": 5531.06, + "probability": 0.9844 + }, + { + "start": 5531.16, + "end": 5531.99, + "probability": 0.998 + }, + { + "start": 5533.16, + "end": 5534.98, + "probability": 0.9746 + }, + { + "start": 5535.16, + "end": 5536.9, + "probability": 0.9863 + }, + { + "start": 5537.26, + "end": 5543.3, + "probability": 0.9811 + }, + { + "start": 5543.48, + "end": 5544.7, + "probability": 0.766 + }, + { + "start": 5545.64, + "end": 5549.66, + "probability": 0.9944 + }, + { + "start": 5549.74, + "end": 5551.88, + "probability": 0.6954 + }, + { + "start": 5551.88, + "end": 5554.32, + "probability": 0.9012 + }, + { + "start": 5555.36, + "end": 5555.6, + "probability": 0.3856 + }, + { + "start": 5555.78, + "end": 5556.44, + "probability": 0.9639 + }, + { + "start": 5556.62, + "end": 5560.76, + "probability": 0.9846 + }, + { + "start": 5560.76, + "end": 5564.98, + "probability": 0.9956 + }, + { + "start": 5565.48, + "end": 5566.34, + "probability": 0.667 + }, + { + "start": 5566.38, + "end": 5569.04, + "probability": 0.9922 + }, + { + "start": 5569.2, + "end": 5571.74, + "probability": 0.9528 + }, + { + "start": 5573.06, + "end": 5573.9, + "probability": 0.9394 + }, + { + "start": 5574.12, + "end": 5576.76, + "probability": 0.9948 + }, + { + "start": 5577.76, + "end": 5582.24, + "probability": 0.9636 + }, + { + "start": 5584.58, + "end": 5589.92, + "probability": 0.9915 + }, + { + "start": 5590.26, + "end": 5593.0, + "probability": 0.9618 + }, + { + "start": 5593.08, + "end": 5596.54, + "probability": 0.942 + }, + { + "start": 5596.6, + "end": 5602.2, + "probability": 0.7827 + }, + { + "start": 5602.58, + "end": 5604.42, + "probability": 0.9666 + }, + { + "start": 5604.56, + "end": 5605.52, + "probability": 0.84 + }, + { + "start": 5606.26, + "end": 5607.86, + "probability": 0.7988 + }, + { + "start": 5607.98, + "end": 5609.38, + "probability": 0.5305 + }, + { + "start": 5609.58, + "end": 5609.9, + "probability": 0.5144 + }, + { + "start": 5610.32, + "end": 5610.38, + "probability": 0.2498 + }, + { + "start": 5610.4, + "end": 5613.72, + "probability": 0.9875 + }, + { + "start": 5615.34, + "end": 5617.9, + "probability": 0.9586 + }, + { + "start": 5617.92, + "end": 5619.64, + "probability": 0.8372 + }, + { + "start": 5620.34, + "end": 5623.12, + "probability": 0.9854 + }, + { + "start": 5623.14, + "end": 5624.44, + "probability": 0.9994 + }, + { + "start": 5625.34, + "end": 5629.52, + "probability": 0.9673 + }, + { + "start": 5630.8, + "end": 5632.36, + "probability": 0.9647 + }, + { + "start": 5633.04, + "end": 5633.28, + "probability": 0.4982 + }, + { + "start": 5633.52, + "end": 5636.26, + "probability": 0.9675 + }, + { + "start": 5636.9, + "end": 5640.66, + "probability": 0.9026 + }, + { + "start": 5641.48, + "end": 5649.28, + "probability": 0.9802 + }, + { + "start": 5650.44, + "end": 5651.52, + "probability": 0.6892 + }, + { + "start": 5651.9, + "end": 5652.76, + "probability": 0.6656 + }, + { + "start": 5653.36, + "end": 5656.62, + "probability": 0.973 + }, + { + "start": 5657.3, + "end": 5657.62, + "probability": 0.5275 + }, + { + "start": 5659.02, + "end": 5661.99, + "probability": 0.8059 + }, + { + "start": 5663.8, + "end": 5665.94, + "probability": 0.8809 + }, + { + "start": 5666.52, + "end": 5671.3, + "probability": 0.9515 + }, + { + "start": 5671.3, + "end": 5674.22, + "probability": 0.9958 + }, + { + "start": 5674.54, + "end": 5678.42, + "probability": 0.9829 + }, + { + "start": 5678.7, + "end": 5679.88, + "probability": 0.9323 + }, + { + "start": 5680.74, + "end": 5681.47, + "probability": 0.9365 + }, + { + "start": 5682.2, + "end": 5683.68, + "probability": 0.9346 + }, + { + "start": 5684.24, + "end": 5685.66, + "probability": 0.9883 + }, + { + "start": 5686.02, + "end": 5688.42, + "probability": 0.978 + }, + { + "start": 5689.04, + "end": 5691.84, + "probability": 0.9949 + }, + { + "start": 5692.14, + "end": 5693.52, + "probability": 0.9825 + }, + { + "start": 5693.76, + "end": 5697.8, + "probability": 0.9323 + }, + { + "start": 5697.8, + "end": 5699.62, + "probability": 0.9943 + }, + { + "start": 5699.92, + "end": 5703.86, + "probability": 0.961 + }, + { + "start": 5703.9, + "end": 5705.74, + "probability": 0.6498 + }, + { + "start": 5705.76, + "end": 5707.84, + "probability": 0.9522 + }, + { + "start": 5708.6, + "end": 5709.3, + "probability": 0.6689 + }, + { + "start": 5709.48, + "end": 5710.94, + "probability": 0.9647 + }, + { + "start": 5711.02, + "end": 5712.12, + "probability": 0.9213 + }, + { + "start": 5712.94, + "end": 5713.8, + "probability": 0.9482 + }, + { + "start": 5714.18, + "end": 5715.2, + "probability": 0.9724 + }, + { + "start": 5715.26, + "end": 5717.4, + "probability": 0.9166 + }, + { + "start": 5717.74, + "end": 5718.6, + "probability": 0.9166 + }, + { + "start": 5718.88, + "end": 5720.82, + "probability": 0.9861 + }, + { + "start": 5721.96, + "end": 5726.14, + "probability": 0.8966 + }, + { + "start": 5726.56, + "end": 5727.76, + "probability": 0.9446 + }, + { + "start": 5728.2, + "end": 5728.52, + "probability": 0.8462 + }, + { + "start": 5728.76, + "end": 5730.82, + "probability": 0.8931 + }, + { + "start": 5731.2, + "end": 5731.54, + "probability": 0.49 + }, + { + "start": 5732.14, + "end": 5734.13, + "probability": 0.9961 + }, + { + "start": 5734.44, + "end": 5737.36, + "probability": 0.9053 + }, + { + "start": 5737.4, + "end": 5739.2, + "probability": 0.9423 + }, + { + "start": 5739.71, + "end": 5743.26, + "probability": 0.9819 + }, + { + "start": 5743.64, + "end": 5748.28, + "probability": 0.996 + }, + { + "start": 5748.66, + "end": 5750.06, + "probability": 0.916 + }, + { + "start": 5750.84, + "end": 5752.36, + "probability": 0.4276 + }, + { + "start": 5752.96, + "end": 5753.82, + "probability": 0.8922 + }, + { + "start": 5753.94, + "end": 5755.66, + "probability": 0.7967 + }, + { + "start": 5755.74, + "end": 5756.98, + "probability": 0.9966 + }, + { + "start": 5758.24, + "end": 5764.32, + "probability": 0.9933 + }, + { + "start": 5764.44, + "end": 5766.26, + "probability": 0.9849 + }, + { + "start": 5766.32, + "end": 5766.66, + "probability": 0.7906 + }, + { + "start": 5767.52, + "end": 5771.72, + "probability": 0.7477 + }, + { + "start": 5772.18, + "end": 5776.0, + "probability": 0.9215 + }, + { + "start": 5776.12, + "end": 5778.06, + "probability": 0.9452 + }, + { + "start": 5797.14, + "end": 5799.83, + "probability": 0.7862 + }, + { + "start": 5803.9, + "end": 5807.12, + "probability": 0.7159 + }, + { + "start": 5807.64, + "end": 5808.52, + "probability": 0.5874 + }, + { + "start": 5813.92, + "end": 5816.36, + "probability": 0.7009 + }, + { + "start": 5826.64, + "end": 5828.58, + "probability": 0.6655 + }, + { + "start": 5829.54, + "end": 5833.32, + "probability": 0.6615 + }, + { + "start": 5834.34, + "end": 5836.52, + "probability": 0.9181 + }, + { + "start": 5837.3, + "end": 5838.99, + "probability": 0.9266 + }, + { + "start": 5841.56, + "end": 5848.0, + "probability": 0.9832 + }, + { + "start": 5848.08, + "end": 5848.9, + "probability": 0.6095 + }, + { + "start": 5849.04, + "end": 5849.52, + "probability": 0.6707 + }, + { + "start": 5850.08, + "end": 5851.68, + "probability": 0.8143 + }, + { + "start": 5853.44, + "end": 5854.34, + "probability": 0.4777 + }, + { + "start": 5855.46, + "end": 5857.0, + "probability": 0.9845 + }, + { + "start": 5857.12, + "end": 5860.14, + "probability": 0.9391 + }, + { + "start": 5860.2, + "end": 5861.16, + "probability": 0.7129 + }, + { + "start": 5861.86, + "end": 5866.98, + "probability": 0.6435 + }, + { + "start": 5867.24, + "end": 5867.56, + "probability": 0.3916 + }, + { + "start": 5867.72, + "end": 5869.24, + "probability": 0.5679 + }, + { + "start": 5869.66, + "end": 5871.32, + "probability": 0.5493 + }, + { + "start": 5872.14, + "end": 5872.72, + "probability": 0.4095 + }, + { + "start": 5872.76, + "end": 5873.94, + "probability": 0.6635 + }, + { + "start": 5874.78, + "end": 5877.76, + "probability": 0.447 + }, + { + "start": 5878.26, + "end": 5879.46, + "probability": 0.6388 + }, + { + "start": 5886.0, + "end": 5890.98, + "probability": 0.8994 + }, + { + "start": 5891.04, + "end": 5891.88, + "probability": 0.6019 + }, + { + "start": 5892.02, + "end": 5893.28, + "probability": 0.53 + }, + { + "start": 5893.36, + "end": 5894.34, + "probability": 0.9274 + }, + { + "start": 5894.78, + "end": 5895.48, + "probability": 0.5029 + }, + { + "start": 5895.72, + "end": 5896.78, + "probability": 0.9479 + }, + { + "start": 5898.6, + "end": 5898.6, + "probability": 0.0033 + }, + { + "start": 5899.14, + "end": 5899.96, + "probability": 0.1011 + }, + { + "start": 5899.96, + "end": 5903.24, + "probability": 0.6194 + }, + { + "start": 5904.16, + "end": 5905.26, + "probability": 0.8514 + }, + { + "start": 5905.44, + "end": 5906.32, + "probability": 0.4226 + }, + { + "start": 5906.5, + "end": 5907.74, + "probability": 0.8039 + }, + { + "start": 5907.94, + "end": 5910.92, + "probability": 0.8512 + }, + { + "start": 5911.58, + "end": 5912.1, + "probability": 0.6566 + }, + { + "start": 5913.08, + "end": 5914.66, + "probability": 0.1582 + }, + { + "start": 5914.82, + "end": 5915.71, + "probability": 0.6636 + }, + { + "start": 5917.46, + "end": 5919.06, + "probability": 0.6446 + }, + { + "start": 5919.46, + "end": 5920.6, + "probability": 0.7206 + }, + { + "start": 5920.7, + "end": 5924.34, + "probability": 0.1915 + }, + { + "start": 5926.43, + "end": 5928.16, + "probability": 0.7889 + }, + { + "start": 5928.3, + "end": 5930.36, + "probability": 0.8283 + }, + { + "start": 5930.72, + "end": 5931.94, + "probability": 0.2282 + }, + { + "start": 5932.04, + "end": 5934.76, + "probability": 0.0383 + }, + { + "start": 5934.88, + "end": 5936.16, + "probability": 0.7317 + }, + { + "start": 5937.0, + "end": 5937.46, + "probability": 0.2418 + }, + { + "start": 5941.72, + "end": 5945.72, + "probability": 0.456 + }, + { + "start": 5945.8, + "end": 5946.26, + "probability": 0.9011 + }, + { + "start": 5946.34, + "end": 5947.0, + "probability": 0.6332 + }, + { + "start": 5947.2, + "end": 5948.6, + "probability": 0.345 + }, + { + "start": 5948.86, + "end": 5950.26, + "probability": 0.8696 + }, + { + "start": 5951.04, + "end": 5952.38, + "probability": 0.8889 + }, + { + "start": 5952.68, + "end": 5953.57, + "probability": 0.9824 + }, + { + "start": 5954.04, + "end": 5954.9, + "probability": 0.9741 + }, + { + "start": 5958.06, + "end": 5959.16, + "probability": 0.312 + }, + { + "start": 5959.24, + "end": 5960.76, + "probability": 0.6479 + }, + { + "start": 5960.92, + "end": 5963.08, + "probability": 0.5865 + }, + { + "start": 5963.12, + "end": 5963.78, + "probability": 0.9431 + }, + { + "start": 5964.0, + "end": 5964.67, + "probability": 0.8906 + }, + { + "start": 5966.24, + "end": 5968.32, + "probability": 0.5507 + }, + { + "start": 5968.64, + "end": 5969.88, + "probability": 0.7539 + }, + { + "start": 5970.06, + "end": 5970.88, + "probability": 0.7637 + }, + { + "start": 5970.94, + "end": 5971.56, + "probability": 0.8698 + }, + { + "start": 5971.76, + "end": 5972.64, + "probability": 0.6313 + }, + { + "start": 5972.72, + "end": 5973.1, + "probability": 0.9222 + }, + { + "start": 5973.1, + "end": 5975.14, + "probability": 0.6958 + }, + { + "start": 5975.38, + "end": 5977.22, + "probability": 0.1077 + }, + { + "start": 5977.22, + "end": 5977.34, + "probability": 0.2799 + }, + { + "start": 5977.34, + "end": 5977.4, + "probability": 0.5028 + }, + { + "start": 5977.4, + "end": 5978.49, + "probability": 0.3138 + }, + { + "start": 5978.82, + "end": 5980.62, + "probability": 0.683 + }, + { + "start": 5980.94, + "end": 5982.66, + "probability": 0.6582 + }, + { + "start": 5982.76, + "end": 5984.64, + "probability": 0.7359 + }, + { + "start": 5985.2, + "end": 5987.38, + "probability": 0.2224 + }, + { + "start": 5988.66, + "end": 5989.56, + "probability": 0.4516 + }, + { + "start": 5989.68, + "end": 5991.46, + "probability": 0.4275 + }, + { + "start": 5991.56, + "end": 5992.51, + "probability": 0.905 + }, + { + "start": 5993.14, + "end": 5994.56, + "probability": 0.9918 + }, + { + "start": 5994.72, + "end": 5996.44, + "probability": 0.6647 + }, + { + "start": 5996.88, + "end": 5997.86, + "probability": 0.9543 + }, + { + "start": 5997.98, + "end": 5998.9, + "probability": 0.9384 + }, + { + "start": 5998.96, + "end": 5999.76, + "probability": 0.8679 + }, + { + "start": 5999.8, + "end": 6000.68, + "probability": 0.4779 + }, + { + "start": 6000.72, + "end": 6001.42, + "probability": 0.9563 + }, + { + "start": 6001.58, + "end": 6003.02, + "probability": 0.8804 + }, + { + "start": 6003.38, + "end": 6003.54, + "probability": 0.176 + }, + { + "start": 6003.54, + "end": 6004.3, + "probability": 0.8167 + }, + { + "start": 6005.28, + "end": 6009.36, + "probability": 0.7559 + }, + { + "start": 6009.46, + "end": 6010.94, + "probability": 0.8149 + }, + { + "start": 6011.12, + "end": 6012.48, + "probability": 0.3975 + }, + { + "start": 6012.48, + "end": 6015.01, + "probability": 0.8029 + }, + { + "start": 6015.56, + "end": 6016.9, + "probability": 0.6356 + }, + { + "start": 6016.96, + "end": 6017.32, + "probability": 0.2865 + }, + { + "start": 6017.42, + "end": 6017.42, + "probability": 0.4258 + }, + { + "start": 6017.42, + "end": 6019.67, + "probability": 0.9604 + }, + { + "start": 6020.2, + "end": 6021.4, + "probability": 0.7127 + }, + { + "start": 6022.18, + "end": 6024.92, + "probability": 0.5621 + }, + { + "start": 6025.76, + "end": 6026.86, + "probability": 0.7757 + }, + { + "start": 6027.4, + "end": 6028.28, + "probability": 0.1564 + }, + { + "start": 6028.28, + "end": 6029.05, + "probability": 0.4856 + }, + { + "start": 6029.54, + "end": 6031.42, + "probability": 0.619 + }, + { + "start": 6031.52, + "end": 6032.02, + "probability": 0.3755 + }, + { + "start": 6032.46, + "end": 6034.1, + "probability": 0.3072 + }, + { + "start": 6034.2, + "end": 6035.54, + "probability": 0.8837 + }, + { + "start": 6035.58, + "end": 6036.23, + "probability": 0.8197 + }, + { + "start": 6037.4, + "end": 6038.67, + "probability": 0.1828 + }, + { + "start": 6038.96, + "end": 6041.12, + "probability": 0.1499 + }, + { + "start": 6043.65, + "end": 6044.0, + "probability": 0.0913 + }, + { + "start": 6044.0, + "end": 6044.0, + "probability": 0.0165 + }, + { + "start": 6044.0, + "end": 6044.82, + "probability": 0.1979 + }, + { + "start": 6044.94, + "end": 6046.46, + "probability": 0.8623 + }, + { + "start": 6046.74, + "end": 6047.92, + "probability": 0.0713 + }, + { + "start": 6049.0, + "end": 6050.74, + "probability": 0.459 + }, + { + "start": 6052.66, + "end": 6052.86, + "probability": 0.0155 + }, + { + "start": 6052.86, + "end": 6052.88, + "probability": 0.0294 + }, + { + "start": 6052.88, + "end": 6052.88, + "probability": 0.4227 + }, + { + "start": 6052.88, + "end": 6052.88, + "probability": 0.3258 + }, + { + "start": 6052.88, + "end": 6052.88, + "probability": 0.2068 + }, + { + "start": 6052.88, + "end": 6054.76, + "probability": 0.6393 + }, + { + "start": 6055.08, + "end": 6056.48, + "probability": 0.7177 + }, + { + "start": 6056.76, + "end": 6057.98, + "probability": 0.7345 + }, + { + "start": 6058.92, + "end": 6059.56, + "probability": 0.6526 + }, + { + "start": 6060.6, + "end": 6061.06, + "probability": 0.8745 + }, + { + "start": 6061.38, + "end": 6062.5, + "probability": 0.9155 + }, + { + "start": 6063.08, + "end": 6064.08, + "probability": 0.8679 + }, + { + "start": 6064.12, + "end": 6066.26, + "probability": 0.7326 + }, + { + "start": 6066.76, + "end": 6067.08, + "probability": 0.6541 + }, + { + "start": 6067.14, + "end": 6067.63, + "probability": 0.7729 + }, + { + "start": 6068.34, + "end": 6073.3, + "probability": 0.7964 + }, + { + "start": 6074.48, + "end": 6075.35, + "probability": 0.3889 + }, + { + "start": 6076.73, + "end": 6080.08, + "probability": 0.4383 + }, + { + "start": 6080.08, + "end": 6082.08, + "probability": 0.7724 + }, + { + "start": 6082.32, + "end": 6082.76, + "probability": 0.8125 + }, + { + "start": 6083.72, + "end": 6086.56, + "probability": 0.4601 + }, + { + "start": 6087.6, + "end": 6089.32, + "probability": 0.058 + }, + { + "start": 6090.16, + "end": 6093.38, + "probability": 0.9216 + }, + { + "start": 6093.54, + "end": 6097.26, + "probability": 0.9494 + }, + { + "start": 6097.42, + "end": 6098.26, + "probability": 0.6955 + }, + { + "start": 6099.58, + "end": 6100.54, + "probability": 0.818 + }, + { + "start": 6101.3, + "end": 6102.27, + "probability": 0.9648 + }, + { + "start": 6106.16, + "end": 6107.8, + "probability": 0.7563 + }, + { + "start": 6111.4, + "end": 6112.5, + "probability": 0.5345 + }, + { + "start": 6112.7, + "end": 6113.92, + "probability": 0.5508 + }, + { + "start": 6114.16, + "end": 6114.52, + "probability": 0.3955 + }, + { + "start": 6114.96, + "end": 6116.14, + "probability": 0.5322 + }, + { + "start": 6116.86, + "end": 6117.1, + "probability": 0.8551 + }, + { + "start": 6117.3, + "end": 6117.7, + "probability": 0.6011 + }, + { + "start": 6117.8, + "end": 6120.3, + "probability": 0.7583 + }, + { + "start": 6120.38, + "end": 6121.12, + "probability": 0.8994 + }, + { + "start": 6121.16, + "end": 6121.82, + "probability": 0.8008 + }, + { + "start": 6121.82, + "end": 6121.92, + "probability": 0.9807 + }, + { + "start": 6122.74, + "end": 6123.52, + "probability": 0.4197 + }, + { + "start": 6123.64, + "end": 6124.52, + "probability": 0.9971 + }, + { + "start": 6124.66, + "end": 6125.01, + "probability": 0.9199 + }, + { + "start": 6125.34, + "end": 6126.0, + "probability": 0.2585 + }, + { + "start": 6126.16, + "end": 6126.98, + "probability": 0.8148 + }, + { + "start": 6128.62, + "end": 6130.07, + "probability": 0.9553 + }, + { + "start": 6132.69, + "end": 6136.2, + "probability": 0.8241 + }, + { + "start": 6139.76, + "end": 6143.28, + "probability": 0.096 + }, + { + "start": 6144.42, + "end": 6148.54, + "probability": 0.9376 + }, + { + "start": 6148.92, + "end": 6149.44, + "probability": 0.521 + }, + { + "start": 6150.0, + "end": 6152.5, + "probability": 0.8027 + }, + { + "start": 6156.44, + "end": 6156.98, + "probability": 0.5465 + }, + { + "start": 6159.4, + "end": 6161.58, + "probability": 0.549 + }, + { + "start": 6161.72, + "end": 6167.12, + "probability": 0.9615 + }, + { + "start": 6167.12, + "end": 6171.28, + "probability": 0.9705 + }, + { + "start": 6175.48, + "end": 6176.6, + "probability": 0.4147 + }, + { + "start": 6178.38, + "end": 6179.92, + "probability": 0.6714 + }, + { + "start": 6180.02, + "end": 6181.92, + "probability": 0.8872 + }, + { + "start": 6182.74, + "end": 6184.87, + "probability": 0.8721 + }, + { + "start": 6185.52, + "end": 6188.26, + "probability": 0.7383 + }, + { + "start": 6188.8, + "end": 6189.76, + "probability": 0.9626 + }, + { + "start": 6191.02, + "end": 6192.96, + "probability": 0.7574 + }, + { + "start": 6193.16, + "end": 6193.78, + "probability": 0.3564 + }, + { + "start": 6193.78, + "end": 6196.48, + "probability": 0.8137 + }, + { + "start": 6196.84, + "end": 6199.86, + "probability": 0.7925 + }, + { + "start": 6199.98, + "end": 6203.98, + "probability": 0.8818 + }, + { + "start": 6204.8, + "end": 6207.63, + "probability": 0.6172 + }, + { + "start": 6208.34, + "end": 6209.2, + "probability": 0.6766 + }, + { + "start": 6209.5, + "end": 6210.9, + "probability": 0.6969 + }, + { + "start": 6210.98, + "end": 6212.02, + "probability": 0.6573 + }, + { + "start": 6212.5, + "end": 6213.9, + "probability": 0.7933 + }, + { + "start": 6214.5, + "end": 6217.16, + "probability": 0.9354 + }, + { + "start": 6217.9, + "end": 6219.7, + "probability": 0.9564 + }, + { + "start": 6219.84, + "end": 6225.48, + "probability": 0.7665 + }, + { + "start": 6228.74, + "end": 6232.6, + "probability": 0.9773 + }, + { + "start": 6233.42, + "end": 6237.9, + "probability": 0.9913 + }, + { + "start": 6238.58, + "end": 6242.58, + "probability": 0.9746 + }, + { + "start": 6243.16, + "end": 6244.77, + "probability": 0.9858 + }, + { + "start": 6245.38, + "end": 6248.78, + "probability": 0.9913 + }, + { + "start": 6249.46, + "end": 6254.08, + "probability": 0.9941 + }, + { + "start": 6254.58, + "end": 6256.02, + "probability": 0.9548 + }, + { + "start": 6256.12, + "end": 6258.64, + "probability": 0.8429 + }, + { + "start": 6259.3, + "end": 6264.74, + "probability": 0.9813 + }, + { + "start": 6265.48, + "end": 6270.94, + "probability": 0.9761 + }, + { + "start": 6271.7, + "end": 6276.04, + "probability": 0.4678 + }, + { + "start": 6276.9, + "end": 6277.26, + "probability": 0.2007 + }, + { + "start": 6277.26, + "end": 6277.26, + "probability": 0.1432 + }, + { + "start": 6277.26, + "end": 6278.94, + "probability": 0.9131 + }, + { + "start": 6279.68, + "end": 6281.86, + "probability": 0.9344 + }, + { + "start": 6282.7, + "end": 6285.96, + "probability": 0.9453 + }, + { + "start": 6286.04, + "end": 6290.5, + "probability": 0.8831 + }, + { + "start": 6291.06, + "end": 6291.9, + "probability": 0.7023 + }, + { + "start": 6291.98, + "end": 6293.8, + "probability": 0.8375 + }, + { + "start": 6294.58, + "end": 6297.22, + "probability": 0.8668 + }, + { + "start": 6297.74, + "end": 6303.38, + "probability": 0.8875 + }, + { + "start": 6304.08, + "end": 6310.78, + "probability": 0.9851 + }, + { + "start": 6311.64, + "end": 6313.86, + "probability": 0.735 + }, + { + "start": 6314.86, + "end": 6318.2, + "probability": 0.9907 + }, + { + "start": 6318.2, + "end": 6323.58, + "probability": 0.998 + }, + { + "start": 6324.3, + "end": 6325.73, + "probability": 0.8417 + }, + { + "start": 6326.94, + "end": 6328.96, + "probability": 0.9427 + }, + { + "start": 6329.6, + "end": 6335.68, + "probability": 0.9963 + }, + { + "start": 6336.54, + "end": 6339.74, + "probability": 0.9757 + }, + { + "start": 6339.74, + "end": 6341.84, + "probability": 0.7759 + }, + { + "start": 6342.82, + "end": 6345.94, + "probability": 0.8623 + }, + { + "start": 6347.08, + "end": 6348.32, + "probability": 0.4345 + }, + { + "start": 6349.1, + "end": 6355.54, + "probability": 0.9542 + }, + { + "start": 6356.94, + "end": 6357.83, + "probability": 0.9239 + }, + { + "start": 6360.26, + "end": 6362.38, + "probability": 0.9788 + }, + { + "start": 6363.38, + "end": 6368.3, + "probability": 0.9814 + }, + { + "start": 6368.88, + "end": 6370.48, + "probability": 0.8071 + }, + { + "start": 6370.66, + "end": 6371.04, + "probability": 0.6457 + }, + { + "start": 6371.74, + "end": 6375.7, + "probability": 0.5749 + }, + { + "start": 6375.8, + "end": 6378.14, + "probability": 0.8161 + }, + { + "start": 6378.3, + "end": 6378.98, + "probability": 0.7725 + }, + { + "start": 6379.06, + "end": 6380.04, + "probability": 0.8131 + }, + { + "start": 6380.26, + "end": 6381.44, + "probability": 0.9775 + }, + { + "start": 6381.94, + "end": 6384.26, + "probability": 0.6622 + }, + { + "start": 6384.3, + "end": 6387.0, + "probability": 0.5486 + }, + { + "start": 6387.24, + "end": 6389.62, + "probability": 0.8537 + }, + { + "start": 6389.88, + "end": 6393.34, + "probability": 0.9545 + }, + { + "start": 6393.42, + "end": 6394.52, + "probability": 0.7593 + }, + { + "start": 6394.98, + "end": 6395.82, + "probability": 0.6297 + }, + { + "start": 6396.36, + "end": 6397.4, + "probability": 0.704 + }, + { + "start": 6398.24, + "end": 6401.2, + "probability": 0.1536 + }, + { + "start": 6401.94, + "end": 6402.14, + "probability": 0.0053 + }, + { + "start": 6406.74, + "end": 6408.18, + "probability": 0.0103 + }, + { + "start": 6410.88, + "end": 6415.26, + "probability": 0.0691 + }, + { + "start": 6417.08, + "end": 6417.7, + "probability": 0.0876 + }, + { + "start": 6417.7, + "end": 6418.5, + "probability": 0.3278 + }, + { + "start": 6419.02, + "end": 6421.8, + "probability": 0.4482 + }, + { + "start": 6421.88, + "end": 6427.44, + "probability": 0.804 + }, + { + "start": 6427.54, + "end": 6432.44, + "probability": 0.8656 + }, + { + "start": 6432.5, + "end": 6433.6, + "probability": 0.6676 + }, + { + "start": 6433.62, + "end": 6433.76, + "probability": 0.2041 + }, + { + "start": 6433.76, + "end": 6434.36, + "probability": 0.5317 + }, + { + "start": 6434.52, + "end": 6435.2, + "probability": 0.6495 + }, + { + "start": 6436.9, + "end": 6438.8, + "probability": 0.178 + }, + { + "start": 6439.48, + "end": 6440.44, + "probability": 0.7983 + }, + { + "start": 6443.94, + "end": 6445.76, + "probability": 0.6372 + }, + { + "start": 6445.84, + "end": 6447.16, + "probability": 0.918 + }, + { + "start": 6447.22, + "end": 6449.4, + "probability": 0.8195 + }, + { + "start": 6449.74, + "end": 6454.62, + "probability": 0.8306 + }, + { + "start": 6456.28, + "end": 6460.44, + "probability": 0.6815 + }, + { + "start": 6460.52, + "end": 6461.52, + "probability": 0.6755 + }, + { + "start": 6465.12, + "end": 6467.04, + "probability": 0.6625 + }, + { + "start": 6467.2, + "end": 6469.68, + "probability": 0.4316 + }, + { + "start": 6470.0, + "end": 6475.38, + "probability": 0.8489 + }, + { + "start": 6475.64, + "end": 6477.14, + "probability": 0.8615 + }, + { + "start": 6480.54, + "end": 6483.43, + "probability": 0.7943 + }, + { + "start": 6496.78, + "end": 6498.64, + "probability": 0.2817 + }, + { + "start": 6498.64, + "end": 6500.74, + "probability": 0.7527 + }, + { + "start": 6501.38, + "end": 6502.6, + "probability": 0.7721 + }, + { + "start": 6503.04, + "end": 6509.62, + "probability": 0.8982 + }, + { + "start": 6511.61, + "end": 6514.06, + "probability": 0.8392 + }, + { + "start": 6516.74, + "end": 6517.82, + "probability": 0.7334 + }, + { + "start": 6518.5, + "end": 6520.34, + "probability": 0.7801 + }, + { + "start": 6520.36, + "end": 6523.12, + "probability": 0.9941 + }, + { + "start": 6523.4, + "end": 6528.58, + "probability": 0.9861 + }, + { + "start": 6528.72, + "end": 6532.42, + "probability": 0.8943 + }, + { + "start": 6534.02, + "end": 6536.62, + "probability": 0.9961 + }, + { + "start": 6537.68, + "end": 6546.16, + "probability": 0.9932 + }, + { + "start": 6546.26, + "end": 6546.76, + "probability": 0.7115 + }, + { + "start": 6546.76, + "end": 6547.55, + "probability": 0.6123 + }, + { + "start": 6547.88, + "end": 6549.4, + "probability": 0.8818 + }, + { + "start": 6549.82, + "end": 6552.42, + "probability": 0.8596 + }, + { + "start": 6552.68, + "end": 6554.3, + "probability": 0.4949 + }, + { + "start": 6554.62, + "end": 6557.32, + "probability": 0.6826 + }, + { + "start": 6557.5, + "end": 6558.69, + "probability": 0.6962 + }, + { + "start": 6559.36, + "end": 6564.78, + "probability": 0.9951 + }, + { + "start": 6565.4, + "end": 6569.42, + "probability": 0.9974 + }, + { + "start": 6569.62, + "end": 6573.7, + "probability": 0.758 + }, + { + "start": 6574.78, + "end": 6576.24, + "probability": 0.8241 + }, + { + "start": 6582.13, + "end": 6585.46, + "probability": 0.7035 + }, + { + "start": 6585.62, + "end": 6589.84, + "probability": 0.8837 + }, + { + "start": 6589.88, + "end": 6591.62, + "probability": 0.9134 + }, + { + "start": 6597.45, + "end": 6604.06, + "probability": 0.9982 + }, + { + "start": 6604.22, + "end": 6608.04, + "probability": 0.9889 + }, + { + "start": 6608.12, + "end": 6609.16, + "probability": 0.7571 + }, + { + "start": 6609.56, + "end": 6614.79, + "probability": 0.9935 + }, + { + "start": 6614.96, + "end": 6618.12, + "probability": 0.9153 + }, + { + "start": 6618.28, + "end": 6623.33, + "probability": 0.9932 + }, + { + "start": 6623.94, + "end": 6626.83, + "probability": 0.999 + }, + { + "start": 6628.0, + "end": 6630.34, + "probability": 0.9951 + }, + { + "start": 6630.34, + "end": 6632.92, + "probability": 0.9977 + }, + { + "start": 6633.42, + "end": 6636.22, + "probability": 0.8327 + }, + { + "start": 6636.22, + "end": 6638.62, + "probability": 0.9633 + }, + { + "start": 6639.1, + "end": 6641.87, + "probability": 0.8828 + }, + { + "start": 6642.32, + "end": 6643.3, + "probability": 0.569 + }, + { + "start": 6643.42, + "end": 6644.02, + "probability": 0.7686 + }, + { + "start": 6644.06, + "end": 6644.62, + "probability": 0.6553 + }, + { + "start": 6646.08, + "end": 6647.88, + "probability": 0.9512 + }, + { + "start": 6648.7, + "end": 6651.32, + "probability": 0.2604 + }, + { + "start": 6651.78, + "end": 6655.04, + "probability": 0.9969 + }, + { + "start": 6655.04, + "end": 6658.52, + "probability": 0.9475 + }, + { + "start": 6659.48, + "end": 6660.58, + "probability": 0.9976 + }, + { + "start": 6660.84, + "end": 6663.39, + "probability": 0.9429 + }, + { + "start": 6663.92, + "end": 6669.46, + "probability": 0.9946 + }, + { + "start": 6669.52, + "end": 6671.67, + "probability": 0.9968 + }, + { + "start": 6672.0, + "end": 6673.06, + "probability": 0.9558 + }, + { + "start": 6673.6, + "end": 6676.96, + "probability": 0.9606 + }, + { + "start": 6677.24, + "end": 6680.32, + "probability": 0.8174 + }, + { + "start": 6680.38, + "end": 6682.32, + "probability": 0.9866 + }, + { + "start": 6682.62, + "end": 6685.01, + "probability": 0.9481 + }, + { + "start": 6685.42, + "end": 6686.76, + "probability": 0.9612 + }, + { + "start": 6686.84, + "end": 6689.58, + "probability": 0.7501 + }, + { + "start": 6689.92, + "end": 6691.52, + "probability": 0.8959 + }, + { + "start": 6691.58, + "end": 6692.24, + "probability": 0.7131 + }, + { + "start": 6692.6, + "end": 6696.16, + "probability": 0.9097 + }, + { + "start": 6697.02, + "end": 6702.06, + "probability": 0.8047 + }, + { + "start": 6717.6, + "end": 6719.88, + "probability": 0.7304 + }, + { + "start": 6720.48, + "end": 6722.31, + "probability": 0.8096 + }, + { + "start": 6723.18, + "end": 6726.82, + "probability": 0.9908 + }, + { + "start": 6727.96, + "end": 6728.72, + "probability": 0.8169 + }, + { + "start": 6728.92, + "end": 6731.8, + "probability": 0.979 + }, + { + "start": 6732.32, + "end": 6738.68, + "probability": 0.8348 + }, + { + "start": 6739.58, + "end": 6742.54, + "probability": 0.7805 + }, + { + "start": 6742.54, + "end": 6748.18, + "probability": 0.8095 + }, + { + "start": 6749.04, + "end": 6752.42, + "probability": 0.8904 + }, + { + "start": 6752.42, + "end": 6756.46, + "probability": 0.9639 + }, + { + "start": 6756.92, + "end": 6760.74, + "probability": 0.959 + }, + { + "start": 6761.18, + "end": 6763.9, + "probability": 0.5966 + }, + { + "start": 6764.12, + "end": 6766.88, + "probability": 0.3929 + }, + { + "start": 6767.6, + "end": 6768.32, + "probability": 0.5164 + }, + { + "start": 6768.74, + "end": 6772.78, + "probability": 0.9565 + }, + { + "start": 6773.18, + "end": 6777.84, + "probability": 0.9951 + }, + { + "start": 6778.1, + "end": 6783.42, + "probability": 0.9205 + }, + { + "start": 6783.68, + "end": 6785.6, + "probability": 0.9325 + }, + { + "start": 6785.78, + "end": 6787.88, + "probability": 0.7683 + }, + { + "start": 6788.24, + "end": 6790.28, + "probability": 0.7047 + }, + { + "start": 6790.72, + "end": 6792.04, + "probability": 0.5469 + }, + { + "start": 6792.78, + "end": 6797.06, + "probability": 0.89 + }, + { + "start": 6797.7, + "end": 6800.74, + "probability": 0.8939 + }, + { + "start": 6801.24, + "end": 6803.72, + "probability": 0.9897 + }, + { + "start": 6803.94, + "end": 6808.5, + "probability": 0.9881 + }, + { + "start": 6808.5, + "end": 6815.8, + "probability": 0.9554 + }, + { + "start": 6815.86, + "end": 6818.04, + "probability": 0.932 + }, + { + "start": 6818.52, + "end": 6820.76, + "probability": 0.9798 + }, + { + "start": 6821.56, + "end": 6827.2, + "probability": 0.9402 + }, + { + "start": 6828.2, + "end": 6829.42, + "probability": 0.7792 + }, + { + "start": 6829.92, + "end": 6832.44, + "probability": 0.7706 + }, + { + "start": 6833.46, + "end": 6835.5, + "probability": 0.9297 + }, + { + "start": 6835.92, + "end": 6839.52, + "probability": 0.8018 + }, + { + "start": 6839.78, + "end": 6844.32, + "probability": 0.9656 + }, + { + "start": 6845.36, + "end": 6854.2, + "probability": 0.9565 + }, + { + "start": 6854.88, + "end": 6865.82, + "probability": 0.9051 + }, + { + "start": 6866.48, + "end": 6869.56, + "probability": 0.8027 + }, + { + "start": 6870.04, + "end": 6871.56, + "probability": 0.8017 + }, + { + "start": 6871.72, + "end": 6873.72, + "probability": 0.6659 + }, + { + "start": 6874.28, + "end": 6878.36, + "probability": 0.7658 + }, + { + "start": 6880.14, + "end": 6882.82, + "probability": 0.3986 + }, + { + "start": 6883.52, + "end": 6886.76, + "probability": 0.1828 + }, + { + "start": 6887.72, + "end": 6890.08, + "probability": 0.6406 + }, + { + "start": 6890.8, + "end": 6896.74, + "probability": 0.4839 + }, + { + "start": 6898.57, + "end": 6907.72, + "probability": 0.8425 + }, + { + "start": 6907.86, + "end": 6912.76, + "probability": 0.8728 + }, + { + "start": 6913.2, + "end": 6913.96, + "probability": 0.7623 + }, + { + "start": 6914.12, + "end": 6917.24, + "probability": 0.9954 + }, + { + "start": 6917.62, + "end": 6919.16, + "probability": 0.9083 + }, + { + "start": 6919.64, + "end": 6925.4, + "probability": 0.9844 + }, + { + "start": 6926.0, + "end": 6930.84, + "probability": 0.9749 + }, + { + "start": 6931.36, + "end": 6938.04, + "probability": 0.955 + }, + { + "start": 6938.14, + "end": 6941.16, + "probability": 0.9271 + }, + { + "start": 6941.58, + "end": 6942.56, + "probability": 0.8896 + }, + { + "start": 6942.96, + "end": 6946.38, + "probability": 0.6801 + }, + { + "start": 6947.04, + "end": 6952.56, + "probability": 0.7925 + }, + { + "start": 6953.1, + "end": 6960.0, + "probability": 0.9655 + }, + { + "start": 6961.24, + "end": 6962.66, + "probability": 0.6667 + }, + { + "start": 6963.16, + "end": 6965.38, + "probability": 0.9502 + }, + { + "start": 6965.62, + "end": 6975.92, + "probability": 0.7809 + }, + { + "start": 6975.92, + "end": 6984.88, + "probability": 0.9849 + }, + { + "start": 6984.98, + "end": 6994.68, + "probability": 0.9961 + }, + { + "start": 6995.2, + "end": 7001.0, + "probability": 0.8374 + }, + { + "start": 7001.56, + "end": 7007.8, + "probability": 0.478 + }, + { + "start": 7008.5, + "end": 7010.32, + "probability": 0.8231 + }, + { + "start": 7010.7, + "end": 7015.34, + "probability": 0.9496 + }, + { + "start": 7015.58, + "end": 7016.88, + "probability": 0.9352 + }, + { + "start": 7017.38, + "end": 7018.56, + "probability": 0.6652 + }, + { + "start": 7018.92, + "end": 7020.46, + "probability": 0.8754 + }, + { + "start": 7020.72, + "end": 7025.46, + "probability": 0.9938 + }, + { + "start": 7026.1, + "end": 7027.28, + "probability": 0.775 + }, + { + "start": 7027.86, + "end": 7029.4, + "probability": 0.643 + }, + { + "start": 7029.56, + "end": 7033.0, + "probability": 0.7504 + }, + { + "start": 7033.16, + "end": 7037.82, + "probability": 0.5971 + }, + { + "start": 7039.02, + "end": 7041.34, + "probability": 0.824 + }, + { + "start": 7041.88, + "end": 7045.66, + "probability": 0.8274 + }, + { + "start": 7046.24, + "end": 7050.84, + "probability": 0.6686 + }, + { + "start": 7051.8, + "end": 7057.94, + "probability": 0.905 + }, + { + "start": 7057.94, + "end": 7063.74, + "probability": 0.9931 + }, + { + "start": 7064.62, + "end": 7070.7, + "probability": 0.7944 + }, + { + "start": 7070.76, + "end": 7072.29, + "probability": 0.5651 + }, + { + "start": 7073.0, + "end": 7081.28, + "probability": 0.9946 + }, + { + "start": 7082.2, + "end": 7087.36, + "probability": 0.8496 + }, + { + "start": 7087.58, + "end": 7090.7, + "probability": 0.5939 + }, + { + "start": 7090.8, + "end": 7091.74, + "probability": 0.9008 + }, + { + "start": 7092.18, + "end": 7098.96, + "probability": 0.9628 + }, + { + "start": 7099.6, + "end": 7102.8, + "probability": 0.9624 + }, + { + "start": 7103.18, + "end": 7110.62, + "probability": 0.9731 + }, + { + "start": 7111.54, + "end": 7115.52, + "probability": 0.8826 + }, + { + "start": 7116.1, + "end": 7116.52, + "probability": 0.4654 + }, + { + "start": 7116.88, + "end": 7123.52, + "probability": 0.9714 + }, + { + "start": 7123.52, + "end": 7129.72, + "probability": 0.9927 + }, + { + "start": 7130.0, + "end": 7133.12, + "probability": 0.855 + }, + { + "start": 7133.26, + "end": 7135.24, + "probability": 0.7229 + }, + { + "start": 7135.66, + "end": 7138.28, + "probability": 0.5489 + }, + { + "start": 7138.28, + "end": 7143.64, + "probability": 0.9763 + }, + { + "start": 7143.9, + "end": 7147.88, + "probability": 0.9618 + }, + { + "start": 7148.1, + "end": 7149.6, + "probability": 0.9442 + }, + { + "start": 7149.92, + "end": 7153.74, + "probability": 0.9875 + }, + { + "start": 7154.1, + "end": 7154.96, + "probability": 0.6544 + }, + { + "start": 7155.62, + "end": 7159.64, + "probability": 0.9414 + }, + { + "start": 7160.18, + "end": 7161.6, + "probability": 0.9336 + }, + { + "start": 7161.92, + "end": 7162.86, + "probability": 0.1887 + }, + { + "start": 7163.34, + "end": 7165.36, + "probability": 0.9614 + }, + { + "start": 7165.54, + "end": 7168.56, + "probability": 0.9718 + }, + { + "start": 7169.16, + "end": 7181.5, + "probability": 0.7092 + }, + { + "start": 7181.54, + "end": 7181.66, + "probability": 0.2099 + }, + { + "start": 7181.72, + "end": 7188.68, + "probability": 0.9818 + }, + { + "start": 7189.34, + "end": 7191.92, + "probability": 0.9934 + }, + { + "start": 7192.14, + "end": 7195.74, + "probability": 0.8771 + }, + { + "start": 7196.08, + "end": 7196.08, + "probability": 0.5386 + }, + { + "start": 7196.24, + "end": 7197.76, + "probability": 0.9484 + }, + { + "start": 7197.98, + "end": 7200.92, + "probability": 0.9744 + }, + { + "start": 7201.38, + "end": 7204.24, + "probability": 0.984 + }, + { + "start": 7204.8, + "end": 7207.66, + "probability": 0.5399 + }, + { + "start": 7208.06, + "end": 7208.94, + "probability": 0.9137 + }, + { + "start": 7209.0, + "end": 7211.08, + "probability": 0.8517 + }, + { + "start": 7211.26, + "end": 7212.33, + "probability": 0.8662 + }, + { + "start": 7213.46, + "end": 7216.12, + "probability": 0.8513 + }, + { + "start": 7216.22, + "end": 7221.04, + "probability": 0.6713 + }, + { + "start": 7221.2, + "end": 7222.96, + "probability": 0.4654 + }, + { + "start": 7223.7, + "end": 7227.34, + "probability": 0.7343 + }, + { + "start": 7228.08, + "end": 7229.79, + "probability": 0.7487 + }, + { + "start": 7230.24, + "end": 7232.56, + "probability": 0.5825 + }, + { + "start": 7233.8, + "end": 7237.84, + "probability": 0.2189 + }, + { + "start": 7238.84, + "end": 7243.38, + "probability": 0.3436 + }, + { + "start": 7243.5, + "end": 7243.96, + "probability": 0.0699 + }, + { + "start": 7249.96, + "end": 7250.92, + "probability": 0.0487 + }, + { + "start": 7251.88, + "end": 7252.46, + "probability": 0.0807 + }, + { + "start": 7252.46, + "end": 7255.28, + "probability": 0.2553 + }, + { + "start": 7255.88, + "end": 7259.42, + "probability": 0.9329 + }, + { + "start": 7259.42, + "end": 7263.18, + "probability": 0.9903 + }, + { + "start": 7266.41, + "end": 7272.14, + "probability": 0.7989 + }, + { + "start": 7272.5, + "end": 7274.02, + "probability": 0.8507 + }, + { + "start": 7274.42, + "end": 7275.59, + "probability": 0.9917 + }, + { + "start": 7276.48, + "end": 7278.64, + "probability": 0.7443 + }, + { + "start": 7278.9, + "end": 7281.74, + "probability": 0.8948 + }, + { + "start": 7281.94, + "end": 7283.24, + "probability": 0.6455 + }, + { + "start": 7283.98, + "end": 7285.88, + "probability": 0.9487 + }, + { + "start": 7288.64, + "end": 7292.78, + "probability": 0.8604 + }, + { + "start": 7301.67, + "end": 7303.92, + "probability": 0.3345 + }, + { + "start": 7303.92, + "end": 7304.52, + "probability": 0.5407 + }, + { + "start": 7305.46, + "end": 7313.48, + "probability": 0.8038 + }, + { + "start": 7313.82, + "end": 7314.9, + "probability": 0.4619 + }, + { + "start": 7315.42, + "end": 7317.04, + "probability": 0.9915 + }, + { + "start": 7317.24, + "end": 7318.08, + "probability": 0.4362 + }, + { + "start": 7328.44, + "end": 7333.43, + "probability": 0.788 + }, + { + "start": 7335.22, + "end": 7335.84, + "probability": 0.729 + }, + { + "start": 7336.12, + "end": 7337.14, + "probability": 0.6493 + }, + { + "start": 7337.2, + "end": 7339.26, + "probability": 0.687 + }, + { + "start": 7339.64, + "end": 7343.2, + "probability": 0.7188 + }, + { + "start": 7343.32, + "end": 7347.44, + "probability": 0.8281 + }, + { + "start": 7348.02, + "end": 7348.6, + "probability": 0.4234 + }, + { + "start": 7348.94, + "end": 7355.16, + "probability": 0.897 + }, + { + "start": 7355.92, + "end": 7356.84, + "probability": 0.6473 + }, + { + "start": 7357.54, + "end": 7366.24, + "probability": 0.8918 + }, + { + "start": 7366.24, + "end": 7371.86, + "probability": 0.9831 + }, + { + "start": 7371.98, + "end": 7373.48, + "probability": 0.9215 + }, + { + "start": 7374.2, + "end": 7374.88, + "probability": 0.6245 + }, + { + "start": 7375.0, + "end": 7375.66, + "probability": 0.7366 + }, + { + "start": 7375.86, + "end": 7379.8, + "probability": 0.8535 + }, + { + "start": 7379.8, + "end": 7382.98, + "probability": 0.9639 + }, + { + "start": 7383.26, + "end": 7388.42, + "probability": 0.9908 + }, + { + "start": 7389.4, + "end": 7392.26, + "probability": 0.9972 + }, + { + "start": 7392.26, + "end": 7397.86, + "probability": 0.9956 + }, + { + "start": 7398.8, + "end": 7403.06, + "probability": 0.9958 + }, + { + "start": 7403.58, + "end": 7406.28, + "probability": 0.9985 + }, + { + "start": 7406.7, + "end": 7412.2, + "probability": 0.9818 + }, + { + "start": 7412.2, + "end": 7418.7, + "probability": 0.9815 + }, + { + "start": 7419.28, + "end": 7422.1, + "probability": 0.9902 + }, + { + "start": 7422.96, + "end": 7428.16, + "probability": 0.9885 + }, + { + "start": 7428.22, + "end": 7429.86, + "probability": 0.6692 + }, + { + "start": 7430.64, + "end": 7432.06, + "probability": 0.9601 + }, + { + "start": 7432.34, + "end": 7438.0, + "probability": 0.9333 + }, + { + "start": 7438.72, + "end": 7444.16, + "probability": 0.9808 + }, + { + "start": 7444.16, + "end": 7450.32, + "probability": 0.9941 + }, + { + "start": 7450.4, + "end": 7455.12, + "probability": 0.954 + }, + { + "start": 7455.12, + "end": 7460.84, + "probability": 0.9796 + }, + { + "start": 7461.02, + "end": 7465.2, + "probability": 0.9263 + }, + { + "start": 7465.88, + "end": 7469.66, + "probability": 0.9153 + }, + { + "start": 7470.18, + "end": 7474.82, + "probability": 0.8677 + }, + { + "start": 7475.24, + "end": 7475.88, + "probability": 0.7481 + }, + { + "start": 7476.08, + "end": 7481.78, + "probability": 0.9937 + }, + { + "start": 7482.66, + "end": 7485.5, + "probability": 0.9514 + }, + { + "start": 7486.08, + "end": 7489.82, + "probability": 0.8179 + }, + { + "start": 7489.94, + "end": 7493.24, + "probability": 0.9705 + }, + { + "start": 7494.71, + "end": 7499.78, + "probability": 0.9636 + }, + { + "start": 7500.82, + "end": 7505.6, + "probability": 0.9648 + }, + { + "start": 7505.64, + "end": 7506.16, + "probability": 0.9723 + }, + { + "start": 7507.02, + "end": 7508.82, + "probability": 0.9901 + }, + { + "start": 7508.9, + "end": 7509.92, + "probability": 0.7701 + }, + { + "start": 7510.06, + "end": 7510.84, + "probability": 0.7374 + }, + { + "start": 7510.92, + "end": 7511.88, + "probability": 0.8232 + }, + { + "start": 7512.38, + "end": 7513.82, + "probability": 0.9685 + }, + { + "start": 7513.88, + "end": 7516.04, + "probability": 0.9875 + }, + { + "start": 7517.08, + "end": 7522.18, + "probability": 0.9855 + }, + { + "start": 7522.44, + "end": 7526.76, + "probability": 0.7756 + }, + { + "start": 7526.8, + "end": 7527.46, + "probability": 0.7223 + }, + { + "start": 7528.0, + "end": 7531.1, + "probability": 0.9757 + }, + { + "start": 7531.14, + "end": 7534.6, + "probability": 0.9761 + }, + { + "start": 7535.74, + "end": 7538.62, + "probability": 0.0534 + }, + { + "start": 7540.58, + "end": 7541.88, + "probability": 0.083 + }, + { + "start": 7541.88, + "end": 7542.4, + "probability": 0.6494 + }, + { + "start": 7542.56, + "end": 7542.88, + "probability": 0.5639 + }, + { + "start": 7542.98, + "end": 7544.56, + "probability": 0.8738 + }, + { + "start": 7545.02, + "end": 7548.2, + "probability": 0.9814 + }, + { + "start": 7548.22, + "end": 7548.76, + "probability": 0.4079 + }, + { + "start": 7548.92, + "end": 7549.01, + "probability": 0.8857 + }, + { + "start": 7550.52, + "end": 7552.64, + "probability": 0.0457 + }, + { + "start": 7555.1, + "end": 7555.66, + "probability": 0.054 + }, + { + "start": 7555.9, + "end": 7556.66, + "probability": 0.1008 + }, + { + "start": 7557.82, + "end": 7563.7, + "probability": 0.0456 + }, + { + "start": 7564.44, + "end": 7576.84, + "probability": 0.0207 + }, + { + "start": 7576.84, + "end": 7579.06, + "probability": 0.1182 + }, + { + "start": 7580.9, + "end": 7581.78, + "probability": 0.0664 + }, + { + "start": 7582.18, + "end": 7586.0, + "probability": 0.0258 + }, + { + "start": 7586.5, + "end": 7588.96, + "probability": 0.0691 + }, + { + "start": 7600.24, + "end": 7602.52, + "probability": 0.0075 + }, + { + "start": 7602.52, + "end": 7609.4, + "probability": 0.019 + }, + { + "start": 7610.1, + "end": 7614.15, + "probability": 0.0578 + }, + { + "start": 7614.22, + "end": 7616.94, + "probability": 0.1499 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7691.0, + "end": 7691.0, + "probability": 0.0 + }, + { + "start": 7707.08, + "end": 7711.08, + "probability": 0.6044 + }, + { + "start": 7711.64, + "end": 7713.58, + "probability": 0.8665 + }, + { + "start": 7714.26, + "end": 7715.74, + "probability": 0.7442 + }, + { + "start": 7716.28, + "end": 7721.08, + "probability": 0.5084 + }, + { + "start": 7721.08, + "end": 7722.98, + "probability": 0.5783 + }, + { + "start": 7723.26, + "end": 7727.94, + "probability": 0.0461 + }, + { + "start": 7728.28, + "end": 7730.26, + "probability": 0.6509 + }, + { + "start": 7730.64, + "end": 7731.86, + "probability": 0.4892 + }, + { + "start": 7732.52, + "end": 7733.3, + "probability": 0.2857 + }, + { + "start": 7733.46, + "end": 7734.62, + "probability": 0.1555 + }, + { + "start": 7735.9, + "end": 7736.3, + "probability": 0.4141 + }, + { + "start": 7736.84, + "end": 7738.08, + "probability": 0.7181 + }, + { + "start": 7738.08, + "end": 7739.7, + "probability": 0.7797 + }, + { + "start": 7739.84, + "end": 7741.08, + "probability": 0.4725 + }, + { + "start": 7741.64, + "end": 7743.18, + "probability": 0.8447 + }, + { + "start": 7743.38, + "end": 7744.82, + "probability": 0.6556 + }, + { + "start": 7746.18, + "end": 7748.3, + "probability": 0.8416 + }, + { + "start": 7748.5, + "end": 7749.1, + "probability": 0.6798 + }, + { + "start": 7749.16, + "end": 7750.1, + "probability": 0.6684 + }, + { + "start": 7758.9, + "end": 7761.48, + "probability": 0.089 + }, + { + "start": 7761.48, + "end": 7761.98, + "probability": 0.0525 + }, + { + "start": 7762.4, + "end": 7762.4, + "probability": 0.0208 + }, + { + "start": 7762.4, + "end": 7763.5, + "probability": 0.6376 + }, + { + "start": 7763.58, + "end": 7764.6, + "probability": 0.741 + }, + { + "start": 7769.34, + "end": 7770.34, + "probability": 0.0254 + }, + { + "start": 7770.9, + "end": 7773.7, + "probability": 0.6611 + }, + { + "start": 7773.72, + "end": 7776.64, + "probability": 0.7208 + }, + { + "start": 7776.7, + "end": 7780.5, + "probability": 0.858 + }, + { + "start": 7785.28, + "end": 7785.8, + "probability": 0.6945 + }, + { + "start": 7786.02, + "end": 7790.8, + "probability": 0.7928 + }, + { + "start": 7790.92, + "end": 7793.18, + "probability": 0.9043 + }, + { + "start": 7794.38, + "end": 7797.28, + "probability": 0.8835 + }, + { + "start": 7797.32, + "end": 7798.04, + "probability": 0.6863 + }, + { + "start": 7798.28, + "end": 7801.3, + "probability": 0.6325 + }, + { + "start": 7801.42, + "end": 7803.58, + "probability": 0.5695 + }, + { + "start": 7803.62, + "end": 7804.28, + "probability": 0.4989 + }, + { + "start": 7810.04, + "end": 7815.04, + "probability": 0.7666 + }, + { + "start": 7823.88, + "end": 7826.1, + "probability": 0.6189 + }, + { + "start": 7826.28, + "end": 7827.3, + "probability": 0.0656 + }, + { + "start": 7827.92, + "end": 7830.64, + "probability": 0.715 + }, + { + "start": 7832.22, + "end": 7836.14, + "probability": 0.9617 + }, + { + "start": 7837.76, + "end": 7846.22, + "probability": 0.9858 + }, + { + "start": 7847.16, + "end": 7860.38, + "probability": 0.9719 + }, + { + "start": 7861.1, + "end": 7863.61, + "probability": 0.838 + }, + { + "start": 7866.22, + "end": 7868.7, + "probability": 0.7631 + }, + { + "start": 7869.84, + "end": 7871.36, + "probability": 0.9203 + }, + { + "start": 7872.0, + "end": 7873.74, + "probability": 0.9226 + }, + { + "start": 7874.34, + "end": 7876.36, + "probability": 0.9276 + }, + { + "start": 7877.36, + "end": 7878.47, + "probability": 0.7485 + }, + { + "start": 7879.58, + "end": 7889.92, + "probability": 0.8572 + }, + { + "start": 7891.76, + "end": 7892.64, + "probability": 0.7963 + }, + { + "start": 7893.64, + "end": 7898.78, + "probability": 0.9401 + }, + { + "start": 7898.94, + "end": 7902.2, + "probability": 0.6328 + }, + { + "start": 7903.14, + "end": 7906.18, + "probability": 0.9948 + }, + { + "start": 7907.56, + "end": 7917.84, + "probability": 0.9292 + }, + { + "start": 7919.02, + "end": 7920.26, + "probability": 0.7896 + }, + { + "start": 7920.88, + "end": 7923.64, + "probability": 0.8095 + }, + { + "start": 7924.9, + "end": 7926.3, + "probability": 0.7254 + }, + { + "start": 7927.04, + "end": 7928.08, + "probability": 0.2788 + }, + { + "start": 7929.1, + "end": 7932.46, + "probability": 0.7847 + }, + { + "start": 7933.38, + "end": 7940.12, + "probability": 0.9851 + }, + { + "start": 7940.97, + "end": 7948.06, + "probability": 0.7341 + }, + { + "start": 7948.76, + "end": 7952.48, + "probability": 0.969 + }, + { + "start": 7953.78, + "end": 7959.76, + "probability": 0.6512 + }, + { + "start": 7959.9, + "end": 7961.68, + "probability": 0.5913 + }, + { + "start": 7962.66, + "end": 7963.46, + "probability": 0.6388 + }, + { + "start": 7965.28, + "end": 7968.38, + "probability": 0.9124 + }, + { + "start": 7969.72, + "end": 7975.78, + "probability": 0.937 + }, + { + "start": 7977.5, + "end": 7980.46, + "probability": 0.9595 + }, + { + "start": 7980.9, + "end": 7989.26, + "probability": 0.9623 + }, + { + "start": 7990.04, + "end": 7995.3, + "probability": 0.6935 + }, + { + "start": 7995.48, + "end": 7996.28, + "probability": 0.9128 + }, + { + "start": 7996.42, + "end": 7997.16, + "probability": 0.8924 + }, + { + "start": 7997.22, + "end": 7998.74, + "probability": 0.948 + }, + { + "start": 7999.36, + "end": 8004.82, + "probability": 0.975 + }, + { + "start": 8005.36, + "end": 8017.4, + "probability": 0.9502 + }, + { + "start": 8018.02, + "end": 8021.26, + "probability": 0.9553 + }, + { + "start": 8021.6, + "end": 8027.58, + "probability": 0.9682 + }, + { + "start": 8027.68, + "end": 8029.9, + "probability": 0.7887 + }, + { + "start": 8030.32, + "end": 8031.14, + "probability": 0.6761 + }, + { + "start": 8031.34, + "end": 8037.68, + "probability": 0.9497 + }, + { + "start": 8038.74, + "end": 8040.94, + "probability": 0.9248 + }, + { + "start": 8041.78, + "end": 8044.78, + "probability": 0.9524 + }, + { + "start": 8045.42, + "end": 8048.78, + "probability": 0.7606 + }, + { + "start": 8048.78, + "end": 8052.54, + "probability": 0.9058 + }, + { + "start": 8052.84, + "end": 8053.62, + "probability": 0.7349 + }, + { + "start": 8053.68, + "end": 8054.06, + "probability": 0.9238 + }, + { + "start": 8054.16, + "end": 8060.08, + "probability": 0.9355 + }, + { + "start": 8060.28, + "end": 8063.54, + "probability": 0.7722 + }, + { + "start": 8064.0, + "end": 8067.08, + "probability": 0.9579 + }, + { + "start": 8067.78, + "end": 8076.52, + "probability": 0.879 + }, + { + "start": 8077.64, + "end": 8082.72, + "probability": 0.9493 + }, + { + "start": 8083.46, + "end": 8088.5, + "probability": 0.8666 + }, + { + "start": 8088.5, + "end": 8090.52, + "probability": 0.747 + }, + { + "start": 8090.56, + "end": 8093.64, + "probability": 0.876 + }, + { + "start": 8093.94, + "end": 8097.22, + "probability": 0.9917 + }, + { + "start": 8097.22, + "end": 8101.58, + "probability": 0.9756 + }, + { + "start": 8102.1, + "end": 8106.82, + "probability": 0.9897 + }, + { + "start": 8107.24, + "end": 8110.88, + "probability": 0.9871 + }, + { + "start": 8111.02, + "end": 8115.66, + "probability": 0.8887 + }, + { + "start": 8115.9, + "end": 8122.98, + "probability": 0.991 + }, + { + "start": 8123.16, + "end": 8124.56, + "probability": 0.9907 + }, + { + "start": 8124.78, + "end": 8126.84, + "probability": 0.9399 + }, + { + "start": 8127.18, + "end": 8128.16, + "probability": 0.7031 + }, + { + "start": 8128.56, + "end": 8134.06, + "probability": 0.8833 + }, + { + "start": 8134.58, + "end": 8136.18, + "probability": 0.9408 + }, + { + "start": 8136.24, + "end": 8137.62, + "probability": 0.8984 + }, + { + "start": 8137.94, + "end": 8140.84, + "probability": 0.9475 + }, + { + "start": 8141.4, + "end": 8142.74, + "probability": 0.6841 + }, + { + "start": 8143.08, + "end": 8149.26, + "probability": 0.8676 + }, + { + "start": 8149.32, + "end": 8149.94, + "probability": 0.891 + }, + { + "start": 8150.48, + "end": 8153.1, + "probability": 0.8139 + }, + { + "start": 8153.16, + "end": 8155.76, + "probability": 0.8839 + }, + { + "start": 8157.66, + "end": 8161.8, + "probability": 0.9506 + }, + { + "start": 8162.7, + "end": 8164.06, + "probability": 0.9573 + }, + { + "start": 8172.44, + "end": 8176.08, + "probability": 0.6649 + }, + { + "start": 8177.12, + "end": 8180.28, + "probability": 0.7849 + }, + { + "start": 8180.92, + "end": 8181.98, + "probability": 0.4345 + }, + { + "start": 8182.3, + "end": 8183.66, + "probability": 0.9014 + }, + { + "start": 8184.1, + "end": 8185.06, + "probability": 0.8213 + }, + { + "start": 8185.64, + "end": 8186.68, + "probability": 0.8286 + }, + { + "start": 8186.78, + "end": 8189.5, + "probability": 0.8447 + }, + { + "start": 8189.92, + "end": 8190.02, + "probability": 0.1133 + }, + { + "start": 8190.02, + "end": 8191.22, + "probability": 0.6741 + }, + { + "start": 8192.62, + "end": 8193.28, + "probability": 0.6546 + }, + { + "start": 8193.36, + "end": 8194.02, + "probability": 0.1931 + }, + { + "start": 8194.06, + "end": 8194.13, + "probability": 0.472 + }, + { + "start": 8195.68, + "end": 8196.68, + "probability": 0.3978 + }, + { + "start": 8197.0, + "end": 8197.21, + "probability": 0.0707 + }, + { + "start": 8197.34, + "end": 8199.52, + "probability": 0.5061 + }, + { + "start": 8200.4, + "end": 8203.45, + "probability": 0.5049 + }, + { + "start": 8203.84, + "end": 8208.06, + "probability": 0.7591 + }, + { + "start": 8208.4, + "end": 8209.92, + "probability": 0.8654 + }, + { + "start": 8210.74, + "end": 8211.72, + "probability": 0.9098 + }, + { + "start": 8211.94, + "end": 8212.56, + "probability": 0.7309 + }, + { + "start": 8212.9, + "end": 8215.8, + "probability": 0.5479 + }, + { + "start": 8216.1, + "end": 8217.52, + "probability": 0.9884 + }, + { + "start": 8217.6, + "end": 8220.92, + "probability": 0.9902 + }, + { + "start": 8221.06, + "end": 8226.66, + "probability": 0.9918 + }, + { + "start": 8227.44, + "end": 8229.24, + "probability": 0.9941 + }, + { + "start": 8229.36, + "end": 8231.78, + "probability": 0.3047 + }, + { + "start": 8232.2, + "end": 8237.56, + "probability": 0.8622 + }, + { + "start": 8238.08, + "end": 8238.72, + "probability": 0.9678 + }, + { + "start": 8238.8, + "end": 8240.8, + "probability": 0.8848 + }, + { + "start": 8240.92, + "end": 8241.84, + "probability": 0.8025 + }, + { + "start": 8242.12, + "end": 8246.06, + "probability": 0.8535 + }, + { + "start": 8246.72, + "end": 8248.24, + "probability": 0.9205 + }, + { + "start": 8248.64, + "end": 8252.58, + "probability": 0.0485 + }, + { + "start": 8252.76, + "end": 8253.4, + "probability": 0.8347 + }, + { + "start": 8254.04, + "end": 8259.9, + "probability": 0.9775 + }, + { + "start": 8260.5, + "end": 8261.96, + "probability": 0.6496 + }, + { + "start": 8262.06, + "end": 8267.36, + "probability": 0.9214 + }, + { + "start": 8267.96, + "end": 8268.72, + "probability": 0.7259 + }, + { + "start": 8268.82, + "end": 8269.8, + "probability": 0.9151 + }, + { + "start": 8269.88, + "end": 8272.72, + "probability": 0.7347 + }, + { + "start": 8272.88, + "end": 8273.86, + "probability": 0.4526 + }, + { + "start": 8274.04, + "end": 8275.16, + "probability": 0.9139 + }, + { + "start": 8275.74, + "end": 8279.9, + "probability": 0.7967 + }, + { + "start": 8279.98, + "end": 8280.78, + "probability": 0.4587 + }, + { + "start": 8281.34, + "end": 8283.62, + "probability": 0.9961 + }, + { + "start": 8284.34, + "end": 8284.94, + "probability": 0.7134 + }, + { + "start": 8285.26, + "end": 8287.7, + "probability": 0.9846 + }, + { + "start": 8287.7, + "end": 8290.66, + "probability": 0.9905 + }, + { + "start": 8290.68, + "end": 8292.78, + "probability": 0.72 + }, + { + "start": 8293.42, + "end": 8297.88, + "probability": 0.9416 + }, + { + "start": 8298.26, + "end": 8299.98, + "probability": 0.7017 + }, + { + "start": 8300.78, + "end": 8301.38, + "probability": 0.512 + }, + { + "start": 8301.54, + "end": 8302.32, + "probability": 0.9135 + }, + { + "start": 8302.68, + "end": 8305.32, + "probability": 0.844 + }, + { + "start": 8305.46, + "end": 8308.22, + "probability": 0.9619 + }, + { + "start": 8308.28, + "end": 8308.68, + "probability": 0.8634 + }, + { + "start": 8309.22, + "end": 8312.24, + "probability": 0.8305 + }, + { + "start": 8312.5, + "end": 8314.28, + "probability": 0.8555 + }, + { + "start": 8314.72, + "end": 8317.4, + "probability": 0.7881 + }, + { + "start": 8318.46, + "end": 8321.96, + "probability": 0.9382 + }, + { + "start": 8321.96, + "end": 8322.92, + "probability": 0.7239 + }, + { + "start": 8323.28, + "end": 8325.12, + "probability": 0.4557 + }, + { + "start": 8326.08, + "end": 8329.6, + "probability": 0.8176 + }, + { + "start": 8329.96, + "end": 8332.22, + "probability": 0.7579 + }, + { + "start": 8332.3, + "end": 8333.0, + "probability": 0.7233 + }, + { + "start": 8333.28, + "end": 8334.48, + "probability": 0.726 + }, + { + "start": 8337.12, + "end": 8340.88, + "probability": 0.0706 + }, + { + "start": 8343.84, + "end": 8345.68, + "probability": 0.0641 + }, + { + "start": 8346.64, + "end": 8347.44, + "probability": 0.0073 + }, + { + "start": 8348.3, + "end": 8350.08, + "probability": 0.1338 + }, + { + "start": 8351.84, + "end": 8354.6, + "probability": 0.5156 + }, + { + "start": 8354.82, + "end": 8357.88, + "probability": 0.9276 + }, + { + "start": 8357.88, + "end": 8362.44, + "probability": 0.9939 + }, + { + "start": 8362.94, + "end": 8365.32, + "probability": 0.9164 + }, + { + "start": 8365.46, + "end": 8367.72, + "probability": 0.9323 + }, + { + "start": 8368.2, + "end": 8369.46, + "probability": 0.6711 + }, + { + "start": 8369.74, + "end": 8371.78, + "probability": 0.8442 + }, + { + "start": 8372.12, + "end": 8374.78, + "probability": 0.8717 + }, + { + "start": 8376.98, + "end": 8379.5, + "probability": 0.9966 + }, + { + "start": 8380.46, + "end": 8381.26, + "probability": 0.8958 + }, + { + "start": 8381.72, + "end": 8387.12, + "probability": 0.8821 + }, + { + "start": 8387.12, + "end": 8389.38, + "probability": 0.0689 + }, + { + "start": 8390.49, + "end": 8394.9, + "probability": 0.9751 + }, + { + "start": 8394.9, + "end": 8397.7, + "probability": 0.8893 + }, + { + "start": 8397.9, + "end": 8399.5, + "probability": 0.5577 + }, + { + "start": 8399.84, + "end": 8401.8, + "probability": 0.7104 + }, + { + "start": 8402.24, + "end": 8406.88, + "probability": 0.9522 + }, + { + "start": 8409.93, + "end": 8411.9, + "probability": 0.8916 + }, + { + "start": 8413.18, + "end": 8413.4, + "probability": 0.1478 + }, + { + "start": 8414.46, + "end": 8415.18, + "probability": 0.511 + }, + { + "start": 8415.36, + "end": 8417.54, + "probability": 0.9175 + }, + { + "start": 8417.84, + "end": 8420.74, + "probability": 0.8696 + }, + { + "start": 8421.02, + "end": 8423.26, + "probability": 0.8358 + }, + { + "start": 8424.32, + "end": 8425.64, + "probability": 0.8862 + }, + { + "start": 8426.9, + "end": 8429.16, + "probability": 0.8463 + }, + { + "start": 8430.36, + "end": 8434.16, + "probability": 0.6863 + }, + { + "start": 8434.74, + "end": 8435.28, + "probability": 0.0306 + }, + { + "start": 8435.42, + "end": 8435.85, + "probability": 0.0753 + }, + { + "start": 8436.28, + "end": 8437.98, + "probability": 0.2674 + }, + { + "start": 8438.34, + "end": 8438.52, + "probability": 0.844 + }, + { + "start": 8438.64, + "end": 8441.06, + "probability": 0.9946 + }, + { + "start": 8441.14, + "end": 8441.46, + "probability": 0.7144 + }, + { + "start": 8441.48, + "end": 8442.04, + "probability": 0.6857 + }, + { + "start": 8442.22, + "end": 8444.92, + "probability": 0.9246 + }, + { + "start": 8446.64, + "end": 8452.94, + "probability": 0.9943 + }, + { + "start": 8453.94, + "end": 8455.22, + "probability": 0.7189 + }, + { + "start": 8455.38, + "end": 8456.62, + "probability": 0.9766 + }, + { + "start": 8456.84, + "end": 8460.18, + "probability": 0.9985 + }, + { + "start": 8460.18, + "end": 8464.96, + "probability": 0.9679 + }, + { + "start": 8465.76, + "end": 8466.56, + "probability": 0.8116 + }, + { + "start": 8467.52, + "end": 8468.6, + "probability": 0.7534 + }, + { + "start": 8469.78, + "end": 8470.97, + "probability": 0.7275 + }, + { + "start": 8471.68, + "end": 8478.6, + "probability": 0.9036 + }, + { + "start": 8479.32, + "end": 8481.81, + "probability": 0.9766 + }, + { + "start": 8482.48, + "end": 8483.72, + "probability": 0.7416 + }, + { + "start": 8483.82, + "end": 8485.7, + "probability": 0.8696 + }, + { + "start": 8485.8, + "end": 8487.58, + "probability": 0.8134 + }, + { + "start": 8487.92, + "end": 8489.4, + "probability": 0.7228 + }, + { + "start": 8490.18, + "end": 8492.08, + "probability": 0.5679 + }, + { + "start": 8492.64, + "end": 8497.04, + "probability": 0.8191 + }, + { + "start": 8497.06, + "end": 8498.38, + "probability": 0.7138 + }, + { + "start": 8498.78, + "end": 8500.86, + "probability": 0.5837 + }, + { + "start": 8501.6, + "end": 8502.36, + "probability": 0.97 + }, + { + "start": 8502.46, + "end": 8507.44, + "probability": 0.829 + }, + { + "start": 8507.6, + "end": 8510.16, + "probability": 0.9561 + }, + { + "start": 8511.02, + "end": 8511.48, + "probability": 0.7567 + }, + { + "start": 8511.62, + "end": 8516.74, + "probability": 0.8398 + }, + { + "start": 8517.72, + "end": 8518.86, + "probability": 0.938 + }, + { + "start": 8520.74, + "end": 8524.3, + "probability": 0.9351 + }, + { + "start": 8524.5, + "end": 8530.1, + "probability": 0.988 + }, + { + "start": 8530.26, + "end": 8530.96, + "probability": 0.6587 + }, + { + "start": 8531.06, + "end": 8538.74, + "probability": 0.9941 + }, + { + "start": 8539.3, + "end": 8546.34, + "probability": 0.8008 + }, + { + "start": 8546.64, + "end": 8548.16, + "probability": 0.9182 + }, + { + "start": 8548.66, + "end": 8551.42, + "probability": 0.9832 + }, + { + "start": 8551.7, + "end": 8553.04, + "probability": 0.595 + }, + { + "start": 8553.84, + "end": 8555.4, + "probability": 0.9382 + }, + { + "start": 8556.1, + "end": 8558.12, + "probability": 0.9778 + }, + { + "start": 8558.36, + "end": 8560.52, + "probability": 0.9683 + }, + { + "start": 8560.78, + "end": 8565.28, + "probability": 0.9823 + }, + { + "start": 8566.0, + "end": 8568.27, + "probability": 0.9648 + }, + { + "start": 8568.86, + "end": 8573.96, + "probability": 0.9317 + }, + { + "start": 8573.96, + "end": 8578.68, + "probability": 0.9897 + }, + { + "start": 8578.74, + "end": 8579.64, + "probability": 0.8528 + }, + { + "start": 8579.9, + "end": 8583.76, + "probability": 0.9331 + }, + { + "start": 8583.9, + "end": 8585.1, + "probability": 0.9065 + }, + { + "start": 8585.54, + "end": 8589.78, + "probability": 0.8334 + }, + { + "start": 8590.52, + "end": 8590.72, + "probability": 0.2675 + }, + { + "start": 8590.88, + "end": 8592.92, + "probability": 0.6522 + }, + { + "start": 8592.96, + "end": 8594.24, + "probability": 0.7337 + }, + { + "start": 8594.48, + "end": 8596.39, + "probability": 0.9141 + }, + { + "start": 8596.7, + "end": 8602.22, + "probability": 0.9864 + }, + { + "start": 8602.44, + "end": 8603.76, + "probability": 0.9739 + }, + { + "start": 8604.76, + "end": 8608.48, + "probability": 0.9543 + }, + { + "start": 8608.9, + "end": 8615.11, + "probability": 0.9781 + }, + { + "start": 8616.06, + "end": 8617.42, + "probability": 0.5963 + }, + { + "start": 8617.8, + "end": 8618.26, + "probability": 0.7961 + }, + { + "start": 8618.34, + "end": 8624.44, + "probability": 0.9934 + }, + { + "start": 8624.92, + "end": 8627.68, + "probability": 0.9301 + }, + { + "start": 8628.74, + "end": 8629.22, + "probability": 0.8481 + }, + { + "start": 8629.82, + "end": 8634.1, + "probability": 0.9693 + }, + { + "start": 8634.16, + "end": 8635.4, + "probability": 0.9366 + }, + { + "start": 8635.84, + "end": 8638.32, + "probability": 0.9901 + }, + { + "start": 8638.74, + "end": 8641.12, + "probability": 0.9314 + }, + { + "start": 8641.78, + "end": 8642.04, + "probability": 0.4076 + }, + { + "start": 8642.08, + "end": 8643.3, + "probability": 0.7862 + }, + { + "start": 8643.64, + "end": 8648.52, + "probability": 0.9683 + }, + { + "start": 8649.2, + "end": 8653.36, + "probability": 0.9961 + }, + { + "start": 8653.74, + "end": 8656.64, + "probability": 0.9897 + }, + { + "start": 8657.33, + "end": 8661.9, + "probability": 0.7067 + }, + { + "start": 8662.4, + "end": 8667.02, + "probability": 0.9389 + }, + { + "start": 8667.44, + "end": 8667.7, + "probability": 0.4803 + }, + { + "start": 8667.74, + "end": 8668.62, + "probability": 0.6672 + }, + { + "start": 8668.66, + "end": 8671.42, + "probability": 0.9917 + }, + { + "start": 8671.66, + "end": 8676.34, + "probability": 0.9937 + }, + { + "start": 8676.68, + "end": 8678.08, + "probability": 0.7896 + }, + { + "start": 8678.12, + "end": 8680.86, + "probability": 0.9763 + }, + { + "start": 8681.08, + "end": 8681.7, + "probability": 0.9465 + }, + { + "start": 8681.98, + "end": 8682.72, + "probability": 0.8519 + }, + { + "start": 8683.56, + "end": 8692.34, + "probability": 0.9878 + }, + { + "start": 8692.68, + "end": 8696.66, + "probability": 0.9984 + }, + { + "start": 8697.24, + "end": 8697.82, + "probability": 0.36 + }, + { + "start": 8697.96, + "end": 8701.68, + "probability": 0.8997 + }, + { + "start": 8701.86, + "end": 8704.58, + "probability": 0.9525 + }, + { + "start": 8704.72, + "end": 8708.86, + "probability": 0.8276 + }, + { + "start": 8709.8, + "end": 8716.36, + "probability": 0.9927 + }, + { + "start": 8716.44, + "end": 8719.1, + "probability": 0.8382 + }, + { + "start": 8719.9, + "end": 8720.5, + "probability": 0.7838 + }, + { + "start": 8721.08, + "end": 8725.52, + "probability": 0.9245 + }, + { + "start": 8725.64, + "end": 8726.84, + "probability": 0.7838 + }, + { + "start": 8727.26, + "end": 8732.98, + "probability": 0.9876 + }, + { + "start": 8733.5, + "end": 8736.76, + "probability": 0.9747 + }, + { + "start": 8736.76, + "end": 8742.04, + "probability": 0.9986 + }, + { + "start": 8743.52, + "end": 8745.72, + "probability": 0.8453 + }, + { + "start": 8747.72, + "end": 8749.96, + "probability": 0.6912 + }, + { + "start": 8750.36, + "end": 8751.31, + "probability": 0.9719 + }, + { + "start": 8752.04, + "end": 8755.72, + "probability": 0.9929 + }, + { + "start": 8756.1, + "end": 8758.26, + "probability": 0.7617 + }, + { + "start": 8758.72, + "end": 8763.36, + "probability": 0.9404 + }, + { + "start": 8763.72, + "end": 8766.8, + "probability": 0.9858 + }, + { + "start": 8767.02, + "end": 8768.9, + "probability": 0.9137 + }, + { + "start": 8769.32, + "end": 8773.5, + "probability": 0.9879 + }, + { + "start": 8773.5, + "end": 8776.76, + "probability": 0.9974 + }, + { + "start": 8777.7, + "end": 8781.68, + "probability": 0.9768 + }, + { + "start": 8781.98, + "end": 8783.44, + "probability": 0.9869 + }, + { + "start": 8784.1, + "end": 8784.9, + "probability": 0.644 + }, + { + "start": 8785.1, + "end": 8788.22, + "probability": 0.815 + }, + { + "start": 8788.84, + "end": 8792.27, + "probability": 0.9922 + }, + { + "start": 8792.84, + "end": 8794.16, + "probability": 0.9366 + }, + { + "start": 8794.2, + "end": 8794.82, + "probability": 0.9595 + }, + { + "start": 8794.88, + "end": 8796.04, + "probability": 0.8068 + }, + { + "start": 8796.22, + "end": 8800.46, + "probability": 0.9914 + }, + { + "start": 8801.18, + "end": 8802.68, + "probability": 0.4061 + }, + { + "start": 8803.46, + "end": 8806.42, + "probability": 0.894 + }, + { + "start": 8806.86, + "end": 8808.92, + "probability": 0.961 + }, + { + "start": 8809.46, + "end": 8816.86, + "probability": 0.9737 + }, + { + "start": 8817.74, + "end": 8821.98, + "probability": 0.9803 + }, + { + "start": 8823.18, + "end": 8826.77, + "probability": 0.9539 + }, + { + "start": 8827.6, + "end": 8832.4, + "probability": 0.9953 + }, + { + "start": 8833.16, + "end": 8833.62, + "probability": 0.4643 + }, + { + "start": 8834.1, + "end": 8835.72, + "probability": 0.9775 + }, + { + "start": 8836.14, + "end": 8838.02, + "probability": 0.9271 + }, + { + "start": 8838.48, + "end": 8842.4, + "probability": 0.9788 + }, + { + "start": 8842.78, + "end": 8844.16, + "probability": 0.7081 + }, + { + "start": 8844.78, + "end": 8847.83, + "probability": 0.8259 + }, + { + "start": 8848.44, + "end": 8851.7, + "probability": 0.967 + }, + { + "start": 8852.16, + "end": 8853.36, + "probability": 0.9467 + }, + { + "start": 8854.0, + "end": 8859.44, + "probability": 0.9912 + }, + { + "start": 8860.0, + "end": 8862.42, + "probability": 0.9583 + }, + { + "start": 8863.1, + "end": 8864.01, + "probability": 0.8811 + }, + { + "start": 8864.56, + "end": 8868.62, + "probability": 0.9108 + }, + { + "start": 8868.8, + "end": 8869.92, + "probability": 0.7663 + }, + { + "start": 8870.0, + "end": 8871.24, + "probability": 0.983 + }, + { + "start": 8871.66, + "end": 8875.52, + "probability": 0.9844 + }, + { + "start": 8876.06, + "end": 8878.32, + "probability": 0.8279 + }, + { + "start": 8878.84, + "end": 8882.06, + "probability": 0.8536 + }, + { + "start": 8882.64, + "end": 8886.1, + "probability": 0.9149 + }, + { + "start": 8887.1, + "end": 8889.2, + "probability": 0.6732 + }, + { + "start": 8889.8, + "end": 8896.54, + "probability": 0.9435 + }, + { + "start": 8896.82, + "end": 8897.9, + "probability": 0.9763 + }, + { + "start": 8898.68, + "end": 8900.98, + "probability": 0.9917 + }, + { + "start": 8901.38, + "end": 8903.16, + "probability": 0.9871 + }, + { + "start": 8903.4, + "end": 8904.3, + "probability": 0.9795 + }, + { + "start": 8904.62, + "end": 8908.82, + "probability": 0.9469 + }, + { + "start": 8909.12, + "end": 8910.32, + "probability": 0.5997 + }, + { + "start": 8910.56, + "end": 8912.78, + "probability": 0.8616 + }, + { + "start": 8912.82, + "end": 8913.4, + "probability": 0.8511 + }, + { + "start": 8914.08, + "end": 8916.8, + "probability": 0.9536 + }, + { + "start": 8917.14, + "end": 8922.08, + "probability": 0.9913 + }, + { + "start": 8922.28, + "end": 8924.3, + "probability": 0.7397 + }, + { + "start": 8924.52, + "end": 8930.34, + "probability": 0.9578 + }, + { + "start": 8930.4, + "end": 8932.76, + "probability": 0.9732 + }, + { + "start": 8933.06, + "end": 8937.36, + "probability": 0.9373 + }, + { + "start": 8948.26, + "end": 8949.14, + "probability": 0.6995 + }, + { + "start": 8950.0, + "end": 8952.58, + "probability": 0.8795 + }, + { + "start": 8953.58, + "end": 8954.34, + "probability": 0.8925 + }, + { + "start": 8954.46, + "end": 8955.38, + "probability": 0.72 + }, + { + "start": 8955.46, + "end": 8956.14, + "probability": 0.7745 + }, + { + "start": 8956.26, + "end": 8957.62, + "probability": 0.7385 + }, + { + "start": 8958.98, + "end": 8959.58, + "probability": 0.8572 + }, + { + "start": 8961.46, + "end": 8963.06, + "probability": 0.7985 + }, + { + "start": 8963.06, + "end": 8964.6, + "probability": 0.8022 + }, + { + "start": 8964.68, + "end": 8964.84, + "probability": 0.2504 + }, + { + "start": 8966.68, + "end": 8967.32, + "probability": 0.9229 + }, + { + "start": 8967.4, + "end": 8972.44, + "probability": 0.9929 + }, + { + "start": 8972.76, + "end": 8976.7, + "probability": 0.9991 + }, + { + "start": 8977.86, + "end": 8979.96, + "probability": 0.8164 + }, + { + "start": 8981.3, + "end": 8981.44, + "probability": 0.2208 + }, + { + "start": 8981.44, + "end": 8982.32, + "probability": 0.7307 + }, + { + "start": 8982.42, + "end": 8982.94, + "probability": 0.8151 + }, + { + "start": 8983.02, + "end": 8983.74, + "probability": 0.936 + }, + { + "start": 8983.84, + "end": 8984.36, + "probability": 0.8443 + }, + { + "start": 8984.36, + "end": 8985.08, + "probability": 0.9163 + }, + { + "start": 8985.14, + "end": 8986.58, + "probability": 0.6217 + }, + { + "start": 8987.04, + "end": 8988.3, + "probability": 0.5802 + }, + { + "start": 8988.56, + "end": 8989.36, + "probability": 0.0002 + }, + { + "start": 8991.52, + "end": 8993.0, + "probability": 0.8544 + }, + { + "start": 8993.24, + "end": 8997.7, + "probability": 0.9865 + }, + { + "start": 8997.82, + "end": 8998.88, + "probability": 0.7594 + }, + { + "start": 8999.0, + "end": 9002.54, + "probability": 0.9193 + }, + { + "start": 9003.82, + "end": 9005.26, + "probability": 0.8734 + }, + { + "start": 9005.3, + "end": 9007.86, + "probability": 0.964 + }, + { + "start": 9008.0, + "end": 9008.92, + "probability": 0.9914 + }, + { + "start": 9009.44, + "end": 9012.08, + "probability": 0.8824 + }, + { + "start": 9014.78, + "end": 9017.18, + "probability": 0.9556 + }, + { + "start": 9017.18, + "end": 9019.76, + "probability": 0.93 + }, + { + "start": 9019.84, + "end": 9020.66, + "probability": 0.6834 + }, + { + "start": 9021.32, + "end": 9023.38, + "probability": 0.9124 + }, + { + "start": 9024.46, + "end": 9027.62, + "probability": 0.9309 + }, + { + "start": 9027.62, + "end": 9030.8, + "probability": 0.998 + }, + { + "start": 9031.82, + "end": 9032.5, + "probability": 0.8366 + }, + { + "start": 9033.04, + "end": 9033.94, + "probability": 0.6828 + }, + { + "start": 9034.04, + "end": 9038.92, + "probability": 0.7993 + }, + { + "start": 9039.32, + "end": 9041.52, + "probability": 0.8521 + }, + { + "start": 9043.36, + "end": 9045.38, + "probability": 0.9094 + }, + { + "start": 9045.9, + "end": 9047.34, + "probability": 0.9011 + }, + { + "start": 9047.82, + "end": 9050.92, + "probability": 0.9013 + }, + { + "start": 9056.12, + "end": 9057.72, + "probability": 0.4727 + }, + { + "start": 9058.7, + "end": 9059.63, + "probability": 0.7613 + }, + { + "start": 9059.76, + "end": 9060.76, + "probability": 0.6217 + }, + { + "start": 9060.9, + "end": 9061.7, + "probability": 0.4655 + }, + { + "start": 9061.78, + "end": 9063.92, + "probability": 0.6258 + }, + { + "start": 9064.14, + "end": 9066.2, + "probability": 0.9288 + }, + { + "start": 9066.74, + "end": 9071.16, + "probability": 0.9872 + }, + { + "start": 9071.32, + "end": 9074.9, + "probability": 0.8711 + }, + { + "start": 9075.48, + "end": 9075.7, + "probability": 0.603 + }, + { + "start": 9076.84, + "end": 9078.88, + "probability": 0.9611 + }, + { + "start": 9079.82, + "end": 9084.06, + "probability": 0.9633 + }, + { + "start": 9084.46, + "end": 9086.16, + "probability": 0.6421 + }, + { + "start": 9086.36, + "end": 9086.72, + "probability": 0.7084 + }, + { + "start": 9086.86, + "end": 9088.08, + "probability": 0.6753 + }, + { + "start": 9088.42, + "end": 9089.82, + "probability": 0.9946 + }, + { + "start": 9090.14, + "end": 9091.54, + "probability": 0.9634 + }, + { + "start": 9091.8, + "end": 9098.12, + "probability": 0.6908 + }, + { + "start": 9098.74, + "end": 9100.4, + "probability": 0.9085 + }, + { + "start": 9102.1, + "end": 9104.7, + "probability": 0.4311 + }, + { + "start": 9104.8, + "end": 9105.52, + "probability": 0.5913 + }, + { + "start": 9105.74, + "end": 9107.6, + "probability": 0.6709 + }, + { + "start": 9107.98, + "end": 9110.2, + "probability": 0.972 + }, + { + "start": 9110.54, + "end": 9113.52, + "probability": 0.9626 + }, + { + "start": 9113.94, + "end": 9114.28, + "probability": 0.6793 + }, + { + "start": 9114.36, + "end": 9115.82, + "probability": 0.7874 + }, + { + "start": 9116.0, + "end": 9116.68, + "probability": 0.244 + }, + { + "start": 9116.68, + "end": 9117.52, + "probability": 0.3802 + }, + { + "start": 9117.67, + "end": 9121.3, + "probability": 0.9832 + }, + { + "start": 9121.96, + "end": 9124.1, + "probability": 0.9266 + }, + { + "start": 9124.61, + "end": 9127.34, + "probability": 0.9905 + }, + { + "start": 9127.5, + "end": 9129.34, + "probability": 0.6601 + }, + { + "start": 9130.4, + "end": 9134.22, + "probability": 0.7012 + }, + { + "start": 9134.4, + "end": 9138.26, + "probability": 0.9002 + }, + { + "start": 9143.82, + "end": 9145.0, + "probability": 0.8525 + }, + { + "start": 9145.7, + "end": 9147.16, + "probability": 0.9317 + }, + { + "start": 9151.44, + "end": 9152.3, + "probability": 0.6362 + }, + { + "start": 9152.38, + "end": 9153.48, + "probability": 0.7189 + }, + { + "start": 9153.56, + "end": 9155.82, + "probability": 0.7097 + }, + { + "start": 9156.46, + "end": 9159.58, + "probability": 0.896 + }, + { + "start": 9159.58, + "end": 9164.44, + "probability": 0.6146 + }, + { + "start": 9164.44, + "end": 9168.02, + "probability": 0.9051 + }, + { + "start": 9168.14, + "end": 9168.48, + "probability": 0.3832 + }, + { + "start": 9168.6, + "end": 9170.1, + "probability": 0.7773 + }, + { + "start": 9170.62, + "end": 9171.34, + "probability": 0.9149 + }, + { + "start": 9171.4, + "end": 9173.88, + "probability": 0.8375 + }, + { + "start": 9174.18, + "end": 9175.76, + "probability": 0.6076 + }, + { + "start": 9176.74, + "end": 9179.56, + "probability": 0.7359 + }, + { + "start": 9179.56, + "end": 9182.32, + "probability": 0.499 + }, + { + "start": 9183.2, + "end": 9187.12, + "probability": 0.6985 + }, + { + "start": 9187.22, + "end": 9189.36, + "probability": 0.8712 + }, + { + "start": 9190.22, + "end": 9195.42, + "probability": 0.741 + }, + { + "start": 9195.98, + "end": 9196.58, + "probability": 0.6476 + }, + { + "start": 9197.08, + "end": 9201.7, + "probability": 0.9688 + }, + { + "start": 9201.84, + "end": 9204.68, + "probability": 0.8392 + }, + { + "start": 9205.42, + "end": 9208.56, + "probability": 0.682 + }, + { + "start": 9209.18, + "end": 9212.79, + "probability": 0.9974 + }, + { + "start": 9214.56, + "end": 9217.72, + "probability": 0.9404 + }, + { + "start": 9217.78, + "end": 9221.12, + "probability": 0.9189 + }, + { + "start": 9221.32, + "end": 9222.92, + "probability": 0.4416 + }, + { + "start": 9222.94, + "end": 9224.62, + "probability": 0.4913 + }, + { + "start": 9224.76, + "end": 9225.38, + "probability": 0.7881 + }, + { + "start": 9225.96, + "end": 9230.06, + "probability": 0.6855 + }, + { + "start": 9230.62, + "end": 9233.6, + "probability": 0.67 + }, + { + "start": 9234.5, + "end": 9234.84, + "probability": 0.6943 + }, + { + "start": 9238.28, + "end": 9241.44, + "probability": 0.9935 + }, + { + "start": 9241.44, + "end": 9243.98, + "probability": 0.7539 + }, + { + "start": 9244.24, + "end": 9245.46, + "probability": 0.4598 + }, + { + "start": 9245.72, + "end": 9249.38, + "probability": 0.876 + }, + { + "start": 9249.98, + "end": 9251.22, + "probability": 0.7058 + }, + { + "start": 9251.24, + "end": 9251.72, + "probability": 0.5006 + }, + { + "start": 9251.9, + "end": 9252.22, + "probability": 0.4166 + }, + { + "start": 9263.04, + "end": 9263.48, + "probability": 0.0949 + }, + { + "start": 9263.48, + "end": 9263.6, + "probability": 0.0675 + }, + { + "start": 9263.6, + "end": 9263.64, + "probability": 0.0495 + }, + { + "start": 9263.64, + "end": 9263.64, + "probability": 0.068 + }, + { + "start": 9273.52, + "end": 9274.04, + "probability": 0.0498 + }, + { + "start": 9274.04, + "end": 9274.68, + "probability": 0.2388 + }, + { + "start": 9274.72, + "end": 9276.54, + "probability": 0.6059 + }, + { + "start": 9276.78, + "end": 9280.44, + "probability": 0.8661 + }, + { + "start": 9280.44, + "end": 9284.52, + "probability": 0.7496 + }, + { + "start": 9285.26, + "end": 9286.46, + "probability": 0.6292 + }, + { + "start": 9287.9, + "end": 9289.42, + "probability": 0.7512 + }, + { + "start": 9290.94, + "end": 9293.86, + "probability": 0.9267 + }, + { + "start": 9293.88, + "end": 9294.72, + "probability": 0.6382 + }, + { + "start": 9295.6, + "end": 9296.02, + "probability": 0.9081 + }, + { + "start": 9296.08, + "end": 9296.84, + "probability": 0.5444 + }, + { + "start": 9296.96, + "end": 9297.38, + "probability": 0.0109 + }, + { + "start": 9297.64, + "end": 9298.0, + "probability": 0.6979 + }, + { + "start": 9298.04, + "end": 9298.56, + "probability": 0.5602 + }, + { + "start": 9298.66, + "end": 9299.18, + "probability": 0.4046 + }, + { + "start": 9299.4, + "end": 9301.52, + "probability": 0.8651 + }, + { + "start": 9301.54, + "end": 9303.0, + "probability": 0.7664 + }, + { + "start": 9303.24, + "end": 9306.1, + "probability": 0.9201 + }, + { + "start": 9306.9, + "end": 9312.38, + "probability": 0.9574 + }, + { + "start": 9312.9, + "end": 9314.24, + "probability": 0.6614 + }, + { + "start": 9314.84, + "end": 9317.22, + "probability": 0.8958 + }, + { + "start": 9328.18, + "end": 9330.26, + "probability": 0.683 + }, + { + "start": 9337.3, + "end": 9339.62, + "probability": 0.7131 + }, + { + "start": 9345.87, + "end": 9348.94, + "probability": 0.7684 + }, + { + "start": 9349.22, + "end": 9349.9, + "probability": 0.5302 + }, + { + "start": 9349.96, + "end": 9352.04, + "probability": 0.6801 + }, + { + "start": 9355.5, + "end": 9360.5, + "probability": 0.6961 + }, + { + "start": 9362.1, + "end": 9362.64, + "probability": 0.6077 + }, + { + "start": 9362.8, + "end": 9366.54, + "probability": 0.8231 + }, + { + "start": 9368.08, + "end": 9368.62, + "probability": 0.563 + }, + { + "start": 9368.78, + "end": 9369.88, + "probability": 0.6049 + }, + { + "start": 9369.94, + "end": 9371.6, + "probability": 0.6844 + }, + { + "start": 9371.74, + "end": 9373.03, + "probability": 0.792 + }, + { + "start": 9373.1, + "end": 9375.58, + "probability": 0.7618 + }, + { + "start": 9375.64, + "end": 9378.18, + "probability": 0.8078 + }, + { + "start": 9378.68, + "end": 9379.68, + "probability": 0.7121 + }, + { + "start": 9381.61, + "end": 9384.04, + "probability": 0.8591 + }, + { + "start": 9386.78, + "end": 9388.46, + "probability": 0.7183 + }, + { + "start": 9388.58, + "end": 9393.54, + "probability": 0.9119 + }, + { + "start": 9394.8, + "end": 9396.82, + "probability": 0.9497 + }, + { + "start": 9396.96, + "end": 9397.52, + "probability": 0.8394 + }, + { + "start": 9397.58, + "end": 9398.34, + "probability": 0.9596 + }, + { + "start": 9398.76, + "end": 9399.66, + "probability": 0.9045 + }, + { + "start": 9399.98, + "end": 9400.94, + "probability": 0.74 + }, + { + "start": 9401.68, + "end": 9405.01, + "probability": 0.9847 + }, + { + "start": 9405.34, + "end": 9408.84, + "probability": 0.8594 + }, + { + "start": 9409.97, + "end": 9414.2, + "probability": 0.9668 + }, + { + "start": 9414.24, + "end": 9415.42, + "probability": 0.9064 + }, + { + "start": 9415.52, + "end": 9423.11, + "probability": 0.9557 + }, + { + "start": 9423.22, + "end": 9431.44, + "probability": 0.926 + }, + { + "start": 9432.7, + "end": 9434.4, + "probability": 0.8686 + }, + { + "start": 9435.08, + "end": 9437.42, + "probability": 0.9293 + }, + { + "start": 9438.18, + "end": 9439.72, + "probability": 0.9924 + }, + { + "start": 9440.32, + "end": 9444.92, + "probability": 0.9276 + }, + { + "start": 9445.22, + "end": 9447.24, + "probability": 0.9675 + }, + { + "start": 9448.8, + "end": 9449.64, + "probability": 0.7589 + }, + { + "start": 9449.7, + "end": 9453.14, + "probability": 0.9905 + }, + { + "start": 9453.14, + "end": 9456.94, + "probability": 0.9845 + }, + { + "start": 9457.36, + "end": 9459.04, + "probability": 0.9836 + }, + { + "start": 9459.5, + "end": 9459.86, + "probability": 0.575 + }, + { + "start": 9460.38, + "end": 9463.5, + "probability": 0.713 + }, + { + "start": 9463.6, + "end": 9465.13, + "probability": 0.9832 + }, + { + "start": 9466.18, + "end": 9468.37, + "probability": 0.6462 + }, + { + "start": 9469.08, + "end": 9473.1, + "probability": 0.6973 + }, + { + "start": 9474.62, + "end": 9478.3, + "probability": 0.9956 + }, + { + "start": 9478.3, + "end": 9483.1, + "probability": 0.9943 + }, + { + "start": 9483.3, + "end": 9485.7, + "probability": 0.5402 + }, + { + "start": 9486.38, + "end": 9490.54, + "probability": 0.9943 + }, + { + "start": 9491.4, + "end": 9497.98, + "probability": 0.9629 + }, + { + "start": 9498.76, + "end": 9500.38, + "probability": 0.9014 + }, + { + "start": 9500.74, + "end": 9504.76, + "probability": 0.9941 + }, + { + "start": 9504.76, + "end": 9509.12, + "probability": 0.9927 + }, + { + "start": 9509.54, + "end": 9512.4, + "probability": 0.9801 + }, + { + "start": 9513.2, + "end": 9513.54, + "probability": 0.4258 + }, + { + "start": 9513.66, + "end": 9514.0, + "probability": 0.7937 + }, + { + "start": 9514.06, + "end": 9514.52, + "probability": 0.6123 + }, + { + "start": 9514.6, + "end": 9515.6, + "probability": 0.6727 + }, + { + "start": 9515.92, + "end": 9516.98, + "probability": 0.7309 + }, + { + "start": 9517.46, + "end": 9523.58, + "probability": 0.9971 + }, + { + "start": 9524.84, + "end": 9528.84, + "probability": 0.6462 + }, + { + "start": 9529.34, + "end": 9536.66, + "probability": 0.9863 + }, + { + "start": 9536.78, + "end": 9538.0, + "probability": 0.8776 + }, + { + "start": 9539.24, + "end": 9545.46, + "probability": 0.9857 + }, + { + "start": 9546.56, + "end": 9549.46, + "probability": 0.6594 + }, + { + "start": 9549.52, + "end": 9551.4, + "probability": 0.95 + }, + { + "start": 9553.22, + "end": 9556.18, + "probability": 0.8766 + }, + { + "start": 9556.36, + "end": 9558.7, + "probability": 0.9839 + }, + { + "start": 9559.26, + "end": 9565.3, + "probability": 0.9043 + }, + { + "start": 9565.84, + "end": 9571.1, + "probability": 0.9963 + }, + { + "start": 9571.16, + "end": 9576.86, + "probability": 0.8773 + }, + { + "start": 9579.44, + "end": 9580.3, + "probability": 0.6235 + }, + { + "start": 9580.32, + "end": 9589.78, + "probability": 0.8647 + }, + { + "start": 9590.18, + "end": 9591.18, + "probability": 0.9271 + }, + { + "start": 9591.44, + "end": 9592.12, + "probability": 0.9289 + }, + { + "start": 9592.56, + "end": 9593.46, + "probability": 0.7493 + }, + { + "start": 9594.04, + "end": 9599.4, + "probability": 0.1777 + }, + { + "start": 9602.4, + "end": 9605.9, + "probability": 0.5618 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.0872 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.1974 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.1127 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.2397 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.4271 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.1541 + }, + { + "start": 9605.9, + "end": 9605.9, + "probability": 0.3423 + }, + { + "start": 9605.9, + "end": 9607.38, + "probability": 0.3187 + }, + { + "start": 9607.92, + "end": 9607.92, + "probability": 0.337 + }, + { + "start": 9607.92, + "end": 9612.08, + "probability": 0.4591 + }, + { + "start": 9612.38, + "end": 9613.08, + "probability": 0.8447 + }, + { + "start": 9613.64, + "end": 9614.86, + "probability": 0.6175 + }, + { + "start": 9614.86, + "end": 9614.98, + "probability": 0.0209 + }, + { + "start": 9615.42, + "end": 9616.52, + "probability": 0.1376 + }, + { + "start": 9616.8, + "end": 9617.28, + "probability": 0.3488 + }, + { + "start": 9617.28, + "end": 9618.0, + "probability": 0.7302 + }, + { + "start": 9618.08, + "end": 9618.82, + "probability": 0.9382 + }, + { + "start": 9618.92, + "end": 9622.32, + "probability": 0.9886 + }, + { + "start": 9622.77, + "end": 9626.88, + "probability": 0.753 + }, + { + "start": 9627.64, + "end": 9630.32, + "probability": 0.9591 + }, + { + "start": 9630.86, + "end": 9630.86, + "probability": 0.5141 + }, + { + "start": 9630.86, + "end": 9632.86, + "probability": 0.5456 + }, + { + "start": 9633.0, + "end": 9639.52, + "probability": 0.9851 + }, + { + "start": 9641.82, + "end": 9642.36, + "probability": 0.4957 + }, + { + "start": 9642.68, + "end": 9642.68, + "probability": 0.1304 + }, + { + "start": 9642.68, + "end": 9643.3, + "probability": 0.2682 + }, + { + "start": 9643.44, + "end": 9645.69, + "probability": 0.6143 + }, + { + "start": 9645.94, + "end": 9646.34, + "probability": 0.5174 + }, + { + "start": 9646.44, + "end": 9649.76, + "probability": 0.9138 + }, + { + "start": 9649.76, + "end": 9651.42, + "probability": 0.9717 + }, + { + "start": 9653.78, + "end": 9654.43, + "probability": 0.5756 + }, + { + "start": 9655.44, + "end": 9657.5, + "probability": 0.2978 + }, + { + "start": 9657.52, + "end": 9661.66, + "probability": 0.7481 + }, + { + "start": 9662.04, + "end": 9663.42, + "probability": 0.9375 + }, + { + "start": 9663.92, + "end": 9665.52, + "probability": 0.8569 + }, + { + "start": 9665.84, + "end": 9667.12, + "probability": 0.6713 + }, + { + "start": 9667.78, + "end": 9669.28, + "probability": 0.5591 + }, + { + "start": 9669.42, + "end": 9671.46, + "probability": 0.718 + }, + { + "start": 9671.9, + "end": 9675.1, + "probability": 0.8205 + }, + { + "start": 9675.1, + "end": 9677.04, + "probability": 0.8911 + }, + { + "start": 9678.66, + "end": 9681.58, + "probability": 0.9595 + }, + { + "start": 9682.46, + "end": 9686.34, + "probability": 0.9828 + }, + { + "start": 9686.92, + "end": 9689.66, + "probability": 0.9951 + }, + { + "start": 9690.12, + "end": 9691.88, + "probability": 0.986 + }, + { + "start": 9691.94, + "end": 9694.2, + "probability": 0.6461 + }, + { + "start": 9694.34, + "end": 9700.74, + "probability": 0.8654 + }, + { + "start": 9700.74, + "end": 9703.24, + "probability": 0.6658 + }, + { + "start": 9704.78, + "end": 9705.62, + "probability": 0.5726 + }, + { + "start": 9705.64, + "end": 9706.5, + "probability": 0.6413 + }, + { + "start": 9706.64, + "end": 9708.36, + "probability": 0.9074 + }, + { + "start": 9708.9, + "end": 9710.88, + "probability": 0.9104 + }, + { + "start": 9710.92, + "end": 9718.84, + "probability": 0.7665 + }, + { + "start": 9719.22, + "end": 9720.26, + "probability": 0.7071 + }, + { + "start": 9720.98, + "end": 9727.42, + "probability": 0.9961 + }, + { + "start": 9727.82, + "end": 9729.44, + "probability": 0.7087 + }, + { + "start": 9729.92, + "end": 9732.3, + "probability": 0.8572 + }, + { + "start": 9732.92, + "end": 9738.66, + "probability": 0.7865 + }, + { + "start": 9738.78, + "end": 9743.6, + "probability": 0.8242 + }, + { + "start": 9743.8, + "end": 9744.06, + "probability": 0.6303 + }, + { + "start": 9744.52, + "end": 9747.64, + "probability": 0.7281 + }, + { + "start": 9747.74, + "end": 9751.1, + "probability": 0.7678 + }, + { + "start": 9752.76, + "end": 9754.98, + "probability": 0.9635 + }, + { + "start": 9755.36, + "end": 9756.46, + "probability": 0.8287 + }, + { + "start": 9756.62, + "end": 9757.72, + "probability": 0.4896 + }, + { + "start": 9759.0, + "end": 9762.02, + "probability": 0.9928 + }, + { + "start": 9762.12, + "end": 9765.8, + "probability": 0.9917 + }, + { + "start": 9767.8, + "end": 9770.43, + "probability": 0.881 + }, + { + "start": 9770.66, + "end": 9771.18, + "probability": 0.7727 + }, + { + "start": 9773.8, + "end": 9775.8, + "probability": 0.7407 + }, + { + "start": 9776.34, + "end": 9779.5, + "probability": 0.9586 + }, + { + "start": 9780.28, + "end": 9783.2, + "probability": 0.995 + }, + { + "start": 9783.54, + "end": 9785.24, + "probability": 0.9924 + }, + { + "start": 9785.24, + "end": 9788.06, + "probability": 0.9897 + }, + { + "start": 9788.88, + "end": 9789.96, + "probability": 0.9526 + }, + { + "start": 9790.14, + "end": 9791.24, + "probability": 0.9602 + }, + { + "start": 9791.28, + "end": 9792.22, + "probability": 0.835 + }, + { + "start": 9792.26, + "end": 9793.54, + "probability": 0.6626 + }, + { + "start": 9793.76, + "end": 9796.12, + "probability": 0.5076 + }, + { + "start": 9797.79, + "end": 9798.42, + "probability": 0.1304 + }, + { + "start": 9798.42, + "end": 9803.34, + "probability": 0.9058 + }, + { + "start": 9804.48, + "end": 9809.92, + "probability": 0.997 + }, + { + "start": 9811.46, + "end": 9815.04, + "probability": 0.9985 + }, + { + "start": 9815.84, + "end": 9818.44, + "probability": 0.8795 + }, + { + "start": 9819.72, + "end": 9823.56, + "probability": 0.9994 + }, + { + "start": 9824.7, + "end": 9826.38, + "probability": 0.8937 + }, + { + "start": 9826.94, + "end": 9828.2, + "probability": 0.9436 + }, + { + "start": 9828.9, + "end": 9832.9, + "probability": 0.982 + }, + { + "start": 9833.34, + "end": 9833.84, + "probability": 0.4999 + }, + { + "start": 9834.72, + "end": 9837.08, + "probability": 0.3327 + }, + { + "start": 9837.24, + "end": 9837.62, + "probability": 0.4891 + }, + { + "start": 9837.76, + "end": 9838.76, + "probability": 0.7883 + }, + { + "start": 9839.48, + "end": 9841.16, + "probability": 0.9916 + }, + { + "start": 9841.74, + "end": 9843.12, + "probability": 0.9916 + }, + { + "start": 9843.74, + "end": 9846.18, + "probability": 0.9702 + }, + { + "start": 9846.2, + "end": 9846.56, + "probability": 0.909 + }, + { + "start": 9847.82, + "end": 9851.56, + "probability": 0.8927 + }, + { + "start": 9853.06, + "end": 9853.66, + "probability": 0.0128 + }, + { + "start": 9853.66, + "end": 9853.94, + "probability": 0.0103 + }, + { + "start": 9853.94, + "end": 9853.94, + "probability": 0.0785 + }, + { + "start": 9853.94, + "end": 9855.02, + "probability": 0.657 + }, + { + "start": 9855.56, + "end": 9856.74, + "probability": 0.2804 + }, + { + "start": 9858.98, + "end": 9860.32, + "probability": 0.833 + }, + { + "start": 9862.46, + "end": 9865.54, + "probability": 0.6075 + }, + { + "start": 9865.68, + "end": 9867.74, + "probability": 0.8618 + }, + { + "start": 9868.86, + "end": 9869.78, + "probability": 0.6221 + }, + { + "start": 9869.94, + "end": 9870.72, + "probability": 0.6477 + }, + { + "start": 9870.76, + "end": 9873.21, + "probability": 0.8553 + }, + { + "start": 9873.66, + "end": 9873.96, + "probability": 0.3425 + }, + { + "start": 9873.96, + "end": 9874.24, + "probability": 0.2825 + }, + { + "start": 9874.42, + "end": 9876.72, + "probability": 0.7693 + }, + { + "start": 9876.76, + "end": 9880.4, + "probability": 0.8054 + }, + { + "start": 9880.58, + "end": 9881.29, + "probability": 0.6837 + }, + { + "start": 9881.96, + "end": 9882.72, + "probability": 0.5307 + }, + { + "start": 9882.72, + "end": 9883.24, + "probability": 0.5512 + }, + { + "start": 9884.64, + "end": 9886.94, + "probability": 0.5564 + }, + { + "start": 9887.84, + "end": 9890.84, + "probability": 0.7664 + }, + { + "start": 9892.24, + "end": 9892.26, + "probability": 0.0283 + }, + { + "start": 9892.26, + "end": 9895.46, + "probability": 0.8716 + }, + { + "start": 9895.92, + "end": 9901.62, + "probability": 0.9843 + }, + { + "start": 9902.28, + "end": 9904.8, + "probability": 0.9656 + }, + { + "start": 9905.4, + "end": 9908.18, + "probability": 0.9285 + }, + { + "start": 9908.66, + "end": 9911.6, + "probability": 0.9747 + }, + { + "start": 9912.74, + "end": 9913.0, + "probability": 0.3318 + }, + { + "start": 9913.16, + "end": 9918.6, + "probability": 0.9783 + }, + { + "start": 9919.04, + "end": 9921.34, + "probability": 0.7545 + }, + { + "start": 9921.86, + "end": 9926.06, + "probability": 0.9979 + }, + { + "start": 9926.12, + "end": 9931.88, + "probability": 0.9813 + }, + { + "start": 9931.88, + "end": 9937.2, + "probability": 0.9985 + }, + { + "start": 9938.36, + "end": 9941.96, + "probability": 0.9919 + }, + { + "start": 9942.58, + "end": 9947.94, + "probability": 0.9943 + }, + { + "start": 9947.94, + "end": 9956.06, + "probability": 0.9947 + }, + { + "start": 9957.42, + "end": 9958.34, + "probability": 0.8533 + }, + { + "start": 9959.3, + "end": 9964.56, + "probability": 0.9984 + }, + { + "start": 9964.56, + "end": 9971.34, + "probability": 0.9989 + }, + { + "start": 9972.22, + "end": 9975.1, + "probability": 0.9871 + }, + { + "start": 9976.04, + "end": 9977.02, + "probability": 0.833 + }, + { + "start": 9977.4, + "end": 9978.04, + "probability": 0.9677 + }, + { + "start": 9979.54, + "end": 9980.46, + "probability": 0.9626 + }, + { + "start": 9980.6, + "end": 9981.08, + "probability": 0.3511 + }, + { + "start": 9981.08, + "end": 9985.26, + "probability": 0.9177 + }, + { + "start": 9985.26, + "end": 9990.4, + "probability": 0.9821 + }, + { + "start": 9991.24, + "end": 9995.82, + "probability": 0.9776 + }, + { + "start": 9996.44, + "end": 9996.68, + "probability": 0.416 + }, + { + "start": 9996.78, + "end": 9997.3, + "probability": 0.8485 + }, + { + "start": 9997.46, + "end": 10001.88, + "probability": 0.8278 + }, + { + "start": 10001.88, + "end": 10006.24, + "probability": 0.9824 + }, + { + "start": 10006.64, + "end": 10008.28, + "probability": 0.9193 + }, + { + "start": 10008.98, + "end": 10013.72, + "probability": 0.9973 + }, + { + "start": 10014.54, + "end": 10018.5, + "probability": 0.9383 + }, + { + "start": 10022.94, + "end": 10025.38, + "probability": 0.8691 + }, + { + "start": 10025.92, + "end": 10028.68, + "probability": 0.653 + }, + { + "start": 10029.22, + "end": 10034.1, + "probability": 0.9722 + }, + { + "start": 10035.06, + "end": 10038.52, + "probability": 0.8914 + }, + { + "start": 10039.04, + "end": 10042.7, + "probability": 0.9698 + }, + { + "start": 10043.5, + "end": 10045.74, + "probability": 0.788 + }, + { + "start": 10046.06, + "end": 10047.92, + "probability": 0.7278 + }, + { + "start": 10048.0, + "end": 10049.84, + "probability": 0.9233 + }, + { + "start": 10050.0, + "end": 10053.36, + "probability": 0.9888 + }, + { + "start": 10054.02, + "end": 10056.64, + "probability": 0.9839 + }, + { + "start": 10057.24, + "end": 10060.46, + "probability": 0.9946 + }, + { + "start": 10061.0, + "end": 10061.72, + "probability": 0.8595 + }, + { + "start": 10061.96, + "end": 10062.64, + "probability": 0.9423 + }, + { + "start": 10062.94, + "end": 10064.24, + "probability": 0.9411 + }, + { + "start": 10064.3, + "end": 10064.8, + "probability": 0.6899 + }, + { + "start": 10064.9, + "end": 10069.64, + "probability": 0.9624 + }, + { + "start": 10070.13, + "end": 10075.52, + "probability": 0.8924 + }, + { + "start": 10076.16, + "end": 10078.82, + "probability": 0.9883 + }, + { + "start": 10079.7, + "end": 10082.46, + "probability": 0.9766 + }, + { + "start": 10082.96, + "end": 10084.74, + "probability": 0.7905 + }, + { + "start": 10085.48, + "end": 10086.58, + "probability": 0.4703 + }, + { + "start": 10086.84, + "end": 10088.46, + "probability": 0.8032 + }, + { + "start": 10088.8, + "end": 10095.04, + "probability": 0.9839 + }, + { + "start": 10095.72, + "end": 10099.0, + "probability": 0.9041 + }, + { + "start": 10099.82, + "end": 10100.72, + "probability": 0.7333 + }, + { + "start": 10100.8, + "end": 10102.3, + "probability": 0.8181 + }, + { + "start": 10102.54, + "end": 10107.36, + "probability": 0.9755 + }, + { + "start": 10107.56, + "end": 10111.0, + "probability": 0.9883 + }, + { + "start": 10111.2, + "end": 10114.68, + "probability": 0.9868 + }, + { + "start": 10115.78, + "end": 10120.02, + "probability": 0.9598 + }, + { + "start": 10120.48, + "end": 10123.82, + "probability": 0.9968 + }, + { + "start": 10124.54, + "end": 10130.2, + "probability": 0.9842 + }, + { + "start": 10130.68, + "end": 10136.18, + "probability": 0.9646 + }, + { + "start": 10136.58, + "end": 10137.28, + "probability": 0.8397 + }, + { + "start": 10137.4, + "end": 10138.56, + "probability": 0.6179 + }, + { + "start": 10139.32, + "end": 10141.64, + "probability": 0.4514 + }, + { + "start": 10141.82, + "end": 10143.62, + "probability": 0.9406 + }, + { + "start": 10144.04, + "end": 10148.22, + "probability": 0.9314 + }, + { + "start": 10149.0, + "end": 10149.58, + "probability": 0.7299 + }, + { + "start": 10149.66, + "end": 10153.18, + "probability": 0.9917 + }, + { + "start": 10153.18, + "end": 10158.34, + "probability": 0.9346 + }, + { + "start": 10159.04, + "end": 10160.64, + "probability": 0.909 + }, + { + "start": 10162.06, + "end": 10163.92, + "probability": 0.6566 + }, + { + "start": 10164.72, + "end": 10164.78, + "probability": 0.7739 + }, + { + "start": 10164.9, + "end": 10170.16, + "probability": 0.9775 + }, + { + "start": 10170.88, + "end": 10170.88, + "probability": 0.0491 + }, + { + "start": 10170.88, + "end": 10171.54, + "probability": 0.7959 + }, + { + "start": 10171.78, + "end": 10173.13, + "probability": 0.9723 + }, + { + "start": 10174.0, + "end": 10175.78, + "probability": 0.9751 + }, + { + "start": 10176.42, + "end": 10183.2, + "probability": 0.9526 + }, + { + "start": 10183.2, + "end": 10185.28, + "probability": 0.6975 + }, + { + "start": 10185.34, + "end": 10186.24, + "probability": 0.9664 + }, + { + "start": 10186.8, + "end": 10187.68, + "probability": 0.865 + }, + { + "start": 10188.3, + "end": 10190.88, + "probability": 0.9839 + }, + { + "start": 10192.1, + "end": 10197.24, + "probability": 0.9 + }, + { + "start": 10198.12, + "end": 10202.1, + "probability": 0.8333 + }, + { + "start": 10202.7, + "end": 10205.59, + "probability": 0.9868 + }, + { + "start": 10205.94, + "end": 10209.76, + "probability": 0.9889 + }, + { + "start": 10210.36, + "end": 10213.2, + "probability": 0.9934 + }, + { + "start": 10213.54, + "end": 10214.9, + "probability": 0.624 + }, + { + "start": 10215.82, + "end": 10217.48, + "probability": 0.9065 + }, + { + "start": 10220.88, + "end": 10223.18, + "probability": 0.5647 + }, + { + "start": 10223.18, + "end": 10224.94, + "probability": 0.5184 + }, + { + "start": 10225.46, + "end": 10230.14, + "probability": 0.8511 + }, + { + "start": 10231.1, + "end": 10231.34, + "probability": 0.3593 + }, + { + "start": 10231.52, + "end": 10232.76, + "probability": 0.9876 + }, + { + "start": 10241.6, + "end": 10242.32, + "probability": 0.2876 + }, + { + "start": 10242.48, + "end": 10243.62, + "probability": 0.4922 + }, + { + "start": 10243.68, + "end": 10244.74, + "probability": 0.7355 + }, + { + "start": 10244.78, + "end": 10246.08, + "probability": 0.8359 + }, + { + "start": 10246.16, + "end": 10247.78, + "probability": 0.54 + }, + { + "start": 10249.85, + "end": 10254.26, + "probability": 0.899 + }, + { + "start": 10254.78, + "end": 10257.72, + "probability": 0.8369 + }, + { + "start": 10257.72, + "end": 10265.96, + "probability": 0.9919 + }, + { + "start": 10266.18, + "end": 10267.54, + "probability": 0.5332 + }, + { + "start": 10270.02, + "end": 10271.7, + "probability": 0.7705 + }, + { + "start": 10271.82, + "end": 10273.42, + "probability": 0.806 + }, + { + "start": 10273.46, + "end": 10275.7, + "probability": 0.4464 + }, + { + "start": 10276.1, + "end": 10278.04, + "probability": 0.592 + }, + { + "start": 10278.14, + "end": 10280.32, + "probability": 0.5951 + }, + { + "start": 10280.36, + "end": 10281.26, + "probability": 0.9673 + }, + { + "start": 10281.44, + "end": 10282.3, + "probability": 0.7245 + }, + { + "start": 10282.38, + "end": 10283.2, + "probability": 0.8777 + }, + { + "start": 10283.42, + "end": 10284.12, + "probability": 0.8218 + }, + { + "start": 10284.48, + "end": 10286.84, + "probability": 0.8591 + }, + { + "start": 10286.96, + "end": 10287.4, + "probability": 0.8686 + }, + { + "start": 10287.52, + "end": 10288.4, + "probability": 0.5143 + }, + { + "start": 10288.8, + "end": 10290.07, + "probability": 0.9276 + }, + { + "start": 10290.71, + "end": 10293.49, + "probability": 0.9986 + }, + { + "start": 10294.35, + "end": 10296.57, + "probability": 0.7465 + }, + { + "start": 10296.71, + "end": 10299.31, + "probability": 0.9806 + }, + { + "start": 10299.67, + "end": 10300.95, + "probability": 0.9521 + }, + { + "start": 10301.15, + "end": 10306.65, + "probability": 0.9896 + }, + { + "start": 10308.37, + "end": 10310.45, + "probability": 0.9952 + }, + { + "start": 10310.45, + "end": 10315.45, + "probability": 0.9984 + }, + { + "start": 10320.36, + "end": 10323.87, + "probability": 0.5178 + }, + { + "start": 10324.01, + "end": 10326.93, + "probability": 0.8896 + }, + { + "start": 10327.01, + "end": 10329.71, + "probability": 0.874 + }, + { + "start": 10329.79, + "end": 10331.85, + "probability": 0.5813 + }, + { + "start": 10332.63, + "end": 10335.45, + "probability": 0.9642 + }, + { + "start": 10335.53, + "end": 10337.3, + "probability": 0.9995 + }, + { + "start": 10337.65, + "end": 10340.41, + "probability": 0.9854 + }, + { + "start": 10341.37, + "end": 10341.95, + "probability": 0.0123 + }, + { + "start": 10341.95, + "end": 10342.99, + "probability": 0.0763 + }, + { + "start": 10342.99, + "end": 10344.53, + "probability": 0.8417 + }, + { + "start": 10344.75, + "end": 10346.19, + "probability": 0.9577 + }, + { + "start": 10346.19, + "end": 10350.87, + "probability": 0.5076 + }, + { + "start": 10352.19, + "end": 10353.79, + "probability": 0.065 + }, + { + "start": 10353.79, + "end": 10354.13, + "probability": 0.241 + }, + { + "start": 10354.75, + "end": 10359.71, + "probability": 0.4144 + }, + { + "start": 10360.05, + "end": 10360.05, + "probability": 0.0527 + }, + { + "start": 10360.07, + "end": 10360.07, + "probability": 0.0424 + }, + { + "start": 10360.07, + "end": 10369.11, + "probability": 0.2818 + }, + { + "start": 10369.59, + "end": 10371.17, + "probability": 0.0699 + }, + { + "start": 10371.17, + "end": 10374.51, + "probability": 0.027 + }, + { + "start": 10375.35, + "end": 10376.01, + "probability": 0.1365 + }, + { + "start": 10376.79, + "end": 10380.31, + "probability": 0.0205 + }, + { + "start": 10380.31, + "end": 10380.31, + "probability": 0.1382 + }, + { + "start": 10380.31, + "end": 10380.87, + "probability": 0.0123 + }, + { + "start": 10380.93, + "end": 10381.73, + "probability": 0.5182 + }, + { + "start": 10382.35, + "end": 10384.25, + "probability": 0.0342 + }, + { + "start": 10389.85, + "end": 10392.51, + "probability": 0.4606 + }, + { + "start": 10393.39, + "end": 10398.2, + "probability": 0.0453 + }, + { + "start": 10398.37, + "end": 10400.29, + "probability": 0.0838 + }, + { + "start": 10401.25, + "end": 10402.71, + "probability": 0.0265 + }, + { + "start": 10404.47, + "end": 10404.57, + "probability": 0.044 + }, + { + "start": 10404.57, + "end": 10405.01, + "probability": 0.2581 + }, + { + "start": 10405.17, + "end": 10412.41, + "probability": 0.0499 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.08, + "probability": 0.1592 + }, + { + "start": 10416.08, + "end": 10416.08, + "probability": 0.1148 + }, + { + "start": 10416.08, + "end": 10416.2, + "probability": 0.0882 + }, + { + "start": 10416.2, + "end": 10417.98, + "probability": 0.4884 + }, + { + "start": 10419.42, + "end": 10421.74, + "probability": 0.7627 + }, + { + "start": 10421.84, + "end": 10425.28, + "probability": 0.98 + }, + { + "start": 10425.42, + "end": 10425.84, + "probability": 0.8587 + }, + { + "start": 10426.66, + "end": 10429.04, + "probability": 0.9857 + }, + { + "start": 10429.16, + "end": 10431.28, + "probability": 0.996 + }, + { + "start": 10431.36, + "end": 10435.6, + "probability": 0.9855 + }, + { + "start": 10437.54, + "end": 10438.58, + "probability": 0.798 + }, + { + "start": 10438.72, + "end": 10441.4, + "probability": 0.9932 + }, + { + "start": 10441.4, + "end": 10445.0, + "probability": 0.9965 + }, + { + "start": 10445.5, + "end": 10449.22, + "probability": 0.9976 + }, + { + "start": 10449.78, + "end": 10451.26, + "probability": 0.9877 + }, + { + "start": 10451.64, + "end": 10452.98, + "probability": 0.1417 + }, + { + "start": 10453.26, + "end": 10454.44, + "probability": 0.9363 + }, + { + "start": 10454.8, + "end": 10457.94, + "probability": 0.9417 + }, + { + "start": 10457.98, + "end": 10461.06, + "probability": 0.9512 + }, + { + "start": 10463.1, + "end": 10464.9, + "probability": 0.9215 + }, + { + "start": 10464.9, + "end": 10466.02, + "probability": 0.7711 + }, + { + "start": 10466.12, + "end": 10467.32, + "probability": 0.522 + }, + { + "start": 10467.54, + "end": 10471.48, + "probability": 0.9834 + }, + { + "start": 10471.82, + "end": 10475.08, + "probability": 0.7435 + }, + { + "start": 10475.3, + "end": 10476.2, + "probability": 0.6076 + }, + { + "start": 10476.62, + "end": 10477.76, + "probability": 0.7152 + }, + { + "start": 10490.06, + "end": 10491.36, + "probability": 0.6529 + }, + { + "start": 10495.04, + "end": 10495.76, + "probability": 0.8893 + }, + { + "start": 10495.82, + "end": 10498.26, + "probability": 0.873 + }, + { + "start": 10498.42, + "end": 10499.48, + "probability": 0.6753 + }, + { + "start": 10502.27, + "end": 10506.84, + "probability": 0.077 + }, + { + "start": 10506.84, + "end": 10506.84, + "probability": 0.0347 + }, + { + "start": 10506.84, + "end": 10506.84, + "probability": 0.1293 + }, + { + "start": 10506.84, + "end": 10507.78, + "probability": 0.3732 + }, + { + "start": 10508.62, + "end": 10508.62, + "probability": 0.0165 + }, + { + "start": 10508.62, + "end": 10508.62, + "probability": 0.1065 + }, + { + "start": 10508.62, + "end": 10513.1, + "probability": 0.6233 + }, + { + "start": 10513.34, + "end": 10514.52, + "probability": 0.4668 + }, + { + "start": 10515.08, + "end": 10520.24, + "probability": 0.8221 + }, + { + "start": 10527.44, + "end": 10529.84, + "probability": 0.6009 + }, + { + "start": 10530.0, + "end": 10531.24, + "probability": 0.4293 + }, + { + "start": 10531.94, + "end": 10532.36, + "probability": 0.2908 + }, + { + "start": 10532.54, + "end": 10532.94, + "probability": 0.0391 + }, + { + "start": 10534.24, + "end": 10534.84, + "probability": 0.0244 + }, + { + "start": 10536.09, + "end": 10537.14, + "probability": 0.0593 + }, + { + "start": 10540.12, + "end": 10540.32, + "probability": 0.1156 + }, + { + "start": 10542.28, + "end": 10543.4, + "probability": 0.1119 + }, + { + "start": 10546.42, + "end": 10549.24, + "probability": 0.1713 + }, + { + "start": 10553.03, + "end": 10554.68, + "probability": 0.0941 + }, + { + "start": 10575.5, + "end": 10579.84, + "probability": 0.8298 + }, + { + "start": 10579.9, + "end": 10581.14, + "probability": 0.394 + }, + { + "start": 10581.44, + "end": 10581.66, + "probability": 0.5201 + }, + { + "start": 10581.78, + "end": 10584.4, + "probability": 0.9923 + }, + { + "start": 10584.96, + "end": 10589.29, + "probability": 0.7856 + }, + { + "start": 10589.86, + "end": 10591.2, + "probability": 0.9963 + }, + { + "start": 10597.54, + "end": 10599.22, + "probability": 0.7132 + }, + { + "start": 10599.64, + "end": 10607.16, + "probability": 0.9901 + }, + { + "start": 10608.54, + "end": 10614.68, + "probability": 0.9758 + }, + { + "start": 10615.98, + "end": 10620.0, + "probability": 0.6011 + }, + { + "start": 10621.08, + "end": 10622.02, + "probability": 0.7781 + }, + { + "start": 10622.02, + "end": 10628.3, + "probability": 0.998 + }, + { + "start": 10628.3, + "end": 10633.66, + "probability": 0.9995 + }, + { + "start": 10637.5, + "end": 10644.58, + "probability": 0.9622 + }, + { + "start": 10647.56, + "end": 10648.4, + "probability": 0.8142 + }, + { + "start": 10648.5, + "end": 10650.04, + "probability": 0.532 + }, + { + "start": 10650.06, + "end": 10651.18, + "probability": 0.6819 + }, + { + "start": 10652.52, + "end": 10655.44, + "probability": 0.9697 + }, + { + "start": 10658.1, + "end": 10659.36, + "probability": 0.7775 + }, + { + "start": 10659.84, + "end": 10660.98, + "probability": 0.7818 + }, + { + "start": 10661.46, + "end": 10664.33, + "probability": 0.9636 + }, + { + "start": 10665.42, + "end": 10668.0, + "probability": 0.9954 + }, + { + "start": 10668.62, + "end": 10669.78, + "probability": 0.9824 + }, + { + "start": 10670.16, + "end": 10671.08, + "probability": 0.9194 + }, + { + "start": 10671.36, + "end": 10673.38, + "probability": 0.1724 + }, + { + "start": 10674.62, + "end": 10675.44, + "probability": 0.0916 + }, + { + "start": 10676.26, + "end": 10677.96, + "probability": 0.6164 + }, + { + "start": 10678.14, + "end": 10678.14, + "probability": 0.1652 + }, + { + "start": 10678.14, + "end": 10679.94, + "probability": 0.7156 + }, + { + "start": 10680.38, + "end": 10680.42, + "probability": 0.3134 + }, + { + "start": 10680.42, + "end": 10681.44, + "probability": 0.7547 + }, + { + "start": 10682.14, + "end": 10683.52, + "probability": 0.948 + }, + { + "start": 10684.25, + "end": 10688.02, + "probability": 0.887 + }, + { + "start": 10688.3, + "end": 10689.49, + "probability": 0.8176 + }, + { + "start": 10689.82, + "end": 10692.56, + "probability": 0.8846 + }, + { + "start": 10692.7, + "end": 10693.68, + "probability": 0.7589 + }, + { + "start": 10695.06, + "end": 10696.02, + "probability": 0.7039 + }, + { + "start": 10696.04, + "end": 10696.42, + "probability": 0.3721 + }, + { + "start": 10696.42, + "end": 10696.84, + "probability": 0.2429 + }, + { + "start": 10697.02, + "end": 10699.82, + "probability": 0.989 + }, + { + "start": 10700.56, + "end": 10703.46, + "probability": 0.7419 + }, + { + "start": 10703.84, + "end": 10710.26, + "probability": 0.948 + }, + { + "start": 10710.78, + "end": 10711.66, + "probability": 0.9562 + }, + { + "start": 10712.0, + "end": 10712.8, + "probability": 0.3216 + }, + { + "start": 10713.37, + "end": 10714.64, + "probability": 0.2457 + }, + { + "start": 10714.92, + "end": 10717.28, + "probability": 0.9939 + }, + { + "start": 10717.56, + "end": 10720.62, + "probability": 0.8857 + }, + { + "start": 10720.76, + "end": 10722.01, + "probability": 0.9795 + }, + { + "start": 10722.76, + "end": 10724.38, + "probability": 0.4958 + }, + { + "start": 10724.44, + "end": 10725.56, + "probability": 0.7707 + }, + { + "start": 10725.66, + "end": 10726.98, + "probability": 0.931 + }, + { + "start": 10727.12, + "end": 10728.24, + "probability": 0.5847 + }, + { + "start": 10728.48, + "end": 10729.38, + "probability": 0.9663 + }, + { + "start": 10729.62, + "end": 10730.02, + "probability": 0.671 + }, + { + "start": 10730.06, + "end": 10731.2, + "probability": 0.4506 + }, + { + "start": 10731.2, + "end": 10733.42, + "probability": 0.728 + }, + { + "start": 10733.46, + "end": 10735.92, + "probability": 0.8531 + }, + { + "start": 10736.04, + "end": 10737.52, + "probability": 0.8036 + }, + { + "start": 10738.04, + "end": 10739.54, + "probability": 0.8897 + }, + { + "start": 10739.64, + "end": 10740.71, + "probability": 0.941 + }, + { + "start": 10741.16, + "end": 10743.24, + "probability": 0.7669 + }, + { + "start": 10743.3, + "end": 10746.08, + "probability": 0.7456 + }, + { + "start": 10746.76, + "end": 10747.53, + "probability": 0.4388 + }, + { + "start": 10748.74, + "end": 10752.41, + "probability": 0.9797 + }, + { + "start": 10753.3, + "end": 10757.04, + "probability": 0.9843 + }, + { + "start": 10757.72, + "end": 10759.16, + "probability": 0.9712 + }, + { + "start": 10759.8, + "end": 10767.12, + "probability": 0.9336 + }, + { + "start": 10767.32, + "end": 10768.58, + "probability": 0.6238 + }, + { + "start": 10768.9, + "end": 10770.22, + "probability": 0.8546 + }, + { + "start": 10771.22, + "end": 10773.94, + "probability": 0.83 + }, + { + "start": 10774.44, + "end": 10777.8, + "probability": 0.9692 + }, + { + "start": 10778.56, + "end": 10779.75, + "probability": 0.9934 + }, + { + "start": 10780.82, + "end": 10784.02, + "probability": 0.9762 + }, + { + "start": 10784.68, + "end": 10786.56, + "probability": 0.9943 + }, + { + "start": 10787.16, + "end": 10790.62, + "probability": 0.8556 + }, + { + "start": 10790.7, + "end": 10790.76, + "probability": 0.0054 + }, + { + "start": 10795.12, + "end": 10797.88, + "probability": 0.5959 + }, + { + "start": 10798.1, + "end": 10798.9, + "probability": 0.73 + }, + { + "start": 10798.9, + "end": 10799.58, + "probability": 0.9251 + }, + { + "start": 10799.58, + "end": 10802.32, + "probability": 0.4907 + }, + { + "start": 10802.52, + "end": 10804.62, + "probability": 0.9753 + }, + { + "start": 10804.76, + "end": 10805.6, + "probability": 0.6313 + }, + { + "start": 10806.18, + "end": 10808.47, + "probability": 0.9377 + }, + { + "start": 10808.72, + "end": 10809.86, + "probability": 0.9571 + }, + { + "start": 10810.44, + "end": 10812.14, + "probability": 0.9197 + }, + { + "start": 10812.38, + "end": 10812.74, + "probability": 0.2919 + }, + { + "start": 10812.74, + "end": 10813.86, + "probability": 0.5488 + }, + { + "start": 10813.94, + "end": 10816.04, + "probability": 0.9497 + }, + { + "start": 10816.28, + "end": 10818.18, + "probability": 0.9776 + }, + { + "start": 10818.18, + "end": 10819.26, + "probability": 0.8962 + }, + { + "start": 10819.28, + "end": 10819.8, + "probability": 0.7731 + }, + { + "start": 10820.86, + "end": 10822.55, + "probability": 0.4272 + }, + { + "start": 10823.46, + "end": 10824.27, + "probability": 0.4056 + }, + { + "start": 10824.64, + "end": 10826.12, + "probability": 0.69 + }, + { + "start": 10828.06, + "end": 10829.5, + "probability": 0.5729 + }, + { + "start": 10830.36, + "end": 10830.88, + "probability": 0.6489 + }, + { + "start": 10831.12, + "end": 10832.22, + "probability": 0.811 + }, + { + "start": 10832.22, + "end": 10832.48, + "probability": 0.1837 + }, + { + "start": 10832.88, + "end": 10835.28, + "probability": 0.8752 + }, + { + "start": 10835.28, + "end": 10835.28, + "probability": 0.0366 + }, + { + "start": 10836.32, + "end": 10836.52, + "probability": 0.1198 + }, + { + "start": 10836.52, + "end": 10836.52, + "probability": 0.243 + }, + { + "start": 10836.52, + "end": 10837.12, + "probability": 0.525 + }, + { + "start": 10837.72, + "end": 10838.58, + "probability": 0.6141 + }, + { + "start": 10843.58, + "end": 10845.66, + "probability": 0.5272 + }, + { + "start": 10845.88, + "end": 10847.9, + "probability": 0.7044 + }, + { + "start": 10848.58, + "end": 10851.6, + "probability": 0.946 + }, + { + "start": 10852.42, + "end": 10856.2, + "probability": 0.9229 + }, + { + "start": 10856.54, + "end": 10857.66, + "probability": 0.9377 + }, + { + "start": 10857.76, + "end": 10859.08, + "probability": 0.9773 + }, + { + "start": 10859.14, + "end": 10864.0, + "probability": 0.9899 + }, + { + "start": 10864.34, + "end": 10867.1, + "probability": 0.9911 + }, + { + "start": 10868.04, + "end": 10869.22, + "probability": 0.7215 + }, + { + "start": 10869.46, + "end": 10871.78, + "probability": 0.5359 + }, + { + "start": 10871.98, + "end": 10874.2, + "probability": 0.6882 + }, + { + "start": 10874.7, + "end": 10876.2, + "probability": 0.9538 + }, + { + "start": 10876.54, + "end": 10881.12, + "probability": 0.8413 + }, + { + "start": 10882.19, + "end": 10884.4, + "probability": 0.8804 + }, + { + "start": 10884.9, + "end": 10885.6, + "probability": 0.3146 + }, + { + "start": 10885.6, + "end": 10886.24, + "probability": 0.4571 + }, + { + "start": 10886.52, + "end": 10887.24, + "probability": 0.0489 + }, + { + "start": 10887.86, + "end": 10888.3, + "probability": 0.0146 + }, + { + "start": 10888.3, + "end": 10889.52, + "probability": 0.5716 + }, + { + "start": 10889.52, + "end": 10891.24, + "probability": 0.3378 + }, + { + "start": 10891.26, + "end": 10891.84, + "probability": 0.2551 + }, + { + "start": 10891.84, + "end": 10893.08, + "probability": 0.7484 + }, + { + "start": 10893.16, + "end": 10894.04, + "probability": 0.8682 + }, + { + "start": 10894.24, + "end": 10896.6, + "probability": 0.039 + }, + { + "start": 10897.86, + "end": 10897.94, + "probability": 0.0455 + }, + { + "start": 10898.23, + "end": 10898.38, + "probability": 0.2157 + }, + { + "start": 10898.6, + "end": 10898.96, + "probability": 0.1495 + }, + { + "start": 10898.96, + "end": 10900.0, + "probability": 0.1791 + }, + { + "start": 10901.82, + "end": 10905.04, + "probability": 0.9709 + }, + { + "start": 10905.7, + "end": 10907.22, + "probability": 0.9626 + }, + { + "start": 10907.46, + "end": 10912.32, + "probability": 0.9958 + }, + { + "start": 10912.46, + "end": 10913.98, + "probability": 0.8626 + }, + { + "start": 10914.26, + "end": 10915.9, + "probability": 0.995 + }, + { + "start": 10916.74, + "end": 10917.66, + "probability": 0.8487 + }, + { + "start": 10917.76, + "end": 10918.64, + "probability": 0.9778 + }, + { + "start": 10919.04, + "end": 10921.52, + "probability": 0.9128 + }, + { + "start": 10921.7, + "end": 10922.18, + "probability": 0.8125 + }, + { + "start": 10922.28, + "end": 10923.0, + "probability": 0.9873 + }, + { + "start": 10923.06, + "end": 10924.06, + "probability": 0.9178 + }, + { + "start": 10924.18, + "end": 10925.16, + "probability": 0.9097 + }, + { + "start": 10925.72, + "end": 10929.1, + "probability": 0.98 + }, + { + "start": 10929.94, + "end": 10936.54, + "probability": 0.9478 + }, + { + "start": 10936.94, + "end": 10938.92, + "probability": 0.9963 + }, + { + "start": 10939.3, + "end": 10939.84, + "probability": 0.2543 + }, + { + "start": 10939.84, + "end": 10945.76, + "probability": 0.9878 + }, + { + "start": 10946.14, + "end": 10946.66, + "probability": 0.9342 + }, + { + "start": 10946.82, + "end": 10948.28, + "probability": 0.7853 + }, + { + "start": 10948.32, + "end": 10949.3, + "probability": 0.8789 + }, + { + "start": 10949.74, + "end": 10953.92, + "probability": 0.7403 + }, + { + "start": 10954.22, + "end": 10955.88, + "probability": 0.9812 + }, + { + "start": 10956.18, + "end": 10956.95, + "probability": 0.9863 + }, + { + "start": 10957.22, + "end": 10959.26, + "probability": 0.8072 + }, + { + "start": 10959.54, + "end": 10965.04, + "probability": 0.9963 + }, + { + "start": 10965.14, + "end": 10966.6, + "probability": 0.9851 + }, + { + "start": 10967.78, + "end": 10968.44, + "probability": 0.711 + }, + { + "start": 10968.86, + "end": 10969.1, + "probability": 0.8535 + }, + { + "start": 10969.3, + "end": 10973.16, + "probability": 0.9004 + }, + { + "start": 10973.26, + "end": 10973.82, + "probability": 0.5812 + }, + { + "start": 10974.88, + "end": 10976.38, + "probability": 0.9709 + }, + { + "start": 10977.55, + "end": 10979.45, + "probability": 0.7702 + }, + { + "start": 10979.82, + "end": 10981.92, + "probability": 0.9482 + }, + { + "start": 10982.34, + "end": 10985.0, + "probability": 0.9901 + }, + { + "start": 10985.42, + "end": 10986.14, + "probability": 0.9436 + }, + { + "start": 10986.2, + "end": 10989.48, + "probability": 0.0724 + }, + { + "start": 10989.48, + "end": 10990.3, + "probability": 0.264 + }, + { + "start": 10990.66, + "end": 10994.22, + "probability": 0.955 + }, + { + "start": 10994.7, + "end": 10996.04, + "probability": 0.0389 + }, + { + "start": 10996.04, + "end": 10996.74, + "probability": 0.0198 + }, + { + "start": 10996.74, + "end": 10997.0, + "probability": 0.4486 + }, + { + "start": 10997.18, + "end": 10998.12, + "probability": 0.8757 + }, + { + "start": 10998.14, + "end": 10998.5, + "probability": 0.7714 + }, + { + "start": 10999.3, + "end": 11001.68, + "probability": 0.7029 + }, + { + "start": 11001.7, + "end": 11005.42, + "probability": 0.8595 + }, + { + "start": 11008.34, + "end": 11008.54, + "probability": 0.1806 + }, + { + "start": 11009.96, + "end": 11010.22, + "probability": 0.7893 + }, + { + "start": 11011.38, + "end": 11011.9, + "probability": 0.1655 + }, + { + "start": 11012.18, + "end": 11016.04, + "probability": 0.8681 + }, + { + "start": 11016.56, + "end": 11018.22, + "probability": 0.935 + }, + { + "start": 11018.4, + "end": 11018.82, + "probability": 0.7544 + }, + { + "start": 11019.38, + "end": 11022.46, + "probability": 0.9421 + }, + { + "start": 11023.04, + "end": 11024.0, + "probability": 0.6381 + }, + { + "start": 11024.26, + "end": 11024.7, + "probability": 0.5084 + }, + { + "start": 11027.46, + "end": 11031.26, + "probability": 0.9719 + }, + { + "start": 11031.93, + "end": 11035.58, + "probability": 0.969 + }, + { + "start": 11035.68, + "end": 11036.6, + "probability": 0.1792 + }, + { + "start": 11036.6, + "end": 11038.06, + "probability": 0.6964 + }, + { + "start": 11038.14, + "end": 11039.9, + "probability": 0.4755 + }, + { + "start": 11040.24, + "end": 11041.58, + "probability": 0.676 + }, + { + "start": 11058.2, + "end": 11059.52, + "probability": 0.4617 + }, + { + "start": 11059.74, + "end": 11060.84, + "probability": 0.8862 + }, + { + "start": 11061.12, + "end": 11063.78, + "probability": 0.6646 + }, + { + "start": 11064.14, + "end": 11072.8, + "probability": 0.9623 + }, + { + "start": 11073.5, + "end": 11078.18, + "probability": 0.9967 + }, + { + "start": 11078.78, + "end": 11080.4, + "probability": 0.709 + }, + { + "start": 11081.46, + "end": 11082.0, + "probability": 0.6355 + }, + { + "start": 11082.16, + "end": 11085.08, + "probability": 0.9742 + }, + { + "start": 11085.46, + "end": 11085.94, + "probability": 0.4751 + }, + { + "start": 11086.0, + "end": 11086.34, + "probability": 0.5826 + }, + { + "start": 11086.44, + "end": 11088.08, + "probability": 0.6969 + }, + { + "start": 11088.08, + "end": 11088.12, + "probability": 0.4487 + }, + { + "start": 11088.12, + "end": 11096.54, + "probability": 0.9609 + }, + { + "start": 11097.22, + "end": 11103.56, + "probability": 0.9875 + }, + { + "start": 11103.68, + "end": 11106.04, + "probability": 0.8301 + }, + { + "start": 11106.14, + "end": 11108.62, + "probability": 0.7788 + }, + { + "start": 11109.0, + "end": 11113.02, + "probability": 0.8463 + }, + { + "start": 11113.12, + "end": 11117.18, + "probability": 0.9507 + }, + { + "start": 11117.94, + "end": 11118.76, + "probability": 0.7571 + }, + { + "start": 11119.22, + "end": 11126.86, + "probability": 0.9463 + }, + { + "start": 11126.86, + "end": 11133.68, + "probability": 0.989 + }, + { + "start": 11134.2, + "end": 11137.48, + "probability": 0.9889 + }, + { + "start": 11137.9, + "end": 11139.68, + "probability": 0.9608 + }, + { + "start": 11140.28, + "end": 11141.24, + "probability": 0.6824 + }, + { + "start": 11141.92, + "end": 11147.52, + "probability": 0.9328 + }, + { + "start": 11147.52, + "end": 11152.12, + "probability": 0.985 + }, + { + "start": 11152.2, + "end": 11154.5, + "probability": 0.8968 + }, + { + "start": 11155.14, + "end": 11161.88, + "probability": 0.9647 + }, + { + "start": 11162.08, + "end": 11164.12, + "probability": 0.9066 + }, + { + "start": 11164.2, + "end": 11167.12, + "probability": 0.6074 + }, + { + "start": 11167.52, + "end": 11168.52, + "probability": 0.0301 + }, + { + "start": 11168.9, + "end": 11171.92, + "probability": 0.9436 + }, + { + "start": 11172.14, + "end": 11176.1, + "probability": 0.8328 + }, + { + "start": 11176.18, + "end": 11179.8, + "probability": 0.7089 + }, + { + "start": 11180.24, + "end": 11188.28, + "probability": 0.9883 + }, + { + "start": 11188.38, + "end": 11193.18, + "probability": 0.8796 + }, + { + "start": 11194.88, + "end": 11197.36, + "probability": 0.0627 + }, + { + "start": 11197.62, + "end": 11205.28, + "probability": 0.6969 + }, + { + "start": 11205.74, + "end": 11209.0, + "probability": 0.9818 + }, + { + "start": 11209.0, + "end": 11213.46, + "probability": 0.9731 + }, + { + "start": 11213.76, + "end": 11216.86, + "probability": 0.9451 + }, + { + "start": 11217.54, + "end": 11218.06, + "probability": 0.6617 + }, + { + "start": 11218.12, + "end": 11220.28, + "probability": 0.9641 + }, + { + "start": 11220.38, + "end": 11222.68, + "probability": 0.6371 + }, + { + "start": 11222.74, + "end": 11225.82, + "probability": 0.9529 + }, + { + "start": 11225.9, + "end": 11226.54, + "probability": 0.8841 + }, + { + "start": 11226.64, + "end": 11227.74, + "probability": 0.9316 + }, + { + "start": 11227.84, + "end": 11228.48, + "probability": 0.8527 + }, + { + "start": 11229.12, + "end": 11231.1, + "probability": 0.9829 + }, + { + "start": 11231.22, + "end": 11235.06, + "probability": 0.988 + }, + { + "start": 11235.16, + "end": 11237.08, + "probability": 0.7158 + }, + { + "start": 11237.58, + "end": 11239.42, + "probability": 0.9463 + }, + { + "start": 11239.52, + "end": 11242.14, + "probability": 0.98 + }, + { + "start": 11242.66, + "end": 11244.68, + "probability": 0.7169 + }, + { + "start": 11244.82, + "end": 11246.92, + "probability": 0.9942 + }, + { + "start": 11246.98, + "end": 11248.06, + "probability": 0.9833 + }, + { + "start": 11248.12, + "end": 11249.14, + "probability": 0.9406 + }, + { + "start": 11249.28, + "end": 11251.08, + "probability": 0.9786 + }, + { + "start": 11251.46, + "end": 11252.3, + "probability": 0.8824 + }, + { + "start": 11252.38, + "end": 11255.98, + "probability": 0.9782 + }, + { + "start": 11256.0, + "end": 11257.1, + "probability": 0.8211 + }, + { + "start": 11257.34, + "end": 11261.07, + "probability": 0.9906 + }, + { + "start": 11262.1, + "end": 11267.46, + "probability": 0.9886 + }, + { + "start": 11268.0, + "end": 11271.14, + "probability": 0.6449 + }, + { + "start": 11271.32, + "end": 11273.92, + "probability": 0.9296 + }, + { + "start": 11274.18, + "end": 11275.74, + "probability": 0.9762 + }, + { + "start": 11276.08, + "end": 11277.68, + "probability": 0.8359 + }, + { + "start": 11278.42, + "end": 11283.8, + "probability": 0.9674 + }, + { + "start": 11284.04, + "end": 11286.4, + "probability": 0.9742 + }, + { + "start": 11286.9, + "end": 11290.84, + "probability": 0.9946 + }, + { + "start": 11291.46, + "end": 11296.96, + "probability": 0.874 + }, + { + "start": 11296.98, + "end": 11297.82, + "probability": 0.937 + }, + { + "start": 11297.94, + "end": 11298.78, + "probability": 0.8634 + }, + { + "start": 11298.98, + "end": 11300.68, + "probability": 0.8445 + }, + { + "start": 11300.88, + "end": 11303.46, + "probability": 0.9818 + }, + { + "start": 11303.54, + "end": 11310.0, + "probability": 0.9688 + }, + { + "start": 11310.54, + "end": 11313.46, + "probability": 0.9696 + }, + { + "start": 11313.96, + "end": 11315.54, + "probability": 0.8514 + }, + { + "start": 11315.64, + "end": 11317.32, + "probability": 0.9939 + }, + { + "start": 11317.32, + "end": 11321.82, + "probability": 0.9731 + }, + { + "start": 11322.14, + "end": 11324.62, + "probability": 0.9857 + }, + { + "start": 11325.08, + "end": 11327.32, + "probability": 0.9045 + }, + { + "start": 11327.72, + "end": 11330.96, + "probability": 0.9904 + }, + { + "start": 11331.34, + "end": 11333.82, + "probability": 0.9845 + }, + { + "start": 11333.92, + "end": 11339.14, + "probability": 0.8418 + }, + { + "start": 11339.32, + "end": 11345.24, + "probability": 0.9679 + }, + { + "start": 11345.64, + "end": 11346.7, + "probability": 0.2646 + }, + { + "start": 11349.08, + "end": 11349.78, + "probability": 0.2821 + }, + { + "start": 11350.22, + "end": 11350.54, + "probability": 0.456 + }, + { + "start": 11350.54, + "end": 11352.1, + "probability": 0.8612 + }, + { + "start": 11352.54, + "end": 11354.66, + "probability": 0.7851 + }, + { + "start": 11354.98, + "end": 11356.42, + "probability": 0.7613 + }, + { + "start": 11356.66, + "end": 11359.14, + "probability": 0.9647 + }, + { + "start": 11359.88, + "end": 11361.8, + "probability": 0.9909 + }, + { + "start": 11362.52, + "end": 11363.62, + "probability": 0.902 + }, + { + "start": 11364.32, + "end": 11367.04, + "probability": 0.9577 + }, + { + "start": 11367.26, + "end": 11369.0, + "probability": 0.8344 + }, + { + "start": 11369.42, + "end": 11370.6, + "probability": 0.9414 + }, + { + "start": 11371.78, + "end": 11374.74, + "probability": 0.8857 + }, + { + "start": 11375.32, + "end": 11381.22, + "probability": 0.9949 + }, + { + "start": 11381.64, + "end": 11385.92, + "probability": 0.8784 + }, + { + "start": 11385.98, + "end": 11387.24, + "probability": 0.5565 + }, + { + "start": 11387.46, + "end": 11391.56, + "probability": 0.9833 + }, + { + "start": 11391.74, + "end": 11393.86, + "probability": 0.9917 + }, + { + "start": 11394.34, + "end": 11396.98, + "probability": 0.9638 + }, + { + "start": 11397.28, + "end": 11398.08, + "probability": 0.747 + }, + { + "start": 11398.14, + "end": 11399.01, + "probability": 0.6123 + }, + { + "start": 11399.82, + "end": 11409.16, + "probability": 0.9875 + }, + { + "start": 11409.86, + "end": 11409.9, + "probability": 0.4493 + }, + { + "start": 11409.9, + "end": 11412.54, + "probability": 0.9941 + }, + { + "start": 11412.54, + "end": 11416.26, + "probability": 0.987 + }, + { + "start": 11416.72, + "end": 11417.4, + "probability": 0.7383 + }, + { + "start": 11418.08, + "end": 11419.18, + "probability": 0.7278 + }, + { + "start": 11419.3, + "end": 11422.06, + "probability": 0.7522 + }, + { + "start": 11422.28, + "end": 11424.36, + "probability": 0.9889 + }, + { + "start": 11425.06, + "end": 11429.68, + "probability": 0.9844 + }, + { + "start": 11429.68, + "end": 11435.86, + "probability": 0.9954 + }, + { + "start": 11436.32, + "end": 11438.14, + "probability": 0.9017 + }, + { + "start": 11438.18, + "end": 11439.92, + "probability": 0.7301 + }, + { + "start": 11440.22, + "end": 11445.28, + "probability": 0.9889 + }, + { + "start": 11445.66, + "end": 11453.06, + "probability": 0.9919 + }, + { + "start": 11453.16, + "end": 11454.82, + "probability": 0.8406 + }, + { + "start": 11454.98, + "end": 11459.72, + "probability": 0.9963 + }, + { + "start": 11459.72, + "end": 11463.68, + "probability": 0.9433 + }, + { + "start": 11463.92, + "end": 11466.7, + "probability": 0.7793 + }, + { + "start": 11466.82, + "end": 11466.92, + "probability": 0.3524 + }, + { + "start": 11467.36, + "end": 11471.84, + "probability": 0.9639 + }, + { + "start": 11471.84, + "end": 11475.6, + "probability": 0.951 + }, + { + "start": 11476.6, + "end": 11480.78, + "probability": 0.8494 + }, + { + "start": 11480.78, + "end": 11484.76, + "probability": 0.95 + }, + { + "start": 11485.78, + "end": 11489.53, + "probability": 0.9954 + }, + { + "start": 11490.08, + "end": 11495.1, + "probability": 0.9229 + }, + { + "start": 11495.1, + "end": 11499.8, + "probability": 0.8903 + }, + { + "start": 11500.14, + "end": 11501.74, + "probability": 0.756 + }, + { + "start": 11501.96, + "end": 11502.9, + "probability": 0.7047 + }, + { + "start": 11502.98, + "end": 11503.94, + "probability": 0.8064 + }, + { + "start": 11504.36, + "end": 11509.2, + "probability": 0.8711 + }, + { + "start": 11509.2, + "end": 11516.02, + "probability": 0.7568 + }, + { + "start": 11516.06, + "end": 11518.54, + "probability": 0.8423 + }, + { + "start": 11519.0, + "end": 11521.36, + "probability": 0.9529 + }, + { + "start": 11522.22, + "end": 11525.02, + "probability": 0.9009 + }, + { + "start": 11525.08, + "end": 11528.48, + "probability": 0.9927 + }, + { + "start": 11529.0, + "end": 11530.94, + "probability": 0.9993 + }, + { + "start": 11531.28, + "end": 11533.3, + "probability": 0.9909 + }, + { + "start": 11533.3, + "end": 11536.62, + "probability": 0.9755 + }, + { + "start": 11536.92, + "end": 11539.18, + "probability": 0.8887 + }, + { + "start": 11539.38, + "end": 11542.5, + "probability": 0.9569 + }, + { + "start": 11542.5, + "end": 11545.6, + "probability": 0.9938 + }, + { + "start": 11545.74, + "end": 11547.0, + "probability": 0.9921 + }, + { + "start": 11547.8, + "end": 11549.7, + "probability": 0.577 + }, + { + "start": 11550.84, + "end": 11551.6, + "probability": 0.3507 + }, + { + "start": 11551.74, + "end": 11554.28, + "probability": 0.9451 + }, + { + "start": 11554.4, + "end": 11560.9, + "probability": 0.9834 + }, + { + "start": 11561.4, + "end": 11564.4, + "probability": 0.8206 + }, + { + "start": 11564.68, + "end": 11565.32, + "probability": 0.949 + }, + { + "start": 11565.4, + "end": 11568.96, + "probability": 0.9794 + }, + { + "start": 11570.16, + "end": 11571.78, + "probability": 0.9882 + }, + { + "start": 11571.84, + "end": 11573.8, + "probability": 0.8153 + }, + { + "start": 11574.34, + "end": 11576.9, + "probability": 0.9661 + }, + { + "start": 11577.26, + "end": 11580.66, + "probability": 0.9464 + }, + { + "start": 11580.68, + "end": 11583.76, + "probability": 0.8494 + }, + { + "start": 11584.1, + "end": 11584.84, + "probability": 0.6229 + }, + { + "start": 11585.02, + "end": 11586.08, + "probability": 0.798 + }, + { + "start": 11586.36, + "end": 11586.94, + "probability": 0.3892 + }, + { + "start": 11587.4, + "end": 11591.68, + "probability": 0.7629 + }, + { + "start": 11593.02, + "end": 11596.56, + "probability": 0.9556 + }, + { + "start": 11596.74, + "end": 11600.38, + "probability": 0.9455 + }, + { + "start": 11600.78, + "end": 11602.74, + "probability": 0.6928 + }, + { + "start": 11602.82, + "end": 11606.32, + "probability": 0.8316 + }, + { + "start": 11606.6, + "end": 11609.36, + "probability": 0.5026 + }, + { + "start": 11609.6, + "end": 11612.98, + "probability": 0.9629 + }, + { + "start": 11613.3, + "end": 11619.36, + "probability": 0.9762 + }, + { + "start": 11619.9, + "end": 11620.96, + "probability": 0.9727 + }, + { + "start": 11621.0, + "end": 11622.88, + "probability": 0.9379 + }, + { + "start": 11623.26, + "end": 11628.84, + "probability": 0.9927 + }, + { + "start": 11628.84, + "end": 11634.56, + "probability": 0.9947 + }, + { + "start": 11634.96, + "end": 11636.1, + "probability": 0.9119 + }, + { + "start": 11636.24, + "end": 11638.74, + "probability": 0.7756 + }, + { + "start": 11638.98, + "end": 11644.92, + "probability": 0.9922 + }, + { + "start": 11645.02, + "end": 11646.88, + "probability": 0.3244 + }, + { + "start": 11647.12, + "end": 11648.56, + "probability": 0.7616 + }, + { + "start": 11649.42, + "end": 11651.18, + "probability": 0.8546 + }, + { + "start": 11651.66, + "end": 11652.34, + "probability": 0.91 + }, + { + "start": 11652.48, + "end": 11657.4, + "probability": 0.9755 + }, + { + "start": 11657.42, + "end": 11657.82, + "probability": 0.6663 + }, + { + "start": 11657.84, + "end": 11661.9, + "probability": 0.9951 + }, + { + "start": 11661.9, + "end": 11666.22, + "probability": 0.9871 + }, + { + "start": 11666.6, + "end": 11668.1, + "probability": 0.9819 + }, + { + "start": 11668.2, + "end": 11669.56, + "probability": 0.7924 + }, + { + "start": 11669.62, + "end": 11674.1, + "probability": 0.9805 + }, + { + "start": 11674.4, + "end": 11676.42, + "probability": 0.7874 + }, + { + "start": 11676.56, + "end": 11679.96, + "probability": 0.9902 + }, + { + "start": 11680.34, + "end": 11682.4, + "probability": 0.5447 + }, + { + "start": 11682.76, + "end": 11683.54, + "probability": 0.4198 + }, + { + "start": 11683.78, + "end": 11685.82, + "probability": 0.4744 + }, + { + "start": 11685.84, + "end": 11686.3, + "probability": 0.4623 + }, + { + "start": 11687.6, + "end": 11689.82, + "probability": 0.5838 + }, + { + "start": 11709.76, + "end": 11711.92, + "probability": 0.6452 + }, + { + "start": 11712.9, + "end": 11716.36, + "probability": 0.9849 + }, + { + "start": 11716.36, + "end": 11719.72, + "probability": 0.9949 + }, + { + "start": 11719.9, + "end": 11719.9, + "probability": 0.0132 + }, + { + "start": 11719.9, + "end": 11722.44, + "probability": 0.8309 + }, + { + "start": 11723.2, + "end": 11726.04, + "probability": 0.9918 + }, + { + "start": 11726.58, + "end": 11730.2, + "probability": 0.9103 + }, + { + "start": 11730.7, + "end": 11732.34, + "probability": 0.9451 + }, + { + "start": 11732.94, + "end": 11738.5, + "probability": 0.9931 + }, + { + "start": 11738.5, + "end": 11745.74, + "probability": 0.9915 + }, + { + "start": 11746.68, + "end": 11753.56, + "probability": 0.9858 + }, + { + "start": 11753.56, + "end": 11760.78, + "probability": 0.9823 + }, + { + "start": 11761.9, + "end": 11769.28, + "probability": 0.9896 + }, + { + "start": 11769.28, + "end": 11776.32, + "probability": 0.9973 + }, + { + "start": 11777.4, + "end": 11778.02, + "probability": 0.6975 + }, + { + "start": 11778.42, + "end": 11784.52, + "probability": 0.9965 + }, + { + "start": 11785.02, + "end": 11791.58, + "probability": 0.8568 + }, + { + "start": 11792.76, + "end": 11797.48, + "probability": 0.9907 + }, + { + "start": 11798.88, + "end": 11801.28, + "probability": 0.857 + }, + { + "start": 11801.9, + "end": 11806.5, + "probability": 0.9944 + }, + { + "start": 11806.5, + "end": 11811.48, + "probability": 0.9578 + }, + { + "start": 11813.76, + "end": 11815.62, + "probability": 0.6932 + }, + { + "start": 11816.22, + "end": 11821.36, + "probability": 0.9853 + }, + { + "start": 11821.36, + "end": 11826.04, + "probability": 0.9895 + }, + { + "start": 11826.92, + "end": 11829.82, + "probability": 0.957 + }, + { + "start": 11830.86, + "end": 11837.34, + "probability": 0.9749 + }, + { + "start": 11837.34, + "end": 11843.62, + "probability": 0.9989 + }, + { + "start": 11844.64, + "end": 11849.24, + "probability": 0.9975 + }, + { + "start": 11849.24, + "end": 11854.5, + "probability": 0.9863 + }, + { + "start": 11855.3, + "end": 11862.66, + "probability": 0.9224 + }, + { + "start": 11863.2, + "end": 11866.96, + "probability": 0.9919 + }, + { + "start": 11867.68, + "end": 11872.74, + "probability": 0.9776 + }, + { + "start": 11872.74, + "end": 11879.76, + "probability": 0.9284 + }, + { + "start": 11881.42, + "end": 11884.54, + "probability": 0.9935 + }, + { + "start": 11885.12, + "end": 11889.84, + "probability": 0.9858 + }, + { + "start": 11890.62, + "end": 11891.58, + "probability": 0.8766 + }, + { + "start": 11892.24, + "end": 11894.34, + "probability": 0.8684 + }, + { + "start": 11894.92, + "end": 11899.82, + "probability": 0.8018 + }, + { + "start": 11899.82, + "end": 11905.58, + "probability": 0.9952 + }, + { + "start": 11906.74, + "end": 11909.34, + "probability": 0.885 + }, + { + "start": 11909.82, + "end": 11911.16, + "probability": 0.7466 + }, + { + "start": 11911.18, + "end": 11917.78, + "probability": 0.9523 + }, + { + "start": 11924.34, + "end": 11928.86, + "probability": 0.6654 + }, + { + "start": 11929.68, + "end": 11937.08, + "probability": 0.666 + }, + { + "start": 11937.7, + "end": 11939.74, + "probability": 0.6992 + }, + { + "start": 11939.92, + "end": 11940.64, + "probability": 0.5886 + }, + { + "start": 11940.68, + "end": 11944.0, + "probability": 0.9441 + }, + { + "start": 11944.42, + "end": 11945.24, + "probability": 0.7478 + }, + { + "start": 11945.26, + "end": 11949.4, + "probability": 0.9658 + }, + { + "start": 11950.1, + "end": 11951.64, + "probability": 0.943 + }, + { + "start": 11951.7, + "end": 11954.84, + "probability": 0.9887 + }, + { + "start": 11955.0, + "end": 11955.6, + "probability": 0.9675 + }, + { + "start": 11956.5, + "end": 11956.7, + "probability": 0.73 + }, + { + "start": 11957.59, + "end": 11960.84, + "probability": 0.9272 + }, + { + "start": 11961.54, + "end": 11965.92, + "probability": 0.9461 + }, + { + "start": 11965.92, + "end": 11970.3, + "probability": 0.9904 + }, + { + "start": 11970.36, + "end": 11971.96, + "probability": 0.7599 + }, + { + "start": 11972.28, + "end": 11975.6, + "probability": 0.9808 + }, + { + "start": 11975.6, + "end": 11975.9, + "probability": 0.4978 + }, + { + "start": 11976.86, + "end": 11976.88, + "probability": 0.6035 + }, + { + "start": 11977.4, + "end": 11978.0, + "probability": 0.9523 + }, + { + "start": 11978.0, + "end": 11978.26, + "probability": 0.7078 + }, + { + "start": 11978.38, + "end": 11983.54, + "probability": 0.9712 + }, + { + "start": 11984.18, + "end": 11988.02, + "probability": 0.9198 + }, + { + "start": 11988.58, + "end": 11991.92, + "probability": 0.9491 + }, + { + "start": 11992.18, + "end": 11993.42, + "probability": 0.9727 + }, + { + "start": 11993.94, + "end": 11994.16, + "probability": 0.4587 + }, + { + "start": 11994.22, + "end": 11995.01, + "probability": 0.985 + }, + { + "start": 11995.46, + "end": 11997.14, + "probability": 0.3408 + }, + { + "start": 11997.38, + "end": 11997.54, + "probability": 0.9072 + }, + { + "start": 11997.56, + "end": 11997.76, + "probability": 0.0945 + }, + { + "start": 11998.96, + "end": 12001.58, + "probability": 0.7191 + }, + { + "start": 12001.86, + "end": 12004.92, + "probability": 0.0169 + }, + { + "start": 12006.24, + "end": 12006.24, + "probability": 0.3754 + }, + { + "start": 12006.94, + "end": 12007.72, + "probability": 0.6006 + }, + { + "start": 12008.4, + "end": 12008.92, + "probability": 0.6037 + }, + { + "start": 12008.92, + "end": 12009.72, + "probability": 0.4611 + }, + { + "start": 12009.8, + "end": 12011.19, + "probability": 0.9397 + }, + { + "start": 12012.08, + "end": 12012.16, + "probability": 0.4881 + }, + { + "start": 12012.24, + "end": 12014.32, + "probability": 0.7986 + }, + { + "start": 12014.9, + "end": 12015.8, + "probability": 0.9608 + }, + { + "start": 12016.76, + "end": 12018.44, + "probability": 0.9271 + }, + { + "start": 12018.92, + "end": 12019.42, + "probability": 0.5135 + }, + { + "start": 12019.54, + "end": 12021.68, + "probability": 0.7856 + }, + { + "start": 12021.68, + "end": 12022.46, + "probability": 0.8284 + }, + { + "start": 12022.94, + "end": 12023.9, + "probability": 0.6572 + }, + { + "start": 12026.58, + "end": 12026.58, + "probability": 0.2671 + }, + { + "start": 12026.58, + "end": 12026.6, + "probability": 0.0862 + }, + { + "start": 12026.6, + "end": 12027.19, + "probability": 0.0724 + }, + { + "start": 12027.8, + "end": 12028.5, + "probability": 0.4884 + }, + { + "start": 12028.58, + "end": 12030.0, + "probability": 0.9287 + }, + { + "start": 12030.34, + "end": 12032.36, + "probability": 0.5637 + }, + { + "start": 12032.38, + "end": 12033.8, + "probability": 0.9299 + }, + { + "start": 12034.04, + "end": 12038.68, + "probability": 0.5059 + }, + { + "start": 12038.68, + "end": 12038.68, + "probability": 0.3206 + }, + { + "start": 12038.68, + "end": 12038.92, + "probability": 0.0365 + }, + { + "start": 12039.56, + "end": 12041.98, + "probability": 0.9159 + }, + { + "start": 12046.14, + "end": 12048.62, + "probability": 0.7193 + }, + { + "start": 12049.32, + "end": 12050.82, + "probability": 0.8888 + }, + { + "start": 12050.86, + "end": 12051.96, + "probability": 0.7992 + }, + { + "start": 12052.08, + "end": 12054.96, + "probability": 0.9714 + }, + { + "start": 12055.08, + "end": 12059.92, + "probability": 0.9869 + }, + { + "start": 12060.02, + "end": 12060.82, + "probability": 0.7357 + }, + { + "start": 12060.9, + "end": 12063.89, + "probability": 0.9941 + }, + { + "start": 12064.7, + "end": 12067.22, + "probability": 0.9701 + }, + { + "start": 12069.38, + "end": 12069.74, + "probability": 0.1473 + }, + { + "start": 12069.74, + "end": 12071.54, + "probability": 0.3438 + }, + { + "start": 12071.8, + "end": 12072.12, + "probability": 0.7534 + }, + { + "start": 12072.4, + "end": 12073.44, + "probability": 0.7577 + }, + { + "start": 12073.62, + "end": 12074.5, + "probability": 0.8242 + }, + { + "start": 12074.52, + "end": 12077.02, + "probability": 0.8988 + }, + { + "start": 12077.08, + "end": 12078.12, + "probability": 0.9829 + }, + { + "start": 12079.14, + "end": 12080.38, + "probability": 0.8948 + }, + { + "start": 12080.56, + "end": 12085.0, + "probability": 0.9904 + }, + { + "start": 12085.16, + "end": 12088.79, + "probability": 0.9642 + }, + { + "start": 12089.34, + "end": 12094.2, + "probability": 0.9075 + }, + { + "start": 12094.52, + "end": 12097.74, + "probability": 0.8627 + }, + { + "start": 12098.02, + "end": 12099.28, + "probability": 0.7177 + }, + { + "start": 12099.52, + "end": 12101.52, + "probability": 0.9863 + }, + { + "start": 12101.52, + "end": 12105.6, + "probability": 0.999 + }, + { + "start": 12105.64, + "end": 12113.12, + "probability": 0.9911 + }, + { + "start": 12113.16, + "end": 12113.58, + "probability": 0.4449 + }, + { + "start": 12113.7, + "end": 12118.16, + "probability": 0.9084 + }, + { + "start": 12118.16, + "end": 12122.76, + "probability": 0.9974 + }, + { + "start": 12123.04, + "end": 12126.62, + "probability": 0.9507 + }, + { + "start": 12126.72, + "end": 12132.44, + "probability": 0.9962 + }, + { + "start": 12132.56, + "end": 12134.04, + "probability": 0.9855 + }, + { + "start": 12134.22, + "end": 12135.2, + "probability": 0.6937 + }, + { + "start": 12135.22, + "end": 12136.02, + "probability": 0.5653 + }, + { + "start": 12136.02, + "end": 12136.68, + "probability": 0.5599 + }, + { + "start": 12136.8, + "end": 12139.94, + "probability": 0.7726 + }, + { + "start": 12140.04, + "end": 12141.92, + "probability": 0.79 + }, + { + "start": 12143.74, + "end": 12145.2, + "probability": 0.7908 + }, + { + "start": 12145.44, + "end": 12149.86, + "probability": 0.9647 + }, + { + "start": 12150.48, + "end": 12154.02, + "probability": 0.9775 + }, + { + "start": 12154.46, + "end": 12160.74, + "probability": 0.9734 + }, + { + "start": 12160.9, + "end": 12162.03, + "probability": 0.955 + }, + { + "start": 12162.7, + "end": 12163.16, + "probability": 0.2793 + }, + { + "start": 12163.26, + "end": 12164.26, + "probability": 0.7272 + }, + { + "start": 12164.46, + "end": 12169.68, + "probability": 0.9812 + }, + { + "start": 12170.4, + "end": 12171.42, + "probability": 0.7558 + }, + { + "start": 12171.66, + "end": 12173.16, + "probability": 0.783 + }, + { + "start": 12173.28, + "end": 12174.56, + "probability": 0.9746 + }, + { + "start": 12175.04, + "end": 12176.34, + "probability": 0.958 + }, + { + "start": 12176.48, + "end": 12177.76, + "probability": 0.8978 + }, + { + "start": 12178.18, + "end": 12179.18, + "probability": 0.8395 + }, + { + "start": 12179.32, + "end": 12181.0, + "probability": 0.9883 + }, + { + "start": 12181.74, + "end": 12182.18, + "probability": 0.812 + }, + { + "start": 12182.18, + "end": 12183.74, + "probability": 0.5867 + }, + { + "start": 12183.94, + "end": 12184.72, + "probability": 0.7089 + }, + { + "start": 12184.76, + "end": 12185.72, + "probability": 0.7807 + }, + { + "start": 12186.4, + "end": 12186.94, + "probability": 0.5471 + }, + { + "start": 12187.42, + "end": 12188.92, + "probability": 0.3289 + }, + { + "start": 12188.92, + "end": 12189.98, + "probability": 0.499 + }, + { + "start": 12190.12, + "end": 12194.42, + "probability": 0.9961 + }, + { + "start": 12194.76, + "end": 12198.34, + "probability": 0.7485 + }, + { + "start": 12198.44, + "end": 12199.88, + "probability": 0.9009 + }, + { + "start": 12199.9, + "end": 12200.38, + "probability": 0.6305 + }, + { + "start": 12200.76, + "end": 12204.58, + "probability": 0.9785 + }, + { + "start": 12204.92, + "end": 12208.48, + "probability": 0.9874 + }, + { + "start": 12208.62, + "end": 12212.8, + "probability": 0.8506 + }, + { + "start": 12213.36, + "end": 12214.7, + "probability": 0.9917 + }, + { + "start": 12214.78, + "end": 12215.16, + "probability": 0.8846 + }, + { + "start": 12215.28, + "end": 12216.4, + "probability": 0.9006 + }, + { + "start": 12216.54, + "end": 12217.8, + "probability": 0.8999 + }, + { + "start": 12218.52, + "end": 12218.94, + "probability": 0.7418 + }, + { + "start": 12219.2, + "end": 12219.2, + "probability": 0.3962 + }, + { + "start": 12219.2, + "end": 12220.0, + "probability": 0.6414 + }, + { + "start": 12220.4, + "end": 12223.92, + "probability": 0.9638 + }, + { + "start": 12224.66, + "end": 12229.76, + "probability": 0.9626 + }, + { + "start": 12229.88, + "end": 12230.5, + "probability": 0.386 + }, + { + "start": 12231.24, + "end": 12234.66, + "probability": 0.9108 + }, + { + "start": 12235.24, + "end": 12236.08, + "probability": 0.5319 + }, + { + "start": 12236.22, + "end": 12238.19, + "probability": 0.9519 + }, + { + "start": 12238.74, + "end": 12241.58, + "probability": 0.9893 + }, + { + "start": 12242.64, + "end": 12243.57, + "probability": 0.905 + }, + { + "start": 12243.74, + "end": 12244.1, + "probability": 0.8805 + }, + { + "start": 12244.32, + "end": 12247.46, + "probability": 0.91 + }, + { + "start": 12249.06, + "end": 12250.34, + "probability": 0.8404 + }, + { + "start": 12251.02, + "end": 12251.78, + "probability": 0.4252 + }, + { + "start": 12252.0, + "end": 12252.62, + "probability": 0.8019 + }, + { + "start": 12254.12, + "end": 12254.8, + "probability": 0.4314 + }, + { + "start": 12254.88, + "end": 12257.34, + "probability": 0.988 + }, + { + "start": 12260.84, + "end": 12262.0, + "probability": 0.7944 + }, + { + "start": 12263.0, + "end": 12265.84, + "probability": 0.7956 + }, + { + "start": 12265.92, + "end": 12266.02, + "probability": 0.2247 + }, + { + "start": 12266.02, + "end": 12266.23, + "probability": 0.7277 + }, + { + "start": 12267.04, + "end": 12268.58, + "probability": 0.9951 + }, + { + "start": 12272.4, + "end": 12274.42, + "probability": 0.0617 + }, + { + "start": 12280.2, + "end": 12282.06, + "probability": 0.1257 + }, + { + "start": 12282.28, + "end": 12283.62, + "probability": 0.5067 + }, + { + "start": 12285.62, + "end": 12287.56, + "probability": 0.9193 + }, + { + "start": 12287.74, + "end": 12290.54, + "probability": 0.6091 + }, + { + "start": 12290.8, + "end": 12291.2, + "probability": 0.6115 + }, + { + "start": 12291.42, + "end": 12292.82, + "probability": 0.7104 + }, + { + "start": 12293.4, + "end": 12293.64, + "probability": 0.8791 + }, + { + "start": 12293.64, + "end": 12294.3, + "probability": 0.8897 + }, + { + "start": 12294.66, + "end": 12296.98, + "probability": 0.6292 + }, + { + "start": 12297.04, + "end": 12298.44, + "probability": 0.6324 + }, + { + "start": 12298.56, + "end": 12299.1, + "probability": 0.7462 + }, + { + "start": 12299.2, + "end": 12300.66, + "probability": 0.8536 + }, + { + "start": 12303.14, + "end": 12304.64, + "probability": 0.8552 + }, + { + "start": 12305.2, + "end": 12308.88, + "probability": 0.9375 + }, + { + "start": 12312.5, + "end": 12313.4, + "probability": 0.8253 + }, + { + "start": 12314.22, + "end": 12317.42, + "probability": 0.7501 + }, + { + "start": 12322.78, + "end": 12323.24, + "probability": 0.5262 + }, + { + "start": 12323.36, + "end": 12323.92, + "probability": 0.9296 + }, + { + "start": 12324.22, + "end": 12327.48, + "probability": 0.7877 + }, + { + "start": 12327.54, + "end": 12332.06, + "probability": 0.829 + }, + { + "start": 12332.06, + "end": 12335.54, + "probability": 0.7991 + }, + { + "start": 12335.68, + "end": 12335.68, + "probability": 0.0133 + }, + { + "start": 12335.68, + "end": 12337.1, + "probability": 0.8973 + }, + { + "start": 12337.18, + "end": 12339.18, + "probability": 0.7695 + }, + { + "start": 12339.22, + "end": 12341.04, + "probability": 0.8011 + }, + { + "start": 12341.08, + "end": 12343.54, + "probability": 0.4099 + }, + { + "start": 12344.88, + "end": 12345.64, + "probability": 0.946 + }, + { + "start": 12346.58, + "end": 12347.21, + "probability": 0.6652 + }, + { + "start": 12348.62, + "end": 12350.44, + "probability": 0.7973 + }, + { + "start": 12351.38, + "end": 12353.82, + "probability": 0.9681 + }, + { + "start": 12354.5, + "end": 12355.42, + "probability": 0.9842 + }, + { + "start": 12356.3, + "end": 12357.54, + "probability": 0.5277 + }, + { + "start": 12358.98, + "end": 12359.76, + "probability": 0.9038 + }, + { + "start": 12360.54, + "end": 12361.5, + "probability": 0.9232 + }, + { + "start": 12362.7, + "end": 12363.52, + "probability": 0.974 + }, + { + "start": 12364.2, + "end": 12365.32, + "probability": 0.9647 + }, + { + "start": 12366.72, + "end": 12367.22, + "probability": 0.9847 + }, + { + "start": 12368.56, + "end": 12369.72, + "probability": 0.9525 + }, + { + "start": 12371.08, + "end": 12371.8, + "probability": 0.9759 + }, + { + "start": 12372.64, + "end": 12373.42, + "probability": 0.5614 + }, + { + "start": 12374.32, + "end": 12374.6, + "probability": 0.7712 + }, + { + "start": 12375.26, + "end": 12376.08, + "probability": 0.6198 + }, + { + "start": 12376.86, + "end": 12377.32, + "probability": 0.9639 + }, + { + "start": 12378.08, + "end": 12379.24, + "probability": 0.938 + }, + { + "start": 12380.58, + "end": 12381.32, + "probability": 0.9064 + }, + { + "start": 12381.88, + "end": 12382.84, + "probability": 0.9281 + }, + { + "start": 12383.54, + "end": 12385.48, + "probability": 0.9568 + }, + { + "start": 12386.36, + "end": 12386.86, + "probability": 0.9679 + }, + { + "start": 12388.08, + "end": 12389.2, + "probability": 0.9516 + }, + { + "start": 12390.16, + "end": 12392.9, + "probability": 0.9532 + }, + { + "start": 12395.92, + "end": 12398.46, + "probability": 0.9092 + }, + { + "start": 12399.12, + "end": 12399.56, + "probability": 0.9411 + }, + { + "start": 12400.24, + "end": 12401.2, + "probability": 0.8475 + }, + { + "start": 12402.76, + "end": 12403.28, + "probability": 0.7578 + }, + { + "start": 12404.42, + "end": 12406.04, + "probability": 0.9188 + }, + { + "start": 12409.94, + "end": 12412.54, + "probability": 0.8266 + }, + { + "start": 12413.26, + "end": 12413.72, + "probability": 0.9072 + }, + { + "start": 12414.36, + "end": 12415.22, + "probability": 0.6718 + }, + { + "start": 12416.38, + "end": 12417.94, + "probability": 0.9279 + }, + { + "start": 12418.54, + "end": 12419.54, + "probability": 0.978 + }, + { + "start": 12420.26, + "end": 12420.8, + "probability": 0.9919 + }, + { + "start": 12421.38, + "end": 12422.38, + "probability": 0.9659 + }, + { + "start": 12423.16, + "end": 12425.26, + "probability": 0.9828 + }, + { + "start": 12426.78, + "end": 12428.78, + "probability": 0.9292 + }, + { + "start": 12429.66, + "end": 12429.96, + "probability": 0.7081 + }, + { + "start": 12430.58, + "end": 12431.66, + "probability": 0.8341 + }, + { + "start": 12432.84, + "end": 12433.18, + "probability": 0.918 + }, + { + "start": 12433.98, + "end": 12435.38, + "probability": 0.803 + }, + { + "start": 12436.3, + "end": 12439.92, + "probability": 0.7498 + }, + { + "start": 12441.14, + "end": 12443.94, + "probability": 0.8057 + }, + { + "start": 12447.04, + "end": 12447.74, + "probability": 0.9103 + }, + { + "start": 12448.36, + "end": 12449.28, + "probability": 0.9097 + }, + { + "start": 12450.3, + "end": 12452.34, + "probability": 0.9219 + }, + { + "start": 12453.24, + "end": 12453.68, + "probability": 0.967 + }, + { + "start": 12454.64, + "end": 12455.5, + "probability": 0.9819 + }, + { + "start": 12456.68, + "end": 12457.12, + "probability": 0.9893 + }, + { + "start": 12458.56, + "end": 12459.52, + "probability": 0.8978 + }, + { + "start": 12460.34, + "end": 12460.72, + "probability": 0.6235 + }, + { + "start": 12462.4, + "end": 12464.94, + "probability": 0.8474 + }, + { + "start": 12466.7, + "end": 12467.44, + "probability": 0.7868 + }, + { + "start": 12468.56, + "end": 12468.88, + "probability": 0.9621 + }, + { + "start": 12469.7, + "end": 12470.54, + "probability": 0.9499 + }, + { + "start": 12471.32, + "end": 12473.44, + "probability": 0.9598 + }, + { + "start": 12474.32, + "end": 12475.04, + "probability": 0.9409 + }, + { + "start": 12475.62, + "end": 12476.74, + "probability": 0.834 + }, + { + "start": 12478.52, + "end": 12481.06, + "probability": 0.8796 + }, + { + "start": 12482.1, + "end": 12484.44, + "probability": 0.9684 + }, + { + "start": 12485.08, + "end": 12486.86, + "probability": 0.9811 + }, + { + "start": 12487.64, + "end": 12487.94, + "probability": 0.7214 + }, + { + "start": 12488.66, + "end": 12489.6, + "probability": 0.5575 + }, + { + "start": 12491.22, + "end": 12494.06, + "probability": 0.9438 + }, + { + "start": 12496.84, + "end": 12499.14, + "probability": 0.8167 + }, + { + "start": 12500.08, + "end": 12502.94, + "probability": 0.9319 + }, + { + "start": 12506.1, + "end": 12511.16, + "probability": 0.9718 + }, + { + "start": 12511.96, + "end": 12513.1, + "probability": 0.9327 + }, + { + "start": 12514.04, + "end": 12515.56, + "probability": 0.7966 + }, + { + "start": 12517.32, + "end": 12519.62, + "probability": 0.7884 + }, + { + "start": 12520.56, + "end": 12521.08, + "probability": 0.9487 + }, + { + "start": 12523.0, + "end": 12524.42, + "probability": 0.7704 + }, + { + "start": 12526.28, + "end": 12528.54, + "probability": 0.8985 + }, + { + "start": 12529.2, + "end": 12529.68, + "probability": 0.9906 + }, + { + "start": 12531.16, + "end": 12532.38, + "probability": 0.9865 + }, + { + "start": 12533.78, + "end": 12534.58, + "probability": 0.9906 + }, + { + "start": 12535.52, + "end": 12536.44, + "probability": 0.8012 + }, + { + "start": 12537.32, + "end": 12540.22, + "probability": 0.9792 + }, + { + "start": 12540.84, + "end": 12541.3, + "probability": 0.993 + }, + { + "start": 12542.9, + "end": 12543.98, + "probability": 0.8529 + }, + { + "start": 12545.24, + "end": 12548.12, + "probability": 0.6828 + }, + { + "start": 12549.16, + "end": 12551.38, + "probability": 0.9176 + }, + { + "start": 12552.18, + "end": 12554.62, + "probability": 0.9406 + }, + { + "start": 12555.36, + "end": 12558.0, + "probability": 0.647 + }, + { + "start": 12558.52, + "end": 12560.6, + "probability": 0.9409 + }, + { + "start": 12561.92, + "end": 12564.24, + "probability": 0.9718 + }, + { + "start": 12565.1, + "end": 12567.46, + "probability": 0.9529 + }, + { + "start": 12569.46, + "end": 12571.36, + "probability": 0.9442 + }, + { + "start": 12574.68, + "end": 12575.62, + "probability": 0.8416 + }, + { + "start": 12576.38, + "end": 12578.34, + "probability": 0.786 + }, + { + "start": 12579.74, + "end": 12581.1, + "probability": 0.735 + }, + { + "start": 12582.18, + "end": 12583.46, + "probability": 0.6917 + }, + { + "start": 12584.18, + "end": 12586.12, + "probability": 0.9568 + }, + { + "start": 12587.18, + "end": 12590.26, + "probability": 0.9753 + }, + { + "start": 12593.68, + "end": 12596.02, + "probability": 0.8932 + }, + { + "start": 12596.78, + "end": 12598.7, + "probability": 0.7715 + }, + { + "start": 12601.32, + "end": 12602.24, + "probability": 0.8918 + }, + { + "start": 12603.26, + "end": 12604.49, + "probability": 0.6874 + }, + { + "start": 12605.74, + "end": 12607.7, + "probability": 0.665 + }, + { + "start": 12610.16, + "end": 12613.9, + "probability": 0.9324 + }, + { + "start": 12614.66, + "end": 12616.74, + "probability": 0.8877 + }, + { + "start": 12620.32, + "end": 12622.88, + "probability": 0.9623 + }, + { + "start": 12624.12, + "end": 12626.64, + "probability": 0.7388 + }, + { + "start": 12627.66, + "end": 12630.16, + "probability": 0.9074 + }, + { + "start": 12632.52, + "end": 12635.88, + "probability": 0.6734 + }, + { + "start": 12637.2, + "end": 12638.6, + "probability": 0.8966 + }, + { + "start": 12640.16, + "end": 12641.52, + "probability": 0.8206 + }, + { + "start": 12642.64, + "end": 12644.84, + "probability": 0.9644 + }, + { + "start": 12645.86, + "end": 12646.4, + "probability": 0.9873 + }, + { + "start": 12647.14, + "end": 12648.28, + "probability": 0.7659 + }, + { + "start": 12650.2, + "end": 12650.66, + "probability": 0.9802 + }, + { + "start": 12651.78, + "end": 12653.8, + "probability": 0.9889 + }, + { + "start": 12654.56, + "end": 12655.92, + "probability": 0.9094 + }, + { + "start": 12656.48, + "end": 12656.88, + "probability": 0.9915 + }, + { + "start": 12657.62, + "end": 12658.64, + "probability": 0.904 + }, + { + "start": 12659.6, + "end": 12659.88, + "probability": 0.7579 + }, + { + "start": 12661.52, + "end": 12662.56, + "probability": 0.6626 + }, + { + "start": 12663.1, + "end": 12665.14, + "probability": 0.9735 + }, + { + "start": 12665.94, + "end": 12666.52, + "probability": 0.9954 + }, + { + "start": 12667.48, + "end": 12668.62, + "probability": 0.9398 + }, + { + "start": 12669.36, + "end": 12671.9, + "probability": 0.9216 + }, + { + "start": 12672.48, + "end": 12674.88, + "probability": 0.9029 + }, + { + "start": 12676.36, + "end": 12678.86, + "probability": 0.9425 + }, + { + "start": 12679.66, + "end": 12680.72, + "probability": 0.9878 + }, + { + "start": 12681.38, + "end": 12682.34, + "probability": 0.75 + }, + { + "start": 12683.22, + "end": 12685.6, + "probability": 0.6683 + }, + { + "start": 12686.58, + "end": 12687.08, + "probability": 0.7757 + }, + { + "start": 12688.74, + "end": 12690.24, + "probability": 0.5487 + }, + { + "start": 12693.14, + "end": 12696.32, + "probability": 0.801 + }, + { + "start": 12697.2, + "end": 12697.68, + "probability": 0.6785 + }, + { + "start": 12698.44, + "end": 12699.36, + "probability": 0.9012 + }, + { + "start": 12702.45, + "end": 12705.22, + "probability": 0.9201 + }, + { + "start": 12706.26, + "end": 12706.7, + "probability": 0.9883 + }, + { + "start": 12708.48, + "end": 12709.72, + "probability": 0.7197 + }, + { + "start": 12711.28, + "end": 12714.14, + "probability": 0.9272 + }, + { + "start": 12715.78, + "end": 12717.84, + "probability": 0.8313 + }, + { + "start": 12719.48, + "end": 12721.92, + "probability": 0.7806 + }, + { + "start": 12723.9, + "end": 12724.74, + "probability": 0.9689 + }, + { + "start": 12725.26, + "end": 12726.42, + "probability": 0.8323 + }, + { + "start": 12729.88, + "end": 12730.18, + "probability": 0.821 + }, + { + "start": 12731.72, + "end": 12732.82, + "probability": 0.7537 + }, + { + "start": 12733.68, + "end": 12736.32, + "probability": 0.9769 + }, + { + "start": 12737.68, + "end": 12740.36, + "probability": 0.938 + }, + { + "start": 12742.8, + "end": 12743.86, + "probability": 0.5746 + }, + { + "start": 12744.92, + "end": 12745.98, + "probability": 0.667 + }, + { + "start": 12747.02, + "end": 12747.72, + "probability": 0.8525 + }, + { + "start": 12750.22, + "end": 12751.34, + "probability": 0.8475 + }, + { + "start": 12752.38, + "end": 12752.8, + "probability": 0.922 + }, + { + "start": 12753.46, + "end": 12754.36, + "probability": 0.9563 + }, + { + "start": 12755.98, + "end": 12758.28, + "probability": 0.95 + }, + { + "start": 12758.94, + "end": 12760.96, + "probability": 0.9873 + }, + { + "start": 12762.72, + "end": 12765.12, + "probability": 0.9886 + }, + { + "start": 12765.96, + "end": 12768.66, + "probability": 0.9854 + }, + { + "start": 12769.26, + "end": 12771.46, + "probability": 0.981 + }, + { + "start": 12772.1, + "end": 12774.22, + "probability": 0.685 + }, + { + "start": 12774.8, + "end": 12777.3, + "probability": 0.7891 + }, + { + "start": 12778.58, + "end": 12780.76, + "probability": 0.8869 + }, + { + "start": 12789.46, + "end": 12790.92, + "probability": 0.6918 + }, + { + "start": 12794.2, + "end": 12795.1, + "probability": 0.5667 + }, + { + "start": 12796.22, + "end": 12796.56, + "probability": 0.7993 + }, + { + "start": 12798.0, + "end": 12798.94, + "probability": 0.8345 + }, + { + "start": 12799.64, + "end": 12800.14, + "probability": 0.988 + }, + { + "start": 12801.1, + "end": 12801.9, + "probability": 0.7714 + }, + { + "start": 12802.92, + "end": 12805.14, + "probability": 0.969 + }, + { + "start": 12811.7, + "end": 12812.1, + "probability": 0.7617 + }, + { + "start": 12812.96, + "end": 12813.76, + "probability": 0.808 + }, + { + "start": 12814.58, + "end": 12816.46, + "probability": 0.8792 + }, + { + "start": 12820.12, + "end": 12822.92, + "probability": 0.7402 + }, + { + "start": 12823.78, + "end": 12824.66, + "probability": 0.9764 + }, + { + "start": 12825.46, + "end": 12829.22, + "probability": 0.6905 + }, + { + "start": 12833.25, + "end": 12833.94, + "probability": 0.0266 + }, + { + "start": 12833.94, + "end": 12834.48, + "probability": 0.0694 + }, + { + "start": 12835.52, + "end": 12838.68, + "probability": 0.8338 + }, + { + "start": 12839.34, + "end": 12841.38, + "probability": 0.8723 + }, + { + "start": 12842.32, + "end": 12844.68, + "probability": 0.9296 + }, + { + "start": 12846.54, + "end": 12848.78, + "probability": 0.9095 + }, + { + "start": 12850.26, + "end": 12852.38, + "probability": 0.8212 + }, + { + "start": 12853.44, + "end": 12854.2, + "probability": 0.9409 + }, + { + "start": 12855.04, + "end": 12856.14, + "probability": 0.9791 + }, + { + "start": 12857.08, + "end": 12859.68, + "probability": 0.8928 + }, + { + "start": 12860.24, + "end": 12862.58, + "probability": 0.8538 + }, + { + "start": 12863.54, + "end": 12865.94, + "probability": 0.7936 + }, + { + "start": 12867.34, + "end": 12874.32, + "probability": 0.9527 + }, + { + "start": 12875.58, + "end": 12878.08, + "probability": 0.9884 + }, + { + "start": 12878.96, + "end": 12880.84, + "probability": 0.868 + }, + { + "start": 12881.8, + "end": 12884.48, + "probability": 0.9186 + }, + { + "start": 12885.34, + "end": 12887.8, + "probability": 0.9073 + }, + { + "start": 12888.94, + "end": 12891.64, + "probability": 0.8039 + }, + { + "start": 12892.06, + "end": 12895.14, + "probability": 0.9862 + }, + { + "start": 12896.28, + "end": 12898.9, + "probability": 0.9337 + }, + { + "start": 12899.96, + "end": 12902.64, + "probability": 0.8216 + }, + { + "start": 12904.34, + "end": 12906.52, + "probability": 0.8667 + }, + { + "start": 12907.06, + "end": 12909.32, + "probability": 0.5194 + }, + { + "start": 12910.7, + "end": 12914.48, + "probability": 0.9237 + }, + { + "start": 12915.3, + "end": 12917.46, + "probability": 0.9428 + }, + { + "start": 12919.2, + "end": 12919.74, + "probability": 0.8919 + }, + { + "start": 12920.62, + "end": 12921.88, + "probability": 0.9509 + }, + { + "start": 12924.06, + "end": 12925.96, + "probability": 0.9285 + }, + { + "start": 12927.42, + "end": 12930.42, + "probability": 0.8051 + }, + { + "start": 12931.52, + "end": 12933.92, + "probability": 0.9115 + }, + { + "start": 12934.88, + "end": 12937.52, + "probability": 0.8648 + }, + { + "start": 12938.6, + "end": 12940.52, + "probability": 0.885 + }, + { + "start": 12941.48, + "end": 12943.58, + "probability": 0.9352 + }, + { + "start": 12944.3, + "end": 12947.62, + "probability": 0.9145 + }, + { + "start": 12949.3, + "end": 12949.9, + "probability": 0.882 + }, + { + "start": 12950.98, + "end": 12952.3, + "probability": 0.9517 + }, + { + "start": 12953.44, + "end": 12955.94, + "probability": 0.6401 + }, + { + "start": 12956.86, + "end": 12959.96, + "probability": 0.9632 + }, + { + "start": 12961.28, + "end": 12963.34, + "probability": 0.783 + }, + { + "start": 12964.6, + "end": 12966.1, + "probability": 0.7494 + }, + { + "start": 12966.92, + "end": 12967.86, + "probability": 0.9962 + }, + { + "start": 12969.42, + "end": 12970.42, + "probability": 0.6465 + }, + { + "start": 12972.22, + "end": 12974.9, + "probability": 0.8644 + }, + { + "start": 12975.52, + "end": 12981.1, + "probability": 0.8113 + }, + { + "start": 12981.18, + "end": 12985.83, + "probability": 0.3858 + }, + { + "start": 12993.68, + "end": 12995.1, + "probability": 0.7235 + }, + { + "start": 12996.22, + "end": 12996.22, + "probability": 0.0711 + }, + { + "start": 12997.2, + "end": 12998.3, + "probability": 0.058 + }, + { + "start": 13008.04, + "end": 13009.8, + "probability": 0.0001 + }, + { + "start": 13010.82, + "end": 13011.92, + "probability": 0.0265 + }, + { + "start": 13072.8, + "end": 13078.4, + "probability": 0.6665 + }, + { + "start": 13078.68, + "end": 13078.86, + "probability": 0.0052 + }, + { + "start": 13152.06, + "end": 13156.78, + "probability": 0.035 + }, + { + "start": 13157.81, + "end": 13158.3, + "probability": 0.1193 + }, + { + "start": 13167.62, + "end": 13170.5, + "probability": 0.0128 + }, + { + "start": 13171.02, + "end": 13171.64, + "probability": 0.0703 + }, + { + "start": 13171.64, + "end": 13173.12, + "probability": 0.0247 + }, + { + "start": 13173.12, + "end": 13178.12, + "probability": 0.0867 + }, + { + "start": 13179.66, + "end": 13180.96, + "probability": 0.0195 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.0, + "end": 13264.0, + "probability": 0.0 + }, + { + "start": 13264.1, + "end": 13266.42, + "probability": 0.8757 + }, + { + "start": 13266.8, + "end": 13267.5, + "probability": 0.8373 + }, + { + "start": 13267.6, + "end": 13269.26, + "probability": 0.7384 + }, + { + "start": 13269.66, + "end": 13275.28, + "probability": 0.9907 + }, + { + "start": 13275.38, + "end": 13277.5, + "probability": 0.996 + }, + { + "start": 13277.8, + "end": 13279.46, + "probability": 0.8732 + }, + { + "start": 13279.74, + "end": 13280.26, + "probability": 0.85 + }, + { + "start": 13280.92, + "end": 13281.6, + "probability": 0.8158 + }, + { + "start": 13281.88, + "end": 13283.44, + "probability": 0.9449 + }, + { + "start": 13289.44, + "end": 13291.42, + "probability": 0.7989 + }, + { + "start": 13293.1, + "end": 13294.76, + "probability": 0.7141 + }, + { + "start": 13296.12, + "end": 13298.6, + "probability": 0.6798 + }, + { + "start": 13299.6, + "end": 13303.48, + "probability": 0.9967 + }, + { + "start": 13305.06, + "end": 13311.18, + "probability": 0.9985 + }, + { + "start": 13312.8, + "end": 13315.94, + "probability": 0.999 + }, + { + "start": 13316.0, + "end": 13319.16, + "probability": 0.998 + }, + { + "start": 13319.7, + "end": 13321.64, + "probability": 0.9945 + }, + { + "start": 13322.24, + "end": 13323.42, + "probability": 0.8737 + }, + { + "start": 13323.98, + "end": 13329.26, + "probability": 0.9642 + }, + { + "start": 13329.74, + "end": 13330.16, + "probability": 0.4285 + }, + { + "start": 13331.18, + "end": 13334.62, + "probability": 0.935 + }, + { + "start": 13334.62, + "end": 13338.06, + "probability": 0.9987 + }, + { + "start": 13338.76, + "end": 13341.02, + "probability": 0.9912 + }, + { + "start": 13341.7, + "end": 13345.96, + "probability": 0.8496 + }, + { + "start": 13346.6, + "end": 13349.04, + "probability": 0.8816 + }, + { + "start": 13349.6, + "end": 13353.98, + "probability": 0.9951 + }, + { + "start": 13354.94, + "end": 13357.12, + "probability": 0.9102 + }, + { + "start": 13357.94, + "end": 13359.84, + "probability": 0.8889 + }, + { + "start": 13360.4, + "end": 13361.18, + "probability": 0.8739 + }, + { + "start": 13362.7, + "end": 13366.82, + "probability": 0.9587 + }, + { + "start": 13369.94, + "end": 13371.42, + "probability": 0.6544 + }, + { + "start": 13372.38, + "end": 13376.57, + "probability": 0.9975 + }, + { + "start": 13376.84, + "end": 13379.2, + "probability": 0.8377 + }, + { + "start": 13379.22, + "end": 13380.24, + "probability": 0.5065 + }, + { + "start": 13380.62, + "end": 13382.12, + "probability": 0.8866 + }, + { + "start": 13383.02, + "end": 13389.62, + "probability": 0.9694 + }, + { + "start": 13391.04, + "end": 13393.0, + "probability": 0.9985 + }, + { + "start": 13393.7, + "end": 13396.4, + "probability": 0.9937 + }, + { + "start": 13396.4, + "end": 13400.98, + "probability": 0.9858 + }, + { + "start": 13401.9, + "end": 13409.52, + "probability": 0.9958 + }, + { + "start": 13410.24, + "end": 13412.64, + "probability": 0.8972 + }, + { + "start": 13413.34, + "end": 13420.16, + "probability": 0.94 + }, + { + "start": 13420.98, + "end": 13425.82, + "probability": 0.8485 + }, + { + "start": 13425.82, + "end": 13432.62, + "probability": 0.9553 + }, + { + "start": 13433.9, + "end": 13435.08, + "probability": 0.6216 + }, + { + "start": 13435.08, + "end": 13435.22, + "probability": 0.5853 + }, + { + "start": 13435.6, + "end": 13436.33, + "probability": 0.9695 + }, + { + "start": 13437.32, + "end": 13439.1, + "probability": 0.9337 + }, + { + "start": 13439.74, + "end": 13440.49, + "probability": 0.9893 + }, + { + "start": 13441.62, + "end": 13446.14, + "probability": 0.9973 + }, + { + "start": 13446.72, + "end": 13448.64, + "probability": 0.999 + }, + { + "start": 13449.26, + "end": 13455.2, + "probability": 0.9995 + }, + { + "start": 13455.2, + "end": 13459.14, + "probability": 0.9989 + }, + { + "start": 13460.08, + "end": 13466.84, + "probability": 0.9754 + }, + { + "start": 13467.3, + "end": 13468.4, + "probability": 0.9351 + }, + { + "start": 13468.46, + "end": 13472.16, + "probability": 0.7474 + }, + { + "start": 13472.78, + "end": 13477.38, + "probability": 0.9978 + }, + { + "start": 13477.96, + "end": 13482.26, + "probability": 0.9077 + }, + { + "start": 13483.08, + "end": 13483.68, + "probability": 0.4752 + }, + { + "start": 13486.36, + "end": 13489.06, + "probability": 0.1098 + }, + { + "start": 13489.06, + "end": 13489.4, + "probability": 0.2675 + }, + { + "start": 13490.08, + "end": 13492.36, + "probability": 0.5253 + }, + { + "start": 13493.48, + "end": 13493.66, + "probability": 0.7878 + }, + { + "start": 13493.78, + "end": 13495.58, + "probability": 0.9623 + }, + { + "start": 13495.76, + "end": 13496.9, + "probability": 0.8406 + }, + { + "start": 13497.88, + "end": 13500.9, + "probability": 0.6222 + }, + { + "start": 13501.14, + "end": 13502.68, + "probability": 0.9415 + }, + { + "start": 13502.72, + "end": 13504.24, + "probability": 0.5195 + }, + { + "start": 13504.96, + "end": 13506.54, + "probability": 0.9805 + }, + { + "start": 13506.76, + "end": 13508.52, + "probability": 0.9906 + }, + { + "start": 13508.58, + "end": 13509.66, + "probability": 0.9175 + }, + { + "start": 13509.88, + "end": 13512.58, + "probability": 0.9487 + }, + { + "start": 13512.76, + "end": 13513.3, + "probability": 0.0709 + }, + { + "start": 13513.56, + "end": 13514.32, + "probability": 0.3724 + }, + { + "start": 13514.32, + "end": 13514.32, + "probability": 0.379 + }, + { + "start": 13514.32, + "end": 13514.32, + "probability": 0.4597 + }, + { + "start": 13514.32, + "end": 13517.0, + "probability": 0.2561 + }, + { + "start": 13517.0, + "end": 13517.54, + "probability": 0.6711 + }, + { + "start": 13517.72, + "end": 13522.28, + "probability": 0.7307 + }, + { + "start": 13522.56, + "end": 13523.04, + "probability": 0.4134 + }, + { + "start": 13523.18, + "end": 13523.56, + "probability": 0.7665 + }, + { + "start": 13524.18, + "end": 13526.64, + "probability": 0.9711 + }, + { + "start": 13527.0, + "end": 13528.5, + "probability": 0.9619 + }, + { + "start": 13531.14, + "end": 13532.68, + "probability": 0.9888 + }, + { + "start": 13532.78, + "end": 13535.04, + "probability": 0.8077 + }, + { + "start": 13535.22, + "end": 13536.54, + "probability": 0.4705 + }, + { + "start": 13536.84, + "end": 13538.9, + "probability": 0.8086 + }, + { + "start": 13538.98, + "end": 13539.6, + "probability": 0.6408 + }, + { + "start": 13556.4, + "end": 13558.82, + "probability": 0.6489 + }, + { + "start": 13560.16, + "end": 13561.26, + "probability": 0.841 + }, + { + "start": 13561.46, + "end": 13563.66, + "probability": 0.8731 + }, + { + "start": 13564.02, + "end": 13568.04, + "probability": 0.9789 + }, + { + "start": 13568.4, + "end": 13569.88, + "probability": 0.9505 + }, + { + "start": 13570.46, + "end": 13571.72, + "probability": 0.8188 + }, + { + "start": 13572.04, + "end": 13574.78, + "probability": 0.988 + }, + { + "start": 13575.44, + "end": 13575.82, + "probability": 0.4454 + }, + { + "start": 13575.84, + "end": 13576.58, + "probability": 0.9387 + }, + { + "start": 13576.64, + "end": 13577.94, + "probability": 0.9292 + }, + { + "start": 13578.26, + "end": 13581.1, + "probability": 0.9925 + }, + { + "start": 13581.82, + "end": 13585.8, + "probability": 0.9966 + }, + { + "start": 13586.36, + "end": 13589.52, + "probability": 0.9736 + }, + { + "start": 13591.14, + "end": 13593.88, + "probability": 0.9056 + }, + { + "start": 13594.98, + "end": 13596.02, + "probability": 0.9744 + }, + { + "start": 13596.3, + "end": 13599.64, + "probability": 0.9928 + }, + { + "start": 13599.84, + "end": 13602.7, + "probability": 0.788 + }, + { + "start": 13602.78, + "end": 13606.14, + "probability": 0.9445 + }, + { + "start": 13606.72, + "end": 13609.88, + "probability": 0.8474 + }, + { + "start": 13610.22, + "end": 13611.46, + "probability": 0.9197 + }, + { + "start": 13611.6, + "end": 13616.52, + "probability": 0.998 + }, + { + "start": 13617.04, + "end": 13619.78, + "probability": 0.985 + }, + { + "start": 13620.12, + "end": 13624.08, + "probability": 0.9701 + }, + { + "start": 13625.26, + "end": 13626.62, + "probability": 0.6308 + }, + { + "start": 13627.04, + "end": 13629.7, + "probability": 0.8833 + }, + { + "start": 13630.08, + "end": 13633.94, + "probability": 0.9956 + }, + { + "start": 13634.54, + "end": 13639.14, + "probability": 0.986 + }, + { + "start": 13639.14, + "end": 13644.0, + "probability": 0.9983 + }, + { + "start": 13644.5, + "end": 13648.76, + "probability": 0.963 + }, + { + "start": 13649.96, + "end": 13651.6, + "probability": 0.9962 + }, + { + "start": 13651.88, + "end": 13655.5, + "probability": 0.9945 + }, + { + "start": 13655.5, + "end": 13661.1, + "probability": 0.998 + }, + { + "start": 13661.62, + "end": 13665.28, + "probability": 0.9944 + }, + { + "start": 13665.34, + "end": 13666.0, + "probability": 0.8865 + }, + { + "start": 13666.42, + "end": 13670.9, + "probability": 0.9948 + }, + { + "start": 13671.9, + "end": 13675.74, + "probability": 0.9609 + }, + { + "start": 13676.02, + "end": 13678.52, + "probability": 0.9298 + }, + { + "start": 13678.58, + "end": 13680.36, + "probability": 0.8708 + }, + { + "start": 13680.82, + "end": 13680.92, + "probability": 0.0198 + }, + { + "start": 13680.92, + "end": 13684.28, + "probability": 0.9336 + }, + { + "start": 13684.44, + "end": 13686.14, + "probability": 0.9291 + }, + { + "start": 13686.32, + "end": 13686.32, + "probability": 0.004 + }, + { + "start": 13686.32, + "end": 13689.11, + "probability": 0.9495 + }, + { + "start": 13689.12, + "end": 13689.84, + "probability": 0.0188 + }, + { + "start": 13690.02, + "end": 13690.46, + "probability": 0.2025 + }, + { + "start": 13690.76, + "end": 13693.82, + "probability": 0.0058 + }, + { + "start": 13693.82, + "end": 13695.2, + "probability": 0.7285 + }, + { + "start": 13695.4, + "end": 13695.4, + "probability": 0.0264 + }, + { + "start": 13695.4, + "end": 13695.96, + "probability": 0.4535 + }, + { + "start": 13696.82, + "end": 13697.16, + "probability": 0.1469 + }, + { + "start": 13697.16, + "end": 13700.18, + "probability": 0.0856 + }, + { + "start": 13700.62, + "end": 13703.96, + "probability": 0.0994 + }, + { + "start": 13705.36, + "end": 13705.36, + "probability": 0.302 + }, + { + "start": 13705.36, + "end": 13705.36, + "probability": 0.3846 + }, + { + "start": 13705.36, + "end": 13707.96, + "probability": 0.9332 + }, + { + "start": 13707.96, + "end": 13707.96, + "probability": 0.1273 + }, + { + "start": 13707.96, + "end": 13710.82, + "probability": 0.939 + }, + { + "start": 13711.0, + "end": 13711.48, + "probability": 0.5636 + }, + { + "start": 13712.22, + "end": 13715.55, + "probability": 0.9894 + }, + { + "start": 13715.56, + "end": 13718.44, + "probability": 0.8969 + }, + { + "start": 13719.0, + "end": 13724.92, + "probability": 0.9359 + }, + { + "start": 13725.54, + "end": 13728.82, + "probability": 0.9836 + }, + { + "start": 13729.26, + "end": 13731.42, + "probability": 0.935 + }, + { + "start": 13732.68, + "end": 13738.32, + "probability": 0.9956 + }, + { + "start": 13738.32, + "end": 13743.22, + "probability": 0.9984 + }, + { + "start": 13743.92, + "end": 13747.66, + "probability": 0.9951 + }, + { + "start": 13748.48, + "end": 13750.02, + "probability": 0.4773 + }, + { + "start": 13750.58, + "end": 13753.14, + "probability": 0.9993 + }, + { + "start": 13753.26, + "end": 13758.48, + "probability": 0.9901 + }, + { + "start": 13758.96, + "end": 13763.16, + "probability": 0.9943 + }, + { + "start": 13763.78, + "end": 13764.62, + "probability": 0.8266 + }, + { + "start": 13764.92, + "end": 13769.26, + "probability": 0.9951 + }, + { + "start": 13770.44, + "end": 13772.72, + "probability": 0.998 + }, + { + "start": 13773.0, + "end": 13776.64, + "probability": 0.9481 + }, + { + "start": 13777.5, + "end": 13781.12, + "probability": 0.9941 + }, + { + "start": 13781.68, + "end": 13786.28, + "probability": 0.9719 + }, + { + "start": 13787.34, + "end": 13788.7, + "probability": 0.8057 + }, + { + "start": 13789.16, + "end": 13791.0, + "probability": 0.8638 + }, + { + "start": 13791.76, + "end": 13794.92, + "probability": 0.9896 + }, + { + "start": 13796.0, + "end": 13796.74, + "probability": 0.768 + }, + { + "start": 13796.86, + "end": 13799.72, + "probability": 0.9871 + }, + { + "start": 13800.5, + "end": 13802.9, + "probability": 0.9785 + }, + { + "start": 13802.9, + "end": 13807.64, + "probability": 0.9771 + }, + { + "start": 13807.88, + "end": 13809.04, + "probability": 0.6864 + }, + { + "start": 13809.26, + "end": 13811.08, + "probability": 0.8469 + }, + { + "start": 13811.24, + "end": 13813.8, + "probability": 0.9337 + }, + { + "start": 13814.16, + "end": 13816.2, + "probability": 0.942 + }, + { + "start": 13816.58, + "end": 13818.2, + "probability": 0.9872 + }, + { + "start": 13819.14, + "end": 13825.26, + "probability": 0.9798 + }, + { + "start": 13826.0, + "end": 13828.18, + "probability": 0.999 + }, + { + "start": 13828.18, + "end": 13831.56, + "probability": 0.9302 + }, + { + "start": 13832.22, + "end": 13837.26, + "probability": 0.9782 + }, + { + "start": 13837.96, + "end": 13839.08, + "probability": 0.7876 + }, + { + "start": 13839.26, + "end": 13842.12, + "probability": 0.9665 + }, + { + "start": 13842.98, + "end": 13843.44, + "probability": 0.6819 + }, + { + "start": 13844.04, + "end": 13849.4, + "probability": 0.9917 + }, + { + "start": 13851.22, + "end": 13852.34, + "probability": 0.9894 + }, + { + "start": 13852.92, + "end": 13855.5, + "probability": 0.9808 + }, + { + "start": 13855.5, + "end": 13857.86, + "probability": 0.9671 + }, + { + "start": 13858.46, + "end": 13860.04, + "probability": 0.9963 + }, + { + "start": 13861.25, + "end": 13865.28, + "probability": 0.7905 + }, + { + "start": 13865.34, + "end": 13869.5, + "probability": 0.9159 + }, + { + "start": 13870.12, + "end": 13870.12, + "probability": 0.3634 + }, + { + "start": 13870.12, + "end": 13870.12, + "probability": 0.004 + }, + { + "start": 13870.12, + "end": 13873.04, + "probability": 0.7331 + }, + { + "start": 13873.34, + "end": 13875.48, + "probability": 0.7673 + }, + { + "start": 13875.8, + "end": 13881.14, + "probability": 0.9398 + }, + { + "start": 13881.42, + "end": 13883.34, + "probability": 0.9833 + }, + { + "start": 13884.64, + "end": 13887.92, + "probability": 0.9738 + }, + { + "start": 13887.92, + "end": 13891.02, + "probability": 0.8296 + }, + { + "start": 13891.72, + "end": 13893.72, + "probability": 0.9731 + }, + { + "start": 13894.62, + "end": 13899.22, + "probability": 0.8057 + }, + { + "start": 13899.7, + "end": 13901.08, + "probability": 0.9319 + }, + { + "start": 13901.56, + "end": 13904.1, + "probability": 0.9172 + }, + { + "start": 13904.58, + "end": 13906.72, + "probability": 0.9399 + }, + { + "start": 13907.66, + "end": 13910.32, + "probability": 0.9692 + }, + { + "start": 13910.32, + "end": 13912.18, + "probability": 0.9985 + }, + { + "start": 13913.02, + "end": 13915.44, + "probability": 0.9766 + }, + { + "start": 13916.2, + "end": 13919.06, + "probability": 0.9603 + }, + { + "start": 13919.4, + "end": 13921.34, + "probability": 0.9847 + }, + { + "start": 13921.42, + "end": 13922.63, + "probability": 0.9875 + }, + { + "start": 13923.44, + "end": 13926.12, + "probability": 0.997 + }, + { + "start": 13926.74, + "end": 13929.52, + "probability": 0.9962 + }, + { + "start": 13929.86, + "end": 13932.46, + "probability": 0.9576 + }, + { + "start": 13932.96, + "end": 13935.5, + "probability": 0.7875 + }, + { + "start": 13936.14, + "end": 13940.74, + "probability": 0.9865 + }, + { + "start": 13941.22, + "end": 13944.67, + "probability": 0.998 + }, + { + "start": 13945.08, + "end": 13949.76, + "probability": 0.9945 + }, + { + "start": 13950.06, + "end": 13951.7, + "probability": 0.9587 + }, + { + "start": 13952.04, + "end": 13952.06, + "probability": 0.0512 + }, + { + "start": 13952.06, + "end": 13953.78, + "probability": 0.6974 + }, + { + "start": 13954.22, + "end": 13956.62, + "probability": 0.9694 + }, + { + "start": 13956.7, + "end": 13957.58, + "probability": 0.8739 + }, + { + "start": 13957.7, + "end": 13958.26, + "probability": 0.856 + }, + { + "start": 13958.38, + "end": 13959.36, + "probability": 0.1478 + }, + { + "start": 13959.46, + "end": 13960.24, + "probability": 0.5987 + }, + { + "start": 13960.72, + "end": 13962.52, + "probability": 0.7098 + }, + { + "start": 13963.44, + "end": 13964.22, + "probability": 0.6016 + }, + { + "start": 13965.34, + "end": 13966.2, + "probability": 0.9197 + }, + { + "start": 13981.2, + "end": 13983.02, + "probability": 0.5188 + }, + { + "start": 13983.94, + "end": 13987.24, + "probability": 0.8921 + }, + { + "start": 13987.98, + "end": 13988.88, + "probability": 0.5267 + }, + { + "start": 13988.9, + "end": 13990.02, + "probability": 0.7609 + }, + { + "start": 13990.52, + "end": 13991.96, + "probability": 0.9575 + }, + { + "start": 13992.82, + "end": 13993.68, + "probability": 0.981 + }, + { + "start": 13993.82, + "end": 13994.1, + "probability": 0.0495 + }, + { + "start": 13995.8, + "end": 13996.92, + "probability": 0.4073 + }, + { + "start": 13996.92, + "end": 13997.04, + "probability": 0.4498 + }, + { + "start": 13997.16, + "end": 13997.66, + "probability": 0.2017 + }, + { + "start": 13997.66, + "end": 13998.36, + "probability": 0.5089 + }, + { + "start": 13998.4, + "end": 13999.16, + "probability": 0.8803 + }, + { + "start": 14000.06, + "end": 14000.08, + "probability": 0.2273 + }, + { + "start": 14000.08, + "end": 14005.62, + "probability": 0.8455 + }, + { + "start": 14006.32, + "end": 14007.18, + "probability": 0.7367 + }, + { + "start": 14007.36, + "end": 14010.26, + "probability": 0.9595 + }, + { + "start": 14010.58, + "end": 14013.6, + "probability": 0.7679 + }, + { + "start": 14013.72, + "end": 14015.92, + "probability": 0.9158 + }, + { + "start": 14016.54, + "end": 14019.3, + "probability": 0.8958 + }, + { + "start": 14019.6, + "end": 14022.66, + "probability": 0.9862 + }, + { + "start": 14023.42, + "end": 14027.58, + "probability": 0.6835 + }, + { + "start": 14027.78, + "end": 14028.2, + "probability": 0.5647 + }, + { + "start": 14028.64, + "end": 14033.98, + "probability": 0.8385 + }, + { + "start": 14034.68, + "end": 14035.96, + "probability": 0.7064 + }, + { + "start": 14037.3, + "end": 14038.86, + "probability": 0.8918 + }, + { + "start": 14040.1, + "end": 14044.56, + "probability": 0.9731 + }, + { + "start": 14045.06, + "end": 14048.28, + "probability": 0.6316 + }, + { + "start": 14048.42, + "end": 14049.86, + "probability": 0.3834 + }, + { + "start": 14050.52, + "end": 14057.04, + "probability": 0.8735 + }, + { + "start": 14057.64, + "end": 14060.51, + "probability": 0.972 + }, + { + "start": 14062.16, + "end": 14063.3, + "probability": 0.8936 + }, + { + "start": 14063.58, + "end": 14069.88, + "probability": 0.9297 + }, + { + "start": 14070.38, + "end": 14070.68, + "probability": 0.7919 + }, + { + "start": 14070.74, + "end": 14072.67, + "probability": 0.7295 + }, + { + "start": 14072.96, + "end": 14076.74, + "probability": 0.9761 + }, + { + "start": 14079.52, + "end": 14080.58, + "probability": 0.851 + }, + { + "start": 14081.4, + "end": 14085.02, + "probability": 0.8432 + }, + { + "start": 14085.96, + "end": 14089.5, + "probability": 0.7585 + }, + { + "start": 14090.14, + "end": 14093.38, + "probability": 0.9978 + }, + { + "start": 14094.45, + "end": 14096.86, + "probability": 0.755 + }, + { + "start": 14097.64, + "end": 14103.04, + "probability": 0.6133 + }, + { + "start": 14103.08, + "end": 14104.92, + "probability": 0.6503 + }, + { + "start": 14105.56, + "end": 14107.78, + "probability": 0.6299 + }, + { + "start": 14108.12, + "end": 14108.85, + "probability": 0.906 + }, + { + "start": 14109.5, + "end": 14110.86, + "probability": 0.8029 + }, + { + "start": 14110.94, + "end": 14115.0, + "probability": 0.9224 + }, + { + "start": 14115.62, + "end": 14117.74, + "probability": 0.9919 + }, + { + "start": 14118.36, + "end": 14120.54, + "probability": 0.9463 + }, + { + "start": 14121.0, + "end": 14121.6, + "probability": 0.5073 + }, + { + "start": 14121.74, + "end": 14121.92, + "probability": 0.7166 + }, + { + "start": 14122.0, + "end": 14123.16, + "probability": 0.9636 + }, + { + "start": 14123.6, + "end": 14125.88, + "probability": 0.9718 + }, + { + "start": 14126.46, + "end": 14128.62, + "probability": 0.9956 + }, + { + "start": 14130.84, + "end": 14132.36, + "probability": 0.9888 + }, + { + "start": 14132.48, + "end": 14135.84, + "probability": 0.9571 + }, + { + "start": 14136.46, + "end": 14143.0, + "probability": 0.9861 + }, + { + "start": 14143.44, + "end": 14145.44, + "probability": 0.9966 + }, + { + "start": 14146.62, + "end": 14148.2, + "probability": 0.9584 + }, + { + "start": 14148.58, + "end": 14150.5, + "probability": 0.9985 + }, + { + "start": 14151.08, + "end": 14152.04, + "probability": 0.4414 + }, + { + "start": 14153.48, + "end": 14154.66, + "probability": 0.7266 + }, + { + "start": 14155.66, + "end": 14156.56, + "probability": 0.67 + }, + { + "start": 14157.42, + "end": 14159.92, + "probability": 0.8704 + }, + { + "start": 14160.54, + "end": 14162.52, + "probability": 0.8532 + }, + { + "start": 14163.5, + "end": 14165.82, + "probability": 0.9889 + }, + { + "start": 14167.12, + "end": 14168.3, + "probability": 0.6179 + }, + { + "start": 14168.32, + "end": 14170.09, + "probability": 0.9937 + }, + { + "start": 14170.82, + "end": 14173.82, + "probability": 0.9941 + }, + { + "start": 14174.34, + "end": 14174.88, + "probability": 0.6004 + }, + { + "start": 14174.98, + "end": 14175.74, + "probability": 0.9082 + }, + { + "start": 14176.16, + "end": 14177.34, + "probability": 0.9264 + }, + { + "start": 14177.66, + "end": 14178.92, + "probability": 0.9757 + }, + { + "start": 14180.66, + "end": 14181.58, + "probability": 0.717 + }, + { + "start": 14181.64, + "end": 14183.32, + "probability": 0.8543 + }, + { + "start": 14183.58, + "end": 14185.48, + "probability": 0.9629 + }, + { + "start": 14186.18, + "end": 14186.52, + "probability": 0.7301 + }, + { + "start": 14187.18, + "end": 14190.64, + "probability": 0.9788 + }, + { + "start": 14191.5, + "end": 14193.84, + "probability": 0.9739 + }, + { + "start": 14194.7, + "end": 14195.94, + "probability": 0.8122 + }, + { + "start": 14196.9, + "end": 14198.2, + "probability": 0.8435 + }, + { + "start": 14199.3, + "end": 14200.92, + "probability": 0.9864 + }, + { + "start": 14202.32, + "end": 14204.0, + "probability": 0.905 + }, + { + "start": 14204.92, + "end": 14209.66, + "probability": 0.6581 + }, + { + "start": 14214.72, + "end": 14215.22, + "probability": 0.1686 + }, + { + "start": 14220.58, + "end": 14222.7, + "probability": 0.8083 + }, + { + "start": 14223.54, + "end": 14224.8, + "probability": 0.9491 + }, + { + "start": 14225.78, + "end": 14229.36, + "probability": 0.9609 + }, + { + "start": 14230.42, + "end": 14236.26, + "probability": 0.9943 + }, + { + "start": 14237.2, + "end": 14240.76, + "probability": 0.9848 + }, + { + "start": 14242.06, + "end": 14242.64, + "probability": 0.784 + }, + { + "start": 14242.72, + "end": 14247.6, + "probability": 0.9637 + }, + { + "start": 14248.34, + "end": 14250.26, + "probability": 0.9511 + }, + { + "start": 14250.7, + "end": 14252.03, + "probability": 0.9966 + }, + { + "start": 14252.14, + "end": 14252.98, + "probability": 0.6206 + }, + { + "start": 14253.36, + "end": 14254.58, + "probability": 0.8021 + }, + { + "start": 14255.06, + "end": 14259.78, + "probability": 0.8047 + }, + { + "start": 14260.6, + "end": 14265.68, + "probability": 0.9905 + }, + { + "start": 14265.68, + "end": 14271.4, + "probability": 0.9983 + }, + { + "start": 14272.88, + "end": 14275.02, + "probability": 0.9993 + }, + { + "start": 14275.48, + "end": 14276.44, + "probability": 0.6311 + }, + { + "start": 14276.94, + "end": 14280.2, + "probability": 0.9767 + }, + { + "start": 14280.2, + "end": 14282.5, + "probability": 0.9483 + }, + { + "start": 14283.46, + "end": 14286.44, + "probability": 0.8332 + }, + { + "start": 14289.06, + "end": 14289.3, + "probability": 0.0342 + }, + { + "start": 14289.3, + "end": 14290.38, + "probability": 0.9129 + }, + { + "start": 14291.86, + "end": 14298.38, + "probability": 0.9897 + }, + { + "start": 14299.5, + "end": 14302.68, + "probability": 0.9897 + }, + { + "start": 14304.0, + "end": 14306.28, + "probability": 0.9438 + }, + { + "start": 14306.7, + "end": 14309.3, + "probability": 0.8612 + }, + { + "start": 14310.0, + "end": 14311.4, + "probability": 0.6655 + }, + { + "start": 14312.08, + "end": 14312.84, + "probability": 0.1021 + }, + { + "start": 14314.36, + "end": 14316.58, + "probability": 0.8501 + }, + { + "start": 14316.96, + "end": 14317.17, + "probability": 0.1601 + }, + { + "start": 14320.02, + "end": 14320.02, + "probability": 0.0088 + }, + { + "start": 14320.02, + "end": 14320.34, + "probability": 0.6535 + }, + { + "start": 14320.48, + "end": 14323.1, + "probability": 0.8735 + }, + { + "start": 14325.22, + "end": 14328.02, + "probability": 0.0475 + }, + { + "start": 14328.02, + "end": 14330.52, + "probability": 0.7786 + }, + { + "start": 14330.62, + "end": 14331.96, + "probability": 0.8645 + }, + { + "start": 14332.38, + "end": 14337.6, + "probability": 0.9884 + }, + { + "start": 14338.2, + "end": 14340.2, + "probability": 0.794 + }, + { + "start": 14341.84, + "end": 14346.72, + "probability": 0.9806 + }, + { + "start": 14346.84, + "end": 14347.88, + "probability": 0.9357 + }, + { + "start": 14348.14, + "end": 14348.86, + "probability": 0.8367 + }, + { + "start": 14351.08, + "end": 14352.62, + "probability": 0.7788 + }, + { + "start": 14353.96, + "end": 14356.1, + "probability": 0.7823 + }, + { + "start": 14357.82, + "end": 14360.58, + "probability": 0.7289 + }, + { + "start": 14362.48, + "end": 14365.5, + "probability": 0.9604 + }, + { + "start": 14367.86, + "end": 14369.38, + "probability": 0.9513 + }, + { + "start": 14371.34, + "end": 14373.08, + "probability": 0.9888 + }, + { + "start": 14374.04, + "end": 14374.88, + "probability": 0.7266 + }, + { + "start": 14378.52, + "end": 14383.54, + "probability": 0.4015 + }, + { + "start": 14383.64, + "end": 14384.28, + "probability": 0.4234 + }, + { + "start": 14384.36, + "end": 14386.58, + "probability": 0.2367 + }, + { + "start": 14387.26, + "end": 14391.76, + "probability": 0.6262 + }, + { + "start": 14392.28, + "end": 14395.75, + "probability": 0.9922 + }, + { + "start": 14396.78, + "end": 14399.1, + "probability": 0.9578 + }, + { + "start": 14399.74, + "end": 14402.52, + "probability": 0.9993 + }, + { + "start": 14403.06, + "end": 14405.66, + "probability": 0.9924 + }, + { + "start": 14406.07, + "end": 14409.26, + "probability": 0.9984 + }, + { + "start": 14409.82, + "end": 14410.83, + "probability": 0.936 + }, + { + "start": 14412.32, + "end": 14412.72, + "probability": 0.5592 + }, + { + "start": 14412.88, + "end": 14415.78, + "probability": 0.9961 + }, + { + "start": 14416.46, + "end": 14417.66, + "probability": 0.9902 + }, + { + "start": 14418.22, + "end": 14418.58, + "probability": 0.8315 + }, + { + "start": 14418.66, + "end": 14422.04, + "probability": 0.98 + }, + { + "start": 14422.58, + "end": 14422.99, + "probability": 0.7363 + }, + { + "start": 14423.92, + "end": 14425.49, + "probability": 0.9902 + }, + { + "start": 14426.44, + "end": 14431.54, + "probability": 0.6164 + }, + { + "start": 14432.66, + "end": 14433.42, + "probability": 0.3243 + }, + { + "start": 14434.56, + "end": 14439.4, + "probability": 0.7559 + }, + { + "start": 14439.46, + "end": 14443.36, + "probability": 0.9932 + }, + { + "start": 14443.76, + "end": 14449.4, + "probability": 0.9911 + }, + { + "start": 14449.78, + "end": 14451.22, + "probability": 0.9478 + }, + { + "start": 14453.44, + "end": 14456.48, + "probability": 0.569 + }, + { + "start": 14457.06, + "end": 14458.68, + "probability": 0.9788 + }, + { + "start": 14462.86, + "end": 14463.88, + "probability": 0.8885 + }, + { + "start": 14464.64, + "end": 14468.88, + "probability": 0.9052 + }, + { + "start": 14470.06, + "end": 14475.62, + "probability": 0.7802 + }, + { + "start": 14475.9, + "end": 14478.3, + "probability": 0.9734 + }, + { + "start": 14478.46, + "end": 14478.9, + "probability": 0.7901 + }, + { + "start": 14479.1, + "end": 14479.8, + "probability": 0.7057 + }, + { + "start": 14480.58, + "end": 14481.64, + "probability": 0.5688 + }, + { + "start": 14482.02, + "end": 14482.68, + "probability": 0.8517 + }, + { + "start": 14494.6, + "end": 14495.1, + "probability": 0.4665 + }, + { + "start": 14495.2, + "end": 14495.94, + "probability": 0.6351 + }, + { + "start": 14496.14, + "end": 14496.64, + "probability": 0.4578 + }, + { + "start": 14496.74, + "end": 14498.2, + "probability": 0.9905 + }, + { + "start": 14498.26, + "end": 14499.0, + "probability": 0.9558 + }, + { + "start": 14499.08, + "end": 14501.14, + "probability": 0.9583 + }, + { + "start": 14501.32, + "end": 14503.12, + "probability": 0.979 + }, + { + "start": 14503.62, + "end": 14505.56, + "probability": 0.9507 + }, + { + "start": 14505.78, + "end": 14506.75, + "probability": 0.7236 + }, + { + "start": 14507.44, + "end": 14508.72, + "probability": 0.8397 + }, + { + "start": 14508.76, + "end": 14509.84, + "probability": 0.7007 + }, + { + "start": 14509.9, + "end": 14511.26, + "probability": 0.9025 + }, + { + "start": 14511.66, + "end": 14515.08, + "probability": 0.9666 + }, + { + "start": 14515.32, + "end": 14519.12, + "probability": 0.9897 + }, + { + "start": 14519.16, + "end": 14520.12, + "probability": 0.9019 + }, + { + "start": 14520.2, + "end": 14521.26, + "probability": 0.8327 + }, + { + "start": 14521.66, + "end": 14522.76, + "probability": 0.7969 + }, + { + "start": 14523.06, + "end": 14523.88, + "probability": 0.8732 + }, + { + "start": 14523.98, + "end": 14524.42, + "probability": 0.8972 + }, + { + "start": 14524.48, + "end": 14525.78, + "probability": 0.9322 + }, + { + "start": 14526.02, + "end": 14527.8, + "probability": 0.6691 + }, + { + "start": 14528.26, + "end": 14529.82, + "probability": 0.9866 + }, + { + "start": 14529.82, + "end": 14532.62, + "probability": 0.6816 + }, + { + "start": 14532.68, + "end": 14535.48, + "probability": 0.9401 + }, + { + "start": 14535.88, + "end": 14536.3, + "probability": 0.0384 + }, + { + "start": 14536.3, + "end": 14538.0, + "probability": 0.5024 + }, + { + "start": 14538.3, + "end": 14541.34, + "probability": 0.9417 + }, + { + "start": 14541.7, + "end": 14542.84, + "probability": 0.937 + }, + { + "start": 14542.9, + "end": 14547.48, + "probability": 0.9569 + }, + { + "start": 14547.78, + "end": 14551.8, + "probability": 0.9615 + }, + { + "start": 14552.28, + "end": 14553.64, + "probability": 0.8088 + }, + { + "start": 14553.64, + "end": 14555.44, + "probability": 0.6664 + }, + { + "start": 14555.84, + "end": 14558.38, + "probability": 0.6441 + }, + { + "start": 14558.38, + "end": 14558.86, + "probability": 0.6492 + }, + { + "start": 14559.94, + "end": 14560.94, + "probability": 0.4085 + }, + { + "start": 14561.04, + "end": 14564.14, + "probability": 0.7998 + }, + { + "start": 14567.9, + "end": 14569.74, + "probability": 0.7139 + }, + { + "start": 14570.62, + "end": 14572.36, + "probability": 0.939 + }, + { + "start": 14572.38, + "end": 14576.06, + "probability": 0.9844 + }, + { + "start": 14576.2, + "end": 14578.42, + "probability": 0.9062 + }, + { + "start": 14578.62, + "end": 14579.7, + "probability": 0.5484 + }, + { + "start": 14581.1, + "end": 14583.94, + "probability": 0.9326 + }, + { + "start": 14584.16, + "end": 14584.56, + "probability": 0.9294 + }, + { + "start": 14586.28, + "end": 14588.8, + "probability": 0.846 + }, + { + "start": 14589.46, + "end": 14589.46, + "probability": 0.1658 + }, + { + "start": 14589.92, + "end": 14591.04, + "probability": 0.0539 + }, + { + "start": 14592.08, + "end": 14592.26, + "probability": 0.0056 + }, + { + "start": 14595.54, + "end": 14597.4, + "probability": 0.0526 + }, + { + "start": 14603.7, + "end": 14605.74, + "probability": 0.0633 + }, + { + "start": 14605.74, + "end": 14609.26, + "probability": 0.4573 + }, + { + "start": 14609.26, + "end": 14611.28, + "probability": 0.832 + }, + { + "start": 14611.88, + "end": 14612.4, + "probability": 0.6633 + }, + { + "start": 14612.58, + "end": 14615.12, + "probability": 0.9618 + }, + { + "start": 14615.12, + "end": 14619.08, + "probability": 0.9976 + }, + { + "start": 14619.18, + "end": 14620.02, + "probability": 0.4495 + }, + { + "start": 14621.12, + "end": 14622.86, + "probability": 0.8569 + }, + { + "start": 14622.9, + "end": 14623.4, + "probability": 0.8911 + }, + { + "start": 14642.96, + "end": 14644.98, + "probability": 0.713 + }, + { + "start": 14646.18, + "end": 14648.1, + "probability": 0.7791 + }, + { + "start": 14648.2, + "end": 14651.96, + "probability": 0.7919 + }, + { + "start": 14652.2, + "end": 14654.12, + "probability": 0.8374 + }, + { + "start": 14654.36, + "end": 14655.04, + "probability": 0.4843 + }, + { + "start": 14655.7, + "end": 14657.38, + "probability": 0.8539 + }, + { + "start": 14661.12, + "end": 14662.42, + "probability": 0.5907 + }, + { + "start": 14662.42, + "end": 14663.44, + "probability": 0.4532 + }, + { + "start": 14663.68, + "end": 14664.42, + "probability": 0.7708 + }, + { + "start": 14665.56, + "end": 14669.14, + "probability": 0.9758 + }, + { + "start": 14669.96, + "end": 14672.96, + "probability": 0.9946 + }, + { + "start": 14672.96, + "end": 14678.08, + "probability": 0.8688 + }, + { + "start": 14679.66, + "end": 14680.74, + "probability": 0.7585 + }, + { + "start": 14681.12, + "end": 14682.76, + "probability": 0.8975 + }, + { + "start": 14684.18, + "end": 14686.38, + "probability": 0.9651 + }, + { + "start": 14686.46, + "end": 14693.56, + "probability": 0.9641 + }, + { + "start": 14694.0, + "end": 14695.64, + "probability": 0.9932 + }, + { + "start": 14695.7, + "end": 14696.2, + "probability": 0.687 + }, + { + "start": 14696.64, + "end": 14701.14, + "probability": 0.9815 + }, + { + "start": 14701.14, + "end": 14704.42, + "probability": 0.9489 + }, + { + "start": 14704.64, + "end": 14705.27, + "probability": 0.977 + }, + { + "start": 14706.44, + "end": 14708.92, + "probability": 0.9985 + }, + { + "start": 14710.86, + "end": 14712.66, + "probability": 0.9912 + }, + { + "start": 14713.46, + "end": 14715.08, + "probability": 0.715 + }, + { + "start": 14715.54, + "end": 14718.9, + "probability": 0.9774 + }, + { + "start": 14723.42, + "end": 14724.0, + "probability": 0.5373 + }, + { + "start": 14727.18, + "end": 14727.32, + "probability": 0.8823 + }, + { + "start": 14729.46, + "end": 14732.22, + "probability": 0.9022 + }, + { + "start": 14732.7, + "end": 14734.5, + "probability": 0.9521 + }, + { + "start": 14734.98, + "end": 14738.0, + "probability": 0.9336 + }, + { + "start": 14738.16, + "end": 14741.36, + "probability": 0.7696 + }, + { + "start": 14743.78, + "end": 14745.05, + "probability": 0.5732 + }, + { + "start": 14745.78, + "end": 14749.38, + "probability": 0.8861 + }, + { + "start": 14751.65, + "end": 14756.4, + "probability": 0.5571 + }, + { + "start": 14756.7, + "end": 14758.74, + "probability": 0.8491 + }, + { + "start": 14758.74, + "end": 14759.38, + "probability": 0.3286 + }, + { + "start": 14759.4, + "end": 14760.93, + "probability": 0.7224 + }, + { + "start": 14761.62, + "end": 14763.32, + "probability": 0.9066 + }, + { + "start": 14763.6, + "end": 14765.3, + "probability": 0.8996 + }, + { + "start": 14765.4, + "end": 14766.24, + "probability": 0.8638 + }, + { + "start": 14767.1, + "end": 14768.48, + "probability": 0.2721 + }, + { + "start": 14770.04, + "end": 14773.24, + "probability": 0.0363 + }, + { + "start": 14773.24, + "end": 14773.24, + "probability": 0.1932 + }, + { + "start": 14773.24, + "end": 14774.14, + "probability": 0.5433 + }, + { + "start": 14774.38, + "end": 14774.5, + "probability": 0.7653 + }, + { + "start": 14774.64, + "end": 14776.1, + "probability": 0.9698 + }, + { + "start": 14776.78, + "end": 14779.06, + "probability": 0.9502 + }, + { + "start": 14779.1, + "end": 14780.1, + "probability": 0.846 + }, + { + "start": 14780.16, + "end": 14781.38, + "probability": 0.9556 + }, + { + "start": 14782.0, + "end": 14786.46, + "probability": 0.8901 + }, + { + "start": 14786.46, + "end": 14788.24, + "probability": 0.9716 + }, + { + "start": 14788.38, + "end": 14788.89, + "probability": 0.8975 + }, + { + "start": 14789.92, + "end": 14791.0, + "probability": 0.8853 + }, + { + "start": 14791.7, + "end": 14792.0, + "probability": 0.6313 + }, + { + "start": 14792.52, + "end": 14796.32, + "probability": 0.9797 + }, + { + "start": 14796.44, + "end": 14801.44, + "probability": 0.8743 + }, + { + "start": 14802.34, + "end": 14804.98, + "probability": 0.6603 + }, + { + "start": 14805.74, + "end": 14807.72, + "probability": 0.988 + }, + { + "start": 14807.82, + "end": 14810.62, + "probability": 0.9978 + }, + { + "start": 14810.94, + "end": 14811.96, + "probability": 0.8066 + }, + { + "start": 14812.36, + "end": 14816.76, + "probability": 0.6172 + }, + { + "start": 14817.28, + "end": 14818.04, + "probability": 0.9683 + }, + { + "start": 14818.08, + "end": 14819.46, + "probability": 0.8853 + }, + { + "start": 14819.54, + "end": 14820.57, + "probability": 0.7723 + }, + { + "start": 14821.56, + "end": 14823.94, + "probability": 0.719 + }, + { + "start": 14824.56, + "end": 14829.84, + "probability": 0.782 + }, + { + "start": 14831.84, + "end": 14834.96, + "probability": 0.9831 + }, + { + "start": 14835.54, + "end": 14837.24, + "probability": 0.9785 + }, + { + "start": 14837.86, + "end": 14842.94, + "probability": 0.9684 + }, + { + "start": 14844.08, + "end": 14849.1, + "probability": 0.9951 + }, + { + "start": 14849.66, + "end": 14849.98, + "probability": 0.2585 + }, + { + "start": 14850.74, + "end": 14853.34, + "probability": 0.76 + }, + { + "start": 14854.12, + "end": 14855.48, + "probability": 0.9529 + }, + { + "start": 14855.68, + "end": 14858.52, + "probability": 0.9834 + }, + { + "start": 14858.78, + "end": 14862.32, + "probability": 0.8837 + }, + { + "start": 14862.98, + "end": 14865.3, + "probability": 0.8803 + }, + { + "start": 14866.02, + "end": 14867.51, + "probability": 0.7852 + }, + { + "start": 14867.7, + "end": 14871.88, + "probability": 0.9951 + }, + { + "start": 14872.32, + "end": 14876.66, + "probability": 0.9878 + }, + { + "start": 14876.66, + "end": 14882.98, + "probability": 0.9329 + }, + { + "start": 14884.06, + "end": 14886.41, + "probability": 0.7886 + }, + { + "start": 14886.9, + "end": 14887.78, + "probability": 0.7407 + }, + { + "start": 14888.38, + "end": 14890.4, + "probability": 0.9324 + }, + { + "start": 14891.84, + "end": 14893.06, + "probability": 0.9323 + }, + { + "start": 14893.06, + "end": 14894.08, + "probability": 0.9528 + }, + { + "start": 14894.08, + "end": 14896.34, + "probability": 0.1347 + }, + { + "start": 14896.42, + "end": 14897.14, + "probability": 0.3409 + }, + { + "start": 14897.64, + "end": 14902.96, + "probability": 0.9448 + }, + { + "start": 14903.86, + "end": 14906.34, + "probability": 0.7611 + }, + { + "start": 14906.96, + "end": 14909.88, + "probability": 0.9875 + }, + { + "start": 14910.94, + "end": 14914.78, + "probability": 0.9972 + }, + { + "start": 14915.24, + "end": 14920.44, + "probability": 0.9756 + }, + { + "start": 14921.12, + "end": 14921.47, + "probability": 0.8638 + }, + { + "start": 14922.42, + "end": 14927.22, + "probability": 0.9732 + }, + { + "start": 14927.36, + "end": 14927.8, + "probability": 0.9214 + }, + { + "start": 14929.34, + "end": 14931.56, + "probability": 0.8367 + }, + { + "start": 14932.04, + "end": 14933.68, + "probability": 0.9816 + }, + { + "start": 14933.78, + "end": 14934.78, + "probability": 0.8414 + }, + { + "start": 14935.34, + "end": 14939.04, + "probability": 0.6403 + }, + { + "start": 14939.9, + "end": 14942.06, + "probability": 0.9717 + }, + { + "start": 14942.96, + "end": 14946.62, + "probability": 0.9932 + }, + { + "start": 14948.02, + "end": 14950.54, + "probability": 0.9845 + }, + { + "start": 14950.62, + "end": 14952.08, + "probability": 0.9416 + }, + { + "start": 14953.94, + "end": 14956.32, + "probability": 0.6087 + }, + { + "start": 14957.46, + "end": 14960.5, + "probability": 0.4787 + }, + { + "start": 14960.9, + "end": 14961.7, + "probability": 0.9063 + }, + { + "start": 14964.98, + "end": 14966.82, + "probability": 0.8047 + }, + { + "start": 14966.82, + "end": 14968.18, + "probability": 0.802 + }, + { + "start": 14968.42, + "end": 14969.44, + "probability": 0.2432 + }, + { + "start": 14970.06, + "end": 14970.06, + "probability": 0.3527 + }, + { + "start": 14970.8, + "end": 14971.3, + "probability": 0.0354 + }, + { + "start": 14971.9, + "end": 14973.18, + "probability": 0.6057 + }, + { + "start": 14974.78, + "end": 14976.3, + "probability": 0.9935 + }, + { + "start": 14976.32, + "end": 14977.36, + "probability": 0.5106 + }, + { + "start": 14979.92, + "end": 14982.02, + "probability": 0.4312 + }, + { + "start": 14984.82, + "end": 14985.36, + "probability": 0.185 + }, + { + "start": 14985.78, + "end": 14986.36, + "probability": 0.3103 + }, + { + "start": 14986.84, + "end": 14987.64, + "probability": 0.1672 + }, + { + "start": 15003.04, + "end": 15004.22, + "probability": 0.3266 + }, + { + "start": 15004.22, + "end": 15005.94, + "probability": 0.6233 + }, + { + "start": 15006.0, + "end": 15008.4, + "probability": 0.834 + }, + { + "start": 15008.54, + "end": 15009.82, + "probability": 0.7738 + }, + { + "start": 15010.3, + "end": 15010.42, + "probability": 0.436 + }, + { + "start": 15010.52, + "end": 15011.64, + "probability": 0.7726 + }, + { + "start": 15011.78, + "end": 15013.36, + "probability": 0.7765 + }, + { + "start": 15013.38, + "end": 15014.86, + "probability": 0.9077 + }, + { + "start": 15014.94, + "end": 15016.9, + "probability": 0.972 + }, + { + "start": 15016.94, + "end": 15018.32, + "probability": 0.9543 + }, + { + "start": 15018.36, + "end": 15019.88, + "probability": 0.973 + }, + { + "start": 15020.36, + "end": 15022.64, + "probability": 0.9038 + }, + { + "start": 15022.68, + "end": 15026.58, + "probability": 0.9619 + }, + { + "start": 15026.94, + "end": 15032.88, + "probability": 0.9551 + }, + { + "start": 15033.14, + "end": 15034.64, + "probability": 0.9666 + }, + { + "start": 15035.1, + "end": 15035.62, + "probability": 0.8301 + }, + { + "start": 15035.64, + "end": 15036.94, + "probability": 0.9377 + }, + { + "start": 15037.08, + "end": 15039.56, + "probability": 0.9915 + }, + { + "start": 15040.1, + "end": 15040.1, + "probability": 0.2428 + }, + { + "start": 15040.1, + "end": 15042.14, + "probability": 0.875 + }, + { + "start": 15042.66, + "end": 15045.88, + "probability": 0.9964 + }, + { + "start": 15046.24, + "end": 15047.78, + "probability": 0.0192 + }, + { + "start": 15047.78, + "end": 15048.08, + "probability": 0.058 + }, + { + "start": 15048.48, + "end": 15048.66, + "probability": 0.1286 + }, + { + "start": 15048.66, + "end": 15048.66, + "probability": 0.0158 + }, + { + "start": 15048.66, + "end": 15054.2, + "probability": 0.4665 + }, + { + "start": 15055.26, + "end": 15055.26, + "probability": 0.0148 + }, + { + "start": 15055.26, + "end": 15055.26, + "probability": 0.1498 + }, + { + "start": 15055.26, + "end": 15057.32, + "probability": 0.843 + }, + { + "start": 15057.94, + "end": 15059.92, + "probability": 0.6895 + }, + { + "start": 15060.06, + "end": 15062.1, + "probability": 0.6735 + }, + { + "start": 15062.24, + "end": 15064.48, + "probability": 0.8875 + }, + { + "start": 15065.1, + "end": 15067.6, + "probability": 0.9968 + }, + { + "start": 15068.0, + "end": 15068.66, + "probability": 0.8599 + }, + { + "start": 15069.3, + "end": 15070.86, + "probability": 0.9714 + }, + { + "start": 15071.02, + "end": 15074.5, + "probability": 0.9937 + }, + { + "start": 15074.7, + "end": 15075.68, + "probability": 0.8089 + }, + { + "start": 15075.8, + "end": 15076.5, + "probability": 0.0762 + }, + { + "start": 15076.5, + "end": 15076.5, + "probability": 0.2663 + }, + { + "start": 15076.5, + "end": 15078.18, + "probability": 0.6549 + }, + { + "start": 15082.04, + "end": 15082.64, + "probability": 0.6121 + }, + { + "start": 15083.5, + "end": 15085.02, + "probability": 0.9944 + }, + { + "start": 15085.04, + "end": 15088.34, + "probability": 0.9573 + }, + { + "start": 15091.3, + "end": 15093.78, + "probability": 0.9806 + }, + { + "start": 15093.78, + "end": 15096.9, + "probability": 0.9559 + }, + { + "start": 15098.92, + "end": 15099.58, + "probability": 0.3338 + }, + { + "start": 15100.32, + "end": 15102.92, + "probability": 0.7815 + }, + { + "start": 15102.98, + "end": 15103.8, + "probability": 0.8558 + }, + { + "start": 15104.26, + "end": 15106.34, + "probability": 0.8822 + }, + { + "start": 15109.14, + "end": 15109.38, + "probability": 0.1279 + }, + { + "start": 15114.2, + "end": 15116.57, + "probability": 0.1356 + }, + { + "start": 15116.88, + "end": 15119.54, + "probability": 0.0442 + }, + { + "start": 15119.54, + "end": 15120.28, + "probability": 0.0546 + }, + { + "start": 15120.28, + "end": 15122.2, + "probability": 0.022 + }, + { + "start": 15123.84, + "end": 15127.48, + "probability": 0.6278 + }, + { + "start": 15127.72, + "end": 15129.36, + "probability": 0.7303 + }, + { + "start": 15129.46, + "end": 15131.8, + "probability": 0.7376 + }, + { + "start": 15132.24, + "end": 15132.64, + "probability": 0.8382 + }, + { + "start": 15133.07, + "end": 15133.42, + "probability": 0.2487 + }, + { + "start": 15139.92, + "end": 15139.92, + "probability": 0.4453 + }, + { + "start": 15139.92, + "end": 15143.6, + "probability": 0.7567 + }, + { + "start": 15146.04, + "end": 15147.26, + "probability": 0.8701 + }, + { + "start": 15148.12, + "end": 15149.82, + "probability": 0.5094 + }, + { + "start": 15150.18, + "end": 15152.52, + "probability": 0.9484 + }, + { + "start": 15152.84, + "end": 15153.56, + "probability": 0.5317 + }, + { + "start": 15153.74, + "end": 15154.52, + "probability": 0.6436 + }, + { + "start": 15154.58, + "end": 15155.66, + "probability": 0.768 + }, + { + "start": 15156.94, + "end": 15160.74, + "probability": 0.4565 + }, + { + "start": 15160.84, + "end": 15166.7, + "probability": 0.9751 + }, + { + "start": 15167.6, + "end": 15173.16, + "probability": 0.8995 + }, + { + "start": 15174.3, + "end": 15174.7, + "probability": 0.4801 + }, + { + "start": 15174.9, + "end": 15179.28, + "probability": 0.9731 + }, + { + "start": 15180.93, + "end": 15183.32, + "probability": 0.8146 + }, + { + "start": 15183.48, + "end": 15187.22, + "probability": 0.8318 + }, + { + "start": 15188.14, + "end": 15188.84, + "probability": 0.6127 + }, + { + "start": 15188.88, + "end": 15189.7, + "probability": 0.5371 + }, + { + "start": 15189.78, + "end": 15194.19, + "probability": 0.972 + }, + { + "start": 15195.12, + "end": 15197.92, + "probability": 0.9067 + }, + { + "start": 15198.02, + "end": 15202.72, + "probability": 0.9958 + }, + { + "start": 15203.42, + "end": 15206.32, + "probability": 0.8706 + }, + { + "start": 15206.32, + "end": 15208.84, + "probability": 0.8765 + }, + { + "start": 15208.94, + "end": 15209.82, + "probability": 0.7721 + }, + { + "start": 15213.06, + "end": 15214.74, + "probability": 0.3892 + }, + { + "start": 15214.78, + "end": 15216.48, + "probability": 0.9943 + }, + { + "start": 15216.56, + "end": 15218.02, + "probability": 0.4928 + }, + { + "start": 15218.58, + "end": 15220.56, + "probability": 0.6852 + }, + { + "start": 15221.08, + "end": 15225.17, + "probability": 0.7931 + }, + { + "start": 15227.3, + "end": 15227.78, + "probability": 0.0163 + }, + { + "start": 15229.96, + "end": 15231.58, + "probability": 0.0839 + }, + { + "start": 15237.78, + "end": 15238.8, + "probability": 0.0077 + }, + { + "start": 15239.87, + "end": 15240.96, + "probability": 0.211 + }, + { + "start": 15240.96, + "end": 15242.16, + "probability": 0.728 + }, + { + "start": 15246.02, + "end": 15246.5, + "probability": 0.011 + }, + { + "start": 15246.5, + "end": 15246.6, + "probability": 0.0287 + }, + { + "start": 15246.74, + "end": 15246.82, + "probability": 0.0731 + }, + { + "start": 15247.18, + "end": 15250.34, + "probability": 0.5031 + }, + { + "start": 15251.24, + "end": 15252.78, + "probability": 0.4554 + }, + { + "start": 15254.16, + "end": 15255.16, + "probability": 0.2222 + }, + { + "start": 15255.16, + "end": 15259.67, + "probability": 0.0292 + }, + { + "start": 15260.16, + "end": 15260.84, + "probability": 0.4991 + }, + { + "start": 15261.44, + "end": 15263.76, + "probability": 0.2594 + }, + { + "start": 15264.16, + "end": 15264.78, + "probability": 0.2462 + }, + { + "start": 15265.04, + "end": 15270.2, + "probability": 0.483 + }, + { + "start": 15270.74, + "end": 15270.74, + "probability": 0.0043 + }, + { + "start": 15273.1, + "end": 15273.98, + "probability": 0.0653 + }, + { + "start": 15273.98, + "end": 15275.39, + "probability": 0.0566 + }, + { + "start": 15275.42, + "end": 15278.13, + "probability": 0.1222 + }, + { + "start": 15278.86, + "end": 15279.02, + "probability": 0.1141 + }, + { + "start": 15279.02, + "end": 15279.37, + "probability": 0.0438 + }, + { + "start": 15280.12, + "end": 15280.28, + "probability": 0.1355 + }, + { + "start": 15280.32, + "end": 15281.7, + "probability": 0.0264 + }, + { + "start": 15283.08, + "end": 15284.66, + "probability": 0.2399 + }, + { + "start": 15285.24, + "end": 15286.28, + "probability": 0.0052 + }, + { + "start": 15286.28, + "end": 15287.3, + "probability": 0.0331 + }, + { + "start": 15287.94, + "end": 15288.42, + "probability": 0.0666 + }, + { + "start": 15288.48, + "end": 15288.72, + "probability": 0.2381 + }, + { + "start": 15288.72, + "end": 15288.72, + "probability": 0.0246 + }, + { + "start": 15288.72, + "end": 15289.36, + "probability": 0.2269 + }, + { + "start": 15290.65, + "end": 15290.72, + "probability": 0.051 + }, + { + "start": 15290.72, + "end": 15290.79, + "probability": 0.0016 + }, + { + "start": 15290.96, + "end": 15291.84, + "probability": 0.162 + }, + { + "start": 15291.96, + "end": 15293.62, + "probability": 0.1351 + }, + { + "start": 15293.62, + "end": 15293.98, + "probability": 0.2775 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15294.0, + "end": 15294.0, + "probability": 0.0 + }, + { + "start": 15297.06, + "end": 15299.26, + "probability": 0.2732 + }, + { + "start": 15299.48, + "end": 15300.26, + "probability": 0.4172 + }, + { + "start": 15300.78, + "end": 15301.08, + "probability": 0.463 + }, + { + "start": 15301.12, + "end": 15302.38, + "probability": 0.6203 + }, + { + "start": 15302.46, + "end": 15303.68, + "probability": 0.6033 + }, + { + "start": 15303.9, + "end": 15305.16, + "probability": 0.5365 + }, + { + "start": 15305.82, + "end": 15309.26, + "probability": 0.4997 + }, + { + "start": 15309.32, + "end": 15311.34, + "probability": 0.9963 + }, + { + "start": 15311.42, + "end": 15312.2, + "probability": 0.7201 + }, + { + "start": 15312.24, + "end": 15313.48, + "probability": 0.9053 + }, + { + "start": 15313.5, + "end": 15313.6, + "probability": 0.3865 + }, + { + "start": 15314.2, + "end": 15314.68, + "probability": 0.7562 + }, + { + "start": 15315.16, + "end": 15319.22, + "probability": 0.98 + }, + { + "start": 15319.62, + "end": 15324.24, + "probability": 0.8848 + }, + { + "start": 15324.74, + "end": 15326.38, + "probability": 0.994 + }, + { + "start": 15326.68, + "end": 15326.86, + "probability": 0.6124 + }, + { + "start": 15326.94, + "end": 15327.64, + "probability": 0.7955 + }, + { + "start": 15327.78, + "end": 15330.64, + "probability": 0.9829 + }, + { + "start": 15330.74, + "end": 15336.92, + "probability": 0.9448 + }, + { + "start": 15338.0, + "end": 15338.2, + "probability": 0.0009 + }, + { + "start": 15338.2, + "end": 15339.8, + "probability": 0.1112 + }, + { + "start": 15339.8, + "end": 15341.04, + "probability": 0.521 + }, + { + "start": 15341.04, + "end": 15342.58, + "probability": 0.729 + }, + { + "start": 15342.6, + "end": 15343.74, + "probability": 0.4846 + }, + { + "start": 15343.78, + "end": 15344.8, + "probability": 0.8564 + }, + { + "start": 15345.12, + "end": 15345.32, + "probability": 0.0533 + }, + { + "start": 15345.32, + "end": 15348.62, + "probability": 0.781 + }, + { + "start": 15348.86, + "end": 15349.48, + "probability": 0.0168 + }, + { + "start": 15349.48, + "end": 15351.66, + "probability": 0.6666 + }, + { + "start": 15351.72, + "end": 15353.3, + "probability": 0.7999 + }, + { + "start": 15353.3, + "end": 15353.4, + "probability": 0.0452 + }, + { + "start": 15353.4, + "end": 15353.84, + "probability": 0.6941 + }, + { + "start": 15353.96, + "end": 15354.5, + "probability": 0.8337 + }, + { + "start": 15354.6, + "end": 15354.88, + "probability": 0.8698 + }, + { + "start": 15354.94, + "end": 15355.86, + "probability": 0.9612 + }, + { + "start": 15355.9, + "end": 15357.64, + "probability": 0.9357 + }, + { + "start": 15357.78, + "end": 15358.16, + "probability": 0.5007 + }, + { + "start": 15358.18, + "end": 15358.62, + "probability": 0.7508 + }, + { + "start": 15358.74, + "end": 15359.5, + "probability": 0.7296 + }, + { + "start": 15359.68, + "end": 15360.2, + "probability": 0.7911 + }, + { + "start": 15360.42, + "end": 15360.44, + "probability": 0.105 + }, + { + "start": 15360.44, + "end": 15360.44, + "probability": 0.2219 + }, + { + "start": 15360.44, + "end": 15361.22, + "probability": 0.7802 + }, + { + "start": 15361.3, + "end": 15361.92, + "probability": 0.7182 + }, + { + "start": 15361.92, + "end": 15364.7, + "probability": 0.9766 + }, + { + "start": 15364.7, + "end": 15365.26, + "probability": 0.3666 + }, + { + "start": 15365.34, + "end": 15366.0, + "probability": 0.773 + }, + { + "start": 15366.08, + "end": 15366.38, + "probability": 0.9473 + }, + { + "start": 15366.4, + "end": 15367.14, + "probability": 0.6646 + }, + { + "start": 15367.24, + "end": 15367.62, + "probability": 0.5784 + }, + { + "start": 15367.64, + "end": 15369.04, + "probability": 0.2873 + }, + { + "start": 15369.6, + "end": 15371.08, + "probability": 0.7591 + }, + { + "start": 15371.38, + "end": 15371.84, + "probability": 0.4409 + }, + { + "start": 15371.84, + "end": 15373.38, + "probability": 0.7008 + }, + { + "start": 15373.38, + "end": 15374.2, + "probability": 0.2361 + }, + { + "start": 15374.3, + "end": 15374.36, + "probability": 0.3641 + }, + { + "start": 15374.36, + "end": 15374.78, + "probability": 0.7651 + }, + { + "start": 15374.88, + "end": 15377.44, + "probability": 0.9209 + }, + { + "start": 15377.94, + "end": 15377.94, + "probability": 0.4147 + }, + { + "start": 15377.96, + "end": 15380.92, + "probability": 0.8608 + }, + { + "start": 15380.92, + "end": 15385.2, + "probability": 0.9973 + }, + { + "start": 15385.54, + "end": 15386.0, + "probability": 0.7288 + }, + { + "start": 15386.26, + "end": 15388.16, + "probability": 0.7451 + }, + { + "start": 15388.18, + "end": 15388.72, + "probability": 0.7935 + }, + { + "start": 15388.98, + "end": 15390.58, + "probability": 0.9966 + }, + { + "start": 15390.98, + "end": 15392.18, + "probability": 0.8682 + }, + { + "start": 15392.36, + "end": 15394.78, + "probability": 0.9778 + }, + { + "start": 15394.78, + "end": 15395.4, + "probability": 0.4814 + }, + { + "start": 15395.76, + "end": 15397.88, + "probability": 0.6168 + }, + { + "start": 15398.26, + "end": 15399.61, + "probability": 0.7438 + }, + { + "start": 15400.14, + "end": 15402.4, + "probability": 0.9301 + }, + { + "start": 15402.66, + "end": 15405.62, + "probability": 0.9968 + }, + { + "start": 15406.18, + "end": 15408.56, + "probability": 0.9971 + }, + { + "start": 15408.7, + "end": 15412.1, + "probability": 0.9692 + }, + { + "start": 15412.38, + "end": 15415.1, + "probability": 0.8825 + }, + { + "start": 15415.14, + "end": 15418.5, + "probability": 0.8889 + }, + { + "start": 15418.74, + "end": 15426.74, + "probability": 0.9886 + }, + { + "start": 15426.74, + "end": 15431.62, + "probability": 0.986 + }, + { + "start": 15431.9, + "end": 15432.66, + "probability": 0.9187 + }, + { + "start": 15432.72, + "end": 15433.56, + "probability": 0.7185 + }, + { + "start": 15433.88, + "end": 15434.5, + "probability": 0.5405 + }, + { + "start": 15434.52, + "end": 15435.48, + "probability": 0.8033 + }, + { + "start": 15435.6, + "end": 15436.18, + "probability": 0.6573 + }, + { + "start": 15436.18, + "end": 15436.98, + "probability": 0.3448 + }, + { + "start": 15437.48, + "end": 15439.86, + "probability": 0.6945 + }, + { + "start": 15439.86, + "end": 15443.88, + "probability": 0.4642 + }, + { + "start": 15444.32, + "end": 15445.22, + "probability": 0.2293 + }, + { + "start": 15445.4, + "end": 15446.66, + "probability": 0.9904 + }, + { + "start": 15446.78, + "end": 15446.94, + "probability": 0.2984 + }, + { + "start": 15447.08, + "end": 15447.08, + "probability": 0.9395 + }, + { + "start": 15447.32, + "end": 15448.64, + "probability": 0.9087 + }, + { + "start": 15450.36, + "end": 15451.8, + "probability": 0.9368 + }, + { + "start": 15455.46, + "end": 15457.56, + "probability": 0.5193 + }, + { + "start": 15458.28, + "end": 15458.78, + "probability": 0.8567 + }, + { + "start": 15459.68, + "end": 15459.98, + "probability": 0.8137 + }, + { + "start": 15460.04, + "end": 15460.86, + "probability": 0.4168 + }, + { + "start": 15460.88, + "end": 15463.48, + "probability": 0.9075 + }, + { + "start": 15463.48, + "end": 15467.08, + "probability": 0.9232 + }, + { + "start": 15467.14, + "end": 15467.62, + "probability": 0.6383 + }, + { + "start": 15467.62, + "end": 15467.68, + "probability": 0.6648 + }, + { + "start": 15469.5, + "end": 15470.5, + "probability": 0.1603 + }, + { + "start": 15470.5, + "end": 15470.54, + "probability": 0.4746 + }, + { + "start": 15470.54, + "end": 15470.54, + "probability": 0.0266 + }, + { + "start": 15470.54, + "end": 15471.34, + "probability": 0.3102 + }, + { + "start": 15472.08, + "end": 15473.54, + "probability": 0.1271 + }, + { + "start": 15474.38, + "end": 15474.96, + "probability": 0.6013 + }, + { + "start": 15475.92, + "end": 15476.72, + "probability": 0.5363 + }, + { + "start": 15477.58, + "end": 15479.9, + "probability": 0.8304 + }, + { + "start": 15480.78, + "end": 15481.4, + "probability": 0.7726 + }, + { + "start": 15484.02, + "end": 15486.68, + "probability": 0.1771 + }, + { + "start": 15487.8, + "end": 15488.46, + "probability": 0.1407 + }, + { + "start": 15488.58, + "end": 15490.92, + "probability": 0.6922 + }, + { + "start": 15494.44, + "end": 15495.18, + "probability": 0.3419 + }, + { + "start": 15495.18, + "end": 15495.52, + "probability": 0.0871 + }, + { + "start": 15495.52, + "end": 15495.74, + "probability": 0.0704 + }, + { + "start": 15496.36, + "end": 15499.59, + "probability": 0.3083 + }, + { + "start": 15499.64, + "end": 15499.72, + "probability": 0.0384 + }, + { + "start": 15499.72, + "end": 15500.68, + "probability": 0.6476 + }, + { + "start": 15500.86, + "end": 15503.88, + "probability": 0.8051 + }, + { + "start": 15503.9, + "end": 15506.46, + "probability": 0.2962 + }, + { + "start": 15506.52, + "end": 15506.52, + "probability": 0.7903 + }, + { + "start": 15506.52, + "end": 15507.22, + "probability": 0.3051 + }, + { + "start": 15508.3, + "end": 15511.42, + "probability": 0.7463 + }, + { + "start": 15512.12, + "end": 15513.46, + "probability": 0.1941 + }, + { + "start": 15513.73, + "end": 15516.1, + "probability": 0.5833 + }, + { + "start": 15517.54, + "end": 15520.26, + "probability": 0.1516 + }, + { + "start": 15520.48, + "end": 15520.87, + "probability": 0.9211 + }, + { + "start": 15521.76, + "end": 15522.2, + "probability": 0.4825 + }, + { + "start": 15522.2, + "end": 15523.24, + "probability": 0.622 + }, + { + "start": 15524.38, + "end": 15529.9, + "probability": 0.1242 + }, + { + "start": 15530.1, + "end": 15531.48, + "probability": 0.0184 + }, + { + "start": 15531.48, + "end": 15531.48, + "probability": 0.1482 + }, + { + "start": 15531.48, + "end": 15534.74, + "probability": 0.0265 + }, + { + "start": 15534.92, + "end": 15535.2, + "probability": 0.1653 + }, + { + "start": 15535.34, + "end": 15536.96, + "probability": 0.4221 + }, + { + "start": 15538.3, + "end": 15538.8, + "probability": 0.5468 + }, + { + "start": 15539.58, + "end": 15540.86, + "probability": 0.8406 + }, + { + "start": 15542.0, + "end": 15542.94, + "probability": 0.0437 + }, + { + "start": 15542.94, + "end": 15542.94, + "probability": 0.0118 + }, + { + "start": 15542.94, + "end": 15544.74, + "probability": 0.3558 + }, + { + "start": 15546.72, + "end": 15549.06, + "probability": 0.7718 + }, + { + "start": 15550.16, + "end": 15553.5, + "probability": 0.7256 + }, + { + "start": 15555.92, + "end": 15556.86, + "probability": 0.7498 + }, + { + "start": 15557.66, + "end": 15558.76, + "probability": 0.6713 + }, + { + "start": 15559.68, + "end": 15559.8, + "probability": 0.1376 + }, + { + "start": 15559.8, + "end": 15563.12, + "probability": 0.5883 + }, + { + "start": 15564.06, + "end": 15565.54, + "probability": 0.6952 + }, + { + "start": 15566.66, + "end": 15570.84, + "probability": 0.9325 + }, + { + "start": 15571.54, + "end": 15575.86, + "probability": 0.9966 + }, + { + "start": 15579.64, + "end": 15581.28, + "probability": 0.9506 + }, + { + "start": 15582.54, + "end": 15585.1, + "probability": 0.8477 + }, + { + "start": 15586.2, + "end": 15586.61, + "probability": 0.7827 + }, + { + "start": 15586.82, + "end": 15589.7, + "probability": 0.9839 + }, + { + "start": 15591.13, + "end": 15593.42, + "probability": 0.9596 + }, + { + "start": 15593.82, + "end": 15594.78, + "probability": 0.3546 + }, + { + "start": 15595.4, + "end": 15596.14, + "probability": 0.6252 + }, + { + "start": 15596.28, + "end": 15601.92, + "probability": 0.816 + }, + { + "start": 15602.02, + "end": 15603.9, + "probability": 0.9719 + }, + { + "start": 15604.74, + "end": 15608.54, + "probability": 0.8312 + }, + { + "start": 15608.8, + "end": 15614.1, + "probability": 0.9084 + }, + { + "start": 15614.84, + "end": 15619.46, + "probability": 0.8802 + }, + { + "start": 15620.04, + "end": 15620.76, + "probability": 0.9102 + }, + { + "start": 15621.4, + "end": 15623.18, + "probability": 0.9065 + }, + { + "start": 15624.64, + "end": 15628.16, + "probability": 0.9531 + }, + { + "start": 15629.66, + "end": 15634.22, + "probability": 0.9973 + }, + { + "start": 15634.48, + "end": 15639.74, + "probability": 0.8263 + }, + { + "start": 15641.46, + "end": 15650.36, + "probability": 0.9928 + }, + { + "start": 15650.76, + "end": 15651.16, + "probability": 0.5928 + }, + { + "start": 15652.82, + "end": 15656.0, + "probability": 0.8909 + }, + { + "start": 15657.21, + "end": 15660.9, + "probability": 0.983 + }, + { + "start": 15662.88, + "end": 15664.56, + "probability": 0.8469 + }, + { + "start": 15664.7, + "end": 15665.24, + "probability": 0.6072 + }, + { + "start": 15665.42, + "end": 15666.26, + "probability": 0.9119 + }, + { + "start": 15666.28, + "end": 15666.78, + "probability": 0.8915 + }, + { + "start": 15666.84, + "end": 15669.7, + "probability": 0.921 + }, + { + "start": 15669.98, + "end": 15670.5, + "probability": 0.2777 + }, + { + "start": 15670.82, + "end": 15671.9, + "probability": 0.5583 + }, + { + "start": 15672.24, + "end": 15673.32, + "probability": 0.7322 + }, + { + "start": 15675.28, + "end": 15676.58, + "probability": 0.838 + }, + { + "start": 15676.94, + "end": 15678.36, + "probability": 0.2676 + }, + { + "start": 15678.5, + "end": 15678.5, + "probability": 0.1425 + }, + { + "start": 15678.52, + "end": 15678.88, + "probability": 0.1151 + }, + { + "start": 15678.98, + "end": 15680.44, + "probability": 0.8196 + }, + { + "start": 15680.88, + "end": 15681.74, + "probability": 0.8385 + }, + { + "start": 15683.34, + "end": 15685.94, + "probability": 0.8197 + }, + { + "start": 15686.99, + "end": 15690.56, + "probability": 0.997 + }, + { + "start": 15690.62, + "end": 15694.48, + "probability": 0.8956 + }, + { + "start": 15695.3, + "end": 15696.9, + "probability": 0.754 + }, + { + "start": 15697.24, + "end": 15697.82, + "probability": 0.954 + }, + { + "start": 15698.06, + "end": 15701.58, + "probability": 0.9627 + }, + { + "start": 15701.64, + "end": 15702.34, + "probability": 0.8755 + }, + { + "start": 15703.46, + "end": 15708.6, + "probability": 0.9728 + }, + { + "start": 15710.72, + "end": 15712.92, + "probability": 0.9076 + }, + { + "start": 15715.5, + "end": 15718.04, + "probability": 0.7428 + }, + { + "start": 15718.88, + "end": 15720.94, + "probability": 0.8664 + }, + { + "start": 15721.68, + "end": 15726.06, + "probability": 0.9713 + }, + { + "start": 15727.46, + "end": 15729.16, + "probability": 0.9938 + }, + { + "start": 15729.9, + "end": 15734.22, + "probability": 0.8145 + }, + { + "start": 15737.72, + "end": 15742.48, + "probability": 0.9919 + }, + { + "start": 15742.82, + "end": 15746.54, + "probability": 0.9868 + }, + { + "start": 15747.78, + "end": 15749.84, + "probability": 0.9971 + }, + { + "start": 15750.2, + "end": 15750.72, + "probability": 0.8401 + }, + { + "start": 15750.76, + "end": 15751.0, + "probability": 0.5268 + }, + { + "start": 15751.0, + "end": 15752.04, + "probability": 0.9598 + }, + { + "start": 15752.08, + "end": 15753.1, + "probability": 0.8301 + }, + { + "start": 15753.82, + "end": 15754.74, + "probability": 0.6348 + }, + { + "start": 15754.8, + "end": 15759.22, + "probability": 0.867 + }, + { + "start": 15759.42, + "end": 15760.2, + "probability": 0.8566 + }, + { + "start": 15761.48, + "end": 15763.4, + "probability": 0.775 + }, + { + "start": 15763.96, + "end": 15768.34, + "probability": 0.7717 + }, + { + "start": 15769.0, + "end": 15772.16, + "probability": 0.7677 + }, + { + "start": 15773.04, + "end": 15774.7, + "probability": 0.7128 + }, + { + "start": 15774.76, + "end": 15776.0, + "probability": 0.8038 + }, + { + "start": 15776.62, + "end": 15777.9, + "probability": 0.9252 + }, + { + "start": 15778.58, + "end": 15780.58, + "probability": 0.9931 + }, + { + "start": 15781.46, + "end": 15782.56, + "probability": 0.8309 + }, + { + "start": 15783.18, + "end": 15786.9, + "probability": 0.9819 + }, + { + "start": 15786.9, + "end": 15791.02, + "probability": 0.9992 + }, + { + "start": 15791.16, + "end": 15797.46, + "probability": 0.9605 + }, + { + "start": 15797.68, + "end": 15798.34, + "probability": 0.4919 + }, + { + "start": 15798.38, + "end": 15799.44, + "probability": 0.9652 + }, + { + "start": 15799.48, + "end": 15801.96, + "probability": 0.9723 + }, + { + "start": 15801.98, + "end": 15803.37, + "probability": 0.9905 + }, + { + "start": 15803.92, + "end": 15805.52, + "probability": 0.9343 + }, + { + "start": 15805.7, + "end": 15806.16, + "probability": 0.5985 + }, + { + "start": 15806.28, + "end": 15807.1, + "probability": 0.5467 + }, + { + "start": 15807.64, + "end": 15812.08, + "probability": 0.938 + }, + { + "start": 15813.14, + "end": 15813.88, + "probability": 0.918 + }, + { + "start": 15815.44, + "end": 15819.48, + "probability": 0.8558 + }, + { + "start": 15820.0, + "end": 15826.96, + "probability": 0.9486 + }, + { + "start": 15827.04, + "end": 15828.4, + "probability": 0.9642 + }, + { + "start": 15836.98, + "end": 15844.72, + "probability": 0.9061 + }, + { + "start": 15844.78, + "end": 15846.1, + "probability": 0.7231 + }, + { + "start": 15846.6, + "end": 15848.45, + "probability": 0.519 + }, + { + "start": 15849.7, + "end": 15853.16, + "probability": 0.9361 + }, + { + "start": 15853.78, + "end": 15854.58, + "probability": 0.9038 + }, + { + "start": 15854.98, + "end": 15856.78, + "probability": 0.7109 + }, + { + "start": 15857.68, + "end": 15861.34, + "probability": 0.7527 + }, + { + "start": 15861.9, + "end": 15865.06, + "probability": 0.9735 + }, + { + "start": 15865.46, + "end": 15866.12, + "probability": 0.283 + }, + { + "start": 15866.2, + "end": 15867.32, + "probability": 0.7418 + }, + { + "start": 15867.6, + "end": 15872.82, + "probability": 0.9808 + }, + { + "start": 15873.26, + "end": 15873.92, + "probability": 0.6746 + }, + { + "start": 15874.3, + "end": 15875.56, + "probability": 0.5463 + }, + { + "start": 15875.74, + "end": 15876.64, + "probability": 0.8659 + }, + { + "start": 15876.68, + "end": 15877.1, + "probability": 0.8882 + }, + { + "start": 15877.36, + "end": 15878.31, + "probability": 0.9574 + }, + { + "start": 15878.72, + "end": 15880.4, + "probability": 0.1637 + }, + { + "start": 15880.4, + "end": 15881.72, + "probability": 0.3955 + }, + { + "start": 15881.88, + "end": 15883.48, + "probability": 0.8919 + }, + { + "start": 15883.74, + "end": 15884.48, + "probability": 0.6276 + }, + { + "start": 15885.1, + "end": 15887.12, + "probability": 0.4329 + }, + { + "start": 15887.4, + "end": 15888.9, + "probability": 0.9185 + }, + { + "start": 15889.22, + "end": 15892.44, + "probability": 0.9539 + }, + { + "start": 15892.76, + "end": 15894.1, + "probability": 0.8529 + }, + { + "start": 15894.2, + "end": 15894.94, + "probability": 0.7421 + }, + { + "start": 15895.36, + "end": 15896.42, + "probability": 0.8262 + }, + { + "start": 15897.2, + "end": 15902.4, + "probability": 0.7022 + }, + { + "start": 15902.86, + "end": 15910.4, + "probability": 0.9966 + }, + { + "start": 15911.5, + "end": 15914.88, + "probability": 0.9271 + }, + { + "start": 15915.26, + "end": 15920.52, + "probability": 0.987 + }, + { + "start": 15920.52, + "end": 15926.94, + "probability": 0.9974 + }, + { + "start": 15927.48, + "end": 15931.0, + "probability": 0.2317 + }, + { + "start": 15932.76, + "end": 15933.84, + "probability": 0.3311 + }, + { + "start": 15933.88, + "end": 15935.3, + "probability": 0.4063 + }, + { + "start": 15935.58, + "end": 15941.04, + "probability": 0.6564 + }, + { + "start": 15941.74, + "end": 15943.28, + "probability": 0.9788 + }, + { + "start": 15943.86, + "end": 15945.84, + "probability": 0.6784 + }, + { + "start": 15946.58, + "end": 15949.58, + "probability": 0.8591 + }, + { + "start": 15949.58, + "end": 15951.58, + "probability": 0.8933 + }, + { + "start": 15952.2, + "end": 15958.92, + "probability": 0.9323 + }, + { + "start": 15959.06, + "end": 15962.56, + "probability": 0.5926 + }, + { + "start": 15962.9, + "end": 15964.6, + "probability": 0.8476 + }, + { + "start": 15966.12, + "end": 15970.08, + "probability": 0.4458 + }, + { + "start": 15970.66, + "end": 15971.84, + "probability": 0.0006 + }, + { + "start": 15972.08, + "end": 15974.58, + "probability": 0.9268 + }, + { + "start": 15975.14, + "end": 15978.34, + "probability": 0.9631 + }, + { + "start": 15978.96, + "end": 15983.57, + "probability": 0.8279 + }, + { + "start": 15984.98, + "end": 15986.32, + "probability": 0.0486 + }, + { + "start": 15986.32, + "end": 15987.04, + "probability": 0.118 + }, + { + "start": 15988.17, + "end": 15991.4, + "probability": 0.0777 + }, + { + "start": 15991.4, + "end": 15993.26, + "probability": 0.5845 + }, + { + "start": 15994.06, + "end": 15999.96, + "probability": 0.752 + }, + { + "start": 16000.32, + "end": 16004.64, + "probability": 0.9823 + }, + { + "start": 16005.08, + "end": 16006.87, + "probability": 0.7503 + }, + { + "start": 16008.26, + "end": 16012.06, + "probability": 0.823 + }, + { + "start": 16012.64, + "end": 16014.92, + "probability": 0.9658 + }, + { + "start": 16015.48, + "end": 16017.94, + "probability": 0.9964 + }, + { + "start": 16018.5, + "end": 16021.56, + "probability": 0.9924 + }, + { + "start": 16021.56, + "end": 16021.72, + "probability": 0.4165 + }, + { + "start": 16021.86, + "end": 16022.62, + "probability": 0.9082 + }, + { + "start": 16025.1, + "end": 16027.22, + "probability": 0.543 + }, + { + "start": 16027.58, + "end": 16033.38, + "probability": 0.9172 + }, + { + "start": 16034.02, + "end": 16035.48, + "probability": 0.8478 + }, + { + "start": 16036.02, + "end": 16037.66, + "probability": 0.8938 + }, + { + "start": 16038.28, + "end": 16042.44, + "probability": 0.984 + }, + { + "start": 16042.44, + "end": 16046.54, + "probability": 0.9828 + }, + { + "start": 16046.96, + "end": 16050.02, + "probability": 0.9505 + }, + { + "start": 16050.1, + "end": 16051.28, + "probability": 0.7931 + }, + { + "start": 16051.62, + "end": 16052.39, + "probability": 0.993 + }, + { + "start": 16052.78, + "end": 16054.14, + "probability": 0.9912 + }, + { + "start": 16054.62, + "end": 16055.94, + "probability": 0.9673 + }, + { + "start": 16056.8, + "end": 16058.36, + "probability": 0.922 + }, + { + "start": 16059.24, + "end": 16061.32, + "probability": 0.7909 + }, + { + "start": 16062.34, + "end": 16067.98, + "probability": 0.8824 + }, + { + "start": 16068.02, + "end": 16071.0, + "probability": 0.705 + }, + { + "start": 16071.52, + "end": 16074.04, + "probability": 0.8759 + }, + { + "start": 16074.1, + "end": 16075.16, + "probability": 0.7692 + }, + { + "start": 16075.62, + "end": 16079.3, + "probability": 0.958 + }, + { + "start": 16079.82, + "end": 16081.12, + "probability": 0.9861 + }, + { + "start": 16081.6, + "end": 16082.28, + "probability": 0.9434 + }, + { + "start": 16082.84, + "end": 16088.5, + "probability": 0.9963 + }, + { + "start": 16088.72, + "end": 16090.78, + "probability": 0.9893 + }, + { + "start": 16091.2, + "end": 16092.76, + "probability": 0.9515 + }, + { + "start": 16093.18, + "end": 16094.96, + "probability": 0.98 + }, + { + "start": 16095.22, + "end": 16098.16, + "probability": 0.9962 + }, + { + "start": 16098.78, + "end": 16100.18, + "probability": 0.9514 + }, + { + "start": 16100.2, + "end": 16101.49, + "probability": 0.9433 + }, + { + "start": 16103.76, + "end": 16105.62, + "probability": 0.9489 + }, + { + "start": 16106.18, + "end": 16108.0, + "probability": 0.4414 + }, + { + "start": 16108.08, + "end": 16111.22, + "probability": 0.9565 + }, + { + "start": 16111.26, + "end": 16113.68, + "probability": 0.9954 + }, + { + "start": 16114.1, + "end": 16115.82, + "probability": 0.998 + }, + { + "start": 16116.26, + "end": 16122.08, + "probability": 0.9748 + }, + { + "start": 16122.24, + "end": 16123.08, + "probability": 0.979 + }, + { + "start": 16123.52, + "end": 16125.34, + "probability": 0.8087 + }, + { + "start": 16125.82, + "end": 16128.58, + "probability": 0.8332 + }, + { + "start": 16128.9, + "end": 16130.96, + "probability": 0.9389 + }, + { + "start": 16131.3, + "end": 16132.04, + "probability": 0.9657 + }, + { + "start": 16132.42, + "end": 16132.48, + "probability": 0.0143 + }, + { + "start": 16132.48, + "end": 16133.62, + "probability": 0.5976 + }, + { + "start": 16134.52, + "end": 16139.04, + "probability": 0.9857 + }, + { + "start": 16139.78, + "end": 16141.76, + "probability": 0.9488 + }, + { + "start": 16141.84, + "end": 16142.36, + "probability": 0.7315 + }, + { + "start": 16142.66, + "end": 16147.76, + "probability": 0.7311 + }, + { + "start": 16148.18, + "end": 16150.24, + "probability": 0.6064 + }, + { + "start": 16150.34, + "end": 16151.04, + "probability": 0.8414 + }, + { + "start": 16154.56, + "end": 16155.34, + "probability": 0.731 + }, + { + "start": 16155.62, + "end": 16156.76, + "probability": 0.7924 + }, + { + "start": 16156.98, + "end": 16157.78, + "probability": 0.8967 + }, + { + "start": 16157.86, + "end": 16158.54, + "probability": 0.7925 + }, + { + "start": 16158.6, + "end": 16159.84, + "probability": 0.684 + }, + { + "start": 16161.3, + "end": 16163.55, + "probability": 0.9902 + }, + { + "start": 16163.8, + "end": 16166.14, + "probability": 0.9971 + }, + { + "start": 16167.2, + "end": 16170.48, + "probability": 0.9922 + }, + { + "start": 16171.62, + "end": 16173.24, + "probability": 0.8085 + }, + { + "start": 16173.9, + "end": 16176.0, + "probability": 0.9473 + }, + { + "start": 16176.56, + "end": 16177.98, + "probability": 0.9498 + }, + { + "start": 16178.66, + "end": 16181.8, + "probability": 0.8883 + }, + { + "start": 16181.9, + "end": 16184.28, + "probability": 0.995 + }, + { + "start": 16184.86, + "end": 16188.16, + "probability": 0.9946 + }, + { + "start": 16188.76, + "end": 16189.54, + "probability": 0.6057 + }, + { + "start": 16190.2, + "end": 16191.86, + "probability": 0.9951 + }, + { + "start": 16193.76, + "end": 16194.96, + "probability": 0.9775 + }, + { + "start": 16195.82, + "end": 16199.12, + "probability": 0.9973 + }, + { + "start": 16199.34, + "end": 16200.3, + "probability": 0.981 + }, + { + "start": 16200.58, + "end": 16202.46, + "probability": 0.9744 + }, + { + "start": 16203.0, + "end": 16203.82, + "probability": 0.957 + }, + { + "start": 16204.86, + "end": 16208.2, + "probability": 0.9822 + }, + { + "start": 16209.26, + "end": 16210.64, + "probability": 0.8442 + }, + { + "start": 16211.44, + "end": 16213.8, + "probability": 0.9567 + }, + { + "start": 16213.94, + "end": 16214.98, + "probability": 0.5301 + }, + { + "start": 16215.86, + "end": 16217.62, + "probability": 0.8057 + }, + { + "start": 16218.24, + "end": 16219.22, + "probability": 0.9611 + }, + { + "start": 16219.88, + "end": 16221.08, + "probability": 0.9225 + }, + { + "start": 16221.6, + "end": 16222.6, + "probability": 0.6168 + }, + { + "start": 16223.44, + "end": 16228.64, + "probability": 0.9988 + }, + { + "start": 16229.36, + "end": 16231.28, + "probability": 0.9739 + }, + { + "start": 16231.9, + "end": 16232.74, + "probability": 0.66 + }, + { + "start": 16233.32, + "end": 16238.44, + "probability": 0.9862 + }, + { + "start": 16238.6, + "end": 16239.32, + "probability": 0.8947 + }, + { + "start": 16240.2, + "end": 16240.96, + "probability": 0.9739 + }, + { + "start": 16243.12, + "end": 16243.4, + "probability": 0.4268 + }, + { + "start": 16243.4, + "end": 16246.14, + "probability": 0.7122 + }, + { + "start": 16246.72, + "end": 16250.92, + "probability": 0.8717 + }, + { + "start": 16251.76, + "end": 16252.42, + "probability": 0.9953 + }, + { + "start": 16253.32, + "end": 16256.54, + "probability": 0.968 + }, + { + "start": 16257.5, + "end": 16259.66, + "probability": 0.9946 + }, + { + "start": 16260.34, + "end": 16260.56, + "probability": 0.9889 + }, + { + "start": 16261.26, + "end": 16262.76, + "probability": 0.1209 + }, + { + "start": 16263.44, + "end": 16268.54, + "probability": 0.9948 + }, + { + "start": 16269.6, + "end": 16273.02, + "probability": 0.8114 + }, + { + "start": 16273.64, + "end": 16277.98, + "probability": 0.9794 + }, + { + "start": 16278.84, + "end": 16280.66, + "probability": 0.9307 + }, + { + "start": 16281.22, + "end": 16281.9, + "probability": 0.6664 + }, + { + "start": 16282.36, + "end": 16284.7, + "probability": 0.9307 + }, + { + "start": 16285.2, + "end": 16286.14, + "probability": 0.7559 + }, + { + "start": 16287.0, + "end": 16291.64, + "probability": 0.9906 + }, + { + "start": 16292.08, + "end": 16292.9, + "probability": 0.7402 + }, + { + "start": 16294.24, + "end": 16297.52, + "probability": 0.8916 + }, + { + "start": 16298.16, + "end": 16300.84, + "probability": 0.9613 + }, + { + "start": 16301.7, + "end": 16302.74, + "probability": 0.6324 + }, + { + "start": 16303.18, + "end": 16304.04, + "probability": 0.9043 + }, + { + "start": 16304.82, + "end": 16307.7, + "probability": 0.9911 + }, + { + "start": 16308.36, + "end": 16312.74, + "probability": 0.9946 + }, + { + "start": 16313.38, + "end": 16315.64, + "probability": 0.9801 + }, + { + "start": 16316.56, + "end": 16320.1, + "probability": 0.9967 + }, + { + "start": 16320.7, + "end": 16322.21, + "probability": 0.9983 + }, + { + "start": 16323.26, + "end": 16326.68, + "probability": 0.9672 + }, + { + "start": 16327.28, + "end": 16328.3, + "probability": 0.9694 + }, + { + "start": 16329.4, + "end": 16330.46, + "probability": 0.9354 + }, + { + "start": 16331.5, + "end": 16334.02, + "probability": 0.9985 + }, + { + "start": 16334.66, + "end": 16339.78, + "probability": 0.6586 + }, + { + "start": 16340.36, + "end": 16341.58, + "probability": 0.6963 + }, + { + "start": 16342.12, + "end": 16347.5, + "probability": 0.9919 + }, + { + "start": 16347.6, + "end": 16348.16, + "probability": 0.8337 + }, + { + "start": 16348.3, + "end": 16349.2, + "probability": 0.4844 + }, + { + "start": 16349.2, + "end": 16351.52, + "probability": 0.8841 + }, + { + "start": 16353.08, + "end": 16355.2, + "probability": 0.7109 + }, + { + "start": 16357.5, + "end": 16363.12, + "probability": 0.9822 + }, + { + "start": 16363.14, + "end": 16363.65, + "probability": 0.9648 + }, + { + "start": 16364.78, + "end": 16367.34, + "probability": 0.2423 + }, + { + "start": 16369.14, + "end": 16370.88, + "probability": 0.1386 + }, + { + "start": 16371.74, + "end": 16374.3, + "probability": 0.0515 + }, + { + "start": 16375.78, + "end": 16375.78, + "probability": 0.5459 + }, + { + "start": 16375.78, + "end": 16377.86, + "probability": 0.8036 + }, + { + "start": 16384.96, + "end": 16386.74, + "probability": 0.5656 + }, + { + "start": 16386.8, + "end": 16389.06, + "probability": 0.6847 + }, + { + "start": 16389.82, + "end": 16390.62, + "probability": 0.9194 + }, + { + "start": 16390.66, + "end": 16392.42, + "probability": 0.8311 + }, + { + "start": 16392.92, + "end": 16397.78, + "probability": 0.9885 + }, + { + "start": 16398.44, + "end": 16402.14, + "probability": 0.8992 + }, + { + "start": 16402.58, + "end": 16405.92, + "probability": 0.9229 + }, + { + "start": 16406.26, + "end": 16406.54, + "probability": 0.7161 + }, + { + "start": 16406.88, + "end": 16407.64, + "probability": 0.6389 + }, + { + "start": 16407.7, + "end": 16410.78, + "probability": 0.6882 + }, + { + "start": 16411.54, + "end": 16414.04, + "probability": 0.8792 + }, + { + "start": 16414.82, + "end": 16416.16, + "probability": 0.9697 + }, + { + "start": 16417.32, + "end": 16418.66, + "probability": 0.5894 + }, + { + "start": 16418.7, + "end": 16422.5, + "probability": 0.9011 + }, + { + "start": 16423.02, + "end": 16429.06, + "probability": 0.8652 + }, + { + "start": 16429.64, + "end": 16430.22, + "probability": 0.8981 + }, + { + "start": 16430.7, + "end": 16434.3, + "probability": 0.9188 + }, + { + "start": 16434.84, + "end": 16435.32, + "probability": 0.8091 + }, + { + "start": 16435.74, + "end": 16439.26, + "probability": 0.9404 + }, + { + "start": 16439.8, + "end": 16440.96, + "probability": 0.9778 + }, + { + "start": 16441.38, + "end": 16447.38, + "probability": 0.7544 + }, + { + "start": 16447.8, + "end": 16448.82, + "probability": 0.5203 + }, + { + "start": 16449.06, + "end": 16451.28, + "probability": 0.6565 + }, + { + "start": 16451.98, + "end": 16454.2, + "probability": 0.6421 + }, + { + "start": 16454.24, + "end": 16455.22, + "probability": 0.7626 + }, + { + "start": 16455.94, + "end": 16457.68, + "probability": 0.8593 + }, + { + "start": 16458.42, + "end": 16458.78, + "probability": 0.2959 + }, + { + "start": 16458.86, + "end": 16463.54, + "probability": 0.9941 + }, + { + "start": 16463.92, + "end": 16465.22, + "probability": 0.9876 + }, + { + "start": 16465.62, + "end": 16466.56, + "probability": 0.9736 + }, + { + "start": 16467.64, + "end": 16468.32, + "probability": 0.8857 + }, + { + "start": 16468.88, + "end": 16477.74, + "probability": 0.993 + }, + { + "start": 16478.0, + "end": 16478.66, + "probability": 0.8351 + }, + { + "start": 16478.84, + "end": 16480.25, + "probability": 0.605 + }, + { + "start": 16480.96, + "end": 16484.28, + "probability": 0.9839 + }, + { + "start": 16484.34, + "end": 16486.12, + "probability": 0.7669 + }, + { + "start": 16487.6, + "end": 16493.46, + "probability": 0.8661 + }, + { + "start": 16493.98, + "end": 16494.98, + "probability": 0.7471 + }, + { + "start": 16495.04, + "end": 16497.02, + "probability": 0.9388 + }, + { + "start": 16498.02, + "end": 16501.56, + "probability": 0.8977 + }, + { + "start": 16502.88, + "end": 16505.28, + "probability": 0.926 + }, + { + "start": 16505.48, + "end": 16505.58, + "probability": 0.3354 + }, + { + "start": 16505.58, + "end": 16507.12, + "probability": 0.597 + }, + { + "start": 16510.0, + "end": 16512.8, + "probability": 0.9351 + }, + { + "start": 16514.8, + "end": 16516.08, + "probability": 0.8931 + }, + { + "start": 16517.28, + "end": 16521.16, + "probability": 0.8912 + }, + { + "start": 16522.04, + "end": 16523.42, + "probability": 0.6173 + }, + { + "start": 16524.18, + "end": 16526.5, + "probability": 0.7454 + }, + { + "start": 16527.08, + "end": 16533.04, + "probability": 0.9723 + }, + { + "start": 16533.9, + "end": 16535.26, + "probability": 0.8794 + }, + { + "start": 16535.36, + "end": 16537.76, + "probability": 0.9995 + }, + { + "start": 16538.26, + "end": 16539.4, + "probability": 0.6135 + }, + { + "start": 16540.18, + "end": 16544.12, + "probability": 0.7213 + }, + { + "start": 16544.52, + "end": 16549.52, + "probability": 0.9336 + }, + { + "start": 16549.84, + "end": 16551.72, + "probability": 0.7576 + }, + { + "start": 16552.42, + "end": 16553.16, + "probability": 0.4211 + }, + { + "start": 16553.18, + "end": 16556.38, + "probability": 0.9268 + }, + { + "start": 16556.38, + "end": 16560.06, + "probability": 0.6854 + }, + { + "start": 16560.06, + "end": 16560.67, + "probability": 0.5776 + }, + { + "start": 16561.42, + "end": 16566.28, + "probability": 0.7375 + }, + { + "start": 16566.98, + "end": 16571.3, + "probability": 0.7588 + }, + { + "start": 16571.8, + "end": 16573.18, + "probability": 0.5229 + }, + { + "start": 16573.18, + "end": 16573.53, + "probability": 0.7496 + }, + { + "start": 16573.9, + "end": 16575.66, + "probability": 0.5797 + }, + { + "start": 16575.7, + "end": 16576.86, + "probability": 0.8482 + }, + { + "start": 16576.94, + "end": 16578.48, + "probability": 0.8195 + }, + { + "start": 16578.56, + "end": 16578.94, + "probability": 0.7074 + }, + { + "start": 16579.0, + "end": 16579.68, + "probability": 0.3979 + }, + { + "start": 16579.76, + "end": 16585.02, + "probability": 0.5869 + }, + { + "start": 16586.38, + "end": 16587.01, + "probability": 0.5864 + }, + { + "start": 16588.42, + "end": 16589.34, + "probability": 0.7339 + }, + { + "start": 16594.42, + "end": 16595.66, + "probability": 0.63 + }, + { + "start": 16595.84, + "end": 16602.88, + "probability": 0.9097 + }, + { + "start": 16602.98, + "end": 16604.14, + "probability": 0.5239 + }, + { + "start": 16604.14, + "end": 16604.94, + "probability": 0.1522 + }, + { + "start": 16605.4, + "end": 16605.72, + "probability": 0.7241 + }, + { + "start": 16605.72, + "end": 16609.9, + "probability": 0.9963 + }, + { + "start": 16609.98, + "end": 16612.62, + "probability": 0.9777 + }, + { + "start": 16612.8, + "end": 16614.56, + "probability": 0.9751 + }, + { + "start": 16615.2, + "end": 16618.24, + "probability": 0.766 + }, + { + "start": 16618.24, + "end": 16618.6, + "probability": 0.749 + }, + { + "start": 16619.2, + "end": 16620.8, + "probability": 0.4847 + }, + { + "start": 16621.0, + "end": 16622.72, + "probability": 0.7684 + }, + { + "start": 16622.9, + "end": 16623.94, + "probability": 0.5211 + }, + { + "start": 16626.4, + "end": 16627.34, + "probability": 0.3149 + }, + { + "start": 16628.16, + "end": 16628.54, + "probability": 0.5982 + }, + { + "start": 16631.52, + "end": 16633.02, + "probability": 0.7382 + }, + { + "start": 16637.16, + "end": 16637.16, + "probability": 0.4666 + }, + { + "start": 16637.16, + "end": 16639.08, + "probability": 0.355 + }, + { + "start": 16639.6, + "end": 16641.38, + "probability": 0.8918 + }, + { + "start": 16646.64, + "end": 16646.92, + "probability": 0.6127 + }, + { + "start": 16646.92, + "end": 16646.92, + "probability": 0.4086 + }, + { + "start": 16646.92, + "end": 16647.88, + "probability": 0.2469 + }, + { + "start": 16651.52, + "end": 16652.02, + "probability": 0.7173 + }, + { + "start": 16653.86, + "end": 16656.76, + "probability": 0.234 + }, + { + "start": 16657.0, + "end": 16658.12, + "probability": 0.384 + }, + { + "start": 16659.62, + "end": 16660.02, + "probability": 0.3528 + }, + { + "start": 16661.2, + "end": 16663.72, + "probability": 0.7758 + }, + { + "start": 16663.76, + "end": 16666.0, + "probability": 0.526 + }, + { + "start": 16666.76, + "end": 16669.6, + "probability": 0.7683 + }, + { + "start": 16670.64, + "end": 16673.66, + "probability": 0.929 + }, + { + "start": 16674.24, + "end": 16674.62, + "probability": 0.0376 + }, + { + "start": 16676.44, + "end": 16677.1, + "probability": 0.0144 + }, + { + "start": 16677.32, + "end": 16679.42, + "probability": 0.0296 + }, + { + "start": 16680.18, + "end": 16683.26, + "probability": 0.9795 + }, + { + "start": 16684.08, + "end": 16693.42, + "probability": 0.8652 + }, + { + "start": 16693.58, + "end": 16698.02, + "probability": 0.8693 + }, + { + "start": 16699.94, + "end": 16702.18, + "probability": 0.9 + }, + { + "start": 16702.26, + "end": 16702.78, + "probability": 0.806 + }, + { + "start": 16702.78, + "end": 16705.52, + "probability": 0.6998 + }, + { + "start": 16705.6, + "end": 16706.68, + "probability": 0.8448 + }, + { + "start": 16707.04, + "end": 16708.91, + "probability": 0.8892 + }, + { + "start": 16710.08, + "end": 16716.14, + "probability": 0.9651 + }, + { + "start": 16716.36, + "end": 16722.28, + "probability": 0.9919 + }, + { + "start": 16723.46, + "end": 16727.58, + "probability": 0.9089 + }, + { + "start": 16728.46, + "end": 16733.32, + "probability": 0.8542 + }, + { + "start": 16734.1, + "end": 16736.48, + "probability": 0.8769 + }, + { + "start": 16736.6, + "end": 16738.42, + "probability": 0.9395 + }, + { + "start": 16738.86, + "end": 16742.12, + "probability": 0.9631 + }, + { + "start": 16744.38, + "end": 16746.56, + "probability": 0.8398 + }, + { + "start": 16747.36, + "end": 16749.9, + "probability": 0.8845 + }, + { + "start": 16750.42, + "end": 16751.04, + "probability": 0.9089 + }, + { + "start": 16751.44, + "end": 16758.73, + "probability": 0.9514 + }, + { + "start": 16759.22, + "end": 16760.46, + "probability": 0.6789 + }, + { + "start": 16760.54, + "end": 16762.58, + "probability": 0.9827 + }, + { + "start": 16764.58, + "end": 16769.4, + "probability": 0.9297 + }, + { + "start": 16769.82, + "end": 16772.66, + "probability": 0.9123 + }, + { + "start": 16773.14, + "end": 16773.76, + "probability": 0.7448 + }, + { + "start": 16774.36, + "end": 16775.26, + "probability": 0.7912 + }, + { + "start": 16775.74, + "end": 16777.66, + "probability": 0.6365 + }, + { + "start": 16778.06, + "end": 16778.6, + "probability": 0.9328 + }, + { + "start": 16779.16, + "end": 16781.4, + "probability": 0.518 + }, + { + "start": 16791.62, + "end": 16794.24, + "probability": 0.5066 + }, + { + "start": 16794.46, + "end": 16798.02, + "probability": 0.8213 + }, + { + "start": 16798.06, + "end": 16802.67, + "probability": 0.9963 + }, + { + "start": 16803.64, + "end": 16807.64, + "probability": 0.966 + }, + { + "start": 16808.44, + "end": 16812.94, + "probability": 0.9532 + }, + { + "start": 16812.94, + "end": 16817.2, + "probability": 0.9995 + }, + { + "start": 16817.7, + "end": 16819.48, + "probability": 0.7523 + }, + { + "start": 16820.1, + "end": 16821.08, + "probability": 0.9174 + }, + { + "start": 16823.48, + "end": 16829.66, + "probability": 0.9695 + }, + { + "start": 16830.32, + "end": 16830.92, + "probability": 0.9788 + }, + { + "start": 16831.08, + "end": 16831.62, + "probability": 0.7144 + }, + { + "start": 16831.8, + "end": 16834.4, + "probability": 0.9927 + }, + { + "start": 16834.82, + "end": 16836.08, + "probability": 0.8528 + }, + { + "start": 16836.22, + "end": 16837.34, + "probability": 0.7632 + }, + { + "start": 16838.56, + "end": 16839.82, + "probability": 0.9854 + }, + { + "start": 16840.8, + "end": 16848.66, + "probability": 0.9871 + }, + { + "start": 16848.66, + "end": 16854.36, + "probability": 0.9973 + }, + { + "start": 16854.88, + "end": 16856.4, + "probability": 0.7186 + }, + { + "start": 16857.14, + "end": 16860.38, + "probability": 0.9787 + }, + { + "start": 16860.58, + "end": 16865.14, + "probability": 0.7979 + }, + { + "start": 16865.82, + "end": 16868.24, + "probability": 0.9364 + }, + { + "start": 16868.36, + "end": 16869.2, + "probability": 0.8054 + }, + { + "start": 16869.4, + "end": 16869.94, + "probability": 0.9355 + }, + { + "start": 16870.02, + "end": 16872.04, + "probability": 0.9895 + }, + { + "start": 16872.46, + "end": 16872.9, + "probability": 0.5203 + }, + { + "start": 16873.28, + "end": 16873.54, + "probability": 0.1224 + }, + { + "start": 16873.54, + "end": 16873.54, + "probability": 0.0863 + }, + { + "start": 16873.54, + "end": 16875.84, + "probability": 0.9688 + }, + { + "start": 16875.88, + "end": 16878.2, + "probability": 0.9727 + }, + { + "start": 16878.44, + "end": 16879.74, + "probability": 0.6553 + }, + { + "start": 16879.74, + "end": 16880.69, + "probability": 0.9878 + }, + { + "start": 16881.36, + "end": 16885.58, + "probability": 0.9476 + }, + { + "start": 16886.14, + "end": 16887.36, + "probability": 0.4555 + }, + { + "start": 16887.36, + "end": 16890.17, + "probability": 0.1889 + }, + { + "start": 16891.02, + "end": 16891.24, + "probability": 0.0486 + }, + { + "start": 16891.76, + "end": 16892.1, + "probability": 0.0386 + }, + { + "start": 16892.1, + "end": 16894.66, + "probability": 0.8542 + }, + { + "start": 16894.98, + "end": 16896.54, + "probability": 0.8235 + }, + { + "start": 16896.86, + "end": 16898.4, + "probability": 0.836 + }, + { + "start": 16899.68, + "end": 16901.48, + "probability": 0.985 + }, + { + "start": 16901.92, + "end": 16904.96, + "probability": 0.8483 + }, + { + "start": 16905.3, + "end": 16909.64, + "probability": 0.9881 + }, + { + "start": 16910.14, + "end": 16911.48, + "probability": 0.9124 + }, + { + "start": 16911.78, + "end": 16912.86, + "probability": 0.9746 + }, + { + "start": 16913.9, + "end": 16915.67, + "probability": 0.9918 + }, + { + "start": 16916.38, + "end": 16919.04, + "probability": 0.1055 + }, + { + "start": 16920.2, + "end": 16920.24, + "probability": 0.0709 + }, + { + "start": 16920.24, + "end": 16922.04, + "probability": 0.9686 + }, + { + "start": 16922.8, + "end": 16925.8, + "probability": 0.9941 + }, + { + "start": 16925.8, + "end": 16931.04, + "probability": 0.9896 + }, + { + "start": 16931.04, + "end": 16936.78, + "probability": 0.9843 + }, + { + "start": 16936.82, + "end": 16941.2, + "probability": 0.9478 + }, + { + "start": 16941.2, + "end": 16945.0, + "probability": 0.9961 + }, + { + "start": 16945.0, + "end": 16946.56, + "probability": 0.6911 + }, + { + "start": 16946.76, + "end": 16947.86, + "probability": 0.0671 + }, + { + "start": 16947.88, + "end": 16948.06, + "probability": 0.0001 + }, + { + "start": 16950.24, + "end": 16950.9, + "probability": 0.2 + }, + { + "start": 16950.9, + "end": 16950.9, + "probability": 0.0735 + }, + { + "start": 16950.94, + "end": 16952.79, + "probability": 0.3264 + }, + { + "start": 16953.48, + "end": 16953.5, + "probability": 0.0373 + }, + { + "start": 16953.5, + "end": 16955.5, + "probability": 0.9117 + }, + { + "start": 16955.66, + "end": 16957.72, + "probability": 0.987 + }, + { + "start": 16957.82, + "end": 16958.26, + "probability": 0.6588 + }, + { + "start": 16958.49, + "end": 16959.0, + "probability": 0.3066 + }, + { + "start": 16959.1, + "end": 16959.98, + "probability": 0.4901 + }, + { + "start": 16960.28, + "end": 16962.44, + "probability": 0.7281 + }, + { + "start": 16983.52, + "end": 16984.44, + "probability": 0.6784 + }, + { + "start": 16984.6, + "end": 16985.64, + "probability": 0.8662 + }, + { + "start": 16985.92, + "end": 16987.36, + "probability": 0.9902 + }, + { + "start": 16988.44, + "end": 16990.54, + "probability": 0.8676 + }, + { + "start": 16991.1, + "end": 16997.1, + "probability": 0.8896 + }, + { + "start": 16998.04, + "end": 17004.22, + "probability": 0.7738 + }, + { + "start": 17005.14, + "end": 17011.68, + "probability": 0.8992 + }, + { + "start": 17011.68, + "end": 17017.6, + "probability": 0.9787 + }, + { + "start": 17019.38, + "end": 17023.74, + "probability": 0.8994 + }, + { + "start": 17024.7, + "end": 17024.88, + "probability": 0.142 + }, + { + "start": 17024.88, + "end": 17024.88, + "probability": 0.587 + }, + { + "start": 17024.88, + "end": 17025.76, + "probability": 0.6331 + }, + { + "start": 17025.84, + "end": 17027.0, + "probability": 0.58 + }, + { + "start": 17028.44, + "end": 17030.96, + "probability": 0.7086 + }, + { + "start": 17031.32, + "end": 17033.22, + "probability": 0.9747 + }, + { + "start": 17033.32, + "end": 17033.52, + "probability": 0.472 + }, + { + "start": 17033.56, + "end": 17035.32, + "probability": 0.9037 + }, + { + "start": 17035.52, + "end": 17037.86, + "probability": 0.9312 + }, + { + "start": 17037.86, + "end": 17037.92, + "probability": 0.2264 + }, + { + "start": 17037.92, + "end": 17040.26, + "probability": 0.7272 + }, + { + "start": 17040.26, + "end": 17040.86, + "probability": 0.8436 + }, + { + "start": 17043.02, + "end": 17044.08, + "probability": 0.745 + }, + { + "start": 17044.36, + "end": 17046.52, + "probability": 0.972 + }, + { + "start": 17046.94, + "end": 17048.54, + "probability": 0.8883 + }, + { + "start": 17049.52, + "end": 17051.12, + "probability": 0.683 + }, + { + "start": 17051.68, + "end": 17053.16, + "probability": 0.9774 + }, + { + "start": 17053.34, + "end": 17056.38, + "probability": 0.9942 + }, + { + "start": 17056.96, + "end": 17062.76, + "probability": 0.9432 + }, + { + "start": 17063.2, + "end": 17063.52, + "probability": 0.4454 + }, + { + "start": 17063.54, + "end": 17065.18, + "probability": 0.917 + }, + { + "start": 17066.02, + "end": 17069.2, + "probability": 0.9803 + }, + { + "start": 17069.9, + "end": 17071.38, + "probability": 0.7492 + }, + { + "start": 17072.2, + "end": 17076.72, + "probability": 0.9791 + }, + { + "start": 17077.48, + "end": 17078.98, + "probability": 0.763 + }, + { + "start": 17079.08, + "end": 17082.5, + "probability": 0.9912 + }, + { + "start": 17082.5, + "end": 17086.52, + "probability": 0.9961 + }, + { + "start": 17087.1, + "end": 17093.48, + "probability": 0.9963 + }, + { + "start": 17093.92, + "end": 17094.3, + "probability": 0.6768 + }, + { + "start": 17094.4, + "end": 17095.16, + "probability": 0.7471 + }, + { + "start": 17095.32, + "end": 17099.62, + "probability": 0.9828 + }, + { + "start": 17099.82, + "end": 17103.04, + "probability": 0.8228 + }, + { + "start": 17103.72, + "end": 17104.52, + "probability": 0.9857 + }, + { + "start": 17105.74, + "end": 17111.2, + "probability": 0.9895 + }, + { + "start": 17112.14, + "end": 17115.1, + "probability": 0.9653 + }, + { + "start": 17115.9, + "end": 17120.82, + "probability": 0.9755 + }, + { + "start": 17121.42, + "end": 17122.4, + "probability": 0.7757 + }, + { + "start": 17122.54, + "end": 17126.34, + "probability": 0.9704 + }, + { + "start": 17126.52, + "end": 17129.68, + "probability": 0.9871 + }, + { + "start": 17130.22, + "end": 17133.34, + "probability": 0.9753 + }, + { + "start": 17133.34, + "end": 17137.24, + "probability": 0.8587 + }, + { + "start": 17137.9, + "end": 17138.74, + "probability": 0.3481 + }, + { + "start": 17139.24, + "end": 17145.0, + "probability": 0.8918 + }, + { + "start": 17145.76, + "end": 17148.62, + "probability": 0.7758 + }, + { + "start": 17149.36, + "end": 17152.72, + "probability": 0.9747 + }, + { + "start": 17153.22, + "end": 17157.04, + "probability": 0.9367 + }, + { + "start": 17157.84, + "end": 17160.34, + "probability": 0.7883 + }, + { + "start": 17160.84, + "end": 17161.64, + "probability": 0.6537 + }, + { + "start": 17162.22, + "end": 17163.4, + "probability": 0.73 + }, + { + "start": 17163.5, + "end": 17164.24, + "probability": 0.6764 + }, + { + "start": 17164.4, + "end": 17165.42, + "probability": 0.8363 + }, + { + "start": 17165.8, + "end": 17171.1, + "probability": 0.8845 + }, + { + "start": 17171.54, + "end": 17173.24, + "probability": 0.8052 + }, + { + "start": 17173.5, + "end": 17174.18, + "probability": 0.3728 + }, + { + "start": 17174.28, + "end": 17175.0, + "probability": 0.5851 + }, + { + "start": 17176.22, + "end": 17177.2, + "probability": 0.9324 + }, + { + "start": 17197.08, + "end": 17199.44, + "probability": 0.7392 + }, + { + "start": 17201.08, + "end": 17205.12, + "probability": 0.945 + }, + { + "start": 17206.4, + "end": 17213.16, + "probability": 0.914 + }, + { + "start": 17214.02, + "end": 17215.06, + "probability": 0.9193 + }, + { + "start": 17215.66, + "end": 17218.94, + "probability": 0.9583 + }, + { + "start": 17220.8, + "end": 17221.24, + "probability": 0.7704 + }, + { + "start": 17221.6, + "end": 17222.98, + "probability": 0.9937 + }, + { + "start": 17223.0, + "end": 17224.44, + "probability": 0.6677 + }, + { + "start": 17225.46, + "end": 17226.7, + "probability": 0.7994 + }, + { + "start": 17226.94, + "end": 17229.26, + "probability": 0.9179 + }, + { + "start": 17229.68, + "end": 17230.78, + "probability": 0.9571 + }, + { + "start": 17232.18, + "end": 17233.02, + "probability": 0.8174 + }, + { + "start": 17234.48, + "end": 17237.26, + "probability": 0.8349 + }, + { + "start": 17237.66, + "end": 17238.52, + "probability": 0.9499 + }, + { + "start": 17239.12, + "end": 17239.86, + "probability": 0.7731 + }, + { + "start": 17240.68, + "end": 17243.54, + "probability": 0.9886 + }, + { + "start": 17244.8, + "end": 17247.9, + "probability": 0.9209 + }, + { + "start": 17248.48, + "end": 17251.64, + "probability": 0.7997 + }, + { + "start": 17253.38, + "end": 17255.14, + "probability": 0.9209 + }, + { + "start": 17256.42, + "end": 17257.36, + "probability": 0.6815 + }, + { + "start": 17258.02, + "end": 17263.98, + "probability": 0.8443 + }, + { + "start": 17264.96, + "end": 17265.66, + "probability": 0.9659 + }, + { + "start": 17267.4, + "end": 17269.92, + "probability": 0.9052 + }, + { + "start": 17270.94, + "end": 17276.84, + "probability": 0.9893 + }, + { + "start": 17277.92, + "end": 17278.6, + "probability": 0.7274 + }, + { + "start": 17280.08, + "end": 17282.14, + "probability": 0.6183 + }, + { + "start": 17283.02, + "end": 17283.59, + "probability": 0.9661 + }, + { + "start": 17284.22, + "end": 17285.52, + "probability": 0.9208 + }, + { + "start": 17287.72, + "end": 17288.46, + "probability": 0.8603 + }, + { + "start": 17289.08, + "end": 17292.14, + "probability": 0.9081 + }, + { + "start": 17292.94, + "end": 17297.44, + "probability": 0.9972 + }, + { + "start": 17299.48, + "end": 17299.8, + "probability": 0.7127 + }, + { + "start": 17299.9, + "end": 17301.0, + "probability": 0.6938 + }, + { + "start": 17301.48, + "end": 17301.78, + "probability": 0.6996 + }, + { + "start": 17301.86, + "end": 17304.76, + "probability": 0.8892 + }, + { + "start": 17305.36, + "end": 17307.54, + "probability": 0.8447 + }, + { + "start": 17308.22, + "end": 17310.32, + "probability": 0.9974 + }, + { + "start": 17311.42, + "end": 17317.5, + "probability": 0.6644 + }, + { + "start": 17318.12, + "end": 17322.14, + "probability": 0.9951 + }, + { + "start": 17322.74, + "end": 17326.82, + "probability": 0.8597 + }, + { + "start": 17327.34, + "end": 17328.83, + "probability": 0.9971 + }, + { + "start": 17329.08, + "end": 17331.24, + "probability": 0.9041 + }, + { + "start": 17331.88, + "end": 17336.72, + "probability": 0.9971 + }, + { + "start": 17338.08, + "end": 17339.24, + "probability": 0.5819 + }, + { + "start": 17343.84, + "end": 17344.78, + "probability": 0.4991 + }, + { + "start": 17345.28, + "end": 17348.36, + "probability": 0.9648 + }, + { + "start": 17349.18, + "end": 17350.6, + "probability": 0.758 + }, + { + "start": 17351.32, + "end": 17354.62, + "probability": 0.9656 + }, + { + "start": 17355.14, + "end": 17357.52, + "probability": 0.98 + }, + { + "start": 17359.58, + "end": 17362.54, + "probability": 0.9983 + }, + { + "start": 17363.44, + "end": 17364.5, + "probability": 0.8474 + }, + { + "start": 17365.12, + "end": 17366.62, + "probability": 0.7676 + }, + { + "start": 17367.76, + "end": 17368.28, + "probability": 0.4885 + }, + { + "start": 17370.26, + "end": 17371.22, + "probability": 0.8307 + }, + { + "start": 17371.32, + "end": 17371.82, + "probability": 0.7655 + }, + { + "start": 17371.88, + "end": 17373.2, + "probability": 0.9769 + }, + { + "start": 17373.48, + "end": 17378.78, + "probability": 0.9612 + }, + { + "start": 17380.46, + "end": 17381.4, + "probability": 0.6486 + }, + { + "start": 17382.56, + "end": 17383.66, + "probability": 0.7104 + }, + { + "start": 17385.2, + "end": 17390.1, + "probability": 0.9855 + }, + { + "start": 17390.1, + "end": 17393.92, + "probability": 0.7574 + }, + { + "start": 17397.18, + "end": 17398.26, + "probability": 0.9963 + }, + { + "start": 17399.18, + "end": 17403.02, + "probability": 0.9966 + }, + { + "start": 17403.08, + "end": 17404.0, + "probability": 0.8806 + }, + { + "start": 17405.36, + "end": 17405.7, + "probability": 0.9763 + }, + { + "start": 17406.94, + "end": 17408.46, + "probability": 0.88 + }, + { + "start": 17409.0, + "end": 17409.94, + "probability": 0.7445 + }, + { + "start": 17410.62, + "end": 17412.27, + "probability": 0.9934 + }, + { + "start": 17413.0, + "end": 17417.94, + "probability": 0.9893 + }, + { + "start": 17418.42, + "end": 17420.02, + "probability": 0.4459 + }, + { + "start": 17420.14, + "end": 17422.16, + "probability": 0.9664 + }, + { + "start": 17422.34, + "end": 17423.5, + "probability": 0.5438 + }, + { + "start": 17423.56, + "end": 17424.58, + "probability": 0.4595 + }, + { + "start": 17424.68, + "end": 17427.6, + "probability": 0.975 + }, + { + "start": 17427.88, + "end": 17428.96, + "probability": 0.9422 + }, + { + "start": 17429.0, + "end": 17430.22, + "probability": 0.8614 + }, + { + "start": 17430.4, + "end": 17435.38, + "probability": 0.9819 + }, + { + "start": 17435.4, + "end": 17436.26, + "probability": 0.5314 + }, + { + "start": 17436.68, + "end": 17438.1, + "probability": 0.6986 + }, + { + "start": 17440.24, + "end": 17440.82, + "probability": 0.6663 + }, + { + "start": 17440.86, + "end": 17442.32, + "probability": 0.9104 + }, + { + "start": 17442.34, + "end": 17442.36, + "probability": 0.1602 + }, + { + "start": 17443.98, + "end": 17444.84, + "probability": 0.0529 + }, + { + "start": 17446.92, + "end": 17448.9, + "probability": 0.8195 + }, + { + "start": 17449.9, + "end": 17451.26, + "probability": 0.9433 + }, + { + "start": 17452.48, + "end": 17455.42, + "probability": 0.6154 + }, + { + "start": 17455.84, + "end": 17457.7, + "probability": 0.8503 + }, + { + "start": 17457.78, + "end": 17457.78, + "probability": 0.0006 + }, + { + "start": 17459.72, + "end": 17461.12, + "probability": 0.1997 + }, + { + "start": 17476.12, + "end": 17476.9, + "probability": 0.4481 + }, + { + "start": 17476.9, + "end": 17477.26, + "probability": 0.4949 + }, + { + "start": 17477.98, + "end": 17478.96, + "probability": 0.6974 + }, + { + "start": 17484.06, + "end": 17484.9, + "probability": 0.7708 + }, + { + "start": 17485.42, + "end": 17485.7, + "probability": 0.5253 + }, + { + "start": 17486.14, + "end": 17487.82, + "probability": 0.8546 + }, + { + "start": 17487.98, + "end": 17490.56, + "probability": 0.6721 + }, + { + "start": 17491.54, + "end": 17493.64, + "probability": 0.9956 + }, + { + "start": 17495.34, + "end": 17495.94, + "probability": 0.9037 + }, + { + "start": 17497.84, + "end": 17499.64, + "probability": 0.8655 + }, + { + "start": 17500.44, + "end": 17501.56, + "probability": 0.9626 + }, + { + "start": 17502.4, + "end": 17503.8, + "probability": 0.8777 + }, + { + "start": 17505.0, + "end": 17506.4, + "probability": 0.9599 + }, + { + "start": 17507.36, + "end": 17509.4, + "probability": 0.9243 + }, + { + "start": 17510.6, + "end": 17519.7, + "probability": 0.979 + }, + { + "start": 17520.34, + "end": 17520.9, + "probability": 0.0171 + }, + { + "start": 17521.62, + "end": 17521.86, + "probability": 0.1021 + }, + { + "start": 17521.86, + "end": 17523.98, + "probability": 0.2397 + }, + { + "start": 17524.2, + "end": 17525.46, + "probability": 0.8401 + }, + { + "start": 17525.7, + "end": 17526.84, + "probability": 0.9486 + }, + { + "start": 17526.88, + "end": 17528.12, + "probability": 0.9897 + }, + { + "start": 17528.76, + "end": 17530.5, + "probability": 0.9805 + }, + { + "start": 17530.5, + "end": 17533.12, + "probability": 0.8947 + }, + { + "start": 17533.14, + "end": 17535.16, + "probability": 0.9412 + }, + { + "start": 17535.2, + "end": 17536.82, + "probability": 0.6656 + }, + { + "start": 17538.02, + "end": 17539.76, + "probability": 0.7488 + }, + { + "start": 17539.86, + "end": 17540.04, + "probability": 0.4481 + }, + { + "start": 17540.08, + "end": 17540.82, + "probability": 0.9508 + }, + { + "start": 17541.08, + "end": 17543.35, + "probability": 0.2445 + }, + { + "start": 17544.52, + "end": 17545.76, + "probability": 0.461 + }, + { + "start": 17545.78, + "end": 17545.92, + "probability": 0.9751 + }, + { + "start": 17546.38, + "end": 17547.98, + "probability": 0.7731 + }, + { + "start": 17548.1, + "end": 17548.56, + "probability": 0.6767 + }, + { + "start": 17548.84, + "end": 17550.1, + "probability": 0.7379 + }, + { + "start": 17550.1, + "end": 17550.96, + "probability": 0.5022 + }, + { + "start": 17551.46, + "end": 17551.46, + "probability": 0.0546 + }, + { + "start": 17551.46, + "end": 17553.56, + "probability": 0.6737 + }, + { + "start": 17556.76, + "end": 17559.54, + "probability": 0.8491 + }, + { + "start": 17560.56, + "end": 17563.26, + "probability": 0.8914 + }, + { + "start": 17563.96, + "end": 17568.1, + "probability": 0.8048 + }, + { + "start": 17569.42, + "end": 17570.6, + "probability": 0.6229 + }, + { + "start": 17571.2, + "end": 17572.0, + "probability": 0.9588 + }, + { + "start": 17573.32, + "end": 17574.54, + "probability": 0.9119 + }, + { + "start": 17574.84, + "end": 17575.54, + "probability": 0.781 + }, + { + "start": 17575.92, + "end": 17582.9, + "probability": 0.9287 + }, + { + "start": 17583.92, + "end": 17587.2, + "probability": 0.9936 + }, + { + "start": 17587.2, + "end": 17591.42, + "probability": 0.9976 + }, + { + "start": 17592.48, + "end": 17596.8, + "probability": 0.9961 + }, + { + "start": 17597.8, + "end": 17597.98, + "probability": 0.2394 + }, + { + "start": 17598.14, + "end": 17598.56, + "probability": 0.8407 + }, + { + "start": 17598.8, + "end": 17601.42, + "probability": 0.9885 + }, + { + "start": 17602.22, + "end": 17603.7, + "probability": 0.8873 + }, + { + "start": 17604.36, + "end": 17605.8, + "probability": 0.943 + }, + { + "start": 17606.06, + "end": 17607.0, + "probability": 0.8018 + }, + { + "start": 17607.5, + "end": 17608.84, + "probability": 0.8052 + }, + { + "start": 17608.94, + "end": 17610.32, + "probability": 0.9673 + }, + { + "start": 17610.34, + "end": 17611.74, + "probability": 0.9139 + }, + { + "start": 17611.86, + "end": 17611.88, + "probability": 0.0072 + }, + { + "start": 17620.18, + "end": 17620.26, + "probability": 0.0624 + }, + { + "start": 17620.26, + "end": 17620.26, + "probability": 0.2087 + }, + { + "start": 17620.26, + "end": 17620.26, + "probability": 0.1954 + }, + { + "start": 17620.26, + "end": 17620.26, + "probability": 0.1427 + }, + { + "start": 17620.26, + "end": 17620.72, + "probability": 0.2992 + }, + { + "start": 17621.32, + "end": 17625.88, + "probability": 0.7021 + }, + { + "start": 17626.4, + "end": 17629.84, + "probability": 0.8052 + }, + { + "start": 17630.46, + "end": 17631.24, + "probability": 0.5963 + }, + { + "start": 17631.56, + "end": 17635.8, + "probability": 0.984 + }, + { + "start": 17636.68, + "end": 17638.22, + "probability": 0.9889 + }, + { + "start": 17639.38, + "end": 17644.14, + "probability": 0.9493 + }, + { + "start": 17644.14, + "end": 17647.98, + "probability": 0.9876 + }, + { + "start": 17648.48, + "end": 17652.48, + "probability": 0.9698 + }, + { + "start": 17652.6, + "end": 17653.7, + "probability": 0.6903 + }, + { + "start": 17654.1, + "end": 17654.96, + "probability": 0.9727 + }, + { + "start": 17655.54, + "end": 17658.08, + "probability": 0.9211 + }, + { + "start": 17658.12, + "end": 17659.3, + "probability": 0.8824 + }, + { + "start": 17659.38, + "end": 17660.5, + "probability": 0.8418 + }, + { + "start": 17660.82, + "end": 17663.94, + "probability": 0.9602 + }, + { + "start": 17664.22, + "end": 17665.08, + "probability": 0.8306 + }, + { + "start": 17665.56, + "end": 17669.84, + "probability": 0.9929 + }, + { + "start": 17669.92, + "end": 17671.12, + "probability": 0.9601 + }, + { + "start": 17671.44, + "end": 17672.02, + "probability": 0.9662 + }, + { + "start": 17672.36, + "end": 17672.62, + "probability": 0.4465 + }, + { + "start": 17672.76, + "end": 17673.48, + "probability": 0.7192 + }, + { + "start": 17673.84, + "end": 17674.66, + "probability": 0.5299 + }, + { + "start": 17674.8, + "end": 17674.8, + "probability": 0.6231 + }, + { + "start": 17674.8, + "end": 17675.8, + "probability": 0.2926 + }, + { + "start": 17676.38, + "end": 17677.64, + "probability": 0.988 + }, + { + "start": 17678.18, + "end": 17678.82, + "probability": 0.7028 + }, + { + "start": 17679.14, + "end": 17681.56, + "probability": 0.8397 + }, + { + "start": 17681.7, + "end": 17683.42, + "probability": 0.9872 + }, + { + "start": 17683.82, + "end": 17684.14, + "probability": 0.2584 + }, + { + "start": 17687.56, + "end": 17688.04, + "probability": 0.5487 + }, + { + "start": 17717.8, + "end": 17718.48, + "probability": 0.3033 + }, + { + "start": 17718.48, + "end": 17719.4, + "probability": 0.6155 + }, + { + "start": 17719.82, + "end": 17720.54, + "probability": 0.7763 + }, + { + "start": 17720.64, + "end": 17721.8, + "probability": 0.797 + }, + { + "start": 17721.9, + "end": 17728.86, + "probability": 0.99 + }, + { + "start": 17729.6, + "end": 17731.64, + "probability": 0.9701 + }, + { + "start": 17732.36, + "end": 17734.96, + "probability": 0.9929 + }, + { + "start": 17735.56, + "end": 17740.42, + "probability": 0.7437 + }, + { + "start": 17740.56, + "end": 17740.77, + "probability": 0.5115 + }, + { + "start": 17741.72, + "end": 17742.76, + "probability": 0.9334 + }, + { + "start": 17743.42, + "end": 17746.1, + "probability": 0.9209 + }, + { + "start": 17746.2, + "end": 17747.84, + "probability": 0.7533 + }, + { + "start": 17748.6, + "end": 17749.94, + "probability": 0.4691 + }, + { + "start": 17751.72, + "end": 17752.42, + "probability": 0.5863 + }, + { + "start": 17752.44, + "end": 17752.76, + "probability": 0.7637 + }, + { + "start": 17753.8, + "end": 17755.72, + "probability": 0.6214 + }, + { + "start": 17755.8, + "end": 17758.18, + "probability": 0.9644 + }, + { + "start": 17758.72, + "end": 17762.12, + "probability": 0.9935 + }, + { + "start": 17763.08, + "end": 17766.02, + "probability": 0.9062 + }, + { + "start": 17766.76, + "end": 17772.46, + "probability": 0.9953 + }, + { + "start": 17772.46, + "end": 17781.0, + "probability": 0.9995 + }, + { + "start": 17781.0, + "end": 17790.16, + "probability": 0.9954 + }, + { + "start": 17791.72, + "end": 17792.98, + "probability": 0.5008 + }, + { + "start": 17794.0, + "end": 17796.58, + "probability": 0.9995 + }, + { + "start": 17797.32, + "end": 17797.98, + "probability": 0.9657 + }, + { + "start": 17798.56, + "end": 17799.7, + "probability": 0.9087 + }, + { + "start": 17800.78, + "end": 17801.36, + "probability": 0.7372 + }, + { + "start": 17801.5, + "end": 17802.58, + "probability": 0.9653 + }, + { + "start": 17802.62, + "end": 17805.6, + "probability": 0.9976 + }, + { + "start": 17805.6, + "end": 17811.12, + "probability": 0.9961 + }, + { + "start": 17812.42, + "end": 17817.12, + "probability": 0.9924 + }, + { + "start": 17817.12, + "end": 17823.2, + "probability": 0.96 + }, + { + "start": 17824.04, + "end": 17829.26, + "probability": 0.9988 + }, + { + "start": 17830.22, + "end": 17831.26, + "probability": 0.7004 + }, + { + "start": 17831.4, + "end": 17835.52, + "probability": 0.9951 + }, + { + "start": 17837.83, + "end": 17838.44, + "probability": 0.0308 + }, + { + "start": 17838.44, + "end": 17841.28, + "probability": 0.999 + }, + { + "start": 17841.28, + "end": 17846.02, + "probability": 0.9071 + }, + { + "start": 17846.5, + "end": 17847.94, + "probability": 0.919 + }, + { + "start": 17849.14, + "end": 17854.06, + "probability": 0.988 + }, + { + "start": 17854.88, + "end": 17858.14, + "probability": 0.9436 + }, + { + "start": 17858.32, + "end": 17859.9, + "probability": 0.9938 + }, + { + "start": 17861.04, + "end": 17861.06, + "probability": 0.0241 + }, + { + "start": 17861.06, + "end": 17862.33, + "probability": 0.6938 + }, + { + "start": 17863.54, + "end": 17866.76, + "probability": 0.9305 + }, + { + "start": 17867.36, + "end": 17870.34, + "probability": 0.8771 + }, + { + "start": 17870.98, + "end": 17874.66, + "probability": 0.9636 + }, + { + "start": 17875.08, + "end": 17878.94, + "probability": 0.97 + }, + { + "start": 17879.5, + "end": 17883.36, + "probability": 0.9709 + }, + { + "start": 17884.56, + "end": 17888.74, + "probability": 0.0576 + }, + { + "start": 17888.74, + "end": 17888.74, + "probability": 0.0713 + }, + { + "start": 17888.74, + "end": 17888.74, + "probability": 0.2802 + }, + { + "start": 17888.74, + "end": 17889.34, + "probability": 0.4689 + }, + { + "start": 17889.42, + "end": 17889.42, + "probability": 0.2814 + }, + { + "start": 17889.42, + "end": 17890.4, + "probability": 0.2 + }, + { + "start": 17890.52, + "end": 17896.12, + "probability": 0.9028 + }, + { + "start": 17896.58, + "end": 17896.58, + "probability": 0.0463 + }, + { + "start": 17896.58, + "end": 17898.26, + "probability": 0.4836 + }, + { + "start": 17898.32, + "end": 17898.56, + "probability": 0.5381 + }, + { + "start": 17898.76, + "end": 17904.9, + "probability": 0.5986 + }, + { + "start": 17904.9, + "end": 17906.16, + "probability": 0.7003 + }, + { + "start": 17906.24, + "end": 17909.0, + "probability": 0.895 + }, + { + "start": 17912.12, + "end": 17913.34, + "probability": 0.8925 + }, + { + "start": 17913.34, + "end": 17917.3, + "probability": 0.9949 + }, + { + "start": 17917.8, + "end": 17921.62, + "probability": 0.9895 + }, + { + "start": 17921.62, + "end": 17925.18, + "probability": 0.9896 + }, + { + "start": 17925.68, + "end": 17931.6, + "probability": 0.9722 + }, + { + "start": 17932.32, + "end": 17933.94, + "probability": 0.6767 + }, + { + "start": 17934.86, + "end": 17936.1, + "probability": 0.5378 + }, + { + "start": 17936.14, + "end": 17936.8, + "probability": 0.9528 + }, + { + "start": 17936.88, + "end": 17943.16, + "probability": 0.9708 + }, + { + "start": 17943.58, + "end": 17945.24, + "probability": 0.704 + }, + { + "start": 17947.96, + "end": 17949.5, + "probability": 0.3564 + }, + { + "start": 17949.5, + "end": 17949.5, + "probability": 0.1161 + }, + { + "start": 17949.5, + "end": 17949.5, + "probability": 0.5196 + }, + { + "start": 17949.5, + "end": 17949.5, + "probability": 0.567 + }, + { + "start": 17949.5, + "end": 17950.1, + "probability": 0.5876 + }, + { + "start": 17966.72, + "end": 17969.44, + "probability": 0.657 + }, + { + "start": 17970.08, + "end": 17973.0, + "probability": 0.951 + }, + { + "start": 17973.86, + "end": 17975.86, + "probability": 0.9022 + }, + { + "start": 17978.08, + "end": 17978.88, + "probability": 0.5831 + }, + { + "start": 17978.88, + "end": 17978.88, + "probability": 0.4228 + }, + { + "start": 17978.88, + "end": 17979.09, + "probability": 0.519 + }, + { + "start": 17979.46, + "end": 17980.52, + "probability": 0.9888 + }, + { + "start": 17981.28, + "end": 17983.76, + "probability": 0.9941 + }, + { + "start": 17984.66, + "end": 17987.76, + "probability": 0.9089 + }, + { + "start": 17987.86, + "end": 17991.18, + "probability": 0.9689 + }, + { + "start": 17992.12, + "end": 17996.74, + "probability": 0.7396 + }, + { + "start": 17998.08, + "end": 17998.36, + "probability": 0.264 + }, + { + "start": 17998.36, + "end": 17998.74, + "probability": 0.0008 + }, + { + "start": 17998.74, + "end": 17998.74, + "probability": 0.0489 + }, + { + "start": 17998.74, + "end": 17999.1, + "probability": 0.3469 + }, + { + "start": 17999.12, + "end": 17999.8, + "probability": 0.6654 + }, + { + "start": 17999.92, + "end": 18000.16, + "probability": 0.058 + }, + { + "start": 18000.42, + "end": 18001.24, + "probability": 0.8137 + }, + { + "start": 18002.76, + "end": 18008.94, + "probability": 0.7485 + }, + { + "start": 18008.94, + "end": 18013.08, + "probability": 0.976 + }, + { + "start": 18013.38, + "end": 18017.42, + "probability": 0.9969 + }, + { + "start": 18018.3, + "end": 18023.04, + "probability": 0.9855 + }, + { + "start": 18024.1, + "end": 18025.8, + "probability": 0.8828 + }, + { + "start": 18026.98, + "end": 18031.92, + "probability": 0.9989 + }, + { + "start": 18032.66, + "end": 18033.94, + "probability": 0.9182 + }, + { + "start": 18034.56, + "end": 18035.06, + "probability": 0.6025 + }, + { + "start": 18035.18, + "end": 18037.82, + "probability": 0.7484 + }, + { + "start": 18038.0, + "end": 18038.48, + "probability": 0.5611 + }, + { + "start": 18038.5, + "end": 18039.2, + "probability": 0.9224 + }, + { + "start": 18039.26, + "end": 18039.52, + "probability": 0.542 + }, + { + "start": 18039.6, + "end": 18042.34, + "probability": 0.9739 + }, + { + "start": 18042.78, + "end": 18044.12, + "probability": 0.9502 + }, + { + "start": 18044.62, + "end": 18049.32, + "probability": 0.9899 + }, + { + "start": 18049.32, + "end": 18052.22, + "probability": 0.9479 + }, + { + "start": 18053.04, + "end": 18057.44, + "probability": 0.9962 + }, + { + "start": 18058.0, + "end": 18062.4, + "probability": 0.9916 + }, + { + "start": 18062.92, + "end": 18069.46, + "probability": 0.9975 + }, + { + "start": 18069.46, + "end": 18075.3, + "probability": 0.9985 + }, + { + "start": 18075.94, + "end": 18078.02, + "probability": 0.9976 + }, + { + "start": 18078.78, + "end": 18083.57, + "probability": 0.9968 + }, + { + "start": 18084.02, + "end": 18087.6, + "probability": 0.9344 + }, + { + "start": 18088.04, + "end": 18090.76, + "probability": 0.8323 + }, + { + "start": 18091.08, + "end": 18092.24, + "probability": 0.9897 + }, + { + "start": 18092.36, + "end": 18093.89, + "probability": 0.7642 + }, + { + "start": 18094.12, + "end": 18101.1, + "probability": 0.9229 + }, + { + "start": 18101.2, + "end": 18104.02, + "probability": 0.9804 + }, + { + "start": 18104.2, + "end": 18108.68, + "probability": 0.6308 + }, + { + "start": 18109.06, + "end": 18111.7, + "probability": 0.8876 + }, + { + "start": 18111.98, + "end": 18112.56, + "probability": 0.8208 + }, + { + "start": 18112.8, + "end": 18117.58, + "probability": 0.9844 + }, + { + "start": 18125.88, + "end": 18127.58, + "probability": 0.7898 + }, + { + "start": 18129.9, + "end": 18130.98, + "probability": 0.5692 + }, + { + "start": 18131.46, + "end": 18135.31, + "probability": 0.8293 + }, + { + "start": 18136.78, + "end": 18138.02, + "probability": 0.9421 + }, + { + "start": 18141.98, + "end": 18142.6, + "probability": 0.7633 + }, + { + "start": 18156.16, + "end": 18156.66, + "probability": 0.7359 + }, + { + "start": 18159.24, + "end": 18160.2, + "probability": 0.2382 + }, + { + "start": 18160.44, + "end": 18161.34, + "probability": 0.6561 + }, + { + "start": 18161.74, + "end": 18162.7, + "probability": 0.7718 + }, + { + "start": 18163.04, + "end": 18163.78, + "probability": 0.7603 + }, + { + "start": 18164.84, + "end": 18166.66, + "probability": 0.174 + }, + { + "start": 18167.36, + "end": 18171.92, + "probability": 0.9804 + }, + { + "start": 18172.0, + "end": 18172.24, + "probability": 0.7138 + }, + { + "start": 18172.3, + "end": 18173.14, + "probability": 0.7209 + }, + { + "start": 18173.72, + "end": 18174.24, + "probability": 0.6234 + }, + { + "start": 18174.38, + "end": 18175.29, + "probability": 0.4106 + }, + { + "start": 18175.94, + "end": 18180.04, + "probability": 0.7675 + }, + { + "start": 18180.98, + "end": 18182.18, + "probability": 0.8133 + }, + { + "start": 18184.68, + "end": 18186.26, + "probability": 0.8499 + }, + { + "start": 18186.92, + "end": 18190.66, + "probability": 0.9932 + }, + { + "start": 18192.38, + "end": 18194.1, + "probability": 0.9345 + }, + { + "start": 18194.9, + "end": 18195.84, + "probability": 0.7992 + }, + { + "start": 18196.48, + "end": 18197.4, + "probability": 0.2048 + }, + { + "start": 18197.54, + "end": 18198.86, + "probability": 0.9187 + }, + { + "start": 18202.24, + "end": 18202.74, + "probability": 0.6222 + }, + { + "start": 18202.92, + "end": 18203.8, + "probability": 0.8572 + }, + { + "start": 18204.1, + "end": 18207.5, + "probability": 0.9746 + }, + { + "start": 18208.1, + "end": 18215.02, + "probability": 0.8901 + }, + { + "start": 18215.76, + "end": 18219.38, + "probability": 0.9835 + }, + { + "start": 18219.9, + "end": 18224.18, + "probability": 0.6642 + }, + { + "start": 18224.22, + "end": 18226.72, + "probability": 0.5648 + }, + { + "start": 18227.4, + "end": 18230.9, + "probability": 0.4992 + }, + { + "start": 18231.46, + "end": 18234.32, + "probability": 0.8771 + }, + { + "start": 18234.6, + "end": 18235.6, + "probability": 0.7898 + }, + { + "start": 18236.18, + "end": 18238.42, + "probability": 0.8295 + }, + { + "start": 18238.94, + "end": 18239.8, + "probability": 0.766 + }, + { + "start": 18240.42, + "end": 18241.4, + "probability": 0.9976 + }, + { + "start": 18242.68, + "end": 18246.36, + "probability": 0.9799 + }, + { + "start": 18246.36, + "end": 18250.44, + "probability": 0.9737 + }, + { + "start": 18251.18, + "end": 18251.9, + "probability": 0.4304 + }, + { + "start": 18251.98, + "end": 18253.04, + "probability": 0.876 + }, + { + "start": 18253.44, + "end": 18256.1, + "probability": 0.6212 + }, + { + "start": 18256.48, + "end": 18257.9, + "probability": 0.7886 + }, + { + "start": 18259.04, + "end": 18260.24, + "probability": 0.52 + }, + { + "start": 18260.34, + "end": 18264.66, + "probability": 0.7196 + }, + { + "start": 18264.94, + "end": 18265.56, + "probability": 0.8467 + }, + { + "start": 18266.34, + "end": 18268.64, + "probability": 0.9888 + }, + { + "start": 18269.48, + "end": 18271.62, + "probability": 0.8949 + }, + { + "start": 18271.66, + "end": 18272.36, + "probability": 0.7998 + }, + { + "start": 18272.7, + "end": 18274.02, + "probability": 0.6633 + }, + { + "start": 18276.26, + "end": 18277.56, + "probability": 0.1924 + }, + { + "start": 18277.63, + "end": 18277.95, + "probability": 0.0767 + }, + { + "start": 18279.7, + "end": 18282.22, + "probability": 0.7909 + }, + { + "start": 18282.88, + "end": 18283.1, + "probability": 0.8206 + }, + { + "start": 18283.78, + "end": 18286.46, + "probability": 0.9915 + }, + { + "start": 18287.22, + "end": 18288.84, + "probability": 0.7923 + }, + { + "start": 18289.18, + "end": 18290.32, + "probability": 0.9792 + }, + { + "start": 18290.36, + "end": 18296.3, + "probability": 0.8943 + }, + { + "start": 18297.6, + "end": 18299.74, + "probability": 0.2854 + }, + { + "start": 18299.8, + "end": 18300.38, + "probability": 0.8147 + }, + { + "start": 18300.5, + "end": 18306.4, + "probability": 0.8522 + }, + { + "start": 18306.62, + "end": 18307.54, + "probability": 0.516 + }, + { + "start": 18308.22, + "end": 18312.88, + "probability": 0.745 + }, + { + "start": 18313.4, + "end": 18314.52, + "probability": 0.968 + }, + { + "start": 18314.58, + "end": 18317.34, + "probability": 0.8202 + }, + { + "start": 18317.34, + "end": 18321.24, + "probability": 0.9 + }, + { + "start": 18321.72, + "end": 18325.22, + "probability": 0.6318 + }, + { + "start": 18325.64, + "end": 18326.64, + "probability": 0.6935 + }, + { + "start": 18326.72, + "end": 18329.08, + "probability": 0.9818 + }, + { + "start": 18329.52, + "end": 18331.24, + "probability": 0.7027 + }, + { + "start": 18331.36, + "end": 18332.28, + "probability": 0.6922 + }, + { + "start": 18332.58, + "end": 18334.0, + "probability": 0.9173 + }, + { + "start": 18334.08, + "end": 18335.41, + "probability": 0.8755 + }, + { + "start": 18337.56, + "end": 18340.18, + "probability": 0.9906 + }, + { + "start": 18340.5, + "end": 18343.3, + "probability": 0.981 + }, + { + "start": 18343.64, + "end": 18344.84, + "probability": 0.9113 + }, + { + "start": 18345.48, + "end": 18349.22, + "probability": 0.8733 + }, + { + "start": 18349.36, + "end": 18350.18, + "probability": 0.5067 + }, + { + "start": 18350.52, + "end": 18350.88, + "probability": 0.691 + }, + { + "start": 18351.56, + "end": 18353.42, + "probability": 0.956 + }, + { + "start": 18353.84, + "end": 18354.5, + "probability": 0.6352 + }, + { + "start": 18354.78, + "end": 18357.74, + "probability": 0.9674 + }, + { + "start": 18358.06, + "end": 18364.08, + "probability": 0.8226 + }, + { + "start": 18364.3, + "end": 18364.9, + "probability": 0.5965 + }, + { + "start": 18364.98, + "end": 18366.6, + "probability": 0.8962 + }, + { + "start": 18366.88, + "end": 18372.3, + "probability": 0.9717 + }, + { + "start": 18372.38, + "end": 18373.92, + "probability": 0.9511 + }, + { + "start": 18374.04, + "end": 18376.62, + "probability": 0.6996 + }, + { + "start": 18376.76, + "end": 18377.58, + "probability": 0.7964 + }, + { + "start": 18377.86, + "end": 18379.76, + "probability": 0.3492 + }, + { + "start": 18380.16, + "end": 18381.02, + "probability": 0.4022 + }, + { + "start": 18381.02, + "end": 18382.0, + "probability": 0.6005 + }, + { + "start": 18382.52, + "end": 18386.96, + "probability": 0.8944 + }, + { + "start": 18387.52, + "end": 18389.1, + "probability": 0.9643 + }, + { + "start": 18389.42, + "end": 18391.48, + "probability": 0.9691 + }, + { + "start": 18391.8, + "end": 18394.9, + "probability": 0.5512 + }, + { + "start": 18394.92, + "end": 18395.72, + "probability": 0.96 + }, + { + "start": 18396.0, + "end": 18397.0, + "probability": 0.7919 + }, + { + "start": 18397.36, + "end": 18397.66, + "probability": 0.8145 + }, + { + "start": 18397.74, + "end": 18398.54, + "probability": 0.7635 + }, + { + "start": 18399.14, + "end": 18400.86, + "probability": 0.9071 + }, + { + "start": 18400.86, + "end": 18402.6, + "probability": 0.6781 + }, + { + "start": 18402.94, + "end": 18404.42, + "probability": 0.9904 + }, + { + "start": 18405.42, + "end": 18406.22, + "probability": 0.743 + }, + { + "start": 18406.64, + "end": 18408.06, + "probability": 0.9146 + }, + { + "start": 18418.06, + "end": 18418.48, + "probability": 0.3975 + }, + { + "start": 18418.66, + "end": 18419.76, + "probability": 0.5587 + }, + { + "start": 18420.9, + "end": 18423.42, + "probability": 0.2835 + }, + { + "start": 18424.3, + "end": 18425.62, + "probability": 0.771 + }, + { + "start": 18425.62, + "end": 18426.08, + "probability": 0.4671 + }, + { + "start": 18426.42, + "end": 18426.56, + "probability": 0.2916 + }, + { + "start": 18426.56, + "end": 18426.84, + "probability": 0.3774 + }, + { + "start": 18428.0, + "end": 18429.34, + "probability": 0.5768 + }, + { + "start": 18429.48, + "end": 18430.45, + "probability": 0.135 + }, + { + "start": 18435.94, + "end": 18438.02, + "probability": 0.7741 + }, + { + "start": 18441.18, + "end": 18442.36, + "probability": 0.6067 + }, + { + "start": 18442.44, + "end": 18445.74, + "probability": 0.8981 + }, + { + "start": 18445.98, + "end": 18450.54, + "probability": 0.7939 + }, + { + "start": 18451.14, + "end": 18452.96, + "probability": 0.9476 + }, + { + "start": 18453.54, + "end": 18455.66, + "probability": 0.8293 + }, + { + "start": 18455.8, + "end": 18457.34, + "probability": 0.8717 + }, + { + "start": 18458.34, + "end": 18459.74, + "probability": 0.7233 + }, + { + "start": 18460.3, + "end": 18462.04, + "probability": 0.601 + }, + { + "start": 18463.14, + "end": 18465.46, + "probability": 0.9805 + }, + { + "start": 18466.02, + "end": 18467.54, + "probability": 0.792 + }, + { + "start": 18469.02, + "end": 18472.6, + "probability": 0.8706 + }, + { + "start": 18473.46, + "end": 18474.56, + "probability": 0.9932 + }, + { + "start": 18475.54, + "end": 18476.86, + "probability": 0.9729 + }, + { + "start": 18477.0, + "end": 18483.3, + "probability": 0.9411 + }, + { + "start": 18484.96, + "end": 18486.0, + "probability": 0.703 + }, + { + "start": 18487.36, + "end": 18488.46, + "probability": 0.9456 + }, + { + "start": 18489.32, + "end": 18490.21, + "probability": 0.8784 + }, + { + "start": 18490.98, + "end": 18491.94, + "probability": 0.9104 + }, + { + "start": 18492.02, + "end": 18492.84, + "probability": 0.9336 + }, + { + "start": 18493.98, + "end": 18494.62, + "probability": 0.9024 + }, + { + "start": 18495.64, + "end": 18499.8, + "probability": 0.9961 + }, + { + "start": 18500.7, + "end": 18501.58, + "probability": 0.8517 + }, + { + "start": 18501.68, + "end": 18502.78, + "probability": 0.7253 + }, + { + "start": 18503.28, + "end": 18504.72, + "probability": 0.9025 + }, + { + "start": 18505.12, + "end": 18507.14, + "probability": 0.8471 + }, + { + "start": 18508.16, + "end": 18509.7, + "probability": 0.7505 + }, + { + "start": 18510.72, + "end": 18515.08, + "probability": 0.9429 + }, + { + "start": 18515.94, + "end": 18516.32, + "probability": 0.7503 + }, + { + "start": 18517.16, + "end": 18521.06, + "probability": 0.9915 + }, + { + "start": 18521.78, + "end": 18521.96, + "probability": 0.4229 + }, + { + "start": 18522.52, + "end": 18524.9, + "probability": 0.9953 + }, + { + "start": 18525.7, + "end": 18526.6, + "probability": 0.6645 + }, + { + "start": 18526.92, + "end": 18530.24, + "probability": 0.9875 + }, + { + "start": 18530.62, + "end": 18535.0, + "probability": 0.9125 + }, + { + "start": 18535.54, + "end": 18536.77, + "probability": 0.5645 + }, + { + "start": 18537.3, + "end": 18540.88, + "probability": 0.9851 + }, + { + "start": 18541.26, + "end": 18543.07, + "probability": 0.9519 + }, + { + "start": 18544.2, + "end": 18549.16, + "probability": 0.8713 + }, + { + "start": 18549.68, + "end": 18550.38, + "probability": 0.4708 + }, + { + "start": 18550.8, + "end": 18552.12, + "probability": 0.9934 + }, + { + "start": 18552.28, + "end": 18554.44, + "probability": 0.835 + }, + { + "start": 18554.52, + "end": 18555.26, + "probability": 0.9433 + }, + { + "start": 18555.58, + "end": 18556.6, + "probability": 0.9331 + }, + { + "start": 18556.96, + "end": 18560.04, + "probability": 0.9529 + }, + { + "start": 18560.08, + "end": 18561.64, + "probability": 0.8685 + }, + { + "start": 18562.1, + "end": 18565.26, + "probability": 0.9854 + }, + { + "start": 18565.62, + "end": 18565.98, + "probability": 0.1408 + }, + { + "start": 18566.12, + "end": 18566.24, + "probability": 0.2931 + }, + { + "start": 18566.24, + "end": 18566.24, + "probability": 0.2828 + }, + { + "start": 18566.24, + "end": 18566.8, + "probability": 0.379 + }, + { + "start": 18567.4, + "end": 18570.46, + "probability": 0.5374 + }, + { + "start": 18570.54, + "end": 18574.9, + "probability": 0.8414 + }, + { + "start": 18575.34, + "end": 18577.9, + "probability": 0.1499 + }, + { + "start": 18577.9, + "end": 18581.74, + "probability": 0.9625 + }, + { + "start": 18582.02, + "end": 18582.99, + "probability": 0.782 + }, + { + "start": 18583.66, + "end": 18585.13, + "probability": 0.8512 + }, + { + "start": 18585.48, + "end": 18586.78, + "probability": 0.8479 + }, + { + "start": 18587.08, + "end": 18588.58, + "probability": 0.6612 + }, + { + "start": 18589.0, + "end": 18591.52, + "probability": 0.0724 + }, + { + "start": 18591.64, + "end": 18592.08, + "probability": 0.0256 + }, + { + "start": 18592.08, + "end": 18592.08, + "probability": 0.0813 + }, + { + "start": 18592.08, + "end": 18592.08, + "probability": 0.0312 + }, + { + "start": 18592.08, + "end": 18592.84, + "probability": 0.265 + }, + { + "start": 18593.22, + "end": 18599.24, + "probability": 0.8468 + }, + { + "start": 18599.7, + "end": 18604.65, + "probability": 0.9814 + }, + { + "start": 18604.86, + "end": 18605.74, + "probability": 0.5854 + }, + { + "start": 18605.96, + "end": 18608.94, + "probability": 0.7021 + }, + { + "start": 18608.94, + "end": 18609.94, + "probability": 0.0506 + }, + { + "start": 18610.02, + "end": 18610.16, + "probability": 0.0235 + }, + { + "start": 18610.28, + "end": 18610.38, + "probability": 0.0834 + }, + { + "start": 18610.38, + "end": 18610.38, + "probability": 0.0408 + }, + { + "start": 18610.38, + "end": 18611.38, + "probability": 0.6009 + }, + { + "start": 18611.76, + "end": 18615.12, + "probability": 0.7595 + }, + { + "start": 18615.56, + "end": 18619.26, + "probability": 0.6727 + }, + { + "start": 18620.1, + "end": 18621.94, + "probability": 0.1518 + }, + { + "start": 18623.36, + "end": 18624.26, + "probability": 0.9068 + }, + { + "start": 18626.74, + "end": 18627.84, + "probability": 0.7796 + }, + { + "start": 18627.92, + "end": 18629.04, + "probability": 0.6002 + }, + { + "start": 18640.12, + "end": 18643.86, + "probability": 0.998 + }, + { + "start": 18644.28, + "end": 18645.28, + "probability": 0.8409 + }, + { + "start": 18645.48, + "end": 18648.66, + "probability": 0.9927 + }, + { + "start": 18649.16, + "end": 18650.54, + "probability": 0.9558 + }, + { + "start": 18650.66, + "end": 18651.8, + "probability": 0.8974 + }, + { + "start": 18651.84, + "end": 18652.58, + "probability": 0.7922 + }, + { + "start": 18653.08, + "end": 18655.14, + "probability": 0.5178 + }, + { + "start": 18655.54, + "end": 18655.92, + "probability": 0.8986 + }, + { + "start": 18656.02, + "end": 18657.82, + "probability": 0.8007 + }, + { + "start": 18657.94, + "end": 18658.77, + "probability": 0.496 + }, + { + "start": 18659.64, + "end": 18660.86, + "probability": 0.8826 + }, + { + "start": 18661.52, + "end": 18662.94, + "probability": 0.9637 + }, + { + "start": 18663.04, + "end": 18663.76, + "probability": 0.6209 + }, + { + "start": 18664.18, + "end": 18664.7, + "probability": 0.5772 + }, + { + "start": 18664.76, + "end": 18665.02, + "probability": 0.8088 + }, + { + "start": 18665.08, + "end": 18666.34, + "probability": 0.8534 + }, + { + "start": 18666.42, + "end": 18667.98, + "probability": 0.9839 + }, + { + "start": 18668.3, + "end": 18670.74, + "probability": 0.9637 + }, + { + "start": 18670.84, + "end": 18672.54, + "probability": 0.9904 + }, + { + "start": 18672.86, + "end": 18674.34, + "probability": 0.9758 + }, + { + "start": 18674.44, + "end": 18676.9, + "probability": 0.9957 + }, + { + "start": 18676.9, + "end": 18679.38, + "probability": 0.998 + }, + { + "start": 18679.76, + "end": 18683.86, + "probability": 0.9659 + }, + { + "start": 18684.06, + "end": 18686.7, + "probability": 0.9966 + }, + { + "start": 18686.7, + "end": 18687.36, + "probability": 0.8085 + }, + { + "start": 18687.42, + "end": 18688.08, + "probability": 0.8978 + }, + { + "start": 18688.44, + "end": 18689.52, + "probability": 0.9655 + }, + { + "start": 18689.82, + "end": 18693.36, + "probability": 0.9863 + }, + { + "start": 18693.52, + "end": 18694.8, + "probability": 0.5602 + }, + { + "start": 18695.1, + "end": 18697.86, + "probability": 0.7493 + }, + { + "start": 18698.04, + "end": 18701.18, + "probability": 0.957 + }, + { + "start": 18701.48, + "end": 18703.08, + "probability": 0.5322 + }, + { + "start": 18703.18, + "end": 18703.28, + "probability": 0.0427 + }, + { + "start": 18703.28, + "end": 18705.94, + "probability": 0.91 + }, + { + "start": 18706.18, + "end": 18710.37, + "probability": 0.9888 + }, + { + "start": 18711.14, + "end": 18711.81, + "probability": 0.8376 + }, + { + "start": 18712.52, + "end": 18714.46, + "probability": 0.9976 + }, + { + "start": 18714.86, + "end": 18715.72, + "probability": 0.8142 + }, + { + "start": 18715.74, + "end": 18719.54, + "probability": 0.9927 + }, + { + "start": 18720.26, + "end": 18722.92, + "probability": 0.9022 + }, + { + "start": 18723.84, + "end": 18724.26, + "probability": 0.5586 + }, + { + "start": 18724.38, + "end": 18725.66, + "probability": 0.9366 + }, + { + "start": 18725.74, + "end": 18727.18, + "probability": 0.8534 + }, + { + "start": 18727.26, + "end": 18731.88, + "probability": 0.9891 + }, + { + "start": 18732.5, + "end": 18738.32, + "probability": 0.9781 + }, + { + "start": 18738.7, + "end": 18741.02, + "probability": 0.6467 + }, + { + "start": 18741.2, + "end": 18742.69, + "probability": 0.9406 + }, + { + "start": 18743.54, + "end": 18745.28, + "probability": 0.8192 + }, + { + "start": 18745.52, + "end": 18747.5, + "probability": 0.9193 + }, + { + "start": 18748.26, + "end": 18750.16, + "probability": 0.987 + }, + { + "start": 18750.7, + "end": 18751.7, + "probability": 0.9876 + }, + { + "start": 18751.78, + "end": 18752.39, + "probability": 0.9634 + }, + { + "start": 18752.68, + "end": 18753.36, + "probability": 0.6639 + }, + { + "start": 18753.4, + "end": 18753.92, + "probability": 0.8728 + }, + { + "start": 18754.18, + "end": 18755.22, + "probability": 0.9176 + }, + { + "start": 18755.34, + "end": 18758.48, + "probability": 0.9888 + }, + { + "start": 18758.78, + "end": 18760.82, + "probability": 0.9966 + }, + { + "start": 18761.16, + "end": 18763.06, + "probability": 0.9819 + }, + { + "start": 18763.4, + "end": 18764.12, + "probability": 0.9506 + }, + { + "start": 18764.36, + "end": 18765.28, + "probability": 0.9819 + }, + { + "start": 18765.5, + "end": 18766.28, + "probability": 0.6101 + }, + { + "start": 18766.46, + "end": 18767.26, + "probability": 0.9609 + }, + { + "start": 18767.34, + "end": 18767.94, + "probability": 0.8405 + }, + { + "start": 18768.06, + "end": 18769.68, + "probability": 0.9229 + }, + { + "start": 18770.66, + "end": 18773.92, + "probability": 0.7614 + }, + { + "start": 18774.22, + "end": 18775.34, + "probability": 0.7715 + }, + { + "start": 18775.44, + "end": 18777.66, + "probability": 0.9907 + }, + { + "start": 18778.08, + "end": 18780.3, + "probability": 0.9761 + }, + { + "start": 18780.3, + "end": 18782.26, + "probability": 0.9871 + }, + { + "start": 18782.74, + "end": 18787.24, + "probability": 0.6001 + }, + { + "start": 18787.36, + "end": 18788.22, + "probability": 0.7952 + }, + { + "start": 18788.38, + "end": 18789.98, + "probability": 0.9958 + }, + { + "start": 18790.2, + "end": 18791.28, + "probability": 0.9587 + }, + { + "start": 18791.68, + "end": 18794.5, + "probability": 0.9972 + }, + { + "start": 18795.42, + "end": 18798.58, + "probability": 0.9744 + }, + { + "start": 18798.7, + "end": 18800.36, + "probability": 0.8738 + }, + { + "start": 18800.4, + "end": 18801.4, + "probability": 0.8562 + }, + { + "start": 18801.52, + "end": 18802.32, + "probability": 0.7998 + }, + { + "start": 18802.46, + "end": 18803.66, + "probability": 0.6437 + }, + { + "start": 18803.8, + "end": 18808.06, + "probability": 0.9204 + }, + { + "start": 18808.16, + "end": 18808.46, + "probability": 0.3937 + }, + { + "start": 18808.5, + "end": 18808.84, + "probability": 0.6473 + }, + { + "start": 18808.92, + "end": 18810.22, + "probability": 0.8674 + }, + { + "start": 18810.22, + "end": 18812.68, + "probability": 0.956 + }, + { + "start": 18812.94, + "end": 18815.34, + "probability": 0.9719 + }, + { + "start": 18815.82, + "end": 18816.24, + "probability": 0.7662 + }, + { + "start": 18816.32, + "end": 18818.08, + "probability": 0.9716 + }, + { + "start": 18818.08, + "end": 18820.5, + "probability": 0.4742 + }, + { + "start": 18820.5, + "end": 18820.5, + "probability": 0.5244 + }, + { + "start": 18820.5, + "end": 18820.98, + "probability": 0.3131 + }, + { + "start": 18821.0, + "end": 18823.38, + "probability": 0.9814 + }, + { + "start": 18823.8, + "end": 18824.0, + "probability": 0.7546 + }, + { + "start": 18824.1, + "end": 18825.02, + "probability": 0.9758 + }, + { + "start": 18825.12, + "end": 18825.7, + "probability": 0.3906 + }, + { + "start": 18825.8, + "end": 18827.92, + "probability": 0.8903 + }, + { + "start": 18828.0, + "end": 18828.86, + "probability": 0.9442 + }, + { + "start": 18829.44, + "end": 18832.9, + "probability": 0.786 + }, + { + "start": 18833.02, + "end": 18833.36, + "probability": 0.7704 + }, + { + "start": 18834.1, + "end": 18834.98, + "probability": 0.7388 + }, + { + "start": 18835.76, + "end": 18839.0, + "probability": 0.9778 + }, + { + "start": 18840.98, + "end": 18844.24, + "probability": 0.1498 + }, + { + "start": 18845.08, + "end": 18849.66, + "probability": 0.1305 + }, + { + "start": 18850.22, + "end": 18850.4, + "probability": 0.0394 + }, + { + "start": 18859.26, + "end": 18859.98, + "probability": 0.0148 + }, + { + "start": 18875.1, + "end": 18879.4, + "probability": 0.9939 + }, + { + "start": 18880.36, + "end": 18881.92, + "probability": 0.9036 + }, + { + "start": 18882.42, + "end": 18886.76, + "probability": 0.9937 + }, + { + "start": 18886.76, + "end": 18890.9, + "probability": 0.9907 + }, + { + "start": 18891.42, + "end": 18892.42, + "probability": 0.9684 + }, + { + "start": 18892.94, + "end": 18896.16, + "probability": 0.7087 + }, + { + "start": 18897.06, + "end": 18898.68, + "probability": 0.9691 + }, + { + "start": 18899.28, + "end": 18901.94, + "probability": 0.975 + }, + { + "start": 18902.84, + "end": 18904.94, + "probability": 0.9735 + }, + { + "start": 18905.04, + "end": 18906.18, + "probability": 0.9135 + }, + { + "start": 18906.92, + "end": 18907.52, + "probability": 0.7229 + }, + { + "start": 18908.44, + "end": 18911.46, + "probability": 0.9978 + }, + { + "start": 18911.46, + "end": 18913.96, + "probability": 0.9576 + }, + { + "start": 18914.08, + "end": 18914.48, + "probability": 0.6975 + }, + { + "start": 18914.56, + "end": 18915.3, + "probability": 0.7244 + }, + { + "start": 18916.36, + "end": 18920.12, + "probability": 0.9897 + }, + { + "start": 18920.98, + "end": 18925.18, + "probability": 0.984 + }, + { + "start": 18925.26, + "end": 18927.32, + "probability": 0.8829 + }, + { + "start": 18928.12, + "end": 18930.84, + "probability": 0.9969 + }, + { + "start": 18930.84, + "end": 18932.8, + "probability": 0.8053 + }, + { + "start": 18933.22, + "end": 18933.62, + "probability": 0.69 + }, + { + "start": 18934.56, + "end": 18937.02, + "probability": 0.9819 + }, + { + "start": 18937.1, + "end": 18937.67, + "probability": 0.7959 + }, + { + "start": 18938.74, + "end": 18941.42, + "probability": 0.8509 + }, + { + "start": 18941.48, + "end": 18942.6, + "probability": 0.4816 + }, + { + "start": 18942.76, + "end": 18946.68, + "probability": 0.9288 + }, + { + "start": 18946.76, + "end": 18947.96, + "probability": 0.8651 + }, + { + "start": 18948.52, + "end": 18951.38, + "probability": 0.9845 + }, + { + "start": 18952.28, + "end": 18956.56, + "probability": 0.9941 + }, + { + "start": 18957.02, + "end": 18959.98, + "probability": 0.9425 + }, + { + "start": 18960.6, + "end": 18963.44, + "probability": 0.8333 + }, + { + "start": 18963.88, + "end": 18965.46, + "probability": 0.7586 + }, + { + "start": 18966.06, + "end": 18973.12, + "probability": 0.7761 + }, + { + "start": 18973.2, + "end": 18978.86, + "probability": 0.9058 + }, + { + "start": 18979.46, + "end": 18980.58, + "probability": 0.5222 + }, + { + "start": 18981.6, + "end": 18982.96, + "probability": 0.8878 + }, + { + "start": 18983.26, + "end": 18986.76, + "probability": 0.9355 + }, + { + "start": 18987.38, + "end": 18988.48, + "probability": 0.812 + }, + { + "start": 18988.54, + "end": 18993.42, + "probability": 0.8869 + }, + { + "start": 18993.92, + "end": 18996.14, + "probability": 0.7174 + }, + { + "start": 18996.18, + "end": 19001.26, + "probability": 0.9565 + }, + { + "start": 19003.72, + "end": 19010.34, + "probability": 0.8944 + }, + { + "start": 19010.48, + "end": 19013.6, + "probability": 0.9951 + }, + { + "start": 19014.28, + "end": 19017.66, + "probability": 0.9969 + }, + { + "start": 19018.44, + "end": 19019.52, + "probability": 0.9385 + }, + { + "start": 19019.68, + "end": 19026.16, + "probability": 0.9466 + }, + { + "start": 19026.24, + "end": 19028.22, + "probability": 0.7939 + }, + { + "start": 19028.56, + "end": 19032.28, + "probability": 0.795 + }, + { + "start": 19032.28, + "end": 19035.58, + "probability": 0.9586 + }, + { + "start": 19035.72, + "end": 19036.08, + "probability": 0.7701 + }, + { + "start": 19036.98, + "end": 19037.8, + "probability": 0.7316 + }, + { + "start": 19038.56, + "end": 19040.46, + "probability": 0.9778 + }, + { + "start": 19041.14, + "end": 19042.16, + "probability": 0.792 + }, + { + "start": 19042.84, + "end": 19045.85, + "probability": 0.9119 + }, + { + "start": 19048.02, + "end": 19049.52, + "probability": 0.8159 + }, + { + "start": 19054.62, + "end": 19058.0, + "probability": 0.2875 + }, + { + "start": 19058.42, + "end": 19059.44, + "probability": 0.699 + }, + { + "start": 19059.54, + "end": 19060.08, + "probability": 0.4239 + }, + { + "start": 19060.28, + "end": 19061.62, + "probability": 0.8266 + }, + { + "start": 19062.24, + "end": 19063.92, + "probability": 0.9553 + }, + { + "start": 19064.0, + "end": 19067.24, + "probability": 0.9851 + }, + { + "start": 19067.24, + "end": 19070.18, + "probability": 0.8976 + }, + { + "start": 19070.78, + "end": 19072.32, + "probability": 0.8745 + }, + { + "start": 19072.96, + "end": 19076.22, + "probability": 0.9242 + }, + { + "start": 19076.74, + "end": 19081.13, + "probability": 0.9947 + }, + { + "start": 19081.92, + "end": 19084.48, + "probability": 0.9445 + }, + { + "start": 19084.56, + "end": 19086.48, + "probability": 0.9059 + }, + { + "start": 19087.26, + "end": 19090.54, + "probability": 0.9535 + }, + { + "start": 19090.68, + "end": 19091.38, + "probability": 0.5416 + }, + { + "start": 19091.72, + "end": 19094.38, + "probability": 0.9057 + }, + { + "start": 19096.42, + "end": 19102.7, + "probability": 0.9481 + }, + { + "start": 19103.04, + "end": 19106.84, + "probability": 0.9357 + }, + { + "start": 19107.4, + "end": 19110.02, + "probability": 0.6517 + }, + { + "start": 19110.52, + "end": 19112.5, + "probability": 0.854 + }, + { + "start": 19112.62, + "end": 19114.24, + "probability": 0.8561 + }, + { + "start": 19114.34, + "end": 19120.38, + "probability": 0.8924 + }, + { + "start": 19121.1, + "end": 19122.29, + "probability": 0.7697 + }, + { + "start": 19123.12, + "end": 19124.59, + "probability": 0.9346 + }, + { + "start": 19125.24, + "end": 19126.92, + "probability": 0.916 + }, + { + "start": 19127.48, + "end": 19131.96, + "probability": 0.9288 + }, + { + "start": 19132.38, + "end": 19136.1, + "probability": 0.9954 + }, + { + "start": 19136.62, + "end": 19137.06, + "probability": 0.8285 + }, + { + "start": 19137.78, + "end": 19138.5, + "probability": 0.7149 + }, + { + "start": 19139.18, + "end": 19139.72, + "probability": 0.9978 + }, + { + "start": 19140.72, + "end": 19142.16, + "probability": 0.9912 + }, + { + "start": 19143.04, + "end": 19150.56, + "probability": 0.9995 + }, + { + "start": 19151.18, + "end": 19156.74, + "probability": 0.8845 + }, + { + "start": 19157.42, + "end": 19158.74, + "probability": 0.9424 + }, + { + "start": 19159.28, + "end": 19165.3, + "probability": 0.9512 + }, + { + "start": 19165.3, + "end": 19170.8, + "probability": 0.9821 + }, + { + "start": 19171.24, + "end": 19174.22, + "probability": 0.9683 + }, + { + "start": 19176.54, + "end": 19177.28, + "probability": 0.7268 + }, + { + "start": 19177.5, + "end": 19179.3, + "probability": 0.9636 + }, + { + "start": 19186.44, + "end": 19187.16, + "probability": 0.1872 + }, + { + "start": 19187.34, + "end": 19187.94, + "probability": 0.87 + }, + { + "start": 19193.02, + "end": 19194.24, + "probability": 0.4741 + }, + { + "start": 19195.12, + "end": 19196.3, + "probability": 0.7668 + }, + { + "start": 19197.56, + "end": 19200.36, + "probability": 0.9867 + }, + { + "start": 19200.36, + "end": 19203.6, + "probability": 0.9504 + }, + { + "start": 19204.58, + "end": 19205.52, + "probability": 0.6534 + }, + { + "start": 19206.04, + "end": 19207.94, + "probability": 0.3312 + }, + { + "start": 19207.98, + "end": 19214.7, + "probability": 0.8909 + }, + { + "start": 19215.3, + "end": 19217.68, + "probability": 0.8582 + }, + { + "start": 19218.78, + "end": 19220.5, + "probability": 0.7906 + }, + { + "start": 19221.32, + "end": 19224.66, + "probability": 0.9849 + }, + { + "start": 19224.74, + "end": 19226.09, + "probability": 0.9762 + }, + { + "start": 19227.2, + "end": 19229.33, + "probability": 0.8374 + }, + { + "start": 19230.94, + "end": 19232.16, + "probability": 0.7134 + }, + { + "start": 19232.9, + "end": 19233.9, + "probability": 0.9111 + }, + { + "start": 19235.9, + "end": 19240.8, + "probability": 0.9043 + }, + { + "start": 19242.64, + "end": 19243.8, + "probability": 0.9009 + }, + { + "start": 19244.86, + "end": 19245.86, + "probability": 0.9224 + }, + { + "start": 19246.82, + "end": 19252.5, + "probability": 0.7971 + }, + { + "start": 19255.02, + "end": 19255.64, + "probability": 0.5486 + }, + { + "start": 19256.56, + "end": 19258.28, + "probability": 0.6543 + }, + { + "start": 19260.72, + "end": 19270.28, + "probability": 0.7178 + }, + { + "start": 19270.96, + "end": 19279.99, + "probability": 0.7413 + }, + { + "start": 19280.1, + "end": 19281.0, + "probability": 0.1822 + }, + { + "start": 19281.0, + "end": 19283.3, + "probability": 0.6002 + }, + { + "start": 19283.96, + "end": 19286.38, + "probability": 0.7627 + }, + { + "start": 19288.76, + "end": 19289.62, + "probability": 0.7875 + }, + { + "start": 19290.48, + "end": 19292.4, + "probability": 0.9272 + }, + { + "start": 19293.38, + "end": 19295.12, + "probability": 0.9059 + }, + { + "start": 19299.8, + "end": 19304.16, + "probability": 0.9858 + }, + { + "start": 19305.12, + "end": 19305.96, + "probability": 0.4834 + }, + { + "start": 19307.36, + "end": 19308.04, + "probability": 0.9822 + }, + { + "start": 19308.72, + "end": 19310.08, + "probability": 0.6732 + }, + { + "start": 19311.76, + "end": 19315.34, + "probability": 0.7841 + }, + { + "start": 19317.3, + "end": 19318.34, + "probability": 0.7939 + }, + { + "start": 19320.2, + "end": 19325.0, + "probability": 0.9719 + }, + { + "start": 19325.72, + "end": 19326.84, + "probability": 0.947 + }, + { + "start": 19327.48, + "end": 19328.56, + "probability": 0.9814 + }, + { + "start": 19328.86, + "end": 19331.56, + "probability": 0.9562 + }, + { + "start": 19333.1, + "end": 19334.22, + "probability": 0.6333 + }, + { + "start": 19334.4, + "end": 19336.78, + "probability": 0.729 + }, + { + "start": 19337.52, + "end": 19338.68, + "probability": 0.7935 + }, + { + "start": 19339.56, + "end": 19342.64, + "probability": 0.8938 + }, + { + "start": 19343.34, + "end": 19344.78, + "probability": 0.9049 + }, + { + "start": 19345.66, + "end": 19350.42, + "probability": 0.967 + }, + { + "start": 19350.42, + "end": 19356.22, + "probability": 0.8524 + }, + { + "start": 19356.58, + "end": 19359.76, + "probability": 0.8423 + }, + { + "start": 19360.02, + "end": 19360.59, + "probability": 0.903 + }, + { + "start": 19361.32, + "end": 19362.0, + "probability": 0.831 + }, + { + "start": 19362.34, + "end": 19362.72, + "probability": 0.8572 + }, + { + "start": 19363.92, + "end": 19364.74, + "probability": 0.7805 + }, + { + "start": 19364.96, + "end": 19367.6, + "probability": 0.8248 + }, + { + "start": 19375.46, + "end": 19376.66, + "probability": 0.672 + }, + { + "start": 19377.72, + "end": 19378.22, + "probability": 0.9146 + }, + { + "start": 19379.58, + "end": 19381.74, + "probability": 0.6767 + }, + { + "start": 19382.34, + "end": 19384.12, + "probability": 0.8318 + }, + { + "start": 19385.7, + "end": 19387.46, + "probability": 0.988 + }, + { + "start": 19387.9, + "end": 19389.52, + "probability": 0.875 + }, + { + "start": 19389.68, + "end": 19390.5, + "probability": 0.9843 + }, + { + "start": 19391.4, + "end": 19393.52, + "probability": 0.9725 + }, + { + "start": 19393.58, + "end": 19394.88, + "probability": 0.7552 + }, + { + "start": 19395.29, + "end": 19397.46, + "probability": 0.8877 + }, + { + "start": 19398.52, + "end": 19399.78, + "probability": 0.9834 + }, + { + "start": 19400.46, + "end": 19401.96, + "probability": 0.9514 + }, + { + "start": 19403.0, + "end": 19404.28, + "probability": 0.3414 + }, + { + "start": 19404.34, + "end": 19404.82, + "probability": 0.871 + }, + { + "start": 19405.02, + "end": 19407.42, + "probability": 0.9924 + }, + { + "start": 19408.16, + "end": 19409.68, + "probability": 0.8288 + }, + { + "start": 19410.46, + "end": 19412.7, + "probability": 0.6697 + }, + { + "start": 19412.76, + "end": 19414.58, + "probability": 0.9523 + }, + { + "start": 19415.28, + "end": 19418.34, + "probability": 0.9969 + }, + { + "start": 19418.94, + "end": 19419.78, + "probability": 0.7149 + }, + { + "start": 19419.92, + "end": 19423.18, + "probability": 0.8969 + }, + { + "start": 19424.04, + "end": 19427.36, + "probability": 0.9478 + }, + { + "start": 19428.06, + "end": 19431.4, + "probability": 0.9929 + }, + { + "start": 19432.16, + "end": 19433.56, + "probability": 0.2715 + }, + { + "start": 19434.22, + "end": 19435.12, + "probability": 0.1582 + }, + { + "start": 19435.42, + "end": 19436.6, + "probability": 0.199 + }, + { + "start": 19436.82, + "end": 19437.88, + "probability": 0.1797 + }, + { + "start": 19437.88, + "end": 19438.38, + "probability": 0.7383 + }, + { + "start": 19438.6, + "end": 19440.24, + "probability": 0.9779 + }, + { + "start": 19440.52, + "end": 19441.84, + "probability": 0.9925 + }, + { + "start": 19442.1, + "end": 19444.3, + "probability": 0.9526 + }, + { + "start": 19444.86, + "end": 19445.66, + "probability": 0.8796 + }, + { + "start": 19446.02, + "end": 19448.48, + "probability": 0.9875 + }, + { + "start": 19448.48, + "end": 19451.78, + "probability": 0.808 + }, + { + "start": 19451.88, + "end": 19453.7, + "probability": 0.9689 + }, + { + "start": 19454.64, + "end": 19455.64, + "probability": 0.8368 + }, + { + "start": 19456.06, + "end": 19456.82, + "probability": 0.8611 + }, + { + "start": 19457.06, + "end": 19459.78, + "probability": 0.9783 + }, + { + "start": 19460.28, + "end": 19462.74, + "probability": 0.8744 + }, + { + "start": 19462.74, + "end": 19465.74, + "probability": 0.8893 + }, + { + "start": 19466.24, + "end": 19468.62, + "probability": 0.5733 + }, + { + "start": 19468.62, + "end": 19470.32, + "probability": 0.5014 + }, + { + "start": 19470.86, + "end": 19471.8, + "probability": 0.4375 + }, + { + "start": 19472.26, + "end": 19475.2, + "probability": 0.843 + }, + { + "start": 19475.32, + "end": 19477.34, + "probability": 0.6591 + }, + { + "start": 19477.72, + "end": 19479.08, + "probability": 0.8055 + }, + { + "start": 19479.86, + "end": 19482.5, + "probability": 0.9697 + }, + { + "start": 19482.56, + "end": 19485.58, + "probability": 0.9963 + }, + { + "start": 19485.58, + "end": 19489.18, + "probability": 0.9972 + }, + { + "start": 19489.5, + "end": 19496.32, + "probability": 0.7335 + }, + { + "start": 19496.9, + "end": 19500.22, + "probability": 0.7753 + }, + { + "start": 19501.02, + "end": 19503.96, + "probability": 0.9956 + }, + { + "start": 19504.12, + "end": 19506.32, + "probability": 0.5167 + }, + { + "start": 19506.36, + "end": 19509.87, + "probability": 0.8737 + }, + { + "start": 19510.92, + "end": 19517.6, + "probability": 0.9937 + }, + { + "start": 19517.68, + "end": 19522.38, + "probability": 0.9585 + }, + { + "start": 19522.78, + "end": 19528.0, + "probability": 0.9928 + }, + { + "start": 19528.6, + "end": 19529.56, + "probability": 0.9694 + }, + { + "start": 19530.1, + "end": 19531.38, + "probability": 0.9791 + }, + { + "start": 19532.0, + "end": 19533.4, + "probability": 0.6753 + }, + { + "start": 19533.96, + "end": 19540.8, + "probability": 0.9787 + }, + { + "start": 19541.5, + "end": 19544.3, + "probability": 0.9007 + }, + { + "start": 19544.78, + "end": 19551.08, + "probability": 0.5035 + }, + { + "start": 19551.34, + "end": 19552.76, + "probability": 0.6763 + }, + { + "start": 19553.3, + "end": 19554.5, + "probability": 0.6288 + }, + { + "start": 19554.84, + "end": 19555.7, + "probability": 0.6398 + }, + { + "start": 19556.14, + "end": 19558.42, + "probability": 0.9504 + }, + { + "start": 19559.0, + "end": 19561.74, + "probability": 0.935 + }, + { + "start": 19561.8, + "end": 19564.42, + "probability": 0.7112 + }, + { + "start": 19564.82, + "end": 19566.84, + "probability": 0.6657 + }, + { + "start": 19566.84, + "end": 19568.42, + "probability": 0.6963 + }, + { + "start": 19568.74, + "end": 19568.82, + "probability": 0.0668 + }, + { + "start": 19568.82, + "end": 19573.22, + "probability": 0.8288 + }, + { + "start": 19573.22, + "end": 19574.44, + "probability": 0.513 + }, + { + "start": 19574.78, + "end": 19575.94, + "probability": 0.9751 + }, + { + "start": 19576.46, + "end": 19582.62, + "probability": 0.9862 + }, + { + "start": 19582.84, + "end": 19585.08, + "probability": 0.8576 + }, + { + "start": 19585.4, + "end": 19586.14, + "probability": 0.8895 + }, + { + "start": 19586.86, + "end": 19587.36, + "probability": 0.7524 + }, + { + "start": 19587.48, + "end": 19589.06, + "probability": 0.9631 + }, + { + "start": 19593.12, + "end": 19593.12, + "probability": 0.4827 + }, + { + "start": 19593.12, + "end": 19594.96, + "probability": 0.4007 + }, + { + "start": 19595.28, + "end": 19596.42, + "probability": 0.9515 + }, + { + "start": 19596.52, + "end": 19598.28, + "probability": 0.959 + }, + { + "start": 19599.76, + "end": 19601.52, + "probability": 0.9464 + }, + { + "start": 19602.1, + "end": 19603.1, + "probability": 0.9132 + }, + { + "start": 19603.24, + "end": 19604.5, + "probability": 0.9878 + }, + { + "start": 19606.43, + "end": 19609.2, + "probability": 0.0682 + }, + { + "start": 19609.26, + "end": 19610.24, + "probability": 0.0814 + }, + { + "start": 19610.5, + "end": 19610.58, + "probability": 0.1168 + }, + { + "start": 19610.58, + "end": 19611.78, + "probability": 0.6625 + }, + { + "start": 19612.1, + "end": 19614.48, + "probability": 0.7881 + }, + { + "start": 19614.56, + "end": 19615.5, + "probability": 0.6323 + }, + { + "start": 19615.58, + "end": 19618.9, + "probability": 0.4864 + }, + { + "start": 19619.42, + "end": 19620.34, + "probability": 0.3282 + }, + { + "start": 19620.4, + "end": 19623.5, + "probability": 0.5454 + }, + { + "start": 19623.84, + "end": 19625.6, + "probability": 0.5112 + }, + { + "start": 19626.22, + "end": 19626.88, + "probability": 0.1888 + }, + { + "start": 19626.98, + "end": 19627.8, + "probability": 0.7549 + }, + { + "start": 19627.88, + "end": 19629.22, + "probability": 0.9834 + }, + { + "start": 19629.49, + "end": 19630.64, + "probability": 0.1614 + }, + { + "start": 19630.64, + "end": 19632.26, + "probability": 0.9487 + }, + { + "start": 19633.2, + "end": 19635.74, + "probability": 0.9924 + }, + { + "start": 19636.18, + "end": 19637.48, + "probability": 0.9692 + }, + { + "start": 19638.1, + "end": 19639.92, + "probability": 0.9492 + }, + { + "start": 19640.92, + "end": 19642.18, + "probability": 0.9409 + }, + { + "start": 19645.16, + "end": 19648.9, + "probability": 0.7929 + }, + { + "start": 19649.52, + "end": 19650.68, + "probability": 0.6095 + }, + { + "start": 19650.78, + "end": 19652.28, + "probability": 0.6736 + }, + { + "start": 19652.57, + "end": 19654.79, + "probability": 0.9421 + }, + { + "start": 19655.1, + "end": 19656.96, + "probability": 0.0242 + }, + { + "start": 19658.1, + "end": 19658.96, + "probability": 0.209 + }, + { + "start": 19661.28, + "end": 19661.64, + "probability": 0.0042 + }, + { + "start": 19663.6, + "end": 19664.72, + "probability": 0.0086 + }, + { + "start": 19664.72, + "end": 19669.4, + "probability": 0.0706 + }, + { + "start": 19669.6, + "end": 19670.68, + "probability": 0.1715 + }, + { + "start": 19671.22, + "end": 19672.56, + "probability": 0.123 + }, + { + "start": 19673.12, + "end": 19675.86, + "probability": 0.0458 + }, + { + "start": 19676.56, + "end": 19678.26, + "probability": 0.4752 + }, + { + "start": 19679.08, + "end": 19684.92, + "probability": 0.3779 + }, + { + "start": 19685.46, + "end": 19685.68, + "probability": 0.0536 + }, + { + "start": 19685.68, + "end": 19687.91, + "probability": 0.0932 + }, + { + "start": 19688.24, + "end": 19688.86, + "probability": 0.0431 + }, + { + "start": 19688.98, + "end": 19690.52, + "probability": 0.0106 + }, + { + "start": 19690.94, + "end": 19691.76, + "probability": 0.1022 + }, + { + "start": 19691.76, + "end": 19696.22, + "probability": 0.0805 + }, + { + "start": 19696.52, + "end": 19699.06, + "probability": 0.0087 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19707.0, + "end": 19707.0, + "probability": 0.0 + }, + { + "start": 19709.13, + "end": 19712.06, + "probability": 0.062 + }, + { + "start": 19712.14, + "end": 19713.34, + "probability": 0.843 + }, + { + "start": 19713.38, + "end": 19715.02, + "probability": 0.8381 + }, + { + "start": 19717.53, + "end": 19720.94, + "probability": 0.9888 + }, + { + "start": 19721.8, + "end": 19722.46, + "probability": 0.807 + }, + { + "start": 19723.5, + "end": 19725.02, + "probability": 0.8757 + }, + { + "start": 19725.06, + "end": 19726.94, + "probability": 0.9709 + }, + { + "start": 19727.28, + "end": 19728.26, + "probability": 0.9846 + }, + { + "start": 19728.36, + "end": 19729.76, + "probability": 0.4702 + }, + { + "start": 19729.94, + "end": 19732.28, + "probability": 0.7697 + }, + { + "start": 19732.86, + "end": 19733.96, + "probability": 0.1018 + }, + { + "start": 19733.96, + "end": 19733.96, + "probability": 0.127 + }, + { + "start": 19733.96, + "end": 19733.96, + "probability": 0.0742 + }, + { + "start": 19733.96, + "end": 19733.96, + "probability": 0.5513 + }, + { + "start": 19733.96, + "end": 19734.06, + "probability": 0.3294 + }, + { + "start": 19734.28, + "end": 19736.2, + "probability": 0.2461 + }, + { + "start": 19736.2, + "end": 19737.48, + "probability": 0.5026 + }, + { + "start": 19737.8, + "end": 19740.22, + "probability": 0.9518 + }, + { + "start": 19740.8, + "end": 19745.34, + "probability": 0.8836 + }, + { + "start": 19745.42, + "end": 19748.96, + "probability": 0.9474 + }, + { + "start": 19749.22, + "end": 19750.04, + "probability": 0.4142 + }, + { + "start": 19750.04, + "end": 19750.04, + "probability": 0.047 + }, + { + "start": 19750.2, + "end": 19751.36, + "probability": 0.7583 + }, + { + "start": 19752.18, + "end": 19754.56, + "probability": 0.3201 + }, + { + "start": 19754.68, + "end": 19756.42, + "probability": 0.7892 + }, + { + "start": 19756.58, + "end": 19757.58, + "probability": 0.5445 + }, + { + "start": 19758.01, + "end": 19759.84, + "probability": 0.6387 + }, + { + "start": 19759.84, + "end": 19763.12, + "probability": 0.7254 + }, + { + "start": 19763.12, + "end": 19763.48, + "probability": 0.6004 + }, + { + "start": 19764.46, + "end": 19764.92, + "probability": 0.7578 + }, + { + "start": 19765.92, + "end": 19766.6, + "probability": 0.8431 + }, + { + "start": 19766.62, + "end": 19768.44, + "probability": 0.6629 + }, + { + "start": 19768.52, + "end": 19769.82, + "probability": 0.7898 + }, + { + "start": 19769.92, + "end": 19770.46, + "probability": 0.8674 + }, + { + "start": 19770.7, + "end": 19772.0, + "probability": 0.9841 + }, + { + "start": 19772.56, + "end": 19777.01, + "probability": 0.9961 + }, + { + "start": 19777.16, + "end": 19778.0, + "probability": 0.8196 + }, + { + "start": 19778.06, + "end": 19778.6, + "probability": 0.8321 + }, + { + "start": 19778.96, + "end": 19780.18, + "probability": 0.3374 + }, + { + "start": 19780.18, + "end": 19780.28, + "probability": 0.0642 + }, + { + "start": 19780.32, + "end": 19781.64, + "probability": 0.9957 + }, + { + "start": 19781.7, + "end": 19782.98, + "probability": 0.9395 + }, + { + "start": 19783.62, + "end": 19787.3, + "probability": 0.9949 + }, + { + "start": 19788.82, + "end": 19792.5, + "probability": 0.9906 + }, + { + "start": 19792.56, + "end": 19795.58, + "probability": 0.9366 + }, + { + "start": 19795.62, + "end": 19796.24, + "probability": 0.7337 + }, + { + "start": 19799.82, + "end": 19799.86, + "probability": 0.0627 + }, + { + "start": 19799.86, + "end": 19800.46, + "probability": 0.0176 + }, + { + "start": 19800.46, + "end": 19801.8, + "probability": 0.7841 + }, + { + "start": 19801.86, + "end": 19804.28, + "probability": 0.8252 + }, + { + "start": 19804.28, + "end": 19804.94, + "probability": 0.7465 + }, + { + "start": 19804.96, + "end": 19807.64, + "probability": 0.1023 + }, + { + "start": 19808.78, + "end": 19810.08, + "probability": 0.0969 + }, + { + "start": 19810.14, + "end": 19815.4, + "probability": 0.6607 + }, + { + "start": 19815.4, + "end": 19817.74, + "probability": 0.4878 + }, + { + "start": 19817.74, + "end": 19821.22, + "probability": 0.1266 + }, + { + "start": 19822.65, + "end": 19824.3, + "probability": 0.2227 + }, + { + "start": 19824.3, + "end": 19824.3, + "probability": 0.0557 + }, + { + "start": 19824.3, + "end": 19824.3, + "probability": 0.229 + }, + { + "start": 19824.3, + "end": 19826.26, + "probability": 0.6138 + }, + { + "start": 19826.94, + "end": 19828.94, + "probability": 0.9763 + }, + { + "start": 19829.06, + "end": 19831.58, + "probability": 0.3005 + }, + { + "start": 19831.84, + "end": 19833.18, + "probability": 0.8928 + }, + { + "start": 19833.44, + "end": 19835.42, + "probability": 0.0958 + }, + { + "start": 19835.54, + "end": 19837.38, + "probability": 0.5134 + }, + { + "start": 19837.46, + "end": 19838.24, + "probability": 0.4402 + }, + { + "start": 19838.66, + "end": 19841.04, + "probability": 0.9888 + }, + { + "start": 19841.12, + "end": 19842.0, + "probability": 0.1026 + }, + { + "start": 19842.44, + "end": 19845.36, + "probability": 0.5269 + }, + { + "start": 19845.38, + "end": 19845.64, + "probability": 0.5876 + }, + { + "start": 19846.08, + "end": 19846.26, + "probability": 0.0353 + }, + { + "start": 19846.26, + "end": 19848.44, + "probability": 0.9127 + }, + { + "start": 19848.54, + "end": 19849.66, + "probability": 0.8243 + }, + { + "start": 19849.78, + "end": 19850.32, + "probability": 0.8218 + }, + { + "start": 19851.34, + "end": 19852.82, + "probability": 0.6237 + }, + { + "start": 19853.06, + "end": 19855.4, + "probability": 0.6581 + }, + { + "start": 19855.44, + "end": 19855.82, + "probability": 0.2202 + }, + { + "start": 19855.82, + "end": 19856.12, + "probability": 0.3071 + }, + { + "start": 19856.12, + "end": 19856.48, + "probability": 0.013 + }, + { + "start": 19856.54, + "end": 19858.18, + "probability": 0.6525 + }, + { + "start": 19858.18, + "end": 19859.34, + "probability": 0.2025 + }, + { + "start": 19859.56, + "end": 19861.86, + "probability": 0.3624 + }, + { + "start": 19861.96, + "end": 19863.32, + "probability": 0.5115 + }, + { + "start": 19863.42, + "end": 19864.14, + "probability": 0.8501 + }, + { + "start": 19864.2, + "end": 19864.84, + "probability": 0.7963 + }, + { + "start": 19865.2, + "end": 19866.66, + "probability": 0.6563 + }, + { + "start": 19866.66, + "end": 19869.48, + "probability": 0.7538 + }, + { + "start": 19869.54, + "end": 19870.72, + "probability": 0.6309 + }, + { + "start": 19870.72, + "end": 19870.76, + "probability": 0.1371 + }, + { + "start": 19873.14, + "end": 19873.22, + "probability": 0.0707 + }, + { + "start": 19873.22, + "end": 19873.22, + "probability": 0.032 + }, + { + "start": 19873.22, + "end": 19873.22, + "probability": 0.1217 + }, + { + "start": 19873.22, + "end": 19873.22, + "probability": 0.0191 + }, + { + "start": 19873.22, + "end": 19873.64, + "probability": 0.179 + }, + { + "start": 19874.34, + "end": 19879.2, + "probability": 0.926 + }, + { + "start": 19879.2, + "end": 19879.26, + "probability": 0.0217 + }, + { + "start": 19879.78, + "end": 19882.52, + "probability": 0.837 + }, + { + "start": 19882.58, + "end": 19884.18, + "probability": 0.7909 + }, + { + "start": 19884.18, + "end": 19884.24, + "probability": 0.0553 + }, + { + "start": 19884.24, + "end": 19884.48, + "probability": 0.0328 + }, + { + "start": 19884.64, + "end": 19885.76, + "probability": 0.9271 + }, + { + "start": 19885.82, + "end": 19887.3, + "probability": 0.9814 + }, + { + "start": 19887.38, + "end": 19888.25, + "probability": 0.703 + }, + { + "start": 19888.34, + "end": 19890.44, + "probability": 0.4493 + }, + { + "start": 19890.44, + "end": 19890.44, + "probability": 0.1182 + }, + { + "start": 19890.44, + "end": 19891.25, + "probability": 0.0972 + }, + { + "start": 19892.4, + "end": 19894.28, + "probability": 0.5195 + }, + { + "start": 19894.74, + "end": 19895.7, + "probability": 0.8735 + }, + { + "start": 19895.74, + "end": 19898.29, + "probability": 0.7543 + }, + { + "start": 19900.48, + "end": 19900.58, + "probability": 0.2812 + }, + { + "start": 19900.58, + "end": 19900.58, + "probability": 0.0454 + }, + { + "start": 19900.58, + "end": 19903.54, + "probability": 0.8475 + }, + { + "start": 19903.74, + "end": 19905.3, + "probability": 0.7914 + }, + { + "start": 19905.64, + "end": 19906.62, + "probability": 0.5794 + }, + { + "start": 19906.62, + "end": 19909.21, + "probability": 0.8198 + }, + { + "start": 19910.06, + "end": 19911.4, + "probability": 0.8392 + }, + { + "start": 19911.54, + "end": 19913.7, + "probability": 0.8638 + }, + { + "start": 19913.74, + "end": 19914.24, + "probability": 0.8661 + }, + { + "start": 19914.24, + "end": 19915.7, + "probability": 0.4679 + }, + { + "start": 19915.78, + "end": 19917.62, + "probability": 0.7522 + }, + { + "start": 19917.62, + "end": 19919.22, + "probability": 0.6453 + }, + { + "start": 19919.64, + "end": 19920.86, + "probability": 0.8057 + }, + { + "start": 19921.04, + "end": 19924.04, + "probability": 0.7759 + }, + { + "start": 19924.54, + "end": 19924.56, + "probability": 0.272 + }, + { + "start": 19924.56, + "end": 19924.56, + "probability": 0.4825 + }, + { + "start": 19924.56, + "end": 19924.56, + "probability": 0.0054 + }, + { + "start": 19924.56, + "end": 19927.16, + "probability": 0.8285 + }, + { + "start": 19927.18, + "end": 19928.88, + "probability": 0.838 + }, + { + "start": 19928.92, + "end": 19928.98, + "probability": 0.0345 + }, + { + "start": 19928.98, + "end": 19930.28, + "probability": 0.0413 + }, + { + "start": 19930.28, + "end": 19933.04, + "probability": 0.1173 + }, + { + "start": 19933.04, + "end": 19934.72, + "probability": 0.4071 + }, + { + "start": 19935.06, + "end": 19937.98, + "probability": 0.8607 + }, + { + "start": 19938.2, + "end": 19940.08, + "probability": 0.9987 + }, + { + "start": 19940.8, + "end": 19940.8, + "probability": 0.0102 + }, + { + "start": 19940.8, + "end": 19940.94, + "probability": 0.038 + }, + { + "start": 19940.94, + "end": 19942.46, + "probability": 0.5907 + }, + { + "start": 19943.79, + "end": 19945.78, + "probability": 0.8658 + }, + { + "start": 19952.8, + "end": 19953.44, + "probability": 0.507 + }, + { + "start": 19956.22, + "end": 19959.08, + "probability": 0.7768 + }, + { + "start": 19959.98, + "end": 19960.88, + "probability": 0.7924 + }, + { + "start": 19973.4, + "end": 19976.08, + "probability": 0.5016 + }, + { + "start": 19976.08, + "end": 19977.58, + "probability": 0.7882 + }, + { + "start": 19977.74, + "end": 19979.6, + "probability": 0.6285 + }, + { + "start": 19979.66, + "end": 19982.8, + "probability": 0.8033 + }, + { + "start": 19983.58, + "end": 19986.52, + "probability": 0.9535 + }, + { + "start": 19987.1, + "end": 19989.46, + "probability": 0.8853 + }, + { + "start": 19990.1, + "end": 19995.1, + "probability": 0.969 + }, + { + "start": 19996.0, + "end": 19998.22, + "probability": 0.9966 + }, + { + "start": 19998.82, + "end": 19999.14, + "probability": 0.4927 + }, + { + "start": 19999.16, + "end": 20004.9, + "probability": 0.979 + }, + { + "start": 20005.78, + "end": 20010.84, + "probability": 0.9982 + }, + { + "start": 20011.08, + "end": 20013.4, + "probability": 0.997 + }, + { + "start": 20013.72, + "end": 20014.3, + "probability": 0.4211 + }, + { + "start": 20014.3, + "end": 20016.34, + "probability": 0.9159 + }, + { + "start": 20016.7, + "end": 20018.28, + "probability": 0.9145 + }, + { + "start": 20018.42, + "end": 20020.34, + "probability": 0.9788 + }, + { + "start": 20020.66, + "end": 20021.88, + "probability": 0.8149 + }, + { + "start": 20021.92, + "end": 20022.64, + "probability": 0.7546 + }, + { + "start": 20023.1, + "end": 20026.26, + "probability": 0.9697 + }, + { + "start": 20026.78, + "end": 20028.14, + "probability": 0.9542 + }, + { + "start": 20028.64, + "end": 20032.08, + "probability": 0.7887 + }, + { + "start": 20032.3, + "end": 20033.62, + "probability": 0.7864 + }, + { + "start": 20033.8, + "end": 20037.06, + "probability": 0.8785 + }, + { + "start": 20037.4, + "end": 20039.7, + "probability": 0.9151 + }, + { + "start": 20039.98, + "end": 20041.74, + "probability": 0.9905 + }, + { + "start": 20041.84, + "end": 20045.89, + "probability": 0.9507 + }, + { + "start": 20046.56, + "end": 20050.84, + "probability": 0.9705 + }, + { + "start": 20051.36, + "end": 20053.84, + "probability": 0.8962 + }, + { + "start": 20054.08, + "end": 20055.64, + "probability": 0.5876 + }, + { + "start": 20055.92, + "end": 20058.14, + "probability": 0.6978 + }, + { + "start": 20058.58, + "end": 20059.14, + "probability": 0.8889 + }, + { + "start": 20059.28, + "end": 20062.78, + "probability": 0.9398 + }, + { + "start": 20062.98, + "end": 20065.37, + "probability": 0.9497 + }, + { + "start": 20065.78, + "end": 20068.04, + "probability": 0.7153 + }, + { + "start": 20068.5, + "end": 20069.54, + "probability": 0.8289 + }, + { + "start": 20069.68, + "end": 20073.02, + "probability": 0.9743 + }, + { + "start": 20073.3, + "end": 20074.84, + "probability": 0.7022 + }, + { + "start": 20074.98, + "end": 20078.42, + "probability": 0.9292 + }, + { + "start": 20078.66, + "end": 20082.1, + "probability": 0.9878 + }, + { + "start": 20082.64, + "end": 20084.23, + "probability": 0.9197 + }, + { + "start": 20084.92, + "end": 20086.32, + "probability": 0.9175 + }, + { + "start": 20086.74, + "end": 20087.18, + "probability": 0.7787 + }, + { + "start": 20087.4, + "end": 20088.44, + "probability": 0.9367 + }, + { + "start": 20088.84, + "end": 20093.35, + "probability": 0.9879 + }, + { + "start": 20093.7, + "end": 20094.44, + "probability": 0.7238 + }, + { + "start": 20094.64, + "end": 20095.96, + "probability": 0.8928 + }, + { + "start": 20096.26, + "end": 20099.92, + "probability": 0.9932 + }, + { + "start": 20099.92, + "end": 20104.58, + "probability": 0.9995 + }, + { + "start": 20104.94, + "end": 20106.28, + "probability": 0.9214 + }, + { + "start": 20106.54, + "end": 20109.34, + "probability": 0.5903 + }, + { + "start": 20109.74, + "end": 20113.14, + "probability": 0.903 + }, + { + "start": 20113.46, + "end": 20114.54, + "probability": 0.8963 + }, + { + "start": 20114.74, + "end": 20116.36, + "probability": 0.9686 + }, + { + "start": 20116.7, + "end": 20119.14, + "probability": 0.9951 + }, + { + "start": 20119.28, + "end": 20122.76, + "probability": 0.9961 + }, + { + "start": 20122.98, + "end": 20127.46, + "probability": 0.9704 + }, + { + "start": 20127.78, + "end": 20129.16, + "probability": 0.7988 + }, + { + "start": 20129.58, + "end": 20130.86, + "probability": 0.9429 + }, + { + "start": 20132.16, + "end": 20132.78, + "probability": 0.4977 + }, + { + "start": 20132.94, + "end": 20134.32, + "probability": 0.701 + }, + { + "start": 20134.44, + "end": 20135.46, + "probability": 0.7943 + }, + { + "start": 20135.54, + "end": 20137.32, + "probability": 0.8292 + }, + { + "start": 20137.66, + "end": 20139.26, + "probability": 0.944 + }, + { + "start": 20139.74, + "end": 20141.88, + "probability": 0.9684 + }, + { + "start": 20142.16, + "end": 20146.93, + "probability": 0.9922 + }, + { + "start": 20147.02, + "end": 20149.78, + "probability": 0.9995 + }, + { + "start": 20149.86, + "end": 20154.3, + "probability": 0.9403 + }, + { + "start": 20154.4, + "end": 20155.6, + "probability": 0.9005 + }, + { + "start": 20155.96, + "end": 20156.97, + "probability": 0.9651 + }, + { + "start": 20157.42, + "end": 20159.06, + "probability": 0.8305 + }, + { + "start": 20159.32, + "end": 20162.9, + "probability": 0.9333 + }, + { + "start": 20163.08, + "end": 20165.2, + "probability": 0.9919 + }, + { + "start": 20165.64, + "end": 20166.44, + "probability": 0.6839 + }, + { + "start": 20166.46, + "end": 20167.96, + "probability": 0.8696 + }, + { + "start": 20168.06, + "end": 20169.4, + "probability": 0.9184 + }, + { + "start": 20169.84, + "end": 20172.3, + "probability": 0.8474 + }, + { + "start": 20173.16, + "end": 20174.24, + "probability": 0.8666 + }, + { + "start": 20174.34, + "end": 20176.78, + "probability": 0.9577 + }, + { + "start": 20177.04, + "end": 20180.14, + "probability": 0.9844 + }, + { + "start": 20180.28, + "end": 20180.66, + "probability": 0.7352 + }, + { + "start": 20180.76, + "end": 20181.76, + "probability": 0.7927 + }, + { + "start": 20182.36, + "end": 20185.68, + "probability": 0.4464 + }, + { + "start": 20186.72, + "end": 20187.56, + "probability": 0.4664 + }, + { + "start": 20187.62, + "end": 20187.66, + "probability": 0.6536 + }, + { + "start": 20187.66, + "end": 20188.57, + "probability": 0.604 + }, + { + "start": 20189.12, + "end": 20190.64, + "probability": 0.8864 + }, + { + "start": 20191.06, + "end": 20193.3, + "probability": 0.2001 + }, + { + "start": 20193.38, + "end": 20194.56, + "probability": 0.5703 + }, + { + "start": 20194.8, + "end": 20199.21, + "probability": 0.6193 + }, + { + "start": 20199.36, + "end": 20203.14, + "probability": 0.0519 + }, + { + "start": 20203.48, + "end": 20204.66, + "probability": 0.9842 + }, + { + "start": 20204.7, + "end": 20206.16, + "probability": 0.8375 + }, + { + "start": 20206.4, + "end": 20207.56, + "probability": 0.4444 + }, + { + "start": 20208.18, + "end": 20210.92, + "probability": 0.9636 + }, + { + "start": 20213.46, + "end": 20217.7, + "probability": 0.6654 + }, + { + "start": 20219.68, + "end": 20222.7, + "probability": 0.7798 + }, + { + "start": 20222.96, + "end": 20225.18, + "probability": 0.9563 + }, + { + "start": 20225.28, + "end": 20227.36, + "probability": 0.8822 + }, + { + "start": 20231.66, + "end": 20236.68, + "probability": 0.7246 + }, + { + "start": 20236.84, + "end": 20238.02, + "probability": 0.2056 + }, + { + "start": 20238.22, + "end": 20240.76, + "probability": 0.0104 + }, + { + "start": 20242.9, + "end": 20245.42, + "probability": 0.0327 + }, + { + "start": 20250.72, + "end": 20252.56, + "probability": 0.5405 + }, + { + "start": 20252.78, + "end": 20255.04, + "probability": 0.8047 + }, + { + "start": 20255.38, + "end": 20256.44, + "probability": 0.8494 + }, + { + "start": 20256.5, + "end": 20258.28, + "probability": 0.4577 + }, + { + "start": 20258.5, + "end": 20259.82, + "probability": 0.8003 + }, + { + "start": 20259.9, + "end": 20261.87, + "probability": 0.9314 + }, + { + "start": 20262.12, + "end": 20262.72, + "probability": 0.5981 + }, + { + "start": 20262.82, + "end": 20266.52, + "probability": 0.8324 + }, + { + "start": 20266.64, + "end": 20267.82, + "probability": 0.3536 + }, + { + "start": 20268.0, + "end": 20268.6, + "probability": 0.8838 + }, + { + "start": 20268.72, + "end": 20270.22, + "probability": 0.77 + }, + { + "start": 20270.44, + "end": 20271.78, + "probability": 0.6 + }, + { + "start": 20271.96, + "end": 20278.41, + "probability": 0.9912 + }, + { + "start": 20279.54, + "end": 20280.84, + "probability": 0.8999 + }, + { + "start": 20281.28, + "end": 20283.22, + "probability": 0.9014 + }, + { + "start": 20283.32, + "end": 20285.86, + "probability": 0.9938 + }, + { + "start": 20285.86, + "end": 20289.76, + "probability": 0.9194 + }, + { + "start": 20290.52, + "end": 20291.66, + "probability": 0.8755 + }, + { + "start": 20291.74, + "end": 20294.54, + "probability": 0.9031 + }, + { + "start": 20294.82, + "end": 20301.4, + "probability": 0.959 + }, + { + "start": 20301.48, + "end": 20303.4, + "probability": 0.8709 + }, + { + "start": 20303.54, + "end": 20304.04, + "probability": 0.4681 + }, + { + "start": 20304.06, + "end": 20304.88, + "probability": 0.5643 + }, + { + "start": 20304.96, + "end": 20307.12, + "probability": 0.8589 + }, + { + "start": 20307.68, + "end": 20310.77, + "probability": 0.9902 + }, + { + "start": 20314.71, + "end": 20316.78, + "probability": 0.4913 + }, + { + "start": 20316.78, + "end": 20317.84, + "probability": 0.8106 + }, + { + "start": 20318.46, + "end": 20321.72, + "probability": 0.9143 + }, + { + "start": 20321.72, + "end": 20325.32, + "probability": 0.9956 + }, + { + "start": 20326.02, + "end": 20328.28, + "probability": 0.5104 + }, + { + "start": 20328.34, + "end": 20334.87, + "probability": 0.9819 + }, + { + "start": 20336.5, + "end": 20342.7, + "probability": 0.9499 + }, + { + "start": 20343.26, + "end": 20344.62, + "probability": 0.8833 + }, + { + "start": 20345.66, + "end": 20348.86, + "probability": 0.9453 + }, + { + "start": 20348.86, + "end": 20352.26, + "probability": 0.9963 + }, + { + "start": 20352.8, + "end": 20354.3, + "probability": 0.7893 + }, + { + "start": 20355.1, + "end": 20357.72, + "probability": 0.8857 + }, + { + "start": 20358.4, + "end": 20361.56, + "probability": 0.9858 + }, + { + "start": 20362.6, + "end": 20365.7, + "probability": 0.9519 + }, + { + "start": 20366.88, + "end": 20373.14, + "probability": 0.9843 + }, + { + "start": 20373.66, + "end": 20375.56, + "probability": 0.9879 + }, + { + "start": 20376.04, + "end": 20379.58, + "probability": 0.9733 + }, + { + "start": 20380.86, + "end": 20381.42, + "probability": 0.8168 + }, + { + "start": 20382.38, + "end": 20384.6, + "probability": 0.9814 + }, + { + "start": 20385.52, + "end": 20387.76, + "probability": 0.9923 + }, + { + "start": 20387.92, + "end": 20392.58, + "probability": 0.9969 + }, + { + "start": 20393.0, + "end": 20395.96, + "probability": 0.9983 + }, + { + "start": 20396.24, + "end": 20396.48, + "probability": 0.3091 + }, + { + "start": 20396.58, + "end": 20400.4, + "probability": 0.6714 + }, + { + "start": 20400.8, + "end": 20401.86, + "probability": 0.917 + }, + { + "start": 20402.16, + "end": 20402.76, + "probability": 0.8252 + }, + { + "start": 20404.3, + "end": 20406.22, + "probability": 0.6631 + }, + { + "start": 20406.68, + "end": 20408.16, + "probability": 0.9395 + }, + { + "start": 20420.76, + "end": 20423.06, + "probability": 0.7908 + }, + { + "start": 20423.18, + "end": 20423.72, + "probability": 0.6193 + }, + { + "start": 20423.74, + "end": 20424.4, + "probability": 0.5099 + }, + { + "start": 20425.1, + "end": 20426.6, + "probability": 0.7925 + }, + { + "start": 20427.18, + "end": 20431.5, + "probability": 0.9646 + }, + { + "start": 20432.38, + "end": 20436.4, + "probability": 0.8933 + }, + { + "start": 20436.84, + "end": 20442.16, + "probability": 0.9848 + }, + { + "start": 20442.68, + "end": 20444.22, + "probability": 0.8528 + }, + { + "start": 20445.08, + "end": 20446.7, + "probability": 0.9673 + }, + { + "start": 20446.86, + "end": 20453.6, + "probability": 0.9805 + }, + { + "start": 20453.7, + "end": 20454.34, + "probability": 0.703 + }, + { + "start": 20454.76, + "end": 20456.44, + "probability": 0.5429 + }, + { + "start": 20456.86, + "end": 20458.44, + "probability": 0.9917 + }, + { + "start": 20458.96, + "end": 20459.86, + "probability": 0.5935 + }, + { + "start": 20459.94, + "end": 20460.92, + "probability": 0.7934 + }, + { + "start": 20460.96, + "end": 20461.42, + "probability": 0.4411 + }, + { + "start": 20461.9, + "end": 20465.4, + "probability": 0.9246 + }, + { + "start": 20465.46, + "end": 20466.7, + "probability": 0.8004 + }, + { + "start": 20467.26, + "end": 20472.08, + "probability": 0.7797 + }, + { + "start": 20472.62, + "end": 20473.94, + "probability": 0.9213 + }, + { + "start": 20474.56, + "end": 20476.79, + "probability": 0.5168 + }, + { + "start": 20477.4, + "end": 20479.78, + "probability": 0.947 + }, + { + "start": 20480.16, + "end": 20482.94, + "probability": 0.9938 + }, + { + "start": 20483.62, + "end": 20485.82, + "probability": 0.9577 + }, + { + "start": 20487.58, + "end": 20489.68, + "probability": 0.8651 + }, + { + "start": 20490.48, + "end": 20493.64, + "probability": 0.7721 + }, + { + "start": 20494.24, + "end": 20495.84, + "probability": 0.8526 + }, + { + "start": 20496.42, + "end": 20499.58, + "probability": 0.8403 + }, + { + "start": 20500.7, + "end": 20507.86, + "probability": 0.959 + }, + { + "start": 20508.58, + "end": 20511.36, + "probability": 0.9854 + }, + { + "start": 20511.4, + "end": 20512.42, + "probability": 0.8512 + }, + { + "start": 20512.5, + "end": 20513.02, + "probability": 0.7689 + }, + { + "start": 20513.12, + "end": 20516.52, + "probability": 0.8824 + }, + { + "start": 20516.58, + "end": 20517.42, + "probability": 0.2313 + }, + { + "start": 20517.48, + "end": 20517.92, + "probability": 0.6091 + }, + { + "start": 20518.48, + "end": 20524.04, + "probability": 0.9526 + }, + { + "start": 20524.66, + "end": 20530.26, + "probability": 0.9752 + }, + { + "start": 20531.28, + "end": 20536.62, + "probability": 0.9951 + }, + { + "start": 20536.86, + "end": 20543.24, + "probability": 0.9753 + }, + { + "start": 20543.44, + "end": 20544.92, + "probability": 0.8081 + }, + { + "start": 20545.52, + "end": 20547.32, + "probability": 0.5568 + }, + { + "start": 20547.94, + "end": 20551.46, + "probability": 0.9746 + }, + { + "start": 20552.16, + "end": 20555.36, + "probability": 0.9839 + }, + { + "start": 20556.2, + "end": 20561.7, + "probability": 0.9928 + }, + { + "start": 20562.48, + "end": 20563.96, + "probability": 0.8777 + }, + { + "start": 20564.12, + "end": 20565.14, + "probability": 0.7904 + }, + { + "start": 20565.74, + "end": 20566.42, + "probability": 0.6656 + }, + { + "start": 20566.94, + "end": 20571.26, + "probability": 0.9855 + }, + { + "start": 20572.24, + "end": 20574.54, + "probability": 0.9951 + }, + { + "start": 20575.24, + "end": 20578.32, + "probability": 0.9683 + }, + { + "start": 20578.48, + "end": 20579.42, + "probability": 0.9412 + }, + { + "start": 20580.16, + "end": 20583.32, + "probability": 0.9774 + }, + { + "start": 20584.7, + "end": 20585.4, + "probability": 0.816 + }, + { + "start": 20586.5, + "end": 20589.4, + "probability": 0.9904 + }, + { + "start": 20592.7, + "end": 20594.66, + "probability": 0.8005 + }, + { + "start": 20595.16, + "end": 20598.22, + "probability": 0.9443 + }, + { + "start": 20599.08, + "end": 20602.38, + "probability": 0.7631 + }, + { + "start": 20602.44, + "end": 20603.74, + "probability": 0.7995 + }, + { + "start": 20603.86, + "end": 20606.76, + "probability": 0.799 + }, + { + "start": 20607.7, + "end": 20609.38, + "probability": 0.8269 + }, + { + "start": 20611.27, + "end": 20613.18, + "probability": 0.6669 + }, + { + "start": 20613.78, + "end": 20613.78, + "probability": 0.0114 + }, + { + "start": 20613.78, + "end": 20618.38, + "probability": 0.9552 + }, + { + "start": 20619.12, + "end": 20623.3, + "probability": 0.8413 + }, + { + "start": 20623.88, + "end": 20625.36, + "probability": 0.8264 + }, + { + "start": 20626.34, + "end": 20631.76, + "probability": 0.9785 + }, + { + "start": 20632.36, + "end": 20635.24, + "probability": 0.9941 + }, + { + "start": 20635.86, + "end": 20639.9, + "probability": 0.9883 + }, + { + "start": 20640.26, + "end": 20641.1, + "probability": 0.979 + }, + { + "start": 20641.52, + "end": 20642.66, + "probability": 0.9719 + }, + { + "start": 20642.82, + "end": 20643.81, + "probability": 0.7517 + }, + { + "start": 20644.46, + "end": 20647.6, + "probability": 0.9556 + }, + { + "start": 20647.68, + "end": 20648.18, + "probability": 0.6327 + }, + { + "start": 20648.18, + "end": 20653.22, + "probability": 0.9976 + }, + { + "start": 20653.28, + "end": 20653.74, + "probability": 0.8616 + }, + { + "start": 20653.74, + "end": 20653.86, + "probability": 0.7407 + }, + { + "start": 20654.46, + "end": 20656.7, + "probability": 0.8413 + }, + { + "start": 20658.9, + "end": 20659.78, + "probability": 0.6326 + }, + { + "start": 20660.6, + "end": 20664.26, + "probability": 0.6743 + }, + { + "start": 20664.8, + "end": 20665.04, + "probability": 0.2609 + }, + { + "start": 20670.82, + "end": 20671.6, + "probability": 0.3068 + }, + { + "start": 20672.02, + "end": 20675.06, + "probability": 0.7417 + }, + { + "start": 20676.44, + "end": 20678.26, + "probability": 0.9082 + }, + { + "start": 20679.52, + "end": 20681.54, + "probability": 0.9859 + }, + { + "start": 20685.04, + "end": 20686.88, + "probability": 0.8447 + }, + { + "start": 20688.54, + "end": 20690.94, + "probability": 0.294 + }, + { + "start": 20690.98, + "end": 20692.24, + "probability": 0.5543 + }, + { + "start": 20694.7, + "end": 20697.02, + "probability": 0.8555 + }, + { + "start": 20698.12, + "end": 20699.32, + "probability": 0.9437 + }, + { + "start": 20700.58, + "end": 20702.36, + "probability": 0.9368 + }, + { + "start": 20703.34, + "end": 20705.32, + "probability": 0.9878 + }, + { + "start": 20707.08, + "end": 20708.34, + "probability": 0.8951 + }, + { + "start": 20709.46, + "end": 20715.0, + "probability": 0.9 + }, + { + "start": 20716.04, + "end": 20716.98, + "probability": 0.7649 + }, + { + "start": 20717.1, + "end": 20718.1, + "probability": 0.9587 + }, + { + "start": 20718.58, + "end": 20721.96, + "probability": 0.9883 + }, + { + "start": 20722.6, + "end": 20728.14, + "probability": 0.9216 + }, + { + "start": 20729.1, + "end": 20733.24, + "probability": 0.9902 + }, + { + "start": 20733.86, + "end": 20735.2, + "probability": 0.9857 + }, + { + "start": 20735.32, + "end": 20738.36, + "probability": 0.9893 + }, + { + "start": 20739.7, + "end": 20743.04, + "probability": 0.9698 + }, + { + "start": 20743.72, + "end": 20748.76, + "probability": 0.9151 + }, + { + "start": 20749.72, + "end": 20750.98, + "probability": 0.993 + }, + { + "start": 20751.74, + "end": 20753.18, + "probability": 0.9585 + }, + { + "start": 20754.22, + "end": 20755.28, + "probability": 0.9819 + }, + { + "start": 20756.0, + "end": 20759.86, + "probability": 0.9753 + }, + { + "start": 20760.08, + "end": 20762.42, + "probability": 0.8245 + }, + { + "start": 20763.5, + "end": 20767.74, + "probability": 0.9736 + }, + { + "start": 20768.26, + "end": 20771.16, + "probability": 0.9906 + }, + { + "start": 20772.38, + "end": 20774.0, + "probability": 0.8859 + }, + { + "start": 20774.76, + "end": 20776.52, + "probability": 0.9712 + }, + { + "start": 20777.46, + "end": 20780.4, + "probability": 0.7408 + }, + { + "start": 20781.12, + "end": 20783.5, + "probability": 0.843 + }, + { + "start": 20783.74, + "end": 20785.48, + "probability": 0.9017 + }, + { + "start": 20786.24, + "end": 20788.18, + "probability": 0.9883 + }, + { + "start": 20789.2, + "end": 20789.64, + "probability": 0.742 + }, + { + "start": 20790.06, + "end": 20794.22, + "probability": 0.9553 + }, + { + "start": 20794.82, + "end": 20798.02, + "probability": 0.8674 + }, + { + "start": 20798.18, + "end": 20800.48, + "probability": 0.764 + }, + { + "start": 20801.04, + "end": 20805.08, + "probability": 0.9906 + }, + { + "start": 20805.6, + "end": 20807.14, + "probability": 0.7712 + }, + { + "start": 20807.74, + "end": 20808.32, + "probability": 0.7127 + }, + { + "start": 20808.36, + "end": 20812.54, + "probability": 0.9904 + }, + { + "start": 20812.7, + "end": 20816.02, + "probability": 0.9482 + }, + { + "start": 20816.58, + "end": 20818.62, + "probability": 0.9471 + }, + { + "start": 20819.18, + "end": 20819.56, + "probability": 0.6672 + }, + { + "start": 20820.16, + "end": 20821.3, + "probability": 0.7126 + }, + { + "start": 20821.88, + "end": 20823.7, + "probability": 0.3374 + }, + { + "start": 20824.24, + "end": 20827.22, + "probability": 0.9497 + }, + { + "start": 20828.48, + "end": 20830.52, + "probability": 0.8789 + }, + { + "start": 20830.94, + "end": 20834.1, + "probability": 0.9289 + }, + { + "start": 20834.3, + "end": 20837.26, + "probability": 0.902 + }, + { + "start": 20837.82, + "end": 20841.9, + "probability": 0.787 + }, + { + "start": 20842.04, + "end": 20842.44, + "probability": 0.7837 + }, + { + "start": 20843.3, + "end": 20843.98, + "probability": 0.7798 + }, + { + "start": 20844.12, + "end": 20846.66, + "probability": 0.9676 + }, + { + "start": 20866.28, + "end": 20867.16, + "probability": 0.8218 + }, + { + "start": 20867.5, + "end": 20870.14, + "probability": 0.9664 + }, + { + "start": 20870.2, + "end": 20871.83, + "probability": 0.6845 + }, + { + "start": 20872.88, + "end": 20873.16, + "probability": 0.559 + }, + { + "start": 20873.16, + "end": 20874.44, + "probability": 0.5699 + }, + { + "start": 20874.88, + "end": 20877.94, + "probability": 0.9782 + }, + { + "start": 20878.04, + "end": 20879.3, + "probability": 0.7877 + }, + { + "start": 20879.62, + "end": 20882.44, + "probability": 0.7506 + }, + { + "start": 20882.54, + "end": 20885.28, + "probability": 0.9946 + }, + { + "start": 20886.3, + "end": 20891.68, + "probability": 0.9377 + }, + { + "start": 20892.26, + "end": 20894.76, + "probability": 0.9972 + }, + { + "start": 20894.82, + "end": 20896.22, + "probability": 0.9273 + }, + { + "start": 20896.26, + "end": 20897.32, + "probability": 0.9633 + }, + { + "start": 20898.52, + "end": 20899.7, + "probability": 0.9402 + }, + { + "start": 20899.74, + "end": 20900.08, + "probability": 0.7031 + }, + { + "start": 20900.14, + "end": 20900.99, + "probability": 0.9822 + }, + { + "start": 20901.9, + "end": 20903.62, + "probability": 0.7524 + }, + { + "start": 20904.94, + "end": 20906.18, + "probability": 0.919 + }, + { + "start": 20906.36, + "end": 20907.5, + "probability": 0.9019 + }, + { + "start": 20907.68, + "end": 20910.94, + "probability": 0.9425 + }, + { + "start": 20911.04, + "end": 20911.46, + "probability": 0.6243 + }, + { + "start": 20911.5, + "end": 20912.94, + "probability": 0.9735 + }, + { + "start": 20913.02, + "end": 20914.68, + "probability": 0.9875 + }, + { + "start": 20914.84, + "end": 20918.3, + "probability": 0.9829 + }, + { + "start": 20918.36, + "end": 20919.66, + "probability": 0.9954 + }, + { + "start": 20920.64, + "end": 20921.4, + "probability": 0.5494 + }, + { + "start": 20922.0, + "end": 20923.14, + "probability": 0.8333 + }, + { + "start": 20923.92, + "end": 20926.8, + "probability": 0.9951 + }, + { + "start": 20929.1, + "end": 20929.1, + "probability": 0.1441 + }, + { + "start": 20929.1, + "end": 20930.06, + "probability": 0.6498 + }, + { + "start": 20930.1, + "end": 20930.82, + "probability": 0.9229 + }, + { + "start": 20930.88, + "end": 20931.58, + "probability": 0.9492 + }, + { + "start": 20931.66, + "end": 20931.92, + "probability": 0.5312 + }, + { + "start": 20931.92, + "end": 20932.38, + "probability": 0.6835 + }, + { + "start": 20932.4, + "end": 20933.36, + "probability": 0.8829 + }, + { + "start": 20934.72, + "end": 20938.15, + "probability": 0.7642 + }, + { + "start": 20939.36, + "end": 20940.0, + "probability": 0.9105 + }, + { + "start": 20940.06, + "end": 20940.92, + "probability": 0.786 + }, + { + "start": 20942.32, + "end": 20943.14, + "probability": 0.8257 + }, + { + "start": 20943.14, + "end": 20944.38, + "probability": 0.7801 + }, + { + "start": 20944.6, + "end": 20946.66, + "probability": 0.5382 + }, + { + "start": 20947.08, + "end": 20947.57, + "probability": 0.7481 + }, + { + "start": 20947.88, + "end": 20948.24, + "probability": 0.7105 + }, + { + "start": 20948.28, + "end": 20951.34, + "probability": 0.977 + }, + { + "start": 20951.44, + "end": 20957.3, + "probability": 0.9688 + }, + { + "start": 20959.4, + "end": 20963.58, + "probability": 0.9291 + }, + { + "start": 20963.58, + "end": 20967.16, + "probability": 0.9785 + }, + { + "start": 20968.1, + "end": 20968.58, + "probability": 0.7152 + }, + { + "start": 20969.38, + "end": 20970.89, + "probability": 0.5596 + }, + { + "start": 20971.74, + "end": 20976.68, + "probability": 0.9565 + }, + { + "start": 20976.84, + "end": 20979.14, + "probability": 0.9194 + }, + { + "start": 20979.24, + "end": 20980.18, + "probability": 0.9724 + }, + { + "start": 20981.32, + "end": 20986.04, + "probability": 0.9482 + }, + { + "start": 20987.46, + "end": 20991.78, + "probability": 0.9035 + }, + { + "start": 20992.86, + "end": 20998.88, + "probability": 0.7621 + }, + { + "start": 20999.46, + "end": 21003.88, + "probability": 0.8179 + }, + { + "start": 21004.64, + "end": 21006.86, + "probability": 0.9759 + }, + { + "start": 21007.5, + "end": 21008.8, + "probability": 0.6628 + }, + { + "start": 21009.48, + "end": 21013.94, + "probability": 0.9871 + }, + { + "start": 21013.94, + "end": 21018.56, + "probability": 0.9043 + }, + { + "start": 21018.74, + "end": 21019.51, + "probability": 0.5073 + }, + { + "start": 21021.61, + "end": 21024.34, + "probability": 0.7539 + }, + { + "start": 21024.4, + "end": 21025.9, + "probability": 0.9976 + }, + { + "start": 21026.04, + "end": 21030.34, + "probability": 0.8929 + }, + { + "start": 21031.44, + "end": 21032.54, + "probability": 0.8867 + }, + { + "start": 21036.46, + "end": 21038.66, + "probability": 0.295 + }, + { + "start": 21039.04, + "end": 21039.7, + "probability": 0.481 + }, + { + "start": 21040.7, + "end": 21041.94, + "probability": 0.5001 + }, + { + "start": 21042.06, + "end": 21044.34, + "probability": 0.9935 + }, + { + "start": 21045.66, + "end": 21048.32, + "probability": 0.9971 + }, + { + "start": 21048.32, + "end": 21052.72, + "probability": 0.98 + }, + { + "start": 21052.76, + "end": 21053.56, + "probability": 0.6652 + }, + { + "start": 21053.58, + "end": 21056.14, + "probability": 0.8201 + }, + { + "start": 21056.6, + "end": 21056.76, + "probability": 0.4698 + }, + { + "start": 21057.16, + "end": 21061.32, + "probability": 0.9408 + }, + { + "start": 21061.98, + "end": 21065.5, + "probability": 0.9789 + }, + { + "start": 21065.5, + "end": 21068.28, + "probability": 0.9802 + }, + { + "start": 21069.24, + "end": 21070.54, + "probability": 0.9262 + }, + { + "start": 21071.7, + "end": 21072.86, + "probability": 0.629 + }, + { + "start": 21073.6, + "end": 21076.94, + "probability": 0.9397 + }, + { + "start": 21077.42, + "end": 21082.14, + "probability": 0.9917 + }, + { + "start": 21082.2, + "end": 21082.44, + "probability": 0.6461 + }, + { + "start": 21082.44, + "end": 21086.9, + "probability": 0.9807 + }, + { + "start": 21086.96, + "end": 21087.2, + "probability": 0.3994 + }, + { + "start": 21087.3, + "end": 21089.2, + "probability": 0.9359 + }, + { + "start": 21089.32, + "end": 21092.44, + "probability": 0.9531 + }, + { + "start": 21092.68, + "end": 21093.66, + "probability": 0.3687 + }, + { + "start": 21093.66, + "end": 21094.46, + "probability": 0.7399 + }, + { + "start": 21096.1, + "end": 21096.74, + "probability": 0.5346 + }, + { + "start": 21101.2, + "end": 21105.48, + "probability": 0.8023 + }, + { + "start": 21106.16, + "end": 21106.96, + "probability": 0.4766 + }, + { + "start": 21108.1, + "end": 21109.04, + "probability": 0.6169 + }, + { + "start": 21109.26, + "end": 21111.42, + "probability": 0.2313 + }, + { + "start": 21111.64, + "end": 21111.64, + "probability": 0.109 + }, + { + "start": 21111.64, + "end": 21114.42, + "probability": 0.8757 + }, + { + "start": 21114.58, + "end": 21116.18, + "probability": 0.195 + }, + { + "start": 21116.18, + "end": 21116.8, + "probability": 0.219 + }, + { + "start": 21116.92, + "end": 21122.2, + "probability": 0.7625 + }, + { + "start": 21122.52, + "end": 21123.38, + "probability": 0.0109 + }, + { + "start": 21123.54, + "end": 21129.2, + "probability": 0.8785 + }, + { + "start": 21129.74, + "end": 21130.96, + "probability": 0.0076 + }, + { + "start": 21130.96, + "end": 21132.52, + "probability": 0.2729 + }, + { + "start": 21132.68, + "end": 21134.0, + "probability": 0.7218 + }, + { + "start": 21134.72, + "end": 21135.4, + "probability": 0.7883 + }, + { + "start": 21135.96, + "end": 21136.66, + "probability": 0.8982 + }, + { + "start": 21136.92, + "end": 21141.46, + "probability": 0.0258 + }, + { + "start": 21147.78, + "end": 21148.27, + "probability": 0.3444 + }, + { + "start": 21154.12, + "end": 21156.42, + "probability": 0.4979 + }, + { + "start": 21157.9, + "end": 21160.72, + "probability": 0.0681 + }, + { + "start": 21160.72, + "end": 21160.72, + "probability": 0.062 + }, + { + "start": 21160.72, + "end": 21163.84, + "probability": 0.9464 + }, + { + "start": 21167.02, + "end": 21170.48, + "probability": 0.7408 + }, + { + "start": 21170.64, + "end": 21172.62, + "probability": 0.706 + }, + { + "start": 21174.02, + "end": 21174.98, + "probability": 0.769 + }, + { + "start": 21175.3, + "end": 21177.96, + "probability": 0.8541 + }, + { + "start": 21178.82, + "end": 21181.2, + "probability": 0.9397 + }, + { + "start": 21183.12, + "end": 21184.63, + "probability": 0.9774 + }, + { + "start": 21185.1, + "end": 21189.6, + "probability": 0.984 + }, + { + "start": 21189.8, + "end": 21192.66, + "probability": 0.8694 + }, + { + "start": 21197.36, + "end": 21202.4, + "probability": 0.9531 + }, + { + "start": 21203.68, + "end": 21208.4, + "probability": 0.7549 + }, + { + "start": 21208.52, + "end": 21209.46, + "probability": 0.8001 + }, + { + "start": 21209.56, + "end": 21210.86, + "probability": 0.3046 + }, + { + "start": 21211.5, + "end": 21213.5, + "probability": 0.9914 + }, + { + "start": 21219.3, + "end": 21224.42, + "probability": 0.9972 + }, + { + "start": 21225.38, + "end": 21226.34, + "probability": 0.6998 + }, + { + "start": 21226.82, + "end": 21227.7, + "probability": 0.9521 + }, + { + "start": 21229.56, + "end": 21232.68, + "probability": 0.2429 + }, + { + "start": 21232.68, + "end": 21232.68, + "probability": 0.0134 + }, + { + "start": 21234.76, + "end": 21235.34, + "probability": 0.0115 + }, + { + "start": 21244.16, + "end": 21244.84, + "probability": 0.0559 + }, + { + "start": 21244.84, + "end": 21244.94, + "probability": 0.2189 + }, + { + "start": 21244.94, + "end": 21248.48, + "probability": 0.7272 + }, + { + "start": 21248.86, + "end": 21253.7, + "probability": 0.8786 + }, + { + "start": 21253.78, + "end": 21254.76, + "probability": 0.8894 + }, + { + "start": 21256.38, + "end": 21259.9, + "probability": 0.7546 + }, + { + "start": 21259.9, + "end": 21268.14, + "probability": 0.9341 + }, + { + "start": 21268.86, + "end": 21270.82, + "probability": 0.751 + }, + { + "start": 21270.82, + "end": 21271.46, + "probability": 0.7117 + }, + { + "start": 21271.48, + "end": 21273.22, + "probability": 0.2892 + }, + { + "start": 21273.62, + "end": 21277.16, + "probability": 0.9918 + }, + { + "start": 21278.1, + "end": 21279.2, + "probability": 0.7084 + }, + { + "start": 21279.54, + "end": 21280.3, + "probability": 0.7186 + }, + { + "start": 21280.78, + "end": 21281.6, + "probability": 0.9359 + }, + { + "start": 21289.39, + "end": 21289.84, + "probability": 0.0366 + }, + { + "start": 21289.84, + "end": 21289.84, + "probability": 0.0214 + }, + { + "start": 21289.84, + "end": 21289.84, + "probability": 0.0465 + }, + { + "start": 21289.84, + "end": 21289.96, + "probability": 0.1085 + }, + { + "start": 21290.04, + "end": 21290.18, + "probability": 0.0771 + }, + { + "start": 21302.26, + "end": 21305.2, + "probability": 0.7328 + }, + { + "start": 21305.68, + "end": 21310.62, + "probability": 0.982 + }, + { + "start": 21310.76, + "end": 21313.9, + "probability": 0.8547 + }, + { + "start": 21314.3, + "end": 21315.58, + "probability": 0.9606 + }, + { + "start": 21315.98, + "end": 21319.26, + "probability": 0.8818 + }, + { + "start": 21319.26, + "end": 21323.54, + "probability": 0.9626 + }, + { + "start": 21330.66, + "end": 21335.32, + "probability": 0.994 + }, + { + "start": 21335.32, + "end": 21338.84, + "probability": 0.9987 + }, + { + "start": 21339.36, + "end": 21341.18, + "probability": 0.3492 + }, + { + "start": 21342.14, + "end": 21344.4, + "probability": 0.1386 + }, + { + "start": 21344.52, + "end": 21346.6, + "probability": 0.8903 + }, + { + "start": 21351.02, + "end": 21352.24, + "probability": 0.5469 + }, + { + "start": 21366.26, + "end": 21370.4, + "probability": 0.5676 + }, + { + "start": 21376.56, + "end": 21377.44, + "probability": 0.6769 + }, + { + "start": 21384.36, + "end": 21385.62, + "probability": 0.8141 + }, + { + "start": 21386.36, + "end": 21387.02, + "probability": 0.2248 + }, + { + "start": 21387.28, + "end": 21387.42, + "probability": 0.0727 + }, + { + "start": 21390.22, + "end": 21395.74, + "probability": 0.729 + }, + { + "start": 21396.62, + "end": 21400.44, + "probability": 0.9396 + }, + { + "start": 21403.46, + "end": 21404.12, + "probability": 0.7673 + }, + { + "start": 21404.7, + "end": 21406.3, + "probability": 0.7234 + }, + { + "start": 21406.36, + "end": 21408.92, + "probability": 0.5281 + }, + { + "start": 21409.8, + "end": 21415.78, + "probability": 0.9339 + }, + { + "start": 21416.76, + "end": 21419.36, + "probability": 0.8418 + }, + { + "start": 21420.38, + "end": 21422.18, + "probability": 0.3741 + }, + { + "start": 21422.3, + "end": 21422.93, + "probability": 0.9663 + }, + { + "start": 21423.14, + "end": 21423.96, + "probability": 0.6289 + }, + { + "start": 21424.89, + "end": 21427.56, + "probability": 0.9385 + }, + { + "start": 21428.46, + "end": 21432.1, + "probability": 0.9591 + }, + { + "start": 21432.1, + "end": 21437.14, + "probability": 0.9603 + }, + { + "start": 21437.56, + "end": 21441.7, + "probability": 0.7445 + }, + { + "start": 21441.78, + "end": 21444.3, + "probability": 0.8486 + }, + { + "start": 21444.86, + "end": 21446.06, + "probability": 0.4065 + }, + { + "start": 21446.12, + "end": 21447.0, + "probability": 0.0692 + }, + { + "start": 21447.12, + "end": 21447.74, + "probability": 0.0347 + }, + { + "start": 21447.94, + "end": 21448.1, + "probability": 0.4143 + }, + { + "start": 21448.1, + "end": 21448.76, + "probability": 0.5657 + }, + { + "start": 21449.58, + "end": 21450.66, + "probability": 0.8861 + }, + { + "start": 21451.04, + "end": 21452.14, + "probability": 0.8316 + }, + { + "start": 21452.18, + "end": 21456.38, + "probability": 0.2744 + }, + { + "start": 21456.85, + "end": 21458.02, + "probability": 0.101 + }, + { + "start": 21458.02, + "end": 21460.54, + "probability": 0.7195 + }, + { + "start": 21460.56, + "end": 21461.6, + "probability": 0.5584 + }, + { + "start": 21462.95, + "end": 21463.16, + "probability": 0.5118 + }, + { + "start": 21463.6, + "end": 21464.04, + "probability": 0.1125 + }, + { + "start": 21464.98, + "end": 21466.66, + "probability": 0.0918 + }, + { + "start": 21485.9, + "end": 21486.54, + "probability": 0.6984 + }, + { + "start": 21487.28, + "end": 21487.68, + "probability": 0.1546 + }, + { + "start": 21488.66, + "end": 21489.57, + "probability": 0.1817 + }, + { + "start": 21490.16, + "end": 21492.09, + "probability": 0.1294 + }, + { + "start": 21493.88, + "end": 21495.3, + "probability": 0.0406 + }, + { + "start": 21505.8, + "end": 21506.44, + "probability": 0.0793 + }, + { + "start": 21511.59, + "end": 21513.3, + "probability": 0.1243 + }, + { + "start": 21514.52, + "end": 21515.28, + "probability": 0.0728 + }, + { + "start": 21515.7, + "end": 21516.06, + "probability": 0.103 + }, + { + "start": 21516.06, + "end": 21516.46, + "probability": 0.0394 + }, + { + "start": 21516.52, + "end": 21518.14, + "probability": 0.0984 + }, + { + "start": 21518.69, + "end": 21519.04, + "probability": 0.1536 + }, + { + "start": 21522.14, + "end": 21522.78, + "probability": 0.1484 + }, + { + "start": 21524.6, + "end": 21528.76, + "probability": 0.0692 + }, + { + "start": 21528.76, + "end": 21530.64, + "probability": 0.0182 + }, + { + "start": 21530.94, + "end": 21535.24, + "probability": 0.0538 + }, + { + "start": 21535.78, + "end": 21539.82, + "probability": 0.114 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21542.0, + "end": 21542.0, + "probability": 0.0 + }, + { + "start": 21572.02, + "end": 21574.82, + "probability": 0.244 + }, + { + "start": 21575.7, + "end": 21577.56, + "probability": 0.0943 + }, + { + "start": 21579.86, + "end": 21581.02, + "probability": 0.0846 + }, + { + "start": 21582.37, + "end": 21584.12, + "probability": 0.0434 + }, + { + "start": 21584.12, + "end": 21587.38, + "probability": 0.0611 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21664.0, + "end": 21664.0, + "probability": 0.0 + }, + { + "start": 21665.35, + "end": 21666.0, + "probability": 0.1386 + }, + { + "start": 21667.08, + "end": 21668.64, + "probability": 0.2435 + }, + { + "start": 21668.64, + "end": 21669.88, + "probability": 0.0137 + }, + { + "start": 21671.12, + "end": 21672.18, + "probability": 0.4757 + }, + { + "start": 21675.54, + "end": 21676.6, + "probability": 0.4463 + }, + { + "start": 21678.5, + "end": 21683.58, + "probability": 0.4206 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.0, + "end": 21787.0, + "probability": 0.0 + }, + { + "start": 21787.22, + "end": 21787.84, + "probability": 0.5063 + }, + { + "start": 21787.9, + "end": 21788.6, + "probability": 0.6052 + }, + { + "start": 21794.48, + "end": 21797.94, + "probability": 0.9688 + }, + { + "start": 21797.94, + "end": 21802.1, + "probability": 0.97 + }, + { + "start": 21802.12, + "end": 21802.74, + "probability": 0.2768 + }, + { + "start": 21802.82, + "end": 21806.54, + "probability": 0.9948 + }, + { + "start": 21806.6, + "end": 21812.48, + "probability": 0.9819 + }, + { + "start": 21812.72, + "end": 21813.34, + "probability": 0.6076 + }, + { + "start": 21813.58, + "end": 21814.32, + "probability": 0.9001 + }, + { + "start": 21814.64, + "end": 21815.38, + "probability": 0.7576 + }, + { + "start": 21837.0, + "end": 21841.82, + "probability": 0.0288 + }, + { + "start": 21842.2, + "end": 21843.3, + "probability": 0.0473 + }, + { + "start": 21843.3, + "end": 21846.26, + "probability": 0.0377 + }, + { + "start": 21846.26, + "end": 21847.4, + "probability": 0.02 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.36, + "end": 21934.38, + "probability": 0.0285 + }, + { + "start": 21934.38, + "end": 21934.72, + "probability": 0.2672 + }, + { + "start": 21934.8, + "end": 21936.47, + "probability": 0.8833 + }, + { + "start": 21939.04, + "end": 21940.94, + "probability": 0.0127 + }, + { + "start": 21941.6, + "end": 21942.08, + "probability": 0.1086 + }, + { + "start": 21942.62, + "end": 21945.72, + "probability": 0.5889 + }, + { + "start": 21946.84, + "end": 21949.08, + "probability": 0.6401 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22055.0, + "end": 22055.0, + "probability": 0.0 + }, + { + "start": 22056.88, + "end": 22063.6, + "probability": 0.2994 + }, + { + "start": 22065.58, + "end": 22067.72, + "probability": 0.1716 + }, + { + "start": 22067.96, + "end": 22068.56, + "probability": 0.0534 + }, + { + "start": 22068.56, + "end": 22068.74, + "probability": 0.0507 + }, + { + "start": 22070.06, + "end": 22071.16, + "probability": 0.845 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22177.0, + "end": 22177.0, + "probability": 0.0 + }, + { + "start": 22181.32, + "end": 22183.92, + "probability": 0.191 + }, + { + "start": 22184.02, + "end": 22188.14, + "probability": 0.6129 + }, + { + "start": 22189.8, + "end": 22195.68, + "probability": 0.1307 + }, + { + "start": 22195.74, + "end": 22196.6, + "probability": 0.3756 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.0, + "end": 22317.0, + "probability": 0.0 + }, + { + "start": 22317.42, + "end": 22318.08, + "probability": 0.0114 + }, + { + "start": 22318.08, + "end": 22318.08, + "probability": 0.0599 + }, + { + "start": 22318.08, + "end": 22321.1, + "probability": 0.5773 + }, + { + "start": 22321.58, + "end": 22323.24, + "probability": 0.9829 + }, + { + "start": 22324.38, + "end": 22324.52, + "probability": 0.7627 + }, + { + "start": 22327.04, + "end": 22329.58, + "probability": 0.7687 + }, + { + "start": 22330.36, + "end": 22331.02, + "probability": 0.383 + }, + { + "start": 22331.34, + "end": 22334.0, + "probability": 0.9502 + }, + { + "start": 22334.0, + "end": 22336.84, + "probability": 0.9621 + }, + { + "start": 22337.02, + "end": 22338.7, + "probability": 0.8921 + }, + { + "start": 22339.1, + "end": 22341.84, + "probability": 0.9651 + }, + { + "start": 22341.84, + "end": 22344.28, + "probability": 0.9893 + }, + { + "start": 22345.26, + "end": 22348.82, + "probability": 0.9507 + }, + { + "start": 22349.2, + "end": 22350.28, + "probability": 0.9541 + }, + { + "start": 22350.98, + "end": 22352.04, + "probability": 0.5564 + }, + { + "start": 22352.08, + "end": 22357.16, + "probability": 0.8984 + }, + { + "start": 22357.34, + "end": 22358.76, + "probability": 0.9414 + }, + { + "start": 22358.92, + "end": 22359.78, + "probability": 0.645 + }, + { + "start": 22360.2, + "end": 22361.95, + "probability": 0.5659 + }, + { + "start": 22362.0, + "end": 22362.52, + "probability": 0.5127 + }, + { + "start": 22362.88, + "end": 22363.58, + "probability": 0.8565 + }, + { + "start": 22365.12, + "end": 22367.48, + "probability": 0.942 + }, + { + "start": 22367.56, + "end": 22372.04, + "probability": 0.9699 + }, + { + "start": 22372.96, + "end": 22374.1, + "probability": 0.6404 + }, + { + "start": 22374.14, + "end": 22377.36, + "probability": 0.9894 + }, + { + "start": 22377.88, + "end": 22379.68, + "probability": 0.9854 + }, + { + "start": 22380.18, + "end": 22381.68, + "probability": 0.9663 + }, + { + "start": 22381.76, + "end": 22382.18, + "probability": 0.7341 + }, + { + "start": 22382.66, + "end": 22383.56, + "probability": 0.827 + }, + { + "start": 22383.68, + "end": 22385.42, + "probability": 0.9106 + }, + { + "start": 22386.1, + "end": 22390.88, + "probability": 0.9956 + }, + { + "start": 22391.28, + "end": 22391.74, + "probability": 0.6388 + }, + { + "start": 22392.06, + "end": 22393.16, + "probability": 0.84 + }, + { + "start": 22393.48, + "end": 22399.24, + "probability": 0.911 + }, + { + "start": 22399.4, + "end": 22399.56, + "probability": 0.4565 + }, + { + "start": 22399.66, + "end": 22400.34, + "probability": 0.9471 + }, + { + "start": 22400.48, + "end": 22401.12, + "probability": 0.8294 + }, + { + "start": 22401.26, + "end": 22404.64, + "probability": 0.9795 + }, + { + "start": 22404.64, + "end": 22408.28, + "probability": 0.9901 + }, + { + "start": 22408.8, + "end": 22412.4, + "probability": 0.9922 + }, + { + "start": 22412.62, + "end": 22413.66, + "probability": 0.8536 + }, + { + "start": 22414.1, + "end": 22419.06, + "probability": 0.9731 + }, + { + "start": 22419.8, + "end": 22422.48, + "probability": 0.7503 + }, + { + "start": 22423.6, + "end": 22426.22, + "probability": 0.9863 + }, + { + "start": 22426.34, + "end": 22427.26, + "probability": 0.9836 + }, + { + "start": 22427.96, + "end": 22432.12, + "probability": 0.9805 + }, + { + "start": 22432.8, + "end": 22435.14, + "probability": 0.8475 + }, + { + "start": 22435.2, + "end": 22437.34, + "probability": 0.9814 + }, + { + "start": 22437.44, + "end": 22440.44, + "probability": 0.9792 + }, + { + "start": 22441.04, + "end": 22444.14, + "probability": 0.9978 + }, + { + "start": 22444.56, + "end": 22448.56, + "probability": 0.9696 + }, + { + "start": 22448.76, + "end": 22450.54, + "probability": 0.9863 + }, + { + "start": 22450.9, + "end": 22451.82, + "probability": 0.6892 + }, + { + "start": 22452.08, + "end": 22453.08, + "probability": 0.2299 + }, + { + "start": 22453.64, + "end": 22458.34, + "probability": 0.9813 + }, + { + "start": 22458.82, + "end": 22460.26, + "probability": 0.996 + }, + { + "start": 22460.4, + "end": 22464.78, + "probability": 0.9966 + }, + { + "start": 22465.16, + "end": 22468.78, + "probability": 0.9956 + }, + { + "start": 22469.9, + "end": 22471.9, + "probability": 0.8947 + }, + { + "start": 22471.92, + "end": 22474.32, + "probability": 0.9702 + }, + { + "start": 22474.46, + "end": 22475.8, + "probability": 0.8809 + }, + { + "start": 22476.54, + "end": 22477.12, + "probability": 0.9685 + }, + { + "start": 22477.24, + "end": 22478.24, + "probability": 0.9754 + }, + { + "start": 22478.32, + "end": 22480.0, + "probability": 0.98 + }, + { + "start": 22480.16, + "end": 22480.68, + "probability": 0.5499 + }, + { + "start": 22481.2, + "end": 22482.32, + "probability": 0.9365 + }, + { + "start": 22483.02, + "end": 22485.5, + "probability": 0.9528 + }, + { + "start": 22486.14, + "end": 22489.64, + "probability": 0.9915 + }, + { + "start": 22490.3, + "end": 22492.76, + "probability": 0.9372 + }, + { + "start": 22493.06, + "end": 22493.82, + "probability": 0.932 + }, + { + "start": 22494.58, + "end": 22495.36, + "probability": 0.8002 + }, + { + "start": 22496.04, + "end": 22497.94, + "probability": 0.9674 + }, + { + "start": 22499.36, + "end": 22499.96, + "probability": 0.5322 + }, + { + "start": 22500.5, + "end": 22500.78, + "probability": 0.7202 + }, + { + "start": 22500.94, + "end": 22502.66, + "probability": 0.9001 + }, + { + "start": 22502.78, + "end": 22502.86, + "probability": 0.5223 + }, + { + "start": 22503.02, + "end": 22504.36, + "probability": 0.8545 + }, + { + "start": 22504.84, + "end": 22506.9, + "probability": 0.9928 + }, + { + "start": 22507.02, + "end": 22508.82, + "probability": 0.9952 + }, + { + "start": 22509.58, + "end": 22512.32, + "probability": 0.8936 + }, + { + "start": 22513.2, + "end": 22514.52, + "probability": 0.8825 + }, + { + "start": 22514.72, + "end": 22517.3, + "probability": 0.9907 + }, + { + "start": 22518.32, + "end": 22523.98, + "probability": 0.9802 + }, + { + "start": 22524.7, + "end": 22525.8, + "probability": 0.8488 + }, + { + "start": 22525.82, + "end": 22527.42, + "probability": 0.9046 + }, + { + "start": 22529.38, + "end": 22532.3, + "probability": 0.7172 + }, + { + "start": 22532.3, + "end": 22537.18, + "probability": 0.8611 + }, + { + "start": 22537.34, + "end": 22541.68, + "probability": 0.9869 + }, + { + "start": 22542.4, + "end": 22544.94, + "probability": 0.7124 + }, + { + "start": 22545.62, + "end": 22548.68, + "probability": 0.8411 + }, + { + "start": 22548.76, + "end": 22550.83, + "probability": 0.7043 + }, + { + "start": 22551.54, + "end": 22553.1, + "probability": 0.8452 + }, + { + "start": 22554.14, + "end": 22557.06, + "probability": 0.617 + }, + { + "start": 22557.42, + "end": 22559.32, + "probability": 0.7817 + }, + { + "start": 22561.3, + "end": 22563.6, + "probability": 0.8173 + }, + { + "start": 22564.3, + "end": 22566.0, + "probability": 0.5335 + }, + { + "start": 22566.66, + "end": 22569.46, + "probability": 0.8596 + }, + { + "start": 22569.64, + "end": 22570.04, + "probability": 0.6902 + }, + { + "start": 22570.22, + "end": 22570.64, + "probability": 0.8832 + }, + { + "start": 22571.62, + "end": 22574.66, + "probability": 0.9963 + }, + { + "start": 22575.24, + "end": 22578.54, + "probability": 0.9961 + }, + { + "start": 22579.36, + "end": 22585.26, + "probability": 0.9119 + }, + { + "start": 22585.58, + "end": 22587.34, + "probability": 0.7723 + }, + { + "start": 22588.62, + "end": 22591.78, + "probability": 0.9983 + }, + { + "start": 22592.5, + "end": 22595.88, + "probability": 0.9951 + }, + { + "start": 22597.34, + "end": 22599.98, + "probability": 0.9819 + }, + { + "start": 22600.1, + "end": 22601.54, + "probability": 0.9519 + }, + { + "start": 22602.2, + "end": 22604.72, + "probability": 0.9954 + }, + { + "start": 22605.42, + "end": 22608.64, + "probability": 0.9332 + }, + { + "start": 22609.22, + "end": 22611.76, + "probability": 0.8237 + }, + { + "start": 22613.06, + "end": 22614.6, + "probability": 0.9845 + }, + { + "start": 22615.76, + "end": 22618.76, + "probability": 0.9966 + }, + { + "start": 22619.22, + "end": 22621.22, + "probability": 0.9979 + }, + { + "start": 22621.4, + "end": 22623.1, + "probability": 0.638 + }, + { + "start": 22623.66, + "end": 22626.42, + "probability": 0.8555 + }, + { + "start": 22627.26, + "end": 22629.7, + "probability": 0.9517 + }, + { + "start": 22630.72, + "end": 22638.28, + "probability": 0.8854 + }, + { + "start": 22638.4, + "end": 22640.96, + "probability": 0.8018 + }, + { + "start": 22641.6, + "end": 22644.2, + "probability": 0.9899 + }, + { + "start": 22644.64, + "end": 22646.36, + "probability": 0.7815 + }, + { + "start": 22647.32, + "end": 22650.12, + "probability": 0.9831 + }, + { + "start": 22650.58, + "end": 22654.18, + "probability": 0.9945 + }, + { + "start": 22654.8, + "end": 22657.54, + "probability": 0.963 + }, + { + "start": 22657.68, + "end": 22659.9, + "probability": 0.9912 + }, + { + "start": 22661.58, + "end": 22663.78, + "probability": 0.7836 + }, + { + "start": 22664.12, + "end": 22665.68, + "probability": 0.8546 + }, + { + "start": 22666.18, + "end": 22669.6, + "probability": 0.9966 + }, + { + "start": 22670.42, + "end": 22670.64, + "probability": 0.9615 + }, + { + "start": 22671.38, + "end": 22673.6, + "probability": 0.9977 + }, + { + "start": 22674.16, + "end": 22677.78, + "probability": 0.9707 + }, + { + "start": 22678.58, + "end": 22680.56, + "probability": 0.9985 + }, + { + "start": 22680.62, + "end": 22686.2, + "probability": 0.9978 + }, + { + "start": 22686.4, + "end": 22688.06, + "probability": 0.9943 + }, + { + "start": 22688.14, + "end": 22689.82, + "probability": 0.9856 + }, + { + "start": 22689.82, + "end": 22693.08, + "probability": 0.9132 + }, + { + "start": 22693.26, + "end": 22695.42, + "probability": 0.915 + }, + { + "start": 22695.6, + "end": 22696.6, + "probability": 0.9932 + }, + { + "start": 22697.26, + "end": 22699.8, + "probability": 0.9984 + }, + { + "start": 22699.94, + "end": 22700.74, + "probability": 0.7197 + }, + { + "start": 22700.9, + "end": 22702.12, + "probability": 0.7806 + }, + { + "start": 22702.26, + "end": 22705.02, + "probability": 0.9761 + }, + { + "start": 22705.6, + "end": 22708.08, + "probability": 0.954 + }, + { + "start": 22708.22, + "end": 22709.62, + "probability": 0.9697 + }, + { + "start": 22709.66, + "end": 22711.27, + "probability": 0.9414 + }, + { + "start": 22712.32, + "end": 22717.52, + "probability": 0.9722 + }, + { + "start": 22717.72, + "end": 22720.86, + "probability": 0.9396 + }, + { + "start": 22721.28, + "end": 22723.52, + "probability": 0.9362 + }, + { + "start": 22724.46, + "end": 22729.84, + "probability": 0.8011 + }, + { + "start": 22729.92, + "end": 22733.26, + "probability": 0.9565 + }, + { + "start": 22733.8, + "end": 22734.0, + "probability": 0.8425 + }, + { + "start": 22734.04, + "end": 22736.96, + "probability": 0.9858 + }, + { + "start": 22737.08, + "end": 22737.42, + "probability": 0.5636 + }, + { + "start": 22737.46, + "end": 22737.76, + "probability": 0.6999 + }, + { + "start": 22739.08, + "end": 22739.86, + "probability": 0.8185 + }, + { + "start": 22740.74, + "end": 22742.86, + "probability": 0.6978 + }, + { + "start": 22742.98, + "end": 22745.24, + "probability": 0.6028 + }, + { + "start": 22745.4, + "end": 22745.92, + "probability": 0.8506 + }, + { + "start": 22747.84, + "end": 22748.82, + "probability": 0.0708 + }, + { + "start": 22759.5, + "end": 22760.8, + "probability": 0.1525 + }, + { + "start": 22760.8, + "end": 22761.92, + "probability": 0.0177 + }, + { + "start": 22768.74, + "end": 22769.78, + "probability": 0.0056 + }, + { + "start": 22773.68, + "end": 22775.68, + "probability": 0.2863 + }, + { + "start": 22776.56, + "end": 22778.26, + "probability": 0.4982 + }, + { + "start": 22782.76, + "end": 22784.66, + "probability": 0.534 + }, + { + "start": 22786.68, + "end": 22791.26, + "probability": 0.8202 + }, + { + "start": 22792.9, + "end": 22796.46, + "probability": 0.6731 + }, + { + "start": 22796.86, + "end": 22797.46, + "probability": 0.6394 + }, + { + "start": 22799.94, + "end": 22801.03, + "probability": 0.998 + }, + { + "start": 22802.16, + "end": 22803.75, + "probability": 0.9262 + }, + { + "start": 22804.52, + "end": 22806.42, + "probability": 0.9868 + }, + { + "start": 22806.82, + "end": 22808.62, + "probability": 0.5971 + }, + { + "start": 22809.22, + "end": 22811.28, + "probability": 0.8037 + }, + { + "start": 22812.05, + "end": 22814.31, + "probability": 0.0747 + }, + { + "start": 22815.6, + "end": 22819.14, + "probability": 0.7856 + }, + { + "start": 22820.34, + "end": 22821.68, + "probability": 0.9551 + }, + { + "start": 22822.88, + "end": 22823.98, + "probability": 0.9612 + }, + { + "start": 22825.56, + "end": 22825.96, + "probability": 0.9185 + }, + { + "start": 22827.18, + "end": 22829.5, + "probability": 0.7315 + }, + { + "start": 22830.9, + "end": 22832.11, + "probability": 0.9666 + }, + { + "start": 22833.18, + "end": 22834.03, + "probability": 0.9416 + }, + { + "start": 22835.74, + "end": 22838.42, + "probability": 0.7692 + }, + { + "start": 22839.9, + "end": 22841.46, + "probability": 0.8694 + }, + { + "start": 22842.08, + "end": 22844.46, + "probability": 0.9901 + }, + { + "start": 22845.1, + "end": 22847.12, + "probability": 0.9836 + }, + { + "start": 22848.68, + "end": 22852.32, + "probability": 0.9932 + }, + { + "start": 22854.32, + "end": 22858.66, + "probability": 0.979 + }, + { + "start": 22860.92, + "end": 22863.7, + "probability": 0.9867 + }, + { + "start": 22864.82, + "end": 22866.92, + "probability": 0.9344 + }, + { + "start": 22867.14, + "end": 22868.74, + "probability": 0.9961 + }, + { + "start": 22870.02, + "end": 22872.3, + "probability": 0.998 + }, + { + "start": 22873.06, + "end": 22878.12, + "probability": 0.8302 + }, + { + "start": 22879.18, + "end": 22880.68, + "probability": 0.8451 + }, + { + "start": 22881.36, + "end": 22884.1, + "probability": 0.8555 + }, + { + "start": 22884.74, + "end": 22887.46, + "probability": 0.9682 + }, + { + "start": 22889.91, + "end": 22893.5, + "probability": 0.934 + }, + { + "start": 22897.78, + "end": 22899.44, + "probability": 0.8927 + }, + { + "start": 22899.62, + "end": 22901.62, + "probability": 0.9779 + }, + { + "start": 22901.74, + "end": 22901.74, + "probability": 0.1305 + }, + { + "start": 22901.74, + "end": 22903.2, + "probability": 0.8615 + }, + { + "start": 22903.52, + "end": 22908.01, + "probability": 0.854 + }, + { + "start": 22908.26, + "end": 22908.34, + "probability": 0.2112 + }, + { + "start": 22908.34, + "end": 22908.86, + "probability": 0.4035 + }, + { + "start": 22908.88, + "end": 22909.76, + "probability": 0.6559 + }, + { + "start": 22909.76, + "end": 22910.38, + "probability": 0.4777 + }, + { + "start": 22912.24, + "end": 22914.16, + "probability": 0.9661 + }, + { + "start": 22914.62, + "end": 22914.98, + "probability": 0.9451 + }, + { + "start": 22916.76, + "end": 22918.16, + "probability": 0.9512 + }, + { + "start": 22918.26, + "end": 22919.4, + "probability": 0.8536 + }, + { + "start": 22919.86, + "end": 22920.88, + "probability": 0.9351 + }, + { + "start": 22921.6, + "end": 22924.7, + "probability": 0.9422 + }, + { + "start": 22925.48, + "end": 22926.54, + "probability": 0.9453 + }, + { + "start": 22927.38, + "end": 22929.76, + "probability": 0.9963 + }, + { + "start": 22929.94, + "end": 22931.16, + "probability": 0.9883 + }, + { + "start": 22931.94, + "end": 22935.24, + "probability": 0.9248 + }, + { + "start": 22936.12, + "end": 22941.56, + "probability": 0.968 + }, + { + "start": 22942.2, + "end": 22945.82, + "probability": 0.9963 + }, + { + "start": 22946.86, + "end": 22948.62, + "probability": 0.8007 + }, + { + "start": 22948.74, + "end": 22954.94, + "probability": 0.9847 + }, + { + "start": 22954.94, + "end": 22960.0, + "probability": 0.9987 + }, + { + "start": 22960.94, + "end": 22966.18, + "probability": 0.97 + }, + { + "start": 22966.8, + "end": 22972.0, + "probability": 0.8855 + }, + { + "start": 22972.62, + "end": 22973.56, + "probability": 0.6858 + }, + { + "start": 22973.9, + "end": 22978.74, + "probability": 0.9922 + }, + { + "start": 22979.2, + "end": 22981.66, + "probability": 0.994 + }, + { + "start": 22981.66, + "end": 22985.3, + "probability": 0.9842 + }, + { + "start": 22985.54, + "end": 22985.88, + "probability": 0.8428 + }, + { + "start": 22986.08, + "end": 22989.26, + "probability": 0.9657 + }, + { + "start": 22990.04, + "end": 22991.8, + "probability": 0.9924 + }, + { + "start": 22991.88, + "end": 22992.46, + "probability": 0.8345 + }, + { + "start": 22992.96, + "end": 22994.72, + "probability": 0.962 + }, + { + "start": 22995.18, + "end": 22999.48, + "probability": 0.9121 + }, + { + "start": 23000.4, + "end": 23002.68, + "probability": 0.8789 + }, + { + "start": 23014.62, + "end": 23015.0, + "probability": 0.0254 + }, + { + "start": 23018.92, + "end": 23022.06, + "probability": 0.6991 + }, + { + "start": 23023.87, + "end": 23026.18, + "probability": 0.0511 + }, + { + "start": 23026.92, + "end": 23028.34, + "probability": 0.6226 + }, + { + "start": 23028.76, + "end": 23029.94, + "probability": 0.578 + }, + { + "start": 23030.5, + "end": 23032.66, + "probability": 0.7944 + }, + { + "start": 23032.86, + "end": 23035.58, + "probability": 0.8952 + }, + { + "start": 23036.02, + "end": 23038.8, + "probability": 0.5767 + }, + { + "start": 23040.74, + "end": 23045.4, + "probability": 0.7023 + }, + { + "start": 23045.4, + "end": 23047.44, + "probability": 0.9136 + }, + { + "start": 23048.1, + "end": 23050.24, + "probability": 0.7004 + }, + { + "start": 23052.94, + "end": 23055.9, + "probability": 0.775 + }, + { + "start": 23057.26, + "end": 23060.96, + "probability": 0.946 + }, + { + "start": 23062.16, + "end": 23062.88, + "probability": 0.9584 + }, + { + "start": 23063.6, + "end": 23065.3, + "probability": 0.9777 + }, + { + "start": 23065.64, + "end": 23069.72, + "probability": 0.9729 + }, + { + "start": 23069.72, + "end": 23075.16, + "probability": 0.9953 + }, + { + "start": 23075.74, + "end": 23077.3, + "probability": 0.7969 + }, + { + "start": 23077.58, + "end": 23084.82, + "probability": 0.9759 + }, + { + "start": 23084.92, + "end": 23086.62, + "probability": 0.86 + }, + { + "start": 23086.64, + "end": 23090.52, + "probability": 0.9907 + }, + { + "start": 23091.02, + "end": 23097.12, + "probability": 0.9906 + }, + { + "start": 23097.52, + "end": 23101.6, + "probability": 0.9932 + }, + { + "start": 23101.6, + "end": 23105.74, + "probability": 0.9826 + }, + { + "start": 23106.3, + "end": 23111.84, + "probability": 0.9868 + }, + { + "start": 23112.7, + "end": 23113.4, + "probability": 0.3726 + }, + { + "start": 23113.9, + "end": 23116.82, + "probability": 0.9944 + }, + { + "start": 23116.82, + "end": 23120.3, + "probability": 0.8542 + }, + { + "start": 23120.36, + "end": 23121.22, + "probability": 0.8627 + }, + { + "start": 23121.72, + "end": 23124.98, + "probability": 0.9885 + }, + { + "start": 23125.4, + "end": 23126.87, + "probability": 0.9554 + }, + { + "start": 23127.26, + "end": 23127.92, + "probability": 0.9384 + }, + { + "start": 23128.0, + "end": 23128.8, + "probability": 0.9385 + }, + { + "start": 23129.06, + "end": 23129.66, + "probability": 0.7049 + }, + { + "start": 23130.66, + "end": 23132.48, + "probability": 0.9159 + }, + { + "start": 23132.76, + "end": 23138.92, + "probability": 0.9838 + }, + { + "start": 23138.92, + "end": 23144.54, + "probability": 0.9292 + }, + { + "start": 23145.0, + "end": 23150.62, + "probability": 0.9922 + }, + { + "start": 23150.72, + "end": 23151.6, + "probability": 0.5315 + }, + { + "start": 23151.74, + "end": 23154.85, + "probability": 0.6533 + }, + { + "start": 23156.3, + "end": 23158.7, + "probability": 0.8775 + }, + { + "start": 23158.9, + "end": 23161.58, + "probability": 0.7584 + }, + { + "start": 23162.14, + "end": 23162.78, + "probability": 0.1257 + }, + { + "start": 23163.18, + "end": 23163.72, + "probability": 0.8496 + }, + { + "start": 23164.02, + "end": 23166.52, + "probability": 0.5822 + }, + { + "start": 23166.7, + "end": 23171.79, + "probability": 0.9857 + }, + { + "start": 23177.24, + "end": 23177.98, + "probability": 0.5413 + }, + { + "start": 23178.1, + "end": 23178.66, + "probability": 0.6685 + }, + { + "start": 23178.76, + "end": 23179.54, + "probability": 0.8361 + }, + { + "start": 23179.68, + "end": 23182.16, + "probability": 0.85 + }, + { + "start": 23182.84, + "end": 23183.76, + "probability": 0.8086 + }, + { + "start": 23186.7, + "end": 23187.42, + "probability": 0.7452 + }, + { + "start": 23187.52, + "end": 23188.3, + "probability": 0.7344 + }, + { + "start": 23188.38, + "end": 23189.9, + "probability": 0.8348 + }, + { + "start": 23191.8, + "end": 23193.74, + "probability": 0.5443 + }, + { + "start": 23196.56, + "end": 23199.98, + "probability": 0.093 + }, + { + "start": 23200.24, + "end": 23201.54, + "probability": 0.2107 + }, + { + "start": 23202.3, + "end": 23203.8, + "probability": 0.7251 + }, + { + "start": 23204.38, + "end": 23205.36, + "probability": 0.6658 + }, + { + "start": 23205.72, + "end": 23206.6, + "probability": 0.7673 + }, + { + "start": 23207.54, + "end": 23209.52, + "probability": 0.9688 + }, + { + "start": 23210.42, + "end": 23210.74, + "probability": 0.806 + }, + { + "start": 23211.82, + "end": 23215.92, + "probability": 0.8668 + }, + { + "start": 23215.92, + "end": 23220.46, + "probability": 0.9975 + }, + { + "start": 23221.76, + "end": 23222.02, + "probability": 0.0702 + }, + { + "start": 23222.02, + "end": 23224.06, + "probability": 0.5947 + }, + { + "start": 23230.58, + "end": 23231.46, + "probability": 0.3034 + }, + { + "start": 23232.46, + "end": 23232.46, + "probability": 0.4102 + }, + { + "start": 23232.46, + "end": 23233.36, + "probability": 0.6026 + }, + { + "start": 23235.62, + "end": 23237.74, + "probability": 0.6475 + }, + { + "start": 23237.78, + "end": 23238.24, + "probability": 0.5457 + }, + { + "start": 23238.36, + "end": 23239.72, + "probability": 0.5807 + }, + { + "start": 23239.86, + "end": 23241.8, + "probability": 0.8397 + }, + { + "start": 23242.68, + "end": 23245.16, + "probability": 0.9661 + }, + { + "start": 23246.3, + "end": 23249.3, + "probability": 0.8318 + }, + { + "start": 23249.3, + "end": 23250.54, + "probability": 0.8533 + }, + { + "start": 23252.44, + "end": 23255.22, + "probability": 0.9882 + }, + { + "start": 23256.76, + "end": 23259.98, + "probability": 0.95 + }, + { + "start": 23260.16, + "end": 23262.08, + "probability": 0.9573 + }, + { + "start": 23262.16, + "end": 23262.4, + "probability": 0.8006 + }, + { + "start": 23263.88, + "end": 23264.48, + "probability": 0.8379 + }, + { + "start": 23264.54, + "end": 23267.16, + "probability": 0.729 + }, + { + "start": 23268.48, + "end": 23272.0, + "probability": 0.9808 + }, + { + "start": 23272.52, + "end": 23277.7, + "probability": 0.9928 + }, + { + "start": 23278.88, + "end": 23280.26, + "probability": 0.8223 + }, + { + "start": 23280.48, + "end": 23285.78, + "probability": 0.9815 + }, + { + "start": 23286.8, + "end": 23295.0, + "probability": 0.9778 + }, + { + "start": 23296.14, + "end": 23297.8, + "probability": 0.0493 + }, + { + "start": 23298.58, + "end": 23299.04, + "probability": 0.3801 + }, + { + "start": 23299.14, + "end": 23299.2, + "probability": 0.163 + }, + { + "start": 23299.2, + "end": 23303.62, + "probability": 0.3873 + }, + { + "start": 23303.72, + "end": 23304.16, + "probability": 0.7545 + }, + { + "start": 23304.34, + "end": 23310.08, + "probability": 0.9352 + }, + { + "start": 23310.88, + "end": 23311.74, + "probability": 0.5535 + }, + { + "start": 23312.42, + "end": 23314.6, + "probability": 0.9382 + }, + { + "start": 23315.22, + "end": 23316.61, + "probability": 0.9834 + }, + { + "start": 23317.26, + "end": 23323.12, + "probability": 0.9905 + }, + { + "start": 23323.76, + "end": 23324.46, + "probability": 0.7672 + }, + { + "start": 23325.94, + "end": 23330.88, + "probability": 0.933 + }, + { + "start": 23331.54, + "end": 23333.74, + "probability": 0.9076 + }, + { + "start": 23334.1, + "end": 23337.31, + "probability": 0.9913 + }, + { + "start": 23338.7, + "end": 23341.8, + "probability": 0.9982 + }, + { + "start": 23341.8, + "end": 23345.24, + "probability": 0.9993 + }, + { + "start": 23345.7, + "end": 23346.8, + "probability": 0.9366 + }, + { + "start": 23346.84, + "end": 23347.36, + "probability": 0.8365 + }, + { + "start": 23348.4, + "end": 23352.0, + "probability": 0.9754 + }, + { + "start": 23352.46, + "end": 23355.58, + "probability": 0.9589 + }, + { + "start": 23355.58, + "end": 23358.82, + "probability": 0.9949 + }, + { + "start": 23359.64, + "end": 23364.78, + "probability": 0.9863 + }, + { + "start": 23364.9, + "end": 23365.85, + "probability": 0.5357 + }, + { + "start": 23366.66, + "end": 23368.24, + "probability": 0.9686 + }, + { + "start": 23368.96, + "end": 23370.94, + "probability": 0.9297 + }, + { + "start": 23371.98, + "end": 23374.77, + "probability": 0.9806 + }, + { + "start": 23374.82, + "end": 23381.3, + "probability": 0.9275 + }, + { + "start": 23382.5, + "end": 23383.48, + "probability": 0.6829 + }, + { + "start": 23384.24, + "end": 23389.7, + "probability": 0.9865 + }, + { + "start": 23390.34, + "end": 23392.3, + "probability": 0.9958 + }, + { + "start": 23392.38, + "end": 23393.1, + "probability": 0.8529 + }, + { + "start": 23393.18, + "end": 23396.42, + "probability": 0.9877 + }, + { + "start": 23396.5, + "end": 23402.38, + "probability": 0.9811 + }, + { + "start": 23403.68, + "end": 23405.54, + "probability": 0.6592 + }, + { + "start": 23406.44, + "end": 23409.06, + "probability": 0.6877 + }, + { + "start": 23409.14, + "end": 23411.7, + "probability": 0.8459 + }, + { + "start": 23412.06, + "end": 23412.6, + "probability": 0.3926 + }, + { + "start": 23412.76, + "end": 23413.92, + "probability": 0.2321 + }, + { + "start": 23414.16, + "end": 23415.32, + "probability": 0.3932 + }, + { + "start": 23415.48, + "end": 23422.36, + "probability": 0.4397 + }, + { + "start": 23422.36, + "end": 23423.34, + "probability": 0.5655 + }, + { + "start": 23424.24, + "end": 23429.65, + "probability": 0.9961 + }, + { + "start": 23432.96, + "end": 23439.6, + "probability": 0.9132 + }, + { + "start": 23439.64, + "end": 23443.6, + "probability": 0.8646 + }, + { + "start": 23444.3, + "end": 23447.54, + "probability": 0.9983 + }, + { + "start": 23447.54, + "end": 23450.38, + "probability": 0.9972 + }, + { + "start": 23451.0, + "end": 23454.02, + "probability": 0.9951 + }, + { + "start": 23455.6, + "end": 23458.16, + "probability": 0.8195 + }, + { + "start": 23458.82, + "end": 23461.52, + "probability": 0.9797 + }, + { + "start": 23462.04, + "end": 23463.5, + "probability": 0.9627 + }, + { + "start": 23463.58, + "end": 23466.98, + "probability": 0.8416 + }, + { + "start": 23466.98, + "end": 23470.66, + "probability": 0.9987 + }, + { + "start": 23471.34, + "end": 23472.76, + "probability": 0.7024 + }, + { + "start": 23473.24, + "end": 23474.32, + "probability": 0.7824 + }, + { + "start": 23474.8, + "end": 23475.84, + "probability": 0.7576 + }, + { + "start": 23475.96, + "end": 23476.45, + "probability": 0.4869 + }, + { + "start": 23477.16, + "end": 23477.52, + "probability": 0.4985 + }, + { + "start": 23477.66, + "end": 23478.08, + "probability": 0.9128 + }, + { + "start": 23478.52, + "end": 23478.72, + "probability": 0.4928 + }, + { + "start": 23478.88, + "end": 23483.0, + "probability": 0.9806 + }, + { + "start": 23483.34, + "end": 23484.64, + "probability": 0.8566 + }, + { + "start": 23485.12, + "end": 23486.86, + "probability": 0.9832 + }, + { + "start": 23486.9, + "end": 23487.66, + "probability": 0.9632 + }, + { + "start": 23488.14, + "end": 23490.92, + "probability": 0.9267 + }, + { + "start": 23491.78, + "end": 23494.6, + "probability": 0.9974 + }, + { + "start": 23495.08, + "end": 23498.04, + "probability": 0.9829 + }, + { + "start": 23498.76, + "end": 23499.98, + "probability": 0.7039 + }, + { + "start": 23500.5, + "end": 23500.5, + "probability": 0.5459 + }, + { + "start": 23503.8, + "end": 23506.12, + "probability": 0.8398 + }, + { + "start": 23506.22, + "end": 23507.7, + "probability": 0.9443 + }, + { + "start": 23507.7, + "end": 23510.24, + "probability": 0.3902 + }, + { + "start": 23512.92, + "end": 23513.76, + "probability": 0.5187 + }, + { + "start": 23517.18, + "end": 23518.08, + "probability": 0.2583 + }, + { + "start": 23519.1, + "end": 23521.96, + "probability": 0.6339 + }, + { + "start": 23522.98, + "end": 23527.26, + "probability": 0.8163 + }, + { + "start": 23528.18, + "end": 23535.52, + "probability": 0.8561 + }, + { + "start": 23537.18, + "end": 23542.52, + "probability": 0.9987 + }, + { + "start": 23543.02, + "end": 23546.16, + "probability": 0.9637 + }, + { + "start": 23546.62, + "end": 23549.64, + "probability": 0.9586 + }, + { + "start": 23550.22, + "end": 23552.04, + "probability": 0.2709 + }, + { + "start": 23552.16, + "end": 23553.3, + "probability": 0.8112 + }, + { + "start": 23555.04, + "end": 23558.14, + "probability": 0.7903 + }, + { + "start": 23561.22, + "end": 23563.82, + "probability": 0.7694 + }, + { + "start": 23565.14, + "end": 23569.02, + "probability": 0.9023 + }, + { + "start": 23570.78, + "end": 23572.82, + "probability": 0.9661 + }, + { + "start": 23572.94, + "end": 23573.62, + "probability": 0.883 + }, + { + "start": 23573.82, + "end": 23576.04, + "probability": 0.9839 + }, + { + "start": 23576.68, + "end": 23581.1, + "probability": 0.9468 + }, + { + "start": 23582.74, + "end": 23583.98, + "probability": 0.6329 + }, + { + "start": 23585.22, + "end": 23587.54, + "probability": 0.9834 + }, + { + "start": 23587.92, + "end": 23593.94, + "probability": 0.9727 + }, + { + "start": 23594.28, + "end": 23595.18, + "probability": 0.8454 + }, + { + "start": 23596.34, + "end": 23600.38, + "probability": 0.9408 + }, + { + "start": 23600.6, + "end": 23601.77, + "probability": 0.8901 + }, + { + "start": 23603.42, + "end": 23606.2, + "probability": 0.9969 + }, + { + "start": 23608.52, + "end": 23610.18, + "probability": 0.945 + }, + { + "start": 23611.78, + "end": 23616.04, + "probability": 0.9756 + }, + { + "start": 23616.62, + "end": 23620.76, + "probability": 0.9385 + }, + { + "start": 23621.74, + "end": 23623.78, + "probability": 0.9424 + }, + { + "start": 23625.56, + "end": 23629.45, + "probability": 0.9661 + }, + { + "start": 23630.58, + "end": 23633.34, + "probability": 0.7337 + }, + { + "start": 23634.1, + "end": 23637.48, + "probability": 0.9245 + }, + { + "start": 23638.9, + "end": 23641.58, + "probability": 0.9927 + }, + { + "start": 23642.68, + "end": 23649.28, + "probability": 0.8978 + }, + { + "start": 23649.4, + "end": 23652.38, + "probability": 0.9888 + }, + { + "start": 23652.38, + "end": 23655.56, + "probability": 0.9149 + }, + { + "start": 23656.78, + "end": 23658.66, + "probability": 0.4604 + }, + { + "start": 23659.1, + "end": 23659.36, + "probability": 0.3303 + }, + { + "start": 23659.52, + "end": 23660.68, + "probability": 0.9595 + }, + { + "start": 23661.9, + "end": 23662.7, + "probability": 0.4966 + }, + { + "start": 23662.86, + "end": 23664.16, + "probability": 0.8895 + }, + { + "start": 23664.44, + "end": 23669.02, + "probability": 0.8616 + }, + { + "start": 23669.88, + "end": 23672.24, + "probability": 0.2142 + }, + { + "start": 23672.42, + "end": 23674.94, + "probability": 0.0675 + }, + { + "start": 23675.64, + "end": 23676.27, + "probability": 0.0889 + }, + { + "start": 23676.52, + "end": 23676.52, + "probability": 0.331 + }, + { + "start": 23676.52, + "end": 23678.68, + "probability": 0.1003 + }, + { + "start": 23679.02, + "end": 23680.46, + "probability": 0.2796 + }, + { + "start": 23680.46, + "end": 23685.26, + "probability": 0.0257 + }, + { + "start": 23685.36, + "end": 23685.36, + "probability": 0.0509 + }, + { + "start": 23686.14, + "end": 23686.5, + "probability": 0.0148 + }, + { + "start": 23686.54, + "end": 23686.95, + "probability": 0.0552 + }, + { + "start": 23687.62, + "end": 23687.62, + "probability": 0.339 + }, + { + "start": 23687.62, + "end": 23689.12, + "probability": 0.1921 + }, + { + "start": 23689.34, + "end": 23690.7, + "probability": 0.7666 + }, + { + "start": 23690.88, + "end": 23691.5, + "probability": 0.6922 + }, + { + "start": 23691.66, + "end": 23692.72, + "probability": 0.7577 + }, + { + "start": 23692.88, + "end": 23693.56, + "probability": 0.4091 + }, + { + "start": 23693.82, + "end": 23695.92, + "probability": 0.7964 + }, + { + "start": 23696.32, + "end": 23697.04, + "probability": 0.8754 + }, + { + "start": 23697.76, + "end": 23697.92, + "probability": 0.2455 + }, + { + "start": 23697.92, + "end": 23697.92, + "probability": 0.3892 + }, + { + "start": 23697.92, + "end": 23700.26, + "probability": 0.9268 + }, + { + "start": 23700.38, + "end": 23705.12, + "probability": 0.8533 + }, + { + "start": 23705.28, + "end": 23707.44, + "probability": 0.98 + }, + { + "start": 23708.08, + "end": 23708.56, + "probability": 0.305 + }, + { + "start": 23709.8, + "end": 23709.84, + "probability": 0.0672 + }, + { + "start": 23709.84, + "end": 23712.52, + "probability": 0.8816 + }, + { + "start": 23712.74, + "end": 23713.02, + "probability": 0.1995 + }, + { + "start": 23713.14, + "end": 23717.64, + "probability": 0.7489 + }, + { + "start": 23717.74, + "end": 23718.12, + "probability": 0.3833 + }, + { + "start": 23718.12, + "end": 23721.14, + "probability": 0.9736 + }, + { + "start": 23721.68, + "end": 23723.13, + "probability": 0.78 + }, + { + "start": 23724.18, + "end": 23725.92, + "probability": 0.5211 + }, + { + "start": 23727.01, + "end": 23730.59, + "probability": 0.6694 + }, + { + "start": 23731.26, + "end": 23732.54, + "probability": 0.7644 + }, + { + "start": 23732.9, + "end": 23738.0, + "probability": 0.9662 + }, + { + "start": 23738.2, + "end": 23738.46, + "probability": 0.2197 + }, + { + "start": 23738.56, + "end": 23739.52, + "probability": 0.786 + }, + { + "start": 23739.92, + "end": 23741.4, + "probability": 0.6794 + }, + { + "start": 23741.4, + "end": 23742.98, + "probability": 0.5857 + }, + { + "start": 23743.04, + "end": 23744.34, + "probability": 0.851 + }, + { + "start": 23744.42, + "end": 23745.36, + "probability": 0.8391 + }, + { + "start": 23745.44, + "end": 23745.7, + "probability": 0.8146 + }, + { + "start": 23745.74, + "end": 23745.8, + "probability": 0.1663 + }, + { + "start": 23745.8, + "end": 23747.5, + "probability": 0.6944 + }, + { + "start": 23747.56, + "end": 23752.3, + "probability": 0.6686 + }, + { + "start": 23752.74, + "end": 23754.04, + "probability": 0.5941 + }, + { + "start": 23756.4, + "end": 23757.02, + "probability": 0.0193 + }, + { + "start": 23757.98, + "end": 23761.3, + "probability": 0.702 + }, + { + "start": 23762.02, + "end": 23763.8, + "probability": 0.9116 + }, + { + "start": 23763.9, + "end": 23765.08, + "probability": 0.7351 + }, + { + "start": 23765.48, + "end": 23766.59, + "probability": 0.9557 + }, + { + "start": 23768.22, + "end": 23768.22, + "probability": 0.3697 + }, + { + "start": 23768.78, + "end": 23770.46, + "probability": 0.9666 + }, + { + "start": 23771.44, + "end": 23773.58, + "probability": 0.886 + }, + { + "start": 23774.04, + "end": 23777.16, + "probability": 0.841 + }, + { + "start": 23777.92, + "end": 23779.02, + "probability": 0.8203 + }, + { + "start": 23779.66, + "end": 23781.58, + "probability": 0.9388 + }, + { + "start": 23782.38, + "end": 23784.66, + "probability": 0.9126 + }, + { + "start": 23785.2, + "end": 23786.74, + "probability": 0.9196 + }, + { + "start": 23786.86, + "end": 23789.33, + "probability": 0.9989 + }, + { + "start": 23790.02, + "end": 23792.16, + "probability": 0.8519 + }, + { + "start": 23792.8, + "end": 23795.1, + "probability": 0.8953 + }, + { + "start": 23795.1, + "end": 23799.78, + "probability": 0.9814 + }, + { + "start": 23799.84, + "end": 23802.36, + "probability": 0.417 + }, + { + "start": 23803.76, + "end": 23804.66, + "probability": 0.6455 + }, + { + "start": 23806.94, + "end": 23810.02, + "probability": 0.9274 + }, + { + "start": 23810.86, + "end": 23811.54, + "probability": 0.8023 + }, + { + "start": 23812.46, + "end": 23815.92, + "probability": 0.9951 + }, + { + "start": 23816.76, + "end": 23819.34, + "probability": 0.9736 + }, + { + "start": 23820.04, + "end": 23820.7, + "probability": 0.5266 + }, + { + "start": 23820.86, + "end": 23821.77, + "probability": 0.9868 + }, + { + "start": 23822.5, + "end": 23824.82, + "probability": 0.9608 + }, + { + "start": 23826.02, + "end": 23826.66, + "probability": 0.9543 + }, + { + "start": 23827.62, + "end": 23829.6, + "probability": 0.8159 + }, + { + "start": 23829.96, + "end": 23830.98, + "probability": 0.4832 + }, + { + "start": 23831.1, + "end": 23833.9, + "probability": 0.9912 + }, + { + "start": 23835.18, + "end": 23837.7, + "probability": 0.6096 + }, + { + "start": 23838.4, + "end": 23840.14, + "probability": 0.7292 + }, + { + "start": 23840.74, + "end": 23841.52, + "probability": 0.8945 + }, + { + "start": 23842.22, + "end": 23847.34, + "probability": 0.9808 + }, + { + "start": 23847.82, + "end": 23849.62, + "probability": 0.9868 + }, + { + "start": 23850.54, + "end": 23853.4, + "probability": 0.9966 + }, + { + "start": 23854.42, + "end": 23857.52, + "probability": 0.8765 + }, + { + "start": 23858.58, + "end": 23863.2, + "probability": 0.9797 + }, + { + "start": 23864.66, + "end": 23865.5, + "probability": 0.9797 + }, + { + "start": 23866.02, + "end": 23868.76, + "probability": 0.9275 + }, + { + "start": 23869.34, + "end": 23871.28, + "probability": 0.8267 + }, + { + "start": 23871.32, + "end": 23871.75, + "probability": 0.8455 + }, + { + "start": 23872.58, + "end": 23875.18, + "probability": 0.9456 + }, + { + "start": 23875.48, + "end": 23877.66, + "probability": 0.7946 + }, + { + "start": 23878.5, + "end": 23879.2, + "probability": 0.8737 + }, + { + "start": 23880.42, + "end": 23881.2, + "probability": 0.8823 + }, + { + "start": 23881.26, + "end": 23882.52, + "probability": 0.6258 + }, + { + "start": 23882.58, + "end": 23884.78, + "probability": 0.8909 + }, + { + "start": 23885.78, + "end": 23888.2, + "probability": 0.9929 + }, + { + "start": 23888.24, + "end": 23888.87, + "probability": 0.8943 + }, + { + "start": 23889.06, + "end": 23889.82, + "probability": 0.9475 + }, + { + "start": 23889.92, + "end": 23891.22, + "probability": 0.8662 + }, + { + "start": 23891.34, + "end": 23892.16, + "probability": 0.955 + }, + { + "start": 23894.04, + "end": 23895.98, + "probability": 0.9985 + }, + { + "start": 23896.74, + "end": 23899.62, + "probability": 0.9478 + }, + { + "start": 23899.9, + "end": 23900.72, + "probability": 0.4973 + }, + { + "start": 23901.34, + "end": 23903.78, + "probability": 0.8233 + }, + { + "start": 23905.28, + "end": 23907.94, + "probability": 0.9243 + }, + { + "start": 23908.0, + "end": 23909.88, + "probability": 0.9956 + }, + { + "start": 23910.0, + "end": 23911.8, + "probability": 0.9979 + }, + { + "start": 23912.64, + "end": 23915.98, + "probability": 0.9945 + }, + { + "start": 23916.24, + "end": 23919.08, + "probability": 0.9708 + }, + { + "start": 23919.08, + "end": 23922.42, + "probability": 0.9937 + }, + { + "start": 23923.08, + "end": 23925.3, + "probability": 0.9883 + }, + { + "start": 23925.4, + "end": 23927.14, + "probability": 0.9933 + }, + { + "start": 23927.14, + "end": 23929.2, + "probability": 0.879 + }, + { + "start": 23929.88, + "end": 23931.22, + "probability": 0.9849 + }, + { + "start": 23931.8, + "end": 23934.26, + "probability": 0.9971 + }, + { + "start": 23934.34, + "end": 23937.64, + "probability": 0.9482 + }, + { + "start": 23938.24, + "end": 23939.3, + "probability": 0.9788 + }, + { + "start": 23939.4, + "end": 23939.88, + "probability": 0.7239 + }, + { + "start": 23939.98, + "end": 23940.3, + "probability": 0.8157 + }, + { + "start": 23941.22, + "end": 23942.07, + "probability": 0.8759 + }, + { + "start": 23942.32, + "end": 23944.94, + "probability": 0.9325 + }, + { + "start": 23945.86, + "end": 23948.88, + "probability": 0.9895 + }, + { + "start": 23948.94, + "end": 23949.72, + "probability": 0.959 + }, + { + "start": 23949.82, + "end": 23950.74, + "probability": 0.8734 + }, + { + "start": 23951.24, + "end": 23951.78, + "probability": 0.8947 + }, + { + "start": 23952.44, + "end": 23954.26, + "probability": 0.958 + }, + { + "start": 23954.66, + "end": 23956.94, + "probability": 0.9046 + }, + { + "start": 23957.22, + "end": 23960.08, + "probability": 0.8767 + }, + { + "start": 23960.08, + "end": 23964.82, + "probability": 0.9933 + }, + { + "start": 23965.22, + "end": 23966.2, + "probability": 0.7209 + }, + { + "start": 23966.44, + "end": 23968.9, + "probability": 0.9639 + }, + { + "start": 23968.92, + "end": 23969.46, + "probability": 0.4998 + }, + { + "start": 23969.94, + "end": 23970.28, + "probability": 0.7031 + }, + { + "start": 23971.02, + "end": 23971.12, + "probability": 0.785 + }, + { + "start": 23971.2, + "end": 23972.02, + "probability": 0.8076 + }, + { + "start": 23972.26, + "end": 23973.96, + "probability": 0.9055 + }, + { + "start": 23974.04, + "end": 23974.6, + "probability": 0.6819 + }, + { + "start": 23974.86, + "end": 23976.66, + "probability": 0.9358 + }, + { + "start": 23976.9, + "end": 23978.66, + "probability": 0.8942 + }, + { + "start": 23978.98, + "end": 23979.38, + "probability": 0.4648 + }, + { + "start": 23979.4, + "end": 23980.12, + "probability": 0.7913 + }, + { + "start": 23980.52, + "end": 23981.2, + "probability": 0.9364 + }, + { + "start": 23981.58, + "end": 23982.98, + "probability": 0.6682 + }, + { + "start": 23984.1, + "end": 23987.06, + "probability": 0.801 + }, + { + "start": 23987.96, + "end": 23989.64, + "probability": 0.6958 + }, + { + "start": 23991.07, + "end": 23993.0, + "probability": 0.5242 + }, + { + "start": 23993.18, + "end": 23994.18, + "probability": 0.7172 + }, + { + "start": 23996.68, + "end": 23998.84, + "probability": 0.2999 + }, + { + "start": 23999.44, + "end": 24000.0, + "probability": 0.7399 + }, + { + "start": 24000.14, + "end": 24001.92, + "probability": 0.466 + }, + { + "start": 24002.06, + "end": 24002.68, + "probability": 0.2994 + }, + { + "start": 24003.46, + "end": 24010.44, + "probability": 0.9717 + }, + { + "start": 24010.54, + "end": 24012.0, + "probability": 0.9095 + }, + { + "start": 24012.91, + "end": 24015.66, + "probability": 0.6547 + }, + { + "start": 24016.2, + "end": 24018.14, + "probability": 0.6864 + }, + { + "start": 24018.78, + "end": 24020.52, + "probability": 0.8518 + }, + { + "start": 24021.38, + "end": 24022.98, + "probability": 0.1683 + }, + { + "start": 24024.16, + "end": 24024.76, + "probability": 0.3232 + }, + { + "start": 24026.1, + "end": 24028.23, + "probability": 0.4882 + }, + { + "start": 24029.38, + "end": 24030.36, + "probability": 0.7223 + }, + { + "start": 24031.64, + "end": 24032.52, + "probability": 0.7156 + }, + { + "start": 24033.04, + "end": 24034.66, + "probability": 0.9787 + }, + { + "start": 24034.66, + "end": 24036.98, + "probability": 0.9965 + }, + { + "start": 24037.6, + "end": 24038.3, + "probability": 0.6751 + }, + { + "start": 24038.46, + "end": 24041.55, + "probability": 0.9863 + }, + { + "start": 24041.84, + "end": 24044.72, + "probability": 0.9964 + }, + { + "start": 24045.62, + "end": 24050.02, + "probability": 0.9958 + }, + { + "start": 24050.56, + "end": 24054.64, + "probability": 0.9956 + }, + { + "start": 24055.34, + "end": 24057.92, + "probability": 0.7064 + }, + { + "start": 24057.92, + "end": 24061.16, + "probability": 0.9868 + }, + { + "start": 24061.62, + "end": 24062.22, + "probability": 0.409 + }, + { + "start": 24062.74, + "end": 24064.98, + "probability": 0.8293 + }, + { + "start": 24065.66, + "end": 24070.62, + "probability": 0.9783 + }, + { + "start": 24071.1, + "end": 24076.3, + "probability": 0.9898 + }, + { + "start": 24076.46, + "end": 24076.8, + "probability": 0.8829 + }, + { + "start": 24077.88, + "end": 24079.94, + "probability": 0.6634 + }, + { + "start": 24080.54, + "end": 24082.66, + "probability": 0.0346 + }, + { + "start": 24082.68, + "end": 24083.68, + "probability": 0.5059 + }, + { + "start": 24083.68, + "end": 24085.0, + "probability": 0.9085 + }, + { + "start": 24085.4, + "end": 24086.48, + "probability": 0.787 + }, + { + "start": 24087.36, + "end": 24087.7, + "probability": 0.941 + }, + { + "start": 24088.9, + "end": 24089.66, + "probability": 0.7595 + }, + { + "start": 24089.82, + "end": 24089.88, + "probability": 0.6124 + }, + { + "start": 24089.88, + "end": 24090.32, + "probability": 0.7736 + }, + { + "start": 24091.18, + "end": 24093.06, + "probability": 0.9875 + }, + { + "start": 24093.18, + "end": 24094.16, + "probability": 0.4955 + }, + { + "start": 24094.34, + "end": 24095.16, + "probability": 0.1822 + }, + { + "start": 24096.68, + "end": 24098.56, + "probability": 0.9836 + }, + { + "start": 24100.84, + "end": 24102.06, + "probability": 0.7157 + }, + { + "start": 24102.22, + "end": 24103.74, + "probability": 0.9587 + }, + { + "start": 24103.82, + "end": 24105.32, + "probability": 0.7314 + }, + { + "start": 24105.46, + "end": 24107.34, + "probability": 0.6294 + }, + { + "start": 24107.64, + "end": 24108.16, + "probability": 0.584 + }, + { + "start": 24108.16, + "end": 24108.26, + "probability": 0.1084 + }, + { + "start": 24109.24, + "end": 24109.34, + "probability": 0.7075 + }, + { + "start": 24111.74, + "end": 24112.4, + "probability": 0.8012 + }, + { + "start": 24113.67, + "end": 24115.72, + "probability": 0.9902 + }, + { + "start": 24116.26, + "end": 24116.62, + "probability": 0.8392 + }, + { + "start": 24117.02, + "end": 24119.58, + "probability": 0.8024 + }, + { + "start": 24119.66, + "end": 24120.82, + "probability": 0.9128 + }, + { + "start": 24121.44, + "end": 24124.32, + "probability": 0.8433 + }, + { + "start": 24124.96, + "end": 24129.05, + "probability": 0.8561 + }, + { + "start": 24130.08, + "end": 24131.92, + "probability": 0.9924 + }, + { + "start": 24132.34, + "end": 24133.1, + "probability": 0.7832 + }, + { + "start": 24133.78, + "end": 24135.26, + "probability": 0.59 + }, + { + "start": 24135.94, + "end": 24139.66, + "probability": 0.9961 + }, + { + "start": 24140.16, + "end": 24141.28, + "probability": 0.9204 + }, + { + "start": 24141.32, + "end": 24143.6, + "probability": 0.9815 + }, + { + "start": 24143.88, + "end": 24145.16, + "probability": 0.9956 + }, + { + "start": 24145.72, + "end": 24146.88, + "probability": 0.9825 + }, + { + "start": 24147.06, + "end": 24148.71, + "probability": 0.9946 + }, + { + "start": 24149.46, + "end": 24152.54, + "probability": 0.9873 + }, + { + "start": 24153.0, + "end": 24155.34, + "probability": 0.9729 + }, + { + "start": 24155.38, + "end": 24155.74, + "probability": 0.9218 + }, + { + "start": 24155.84, + "end": 24157.82, + "probability": 0.9689 + }, + { + "start": 24158.74, + "end": 24159.38, + "probability": 0.767 + }, + { + "start": 24159.42, + "end": 24163.18, + "probability": 0.99 + }, + { + "start": 24163.74, + "end": 24164.74, + "probability": 0.9898 + }, + { + "start": 24165.38, + "end": 24165.62, + "probability": 0.8066 + }, + { + "start": 24166.04, + "end": 24167.58, + "probability": 0.9683 + }, + { + "start": 24168.04, + "end": 24170.04, + "probability": 0.9978 + }, + { + "start": 24170.22, + "end": 24171.3, + "probability": 0.9378 + }, + { + "start": 24171.92, + "end": 24176.31, + "probability": 0.9958 + }, + { + "start": 24176.64, + "end": 24178.84, + "probability": 0.965 + }, + { + "start": 24179.12, + "end": 24179.5, + "probability": 0.7291 + }, + { + "start": 24180.0, + "end": 24181.04, + "probability": 0.4438 + }, + { + "start": 24181.54, + "end": 24183.9, + "probability": 0.9829 + }, + { + "start": 24184.1, + "end": 24186.2, + "probability": 0.9725 + }, + { + "start": 24186.2, + "end": 24186.66, + "probability": 0.0489 + }, + { + "start": 24186.66, + "end": 24186.66, + "probability": 0.1691 + }, + { + "start": 24186.94, + "end": 24187.08, + "probability": 0.5897 + }, + { + "start": 24191.4, + "end": 24192.22, + "probability": 0.2511 + }, + { + "start": 24192.3, + "end": 24194.4, + "probability": 0.9963 + }, + { + "start": 24195.48, + "end": 24196.44, + "probability": 0.8954 + }, + { + "start": 24197.16, + "end": 24197.9, + "probability": 0.6398 + }, + { + "start": 24201.36, + "end": 24204.02, + "probability": 0.3444 + }, + { + "start": 24206.04, + "end": 24206.14, + "probability": 0.7403 + }, + { + "start": 24206.14, + "end": 24206.14, + "probability": 0.0066 + }, + { + "start": 24206.14, + "end": 24208.4, + "probability": 0.7024 + }, + { + "start": 24208.64, + "end": 24209.96, + "probability": 0.4179 + }, + { + "start": 24210.06, + "end": 24212.7, + "probability": 0.7259 + }, + { + "start": 24213.02, + "end": 24219.78, + "probability": 0.9635 + }, + { + "start": 24220.4, + "end": 24223.52, + "probability": 0.896 + }, + { + "start": 24224.2, + "end": 24224.72, + "probability": 0.1142 + }, + { + "start": 24224.72, + "end": 24227.7, + "probability": 0.8292 + }, + { + "start": 24235.16, + "end": 24235.16, + "probability": 0.0205 + }, + { + "start": 24235.16, + "end": 24235.16, + "probability": 0.2329 + }, + { + "start": 24235.16, + "end": 24235.16, + "probability": 0.0877 + }, + { + "start": 24235.16, + "end": 24235.16, + "probability": 0.1775 + }, + { + "start": 24235.16, + "end": 24239.12, + "probability": 0.9519 + }, + { + "start": 24239.92, + "end": 24243.32, + "probability": 0.7295 + }, + { + "start": 24244.0, + "end": 24246.1, + "probability": 0.4761 + }, + { + "start": 24246.3, + "end": 24246.86, + "probability": 0.5306 + }, + { + "start": 24247.24, + "end": 24247.44, + "probability": 0.9237 + }, + { + "start": 24248.02, + "end": 24248.75, + "probability": 0.8922 + }, + { + "start": 24248.86, + "end": 24249.78, + "probability": 0.6882 + }, + { + "start": 24249.98, + "end": 24251.82, + "probability": 0.7266 + }, + { + "start": 24251.92, + "end": 24257.06, + "probability": 0.8175 + }, + { + "start": 24258.16, + "end": 24262.84, + "probability": 0.6647 + }, + { + "start": 24263.12, + "end": 24263.84, + "probability": 0.8221 + }, + { + "start": 24264.04, + "end": 24266.5, + "probability": 0.9477 + }, + { + "start": 24267.16, + "end": 24268.58, + "probability": 0.8075 + }, + { + "start": 24269.24, + "end": 24272.8, + "probability": 0.8614 + }, + { + "start": 24273.52, + "end": 24274.74, + "probability": 0.998 + }, + { + "start": 24275.8, + "end": 24278.34, + "probability": 0.7629 + }, + { + "start": 24278.48, + "end": 24279.4, + "probability": 0.7777 + }, + { + "start": 24279.5, + "end": 24285.4, + "probability": 0.9734 + }, + { + "start": 24285.52, + "end": 24289.4, + "probability": 0.8665 + }, + { + "start": 24290.3, + "end": 24290.96, + "probability": 0.6286 + }, + { + "start": 24291.48, + "end": 24293.58, + "probability": 0.7939 + }, + { + "start": 24294.18, + "end": 24298.82, + "probability": 0.9689 + }, + { + "start": 24298.88, + "end": 24301.72, + "probability": 0.9601 + }, + { + "start": 24302.6, + "end": 24303.56, + "probability": 0.9957 + }, + { + "start": 24304.0, + "end": 24307.42, + "probability": 0.9552 + }, + { + "start": 24309.48, + "end": 24309.68, + "probability": 0.2372 + }, + { + "start": 24309.72, + "end": 24311.12, + "probability": 0.9016 + }, + { + "start": 24311.32, + "end": 24311.42, + "probability": 0.6415 + }, + { + "start": 24312.3, + "end": 24315.8, + "probability": 0.9926 + }, + { + "start": 24316.42, + "end": 24318.04, + "probability": 0.9941 + }, + { + "start": 24318.04, + "end": 24321.16, + "probability": 0.6454 + }, + { + "start": 24321.68, + "end": 24324.04, + "probability": 0.8348 + }, + { + "start": 24324.14, + "end": 24326.29, + "probability": 0.9829 + }, + { + "start": 24329.82, + "end": 24329.98, + "probability": 0.6938 + }, + { + "start": 24330.12, + "end": 24331.0, + "probability": 0.7934 + }, + { + "start": 24331.06, + "end": 24332.48, + "probability": 0.981 + }, + { + "start": 24332.7, + "end": 24334.62, + "probability": 0.1638 + }, + { + "start": 24334.74, + "end": 24336.1, + "probability": 0.3358 + }, + { + "start": 24336.12, + "end": 24336.12, + "probability": 0.1395 + }, + { + "start": 24336.12, + "end": 24339.9, + "probability": 0.6273 + }, + { + "start": 24341.2, + "end": 24344.98, + "probability": 0.9725 + }, + { + "start": 24345.14, + "end": 24345.6, + "probability": 0.7254 + }, + { + "start": 24345.98, + "end": 24347.1, + "probability": 0.8638 + }, + { + "start": 24347.94, + "end": 24348.48, + "probability": 0.7783 + }, + { + "start": 24348.76, + "end": 24350.52, + "probability": 0.9436 + }, + { + "start": 24350.58, + "end": 24354.38, + "probability": 0.9792 + }, + { + "start": 24355.7, + "end": 24357.42, + "probability": 0.7477 + }, + { + "start": 24357.48, + "end": 24361.48, + "probability": 0.9915 + }, + { + "start": 24362.2, + "end": 24362.86, + "probability": 0.8102 + }, + { + "start": 24362.94, + "end": 24363.78, + "probability": 0.7396 + }, + { + "start": 24363.82, + "end": 24364.18, + "probability": 0.8777 + }, + { + "start": 24364.52, + "end": 24368.98, + "probability": 0.9746 + }, + { + "start": 24369.26, + "end": 24370.04, + "probability": 0.9409 + }, + { + "start": 24370.82, + "end": 24375.0, + "probability": 0.9844 + }, + { + "start": 24375.92, + "end": 24376.38, + "probability": 0.7759 + }, + { + "start": 24376.56, + "end": 24378.92, + "probability": 0.9745 + }, + { + "start": 24379.2, + "end": 24381.32, + "probability": 0.9857 + }, + { + "start": 24381.94, + "end": 24386.46, + "probability": 0.8434 + }, + { + "start": 24387.1, + "end": 24388.02, + "probability": 0.6307 + }, + { + "start": 24388.18, + "end": 24388.88, + "probability": 0.6386 + }, + { + "start": 24388.96, + "end": 24389.42, + "probability": 0.8976 + }, + { + "start": 24389.48, + "end": 24390.74, + "probability": 0.9967 + }, + { + "start": 24391.76, + "end": 24396.3, + "probability": 0.9874 + }, + { + "start": 24398.34, + "end": 24401.2, + "probability": 0.7371 + }, + { + "start": 24401.24, + "end": 24402.08, + "probability": 0.9297 + }, + { + "start": 24402.2, + "end": 24405.68, + "probability": 0.9932 + }, + { + "start": 24407.3, + "end": 24408.48, + "probability": 0.6438 + }, + { + "start": 24409.08, + "end": 24409.08, + "probability": 0.676 + }, + { + "start": 24409.08, + "end": 24410.9, + "probability": 0.9543 + }, + { + "start": 24410.98, + "end": 24413.9, + "probability": 0.992 + }, + { + "start": 24414.48, + "end": 24415.58, + "probability": 0.9983 + }, + { + "start": 24415.68, + "end": 24416.32, + "probability": 0.7425 + }, + { + "start": 24416.4, + "end": 24416.9, + "probability": 0.6372 + }, + { + "start": 24417.02, + "end": 24419.26, + "probability": 0.9209 + }, + { + "start": 24421.14, + "end": 24423.64, + "probability": 0.8179 + }, + { + "start": 24424.26, + "end": 24426.0, + "probability": 0.788 + }, + { + "start": 24426.06, + "end": 24426.42, + "probability": 0.8974 + }, + { + "start": 24426.52, + "end": 24430.9, + "probability": 0.9954 + }, + { + "start": 24431.32, + "end": 24432.18, + "probability": 0.8795 + }, + { + "start": 24432.22, + "end": 24432.74, + "probability": 0.6616 + }, + { + "start": 24432.74, + "end": 24435.86, + "probability": 0.7096 + }, + { + "start": 24436.14, + "end": 24438.36, + "probability": 0.9979 + }, + { + "start": 24438.88, + "end": 24442.04, + "probability": 0.9956 + }, + { + "start": 24442.24, + "end": 24442.4, + "probability": 0.7728 + }, + { + "start": 24443.7, + "end": 24445.22, + "probability": 0.9774 + }, + { + "start": 24445.36, + "end": 24445.96, + "probability": 0.9873 + }, + { + "start": 24445.98, + "end": 24449.36, + "probability": 0.9875 + }, + { + "start": 24449.96, + "end": 24452.13, + "probability": 0.9641 + }, + { + "start": 24452.58, + "end": 24456.36, + "probability": 0.9955 + }, + { + "start": 24456.36, + "end": 24460.5, + "probability": 0.9988 + }, + { + "start": 24461.72, + "end": 24466.76, + "probability": 0.9766 + }, + { + "start": 24467.62, + "end": 24471.86, + "probability": 0.998 + }, + { + "start": 24472.12, + "end": 24476.02, + "probability": 0.997 + }, + { + "start": 24476.18, + "end": 24477.14, + "probability": 0.6839 + }, + { + "start": 24477.64, + "end": 24478.26, + "probability": 0.6445 + }, + { + "start": 24478.88, + "end": 24485.04, + "probability": 0.9399 + }, + { + "start": 24485.86, + "end": 24487.72, + "probability": 0.9862 + }, + { + "start": 24488.39, + "end": 24490.24, + "probability": 0.9414 + }, + { + "start": 24490.26, + "end": 24490.54, + "probability": 0.2783 + }, + { + "start": 24490.6, + "end": 24490.7, + "probability": 0.7444 + }, + { + "start": 24490.78, + "end": 24494.54, + "probability": 0.978 + }, + { + "start": 24494.56, + "end": 24497.18, + "probability": 0.9082 + }, + { + "start": 24497.26, + "end": 24499.16, + "probability": 0.5973 + }, + { + "start": 24499.24, + "end": 24500.3, + "probability": 0.9971 + }, + { + "start": 24500.3, + "end": 24501.89, + "probability": 0.6956 + }, + { + "start": 24502.42, + "end": 24507.28, + "probability": 0.842 + }, + { + "start": 24507.34, + "end": 24507.96, + "probability": 0.8074 + }, + { + "start": 24508.06, + "end": 24509.18, + "probability": 0.8706 + }, + { + "start": 24509.54, + "end": 24510.7, + "probability": 0.9835 + }, + { + "start": 24511.04, + "end": 24513.74, + "probability": 0.9396 + }, + { + "start": 24514.34, + "end": 24516.22, + "probability": 0.9783 + }, + { + "start": 24517.0, + "end": 24519.52, + "probability": 0.8284 + }, + { + "start": 24519.74, + "end": 24520.62, + "probability": 0.9084 + }, + { + "start": 24520.92, + "end": 24521.72, + "probability": 0.9788 + }, + { + "start": 24522.12, + "end": 24524.14, + "probability": 0.9583 + }, + { + "start": 24524.86, + "end": 24526.88, + "probability": 0.99 + }, + { + "start": 24527.44, + "end": 24531.96, + "probability": 0.994 + }, + { + "start": 24532.68, + "end": 24536.44, + "probability": 0.9985 + }, + { + "start": 24536.46, + "end": 24538.16, + "probability": 0.9263 + }, + { + "start": 24539.7, + "end": 24542.8, + "probability": 0.9993 + }, + { + "start": 24543.22, + "end": 24544.32, + "probability": 0.7418 + }, + { + "start": 24544.62, + "end": 24548.04, + "probability": 0.9749 + }, + { + "start": 24548.54, + "end": 24550.54, + "probability": 0.9924 + }, + { + "start": 24551.38, + "end": 24552.02, + "probability": 0.1566 + }, + { + "start": 24552.02, + "end": 24554.2, + "probability": 0.9904 + }, + { + "start": 24554.5, + "end": 24555.58, + "probability": 0.6472 + }, + { + "start": 24556.0, + "end": 24558.34, + "probability": 0.8477 + }, + { + "start": 24558.4, + "end": 24559.26, + "probability": 0.6847 + }, + { + "start": 24560.0, + "end": 24561.8, + "probability": 0.9497 + }, + { + "start": 24561.9, + "end": 24564.92, + "probability": 0.9697 + }, + { + "start": 24565.66, + "end": 24567.74, + "probability": 0.9761 + }, + { + "start": 24567.88, + "end": 24568.8, + "probability": 0.7906 + }, + { + "start": 24569.42, + "end": 24571.78, + "probability": 0.8276 + }, + { + "start": 24572.7, + "end": 24575.3, + "probability": 0.8886 + }, + { + "start": 24575.44, + "end": 24576.3, + "probability": 0.8633 + }, + { + "start": 24578.06, + "end": 24579.26, + "probability": 0.5758 + }, + { + "start": 24580.7, + "end": 24581.88, + "probability": 0.9712 + }, + { + "start": 24583.22, + "end": 24584.58, + "probability": 0.279 + }, + { + "start": 24584.64, + "end": 24587.72, + "probability": 0.5977 + }, + { + "start": 24592.24, + "end": 24593.0, + "probability": 0.2359 + }, + { + "start": 24593.02, + "end": 24595.84, + "probability": 0.4821 + }, + { + "start": 24595.88, + "end": 24601.5, + "probability": 0.9769 + }, + { + "start": 24602.56, + "end": 24602.62, + "probability": 0.2711 + }, + { + "start": 24602.62, + "end": 24602.62, + "probability": 0.5883 + }, + { + "start": 24602.62, + "end": 24603.2, + "probability": 0.7402 + }, + { + "start": 24604.24, + "end": 24604.28, + "probability": 0.4894 + }, + { + "start": 24604.28, + "end": 24607.98, + "probability": 0.5483 + }, + { + "start": 24609.9, + "end": 24613.38, + "probability": 0.5594 + }, + { + "start": 24613.96, + "end": 24617.5, + "probability": 0.9561 + }, + { + "start": 24618.3, + "end": 24619.64, + "probability": 0.7278 + }, + { + "start": 24619.7, + "end": 24620.68, + "probability": 0.6493 + }, + { + "start": 24622.6, + "end": 24623.52, + "probability": 0.1031 + }, + { + "start": 24631.24, + "end": 24631.32, + "probability": 0.0757 + }, + { + "start": 24631.32, + "end": 24631.32, + "probability": 0.4094 + }, + { + "start": 24631.32, + "end": 24631.36, + "probability": 0.0619 + }, + { + "start": 24631.36, + "end": 24631.42, + "probability": 0.045 + }, + { + "start": 24631.42, + "end": 24631.42, + "probability": 0.0001 + }, + { + "start": 24645.26, + "end": 24648.98, + "probability": 0.3601 + }, + { + "start": 24649.72, + "end": 24653.44, + "probability": 0.813 + }, + { + "start": 24653.68, + "end": 24655.68, + "probability": 0.983 + }, + { + "start": 24656.28, + "end": 24658.22, + "probability": 0.7051 + }, + { + "start": 24672.4, + "end": 24675.12, + "probability": 0.7082 + }, + { + "start": 24675.14, + "end": 24677.0, + "probability": 0.8652 + }, + { + "start": 24678.08, + "end": 24682.14, + "probability": 0.7043 + }, + { + "start": 24682.74, + "end": 24686.24, + "probability": 0.8603 + }, + { + "start": 24687.16, + "end": 24691.22, + "probability": 0.9604 + }, + { + "start": 24691.22, + "end": 24693.22, + "probability": 0.9011 + }, + { + "start": 24694.44, + "end": 24695.74, + "probability": 0.7419 + }, + { + "start": 24695.9, + "end": 24697.06, + "probability": 0.7468 + }, + { + "start": 24697.18, + "end": 24698.1, + "probability": 0.8242 + }, + { + "start": 24698.48, + "end": 24703.62, + "probability": 0.9469 + }, + { + "start": 24704.34, + "end": 24704.66, + "probability": 0.9707 + }, + { + "start": 24705.52, + "end": 24706.52, + "probability": 0.6502 + }, + { + "start": 24707.1, + "end": 24711.02, + "probability": 0.8869 + }, + { + "start": 24711.54, + "end": 24713.78, + "probability": 0.7252 + }, + { + "start": 24713.82, + "end": 24715.12, + "probability": 0.906 + }, + { + "start": 24715.18, + "end": 24716.1, + "probability": 0.6897 + }, + { + "start": 24716.18, + "end": 24718.82, + "probability": 0.99 + }, + { + "start": 24719.9, + "end": 24720.34, + "probability": 0.6945 + }, + { + "start": 24721.26, + "end": 24723.96, + "probability": 0.8566 + }, + { + "start": 24725.96, + "end": 24732.12, + "probability": 0.9915 + }, + { + "start": 24733.66, + "end": 24739.84, + "probability": 0.9972 + }, + { + "start": 24739.84, + "end": 24747.0, + "probability": 0.9978 + }, + { + "start": 24747.54, + "end": 24750.54, + "probability": 0.9359 + }, + { + "start": 24751.02, + "end": 24752.16, + "probability": 0.8591 + }, + { + "start": 24752.78, + "end": 24753.54, + "probability": 0.4278 + }, + { + "start": 24753.66, + "end": 24761.14, + "probability": 0.9094 + }, + { + "start": 24761.26, + "end": 24762.12, + "probability": 0.9263 + }, + { + "start": 24762.24, + "end": 24763.06, + "probability": 0.7024 + }, + { + "start": 24763.36, + "end": 24764.54, + "probability": 0.48 + }, + { + "start": 24764.78, + "end": 24767.48, + "probability": 0.8066 + }, + { + "start": 24768.6, + "end": 24769.64, + "probability": 0.7321 + }, + { + "start": 24770.34, + "end": 24773.7, + "probability": 0.8285 + }, + { + "start": 24775.02, + "end": 24777.24, + "probability": 0.9764 + }, + { + "start": 24777.98, + "end": 24778.8, + "probability": 0.8979 + }, + { + "start": 24779.36, + "end": 24781.28, + "probability": 0.9824 + }, + { + "start": 24781.78, + "end": 24783.82, + "probability": 0.934 + }, + { + "start": 24784.06, + "end": 24786.98, + "probability": 0.8435 + }, + { + "start": 24786.98, + "end": 24787.8, + "probability": 0.6503 + }, + { + "start": 24787.88, + "end": 24789.5, + "probability": 0.9941 + }, + { + "start": 24790.44, + "end": 24791.56, + "probability": 0.8145 + }, + { + "start": 24791.62, + "end": 24793.78, + "probability": 0.5532 + }, + { + "start": 24793.78, + "end": 24795.82, + "probability": 0.7828 + }, + { + "start": 24795.9, + "end": 24796.34, + "probability": 0.5587 + }, + { + "start": 24796.48, + "end": 24797.18, + "probability": 0.2917 + }, + { + "start": 24797.2, + "end": 24800.92, + "probability": 0.7767 + }, + { + "start": 24800.98, + "end": 24801.58, + "probability": 0.2649 + }, + { + "start": 24801.62, + "end": 24803.1, + "probability": 0.6804 + }, + { + "start": 24803.3, + "end": 24808.24, + "probability": 0.9493 + }, + { + "start": 24808.62, + "end": 24810.26, + "probability": 0.818 + }, + { + "start": 24811.0, + "end": 24813.78, + "probability": 0.9796 + }, + { + "start": 24814.38, + "end": 24815.79, + "probability": 0.9798 + }, + { + "start": 24816.4, + "end": 24818.96, + "probability": 0.9971 + }, + { + "start": 24819.34, + "end": 24820.48, + "probability": 0.9303 + }, + { + "start": 24820.9, + "end": 24823.0, + "probability": 0.7397 + }, + { + "start": 24823.06, + "end": 24823.34, + "probability": 0.8677 + }, + { + "start": 24823.68, + "end": 24827.44, + "probability": 0.7265 + }, + { + "start": 24828.08, + "end": 24828.92, + "probability": 0.9486 + }, + { + "start": 24829.46, + "end": 24832.24, + "probability": 0.8363 + }, + { + "start": 24832.76, + "end": 24834.58, + "probability": 0.8705 + }, + { + "start": 24835.36, + "end": 24836.64, + "probability": 0.7535 + }, + { + "start": 24836.92, + "end": 24838.46, + "probability": 0.9483 + }, + { + "start": 24839.3, + "end": 24841.64, + "probability": 0.4571 + }, + { + "start": 24841.7, + "end": 24842.88, + "probability": 0.3415 + }, + { + "start": 24843.27, + "end": 24847.18, + "probability": 0.5748 + }, + { + "start": 24847.18, + "end": 24847.88, + "probability": 0.6064 + }, + { + "start": 24848.22, + "end": 24849.12, + "probability": 0.9367 + }, + { + "start": 24849.26, + "end": 24852.78, + "probability": 0.8441 + }, + { + "start": 24853.32, + "end": 24854.48, + "probability": 0.9596 + }, + { + "start": 24855.0, + "end": 24858.82, + "probability": 0.9913 + }, + { + "start": 24859.2, + "end": 24862.34, + "probability": 0.9771 + }, + { + "start": 24862.4, + "end": 24865.66, + "probability": 0.8885 + }, + { + "start": 24865.66, + "end": 24868.24, + "probability": 0.8237 + }, + { + "start": 24868.24, + "end": 24870.52, + "probability": 0.4769 + }, + { + "start": 24870.6, + "end": 24871.14, + "probability": 0.7635 + }, + { + "start": 24871.2, + "end": 24873.12, + "probability": 0.9077 + }, + { + "start": 24873.72, + "end": 24874.76, + "probability": 0.861 + }, + { + "start": 24875.32, + "end": 24877.34, + "probability": 0.9974 + }, + { + "start": 24877.34, + "end": 24879.52, + "probability": 0.9963 + }, + { + "start": 24879.78, + "end": 24880.68, + "probability": 0.8882 + }, + { + "start": 24881.14, + "end": 24883.72, + "probability": 0.9914 + }, + { + "start": 24883.96, + "end": 24884.86, + "probability": 0.9976 + }, + { + "start": 24885.3, + "end": 24888.48, + "probability": 0.9041 + }, + { + "start": 24889.52, + "end": 24890.92, + "probability": 0.0888 + }, + { + "start": 24891.32, + "end": 24891.32, + "probability": 0.1224 + }, + { + "start": 24891.5, + "end": 24895.16, + "probability": 0.3751 + }, + { + "start": 24895.16, + "end": 24897.02, + "probability": 0.5832 + }, + { + "start": 24897.16, + "end": 24898.42, + "probability": 0.875 + }, + { + "start": 24898.44, + "end": 24899.24, + "probability": 0.9316 + }, + { + "start": 24899.48, + "end": 24899.76, + "probability": 0.4112 + }, + { + "start": 24899.88, + "end": 24901.34, + "probability": 0.6071 + }, + { + "start": 24901.34, + "end": 24901.6, + "probability": 0.4175 + }, + { + "start": 24902.36, + "end": 24908.34, + "probability": 0.9624 + }, + { + "start": 24908.72, + "end": 24914.54, + "probability": 0.9974 + }, + { + "start": 24915.04, + "end": 24915.89, + "probability": 0.7233 + }, + { + "start": 24916.46, + "end": 24918.46, + "probability": 0.6514 + }, + { + "start": 24918.6, + "end": 24920.44, + "probability": 0.8059 + }, + { + "start": 24920.48, + "end": 24921.78, + "probability": 0.5623 + }, + { + "start": 24921.78, + "end": 24922.5, + "probability": 0.6377 + }, + { + "start": 24922.5, + "end": 24923.54, + "probability": 0.7077 + }, + { + "start": 24923.58, + "end": 24925.38, + "probability": 0.9388 + }, + { + "start": 24925.8, + "end": 24928.28, + "probability": 0.622 + }, + { + "start": 24928.56, + "end": 24928.7, + "probability": 0.5401 + }, + { + "start": 24928.78, + "end": 24931.24, + "probability": 0.9531 + }, + { + "start": 24931.72, + "end": 24935.06, + "probability": 0.9563 + }, + { + "start": 24935.06, + "end": 24935.72, + "probability": 0.2835 + }, + { + "start": 24935.82, + "end": 24941.38, + "probability": 0.9773 + }, + { + "start": 24941.7, + "end": 24942.65, + "probability": 0.7678 + }, + { + "start": 24943.04, + "end": 24943.63, + "probability": 0.0335 + }, + { + "start": 24944.4, + "end": 24944.92, + "probability": 0.3379 + }, + { + "start": 24945.06, + "end": 24945.84, + "probability": 0.1987 + }, + { + "start": 24946.3, + "end": 24946.8, + "probability": 0.9744 + }, + { + "start": 24950.74, + "end": 24951.5, + "probability": 0.7425 + }, + { + "start": 24951.58, + "end": 24952.84, + "probability": 0.1274 + }, + { + "start": 24952.92, + "end": 24953.26, + "probability": 0.0113 + }, + { + "start": 24954.64, + "end": 24956.7, + "probability": 0.4177 + }, + { + "start": 24957.64, + "end": 24958.46, + "probability": 0.6422 + }, + { + "start": 24958.5, + "end": 24963.4, + "probability": 0.7073 + }, + { + "start": 24964.76, + "end": 24965.06, + "probability": 0.9155 + }, + { + "start": 24966.64, + "end": 24967.28, + "probability": 0.7668 + }, + { + "start": 24967.82, + "end": 24970.52, + "probability": 0.6846 + }, + { + "start": 24971.4, + "end": 24972.58, + "probability": 0.9526 + }, + { + "start": 24972.72, + "end": 24973.68, + "probability": 0.9033 + }, + { + "start": 24973.8, + "end": 24978.18, + "probability": 0.9944 + }, + { + "start": 24979.64, + "end": 24982.78, + "probability": 0.9961 + }, + { + "start": 24983.44, + "end": 24988.52, + "probability": 0.99 + }, + { + "start": 24989.2, + "end": 24992.22, + "probability": 0.6434 + }, + { + "start": 24993.24, + "end": 24995.91, + "probability": 0.9966 + }, + { + "start": 24996.34, + "end": 24998.54, + "probability": 0.9716 + }, + { + "start": 24998.74, + "end": 24999.84, + "probability": 0.9924 + }, + { + "start": 25000.68, + "end": 25003.94, + "probability": 0.9126 + }, + { + "start": 25004.88, + "end": 25006.32, + "probability": 0.9536 + }, + { + "start": 25006.76, + "end": 25007.36, + "probability": 0.9539 + }, + { + "start": 25007.7, + "end": 25008.6, + "probability": 0.7884 + }, + { + "start": 25009.0, + "end": 25012.38, + "probability": 0.9666 + }, + { + "start": 25012.82, + "end": 25013.68, + "probability": 0.9092 + }, + { + "start": 25014.04, + "end": 25016.46, + "probability": 0.883 + }, + { + "start": 25017.64, + "end": 25018.4, + "probability": 0.7957 + }, + { + "start": 25019.94, + "end": 25023.2, + "probability": 0.9917 + }, + { + "start": 25023.6, + "end": 25024.4, + "probability": 0.9193 + }, + { + "start": 25024.84, + "end": 25030.86, + "probability": 0.9948 + }, + { + "start": 25031.48, + "end": 25032.24, + "probability": 0.7762 + }, + { + "start": 25032.92, + "end": 25033.76, + "probability": 0.6904 + }, + { + "start": 25034.82, + "end": 25036.52, + "probability": 0.7571 + }, + { + "start": 25036.76, + "end": 25037.7, + "probability": 0.9779 + }, + { + "start": 25038.06, + "end": 25041.82, + "probability": 0.93 + }, + { + "start": 25041.94, + "end": 25043.18, + "probability": 0.7199 + }, + { + "start": 25043.32, + "end": 25044.98, + "probability": 0.7593 + }, + { + "start": 25045.0, + "end": 25048.29, + "probability": 0.6718 + }, + { + "start": 25048.96, + "end": 25049.76, + "probability": 0.5368 + }, + { + "start": 25050.64, + "end": 25055.64, + "probability": 0.995 + }, + { + "start": 25056.16, + "end": 25060.68, + "probability": 0.7588 + }, + { + "start": 25061.26, + "end": 25062.26, + "probability": 0.8535 + }, + { + "start": 25062.92, + "end": 25067.74, + "probability": 0.9917 + }, + { + "start": 25068.26, + "end": 25069.21, + "probability": 0.9851 + }, + { + "start": 25070.62, + "end": 25072.18, + "probability": 0.8231 + }, + { + "start": 25072.9, + "end": 25077.48, + "probability": 0.9951 + }, + { + "start": 25078.3, + "end": 25079.66, + "probability": 0.6707 + }, + { + "start": 25080.46, + "end": 25081.9, + "probability": 0.6566 + }, + { + "start": 25083.6, + "end": 25085.04, + "probability": 0.8896 + }, + { + "start": 25085.92, + "end": 25087.08, + "probability": 0.9795 + }, + { + "start": 25087.6, + "end": 25089.88, + "probability": 0.9027 + }, + { + "start": 25090.86, + "end": 25094.8, + "probability": 0.8482 + }, + { + "start": 25095.42, + "end": 25096.62, + "probability": 0.9956 + }, + { + "start": 25097.62, + "end": 25099.3, + "probability": 0.9692 + }, + { + "start": 25099.68, + "end": 25101.6, + "probability": 0.9852 + }, + { + "start": 25101.92, + "end": 25105.28, + "probability": 0.9826 + }, + { + "start": 25106.12, + "end": 25111.2, + "probability": 0.9578 + }, + { + "start": 25112.64, + "end": 25114.72, + "probability": 0.9391 + }, + { + "start": 25115.24, + "end": 25122.48, + "probability": 0.995 + }, + { + "start": 25122.62, + "end": 25124.7, + "probability": 0.7696 + }, + { + "start": 25125.1, + "end": 25126.9, + "probability": 0.981 + }, + { + "start": 25129.16, + "end": 25133.84, + "probability": 0.9974 + }, + { + "start": 25134.36, + "end": 25138.72, + "probability": 0.9902 + }, + { + "start": 25139.14, + "end": 25139.78, + "probability": 0.9935 + }, + { + "start": 25141.0, + "end": 25141.92, + "probability": 0.8255 + }, + { + "start": 25143.32, + "end": 25144.56, + "probability": 0.9718 + }, + { + "start": 25145.62, + "end": 25147.08, + "probability": 0.9253 + }, + { + "start": 25147.76, + "end": 25148.46, + "probability": 0.8419 + }, + { + "start": 25148.98, + "end": 25150.94, + "probability": 0.9602 + }, + { + "start": 25151.58, + "end": 25156.96, + "probability": 0.994 + }, + { + "start": 25157.24, + "end": 25161.2, + "probability": 0.2443 + }, + { + "start": 25162.22, + "end": 25162.36, + "probability": 0.0974 + }, + { + "start": 25162.36, + "end": 25162.43, + "probability": 0.4696 + }, + { + "start": 25162.58, + "end": 25164.9, + "probability": 0.4649 + }, + { + "start": 25165.7, + "end": 25167.44, + "probability": 0.7562 + }, + { + "start": 25167.6, + "end": 25171.24, + "probability": 0.9812 + }, + { + "start": 25171.58, + "end": 25172.86, + "probability": 0.7943 + }, + { + "start": 25173.54, + "end": 25175.58, + "probability": 0.9941 + }, + { + "start": 25176.02, + "end": 25181.26, + "probability": 0.999 + }, + { + "start": 25181.58, + "end": 25183.74, + "probability": 0.9938 + }, + { + "start": 25184.44, + "end": 25185.35, + "probability": 0.7089 + }, + { + "start": 25185.84, + "end": 25187.26, + "probability": 0.7608 + }, + { + "start": 25187.4, + "end": 25188.38, + "probability": 0.7778 + }, + { + "start": 25188.74, + "end": 25189.2, + "probability": 0.8153 + }, + { + "start": 25189.3, + "end": 25191.54, + "probability": 0.5322 + }, + { + "start": 25192.66, + "end": 25196.62, + "probability": 0.9136 + }, + { + "start": 25198.64, + "end": 25205.8, + "probability": 0.8013 + }, + { + "start": 25206.04, + "end": 25206.04, + "probability": 0.029 + }, + { + "start": 25206.04, + "end": 25206.48, + "probability": 0.3538 + }, + { + "start": 25206.5, + "end": 25209.12, + "probability": 0.7429 + }, + { + "start": 25209.58, + "end": 25210.0, + "probability": 0.5498 + }, + { + "start": 25211.74, + "end": 25215.46, + "probability": 0.9027 + }, + { + "start": 25217.02, + "end": 25217.12, + "probability": 0.6945 + }, + { + "start": 25219.28, + "end": 25220.58, + "probability": 0.9483 + }, + { + "start": 25220.84, + "end": 25221.74, + "probability": 0.5212 + }, + { + "start": 25223.36, + "end": 25223.88, + "probability": 0.6733 + }, + { + "start": 25225.48, + "end": 25226.54, + "probability": 0.5176 + }, + { + "start": 25227.48, + "end": 25229.68, + "probability": 0.7957 + }, + { + "start": 25229.72, + "end": 25231.98, + "probability": 0.7541 + }, + { + "start": 25232.0, + "end": 25232.86, + "probability": 0.556 + }, + { + "start": 25232.92, + "end": 25233.97, + "probability": 0.9888 + }, + { + "start": 25234.06, + "end": 25237.62, + "probability": 0.9233 + }, + { + "start": 25239.14, + "end": 25240.88, + "probability": 0.9964 + }, + { + "start": 25241.46, + "end": 25245.2, + "probability": 0.97 + }, + { + "start": 25245.84, + "end": 25248.54, + "probability": 0.9863 + }, + { + "start": 25248.96, + "end": 25250.5, + "probability": 0.6506 + }, + { + "start": 25251.0, + "end": 25253.52, + "probability": 0.9937 + }, + { + "start": 25254.46, + "end": 25258.6, + "probability": 0.9669 + }, + { + "start": 25259.04, + "end": 25260.96, + "probability": 0.9214 + }, + { + "start": 25261.46, + "end": 25262.26, + "probability": 0.8125 + }, + { + "start": 25262.9, + "end": 25264.34, + "probability": 0.6835 + }, + { + "start": 25264.78, + "end": 25265.82, + "probability": 0.7827 + }, + { + "start": 25266.46, + "end": 25267.98, + "probability": 0.9917 + }, + { + "start": 25268.88, + "end": 25272.78, + "probability": 0.9845 + }, + { + "start": 25273.5, + "end": 25275.28, + "probability": 0.8114 + }, + { + "start": 25275.38, + "end": 25276.44, + "probability": 0.883 + }, + { + "start": 25276.98, + "end": 25280.63, + "probability": 0.968 + }, + { + "start": 25281.54, + "end": 25285.28, + "probability": 0.9326 + }, + { + "start": 25285.72, + "end": 25287.79, + "probability": 0.7878 + }, + { + "start": 25288.34, + "end": 25289.22, + "probability": 0.7949 + }, + { + "start": 25289.52, + "end": 25291.34, + "probability": 0.9124 + }, + { + "start": 25291.42, + "end": 25292.92, + "probability": 0.9907 + }, + { + "start": 25293.14, + "end": 25293.58, + "probability": 0.177 + }, + { + "start": 25293.58, + "end": 25297.54, + "probability": 0.8715 + }, + { + "start": 25297.9, + "end": 25299.92, + "probability": 0.7361 + }, + { + "start": 25299.94, + "end": 25301.46, + "probability": 0.9396 + }, + { + "start": 25301.64, + "end": 25303.24, + "probability": 0.9105 + }, + { + "start": 25303.36, + "end": 25304.42, + "probability": 0.8744 + }, + { + "start": 25304.58, + "end": 25304.65, + "probability": 0.0756 + }, + { + "start": 25305.04, + "end": 25305.32, + "probability": 0.0049 + }, + { + "start": 25305.42, + "end": 25310.26, + "probability": 0.8154 + }, + { + "start": 25310.3, + "end": 25311.12, + "probability": 0.6391 + }, + { + "start": 25311.64, + "end": 25311.92, + "probability": 0.0634 + }, + { + "start": 25312.06, + "end": 25313.2, + "probability": 0.6941 + }, + { + "start": 25314.34, + "end": 25315.46, + "probability": 0.2883 + }, + { + "start": 25315.6, + "end": 25315.96, + "probability": 0.7 + }, + { + "start": 25316.02, + "end": 25317.1, + "probability": 0.9121 + }, + { + "start": 25317.48, + "end": 25320.96, + "probability": 0.8853 + }, + { + "start": 25321.7, + "end": 25321.7, + "probability": 0.1312 + }, + { + "start": 25321.7, + "end": 25324.88, + "probability": 0.7263 + }, + { + "start": 25325.04, + "end": 25326.54, + "probability": 0.9374 + }, + { + "start": 25326.9, + "end": 25327.68, + "probability": 0.5949 + }, + { + "start": 25327.86, + "end": 25328.9, + "probability": 0.8099 + }, + { + "start": 25329.7, + "end": 25330.04, + "probability": 0.7786 + }, + { + "start": 25330.06, + "end": 25335.04, + "probability": 0.9694 + }, + { + "start": 25335.04, + "end": 25340.36, + "probability": 0.9435 + }, + { + "start": 25340.98, + "end": 25341.62, + "probability": 0.3518 + }, + { + "start": 25341.98, + "end": 25342.84, + "probability": 0.8215 + }, + { + "start": 25343.02, + "end": 25344.4, + "probability": 0.9221 + }, + { + "start": 25345.12, + "end": 25348.98, + "probability": 0.9641 + }, + { + "start": 25349.52, + "end": 25350.82, + "probability": 0.7546 + }, + { + "start": 25351.18, + "end": 25351.92, + "probability": 0.972 + }, + { + "start": 25352.3, + "end": 25357.82, + "probability": 0.9496 + }, + { + "start": 25358.8, + "end": 25363.4, + "probability": 0.6971 + }, + { + "start": 25364.02, + "end": 25365.02, + "probability": 0.4875 + }, + { + "start": 25365.52, + "end": 25366.68, + "probability": 0.8237 + }, + { + "start": 25366.94, + "end": 25368.38, + "probability": 0.7701 + }, + { + "start": 25368.78, + "end": 25369.88, + "probability": 0.9327 + }, + { + "start": 25370.72, + "end": 25372.94, + "probability": 0.9056 + }, + { + "start": 25373.52, + "end": 25375.5, + "probability": 0.9221 + }, + { + "start": 25375.92, + "end": 25378.12, + "probability": 0.7682 + }, + { + "start": 25378.48, + "end": 25384.48, + "probability": 0.811 + }, + { + "start": 25384.74, + "end": 25388.4, + "probability": 0.8979 + }, + { + "start": 25388.62, + "end": 25390.36, + "probability": 0.9896 + }, + { + "start": 25390.48, + "end": 25392.1, + "probability": 0.8853 + }, + { + "start": 25392.46, + "end": 25396.22, + "probability": 0.9955 + }, + { + "start": 25396.84, + "end": 25401.92, + "probability": 0.7656 + }, + { + "start": 25401.94, + "end": 25406.66, + "probability": 0.9271 + }, + { + "start": 25406.78, + "end": 25407.58, + "probability": 0.7866 + }, + { + "start": 25407.72, + "end": 25409.92, + "probability": 0.9935 + }, + { + "start": 25410.06, + "end": 25411.62, + "probability": 0.843 + }, + { + "start": 25411.78, + "end": 25412.32, + "probability": 0.8076 + }, + { + "start": 25412.34, + "end": 25412.92, + "probability": 0.6076 + }, + { + "start": 25413.08, + "end": 25416.04, + "probability": 0.9813 + }, + { + "start": 25416.08, + "end": 25417.3, + "probability": 0.9692 + }, + { + "start": 25417.68, + "end": 25418.76, + "probability": 0.7921 + }, + { + "start": 25419.06, + "end": 25419.06, + "probability": 0.2596 + }, + { + "start": 25419.06, + "end": 25420.54, + "probability": 0.9495 + }, + { + "start": 25420.6, + "end": 25420.88, + "probability": 0.7891 + }, + { + "start": 25420.88, + "end": 25422.84, + "probability": 0.8006 + }, + { + "start": 25422.84, + "end": 25424.84, + "probability": 0.9102 + }, + { + "start": 25425.48, + "end": 25427.12, + "probability": 0.6924 + }, + { + "start": 25430.02, + "end": 25432.84, + "probability": 0.8135 + }, + { + "start": 25432.96, + "end": 25435.34, + "probability": 0.3612 + }, + { + "start": 25436.7, + "end": 25439.46, + "probability": 0.1315 + }, + { + "start": 25440.12, + "end": 25441.76, + "probability": 0.7513 + }, + { + "start": 25442.5, + "end": 25443.86, + "probability": 0.464 + }, + { + "start": 25446.06, + "end": 25447.62, + "probability": 0.0563 + }, + { + "start": 25447.62, + "end": 25447.62, + "probability": 0.0336 + }, + { + "start": 25447.62, + "end": 25447.7, + "probability": 0.0657 + }, + { + "start": 25447.7, + "end": 25448.4, + "probability": 0.2167 + }, + { + "start": 25448.54, + "end": 25450.62, + "probability": 0.4692 + }, + { + "start": 25450.74, + "end": 25453.1, + "probability": 0.2507 + }, + { + "start": 25453.1, + "end": 25454.6, + "probability": 0.4873 + }, + { + "start": 25455.56, + "end": 25457.52, + "probability": 0.3598 + }, + { + "start": 25461.4, + "end": 25462.14, + "probability": 0.3506 + }, + { + "start": 25462.44, + "end": 25467.22, + "probability": 0.9269 + }, + { + "start": 25467.4, + "end": 25469.62, + "probability": 0.8398 + }, + { + "start": 25470.06, + "end": 25470.18, + "probability": 0.3525 + }, + { + "start": 25472.36, + "end": 25478.0, + "probability": 0.9422 + }, + { + "start": 25478.8, + "end": 25480.74, + "probability": 0.3763 + }, + { + "start": 25480.76, + "end": 25481.72, + "probability": 0.8068 + }, + { + "start": 25481.94, + "end": 25483.72, + "probability": 0.8237 + }, + { + "start": 25483.72, + "end": 25485.62, + "probability": 0.9772 + }, + { + "start": 25485.72, + "end": 25487.72, + "probability": 0.761 + }, + { + "start": 25487.72, + "end": 25490.4, + "probability": 0.9388 + }, + { + "start": 25490.96, + "end": 25491.62, + "probability": 0.6472 + }, + { + "start": 25492.13, + "end": 25495.74, + "probability": 0.9601 + }, + { + "start": 25495.78, + "end": 25497.94, + "probability": 0.9749 + }, + { + "start": 25498.28, + "end": 25498.72, + "probability": 0.5158 + }, + { + "start": 25498.78, + "end": 25499.5, + "probability": 0.7551 + }, + { + "start": 25499.64, + "end": 25503.18, + "probability": 0.8556 + }, + { + "start": 25503.24, + "end": 25504.38, + "probability": 0.5235 + }, + { + "start": 25504.56, + "end": 25505.92, + "probability": 0.8053 + }, + { + "start": 25506.34, + "end": 25506.94, + "probability": 0.9916 + }, + { + "start": 25507.34, + "end": 25509.22, + "probability": 0.8987 + }, + { + "start": 25509.68, + "end": 25511.32, + "probability": 0.952 + }, + { + "start": 25511.54, + "end": 25511.9, + "probability": 0.8309 + }, + { + "start": 25512.14, + "end": 25512.2, + "probability": 0.0282 + }, + { + "start": 25512.2, + "end": 25514.12, + "probability": 0.7742 + }, + { + "start": 25514.2, + "end": 25514.74, + "probability": 0.9233 + }, + { + "start": 25515.32, + "end": 25520.06, + "probability": 0.97 + }, + { + "start": 25520.18, + "end": 25520.28, + "probability": 0.3777 + }, + { + "start": 25521.4, + "end": 25521.46, + "probability": 0.4989 + }, + { + "start": 25521.46, + "end": 25521.46, + "probability": 0.4505 + }, + { + "start": 25521.46, + "end": 25523.64, + "probability": 0.6479 + }, + { + "start": 25523.86, + "end": 25528.84, + "probability": 0.6895 + }, + { + "start": 25530.5, + "end": 25530.94, + "probability": 0.0508 + }, + { + "start": 25530.94, + "end": 25536.02, + "probability": 0.9974 + }, + { + "start": 25536.54, + "end": 25538.56, + "probability": 0.9805 + }, + { + "start": 25539.2, + "end": 25541.8, + "probability": 0.9149 + }, + { + "start": 25542.44, + "end": 25544.96, + "probability": 0.7599 + }, + { + "start": 25545.49, + "end": 25550.4, + "probability": 0.9287 + }, + { + "start": 25551.2, + "end": 25554.26, + "probability": 0.6036 + }, + { + "start": 25555.54, + "end": 25556.7, + "probability": 0.6616 + }, + { + "start": 25556.82, + "end": 25560.06, + "probability": 0.9099 + }, + { + "start": 25560.12, + "end": 25561.66, + "probability": 0.523 + }, + { + "start": 25562.2, + "end": 25563.92, + "probability": 0.995 + }, + { + "start": 25564.14, + "end": 25565.06, + "probability": 0.7251 + }, + { + "start": 25565.14, + "end": 25565.66, + "probability": 0.5774 + }, + { + "start": 25565.72, + "end": 25567.38, + "probability": 0.9485 + }, + { + "start": 25568.68, + "end": 25569.62, + "probability": 0.7576 + }, + { + "start": 25571.04, + "end": 25572.68, + "probability": 0.6393 + }, + { + "start": 25573.36, + "end": 25574.48, + "probability": 0.7177 + }, + { + "start": 25576.5, + "end": 25579.0, + "probability": 0.9985 + }, + { + "start": 25579.52, + "end": 25583.36, + "probability": 0.9889 + }, + { + "start": 25584.24, + "end": 25584.7, + "probability": 0.7617 + }, + { + "start": 25585.48, + "end": 25590.76, + "probability": 0.994 + }, + { + "start": 25591.62, + "end": 25592.08, + "probability": 0.8646 + }, + { + "start": 25593.06, + "end": 25594.42, + "probability": 0.9993 + }, + { + "start": 25595.18, + "end": 25596.42, + "probability": 0.9575 + }, + { + "start": 25597.56, + "end": 25600.08, + "probability": 0.9998 + }, + { + "start": 25600.86, + "end": 25602.18, + "probability": 0.9997 + }, + { + "start": 25604.4, + "end": 25607.42, + "probability": 0.9875 + }, + { + "start": 25609.94, + "end": 25611.7, + "probability": 0.9973 + }, + { + "start": 25611.78, + "end": 25615.06, + "probability": 0.9971 + }, + { + "start": 25615.2, + "end": 25616.76, + "probability": 0.8703 + }, + { + "start": 25618.2, + "end": 25619.48, + "probability": 0.9985 + }, + { + "start": 25620.06, + "end": 25624.74, + "probability": 0.9743 + }, + { + "start": 25625.82, + "end": 25626.36, + "probability": 0.8358 + }, + { + "start": 25626.98, + "end": 25631.22, + "probability": 0.987 + }, + { + "start": 25631.22, + "end": 25637.94, + "probability": 0.9951 + }, + { + "start": 25638.54, + "end": 25639.18, + "probability": 0.7758 + }, + { + "start": 25640.6, + "end": 25644.6, + "probability": 0.9846 + }, + { + "start": 25645.06, + "end": 25647.64, + "probability": 0.8801 + }, + { + "start": 25648.38, + "end": 25652.32, + "probability": 0.9958 + }, + { + "start": 25652.76, + "end": 25655.28, + "probability": 0.8212 + }, + { + "start": 25655.7, + "end": 25657.02, + "probability": 0.6917 + }, + { + "start": 25658.48, + "end": 25662.84, + "probability": 0.9944 + }, + { + "start": 25663.76, + "end": 25668.5, + "probability": 0.9967 + }, + { + "start": 25669.12, + "end": 25670.58, + "probability": 0.9961 + }, + { + "start": 25671.6, + "end": 25672.2, + "probability": 0.8455 + }, + { + "start": 25672.94, + "end": 25673.58, + "probability": 0.9967 + }, + { + "start": 25674.12, + "end": 25678.52, + "probability": 0.9988 + }, + { + "start": 25678.52, + "end": 25682.5, + "probability": 0.9945 + }, + { + "start": 25682.56, + "end": 25686.74, + "probability": 0.9607 + }, + { + "start": 25688.18, + "end": 25693.42, + "probability": 0.9887 + }, + { + "start": 25694.28, + "end": 25697.86, + "probability": 0.9921 + }, + { + "start": 25697.86, + "end": 25701.88, + "probability": 0.9826 + }, + { + "start": 25703.02, + "end": 25707.76, + "probability": 0.9948 + }, + { + "start": 25708.38, + "end": 25711.18, + "probability": 0.9835 + }, + { + "start": 25711.66, + "end": 25716.7, + "probability": 0.9963 + }, + { + "start": 25717.72, + "end": 25720.86, + "probability": 0.8553 + }, + { + "start": 25721.44, + "end": 25722.82, + "probability": 0.9763 + }, + { + "start": 25722.98, + "end": 25724.82, + "probability": 0.9972 + }, + { + "start": 25725.74, + "end": 25729.36, + "probability": 0.9691 + }, + { + "start": 25729.88, + "end": 25730.28, + "probability": 0.7296 + }, + { + "start": 25731.58, + "end": 25734.94, + "probability": 0.9785 + }, + { + "start": 25734.94, + "end": 25739.78, + "probability": 0.9726 + }, + { + "start": 25740.4, + "end": 25743.92, + "probability": 0.9929 + }, + { + "start": 25745.04, + "end": 25747.3, + "probability": 0.9867 + }, + { + "start": 25747.98, + "end": 25752.1, + "probability": 0.9604 + }, + { + "start": 25753.6, + "end": 25759.48, + "probability": 0.9976 + }, + { + "start": 25760.2, + "end": 25763.72, + "probability": 0.9849 + }, + { + "start": 25764.36, + "end": 25766.38, + "probability": 0.9813 + }, + { + "start": 25767.6, + "end": 25771.06, + "probability": 0.9865 + }, + { + "start": 25771.74, + "end": 25773.66, + "probability": 0.8412 + }, + { + "start": 25774.24, + "end": 25776.76, + "probability": 0.9964 + }, + { + "start": 25777.18, + "end": 25779.22, + "probability": 0.9877 + }, + { + "start": 25780.18, + "end": 25781.52, + "probability": 0.9622 + }, + { + "start": 25782.14, + "end": 25786.34, + "probability": 0.9942 + }, + { + "start": 25786.34, + "end": 25791.5, + "probability": 0.9705 + }, + { + "start": 25792.22, + "end": 25797.32, + "probability": 0.9908 + }, + { + "start": 25798.46, + "end": 25798.46, + "probability": 0.2026 + }, + { + "start": 25798.46, + "end": 25799.9, + "probability": 0.9089 + }, + { + "start": 25800.4, + "end": 25804.9, + "probability": 0.9927 + }, + { + "start": 25806.62, + "end": 25811.28, + "probability": 0.9303 + }, + { + "start": 25812.04, + "end": 25813.86, + "probability": 0.9155 + }, + { + "start": 25814.66, + "end": 25817.18, + "probability": 0.993 + }, + { + "start": 25817.18, + "end": 25820.06, + "probability": 0.9937 + }, + { + "start": 25821.06, + "end": 25823.98, + "probability": 0.7905 + }, + { + "start": 25824.84, + "end": 25830.34, + "probability": 0.9067 + }, + { + "start": 25831.4, + "end": 25832.92, + "probability": 0.8014 + }, + { + "start": 25833.44, + "end": 25834.74, + "probability": 0.9928 + }, + { + "start": 25835.28, + "end": 25837.58, + "probability": 0.9861 + }, + { + "start": 25838.24, + "end": 25839.78, + "probability": 0.8949 + }, + { + "start": 25841.06, + "end": 25841.6, + "probability": 0.7112 + }, + { + "start": 25841.72, + "end": 25843.22, + "probability": 0.9012 + }, + { + "start": 25843.7, + "end": 25845.88, + "probability": 0.9517 + }, + { + "start": 25846.66, + "end": 25851.0, + "probability": 0.9771 + }, + { + "start": 25851.6, + "end": 25852.22, + "probability": 0.69 + }, + { + "start": 25852.22, + "end": 25853.48, + "probability": 0.8053 + }, + { + "start": 25853.94, + "end": 25855.98, + "probability": 0.9832 + }, + { + "start": 25856.74, + "end": 25860.5, + "probability": 0.9896 + }, + { + "start": 25860.5, + "end": 25863.22, + "probability": 0.9976 + }, + { + "start": 25863.92, + "end": 25867.34, + "probability": 0.9904 + }, + { + "start": 25867.34, + "end": 25871.02, + "probability": 0.9934 + }, + { + "start": 25871.48, + "end": 25873.74, + "probability": 0.9846 + }, + { + "start": 25874.44, + "end": 25876.92, + "probability": 0.9595 + }, + { + "start": 25877.38, + "end": 25878.26, + "probability": 0.9837 + }, + { + "start": 25879.8, + "end": 25884.44, + "probability": 0.9188 + }, + { + "start": 25884.44, + "end": 25889.18, + "probability": 0.9831 + }, + { + "start": 25890.28, + "end": 25893.58, + "probability": 0.9887 + }, + { + "start": 25895.54, + "end": 25901.38, + "probability": 0.9788 + }, + { + "start": 25901.68, + "end": 25903.76, + "probability": 0.8063 + }, + { + "start": 25904.4, + "end": 25907.22, + "probability": 0.9917 + }, + { + "start": 25908.04, + "end": 25910.82, + "probability": 0.9969 + }, + { + "start": 25911.7, + "end": 25917.0, + "probability": 0.9409 + }, + { + "start": 25917.0, + "end": 25923.0, + "probability": 0.9891 + }, + { + "start": 25924.02, + "end": 25924.88, + "probability": 0.9159 + }, + { + "start": 25925.74, + "end": 25929.98, + "probability": 0.9648 + }, + { + "start": 25930.52, + "end": 25933.26, + "probability": 0.9886 + }, + { + "start": 25933.72, + "end": 25937.46, + "probability": 0.9976 + }, + { + "start": 25938.12, + "end": 25941.36, + "probability": 0.9154 + }, + { + "start": 25942.36, + "end": 25942.62, + "probability": 0.5125 + }, + { + "start": 25943.4, + "end": 25946.4, + "probability": 0.9666 + }, + { + "start": 25947.16, + "end": 25949.9, + "probability": 0.8663 + }, + { + "start": 25951.18, + "end": 25957.62, + "probability": 0.985 + }, + { + "start": 25957.62, + "end": 25963.12, + "probability": 0.9888 + }, + { + "start": 25964.52, + "end": 25969.38, + "probability": 0.9751 + }, + { + "start": 25969.96, + "end": 25972.44, + "probability": 0.9697 + }, + { + "start": 25972.94, + "end": 25976.06, + "probability": 0.9977 + }, + { + "start": 25976.9, + "end": 25978.8, + "probability": 0.9718 + }, + { + "start": 25980.22, + "end": 25983.54, + "probability": 0.9973 + }, + { + "start": 25984.84, + "end": 25985.16, + "probability": 0.5631 + }, + { + "start": 25985.2, + "end": 25985.86, + "probability": 0.9658 + }, + { + "start": 25986.36, + "end": 25988.54, + "probability": 0.769 + }, + { + "start": 25989.58, + "end": 25990.16, + "probability": 0.4424 + }, + { + "start": 25990.74, + "end": 25991.94, + "probability": 0.9429 + }, + { + "start": 25991.96, + "end": 25994.9, + "probability": 0.8846 + }, + { + "start": 25994.9, + "end": 25996.94, + "probability": 0.9531 + }, + { + "start": 25998.34, + "end": 26001.36, + "probability": 0.9362 + }, + { + "start": 26001.9, + "end": 26003.36, + "probability": 0.8745 + }, + { + "start": 26004.8, + "end": 26008.42, + "probability": 0.9847 + }, + { + "start": 26009.32, + "end": 26014.0, + "probability": 0.9146 + }, + { + "start": 26014.62, + "end": 26015.46, + "probability": 0.8489 + }, + { + "start": 26017.2, + "end": 26017.72, + "probability": 0.7156 + }, + { + "start": 26018.32, + "end": 26021.9, + "probability": 0.9744 + }, + { + "start": 26022.96, + "end": 26025.48, + "probability": 0.9981 + }, + { + "start": 26025.48, + "end": 26029.26, + "probability": 0.9538 + }, + { + "start": 26030.02, + "end": 26033.08, + "probability": 0.988 + }, + { + "start": 26033.9, + "end": 26035.44, + "probability": 0.924 + }, + { + "start": 26036.3, + "end": 26041.2, + "probability": 0.9977 + }, + { + "start": 26041.94, + "end": 26044.18, + "probability": 0.996 + }, + { + "start": 26045.24, + "end": 26048.78, + "probability": 0.9421 + }, + { + "start": 26049.5, + "end": 26054.84, + "probability": 0.9988 + }, + { + "start": 26054.84, + "end": 26059.22, + "probability": 0.9977 + }, + { + "start": 26059.82, + "end": 26065.04, + "probability": 0.9862 + }, + { + "start": 26065.64, + "end": 26065.96, + "probability": 0.5865 + }, + { + "start": 26067.02, + "end": 26069.84, + "probability": 0.9443 + }, + { + "start": 26070.9, + "end": 26073.7, + "probability": 0.935 + }, + { + "start": 26074.36, + "end": 26077.64, + "probability": 0.9893 + }, + { + "start": 26077.64, + "end": 26082.78, + "probability": 0.9749 + }, + { + "start": 26083.64, + "end": 26086.3, + "probability": 0.9971 + }, + { + "start": 26087.02, + "end": 26091.22, + "probability": 0.9974 + }, + { + "start": 26091.22, + "end": 26095.96, + "probability": 0.9984 + }, + { + "start": 26096.92, + "end": 26101.04, + "probability": 0.9845 + }, + { + "start": 26101.58, + "end": 26107.46, + "probability": 0.9614 + }, + { + "start": 26109.28, + "end": 26115.34, + "probability": 0.9314 + }, + { + "start": 26115.78, + "end": 26118.14, + "probability": 0.7345 + }, + { + "start": 26118.86, + "end": 26120.04, + "probability": 0.7766 + }, + { + "start": 26120.66, + "end": 26123.78, + "probability": 0.7566 + }, + { + "start": 26124.34, + "end": 26126.96, + "probability": 0.8081 + }, + { + "start": 26127.38, + "end": 26128.48, + "probability": 0.9076 + }, + { + "start": 26129.58, + "end": 26132.7, + "probability": 0.978 + }, + { + "start": 26132.7, + "end": 26136.5, + "probability": 0.9792 + }, + { + "start": 26137.14, + "end": 26141.14, + "probability": 0.9404 + }, + { + "start": 26141.9, + "end": 26145.28, + "probability": 0.9919 + }, + { + "start": 26145.96, + "end": 26150.96, + "probability": 0.9904 + }, + { + "start": 26151.58, + "end": 26153.22, + "probability": 0.9805 + }, + { + "start": 26153.9, + "end": 26158.08, + "probability": 0.9831 + }, + { + "start": 26158.7, + "end": 26161.24, + "probability": 0.9333 + }, + { + "start": 26161.88, + "end": 26162.72, + "probability": 0.972 + }, + { + "start": 26163.38, + "end": 26165.66, + "probability": 0.9712 + }, + { + "start": 26166.1, + "end": 26166.58, + "probability": 0.4911 + }, + { + "start": 26166.74, + "end": 26169.6, + "probability": 0.995 + }, + { + "start": 26169.6, + "end": 26172.36, + "probability": 0.9995 + }, + { + "start": 26172.52, + "end": 26172.82, + "probability": 0.5229 + }, + { + "start": 26173.54, + "end": 26175.92, + "probability": 0.998 + }, + { + "start": 26176.48, + "end": 26181.68, + "probability": 0.998 + }, + { + "start": 26182.24, + "end": 26185.14, + "probability": 0.9963 + }, + { + "start": 26185.14, + "end": 26188.1, + "probability": 0.9778 + }, + { + "start": 26188.76, + "end": 26190.24, + "probability": 0.9873 + }, + { + "start": 26190.88, + "end": 26195.5, + "probability": 0.9794 + }, + { + "start": 26195.96, + "end": 26199.69, + "probability": 0.9219 + }, + { + "start": 26200.48, + "end": 26204.14, + "probability": 0.9969 + }, + { + "start": 26204.14, + "end": 26208.12, + "probability": 0.9983 + }, + { + "start": 26208.26, + "end": 26213.66, + "probability": 0.99 + }, + { + "start": 26214.9, + "end": 26215.34, + "probability": 0.2085 + }, + { + "start": 26215.66, + "end": 26217.8, + "probability": 0.1272 + }, + { + "start": 26217.8, + "end": 26217.8, + "probability": 0.5692 + }, + { + "start": 26217.8, + "end": 26218.18, + "probability": 0.4208 + }, + { + "start": 26218.26, + "end": 26220.56, + "probability": 0.8385 + }, + { + "start": 26224.56, + "end": 26226.28, + "probability": 0.7409 + }, + { + "start": 26230.22, + "end": 26232.18, + "probability": 0.6767 + }, + { + "start": 26232.88, + "end": 26233.24, + "probability": 0.7067 + }, + { + "start": 26233.32, + "end": 26233.58, + "probability": 0.6641 + }, + { + "start": 26233.58, + "end": 26235.86, + "probability": 0.9917 + }, + { + "start": 26235.98, + "end": 26237.24, + "probability": 0.8067 + }, + { + "start": 26237.98, + "end": 26240.14, + "probability": 0.9976 + }, + { + "start": 26240.24, + "end": 26243.9, + "probability": 0.9924 + }, + { + "start": 26244.78, + "end": 26246.96, + "probability": 0.8735 + }, + { + "start": 26248.8, + "end": 26252.96, + "probability": 0.9873 + }, + { + "start": 26253.82, + "end": 26256.8, + "probability": 0.9395 + }, + { + "start": 26256.9, + "end": 26258.28, + "probability": 0.9384 + }, + { + "start": 26258.5, + "end": 26259.06, + "probability": 0.8967 + }, + { + "start": 26259.64, + "end": 26261.08, + "probability": 0.8665 + }, + { + "start": 26261.68, + "end": 26261.68, + "probability": 0.4447 + }, + { + "start": 26261.68, + "end": 26264.8, + "probability": 0.9752 + }, + { + "start": 26265.7, + "end": 26271.22, + "probability": 0.9958 + }, + { + "start": 26272.0, + "end": 26272.6, + "probability": 0.6747 + }, + { + "start": 26272.74, + "end": 26275.78, + "probability": 0.8304 + }, + { + "start": 26275.78, + "end": 26278.4, + "probability": 0.9946 + }, + { + "start": 26279.3, + "end": 26283.12, + "probability": 0.8519 + }, + { + "start": 26283.68, + "end": 26289.28, + "probability": 0.9338 + }, + { + "start": 26289.9, + "end": 26292.06, + "probability": 0.8245 + }, + { + "start": 26293.04, + "end": 26296.8, + "probability": 0.9897 + }, + { + "start": 26296.8, + "end": 26300.28, + "probability": 0.9766 + }, + { + "start": 26301.22, + "end": 26305.12, + "probability": 0.9919 + }, + { + "start": 26305.72, + "end": 26308.66, + "probability": 0.8553 + }, + { + "start": 26309.48, + "end": 26312.92, + "probability": 0.9531 + }, + { + "start": 26313.0, + "end": 26313.67, + "probability": 0.9636 + }, + { + "start": 26313.98, + "end": 26314.57, + "probability": 0.761 + }, + { + "start": 26315.72, + "end": 26318.16, + "probability": 0.9191 + }, + { + "start": 26318.16, + "end": 26321.62, + "probability": 0.9804 + }, + { + "start": 26321.7, + "end": 26323.16, + "probability": 0.9866 + }, + { + "start": 26323.52, + "end": 26325.28, + "probability": 0.988 + }, + { + "start": 26326.62, + "end": 26327.46, + "probability": 0.7391 + }, + { + "start": 26327.7, + "end": 26331.42, + "probability": 0.7234 + }, + { + "start": 26332.48, + "end": 26333.0, + "probability": 0.82 + }, + { + "start": 26333.1, + "end": 26335.82, + "probability": 0.786 + }, + { + "start": 26335.82, + "end": 26339.7, + "probability": 0.978 + }, + { + "start": 26340.16, + "end": 26343.08, + "probability": 0.9715 + }, + { + "start": 26344.04, + "end": 26348.16, + "probability": 0.9894 + }, + { + "start": 26348.86, + "end": 26350.86, + "probability": 0.7601 + }, + { + "start": 26351.52, + "end": 26354.86, + "probability": 0.9973 + }, + { + "start": 26354.93, + "end": 26358.8, + "probability": 0.9873 + }, + { + "start": 26358.92, + "end": 26359.72, + "probability": 0.6431 + }, + { + "start": 26360.44, + "end": 26364.08, + "probability": 0.9825 + }, + { + "start": 26364.78, + "end": 26371.58, + "probability": 0.9929 + }, + { + "start": 26372.42, + "end": 26375.88, + "probability": 0.9836 + }, + { + "start": 26375.88, + "end": 26379.34, + "probability": 0.9913 + }, + { + "start": 26379.44, + "end": 26379.68, + "probability": 0.3276 + }, + { + "start": 26379.68, + "end": 26380.74, + "probability": 0.6423 + }, + { + "start": 26381.22, + "end": 26383.24, + "probability": 0.7814 + }, + { + "start": 26384.1, + "end": 26386.42, + "probability": 0.9668 + }, + { + "start": 26386.5, + "end": 26387.72, + "probability": 0.9632 + }, + { + "start": 26388.2, + "end": 26392.8, + "probability": 0.9877 + }, + { + "start": 26392.8, + "end": 26396.78, + "probability": 0.9907 + }, + { + "start": 26397.62, + "end": 26398.12, + "probability": 0.5959 + }, + { + "start": 26398.22, + "end": 26401.42, + "probability": 0.9646 + }, + { + "start": 26401.42, + "end": 26406.08, + "probability": 0.9989 + }, + { + "start": 26406.7, + "end": 26407.24, + "probability": 0.2872 + }, + { + "start": 26407.3, + "end": 26407.86, + "probability": 0.872 + }, + { + "start": 26407.96, + "end": 26412.54, + "probability": 0.9859 + }, + { + "start": 26413.22, + "end": 26415.84, + "probability": 0.996 + }, + { + "start": 26415.84, + "end": 26419.96, + "probability": 0.9844 + }, + { + "start": 26420.42, + "end": 26422.06, + "probability": 0.9578 + }, + { + "start": 26422.62, + "end": 26426.14, + "probability": 0.9963 + }, + { + "start": 26426.62, + "end": 26428.9, + "probability": 0.6505 + }, + { + "start": 26429.32, + "end": 26431.96, + "probability": 0.9633 + }, + { + "start": 26432.04, + "end": 26435.14, + "probability": 0.9794 + }, + { + "start": 26436.52, + "end": 26441.14, + "probability": 0.9937 + }, + { + "start": 26441.14, + "end": 26444.9, + "probability": 0.9986 + }, + { + "start": 26445.68, + "end": 26448.12, + "probability": 0.9758 + }, + { + "start": 26448.12, + "end": 26451.42, + "probability": 0.998 + }, + { + "start": 26451.94, + "end": 26455.04, + "probability": 0.9981 + }, + { + "start": 26455.6, + "end": 26457.14, + "probability": 0.5781 + }, + { + "start": 26458.84, + "end": 26460.48, + "probability": 0.5862 + }, + { + "start": 26461.14, + "end": 26466.18, + "probability": 0.9654 + }, + { + "start": 26466.62, + "end": 26469.7, + "probability": 0.988 + }, + { + "start": 26470.5, + "end": 26473.96, + "probability": 0.9766 + }, + { + "start": 26474.46, + "end": 26477.64, + "probability": 0.7528 + }, + { + "start": 26477.78, + "end": 26481.24, + "probability": 0.9945 + }, + { + "start": 26481.24, + "end": 26484.82, + "probability": 0.9798 + }, + { + "start": 26484.88, + "end": 26487.02, + "probability": 0.7173 + }, + { + "start": 26487.14, + "end": 26487.22, + "probability": 0.1357 + }, + { + "start": 26487.22, + "end": 26488.02, + "probability": 0.7554 + }, + { + "start": 26488.66, + "end": 26488.8, + "probability": 0.1843 + }, + { + "start": 26488.82, + "end": 26489.82, + "probability": 0.8032 + }, + { + "start": 26490.56, + "end": 26496.08, + "probability": 0.5817 + }, + { + "start": 26496.76, + "end": 26499.44, + "probability": 0.9507 + }, + { + "start": 26499.78, + "end": 26500.72, + "probability": 0.9966 + }, + { + "start": 26501.86, + "end": 26502.26, + "probability": 0.7085 + }, + { + "start": 26509.0, + "end": 26509.38, + "probability": 0.5667 + }, + { + "start": 26509.66, + "end": 26510.58, + "probability": 0.2246 + }, + { + "start": 26511.32, + "end": 26512.8, + "probability": 0.4192 + }, + { + "start": 26523.28, + "end": 26523.28, + "probability": 0.0177 + }, + { + "start": 26523.28, + "end": 26523.66, + "probability": 0.3409 + }, + { + "start": 26523.76, + "end": 26526.5, + "probability": 0.9508 + }, + { + "start": 26527.16, + "end": 26530.54, + "probability": 0.0785 + }, + { + "start": 26530.54, + "end": 26531.45, + "probability": 0.3198 + }, + { + "start": 26532.66, + "end": 26536.32, + "probability": 0.7242 + }, + { + "start": 26537.0, + "end": 26538.46, + "probability": 0.6769 + }, + { + "start": 26542.74, + "end": 26546.12, + "probability": 0.7428 + }, + { + "start": 26546.66, + "end": 26546.94, + "probability": 0.8962 + }, + { + "start": 26548.9, + "end": 26550.12, + "probability": 0.8281 + }, + { + "start": 26551.18, + "end": 26551.92, + "probability": 0.5537 + }, + { + "start": 26553.42, + "end": 26558.44, + "probability": 0.9893 + }, + { + "start": 26558.6, + "end": 26561.34, + "probability": 0.9858 + }, + { + "start": 26561.4, + "end": 26562.02, + "probability": 0.9736 + }, + { + "start": 26562.68, + "end": 26562.9, + "probability": 0.3353 + }, + { + "start": 26564.34, + "end": 26565.26, + "probability": 0.8348 + }, + { + "start": 26565.5, + "end": 26566.0, + "probability": 0.9268 + }, + { + "start": 26566.44, + "end": 26567.52, + "probability": 0.8347 + }, + { + "start": 26567.6, + "end": 26567.88, + "probability": 0.4933 + }, + { + "start": 26568.02, + "end": 26568.44, + "probability": 0.5399 + }, + { + "start": 26568.5, + "end": 26569.28, + "probability": 0.9341 + }, + { + "start": 26569.4, + "end": 26570.24, + "probability": 0.9492 + }, + { + "start": 26571.22, + "end": 26571.72, + "probability": 0.3302 + }, + { + "start": 26571.82, + "end": 26572.52, + "probability": 0.8853 + }, + { + "start": 26573.74, + "end": 26574.9, + "probability": 0.8359 + }, + { + "start": 26576.74, + "end": 26579.72, + "probability": 0.9992 + }, + { + "start": 26580.22, + "end": 26583.06, + "probability": 0.8524 + }, + { + "start": 26583.18, + "end": 26584.28, + "probability": 0.8023 + }, + { + "start": 26585.06, + "end": 26585.32, + "probability": 0.5193 + }, + { + "start": 26585.34, + "end": 26586.52, + "probability": 0.7759 + }, + { + "start": 26587.44, + "end": 26590.98, + "probability": 0.9969 + }, + { + "start": 26591.46, + "end": 26592.9, + "probability": 0.9982 + }, + { + "start": 26593.18, + "end": 26593.98, + "probability": 0.9001 + }, + { + "start": 26595.0, + "end": 26596.6, + "probability": 0.9949 + }, + { + "start": 26597.1, + "end": 26597.94, + "probability": 0.6171 + }, + { + "start": 26598.0, + "end": 26599.52, + "probability": 0.9001 + }, + { + "start": 26599.58, + "end": 26600.38, + "probability": 0.9522 + }, + { + "start": 26601.44, + "end": 26602.16, + "probability": 0.7436 + }, + { + "start": 26603.88, + "end": 26605.26, + "probability": 0.9922 + }, + { + "start": 26606.8, + "end": 26609.32, + "probability": 0.9967 + }, + { + "start": 26610.6, + "end": 26613.44, + "probability": 0.9632 + }, + { + "start": 26614.64, + "end": 26616.16, + "probability": 0.9699 + }, + { + "start": 26616.98, + "end": 26617.7, + "probability": 0.7839 + }, + { + "start": 26619.34, + "end": 26620.82, + "probability": 0.7415 + }, + { + "start": 26621.64, + "end": 26623.78, + "probability": 0.9643 + }, + { + "start": 26624.7, + "end": 26628.76, + "probability": 0.9701 + }, + { + "start": 26629.28, + "end": 26630.2, + "probability": 0.9428 + }, + { + "start": 26631.48, + "end": 26633.84, + "probability": 0.8787 + }, + { + "start": 26634.66, + "end": 26635.55, + "probability": 0.9609 + }, + { + "start": 26636.34, + "end": 26637.8, + "probability": 0.8141 + }, + { + "start": 26639.46, + "end": 26640.52, + "probability": 0.8799 + }, + { + "start": 26640.68, + "end": 26641.32, + "probability": 0.697 + }, + { + "start": 26641.44, + "end": 26643.14, + "probability": 0.8167 + }, + { + "start": 26645.02, + "end": 26647.04, + "probability": 0.9585 + }, + { + "start": 26647.44, + "end": 26647.98, + "probability": 0.4661 + }, + { + "start": 26648.1, + "end": 26648.46, + "probability": 0.3852 + }, + { + "start": 26648.78, + "end": 26653.56, + "probability": 0.883 + }, + { + "start": 26654.34, + "end": 26654.76, + "probability": 0.026 + }, + { + "start": 26656.48, + "end": 26658.4, + "probability": 0.9845 + }, + { + "start": 26659.32, + "end": 26663.34, + "probability": 0.7665 + }, + { + "start": 26664.04, + "end": 26666.58, + "probability": 0.9872 + }, + { + "start": 26667.34, + "end": 26668.58, + "probability": 0.9728 + }, + { + "start": 26669.58, + "end": 26672.48, + "probability": 0.8175 + }, + { + "start": 26673.82, + "end": 26675.62, + "probability": 0.9937 + }, + { + "start": 26676.8, + "end": 26676.98, + "probability": 0.9001 + }, + { + "start": 26677.76, + "end": 26679.94, + "probability": 0.9899 + }, + { + "start": 26680.72, + "end": 26682.16, + "probability": 0.9893 + }, + { + "start": 26683.18, + "end": 26685.32, + "probability": 0.9885 + }, + { + "start": 26685.32, + "end": 26687.12, + "probability": 0.9999 + }, + { + "start": 26688.42, + "end": 26692.14, + "probability": 0.9486 + }, + { + "start": 26693.24, + "end": 26694.64, + "probability": 0.8356 + }, + { + "start": 26694.72, + "end": 26695.72, + "probability": 0.951 + }, + { + "start": 26695.94, + "end": 26697.78, + "probability": 0.8318 + }, + { + "start": 26697.88, + "end": 26698.84, + "probability": 0.9982 + }, + { + "start": 26699.64, + "end": 26702.86, + "probability": 0.9929 + }, + { + "start": 26703.76, + "end": 26705.46, + "probability": 0.9858 + }, + { + "start": 26706.86, + "end": 26710.36, + "probability": 0.9897 + }, + { + "start": 26711.14, + "end": 26714.82, + "probability": 0.9911 + }, + { + "start": 26714.96, + "end": 26716.4, + "probability": 0.886 + }, + { + "start": 26717.32, + "end": 26722.46, + "probability": 0.9766 + }, + { + "start": 26723.02, + "end": 26725.58, + "probability": 0.9723 + }, + { + "start": 26726.32, + "end": 26727.62, + "probability": 0.9178 + }, + { + "start": 26728.5, + "end": 26730.0, + "probability": 0.9837 + }, + { + "start": 26731.4, + "end": 26734.22, + "probability": 0.8366 + }, + { + "start": 26735.22, + "end": 26736.84, + "probability": 0.9635 + }, + { + "start": 26738.26, + "end": 26739.39, + "probability": 0.9948 + }, + { + "start": 26740.48, + "end": 26741.14, + "probability": 0.7591 + }, + { + "start": 26742.0, + "end": 26742.62, + "probability": 0.792 + }, + { + "start": 26742.76, + "end": 26744.06, + "probability": 0.9919 + }, + { + "start": 26744.12, + "end": 26746.7, + "probability": 0.9387 + }, + { + "start": 26747.28, + "end": 26749.06, + "probability": 0.9893 + }, + { + "start": 26749.92, + "end": 26752.48, + "probability": 0.9956 + }, + { + "start": 26753.24, + "end": 26753.4, + "probability": 0.449 + }, + { + "start": 26753.58, + "end": 26754.1, + "probability": 0.7555 + }, + { + "start": 26754.28, + "end": 26755.68, + "probability": 0.9712 + }, + { + "start": 26755.82, + "end": 26756.0, + "probability": 0.7601 + }, + { + "start": 26756.08, + "end": 26756.64, + "probability": 0.8616 + }, + { + "start": 26757.1, + "end": 26759.0, + "probability": 0.9852 + }, + { + "start": 26759.06, + "end": 26761.4, + "probability": 0.9357 + }, + { + "start": 26761.6, + "end": 26762.48, + "probability": 0.4891 + }, + { + "start": 26763.5, + "end": 26765.86, + "probability": 0.9388 + }, + { + "start": 26766.5, + "end": 26767.5, + "probability": 0.9832 + }, + { + "start": 26767.58, + "end": 26768.15, + "probability": 0.8674 + }, + { + "start": 26768.4, + "end": 26770.28, + "probability": 0.9876 + }, + { + "start": 26771.0, + "end": 26771.54, + "probability": 0.8955 + }, + { + "start": 26771.62, + "end": 26771.98, + "probability": 0.6007 + }, + { + "start": 26772.36, + "end": 26773.28, + "probability": 0.9772 + }, + { + "start": 26773.68, + "end": 26774.02, + "probability": 0.7799 + }, + { + "start": 26774.2, + "end": 26774.3, + "probability": 0.9223 + }, + { + "start": 26775.12, + "end": 26776.96, + "probability": 0.9256 + }, + { + "start": 26777.06, + "end": 26777.18, + "probability": 0.8335 + }, + { + "start": 26777.7, + "end": 26777.88, + "probability": 0.9611 + }, + { + "start": 26778.96, + "end": 26780.92, + "probability": 0.9355 + }, + { + "start": 26781.4, + "end": 26782.04, + "probability": 0.6171 + }, + { + "start": 26782.5, + "end": 26782.78, + "probability": 0.7118 + }, + { + "start": 26783.42, + "end": 26785.56, + "probability": 0.9575 + }, + { + "start": 26787.1, + "end": 26789.68, + "probability": 0.9713 + }, + { + "start": 26791.1, + "end": 26792.18, + "probability": 0.7481 + }, + { + "start": 26792.96, + "end": 26793.64, + "probability": 0.7183 + }, + { + "start": 26794.42, + "end": 26797.04, + "probability": 0.9958 + }, + { + "start": 26797.18, + "end": 26797.88, + "probability": 0.5054 + }, + { + "start": 26798.76, + "end": 26799.56, + "probability": 0.6712 + }, + { + "start": 26800.3, + "end": 26801.12, + "probability": 0.8828 + }, + { + "start": 26801.92, + "end": 26804.92, + "probability": 0.9565 + }, + { + "start": 26805.98, + "end": 26807.54, + "probability": 0.9567 + }, + { + "start": 26808.18, + "end": 26812.38, + "probability": 0.9827 + }, + { + "start": 26812.5, + "end": 26813.0, + "probability": 0.9188 + }, + { + "start": 26814.28, + "end": 26815.38, + "probability": 0.9232 + }, + { + "start": 26816.32, + "end": 26818.96, + "probability": 0.9795 + }, + { + "start": 26819.7, + "end": 26824.76, + "probability": 0.9914 + }, + { + "start": 26825.86, + "end": 26826.18, + "probability": 0.2648 + }, + { + "start": 26826.2, + "end": 26828.56, + "probability": 0.9 + }, + { + "start": 26829.5, + "end": 26832.62, + "probability": 0.9911 + }, + { + "start": 26833.24, + "end": 26836.3, + "probability": 0.9893 + }, + { + "start": 26837.06, + "end": 26839.94, + "probability": 0.9935 + }, + { + "start": 26840.66, + "end": 26842.5, + "probability": 0.976 + }, + { + "start": 26842.94, + "end": 26843.86, + "probability": 0.7097 + }, + { + "start": 26844.16, + "end": 26846.06, + "probability": 0.9803 + }, + { + "start": 26846.16, + "end": 26848.9, + "probability": 0.9974 + }, + { + "start": 26849.66, + "end": 26851.58, + "probability": 0.9976 + }, + { + "start": 26852.08, + "end": 26853.62, + "probability": 0.9919 + }, + { + "start": 26853.92, + "end": 26854.02, + "probability": 0.2328 + }, + { + "start": 26854.64, + "end": 26855.28, + "probability": 0.978 + }, + { + "start": 26856.38, + "end": 26859.02, + "probability": 0.8423 + }, + { + "start": 26859.12, + "end": 26863.24, + "probability": 0.9871 + }, + { + "start": 26863.48, + "end": 26864.88, + "probability": 0.9033 + }, + { + "start": 26865.28, + "end": 26865.86, + "probability": 0.6254 + }, + { + "start": 26865.96, + "end": 26866.86, + "probability": 0.6322 + }, + { + "start": 26867.96, + "end": 26871.42, + "probability": 0.7986 + }, + { + "start": 26872.14, + "end": 26874.46, + "probability": 0.9404 + }, + { + "start": 26874.46, + "end": 26877.3, + "probability": 0.9798 + }, + { + "start": 26878.0, + "end": 26878.3, + "probability": 0.7378 + }, + { + "start": 26878.4, + "end": 26878.66, + "probability": 0.8827 + }, + { + "start": 26878.72, + "end": 26881.02, + "probability": 0.988 + }, + { + "start": 26881.68, + "end": 26882.5, + "probability": 0.8666 + }, + { + "start": 26883.08, + "end": 26883.62, + "probability": 0.9146 + }, + { + "start": 26884.06, + "end": 26884.46, + "probability": 0.5763 + }, + { + "start": 26884.54, + "end": 26888.5, + "probability": 0.9134 + }, + { + "start": 26889.0, + "end": 26891.12, + "probability": 0.9806 + }, + { + "start": 26891.82, + "end": 26894.6, + "probability": 0.7893 + }, + { + "start": 26895.06, + "end": 26896.34, + "probability": 0.9911 + }, + { + "start": 26896.68, + "end": 26897.82, + "probability": 0.9952 + }, + { + "start": 26898.98, + "end": 26900.72, + "probability": 0.9086 + }, + { + "start": 26900.78, + "end": 26904.04, + "probability": 0.9547 + }, + { + "start": 26904.7, + "end": 26905.88, + "probability": 0.7798 + }, + { + "start": 26905.94, + "end": 26907.32, + "probability": 0.9364 + }, + { + "start": 26907.66, + "end": 26909.09, + "probability": 0.6768 + }, + { + "start": 26909.34, + "end": 26911.52, + "probability": 0.8962 + }, + { + "start": 26911.64, + "end": 26911.86, + "probability": 0.0992 + }, + { + "start": 26912.18, + "end": 26912.38, + "probability": 0.4008 + }, + { + "start": 26912.38, + "end": 26913.36, + "probability": 0.5962 + }, + { + "start": 26913.64, + "end": 26917.88, + "probability": 0.9856 + }, + { + "start": 26917.88, + "end": 26921.46, + "probability": 0.9598 + }, + { + "start": 26922.38, + "end": 26923.54, + "probability": 0.9266 + }, + { + "start": 26924.44, + "end": 26927.32, + "probability": 0.9863 + }, + { + "start": 26928.04, + "end": 26929.6, + "probability": 0.9903 + }, + { + "start": 26929.72, + "end": 26931.44, + "probability": 0.9585 + }, + { + "start": 26932.4, + "end": 26935.08, + "probability": 0.946 + }, + { + "start": 26935.58, + "end": 26938.98, + "probability": 0.9976 + }, + { + "start": 26939.36, + "end": 26941.0, + "probability": 0.9861 + }, + { + "start": 26941.82, + "end": 26944.6, + "probability": 0.9993 + }, + { + "start": 26945.24, + "end": 26948.12, + "probability": 0.9745 + }, + { + "start": 26948.16, + "end": 26951.52, + "probability": 0.8088 + }, + { + "start": 26951.58, + "end": 26952.06, + "probability": 0.29 + }, + { + "start": 26952.56, + "end": 26955.36, + "probability": 0.9841 + }, + { + "start": 26955.98, + "end": 26956.72, + "probability": 0.9486 + }, + { + "start": 26957.18, + "end": 26958.88, + "probability": 0.9692 + }, + { + "start": 26959.0, + "end": 26961.2, + "probability": 0.9871 + }, + { + "start": 26961.86, + "end": 26964.68, + "probability": 0.6375 + }, + { + "start": 26965.3, + "end": 26968.2, + "probability": 0.9951 + }, + { + "start": 26969.26, + "end": 26971.84, + "probability": 0.9961 + }, + { + "start": 26971.84, + "end": 26975.22, + "probability": 0.9982 + }, + { + "start": 26976.04, + "end": 26976.72, + "probability": 0.5217 + }, + { + "start": 26976.82, + "end": 26977.78, + "probability": 0.8211 + }, + { + "start": 26978.26, + "end": 26979.66, + "probability": 0.9591 + }, + { + "start": 26980.08, + "end": 26981.36, + "probability": 0.9717 + }, + { + "start": 26981.4, + "end": 26982.96, + "probability": 0.9711 + }, + { + "start": 26983.06, + "end": 26984.36, + "probability": 0.9212 + }, + { + "start": 26984.66, + "end": 26986.88, + "probability": 0.988 + }, + { + "start": 26988.7, + "end": 26988.88, + "probability": 0.0556 + }, + { + "start": 26988.88, + "end": 26989.37, + "probability": 0.9307 + }, + { + "start": 26990.26, + "end": 26992.22, + "probability": 0.9811 + }, + { + "start": 26992.78, + "end": 26993.95, + "probability": 0.9296 + }, + { + "start": 26994.42, + "end": 26994.68, + "probability": 0.9683 + }, + { + "start": 26994.84, + "end": 26997.08, + "probability": 0.9917 + }, + { + "start": 26997.16, + "end": 26997.65, + "probability": 0.8442 + }, + { + "start": 26997.82, + "end": 26998.64, + "probability": 0.6941 + }, + { + "start": 26999.18, + "end": 27001.04, + "probability": 0.9929 + }, + { + "start": 27001.8, + "end": 27003.34, + "probability": 0.999 + }, + { + "start": 27003.88, + "end": 27006.72, + "probability": 0.9925 + }, + { + "start": 27007.64, + "end": 27010.1, + "probability": 0.9618 + }, + { + "start": 27010.7, + "end": 27013.58, + "probability": 0.9753 + }, + { + "start": 27013.58, + "end": 27017.57, + "probability": 0.831 + }, + { + "start": 27018.16, + "end": 27018.74, + "probability": 0.9318 + }, + { + "start": 27019.42, + "end": 27020.18, + "probability": 0.9424 + }, + { + "start": 27020.28, + "end": 27023.02, + "probability": 0.9932 + }, + { + "start": 27023.08, + "end": 27024.98, + "probability": 0.9119 + }, + { + "start": 27025.1, + "end": 27025.96, + "probability": 0.8072 + }, + { + "start": 27026.16, + "end": 27027.14, + "probability": 0.7414 + }, + { + "start": 27027.14, + "end": 27028.46, + "probability": 0.9522 + }, + { + "start": 27029.28, + "end": 27030.96, + "probability": 0.9681 + }, + { + "start": 27032.62, + "end": 27033.0, + "probability": 0.5 + }, + { + "start": 27033.08, + "end": 27033.78, + "probability": 0.8082 + }, + { + "start": 27033.96, + "end": 27034.56, + "probability": 0.7027 + }, + { + "start": 27034.62, + "end": 27036.78, + "probability": 0.9969 + }, + { + "start": 27036.9, + "end": 27039.36, + "probability": 0.9912 + }, + { + "start": 27039.82, + "end": 27040.68, + "probability": 0.7773 + }, + { + "start": 27040.78, + "end": 27042.3, + "probability": 0.9905 + }, + { + "start": 27042.58, + "end": 27045.76, + "probability": 0.8395 + }, + { + "start": 27046.48, + "end": 27047.87, + "probability": 0.979 + }, + { + "start": 27048.74, + "end": 27049.9, + "probability": 0.8913 + }, + { + "start": 27050.74, + "end": 27053.48, + "probability": 0.93 + }, + { + "start": 27054.08, + "end": 27056.54, + "probability": 0.9952 + }, + { + "start": 27056.54, + "end": 27058.68, + "probability": 0.9902 + }, + { + "start": 27059.38, + "end": 27059.94, + "probability": 0.9858 + }, + { + "start": 27060.74, + "end": 27062.28, + "probability": 0.8589 + }, + { + "start": 27062.76, + "end": 27063.68, + "probability": 0.9946 + }, + { + "start": 27064.54, + "end": 27066.38, + "probability": 0.9731 + }, + { + "start": 27066.46, + "end": 27068.24, + "probability": 0.9263 + }, + { + "start": 27068.54, + "end": 27070.76, + "probability": 0.9951 + }, + { + "start": 27071.28, + "end": 27072.38, + "probability": 0.9117 + }, + { + "start": 27073.22, + "end": 27075.54, + "probability": 0.9062 + }, + { + "start": 27076.02, + "end": 27079.72, + "probability": 0.8915 + }, + { + "start": 27080.18, + "end": 27081.36, + "probability": 0.9328 + }, + { + "start": 27081.48, + "end": 27082.92, + "probability": 0.9976 + }, + { + "start": 27083.42, + "end": 27084.2, + "probability": 0.799 + }, + { + "start": 27084.3, + "end": 27088.02, + "probability": 0.9958 + }, + { + "start": 27088.5, + "end": 27089.84, + "probability": 0.8899 + }, + { + "start": 27090.28, + "end": 27091.5, + "probability": 0.9576 + }, + { + "start": 27091.52, + "end": 27094.6, + "probability": 0.9888 + }, + { + "start": 27095.02, + "end": 27098.44, + "probability": 0.9223 + }, + { + "start": 27099.28, + "end": 27102.71, + "probability": 0.9622 + }, + { + "start": 27104.08, + "end": 27106.2, + "probability": 0.9956 + }, + { + "start": 27106.8, + "end": 27107.32, + "probability": 0.9805 + }, + { + "start": 27108.02, + "end": 27109.4, + "probability": 0.7393 + }, + { + "start": 27109.42, + "end": 27111.96, + "probability": 0.8409 + }, + { + "start": 27113.4, + "end": 27115.78, + "probability": 0.8783 + }, + { + "start": 27116.54, + "end": 27119.48, + "probability": 0.9948 + }, + { + "start": 27120.2, + "end": 27122.66, + "probability": 0.9307 + }, + { + "start": 27123.18, + "end": 27124.18, + "probability": 0.9501 + }, + { + "start": 27124.28, + "end": 27125.78, + "probability": 0.9837 + }, + { + "start": 27126.26, + "end": 27128.4, + "probability": 0.991 + }, + { + "start": 27128.92, + "end": 27130.52, + "probability": 0.937 + }, + { + "start": 27131.32, + "end": 27132.66, + "probability": 0.9974 + }, + { + "start": 27133.4, + "end": 27134.3, + "probability": 0.9278 + }, + { + "start": 27134.32, + "end": 27136.32, + "probability": 0.9294 + }, + { + "start": 27136.48, + "end": 27136.62, + "probability": 0.4592 + }, + { + "start": 27137.96, + "end": 27140.38, + "probability": 0.9087 + }, + { + "start": 27141.06, + "end": 27142.4, + "probability": 0.9458 + }, + { + "start": 27142.76, + "end": 27145.32, + "probability": 0.9895 + }, + { + "start": 27145.32, + "end": 27147.76, + "probability": 0.9727 + }, + { + "start": 27148.14, + "end": 27149.56, + "probability": 0.9912 + }, + { + "start": 27149.8, + "end": 27150.12, + "probability": 0.6598 + }, + { + "start": 27150.94, + "end": 27153.4, + "probability": 0.998 + }, + { + "start": 27153.92, + "end": 27156.52, + "probability": 0.8905 + }, + { + "start": 27157.62, + "end": 27158.98, + "probability": 0.9556 + }, + { + "start": 27159.12, + "end": 27159.98, + "probability": 0.8149 + }, + { + "start": 27160.06, + "end": 27163.4, + "probability": 0.9602 + }, + { + "start": 27163.9, + "end": 27164.74, + "probability": 0.9551 + }, + { + "start": 27165.08, + "end": 27166.63, + "probability": 0.9888 + }, + { + "start": 27167.6, + "end": 27168.18, + "probability": 0.9686 + }, + { + "start": 27168.5, + "end": 27169.6, + "probability": 0.9248 + }, + { + "start": 27169.82, + "end": 27170.52, + "probability": 0.5137 + }, + { + "start": 27170.68, + "end": 27173.18, + "probability": 0.6921 + }, + { + "start": 27173.72, + "end": 27176.52, + "probability": 0.9414 + }, + { + "start": 27176.9, + "end": 27177.66, + "probability": 0.2174 + }, + { + "start": 27177.82, + "end": 27178.24, + "probability": 0.283 + }, + { + "start": 27178.3, + "end": 27180.48, + "probability": 0.9665 + }, + { + "start": 27180.52, + "end": 27181.62, + "probability": 0.7666 + }, + { + "start": 27181.74, + "end": 27183.82, + "probability": 0.6085 + }, + { + "start": 27183.92, + "end": 27186.62, + "probability": 0.4748 + }, + { + "start": 27187.24, + "end": 27187.38, + "probability": 0.0867 + }, + { + "start": 27187.42, + "end": 27188.64, + "probability": 0.9414 + }, + { + "start": 27188.64, + "end": 27192.06, + "probability": 0.8183 + }, + { + "start": 27192.06, + "end": 27192.9, + "probability": 0.6564 + }, + { + "start": 27193.12, + "end": 27196.48, + "probability": 0.6508 + }, + { + "start": 27196.94, + "end": 27198.68, + "probability": 0.4648 + }, + { + "start": 27199.26, + "end": 27200.64, + "probability": 0.5365 + }, + { + "start": 27200.68, + "end": 27200.72, + "probability": 0.2661 + }, + { + "start": 27200.76, + "end": 27201.18, + "probability": 0.9186 + }, + { + "start": 27201.28, + "end": 27206.82, + "probability": 0.9424 + }, + { + "start": 27206.82, + "end": 27206.92, + "probability": 0.0882 + }, + { + "start": 27206.92, + "end": 27207.34, + "probability": 0.2009 + }, + { + "start": 27207.34, + "end": 27209.5, + "probability": 0.9567 + }, + { + "start": 27209.7, + "end": 27210.84, + "probability": 0.8516 + }, + { + "start": 27211.84, + "end": 27215.88, + "probability": 0.9932 + }, + { + "start": 27216.02, + "end": 27219.92, + "probability": 0.4811 + }, + { + "start": 27220.18, + "end": 27225.58, + "probability": 0.4368 + }, + { + "start": 27228.66, + "end": 27229.76, + "probability": 0.169 + }, + { + "start": 27235.14, + "end": 27235.44, + "probability": 0.279 + }, + { + "start": 27235.44, + "end": 27238.34, + "probability": 0.5476 + }, + { + "start": 27239.36, + "end": 27241.72, + "probability": 0.3844 + }, + { + "start": 27242.04, + "end": 27243.04, + "probability": 0.902 + }, + { + "start": 27243.26, + "end": 27247.98, + "probability": 0.9143 + }, + { + "start": 27248.78, + "end": 27249.02, + "probability": 0.6629 + }, + { + "start": 27249.14, + "end": 27249.82, + "probability": 0.7763 + }, + { + "start": 27250.08, + "end": 27251.28, + "probability": 0.8109 + }, + { + "start": 27251.38, + "end": 27252.64, + "probability": 0.8699 + }, + { + "start": 27252.8, + "end": 27257.02, + "probability": 0.9856 + }, + { + "start": 27257.02, + "end": 27261.54, + "probability": 0.9932 + }, + { + "start": 27262.06, + "end": 27265.65, + "probability": 0.9923 + }, + { + "start": 27266.34, + "end": 27270.6, + "probability": 0.4995 + }, + { + "start": 27270.78, + "end": 27270.98, + "probability": 0.7736 + }, + { + "start": 27271.54, + "end": 27272.18, + "probability": 0.3492 + }, + { + "start": 27272.52, + "end": 27279.06, + "probability": 0.777 + }, + { + "start": 27279.06, + "end": 27285.5, + "probability": 0.9582 + }, + { + "start": 27286.18, + "end": 27292.08, + "probability": 0.9626 + }, + { + "start": 27292.88, + "end": 27293.75, + "probability": 0.2566 + }, + { + "start": 27295.02, + "end": 27297.02, + "probability": 0.8412 + }, + { + "start": 27297.68, + "end": 27298.64, + "probability": 0.9831 + }, + { + "start": 27298.74, + "end": 27299.36, + "probability": 0.6786 + }, + { + "start": 27299.9, + "end": 27305.84, + "probability": 0.8491 + }, + { + "start": 27305.9, + "end": 27306.72, + "probability": 0.7155 + }, + { + "start": 27307.92, + "end": 27309.12, + "probability": 0.8647 + }, + { + "start": 27310.5, + "end": 27311.08, + "probability": 0.9058 + }, + { + "start": 27311.16, + "end": 27311.46, + "probability": 0.8661 + }, + { + "start": 27311.58, + "end": 27313.32, + "probability": 0.996 + }, + { + "start": 27314.26, + "end": 27316.08, + "probability": 0.7924 + }, + { + "start": 27317.34, + "end": 27318.08, + "probability": 0.4566 + }, + { + "start": 27318.38, + "end": 27322.08, + "probability": 0.9781 + }, + { + "start": 27322.12, + "end": 27322.66, + "probability": 0.9214 + }, + { + "start": 27324.32, + "end": 27325.44, + "probability": 0.739 + }, + { + "start": 27326.54, + "end": 27327.56, + "probability": 0.9718 + }, + { + "start": 27327.8, + "end": 27327.8, + "probability": 0.1486 + }, + { + "start": 27327.8, + "end": 27328.58, + "probability": 0.5018 + }, + { + "start": 27330.04, + "end": 27330.04, + "probability": 0.0089 + }, + { + "start": 27330.04, + "end": 27330.04, + "probability": 0.2934 + }, + { + "start": 27330.04, + "end": 27332.86, + "probability": 0.8829 + }, + { + "start": 27333.3, + "end": 27334.94, + "probability": 0.9375 + }, + { + "start": 27336.12, + "end": 27338.58, + "probability": 0.9837 + }, + { + "start": 27339.3, + "end": 27342.9, + "probability": 0.8593 + }, + { + "start": 27344.02, + "end": 27347.3, + "probability": 0.9984 + }, + { + "start": 27347.46, + "end": 27347.96, + "probability": 0.5571 + }, + { + "start": 27348.04, + "end": 27349.62, + "probability": 0.9607 + }, + { + "start": 27349.74, + "end": 27350.58, + "probability": 0.7737 + }, + { + "start": 27351.22, + "end": 27354.6, + "probability": 0.9779 + }, + { + "start": 27355.06, + "end": 27357.48, + "probability": 0.9753 + }, + { + "start": 27357.82, + "end": 27359.0, + "probability": 0.957 + }, + { + "start": 27360.16, + "end": 27362.08, + "probability": 0.8985 + }, + { + "start": 27364.12, + "end": 27365.52, + "probability": 0.8888 + }, + { + "start": 27366.34, + "end": 27368.68, + "probability": 0.9937 + }, + { + "start": 27369.8, + "end": 27370.36, + "probability": 0.8269 + }, + { + "start": 27371.02, + "end": 27372.18, + "probability": 0.6794 + }, + { + "start": 27373.28, + "end": 27374.51, + "probability": 0.8805 + }, + { + "start": 27375.24, + "end": 27375.38, + "probability": 0.4522 + }, + { + "start": 27375.54, + "end": 27376.44, + "probability": 0.7918 + }, + { + "start": 27376.9, + "end": 27378.34, + "probability": 0.9008 + }, + { + "start": 27379.2, + "end": 27382.36, + "probability": 0.9811 + }, + { + "start": 27382.46, + "end": 27383.18, + "probability": 0.5285 + }, + { + "start": 27383.42, + "end": 27384.76, + "probability": 0.9728 + }, + { + "start": 27385.52, + "end": 27385.92, + "probability": 0.98 + }, + { + "start": 27386.0, + "end": 27386.84, + "probability": 0.7505 + }, + { + "start": 27386.9, + "end": 27387.74, + "probability": 0.7946 + }, + { + "start": 27388.12, + "end": 27388.8, + "probability": 0.9262 + }, + { + "start": 27389.12, + "end": 27390.08, + "probability": 0.9055 + }, + { + "start": 27390.1, + "end": 27391.36, + "probability": 0.9478 + }, + { + "start": 27392.4, + "end": 27393.02, + "probability": 0.8776 + }, + { + "start": 27393.36, + "end": 27396.28, + "probability": 0.6574 + }, + { + "start": 27396.44, + "end": 27398.72, + "probability": 0.979 + }, + { + "start": 27399.1, + "end": 27401.84, + "probability": 0.9986 + }, + { + "start": 27401.84, + "end": 27405.44, + "probability": 0.9995 + }, + { + "start": 27405.94, + "end": 27409.0, + "probability": 0.9924 + }, + { + "start": 27409.56, + "end": 27410.42, + "probability": 0.5141 + }, + { + "start": 27411.26, + "end": 27413.19, + "probability": 0.9407 + }, + { + "start": 27414.46, + "end": 27416.32, + "probability": 0.8613 + }, + { + "start": 27417.1, + "end": 27418.64, + "probability": 0.9912 + }, + { + "start": 27419.06, + "end": 27420.98, + "probability": 0.7489 + }, + { + "start": 27421.06, + "end": 27421.92, + "probability": 0.8744 + }, + { + "start": 27422.46, + "end": 27425.6, + "probability": 0.9922 + }, + { + "start": 27426.44, + "end": 27428.34, + "probability": 0.9815 + }, + { + "start": 27428.64, + "end": 27428.96, + "probability": 0.3885 + }, + { + "start": 27429.72, + "end": 27432.16, + "probability": 0.9989 + }, + { + "start": 27432.66, + "end": 27433.08, + "probability": 0.531 + }, + { + "start": 27434.18, + "end": 27438.38, + "probability": 0.979 + }, + { + "start": 27438.38, + "end": 27441.54, + "probability": 0.9985 + }, + { + "start": 27442.28, + "end": 27445.06, + "probability": 0.8305 + }, + { + "start": 27445.3, + "end": 27446.25, + "probability": 0.8228 + }, + { + "start": 27446.92, + "end": 27449.0, + "probability": 0.9944 + }, + { + "start": 27449.1, + "end": 27452.26, + "probability": 0.938 + }, + { + "start": 27452.68, + "end": 27453.5, + "probability": 0.8956 + }, + { + "start": 27454.28, + "end": 27458.06, + "probability": 0.8651 + }, + { + "start": 27458.44, + "end": 27460.2, + "probability": 0.6353 + }, + { + "start": 27460.76, + "end": 27460.88, + "probability": 0.0438 + }, + { + "start": 27460.94, + "end": 27461.78, + "probability": 0.8405 + }, + { + "start": 27461.84, + "end": 27462.5, + "probability": 0.7617 + }, + { + "start": 27462.56, + "end": 27464.06, + "probability": 0.7214 + }, + { + "start": 27464.3, + "end": 27466.0, + "probability": 0.9783 + }, + { + "start": 27466.52, + "end": 27467.43, + "probability": 0.9373 + }, + { + "start": 27469.22, + "end": 27470.88, + "probability": 0.9713 + }, + { + "start": 27471.14, + "end": 27472.88, + "probability": 0.958 + }, + { + "start": 27473.0, + "end": 27474.02, + "probability": 0.8374 + }, + { + "start": 27474.94, + "end": 27477.33, + "probability": 0.9941 + }, + { + "start": 27478.74, + "end": 27479.7, + "probability": 0.8242 + }, + { + "start": 27481.08, + "end": 27484.22, + "probability": 0.8397 + }, + { + "start": 27484.6, + "end": 27485.12, + "probability": 0.6181 + }, + { + "start": 27486.12, + "end": 27487.5, + "probability": 0.9017 + }, + { + "start": 27487.56, + "end": 27488.82, + "probability": 0.9928 + }, + { + "start": 27488.9, + "end": 27490.06, + "probability": 0.7542 + }, + { + "start": 27491.04, + "end": 27495.32, + "probability": 0.7584 + }, + { + "start": 27495.38, + "end": 27495.53, + "probability": 0.0655 + }, + { + "start": 27496.3, + "end": 27498.88, + "probability": 0.7554 + }, + { + "start": 27499.44, + "end": 27501.42, + "probability": 0.9417 + }, + { + "start": 27502.04, + "end": 27503.1, + "probability": 0.8688 + }, + { + "start": 27503.36, + "end": 27508.28, + "probability": 0.9159 + }, + { + "start": 27508.72, + "end": 27509.66, + "probability": 0.8826 + }, + { + "start": 27509.72, + "end": 27513.52, + "probability": 0.9641 + }, + { + "start": 27514.08, + "end": 27515.08, + "probability": 0.9897 + }, + { + "start": 27515.2, + "end": 27517.7, + "probability": 0.8459 + }, + { + "start": 27518.26, + "end": 27519.2, + "probability": 0.8831 + }, + { + "start": 27519.28, + "end": 27519.38, + "probability": 0.4067 + }, + { + "start": 27519.44, + "end": 27521.84, + "probability": 0.6602 + }, + { + "start": 27521.92, + "end": 27524.56, + "probability": 0.79 + }, + { + "start": 27525.0, + "end": 27526.92, + "probability": 0.8697 + }, + { + "start": 27527.1, + "end": 27531.2, + "probability": 0.9622 + }, + { + "start": 27531.32, + "end": 27532.12, + "probability": 0.9297 + }, + { + "start": 27532.5, + "end": 27535.28, + "probability": 0.9883 + }, + { + "start": 27535.84, + "end": 27539.44, + "probability": 0.9753 + }, + { + "start": 27540.02, + "end": 27546.56, + "probability": 0.9921 + }, + { + "start": 27546.9, + "end": 27548.14, + "probability": 0.9479 + }, + { + "start": 27548.86, + "end": 27551.98, + "probability": 0.9489 + }, + { + "start": 27552.36, + "end": 27553.46, + "probability": 0.4605 + }, + { + "start": 27553.56, + "end": 27555.0, + "probability": 0.4083 + }, + { + "start": 27555.96, + "end": 27558.6, + "probability": 0.6135 + }, + { + "start": 27558.62, + "end": 27560.06, + "probability": 0.8884 + }, + { + "start": 27560.4, + "end": 27561.56, + "probability": 0.7957 + }, + { + "start": 27561.88, + "end": 27562.96, + "probability": 0.7017 + }, + { + "start": 27563.66, + "end": 27566.38, + "probability": 0.9557 + }, + { + "start": 27567.24, + "end": 27569.65, + "probability": 0.9932 + }, + { + "start": 27571.36, + "end": 27571.58, + "probability": 0.7615 + }, + { + "start": 27571.64, + "end": 27573.02, + "probability": 0.8665 + }, + { + "start": 27573.08, + "end": 27573.4, + "probability": 0.5679 + }, + { + "start": 27574.28, + "end": 27575.74, + "probability": 0.7139 + }, + { + "start": 27575.82, + "end": 27576.58, + "probability": 0.9196 + }, + { + "start": 27576.66, + "end": 27578.01, + "probability": 0.9976 + }, + { + "start": 27578.4, + "end": 27582.96, + "probability": 0.9398 + }, + { + "start": 27582.96, + "end": 27583.58, + "probability": 0.8571 + }, + { + "start": 27583.9, + "end": 27585.08, + "probability": 0.8531 + }, + { + "start": 27585.16, + "end": 27587.5, + "probability": 0.9323 + }, + { + "start": 27587.52, + "end": 27587.78, + "probability": 0.7593 + }, + { + "start": 27590.1, + "end": 27591.15, + "probability": 0.2207 + }, + { + "start": 27592.54, + "end": 27592.78, + "probability": 0.2153 + }, + { + "start": 27593.42, + "end": 27594.02, + "probability": 0.1811 + }, + { + "start": 27594.12, + "end": 27594.74, + "probability": 0.2849 + }, + { + "start": 27595.96, + "end": 27597.69, + "probability": 0.6028 + }, + { + "start": 27598.56, + "end": 27602.69, + "probability": 0.8674 + }, + { + "start": 27603.72, + "end": 27604.42, + "probability": 0.0166 + }, + { + "start": 27606.64, + "end": 27607.96, + "probability": 0.0317 + }, + { + "start": 27607.98, + "end": 27608.62, + "probability": 0.3353 + }, + { + "start": 27609.24, + "end": 27609.96, + "probability": 0.1198 + }, + { + "start": 27610.36, + "end": 27611.0, + "probability": 0.0214 + }, + { + "start": 27611.0, + "end": 27611.91, + "probability": 0.2086 + }, + { + "start": 27612.8, + "end": 27616.0, + "probability": 0.7065 + }, + { + "start": 27644.56, + "end": 27645.96, + "probability": 0.003 + }, + { + "start": 27647.36, + "end": 27648.2, + "probability": 0.0769 + }, + { + "start": 27648.2, + "end": 27648.96, + "probability": 0.2776 + } + ], + "segments_count": 9541, + "words_count": 47643, + "avg_words_per_segment": 4.9935, + "avg_segment_duration": 2.1076, + "avg_words_per_minute": 102.2386, + "plenum_id": "67781", + "duration": 27959.89, + "title": null, + "plenum_date": "2017-11-22" +} \ No newline at end of file