diff --git "a/132061/metadata.json" "b/132061/metadata.json" new file mode 100644--- /dev/null +++ "b/132061/metadata.json" @@ -0,0 +1,43957 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "132061", + "quality_score": 0.9252, + "per_segment_quality_scores": [ + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.66, + "end": 135.62, + "probability": 0.7233 + }, + { + "start": 135.74, + "end": 137.02, + "probability": 0.8814 + }, + { + "start": 137.18, + "end": 139.32, + "probability": 0.9825 + }, + { + "start": 140.68, + "end": 142.28, + "probability": 0.8513 + }, + { + "start": 142.82, + "end": 144.02, + "probability": 0.8537 + }, + { + "start": 145.78, + "end": 145.9, + "probability": 0.4574 + }, + { + "start": 147.0, + "end": 147.8, + "probability": 0.7629 + }, + { + "start": 147.86, + "end": 148.5, + "probability": 0.97 + }, + { + "start": 152.54, + "end": 153.4, + "probability": 0.9241 + }, + { + "start": 153.9, + "end": 153.9, + "probability": 0.0318 + }, + { + "start": 170.84, + "end": 171.72, + "probability": 0.149 + }, + { + "start": 171.72, + "end": 172.16, + "probability": 0.1992 + }, + { + "start": 172.88, + "end": 174.82, + "probability": 0.05 + }, + { + "start": 175.28, + "end": 175.54, + "probability": 0.1048 + }, + { + "start": 175.54, + "end": 178.28, + "probability": 0.0432 + }, + { + "start": 178.86, + "end": 179.34, + "probability": 0.0532 + }, + { + "start": 180.42, + "end": 182.76, + "probability": 0.0699 + }, + { + "start": 187.1, + "end": 187.44, + "probability": 0.0305 + }, + { + "start": 192.26, + "end": 192.46, + "probability": 0.0 + }, + { + "start": 205.9, + "end": 209.65, + "probability": 0.1269 + }, + { + "start": 1373.0, + "end": 1373.0, + "probability": 0.0 + }, + { + "start": 1373.0, + "end": 1373.0, + "probability": 0.0 + }, + { + "start": 1373.0, + "end": 1373.0, + "probability": 0.0 + }, + { + "start": 1373.0, + "end": 1373.0, + "probability": 0.0 + }, + { + "start": 1373.1, + "end": 1373.1, + "probability": 0.1773 + }, + { + "start": 1373.1, + "end": 1373.26, + "probability": 0.4053 + }, + { + "start": 1373.38, + "end": 1375.08, + "probability": 0.981 + }, + { + "start": 1376.34, + "end": 1378.78, + "probability": 0.8956 + }, + { + "start": 1378.94, + "end": 1379.7, + "probability": 0.9878 + }, + { + "start": 1379.76, + "end": 1382.24, + "probability": 0.9893 + }, + { + "start": 1383.18, + "end": 1384.46, + "probability": 0.9883 + }, + { + "start": 1385.52, + "end": 1390.72, + "probability": 0.9971 + }, + { + "start": 1390.9, + "end": 1394.88, + "probability": 0.9482 + }, + { + "start": 1395.76, + "end": 1399.26, + "probability": 0.9972 + }, + { + "start": 1399.32, + "end": 1400.46, + "probability": 0.9802 + }, + { + "start": 1401.78, + "end": 1405.56, + "probability": 0.9966 + }, + { + "start": 1407.32, + "end": 1409.06, + "probability": 0.8745 + }, + { + "start": 1409.52, + "end": 1411.79, + "probability": 0.8559 + }, + { + "start": 1413.22, + "end": 1416.14, + "probability": 0.9487 + }, + { + "start": 1416.24, + "end": 1417.8, + "probability": 0.9917 + }, + { + "start": 1417.88, + "end": 1418.48, + "probability": 0.8717 + }, + { + "start": 1419.06, + "end": 1420.5, + "probability": 0.7984 + }, + { + "start": 1421.26, + "end": 1424.2, + "probability": 0.5657 + }, + { + "start": 1425.28, + "end": 1428.08, + "probability": 0.8598 + }, + { + "start": 1428.96, + "end": 1431.38, + "probability": 0.978 + }, + { + "start": 1432.28, + "end": 1434.48, + "probability": 0.9937 + }, + { + "start": 1435.22, + "end": 1436.48, + "probability": 0.9902 + }, + { + "start": 1437.28, + "end": 1438.58, + "probability": 0.9757 + }, + { + "start": 1439.36, + "end": 1441.22, + "probability": 0.7778 + }, + { + "start": 1441.76, + "end": 1443.22, + "probability": 0.9962 + }, + { + "start": 1444.42, + "end": 1448.96, + "probability": 0.9907 + }, + { + "start": 1449.88, + "end": 1450.2, + "probability": 0.7931 + }, + { + "start": 1450.96, + "end": 1453.54, + "probability": 0.974 + }, + { + "start": 1454.26, + "end": 1458.08, + "probability": 0.9751 + }, + { + "start": 1458.4, + "end": 1458.6, + "probability": 0.6397 + }, + { + "start": 1460.08, + "end": 1464.38, + "probability": 0.9919 + }, + { + "start": 1464.92, + "end": 1466.28, + "probability": 0.9674 + }, + { + "start": 1467.28, + "end": 1469.56, + "probability": 0.9668 + }, + { + "start": 1470.42, + "end": 1472.18, + "probability": 0.8901 + }, + { + "start": 1472.74, + "end": 1475.38, + "probability": 0.9954 + }, + { + "start": 1476.52, + "end": 1477.8, + "probability": 0.9842 + }, + { + "start": 1478.38, + "end": 1478.92, + "probability": 0.9902 + }, + { + "start": 1479.52, + "end": 1479.8, + "probability": 0.7369 + }, + { + "start": 1480.46, + "end": 1481.84, + "probability": 0.9223 + }, + { + "start": 1481.94, + "end": 1483.88, + "probability": 0.7792 + }, + { + "start": 1484.02, + "end": 1486.14, + "probability": 0.7984 + }, + { + "start": 1486.22, + "end": 1486.64, + "probability": 0.9744 + }, + { + "start": 1489.3, + "end": 1492.38, + "probability": 0.6518 + }, + { + "start": 1493.48, + "end": 1497.84, + "probability": 0.9111 + }, + { + "start": 1498.82, + "end": 1504.5, + "probability": 0.9783 + }, + { + "start": 1504.68, + "end": 1505.4, + "probability": 0.9902 + }, + { + "start": 1508.74, + "end": 1509.76, + "probability": 0.7626 + }, + { + "start": 1510.62, + "end": 1511.76, + "probability": 0.8029 + }, + { + "start": 1512.92, + "end": 1514.22, + "probability": 0.9608 + }, + { + "start": 1515.62, + "end": 1516.3, + "probability": 0.8101 + }, + { + "start": 1517.14, + "end": 1517.66, + "probability": 0.7236 + }, + { + "start": 1517.82, + "end": 1518.98, + "probability": 0.9833 + }, + { + "start": 1522.18, + "end": 1524.76, + "probability": 0.8904 + }, + { + "start": 1525.46, + "end": 1526.16, + "probability": 0.5813 + }, + { + "start": 1526.74, + "end": 1530.82, + "probability": 0.9873 + }, + { + "start": 1530.94, + "end": 1535.32, + "probability": 0.9827 + }, + { + "start": 1535.32, + "end": 1540.46, + "probability": 0.9872 + }, + { + "start": 1540.96, + "end": 1541.58, + "probability": 0.9897 + }, + { + "start": 1542.18, + "end": 1543.48, + "probability": 0.8819 + }, + { + "start": 1544.1, + "end": 1547.02, + "probability": 0.9569 + }, + { + "start": 1547.12, + "end": 1549.82, + "probability": 0.9951 + }, + { + "start": 1551.34, + "end": 1552.84, + "probability": 0.908 + }, + { + "start": 1553.88, + "end": 1558.06, + "probability": 0.9624 + }, + { + "start": 1558.1, + "end": 1559.46, + "probability": 0.6596 + }, + { + "start": 1559.9, + "end": 1564.74, + "probability": 0.9829 + }, + { + "start": 1564.74, + "end": 1568.78, + "probability": 0.9947 + }, + { + "start": 1569.36, + "end": 1569.56, + "probability": 0.7748 + }, + { + "start": 1570.98, + "end": 1571.96, + "probability": 0.6092 + }, + { + "start": 1572.02, + "end": 1573.82, + "probability": 0.9957 + }, + { + "start": 1573.82, + "end": 1576.16, + "probability": 0.9545 + }, + { + "start": 1576.26, + "end": 1577.34, + "probability": 0.8381 + }, + { + "start": 1578.04, + "end": 1578.96, + "probability": 0.9797 + }, + { + "start": 1580.14, + "end": 1582.72, + "probability": 0.9412 + }, + { + "start": 1582.98, + "end": 1583.46, + "probability": 0.356 + }, + { + "start": 1583.88, + "end": 1585.0, + "probability": 0.7953 + }, + { + "start": 1586.66, + "end": 1587.62, + "probability": 0.7461 + }, + { + "start": 1588.1, + "end": 1589.04, + "probability": 0.6525 + }, + { + "start": 1589.44, + "end": 1591.96, + "probability": 0.9746 + }, + { + "start": 1592.6, + "end": 1594.98, + "probability": 0.9651 + }, + { + "start": 1595.62, + "end": 1601.14, + "probability": 0.9692 + }, + { + "start": 1601.88, + "end": 1604.22, + "probability": 0.7195 + }, + { + "start": 1605.0, + "end": 1606.04, + "probability": 0.8384 + }, + { + "start": 1606.86, + "end": 1610.16, + "probability": 0.9113 + }, + { + "start": 1610.78, + "end": 1617.94, + "probability": 0.9878 + }, + { + "start": 1618.5, + "end": 1621.88, + "probability": 0.9972 + }, + { + "start": 1622.66, + "end": 1623.34, + "probability": 0.7332 + }, + { + "start": 1623.48, + "end": 1628.1, + "probability": 0.9682 + }, + { + "start": 1628.88, + "end": 1631.34, + "probability": 0.965 + }, + { + "start": 1631.72, + "end": 1634.0, + "probability": 0.9902 + }, + { + "start": 1635.06, + "end": 1638.8, + "probability": 0.9696 + }, + { + "start": 1638.94, + "end": 1640.0, + "probability": 0.7694 + }, + { + "start": 1641.4, + "end": 1644.98, + "probability": 0.9956 + }, + { + "start": 1645.4, + "end": 1648.52, + "probability": 0.9933 + }, + { + "start": 1649.32, + "end": 1651.12, + "probability": 0.7285 + }, + { + "start": 1651.82, + "end": 1654.14, + "probability": 0.9917 + }, + { + "start": 1655.0, + "end": 1657.5, + "probability": 0.9535 + }, + { + "start": 1658.38, + "end": 1661.6, + "probability": 0.9835 + }, + { + "start": 1662.46, + "end": 1662.86, + "probability": 0.5693 + }, + { + "start": 1662.96, + "end": 1664.04, + "probability": 0.7265 + }, + { + "start": 1664.14, + "end": 1664.62, + "probability": 0.4859 + }, + { + "start": 1664.62, + "end": 1666.22, + "probability": 0.8563 + }, + { + "start": 1668.02, + "end": 1669.12, + "probability": 0.955 + }, + { + "start": 1670.18, + "end": 1671.93, + "probability": 0.5394 + }, + { + "start": 1673.62, + "end": 1676.78, + "probability": 0.6087 + }, + { + "start": 1677.24, + "end": 1680.1, + "probability": 0.8944 + }, + { + "start": 1681.4, + "end": 1684.62, + "probability": 0.8838 + }, + { + "start": 1685.44, + "end": 1688.02, + "probability": 0.978 + }, + { + "start": 1688.62, + "end": 1692.76, + "probability": 0.9943 + }, + { + "start": 1693.34, + "end": 1697.62, + "probability": 0.7943 + }, + { + "start": 1698.2, + "end": 1700.04, + "probability": 0.9929 + }, + { + "start": 1700.86, + "end": 1702.8, + "probability": 0.9971 + }, + { + "start": 1703.58, + "end": 1707.18, + "probability": 0.8692 + }, + { + "start": 1708.12, + "end": 1714.04, + "probability": 0.9876 + }, + { + "start": 1714.82, + "end": 1715.84, + "probability": 0.5584 + }, + { + "start": 1716.38, + "end": 1720.44, + "probability": 0.9883 + }, + { + "start": 1721.08, + "end": 1728.16, + "probability": 0.9937 + }, + { + "start": 1729.24, + "end": 1733.08, + "probability": 0.9963 + }, + { + "start": 1733.72, + "end": 1736.5, + "probability": 0.9856 + }, + { + "start": 1737.3, + "end": 1739.44, + "probability": 0.7038 + }, + { + "start": 1740.38, + "end": 1741.7, + "probability": 0.9719 + }, + { + "start": 1742.38, + "end": 1743.8, + "probability": 0.9771 + }, + { + "start": 1744.66, + "end": 1745.61, + "probability": 0.6212 + }, + { + "start": 1746.4, + "end": 1750.24, + "probability": 0.9578 + }, + { + "start": 1750.98, + "end": 1752.08, + "probability": 0.8346 + }, + { + "start": 1752.78, + "end": 1755.62, + "probability": 0.829 + }, + { + "start": 1756.14, + "end": 1758.54, + "probability": 0.9846 + }, + { + "start": 1759.32, + "end": 1763.78, + "probability": 0.977 + }, + { + "start": 1763.88, + "end": 1764.1, + "probability": 0.7241 + }, + { + "start": 1764.68, + "end": 1765.44, + "probability": 0.8319 + }, + { + "start": 1765.86, + "end": 1767.8, + "probability": 0.8906 + }, + { + "start": 1768.42, + "end": 1770.76, + "probability": 0.9036 + }, + { + "start": 1773.2, + "end": 1775.12, + "probability": 0.786 + }, + { + "start": 1775.48, + "end": 1777.98, + "probability": 0.9932 + }, + { + "start": 1778.06, + "end": 1778.97, + "probability": 0.975 + }, + { + "start": 1779.46, + "end": 1785.94, + "probability": 0.9897 + }, + { + "start": 1786.54, + "end": 1788.54, + "probability": 0.9724 + }, + { + "start": 1788.82, + "end": 1789.92, + "probability": 0.9355 + }, + { + "start": 1789.98, + "end": 1790.72, + "probability": 0.9525 + }, + { + "start": 1790.78, + "end": 1793.92, + "probability": 0.9995 + }, + { + "start": 1794.38, + "end": 1795.18, + "probability": 0.9733 + }, + { + "start": 1795.24, + "end": 1795.64, + "probability": 0.9252 + }, + { + "start": 1795.7, + "end": 1797.6, + "probability": 0.8356 + }, + { + "start": 1797.64, + "end": 1797.92, + "probability": 0.8091 + }, + { + "start": 1798.04, + "end": 1798.62, + "probability": 0.9684 + }, + { + "start": 1799.48, + "end": 1801.32, + "probability": 0.9259 + }, + { + "start": 1801.44, + "end": 1804.86, + "probability": 0.9938 + }, + { + "start": 1805.38, + "end": 1806.52, + "probability": 0.9843 + }, + { + "start": 1807.1, + "end": 1809.1, + "probability": 0.9937 + }, + { + "start": 1809.18, + "end": 1810.24, + "probability": 0.904 + }, + { + "start": 1810.7, + "end": 1813.12, + "probability": 0.9988 + }, + { + "start": 1813.3, + "end": 1814.92, + "probability": 0.9827 + }, + { + "start": 1815.66, + "end": 1817.22, + "probability": 0.9729 + }, + { + "start": 1817.42, + "end": 1818.08, + "probability": 0.8363 + }, + { + "start": 1818.54, + "end": 1819.75, + "probability": 0.9978 + }, + { + "start": 1819.92, + "end": 1820.72, + "probability": 0.8782 + }, + { + "start": 1820.8, + "end": 1821.82, + "probability": 0.9783 + }, + { + "start": 1822.3, + "end": 1823.94, + "probability": 0.6694 + }, + { + "start": 1824.88, + "end": 1826.2, + "probability": 0.9972 + }, + { + "start": 1827.08, + "end": 1833.16, + "probability": 0.9944 + }, + { + "start": 1834.04, + "end": 1837.5, + "probability": 0.9857 + }, + { + "start": 1837.58, + "end": 1838.3, + "probability": 0.6845 + }, + { + "start": 1839.28, + "end": 1842.42, + "probability": 0.9796 + }, + { + "start": 1842.5, + "end": 1843.82, + "probability": 0.7082 + }, + { + "start": 1844.14, + "end": 1847.06, + "probability": 0.9813 + }, + { + "start": 1847.68, + "end": 1849.31, + "probability": 0.9203 + }, + { + "start": 1850.62, + "end": 1854.06, + "probability": 0.9664 + }, + { + "start": 1854.9, + "end": 1857.16, + "probability": 0.9748 + }, + { + "start": 1857.9, + "end": 1859.72, + "probability": 0.9587 + }, + { + "start": 1860.46, + "end": 1862.38, + "probability": 0.9805 + }, + { + "start": 1862.44, + "end": 1864.0, + "probability": 0.5051 + }, + { + "start": 1865.07, + "end": 1868.4, + "probability": 0.8568 + }, + { + "start": 1868.46, + "end": 1870.02, + "probability": 0.922 + }, + { + "start": 1870.96, + "end": 1874.4, + "probability": 0.7854 + }, + { + "start": 1875.52, + "end": 1880.18, + "probability": 0.993 + }, + { + "start": 1880.26, + "end": 1880.5, + "probability": 0.7834 + }, + { + "start": 1881.8, + "end": 1882.8, + "probability": 0.903 + }, + { + "start": 1883.72, + "end": 1885.7, + "probability": 0.6653 + }, + { + "start": 1886.42, + "end": 1889.26, + "probability": 0.8083 + }, + { + "start": 1890.74, + "end": 1893.98, + "probability": 0.6981 + }, + { + "start": 1895.2, + "end": 1896.98, + "probability": 0.9548 + }, + { + "start": 1897.5, + "end": 1899.4, + "probability": 0.9977 + }, + { + "start": 1900.12, + "end": 1901.82, + "probability": 0.8971 + }, + { + "start": 1902.54, + "end": 1905.98, + "probability": 0.9936 + }, + { + "start": 1906.2, + "end": 1907.53, + "probability": 0.9571 + }, + { + "start": 1908.2, + "end": 1910.02, + "probability": 0.9845 + }, + { + "start": 1911.14, + "end": 1918.68, + "probability": 0.995 + }, + { + "start": 1919.56, + "end": 1923.94, + "probability": 0.9887 + }, + { + "start": 1925.52, + "end": 1927.2, + "probability": 0.9972 + }, + { + "start": 1928.16, + "end": 1932.34, + "probability": 0.9968 + }, + { + "start": 1933.0, + "end": 1934.34, + "probability": 0.9026 + }, + { + "start": 1934.92, + "end": 1935.52, + "probability": 0.7546 + }, + { + "start": 1936.3, + "end": 1937.34, + "probability": 0.8996 + }, + { + "start": 1938.06, + "end": 1939.56, + "probability": 0.9941 + }, + { + "start": 1940.86, + "end": 1945.28, + "probability": 0.9956 + }, + { + "start": 1945.28, + "end": 1950.68, + "probability": 0.9932 + }, + { + "start": 1951.68, + "end": 1954.1, + "probability": 0.9972 + }, + { + "start": 1954.62, + "end": 1956.74, + "probability": 0.9976 + }, + { + "start": 1957.74, + "end": 1959.5, + "probability": 0.9884 + }, + { + "start": 1960.04, + "end": 1962.32, + "probability": 0.9763 + }, + { + "start": 1963.22, + "end": 1965.86, + "probability": 0.99 + }, + { + "start": 1966.32, + "end": 1969.5, + "probability": 0.993 + }, + { + "start": 1970.34, + "end": 1971.22, + "probability": 0.8003 + }, + { + "start": 1972.12, + "end": 1973.56, + "probability": 0.9953 + }, + { + "start": 1976.38, + "end": 1976.94, + "probability": 0.5703 + }, + { + "start": 1977.16, + "end": 1978.48, + "probability": 0.9589 + }, + { + "start": 1978.64, + "end": 1979.0, + "probability": 0.5379 + }, + { + "start": 1979.06, + "end": 1981.42, + "probability": 0.8587 + }, + { + "start": 1988.46, + "end": 1989.36, + "probability": 0.7212 + }, + { + "start": 1989.46, + "end": 1990.6, + "probability": 0.8978 + }, + { + "start": 1990.74, + "end": 1993.6, + "probability": 0.9768 + }, + { + "start": 1994.3, + "end": 1999.54, + "probability": 0.9952 + }, + { + "start": 2000.04, + "end": 2004.7, + "probability": 0.9652 + }, + { + "start": 2005.6, + "end": 2006.42, + "probability": 0.3867 + }, + { + "start": 2007.14, + "end": 2010.34, + "probability": 0.9989 + }, + { + "start": 2010.82, + "end": 2012.46, + "probability": 0.9993 + }, + { + "start": 2012.58, + "end": 2013.98, + "probability": 0.8651 + }, + { + "start": 2015.22, + "end": 2018.08, + "probability": 0.8923 + }, + { + "start": 2018.56, + "end": 2020.55, + "probability": 0.9976 + }, + { + "start": 2021.74, + "end": 2023.94, + "probability": 0.9978 + }, + { + "start": 2024.7, + "end": 2026.86, + "probability": 0.9977 + }, + { + "start": 2027.42, + "end": 2031.02, + "probability": 0.9982 + }, + { + "start": 2031.62, + "end": 2035.96, + "probability": 0.9941 + }, + { + "start": 2036.42, + "end": 2039.86, + "probability": 0.9803 + }, + { + "start": 2040.42, + "end": 2041.8, + "probability": 0.9976 + }, + { + "start": 2042.26, + "end": 2044.76, + "probability": 0.9975 + }, + { + "start": 2045.2, + "end": 2046.12, + "probability": 0.988 + }, + { + "start": 2046.48, + "end": 2051.32, + "probability": 0.9844 + }, + { + "start": 2052.48, + "end": 2054.16, + "probability": 0.9963 + }, + { + "start": 2054.7, + "end": 2057.02, + "probability": 0.9654 + }, + { + "start": 2057.5, + "end": 2058.08, + "probability": 0.7377 + }, + { + "start": 2058.16, + "end": 2058.54, + "probability": 0.871 + }, + { + "start": 2058.8, + "end": 2060.44, + "probability": 0.9624 + }, + { + "start": 2060.86, + "end": 2064.82, + "probability": 0.989 + }, + { + "start": 2064.98, + "end": 2065.78, + "probability": 0.7498 + }, + { + "start": 2065.84, + "end": 2066.52, + "probability": 0.9573 + }, + { + "start": 2066.94, + "end": 2068.86, + "probability": 0.8088 + }, + { + "start": 2069.2, + "end": 2072.78, + "probability": 0.9916 + }, + { + "start": 2073.32, + "end": 2073.96, + "probability": 0.8333 + }, + { + "start": 2074.2, + "end": 2077.56, + "probability": 0.9329 + }, + { + "start": 2077.56, + "end": 2081.48, + "probability": 0.9956 + }, + { + "start": 2083.14, + "end": 2083.42, + "probability": 0.5235 + }, + { + "start": 2083.44, + "end": 2083.96, + "probability": 0.3285 + }, + { + "start": 2084.34, + "end": 2085.08, + "probability": 0.981 + }, + { + "start": 2085.88, + "end": 2087.52, + "probability": 0.5837 + }, + { + "start": 2088.08, + "end": 2089.5, + "probability": 0.7408 + }, + { + "start": 2096.48, + "end": 2100.46, + "probability": 0.6563 + }, + { + "start": 2100.54, + "end": 2101.42, + "probability": 0.9186 + }, + { + "start": 2101.54, + "end": 2104.52, + "probability": 0.9023 + }, + { + "start": 2104.98, + "end": 2106.76, + "probability": 0.7666 + }, + { + "start": 2107.4, + "end": 2112.46, + "probability": 0.9793 + }, + { + "start": 2113.22, + "end": 2114.2, + "probability": 0.5111 + }, + { + "start": 2114.7, + "end": 2122.84, + "probability": 0.8551 + }, + { + "start": 2123.7, + "end": 2125.06, + "probability": 0.9195 + }, + { + "start": 2125.66, + "end": 2127.72, + "probability": 0.9927 + }, + { + "start": 2128.24, + "end": 2130.36, + "probability": 0.9933 + }, + { + "start": 2130.74, + "end": 2134.3, + "probability": 0.9707 + }, + { + "start": 2135.02, + "end": 2137.18, + "probability": 0.9642 + }, + { + "start": 2137.78, + "end": 2140.04, + "probability": 0.9979 + }, + { + "start": 2140.06, + "end": 2143.22, + "probability": 0.9985 + }, + { + "start": 2143.74, + "end": 2146.74, + "probability": 0.9937 + }, + { + "start": 2147.22, + "end": 2149.42, + "probability": 0.9719 + }, + { + "start": 2150.08, + "end": 2150.85, + "probability": 0.8763 + }, + { + "start": 2151.4, + "end": 2155.18, + "probability": 0.9807 + }, + { + "start": 2155.7, + "end": 2157.82, + "probability": 0.9393 + }, + { + "start": 2158.58, + "end": 2160.8, + "probability": 0.9951 + }, + { + "start": 2161.24, + "end": 2163.64, + "probability": 0.886 + }, + { + "start": 2164.62, + "end": 2166.04, + "probability": 0.8372 + }, + { + "start": 2166.5, + "end": 2170.32, + "probability": 0.9954 + }, + { + "start": 2170.94, + "end": 2171.6, + "probability": 0.9113 + }, + { + "start": 2172.16, + "end": 2172.78, + "probability": 0.7437 + }, + { + "start": 2172.8, + "end": 2174.1, + "probability": 0.7059 + }, + { + "start": 2174.18, + "end": 2174.8, + "probability": 0.4209 + }, + { + "start": 2175.3, + "end": 2176.88, + "probability": 0.7071 + }, + { + "start": 2177.84, + "end": 2178.68, + "probability": 0.6235 + }, + { + "start": 2178.74, + "end": 2180.08, + "probability": 0.8037 + }, + { + "start": 2180.26, + "end": 2184.48, + "probability": 0.9395 + }, + { + "start": 2184.54, + "end": 2184.92, + "probability": 0.8344 + }, + { + "start": 2185.56, + "end": 2187.34, + "probability": 0.8399 + }, + { + "start": 2187.86, + "end": 2191.16, + "probability": 0.9458 + }, + { + "start": 2191.28, + "end": 2193.14, + "probability": 0.7886 + }, + { + "start": 2194.02, + "end": 2196.6, + "probability": 0.9927 + }, + { + "start": 2196.6, + "end": 2200.4, + "probability": 0.9972 + }, + { + "start": 2201.24, + "end": 2203.94, + "probability": 0.9485 + }, + { + "start": 2204.6, + "end": 2207.68, + "probability": 0.9945 + }, + { + "start": 2207.88, + "end": 2215.0, + "probability": 0.9894 + }, + { + "start": 2215.54, + "end": 2216.38, + "probability": 0.8707 + }, + { + "start": 2217.06, + "end": 2218.38, + "probability": 0.9896 + }, + { + "start": 2218.52, + "end": 2219.72, + "probability": 0.9941 + }, + { + "start": 2220.14, + "end": 2220.94, + "probability": 0.9873 + }, + { + "start": 2221.66, + "end": 2222.4, + "probability": 0.8935 + }, + { + "start": 2222.52, + "end": 2226.16, + "probability": 0.9814 + }, + { + "start": 2226.28, + "end": 2228.76, + "probability": 0.8691 + }, + { + "start": 2229.3, + "end": 2232.36, + "probability": 0.9958 + }, + { + "start": 2232.54, + "end": 2238.58, + "probability": 0.9871 + }, + { + "start": 2238.84, + "end": 2239.58, + "probability": 0.7457 + }, + { + "start": 2239.9, + "end": 2242.06, + "probability": 0.8619 + }, + { + "start": 2242.54, + "end": 2243.72, + "probability": 0.9708 + }, + { + "start": 2243.76, + "end": 2245.16, + "probability": 0.8413 + }, + { + "start": 2245.48, + "end": 2246.74, + "probability": 0.7478 + }, + { + "start": 2247.32, + "end": 2251.82, + "probability": 0.9288 + }, + { + "start": 2252.2, + "end": 2253.58, + "probability": 0.9513 + }, + { + "start": 2254.1, + "end": 2255.72, + "probability": 0.9305 + }, + { + "start": 2255.96, + "end": 2256.18, + "probability": 0.6439 + }, + { + "start": 2256.72, + "end": 2257.2, + "probability": 0.54 + }, + { + "start": 2257.24, + "end": 2259.32, + "probability": 0.8302 + }, + { + "start": 2264.56, + "end": 2265.64, + "probability": 0.8065 + }, + { + "start": 2265.78, + "end": 2266.74, + "probability": 0.6584 + }, + { + "start": 2267.02, + "end": 2271.4, + "probability": 0.9672 + }, + { + "start": 2271.92, + "end": 2275.78, + "probability": 0.7884 + }, + { + "start": 2276.36, + "end": 2280.15, + "probability": 0.9873 + }, + { + "start": 2281.3, + "end": 2283.56, + "probability": 0.7428 + }, + { + "start": 2284.18, + "end": 2287.64, + "probability": 0.9908 + }, + { + "start": 2288.3, + "end": 2295.76, + "probability": 0.8326 + }, + { + "start": 2296.32, + "end": 2302.68, + "probability": 0.9514 + }, + { + "start": 2303.02, + "end": 2303.86, + "probability": 0.5062 + }, + { + "start": 2304.89, + "end": 2308.32, + "probability": 0.7773 + }, + { + "start": 2308.68, + "end": 2310.14, + "probability": 0.8834 + }, + { + "start": 2310.54, + "end": 2310.8, + "probability": 0.7844 + }, + { + "start": 2311.76, + "end": 2313.38, + "probability": 0.9045 + }, + { + "start": 2314.16, + "end": 2317.38, + "probability": 0.9837 + }, + { + "start": 2318.14, + "end": 2322.14, + "probability": 0.9897 + }, + { + "start": 2322.82, + "end": 2327.0, + "probability": 0.9908 + }, + { + "start": 2327.4, + "end": 2327.48, + "probability": 0.17 + }, + { + "start": 2329.68, + "end": 2331.58, + "probability": 0.1734 + }, + { + "start": 2335.68, + "end": 2335.88, + "probability": 0.2678 + }, + { + "start": 2357.38, + "end": 2359.22, + "probability": 0.7412 + }, + { + "start": 2360.02, + "end": 2360.8, + "probability": 0.6732 + }, + { + "start": 2360.9, + "end": 2365.12, + "probability": 0.8935 + }, + { + "start": 2366.38, + "end": 2368.54, + "probability": 0.9644 + }, + { + "start": 2368.6, + "end": 2369.73, + "probability": 0.9696 + }, + { + "start": 2370.14, + "end": 2372.08, + "probability": 0.9816 + }, + { + "start": 2372.22, + "end": 2373.16, + "probability": 0.8266 + }, + { + "start": 2373.86, + "end": 2376.44, + "probability": 0.9833 + }, + { + "start": 2377.06, + "end": 2378.74, + "probability": 0.9347 + }, + { + "start": 2379.62, + "end": 2380.02, + "probability": 0.4878 + }, + { + "start": 2380.16, + "end": 2382.64, + "probability": 0.9761 + }, + { + "start": 2382.98, + "end": 2383.78, + "probability": 0.9628 + }, + { + "start": 2384.3, + "end": 2385.8, + "probability": 0.9281 + }, + { + "start": 2386.56, + "end": 2387.36, + "probability": 0.4286 + }, + { + "start": 2388.48, + "end": 2389.94, + "probability": 0.9515 + }, + { + "start": 2390.46, + "end": 2394.56, + "probability": 0.5072 + }, + { + "start": 2395.36, + "end": 2401.56, + "probability": 0.9863 + }, + { + "start": 2401.78, + "end": 2403.04, + "probability": 0.8934 + }, + { + "start": 2403.74, + "end": 2404.78, + "probability": 0.7653 + }, + { + "start": 2406.02, + "end": 2409.3, + "probability": 0.8853 + }, + { + "start": 2410.44, + "end": 2412.14, + "probability": 0.9667 + }, + { + "start": 2412.58, + "end": 2414.04, + "probability": 0.9598 + }, + { + "start": 2414.14, + "end": 2415.92, + "probability": 0.967 + }, + { + "start": 2416.54, + "end": 2421.4, + "probability": 0.974 + }, + { + "start": 2422.06, + "end": 2426.6, + "probability": 0.9069 + }, + { + "start": 2427.06, + "end": 2429.6, + "probability": 0.9131 + }, + { + "start": 2430.16, + "end": 2432.8, + "probability": 0.9704 + }, + { + "start": 2433.5, + "end": 2436.7, + "probability": 0.9406 + }, + { + "start": 2436.7, + "end": 2440.16, + "probability": 0.9985 + }, + { + "start": 2440.82, + "end": 2447.4, + "probability": 0.9947 + }, + { + "start": 2448.98, + "end": 2452.21, + "probability": 0.9971 + }, + { + "start": 2453.24, + "end": 2455.94, + "probability": 0.9534 + }, + { + "start": 2456.02, + "end": 2457.58, + "probability": 0.9877 + }, + { + "start": 2457.62, + "end": 2458.54, + "probability": 0.7322 + }, + { + "start": 2459.26, + "end": 2460.38, + "probability": 0.9653 + }, + { + "start": 2461.04, + "end": 2461.5, + "probability": 0.9582 + }, + { + "start": 2462.24, + "end": 2465.66, + "probability": 0.9878 + }, + { + "start": 2466.16, + "end": 2466.66, + "probability": 0.8999 + }, + { + "start": 2467.18, + "end": 2472.82, + "probability": 0.8666 + }, + { + "start": 2473.32, + "end": 2479.56, + "probability": 0.8701 + }, + { + "start": 2480.34, + "end": 2487.78, + "probability": 0.993 + }, + { + "start": 2488.02, + "end": 2490.06, + "probability": 0.6887 + }, + { + "start": 2490.66, + "end": 2491.64, + "probability": 0.7998 + }, + { + "start": 2492.4, + "end": 2494.12, + "probability": 0.8701 + }, + { + "start": 2494.36, + "end": 2496.16, + "probability": 0.6064 + }, + { + "start": 2496.24, + "end": 2500.16, + "probability": 0.9744 + }, + { + "start": 2501.26, + "end": 2502.14, + "probability": 0.809 + }, + { + "start": 2502.26, + "end": 2505.64, + "probability": 0.9961 + }, + { + "start": 2505.76, + "end": 2507.2, + "probability": 0.7461 + }, + { + "start": 2508.12, + "end": 2510.02, + "probability": 0.9259 + }, + { + "start": 2511.18, + "end": 2512.5, + "probability": 0.9591 + }, + { + "start": 2512.66, + "end": 2515.94, + "probability": 0.9915 + }, + { + "start": 2516.22, + "end": 2517.74, + "probability": 0.7493 + }, + { + "start": 2518.1, + "end": 2519.36, + "probability": 0.9294 + }, + { + "start": 2520.36, + "end": 2524.56, + "probability": 0.9647 + }, + { + "start": 2526.46, + "end": 2532.16, + "probability": 0.8715 + }, + { + "start": 2533.52, + "end": 2534.88, + "probability": 0.9275 + }, + { + "start": 2535.2, + "end": 2538.24, + "probability": 0.9941 + }, + { + "start": 2538.4, + "end": 2539.24, + "probability": 0.8867 + }, + { + "start": 2541.66, + "end": 2544.12, + "probability": 0.9956 + }, + { + "start": 2544.3, + "end": 2547.12, + "probability": 0.9837 + }, + { + "start": 2548.04, + "end": 2549.88, + "probability": 0.8621 + }, + { + "start": 2550.02, + "end": 2551.48, + "probability": 0.9728 + }, + { + "start": 2552.84, + "end": 2555.08, + "probability": 0.9952 + }, + { + "start": 2555.62, + "end": 2557.88, + "probability": 0.7138 + }, + { + "start": 2558.06, + "end": 2562.1, + "probability": 0.8629 + }, + { + "start": 2562.54, + "end": 2563.58, + "probability": 0.9242 + }, + { + "start": 2564.3, + "end": 2567.28, + "probability": 0.8287 + }, + { + "start": 2568.02, + "end": 2569.16, + "probability": 0.9937 + }, + { + "start": 2569.26, + "end": 2574.12, + "probability": 0.9849 + }, + { + "start": 2574.56, + "end": 2577.56, + "probability": 0.9764 + }, + { + "start": 2577.72, + "end": 2578.74, + "probability": 0.9717 + }, + { + "start": 2579.06, + "end": 2581.24, + "probability": 0.9835 + }, + { + "start": 2581.56, + "end": 2582.36, + "probability": 0.9192 + }, + { + "start": 2583.38, + "end": 2584.48, + "probability": 0.7135 + }, + { + "start": 2584.74, + "end": 2587.98, + "probability": 0.9972 + }, + { + "start": 2589.12, + "end": 2592.8, + "probability": 0.9996 + }, + { + "start": 2593.52, + "end": 2598.8, + "probability": 0.9719 + }, + { + "start": 2599.58, + "end": 2602.76, + "probability": 0.8726 + }, + { + "start": 2603.08, + "end": 2604.4, + "probability": 0.9257 + }, + { + "start": 2604.68, + "end": 2606.86, + "probability": 0.9157 + }, + { + "start": 2606.92, + "end": 2608.34, + "probability": 0.6271 + }, + { + "start": 2609.04, + "end": 2609.56, + "probability": 0.6975 + }, + { + "start": 2610.0, + "end": 2611.0, + "probability": 0.974 + }, + { + "start": 2611.16, + "end": 2612.14, + "probability": 0.9938 + }, + { + "start": 2612.26, + "end": 2612.86, + "probability": 0.9724 + }, + { + "start": 2613.12, + "end": 2614.42, + "probability": 0.7585 + }, + { + "start": 2614.92, + "end": 2616.44, + "probability": 0.6689 + }, + { + "start": 2617.26, + "end": 2619.1, + "probability": 0.9514 + }, + { + "start": 2619.2, + "end": 2619.5, + "probability": 0.7151 + }, + { + "start": 2619.52, + "end": 2619.82, + "probability": 0.6794 + }, + { + "start": 2619.9, + "end": 2620.28, + "probability": 0.9263 + }, + { + "start": 2620.42, + "end": 2621.07, + "probability": 0.8725 + }, + { + "start": 2622.0, + "end": 2623.42, + "probability": 0.973 + }, + { + "start": 2624.78, + "end": 2626.34, + "probability": 0.97 + }, + { + "start": 2627.24, + "end": 2628.48, + "probability": 0.939 + }, + { + "start": 2628.56, + "end": 2631.86, + "probability": 0.7251 + }, + { + "start": 2632.12, + "end": 2634.28, + "probability": 0.3245 + }, + { + "start": 2634.58, + "end": 2635.56, + "probability": 0.2206 + }, + { + "start": 2635.68, + "end": 2636.8, + "probability": 0.5677 + }, + { + "start": 2637.04, + "end": 2637.04, + "probability": 0.1377 + }, + { + "start": 2637.04, + "end": 2637.78, + "probability": 0.8172 + }, + { + "start": 2638.42, + "end": 2638.5, + "probability": 0.1715 + }, + { + "start": 2638.5, + "end": 2638.5, + "probability": 0.0941 + }, + { + "start": 2638.5, + "end": 2642.06, + "probability": 0.8081 + }, + { + "start": 2642.58, + "end": 2642.58, + "probability": 0.015 + }, + { + "start": 2643.44, + "end": 2645.34, + "probability": 0.0662 + }, + { + "start": 2646.22, + "end": 2646.22, + "probability": 0.3662 + }, + { + "start": 2646.78, + "end": 2647.94, + "probability": 0.053 + }, + { + "start": 2647.94, + "end": 2648.38, + "probability": 0.2043 + }, + { + "start": 2648.48, + "end": 2648.48, + "probability": 0.133 + }, + { + "start": 2648.48, + "end": 2648.52, + "probability": 0.6017 + }, + { + "start": 2648.52, + "end": 2650.2, + "probability": 0.1692 + }, + { + "start": 2650.2, + "end": 2654.6, + "probability": 0.927 + }, + { + "start": 2655.5, + "end": 2657.04, + "probability": 0.5065 + }, + { + "start": 2657.18, + "end": 2659.66, + "probability": 0.9961 + }, + { + "start": 2660.2, + "end": 2662.3, + "probability": 0.9393 + }, + { + "start": 2662.3, + "end": 2663.02, + "probability": 0.2534 + }, + { + "start": 2663.2, + "end": 2664.46, + "probability": 0.9211 + }, + { + "start": 2664.78, + "end": 2671.5, + "probability": 0.7034 + }, + { + "start": 2671.64, + "end": 2671.64, + "probability": 0.003 + }, + { + "start": 2671.64, + "end": 2671.98, + "probability": 0.2946 + }, + { + "start": 2671.98, + "end": 2672.33, + "probability": 0.529 + }, + { + "start": 2674.7, + "end": 2676.16, + "probability": 0.2506 + }, + { + "start": 2676.7, + "end": 2677.04, + "probability": 0.0869 + }, + { + "start": 2677.04, + "end": 2677.18, + "probability": 0.059 + }, + { + "start": 2677.28, + "end": 2677.28, + "probability": 0.0454 + }, + { + "start": 2677.28, + "end": 2677.34, + "probability": 0.0625 + }, + { + "start": 2677.34, + "end": 2677.34, + "probability": 0.0485 + }, + { + "start": 2677.34, + "end": 2677.66, + "probability": 0.1606 + }, + { + "start": 2677.86, + "end": 2680.4, + "probability": 0.9513 + }, + { + "start": 2681.1, + "end": 2681.2, + "probability": 0.0235 + }, + { + "start": 2681.2, + "end": 2682.3, + "probability": 0.1766 + }, + { + "start": 2682.56, + "end": 2683.42, + "probability": 0.8281 + }, + { + "start": 2683.48, + "end": 2684.54, + "probability": 0.9175 + }, + { + "start": 2684.86, + "end": 2685.46, + "probability": 0.8593 + }, + { + "start": 2685.52, + "end": 2687.92, + "probability": 0.9666 + }, + { + "start": 2687.98, + "end": 2688.66, + "probability": 0.7365 + }, + { + "start": 2688.74, + "end": 2689.98, + "probability": 0.9929 + }, + { + "start": 2690.7, + "end": 2691.97, + "probability": 0.9983 + }, + { + "start": 2692.64, + "end": 2693.42, + "probability": 0.2562 + }, + { + "start": 2693.5, + "end": 2695.66, + "probability": 0.9619 + }, + { + "start": 2696.58, + "end": 2698.62, + "probability": 0.9749 + }, + { + "start": 2699.4, + "end": 2702.19, + "probability": 0.9839 + }, + { + "start": 2703.52, + "end": 2705.34, + "probability": 0.9957 + }, + { + "start": 2705.42, + "end": 2706.61, + "probability": 0.9808 + }, + { + "start": 2709.8, + "end": 2709.8, + "probability": 0.0022 + }, + { + "start": 2709.8, + "end": 2709.8, + "probability": 0.2136 + }, + { + "start": 2709.8, + "end": 2713.38, + "probability": 0.8445 + }, + { + "start": 2714.34, + "end": 2715.92, + "probability": 0.5729 + }, + { + "start": 2717.3, + "end": 2719.4, + "probability": 0.7737 + }, + { + "start": 2720.26, + "end": 2722.54, + "probability": 0.9695 + }, + { + "start": 2723.76, + "end": 2725.44, + "probability": 0.9995 + }, + { + "start": 2726.1, + "end": 2728.36, + "probability": 0.9505 + }, + { + "start": 2728.56, + "end": 2729.88, + "probability": 0.9925 + }, + { + "start": 2729.92, + "end": 2733.44, + "probability": 0.998 + }, + { + "start": 2733.7, + "end": 2735.58, + "probability": 0.9601 + }, + { + "start": 2737.82, + "end": 2739.44, + "probability": 0.9844 + }, + { + "start": 2740.1, + "end": 2741.92, + "probability": 0.9736 + }, + { + "start": 2743.92, + "end": 2746.48, + "probability": 0.9223 + }, + { + "start": 2747.14, + "end": 2750.04, + "probability": 0.9898 + }, + { + "start": 2750.78, + "end": 2754.34, + "probability": 0.9875 + }, + { + "start": 2754.94, + "end": 2757.02, + "probability": 0.9814 + }, + { + "start": 2757.56, + "end": 2759.0, + "probability": 0.969 + }, + { + "start": 2759.74, + "end": 2762.28, + "probability": 0.8613 + }, + { + "start": 2762.36, + "end": 2764.08, + "probability": 0.918 + }, + { + "start": 2764.08, + "end": 2766.92, + "probability": 0.9985 + }, + { + "start": 2767.32, + "end": 2770.78, + "probability": 0.9976 + }, + { + "start": 2771.42, + "end": 2774.22, + "probability": 0.8776 + }, + { + "start": 2775.06, + "end": 2777.64, + "probability": 0.6675 + }, + { + "start": 2777.74, + "end": 2778.16, + "probability": 0.7651 + }, + { + "start": 2778.68, + "end": 2780.06, + "probability": 0.9237 + }, + { + "start": 2780.2, + "end": 2781.74, + "probability": 0.9624 + }, + { + "start": 2782.28, + "end": 2784.74, + "probability": 0.9798 + }, + { + "start": 2784.78, + "end": 2787.14, + "probability": 0.9836 + }, + { + "start": 2788.38, + "end": 2793.44, + "probability": 0.7858 + }, + { + "start": 2793.66, + "end": 2794.9, + "probability": 0.8171 + }, + { + "start": 2795.54, + "end": 2796.38, + "probability": 0.7917 + }, + { + "start": 2796.5, + "end": 2797.4, + "probability": 0.9767 + }, + { + "start": 2797.5, + "end": 2797.96, + "probability": 0.9649 + }, + { + "start": 2798.04, + "end": 2799.92, + "probability": 0.9867 + }, + { + "start": 2800.86, + "end": 2803.14, + "probability": 0.8416 + }, + { + "start": 2803.3, + "end": 2804.12, + "probability": 0.6676 + }, + { + "start": 2810.58, + "end": 2811.94, + "probability": 0.6159 + }, + { + "start": 2812.14, + "end": 2812.62, + "probability": 0.7111 + }, + { + "start": 2812.72, + "end": 2813.78, + "probability": 0.5826 + }, + { + "start": 2813.86, + "end": 2815.82, + "probability": 0.8493 + }, + { + "start": 2816.14, + "end": 2820.58, + "probability": 0.9928 + }, + { + "start": 2820.58, + "end": 2823.4, + "probability": 0.9982 + }, + { + "start": 2824.24, + "end": 2829.38, + "probability": 0.9972 + }, + { + "start": 2830.58, + "end": 2831.48, + "probability": 0.8348 + }, + { + "start": 2831.56, + "end": 2832.16, + "probability": 0.9468 + }, + { + "start": 2832.34, + "end": 2837.18, + "probability": 0.9117 + }, + { + "start": 2837.32, + "end": 2840.96, + "probability": 0.9968 + }, + { + "start": 2840.96, + "end": 2844.88, + "probability": 0.9802 + }, + { + "start": 2845.44, + "end": 2849.04, + "probability": 0.9598 + }, + { + "start": 2850.1, + "end": 2854.32, + "probability": 0.9917 + }, + { + "start": 2854.66, + "end": 2856.48, + "probability": 0.9224 + }, + { + "start": 2857.34, + "end": 2862.56, + "probability": 0.9976 + }, + { + "start": 2863.02, + "end": 2866.65, + "probability": 0.9977 + }, + { + "start": 2867.76, + "end": 2869.94, + "probability": 0.9974 + }, + { + "start": 2870.86, + "end": 2872.94, + "probability": 0.9928 + }, + { + "start": 2874.74, + "end": 2878.82, + "probability": 0.9915 + }, + { + "start": 2878.82, + "end": 2883.76, + "probability": 0.9951 + }, + { + "start": 2884.86, + "end": 2887.34, + "probability": 0.9997 + }, + { + "start": 2887.34, + "end": 2892.44, + "probability": 0.9951 + }, + { + "start": 2892.54, + "end": 2895.52, + "probability": 0.9768 + }, + { + "start": 2896.0, + "end": 2898.98, + "probability": 0.9962 + }, + { + "start": 2899.68, + "end": 2904.06, + "probability": 0.9884 + }, + { + "start": 2905.04, + "end": 2907.6, + "probability": 0.954 + }, + { + "start": 2907.68, + "end": 2912.36, + "probability": 0.9968 + }, + { + "start": 2912.72, + "end": 2917.62, + "probability": 0.9797 + }, + { + "start": 2918.64, + "end": 2924.9, + "probability": 0.9946 + }, + { + "start": 2926.08, + "end": 2928.18, + "probability": 0.8395 + }, + { + "start": 2929.0, + "end": 2929.92, + "probability": 0.8749 + }, + { + "start": 2930.08, + "end": 2932.34, + "probability": 0.9665 + }, + { + "start": 2932.46, + "end": 2936.26, + "probability": 0.9128 + }, + { + "start": 2936.78, + "end": 2937.66, + "probability": 0.5894 + }, + { + "start": 2938.44, + "end": 2942.86, + "probability": 0.8815 + }, + { + "start": 2944.1, + "end": 2947.62, + "probability": 0.9705 + }, + { + "start": 2947.72, + "end": 2950.58, + "probability": 0.9813 + }, + { + "start": 2951.86, + "end": 2956.36, + "probability": 0.9971 + }, + { + "start": 2956.44, + "end": 2958.98, + "probability": 0.9897 + }, + { + "start": 2959.8, + "end": 2963.78, + "probability": 0.9862 + }, + { + "start": 2964.26, + "end": 2967.96, + "probability": 0.9977 + }, + { + "start": 2967.96, + "end": 2972.06, + "probability": 0.9456 + }, + { + "start": 2973.64, + "end": 2978.78, + "probability": 0.9986 + }, + { + "start": 2978.78, + "end": 2983.64, + "probability": 0.9995 + }, + { + "start": 2983.72, + "end": 2985.42, + "probability": 0.9915 + }, + { + "start": 2987.18, + "end": 2989.74, + "probability": 0.9995 + }, + { + "start": 2989.96, + "end": 2992.16, + "probability": 0.9956 + }, + { + "start": 2992.58, + "end": 2993.38, + "probability": 0.9518 + }, + { + "start": 2994.02, + "end": 2997.7, + "probability": 0.986 + }, + { + "start": 2997.7, + "end": 3000.04, + "probability": 0.9982 + }, + { + "start": 3000.22, + "end": 3000.68, + "probability": 0.7476 + }, + { + "start": 3000.76, + "end": 3004.6, + "probability": 0.9832 + }, + { + "start": 3005.94, + "end": 3006.44, + "probability": 0.8133 + }, + { + "start": 3006.84, + "end": 3011.38, + "probability": 0.9572 + }, + { + "start": 3012.08, + "end": 3014.02, + "probability": 0.9982 + }, + { + "start": 3014.02, + "end": 3016.56, + "probability": 0.9985 + }, + { + "start": 3016.7, + "end": 3017.18, + "probability": 0.9294 + }, + { + "start": 3017.2, + "end": 3020.08, + "probability": 0.9762 + }, + { + "start": 3020.5, + "end": 3022.22, + "probability": 0.8024 + }, + { + "start": 3022.26, + "end": 3024.42, + "probability": 0.9503 + }, + { + "start": 3024.86, + "end": 3026.2, + "probability": 0.9819 + }, + { + "start": 3026.28, + "end": 3027.26, + "probability": 0.76 + }, + { + "start": 3027.3, + "end": 3029.4, + "probability": 0.9852 + }, + { + "start": 3030.24, + "end": 3030.82, + "probability": 0.8027 + }, + { + "start": 3030.88, + "end": 3033.18, + "probability": 0.9973 + }, + { + "start": 3033.32, + "end": 3037.56, + "probability": 0.9956 + }, + { + "start": 3038.06, + "end": 3039.38, + "probability": 0.9808 + }, + { + "start": 3039.42, + "end": 3044.72, + "probability": 0.9817 + }, + { + "start": 3044.8, + "end": 3045.28, + "probability": 0.7446 + }, + { + "start": 3046.02, + "end": 3048.04, + "probability": 0.6924 + }, + { + "start": 3048.08, + "end": 3051.24, + "probability": 0.9834 + }, + { + "start": 3069.62, + "end": 3071.16, + "probability": 0.8654 + }, + { + "start": 3072.14, + "end": 3073.42, + "probability": 0.3583 + }, + { + "start": 3073.48, + "end": 3074.46, + "probability": 0.6264 + }, + { + "start": 3075.3, + "end": 3076.72, + "probability": 0.9452 + }, + { + "start": 3078.06, + "end": 3082.68, + "probability": 0.9432 + }, + { + "start": 3082.68, + "end": 3086.78, + "probability": 0.998 + }, + { + "start": 3087.88, + "end": 3088.94, + "probability": 0.8641 + }, + { + "start": 3089.98, + "end": 3094.08, + "probability": 0.9729 + }, + { + "start": 3095.34, + "end": 3100.36, + "probability": 0.9956 + }, + { + "start": 3100.86, + "end": 3104.4, + "probability": 0.999 + }, + { + "start": 3105.08, + "end": 3106.0, + "probability": 0.8546 + }, + { + "start": 3106.64, + "end": 3107.46, + "probability": 0.9919 + }, + { + "start": 3108.46, + "end": 3109.82, + "probability": 0.9985 + }, + { + "start": 3111.06, + "end": 3113.02, + "probability": 0.892 + }, + { + "start": 3114.16, + "end": 3114.98, + "probability": 0.9764 + }, + { + "start": 3115.54, + "end": 3118.22, + "probability": 0.9933 + }, + { + "start": 3119.0, + "end": 3120.14, + "probability": 0.9956 + }, + { + "start": 3121.46, + "end": 3122.76, + "probability": 0.9979 + }, + { + "start": 3124.06, + "end": 3127.44, + "probability": 0.9978 + }, + { + "start": 3129.54, + "end": 3136.9, + "probability": 0.9133 + }, + { + "start": 3137.58, + "end": 3138.7, + "probability": 0.9812 + }, + { + "start": 3139.3, + "end": 3140.0, + "probability": 0.8622 + }, + { + "start": 3141.06, + "end": 3144.58, + "probability": 0.9951 + }, + { + "start": 3145.42, + "end": 3146.47, + "probability": 0.9993 + }, + { + "start": 3147.42, + "end": 3148.6, + "probability": 0.9941 + }, + { + "start": 3149.42, + "end": 3151.38, + "probability": 0.9969 + }, + { + "start": 3152.22, + "end": 3154.12, + "probability": 0.999 + }, + { + "start": 3155.42, + "end": 3157.32, + "probability": 0.9958 + }, + { + "start": 3159.36, + "end": 3165.96, + "probability": 0.9878 + }, + { + "start": 3167.02, + "end": 3168.76, + "probability": 0.9564 + }, + { + "start": 3169.84, + "end": 3170.8, + "probability": 0.8755 + }, + { + "start": 3172.44, + "end": 3173.68, + "probability": 0.9422 + }, + { + "start": 3174.66, + "end": 3175.36, + "probability": 0.9228 + }, + { + "start": 3176.3, + "end": 3177.18, + "probability": 0.8981 + }, + { + "start": 3178.0, + "end": 3184.42, + "probability": 0.9935 + }, + { + "start": 3185.84, + "end": 3190.1, + "probability": 0.9995 + }, + { + "start": 3190.94, + "end": 3191.64, + "probability": 0.9734 + }, + { + "start": 3193.12, + "end": 3196.16, + "probability": 0.9947 + }, + { + "start": 3197.34, + "end": 3197.7, + "probability": 0.7528 + }, + { + "start": 3199.18, + "end": 3203.42, + "probability": 0.9206 + }, + { + "start": 3204.38, + "end": 3209.12, + "probability": 0.9979 + }, + { + "start": 3210.26, + "end": 3211.36, + "probability": 0.9753 + }, + { + "start": 3212.14, + "end": 3214.59, + "probability": 0.9861 + }, + { + "start": 3214.84, + "end": 3218.58, + "probability": 0.8441 + }, + { + "start": 3219.58, + "end": 3220.97, + "probability": 0.8589 + }, + { + "start": 3222.36, + "end": 3225.04, + "probability": 0.9484 + }, + { + "start": 3225.98, + "end": 3227.78, + "probability": 0.9779 + }, + { + "start": 3228.44, + "end": 3231.48, + "probability": 0.9951 + }, + { + "start": 3232.2, + "end": 3234.82, + "probability": 0.5855 + }, + { + "start": 3235.88, + "end": 3237.48, + "probability": 0.997 + }, + { + "start": 3238.12, + "end": 3241.34, + "probability": 0.9647 + }, + { + "start": 3242.22, + "end": 3244.44, + "probability": 0.9995 + }, + { + "start": 3245.18, + "end": 3248.76, + "probability": 0.6295 + }, + { + "start": 3249.56, + "end": 3251.96, + "probability": 0.9042 + }, + { + "start": 3252.88, + "end": 3256.9, + "probability": 0.983 + }, + { + "start": 3257.52, + "end": 3258.44, + "probability": 0.8768 + }, + { + "start": 3259.12, + "end": 3264.26, + "probability": 0.9737 + }, + { + "start": 3264.68, + "end": 3264.78, + "probability": 0.147 + }, + { + "start": 3265.8, + "end": 3266.74, + "probability": 0.9033 + }, + { + "start": 3267.76, + "end": 3269.84, + "probability": 0.9942 + }, + { + "start": 3271.04, + "end": 3271.34, + "probability": 0.6476 + }, + { + "start": 3272.96, + "end": 3275.32, + "probability": 0.8326 + }, + { + "start": 3275.32, + "end": 3277.2, + "probability": 0.9975 + }, + { + "start": 3278.18, + "end": 3281.1, + "probability": 0.8076 + }, + { + "start": 3281.72, + "end": 3282.74, + "probability": 0.6668 + }, + { + "start": 3283.88, + "end": 3285.24, + "probability": 0.8405 + }, + { + "start": 3286.1, + "end": 3287.58, + "probability": 0.4829 + }, + { + "start": 3288.1, + "end": 3288.64, + "probability": 0.7382 + }, + { + "start": 3289.5, + "end": 3290.12, + "probability": 0.9513 + }, + { + "start": 3291.12, + "end": 3294.26, + "probability": 0.9956 + }, + { + "start": 3295.28, + "end": 3297.0, + "probability": 0.7725 + }, + { + "start": 3297.64, + "end": 3300.78, + "probability": 0.8921 + }, + { + "start": 3301.76, + "end": 3303.76, + "probability": 0.9972 + }, + { + "start": 3304.44, + "end": 3307.7, + "probability": 0.981 + }, + { + "start": 3307.78, + "end": 3309.68, + "probability": 0.8018 + }, + { + "start": 3310.32, + "end": 3311.49, + "probability": 0.9792 + }, + { + "start": 3312.32, + "end": 3313.44, + "probability": 0.9996 + }, + { + "start": 3314.44, + "end": 3315.08, + "probability": 0.8197 + }, + { + "start": 3316.18, + "end": 3317.57, + "probability": 0.9992 + }, + { + "start": 3318.26, + "end": 3321.08, + "probability": 0.9062 + }, + { + "start": 3321.78, + "end": 3326.06, + "probability": 0.9949 + }, + { + "start": 3326.14, + "end": 3327.22, + "probability": 0.9946 + }, + { + "start": 3329.3, + "end": 3330.4, + "probability": 0.9959 + }, + { + "start": 3332.5, + "end": 3334.5, + "probability": 0.917 + }, + { + "start": 3335.54, + "end": 3338.14, + "probability": 0.9826 + }, + { + "start": 3339.94, + "end": 3344.0, + "probability": 0.9971 + }, + { + "start": 3346.12, + "end": 3347.56, + "probability": 0.8536 + }, + { + "start": 3348.6, + "end": 3349.42, + "probability": 0.9515 + }, + { + "start": 3350.4, + "end": 3352.06, + "probability": 0.9961 + }, + { + "start": 3353.02, + "end": 3355.0, + "probability": 0.972 + }, + { + "start": 3355.74, + "end": 3358.6, + "probability": 0.9955 + }, + { + "start": 3360.98, + "end": 3362.56, + "probability": 0.8963 + }, + { + "start": 3363.66, + "end": 3365.92, + "probability": 0.7387 + }, + { + "start": 3367.12, + "end": 3369.04, + "probability": 0.9142 + }, + { + "start": 3369.8, + "end": 3372.02, + "probability": 0.8984 + }, + { + "start": 3372.92, + "end": 3373.74, + "probability": 0.8492 + }, + { + "start": 3374.46, + "end": 3382.38, + "probability": 0.9887 + }, + { + "start": 3383.02, + "end": 3383.38, + "probability": 0.9421 + }, + { + "start": 3384.16, + "end": 3384.71, + "probability": 0.9717 + }, + { + "start": 3385.56, + "end": 3387.72, + "probability": 0.9294 + }, + { + "start": 3389.28, + "end": 3392.3, + "probability": 0.9858 + }, + { + "start": 3393.1, + "end": 3394.92, + "probability": 0.9437 + }, + { + "start": 3396.12, + "end": 3399.46, + "probability": 0.8569 + }, + { + "start": 3401.1, + "end": 3403.88, + "probability": 0.9358 + }, + { + "start": 3428.98, + "end": 3431.68, + "probability": 0.8363 + }, + { + "start": 3432.0, + "end": 3434.9, + "probability": 0.0956 + }, + { + "start": 3446.76, + "end": 3447.7, + "probability": 0.4866 + }, + { + "start": 3448.96, + "end": 3452.48, + "probability": 0.9924 + }, + { + "start": 3452.7, + "end": 3456.06, + "probability": 0.9918 + }, + { + "start": 3456.66, + "end": 3461.5, + "probability": 0.9984 + }, + { + "start": 3462.26, + "end": 3466.82, + "probability": 0.9942 + }, + { + "start": 3467.38, + "end": 3469.04, + "probability": 0.9963 + }, + { + "start": 3470.14, + "end": 3470.48, + "probability": 0.6621 + }, + { + "start": 3470.62, + "end": 3471.22, + "probability": 0.9324 + }, + { + "start": 3471.3, + "end": 3472.68, + "probability": 0.9922 + }, + { + "start": 3472.78, + "end": 3476.44, + "probability": 0.9892 + }, + { + "start": 3476.98, + "end": 3479.44, + "probability": 0.9641 + }, + { + "start": 3479.44, + "end": 3482.3, + "probability": 0.9998 + }, + { + "start": 3483.08, + "end": 3487.22, + "probability": 0.9189 + }, + { + "start": 3487.82, + "end": 3490.38, + "probability": 0.9868 + }, + { + "start": 3490.9, + "end": 3492.12, + "probability": 0.9748 + }, + { + "start": 3492.2, + "end": 3493.52, + "probability": 0.9696 + }, + { + "start": 3493.72, + "end": 3496.8, + "probability": 0.9958 + }, + { + "start": 3496.8, + "end": 3500.86, + "probability": 0.9875 + }, + { + "start": 3501.32, + "end": 3504.2, + "probability": 0.9475 + }, + { + "start": 3504.6, + "end": 3508.2, + "probability": 0.9494 + }, + { + "start": 3508.66, + "end": 3509.65, + "probability": 0.6986 + }, + { + "start": 3511.18, + "end": 3513.64, + "probability": 0.942 + }, + { + "start": 3514.1, + "end": 3519.22, + "probability": 0.8719 + }, + { + "start": 3519.68, + "end": 3521.14, + "probability": 0.9753 + }, + { + "start": 3521.54, + "end": 3523.14, + "probability": 0.9746 + }, + { + "start": 3523.54, + "end": 3525.02, + "probability": 0.7438 + }, + { + "start": 3525.38, + "end": 3529.72, + "probability": 0.9213 + }, + { + "start": 3530.1, + "end": 3530.6, + "probability": 0.8894 + }, + { + "start": 3531.02, + "end": 3532.32, + "probability": 0.8615 + }, + { + "start": 3533.14, + "end": 3536.28, + "probability": 0.8237 + }, + { + "start": 3537.3, + "end": 3538.08, + "probability": 0.9664 + }, + { + "start": 3538.52, + "end": 3540.88, + "probability": 0.8728 + }, + { + "start": 3541.16, + "end": 3544.66, + "probability": 0.948 + }, + { + "start": 3545.66, + "end": 3548.96, + "probability": 0.9849 + }, + { + "start": 3549.1, + "end": 3551.9, + "probability": 0.6977 + }, + { + "start": 3551.9, + "end": 3555.64, + "probability": 0.979 + }, + { + "start": 3555.94, + "end": 3557.84, + "probability": 0.8944 + }, + { + "start": 3558.5, + "end": 3560.06, + "probability": 0.6152 + }, + { + "start": 3560.6, + "end": 3564.22, + "probability": 0.9102 + }, + { + "start": 3565.06, + "end": 3565.74, + "probability": 0.3185 + }, + { + "start": 3565.84, + "end": 3566.54, + "probability": 0.8425 + }, + { + "start": 3566.62, + "end": 3567.62, + "probability": 0.9866 + }, + { + "start": 3567.66, + "end": 3568.38, + "probability": 0.6996 + }, + { + "start": 3568.44, + "end": 3571.3, + "probability": 0.998 + }, + { + "start": 3571.62, + "end": 3574.52, + "probability": 0.9905 + }, + { + "start": 3574.52, + "end": 3578.42, + "probability": 0.9956 + }, + { + "start": 3578.72, + "end": 3581.0, + "probability": 0.9946 + }, + { + "start": 3581.0, + "end": 3584.35, + "probability": 0.8766 + }, + { + "start": 3585.09, + "end": 3589.64, + "probability": 0.7054 + }, + { + "start": 3593.62, + "end": 3593.64, + "probability": 0.4523 + }, + { + "start": 3593.64, + "end": 3595.12, + "probability": 0.6569 + }, + { + "start": 3596.78, + "end": 3597.32, + "probability": 0.4892 + }, + { + "start": 3597.4, + "end": 3598.38, + "probability": 0.9223 + }, + { + "start": 3598.42, + "end": 3598.56, + "probability": 0.2778 + }, + { + "start": 3598.56, + "end": 3599.1, + "probability": 0.7867 + }, + { + "start": 3610.96, + "end": 3613.38, + "probability": 0.4299 + }, + { + "start": 3613.46, + "end": 3616.8, + "probability": 0.9925 + }, + { + "start": 3617.0, + "end": 3618.58, + "probability": 0.5669 + }, + { + "start": 3618.64, + "end": 3622.84, + "probability": 0.9699 + }, + { + "start": 3623.22, + "end": 3624.28, + "probability": 0.7408 + }, + { + "start": 3624.86, + "end": 3625.38, + "probability": 0.8639 + }, + { + "start": 3625.48, + "end": 3627.98, + "probability": 0.9185 + }, + { + "start": 3628.38, + "end": 3632.46, + "probability": 0.7366 + }, + { + "start": 3633.02, + "end": 3636.6, + "probability": 0.928 + }, + { + "start": 3637.1, + "end": 3640.66, + "probability": 0.8079 + }, + { + "start": 3640.7, + "end": 3641.24, + "probability": 0.98 + }, + { + "start": 3641.3, + "end": 3643.22, + "probability": 0.9905 + }, + { + "start": 3643.6, + "end": 3644.84, + "probability": 0.7299 + }, + { + "start": 3645.38, + "end": 3647.44, + "probability": 0.6585 + }, + { + "start": 3648.1, + "end": 3648.38, + "probability": 0.3287 + }, + { + "start": 3648.42, + "end": 3651.42, + "probability": 0.9691 + }, + { + "start": 3651.76, + "end": 3653.0, + "probability": 0.8159 + }, + { + "start": 3653.3, + "end": 3654.52, + "probability": 0.9429 + }, + { + "start": 3654.78, + "end": 3657.0, + "probability": 0.9813 + }, + { + "start": 3658.46, + "end": 3659.97, + "probability": 0.0891 + }, + { + "start": 3660.76, + "end": 3662.64, + "probability": 0.5299 + }, + { + "start": 3663.04, + "end": 3665.44, + "probability": 0.9751 + }, + { + "start": 3665.44, + "end": 3668.0, + "probability": 0.9455 + }, + { + "start": 3668.38, + "end": 3672.76, + "probability": 0.9466 + }, + { + "start": 3672.9, + "end": 3673.5, + "probability": 0.8258 + }, + { + "start": 3673.6, + "end": 3674.92, + "probability": 0.8708 + }, + { + "start": 3675.06, + "end": 3680.0, + "probability": 0.9332 + }, + { + "start": 3680.08, + "end": 3680.96, + "probability": 0.9534 + }, + { + "start": 3681.26, + "end": 3682.1, + "probability": 0.9612 + }, + { + "start": 3682.42, + "end": 3683.93, + "probability": 0.9451 + }, + { + "start": 3684.5, + "end": 3686.16, + "probability": 0.9437 + }, + { + "start": 3686.5, + "end": 3689.05, + "probability": 0.7615 + }, + { + "start": 3689.38, + "end": 3691.24, + "probability": 0.9336 + }, + { + "start": 3691.66, + "end": 3694.44, + "probability": 0.9986 + }, + { + "start": 3694.82, + "end": 3696.28, + "probability": 0.9657 + }, + { + "start": 3696.72, + "end": 3697.6, + "probability": 0.607 + }, + { + "start": 3698.16, + "end": 3699.7, + "probability": 0.9839 + }, + { + "start": 3700.4, + "end": 3703.54, + "probability": 0.9932 + }, + { + "start": 3703.98, + "end": 3707.9, + "probability": 0.8343 + }, + { + "start": 3708.18, + "end": 3711.44, + "probability": 0.9821 + }, + { + "start": 3712.02, + "end": 3714.98, + "probability": 0.6719 + }, + { + "start": 3715.38, + "end": 3717.58, + "probability": 0.7351 + }, + { + "start": 3718.0, + "end": 3720.0, + "probability": 0.8239 + }, + { + "start": 3720.9, + "end": 3723.58, + "probability": 0.9197 + }, + { + "start": 3724.08, + "end": 3727.74, + "probability": 0.9859 + }, + { + "start": 3728.28, + "end": 3732.68, + "probability": 0.939 + }, + { + "start": 3732.98, + "end": 3738.0, + "probability": 0.9668 + }, + { + "start": 3738.88, + "end": 3739.44, + "probability": 0.8837 + }, + { + "start": 3739.88, + "end": 3746.02, + "probability": 0.9819 + }, + { + "start": 3746.44, + "end": 3747.62, + "probability": 0.9989 + }, + { + "start": 3748.16, + "end": 3751.9, + "probability": 0.9955 + }, + { + "start": 3752.32, + "end": 3756.64, + "probability": 0.9941 + }, + { + "start": 3757.92, + "end": 3761.94, + "probability": 0.9263 + }, + { + "start": 3762.68, + "end": 3762.94, + "probability": 0.5482 + }, + { + "start": 3763.64, + "end": 3768.1, + "probability": 0.9554 + }, + { + "start": 3768.46, + "end": 3770.74, + "probability": 0.9669 + }, + { + "start": 3770.84, + "end": 3776.0, + "probability": 0.9867 + }, + { + "start": 3776.62, + "end": 3778.23, + "probability": 0.9713 + }, + { + "start": 3778.34, + "end": 3781.56, + "probability": 0.968 + }, + { + "start": 3782.4, + "end": 3784.72, + "probability": 0.978 + }, + { + "start": 3784.96, + "end": 3791.36, + "probability": 0.9977 + }, + { + "start": 3791.8, + "end": 3794.82, + "probability": 0.8206 + }, + { + "start": 3795.72, + "end": 3797.86, + "probability": 0.9914 + }, + { + "start": 3797.98, + "end": 3800.02, + "probability": 0.9893 + }, + { + "start": 3800.18, + "end": 3800.56, + "probability": 0.7465 + }, + { + "start": 3800.6, + "end": 3801.98, + "probability": 0.6336 + }, + { + "start": 3802.12, + "end": 3804.78, + "probability": 0.986 + }, + { + "start": 3823.56, + "end": 3825.78, + "probability": 0.81 + }, + { + "start": 3827.84, + "end": 3831.18, + "probability": 0.8319 + }, + { + "start": 3832.22, + "end": 3835.92, + "probability": 0.9918 + }, + { + "start": 3836.08, + "end": 3838.02, + "probability": 0.9381 + }, + { + "start": 3838.02, + "end": 3841.38, + "probability": 0.9995 + }, + { + "start": 3841.72, + "end": 3845.4, + "probability": 0.9778 + }, + { + "start": 3845.42, + "end": 3848.78, + "probability": 0.9951 + }, + { + "start": 3849.8, + "end": 3852.28, + "probability": 0.9502 + }, + { + "start": 3853.24, + "end": 3857.12, + "probability": 0.9878 + }, + { + "start": 3857.86, + "end": 3861.84, + "probability": 0.959 + }, + { + "start": 3862.42, + "end": 3866.08, + "probability": 0.9877 + }, + { + "start": 3866.08, + "end": 3869.24, + "probability": 0.9987 + }, + { + "start": 3870.2, + "end": 3873.32, + "probability": 0.9937 + }, + { + "start": 3873.32, + "end": 3877.48, + "probability": 0.9973 + }, + { + "start": 3877.74, + "end": 3881.84, + "probability": 0.9889 + }, + { + "start": 3881.84, + "end": 3885.92, + "probability": 0.999 + }, + { + "start": 3887.2, + "end": 3890.64, + "probability": 0.847 + }, + { + "start": 3891.34, + "end": 3895.46, + "probability": 0.9814 + }, + { + "start": 3896.86, + "end": 3901.34, + "probability": 0.9889 + }, + { + "start": 3901.44, + "end": 3903.06, + "probability": 0.9912 + }, + { + "start": 3906.06, + "end": 3908.5, + "probability": 0.9951 + }, + { + "start": 3908.5, + "end": 3912.94, + "probability": 0.9844 + }, + { + "start": 3913.6, + "end": 3916.76, + "probability": 0.8867 + }, + { + "start": 3917.78, + "end": 3918.68, + "probability": 0.7434 + }, + { + "start": 3919.56, + "end": 3921.86, + "probability": 0.9463 + }, + { + "start": 3921.9, + "end": 3922.74, + "probability": 0.7634 + }, + { + "start": 3923.72, + "end": 3924.76, + "probability": 0.8144 + }, + { + "start": 3926.1, + "end": 3929.18, + "probability": 0.9153 + }, + { + "start": 3930.4, + "end": 3930.8, + "probability": 0.4229 + }, + { + "start": 3930.82, + "end": 3931.6, + "probability": 0.8968 + }, + { + "start": 3931.7, + "end": 3935.8, + "probability": 0.982 + }, + { + "start": 3936.82, + "end": 3940.28, + "probability": 0.964 + }, + { + "start": 3941.36, + "end": 3943.1, + "probability": 0.9849 + }, + { + "start": 3944.56, + "end": 3946.46, + "probability": 0.8875 + }, + { + "start": 3947.83, + "end": 3952.0, + "probability": 0.9976 + }, + { + "start": 3952.87, + "end": 3955.7, + "probability": 0.9784 + }, + { + "start": 3957.7, + "end": 3963.24, + "probability": 0.9972 + }, + { + "start": 3963.74, + "end": 3965.98, + "probability": 0.9704 + }, + { + "start": 3967.54, + "end": 3969.18, + "probability": 0.9484 + }, + { + "start": 3971.46, + "end": 3974.68, + "probability": 0.9771 + }, + { + "start": 3975.34, + "end": 3976.08, + "probability": 0.7934 + }, + { + "start": 3977.26, + "end": 3982.78, + "probability": 0.9854 + }, + { + "start": 3985.0, + "end": 3989.58, + "probability": 0.9863 + }, + { + "start": 3990.34, + "end": 3993.58, + "probability": 0.9587 + }, + { + "start": 3993.66, + "end": 3994.59, + "probability": 0.6353 + }, + { + "start": 3995.4, + "end": 3996.88, + "probability": 0.9867 + }, + { + "start": 3998.12, + "end": 3998.72, + "probability": 0.9181 + }, + { + "start": 4001.02, + "end": 4006.1, + "probability": 0.7284 + }, + { + "start": 4007.22, + "end": 4007.22, + "probability": 0.0319 + }, + { + "start": 4007.22, + "end": 4007.86, + "probability": 0.6192 + }, + { + "start": 4008.34, + "end": 4009.66, + "probability": 0.951 + }, + { + "start": 4010.22, + "end": 4010.9, + "probability": 0.7792 + }, + { + "start": 4011.76, + "end": 4012.24, + "probability": 0.3931 + }, + { + "start": 4012.38, + "end": 4016.06, + "probability": 0.969 + }, + { + "start": 4016.82, + "end": 4017.86, + "probability": 0.9739 + }, + { + "start": 4019.74, + "end": 4021.94, + "probability": 0.9287 + }, + { + "start": 4024.4, + "end": 4025.7, + "probability": 0.9728 + }, + { + "start": 4033.06, + "end": 4033.5, + "probability": 0.1727 + }, + { + "start": 4044.6, + "end": 4048.54, + "probability": 0.6757 + }, + { + "start": 4050.0, + "end": 4054.66, + "probability": 0.9974 + }, + { + "start": 4055.12, + "end": 4057.94, + "probability": 0.9794 + }, + { + "start": 4058.6, + "end": 4061.98, + "probability": 0.9942 + }, + { + "start": 4061.98, + "end": 4065.6, + "probability": 0.9978 + }, + { + "start": 4066.68, + "end": 4067.62, + "probability": 0.6998 + }, + { + "start": 4068.12, + "end": 4070.3, + "probability": 0.9941 + }, + { + "start": 4070.8, + "end": 4072.52, + "probability": 0.9906 + }, + { + "start": 4072.62, + "end": 4073.24, + "probability": 0.9083 + }, + { + "start": 4073.76, + "end": 4075.36, + "probability": 0.9915 + }, + { + "start": 4076.02, + "end": 4080.7, + "probability": 0.9733 + }, + { + "start": 4081.2, + "end": 4082.68, + "probability": 0.7039 + }, + { + "start": 4082.82, + "end": 4083.56, + "probability": 0.7231 + }, + { + "start": 4085.13, + "end": 4086.53, + "probability": 0.9742 + }, + { + "start": 4086.62, + "end": 4087.06, + "probability": 0.9921 + }, + { + "start": 4087.92, + "end": 4089.74, + "probability": 0.9715 + }, + { + "start": 4090.38, + "end": 4091.78, + "probability": 0.9902 + }, + { + "start": 4092.48, + "end": 4097.14, + "probability": 0.8745 + }, + { + "start": 4097.6, + "end": 4101.06, + "probability": 0.9946 + }, + { + "start": 4101.8, + "end": 4106.09, + "probability": 0.9925 + }, + { + "start": 4106.7, + "end": 4108.64, + "probability": 0.9979 + }, + { + "start": 4108.76, + "end": 4110.46, + "probability": 0.9868 + }, + { + "start": 4111.44, + "end": 4114.06, + "probability": 0.9764 + }, + { + "start": 4114.54, + "end": 4116.22, + "probability": 0.9826 + }, + { + "start": 4116.86, + "end": 4118.7, + "probability": 0.8301 + }, + { + "start": 4118.78, + "end": 4122.54, + "probability": 0.9982 + }, + { + "start": 4122.54, + "end": 4126.46, + "probability": 0.9989 + }, + { + "start": 4127.16, + "end": 4129.52, + "probability": 0.9967 + }, + { + "start": 4129.9, + "end": 4131.52, + "probability": 0.9763 + }, + { + "start": 4131.86, + "end": 4135.64, + "probability": 0.9885 + }, + { + "start": 4136.76, + "end": 4139.16, + "probability": 0.9976 + }, + { + "start": 4139.72, + "end": 4141.72, + "probability": 0.9771 + }, + { + "start": 4142.26, + "end": 4146.5, + "probability": 0.9525 + }, + { + "start": 4147.52, + "end": 4148.6, + "probability": 0.9325 + }, + { + "start": 4150.82, + "end": 4156.62, + "probability": 0.9717 + }, + { + "start": 4157.1, + "end": 4161.88, + "probability": 0.9873 + }, + { + "start": 4162.4, + "end": 4164.4, + "probability": 0.2103 + }, + { + "start": 4164.98, + "end": 4165.84, + "probability": 0.3036 + }, + { + "start": 4166.28, + "end": 4167.96, + "probability": 0.8091 + }, + { + "start": 4168.34, + "end": 4170.48, + "probability": 0.9781 + }, + { + "start": 4170.9, + "end": 4174.92, + "probability": 0.9679 + }, + { + "start": 4175.66, + "end": 4175.84, + "probability": 0.3012 + }, + { + "start": 4175.88, + "end": 4180.26, + "probability": 0.9252 + }, + { + "start": 4180.74, + "end": 4183.16, + "probability": 0.9984 + }, + { + "start": 4183.66, + "end": 4186.62, + "probability": 0.9007 + }, + { + "start": 4186.68, + "end": 4188.24, + "probability": 0.8654 + }, + { + "start": 4189.32, + "end": 4193.06, + "probability": 0.9985 + }, + { + "start": 4193.4, + "end": 4196.12, + "probability": 0.9971 + }, + { + "start": 4196.12, + "end": 4200.14, + "probability": 0.9469 + }, + { + "start": 4200.88, + "end": 4203.92, + "probability": 0.9037 + }, + { + "start": 4204.4, + "end": 4206.0, + "probability": 0.9686 + }, + { + "start": 4206.52, + "end": 4209.64, + "probability": 0.9956 + }, + { + "start": 4209.64, + "end": 4213.88, + "probability": 0.9297 + }, + { + "start": 4214.38, + "end": 4217.32, + "probability": 0.993 + }, + { + "start": 4217.74, + "end": 4219.7, + "probability": 0.8918 + }, + { + "start": 4220.22, + "end": 4221.9, + "probability": 0.9829 + }, + { + "start": 4222.7, + "end": 4227.12, + "probability": 0.9889 + }, + { + "start": 4227.52, + "end": 4232.44, + "probability": 0.9753 + }, + { + "start": 4232.88, + "end": 4237.72, + "probability": 0.9893 + }, + { + "start": 4238.1, + "end": 4239.6, + "probability": 0.7668 + }, + { + "start": 4240.1, + "end": 4240.68, + "probability": 0.512 + }, + { + "start": 4240.98, + "end": 4244.06, + "probability": 0.9971 + }, + { + "start": 4244.06, + "end": 4247.38, + "probability": 0.9993 + }, + { + "start": 4248.0, + "end": 4251.92, + "probability": 0.9993 + }, + { + "start": 4252.4, + "end": 4256.58, + "probability": 0.9846 + }, + { + "start": 4256.72, + "end": 4257.1, + "probability": 0.8232 + }, + { + "start": 4257.64, + "end": 4260.64, + "probability": 0.9637 + }, + { + "start": 4260.64, + "end": 4264.3, + "probability": 0.9996 + }, + { + "start": 4265.08, + "end": 4268.3, + "probability": 0.9738 + }, + { + "start": 4268.84, + "end": 4272.18, + "probability": 0.8369 + }, + { + "start": 4272.68, + "end": 4277.48, + "probability": 0.9982 + }, + { + "start": 4277.9, + "end": 4278.28, + "probability": 0.8373 + }, + { + "start": 4279.72, + "end": 4282.82, + "probability": 0.9918 + }, + { + "start": 4282.82, + "end": 4286.46, + "probability": 0.8137 + }, + { + "start": 4286.88, + "end": 4288.94, + "probability": 0.9729 + }, + { + "start": 4289.38, + "end": 4293.88, + "probability": 0.8134 + }, + { + "start": 4294.22, + "end": 4295.4, + "probability": 0.946 + }, + { + "start": 4295.72, + "end": 4295.92, + "probability": 0.7999 + }, + { + "start": 4296.34, + "end": 4296.74, + "probability": 0.8303 + }, + { + "start": 4296.96, + "end": 4298.1, + "probability": 0.9403 + }, + { + "start": 4299.96, + "end": 4302.44, + "probability": 0.7761 + }, + { + "start": 4302.66, + "end": 4305.62, + "probability": 0.958 + }, + { + "start": 4306.48, + "end": 4306.92, + "probability": 0.9332 + }, + { + "start": 4307.54, + "end": 4309.1, + "probability": 0.9342 + }, + { + "start": 4309.18, + "end": 4310.56, + "probability": 0.6994 + }, + { + "start": 4311.08, + "end": 4313.08, + "probability": 0.9897 + }, + { + "start": 4313.62, + "end": 4314.22, + "probability": 0.9233 + }, + { + "start": 4344.62, + "end": 4345.38, + "probability": 0.8505 + }, + { + "start": 4357.04, + "end": 4359.74, + "probability": 0.5856 + }, + { + "start": 4361.12, + "end": 4365.04, + "probability": 0.9967 + }, + { + "start": 4365.74, + "end": 4370.72, + "probability": 0.9906 + }, + { + "start": 4371.8, + "end": 4373.22, + "probability": 0.8691 + }, + { + "start": 4375.78, + "end": 4381.68, + "probability": 0.9975 + }, + { + "start": 4381.68, + "end": 4387.44, + "probability": 0.9886 + }, + { + "start": 4388.54, + "end": 4393.9, + "probability": 0.9764 + }, + { + "start": 4394.42, + "end": 4395.66, + "probability": 0.5002 + }, + { + "start": 4395.74, + "end": 4400.28, + "probability": 0.969 + }, + { + "start": 4400.28, + "end": 4406.16, + "probability": 0.9961 + }, + { + "start": 4407.1, + "end": 4410.36, + "probability": 0.9959 + }, + { + "start": 4410.98, + "end": 4417.54, + "probability": 0.9941 + }, + { + "start": 4418.8, + "end": 4420.68, + "probability": 0.9375 + }, + { + "start": 4421.24, + "end": 4422.88, + "probability": 0.9131 + }, + { + "start": 4423.74, + "end": 4430.2, + "probability": 0.993 + }, + { + "start": 4431.1, + "end": 4434.76, + "probability": 0.6331 + }, + { + "start": 4435.1, + "end": 4435.92, + "probability": 0.6154 + }, + { + "start": 4436.88, + "end": 4437.44, + "probability": 0.7672 + }, + { + "start": 4438.46, + "end": 4439.4, + "probability": 0.9935 + }, + { + "start": 4440.74, + "end": 4442.1, + "probability": 0.5198 + }, + { + "start": 4442.64, + "end": 4443.26, + "probability": 0.5089 + }, + { + "start": 4444.2, + "end": 4447.02, + "probability": 0.9528 + }, + { + "start": 4448.04, + "end": 4450.06, + "probability": 0.8985 + }, + { + "start": 4451.28, + "end": 4452.92, + "probability": 0.9268 + }, + { + "start": 4453.56, + "end": 4454.74, + "probability": 0.9394 + }, + { + "start": 4455.56, + "end": 4456.68, + "probability": 0.6304 + }, + { + "start": 4457.6, + "end": 4461.04, + "probability": 0.9216 + }, + { + "start": 4461.82, + "end": 4463.8, + "probability": 0.9928 + }, + { + "start": 4464.18, + "end": 4465.14, + "probability": 0.9601 + }, + { + "start": 4465.34, + "end": 4465.88, + "probability": 0.6985 + }, + { + "start": 4466.98, + "end": 4469.66, + "probability": 0.958 + }, + { + "start": 4472.58, + "end": 4475.78, + "probability": 0.9108 + }, + { + "start": 4477.16, + "end": 4481.34, + "probability": 0.9868 + }, + { + "start": 4481.96, + "end": 4483.68, + "probability": 0.9629 + }, + { + "start": 4484.44, + "end": 4487.2, + "probability": 0.9624 + }, + { + "start": 4487.2, + "end": 4490.28, + "probability": 0.9493 + }, + { + "start": 4490.82, + "end": 4494.8, + "probability": 0.9961 + }, + { + "start": 4495.54, + "end": 4499.44, + "probability": 0.9916 + }, + { + "start": 4500.62, + "end": 4502.58, + "probability": 0.9852 + }, + { + "start": 4503.38, + "end": 4504.8, + "probability": 0.9959 + }, + { + "start": 4505.4, + "end": 4509.7, + "probability": 0.9803 + }, + { + "start": 4511.4, + "end": 4511.6, + "probability": 0.0502 + }, + { + "start": 4512.06, + "end": 4517.42, + "probability": 0.9844 + }, + { + "start": 4518.22, + "end": 4519.96, + "probability": 0.992 + }, + { + "start": 4520.76, + "end": 4523.84, + "probability": 0.9902 + }, + { + "start": 4523.84, + "end": 4526.64, + "probability": 0.8651 + }, + { + "start": 4528.86, + "end": 4531.78, + "probability": 0.9961 + }, + { + "start": 4532.98, + "end": 4534.62, + "probability": 0.8743 + }, + { + "start": 4534.8, + "end": 4537.32, + "probability": 0.8115 + }, + { + "start": 4538.2, + "end": 4544.54, + "probability": 0.9945 + }, + { + "start": 4545.14, + "end": 4549.94, + "probability": 0.995 + }, + { + "start": 4550.52, + "end": 4551.92, + "probability": 0.8677 + }, + { + "start": 4552.6, + "end": 4556.42, + "probability": 0.9935 + }, + { + "start": 4556.42, + "end": 4561.16, + "probability": 0.9979 + }, + { + "start": 4561.68, + "end": 4563.48, + "probability": 0.8671 + }, + { + "start": 4564.06, + "end": 4568.38, + "probability": 0.8913 + }, + { + "start": 4568.86, + "end": 4571.58, + "probability": 0.9875 + }, + { + "start": 4572.38, + "end": 4576.6, + "probability": 0.9934 + }, + { + "start": 4577.2, + "end": 4581.36, + "probability": 0.9969 + }, + { + "start": 4582.22, + "end": 4587.16, + "probability": 0.9919 + }, + { + "start": 4587.16, + "end": 4593.08, + "probability": 0.9965 + }, + { + "start": 4593.9, + "end": 4597.38, + "probability": 0.999 + }, + { + "start": 4598.14, + "end": 4601.96, + "probability": 0.7178 + }, + { + "start": 4602.8, + "end": 4606.44, + "probability": 0.9428 + }, + { + "start": 4610.1, + "end": 4613.28, + "probability": 0.9056 + }, + { + "start": 4613.52, + "end": 4617.18, + "probability": 0.9285 + }, + { + "start": 4618.12, + "end": 4619.6, + "probability": 0.9944 + }, + { + "start": 4620.48, + "end": 4624.64, + "probability": 0.9906 + }, + { + "start": 4625.14, + "end": 4628.17, + "probability": 0.997 + }, + { + "start": 4628.8, + "end": 4629.82, + "probability": 0.8411 + }, + { + "start": 4630.26, + "end": 4631.18, + "probability": 0.9108 + }, + { + "start": 4631.66, + "end": 4633.74, + "probability": 0.7382 + }, + { + "start": 4634.74, + "end": 4638.62, + "probability": 0.9774 + }, + { + "start": 4639.08, + "end": 4640.28, + "probability": 0.906 + }, + { + "start": 4640.82, + "end": 4643.76, + "probability": 0.9871 + }, + { + "start": 4644.58, + "end": 4649.32, + "probability": 0.9893 + }, + { + "start": 4649.8, + "end": 4655.46, + "probability": 0.9976 + }, + { + "start": 4656.16, + "end": 4657.48, + "probability": 0.9401 + }, + { + "start": 4657.9, + "end": 4658.46, + "probability": 0.9522 + }, + { + "start": 4658.6, + "end": 4659.02, + "probability": 0.8702 + }, + { + "start": 4659.44, + "end": 4660.48, + "probability": 0.9524 + }, + { + "start": 4660.86, + "end": 4661.18, + "probability": 0.7824 + }, + { + "start": 4661.3, + "end": 4661.52, + "probability": 0.7701 + }, + { + "start": 4661.62, + "end": 4661.86, + "probability": 0.7969 + }, + { + "start": 4662.0, + "end": 4663.96, + "probability": 0.8901 + }, + { + "start": 4664.48, + "end": 4666.56, + "probability": 0.9621 + }, + { + "start": 4668.34, + "end": 4673.06, + "probability": 0.9993 + }, + { + "start": 4673.62, + "end": 4676.6, + "probability": 0.9958 + }, + { + "start": 4677.16, + "end": 4679.16, + "probability": 0.9969 + }, + { + "start": 4680.06, + "end": 4682.38, + "probability": 0.9077 + }, + { + "start": 4683.14, + "end": 4688.94, + "probability": 0.9919 + }, + { + "start": 4689.74, + "end": 4692.4, + "probability": 0.9722 + }, + { + "start": 4693.46, + "end": 4697.76, + "probability": 0.9714 + }, + { + "start": 4698.62, + "end": 4703.88, + "probability": 0.9977 + }, + { + "start": 4704.52, + "end": 4707.66, + "probability": 0.9108 + }, + { + "start": 4708.32, + "end": 4711.96, + "probability": 0.9584 + }, + { + "start": 4712.9, + "end": 4718.14, + "probability": 0.9758 + }, + { + "start": 4718.76, + "end": 4719.62, + "probability": 0.8712 + }, + { + "start": 4720.44, + "end": 4721.3, + "probability": 0.9917 + }, + { + "start": 4721.92, + "end": 4724.32, + "probability": 0.9941 + }, + { + "start": 4724.7, + "end": 4729.22, + "probability": 0.9982 + }, + { + "start": 4729.44, + "end": 4730.56, + "probability": 0.9404 + }, + { + "start": 4732.22, + "end": 4732.94, + "probability": 0.8098 + }, + { + "start": 4734.0, + "end": 4735.78, + "probability": 0.978 + }, + { + "start": 4738.96, + "end": 4743.24, + "probability": 0.9954 + }, + { + "start": 4743.72, + "end": 4747.6, + "probability": 0.9985 + }, + { + "start": 4748.42, + "end": 4750.34, + "probability": 0.9539 + }, + { + "start": 4751.16, + "end": 4754.66, + "probability": 0.9952 + }, + { + "start": 4756.32, + "end": 4759.42, + "probability": 0.992 + }, + { + "start": 4760.78, + "end": 4763.54, + "probability": 0.9924 + }, + { + "start": 4763.54, + "end": 4767.98, + "probability": 0.9932 + }, + { + "start": 4768.34, + "end": 4769.2, + "probability": 0.7349 + }, + { + "start": 4769.9, + "end": 4771.76, + "probability": 0.9898 + }, + { + "start": 4772.18, + "end": 4775.66, + "probability": 0.9903 + }, + { + "start": 4777.14, + "end": 4779.48, + "probability": 0.9848 + }, + { + "start": 4779.96, + "end": 4782.88, + "probability": 0.9966 + }, + { + "start": 4783.28, + "end": 4786.5, + "probability": 0.998 + }, + { + "start": 4788.18, + "end": 4790.4, + "probability": 0.9916 + }, + { + "start": 4790.4, + "end": 4793.74, + "probability": 0.9993 + }, + { + "start": 4794.62, + "end": 4798.64, + "probability": 0.9155 + }, + { + "start": 4800.16, + "end": 4802.62, + "probability": 0.9981 + }, + { + "start": 4803.38, + "end": 4803.56, + "probability": 0.632 + }, + { + "start": 4803.66, + "end": 4806.08, + "probability": 0.9949 + }, + { + "start": 4806.18, + "end": 4808.36, + "probability": 0.9979 + }, + { + "start": 4809.08, + "end": 4814.18, + "probability": 0.9971 + }, + { + "start": 4814.7, + "end": 4815.32, + "probability": 0.9966 + }, + { + "start": 4816.66, + "end": 4817.82, + "probability": 0.9973 + }, + { + "start": 4818.0, + "end": 4822.52, + "probability": 0.9832 + }, + { + "start": 4823.5, + "end": 4828.39, + "probability": 0.9955 + }, + { + "start": 4828.5, + "end": 4828.92, + "probability": 0.366 + }, + { + "start": 4829.44, + "end": 4830.86, + "probability": 0.9675 + }, + { + "start": 4831.52, + "end": 4835.52, + "probability": 0.6738 + }, + { + "start": 4837.16, + "end": 4841.0, + "probability": 0.9895 + }, + { + "start": 4841.48, + "end": 4841.94, + "probability": 0.6927 + }, + { + "start": 4842.64, + "end": 4844.2, + "probability": 0.9707 + }, + { + "start": 4844.48, + "end": 4847.94, + "probability": 0.9971 + }, + { + "start": 4848.34, + "end": 4851.64, + "probability": 0.9947 + }, + { + "start": 4853.16, + "end": 4853.98, + "probability": 0.7115 + }, + { + "start": 4854.52, + "end": 4857.56, + "probability": 0.9565 + }, + { + "start": 4858.18, + "end": 4862.04, + "probability": 0.9959 + }, + { + "start": 4862.04, + "end": 4865.78, + "probability": 0.9985 + }, + { + "start": 4866.18, + "end": 4867.23, + "probability": 0.9929 + }, + { + "start": 4867.88, + "end": 4868.48, + "probability": 0.5074 + }, + { + "start": 4869.06, + "end": 4871.58, + "probability": 0.9757 + }, + { + "start": 4872.08, + "end": 4872.8, + "probability": 0.7061 + }, + { + "start": 4872.88, + "end": 4874.04, + "probability": 0.6458 + }, + { + "start": 4874.18, + "end": 4875.46, + "probability": 0.6202 + }, + { + "start": 4876.24, + "end": 4878.66, + "probability": 0.6297 + }, + { + "start": 4879.62, + "end": 4882.16, + "probability": 0.0153 + }, + { + "start": 4888.48, + "end": 4888.48, + "probability": 0.0329 + }, + { + "start": 4888.48, + "end": 4888.48, + "probability": 0.1654 + }, + { + "start": 4888.48, + "end": 4888.48, + "probability": 0.116 + }, + { + "start": 4888.48, + "end": 4888.48, + "probability": 0.0271 + }, + { + "start": 4888.48, + "end": 4888.48, + "probability": 0.1215 + }, + { + "start": 4888.48, + "end": 4888.48, + "probability": 0.0914 + }, + { + "start": 4912.28, + "end": 4914.02, + "probability": 0.219 + }, + { + "start": 4914.62, + "end": 4918.58, + "probability": 0.9901 + }, + { + "start": 4919.72, + "end": 4924.66, + "probability": 0.9697 + }, + { + "start": 4925.32, + "end": 4925.48, + "probability": 0.5632 + }, + { + "start": 4925.52, + "end": 4928.66, + "probability": 0.4751 + }, + { + "start": 4928.86, + "end": 4931.18, + "probability": 0.9903 + }, + { + "start": 4931.78, + "end": 4934.82, + "probability": 0.9905 + }, + { + "start": 4935.44, + "end": 4939.66, + "probability": 0.934 + }, + { + "start": 4940.58, + "end": 4943.86, + "probability": 0.9926 + }, + { + "start": 4944.38, + "end": 4946.9, + "probability": 0.9985 + }, + { + "start": 4947.48, + "end": 4951.28, + "probability": 0.8193 + }, + { + "start": 4952.16, + "end": 4957.44, + "probability": 0.9958 + }, + { + "start": 4958.14, + "end": 4962.92, + "probability": 0.9932 + }, + { + "start": 4964.58, + "end": 4967.8, + "probability": 0.9756 + }, + { + "start": 4969.94, + "end": 4973.86, + "probability": 0.9883 + }, + { + "start": 4974.0, + "end": 4974.86, + "probability": 0.7098 + }, + { + "start": 4975.6, + "end": 4978.64, + "probability": 0.9957 + }, + { + "start": 4979.1, + "end": 4981.56, + "probability": 0.987 + }, + { + "start": 4983.42, + "end": 4989.56, + "probability": 0.9379 + }, + { + "start": 4990.18, + "end": 4991.2, + "probability": 0.8573 + }, + { + "start": 4991.9, + "end": 4996.38, + "probability": 0.9968 + }, + { + "start": 4996.44, + "end": 4999.45, + "probability": 0.9429 + }, + { + "start": 5000.34, + "end": 5001.68, + "probability": 0.7327 + }, + { + "start": 5002.16, + "end": 5005.62, + "probability": 0.9823 + }, + { + "start": 5006.04, + "end": 5010.42, + "probability": 0.9708 + }, + { + "start": 5010.46, + "end": 5014.14, + "probability": 0.9961 + }, + { + "start": 5014.84, + "end": 5019.24, + "probability": 0.9653 + }, + { + "start": 5019.88, + "end": 5021.4, + "probability": 0.8649 + }, + { + "start": 5022.52, + "end": 5024.82, + "probability": 0.7336 + }, + { + "start": 5025.95, + "end": 5029.44, + "probability": 0.7334 + }, + { + "start": 5029.44, + "end": 5033.34, + "probability": 0.8811 + }, + { + "start": 5033.84, + "end": 5036.12, + "probability": 0.6443 + }, + { + "start": 5036.74, + "end": 5040.92, + "probability": 0.7568 + }, + { + "start": 5041.98, + "end": 5044.7, + "probability": 0.8905 + }, + { + "start": 5046.56, + "end": 5050.34, + "probability": 0.9814 + }, + { + "start": 5051.2, + "end": 5055.58, + "probability": 0.9601 + }, + { + "start": 5056.48, + "end": 5058.58, + "probability": 0.9929 + }, + { + "start": 5059.14, + "end": 5060.62, + "probability": 0.9927 + }, + { + "start": 5062.76, + "end": 5066.92, + "probability": 0.9662 + }, + { + "start": 5068.32, + "end": 5072.16, + "probability": 0.995 + }, + { + "start": 5072.16, + "end": 5076.16, + "probability": 0.5997 + }, + { + "start": 5076.22, + "end": 5081.98, + "probability": 0.8863 + }, + { + "start": 5082.08, + "end": 5085.54, + "probability": 0.7417 + }, + { + "start": 5086.44, + "end": 5090.62, + "probability": 0.9412 + }, + { + "start": 5091.6, + "end": 5096.96, + "probability": 0.9951 + }, + { + "start": 5096.96, + "end": 5104.58, + "probability": 0.9857 + }, + { + "start": 5105.4, + "end": 5107.16, + "probability": 0.9993 + }, + { + "start": 5107.76, + "end": 5109.08, + "probability": 0.9082 + }, + { + "start": 5109.16, + "end": 5113.92, + "probability": 0.9636 + }, + { + "start": 5113.92, + "end": 5116.52, + "probability": 0.9315 + }, + { + "start": 5117.24, + "end": 5121.24, + "probability": 0.9227 + }, + { + "start": 5121.76, + "end": 5124.16, + "probability": 0.7831 + }, + { + "start": 5124.76, + "end": 5125.86, + "probability": 0.9858 + }, + { + "start": 5126.46, + "end": 5127.3, + "probability": 0.8403 + }, + { + "start": 5127.4, + "end": 5131.86, + "probability": 0.9954 + }, + { + "start": 5132.4, + "end": 5132.98, + "probability": 0.7527 + }, + { + "start": 5133.04, + "end": 5135.08, + "probability": 0.9852 + }, + { + "start": 5135.66, + "end": 5137.52, + "probability": 0.9568 + }, + { + "start": 5139.14, + "end": 5139.78, + "probability": 0.8716 + }, + { + "start": 5140.5, + "end": 5143.22, + "probability": 0.8489 + }, + { + "start": 5143.86, + "end": 5146.14, + "probability": 0.9988 + }, + { + "start": 5147.68, + "end": 5148.86, + "probability": 0.969 + }, + { + "start": 5149.3, + "end": 5151.03, + "probability": 0.9922 + }, + { + "start": 5151.8, + "end": 5154.12, + "probability": 0.9814 + }, + { + "start": 5154.54, + "end": 5155.98, + "probability": 0.9799 + }, + { + "start": 5156.44, + "end": 5157.96, + "probability": 0.9907 + }, + { + "start": 5158.32, + "end": 5160.28, + "probability": 0.9971 + }, + { + "start": 5160.84, + "end": 5161.74, + "probability": 0.6356 + }, + { + "start": 5162.24, + "end": 5164.96, + "probability": 0.5542 + }, + { + "start": 5164.96, + "end": 5168.08, + "probability": 0.8849 + }, + { + "start": 5168.64, + "end": 5169.94, + "probability": 0.9786 + }, + { + "start": 5170.5, + "end": 5173.46, + "probability": 0.9841 + }, + { + "start": 5174.04, + "end": 5176.14, + "probability": 0.9935 + }, + { + "start": 5176.66, + "end": 5180.26, + "probability": 0.9851 + }, + { + "start": 5180.7, + "end": 5183.84, + "probability": 0.9094 + }, + { + "start": 5184.46, + "end": 5187.28, + "probability": 0.7222 + }, + { + "start": 5187.84, + "end": 5190.44, + "probability": 0.9828 + }, + { + "start": 5191.08, + "end": 5191.62, + "probability": 0.9731 + }, + { + "start": 5191.72, + "end": 5192.32, + "probability": 0.8285 + }, + { + "start": 5192.72, + "end": 5194.42, + "probability": 0.9976 + }, + { + "start": 5194.5, + "end": 5194.95, + "probability": 0.9834 + }, + { + "start": 5195.74, + "end": 5196.89, + "probability": 0.9705 + }, + { + "start": 5197.4, + "end": 5198.74, + "probability": 0.712 + }, + { + "start": 5198.84, + "end": 5199.62, + "probability": 0.3677 + }, + { + "start": 5200.18, + "end": 5203.46, + "probability": 0.8895 + }, + { + "start": 5204.04, + "end": 5205.08, + "probability": 0.7669 + }, + { + "start": 5205.54, + "end": 5209.56, + "probability": 0.9966 + }, + { + "start": 5210.3, + "end": 5210.82, + "probability": 0.7901 + }, + { + "start": 5211.54, + "end": 5212.72, + "probability": 0.5676 + }, + { + "start": 5212.9, + "end": 5215.22, + "probability": 0.8333 + }, + { + "start": 5216.04, + "end": 5216.96, + "probability": 0.9343 + }, + { + "start": 5217.08, + "end": 5218.62, + "probability": 0.6924 + }, + { + "start": 5218.7, + "end": 5219.14, + "probability": 0.4385 + }, + { + "start": 5221.04, + "end": 5223.98, + "probability": 0.0092 + }, + { + "start": 5224.2, + "end": 5225.02, + "probability": 0.2335 + }, + { + "start": 5228.58, + "end": 5230.86, + "probability": 0.5155 + }, + { + "start": 5251.18, + "end": 5252.0, + "probability": 0.489 + }, + { + "start": 5252.54, + "end": 5254.3, + "probability": 0.6199 + }, + { + "start": 5255.08, + "end": 5256.58, + "probability": 0.7812 + }, + { + "start": 5257.3, + "end": 5262.94, + "probability": 0.9188 + }, + { + "start": 5263.72, + "end": 5266.08, + "probability": 0.8672 + }, + { + "start": 5267.52, + "end": 5268.82, + "probability": 0.8569 + }, + { + "start": 5269.42, + "end": 5270.98, + "probability": 0.9844 + }, + { + "start": 5272.1, + "end": 5274.08, + "probability": 0.7506 + }, + { + "start": 5275.34, + "end": 5276.2, + "probability": 0.7502 + }, + { + "start": 5276.28, + "end": 5282.26, + "probability": 0.9924 + }, + { + "start": 5283.02, + "end": 5285.14, + "probability": 0.9843 + }, + { + "start": 5287.74, + "end": 5289.52, + "probability": 0.9753 + }, + { + "start": 5291.06, + "end": 5292.32, + "probability": 0.9164 + }, + { + "start": 5292.4, + "end": 5293.64, + "probability": 0.8459 + }, + { + "start": 5293.76, + "end": 5297.58, + "probability": 0.9751 + }, + { + "start": 5298.86, + "end": 5302.26, + "probability": 0.9962 + }, + { + "start": 5304.72, + "end": 5305.38, + "probability": 0.9303 + }, + { + "start": 5305.44, + "end": 5307.3, + "probability": 0.8065 + }, + { + "start": 5307.44, + "end": 5310.16, + "probability": 0.8674 + }, + { + "start": 5311.26, + "end": 5313.54, + "probability": 0.983 + }, + { + "start": 5314.48, + "end": 5314.88, + "probability": 0.8674 + }, + { + "start": 5315.2, + "end": 5317.34, + "probability": 0.9894 + }, + { + "start": 5317.42, + "end": 5323.14, + "probability": 0.8398 + }, + { + "start": 5323.14, + "end": 5326.1, + "probability": 0.9917 + }, + { + "start": 5327.6, + "end": 5329.8, + "probability": 0.9889 + }, + { + "start": 5330.26, + "end": 5331.82, + "probability": 0.992 + }, + { + "start": 5334.02, + "end": 5334.52, + "probability": 0.7491 + }, + { + "start": 5337.02, + "end": 5337.8, + "probability": 0.8682 + }, + { + "start": 5337.94, + "end": 5343.58, + "probability": 0.9886 + }, + { + "start": 5344.28, + "end": 5346.9, + "probability": 0.7063 + }, + { + "start": 5347.62, + "end": 5351.62, + "probability": 0.9899 + }, + { + "start": 5352.86, + "end": 5357.34, + "probability": 0.9739 + }, + { + "start": 5357.42, + "end": 5357.92, + "probability": 0.8194 + }, + { + "start": 5358.44, + "end": 5361.0, + "probability": 0.9279 + }, + { + "start": 5361.82, + "end": 5365.12, + "probability": 0.9794 + }, + { + "start": 5367.12, + "end": 5368.02, + "probability": 0.8778 + }, + { + "start": 5368.48, + "end": 5371.96, + "probability": 0.9839 + }, + { + "start": 5371.96, + "end": 5375.62, + "probability": 0.9518 + }, + { + "start": 5377.08, + "end": 5381.42, + "probability": 0.998 + }, + { + "start": 5382.18, + "end": 5384.47, + "probability": 0.9858 + }, + { + "start": 5385.74, + "end": 5387.0, + "probability": 0.9484 + }, + { + "start": 5387.52, + "end": 5390.7, + "probability": 0.8122 + }, + { + "start": 5390.76, + "end": 5392.52, + "probability": 0.9841 + }, + { + "start": 5392.58, + "end": 5393.68, + "probability": 0.9851 + }, + { + "start": 5394.7, + "end": 5397.62, + "probability": 0.9985 + }, + { + "start": 5398.24, + "end": 5400.08, + "probability": 0.9868 + }, + { + "start": 5401.08, + "end": 5403.28, + "probability": 0.9909 + }, + { + "start": 5404.2, + "end": 5404.92, + "probability": 0.89 + }, + { + "start": 5405.46, + "end": 5406.1, + "probability": 0.9787 + }, + { + "start": 5406.68, + "end": 5407.56, + "probability": 0.9705 + }, + { + "start": 5408.2, + "end": 5409.08, + "probability": 0.9796 + }, + { + "start": 5409.7, + "end": 5410.3, + "probability": 0.8999 + }, + { + "start": 5411.92, + "end": 5413.1, + "probability": 0.9829 + }, + { + "start": 5414.0, + "end": 5414.7, + "probability": 0.7886 + }, + { + "start": 5415.88, + "end": 5416.34, + "probability": 0.8192 + }, + { + "start": 5417.68, + "end": 5418.24, + "probability": 0.6636 + }, + { + "start": 5418.38, + "end": 5419.36, + "probability": 0.7559 + }, + { + "start": 5419.52, + "end": 5422.1, + "probability": 0.3607 + }, + { + "start": 5425.34, + "end": 5426.12, + "probability": 0.7796 + }, + { + "start": 5427.02, + "end": 5427.86, + "probability": 0.5587 + }, + { + "start": 5428.52, + "end": 5430.32, + "probability": 0.7797 + }, + { + "start": 5431.26, + "end": 5431.72, + "probability": 0.9065 + }, + { + "start": 5440.08, + "end": 5440.08, + "probability": 0.0174 + }, + { + "start": 5440.08, + "end": 5440.08, + "probability": 0.2259 + }, + { + "start": 5440.08, + "end": 5440.1, + "probability": 0.0523 + }, + { + "start": 5440.1, + "end": 5440.1, + "probability": 0.1717 + }, + { + "start": 5440.1, + "end": 5440.16, + "probability": 0.2643 + }, + { + "start": 5446.1, + "end": 5446.42, + "probability": 0.0056 + }, + { + "start": 5446.54, + "end": 5447.24, + "probability": 0.0505 + }, + { + "start": 5447.24, + "end": 5447.24, + "probability": 0.0216 + }, + { + "start": 5483.12, + "end": 5487.36, + "probability": 0.998 + }, + { + "start": 5488.06, + "end": 5491.92, + "probability": 0.8745 + }, + { + "start": 5492.58, + "end": 5496.5, + "probability": 0.9056 + }, + { + "start": 5496.7, + "end": 5497.33, + "probability": 0.9924 + }, + { + "start": 5497.64, + "end": 5498.86, + "probability": 0.9796 + }, + { + "start": 5499.2, + "end": 5499.75, + "probability": 0.9888 + }, + { + "start": 5500.1, + "end": 5501.1, + "probability": 0.9801 + }, + { + "start": 5501.74, + "end": 5502.28, + "probability": 0.494 + }, + { + "start": 5502.44, + "end": 5506.32, + "probability": 0.9878 + }, + { + "start": 5506.76, + "end": 5507.55, + "probability": 0.8994 + }, + { + "start": 5508.64, + "end": 5511.68, + "probability": 0.9333 + }, + { + "start": 5512.28, + "end": 5513.84, + "probability": 0.9969 + }, + { + "start": 5514.48, + "end": 5517.88, + "probability": 0.976 + }, + { + "start": 5518.4, + "end": 5521.1, + "probability": 0.9447 + }, + { + "start": 5521.66, + "end": 5526.28, + "probability": 0.9961 + }, + { + "start": 5526.88, + "end": 5529.5, + "probability": 0.9468 + }, + { + "start": 5529.62, + "end": 5534.5, + "probability": 0.9988 + }, + { + "start": 5535.14, + "end": 5536.22, + "probability": 0.4862 + }, + { + "start": 5536.46, + "end": 5536.82, + "probability": 0.9253 + }, + { + "start": 5537.64, + "end": 5540.78, + "probability": 0.9865 + }, + { + "start": 5541.14, + "end": 5546.6, + "probability": 0.8656 + }, + { + "start": 5546.78, + "end": 5551.32, + "probability": 0.9824 + }, + { + "start": 5551.56, + "end": 5552.54, + "probability": 0.9731 + }, + { + "start": 5553.0, + "end": 5555.42, + "probability": 0.9744 + }, + { + "start": 5555.52, + "end": 5558.14, + "probability": 0.9731 + }, + { + "start": 5558.64, + "end": 5563.92, + "probability": 0.9926 + }, + { + "start": 5564.52, + "end": 5569.2, + "probability": 0.8581 + }, + { + "start": 5569.72, + "end": 5571.74, + "probability": 0.8893 + }, + { + "start": 5571.82, + "end": 5573.34, + "probability": 0.9925 + }, + { + "start": 5573.48, + "end": 5575.56, + "probability": 0.8858 + }, + { + "start": 5576.06, + "end": 5577.92, + "probability": 0.9437 + }, + { + "start": 5578.48, + "end": 5580.44, + "probability": 0.9233 + }, + { + "start": 5580.96, + "end": 5586.04, + "probability": 0.994 + }, + { + "start": 5586.26, + "end": 5588.72, + "probability": 0.8577 + }, + { + "start": 5589.12, + "end": 5591.46, + "probability": 0.9797 + }, + { + "start": 5591.78, + "end": 5595.16, + "probability": 0.991 + }, + { + "start": 5595.7, + "end": 5598.12, + "probability": 0.9941 + }, + { + "start": 5599.48, + "end": 5600.06, + "probability": 0.8124 + }, + { + "start": 5600.32, + "end": 5604.59, + "probability": 0.9865 + }, + { + "start": 5605.52, + "end": 5610.96, + "probability": 0.955 + }, + { + "start": 5611.06, + "end": 5612.38, + "probability": 0.9642 + }, + { + "start": 5612.92, + "end": 5617.2, + "probability": 0.9741 + }, + { + "start": 5617.34, + "end": 5618.22, + "probability": 0.8429 + }, + { + "start": 5618.3, + "end": 5620.48, + "probability": 0.8608 + }, + { + "start": 5620.62, + "end": 5621.38, + "probability": 0.716 + }, + { + "start": 5621.8, + "end": 5622.66, + "probability": 0.9594 + }, + { + "start": 5622.72, + "end": 5624.82, + "probability": 0.978 + }, + { + "start": 5624.86, + "end": 5625.68, + "probability": 0.4922 + }, + { + "start": 5626.06, + "end": 5630.32, + "probability": 0.95 + }, + { + "start": 5630.6, + "end": 5632.04, + "probability": 0.9781 + }, + { + "start": 5632.92, + "end": 5636.36, + "probability": 0.9656 + }, + { + "start": 5637.16, + "end": 5641.0, + "probability": 0.7391 + }, + { + "start": 5641.0, + "end": 5644.54, + "probability": 0.8012 + }, + { + "start": 5644.88, + "end": 5646.1, + "probability": 0.935 + }, + { + "start": 5646.42, + "end": 5647.4, + "probability": 0.8985 + }, + { + "start": 5647.44, + "end": 5650.6, + "probability": 0.984 + }, + { + "start": 5652.5, + "end": 5657.38, + "probability": 0.9957 + }, + { + "start": 5658.72, + "end": 5662.68, + "probability": 0.998 + }, + { + "start": 5662.78, + "end": 5667.86, + "probability": 0.9723 + }, + { + "start": 5669.29, + "end": 5673.0, + "probability": 0.853 + }, + { + "start": 5673.5, + "end": 5675.8, + "probability": 0.9936 + }, + { + "start": 5676.02, + "end": 5681.3, + "probability": 0.9201 + }, + { + "start": 5681.72, + "end": 5683.68, + "probability": 0.9893 + }, + { + "start": 5683.92, + "end": 5684.8, + "probability": 0.9858 + }, + { + "start": 5685.28, + "end": 5687.02, + "probability": 0.9946 + }, + { + "start": 5687.32, + "end": 5690.0, + "probability": 0.9951 + }, + { + "start": 5690.46, + "end": 5693.68, + "probability": 0.4854 + }, + { + "start": 5694.14, + "end": 5695.5, + "probability": 0.8694 + }, + { + "start": 5696.4, + "end": 5699.3, + "probability": 0.9232 + }, + { + "start": 5699.46, + "end": 5704.72, + "probability": 0.9692 + }, + { + "start": 5705.26, + "end": 5710.82, + "probability": 0.8463 + }, + { + "start": 5711.38, + "end": 5718.62, + "probability": 0.9639 + }, + { + "start": 5718.62, + "end": 5724.46, + "probability": 0.9862 + }, + { + "start": 5724.9, + "end": 5726.46, + "probability": 0.9988 + }, + { + "start": 5726.72, + "end": 5730.6, + "probability": 0.9896 + }, + { + "start": 5730.78, + "end": 5732.14, + "probability": 0.7672 + }, + { + "start": 5732.56, + "end": 5735.54, + "probability": 0.9426 + }, + { + "start": 5736.2, + "end": 5739.0, + "probability": 0.6609 + }, + { + "start": 5739.54, + "end": 5742.06, + "probability": 0.9169 + }, + { + "start": 5742.12, + "end": 5743.56, + "probability": 0.7371 + }, + { + "start": 5743.56, + "end": 5745.66, + "probability": 0.916 + }, + { + "start": 5745.82, + "end": 5749.66, + "probability": 0.781 + }, + { + "start": 5749.66, + "end": 5755.96, + "probability": 0.9792 + }, + { + "start": 5756.12, + "end": 5758.02, + "probability": 0.8843 + }, + { + "start": 5758.84, + "end": 5759.42, + "probability": 0.5834 + }, + { + "start": 5760.22, + "end": 5765.48, + "probability": 0.9971 + }, + { + "start": 5765.88, + "end": 5768.34, + "probability": 0.9943 + }, + { + "start": 5768.34, + "end": 5773.16, + "probability": 0.8899 + }, + { + "start": 5773.48, + "end": 5773.74, + "probability": 0.653 + }, + { + "start": 5774.04, + "end": 5774.88, + "probability": 0.6942 + }, + { + "start": 5775.04, + "end": 5777.54, + "probability": 0.5521 + }, + { + "start": 5797.26, + "end": 5797.26, + "probability": 0.1767 + }, + { + "start": 5797.26, + "end": 5797.66, + "probability": 0.3495 + }, + { + "start": 5799.65, + "end": 5802.5, + "probability": 0.6617 + }, + { + "start": 5803.46, + "end": 5805.12, + "probability": 0.7728 + }, + { + "start": 5806.7, + "end": 5807.7, + "probability": 0.8138 + }, + { + "start": 5808.9, + "end": 5809.86, + "probability": 0.8554 + }, + { + "start": 5810.68, + "end": 5816.0, + "probability": 0.8636 + }, + { + "start": 5817.06, + "end": 5817.82, + "probability": 0.7548 + }, + { + "start": 5819.52, + "end": 5820.32, + "probability": 0.6801 + }, + { + "start": 5820.44, + "end": 5824.76, + "probability": 0.96 + }, + { + "start": 5825.38, + "end": 5827.08, + "probability": 0.9368 + }, + { + "start": 5827.94, + "end": 5832.24, + "probability": 0.9937 + }, + { + "start": 5833.42, + "end": 5836.22, + "probability": 0.9397 + }, + { + "start": 5837.24, + "end": 5842.62, + "probability": 0.8909 + }, + { + "start": 5843.56, + "end": 5846.64, + "probability": 0.9364 + }, + { + "start": 5848.28, + "end": 5849.5, + "probability": 0.933 + }, + { + "start": 5849.68, + "end": 5850.44, + "probability": 0.9653 + }, + { + "start": 5851.92, + "end": 5855.6, + "probability": 0.9295 + }, + { + "start": 5856.46, + "end": 5857.78, + "probability": 0.709 + }, + { + "start": 5858.68, + "end": 5859.94, + "probability": 0.9941 + }, + { + "start": 5861.32, + "end": 5862.2, + "probability": 0.9377 + }, + { + "start": 5862.36, + "end": 5872.4, + "probability": 0.9757 + }, + { + "start": 5873.52, + "end": 5874.66, + "probability": 0.7396 + }, + { + "start": 5875.42, + "end": 5880.3, + "probability": 0.9937 + }, + { + "start": 5880.3, + "end": 5885.02, + "probability": 0.9202 + }, + { + "start": 5885.12, + "end": 5885.72, + "probability": 0.9551 + }, + { + "start": 5885.78, + "end": 5886.7, + "probability": 0.7325 + }, + { + "start": 5887.54, + "end": 5889.12, + "probability": 0.8967 + }, + { + "start": 5890.64, + "end": 5892.88, + "probability": 0.9927 + }, + { + "start": 5893.78, + "end": 5896.78, + "probability": 0.9888 + }, + { + "start": 5898.12, + "end": 5900.78, + "probability": 0.8079 + }, + { + "start": 5901.18, + "end": 5903.24, + "probability": 0.991 + }, + { + "start": 5904.16, + "end": 5907.38, + "probability": 0.9492 + }, + { + "start": 5907.92, + "end": 5908.78, + "probability": 0.9528 + }, + { + "start": 5910.62, + "end": 5916.44, + "probability": 0.9725 + }, + { + "start": 5917.2, + "end": 5919.24, + "probability": 0.9054 + }, + { + "start": 5920.14, + "end": 5925.14, + "probability": 0.782 + }, + { + "start": 5927.42, + "end": 5931.46, + "probability": 0.9916 + }, + { + "start": 5931.46, + "end": 5936.92, + "probability": 0.9928 + }, + { + "start": 5937.78, + "end": 5938.58, + "probability": 0.9759 + }, + { + "start": 5938.68, + "end": 5939.52, + "probability": 0.7309 + }, + { + "start": 5939.54, + "end": 5941.8, + "probability": 0.9795 + }, + { + "start": 5942.68, + "end": 5946.42, + "probability": 0.9651 + }, + { + "start": 5947.22, + "end": 5950.28, + "probability": 0.8672 + }, + { + "start": 5951.42, + "end": 5955.88, + "probability": 0.9559 + }, + { + "start": 5956.72, + "end": 5958.62, + "probability": 0.7957 + }, + { + "start": 5959.64, + "end": 5961.62, + "probability": 0.8673 + }, + { + "start": 5962.5, + "end": 5964.06, + "probability": 0.9673 + }, + { + "start": 5965.02, + "end": 5965.84, + "probability": 0.9577 + }, + { + "start": 5966.04, + "end": 5967.12, + "probability": 0.836 + }, + { + "start": 5967.58, + "end": 5968.98, + "probability": 0.8058 + }, + { + "start": 5969.12, + "end": 5970.57, + "probability": 0.721 + }, + { + "start": 5971.42, + "end": 5972.96, + "probability": 0.9628 + }, + { + "start": 5973.0, + "end": 5975.34, + "probability": 0.9971 + }, + { + "start": 5975.34, + "end": 5978.7, + "probability": 0.9993 + }, + { + "start": 5978.94, + "end": 5982.3, + "probability": 0.9948 + }, + { + "start": 5983.92, + "end": 5990.34, + "probability": 0.9439 + }, + { + "start": 5991.48, + "end": 5994.84, + "probability": 0.9297 + }, + { + "start": 5995.62, + "end": 5997.32, + "probability": 0.9683 + }, + { + "start": 5998.2, + "end": 6001.8, + "probability": 0.6887 + }, + { + "start": 6002.5, + "end": 6006.48, + "probability": 0.8865 + }, + { + "start": 6007.42, + "end": 6007.82, + "probability": 0.7461 + }, + { + "start": 6007.94, + "end": 6012.78, + "probability": 0.996 + }, + { + "start": 6014.16, + "end": 6015.33, + "probability": 0.9847 + }, + { + "start": 6016.44, + "end": 6020.76, + "probability": 0.9758 + }, + { + "start": 6022.56, + "end": 6025.34, + "probability": 0.9736 + }, + { + "start": 6026.38, + "end": 6028.0, + "probability": 0.9276 + }, + { + "start": 6029.06, + "end": 6031.04, + "probability": 0.9637 + }, + { + "start": 6033.98, + "end": 6038.76, + "probability": 0.9992 + }, + { + "start": 6041.16, + "end": 6043.0, + "probability": 0.9839 + }, + { + "start": 6044.08, + "end": 6046.2, + "probability": 0.9739 + }, + { + "start": 6047.1, + "end": 6048.62, + "probability": 0.6853 + }, + { + "start": 6048.66, + "end": 6055.28, + "probability": 0.998 + }, + { + "start": 6056.04, + "end": 6056.44, + "probability": 0.5844 + }, + { + "start": 6056.56, + "end": 6057.04, + "probability": 0.1768 + }, + { + "start": 6057.18, + "end": 6058.64, + "probability": 0.9841 + }, + { + "start": 6058.78, + "end": 6060.14, + "probability": 0.5737 + }, + { + "start": 6060.2, + "end": 6060.64, + "probability": 0.8895 + }, + { + "start": 6060.74, + "end": 6061.78, + "probability": 0.9392 + }, + { + "start": 6062.34, + "end": 6063.4, + "probability": 0.9666 + }, + { + "start": 6063.58, + "end": 6067.58, + "probability": 0.9956 + }, + { + "start": 6068.64, + "end": 6070.72, + "probability": 0.9291 + }, + { + "start": 6071.6, + "end": 6072.14, + "probability": 0.7727 + }, + { + "start": 6073.24, + "end": 6076.72, + "probability": 0.825 + }, + { + "start": 6078.6, + "end": 6082.44, + "probability": 0.5416 + }, + { + "start": 6083.02, + "end": 6086.12, + "probability": 0.9502 + }, + { + "start": 6086.66, + "end": 6088.42, + "probability": 0.8491 + }, + { + "start": 6088.94, + "end": 6094.0, + "probability": 0.9979 + }, + { + "start": 6095.5, + "end": 6096.0, + "probability": 0.6347 + }, + { + "start": 6096.04, + "end": 6099.78, + "probability": 0.9871 + }, + { + "start": 6099.96, + "end": 6101.16, + "probability": 0.5906 + }, + { + "start": 6102.04, + "end": 6108.92, + "probability": 0.9918 + }, + { + "start": 6109.16, + "end": 6110.42, + "probability": 0.9607 + }, + { + "start": 6110.9, + "end": 6114.34, + "probability": 0.9775 + }, + { + "start": 6114.78, + "end": 6116.42, + "probability": 0.9949 + }, + { + "start": 6117.16, + "end": 6118.38, + "probability": 0.8101 + }, + { + "start": 6118.96, + "end": 6123.0, + "probability": 0.9866 + }, + { + "start": 6123.16, + "end": 6123.75, + "probability": 0.5849 + }, + { + "start": 6124.52, + "end": 6127.0, + "probability": 0.9837 + }, + { + "start": 6127.32, + "end": 6130.55, + "probability": 0.9491 + }, + { + "start": 6131.3, + "end": 6133.0, + "probability": 0.849 + }, + { + "start": 6133.46, + "end": 6135.22, + "probability": 0.7773 + }, + { + "start": 6135.26, + "end": 6135.44, + "probability": 0.6697 + }, + { + "start": 6136.04, + "end": 6136.62, + "probability": 0.7869 + }, + { + "start": 6137.6, + "end": 6140.56, + "probability": 0.8329 + }, + { + "start": 6141.2, + "end": 6142.36, + "probability": 0.321 + }, + { + "start": 6143.78, + "end": 6144.74, + "probability": 0.9308 + }, + { + "start": 6145.92, + "end": 6147.24, + "probability": 0.9336 + }, + { + "start": 6148.14, + "end": 6149.34, + "probability": 0.7443 + }, + { + "start": 6151.04, + "end": 6151.92, + "probability": 0.9873 + }, + { + "start": 6153.08, + "end": 6158.94, + "probability": 0.7401 + }, + { + "start": 6158.98, + "end": 6160.72, + "probability": 0.9901 + }, + { + "start": 6160.76, + "end": 6164.26, + "probability": 0.7192 + }, + { + "start": 6164.62, + "end": 6168.18, + "probability": 0.9872 + }, + { + "start": 6168.98, + "end": 6171.86, + "probability": 0.9753 + }, + { + "start": 6171.92, + "end": 6176.5, + "probability": 0.9761 + }, + { + "start": 6177.18, + "end": 6183.46, + "probability": 0.9882 + }, + { + "start": 6184.3, + "end": 6185.36, + "probability": 0.8364 + }, + { + "start": 6185.44, + "end": 6186.26, + "probability": 0.6314 + }, + { + "start": 6186.5, + "end": 6186.5, + "probability": 0.691 + }, + { + "start": 6186.56, + "end": 6187.38, + "probability": 0.667 + }, + { + "start": 6187.46, + "end": 6188.34, + "probability": 0.861 + }, + { + "start": 6207.94, + "end": 6210.08, + "probability": 0.7451 + }, + { + "start": 6211.24, + "end": 6212.18, + "probability": 0.7343 + }, + { + "start": 6213.08, + "end": 6214.1, + "probability": 0.8552 + }, + { + "start": 6215.7, + "end": 6217.18, + "probability": 0.7616 + }, + { + "start": 6217.8, + "end": 6219.72, + "probability": 0.8228 + }, + { + "start": 6220.66, + "end": 6226.54, + "probability": 0.7792 + }, + { + "start": 6227.54, + "end": 6228.12, + "probability": 0.7448 + }, + { + "start": 6228.9, + "end": 6230.16, + "probability": 0.6998 + }, + { + "start": 6231.9, + "end": 6234.45, + "probability": 0.3418 + }, + { + "start": 6236.74, + "end": 6237.55, + "probability": 0.6917 + }, + { + "start": 6239.5, + "end": 6242.24, + "probability": 0.7725 + }, + { + "start": 6243.12, + "end": 6246.18, + "probability": 0.8436 + }, + { + "start": 6246.9, + "end": 6248.14, + "probability": 0.9937 + }, + { + "start": 6249.68, + "end": 6252.14, + "probability": 0.9618 + }, + { + "start": 6253.32, + "end": 6260.06, + "probability": 0.9507 + }, + { + "start": 6261.78, + "end": 6263.2, + "probability": 0.7571 + }, + { + "start": 6264.22, + "end": 6265.04, + "probability": 0.4574 + }, + { + "start": 6267.72, + "end": 6269.16, + "probability": 0.8388 + }, + { + "start": 6270.4, + "end": 6271.18, + "probability": 0.6754 + }, + { + "start": 6271.72, + "end": 6273.44, + "probability": 0.8573 + }, + { + "start": 6274.52, + "end": 6274.9, + "probability": 0.9379 + }, + { + "start": 6277.4, + "end": 6278.82, + "probability": 0.5828 + }, + { + "start": 6280.38, + "end": 6284.1, + "probability": 0.9741 + }, + { + "start": 6286.06, + "end": 6290.22, + "probability": 0.9839 + }, + { + "start": 6291.86, + "end": 6294.12, + "probability": 0.9871 + }, + { + "start": 6295.42, + "end": 6304.3, + "probability": 0.9829 + }, + { + "start": 6305.06, + "end": 6306.36, + "probability": 0.5601 + }, + { + "start": 6307.32, + "end": 6309.38, + "probability": 0.8085 + }, + { + "start": 6311.16, + "end": 6314.19, + "probability": 0.9014 + }, + { + "start": 6314.96, + "end": 6322.52, + "probability": 0.9719 + }, + { + "start": 6322.98, + "end": 6325.02, + "probability": 0.8053 + }, + { + "start": 6325.9, + "end": 6327.26, + "probability": 0.8427 + }, + { + "start": 6327.92, + "end": 6329.06, + "probability": 0.8886 + }, + { + "start": 6329.62, + "end": 6334.48, + "probability": 0.9639 + }, + { + "start": 6335.14, + "end": 6338.52, + "probability": 0.9272 + }, + { + "start": 6339.46, + "end": 6347.14, + "probability": 0.9294 + }, + { + "start": 6347.24, + "end": 6350.3, + "probability": 0.5567 + }, + { + "start": 6350.9, + "end": 6355.82, + "probability": 0.7528 + }, + { + "start": 6356.44, + "end": 6361.68, + "probability": 0.7823 + }, + { + "start": 6363.36, + "end": 6364.96, + "probability": 0.6089 + }, + { + "start": 6365.5, + "end": 6366.62, + "probability": 0.8324 + }, + { + "start": 6367.36, + "end": 6368.4, + "probability": 0.8817 + }, + { + "start": 6368.56, + "end": 6372.36, + "probability": 0.9141 + }, + { + "start": 6373.02, + "end": 6378.64, + "probability": 0.9919 + }, + { + "start": 6379.16, + "end": 6383.86, + "probability": 0.7026 + }, + { + "start": 6384.6, + "end": 6387.1, + "probability": 0.9409 + }, + { + "start": 6387.88, + "end": 6389.86, + "probability": 0.7419 + }, + { + "start": 6390.32, + "end": 6392.76, + "probability": 0.9124 + }, + { + "start": 6393.28, + "end": 6394.36, + "probability": 0.9714 + }, + { + "start": 6394.9, + "end": 6397.18, + "probability": 0.995 + }, + { + "start": 6398.62, + "end": 6399.94, + "probability": 0.9151 + }, + { + "start": 6400.42, + "end": 6405.46, + "probability": 0.8832 + }, + { + "start": 6405.9, + "end": 6406.98, + "probability": 0.6121 + }, + { + "start": 6407.22, + "end": 6408.88, + "probability": 0.8894 + }, + { + "start": 6409.66, + "end": 6410.38, + "probability": 0.916 + }, + { + "start": 6410.9, + "end": 6412.44, + "probability": 0.9005 + }, + { + "start": 6412.86, + "end": 6420.86, + "probability": 0.8606 + }, + { + "start": 6421.32, + "end": 6422.84, + "probability": 0.9657 + }, + { + "start": 6424.63, + "end": 6426.66, + "probability": 0.8213 + }, + { + "start": 6426.66, + "end": 6427.04, + "probability": 0.7271 + }, + { + "start": 6427.44, + "end": 6428.64, + "probability": 0.8668 + }, + { + "start": 6429.8, + "end": 6434.4, + "probability": 0.9799 + }, + { + "start": 6435.14, + "end": 6441.4, + "probability": 0.9858 + }, + { + "start": 6443.58, + "end": 6443.68, + "probability": 0.1827 + }, + { + "start": 6443.68, + "end": 6449.36, + "probability": 0.7692 + }, + { + "start": 6449.8, + "end": 6454.2, + "probability": 0.9788 + }, + { + "start": 6454.46, + "end": 6456.02, + "probability": 0.624 + }, + { + "start": 6456.52, + "end": 6459.24, + "probability": 0.8741 + }, + { + "start": 6459.7, + "end": 6460.9, + "probability": 0.7407 + }, + { + "start": 6461.28, + "end": 6462.82, + "probability": 0.5607 + }, + { + "start": 6463.44, + "end": 6466.3, + "probability": 0.7212 + }, + { + "start": 6466.52, + "end": 6469.32, + "probability": 0.747 + }, + { + "start": 6469.86, + "end": 6470.98, + "probability": 0.9294 + }, + { + "start": 6471.28, + "end": 6472.06, + "probability": 0.891 + }, + { + "start": 6472.26, + "end": 6473.1, + "probability": 0.7172 + }, + { + "start": 6473.5, + "end": 6477.44, + "probability": 0.7725 + }, + { + "start": 6477.8, + "end": 6480.42, + "probability": 0.9939 + }, + { + "start": 6481.2, + "end": 6482.84, + "probability": 0.8315 + }, + { + "start": 6483.46, + "end": 6485.96, + "probability": 0.8755 + }, + { + "start": 6486.34, + "end": 6493.98, + "probability": 0.967 + }, + { + "start": 6494.38, + "end": 6501.88, + "probability": 0.8833 + }, + { + "start": 6502.16, + "end": 6504.5, + "probability": 0.4795 + }, + { + "start": 6504.9, + "end": 6508.16, + "probability": 0.9917 + }, + { + "start": 6508.16, + "end": 6511.24, + "probability": 0.9973 + }, + { + "start": 6512.34, + "end": 6513.96, + "probability": 0.7922 + }, + { + "start": 6514.28, + "end": 6521.56, + "probability": 0.9872 + }, + { + "start": 6522.18, + "end": 6524.42, + "probability": 0.9489 + }, + { + "start": 6524.74, + "end": 6527.36, + "probability": 0.9938 + }, + { + "start": 6528.26, + "end": 6529.38, + "probability": 0.7642 + }, + { + "start": 6530.08, + "end": 6533.3, + "probability": 0.9837 + }, + { + "start": 6533.78, + "end": 6537.16, + "probability": 0.9192 + }, + { + "start": 6537.16, + "end": 6541.64, + "probability": 0.9873 + }, + { + "start": 6542.4, + "end": 6545.4, + "probability": 0.768 + }, + { + "start": 6546.0, + "end": 6549.2, + "probability": 0.598 + }, + { + "start": 6549.84, + "end": 6553.1, + "probability": 0.9577 + }, + { + "start": 6553.52, + "end": 6554.68, + "probability": 0.948 + }, + { + "start": 6555.04, + "end": 6556.77, + "probability": 0.9741 + }, + { + "start": 6557.3, + "end": 6559.88, + "probability": 0.7872 + }, + { + "start": 6560.18, + "end": 6560.8, + "probability": 0.776 + }, + { + "start": 6564.74, + "end": 6567.44, + "probability": 0.667 + }, + { + "start": 6567.54, + "end": 6569.21, + "probability": 0.6165 + }, + { + "start": 6569.94, + "end": 6570.2, + "probability": 0.5944 + }, + { + "start": 6570.38, + "end": 6571.34, + "probability": 0.6068 + }, + { + "start": 6571.38, + "end": 6572.42, + "probability": 0.7825 + }, + { + "start": 6573.56, + "end": 6574.46, + "probability": 0.571 + }, + { + "start": 6575.28, + "end": 6575.6, + "probability": 0.814 + }, + { + "start": 6575.64, + "end": 6580.07, + "probability": 0.6922 + }, + { + "start": 6580.9, + "end": 6583.52, + "probability": 0.9336 + }, + { + "start": 6599.62, + "end": 6600.48, + "probability": 0.7175 + }, + { + "start": 6607.08, + "end": 6608.38, + "probability": 0.6431 + }, + { + "start": 6609.44, + "end": 6610.7, + "probability": 0.8538 + }, + { + "start": 6612.42, + "end": 6616.34, + "probability": 0.8353 + }, + { + "start": 6619.42, + "end": 6620.46, + "probability": 0.7665 + }, + { + "start": 6622.24, + "end": 6623.4, + "probability": 0.8901 + }, + { + "start": 6625.14, + "end": 6626.34, + "probability": 0.6397 + }, + { + "start": 6626.64, + "end": 6632.65, + "probability": 0.9878 + }, + { + "start": 6633.66, + "end": 6635.86, + "probability": 0.8859 + }, + { + "start": 6636.92, + "end": 6643.68, + "probability": 0.9438 + }, + { + "start": 6645.02, + "end": 6650.0, + "probability": 0.9832 + }, + { + "start": 6651.68, + "end": 6654.76, + "probability": 0.9088 + }, + { + "start": 6655.3, + "end": 6659.8, + "probability": 0.9575 + }, + { + "start": 6661.6, + "end": 6662.32, + "probability": 0.9091 + }, + { + "start": 6662.42, + "end": 6664.72, + "probability": 0.9718 + }, + { + "start": 6664.72, + "end": 6668.32, + "probability": 0.9978 + }, + { + "start": 6668.98, + "end": 6676.26, + "probability": 0.9954 + }, + { + "start": 6678.0, + "end": 6681.46, + "probability": 0.9968 + }, + { + "start": 6682.06, + "end": 6687.26, + "probability": 0.9854 + }, + { + "start": 6688.86, + "end": 6688.94, + "probability": 0.0299 + }, + { + "start": 6688.94, + "end": 6692.08, + "probability": 0.4943 + }, + { + "start": 6693.12, + "end": 6693.12, + "probability": 0.0256 + }, + { + "start": 6693.12, + "end": 6697.54, + "probability": 0.9675 + }, + { + "start": 6698.94, + "end": 6699.38, + "probability": 0.5511 + }, + { + "start": 6699.48, + "end": 6701.2, + "probability": 0.8199 + }, + { + "start": 6701.46, + "end": 6706.44, + "probability": 0.9868 + }, + { + "start": 6706.44, + "end": 6711.18, + "probability": 0.0696 + }, + { + "start": 6711.18, + "end": 6711.18, + "probability": 0.1707 + }, + { + "start": 6711.18, + "end": 6711.18, + "probability": 0.1869 + }, + { + "start": 6711.18, + "end": 6716.42, + "probability": 0.709 + }, + { + "start": 6717.6, + "end": 6717.6, + "probability": 0.0431 + }, + { + "start": 6717.6, + "end": 6717.6, + "probability": 0.0879 + }, + { + "start": 6717.6, + "end": 6720.46, + "probability": 0.5184 + }, + { + "start": 6721.38, + "end": 6721.52, + "probability": 0.2695 + }, + { + "start": 6721.52, + "end": 6722.91, + "probability": 0.5624 + }, + { + "start": 6723.16, + "end": 6723.52, + "probability": 0.2026 + }, + { + "start": 6723.74, + "end": 6724.24, + "probability": 0.1964 + }, + { + "start": 6724.24, + "end": 6725.26, + "probability": 0.9201 + }, + { + "start": 6725.86, + "end": 6731.6, + "probability": 0.8989 + }, + { + "start": 6732.24, + "end": 6735.44, + "probability": 0.9919 + }, + { + "start": 6736.48, + "end": 6739.14, + "probability": 0.9801 + }, + { + "start": 6739.24, + "end": 6741.96, + "probability": 0.8549 + }, + { + "start": 6742.56, + "end": 6746.42, + "probability": 0.9963 + }, + { + "start": 6746.68, + "end": 6754.06, + "probability": 0.9941 + }, + { + "start": 6754.6, + "end": 6762.24, + "probability": 0.9912 + }, + { + "start": 6763.2, + "end": 6767.48, + "probability": 0.9941 + }, + { + "start": 6768.52, + "end": 6771.98, + "probability": 0.9749 + }, + { + "start": 6771.98, + "end": 6775.48, + "probability": 0.9975 + }, + { + "start": 6776.6, + "end": 6777.34, + "probability": 0.6757 + }, + { + "start": 6777.46, + "end": 6782.36, + "probability": 0.9799 + }, + { + "start": 6782.64, + "end": 6785.84, + "probability": 0.9155 + }, + { + "start": 6786.92, + "end": 6792.68, + "probability": 0.9939 + }, + { + "start": 6794.0, + "end": 6799.46, + "probability": 0.9943 + }, + { + "start": 6800.12, + "end": 6805.48, + "probability": 0.9912 + }, + { + "start": 6805.52, + "end": 6810.58, + "probability": 0.9826 + }, + { + "start": 6811.6, + "end": 6814.84, + "probability": 0.6911 + }, + { + "start": 6814.92, + "end": 6818.34, + "probability": 0.9951 + }, + { + "start": 6818.34, + "end": 6821.62, + "probability": 0.7582 + }, + { + "start": 6822.14, + "end": 6824.34, + "probability": 0.8914 + }, + { + "start": 6825.08, + "end": 6828.6, + "probability": 0.8958 + }, + { + "start": 6829.24, + "end": 6829.76, + "probability": 0.9565 + }, + { + "start": 6831.24, + "end": 6832.0, + "probability": 0.6169 + }, + { + "start": 6832.08, + "end": 6832.66, + "probability": 0.8837 + }, + { + "start": 6832.76, + "end": 6836.8, + "probability": 0.9611 + }, + { + "start": 6839.3, + "end": 6842.7, + "probability": 0.9677 + }, + { + "start": 6842.7, + "end": 6846.42, + "probability": 0.9022 + }, + { + "start": 6846.42, + "end": 6851.82, + "probability": 0.8901 + }, + { + "start": 6852.78, + "end": 6853.26, + "probability": 0.598 + }, + { + "start": 6853.4, + "end": 6856.28, + "probability": 0.9797 + }, + { + "start": 6856.28, + "end": 6859.34, + "probability": 0.9951 + }, + { + "start": 6859.62, + "end": 6860.94, + "probability": 0.2934 + }, + { + "start": 6861.2, + "end": 6864.58, + "probability": 0.8855 + }, + { + "start": 6865.54, + "end": 6868.92, + "probability": 0.9886 + }, + { + "start": 6869.04, + "end": 6870.24, + "probability": 0.4714 + }, + { + "start": 6873.18, + "end": 6874.92, + "probability": 0.389 + }, + { + "start": 6874.92, + "end": 6874.92, + "probability": 0.4631 + }, + { + "start": 6874.92, + "end": 6875.42, + "probability": 0.2489 + }, + { + "start": 6876.5, + "end": 6880.66, + "probability": 0.9632 + }, + { + "start": 6880.66, + "end": 6884.66, + "probability": 0.9655 + }, + { + "start": 6886.18, + "end": 6889.24, + "probability": 0.6132 + }, + { + "start": 6889.3, + "end": 6892.86, + "probability": 0.9853 + }, + { + "start": 6893.08, + "end": 6896.36, + "probability": 0.9656 + }, + { + "start": 6896.36, + "end": 6901.08, + "probability": 0.9951 + }, + { + "start": 6901.78, + "end": 6905.64, + "probability": 0.9963 + }, + { + "start": 6905.64, + "end": 6908.98, + "probability": 0.9967 + }, + { + "start": 6910.48, + "end": 6915.96, + "probability": 0.9885 + }, + { + "start": 6916.0, + "end": 6920.66, + "probability": 0.9902 + }, + { + "start": 6920.66, + "end": 6923.66, + "probability": 0.985 + }, + { + "start": 6923.7, + "end": 6935.0, + "probability": 0.98 + }, + { + "start": 6935.92, + "end": 6936.72, + "probability": 0.9762 + }, + { + "start": 6938.12, + "end": 6942.9, + "probability": 0.9968 + }, + { + "start": 6942.9, + "end": 6948.2, + "probability": 0.9581 + }, + { + "start": 6948.46, + "end": 6951.18, + "probability": 0.9961 + }, + { + "start": 6951.84, + "end": 6957.02, + "probability": 0.9932 + }, + { + "start": 6957.02, + "end": 6962.6, + "probability": 0.9679 + }, + { + "start": 6963.66, + "end": 6968.44, + "probability": 0.9917 + }, + { + "start": 6969.04, + "end": 6970.32, + "probability": 0.7611 + }, + { + "start": 6971.2, + "end": 6974.5, + "probability": 0.6723 + }, + { + "start": 6974.7, + "end": 6980.02, + "probability": 0.9913 + }, + { + "start": 6980.02, + "end": 6984.7, + "probability": 0.8896 + }, + { + "start": 6985.32, + "end": 6988.2, + "probability": 0.6905 + }, + { + "start": 6988.98, + "end": 6995.0, + "probability": 0.9961 + }, + { + "start": 6995.66, + "end": 7000.98, + "probability": 0.9752 + }, + { + "start": 7003.18, + "end": 7003.48, + "probability": 0.4722 + }, + { + "start": 7004.0, + "end": 7005.96, + "probability": 0.974 + }, + { + "start": 7006.26, + "end": 7011.14, + "probability": 0.9968 + }, + { + "start": 7011.14, + "end": 7016.56, + "probability": 0.9786 + }, + { + "start": 7017.46, + "end": 7019.84, + "probability": 0.9932 + }, + { + "start": 7020.52, + "end": 7021.76, + "probability": 0.9829 + }, + { + "start": 7028.98, + "end": 7032.62, + "probability": 0.9991 + }, + { + "start": 7034.24, + "end": 7035.26, + "probability": 0.8998 + }, + { + "start": 7036.56, + "end": 7039.02, + "probability": 0.9456 + }, + { + "start": 7040.42, + "end": 7043.58, + "probability": 0.6758 + }, + { + "start": 7044.36, + "end": 7046.44, + "probability": 0.9519 + }, + { + "start": 7047.74, + "end": 7051.32, + "probability": 0.8934 + }, + { + "start": 7051.32, + "end": 7055.0, + "probability": 0.9837 + }, + { + "start": 7055.32, + "end": 7057.34, + "probability": 0.8932 + }, + { + "start": 7058.1, + "end": 7061.3, + "probability": 0.9574 + }, + { + "start": 7061.3, + "end": 7065.18, + "probability": 0.9836 + }, + { + "start": 7066.1, + "end": 7071.18, + "probability": 0.9849 + }, + { + "start": 7072.12, + "end": 7076.1, + "probability": 0.9966 + }, + { + "start": 7076.27, + "end": 7081.72, + "probability": 0.9967 + }, + { + "start": 7081.94, + "end": 7082.74, + "probability": 0.8635 + }, + { + "start": 7082.9, + "end": 7085.46, + "probability": 0.9885 + }, + { + "start": 7086.4, + "end": 7086.9, + "probability": 0.4643 + }, + { + "start": 7086.98, + "end": 7092.36, + "probability": 0.7991 + }, + { + "start": 7092.76, + "end": 7092.76, + "probability": 0.0906 + }, + { + "start": 7092.76, + "end": 7096.9, + "probability": 0.9529 + }, + { + "start": 7096.9, + "end": 7101.34, + "probability": 0.9867 + }, + { + "start": 7102.6, + "end": 7105.88, + "probability": 0.9631 + }, + { + "start": 7105.88, + "end": 7108.92, + "probability": 0.9945 + }, + { + "start": 7110.1, + "end": 7110.3, + "probability": 0.6517 + }, + { + "start": 7110.42, + "end": 7116.0, + "probability": 0.9493 + }, + { + "start": 7116.94, + "end": 7122.04, + "probability": 0.9966 + }, + { + "start": 7122.04, + "end": 7131.2, + "probability": 0.9303 + }, + { + "start": 7131.34, + "end": 7131.82, + "probability": 0.8387 + }, + { + "start": 7132.84, + "end": 7139.86, + "probability": 0.9075 + }, + { + "start": 7140.96, + "end": 7145.51, + "probability": 0.9465 + }, + { + "start": 7150.13, + "end": 7153.86, + "probability": 0.7837 + }, + { + "start": 7154.94, + "end": 7159.5, + "probability": 0.8823 + }, + { + "start": 7161.59, + "end": 7164.32, + "probability": 0.9965 + }, + { + "start": 7164.32, + "end": 7167.94, + "probability": 0.9997 + }, + { + "start": 7168.94, + "end": 7172.66, + "probability": 0.9883 + }, + { + "start": 7173.44, + "end": 7177.96, + "probability": 0.9338 + }, + { + "start": 7178.84, + "end": 7180.52, + "probability": 0.9848 + }, + { + "start": 7180.96, + "end": 7184.18, + "probability": 0.9836 + }, + { + "start": 7184.84, + "end": 7187.2, + "probability": 0.9953 + }, + { + "start": 7188.44, + "end": 7193.42, + "probability": 0.9377 + }, + { + "start": 7193.42, + "end": 7199.28, + "probability": 0.9807 + }, + { + "start": 7200.46, + "end": 7206.88, + "probability": 0.9861 + }, + { + "start": 7207.52, + "end": 7210.54, + "probability": 0.9384 + }, + { + "start": 7211.26, + "end": 7215.04, + "probability": 0.784 + }, + { + "start": 7216.02, + "end": 7217.28, + "probability": 0.9787 + }, + { + "start": 7217.4, + "end": 7221.42, + "probability": 0.9915 + }, + { + "start": 7221.52, + "end": 7225.24, + "probability": 0.8942 + }, + { + "start": 7225.78, + "end": 7226.62, + "probability": 0.2493 + }, + { + "start": 7227.06, + "end": 7230.84, + "probability": 0.7576 + }, + { + "start": 7231.82, + "end": 7232.02, + "probability": 0.0041 + }, + { + "start": 7232.02, + "end": 7232.44, + "probability": 0.7234 + }, + { + "start": 7232.58, + "end": 7235.51, + "probability": 0.9849 + }, + { + "start": 7236.04, + "end": 7237.38, + "probability": 0.7857 + }, + { + "start": 7238.46, + "end": 7238.64, + "probability": 0.4987 + }, + { + "start": 7239.7, + "end": 7241.6, + "probability": 0.8122 + }, + { + "start": 7241.68, + "end": 7243.38, + "probability": 0.8909 + }, + { + "start": 7244.6, + "end": 7244.92, + "probability": 0.0286 + }, + { + "start": 7245.14, + "end": 7247.88, + "probability": 0.9443 + }, + { + "start": 7247.96, + "end": 7249.04, + "probability": 0.5648 + }, + { + "start": 7249.52, + "end": 7250.88, + "probability": 0.8178 + }, + { + "start": 7251.36, + "end": 7252.42, + "probability": 0.9798 + }, + { + "start": 7252.6, + "end": 7254.5, + "probability": 0.8621 + }, + { + "start": 7255.04, + "end": 7261.86, + "probability": 0.9591 + }, + { + "start": 7262.28, + "end": 7263.76, + "probability": 0.5478 + }, + { + "start": 7264.28, + "end": 7264.48, + "probability": 0.075 + }, + { + "start": 7265.32, + "end": 7268.92, + "probability": 0.9301 + }, + { + "start": 7268.92, + "end": 7273.24, + "probability": 0.9711 + }, + { + "start": 7275.3, + "end": 7276.32, + "probability": 0.1989 + }, + { + "start": 7276.74, + "end": 7282.7, + "probability": 0.9478 + }, + { + "start": 7283.14, + "end": 7283.4, + "probability": 0.0702 + }, + { + "start": 7283.74, + "end": 7287.86, + "probability": 0.9741 + }, + { + "start": 7287.86, + "end": 7290.3, + "probability": 0.8592 + }, + { + "start": 7290.88, + "end": 7294.84, + "probability": 0.9833 + }, + { + "start": 7295.68, + "end": 7299.26, + "probability": 0.9986 + }, + { + "start": 7299.26, + "end": 7304.54, + "probability": 0.9943 + }, + { + "start": 7305.04, + "end": 7305.78, + "probability": 0.5843 + }, + { + "start": 7306.94, + "end": 7307.34, + "probability": 0.5014 + }, + { + "start": 7307.78, + "end": 7309.46, + "probability": 0.6532 + }, + { + "start": 7309.86, + "end": 7312.1, + "probability": 0.7511 + }, + { + "start": 7313.34, + "end": 7314.62, + "probability": 0.3491 + }, + { + "start": 7314.94, + "end": 7316.72, + "probability": 0.6477 + }, + { + "start": 7317.06, + "end": 7318.9, + "probability": 0.4402 + }, + { + "start": 7319.08, + "end": 7321.1, + "probability": 0.6221 + }, + { + "start": 7321.26, + "end": 7322.46, + "probability": 0.5874 + }, + { + "start": 7322.82, + "end": 7324.76, + "probability": 0.8086 + }, + { + "start": 7324.98, + "end": 7325.18, + "probability": 0.8683 + }, + { + "start": 7325.26, + "end": 7326.52, + "probability": 0.9288 + }, + { + "start": 7326.6, + "end": 7329.21, + "probability": 0.4717 + }, + { + "start": 7330.4, + "end": 7333.47, + "probability": 0.9502 + }, + { + "start": 7334.02, + "end": 7335.46, + "probability": 0.2532 + }, + { + "start": 7336.5, + "end": 7337.7, + "probability": 0.7494 + }, + { + "start": 7337.94, + "end": 7340.34, + "probability": 0.8184 + }, + { + "start": 7342.54, + "end": 7344.98, + "probability": 0.2808 + }, + { + "start": 7345.52, + "end": 7347.5, + "probability": 0.7454 + }, + { + "start": 7347.58, + "end": 7348.5, + "probability": 0.986 + }, + { + "start": 7364.28, + "end": 7365.12, + "probability": 0.8527 + }, + { + "start": 7365.48, + "end": 7366.14, + "probability": 0.5813 + }, + { + "start": 7369.34, + "end": 7370.44, + "probability": 0.6669 + }, + { + "start": 7370.62, + "end": 7371.66, + "probability": 0.8306 + }, + { + "start": 7371.96, + "end": 7374.9, + "probability": 0.9675 + }, + { + "start": 7375.44, + "end": 7376.4, + "probability": 0.7394 + }, + { + "start": 7377.08, + "end": 7380.78, + "probability": 0.9736 + }, + { + "start": 7380.84, + "end": 7383.35, + "probability": 0.7185 + }, + { + "start": 7384.52, + "end": 7389.34, + "probability": 0.9636 + }, + { + "start": 7389.9, + "end": 7390.7, + "probability": 0.7004 + }, + { + "start": 7391.24, + "end": 7392.2, + "probability": 0.8413 + }, + { + "start": 7392.62, + "end": 7395.28, + "probability": 0.9953 + }, + { + "start": 7396.44, + "end": 7397.38, + "probability": 0.9471 + }, + { + "start": 7397.96, + "end": 7399.44, + "probability": 0.9743 + }, + { + "start": 7400.18, + "end": 7406.08, + "probability": 0.9872 + }, + { + "start": 7406.62, + "end": 7408.32, + "probability": 0.8599 + }, + { + "start": 7409.4, + "end": 7411.3, + "probability": 0.8564 + }, + { + "start": 7411.38, + "end": 7413.02, + "probability": 0.7365 + }, + { + "start": 7413.52, + "end": 7417.54, + "probability": 0.9974 + }, + { + "start": 7417.98, + "end": 7422.89, + "probability": 0.9382 + }, + { + "start": 7424.08, + "end": 7429.98, + "probability": 0.9881 + }, + { + "start": 7430.78, + "end": 7436.02, + "probability": 0.9954 + }, + { + "start": 7436.68, + "end": 7439.2, + "probability": 0.6927 + }, + { + "start": 7439.38, + "end": 7441.54, + "probability": 0.9148 + }, + { + "start": 7442.06, + "end": 7444.9, + "probability": 0.958 + }, + { + "start": 7445.42, + "end": 7447.6, + "probability": 0.9987 + }, + { + "start": 7448.12, + "end": 7456.32, + "probability": 0.9264 + }, + { + "start": 7456.32, + "end": 7460.8, + "probability": 0.9972 + }, + { + "start": 7461.4, + "end": 7464.42, + "probability": 0.9711 + }, + { + "start": 7464.44, + "end": 7467.66, + "probability": 0.9832 + }, + { + "start": 7468.16, + "end": 7470.08, + "probability": 0.9631 + }, + { + "start": 7470.56, + "end": 7471.44, + "probability": 0.8624 + }, + { + "start": 7471.6, + "end": 7476.88, + "probability": 0.8692 + }, + { + "start": 7476.88, + "end": 7481.48, + "probability": 0.8792 + }, + { + "start": 7482.14, + "end": 7484.72, + "probability": 0.7195 + }, + { + "start": 7485.3, + "end": 7490.74, + "probability": 0.8934 + }, + { + "start": 7491.36, + "end": 7495.96, + "probability": 0.9386 + }, + { + "start": 7495.96, + "end": 7502.25, + "probability": 0.9979 + }, + { + "start": 7503.94, + "end": 7504.94, + "probability": 0.8228 + }, + { + "start": 7505.1, + "end": 7507.68, + "probability": 0.7657 + }, + { + "start": 7508.86, + "end": 7512.12, + "probability": 0.8656 + }, + { + "start": 7513.48, + "end": 7514.84, + "probability": 0.9022 + }, + { + "start": 7514.94, + "end": 7519.56, + "probability": 0.9348 + }, + { + "start": 7519.58, + "end": 7524.2, + "probability": 0.9751 + }, + { + "start": 7525.1, + "end": 7529.2, + "probability": 0.9893 + }, + { + "start": 7529.8, + "end": 7532.14, + "probability": 0.9922 + }, + { + "start": 7532.84, + "end": 7537.5, + "probability": 0.9485 + }, + { + "start": 7538.0, + "end": 7542.54, + "probability": 0.9849 + }, + { + "start": 7543.16, + "end": 7545.52, + "probability": 0.9785 + }, + { + "start": 7546.1, + "end": 7550.34, + "probability": 0.9984 + }, + { + "start": 7550.34, + "end": 7555.08, + "probability": 0.9219 + }, + { + "start": 7555.78, + "end": 7559.86, + "probability": 0.8848 + }, + { + "start": 7560.44, + "end": 7565.21, + "probability": 0.9201 + }, + { + "start": 7565.86, + "end": 7567.16, + "probability": 0.9407 + }, + { + "start": 7567.64, + "end": 7572.22, + "probability": 0.8101 + }, + { + "start": 7572.3, + "end": 7576.92, + "probability": 0.8665 + }, + { + "start": 7577.66, + "end": 7578.14, + "probability": 0.4654 + }, + { + "start": 7578.9, + "end": 7582.9, + "probability": 0.9702 + }, + { + "start": 7583.38, + "end": 7584.88, + "probability": 0.9915 + }, + { + "start": 7585.48, + "end": 7587.64, + "probability": 0.9943 + }, + { + "start": 7587.64, + "end": 7591.67, + "probability": 0.9684 + }, + { + "start": 7592.66, + "end": 7596.28, + "probability": 0.9559 + }, + { + "start": 7596.28, + "end": 7599.36, + "probability": 0.9885 + }, + { + "start": 7599.84, + "end": 7600.42, + "probability": 0.6542 + }, + { + "start": 7600.44, + "end": 7602.92, + "probability": 0.9369 + }, + { + "start": 7602.92, + "end": 7606.86, + "probability": 0.999 + }, + { + "start": 7607.32, + "end": 7611.52, + "probability": 0.9914 + }, + { + "start": 7612.08, + "end": 7614.66, + "probability": 0.9852 + }, + { + "start": 7615.16, + "end": 7617.94, + "probability": 0.9836 + }, + { + "start": 7618.2, + "end": 7618.9, + "probability": 0.4269 + }, + { + "start": 7618.96, + "end": 7625.42, + "probability": 0.9779 + }, + { + "start": 7626.1, + "end": 7631.62, + "probability": 0.9614 + }, + { + "start": 7632.44, + "end": 7633.82, + "probability": 0.9304 + }, + { + "start": 7633.9, + "end": 7639.4, + "probability": 0.9609 + }, + { + "start": 7640.44, + "end": 7642.88, + "probability": 0.7849 + }, + { + "start": 7643.62, + "end": 7645.12, + "probability": 0.9941 + }, + { + "start": 7645.98, + "end": 7649.58, + "probability": 0.9274 + }, + { + "start": 7650.06, + "end": 7656.24, + "probability": 0.9608 + }, + { + "start": 7656.58, + "end": 7657.14, + "probability": 0.6996 + }, + { + "start": 7658.9, + "end": 7660.16, + "probability": 0.5411 + }, + { + "start": 7660.54, + "end": 7664.7, + "probability": 0.646 + }, + { + "start": 7664.84, + "end": 7666.36, + "probability": 0.7375 + }, + { + "start": 7672.02, + "end": 7673.9, + "probability": 0.672 + }, + { + "start": 7675.62, + "end": 7676.05, + "probability": 0.917 + }, + { + "start": 7678.32, + "end": 7680.24, + "probability": 0.977 + }, + { + "start": 7681.26, + "end": 7682.9, + "probability": 0.9214 + }, + { + "start": 7684.12, + "end": 7685.78, + "probability": 0.6107 + }, + { + "start": 7687.54, + "end": 7687.88, + "probability": 0.4853 + }, + { + "start": 7688.59, + "end": 7690.4, + "probability": 0.7044 + }, + { + "start": 7691.72, + "end": 7695.04, + "probability": 0.5869 + }, + { + "start": 7695.68, + "end": 7697.36, + "probability": 0.8553 + }, + { + "start": 7699.38, + "end": 7700.32, + "probability": 0.0928 + }, + { + "start": 7702.14, + "end": 7704.37, + "probability": 0.962 + }, + { + "start": 7705.62, + "end": 7706.58, + "probability": 0.4772 + }, + { + "start": 7707.04, + "end": 7712.04, + "probability": 0.2797 + }, + { + "start": 7712.48, + "end": 7714.5, + "probability": 0.7688 + }, + { + "start": 7715.04, + "end": 7716.44, + "probability": 0.5339 + }, + { + "start": 7717.73, + "end": 7721.96, + "probability": 0.9962 + }, + { + "start": 7723.06, + "end": 7725.68, + "probability": 0.9992 + }, + { + "start": 7726.54, + "end": 7730.96, + "probability": 0.9736 + }, + { + "start": 7731.66, + "end": 7734.1, + "probability": 0.9968 + }, + { + "start": 7734.96, + "end": 7739.76, + "probability": 0.9902 + }, + { + "start": 7740.46, + "end": 7744.4, + "probability": 0.9988 + }, + { + "start": 7744.4, + "end": 7747.24, + "probability": 0.9892 + }, + { + "start": 7748.18, + "end": 7750.86, + "probability": 0.9154 + }, + { + "start": 7751.38, + "end": 7753.74, + "probability": 0.6734 + }, + { + "start": 7754.36, + "end": 7755.14, + "probability": 0.4829 + }, + { + "start": 7755.72, + "end": 7756.28, + "probability": 0.483 + }, + { + "start": 7757.02, + "end": 7758.96, + "probability": 0.9902 + }, + { + "start": 7759.68, + "end": 7763.82, + "probability": 0.999 + }, + { + "start": 7764.48, + "end": 7766.74, + "probability": 0.9905 + }, + { + "start": 7767.44, + "end": 7769.12, + "probability": 0.9963 + }, + { + "start": 7769.66, + "end": 7771.16, + "probability": 0.717 + }, + { + "start": 7771.9, + "end": 7774.36, + "probability": 0.9814 + }, + { + "start": 7774.98, + "end": 7777.3, + "probability": 0.9463 + }, + { + "start": 7778.34, + "end": 7782.2, + "probability": 0.9919 + }, + { + "start": 7783.0, + "end": 7786.5, + "probability": 0.9962 + }, + { + "start": 7787.3, + "end": 7790.48, + "probability": 0.9824 + }, + { + "start": 7791.04, + "end": 7793.52, + "probability": 0.8592 + }, + { + "start": 7794.14, + "end": 7796.48, + "probability": 0.9886 + }, + { + "start": 7797.3, + "end": 7802.06, + "probability": 0.9793 + }, + { + "start": 7802.44, + "end": 7804.06, + "probability": 0.9901 + }, + { + "start": 7804.9, + "end": 7806.99, + "probability": 0.9938 + }, + { + "start": 7807.56, + "end": 7809.92, + "probability": 0.9754 + }, + { + "start": 7810.22, + "end": 7813.66, + "probability": 0.91 + }, + { + "start": 7814.2, + "end": 7816.98, + "probability": 0.8395 + }, + { + "start": 7817.92, + "end": 7824.36, + "probability": 0.9951 + }, + { + "start": 7825.1, + "end": 7829.48, + "probability": 0.9658 + }, + { + "start": 7830.3, + "end": 7832.7, + "probability": 0.9883 + }, + { + "start": 7833.1, + "end": 7837.5, + "probability": 0.9207 + }, + { + "start": 7838.08, + "end": 7841.72, + "probability": 0.9718 + }, + { + "start": 7842.2, + "end": 7847.1, + "probability": 0.9786 + }, + { + "start": 7847.7, + "end": 7853.52, + "probability": 0.9903 + }, + { + "start": 7854.48, + "end": 7858.76, + "probability": 0.998 + }, + { + "start": 7859.44, + "end": 7861.68, + "probability": 0.9937 + }, + { + "start": 7862.18, + "end": 7865.84, + "probability": 0.9838 + }, + { + "start": 7865.84, + "end": 7870.5, + "probability": 0.9988 + }, + { + "start": 7870.58, + "end": 7871.3, + "probability": 0.7031 + }, + { + "start": 7872.16, + "end": 7877.36, + "probability": 0.9033 + }, + { + "start": 7877.98, + "end": 7878.62, + "probability": 0.3988 + }, + { + "start": 7879.14, + "end": 7883.2, + "probability": 0.8452 + }, + { + "start": 7884.32, + "end": 7887.62, + "probability": 0.9969 + }, + { + "start": 7888.36, + "end": 7889.55, + "probability": 0.8143 + }, + { + "start": 7890.58, + "end": 7894.12, + "probability": 0.5339 + }, + { + "start": 7894.56, + "end": 7896.4, + "probability": 0.9945 + }, + { + "start": 7896.98, + "end": 7902.82, + "probability": 0.9747 + }, + { + "start": 7903.0, + "end": 7906.36, + "probability": 0.9844 + }, + { + "start": 7906.96, + "end": 7911.28, + "probability": 0.7422 + }, + { + "start": 7911.84, + "end": 7916.62, + "probability": 0.9745 + }, + { + "start": 7917.7, + "end": 7921.1, + "probability": 0.987 + }, + { + "start": 7921.1, + "end": 7926.42, + "probability": 0.9993 + }, + { + "start": 7927.14, + "end": 7932.6, + "probability": 0.9993 + }, + { + "start": 7933.12, + "end": 7934.52, + "probability": 0.9966 + }, + { + "start": 7935.0, + "end": 7937.6, + "probability": 0.4005 + }, + { + "start": 7937.68, + "end": 7941.94, + "probability": 0.8013 + }, + { + "start": 7942.62, + "end": 7944.92, + "probability": 0.8599 + }, + { + "start": 7945.34, + "end": 7948.28, + "probability": 0.9292 + }, + { + "start": 7948.82, + "end": 7951.54, + "probability": 0.9932 + }, + { + "start": 7951.54, + "end": 7956.58, + "probability": 0.9067 + }, + { + "start": 7957.62, + "end": 7958.2, + "probability": 0.1492 + }, + { + "start": 7958.86, + "end": 7964.08, + "probability": 0.979 + }, + { + "start": 7964.8, + "end": 7967.32, + "probability": 0.8311 + }, + { + "start": 7967.86, + "end": 7969.86, + "probability": 0.9448 + }, + { + "start": 7970.06, + "end": 7971.68, + "probability": 0.9946 + }, + { + "start": 7971.86, + "end": 7972.88, + "probability": 0.8175 + }, + { + "start": 7973.86, + "end": 7976.14, + "probability": 0.9945 + }, + { + "start": 7978.34, + "end": 7986.95, + "probability": 0.9848 + }, + { + "start": 7988.62, + "end": 7992.94, + "probability": 0.9834 + }, + { + "start": 7994.1, + "end": 7996.96, + "probability": 0.8934 + }, + { + "start": 7997.92, + "end": 8004.02, + "probability": 0.9971 + }, + { + "start": 8004.3, + "end": 8005.22, + "probability": 0.8149 + }, + { + "start": 8006.44, + "end": 8007.2, + "probability": 0.7431 + }, + { + "start": 8007.98, + "end": 8011.06, + "probability": 0.8834 + }, + { + "start": 8011.7, + "end": 8015.56, + "probability": 0.8767 + }, + { + "start": 8016.1, + "end": 8018.34, + "probability": 0.9354 + }, + { + "start": 8019.26, + "end": 8024.7, + "probability": 0.9832 + }, + { + "start": 8024.7, + "end": 8030.64, + "probability": 0.9911 + }, + { + "start": 8030.66, + "end": 8031.34, + "probability": 0.5863 + }, + { + "start": 8031.88, + "end": 8032.64, + "probability": 0.6287 + }, + { + "start": 8032.98, + "end": 8033.34, + "probability": 0.5975 + }, + { + "start": 8033.44, + "end": 8034.38, + "probability": 0.809 + }, + { + "start": 8034.74, + "end": 8038.42, + "probability": 0.997 + }, + { + "start": 8038.56, + "end": 8038.92, + "probability": 0.8799 + }, + { + "start": 8038.94, + "end": 8039.58, + "probability": 0.6726 + }, + { + "start": 8039.72, + "end": 8042.26, + "probability": 0.6602 + }, + { + "start": 8043.2, + "end": 8043.84, + "probability": 0.3428 + }, + { + "start": 8043.92, + "end": 8046.49, + "probability": 0.8066 + }, + { + "start": 8060.0, + "end": 8061.12, + "probability": 0.6947 + }, + { + "start": 8062.34, + "end": 8064.46, + "probability": 0.7052 + }, + { + "start": 8065.9, + "end": 8068.36, + "probability": 0.9958 + }, + { + "start": 8070.22, + "end": 8071.66, + "probability": 0.9707 + }, + { + "start": 8071.78, + "end": 8073.3, + "probability": 0.9958 + }, + { + "start": 8073.34, + "end": 8073.9, + "probability": 0.2614 + }, + { + "start": 8075.3, + "end": 8077.0, + "probability": 0.9639 + }, + { + "start": 8077.66, + "end": 8080.8, + "probability": 0.6655 + }, + { + "start": 8083.3, + "end": 8085.36, + "probability": 0.8977 + }, + { + "start": 8086.24, + "end": 8088.86, + "probability": 0.9733 + }, + { + "start": 8088.86, + "end": 8091.62, + "probability": 0.9463 + }, + { + "start": 8092.3, + "end": 8092.88, + "probability": 0.7342 + }, + { + "start": 8094.24, + "end": 8096.78, + "probability": 0.8918 + }, + { + "start": 8098.22, + "end": 8099.08, + "probability": 0.4503 + }, + { + "start": 8099.92, + "end": 8104.88, + "probability": 0.9871 + }, + { + "start": 8108.92, + "end": 8111.83, + "probability": 0.9871 + }, + { + "start": 8113.62, + "end": 8115.56, + "probability": 0.9846 + }, + { + "start": 8118.5, + "end": 8119.34, + "probability": 0.9008 + }, + { + "start": 8120.68, + "end": 8121.45, + "probability": 0.9644 + }, + { + "start": 8121.64, + "end": 8122.2, + "probability": 0.6788 + }, + { + "start": 8122.34, + "end": 8122.8, + "probability": 0.7978 + }, + { + "start": 8122.98, + "end": 8124.7, + "probability": 0.9932 + }, + { + "start": 8127.92, + "end": 8129.82, + "probability": 0.9711 + }, + { + "start": 8131.16, + "end": 8131.77, + "probability": 0.9848 + }, + { + "start": 8133.28, + "end": 8134.14, + "probability": 0.9988 + }, + { + "start": 8135.06, + "end": 8137.54, + "probability": 0.9635 + }, + { + "start": 8138.14, + "end": 8140.1, + "probability": 0.9907 + }, + { + "start": 8142.82, + "end": 8144.34, + "probability": 0.9985 + }, + { + "start": 8145.88, + "end": 8149.0, + "probability": 0.9459 + }, + { + "start": 8149.62, + "end": 8149.94, + "probability": 0.8201 + }, + { + "start": 8151.22, + "end": 8154.42, + "probability": 0.951 + }, + { + "start": 8155.82, + "end": 8156.66, + "probability": 0.8332 + }, + { + "start": 8157.42, + "end": 8159.18, + "probability": 0.9691 + }, + { + "start": 8159.94, + "end": 8162.92, + "probability": 0.9258 + }, + { + "start": 8163.58, + "end": 8164.12, + "probability": 0.4897 + }, + { + "start": 8165.68, + "end": 8168.7, + "probability": 0.9897 + }, + { + "start": 8169.64, + "end": 8171.68, + "probability": 0.969 + }, + { + "start": 8173.87, + "end": 8175.98, + "probability": 0.9779 + }, + { + "start": 8176.04, + "end": 8176.82, + "probability": 0.6674 + }, + { + "start": 8176.82, + "end": 8177.3, + "probability": 0.8718 + }, + { + "start": 8177.58, + "end": 8178.85, + "probability": 0.8657 + }, + { + "start": 8179.98, + "end": 8181.58, + "probability": 0.9766 + }, + { + "start": 8183.02, + "end": 8188.88, + "probability": 0.9844 + }, + { + "start": 8189.02, + "end": 8190.06, + "probability": 0.9506 + }, + { + "start": 8192.2, + "end": 8194.56, + "probability": 0.9962 + }, + { + "start": 8195.42, + "end": 8196.32, + "probability": 0.5046 + }, + { + "start": 8197.38, + "end": 8198.08, + "probability": 0.9092 + }, + { + "start": 8199.42, + "end": 8202.18, + "probability": 0.9903 + }, + { + "start": 8203.66, + "end": 8206.32, + "probability": 0.9964 + }, + { + "start": 8206.84, + "end": 8212.64, + "probability": 0.998 + }, + { + "start": 8213.42, + "end": 8214.5, + "probability": 0.9014 + }, + { + "start": 8215.8, + "end": 8216.98, + "probability": 0.5043 + }, + { + "start": 8218.9, + "end": 8221.72, + "probability": 0.9958 + }, + { + "start": 8221.72, + "end": 8225.88, + "probability": 0.9965 + }, + { + "start": 8227.82, + "end": 8231.38, + "probability": 0.9924 + }, + { + "start": 8232.68, + "end": 8233.89, + "probability": 0.8954 + }, + { + "start": 8234.6, + "end": 8235.36, + "probability": 0.8854 + }, + { + "start": 8236.66, + "end": 8239.76, + "probability": 0.9307 + }, + { + "start": 8241.22, + "end": 8242.18, + "probability": 0.9946 + }, + { + "start": 8242.46, + "end": 8242.95, + "probability": 0.7275 + }, + { + "start": 8243.1, + "end": 8244.74, + "probability": 0.937 + }, + { + "start": 8245.5, + "end": 8247.52, + "probability": 0.9933 + }, + { + "start": 8247.92, + "end": 8249.88, + "probability": 0.8104 + }, + { + "start": 8249.92, + "end": 8250.62, + "probability": 0.9438 + }, + { + "start": 8251.1, + "end": 8251.76, + "probability": 0.7925 + }, + { + "start": 8252.7, + "end": 8253.16, + "probability": 0.8421 + }, + { + "start": 8255.04, + "end": 8256.1, + "probability": 0.9148 + }, + { + "start": 8258.12, + "end": 8259.44, + "probability": 0.9451 + }, + { + "start": 8261.6, + "end": 8262.36, + "probability": 0.9745 + }, + { + "start": 8262.74, + "end": 8263.44, + "probability": 0.9686 + }, + { + "start": 8263.56, + "end": 8264.12, + "probability": 0.9802 + }, + { + "start": 8264.2, + "end": 8265.52, + "probability": 0.7089 + }, + { + "start": 8268.12, + "end": 8272.0, + "probability": 0.998 + }, + { + "start": 8273.12, + "end": 8274.38, + "probability": 0.9902 + }, + { + "start": 8275.38, + "end": 8281.1, + "probability": 0.9761 + }, + { + "start": 8282.12, + "end": 8283.26, + "probability": 0.85 + }, + { + "start": 8284.04, + "end": 8288.9, + "probability": 0.985 + }, + { + "start": 8289.92, + "end": 8292.9, + "probability": 0.9519 + }, + { + "start": 8293.32, + "end": 8296.78, + "probability": 0.9691 + }, + { + "start": 8296.94, + "end": 8299.56, + "probability": 0.7101 + }, + { + "start": 8300.22, + "end": 8301.52, + "probability": 0.7216 + }, + { + "start": 8302.28, + "end": 8303.25, + "probability": 0.9922 + }, + { + "start": 8304.48, + "end": 8305.28, + "probability": 0.6757 + }, + { + "start": 8305.4, + "end": 8307.82, + "probability": 0.7079 + }, + { + "start": 8307.88, + "end": 8308.46, + "probability": 0.4262 + }, + { + "start": 8309.58, + "end": 8310.73, + "probability": 0.8837 + }, + { + "start": 8311.38, + "end": 8316.14, + "probability": 0.9677 + }, + { + "start": 8317.12, + "end": 8321.8, + "probability": 0.9779 + }, + { + "start": 8322.76, + "end": 8324.36, + "probability": 0.8608 + }, + { + "start": 8326.06, + "end": 8329.36, + "probability": 0.9941 + }, + { + "start": 8331.2, + "end": 8332.5, + "probability": 0.9956 + }, + { + "start": 8333.64, + "end": 8335.08, + "probability": 0.8161 + }, + { + "start": 8336.7, + "end": 8337.6, + "probability": 0.9472 + }, + { + "start": 8338.44, + "end": 8342.3, + "probability": 0.9814 + }, + { + "start": 8342.7, + "end": 8343.26, + "probability": 0.9064 + }, + { + "start": 8343.76, + "end": 8346.21, + "probability": 0.9907 + }, + { + "start": 8347.44, + "end": 8348.16, + "probability": 0.5954 + }, + { + "start": 8348.84, + "end": 8349.4, + "probability": 0.8094 + }, + { + "start": 8350.08, + "end": 8351.44, + "probability": 0.9651 + }, + { + "start": 8351.68, + "end": 8352.74, + "probability": 0.9966 + }, + { + "start": 8353.5, + "end": 8353.72, + "probability": 0.854 + }, + { + "start": 8355.0, + "end": 8355.64, + "probability": 0.7575 + }, + { + "start": 8355.88, + "end": 8359.02, + "probability": 0.657 + }, + { + "start": 8359.92, + "end": 8362.16, + "probability": 0.7528 + }, + { + "start": 8364.08, + "end": 8364.46, + "probability": 0.7131 + }, + { + "start": 8373.04, + "end": 8374.06, + "probability": 0.4714 + }, + { + "start": 8375.34, + "end": 8376.26, + "probability": 0.4656 + }, + { + "start": 8379.88, + "end": 8382.97, + "probability": 0.7928 + }, + { + "start": 8383.62, + "end": 8384.8, + "probability": 0.2642 + }, + { + "start": 8385.04, + "end": 8387.08, + "probability": 0.9377 + }, + { + "start": 8391.26, + "end": 8394.22, + "probability": 0.3924 + }, + { + "start": 8394.3, + "end": 8394.98, + "probability": 0.73 + }, + { + "start": 8398.1, + "end": 8401.02, + "probability": 0.8 + }, + { + "start": 8402.08, + "end": 8402.88, + "probability": 0.9531 + }, + { + "start": 8403.66, + "end": 8405.41, + "probability": 0.9907 + }, + { + "start": 8407.06, + "end": 8408.18, + "probability": 0.9946 + }, + { + "start": 8408.26, + "end": 8412.72, + "probability": 0.9681 + }, + { + "start": 8412.8, + "end": 8412.92, + "probability": 0.0683 + }, + { + "start": 8412.94, + "end": 8413.74, + "probability": 0.5195 + }, + { + "start": 8413.84, + "end": 8415.0, + "probability": 0.9214 + }, + { + "start": 8415.87, + "end": 8418.92, + "probability": 0.8385 + }, + { + "start": 8418.94, + "end": 8420.68, + "probability": 0.8695 + }, + { + "start": 8420.88, + "end": 8424.02, + "probability": 0.9959 + }, + { + "start": 8424.04, + "end": 8425.12, + "probability": 0.4671 + }, + { + "start": 8425.26, + "end": 8426.58, + "probability": 0.7293 + }, + { + "start": 8426.68, + "end": 8428.78, + "probability": 0.96 + }, + { + "start": 8429.38, + "end": 8430.07, + "probability": 0.9966 + }, + { + "start": 8431.02, + "end": 8432.6, + "probability": 0.7144 + }, + { + "start": 8432.74, + "end": 8434.2, + "probability": 0.9263 + }, + { + "start": 8434.66, + "end": 8436.6, + "probability": 0.939 + }, + { + "start": 8436.74, + "end": 8442.58, + "probability": 0.9685 + }, + { + "start": 8442.8, + "end": 8444.12, + "probability": 0.9766 + }, + { + "start": 8444.66, + "end": 8449.64, + "probability": 0.9028 + }, + { + "start": 8450.26, + "end": 8450.9, + "probability": 0.6279 + }, + { + "start": 8451.7, + "end": 8452.89, + "probability": 0.9956 + }, + { + "start": 8454.08, + "end": 8454.76, + "probability": 0.5307 + }, + { + "start": 8455.14, + "end": 8456.38, + "probability": 0.0143 + }, + { + "start": 8457.0, + "end": 8457.61, + "probability": 0.8823 + }, + { + "start": 8458.16, + "end": 8461.18, + "probability": 0.9705 + }, + { + "start": 8461.72, + "end": 8462.6, + "probability": 0.5999 + }, + { + "start": 8463.4, + "end": 8464.82, + "probability": 0.5366 + }, + { + "start": 8464.92, + "end": 8466.91, + "probability": 0.7594 + }, + { + "start": 8467.54, + "end": 8468.28, + "probability": 0.1091 + }, + { + "start": 8468.94, + "end": 8475.6, + "probability": 0.9933 + }, + { + "start": 8475.6, + "end": 8480.46, + "probability": 0.9888 + }, + { + "start": 8480.54, + "end": 8480.82, + "probability": 0.4474 + }, + { + "start": 8483.72, + "end": 8484.58, + "probability": 0.7944 + }, + { + "start": 8484.68, + "end": 8485.86, + "probability": 0.8009 + }, + { + "start": 8486.04, + "end": 8488.42, + "probability": 0.4607 + }, + { + "start": 8488.88, + "end": 8490.08, + "probability": 0.5608 + }, + { + "start": 8491.26, + "end": 8493.76, + "probability": 0.2016 + }, + { + "start": 8493.8, + "end": 8495.74, + "probability": 0.7012 + }, + { + "start": 8495.82, + "end": 8496.43, + "probability": 0.9966 + }, + { + "start": 8496.72, + "end": 8497.21, + "probability": 0.871 + }, + { + "start": 8498.3, + "end": 8498.77, + "probability": 0.9595 + }, + { + "start": 8499.08, + "end": 8500.16, + "probability": 0.9827 + }, + { + "start": 8501.7, + "end": 8502.92, + "probability": 0.3054 + }, + { + "start": 8503.8, + "end": 8505.38, + "probability": 0.601 + }, + { + "start": 8506.14, + "end": 8506.64, + "probability": 0.9055 + }, + { + "start": 8506.74, + "end": 8511.1, + "probability": 0.8944 + }, + { + "start": 8512.2, + "end": 8515.68, + "probability": 0.8701 + }, + { + "start": 8516.02, + "end": 8517.66, + "probability": 0.9234 + }, + { + "start": 8518.22, + "end": 8519.72, + "probability": 0.9924 + }, + { + "start": 8520.24, + "end": 8520.88, + "probability": 0.6144 + }, + { + "start": 8520.94, + "end": 8522.05, + "probability": 0.8793 + }, + { + "start": 8522.44, + "end": 8523.7, + "probability": 0.995 + }, + { + "start": 8523.78, + "end": 8524.59, + "probability": 0.9557 + }, + { + "start": 8526.12, + "end": 8527.88, + "probability": 0.5504 + }, + { + "start": 8528.02, + "end": 8529.72, + "probability": 0.4544 + }, + { + "start": 8529.82, + "end": 8535.02, + "probability": 0.9976 + }, + { + "start": 8535.62, + "end": 8538.68, + "probability": 0.7727 + }, + { + "start": 8539.24, + "end": 8541.35, + "probability": 0.0635 + }, + { + "start": 8542.34, + "end": 8543.04, + "probability": 0.5022 + }, + { + "start": 8543.04, + "end": 8543.04, + "probability": 0.5119 + }, + { + "start": 8543.18, + "end": 8545.12, + "probability": 0.0075 + }, + { + "start": 8545.64, + "end": 8545.88, + "probability": 0.2454 + }, + { + "start": 8545.88, + "end": 8545.88, + "probability": 0.0036 + }, + { + "start": 8545.88, + "end": 8545.88, + "probability": 0.2289 + }, + { + "start": 8545.88, + "end": 8546.88, + "probability": 0.8371 + }, + { + "start": 8547.54, + "end": 8550.04, + "probability": 0.2757 + }, + { + "start": 8550.04, + "end": 8552.76, + "probability": 0.7355 + }, + { + "start": 8552.98, + "end": 8554.86, + "probability": 0.6017 + }, + { + "start": 8554.86, + "end": 8557.22, + "probability": 0.0835 + }, + { + "start": 8557.22, + "end": 8558.59, + "probability": 0.0442 + }, + { + "start": 8559.46, + "end": 8560.6, + "probability": 0.5596 + }, + { + "start": 8561.12, + "end": 8562.26, + "probability": 0.6495 + }, + { + "start": 8562.7, + "end": 8563.92, + "probability": 0.9824 + }, + { + "start": 8563.98, + "end": 8564.68, + "probability": 0.8297 + }, + { + "start": 8564.8, + "end": 8571.08, + "probability": 0.9673 + }, + { + "start": 8571.24, + "end": 8572.66, + "probability": 0.7437 + }, + { + "start": 8572.88, + "end": 8576.26, + "probability": 0.9805 + }, + { + "start": 8576.86, + "end": 8579.34, + "probability": 0.9932 + }, + { + "start": 8579.92, + "end": 8581.46, + "probability": 0.9978 + }, + { + "start": 8582.14, + "end": 8583.26, + "probability": 0.8915 + }, + { + "start": 8586.86, + "end": 8588.26, + "probability": 0.5463 + }, + { + "start": 8588.26, + "end": 8589.1, + "probability": 0.6573 + }, + { + "start": 8589.56, + "end": 8591.98, + "probability": 0.8113 + }, + { + "start": 8592.18, + "end": 8592.69, + "probability": 0.5158 + }, + { + "start": 8593.64, + "end": 8595.6, + "probability": 0.9227 + }, + { + "start": 8596.28, + "end": 8597.04, + "probability": 0.1442 + }, + { + "start": 8597.16, + "end": 8598.12, + "probability": 0.5714 + }, + { + "start": 8598.34, + "end": 8599.04, + "probability": 0.8721 + }, + { + "start": 8599.5, + "end": 8599.5, + "probability": 0.2303 + }, + { + "start": 8599.5, + "end": 8601.82, + "probability": 0.6564 + }, + { + "start": 8602.12, + "end": 8602.28, + "probability": 0.0003 + }, + { + "start": 8603.04, + "end": 8603.36, + "probability": 0.1982 + }, + { + "start": 8603.98, + "end": 8603.98, + "probability": 0.0899 + }, + { + "start": 8603.98, + "end": 8605.22, + "probability": 0.7193 + }, + { + "start": 8605.3, + "end": 8605.98, + "probability": 0.6472 + }, + { + "start": 8606.1, + "end": 8608.44, + "probability": 0.9831 + }, + { + "start": 8608.46, + "end": 8610.24, + "probability": 0.932 + }, + { + "start": 8610.38, + "end": 8611.02, + "probability": 0.625 + }, + { + "start": 8611.24, + "end": 8611.84, + "probability": 0.5317 + }, + { + "start": 8611.92, + "end": 8613.46, + "probability": 0.7829 + }, + { + "start": 8614.36, + "end": 8617.98, + "probability": 0.4457 + }, + { + "start": 8618.1, + "end": 8618.8, + "probability": 0.8467 + }, + { + "start": 8618.9, + "end": 8619.42, + "probability": 0.6868 + }, + { + "start": 8619.8, + "end": 8620.63, + "probability": 0.6665 + }, + { + "start": 8620.98, + "end": 8626.6, + "probability": 0.9952 + }, + { + "start": 8626.6, + "end": 8631.58, + "probability": 0.9956 + }, + { + "start": 8632.96, + "end": 8634.28, + "probability": 0.7018 + }, + { + "start": 8634.56, + "end": 8636.14, + "probability": 0.9962 + }, + { + "start": 8636.84, + "end": 8638.54, + "probability": 0.9923 + }, + { + "start": 8639.18, + "end": 8640.34, + "probability": 0.996 + }, + { + "start": 8640.44, + "end": 8643.34, + "probability": 0.9861 + }, + { + "start": 8643.4, + "end": 8644.62, + "probability": 0.9742 + }, + { + "start": 8645.14, + "end": 8649.8, + "probability": 0.989 + }, + { + "start": 8650.14, + "end": 8653.6, + "probability": 0.9748 + }, + { + "start": 8653.6, + "end": 8656.8, + "probability": 0.9965 + }, + { + "start": 8657.24, + "end": 8660.58, + "probability": 0.9984 + }, + { + "start": 8660.74, + "end": 8663.24, + "probability": 0.9946 + }, + { + "start": 8663.4, + "end": 8664.48, + "probability": 0.9941 + }, + { + "start": 8665.0, + "end": 8665.65, + "probability": 0.9331 + }, + { + "start": 8667.1, + "end": 8667.52, + "probability": 0.8093 + }, + { + "start": 8668.28, + "end": 8668.28, + "probability": 0.027 + }, + { + "start": 8669.02, + "end": 8669.8, + "probability": 0.334 + }, + { + "start": 8670.9, + "end": 8673.46, + "probability": 0.8464 + }, + { + "start": 8674.18, + "end": 8674.68, + "probability": 0.9458 + }, + { + "start": 8676.9, + "end": 8678.36, + "probability": 0.2131 + }, + { + "start": 8678.4, + "end": 8679.86, + "probability": 0.9355 + }, + { + "start": 8680.28, + "end": 8681.94, + "probability": 0.9561 + }, + { + "start": 8682.42, + "end": 8683.66, + "probability": 0.9669 + }, + { + "start": 8683.98, + "end": 8684.4, + "probability": 0.5093 + }, + { + "start": 8685.58, + "end": 8690.44, + "probability": 0.9213 + }, + { + "start": 8690.54, + "end": 8693.46, + "probability": 0.983 + }, + { + "start": 8693.8, + "end": 8694.36, + "probability": 0.0236 + }, + { + "start": 8696.52, + "end": 8698.38, + "probability": 0.2947 + }, + { + "start": 8699.74, + "end": 8700.3, + "probability": 0.1091 + }, + { + "start": 8700.6, + "end": 8701.96, + "probability": 0.1881 + }, + { + "start": 8702.7, + "end": 8703.26, + "probability": 0.1828 + }, + { + "start": 8703.74, + "end": 8704.54, + "probability": 0.3199 + }, + { + "start": 8704.54, + "end": 8704.54, + "probability": 0.1046 + }, + { + "start": 8704.54, + "end": 8706.74, + "probability": 0.2076 + }, + { + "start": 8707.02, + "end": 8707.36, + "probability": 0.4901 + }, + { + "start": 8708.0, + "end": 8710.68, + "probability": 0.6605 + }, + { + "start": 8710.68, + "end": 8710.94, + "probability": 0.7349 + }, + { + "start": 8711.2, + "end": 8712.08, + "probability": 0.7513 + }, + { + "start": 8712.18, + "end": 8714.88, + "probability": 0.6168 + }, + { + "start": 8715.0, + "end": 8716.8, + "probability": 0.9169 + }, + { + "start": 8716.88, + "end": 8719.8, + "probability": 0.9988 + }, + { + "start": 8719.88, + "end": 8721.28, + "probability": 0.2913 + }, + { + "start": 8721.34, + "end": 8722.24, + "probability": 0.3082 + }, + { + "start": 8722.5, + "end": 8723.84, + "probability": 0.9866 + }, + { + "start": 8724.48, + "end": 8727.98, + "probability": 0.9323 + }, + { + "start": 8728.38, + "end": 8729.64, + "probability": 0.9021 + }, + { + "start": 8730.76, + "end": 8733.4, + "probability": 0.933 + }, + { + "start": 8733.4, + "end": 8739.3, + "probability": 0.7116 + }, + { + "start": 8739.38, + "end": 8739.94, + "probability": 0.734 + }, + { + "start": 8740.06, + "end": 8740.76, + "probability": 0.7646 + }, + { + "start": 8740.88, + "end": 8741.26, + "probability": 0.6748 + }, + { + "start": 8741.38, + "end": 8742.88, + "probability": 0.6896 + }, + { + "start": 8743.4, + "end": 8745.15, + "probability": 0.0274 + }, + { + "start": 8746.5, + "end": 8746.5, + "probability": 0.0657 + }, + { + "start": 8746.5, + "end": 8746.5, + "probability": 0.1076 + }, + { + "start": 8746.5, + "end": 8746.5, + "probability": 0.4768 + }, + { + "start": 8746.5, + "end": 8746.5, + "probability": 0.1766 + }, + { + "start": 8746.5, + "end": 8747.16, + "probability": 0.2941 + }, + { + "start": 8747.34, + "end": 8748.2, + "probability": 0.3207 + }, + { + "start": 8749.24, + "end": 8750.46, + "probability": 0.3294 + }, + { + "start": 8763.3, + "end": 8767.42, + "probability": 0.4664 + }, + { + "start": 8768.28, + "end": 8768.28, + "probability": 0.2375 + }, + { + "start": 8768.28, + "end": 8768.28, + "probability": 0.0259 + }, + { + "start": 8768.28, + "end": 8768.82, + "probability": 0.1163 + }, + { + "start": 8769.36, + "end": 8770.42, + "probability": 0.8464 + }, + { + "start": 8770.92, + "end": 8774.5, + "probability": 0.8296 + }, + { + "start": 8775.44, + "end": 8778.78, + "probability": 0.9582 + }, + { + "start": 8779.4, + "end": 8780.5, + "probability": 0.6885 + }, + { + "start": 8781.82, + "end": 8783.5, + "probability": 0.7341 + }, + { + "start": 8784.2, + "end": 8787.94, + "probability": 0.9648 + }, + { + "start": 8788.86, + "end": 8795.52, + "probability": 0.9901 + }, + { + "start": 8796.4, + "end": 8799.48, + "probability": 0.9503 + }, + { + "start": 8800.08, + "end": 8801.2, + "probability": 0.9888 + }, + { + "start": 8801.54, + "end": 8806.48, + "probability": 0.8542 + }, + { + "start": 8806.92, + "end": 8807.38, + "probability": 0.0103 + }, + { + "start": 8807.38, + "end": 8808.7, + "probability": 0.0341 + }, + { + "start": 8809.7, + "end": 8810.72, + "probability": 0.8667 + }, + { + "start": 8811.38, + "end": 8816.58, + "probability": 0.9583 + }, + { + "start": 8817.38, + "end": 8820.52, + "probability": 0.9772 + }, + { + "start": 8820.86, + "end": 8823.8, + "probability": 0.9193 + }, + { + "start": 8824.48, + "end": 8825.58, + "probability": 0.7836 + }, + { + "start": 8826.42, + "end": 8831.7, + "probability": 0.9948 + }, + { + "start": 8831.7, + "end": 8835.24, + "probability": 0.998 + }, + { + "start": 8835.88, + "end": 8837.86, + "probability": 0.9839 + }, + { + "start": 8839.54, + "end": 8841.89, + "probability": 0.8506 + }, + { + "start": 8843.2, + "end": 8843.56, + "probability": 0.2482 + }, + { + "start": 8844.3, + "end": 8845.12, + "probability": 0.3486 + }, + { + "start": 8847.56, + "end": 8851.26, + "probability": 0.5554 + }, + { + "start": 8851.84, + "end": 8855.7, + "probability": 0.5892 + }, + { + "start": 8856.66, + "end": 8857.68, + "probability": 0.701 + }, + { + "start": 8858.68, + "end": 8863.0, + "probability": 0.9956 + }, + { + "start": 8863.5, + "end": 8867.78, + "probability": 0.9807 + }, + { + "start": 8868.48, + "end": 8869.04, + "probability": 0.8794 + }, + { + "start": 8869.82, + "end": 8871.92, + "probability": 0.5574 + }, + { + "start": 8874.08, + "end": 8877.46, + "probability": 0.9143 + }, + { + "start": 8878.14, + "end": 8879.94, + "probability": 0.9658 + }, + { + "start": 8880.46, + "end": 8881.38, + "probability": 0.7174 + }, + { + "start": 8882.04, + "end": 8882.5, + "probability": 0.9796 + }, + { + "start": 8882.86, + "end": 8886.32, + "probability": 0.4408 + }, + { + "start": 8886.92, + "end": 8886.92, + "probability": 0.0418 + }, + { + "start": 8886.92, + "end": 8886.92, + "probability": 0.3583 + }, + { + "start": 8886.92, + "end": 8888.76, + "probability": 0.7707 + }, + { + "start": 8889.58, + "end": 8893.24, + "probability": 0.947 + }, + { + "start": 8894.2, + "end": 8897.8, + "probability": 0.9976 + }, + { + "start": 8898.3, + "end": 8898.86, + "probability": 0.9631 + }, + { + "start": 8899.16, + "end": 8899.94, + "probability": 0.5406 + }, + { + "start": 8900.42, + "end": 8901.5, + "probability": 0.963 + }, + { + "start": 8902.2, + "end": 8904.4, + "probability": 0.989 + }, + { + "start": 8905.86, + "end": 8907.14, + "probability": 0.9065 + }, + { + "start": 8907.68, + "end": 8910.58, + "probability": 0.9883 + }, + { + "start": 8911.42, + "end": 8913.07, + "probability": 0.9872 + }, + { + "start": 8913.66, + "end": 8916.64, + "probability": 0.9958 + }, + { + "start": 8917.14, + "end": 8917.57, + "probability": 0.5629 + }, + { + "start": 8918.34, + "end": 8918.84, + "probability": 0.9211 + }, + { + "start": 8918.96, + "end": 8920.2, + "probability": 0.9909 + }, + { + "start": 8920.52, + "end": 8921.94, + "probability": 0.9728 + }, + { + "start": 8922.44, + "end": 8923.78, + "probability": 0.953 + }, + { + "start": 8925.1, + "end": 8929.26, + "probability": 0.9717 + }, + { + "start": 8930.1, + "end": 8931.26, + "probability": 0.9722 + }, + { + "start": 8933.48, + "end": 8936.13, + "probability": 0.979 + }, + { + "start": 8936.96, + "end": 8938.96, + "probability": 0.9929 + }, + { + "start": 8939.5, + "end": 8941.62, + "probability": 0.8838 + }, + { + "start": 8941.9, + "end": 8945.28, + "probability": 0.9956 + }, + { + "start": 8945.48, + "end": 8947.44, + "probability": 0.6981 + }, + { + "start": 8948.2, + "end": 8949.94, + "probability": 0.1486 + }, + { + "start": 8949.94, + "end": 8949.98, + "probability": 0.1523 + }, + { + "start": 8949.98, + "end": 8953.5, + "probability": 0.7957 + }, + { + "start": 8954.18, + "end": 8955.46, + "probability": 0.8306 + }, + { + "start": 8955.94, + "end": 8958.56, + "probability": 0.9942 + }, + { + "start": 8959.72, + "end": 8960.62, + "probability": 0.9941 + }, + { + "start": 8961.26, + "end": 8963.0, + "probability": 0.9977 + }, + { + "start": 8963.32, + "end": 8965.66, + "probability": 0.7229 + }, + { + "start": 8966.44, + "end": 8968.24, + "probability": 0.9247 + }, + { + "start": 8968.64, + "end": 8969.8, + "probability": 0.9091 + }, + { + "start": 8970.08, + "end": 8971.62, + "probability": 0.7371 + }, + { + "start": 8973.3, + "end": 8977.0, + "probability": 0.9785 + }, + { + "start": 8977.12, + "end": 8977.64, + "probability": 0.9785 + }, + { + "start": 8979.64, + "end": 8981.54, + "probability": 0.8674 + }, + { + "start": 8982.74, + "end": 8984.6, + "probability": 0.6699 + }, + { + "start": 8984.9, + "end": 8986.55, + "probability": 0.7265 + }, + { + "start": 8990.78, + "end": 8996.3, + "probability": 0.8973 + }, + { + "start": 8997.06, + "end": 8999.2, + "probability": 0.9963 + }, + { + "start": 8999.2, + "end": 9002.94, + "probability": 0.9985 + }, + { + "start": 9003.2, + "end": 9006.08, + "probability": 0.9786 + }, + { + "start": 9006.2, + "end": 9008.0, + "probability": 0.9897 + }, + { + "start": 9009.52, + "end": 9013.24, + "probability": 0.9952 + }, + { + "start": 9013.66, + "end": 9014.76, + "probability": 0.9165 + }, + { + "start": 9015.16, + "end": 9017.44, + "probability": 0.9958 + }, + { + "start": 9018.18, + "end": 9022.26, + "probability": 0.9959 + }, + { + "start": 9022.8, + "end": 9024.98, + "probability": 0.9949 + }, + { + "start": 9025.32, + "end": 9026.14, + "probability": 0.7597 + }, + { + "start": 9026.64, + "end": 9026.86, + "probability": 0.9521 + }, + { + "start": 9028.02, + "end": 9028.9, + "probability": 0.9779 + }, + { + "start": 9029.32, + "end": 9030.64, + "probability": 0.9971 + }, + { + "start": 9031.18, + "end": 9035.1, + "probability": 0.9871 + }, + { + "start": 9037.0, + "end": 9037.68, + "probability": 0.9766 + }, + { + "start": 9037.82, + "end": 9042.62, + "probability": 0.9933 + }, + { + "start": 9043.46, + "end": 9047.84, + "probability": 0.9939 + }, + { + "start": 9047.84, + "end": 9051.9, + "probability": 0.9965 + }, + { + "start": 9052.58, + "end": 9057.62, + "probability": 0.9966 + }, + { + "start": 9058.06, + "end": 9058.52, + "probability": 0.3598 + }, + { + "start": 9059.22, + "end": 9061.84, + "probability": 0.876 + }, + { + "start": 9062.5, + "end": 9066.1, + "probability": 0.9912 + }, + { + "start": 9066.5, + "end": 9067.92, + "probability": 0.2672 + }, + { + "start": 9068.0, + "end": 9068.82, + "probability": 0.4803 + }, + { + "start": 9069.14, + "end": 9070.8, + "probability": 0.8251 + }, + { + "start": 9071.16, + "end": 9075.12, + "probability": 0.9689 + }, + { + "start": 9075.8, + "end": 9076.68, + "probability": 0.8921 + }, + { + "start": 9077.12, + "end": 9079.82, + "probability": 0.8664 + }, + { + "start": 9080.2, + "end": 9083.12, + "probability": 0.9696 + }, + { + "start": 9083.4, + "end": 9085.16, + "probability": 0.927 + }, + { + "start": 9085.54, + "end": 9088.38, + "probability": 0.9343 + }, + { + "start": 9088.92, + "end": 9090.44, + "probability": 0.9632 + }, + { + "start": 9090.52, + "end": 9092.0, + "probability": 0.994 + }, + { + "start": 9092.18, + "end": 9093.76, + "probability": 0.9497 + }, + { + "start": 9093.76, + "end": 9094.66, + "probability": 0.4329 + }, + { + "start": 9094.66, + "end": 9095.94, + "probability": 0.7228 + }, + { + "start": 9096.54, + "end": 9097.46, + "probability": 0.3183 + }, + { + "start": 9097.6, + "end": 9100.56, + "probability": 0.8953 + }, + { + "start": 9100.76, + "end": 9104.14, + "probability": 0.9706 + }, + { + "start": 9104.22, + "end": 9104.92, + "probability": 0.8972 + }, + { + "start": 9105.44, + "end": 9107.02, + "probability": 0.7949 + }, + { + "start": 9118.3, + "end": 9119.68, + "probability": 0.5105 + }, + { + "start": 9120.68, + "end": 9123.54, + "probability": 0.8047 + }, + { + "start": 9124.08, + "end": 9125.6, + "probability": 0.2382 + }, + { + "start": 9125.7, + "end": 9130.3, + "probability": 0.8073 + }, + { + "start": 9130.58, + "end": 9135.52, + "probability": 0.9234 + }, + { + "start": 9135.54, + "end": 9140.82, + "probability": 0.9983 + }, + { + "start": 9141.06, + "end": 9144.74, + "probability": 0.8601 + }, + { + "start": 9145.36, + "end": 9149.94, + "probability": 0.981 + }, + { + "start": 9150.08, + "end": 9153.24, + "probability": 0.9717 + }, + { + "start": 9154.34, + "end": 9156.42, + "probability": 0.9145 + }, + { + "start": 9156.84, + "end": 9159.07, + "probability": 0.83 + }, + { + "start": 9159.32, + "end": 9167.9, + "probability": 0.9867 + }, + { + "start": 9169.2, + "end": 9174.1, + "probability": 0.9907 + }, + { + "start": 9174.1, + "end": 9179.82, + "probability": 0.975 + }, + { + "start": 9180.14, + "end": 9180.6, + "probability": 0.6383 + }, + { + "start": 9180.72, + "end": 9185.68, + "probability": 0.9935 + }, + { + "start": 9186.94, + "end": 9190.76, + "probability": 0.8809 + }, + { + "start": 9191.44, + "end": 9193.8, + "probability": 0.7579 + }, + { + "start": 9194.68, + "end": 9195.84, + "probability": 0.9417 + }, + { + "start": 9196.02, + "end": 9197.03, + "probability": 0.9849 + }, + { + "start": 9197.08, + "end": 9197.84, + "probability": 0.9549 + }, + { + "start": 9197.88, + "end": 9198.78, + "probability": 0.9751 + }, + { + "start": 9198.84, + "end": 9199.86, + "probability": 0.9837 + }, + { + "start": 9199.88, + "end": 9203.62, + "probability": 0.9678 + }, + { + "start": 9203.72, + "end": 9206.7, + "probability": 0.9561 + }, + { + "start": 9207.74, + "end": 9212.52, + "probability": 0.9982 + }, + { + "start": 9212.84, + "end": 9214.04, + "probability": 0.9379 + }, + { + "start": 9214.46, + "end": 9218.76, + "probability": 0.9932 + }, + { + "start": 9219.96, + "end": 9221.08, + "probability": 0.9629 + }, + { + "start": 9221.92, + "end": 9223.7, + "probability": 0.8633 + }, + { + "start": 9224.96, + "end": 9226.42, + "probability": 0.9519 + }, + { + "start": 9226.84, + "end": 9228.9, + "probability": 0.3454 + }, + { + "start": 9229.08, + "end": 9234.12, + "probability": 0.9839 + }, + { + "start": 9234.74, + "end": 9236.24, + "probability": 0.881 + }, + { + "start": 9236.9, + "end": 9238.62, + "probability": 0.8429 + }, + { + "start": 9239.26, + "end": 9242.24, + "probability": 0.9941 + }, + { + "start": 9242.6, + "end": 9244.18, + "probability": 0.9621 + }, + { + "start": 9245.0, + "end": 9247.58, + "probability": 0.9619 + }, + { + "start": 9248.2, + "end": 9251.98, + "probability": 0.9867 + }, + { + "start": 9252.56, + "end": 9254.78, + "probability": 0.856 + }, + { + "start": 9256.04, + "end": 9258.46, + "probability": 0.9962 + }, + { + "start": 9259.9, + "end": 9266.5, + "probability": 0.9881 + }, + { + "start": 9267.1, + "end": 9270.3, + "probability": 0.9687 + }, + { + "start": 9271.18, + "end": 9271.74, + "probability": 0.885 + }, + { + "start": 9271.9, + "end": 9279.48, + "probability": 0.9878 + }, + { + "start": 9280.68, + "end": 9286.66, + "probability": 0.9982 + }, + { + "start": 9287.96, + "end": 9290.1, + "probability": 0.8152 + }, + { + "start": 9290.88, + "end": 9292.2, + "probability": 0.9173 + }, + { + "start": 9292.76, + "end": 9295.54, + "probability": 0.9973 + }, + { + "start": 9297.18, + "end": 9298.5, + "probability": 0.5291 + }, + { + "start": 9298.76, + "end": 9300.28, + "probability": 0.7953 + }, + { + "start": 9301.68, + "end": 9303.36, + "probability": 0.3095 + }, + { + "start": 9304.74, + "end": 9305.14, + "probability": 0.4537 + }, + { + "start": 9305.34, + "end": 9305.58, + "probability": 0.4023 + }, + { + "start": 9305.62, + "end": 9306.68, + "probability": 0.7376 + }, + { + "start": 9307.32, + "end": 9308.02, + "probability": 0.7303 + }, + { + "start": 9316.78, + "end": 9318.34, + "probability": 0.5537 + }, + { + "start": 9323.16, + "end": 9324.88, + "probability": 0.7921 + }, + { + "start": 9326.48, + "end": 9328.08, + "probability": 0.7305 + }, + { + "start": 9328.24, + "end": 9332.0, + "probability": 0.9399 + }, + { + "start": 9332.68, + "end": 9335.34, + "probability": 0.935 + }, + { + "start": 9336.56, + "end": 9340.4, + "probability": 0.9943 + }, + { + "start": 9341.6, + "end": 9346.2, + "probability": 0.9825 + }, + { + "start": 9346.2, + "end": 9349.58, + "probability": 0.9934 + }, + { + "start": 9349.74, + "end": 9351.29, + "probability": 0.9673 + }, + { + "start": 9352.26, + "end": 9355.24, + "probability": 0.9655 + }, + { + "start": 9355.24, + "end": 9358.72, + "probability": 0.964 + }, + { + "start": 9359.4, + "end": 9361.8, + "probability": 0.9719 + }, + { + "start": 9363.1, + "end": 9364.22, + "probability": 0.9033 + }, + { + "start": 9364.48, + "end": 9366.14, + "probability": 0.6948 + }, + { + "start": 9366.22, + "end": 9367.84, + "probability": 0.9831 + }, + { + "start": 9368.0, + "end": 9373.38, + "probability": 0.8032 + }, + { + "start": 9374.92, + "end": 9380.68, + "probability": 0.9937 + }, + { + "start": 9381.0, + "end": 9386.18, + "probability": 0.83 + }, + { + "start": 9386.92, + "end": 9387.14, + "probability": 0.6915 + }, + { + "start": 9387.22, + "end": 9392.96, + "probability": 0.981 + }, + { + "start": 9393.64, + "end": 9394.9, + "probability": 0.7212 + }, + { + "start": 9394.92, + "end": 9397.08, + "probability": 0.9326 + }, + { + "start": 9397.24, + "end": 9399.9, + "probability": 0.9894 + }, + { + "start": 9400.72, + "end": 9405.52, + "probability": 0.9959 + }, + { + "start": 9406.6, + "end": 9411.1, + "probability": 0.9826 + }, + { + "start": 9411.4, + "end": 9414.46, + "probability": 0.9932 + }, + { + "start": 9415.3, + "end": 9418.34, + "probability": 0.9739 + }, + { + "start": 9418.74, + "end": 9419.4, + "probability": 0.6724 + }, + { + "start": 9419.88, + "end": 9421.18, + "probability": 0.9959 + }, + { + "start": 9422.16, + "end": 9422.94, + "probability": 0.978 + }, + { + "start": 9423.44, + "end": 9430.2, + "probability": 0.9783 + }, + { + "start": 9430.82, + "end": 9431.28, + "probability": 0.8916 + }, + { + "start": 9431.34, + "end": 9433.98, + "probability": 0.9224 + }, + { + "start": 9434.18, + "end": 9435.96, + "probability": 0.9977 + }, + { + "start": 9436.74, + "end": 9439.32, + "probability": 0.9618 + }, + { + "start": 9439.4, + "end": 9444.42, + "probability": 0.9301 + }, + { + "start": 9444.58, + "end": 9444.72, + "probability": 0.6308 + }, + { + "start": 9444.78, + "end": 9445.16, + "probability": 0.9779 + }, + { + "start": 9445.3, + "end": 9446.94, + "probability": 0.927 + }, + { + "start": 9447.34, + "end": 9448.28, + "probability": 0.8843 + }, + { + "start": 9448.7, + "end": 9449.76, + "probability": 0.9487 + }, + { + "start": 9451.6, + "end": 9451.64, + "probability": 0.0857 + }, + { + "start": 9451.64, + "end": 9451.94, + "probability": 0.2604 + }, + { + "start": 9452.16, + "end": 9455.86, + "probability": 0.9741 + }, + { + "start": 9455.92, + "end": 9463.04, + "probability": 0.9967 + }, + { + "start": 9463.36, + "end": 9467.08, + "probability": 0.9977 + }, + { + "start": 9467.1, + "end": 9469.54, + "probability": 0.7582 + }, + { + "start": 9470.22, + "end": 9471.94, + "probability": 0.8807 + }, + { + "start": 9472.42, + "end": 9474.9, + "probability": 0.8779 + }, + { + "start": 9475.48, + "end": 9475.7, + "probability": 0.6678 + }, + { + "start": 9476.26, + "end": 9480.16, + "probability": 0.9149 + }, + { + "start": 9481.34, + "end": 9483.18, + "probability": 0.9259 + }, + { + "start": 9483.96, + "end": 9486.12, + "probability": 0.9596 + }, + { + "start": 9487.2, + "end": 9488.7, + "probability": 0.4924 + }, + { + "start": 9489.84, + "end": 9494.32, + "probability": 0.8642 + }, + { + "start": 9495.54, + "end": 9498.25, + "probability": 0.9985 + }, + { + "start": 9500.48, + "end": 9502.16, + "probability": 0.9476 + }, + { + "start": 9502.48, + "end": 9507.12, + "probability": 0.9727 + }, + { + "start": 9507.94, + "end": 9510.06, + "probability": 0.8355 + }, + { + "start": 9510.16, + "end": 9512.48, + "probability": 0.9758 + }, + { + "start": 9512.92, + "end": 9515.28, + "probability": 0.8725 + }, + { + "start": 9515.6, + "end": 9516.38, + "probability": 0.9506 + }, + { + "start": 9516.8, + "end": 9518.6, + "probability": 0.8636 + }, + { + "start": 9519.56, + "end": 9521.88, + "probability": 0.984 + }, + { + "start": 9522.86, + "end": 9526.32, + "probability": 0.9858 + }, + { + "start": 9526.48, + "end": 9527.86, + "probability": 0.9393 + }, + { + "start": 9528.26, + "end": 9531.2, + "probability": 0.9369 + }, + { + "start": 9531.7, + "end": 9532.34, + "probability": 0.9714 + }, + { + "start": 9532.44, + "end": 9535.86, + "probability": 0.9855 + }, + { + "start": 9536.78, + "end": 9539.14, + "probability": 0.9678 + }, + { + "start": 9539.82, + "end": 9543.85, + "probability": 0.9637 + }, + { + "start": 9544.2, + "end": 9548.14, + "probability": 0.9976 + }, + { + "start": 9548.7, + "end": 9552.66, + "probability": 0.9956 + }, + { + "start": 9552.66, + "end": 9556.06, + "probability": 0.9983 + }, + { + "start": 9556.5, + "end": 9559.3, + "probability": 0.9109 + }, + { + "start": 9559.86, + "end": 9561.92, + "probability": 0.9588 + }, + { + "start": 9562.54, + "end": 9564.96, + "probability": 0.9949 + }, + { + "start": 9565.3, + "end": 9568.7, + "probability": 0.9911 + }, + { + "start": 9569.54, + "end": 9572.76, + "probability": 0.9442 + }, + { + "start": 9572.98, + "end": 9574.77, + "probability": 0.9985 + }, + { + "start": 9576.2, + "end": 9576.86, + "probability": 0.8476 + }, + { + "start": 9577.22, + "end": 9579.58, + "probability": 0.702 + }, + { + "start": 9580.0, + "end": 9582.32, + "probability": 0.9883 + }, + { + "start": 9582.68, + "end": 9585.34, + "probability": 0.9899 + }, + { + "start": 9585.9, + "end": 9588.4, + "probability": 0.9915 + }, + { + "start": 9589.34, + "end": 9594.34, + "probability": 0.9939 + }, + { + "start": 9594.46, + "end": 9598.2, + "probability": 0.818 + }, + { + "start": 9598.78, + "end": 9604.26, + "probability": 0.9916 + }, + { + "start": 9604.72, + "end": 9605.96, + "probability": 0.9849 + }, + { + "start": 9606.26, + "end": 9607.8, + "probability": 0.9661 + }, + { + "start": 9608.12, + "end": 9609.82, + "probability": 0.9976 + }, + { + "start": 9610.36, + "end": 9614.7, + "probability": 0.9919 + }, + { + "start": 9615.06, + "end": 9616.42, + "probability": 0.9581 + }, + { + "start": 9616.72, + "end": 9618.14, + "probability": 0.9879 + }, + { + "start": 9618.36, + "end": 9619.64, + "probability": 0.8342 + }, + { + "start": 9619.84, + "end": 9621.76, + "probability": 0.9878 + }, + { + "start": 9622.0, + "end": 9623.3, + "probability": 0.9979 + }, + { + "start": 9623.4, + "end": 9625.26, + "probability": 0.9901 + }, + { + "start": 9625.54, + "end": 9628.26, + "probability": 0.9907 + }, + { + "start": 9628.38, + "end": 9628.84, + "probability": 0.5502 + }, + { + "start": 9629.66, + "end": 9630.62, + "probability": 0.64 + }, + { + "start": 9630.72, + "end": 9631.98, + "probability": 0.5098 + }, + { + "start": 9650.72, + "end": 9652.42, + "probability": 0.8623 + }, + { + "start": 9653.3, + "end": 9654.2, + "probability": 0.7696 + }, + { + "start": 9654.3, + "end": 9655.98, + "probability": 0.8343 + }, + { + "start": 9656.12, + "end": 9657.66, + "probability": 0.8905 + }, + { + "start": 9657.76, + "end": 9660.2, + "probability": 0.9959 + }, + { + "start": 9660.28, + "end": 9661.34, + "probability": 0.9801 + }, + { + "start": 9662.08, + "end": 9663.32, + "probability": 0.9583 + }, + { + "start": 9664.4, + "end": 9665.64, + "probability": 0.9362 + }, + { + "start": 9666.64, + "end": 9670.08, + "probability": 0.8392 + }, + { + "start": 9670.68, + "end": 9672.3, + "probability": 0.9824 + }, + { + "start": 9673.34, + "end": 9676.3, + "probability": 0.7326 + }, + { + "start": 9677.54, + "end": 9678.82, + "probability": 0.7705 + }, + { + "start": 9679.04, + "end": 9680.74, + "probability": 0.714 + }, + { + "start": 9680.78, + "end": 9681.84, + "probability": 0.4308 + }, + { + "start": 9682.72, + "end": 9685.4, + "probability": 0.6624 + }, + { + "start": 9686.74, + "end": 9688.48, + "probability": 0.7608 + }, + { + "start": 9689.96, + "end": 9690.72, + "probability": 0.3514 + }, + { + "start": 9691.16, + "end": 9691.86, + "probability": 0.8884 + }, + { + "start": 9692.96, + "end": 9693.72, + "probability": 0.7519 + }, + { + "start": 9694.2, + "end": 9700.8, + "probability": 0.7621 + }, + { + "start": 9701.14, + "end": 9702.76, + "probability": 0.9038 + }, + { + "start": 9703.48, + "end": 9704.65, + "probability": 0.9451 + }, + { + "start": 9705.46, + "end": 9706.74, + "probability": 0.6123 + }, + { + "start": 9707.62, + "end": 9713.64, + "probability": 0.9883 + }, + { + "start": 9714.28, + "end": 9718.94, + "probability": 0.9986 + }, + { + "start": 9719.52, + "end": 9723.1, + "probability": 0.9403 + }, + { + "start": 9723.7, + "end": 9725.6, + "probability": 0.8691 + }, + { + "start": 9726.18, + "end": 9726.92, + "probability": 0.6716 + }, + { + "start": 9727.5, + "end": 9729.36, + "probability": 0.752 + }, + { + "start": 9730.96, + "end": 9733.94, + "probability": 0.9911 + }, + { + "start": 9734.62, + "end": 9736.86, + "probability": 0.771 + }, + { + "start": 9737.9, + "end": 9739.66, + "probability": 0.9764 + }, + { + "start": 9740.3, + "end": 9741.98, + "probability": 0.9631 + }, + { + "start": 9742.48, + "end": 9742.64, + "probability": 0.4999 + }, + { + "start": 9742.86, + "end": 9743.28, + "probability": 0.6002 + }, + { + "start": 9743.3, + "end": 9748.32, + "probability": 0.9562 + }, + { + "start": 9749.32, + "end": 9753.82, + "probability": 0.9659 + }, + { + "start": 9753.96, + "end": 9754.98, + "probability": 0.968 + }, + { + "start": 9755.72, + "end": 9756.48, + "probability": 0.6125 + }, + { + "start": 9757.08, + "end": 9757.84, + "probability": 0.7764 + }, + { + "start": 9758.22, + "end": 9761.82, + "probability": 0.9625 + }, + { + "start": 9762.0, + "end": 9766.7, + "probability": 0.7738 + }, + { + "start": 9767.82, + "end": 9770.62, + "probability": 0.9939 + }, + { + "start": 9771.06, + "end": 9773.98, + "probability": 0.9965 + }, + { + "start": 9774.48, + "end": 9776.3, + "probability": 0.9497 + }, + { + "start": 9776.4, + "end": 9779.48, + "probability": 0.8091 + }, + { + "start": 9780.14, + "end": 9781.16, + "probability": 0.9105 + }, + { + "start": 9782.28, + "end": 9784.62, + "probability": 0.7871 + }, + { + "start": 9785.38, + "end": 9789.1, + "probability": 0.9052 + }, + { + "start": 9789.82, + "end": 9794.3, + "probability": 0.9875 + }, + { + "start": 9794.5, + "end": 9795.56, + "probability": 0.7255 + }, + { + "start": 9796.6, + "end": 9799.48, + "probability": 0.9972 + }, + { + "start": 9799.54, + "end": 9800.08, + "probability": 0.5027 + }, + { + "start": 9800.66, + "end": 9801.16, + "probability": 0.851 + }, + { + "start": 9801.84, + "end": 9803.7, + "probability": 0.9776 + }, + { + "start": 9804.28, + "end": 9805.42, + "probability": 0.4086 + }, + { + "start": 9806.04, + "end": 9806.84, + "probability": 0.252 + }, + { + "start": 9806.84, + "end": 9808.96, + "probability": 0.874 + }, + { + "start": 9808.96, + "end": 9810.12, + "probability": 0.9919 + }, + { + "start": 9810.6, + "end": 9812.98, + "probability": 0.0875 + }, + { + "start": 9812.98, + "end": 9813.26, + "probability": 0.3946 + }, + { + "start": 9814.14, + "end": 9816.45, + "probability": 0.3111 + }, + { + "start": 9817.2, + "end": 9817.92, + "probability": 0.5706 + }, + { + "start": 9818.68, + "end": 9818.68, + "probability": 0.0281 + }, + { + "start": 9818.68, + "end": 9821.08, + "probability": 0.6471 + }, + { + "start": 9821.9, + "end": 9824.68, + "probability": 0.9771 + }, + { + "start": 9824.78, + "end": 9826.4, + "probability": 0.992 + }, + { + "start": 9826.96, + "end": 9829.16, + "probability": 0.8947 + }, + { + "start": 9830.38, + "end": 9832.0, + "probability": 0.5628 + }, + { + "start": 9832.06, + "end": 9834.2, + "probability": 0.9849 + }, + { + "start": 9834.54, + "end": 9835.39, + "probability": 0.8016 + }, + { + "start": 9836.3, + "end": 9839.92, + "probability": 0.9574 + }, + { + "start": 9840.66, + "end": 9843.26, + "probability": 0.8941 + }, + { + "start": 9843.9, + "end": 9846.48, + "probability": 0.9927 + }, + { + "start": 9847.16, + "end": 9851.98, + "probability": 0.9908 + }, + { + "start": 9852.64, + "end": 9855.8, + "probability": 0.8597 + }, + { + "start": 9856.52, + "end": 9858.04, + "probability": 0.8994 + }, + { + "start": 9858.6, + "end": 9860.48, + "probability": 0.9958 + }, + { + "start": 9861.28, + "end": 9865.82, + "probability": 0.8983 + }, + { + "start": 9866.28, + "end": 9870.02, + "probability": 0.8989 + }, + { + "start": 9870.64, + "end": 9874.82, + "probability": 0.9876 + }, + { + "start": 9875.4, + "end": 9875.92, + "probability": 0.5278 + }, + { + "start": 9877.82, + "end": 9882.11, + "probability": 0.9199 + }, + { + "start": 9882.48, + "end": 9883.0, + "probability": 0.6746 + }, + { + "start": 9883.24, + "end": 9884.42, + "probability": 0.9228 + }, + { + "start": 9885.04, + "end": 9891.42, + "probability": 0.9917 + }, + { + "start": 9891.78, + "end": 9894.18, + "probability": 0.8954 + }, + { + "start": 9894.82, + "end": 9899.52, + "probability": 0.957 + }, + { + "start": 9899.96, + "end": 9902.48, + "probability": 0.9937 + }, + { + "start": 9903.06, + "end": 9904.26, + "probability": 0.6446 + }, + { + "start": 9904.76, + "end": 9905.42, + "probability": 0.8759 + }, + { + "start": 9905.5, + "end": 9906.6, + "probability": 0.9451 + }, + { + "start": 9906.94, + "end": 9908.64, + "probability": 0.9314 + }, + { + "start": 9909.26, + "end": 9914.02, + "probability": 0.913 + }, + { + "start": 9914.54, + "end": 9916.96, + "probability": 0.9814 + }, + { + "start": 9918.2, + "end": 9923.66, + "probability": 0.9946 + }, + { + "start": 9924.04, + "end": 9926.2, + "probability": 0.8382 + }, + { + "start": 9926.86, + "end": 9929.66, + "probability": 0.9397 + }, + { + "start": 9930.16, + "end": 9933.4, + "probability": 0.9922 + }, + { + "start": 9934.18, + "end": 9938.08, + "probability": 0.998 + }, + { + "start": 9938.08, + "end": 9941.24, + "probability": 0.909 + }, + { + "start": 9941.84, + "end": 9945.12, + "probability": 0.9949 + }, + { + "start": 9945.12, + "end": 9947.44, + "probability": 0.9875 + }, + { + "start": 9948.04, + "end": 9948.62, + "probability": 0.2901 + }, + { + "start": 9948.76, + "end": 9952.3, + "probability": 0.9443 + }, + { + "start": 9952.9, + "end": 9957.5, + "probability": 0.9939 + }, + { + "start": 9957.88, + "end": 9959.14, + "probability": 0.8669 + }, + { + "start": 9959.74, + "end": 9960.86, + "probability": 0.5408 + }, + { + "start": 9961.4, + "end": 9963.52, + "probability": 0.6241 + }, + { + "start": 9964.22, + "end": 9966.64, + "probability": 0.923 + }, + { + "start": 9967.14, + "end": 9972.38, + "probability": 0.7231 + }, + { + "start": 9972.38, + "end": 9975.74, + "probability": 0.996 + }, + { + "start": 9976.38, + "end": 9979.54, + "probability": 0.9976 + }, + { + "start": 9980.22, + "end": 9982.96, + "probability": 0.9418 + }, + { + "start": 9983.44, + "end": 9986.0, + "probability": 0.8419 + }, + { + "start": 9986.0, + "end": 9989.24, + "probability": 0.9901 + }, + { + "start": 9989.68, + "end": 9995.22, + "probability": 0.9944 + }, + { + "start": 9995.62, + "end": 9998.44, + "probability": 0.9017 + }, + { + "start": 9998.5, + "end": 9999.88, + "probability": 0.634 + }, + { + "start": 10000.5, + "end": 10001.02, + "probability": 0.5392 + }, + { + "start": 10001.02, + "end": 10002.8, + "probability": 0.6956 + }, + { + "start": 10007.68, + "end": 10009.48, + "probability": 0.845 + }, + { + "start": 10010.96, + "end": 10010.96, + "probability": 0.0055 + }, + { + "start": 10012.5, + "end": 10013.64, + "probability": 0.0789 + }, + { + "start": 10016.38, + "end": 10018.46, + "probability": 0.9219 + }, + { + "start": 10019.64, + "end": 10022.44, + "probability": 0.8571 + }, + { + "start": 10022.8, + "end": 10023.4, + "probability": 0.8826 + }, + { + "start": 10023.96, + "end": 10025.6, + "probability": 0.8387 + }, + { + "start": 10025.96, + "end": 10027.32, + "probability": 0.6974 + }, + { + "start": 10028.02, + "end": 10032.02, + "probability": 0.9965 + }, + { + "start": 10034.56, + "end": 10035.68, + "probability": 0.9674 + }, + { + "start": 10036.68, + "end": 10038.06, + "probability": 0.2871 + }, + { + "start": 10038.32, + "end": 10039.86, + "probability": 0.0827 + }, + { + "start": 10040.06, + "end": 10040.44, + "probability": 0.9448 + }, + { + "start": 10042.08, + "end": 10043.28, + "probability": 0.9946 + }, + { + "start": 10043.56, + "end": 10046.0, + "probability": 0.954 + }, + { + "start": 10046.52, + "end": 10047.84, + "probability": 0.2362 + }, + { + "start": 10047.84, + "end": 10049.58, + "probability": 0.9977 + }, + { + "start": 10049.72, + "end": 10050.18, + "probability": 0.1486 + }, + { + "start": 10050.38, + "end": 10051.72, + "probability": 0.864 + }, + { + "start": 10052.38, + "end": 10054.56, + "probability": 0.9207 + }, + { + "start": 10054.64, + "end": 10055.14, + "probability": 0.7875 + }, + { + "start": 10055.91, + "end": 10058.66, + "probability": 0.9841 + }, + { + "start": 10058.94, + "end": 10060.16, + "probability": 0.8636 + }, + { + "start": 10061.2, + "end": 10068.06, + "probability": 0.9597 + }, + { + "start": 10070.44, + "end": 10071.4, + "probability": 0.84 + }, + { + "start": 10071.56, + "end": 10072.24, + "probability": 0.9191 + }, + { + "start": 10072.36, + "end": 10073.3, + "probability": 0.5242 + }, + { + "start": 10074.12, + "end": 10076.98, + "probability": 0.9635 + }, + { + "start": 10077.04, + "end": 10078.52, + "probability": 0.9961 + }, + { + "start": 10078.62, + "end": 10079.42, + "probability": 0.9821 + }, + { + "start": 10079.76, + "end": 10081.76, + "probability": 0.9648 + }, + { + "start": 10082.82, + "end": 10086.16, + "probability": 0.9777 + }, + { + "start": 10086.94, + "end": 10090.64, + "probability": 0.9188 + }, + { + "start": 10091.52, + "end": 10093.73, + "probability": 0.7774 + }, + { + "start": 10094.5, + "end": 10096.54, + "probability": 0.998 + }, + { + "start": 10096.7, + "end": 10102.44, + "probability": 0.9958 + }, + { + "start": 10102.92, + "end": 10105.38, + "probability": 0.9723 + }, + { + "start": 10106.34, + "end": 10107.34, + "probability": 0.8524 + }, + { + "start": 10107.4, + "end": 10108.38, + "probability": 0.87 + }, + { + "start": 10108.48, + "end": 10109.86, + "probability": 0.6535 + }, + { + "start": 10110.16, + "end": 10114.48, + "probability": 0.8715 + }, + { + "start": 10114.8, + "end": 10116.16, + "probability": 0.8744 + }, + { + "start": 10117.16, + "end": 10120.68, + "probability": 0.5822 + }, + { + "start": 10121.4, + "end": 10124.02, + "probability": 0.5839 + }, + { + "start": 10124.48, + "end": 10129.94, + "probability": 0.9932 + }, + { + "start": 10130.38, + "end": 10134.6, + "probability": 0.9603 + }, + { + "start": 10134.6, + "end": 10137.6, + "probability": 0.9983 + }, + { + "start": 10138.16, + "end": 10141.48, + "probability": 0.9521 + }, + { + "start": 10142.34, + "end": 10143.4, + "probability": 0.5623 + }, + { + "start": 10143.54, + "end": 10144.8, + "probability": 0.692 + }, + { + "start": 10144.82, + "end": 10144.92, + "probability": 0.1391 + }, + { + "start": 10146.28, + "end": 10146.28, + "probability": 0.4157 + }, + { + "start": 10146.28, + "end": 10150.2, + "probability": 0.8667 + }, + { + "start": 10150.94, + "end": 10152.08, + "probability": 0.9291 + }, + { + "start": 10152.28, + "end": 10155.84, + "probability": 0.9129 + }, + { + "start": 10156.82, + "end": 10158.24, + "probability": 0.995 + }, + { + "start": 10158.62, + "end": 10161.24, + "probability": 0.9754 + }, + { + "start": 10161.94, + "end": 10165.52, + "probability": 0.9899 + }, + { + "start": 10166.54, + "end": 10166.66, + "probability": 0.3079 + }, + { + "start": 10166.66, + "end": 10166.66, + "probability": 0.5731 + }, + { + "start": 10166.9, + "end": 10167.57, + "probability": 0.9199 + }, + { + "start": 10168.1, + "end": 10168.46, + "probability": 0.6766 + }, + { + "start": 10168.52, + "end": 10169.12, + "probability": 0.8816 + }, + { + "start": 10169.18, + "end": 10169.82, + "probability": 0.8166 + }, + { + "start": 10169.96, + "end": 10170.91, + "probability": 0.6488 + }, + { + "start": 10171.3, + "end": 10174.78, + "probability": 0.8394 + }, + { + "start": 10175.74, + "end": 10176.63, + "probability": 0.9488 + }, + { + "start": 10177.1, + "end": 10178.82, + "probability": 0.8571 + }, + { + "start": 10179.26, + "end": 10179.52, + "probability": 0.4623 + }, + { + "start": 10179.56, + "end": 10180.22, + "probability": 0.8787 + }, + { + "start": 10180.32, + "end": 10181.62, + "probability": 0.8076 + }, + { + "start": 10182.1, + "end": 10185.7, + "probability": 0.9801 + }, + { + "start": 10186.18, + "end": 10187.18, + "probability": 0.7267 + }, + { + "start": 10187.96, + "end": 10191.54, + "probability": 0.4113 + }, + { + "start": 10192.0, + "end": 10195.3, + "probability": 0.7686 + }, + { + "start": 10195.4, + "end": 10198.18, + "probability": 0.9649 + }, + { + "start": 10198.42, + "end": 10200.32, + "probability": 0.8511 + }, + { + "start": 10200.6, + "end": 10201.48, + "probability": 0.3147 + }, + { + "start": 10202.06, + "end": 10206.0, + "probability": 0.9968 + }, + { + "start": 10206.24, + "end": 10206.84, + "probability": 0.1241 + }, + { + "start": 10207.78, + "end": 10211.62, + "probability": 0.753 + }, + { + "start": 10212.0, + "end": 10213.28, + "probability": 0.9959 + }, + { + "start": 10214.08, + "end": 10215.3, + "probability": 0.8728 + }, + { + "start": 10215.88, + "end": 10218.58, + "probability": 0.6558 + }, + { + "start": 10219.28, + "end": 10223.1, + "probability": 0.7114 + }, + { + "start": 10224.04, + "end": 10229.48, + "probability": 0.499 + }, + { + "start": 10230.04, + "end": 10231.34, + "probability": 0.6558 + }, + { + "start": 10232.26, + "end": 10238.9, + "probability": 0.9785 + }, + { + "start": 10239.62, + "end": 10241.78, + "probability": 0.8777 + }, + { + "start": 10245.24, + "end": 10246.86, + "probability": 0.6637 + }, + { + "start": 10247.04, + "end": 10253.58, + "probability": 0.9716 + }, + { + "start": 10254.4, + "end": 10258.5, + "probability": 0.9315 + }, + { + "start": 10259.0, + "end": 10259.78, + "probability": 0.3998 + }, + { + "start": 10260.46, + "end": 10262.04, + "probability": 0.9077 + }, + { + "start": 10262.38, + "end": 10266.76, + "probability": 0.982 + }, + { + "start": 10267.94, + "end": 10269.26, + "probability": 0.5394 + }, + { + "start": 10269.6, + "end": 10271.54, + "probability": 0.0133 + }, + { + "start": 10273.02, + "end": 10273.14, + "probability": 0.0232 + }, + { + "start": 10273.24, + "end": 10273.42, + "probability": 0.8377 + }, + { + "start": 10273.48, + "end": 10278.12, + "probability": 0.9543 + }, + { + "start": 10278.62, + "end": 10281.82, + "probability": 0.9684 + }, + { + "start": 10282.16, + "end": 10284.04, + "probability": 0.8614 + }, + { + "start": 10284.3, + "end": 10285.83, + "probability": 0.9976 + }, + { + "start": 10286.32, + "end": 10287.7, + "probability": 0.9869 + }, + { + "start": 10288.04, + "end": 10289.38, + "probability": 0.9763 + }, + { + "start": 10290.3, + "end": 10291.58, + "probability": 0.8637 + }, + { + "start": 10291.86, + "end": 10294.42, + "probability": 0.9847 + }, + { + "start": 10294.52, + "end": 10295.5, + "probability": 0.196 + }, + { + "start": 10296.42, + "end": 10300.01, + "probability": 0.8761 + }, + { + "start": 10300.64, + "end": 10303.14, + "probability": 0.8829 + }, + { + "start": 10303.68, + "end": 10306.84, + "probability": 0.9684 + }, + { + "start": 10308.41, + "end": 10311.72, + "probability": 0.9762 + }, + { + "start": 10311.78, + "end": 10313.11, + "probability": 0.9929 + }, + { + "start": 10313.9, + "end": 10316.26, + "probability": 0.9672 + }, + { + "start": 10316.26, + "end": 10319.4, + "probability": 0.9757 + }, + { + "start": 10319.82, + "end": 10322.98, + "probability": 0.9027 + }, + { + "start": 10323.28, + "end": 10325.46, + "probability": 0.9974 + }, + { + "start": 10325.64, + "end": 10325.92, + "probability": 0.5325 + }, + { + "start": 10325.92, + "end": 10326.68, + "probability": 0.7405 + }, + { + "start": 10326.86, + "end": 10329.74, + "probability": 0.8784 + }, + { + "start": 10329.86, + "end": 10331.56, + "probability": 0.5072 + }, + { + "start": 10331.84, + "end": 10332.96, + "probability": 0.9834 + }, + { + "start": 10333.04, + "end": 10334.2, + "probability": 0.7053 + }, + { + "start": 10334.42, + "end": 10335.76, + "probability": 0.8401 + }, + { + "start": 10336.28, + "end": 10336.28, + "probability": 0.8115 + }, + { + "start": 10336.28, + "end": 10338.62, + "probability": 0.8304 + }, + { + "start": 10339.26, + "end": 10340.96, + "probability": 0.8168 + }, + { + "start": 10341.42, + "end": 10345.86, + "probability": 0.9231 + }, + { + "start": 10346.18, + "end": 10346.78, + "probability": 0.1831 + }, + { + "start": 10346.84, + "end": 10349.62, + "probability": 0.9067 + }, + { + "start": 10358.72, + "end": 10360.82, + "probability": 0.6668 + }, + { + "start": 10361.16, + "end": 10362.92, + "probability": 0.7469 + }, + { + "start": 10363.58, + "end": 10366.28, + "probability": 0.981 + }, + { + "start": 10366.86, + "end": 10368.96, + "probability": 0.4674 + }, + { + "start": 10369.74, + "end": 10371.36, + "probability": 0.6376 + }, + { + "start": 10371.96, + "end": 10375.34, + "probability": 0.4149 + }, + { + "start": 10375.64, + "end": 10377.02, + "probability": 0.7438 + }, + { + "start": 10377.16, + "end": 10379.56, + "probability": 0.502 + }, + { + "start": 10379.56, + "end": 10380.54, + "probability": 0.9438 + }, + { + "start": 10380.62, + "end": 10381.62, + "probability": 0.8883 + }, + { + "start": 10381.66, + "end": 10384.17, + "probability": 0.2366 + }, + { + "start": 10385.61, + "end": 10387.08, + "probability": 0.6579 + }, + { + "start": 10387.18, + "end": 10388.54, + "probability": 0.7511 + }, + { + "start": 10388.86, + "end": 10389.64, + "probability": 0.9976 + }, + { + "start": 10389.98, + "end": 10397.32, + "probability": 0.9836 + }, + { + "start": 10397.52, + "end": 10398.78, + "probability": 0.9414 + }, + { + "start": 10399.12, + "end": 10405.6, + "probability": 0.9855 + }, + { + "start": 10406.24, + "end": 10406.8, + "probability": 0.3111 + }, + { + "start": 10407.18, + "end": 10409.82, + "probability": 0.8669 + }, + { + "start": 10410.16, + "end": 10413.76, + "probability": 0.9904 + }, + { + "start": 10413.84, + "end": 10414.18, + "probability": 0.8124 + }, + { + "start": 10414.3, + "end": 10415.28, + "probability": 0.9823 + }, + { + "start": 10415.4, + "end": 10416.56, + "probability": 0.8209 + }, + { + "start": 10416.98, + "end": 10418.12, + "probability": 0.663 + }, + { + "start": 10418.76, + "end": 10421.06, + "probability": 0.9746 + }, + { + "start": 10421.54, + "end": 10423.9, + "probability": 0.9868 + }, + { + "start": 10426.04, + "end": 10430.5, + "probability": 0.8972 + }, + { + "start": 10431.42, + "end": 10434.1, + "probability": 0.9883 + }, + { + "start": 10434.6, + "end": 10436.08, + "probability": 0.9502 + }, + { + "start": 10436.88, + "end": 10440.5, + "probability": 0.9839 + }, + { + "start": 10442.24, + "end": 10447.02, + "probability": 0.9854 + }, + { + "start": 10447.02, + "end": 10451.58, + "probability": 0.9893 + }, + { + "start": 10451.58, + "end": 10457.12, + "probability": 0.9967 + }, + { + "start": 10457.7, + "end": 10460.48, + "probability": 0.9886 + }, + { + "start": 10460.62, + "end": 10461.5, + "probability": 0.9474 + }, + { + "start": 10462.02, + "end": 10467.44, + "probability": 0.9939 + }, + { + "start": 10468.06, + "end": 10471.38, + "probability": 0.9949 + }, + { + "start": 10471.48, + "end": 10476.0, + "probability": 0.9948 + }, + { + "start": 10476.94, + "end": 10477.28, + "probability": 0.7695 + }, + { + "start": 10477.38, + "end": 10478.1, + "probability": 0.9642 + }, + { + "start": 10478.16, + "end": 10479.16, + "probability": 0.9713 + }, + { + "start": 10479.24, + "end": 10482.74, + "probability": 0.9834 + }, + { + "start": 10482.88, + "end": 10484.04, + "probability": 0.4148 + }, + { + "start": 10484.98, + "end": 10488.06, + "probability": 0.9855 + }, + { + "start": 10488.44, + "end": 10488.98, + "probability": 0.6666 + }, + { + "start": 10489.02, + "end": 10489.46, + "probability": 0.9855 + }, + { + "start": 10489.62, + "end": 10490.28, + "probability": 0.5527 + }, + { + "start": 10491.06, + "end": 10495.0, + "probability": 0.8691 + }, + { + "start": 10495.42, + "end": 10497.76, + "probability": 0.9904 + }, + { + "start": 10498.68, + "end": 10499.16, + "probability": 0.6517 + }, + { + "start": 10499.24, + "end": 10500.88, + "probability": 0.8551 + }, + { + "start": 10501.24, + "end": 10502.26, + "probability": 0.9922 + }, + { + "start": 10502.36, + "end": 10504.92, + "probability": 0.9868 + }, + { + "start": 10505.42, + "end": 10509.26, + "probability": 0.9922 + }, + { + "start": 10509.68, + "end": 10510.94, + "probability": 0.9305 + }, + { + "start": 10511.0, + "end": 10512.32, + "probability": 0.5234 + }, + { + "start": 10512.9, + "end": 10514.76, + "probability": 0.9893 + }, + { + "start": 10515.84, + "end": 10519.58, + "probability": 0.855 + }, + { + "start": 10520.8, + "end": 10526.1, + "probability": 0.9966 + }, + { + "start": 10526.4, + "end": 10529.5, + "probability": 0.9277 + }, + { + "start": 10529.94, + "end": 10533.4, + "probability": 0.9929 + }, + { + "start": 10533.5, + "end": 10537.62, + "probability": 0.9956 + }, + { + "start": 10538.4, + "end": 10538.94, + "probability": 0.9516 + }, + { + "start": 10539.0, + "end": 10539.26, + "probability": 0.3944 + }, + { + "start": 10539.32, + "end": 10539.7, + "probability": 0.9344 + }, + { + "start": 10539.8, + "end": 10544.84, + "probability": 0.9969 + }, + { + "start": 10544.94, + "end": 10546.14, + "probability": 0.8439 + }, + { + "start": 10546.36, + "end": 10547.24, + "probability": 0.6525 + }, + { + "start": 10547.3, + "end": 10548.46, + "probability": 0.972 + }, + { + "start": 10548.54, + "end": 10549.84, + "probability": 0.8999 + }, + { + "start": 10549.92, + "end": 10551.8, + "probability": 0.9896 + }, + { + "start": 10552.14, + "end": 10552.24, + "probability": 0.6053 + }, + { + "start": 10552.64, + "end": 10555.9, + "probability": 0.9306 + }, + { + "start": 10555.9, + "end": 10559.5, + "probability": 0.9951 + }, + { + "start": 10559.64, + "end": 10560.12, + "probability": 0.8509 + }, + { + "start": 10560.68, + "end": 10567.48, + "probability": 0.9977 + }, + { + "start": 10567.9, + "end": 10571.04, + "probability": 0.98 + }, + { + "start": 10571.9, + "end": 10572.22, + "probability": 0.5419 + }, + { + "start": 10572.28, + "end": 10575.14, + "probability": 0.9941 + }, + { + "start": 10575.14, + "end": 10579.32, + "probability": 0.9309 + }, + { + "start": 10579.44, + "end": 10580.83, + "probability": 0.9803 + }, + { + "start": 10583.56, + "end": 10584.02, + "probability": 0.6452 + }, + { + "start": 10584.56, + "end": 10585.21, + "probability": 0.4314 + }, + { + "start": 10585.52, + "end": 10587.52, + "probability": 0.7762 + }, + { + "start": 10587.7, + "end": 10590.76, + "probability": 0.9966 + }, + { + "start": 10590.76, + "end": 10593.88, + "probability": 0.9958 + }, + { + "start": 10594.68, + "end": 10596.36, + "probability": 0.8381 + }, + { + "start": 10596.9, + "end": 10597.76, + "probability": 0.7271 + }, + { + "start": 10598.64, + "end": 10600.76, + "probability": 0.7752 + }, + { + "start": 10600.92, + "end": 10603.9, + "probability": 0.9653 + }, + { + "start": 10604.18, + "end": 10604.74, + "probability": 0.6797 + }, + { + "start": 10604.82, + "end": 10609.12, + "probability": 0.9969 + }, + { + "start": 10609.76, + "end": 10612.52, + "probability": 0.9834 + }, + { + "start": 10612.98, + "end": 10617.34, + "probability": 0.9913 + }, + { + "start": 10617.34, + "end": 10621.38, + "probability": 0.999 + }, + { + "start": 10622.4, + "end": 10623.75, + "probability": 0.7905 + }, + { + "start": 10624.24, + "end": 10625.4, + "probability": 0.3064 + }, + { + "start": 10626.3, + "end": 10628.42, + "probability": 0.999 + }, + { + "start": 10629.82, + "end": 10633.76, + "probability": 0.9928 + }, + { + "start": 10634.16, + "end": 10638.02, + "probability": 0.9951 + }, + { + "start": 10638.18, + "end": 10638.94, + "probability": 0.9213 + }, + { + "start": 10639.56, + "end": 10644.5, + "probability": 0.9839 + }, + { + "start": 10644.72, + "end": 10648.7, + "probability": 0.9915 + }, + { + "start": 10649.34, + "end": 10649.86, + "probability": 0.845 + }, + { + "start": 10650.5, + "end": 10651.78, + "probability": 0.9592 + }, + { + "start": 10652.14, + "end": 10656.84, + "probability": 0.988 + }, + { + "start": 10656.92, + "end": 10660.42, + "probability": 0.9892 + }, + { + "start": 10661.06, + "end": 10663.32, + "probability": 0.9904 + }, + { + "start": 10664.38, + "end": 10668.4, + "probability": 0.9978 + }, + { + "start": 10668.4, + "end": 10673.7, + "probability": 0.9962 + }, + { + "start": 10674.08, + "end": 10678.54, + "probability": 0.9697 + }, + { + "start": 10678.54, + "end": 10682.46, + "probability": 0.9996 + }, + { + "start": 10682.76, + "end": 10683.26, + "probability": 0.7458 + }, + { + "start": 10684.08, + "end": 10685.12, + "probability": 0.5752 + }, + { + "start": 10685.24, + "end": 10686.62, + "probability": 0.8272 + }, + { + "start": 10687.18, + "end": 10687.76, + "probability": 0.3148 + }, + { + "start": 10687.86, + "end": 10690.34, + "probability": 0.5351 + }, + { + "start": 10691.26, + "end": 10693.04, + "probability": 0.954 + }, + { + "start": 10693.4, + "end": 10693.98, + "probability": 0.7616 + }, + { + "start": 10694.08, + "end": 10695.08, + "probability": 0.9569 + }, + { + "start": 10695.66, + "end": 10696.34, + "probability": 0.9125 + }, + { + "start": 10696.44, + "end": 10698.68, + "probability": 0.6656 + }, + { + "start": 10700.14, + "end": 10702.76, + "probability": 0.3841 + }, + { + "start": 10703.86, + "end": 10705.04, + "probability": 0.5736 + }, + { + "start": 10705.1, + "end": 10705.62, + "probability": 0.6502 + }, + { + "start": 10705.74, + "end": 10707.74, + "probability": 0.969 + }, + { + "start": 10707.74, + "end": 10708.32, + "probability": 0.8256 + }, + { + "start": 10709.16, + "end": 10709.96, + "probability": 0.7211 + }, + { + "start": 10710.0, + "end": 10710.56, + "probability": 0.7524 + }, + { + "start": 10710.68, + "end": 10712.3, + "probability": 0.8184 + }, + { + "start": 10712.42, + "end": 10712.92, + "probability": 0.4503 + }, + { + "start": 10713.52, + "end": 10715.06, + "probability": 0.4928 + }, + { + "start": 10715.76, + "end": 10717.16, + "probability": 0.4617 + }, + { + "start": 10718.26, + "end": 10720.34, + "probability": 0.7856 + }, + { + "start": 10721.12, + "end": 10722.3, + "probability": 0.812 + }, + { + "start": 10723.3, + "end": 10725.85, + "probability": 0.9055 + }, + { + "start": 10726.22, + "end": 10728.14, + "probability": 0.8728 + }, + { + "start": 10728.94, + "end": 10731.38, + "probability": 0.6751 + }, + { + "start": 10738.98, + "end": 10741.48, + "probability": 0.2718 + }, + { + "start": 10741.48, + "end": 10745.0, + "probability": 0.74 + }, + { + "start": 10745.62, + "end": 10747.22, + "probability": 0.8693 + }, + { + "start": 10747.36, + "end": 10750.52, + "probability": 0.9897 + }, + { + "start": 10752.0, + "end": 10755.3, + "probability": 0.7018 + }, + { + "start": 10755.4, + "end": 10757.9, + "probability": 0.6598 + }, + { + "start": 10758.37, + "end": 10759.01, + "probability": 0.3566 + }, + { + "start": 10759.78, + "end": 10759.78, + "probability": 0.0001 + }, + { + "start": 10760.4, + "end": 10762.3, + "probability": 0.859 + }, + { + "start": 10762.84, + "end": 10765.38, + "probability": 0.8844 + }, + { + "start": 10766.04, + "end": 10766.86, + "probability": 0.9697 + }, + { + "start": 10767.48, + "end": 10769.6, + "probability": 0.8702 + }, + { + "start": 10770.88, + "end": 10772.66, + "probability": 0.7811 + }, + { + "start": 10773.36, + "end": 10776.74, + "probability": 0.9866 + }, + { + "start": 10777.98, + "end": 10779.64, + "probability": 0.8749 + }, + { + "start": 10780.5, + "end": 10783.06, + "probability": 0.9805 + }, + { + "start": 10784.38, + "end": 10785.94, + "probability": 0.9792 + }, + { + "start": 10786.76, + "end": 10792.86, + "probability": 0.9971 + }, + { + "start": 10792.86, + "end": 10798.62, + "probability": 0.9984 + }, + { + "start": 10799.6, + "end": 10800.54, + "probability": 0.8115 + }, + { + "start": 10801.9, + "end": 10808.0, + "probability": 0.9783 + }, + { + "start": 10808.0, + "end": 10813.64, + "probability": 0.9992 + }, + { + "start": 10814.32, + "end": 10815.02, + "probability": 0.4843 + }, + { + "start": 10815.94, + "end": 10818.56, + "probability": 0.995 + }, + { + "start": 10819.44, + "end": 10823.84, + "probability": 0.9985 + }, + { + "start": 10824.42, + "end": 10830.74, + "probability": 0.9888 + }, + { + "start": 10833.32, + "end": 10840.06, + "probability": 0.9927 + }, + { + "start": 10840.76, + "end": 10846.08, + "probability": 0.9977 + }, + { + "start": 10846.54, + "end": 10849.8, + "probability": 0.9977 + }, + { + "start": 10849.8, + "end": 10853.42, + "probability": 0.9963 + }, + { + "start": 10854.78, + "end": 10860.84, + "probability": 0.9468 + }, + { + "start": 10862.02, + "end": 10870.62, + "probability": 0.9937 + }, + { + "start": 10871.14, + "end": 10872.46, + "probability": 0.7176 + }, + { + "start": 10873.1, + "end": 10874.34, + "probability": 0.9894 + }, + { + "start": 10875.52, + "end": 10876.32, + "probability": 0.9841 + }, + { + "start": 10877.54, + "end": 10878.5, + "probability": 0.8138 + }, + { + "start": 10880.58, + "end": 10882.62, + "probability": 0.9996 + }, + { + "start": 10884.4, + "end": 10885.84, + "probability": 0.7906 + }, + { + "start": 10886.76, + "end": 10889.68, + "probability": 0.9941 + }, + { + "start": 10890.76, + "end": 10893.9, + "probability": 0.997 + }, + { + "start": 10894.82, + "end": 10896.86, + "probability": 0.4639 + }, + { + "start": 10897.88, + "end": 10898.46, + "probability": 0.98 + }, + { + "start": 10899.54, + "end": 10902.02, + "probability": 0.7944 + }, + { + "start": 10903.88, + "end": 10906.26, + "probability": 0.9839 + }, + { + "start": 10907.5, + "end": 10909.3, + "probability": 0.9272 + }, + { + "start": 10909.46, + "end": 10912.58, + "probability": 0.9423 + }, + { + "start": 10912.72, + "end": 10913.34, + "probability": 0.8083 + }, + { + "start": 10913.68, + "end": 10914.42, + "probability": 0.8908 + }, + { + "start": 10914.56, + "end": 10915.04, + "probability": 0.708 + }, + { + "start": 10915.78, + "end": 10917.6, + "probability": 0.9966 + }, + { + "start": 10918.18, + "end": 10921.76, + "probability": 0.9932 + }, + { + "start": 10924.16, + "end": 10925.92, + "probability": 0.9333 + }, + { + "start": 10926.46, + "end": 10927.82, + "probability": 0.98 + }, + { + "start": 10928.9, + "end": 10933.51, + "probability": 0.9963 + }, + { + "start": 10933.62, + "end": 10939.12, + "probability": 0.9365 + }, + { + "start": 10940.72, + "end": 10942.7, + "probability": 0.7819 + }, + { + "start": 10943.26, + "end": 10944.56, + "probability": 0.964 + }, + { + "start": 10947.05, + "end": 10948.56, + "probability": 0.9805 + }, + { + "start": 10948.56, + "end": 10949.0, + "probability": 0.5487 + }, + { + "start": 10949.34, + "end": 10952.45, + "probability": 0.9847 + }, + { + "start": 10952.94, + "end": 10953.14, + "probability": 0.7355 + }, + { + "start": 10953.66, + "end": 10954.76, + "probability": 0.9573 + }, + { + "start": 10955.06, + "end": 10955.58, + "probability": 0.2195 + }, + { + "start": 10955.64, + "end": 10956.9, + "probability": 0.9445 + }, + { + "start": 10957.04, + "end": 10957.18, + "probability": 0.6781 + }, + { + "start": 10957.7, + "end": 10958.76, + "probability": 0.9981 + }, + { + "start": 10959.3, + "end": 10960.94, + "probability": 0.6834 + }, + { + "start": 10961.82, + "end": 10965.42, + "probability": 0.9956 + }, + { + "start": 10965.78, + "end": 10966.48, + "probability": 0.7434 + }, + { + "start": 10967.06, + "end": 10969.98, + "probability": 0.9918 + }, + { + "start": 10969.98, + "end": 10973.24, + "probability": 0.9984 + }, + { + "start": 10974.18, + "end": 10976.32, + "probability": 0.9561 + }, + { + "start": 10976.96, + "end": 10983.78, + "probability": 0.9922 + }, + { + "start": 10985.26, + "end": 10988.14, + "probability": 0.9979 + }, + { + "start": 10988.14, + "end": 10991.82, + "probability": 0.9961 + }, + { + "start": 10992.66, + "end": 10996.74, + "probability": 0.8997 + }, + { + "start": 10996.74, + "end": 11001.04, + "probability": 0.9951 + }, + { + "start": 11001.2, + "end": 11002.03, + "probability": 0.96 + }, + { + "start": 11003.74, + "end": 11007.68, + "probability": 0.9954 + }, + { + "start": 11008.26, + "end": 11011.68, + "probability": 0.9692 + }, + { + "start": 11013.2, + "end": 11015.06, + "probability": 0.9136 + }, + { + "start": 11016.24, + "end": 11020.5, + "probability": 0.9985 + }, + { + "start": 11020.5, + "end": 11024.5, + "probability": 0.9841 + }, + { + "start": 11024.9, + "end": 11026.72, + "probability": 0.95 + }, + { + "start": 11027.64, + "end": 11030.88, + "probability": 0.9815 + }, + { + "start": 11031.66, + "end": 11035.16, + "probability": 0.9958 + }, + { + "start": 11035.78, + "end": 11038.18, + "probability": 0.9911 + }, + { + "start": 11038.72, + "end": 11040.18, + "probability": 0.9671 + }, + { + "start": 11040.76, + "end": 11044.98, + "probability": 0.9907 + }, + { + "start": 11044.98, + "end": 11047.28, + "probability": 0.9833 + }, + { + "start": 11047.66, + "end": 11048.78, + "probability": 0.436 + }, + { + "start": 11049.78, + "end": 11051.48, + "probability": 0.7852 + }, + { + "start": 11052.68, + "end": 11054.36, + "probability": 0.9189 + }, + { + "start": 11055.32, + "end": 11059.35, + "probability": 0.984 + }, + { + "start": 11060.3, + "end": 11061.8, + "probability": 0.9451 + }, + { + "start": 11062.36, + "end": 11069.5, + "probability": 0.9914 + }, + { + "start": 11070.02, + "end": 11071.84, + "probability": 0.7173 + }, + { + "start": 11072.4, + "end": 11077.12, + "probability": 0.9758 + }, + { + "start": 11077.5, + "end": 11080.24, + "probability": 0.6856 + }, + { + "start": 11080.3, + "end": 11082.32, + "probability": 0.6482 + }, + { + "start": 11082.36, + "end": 11082.68, + "probability": 0.6243 + }, + { + "start": 11083.12, + "end": 11087.56, + "probability": 0.588 + }, + { + "start": 11089.28, + "end": 11090.32, + "probability": 0.9411 + }, + { + "start": 11091.41, + "end": 11094.34, + "probability": 0.9137 + }, + { + "start": 11094.46, + "end": 11095.82, + "probability": 0.9808 + }, + { + "start": 11095.92, + "end": 11096.8, + "probability": 0.9696 + }, + { + "start": 11097.89, + "end": 11101.62, + "probability": 0.8537 + }, + { + "start": 11104.92, + "end": 11108.32, + "probability": 0.9896 + }, + { + "start": 11108.42, + "end": 11108.52, + "probability": 0.8193 + }, + { + "start": 11109.0, + "end": 11109.78, + "probability": 0.7973 + }, + { + "start": 11112.46, + "end": 11114.05, + "probability": 0.9215 + }, + { + "start": 11114.14, + "end": 11119.38, + "probability": 0.9301 + }, + { + "start": 11119.68, + "end": 11120.76, + "probability": 0.9079 + }, + { + "start": 11122.2, + "end": 11123.94, + "probability": 0.7936 + }, + { + "start": 11124.94, + "end": 11127.24, + "probability": 0.9559 + }, + { + "start": 11127.9, + "end": 11129.64, + "probability": 0.8047 + }, + { + "start": 11130.8, + "end": 11133.3, + "probability": 0.989 + }, + { + "start": 11134.24, + "end": 11137.66, + "probability": 0.9444 + }, + { + "start": 11138.3, + "end": 11140.38, + "probability": 0.9771 + }, + { + "start": 11141.42, + "end": 11143.58, + "probability": 0.9344 + }, + { + "start": 11144.5, + "end": 11147.28, + "probability": 0.7598 + }, + { + "start": 11148.12, + "end": 11151.02, + "probability": 0.9089 + }, + { + "start": 11151.92, + "end": 11153.48, + "probability": 0.9969 + }, + { + "start": 11154.46, + "end": 11159.58, + "probability": 0.9845 + }, + { + "start": 11159.98, + "end": 11160.28, + "probability": 0.9366 + }, + { + "start": 11160.78, + "end": 11161.26, + "probability": 0.7236 + }, + { + "start": 11162.14, + "end": 11163.16, + "probability": 0.9519 + }, + { + "start": 11164.9, + "end": 11165.74, + "probability": 0.9093 + }, + { + "start": 11166.78, + "end": 11167.1, + "probability": 0.9247 + }, + { + "start": 11168.56, + "end": 11171.82, + "probability": 0.9325 + }, + { + "start": 11173.14, + "end": 11176.26, + "probability": 0.9837 + }, + { + "start": 11177.46, + "end": 11179.33, + "probability": 0.999 + }, + { + "start": 11180.12, + "end": 11181.32, + "probability": 0.9215 + }, + { + "start": 11181.7, + "end": 11183.92, + "probability": 0.9958 + }, + { + "start": 11185.9, + "end": 11188.42, + "probability": 0.9691 + }, + { + "start": 11188.8, + "end": 11191.3, + "probability": 0.9786 + }, + { + "start": 11191.92, + "end": 11194.46, + "probability": 0.3117 + }, + { + "start": 11195.1, + "end": 11195.1, + "probability": 0.1361 + }, + { + "start": 11195.1, + "end": 11196.75, + "probability": 0.0982 + }, + { + "start": 11196.84, + "end": 11197.3, + "probability": 0.3464 + }, + { + "start": 11197.8, + "end": 11199.44, + "probability": 0.6986 + }, + { + "start": 11200.36, + "end": 11201.44, + "probability": 0.8627 + }, + { + "start": 11201.98, + "end": 11202.88, + "probability": 0.9775 + }, + { + "start": 11204.2, + "end": 11206.34, + "probability": 0.9639 + }, + { + "start": 11207.3, + "end": 11212.68, + "probability": 0.9941 + }, + { + "start": 11212.68, + "end": 11217.06, + "probability": 0.9976 + }, + { + "start": 11218.52, + "end": 11221.82, + "probability": 0.9897 + }, + { + "start": 11222.46, + "end": 11227.42, + "probability": 0.8966 + }, + { + "start": 11227.74, + "end": 11228.46, + "probability": 0.736 + }, + { + "start": 11229.18, + "end": 11230.74, + "probability": 0.7545 + }, + { + "start": 11231.4, + "end": 11233.34, + "probability": 0.9946 + }, + { + "start": 11234.2, + "end": 11236.78, + "probability": 0.9927 + }, + { + "start": 11237.44, + "end": 11239.93, + "probability": 0.9985 + }, + { + "start": 11240.36, + "end": 11244.52, + "probability": 0.9842 + }, + { + "start": 11245.36, + "end": 11247.86, + "probability": 0.7578 + }, + { + "start": 11248.08, + "end": 11249.97, + "probability": 0.9934 + }, + { + "start": 11251.28, + "end": 11256.26, + "probability": 0.9965 + }, + { + "start": 11256.76, + "end": 11259.5, + "probability": 0.9951 + }, + { + "start": 11259.9, + "end": 11261.26, + "probability": 0.9609 + }, + { + "start": 11261.9, + "end": 11264.68, + "probability": 0.9897 + }, + { + "start": 11264.68, + "end": 11268.72, + "probability": 0.9667 + }, + { + "start": 11269.24, + "end": 11271.56, + "probability": 0.8691 + }, + { + "start": 11272.4, + "end": 11273.56, + "probability": 0.9376 + }, + { + "start": 11274.0, + "end": 11277.54, + "probability": 0.9777 + }, + { + "start": 11278.9, + "end": 11283.16, + "probability": 0.9961 + }, + { + "start": 11284.14, + "end": 11286.04, + "probability": 0.9571 + }, + { + "start": 11286.46, + "end": 11291.48, + "probability": 0.9321 + }, + { + "start": 11291.6, + "end": 11294.02, + "probability": 0.9775 + }, + { + "start": 11294.62, + "end": 11296.36, + "probability": 0.9948 + }, + { + "start": 11297.06, + "end": 11300.84, + "probability": 0.9635 + }, + { + "start": 11301.28, + "end": 11302.93, + "probability": 0.9929 + }, + { + "start": 11303.9, + "end": 11304.98, + "probability": 0.8306 + }, + { + "start": 11306.2, + "end": 11307.98, + "probability": 0.8955 + }, + { + "start": 11308.54, + "end": 11313.4, + "probability": 0.7969 + }, + { + "start": 11313.46, + "end": 11315.32, + "probability": 0.8304 + }, + { + "start": 11316.16, + "end": 11319.68, + "probability": 0.9878 + }, + { + "start": 11319.92, + "end": 11323.14, + "probability": 0.9591 + }, + { + "start": 11323.68, + "end": 11325.76, + "probability": 0.9505 + }, + { + "start": 11326.06, + "end": 11327.64, + "probability": 0.8508 + }, + { + "start": 11328.33, + "end": 11329.31, + "probability": 0.8 + }, + { + "start": 11330.22, + "end": 11332.98, + "probability": 0.9814 + }, + { + "start": 11332.98, + "end": 11336.18, + "probability": 0.9841 + }, + { + "start": 11336.32, + "end": 11338.8, + "probability": 0.9976 + }, + { + "start": 11339.08, + "end": 11339.74, + "probability": 0.9977 + }, + { + "start": 11341.48, + "end": 11341.92, + "probability": 0.942 + }, + { + "start": 11342.2, + "end": 11344.18, + "probability": 0.9365 + }, + { + "start": 11344.56, + "end": 11347.48, + "probability": 0.995 + }, + { + "start": 11348.08, + "end": 11351.44, + "probability": 0.9965 + }, + { + "start": 11351.86, + "end": 11354.7, + "probability": 0.9978 + }, + { + "start": 11355.44, + "end": 11357.82, + "probability": 0.9724 + }, + { + "start": 11358.2, + "end": 11360.46, + "probability": 0.983 + }, + { + "start": 11360.54, + "end": 11362.06, + "probability": 0.9154 + }, + { + "start": 11363.14, + "end": 11363.82, + "probability": 0.5266 + }, + { + "start": 11363.9, + "end": 11364.25, + "probability": 0.8907 + }, + { + "start": 11364.38, + "end": 11366.22, + "probability": 0.9836 + }, + { + "start": 11366.6, + "end": 11368.6, + "probability": 0.9449 + }, + { + "start": 11369.12, + "end": 11372.98, + "probability": 0.9553 + }, + { + "start": 11373.44, + "end": 11374.28, + "probability": 0.9694 + }, + { + "start": 11377.36, + "end": 11377.82, + "probability": 0.105 + }, + { + "start": 11377.82, + "end": 11378.8, + "probability": 0.399 + }, + { + "start": 11379.56, + "end": 11380.8, + "probability": 0.9677 + }, + { + "start": 11381.32, + "end": 11385.14, + "probability": 0.9834 + }, + { + "start": 11385.4, + "end": 11386.74, + "probability": 0.9847 + }, + { + "start": 11387.12, + "end": 11388.56, + "probability": 0.98 + }, + { + "start": 11389.24, + "end": 11391.68, + "probability": 0.9849 + }, + { + "start": 11391.68, + "end": 11391.98, + "probability": 0.7509 + }, + { + "start": 11393.72, + "end": 11395.93, + "probability": 0.8825 + }, + { + "start": 11396.26, + "end": 11401.08, + "probability": 0.8418 + }, + { + "start": 11401.36, + "end": 11402.28, + "probability": 0.7514 + }, + { + "start": 11418.54, + "end": 11418.56, + "probability": 0.6403 + }, + { + "start": 11418.56, + "end": 11419.53, + "probability": 0.5074 + }, + { + "start": 11419.56, + "end": 11419.76, + "probability": 0.7616 + }, + { + "start": 11425.38, + "end": 11428.4, + "probability": 0.6679 + }, + { + "start": 11430.46, + "end": 11438.26, + "probability": 0.8886 + }, + { + "start": 11439.34, + "end": 11441.58, + "probability": 0.8368 + }, + { + "start": 11442.38, + "end": 11444.34, + "probability": 0.9904 + }, + { + "start": 11445.22, + "end": 11446.9, + "probability": 0.781 + }, + { + "start": 11447.68, + "end": 11448.6, + "probability": 0.838 + }, + { + "start": 11449.74, + "end": 11450.78, + "probability": 0.9404 + }, + { + "start": 11452.7, + "end": 11454.34, + "probability": 0.9842 + }, + { + "start": 11455.3, + "end": 11460.4, + "probability": 0.8075 + }, + { + "start": 11461.72, + "end": 11465.4, + "probability": 0.9855 + }, + { + "start": 11466.98, + "end": 11468.36, + "probability": 0.8972 + }, + { + "start": 11470.3, + "end": 11474.17, + "probability": 0.6866 + }, + { + "start": 11476.08, + "end": 11479.2, + "probability": 0.9445 + }, + { + "start": 11480.24, + "end": 11482.84, + "probability": 0.8879 + }, + { + "start": 11484.94, + "end": 11492.12, + "probability": 0.474 + }, + { + "start": 11492.68, + "end": 11496.0, + "probability": 0.6705 + }, + { + "start": 11496.84, + "end": 11497.8, + "probability": 0.6517 + }, + { + "start": 11498.6, + "end": 11500.5, + "probability": 0.7497 + }, + { + "start": 11501.42, + "end": 11504.06, + "probability": 0.7079 + }, + { + "start": 11504.84, + "end": 11507.18, + "probability": 0.5861 + }, + { + "start": 11507.84, + "end": 11509.12, + "probability": 0.7154 + }, + { + "start": 11510.18, + "end": 11514.54, + "probability": 0.6324 + }, + { + "start": 11515.32, + "end": 11516.7, + "probability": 0.8461 + }, + { + "start": 11517.26, + "end": 11518.48, + "probability": 0.8943 + }, + { + "start": 11519.08, + "end": 11523.56, + "probability": 0.9781 + }, + { + "start": 11524.32, + "end": 11526.92, + "probability": 0.9647 + }, + { + "start": 11528.44, + "end": 11530.08, + "probability": 0.5588 + }, + { + "start": 11531.04, + "end": 11533.8, + "probability": 0.7381 + }, + { + "start": 11533.92, + "end": 11533.92, + "probability": 0.6598 + }, + { + "start": 11533.92, + "end": 11533.92, + "probability": 0.0976 + }, + { + "start": 11534.0, + "end": 11536.76, + "probability": 0.7503 + }, + { + "start": 11537.8, + "end": 11538.7, + "probability": 0.991 + }, + { + "start": 11540.12, + "end": 11541.88, + "probability": 0.9076 + }, + { + "start": 11542.7, + "end": 11545.12, + "probability": 0.7728 + }, + { + "start": 11545.74, + "end": 11547.64, + "probability": 0.8154 + }, + { + "start": 11548.86, + "end": 11551.82, + "probability": 0.8896 + }, + { + "start": 11552.04, + "end": 11552.32, + "probability": 0.782 + }, + { + "start": 11552.46, + "end": 11553.96, + "probability": 0.9825 + }, + { + "start": 11554.98, + "end": 11557.78, + "probability": 0.9686 + }, + { + "start": 11558.5, + "end": 11562.06, + "probability": 0.9959 + }, + { + "start": 11562.82, + "end": 11563.67, + "probability": 0.9932 + }, + { + "start": 11564.46, + "end": 11568.68, + "probability": 0.9907 + }, + { + "start": 11569.2, + "end": 11572.86, + "probability": 0.8494 + }, + { + "start": 11574.42, + "end": 11576.0, + "probability": 0.9215 + }, + { + "start": 11577.2, + "end": 11579.02, + "probability": 0.9869 + }, + { + "start": 11579.74, + "end": 11580.23, + "probability": 0.9463 + }, + { + "start": 11581.38, + "end": 11582.66, + "probability": 0.9368 + }, + { + "start": 11583.92, + "end": 11585.42, + "probability": 0.5014 + }, + { + "start": 11588.18, + "end": 11588.88, + "probability": 0.8398 + }, + { + "start": 11589.52, + "end": 11590.04, + "probability": 0.7352 + }, + { + "start": 11591.32, + "end": 11593.92, + "probability": 0.9199 + }, + { + "start": 11595.06, + "end": 11599.36, + "probability": 0.9657 + }, + { + "start": 11599.74, + "end": 11606.28, + "probability": 0.9773 + }, + { + "start": 11607.28, + "end": 11607.88, + "probability": 0.9509 + }, + { + "start": 11608.4, + "end": 11610.26, + "probability": 0.865 + }, + { + "start": 11611.62, + "end": 11614.66, + "probability": 0.8123 + }, + { + "start": 11615.0, + "end": 11616.96, + "probability": 0.7255 + }, + { + "start": 11618.26, + "end": 11619.92, + "probability": 0.9094 + }, + { + "start": 11620.92, + "end": 11622.92, + "probability": 0.8657 + }, + { + "start": 11624.22, + "end": 11628.46, + "probability": 0.9747 + }, + { + "start": 11629.4, + "end": 11630.42, + "probability": 0.6789 + }, + { + "start": 11631.2, + "end": 11633.58, + "probability": 0.0195 + }, + { + "start": 11634.88, + "end": 11635.06, + "probability": 0.4272 + }, + { + "start": 11647.86, + "end": 11649.16, + "probability": 0.2667 + }, + { + "start": 11649.44, + "end": 11651.78, + "probability": 0.5106 + }, + { + "start": 11652.2, + "end": 11654.18, + "probability": 0.6599 + }, + { + "start": 11654.22, + "end": 11654.5, + "probability": 0.9064 + }, + { + "start": 11676.64, + "end": 11677.46, + "probability": 0.7876 + }, + { + "start": 11677.46, + "end": 11677.68, + "probability": 0.8552 + }, + { + "start": 11678.9, + "end": 11681.9, + "probability": 0.7265 + }, + { + "start": 11682.82, + "end": 11691.06, + "probability": 0.9331 + }, + { + "start": 11691.88, + "end": 11697.12, + "probability": 0.7306 + }, + { + "start": 11698.08, + "end": 11699.98, + "probability": 0.9565 + }, + { + "start": 11700.14, + "end": 11704.16, + "probability": 0.6749 + }, + { + "start": 11706.08, + "end": 11708.84, + "probability": 0.7412 + }, + { + "start": 11709.66, + "end": 11710.7, + "probability": 0.699 + }, + { + "start": 11711.72, + "end": 11717.01, + "probability": 0.9663 + }, + { + "start": 11718.82, + "end": 11725.54, + "probability": 0.995 + }, + { + "start": 11725.58, + "end": 11731.58, + "probability": 0.9911 + }, + { + "start": 11733.18, + "end": 11736.66, + "probability": 0.9973 + }, + { + "start": 11736.76, + "end": 11741.98, + "probability": 0.9288 + }, + { + "start": 11742.14, + "end": 11742.8, + "probability": 0.9706 + }, + { + "start": 11743.6, + "end": 11745.76, + "probability": 0.8347 + }, + { + "start": 11745.98, + "end": 11750.04, + "probability": 0.9771 + }, + { + "start": 11750.78, + "end": 11755.44, + "probability": 0.9782 + }, + { + "start": 11755.86, + "end": 11760.28, + "probability": 0.9734 + }, + { + "start": 11761.16, + "end": 11763.96, + "probability": 0.9561 + }, + { + "start": 11764.74, + "end": 11772.66, + "probability": 0.9965 + }, + { + "start": 11774.32, + "end": 11775.84, + "probability": 0.99 + }, + { + "start": 11776.88, + "end": 11784.18, + "probability": 0.9985 + }, + { + "start": 11785.3, + "end": 11787.46, + "probability": 0.9967 + }, + { + "start": 11788.26, + "end": 11791.33, + "probability": 0.9974 + }, + { + "start": 11791.64, + "end": 11797.56, + "probability": 0.9974 + }, + { + "start": 11798.74, + "end": 11802.64, + "probability": 0.8654 + }, + { + "start": 11803.76, + "end": 11804.46, + "probability": 0.976 + }, + { + "start": 11805.34, + "end": 11806.78, + "probability": 0.7886 + }, + { + "start": 11807.8, + "end": 11809.18, + "probability": 0.9506 + }, + { + "start": 11809.38, + "end": 11812.29, + "probability": 0.7623 + }, + { + "start": 11812.56, + "end": 11814.14, + "probability": 0.9637 + }, + { + "start": 11814.72, + "end": 11816.44, + "probability": 0.9695 + }, + { + "start": 11817.18, + "end": 11826.86, + "probability": 0.9937 + }, + { + "start": 11827.46, + "end": 11827.58, + "probability": 0.1368 + }, + { + "start": 11828.16, + "end": 11828.64, + "probability": 0.3798 + }, + { + "start": 11829.34, + "end": 11833.64, + "probability": 0.9976 + }, + { + "start": 11833.64, + "end": 11838.12, + "probability": 0.8026 + }, + { + "start": 11838.7, + "end": 11840.32, + "probability": 0.7615 + }, + { + "start": 11841.16, + "end": 11842.14, + "probability": 0.0848 + }, + { + "start": 11842.14, + "end": 11842.14, + "probability": 0.4399 + }, + { + "start": 11842.74, + "end": 11843.66, + "probability": 0.9628 + }, + { + "start": 11844.46, + "end": 11846.28, + "probability": 0.9748 + }, + { + "start": 11846.38, + "end": 11848.26, + "probability": 0.3158 + }, + { + "start": 11848.26, + "end": 11848.3, + "probability": 0.0615 + }, + { + "start": 11849.52, + "end": 11852.6, + "probability": 0.9771 + }, + { + "start": 11853.16, + "end": 11855.64, + "probability": 0.9728 + }, + { + "start": 11857.24, + "end": 11862.2, + "probability": 0.9453 + }, + { + "start": 11863.06, + "end": 11865.32, + "probability": 0.8566 + }, + { + "start": 11866.04, + "end": 11867.94, + "probability": 0.6459 + }, + { + "start": 11868.54, + "end": 11871.5, + "probability": 0.9917 + }, + { + "start": 11872.66, + "end": 11880.04, + "probability": 0.9965 + }, + { + "start": 11880.4, + "end": 11882.6, + "probability": 0.9939 + }, + { + "start": 11883.36, + "end": 11885.64, + "probability": 0.9911 + }, + { + "start": 11886.6, + "end": 11889.4, + "probability": 0.3505 + }, + { + "start": 11890.18, + "end": 11892.74, + "probability": 0.6892 + }, + { + "start": 11893.52, + "end": 11896.2, + "probability": 0.9072 + }, + { + "start": 11896.42, + "end": 11896.78, + "probability": 0.722 + }, + { + "start": 11897.58, + "end": 11899.72, + "probability": 0.9839 + }, + { + "start": 11900.28, + "end": 11905.42, + "probability": 0.964 + }, + { + "start": 11906.14, + "end": 11907.48, + "probability": 0.7634 + }, + { + "start": 11907.68, + "end": 11909.36, + "probability": 0.9973 + }, + { + "start": 11909.84, + "end": 11917.38, + "probability": 0.971 + }, + { + "start": 11917.84, + "end": 11918.94, + "probability": 0.8522 + }, + { + "start": 11920.08, + "end": 11921.2, + "probability": 0.9144 + }, + { + "start": 11922.72, + "end": 11924.88, + "probability": 0.9813 + }, + { + "start": 11925.56, + "end": 11928.28, + "probability": 0.9863 + }, + { + "start": 11928.8, + "end": 11932.58, + "probability": 0.9876 + }, + { + "start": 11932.86, + "end": 11935.52, + "probability": 0.7986 + }, + { + "start": 11935.64, + "end": 11941.44, + "probability": 0.9968 + }, + { + "start": 11942.12, + "end": 11943.16, + "probability": 0.9609 + }, + { + "start": 11943.68, + "end": 11948.52, + "probability": 0.9991 + }, + { + "start": 11950.83, + "end": 11958.32, + "probability": 0.8623 + }, + { + "start": 11959.4, + "end": 11961.7, + "probability": 0.9314 + }, + { + "start": 11962.32, + "end": 11973.56, + "probability": 0.9873 + }, + { + "start": 11974.12, + "end": 11977.7, + "probability": 0.9143 + }, + { + "start": 11978.34, + "end": 11978.8, + "probability": 0.9494 + }, + { + "start": 11979.4, + "end": 11982.78, + "probability": 0.9945 + }, + { + "start": 11982.82, + "end": 11986.08, + "probability": 0.9604 + }, + { + "start": 11986.24, + "end": 11988.36, + "probability": 0.5036 + }, + { + "start": 11988.98, + "end": 11991.22, + "probability": 0.7281 + }, + { + "start": 11991.44, + "end": 11993.39, + "probability": 0.8313 + }, + { + "start": 11994.85, + "end": 11996.7, + "probability": 0.7166 + }, + { + "start": 11996.94, + "end": 11998.5, + "probability": 0.6971 + }, + { + "start": 11998.56, + "end": 12000.74, + "probability": 0.9066 + }, + { + "start": 12000.88, + "end": 12000.98, + "probability": 0.6846 + }, + { + "start": 12000.98, + "end": 12001.74, + "probability": 0.7458 + }, + { + "start": 12002.2, + "end": 12003.36, + "probability": 0.4144 + }, + { + "start": 12011.08, + "end": 12015.12, + "probability": 0.7323 + }, + { + "start": 12015.2, + "end": 12015.82, + "probability": 0.7175 + }, + { + "start": 12016.56, + "end": 12018.36, + "probability": 0.9086 + }, + { + "start": 12019.2, + "end": 12026.31, + "probability": 0.8853 + }, + { + "start": 12027.98, + "end": 12033.66, + "probability": 0.1055 + }, + { + "start": 12043.18, + "end": 12045.82, + "probability": 0.4179 + }, + { + "start": 12045.94, + "end": 12047.7, + "probability": 0.9826 + }, + { + "start": 12048.42, + "end": 12050.9, + "probability": 0.6775 + }, + { + "start": 12052.36, + "end": 12058.32, + "probability": 0.6786 + }, + { + "start": 12062.46, + "end": 12063.76, + "probability": 0.486 + }, + { + "start": 12064.98, + "end": 12066.7, + "probability": 0.0148 + }, + { + "start": 12077.1, + "end": 12077.32, + "probability": 0.0782 + }, + { + "start": 12077.34, + "end": 12077.86, + "probability": 0.699 + }, + { + "start": 12077.9, + "end": 12078.22, + "probability": 0.6808 + }, + { + "start": 12079.21, + "end": 12081.55, + "probability": 0.8687 + }, + { + "start": 12081.98, + "end": 12082.26, + "probability": 0.2899 + }, + { + "start": 12082.26, + "end": 12084.46, + "probability": 0.8084 + }, + { + "start": 12084.7, + "end": 12087.94, + "probability": 0.5568 + }, + { + "start": 12088.08, + "end": 12089.26, + "probability": 0.8254 + }, + { + "start": 12091.58, + "end": 12093.64, + "probability": 0.0028 + }, + { + "start": 12094.48, + "end": 12096.62, + "probability": 0.3614 + }, + { + "start": 12098.38, + "end": 12098.8, + "probability": 0.1843 + }, + { + "start": 12100.14, + "end": 12101.6, + "probability": 0.2803 + }, + { + "start": 12106.94, + "end": 12107.26, + "probability": 0.4576 + }, + { + "start": 12107.34, + "end": 12109.22, + "probability": 0.9625 + }, + { + "start": 12109.24, + "end": 12109.24, + "probability": 0.7687 + }, + { + "start": 12109.3, + "end": 12110.4, + "probability": 0.744 + }, + { + "start": 12110.46, + "end": 12114.42, + "probability": 0.8869 + }, + { + "start": 12115.3, + "end": 12117.78, + "probability": 0.1645 + }, + { + "start": 12118.26, + "end": 12122.32, + "probability": 0.7866 + }, + { + "start": 12127.82, + "end": 12128.34, + "probability": 0.0172 + }, + { + "start": 12129.83, + "end": 12131.64, + "probability": 0.4614 + }, + { + "start": 12132.22, + "end": 12134.18, + "probability": 0.4947 + }, + { + "start": 12138.0, + "end": 12140.12, + "probability": 0.7879 + }, + { + "start": 12140.12, + "end": 12143.22, + "probability": 0.7764 + }, + { + "start": 12143.84, + "end": 12146.5, + "probability": 0.0874 + }, + { + "start": 12147.24, + "end": 12148.06, + "probability": 0.3189 + }, + { + "start": 12150.18, + "end": 12150.7, + "probability": 0.9252 + }, + { + "start": 12152.52, + "end": 12154.0, + "probability": 0.0039 + }, + { + "start": 12155.86, + "end": 12156.5, + "probability": 0.3466 + }, + { + "start": 12157.34, + "end": 12158.26, + "probability": 0.0745 + }, + { + "start": 12159.08, + "end": 12159.36, + "probability": 0.1723 + }, + { + "start": 12159.36, + "end": 12159.36, + "probability": 0.2044 + }, + { + "start": 12162.0, + "end": 12163.34, + "probability": 0.509 + }, + { + "start": 12163.42, + "end": 12167.79, + "probability": 0.7673 + }, + { + "start": 12168.24, + "end": 12170.14, + "probability": 0.4539 + }, + { + "start": 12170.42, + "end": 12171.78, + "probability": 0.8254 + }, + { + "start": 12171.92, + "end": 12174.12, + "probability": 0.9198 + }, + { + "start": 12174.44, + "end": 12175.98, + "probability": 0.7126 + }, + { + "start": 12176.1, + "end": 12177.42, + "probability": 0.9364 + }, + { + "start": 12185.98, + "end": 12186.4, + "probability": 0.3915 + }, + { + "start": 12186.5, + "end": 12192.52, + "probability": 0.971 + }, + { + "start": 12193.06, + "end": 12195.8, + "probability": 0.6894 + }, + { + "start": 12196.52, + "end": 12199.32, + "probability": 0.9504 + }, + { + "start": 12199.32, + "end": 12199.44, + "probability": 0.5866 + }, + { + "start": 12199.44, + "end": 12203.16, + "probability": 0.994 + }, + { + "start": 12203.26, + "end": 12204.58, + "probability": 0.5098 + }, + { + "start": 12204.78, + "end": 12208.22, + "probability": 0.8941 + }, + { + "start": 12208.84, + "end": 12211.86, + "probability": 0.7002 + }, + { + "start": 12212.18, + "end": 12213.12, + "probability": 0.8177 + }, + { + "start": 12213.24, + "end": 12214.26, + "probability": 0.7486 + }, + { + "start": 12215.26, + "end": 12219.22, + "probability": 0.7867 + }, + { + "start": 12220.34, + "end": 12220.79, + "probability": 0.8478 + }, + { + "start": 12221.68, + "end": 12223.1, + "probability": 0.9065 + }, + { + "start": 12223.42, + "end": 12224.54, + "probability": 0.9872 + }, + { + "start": 12225.0, + "end": 12225.88, + "probability": 0.9712 + }, + { + "start": 12226.26, + "end": 12226.94, + "probability": 0.7529 + }, + { + "start": 12227.76, + "end": 12229.94, + "probability": 0.8227 + }, + { + "start": 12230.52, + "end": 12231.12, + "probability": 0.6517 + }, + { + "start": 12231.62, + "end": 12232.44, + "probability": 0.5641 + }, + { + "start": 12232.74, + "end": 12233.96, + "probability": 0.9586 + }, + { + "start": 12234.36, + "end": 12234.9, + "probability": 0.9048 + }, + { + "start": 12235.58, + "end": 12238.08, + "probability": 0.9131 + }, + { + "start": 12238.08, + "end": 12240.46, + "probability": 0.9476 + }, + { + "start": 12241.16, + "end": 12245.02, + "probability": 0.7638 + }, + { + "start": 12245.52, + "end": 12249.24, + "probability": 0.9808 + }, + { + "start": 12249.32, + "end": 12250.7, + "probability": 0.9663 + }, + { + "start": 12250.84, + "end": 12251.26, + "probability": 0.9857 + }, + { + "start": 12251.6, + "end": 12251.92, + "probability": 0.987 + }, + { + "start": 12252.14, + "end": 12252.66, + "probability": 0.7639 + }, + { + "start": 12252.92, + "end": 12253.62, + "probability": 0.7525 + }, + { + "start": 12254.14, + "end": 12255.12, + "probability": 0.8694 + }, + { + "start": 12257.02, + "end": 12257.42, + "probability": 0.354 + }, + { + "start": 12257.42, + "end": 12258.26, + "probability": 0.7244 + }, + { + "start": 12258.72, + "end": 12261.16, + "probability": 0.955 + }, + { + "start": 12261.4, + "end": 12264.68, + "probability": 0.7751 + }, + { + "start": 12265.34, + "end": 12268.28, + "probability": 0.499 + }, + { + "start": 12268.56, + "end": 12271.38, + "probability": 0.6807 + }, + { + "start": 12272.29, + "end": 12277.26, + "probability": 0.9343 + }, + { + "start": 12277.94, + "end": 12278.68, + "probability": 0.9079 + }, + { + "start": 12278.78, + "end": 12280.26, + "probability": 0.9133 + }, + { + "start": 12283.52, + "end": 12283.58, + "probability": 0.3548 + }, + { + "start": 12305.7, + "end": 12308.12, + "probability": 0.6676 + }, + { + "start": 12309.44, + "end": 12311.28, + "probability": 0.8386 + }, + { + "start": 12311.94, + "end": 12315.74, + "probability": 0.939 + }, + { + "start": 12316.32, + "end": 12318.28, + "probability": 0.6652 + }, + { + "start": 12318.52, + "end": 12319.74, + "probability": 0.8961 + }, + { + "start": 12320.24, + "end": 12324.24, + "probability": 0.9578 + }, + { + "start": 12324.84, + "end": 12327.5, + "probability": 0.2755 + }, + { + "start": 12327.96, + "end": 12332.6, + "probability": 0.9562 + }, + { + "start": 12334.44, + "end": 12335.7, + "probability": 0.8204 + }, + { + "start": 12336.0, + "end": 12340.84, + "probability": 0.9951 + }, + { + "start": 12340.84, + "end": 12345.94, + "probability": 0.9963 + }, + { + "start": 12346.54, + "end": 12350.94, + "probability": 0.9919 + }, + { + "start": 12351.48, + "end": 12352.9, + "probability": 0.9172 + }, + { + "start": 12353.4, + "end": 12357.72, + "probability": 0.9236 + }, + { + "start": 12358.28, + "end": 12360.02, + "probability": 0.4978 + }, + { + "start": 12360.1, + "end": 12361.7, + "probability": 0.8441 + }, + { + "start": 12361.74, + "end": 12362.82, + "probability": 0.8209 + }, + { + "start": 12362.9, + "end": 12365.8, + "probability": 0.8882 + }, + { + "start": 12365.92, + "end": 12368.82, + "probability": 0.0631 + }, + { + "start": 12368.82, + "end": 12368.82, + "probability": 0.0345 + }, + { + "start": 12368.82, + "end": 12370.96, + "probability": 0.1911 + }, + { + "start": 12370.96, + "end": 12376.0, + "probability": 0.918 + }, + { + "start": 12376.58, + "end": 12380.88, + "probability": 0.9814 + }, + { + "start": 12381.54, + "end": 12382.86, + "probability": 0.9466 + }, + { + "start": 12383.4, + "end": 12387.7, + "probability": 0.9645 + }, + { + "start": 12388.42, + "end": 12393.58, + "probability": 0.9932 + }, + { + "start": 12393.7, + "end": 12396.82, + "probability": 0.9865 + }, + { + "start": 12397.44, + "end": 12399.36, + "probability": 0.9256 + }, + { + "start": 12399.88, + "end": 12402.68, + "probability": 0.8208 + }, + { + "start": 12403.16, + "end": 12404.96, + "probability": 0.9974 + }, + { + "start": 12405.48, + "end": 12409.64, + "probability": 0.9949 + }, + { + "start": 12410.36, + "end": 12411.71, + "probability": 0.8438 + }, + { + "start": 12411.98, + "end": 12414.54, + "probability": 0.8475 + }, + { + "start": 12415.16, + "end": 12419.12, + "probability": 0.9953 + }, + { + "start": 12419.12, + "end": 12424.66, + "probability": 0.9771 + }, + { + "start": 12424.66, + "end": 12428.72, + "probability": 0.9957 + }, + { + "start": 12429.2, + "end": 12429.9, + "probability": 0.8154 + }, + { + "start": 12430.36, + "end": 12431.5, + "probability": 0.9806 + }, + { + "start": 12432.02, + "end": 12437.94, + "probability": 0.991 + }, + { + "start": 12437.94, + "end": 12444.16, + "probability": 0.99 + }, + { + "start": 12444.78, + "end": 12446.32, + "probability": 0.7663 + }, + { + "start": 12446.48, + "end": 12451.94, + "probability": 0.9594 + }, + { + "start": 12452.82, + "end": 12453.7, + "probability": 0.7362 + }, + { + "start": 12453.86, + "end": 12456.86, + "probability": 0.8214 + }, + { + "start": 12457.56, + "end": 12462.26, + "probability": 0.9862 + }, + { + "start": 12462.26, + "end": 12467.12, + "probability": 0.9932 + }, + { + "start": 12467.68, + "end": 12471.42, + "probability": 0.8384 + }, + { + "start": 12471.42, + "end": 12475.84, + "probability": 0.9897 + }, + { + "start": 12475.92, + "end": 12477.1, + "probability": 0.5331 + }, + { + "start": 12477.66, + "end": 12482.64, + "probability": 0.9793 + }, + { + "start": 12483.2, + "end": 12487.38, + "probability": 0.9854 + }, + { + "start": 12487.92, + "end": 12491.64, + "probability": 0.9384 + }, + { + "start": 12492.2, + "end": 12492.86, + "probability": 0.5052 + }, + { + "start": 12492.92, + "end": 12497.6, + "probability": 0.9767 + }, + { + "start": 12497.6, + "end": 12501.46, + "probability": 0.9883 + }, + { + "start": 12501.52, + "end": 12505.58, + "probability": 0.9587 + }, + { + "start": 12506.6, + "end": 12509.02, + "probability": 0.9857 + }, + { + "start": 12509.62, + "end": 12511.86, + "probability": 0.9276 + }, + { + "start": 12512.38, + "end": 12513.1, + "probability": 0.902 + }, + { + "start": 12513.18, + "end": 12517.88, + "probability": 0.9402 + }, + { + "start": 12518.22, + "end": 12519.2, + "probability": 0.667 + }, + { + "start": 12519.38, + "end": 12521.54, + "probability": 0.9826 + }, + { + "start": 12522.04, + "end": 12522.46, + "probability": 0.5839 + }, + { + "start": 12522.52, + "end": 12527.22, + "probability": 0.9922 + }, + { + "start": 12527.7, + "end": 12529.06, + "probability": 0.8494 + }, + { + "start": 12529.44, + "end": 12530.96, + "probability": 0.9829 + }, + { + "start": 12531.24, + "end": 12531.92, + "probability": 0.6555 + }, + { + "start": 12532.56, + "end": 12536.0, + "probability": 0.9961 + }, + { + "start": 12536.0, + "end": 12540.72, + "probability": 0.9768 + }, + { + "start": 12541.32, + "end": 12545.5, + "probability": 0.9673 + }, + { + "start": 12546.12, + "end": 12550.82, + "probability": 0.9126 + }, + { + "start": 12551.38, + "end": 12554.74, + "probability": 0.956 + }, + { + "start": 12554.9, + "end": 12558.24, + "probability": 0.8774 + }, + { + "start": 12558.66, + "end": 12560.98, + "probability": 0.9246 + }, + { + "start": 12561.46, + "end": 12565.32, + "probability": 0.9932 + }, + { + "start": 12565.82, + "end": 12565.98, + "probability": 0.4085 + }, + { + "start": 12566.2, + "end": 12568.48, + "probability": 0.8131 + }, + { + "start": 12568.48, + "end": 12571.56, + "probability": 0.9755 + }, + { + "start": 12572.24, + "end": 12576.02, + "probability": 0.9023 + }, + { + "start": 12576.02, + "end": 12580.48, + "probability": 0.9927 + }, + { + "start": 12580.62, + "end": 12581.86, + "probability": 0.9786 + }, + { + "start": 12582.4, + "end": 12585.14, + "probability": 0.9966 + }, + { + "start": 12585.46, + "end": 12586.12, + "probability": 0.6387 + }, + { + "start": 12586.58, + "end": 12588.02, + "probability": 0.9941 + }, + { + "start": 12588.38, + "end": 12590.72, + "probability": 0.8412 + }, + { + "start": 12591.4, + "end": 12596.16, + "probability": 0.8652 + }, + { + "start": 12596.24, + "end": 12600.84, + "probability": 0.7945 + }, + { + "start": 12601.08, + "end": 12604.68, + "probability": 0.9165 + }, + { + "start": 12605.26, + "end": 12609.76, + "probability": 0.926 + }, + { + "start": 12610.34, + "end": 12614.3, + "probability": 0.8755 + }, + { + "start": 12614.5, + "end": 12621.64, + "probability": 0.9489 + }, + { + "start": 12622.1, + "end": 12622.5, + "probability": 0.2655 + }, + { + "start": 12624.86, + "end": 12626.48, + "probability": 0.7848 + }, + { + "start": 12626.5, + "end": 12628.58, + "probability": 0.819 + }, + { + "start": 12628.66, + "end": 12632.1, + "probability": 0.9481 + }, + { + "start": 12632.66, + "end": 12634.66, + "probability": 0.9251 + }, + { + "start": 12634.76, + "end": 12637.12, + "probability": 0.8806 + }, + { + "start": 12637.8, + "end": 12638.76, + "probability": 0.5066 + }, + { + "start": 12639.98, + "end": 12640.7, + "probability": 0.7858 + }, + { + "start": 12640.82, + "end": 12641.96, + "probability": 0.7738 + }, + { + "start": 12641.98, + "end": 12642.4, + "probability": 0.8877 + }, + { + "start": 12642.5, + "end": 12643.95, + "probability": 0.7778 + }, + { + "start": 12645.14, + "end": 12647.62, + "probability": 0.8857 + }, + { + "start": 12649.18, + "end": 12649.46, + "probability": 0.4791 + }, + { + "start": 12649.46, + "end": 12651.36, + "probability": 0.9634 + }, + { + "start": 12651.84, + "end": 12653.04, + "probability": 0.5721 + }, + { + "start": 12653.48, + "end": 12654.46, + "probability": 0.9773 + }, + { + "start": 12655.3, + "end": 12658.26, + "probability": 0.8711 + }, + { + "start": 12659.3, + "end": 12661.98, + "probability": 0.8215 + }, + { + "start": 12662.08, + "end": 12664.16, + "probability": 0.9362 + }, + { + "start": 12665.1, + "end": 12666.32, + "probability": 0.5471 + }, + { + "start": 12666.84, + "end": 12668.34, + "probability": 0.8497 + }, + { + "start": 12668.44, + "end": 12669.5, + "probability": 0.8667 + }, + { + "start": 12670.18, + "end": 12671.62, + "probability": 0.6478 + }, + { + "start": 12675.86, + "end": 12678.62, + "probability": 0.8276 + }, + { + "start": 12678.68, + "end": 12681.64, + "probability": 0.8748 + }, + { + "start": 12681.8, + "end": 12682.58, + "probability": 0.79 + }, + { + "start": 12683.1, + "end": 12684.98, + "probability": 0.8569 + }, + { + "start": 12685.34, + "end": 12686.56, + "probability": 0.9116 + }, + { + "start": 12687.82, + "end": 12688.04, + "probability": 0.5497 + }, + { + "start": 12688.04, + "end": 12689.07, + "probability": 0.4681 + }, + { + "start": 12690.28, + "end": 12694.48, + "probability": 0.7526 + }, + { + "start": 12695.92, + "end": 12700.46, + "probability": 0.9985 + }, + { + "start": 12701.98, + "end": 12702.0, + "probability": 0.4321 + }, + { + "start": 12702.04, + "end": 12704.26, + "probability": 0.6738 + }, + { + "start": 12705.03, + "end": 12709.32, + "probability": 0.9888 + }, + { + "start": 12710.74, + "end": 12714.66, + "probability": 0.9972 + }, + { + "start": 12714.68, + "end": 12719.84, + "probability": 0.9807 + }, + { + "start": 12720.94, + "end": 12724.7, + "probability": 0.981 + }, + { + "start": 12724.76, + "end": 12726.72, + "probability": 0.6583 + }, + { + "start": 12728.1, + "end": 12732.92, + "probability": 0.8341 + }, + { + "start": 12733.16, + "end": 12735.64, + "probability": 0.9741 + }, + { + "start": 12735.96, + "end": 12742.2, + "probability": 0.902 + }, + { + "start": 12743.14, + "end": 12745.22, + "probability": 0.9753 + }, + { + "start": 12746.72, + "end": 12750.68, + "probability": 0.9647 + }, + { + "start": 12751.34, + "end": 12754.2, + "probability": 0.9067 + }, + { + "start": 12759.26, + "end": 12763.1, + "probability": 0.9824 + }, + { + "start": 12763.66, + "end": 12767.52, + "probability": 0.9485 + }, + { + "start": 12768.24, + "end": 12769.18, + "probability": 0.9941 + }, + { + "start": 12770.34, + "end": 12773.52, + "probability": 0.993 + }, + { + "start": 12773.52, + "end": 12776.66, + "probability": 0.9949 + }, + { + "start": 12777.24, + "end": 12779.1, + "probability": 0.9984 + }, + { + "start": 12779.78, + "end": 12781.58, + "probability": 0.8875 + }, + { + "start": 12782.54, + "end": 12783.18, + "probability": 0.3666 + }, + { + "start": 12784.24, + "end": 12787.06, + "probability": 0.9854 + }, + { + "start": 12787.64, + "end": 12789.48, + "probability": 0.9229 + }, + { + "start": 12791.28, + "end": 12797.62, + "probability": 0.9826 + }, + { + "start": 12797.84, + "end": 12798.6, + "probability": 0.9559 + }, + { + "start": 12798.94, + "end": 12800.76, + "probability": 0.9518 + }, + { + "start": 12801.46, + "end": 12807.38, + "probability": 0.9951 + }, + { + "start": 12808.64, + "end": 12811.06, + "probability": 0.9425 + }, + { + "start": 12812.86, + "end": 12816.58, + "probability": 0.9839 + }, + { + "start": 12818.52, + "end": 12821.04, + "probability": 0.8506 + }, + { + "start": 12823.64, + "end": 12826.2, + "probability": 0.919 + }, + { + "start": 12826.4, + "end": 12828.4, + "probability": 0.9849 + }, + { + "start": 12829.78, + "end": 12832.44, + "probability": 0.9944 + }, + { + "start": 12832.54, + "end": 12835.32, + "probability": 0.9952 + }, + { + "start": 12837.36, + "end": 12842.82, + "probability": 0.9413 + }, + { + "start": 12843.8, + "end": 12846.24, + "probability": 0.9956 + }, + { + "start": 12847.0, + "end": 12848.86, + "probability": 0.8408 + }, + { + "start": 12849.56, + "end": 12851.56, + "probability": 0.9745 + }, + { + "start": 12852.48, + "end": 12856.81, + "probability": 0.9943 + }, + { + "start": 12857.78, + "end": 12862.44, + "probability": 0.9615 + }, + { + "start": 12866.14, + "end": 12869.18, + "probability": 0.9937 + }, + { + "start": 12869.34, + "end": 12872.14, + "probability": 0.9657 + }, + { + "start": 12872.86, + "end": 12876.04, + "probability": 0.9448 + }, + { + "start": 12876.68, + "end": 12878.72, + "probability": 0.9233 + }, + { + "start": 12878.88, + "end": 12879.68, + "probability": 0.6988 + }, + { + "start": 12880.26, + "end": 12881.82, + "probability": 0.9872 + }, + { + "start": 12882.66, + "end": 12887.76, + "probability": 0.9805 + }, + { + "start": 12888.72, + "end": 12891.84, + "probability": 0.9823 + }, + { + "start": 12892.58, + "end": 12895.82, + "probability": 0.8958 + }, + { + "start": 12896.44, + "end": 12898.62, + "probability": 0.9866 + }, + { + "start": 12899.44, + "end": 12900.52, + "probability": 0.8516 + }, + { + "start": 12901.78, + "end": 12904.38, + "probability": 0.99 + }, + { + "start": 12905.62, + "end": 12912.14, + "probability": 0.9786 + }, + { + "start": 12913.5, + "end": 12918.48, + "probability": 0.9976 + }, + { + "start": 12918.48, + "end": 12923.56, + "probability": 0.9917 + }, + { + "start": 12924.32, + "end": 12925.94, + "probability": 0.9815 + }, + { + "start": 12926.48, + "end": 12926.82, + "probability": 0.5551 + }, + { + "start": 12927.34, + "end": 12929.96, + "probability": 0.9954 + }, + { + "start": 12931.26, + "end": 12934.26, + "probability": 0.9985 + }, + { + "start": 12936.06, + "end": 12940.44, + "probability": 0.9333 + }, + { + "start": 12940.54, + "end": 12941.63, + "probability": 0.9223 + }, + { + "start": 12943.0, + "end": 12944.4, + "probability": 0.9824 + }, + { + "start": 12945.28, + "end": 12948.48, + "probability": 0.9294 + }, + { + "start": 12949.36, + "end": 12950.94, + "probability": 0.8428 + }, + { + "start": 12952.22, + "end": 12955.28, + "probability": 0.9944 + }, + { + "start": 12956.12, + "end": 12956.76, + "probability": 0.8875 + }, + { + "start": 12957.3, + "end": 12961.16, + "probability": 0.9925 + }, + { + "start": 12961.68, + "end": 12966.96, + "probability": 0.9937 + }, + { + "start": 12967.0, + "end": 12972.52, + "probability": 0.9991 + }, + { + "start": 12973.14, + "end": 12974.0, + "probability": 0.8359 + }, + { + "start": 12975.04, + "end": 12977.8, + "probability": 0.9863 + }, + { + "start": 12977.92, + "end": 12978.66, + "probability": 0.9814 + }, + { + "start": 12979.22, + "end": 12985.72, + "probability": 0.7356 + }, + { + "start": 12985.74, + "end": 12986.5, + "probability": 0.9018 + }, + { + "start": 12987.28, + "end": 12987.7, + "probability": 0.738 + }, + { + "start": 12988.22, + "end": 12991.78, + "probability": 0.9366 + }, + { + "start": 12992.62, + "end": 12996.44, + "probability": 0.9979 + }, + { + "start": 12997.0, + "end": 12999.52, + "probability": 0.9872 + }, + { + "start": 13000.1, + "end": 13002.46, + "probability": 0.9995 + }, + { + "start": 13003.0, + "end": 13006.12, + "probability": 0.999 + }, + { + "start": 13006.28, + "end": 13006.78, + "probability": 0.7463 + }, + { + "start": 13006.88, + "end": 13008.36, + "probability": 0.9559 + }, + { + "start": 13008.92, + "end": 13010.16, + "probability": 0.6378 + }, + { + "start": 13010.26, + "end": 13011.02, + "probability": 0.253 + }, + { + "start": 13011.22, + "end": 13012.52, + "probability": 0.9553 + }, + { + "start": 13012.58, + "end": 13012.92, + "probability": 0.2819 + }, + { + "start": 13013.24, + "end": 13016.09, + "probability": 0.5863 + }, + { + "start": 13016.94, + "end": 13020.18, + "probability": 0.568 + }, + { + "start": 13020.38, + "end": 13022.4, + "probability": 0.6186 + }, + { + "start": 13043.42, + "end": 13044.4, + "probability": 0.9474 + }, + { + "start": 13052.06, + "end": 13055.02, + "probability": 0.7682 + }, + { + "start": 13056.1, + "end": 13061.44, + "probability": 0.9749 + }, + { + "start": 13061.44, + "end": 13067.42, + "probability": 0.9652 + }, + { + "start": 13068.42, + "end": 13073.38, + "probability": 0.9569 + }, + { + "start": 13074.36, + "end": 13075.28, + "probability": 0.6839 + }, + { + "start": 13076.22, + "end": 13079.03, + "probability": 0.9934 + }, + { + "start": 13080.08, + "end": 13084.2, + "probability": 0.968 + }, + { + "start": 13084.72, + "end": 13086.88, + "probability": 0.9524 + }, + { + "start": 13087.7, + "end": 13090.28, + "probability": 0.9967 + }, + { + "start": 13091.38, + "end": 13092.34, + "probability": 0.4995 + }, + { + "start": 13093.3, + "end": 13094.55, + "probability": 0.9049 + }, + { + "start": 13095.78, + "end": 13103.24, + "probability": 0.9977 + }, + { + "start": 13103.24, + "end": 13109.64, + "probability": 0.9988 + }, + { + "start": 13110.82, + "end": 13114.06, + "probability": 0.9337 + }, + { + "start": 13114.58, + "end": 13117.88, + "probability": 0.9306 + }, + { + "start": 13118.42, + "end": 13122.76, + "probability": 0.9974 + }, + { + "start": 13123.44, + "end": 13126.66, + "probability": 0.9584 + }, + { + "start": 13127.36, + "end": 13129.7, + "probability": 0.9836 + }, + { + "start": 13130.3, + "end": 13131.62, + "probability": 0.9709 + }, + { + "start": 13132.74, + "end": 13134.06, + "probability": 0.748 + }, + { + "start": 13135.62, + "end": 13139.64, + "probability": 0.9386 + }, + { + "start": 13140.46, + "end": 13143.22, + "probability": 0.9956 + }, + { + "start": 13144.18, + "end": 13145.66, + "probability": 0.9421 + }, + { + "start": 13146.22, + "end": 13150.16, + "probability": 0.9741 + }, + { + "start": 13150.72, + "end": 13152.18, + "probability": 0.9886 + }, + { + "start": 13153.24, + "end": 13157.2, + "probability": 0.975 + }, + { + "start": 13158.32, + "end": 13163.92, + "probability": 0.9221 + }, + { + "start": 13163.92, + "end": 13166.14, + "probability": 0.6904 + }, + { + "start": 13166.8, + "end": 13170.3, + "probability": 0.4499 + }, + { + "start": 13171.06, + "end": 13172.44, + "probability": 0.8481 + }, + { + "start": 13172.78, + "end": 13174.02, + "probability": 0.8049 + }, + { + "start": 13174.36, + "end": 13175.74, + "probability": 0.9779 + }, + { + "start": 13176.06, + "end": 13177.38, + "probability": 0.884 + }, + { + "start": 13177.66, + "end": 13178.28, + "probability": 0.6414 + }, + { + "start": 13179.06, + "end": 13180.76, + "probability": 0.9294 + }, + { + "start": 13181.24, + "end": 13183.8, + "probability": 0.6083 + }, + { + "start": 13183.98, + "end": 13184.92, + "probability": 0.95 + }, + { + "start": 13185.38, + "end": 13190.62, + "probability": 0.9868 + }, + { + "start": 13191.2, + "end": 13195.92, + "probability": 0.9214 + }, + { + "start": 13196.62, + "end": 13197.44, + "probability": 0.7224 + }, + { + "start": 13197.86, + "end": 13203.1, + "probability": 0.9937 + }, + { + "start": 13203.64, + "end": 13204.82, + "probability": 0.6632 + }, + { + "start": 13204.84, + "end": 13207.86, + "probability": 0.814 + }, + { + "start": 13207.86, + "end": 13208.18, + "probability": 0.4744 + }, + { + "start": 13208.2, + "end": 13215.64, + "probability": 0.8527 + }, + { + "start": 13216.28, + "end": 13217.96, + "probability": 0.5762 + }, + { + "start": 13218.8, + "end": 13221.16, + "probability": 0.5894 + }, + { + "start": 13221.96, + "end": 13226.12, + "probability": 0.6935 + }, + { + "start": 13226.14, + "end": 13227.62, + "probability": 0.4737 + }, + { + "start": 13227.62, + "end": 13229.05, + "probability": 0.2524 + }, + { + "start": 13229.84, + "end": 13231.26, + "probability": 0.8699 + }, + { + "start": 13231.4, + "end": 13231.68, + "probability": 0.7773 + }, + { + "start": 13231.68, + "end": 13234.2, + "probability": 0.6646 + }, + { + "start": 13234.68, + "end": 13239.04, + "probability": 0.9733 + }, + { + "start": 13239.68, + "end": 13241.82, + "probability": 0.9577 + }, + { + "start": 13242.68, + "end": 13245.04, + "probability": 0.672 + }, + { + "start": 13245.16, + "end": 13245.68, + "probability": 0.3671 + }, + { + "start": 13245.74, + "end": 13246.08, + "probability": 0.6674 + }, + { + "start": 13246.08, + "end": 13246.88, + "probability": 0.4969 + }, + { + "start": 13247.0, + "end": 13248.36, + "probability": 0.3753 + }, + { + "start": 13248.36, + "end": 13249.28, + "probability": 0.6073 + }, + { + "start": 13249.34, + "end": 13249.5, + "probability": 0.801 + }, + { + "start": 13249.76, + "end": 13250.66, + "probability": 0.0945 + }, + { + "start": 13251.48, + "end": 13252.56, + "probability": 0.7839 + }, + { + "start": 13253.0, + "end": 13255.0, + "probability": 0.1478 + }, + { + "start": 13255.46, + "end": 13255.74, + "probability": 0.3984 + }, + { + "start": 13256.56, + "end": 13257.38, + "probability": 0.4663 + }, + { + "start": 13257.96, + "end": 13258.78, + "probability": 0.0703 + }, + { + "start": 13259.2, + "end": 13260.57, + "probability": 0.586 + }, + { + "start": 13261.34, + "end": 13262.54, + "probability": 0.8451 + }, + { + "start": 13262.94, + "end": 13264.62, + "probability": 0.8608 + }, + { + "start": 13264.72, + "end": 13267.92, + "probability": 0.68 + }, + { + "start": 13268.52, + "end": 13271.02, + "probability": 0.0942 + }, + { + "start": 13271.02, + "end": 13277.54, + "probability": 0.9268 + }, + { + "start": 13277.68, + "end": 13284.02, + "probability": 0.9598 + }, + { + "start": 13284.62, + "end": 13286.02, + "probability": 0.437 + }, + { + "start": 13286.66, + "end": 13287.98, + "probability": 0.7188 + }, + { + "start": 13288.42, + "end": 13290.0, + "probability": 0.7664 + }, + { + "start": 13290.12, + "end": 13294.56, + "probability": 0.9656 + }, + { + "start": 13295.16, + "end": 13297.36, + "probability": 0.9888 + }, + { + "start": 13298.04, + "end": 13299.68, + "probability": 0.9892 + }, + { + "start": 13300.3, + "end": 13301.6, + "probability": 0.9358 + }, + { + "start": 13301.94, + "end": 13306.96, + "probability": 0.9648 + }, + { + "start": 13307.44, + "end": 13309.54, + "probability": 0.9346 + }, + { + "start": 13309.66, + "end": 13313.42, + "probability": 0.8729 + }, + { + "start": 13313.56, + "end": 13317.32, + "probability": 0.8839 + }, + { + "start": 13317.52, + "end": 13319.32, + "probability": 0.3719 + }, + { + "start": 13320.34, + "end": 13320.5, + "probability": 0.019 + }, + { + "start": 13320.5, + "end": 13323.72, + "probability": 0.9606 + }, + { + "start": 13324.24, + "end": 13326.58, + "probability": 0.8104 + }, + { + "start": 13327.0, + "end": 13330.12, + "probability": 0.9691 + }, + { + "start": 13330.52, + "end": 13333.35, + "probability": 0.9821 + }, + { + "start": 13334.08, + "end": 13335.46, + "probability": 0.9716 + }, + { + "start": 13336.0, + "end": 13340.68, + "probability": 0.9893 + }, + { + "start": 13340.74, + "end": 13344.86, + "probability": 0.6916 + }, + { + "start": 13345.3, + "end": 13346.82, + "probability": 0.8423 + }, + { + "start": 13347.26, + "end": 13350.36, + "probability": 0.9173 + }, + { + "start": 13350.36, + "end": 13356.5, + "probability": 0.9525 + }, + { + "start": 13356.6, + "end": 13360.48, + "probability": 0.9575 + }, + { + "start": 13361.14, + "end": 13363.24, + "probability": 0.9343 + }, + { + "start": 13363.7, + "end": 13365.6, + "probability": 0.9892 + }, + { + "start": 13365.66, + "end": 13368.44, + "probability": 0.9039 + }, + { + "start": 13368.7, + "end": 13372.86, + "probability": 0.7956 + }, + { + "start": 13373.1, + "end": 13373.86, + "probability": 0.4953 + }, + { + "start": 13373.9, + "end": 13375.7, + "probability": 0.7935 + }, + { + "start": 13375.9, + "end": 13376.24, + "probability": 0.4326 + }, + { + "start": 13376.44, + "end": 13378.6, + "probability": 0.1439 + }, + { + "start": 13378.62, + "end": 13381.02, + "probability": 0.7119 + }, + { + "start": 13381.12, + "end": 13381.66, + "probability": 0.4806 + }, + { + "start": 13381.66, + "end": 13382.4, + "probability": 0.7159 + }, + { + "start": 13383.34, + "end": 13385.26, + "probability": 0.2616 + }, + { + "start": 13385.4, + "end": 13386.68, + "probability": 0.6256 + }, + { + "start": 13386.68, + "end": 13387.4, + "probability": 0.7245 + }, + { + "start": 13387.86, + "end": 13391.48, + "probability": 0.7548 + }, + { + "start": 13391.56, + "end": 13392.2, + "probability": 0.8777 + }, + { + "start": 13392.26, + "end": 13393.82, + "probability": 0.8413 + }, + { + "start": 13394.8, + "end": 13395.48, + "probability": 0.2822 + }, + { + "start": 13395.58, + "end": 13398.6, + "probability": 0.8245 + }, + { + "start": 13398.68, + "end": 13400.14, + "probability": 0.6613 + }, + { + "start": 13400.74, + "end": 13401.44, + "probability": 0.1617 + }, + { + "start": 13403.15, + "end": 13405.94, + "probability": 0.9541 + }, + { + "start": 13406.22, + "end": 13412.18, + "probability": 0.7308 + }, + { + "start": 13412.18, + "end": 13415.06, + "probability": 0.6355 + }, + { + "start": 13415.32, + "end": 13417.34, + "probability": 0.1533 + }, + { + "start": 13417.46, + "end": 13418.6, + "probability": 0.6299 + }, + { + "start": 13426.54, + "end": 13427.06, + "probability": 0.3758 + }, + { + "start": 13427.12, + "end": 13428.62, + "probability": 0.0039 + }, + { + "start": 13430.06, + "end": 13433.8, + "probability": 0.0601 + }, + { + "start": 13434.4, + "end": 13436.74, + "probability": 0.3528 + }, + { + "start": 13436.84, + "end": 13439.92, + "probability": 0.8501 + }, + { + "start": 13439.98, + "end": 13443.82, + "probability": 0.9688 + }, + { + "start": 13444.62, + "end": 13446.94, + "probability": 0.462 + }, + { + "start": 13447.76, + "end": 13450.42, + "probability": 0.2935 + }, + { + "start": 13451.44, + "end": 13457.8, + "probability": 0.2264 + }, + { + "start": 13458.44, + "end": 13460.04, + "probability": 0.108 + }, + { + "start": 13460.62, + "end": 13461.4, + "probability": 0.1487 + }, + { + "start": 13464.8, + "end": 13466.58, + "probability": 0.5273 + }, + { + "start": 13466.74, + "end": 13469.55, + "probability": 0.7608 + }, + { + "start": 13471.22, + "end": 13472.48, + "probability": 0.3286 + }, + { + "start": 13472.74, + "end": 13476.72, + "probability": 0.8831 + }, + { + "start": 13477.9, + "end": 13481.08, + "probability": 0.6866 + }, + { + "start": 13481.1, + "end": 13481.46, + "probability": 0.8686 + }, + { + "start": 13482.12, + "end": 13485.12, + "probability": 0.2975 + }, + { + "start": 13504.94, + "end": 13506.4, + "probability": 0.2064 + }, + { + "start": 13506.44, + "end": 13507.14, + "probability": 0.6898 + }, + { + "start": 13507.2, + "end": 13508.93, + "probability": 0.6547 + }, + { + "start": 13509.69, + "end": 13513.26, + "probability": 0.9448 + }, + { + "start": 13513.78, + "end": 13519.16, + "probability": 0.8435 + }, + { + "start": 13519.86, + "end": 13522.32, + "probability": 0.9834 + }, + { + "start": 13523.06, + "end": 13526.9, + "probability": 0.9666 + }, + { + "start": 13527.5, + "end": 13528.2, + "probability": 0.9679 + }, + { + "start": 13529.38, + "end": 13532.56, + "probability": 0.9759 + }, + { + "start": 13533.02, + "end": 13536.08, + "probability": 0.9182 + }, + { + "start": 13536.16, + "end": 13536.9, + "probability": 0.9617 + }, + { + "start": 13536.94, + "end": 13537.94, + "probability": 0.7055 + }, + { + "start": 13538.58, + "end": 13542.02, + "probability": 0.794 + }, + { + "start": 13542.72, + "end": 13549.24, + "probability": 0.9697 + }, + { + "start": 13550.2, + "end": 13551.98, + "probability": 0.8936 + }, + { + "start": 13552.64, + "end": 13555.14, + "probability": 0.8091 + }, + { + "start": 13555.74, + "end": 13556.94, + "probability": 0.5259 + }, + { + "start": 13557.06, + "end": 13561.36, + "probability": 0.7854 + }, + { + "start": 13561.84, + "end": 13562.4, + "probability": 0.8275 + }, + { + "start": 13562.88, + "end": 13569.6, + "probability": 0.8037 + }, + { + "start": 13569.86, + "end": 13570.98, + "probability": 0.8538 + }, + { + "start": 13571.34, + "end": 13572.48, + "probability": 0.9471 + }, + { + "start": 13573.28, + "end": 13575.64, + "probability": 0.8966 + }, + { + "start": 13575.64, + "end": 13580.02, + "probability": 0.8573 + }, + { + "start": 13580.98, + "end": 13583.54, + "probability": 0.991 + }, + { + "start": 13584.24, + "end": 13588.7, + "probability": 0.8921 + }, + { + "start": 13588.92, + "end": 13590.32, + "probability": 0.9199 + }, + { + "start": 13592.66, + "end": 13592.96, + "probability": 0.0893 + }, + { + "start": 13592.96, + "end": 13594.24, + "probability": 0.6718 + }, + { + "start": 13594.32, + "end": 13598.82, + "probability": 0.9445 + }, + { + "start": 13600.0, + "end": 13601.22, + "probability": 0.8203 + }, + { + "start": 13601.22, + "end": 13602.78, + "probability": 0.5645 + }, + { + "start": 13604.04, + "end": 13606.44, + "probability": 0.7507 + }, + { + "start": 13606.96, + "end": 13610.48, + "probability": 0.67 + }, + { + "start": 13611.14, + "end": 13612.78, + "probability": 0.5803 + }, + { + "start": 13612.82, + "end": 13616.15, + "probability": 0.9913 + }, + { + "start": 13616.42, + "end": 13620.4, + "probability": 0.7296 + }, + { + "start": 13620.98, + "end": 13621.56, + "probability": 0.4357 + }, + { + "start": 13622.48, + "end": 13623.98, + "probability": 0.7055 + }, + { + "start": 13624.6, + "end": 13625.56, + "probability": 0.6428 + }, + { + "start": 13626.08, + "end": 13631.66, + "probability": 0.7371 + }, + { + "start": 13631.82, + "end": 13635.0, + "probability": 0.9485 + }, + { + "start": 13635.84, + "end": 13637.14, + "probability": 0.9668 + }, + { + "start": 13637.8, + "end": 13639.98, + "probability": 0.9917 + }, + { + "start": 13640.68, + "end": 13646.14, + "probability": 0.9971 + }, + { + "start": 13646.8, + "end": 13648.42, + "probability": 0.6658 + }, + { + "start": 13648.58, + "end": 13650.13, + "probability": 0.7317 + }, + { + "start": 13650.26, + "end": 13651.5, + "probability": 0.7161 + }, + { + "start": 13652.08, + "end": 13655.16, + "probability": 0.8445 + }, + { + "start": 13655.76, + "end": 13657.7, + "probability": 0.9932 + }, + { + "start": 13657.78, + "end": 13658.46, + "probability": 0.8146 + }, + { + "start": 13658.46, + "end": 13658.64, + "probability": 0.8393 + }, + { + "start": 13659.0, + "end": 13659.6, + "probability": 0.7186 + }, + { + "start": 13660.02, + "end": 13660.5, + "probability": 0.5047 + }, + { + "start": 13661.16, + "end": 13664.7, + "probability": 0.9902 + }, + { + "start": 13665.26, + "end": 13670.92, + "probability": 0.9821 + }, + { + "start": 13672.04, + "end": 13674.74, + "probability": 0.7819 + }, + { + "start": 13675.54, + "end": 13679.9, + "probability": 0.9955 + }, + { + "start": 13679.9, + "end": 13684.54, + "probability": 0.9841 + }, + { + "start": 13684.62, + "end": 13686.4, + "probability": 0.9415 + }, + { + "start": 13687.02, + "end": 13687.14, + "probability": 0.7197 + }, + { + "start": 13688.38, + "end": 13692.86, + "probability": 0.9974 + }, + { + "start": 13694.28, + "end": 13694.84, + "probability": 0.9424 + }, + { + "start": 13695.56, + "end": 13696.14, + "probability": 0.8009 + }, + { + "start": 13696.48, + "end": 13696.9, + "probability": 0.9755 + }, + { + "start": 13697.78, + "end": 13700.38, + "probability": 0.9946 + }, + { + "start": 13700.5, + "end": 13701.18, + "probability": 0.8777 + }, + { + "start": 13702.16, + "end": 13702.86, + "probability": 0.4021 + }, + { + "start": 13703.48, + "end": 13707.96, + "probability": 0.9341 + }, + { + "start": 13708.14, + "end": 13712.0, + "probability": 0.9819 + }, + { + "start": 13712.02, + "end": 13715.6, + "probability": 0.9637 + }, + { + "start": 13716.0, + "end": 13717.48, + "probability": 0.8111 + }, + { + "start": 13718.12, + "end": 13719.48, + "probability": 0.8152 + }, + { + "start": 13720.2, + "end": 13722.14, + "probability": 0.8431 + }, + { + "start": 13722.56, + "end": 13724.28, + "probability": 0.8584 + }, + { + "start": 13724.78, + "end": 13726.3, + "probability": 0.9781 + }, + { + "start": 13727.22, + "end": 13727.8, + "probability": 0.5096 + }, + { + "start": 13728.08, + "end": 13730.92, + "probability": 0.8659 + }, + { + "start": 13731.3, + "end": 13733.82, + "probability": 0.916 + }, + { + "start": 13734.36, + "end": 13736.56, + "probability": 0.87 + }, + { + "start": 13736.94, + "end": 13738.04, + "probability": 0.7688 + }, + { + "start": 13738.06, + "end": 13738.74, + "probability": 0.5935 + }, + { + "start": 13738.8, + "end": 13739.78, + "probability": 0.9836 + }, + { + "start": 13740.26, + "end": 13741.04, + "probability": 0.6539 + }, + { + "start": 13741.62, + "end": 13746.4, + "probability": 0.9347 + }, + { + "start": 13747.12, + "end": 13749.36, + "probability": 0.7911 + }, + { + "start": 13749.6, + "end": 13752.06, + "probability": 0.9622 + }, + { + "start": 13752.18, + "end": 13752.44, + "probability": 0.7828 + }, + { + "start": 13753.34, + "end": 13755.14, + "probability": 0.7418 + }, + { + "start": 13755.28, + "end": 13757.36, + "probability": 0.9747 + }, + { + "start": 13758.1, + "end": 13761.08, + "probability": 0.7737 + }, + { + "start": 13761.7, + "end": 13764.84, + "probability": 0.974 + }, + { + "start": 13765.5, + "end": 13768.98, + "probability": 0.4071 + }, + { + "start": 13769.04, + "end": 13772.68, + "probability": 0.8721 + }, + { + "start": 13791.0, + "end": 13793.32, + "probability": 0.703 + }, + { + "start": 13794.34, + "end": 13800.24, + "probability": 0.9896 + }, + { + "start": 13801.44, + "end": 13803.42, + "probability": 0.968 + }, + { + "start": 13803.96, + "end": 13805.42, + "probability": 0.5859 + }, + { + "start": 13806.22, + "end": 13811.92, + "probability": 0.9603 + }, + { + "start": 13813.14, + "end": 13813.32, + "probability": 0.2545 + }, + { + "start": 13813.54, + "end": 13816.86, + "probability": 0.9922 + }, + { + "start": 13817.33, + "end": 13820.42, + "probability": 0.7746 + }, + { + "start": 13821.06, + "end": 13822.04, + "probability": 0.7376 + }, + { + "start": 13822.94, + "end": 13825.04, + "probability": 0.6189 + }, + { + "start": 13825.92, + "end": 13826.96, + "probability": 0.7676 + }, + { + "start": 13827.72, + "end": 13832.28, + "probability": 0.5842 + }, + { + "start": 13833.14, + "end": 13833.34, + "probability": 0.0253 + }, + { + "start": 13834.06, + "end": 13836.84, + "probability": 0.9598 + }, + { + "start": 13838.02, + "end": 13842.72, + "probability": 0.9843 + }, + { + "start": 13842.72, + "end": 13849.12, + "probability": 0.9956 + }, + { + "start": 13850.28, + "end": 13852.3, + "probability": 0.8969 + }, + { + "start": 13853.92, + "end": 13855.7, + "probability": 0.9771 + }, + { + "start": 13856.42, + "end": 13860.14, + "probability": 0.9547 + }, + { + "start": 13862.0, + "end": 13864.82, + "probability": 0.6812 + }, + { + "start": 13865.34, + "end": 13865.98, + "probability": 0.9593 + }, + { + "start": 13866.5, + "end": 13868.14, + "probability": 0.9775 + }, + { + "start": 13869.14, + "end": 13872.32, + "probability": 0.9514 + }, + { + "start": 13873.0, + "end": 13877.12, + "probability": 0.6929 + }, + { + "start": 13878.76, + "end": 13882.26, + "probability": 0.9595 + }, + { + "start": 13882.26, + "end": 13886.42, + "probability": 0.7179 + }, + { + "start": 13887.24, + "end": 13889.36, + "probability": 0.9905 + }, + { + "start": 13889.36, + "end": 13892.76, + "probability": 0.9744 + }, + { + "start": 13893.98, + "end": 13896.54, + "probability": 0.9996 + }, + { + "start": 13897.28, + "end": 13900.68, + "probability": 0.953 + }, + { + "start": 13901.18, + "end": 13903.48, + "probability": 0.8011 + }, + { + "start": 13904.94, + "end": 13905.36, + "probability": 0.4019 + }, + { + "start": 13906.1, + "end": 13908.2, + "probability": 0.939 + }, + { + "start": 13908.2, + "end": 13910.32, + "probability": 0.994 + }, + { + "start": 13910.98, + "end": 13912.02, + "probability": 0.6983 + }, + { + "start": 13912.18, + "end": 13919.82, + "probability": 0.5559 + }, + { + "start": 13920.68, + "end": 13923.58, + "probability": 0.9956 + }, + { + "start": 13924.3, + "end": 13930.74, + "probability": 0.9863 + }, + { + "start": 13931.62, + "end": 13938.02, + "probability": 0.7493 + }, + { + "start": 13938.24, + "end": 13941.92, + "probability": 0.9479 + }, + { + "start": 13942.66, + "end": 13947.02, + "probability": 0.9684 + }, + { + "start": 13948.16, + "end": 13951.28, + "probability": 0.9988 + }, + { + "start": 13952.3, + "end": 13955.86, + "probability": 0.9702 + }, + { + "start": 13957.08, + "end": 13959.96, + "probability": 0.9884 + }, + { + "start": 13960.5, + "end": 13961.66, + "probability": 0.9765 + }, + { + "start": 13962.48, + "end": 13963.72, + "probability": 0.4852 + }, + { + "start": 13964.56, + "end": 13966.92, + "probability": 0.8718 + }, + { + "start": 13967.46, + "end": 13969.44, + "probability": 0.9948 + }, + { + "start": 13970.31, + "end": 13972.36, + "probability": 0.804 + }, + { + "start": 13973.3, + "end": 13974.08, + "probability": 0.8988 + }, + { + "start": 13974.82, + "end": 13977.16, + "probability": 0.895 + }, + { + "start": 13977.98, + "end": 13979.24, + "probability": 0.7463 + }, + { + "start": 13979.74, + "end": 13983.78, + "probability": 0.95 + }, + { + "start": 13984.68, + "end": 13987.2, + "probability": 0.6965 + }, + { + "start": 13987.86, + "end": 13991.64, + "probability": 0.9941 + }, + { + "start": 13992.18, + "end": 13993.06, + "probability": 0.9755 + }, + { + "start": 13993.66, + "end": 13995.78, + "probability": 0.971 + }, + { + "start": 13997.22, + "end": 14000.18, + "probability": 0.803 + }, + { + "start": 14000.18, + "end": 14002.38, + "probability": 0.9897 + }, + { + "start": 14003.52, + "end": 14004.74, + "probability": 0.7061 + }, + { + "start": 14004.94, + "end": 14006.46, + "probability": 0.6334 + }, + { + "start": 14006.62, + "end": 14008.26, + "probability": 0.9297 + }, + { + "start": 14008.78, + "end": 14009.96, + "probability": 0.9315 + }, + { + "start": 14011.14, + "end": 14014.44, + "probability": 0.9829 + }, + { + "start": 14015.56, + "end": 14018.34, + "probability": 0.9248 + }, + { + "start": 14018.46, + "end": 14021.86, + "probability": 0.9892 + }, + { + "start": 14022.64, + "end": 14023.82, + "probability": 0.9643 + }, + { + "start": 14025.16, + "end": 14026.0, + "probability": 0.6805 + }, + { + "start": 14027.02, + "end": 14028.78, + "probability": 0.4668 + }, + { + "start": 14028.86, + "end": 14032.46, + "probability": 0.3241 + }, + { + "start": 14035.02, + "end": 14035.18, + "probability": 0.6389 + }, + { + "start": 14046.84, + "end": 14047.48, + "probability": 0.2044 + }, + { + "start": 14047.48, + "end": 14049.98, + "probability": 0.3436 + }, + { + "start": 14052.74, + "end": 14054.56, + "probability": 0.2355 + }, + { + "start": 14055.3, + "end": 14056.49, + "probability": 0.0052 + }, + { + "start": 14059.78, + "end": 14063.7, + "probability": 0.3761 + }, + { + "start": 14066.31, + "end": 14066.8, + "probability": 0.0432 + }, + { + "start": 14068.52, + "end": 14071.33, + "probability": 0.0396 + }, + { + "start": 14072.1, + "end": 14074.38, + "probability": 0.0597 + }, + { + "start": 14074.38, + "end": 14074.46, + "probability": 0.04 + }, + { + "start": 14075.3, + "end": 14078.6, + "probability": 0.0778 + }, + { + "start": 14079.1, + "end": 14079.84, + "probability": 0.1035 + }, + { + "start": 14088.2, + "end": 14088.88, + "probability": 0.0426 + }, + { + "start": 14090.49, + "end": 14093.5, + "probability": 0.0165 + }, + { + "start": 14093.78, + "end": 14094.7, + "probability": 0.016 + }, + { + "start": 14095.36, + "end": 14095.9, + "probability": 0.1422 + }, + { + "start": 14096.02, + "end": 14097.2, + "probability": 0.0129 + }, + { + "start": 14097.2, + "end": 14100.64, + "probability": 0.0999 + }, + { + "start": 14101.68, + "end": 14104.32, + "probability": 0.0136 + }, + { + "start": 14104.61, + "end": 14105.28, + "probability": 0.0602 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.0, + "end": 14107.0, + "probability": 0.0 + }, + { + "start": 14107.12, + "end": 14107.12, + "probability": 0.0356 + }, + { + "start": 14107.12, + "end": 14108.41, + "probability": 0.7007 + }, + { + "start": 14108.64, + "end": 14109.72, + "probability": 0.5706 + }, + { + "start": 14110.28, + "end": 14113.72, + "probability": 0.8945 + }, + { + "start": 14114.2, + "end": 14119.16, + "probability": 0.8896 + }, + { + "start": 14119.64, + "end": 14120.36, + "probability": 0.5591 + }, + { + "start": 14120.68, + "end": 14121.08, + "probability": 0.884 + }, + { + "start": 14121.2, + "end": 14121.7, + "probability": 0.8911 + }, + { + "start": 14121.78, + "end": 14122.86, + "probability": 0.9929 + }, + { + "start": 14123.42, + "end": 14125.2, + "probability": 0.26 + }, + { + "start": 14125.72, + "end": 14129.2, + "probability": 0.908 + }, + { + "start": 14129.72, + "end": 14131.74, + "probability": 0.7164 + }, + { + "start": 14132.24, + "end": 14132.68, + "probability": 0.3712 + }, + { + "start": 14132.8, + "end": 14133.84, + "probability": 0.9663 + }, + { + "start": 14134.34, + "end": 14135.82, + "probability": 0.6444 + }, + { + "start": 14136.28, + "end": 14137.72, + "probability": 0.8608 + }, + { + "start": 14137.78, + "end": 14138.54, + "probability": 0.9047 + }, + { + "start": 14139.2, + "end": 14140.26, + "probability": 0.6795 + }, + { + "start": 14140.4, + "end": 14143.24, + "probability": 0.9524 + }, + { + "start": 14143.5, + "end": 14145.84, + "probability": 0.81 + }, + { + "start": 14145.84, + "end": 14146.8, + "probability": 0.6164 + }, + { + "start": 14146.92, + "end": 14147.44, + "probability": 0.3782 + }, + { + "start": 14147.82, + "end": 14149.1, + "probability": 0.6441 + }, + { + "start": 14149.14, + "end": 14149.86, + "probability": 0.5646 + }, + { + "start": 14150.34, + "end": 14153.38, + "probability": 0.7092 + }, + { + "start": 14157.64, + "end": 14157.78, + "probability": 0.7166 + }, + { + "start": 14157.84, + "end": 14159.36, + "probability": 0.8341 + }, + { + "start": 14159.44, + "end": 14159.94, + "probability": 0.8328 + }, + { + "start": 14160.04, + "end": 14162.72, + "probability": 0.9394 + }, + { + "start": 14162.72, + "end": 14166.74, + "probability": 0.9328 + }, + { + "start": 14167.16, + "end": 14167.84, + "probability": 0.6165 + }, + { + "start": 14168.62, + "end": 14171.88, + "probability": 0.994 + }, + { + "start": 14172.32, + "end": 14175.58, + "probability": 0.7078 + }, + { + "start": 14175.58, + "end": 14178.34, + "probability": 0.9973 + }, + { + "start": 14178.52, + "end": 14180.92, + "probability": 0.5135 + }, + { + "start": 14180.97, + "end": 14182.84, + "probability": 0.2685 + }, + { + "start": 14182.9, + "end": 14183.16, + "probability": 0.9525 + }, + { + "start": 14183.82, + "end": 14184.72, + "probability": 0.8076 + }, + { + "start": 14184.94, + "end": 14186.48, + "probability": 0.7317 + }, + { + "start": 14186.52, + "end": 14186.86, + "probability": 0.5464 + }, + { + "start": 14186.88, + "end": 14188.26, + "probability": 0.6974 + }, + { + "start": 14188.34, + "end": 14188.52, + "probability": 0.5869 + }, + { + "start": 14188.68, + "end": 14190.03, + "probability": 0.4192 + }, + { + "start": 14190.22, + "end": 14190.96, + "probability": 0.5406 + }, + { + "start": 14191.42, + "end": 14192.64, + "probability": 0.7109 + }, + { + "start": 14192.64, + "end": 14195.08, + "probability": 0.2229 + }, + { + "start": 14195.26, + "end": 14197.56, + "probability": 0.716 + }, + { + "start": 14197.7, + "end": 14200.74, + "probability": 0.4533 + }, + { + "start": 14200.74, + "end": 14200.74, + "probability": 0.1036 + }, + { + "start": 14200.74, + "end": 14200.74, + "probability": 0.1539 + }, + { + "start": 14200.74, + "end": 14202.58, + "probability": 0.3491 + }, + { + "start": 14202.66, + "end": 14205.12, + "probability": 0.9958 + }, + { + "start": 14205.2, + "end": 14206.68, + "probability": 0.9679 + }, + { + "start": 14206.68, + "end": 14206.77, + "probability": 0.0229 + }, + { + "start": 14207.98, + "end": 14208.68, + "probability": 0.0213 + }, + { + "start": 14208.68, + "end": 14209.36, + "probability": 0.2316 + }, + { + "start": 14209.48, + "end": 14210.82, + "probability": 0.8918 + }, + { + "start": 14210.86, + "end": 14211.92, + "probability": 0.7743 + }, + { + "start": 14211.92, + "end": 14213.14, + "probability": 0.9178 + }, + { + "start": 14213.6, + "end": 14213.64, + "probability": 0.0305 + }, + { + "start": 14214.28, + "end": 14215.36, + "probability": 0.1645 + }, + { + "start": 14216.88, + "end": 14218.88, + "probability": 0.0567 + }, + { + "start": 14221.1, + "end": 14222.74, + "probability": 0.1993 + }, + { + "start": 14223.92, + "end": 14224.04, + "probability": 0.0331 + }, + { + "start": 14224.04, + "end": 14226.86, + "probability": 0.1135 + }, + { + "start": 14227.9, + "end": 14229.8, + "probability": 0.0449 + }, + { + "start": 14232.92, + "end": 14234.18, + "probability": 0.0469 + }, + { + "start": 14248.08, + "end": 14248.16, + "probability": 0.168 + }, + { + "start": 14248.16, + "end": 14248.86, + "probability": 0.0722 + }, + { + "start": 14253.66, + "end": 14254.48, + "probability": 0.179 + }, + { + "start": 14254.56, + "end": 14255.6, + "probability": 0.1227 + }, + { + "start": 14258.66, + "end": 14260.0, + "probability": 0.2863 + }, + { + "start": 14261.58, + "end": 14264.22, + "probability": 0.1091 + }, + { + "start": 14265.02, + "end": 14266.82, + "probability": 0.1041 + }, + { + "start": 14266.82, + "end": 14266.94, + "probability": 0.1241 + }, + { + "start": 14267.34, + "end": 14267.98, + "probability": 0.1048 + }, + { + "start": 14268.0, + "end": 14268.0, + "probability": 0.0 + }, + { + "start": 14268.0, + "end": 14268.0, + "probability": 0.0 + }, + { + "start": 14268.0, + "end": 14268.0, + "probability": 0.0 + }, + { + "start": 14268.0, + "end": 14268.0, + "probability": 0.0 + }, + { + "start": 14268.18, + "end": 14268.18, + "probability": 0.0487 + }, + { + "start": 14268.18, + "end": 14268.18, + "probability": 0.0756 + }, + { + "start": 14268.18, + "end": 14269.22, + "probability": 0.2883 + }, + { + "start": 14270.4, + "end": 14271.69, + "probability": 0.6338 + }, + { + "start": 14271.82, + "end": 14274.65, + "probability": 0.9353 + }, + { + "start": 14275.04, + "end": 14278.96, + "probability": 0.8825 + }, + { + "start": 14280.26, + "end": 14283.72, + "probability": 0.986 + }, + { + "start": 14284.74, + "end": 14288.2, + "probability": 0.9948 + }, + { + "start": 14289.1, + "end": 14292.92, + "probability": 0.9116 + }, + { + "start": 14293.4, + "end": 14298.3, + "probability": 0.978 + }, + { + "start": 14298.88, + "end": 14302.9, + "probability": 0.976 + }, + { + "start": 14303.84, + "end": 14307.76, + "probability": 0.9695 + }, + { + "start": 14308.16, + "end": 14309.38, + "probability": 0.9048 + }, + { + "start": 14309.6, + "end": 14312.96, + "probability": 0.9694 + }, + { + "start": 14312.96, + "end": 14317.24, + "probability": 0.9346 + }, + { + "start": 14317.76, + "end": 14320.76, + "probability": 0.83 + }, + { + "start": 14320.88, + "end": 14323.82, + "probability": 0.9721 + }, + { + "start": 14324.7, + "end": 14328.46, + "probability": 0.9905 + }, + { + "start": 14328.84, + "end": 14329.38, + "probability": 0.9711 + }, + { + "start": 14329.96, + "end": 14331.84, + "probability": 0.9342 + }, + { + "start": 14332.24, + "end": 14337.02, + "probability": 0.9058 + }, + { + "start": 14338.14, + "end": 14341.18, + "probability": 0.9976 + }, + { + "start": 14341.88, + "end": 14345.92, + "probability": 0.9579 + }, + { + "start": 14346.44, + "end": 14347.64, + "probability": 0.9814 + }, + { + "start": 14349.46, + "end": 14353.06, + "probability": 0.9803 + }, + { + "start": 14353.7, + "end": 14356.72, + "probability": 0.9796 + }, + { + "start": 14357.22, + "end": 14360.66, + "probability": 0.9971 + }, + { + "start": 14360.66, + "end": 14365.02, + "probability": 0.99 + }, + { + "start": 14365.76, + "end": 14370.42, + "probability": 0.9922 + }, + { + "start": 14371.02, + "end": 14375.58, + "probability": 0.9959 + }, + { + "start": 14375.58, + "end": 14380.86, + "probability": 0.9907 + }, + { + "start": 14381.52, + "end": 14381.86, + "probability": 0.8265 + }, + { + "start": 14382.18, + "end": 14384.2, + "probability": 0.7333 + }, + { + "start": 14384.32, + "end": 14385.62, + "probability": 0.6589 + }, + { + "start": 14386.74, + "end": 14390.86, + "probability": 0.9951 + }, + { + "start": 14391.0, + "end": 14391.78, + "probability": 0.7089 + }, + { + "start": 14391.98, + "end": 14392.78, + "probability": 0.8309 + }, + { + "start": 14392.88, + "end": 14396.96, + "probability": 0.9652 + }, + { + "start": 14398.26, + "end": 14399.12, + "probability": 0.7511 + }, + { + "start": 14399.26, + "end": 14399.68, + "probability": 0.4183 + }, + { + "start": 14399.72, + "end": 14400.54, + "probability": 0.9602 + }, + { + "start": 14401.28, + "end": 14401.9, + "probability": 0.2544 + }, + { + "start": 14402.14, + "end": 14403.62, + "probability": 0.9033 + }, + { + "start": 14404.02, + "end": 14404.98, + "probability": 0.8946 + }, + { + "start": 14405.88, + "end": 14406.34, + "probability": 0.6698 + }, + { + "start": 14406.42, + "end": 14406.8, + "probability": 0.5069 + }, + { + "start": 14407.77, + "end": 14408.88, + "probability": 0.5285 + }, + { + "start": 14408.88, + "end": 14409.7, + "probability": 0.3545 + }, + { + "start": 14410.96, + "end": 14412.38, + "probability": 0.7915 + }, + { + "start": 14413.02, + "end": 14414.94, + "probability": 0.8768 + }, + { + "start": 14416.1, + "end": 14416.97, + "probability": 0.6323 + }, + { + "start": 14417.52, + "end": 14418.08, + "probability": 0.7029 + }, + { + "start": 14418.14, + "end": 14419.9, + "probability": 0.895 + }, + { + "start": 14422.5, + "end": 14423.42, + "probability": 0.9597 + }, + { + "start": 14424.02, + "end": 14425.24, + "probability": 0.4977 + }, + { + "start": 14426.28, + "end": 14429.14, + "probability": 0.7975 + }, + { + "start": 14429.76, + "end": 14431.38, + "probability": 0.996 + }, + { + "start": 14432.1, + "end": 14433.12, + "probability": 0.9443 + }, + { + "start": 14434.14, + "end": 14438.14, + "probability": 0.9883 + }, + { + "start": 14439.0, + "end": 14439.36, + "probability": 0.7977 + }, + { + "start": 14443.06, + "end": 14447.08, + "probability": 0.8516 + }, + { + "start": 14447.58, + "end": 14448.36, + "probability": 0.6156 + }, + { + "start": 14448.36, + "end": 14449.28, + "probability": 0.7131 + }, + { + "start": 14449.9, + "end": 14450.24, + "probability": 0.815 + }, + { + "start": 14451.94, + "end": 14455.78, + "probability": 0.9552 + }, + { + "start": 14456.88, + "end": 14457.4, + "probability": 0.0004 + }, + { + "start": 14459.99, + "end": 14462.56, + "probability": 0.8896 + }, + { + "start": 14463.24, + "end": 14463.36, + "probability": 0.5062 + }, + { + "start": 14463.42, + "end": 14463.97, + "probability": 0.8748 + }, + { + "start": 14464.76, + "end": 14465.9, + "probability": 0.9678 + }, + { + "start": 14466.0, + "end": 14467.98, + "probability": 0.9412 + }, + { + "start": 14469.64, + "end": 14469.98, + "probability": 0.5459 + }, + { + "start": 14470.06, + "end": 14471.0, + "probability": 0.361 + }, + { + "start": 14471.36, + "end": 14472.07, + "probability": 0.7007 + }, + { + "start": 14472.7, + "end": 14474.12, + "probability": 0.6998 + }, + { + "start": 14474.4, + "end": 14475.74, + "probability": 0.9806 + }, + { + "start": 14475.84, + "end": 14477.14, + "probability": 0.4452 + }, + { + "start": 14477.2, + "end": 14480.92, + "probability": 0.7494 + }, + { + "start": 14481.96, + "end": 14484.0, + "probability": 0.981 + }, + { + "start": 14484.7, + "end": 14485.92, + "probability": 0.9537 + }, + { + "start": 14486.58, + "end": 14488.52, + "probability": 0.7773 + }, + { + "start": 14488.76, + "end": 14491.3, + "probability": 0.9518 + }, + { + "start": 14491.68, + "end": 14493.44, + "probability": 0.7258 + }, + { + "start": 14494.46, + "end": 14497.04, + "probability": 0.9918 + }, + { + "start": 14497.62, + "end": 14499.84, + "probability": 0.9905 + }, + { + "start": 14499.84, + "end": 14502.56, + "probability": 0.9962 + }, + { + "start": 14502.82, + "end": 14505.64, + "probability": 0.9644 + }, + { + "start": 14505.64, + "end": 14508.72, + "probability": 0.9951 + }, + { + "start": 14509.22, + "end": 14511.32, + "probability": 0.9815 + }, + { + "start": 14511.66, + "end": 14516.86, + "probability": 0.882 + }, + { + "start": 14517.24, + "end": 14518.1, + "probability": 0.9731 + }, + { + "start": 14518.38, + "end": 14519.12, + "probability": 0.7831 + }, + { + "start": 14519.32, + "end": 14523.36, + "probability": 0.9785 + }, + { + "start": 14523.86, + "end": 14525.88, + "probability": 0.8798 + }, + { + "start": 14525.88, + "end": 14530.82, + "probability": 0.9769 + }, + { + "start": 14532.27, + "end": 14538.68, + "probability": 0.9863 + }, + { + "start": 14538.98, + "end": 14541.6, + "probability": 0.9396 + }, + { + "start": 14542.15, + "end": 14543.38, + "probability": 0.959 + }, + { + "start": 14543.44, + "end": 14547.05, + "probability": 0.9965 + }, + { + "start": 14547.76, + "end": 14552.52, + "probability": 0.852 + }, + { + "start": 14552.68, + "end": 14556.64, + "probability": 0.9526 + }, + { + "start": 14557.12, + "end": 14557.98, + "probability": 0.7053 + }, + { + "start": 14558.42, + "end": 14560.36, + "probability": 0.2196 + }, + { + "start": 14560.36, + "end": 14560.36, + "probability": 0.0947 + }, + { + "start": 14560.36, + "end": 14561.15, + "probability": 0.6345 + }, + { + "start": 14561.4, + "end": 14563.84, + "probability": 0.6578 + }, + { + "start": 14563.92, + "end": 14565.12, + "probability": 0.8835 + }, + { + "start": 14565.2, + "end": 14566.94, + "probability": 0.938 + }, + { + "start": 14567.18, + "end": 14569.8, + "probability": 0.9682 + }, + { + "start": 14569.9, + "end": 14570.98, + "probability": 0.9739 + }, + { + "start": 14571.18, + "end": 14572.92, + "probability": 0.6048 + }, + { + "start": 14573.28, + "end": 14575.78, + "probability": 0.9888 + }, + { + "start": 14576.78, + "end": 14582.58, + "probability": 0.9834 + }, + { + "start": 14582.82, + "end": 14585.4, + "probability": 0.7751 + }, + { + "start": 14585.5, + "end": 14586.1, + "probability": 0.9293 + }, + { + "start": 14586.16, + "end": 14586.46, + "probability": 0.5671 + }, + { + "start": 14586.5, + "end": 14587.2, + "probability": 0.9951 + }, + { + "start": 14588.52, + "end": 14591.74, + "probability": 0.7668 + }, + { + "start": 14592.04, + "end": 14592.42, + "probability": 0.813 + }, + { + "start": 14592.44, + "end": 14593.18, + "probability": 0.7992 + }, + { + "start": 14593.28, + "end": 14593.95, + "probability": 0.9688 + }, + { + "start": 14594.22, + "end": 14597.81, + "probability": 0.5977 + }, + { + "start": 14598.64, + "end": 14600.22, + "probability": 0.9632 + }, + { + "start": 14600.66, + "end": 14601.45, + "probability": 0.9543 + }, + { + "start": 14601.86, + "end": 14602.12, + "probability": 0.1827 + }, + { + "start": 14602.32, + "end": 14604.1, + "probability": 0.8905 + }, + { + "start": 14604.36, + "end": 14604.7, + "probability": 0.3244 + }, + { + "start": 14605.12, + "end": 14606.62, + "probability": 0.9315 + }, + { + "start": 14607.06, + "end": 14610.12, + "probability": 0.9028 + }, + { + "start": 14610.6, + "end": 14616.16, + "probability": 0.9932 + }, + { + "start": 14616.52, + "end": 14618.34, + "probability": 0.6406 + }, + { + "start": 14618.96, + "end": 14620.18, + "probability": 0.9136 + }, + { + "start": 14620.22, + "end": 14621.48, + "probability": 0.8563 + }, + { + "start": 14621.62, + "end": 14624.66, + "probability": 0.9873 + }, + { + "start": 14624.94, + "end": 14626.36, + "probability": 0.929 + }, + { + "start": 14626.62, + "end": 14627.34, + "probability": 0.6859 + }, + { + "start": 14627.4, + "end": 14628.48, + "probability": 0.3422 + }, + { + "start": 14629.0, + "end": 14630.48, + "probability": 0.6367 + }, + { + "start": 14631.0, + "end": 14632.98, + "probability": 0.96 + }, + { + "start": 14633.22, + "end": 14636.94, + "probability": 0.8888 + }, + { + "start": 14637.18, + "end": 14639.18, + "probability": 0.7884 + }, + { + "start": 14639.38, + "end": 14640.9, + "probability": 0.6792 + }, + { + "start": 14641.04, + "end": 14642.7, + "probability": 0.7505 + }, + { + "start": 14642.8, + "end": 14644.36, + "probability": 0.4311 + }, + { + "start": 14645.14, + "end": 14647.22, + "probability": 0.7984 + }, + { + "start": 14647.82, + "end": 14648.56, + "probability": 0.8019 + }, + { + "start": 14649.2, + "end": 14651.08, + "probability": 0.2222 + }, + { + "start": 14651.08, + "end": 14652.24, + "probability": 0.6654 + }, + { + "start": 14652.28, + "end": 14652.56, + "probability": 0.7309 + }, + { + "start": 14652.94, + "end": 14653.76, + "probability": 0.2345 + }, + { + "start": 14653.96, + "end": 14655.54, + "probability": 0.6318 + }, + { + "start": 14655.56, + "end": 14655.98, + "probability": 0.6073 + }, + { + "start": 14657.1, + "end": 14660.48, + "probability": 0.6435 + }, + { + "start": 14660.52, + "end": 14661.22, + "probability": 0.6683 + }, + { + "start": 14661.24, + "end": 14662.42, + "probability": 0.7042 + }, + { + "start": 14668.54, + "end": 14670.46, + "probability": 0.8143 + }, + { + "start": 14670.46, + "end": 14672.86, + "probability": 0.9747 + }, + { + "start": 14672.92, + "end": 14673.5, + "probability": 0.4785 + }, + { + "start": 14673.64, + "end": 14674.56, + "probability": 0.9019 + }, + { + "start": 14675.18, + "end": 14677.32, + "probability": 0.5929 + }, + { + "start": 14678.52, + "end": 14684.28, + "probability": 0.9699 + }, + { + "start": 14687.4, + "end": 14690.44, + "probability": 0.9954 + }, + { + "start": 14691.76, + "end": 14693.74, + "probability": 0.9994 + }, + { + "start": 14697.32, + "end": 14700.54, + "probability": 0.999 + }, + { + "start": 14702.0, + "end": 14703.22, + "probability": 0.9888 + }, + { + "start": 14703.54, + "end": 14703.58, + "probability": 0.1731 + }, + { + "start": 14703.62, + "end": 14704.18, + "probability": 0.4838 + }, + { + "start": 14704.32, + "end": 14705.12, + "probability": 0.8388 + }, + { + "start": 14707.0, + "end": 14709.0, + "probability": 0.9951 + }, + { + "start": 14709.52, + "end": 14710.14, + "probability": 0.9893 + }, + { + "start": 14711.86, + "end": 14713.78, + "probability": 0.9775 + }, + { + "start": 14714.48, + "end": 14717.42, + "probability": 0.8735 + }, + { + "start": 14718.04, + "end": 14719.08, + "probability": 0.9589 + }, + { + "start": 14720.12, + "end": 14722.68, + "probability": 0.9748 + }, + { + "start": 14723.48, + "end": 14724.02, + "probability": 0.957 + }, + { + "start": 14725.72, + "end": 14726.08, + "probability": 0.6604 + }, + { + "start": 14728.46, + "end": 14729.74, + "probability": 0.9977 + }, + { + "start": 14730.8, + "end": 14732.68, + "probability": 0.9813 + }, + { + "start": 14734.0, + "end": 14735.38, + "probability": 0.9683 + }, + { + "start": 14737.28, + "end": 14738.08, + "probability": 0.6918 + }, + { + "start": 14739.2, + "end": 14741.38, + "probability": 0.9629 + }, + { + "start": 14742.22, + "end": 14744.36, + "probability": 0.9539 + }, + { + "start": 14746.36, + "end": 14747.54, + "probability": 0.9805 + }, + { + "start": 14748.2, + "end": 14749.84, + "probability": 0.4882 + }, + { + "start": 14751.5, + "end": 14753.76, + "probability": 0.9023 + }, + { + "start": 14754.16, + "end": 14755.4, + "probability": 0.8738 + }, + { + "start": 14755.82, + "end": 14757.3, + "probability": 0.5281 + }, + { + "start": 14757.52, + "end": 14759.74, + "probability": 0.8351 + }, + { + "start": 14761.5, + "end": 14762.18, + "probability": 0.2973 + }, + { + "start": 14762.82, + "end": 14764.68, + "probability": 0.4408 + }, + { + "start": 14767.02, + "end": 14768.48, + "probability": 0.9043 + }, + { + "start": 14770.24, + "end": 14771.34, + "probability": 0.9563 + }, + { + "start": 14771.4, + "end": 14775.02, + "probability": 0.8551 + }, + { + "start": 14776.5, + "end": 14778.16, + "probability": 0.9122 + }, + { + "start": 14778.98, + "end": 14782.52, + "probability": 0.9947 + }, + { + "start": 14783.2, + "end": 14785.76, + "probability": 0.9961 + }, + { + "start": 14788.94, + "end": 14790.2, + "probability": 0.8132 + }, + { + "start": 14791.4, + "end": 14792.98, + "probability": 0.8899 + }, + { + "start": 14793.92, + "end": 14797.3, + "probability": 0.9983 + }, + { + "start": 14798.94, + "end": 14802.82, + "probability": 0.9784 + }, + { + "start": 14803.98, + "end": 14805.58, + "probability": 0.6732 + }, + { + "start": 14805.72, + "end": 14805.79, + "probability": 0.0447 + }, + { + "start": 14807.52, + "end": 14809.26, + "probability": 0.8363 + }, + { + "start": 14810.84, + "end": 14811.84, + "probability": 0.9736 + }, + { + "start": 14812.36, + "end": 14813.48, + "probability": 0.9728 + }, + { + "start": 14813.68, + "end": 14815.02, + "probability": 0.9624 + }, + { + "start": 14815.08, + "end": 14816.32, + "probability": 0.8144 + }, + { + "start": 14817.32, + "end": 14819.26, + "probability": 0.9898 + }, + { + "start": 14819.4, + "end": 14821.56, + "probability": 0.9933 + }, + { + "start": 14823.14, + "end": 14826.98, + "probability": 0.9919 + }, + { + "start": 14828.24, + "end": 14828.92, + "probability": 0.9586 + }, + { + "start": 14830.14, + "end": 14833.46, + "probability": 0.9408 + }, + { + "start": 14834.2, + "end": 14834.92, + "probability": 0.7447 + }, + { + "start": 14835.02, + "end": 14836.4, + "probability": 0.9719 + }, + { + "start": 14837.22, + "end": 14837.64, + "probability": 0.8915 + }, + { + "start": 14837.72, + "end": 14840.2, + "probability": 0.9013 + }, + { + "start": 14840.26, + "end": 14841.27, + "probability": 0.9657 + }, + { + "start": 14842.14, + "end": 14846.28, + "probability": 0.9938 + }, + { + "start": 14846.48, + "end": 14847.72, + "probability": 0.7289 + }, + { + "start": 14848.88, + "end": 14851.62, + "probability": 0.8522 + }, + { + "start": 14852.3, + "end": 14854.28, + "probability": 0.8604 + }, + { + "start": 14854.84, + "end": 14856.08, + "probability": 0.968 + }, + { + "start": 14856.4, + "end": 14856.54, + "probability": 0.6609 + }, + { + "start": 14856.86, + "end": 14859.84, + "probability": 0.9376 + }, + { + "start": 14861.48, + "end": 14861.82, + "probability": 0.8478 + }, + { + "start": 14862.07, + "end": 14866.4, + "probability": 0.9586 + }, + { + "start": 14866.5, + "end": 14867.88, + "probability": 0.99 + }, + { + "start": 14868.06, + "end": 14871.18, + "probability": 0.8354 + }, + { + "start": 14871.98, + "end": 14872.62, + "probability": 0.7729 + }, + { + "start": 14873.18, + "end": 14874.7, + "probability": 0.9615 + }, + { + "start": 14875.34, + "end": 14878.04, + "probability": 0.9153 + }, + { + "start": 14878.22, + "end": 14878.96, + "probability": 0.9633 + }, + { + "start": 14879.16, + "end": 14880.94, + "probability": 0.5137 + }, + { + "start": 14881.06, + "end": 14882.66, + "probability": 0.6552 + }, + { + "start": 14895.3, + "end": 14895.6, + "probability": 0.6184 + }, + { + "start": 14896.22, + "end": 14899.16, + "probability": 0.6141 + }, + { + "start": 14900.08, + "end": 14903.6, + "probability": 0.9861 + }, + { + "start": 14904.12, + "end": 14906.14, + "probability": 0.8538 + }, + { + "start": 14906.34, + "end": 14906.9, + "probability": 0.748 + }, + { + "start": 14908.0, + "end": 14910.64, + "probability": 0.974 + }, + { + "start": 14910.7, + "end": 14911.8, + "probability": 0.9888 + }, + { + "start": 14911.82, + "end": 14917.76, + "probability": 0.975 + }, + { + "start": 14918.68, + "end": 14920.74, + "probability": 0.4915 + }, + { + "start": 14921.0, + "end": 14926.62, + "probability": 0.992 + }, + { + "start": 14926.82, + "end": 14931.04, + "probability": 0.9128 + }, + { + "start": 14931.28, + "end": 14931.82, + "probability": 0.2154 + }, + { + "start": 14931.82, + "end": 14932.82, + "probability": 0.2458 + }, + { + "start": 14933.52, + "end": 14933.54, + "probability": 0.0171 + }, + { + "start": 14933.54, + "end": 14933.54, + "probability": 0.1675 + }, + { + "start": 14933.54, + "end": 14933.66, + "probability": 0.0062 + }, + { + "start": 14934.68, + "end": 14937.2, + "probability": 0.9694 + }, + { + "start": 14937.2, + "end": 14941.02, + "probability": 0.9688 + }, + { + "start": 14941.48, + "end": 14941.78, + "probability": 0.3676 + }, + { + "start": 14941.78, + "end": 14942.5, + "probability": 0.9202 + }, + { + "start": 14942.6, + "end": 14943.08, + "probability": 0.9229 + }, + { + "start": 14943.56, + "end": 14944.6, + "probability": 0.6489 + }, + { + "start": 14944.72, + "end": 14947.2, + "probability": 0.9889 + }, + { + "start": 14947.2, + "end": 14952.96, + "probability": 0.9981 + }, + { + "start": 14953.04, + "end": 14953.48, + "probability": 0.053 + }, + { + "start": 14953.62, + "end": 14954.4, + "probability": 0.8149 + }, + { + "start": 14954.54, + "end": 14960.54, + "probability": 0.9948 + }, + { + "start": 14961.6, + "end": 14962.96, + "probability": 0.0314 + }, + { + "start": 14963.34, + "end": 14966.82, + "probability": 0.8286 + }, + { + "start": 14967.4, + "end": 14972.02, + "probability": 0.9832 + }, + { + "start": 14972.12, + "end": 14973.88, + "probability": 0.9432 + }, + { + "start": 14974.28, + "end": 14976.86, + "probability": 0.9132 + }, + { + "start": 14977.7, + "end": 14979.42, + "probability": 0.9854 + }, + { + "start": 14979.74, + "end": 14986.3, + "probability": 0.9714 + }, + { + "start": 14986.84, + "end": 14988.8, + "probability": 0.9951 + }, + { + "start": 14988.84, + "end": 14992.72, + "probability": 0.962 + }, + { + "start": 14993.14, + "end": 14997.66, + "probability": 0.9863 + }, + { + "start": 14998.7, + "end": 14999.54, + "probability": 0.8514 + }, + { + "start": 15000.4, + "end": 15004.36, + "probability": 0.9932 + }, + { + "start": 15005.08, + "end": 15005.98, + "probability": 0.7834 + }, + { + "start": 15006.58, + "end": 15011.98, + "probability": 0.9963 + }, + { + "start": 15012.64, + "end": 15016.49, + "probability": 0.9824 + }, + { + "start": 15018.16, + "end": 15021.82, + "probability": 0.9963 + }, + { + "start": 15021.82, + "end": 15024.74, + "probability": 0.9972 + }, + { + "start": 15025.56, + "end": 15028.44, + "probability": 0.9809 + }, + { + "start": 15028.68, + "end": 15031.2, + "probability": 0.9644 + }, + { + "start": 15031.3, + "end": 15033.58, + "probability": 0.9823 + }, + { + "start": 15034.2, + "end": 15036.32, + "probability": 0.9863 + }, + { + "start": 15037.54, + "end": 15039.16, + "probability": 0.9982 + }, + { + "start": 15039.34, + "end": 15039.88, + "probability": 0.4817 + }, + { + "start": 15040.06, + "end": 15042.28, + "probability": 0.9937 + }, + { + "start": 15043.84, + "end": 15047.28, + "probability": 0.9815 + }, + { + "start": 15047.28, + "end": 15051.58, + "probability": 0.989 + }, + { + "start": 15052.22, + "end": 15055.16, + "probability": 0.9629 + }, + { + "start": 15056.64, + "end": 15061.82, + "probability": 0.9963 + }, + { + "start": 15062.6, + "end": 15064.46, + "probability": 0.7084 + }, + { + "start": 15065.1, + "end": 15065.9, + "probability": 0.9058 + }, + { + "start": 15066.72, + "end": 15069.62, + "probability": 0.869 + }, + { + "start": 15069.88, + "end": 15070.24, + "probability": 0.5432 + }, + { + "start": 15071.08, + "end": 15071.92, + "probability": 0.795 + }, + { + "start": 15072.24, + "end": 15072.96, + "probability": 0.939 + }, + { + "start": 15074.78, + "end": 15076.16, + "probability": 0.6086 + }, + { + "start": 15076.24, + "end": 15079.28, + "probability": 0.6415 + }, + { + "start": 15092.5, + "end": 15092.5, + "probability": 0.7681 + }, + { + "start": 15092.5, + "end": 15093.26, + "probability": 0.8027 + }, + { + "start": 15093.94, + "end": 15094.26, + "probability": 0.6898 + }, + { + "start": 15094.74, + "end": 15096.78, + "probability": 0.7244 + }, + { + "start": 15097.38, + "end": 15099.7, + "probability": 0.7823 + }, + { + "start": 15100.42, + "end": 15103.04, + "probability": 0.9306 + }, + { + "start": 15103.78, + "end": 15104.6, + "probability": 0.7278 + }, + { + "start": 15105.38, + "end": 15106.86, + "probability": 0.9792 + }, + { + "start": 15107.48, + "end": 15108.62, + "probability": 0.9429 + }, + { + "start": 15109.84, + "end": 15111.62, + "probability": 0.6287 + }, + { + "start": 15112.78, + "end": 15114.52, + "probability": 0.7677 + }, + { + "start": 15114.94, + "end": 15119.04, + "probability": 0.9793 + }, + { + "start": 15120.32, + "end": 15120.34, + "probability": 0.0374 + }, + { + "start": 15120.34, + "end": 15120.78, + "probability": 0.8404 + }, + { + "start": 15120.94, + "end": 15121.78, + "probability": 0.8886 + }, + { + "start": 15123.28, + "end": 15127.26, + "probability": 0.7561 + }, + { + "start": 15128.02, + "end": 15131.94, + "probability": 0.616 + }, + { + "start": 15132.08, + "end": 15133.08, + "probability": 0.8401 + }, + { + "start": 15133.64, + "end": 15135.08, + "probability": 0.9699 + }, + { + "start": 15135.66, + "end": 15136.27, + "probability": 0.8533 + }, + { + "start": 15137.92, + "end": 15139.22, + "probability": 0.5763 + }, + { + "start": 15139.56, + "end": 15141.82, + "probability": 0.8049 + }, + { + "start": 15142.48, + "end": 15145.7, + "probability": 0.7466 + }, + { + "start": 15146.32, + "end": 15149.74, + "probability": 0.9962 + }, + { + "start": 15150.28, + "end": 15150.89, + "probability": 0.9143 + }, + { + "start": 15151.94, + "end": 15153.64, + "probability": 0.9686 + }, + { + "start": 15153.72, + "end": 15154.82, + "probability": 0.83 + }, + { + "start": 15155.14, + "end": 15156.32, + "probability": 0.9696 + }, + { + "start": 15159.86, + "end": 15160.12, + "probability": 0.3182 + }, + { + "start": 15160.12, + "end": 15161.86, + "probability": 0.6687 + }, + { + "start": 15162.36, + "end": 15164.1, + "probability": 0.9502 + }, + { + "start": 15164.44, + "end": 15164.9, + "probability": 0.8208 + }, + { + "start": 15165.64, + "end": 15167.54, + "probability": 0.9568 + }, + { + "start": 15167.84, + "end": 15168.58, + "probability": 0.9086 + }, + { + "start": 15168.92, + "end": 15172.07, + "probability": 0.9961 + }, + { + "start": 15172.9, + "end": 15173.74, + "probability": 0.7371 + }, + { + "start": 15174.4, + "end": 15176.64, + "probability": 0.8033 + }, + { + "start": 15177.18, + "end": 15178.98, + "probability": 0.9783 + }, + { + "start": 15179.46, + "end": 15182.2, + "probability": 0.9775 + }, + { + "start": 15182.46, + "end": 15184.98, + "probability": 0.977 + }, + { + "start": 15185.5, + "end": 15188.86, + "probability": 0.985 + }, + { + "start": 15189.44, + "end": 15191.08, + "probability": 0.9207 + }, + { + "start": 15192.08, + "end": 15194.64, + "probability": 0.9551 + }, + { + "start": 15195.24, + "end": 15198.06, + "probability": 0.783 + }, + { + "start": 15198.4, + "end": 15198.78, + "probability": 0.7345 + }, + { + "start": 15199.28, + "end": 15200.12, + "probability": 0.8703 + }, + { + "start": 15200.6, + "end": 15203.46, + "probability": 0.9857 + }, + { + "start": 15203.84, + "end": 15206.84, + "probability": 0.9961 + }, + { + "start": 15207.42, + "end": 15208.1, + "probability": 0.7362 + }, + { + "start": 15209.08, + "end": 15210.18, + "probability": 0.5771 + }, + { + "start": 15210.34, + "end": 15211.04, + "probability": 0.3672 + }, + { + "start": 15211.7, + "end": 15215.8, + "probability": 0.9897 + }, + { + "start": 15216.6, + "end": 15220.92, + "probability": 0.9872 + }, + { + "start": 15221.56, + "end": 15226.52, + "probability": 0.9968 + }, + { + "start": 15226.56, + "end": 15228.54, + "probability": 0.9544 + }, + { + "start": 15229.06, + "end": 15232.2, + "probability": 0.9764 + }, + { + "start": 15233.56, + "end": 15235.58, + "probability": 0.855 + }, + { + "start": 15236.3, + "end": 15239.72, + "probability": 0.9462 + }, + { + "start": 15240.36, + "end": 15241.66, + "probability": 0.9388 + }, + { + "start": 15242.2, + "end": 15243.84, + "probability": 0.991 + }, + { + "start": 15244.4, + "end": 15245.28, + "probability": 0.8058 + }, + { + "start": 15246.08, + "end": 15247.78, + "probability": 0.9951 + }, + { + "start": 15248.2, + "end": 15250.84, + "probability": 0.9679 + }, + { + "start": 15251.62, + "end": 15256.92, + "probability": 0.994 + }, + { + "start": 15257.3, + "end": 15258.16, + "probability": 0.9979 + }, + { + "start": 15258.42, + "end": 15259.76, + "probability": 0.9038 + }, + { + "start": 15260.16, + "end": 15262.12, + "probability": 0.9587 + }, + { + "start": 15262.68, + "end": 15262.9, + "probability": 0.744 + }, + { + "start": 15263.2, + "end": 15264.26, + "probability": 0.9153 + }, + { + "start": 15264.7, + "end": 15266.9, + "probability": 0.9688 + }, + { + "start": 15267.4, + "end": 15274.06, + "probability": 0.9784 + }, + { + "start": 15276.48, + "end": 15278.84, + "probability": 0.625 + }, + { + "start": 15278.92, + "end": 15280.7, + "probability": 0.7281 + }, + { + "start": 15298.68, + "end": 15298.72, + "probability": 0.6908 + }, + { + "start": 15298.72, + "end": 15300.3, + "probability": 0.5013 + }, + { + "start": 15300.7, + "end": 15300.94, + "probability": 0.8239 + }, + { + "start": 15302.82, + "end": 15305.86, + "probability": 0.8264 + }, + { + "start": 15307.08, + "end": 15310.32, + "probability": 0.9274 + }, + { + "start": 15311.2, + "end": 15316.08, + "probability": 0.9429 + }, + { + "start": 15316.22, + "end": 15319.18, + "probability": 0.9688 + }, + { + "start": 15320.04, + "end": 15324.0, + "probability": 0.7518 + }, + { + "start": 15324.62, + "end": 15327.56, + "probability": 0.931 + }, + { + "start": 15329.22, + "end": 15332.34, + "probability": 0.6809 + }, + { + "start": 15332.38, + "end": 15333.06, + "probability": 0.7519 + }, + { + "start": 15333.24, + "end": 15334.14, + "probability": 0.7722 + }, + { + "start": 15334.64, + "end": 15338.74, + "probability": 0.9324 + }, + { + "start": 15339.24, + "end": 15341.3, + "probability": 0.9966 + }, + { + "start": 15341.76, + "end": 15345.92, + "probability": 0.7653 + }, + { + "start": 15346.26, + "end": 15350.56, + "probability": 0.9823 + }, + { + "start": 15351.32, + "end": 15353.0, + "probability": 0.9717 + }, + { + "start": 15353.86, + "end": 15354.04, + "probability": 0.7588 + }, + { + "start": 15354.08, + "end": 15356.44, + "probability": 0.9175 + }, + { + "start": 15357.04, + "end": 15357.7, + "probability": 0.7476 + }, + { + "start": 15357.78, + "end": 15358.86, + "probability": 0.9733 + }, + { + "start": 15359.38, + "end": 15361.66, + "probability": 0.9901 + }, + { + "start": 15361.86, + "end": 15362.48, + "probability": 0.7722 + }, + { + "start": 15362.56, + "end": 15365.24, + "probability": 0.6183 + }, + { + "start": 15365.42, + "end": 15366.38, + "probability": 0.7771 + }, + { + "start": 15366.5, + "end": 15367.36, + "probability": 0.8994 + }, + { + "start": 15368.18, + "end": 15375.74, + "probability": 0.9419 + }, + { + "start": 15375.84, + "end": 15377.56, + "probability": 0.9871 + }, + { + "start": 15377.62, + "end": 15378.24, + "probability": 0.984 + }, + { + "start": 15378.9, + "end": 15381.52, + "probability": 0.9904 + }, + { + "start": 15381.86, + "end": 15384.48, + "probability": 0.9458 + }, + { + "start": 15384.78, + "end": 15385.02, + "probability": 0.4999 + }, + { + "start": 15385.64, + "end": 15389.46, + "probability": 0.9559 + }, + { + "start": 15390.36, + "end": 15397.98, + "probability": 0.9855 + }, + { + "start": 15398.58, + "end": 15399.2, + "probability": 0.9314 + }, + { + "start": 15399.7, + "end": 15406.62, + "probability": 0.9967 + }, + { + "start": 15406.62, + "end": 15414.56, + "probability": 0.979 + }, + { + "start": 15416.46, + "end": 15420.72, + "probability": 0.9969 + }, + { + "start": 15421.78, + "end": 15424.3, + "probability": 0.7916 + }, + { + "start": 15425.56, + "end": 15427.86, + "probability": 0.9091 + }, + { + "start": 15428.0, + "end": 15428.84, + "probability": 0.8369 + }, + { + "start": 15428.94, + "end": 15431.8, + "probability": 0.8892 + }, + { + "start": 15431.86, + "end": 15433.88, + "probability": 0.9818 + }, + { + "start": 15434.02, + "end": 15436.88, + "probability": 0.982 + }, + { + "start": 15437.42, + "end": 15438.36, + "probability": 0.7312 + }, + { + "start": 15439.08, + "end": 15439.96, + "probability": 0.9044 + }, + { + "start": 15440.06, + "end": 15443.68, + "probability": 0.9709 + }, + { + "start": 15444.36, + "end": 15445.28, + "probability": 0.857 + }, + { + "start": 15445.56, + "end": 15447.12, + "probability": 0.8473 + }, + { + "start": 15447.44, + "end": 15449.0, + "probability": 0.7751 + }, + { + "start": 15449.54, + "end": 15451.12, + "probability": 0.93 + }, + { + "start": 15451.68, + "end": 15455.42, + "probability": 0.9771 + }, + { + "start": 15455.8, + "end": 15458.6, + "probability": 0.9224 + }, + { + "start": 15459.02, + "end": 15460.82, + "probability": 0.6718 + }, + { + "start": 15460.92, + "end": 15466.22, + "probability": 0.9041 + }, + { + "start": 15466.6, + "end": 15469.4, + "probability": 0.7126 + }, + { + "start": 15470.06, + "end": 15471.61, + "probability": 0.9971 + }, + { + "start": 15472.12, + "end": 15476.16, + "probability": 0.5338 + }, + { + "start": 15477.2, + "end": 15479.02, + "probability": 0.8294 + }, + { + "start": 15479.16, + "end": 15480.1, + "probability": 0.9234 + }, + { + "start": 15480.4, + "end": 15481.6, + "probability": 0.8192 + }, + { + "start": 15481.94, + "end": 15487.86, + "probability": 0.9707 + }, + { + "start": 15487.86, + "end": 15492.76, + "probability": 0.7132 + }, + { + "start": 15493.04, + "end": 15493.32, + "probability": 0.0531 + }, + { + "start": 15493.32, + "end": 15493.32, + "probability": 0.5237 + }, + { + "start": 15493.32, + "end": 15493.62, + "probability": 0.4626 + }, + { + "start": 15494.0, + "end": 15494.62, + "probability": 0.386 + }, + { + "start": 15495.06, + "end": 15499.0, + "probability": 0.8549 + }, + { + "start": 15499.6, + "end": 15502.22, + "probability": 0.9868 + }, + { + "start": 15502.9, + "end": 15509.96, + "probability": 0.9896 + }, + { + "start": 15510.98, + "end": 15513.08, + "probability": 0.5296 + }, + { + "start": 15513.4, + "end": 15515.36, + "probability": 0.7886 + }, + { + "start": 15516.04, + "end": 15520.5, + "probability": 0.9304 + }, + { + "start": 15525.9, + "end": 15526.6, + "probability": 0.4358 + }, + { + "start": 15526.66, + "end": 15527.68, + "probability": 0.8474 + }, + { + "start": 15527.8, + "end": 15530.0, + "probability": 0.9338 + }, + { + "start": 15530.06, + "end": 15532.32, + "probability": 0.9572 + }, + { + "start": 15533.04, + "end": 15534.38, + "probability": 0.9706 + }, + { + "start": 15534.92, + "end": 15538.64, + "probability": 0.9686 + }, + { + "start": 15539.18, + "end": 15539.72, + "probability": 0.7757 + }, + { + "start": 15540.34, + "end": 15540.74, + "probability": 0.3956 + }, + { + "start": 15540.88, + "end": 15541.14, + "probability": 0.6477 + }, + { + "start": 15541.64, + "end": 15550.5, + "probability": 0.9847 + }, + { + "start": 15551.28, + "end": 15552.23, + "probability": 0.762 + }, + { + "start": 15552.92, + "end": 15555.11, + "probability": 0.8391 + }, + { + "start": 15555.2, + "end": 15555.44, + "probability": 0.8314 + }, + { + "start": 15555.7, + "end": 15556.72, + "probability": 0.8564 + }, + { + "start": 15557.44, + "end": 15558.74, + "probability": 0.9177 + }, + { + "start": 15559.22, + "end": 15560.26, + "probability": 0.9247 + }, + { + "start": 15560.36, + "end": 15563.86, + "probability": 0.9084 + }, + { + "start": 15564.32, + "end": 15565.16, + "probability": 0.7763 + }, + { + "start": 15565.6, + "end": 15567.74, + "probability": 0.8614 + }, + { + "start": 15568.16, + "end": 15569.84, + "probability": 0.744 + }, + { + "start": 15570.48, + "end": 15570.66, + "probability": 0.5073 + }, + { + "start": 15570.9, + "end": 15571.48, + "probability": 0.3105 + }, + { + "start": 15571.5, + "end": 15572.34, + "probability": 0.5531 + }, + { + "start": 15572.52, + "end": 15574.25, + "probability": 0.9302 + }, + { + "start": 15575.08, + "end": 15576.42, + "probability": 0.9926 + }, + { + "start": 15576.6, + "end": 15579.4, + "probability": 0.8359 + }, + { + "start": 15579.96, + "end": 15581.04, + "probability": 0.9772 + }, + { + "start": 15581.64, + "end": 15583.92, + "probability": 0.7732 + }, + { + "start": 15584.48, + "end": 15590.9, + "probability": 0.9055 + }, + { + "start": 15591.84, + "end": 15594.8, + "probability": 0.7509 + }, + { + "start": 15595.28, + "end": 15600.42, + "probability": 0.9906 + }, + { + "start": 15600.96, + "end": 15604.56, + "probability": 0.9318 + }, + { + "start": 15605.34, + "end": 15607.08, + "probability": 0.7208 + }, + { + "start": 15607.58, + "end": 15612.44, + "probability": 0.7683 + }, + { + "start": 15612.44, + "end": 15615.42, + "probability": 0.1618 + }, + { + "start": 15617.55, + "end": 15618.32, + "probability": 0.025 + }, + { + "start": 15619.14, + "end": 15620.14, + "probability": 0.0595 + }, + { + "start": 15620.32, + "end": 15624.69, + "probability": 0.2465 + }, + { + "start": 15626.54, + "end": 15627.8, + "probability": 0.2081 + }, + { + "start": 15627.8, + "end": 15631.98, + "probability": 0.0522 + }, + { + "start": 15632.04, + "end": 15632.74, + "probability": 0.0735 + }, + { + "start": 15632.98, + "end": 15634.13, + "probability": 0.1064 + }, + { + "start": 15635.66, + "end": 15637.66, + "probability": 0.1312 + }, + { + "start": 15637.88, + "end": 15638.24, + "probability": 0.1189 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.0, + "end": 15721.0, + "probability": 0.0 + }, + { + "start": 15721.32, + "end": 15721.5, + "probability": 0.0491 + }, + { + "start": 15721.5, + "end": 15722.22, + "probability": 0.3438 + }, + { + "start": 15722.22, + "end": 15722.78, + "probability": 0.7183 + }, + { + "start": 15723.64, + "end": 15725.64, + "probability": 0.046 + }, + { + "start": 15725.96, + "end": 15726.74, + "probability": 0.1806 + }, + { + "start": 15726.86, + "end": 15729.84, + "probability": 0.7384 + }, + { + "start": 15730.37, + "end": 15732.64, + "probability": 0.3849 + }, + { + "start": 15732.9, + "end": 15737.04, + "probability": 0.946 + }, + { + "start": 15737.42, + "end": 15738.68, + "probability": 0.7861 + }, + { + "start": 15739.02, + "end": 15741.02, + "probability": 0.7408 + }, + { + "start": 15741.34, + "end": 15744.32, + "probability": 0.9338 + }, + { + "start": 15744.84, + "end": 15746.56, + "probability": 0.9802 + }, + { + "start": 15747.02, + "end": 15751.76, + "probability": 0.9938 + }, + { + "start": 15752.16, + "end": 15753.12, + "probability": 0.7547 + }, + { + "start": 15753.28, + "end": 15755.2, + "probability": 0.8945 + }, + { + "start": 15755.54, + "end": 15756.7, + "probability": 0.936 + }, + { + "start": 15757.1, + "end": 15757.86, + "probability": 0.9714 + }, + { + "start": 15759.04, + "end": 15760.12, + "probability": 0.8746 + }, + { + "start": 15760.7, + "end": 15765.66, + "probability": 0.974 + }, + { + "start": 15765.92, + "end": 15767.78, + "probability": 0.913 + }, + { + "start": 15768.54, + "end": 15768.88, + "probability": 0.0491 + }, + { + "start": 15768.88, + "end": 15771.5, + "probability": 0.488 + }, + { + "start": 15771.68, + "end": 15773.12, + "probability": 0.9367 + }, + { + "start": 15773.36, + "end": 15773.78, + "probability": 0.0199 + }, + { + "start": 15774.7, + "end": 15776.0, + "probability": 0.2629 + }, + { + "start": 15776.14, + "end": 15780.8, + "probability": 0.9687 + }, + { + "start": 15781.12, + "end": 15784.82, + "probability": 0.6678 + }, + { + "start": 15787.34, + "end": 15790.1, + "probability": 0.7057 + }, + { + "start": 15792.18, + "end": 15794.74, + "probability": 0.8159 + }, + { + "start": 15795.2, + "end": 15795.44, + "probability": 0.793 + }, + { + "start": 15795.52, + "end": 15796.7, + "probability": 0.9056 + }, + { + "start": 15796.76, + "end": 15798.24, + "probability": 0.9309 + }, + { + "start": 15798.36, + "end": 15799.17, + "probability": 0.7896 + }, + { + "start": 15799.26, + "end": 15801.86, + "probability": 0.871 + }, + { + "start": 15802.66, + "end": 15803.6, + "probability": 0.8762 + }, + { + "start": 15803.6, + "end": 15804.82, + "probability": 0.6782 + }, + { + "start": 15805.7, + "end": 15806.68, + "probability": 0.7914 + }, + { + "start": 15807.66, + "end": 15811.56, + "probability": 0.7734 + }, + { + "start": 15812.6, + "end": 15819.04, + "probability": 0.9833 + }, + { + "start": 15819.8, + "end": 15822.34, + "probability": 0.9569 + }, + { + "start": 15823.44, + "end": 15824.06, + "probability": 0.4625 + }, + { + "start": 15824.76, + "end": 15826.37, + "probability": 0.9592 + }, + { + "start": 15827.34, + "end": 15829.69, + "probability": 0.9989 + }, + { + "start": 15830.72, + "end": 15832.96, + "probability": 0.999 + }, + { + "start": 15835.38, + "end": 15837.02, + "probability": 0.6533 + }, + { + "start": 15837.48, + "end": 15838.74, + "probability": 0.7947 + }, + { + "start": 15840.4, + "end": 15843.73, + "probability": 0.5632 + }, + { + "start": 15845.12, + "end": 15846.68, + "probability": 0.8897 + }, + { + "start": 15848.06, + "end": 15850.96, + "probability": 0.8664 + }, + { + "start": 15852.3, + "end": 15854.0, + "probability": 0.9894 + }, + { + "start": 15854.72, + "end": 15861.62, + "probability": 0.9991 + }, + { + "start": 15862.2, + "end": 15863.5, + "probability": 0.9731 + }, + { + "start": 15865.66, + "end": 15867.02, + "probability": 0.9554 + }, + { + "start": 15868.28, + "end": 15872.2, + "probability": 0.8508 + }, + { + "start": 15873.9, + "end": 15876.25, + "probability": 0.9399 + }, + { + "start": 15877.3, + "end": 15879.9, + "probability": 0.9836 + }, + { + "start": 15880.6, + "end": 15883.42, + "probability": 0.9976 + }, + { + "start": 15884.44, + "end": 15887.4, + "probability": 0.9928 + }, + { + "start": 15891.1, + "end": 15896.66, + "probability": 0.9907 + }, + { + "start": 15896.7, + "end": 15902.1, + "probability": 0.9982 + }, + { + "start": 15903.62, + "end": 15905.3, + "probability": 0.6663 + }, + { + "start": 15906.16, + "end": 15907.24, + "probability": 0.8982 + }, + { + "start": 15907.76, + "end": 15909.68, + "probability": 0.8336 + }, + { + "start": 15911.86, + "end": 15916.68, + "probability": 0.9908 + }, + { + "start": 15917.72, + "end": 15919.66, + "probability": 0.9747 + }, + { + "start": 15920.54, + "end": 15921.9, + "probability": 0.6522 + }, + { + "start": 15922.54, + "end": 15925.66, + "probability": 0.8946 + }, + { + "start": 15926.36, + "end": 15929.16, + "probability": 0.9796 + }, + { + "start": 15929.84, + "end": 15930.92, + "probability": 0.4572 + }, + { + "start": 15931.54, + "end": 15932.42, + "probability": 0.8096 + }, + { + "start": 15932.52, + "end": 15935.07, + "probability": 0.9946 + }, + { + "start": 15935.62, + "end": 15940.24, + "probability": 0.9932 + }, + { + "start": 15941.26, + "end": 15943.46, + "probability": 0.9962 + }, + { + "start": 15944.6, + "end": 15945.62, + "probability": 0.5433 + }, + { + "start": 15946.72, + "end": 15947.82, + "probability": 0.9456 + }, + { + "start": 15948.38, + "end": 15951.18, + "probability": 0.9639 + }, + { + "start": 15951.98, + "end": 15954.56, + "probability": 0.9914 + }, + { + "start": 15954.78, + "end": 15955.48, + "probability": 0.5715 + }, + { + "start": 15956.68, + "end": 15957.97, + "probability": 0.978 + }, + { + "start": 15958.12, + "end": 15962.43, + "probability": 0.9873 + }, + { + "start": 15962.78, + "end": 15964.14, + "probability": 0.9202 + }, + { + "start": 15964.42, + "end": 15967.5, + "probability": 0.7376 + }, + { + "start": 15968.3, + "end": 15970.52, + "probability": 0.9875 + }, + { + "start": 15970.96, + "end": 15972.4, + "probability": 0.3836 + }, + { + "start": 15972.5, + "end": 15972.88, + "probability": 0.5371 + }, + { + "start": 15974.5, + "end": 15977.56, + "probability": 0.7966 + }, + { + "start": 15978.3, + "end": 15979.18, + "probability": 0.7358 + }, + { + "start": 15979.74, + "end": 15982.82, + "probability": 0.8768 + }, + { + "start": 15983.58, + "end": 15985.94, + "probability": 0.822 + }, + { + "start": 15987.52, + "end": 15988.3, + "probability": 0.7966 + }, + { + "start": 15988.52, + "end": 15993.36, + "probability": 0.9963 + }, + { + "start": 15993.84, + "end": 15994.08, + "probability": 0.8477 + }, + { + "start": 15994.62, + "end": 15997.1, + "probability": 0.8427 + }, + { + "start": 15997.66, + "end": 16001.38, + "probability": 0.9762 + }, + { + "start": 16003.64, + "end": 16005.58, + "probability": 0.4908 + }, + { + "start": 16005.58, + "end": 16006.98, + "probability": 0.3867 + }, + { + "start": 16007.58, + "end": 16009.3, + "probability": 0.6454 + }, + { + "start": 16010.22, + "end": 16012.92, + "probability": 0.9699 + }, + { + "start": 16013.72, + "end": 16014.36, + "probability": 0.8508 + }, + { + "start": 16014.74, + "end": 16015.9, + "probability": 0.09 + }, + { + "start": 16016.36, + "end": 16020.08, + "probability": 0.9783 + }, + { + "start": 16020.18, + "end": 16021.38, + "probability": 0.9803 + }, + { + "start": 16021.42, + "end": 16022.28, + "probability": 0.8192 + }, + { + "start": 16022.44, + "end": 16024.34, + "probability": 0.687 + }, + { + "start": 16025.16, + "end": 16026.26, + "probability": 0.8288 + }, + { + "start": 16026.46, + "end": 16028.98, + "probability": 0.8254 + }, + { + "start": 16028.98, + "end": 16029.16, + "probability": 0.9082 + }, + { + "start": 16029.62, + "end": 16030.46, + "probability": 0.6535 + }, + { + "start": 16031.6, + "end": 16034.52, + "probability": 0.4143 + }, + { + "start": 16044.8, + "end": 16045.62, + "probability": 0.1225 + }, + { + "start": 16045.66, + "end": 16045.72, + "probability": 0.1798 + }, + { + "start": 16045.72, + "end": 16045.72, + "probability": 0.1267 + }, + { + "start": 16045.72, + "end": 16045.72, + "probability": 0.047 + }, + { + "start": 16045.72, + "end": 16048.06, + "probability": 0.4533 + }, + { + "start": 16048.14, + "end": 16053.88, + "probability": 0.9612 + }, + { + "start": 16054.4, + "end": 16055.7, + "probability": 0.9276 + }, + { + "start": 16055.78, + "end": 16058.4, + "probability": 0.736 + }, + { + "start": 16058.46, + "end": 16062.5, + "probability": 0.7847 + }, + { + "start": 16064.38, + "end": 16065.5, + "probability": 0.0197 + }, + { + "start": 16067.6, + "end": 16067.62, + "probability": 0.1395 + }, + { + "start": 16067.62, + "end": 16067.62, + "probability": 0.0953 + }, + { + "start": 16067.62, + "end": 16068.8, + "probability": 0.6553 + }, + { + "start": 16069.18, + "end": 16069.97, + "probability": 0.6359 + }, + { + "start": 16071.3, + "end": 16073.06, + "probability": 0.1681 + }, + { + "start": 16073.64, + "end": 16073.64, + "probability": 0.3013 + }, + { + "start": 16073.64, + "end": 16074.24, + "probability": 0.7354 + }, + { + "start": 16076.58, + "end": 16076.58, + "probability": 0.0762 + }, + { + "start": 16076.58, + "end": 16078.61, + "probability": 0.1372 + }, + { + "start": 16078.8, + "end": 16082.74, + "probability": 0.984 + }, + { + "start": 16082.9, + "end": 16086.14, + "probability": 0.89 + }, + { + "start": 16086.48, + "end": 16091.24, + "probability": 0.8559 + }, + { + "start": 16091.3, + "end": 16092.74, + "probability": 0.9569 + }, + { + "start": 16094.22, + "end": 16099.88, + "probability": 0.8054 + }, + { + "start": 16100.96, + "end": 16101.41, + "probability": 0.1619 + }, + { + "start": 16102.8, + "end": 16103.28, + "probability": 0.0228 + }, + { + "start": 16103.68, + "end": 16107.52, + "probability": 0.3389 + }, + { + "start": 16107.7, + "end": 16108.12, + "probability": 0.2417 + }, + { + "start": 16110.02, + "end": 16114.58, + "probability": 0.3608 + }, + { + "start": 16114.78, + "end": 16115.9, + "probability": 0.0351 + }, + { + "start": 16115.92, + "end": 16123.3, + "probability": 0.215 + }, + { + "start": 16124.08, + "end": 16124.08, + "probability": 0.0424 + }, + { + "start": 16124.08, + "end": 16124.08, + "probability": 0.5281 + }, + { + "start": 16124.08, + "end": 16125.4, + "probability": 0.4991 + }, + { + "start": 16125.58, + "end": 16128.22, + "probability": 0.9574 + }, + { + "start": 16128.38, + "end": 16129.92, + "probability": 0.8521 + }, + { + "start": 16130.6, + "end": 16130.94, + "probability": 0.6147 + }, + { + "start": 16131.08, + "end": 16132.38, + "probability": 0.5051 + }, + { + "start": 16132.54, + "end": 16135.02, + "probability": 0.8291 + }, + { + "start": 16135.04, + "end": 16135.32, + "probability": 0.076 + }, + { + "start": 16135.48, + "end": 16136.25, + "probability": 0.9077 + }, + { + "start": 16136.68, + "end": 16141.28, + "probability": 0.7496 + }, + { + "start": 16141.9, + "end": 16143.78, + "probability": 0.9706 + }, + { + "start": 16143.78, + "end": 16146.04, + "probability": 0.8517 + }, + { + "start": 16146.18, + "end": 16148.28, + "probability": 0.9312 + }, + { + "start": 16148.38, + "end": 16149.62, + "probability": 0.7151 + }, + { + "start": 16149.62, + "end": 16151.36, + "probability": 0.9728 + }, + { + "start": 16151.46, + "end": 16152.26, + "probability": 0.0192 + }, + { + "start": 16152.26, + "end": 16153.68, + "probability": 0.3893 + }, + { + "start": 16153.68, + "end": 16155.36, + "probability": 0.2093 + }, + { + "start": 16155.36, + "end": 16155.36, + "probability": 0.0302 + }, + { + "start": 16155.36, + "end": 16155.48, + "probability": 0.2119 + }, + { + "start": 16155.62, + "end": 16155.62, + "probability": 0.2472 + }, + { + "start": 16155.62, + "end": 16156.6, + "probability": 0.5246 + }, + { + "start": 16156.66, + "end": 16157.48, + "probability": 0.4699 + }, + { + "start": 16157.48, + "end": 16158.66, + "probability": 0.5317 + }, + { + "start": 16159.56, + "end": 16161.42, + "probability": 0.6949 + }, + { + "start": 16162.14, + "end": 16167.24, + "probability": 0.6145 + }, + { + "start": 16167.44, + "end": 16168.15, + "probability": 0.5076 + }, + { + "start": 16168.58, + "end": 16169.36, + "probability": 0.9019 + }, + { + "start": 16169.54, + "end": 16170.92, + "probability": 0.7594 + }, + { + "start": 16171.0, + "end": 16174.26, + "probability": 0.9347 + }, + { + "start": 16174.34, + "end": 16175.82, + "probability": 0.8176 + }, + { + "start": 16176.6, + "end": 16177.02, + "probability": 0.5256 + }, + { + "start": 16177.06, + "end": 16179.0, + "probability": 0.9129 + }, + { + "start": 16179.6, + "end": 16180.54, + "probability": 0.7586 + }, + { + "start": 16180.64, + "end": 16182.08, + "probability": 0.7835 + }, + { + "start": 16182.12, + "end": 16182.92, + "probability": 0.9378 + }, + { + "start": 16182.98, + "end": 16183.66, + "probability": 0.9071 + }, + { + "start": 16183.78, + "end": 16184.06, + "probability": 0.578 + }, + { + "start": 16184.12, + "end": 16184.36, + "probability": 0.8169 + }, + { + "start": 16184.64, + "end": 16187.18, + "probability": 0.8652 + }, + { + "start": 16187.42, + "end": 16189.42, + "probability": 0.7039 + }, + { + "start": 16190.06, + "end": 16193.08, + "probability": 0.9926 + }, + { + "start": 16193.2, + "end": 16194.37, + "probability": 0.7501 + }, + { + "start": 16195.84, + "end": 16196.47, + "probability": 0.9902 + }, + { + "start": 16197.28, + "end": 16198.2, + "probability": 0.7954 + }, + { + "start": 16198.26, + "end": 16201.4, + "probability": 0.9368 + }, + { + "start": 16201.88, + "end": 16205.12, + "probability": 0.9957 + }, + { + "start": 16205.2, + "end": 16206.18, + "probability": 0.8324 + }, + { + "start": 16206.9, + "end": 16210.68, + "probability": 0.972 + }, + { + "start": 16211.5, + "end": 16212.72, + "probability": 0.9575 + }, + { + "start": 16213.18, + "end": 16214.22, + "probability": 0.3733 + }, + { + "start": 16214.8, + "end": 16218.76, + "probability": 0.884 + }, + { + "start": 16219.54, + "end": 16222.64, + "probability": 0.8158 + }, + { + "start": 16222.92, + "end": 16223.38, + "probability": 0.412 + }, + { + "start": 16223.56, + "end": 16224.46, + "probability": 0.9658 + }, + { + "start": 16224.78, + "end": 16225.96, + "probability": 0.7848 + }, + { + "start": 16226.38, + "end": 16228.02, + "probability": 0.9969 + }, + { + "start": 16228.34, + "end": 16230.04, + "probability": 0.8272 + }, + { + "start": 16231.52, + "end": 16235.14, + "probability": 0.7776 + }, + { + "start": 16235.7, + "end": 16239.38, + "probability": 0.9847 + }, + { + "start": 16239.58, + "end": 16240.92, + "probability": 0.6531 + }, + { + "start": 16241.0, + "end": 16242.18, + "probability": 0.8492 + }, + { + "start": 16242.48, + "end": 16247.42, + "probability": 0.8723 + }, + { + "start": 16247.66, + "end": 16248.54, + "probability": 0.0449 + }, + { + "start": 16249.26, + "end": 16249.66, + "probability": 0.0605 + }, + { + "start": 16249.66, + "end": 16252.26, + "probability": 0.0598 + }, + { + "start": 16252.36, + "end": 16253.36, + "probability": 0.5877 + }, + { + "start": 16253.36, + "end": 16257.86, + "probability": 0.363 + }, + { + "start": 16258.02, + "end": 16259.02, + "probability": 0.4162 + }, + { + "start": 16259.02, + "end": 16264.88, + "probability": 0.9187 + }, + { + "start": 16264.88, + "end": 16267.8, + "probability": 0.9988 + }, + { + "start": 16268.5, + "end": 16274.58, + "probability": 0.9586 + }, + { + "start": 16274.9, + "end": 16277.1, + "probability": 0.9401 + }, + { + "start": 16278.4, + "end": 16278.82, + "probability": 0.4535 + }, + { + "start": 16278.86, + "end": 16282.14, + "probability": 0.2611 + }, + { + "start": 16282.14, + "end": 16282.14, + "probability": 0.2235 + }, + { + "start": 16282.14, + "end": 16284.56, + "probability": 0.6403 + }, + { + "start": 16284.88, + "end": 16286.98, + "probability": 0.7389 + }, + { + "start": 16286.98, + "end": 16290.54, + "probability": 0.9495 + }, + { + "start": 16290.86, + "end": 16292.24, + "probability": 0.95 + }, + { + "start": 16292.62, + "end": 16294.1, + "probability": 0.7836 + }, + { + "start": 16294.22, + "end": 16296.48, + "probability": 0.9003 + }, + { + "start": 16296.64, + "end": 16299.38, + "probability": 0.9614 + }, + { + "start": 16299.76, + "end": 16302.08, + "probability": 0.6254 + }, + { + "start": 16302.3, + "end": 16304.68, + "probability": 0.9045 + }, + { + "start": 16305.22, + "end": 16307.28, + "probability": 0.884 + }, + { + "start": 16307.56, + "end": 16310.74, + "probability": 0.8134 + }, + { + "start": 16311.54, + "end": 16312.4, + "probability": 0.9721 + }, + { + "start": 16312.44, + "end": 16312.88, + "probability": 0.1688 + }, + { + "start": 16312.92, + "end": 16313.0, + "probability": 0.2898 + }, + { + "start": 16313.0, + "end": 16317.78, + "probability": 0.8426 + }, + { + "start": 16317.78, + "end": 16317.96, + "probability": 0.7339 + }, + { + "start": 16318.04, + "end": 16319.75, + "probability": 0.7729 + }, + { + "start": 16320.36, + "end": 16321.54, + "probability": 0.1395 + }, + { + "start": 16321.64, + "end": 16322.86, + "probability": 0.6346 + }, + { + "start": 16322.95, + "end": 16324.46, + "probability": 0.3479 + }, + { + "start": 16324.46, + "end": 16325.44, + "probability": 0.063 + }, + { + "start": 16325.44, + "end": 16328.86, + "probability": 0.6423 + }, + { + "start": 16328.9, + "end": 16329.94, + "probability": 0.6691 + }, + { + "start": 16330.02, + "end": 16330.44, + "probability": 0.5085 + }, + { + "start": 16330.44, + "end": 16331.4, + "probability": 0.9705 + }, + { + "start": 16332.18, + "end": 16332.62, + "probability": 0.8646 + }, + { + "start": 16332.62, + "end": 16333.96, + "probability": 0.6912 + }, + { + "start": 16334.18, + "end": 16336.36, + "probability": 0.8855 + }, + { + "start": 16336.48, + "end": 16336.66, + "probability": 0.4008 + }, + { + "start": 16340.1, + "end": 16341.76, + "probability": 0.5875 + }, + { + "start": 16342.68, + "end": 16344.18, + "probability": 0.2303 + }, + { + "start": 16352.88, + "end": 16353.72, + "probability": 0.034 + }, + { + "start": 16356.52, + "end": 16359.12, + "probability": 0.5187 + }, + { + "start": 16361.64, + "end": 16362.58, + "probability": 0.9108 + }, + { + "start": 16362.7, + "end": 16362.92, + "probability": 0.5584 + }, + { + "start": 16362.98, + "end": 16364.32, + "probability": 0.9702 + }, + { + "start": 16366.06, + "end": 16366.9, + "probability": 0.9807 + }, + { + "start": 16368.7, + "end": 16372.06, + "probability": 0.8861 + }, + { + "start": 16372.96, + "end": 16376.88, + "probability": 0.9229 + }, + { + "start": 16379.74, + "end": 16380.8, + "probability": 0.8111 + }, + { + "start": 16380.86, + "end": 16381.28, + "probability": 0.9642 + }, + { + "start": 16381.46, + "end": 16382.78, + "probability": 0.9878 + }, + { + "start": 16384.58, + "end": 16386.28, + "probability": 0.9884 + }, + { + "start": 16387.38, + "end": 16388.5, + "probability": 0.8489 + }, + { + "start": 16389.34, + "end": 16390.66, + "probability": 0.9984 + }, + { + "start": 16391.4, + "end": 16393.74, + "probability": 0.9984 + }, + { + "start": 16394.9, + "end": 16396.42, + "probability": 0.819 + }, + { + "start": 16397.08, + "end": 16400.78, + "probability": 0.9216 + }, + { + "start": 16401.06, + "end": 16402.92, + "probability": 0.9409 + }, + { + "start": 16404.94, + "end": 16408.48, + "probability": 0.9932 + }, + { + "start": 16410.88, + "end": 16411.44, + "probability": 0.9727 + }, + { + "start": 16413.76, + "end": 16414.18, + "probability": 0.4529 + }, + { + "start": 16415.02, + "end": 16416.3, + "probability": 0.7349 + }, + { + "start": 16420.4, + "end": 16421.54, + "probability": 0.5295 + }, + { + "start": 16421.64, + "end": 16422.62, + "probability": 0.75 + }, + { + "start": 16422.62, + "end": 16424.08, + "probability": 0.9049 + }, + { + "start": 16425.12, + "end": 16429.44, + "probability": 0.7429 + }, + { + "start": 16430.54, + "end": 16432.2, + "probability": 0.7197 + }, + { + "start": 16432.78, + "end": 16435.0, + "probability": 0.9905 + }, + { + "start": 16437.46, + "end": 16438.7, + "probability": 0.8729 + }, + { + "start": 16441.16, + "end": 16441.82, + "probability": 0.7715 + }, + { + "start": 16441.9, + "end": 16443.94, + "probability": 0.9606 + }, + { + "start": 16444.84, + "end": 16447.92, + "probability": 0.9632 + }, + { + "start": 16447.94, + "end": 16448.6, + "probability": 0.6598 + }, + { + "start": 16450.0, + "end": 16454.01, + "probability": 0.9145 + }, + { + "start": 16455.64, + "end": 16459.28, + "probability": 0.9921 + }, + { + "start": 16460.14, + "end": 16462.42, + "probability": 0.6339 + }, + { + "start": 16463.26, + "end": 16465.54, + "probability": 0.9865 + }, + { + "start": 16465.56, + "end": 16466.64, + "probability": 0.9745 + }, + { + "start": 16466.82, + "end": 16467.92, + "probability": 0.9577 + }, + { + "start": 16467.96, + "end": 16469.3, + "probability": 0.9407 + }, + { + "start": 16470.24, + "end": 16474.26, + "probability": 0.993 + }, + { + "start": 16474.26, + "end": 16478.08, + "probability": 0.9563 + }, + { + "start": 16479.6, + "end": 16483.46, + "probability": 0.9866 + }, + { + "start": 16484.02, + "end": 16484.52, + "probability": 0.8041 + }, + { + "start": 16486.18, + "end": 16488.52, + "probability": 0.9944 + }, + { + "start": 16489.94, + "end": 16491.44, + "probability": 0.8861 + }, + { + "start": 16491.62, + "end": 16492.88, + "probability": 0.9895 + }, + { + "start": 16493.0, + "end": 16493.84, + "probability": 0.6176 + }, + { + "start": 16494.0, + "end": 16494.64, + "probability": 0.7891 + }, + { + "start": 16496.86, + "end": 16500.82, + "probability": 0.6685 + }, + { + "start": 16500.98, + "end": 16501.76, + "probability": 0.875 + }, + { + "start": 16504.66, + "end": 16505.2, + "probability": 0.6626 + }, + { + "start": 16505.24, + "end": 16506.04, + "probability": 0.5948 + }, + { + "start": 16506.06, + "end": 16506.84, + "probability": 0.9608 + }, + { + "start": 16506.92, + "end": 16507.84, + "probability": 0.9917 + }, + { + "start": 16508.66, + "end": 16508.68, + "probability": 0.0878 + }, + { + "start": 16508.68, + "end": 16508.68, + "probability": 0.4989 + }, + { + "start": 16508.68, + "end": 16509.46, + "probability": 0.8363 + }, + { + "start": 16509.54, + "end": 16510.14, + "probability": 0.8671 + }, + { + "start": 16512.12, + "end": 16512.12, + "probability": 0.4075 + }, + { + "start": 16512.12, + "end": 16516.12, + "probability": 0.7914 + }, + { + "start": 16517.54, + "end": 16519.04, + "probability": 0.9199 + }, + { + "start": 16519.1, + "end": 16519.82, + "probability": 0.7888 + }, + { + "start": 16519.94, + "end": 16521.88, + "probability": 0.6793 + }, + { + "start": 16522.4, + "end": 16525.41, + "probability": 0.9277 + }, + { + "start": 16525.98, + "end": 16528.84, + "probability": 0.9652 + }, + { + "start": 16529.64, + "end": 16531.18, + "probability": 0.9982 + }, + { + "start": 16532.32, + "end": 16534.22, + "probability": 0.855 + }, + { + "start": 16535.28, + "end": 16537.54, + "probability": 0.8876 + }, + { + "start": 16537.62, + "end": 16539.42, + "probability": 0.9359 + }, + { + "start": 16539.6, + "end": 16539.6, + "probability": 0.7 + }, + { + "start": 16539.88, + "end": 16542.66, + "probability": 0.9731 + }, + { + "start": 16542.76, + "end": 16543.2, + "probability": 0.9244 + }, + { + "start": 16543.46, + "end": 16545.32, + "probability": 0.6214 + }, + { + "start": 16545.44, + "end": 16546.06, + "probability": 0.5778 + }, + { + "start": 16546.52, + "end": 16547.46, + "probability": 0.6647 + }, + { + "start": 16547.56, + "end": 16548.08, + "probability": 0.9213 + }, + { + "start": 16548.18, + "end": 16549.44, + "probability": 0.9218 + }, + { + "start": 16550.1, + "end": 16550.82, + "probability": 0.7211 + }, + { + "start": 16551.24, + "end": 16553.6, + "probability": 0.7006 + }, + { + "start": 16556.88, + "end": 16557.54, + "probability": 0.358 + }, + { + "start": 16581.18, + "end": 16582.38, + "probability": 0.6586 + }, + { + "start": 16582.66, + "end": 16584.02, + "probability": 0.7532 + }, + { + "start": 16584.2, + "end": 16587.4, + "probability": 0.9525 + }, + { + "start": 16587.66, + "end": 16588.52, + "probability": 0.9448 + }, + { + "start": 16589.24, + "end": 16593.14, + "probability": 0.9601 + }, + { + "start": 16595.51, + "end": 16598.86, + "probability": 0.9973 + }, + { + "start": 16598.86, + "end": 16605.18, + "probability": 0.978 + }, + { + "start": 16605.62, + "end": 16609.88, + "probability": 0.9469 + }, + { + "start": 16610.72, + "end": 16613.56, + "probability": 0.9939 + }, + { + "start": 16614.34, + "end": 16617.82, + "probability": 0.9554 + }, + { + "start": 16618.42, + "end": 16620.6, + "probability": 0.7986 + }, + { + "start": 16621.48, + "end": 16625.4, + "probability": 0.9845 + }, + { + "start": 16625.5, + "end": 16626.64, + "probability": 0.9694 + }, + { + "start": 16627.74, + "end": 16629.02, + "probability": 0.9897 + }, + { + "start": 16629.16, + "end": 16630.58, + "probability": 0.9929 + }, + { + "start": 16630.66, + "end": 16631.44, + "probability": 0.974 + }, + { + "start": 16631.48, + "end": 16632.52, + "probability": 0.9868 + }, + { + "start": 16633.12, + "end": 16635.26, + "probability": 0.9939 + }, + { + "start": 16636.36, + "end": 16638.18, + "probability": 0.5907 + }, + { + "start": 16638.96, + "end": 16640.96, + "probability": 0.9921 + }, + { + "start": 16641.06, + "end": 16641.9, + "probability": 0.9539 + }, + { + "start": 16641.94, + "end": 16642.72, + "probability": 0.8359 + }, + { + "start": 16643.12, + "end": 16645.78, + "probability": 0.7827 + }, + { + "start": 16645.9, + "end": 16646.58, + "probability": 0.9639 + }, + { + "start": 16646.86, + "end": 16647.86, + "probability": 0.8991 + }, + { + "start": 16649.4, + "end": 16651.3, + "probability": 0.958 + }, + { + "start": 16652.52, + "end": 16655.92, + "probability": 0.9555 + }, + { + "start": 16656.6, + "end": 16658.84, + "probability": 0.9847 + }, + { + "start": 16658.88, + "end": 16662.96, + "probability": 0.9938 + }, + { + "start": 16664.0, + "end": 16666.44, + "probability": 0.997 + }, + { + "start": 16667.79, + "end": 16670.34, + "probability": 0.9983 + }, + { + "start": 16670.46, + "end": 16672.32, + "probability": 0.9439 + }, + { + "start": 16672.46, + "end": 16673.72, + "probability": 0.9855 + }, + { + "start": 16673.82, + "end": 16675.88, + "probability": 0.9131 + }, + { + "start": 16675.98, + "end": 16676.58, + "probability": 0.5473 + }, + { + "start": 16676.64, + "end": 16677.52, + "probability": 0.5352 + }, + { + "start": 16677.74, + "end": 16680.96, + "probability": 0.9971 + }, + { + "start": 16680.96, + "end": 16684.68, + "probability": 0.979 + }, + { + "start": 16685.45, + "end": 16690.1, + "probability": 0.9958 + }, + { + "start": 16690.18, + "end": 16691.8, + "probability": 0.9342 + }, + { + "start": 16692.28, + "end": 16695.72, + "probability": 0.9824 + }, + { + "start": 16696.52, + "end": 16701.02, + "probability": 0.9973 + }, + { + "start": 16701.52, + "end": 16705.5, + "probability": 0.9871 + }, + { + "start": 16706.46, + "end": 16709.54, + "probability": 0.9843 + }, + { + "start": 16711.58, + "end": 16719.28, + "probability": 0.962 + }, + { + "start": 16719.38, + "end": 16720.74, + "probability": 0.9885 + }, + { + "start": 16721.14, + "end": 16724.36, + "probability": 0.9985 + }, + { + "start": 16725.12, + "end": 16727.84, + "probability": 0.9941 + }, + { + "start": 16728.32, + "end": 16731.86, + "probability": 0.9329 + }, + { + "start": 16732.08, + "end": 16733.0, + "probability": 0.8316 + }, + { + "start": 16733.06, + "end": 16736.94, + "probability": 0.9358 + }, + { + "start": 16737.06, + "end": 16740.26, + "probability": 0.8955 + }, + { + "start": 16740.34, + "end": 16742.64, + "probability": 0.969 + }, + { + "start": 16742.7, + "end": 16747.04, + "probability": 0.9926 + }, + { + "start": 16747.28, + "end": 16747.42, + "probability": 0.4391 + }, + { + "start": 16748.1, + "end": 16749.88, + "probability": 0.9954 + }, + { + "start": 16750.24, + "end": 16750.54, + "probability": 0.5874 + }, + { + "start": 16750.68, + "end": 16751.12, + "probability": 0.9638 + }, + { + "start": 16751.2, + "end": 16751.76, + "probability": 0.3527 + }, + { + "start": 16751.82, + "end": 16753.5, + "probability": 0.8287 + }, + { + "start": 16753.84, + "end": 16757.02, + "probability": 0.9707 + }, + { + "start": 16757.56, + "end": 16760.3, + "probability": 0.9609 + }, + { + "start": 16760.6, + "end": 16763.42, + "probability": 0.9432 + }, + { + "start": 16763.54, + "end": 16765.81, + "probability": 0.9862 + }, + { + "start": 16765.84, + "end": 16765.86, + "probability": 0.7046 + }, + { + "start": 16765.94, + "end": 16767.98, + "probability": 0.6491 + }, + { + "start": 16768.1, + "end": 16768.7, + "probability": 0.7147 + }, + { + "start": 16768.82, + "end": 16770.44, + "probability": 0.9613 + }, + { + "start": 16770.66, + "end": 16771.3, + "probability": 0.9508 + }, + { + "start": 16771.82, + "end": 16773.84, + "probability": 0.5401 + }, + { + "start": 16774.56, + "end": 16776.12, + "probability": 0.5385 + }, + { + "start": 16776.8, + "end": 16778.78, + "probability": 0.5122 + }, + { + "start": 16787.32, + "end": 16789.8, + "probability": 0.5014 + }, + { + "start": 16792.38, + "end": 16795.46, + "probability": 0.4205 + }, + { + "start": 16797.96, + "end": 16798.4, + "probability": 0.5422 + }, + { + "start": 16800.06, + "end": 16802.3, + "probability": 0.4001 + }, + { + "start": 16802.86, + "end": 16803.38, + "probability": 0.4521 + }, + { + "start": 16803.4, + "end": 16806.54, + "probability": 0.7153 + }, + { + "start": 16807.08, + "end": 16810.78, + "probability": 0.2264 + }, + { + "start": 16811.48, + "end": 16812.72, + "probability": 0.9897 + }, + { + "start": 16813.08, + "end": 16813.78, + "probability": 0.6974 + }, + { + "start": 16813.9, + "end": 16816.32, + "probability": 0.8698 + }, + { + "start": 16816.42, + "end": 16816.8, + "probability": 0.7495 + }, + { + "start": 16818.42, + "end": 16819.38, + "probability": 0.3175 + }, + { + "start": 16820.78, + "end": 16823.98, + "probability": 0.701 + }, + { + "start": 16824.72, + "end": 16825.5, + "probability": 0.4053 + }, + { + "start": 16825.74, + "end": 16828.4, + "probability": 0.5305 + }, + { + "start": 16828.46, + "end": 16830.06, + "probability": 0.7117 + }, + { + "start": 16830.06, + "end": 16831.16, + "probability": 0.58 + }, + { + "start": 16832.9, + "end": 16834.42, + "probability": 0.8163 + }, + { + "start": 16835.08, + "end": 16836.2, + "probability": 0.733 + }, + { + "start": 16836.32, + "end": 16837.3, + "probability": 0.7139 + }, + { + "start": 16838.35, + "end": 16839.76, + "probability": 0.2839 + }, + { + "start": 16839.76, + "end": 16840.44, + "probability": 0.7175 + }, + { + "start": 16841.02, + "end": 16842.42, + "probability": 0.689 + }, + { + "start": 16842.78, + "end": 16844.6, + "probability": 0.7827 + }, + { + "start": 16844.64, + "end": 16845.92, + "probability": 0.8559 + }, + { + "start": 16849.14, + "end": 16849.6, + "probability": 0.825 + }, + { + "start": 16850.36, + "end": 16851.24, + "probability": 0.8652 + }, + { + "start": 16852.74, + "end": 16854.22, + "probability": 0.5942 + }, + { + "start": 16854.28, + "end": 16856.16, + "probability": 0.6992 + }, + { + "start": 16856.44, + "end": 16858.32, + "probability": 0.8948 + }, + { + "start": 16860.06, + "end": 16861.7, + "probability": 0.8922 + }, + { + "start": 16862.7, + "end": 16863.8, + "probability": 0.8835 + }, + { + "start": 16863.84, + "end": 16864.92, + "probability": 0.9189 + }, + { + "start": 16864.94, + "end": 16866.88, + "probability": 0.1173 + }, + { + "start": 16866.88, + "end": 16867.44, + "probability": 0.5391 + }, + { + "start": 16869.58, + "end": 16871.64, + "probability": 0.8364 + }, + { + "start": 16871.9, + "end": 16873.04, + "probability": 0.8855 + }, + { + "start": 16873.52, + "end": 16874.22, + "probability": 0.9777 + }, + { + "start": 16875.08, + "end": 16880.56, + "probability": 0.5961 + }, + { + "start": 16881.54, + "end": 16883.04, + "probability": 0.8483 + }, + { + "start": 16883.1, + "end": 16884.18, + "probability": 0.8217 + }, + { + "start": 16884.28, + "end": 16885.3, + "probability": 0.6656 + }, + { + "start": 16885.38, + "end": 16886.94, + "probability": 0.9601 + }, + { + "start": 16887.06, + "end": 16888.02, + "probability": 0.7894 + }, + { + "start": 16888.08, + "end": 16889.76, + "probability": 0.9065 + }, + { + "start": 16889.9, + "end": 16891.56, + "probability": 0.9647 + }, + { + "start": 16891.6, + "end": 16892.92, + "probability": 0.7083 + }, + { + "start": 16892.94, + "end": 16894.12, + "probability": 0.5368 + }, + { + "start": 16895.1, + "end": 16897.0, + "probability": 0.7527 + }, + { + "start": 16897.22, + "end": 16898.46, + "probability": 0.6212 + }, + { + "start": 16898.54, + "end": 16899.9, + "probability": 0.8398 + }, + { + "start": 16899.92, + "end": 16902.08, + "probability": 0.6903 + }, + { + "start": 16902.42, + "end": 16903.98, + "probability": 0.8974 + }, + { + "start": 16904.38, + "end": 16906.6, + "probability": 0.6394 + }, + { + "start": 16907.2, + "end": 16910.1, + "probability": 0.7815 + }, + { + "start": 16911.12, + "end": 16912.52, + "probability": 0.7327 + }, + { + "start": 16912.6, + "end": 16914.26, + "probability": 0.7715 + }, + { + "start": 16915.12, + "end": 16915.78, + "probability": 0.9849 + }, + { + "start": 16916.86, + "end": 16917.56, + "probability": 0.3938 + }, + { + "start": 16917.56, + "end": 16918.92, + "probability": 0.7753 + }, + { + "start": 16918.94, + "end": 16920.58, + "probability": 0.9097 + }, + { + "start": 16921.26, + "end": 16921.94, + "probability": 0.3831 + }, + { + "start": 16922.58, + "end": 16924.88, + "probability": 0.1754 + }, + { + "start": 16925.4, + "end": 16927.12, + "probability": 0.7268 + }, + { + "start": 16928.68, + "end": 16930.28, + "probability": 0.8953 + }, + { + "start": 16931.02, + "end": 16931.3, + "probability": 0.7209 + }, + { + "start": 16932.1, + "end": 16934.42, + "probability": 0.9628 + }, + { + "start": 16935.0, + "end": 16937.2, + "probability": 0.9162 + }, + { + "start": 16937.46, + "end": 16938.66, + "probability": 0.6509 + }, + { + "start": 16938.68, + "end": 16939.46, + "probability": 0.6218 + }, + { + "start": 16939.76, + "end": 16941.7, + "probability": 0.7996 + }, + { + "start": 16941.72, + "end": 16942.96, + "probability": 0.768 + }, + { + "start": 16943.06, + "end": 16944.12, + "probability": 0.8178 + }, + { + "start": 16947.72, + "end": 16948.08, + "probability": 0.5503 + }, + { + "start": 16948.7, + "end": 16949.3, + "probability": 0.6766 + }, + { + "start": 16949.34, + "end": 16950.26, + "probability": 0.8662 + }, + { + "start": 16950.3, + "end": 16951.74, + "probability": 0.7239 + }, + { + "start": 16956.34, + "end": 16957.42, + "probability": 0.3943 + }, + { + "start": 16960.18, + "end": 16960.5, + "probability": 0.3284 + }, + { + "start": 16964.7, + "end": 16967.6, + "probability": 0.7505 + }, + { + "start": 16968.14, + "end": 16968.66, + "probability": 0.9035 + }, + { + "start": 16968.82, + "end": 16970.02, + "probability": 0.789 + }, + { + "start": 16970.1, + "end": 16971.56, + "probability": 0.9648 + }, + { + "start": 16972.54, + "end": 16975.02, + "probability": 0.8217 + }, + { + "start": 16976.14, + "end": 16976.56, + "probability": 0.9353 + }, + { + "start": 16977.94, + "end": 16978.98, + "probability": 0.7623 + }, + { + "start": 16979.1, + "end": 16980.48, + "probability": 0.5575 + }, + { + "start": 16980.6, + "end": 16981.76, + "probability": 0.6371 + }, + { + "start": 16981.76, + "end": 16983.22, + "probability": 0.913 + }, + { + "start": 16983.3, + "end": 16986.34, + "probability": 0.9118 + }, + { + "start": 16986.52, + "end": 16987.96, + "probability": 0.9282 + }, + { + "start": 16989.6, + "end": 16991.18, + "probability": 0.7644 + }, + { + "start": 16991.28, + "end": 16992.66, + "probability": 0.7284 + }, + { + "start": 16992.66, + "end": 16994.34, + "probability": 0.7766 + }, + { + "start": 16994.42, + "end": 16995.44, + "probability": 0.8883 + }, + { + "start": 16995.46, + "end": 16996.58, + "probability": 0.9558 + }, + { + "start": 16997.36, + "end": 16998.66, + "probability": 0.9662 + }, + { + "start": 16998.72, + "end": 17000.4, + "probability": 0.8325 + }, + { + "start": 17005.04, + "end": 17009.02, + "probability": 0.4743 + }, + { + "start": 17009.34, + "end": 17011.16, + "probability": 0.7768 + }, + { + "start": 17012.36, + "end": 17012.82, + "probability": 0.7214 + }, + { + "start": 17013.56, + "end": 17016.16, + "probability": 0.812 + }, + { + "start": 17020.1, + "end": 17022.6, + "probability": 0.6995 + }, + { + "start": 17023.24, + "end": 17024.4, + "probability": 0.6234 + }, + { + "start": 17025.82, + "end": 17027.56, + "probability": 0.8116 + }, + { + "start": 17028.66, + "end": 17029.18, + "probability": 0.9482 + }, + { + "start": 17030.52, + "end": 17031.14, + "probability": 0.922 + }, + { + "start": 17031.14, + "end": 17032.24, + "probability": 0.9232 + }, + { + "start": 17032.28, + "end": 17033.16, + "probability": 0.9087 + }, + { + "start": 17033.2, + "end": 17034.98, + "probability": 0.5147 + }, + { + "start": 17034.98, + "end": 17035.68, + "probability": 0.1599 + }, + { + "start": 17037.52, + "end": 17038.06, + "probability": 0.8657 + }, + { + "start": 17039.44, + "end": 17040.52, + "probability": 0.622 + }, + { + "start": 17041.48, + "end": 17047.02, + "probability": 0.9277 + }, + { + "start": 17048.22, + "end": 17049.64, + "probability": 0.988 + }, + { + "start": 17051.08, + "end": 17052.6, + "probability": 0.9414 + }, + { + "start": 17056.56, + "end": 17060.84, + "probability": 0.5381 + }, + { + "start": 17062.16, + "end": 17063.62, + "probability": 0.7424 + }, + { + "start": 17063.64, + "end": 17065.0, + "probability": 0.7648 + }, + { + "start": 17065.08, + "end": 17066.88, + "probability": 0.9868 + }, + { + "start": 17067.58, + "end": 17069.1, + "probability": 0.8426 + }, + { + "start": 17070.96, + "end": 17071.48, + "probability": 0.9331 + }, + { + "start": 17072.76, + "end": 17073.64, + "probability": 0.7399 + }, + { + "start": 17074.48, + "end": 17077.84, + "probability": 0.6673 + }, + { + "start": 17079.48, + "end": 17082.62, + "probability": 0.7273 + }, + { + "start": 17083.76, + "end": 17085.26, + "probability": 0.9547 + }, + { + "start": 17085.98, + "end": 17087.32, + "probability": 0.8872 + }, + { + "start": 17087.46, + "end": 17088.62, + "probability": 0.8538 + }, + { + "start": 17088.66, + "end": 17089.86, + "probability": 0.2251 + }, + { + "start": 17089.86, + "end": 17091.78, + "probability": 0.6364 + }, + { + "start": 17091.9, + "end": 17093.1, + "probability": 0.7105 + }, + { + "start": 17093.22, + "end": 17094.64, + "probability": 0.8549 + }, + { + "start": 17095.24, + "end": 17096.78, + "probability": 0.8715 + }, + { + "start": 17097.34, + "end": 17099.08, + "probability": 0.6667 + }, + { + "start": 17099.78, + "end": 17101.3, + "probability": 0.6026 + }, + { + "start": 17101.32, + "end": 17104.52, + "probability": 0.3674 + }, + { + "start": 17104.6, + "end": 17105.3, + "probability": 0.7248 + }, + { + "start": 17105.96, + "end": 17107.14, + "probability": 0.3275 + }, + { + "start": 17107.24, + "end": 17108.36, + "probability": 0.7169 + }, + { + "start": 17108.36, + "end": 17109.44, + "probability": 0.4113 + }, + { + "start": 17109.48, + "end": 17110.78, + "probability": 0.6418 + }, + { + "start": 17111.24, + "end": 17112.98, + "probability": 0.3203 + }, + { + "start": 17112.98, + "end": 17113.61, + "probability": 0.413 + }, + { + "start": 17113.7, + "end": 17114.74, + "probability": 0.6626 + }, + { + "start": 17114.82, + "end": 17115.82, + "probability": 0.5748 + }, + { + "start": 17115.86, + "end": 17116.8, + "probability": 0.6957 + }, + { + "start": 17116.86, + "end": 17118.44, + "probability": 0.8644 + }, + { + "start": 17118.44, + "end": 17119.44, + "probability": 0.6784 + }, + { + "start": 17119.58, + "end": 17120.98, + "probability": 0.5287 + }, + { + "start": 17121.0, + "end": 17122.12, + "probability": 0.7096 + }, + { + "start": 17122.12, + "end": 17123.12, + "probability": 0.8293 + }, + { + "start": 17123.16, + "end": 17124.22, + "probability": 0.8148 + }, + { + "start": 17124.24, + "end": 17125.9, + "probability": 0.9625 + }, + { + "start": 17126.74, + "end": 17127.54, + "probability": 0.7697 + }, + { + "start": 17127.7, + "end": 17128.78, + "probability": 0.7156 + }, + { + "start": 17130.54, + "end": 17131.72, + "probability": 0.1358 + }, + { + "start": 17131.72, + "end": 17131.72, + "probability": 0.3049 + }, + { + "start": 17131.72, + "end": 17131.96, + "probability": 0.5512 + }, + { + "start": 17132.08, + "end": 17133.16, + "probability": 0.7169 + }, + { + "start": 17133.68, + "end": 17135.82, + "probability": 0.8757 + }, + { + "start": 17136.38, + "end": 17137.12, + "probability": 0.8529 + }, + { + "start": 17138.2, + "end": 17139.68, + "probability": 0.6852 + }, + { + "start": 17140.22, + "end": 17142.7, + "probability": 0.7676 + }, + { + "start": 17143.38, + "end": 17143.92, + "probability": 0.1469 + }, + { + "start": 17144.0, + "end": 17144.5, + "probability": 0.134 + }, + { + "start": 17144.5, + "end": 17144.5, + "probability": 0.3677 + }, + { + "start": 17144.56, + "end": 17144.98, + "probability": 0.7045 + }, + { + "start": 17145.1, + "end": 17146.36, + "probability": 0.7312 + }, + { + "start": 17147.3, + "end": 17149.68, + "probability": 0.8572 + }, + { + "start": 17149.76, + "end": 17150.98, + "probability": 0.4722 + }, + { + "start": 17151.1, + "end": 17152.56, + "probability": 0.6932 + }, + { + "start": 17153.0, + "end": 17154.1, + "probability": 0.5133 + }, + { + "start": 17154.14, + "end": 17155.12, + "probability": 0.696 + }, + { + "start": 17155.16, + "end": 17156.1, + "probability": 0.3727 + }, + { + "start": 17156.22, + "end": 17158.18, + "probability": 0.8016 + }, + { + "start": 17158.26, + "end": 17159.5, + "probability": 0.6263 + }, + { + "start": 17161.16, + "end": 17162.2, + "probability": 0.2419 + }, + { + "start": 17162.24, + "end": 17163.7, + "probability": 0.5287 + }, + { + "start": 17163.78, + "end": 17164.74, + "probability": 0.9038 + }, + { + "start": 17164.78, + "end": 17165.82, + "probability": 0.7579 + }, + { + "start": 17165.86, + "end": 17166.76, + "probability": 0.92 + }, + { + "start": 17168.62, + "end": 17169.52, + "probability": 0.9672 + }, + { + "start": 17169.64, + "end": 17170.72, + "probability": 0.8725 + }, + { + "start": 17170.86, + "end": 17172.24, + "probability": 0.5825 + }, + { + "start": 17172.34, + "end": 17173.28, + "probability": 0.7927 + }, + { + "start": 17173.32, + "end": 17174.26, + "probability": 0.6712 + }, + { + "start": 17174.44, + "end": 17175.36, + "probability": 0.9639 + }, + { + "start": 17176.24, + "end": 17177.14, + "probability": 0.8613 + }, + { + "start": 17177.48, + "end": 17178.46, + "probability": 0.849 + }, + { + "start": 17178.54, + "end": 17179.62, + "probability": 0.9481 + }, + { + "start": 17179.68, + "end": 17180.6, + "probability": 0.895 + }, + { + "start": 17180.62, + "end": 17182.32, + "probability": 0.9008 + }, + { + "start": 17182.56, + "end": 17183.82, + "probability": 0.5984 + }, + { + "start": 17184.84, + "end": 17185.84, + "probability": 0.5075 + }, + { + "start": 17188.08, + "end": 17188.7, + "probability": 0.3848 + }, + { + "start": 17188.8, + "end": 17189.78, + "probability": 0.5312 + }, + { + "start": 17189.84, + "end": 17191.0, + "probability": 0.7728 + }, + { + "start": 17191.04, + "end": 17192.02, + "probability": 0.9128 + }, + { + "start": 17192.04, + "end": 17192.6, + "probability": 0.626 + }, + { + "start": 17193.32, + "end": 17195.46, + "probability": 0.8264 + }, + { + "start": 17196.5, + "end": 17198.14, + "probability": 0.4727 + }, + { + "start": 17210.64, + "end": 17214.7, + "probability": 0.3911 + }, + { + "start": 17216.08, + "end": 17219.44, + "probability": 0.7374 + }, + { + "start": 17220.24, + "end": 17222.14, + "probability": 0.8906 + }, + { + "start": 17222.18, + "end": 17223.58, + "probability": 0.8274 + }, + { + "start": 17224.6, + "end": 17225.8, + "probability": 0.5612 + }, + { + "start": 17225.88, + "end": 17226.9, + "probability": 0.4911 + }, + { + "start": 17226.96, + "end": 17228.0, + "probability": 0.8603 + }, + { + "start": 17228.32, + "end": 17229.82, + "probability": 0.9409 + }, + { + "start": 17229.92, + "end": 17231.06, + "probability": 0.6607 + }, + { + "start": 17232.2, + "end": 17233.9, + "probability": 0.5116 + }, + { + "start": 17234.1, + "end": 17235.64, + "probability": 0.9421 + }, + { + "start": 17235.72, + "end": 17236.74, + "probability": 0.5297 + }, + { + "start": 17238.0, + "end": 17241.16, + "probability": 0.5431 + }, + { + "start": 17241.26, + "end": 17242.28, + "probability": 0.6422 + }, + { + "start": 17242.3, + "end": 17243.28, + "probability": 0.8474 + }, + { + "start": 17243.32, + "end": 17244.46, + "probability": 0.8523 + }, + { + "start": 17244.52, + "end": 17245.12, + "probability": 0.7967 + }, + { + "start": 17245.92, + "end": 17246.84, + "probability": 0.6823 + }, + { + "start": 17248.66, + "end": 17250.1, + "probability": 0.9724 + }, + { + "start": 17250.72, + "end": 17254.38, + "probability": 0.7769 + }, + { + "start": 17255.52, + "end": 17256.56, + "probability": 0.4183 + }, + { + "start": 17257.84, + "end": 17258.8, + "probability": 0.4645 + }, + { + "start": 17258.84, + "end": 17260.54, + "probability": 0.8066 + }, + { + "start": 17261.26, + "end": 17265.78, + "probability": 0.8463 + }, + { + "start": 17266.62, + "end": 17268.18, + "probability": 0.6314 + }, + { + "start": 17268.88, + "end": 17270.32, + "probability": 0.736 + }, + { + "start": 17271.26, + "end": 17274.76, + "probability": 0.7847 + }, + { + "start": 17284.1, + "end": 17285.1, + "probability": 0.3463 + }, + { + "start": 17285.68, + "end": 17287.46, + "probability": 0.8916 + }, + { + "start": 17288.32, + "end": 17289.5, + "probability": 0.7278 + }, + { + "start": 17289.52, + "end": 17290.6, + "probability": 0.5826 + }, + { + "start": 17290.64, + "end": 17292.6, + "probability": 0.8936 + }, + { + "start": 17294.04, + "end": 17296.5, + "probability": 0.4839 + }, + { + "start": 17296.54, + "end": 17298.02, + "probability": 0.9497 + }, + { + "start": 17298.5, + "end": 17299.78, + "probability": 0.439 + }, + { + "start": 17299.84, + "end": 17300.48, + "probability": 0.9313 + }, + { + "start": 17301.74, + "end": 17306.52, + "probability": 0.5022 + }, + { + "start": 17307.02, + "end": 17308.68, + "probability": 0.4283 + }, + { + "start": 17308.72, + "end": 17309.64, + "probability": 0.5503 + }, + { + "start": 17310.54, + "end": 17313.96, + "probability": 0.0474 + }, + { + "start": 17322.76, + "end": 17324.86, + "probability": 0.2055 + }, + { + "start": 17359.04, + "end": 17364.98, + "probability": 0.723 + }, + { + "start": 17365.2, + "end": 17366.84, + "probability": 0.1602 + }, + { + "start": 17367.12, + "end": 17370.6, + "probability": 0.7851 + }, + { + "start": 17370.6, + "end": 17373.34, + "probability": 0.9778 + }, + { + "start": 17373.46, + "end": 17374.2, + "probability": 0.6344 + }, + { + "start": 17374.78, + "end": 17376.14, + "probability": 0.563 + }, + { + "start": 17376.28, + "end": 17379.3, + "probability": 0.7607 + }, + { + "start": 17379.9, + "end": 17381.94, + "probability": 0.6583 + }, + { + "start": 17382.6, + "end": 17386.62, + "probability": 0.5372 + }, + { + "start": 17387.24, + "end": 17387.78, + "probability": 0.4954 + }, + { + "start": 17387.78, + "end": 17390.6, + "probability": 0.9121 + }, + { + "start": 17390.6, + "end": 17391.02, + "probability": 0.8941 + }, + { + "start": 17391.28, + "end": 17393.6, + "probability": 0.0564 + }, + { + "start": 17395.54, + "end": 17398.54, + "probability": 0.6337 + }, + { + "start": 17400.27, + "end": 17404.12, + "probability": 0.8015 + }, + { + "start": 17406.16, + "end": 17407.8, + "probability": 0.7456 + }, + { + "start": 17408.5, + "end": 17410.26, + "probability": 0.0425 + }, + { + "start": 17410.32, + "end": 17411.68, + "probability": 0.2427 + }, + { + "start": 17412.5, + "end": 17415.44, + "probability": 0.3692 + }, + { + "start": 17418.88, + "end": 17420.64, + "probability": 0.5708 + }, + { + "start": 17421.82, + "end": 17422.8, + "probability": 0.5946 + }, + { + "start": 17423.72, + "end": 17427.1, + "probability": 0.9928 + }, + { + "start": 17427.42, + "end": 17428.1, + "probability": 0.9437 + }, + { + "start": 17428.26, + "end": 17429.54, + "probability": 0.9635 + }, + { + "start": 17429.92, + "end": 17431.19, + "probability": 0.647 + }, + { + "start": 17431.38, + "end": 17436.56, + "probability": 0.9925 + }, + { + "start": 17436.78, + "end": 17440.1, + "probability": 0.9883 + }, + { + "start": 17440.98, + "end": 17442.9, + "probability": 0.952 + }, + { + "start": 17442.9, + "end": 17445.3, + "probability": 0.9869 + }, + { + "start": 17446.5, + "end": 17449.34, + "probability": 0.9976 + }, + { + "start": 17449.34, + "end": 17452.38, + "probability": 0.9986 + }, + { + "start": 17453.18, + "end": 17454.96, + "probability": 0.8943 + }, + { + "start": 17455.26, + "end": 17460.92, + "probability": 0.9873 + }, + { + "start": 17462.54, + "end": 17464.8, + "probability": 0.8758 + }, + { + "start": 17464.88, + "end": 17466.76, + "probability": 0.8904 + }, + { + "start": 17466.94, + "end": 17468.08, + "probability": 0.8401 + }, + { + "start": 17468.56, + "end": 17468.72, + "probability": 0.6399 + }, + { + "start": 17469.26, + "end": 17473.34, + "probability": 0.9856 + }, + { + "start": 17473.86, + "end": 17477.02, + "probability": 0.8449 + }, + { + "start": 17477.14, + "end": 17479.8, + "probability": 0.9906 + }, + { + "start": 17480.54, + "end": 17482.02, + "probability": 0.7755 + }, + { + "start": 17483.92, + "end": 17485.3, + "probability": 0.9814 + }, + { + "start": 17485.34, + "end": 17487.88, + "probability": 0.9825 + }, + { + "start": 17487.94, + "end": 17489.88, + "probability": 0.945 + }, + { + "start": 17489.98, + "end": 17493.3, + "probability": 0.9934 + }, + { + "start": 17493.68, + "end": 17496.88, + "probability": 0.9963 + }, + { + "start": 17497.86, + "end": 17498.58, + "probability": 0.8882 + }, + { + "start": 17498.62, + "end": 17499.34, + "probability": 0.9666 + }, + { + "start": 17499.38, + "end": 17501.94, + "probability": 0.8682 + }, + { + "start": 17502.48, + "end": 17504.38, + "probability": 0.9992 + }, + { + "start": 17504.44, + "end": 17508.32, + "probability": 0.9926 + }, + { + "start": 17508.64, + "end": 17509.44, + "probability": 0.9885 + }, + { + "start": 17509.7, + "end": 17510.62, + "probability": 0.6508 + }, + { + "start": 17510.76, + "end": 17512.28, + "probability": 0.9646 + }, + { + "start": 17512.32, + "end": 17514.92, + "probability": 0.7927 + }, + { + "start": 17515.28, + "end": 17516.52, + "probability": 0.8511 + }, + { + "start": 17516.58, + "end": 17517.0, + "probability": 0.4512 + }, + { + "start": 17517.18, + "end": 17518.34, + "probability": 0.2754 + }, + { + "start": 17518.36, + "end": 17518.86, + "probability": 0.6067 + }, + { + "start": 17519.32, + "end": 17521.62, + "probability": 0.655 + }, + { + "start": 17535.74, + "end": 17537.55, + "probability": 0.4225 + }, + { + "start": 17537.58, + "end": 17539.78, + "probability": 0.7429 + }, + { + "start": 17539.94, + "end": 17541.02, + "probability": 0.8065 + }, + { + "start": 17541.4, + "end": 17545.56, + "probability": 0.9326 + }, + { + "start": 17546.44, + "end": 17547.2, + "probability": 0.9769 + }, + { + "start": 17547.9, + "end": 17551.38, + "probability": 0.9927 + }, + { + "start": 17552.9, + "end": 17555.84, + "probability": 0.9189 + }, + { + "start": 17556.68, + "end": 17559.52, + "probability": 0.8774 + }, + { + "start": 17560.56, + "end": 17564.66, + "probability": 0.9795 + }, + { + "start": 17565.64, + "end": 17569.62, + "probability": 0.9937 + }, + { + "start": 17570.34, + "end": 17571.4, + "probability": 0.7278 + }, + { + "start": 17571.92, + "end": 17573.38, + "probability": 0.788 + }, + { + "start": 17573.76, + "end": 17574.12, + "probability": 0.4551 + }, + { + "start": 17574.24, + "end": 17575.5, + "probability": 0.9757 + }, + { + "start": 17575.66, + "end": 17581.1, + "probability": 0.9885 + }, + { + "start": 17581.1, + "end": 17585.56, + "probability": 0.9697 + }, + { + "start": 17586.44, + "end": 17587.84, + "probability": 0.8858 + }, + { + "start": 17588.88, + "end": 17592.68, + "probability": 0.9748 + }, + { + "start": 17593.26, + "end": 17599.74, + "probability": 0.9793 + }, + { + "start": 17601.34, + "end": 17603.68, + "probability": 0.9953 + }, + { + "start": 17604.0, + "end": 17605.58, + "probability": 0.9648 + }, + { + "start": 17606.54, + "end": 17609.32, + "probability": 0.9804 + }, + { + "start": 17609.7, + "end": 17613.56, + "probability": 0.9685 + }, + { + "start": 17614.68, + "end": 17615.98, + "probability": 0.987 + }, + { + "start": 17616.5, + "end": 17620.08, + "probability": 0.9523 + }, + { + "start": 17621.04, + "end": 17624.26, + "probability": 0.8924 + }, + { + "start": 17625.6, + "end": 17625.94, + "probability": 0.567 + }, + { + "start": 17626.28, + "end": 17626.98, + "probability": 0.9523 + }, + { + "start": 17627.26, + "end": 17628.3, + "probability": 0.9104 + }, + { + "start": 17628.8, + "end": 17630.19, + "probability": 0.9647 + }, + { + "start": 17630.82, + "end": 17631.12, + "probability": 0.7476 + }, + { + "start": 17631.34, + "end": 17632.34, + "probability": 0.819 + }, + { + "start": 17632.44, + "end": 17634.6, + "probability": 0.9822 + }, + { + "start": 17634.78, + "end": 17636.86, + "probability": 0.9946 + }, + { + "start": 17638.12, + "end": 17641.48, + "probability": 0.9621 + }, + { + "start": 17642.22, + "end": 17643.54, + "probability": 0.783 + }, + { + "start": 17644.44, + "end": 17645.38, + "probability": 0.6059 + }, + { + "start": 17645.92, + "end": 17647.92, + "probability": 0.9915 + }, + { + "start": 17649.02, + "end": 17652.24, + "probability": 0.96 + }, + { + "start": 17652.78, + "end": 17653.64, + "probability": 0.8055 + }, + { + "start": 17654.26, + "end": 17654.58, + "probability": 0.5172 + }, + { + "start": 17655.14, + "end": 17659.74, + "probability": 0.9609 + }, + { + "start": 17660.98, + "end": 17664.16, + "probability": 0.9951 + }, + { + "start": 17664.68, + "end": 17669.3, + "probability": 0.9916 + }, + { + "start": 17671.04, + "end": 17673.4, + "probability": 0.8514 + }, + { + "start": 17673.44, + "end": 17676.58, + "probability": 0.8646 + }, + { + "start": 17677.28, + "end": 17684.0, + "probability": 0.9827 + }, + { + "start": 17684.56, + "end": 17687.22, + "probability": 0.9767 + }, + { + "start": 17687.6, + "end": 17689.38, + "probability": 0.8526 + }, + { + "start": 17690.3, + "end": 17694.16, + "probability": 0.7783 + }, + { + "start": 17694.16, + "end": 17697.04, + "probability": 0.9976 + }, + { + "start": 17697.84, + "end": 17698.8, + "probability": 0.856 + }, + { + "start": 17699.26, + "end": 17704.52, + "probability": 0.9827 + }, + { + "start": 17705.3, + "end": 17707.56, + "probability": 0.9685 + }, + { + "start": 17708.64, + "end": 17712.36, + "probability": 0.8135 + }, + { + "start": 17712.58, + "end": 17713.24, + "probability": 0.7703 + }, + { + "start": 17713.48, + "end": 17715.14, + "probability": 0.7998 + }, + { + "start": 17715.52, + "end": 17715.72, + "probability": 0.3985 + }, + { + "start": 17715.82, + "end": 17716.0, + "probability": 0.2817 + }, + { + "start": 17716.9, + "end": 17718.46, + "probability": 0.6338 + }, + { + "start": 17718.84, + "end": 17718.96, + "probability": 0.6727 + }, + { + "start": 17718.96, + "end": 17721.6, + "probability": 0.6974 + }, + { + "start": 17721.66, + "end": 17722.62, + "probability": 0.662 + }, + { + "start": 17722.96, + "end": 17724.32, + "probability": 0.7936 + }, + { + "start": 17724.7, + "end": 17725.36, + "probability": 0.6867 + }, + { + "start": 17725.46, + "end": 17726.68, + "probability": 0.507 + }, + { + "start": 17729.36, + "end": 17732.78, + "probability": 0.7358 + }, + { + "start": 17733.12, + "end": 17734.46, + "probability": 0.7637 + }, + { + "start": 17735.54, + "end": 17736.46, + "probability": 0.9424 + }, + { + "start": 17750.78, + "end": 17758.56, + "probability": 0.9569 + }, + { + "start": 17759.44, + "end": 17761.64, + "probability": 0.5608 + }, + { + "start": 17764.62, + "end": 17771.82, + "probability": 0.9316 + }, + { + "start": 17773.72, + "end": 17777.42, + "probability": 0.9821 + }, + { + "start": 17779.72, + "end": 17782.52, + "probability": 0.9838 + }, + { + "start": 17783.74, + "end": 17786.96, + "probability": 0.8706 + }, + { + "start": 17788.4, + "end": 17790.2, + "probability": 0.5677 + }, + { + "start": 17792.76, + "end": 17794.28, + "probability": 0.9097 + }, + { + "start": 17794.32, + "end": 17795.58, + "probability": 0.8643 + }, + { + "start": 17795.64, + "end": 17796.9, + "probability": 0.9218 + }, + { + "start": 17797.0, + "end": 17797.82, + "probability": 0.8246 + }, + { + "start": 17797.92, + "end": 17798.96, + "probability": 0.9395 + }, + { + "start": 17801.46, + "end": 17803.38, + "probability": 0.9386 + }, + { + "start": 17805.72, + "end": 17812.32, + "probability": 0.9639 + }, + { + "start": 17817.14, + "end": 17819.3, + "probability": 0.999 + }, + { + "start": 17821.9, + "end": 17822.76, + "probability": 0.8654 + }, + { + "start": 17823.58, + "end": 17829.08, + "probability": 0.9856 + }, + { + "start": 17830.02, + "end": 17831.36, + "probability": 0.9897 + }, + { + "start": 17832.3, + "end": 17836.02, + "probability": 0.9971 + }, + { + "start": 17838.6, + "end": 17842.26, + "probability": 0.9944 + }, + { + "start": 17842.86, + "end": 17843.86, + "probability": 0.812 + }, + { + "start": 17845.98, + "end": 17849.48, + "probability": 0.7016 + }, + { + "start": 17849.82, + "end": 17851.64, + "probability": 0.7832 + }, + { + "start": 17852.36, + "end": 17855.02, + "probability": 0.9814 + }, + { + "start": 17855.9, + "end": 17856.66, + "probability": 0.7763 + }, + { + "start": 17858.22, + "end": 17859.36, + "probability": 0.998 + }, + { + "start": 17859.46, + "end": 17861.86, + "probability": 0.8515 + }, + { + "start": 17862.08, + "end": 17863.1, + "probability": 0.9954 + }, + { + "start": 17864.06, + "end": 17868.04, + "probability": 0.8351 + }, + { + "start": 17868.12, + "end": 17871.44, + "probability": 0.9858 + }, + { + "start": 17873.18, + "end": 17876.04, + "probability": 0.912 + }, + { + "start": 17877.0, + "end": 17877.66, + "probability": 0.9061 + }, + { + "start": 17878.2, + "end": 17879.48, + "probability": 0.9717 + }, + { + "start": 17881.18, + "end": 17881.54, + "probability": 0.9264 + }, + { + "start": 17881.58, + "end": 17887.64, + "probability": 0.9739 + }, + { + "start": 17889.96, + "end": 17889.96, + "probability": 0.916 + }, + { + "start": 17890.72, + "end": 17891.02, + "probability": 0.9954 + }, + { + "start": 17894.7, + "end": 17897.28, + "probability": 0.9883 + }, + { + "start": 17898.04, + "end": 17900.88, + "probability": 0.9346 + }, + { + "start": 17902.02, + "end": 17904.06, + "probability": 0.8492 + }, + { + "start": 17905.58, + "end": 17906.64, + "probability": 0.9795 + }, + { + "start": 17908.25, + "end": 17912.72, + "probability": 0.9958 + }, + { + "start": 17914.74, + "end": 17915.64, + "probability": 0.068 + }, + { + "start": 17915.96, + "end": 17916.46, + "probability": 0.466 + }, + { + "start": 17917.62, + "end": 17919.56, + "probability": 0.3071 + }, + { + "start": 17922.16, + "end": 17928.26, + "probability": 0.3378 + }, + { + "start": 17928.34, + "end": 17930.96, + "probability": 0.553 + }, + { + "start": 17931.0, + "end": 17935.02, + "probability": 0.9985 + }, + { + "start": 17935.06, + "end": 17935.66, + "probability": 0.7504 + }, + { + "start": 17936.6, + "end": 17937.74, + "probability": 0.6385 + }, + { + "start": 17938.32, + "end": 17939.14, + "probability": 0.5367 + }, + { + "start": 17939.14, + "end": 17939.56, + "probability": 0.3841 + }, + { + "start": 17940.36, + "end": 17943.58, + "probability": 0.9319 + }, + { + "start": 17944.92, + "end": 17946.5, + "probability": 0.3161 + }, + { + "start": 17948.48, + "end": 17948.78, + "probability": 0.3105 + }, + { + "start": 17948.88, + "end": 17949.79, + "probability": 0.5979 + }, + { + "start": 17950.28, + "end": 17951.34, + "probability": 0.8381 + }, + { + "start": 17955.22, + "end": 17959.88, + "probability": 0.4411 + }, + { + "start": 17961.04, + "end": 17962.52, + "probability": 0.8167 + }, + { + "start": 17962.78, + "end": 17963.24, + "probability": 0.5118 + }, + { + "start": 17963.34, + "end": 17964.62, + "probability": 0.7923 + }, + { + "start": 17964.7, + "end": 17965.26, + "probability": 0.8933 + }, + { + "start": 17966.04, + "end": 17969.1, + "probability": 0.9751 + }, + { + "start": 17969.82, + "end": 17971.62, + "probability": 0.4145 + }, + { + "start": 17971.68, + "end": 17973.72, + "probability": 0.6571 + }, + { + "start": 17975.0, + "end": 17975.86, + "probability": 0.8043 + }, + { + "start": 17976.48, + "end": 17979.64, + "probability": 0.9124 + }, + { + "start": 17980.54, + "end": 17982.6, + "probability": 0.1877 + }, + { + "start": 17983.24, + "end": 17985.48, + "probability": 0.3439 + }, + { + "start": 17988.44, + "end": 17992.24, + "probability": 0.6308 + }, + { + "start": 17993.58, + "end": 17996.18, + "probability": 0.7569 + }, + { + "start": 17996.84, + "end": 17998.92, + "probability": 0.9851 + }, + { + "start": 17998.94, + "end": 18003.04, + "probability": 0.9015 + }, + { + "start": 18003.88, + "end": 18006.04, + "probability": 0.9861 + }, + { + "start": 18006.8, + "end": 18009.84, + "probability": 0.9926 + }, + { + "start": 18011.2, + "end": 18015.26, + "probability": 0.957 + }, + { + "start": 18016.38, + "end": 18017.6, + "probability": 0.8655 + }, + { + "start": 18018.2, + "end": 18019.58, + "probability": 0.987 + }, + { + "start": 18020.0, + "end": 18021.24, + "probability": 0.9268 + }, + { + "start": 18021.66, + "end": 18022.88, + "probability": 0.9956 + }, + { + "start": 18023.0, + "end": 18024.42, + "probability": 0.9969 + }, + { + "start": 18024.48, + "end": 18025.8, + "probability": 0.8762 + }, + { + "start": 18026.82, + "end": 18029.48, + "probability": 0.9952 + }, + { + "start": 18030.24, + "end": 18033.3, + "probability": 0.9222 + }, + { + "start": 18033.94, + "end": 18036.8, + "probability": 0.9447 + }, + { + "start": 18037.38, + "end": 18041.14, + "probability": 0.9451 + }, + { + "start": 18042.1, + "end": 18043.72, + "probability": 0.9163 + }, + { + "start": 18044.2, + "end": 18047.16, + "probability": 0.9854 + }, + { + "start": 18047.16, + "end": 18050.88, + "probability": 0.9821 + }, + { + "start": 18051.74, + "end": 18053.32, + "probability": 0.8339 + }, + { + "start": 18053.88, + "end": 18058.48, + "probability": 0.993 + }, + { + "start": 18058.94, + "end": 18061.42, + "probability": 0.9757 + }, + { + "start": 18061.96, + "end": 18063.46, + "probability": 0.8491 + }, + { + "start": 18063.92, + "end": 18067.22, + "probability": 0.9907 + }, + { + "start": 18067.68, + "end": 18069.58, + "probability": 0.9769 + }, + { + "start": 18070.06, + "end": 18071.62, + "probability": 0.9896 + }, + { + "start": 18072.02, + "end": 18073.76, + "probability": 0.9924 + }, + { + "start": 18074.08, + "end": 18075.68, + "probability": 0.9917 + }, + { + "start": 18076.94, + "end": 18080.1, + "probability": 0.7518 + }, + { + "start": 18080.6, + "end": 18085.68, + "probability": 0.9979 + }, + { + "start": 18086.54, + "end": 18089.66, + "probability": 0.9843 + }, + { + "start": 18090.38, + "end": 18093.78, + "probability": 0.9941 + }, + { + "start": 18094.48, + "end": 18097.54, + "probability": 0.9309 + }, + { + "start": 18098.24, + "end": 18100.2, + "probability": 0.9825 + }, + { + "start": 18100.68, + "end": 18103.18, + "probability": 0.9939 + }, + { + "start": 18103.28, + "end": 18104.6, + "probability": 0.9695 + }, + { + "start": 18105.34, + "end": 18110.08, + "probability": 0.9707 + }, + { + "start": 18110.46, + "end": 18111.92, + "probability": 0.5983 + }, + { + "start": 18112.48, + "end": 18113.53, + "probability": 0.8908 + }, + { + "start": 18113.76, + "end": 18114.59, + "probability": 0.9531 + }, + { + "start": 18115.2, + "end": 18116.1, + "probability": 0.7725 + }, + { + "start": 18116.58, + "end": 18118.28, + "probability": 0.9835 + }, + { + "start": 18119.26, + "end": 18121.06, + "probability": 0.9546 + }, + { + "start": 18121.84, + "end": 18124.92, + "probability": 0.9917 + }, + { + "start": 18125.76, + "end": 18130.56, + "probability": 0.9114 + }, + { + "start": 18131.16, + "end": 18133.28, + "probability": 0.994 + }, + { + "start": 18133.88, + "end": 18137.68, + "probability": 0.6666 + }, + { + "start": 18138.36, + "end": 18142.08, + "probability": 0.9727 + }, + { + "start": 18142.68, + "end": 18144.74, + "probability": 0.5955 + }, + { + "start": 18145.88, + "end": 18146.66, + "probability": 0.8474 + }, + { + "start": 18147.14, + "end": 18148.2, + "probability": 0.9524 + }, + { + "start": 18148.68, + "end": 18151.54, + "probability": 0.8927 + }, + { + "start": 18152.34, + "end": 18156.1, + "probability": 0.9629 + }, + { + "start": 18156.66, + "end": 18159.18, + "probability": 0.9967 + }, + { + "start": 18159.66, + "end": 18160.54, + "probability": 0.9813 + }, + { + "start": 18160.94, + "end": 18162.72, + "probability": 0.511 + }, + { + "start": 18162.72, + "end": 18163.66, + "probability": 0.3172 + }, + { + "start": 18164.36, + "end": 18167.3, + "probability": 0.9803 + }, + { + "start": 18167.64, + "end": 18170.98, + "probability": 0.9432 + }, + { + "start": 18171.78, + "end": 18173.62, + "probability": 0.8945 + }, + { + "start": 18173.64, + "end": 18176.62, + "probability": 0.5202 + }, + { + "start": 18176.7, + "end": 18180.14, + "probability": 0.9867 + }, + { + "start": 18180.18, + "end": 18180.42, + "probability": 0.7356 + }, + { + "start": 18180.64, + "end": 18182.36, + "probability": 0.6214 + }, + { + "start": 18186.9, + "end": 18193.24, + "probability": 0.51 + }, + { + "start": 18193.24, + "end": 18194.14, + "probability": 0.7579 + }, + { + "start": 18194.3, + "end": 18196.92, + "probability": 0.7473 + }, + { + "start": 18198.18, + "end": 18201.38, + "probability": 0.5967 + }, + { + "start": 18205.92, + "end": 18207.06, + "probability": 0.7703 + }, + { + "start": 18207.9, + "end": 18209.92, + "probability": 0.9971 + }, + { + "start": 18209.92, + "end": 18213.02, + "probability": 0.9927 + }, + { + "start": 18213.8, + "end": 18215.36, + "probability": 0.9241 + }, + { + "start": 18216.72, + "end": 18221.68, + "probability": 0.998 + }, + { + "start": 18221.8, + "end": 18223.82, + "probability": 0.9927 + }, + { + "start": 18224.28, + "end": 18229.62, + "probability": 0.9928 + }, + { + "start": 18230.32, + "end": 18235.52, + "probability": 0.98 + }, + { + "start": 18235.64, + "end": 18237.32, + "probability": 0.9922 + }, + { + "start": 18237.52, + "end": 18241.4, + "probability": 0.9922 + }, + { + "start": 18242.06, + "end": 18243.62, + "probability": 0.9954 + }, + { + "start": 18243.62, + "end": 18246.1, + "probability": 0.9983 + }, + { + "start": 18247.93, + "end": 18250.48, + "probability": 0.9926 + }, + { + "start": 18250.48, + "end": 18251.06, + "probability": 0.7783 + }, + { + "start": 18251.64, + "end": 18256.0, + "probability": 0.9946 + }, + { + "start": 18256.46, + "end": 18259.98, + "probability": 0.8021 + }, + { + "start": 18260.98, + "end": 18262.75, + "probability": 0.9762 + }, + { + "start": 18263.46, + "end": 18269.02, + "probability": 0.9912 + }, + { + "start": 18269.96, + "end": 18274.12, + "probability": 0.992 + }, + { + "start": 18275.26, + "end": 18277.76, + "probability": 0.9863 + }, + { + "start": 18278.04, + "end": 18283.6, + "probability": 0.9884 + }, + { + "start": 18284.0, + "end": 18284.87, + "probability": 0.9893 + }, + { + "start": 18284.96, + "end": 18287.58, + "probability": 0.9959 + }, + { + "start": 18288.06, + "end": 18290.96, + "probability": 0.9347 + }, + { + "start": 18291.44, + "end": 18296.62, + "probability": 0.9859 + }, + { + "start": 18297.1, + "end": 18302.6, + "probability": 0.9971 + }, + { + "start": 18303.44, + "end": 18307.1, + "probability": 0.9984 + }, + { + "start": 18307.62, + "end": 18310.98, + "probability": 0.9846 + }, + { + "start": 18312.32, + "end": 18317.8, + "probability": 0.9613 + }, + { + "start": 18318.62, + "end": 18321.08, + "probability": 0.9775 + }, + { + "start": 18321.16, + "end": 18325.24, + "probability": 0.9862 + }, + { + "start": 18326.04, + "end": 18329.1, + "probability": 0.9958 + }, + { + "start": 18329.96, + "end": 18330.92, + "probability": 0.5587 + }, + { + "start": 18331.46, + "end": 18336.24, + "probability": 0.9961 + }, + { + "start": 18336.44, + "end": 18341.0, + "probability": 0.9924 + }, + { + "start": 18341.5, + "end": 18346.28, + "probability": 0.9971 + }, + { + "start": 18347.4, + "end": 18349.6, + "probability": 0.7251 + }, + { + "start": 18350.46, + "end": 18353.78, + "probability": 0.9781 + }, + { + "start": 18354.22, + "end": 18356.4, + "probability": 0.9044 + }, + { + "start": 18357.08, + "end": 18358.06, + "probability": 0.9956 + }, + { + "start": 18359.16, + "end": 18359.26, + "probability": 0.8875 + }, + { + "start": 18359.36, + "end": 18362.1, + "probability": 0.9965 + }, + { + "start": 18362.22, + "end": 18363.78, + "probability": 0.8574 + }, + { + "start": 18364.18, + "end": 18365.43, + "probability": 0.9409 + }, + { + "start": 18367.0, + "end": 18370.5, + "probability": 0.9939 + }, + { + "start": 18370.94, + "end": 18373.18, + "probability": 0.957 + }, + { + "start": 18373.28, + "end": 18377.82, + "probability": 0.999 + }, + { + "start": 18378.16, + "end": 18378.7, + "probability": 0.8047 + }, + { + "start": 18379.42, + "end": 18380.67, + "probability": 0.9951 + }, + { + "start": 18381.04, + "end": 18382.78, + "probability": 0.8466 + }, + { + "start": 18383.24, + "end": 18384.58, + "probability": 0.9951 + }, + { + "start": 18385.64, + "end": 18386.08, + "probability": 0.8461 + }, + { + "start": 18386.54, + "end": 18387.88, + "probability": 0.8402 + }, + { + "start": 18392.5, + "end": 18392.72, + "probability": 0.7948 + }, + { + "start": 18392.78, + "end": 18393.86, + "probability": 0.9526 + }, + { + "start": 18393.86, + "end": 18395.46, + "probability": 0.8704 + }, + { + "start": 18396.04, + "end": 18398.74, + "probability": 0.6417 + }, + { + "start": 18401.36, + "end": 18401.36, + "probability": 0.0077 + }, + { + "start": 18401.36, + "end": 18401.58, + "probability": 0.6475 + }, + { + "start": 18401.78, + "end": 18403.86, + "probability": 0.9102 + }, + { + "start": 18404.12, + "end": 18405.34, + "probability": 0.3467 + }, + { + "start": 18405.92, + "end": 18406.76, + "probability": 0.3695 + }, + { + "start": 18406.88, + "end": 18407.82, + "probability": 0.0964 + }, + { + "start": 18407.82, + "end": 18408.5, + "probability": 0.3984 + }, + { + "start": 18408.52, + "end": 18410.54, + "probability": 0.3311 + }, + { + "start": 18411.4, + "end": 18413.9, + "probability": 0.0009 + }, + { + "start": 18414.48, + "end": 18420.2, + "probability": 0.2057 + }, + { + "start": 18420.2, + "end": 18420.83, + "probability": 0.1543 + }, + { + "start": 18421.32, + "end": 18422.46, + "probability": 0.4108 + }, + { + "start": 18422.46, + "end": 18424.28, + "probability": 0.1747 + }, + { + "start": 18425.58, + "end": 18427.7, + "probability": 0.0982 + }, + { + "start": 18428.82, + "end": 18431.38, + "probability": 0.253 + }, + { + "start": 18431.38, + "end": 18433.38, + "probability": 0.314 + }, + { + "start": 18433.58, + "end": 18433.9, + "probability": 0.0782 + }, + { + "start": 18433.9, + "end": 18434.22, + "probability": 0.2386 + }, + { + "start": 18434.5, + "end": 18436.52, + "probability": 0.1054 + }, + { + "start": 18438.54, + "end": 18438.56, + "probability": 0.0357 + }, + { + "start": 18438.56, + "end": 18438.56, + "probability": 0.1736 + }, + { + "start": 18438.56, + "end": 18438.56, + "probability": 0.2863 + }, + { + "start": 18438.56, + "end": 18440.38, + "probability": 0.2715 + }, + { + "start": 18442.72, + "end": 18449.71, + "probability": 0.9675 + }, + { + "start": 18450.44, + "end": 18451.4, + "probability": 0.8596 + }, + { + "start": 18451.44, + "end": 18452.44, + "probability": 0.9326 + }, + { + "start": 18452.48, + "end": 18453.34, + "probability": 0.582 + }, + { + "start": 18453.5, + "end": 18454.62, + "probability": 0.1279 + }, + { + "start": 18454.82, + "end": 18455.82, + "probability": 0.9546 + }, + { + "start": 18455.88, + "end": 18456.98, + "probability": 0.9739 + }, + { + "start": 18457.02, + "end": 18461.12, + "probability": 0.8448 + }, + { + "start": 18463.38, + "end": 18465.34, + "probability": 0.9805 + }, + { + "start": 18467.16, + "end": 18470.24, + "probability": 0.7555 + }, + { + "start": 18470.38, + "end": 18473.8, + "probability": 0.9128 + }, + { + "start": 18473.86, + "end": 18478.32, + "probability": 0.9631 + }, + { + "start": 18478.32, + "end": 18482.44, + "probability": 0.9092 + }, + { + "start": 18483.38, + "end": 18485.3, + "probability": 0.7706 + }, + { + "start": 18488.12, + "end": 18490.02, + "probability": 0.7827 + }, + { + "start": 18490.8, + "end": 18494.6, + "probability": 0.9099 + }, + { + "start": 18495.79, + "end": 18497.57, + "probability": 0.3305 + }, + { + "start": 18498.08, + "end": 18500.6, + "probability": 0.9902 + }, + { + "start": 18501.38, + "end": 18503.49, + "probability": 0.9877 + }, + { + "start": 18504.68, + "end": 18506.32, + "probability": 0.8377 + }, + { + "start": 18507.1, + "end": 18508.12, + "probability": 0.1475 + }, + { + "start": 18508.2, + "end": 18509.18, + "probability": 0.9568 + }, + { + "start": 18509.4, + "end": 18510.9, + "probability": 0.7317 + }, + { + "start": 18511.36, + "end": 18514.1, + "probability": 0.8085 + }, + { + "start": 18514.82, + "end": 18517.72, + "probability": 0.9076 + }, + { + "start": 18518.86, + "end": 18520.13, + "probability": 0.9677 + }, + { + "start": 18521.04, + "end": 18521.84, + "probability": 0.8969 + }, + { + "start": 18523.1, + "end": 18523.62, + "probability": 0.6876 + }, + { + "start": 18524.5, + "end": 18526.0, + "probability": 0.9526 + }, + { + "start": 18528.1, + "end": 18528.8, + "probability": 0.8627 + }, + { + "start": 18530.64, + "end": 18533.14, + "probability": 0.4625 + }, + { + "start": 18534.26, + "end": 18538.9, + "probability": 0.9875 + }, + { + "start": 18540.96, + "end": 18541.92, + "probability": 0.9985 + }, + { + "start": 18543.2, + "end": 18545.25, + "probability": 0.9409 + }, + { + "start": 18546.9, + "end": 18547.46, + "probability": 0.9636 + }, + { + "start": 18547.52, + "end": 18548.82, + "probability": 0.9883 + }, + { + "start": 18549.04, + "end": 18550.08, + "probability": 0.9899 + }, + { + "start": 18550.2, + "end": 18553.8, + "probability": 0.8315 + }, + { + "start": 18555.18, + "end": 18555.96, + "probability": 0.9058 + }, + { + "start": 18556.5, + "end": 18557.82, + "probability": 0.9898 + }, + { + "start": 18558.56, + "end": 18559.36, + "probability": 0.974 + }, + { + "start": 18561.38, + "end": 18561.88, + "probability": 0.709 + }, + { + "start": 18562.02, + "end": 18566.74, + "probability": 0.9888 + }, + { + "start": 18567.98, + "end": 18570.36, + "probability": 0.9476 + }, + { + "start": 18570.4, + "end": 18571.49, + "probability": 0.935 + }, + { + "start": 18572.3, + "end": 18575.0, + "probability": 0.9465 + }, + { + "start": 18575.26, + "end": 18575.72, + "probability": 0.9739 + }, + { + "start": 18576.78, + "end": 18577.7, + "probability": 0.8608 + }, + { + "start": 18578.22, + "end": 18581.64, + "probability": 0.9487 + }, + { + "start": 18582.0, + "end": 18582.96, + "probability": 0.8638 + }, + { + "start": 18583.78, + "end": 18585.52, + "probability": 0.6103 + }, + { + "start": 18586.26, + "end": 18589.94, + "probability": 0.9473 + }, + { + "start": 18590.62, + "end": 18592.4, + "probability": 0.9744 + }, + { + "start": 18593.28, + "end": 18595.14, + "probability": 0.8342 + }, + { + "start": 18595.92, + "end": 18598.52, + "probability": 0.9386 + }, + { + "start": 18599.0, + "end": 18600.46, + "probability": 0.925 + }, + { + "start": 18600.76, + "end": 18602.38, + "probability": 0.9922 + }, + { + "start": 18602.52, + "end": 18602.74, + "probability": 0.7934 + }, + { + "start": 18603.64, + "end": 18604.24, + "probability": 0.6838 + }, + { + "start": 18604.44, + "end": 18606.56, + "probability": 0.384 + }, + { + "start": 18606.7, + "end": 18608.74, + "probability": 0.5708 + }, + { + "start": 18616.84, + "end": 18616.88, + "probability": 0.1528 + }, + { + "start": 18616.88, + "end": 18616.88, + "probability": 0.3177 + }, + { + "start": 18616.88, + "end": 18616.88, + "probability": 0.0991 + }, + { + "start": 18616.88, + "end": 18616.88, + "probability": 0.0919 + }, + { + "start": 18616.88, + "end": 18616.92, + "probability": 0.0737 + }, + { + "start": 18616.92, + "end": 18616.96, + "probability": 0.0442 + }, + { + "start": 18624.8, + "end": 18625.98, + "probability": 0.1007 + }, + { + "start": 18627.2, + "end": 18628.24, + "probability": 0.003 + }, + { + "start": 18629.94, + "end": 18634.22, + "probability": 0.2637 + }, + { + "start": 18635.24, + "end": 18635.68, + "probability": 0.3357 + }, + { + "start": 18636.2, + "end": 18637.46, + "probability": 0.9938 + }, + { + "start": 18637.98, + "end": 18639.64, + "probability": 0.9845 + }, + { + "start": 18640.28, + "end": 18640.68, + "probability": 0.3437 + }, + { + "start": 18640.86, + "end": 18644.46, + "probability": 0.7607 + }, + { + "start": 18645.18, + "end": 18649.58, + "probability": 0.9396 + }, + { + "start": 18650.24, + "end": 18652.08, + "probability": 0.9934 + }, + { + "start": 18652.78, + "end": 18655.9, + "probability": 0.9023 + }, + { + "start": 18656.42, + "end": 18659.2, + "probability": 0.9257 + }, + { + "start": 18659.62, + "end": 18662.68, + "probability": 0.9759 + }, + { + "start": 18662.68, + "end": 18666.42, + "probability": 0.7985 + }, + { + "start": 18666.9, + "end": 18669.62, + "probability": 0.8826 + }, + { + "start": 18670.2, + "end": 18671.46, + "probability": 0.7541 + }, + { + "start": 18671.88, + "end": 18673.66, + "probability": 0.9886 + }, + { + "start": 18674.22, + "end": 18676.98, + "probability": 0.6584 + }, + { + "start": 18677.44, + "end": 18678.86, + "probability": 0.8818 + }, + { + "start": 18679.94, + "end": 18680.96, + "probability": 0.9256 + }, + { + "start": 18681.54, + "end": 18684.42, + "probability": 0.9709 + }, + { + "start": 18684.88, + "end": 18685.29, + "probability": 0.7981 + }, + { + "start": 18687.2, + "end": 18687.7, + "probability": 0.555 + }, + { + "start": 18687.82, + "end": 18690.58, + "probability": 0.9209 + }, + { + "start": 18690.6, + "end": 18692.54, + "probability": 0.74 + }, + { + "start": 18693.1, + "end": 18694.5, + "probability": 0.8669 + }, + { + "start": 18694.54, + "end": 18695.72, + "probability": 0.8302 + }, + { + "start": 18696.16, + "end": 18698.8, + "probability": 0.9229 + }, + { + "start": 18699.28, + "end": 18699.84, + "probability": 0.756 + }, + { + "start": 18699.9, + "end": 18701.75, + "probability": 0.9916 + }, + { + "start": 18701.86, + "end": 18704.54, + "probability": 0.9868 + }, + { + "start": 18705.1, + "end": 18707.26, + "probability": 0.8079 + }, + { + "start": 18707.94, + "end": 18710.72, + "probability": 0.9138 + }, + { + "start": 18711.44, + "end": 18712.4, + "probability": 0.5095 + }, + { + "start": 18712.96, + "end": 18714.84, + "probability": 0.7884 + }, + { + "start": 18715.42, + "end": 18718.94, + "probability": 0.9839 + }, + { + "start": 18721.04, + "end": 18722.94, + "probability": 0.8205 + }, + { + "start": 18723.46, + "end": 18726.7, + "probability": 0.9662 + }, + { + "start": 18727.02, + "end": 18730.1, + "probability": 0.8877 + }, + { + "start": 18730.1, + "end": 18732.46, + "probability": 0.9573 + }, + { + "start": 18733.0, + "end": 18733.12, + "probability": 0.232 + }, + { + "start": 18733.3, + "end": 18737.46, + "probability": 0.9744 + }, + { + "start": 18737.46, + "end": 18743.62, + "probability": 0.9633 + }, + { + "start": 18743.88, + "end": 18747.22, + "probability": 0.9581 + }, + { + "start": 18747.76, + "end": 18750.24, + "probability": 0.757 + }, + { + "start": 18750.3, + "end": 18754.76, + "probability": 0.6686 + }, + { + "start": 18756.42, + "end": 18759.44, + "probability": 0.9985 + }, + { + "start": 18759.94, + "end": 18762.8, + "probability": 0.9948 + }, + { + "start": 18763.34, + "end": 18764.68, + "probability": 0.9419 + }, + { + "start": 18765.1, + "end": 18767.62, + "probability": 0.8527 + }, + { + "start": 18767.98, + "end": 18769.74, + "probability": 0.8916 + }, + { + "start": 18770.22, + "end": 18772.42, + "probability": 0.9687 + }, + { + "start": 18772.98, + "end": 18774.2, + "probability": 0.8766 + }, + { + "start": 18774.36, + "end": 18778.28, + "probability": 0.9637 + }, + { + "start": 18778.62, + "end": 18780.94, + "probability": 0.9264 + }, + { + "start": 18781.44, + "end": 18783.26, + "probability": 0.9974 + }, + { + "start": 18783.7, + "end": 18784.8, + "probability": 0.999 + }, + { + "start": 18785.44, + "end": 18786.28, + "probability": 0.9756 + }, + { + "start": 18786.98, + "end": 18787.26, + "probability": 0.7508 + }, + { + "start": 18788.6, + "end": 18789.16, + "probability": 0.7058 + }, + { + "start": 18789.38, + "end": 18790.24, + "probability": 0.8939 + }, + { + "start": 18802.1, + "end": 18802.3, + "probability": 0.511 + }, + { + "start": 18802.3, + "end": 18803.54, + "probability": 0.6477 + }, + { + "start": 18804.32, + "end": 18806.27, + "probability": 0.9102 + }, + { + "start": 18808.62, + "end": 18809.72, + "probability": 0.8858 + }, + { + "start": 18810.24, + "end": 18813.02, + "probability": 0.9673 + }, + { + "start": 18813.72, + "end": 18815.14, + "probability": 0.5587 + }, + { + "start": 18816.06, + "end": 18817.74, + "probability": 0.9811 + }, + { + "start": 18817.8, + "end": 18820.48, + "probability": 0.9432 + }, + { + "start": 18821.4, + "end": 18823.28, + "probability": 0.9628 + }, + { + "start": 18824.14, + "end": 18825.26, + "probability": 0.6258 + }, + { + "start": 18826.38, + "end": 18828.64, + "probability": 0.9656 + }, + { + "start": 18829.4, + "end": 18835.56, + "probability": 0.9902 + }, + { + "start": 18836.06, + "end": 18837.12, + "probability": 0.9951 + }, + { + "start": 18838.46, + "end": 18839.64, + "probability": 0.6076 + }, + { + "start": 18840.04, + "end": 18841.21, + "probability": 0.9219 + }, + { + "start": 18842.52, + "end": 18845.02, + "probability": 0.9007 + }, + { + "start": 18846.24, + "end": 18847.94, + "probability": 0.9431 + }, + { + "start": 18848.42, + "end": 18852.56, + "probability": 0.9861 + }, + { + "start": 18853.04, + "end": 18858.06, + "probability": 0.9957 + }, + { + "start": 18858.06, + "end": 18863.04, + "probability": 0.6656 + }, + { + "start": 18864.14, + "end": 18867.52, + "probability": 0.5904 + }, + { + "start": 18869.16, + "end": 18871.66, + "probability": 0.89 + }, + { + "start": 18872.92, + "end": 18874.07, + "probability": 0.7512 + }, + { + "start": 18874.86, + "end": 18876.18, + "probability": 0.0335 + }, + { + "start": 18876.4, + "end": 18877.74, + "probability": 0.5528 + }, + { + "start": 18878.14, + "end": 18879.33, + "probability": 0.9814 + }, + { + "start": 18882.06, + "end": 18883.78, + "probability": 0.9536 + }, + { + "start": 18884.36, + "end": 18887.64, + "probability": 0.9811 + }, + { + "start": 18889.2, + "end": 18893.12, + "probability": 0.9697 + }, + { + "start": 18894.46, + "end": 18896.16, + "probability": 0.9828 + }, + { + "start": 18898.02, + "end": 18899.54, + "probability": 0.74 + }, + { + "start": 18900.98, + "end": 18902.18, + "probability": 0.8588 + }, + { + "start": 18907.7, + "end": 18908.5, + "probability": 0.9578 + }, + { + "start": 18909.64, + "end": 18910.14, + "probability": 0.4747 + }, + { + "start": 18910.42, + "end": 18913.2, + "probability": 0.9935 + }, + { + "start": 18914.28, + "end": 18920.73, + "probability": 0.9967 + }, + { + "start": 18924.08, + "end": 18924.84, + "probability": 0.9272 + }, + { + "start": 18927.4, + "end": 18928.14, + "probability": 0.6519 + }, + { + "start": 18930.54, + "end": 18934.02, + "probability": 0.886 + }, + { + "start": 18938.14, + "end": 18940.56, + "probability": 0.9966 + }, + { + "start": 18942.38, + "end": 18945.42, + "probability": 0.9401 + }, + { + "start": 18945.5, + "end": 18947.28, + "probability": 0.9626 + }, + { + "start": 18947.76, + "end": 18951.64, + "probability": 0.9739 + }, + { + "start": 18953.6, + "end": 18955.34, + "probability": 0.5712 + }, + { + "start": 18955.42, + "end": 18955.98, + "probability": 0.5459 + }, + { + "start": 18956.1, + "end": 18958.26, + "probability": 0.799 + }, + { + "start": 18959.74, + "end": 18961.38, + "probability": 0.8403 + }, + { + "start": 18961.5, + "end": 18965.62, + "probability": 0.9971 + }, + { + "start": 18966.66, + "end": 18969.54, + "probability": 0.9253 + }, + { + "start": 18970.86, + "end": 18971.74, + "probability": 0.9314 + }, + { + "start": 18972.0, + "end": 18975.28, + "probability": 0.9896 + }, + { + "start": 18976.44, + "end": 18978.38, + "probability": 0.9631 + }, + { + "start": 18979.72, + "end": 18982.12, + "probability": 0.6988 + }, + { + "start": 18982.32, + "end": 18983.66, + "probability": 0.7723 + }, + { + "start": 18984.1, + "end": 18984.6, + "probability": 0.7336 + }, + { + "start": 18984.9, + "end": 18989.24, + "probability": 0.9939 + }, + { + "start": 18990.82, + "end": 18990.92, + "probability": 0.3999 + }, + { + "start": 18991.38, + "end": 18991.8, + "probability": 0.6453 + }, + { + "start": 18991.84, + "end": 18992.98, + "probability": 0.4022 + }, + { + "start": 18993.08, + "end": 18993.44, + "probability": 0.267 + }, + { + "start": 18993.56, + "end": 18994.92, + "probability": 0.974 + }, + { + "start": 18995.02, + "end": 18996.98, + "probability": 0.3439 + }, + { + "start": 18996.98, + "end": 18998.48, + "probability": 0.7551 + }, + { + "start": 19016.94, + "end": 19017.5, + "probability": 0.652 + }, + { + "start": 19017.68, + "end": 19018.58, + "probability": 0.7527 + }, + { + "start": 19019.12, + "end": 19022.32, + "probability": 0.693 + }, + { + "start": 19023.5, + "end": 19025.64, + "probability": 0.6697 + }, + { + "start": 19025.7, + "end": 19027.62, + "probability": 0.9851 + }, + { + "start": 19027.92, + "end": 19029.14, + "probability": 0.9801 + }, + { + "start": 19030.12, + "end": 19032.36, + "probability": 0.9832 + }, + { + "start": 19032.44, + "end": 19033.41, + "probability": 0.8931 + }, + { + "start": 19034.04, + "end": 19034.6, + "probability": 0.196 + }, + { + "start": 19035.36, + "end": 19035.68, + "probability": 0.3849 + }, + { + "start": 19035.84, + "end": 19037.08, + "probability": 0.8568 + }, + { + "start": 19037.84, + "end": 19042.6, + "probability": 0.9846 + }, + { + "start": 19042.6, + "end": 19047.24, + "probability": 0.9004 + }, + { + "start": 19048.9, + "end": 19050.94, + "probability": 0.9079 + }, + { + "start": 19051.42, + "end": 19055.32, + "probability": 0.7828 + }, + { + "start": 19055.48, + "end": 19055.86, + "probability": 0.0098 + }, + { + "start": 19056.03, + "end": 19059.1, + "probability": 0.5065 + }, + { + "start": 19059.28, + "end": 19062.96, + "probability": 0.7904 + }, + { + "start": 19063.99, + "end": 19065.75, + "probability": 0.0116 + }, + { + "start": 19065.88, + "end": 19069.82, + "probability": 0.5973 + }, + { + "start": 19070.14, + "end": 19072.98, + "probability": 0.3128 + }, + { + "start": 19073.12, + "end": 19073.68, + "probability": 0.0053 + }, + { + "start": 19073.68, + "end": 19074.28, + "probability": 0.2177 + }, + { + "start": 19074.34, + "end": 19076.2, + "probability": 0.9785 + }, + { + "start": 19076.92, + "end": 19078.37, + "probability": 0.9865 + }, + { + "start": 19080.12, + "end": 19082.29, + "probability": 0.8398 + }, + { + "start": 19082.6, + "end": 19083.1, + "probability": 0.6769 + }, + { + "start": 19083.48, + "end": 19087.86, + "probability": 0.9951 + }, + { + "start": 19087.96, + "end": 19087.98, + "probability": 0.1794 + }, + { + "start": 19087.98, + "end": 19089.58, + "probability": 0.5712 + }, + { + "start": 19090.72, + "end": 19093.88, + "probability": 0.9891 + }, + { + "start": 19094.08, + "end": 19098.9, + "probability": 0.9985 + }, + { + "start": 19098.96, + "end": 19100.28, + "probability": 0.8037 + }, + { + "start": 19100.52, + "end": 19101.7, + "probability": 0.7596 + }, + { + "start": 19102.08, + "end": 19103.42, + "probability": 0.5244 + }, + { + "start": 19104.04, + "end": 19109.18, + "probability": 0.8223 + }, + { + "start": 19109.46, + "end": 19113.1, + "probability": 0.6557 + }, + { + "start": 19113.74, + "end": 19115.66, + "probability": 0.9347 + }, + { + "start": 19116.7, + "end": 19120.68, + "probability": 0.9948 + }, + { + "start": 19120.68, + "end": 19122.78, + "probability": 0.3365 + }, + { + "start": 19123.0, + "end": 19127.16, + "probability": 0.2388 + }, + { + "start": 19127.46, + "end": 19128.8, + "probability": 0.67 + }, + { + "start": 19129.18, + "end": 19130.44, + "probability": 0.9381 + }, + { + "start": 19130.96, + "end": 19135.04, + "probability": 0.2109 + }, + { + "start": 19135.78, + "end": 19138.22, + "probability": 0.5647 + }, + { + "start": 19138.82, + "end": 19140.38, + "probability": 0.2491 + }, + { + "start": 19144.12, + "end": 19147.8, + "probability": 0.5084 + }, + { + "start": 19148.46, + "end": 19149.88, + "probability": 0.146 + }, + { + "start": 19150.02, + "end": 19152.19, + "probability": 0.5945 + }, + { + "start": 19152.7, + "end": 19155.2, + "probability": 0.5583 + }, + { + "start": 19155.2, + "end": 19157.38, + "probability": 0.6159 + }, + { + "start": 19157.44, + "end": 19157.44, + "probability": 0.2977 + }, + { + "start": 19158.0, + "end": 19160.52, + "probability": 0.7673 + }, + { + "start": 19161.26, + "end": 19163.06, + "probability": 0.546 + }, + { + "start": 19163.52, + "end": 19165.32, + "probability": 0.7058 + }, + { + "start": 19165.88, + "end": 19168.44, + "probability": 0.073 + }, + { + "start": 19168.44, + "end": 19169.18, + "probability": 0.3135 + }, + { + "start": 19169.26, + "end": 19170.5, + "probability": 0.2382 + }, + { + "start": 19174.38, + "end": 19175.36, + "probability": 0.0919 + }, + { + "start": 19175.62, + "end": 19177.5, + "probability": 0.2425 + }, + { + "start": 19177.66, + "end": 19179.24, + "probability": 0.7712 + }, + { + "start": 19179.36, + "end": 19180.76, + "probability": 0.8348 + }, + { + "start": 19180.76, + "end": 19181.25, + "probability": 0.2838 + }, + { + "start": 19181.81, + "end": 19183.85, + "probability": 0.9252 + }, + { + "start": 19184.36, + "end": 19186.08, + "probability": 0.7632 + }, + { + "start": 19186.78, + "end": 19186.82, + "probability": 0.1259 + }, + { + "start": 19186.82, + "end": 19187.86, + "probability": 0.4466 + }, + { + "start": 19188.14, + "end": 19188.7, + "probability": 0.9022 + }, + { + "start": 19189.68, + "end": 19191.64, + "probability": 0.6387 + }, + { + "start": 19191.86, + "end": 19194.8, + "probability": 0.6027 + }, + { + "start": 19194.8, + "end": 19195.3, + "probability": 0.6034 + }, + { + "start": 19195.38, + "end": 19195.92, + "probability": 0.4187 + }, + { + "start": 19195.92, + "end": 19196.63, + "probability": 0.1804 + }, + { + "start": 19197.12, + "end": 19198.58, + "probability": 0.0537 + }, + { + "start": 19198.74, + "end": 19199.8, + "probability": 0.4879 + }, + { + "start": 19199.8, + "end": 19201.14, + "probability": 0.4448 + }, + { + "start": 19201.14, + "end": 19202.02, + "probability": 0.5745 + }, + { + "start": 19202.08, + "end": 19203.44, + "probability": 0.2288 + }, + { + "start": 19203.7, + "end": 19204.52, + "probability": 0.2466 + }, + { + "start": 19204.52, + "end": 19205.6, + "probability": 0.3087 + }, + { + "start": 19205.64, + "end": 19207.44, + "probability": 0.5604 + }, + { + "start": 19207.54, + "end": 19209.02, + "probability": 0.0143 + }, + { + "start": 19209.02, + "end": 19209.66, + "probability": 0.0595 + }, + { + "start": 19209.66, + "end": 19210.52, + "probability": 0.1863 + }, + { + "start": 19211.38, + "end": 19211.76, + "probability": 0.4585 + }, + { + "start": 19211.92, + "end": 19213.8, + "probability": 0.6403 + }, + { + "start": 19213.88, + "end": 19216.02, + "probability": 0.4753 + }, + { + "start": 19216.1, + "end": 19218.6, + "probability": 0.8048 + }, + { + "start": 19218.82, + "end": 19219.48, + "probability": 0.7737 + }, + { + "start": 19219.88, + "end": 19220.98, + "probability": 0.2215 + }, + { + "start": 19221.43, + "end": 19223.08, + "probability": 0.8882 + }, + { + "start": 19224.52, + "end": 19227.73, + "probability": 0.9375 + }, + { + "start": 19228.68, + "end": 19229.18, + "probability": 0.5933 + }, + { + "start": 19229.28, + "end": 19231.76, + "probability": 0.9825 + }, + { + "start": 19232.28, + "end": 19233.78, + "probability": 0.9083 + }, + { + "start": 19234.0, + "end": 19236.82, + "probability": 0.9604 + }, + { + "start": 19237.24, + "end": 19237.64, + "probability": 0.7251 + }, + { + "start": 19238.78, + "end": 19239.48, + "probability": 0.8606 + }, + { + "start": 19240.2, + "end": 19241.6, + "probability": 0.5285 + }, + { + "start": 19241.66, + "end": 19243.4, + "probability": 0.8835 + }, + { + "start": 19243.46, + "end": 19243.76, + "probability": 0.5679 + }, + { + "start": 19243.94, + "end": 19244.88, + "probability": 0.998 + }, + { + "start": 19244.88, + "end": 19246.16, + "probability": 0.4341 + }, + { + "start": 19246.16, + "end": 19247.36, + "probability": 0.7439 + }, + { + "start": 19247.8, + "end": 19250.7, + "probability": 0.6959 + }, + { + "start": 19250.88, + "end": 19250.88, + "probability": 0.7045 + }, + { + "start": 19250.88, + "end": 19252.04, + "probability": 0.7166 + }, + { + "start": 19252.22, + "end": 19254.88, + "probability": 0.4605 + }, + { + "start": 19254.88, + "end": 19256.18, + "probability": 0.2173 + }, + { + "start": 19256.18, + "end": 19256.28, + "probability": 0.745 + }, + { + "start": 19256.88, + "end": 19261.0, + "probability": 0.9028 + }, + { + "start": 19261.14, + "end": 19262.5, + "probability": 0.9836 + }, + { + "start": 19263.04, + "end": 19264.32, + "probability": 0.9894 + }, + { + "start": 19264.47, + "end": 19265.12, + "probability": 0.0288 + }, + { + "start": 19265.12, + "end": 19265.62, + "probability": 0.0594 + }, + { + "start": 19265.86, + "end": 19266.63, + "probability": 0.7711 + }, + { + "start": 19267.62, + "end": 19268.66, + "probability": 0.1499 + }, + { + "start": 19270.16, + "end": 19271.26, + "probability": 0.4166 + }, + { + "start": 19271.36, + "end": 19272.74, + "probability": 0.1655 + }, + { + "start": 19272.8, + "end": 19276.18, + "probability": 0.3271 + }, + { + "start": 19276.24, + "end": 19277.44, + "probability": 0.837 + }, + { + "start": 19278.04, + "end": 19280.3, + "probability": 0.7179 + }, + { + "start": 19280.3, + "end": 19280.88, + "probability": 0.7759 + }, + { + "start": 19280.94, + "end": 19281.7, + "probability": 0.9351 + }, + { + "start": 19281.78, + "end": 19282.32, + "probability": 0.9056 + }, + { + "start": 19282.92, + "end": 19286.16, + "probability": 0.9903 + }, + { + "start": 19286.16, + "end": 19290.56, + "probability": 0.9945 + }, + { + "start": 19290.98, + "end": 19293.1, + "probability": 0.7354 + }, + { + "start": 19293.34, + "end": 19295.9, + "probability": 0.6573 + }, + { + "start": 19296.04, + "end": 19296.98, + "probability": 0.9231 + }, + { + "start": 19297.2, + "end": 19297.88, + "probability": 0.926 + }, + { + "start": 19298.42, + "end": 19300.04, + "probability": 0.9991 + }, + { + "start": 19300.16, + "end": 19300.74, + "probability": 0.9711 + }, + { + "start": 19300.8, + "end": 19301.3, + "probability": 0.7195 + }, + { + "start": 19301.36, + "end": 19302.25, + "probability": 0.9971 + }, + { + "start": 19302.5, + "end": 19303.34, + "probability": 0.4925 + }, + { + "start": 19303.9, + "end": 19306.02, + "probability": 0.9946 + }, + { + "start": 19307.1, + "end": 19310.64, + "probability": 0.9398 + }, + { + "start": 19311.0, + "end": 19312.28, + "probability": 0.9901 + }, + { + "start": 19312.34, + "end": 19313.15, + "probability": 0.8081 + }, + { + "start": 19313.64, + "end": 19314.92, + "probability": 0.9946 + }, + { + "start": 19315.36, + "end": 19317.68, + "probability": 0.9834 + }, + { + "start": 19317.86, + "end": 19322.1, + "probability": 0.995 + }, + { + "start": 19322.26, + "end": 19323.08, + "probability": 0.5681 + }, + { + "start": 19323.58, + "end": 19325.1, + "probability": 0.9605 + }, + { + "start": 19325.92, + "end": 19327.62, + "probability": 0.5664 + }, + { + "start": 19328.14, + "end": 19328.78, + "probability": 0.6241 + }, + { + "start": 19328.78, + "end": 19330.0, + "probability": 0.6261 + }, + { + "start": 19330.6, + "end": 19331.16, + "probability": 0.3568 + }, + { + "start": 19331.26, + "end": 19332.82, + "probability": 0.949 + }, + { + "start": 19333.32, + "end": 19336.06, + "probability": 0.2301 + }, + { + "start": 19336.06, + "end": 19337.0, + "probability": 0.0277 + }, + { + "start": 19337.22, + "end": 19339.68, + "probability": 0.0533 + }, + { + "start": 19348.32, + "end": 19350.18, + "probability": 0.1522 + }, + { + "start": 19351.78, + "end": 19354.38, + "probability": 0.6812 + }, + { + "start": 19355.08, + "end": 19356.32, + "probability": 0.822 + }, + { + "start": 19357.2, + "end": 19362.02, + "probability": 0.9673 + }, + { + "start": 19362.26, + "end": 19364.34, + "probability": 0.6086 + }, + { + "start": 19364.92, + "end": 19368.28, + "probability": 0.9984 + }, + { + "start": 19368.82, + "end": 19369.42, + "probability": 0.1547 + }, + { + "start": 19370.2, + "end": 19372.21, + "probability": 0.9847 + }, + { + "start": 19372.86, + "end": 19375.58, + "probability": 0.3249 + }, + { + "start": 19375.58, + "end": 19380.07, + "probability": 0.7757 + }, + { + "start": 19380.26, + "end": 19381.28, + "probability": 0.0645 + }, + { + "start": 19381.44, + "end": 19383.08, + "probability": 0.9562 + }, + { + "start": 19383.8, + "end": 19384.44, + "probability": 0.8473 + }, + { + "start": 19385.1, + "end": 19385.92, + "probability": 0.9364 + }, + { + "start": 19386.32, + "end": 19390.7, + "probability": 0.9564 + }, + { + "start": 19390.76, + "end": 19393.18, + "probability": 0.9491 + }, + { + "start": 19394.84, + "end": 19397.6, + "probability": 0.6673 + }, + { + "start": 19398.08, + "end": 19398.78, + "probability": 0.9341 + }, + { + "start": 19399.74, + "end": 19401.78, + "probability": 0.2066 + }, + { + "start": 19403.96, + "end": 19404.86, + "probability": 0.2949 + }, + { + "start": 19405.6, + "end": 19405.6, + "probability": 0.0128 + }, + { + "start": 19405.6, + "end": 19405.6, + "probability": 0.0209 + }, + { + "start": 19405.6, + "end": 19406.68, + "probability": 0.8591 + }, + { + "start": 19407.56, + "end": 19408.88, + "probability": 0.9583 + }, + { + "start": 19409.52, + "end": 19412.56, + "probability": 0.686 + }, + { + "start": 19412.94, + "end": 19413.74, + "probability": 0.4927 + }, + { + "start": 19414.58, + "end": 19415.42, + "probability": 0.8218 + }, + { + "start": 19415.54, + "end": 19418.02, + "probability": 0.6934 + }, + { + "start": 19418.52, + "end": 19420.5, + "probability": 0.9536 + }, + { + "start": 19420.74, + "end": 19422.2, + "probability": 0.9857 + }, + { + "start": 19422.3, + "end": 19422.4, + "probability": 0.8372 + }, + { + "start": 19422.54, + "end": 19423.82, + "probability": 0.7196 + }, + { + "start": 19424.5, + "end": 19426.3, + "probability": 0.7558 + }, + { + "start": 19426.67, + "end": 19428.63, + "probability": 0.96 + }, + { + "start": 19428.96, + "end": 19432.72, + "probability": 0.9883 + }, + { + "start": 19433.16, + "end": 19437.5, + "probability": 0.8669 + }, + { + "start": 19438.18, + "end": 19440.5, + "probability": 0.9672 + }, + { + "start": 19441.12, + "end": 19444.68, + "probability": 0.7123 + }, + { + "start": 19444.74, + "end": 19449.18, + "probability": 0.9815 + }, + { + "start": 19450.16, + "end": 19450.28, + "probability": 0.0823 + }, + { + "start": 19451.06, + "end": 19453.7, + "probability": 0.0381 + }, + { + "start": 19454.5, + "end": 19454.86, + "probability": 0.2749 + }, + { + "start": 19454.86, + "end": 19461.87, + "probability": 0.8486 + }, + { + "start": 19462.12, + "end": 19465.94, + "probability": 0.7341 + }, + { + "start": 19466.32, + "end": 19470.72, + "probability": 0.9785 + }, + { + "start": 19471.6, + "end": 19473.18, + "probability": 0.9079 + }, + { + "start": 19473.36, + "end": 19474.26, + "probability": 0.5349 + }, + { + "start": 19474.6, + "end": 19475.38, + "probability": 0.7718 + }, + { + "start": 19475.92, + "end": 19476.62, + "probability": 0.0421 + }, + { + "start": 19476.7, + "end": 19483.18, + "probability": 0.0557 + }, + { + "start": 19483.28, + "end": 19484.64, + "probability": 0.0578 + }, + { + "start": 19484.8, + "end": 19492.64, + "probability": 0.5936 + }, + { + "start": 19492.64, + "end": 19498.82, + "probability": 0.8486 + }, + { + "start": 19498.94, + "end": 19499.26, + "probability": 0.4055 + }, + { + "start": 19499.74, + "end": 19500.46, + "probability": 0.533 + }, + { + "start": 19500.8, + "end": 19501.16, + "probability": 0.9548 + }, + { + "start": 19501.24, + "end": 19503.67, + "probability": 0.6951 + }, + { + "start": 19504.0, + "end": 19508.12, + "probability": 0.9908 + }, + { + "start": 19508.7, + "end": 19508.78, + "probability": 0.0471 + }, + { + "start": 19509.8, + "end": 19511.38, + "probability": 0.3343 + }, + { + "start": 19512.0, + "end": 19512.98, + "probability": 0.058 + }, + { + "start": 19513.12, + "end": 19513.84, + "probability": 0.3298 + }, + { + "start": 19513.92, + "end": 19515.74, + "probability": 0.0682 + }, + { + "start": 19516.32, + "end": 19517.99, + "probability": 0.0706 + }, + { + "start": 19518.92, + "end": 19520.26, + "probability": 0.3413 + }, + { + "start": 19520.62, + "end": 19521.32, + "probability": 0.8017 + }, + { + "start": 19521.5, + "end": 19523.92, + "probability": 0.4184 + }, + { + "start": 19524.34, + "end": 19527.94, + "probability": 0.7952 + }, + { + "start": 19528.4, + "end": 19534.14, + "probability": 0.9734 + }, + { + "start": 19534.88, + "end": 19541.32, + "probability": 0.9169 + }, + { + "start": 19542.32, + "end": 19542.32, + "probability": 0.221 + }, + { + "start": 19542.32, + "end": 19545.28, + "probability": 0.9514 + }, + { + "start": 19545.28, + "end": 19549.26, + "probability": 0.8481 + }, + { + "start": 19549.34, + "end": 19552.56, + "probability": 0.9636 + }, + { + "start": 19552.6, + "end": 19555.8, + "probability": 0.9816 + }, + { + "start": 19555.8, + "end": 19559.38, + "probability": 0.9913 + }, + { + "start": 19559.9, + "end": 19562.42, + "probability": 0.6976 + }, + { + "start": 19562.42, + "end": 19562.42, + "probability": 0.3921 + }, + { + "start": 19562.42, + "end": 19562.42, + "probability": 0.3173 + }, + { + "start": 19562.42, + "end": 19563.84, + "probability": 0.8156 + }, + { + "start": 19563.88, + "end": 19565.3, + "probability": 0.949 + }, + { + "start": 19565.72, + "end": 19566.2, + "probability": 0.4712 + }, + { + "start": 19566.24, + "end": 19566.8, + "probability": 0.8059 + }, + { + "start": 19566.82, + "end": 19567.6, + "probability": 0.7856 + }, + { + "start": 19567.82, + "end": 19568.94, + "probability": 0.9237 + }, + { + "start": 19569.06, + "end": 19569.48, + "probability": 0.6597 + }, + { + "start": 19569.6, + "end": 19570.36, + "probability": 0.9805 + }, + { + "start": 19570.46, + "end": 19571.02, + "probability": 0.9162 + }, + { + "start": 19571.56, + "end": 19573.24, + "probability": 0.8896 + }, + { + "start": 19573.56, + "end": 19576.76, + "probability": 0.6973 + }, + { + "start": 19592.58, + "end": 19594.22, + "probability": 0.7424 + }, + { + "start": 19594.54, + "end": 19597.06, + "probability": 0.6132 + }, + { + "start": 19597.86, + "end": 19598.98, + "probability": 0.917 + }, + { + "start": 19599.14, + "end": 19600.74, + "probability": 0.9156 + }, + { + "start": 19601.24, + "end": 19601.48, + "probability": 0.9167 + }, + { + "start": 19601.58, + "end": 19601.84, + "probability": 0.8707 + }, + { + "start": 19601.88, + "end": 19603.28, + "probability": 0.9779 + }, + { + "start": 19603.38, + "end": 19606.4, + "probability": 0.9927 + }, + { + "start": 19606.96, + "end": 19609.3, + "probability": 0.9893 + }, + { + "start": 19609.3, + "end": 19611.62, + "probability": 0.9975 + }, + { + "start": 19612.14, + "end": 19614.45, + "probability": 0.998 + }, + { + "start": 19615.04, + "end": 19621.56, + "probability": 0.9492 + }, + { + "start": 19621.74, + "end": 19621.9, + "probability": 0.4375 + }, + { + "start": 19622.24, + "end": 19622.98, + "probability": 0.513 + }, + { + "start": 19623.2, + "end": 19627.38, + "probability": 0.8251 + }, + { + "start": 19627.78, + "end": 19630.38, + "probability": 0.9748 + }, + { + "start": 19630.94, + "end": 19633.0, + "probability": 0.6061 + }, + { + "start": 19633.0, + "end": 19634.8, + "probability": 0.6889 + }, + { + "start": 19634.82, + "end": 19636.34, + "probability": 0.683 + }, + { + "start": 19637.12, + "end": 19637.32, + "probability": 0.8361 + }, + { + "start": 19637.48, + "end": 19639.74, + "probability": 0.9819 + }, + { + "start": 19639.86, + "end": 19640.54, + "probability": 0.8044 + }, + { + "start": 19640.94, + "end": 19641.54, + "probability": 0.4331 + }, + { + "start": 19641.62, + "end": 19642.02, + "probability": 0.9449 + }, + { + "start": 19642.14, + "end": 19643.96, + "probability": 0.7925 + }, + { + "start": 19644.2, + "end": 19645.28, + "probability": 0.9169 + }, + { + "start": 19645.86, + "end": 19645.86, + "probability": 0.5927 + }, + { + "start": 19645.9, + "end": 19645.9, + "probability": 0.3975 + }, + { + "start": 19645.9, + "end": 19650.76, + "probability": 0.9385 + }, + { + "start": 19650.84, + "end": 19651.74, + "probability": 0.6667 + }, + { + "start": 19652.14, + "end": 19653.06, + "probability": 0.588 + }, + { + "start": 19653.16, + "end": 19656.88, + "probability": 0.7969 + }, + { + "start": 19657.16, + "end": 19657.92, + "probability": 0.9733 + }, + { + "start": 19658.68, + "end": 19660.82, + "probability": 0.9479 + }, + { + "start": 19661.16, + "end": 19661.16, + "probability": 0.0397 + }, + { + "start": 19661.16, + "end": 19665.38, + "probability": 0.9819 + }, + { + "start": 19666.08, + "end": 19670.04, + "probability": 0.7666 + }, + { + "start": 19670.64, + "end": 19672.66, + "probability": 0.9218 + }, + { + "start": 19673.12, + "end": 19677.06, + "probability": 0.9741 + }, + { + "start": 19677.54, + "end": 19680.68, + "probability": 0.7724 + }, + { + "start": 19680.92, + "end": 19681.82, + "probability": 0.3091 + }, + { + "start": 19682.1, + "end": 19683.76, + "probability": 0.524 + }, + { + "start": 19684.3, + "end": 19684.62, + "probability": 0.1421 + }, + { + "start": 19684.7, + "end": 19685.52, + "probability": 0.4707 + }, + { + "start": 19685.52, + "end": 19686.55, + "probability": 0.0193 + }, + { + "start": 19687.04, + "end": 19690.12, + "probability": 0.8035 + }, + { + "start": 19690.84, + "end": 19691.82, + "probability": 0.0448 + }, + { + "start": 19691.98, + "end": 19692.34, + "probability": 0.423 + }, + { + "start": 19692.54, + "end": 19697.02, + "probability": 0.8448 + }, + { + "start": 19698.38, + "end": 19698.88, + "probability": 0.7546 + }, + { + "start": 19699.48, + "end": 19702.38, + "probability": 0.957 + }, + { + "start": 19702.87, + "end": 19702.94, + "probability": 0.0317 + }, + { + "start": 19702.94, + "end": 19703.14, + "probability": 0.4711 + }, + { + "start": 19703.28, + "end": 19706.54, + "probability": 0.9399 + }, + { + "start": 19706.54, + "end": 19711.3, + "probability": 0.9232 + }, + { + "start": 19712.44, + "end": 19713.32, + "probability": 0.184 + }, + { + "start": 19713.34, + "end": 19713.48, + "probability": 0.0092 + }, + { + "start": 19713.72, + "end": 19715.66, + "probability": 0.0272 + }, + { + "start": 19715.75, + "end": 19716.35, + "probability": 0.0416 + }, + { + "start": 19716.86, + "end": 19717.8, + "probability": 0.5822 + }, + { + "start": 19718.02, + "end": 19719.4, + "probability": 0.7529 + }, + { + "start": 19720.04, + "end": 19721.7, + "probability": 0.8425 + }, + { + "start": 19721.92, + "end": 19724.08, + "probability": 0.8778 + }, + { + "start": 19724.2, + "end": 19725.84, + "probability": 0.9082 + }, + { + "start": 19726.54, + "end": 19729.72, + "probability": 0.8973 + }, + { + "start": 19729.72, + "end": 19732.36, + "probability": 0.5249 + }, + { + "start": 19732.64, + "end": 19734.46, + "probability": 0.6641 + }, + { + "start": 19734.46, + "end": 19737.74, + "probability": 0.9814 + }, + { + "start": 19738.18, + "end": 19738.58, + "probability": 0.8168 + }, + { + "start": 19738.88, + "end": 19740.16, + "probability": 0.5804 + }, + { + "start": 19740.56, + "end": 19741.76, + "probability": 0.8722 + }, + { + "start": 19742.2, + "end": 19745.54, + "probability": 0.9941 + }, + { + "start": 19745.6, + "end": 19748.48, + "probability": 0.7678 + }, + { + "start": 19748.86, + "end": 19750.6, + "probability": 0.9008 + }, + { + "start": 19750.94, + "end": 19755.5, + "probability": 0.9992 + }, + { + "start": 19755.5, + "end": 19761.3, + "probability": 0.6318 + }, + { + "start": 19761.82, + "end": 19764.6, + "probability": 0.5776 + }, + { + "start": 19764.84, + "end": 19766.28, + "probability": 0.2565 + }, + { + "start": 19766.48, + "end": 19768.06, + "probability": 0.8329 + }, + { + "start": 19768.54, + "end": 19772.92, + "probability": 0.8923 + }, + { + "start": 19772.96, + "end": 19774.16, + "probability": 0.7055 + }, + { + "start": 19774.52, + "end": 19779.4, + "probability": 0.8875 + }, + { + "start": 19779.4, + "end": 19781.96, + "probability": 0.5517 + }, + { + "start": 19782.0, + "end": 19784.92, + "probability": 0.405 + }, + { + "start": 19785.16, + "end": 19785.34, + "probability": 0.0298 + }, + { + "start": 19785.34, + "end": 19785.66, + "probability": 0.337 + }, + { + "start": 19785.7, + "end": 19787.76, + "probability": 0.6859 + }, + { + "start": 19787.84, + "end": 19789.32, + "probability": 0.7996 + }, + { + "start": 19789.98, + "end": 19792.35, + "probability": 0.2798 + }, + { + "start": 19793.0, + "end": 19794.96, + "probability": 0.3868 + }, + { + "start": 19795.78, + "end": 19796.93, + "probability": 0.6386 + }, + { + "start": 19797.34, + "end": 19798.58, + "probability": 0.4789 + }, + { + "start": 19798.58, + "end": 19800.2, + "probability": 0.1029 + }, + { + "start": 19800.32, + "end": 19802.0, + "probability": 0.5834 + }, + { + "start": 19802.46, + "end": 19804.7, + "probability": 0.8161 + }, + { + "start": 19805.68, + "end": 19806.54, + "probability": 0.0769 + }, + { + "start": 19811.54, + "end": 19812.52, + "probability": 0.004 + }, + { + "start": 19816.32, + "end": 19818.62, + "probability": 0.6071 + }, + { + "start": 19818.86, + "end": 19820.27, + "probability": 0.7978 + }, + { + "start": 19820.38, + "end": 19820.64, + "probability": 0.712 + }, + { + "start": 19821.04, + "end": 19822.74, + "probability": 0.9954 + }, + { + "start": 19823.9, + "end": 19829.07, + "probability": 0.8008 + }, + { + "start": 19829.58, + "end": 19834.16, + "probability": 0.9767 + }, + { + "start": 19834.5, + "end": 19834.8, + "probability": 0.7178 + }, + { + "start": 19836.06, + "end": 19836.58, + "probability": 0.7287 + }, + { + "start": 19836.58, + "end": 19839.4, + "probability": 0.9718 + }, + { + "start": 19840.02, + "end": 19841.14, + "probability": 0.9153 + }, + { + "start": 19841.74, + "end": 19843.22, + "probability": 0.9919 + }, + { + "start": 19846.92, + "end": 19851.82, + "probability": 0.974 + }, + { + "start": 19853.02, + "end": 19856.86, + "probability": 0.9775 + }, + { + "start": 19857.02, + "end": 19860.82, + "probability": 0.9934 + }, + { + "start": 19861.16, + "end": 19861.74, + "probability": 0.9484 + }, + { + "start": 19862.74, + "end": 19868.06, + "probability": 0.7713 + }, + { + "start": 19868.68, + "end": 19871.26, + "probability": 0.7416 + }, + { + "start": 19871.38, + "end": 19872.38, + "probability": 0.8467 + }, + { + "start": 19872.48, + "end": 19873.7, + "probability": 0.7508 + }, + { + "start": 19874.36, + "end": 19877.94, + "probability": 0.9985 + }, + { + "start": 19878.34, + "end": 19880.82, + "probability": 0.8026 + }, + { + "start": 19881.34, + "end": 19884.56, + "probability": 0.9072 + }, + { + "start": 19885.06, + "end": 19886.64, + "probability": 0.9897 + }, + { + "start": 19886.98, + "end": 19888.58, + "probability": 0.1901 + }, + { + "start": 19889.06, + "end": 19889.9, + "probability": 0.8206 + }, + { + "start": 19890.1, + "end": 19893.52, + "probability": 0.9946 + }, + { + "start": 19894.18, + "end": 19896.28, + "probability": 0.9951 + }, + { + "start": 19896.98, + "end": 19897.06, + "probability": 0.0684 + }, + { + "start": 19897.06, + "end": 19900.12, + "probability": 0.9373 + }, + { + "start": 19900.64, + "end": 19901.54, + "probability": 0.8879 + }, + { + "start": 19902.38, + "end": 19908.98, + "probability": 0.9627 + }, + { + "start": 19908.98, + "end": 19914.76, + "probability": 0.999 + }, + { + "start": 19915.28, + "end": 19916.76, + "probability": 0.8199 + }, + { + "start": 19917.16, + "end": 19918.54, + "probability": 0.4858 + }, + { + "start": 19918.6, + "end": 19919.38, + "probability": 0.8863 + }, + { + "start": 19919.44, + "end": 19920.62, + "probability": 0.9474 + }, + { + "start": 19921.06, + "end": 19923.84, + "probability": 0.9713 + }, + { + "start": 19926.3, + "end": 19928.72, + "probability": 0.9968 + }, + { + "start": 19929.22, + "end": 19931.3, + "probability": 0.925 + }, + { + "start": 19931.64, + "end": 19932.22, + "probability": 0.9282 + }, + { + "start": 19933.62, + "end": 19934.68, + "probability": 0.6632 + }, + { + "start": 19934.9, + "end": 19938.06, + "probability": 0.2596 + }, + { + "start": 19938.06, + "end": 19938.06, + "probability": 0.5679 + }, + { + "start": 19938.06, + "end": 19938.06, + "probability": 0.4487 + }, + { + "start": 19938.06, + "end": 19938.74, + "probability": 0.6423 + }, + { + "start": 19940.34, + "end": 19941.4, + "probability": 0.2729 + }, + { + "start": 19941.96, + "end": 19942.52, + "probability": 0.1955 + }, + { + "start": 19942.66, + "end": 19942.86, + "probability": 0.5165 + }, + { + "start": 19942.9, + "end": 19946.78, + "probability": 0.1224 + }, + { + "start": 19947.34, + "end": 19947.76, + "probability": 0.018 + }, + { + "start": 19951.38, + "end": 19952.92, + "probability": 0.4221 + }, + { + "start": 19953.16, + "end": 19953.18, + "probability": 0.0964 + }, + { + "start": 19953.18, + "end": 19953.64, + "probability": 0.1699 + }, + { + "start": 19953.74, + "end": 19953.76, + "probability": 0.3615 + }, + { + "start": 19953.76, + "end": 19954.0, + "probability": 0.4187 + }, + { + "start": 19954.0, + "end": 19955.84, + "probability": 0.031 + }, + { + "start": 19955.96, + "end": 19960.26, + "probability": 0.3605 + }, + { + "start": 19964.04, + "end": 19965.48, + "probability": 0.2503 + }, + { + "start": 19968.82, + "end": 19971.3, + "probability": 0.2961 + }, + { + "start": 19974.6, + "end": 19977.92, + "probability": 0.3384 + }, + { + "start": 19977.92, + "end": 19978.4, + "probability": 0.2925 + }, + { + "start": 19979.04, + "end": 19980.13, + "probability": 0.0786 + }, + { + "start": 19980.56, + "end": 19983.9, + "probability": 0.0948 + }, + { + "start": 19985.46, + "end": 19987.4, + "probability": 0.1639 + }, + { + "start": 19987.52, + "end": 19988.72, + "probability": 0.3612 + }, + { + "start": 19988.76, + "end": 19992.16, + "probability": 0.0551 + }, + { + "start": 19992.16, + "end": 19993.32, + "probability": 0.0077 + }, + { + "start": 19995.02, + "end": 19996.04, + "probability": 0.0062 + }, + { + "start": 19997.2, + "end": 19997.62, + "probability": 0.0475 + }, + { + "start": 19998.78, + "end": 20000.48, + "probability": 0.1212 + }, + { + "start": 20000.84, + "end": 20001.34, + "probability": 0.1307 + }, + { + "start": 20001.34, + "end": 20003.2, + "probability": 0.0888 + }, + { + "start": 20003.28, + "end": 20003.48, + "probability": 0.2071 + }, + { + "start": 20003.48, + "end": 20003.93, + "probability": 0.1252 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.0, + "end": 20004.0, + "probability": 0.0 + }, + { + "start": 20004.14, + "end": 20006.14, + "probability": 0.3834 + }, + { + "start": 20006.2, + "end": 20007.54, + "probability": 0.7947 + }, + { + "start": 20008.14, + "end": 20008.7, + "probability": 0.0143 + }, + { + "start": 20009.34, + "end": 20009.78, + "probability": 0.7325 + }, + { + "start": 20011.26, + "end": 20012.0, + "probability": 0.6169 + }, + { + "start": 20012.42, + "end": 20014.1, + "probability": 0.3692 + }, + { + "start": 20014.18, + "end": 20016.06, + "probability": 0.8811 + }, + { + "start": 20016.18, + "end": 20016.82, + "probability": 0.3352 + }, + { + "start": 20017.8, + "end": 20020.82, + "probability": 0.4724 + }, + { + "start": 20020.84, + "end": 20021.54, + "probability": 0.4468 + }, + { + "start": 20021.58, + "end": 20022.26, + "probability": 0.6166 + }, + { + "start": 20022.78, + "end": 20023.08, + "probability": 0.608 + }, + { + "start": 20023.14, + "end": 20026.08, + "probability": 0.8826 + }, + { + "start": 20026.08, + "end": 20029.16, + "probability": 0.3233 + }, + { + "start": 20029.68, + "end": 20032.68, + "probability": 0.5024 + }, + { + "start": 20034.06, + "end": 20036.34, + "probability": 0.4973 + }, + { + "start": 20036.72, + "end": 20038.04, + "probability": 0.2617 + }, + { + "start": 20051.74, + "end": 20057.02, + "probability": 0.1322 + }, + { + "start": 20057.28, + "end": 20059.66, + "probability": 0.4621 + }, + { + "start": 20059.8, + "end": 20061.8, + "probability": 0.2417 + }, + { + "start": 20063.16, + "end": 20066.32, + "probability": 0.8391 + }, + { + "start": 20068.32, + "end": 20069.68, + "probability": 0.1324 + }, + { + "start": 20069.68, + "end": 20071.52, + "probability": 0.0745 + }, + { + "start": 20074.88, + "end": 20077.02, + "probability": 0.023 + }, + { + "start": 20082.02, + "end": 20084.18, + "probability": 0.0671 + }, + { + "start": 20084.5, + "end": 20084.98, + "probability": 0.0735 + }, + { + "start": 20084.98, + "end": 20092.7, + "probability": 0.0892 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.0, + "end": 20126.0, + "probability": 0.0 + }, + { + "start": 20126.16, + "end": 20126.22, + "probability": 0.2048 + }, + { + "start": 20126.22, + "end": 20127.26, + "probability": 0.2203 + }, + { + "start": 20127.7, + "end": 20129.76, + "probability": 0.9862 + }, + { + "start": 20129.78, + "end": 20131.9, + "probability": 0.9937 + }, + { + "start": 20132.52, + "end": 20133.46, + "probability": 0.8356 + }, + { + "start": 20133.56, + "end": 20135.1, + "probability": 0.6371 + }, + { + "start": 20135.16, + "end": 20137.68, + "probability": 0.7202 + }, + { + "start": 20137.76, + "end": 20139.92, + "probability": 0.9937 + }, + { + "start": 20140.12, + "end": 20142.2, + "probability": 0.9899 + }, + { + "start": 20143.08, + "end": 20143.74, + "probability": 0.7893 + }, + { + "start": 20143.82, + "end": 20146.0, + "probability": 0.7426 + }, + { + "start": 20146.06, + "end": 20147.6, + "probability": 0.9133 + }, + { + "start": 20148.18, + "end": 20150.16, + "probability": 0.9527 + }, + { + "start": 20150.22, + "end": 20151.8, + "probability": 0.9424 + }, + { + "start": 20152.48, + "end": 20155.96, + "probability": 0.9728 + }, + { + "start": 20155.96, + "end": 20161.2, + "probability": 0.9962 + }, + { + "start": 20162.28, + "end": 20164.48, + "probability": 0.9788 + }, + { + "start": 20164.62, + "end": 20167.06, + "probability": 0.9974 + }, + { + "start": 20167.06, + "end": 20170.7, + "probability": 0.9993 + }, + { + "start": 20171.4, + "end": 20172.66, + "probability": 0.9801 + }, + { + "start": 20173.48, + "end": 20174.74, + "probability": 0.7399 + }, + { + "start": 20174.78, + "end": 20175.9, + "probability": 0.7885 + }, + { + "start": 20175.94, + "end": 20179.28, + "probability": 0.9764 + }, + { + "start": 20180.1, + "end": 20183.54, + "probability": 0.9161 + }, + { + "start": 20183.56, + "end": 20186.6, + "probability": 0.9677 + }, + { + "start": 20187.2, + "end": 20190.56, + "probability": 0.9852 + }, + { + "start": 20191.42, + "end": 20193.36, + "probability": 0.989 + }, + { + "start": 20193.36, + "end": 20195.49, + "probability": 0.9948 + }, + { + "start": 20196.52, + "end": 20197.8, + "probability": 0.8793 + }, + { + "start": 20198.18, + "end": 20200.42, + "probability": 0.9982 + }, + { + "start": 20200.52, + "end": 20202.36, + "probability": 0.9294 + }, + { + "start": 20202.86, + "end": 20205.36, + "probability": 0.9919 + }, + { + "start": 20205.9, + "end": 20206.16, + "probability": 0.2022 + }, + { + "start": 20206.2, + "end": 20208.06, + "probability": 0.9556 + }, + { + "start": 20208.06, + "end": 20210.08, + "probability": 0.9825 + }, + { + "start": 20210.48, + "end": 20213.56, + "probability": 0.9974 + }, + { + "start": 20213.56, + "end": 20217.5, + "probability": 0.9932 + }, + { + "start": 20218.1, + "end": 20222.22, + "probability": 0.9628 + }, + { + "start": 20222.22, + "end": 20226.06, + "probability": 0.9931 + }, + { + "start": 20226.46, + "end": 20228.02, + "probability": 0.9972 + }, + { + "start": 20228.02, + "end": 20230.82, + "probability": 0.98 + }, + { + "start": 20231.36, + "end": 20233.66, + "probability": 0.8566 + }, + { + "start": 20234.18, + "end": 20234.84, + "probability": 0.8933 + }, + { + "start": 20234.88, + "end": 20239.06, + "probability": 0.887 + }, + { + "start": 20239.12, + "end": 20240.48, + "probability": 0.9968 + }, + { + "start": 20240.6, + "end": 20241.5, + "probability": 0.9388 + }, + { + "start": 20241.94, + "end": 20243.36, + "probability": 0.9401 + }, + { + "start": 20243.84, + "end": 20244.46, + "probability": 0.7419 + }, + { + "start": 20244.5, + "end": 20248.28, + "probability": 0.7649 + }, + { + "start": 20248.82, + "end": 20251.66, + "probability": 0.9689 + }, + { + "start": 20252.26, + "end": 20254.94, + "probability": 0.9893 + }, + { + "start": 20255.1, + "end": 20256.0, + "probability": 0.8916 + }, + { + "start": 20256.96, + "end": 20260.48, + "probability": 0.7198 + }, + { + "start": 20266.26, + "end": 20270.36, + "probability": 0.9642 + }, + { + "start": 20270.76, + "end": 20271.26, + "probability": 0.5206 + }, + { + "start": 20272.45, + "end": 20277.66, + "probability": 0.7008 + }, + { + "start": 20277.94, + "end": 20278.38, + "probability": 0.4719 + }, + { + "start": 20278.44, + "end": 20279.02, + "probability": 0.7987 + }, + { + "start": 20279.1, + "end": 20280.48, + "probability": 0.5644 + }, + { + "start": 20280.62, + "end": 20281.26, + "probability": 0.8529 + }, + { + "start": 20281.76, + "end": 20282.32, + "probability": 0.3716 + }, + { + "start": 20282.46, + "end": 20285.06, + "probability": 0.4809 + }, + { + "start": 20291.62, + "end": 20293.72, + "probability": 0.684 + }, + { + "start": 20293.72, + "end": 20296.62, + "probability": 0.0539 + }, + { + "start": 20296.62, + "end": 20297.16, + "probability": 0.0223 + }, + { + "start": 20297.16, + "end": 20298.16, + "probability": 0.0766 + }, + { + "start": 20298.16, + "end": 20300.46, + "probability": 0.1219 + }, + { + "start": 20302.74, + "end": 20304.14, + "probability": 0.2858 + }, + { + "start": 20329.86, + "end": 20332.88, + "probability": 0.9946 + }, + { + "start": 20333.7, + "end": 20342.7, + "probability": 0.9984 + }, + { + "start": 20344.04, + "end": 20350.02, + "probability": 0.9698 + }, + { + "start": 20350.9, + "end": 20353.32, + "probability": 0.9618 + }, + { + "start": 20353.86, + "end": 20356.48, + "probability": 0.9329 + }, + { + "start": 20357.22, + "end": 20358.8, + "probability": 0.8984 + }, + { + "start": 20359.84, + "end": 20362.55, + "probability": 0.9639 + }, + { + "start": 20363.88, + "end": 20365.99, + "probability": 0.9985 + }, + { + "start": 20366.86, + "end": 20368.88, + "probability": 0.9911 + }, + { + "start": 20369.72, + "end": 20373.76, + "probability": 0.998 + }, + { + "start": 20374.36, + "end": 20379.7, + "probability": 0.9982 + }, + { + "start": 20380.68, + "end": 20381.62, + "probability": 0.9987 + }, + { + "start": 20382.92, + "end": 20385.16, + "probability": 0.9961 + }, + { + "start": 20385.68, + "end": 20389.59, + "probability": 0.9398 + }, + { + "start": 20390.94, + "end": 20394.01, + "probability": 0.9917 + }, + { + "start": 20396.08, + "end": 20402.46, + "probability": 0.9831 + }, + { + "start": 20403.44, + "end": 20404.4, + "probability": 0.9628 + }, + { + "start": 20406.44, + "end": 20410.08, + "probability": 0.9158 + }, + { + "start": 20410.08, + "end": 20413.52, + "probability": 0.9869 + }, + { + "start": 20414.1, + "end": 20416.58, + "probability": 0.8898 + }, + { + "start": 20416.66, + "end": 20417.03, + "probability": 0.9673 + }, + { + "start": 20419.42, + "end": 20422.26, + "probability": 0.7605 + }, + { + "start": 20422.38, + "end": 20425.08, + "probability": 0.9971 + }, + { + "start": 20426.48, + "end": 20428.38, + "probability": 0.7515 + }, + { + "start": 20429.0, + "end": 20431.74, + "probability": 0.989 + }, + { + "start": 20431.84, + "end": 20433.58, + "probability": 0.9883 + }, + { + "start": 20434.1, + "end": 20434.9, + "probability": 0.9029 + }, + { + "start": 20435.04, + "end": 20435.88, + "probability": 0.8858 + }, + { + "start": 20437.14, + "end": 20440.6, + "probability": 0.9429 + }, + { + "start": 20441.64, + "end": 20445.16, + "probability": 0.9573 + }, + { + "start": 20445.82, + "end": 20450.36, + "probability": 0.9976 + }, + { + "start": 20450.56, + "end": 20453.02, + "probability": 0.9883 + }, + { + "start": 20454.42, + "end": 20455.64, + "probability": 0.9946 + }, + { + "start": 20458.86, + "end": 20463.56, + "probability": 0.9823 + }, + { + "start": 20466.02, + "end": 20468.4, + "probability": 0.856 + }, + { + "start": 20469.16, + "end": 20470.6, + "probability": 0.9902 + }, + { + "start": 20471.06, + "end": 20474.12, + "probability": 0.8902 + }, + { + "start": 20474.96, + "end": 20475.28, + "probability": 0.912 + }, + { + "start": 20475.34, + "end": 20477.46, + "probability": 0.9985 + }, + { + "start": 20478.24, + "end": 20483.12, + "probability": 0.9916 + }, + { + "start": 20484.16, + "end": 20484.74, + "probability": 0.8442 + }, + { + "start": 20484.88, + "end": 20486.16, + "probability": 0.873 + }, + { + "start": 20486.3, + "end": 20489.12, + "probability": 0.9971 + }, + { + "start": 20490.38, + "end": 20491.94, + "probability": 0.96 + }, + { + "start": 20493.12, + "end": 20495.58, + "probability": 0.9949 + }, + { + "start": 20495.68, + "end": 20497.64, + "probability": 0.8853 + }, + { + "start": 20499.7, + "end": 20504.22, + "probability": 0.9979 + }, + { + "start": 20505.16, + "end": 20506.49, + "probability": 0.9971 + }, + { + "start": 20507.84, + "end": 20510.32, + "probability": 0.9817 + }, + { + "start": 20511.48, + "end": 20515.08, + "probability": 0.9977 + }, + { + "start": 20515.08, + "end": 20519.36, + "probability": 0.9961 + }, + { + "start": 20519.88, + "end": 20521.64, + "probability": 0.9799 + }, + { + "start": 20523.34, + "end": 20524.36, + "probability": 0.9946 + }, + { + "start": 20524.92, + "end": 20526.48, + "probability": 0.9622 + }, + { + "start": 20526.98, + "end": 20530.54, + "probability": 0.9953 + }, + { + "start": 20531.06, + "end": 20537.86, + "probability": 0.9933 + }, + { + "start": 20538.26, + "end": 20539.02, + "probability": 0.9208 + }, + { + "start": 20539.1, + "end": 20541.02, + "probability": 0.9979 + }, + { + "start": 20542.06, + "end": 20544.62, + "probability": 0.9923 + }, + { + "start": 20546.04, + "end": 20549.02, + "probability": 0.9873 + }, + { + "start": 20549.5, + "end": 20553.44, + "probability": 0.9832 + }, + { + "start": 20554.18, + "end": 20557.9, + "probability": 0.9318 + }, + { + "start": 20558.5, + "end": 20559.68, + "probability": 0.8998 + }, + { + "start": 20560.34, + "end": 20561.32, + "probability": 0.8296 + }, + { + "start": 20561.94, + "end": 20564.28, + "probability": 0.9715 + }, + { + "start": 20564.86, + "end": 20568.67, + "probability": 0.9914 + }, + { + "start": 20571.5, + "end": 20574.68, + "probability": 0.9988 + }, + { + "start": 20577.0, + "end": 20578.23, + "probability": 0.9702 + }, + { + "start": 20579.4, + "end": 20582.68, + "probability": 0.999 + }, + { + "start": 20583.7, + "end": 20585.58, + "probability": 0.9355 + }, + { + "start": 20586.26, + "end": 20588.0, + "probability": 0.8201 + }, + { + "start": 20589.3, + "end": 20589.9, + "probability": 0.5559 + }, + { + "start": 20591.22, + "end": 20593.11, + "probability": 0.5995 + }, + { + "start": 20594.38, + "end": 20596.26, + "probability": 0.9419 + }, + { + "start": 20597.2, + "end": 20599.36, + "probability": 0.9976 + }, + { + "start": 20599.72, + "end": 20602.24, + "probability": 0.9938 + }, + { + "start": 20603.16, + "end": 20609.32, + "probability": 0.964 + }, + { + "start": 20610.18, + "end": 20610.96, + "probability": 0.5189 + }, + { + "start": 20612.22, + "end": 20614.31, + "probability": 0.9958 + }, + { + "start": 20616.42, + "end": 20616.42, + "probability": 0.0959 + }, + { + "start": 20616.42, + "end": 20616.42, + "probability": 0.623 + }, + { + "start": 20616.42, + "end": 20621.36, + "probability": 0.9602 + }, + { + "start": 20622.16, + "end": 20622.5, + "probability": 0.8739 + }, + { + "start": 20623.12, + "end": 20624.44, + "probability": 0.5888 + }, + { + "start": 20642.7, + "end": 20643.16, + "probability": 0.5668 + }, + { + "start": 20643.98, + "end": 20646.34, + "probability": 0.8107 + }, + { + "start": 20647.6, + "end": 20653.18, + "probability": 0.9457 + }, + { + "start": 20654.28, + "end": 20658.78, + "probability": 0.6546 + }, + { + "start": 20659.88, + "end": 20662.5, + "probability": 0.988 + }, + { + "start": 20663.16, + "end": 20664.08, + "probability": 0.5403 + }, + { + "start": 20664.2, + "end": 20669.98, + "probability": 0.9482 + }, + { + "start": 20669.98, + "end": 20671.42, + "probability": 0.7454 + }, + { + "start": 20672.9, + "end": 20675.58, + "probability": 0.9957 + }, + { + "start": 20677.0, + "end": 20678.1, + "probability": 0.7194 + }, + { + "start": 20679.78, + "end": 20681.2, + "probability": 0.8088 + }, + { + "start": 20681.54, + "end": 20684.1, + "probability": 0.9419 + }, + { + "start": 20684.96, + "end": 20685.66, + "probability": 0.944 + }, + { + "start": 20686.8, + "end": 20688.34, + "probability": 0.8991 + }, + { + "start": 20688.98, + "end": 20689.88, + "probability": 0.8624 + }, + { + "start": 20691.28, + "end": 20693.24, + "probability": 0.9217 + }, + { + "start": 20693.36, + "end": 20695.98, + "probability": 0.9228 + }, + { + "start": 20697.04, + "end": 20702.62, + "probability": 0.9505 + }, + { + "start": 20703.84, + "end": 20705.64, + "probability": 0.9115 + }, + { + "start": 20706.74, + "end": 20707.38, + "probability": 0.8437 + }, + { + "start": 20708.4, + "end": 20708.86, + "probability": 0.714 + }, + { + "start": 20709.5, + "end": 20711.46, + "probability": 0.9443 + }, + { + "start": 20712.4, + "end": 20715.84, + "probability": 0.9949 + }, + { + "start": 20717.44, + "end": 20718.66, + "probability": 0.9783 + }, + { + "start": 20719.76, + "end": 20723.66, + "probability": 0.9584 + }, + { + "start": 20725.98, + "end": 20727.62, + "probability": 0.9972 + }, + { + "start": 20729.9, + "end": 20734.28, + "probability": 0.988 + }, + { + "start": 20734.28, + "end": 20738.48, + "probability": 0.9779 + }, + { + "start": 20741.04, + "end": 20744.51, + "probability": 0.9609 + }, + { + "start": 20745.0, + "end": 20746.54, + "probability": 0.7843 + }, + { + "start": 20746.7, + "end": 20747.94, + "probability": 0.748 + }, + { + "start": 20748.72, + "end": 20749.28, + "probability": 0.9966 + }, + { + "start": 20751.12, + "end": 20753.32, + "probability": 0.7523 + }, + { + "start": 20753.36, + "end": 20756.44, + "probability": 0.9982 + }, + { + "start": 20758.92, + "end": 20762.08, + "probability": 0.7494 + }, + { + "start": 20763.81, + "end": 20766.88, + "probability": 0.9995 + }, + { + "start": 20767.62, + "end": 20768.7, + "probability": 0.7757 + }, + { + "start": 20769.8, + "end": 20773.7, + "probability": 0.9951 + }, + { + "start": 20774.3, + "end": 20775.94, + "probability": 0.9976 + }, + { + "start": 20777.46, + "end": 20780.86, + "probability": 0.9343 + }, + { + "start": 20781.92, + "end": 20786.24, + "probability": 0.9562 + }, + { + "start": 20788.2, + "end": 20789.13, + "probability": 0.9753 + }, + { + "start": 20790.08, + "end": 20791.88, + "probability": 0.9745 + }, + { + "start": 20794.14, + "end": 20795.58, + "probability": 0.8206 + }, + { + "start": 20796.94, + "end": 20797.62, + "probability": 0.5972 + }, + { + "start": 20798.66, + "end": 20800.18, + "probability": 0.8945 + }, + { + "start": 20802.16, + "end": 20804.64, + "probability": 0.9984 + }, + { + "start": 20804.64, + "end": 20808.98, + "probability": 0.9985 + }, + { + "start": 20810.56, + "end": 20811.38, + "probability": 0.975 + }, + { + "start": 20813.86, + "end": 20815.44, + "probability": 0.9868 + }, + { + "start": 20818.08, + "end": 20821.0, + "probability": 0.9954 + }, + { + "start": 20822.24, + "end": 20824.16, + "probability": 0.9612 + }, + { + "start": 20825.96, + "end": 20826.34, + "probability": 0.6815 + }, + { + "start": 20827.02, + "end": 20829.1, + "probability": 0.7269 + }, + { + "start": 20832.26, + "end": 20833.62, + "probability": 0.7618 + }, + { + "start": 20836.12, + "end": 20837.18, + "probability": 0.9827 + }, + { + "start": 20837.76, + "end": 20838.9, + "probability": 0.919 + }, + { + "start": 20839.94, + "end": 20841.74, + "probability": 0.9864 + }, + { + "start": 20843.16, + "end": 20846.42, + "probability": 0.9052 + }, + { + "start": 20848.88, + "end": 20851.4, + "probability": 0.9409 + }, + { + "start": 20854.74, + "end": 20855.08, + "probability": 0.4572 + }, + { + "start": 20855.14, + "end": 20855.88, + "probability": 0.8788 + }, + { + "start": 20856.02, + "end": 20856.22, + "probability": 0.6536 + }, + { + "start": 20856.3, + "end": 20856.42, + "probability": 0.7241 + }, + { + "start": 20856.52, + "end": 20856.98, + "probability": 0.8267 + }, + { + "start": 20857.06, + "end": 20857.36, + "probability": 0.6278 + }, + { + "start": 20857.78, + "end": 20859.77, + "probability": 0.916 + }, + { + "start": 20860.78, + "end": 20861.5, + "probability": 0.7571 + }, + { + "start": 20862.06, + "end": 20862.96, + "probability": 0.79 + }, + { + "start": 20863.16, + "end": 20864.7, + "probability": 0.6286 + }, + { + "start": 20864.88, + "end": 20866.22, + "probability": 0.1924 + }, + { + "start": 20881.28, + "end": 20881.62, + "probability": 0.6439 + }, + { + "start": 20882.18, + "end": 20882.18, + "probability": 0.0917 + }, + { + "start": 20882.18, + "end": 20883.7, + "probability": 0.3331 + }, + { + "start": 20883.98, + "end": 20884.32, + "probability": 0.0162 + }, + { + "start": 20884.32, + "end": 20885.4, + "probability": 0.2776 + }, + { + "start": 20886.64, + "end": 20888.06, + "probability": 0.4908 + }, + { + "start": 20888.08, + "end": 20889.62, + "probability": 0.278 + }, + { + "start": 20894.94, + "end": 20895.2, + "probability": 0.162 + }, + { + "start": 20895.2, + "end": 20896.18, + "probability": 0.1863 + }, + { + "start": 20899.48, + "end": 20899.64, + "probability": 0.3411 + }, + { + "start": 20902.34, + "end": 20902.52, + "probability": 0.1681 + }, + { + "start": 20902.52, + "end": 20902.52, + "probability": 0.1349 + }, + { + "start": 20902.52, + "end": 20902.74, + "probability": 0.1227 + }, + { + "start": 20903.46, + "end": 20909.54, + "probability": 0.2557 + }, + { + "start": 20910.2, + "end": 20910.2, + "probability": 0.1393 + }, + { + "start": 20916.32, + "end": 20919.68, + "probability": 0.1196 + }, + { + "start": 20922.74, + "end": 20925.48, + "probability": 0.0198 + }, + { + "start": 20925.48, + "end": 20925.56, + "probability": 0.0228 + }, + { + "start": 20929.72, + "end": 20931.98, + "probability": 0.1275 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.0, + "end": 20952.0, + "probability": 0.0 + }, + { + "start": 20952.02, + "end": 20953.06, + "probability": 0.281 + }, + { + "start": 20953.12, + "end": 20953.58, + "probability": 0.746 + }, + { + "start": 20954.08, + "end": 20954.96, + "probability": 0.7339 + }, + { + "start": 20954.96, + "end": 20956.2, + "probability": 0.7653 + }, + { + "start": 20957.38, + "end": 20957.48, + "probability": 0.3133 + }, + { + "start": 20957.48, + "end": 20959.08, + "probability": 0.9349 + }, + { + "start": 20961.04, + "end": 20961.46, + "probability": 0.8218 + }, + { + "start": 20975.04, + "end": 20977.11, + "probability": 0.5393 + }, + { + "start": 20980.6, + "end": 20981.77, + "probability": 0.9681 + }, + { + "start": 20981.98, + "end": 20983.34, + "probability": 0.9989 + }, + { + "start": 20983.38, + "end": 20985.68, + "probability": 0.9305 + }, + { + "start": 20986.4, + "end": 20987.4, + "probability": 0.6843 + }, + { + "start": 20991.14, + "end": 20993.42, + "probability": 0.9154 + }, + { + "start": 20997.34, + "end": 21001.39, + "probability": 0.6548 + }, + { + "start": 21004.04, + "end": 21009.86, + "probability": 0.9979 + }, + { + "start": 21009.98, + "end": 21011.14, + "probability": 0.896 + }, + { + "start": 21012.48, + "end": 21014.56, + "probability": 0.9982 + }, + { + "start": 21015.6, + "end": 21018.5, + "probability": 0.8646 + }, + { + "start": 21019.58, + "end": 21023.26, + "probability": 0.9905 + }, + { + "start": 21023.78, + "end": 21025.18, + "probability": 0.9831 + }, + { + "start": 21027.58, + "end": 21028.58, + "probability": 0.8926 + }, + { + "start": 21029.66, + "end": 21032.96, + "probability": 0.981 + }, + { + "start": 21033.74, + "end": 21038.78, + "probability": 0.9885 + }, + { + "start": 21039.9, + "end": 21042.2, + "probability": 0.6691 + }, + { + "start": 21043.24, + "end": 21045.86, + "probability": 0.6632 + }, + { + "start": 21046.12, + "end": 21046.78, + "probability": 0.8499 + }, + { + "start": 21047.26, + "end": 21048.56, + "probability": 0.9408 + }, + { + "start": 21048.94, + "end": 21051.3, + "probability": 0.945 + }, + { + "start": 21051.44, + "end": 21052.62, + "probability": 0.8134 + }, + { + "start": 21053.96, + "end": 21055.16, + "probability": 0.805 + }, + { + "start": 21056.22, + "end": 21058.36, + "probability": 0.998 + }, + { + "start": 21058.5, + "end": 21060.5, + "probability": 0.8225 + }, + { + "start": 21061.46, + "end": 21062.8, + "probability": 0.9582 + }, + { + "start": 21065.22, + "end": 21072.38, + "probability": 0.9043 + }, + { + "start": 21074.64, + "end": 21077.8, + "probability": 0.8633 + }, + { + "start": 21077.92, + "end": 21080.2, + "probability": 0.8877 + }, + { + "start": 21080.74, + "end": 21083.98, + "probability": 0.8513 + }, + { + "start": 21085.3, + "end": 21087.04, + "probability": 0.8148 + }, + { + "start": 21087.98, + "end": 21091.24, + "probability": 0.9951 + }, + { + "start": 21092.28, + "end": 21094.04, + "probability": 0.9243 + }, + { + "start": 21095.34, + "end": 21096.92, + "probability": 0.9956 + }, + { + "start": 21097.68, + "end": 21099.64, + "probability": 0.9703 + }, + { + "start": 21100.2, + "end": 21103.5, + "probability": 0.7287 + }, + { + "start": 21104.34, + "end": 21104.9, + "probability": 0.9868 + }, + { + "start": 21105.92, + "end": 21106.98, + "probability": 0.5414 + }, + { + "start": 21107.76, + "end": 21109.02, + "probability": 0.892 + }, + { + "start": 21109.66, + "end": 21111.06, + "probability": 0.806 + }, + { + "start": 21112.86, + "end": 21115.34, + "probability": 0.9462 + }, + { + "start": 21116.14, + "end": 21117.06, + "probability": 0.8796 + }, + { + "start": 21118.5, + "end": 21123.86, + "probability": 0.9874 + }, + { + "start": 21123.96, + "end": 21125.78, + "probability": 0.8677 + }, + { + "start": 21127.14, + "end": 21129.34, + "probability": 0.8226 + }, + { + "start": 21132.1, + "end": 21134.14, + "probability": 0.9459 + }, + { + "start": 21137.72, + "end": 21139.78, + "probability": 0.9609 + }, + { + "start": 21141.26, + "end": 21145.26, + "probability": 0.9383 + }, + { + "start": 21145.3, + "end": 21146.42, + "probability": 0.9561 + }, + { + "start": 21147.2, + "end": 21148.17, + "probability": 0.6925 + }, + { + "start": 21150.38, + "end": 21155.2, + "probability": 0.9205 + }, + { + "start": 21159.98, + "end": 21166.14, + "probability": 0.9927 + }, + { + "start": 21166.86, + "end": 21171.96, + "probability": 0.9958 + }, + { + "start": 21172.84, + "end": 21176.0, + "probability": 0.8531 + }, + { + "start": 21176.08, + "end": 21176.5, + "probability": 0.827 + }, + { + "start": 21176.86, + "end": 21178.72, + "probability": 0.9781 + }, + { + "start": 21180.04, + "end": 21184.08, + "probability": 0.994 + }, + { + "start": 21185.26, + "end": 21187.91, + "probability": 0.9968 + }, + { + "start": 21188.82, + "end": 21191.22, + "probability": 0.962 + }, + { + "start": 21191.92, + "end": 21195.67, + "probability": 0.98 + }, + { + "start": 21196.02, + "end": 21198.12, + "probability": 0.985 + }, + { + "start": 21199.06, + "end": 21200.36, + "probability": 0.9986 + }, + { + "start": 21203.06, + "end": 21204.46, + "probability": 0.9235 + }, + { + "start": 21205.4, + "end": 21206.9, + "probability": 0.8916 + }, + { + "start": 21208.18, + "end": 21210.62, + "probability": 0.8436 + }, + { + "start": 21211.82, + "end": 21214.26, + "probability": 0.8636 + }, + { + "start": 21215.56, + "end": 21219.5, + "probability": 0.952 + }, + { + "start": 21220.68, + "end": 21226.6, + "probability": 0.9932 + }, + { + "start": 21228.06, + "end": 21232.22, + "probability": 0.9929 + }, + { + "start": 21232.82, + "end": 21237.16, + "probability": 0.9444 + }, + { + "start": 21237.76, + "end": 21240.5, + "probability": 0.9269 + }, + { + "start": 21243.42, + "end": 21245.86, + "probability": 0.8226 + }, + { + "start": 21247.12, + "end": 21249.82, + "probability": 0.9653 + }, + { + "start": 21251.82, + "end": 21253.18, + "probability": 0.7767 + }, + { + "start": 21254.34, + "end": 21256.48, + "probability": 0.98 + }, + { + "start": 21257.02, + "end": 21257.96, + "probability": 0.9975 + }, + { + "start": 21258.54, + "end": 21259.46, + "probability": 0.6457 + }, + { + "start": 21260.66, + "end": 21262.04, + "probability": 0.8906 + }, + { + "start": 21263.32, + "end": 21265.82, + "probability": 0.9701 + }, + { + "start": 21266.92, + "end": 21267.82, + "probability": 0.9633 + }, + { + "start": 21270.38, + "end": 21272.54, + "probability": 0.9969 + }, + { + "start": 21273.52, + "end": 21278.58, + "probability": 0.925 + }, + { + "start": 21278.62, + "end": 21279.06, + "probability": 0.8638 + }, + { + "start": 21279.52, + "end": 21280.08, + "probability": 0.7365 + }, + { + "start": 21281.58, + "end": 21282.7, + "probability": 0.7088 + }, + { + "start": 21284.88, + "end": 21292.76, + "probability": 0.7168 + }, + { + "start": 21298.54, + "end": 21299.94, + "probability": 0.6525 + }, + { + "start": 21300.0, + "end": 21300.84, + "probability": 0.5847 + }, + { + "start": 21300.96, + "end": 21301.22, + "probability": 0.6898 + }, + { + "start": 21301.36, + "end": 21306.18, + "probability": 0.9083 + }, + { + "start": 21307.04, + "end": 21308.96, + "probability": 0.7444 + }, + { + "start": 21311.36, + "end": 21313.96, + "probability": 0.9589 + }, + { + "start": 21314.68, + "end": 21315.7, + "probability": 0.8379 + }, + { + "start": 21316.22, + "end": 21317.06, + "probability": 0.886 + }, + { + "start": 21317.2, + "end": 21317.8, + "probability": 0.8577 + }, + { + "start": 21318.46, + "end": 21319.22, + "probability": 0.9286 + }, + { + "start": 21320.36, + "end": 21321.24, + "probability": 0.9789 + }, + { + "start": 21322.3, + "end": 21323.32, + "probability": 0.9675 + }, + { + "start": 21324.4, + "end": 21325.26, + "probability": 0.963 + }, + { + "start": 21325.98, + "end": 21326.72, + "probability": 0.6948 + }, + { + "start": 21326.8, + "end": 21328.42, + "probability": 0.7732 + }, + { + "start": 21328.64, + "end": 21328.88, + "probability": 0.8181 + }, + { + "start": 21328.92, + "end": 21329.04, + "probability": 0.6379 + }, + { + "start": 21329.1, + "end": 21329.58, + "probability": 0.6568 + }, + { + "start": 21329.62, + "end": 21330.14, + "probability": 0.9561 + }, + { + "start": 21332.36, + "end": 21333.18, + "probability": 0.9134 + }, + { + "start": 21333.54, + "end": 21334.88, + "probability": 0.9927 + }, + { + "start": 21335.77, + "end": 21337.96, + "probability": 0.944 + }, + { + "start": 21338.84, + "end": 21339.48, + "probability": 0.9574 + }, + { + "start": 21341.08, + "end": 21341.72, + "probability": 0.9385 + }, + { + "start": 21342.42, + "end": 21343.74, + "probability": 0.6487 + }, + { + "start": 21343.92, + "end": 21344.58, + "probability": 0.6493 + }, + { + "start": 21345.04, + "end": 21345.14, + "probability": 0.3365 + }, + { + "start": 21345.72, + "end": 21346.22, + "probability": 0.5949 + }, + { + "start": 21346.3, + "end": 21347.76, + "probability": 0.6532 + }, + { + "start": 21347.84, + "end": 21348.76, + "probability": 0.896 + }, + { + "start": 21349.12, + "end": 21350.36, + "probability": 0.7591 + }, + { + "start": 21352.08, + "end": 21353.4, + "probability": 0.938 + }, + { + "start": 21353.76, + "end": 21355.48, + "probability": 0.9814 + }, + { + "start": 21355.6, + "end": 21356.83, + "probability": 0.9917 + }, + { + "start": 21357.72, + "end": 21360.3, + "probability": 0.9523 + }, + { + "start": 21360.42, + "end": 21362.67, + "probability": 0.7204 + }, + { + "start": 21363.7, + "end": 21366.92, + "probability": 0.9575 + }, + { + "start": 21367.8, + "end": 21368.42, + "probability": 0.7299 + }, + { + "start": 21368.66, + "end": 21369.6, + "probability": 0.7602 + }, + { + "start": 21370.54, + "end": 21372.9, + "probability": 0.7902 + }, + { + "start": 21372.92, + "end": 21373.8, + "probability": 0.2629 + }, + { + "start": 21374.68, + "end": 21378.3, + "probability": 0.9057 + }, + { + "start": 21378.38, + "end": 21379.56, + "probability": 0.8287 + }, + { + "start": 21379.94, + "end": 21381.82, + "probability": 0.9928 + }, + { + "start": 21382.24, + "end": 21382.83, + "probability": 0.99 + }, + { + "start": 21384.74, + "end": 21385.68, + "probability": 0.9022 + }, + { + "start": 21385.86, + "end": 21387.02, + "probability": 0.7645 + }, + { + "start": 21387.12, + "end": 21387.92, + "probability": 0.9312 + }, + { + "start": 21400.14, + "end": 21402.52, + "probability": 0.078 + }, + { + "start": 21402.52, + "end": 21402.52, + "probability": 0.129 + }, + { + "start": 21402.52, + "end": 21402.52, + "probability": 0.0297 + }, + { + "start": 21402.52, + "end": 21403.58, + "probability": 0.3866 + }, + { + "start": 21403.66, + "end": 21405.26, + "probability": 0.731 + }, + { + "start": 21406.02, + "end": 21407.02, + "probability": 0.8652 + }, + { + "start": 21407.18, + "end": 21408.24, + "probability": 0.8425 + }, + { + "start": 21408.32, + "end": 21412.68, + "probability": 0.9846 + }, + { + "start": 21414.4, + "end": 21415.32, + "probability": 0.9813 + }, + { + "start": 21417.48, + "end": 21418.6, + "probability": 0.9847 + }, + { + "start": 21420.0, + "end": 21421.24, + "probability": 0.9872 + }, + { + "start": 21421.36, + "end": 21422.34, + "probability": 0.9355 + }, + { + "start": 21423.3, + "end": 21425.06, + "probability": 0.9912 + }, + { + "start": 21425.1, + "end": 21427.94, + "probability": 0.9874 + }, + { + "start": 21427.94, + "end": 21431.5, + "probability": 0.9333 + }, + { + "start": 21432.92, + "end": 21434.44, + "probability": 0.7847 + }, + { + "start": 21436.06, + "end": 21437.66, + "probability": 0.7785 + }, + { + "start": 21438.98, + "end": 21442.84, + "probability": 0.9965 + }, + { + "start": 21444.5, + "end": 21445.29, + "probability": 0.628 + }, + { + "start": 21447.24, + "end": 21448.12, + "probability": 0.8758 + }, + { + "start": 21448.2, + "end": 21453.26, + "probability": 0.9131 + }, + { + "start": 21454.3, + "end": 21457.28, + "probability": 0.9865 + }, + { + "start": 21458.64, + "end": 21461.03, + "probability": 0.9905 + }, + { + "start": 21461.54, + "end": 21465.0, + "probability": 0.8977 + }, + { + "start": 21465.42, + "end": 21466.48, + "probability": 0.6201 + }, + { + "start": 21468.32, + "end": 21469.64, + "probability": 0.8801 + }, + { + "start": 21469.76, + "end": 21470.76, + "probability": 0.7812 + }, + { + "start": 21471.48, + "end": 21473.98, + "probability": 0.8747 + }, + { + "start": 21474.12, + "end": 21474.24, + "probability": 0.8174 + }, + { + "start": 21474.92, + "end": 21476.58, + "probability": 0.8209 + }, + { + "start": 21476.72, + "end": 21478.28, + "probability": 0.9671 + }, + { + "start": 21478.58, + "end": 21483.73, + "probability": 0.9422 + }, + { + "start": 21484.52, + "end": 21486.06, + "probability": 0.7643 + }, + { + "start": 21486.96, + "end": 21489.56, + "probability": 0.9673 + }, + { + "start": 21489.76, + "end": 21489.96, + "probability": 0.9154 + }, + { + "start": 21490.72, + "end": 21492.72, + "probability": 0.8704 + }, + { + "start": 21493.46, + "end": 21497.18, + "probability": 0.8888 + }, + { + "start": 21497.62, + "end": 21497.76, + "probability": 0.0253 + }, + { + "start": 21497.76, + "end": 21498.28, + "probability": 0.766 + }, + { + "start": 21498.8, + "end": 21502.6, + "probability": 0.9934 + }, + { + "start": 21503.38, + "end": 21506.56, + "probability": 0.8347 + }, + { + "start": 21506.62, + "end": 21507.66, + "probability": 0.907 + }, + { + "start": 21507.88, + "end": 21509.06, + "probability": 0.9398 + }, + { + "start": 21509.82, + "end": 21512.52, + "probability": 0.9904 + }, + { + "start": 21514.12, + "end": 21515.34, + "probability": 0.9937 + }, + { + "start": 21517.28, + "end": 21519.52, + "probability": 0.9059 + }, + { + "start": 21519.54, + "end": 21520.62, + "probability": 0.9994 + }, + { + "start": 21521.16, + "end": 21524.7, + "probability": 0.571 + }, + { + "start": 21526.0, + "end": 21528.24, + "probability": 0.8219 + }, + { + "start": 21529.9, + "end": 21530.84, + "probability": 0.9954 + }, + { + "start": 21532.1, + "end": 21533.8, + "probability": 0.986 + }, + { + "start": 21533.88, + "end": 21534.96, + "probability": 0.939 + }, + { + "start": 21535.04, + "end": 21537.46, + "probability": 0.9426 + }, + { + "start": 21537.82, + "end": 21539.98, + "probability": 0.8865 + }, + { + "start": 21541.32, + "end": 21541.86, + "probability": 0.8198 + }, + { + "start": 21541.94, + "end": 21543.88, + "probability": 0.9937 + }, + { + "start": 21544.24, + "end": 21549.04, + "probability": 0.9975 + }, + { + "start": 21551.58, + "end": 21553.7, + "probability": 0.9075 + }, + { + "start": 21554.32, + "end": 21554.64, + "probability": 0.772 + }, + { + "start": 21557.12, + "end": 21558.4, + "probability": 0.9946 + }, + { + "start": 21558.62, + "end": 21561.0, + "probability": 0.9633 + }, + { + "start": 21562.4, + "end": 21564.3, + "probability": 0.9529 + }, + { + "start": 21565.52, + "end": 21567.28, + "probability": 0.9217 + }, + { + "start": 21567.4, + "end": 21572.06, + "probability": 0.994 + }, + { + "start": 21572.6, + "end": 21573.08, + "probability": 0.8518 + }, + { + "start": 21573.78, + "end": 21574.52, + "probability": 0.9386 + }, + { + "start": 21575.44, + "end": 21577.35, + "probability": 0.9919 + }, + { + "start": 21578.2, + "end": 21578.96, + "probability": 0.8649 + }, + { + "start": 21580.02, + "end": 21580.86, + "probability": 0.8231 + }, + { + "start": 21581.52, + "end": 21582.48, + "probability": 0.698 + }, + { + "start": 21583.2, + "end": 21583.88, + "probability": 0.7216 + }, + { + "start": 21584.94, + "end": 21585.54, + "probability": 0.8008 + }, + { + "start": 21587.02, + "end": 21590.18, + "probability": 0.7853 + }, + { + "start": 21591.74, + "end": 21595.94, + "probability": 0.6125 + }, + { + "start": 21596.22, + "end": 21596.96, + "probability": 0.6532 + }, + { + "start": 21602.48, + "end": 21603.34, + "probability": 0.8767 + }, + { + "start": 21603.4, + "end": 21604.5, + "probability": 0.9543 + }, + { + "start": 21608.46, + "end": 21609.78, + "probability": 0.7104 + }, + { + "start": 21609.9, + "end": 21611.02, + "probability": 0.8646 + }, + { + "start": 21611.08, + "end": 21612.37, + "probability": 0.9157 + }, + { + "start": 21613.14, + "end": 21615.74, + "probability": 0.9971 + }, + { + "start": 21615.78, + "end": 21617.64, + "probability": 0.7271 + }, + { + "start": 21618.36, + "end": 21621.02, + "probability": 0.9855 + }, + { + "start": 21621.56, + "end": 21623.06, + "probability": 0.9672 + }, + { + "start": 21623.4, + "end": 21623.7, + "probability": 0.5335 + }, + { + "start": 21623.96, + "end": 21624.92, + "probability": 0.7717 + }, + { + "start": 21624.94, + "end": 21627.92, + "probability": 0.9169 + }, + { + "start": 21628.72, + "end": 21631.12, + "probability": 0.882 + }, + { + "start": 21632.04, + "end": 21633.06, + "probability": 0.8384 + }, + { + "start": 21634.16, + "end": 21634.46, + "probability": 0.9034 + }, + { + "start": 21635.14, + "end": 21637.49, + "probability": 0.9624 + }, + { + "start": 21638.2, + "end": 21640.36, + "probability": 0.9961 + }, + { + "start": 21640.36, + "end": 21643.45, + "probability": 0.9953 + }, + { + "start": 21644.34, + "end": 21644.92, + "probability": 0.8948 + }, + { + "start": 21645.58, + "end": 21651.6, + "probability": 0.9415 + }, + { + "start": 21652.42, + "end": 21654.48, + "probability": 0.9305 + }, + { + "start": 21655.36, + "end": 21660.88, + "probability": 0.9981 + }, + { + "start": 21661.74, + "end": 21665.46, + "probability": 0.9988 + }, + { + "start": 21666.42, + "end": 21668.96, + "probability": 0.8489 + }, + { + "start": 21669.06, + "end": 21674.42, + "probability": 0.8126 + }, + { + "start": 21674.72, + "end": 21675.26, + "probability": 0.4119 + }, + { + "start": 21677.06, + "end": 21679.34, + "probability": 0.8594 + }, + { + "start": 21681.02, + "end": 21686.12, + "probability": 0.8667 + }, + { + "start": 21686.2, + "end": 21688.62, + "probability": 0.9988 + }, + { + "start": 21689.1, + "end": 21691.69, + "probability": 0.9966 + }, + { + "start": 21691.88, + "end": 21694.28, + "probability": 0.7074 + }, + { + "start": 21694.94, + "end": 21695.96, + "probability": 0.374 + }, + { + "start": 21696.44, + "end": 21703.18, + "probability": 0.781 + }, + { + "start": 21703.84, + "end": 21706.74, + "probability": 0.9213 + }, + { + "start": 21706.78, + "end": 21707.5, + "probability": 0.6938 + }, + { + "start": 21707.8, + "end": 21708.31, + "probability": 0.8574 + }, + { + "start": 21708.5, + "end": 21709.12, + "probability": 0.4865 + }, + { + "start": 21709.16, + "end": 21711.4, + "probability": 0.9672 + }, + { + "start": 21713.1, + "end": 21714.06, + "probability": 0.9721 + }, + { + "start": 21714.3, + "end": 21718.4, + "probability": 0.9956 + }, + { + "start": 21718.72, + "end": 21722.12, + "probability": 0.9893 + }, + { + "start": 21722.6, + "end": 21725.92, + "probability": 0.8298 + }, + { + "start": 21726.28, + "end": 21729.26, + "probability": 0.9974 + }, + { + "start": 21729.52, + "end": 21732.36, + "probability": 0.9761 + }, + { + "start": 21732.44, + "end": 21734.56, + "probability": 0.7367 + }, + { + "start": 21735.0, + "end": 21735.84, + "probability": 0.7986 + }, + { + "start": 21736.34, + "end": 21739.14, + "probability": 0.8839 + }, + { + "start": 21739.2, + "end": 21743.18, + "probability": 0.9796 + }, + { + "start": 21743.32, + "end": 21744.14, + "probability": 0.9197 + }, + { + "start": 21744.66, + "end": 21746.94, + "probability": 0.9939 + }, + { + "start": 21748.16, + "end": 21754.48, + "probability": 0.9879 + }, + { + "start": 21754.6, + "end": 21758.68, + "probability": 0.9246 + }, + { + "start": 21759.32, + "end": 21763.98, + "probability": 0.9938 + }, + { + "start": 21764.2, + "end": 21765.56, + "probability": 0.8844 + }, + { + "start": 21765.98, + "end": 21767.3, + "probability": 0.9062 + }, + { + "start": 21767.68, + "end": 21770.44, + "probability": 0.9756 + }, + { + "start": 21770.88, + "end": 21772.24, + "probability": 0.9903 + }, + { + "start": 21773.46, + "end": 21775.02, + "probability": 0.9822 + }, + { + "start": 21775.68, + "end": 21776.84, + "probability": 0.7257 + }, + { + "start": 21777.42, + "end": 21781.92, + "probability": 0.9056 + }, + { + "start": 21782.58, + "end": 21786.2, + "probability": 0.9949 + }, + { + "start": 21786.28, + "end": 21787.3, + "probability": 0.5684 + }, + { + "start": 21787.96, + "end": 21791.6, + "probability": 0.9981 + }, + { + "start": 21791.6, + "end": 21795.68, + "probability": 0.9933 + }, + { + "start": 21796.3, + "end": 21798.12, + "probability": 0.9135 + }, + { + "start": 21798.54, + "end": 21803.68, + "probability": 0.995 + }, + { + "start": 21803.82, + "end": 21804.88, + "probability": 0.5886 + }, + { + "start": 21805.76, + "end": 21810.08, + "probability": 0.9826 + }, + { + "start": 21810.72, + "end": 21812.01, + "probability": 0.957 + }, + { + "start": 21812.62, + "end": 21813.44, + "probability": 0.9349 + }, + { + "start": 21813.5, + "end": 21814.04, + "probability": 0.8883 + }, + { + "start": 21814.76, + "end": 21817.7, + "probability": 0.985 + }, + { + "start": 21818.4, + "end": 21819.82, + "probability": 0.9716 + }, + { + "start": 21821.02, + "end": 21822.28, + "probability": 0.7625 + }, + { + "start": 21823.68, + "end": 21827.58, + "probability": 0.889 + }, + { + "start": 21828.0, + "end": 21829.58, + "probability": 0.9281 + }, + { + "start": 21829.88, + "end": 21830.58, + "probability": 0.8813 + }, + { + "start": 21830.74, + "end": 21832.64, + "probability": 0.891 + }, + { + "start": 21832.7, + "end": 21834.18, + "probability": 0.9971 + }, + { + "start": 21834.8, + "end": 21835.96, + "probability": 0.9821 + }, + { + "start": 21837.24, + "end": 21839.72, + "probability": 0.9808 + }, + { + "start": 21841.44, + "end": 21841.88, + "probability": 0.0007 + }, + { + "start": 21843.14, + "end": 21846.54, + "probability": 0.5074 + }, + { + "start": 21846.74, + "end": 21848.86, + "probability": 0.7534 + }, + { + "start": 21849.24, + "end": 21851.06, + "probability": 0.9732 + }, + { + "start": 21851.22, + "end": 21852.2, + "probability": 0.8682 + }, + { + "start": 21852.28, + "end": 21854.0, + "probability": 0.7544 + }, + { + "start": 21854.74, + "end": 21859.86, + "probability": 0.7345 + }, + { + "start": 21860.5, + "end": 21862.36, + "probability": 0.9891 + }, + { + "start": 21863.0, + "end": 21865.12, + "probability": 0.7598 + }, + { + "start": 21865.26, + "end": 21865.9, + "probability": 0.577 + }, + { + "start": 21866.1, + "end": 21868.05, + "probability": 0.7231 + }, + { + "start": 21868.22, + "end": 21872.38, + "probability": 0.9819 + }, + { + "start": 21872.9, + "end": 21873.44, + "probability": 0.5857 + }, + { + "start": 21873.72, + "end": 21876.76, + "probability": 0.9594 + }, + { + "start": 21877.26, + "end": 21878.65, + "probability": 0.9821 + }, + { + "start": 21879.3, + "end": 21882.86, + "probability": 0.9924 + }, + { + "start": 21882.86, + "end": 21886.24, + "probability": 0.9939 + }, + { + "start": 21886.52, + "end": 21886.94, + "probability": 0.9578 + }, + { + "start": 21887.46, + "end": 21888.42, + "probability": 0.8833 + }, + { + "start": 21888.96, + "end": 21891.94, + "probability": 0.8837 + }, + { + "start": 21892.22, + "end": 21894.16, + "probability": 0.9254 + }, + { + "start": 21894.2, + "end": 21896.9, + "probability": 0.873 + }, + { + "start": 21897.04, + "end": 21899.1, + "probability": 0.9443 + }, + { + "start": 21899.36, + "end": 21901.18, + "probability": 0.9635 + }, + { + "start": 21901.44, + "end": 21905.7, + "probability": 0.8776 + }, + { + "start": 21906.12, + "end": 21907.5, + "probability": 0.6746 + }, + { + "start": 21908.3, + "end": 21909.06, + "probability": 0.6781 + }, + { + "start": 21909.16, + "end": 21909.2, + "probability": 0.4158 + }, + { + "start": 21909.2, + "end": 21910.1, + "probability": 0.9849 + }, + { + "start": 21910.34, + "end": 21912.04, + "probability": 0.6691 + }, + { + "start": 21912.08, + "end": 21914.36, + "probability": 0.8104 + }, + { + "start": 21915.52, + "end": 21919.02, + "probability": 0.96 + }, + { + "start": 21919.64, + "end": 21922.68, + "probability": 0.6294 + }, + { + "start": 21923.2, + "end": 21923.34, + "probability": 0.2554 + }, + { + "start": 21923.34, + "end": 21924.22, + "probability": 0.7828 + }, + { + "start": 21924.74, + "end": 21925.86, + "probability": 0.7393 + }, + { + "start": 21933.3, + "end": 21934.58, + "probability": 0.2686 + }, + { + "start": 21934.72, + "end": 21935.76, + "probability": 0.6741 + }, + { + "start": 21936.6, + "end": 21937.62, + "probability": 0.8379 + }, + { + "start": 21949.8, + "end": 21950.58, + "probability": 0.5026 + }, + { + "start": 21950.9, + "end": 21952.48, + "probability": 0.6175 + }, + { + "start": 21953.08, + "end": 21958.28, + "probability": 0.7932 + }, + { + "start": 21958.28, + "end": 21961.2, + "probability": 0.9813 + }, + { + "start": 21961.32, + "end": 21961.94, + "probability": 0.9136 + }, + { + "start": 21966.88, + "end": 21970.68, + "probability": 0.7445 + }, + { + "start": 21970.74, + "end": 21973.04, + "probability": 0.9932 + }, + { + "start": 21973.44, + "end": 21975.14, + "probability": 0.9879 + }, + { + "start": 21976.16, + "end": 21978.92, + "probability": 0.9634 + }, + { + "start": 21980.12, + "end": 21981.22, + "probability": 0.8503 + }, + { + "start": 21981.26, + "end": 21984.12, + "probability": 0.7661 + }, + { + "start": 21984.72, + "end": 21986.52, + "probability": 0.8439 + }, + { + "start": 21988.04, + "end": 21990.1, + "probability": 0.8332 + }, + { + "start": 21991.04, + "end": 21993.5, + "probability": 0.9978 + }, + { + "start": 21994.2, + "end": 21997.44, + "probability": 0.9992 + }, + { + "start": 21997.96, + "end": 21998.76, + "probability": 0.5075 + }, + { + "start": 21999.14, + "end": 22002.44, + "probability": 0.999 + }, + { + "start": 22002.8, + "end": 22005.12, + "probability": 0.9987 + }, + { + "start": 22005.96, + "end": 22010.92, + "probability": 0.9971 + }, + { + "start": 22010.98, + "end": 22015.64, + "probability": 0.9976 + }, + { + "start": 22016.54, + "end": 22021.16, + "probability": 0.9875 + }, + { + "start": 22022.14, + "end": 22027.28, + "probability": 0.9972 + }, + { + "start": 22027.82, + "end": 22029.82, + "probability": 0.998 + }, + { + "start": 22031.08, + "end": 22033.58, + "probability": 0.9609 + }, + { + "start": 22034.32, + "end": 22038.46, + "probability": 0.9457 + }, + { + "start": 22039.36, + "end": 22041.94, + "probability": 0.9976 + }, + { + "start": 22043.5, + "end": 22045.2, + "probability": 0.9921 + }, + { + "start": 22045.8, + "end": 22049.5, + "probability": 0.9929 + }, + { + "start": 22050.2, + "end": 22052.74, + "probability": 0.9746 + }, + { + "start": 22053.42, + "end": 22055.58, + "probability": 0.9983 + }, + { + "start": 22056.12, + "end": 22060.46, + "probability": 0.994 + }, + { + "start": 22060.96, + "end": 22065.74, + "probability": 0.9974 + }, + { + "start": 22067.02, + "end": 22069.56, + "probability": 0.9961 + }, + { + "start": 22070.06, + "end": 22072.4, + "probability": 0.9463 + }, + { + "start": 22072.96, + "end": 22075.7, + "probability": 0.9836 + }, + { + "start": 22076.4, + "end": 22082.02, + "probability": 0.9747 + }, + { + "start": 22082.54, + "end": 22084.78, + "probability": 0.98 + }, + { + "start": 22085.72, + "end": 22086.96, + "probability": 0.9932 + }, + { + "start": 22087.68, + "end": 22089.64, + "probability": 0.9201 + }, + { + "start": 22090.12, + "end": 22092.58, + "probability": 0.963 + }, + { + "start": 22093.12, + "end": 22095.48, + "probability": 0.9772 + }, + { + "start": 22096.32, + "end": 22098.88, + "probability": 0.9814 + }, + { + "start": 22099.32, + "end": 22101.2, + "probability": 0.8981 + }, + { + "start": 22101.86, + "end": 22106.24, + "probability": 0.9971 + }, + { + "start": 22107.12, + "end": 22110.13, + "probability": 0.9522 + }, + { + "start": 22110.98, + "end": 22114.0, + "probability": 0.9834 + }, + { + "start": 22114.7, + "end": 22118.0, + "probability": 0.9936 + }, + { + "start": 22119.14, + "end": 22119.88, + "probability": 0.9949 + }, + { + "start": 22122.54, + "end": 22126.56, + "probability": 0.9781 + }, + { + "start": 22127.16, + "end": 22132.02, + "probability": 0.9827 + }, + { + "start": 22132.56, + "end": 22136.38, + "probability": 0.998 + }, + { + "start": 22136.38, + "end": 22140.14, + "probability": 0.9991 + }, + { + "start": 22140.86, + "end": 22144.72, + "probability": 0.9955 + }, + { + "start": 22144.72, + "end": 22148.5, + "probability": 0.9991 + }, + { + "start": 22149.22, + "end": 22149.86, + "probability": 0.5727 + }, + { + "start": 22150.42, + "end": 22154.96, + "probability": 0.9832 + }, + { + "start": 22156.02, + "end": 22163.16, + "probability": 0.8286 + }, + { + "start": 22163.72, + "end": 22167.06, + "probability": 0.9976 + }, + { + "start": 22167.76, + "end": 22169.08, + "probability": 0.7516 + }, + { + "start": 22169.52, + "end": 22172.62, + "probability": 0.8688 + }, + { + "start": 22174.52, + "end": 22179.02, + "probability": 0.9987 + }, + { + "start": 22179.64, + "end": 22183.32, + "probability": 0.925 + }, + { + "start": 22183.72, + "end": 22188.98, + "probability": 0.9918 + }, + { + "start": 22189.56, + "end": 22193.69, + "probability": 0.9257 + }, + { + "start": 22194.26, + "end": 22196.22, + "probability": 0.9988 + }, + { + "start": 22196.54, + "end": 22197.98, + "probability": 0.9908 + }, + { + "start": 22198.44, + "end": 22199.44, + "probability": 0.7229 + }, + { + "start": 22199.48, + "end": 22203.5, + "probability": 0.9134 + }, + { + "start": 22204.8, + "end": 22207.22, + "probability": 0.9956 + }, + { + "start": 22207.22, + "end": 22210.68, + "probability": 0.9666 + }, + { + "start": 22211.22, + "end": 22215.6, + "probability": 0.9849 + }, + { + "start": 22216.12, + "end": 22221.7, + "probability": 0.9505 + }, + { + "start": 22222.46, + "end": 22228.0, + "probability": 0.9968 + }, + { + "start": 22228.0, + "end": 22233.14, + "probability": 0.9961 + }, + { + "start": 22233.86, + "end": 22234.86, + "probability": 0.7941 + }, + { + "start": 22235.44, + "end": 22242.58, + "probability": 0.9203 + }, + { + "start": 22243.38, + "end": 22245.48, + "probability": 0.6417 + }, + { + "start": 22245.68, + "end": 22246.2, + "probability": 0.7991 + }, + { + "start": 22247.14, + "end": 22248.7, + "probability": 0.7648 + }, + { + "start": 22251.06, + "end": 22252.42, + "probability": 0.2728 + }, + { + "start": 22263.14, + "end": 22264.44, + "probability": 0.2403 + }, + { + "start": 22264.54, + "end": 22264.88, + "probability": 0.4409 + }, + { + "start": 22266.4, + "end": 22273.84, + "probability": 0.9857 + }, + { + "start": 22274.92, + "end": 22278.74, + "probability": 0.8293 + }, + { + "start": 22279.34, + "end": 22281.68, + "probability": 0.9015 + }, + { + "start": 22281.84, + "end": 22284.34, + "probability": 0.8104 + }, + { + "start": 22284.76, + "end": 22287.0, + "probability": 0.9437 + }, + { + "start": 22288.28, + "end": 22293.8, + "probability": 0.9531 + }, + { + "start": 22294.62, + "end": 22295.08, + "probability": 0.9502 + }, + { + "start": 22295.12, + "end": 22300.6, + "probability": 0.9916 + }, + { + "start": 22301.94, + "end": 22307.52, + "probability": 0.9982 + }, + { + "start": 22308.8, + "end": 22311.7, + "probability": 0.9311 + }, + { + "start": 22312.72, + "end": 22315.14, + "probability": 0.9576 + }, + { + "start": 22316.86, + "end": 22322.14, + "probability": 0.964 + }, + { + "start": 22323.4, + "end": 22330.94, + "probability": 0.9934 + }, + { + "start": 22332.16, + "end": 22335.68, + "probability": 0.9055 + }, + { + "start": 22335.7, + "end": 22340.42, + "probability": 0.998 + }, + { + "start": 22341.54, + "end": 22346.32, + "probability": 0.974 + }, + { + "start": 22346.54, + "end": 22347.26, + "probability": 0.8074 + }, + { + "start": 22349.08, + "end": 22356.1, + "probability": 0.9909 + }, + { + "start": 22356.9, + "end": 22361.42, + "probability": 0.9247 + }, + { + "start": 22362.14, + "end": 22366.92, + "probability": 0.9686 + }, + { + "start": 22368.4, + "end": 22371.31, + "probability": 0.9834 + }, + { + "start": 22372.12, + "end": 22375.26, + "probability": 0.9324 + }, + { + "start": 22376.92, + "end": 22380.72, + "probability": 0.9623 + }, + { + "start": 22381.98, + "end": 22386.08, + "probability": 0.9939 + }, + { + "start": 22386.24, + "end": 22388.3, + "probability": 0.9561 + }, + { + "start": 22388.66, + "end": 22391.76, + "probability": 0.9956 + }, + { + "start": 22392.4, + "end": 22395.72, + "probability": 0.9291 + }, + { + "start": 22397.32, + "end": 22401.72, + "probability": 0.9928 + }, + { + "start": 22401.9, + "end": 22402.96, + "probability": 0.9153 + }, + { + "start": 22403.32, + "end": 22406.16, + "probability": 0.9902 + }, + { + "start": 22406.32, + "end": 22407.52, + "probability": 0.5133 + }, + { + "start": 22407.56, + "end": 22409.96, + "probability": 0.9646 + }, + { + "start": 22411.24, + "end": 22414.94, + "probability": 0.968 + }, + { + "start": 22415.52, + "end": 22416.24, + "probability": 0.8991 + }, + { + "start": 22417.0, + "end": 22418.56, + "probability": 0.991 + }, + { + "start": 22419.68, + "end": 22421.4, + "probability": 0.9893 + }, + { + "start": 22421.52, + "end": 22422.08, + "probability": 0.9366 + }, + { + "start": 22422.32, + "end": 22423.9, + "probability": 0.9831 + }, + { + "start": 22424.8, + "end": 22428.82, + "probability": 0.9835 + }, + { + "start": 22430.1, + "end": 22433.16, + "probability": 0.6971 + }, + { + "start": 22433.64, + "end": 22434.5, + "probability": 0.837 + }, + { + "start": 22435.76, + "end": 22440.68, + "probability": 0.9393 + }, + { + "start": 22441.38, + "end": 22441.76, + "probability": 0.5783 + }, + { + "start": 22441.84, + "end": 22448.12, + "probability": 0.9926 + }, + { + "start": 22449.02, + "end": 22454.96, + "probability": 0.9964 + }, + { + "start": 22456.16, + "end": 22456.58, + "probability": 0.558 + }, + { + "start": 22456.78, + "end": 22458.6, + "probability": 0.9858 + }, + { + "start": 22458.7, + "end": 22461.52, + "probability": 0.9835 + }, + { + "start": 22461.84, + "end": 22464.86, + "probability": 0.8372 + }, + { + "start": 22465.96, + "end": 22468.34, + "probability": 0.9485 + }, + { + "start": 22468.92, + "end": 22471.12, + "probability": 0.8904 + }, + { + "start": 22471.68, + "end": 22474.92, + "probability": 0.9819 + }, + { + "start": 22475.94, + "end": 22478.66, + "probability": 0.977 + }, + { + "start": 22478.66, + "end": 22482.44, + "probability": 0.9947 + }, + { + "start": 22483.54, + "end": 22484.08, + "probability": 0.575 + }, + { + "start": 22484.5, + "end": 22486.8, + "probability": 0.9348 + }, + { + "start": 22487.0, + "end": 22489.36, + "probability": 0.8721 + }, + { + "start": 22490.76, + "end": 22492.68, + "probability": 0.8919 + }, + { + "start": 22493.9, + "end": 22499.4, + "probability": 0.9816 + }, + { + "start": 22500.36, + "end": 22501.62, + "probability": 0.8913 + }, + { + "start": 22502.78, + "end": 22505.5, + "probability": 0.9034 + }, + { + "start": 22505.8, + "end": 22507.54, + "probability": 0.9404 + }, + { + "start": 22507.92, + "end": 22511.36, + "probability": 0.9758 + }, + { + "start": 22511.42, + "end": 22516.06, + "probability": 0.9584 + }, + { + "start": 22516.28, + "end": 22516.82, + "probability": 0.8337 + }, + { + "start": 22517.52, + "end": 22520.76, + "probability": 0.9842 + }, + { + "start": 22520.76, + "end": 22525.38, + "probability": 0.9565 + }, + { + "start": 22525.5, + "end": 22526.68, + "probability": 0.7907 + }, + { + "start": 22527.36, + "end": 22532.02, + "probability": 0.9796 + }, + { + "start": 22532.48, + "end": 22535.06, + "probability": 0.9867 + }, + { + "start": 22535.74, + "end": 22539.74, + "probability": 0.9883 + }, + { + "start": 22541.34, + "end": 22543.86, + "probability": 0.9703 + }, + { + "start": 22544.04, + "end": 22544.5, + "probability": 0.8994 + }, + { + "start": 22544.6, + "end": 22545.6, + "probability": 0.8807 + }, + { + "start": 22546.0, + "end": 22546.92, + "probability": 0.9364 + }, + { + "start": 22546.94, + "end": 22548.32, + "probability": 0.9878 + }, + { + "start": 22548.4, + "end": 22552.04, + "probability": 0.9937 + }, + { + "start": 22552.58, + "end": 22557.32, + "probability": 0.9941 + }, + { + "start": 22559.22, + "end": 22559.86, + "probability": 0.8972 + }, + { + "start": 22563.34, + "end": 22565.0, + "probability": 0.8859 + }, + { + "start": 22573.24, + "end": 22574.02, + "probability": 0.2402 + }, + { + "start": 22582.06, + "end": 22582.6, + "probability": 0.4136 + }, + { + "start": 22582.68, + "end": 22583.94, + "probability": 0.5954 + }, + { + "start": 22584.04, + "end": 22586.28, + "probability": 0.9059 + }, + { + "start": 22588.09, + "end": 22588.88, + "probability": 0.6748 + }, + { + "start": 22589.26, + "end": 22589.36, + "probability": 0.689 + }, + { + "start": 22590.82, + "end": 22594.92, + "probability": 0.9356 + }, + { + "start": 22595.08, + "end": 22598.98, + "probability": 0.9408 + }, + { + "start": 22599.68, + "end": 22601.09, + "probability": 0.9507 + }, + { + "start": 22602.04, + "end": 22606.5, + "probability": 0.5776 + }, + { + "start": 22609.42, + "end": 22611.76, + "probability": 0.9933 + }, + { + "start": 22612.92, + "end": 22613.16, + "probability": 0.6805 + }, + { + "start": 22613.22, + "end": 22618.7, + "probability": 0.9968 + }, + { + "start": 22619.92, + "end": 22623.14, + "probability": 0.9669 + }, + { + "start": 22624.28, + "end": 22629.72, + "probability": 0.9774 + }, + { + "start": 22630.12, + "end": 22631.98, + "probability": 0.9831 + }, + { + "start": 22631.98, + "end": 22633.28, + "probability": 0.8433 + }, + { + "start": 22633.36, + "end": 22638.48, + "probability": 0.9746 + }, + { + "start": 22639.24, + "end": 22641.08, + "probability": 0.9707 + }, + { + "start": 22641.94, + "end": 22643.44, + "probability": 0.8857 + }, + { + "start": 22643.52, + "end": 22643.93, + "probability": 0.684 + }, + { + "start": 22644.3, + "end": 22647.28, + "probability": 0.9985 + }, + { + "start": 22647.28, + "end": 22651.78, + "probability": 0.9985 + }, + { + "start": 22652.34, + "end": 22653.58, + "probability": 0.9951 + }, + { + "start": 22654.18, + "end": 22655.44, + "probability": 0.9924 + }, + { + "start": 22656.0, + "end": 22657.05, + "probability": 0.999 + }, + { + "start": 22657.56, + "end": 22659.52, + "probability": 0.9934 + }, + { + "start": 22660.14, + "end": 22663.9, + "probability": 0.9944 + }, + { + "start": 22664.84, + "end": 22666.6, + "probability": 0.9462 + }, + { + "start": 22666.66, + "end": 22670.16, + "probability": 0.9821 + }, + { + "start": 22670.34, + "end": 22671.24, + "probability": 0.896 + }, + { + "start": 22671.84, + "end": 22673.34, + "probability": 0.7803 + }, + { + "start": 22675.26, + "end": 22679.26, + "probability": 0.9944 + }, + { + "start": 22680.52, + "end": 22685.0, + "probability": 0.839 + }, + { + "start": 22690.4, + "end": 22691.24, + "probability": 0.3917 + }, + { + "start": 22692.3, + "end": 22693.12, + "probability": 0.9535 + }, + { + "start": 22694.16, + "end": 22694.96, + "probability": 0.8847 + }, + { + "start": 22695.58, + "end": 22696.62, + "probability": 0.9069 + }, + { + "start": 22697.24, + "end": 22698.26, + "probability": 0.9426 + }, + { + "start": 22698.76, + "end": 22700.3, + "probability": 0.9369 + }, + { + "start": 22700.4, + "end": 22702.64, + "probability": 0.9839 + }, + { + "start": 22704.1, + "end": 22705.64, + "probability": 0.7073 + }, + { + "start": 22706.06, + "end": 22707.7, + "probability": 0.9223 + }, + { + "start": 22707.78, + "end": 22710.2, + "probability": 0.9788 + }, + { + "start": 22710.72, + "end": 22711.9, + "probability": 0.8175 + }, + { + "start": 22712.36, + "end": 22714.6, + "probability": 0.9098 + }, + { + "start": 22715.46, + "end": 22717.46, + "probability": 0.9579 + }, + { + "start": 22717.5, + "end": 22719.04, + "probability": 0.9618 + }, + { + "start": 22719.66, + "end": 22720.54, + "probability": 0.9568 + }, + { + "start": 22721.62, + "end": 22727.58, + "probability": 0.804 + }, + { + "start": 22728.16, + "end": 22728.52, + "probability": 0.6352 + }, + { + "start": 22729.16, + "end": 22733.98, + "probability": 0.9363 + }, + { + "start": 22734.52, + "end": 22739.64, + "probability": 0.9942 + }, + { + "start": 22740.14, + "end": 22740.68, + "probability": 0.6806 + }, + { + "start": 22741.34, + "end": 22742.24, + "probability": 0.9377 + }, + { + "start": 22743.26, + "end": 22747.16, + "probability": 0.7677 + }, + { + "start": 22748.66, + "end": 22750.3, + "probability": 0.7845 + }, + { + "start": 22750.96, + "end": 22756.32, + "probability": 0.9336 + }, + { + "start": 22757.24, + "end": 22758.2, + "probability": 0.793 + }, + { + "start": 22758.42, + "end": 22760.92, + "probability": 0.8199 + }, + { + "start": 22761.32, + "end": 22761.78, + "probability": 0.6003 + }, + { + "start": 22762.16, + "end": 22763.96, + "probability": 0.8322 + }, + { + "start": 22764.16, + "end": 22765.68, + "probability": 0.8621 + }, + { + "start": 22766.22, + "end": 22772.54, + "probability": 0.987 + }, + { + "start": 22773.2, + "end": 22776.88, + "probability": 0.978 + }, + { + "start": 22777.4, + "end": 22779.77, + "probability": 0.9062 + }, + { + "start": 22780.3, + "end": 22785.65, + "probability": 0.9758 + }, + { + "start": 22787.52, + "end": 22789.5, + "probability": 0.9814 + }, + { + "start": 22789.6, + "end": 22792.04, + "probability": 0.9677 + }, + { + "start": 22792.86, + "end": 22796.86, + "probability": 0.9964 + }, + { + "start": 22797.08, + "end": 22801.26, + "probability": 0.9747 + }, + { + "start": 22802.08, + "end": 22802.96, + "probability": 0.8059 + }, + { + "start": 22803.08, + "end": 22803.86, + "probability": 0.7908 + }, + { + "start": 22804.64, + "end": 22805.84, + "probability": 0.9624 + }, + { + "start": 22805.96, + "end": 22807.28, + "probability": 0.8747 + }, + { + "start": 22807.8, + "end": 22810.08, + "probability": 0.9884 + }, + { + "start": 22810.78, + "end": 22811.88, + "probability": 0.7063 + }, + { + "start": 22812.12, + "end": 22813.34, + "probability": 0.9595 + }, + { + "start": 22813.96, + "end": 22814.88, + "probability": 0.5934 + }, + { + "start": 22816.64, + "end": 22821.08, + "probability": 0.9171 + }, + { + "start": 22821.38, + "end": 22827.66, + "probability": 0.9843 + }, + { + "start": 22828.44, + "end": 22829.22, + "probability": 0.5046 + }, + { + "start": 22829.34, + "end": 22834.1, + "probability": 0.7224 + }, + { + "start": 22834.78, + "end": 22836.72, + "probability": 0.9702 + }, + { + "start": 22836.74, + "end": 22837.96, + "probability": 0.9704 + }, + { + "start": 22838.46, + "end": 22839.49, + "probability": 0.911 + }, + { + "start": 22839.96, + "end": 22841.86, + "probability": 0.9476 + }, + { + "start": 22842.78, + "end": 22848.28, + "probability": 0.8558 + }, + { + "start": 22848.28, + "end": 22853.04, + "probability": 0.9444 + }, + { + "start": 22853.5, + "end": 22860.38, + "probability": 0.86 + }, + { + "start": 22860.96, + "end": 22862.36, + "probability": 0.5186 + }, + { + "start": 22862.84, + "end": 22863.64, + "probability": 0.8509 + }, + { + "start": 22864.76, + "end": 22866.98, + "probability": 0.8745 + }, + { + "start": 22867.18, + "end": 22867.72, + "probability": 0.9154 + }, + { + "start": 22868.12, + "end": 22871.38, + "probability": 0.9581 + }, + { + "start": 22871.74, + "end": 22875.26, + "probability": 0.986 + }, + { + "start": 22875.56, + "end": 22876.74, + "probability": 0.6807 + }, + { + "start": 22877.04, + "end": 22879.64, + "probability": 0.6876 + }, + { + "start": 22880.5, + "end": 22880.8, + "probability": 0.013 + }, + { + "start": 22880.8, + "end": 22882.02, + "probability": 0.4125 + }, + { + "start": 22882.6, + "end": 22888.68, + "probability": 0.9427 + }, + { + "start": 22889.1, + "end": 22889.1, + "probability": 0.6618 + }, + { + "start": 22889.1, + "end": 22889.92, + "probability": 0.8951 + }, + { + "start": 22889.98, + "end": 22895.82, + "probability": 0.7711 + }, + { + "start": 22895.82, + "end": 22898.48, + "probability": 0.999 + }, + { + "start": 22898.58, + "end": 22898.86, + "probability": 0.7148 + }, + { + "start": 22898.86, + "end": 22899.06, + "probability": 0.5201 + }, + { + "start": 22899.64, + "end": 22900.86, + "probability": 0.4992 + }, + { + "start": 22902.9, + "end": 22907.12, + "probability": 0.2576 + }, + { + "start": 22908.87, + "end": 22912.27, + "probability": 0.3063 + }, + { + "start": 22925.14, + "end": 22926.2, + "probability": 0.5988 + }, + { + "start": 22926.44, + "end": 22928.18, + "probability": 0.8403 + }, + { + "start": 22928.3, + "end": 22928.88, + "probability": 0.2608 + }, + { + "start": 22929.24, + "end": 22929.94, + "probability": 0.8032 + }, + { + "start": 22929.98, + "end": 22932.28, + "probability": 0.7803 + }, + { + "start": 22933.32, + "end": 22936.2, + "probability": 0.9283 + }, + { + "start": 22936.34, + "end": 22937.38, + "probability": 0.5279 + }, + { + "start": 22937.7, + "end": 22941.32, + "probability": 0.9781 + }, + { + "start": 22941.36, + "end": 22942.28, + "probability": 0.8948 + }, + { + "start": 22942.3, + "end": 22943.9, + "probability": 0.9941 + }, + { + "start": 22944.7, + "end": 22949.92, + "probability": 0.9952 + }, + { + "start": 22950.4, + "end": 22952.26, + "probability": 0.9524 + }, + { + "start": 22953.18, + "end": 22958.16, + "probability": 0.984 + }, + { + "start": 22959.28, + "end": 22962.22, + "probability": 0.6737 + }, + { + "start": 22963.08, + "end": 22966.4, + "probability": 0.9816 + }, + { + "start": 22968.02, + "end": 22970.24, + "probability": 0.8514 + }, + { + "start": 22970.82, + "end": 22973.58, + "probability": 0.9092 + }, + { + "start": 22974.28, + "end": 22976.42, + "probability": 0.9847 + }, + { + "start": 22977.58, + "end": 22981.46, + "probability": 0.9692 + }, + { + "start": 22981.58, + "end": 22982.32, + "probability": 0.5286 + }, + { + "start": 22982.42, + "end": 22984.38, + "probability": 0.8387 + }, + { + "start": 22984.78, + "end": 22985.82, + "probability": 0.6021 + }, + { + "start": 22986.96, + "end": 22989.58, + "probability": 0.9517 + }, + { + "start": 22990.5, + "end": 22991.64, + "probability": 0.7036 + }, + { + "start": 22992.24, + "end": 22992.42, + "probability": 0.1375 + }, + { + "start": 22992.68, + "end": 22999.28, + "probability": 0.977 + }, + { + "start": 22999.72, + "end": 23004.06, + "probability": 0.9972 + }, + { + "start": 23004.62, + "end": 23005.22, + "probability": 0.9095 + }, + { + "start": 23005.3, + "end": 23006.48, + "probability": 0.5767 + }, + { + "start": 23007.08, + "end": 23009.04, + "probability": 0.9937 + }, + { + "start": 23009.18, + "end": 23010.4, + "probability": 0.9524 + }, + { + "start": 23011.16, + "end": 23012.32, + "probability": 0.6958 + }, + { + "start": 23013.1, + "end": 23014.88, + "probability": 0.3893 + }, + { + "start": 23015.46, + "end": 23017.0, + "probability": 0.8737 + }, + { + "start": 23017.18, + "end": 23020.36, + "probability": 0.8057 + }, + { + "start": 23020.88, + "end": 23022.96, + "probability": 0.9426 + }, + { + "start": 23023.66, + "end": 23032.5, + "probability": 0.9574 + }, + { + "start": 23034.08, + "end": 23035.96, + "probability": 0.8057 + }, + { + "start": 23036.08, + "end": 23039.24, + "probability": 0.9963 + }, + { + "start": 23039.82, + "end": 23044.3, + "probability": 0.9563 + }, + { + "start": 23044.94, + "end": 23046.52, + "probability": 0.4492 + }, + { + "start": 23047.06, + "end": 23049.22, + "probability": 0.9233 + }, + { + "start": 23050.06, + "end": 23053.16, + "probability": 0.7772 + }, + { + "start": 23053.98, + "end": 23055.39, + "probability": 0.9489 + }, + { + "start": 23055.98, + "end": 23056.56, + "probability": 0.6042 + }, + { + "start": 23057.66, + "end": 23059.74, + "probability": 0.9786 + }, + { + "start": 23060.42, + "end": 23060.74, + "probability": 0.8345 + }, + { + "start": 23061.16, + "end": 23064.62, + "probability": 0.9055 + }, + { + "start": 23065.1, + "end": 23067.88, + "probability": 0.9893 + }, + { + "start": 23068.34, + "end": 23070.54, + "probability": 0.4973 + }, + { + "start": 23070.84, + "end": 23071.16, + "probability": 0.4468 + }, + { + "start": 23071.26, + "end": 23072.9, + "probability": 0.9451 + }, + { + "start": 23073.28, + "end": 23077.78, + "probability": 0.9315 + }, + { + "start": 23078.28, + "end": 23079.58, + "probability": 0.9264 + }, + { + "start": 23080.84, + "end": 23081.44, + "probability": 0.8326 + }, + { + "start": 23082.8, + "end": 23084.12, + "probability": 0.8047 + }, + { + "start": 23084.56, + "end": 23086.3, + "probability": 0.0434 + }, + { + "start": 23086.9, + "end": 23088.62, + "probability": 0.0686 + }, + { + "start": 23089.72, + "end": 23089.76, + "probability": 0.1585 + }, + { + "start": 23089.76, + "end": 23090.32, + "probability": 0.4716 + }, + { + "start": 23090.88, + "end": 23092.6, + "probability": 0.6881 + }, + { + "start": 23113.4, + "end": 23113.58, + "probability": 0.3847 + }, + { + "start": 23113.58, + "end": 23116.7, + "probability": 0.5734 + }, + { + "start": 23116.78, + "end": 23118.06, + "probability": 0.7114 + }, + { + "start": 23119.72, + "end": 23120.88, + "probability": 0.8017 + }, + { + "start": 23121.58, + "end": 23122.84, + "probability": 0.1076 + }, + { + "start": 23122.84, + "end": 23124.8, + "probability": 0.8667 + }, + { + "start": 23125.58, + "end": 23126.5, + "probability": 0.564 + }, + { + "start": 23127.06, + "end": 23127.92, + "probability": 0.1675 + }, + { + "start": 23129.66, + "end": 23131.2, + "probability": 0.8577 + }, + { + "start": 23131.24, + "end": 23131.44, + "probability": 0.8378 + }, + { + "start": 23132.99, + "end": 23135.06, + "probability": 0.3528 + }, + { + "start": 23135.16, + "end": 23137.58, + "probability": 0.2586 + }, + { + "start": 23137.88, + "end": 23140.35, + "probability": 0.1942 + }, + { + "start": 23149.8, + "end": 23151.08, + "probability": 0.2985 + }, + { + "start": 23163.24, + "end": 23163.76, + "probability": 0.44 + }, + { + "start": 23168.04, + "end": 23169.7, + "probability": 0.7388 + }, + { + "start": 23170.4, + "end": 23171.56, + "probability": 0.7572 + }, + { + "start": 23172.3, + "end": 23172.74, + "probability": 0.8561 + }, + { + "start": 23172.82, + "end": 23177.2, + "probability": 0.9773 + }, + { + "start": 23177.38, + "end": 23178.28, + "probability": 0.8212 + }, + { + "start": 23178.42, + "end": 23179.0, + "probability": 0.9354 + }, + { + "start": 23179.04, + "end": 23179.52, + "probability": 0.72 + }, + { + "start": 23179.98, + "end": 23183.07, + "probability": 0.9976 + }, + { + "start": 23183.52, + "end": 23184.92, + "probability": 0.9307 + }, + { + "start": 23185.32, + "end": 23185.5, + "probability": 0.011 + }, + { + "start": 23185.5, + "end": 23187.22, + "probability": 0.13 + }, + { + "start": 23187.36, + "end": 23190.2, + "probability": 0.8915 + }, + { + "start": 23190.28, + "end": 23192.02, + "probability": 0.7909 + }, + { + "start": 23193.28, + "end": 23198.94, + "probability": 0.8145 + }, + { + "start": 23198.98, + "end": 23201.22, + "probability": 0.9993 + }, + { + "start": 23201.64, + "end": 23202.36, + "probability": 0.9164 + }, + { + "start": 23202.44, + "end": 23207.28, + "probability": 0.9966 + }, + { + "start": 23208.08, + "end": 23208.54, + "probability": 0.9391 + }, + { + "start": 23208.88, + "end": 23212.42, + "probability": 0.9218 + }, + { + "start": 23212.42, + "end": 23213.58, + "probability": 0.8998 + }, + { + "start": 23213.62, + "end": 23219.3, + "probability": 0.8937 + }, + { + "start": 23219.44, + "end": 23223.55, + "probability": 0.9055 + }, + { + "start": 23224.74, + "end": 23226.34, + "probability": 0.6365 + }, + { + "start": 23226.46, + "end": 23227.8, + "probability": 0.8615 + }, + { + "start": 23227.9, + "end": 23230.46, + "probability": 0.9866 + }, + { + "start": 23231.22, + "end": 23232.18, + "probability": 0.6664 + }, + { + "start": 23232.44, + "end": 23234.06, + "probability": 0.8567 + }, + { + "start": 23234.06, + "end": 23236.04, + "probability": 0.603 + }, + { + "start": 23236.24, + "end": 23238.34, + "probability": 0.5571 + }, + { + "start": 23240.06, + "end": 23240.42, + "probability": 0.3174 + }, + { + "start": 23240.46, + "end": 23241.16, + "probability": 0.9028 + }, + { + "start": 23241.24, + "end": 23246.06, + "probability": 0.9917 + }, + { + "start": 23246.12, + "end": 23248.38, + "probability": 0.8411 + }, + { + "start": 23248.94, + "end": 23251.42, + "probability": 0.8581 + }, + { + "start": 23252.38, + "end": 23253.32, + "probability": 0.9432 + }, + { + "start": 23253.88, + "end": 23254.22, + "probability": 0.8459 + }, + { + "start": 23254.32, + "end": 23254.84, + "probability": 0.9296 + }, + { + "start": 23254.98, + "end": 23256.84, + "probability": 0.9419 + }, + { + "start": 23256.94, + "end": 23258.06, + "probability": 0.9794 + }, + { + "start": 23259.08, + "end": 23263.0, + "probability": 0.9911 + }, + { + "start": 23263.58, + "end": 23269.13, + "probability": 0.9985 + }, + { + "start": 23269.18, + "end": 23272.68, + "probability": 0.981 + }, + { + "start": 23272.84, + "end": 23274.94, + "probability": 0.988 + }, + { + "start": 23275.94, + "end": 23279.94, + "probability": 0.9989 + }, + { + "start": 23280.12, + "end": 23281.64, + "probability": 0.8652 + }, + { + "start": 23281.78, + "end": 23283.64, + "probability": 0.7859 + }, + { + "start": 23284.26, + "end": 23284.6, + "probability": 0.8678 + }, + { + "start": 23284.62, + "end": 23288.08, + "probability": 0.9666 + }, + { + "start": 23288.12, + "end": 23288.9, + "probability": 0.939 + }, + { + "start": 23289.8, + "end": 23292.98, + "probability": 0.9922 + }, + { + "start": 23293.36, + "end": 23294.14, + "probability": 0.9194 + }, + { + "start": 23295.4, + "end": 23296.66, + "probability": 0.8271 + }, + { + "start": 23296.8, + "end": 23299.34, + "probability": 0.9043 + }, + { + "start": 23301.04, + "end": 23301.74, + "probability": 0.703 + }, + { + "start": 23302.84, + "end": 23304.08, + "probability": 0.7149 + }, + { + "start": 23304.76, + "end": 23308.18, + "probability": 0.8535 + }, + { + "start": 23308.91, + "end": 23310.67, + "probability": 0.9468 + }, + { + "start": 23310.94, + "end": 23311.58, + "probability": 0.5659 + }, + { + "start": 23313.28, + "end": 23318.12, + "probability": 0.9987 + }, + { + "start": 23318.22, + "end": 23320.56, + "probability": 0.9917 + }, + { + "start": 23320.8, + "end": 23323.78, + "probability": 0.9405 + }, + { + "start": 23323.9, + "end": 23324.38, + "probability": 0.6625 + }, + { + "start": 23324.44, + "end": 23328.08, + "probability": 0.8459 + }, + { + "start": 23328.2, + "end": 23330.62, + "probability": 0.9993 + }, + { + "start": 23330.94, + "end": 23331.78, + "probability": 0.781 + }, + { + "start": 23332.16, + "end": 23333.24, + "probability": 0.9858 + }, + { + "start": 23333.76, + "end": 23335.72, + "probability": 0.9526 + }, + { + "start": 23336.88, + "end": 23337.64, + "probability": 0.8728 + }, + { + "start": 23338.76, + "end": 23342.17, + "probability": 0.9472 + }, + { + "start": 23343.12, + "end": 23345.04, + "probability": 0.5616 + }, + { + "start": 23345.14, + "end": 23347.8, + "probability": 0.9709 + }, + { + "start": 23347.88, + "end": 23349.6, + "probability": 0.8214 + }, + { + "start": 23350.2, + "end": 23350.44, + "probability": 0.225 + }, + { + "start": 23351.02, + "end": 23351.68, + "probability": 0.7508 + }, + { + "start": 23351.96, + "end": 23354.04, + "probability": 0.9394 + }, + { + "start": 23354.1, + "end": 23359.22, + "probability": 0.9946 + }, + { + "start": 23359.32, + "end": 23360.18, + "probability": 0.6935 + }, + { + "start": 23360.28, + "end": 23361.4, + "probability": 0.9365 + }, + { + "start": 23362.64, + "end": 23363.82, + "probability": 0.833 + }, + { + "start": 23366.72, + "end": 23368.98, + "probability": 0.9946 + }, + { + "start": 23371.58, + "end": 23376.52, + "probability": 0.9554 + }, + { + "start": 23377.84, + "end": 23379.42, + "probability": 0.9268 + }, + { + "start": 23381.24, + "end": 23382.9, + "probability": 0.6788 + }, + { + "start": 23383.06, + "end": 23384.24, + "probability": 0.6931 + }, + { + "start": 23384.28, + "end": 23387.7, + "probability": 0.9713 + }, + { + "start": 23387.74, + "end": 23389.98, + "probability": 0.7801 + }, + { + "start": 23390.38, + "end": 23390.56, + "probability": 0.5848 + }, + { + "start": 23390.76, + "end": 23392.18, + "probability": 0.921 + }, + { + "start": 23392.28, + "end": 23393.3, + "probability": 0.689 + }, + { + "start": 23393.54, + "end": 23398.4, + "probability": 0.945 + }, + { + "start": 23400.1, + "end": 23402.66, + "probability": 0.9846 + }, + { + "start": 23403.54, + "end": 23404.38, + "probability": 0.3095 + }, + { + "start": 23404.8, + "end": 23407.9, + "probability": 0.9761 + }, + { + "start": 23408.14, + "end": 23409.94, + "probability": 0.9866 + }, + { + "start": 23410.0, + "end": 23413.84, + "probability": 0.9648 + }, + { + "start": 23414.28, + "end": 23417.4, + "probability": 0.9941 + }, + { + "start": 23417.4, + "end": 23419.48, + "probability": 0.7646 + }, + { + "start": 23419.58, + "end": 23420.4, + "probability": 0.719 + }, + { + "start": 23421.62, + "end": 23422.58, + "probability": 0.8325 + }, + { + "start": 23423.28, + "end": 23423.64, + "probability": 0.7651 + }, + { + "start": 23424.18, + "end": 23426.9, + "probability": 0.9242 + }, + { + "start": 23427.42, + "end": 23428.98, + "probability": 0.9963 + }, + { + "start": 23429.1, + "end": 23431.0, + "probability": 0.9961 + }, + { + "start": 23431.12, + "end": 23431.88, + "probability": 0.3418 + }, + { + "start": 23431.88, + "end": 23433.64, + "probability": 0.8532 + }, + { + "start": 23434.04, + "end": 23435.22, + "probability": 0.8372 + }, + { + "start": 23435.6, + "end": 23438.6, + "probability": 0.9411 + }, + { + "start": 23438.78, + "end": 23439.24, + "probability": 0.709 + }, + { + "start": 23439.6, + "end": 23441.14, + "probability": 0.9669 + }, + { + "start": 23441.76, + "end": 23445.16, + "probability": 0.9857 + }, + { + "start": 23445.16, + "end": 23447.96, + "probability": 0.9799 + }, + { + "start": 23448.36, + "end": 23449.16, + "probability": 0.835 + }, + { + "start": 23449.64, + "end": 23450.22, + "probability": 0.8054 + }, + { + "start": 23455.14, + "end": 23458.58, + "probability": 0.7968 + }, + { + "start": 23459.46, + "end": 23461.68, + "probability": 0.7151 + }, + { + "start": 23464.36, + "end": 23467.8, + "probability": 0.8281 + }, + { + "start": 23471.88, + "end": 23472.18, + "probability": 0.0408 + }, + { + "start": 23472.18, + "end": 23473.38, + "probability": 0.5582 + }, + { + "start": 23473.5, + "end": 23473.96, + "probability": 0.3328 + }, + { + "start": 23474.16, + "end": 23474.28, + "probability": 0.6198 + }, + { + "start": 23476.7, + "end": 23477.78, + "probability": 0.5081 + }, + { + "start": 23478.22, + "end": 23481.88, + "probability": 0.7735 + }, + { + "start": 23482.21, + "end": 23486.98, + "probability": 0.4475 + }, + { + "start": 23488.9, + "end": 23490.16, + "probability": 0.1152 + }, + { + "start": 23490.82, + "end": 23494.38, + "probability": 0.0222 + }, + { + "start": 23494.48, + "end": 23496.36, + "probability": 0.2003 + }, + { + "start": 23496.88, + "end": 23497.08, + "probability": 0.1815 + }, + { + "start": 23497.62, + "end": 23499.42, + "probability": 0.5995 + }, + { + "start": 23500.54, + "end": 23505.74, + "probability": 0.7494 + }, + { + "start": 23506.93, + "end": 23508.56, + "probability": 0.5767 + }, + { + "start": 23508.6, + "end": 23510.6, + "probability": 0.5267 + }, + { + "start": 23510.7, + "end": 23511.16, + "probability": 0.4366 + }, + { + "start": 23511.3, + "end": 23511.78, + "probability": 0.4437 + }, + { + "start": 23511.82, + "end": 23512.64, + "probability": 0.4981 + }, + { + "start": 23513.06, + "end": 23513.64, + "probability": 0.4696 + }, + { + "start": 23513.86, + "end": 23515.32, + "probability": 0.3997 + }, + { + "start": 23516.1, + "end": 23517.14, + "probability": 0.3347 + }, + { + "start": 23517.94, + "end": 23520.66, + "probability": 0.007 + }, + { + "start": 23525.12, + "end": 23526.46, + "probability": 0.6042 + }, + { + "start": 23529.18, + "end": 23532.34, + "probability": 0.553 + }, + { + "start": 23532.76, + "end": 23535.14, + "probability": 0.5142 + }, + { + "start": 23535.28, + "end": 23536.76, + "probability": 0.4831 + }, + { + "start": 23538.5, + "end": 23539.78, + "probability": 0.0185 + }, + { + "start": 23541.08, + "end": 23542.01, + "probability": 0.1773 + }, + { + "start": 23543.98, + "end": 23548.46, + "probability": 0.2908 + }, + { + "start": 23548.46, + "end": 23549.86, + "probability": 0.2748 + }, + { + "start": 23565.48, + "end": 23566.56, + "probability": 0.3485 + }, + { + "start": 23567.7, + "end": 23573.22, + "probability": 0.9976 + }, + { + "start": 23574.0, + "end": 23575.53, + "probability": 0.9885 + }, + { + "start": 23576.78, + "end": 23581.58, + "probability": 0.9914 + }, + { + "start": 23581.68, + "end": 23582.3, + "probability": 0.5224 + }, + { + "start": 23582.36, + "end": 23583.62, + "probability": 0.9905 + }, + { + "start": 23583.82, + "end": 23585.58, + "probability": 0.9495 + }, + { + "start": 23586.78, + "end": 23593.6, + "probability": 0.9934 + }, + { + "start": 23593.82, + "end": 23596.92, + "probability": 0.9946 + }, + { + "start": 23596.92, + "end": 23600.32, + "probability": 0.9252 + }, + { + "start": 23600.42, + "end": 23606.45, + "probability": 0.9966 + }, + { + "start": 23607.18, + "end": 23609.26, + "probability": 0.9438 + }, + { + "start": 23609.38, + "end": 23609.96, + "probability": 0.9381 + }, + { + "start": 23610.12, + "end": 23613.94, + "probability": 0.8277 + }, + { + "start": 23614.44, + "end": 23614.92, + "probability": 0.8739 + }, + { + "start": 23615.28, + "end": 23619.6, + "probability": 0.9941 + }, + { + "start": 23620.22, + "end": 23624.92, + "probability": 0.9939 + }, + { + "start": 23625.84, + "end": 23630.9, + "probability": 0.4955 + }, + { + "start": 23631.54, + "end": 23633.72, + "probability": 0.0143 + }, + { + "start": 23634.16, + "end": 23634.34, + "probability": 0.009 + }, + { + "start": 23634.34, + "end": 23634.34, + "probability": 0.0516 + }, + { + "start": 23634.34, + "end": 23634.34, + "probability": 0.2171 + }, + { + "start": 23634.34, + "end": 23637.06, + "probability": 0.4019 + }, + { + "start": 23637.06, + "end": 23638.26, + "probability": 0.4978 + }, + { + "start": 23639.06, + "end": 23639.96, + "probability": 0.0802 + }, + { + "start": 23639.96, + "end": 23642.06, + "probability": 0.7156 + }, + { + "start": 23642.74, + "end": 23643.76, + "probability": 0.8472 + }, + { + "start": 23644.34, + "end": 23647.5, + "probability": 0.8944 + }, + { + "start": 23648.46, + "end": 23654.34, + "probability": 0.9885 + }, + { + "start": 23654.74, + "end": 23656.16, + "probability": 0.9961 + }, + { + "start": 23656.68, + "end": 23657.78, + "probability": 0.9402 + }, + { + "start": 23657.96, + "end": 23658.16, + "probability": 0.8669 + }, + { + "start": 23658.28, + "end": 23659.62, + "probability": 0.9663 + }, + { + "start": 23660.1, + "end": 23662.68, + "probability": 0.9966 + }, + { + "start": 23662.68, + "end": 23665.48, + "probability": 0.9967 + }, + { + "start": 23666.36, + "end": 23667.72, + "probability": 0.9966 + }, + { + "start": 23668.6, + "end": 23669.5, + "probability": 0.32 + }, + { + "start": 23669.68, + "end": 23671.04, + "probability": 0.9839 + }, + { + "start": 23672.48, + "end": 23672.96, + "probability": 0.7338 + }, + { + "start": 23675.1, + "end": 23679.84, + "probability": 0.9941 + }, + { + "start": 23680.84, + "end": 23681.88, + "probability": 0.9224 + }, + { + "start": 23682.1, + "end": 23683.59, + "probability": 0.999 + }, + { + "start": 23684.54, + "end": 23689.52, + "probability": 0.9927 + }, + { + "start": 23689.52, + "end": 23694.54, + "probability": 0.9953 + }, + { + "start": 23694.68, + "end": 23696.66, + "probability": 0.9972 + }, + { + "start": 23697.1, + "end": 23699.69, + "probability": 0.8772 + }, + { + "start": 23700.8, + "end": 23701.66, + "probability": 0.5654 + }, + { + "start": 23701.98, + "end": 23708.94, + "probability": 0.9559 + }, + { + "start": 23709.04, + "end": 23709.86, + "probability": 0.9099 + }, + { + "start": 23710.16, + "end": 23713.94, + "probability": 0.9865 + }, + { + "start": 23714.54, + "end": 23719.82, + "probability": 0.9937 + }, + { + "start": 23720.6, + "end": 23725.6, + "probability": 0.9785 + }, + { + "start": 23729.94, + "end": 23735.44, + "probability": 0.9891 + }, + { + "start": 23737.18, + "end": 23742.38, + "probability": 0.9976 + }, + { + "start": 23743.02, + "end": 23746.82, + "probability": 0.938 + }, + { + "start": 23746.94, + "end": 23748.16, + "probability": 0.6605 + }, + { + "start": 23748.6, + "end": 23749.79, + "probability": 0.9404 + }, + { + "start": 23750.66, + "end": 23753.96, + "probability": 0.9149 + }, + { + "start": 23754.04, + "end": 23757.05, + "probability": 0.9624 + }, + { + "start": 23757.62, + "end": 23761.5, + "probability": 0.9988 + }, + { + "start": 23761.94, + "end": 23765.02, + "probability": 0.9985 + }, + { + "start": 23765.24, + "end": 23765.34, + "probability": 0.1711 + }, + { + "start": 23765.42, + "end": 23766.9, + "probability": 0.7688 + }, + { + "start": 23767.58, + "end": 23770.18, + "probability": 0.9556 + }, + { + "start": 23770.18, + "end": 23772.84, + "probability": 0.9985 + }, + { + "start": 23773.28, + "end": 23775.64, + "probability": 0.9889 + }, + { + "start": 23776.14, + "end": 23776.93, + "probability": 0.9238 + }, + { + "start": 23777.8, + "end": 23778.88, + "probability": 0.9716 + }, + { + "start": 23779.22, + "end": 23779.78, + "probability": 0.7438 + }, + { + "start": 23779.92, + "end": 23780.49, + "probability": 0.7349 + }, + { + "start": 23780.74, + "end": 23781.9, + "probability": 0.2909 + }, + { + "start": 23781.94, + "end": 23783.68, + "probability": 0.9873 + }, + { + "start": 23784.16, + "end": 23786.48, + "probability": 0.9732 + }, + { + "start": 23786.62, + "end": 23787.76, + "probability": 0.8731 + }, + { + "start": 23788.62, + "end": 23791.2, + "probability": 0.9507 + }, + { + "start": 23791.58, + "end": 23795.2, + "probability": 0.9961 + }, + { + "start": 23796.24, + "end": 23802.04, + "probability": 0.8902 + }, + { + "start": 23803.46, + "end": 23807.68, + "probability": 0.9975 + }, + { + "start": 23808.1, + "end": 23809.08, + "probability": 0.8604 + }, + { + "start": 23809.38, + "end": 23810.44, + "probability": 0.9219 + }, + { + "start": 23810.84, + "end": 23811.34, + "probability": 0.3104 + }, + { + "start": 23811.78, + "end": 23812.52, + "probability": 0.5165 + }, + { + "start": 23813.06, + "end": 23817.6, + "probability": 0.9843 + }, + { + "start": 23818.04, + "end": 23819.26, + "probability": 0.9199 + }, + { + "start": 23819.56, + "end": 23820.8, + "probability": 0.9867 + }, + { + "start": 23821.04, + "end": 23822.8, + "probability": 0.926 + }, + { + "start": 23825.88, + "end": 23826.26, + "probability": 0.0972 + }, + { + "start": 23826.26, + "end": 23827.74, + "probability": 0.9531 + }, + { + "start": 23828.26, + "end": 23829.54, + "probability": 0.7076 + }, + { + "start": 23829.74, + "end": 23833.1, + "probability": 0.9926 + }, + { + "start": 23833.62, + "end": 23834.7, + "probability": 0.9837 + }, + { + "start": 23834.8, + "end": 23836.0, + "probability": 0.9754 + }, + { + "start": 23836.38, + "end": 23839.9, + "probability": 0.9973 + }, + { + "start": 23840.94, + "end": 23842.22, + "probability": 0.9707 + }, + { + "start": 23842.64, + "end": 23846.42, + "probability": 0.9868 + }, + { + "start": 23846.58, + "end": 23847.76, + "probability": 0.9127 + }, + { + "start": 23848.44, + "end": 23851.92, + "probability": 0.9878 + }, + { + "start": 23853.54, + "end": 23855.6, + "probability": 0.9648 + }, + { + "start": 23855.8, + "end": 23858.72, + "probability": 0.9793 + }, + { + "start": 23859.76, + "end": 23862.24, + "probability": 0.901 + }, + { + "start": 23863.04, + "end": 23864.96, + "probability": 0.9837 + }, + { + "start": 23865.26, + "end": 23866.74, + "probability": 0.9794 + }, + { + "start": 23867.16, + "end": 23869.94, + "probability": 0.9842 + }, + { + "start": 23871.34, + "end": 23871.92, + "probability": 0.9589 + }, + { + "start": 23877.66, + "end": 23879.94, + "probability": 0.5731 + }, + { + "start": 23899.26, + "end": 23899.26, + "probability": 0.5936 + }, + { + "start": 23899.26, + "end": 23900.02, + "probability": 0.6163 + }, + { + "start": 23904.98, + "end": 23905.77, + "probability": 0.8013 + }, + { + "start": 23906.1, + "end": 23907.28, + "probability": 0.0197 + }, + { + "start": 23907.98, + "end": 23912.48, + "probability": 0.9469 + }, + { + "start": 23913.16, + "end": 23915.52, + "probability": 0.9598 + }, + { + "start": 23916.66, + "end": 23920.72, + "probability": 0.9824 + }, + { + "start": 23924.28, + "end": 23925.46, + "probability": 0.9968 + }, + { + "start": 23926.82, + "end": 23927.76, + "probability": 0.9659 + }, + { + "start": 23928.52, + "end": 23929.32, + "probability": 0.7522 + }, + { + "start": 23930.24, + "end": 23932.38, + "probability": 0.8442 + }, + { + "start": 23933.44, + "end": 23937.14, + "probability": 0.8462 + }, + { + "start": 23938.92, + "end": 23940.56, + "probability": 0.8273 + }, + { + "start": 23943.54, + "end": 23944.3, + "probability": 0.8635 + }, + { + "start": 23944.34, + "end": 23945.2, + "probability": 0.805 + }, + { + "start": 23945.36, + "end": 23950.74, + "probability": 0.9907 + }, + { + "start": 23951.84, + "end": 23954.84, + "probability": 0.9808 + }, + { + "start": 23956.2, + "end": 23956.74, + "probability": 0.3385 + }, + { + "start": 23957.8, + "end": 23959.36, + "probability": 0.9927 + }, + { + "start": 23960.6, + "end": 23961.74, + "probability": 0.9195 + }, + { + "start": 23962.42, + "end": 23964.36, + "probability": 0.9978 + }, + { + "start": 23964.54, + "end": 23969.36, + "probability": 0.9497 + }, + { + "start": 23970.56, + "end": 23970.76, + "probability": 0.0903 + }, + { + "start": 23971.62, + "end": 23973.34, + "probability": 0.9702 + }, + { + "start": 23973.54, + "end": 23982.0, + "probability": 0.9966 + }, + { + "start": 23983.94, + "end": 23985.32, + "probability": 0.9636 + }, + { + "start": 23986.24, + "end": 23989.22, + "probability": 0.992 + }, + { + "start": 23989.98, + "end": 23991.86, + "probability": 0.9939 + }, + { + "start": 23994.06, + "end": 23995.02, + "probability": 0.8424 + }, + { + "start": 23997.8, + "end": 24000.04, + "probability": 0.5938 + }, + { + "start": 24001.24, + "end": 24003.36, + "probability": 0.9922 + }, + { + "start": 24005.56, + "end": 24009.12, + "probability": 0.7732 + }, + { + "start": 24011.28, + "end": 24017.0, + "probability": 0.9927 + }, + { + "start": 24018.26, + "end": 24019.48, + "probability": 0.6801 + }, + { + "start": 24019.56, + "end": 24020.51, + "probability": 0.9985 + }, + { + "start": 24021.88, + "end": 24022.7, + "probability": 0.9175 + }, + { + "start": 24022.82, + "end": 24023.76, + "probability": 0.9401 + }, + { + "start": 24024.76, + "end": 24027.6, + "probability": 0.9595 + }, + { + "start": 24027.7, + "end": 24029.0, + "probability": 0.9982 + }, + { + "start": 24030.32, + "end": 24033.16, + "probability": 0.9564 + }, + { + "start": 24033.6, + "end": 24037.14, + "probability": 0.0533 + }, + { + "start": 24039.52, + "end": 24040.16, + "probability": 0.3022 + }, + { + "start": 24040.38, + "end": 24040.6, + "probability": 0.0554 + }, + { + "start": 24040.6, + "end": 24040.6, + "probability": 0.3377 + }, + { + "start": 24040.6, + "end": 24040.78, + "probability": 0.4487 + }, + { + "start": 24040.86, + "end": 24041.42, + "probability": 0.4728 + }, + { + "start": 24041.86, + "end": 24042.28, + "probability": 0.2654 + }, + { + "start": 24042.48, + "end": 24045.5, + "probability": 0.488 + }, + { + "start": 24045.54, + "end": 24049.5, + "probability": 0.9539 + }, + { + "start": 24049.6, + "end": 24050.32, + "probability": 0.0251 + }, + { + "start": 24050.32, + "end": 24053.48, + "probability": 0.8528 + }, + { + "start": 24053.64, + "end": 24056.0, + "probability": 0.8826 + }, + { + "start": 24056.96, + "end": 24058.82, + "probability": 0.9874 + }, + { + "start": 24059.48, + "end": 24061.52, + "probability": 0.9875 + }, + { + "start": 24061.58, + "end": 24062.48, + "probability": 0.4187 + }, + { + "start": 24063.2, + "end": 24063.54, + "probability": 0.4197 + }, + { + "start": 24063.84, + "end": 24070.46, + "probability": 0.9698 + }, + { + "start": 24071.08, + "end": 24073.44, + "probability": 0.9837 + }, + { + "start": 24073.44, + "end": 24074.74, + "probability": 0.9775 + }, + { + "start": 24074.84, + "end": 24075.2, + "probability": 0.4706 + }, + { + "start": 24075.2, + "end": 24079.32, + "probability": 0.863 + }, + { + "start": 24079.32, + "end": 24080.08, + "probability": 0.0905 + }, + { + "start": 24080.14, + "end": 24080.2, + "probability": 0.5116 + }, + { + "start": 24080.2, + "end": 24082.66, + "probability": 0.5238 + }, + { + "start": 24083.56, + "end": 24084.8, + "probability": 0.6605 + }, + { + "start": 24084.84, + "end": 24085.32, + "probability": 0.7751 + }, + { + "start": 24085.34, + "end": 24086.02, + "probability": 0.4912 + }, + { + "start": 24086.04, + "end": 24087.24, + "probability": 0.5349 + }, + { + "start": 24087.26, + "end": 24089.04, + "probability": 0.9473 + }, + { + "start": 24089.04, + "end": 24089.72, + "probability": 0.5223 + }, + { + "start": 24089.72, + "end": 24089.9, + "probability": 0.1626 + }, + { + "start": 24089.9, + "end": 24092.34, + "probability": 0.6969 + }, + { + "start": 24092.94, + "end": 24096.28, + "probability": 0.9377 + }, + { + "start": 24096.5, + "end": 24098.67, + "probability": 0.9977 + }, + { + "start": 24099.32, + "end": 24102.16, + "probability": 0.9864 + }, + { + "start": 24102.4, + "end": 24103.74, + "probability": 0.8916 + }, + { + "start": 24104.1, + "end": 24105.86, + "probability": 0.9854 + }, + { + "start": 24106.08, + "end": 24108.28, + "probability": 0.7355 + }, + { + "start": 24108.84, + "end": 24109.94, + "probability": 0.9841 + }, + { + "start": 24110.62, + "end": 24111.94, + "probability": 0.7005 + }, + { + "start": 24112.04, + "end": 24116.8, + "probability": 0.9743 + }, + { + "start": 24117.74, + "end": 24118.42, + "probability": 0.9673 + }, + { + "start": 24118.72, + "end": 24119.74, + "probability": 0.7455 + }, + { + "start": 24119.82, + "end": 24120.46, + "probability": 0.8603 + }, + { + "start": 24120.52, + "end": 24121.81, + "probability": 0.9937 + }, + { + "start": 24123.0, + "end": 24123.58, + "probability": 0.968 + }, + { + "start": 24123.6, + "end": 24125.62, + "probability": 0.8621 + }, + { + "start": 24125.72, + "end": 24126.56, + "probability": 0.9764 + }, + { + "start": 24126.82, + "end": 24132.7, + "probability": 0.9742 + }, + { + "start": 24132.86, + "end": 24133.64, + "probability": 0.6897 + }, + { + "start": 24133.74, + "end": 24135.37, + "probability": 0.9595 + }, + { + "start": 24136.08, + "end": 24138.88, + "probability": 0.9883 + }, + { + "start": 24140.5, + "end": 24144.64, + "probability": 0.9862 + }, + { + "start": 24144.7, + "end": 24147.32, + "probability": 0.9842 + }, + { + "start": 24147.56, + "end": 24149.45, + "probability": 0.9944 + }, + { + "start": 24149.94, + "end": 24150.92, + "probability": 0.685 + }, + { + "start": 24151.62, + "end": 24152.08, + "probability": 0.8815 + }, + { + "start": 24152.4, + "end": 24153.72, + "probability": 0.6002 + }, + { + "start": 24153.78, + "end": 24157.12, + "probability": 0.9155 + }, + { + "start": 24157.46, + "end": 24159.28, + "probability": 0.9641 + }, + { + "start": 24159.36, + "end": 24160.1, + "probability": 0.6028 + }, + { + "start": 24160.28, + "end": 24162.96, + "probability": 0.9823 + }, + { + "start": 24163.04, + "end": 24163.38, + "probability": 0.5164 + }, + { + "start": 24163.38, + "end": 24164.52, + "probability": 0.9857 + }, + { + "start": 24164.86, + "end": 24166.3, + "probability": 0.9935 + }, + { + "start": 24166.46, + "end": 24167.34, + "probability": 0.651 + }, + { + "start": 24167.9, + "end": 24168.84, + "probability": 0.9461 + }, + { + "start": 24168.88, + "end": 24168.96, + "probability": 0.5103 + }, + { + "start": 24168.96, + "end": 24169.3, + "probability": 0.7002 + }, + { + "start": 24169.54, + "end": 24171.2, + "probability": 0.9133 + }, + { + "start": 24171.4, + "end": 24173.08, + "probability": 0.9864 + }, + { + "start": 24173.16, + "end": 24173.86, + "probability": 0.1375 + }, + { + "start": 24174.0, + "end": 24176.9, + "probability": 0.9882 + }, + { + "start": 24176.96, + "end": 24177.76, + "probability": 0.881 + }, + { + "start": 24177.96, + "end": 24179.83, + "probability": 0.6371 + }, + { + "start": 24180.88, + "end": 24181.52, + "probability": 0.9615 + }, + { + "start": 24181.68, + "end": 24181.78, + "probability": 0.8618 + }, + { + "start": 24181.94, + "end": 24182.36, + "probability": 0.8409 + }, + { + "start": 24182.5, + "end": 24182.78, + "probability": 0.5746 + }, + { + "start": 24182.96, + "end": 24184.12, + "probability": 0.7834 + }, + { + "start": 24184.3, + "end": 24188.46, + "probability": 0.8739 + }, + { + "start": 24188.52, + "end": 24190.56, + "probability": 0.6884 + }, + { + "start": 24190.66, + "end": 24192.42, + "probability": 0.7468 + }, + { + "start": 24193.26, + "end": 24197.22, + "probability": 0.8418 + }, + { + "start": 24197.32, + "end": 24198.62, + "probability": 0.7991 + }, + { + "start": 24198.7, + "end": 24199.18, + "probability": 0.7847 + }, + { + "start": 24199.52, + "end": 24200.86, + "probability": 0.9988 + }, + { + "start": 24201.2, + "end": 24203.36, + "probability": 0.7105 + }, + { + "start": 24203.38, + "end": 24204.1, + "probability": 0.7856 + }, + { + "start": 24204.12, + "end": 24206.42, + "probability": 0.9838 + }, + { + "start": 24207.34, + "end": 24207.68, + "probability": 0.816 + }, + { + "start": 24209.26, + "end": 24209.55, + "probability": 0.138 + }, + { + "start": 24222.64, + "end": 24223.72, + "probability": 0.3205 + }, + { + "start": 24223.72, + "end": 24225.56, + "probability": 0.7581 + }, + { + "start": 24226.82, + "end": 24228.92, + "probability": 0.9852 + }, + { + "start": 24231.2, + "end": 24234.12, + "probability": 0.1936 + }, + { + "start": 24234.6, + "end": 24236.38, + "probability": 0.1727 + }, + { + "start": 24236.58, + "end": 24237.52, + "probability": 0.7603 + }, + { + "start": 24238.8, + "end": 24240.4, + "probability": 0.8885 + }, + { + "start": 24240.73, + "end": 24242.58, + "probability": 0.5037 + }, + { + "start": 24242.58, + "end": 24243.26, + "probability": 0.2967 + }, + { + "start": 24243.26, + "end": 24244.18, + "probability": 0.7952 + }, + { + "start": 24244.26, + "end": 24245.32, + "probability": 0.4705 + }, + { + "start": 24245.48, + "end": 24246.84, + "probability": 0.6181 + }, + { + "start": 24248.12, + "end": 24248.94, + "probability": 0.3413 + }, + { + "start": 24250.14, + "end": 24252.04, + "probability": 0.9906 + }, + { + "start": 24253.58, + "end": 24258.46, + "probability": 0.9906 + }, + { + "start": 24260.0, + "end": 24264.72, + "probability": 0.9151 + }, + { + "start": 24264.74, + "end": 24265.58, + "probability": 0.9716 + }, + { + "start": 24265.64, + "end": 24266.04, + "probability": 0.8741 + }, + { + "start": 24267.34, + "end": 24274.12, + "probability": 0.8846 + }, + { + "start": 24274.62, + "end": 24276.88, + "probability": 0.2648 + }, + { + "start": 24277.72, + "end": 24281.76, + "probability": 0.9596 + }, + { + "start": 24282.36, + "end": 24283.46, + "probability": 0.9651 + }, + { + "start": 24284.08, + "end": 24287.3, + "probability": 0.9863 + }, + { + "start": 24288.3, + "end": 24291.28, + "probability": 0.8755 + }, + { + "start": 24292.14, + "end": 24292.5, + "probability": 0.5501 + }, + { + "start": 24293.4, + "end": 24294.9, + "probability": 0.2461 + }, + { + "start": 24294.9, + "end": 24294.9, + "probability": 0.254 + }, + { + "start": 24294.9, + "end": 24294.9, + "probability": 0.3581 + }, + { + "start": 24294.9, + "end": 24302.22, + "probability": 0.7995 + }, + { + "start": 24302.38, + "end": 24303.66, + "probability": 0.7995 + }, + { + "start": 24304.46, + "end": 24311.2, + "probability": 0.6645 + }, + { + "start": 24312.22, + "end": 24313.08, + "probability": 0.3943 + }, + { + "start": 24313.86, + "end": 24315.6, + "probability": 0.7771 + }, + { + "start": 24317.52, + "end": 24318.66, + "probability": 0.7207 + }, + { + "start": 24320.64, + "end": 24326.72, + "probability": 0.9332 + }, + { + "start": 24327.52, + "end": 24328.58, + "probability": 0.9817 + }, + { + "start": 24329.4, + "end": 24333.58, + "probability": 0.9688 + }, + { + "start": 24334.44, + "end": 24337.91, + "probability": 0.9807 + }, + { + "start": 24338.76, + "end": 24339.62, + "probability": 0.3215 + }, + { + "start": 24341.48, + "end": 24341.94, + "probability": 0.6568 + }, + { + "start": 24342.86, + "end": 24346.55, + "probability": 0.855 + }, + { + "start": 24347.5, + "end": 24350.16, + "probability": 0.9305 + }, + { + "start": 24351.42, + "end": 24352.24, + "probability": 0.7402 + }, + { + "start": 24352.34, + "end": 24353.84, + "probability": 0.8529 + }, + { + "start": 24353.92, + "end": 24356.76, + "probability": 0.5856 + }, + { + "start": 24357.12, + "end": 24358.03, + "probability": 0.055 + }, + { + "start": 24358.8, + "end": 24359.68, + "probability": 0.0841 + }, + { + "start": 24362.13, + "end": 24365.86, + "probability": 0.6796 + }, + { + "start": 24365.94, + "end": 24366.94, + "probability": 0.9597 + }, + { + "start": 24368.34, + "end": 24372.04, + "probability": 0.9548 + }, + { + "start": 24373.08, + "end": 24375.1, + "probability": 0.9929 + }, + { + "start": 24375.78, + "end": 24376.62, + "probability": 0.9595 + }, + { + "start": 24379.24, + "end": 24382.24, + "probability": 0.9965 + }, + { + "start": 24382.94, + "end": 24385.88, + "probability": 0.502 + }, + { + "start": 24387.22, + "end": 24387.42, + "probability": 0.969 + }, + { + "start": 24388.18, + "end": 24392.16, + "probability": 0.7455 + }, + { + "start": 24393.06, + "end": 24397.14, + "probability": 0.9268 + }, + { + "start": 24397.62, + "end": 24398.52, + "probability": 0.6312 + }, + { + "start": 24398.8, + "end": 24401.44, + "probability": 0.7595 + }, + { + "start": 24401.94, + "end": 24404.76, + "probability": 0.9805 + }, + { + "start": 24406.46, + "end": 24406.62, + "probability": 0.3819 + }, + { + "start": 24408.04, + "end": 24409.02, + "probability": 0.402 + }, + { + "start": 24410.18, + "end": 24414.56, + "probability": 0.8208 + }, + { + "start": 24415.62, + "end": 24416.74, + "probability": 0.8468 + }, + { + "start": 24418.1, + "end": 24420.86, + "probability": 0.9978 + }, + { + "start": 24422.38, + "end": 24424.62, + "probability": 0.9783 + }, + { + "start": 24425.4, + "end": 24426.04, + "probability": 0.2145 + }, + { + "start": 24426.96, + "end": 24427.92, + "probability": 0.8065 + }, + { + "start": 24429.46, + "end": 24434.46, + "probability": 0.8931 + }, + { + "start": 24434.64, + "end": 24436.32, + "probability": 0.8889 + }, + { + "start": 24437.4, + "end": 24439.44, + "probability": 0.9383 + }, + { + "start": 24440.18, + "end": 24441.11, + "probability": 0.9732 + }, + { + "start": 24442.16, + "end": 24443.04, + "probability": 0.9932 + }, + { + "start": 24444.84, + "end": 24445.06, + "probability": 0.8699 + }, + { + "start": 24446.04, + "end": 24451.2, + "probability": 0.9814 + }, + { + "start": 24451.32, + "end": 24452.38, + "probability": 0.8731 + }, + { + "start": 24453.8, + "end": 24455.06, + "probability": 0.8801 + }, + { + "start": 24456.2, + "end": 24457.28, + "probability": 0.6686 + }, + { + "start": 24458.98, + "end": 24459.92, + "probability": 0.7611 + }, + { + "start": 24461.84, + "end": 24463.4, + "probability": 0.9932 + }, + { + "start": 24464.6, + "end": 24465.22, + "probability": 0.9791 + }, + { + "start": 24466.76, + "end": 24468.44, + "probability": 0.9929 + }, + { + "start": 24470.16, + "end": 24472.4, + "probability": 0.9224 + }, + { + "start": 24473.14, + "end": 24479.74, + "probability": 0.9814 + }, + { + "start": 24480.98, + "end": 24482.19, + "probability": 0.9976 + }, + { + "start": 24483.42, + "end": 24484.27, + "probability": 0.8296 + }, + { + "start": 24486.1, + "end": 24488.52, + "probability": 0.8685 + }, + { + "start": 24489.62, + "end": 24493.08, + "probability": 0.9966 + }, + { + "start": 24494.32, + "end": 24495.18, + "probability": 0.895 + }, + { + "start": 24497.9, + "end": 24500.82, + "probability": 0.816 + }, + { + "start": 24500.86, + "end": 24501.42, + "probability": 0.3772 + }, + { + "start": 24501.5, + "end": 24502.68, + "probability": 0.7405 + }, + { + "start": 24503.66, + "end": 24505.58, + "probability": 0.8733 + }, + { + "start": 24506.36, + "end": 24507.54, + "probability": 0.8685 + }, + { + "start": 24508.34, + "end": 24514.04, + "probability": 0.9961 + }, + { + "start": 24514.12, + "end": 24514.5, + "probability": 0.7858 + }, + { + "start": 24515.96, + "end": 24519.18, + "probability": 0.9758 + }, + { + "start": 24519.72, + "end": 24520.36, + "probability": 0.731 + }, + { + "start": 24521.68, + "end": 24521.96, + "probability": 0.7513 + }, + { + "start": 24522.44, + "end": 24522.98, + "probability": 0.7936 + }, + { + "start": 24526.44, + "end": 24529.38, + "probability": 0.7785 + }, + { + "start": 24543.01, + "end": 24545.6, + "probability": 0.6276 + }, + { + "start": 24547.58, + "end": 24550.26, + "probability": 0.9852 + }, + { + "start": 24551.38, + "end": 24552.0, + "probability": 0.9532 + }, + { + "start": 24553.52, + "end": 24555.34, + "probability": 0.9985 + }, + { + "start": 24555.42, + "end": 24557.04, + "probability": 0.9368 + }, + { + "start": 24558.66, + "end": 24560.7, + "probability": 0.9684 + }, + { + "start": 24561.92, + "end": 24563.82, + "probability": 0.9878 + }, + { + "start": 24566.16, + "end": 24568.64, + "probability": 0.9808 + }, + { + "start": 24570.66, + "end": 24571.5, + "probability": 0.9922 + }, + { + "start": 24573.66, + "end": 24575.04, + "probability": 0.9249 + }, + { + "start": 24577.92, + "end": 24578.34, + "probability": 0.8628 + }, + { + "start": 24578.66, + "end": 24582.5, + "probability": 0.9917 + }, + { + "start": 24584.52, + "end": 24587.42, + "probability": 0.992 + }, + { + "start": 24588.46, + "end": 24590.42, + "probability": 0.9959 + }, + { + "start": 24592.04, + "end": 24593.6, + "probability": 0.8975 + }, + { + "start": 24596.06, + "end": 24596.74, + "probability": 0.4981 + }, + { + "start": 24597.44, + "end": 24600.4, + "probability": 0.9883 + }, + { + "start": 24602.1, + "end": 24603.94, + "probability": 0.9299 + }, + { + "start": 24605.38, + "end": 24605.92, + "probability": 0.9653 + }, + { + "start": 24607.58, + "end": 24608.64, + "probability": 0.8873 + }, + { + "start": 24609.72, + "end": 24610.64, + "probability": 0.8252 + }, + { + "start": 24610.76, + "end": 24611.58, + "probability": 0.9247 + }, + { + "start": 24611.7, + "end": 24612.58, + "probability": 0.8165 + }, + { + "start": 24612.7, + "end": 24615.34, + "probability": 0.9956 + }, + { + "start": 24617.4, + "end": 24620.26, + "probability": 0.9792 + }, + { + "start": 24621.44, + "end": 24622.8, + "probability": 0.9971 + }, + { + "start": 24622.9, + "end": 24623.62, + "probability": 0.8822 + }, + { + "start": 24623.7, + "end": 24624.44, + "probability": 0.9646 + }, + { + "start": 24624.6, + "end": 24626.68, + "probability": 0.4291 + }, + { + "start": 24626.84, + "end": 24628.32, + "probability": 0.9181 + }, + { + "start": 24630.46, + "end": 24631.72, + "probability": 0.9823 + }, + { + "start": 24635.02, + "end": 24637.48, + "probability": 0.9927 + }, + { + "start": 24638.18, + "end": 24640.58, + "probability": 0.9889 + }, + { + "start": 24641.34, + "end": 24644.76, + "probability": 0.9885 + }, + { + "start": 24645.9, + "end": 24646.62, + "probability": 0.6563 + }, + { + "start": 24647.28, + "end": 24650.98, + "probability": 0.9989 + }, + { + "start": 24652.7, + "end": 24654.9, + "probability": 0.9756 + }, + { + "start": 24658.04, + "end": 24661.38, + "probability": 0.9958 + }, + { + "start": 24663.62, + "end": 24666.86, + "probability": 0.996 + }, + { + "start": 24667.9, + "end": 24669.86, + "probability": 0.6647 + }, + { + "start": 24669.94, + "end": 24673.18, + "probability": 0.973 + }, + { + "start": 24673.98, + "end": 24674.47, + "probability": 0.9017 + }, + { + "start": 24675.88, + "end": 24679.5, + "probability": 0.991 + }, + { + "start": 24680.36, + "end": 24681.24, + "probability": 0.9746 + }, + { + "start": 24681.82, + "end": 24683.86, + "probability": 0.743 + }, + { + "start": 24684.42, + "end": 24684.96, + "probability": 0.7638 + }, + { + "start": 24685.62, + "end": 24689.56, + "probability": 0.3251 + }, + { + "start": 24689.56, + "end": 24693.76, + "probability": 0.2014 + }, + { + "start": 24693.76, + "end": 24693.76, + "probability": 0.0839 + }, + { + "start": 24694.0, + "end": 24694.0, + "probability": 0.081 + }, + { + "start": 24694.0, + "end": 24696.23, + "probability": 0.6369 + }, + { + "start": 24697.18, + "end": 24700.08, + "probability": 0.7412 + }, + { + "start": 24700.22, + "end": 24701.2, + "probability": 0.8732 + }, + { + "start": 24702.2, + "end": 24704.4, + "probability": 0.9917 + }, + { + "start": 24704.86, + "end": 24706.34, + "probability": 0.9 + }, + { + "start": 24708.02, + "end": 24709.34, + "probability": 0.9608 + }, + { + "start": 24710.12, + "end": 24711.1, + "probability": 0.9746 + }, + { + "start": 24714.0, + "end": 24716.16, + "probability": 0.9698 + }, + { + "start": 24722.6, + "end": 24724.82, + "probability": 0.7559 + }, + { + "start": 24725.26, + "end": 24729.32, + "probability": 0.9818 + }, + { + "start": 24729.32, + "end": 24730.52, + "probability": 0.8804 + }, + { + "start": 24732.89, + "end": 24734.88, + "probability": 0.7833 + }, + { + "start": 24735.12, + "end": 24738.6, + "probability": 0.881 + }, + { + "start": 24739.76, + "end": 24742.58, + "probability": 0.8901 + }, + { + "start": 24743.14, + "end": 24744.22, + "probability": 0.8955 + }, + { + "start": 24745.5, + "end": 24745.92, + "probability": 0.7861 + }, + { + "start": 24747.12, + "end": 24747.71, + "probability": 0.937 + }, + { + "start": 24748.38, + "end": 24751.82, + "probability": 0.9959 + }, + { + "start": 24751.92, + "end": 24753.54, + "probability": 0.6645 + }, + { + "start": 24753.86, + "end": 24754.92, + "probability": 0.5125 + }, + { + "start": 24755.38, + "end": 24759.2, + "probability": 0.88 + }, + { + "start": 24759.5, + "end": 24762.72, + "probability": 0.7944 + }, + { + "start": 24764.12, + "end": 24767.54, + "probability": 0.729 + }, + { + "start": 24767.82, + "end": 24770.64, + "probability": 0.9913 + }, + { + "start": 24770.8, + "end": 24771.42, + "probability": 0.696 + }, + { + "start": 24771.5, + "end": 24772.52, + "probability": 0.9596 + }, + { + "start": 24773.24, + "end": 24774.78, + "probability": 0.9901 + }, + { + "start": 24775.22, + "end": 24775.88, + "probability": 0.7008 + }, + { + "start": 24776.18, + "end": 24777.22, + "probability": 0.7582 + }, + { + "start": 24777.3, + "end": 24779.48, + "probability": 0.9499 + }, + { + "start": 24779.78, + "end": 24782.08, + "probability": 0.0551 + }, + { + "start": 24782.4, + "end": 24783.38, + "probability": 0.837 + }, + { + "start": 24784.96, + "end": 24788.06, + "probability": 0.9328 + }, + { + "start": 24789.9, + "end": 24792.74, + "probability": 0.9927 + }, + { + "start": 24792.92, + "end": 24796.8, + "probability": 0.9937 + }, + { + "start": 24797.8, + "end": 24799.24, + "probability": 0.5167 + }, + { + "start": 24799.84, + "end": 24800.74, + "probability": 0.3741 + }, + { + "start": 24800.78, + "end": 24801.32, + "probability": 0.9912 + }, + { + "start": 24801.94, + "end": 24804.08, + "probability": 0.9727 + }, + { + "start": 24804.94, + "end": 24806.08, + "probability": 0.9657 + }, + { + "start": 24806.76, + "end": 24808.04, + "probability": 0.9186 + }, + { + "start": 24808.2, + "end": 24810.36, + "probability": 0.9707 + }, + { + "start": 24811.26, + "end": 24816.06, + "probability": 0.9924 + }, + { + "start": 24816.22, + "end": 24819.76, + "probability": 0.9978 + }, + { + "start": 24819.76, + "end": 24822.78, + "probability": 0.9941 + }, + { + "start": 24823.14, + "end": 24824.18, + "probability": 0.8103 + }, + { + "start": 24824.34, + "end": 24824.58, + "probability": 0.4658 + }, + { + "start": 24824.64, + "end": 24825.26, + "probability": 0.5399 + }, + { + "start": 24825.4, + "end": 24826.06, + "probability": 0.9104 + }, + { + "start": 24826.86, + "end": 24828.14, + "probability": 0.8692 + }, + { + "start": 24829.14, + "end": 24830.67, + "probability": 0.9179 + }, + { + "start": 24831.32, + "end": 24836.24, + "probability": 0.7998 + }, + { + "start": 24837.44, + "end": 24838.78, + "probability": 0.948 + }, + { + "start": 24839.4, + "end": 24839.88, + "probability": 0.5612 + }, + { + "start": 24840.48, + "end": 24843.68, + "probability": 0.9044 + }, + { + "start": 24844.36, + "end": 24845.6, + "probability": 0.896 + }, + { + "start": 24849.48, + "end": 24850.14, + "probability": 0.2466 + }, + { + "start": 24850.62, + "end": 24851.97, + "probability": 0.2778 + }, + { + "start": 24853.72, + "end": 24854.34, + "probability": 0.5109 + }, + { + "start": 24854.4, + "end": 24855.7, + "probability": 0.7791 + }, + { + "start": 24855.8, + "end": 24856.54, + "probability": 0.6587 + }, + { + "start": 24856.68, + "end": 24857.78, + "probability": 0.9323 + }, + { + "start": 24858.18, + "end": 24860.62, + "probability": 0.3791 + }, + { + "start": 24860.92, + "end": 24861.4, + "probability": 0.0237 + }, + { + "start": 24862.24, + "end": 24863.22, + "probability": 0.0438 + }, + { + "start": 24863.22, + "end": 24864.12, + "probability": 0.5083 + }, + { + "start": 24865.28, + "end": 24865.92, + "probability": 0.1539 + }, + { + "start": 24867.82, + "end": 24870.18, + "probability": 0.5838 + }, + { + "start": 24870.94, + "end": 24873.68, + "probability": 0.7345 + }, + { + "start": 24873.76, + "end": 24880.56, + "probability": 0.9548 + }, + { + "start": 24880.56, + "end": 24886.24, + "probability": 0.9824 + }, + { + "start": 24886.44, + "end": 24888.26, + "probability": 0.9315 + }, + { + "start": 24889.0, + "end": 24892.48, + "probability": 0.9752 + }, + { + "start": 24892.48, + "end": 24895.72, + "probability": 0.9653 + }, + { + "start": 24896.54, + "end": 24899.95, + "probability": 0.9719 + }, + { + "start": 24900.52, + "end": 24904.06, + "probability": 0.8912 + }, + { + "start": 24904.66, + "end": 24908.78, + "probability": 0.9821 + }, + { + "start": 24909.58, + "end": 24910.4, + "probability": 0.8875 + }, + { + "start": 24910.92, + "end": 24912.14, + "probability": 0.9087 + }, + { + "start": 24912.78, + "end": 24917.54, + "probability": 0.8509 + }, + { + "start": 24918.3, + "end": 24921.92, + "probability": 0.9763 + }, + { + "start": 24921.98, + "end": 24927.04, + "probability": 0.9543 + }, + { + "start": 24927.16, + "end": 24928.6, + "probability": 0.9549 + }, + { + "start": 24928.74, + "end": 24931.46, + "probability": 0.9417 + }, + { + "start": 24932.04, + "end": 24934.58, + "probability": 0.9307 + }, + { + "start": 24934.6, + "end": 24935.94, + "probability": 0.9057 + }, + { + "start": 24936.34, + "end": 24937.57, + "probability": 0.9917 + }, + { + "start": 24938.16, + "end": 24939.16, + "probability": 0.595 + }, + { + "start": 24939.54, + "end": 24940.58, + "probability": 0.8986 + }, + { + "start": 24940.68, + "end": 24942.12, + "probability": 0.8592 + }, + { + "start": 24942.5, + "end": 24947.76, + "probability": 0.9285 + }, + { + "start": 24948.92, + "end": 24953.58, + "probability": 0.9306 + }, + { + "start": 24954.56, + "end": 24956.22, + "probability": 0.8148 + }, + { + "start": 24956.74, + "end": 24960.6, + "probability": 0.9267 + }, + { + "start": 24960.6, + "end": 24964.46, + "probability": 0.995 + }, + { + "start": 24964.46, + "end": 24970.02, + "probability": 0.9791 + }, + { + "start": 24970.82, + "end": 24973.04, + "probability": 0.965 + }, + { + "start": 24973.6, + "end": 24977.7, + "probability": 0.9661 + }, + { + "start": 24978.78, + "end": 24983.68, + "probability": 0.9972 + }, + { + "start": 24984.32, + "end": 24985.12, + "probability": 0.7797 + }, + { + "start": 24985.94, + "end": 24988.94, + "probability": 0.7405 + }, + { + "start": 24989.5, + "end": 24990.34, + "probability": 0.8606 + }, + { + "start": 24990.88, + "end": 24991.62, + "probability": 0.4028 + }, + { + "start": 24992.78, + "end": 24995.46, + "probability": 0.9691 + }, + { + "start": 24996.04, + "end": 24997.52, + "probability": 0.9788 + }, + { + "start": 24997.9, + "end": 25000.58, + "probability": 0.8844 + }, + { + "start": 25000.86, + "end": 25002.02, + "probability": 0.7827 + }, + { + "start": 25003.06, + "end": 25008.62, + "probability": 0.9054 + }, + { + "start": 25009.3, + "end": 25010.62, + "probability": 0.7377 + }, + { + "start": 25011.22, + "end": 25013.6, + "probability": 0.8666 + }, + { + "start": 25014.34, + "end": 25019.74, + "probability": 0.9988 + }, + { + "start": 25020.4, + "end": 25023.66, + "probability": 0.7856 + }, + { + "start": 25023.66, + "end": 25028.2, + "probability": 0.703 + }, + { + "start": 25028.24, + "end": 25028.66, + "probability": 0.3552 + }, + { + "start": 25028.74, + "end": 25031.58, + "probability": 0.9419 + }, + { + "start": 25032.18, + "end": 25035.04, + "probability": 0.9971 + }, + { + "start": 25035.04, + "end": 25037.92, + "probability": 0.9986 + }, + { + "start": 25038.56, + "end": 25041.18, + "probability": 0.9867 + }, + { + "start": 25041.58, + "end": 25045.02, + "probability": 0.947 + }, + { + "start": 25045.14, + "end": 25050.68, + "probability": 0.9347 + }, + { + "start": 25050.68, + "end": 25054.62, + "probability": 0.9968 + }, + { + "start": 25055.06, + "end": 25058.16, + "probability": 0.9923 + }, + { + "start": 25058.16, + "end": 25062.06, + "probability": 0.9758 + }, + { + "start": 25062.76, + "end": 25065.5, + "probability": 0.8714 + }, + { + "start": 25066.06, + "end": 25066.96, + "probability": 0.6379 + }, + { + "start": 25068.32, + "end": 25069.58, + "probability": 0.5278 + }, + { + "start": 25070.3, + "end": 25073.88, + "probability": 0.9496 + }, + { + "start": 25074.54, + "end": 25075.56, + "probability": 0.8415 + }, + { + "start": 25076.3, + "end": 25080.7, + "probability": 0.9543 + }, + { + "start": 25081.48, + "end": 25082.6, + "probability": 0.9363 + }, + { + "start": 25083.24, + "end": 25085.96, + "probability": 0.9943 + }, + { + "start": 25086.44, + "end": 25088.3, + "probability": 0.9587 + }, + { + "start": 25088.9, + "end": 25090.26, + "probability": 0.8132 + }, + { + "start": 25091.14, + "end": 25096.44, + "probability": 0.9615 + }, + { + "start": 25096.44, + "end": 25103.44, + "probability": 0.9956 + }, + { + "start": 25104.3, + "end": 25106.02, + "probability": 0.9846 + }, + { + "start": 25106.78, + "end": 25109.88, + "probability": 0.9941 + }, + { + "start": 25109.96, + "end": 25113.58, + "probability": 0.9985 + }, + { + "start": 25113.72, + "end": 25114.32, + "probability": 0.7075 + }, + { + "start": 25114.7, + "end": 25117.96, + "probability": 0.9994 + }, + { + "start": 25118.52, + "end": 25120.7, + "probability": 0.9443 + }, + { + "start": 25121.04, + "end": 25123.98, + "probability": 0.983 + }, + { + "start": 25124.66, + "end": 25127.5, + "probability": 0.9747 + }, + { + "start": 25128.34, + "end": 25130.76, + "probability": 0.9589 + }, + { + "start": 25132.02, + "end": 25137.78, + "probability": 0.876 + }, + { + "start": 25138.5, + "end": 25141.68, + "probability": 0.9779 + }, + { + "start": 25143.2, + "end": 25144.08, + "probability": 0.7509 + }, + { + "start": 25145.14, + "end": 25148.98, + "probability": 0.896 + }, + { + "start": 25149.62, + "end": 25149.94, + "probability": 0.1351 + }, + { + "start": 25169.9, + "end": 25171.9, + "probability": 0.4792 + }, + { + "start": 25174.6, + "end": 25180.12, + "probability": 0.9725 + }, + { + "start": 25181.8, + "end": 25185.5, + "probability": 0.9233 + }, + { + "start": 25186.0, + "end": 25189.68, + "probability": 0.9879 + }, + { + "start": 25190.16, + "end": 25193.2, + "probability": 0.8986 + }, + { + "start": 25194.22, + "end": 25199.48, + "probability": 0.9917 + }, + { + "start": 25200.16, + "end": 25203.9, + "probability": 0.9932 + }, + { + "start": 25204.25, + "end": 25207.52, + "probability": 0.997 + }, + { + "start": 25208.4, + "end": 25214.22, + "probability": 0.8947 + }, + { + "start": 25214.98, + "end": 25219.74, + "probability": 0.98 + }, + { + "start": 25220.72, + "end": 25221.34, + "probability": 0.4962 + }, + { + "start": 25221.88, + "end": 25223.74, + "probability": 0.9811 + }, + { + "start": 25224.36, + "end": 25225.24, + "probability": 0.9803 + }, + { + "start": 25225.86, + "end": 25227.7, + "probability": 0.9551 + }, + { + "start": 25228.1, + "end": 25229.18, + "probability": 0.6963 + }, + { + "start": 25229.8, + "end": 25234.42, + "probability": 0.9749 + }, + { + "start": 25234.42, + "end": 25240.04, + "probability": 0.9984 + }, + { + "start": 25240.76, + "end": 25241.16, + "probability": 0.8521 + }, + { + "start": 25241.66, + "end": 25244.02, + "probability": 0.9219 + }, + { + "start": 25244.52, + "end": 25246.88, + "probability": 0.9204 + }, + { + "start": 25247.56, + "end": 25254.17, + "probability": 0.9597 + }, + { + "start": 25254.86, + "end": 25256.25, + "probability": 0.9102 + }, + { + "start": 25257.1, + "end": 25262.66, + "probability": 0.9461 + }, + { + "start": 25262.78, + "end": 25263.96, + "probability": 0.2432 + }, + { + "start": 25264.44, + "end": 25266.54, + "probability": 0.9807 + }, + { + "start": 25266.82, + "end": 25268.2, + "probability": 0.9432 + }, + { + "start": 25268.82, + "end": 25269.98, + "probability": 0.9848 + }, + { + "start": 25270.54, + "end": 25271.66, + "probability": 0.7838 + }, + { + "start": 25272.48, + "end": 25277.4, + "probability": 0.993 + }, + { + "start": 25278.07, + "end": 25283.02, + "probability": 0.9946 + }, + { + "start": 25284.12, + "end": 25288.36, + "probability": 0.8302 + }, + { + "start": 25289.1, + "end": 25290.18, + "probability": 0.7411 + }, + { + "start": 25290.92, + "end": 25292.32, + "probability": 0.8547 + }, + { + "start": 25292.9, + "end": 25297.22, + "probability": 0.98 + }, + { + "start": 25297.6, + "end": 25302.22, + "probability": 0.9859 + }, + { + "start": 25302.88, + "end": 25303.98, + "probability": 0.9892 + }, + { + "start": 25304.56, + "end": 25307.08, + "probability": 0.9974 + }, + { + "start": 25307.08, + "end": 25311.12, + "probability": 0.9978 + }, + { + "start": 25311.64, + "end": 25315.06, + "probability": 0.9896 + }, + { + "start": 25315.76, + "end": 25319.96, + "probability": 0.9849 + }, + { + "start": 25320.58, + "end": 25323.43, + "probability": 0.7288 + }, + { + "start": 25324.06, + "end": 25329.28, + "probability": 0.9961 + }, + { + "start": 25329.78, + "end": 25331.88, + "probability": 0.9799 + }, + { + "start": 25332.3, + "end": 25335.18, + "probability": 0.9924 + }, + { + "start": 25335.18, + "end": 25339.58, + "probability": 0.9995 + }, + { + "start": 25340.58, + "end": 25341.76, + "probability": 0.8834 + }, + { + "start": 25342.5, + "end": 25343.76, + "probability": 0.4996 + }, + { + "start": 25343.84, + "end": 25345.05, + "probability": 0.3863 + }, + { + "start": 25345.78, + "end": 25347.76, + "probability": 0.6677 + }, + { + "start": 25347.9, + "end": 25349.4, + "probability": 0.6772 + }, + { + "start": 25349.46, + "end": 25350.13, + "probability": 0.4526 + }, + { + "start": 25350.46, + "end": 25351.11, + "probability": 0.5507 + }, + { + "start": 25351.14, + "end": 25352.16, + "probability": 0.2967 + }, + { + "start": 25352.16, + "end": 25352.3, + "probability": 0.1478 + }, + { + "start": 25352.3, + "end": 25352.96, + "probability": 0.7792 + }, + { + "start": 25353.35, + "end": 25353.56, + "probability": 0.5171 + }, + { + "start": 25353.8, + "end": 25355.74, + "probability": 0.1268 + }, + { + "start": 25359.98, + "end": 25364.56, + "probability": 0.2332 + }, + { + "start": 25365.68, + "end": 25367.08, + "probability": 0.7433 + }, + { + "start": 25367.16, + "end": 25367.3, + "probability": 0.6502 + }, + { + "start": 25371.49, + "end": 25373.7, + "probability": 0.7801 + }, + { + "start": 25373.88, + "end": 25375.84, + "probability": 0.7921 + }, + { + "start": 25376.08, + "end": 25377.48, + "probability": 0.318 + }, + { + "start": 25377.68, + "end": 25378.3, + "probability": 0.5372 + }, + { + "start": 25378.34, + "end": 25380.34, + "probability": 0.4543 + }, + { + "start": 25380.52, + "end": 25381.68, + "probability": 0.0226 + }, + { + "start": 25382.32, + "end": 25383.32, + "probability": 0.0912 + }, + { + "start": 25385.52, + "end": 25387.38, + "probability": 0.2028 + }, + { + "start": 25387.5, + "end": 25387.52, + "probability": 0.1598 + }, + { + "start": 25387.52, + "end": 25387.52, + "probability": 0.2226 + }, + { + "start": 25387.52, + "end": 25387.94, + "probability": 0.7956 + }, + { + "start": 25388.76, + "end": 25390.26, + "probability": 0.9387 + }, + { + "start": 25392.16, + "end": 25394.48, + "probability": 0.7665 + }, + { + "start": 25395.58, + "end": 25397.0, + "probability": 0.5873 + }, + { + "start": 25397.18, + "end": 25402.78, + "probability": 0.3011 + }, + { + "start": 25403.1, + "end": 25404.82, + "probability": 0.5723 + }, + { + "start": 25404.82, + "end": 25405.86, + "probability": 0.0554 + }, + { + "start": 25410.48, + "end": 25411.2, + "probability": 0.2536 + }, + { + "start": 25412.28, + "end": 25418.6, + "probability": 0.7005 + }, + { + "start": 25418.96, + "end": 25422.16, + "probability": 0.9081 + }, + { + "start": 25423.1, + "end": 25427.15, + "probability": 0.9946 + }, + { + "start": 25427.54, + "end": 25430.56, + "probability": 0.9748 + }, + { + "start": 25430.82, + "end": 25435.0, + "probability": 0.882 + }, + { + "start": 25435.0, + "end": 25439.72, + "probability": 0.9981 + }, + { + "start": 25440.18, + "end": 25442.6, + "probability": 0.8422 + }, + { + "start": 25442.92, + "end": 25446.38, + "probability": 0.9841 + }, + { + "start": 25446.86, + "end": 25447.82, + "probability": 0.682 + }, + { + "start": 25448.42, + "end": 25453.16, + "probability": 0.948 + }, + { + "start": 25453.16, + "end": 25459.24, + "probability": 0.9977 + }, + { + "start": 25459.52, + "end": 25460.76, + "probability": 0.7912 + }, + { + "start": 25461.4, + "end": 25463.66, + "probability": 0.9901 + }, + { + "start": 25464.02, + "end": 25467.14, + "probability": 0.9858 + }, + { + "start": 25467.9, + "end": 25469.58, + "probability": 0.9989 + }, + { + "start": 25469.92, + "end": 25473.78, + "probability": 0.9891 + }, + { + "start": 25474.22, + "end": 25478.54, + "probability": 0.9949 + }, + { + "start": 25478.54, + "end": 25483.9, + "probability": 0.9798 + }, + { + "start": 25484.48, + "end": 25487.88, + "probability": 0.9973 + }, + { + "start": 25487.88, + "end": 25491.68, + "probability": 0.8915 + }, + { + "start": 25492.08, + "end": 25496.74, + "probability": 0.9922 + }, + { + "start": 25497.18, + "end": 25503.82, + "probability": 0.9939 + }, + { + "start": 25504.1, + "end": 25505.1, + "probability": 0.9968 + }, + { + "start": 25505.4, + "end": 25506.42, + "probability": 0.9742 + }, + { + "start": 25506.88, + "end": 25508.72, + "probability": 0.9956 + }, + { + "start": 25509.1, + "end": 25512.66, + "probability": 0.9364 + }, + { + "start": 25513.04, + "end": 25517.08, + "probability": 0.9911 + }, + { + "start": 25517.58, + "end": 25522.46, + "probability": 0.7705 + }, + { + "start": 25523.04, + "end": 25526.54, + "probability": 0.9365 + }, + { + "start": 25527.16, + "end": 25531.36, + "probability": 0.9521 + }, + { + "start": 25531.76, + "end": 25532.24, + "probability": 0.7755 + }, + { + "start": 25532.64, + "end": 25533.86, + "probability": 0.3626 + }, + { + "start": 25552.06, + "end": 25553.82, + "probability": 0.5103 + }, + { + "start": 25553.9, + "end": 25554.18, + "probability": 0.0772 + }, + { + "start": 25556.4, + "end": 25560.22, + "probability": 0.8282 + }, + { + "start": 25560.6, + "end": 25562.78, + "probability": 0.8389 + }, + { + "start": 25563.02, + "end": 25564.72, + "probability": 0.4749 + }, + { + "start": 25564.72, + "end": 25568.68, + "probability": 0.213 + }, + { + "start": 25568.76, + "end": 25568.8, + "probability": 0.0485 + }, + { + "start": 25568.82, + "end": 25571.22, + "probability": 0.8458 + }, + { + "start": 25574.21, + "end": 25575.37, + "probability": 0.6106 + }, + { + "start": 25575.48, + "end": 25577.06, + "probability": 0.7006 + }, + { + "start": 25577.22, + "end": 25579.08, + "probability": 0.0735 + }, + { + "start": 25579.2, + "end": 25580.12, + "probability": 0.3342 + }, + { + "start": 25580.56, + "end": 25580.56, + "probability": 0.0009 + }, + { + "start": 25580.56, + "end": 25583.1, + "probability": 0.5282 + }, + { + "start": 25583.52, + "end": 25586.68, + "probability": 0.4744 + }, + { + "start": 25586.82, + "end": 25590.24, + "probability": 0.9778 + }, + { + "start": 25590.9, + "end": 25595.24, + "probability": 0.9908 + }, + { + "start": 25595.82, + "end": 25599.5, + "probability": 0.9456 + }, + { + "start": 25600.24, + "end": 25601.2, + "probability": 0.5228 + }, + { + "start": 25601.96, + "end": 25603.3, + "probability": 0.9849 + }, + { + "start": 25604.16, + "end": 25606.86, + "probability": 0.9892 + }, + { + "start": 25606.86, + "end": 25610.82, + "probability": 0.9803 + }, + { + "start": 25612.2, + "end": 25613.92, + "probability": 0.5786 + }, + { + "start": 25615.0, + "end": 25619.24, + "probability": 0.9878 + }, + { + "start": 25620.36, + "end": 25623.62, + "probability": 0.874 + }, + { + "start": 25625.04, + "end": 25625.18, + "probability": 0.1723 + }, + { + "start": 25625.72, + "end": 25625.88, + "probability": 0.3861 + }, + { + "start": 25625.9, + "end": 25626.38, + "probability": 0.4798 + }, + { + "start": 25626.44, + "end": 25629.8, + "probability": 0.98 + }, + { + "start": 25629.88, + "end": 25634.0, + "probability": 0.978 + }, + { + "start": 25634.56, + "end": 25636.34, + "probability": 0.7389 + }, + { + "start": 25637.76, + "end": 25640.28, + "probability": 0.9965 + }, + { + "start": 25640.88, + "end": 25642.26, + "probability": 0.681 + }, + { + "start": 25642.86, + "end": 25643.4, + "probability": 0.5554 + }, + { + "start": 25644.04, + "end": 25647.06, + "probability": 0.9869 + }, + { + "start": 25647.06, + "end": 25651.04, + "probability": 0.9979 + }, + { + "start": 25651.42, + "end": 25652.82, + "probability": 0.9716 + }, + { + "start": 25653.48, + "end": 25655.34, + "probability": 0.8742 + }, + { + "start": 25655.9, + "end": 25660.08, + "probability": 0.9657 + }, + { + "start": 25661.26, + "end": 25666.46, + "probability": 0.9358 + }, + { + "start": 25666.46, + "end": 25672.3, + "probability": 0.9753 + }, + { + "start": 25673.04, + "end": 25677.58, + "probability": 0.7983 + }, + { + "start": 25678.14, + "end": 25681.06, + "probability": 0.9906 + }, + { + "start": 25681.86, + "end": 25684.76, + "probability": 0.8771 + }, + { + "start": 25686.04, + "end": 25691.86, + "probability": 0.98 + }, + { + "start": 25692.82, + "end": 25693.42, + "probability": 0.8142 + }, + { + "start": 25694.38, + "end": 25695.8, + "probability": 0.9019 + }, + { + "start": 25696.3, + "end": 25698.62, + "probability": 0.9937 + }, + { + "start": 25698.76, + "end": 25699.48, + "probability": 0.9925 + }, + { + "start": 25699.56, + "end": 25701.06, + "probability": 0.9952 + }, + { + "start": 25701.84, + "end": 25706.16, + "probability": 0.9958 + }, + { + "start": 25706.16, + "end": 25710.28, + "probability": 0.9952 + }, + { + "start": 25710.7, + "end": 25712.28, + "probability": 0.9297 + }, + { + "start": 25712.72, + "end": 25713.32, + "probability": 0.589 + }, + { + "start": 25713.42, + "end": 25715.42, + "probability": 0.7816 + }, + { + "start": 25716.02, + "end": 25720.54, + "probability": 0.9699 + }, + { + "start": 25722.3, + "end": 25723.72, + "probability": 0.9778 + }, + { + "start": 25723.84, + "end": 25726.24, + "probability": 0.7093 + }, + { + "start": 25726.38, + "end": 25728.28, + "probability": 0.797 + }, + { + "start": 25729.24, + "end": 25729.82, + "probability": 0.5352 + }, + { + "start": 25729.98, + "end": 25731.68, + "probability": 0.875 + }, + { + "start": 25731.94, + "end": 25737.02, + "probability": 0.9894 + }, + { + "start": 25737.44, + "end": 25744.02, + "probability": 0.9806 + }, + { + "start": 25744.42, + "end": 25745.9, + "probability": 0.7997 + }, + { + "start": 25747.3, + "end": 25749.64, + "probability": 0.8169 + }, + { + "start": 25750.08, + "end": 25752.12, + "probability": 0.7471 + }, + { + "start": 25752.74, + "end": 25760.08, + "probability": 0.9109 + }, + { + "start": 25761.02, + "end": 25763.93, + "probability": 0.9821 + }, + { + "start": 25764.28, + "end": 25768.42, + "probability": 0.9799 + }, + { + "start": 25769.36, + "end": 25771.04, + "probability": 0.9888 + }, + { + "start": 25771.2, + "end": 25774.08, + "probability": 0.9898 + }, + { + "start": 25775.28, + "end": 25778.74, + "probability": 0.9661 + }, + { + "start": 25779.46, + "end": 25782.38, + "probability": 0.9777 + }, + { + "start": 25783.64, + "end": 25787.98, + "probability": 0.9772 + }, + { + "start": 25788.78, + "end": 25795.08, + "probability": 0.7419 + }, + { + "start": 25795.12, + "end": 25796.66, + "probability": 0.9893 + }, + { + "start": 25796.86, + "end": 25798.36, + "probability": 0.9943 + }, + { + "start": 25798.72, + "end": 25801.58, + "probability": 0.9892 + }, + { + "start": 25802.64, + "end": 25805.62, + "probability": 0.9675 + }, + { + "start": 25805.62, + "end": 25810.2, + "probability": 0.9813 + }, + { + "start": 25810.94, + "end": 25813.5, + "probability": 0.8727 + }, + { + "start": 25814.28, + "end": 25815.24, + "probability": 0.5125 + }, + { + "start": 25816.88, + "end": 25818.98, + "probability": 0.9819 + }, + { + "start": 25819.66, + "end": 25820.44, + "probability": 0.9515 + }, + { + "start": 25821.06, + "end": 25823.74, + "probability": 0.9612 + }, + { + "start": 25825.22, + "end": 25826.94, + "probability": 0.9843 + }, + { + "start": 25827.96, + "end": 25829.24, + "probability": 0.9592 + }, + { + "start": 25830.48, + "end": 25835.32, + "probability": 0.9777 + }, + { + "start": 25836.32, + "end": 25838.76, + "probability": 0.9915 + }, + { + "start": 25839.66, + "end": 25841.86, + "probability": 0.8455 + }, + { + "start": 25842.86, + "end": 25846.8, + "probability": 0.9775 + }, + { + "start": 25847.8, + "end": 25852.84, + "probability": 0.9733 + }, + { + "start": 25853.44, + "end": 25859.6, + "probability": 0.9899 + }, + { + "start": 25860.98, + "end": 25865.7, + "probability": 0.9981 + }, + { + "start": 25866.68, + "end": 25870.12, + "probability": 0.9925 + }, + { + "start": 25871.1, + "end": 25876.72, + "probability": 0.9961 + }, + { + "start": 25877.5, + "end": 25878.7, + "probability": 0.6282 + }, + { + "start": 25878.72, + "end": 25880.36, + "probability": 0.7737 + }, + { + "start": 25881.72, + "end": 25883.16, + "probability": 0.6015 + }, + { + "start": 25883.28, + "end": 25888.38, + "probability": 0.9528 + }, + { + "start": 25888.48, + "end": 25888.89, + "probability": 0.7084 + }, + { + "start": 25889.82, + "end": 25893.92, + "probability": 0.9951 + }, + { + "start": 25894.48, + "end": 25896.8, + "probability": 0.9704 + }, + { + "start": 25897.48, + "end": 25899.42, + "probability": 0.9424 + }, + { + "start": 25903.34, + "end": 25904.1, + "probability": 0.8315 + }, + { + "start": 25904.58, + "end": 25906.28, + "probability": 0.5755 + }, + { + "start": 25906.6, + "end": 25908.06, + "probability": 0.763 + }, + { + "start": 25908.26, + "end": 25911.37, + "probability": 0.9574 + }, + { + "start": 25911.96, + "end": 25915.78, + "probability": 0.909 + }, + { + "start": 25916.5, + "end": 25918.14, + "probability": 0.8766 + }, + { + "start": 25918.26, + "end": 25922.98, + "probability": 0.9824 + }, + { + "start": 25925.73, + "end": 25927.74, + "probability": 0.999 + }, + { + "start": 25928.82, + "end": 25934.38, + "probability": 0.9905 + }, + { + "start": 25935.16, + "end": 25937.48, + "probability": 0.9487 + }, + { + "start": 25937.94, + "end": 25941.06, + "probability": 0.9272 + }, + { + "start": 25942.02, + "end": 25947.86, + "probability": 0.7856 + }, + { + "start": 25948.28, + "end": 25951.32, + "probability": 0.9596 + }, + { + "start": 25954.18, + "end": 25954.67, + "probability": 0.7611 + }, + { + "start": 25955.04, + "end": 25959.32, + "probability": 0.9896 + }, + { + "start": 25959.56, + "end": 25964.58, + "probability": 0.9863 + }, + { + "start": 25964.96, + "end": 25967.12, + "probability": 0.9973 + }, + { + "start": 25967.24, + "end": 25969.84, + "probability": 0.9976 + }, + { + "start": 25969.94, + "end": 25971.86, + "probability": 0.7888 + }, + { + "start": 25972.1, + "end": 25975.8, + "probability": 0.9306 + }, + { + "start": 25976.28, + "end": 25978.58, + "probability": 0.9858 + }, + { + "start": 25979.56, + "end": 25984.14, + "probability": 0.8632 + }, + { + "start": 25984.68, + "end": 25987.26, + "probability": 0.9357 + }, + { + "start": 25988.86, + "end": 25991.18, + "probability": 0.9089 + }, + { + "start": 25992.04, + "end": 25993.16, + "probability": 0.7029 + }, + { + "start": 25993.96, + "end": 25999.44, + "probability": 0.9726 + }, + { + "start": 25999.44, + "end": 26005.5, + "probability": 0.9932 + }, + { + "start": 26005.6, + "end": 26006.42, + "probability": 0.8959 + }, + { + "start": 26006.58, + "end": 26008.22, + "probability": 0.9417 + }, + { + "start": 26008.89, + "end": 26012.08, + "probability": 0.9048 + }, + { + "start": 26013.44, + "end": 26017.64, + "probability": 0.9827 + }, + { + "start": 26018.14, + "end": 26021.32, + "probability": 0.9016 + }, + { + "start": 26021.52, + "end": 26022.34, + "probability": 0.991 + }, + { + "start": 26022.46, + "end": 26023.56, + "probability": 0.9521 + }, + { + "start": 26023.88, + "end": 26025.9, + "probability": 0.9904 + }, + { + "start": 26027.28, + "end": 26027.88, + "probability": 0.6962 + }, + { + "start": 26028.02, + "end": 26033.38, + "probability": 0.9967 + }, + { + "start": 26034.6, + "end": 26037.62, + "probability": 0.996 + }, + { + "start": 26037.62, + "end": 26040.94, + "probability": 0.9803 + }, + { + "start": 26042.1, + "end": 26049.96, + "probability": 0.9982 + }, + { + "start": 26050.66, + "end": 26053.14, + "probability": 0.9988 + }, + { + "start": 26054.1, + "end": 26059.4, + "probability": 0.9825 + }, + { + "start": 26061.94, + "end": 26062.55, + "probability": 0.9568 + }, + { + "start": 26063.76, + "end": 26064.68, + "probability": 0.881 + }, + { + "start": 26064.92, + "end": 26065.6, + "probability": 0.8149 + }, + { + "start": 26066.14, + "end": 26070.06, + "probability": 0.9153 + }, + { + "start": 26070.96, + "end": 26073.82, + "probability": 0.9177 + }, + { + "start": 26074.16, + "end": 26075.48, + "probability": 0.9918 + }, + { + "start": 26075.72, + "end": 26076.49, + "probability": 0.778 + }, + { + "start": 26076.84, + "end": 26078.36, + "probability": 0.745 + }, + { + "start": 26078.96, + "end": 26080.0, + "probability": 0.8737 + }, + { + "start": 26080.6, + "end": 26083.72, + "probability": 0.94 + }, + { + "start": 26084.56, + "end": 26086.84, + "probability": 0.9893 + }, + { + "start": 26088.54, + "end": 26090.95, + "probability": 0.9915 + }, + { + "start": 26091.6, + "end": 26094.7, + "probability": 0.9151 + }, + { + "start": 26094.84, + "end": 26097.6, + "probability": 0.9942 + }, + { + "start": 26098.44, + "end": 26100.94, + "probability": 0.895 + }, + { + "start": 26101.34, + "end": 26102.84, + "probability": 0.9871 + }, + { + "start": 26103.62, + "end": 26106.64, + "probability": 0.9967 + }, + { + "start": 26107.0, + "end": 26109.0, + "probability": 0.9705 + }, + { + "start": 26109.56, + "end": 26113.36, + "probability": 0.9913 + }, + { + "start": 26114.62, + "end": 26116.44, + "probability": 0.9622 + }, + { + "start": 26116.64, + "end": 26118.96, + "probability": 0.8417 + }, + { + "start": 26119.44, + "end": 26121.1, + "probability": 0.9639 + }, + { + "start": 26121.54, + "end": 26124.58, + "probability": 0.9946 + }, + { + "start": 26124.7, + "end": 26126.56, + "probability": 0.9856 + }, + { + "start": 26127.02, + "end": 26128.58, + "probability": 0.7666 + }, + { + "start": 26129.0, + "end": 26131.22, + "probability": 0.9889 + }, + { + "start": 26131.9, + "end": 26135.5, + "probability": 0.9258 + }, + { + "start": 26135.86, + "end": 26138.98, + "probability": 0.9917 + }, + { + "start": 26139.32, + "end": 26141.08, + "probability": 0.9714 + }, + { + "start": 26141.66, + "end": 26143.12, + "probability": 0.8324 + }, + { + "start": 26145.24, + "end": 26148.02, + "probability": 0.9958 + }, + { + "start": 26148.52, + "end": 26151.88, + "probability": 0.9733 + }, + { + "start": 26152.38, + "end": 26156.08, + "probability": 0.9943 + }, + { + "start": 26156.08, + "end": 26159.54, + "probability": 0.8701 + }, + { + "start": 26160.08, + "end": 26166.52, + "probability": 0.9955 + }, + { + "start": 26167.34, + "end": 26169.78, + "probability": 0.8174 + }, + { + "start": 26170.04, + "end": 26170.3, + "probability": 0.7563 + }, + { + "start": 26170.66, + "end": 26172.22, + "probability": 0.6792 + }, + { + "start": 26173.08, + "end": 26174.58, + "probability": 0.6132 + }, + { + "start": 26186.06, + "end": 26187.02, + "probability": 0.5708 + }, + { + "start": 26189.78, + "end": 26190.28, + "probability": 0.5844 + }, + { + "start": 26190.28, + "end": 26190.86, + "probability": 0.7437 + }, + { + "start": 26190.94, + "end": 26191.36, + "probability": 0.9494 + }, + { + "start": 26191.88, + "end": 26192.54, + "probability": 0.8783 + }, + { + "start": 26193.0, + "end": 26193.62, + "probability": 0.4249 + }, + { + "start": 26193.62, + "end": 26193.88, + "probability": 0.696 + }, + { + "start": 26196.61, + "end": 26196.76, + "probability": 0.3003 + }, + { + "start": 26196.76, + "end": 26200.78, + "probability": 0.724 + }, + { + "start": 26201.64, + "end": 26203.34, + "probability": 0.2424 + }, + { + "start": 26203.36, + "end": 26203.58, + "probability": 0.4424 + }, + { + "start": 26203.76, + "end": 26205.6, + "probability": 0.8475 + }, + { + "start": 26206.01, + "end": 26211.28, + "probability": 0.9795 + }, + { + "start": 26211.76, + "end": 26214.48, + "probability": 0.9617 + }, + { + "start": 26216.27, + "end": 26218.48, + "probability": 0.5072 + }, + { + "start": 26219.42, + "end": 26224.9, + "probability": 0.9941 + }, + { + "start": 26226.68, + "end": 26230.16, + "probability": 0.9902 + }, + { + "start": 26230.7, + "end": 26233.08, + "probability": 0.9993 + }, + { + "start": 26233.94, + "end": 26237.54, + "probability": 0.8629 + }, + { + "start": 26237.7, + "end": 26238.26, + "probability": 0.9144 + }, + { + "start": 26238.92, + "end": 26241.12, + "probability": 0.9635 + }, + { + "start": 26243.12, + "end": 26246.34, + "probability": 0.9884 + }, + { + "start": 26246.34, + "end": 26250.98, + "probability": 0.7857 + }, + { + "start": 26252.16, + "end": 26254.02, + "probability": 0.6505 + }, + { + "start": 26254.08, + "end": 26257.42, + "probability": 0.9076 + }, + { + "start": 26257.84, + "end": 26264.0, + "probability": 0.9754 + }, + { + "start": 26264.62, + "end": 26268.28, + "probability": 0.9176 + }, + { + "start": 26268.88, + "end": 26271.06, + "probability": 0.9997 + }, + { + "start": 26273.08, + "end": 26274.12, + "probability": 0.4541 + }, + { + "start": 26275.28, + "end": 26277.3, + "probability": 0.9427 + }, + { + "start": 26278.08, + "end": 26284.76, + "probability": 0.9969 + }, + { + "start": 26286.08, + "end": 26290.26, + "probability": 0.9614 + }, + { + "start": 26290.86, + "end": 26292.48, + "probability": 0.8896 + }, + { + "start": 26293.18, + "end": 26294.98, + "probability": 0.9492 + }, + { + "start": 26295.76, + "end": 26299.58, + "probability": 0.9883 + }, + { + "start": 26300.24, + "end": 26303.04, + "probability": 0.8466 + }, + { + "start": 26303.58, + "end": 26309.42, + "probability": 0.957 + }, + { + "start": 26310.74, + "end": 26313.28, + "probability": 0.8049 + }, + { + "start": 26313.94, + "end": 26318.16, + "probability": 0.6882 + }, + { + "start": 26318.64, + "end": 26321.44, + "probability": 0.8433 + }, + { + "start": 26322.18, + "end": 26324.96, + "probability": 0.7997 + }, + { + "start": 26325.44, + "end": 26329.3, + "probability": 0.7154 + }, + { + "start": 26329.78, + "end": 26330.96, + "probability": 0.5866 + }, + { + "start": 26332.88, + "end": 26338.86, + "probability": 0.9965 + }, + { + "start": 26339.7, + "end": 26343.38, + "probability": 0.994 + }, + { + "start": 26343.38, + "end": 26347.98, + "probability": 0.998 + }, + { + "start": 26349.02, + "end": 26351.3, + "probability": 0.9916 + }, + { + "start": 26352.16, + "end": 26357.7, + "probability": 0.991 + }, + { + "start": 26358.38, + "end": 26361.92, + "probability": 0.9807 + }, + { + "start": 26362.5, + "end": 26366.66, + "probability": 0.9908 + }, + { + "start": 26367.38, + "end": 26369.24, + "probability": 0.9777 + }, + { + "start": 26369.92, + "end": 26371.9, + "probability": 0.998 + }, + { + "start": 26372.54, + "end": 26373.5, + "probability": 0.9742 + }, + { + "start": 26374.12, + "end": 26375.2, + "probability": 0.9812 + }, + { + "start": 26375.74, + "end": 26378.66, + "probability": 0.9413 + }, + { + "start": 26379.36, + "end": 26380.32, + "probability": 0.9732 + }, + { + "start": 26380.78, + "end": 26383.26, + "probability": 0.9993 + }, + { + "start": 26383.96, + "end": 26389.7, + "probability": 0.9476 + }, + { + "start": 26390.42, + "end": 26391.7, + "probability": 0.5783 + }, + { + "start": 26392.26, + "end": 26393.16, + "probability": 0.7234 + }, + { + "start": 26393.7, + "end": 26394.56, + "probability": 0.9632 + }, + { + "start": 26396.32, + "end": 26399.4, + "probability": 0.984 + }, + { + "start": 26399.56, + "end": 26400.96, + "probability": 0.9496 + }, + { + "start": 26401.58, + "end": 26403.02, + "probability": 0.7593 + }, + { + "start": 26403.84, + "end": 26406.64, + "probability": 0.716 + }, + { + "start": 26407.4, + "end": 26410.57, + "probability": 0.9761 + }, + { + "start": 26411.84, + "end": 26417.0, + "probability": 0.9969 + }, + { + "start": 26417.44, + "end": 26421.58, + "probability": 0.999 + }, + { + "start": 26422.08, + "end": 26422.9, + "probability": 0.8512 + }, + { + "start": 26423.78, + "end": 26426.78, + "probability": 0.9634 + }, + { + "start": 26426.92, + "end": 26428.44, + "probability": 0.9961 + }, + { + "start": 26428.9, + "end": 26432.3, + "probability": 0.9917 + }, + { + "start": 26432.9, + "end": 26434.58, + "probability": 0.9792 + }, + { + "start": 26437.06, + "end": 26440.52, + "probability": 0.729 + }, + { + "start": 26441.26, + "end": 26443.39, + "probability": 0.9481 + }, + { + "start": 26445.12, + "end": 26447.52, + "probability": 0.9946 + }, + { + "start": 26448.48, + "end": 26455.68, + "probability": 0.9977 + }, + { + "start": 26456.46, + "end": 26458.3, + "probability": 0.5865 + }, + { + "start": 26459.14, + "end": 26460.69, + "probability": 0.9609 + }, + { + "start": 26461.7, + "end": 26462.86, + "probability": 0.7798 + }, + { + "start": 26463.8, + "end": 26465.54, + "probability": 0.9915 + }, + { + "start": 26466.56, + "end": 26467.56, + "probability": 0.9648 + }, + { + "start": 26468.42, + "end": 26472.8, + "probability": 0.6998 + }, + { + "start": 26472.84, + "end": 26473.14, + "probability": 0.8154 + }, + { + "start": 26473.24, + "end": 26474.5, + "probability": 0.9414 + }, + { + "start": 26475.0, + "end": 26476.62, + "probability": 0.8994 + }, + { + "start": 26476.62, + "end": 26481.36, + "probability": 0.861 + }, + { + "start": 26481.8, + "end": 26482.06, + "probability": 0.8138 + }, + { + "start": 26482.5, + "end": 26483.9, + "probability": 0.6965 + }, + { + "start": 26484.58, + "end": 26485.68, + "probability": 0.7346 + }, + { + "start": 26487.18, + "end": 26490.86, + "probability": 0.8052 + }, + { + "start": 26494.18, + "end": 26494.8, + "probability": 0.6248 + }, + { + "start": 26497.78, + "end": 26500.32, + "probability": 0.6821 + }, + { + "start": 26510.24, + "end": 26511.84, + "probability": 0.655 + }, + { + "start": 26511.92, + "end": 26513.26, + "probability": 0.6748 + }, + { + "start": 26513.34, + "end": 26513.68, + "probability": 0.2669 + }, + { + "start": 26513.86, + "end": 26513.94, + "probability": 0.4682 + }, + { + "start": 26513.94, + "end": 26516.98, + "probability": 0.7996 + }, + { + "start": 26520.34, + "end": 26521.98, + "probability": 0.0796 + }, + { + "start": 26524.08, + "end": 26524.32, + "probability": 0.0662 + }, + { + "start": 26524.72, + "end": 26526.92, + "probability": 0.9548 + }, + { + "start": 26527.64, + "end": 26528.62, + "probability": 0.1737 + }, + { + "start": 26529.18, + "end": 26529.68, + "probability": 0.6043 + }, + { + "start": 26529.8, + "end": 26530.96, + "probability": 0.9753 + }, + { + "start": 26531.64, + "end": 26532.04, + "probability": 0.968 + }, + { + "start": 26533.64, + "end": 26538.1, + "probability": 0.558 + }, + { + "start": 26541.58, + "end": 26545.2, + "probability": 0.9261 + }, + { + "start": 26545.28, + "end": 26547.38, + "probability": 0.9963 + }, + { + "start": 26547.46, + "end": 26549.08, + "probability": 0.9709 + }, + { + "start": 26549.16, + "end": 26550.63, + "probability": 0.9377 + }, + { + "start": 26552.02, + "end": 26556.12, + "probability": 0.99 + }, + { + "start": 26556.32, + "end": 26558.0, + "probability": 0.756 + }, + { + "start": 26558.12, + "end": 26558.38, + "probability": 0.0422 + }, + { + "start": 26558.38, + "end": 26558.9, + "probability": 0.7197 + }, + { + "start": 26559.52, + "end": 26560.16, + "probability": 0.5942 + }, + { + "start": 26560.66, + "end": 26560.94, + "probability": 0.8925 + }, + { + "start": 26561.36, + "end": 26563.88, + "probability": 0.9292 + }, + { + "start": 26563.98, + "end": 26566.38, + "probability": 0.879 + }, + { + "start": 26567.2, + "end": 26567.58, + "probability": 0.3432 + }, + { + "start": 26567.78, + "end": 26568.62, + "probability": 0.9377 + }, + { + "start": 26569.02, + "end": 26569.16, + "probability": 0.0018 + }, + { + "start": 26572.16, + "end": 26574.9, + "probability": 0.7808 + }, + { + "start": 26575.62, + "end": 26576.08, + "probability": 0.4997 + }, + { + "start": 26576.08, + "end": 26576.18, + "probability": 0.8622 + }, + { + "start": 26576.56, + "end": 26580.6, + "probability": 0.8909 + }, + { + "start": 26580.76, + "end": 26583.7, + "probability": 0.9736 + }, + { + "start": 26583.84, + "end": 26586.86, + "probability": 0.9907 + }, + { + "start": 26587.0, + "end": 26587.32, + "probability": 0.3214 + }, + { + "start": 26587.48, + "end": 26589.0, + "probability": 0.7971 + }, + { + "start": 26590.04, + "end": 26591.4, + "probability": 0.9566 + }, + { + "start": 26593.33, + "end": 26596.14, + "probability": 0.9658 + }, + { + "start": 26596.34, + "end": 26598.98, + "probability": 0.4036 + }, + { + "start": 26599.04, + "end": 26602.76, + "probability": 0.985 + }, + { + "start": 26603.18, + "end": 26604.68, + "probability": 0.9951 + }, + { + "start": 26605.24, + "end": 26607.88, + "probability": 0.7661 + }, + { + "start": 26608.4, + "end": 26609.76, + "probability": 0.8725 + }, + { + "start": 26609.94, + "end": 26610.88, + "probability": 0.7961 + }, + { + "start": 26611.06, + "end": 26612.12, + "probability": 0.6452 + }, + { + "start": 26612.18, + "end": 26614.82, + "probability": 0.978 + }, + { + "start": 26615.74, + "end": 26618.02, + "probability": 0.9787 + }, + { + "start": 26618.54, + "end": 26620.72, + "probability": 0.9829 + }, + { + "start": 26621.54, + "end": 26622.62, + "probability": 0.9073 + }, + { + "start": 26623.1, + "end": 26626.06, + "probability": 0.8611 + }, + { + "start": 26626.32, + "end": 26628.8, + "probability": 0.8675 + }, + { + "start": 26628.94, + "end": 26630.15, + "probability": 0.9919 + }, + { + "start": 26631.32, + "end": 26632.38, + "probability": 0.9836 + }, + { + "start": 26632.9, + "end": 26636.55, + "probability": 0.9697 + }, + { + "start": 26636.68, + "end": 26639.52, + "probability": 0.9919 + }, + { + "start": 26641.16, + "end": 26641.44, + "probability": 0.5612 + }, + { + "start": 26641.56, + "end": 26644.52, + "probability": 0.8898 + }, + { + "start": 26644.96, + "end": 26646.24, + "probability": 0.9899 + }, + { + "start": 26647.2, + "end": 26650.06, + "probability": 0.9937 + }, + { + "start": 26650.26, + "end": 26653.3, + "probability": 0.9916 + }, + { + "start": 26653.64, + "end": 26655.52, + "probability": 0.9977 + }, + { + "start": 26658.12, + "end": 26662.32, + "probability": 0.9778 + }, + { + "start": 26662.94, + "end": 26665.02, + "probability": 0.6748 + }, + { + "start": 26665.06, + "end": 26666.26, + "probability": 0.7681 + }, + { + "start": 26666.38, + "end": 26667.6, + "probability": 0.872 + }, + { + "start": 26668.96, + "end": 26673.16, + "probability": 0.9873 + }, + { + "start": 26676.84, + "end": 26679.3, + "probability": 0.9995 + }, + { + "start": 26682.56, + "end": 26686.64, + "probability": 0.7351 + }, + { + "start": 26687.6, + "end": 26689.26, + "probability": 0.8048 + }, + { + "start": 26689.66, + "end": 26691.54, + "probability": 0.8239 + }, + { + "start": 26691.64, + "end": 26693.6, + "probability": 0.8827 + }, + { + "start": 26694.04, + "end": 26695.74, + "probability": 0.9014 + }, + { + "start": 26697.28, + "end": 26699.46, + "probability": 0.6076 + }, + { + "start": 26700.14, + "end": 26700.68, + "probability": 0.5274 + }, + { + "start": 26700.76, + "end": 26701.36, + "probability": 0.8211 + }, + { + "start": 26701.65, + "end": 26703.78, + "probability": 0.9979 + }, + { + "start": 26703.82, + "end": 26704.68, + "probability": 0.683 + }, + { + "start": 26704.8, + "end": 26706.1, + "probability": 0.6587 + }, + { + "start": 26706.1, + "end": 26706.12, + "probability": 0.7078 + }, + { + "start": 26706.22, + "end": 26706.22, + "probability": 0.4872 + }, + { + "start": 26706.22, + "end": 26708.04, + "probability": 0.2139 + }, + { + "start": 26708.88, + "end": 26709.98, + "probability": 0.5879 + }, + { + "start": 26711.86, + "end": 26715.54, + "probability": 0.9573 + }, + { + "start": 26715.68, + "end": 26717.06, + "probability": 0.9685 + }, + { + "start": 26717.16, + "end": 26717.32, + "probability": 0.5814 + }, + { + "start": 26718.54, + "end": 26720.54, + "probability": 0.8948 + }, + { + "start": 26720.89, + "end": 26726.34, + "probability": 0.8147 + }, + { + "start": 26726.7, + "end": 26727.7, + "probability": 0.9437 + }, + { + "start": 26727.76, + "end": 26729.06, + "probability": 0.9929 + }, + { + "start": 26731.1, + "end": 26732.96, + "probability": 0.651 + }, + { + "start": 26733.98, + "end": 26735.32, + "probability": 0.9002 + }, + { + "start": 26735.62, + "end": 26736.2, + "probability": 0.9902 + }, + { + "start": 26737.7, + "end": 26739.72, + "probability": 0.991 + }, + { + "start": 26741.04, + "end": 26744.74, + "probability": 0.9026 + }, + { + "start": 26745.66, + "end": 26747.92, + "probability": 0.9959 + }, + { + "start": 26748.62, + "end": 26749.46, + "probability": 0.9511 + }, + { + "start": 26750.44, + "end": 26752.72, + "probability": 0.7538 + }, + { + "start": 26753.36, + "end": 26754.18, + "probability": 0.817 + }, + { + "start": 26755.84, + "end": 26757.12, + "probability": 0.8431 + }, + { + "start": 26757.2, + "end": 26758.42, + "probability": 0.7286 + }, + { + "start": 26758.82, + "end": 26762.08, + "probability": 0.9982 + }, + { + "start": 26762.2, + "end": 26765.06, + "probability": 0.9968 + }, + { + "start": 26766.74, + "end": 26769.24, + "probability": 0.9863 + }, + { + "start": 26769.42, + "end": 26773.0, + "probability": 0.9321 + }, + { + "start": 26773.2, + "end": 26774.98, + "probability": 0.9913 + }, + { + "start": 26775.16, + "end": 26775.92, + "probability": 0.4854 + }, + { + "start": 26776.04, + "end": 26776.56, + "probability": 0.8309 + }, + { + "start": 26777.3, + "end": 26777.86, + "probability": 0.9444 + }, + { + "start": 26778.42, + "end": 26779.92, + "probability": 0.9796 + }, + { + "start": 26780.04, + "end": 26781.24, + "probability": 0.9634 + }, + { + "start": 26782.28, + "end": 26783.98, + "probability": 0.9961 + }, + { + "start": 26785.36, + "end": 26787.94, + "probability": 0.8955 + }, + { + "start": 26788.62, + "end": 26793.26, + "probability": 0.9189 + }, + { + "start": 26794.42, + "end": 26798.96, + "probability": 0.9941 + }, + { + "start": 26799.1, + "end": 26800.7, + "probability": 0.6296 + }, + { + "start": 26801.3, + "end": 26803.44, + "probability": 0.9585 + }, + { + "start": 26804.16, + "end": 26806.78, + "probability": 0.753 + }, + { + "start": 26807.6, + "end": 26811.8, + "probability": 0.9912 + }, + { + "start": 26811.88, + "end": 26813.68, + "probability": 0.8596 + }, + { + "start": 26815.14, + "end": 26817.68, + "probability": 0.9963 + }, + { + "start": 26818.04, + "end": 26819.02, + "probability": 0.9962 + }, + { + "start": 26819.1, + "end": 26820.86, + "probability": 0.9001 + }, + { + "start": 26820.94, + "end": 26823.64, + "probability": 0.9468 + }, + { + "start": 26824.16, + "end": 26824.18, + "probability": 0.452 + }, + { + "start": 26824.26, + "end": 26824.26, + "probability": 0.3111 + }, + { + "start": 26824.26, + "end": 26831.98, + "probability": 0.9767 + }, + { + "start": 26833.58, + "end": 26834.06, + "probability": 0.9565 + }, + { + "start": 26834.52, + "end": 26835.42, + "probability": 0.7477 + }, + { + "start": 26835.88, + "end": 26837.56, + "probability": 0.8922 + }, + { + "start": 26838.98, + "end": 26843.4, + "probability": 0.8611 + }, + { + "start": 26844.6, + "end": 26845.12, + "probability": 0.7302 + }, + { + "start": 26847.56, + "end": 26853.5, + "probability": 0.7498 + }, + { + "start": 26854.7, + "end": 26856.3, + "probability": 0.5857 + }, + { + "start": 26857.3, + "end": 26859.24, + "probability": 0.6416 + }, + { + "start": 26859.84, + "end": 26861.38, + "probability": 0.2431 + }, + { + "start": 26862.12, + "end": 26864.51, + "probability": 0.889 + }, + { + "start": 26865.92, + "end": 26867.93, + "probability": 0.5518 + }, + { + "start": 26868.56, + "end": 26870.56, + "probability": 0.3772 + }, + { + "start": 26872.66, + "end": 26872.66, + "probability": 0.1269 + }, + { + "start": 26872.66, + "end": 26873.58, + "probability": 0.4135 + }, + { + "start": 26874.0, + "end": 26874.77, + "probability": 0.5828 + }, + { + "start": 26876.28, + "end": 26876.96, + "probability": 0.8675 + }, + { + "start": 26878.04, + "end": 26878.39, + "probability": 0.4083 + }, + { + "start": 26879.76, + "end": 26880.4, + "probability": 0.3913 + }, + { + "start": 26883.14, + "end": 26883.38, + "probability": 0.4811 + }, + { + "start": 26885.1, + "end": 26885.7, + "probability": 0.3971 + }, + { + "start": 26888.24, + "end": 26890.54, + "probability": 0.7537 + }, + { + "start": 26890.74, + "end": 26890.92, + "probability": 0.7223 + }, + { + "start": 26890.98, + "end": 26898.1, + "probability": 0.4872 + }, + { + "start": 26899.64, + "end": 26900.26, + "probability": 0.4597 + }, + { + "start": 26900.74, + "end": 26902.42, + "probability": 0.9708 + }, + { + "start": 26902.58, + "end": 26903.68, + "probability": 0.6627 + }, + { + "start": 26904.88, + "end": 26906.6, + "probability": 0.7875 + }, + { + "start": 26911.3, + "end": 26912.34, + "probability": 0.3421 + }, + { + "start": 26912.36, + "end": 26915.3, + "probability": 0.3814 + }, + { + "start": 26916.44, + "end": 26918.22, + "probability": 0.8049 + }, + { + "start": 26919.3, + "end": 26921.42, + "probability": 0.7963 + }, + { + "start": 26924.33, + "end": 26927.58, + "probability": 0.7676 + }, + { + "start": 26931.32, + "end": 26931.86, + "probability": 0.6447 + }, + { + "start": 26933.14, + "end": 26933.98, + "probability": 0.1268 + }, + { + "start": 26940.0, + "end": 26940.5, + "probability": 0.0003 + }, + { + "start": 26942.64, + "end": 26944.22, + "probability": 0.978 + }, + { + "start": 26946.01, + "end": 26948.63, + "probability": 0.4056 + }, + { + "start": 26953.36, + "end": 26957.935, + "probability": 0.0918 + }, + { + "start": 26959.27, + "end": 26961.91, + "probability": 0.7056 + }, + { + "start": 26963.53, + "end": 26964.17, + "probability": 0.5152 + }, + { + "start": 26964.97, + "end": 26965.83, + "probability": 0.0185 + }, + { + "start": 26967.37, + "end": 26969.28, + "probability": 0.1159 + }, + { + "start": 26970.84, + "end": 26974.81, + "probability": 0.047 + }, + { + "start": 26976.19, + "end": 26976.63, + "probability": 0.109 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27035.0, + "end": 27035.0, + "probability": 0.0 + }, + { + "start": 27037.23, + "end": 27040.12, + "probability": 0.2501 + }, + { + "start": 27040.26, + "end": 27042.54, + "probability": 0.1377 + }, + { + "start": 27042.92, + "end": 27045.36, + "probability": 0.9052 + }, + { + "start": 27045.42, + "end": 27047.32, + "probability": 0.9325 + }, + { + "start": 27047.66, + "end": 27048.66, + "probability": 0.2562 + }, + { + "start": 27049.16, + "end": 27050.04, + "probability": 0.908 + }, + { + "start": 27052.34, + "end": 27052.34, + "probability": 0.0627 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.0, + "end": 27158.0, + "probability": 0.0 + }, + { + "start": 27158.18, + "end": 27159.34, + "probability": 0.0428 + }, + { + "start": 27160.1, + "end": 27161.92, + "probability": 0.8958 + }, + { + "start": 27162.52, + "end": 27163.9, + "probability": 0.4916 + }, + { + "start": 27163.96, + "end": 27168.88, + "probability": 0.9529 + }, + { + "start": 27169.98, + "end": 27173.2, + "probability": 0.9887 + }, + { + "start": 27175.02, + "end": 27177.82, + "probability": 0.9189 + }, + { + "start": 27178.58, + "end": 27179.88, + "probability": 0.9492 + }, + { + "start": 27180.26, + "end": 27184.42, + "probability": 0.9844 + }, + { + "start": 27185.68, + "end": 27188.22, + "probability": 0.9844 + }, + { + "start": 27188.94, + "end": 27191.56, + "probability": 0.9975 + }, + { + "start": 27192.78, + "end": 27193.22, + "probability": 0.8704 + }, + { + "start": 27193.74, + "end": 27196.22, + "probability": 0.9748 + }, + { + "start": 27197.18, + "end": 27199.4, + "probability": 0.9576 + }, + { + "start": 27200.14, + "end": 27202.88, + "probability": 0.9661 + }, + { + "start": 27202.88, + "end": 27205.58, + "probability": 0.9858 + }, + { + "start": 27206.32, + "end": 27207.66, + "probability": 0.8434 + }, + { + "start": 27208.5, + "end": 27210.68, + "probability": 0.8418 + }, + { + "start": 27211.2, + "end": 27211.88, + "probability": 0.9691 + }, + { + "start": 27213.3, + "end": 27217.68, + "probability": 0.9043 + }, + { + "start": 27217.68, + "end": 27221.0, + "probability": 0.9733 + }, + { + "start": 27221.96, + "end": 27225.2, + "probability": 0.972 + }, + { + "start": 27226.16, + "end": 27230.29, + "probability": 0.9862 + }, + { + "start": 27230.94, + "end": 27236.5, + "probability": 0.8803 + }, + { + "start": 27237.86, + "end": 27240.44, + "probability": 0.991 + }, + { + "start": 27241.46, + "end": 27243.74, + "probability": 0.9941 + }, + { + "start": 27244.42, + "end": 27246.9, + "probability": 0.9951 + }, + { + "start": 27247.62, + "end": 27250.44, + "probability": 0.9799 + }, + { + "start": 27251.48, + "end": 27252.88, + "probability": 0.7687 + }, + { + "start": 27252.98, + "end": 27255.48, + "probability": 0.9697 + }, + { + "start": 27256.36, + "end": 27258.84, + "probability": 0.9895 + }, + { + "start": 27260.08, + "end": 27261.22, + "probability": 0.9906 + }, + { + "start": 27261.7, + "end": 27266.16, + "probability": 0.9001 + }, + { + "start": 27268.39, + "end": 27273.23, + "probability": 0.4067 + }, + { + "start": 27275.1, + "end": 27276.4, + "probability": 0.8552 + }, + { + "start": 27277.04, + "end": 27278.12, + "probability": 0.8206 + }, + { + "start": 27278.64, + "end": 27281.16, + "probability": 0.8303 + }, + { + "start": 27281.88, + "end": 27283.62, + "probability": 0.984 + }, + { + "start": 27284.48, + "end": 27286.2, + "probability": 0.6962 + }, + { + "start": 27286.38, + "end": 27288.4, + "probability": 0.9301 + }, + { + "start": 27288.48, + "end": 27290.38, + "probability": 0.6388 + }, + { + "start": 27290.92, + "end": 27292.26, + "probability": 0.7696 + }, + { + "start": 27292.98, + "end": 27296.24, + "probability": 0.9881 + }, + { + "start": 27297.18, + "end": 27298.52, + "probability": 0.7774 + }, + { + "start": 27299.08, + "end": 27299.74, + "probability": 0.6953 + }, + { + "start": 27299.88, + "end": 27303.45, + "probability": 0.339 + }, + { + "start": 27303.66, + "end": 27303.74, + "probability": 0.1431 + }, + { + "start": 27303.74, + "end": 27304.0, + "probability": 0.6102 + }, + { + "start": 27304.54, + "end": 27306.98, + "probability": 0.4966 + }, + { + "start": 27307.56, + "end": 27309.02, + "probability": 0.6283 + }, + { + "start": 27309.1, + "end": 27311.02, + "probability": 0.7635 + }, + { + "start": 27311.18, + "end": 27314.14, + "probability": 0.8204 + }, + { + "start": 27314.98, + "end": 27316.02, + "probability": 0.521 + }, + { + "start": 27316.12, + "end": 27318.0, + "probability": 0.8898 + }, + { + "start": 27318.92, + "end": 27320.52, + "probability": 0.9771 + }, + { + "start": 27320.52, + "end": 27323.72, + "probability": 0.927 + }, + { + "start": 27324.66, + "end": 27327.96, + "probability": 0.8077 + }, + { + "start": 27329.72, + "end": 27333.22, + "probability": 0.7096 + }, + { + "start": 27334.2, + "end": 27336.1, + "probability": 0.8198 + }, + { + "start": 27336.64, + "end": 27337.66, + "probability": 0.5858 + }, + { + "start": 27338.46, + "end": 27342.96, + "probability": 0.9726 + }, + { + "start": 27343.52, + "end": 27345.34, + "probability": 0.7576 + }, + { + "start": 27346.36, + "end": 27348.64, + "probability": 0.8597 + }, + { + "start": 27349.52, + "end": 27353.28, + "probability": 0.8405 + }, + { + "start": 27353.28, + "end": 27356.44, + "probability": 0.778 + }, + { + "start": 27356.84, + "end": 27360.1, + "probability": 0.9537 + }, + { + "start": 27360.9, + "end": 27362.82, + "probability": 0.9912 + }, + { + "start": 27363.34, + "end": 27366.38, + "probability": 0.9733 + }, + { + "start": 27367.04, + "end": 27367.52, + "probability": 0.6871 + }, + { + "start": 27368.2, + "end": 27369.08, + "probability": 0.9207 + }, + { + "start": 27369.42, + "end": 27374.98, + "probability": 0.9665 + }, + { + "start": 27375.1, + "end": 27377.24, + "probability": 0.5995 + }, + { + "start": 27377.24, + "end": 27377.92, + "probability": 0.9108 + }, + { + "start": 27377.94, + "end": 27378.44, + "probability": 0.6894 + }, + { + "start": 27378.74, + "end": 27383.18, + "probability": 0.7136 + }, + { + "start": 27384.88, + "end": 27386.92, + "probability": 0.1729 + }, + { + "start": 27387.06, + "end": 27387.56, + "probability": 0.5714 + }, + { + "start": 27387.58, + "end": 27392.12, + "probability": 0.8018 + }, + { + "start": 27392.2, + "end": 27392.7, + "probability": 0.7962 + }, + { + "start": 27395.12, + "end": 27396.42, + "probability": 0.0539 + }, + { + "start": 27400.65, + "end": 27401.98, + "probability": 0.113 + }, + { + "start": 27402.14, + "end": 27402.95, + "probability": 0.8957 + }, + { + "start": 27404.72, + "end": 27405.08, + "probability": 0.4576 + }, + { + "start": 27411.18, + "end": 27413.06, + "probability": 0.623 + }, + { + "start": 27414.04, + "end": 27415.06, + "probability": 0.8032 + }, + { + "start": 27416.0, + "end": 27419.26, + "probability": 0.8214 + }, + { + "start": 27420.36, + "end": 27422.46, + "probability": 0.9908 + }, + { + "start": 27423.28, + "end": 27424.08, + "probability": 0.9922 + }, + { + "start": 27424.7, + "end": 27424.7, + "probability": 0.1545 + }, + { + "start": 27424.7, + "end": 27424.84, + "probability": 0.7333 + }, + { + "start": 27424.94, + "end": 27429.02, + "probability": 0.7134 + }, + { + "start": 27429.14, + "end": 27433.12, + "probability": 0.7627 + }, + { + "start": 27433.12, + "end": 27434.96, + "probability": 0.6706 + }, + { + "start": 27435.14, + "end": 27436.54, + "probability": 0.6072 + }, + { + "start": 27436.6, + "end": 27438.62, + "probability": 0.7596 + }, + { + "start": 27439.32, + "end": 27441.62, + "probability": 0.6241 + }, + { + "start": 27442.1, + "end": 27444.56, + "probability": 0.8435 + }, + { + "start": 27444.7, + "end": 27447.52, + "probability": 0.2958 + }, + { + "start": 27447.68, + "end": 27448.52, + "probability": 0.2192 + }, + { + "start": 27448.52, + "end": 27450.66, + "probability": 0.3505 + }, + { + "start": 27452.34, + "end": 27454.71, + "probability": 0.5339 + }, + { + "start": 27455.6, + "end": 27457.92, + "probability": 0.6461 + }, + { + "start": 27458.6, + "end": 27462.44, + "probability": 0.3756 + }, + { + "start": 27462.44, + "end": 27463.64, + "probability": 0.903 + }, + { + "start": 27464.1, + "end": 27467.76, + "probability": 0.9767 + }, + { + "start": 27467.92, + "end": 27470.42, + "probability": 0.8494 + }, + { + "start": 27470.42, + "end": 27473.54, + "probability": 0.8676 + }, + { + "start": 27474.02, + "end": 27477.78, + "probability": 0.8104 + }, + { + "start": 27478.28, + "end": 27478.68, + "probability": 0.157 + }, + { + "start": 27480.64, + "end": 27481.34, + "probability": 0.0357 + }, + { + "start": 27482.06, + "end": 27485.5, + "probability": 0.5233 + }, + { + "start": 27486.0, + "end": 27488.2, + "probability": 0.1255 + }, + { + "start": 27488.3, + "end": 27493.16, + "probability": 0.5227 + }, + { + "start": 27494.56, + "end": 27496.78, + "probability": 0.6426 + }, + { + "start": 27497.16, + "end": 27498.4, + "probability": 0.8639 + }, + { + "start": 27498.78, + "end": 27501.64, + "probability": 0.8439 + }, + { + "start": 27502.0, + "end": 27503.4, + "probability": 0.8977 + }, + { + "start": 27503.86, + "end": 27505.62, + "probability": 0.8233 + }, + { + "start": 27505.66, + "end": 27506.7, + "probability": 0.808 + }, + { + "start": 27507.14, + "end": 27509.42, + "probability": 0.8164 + }, + { + "start": 27509.98, + "end": 27511.6, + "probability": 0.7143 + }, + { + "start": 27512.04, + "end": 27513.76, + "probability": 0.7769 + }, + { + "start": 27513.76, + "end": 27516.58, + "probability": 0.7101 + }, + { + "start": 27516.62, + "end": 27519.14, + "probability": 0.6175 + }, + { + "start": 27519.64, + "end": 27523.16, + "probability": 0.5851 + }, + { + "start": 27523.32, + "end": 27525.98, + "probability": 0.9601 + }, + { + "start": 27526.08, + "end": 27527.89, + "probability": 0.972 + }, + { + "start": 27528.46, + "end": 27529.62, + "probability": 0.4769 + }, + { + "start": 27529.68, + "end": 27531.92, + "probability": 0.7478 + }, + { + "start": 27532.3, + "end": 27533.8, + "probability": 0.9784 + }, + { + "start": 27534.36, + "end": 27537.02, + "probability": 0.9595 + }, + { + "start": 27537.32, + "end": 27538.44, + "probability": 0.5313 + }, + { + "start": 27538.54, + "end": 27542.02, + "probability": 0.7848 + }, + { + "start": 27542.1, + "end": 27544.02, + "probability": 0.8039 + }, + { + "start": 27544.48, + "end": 27545.42, + "probability": 0.2157 + }, + { + "start": 27545.44, + "end": 27547.3, + "probability": 0.7593 + }, + { + "start": 27547.3, + "end": 27550.22, + "probability": 0.7968 + }, + { + "start": 27550.34, + "end": 27552.54, + "probability": 0.8172 + }, + { + "start": 27552.54, + "end": 27556.1, + "probability": 0.8563 + }, + { + "start": 27556.6, + "end": 27557.04, + "probability": 0.3931 + }, + { + "start": 27557.06, + "end": 27558.72, + "probability": 0.4298 + }, + { + "start": 27558.72, + "end": 27559.38, + "probability": 0.7397 + }, + { + "start": 27559.82, + "end": 27563.22, + "probability": 0.7705 + }, + { + "start": 27563.3, + "end": 27568.08, + "probability": 0.8036 + }, + { + "start": 27568.08, + "end": 27572.16, + "probability": 0.8057 + }, + { + "start": 27572.74, + "end": 27573.26, + "probability": 0.2976 + }, + { + "start": 27573.38, + "end": 27575.72, + "probability": 0.453 + }, + { + "start": 27576.3, + "end": 27579.18, + "probability": 0.922 + }, + { + "start": 27579.18, + "end": 27582.08, + "probability": 0.9545 + }, + { + "start": 27582.18, + "end": 27582.58, + "probability": 0.5191 + }, + { + "start": 27583.72, + "end": 27586.72, + "probability": 0.7221 + }, + { + "start": 27586.72, + "end": 27590.3, + "probability": 0.6138 + }, + { + "start": 27590.4, + "end": 27592.52, + "probability": 0.8525 + }, + { + "start": 27592.52, + "end": 27595.7, + "probability": 0.834 + }, + { + "start": 27596.54, + "end": 27600.04, + "probability": 0.7122 + }, + { + "start": 27600.12, + "end": 27603.44, + "probability": 0.988 + }, + { + "start": 27603.52, + "end": 27604.72, + "probability": 0.796 + }, + { + "start": 27605.46, + "end": 27606.54, + "probability": 0.7856 + }, + { + "start": 27606.58, + "end": 27610.68, + "probability": 0.9858 + }, + { + "start": 27610.8, + "end": 27611.26, + "probability": 0.7297 + }, + { + "start": 27611.88, + "end": 27613.2, + "probability": 0.6995 + }, + { + "start": 27614.12, + "end": 27616.1, + "probability": 0.86 + }, + { + "start": 27616.32, + "end": 27619.24, + "probability": 0.9921 + }, + { + "start": 27621.64, + "end": 27622.68, + "probability": 0.9399 + }, + { + "start": 27622.8, + "end": 27627.12, + "probability": 0.9741 + }, + { + "start": 27627.92, + "end": 27628.98, + "probability": 0.4892 + }, + { + "start": 27630.16, + "end": 27630.9, + "probability": 0.6192 + }, + { + "start": 27630.96, + "end": 27632.08, + "probability": 0.4488 + }, + { + "start": 27633.42, + "end": 27634.78, + "probability": 0.7734 + }, + { + "start": 27636.26, + "end": 27639.84, + "probability": 0.5815 + }, + { + "start": 27640.7, + "end": 27642.48, + "probability": 0.2584 + }, + { + "start": 27643.04, + "end": 27644.08, + "probability": 0.8757 + }, + { + "start": 27644.26, + "end": 27644.36, + "probability": 0.6804 + }, + { + "start": 27645.16, + "end": 27645.36, + "probability": 0.4013 + }, + { + "start": 27652.56, + "end": 27653.1, + "probability": 0.1385 + }, + { + "start": 27654.18, + "end": 27655.18, + "probability": 0.3941 + }, + { + "start": 27659.16, + "end": 27659.68, + "probability": 0.0412 + }, + { + "start": 27664.28, + "end": 27664.4, + "probability": 0.0757 + }, + { + "start": 27665.04, + "end": 27671.62, + "probability": 0.4603 + }, + { + "start": 27681.22, + "end": 27683.44, + "probability": 0.0056 + }, + { + "start": 27684.26, + "end": 27684.42, + "probability": 0.0872 + }, + { + "start": 27684.42, + "end": 27685.88, + "probability": 0.0275 + }, + { + "start": 27686.88, + "end": 27687.32, + "probability": 0.0147 + }, + { + "start": 27690.54, + "end": 27692.44, + "probability": 0.2381 + }, + { + "start": 27692.56, + "end": 27693.92, + "probability": 0.05 + }, + { + "start": 27693.98, + "end": 27695.82, + "probability": 0.06 + }, + { + "start": 27695.82, + "end": 27699.5, + "probability": 0.2182 + }, + { + "start": 27705.9, + "end": 27709.48, + "probability": 0.5092 + }, + { + "start": 27710.88, + "end": 27712.91, + "probability": 0.0573 + }, + { + "start": 27716.6, + "end": 27717.04, + "probability": 0.3673 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.0, + "end": 27766.0, + "probability": 0.0 + }, + { + "start": 27766.2, + "end": 27769.06, + "probability": 0.042 + }, + { + "start": 27769.06, + "end": 27772.58, + "probability": 0.0273 + }, + { + "start": 27773.84, + "end": 27775.46, + "probability": 0.0055 + }, + { + "start": 27775.86, + "end": 27781.68, + "probability": 0.0535 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.0, + "end": 27919.0, + "probability": 0.0 + }, + { + "start": 27919.4, + "end": 27921.9, + "probability": 0.9429 + }, + { + "start": 27922.0, + "end": 27924.88, + "probability": 0.7507 + }, + { + "start": 27924.98, + "end": 27925.74, + "probability": 0.2644 + }, + { + "start": 27925.84, + "end": 27926.74, + "probability": 0.0898 + }, + { + "start": 27927.18, + "end": 27927.58, + "probability": 0.6196 + }, + { + "start": 27927.68, + "end": 27930.64, + "probability": 0.892 + }, + { + "start": 27930.64, + "end": 27931.06, + "probability": 0.5761 + }, + { + "start": 27931.2, + "end": 27932.08, + "probability": 0.4209 + }, + { + "start": 27932.2, + "end": 27933.4, + "probability": 0.2595 + }, + { + "start": 27933.6, + "end": 27935.06, + "probability": 0.8124 + }, + { + "start": 27936.98, + "end": 27937.56, + "probability": 0.6113 + }, + { + "start": 27937.62, + "end": 27939.96, + "probability": 0.6676 + }, + { + "start": 27940.1, + "end": 27941.29, + "probability": 0.8162 + }, + { + "start": 27945.64, + "end": 27953.32, + "probability": 0.5815 + }, + { + "start": 27957.98, + "end": 27959.52, + "probability": 0.7281 + }, + { + "start": 27973.56, + "end": 27975.02, + "probability": 0.2959 + }, + { + "start": 27975.86, + "end": 27976.48, + "probability": 0.1605 + }, + { + "start": 27979.14, + "end": 27979.7, + "probability": 0.1232 + }, + { + "start": 27979.7, + "end": 27981.58, + "probability": 0.3189 + }, + { + "start": 27981.66, + "end": 27984.3, + "probability": 0.1301 + }, + { + "start": 27985.14, + "end": 27985.64, + "probability": 0.5338 + }, + { + "start": 27985.66, + "end": 27990.94, + "probability": 0.0948 + }, + { + "start": 27990.94, + "end": 27996.96, + "probability": 0.2249 + }, + { + "start": 27996.96, + "end": 28002.3, + "probability": 0.0732 + }, + { + "start": 28004.02, + "end": 28005.26, + "probability": 0.0993 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + }, + { + "start": 28374.18, + "end": 28374.18, + "probability": 0.0 + } + ], + "segments_count": 8788, + "words_count": 44250, + "avg_words_per_segment": 5.0353, + "avg_segment_duration": 2.1884, + "avg_words_per_minute": 93.571, + "plenum_id": "132061", + "duration": 28374.18, + "title": null, + "plenum_date": "2024-11-19" +} \ No newline at end of file