diff --git "a/133334/metadata.json" "b/133334/metadata.json" new file mode 100644--- /dev/null +++ "b/133334/metadata.json" @@ -0,0 +1,60937 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "133334", + "quality_score": 0.8655, + "per_segment_quality_scores": [ + { + "start": 45.04, + "end": 46.86, + "probability": 0.8707 + }, + { + "start": 47.02, + "end": 53.38, + "probability": 0.9701 + }, + { + "start": 53.44, + "end": 54.8, + "probability": 0.7996 + }, + { + "start": 54.82, + "end": 58.26, + "probability": 0.9614 + }, + { + "start": 59.44, + "end": 64.62, + "probability": 0.9908 + }, + { + "start": 65.6, + "end": 69.46, + "probability": 0.9936 + }, + { + "start": 70.52, + "end": 74.14, + "probability": 0.9913 + }, + { + "start": 74.86, + "end": 77.98, + "probability": 0.9071 + }, + { + "start": 78.88, + "end": 82.72, + "probability": 0.9681 + }, + { + "start": 83.46, + "end": 85.22, + "probability": 0.6255 + }, + { + "start": 85.98, + "end": 87.54, + "probability": 0.8349 + }, + { + "start": 87.62, + "end": 90.46, + "probability": 0.9951 + }, + { + "start": 91.12, + "end": 94.28, + "probability": 0.9888 + }, + { + "start": 94.86, + "end": 96.66, + "probability": 0.8314 + }, + { + "start": 97.24, + "end": 101.72, + "probability": 0.8982 + }, + { + "start": 101.82, + "end": 105.18, + "probability": 0.9993 + }, + { + "start": 106.26, + "end": 109.9, + "probability": 0.9962 + }, + { + "start": 109.9, + "end": 113.98, + "probability": 0.9873 + }, + { + "start": 114.52, + "end": 115.26, + "probability": 0.9727 + }, + { + "start": 117.56, + "end": 118.66, + "probability": 0.9655 + }, + { + "start": 121.04, + "end": 122.26, + "probability": 0.7163 + }, + { + "start": 122.42, + "end": 123.4, + "probability": 0.5846 + }, + { + "start": 123.48, + "end": 124.78, + "probability": 0.9429 + }, + { + "start": 124.96, + "end": 126.6, + "probability": 0.8374 + }, + { + "start": 126.94, + "end": 127.6, + "probability": 0.8645 + }, + { + "start": 129.82, + "end": 132.24, + "probability": 0.3295 + }, + { + "start": 133.92, + "end": 136.06, + "probability": 0.292 + }, + { + "start": 136.94, + "end": 139.66, + "probability": 0.6339 + }, + { + "start": 140.66, + "end": 144.68, + "probability": 0.9538 + }, + { + "start": 144.68, + "end": 150.24, + "probability": 0.9684 + }, + { + "start": 150.62, + "end": 152.78, + "probability": 0.279 + }, + { + "start": 152.94, + "end": 154.88, + "probability": 0.262 + }, + { + "start": 155.5, + "end": 157.08, + "probability": 0.8032 + }, + { + "start": 157.6, + "end": 159.28, + "probability": 0.876 + }, + { + "start": 159.98, + "end": 162.6, + "probability": 0.8682 + }, + { + "start": 162.6, + "end": 165.68, + "probability": 0.7108 + }, + { + "start": 165.84, + "end": 168.18, + "probability": 0.3649 + }, + { + "start": 168.5, + "end": 171.62, + "probability": 0.9954 + }, + { + "start": 171.72, + "end": 172.24, + "probability": 0.7915 + }, + { + "start": 172.34, + "end": 175.42, + "probability": 0.5668 + }, + { + "start": 175.94, + "end": 177.08, + "probability": 0.3598 + }, + { + "start": 177.56, + "end": 182.58, + "probability": 0.9958 + }, + { + "start": 182.7, + "end": 189.38, + "probability": 0.9755 + }, + { + "start": 189.38, + "end": 195.94, + "probability": 0.611 + }, + { + "start": 196.38, + "end": 197.16, + "probability": 0.498 + }, + { + "start": 197.2, + "end": 197.84, + "probability": 0.819 + }, + { + "start": 197.92, + "end": 198.68, + "probability": 0.8502 + }, + { + "start": 198.8, + "end": 201.12, + "probability": 0.6885 + }, + { + "start": 202.32, + "end": 206.9, + "probability": 0.8077 + }, + { + "start": 207.04, + "end": 207.04, + "probability": 0.1264 + }, + { + "start": 207.04, + "end": 207.04, + "probability": 0.142 + }, + { + "start": 207.04, + "end": 207.04, + "probability": 0.0321 + }, + { + "start": 207.04, + "end": 210.2, + "probability": 0.9596 + }, + { + "start": 210.82, + "end": 213.56, + "probability": 0.9271 + }, + { + "start": 214.42, + "end": 216.88, + "probability": 0.8728 + }, + { + "start": 219.44, + "end": 221.22, + "probability": 0.5414 + }, + { + "start": 222.18, + "end": 226.7, + "probability": 0.9917 + }, + { + "start": 226.7, + "end": 229.5, + "probability": 0.8457 + }, + { + "start": 231.4, + "end": 233.67, + "probability": 0.9961 + }, + { + "start": 233.9, + "end": 234.88, + "probability": 0.6831 + }, + { + "start": 235.04, + "end": 235.72, + "probability": 0.9321 + }, + { + "start": 235.8, + "end": 236.52, + "probability": 0.9611 + }, + { + "start": 236.64, + "end": 237.42, + "probability": 0.9838 + }, + { + "start": 237.52, + "end": 238.9, + "probability": 0.9097 + }, + { + "start": 239.66, + "end": 246.14, + "probability": 0.9541 + }, + { + "start": 247.56, + "end": 254.88, + "probability": 0.9946 + }, + { + "start": 254.88, + "end": 259.76, + "probability": 0.9949 + }, + { + "start": 260.84, + "end": 262.9, + "probability": 0.7324 + }, + { + "start": 263.22, + "end": 263.74, + "probability": 0.9578 + }, + { + "start": 264.52, + "end": 268.16, + "probability": 0.9922 + }, + { + "start": 268.26, + "end": 269.24, + "probability": 0.7803 + }, + { + "start": 270.44, + "end": 273.48, + "probability": 0.614 + }, + { + "start": 274.0, + "end": 274.84, + "probability": 0.92 + }, + { + "start": 276.14, + "end": 279.98, + "probability": 0.9954 + }, + { + "start": 280.06, + "end": 281.46, + "probability": 0.7917 + }, + { + "start": 281.62, + "end": 285.78, + "probability": 0.9456 + }, + { + "start": 285.78, + "end": 291.66, + "probability": 0.9776 + }, + { + "start": 292.18, + "end": 292.77, + "probability": 0.9985 + }, + { + "start": 293.32, + "end": 295.54, + "probability": 0.9792 + }, + { + "start": 295.72, + "end": 296.96, + "probability": 0.6374 + }, + { + "start": 296.98, + "end": 300.62, + "probability": 0.9827 + }, + { + "start": 300.7, + "end": 300.98, + "probability": 0.7802 + }, + { + "start": 301.14, + "end": 304.16, + "probability": 0.9749 + }, + { + "start": 305.22, + "end": 308.7, + "probability": 0.955 + }, + { + "start": 309.58, + "end": 310.14, + "probability": 0.9312 + }, + { + "start": 310.84, + "end": 312.24, + "probability": 0.8493 + }, + { + "start": 313.0, + "end": 315.56, + "probability": 0.8504 + }, + { + "start": 315.86, + "end": 318.56, + "probability": 0.9952 + }, + { + "start": 319.44, + "end": 321.1, + "probability": 0.999 + }, + { + "start": 322.24, + "end": 323.44, + "probability": 0.9819 + }, + { + "start": 324.64, + "end": 325.96, + "probability": 0.9814 + }, + { + "start": 326.68, + "end": 328.6, + "probability": 0.9133 + }, + { + "start": 329.42, + "end": 332.4, + "probability": 0.8742 + }, + { + "start": 332.58, + "end": 335.6, + "probability": 0.8223 + }, + { + "start": 336.06, + "end": 339.64, + "probability": 0.9932 + }, + { + "start": 340.82, + "end": 344.4, + "probability": 0.9937 + }, + { + "start": 344.4, + "end": 345.32, + "probability": 0.2747 + }, + { + "start": 346.2, + "end": 349.52, + "probability": 0.9967 + }, + { + "start": 350.76, + "end": 353.44, + "probability": 0.9879 + }, + { + "start": 354.46, + "end": 360.8, + "probability": 0.999 + }, + { + "start": 361.4, + "end": 365.62, + "probability": 0.9624 + }, + { + "start": 366.9, + "end": 369.2, + "probability": 0.9974 + }, + { + "start": 369.86, + "end": 374.82, + "probability": 0.9698 + }, + { + "start": 376.04, + "end": 377.18, + "probability": 0.6318 + }, + { + "start": 378.42, + "end": 379.5, + "probability": 0.9019 + }, + { + "start": 380.2, + "end": 380.96, + "probability": 0.8914 + }, + { + "start": 381.12, + "end": 384.31, + "probability": 0.8147 + }, + { + "start": 385.24, + "end": 386.78, + "probability": 0.9882 + }, + { + "start": 388.14, + "end": 389.44, + "probability": 0.9834 + }, + { + "start": 390.54, + "end": 393.64, + "probability": 0.9468 + }, + { + "start": 393.7, + "end": 395.92, + "probability": 0.7842 + }, + { + "start": 396.42, + "end": 397.9, + "probability": 0.9457 + }, + { + "start": 397.98, + "end": 399.84, + "probability": 0.8906 + }, + { + "start": 400.36, + "end": 403.83, + "probability": 0.9764 + }, + { + "start": 403.98, + "end": 405.64, + "probability": 0.9137 + }, + { + "start": 406.9, + "end": 407.54, + "probability": 0.948 + }, + { + "start": 407.54, + "end": 407.96, + "probability": 0.4113 + }, + { + "start": 408.54, + "end": 409.22, + "probability": 0.9636 + }, + { + "start": 410.24, + "end": 411.23, + "probability": 0.9874 + }, + { + "start": 412.36, + "end": 415.78, + "probability": 0.9345 + }, + { + "start": 415.96, + "end": 417.18, + "probability": 0.979 + }, + { + "start": 417.72, + "end": 421.36, + "probability": 0.9956 + }, + { + "start": 422.58, + "end": 424.16, + "probability": 0.6024 + }, + { + "start": 425.24, + "end": 427.18, + "probability": 0.7864 + }, + { + "start": 427.28, + "end": 430.26, + "probability": 0.9958 + }, + { + "start": 430.3, + "end": 435.48, + "probability": 0.9919 + }, + { + "start": 436.2, + "end": 436.98, + "probability": 0.5071 + }, + { + "start": 437.76, + "end": 438.64, + "probability": 0.9433 + }, + { + "start": 438.68, + "end": 439.38, + "probability": 0.9183 + }, + { + "start": 439.42, + "end": 440.26, + "probability": 0.9541 + }, + { + "start": 440.36, + "end": 440.72, + "probability": 0.8655 + }, + { + "start": 440.78, + "end": 441.7, + "probability": 0.9485 + }, + { + "start": 441.82, + "end": 442.4, + "probability": 0.9761 + }, + { + "start": 442.44, + "end": 443.24, + "probability": 0.9893 + }, + { + "start": 443.3, + "end": 444.38, + "probability": 0.8798 + }, + { + "start": 444.9, + "end": 446.26, + "probability": 0.8601 + }, + { + "start": 447.2, + "end": 447.66, + "probability": 0.5623 + }, + { + "start": 448.7, + "end": 449.46, + "probability": 0.8289 + }, + { + "start": 449.94, + "end": 450.72, + "probability": 0.8797 + }, + { + "start": 451.24, + "end": 452.5, + "probability": 0.9825 + }, + { + "start": 452.6, + "end": 455.26, + "probability": 0.826 + }, + { + "start": 456.02, + "end": 459.76, + "probability": 0.9862 + }, + { + "start": 461.16, + "end": 463.1, + "probability": 0.7447 + }, + { + "start": 464.24, + "end": 465.96, + "probability": 0.9932 + }, + { + "start": 468.02, + "end": 468.76, + "probability": 0.9637 + }, + { + "start": 469.56, + "end": 470.58, + "probability": 0.9188 + }, + { + "start": 471.14, + "end": 472.18, + "probability": 0.9858 + }, + { + "start": 472.96, + "end": 475.24, + "probability": 0.9915 + }, + { + "start": 476.02, + "end": 476.58, + "probability": 0.814 + }, + { + "start": 476.62, + "end": 477.32, + "probability": 0.9666 + }, + { + "start": 477.36, + "end": 478.06, + "probability": 0.7966 + }, + { + "start": 478.2, + "end": 479.64, + "probability": 0.9867 + }, + { + "start": 479.76, + "end": 484.08, + "probability": 0.9727 + }, + { + "start": 484.42, + "end": 487.6, + "probability": 0.9796 + }, + { + "start": 488.86, + "end": 490.54, + "probability": 0.9928 + }, + { + "start": 491.3, + "end": 491.48, + "probability": 0.5992 + }, + { + "start": 492.32, + "end": 492.9, + "probability": 0.4106 + }, + { + "start": 493.86, + "end": 495.5, + "probability": 0.705 + }, + { + "start": 495.78, + "end": 501.34, + "probability": 0.9313 + }, + { + "start": 501.94, + "end": 503.92, + "probability": 0.9683 + }, + { + "start": 504.66, + "end": 505.34, + "probability": 0.6183 + }, + { + "start": 506.44, + "end": 509.04, + "probability": 0.9551 + }, + { + "start": 509.64, + "end": 510.42, + "probability": 0.6296 + }, + { + "start": 510.54, + "end": 511.82, + "probability": 0.9154 + }, + { + "start": 514.4, + "end": 515.42, + "probability": 0.9976 + }, + { + "start": 516.8, + "end": 518.12, + "probability": 0.8408 + }, + { + "start": 518.8, + "end": 521.98, + "probability": 0.9945 + }, + { + "start": 523.02, + "end": 527.18, + "probability": 0.9926 + }, + { + "start": 528.38, + "end": 531.44, + "probability": 0.9814 + }, + { + "start": 532.38, + "end": 535.94, + "probability": 0.9586 + }, + { + "start": 537.06, + "end": 541.1, + "probability": 0.9763 + }, + { + "start": 542.42, + "end": 545.0, + "probability": 0.984 + }, + { + "start": 545.48, + "end": 546.06, + "probability": 0.9148 + }, + { + "start": 546.14, + "end": 547.08, + "probability": 0.733 + }, + { + "start": 547.12, + "end": 548.96, + "probability": 0.9889 + }, + { + "start": 549.96, + "end": 552.44, + "probability": 0.9976 + }, + { + "start": 552.56, + "end": 553.2, + "probability": 0.509 + }, + { + "start": 553.98, + "end": 557.23, + "probability": 0.9988 + }, + { + "start": 557.8, + "end": 559.48, + "probability": 0.951 + }, + { + "start": 561.1, + "end": 568.2, + "probability": 0.9537 + }, + { + "start": 569.92, + "end": 572.7, + "probability": 0.9963 + }, + { + "start": 572.76, + "end": 577.0, + "probability": 0.9813 + }, + { + "start": 577.58, + "end": 580.48, + "probability": 0.9978 + }, + { + "start": 580.78, + "end": 582.74, + "probability": 0.9693 + }, + { + "start": 583.94, + "end": 585.42, + "probability": 0.9964 + }, + { + "start": 586.2, + "end": 587.4, + "probability": 0.9256 + }, + { + "start": 588.34, + "end": 588.84, + "probability": 0.7246 + }, + { + "start": 589.9, + "end": 590.52, + "probability": 0.9935 + }, + { + "start": 591.3, + "end": 592.62, + "probability": 0.9497 + }, + { + "start": 593.86, + "end": 597.7, + "probability": 0.9958 + }, + { + "start": 598.94, + "end": 602.9, + "probability": 0.9491 + }, + { + "start": 603.78, + "end": 606.88, + "probability": 0.9951 + }, + { + "start": 608.08, + "end": 609.04, + "probability": 0.9948 + }, + { + "start": 609.58, + "end": 610.42, + "probability": 0.9922 + }, + { + "start": 611.02, + "end": 612.12, + "probability": 0.9857 + }, + { + "start": 612.96, + "end": 613.58, + "probability": 0.6912 + }, + { + "start": 614.66, + "end": 616.68, + "probability": 0.9556 + }, + { + "start": 616.72, + "end": 619.16, + "probability": 0.9745 + }, + { + "start": 619.72, + "end": 621.64, + "probability": 0.9476 + }, + { + "start": 621.86, + "end": 624.14, + "probability": 0.9917 + }, + { + "start": 624.62, + "end": 626.8, + "probability": 0.9069 + }, + { + "start": 627.32, + "end": 628.88, + "probability": 0.9858 + }, + { + "start": 629.08, + "end": 632.14, + "probability": 0.9976 + }, + { + "start": 632.78, + "end": 633.72, + "probability": 0.8525 + }, + { + "start": 638.28, + "end": 640.78, + "probability": 0.9705 + }, + { + "start": 640.94, + "end": 643.68, + "probability": 0.8886 + }, + { + "start": 644.36, + "end": 645.16, + "probability": 0.8496 + }, + { + "start": 645.34, + "end": 645.64, + "probability": 0.9239 + }, + { + "start": 660.8, + "end": 660.8, + "probability": 0.0433 + }, + { + "start": 668.78, + "end": 669.06, + "probability": 0.1148 + }, + { + "start": 669.06, + "end": 672.32, + "probability": 0.7158 + }, + { + "start": 674.06, + "end": 675.26, + "probability": 0.7608 + }, + { + "start": 676.84, + "end": 679.54, + "probability": 0.8555 + }, + { + "start": 681.74, + "end": 682.58, + "probability": 0.9412 + }, + { + "start": 683.28, + "end": 685.16, + "probability": 0.3244 + }, + { + "start": 687.64, + "end": 687.64, + "probability": 0.0532 + }, + { + "start": 687.64, + "end": 688.18, + "probability": 0.1401 + }, + { + "start": 688.18, + "end": 688.18, + "probability": 0.0235 + }, + { + "start": 688.18, + "end": 689.74, + "probability": 0.2229 + }, + { + "start": 691.24, + "end": 691.88, + "probability": 0.5131 + }, + { + "start": 692.5, + "end": 692.54, + "probability": 0.0817 + }, + { + "start": 692.54, + "end": 693.78, + "probability": 0.3019 + }, + { + "start": 693.9, + "end": 696.72, + "probability": 0.6647 + }, + { + "start": 698.0, + "end": 698.6, + "probability": 0.5309 + }, + { + "start": 699.34, + "end": 701.92, + "probability": 0.2399 + }, + { + "start": 702.26, + "end": 702.28, + "probability": 0.224 + }, + { + "start": 702.28, + "end": 702.28, + "probability": 0.1194 + }, + { + "start": 702.28, + "end": 703.36, + "probability": 0.8607 + }, + { + "start": 704.04, + "end": 706.68, + "probability": 0.9302 + }, + { + "start": 707.26, + "end": 709.88, + "probability": 0.8823 + }, + { + "start": 711.02, + "end": 712.1, + "probability": 0.6319 + }, + { + "start": 713.44, + "end": 718.04, + "probability": 0.7769 + }, + { + "start": 718.74, + "end": 720.26, + "probability": 0.9763 + }, + { + "start": 722.4, + "end": 723.74, + "probability": 0.9599 + }, + { + "start": 723.82, + "end": 726.5, + "probability": 0.9909 + }, + { + "start": 726.5, + "end": 727.66, + "probability": 0.7661 + }, + { + "start": 727.98, + "end": 728.06, + "probability": 0.2578 + }, + { + "start": 728.06, + "end": 732.08, + "probability": 0.9365 + }, + { + "start": 732.08, + "end": 732.82, + "probability": 0.4814 + }, + { + "start": 732.82, + "end": 733.24, + "probability": 0.1797 + }, + { + "start": 733.28, + "end": 734.18, + "probability": 0.623 + }, + { + "start": 734.3, + "end": 735.36, + "probability": 0.7766 + }, + { + "start": 735.5, + "end": 737.14, + "probability": 0.7666 + }, + { + "start": 738.04, + "end": 738.92, + "probability": 0.6619 + }, + { + "start": 739.06, + "end": 741.3, + "probability": 0.5043 + }, + { + "start": 741.52, + "end": 743.06, + "probability": 0.154 + }, + { + "start": 743.12, + "end": 743.75, + "probability": 0.3026 + }, + { + "start": 744.0, + "end": 744.0, + "probability": 0.0 + }, + { + "start": 744.0, + "end": 744.0, + "probability": 0.0 + }, + { + "start": 744.0, + "end": 744.0, + "probability": 0.0 + }, + { + "start": 744.4, + "end": 745.88, + "probability": 0.1514 + }, + { + "start": 745.92, + "end": 749.1, + "probability": 0.8159 + }, + { + "start": 749.28, + "end": 749.54, + "probability": 0.1241 + }, + { + "start": 749.72, + "end": 750.72, + "probability": 0.2509 + }, + { + "start": 750.94, + "end": 751.36, + "probability": 0.1037 + }, + { + "start": 751.36, + "end": 751.98, + "probability": 0.6033 + }, + { + "start": 752.04, + "end": 753.72, + "probability": 0.6285 + }, + { + "start": 753.82, + "end": 755.02, + "probability": 0.0497 + }, + { + "start": 755.02, + "end": 755.82, + "probability": 0.35 + }, + { + "start": 755.82, + "end": 756.84, + "probability": 0.2998 + }, + { + "start": 756.86, + "end": 759.2, + "probability": 0.6276 + }, + { + "start": 759.59, + "end": 759.94, + "probability": 0.5819 + }, + { + "start": 760.08, + "end": 760.76, + "probability": 0.3189 + }, + { + "start": 760.76, + "end": 761.76, + "probability": 0.11 + }, + { + "start": 762.92, + "end": 763.44, + "probability": 0.2358 + }, + { + "start": 763.76, + "end": 764.22, + "probability": 0.0108 + }, + { + "start": 764.22, + "end": 764.22, + "probability": 0.1284 + }, + { + "start": 764.22, + "end": 765.7, + "probability": 0.5215 + }, + { + "start": 765.7, + "end": 768.28, + "probability": 0.357 + }, + { + "start": 768.34, + "end": 768.56, + "probability": 0.2124 + }, + { + "start": 768.66, + "end": 768.68, + "probability": 0.093 + }, + { + "start": 768.68, + "end": 769.1, + "probability": 0.3657 + }, + { + "start": 769.44, + "end": 770.0, + "probability": 0.8963 + }, + { + "start": 770.2, + "end": 771.28, + "probability": 0.7837 + }, + { + "start": 771.58, + "end": 776.22, + "probability": 0.9744 + }, + { + "start": 776.36, + "end": 778.3, + "probability": 0.9873 + }, + { + "start": 778.64, + "end": 779.38, + "probability": 0.7561 + }, + { + "start": 779.38, + "end": 780.01, + "probability": 0.008 + }, + { + "start": 782.24, + "end": 784.84, + "probability": 0.1692 + }, + { + "start": 784.84, + "end": 786.68, + "probability": 0.0111 + }, + { + "start": 792.86, + "end": 796.74, + "probability": 0.1373 + }, + { + "start": 796.74, + "end": 798.0, + "probability": 0.1226 + }, + { + "start": 798.58, + "end": 799.92, + "probability": 0.0715 + }, + { + "start": 800.02, + "end": 801.84, + "probability": 0.0775 + }, + { + "start": 804.04, + "end": 804.28, + "probability": 0.0951 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.0, + "end": 865.0, + "probability": 0.0 + }, + { + "start": 865.18, + "end": 865.34, + "probability": 0.2975 + }, + { + "start": 865.34, + "end": 865.9, + "probability": 0.0562 + }, + { + "start": 865.9, + "end": 866.54, + "probability": 0.4952 + }, + { + "start": 866.54, + "end": 867.84, + "probability": 0.5924 + }, + { + "start": 869.74, + "end": 870.84, + "probability": 0.0462 + }, + { + "start": 871.86, + "end": 874.1, + "probability": 0.1379 + }, + { + "start": 874.64, + "end": 874.64, + "probability": 0.0013 + }, + { + "start": 874.68, + "end": 876.08, + "probability": 0.1898 + }, + { + "start": 876.7, + "end": 878.82, + "probability": 0.2082 + }, + { + "start": 879.0, + "end": 879.82, + "probability": 0.1513 + }, + { + "start": 879.82, + "end": 880.86, + "probability": 0.0231 + }, + { + "start": 881.82, + "end": 885.28, + "probability": 0.3482 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.0, + "end": 985.0, + "probability": 0.0 + }, + { + "start": 985.38, + "end": 985.4, + "probability": 0.3588 + }, + { + "start": 985.4, + "end": 985.4, + "probability": 0.0472 + }, + { + "start": 985.4, + "end": 986.02, + "probability": 0.5837 + }, + { + "start": 986.16, + "end": 987.44, + "probability": 0.6951 + }, + { + "start": 987.62, + "end": 989.68, + "probability": 0.6824 + }, + { + "start": 990.12, + "end": 992.04, + "probability": 0.0139 + }, + { + "start": 992.04, + "end": 992.64, + "probability": 0.1119 + }, + { + "start": 993.94, + "end": 995.1, + "probability": 0.0481 + }, + { + "start": 995.42, + "end": 995.74, + "probability": 0.1586 + }, + { + "start": 997.46, + "end": 997.74, + "probability": 0.1363 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.0, + "end": 1108.0, + "probability": 0.0 + }, + { + "start": 1108.3, + "end": 1112.18, + "probability": 0.039 + }, + { + "start": 1112.18, + "end": 1113.28, + "probability": 0.0517 + }, + { + "start": 1113.28, + "end": 1113.28, + "probability": 0.0247 + }, + { + "start": 1113.62, + "end": 1115.22, + "probability": 0.0323 + }, + { + "start": 1115.42, + "end": 1116.28, + "probability": 0.0625 + }, + { + "start": 1116.28, + "end": 1117.8, + "probability": 0.3667 + }, + { + "start": 1119.48, + "end": 1120.02, + "probability": 0.028 + }, + { + "start": 1120.02, + "end": 1120.02, + "probability": 0.2127 + }, + { + "start": 1120.02, + "end": 1120.02, + "probability": 0.0499 + }, + { + "start": 1120.02, + "end": 1120.99, + "probability": 0.3254 + }, + { + "start": 1122.0, + "end": 1124.66, + "probability": 0.1418 + }, + { + "start": 1124.7, + "end": 1126.73, + "probability": 0.2629 + }, + { + "start": 1127.08, + "end": 1127.4, + "probability": 0.4229 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.0, + "end": 1228.0, + "probability": 0.0 + }, + { + "start": 1228.41, + "end": 1229.86, + "probability": 0.4562 + }, + { + "start": 1229.86, + "end": 1230.86, + "probability": 0.3521 + }, + { + "start": 1230.9, + "end": 1231.61, + "probability": 0.4841 + }, + { + "start": 1232.06, + "end": 1233.04, + "probability": 0.253 + }, + { + "start": 1233.26, + "end": 1235.94, + "probability": 0.8491 + }, + { + "start": 1235.96, + "end": 1237.06, + "probability": 0.8006 + }, + { + "start": 1238.8, + "end": 1239.88, + "probability": 0.9653 + }, + { + "start": 1240.78, + "end": 1241.18, + "probability": 0.805 + }, + { + "start": 1241.18, + "end": 1244.56, + "probability": 0.7987 + }, + { + "start": 1244.84, + "end": 1245.58, + "probability": 0.7356 + }, + { + "start": 1245.82, + "end": 1246.02, + "probability": 0.6545 + }, + { + "start": 1246.02, + "end": 1247.6, + "probability": 0.7915 + }, + { + "start": 1248.14, + "end": 1248.21, + "probability": 0.0199 + }, + { + "start": 1248.98, + "end": 1250.04, + "probability": 0.7861 + }, + { + "start": 1251.04, + "end": 1254.76, + "probability": 0.9427 + }, + { + "start": 1255.82, + "end": 1257.6, + "probability": 0.8103 + }, + { + "start": 1259.12, + "end": 1262.82, + "probability": 0.2142 + }, + { + "start": 1263.12, + "end": 1264.26, + "probability": 0.3372 + }, + { + "start": 1264.26, + "end": 1265.98, + "probability": 0.4355 + }, + { + "start": 1266.18, + "end": 1266.86, + "probability": 0.5987 + }, + { + "start": 1266.96, + "end": 1269.52, + "probability": 0.8355 + }, + { + "start": 1269.66, + "end": 1269.66, + "probability": 0.2707 + }, + { + "start": 1269.66, + "end": 1270.3, + "probability": 0.7041 + }, + { + "start": 1270.82, + "end": 1272.44, + "probability": 0.8397 + }, + { + "start": 1272.86, + "end": 1273.18, + "probability": 0.0483 + }, + { + "start": 1273.18, + "end": 1273.18, + "probability": 0.7709 + }, + { + "start": 1273.18, + "end": 1274.62, + "probability": 0.4076 + }, + { + "start": 1274.72, + "end": 1277.22, + "probability": 0.6364 + }, + { + "start": 1277.46, + "end": 1278.64, + "probability": 0.4149 + }, + { + "start": 1278.64, + "end": 1279.16, + "probability": 0.2546 + }, + { + "start": 1279.18, + "end": 1280.51, + "probability": 0.7874 + }, + { + "start": 1280.92, + "end": 1285.76, + "probability": 0.4937 + }, + { + "start": 1285.96, + "end": 1287.24, + "probability": 0.4411 + }, + { + "start": 1287.24, + "end": 1288.26, + "probability": 0.1148 + }, + { + "start": 1288.38, + "end": 1289.64, + "probability": 0.5636 + }, + { + "start": 1289.68, + "end": 1291.94, + "probability": 0.9051 + }, + { + "start": 1292.08, + "end": 1292.88, + "probability": 0.972 + }, + { + "start": 1293.18, + "end": 1293.4, + "probability": 0.1614 + }, + { + "start": 1293.64, + "end": 1295.24, + "probability": 0.0204 + }, + { + "start": 1296.0, + "end": 1296.64, + "probability": 0.0193 + }, + { + "start": 1296.64, + "end": 1297.44, + "probability": 0.1991 + }, + { + "start": 1297.92, + "end": 1299.77, + "probability": 0.7607 + }, + { + "start": 1300.3, + "end": 1301.38, + "probability": 0.7326 + }, + { + "start": 1301.38, + "end": 1302.38, + "probability": 0.2557 + }, + { + "start": 1302.88, + "end": 1304.3, + "probability": 0.8232 + }, + { + "start": 1304.88, + "end": 1305.8, + "probability": 0.6084 + }, + { + "start": 1305.94, + "end": 1306.38, + "probability": 0.5577 + }, + { + "start": 1306.6, + "end": 1308.36, + "probability": 0.9962 + }, + { + "start": 1308.68, + "end": 1309.34, + "probability": 0.0013 + }, + { + "start": 1309.72, + "end": 1309.98, + "probability": 0.1615 + }, + { + "start": 1310.14, + "end": 1311.14, + "probability": 0.8564 + }, + { + "start": 1311.16, + "end": 1311.84, + "probability": 0.3982 + }, + { + "start": 1311.94, + "end": 1313.0, + "probability": 0.7668 + }, + { + "start": 1313.6, + "end": 1315.24, + "probability": 0.2406 + }, + { + "start": 1315.24, + "end": 1315.24, + "probability": 0.0966 + }, + { + "start": 1315.24, + "end": 1316.26, + "probability": 0.2977 + }, + { + "start": 1316.26, + "end": 1319.66, + "probability": 0.7085 + }, + { + "start": 1319.74, + "end": 1321.14, + "probability": 0.4526 + }, + { + "start": 1321.62, + "end": 1321.62, + "probability": 0.2702 + }, + { + "start": 1321.62, + "end": 1322.8, + "probability": 0.8926 + }, + { + "start": 1323.18, + "end": 1323.86, + "probability": 0.766 + }, + { + "start": 1323.98, + "end": 1325.56, + "probability": 0.9983 + }, + { + "start": 1325.56, + "end": 1326.86, + "probability": 0.8549 + }, + { + "start": 1326.86, + "end": 1327.34, + "probability": 0.4933 + }, + { + "start": 1327.36, + "end": 1328.06, + "probability": 0.8365 + }, + { + "start": 1328.34, + "end": 1328.72, + "probability": 0.8547 + }, + { + "start": 1328.74, + "end": 1330.74, + "probability": 0.8584 + }, + { + "start": 1330.74, + "end": 1335.72, + "probability": 0.9906 + }, + { + "start": 1336.66, + "end": 1339.1, + "probability": 0.9968 + }, + { + "start": 1339.8, + "end": 1342.66, + "probability": 0.9785 + }, + { + "start": 1343.44, + "end": 1347.36, + "probability": 0.9474 + }, + { + "start": 1348.04, + "end": 1352.0, + "probability": 0.8696 + }, + { + "start": 1352.52, + "end": 1356.12, + "probability": 0.9344 + }, + { + "start": 1356.86, + "end": 1359.94, + "probability": 0.8767 + }, + { + "start": 1360.48, + "end": 1362.22, + "probability": 0.5074 + }, + { + "start": 1362.48, + "end": 1363.04, + "probability": 0.0994 + }, + { + "start": 1363.04, + "end": 1367.5, + "probability": 0.7509 + }, + { + "start": 1367.92, + "end": 1370.86, + "probability": 0.6272 + }, + { + "start": 1370.86, + "end": 1372.54, + "probability": 0.1048 + }, + { + "start": 1372.7, + "end": 1373.88, + "probability": 0.4285 + }, + { + "start": 1374.26, + "end": 1375.34, + "probability": 0.5649 + }, + { + "start": 1376.83, + "end": 1376.9, + "probability": 0.2061 + }, + { + "start": 1376.9, + "end": 1376.9, + "probability": 0.0784 + }, + { + "start": 1376.9, + "end": 1377.36, + "probability": 0.419 + }, + { + "start": 1377.5, + "end": 1378.2, + "probability": 0.4178 + }, + { + "start": 1378.24, + "end": 1379.91, + "probability": 0.6468 + }, + { + "start": 1380.74, + "end": 1383.4, + "probability": 0.8224 + }, + { + "start": 1384.31, + "end": 1385.58, + "probability": 0.1328 + }, + { + "start": 1385.6, + "end": 1389.36, + "probability": 0.9704 + }, + { + "start": 1389.64, + "end": 1389.88, + "probability": 0.0305 + }, + { + "start": 1389.88, + "end": 1391.43, + "probability": 0.8643 + }, + { + "start": 1391.96, + "end": 1395.94, + "probability": 0.8193 + }, + { + "start": 1396.64, + "end": 1400.86, + "probability": 0.8071 + }, + { + "start": 1400.98, + "end": 1401.66, + "probability": 0.1914 + }, + { + "start": 1401.66, + "end": 1403.42, + "probability": 0.8896 + }, + { + "start": 1404.08, + "end": 1405.4, + "probability": 0.9182 + }, + { + "start": 1405.6, + "end": 1413.32, + "probability": 0.9917 + }, + { + "start": 1414.5, + "end": 1416.22, + "probability": 0.8815 + }, + { + "start": 1417.22, + "end": 1419.72, + "probability": 0.9946 + }, + { + "start": 1419.72, + "end": 1422.7, + "probability": 0.8454 + }, + { + "start": 1423.18, + "end": 1423.98, + "probability": 0.8115 + }, + { + "start": 1424.5, + "end": 1428.26, + "probability": 0.9894 + }, + { + "start": 1428.84, + "end": 1430.96, + "probability": 0.8112 + }, + { + "start": 1431.46, + "end": 1438.68, + "probability": 0.9891 + }, + { + "start": 1438.94, + "end": 1440.5, + "probability": 0.5539 + }, + { + "start": 1440.6, + "end": 1440.68, + "probability": 0.3125 + }, + { + "start": 1440.68, + "end": 1441.0, + "probability": 0.4172 + }, + { + "start": 1441.06, + "end": 1441.14, + "probability": 0.0641 + }, + { + "start": 1441.14, + "end": 1443.16, + "probability": 0.9306 + }, + { + "start": 1443.6, + "end": 1445.9, + "probability": 0.9795 + }, + { + "start": 1446.16, + "end": 1446.92, + "probability": 0.532 + }, + { + "start": 1446.92, + "end": 1449.52, + "probability": 0.9701 + }, + { + "start": 1449.98, + "end": 1451.02, + "probability": 0.9454 + }, + { + "start": 1451.56, + "end": 1453.96, + "probability": 0.7797 + }, + { + "start": 1453.96, + "end": 1454.28, + "probability": 0.4041 + }, + { + "start": 1454.3, + "end": 1454.34, + "probability": 0.4153 + }, + { + "start": 1454.34, + "end": 1455.64, + "probability": 0.7206 + }, + { + "start": 1455.64, + "end": 1458.84, + "probability": 0.8193 + }, + { + "start": 1458.98, + "end": 1460.72, + "probability": 0.9889 + }, + { + "start": 1461.12, + "end": 1462.6, + "probability": 0.8124 + }, + { + "start": 1463.74, + "end": 1465.78, + "probability": 0.8334 + }, + { + "start": 1466.56, + "end": 1470.44, + "probability": 0.8931 + }, + { + "start": 1471.3, + "end": 1473.86, + "probability": 0.945 + }, + { + "start": 1474.54, + "end": 1477.24, + "probability": 0.8833 + }, + { + "start": 1478.56, + "end": 1481.2, + "probability": 0.8897 + }, + { + "start": 1482.08, + "end": 1489.2, + "probability": 0.9937 + }, + { + "start": 1489.44, + "end": 1490.38, + "probability": 0.4344 + }, + { + "start": 1490.7, + "end": 1494.14, + "probability": 0.8062 + }, + { + "start": 1494.68, + "end": 1495.3, + "probability": 0.8343 + }, + { + "start": 1495.42, + "end": 1497.14, + "probability": 0.9976 + }, + { + "start": 1497.64, + "end": 1499.58, + "probability": 0.9942 + }, + { + "start": 1500.34, + "end": 1503.56, + "probability": 0.9623 + }, + { + "start": 1503.72, + "end": 1506.64, + "probability": 0.9167 + }, + { + "start": 1507.44, + "end": 1510.78, + "probability": 0.9073 + }, + { + "start": 1511.88, + "end": 1512.86, + "probability": 0.9495 + }, + { + "start": 1513.34, + "end": 1515.0, + "probability": 0.5461 + }, + { + "start": 1516.32, + "end": 1518.12, + "probability": 0.7959 + }, + { + "start": 1518.3, + "end": 1518.74, + "probability": 0.6574 + }, + { + "start": 1518.8, + "end": 1519.86, + "probability": 0.95 + }, + { + "start": 1519.92, + "end": 1520.4, + "probability": 0.8869 + }, + { + "start": 1520.4, + "end": 1521.28, + "probability": 0.946 + }, + { + "start": 1522.28, + "end": 1523.26, + "probability": 0.6867 + }, + { + "start": 1524.06, + "end": 1525.7, + "probability": 0.9019 + }, + { + "start": 1525.74, + "end": 1528.1, + "probability": 0.6092 + }, + { + "start": 1528.1, + "end": 1529.42, + "probability": 0.5606 + }, + { + "start": 1529.98, + "end": 1531.4, + "probability": 0.8107 + }, + { + "start": 1531.44, + "end": 1531.64, + "probability": 0.1003 + }, + { + "start": 1531.64, + "end": 1532.96, + "probability": 0.5874 + }, + { + "start": 1532.98, + "end": 1533.68, + "probability": 0.906 + }, + { + "start": 1533.88, + "end": 1535.16, + "probability": 0.7124 + }, + { + "start": 1535.36, + "end": 1535.4, + "probability": 0.0604 + }, + { + "start": 1535.4, + "end": 1535.4, + "probability": 0.0141 + }, + { + "start": 1535.4, + "end": 1537.32, + "probability": 0.6377 + }, + { + "start": 1537.42, + "end": 1538.46, + "probability": 0.0246 + }, + { + "start": 1538.46, + "end": 1538.78, + "probability": 0.2973 + }, + { + "start": 1540.8, + "end": 1540.8, + "probability": 0.1193 + }, + { + "start": 1540.8, + "end": 1540.8, + "probability": 0.0399 + }, + { + "start": 1540.8, + "end": 1540.8, + "probability": 0.2463 + }, + { + "start": 1540.8, + "end": 1543.3, + "probability": 0.2831 + }, + { + "start": 1543.32, + "end": 1544.84, + "probability": 0.8491 + }, + { + "start": 1544.9, + "end": 1545.58, + "probability": 0.3418 + }, + { + "start": 1545.84, + "end": 1547.78, + "probability": 0.8 + }, + { + "start": 1548.2, + "end": 1548.98, + "probability": 0.5251 + }, + { + "start": 1549.02, + "end": 1552.98, + "probability": 0.9206 + }, + { + "start": 1553.86, + "end": 1556.52, + "probability": 0.9451 + }, + { + "start": 1557.12, + "end": 1558.48, + "probability": 0.9081 + }, + { + "start": 1558.74, + "end": 1560.85, + "probability": 0.9679 + }, + { + "start": 1562.12, + "end": 1564.4, + "probability": 0.823 + }, + { + "start": 1565.06, + "end": 1566.9, + "probability": 0.7744 + }, + { + "start": 1567.28, + "end": 1568.82, + "probability": 0.5682 + }, + { + "start": 1569.22, + "end": 1569.22, + "probability": 0.0859 + }, + { + "start": 1569.22, + "end": 1571.7, + "probability": 0.6426 + }, + { + "start": 1572.18, + "end": 1574.78, + "probability": 0.8557 + }, + { + "start": 1575.24, + "end": 1576.42, + "probability": 0.9549 + }, + { + "start": 1577.1, + "end": 1578.72, + "probability": 0.9648 + }, + { + "start": 1578.8, + "end": 1579.88, + "probability": 0.5841 + }, + { + "start": 1580.4, + "end": 1582.42, + "probability": 0.68 + }, + { + "start": 1583.06, + "end": 1584.4, + "probability": 0.9228 + }, + { + "start": 1585.02, + "end": 1585.5, + "probability": 0.5916 + }, + { + "start": 1585.92, + "end": 1588.08, + "probability": 0.7706 + }, + { + "start": 1589.1, + "end": 1591.02, + "probability": 0.9434 + }, + { + "start": 1592.36, + "end": 1594.14, + "probability": 0.9871 + }, + { + "start": 1594.66, + "end": 1599.14, + "probability": 0.8555 + }, + { + "start": 1600.4, + "end": 1603.62, + "probability": 0.9733 + }, + { + "start": 1604.02, + "end": 1604.96, + "probability": 0.396 + }, + { + "start": 1605.06, + "end": 1607.22, + "probability": 0.246 + }, + { + "start": 1607.42, + "end": 1609.56, + "probability": 0.9751 + }, + { + "start": 1611.28, + "end": 1613.62, + "probability": 0.877 + }, + { + "start": 1613.98, + "end": 1618.02, + "probability": 0.8474 + }, + { + "start": 1619.29, + "end": 1619.36, + "probability": 0.3184 + }, + { + "start": 1619.36, + "end": 1619.56, + "probability": 0.0143 + }, + { + "start": 1619.56, + "end": 1623.54, + "probability": 0.7967 + }, + { + "start": 1624.68, + "end": 1626.06, + "probability": 0.7033 + }, + { + "start": 1626.06, + "end": 1626.61, + "probability": 0.5223 + }, + { + "start": 1627.1, + "end": 1630.8, + "probability": 0.9571 + }, + { + "start": 1631.52, + "end": 1631.52, + "probability": 0.2412 + }, + { + "start": 1631.52, + "end": 1635.18, + "probability": 0.9325 + }, + { + "start": 1636.39, + "end": 1640.24, + "probability": 0.4425 + }, + { + "start": 1640.88, + "end": 1641.18, + "probability": 0.5432 + }, + { + "start": 1641.3, + "end": 1642.26, + "probability": 0.0901 + }, + { + "start": 1642.86, + "end": 1644.26, + "probability": 0.1228 + }, + { + "start": 1644.26, + "end": 1644.26, + "probability": 0.3851 + }, + { + "start": 1644.26, + "end": 1645.28, + "probability": 0.4011 + }, + { + "start": 1646.6, + "end": 1648.82, + "probability": 0.5921 + }, + { + "start": 1648.98, + "end": 1650.44, + "probability": 0.8735 + }, + { + "start": 1650.7, + "end": 1654.34, + "probability": 0.9881 + }, + { + "start": 1655.16, + "end": 1657.04, + "probability": 0.783 + }, + { + "start": 1658.28, + "end": 1659.82, + "probability": 0.9437 + }, + { + "start": 1660.8, + "end": 1661.68, + "probability": 0.7203 + }, + { + "start": 1662.82, + "end": 1664.86, + "probability": 0.9595 + }, + { + "start": 1665.38, + "end": 1668.3, + "probability": 0.6993 + }, + { + "start": 1668.3, + "end": 1668.94, + "probability": 0.5881 + }, + { + "start": 1669.06, + "end": 1670.64, + "probability": 0.9941 + }, + { + "start": 1670.68, + "end": 1674.96, + "probability": 0.237 + }, + { + "start": 1675.16, + "end": 1675.34, + "probability": 0.1539 + }, + { + "start": 1675.34, + "end": 1675.34, + "probability": 0.4454 + }, + { + "start": 1675.34, + "end": 1675.34, + "probability": 0.0419 + }, + { + "start": 1675.34, + "end": 1675.34, + "probability": 0.3551 + }, + { + "start": 1675.46, + "end": 1676.4, + "probability": 0.7715 + }, + { + "start": 1676.42, + "end": 1678.46, + "probability": 0.5374 + }, + { + "start": 1678.68, + "end": 1679.02, + "probability": 0.7452 + }, + { + "start": 1679.02, + "end": 1682.5, + "probability": 0.6584 + }, + { + "start": 1682.96, + "end": 1684.83, + "probability": 0.4486 + }, + { + "start": 1685.26, + "end": 1685.26, + "probability": 0.2518 + }, + { + "start": 1685.26, + "end": 1686.18, + "probability": 0.6134 + }, + { + "start": 1686.78, + "end": 1688.74, + "probability": 0.9492 + }, + { + "start": 1689.34, + "end": 1690.16, + "probability": 0.8718 + }, + { + "start": 1690.24, + "end": 1692.06, + "probability": 0.9598 + }, + { + "start": 1692.38, + "end": 1694.08, + "probability": 0.8333 + }, + { + "start": 1694.34, + "end": 1696.48, + "probability": 0.9409 + }, + { + "start": 1696.56, + "end": 1699.2, + "probability": 0.8979 + }, + { + "start": 1699.56, + "end": 1702.26, + "probability": 0.7466 + }, + { + "start": 1702.3, + "end": 1703.18, + "probability": 0.6778 + }, + { + "start": 1703.36, + "end": 1705.46, + "probability": 0.9844 + }, + { + "start": 1705.46, + "end": 1705.94, + "probability": 0.7069 + }, + { + "start": 1705.96, + "end": 1709.04, + "probability": 0.0642 + }, + { + "start": 1709.04, + "end": 1710.82, + "probability": 0.7686 + }, + { + "start": 1711.12, + "end": 1713.24, + "probability": 0.4005 + }, + { + "start": 1713.28, + "end": 1713.78, + "probability": 0.6918 + }, + { + "start": 1713.78, + "end": 1714.84, + "probability": 0.9316 + }, + { + "start": 1714.92, + "end": 1719.18, + "probability": 0.759 + }, + { + "start": 1719.22, + "end": 1721.8, + "probability": 0.9925 + }, + { + "start": 1722.5, + "end": 1723.76, + "probability": 0.642 + }, + { + "start": 1723.86, + "end": 1726.54, + "probability": 0.738 + }, + { + "start": 1727.08, + "end": 1728.1, + "probability": 0.9699 + }, + { + "start": 1729.18, + "end": 1729.96, + "probability": 0.8975 + }, + { + "start": 1730.04, + "end": 1734.6, + "probability": 0.8878 + }, + { + "start": 1734.7, + "end": 1735.28, + "probability": 0.2801 + }, + { + "start": 1735.34, + "end": 1736.8, + "probability": 0.9111 + }, + { + "start": 1736.98, + "end": 1737.0, + "probability": 0.3123 + }, + { + "start": 1737.0, + "end": 1738.4, + "probability": 0.8015 + }, + { + "start": 1738.48, + "end": 1739.88, + "probability": 0.9868 + }, + { + "start": 1740.13, + "end": 1744.12, + "probability": 0.9834 + }, + { + "start": 1744.5, + "end": 1745.42, + "probability": 0.8975 + }, + { + "start": 1745.52, + "end": 1747.24, + "probability": 0.9992 + }, + { + "start": 1747.54, + "end": 1751.98, + "probability": 0.7231 + }, + { + "start": 1752.0, + "end": 1754.6, + "probability": 0.627 + }, + { + "start": 1754.64, + "end": 1754.96, + "probability": 0.3583 + }, + { + "start": 1754.96, + "end": 1755.96, + "probability": 0.9653 + }, + { + "start": 1756.2, + "end": 1756.91, + "probability": 0.5856 + }, + { + "start": 1757.34, + "end": 1757.88, + "probability": 0.1363 + }, + { + "start": 1757.88, + "end": 1758.99, + "probability": 0.2424 + }, + { + "start": 1759.08, + "end": 1759.44, + "probability": 0.3433 + }, + { + "start": 1759.56, + "end": 1760.4, + "probability": 0.5063 + }, + { + "start": 1760.5, + "end": 1763.34, + "probability": 0.6771 + }, + { + "start": 1763.5, + "end": 1763.68, + "probability": 0.3308 + }, + { + "start": 1765.28, + "end": 1767.56, + "probability": 0.8041 + }, + { + "start": 1767.66, + "end": 1769.13, + "probability": 0.7283 + }, + { + "start": 1769.78, + "end": 1769.78, + "probability": 0.0064 + }, + { + "start": 1769.78, + "end": 1771.56, + "probability": 0.0504 + }, + { + "start": 1772.12, + "end": 1772.34, + "probability": 0.3166 + }, + { + "start": 1773.06, + "end": 1773.06, + "probability": 0.5023 + }, + { + "start": 1773.06, + "end": 1777.16, + "probability": 0.6023 + }, + { + "start": 1777.26, + "end": 1778.38, + "probability": 0.1064 + }, + { + "start": 1778.38, + "end": 1778.38, + "probability": 0.4905 + }, + { + "start": 1778.38, + "end": 1779.9, + "probability": 0.7424 + }, + { + "start": 1779.9, + "end": 1781.34, + "probability": 0.9902 + }, + { + "start": 1781.4, + "end": 1785.18, + "probability": 0.0359 + }, + { + "start": 1785.18, + "end": 1785.18, + "probability": 0.4476 + }, + { + "start": 1785.18, + "end": 1786.15, + "probability": 0.562 + }, + { + "start": 1786.98, + "end": 1787.56, + "probability": 0.6353 + }, + { + "start": 1787.68, + "end": 1788.22, + "probability": 0.7118 + }, + { + "start": 1788.26, + "end": 1790.76, + "probability": 0.8958 + }, + { + "start": 1791.5, + "end": 1794.5, + "probability": 0.3251 + }, + { + "start": 1794.5, + "end": 1794.5, + "probability": 0.1482 + }, + { + "start": 1794.5, + "end": 1794.96, + "probability": 0.1177 + }, + { + "start": 1794.96, + "end": 1798.92, + "probability": 0.8228 + }, + { + "start": 1799.38, + "end": 1802.92, + "probability": 0.866 + }, + { + "start": 1803.92, + "end": 1806.84, + "probability": 0.8285 + }, + { + "start": 1807.52, + "end": 1810.0, + "probability": 0.9556 + }, + { + "start": 1811.06, + "end": 1812.12, + "probability": 0.8124 + }, + { + "start": 1812.46, + "end": 1813.5, + "probability": 0.4623 + }, + { + "start": 1813.66, + "end": 1815.62, + "probability": 0.8053 + }, + { + "start": 1816.1, + "end": 1818.48, + "probability": 0.9836 + }, + { + "start": 1818.86, + "end": 1819.4, + "probability": 0.2874 + }, + { + "start": 1819.4, + "end": 1819.4, + "probability": 0.0029 + }, + { + "start": 1819.4, + "end": 1819.4, + "probability": 0.0818 + }, + { + "start": 1819.4, + "end": 1819.4, + "probability": 0.0629 + }, + { + "start": 1819.4, + "end": 1819.4, + "probability": 0.6372 + }, + { + "start": 1819.4, + "end": 1821.18, + "probability": 0.4374 + }, + { + "start": 1821.18, + "end": 1822.84, + "probability": 0.8029 + }, + { + "start": 1823.14, + "end": 1823.58, + "probability": 0.47 + }, + { + "start": 1823.82, + "end": 1825.78, + "probability": 0.0644 + }, + { + "start": 1827.46, + "end": 1828.32, + "probability": 0.0917 + }, + { + "start": 1828.32, + "end": 1828.32, + "probability": 0.197 + }, + { + "start": 1828.32, + "end": 1828.32, + "probability": 0.0356 + }, + { + "start": 1828.32, + "end": 1828.82, + "probability": 0.1868 + }, + { + "start": 1828.82, + "end": 1831.26, + "probability": 0.3018 + }, + { + "start": 1831.26, + "end": 1832.38, + "probability": 0.6392 + }, + { + "start": 1832.94, + "end": 1833.52, + "probability": 0.6758 + }, + { + "start": 1833.54, + "end": 1837.14, + "probability": 0.1443 + }, + { + "start": 1837.14, + "end": 1838.04, + "probability": 0.0954 + }, + { + "start": 1838.08, + "end": 1839.1, + "probability": 0.4492 + }, + { + "start": 1839.1, + "end": 1839.2, + "probability": 0.3904 + }, + { + "start": 1839.2, + "end": 1839.72, + "probability": 0.2177 + }, + { + "start": 1839.92, + "end": 1842.22, + "probability": 0.7525 + }, + { + "start": 1842.5, + "end": 1844.0, + "probability": 0.4188 + }, + { + "start": 1844.12, + "end": 1844.12, + "probability": 0.0029 + }, + { + "start": 1844.7, + "end": 1844.93, + "probability": 0.3094 + }, + { + "start": 1845.54, + "end": 1845.62, + "probability": 0.3311 + }, + { + "start": 1845.62, + "end": 1845.8, + "probability": 0.146 + }, + { + "start": 1845.8, + "end": 1847.62, + "probability": 0.7263 + }, + { + "start": 1847.62, + "end": 1848.38, + "probability": 0.1075 + }, + { + "start": 1848.38, + "end": 1849.78, + "probability": 0.805 + }, + { + "start": 1849.9, + "end": 1851.2, + "probability": 0.5311 + }, + { + "start": 1851.24, + "end": 1851.36, + "probability": 0.0956 + }, + { + "start": 1851.36, + "end": 1852.04, + "probability": 0.5289 + }, + { + "start": 1852.34, + "end": 1854.78, + "probability": 0.834 + }, + { + "start": 1854.94, + "end": 1855.6, + "probability": 0.8242 + }, + { + "start": 1855.72, + "end": 1856.82, + "probability": 0.557 + }, + { + "start": 1856.9, + "end": 1857.94, + "probability": 0.1571 + }, + { + "start": 1858.14, + "end": 1859.24, + "probability": 0.3835 + }, + { + "start": 1859.24, + "end": 1861.14, + "probability": 0.3423 + }, + { + "start": 1861.7, + "end": 1862.82, + "probability": 0.6288 + }, + { + "start": 1863.0, + "end": 1865.24, + "probability": 0.308 + }, + { + "start": 1865.24, + "end": 1866.34, + "probability": 0.3111 + }, + { + "start": 1867.28, + "end": 1867.84, + "probability": 0.9075 + }, + { + "start": 1867.84, + "end": 1870.8, + "probability": 0.4788 + }, + { + "start": 1871.28, + "end": 1872.6, + "probability": 0.4029 + }, + { + "start": 1872.6, + "end": 1874.72, + "probability": 0.4873 + }, + { + "start": 1875.82, + "end": 1875.82, + "probability": 0.0876 + }, + { + "start": 1875.82, + "end": 1875.9, + "probability": 0.0581 + }, + { + "start": 1875.9, + "end": 1876.39, + "probability": 0.4932 + }, + { + "start": 1877.26, + "end": 1879.74, + "probability": 0.925 + }, + { + "start": 1880.48, + "end": 1887.36, + "probability": 0.959 + }, + { + "start": 1888.18, + "end": 1890.18, + "probability": 0.9973 + }, + { + "start": 1891.06, + "end": 1892.53, + "probability": 0.9537 + }, + { + "start": 1893.36, + "end": 1896.64, + "probability": 0.7539 + }, + { + "start": 1897.62, + "end": 1901.14, + "probability": 0.9666 + }, + { + "start": 1902.36, + "end": 1903.22, + "probability": 0.7836 + }, + { + "start": 1903.32, + "end": 1906.28, + "probability": 0.8931 + }, + { + "start": 1907.84, + "end": 1908.2, + "probability": 0.638 + }, + { + "start": 1908.26, + "end": 1908.86, + "probability": 0.8164 + }, + { + "start": 1909.02, + "end": 1912.69, + "probability": 0.6635 + }, + { + "start": 1913.22, + "end": 1915.78, + "probability": 0.6846 + }, + { + "start": 1916.12, + "end": 1918.22, + "probability": 0.9364 + }, + { + "start": 1919.96, + "end": 1924.58, + "probability": 0.9833 + }, + { + "start": 1926.26, + "end": 1928.68, + "probability": 0.7178 + }, + { + "start": 1928.76, + "end": 1932.26, + "probability": 0.9947 + }, + { + "start": 1932.32, + "end": 1933.18, + "probability": 0.7871 + }, + { + "start": 1934.04, + "end": 1938.14, + "probability": 0.9915 + }, + { + "start": 1939.9, + "end": 1940.94, + "probability": 0.9875 + }, + { + "start": 1941.48, + "end": 1942.48, + "probability": 0.9739 + }, + { + "start": 1942.88, + "end": 1943.78, + "probability": 0.8633 + }, + { + "start": 1944.32, + "end": 1945.26, + "probability": 0.5833 + }, + { + "start": 1945.96, + "end": 1946.16, + "probability": 0.077 + }, + { + "start": 1946.16, + "end": 1947.06, + "probability": 0.4845 + }, + { + "start": 1947.76, + "end": 1951.44, + "probability": 0.9416 + }, + { + "start": 1951.56, + "end": 1954.44, + "probability": 0.9244 + }, + { + "start": 1955.64, + "end": 1958.6, + "probability": 0.9012 + }, + { + "start": 1958.6, + "end": 1961.74, + "probability": 0.999 + }, + { + "start": 1962.44, + "end": 1963.94, + "probability": 0.9297 + }, + { + "start": 1964.7, + "end": 1967.78, + "probability": 0.959 + }, + { + "start": 1968.18, + "end": 1968.96, + "probability": 0.7879 + }, + { + "start": 1969.24, + "end": 1970.4, + "probability": 0.9202 + }, + { + "start": 1971.04, + "end": 1972.58, + "probability": 0.9087 + }, + { + "start": 1972.76, + "end": 1974.15, + "probability": 0.9985 + }, + { + "start": 1974.6, + "end": 1976.2, + "probability": 0.936 + }, + { + "start": 1976.3, + "end": 1976.98, + "probability": 0.542 + }, + { + "start": 1977.58, + "end": 1979.82, + "probability": 0.8694 + }, + { + "start": 1980.44, + "end": 1982.66, + "probability": 0.8033 + }, + { + "start": 1983.36, + "end": 1989.2, + "probability": 0.7193 + }, + { + "start": 1989.92, + "end": 1992.58, + "probability": 0.35 + }, + { + "start": 1992.62, + "end": 1995.18, + "probability": 0.8787 + }, + { + "start": 1996.02, + "end": 1996.32, + "probability": 0.3494 + }, + { + "start": 1996.46, + "end": 1998.28, + "probability": 0.9902 + }, + { + "start": 1999.08, + "end": 2002.64, + "probability": 0.9457 + }, + { + "start": 2002.78, + "end": 2006.9, + "probability": 0.9324 + }, + { + "start": 2007.92, + "end": 2008.96, + "probability": 0.8836 + }, + { + "start": 2009.04, + "end": 2009.9, + "probability": 0.9893 + }, + { + "start": 2010.3, + "end": 2010.52, + "probability": 0.8878 + }, + { + "start": 2010.54, + "end": 2011.34, + "probability": 0.9739 + }, + { + "start": 2012.28, + "end": 2014.9, + "probability": 0.9734 + }, + { + "start": 2015.72, + "end": 2017.62, + "probability": 0.9641 + }, + { + "start": 2017.66, + "end": 2017.98, + "probability": 0.5473 + }, + { + "start": 2018.08, + "end": 2018.72, + "probability": 0.7798 + }, + { + "start": 2019.56, + "end": 2020.7, + "probability": 0.7505 + }, + { + "start": 2020.7, + "end": 2021.7, + "probability": 0.3434 + }, + { + "start": 2021.96, + "end": 2025.5, + "probability": 0.9602 + }, + { + "start": 2025.5, + "end": 2026.34, + "probability": 0.9433 + }, + { + "start": 2027.02, + "end": 2029.22, + "probability": 0.9863 + }, + { + "start": 2029.28, + "end": 2031.08, + "probability": 0.7026 + }, + { + "start": 2031.8, + "end": 2031.98, + "probability": 0.1472 + }, + { + "start": 2032.12, + "end": 2035.82, + "probability": 0.8998 + }, + { + "start": 2036.6, + "end": 2038.84, + "probability": 0.8048 + }, + { + "start": 2039.78, + "end": 2041.82, + "probability": 0.9766 + }, + { + "start": 2042.34, + "end": 2045.95, + "probability": 0.8909 + }, + { + "start": 2047.06, + "end": 2050.78, + "probability": 0.9294 + }, + { + "start": 2050.78, + "end": 2051.34, + "probability": 0.2248 + }, + { + "start": 2051.52, + "end": 2053.84, + "probability": 0.5204 + }, + { + "start": 2054.68, + "end": 2058.26, + "probability": 0.7743 + }, + { + "start": 2059.06, + "end": 2061.18, + "probability": 0.9849 + }, + { + "start": 2062.06, + "end": 2063.34, + "probability": 0.6045 + }, + { + "start": 2064.3, + "end": 2065.88, + "probability": 0.6763 + }, + { + "start": 2065.98, + "end": 2066.66, + "probability": 0.9086 + }, + { + "start": 2066.66, + "end": 2067.32, + "probability": 0.9568 + }, + { + "start": 2068.61, + "end": 2070.98, + "probability": 0.0233 + }, + { + "start": 2070.98, + "end": 2072.8, + "probability": 0.4995 + }, + { + "start": 2072.84, + "end": 2074.22, + "probability": 0.7336 + }, + { + "start": 2074.28, + "end": 2076.02, + "probability": 0.9456 + }, + { + "start": 2076.24, + "end": 2077.34, + "probability": 0.7342 + }, + { + "start": 2077.76, + "end": 2080.98, + "probability": 0.7483 + }, + { + "start": 2081.1, + "end": 2081.1, + "probability": 0.0618 + }, + { + "start": 2081.1, + "end": 2081.88, + "probability": 0.4819 + }, + { + "start": 2082.06, + "end": 2084.14, + "probability": 0.864 + }, + { + "start": 2084.22, + "end": 2084.7, + "probability": 0.4311 + }, + { + "start": 2084.82, + "end": 2085.8, + "probability": 0.6982 + }, + { + "start": 2086.4, + "end": 2086.78, + "probability": 0.6483 + }, + { + "start": 2087.12, + "end": 2087.72, + "probability": 0.9746 + }, + { + "start": 2088.48, + "end": 2090.46, + "probability": 0.41 + }, + { + "start": 2090.46, + "end": 2090.92, + "probability": 0.0214 + }, + { + "start": 2091.02, + "end": 2092.71, + "probability": 0.8822 + }, + { + "start": 2093.4, + "end": 2096.5, + "probability": 0.5332 + }, + { + "start": 2097.36, + "end": 2098.24, + "probability": 0.7336 + }, + { + "start": 2098.28, + "end": 2098.8, + "probability": 0.8632 + }, + { + "start": 2098.82, + "end": 2100.06, + "probability": 0.7944 + }, + { + "start": 2100.1, + "end": 2107.58, + "probability": 0.9938 + }, + { + "start": 2107.94, + "end": 2113.56, + "probability": 0.9215 + }, + { + "start": 2113.56, + "end": 2117.72, + "probability": 0.9501 + }, + { + "start": 2118.44, + "end": 2118.76, + "probability": 0.6853 + }, + { + "start": 2118.86, + "end": 2119.56, + "probability": 0.5586 + }, + { + "start": 2119.98, + "end": 2122.72, + "probability": 0.9714 + }, + { + "start": 2123.08, + "end": 2126.48, + "probability": 0.9606 + }, + { + "start": 2127.12, + "end": 2131.04, + "probability": 0.9972 + }, + { + "start": 2131.06, + "end": 2131.82, + "probability": 0.748 + }, + { + "start": 2131.98, + "end": 2133.44, + "probability": 0.8925 + }, + { + "start": 2134.52, + "end": 2139.02, + "probability": 0.8848 + }, + { + "start": 2139.7, + "end": 2143.18, + "probability": 0.9893 + }, + { + "start": 2144.22, + "end": 2144.22, + "probability": 0.1463 + }, + { + "start": 2144.22, + "end": 2144.22, + "probability": 0.1158 + }, + { + "start": 2144.22, + "end": 2146.5, + "probability": 0.5369 + }, + { + "start": 2146.84, + "end": 2148.8, + "probability": 0.0899 + }, + { + "start": 2148.8, + "end": 2148.9, + "probability": 0.0687 + }, + { + "start": 2148.98, + "end": 2153.22, + "probability": 0.7928 + }, + { + "start": 2153.64, + "end": 2156.86, + "probability": 0.9785 + }, + { + "start": 2157.16, + "end": 2157.68, + "probability": 0.7305 + }, + { + "start": 2158.26, + "end": 2159.76, + "probability": 0.7444 + }, + { + "start": 2159.84, + "end": 2163.04, + "probability": 0.9227 + }, + { + "start": 2163.04, + "end": 2166.26, + "probability": 0.9334 + }, + { + "start": 2166.46, + "end": 2169.54, + "probability": 0.1306 + }, + { + "start": 2170.0, + "end": 2170.58, + "probability": 0.5952 + }, + { + "start": 2171.98, + "end": 2174.5, + "probability": 0.2341 + }, + { + "start": 2175.3, + "end": 2177.61, + "probability": 0.4695 + }, + { + "start": 2178.16, + "end": 2180.02, + "probability": 0.0497 + }, + { + "start": 2180.2, + "end": 2181.54, + "probability": 0.6626 + }, + { + "start": 2181.96, + "end": 2183.12, + "probability": 0.8149 + }, + { + "start": 2183.22, + "end": 2184.22, + "probability": 0.8345 + }, + { + "start": 2184.62, + "end": 2188.14, + "probability": 0.887 + }, + { + "start": 2188.22, + "end": 2189.18, + "probability": 0.9582 + }, + { + "start": 2189.92, + "end": 2193.72, + "probability": 0.9872 + }, + { + "start": 2194.7, + "end": 2197.22, + "probability": 0.7645 + }, + { + "start": 2198.08, + "end": 2200.64, + "probability": 0.9469 + }, + { + "start": 2200.7, + "end": 2202.3, + "probability": 0.8268 + }, + { + "start": 2202.52, + "end": 2202.88, + "probability": 0.8508 + }, + { + "start": 2202.98, + "end": 2203.56, + "probability": 0.8874 + }, + { + "start": 2203.98, + "end": 2205.03, + "probability": 0.7717 + }, + { + "start": 2206.72, + "end": 2210.56, + "probability": 0.9209 + }, + { + "start": 2211.16, + "end": 2211.62, + "probability": 0.3748 + }, + { + "start": 2212.82, + "end": 2212.98, + "probability": 0.0814 + }, + { + "start": 2212.98, + "end": 2214.18, + "probability": 0.5937 + }, + { + "start": 2215.14, + "end": 2218.84, + "probability": 0.7491 + }, + { + "start": 2220.16, + "end": 2221.62, + "probability": 0.2015 + }, + { + "start": 2221.62, + "end": 2221.62, + "probability": 0.0799 + }, + { + "start": 2221.62, + "end": 2221.84, + "probability": 0.2693 + }, + { + "start": 2222.4, + "end": 2226.22, + "probability": 0.9539 + }, + { + "start": 2227.0, + "end": 2230.5, + "probability": 0.8848 + }, + { + "start": 2230.54, + "end": 2232.3, + "probability": 0.9896 + }, + { + "start": 2232.5, + "end": 2233.73, + "probability": 0.9661 + }, + { + "start": 2234.8, + "end": 2237.74, + "probability": 0.7904 + }, + { + "start": 2239.0, + "end": 2240.86, + "probability": 0.9107 + }, + { + "start": 2240.94, + "end": 2242.22, + "probability": 0.7609 + }, + { + "start": 2243.16, + "end": 2246.06, + "probability": 0.8083 + }, + { + "start": 2246.7, + "end": 2248.16, + "probability": 0.7798 + }, + { + "start": 2248.88, + "end": 2250.78, + "probability": 0.9619 + }, + { + "start": 2252.82, + "end": 2254.68, + "probability": 0.9711 + }, + { + "start": 2255.78, + "end": 2259.38, + "probability": 0.9957 + }, + { + "start": 2259.48, + "end": 2260.1, + "probability": 0.437 + }, + { + "start": 2260.58, + "end": 2262.14, + "probability": 0.9141 + }, + { + "start": 2262.84, + "end": 2266.58, + "probability": 0.9639 + }, + { + "start": 2267.16, + "end": 2268.96, + "probability": 0.9832 + }, + { + "start": 2270.1, + "end": 2273.96, + "probability": 0.7034 + }, + { + "start": 2274.94, + "end": 2277.76, + "probability": 0.9031 + }, + { + "start": 2282.53, + "end": 2285.96, + "probability": 0.964 + }, + { + "start": 2287.04, + "end": 2287.9, + "probability": 0.7915 + }, + { + "start": 2288.46, + "end": 2289.62, + "probability": 0.9334 + }, + { + "start": 2289.72, + "end": 2290.7, + "probability": 0.9149 + }, + { + "start": 2291.2, + "end": 2294.4, + "probability": 0.9855 + }, + { + "start": 2294.7, + "end": 2296.24, + "probability": 0.9426 + }, + { + "start": 2297.3, + "end": 2298.64, + "probability": 0.8302 + }, + { + "start": 2298.78, + "end": 2299.62, + "probability": 0.9368 + }, + { + "start": 2299.68, + "end": 2303.16, + "probability": 0.9844 + }, + { + "start": 2304.4, + "end": 2307.86, + "probability": 0.9922 + }, + { + "start": 2307.86, + "end": 2310.44, + "probability": 0.991 + }, + { + "start": 2311.76, + "end": 2312.39, + "probability": 0.6008 + }, + { + "start": 2313.26, + "end": 2316.4, + "probability": 0.9456 + }, + { + "start": 2316.6, + "end": 2321.06, + "probability": 0.9858 + }, + { + "start": 2322.68, + "end": 2323.36, + "probability": 0.9756 + }, + { + "start": 2323.98, + "end": 2326.18, + "probability": 0.9963 + }, + { + "start": 2326.44, + "end": 2327.22, + "probability": 0.966 + }, + { + "start": 2327.9, + "end": 2329.24, + "probability": 0.9722 + }, + { + "start": 2329.54, + "end": 2334.32, + "probability": 0.9961 + }, + { + "start": 2334.94, + "end": 2339.46, + "probability": 0.9651 + }, + { + "start": 2340.42, + "end": 2342.8, + "probability": 0.9405 + }, + { + "start": 2342.92, + "end": 2345.8, + "probability": 0.9814 + }, + { + "start": 2346.54, + "end": 2349.84, + "probability": 0.9504 + }, + { + "start": 2350.46, + "end": 2351.22, + "probability": 0.837 + }, + { + "start": 2351.54, + "end": 2354.5, + "probability": 0.9868 + }, + { + "start": 2354.64, + "end": 2356.26, + "probability": 0.9597 + }, + { + "start": 2356.78, + "end": 2361.15, + "probability": 0.9969 + }, + { + "start": 2361.96, + "end": 2366.12, + "probability": 0.9663 + }, + { + "start": 2367.2, + "end": 2368.6, + "probability": 0.8447 + }, + { + "start": 2368.66, + "end": 2370.56, + "probability": 0.9645 + }, + { + "start": 2370.62, + "end": 2371.54, + "probability": 0.9868 + }, + { + "start": 2372.14, + "end": 2373.6, + "probability": 0.8928 + }, + { + "start": 2373.84, + "end": 2374.86, + "probability": 0.9787 + }, + { + "start": 2375.92, + "end": 2379.24, + "probability": 0.7986 + }, + { + "start": 2380.9, + "end": 2381.6, + "probability": 0.7698 + }, + { + "start": 2382.52, + "end": 2385.48, + "probability": 0.9927 + }, + { + "start": 2386.44, + "end": 2388.5, + "probability": 0.9796 + }, + { + "start": 2389.3, + "end": 2395.02, + "probability": 0.9773 + }, + { + "start": 2395.54, + "end": 2397.48, + "probability": 0.9941 + }, + { + "start": 2398.1, + "end": 2401.02, + "probability": 0.9761 + }, + { + "start": 2401.5, + "end": 2402.64, + "probability": 0.8633 + }, + { + "start": 2403.24, + "end": 2405.94, + "probability": 0.976 + }, + { + "start": 2407.18, + "end": 2410.38, + "probability": 0.9852 + }, + { + "start": 2410.38, + "end": 2414.04, + "probability": 0.899 + }, + { + "start": 2415.44, + "end": 2418.26, + "probability": 0.9702 + }, + { + "start": 2419.0, + "end": 2421.6, + "probability": 0.988 + }, + { + "start": 2421.68, + "end": 2422.72, + "probability": 0.9946 + }, + { + "start": 2422.88, + "end": 2423.7, + "probability": 0.9809 + }, + { + "start": 2423.78, + "end": 2424.34, + "probability": 0.8063 + }, + { + "start": 2424.94, + "end": 2426.96, + "probability": 0.9552 + }, + { + "start": 2427.74, + "end": 2428.4, + "probability": 0.8226 + }, + { + "start": 2429.28, + "end": 2432.28, + "probability": 0.6611 + }, + { + "start": 2433.02, + "end": 2435.76, + "probability": 0.8737 + }, + { + "start": 2436.48, + "end": 2439.84, + "probability": 0.915 + }, + { + "start": 2440.3, + "end": 2440.74, + "probability": 0.8811 + }, + { + "start": 2440.86, + "end": 2441.26, + "probability": 0.926 + }, + { + "start": 2441.38, + "end": 2441.84, + "probability": 0.7542 + }, + { + "start": 2442.4, + "end": 2443.74, + "probability": 0.8853 + }, + { + "start": 2444.9, + "end": 2448.0, + "probability": 0.9429 + }, + { + "start": 2448.84, + "end": 2453.6, + "probability": 0.9966 + }, + { + "start": 2454.8, + "end": 2459.74, + "probability": 0.9899 + }, + { + "start": 2460.42, + "end": 2461.46, + "probability": 0.9194 + }, + { + "start": 2462.28, + "end": 2464.6, + "probability": 0.937 + }, + { + "start": 2465.14, + "end": 2465.66, + "probability": 0.8406 + }, + { + "start": 2465.66, + "end": 2466.12, + "probability": 0.8562 + }, + { + "start": 2466.22, + "end": 2466.68, + "probability": 0.8573 + }, + { + "start": 2466.78, + "end": 2472.26, + "probability": 0.9785 + }, + { + "start": 2472.94, + "end": 2475.4, + "probability": 0.8264 + }, + { + "start": 2475.54, + "end": 2476.98, + "probability": 0.8182 + }, + { + "start": 2477.54, + "end": 2479.04, + "probability": 0.9621 + }, + { + "start": 2479.64, + "end": 2483.76, + "probability": 0.9777 + }, + { + "start": 2483.86, + "end": 2484.72, + "probability": 0.84 + }, + { + "start": 2485.16, + "end": 2486.52, + "probability": 0.9171 + }, + { + "start": 2487.18, + "end": 2488.06, + "probability": 0.5299 + }, + { + "start": 2488.14, + "end": 2489.5, + "probability": 0.9934 + }, + { + "start": 2490.82, + "end": 2491.88, + "probability": 0.835 + }, + { + "start": 2491.88, + "end": 2494.24, + "probability": 0.9925 + }, + { + "start": 2494.24, + "end": 2497.4, + "probability": 0.7996 + }, + { + "start": 2497.58, + "end": 2498.7, + "probability": 0.9778 + }, + { + "start": 2499.4, + "end": 2501.22, + "probability": 0.9713 + }, + { + "start": 2501.44, + "end": 2501.76, + "probability": 0.4986 + }, + { + "start": 2502.3, + "end": 2504.22, + "probability": 0.9487 + }, + { + "start": 2505.22, + "end": 2509.18, + "probability": 0.9481 + }, + { + "start": 2509.7, + "end": 2513.1, + "probability": 0.9962 + }, + { + "start": 2513.64, + "end": 2521.06, + "probability": 0.948 + }, + { + "start": 2521.76, + "end": 2523.0, + "probability": 0.5002 + }, + { + "start": 2523.58, + "end": 2530.44, + "probability": 0.946 + }, + { + "start": 2531.36, + "end": 2532.62, + "probability": 0.8861 + }, + { + "start": 2533.38, + "end": 2537.5, + "probability": 0.9963 + }, + { + "start": 2538.08, + "end": 2545.0, + "probability": 0.9423 + }, + { + "start": 2545.66, + "end": 2546.72, + "probability": 0.8742 + }, + { + "start": 2547.38, + "end": 2549.04, + "probability": 0.9003 + }, + { + "start": 2549.64, + "end": 2551.88, + "probability": 0.9053 + }, + { + "start": 2553.14, + "end": 2553.16, + "probability": 0.7629 + }, + { + "start": 2553.24, + "end": 2554.08, + "probability": 0.8983 + }, + { + "start": 2554.2, + "end": 2556.58, + "probability": 0.9899 + }, + { + "start": 2557.3, + "end": 2558.28, + "probability": 0.7984 + }, + { + "start": 2558.86, + "end": 2561.92, + "probability": 0.988 + }, + { + "start": 2562.02, + "end": 2566.36, + "probability": 0.9889 + }, + { + "start": 2566.56, + "end": 2567.06, + "probability": 0.6445 + }, + { + "start": 2567.86, + "end": 2570.48, + "probability": 0.9486 + }, + { + "start": 2571.34, + "end": 2573.06, + "probability": 0.4982 + }, + { + "start": 2573.12, + "end": 2575.34, + "probability": 0.4807 + }, + { + "start": 2575.46, + "end": 2576.18, + "probability": 0.6595 + }, + { + "start": 2577.36, + "end": 2578.56, + "probability": 0.0583 + }, + { + "start": 2578.86, + "end": 2580.8, + "probability": 0.0093 + }, + { + "start": 2581.24, + "end": 2582.34, + "probability": 0.8672 + }, + { + "start": 2582.4, + "end": 2585.8, + "probability": 0.9927 + }, + { + "start": 2585.92, + "end": 2587.14, + "probability": 0.9834 + }, + { + "start": 2587.96, + "end": 2590.82, + "probability": 0.9862 + }, + { + "start": 2591.2, + "end": 2593.04, + "probability": 0.9221 + }, + { + "start": 2593.96, + "end": 2598.6, + "probability": 0.9966 + }, + { + "start": 2599.26, + "end": 2601.98, + "probability": 0.8313 + }, + { + "start": 2602.52, + "end": 2604.74, + "probability": 0.9722 + }, + { + "start": 2605.46, + "end": 2607.88, + "probability": 0.9877 + }, + { + "start": 2608.46, + "end": 2610.74, + "probability": 0.9674 + }, + { + "start": 2610.74, + "end": 2614.52, + "probability": 0.9995 + }, + { + "start": 2616.8, + "end": 2617.04, + "probability": 0.566 + }, + { + "start": 2617.28, + "end": 2620.65, + "probability": 0.9863 + }, + { + "start": 2620.72, + "end": 2622.07, + "probability": 0.9944 + }, + { + "start": 2622.98, + "end": 2625.72, + "probability": 0.8651 + }, + { + "start": 2626.26, + "end": 2628.98, + "probability": 0.9949 + }, + { + "start": 2629.9, + "end": 2631.8, + "probability": 0.9441 + }, + { + "start": 2632.78, + "end": 2633.26, + "probability": 0.8726 + }, + { + "start": 2634.14, + "end": 2635.84, + "probability": 0.991 + }, + { + "start": 2636.64, + "end": 2641.84, + "probability": 0.9972 + }, + { + "start": 2641.96, + "end": 2643.64, + "probability": 0.9403 + }, + { + "start": 2643.78, + "end": 2644.6, + "probability": 0.7935 + }, + { + "start": 2645.02, + "end": 2645.4, + "probability": 0.8128 + }, + { + "start": 2646.1, + "end": 2648.9, + "probability": 0.985 + }, + { + "start": 2649.38, + "end": 2650.34, + "probability": 0.9205 + }, + { + "start": 2651.2, + "end": 2654.42, + "probability": 0.991 + }, + { + "start": 2654.52, + "end": 2655.24, + "probability": 0.8987 + }, + { + "start": 2655.78, + "end": 2656.32, + "probability": 0.9018 + }, + { + "start": 2656.46, + "end": 2657.24, + "probability": 0.954 + }, + { + "start": 2657.34, + "end": 2658.42, + "probability": 0.9847 + }, + { + "start": 2659.62, + "end": 2661.4, + "probability": 0.9883 + }, + { + "start": 2662.46, + "end": 2667.46, + "probability": 0.9626 + }, + { + "start": 2667.46, + "end": 2670.48, + "probability": 0.9771 + }, + { + "start": 2672.22, + "end": 2676.4, + "probability": 0.8387 + }, + { + "start": 2676.42, + "end": 2677.76, + "probability": 0.9932 + }, + { + "start": 2678.3, + "end": 2682.02, + "probability": 0.9074 + }, + { + "start": 2682.02, + "end": 2683.2, + "probability": 0.9966 + }, + { + "start": 2683.26, + "end": 2686.04, + "probability": 0.9743 + }, + { + "start": 2686.5, + "end": 2687.32, + "probability": 0.9692 + }, + { + "start": 2687.38, + "end": 2689.82, + "probability": 0.8725 + }, + { + "start": 2689.88, + "end": 2692.24, + "probability": 0.9917 + }, + { + "start": 2693.3, + "end": 2696.38, + "probability": 0.9923 + }, + { + "start": 2697.3, + "end": 2700.86, + "probability": 0.7975 + }, + { + "start": 2701.38, + "end": 2702.56, + "probability": 0.8085 + }, + { + "start": 2702.72, + "end": 2704.74, + "probability": 0.9943 + }, + { + "start": 2704.9, + "end": 2706.04, + "probability": 0.9381 + }, + { + "start": 2706.14, + "end": 2707.3, + "probability": 0.9622 + }, + { + "start": 2707.86, + "end": 2710.06, + "probability": 0.6848 + }, + { + "start": 2710.66, + "end": 2712.82, + "probability": 0.9818 + }, + { + "start": 2712.82, + "end": 2716.5, + "probability": 0.9731 + }, + { + "start": 2717.04, + "end": 2720.9, + "probability": 0.9814 + }, + { + "start": 2721.32, + "end": 2723.24, + "probability": 0.9957 + }, + { + "start": 2724.88, + "end": 2728.78, + "probability": 0.6997 + }, + { + "start": 2729.98, + "end": 2734.18, + "probability": 0.9761 + }, + { + "start": 2734.7, + "end": 2736.96, + "probability": 0.8779 + }, + { + "start": 2737.56, + "end": 2742.16, + "probability": 0.9971 + }, + { + "start": 2742.4, + "end": 2742.94, + "probability": 0.8928 + }, + { + "start": 2743.46, + "end": 2745.68, + "probability": 0.9993 + }, + { + "start": 2746.14, + "end": 2748.62, + "probability": 0.9946 + }, + { + "start": 2749.24, + "end": 2751.32, + "probability": 0.9954 + }, + { + "start": 2752.08, + "end": 2752.78, + "probability": 0.8649 + }, + { + "start": 2753.88, + "end": 2756.6, + "probability": 0.9606 + }, + { + "start": 2757.16, + "end": 2757.6, + "probability": 0.923 + }, + { + "start": 2758.52, + "end": 2759.04, + "probability": 0.1961 + }, + { + "start": 2759.84, + "end": 2761.48, + "probability": 0.985 + }, + { + "start": 2762.04, + "end": 2764.9, + "probability": 0.9352 + }, + { + "start": 2765.88, + "end": 2769.26, + "probability": 0.9985 + }, + { + "start": 2769.82, + "end": 2772.26, + "probability": 0.993 + }, + { + "start": 2772.42, + "end": 2775.34, + "probability": 0.97 + }, + { + "start": 2775.76, + "end": 2777.72, + "probability": 0.9696 + }, + { + "start": 2778.82, + "end": 2781.36, + "probability": 0.9083 + }, + { + "start": 2782.08, + "end": 2784.71, + "probability": 0.959 + }, + { + "start": 2785.36, + "end": 2788.96, + "probability": 0.8085 + }, + { + "start": 2789.64, + "end": 2794.3, + "probability": 0.979 + }, + { + "start": 2795.6, + "end": 2797.88, + "probability": 0.9877 + }, + { + "start": 2797.88, + "end": 2802.44, + "probability": 0.998 + }, + { + "start": 2803.06, + "end": 2804.14, + "probability": 0.9638 + }, + { + "start": 2804.9, + "end": 2805.92, + "probability": 0.9846 + }, + { + "start": 2806.14, + "end": 2810.02, + "probability": 0.9977 + }, + { + "start": 2810.06, + "end": 2814.86, + "probability": 0.9937 + }, + { + "start": 2815.78, + "end": 2821.62, + "probability": 0.9976 + }, + { + "start": 2821.8, + "end": 2822.28, + "probability": 0.8902 + }, + { + "start": 2822.58, + "end": 2823.36, + "probability": 0.7374 + }, + { + "start": 2825.98, + "end": 2827.4, + "probability": 0.7878 + }, + { + "start": 2827.74, + "end": 2830.0, + "probability": 0.913 + }, + { + "start": 2831.16, + "end": 2834.26, + "probability": 0.482 + }, + { + "start": 2834.4, + "end": 2836.16, + "probability": 0.7867 + }, + { + "start": 2836.94, + "end": 2838.84, + "probability": 0.3128 + }, + { + "start": 2839.12, + "end": 2843.86, + "probability": 0.9438 + }, + { + "start": 2844.02, + "end": 2846.36, + "probability": 0.2819 + }, + { + "start": 2846.56, + "end": 2847.56, + "probability": 0.8858 + }, + { + "start": 2848.44, + "end": 2851.18, + "probability": 0.7975 + }, + { + "start": 2851.22, + "end": 2851.42, + "probability": 0.8249 + }, + { + "start": 2853.56, + "end": 2855.46, + "probability": 0.8345 + }, + { + "start": 2856.76, + "end": 2857.26, + "probability": 0.7236 + }, + { + "start": 2858.88, + "end": 2861.18, + "probability": 0.7152 + }, + { + "start": 2862.12, + "end": 2864.1, + "probability": 0.9556 + }, + { + "start": 2865.98, + "end": 2867.48, + "probability": 0.9895 + }, + { + "start": 2868.92, + "end": 2871.16, + "probability": 0.6851 + }, + { + "start": 2871.76, + "end": 2874.46, + "probability": 0.8893 + }, + { + "start": 2875.3, + "end": 2877.0, + "probability": 0.9849 + }, + { + "start": 2877.44, + "end": 2878.53, + "probability": 0.9688 + }, + { + "start": 2879.02, + "end": 2882.38, + "probability": 0.9468 + }, + { + "start": 2883.46, + "end": 2883.78, + "probability": 0.6601 + }, + { + "start": 2884.02, + "end": 2884.8, + "probability": 0.9557 + }, + { + "start": 2884.88, + "end": 2888.66, + "probability": 0.9142 + }, + { + "start": 2891.16, + "end": 2894.3, + "probability": 0.9546 + }, + { + "start": 2894.88, + "end": 2897.16, + "probability": 0.6219 + }, + { + "start": 2902.91, + "end": 2905.64, + "probability": 0.7187 + }, + { + "start": 2908.64, + "end": 2909.52, + "probability": 0.7496 + }, + { + "start": 2910.58, + "end": 2912.38, + "probability": 0.9792 + }, + { + "start": 2913.28, + "end": 2914.12, + "probability": 0.9878 + }, + { + "start": 2916.0, + "end": 2917.62, + "probability": 0.9961 + }, + { + "start": 2917.72, + "end": 2918.5, + "probability": 0.9624 + }, + { + "start": 2918.62, + "end": 2919.18, + "probability": 0.7798 + }, + { + "start": 2919.6, + "end": 2921.79, + "probability": 0.9084 + }, + { + "start": 2922.44, + "end": 2923.8, + "probability": 0.9214 + }, + { + "start": 2925.04, + "end": 2928.3, + "probability": 0.973 + }, + { + "start": 2929.1, + "end": 2930.08, + "probability": 0.8574 + }, + { + "start": 2931.48, + "end": 2931.92, + "probability": 0.9187 + }, + { + "start": 2931.92, + "end": 2932.46, + "probability": 0.87 + }, + { + "start": 2932.56, + "end": 2936.0, + "probability": 0.7958 + }, + { + "start": 2936.06, + "end": 2937.58, + "probability": 0.7152 + }, + { + "start": 2939.14, + "end": 2940.12, + "probability": 0.7418 + }, + { + "start": 2941.2, + "end": 2943.84, + "probability": 0.3015 + }, + { + "start": 2943.84, + "end": 2946.12, + "probability": 0.581 + }, + { + "start": 2946.54, + "end": 2951.0, + "probability": 0.9958 + }, + { + "start": 2951.17, + "end": 2959.24, + "probability": 0.9932 + }, + { + "start": 2960.1, + "end": 2962.18, + "probability": 0.9326 + }, + { + "start": 2962.88, + "end": 2964.04, + "probability": 0.9991 + }, + { + "start": 2964.18, + "end": 2966.02, + "probability": 0.938 + }, + { + "start": 2967.6, + "end": 2968.66, + "probability": 0.9624 + }, + { + "start": 2969.12, + "end": 2970.34, + "probability": 0.4654 + }, + { + "start": 2970.4, + "end": 2972.39, + "probability": 0.9292 + }, + { + "start": 2972.86, + "end": 2973.68, + "probability": 0.6219 + }, + { + "start": 2974.66, + "end": 2975.88, + "probability": 0.9643 + }, + { + "start": 2976.76, + "end": 2978.49, + "probability": 0.9913 + }, + { + "start": 2978.64, + "end": 2983.8, + "probability": 0.9885 + }, + { + "start": 2985.38, + "end": 2986.64, + "probability": 0.9349 + }, + { + "start": 2988.14, + "end": 2988.44, + "probability": 0.9287 + }, + { + "start": 2988.6, + "end": 2990.0, + "probability": 0.9321 + }, + { + "start": 2990.26, + "end": 2992.26, + "probability": 0.962 + }, + { + "start": 2992.84, + "end": 2994.86, + "probability": 0.839 + }, + { + "start": 2995.86, + "end": 2997.2, + "probability": 0.8333 + }, + { + "start": 2998.52, + "end": 3000.26, + "probability": 0.773 + }, + { + "start": 3000.98, + "end": 3003.3, + "probability": 0.9678 + }, + { + "start": 3003.34, + "end": 3005.08, + "probability": 0.7696 + }, + { + "start": 3005.44, + "end": 3005.78, + "probability": 0.7545 + }, + { + "start": 3005.82, + "end": 3005.9, + "probability": 0.7672 + }, + { + "start": 3006.04, + "end": 3009.8, + "probability": 0.9839 + }, + { + "start": 3011.34, + "end": 3013.72, + "probability": 0.7659 + }, + { + "start": 3014.56, + "end": 3016.86, + "probability": 0.9983 + }, + { + "start": 3016.94, + "end": 3018.34, + "probability": 0.998 + }, + { + "start": 3018.42, + "end": 3018.85, + "probability": 0.9883 + }, + { + "start": 3019.88, + "end": 3021.1, + "probability": 0.8848 + }, + { + "start": 3021.2, + "end": 3022.88, + "probability": 0.9462 + }, + { + "start": 3022.88, + "end": 3023.84, + "probability": 0.9932 + }, + { + "start": 3027.12, + "end": 3027.86, + "probability": 0.4821 + }, + { + "start": 3027.86, + "end": 3032.84, + "probability": 0.9803 + }, + { + "start": 3033.52, + "end": 3039.16, + "probability": 0.9804 + }, + { + "start": 3040.26, + "end": 3042.18, + "probability": 0.9973 + }, + { + "start": 3042.96, + "end": 3043.7, + "probability": 0.4879 + }, + { + "start": 3044.52, + "end": 3045.4, + "probability": 0.751 + }, + { + "start": 3045.52, + "end": 3046.08, + "probability": 0.5355 + }, + { + "start": 3046.24, + "end": 3047.72, + "probability": 0.9829 + }, + { + "start": 3048.89, + "end": 3050.52, + "probability": 0.9851 + }, + { + "start": 3052.12, + "end": 3053.94, + "probability": 0.7501 + }, + { + "start": 3054.02, + "end": 3057.84, + "probability": 0.9606 + }, + { + "start": 3057.88, + "end": 3058.96, + "probability": 0.8553 + }, + { + "start": 3059.02, + "end": 3060.42, + "probability": 0.88 + }, + { + "start": 3060.64, + "end": 3060.85, + "probability": 0.6641 + }, + { + "start": 3061.16, + "end": 3061.53, + "probability": 0.918 + }, + { + "start": 3063.12, + "end": 3064.82, + "probability": 0.9438 + }, + { + "start": 3065.76, + "end": 3067.52, + "probability": 0.7133 + }, + { + "start": 3068.8, + "end": 3071.48, + "probability": 0.9513 + }, + { + "start": 3072.36, + "end": 3073.6, + "probability": 0.9619 + }, + { + "start": 3074.88, + "end": 3076.12, + "probability": 0.8416 + }, + { + "start": 3076.56, + "end": 3079.02, + "probability": 0.9971 + }, + { + "start": 3080.18, + "end": 3083.44, + "probability": 0.8707 + }, + { + "start": 3085.27, + "end": 3089.68, + "probability": 0.9714 + }, + { + "start": 3089.76, + "end": 3094.92, + "probability": 0.9453 + }, + { + "start": 3095.13, + "end": 3098.16, + "probability": 0.998 + }, + { + "start": 3099.0, + "end": 3101.26, + "probability": 0.9781 + }, + { + "start": 3101.4, + "end": 3102.64, + "probability": 0.8886 + }, + { + "start": 3102.86, + "end": 3103.3, + "probability": 0.9968 + }, + { + "start": 3103.72, + "end": 3104.26, + "probability": 0.8718 + }, + { + "start": 3104.78, + "end": 3106.67, + "probability": 0.996 + }, + { + "start": 3108.42, + "end": 3112.78, + "probability": 0.8072 + }, + { + "start": 3113.92, + "end": 3116.48, + "probability": 0.9011 + }, + { + "start": 3117.4, + "end": 3119.68, + "probability": 0.9924 + }, + { + "start": 3119.7, + "end": 3120.6, + "probability": 0.0211 + }, + { + "start": 3121.24, + "end": 3124.94, + "probability": 0.9442 + }, + { + "start": 3125.02, + "end": 3127.0, + "probability": 0.9541 + }, + { + "start": 3127.76, + "end": 3128.26, + "probability": 0.826 + }, + { + "start": 3128.34, + "end": 3128.86, + "probability": 0.8975 + }, + { + "start": 3129.2, + "end": 3131.62, + "probability": 0.9957 + }, + { + "start": 3131.68, + "end": 3132.25, + "probability": 0.942 + }, + { + "start": 3133.04, + "end": 3135.06, + "probability": 0.7414 + }, + { + "start": 3136.16, + "end": 3138.02, + "probability": 0.9882 + }, + { + "start": 3139.04, + "end": 3139.92, + "probability": 0.8105 + }, + { + "start": 3140.18, + "end": 3140.86, + "probability": 0.7521 + }, + { + "start": 3141.68, + "end": 3143.14, + "probability": 0.9642 + }, + { + "start": 3144.33, + "end": 3145.7, + "probability": 0.0533 + }, + { + "start": 3145.7, + "end": 3150.72, + "probability": 0.9468 + }, + { + "start": 3150.72, + "end": 3152.6, + "probability": 0.8204 + }, + { + "start": 3152.78, + "end": 3154.0, + "probability": 0.803 + }, + { + "start": 3154.06, + "end": 3154.57, + "probability": 0.9882 + }, + { + "start": 3154.92, + "end": 3155.41, + "probability": 0.689 + }, + { + "start": 3156.24, + "end": 3157.24, + "probability": 0.9985 + }, + { + "start": 3157.9, + "end": 3159.52, + "probability": 0.8479 + }, + { + "start": 3159.6, + "end": 3160.73, + "probability": 0.4821 + }, + { + "start": 3160.9, + "end": 3162.2, + "probability": 0.9719 + }, + { + "start": 3162.29, + "end": 3168.12, + "probability": 0.9763 + }, + { + "start": 3169.81, + "end": 3173.76, + "probability": 0.7329 + }, + { + "start": 3173.96, + "end": 3174.59, + "probability": 0.9568 + }, + { + "start": 3175.36, + "end": 3176.34, + "probability": 0.9824 + }, + { + "start": 3177.28, + "end": 3178.36, + "probability": 0.9966 + }, + { + "start": 3178.48, + "end": 3179.22, + "probability": 0.5513 + }, + { + "start": 3179.34, + "end": 3180.02, + "probability": 0.9862 + }, + { + "start": 3180.54, + "end": 3181.36, + "probability": 0.9969 + }, + { + "start": 3181.96, + "end": 3182.4, + "probability": 0.1679 + }, + { + "start": 3183.64, + "end": 3184.26, + "probability": 0.5074 + }, + { + "start": 3184.34, + "end": 3184.86, + "probability": 0.5165 + }, + { + "start": 3184.9, + "end": 3187.78, + "probability": 0.6589 + }, + { + "start": 3189.82, + "end": 3193.02, + "probability": 0.6978 + }, + { + "start": 3193.64, + "end": 3198.18, + "probability": 0.8784 + }, + { + "start": 3198.72, + "end": 3200.6, + "probability": 0.7004 + }, + { + "start": 3201.7, + "end": 3202.98, + "probability": 0.6755 + }, + { + "start": 3203.06, + "end": 3204.76, + "probability": 0.9336 + }, + { + "start": 3205.36, + "end": 3206.48, + "probability": 0.9863 + }, + { + "start": 3207.02, + "end": 3207.76, + "probability": 0.8791 + }, + { + "start": 3209.2, + "end": 3210.42, + "probability": 0.9965 + }, + { + "start": 3210.44, + "end": 3210.92, + "probability": 0.9907 + }, + { + "start": 3210.96, + "end": 3216.0, + "probability": 0.9856 + }, + { + "start": 3216.18, + "end": 3218.34, + "probability": 0.9916 + }, + { + "start": 3218.54, + "end": 3219.22, + "probability": 0.9266 + }, + { + "start": 3220.04, + "end": 3221.54, + "probability": 0.7916 + }, + { + "start": 3221.66, + "end": 3222.16, + "probability": 0.7909 + }, + { + "start": 3222.41, + "end": 3224.4, + "probability": 0.9666 + }, + { + "start": 3225.18, + "end": 3226.92, + "probability": 0.976 + }, + { + "start": 3228.22, + "end": 3229.26, + "probability": 0.9937 + }, + { + "start": 3230.38, + "end": 3231.52, + "probability": 0.9875 + }, + { + "start": 3231.56, + "end": 3233.94, + "probability": 0.8513 + }, + { + "start": 3234.02, + "end": 3235.44, + "probability": 0.9457 + }, + { + "start": 3235.7, + "end": 3239.48, + "probability": 0.9558 + }, + { + "start": 3240.1, + "end": 3241.36, + "probability": 0.8906 + }, + { + "start": 3241.56, + "end": 3242.86, + "probability": 0.9948 + }, + { + "start": 3244.06, + "end": 3244.92, + "probability": 0.7578 + }, + { + "start": 3245.08, + "end": 3245.9, + "probability": 0.5441 + }, + { + "start": 3245.9, + "end": 3247.84, + "probability": 0.8388 + }, + { + "start": 3249.42, + "end": 3250.9, + "probability": 0.9957 + }, + { + "start": 3251.76, + "end": 3254.68, + "probability": 0.9953 + }, + { + "start": 3254.74, + "end": 3255.72, + "probability": 0.9062 + }, + { + "start": 3255.82, + "end": 3256.92, + "probability": 0.9351 + }, + { + "start": 3258.32, + "end": 3262.02, + "probability": 0.9952 + }, + { + "start": 3262.08, + "end": 3263.2, + "probability": 0.9336 + }, + { + "start": 3263.36, + "end": 3264.48, + "probability": 0.9884 + }, + { + "start": 3266.04, + "end": 3268.62, + "probability": 0.9658 + }, + { + "start": 3270.16, + "end": 3270.52, + "probability": 0.6606 + }, + { + "start": 3270.52, + "end": 3271.73, + "probability": 0.8723 + }, + { + "start": 3273.24, + "end": 3273.24, + "probability": 0.2077 + }, + { + "start": 3273.24, + "end": 3273.52, + "probability": 0.8373 + }, + { + "start": 3274.58, + "end": 3276.3, + "probability": 0.9951 + }, + { + "start": 3276.36, + "end": 3276.78, + "probability": 0.99 + }, + { + "start": 3278.0, + "end": 3279.18, + "probability": 0.9399 + }, + { + "start": 3279.38, + "end": 3282.28, + "probability": 0.8949 + }, + { + "start": 3282.34, + "end": 3283.14, + "probability": 0.9556 + }, + { + "start": 3283.28, + "end": 3283.88, + "probability": 0.963 + }, + { + "start": 3285.7, + "end": 3287.98, + "probability": 0.9946 + }, + { + "start": 3288.04, + "end": 3289.54, + "probability": 0.9972 + }, + { + "start": 3289.7, + "end": 3290.05, + "probability": 0.996 + }, + { + "start": 3290.48, + "end": 3292.66, + "probability": 0.48 + }, + { + "start": 3293.34, + "end": 3295.1, + "probability": 0.8636 + }, + { + "start": 3296.13, + "end": 3297.74, + "probability": 0.8134 + }, + { + "start": 3298.01, + "end": 3301.12, + "probability": 0.9915 + }, + { + "start": 3301.54, + "end": 3302.83, + "probability": 0.998 + }, + { + "start": 3303.74, + "end": 3305.68, + "probability": 0.5588 + }, + { + "start": 3306.34, + "end": 3308.32, + "probability": 0.9652 + }, + { + "start": 3308.4, + "end": 3309.58, + "probability": 0.9471 + }, + { + "start": 3310.14, + "end": 3316.34, + "probability": 0.9722 + }, + { + "start": 3317.66, + "end": 3318.96, + "probability": 0.9099 + }, + { + "start": 3320.42, + "end": 3323.92, + "probability": 0.9595 + }, + { + "start": 3325.08, + "end": 3326.54, + "probability": 0.9994 + }, + { + "start": 3327.92, + "end": 3328.76, + "probability": 0.9743 + }, + { + "start": 3328.78, + "end": 3329.1, + "probability": 0.7274 + }, + { + "start": 3329.1, + "end": 3330.53, + "probability": 0.9829 + }, + { + "start": 3332.06, + "end": 3335.88, + "probability": 0.9985 + }, + { + "start": 3337.64, + "end": 3341.24, + "probability": 0.908 + }, + { + "start": 3341.8, + "end": 3344.2, + "probability": 0.9194 + }, + { + "start": 3344.32, + "end": 3345.95, + "probability": 0.6838 + }, + { + "start": 3348.24, + "end": 3349.62, + "probability": 0.7599 + }, + { + "start": 3350.36, + "end": 3354.54, + "probability": 0.8538 + }, + { + "start": 3355.06, + "end": 3355.26, + "probability": 0.9746 + }, + { + "start": 3357.21, + "end": 3360.92, + "probability": 0.9683 + }, + { + "start": 3360.94, + "end": 3363.64, + "probability": 0.978 + }, + { + "start": 3365.88, + "end": 3367.74, + "probability": 0.9749 + }, + { + "start": 3368.8, + "end": 3369.9, + "probability": 0.9836 + }, + { + "start": 3369.96, + "end": 3371.48, + "probability": 0.932 + }, + { + "start": 3371.66, + "end": 3372.06, + "probability": 0.34 + }, + { + "start": 3372.14, + "end": 3375.58, + "probability": 0.9584 + }, + { + "start": 3376.98, + "end": 3377.54, + "probability": 0.878 + }, + { + "start": 3378.5, + "end": 3379.52, + "probability": 0.7906 + }, + { + "start": 3380.84, + "end": 3383.8, + "probability": 0.9971 + }, + { + "start": 3384.8, + "end": 3386.84, + "probability": 0.7825 + }, + { + "start": 3386.86, + "end": 3388.12, + "probability": 0.8663 + }, + { + "start": 3389.4, + "end": 3391.56, + "probability": 0.8049 + }, + { + "start": 3391.64, + "end": 3395.42, + "probability": 0.999 + }, + { + "start": 3395.98, + "end": 3402.28, + "probability": 0.9805 + }, + { + "start": 3403.12, + "end": 3404.72, + "probability": 0.867 + }, + { + "start": 3405.42, + "end": 3406.4, + "probability": 0.7889 + }, + { + "start": 3407.2, + "end": 3411.08, + "probability": 0.7655 + }, + { + "start": 3412.44, + "end": 3412.7, + "probability": 0.8444 + }, + { + "start": 3414.5, + "end": 3416.64, + "probability": 0.9686 + }, + { + "start": 3416.78, + "end": 3417.66, + "probability": 0.7171 + }, + { + "start": 3417.74, + "end": 3420.76, + "probability": 0.9863 + }, + { + "start": 3421.84, + "end": 3423.2, + "probability": 0.7471 + }, + { + "start": 3425.36, + "end": 3432.74, + "probability": 0.9039 + }, + { + "start": 3432.96, + "end": 3434.08, + "probability": 0.8496 + }, + { + "start": 3434.46, + "end": 3436.56, + "probability": 0.8955 + }, + { + "start": 3436.7, + "end": 3438.8, + "probability": 0.9078 + }, + { + "start": 3439.02, + "end": 3439.58, + "probability": 0.9062 + }, + { + "start": 3441.24, + "end": 3444.34, + "probability": 0.8749 + }, + { + "start": 3445.46, + "end": 3446.4, + "probability": 0.986 + }, + { + "start": 3448.06, + "end": 3448.6, + "probability": 0.8804 + }, + { + "start": 3450.44, + "end": 3453.44, + "probability": 0.9426 + }, + { + "start": 3454.24, + "end": 3456.44, + "probability": 0.9867 + }, + { + "start": 3456.94, + "end": 3457.86, + "probability": 0.6077 + }, + { + "start": 3458.04, + "end": 3459.46, + "probability": 0.9946 + }, + { + "start": 3459.62, + "end": 3460.48, + "probability": 0.8754 + }, + { + "start": 3461.94, + "end": 3464.76, + "probability": 0.8218 + }, + { + "start": 3464.82, + "end": 3467.08, + "probability": 0.8665 + }, + { + "start": 3467.48, + "end": 3467.84, + "probability": 0.6646 + }, + { + "start": 3468.82, + "end": 3470.86, + "probability": 0.9995 + }, + { + "start": 3471.42, + "end": 3472.12, + "probability": 0.9291 + }, + { + "start": 3473.78, + "end": 3474.08, + "probability": 0.4768 + }, + { + "start": 3474.26, + "end": 3478.5, + "probability": 0.9251 + }, + { + "start": 3479.66, + "end": 3481.7, + "probability": 0.9974 + }, + { + "start": 3481.76, + "end": 3482.64, + "probability": 0.9521 + }, + { + "start": 3484.32, + "end": 3486.06, + "probability": 0.9517 + }, + { + "start": 3486.96, + "end": 3487.26, + "probability": 0.5063 + }, + { + "start": 3488.26, + "end": 3489.68, + "probability": 0.99 + }, + { + "start": 3490.72, + "end": 3494.24, + "probability": 0.7407 + }, + { + "start": 3494.84, + "end": 3495.42, + "probability": 0.4348 + }, + { + "start": 3496.92, + "end": 3499.24, + "probability": 0.6898 + }, + { + "start": 3499.4, + "end": 3501.7, + "probability": 0.9792 + }, + { + "start": 3502.7, + "end": 3506.14, + "probability": 0.8204 + }, + { + "start": 3506.9, + "end": 3511.58, + "probability": 0.9045 + }, + { + "start": 3512.32, + "end": 3512.46, + "probability": 0.6731 + }, + { + "start": 3513.7, + "end": 3515.24, + "probability": 0.9777 + }, + { + "start": 3515.26, + "end": 3516.1, + "probability": 0.7411 + }, + { + "start": 3518.12, + "end": 3521.76, + "probability": 0.954 + }, + { + "start": 3523.58, + "end": 3524.42, + "probability": 0.9045 + }, + { + "start": 3526.16, + "end": 3527.78, + "probability": 0.9922 + }, + { + "start": 3528.68, + "end": 3531.4, + "probability": 0.8617 + }, + { + "start": 3531.52, + "end": 3532.08, + "probability": 0.8802 + }, + { + "start": 3532.18, + "end": 3534.28, + "probability": 0.8645 + }, + { + "start": 3535.76, + "end": 3536.82, + "probability": 0.8837 + }, + { + "start": 3538.7, + "end": 3541.06, + "probability": 0.9729 + }, + { + "start": 3541.7, + "end": 3543.05, + "probability": 0.9877 + }, + { + "start": 3544.6, + "end": 3546.26, + "probability": 0.7037 + }, + { + "start": 3547.6, + "end": 3548.2, + "probability": 0.9989 + }, + { + "start": 3548.8, + "end": 3550.41, + "probability": 0.7492 + }, + { + "start": 3550.6, + "end": 3551.2, + "probability": 0.7965 + }, + { + "start": 3551.26, + "end": 3552.64, + "probability": 0.9661 + }, + { + "start": 3552.68, + "end": 3553.16, + "probability": 0.8881 + }, + { + "start": 3553.82, + "end": 3554.82, + "probability": 0.9738 + }, + { + "start": 3555.66, + "end": 3556.56, + "probability": 0.7094 + }, + { + "start": 3556.66, + "end": 3556.86, + "probability": 0.3939 + }, + { + "start": 3558.46, + "end": 3561.66, + "probability": 0.9494 + }, + { + "start": 3561.96, + "end": 3568.04, + "probability": 0.9212 + }, + { + "start": 3569.14, + "end": 3570.02, + "probability": 0.6588 + }, + { + "start": 3570.08, + "end": 3571.86, + "probability": 0.9781 + }, + { + "start": 3573.06, + "end": 3575.47, + "probability": 0.9875 + }, + { + "start": 3577.46, + "end": 3577.46, + "probability": 0.3165 + }, + { + "start": 3577.46, + "end": 3578.5, + "probability": 0.7928 + }, + { + "start": 3578.64, + "end": 3584.46, + "probability": 0.9138 + }, + { + "start": 3585.26, + "end": 3586.24, + "probability": 0.2153 + }, + { + "start": 3586.24, + "end": 3587.1, + "probability": 0.6412 + }, + { + "start": 3588.2, + "end": 3588.52, + "probability": 0.13 + }, + { + "start": 3588.52, + "end": 3588.52, + "probability": 0.4305 + }, + { + "start": 3588.52, + "end": 3588.96, + "probability": 0.162 + }, + { + "start": 3589.02, + "end": 3592.4, + "probability": 0.9625 + }, + { + "start": 3593.28, + "end": 3594.07, + "probability": 0.7666 + }, + { + "start": 3594.28, + "end": 3594.52, + "probability": 0.8745 + }, + { + "start": 3594.66, + "end": 3597.0, + "probability": 0.8439 + }, + { + "start": 3598.0, + "end": 3598.0, + "probability": 0.1599 + }, + { + "start": 3598.0, + "end": 3598.34, + "probability": 0.1658 + }, + { + "start": 3598.54, + "end": 3600.8, + "probability": 0.3648 + }, + { + "start": 3601.02, + "end": 3602.38, + "probability": 0.7937 + }, + { + "start": 3602.56, + "end": 3603.58, + "probability": 0.6621 + }, + { + "start": 3603.58, + "end": 3605.68, + "probability": 0.7551 + }, + { + "start": 3605.7, + "end": 3607.02, + "probability": 0.8676 + }, + { + "start": 3607.4, + "end": 3608.38, + "probability": 0.6349 + }, + { + "start": 3608.4, + "end": 3609.3, + "probability": 0.8933 + }, + { + "start": 3609.92, + "end": 3612.12, + "probability": 0.7569 + }, + { + "start": 3612.26, + "end": 3612.5, + "probability": 0.8704 + }, + { + "start": 3613.16, + "end": 3614.86, + "probability": 0.9785 + }, + { + "start": 3614.98, + "end": 3615.26, + "probability": 0.9498 + }, + { + "start": 3617.48, + "end": 3617.54, + "probability": 0.0092 + }, + { + "start": 3617.54, + "end": 3617.58, + "probability": 0.0514 + }, + { + "start": 3617.58, + "end": 3618.78, + "probability": 0.5487 + }, + { + "start": 3619.41, + "end": 3621.58, + "probability": 0.5902 + }, + { + "start": 3622.52, + "end": 3624.98, + "probability": 0.8688 + }, + { + "start": 3625.18, + "end": 3630.38, + "probability": 0.8069 + }, + { + "start": 3631.29, + "end": 3632.18, + "probability": 0.1459 + }, + { + "start": 3632.18, + "end": 3633.94, + "probability": 0.9214 + }, + { + "start": 3634.2, + "end": 3635.0, + "probability": 0.6941 + }, + { + "start": 3635.6, + "end": 3638.4, + "probability": 0.8581 + }, + { + "start": 3639.24, + "end": 3639.46, + "probability": 0.0289 + }, + { + "start": 3639.46, + "end": 3640.38, + "probability": 0.1219 + }, + { + "start": 3641.14, + "end": 3641.68, + "probability": 0.4269 + }, + { + "start": 3641.9, + "end": 3644.74, + "probability": 0.7607 + }, + { + "start": 3644.82, + "end": 3646.36, + "probability": 0.9551 + }, + { + "start": 3647.36, + "end": 3647.96, + "probability": 0.4547 + }, + { + "start": 3647.96, + "end": 3647.98, + "probability": 0.0874 + }, + { + "start": 3647.98, + "end": 3648.0, + "probability": 0.3514 + }, + { + "start": 3648.08, + "end": 3649.2, + "probability": 0.6708 + }, + { + "start": 3649.38, + "end": 3649.94, + "probability": 0.251 + }, + { + "start": 3650.06, + "end": 3651.07, + "probability": 0.5795 + }, + { + "start": 3651.58, + "end": 3654.91, + "probability": 0.9119 + }, + { + "start": 3655.42, + "end": 3656.4, + "probability": 0.6825 + }, + { + "start": 3656.94, + "end": 3657.42, + "probability": 0.7732 + }, + { + "start": 3658.16, + "end": 3658.8, + "probability": 0.1892 + }, + { + "start": 3658.8, + "end": 3658.8, + "probability": 0.2817 + }, + { + "start": 3658.8, + "end": 3658.8, + "probability": 0.0659 + }, + { + "start": 3658.8, + "end": 3660.52, + "probability": 0.3597 + }, + { + "start": 3660.76, + "end": 3661.06, + "probability": 0.1046 + }, + { + "start": 3661.06, + "end": 3663.1, + "probability": 0.8538 + }, + { + "start": 3664.56, + "end": 3665.52, + "probability": 0.5586 + }, + { + "start": 3665.7, + "end": 3667.44, + "probability": 0.5153 + }, + { + "start": 3668.86, + "end": 3670.48, + "probability": 0.9245 + }, + { + "start": 3671.14, + "end": 3673.7, + "probability": 0.9224 + }, + { + "start": 3674.92, + "end": 3675.32, + "probability": 0.6856 + }, + { + "start": 3675.4, + "end": 3679.56, + "probability": 0.9949 + }, + { + "start": 3679.84, + "end": 3680.24, + "probability": 0.998 + }, + { + "start": 3680.92, + "end": 3681.36, + "probability": 0.3324 + }, + { + "start": 3682.9, + "end": 3683.76, + "probability": 0.9795 + }, + { + "start": 3684.54, + "end": 3689.16, + "probability": 0.9978 + }, + { + "start": 3689.72, + "end": 3691.26, + "probability": 0.9854 + }, + { + "start": 3692.44, + "end": 3695.14, + "probability": 0.839 + }, + { + "start": 3696.1, + "end": 3696.8, + "probability": 0.9869 + }, + { + "start": 3697.14, + "end": 3697.88, + "probability": 0.861 + }, + { + "start": 3697.98, + "end": 3699.26, + "probability": 0.8647 + }, + { + "start": 3699.98, + "end": 3701.52, + "probability": 0.9954 + }, + { + "start": 3702.54, + "end": 3702.68, + "probability": 0.0209 + }, + { + "start": 3702.68, + "end": 3706.0, + "probability": 0.985 + }, + { + "start": 3706.1, + "end": 3706.6, + "probability": 0.4678 + }, + { + "start": 3706.72, + "end": 3710.2, + "probability": 0.981 + }, + { + "start": 3710.38, + "end": 3711.3, + "probability": 0.9419 + }, + { + "start": 3711.54, + "end": 3714.82, + "probability": 0.9573 + }, + { + "start": 3714.82, + "end": 3717.14, + "probability": 0.9899 + }, + { + "start": 3718.02, + "end": 3718.68, + "probability": 0.8469 + }, + { + "start": 3719.28, + "end": 3719.88, + "probability": 0.9011 + }, + { + "start": 3720.42, + "end": 3721.94, + "probability": 0.8448 + }, + { + "start": 3722.78, + "end": 3723.52, + "probability": 0.5047 + }, + { + "start": 3723.76, + "end": 3725.28, + "probability": 0.7949 + }, + { + "start": 3725.4, + "end": 3725.96, + "probability": 0.4383 + }, + { + "start": 3726.24, + "end": 3727.96, + "probability": 0.9581 + }, + { + "start": 3728.86, + "end": 3732.42, + "probability": 0.981 + }, + { + "start": 3732.96, + "end": 3734.32, + "probability": 0.9302 + }, + { + "start": 3735.0, + "end": 3737.92, + "probability": 0.9611 + }, + { + "start": 3738.98, + "end": 3742.66, + "probability": 0.9208 + }, + { + "start": 3743.46, + "end": 3746.2, + "probability": 0.9844 + }, + { + "start": 3746.94, + "end": 3748.78, + "probability": 0.9976 + }, + { + "start": 3750.46, + "end": 3755.18, + "probability": 0.9028 + }, + { + "start": 3755.26, + "end": 3756.6, + "probability": 0.9702 + }, + { + "start": 3757.3, + "end": 3759.72, + "probability": 0.9822 + }, + { + "start": 3760.66, + "end": 3762.86, + "probability": 0.9951 + }, + { + "start": 3763.76, + "end": 3768.02, + "probability": 0.9947 + }, + { + "start": 3768.54, + "end": 3769.68, + "probability": 0.8636 + }, + { + "start": 3770.2, + "end": 3770.22, + "probability": 0.11 + }, + { + "start": 3770.22, + "end": 3771.54, + "probability": 0.7619 + }, + { + "start": 3772.52, + "end": 3774.37, + "probability": 0.8911 + }, + { + "start": 3774.98, + "end": 3778.32, + "probability": 0.8678 + }, + { + "start": 3779.26, + "end": 3779.6, + "probability": 0.4114 + }, + { + "start": 3783.86, + "end": 3784.56, + "probability": 0.1036 + }, + { + "start": 3784.56, + "end": 3784.56, + "probability": 0.1455 + }, + { + "start": 3784.56, + "end": 3786.3, + "probability": 0.5873 + }, + { + "start": 3786.46, + "end": 3787.98, + "probability": 0.9824 + }, + { + "start": 3789.04, + "end": 3790.06, + "probability": 0.8658 + }, + { + "start": 3791.32, + "end": 3791.64, + "probability": 0.8285 + }, + { + "start": 3792.26, + "end": 3793.68, + "probability": 0.9973 + }, + { + "start": 3794.68, + "end": 3796.86, + "probability": 0.9429 + }, + { + "start": 3797.24, + "end": 3798.72, + "probability": 0.977 + }, + { + "start": 3798.78, + "end": 3799.98, + "probability": 0.9876 + }, + { + "start": 3800.52, + "end": 3801.46, + "probability": 0.9285 + }, + { + "start": 3801.48, + "end": 3803.3, + "probability": 0.9938 + }, + { + "start": 3804.0, + "end": 3808.84, + "probability": 0.9763 + }, + { + "start": 3810.48, + "end": 3814.74, + "probability": 0.8617 + }, + { + "start": 3815.34, + "end": 3815.46, + "probability": 0.6923 + }, + { + "start": 3815.64, + "end": 3816.36, + "probability": 0.5747 + }, + { + "start": 3816.46, + "end": 3816.92, + "probability": 0.9097 + }, + { + "start": 3816.94, + "end": 3817.32, + "probability": 0.9364 + }, + { + "start": 3817.36, + "end": 3819.44, + "probability": 0.9919 + }, + { + "start": 3819.78, + "end": 3820.88, + "probability": 0.9915 + }, + { + "start": 3821.02, + "end": 3821.78, + "probability": 0.9796 + }, + { + "start": 3821.84, + "end": 3822.48, + "probability": 0.3428 + }, + { + "start": 3823.78, + "end": 3825.08, + "probability": 0.9946 + }, + { + "start": 3826.2, + "end": 3827.38, + "probability": 0.6294 + }, + { + "start": 3828.1, + "end": 3829.55, + "probability": 0.953 + }, + { + "start": 3831.12, + "end": 3831.8, + "probability": 0.8968 + }, + { + "start": 3831.98, + "end": 3834.22, + "probability": 0.9637 + }, + { + "start": 3834.34, + "end": 3834.86, + "probability": 0.7504 + }, + { + "start": 3836.06, + "end": 3837.4, + "probability": 0.9472 + }, + { + "start": 3838.08, + "end": 3840.36, + "probability": 0.8828 + }, + { + "start": 3841.08, + "end": 3841.92, + "probability": 0.9701 + }, + { + "start": 3842.0, + "end": 3845.62, + "probability": 0.9292 + }, + { + "start": 3846.5, + "end": 3847.9, + "probability": 0.0287 + }, + { + "start": 3851.0, + "end": 3851.0, + "probability": 0.0286 + }, + { + "start": 3851.0, + "end": 3851.02, + "probability": 0.0091 + }, + { + "start": 3851.02, + "end": 3852.08, + "probability": 0.7287 + }, + { + "start": 3852.98, + "end": 3853.0, + "probability": 0.0494 + }, + { + "start": 3853.0, + "end": 3855.26, + "probability": 0.6073 + }, + { + "start": 3856.44, + "end": 3856.96, + "probability": 0.0161 + }, + { + "start": 3863.64, + "end": 3863.68, + "probability": 0.0298 + }, + { + "start": 3863.68, + "end": 3864.48, + "probability": 0.2561 + }, + { + "start": 3864.62, + "end": 3865.68, + "probability": 0.115 + }, + { + "start": 3869.12, + "end": 3870.7, + "probability": 0.0718 + }, + { + "start": 3871.07, + "end": 3871.2, + "probability": 0.0674 + }, + { + "start": 3871.2, + "end": 3871.72, + "probability": 0.0195 + }, + { + "start": 3871.82, + "end": 3877.14, + "probability": 0.1601 + }, + { + "start": 3886.84, + "end": 3886.84, + "probability": 0.3401 + }, + { + "start": 3889.42, + "end": 3890.92, + "probability": 0.1788 + }, + { + "start": 3890.98, + "end": 3892.08, + "probability": 0.0813 + }, + { + "start": 3892.08, + "end": 3892.78, + "probability": 0.0821 + }, + { + "start": 3895.26, + "end": 3895.8, + "probability": 0.0048 + }, + { + "start": 3905.52, + "end": 3906.18, + "probability": 0.0571 + }, + { + "start": 3906.18, + "end": 3907.6, + "probability": 0.3952 + }, + { + "start": 3910.68, + "end": 3912.08, + "probability": 0.1268 + }, + { + "start": 3913.04, + "end": 3913.5, + "probability": 0.0432 + }, + { + "start": 3913.5, + "end": 3915.32, + "probability": 0.2383 + }, + { + "start": 3915.32, + "end": 3916.47, + "probability": 0.0591 + }, + { + "start": 3919.68, + "end": 3919.76, + "probability": 0.1435 + }, + { + "start": 3919.76, + "end": 3919.84, + "probability": 0.2911 + }, + { + "start": 3919.86, + "end": 3919.96, + "probability": 0.1554 + }, + { + "start": 3919.96, + "end": 3919.98, + "probability": 0.2172 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0 + }, + { + "start": 3920.3, + "end": 3924.24, + "probability": 0.0315 + }, + { + "start": 3925.06, + "end": 3925.24, + "probability": 0.0525 + }, + { + "start": 3925.32, + "end": 3927.02, + "probability": 0.0234 + }, + { + "start": 3928.66, + "end": 3929.6, + "probability": 0.117 + }, + { + "start": 3930.52, + "end": 3934.06, + "probability": 0.1192 + }, + { + "start": 3934.06, + "end": 3935.18, + "probability": 0.3353 + }, + { + "start": 3936.08, + "end": 3936.3, + "probability": 0.23 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.0, + "end": 4041.0, + "probability": 0.0 + }, + { + "start": 4041.14, + "end": 4041.32, + "probability": 0.2163 + }, + { + "start": 4042.06, + "end": 4044.38, + "probability": 0.8085 + }, + { + "start": 4046.1, + "end": 4051.24, + "probability": 0.9925 + }, + { + "start": 4051.24, + "end": 4057.42, + "probability": 0.9979 + }, + { + "start": 4058.6, + "end": 4062.14, + "probability": 0.999 + }, + { + "start": 4062.17, + "end": 4067.32, + "probability": 0.9973 + }, + { + "start": 4068.14, + "end": 4073.92, + "probability": 0.9876 + }, + { + "start": 4074.64, + "end": 4079.96, + "probability": 0.9983 + }, + { + "start": 4080.46, + "end": 4081.22, + "probability": 0.8992 + }, + { + "start": 4082.46, + "end": 4086.32, + "probability": 0.9934 + }, + { + "start": 4087.12, + "end": 4087.4, + "probability": 0.5005 + }, + { + "start": 4088.36, + "end": 4092.69, + "probability": 0.9668 + }, + { + "start": 4094.26, + "end": 4098.48, + "probability": 0.913 + }, + { + "start": 4099.02, + "end": 4102.96, + "probability": 0.9902 + }, + { + "start": 4103.98, + "end": 4109.72, + "probability": 0.9939 + }, + { + "start": 4109.72, + "end": 4116.34, + "probability": 0.9977 + }, + { + "start": 4117.52, + "end": 4123.6, + "probability": 0.9956 + }, + { + "start": 4124.16, + "end": 4129.42, + "probability": 0.9469 + }, + { + "start": 4129.42, + "end": 4134.28, + "probability": 0.9948 + }, + { + "start": 4136.28, + "end": 4138.6, + "probability": 0.9797 + }, + { + "start": 4139.36, + "end": 4143.0, + "probability": 0.9741 + }, + { + "start": 4143.32, + "end": 4143.46, + "probability": 0.3884 + }, + { + "start": 4144.08, + "end": 4145.5, + "probability": 0.8435 + }, + { + "start": 4146.24, + "end": 4147.6, + "probability": 0.8354 + }, + { + "start": 4148.4, + "end": 4155.9, + "probability": 0.9918 + }, + { + "start": 4156.64, + "end": 4160.74, + "probability": 0.9857 + }, + { + "start": 4161.7, + "end": 4164.92, + "probability": 0.9699 + }, + { + "start": 4164.92, + "end": 4169.4, + "probability": 0.9929 + }, + { + "start": 4169.46, + "end": 4170.12, + "probability": 0.6009 + }, + { + "start": 4170.9, + "end": 4172.2, + "probability": 0.9772 + }, + { + "start": 4173.26, + "end": 4181.3, + "probability": 0.9971 + }, + { + "start": 4181.68, + "end": 4182.2, + "probability": 0.3903 + }, + { + "start": 4182.92, + "end": 4183.34, + "probability": 0.8097 + }, + { + "start": 4184.0, + "end": 4190.88, + "probability": 0.9928 + }, + { + "start": 4191.94, + "end": 4194.52, + "probability": 0.9888 + }, + { + "start": 4195.14, + "end": 4203.76, + "probability": 0.9823 + }, + { + "start": 4204.72, + "end": 4209.44, + "probability": 0.9986 + }, + { + "start": 4209.44, + "end": 4214.76, + "probability": 0.9902 + }, + { + "start": 4214.9, + "end": 4216.34, + "probability": 0.6452 + }, + { + "start": 4217.0, + "end": 4222.32, + "probability": 0.9823 + }, + { + "start": 4224.38, + "end": 4228.12, + "probability": 0.9944 + }, + { + "start": 4228.28, + "end": 4232.14, + "probability": 0.9567 + }, + { + "start": 4232.74, + "end": 4236.34, + "probability": 0.9754 + }, + { + "start": 4237.48, + "end": 4240.8, + "probability": 0.9361 + }, + { + "start": 4241.78, + "end": 4244.66, + "probability": 0.9954 + }, + { + "start": 4245.6, + "end": 4247.72, + "probability": 0.9897 + }, + { + "start": 4248.38, + "end": 4252.66, + "probability": 0.996 + }, + { + "start": 4253.52, + "end": 4256.58, + "probability": 0.9748 + }, + { + "start": 4257.14, + "end": 4260.42, + "probability": 0.9761 + }, + { + "start": 4260.88, + "end": 4264.74, + "probability": 0.9897 + }, + { + "start": 4265.3, + "end": 4267.14, + "probability": 0.7673 + }, + { + "start": 4268.76, + "end": 4271.2, + "probability": 0.9541 + }, + { + "start": 4271.6, + "end": 4274.89, + "probability": 0.9865 + }, + { + "start": 4276.64, + "end": 4279.0, + "probability": 0.7574 + }, + { + "start": 4279.64, + "end": 4281.5, + "probability": 0.805 + }, + { + "start": 4282.16, + "end": 4287.24, + "probability": 0.943 + }, + { + "start": 4287.88, + "end": 4290.52, + "probability": 0.9933 + }, + { + "start": 4291.04, + "end": 4294.58, + "probability": 0.936 + }, + { + "start": 4294.8, + "end": 4301.92, + "probability": 0.8394 + }, + { + "start": 4301.98, + "end": 4309.14, + "probability": 0.9665 + }, + { + "start": 4310.4, + "end": 4310.56, + "probability": 0.8196 + }, + { + "start": 4311.2, + "end": 4312.54, + "probability": 0.5009 + }, + { + "start": 4312.88, + "end": 4315.47, + "probability": 0.972 + }, + { + "start": 4316.04, + "end": 4319.92, + "probability": 0.9931 + }, + { + "start": 4319.92, + "end": 4326.44, + "probability": 0.9404 + }, + { + "start": 4327.34, + "end": 4331.48, + "probability": 0.8689 + }, + { + "start": 4332.56, + "end": 4339.67, + "probability": 0.9947 + }, + { + "start": 4340.74, + "end": 4340.74, + "probability": 0.0362 + }, + { + "start": 4341.56, + "end": 4350.68, + "probability": 0.997 + }, + { + "start": 4353.94, + "end": 4358.48, + "probability": 0.56 + }, + { + "start": 4359.0, + "end": 4361.68, + "probability": 0.4709 + }, + { + "start": 4361.68, + "end": 4363.3, + "probability": 0.7939 + }, + { + "start": 4363.76, + "end": 4367.26, + "probability": 0.9807 + }, + { + "start": 4367.26, + "end": 4371.98, + "probability": 0.9931 + }, + { + "start": 4372.42, + "end": 4373.72, + "probability": 0.7397 + }, + { + "start": 4374.92, + "end": 4378.82, + "probability": 0.9803 + }, + { + "start": 4379.74, + "end": 4385.22, + "probability": 0.9568 + }, + { + "start": 4385.86, + "end": 4392.44, + "probability": 0.9955 + }, + { + "start": 4392.66, + "end": 4397.58, + "probability": 0.9886 + }, + { + "start": 4398.32, + "end": 4402.0, + "probability": 0.9394 + }, + { + "start": 4402.68, + "end": 4404.4, + "probability": 0.9948 + }, + { + "start": 4404.68, + "end": 4405.0, + "probability": 0.6058 + }, + { + "start": 4406.08, + "end": 4411.42, + "probability": 0.9978 + }, + { + "start": 4411.48, + "end": 4417.1, + "probability": 0.9133 + }, + { + "start": 4417.82, + "end": 4423.22, + "probability": 0.4136 + }, + { + "start": 4423.22, + "end": 4428.84, + "probability": 0.9578 + }, + { + "start": 4429.38, + "end": 4432.06, + "probability": 0.9873 + }, + { + "start": 4432.72, + "end": 4438.6, + "probability": 0.9927 + }, + { + "start": 4440.68, + "end": 4444.54, + "probability": 0.876 + }, + { + "start": 4445.34, + "end": 4448.98, + "probability": 0.8241 + }, + { + "start": 4449.12, + "end": 4452.74, + "probability": 0.9849 + }, + { + "start": 4453.56, + "end": 4456.28, + "probability": 0.8409 + }, + { + "start": 4457.0, + "end": 4461.76, + "probability": 0.9877 + }, + { + "start": 4462.42, + "end": 4464.14, + "probability": 0.9615 + }, + { + "start": 4464.78, + "end": 4468.35, + "probability": 0.809 + }, + { + "start": 4469.6, + "end": 4474.84, + "probability": 0.984 + }, + { + "start": 4475.34, + "end": 4477.92, + "probability": 0.9512 + }, + { + "start": 4478.96, + "end": 4480.12, + "probability": 0.6139 + }, + { + "start": 4481.7, + "end": 4484.45, + "probability": 0.9806 + }, + { + "start": 4486.1, + "end": 4487.6, + "probability": 0.9954 + }, + { + "start": 4489.1, + "end": 4491.42, + "probability": 0.997 + }, + { + "start": 4492.24, + "end": 4494.1, + "probability": 0.9902 + }, + { + "start": 4494.78, + "end": 4498.14, + "probability": 0.9696 + }, + { + "start": 4498.96, + "end": 4506.02, + "probability": 0.7483 + }, + { + "start": 4508.06, + "end": 4509.98, + "probability": 0.982 + }, + { + "start": 4510.36, + "end": 4511.9, + "probability": 0.9561 + }, + { + "start": 4512.1, + "end": 4514.62, + "probability": 0.7985 + }, + { + "start": 4516.34, + "end": 4520.38, + "probability": 0.9995 + }, + { + "start": 4522.74, + "end": 4524.38, + "probability": 0.9367 + }, + { + "start": 4524.66, + "end": 4525.78, + "probability": 0.6438 + }, + { + "start": 4526.5, + "end": 4528.9, + "probability": 0.6677 + }, + { + "start": 4528.9, + "end": 4532.8, + "probability": 0.8946 + }, + { + "start": 4533.38, + "end": 4538.86, + "probability": 0.9877 + }, + { + "start": 4540.3, + "end": 4541.76, + "probability": 0.9915 + }, + { + "start": 4542.96, + "end": 4543.87, + "probability": 0.1133 + }, + { + "start": 4545.74, + "end": 4546.99, + "probability": 0.95 + }, + { + "start": 4547.6, + "end": 4551.92, + "probability": 0.987 + }, + { + "start": 4553.06, + "end": 4561.22, + "probability": 0.9785 + }, + { + "start": 4561.44, + "end": 4562.42, + "probability": 0.8698 + }, + { + "start": 4562.64, + "end": 4564.4, + "probability": 0.9956 + }, + { + "start": 4565.3, + "end": 4570.6, + "probability": 0.9319 + }, + { + "start": 4571.62, + "end": 4573.74, + "probability": 0.9216 + }, + { + "start": 4574.3, + "end": 4581.16, + "probability": 0.9956 + }, + { + "start": 4581.16, + "end": 4587.48, + "probability": 0.9948 + }, + { + "start": 4588.46, + "end": 4590.86, + "probability": 0.991 + }, + { + "start": 4591.06, + "end": 4596.6, + "probability": 0.9946 + }, + { + "start": 4596.82, + "end": 4598.94, + "probability": 0.8292 + }, + { + "start": 4600.1, + "end": 4601.62, + "probability": 0.9524 + }, + { + "start": 4602.68, + "end": 4603.86, + "probability": 0.9926 + }, + { + "start": 4604.62, + "end": 4606.18, + "probability": 0.819 + }, + { + "start": 4607.08, + "end": 4607.76, + "probability": 0.958 + }, + { + "start": 4608.46, + "end": 4614.86, + "probability": 0.9928 + }, + { + "start": 4614.86, + "end": 4618.24, + "probability": 0.9854 + }, + { + "start": 4618.4, + "end": 4619.66, + "probability": 0.565 + }, + { + "start": 4620.34, + "end": 4624.02, + "probability": 0.811 + }, + { + "start": 4624.56, + "end": 4629.75, + "probability": 0.7464 + }, + { + "start": 4631.52, + "end": 4632.08, + "probability": 0.597 + }, + { + "start": 4632.72, + "end": 4634.7, + "probability": 0.9347 + }, + { + "start": 4635.08, + "end": 4638.72, + "probability": 0.6719 + }, + { + "start": 4639.48, + "end": 4640.58, + "probability": 0.8682 + }, + { + "start": 4640.98, + "end": 4645.42, + "probability": 0.5191 + }, + { + "start": 4645.5, + "end": 4645.5, + "probability": 0.6761 + }, + { + "start": 4645.6, + "end": 4647.24, + "probability": 0.9838 + }, + { + "start": 4648.5, + "end": 4652.6, + "probability": 0.9692 + }, + { + "start": 4653.34, + "end": 4654.74, + "probability": 0.6107 + }, + { + "start": 4654.9, + "end": 4654.9, + "probability": 0.2897 + }, + { + "start": 4654.9, + "end": 4659.78, + "probability": 0.9723 + }, + { + "start": 4661.68, + "end": 4664.2, + "probability": 0.8467 + }, + { + "start": 4664.86, + "end": 4670.12, + "probability": 0.9146 + }, + { + "start": 4670.34, + "end": 4670.44, + "probability": 0.7446 + }, + { + "start": 4686.48, + "end": 4688.42, + "probability": 0.6083 + }, + { + "start": 4689.64, + "end": 4690.4, + "probability": 0.7607 + }, + { + "start": 4691.36, + "end": 4692.96, + "probability": 0.9185 + }, + { + "start": 4694.4, + "end": 4694.84, + "probability": 0.6275 + }, + { + "start": 4695.82, + "end": 4698.64, + "probability": 0.9932 + }, + { + "start": 4699.26, + "end": 4699.64, + "probability": 0.1674 + }, + { + "start": 4700.18, + "end": 4700.18, + "probability": 0.1316 + }, + { + "start": 4701.5, + "end": 4705.46, + "probability": 0.615 + }, + { + "start": 4705.6, + "end": 4711.6, + "probability": 0.902 + }, + { + "start": 4712.58, + "end": 4713.46, + "probability": 0.8131 + }, + { + "start": 4715.42, + "end": 4717.74, + "probability": 0.6649 + }, + { + "start": 4718.4, + "end": 4724.28, + "probability": 0.9844 + }, + { + "start": 4724.28, + "end": 4724.28, + "probability": 0.0486 + }, + { + "start": 4724.28, + "end": 4727.58, + "probability": 0.9112 + }, + { + "start": 4728.08, + "end": 4728.52, + "probability": 0.4262 + }, + { + "start": 4730.3, + "end": 4736.82, + "probability": 0.738 + }, + { + "start": 4736.9, + "end": 4739.02, + "probability": 0.7069 + }, + { + "start": 4739.06, + "end": 4739.68, + "probability": 0.5763 + }, + { + "start": 4739.78, + "end": 4743.06, + "probability": 0.6547 + }, + { + "start": 4743.82, + "end": 4748.06, + "probability": 0.9077 + }, + { + "start": 4748.58, + "end": 4751.26, + "probability": 0.6791 + }, + { + "start": 4754.16, + "end": 4757.8, + "probability": 0.9366 + }, + { + "start": 4758.94, + "end": 4759.24, + "probability": 0.6562 + }, + { + "start": 4759.94, + "end": 4761.1, + "probability": 0.8652 + }, + { + "start": 4762.24, + "end": 4764.57, + "probability": 0.9803 + }, + { + "start": 4765.02, + "end": 4765.54, + "probability": 0.5385 + }, + { + "start": 4765.78, + "end": 4767.1, + "probability": 0.8443 + }, + { + "start": 4768.9, + "end": 4769.78, + "probability": 0.2141 + }, + { + "start": 4769.86, + "end": 4770.26, + "probability": 0.8884 + }, + { + "start": 4770.38, + "end": 4773.46, + "probability": 0.9043 + }, + { + "start": 4773.46, + "end": 4774.69, + "probability": 0.917 + }, + { + "start": 4775.38, + "end": 4776.36, + "probability": 0.9932 + }, + { + "start": 4777.54, + "end": 4779.6, + "probability": 0.4644 + }, + { + "start": 4780.0, + "end": 4782.06, + "probability": 0.9622 + }, + { + "start": 4782.1, + "end": 4783.66, + "probability": 0.7302 + }, + { + "start": 4784.48, + "end": 4787.12, + "probability": 0.6972 + }, + { + "start": 4788.38, + "end": 4789.14, + "probability": 0.7362 + }, + { + "start": 4790.51, + "end": 4792.12, + "probability": 0.8888 + }, + { + "start": 4793.92, + "end": 4796.3, + "probability": 0.8885 + }, + { + "start": 4796.48, + "end": 4798.56, + "probability": 0.9731 + }, + { + "start": 4798.76, + "end": 4800.44, + "probability": 0.9409 + }, + { + "start": 4801.54, + "end": 4804.3, + "probability": 0.9863 + }, + { + "start": 4804.62, + "end": 4804.72, + "probability": 0.636 + }, + { + "start": 4807.46, + "end": 4808.66, + "probability": 0.9642 + }, + { + "start": 4809.76, + "end": 4812.66, + "probability": 0.7505 + }, + { + "start": 4813.16, + "end": 4819.04, + "probability": 0.8089 + }, + { + "start": 4819.3, + "end": 4820.28, + "probability": 0.1621 + }, + { + "start": 4820.64, + "end": 4821.62, + "probability": 0.6108 + }, + { + "start": 4822.06, + "end": 4825.4, + "probability": 0.6379 + }, + { + "start": 4825.46, + "end": 4826.34, + "probability": 0.5893 + }, + { + "start": 4826.44, + "end": 4827.4, + "probability": 0.45 + }, + { + "start": 4827.4, + "end": 4828.78, + "probability": 0.715 + }, + { + "start": 4828.82, + "end": 4829.16, + "probability": 0.8112 + }, + { + "start": 4829.24, + "end": 4830.44, + "probability": 0.8882 + }, + { + "start": 4831.02, + "end": 4832.83, + "probability": 0.9595 + }, + { + "start": 4832.96, + "end": 4835.78, + "probability": 0.9717 + }, + { + "start": 4835.88, + "end": 4837.49, + "probability": 0.9553 + }, + { + "start": 4837.8, + "end": 4839.84, + "probability": 0.5103 + }, + { + "start": 4839.88, + "end": 4840.48, + "probability": 0.7115 + }, + { + "start": 4840.6, + "end": 4840.92, + "probability": 0.9203 + }, + { + "start": 4841.0, + "end": 4841.22, + "probability": 0.8745 + }, + { + "start": 4841.26, + "end": 4841.58, + "probability": 0.9033 + }, + { + "start": 4843.32, + "end": 4843.76, + "probability": 0.9061 + }, + { + "start": 4843.8, + "end": 4845.12, + "probability": 0.9878 + }, + { + "start": 4845.32, + "end": 4845.66, + "probability": 0.8874 + }, + { + "start": 4845.72, + "end": 4846.44, + "probability": 0.8292 + }, + { + "start": 4846.88, + "end": 4848.0, + "probability": 0.7769 + }, + { + "start": 4848.02, + "end": 4851.16, + "probability": 0.8777 + }, + { + "start": 4851.48, + "end": 4853.0, + "probability": 0.9448 + }, + { + "start": 4853.26, + "end": 4854.08, + "probability": 0.4214 + }, + { + "start": 4854.44, + "end": 4857.49, + "probability": 0.9492 + }, + { + "start": 4859.04, + "end": 4860.52, + "probability": 0.7887 + }, + { + "start": 4861.18, + "end": 4862.38, + "probability": 0.9196 + }, + { + "start": 4862.52, + "end": 4862.88, + "probability": 0.9571 + }, + { + "start": 4862.92, + "end": 4864.72, + "probability": 0.98 + }, + { + "start": 4866.3, + "end": 4866.84, + "probability": 0.6628 + }, + { + "start": 4867.54, + "end": 4868.99, + "probability": 0.9751 + }, + { + "start": 4869.54, + "end": 4871.68, + "probability": 0.9387 + }, + { + "start": 4872.98, + "end": 4874.24, + "probability": 0.9585 + }, + { + "start": 4874.34, + "end": 4874.96, + "probability": 0.6844 + }, + { + "start": 4875.14, + "end": 4875.38, + "probability": 0.5354 + }, + { + "start": 4876.54, + "end": 4879.02, + "probability": 0.9582 + }, + { + "start": 4879.02, + "end": 4879.68, + "probability": 0.8049 + }, + { + "start": 4881.48, + "end": 4882.14, + "probability": 0.4995 + }, + { + "start": 4882.14, + "end": 4885.88, + "probability": 0.8617 + }, + { + "start": 4885.92, + "end": 4886.26, + "probability": 0.1086 + }, + { + "start": 4886.46, + "end": 4891.04, + "probability": 0.8964 + }, + { + "start": 4891.96, + "end": 4895.1, + "probability": 0.9753 + }, + { + "start": 4895.1, + "end": 4895.2, + "probability": 0.745 + }, + { + "start": 4897.41, + "end": 4899.46, + "probability": 0.8347 + }, + { + "start": 4900.44, + "end": 4901.96, + "probability": 0.9973 + }, + { + "start": 4903.82, + "end": 4905.02, + "probability": 0.9253 + }, + { + "start": 4905.8, + "end": 4907.26, + "probability": 0.9282 + }, + { + "start": 4907.38, + "end": 4908.08, + "probability": 0.9854 + }, + { + "start": 4908.16, + "end": 4909.98, + "probability": 0.6828 + }, + { + "start": 4910.88, + "end": 4912.84, + "probability": 0.988 + }, + { + "start": 4913.64, + "end": 4917.94, + "probability": 0.9732 + }, + { + "start": 4918.38, + "end": 4919.24, + "probability": 0.8599 + }, + { + "start": 4920.94, + "end": 4923.7, + "probability": 0.9644 + }, + { + "start": 4924.72, + "end": 4925.72, + "probability": 0.8922 + }, + { + "start": 4925.78, + "end": 4927.04, + "probability": 0.9501 + }, + { + "start": 4927.32, + "end": 4928.18, + "probability": 0.6941 + }, + { + "start": 4928.26, + "end": 4929.52, + "probability": 0.9292 + }, + { + "start": 4930.88, + "end": 4931.64, + "probability": 0.9519 + }, + { + "start": 4934.06, + "end": 4935.7, + "probability": 0.2893 + }, + { + "start": 4935.98, + "end": 4937.0, + "probability": 0.4019 + }, + { + "start": 4938.24, + "end": 4941.32, + "probability": 0.1268 + }, + { + "start": 4941.82, + "end": 4942.6, + "probability": 0.4956 + }, + { + "start": 4942.74, + "end": 4943.66, + "probability": 0.4774 + }, + { + "start": 4944.38, + "end": 4945.22, + "probability": 0.4751 + }, + { + "start": 4945.4, + "end": 4946.88, + "probability": 0.8357 + }, + { + "start": 4946.88, + "end": 4948.65, + "probability": 0.0577 + }, + { + "start": 4949.58, + "end": 4951.11, + "probability": 0.0722 + }, + { + "start": 4951.58, + "end": 4953.04, + "probability": 0.9485 + }, + { + "start": 4953.5, + "end": 4954.48, + "probability": 0.9879 + }, + { + "start": 4954.58, + "end": 4954.62, + "probability": 0.8452 + }, + { + "start": 4955.46, + "end": 4955.82, + "probability": 0.6326 + }, + { + "start": 4956.66, + "end": 4960.46, + "probability": 0.668 + }, + { + "start": 4960.54, + "end": 4967.34, + "probability": 0.9813 + }, + { + "start": 4968.5, + "end": 4972.42, + "probability": 0.9608 + }, + { + "start": 4972.5, + "end": 4974.86, + "probability": 0.8967 + }, + { + "start": 4975.14, + "end": 4975.54, + "probability": 0.8594 + }, + { + "start": 4975.74, + "end": 4976.82, + "probability": 0.5188 + }, + { + "start": 4976.9, + "end": 4979.2, + "probability": 0.8159 + }, + { + "start": 4979.34, + "end": 4979.78, + "probability": 0.7878 + }, + { + "start": 4980.42, + "end": 4982.62, + "probability": 0.9943 + }, + { + "start": 4982.88, + "end": 4983.46, + "probability": 0.367 + }, + { + "start": 4984.12, + "end": 4985.48, + "probability": 0.9912 + }, + { + "start": 4986.04, + "end": 4987.26, + "probability": 0.6011 + }, + { + "start": 4988.36, + "end": 4991.4, + "probability": 0.9924 + }, + { + "start": 4991.68, + "end": 4992.0, + "probability": 0.95 + }, + { + "start": 4995.17, + "end": 4997.89, + "probability": 0.892 + }, + { + "start": 4998.14, + "end": 4998.4, + "probability": 0.3185 + }, + { + "start": 4998.88, + "end": 4998.88, + "probability": 0.6719 + }, + { + "start": 4998.9, + "end": 5000.3, + "probability": 0.7653 + }, + { + "start": 5000.5, + "end": 5008.22, + "probability": 0.9109 + }, + { + "start": 5008.22, + "end": 5012.78, + "probability": 0.9681 + }, + { + "start": 5013.76, + "end": 5015.84, + "probability": 0.7588 + }, + { + "start": 5016.0, + "end": 5017.14, + "probability": 0.8013 + }, + { + "start": 5017.26, + "end": 5017.76, + "probability": 0.8093 + }, + { + "start": 5017.84, + "end": 5018.62, + "probability": 0.9536 + }, + { + "start": 5019.88, + "end": 5021.58, + "probability": 0.9702 + }, + { + "start": 5022.3, + "end": 5026.08, + "probability": 0.984 + }, + { + "start": 5026.8, + "end": 5029.86, + "probability": 0.8781 + }, + { + "start": 5030.48, + "end": 5033.24, + "probability": 0.9819 + }, + { + "start": 5033.98, + "end": 5034.96, + "probability": 0.4829 + }, + { + "start": 5036.26, + "end": 5041.0, + "probability": 0.9487 + }, + { + "start": 5041.68, + "end": 5043.34, + "probability": 0.9612 + }, + { + "start": 5043.48, + "end": 5043.99, + "probability": 0.7166 + }, + { + "start": 5044.64, + "end": 5045.84, + "probability": 0.7695 + }, + { + "start": 5045.86, + "end": 5047.66, + "probability": 0.9662 + }, + { + "start": 5049.18, + "end": 5049.28, + "probability": 0.2139 + }, + { + "start": 5049.28, + "end": 5053.24, + "probability": 0.6011 + }, + { + "start": 5053.64, + "end": 5054.76, + "probability": 0.3821 + }, + { + "start": 5054.94, + "end": 5055.38, + "probability": 0.5549 + }, + { + "start": 5055.38, + "end": 5057.74, + "probability": 0.7717 + }, + { + "start": 5058.48, + "end": 5059.36, + "probability": 0.4983 + }, + { + "start": 5059.68, + "end": 5062.94, + "probability": 0.9709 + }, + { + "start": 5063.56, + "end": 5066.24, + "probability": 0.8721 + }, + { + "start": 5066.94, + "end": 5070.96, + "probability": 0.845 + }, + { + "start": 5072.62, + "end": 5072.88, + "probability": 0.0375 + }, + { + "start": 5073.08, + "end": 5073.22, + "probability": 0.4242 + }, + { + "start": 5073.22, + "end": 5073.22, + "probability": 0.0349 + }, + { + "start": 5073.22, + "end": 5075.2, + "probability": 0.4794 + }, + { + "start": 5075.2, + "end": 5075.24, + "probability": 0.2135 + }, + { + "start": 5075.3, + "end": 5076.22, + "probability": 0.6792 + }, + { + "start": 5077.08, + "end": 5078.07, + "probability": 0.8591 + }, + { + "start": 5079.64, + "end": 5082.04, + "probability": 0.7062 + }, + { + "start": 5083.1, + "end": 5083.1, + "probability": 0.1589 + }, + { + "start": 5083.1, + "end": 5083.1, + "probability": 0.1566 + }, + { + "start": 5083.1, + "end": 5083.74, + "probability": 0.5533 + }, + { + "start": 5085.2, + "end": 5086.78, + "probability": 0.8867 + }, + { + "start": 5086.9, + "end": 5088.22, + "probability": 0.9941 + }, + { + "start": 5089.0, + "end": 5090.62, + "probability": 0.9987 + }, + { + "start": 5090.68, + "end": 5091.62, + "probability": 0.9896 + }, + { + "start": 5092.36, + "end": 5093.08, + "probability": 0.8019 + }, + { + "start": 5093.48, + "end": 5094.9, + "probability": 0.6233 + }, + { + "start": 5095.24, + "end": 5096.18, + "probability": 0.9177 + }, + { + "start": 5096.94, + "end": 5099.76, + "probability": 0.9827 + }, + { + "start": 5099.76, + "end": 5100.04, + "probability": 0.2264 + }, + { + "start": 5100.76, + "end": 5101.46, + "probability": 0.8979 + }, + { + "start": 5102.8, + "end": 5103.56, + "probability": 0.9459 + }, + { + "start": 5103.64, + "end": 5105.08, + "probability": 0.8346 + }, + { + "start": 5105.28, + "end": 5105.84, + "probability": 0.5659 + }, + { + "start": 5106.26, + "end": 5107.62, + "probability": 0.6929 + }, + { + "start": 5107.94, + "end": 5109.03, + "probability": 0.8918 + }, + { + "start": 5110.18, + "end": 5110.8, + "probability": 0.4181 + }, + { + "start": 5111.26, + "end": 5111.44, + "probability": 0.7844 + }, + { + "start": 5111.56, + "end": 5112.66, + "probability": 0.8665 + }, + { + "start": 5112.72, + "end": 5113.18, + "probability": 0.4256 + }, + { + "start": 5113.26, + "end": 5116.4, + "probability": 0.9131 + }, + { + "start": 5117.0, + "end": 5122.82, + "probability": 0.9806 + }, + { + "start": 5123.38, + "end": 5124.6, + "probability": 0.4197 + }, + { + "start": 5124.64, + "end": 5125.06, + "probability": 0.5905 + }, + { + "start": 5125.06, + "end": 5127.86, + "probability": 0.9919 + }, + { + "start": 5127.92, + "end": 5129.1, + "probability": 0.8785 + }, + { + "start": 5129.78, + "end": 5130.22, + "probability": 0.9463 + }, + { + "start": 5131.06, + "end": 5131.79, + "probability": 0.8474 + }, + { + "start": 5132.66, + "end": 5133.12, + "probability": 0.8284 + }, + { + "start": 5133.2, + "end": 5139.44, + "probability": 0.9876 + }, + { + "start": 5139.52, + "end": 5140.04, + "probability": 0.5275 + }, + { + "start": 5140.1, + "end": 5142.46, + "probability": 0.9989 + }, + { + "start": 5142.72, + "end": 5143.47, + "probability": 0.9685 + }, + { + "start": 5144.26, + "end": 5146.2, + "probability": 0.8727 + }, + { + "start": 5146.72, + "end": 5146.72, + "probability": 0.0625 + }, + { + "start": 5146.72, + "end": 5146.98, + "probability": 0.2483 + }, + { + "start": 5146.98, + "end": 5150.03, + "probability": 0.9876 + }, + { + "start": 5150.88, + "end": 5153.12, + "probability": 0.4539 + }, + { + "start": 5153.12, + "end": 5153.12, + "probability": 0.1605 + }, + { + "start": 5153.12, + "end": 5153.12, + "probability": 0.0664 + }, + { + "start": 5153.12, + "end": 5153.78, + "probability": 0.7396 + }, + { + "start": 5154.32, + "end": 5154.32, + "probability": 0.2196 + }, + { + "start": 5156.06, + "end": 5157.54, + "probability": 0.0304 + }, + { + "start": 5157.54, + "end": 5159.62, + "probability": 0.0961 + }, + { + "start": 5159.62, + "end": 5162.06, + "probability": 0.1263 + }, + { + "start": 5162.06, + "end": 5163.12, + "probability": 0.1795 + }, + { + "start": 5163.2, + "end": 5163.36, + "probability": 0.0849 + }, + { + "start": 5163.36, + "end": 5168.48, + "probability": 0.5602 + }, + { + "start": 5168.48, + "end": 5168.66, + "probability": 0.3039 + }, + { + "start": 5169.48, + "end": 5172.04, + "probability": 0.889 + }, + { + "start": 5172.34, + "end": 5176.12, + "probability": 0.6595 + }, + { + "start": 5176.12, + "end": 5176.62, + "probability": 0.1727 + }, + { + "start": 5177.32, + "end": 5177.84, + "probability": 0.1076 + }, + { + "start": 5177.84, + "end": 5177.84, + "probability": 0.1114 + }, + { + "start": 5177.84, + "end": 5177.84, + "probability": 0.463 + }, + { + "start": 5177.84, + "end": 5179.6, + "probability": 0.6399 + }, + { + "start": 5179.66, + "end": 5181.52, + "probability": 0.6848 + }, + { + "start": 5181.6, + "end": 5185.78, + "probability": 0.9846 + }, + { + "start": 5186.46, + "end": 5187.42, + "probability": 0.3384 + }, + { + "start": 5188.86, + "end": 5189.16, + "probability": 0.1815 + }, + { + "start": 5189.16, + "end": 5189.78, + "probability": 0.22 + }, + { + "start": 5190.02, + "end": 5191.28, + "probability": 0.0625 + }, + { + "start": 5192.04, + "end": 5194.5, + "probability": 0.8018 + }, + { + "start": 5194.9, + "end": 5197.34, + "probability": 0.7641 + }, + { + "start": 5197.5, + "end": 5198.74, + "probability": 0.3733 + }, + { + "start": 5198.91, + "end": 5201.36, + "probability": 0.0978 + }, + { + "start": 5201.52, + "end": 5201.96, + "probability": 0.0273 + }, + { + "start": 5201.96, + "end": 5203.08, + "probability": 0.9136 + }, + { + "start": 5206.62, + "end": 5208.22, + "probability": 0.4767 + }, + { + "start": 5208.92, + "end": 5214.1, + "probability": 0.9386 + }, + { + "start": 5214.34, + "end": 5215.6, + "probability": 0.0264 + }, + { + "start": 5215.84, + "end": 5218.36, + "probability": 0.9715 + }, + { + "start": 5218.48, + "end": 5221.48, + "probability": 0.9694 + }, + { + "start": 5221.54, + "end": 5222.56, + "probability": 0.6714 + }, + { + "start": 5222.96, + "end": 5224.26, + "probability": 0.8643 + }, + { + "start": 5224.28, + "end": 5226.22, + "probability": 0.121 + }, + { + "start": 5226.22, + "end": 5229.38, + "probability": 0.7217 + }, + { + "start": 5229.56, + "end": 5230.92, + "probability": 0.9883 + }, + { + "start": 5231.2, + "end": 5233.1, + "probability": 0.9827 + }, + { + "start": 5233.4, + "end": 5238.1, + "probability": 0.5801 + }, + { + "start": 5238.1, + "end": 5238.56, + "probability": 0.065 + }, + { + "start": 5238.56, + "end": 5238.56, + "probability": 0.4724 + }, + { + "start": 5238.68, + "end": 5240.44, + "probability": 0.696 + }, + { + "start": 5240.56, + "end": 5244.82, + "probability": 0.9585 + }, + { + "start": 5244.88, + "end": 5245.52, + "probability": 0.707 + }, + { + "start": 5246.5, + "end": 5248.7, + "probability": 0.6221 + }, + { + "start": 5248.82, + "end": 5249.54, + "probability": 0.9954 + }, + { + "start": 5250.54, + "end": 5251.32, + "probability": 0.8589 + }, + { + "start": 5253.76, + "end": 5255.94, + "probability": 0.0408 + }, + { + "start": 5255.94, + "end": 5256.48, + "probability": 0.2257 + }, + { + "start": 5256.5, + "end": 5260.26, + "probability": 0.7073 + }, + { + "start": 5261.3, + "end": 5264.7, + "probability": 0.9365 + }, + { + "start": 5264.7, + "end": 5265.1, + "probability": 0.0089 + }, + { + "start": 5266.56, + "end": 5267.75, + "probability": 0.9053 + }, + { + "start": 5268.4, + "end": 5270.78, + "probability": 0.9478 + }, + { + "start": 5271.54, + "end": 5272.26, + "probability": 0.5107 + }, + { + "start": 5272.36, + "end": 5273.46, + "probability": 0.5298 + }, + { + "start": 5274.72, + "end": 5275.32, + "probability": 0.7971 + }, + { + "start": 5276.22, + "end": 5277.92, + "probability": 0.9664 + }, + { + "start": 5279.4, + "end": 5284.1, + "probability": 0.8992 + }, + { + "start": 5284.16, + "end": 5284.86, + "probability": 0.8207 + }, + { + "start": 5286.74, + "end": 5287.4, + "probability": 0.5448 + }, + { + "start": 5288.7, + "end": 5291.44, + "probability": 0.5579 + }, + { + "start": 5292.62, + "end": 5293.56, + "probability": 0.6723 + }, + { + "start": 5294.36, + "end": 5294.7, + "probability": 0.593 + }, + { + "start": 5296.26, + "end": 5297.06, + "probability": 0.9769 + }, + { + "start": 5297.14, + "end": 5299.33, + "probability": 0.984 + }, + { + "start": 5300.54, + "end": 5300.98, + "probability": 0.6853 + }, + { + "start": 5301.46, + "end": 5302.2, + "probability": 0.7145 + }, + { + "start": 5302.4, + "end": 5303.78, + "probability": 0.9926 + }, + { + "start": 5304.58, + "end": 5306.48, + "probability": 0.9922 + }, + { + "start": 5308.32, + "end": 5310.6, + "probability": 0.7657 + }, + { + "start": 5311.68, + "end": 5312.6, + "probability": 0.8755 + }, + { + "start": 5312.74, + "end": 5313.48, + "probability": 0.9302 + }, + { + "start": 5313.56, + "end": 5314.92, + "probability": 0.9969 + }, + { + "start": 5315.9, + "end": 5317.88, + "probability": 0.8948 + }, + { + "start": 5318.64, + "end": 5319.84, + "probability": 0.6887 + }, + { + "start": 5321.35, + "end": 5323.72, + "probability": 0.9787 + }, + { + "start": 5323.96, + "end": 5324.74, + "probability": 0.9272 + }, + { + "start": 5325.3, + "end": 5330.32, + "probability": 0.9888 + }, + { + "start": 5330.54, + "end": 5333.08, + "probability": 0.8641 + }, + { + "start": 5334.52, + "end": 5336.34, + "probability": 0.3194 + }, + { + "start": 5336.86, + "end": 5337.54, + "probability": 0.5016 + }, + { + "start": 5337.76, + "end": 5338.02, + "probability": 0.9695 + }, + { + "start": 5338.8, + "end": 5339.72, + "probability": 0.7979 + }, + { + "start": 5340.08, + "end": 5341.18, + "probability": 0.8927 + }, + { + "start": 5341.36, + "end": 5345.66, + "probability": 0.9706 + }, + { + "start": 5346.94, + "end": 5347.54, + "probability": 0.736 + }, + { + "start": 5347.72, + "end": 5350.46, + "probability": 0.9341 + }, + { + "start": 5351.56, + "end": 5352.58, + "probability": 0.8228 + }, + { + "start": 5353.66, + "end": 5356.88, + "probability": 0.999 + }, + { + "start": 5357.0, + "end": 5358.9, + "probability": 0.998 + }, + { + "start": 5359.8, + "end": 5367.22, + "probability": 0.9688 + }, + { + "start": 5368.72, + "end": 5371.5, + "probability": 0.8994 + }, + { + "start": 5372.04, + "end": 5373.96, + "probability": 0.6985 + }, + { + "start": 5374.26, + "end": 5375.34, + "probability": 0.7343 + }, + { + "start": 5376.12, + "end": 5379.4, + "probability": 0.9785 + }, + { + "start": 5379.5, + "end": 5380.22, + "probability": 0.9365 + }, + { + "start": 5381.12, + "end": 5382.74, + "probability": 0.7759 + }, + { + "start": 5383.34, + "end": 5385.82, + "probability": 0.9658 + }, + { + "start": 5386.58, + "end": 5387.32, + "probability": 0.6835 + }, + { + "start": 5388.72, + "end": 5390.02, + "probability": 0.9897 + }, + { + "start": 5390.56, + "end": 5392.5, + "probability": 0.8831 + }, + { + "start": 5393.56, + "end": 5395.62, + "probability": 0.783 + }, + { + "start": 5397.27, + "end": 5398.99, + "probability": 0.9633 + }, + { + "start": 5400.52, + "end": 5402.84, + "probability": 0.7403 + }, + { + "start": 5403.78, + "end": 5404.1, + "probability": 0.5594 + }, + { + "start": 5404.16, + "end": 5404.78, + "probability": 0.6693 + }, + { + "start": 5405.94, + "end": 5407.12, + "probability": 0.9795 + }, + { + "start": 5408.4, + "end": 5409.88, + "probability": 0.7348 + }, + { + "start": 5410.36, + "end": 5411.94, + "probability": 0.8735 + }, + { + "start": 5412.98, + "end": 5413.08, + "probability": 0.4446 + }, + { + "start": 5413.68, + "end": 5415.88, + "probability": 0.7747 + }, + { + "start": 5416.04, + "end": 5419.02, + "probability": 0.1077 + }, + { + "start": 5420.24, + "end": 5422.3, + "probability": 0.7065 + }, + { + "start": 5422.96, + "end": 5423.86, + "probability": 0.6971 + }, + { + "start": 5424.9, + "end": 5428.7, + "probability": 0.9856 + }, + { + "start": 5428.82, + "end": 5430.74, + "probability": 0.8235 + }, + { + "start": 5431.34, + "end": 5433.56, + "probability": 0.9818 + }, + { + "start": 5434.1, + "end": 5435.68, + "probability": 0.7872 + }, + { + "start": 5436.22, + "end": 5438.52, + "probability": 0.9073 + }, + { + "start": 5439.38, + "end": 5441.62, + "probability": 0.7419 + }, + { + "start": 5442.1, + "end": 5444.26, + "probability": 0.6177 + }, + { + "start": 5444.86, + "end": 5445.8, + "probability": 0.8056 + }, + { + "start": 5446.36, + "end": 5446.88, + "probability": 0.5635 + }, + { + "start": 5447.12, + "end": 5447.54, + "probability": 0.9062 + }, + { + "start": 5448.2, + "end": 5450.24, + "probability": 0.7577 + }, + { + "start": 5451.24, + "end": 5452.68, + "probability": 0.9297 + }, + { + "start": 5452.76, + "end": 5453.74, + "probability": 0.8603 + }, + { + "start": 5453.84, + "end": 5454.56, + "probability": 0.7082 + }, + { + "start": 5454.62, + "end": 5455.38, + "probability": 0.756 + }, + { + "start": 5457.68, + "end": 5459.98, + "probability": 0.9481 + }, + { + "start": 5460.78, + "end": 5461.82, + "probability": 0.9294 + }, + { + "start": 5462.92, + "end": 5464.64, + "probability": 0.8858 + }, + { + "start": 5466.82, + "end": 5469.58, + "probability": 0.959 + }, + { + "start": 5470.22, + "end": 5472.72, + "probability": 0.9834 + }, + { + "start": 5474.22, + "end": 5475.18, + "probability": 0.9682 + }, + { + "start": 5476.8, + "end": 5479.52, + "probability": 0.8012 + }, + { + "start": 5480.8, + "end": 5483.06, + "probability": 0.9771 + }, + { + "start": 5483.12, + "end": 5483.71, + "probability": 0.8684 + }, + { + "start": 5485.63, + "end": 5487.46, + "probability": 0.9919 + }, + { + "start": 5489.6, + "end": 5491.78, + "probability": 0.9487 + }, + { + "start": 5492.02, + "end": 5493.6, + "probability": 0.6924 + }, + { + "start": 5494.98, + "end": 5499.52, + "probability": 0.9298 + }, + { + "start": 5501.18, + "end": 5502.42, + "probability": 0.9841 + }, + { + "start": 5503.34, + "end": 5504.68, + "probability": 0.9688 + }, + { + "start": 5506.28, + "end": 5508.86, + "probability": 0.9232 + }, + { + "start": 5510.7, + "end": 5511.52, + "probability": 0.7245 + }, + { + "start": 5512.18, + "end": 5514.5, + "probability": 0.9014 + }, + { + "start": 5515.58, + "end": 5516.68, + "probability": 0.5686 + }, + { + "start": 5517.94, + "end": 5519.09, + "probability": 0.9976 + }, + { + "start": 5520.48, + "end": 5521.54, + "probability": 0.7164 + }, + { + "start": 5521.72, + "end": 5524.2, + "probability": 0.9216 + }, + { + "start": 5525.54, + "end": 5526.7, + "probability": 0.3458 + }, + { + "start": 5528.04, + "end": 5529.68, + "probability": 0.6991 + }, + { + "start": 5530.82, + "end": 5531.76, + "probability": 0.6495 + }, + { + "start": 5532.9, + "end": 5536.14, + "probability": 0.9803 + }, + { + "start": 5536.24, + "end": 5537.12, + "probability": 0.8891 + }, + { + "start": 5538.48, + "end": 5539.16, + "probability": 0.4784 + }, + { + "start": 5539.86, + "end": 5540.86, + "probability": 0.7246 + }, + { + "start": 5542.02, + "end": 5543.3, + "probability": 0.8092 + }, + { + "start": 5544.54, + "end": 5545.04, + "probability": 0.7146 + }, + { + "start": 5545.78, + "end": 5548.12, + "probability": 0.9977 + }, + { + "start": 5549.94, + "end": 5550.56, + "probability": 0.7216 + }, + { + "start": 5551.12, + "end": 5553.9, + "probability": 0.8817 + }, + { + "start": 5554.34, + "end": 5556.84, + "probability": 0.8348 + }, + { + "start": 5558.86, + "end": 5561.78, + "probability": 0.9813 + }, + { + "start": 5562.38, + "end": 5564.66, + "probability": 0.9292 + }, + { + "start": 5566.34, + "end": 5567.3, + "probability": 0.9964 + }, + { + "start": 5570.32, + "end": 5573.42, + "probability": 0.985 + }, + { + "start": 5574.28, + "end": 5575.6, + "probability": 0.9937 + }, + { + "start": 5577.02, + "end": 5578.98, + "probability": 0.995 + }, + { + "start": 5579.54, + "end": 5580.0, + "probability": 0.8352 + }, + { + "start": 5581.16, + "end": 5583.12, + "probability": 0.9883 + }, + { + "start": 5584.3, + "end": 5585.1, + "probability": 0.9907 + }, + { + "start": 5586.28, + "end": 5587.05, + "probability": 0.9651 + }, + { + "start": 5587.6, + "end": 5589.18, + "probability": 0.8481 + }, + { + "start": 5589.8, + "end": 5590.23, + "probability": 0.6022 + }, + { + "start": 5591.12, + "end": 5592.98, + "probability": 0.7438 + }, + { + "start": 5596.26, + "end": 5596.74, + "probability": 0.2863 + }, + { + "start": 5597.5, + "end": 5598.1, + "probability": 0.369 + }, + { + "start": 5598.38, + "end": 5599.5, + "probability": 0.8162 + }, + { + "start": 5599.58, + "end": 5600.88, + "probability": 0.4253 + }, + { + "start": 5601.18, + "end": 5601.94, + "probability": 0.8596 + }, + { + "start": 5602.28, + "end": 5602.44, + "probability": 0.4525 + }, + { + "start": 5602.54, + "end": 5603.56, + "probability": 0.7306 + }, + { + "start": 5604.02, + "end": 5604.12, + "probability": 0.4413 + }, + { + "start": 5604.12, + "end": 5604.62, + "probability": 0.5444 + }, + { + "start": 5605.18, + "end": 5609.16, + "probability": 0.7967 + }, + { + "start": 5609.96, + "end": 5611.0, + "probability": 0.8814 + }, + { + "start": 5611.0, + "end": 5611.8, + "probability": 0.5437 + }, + { + "start": 5612.24, + "end": 5613.92, + "probability": 0.9749 + }, + { + "start": 5614.74, + "end": 5615.08, + "probability": 0.1107 + }, + { + "start": 5615.12, + "end": 5615.28, + "probability": 0.41 + }, + { + "start": 5615.52, + "end": 5616.94, + "probability": 0.4087 + }, + { + "start": 5616.96, + "end": 5619.04, + "probability": 0.8315 + }, + { + "start": 5619.44, + "end": 5620.48, + "probability": 0.3442 + }, + { + "start": 5621.9, + "end": 5623.28, + "probability": 0.3423 + }, + { + "start": 5623.4, + "end": 5624.33, + "probability": 0.9725 + }, + { + "start": 5625.12, + "end": 5627.92, + "probability": 0.7517 + }, + { + "start": 5628.06, + "end": 5628.98, + "probability": 0.0469 + }, + { + "start": 5628.98, + "end": 5630.24, + "probability": 0.8058 + }, + { + "start": 5630.32, + "end": 5633.02, + "probability": 0.7639 + }, + { + "start": 5633.1, + "end": 5638.14, + "probability": 0.8594 + }, + { + "start": 5638.62, + "end": 5639.7, + "probability": 0.3547 + }, + { + "start": 5640.06, + "end": 5640.38, + "probability": 0.6095 + }, + { + "start": 5640.84, + "end": 5641.08, + "probability": 0.1399 + }, + { + "start": 5641.08, + "end": 5642.44, + "probability": 0.8797 + }, + { + "start": 5642.58, + "end": 5643.04, + "probability": 0.9767 + }, + { + "start": 5643.48, + "end": 5644.34, + "probability": 0.9982 + }, + { + "start": 5644.98, + "end": 5646.2, + "probability": 0.879 + }, + { + "start": 5646.3, + "end": 5649.7, + "probability": 0.974 + }, + { + "start": 5650.38, + "end": 5650.96, + "probability": 0.6235 + }, + { + "start": 5651.9, + "end": 5654.17, + "probability": 0.6002 + }, + { + "start": 5654.22, + "end": 5657.14, + "probability": 0.5315 + }, + { + "start": 5657.44, + "end": 5659.4, + "probability": 0.7641 + }, + { + "start": 5659.44, + "end": 5659.94, + "probability": 0.4444 + }, + { + "start": 5660.04, + "end": 5660.88, + "probability": 0.2894 + }, + { + "start": 5660.88, + "end": 5662.22, + "probability": 0.274 + }, + { + "start": 5662.22, + "end": 5665.0, + "probability": 0.951 + }, + { + "start": 5665.06, + "end": 5666.14, + "probability": 0.7314 + }, + { + "start": 5666.28, + "end": 5666.96, + "probability": 0.7833 + }, + { + "start": 5667.22, + "end": 5668.1, + "probability": 0.0553 + }, + { + "start": 5668.14, + "end": 5668.68, + "probability": 0.6896 + }, + { + "start": 5668.76, + "end": 5671.98, + "probability": 0.8505 + }, + { + "start": 5672.04, + "end": 5673.04, + "probability": 0.2807 + }, + { + "start": 5673.1, + "end": 5674.7, + "probability": 0.7052 + }, + { + "start": 5675.42, + "end": 5677.48, + "probability": 0.6442 + }, + { + "start": 5678.56, + "end": 5679.64, + "probability": 0.8168 + }, + { + "start": 5680.22, + "end": 5681.44, + "probability": 0.7181 + }, + { + "start": 5682.64, + "end": 5684.84, + "probability": 0.9276 + }, + { + "start": 5684.86, + "end": 5688.42, + "probability": 0.9045 + }, + { + "start": 5688.64, + "end": 5690.4, + "probability": 0.9827 + }, + { + "start": 5691.24, + "end": 5693.52, + "probability": 0.9787 + }, + { + "start": 5693.76, + "end": 5694.78, + "probability": 0.6054 + }, + { + "start": 5695.46, + "end": 5696.62, + "probability": 0.8184 + }, + { + "start": 5697.02, + "end": 5698.06, + "probability": 0.8259 + }, + { + "start": 5700.78, + "end": 5702.36, + "probability": 0.9582 + }, + { + "start": 5702.64, + "end": 5703.94, + "probability": 0.9238 + }, + { + "start": 5704.7, + "end": 5706.76, + "probability": 0.9484 + }, + { + "start": 5707.48, + "end": 5709.58, + "probability": 0.9852 + }, + { + "start": 5710.68, + "end": 5712.69, + "probability": 0.9956 + }, + { + "start": 5714.02, + "end": 5714.92, + "probability": 0.8738 + }, + { + "start": 5715.96, + "end": 5717.42, + "probability": 0.8207 + }, + { + "start": 5717.52, + "end": 5717.56, + "probability": 0.2736 + }, + { + "start": 5717.58, + "end": 5718.58, + "probability": 0.6676 + }, + { + "start": 5718.86, + "end": 5719.3, + "probability": 0.4644 + }, + { + "start": 5719.38, + "end": 5720.18, + "probability": 0.9006 + }, + { + "start": 5720.22, + "end": 5724.38, + "probability": 0.6762 + }, + { + "start": 5724.38, + "end": 5724.38, + "probability": 0.0594 + }, + { + "start": 5724.38, + "end": 5726.58, + "probability": 0.4473 + }, + { + "start": 5726.94, + "end": 5729.02, + "probability": 0.9976 + }, + { + "start": 5729.34, + "end": 5729.62, + "probability": 0.5753 + }, + { + "start": 5729.62, + "end": 5730.6, + "probability": 0.591 + }, + { + "start": 5730.6, + "end": 5731.66, + "probability": 0.697 + }, + { + "start": 5732.74, + "end": 5735.38, + "probability": 0.9841 + }, + { + "start": 5735.42, + "end": 5736.78, + "probability": 0.7196 + }, + { + "start": 5736.94, + "end": 5740.6, + "probability": 0.9845 + }, + { + "start": 5740.92, + "end": 5743.2, + "probability": 0.8565 + }, + { + "start": 5744.44, + "end": 5745.74, + "probability": 0.9766 + }, + { + "start": 5746.76, + "end": 5747.98, + "probability": 0.7546 + }, + { + "start": 5748.7, + "end": 5750.34, + "probability": 0.8414 + }, + { + "start": 5750.68, + "end": 5756.56, + "probability": 0.5928 + }, + { + "start": 5756.56, + "end": 5758.9, + "probability": 0.3368 + }, + { + "start": 5758.9, + "end": 5760.22, + "probability": 0.7847 + }, + { + "start": 5761.48, + "end": 5761.68, + "probability": 0.0524 + }, + { + "start": 5764.81, + "end": 5766.88, + "probability": 0.8838 + }, + { + "start": 5771.09, + "end": 5773.52, + "probability": 0.9832 + }, + { + "start": 5773.54, + "end": 5776.5, + "probability": 0.9309 + }, + { + "start": 5777.26, + "end": 5779.02, + "probability": 0.9372 + }, + { + "start": 5779.54, + "end": 5781.16, + "probability": 0.8197 + }, + { + "start": 5781.84, + "end": 5784.24, + "probability": 0.8987 + }, + { + "start": 5785.92, + "end": 5786.56, + "probability": 0.7189 + }, + { + "start": 5786.76, + "end": 5787.58, + "probability": 0.7748 + }, + { + "start": 5788.04, + "end": 5788.9, + "probability": 0.8274 + }, + { + "start": 5790.2, + "end": 5791.94, + "probability": 0.9109 + }, + { + "start": 5791.94, + "end": 5795.56, + "probability": 0.6233 + }, + { + "start": 5795.7, + "end": 5800.24, + "probability": 0.9786 + }, + { + "start": 5800.89, + "end": 5804.92, + "probability": 0.9632 + }, + { + "start": 5805.32, + "end": 5806.28, + "probability": 0.5356 + }, + { + "start": 5807.1, + "end": 5808.4, + "probability": 0.5375 + }, + { + "start": 5809.34, + "end": 5811.32, + "probability": 0.9417 + }, + { + "start": 5811.42, + "end": 5812.38, + "probability": 0.9829 + }, + { + "start": 5812.9, + "end": 5813.62, + "probability": 0.8764 + }, + { + "start": 5815.26, + "end": 5815.9, + "probability": 0.7393 + }, + { + "start": 5816.1, + "end": 5819.0, + "probability": 0.9678 + }, + { + "start": 5819.2, + "end": 5819.64, + "probability": 0.9098 + }, + { + "start": 5819.82, + "end": 5821.12, + "probability": 0.099 + }, + { + "start": 5821.46, + "end": 5824.24, + "probability": 0.9528 + }, + { + "start": 5824.4, + "end": 5825.26, + "probability": 0.8313 + }, + { + "start": 5826.82, + "end": 5830.08, + "probability": 0.3413 + }, + { + "start": 5830.12, + "end": 5831.0, + "probability": 0.7943 + }, + { + "start": 5831.14, + "end": 5832.08, + "probability": 0.9721 + }, + { + "start": 5832.12, + "end": 5833.4, + "probability": 0.8363 + }, + { + "start": 5833.7, + "end": 5835.46, + "probability": 0.5427 + }, + { + "start": 5835.5, + "end": 5836.62, + "probability": 0.9566 + }, + { + "start": 5837.34, + "end": 5839.18, + "probability": 0.7568 + }, + { + "start": 5839.22, + "end": 5839.86, + "probability": 0.5133 + }, + { + "start": 5839.9, + "end": 5841.98, + "probability": 0.1175 + }, + { + "start": 5841.98, + "end": 5844.72, + "probability": 0.0763 + }, + { + "start": 5844.84, + "end": 5846.22, + "probability": 0.7563 + }, + { + "start": 5846.22, + "end": 5848.93, + "probability": 0.9211 + }, + { + "start": 5849.48, + "end": 5852.26, + "probability": 0.9792 + }, + { + "start": 5852.5, + "end": 5857.16, + "probability": 0.9982 + }, + { + "start": 5858.1, + "end": 5863.14, + "probability": 0.9683 + }, + { + "start": 5863.14, + "end": 5863.54, + "probability": 0.0421 + }, + { + "start": 5863.72, + "end": 5864.32, + "probability": 0.4408 + }, + { + "start": 5864.46, + "end": 5865.42, + "probability": 0.6519 + }, + { + "start": 5865.84, + "end": 5868.1, + "probability": 0.9668 + }, + { + "start": 5868.28, + "end": 5872.38, + "probability": 0.8133 + }, + { + "start": 5872.4, + "end": 5872.98, + "probability": 0.924 + }, + { + "start": 5873.08, + "end": 5876.0, + "probability": 0.8529 + }, + { + "start": 5876.28, + "end": 5877.36, + "probability": 0.6307 + }, + { + "start": 5877.46, + "end": 5881.24, + "probability": 0.2418 + }, + { + "start": 5881.4, + "end": 5881.4, + "probability": 0.0092 + }, + { + "start": 5881.42, + "end": 5882.16, + "probability": 0.0193 + }, + { + "start": 5882.38, + "end": 5884.18, + "probability": 0.8067 + }, + { + "start": 5884.44, + "end": 5886.7, + "probability": 0.7825 + }, + { + "start": 5886.97, + "end": 5891.7, + "probability": 0.642 + }, + { + "start": 5892.5, + "end": 5893.28, + "probability": 0.6979 + }, + { + "start": 5894.22, + "end": 5895.91, + "probability": 0.8369 + }, + { + "start": 5896.88, + "end": 5904.28, + "probability": 0.9199 + }, + { + "start": 5904.74, + "end": 5905.96, + "probability": 0.6488 + }, + { + "start": 5906.38, + "end": 5907.38, + "probability": 0.5455 + }, + { + "start": 5907.5, + "end": 5909.73, + "probability": 0.7129 + }, + { + "start": 5910.06, + "end": 5912.36, + "probability": 0.9927 + }, + { + "start": 5912.56, + "end": 5914.94, + "probability": 0.9932 + }, + { + "start": 5915.2, + "end": 5916.28, + "probability": 0.9628 + }, + { + "start": 5916.68, + "end": 5920.18, + "probability": 0.9404 + }, + { + "start": 5920.62, + "end": 5925.18, + "probability": 0.9303 + }, + { + "start": 5925.32, + "end": 5927.22, + "probability": 0.9378 + }, + { + "start": 5927.44, + "end": 5930.82, + "probability": 0.7587 + }, + { + "start": 5931.6, + "end": 5933.08, + "probability": 0.8865 + }, + { + "start": 5933.38, + "end": 5934.06, + "probability": 0.5618 + }, + { + "start": 5934.1, + "end": 5936.18, + "probability": 0.79 + }, + { + "start": 5937.04, + "end": 5937.72, + "probability": 0.5059 + }, + { + "start": 5938.34, + "end": 5940.42, + "probability": 0.8802 + }, + { + "start": 5941.0, + "end": 5943.96, + "probability": 0.9803 + }, + { + "start": 5944.68, + "end": 5946.32, + "probability": 0.9609 + }, + { + "start": 5948.68, + "end": 5949.24, + "probability": 0.8451 + }, + { + "start": 5949.46, + "end": 5951.28, + "probability": 0.9899 + }, + { + "start": 5952.02, + "end": 5953.54, + "probability": 0.9952 + }, + { + "start": 5954.42, + "end": 5958.0, + "probability": 0.8159 + }, + { + "start": 5958.88, + "end": 5960.56, + "probability": 0.8876 + }, + { + "start": 5961.82, + "end": 5965.7, + "probability": 0.8299 + }, + { + "start": 5966.4, + "end": 5968.34, + "probability": 0.8473 + }, + { + "start": 5968.4, + "end": 5972.72, + "probability": 0.9853 + }, + { + "start": 5974.12, + "end": 5977.22, + "probability": 0.764 + }, + { + "start": 5978.5, + "end": 5979.38, + "probability": 0.9117 + }, + { + "start": 5981.12, + "end": 5983.34, + "probability": 0.9515 + }, + { + "start": 5983.4, + "end": 5986.68, + "probability": 0.8883 + }, + { + "start": 5987.62, + "end": 5989.62, + "probability": 0.4976 + }, + { + "start": 5991.3, + "end": 5991.86, + "probability": 0.9016 + }, + { + "start": 5993.59, + "end": 5996.1, + "probability": 0.16 + }, + { + "start": 5996.94, + "end": 5999.02, + "probability": 0.5995 + }, + { + "start": 6000.35, + "end": 6003.42, + "probability": 0.9377 + }, + { + "start": 6003.7, + "end": 6005.46, + "probability": 0.7527 + }, + { + "start": 6006.0, + "end": 6008.01, + "probability": 0.9865 + }, + { + "start": 6008.64, + "end": 6010.94, + "probability": 0.988 + }, + { + "start": 6011.26, + "end": 6012.66, + "probability": 0.8335 + }, + { + "start": 6012.66, + "end": 6015.62, + "probability": 0.9565 + }, + { + "start": 6015.62, + "end": 6016.79, + "probability": 0.0342 + }, + { + "start": 6017.0, + "end": 6019.11, + "probability": 0.9025 + }, + { + "start": 6019.74, + "end": 6020.9, + "probability": 0.9299 + }, + { + "start": 6021.18, + "end": 6021.76, + "probability": 0.1965 + }, + { + "start": 6023.08, + "end": 6024.4, + "probability": 0.6881 + }, + { + "start": 6024.46, + "end": 6025.56, + "probability": 0.9196 + }, + { + "start": 6026.78, + "end": 6027.76, + "probability": 0.9807 + }, + { + "start": 6027.84, + "end": 6029.42, + "probability": 0.877 + }, + { + "start": 6030.16, + "end": 6031.96, + "probability": 0.6943 + }, + { + "start": 6032.88, + "end": 6033.92, + "probability": 0.5265 + }, + { + "start": 6034.04, + "end": 6035.2, + "probability": 0.6855 + }, + { + "start": 6035.38, + "end": 6036.1, + "probability": 0.4066 + }, + { + "start": 6037.68, + "end": 6041.9, + "probability": 0.7921 + }, + { + "start": 6042.78, + "end": 6043.56, + "probability": 0.9479 + }, + { + "start": 6043.68, + "end": 6044.7, + "probability": 0.2969 + }, + { + "start": 6044.98, + "end": 6045.74, + "probability": 0.7758 + }, + { + "start": 6046.44, + "end": 6046.96, + "probability": 0.8328 + }, + { + "start": 6048.78, + "end": 6051.96, + "probability": 0.9641 + }, + { + "start": 6052.0, + "end": 6053.98, + "probability": 0.9372 + }, + { + "start": 6054.56, + "end": 6054.66, + "probability": 0.7182 + }, + { + "start": 6055.52, + "end": 6055.84, + "probability": 0.1327 + }, + { + "start": 6055.86, + "end": 6055.86, + "probability": 0.0269 + }, + { + "start": 6055.86, + "end": 6060.24, + "probability": 0.9857 + }, + { + "start": 6061.72, + "end": 6064.24, + "probability": 0.9512 + }, + { + "start": 6066.06, + "end": 6068.26, + "probability": 0.996 + }, + { + "start": 6068.76, + "end": 6073.3, + "probability": 0.8071 + }, + { + "start": 6073.44, + "end": 6074.24, + "probability": 0.7403 + }, + { + "start": 6074.63, + "end": 6078.3, + "probability": 0.844 + }, + { + "start": 6078.5, + "end": 6080.92, + "probability": 0.7876 + }, + { + "start": 6081.48, + "end": 6084.56, + "probability": 0.7485 + }, + { + "start": 6084.56, + "end": 6085.29, + "probability": 0.6838 + }, + { + "start": 6085.5, + "end": 6086.02, + "probability": 0.9954 + }, + { + "start": 6086.2, + "end": 6091.12, + "probability": 0.9756 + }, + { + "start": 6091.72, + "end": 6094.28, + "probability": 0.9966 + }, + { + "start": 6094.82, + "end": 6096.36, + "probability": 0.5409 + }, + { + "start": 6096.62, + "end": 6098.44, + "probability": 0.3221 + }, + { + "start": 6099.0, + "end": 6101.66, + "probability": 0.3603 + }, + { + "start": 6102.28, + "end": 6103.96, + "probability": 0.1805 + }, + { + "start": 6104.3, + "end": 6105.94, + "probability": 0.3713 + }, + { + "start": 6107.04, + "end": 6107.84, + "probability": 0.1575 + }, + { + "start": 6108.22, + "end": 6112.99, + "probability": 0.1828 + }, + { + "start": 6113.64, + "end": 6117.92, + "probability": 0.0487 + }, + { + "start": 6117.92, + "end": 6118.42, + "probability": 0.0297 + }, + { + "start": 6118.42, + "end": 6119.82, + "probability": 0.0271 + }, + { + "start": 6120.08, + "end": 6121.54, + "probability": 0.0462 + }, + { + "start": 6122.75, + "end": 6130.18, + "probability": 0.0226 + }, + { + "start": 6130.18, + "end": 6130.18, + "probability": 0.0295 + }, + { + "start": 6130.18, + "end": 6131.0, + "probability": 0.0632 + }, + { + "start": 6131.82, + "end": 6133.78, + "probability": 0.136 + }, + { + "start": 6134.93, + "end": 6135.72, + "probability": 0.0953 + }, + { + "start": 6136.62, + "end": 6138.52, + "probability": 0.1226 + }, + { + "start": 6139.14, + "end": 6139.66, + "probability": 0.1563 + }, + { + "start": 6141.3, + "end": 6141.86, + "probability": 0.1443 + }, + { + "start": 6144.54, + "end": 6149.86, + "probability": 0.0853 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6150.0, + "end": 6150.0, + "probability": 0.0 + }, + { + "start": 6158.48, + "end": 6160.44, + "probability": 0.1463 + }, + { + "start": 6160.44, + "end": 6162.32, + "probability": 0.0378 + }, + { + "start": 6162.32, + "end": 6162.7, + "probability": 0.0418 + }, + { + "start": 6162.88, + "end": 6163.08, + "probability": 0.1503 + }, + { + "start": 6163.08, + "end": 6168.18, + "probability": 0.1426 + }, + { + "start": 6168.22, + "end": 6171.48, + "probability": 0.1596 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.0, + "end": 6278.0, + "probability": 0.0 + }, + { + "start": 6278.48, + "end": 6280.12, + "probability": 0.113 + }, + { + "start": 6280.12, + "end": 6281.26, + "probability": 0.0471 + }, + { + "start": 6282.32, + "end": 6282.7, + "probability": 0.1523 + }, + { + "start": 6282.7, + "end": 6283.9, + "probability": 0.442 + }, + { + "start": 6283.9, + "end": 6283.96, + "probability": 0.4342 + }, + { + "start": 6283.98, + "end": 6283.98, + "probability": 0.1842 + }, + { + "start": 6284.52, + "end": 6295.43, + "probability": 0.1058 + }, + { + "start": 6298.22, + "end": 6298.22, + "probability": 0.0753 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.0, + "end": 6402.0, + "probability": 0.0 + }, + { + "start": 6402.16, + "end": 6402.16, + "probability": 0.1572 + }, + { + "start": 6402.16, + "end": 6402.94, + "probability": 0.685 + }, + { + "start": 6403.42, + "end": 6404.56, + "probability": 0.8438 + }, + { + "start": 6404.66, + "end": 6405.36, + "probability": 0.9107 + }, + { + "start": 6405.6, + "end": 6408.78, + "probability": 0.5021 + }, + { + "start": 6408.78, + "end": 6409.38, + "probability": 0.2153 + }, + { + "start": 6409.44, + "end": 6410.6, + "probability": 0.3873 + }, + { + "start": 6410.6, + "end": 6413.54, + "probability": 0.8276 + }, + { + "start": 6413.64, + "end": 6414.0, + "probability": 0.7149 + }, + { + "start": 6414.22, + "end": 6416.08, + "probability": 0.7847 + }, + { + "start": 6416.46, + "end": 6419.06, + "probability": 0.9112 + }, + { + "start": 6419.9, + "end": 6422.53, + "probability": 0.7817 + }, + { + "start": 6423.74, + "end": 6426.38, + "probability": 0.9893 + }, + { + "start": 6426.7, + "end": 6427.67, + "probability": 0.9952 + }, + { + "start": 6428.06, + "end": 6429.35, + "probability": 0.6799 + }, + { + "start": 6430.12, + "end": 6431.1, + "probability": 0.9477 + }, + { + "start": 6432.28, + "end": 6434.4, + "probability": 0.9976 + }, + { + "start": 6435.26, + "end": 6437.02, + "probability": 0.9474 + }, + { + "start": 6437.56, + "end": 6438.72, + "probability": 0.9369 + }, + { + "start": 6439.14, + "end": 6439.98, + "probability": 0.9541 + }, + { + "start": 6440.04, + "end": 6442.28, + "probability": 0.6243 + }, + { + "start": 6442.64, + "end": 6444.42, + "probability": 0.9283 + }, + { + "start": 6444.58, + "end": 6445.48, + "probability": 0.9945 + }, + { + "start": 6446.04, + "end": 6446.48, + "probability": 0.556 + }, + { + "start": 6447.14, + "end": 6448.76, + "probability": 0.9591 + }, + { + "start": 6449.06, + "end": 6450.38, + "probability": 0.85 + }, + { + "start": 6451.12, + "end": 6454.94, + "probability": 0.9651 + }, + { + "start": 6455.24, + "end": 6456.34, + "probability": 0.8536 + }, + { + "start": 6457.3, + "end": 6458.36, + "probability": 0.9516 + }, + { + "start": 6459.92, + "end": 6461.92, + "probability": 0.1465 + }, + { + "start": 6461.92, + "end": 6463.38, + "probability": 0.5732 + }, + { + "start": 6463.46, + "end": 6464.42, + "probability": 0.7925 + }, + { + "start": 6464.66, + "end": 6465.16, + "probability": 0.0789 + }, + { + "start": 6465.24, + "end": 6467.22, + "probability": 0.1089 + }, + { + "start": 6468.56, + "end": 6470.9, + "probability": 0.7135 + }, + { + "start": 6471.2, + "end": 6473.4, + "probability": 0.9538 + }, + { + "start": 6473.62, + "end": 6474.95, + "probability": 0.9961 + }, + { + "start": 6475.1, + "end": 6475.44, + "probability": 0.7661 + }, + { + "start": 6475.97, + "end": 6476.09, + "probability": 0.0295 + }, + { + "start": 6477.6, + "end": 6478.88, + "probability": 0.637 + }, + { + "start": 6479.28, + "end": 6480.88, + "probability": 0.7063 + }, + { + "start": 6481.48, + "end": 6484.76, + "probability": 0.6974 + }, + { + "start": 6486.02, + "end": 6487.08, + "probability": 0.5874 + }, + { + "start": 6488.18, + "end": 6490.64, + "probability": 0.8068 + }, + { + "start": 6498.0, + "end": 6498.54, + "probability": 0.4889 + }, + { + "start": 6499.12, + "end": 6502.54, + "probability": 0.8776 + }, + { + "start": 6502.64, + "end": 6503.2, + "probability": 0.893 + }, + { + "start": 6504.36, + "end": 6504.36, + "probability": 0.1555 + }, + { + "start": 6504.36, + "end": 6507.66, + "probability": 0.9567 + }, + { + "start": 6507.8, + "end": 6509.72, + "probability": 0.8949 + }, + { + "start": 6511.7, + "end": 6514.68, + "probability": 0.3309 + }, + { + "start": 6515.26, + "end": 6517.58, + "probability": 0.2757 + }, + { + "start": 6517.62, + "end": 6518.11, + "probability": 0.1121 + }, + { + "start": 6518.42, + "end": 6518.42, + "probability": 0.0304 + }, + { + "start": 6518.42, + "end": 6520.46, + "probability": 0.6676 + }, + { + "start": 6520.86, + "end": 6524.1, + "probability": 0.5297 + }, + { + "start": 6524.16, + "end": 6526.74, + "probability": 0.743 + }, + { + "start": 6526.74, + "end": 6526.76, + "probability": 0.622 + }, + { + "start": 6526.78, + "end": 6527.32, + "probability": 0.6266 + }, + { + "start": 6527.38, + "end": 6528.38, + "probability": 0.6843 + }, + { + "start": 6528.62, + "end": 6529.76, + "probability": 0.8265 + }, + { + "start": 6529.82, + "end": 6532.76, + "probability": 0.8954 + }, + { + "start": 6533.62, + "end": 6535.76, + "probability": 0.9283 + }, + { + "start": 6535.88, + "end": 6539.04, + "probability": 0.66 + }, + { + "start": 6539.16, + "end": 6541.34, + "probability": 0.9914 + }, + { + "start": 6542.0, + "end": 6544.54, + "probability": 0.9857 + }, + { + "start": 6545.04, + "end": 6547.94, + "probability": 0.9995 + }, + { + "start": 6548.32, + "end": 6549.78, + "probability": 0.9885 + }, + { + "start": 6550.3, + "end": 6551.5, + "probability": 0.7647 + }, + { + "start": 6552.08, + "end": 6553.16, + "probability": 0.4011 + }, + { + "start": 6553.84, + "end": 6555.82, + "probability": 0.9979 + }, + { + "start": 6556.26, + "end": 6556.86, + "probability": 0.7305 + }, + { + "start": 6556.94, + "end": 6558.3, + "probability": 0.9719 + }, + { + "start": 6558.82, + "end": 6563.22, + "probability": 0.9714 + }, + { + "start": 6564.52, + "end": 6567.06, + "probability": 0.6642 + }, + { + "start": 6567.24, + "end": 6569.14, + "probability": 0.9147 + }, + { + "start": 6569.2, + "end": 6569.7, + "probability": 0.6647 + }, + { + "start": 6570.26, + "end": 6572.02, + "probability": 0.8682 + }, + { + "start": 6572.08, + "end": 6574.98, + "probability": 0.9453 + }, + { + "start": 6575.08, + "end": 6575.26, + "probability": 0.613 + }, + { + "start": 6575.56, + "end": 6576.41, + "probability": 0.9119 + }, + { + "start": 6577.3, + "end": 6577.92, + "probability": 0.8025 + }, + { + "start": 6578.26, + "end": 6579.92, + "probability": 0.9929 + }, + { + "start": 6580.62, + "end": 6584.22, + "probability": 0.8534 + }, + { + "start": 6585.14, + "end": 6587.8, + "probability": 0.9929 + }, + { + "start": 6589.8, + "end": 6590.88, + "probability": 0.9722 + }, + { + "start": 6592.62, + "end": 6593.1, + "probability": 0.9855 + }, + { + "start": 6593.66, + "end": 6594.92, + "probability": 0.957 + }, + { + "start": 6595.02, + "end": 6597.04, + "probability": 0.9966 + }, + { + "start": 6597.58, + "end": 6601.9, + "probability": 0.9805 + }, + { + "start": 6602.06, + "end": 6603.78, + "probability": 0.9874 + }, + { + "start": 6606.06, + "end": 6606.94, + "probability": 0.9375 + }, + { + "start": 6607.56, + "end": 6611.7, + "probability": 0.9789 + }, + { + "start": 6612.46, + "end": 6616.94, + "probability": 0.709 + }, + { + "start": 6617.22, + "end": 6618.04, + "probability": 0.8711 + }, + { + "start": 6618.44, + "end": 6619.64, + "probability": 0.9484 + }, + { + "start": 6619.98, + "end": 6620.02, + "probability": 0.0421 + }, + { + "start": 6620.02, + "end": 6621.46, + "probability": 0.5642 + }, + { + "start": 6621.7, + "end": 6624.02, + "probability": 0.917 + }, + { + "start": 6624.88, + "end": 6626.48, + "probability": 0.9871 + }, + { + "start": 6626.96, + "end": 6628.42, + "probability": 0.8467 + }, + { + "start": 6629.16, + "end": 6630.1, + "probability": 0.9109 + }, + { + "start": 6630.76, + "end": 6631.48, + "probability": 0.8435 + }, + { + "start": 6631.62, + "end": 6631.98, + "probability": 0.8856 + }, + { + "start": 6632.08, + "end": 6632.84, + "probability": 0.8539 + }, + { + "start": 6632.92, + "end": 6637.2, + "probability": 0.9937 + }, + { + "start": 6637.58, + "end": 6638.75, + "probability": 0.889 + }, + { + "start": 6639.56, + "end": 6642.04, + "probability": 0.9226 + }, + { + "start": 6642.86, + "end": 6643.94, + "probability": 0.9873 + }, + { + "start": 6644.76, + "end": 6646.42, + "probability": 0.9474 + }, + { + "start": 6646.5, + "end": 6647.58, + "probability": 0.9985 + }, + { + "start": 6647.84, + "end": 6648.54, + "probability": 0.7918 + }, + { + "start": 6649.08, + "end": 6649.68, + "probability": 0.7979 + }, + { + "start": 6650.52, + "end": 6651.72, + "probability": 0.9369 + }, + { + "start": 6652.46, + "end": 6655.32, + "probability": 0.9946 + }, + { + "start": 6655.62, + "end": 6658.32, + "probability": 0.9611 + }, + { + "start": 6658.96, + "end": 6661.3, + "probability": 0.9937 + }, + { + "start": 6661.88, + "end": 6664.36, + "probability": 0.98 + }, + { + "start": 6665.06, + "end": 6667.52, + "probability": 0.9966 + }, + { + "start": 6667.66, + "end": 6668.32, + "probability": 0.7927 + }, + { + "start": 6668.54, + "end": 6670.18, + "probability": 0.9872 + }, + { + "start": 6670.72, + "end": 6673.44, + "probability": 0.9414 + }, + { + "start": 6673.76, + "end": 6677.04, + "probability": 0.9656 + }, + { + "start": 6677.48, + "end": 6678.8, + "probability": 0.9839 + }, + { + "start": 6678.92, + "end": 6681.58, + "probability": 0.7369 + }, + { + "start": 6681.58, + "end": 6684.06, + "probability": 0.9754 + }, + { + "start": 6685.08, + "end": 6687.8, + "probability": 0.9878 + }, + { + "start": 6689.16, + "end": 6695.1, + "probability": 0.9819 + }, + { + "start": 6695.5, + "end": 6696.24, + "probability": 0.9795 + }, + { + "start": 6697.36, + "end": 6699.14, + "probability": 0.9255 + }, + { + "start": 6700.26, + "end": 6703.86, + "probability": 0.9519 + }, + { + "start": 6703.86, + "end": 6710.04, + "probability": 0.9985 + }, + { + "start": 6710.64, + "end": 6713.16, + "probability": 0.9973 + }, + { + "start": 6713.16, + "end": 6715.68, + "probability": 0.9638 + }, + { + "start": 6716.1, + "end": 6717.36, + "probability": 0.9556 + }, + { + "start": 6717.48, + "end": 6719.18, + "probability": 0.9659 + }, + { + "start": 6720.08, + "end": 6724.64, + "probability": 0.9473 + }, + { + "start": 6724.64, + "end": 6724.64, + "probability": 0.3228 + }, + { + "start": 6724.64, + "end": 6725.3, + "probability": 0.2506 + }, + { + "start": 6725.48, + "end": 6729.36, + "probability": 0.8335 + }, + { + "start": 6729.82, + "end": 6731.36, + "probability": 0.9069 + }, + { + "start": 6731.38, + "end": 6733.86, + "probability": 0.9868 + }, + { + "start": 6733.86, + "end": 6734.72, + "probability": 0.9268 + }, + { + "start": 6735.02, + "end": 6737.72, + "probability": 0.9878 + }, + { + "start": 6738.36, + "end": 6739.36, + "probability": 0.5526 + }, + { + "start": 6739.52, + "end": 6740.76, + "probability": 0.5112 + }, + { + "start": 6741.3, + "end": 6743.14, + "probability": 0.8162 + }, + { + "start": 6751.16, + "end": 6753.72, + "probability": 0.8052 + }, + { + "start": 6754.84, + "end": 6756.82, + "probability": 0.5614 + }, + { + "start": 6757.94, + "end": 6759.52, + "probability": 0.7054 + }, + { + "start": 6760.48, + "end": 6762.7, + "probability": 0.9096 + }, + { + "start": 6763.68, + "end": 6767.0, + "probability": 0.9037 + }, + { + "start": 6767.82, + "end": 6772.02, + "probability": 0.9894 + }, + { + "start": 6772.02, + "end": 6779.44, + "probability": 0.9735 + }, + { + "start": 6781.44, + "end": 6782.56, + "probability": 0.5222 + }, + { + "start": 6782.88, + "end": 6788.48, + "probability": 0.9353 + }, + { + "start": 6789.52, + "end": 6790.6, + "probability": 0.9753 + }, + { + "start": 6791.24, + "end": 6796.84, + "probability": 0.9568 + }, + { + "start": 6798.68, + "end": 6804.22, + "probability": 0.8632 + }, + { + "start": 6806.58, + "end": 6807.39, + "probability": 0.9637 + }, + { + "start": 6808.34, + "end": 6811.0, + "probability": 0.8935 + }, + { + "start": 6813.06, + "end": 6815.38, + "probability": 0.8201 + }, + { + "start": 6815.74, + "end": 6820.36, + "probability": 0.979 + }, + { + "start": 6821.12, + "end": 6822.54, + "probability": 0.7819 + }, + { + "start": 6824.12, + "end": 6825.4, + "probability": 0.8868 + }, + { + "start": 6825.9, + "end": 6826.67, + "probability": 0.9736 + }, + { + "start": 6827.28, + "end": 6828.25, + "probability": 0.9629 + }, + { + "start": 6828.48, + "end": 6829.36, + "probability": 0.942 + }, + { + "start": 6830.08, + "end": 6831.76, + "probability": 0.5966 + }, + { + "start": 6832.88, + "end": 6833.76, + "probability": 0.8973 + }, + { + "start": 6834.68, + "end": 6836.56, + "probability": 0.8455 + }, + { + "start": 6838.0, + "end": 6840.68, + "probability": 0.9622 + }, + { + "start": 6842.68, + "end": 6845.64, + "probability": 0.9933 + }, + { + "start": 6846.98, + "end": 6853.92, + "probability": 0.9874 + }, + { + "start": 6854.9, + "end": 6856.04, + "probability": 0.9087 + }, + { + "start": 6857.34, + "end": 6862.38, + "probability": 0.9941 + }, + { + "start": 6862.38, + "end": 6869.7, + "probability": 0.9982 + }, + { + "start": 6870.98, + "end": 6871.9, + "probability": 0.5584 + }, + { + "start": 6872.58, + "end": 6873.2, + "probability": 0.785 + }, + { + "start": 6873.98, + "end": 6875.06, + "probability": 0.8951 + }, + { + "start": 6876.28, + "end": 6876.89, + "probability": 0.9966 + }, + { + "start": 6877.94, + "end": 6881.42, + "probability": 0.9729 + }, + { + "start": 6882.22, + "end": 6885.22, + "probability": 0.9973 + }, + { + "start": 6886.34, + "end": 6887.44, + "probability": 0.9625 + }, + { + "start": 6888.28, + "end": 6892.84, + "probability": 0.9979 + }, + { + "start": 6892.84, + "end": 6899.48, + "probability": 0.992 + }, + { + "start": 6902.84, + "end": 6908.38, + "probability": 0.8596 + }, + { + "start": 6909.16, + "end": 6909.68, + "probability": 0.9536 + }, + { + "start": 6910.28, + "end": 6919.92, + "probability": 0.9884 + }, + { + "start": 6920.88, + "end": 6923.23, + "probability": 0.7573 + }, + { + "start": 6924.96, + "end": 6926.28, + "probability": 0.9968 + }, + { + "start": 6926.82, + "end": 6928.14, + "probability": 0.5196 + }, + { + "start": 6928.68, + "end": 6931.04, + "probability": 0.6728 + }, + { + "start": 6931.22, + "end": 6931.76, + "probability": 0.7128 + }, + { + "start": 6932.44, + "end": 6936.56, + "probability": 0.9775 + }, + { + "start": 6936.9, + "end": 6937.32, + "probability": 0.7927 + }, + { + "start": 6939.22, + "end": 6941.14, + "probability": 0.7743 + }, + { + "start": 6941.32, + "end": 6942.92, + "probability": 0.899 + }, + { + "start": 6945.4, + "end": 6946.56, + "probability": 0.5817 + }, + { + "start": 6946.62, + "end": 6947.42, + "probability": 0.6064 + }, + { + "start": 6947.5, + "end": 6948.64, + "probability": 0.7451 + }, + { + "start": 6948.76, + "end": 6950.1, + "probability": 0.9247 + }, + { + "start": 6950.98, + "end": 6954.02, + "probability": 0.6253 + }, + { + "start": 6954.72, + "end": 6955.84, + "probability": 0.1788 + }, + { + "start": 6956.26, + "end": 6958.34, + "probability": 0.9899 + }, + { + "start": 6958.34, + "end": 6961.46, + "probability": 0.6516 + }, + { + "start": 6961.6, + "end": 6963.14, + "probability": 0.4897 + }, + { + "start": 6963.42, + "end": 6966.08, + "probability": 0.8127 + }, + { + "start": 6966.35, + "end": 6967.5, + "probability": 0.9855 + }, + { + "start": 6968.0, + "end": 6979.84, + "probability": 0.7797 + }, + { + "start": 6979.9, + "end": 6980.72, + "probability": 0.6987 + }, + { + "start": 6980.8, + "end": 6984.62, + "probability": 0.8983 + }, + { + "start": 6988.6, + "end": 6988.7, + "probability": 0.0333 + }, + { + "start": 6988.7, + "end": 6989.69, + "probability": 0.3955 + }, + { + "start": 6989.74, + "end": 6993.38, + "probability": 0.6845 + }, + { + "start": 6993.46, + "end": 6994.94, + "probability": 0.3957 + }, + { + "start": 6995.08, + "end": 6996.64, + "probability": 0.9575 + }, + { + "start": 6997.12, + "end": 7000.88, + "probability": 0.7502 + }, + { + "start": 7000.94, + "end": 7002.36, + "probability": 0.4936 + }, + { + "start": 7002.82, + "end": 7003.66, + "probability": 0.7015 + }, + { + "start": 7003.66, + "end": 7005.36, + "probability": 0.8189 + }, + { + "start": 7005.4, + "end": 7005.6, + "probability": 0.7213 + }, + { + "start": 7006.56, + "end": 7007.4, + "probability": 0.7072 + }, + { + "start": 7007.52, + "end": 7008.94, + "probability": 0.8398 + }, + { + "start": 7009.2, + "end": 7011.12, + "probability": 0.8601 + }, + { + "start": 7023.62, + "end": 7025.5, + "probability": 0.7341 + }, + { + "start": 7026.2, + "end": 7026.92, + "probability": 0.9048 + }, + { + "start": 7027.88, + "end": 7028.38, + "probability": 0.6823 + }, + { + "start": 7029.56, + "end": 7031.24, + "probability": 0.9946 + }, + { + "start": 7031.34, + "end": 7033.24, + "probability": 0.9947 + }, + { + "start": 7033.74, + "end": 7035.54, + "probability": 0.9987 + }, + { + "start": 7035.7, + "end": 7038.6, + "probability": 0.9829 + }, + { + "start": 7038.78, + "end": 7040.96, + "probability": 0.934 + }, + { + "start": 7041.46, + "end": 7045.5, + "probability": 0.9826 + }, + { + "start": 7045.66, + "end": 7046.62, + "probability": 0.9733 + }, + { + "start": 7047.22, + "end": 7048.4, + "probability": 0.9841 + }, + { + "start": 7049.36, + "end": 7052.76, + "probability": 0.9435 + }, + { + "start": 7052.9, + "end": 7056.04, + "probability": 0.988 + }, + { + "start": 7057.46, + "end": 7061.5, + "probability": 0.8475 + }, + { + "start": 7061.94, + "end": 7063.3, + "probability": 0.7819 + }, + { + "start": 7063.82, + "end": 7069.12, + "probability": 0.6517 + }, + { + "start": 7069.62, + "end": 7073.9, + "probability": 0.8697 + }, + { + "start": 7074.37, + "end": 7075.99, + "probability": 0.027 + }, + { + "start": 7076.14, + "end": 7077.72, + "probability": 0.8806 + }, + { + "start": 7078.06, + "end": 7082.16, + "probability": 0.9873 + }, + { + "start": 7082.3, + "end": 7084.2, + "probability": 0.7904 + }, + { + "start": 7084.5, + "end": 7087.3, + "probability": 0.9573 + }, + { + "start": 7087.86, + "end": 7090.46, + "probability": 0.5353 + }, + { + "start": 7090.46, + "end": 7094.9, + "probability": 0.9967 + }, + { + "start": 7095.46, + "end": 7098.74, + "probability": 0.8429 + }, + { + "start": 7099.72, + "end": 7100.82, + "probability": 0.9493 + }, + { + "start": 7101.02, + "end": 7101.06, + "probability": 0.3933 + }, + { + "start": 7101.08, + "end": 7103.14, + "probability": 0.3003 + }, + { + "start": 7103.14, + "end": 7104.14, + "probability": 0.4831 + }, + { + "start": 7104.14, + "end": 7104.38, + "probability": 0.1112 + }, + { + "start": 7104.52, + "end": 7105.09, + "probability": 0.6562 + }, + { + "start": 7105.54, + "end": 7106.76, + "probability": 0.6018 + }, + { + "start": 7106.82, + "end": 7110.22, + "probability": 0.9264 + }, + { + "start": 7110.54, + "end": 7112.0, + "probability": 0.998 + }, + { + "start": 7112.54, + "end": 7115.7, + "probability": 0.9749 + }, + { + "start": 7118.1, + "end": 7120.14, + "probability": 0.9683 + }, + { + "start": 7120.64, + "end": 7122.5, + "probability": 0.5067 + }, + { + "start": 7122.52, + "end": 7125.48, + "probability": 0.5151 + }, + { + "start": 7125.96, + "end": 7130.26, + "probability": 0.9581 + }, + { + "start": 7130.4, + "end": 7132.14, + "probability": 0.4654 + }, + { + "start": 7132.14, + "end": 7136.12, + "probability": 0.9574 + }, + { + "start": 7136.38, + "end": 7139.4, + "probability": 0.9993 + }, + { + "start": 7139.4, + "end": 7143.64, + "probability": 0.9971 + }, + { + "start": 7144.06, + "end": 7146.18, + "probability": 0.8757 + }, + { + "start": 7146.32, + "end": 7150.14, + "probability": 0.9966 + }, + { + "start": 7150.74, + "end": 7152.66, + "probability": 0.931 + }, + { + "start": 7153.06, + "end": 7154.16, + "probability": 0.9966 + }, + { + "start": 7154.74, + "end": 7158.9, + "probability": 0.9936 + }, + { + "start": 7159.5, + "end": 7163.5, + "probability": 0.9891 + }, + { + "start": 7164.2, + "end": 7166.42, + "probability": 0.9937 + }, + { + "start": 7167.92, + "end": 7171.2, + "probability": 0.2463 + }, + { + "start": 7171.2, + "end": 7176.64, + "probability": 0.9924 + }, + { + "start": 7177.36, + "end": 7179.7, + "probability": 0.5631 + }, + { + "start": 7180.2, + "end": 7181.39, + "probability": 0.9922 + }, + { + "start": 7181.92, + "end": 7185.22, + "probability": 0.9893 + }, + { + "start": 7185.22, + "end": 7187.58, + "probability": 0.9814 + }, + { + "start": 7188.42, + "end": 7190.66, + "probability": 0.9956 + }, + { + "start": 7191.02, + "end": 7192.72, + "probability": 0.9994 + }, + { + "start": 7193.14, + "end": 7194.7, + "probability": 0.9346 + }, + { + "start": 7195.4, + "end": 7197.52, + "probability": 0.9909 + }, + { + "start": 7197.9, + "end": 7199.4, + "probability": 0.8811 + }, + { + "start": 7199.94, + "end": 7202.48, + "probability": 0.9971 + }, + { + "start": 7202.48, + "end": 7205.02, + "probability": 0.9815 + }, + { + "start": 7205.46, + "end": 7210.64, + "probability": 0.9657 + }, + { + "start": 7212.26, + "end": 7213.68, + "probability": 0.7186 + }, + { + "start": 7213.86, + "end": 7215.44, + "probability": 0.9082 + }, + { + "start": 7231.94, + "end": 7233.56, + "probability": 0.414 + }, + { + "start": 7234.38, + "end": 7237.82, + "probability": 0.9049 + }, + { + "start": 7238.78, + "end": 7240.72, + "probability": 0.878 + }, + { + "start": 7240.78, + "end": 7245.12, + "probability": 0.8131 + }, + { + "start": 7246.74, + "end": 7250.5, + "probability": 0.9351 + }, + { + "start": 7251.04, + "end": 7252.5, + "probability": 0.7489 + }, + { + "start": 7252.7, + "end": 7256.76, + "probability": 0.8168 + }, + { + "start": 7257.23, + "end": 7261.2, + "probability": 0.9946 + }, + { + "start": 7261.96, + "end": 7265.54, + "probability": 0.9736 + }, + { + "start": 7265.54, + "end": 7270.82, + "probability": 0.9963 + }, + { + "start": 7271.66, + "end": 7277.56, + "probability": 0.9595 + }, + { + "start": 7278.26, + "end": 7285.1, + "probability": 0.9919 + }, + { + "start": 7285.7, + "end": 7287.04, + "probability": 0.9058 + }, + { + "start": 7287.92, + "end": 7289.74, + "probability": 0.9736 + }, + { + "start": 7289.8, + "end": 7290.4, + "probability": 0.7674 + }, + { + "start": 7290.5, + "end": 7293.18, + "probability": 0.9221 + }, + { + "start": 7293.3, + "end": 7295.48, + "probability": 0.9005 + }, + { + "start": 7296.22, + "end": 7302.04, + "probability": 0.9899 + }, + { + "start": 7302.07, + "end": 7309.18, + "probability": 0.9787 + }, + { + "start": 7311.14, + "end": 7315.3, + "probability": 0.9287 + }, + { + "start": 7315.94, + "end": 7321.88, + "probability": 0.9984 + }, + { + "start": 7322.66, + "end": 7325.62, + "probability": 0.9701 + }, + { + "start": 7326.6, + "end": 7332.78, + "probability": 0.9946 + }, + { + "start": 7332.78, + "end": 7341.86, + "probability": 0.9932 + }, + { + "start": 7342.4, + "end": 7343.92, + "probability": 0.7647 + }, + { + "start": 7344.74, + "end": 7349.92, + "probability": 0.7435 + }, + { + "start": 7350.12, + "end": 7351.2, + "probability": 0.7796 + }, + { + "start": 7351.32, + "end": 7354.62, + "probability": 0.9158 + }, + { + "start": 7355.16, + "end": 7359.66, + "probability": 0.9564 + }, + { + "start": 7360.5, + "end": 7365.04, + "probability": 0.913 + }, + { + "start": 7365.66, + "end": 7369.66, + "probability": 0.9701 + }, + { + "start": 7370.46, + "end": 7375.06, + "probability": 0.8818 + }, + { + "start": 7375.58, + "end": 7379.28, + "probability": 0.9865 + }, + { + "start": 7380.22, + "end": 7383.24, + "probability": 0.998 + }, + { + "start": 7383.28, + "end": 7384.06, + "probability": 0.6343 + }, + { + "start": 7384.64, + "end": 7386.74, + "probability": 0.9892 + }, + { + "start": 7387.56, + "end": 7394.28, + "probability": 0.9947 + }, + { + "start": 7394.28, + "end": 7400.48, + "probability": 0.9845 + }, + { + "start": 7401.16, + "end": 7405.38, + "probability": 0.9525 + }, + { + "start": 7405.38, + "end": 7410.06, + "probability": 0.9631 + }, + { + "start": 7410.2, + "end": 7410.74, + "probability": 0.766 + }, + { + "start": 7411.46, + "end": 7413.33, + "probability": 0.7038 + }, + { + "start": 7413.38, + "end": 7414.44, + "probability": 0.9182 + }, + { + "start": 7429.64, + "end": 7429.7, + "probability": 0.6742 + }, + { + "start": 7429.7, + "end": 7430.38, + "probability": 0.3752 + }, + { + "start": 7430.46, + "end": 7430.98, + "probability": 0.7456 + }, + { + "start": 7431.58, + "end": 7433.26, + "probability": 0.6809 + }, + { + "start": 7434.28, + "end": 7439.96, + "probability": 0.8293 + }, + { + "start": 7440.48, + "end": 7442.14, + "probability": 0.8481 + }, + { + "start": 7442.94, + "end": 7449.78, + "probability": 0.894 + }, + { + "start": 7449.86, + "end": 7451.68, + "probability": 0.9869 + }, + { + "start": 7453.5, + "end": 7455.12, + "probability": 0.7068 + }, + { + "start": 7457.02, + "end": 7458.32, + "probability": 0.9507 + }, + { + "start": 7460.1, + "end": 7469.86, + "probability": 0.9546 + }, + { + "start": 7470.04, + "end": 7471.1, + "probability": 0.7589 + }, + { + "start": 7474.9, + "end": 7476.64, + "probability": 0.9754 + }, + { + "start": 7477.4, + "end": 7481.2, + "probability": 0.4363 + }, + { + "start": 7481.92, + "end": 7483.46, + "probability": 0.9394 + }, + { + "start": 7485.24, + "end": 7489.38, + "probability": 0.8199 + }, + { + "start": 7492.58, + "end": 7494.56, + "probability": 0.7387 + }, + { + "start": 7494.86, + "end": 7502.48, + "probability": 0.9779 + }, + { + "start": 7503.94, + "end": 7506.18, + "probability": 0.9937 + }, + { + "start": 7507.07, + "end": 7509.38, + "probability": 0.8831 + }, + { + "start": 7511.42, + "end": 7512.84, + "probability": 0.9063 + }, + { + "start": 7513.66, + "end": 7514.78, + "probability": 0.8014 + }, + { + "start": 7515.48, + "end": 7519.4, + "probability": 0.9794 + }, + { + "start": 7520.5, + "end": 7522.8, + "probability": 0.9897 + }, + { + "start": 7523.84, + "end": 7528.14, + "probability": 0.9819 + }, + { + "start": 7528.14, + "end": 7533.26, + "probability": 0.9939 + }, + { + "start": 7533.46, + "end": 7534.92, + "probability": 0.782 + }, + { + "start": 7536.08, + "end": 7539.16, + "probability": 0.7551 + }, + { + "start": 7539.72, + "end": 7541.16, + "probability": 0.6917 + }, + { + "start": 7542.52, + "end": 7546.68, + "probability": 0.9247 + }, + { + "start": 7547.54, + "end": 7549.11, + "probability": 0.516 + }, + { + "start": 7551.28, + "end": 7552.86, + "probability": 0.9488 + }, + { + "start": 7553.78, + "end": 7557.48, + "probability": 0.9565 + }, + { + "start": 7558.38, + "end": 7562.1, + "probability": 0.9713 + }, + { + "start": 7563.76, + "end": 7564.48, + "probability": 0.9663 + }, + { + "start": 7565.24, + "end": 7565.88, + "probability": 0.8535 + }, + { + "start": 7567.36, + "end": 7570.5, + "probability": 0.8776 + }, + { + "start": 7571.68, + "end": 7575.72, + "probability": 0.9403 + }, + { + "start": 7576.86, + "end": 7578.0, + "probability": 0.7645 + }, + { + "start": 7579.34, + "end": 7580.08, + "probability": 0.6502 + }, + { + "start": 7581.32, + "end": 7586.66, + "probability": 0.9297 + }, + { + "start": 7587.42, + "end": 7588.78, + "probability": 0.8848 + }, + { + "start": 7590.52, + "end": 7594.94, + "probability": 0.9819 + }, + { + "start": 7595.64, + "end": 7599.78, + "probability": 0.9935 + }, + { + "start": 7599.88, + "end": 7600.64, + "probability": 0.8679 + }, + { + "start": 7601.05, + "end": 7603.42, + "probability": 0.838 + }, + { + "start": 7606.26, + "end": 7607.68, + "probability": 0.3519 + }, + { + "start": 7608.18, + "end": 7611.96, + "probability": 0.9849 + }, + { + "start": 7613.08, + "end": 7618.68, + "probability": 0.9147 + }, + { + "start": 7619.92, + "end": 7621.88, + "probability": 0.9266 + }, + { + "start": 7623.12, + "end": 7630.58, + "probability": 0.9781 + }, + { + "start": 7630.64, + "end": 7631.51, + "probability": 0.9771 + }, + { + "start": 7632.08, + "end": 7633.3, + "probability": 0.5238 + }, + { + "start": 7633.5, + "end": 7634.92, + "probability": 0.744 + }, + { + "start": 7635.5, + "end": 7636.7, + "probability": 0.4962 + }, + { + "start": 7637.56, + "end": 7638.5, + "probability": 0.8286 + }, + { + "start": 7639.16, + "end": 7640.32, + "probability": 0.9636 + }, + { + "start": 7641.16, + "end": 7641.16, + "probability": 0.0703 + }, + { + "start": 7657.92, + "end": 7661.0, + "probability": 0.4294 + }, + { + "start": 7661.88, + "end": 7667.66, + "probability": 0.6002 + }, + { + "start": 7668.4, + "end": 7670.1, + "probability": 0.9153 + }, + { + "start": 7671.0, + "end": 7673.64, + "probability": 0.7269 + }, + { + "start": 7674.32, + "end": 7677.3, + "probability": 0.9181 + }, + { + "start": 7679.52, + "end": 7680.46, + "probability": 0.5011 + }, + { + "start": 7681.66, + "end": 7683.58, + "probability": 0.9324 + }, + { + "start": 7684.82, + "end": 7690.4, + "probability": 0.9922 + }, + { + "start": 7691.76, + "end": 7693.76, + "probability": 0.9944 + }, + { + "start": 7694.5, + "end": 7699.42, + "probability": 0.8865 + }, + { + "start": 7699.96, + "end": 7701.42, + "probability": 0.8873 + }, + { + "start": 7701.96, + "end": 7703.82, + "probability": 0.9464 + }, + { + "start": 7704.58, + "end": 7707.06, + "probability": 0.9565 + }, + { + "start": 7707.78, + "end": 7710.94, + "probability": 0.9907 + }, + { + "start": 7711.6, + "end": 7713.7, + "probability": 0.9526 + }, + { + "start": 7714.44, + "end": 7717.46, + "probability": 0.9814 + }, + { + "start": 7719.06, + "end": 7722.06, + "probability": 0.9692 + }, + { + "start": 7722.18, + "end": 7724.46, + "probability": 0.8883 + }, + { + "start": 7724.86, + "end": 7729.96, + "probability": 0.9965 + }, + { + "start": 7729.96, + "end": 7735.82, + "probability": 0.9928 + }, + { + "start": 7737.12, + "end": 7738.72, + "probability": 0.7551 + }, + { + "start": 7739.54, + "end": 7740.46, + "probability": 0.5079 + }, + { + "start": 7741.0, + "end": 7743.76, + "probability": 0.872 + }, + { + "start": 7743.94, + "end": 7744.24, + "probability": 0.7446 + }, + { + "start": 7744.44, + "end": 7745.04, + "probability": 0.5041 + }, + { + "start": 7745.56, + "end": 7748.48, + "probability": 0.9596 + }, + { + "start": 7748.5, + "end": 7748.76, + "probability": 0.9142 + }, + { + "start": 7750.99, + "end": 7752.28, + "probability": 0.4973 + }, + { + "start": 7752.72, + "end": 7755.78, + "probability": 0.9568 + }, + { + "start": 7755.88, + "end": 7762.08, + "probability": 0.9979 + }, + { + "start": 7762.62, + "end": 7763.16, + "probability": 0.9813 + }, + { + "start": 7764.02, + "end": 7770.56, + "probability": 0.9867 + }, + { + "start": 7771.38, + "end": 7774.22, + "probability": 0.9824 + }, + { + "start": 7774.76, + "end": 7778.58, + "probability": 0.9976 + }, + { + "start": 7778.58, + "end": 7782.3, + "probability": 0.9992 + }, + { + "start": 7782.56, + "end": 7785.9, + "probability": 0.9971 + }, + { + "start": 7787.4, + "end": 7790.94, + "probability": 0.9973 + }, + { + "start": 7791.4, + "end": 7795.88, + "probability": 0.8585 + }, + { + "start": 7796.7, + "end": 7799.38, + "probability": 0.9928 + }, + { + "start": 7800.24, + "end": 7802.01, + "probability": 0.9168 + }, + { + "start": 7802.62, + "end": 7804.74, + "probability": 0.9651 + }, + { + "start": 7805.02, + "end": 7806.48, + "probability": 0.9814 + }, + { + "start": 7806.64, + "end": 7807.81, + "probability": 0.9849 + }, + { + "start": 7808.34, + "end": 7809.18, + "probability": 0.7432 + }, + { + "start": 7809.56, + "end": 7811.22, + "probability": 0.9904 + }, + { + "start": 7811.58, + "end": 7813.5, + "probability": 0.8399 + }, + { + "start": 7813.8, + "end": 7815.24, + "probability": 0.9917 + }, + { + "start": 7815.72, + "end": 7817.66, + "probability": 0.9331 + }, + { + "start": 7818.1, + "end": 7819.82, + "probability": 0.9989 + }, + { + "start": 7820.52, + "end": 7822.6, + "probability": 0.8427 + }, + { + "start": 7823.26, + "end": 7825.48, + "probability": 0.9385 + }, + { + "start": 7826.04, + "end": 7827.8, + "probability": 0.9616 + }, + { + "start": 7829.26, + "end": 7831.72, + "probability": 0.9972 + }, + { + "start": 7832.8, + "end": 7835.02, + "probability": 0.9569 + }, + { + "start": 7835.18, + "end": 7836.87, + "probability": 0.9606 + }, + { + "start": 7837.2, + "end": 7840.56, + "probability": 0.989 + }, + { + "start": 7841.14, + "end": 7841.24, + "probability": 0.1624 + }, + { + "start": 7841.34, + "end": 7843.56, + "probability": 0.9303 + }, + { + "start": 7843.66, + "end": 7844.98, + "probability": 0.5481 + }, + { + "start": 7845.84, + "end": 7849.78, + "probability": 0.9956 + }, + { + "start": 7850.24, + "end": 7852.42, + "probability": 0.9893 + }, + { + "start": 7853.2, + "end": 7856.2, + "probability": 0.9946 + }, + { + "start": 7856.78, + "end": 7861.2, + "probability": 0.9967 + }, + { + "start": 7861.78, + "end": 7862.54, + "probability": 0.7563 + }, + { + "start": 7863.18, + "end": 7865.36, + "probability": 0.9664 + }, + { + "start": 7865.58, + "end": 7865.74, + "probability": 0.6105 + }, + { + "start": 7865.8, + "end": 7867.46, + "probability": 0.9971 + }, + { + "start": 7868.58, + "end": 7871.72, + "probability": 0.9553 + }, + { + "start": 7872.16, + "end": 7874.46, + "probability": 0.9561 + }, + { + "start": 7875.24, + "end": 7878.78, + "probability": 0.9975 + }, + { + "start": 7879.62, + "end": 7882.72, + "probability": 0.9952 + }, + { + "start": 7883.36, + "end": 7887.16, + "probability": 0.9893 + }, + { + "start": 7887.36, + "end": 7887.6, + "probability": 0.7118 + }, + { + "start": 7888.22, + "end": 7890.5, + "probability": 0.9224 + }, + { + "start": 7890.84, + "end": 7891.68, + "probability": 0.9489 + }, + { + "start": 7891.7, + "end": 7894.52, + "probability": 0.9487 + }, + { + "start": 7894.58, + "end": 7895.5, + "probability": 0.6971 + }, + { + "start": 7895.54, + "end": 7899.26, + "probability": 0.8948 + }, + { + "start": 7899.26, + "end": 7899.62, + "probability": 0.0043 + }, + { + "start": 7899.82, + "end": 7900.92, + "probability": 0.3301 + }, + { + "start": 7902.34, + "end": 7902.46, + "probability": 0.138 + }, + { + "start": 7902.46, + "end": 7902.46, + "probability": 0.0415 + }, + { + "start": 7902.46, + "end": 7902.46, + "probability": 0.0493 + }, + { + "start": 7902.46, + "end": 7906.72, + "probability": 0.4487 + }, + { + "start": 7907.0, + "end": 7909.16, + "probability": 0.8717 + }, + { + "start": 7909.44, + "end": 7911.38, + "probability": 0.7086 + }, + { + "start": 7911.62, + "end": 7914.9, + "probability": 0.9235 + }, + { + "start": 7914.92, + "end": 7915.28, + "probability": 0.8747 + }, + { + "start": 7916.26, + "end": 7917.32, + "probability": 0.2691 + }, + { + "start": 7918.16, + "end": 7919.02, + "probability": 0.6017 + }, + { + "start": 7919.24, + "end": 7920.86, + "probability": 0.6767 + }, + { + "start": 7920.98, + "end": 7922.1, + "probability": 0.9006 + }, + { + "start": 7922.22, + "end": 7923.3, + "probability": 0.4448 + }, + { + "start": 7923.32, + "end": 7925.0, + "probability": 0.5456 + }, + { + "start": 7926.46, + "end": 7928.64, + "probability": 0.9429 + }, + { + "start": 7928.68, + "end": 7929.56, + "probability": 0.6823 + }, + { + "start": 7929.62, + "end": 7930.92, + "probability": 0.6676 + }, + { + "start": 7931.8, + "end": 7932.2, + "probability": 0.7732 + }, + { + "start": 7933.62, + "end": 7934.34, + "probability": 0.7664 + }, + { + "start": 7934.94, + "end": 7937.04, + "probability": 0.9837 + }, + { + "start": 7937.56, + "end": 7938.52, + "probability": 0.5761 + }, + { + "start": 7938.56, + "end": 7939.6, + "probability": 0.8105 + }, + { + "start": 7939.62, + "end": 7940.9, + "probability": 0.5522 + }, + { + "start": 7941.58, + "end": 7942.78, + "probability": 0.8652 + }, + { + "start": 7942.8, + "end": 7943.92, + "probability": 0.8859 + }, + { + "start": 7943.98, + "end": 7944.44, + "probability": 0.9252 + }, + { + "start": 7945.5, + "end": 7946.22, + "probability": 0.9264 + }, + { + "start": 7951.04, + "end": 7951.6, + "probability": 0.0998 + }, + { + "start": 7953.16, + "end": 7957.1, + "probability": 0.3853 + }, + { + "start": 7957.2, + "end": 7958.54, + "probability": 0.8139 + }, + { + "start": 7962.04, + "end": 7964.1, + "probability": 0.8328 + }, + { + "start": 7965.02, + "end": 7967.86, + "probability": 0.9314 + }, + { + "start": 7968.39, + "end": 7970.2, + "probability": 0.9731 + }, + { + "start": 7971.04, + "end": 7972.04, + "probability": 0.4927 + }, + { + "start": 7972.04, + "end": 7972.53, + "probability": 0.4844 + }, + { + "start": 7972.6, + "end": 7973.68, + "probability": 0.665 + }, + { + "start": 7974.0, + "end": 7974.58, + "probability": 0.958 + }, + { + "start": 7976.34, + "end": 7977.44, + "probability": 0.0971 + }, + { + "start": 7977.44, + "end": 7978.54, + "probability": 0.5791 + }, + { + "start": 7978.64, + "end": 7979.54, + "probability": 0.6096 + }, + { + "start": 7979.58, + "end": 7980.62, + "probability": 0.8232 + }, + { + "start": 7982.47, + "end": 7982.88, + "probability": 0.207 + }, + { + "start": 7982.88, + "end": 7983.4, + "probability": 0.3815 + }, + { + "start": 7984.08, + "end": 7984.3, + "probability": 0.6389 + }, + { + "start": 7985.2, + "end": 7988.48, + "probability": 0.8697 + }, + { + "start": 7989.36, + "end": 7990.54, + "probability": 0.9227 + }, + { + "start": 7990.68, + "end": 7992.04, + "probability": 0.7434 + }, + { + "start": 7992.04, + "end": 7993.14, + "probability": 0.5003 + }, + { + "start": 7993.64, + "end": 7994.84, + "probability": 0.0904 + }, + { + "start": 7994.84, + "end": 7995.3, + "probability": 0.1953 + }, + { + "start": 7995.98, + "end": 7996.88, + "probability": 0.6639 + }, + { + "start": 7996.9, + "end": 7998.08, + "probability": 0.5066 + }, + { + "start": 7998.2, + "end": 7999.46, + "probability": 0.6518 + }, + { + "start": 7999.92, + "end": 8001.52, + "probability": 0.8352 + }, + { + "start": 8001.58, + "end": 8003.02, + "probability": 0.8018 + }, + { + "start": 8003.08, + "end": 8004.28, + "probability": 0.6031 + }, + { + "start": 8007.52, + "end": 8009.4, + "probability": 0.7847 + }, + { + "start": 8010.22, + "end": 8010.46, + "probability": 0.702 + }, + { + "start": 8012.34, + "end": 8012.78, + "probability": 0.2393 + }, + { + "start": 8014.22, + "end": 8014.94, + "probability": 0.9746 + }, + { + "start": 8015.48, + "end": 8016.48, + "probability": 0.8764 + }, + { + "start": 8017.76, + "end": 8018.2, + "probability": 0.9888 + }, + { + "start": 8018.86, + "end": 8019.62, + "probability": 0.6342 + }, + { + "start": 8020.67, + "end": 8022.16, + "probability": 0.9941 + }, + { + "start": 8023.4, + "end": 8023.82, + "probability": 0.5854 + }, + { + "start": 8025.26, + "end": 8026.1, + "probability": 0.407 + }, + { + "start": 8026.28, + "end": 8027.4, + "probability": 0.4451 + }, + { + "start": 8027.5, + "end": 8028.52, + "probability": 0.8058 + }, + { + "start": 8028.58, + "end": 8029.64, + "probability": 0.5114 + }, + { + "start": 8032.14, + "end": 8035.16, + "probability": 0.9036 + }, + { + "start": 8036.24, + "end": 8037.76, + "probability": 0.9304 + }, + { + "start": 8039.16, + "end": 8042.3, + "probability": 0.9683 + }, + { + "start": 8043.04, + "end": 8043.48, + "probability": 0.9949 + }, + { + "start": 8044.32, + "end": 8044.98, + "probability": 0.7037 + }, + { + "start": 8046.48, + "end": 8046.86, + "probability": 0.6157 + }, + { + "start": 8048.2, + "end": 8051.5, + "probability": 0.7457 + }, + { + "start": 8053.76, + "end": 8054.16, + "probability": 0.6242 + }, + { + "start": 8055.2, + "end": 8056.16, + "probability": 0.6975 + }, + { + "start": 8056.96, + "end": 8058.66, + "probability": 0.9807 + }, + { + "start": 8061.4, + "end": 8062.2, + "probability": 0.9934 + }, + { + "start": 8062.82, + "end": 8063.54, + "probability": 0.942 + }, + { + "start": 8065.46, + "end": 8068.2, + "probability": 0.9206 + }, + { + "start": 8072.3, + "end": 8072.72, + "probability": 0.586 + }, + { + "start": 8073.74, + "end": 8075.94, + "probability": 0.8386 + }, + { + "start": 8076.7, + "end": 8077.88, + "probability": 0.5064 + }, + { + "start": 8078.72, + "end": 8081.36, + "probability": 0.9334 + }, + { + "start": 8081.92, + "end": 8083.22, + "probability": 0.8739 + }, + { + "start": 8084.6, + "end": 8084.9, + "probability": 0.9922 + }, + { + "start": 8086.18, + "end": 8087.4, + "probability": 0.7297 + }, + { + "start": 8088.46, + "end": 8089.42, + "probability": 0.9839 + }, + { + "start": 8090.0, + "end": 8091.02, + "probability": 0.7809 + }, + { + "start": 8091.86, + "end": 8094.26, + "probability": 0.9622 + }, + { + "start": 8094.44, + "end": 8095.82, + "probability": 0.3992 + }, + { + "start": 8095.86, + "end": 8096.74, + "probability": 0.862 + }, + { + "start": 8096.84, + "end": 8098.84, + "probability": 0.8923 + }, + { + "start": 8099.66, + "end": 8100.0, + "probability": 0.8882 + }, + { + "start": 8101.86, + "end": 8104.4, + "probability": 0.8294 + }, + { + "start": 8105.1, + "end": 8107.86, + "probability": 0.8609 + }, + { + "start": 8111.9, + "end": 8112.12, + "probability": 0.5628 + }, + { + "start": 8113.2, + "end": 8115.66, + "probability": 0.7109 + }, + { + "start": 8118.78, + "end": 8120.12, + "probability": 0.5316 + }, + { + "start": 8120.46, + "end": 8122.12, + "probability": 0.7527 + }, + { + "start": 8122.22, + "end": 8123.38, + "probability": 0.6902 + }, + { + "start": 8123.42, + "end": 8124.54, + "probability": 0.6934 + }, + { + "start": 8124.62, + "end": 8126.4, + "probability": 0.8702 + }, + { + "start": 8126.44, + "end": 8128.12, + "probability": 0.8177 + }, + { + "start": 8128.24, + "end": 8129.46, + "probability": 0.6438 + }, + { + "start": 8129.5, + "end": 8130.42, + "probability": 0.7813 + }, + { + "start": 8130.46, + "end": 8131.74, + "probability": 0.8363 + }, + { + "start": 8135.18, + "end": 8135.58, + "probability": 0.7832 + }, + { + "start": 8136.44, + "end": 8138.12, + "probability": 0.7399 + }, + { + "start": 8150.2, + "end": 8150.9, + "probability": 0.4993 + }, + { + "start": 8153.48, + "end": 8153.88, + "probability": 0.611 + }, + { + "start": 8156.24, + "end": 8159.18, + "probability": 0.6374 + }, + { + "start": 8160.44, + "end": 8161.38, + "probability": 0.9761 + }, + { + "start": 8161.96, + "end": 8163.92, + "probability": 0.8061 + }, + { + "start": 8167.0, + "end": 8168.8, + "probability": 0.9462 + }, + { + "start": 8168.88, + "end": 8169.92, + "probability": 0.8691 + }, + { + "start": 8169.92, + "end": 8171.26, + "probability": 0.9558 + }, + { + "start": 8171.98, + "end": 8172.4, + "probability": 0.5438 + }, + { + "start": 8174.2, + "end": 8175.4, + "probability": 0.703 + }, + { + "start": 8176.5, + "end": 8176.98, + "probability": 0.9683 + }, + { + "start": 8178.14, + "end": 8179.36, + "probability": 0.8049 + }, + { + "start": 8180.08, + "end": 8182.16, + "probability": 0.9846 + }, + { + "start": 8182.22, + "end": 8183.32, + "probability": 0.829 + }, + { + "start": 8183.38, + "end": 8184.42, + "probability": 0.8703 + }, + { + "start": 8185.24, + "end": 8186.08, + "probability": 0.9622 + }, + { + "start": 8186.92, + "end": 8187.7, + "probability": 0.8864 + }, + { + "start": 8188.26, + "end": 8189.48, + "probability": 0.8881 + }, + { + "start": 8190.23, + "end": 8191.82, + "probability": 0.5877 + }, + { + "start": 8191.82, + "end": 8192.42, + "probability": 0.6251 + }, + { + "start": 8192.5, + "end": 8195.26, + "probability": 0.7878 + }, + { + "start": 8197.0, + "end": 8198.84, + "probability": 0.852 + }, + { + "start": 8202.76, + "end": 8203.2, + "probability": 0.7725 + }, + { + "start": 8204.68, + "end": 8205.58, + "probability": 0.7966 + }, + { + "start": 8206.52, + "end": 8206.98, + "probability": 0.9602 + }, + { + "start": 8207.8, + "end": 8210.82, + "probability": 0.9036 + }, + { + "start": 8211.7, + "end": 8212.14, + "probability": 0.9875 + }, + { + "start": 8212.76, + "end": 8213.78, + "probability": 0.8118 + }, + { + "start": 8214.46, + "end": 8215.24, + "probability": 0.5374 + }, + { + "start": 8215.92, + "end": 8216.56, + "probability": 0.8204 + }, + { + "start": 8218.04, + "end": 8221.5, + "probability": 0.9154 + }, + { + "start": 8222.36, + "end": 8223.06, + "probability": 0.9463 + }, + { + "start": 8223.88, + "end": 8224.64, + "probability": 0.5114 + }, + { + "start": 8227.08, + "end": 8231.92, + "probability": 0.7524 + }, + { + "start": 8232.06, + "end": 8232.28, + "probability": 0.645 + }, + { + "start": 8233.48, + "end": 8233.9, + "probability": 0.1736 + }, + { + "start": 8234.04, + "end": 8235.24, + "probability": 0.4312 + }, + { + "start": 8235.36, + "end": 8236.38, + "probability": 0.7216 + }, + { + "start": 8236.42, + "end": 8237.54, + "probability": 0.7869 + }, + { + "start": 8237.94, + "end": 8239.34, + "probability": 0.6906 + }, + { + "start": 8241.86, + "end": 8242.68, + "probability": 0.9507 + }, + { + "start": 8243.38, + "end": 8243.86, + "probability": 0.39 + }, + { + "start": 8244.0, + "end": 8244.78, + "probability": 0.2205 + }, + { + "start": 8244.84, + "end": 8246.02, + "probability": 0.8322 + }, + { + "start": 8246.36, + "end": 8247.48, + "probability": 0.6659 + }, + { + "start": 8247.6, + "end": 8248.5, + "probability": 0.7118 + }, + { + "start": 8248.58, + "end": 8249.68, + "probability": 0.5988 + }, + { + "start": 8249.68, + "end": 8251.18, + "probability": 0.8409 + }, + { + "start": 8251.18, + "end": 8252.16, + "probability": 0.6696 + }, + { + "start": 8252.28, + "end": 8253.38, + "probability": 0.572 + }, + { + "start": 8253.42, + "end": 8255.14, + "probability": 0.8164 + }, + { + "start": 8256.38, + "end": 8257.0, + "probability": 0.9726 + }, + { + "start": 8257.82, + "end": 8258.58, + "probability": 0.9276 + }, + { + "start": 8258.7, + "end": 8259.86, + "probability": 0.9101 + }, + { + "start": 8259.98, + "end": 8261.1, + "probability": 0.8195 + }, + { + "start": 8261.14, + "end": 8262.12, + "probability": 0.6441 + }, + { + "start": 8262.2, + "end": 8264.88, + "probability": 0.0887 + }, + { + "start": 8264.96, + "end": 8265.96, + "probability": 0.4945 + }, + { + "start": 8266.1, + "end": 8266.98, + "probability": 0.5724 + }, + { + "start": 8267.0, + "end": 8268.04, + "probability": 0.7239 + }, + { + "start": 8268.14, + "end": 8269.16, + "probability": 0.4331 + }, + { + "start": 8269.16, + "end": 8270.96, + "probability": 0.6768 + }, + { + "start": 8271.02, + "end": 8272.74, + "probability": 0.6864 + }, + { + "start": 8272.86, + "end": 8274.56, + "probability": 0.453 + }, + { + "start": 8274.6, + "end": 8275.52, + "probability": 0.3707 + }, + { + "start": 8275.62, + "end": 8276.6, + "probability": 0.7465 + }, + { + "start": 8276.72, + "end": 8278.16, + "probability": 0.4534 + }, + { + "start": 8278.18, + "end": 8279.1, + "probability": 0.7997 + }, + { + "start": 8279.2, + "end": 8280.78, + "probability": 0.7622 + }, + { + "start": 8281.72, + "end": 8281.72, + "probability": 0.0151 + }, + { + "start": 8281.72, + "end": 8281.79, + "probability": 0.2923 + }, + { + "start": 8282.38, + "end": 8283.92, + "probability": 0.8096 + }, + { + "start": 8284.12, + "end": 8285.84, + "probability": 0.7761 + }, + { + "start": 8285.92, + "end": 8287.84, + "probability": 0.7599 + }, + { + "start": 8289.54, + "end": 8290.24, + "probability": 0.96 + }, + { + "start": 8291.18, + "end": 8291.74, + "probability": 0.6126 + }, + { + "start": 8291.89, + "end": 8293.4, + "probability": 0.341 + }, + { + "start": 8293.46, + "end": 8294.14, + "probability": 0.7989 + }, + { + "start": 8294.26, + "end": 8296.14, + "probability": 0.9184 + }, + { + "start": 8297.04, + "end": 8297.84, + "probability": 0.6703 + }, + { + "start": 8299.48, + "end": 8301.52, + "probability": 0.9006 + }, + { + "start": 8301.74, + "end": 8303.02, + "probability": 0.8212 + }, + { + "start": 8303.16, + "end": 8304.12, + "probability": 0.8065 + }, + { + "start": 8304.2, + "end": 8306.84, + "probability": 0.8885 + }, + { + "start": 8308.0, + "end": 8308.0, + "probability": 0.0335 + }, + { + "start": 8308.0, + "end": 8308.56, + "probability": 0.1448 + }, + { + "start": 8308.74, + "end": 8309.98, + "probability": 0.634 + }, + { + "start": 8310.08, + "end": 8311.08, + "probability": 0.7619 + }, + { + "start": 8311.14, + "end": 8312.36, + "probability": 0.8457 + }, + { + "start": 8312.44, + "end": 8313.9, + "probability": 0.8997 + }, + { + "start": 8314.24, + "end": 8315.5, + "probability": 0.2581 + }, + { + "start": 8315.5, + "end": 8316.4, + "probability": 0.4524 + }, + { + "start": 8316.5, + "end": 8317.64, + "probability": 0.7367 + }, + { + "start": 8317.72, + "end": 8318.98, + "probability": 0.78 + }, + { + "start": 8320.1, + "end": 8322.1, + "probability": 0.9354 + }, + { + "start": 8322.14, + "end": 8323.4, + "probability": 0.8636 + }, + { + "start": 8323.48, + "end": 8324.6, + "probability": 0.3061 + }, + { + "start": 8324.88, + "end": 8327.12, + "probability": 0.6617 + }, + { + "start": 8327.24, + "end": 8328.7, + "probability": 0.7952 + }, + { + "start": 8328.78, + "end": 8329.42, + "probability": 0.8612 + }, + { + "start": 8330.16, + "end": 8330.9, + "probability": 0.7912 + }, + { + "start": 8330.94, + "end": 8332.16, + "probability": 0.8669 + }, + { + "start": 8332.2, + "end": 8333.4, + "probability": 0.6426 + }, + { + "start": 8333.86, + "end": 8335.24, + "probability": 0.7417 + }, + { + "start": 8335.34, + "end": 8337.1, + "probability": 0.6888 + }, + { + "start": 8339.86, + "end": 8340.28, + "probability": 0.8882 + }, + { + "start": 8341.82, + "end": 8342.28, + "probability": 0.9006 + }, + { + "start": 8342.98, + "end": 8344.02, + "probability": 0.8781 + }, + { + "start": 8344.16, + "end": 8345.32, + "probability": 0.9746 + }, + { + "start": 8345.4, + "end": 8347.1, + "probability": 0.8481 + }, + { + "start": 8347.2, + "end": 8348.62, + "probability": 0.9207 + }, + { + "start": 8348.64, + "end": 8349.48, + "probability": 0.6643 + }, + { + "start": 8349.58, + "end": 8350.56, + "probability": 0.6788 + }, + { + "start": 8350.7, + "end": 8351.78, + "probability": 0.6855 + }, + { + "start": 8351.82, + "end": 8354.86, + "probability": 0.8761 + }, + { + "start": 8354.94, + "end": 8357.4, + "probability": 0.4861 + }, + { + "start": 8358.34, + "end": 8360.66, + "probability": 0.9587 + }, + { + "start": 8362.1, + "end": 8365.02, + "probability": 0.8566 + }, + { + "start": 8365.16, + "end": 8366.95, + "probability": 0.6965 + }, + { + "start": 8368.1, + "end": 8368.78, + "probability": 0.2081 + }, + { + "start": 8369.08, + "end": 8374.18, + "probability": 0.6694 + }, + { + "start": 8375.1, + "end": 8377.64, + "probability": 0.5865 + }, + { + "start": 8378.58, + "end": 8380.54, + "probability": 0.8293 + }, + { + "start": 8399.42, + "end": 8400.26, + "probability": 0.0851 + }, + { + "start": 8407.6, + "end": 8408.84, + "probability": 0.1377 + }, + { + "start": 8409.38, + "end": 8409.76, + "probability": 0.0204 + }, + { + "start": 8412.14, + "end": 8412.4, + "probability": 0.1228 + }, + { + "start": 8414.78, + "end": 8415.04, + "probability": 0.1434 + }, + { + "start": 8416.54, + "end": 8417.03, + "probability": 0.0268 + }, + { + "start": 8418.82, + "end": 8424.38, + "probability": 0.0176 + }, + { + "start": 8482.0, + "end": 8482.0, + "probability": 0.0 + }, + { + "start": 8482.0, + "end": 8482.0, + "probability": 0.0 + }, + { + "start": 8482.54, + "end": 8482.54, + "probability": 0.0751 + }, + { + "start": 8482.54, + "end": 8482.54, + "probability": 0.0558 + }, + { + "start": 8482.54, + "end": 8482.54, + "probability": 0.0555 + }, + { + "start": 8482.54, + "end": 8484.04, + "probability": 0.6938 + }, + { + "start": 8484.08, + "end": 8487.19, + "probability": 0.7245 + }, + { + "start": 8488.56, + "end": 8489.06, + "probability": 0.6368 + }, + { + "start": 8490.24, + "end": 8492.06, + "probability": 0.0422 + }, + { + "start": 8503.78, + "end": 8504.9, + "probability": 0.1168 + }, + { + "start": 8504.9, + "end": 8506.16, + "probability": 0.3429 + }, + { + "start": 8506.44, + "end": 8511.32, + "probability": 0.9872 + }, + { + "start": 8512.58, + "end": 8514.82, + "probability": 0.9681 + }, + { + "start": 8514.82, + "end": 8518.5, + "probability": 0.7056 + }, + { + "start": 8519.28, + "end": 8520.92, + "probability": 0.7284 + }, + { + "start": 8521.08, + "end": 8521.68, + "probability": 0.635 + }, + { + "start": 8523.36, + "end": 8524.24, + "probability": 0.0453 + }, + { + "start": 8527.6, + "end": 8534.78, + "probability": 0.0525 + }, + { + "start": 8535.0, + "end": 8536.58, + "probability": 0.3875 + }, + { + "start": 8536.7, + "end": 8541.02, + "probability": 0.9878 + }, + { + "start": 8541.8, + "end": 8544.4, + "probability": 0.7656 + }, + { + "start": 8544.55, + "end": 8547.64, + "probability": 0.9125 + }, + { + "start": 8547.92, + "end": 8549.18, + "probability": 0.9045 + }, + { + "start": 8550.99, + "end": 8552.96, + "probability": 0.9429 + }, + { + "start": 8553.52, + "end": 8554.76, + "probability": 0.3179 + }, + { + "start": 8555.08, + "end": 8555.78, + "probability": 0.5077 + }, + { + "start": 8556.02, + "end": 8556.4, + "probability": 0.6459 + }, + { + "start": 8557.72, + "end": 8561.08, + "probability": 0.7557 + }, + { + "start": 8562.1, + "end": 8566.58, + "probability": 0.8494 + }, + { + "start": 8567.36, + "end": 8569.66, + "probability": 0.3651 + }, + { + "start": 8570.66, + "end": 8572.24, + "probability": 0.9653 + }, + { + "start": 8573.4, + "end": 8574.56, + "probability": 0.746 + }, + { + "start": 8574.76, + "end": 8579.44, + "probability": 0.9667 + }, + { + "start": 8579.46, + "end": 8580.36, + "probability": 0.8922 + }, + { + "start": 8581.38, + "end": 8586.2, + "probability": 0.9412 + }, + { + "start": 8592.56, + "end": 8593.56, + "probability": 0.6433 + }, + { + "start": 8593.68, + "end": 8595.06, + "probability": 0.5824 + }, + { + "start": 8595.96, + "end": 8598.12, + "probability": 0.832 + }, + { + "start": 8599.88, + "end": 8604.76, + "probability": 0.9956 + }, + { + "start": 8604.86, + "end": 8605.32, + "probability": 0.949 + }, + { + "start": 8605.48, + "end": 8606.48, + "probability": 0.8998 + }, + { + "start": 8606.62, + "end": 8606.92, + "probability": 0.1206 + }, + { + "start": 8607.4, + "end": 8608.48, + "probability": 0.2028 + }, + { + "start": 8608.64, + "end": 8609.12, + "probability": 0.7952 + }, + { + "start": 8609.18, + "end": 8610.21, + "probability": 0.7977 + }, + { + "start": 8610.3, + "end": 8610.72, + "probability": 0.8341 + }, + { + "start": 8610.78, + "end": 8611.08, + "probability": 0.7613 + }, + { + "start": 8612.12, + "end": 8616.26, + "probability": 0.9715 + }, + { + "start": 8616.36, + "end": 8619.12, + "probability": 0.9256 + }, + { + "start": 8619.76, + "end": 8621.62, + "probability": 0.6215 + }, + { + "start": 8621.7, + "end": 8622.2, + "probability": 0.8068 + }, + { + "start": 8623.04, + "end": 8624.24, + "probability": 0.9298 + }, + { + "start": 8624.24, + "end": 8625.5, + "probability": 0.9707 + }, + { + "start": 8625.6, + "end": 8625.74, + "probability": 0.8738 + }, + { + "start": 8625.84, + "end": 8628.7, + "probability": 0.9804 + }, + { + "start": 8629.02, + "end": 8629.74, + "probability": 0.5708 + }, + { + "start": 8630.48, + "end": 8631.56, + "probability": 0.8392 + }, + { + "start": 8631.9, + "end": 8635.24, + "probability": 0.9578 + }, + { + "start": 8635.26, + "end": 8639.68, + "probability": 0.9611 + }, + { + "start": 8641.0, + "end": 8645.1, + "probability": 0.9393 + }, + { + "start": 8646.06, + "end": 8647.08, + "probability": 0.8753 + }, + { + "start": 8648.42, + "end": 8650.12, + "probability": 0.9969 + }, + { + "start": 8650.92, + "end": 8652.14, + "probability": 0.9808 + }, + { + "start": 8653.04, + "end": 8653.14, + "probability": 0.0092 + }, + { + "start": 8653.14, + "end": 8653.46, + "probability": 0.673 + }, + { + "start": 8654.08, + "end": 8655.37, + "probability": 0.4029 + }, + { + "start": 8655.44, + "end": 8655.72, + "probability": 0.5356 + }, + { + "start": 8656.34, + "end": 8658.07, + "probability": 0.6926 + }, + { + "start": 8658.2, + "end": 8661.62, + "probability": 0.68 + }, + { + "start": 8661.76, + "end": 8662.58, + "probability": 0.5157 + }, + { + "start": 8662.66, + "end": 8664.46, + "probability": 0.8383 + }, + { + "start": 8664.62, + "end": 8665.54, + "probability": 0.7324 + }, + { + "start": 8665.56, + "end": 8666.14, + "probability": 0.9388 + }, + { + "start": 8666.56, + "end": 8667.38, + "probability": 0.9403 + }, + { + "start": 8668.04, + "end": 8672.76, + "probability": 0.9985 + }, + { + "start": 8673.36, + "end": 8675.22, + "probability": 0.9835 + }, + { + "start": 8675.52, + "end": 8679.14, + "probability": 0.9995 + }, + { + "start": 8679.14, + "end": 8681.72, + "probability": 0.9999 + }, + { + "start": 8682.46, + "end": 8686.18, + "probability": 0.998 + }, + { + "start": 8686.42, + "end": 8688.92, + "probability": 0.0313 + }, + { + "start": 8688.92, + "end": 8689.16, + "probability": 0.1851 + }, + { + "start": 8689.2, + "end": 8689.24, + "probability": 0.155 + }, + { + "start": 8689.24, + "end": 8690.74, + "probability": 0.4274 + }, + { + "start": 8691.08, + "end": 8693.28, + "probability": 0.8365 + }, + { + "start": 8693.38, + "end": 8695.34, + "probability": 0.9792 + }, + { + "start": 8695.78, + "end": 8696.22, + "probability": 0.4382 + }, + { + "start": 8696.32, + "end": 8697.38, + "probability": 0.8827 + }, + { + "start": 8697.78, + "end": 8698.54, + "probability": 0.9365 + }, + { + "start": 8698.54, + "end": 8699.34, + "probability": 0.8056 + }, + { + "start": 8699.84, + "end": 8700.66, + "probability": 0.9712 + }, + { + "start": 8700.74, + "end": 8700.9, + "probability": 0.7701 + }, + { + "start": 8700.96, + "end": 8702.32, + "probability": 0.81 + }, + { + "start": 8702.34, + "end": 8704.72, + "probability": 0.9971 + }, + { + "start": 8704.98, + "end": 8705.62, + "probability": 0.3537 + }, + { + "start": 8706.38, + "end": 8708.1, + "probability": 0.834 + }, + { + "start": 8708.54, + "end": 8708.78, + "probability": 0.4885 + }, + { + "start": 8708.88, + "end": 8711.72, + "probability": 0.9246 + }, + { + "start": 8711.82, + "end": 8712.68, + "probability": 0.7625 + }, + { + "start": 8712.76, + "end": 8715.24, + "probability": 0.9692 + }, + { + "start": 8715.34, + "end": 8715.6, + "probability": 0.9044 + }, + { + "start": 8716.12, + "end": 8720.06, + "probability": 0.8666 + }, + { + "start": 8720.14, + "end": 8724.73, + "probability": 0.9375 + }, + { + "start": 8725.92, + "end": 8728.4, + "probability": 0.9956 + }, + { + "start": 8728.6, + "end": 8729.92, + "probability": 0.9935 + }, + { + "start": 8730.6, + "end": 8733.86, + "probability": 0.9757 + }, + { + "start": 8734.0, + "end": 8734.9, + "probability": 0.9567 + }, + { + "start": 8735.68, + "end": 8739.24, + "probability": 0.9937 + }, + { + "start": 8739.54, + "end": 8740.04, + "probability": 0.6764 + }, + { + "start": 8740.12, + "end": 8740.72, + "probability": 0.7094 + }, + { + "start": 8740.84, + "end": 8742.14, + "probability": 0.8649 + }, + { + "start": 8742.7, + "end": 8745.42, + "probability": 0.9503 + }, + { + "start": 8746.0, + "end": 8746.97, + "probability": 0.784 + }, + { + "start": 8747.24, + "end": 8749.46, + "probability": 0.6898 + }, + { + "start": 8750.06, + "end": 8755.36, + "probability": 0.9895 + }, + { + "start": 8755.4, + "end": 8758.24, + "probability": 0.999 + }, + { + "start": 8759.3, + "end": 8760.34, + "probability": 0.1352 + }, + { + "start": 8760.78, + "end": 8762.28, + "probability": 0.4615 + }, + { + "start": 8762.9, + "end": 8764.74, + "probability": 0.8099 + }, + { + "start": 8764.84, + "end": 8765.74, + "probability": 0.6367 + }, + { + "start": 8765.86, + "end": 8767.46, + "probability": 0.2318 + }, + { + "start": 8767.52, + "end": 8768.2, + "probability": 0.4552 + }, + { + "start": 8768.54, + "end": 8768.84, + "probability": 0.1217 + }, + { + "start": 8768.86, + "end": 8770.28, + "probability": 0.2224 + }, + { + "start": 8770.34, + "end": 8771.58, + "probability": 0.4505 + }, + { + "start": 8771.64, + "end": 8773.38, + "probability": 0.7154 + }, + { + "start": 8773.77, + "end": 8776.51, + "probability": 0.7838 + }, + { + "start": 8776.66, + "end": 8780.56, + "probability": 0.8379 + }, + { + "start": 8780.76, + "end": 8781.54, + "probability": 0.8381 + }, + { + "start": 8781.68, + "end": 8782.26, + "probability": 0.9543 + }, + { + "start": 8782.26, + "end": 8785.3, + "probability": 0.9375 + }, + { + "start": 8785.3, + "end": 8786.06, + "probability": 0.3506 + }, + { + "start": 8786.18, + "end": 8789.54, + "probability": 0.8882 + }, + { + "start": 8789.54, + "end": 8789.68, + "probability": 0.1308 + }, + { + "start": 8791.36, + "end": 8793.98, + "probability": 0.9496 + }, + { + "start": 8794.32, + "end": 8795.12, + "probability": 0.7813 + }, + { + "start": 8795.32, + "end": 8797.26, + "probability": 0.7838 + }, + { + "start": 8797.44, + "end": 8798.56, + "probability": 0.841 + }, + { + "start": 8798.6, + "end": 8800.82, + "probability": 0.8973 + }, + { + "start": 8801.04, + "end": 8801.76, + "probability": 0.9174 + }, + { + "start": 8801.88, + "end": 8802.54, + "probability": 0.644 + }, + { + "start": 8802.84, + "end": 8805.5, + "probability": 0.966 + }, + { + "start": 8805.62, + "end": 8809.3, + "probability": 0.9571 + }, + { + "start": 8809.48, + "end": 8811.14, + "probability": 0.8415 + }, + { + "start": 8811.58, + "end": 8813.66, + "probability": 0.8992 + }, + { + "start": 8814.22, + "end": 8818.1, + "probability": 0.9837 + }, + { + "start": 8819.26, + "end": 8821.62, + "probability": 0.0234 + }, + { + "start": 8821.64, + "end": 8822.66, + "probability": 0.0076 + }, + { + "start": 8822.7, + "end": 8822.82, + "probability": 0.0429 + }, + { + "start": 8822.84, + "end": 8823.08, + "probability": 0.1739 + }, + { + "start": 8823.98, + "end": 8827.26, + "probability": 0.5672 + }, + { + "start": 8829.14, + "end": 8830.75, + "probability": 0.632 + }, + { + "start": 8832.34, + "end": 8836.2, + "probability": 0.4443 + }, + { + "start": 8837.28, + "end": 8838.5, + "probability": 0.094 + }, + { + "start": 8838.52, + "end": 8838.72, + "probability": 0.3623 + }, + { + "start": 8838.72, + "end": 8839.84, + "probability": 0.2755 + }, + { + "start": 8840.56, + "end": 8843.36, + "probability": 0.0362 + }, + { + "start": 8845.97, + "end": 8846.57, + "probability": 0.2288 + }, + { + "start": 8847.14, + "end": 8847.9, + "probability": 0.0679 + }, + { + "start": 8847.9, + "end": 8848.64, + "probability": 0.038 + }, + { + "start": 8848.64, + "end": 8851.02, + "probability": 0.009 + }, + { + "start": 8851.02, + "end": 8852.36, + "probability": 0.207 + }, + { + "start": 8852.52, + "end": 8854.54, + "probability": 0.3046 + }, + { + "start": 8854.78, + "end": 8856.7, + "probability": 0.6549 + }, + { + "start": 8857.24, + "end": 8858.5, + "probability": 0.0175 + }, + { + "start": 8858.5, + "end": 8859.06, + "probability": 0.0084 + }, + { + "start": 8859.06, + "end": 8861.77, + "probability": 0.0614 + }, + { + "start": 8862.93, + "end": 8866.47, + "probability": 0.0201 + }, + { + "start": 8868.04, + "end": 8870.38, + "probability": 0.0598 + }, + { + "start": 8870.6, + "end": 8871.48, + "probability": 0.0414 + }, + { + "start": 8871.48, + "end": 8871.56, + "probability": 0.4314 + }, + { + "start": 8871.58, + "end": 8872.32, + "probability": 0.0492 + }, + { + "start": 8872.32, + "end": 8872.82, + "probability": 0.0471 + }, + { + "start": 8873.26, + "end": 8875.4, + "probability": 0.1096 + }, + { + "start": 8876.59, + "end": 8879.96, + "probability": 0.079 + }, + { + "start": 8879.96, + "end": 8879.96, + "probability": 0.0169 + }, + { + "start": 8879.96, + "end": 8879.96, + "probability": 0.1803 + }, + { + "start": 8879.96, + "end": 8879.98, + "probability": 0.181 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.0, + "end": 8880.0, + "probability": 0.0 + }, + { + "start": 8880.16, + "end": 8880.24, + "probability": 0.0323 + }, + { + "start": 8880.24, + "end": 8881.26, + "probability": 0.097 + }, + { + "start": 8881.26, + "end": 8883.74, + "probability": 0.8168 + }, + { + "start": 8883.78, + "end": 8885.4, + "probability": 0.0591 + }, + { + "start": 8885.86, + "end": 8885.88, + "probability": 0.0223 + }, + { + "start": 8885.88, + "end": 8886.3, + "probability": 0.5618 + }, + { + "start": 8886.38, + "end": 8886.72, + "probability": 0.318 + }, + { + "start": 8886.74, + "end": 8887.76, + "probability": 0.6643 + }, + { + "start": 8887.82, + "end": 8887.9, + "probability": 0.804 + }, + { + "start": 8888.02, + "end": 8889.0, + "probability": 0.9553 + }, + { + "start": 8889.12, + "end": 8891.02, + "probability": 0.8602 + }, + { + "start": 8891.2, + "end": 8891.58, + "probability": 0.6686 + }, + { + "start": 8891.74, + "end": 8896.52, + "probability": 0.9868 + }, + { + "start": 8897.12, + "end": 8898.68, + "probability": 0.6948 + }, + { + "start": 8899.54, + "end": 8902.16, + "probability": 0.8727 + }, + { + "start": 8902.5, + "end": 8902.58, + "probability": 0.0277 + }, + { + "start": 8902.58, + "end": 8904.35, + "probability": 0.7128 + }, + { + "start": 8904.56, + "end": 8908.62, + "probability": 0.9747 + }, + { + "start": 8908.88, + "end": 8913.38, + "probability": 0.5064 + }, + { + "start": 8913.38, + "end": 8913.6, + "probability": 0.3507 + }, + { + "start": 8913.62, + "end": 8918.74, + "probability": 0.0254 + }, + { + "start": 8929.68, + "end": 8930.9, + "probability": 0.7661 + }, + { + "start": 8931.08, + "end": 8932.2, + "probability": 0.055 + }, + { + "start": 8932.2, + "end": 8933.08, + "probability": 0.056 + }, + { + "start": 8933.08, + "end": 8934.13, + "probability": 0.1092 + }, + { + "start": 8934.2, + "end": 8935.04, + "probability": 0.1231 + }, + { + "start": 8935.98, + "end": 8937.74, + "probability": 0.4531 + }, + { + "start": 8941.56, + "end": 8943.88, + "probability": 0.0571 + }, + { + "start": 8943.88, + "end": 8943.88, + "probability": 0.0523 + }, + { + "start": 8943.88, + "end": 8943.88, + "probability": 0.0311 + }, + { + "start": 8943.88, + "end": 8944.08, + "probability": 0.2549 + }, + { + "start": 8945.41, + "end": 8945.96, + "probability": 0.2549 + }, + { + "start": 8946.3, + "end": 8947.3, + "probability": 0.0282 + }, + { + "start": 8950.38, + "end": 8952.14, + "probability": 0.1449 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.0, + "end": 9001.0, + "probability": 0.0 + }, + { + "start": 9001.3, + "end": 9001.3, + "probability": 0.1352 + }, + { + "start": 9001.3, + "end": 9002.88, + "probability": 0.5392 + }, + { + "start": 9003.0, + "end": 9003.96, + "probability": 0.4854 + }, + { + "start": 9003.98, + "end": 9004.28, + "probability": 0.6999 + }, + { + "start": 9004.28, + "end": 9005.07, + "probability": 0.5757 + }, + { + "start": 9005.58, + "end": 9006.44, + "probability": 0.8418 + }, + { + "start": 9006.44, + "end": 9007.82, + "probability": 0.2802 + }, + { + "start": 9007.94, + "end": 9014.66, + "probability": 0.9565 + }, + { + "start": 9015.12, + "end": 9018.92, + "probability": 0.9972 + }, + { + "start": 9018.92, + "end": 9022.66, + "probability": 0.987 + }, + { + "start": 9022.7, + "end": 9023.64, + "probability": 0.515 + }, + { + "start": 9023.7, + "end": 9028.76, + "probability": 0.9797 + }, + { + "start": 9028.8, + "end": 9031.82, + "probability": 0.9567 + }, + { + "start": 9031.92, + "end": 9032.98, + "probability": 0.0504 + }, + { + "start": 9032.98, + "end": 9032.98, + "probability": 0.0158 + }, + { + "start": 9032.98, + "end": 9036.36, + "probability": 0.6832 + }, + { + "start": 9036.74, + "end": 9038.46, + "probability": 0.89 + }, + { + "start": 9038.66, + "end": 9040.06, + "probability": 0.8179 + }, + { + "start": 9040.36, + "end": 9041.88, + "probability": 0.9666 + }, + { + "start": 9041.9, + "end": 9044.04, + "probability": 0.937 + }, + { + "start": 9044.58, + "end": 9045.3, + "probability": 0.8682 + }, + { + "start": 9045.36, + "end": 9046.37, + "probability": 0.8647 + }, + { + "start": 9047.08, + "end": 9049.1, + "probability": 0.7799 + }, + { + "start": 9049.1, + "end": 9051.86, + "probability": 0.8454 + }, + { + "start": 9052.3, + "end": 9053.03, + "probability": 0.792 + }, + { + "start": 9053.6, + "end": 9053.92, + "probability": 0.5361 + }, + { + "start": 9054.18, + "end": 9055.79, + "probability": 0.9652 + }, + { + "start": 9056.44, + "end": 9057.74, + "probability": 0.5279 + }, + { + "start": 9058.2, + "end": 9059.66, + "probability": 0.8289 + }, + { + "start": 9060.02, + "end": 9060.04, + "probability": 0.0505 + }, + { + "start": 9060.04, + "end": 9062.22, + "probability": 0.7948 + }, + { + "start": 9062.66, + "end": 9065.09, + "probability": 0.6321 + }, + { + "start": 9065.56, + "end": 9065.56, + "probability": 0.2934 + }, + { + "start": 9065.66, + "end": 9066.26, + "probability": 0.5815 + }, + { + "start": 9066.88, + "end": 9067.98, + "probability": 0.6502 + }, + { + "start": 9068.04, + "end": 9070.29, + "probability": 0.9141 + }, + { + "start": 9070.86, + "end": 9071.6, + "probability": 0.704 + }, + { + "start": 9071.76, + "end": 9073.54, + "probability": 0.9231 + }, + { + "start": 9074.14, + "end": 9074.28, + "probability": 0.0075 + }, + { + "start": 9074.28, + "end": 9074.32, + "probability": 0.0917 + }, + { + "start": 9074.32, + "end": 9076.58, + "probability": 0.8037 + }, + { + "start": 9076.8, + "end": 9077.72, + "probability": 0.937 + }, + { + "start": 9077.86, + "end": 9079.06, + "probability": 0.3727 + }, + { + "start": 9079.46, + "end": 9081.68, + "probability": 0.9941 + }, + { + "start": 9082.1, + "end": 9086.02, + "probability": 0.7927 + }, + { + "start": 9086.08, + "end": 9088.12, + "probability": 0.9946 + }, + { + "start": 9088.16, + "end": 9089.68, + "probability": 0.9501 + }, + { + "start": 9090.24, + "end": 9090.52, + "probability": 0.0953 + }, + { + "start": 9090.6, + "end": 9091.0, + "probability": 0.4264 + }, + { + "start": 9091.08, + "end": 9091.78, + "probability": 0.5995 + }, + { + "start": 9091.84, + "end": 9095.09, + "probability": 0.9887 + }, + { + "start": 9095.94, + "end": 9097.4, + "probability": 0.6843 + }, + { + "start": 9098.02, + "end": 9098.52, + "probability": 0.147 + }, + { + "start": 9098.52, + "end": 9098.52, + "probability": 0.4456 + }, + { + "start": 9098.52, + "end": 9099.74, + "probability": 0.6739 + }, + { + "start": 9099.74, + "end": 9100.74, + "probability": 0.6623 + }, + { + "start": 9100.74, + "end": 9101.08, + "probability": 0.237 + }, + { + "start": 9101.08, + "end": 9103.12, + "probability": 0.0502 + }, + { + "start": 9103.12, + "end": 9103.3, + "probability": 0.1193 + }, + { + "start": 9103.3, + "end": 9103.92, + "probability": 0.302 + }, + { + "start": 9104.1, + "end": 9105.58, + "probability": 0.2162 + }, + { + "start": 9107.1, + "end": 9107.9, + "probability": 0.2817 + }, + { + "start": 9108.72, + "end": 9109.42, + "probability": 0.8345 + }, + { + "start": 9109.68, + "end": 9110.54, + "probability": 0.1107 + }, + { + "start": 9110.58, + "end": 9110.64, + "probability": 0.1309 + }, + { + "start": 9110.64, + "end": 9111.16, + "probability": 0.4533 + }, + { + "start": 9111.32, + "end": 9112.8, + "probability": 0.4653 + }, + { + "start": 9112.92, + "end": 9113.58, + "probability": 0.6735 + }, + { + "start": 9113.84, + "end": 9114.92, + "probability": 0.1299 + }, + { + "start": 9115.02, + "end": 9116.38, + "probability": 0.302 + }, + { + "start": 9116.46, + "end": 9116.66, + "probability": 0.1213 + }, + { + "start": 9116.72, + "end": 9116.98, + "probability": 0.6147 + }, + { + "start": 9117.0, + "end": 9117.67, + "probability": 0.6158 + }, + { + "start": 9118.6, + "end": 9119.97, + "probability": 0.8051 + }, + { + "start": 9120.36, + "end": 9122.22, + "probability": 0.6171 + }, + { + "start": 9122.4, + "end": 9123.98, + "probability": 0.7273 + }, + { + "start": 9123.98, + "end": 9124.92, + "probability": 0.519 + }, + { + "start": 9125.06, + "end": 9129.76, + "probability": 0.8333 + }, + { + "start": 9130.42, + "end": 9130.94, + "probability": 0.169 + }, + { + "start": 9130.94, + "end": 9132.02, + "probability": 0.1746 + }, + { + "start": 9132.02, + "end": 9132.22, + "probability": 0.4493 + }, + { + "start": 9132.28, + "end": 9134.96, + "probability": 0.503 + }, + { + "start": 9135.0, + "end": 9136.68, + "probability": 0.7344 + }, + { + "start": 9136.84, + "end": 9139.36, + "probability": 0.4143 + }, + { + "start": 9139.54, + "end": 9140.34, + "probability": 0.4332 + }, + { + "start": 9140.68, + "end": 9144.66, + "probability": 0.9221 + }, + { + "start": 9145.0, + "end": 9150.48, + "probability": 0.9051 + }, + { + "start": 9150.48, + "end": 9152.58, + "probability": 0.5736 + }, + { + "start": 9152.94, + "end": 9153.64, + "probability": 0.7997 + }, + { + "start": 9153.7, + "end": 9154.04, + "probability": 0.7383 + }, + { + "start": 9155.52, + "end": 9158.58, + "probability": 0.409 + }, + { + "start": 9158.7, + "end": 9158.94, + "probability": 0.4413 + }, + { + "start": 9159.04, + "end": 9161.84, + "probability": 0.6561 + }, + { + "start": 9162.16, + "end": 9163.92, + "probability": 0.8709 + }, + { + "start": 9163.94, + "end": 9164.22, + "probability": 0.7647 + }, + { + "start": 9164.24, + "end": 9164.46, + "probability": 0.2416 + }, + { + "start": 9164.46, + "end": 9167.1, + "probability": 0.7234 + }, + { + "start": 9167.52, + "end": 9167.52, + "probability": 0.0832 + }, + { + "start": 9167.52, + "end": 9167.52, + "probability": 0.1031 + }, + { + "start": 9167.52, + "end": 9170.46, + "probability": 0.8986 + }, + { + "start": 9170.48, + "end": 9171.96, + "probability": 0.1641 + }, + { + "start": 9171.96, + "end": 9175.08, + "probability": 0.7373 + }, + { + "start": 9175.14, + "end": 9175.59, + "probability": 0.7607 + }, + { + "start": 9175.88, + "end": 9178.36, + "probability": 0.9757 + }, + { + "start": 9178.36, + "end": 9180.86, + "probability": 0.9195 + }, + { + "start": 9181.3, + "end": 9184.9, + "probability": 0.7273 + }, + { + "start": 9185.02, + "end": 9186.94, + "probability": 0.8134 + }, + { + "start": 9187.38, + "end": 9190.08, + "probability": 0.7556 + }, + { + "start": 9190.3, + "end": 9192.56, + "probability": 0.7704 + }, + { + "start": 9192.56, + "end": 9194.42, + "probability": 0.7615 + }, + { + "start": 9194.46, + "end": 9196.9, + "probability": 0.7272 + }, + { + "start": 9196.96, + "end": 9199.9, + "probability": 0.5237 + }, + { + "start": 9200.57, + "end": 9202.58, + "probability": 0.3991 + }, + { + "start": 9203.03, + "end": 9205.21, + "probability": 0.6294 + }, + { + "start": 9205.42, + "end": 9207.82, + "probability": 0.843 + }, + { + "start": 9208.32, + "end": 9214.42, + "probability": 0.9937 + }, + { + "start": 9214.78, + "end": 9214.78, + "probability": 0.1055 + }, + { + "start": 9214.78, + "end": 9217.0, + "probability": 0.6676 + }, + { + "start": 9217.0, + "end": 9218.66, + "probability": 0.7709 + }, + { + "start": 9218.84, + "end": 9222.82, + "probability": 0.9961 + }, + { + "start": 9222.98, + "end": 9227.26, + "probability": 0.9854 + }, + { + "start": 9227.58, + "end": 9227.58, + "probability": 0.1212 + }, + { + "start": 9227.58, + "end": 9229.76, + "probability": 0.8579 + }, + { + "start": 9229.82, + "end": 9230.8, + "probability": 0.963 + }, + { + "start": 9231.2, + "end": 9232.84, + "probability": 0.8553 + }, + { + "start": 9232.92, + "end": 9233.52, + "probability": 0.449 + }, + { + "start": 9233.52, + "end": 9234.82, + "probability": 0.9812 + }, + { + "start": 9234.82, + "end": 9236.36, + "probability": 0.9914 + }, + { + "start": 9236.42, + "end": 9237.68, + "probability": 0.9881 + }, + { + "start": 9237.72, + "end": 9238.92, + "probability": 0.981 + }, + { + "start": 9238.94, + "end": 9240.16, + "probability": 0.9564 + }, + { + "start": 9240.38, + "end": 9241.56, + "probability": 0.5472 + }, + { + "start": 9241.56, + "end": 9242.0, + "probability": 0.4328 + }, + { + "start": 9242.22, + "end": 9248.32, + "probability": 0.9791 + }, + { + "start": 9248.7, + "end": 9250.4, + "probability": 0.4905 + }, + { + "start": 9250.52, + "end": 9251.7, + "probability": 0.5874 + }, + { + "start": 9251.76, + "end": 9252.24, + "probability": 0.7372 + }, + { + "start": 9253.12, + "end": 9253.38, + "probability": 0.0693 + }, + { + "start": 9253.5, + "end": 9254.7, + "probability": 0.5955 + }, + { + "start": 9255.06, + "end": 9258.7, + "probability": 0.9676 + }, + { + "start": 9258.82, + "end": 9261.34, + "probability": 0.4585 + }, + { + "start": 9261.34, + "end": 9261.36, + "probability": 0.029 + }, + { + "start": 9261.36, + "end": 9262.19, + "probability": 0.5251 + }, + { + "start": 9262.46, + "end": 9262.58, + "probability": 0.7562 + }, + { + "start": 9262.58, + "end": 9264.76, + "probability": 0.9757 + }, + { + "start": 9264.76, + "end": 9267.78, + "probability": 0.9834 + }, + { + "start": 9268.1, + "end": 9268.74, + "probability": 0.9472 + }, + { + "start": 9268.84, + "end": 9269.82, + "probability": 0.8315 + }, + { + "start": 9270.84, + "end": 9271.26, + "probability": 0.7144 + }, + { + "start": 9271.38, + "end": 9271.54, + "probability": 0.171 + }, + { + "start": 9271.62, + "end": 9271.84, + "probability": 0.1348 + }, + { + "start": 9272.1, + "end": 9274.98, + "probability": 0.7714 + }, + { + "start": 9275.06, + "end": 9277.22, + "probability": 0.9785 + }, + { + "start": 9277.32, + "end": 9277.66, + "probability": 0.9189 + }, + { + "start": 9277.66, + "end": 9278.1, + "probability": 0.2065 + }, + { + "start": 9278.12, + "end": 9278.96, + "probability": 0.5192 + }, + { + "start": 9279.9, + "end": 9280.16, + "probability": 0.2065 + }, + { + "start": 9280.16, + "end": 9280.16, + "probability": 0.3293 + }, + { + "start": 9280.16, + "end": 9280.91, + "probability": 0.5645 + }, + { + "start": 9281.58, + "end": 9284.76, + "probability": 0.7971 + }, + { + "start": 9284.88, + "end": 9285.52, + "probability": 0.1821 + }, + { + "start": 9285.52, + "end": 9285.52, + "probability": 0.4489 + }, + { + "start": 9285.52, + "end": 9287.42, + "probability": 0.4806 + }, + { + "start": 9287.66, + "end": 9288.72, + "probability": 0.9419 + }, + { + "start": 9288.8, + "end": 9290.44, + "probability": 0.8207 + }, + { + "start": 9290.44, + "end": 9291.39, + "probability": 0.6758 + }, + { + "start": 9292.28, + "end": 9294.44, + "probability": 0.8804 + }, + { + "start": 9295.0, + "end": 9296.3, + "probability": 0.9954 + }, + { + "start": 9296.68, + "end": 9297.42, + "probability": 0.807 + }, + { + "start": 9297.54, + "end": 9301.92, + "probability": 0.9825 + }, + { + "start": 9301.92, + "end": 9306.38, + "probability": 0.9442 + }, + { + "start": 9306.5, + "end": 9307.7, + "probability": 0.851 + }, + { + "start": 9307.8, + "end": 9308.06, + "probability": 0.3746 + }, + { + "start": 9308.14, + "end": 9308.4, + "probability": 0.6518 + }, + { + "start": 9308.46, + "end": 9311.07, + "probability": 0.9469 + }, + { + "start": 9312.06, + "end": 9314.86, + "probability": 0.1296 + }, + { + "start": 9316.61, + "end": 9317.96, + "probability": 0.0475 + }, + { + "start": 9318.22, + "end": 9318.24, + "probability": 0.1512 + }, + { + "start": 9318.24, + "end": 9318.24, + "probability": 0.0339 + }, + { + "start": 9318.24, + "end": 9318.24, + "probability": 0.2723 + }, + { + "start": 9318.24, + "end": 9318.24, + "probability": 0.0188 + }, + { + "start": 9318.24, + "end": 9319.12, + "probability": 0.9019 + }, + { + "start": 9319.48, + "end": 9321.44, + "probability": 0.7385 + }, + { + "start": 9322.3, + "end": 9322.3, + "probability": 0.1859 + }, + { + "start": 9322.3, + "end": 9325.76, + "probability": 0.7471 + }, + { + "start": 9325.76, + "end": 9325.84, + "probability": 0.2027 + }, + { + "start": 9325.84, + "end": 9328.58, + "probability": 0.779 + }, + { + "start": 9328.58, + "end": 9331.54, + "probability": 0.8888 + }, + { + "start": 9332.0, + "end": 9337.1, + "probability": 0.4292 + }, + { + "start": 9337.64, + "end": 9337.64, + "probability": 0.1014 + }, + { + "start": 9337.64, + "end": 9337.64, + "probability": 0.0254 + }, + { + "start": 9337.64, + "end": 9337.64, + "probability": 0.07 + }, + { + "start": 9337.64, + "end": 9337.64, + "probability": 0.1093 + }, + { + "start": 9337.64, + "end": 9337.64, + "probability": 0.1106 + }, + { + "start": 9337.64, + "end": 9337.64, + "probability": 0.081 + }, + { + "start": 9337.64, + "end": 9338.16, + "probability": 0.6629 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9375.0, + "end": 9375.0, + "probability": 0.0 + }, + { + "start": 9382.0, + "end": 9382.86, + "probability": 0.4409 + }, + { + "start": 9383.64, + "end": 9385.1, + "probability": 0.1172 + }, + { + "start": 9385.48, + "end": 9385.86, + "probability": 0.4664 + }, + { + "start": 9386.24, + "end": 9387.0, + "probability": 0.2009 + }, + { + "start": 9387.1, + "end": 9388.51, + "probability": 0.101 + }, + { + "start": 9389.28, + "end": 9389.28, + "probability": 0.1226 + }, + { + "start": 9389.28, + "end": 9389.28, + "probability": 0.1652 + }, + { + "start": 9391.4, + "end": 9391.88, + "probability": 0.0438 + }, + { + "start": 9395.12, + "end": 9395.38, + "probability": 0.1657 + }, + { + "start": 9395.38, + "end": 9395.73, + "probability": 0.0743 + }, + { + "start": 9396.0, + "end": 9397.34, + "probability": 0.0454 + }, + { + "start": 9398.28, + "end": 9398.56, + "probability": 0.0125 + }, + { + "start": 9398.6, + "end": 9400.06, + "probability": 0.0768 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.0, + "end": 9505.0, + "probability": 0.0 + }, + { + "start": 9505.14, + "end": 9506.78, + "probability": 0.0125 + }, + { + "start": 9507.34, + "end": 9507.44, + "probability": 0.2539 + }, + { + "start": 9507.7, + "end": 9509.86, + "probability": 0.2592 + }, + { + "start": 9509.86, + "end": 9510.35, + "probability": 0.1932 + }, + { + "start": 9511.8, + "end": 9512.38, + "probability": 0.2878 + }, + { + "start": 9513.12, + "end": 9514.92, + "probability": 0.1705 + }, + { + "start": 9515.76, + "end": 9516.92, + "probability": 0.2306 + }, + { + "start": 9517.56, + "end": 9518.12, + "probability": 0.3259 + }, + { + "start": 9518.12, + "end": 9518.46, + "probability": 0.0157 + }, + { + "start": 9518.46, + "end": 9518.46, + "probability": 0.2051 + }, + { + "start": 9518.46, + "end": 9518.52, + "probability": 0.0675 + }, + { + "start": 9518.7, + "end": 9521.1, + "probability": 0.6988 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.0, + "end": 9630.0, + "probability": 0.0 + }, + { + "start": 9630.08, + "end": 9630.66, + "probability": 0.051 + }, + { + "start": 9630.86, + "end": 9631.68, + "probability": 0.6623 + }, + { + "start": 9631.76, + "end": 9635.24, + "probability": 0.7137 + }, + { + "start": 9635.58, + "end": 9636.76, + "probability": 0.6112 + }, + { + "start": 9636.86, + "end": 9638.1, + "probability": 0.945 + }, + { + "start": 9639.5, + "end": 9640.3, + "probability": 0.6635 + }, + { + "start": 9640.34, + "end": 9643.36, + "probability": 0.6788 + }, + { + "start": 9656.58, + "end": 9657.32, + "probability": 0.3209 + }, + { + "start": 9657.66, + "end": 9659.12, + "probability": 0.8653 + }, + { + "start": 9659.48, + "end": 9660.4, + "probability": 0.2845 + }, + { + "start": 9660.46, + "end": 9660.82, + "probability": 0.801 + }, + { + "start": 9660.96, + "end": 9662.1, + "probability": 0.9641 + }, + { + "start": 9676.66, + "end": 9678.34, + "probability": 0.7416 + }, + { + "start": 9679.18, + "end": 9682.34, + "probability": 0.8488 + }, + { + "start": 9683.1, + "end": 9691.02, + "probability": 0.7367 + }, + { + "start": 9692.82, + "end": 9694.46, + "probability": 0.9729 + }, + { + "start": 9695.6, + "end": 9698.8, + "probability": 0.8921 + }, + { + "start": 9699.08, + "end": 9700.9, + "probability": 0.8574 + }, + { + "start": 9702.14, + "end": 9703.36, + "probability": 0.5765 + }, + { + "start": 9703.42, + "end": 9703.7, + "probability": 0.6168 + }, + { + "start": 9703.86, + "end": 9708.86, + "probability": 0.8676 + }, + { + "start": 9709.8, + "end": 9711.18, + "probability": 0.9969 + }, + { + "start": 9712.4, + "end": 9714.1, + "probability": 0.9885 + }, + { + "start": 9714.24, + "end": 9715.24, + "probability": 0.7209 + }, + { + "start": 9715.4, + "end": 9719.44, + "probability": 0.6908 + }, + { + "start": 9720.7, + "end": 9723.6, + "probability": 0.8259 + }, + { + "start": 9724.56, + "end": 9726.16, + "probability": 0.9327 + }, + { + "start": 9727.76, + "end": 9732.8, + "probability": 0.9426 + }, + { + "start": 9734.2, + "end": 9739.92, + "probability": 0.8416 + }, + { + "start": 9741.06, + "end": 9745.12, + "probability": 0.7788 + }, + { + "start": 9745.74, + "end": 9746.18, + "probability": 0.8668 + }, + { + "start": 9746.26, + "end": 9748.42, + "probability": 0.7323 + }, + { + "start": 9748.82, + "end": 9750.54, + "probability": 0.6965 + }, + { + "start": 9750.6, + "end": 9751.58, + "probability": 0.9079 + }, + { + "start": 9752.02, + "end": 9752.72, + "probability": 0.9031 + }, + { + "start": 9752.88, + "end": 9754.48, + "probability": 0.8102 + }, + { + "start": 9755.28, + "end": 9758.2, + "probability": 0.9053 + }, + { + "start": 9758.46, + "end": 9761.12, + "probability": 0.8918 + }, + { + "start": 9761.32, + "end": 9763.5, + "probability": 0.7643 + }, + { + "start": 9764.06, + "end": 9765.53, + "probability": 0.8822 + }, + { + "start": 9765.84, + "end": 9767.16, + "probability": 0.9801 + }, + { + "start": 9767.88, + "end": 9770.26, + "probability": 0.927 + }, + { + "start": 9770.36, + "end": 9770.7, + "probability": 0.9144 + }, + { + "start": 9773.82, + "end": 9776.76, + "probability": 0.8933 + }, + { + "start": 9777.34, + "end": 9779.38, + "probability": 0.7153 + }, + { + "start": 9779.8, + "end": 9780.5, + "probability": 0.5259 + }, + { + "start": 9781.98, + "end": 9785.22, + "probability": 0.9532 + }, + { + "start": 9785.92, + "end": 9789.18, + "probability": 0.8372 + }, + { + "start": 9790.02, + "end": 9791.86, + "probability": 0.9805 + }, + { + "start": 9792.84, + "end": 9795.92, + "probability": 0.9077 + }, + { + "start": 9796.64, + "end": 9798.66, + "probability": 0.4955 + }, + { + "start": 9799.68, + "end": 9805.54, + "probability": 0.9531 + }, + { + "start": 9807.02, + "end": 9808.18, + "probability": 0.7114 + }, + { + "start": 9808.88, + "end": 9814.58, + "probability": 0.9672 + }, + { + "start": 9815.62, + "end": 9816.42, + "probability": 0.8909 + }, + { + "start": 9818.4, + "end": 9823.96, + "probability": 0.8632 + }, + { + "start": 9825.18, + "end": 9825.94, + "probability": 0.6793 + }, + { + "start": 9827.42, + "end": 9837.44, + "probability": 0.9118 + }, + { + "start": 9838.06, + "end": 9838.8, + "probability": 0.9358 + }, + { + "start": 9838.94, + "end": 9840.81, + "probability": 0.7156 + }, + { + "start": 9841.44, + "end": 9843.06, + "probability": 0.916 + }, + { + "start": 9843.74, + "end": 9845.23, + "probability": 0.7413 + }, + { + "start": 9846.62, + "end": 9847.74, + "probability": 0.7891 + }, + { + "start": 9849.28, + "end": 9854.26, + "probability": 0.9478 + }, + { + "start": 9855.06, + "end": 9856.4, + "probability": 0.5623 + }, + { + "start": 9856.6, + "end": 9857.04, + "probability": 0.7064 + }, + { + "start": 9857.46, + "end": 9861.2, + "probability": 0.8091 + }, + { + "start": 9862.32, + "end": 9866.44, + "probability": 0.7753 + }, + { + "start": 9867.16, + "end": 9868.42, + "probability": 0.6688 + }, + { + "start": 9869.14, + "end": 9871.36, + "probability": 0.6437 + }, + { + "start": 9871.9, + "end": 9875.96, + "probability": 0.7578 + }, + { + "start": 9876.5, + "end": 9881.12, + "probability": 0.8726 + }, + { + "start": 9881.74, + "end": 9883.04, + "probability": 0.7448 + }, + { + "start": 9883.16, + "end": 9885.48, + "probability": 0.7642 + }, + { + "start": 9886.34, + "end": 9887.7, + "probability": 0.2643 + }, + { + "start": 9888.06, + "end": 9893.8, + "probability": 0.9357 + }, + { + "start": 9894.26, + "end": 9896.58, + "probability": 0.9422 + }, + { + "start": 9898.06, + "end": 9899.54, + "probability": 0.1714 + }, + { + "start": 9899.88, + "end": 9903.34, + "probability": 0.7687 + }, + { + "start": 9903.48, + "end": 9904.32, + "probability": 0.8027 + }, + { + "start": 9904.84, + "end": 9906.32, + "probability": 0.9374 + }, + { + "start": 9906.34, + "end": 9906.36, + "probability": 0.2352 + }, + { + "start": 9906.36, + "end": 9906.96, + "probability": 0.5663 + }, + { + "start": 9906.98, + "end": 9907.88, + "probability": 0.696 + }, + { + "start": 9908.42, + "end": 9910.52, + "probability": 0.0969 + }, + { + "start": 9912.42, + "end": 9914.32, + "probability": 0.1073 + }, + { + "start": 9914.38, + "end": 9916.78, + "probability": 0.106 + }, + { + "start": 9916.96, + "end": 9917.08, + "probability": 0.1034 + }, + { + "start": 9917.08, + "end": 9918.36, + "probability": 0.5441 + }, + { + "start": 9918.42, + "end": 9919.82, + "probability": 0.8228 + }, + { + "start": 9919.84, + "end": 9920.08, + "probability": 0.2922 + }, + { + "start": 9920.08, + "end": 9920.6, + "probability": 0.4793 + }, + { + "start": 9921.42, + "end": 9924.12, + "probability": 0.5657 + }, + { + "start": 9924.26, + "end": 9925.8, + "probability": 0.7016 + }, + { + "start": 9953.98, + "end": 9953.98, + "probability": 0.6721 + }, + { + "start": 9953.98, + "end": 9955.06, + "probability": 0.6653 + }, + { + "start": 9956.42, + "end": 9958.38, + "probability": 0.7803 + }, + { + "start": 9959.5, + "end": 9962.49, + "probability": 0.95 + }, + { + "start": 9964.0, + "end": 9964.76, + "probability": 0.8336 + }, + { + "start": 9965.02, + "end": 9967.68, + "probability": 0.9175 + }, + { + "start": 9967.8, + "end": 9969.62, + "probability": 0.9416 + }, + { + "start": 9970.52, + "end": 9971.82, + "probability": 0.7049 + }, + { + "start": 9972.74, + "end": 9975.42, + "probability": 0.7817 + }, + { + "start": 9975.62, + "end": 9978.42, + "probability": 0.9896 + }, + { + "start": 9978.56, + "end": 9981.96, + "probability": 0.9922 + }, + { + "start": 9981.96, + "end": 9983.8, + "probability": 0.9826 + }, + { + "start": 9984.22, + "end": 9986.58, + "probability": 0.9277 + }, + { + "start": 9987.36, + "end": 9989.82, + "probability": 0.9233 + }, + { + "start": 9990.22, + "end": 9992.42, + "probability": 0.8278 + }, + { + "start": 9992.56, + "end": 9993.96, + "probability": 0.9497 + }, + { + "start": 9994.04, + "end": 9995.58, + "probability": 0.9619 + }, + { + "start": 9998.88, + "end": 9998.88, + "probability": 0.0837 + }, + { + "start": 9998.88, + "end": 9998.88, + "probability": 0.0749 + }, + { + "start": 9998.88, + "end": 9998.88, + "probability": 0.1263 + }, + { + "start": 9998.88, + "end": 9998.88, + "probability": 0.2603 + }, + { + "start": 9999.52, + "end": 10001.96, + "probability": 0.468 + }, + { + "start": 10002.0, + "end": 10003.4, + "probability": 0.8101 + }, + { + "start": 10003.8, + "end": 10004.73, + "probability": 0.522 + }, + { + "start": 10005.46, + "end": 10008.66, + "probability": 0.8252 + }, + { + "start": 10009.3, + "end": 10013.44, + "probability": 0.2181 + }, + { + "start": 10015.72, + "end": 10016.6, + "probability": 0.4815 + }, + { + "start": 10016.7, + "end": 10017.22, + "probability": 0.9132 + }, + { + "start": 10017.3, + "end": 10018.12, + "probability": 0.6682 + }, + { + "start": 10019.08, + "end": 10020.12, + "probability": 0.5186 + }, + { + "start": 10020.28, + "end": 10021.53, + "probability": 0.9822 + }, + { + "start": 10021.66, + "end": 10023.2, + "probability": 0.9965 + }, + { + "start": 10024.24, + "end": 10026.35, + "probability": 0.9099 + }, + { + "start": 10027.08, + "end": 10028.54, + "probability": 0.7935 + }, + { + "start": 10028.72, + "end": 10032.08, + "probability": 0.8445 + }, + { + "start": 10032.12, + "end": 10032.78, + "probability": 0.4605 + }, + { + "start": 10033.58, + "end": 10037.24, + "probability": 0.9881 + }, + { + "start": 10037.94, + "end": 10039.52, + "probability": 0.8323 + }, + { + "start": 10039.66, + "end": 10041.33, + "probability": 0.8923 + }, + { + "start": 10043.92, + "end": 10045.42, + "probability": 0.3334 + }, + { + "start": 10046.08, + "end": 10046.2, + "probability": 0.2937 + }, + { + "start": 10046.2, + "end": 10046.2, + "probability": 0.0648 + }, + { + "start": 10046.2, + "end": 10047.0, + "probability": 0.36 + }, + { + "start": 10047.12, + "end": 10048.54, + "probability": 0.7675 + }, + { + "start": 10049.5, + "end": 10051.88, + "probability": 0.8396 + }, + { + "start": 10052.18, + "end": 10058.9, + "probability": 0.7875 + }, + { + "start": 10059.36, + "end": 10061.06, + "probability": 0.5151 + }, + { + "start": 10061.74, + "end": 10064.28, + "probability": 0.9418 + }, + { + "start": 10064.68, + "end": 10066.08, + "probability": 0.948 + }, + { + "start": 10066.24, + "end": 10066.38, + "probability": 0.0872 + }, + { + "start": 10066.4, + "end": 10067.9, + "probability": 0.9303 + }, + { + "start": 10068.72, + "end": 10069.4, + "probability": 0.8037 + }, + { + "start": 10070.32, + "end": 10070.64, + "probability": 0.9739 + }, + { + "start": 10071.86, + "end": 10072.3, + "probability": 0.7052 + }, + { + "start": 10072.32, + "end": 10075.68, + "probability": 0.887 + }, + { + "start": 10075.7, + "end": 10076.74, + "probability": 0.7448 + }, + { + "start": 10077.54, + "end": 10079.12, + "probability": 0.5117 + }, + { + "start": 10079.22, + "end": 10079.96, + "probability": 0.5643 + }, + { + "start": 10080.48, + "end": 10081.4, + "probability": 0.9431 + }, + { + "start": 10081.92, + "end": 10084.26, + "probability": 0.9604 + }, + { + "start": 10084.48, + "end": 10085.68, + "probability": 0.7758 + }, + { + "start": 10086.18, + "end": 10090.02, + "probability": 0.9539 + }, + { + "start": 10090.22, + "end": 10092.88, + "probability": 0.9965 + }, + { + "start": 10093.18, + "end": 10095.02, + "probability": 0.9785 + }, + { + "start": 10095.12, + "end": 10097.05, + "probability": 0.9837 + }, + { + "start": 10097.36, + "end": 10100.8, + "probability": 0.9762 + }, + { + "start": 10105.3, + "end": 10106.96, + "probability": 0.9678 + }, + { + "start": 10107.08, + "end": 10108.2, + "probability": 0.9954 + }, + { + "start": 10108.5, + "end": 10110.82, + "probability": 0.9945 + }, + { + "start": 10110.94, + "end": 10113.7, + "probability": 0.8534 + }, + { + "start": 10113.8, + "end": 10116.78, + "probability": 0.97 + }, + { + "start": 10117.02, + "end": 10118.62, + "probability": 0.9484 + }, + { + "start": 10118.7, + "end": 10121.88, + "probability": 0.8983 + }, + { + "start": 10122.42, + "end": 10122.96, + "probability": 0.7905 + }, + { + "start": 10123.58, + "end": 10124.66, + "probability": 0.7283 + }, + { + "start": 10125.66, + "end": 10127.11, + "probability": 0.9939 + }, + { + "start": 10132.68, + "end": 10133.02, + "probability": 0.7142 + }, + { + "start": 10133.66, + "end": 10136.16, + "probability": 0.5121 + }, + { + "start": 10136.2, + "end": 10137.36, + "probability": 0.9325 + }, + { + "start": 10138.26, + "end": 10140.54, + "probability": 0.696 + }, + { + "start": 10142.02, + "end": 10142.52, + "probability": 0.4996 + }, + { + "start": 10142.9, + "end": 10144.38, + "probability": 0.9461 + }, + { + "start": 10157.24, + "end": 10157.24, + "probability": 0.7343 + }, + { + "start": 10157.24, + "end": 10158.6, + "probability": 0.6612 + }, + { + "start": 10159.94, + "end": 10162.94, + "probability": 0.7299 + }, + { + "start": 10164.18, + "end": 10168.3, + "probability": 0.9817 + }, + { + "start": 10169.12, + "end": 10172.46, + "probability": 0.9866 + }, + { + "start": 10173.28, + "end": 10175.84, + "probability": 0.9371 + }, + { + "start": 10176.72, + "end": 10176.94, + "probability": 0.9713 + }, + { + "start": 10177.06, + "end": 10181.0, + "probability": 0.9487 + }, + { + "start": 10181.14, + "end": 10184.18, + "probability": 0.9671 + }, + { + "start": 10184.58, + "end": 10186.02, + "probability": 0.9487 + }, + { + "start": 10187.12, + "end": 10188.28, + "probability": 0.696 + }, + { + "start": 10188.38, + "end": 10189.16, + "probability": 0.5909 + }, + { + "start": 10189.16, + "end": 10190.92, + "probability": 0.9933 + }, + { + "start": 10191.34, + "end": 10192.66, + "probability": 0.8696 + }, + { + "start": 10193.14, + "end": 10194.16, + "probability": 0.9444 + }, + { + "start": 10194.6, + "end": 10201.24, + "probability": 0.9965 + }, + { + "start": 10202.32, + "end": 10206.0, + "probability": 0.9278 + }, + { + "start": 10206.86, + "end": 10208.62, + "probability": 0.8741 + }, + { + "start": 10209.12, + "end": 10215.68, + "probability": 0.7113 + }, + { + "start": 10216.06, + "end": 10216.06, + "probability": 0.5762 + }, + { + "start": 10216.18, + "end": 10217.14, + "probability": 0.6382 + }, + { + "start": 10217.94, + "end": 10220.8, + "probability": 0.9875 + }, + { + "start": 10221.72, + "end": 10228.98, + "probability": 0.994 + }, + { + "start": 10229.78, + "end": 10230.6, + "probability": 0.915 + }, + { + "start": 10231.84, + "end": 10234.34, + "probability": 0.9497 + }, + { + "start": 10235.12, + "end": 10236.61, + "probability": 0.9968 + }, + { + "start": 10237.58, + "end": 10238.82, + "probability": 0.8683 + }, + { + "start": 10239.76, + "end": 10240.06, + "probability": 0.8999 + }, + { + "start": 10240.12, + "end": 10244.06, + "probability": 0.995 + }, + { + "start": 10244.8, + "end": 10248.36, + "probability": 0.9554 + }, + { + "start": 10248.36, + "end": 10250.72, + "probability": 0.8342 + }, + { + "start": 10251.06, + "end": 10252.0, + "probability": 0.8763 + }, + { + "start": 10253.46, + "end": 10255.12, + "probability": 0.9412 + }, + { + "start": 10255.32, + "end": 10258.84, + "probability": 0.4628 + }, + { + "start": 10258.84, + "end": 10259.1, + "probability": 0.6972 + }, + { + "start": 10259.48, + "end": 10261.28, + "probability": 0.8184 + }, + { + "start": 10262.46, + "end": 10263.08, + "probability": 0.3373 + }, + { + "start": 10263.08, + "end": 10264.74, + "probability": 0.9163 + }, + { + "start": 10264.96, + "end": 10265.66, + "probability": 0.7952 + }, + { + "start": 10266.9, + "end": 10269.24, + "probability": 0.817 + }, + { + "start": 10270.04, + "end": 10270.92, + "probability": 0.5912 + }, + { + "start": 10271.86, + "end": 10273.44, + "probability": 0.9422 + }, + { + "start": 10274.28, + "end": 10275.46, + "probability": 0.9882 + }, + { + "start": 10275.56, + "end": 10277.3, + "probability": 0.9295 + }, + { + "start": 10277.36, + "end": 10278.2, + "probability": 0.7478 + }, + { + "start": 10278.6, + "end": 10280.26, + "probability": 0.9915 + }, + { + "start": 10281.34, + "end": 10284.92, + "probability": 0.9653 + }, + { + "start": 10285.3, + "end": 10287.74, + "probability": 0.9556 + }, + { + "start": 10288.6, + "end": 10289.51, + "probability": 0.9078 + }, + { + "start": 10290.32, + "end": 10294.56, + "probability": 0.9771 + }, + { + "start": 10294.9, + "end": 10296.0, + "probability": 0.7881 + }, + { + "start": 10296.18, + "end": 10297.76, + "probability": 0.792 + }, + { + "start": 10298.62, + "end": 10299.2, + "probability": 0.9331 + }, + { + "start": 10300.44, + "end": 10303.74, + "probability": 0.8884 + }, + { + "start": 10304.62, + "end": 10307.58, + "probability": 0.9941 + }, + { + "start": 10307.58, + "end": 10311.74, + "probability": 0.9897 + }, + { + "start": 10312.16, + "end": 10313.72, + "probability": 0.6689 + }, + { + "start": 10314.24, + "end": 10318.58, + "probability": 0.9601 + }, + { + "start": 10319.12, + "end": 10323.3, + "probability": 0.8965 + }, + { + "start": 10323.76, + "end": 10327.12, + "probability": 0.907 + }, + { + "start": 10328.02, + "end": 10331.4, + "probability": 0.9919 + }, + { + "start": 10332.08, + "end": 10336.24, + "probability": 0.9924 + }, + { + "start": 10336.24, + "end": 10341.18, + "probability": 0.9763 + }, + { + "start": 10341.64, + "end": 10342.96, + "probability": 0.929 + }, + { + "start": 10343.4, + "end": 10348.52, + "probability": 0.9922 + }, + { + "start": 10348.66, + "end": 10348.66, + "probability": 0.6821 + }, + { + "start": 10349.1, + "end": 10349.14, + "probability": 0.0928 + }, + { + "start": 10349.26, + "end": 10349.54, + "probability": 0.6124 + }, + { + "start": 10349.72, + "end": 10350.66, + "probability": 0.8648 + }, + { + "start": 10351.1, + "end": 10354.5, + "probability": 0.9935 + }, + { + "start": 10354.5, + "end": 10358.46, + "probability": 0.993 + }, + { + "start": 10358.46, + "end": 10359.5, + "probability": 0.8375 + }, + { + "start": 10359.54, + "end": 10359.92, + "probability": 0.8152 + }, + { + "start": 10360.0, + "end": 10361.42, + "probability": 0.5511 + }, + { + "start": 10361.58, + "end": 10362.78, + "probability": 0.9486 + }, + { + "start": 10364.26, + "end": 10364.98, + "probability": 0.3355 + }, + { + "start": 10365.18, + "end": 10366.6, + "probability": 0.6881 + }, + { + "start": 10366.9, + "end": 10367.22, + "probability": 0.2538 + }, + { + "start": 10367.52, + "end": 10368.06, + "probability": 0.2328 + }, + { + "start": 10381.46, + "end": 10383.14, + "probability": 0.7506 + }, + { + "start": 10383.14, + "end": 10383.14, + "probability": 0.7535 + }, + { + "start": 10383.14, + "end": 10384.04, + "probability": 0.8152 + }, + { + "start": 10384.86, + "end": 10386.12, + "probability": 0.7376 + }, + { + "start": 10387.66, + "end": 10388.28, + "probability": 0.9316 + }, + { + "start": 10389.06, + "end": 10391.19, + "probability": 0.9586 + }, + { + "start": 10392.04, + "end": 10395.22, + "probability": 0.8944 + }, + { + "start": 10395.3, + "end": 10396.44, + "probability": 0.9434 + }, + { + "start": 10396.56, + "end": 10400.56, + "probability": 0.9916 + }, + { + "start": 10400.78, + "end": 10404.38, + "probability": 0.926 + }, + { + "start": 10404.38, + "end": 10406.76, + "probability": 0.999 + }, + { + "start": 10410.82, + "end": 10415.4, + "probability": 0.6886 + }, + { + "start": 10415.42, + "end": 10420.12, + "probability": 0.8872 + }, + { + "start": 10421.08, + "end": 10426.84, + "probability": 0.9685 + }, + { + "start": 10427.8, + "end": 10429.8, + "probability": 0.8789 + }, + { + "start": 10430.26, + "end": 10435.86, + "probability": 0.8554 + }, + { + "start": 10436.84, + "end": 10443.02, + "probability": 0.9652 + }, + { + "start": 10443.16, + "end": 10445.5, + "probability": 0.9296 + }, + { + "start": 10445.86, + "end": 10446.84, + "probability": 0.8938 + }, + { + "start": 10447.46, + "end": 10453.2, + "probability": 0.9798 + }, + { + "start": 10454.5, + "end": 10458.44, + "probability": 0.9492 + }, + { + "start": 10458.62, + "end": 10463.44, + "probability": 0.9885 + }, + { + "start": 10464.64, + "end": 10469.34, + "probability": 0.9198 + }, + { + "start": 10470.08, + "end": 10473.22, + "probability": 0.9662 + }, + { + "start": 10473.22, + "end": 10476.3, + "probability": 0.9339 + }, + { + "start": 10477.16, + "end": 10478.16, + "probability": 0.6237 + }, + { + "start": 10478.16, + "end": 10478.96, + "probability": 0.6136 + }, + { + "start": 10479.2, + "end": 10479.94, + "probability": 0.9136 + }, + { + "start": 10480.34, + "end": 10484.02, + "probability": 0.9797 + }, + { + "start": 10485.06, + "end": 10486.84, + "probability": 0.9914 + }, + { + "start": 10488.22, + "end": 10488.96, + "probability": 0.2753 + }, + { + "start": 10489.9, + "end": 10492.04, + "probability": 0.9261 + }, + { + "start": 10492.26, + "end": 10495.08, + "probability": 0.9927 + }, + { + "start": 10495.9, + "end": 10499.44, + "probability": 0.9943 + }, + { + "start": 10499.44, + "end": 10503.74, + "probability": 0.875 + }, + { + "start": 10504.44, + "end": 10506.6, + "probability": 0.8703 + }, + { + "start": 10507.28, + "end": 10508.28, + "probability": 0.8105 + }, + { + "start": 10508.48, + "end": 10509.0, + "probability": 0.7452 + }, + { + "start": 10509.04, + "end": 10513.8, + "probability": 0.9663 + }, + { + "start": 10514.26, + "end": 10515.32, + "probability": 0.9492 + }, + { + "start": 10515.52, + "end": 10519.94, + "probability": 0.982 + }, + { + "start": 10520.1, + "end": 10523.68, + "probability": 0.9568 + }, + { + "start": 10525.02, + "end": 10526.18, + "probability": 0.833 + }, + { + "start": 10526.46, + "end": 10527.2, + "probability": 0.8579 + }, + { + "start": 10527.22, + "end": 10530.18, + "probability": 0.9827 + }, + { + "start": 10532.24, + "end": 10535.84, + "probability": 0.7977 + }, + { + "start": 10536.0, + "end": 10540.26, + "probability": 0.9497 + }, + { + "start": 10540.3, + "end": 10541.82, + "probability": 0.979 + }, + { + "start": 10542.34, + "end": 10546.32, + "probability": 0.991 + }, + { + "start": 10546.32, + "end": 10550.14, + "probability": 0.8825 + }, + { + "start": 10550.42, + "end": 10552.14, + "probability": 0.9661 + }, + { + "start": 10553.38, + "end": 10559.71, + "probability": 0.9968 + }, + { + "start": 10560.4, + "end": 10561.72, + "probability": 0.8319 + }, + { + "start": 10561.82, + "end": 10566.96, + "probability": 0.9475 + }, + { + "start": 10567.28, + "end": 10568.04, + "probability": 0.4603 + }, + { + "start": 10568.1, + "end": 10568.4, + "probability": 0.6336 + }, + { + "start": 10568.76, + "end": 10570.18, + "probability": 0.8167 + }, + { + "start": 10570.52, + "end": 10574.62, + "probability": 0.9777 + }, + { + "start": 10574.66, + "end": 10577.0, + "probability": 0.9852 + }, + { + "start": 10577.36, + "end": 10579.98, + "probability": 0.8135 + }, + { + "start": 10579.98, + "end": 10583.24, + "probability": 0.9248 + }, + { + "start": 10583.72, + "end": 10586.02, + "probability": 0.4849 + }, + { + "start": 10586.04, + "end": 10587.06, + "probability": 0.5144 + }, + { + "start": 10587.52, + "end": 10589.68, + "probability": 0.9874 + }, + { + "start": 10589.78, + "end": 10594.5, + "probability": 0.9702 + }, + { + "start": 10594.62, + "end": 10598.6, + "probability": 0.9565 + }, + { + "start": 10598.76, + "end": 10599.12, + "probability": 0.8535 + }, + { + "start": 10599.2, + "end": 10600.94, + "probability": 0.7121 + }, + { + "start": 10601.08, + "end": 10602.66, + "probability": 0.6865 + }, + { + "start": 10612.42, + "end": 10614.36, + "probability": 0.6737 + }, + { + "start": 10616.36, + "end": 10617.38, + "probability": 0.9006 + }, + { + "start": 10618.88, + "end": 10623.1, + "probability": 0.9868 + }, + { + "start": 10623.92, + "end": 10626.04, + "probability": 0.9787 + }, + { + "start": 10626.7, + "end": 10628.6, + "probability": 0.9988 + }, + { + "start": 10629.88, + "end": 10631.82, + "probability": 0.8943 + }, + { + "start": 10632.44, + "end": 10635.1, + "probability": 0.9966 + }, + { + "start": 10635.1, + "end": 10639.74, + "probability": 0.8998 + }, + { + "start": 10640.26, + "end": 10644.46, + "probability": 0.9777 + }, + { + "start": 10644.8, + "end": 10646.02, + "probability": 0.9824 + }, + { + "start": 10646.76, + "end": 10647.26, + "probability": 0.7482 + }, + { + "start": 10648.16, + "end": 10650.98, + "probability": 0.979 + }, + { + "start": 10651.62, + "end": 10652.16, + "probability": 0.772 + }, + { + "start": 10652.26, + "end": 10653.22, + "probability": 0.9032 + }, + { + "start": 10653.4, + "end": 10655.84, + "probability": 0.9805 + }, + { + "start": 10656.18, + "end": 10658.0, + "probability": 0.9219 + }, + { + "start": 10658.96, + "end": 10660.08, + "probability": 0.8494 + }, + { + "start": 10660.22, + "end": 10661.22, + "probability": 0.9077 + }, + { + "start": 10661.64, + "end": 10662.78, + "probability": 0.9014 + }, + { + "start": 10663.06, + "end": 10663.75, + "probability": 0.8835 + }, + { + "start": 10664.44, + "end": 10665.92, + "probability": 0.9849 + }, + { + "start": 10666.54, + "end": 10668.86, + "probability": 0.8923 + }, + { + "start": 10669.62, + "end": 10673.94, + "probability": 0.975 + }, + { + "start": 10674.3, + "end": 10677.26, + "probability": 0.9976 + }, + { + "start": 10677.62, + "end": 10678.32, + "probability": 0.5983 + }, + { + "start": 10678.46, + "end": 10680.42, + "probability": 0.9812 + }, + { + "start": 10680.86, + "end": 10681.98, + "probability": 0.9929 + }, + { + "start": 10682.62, + "end": 10686.5, + "probability": 0.9912 + }, + { + "start": 10687.06, + "end": 10688.18, + "probability": 0.6694 + }, + { + "start": 10689.62, + "end": 10691.44, + "probability": 0.7057 + }, + { + "start": 10691.7, + "end": 10693.46, + "probability": 0.9441 + }, + { + "start": 10693.88, + "end": 10694.92, + "probability": 0.9384 + }, + { + "start": 10695.44, + "end": 10696.7, + "probability": 0.925 + }, + { + "start": 10697.2, + "end": 10699.74, + "probability": 0.944 + }, + { + "start": 10699.86, + "end": 10700.66, + "probability": 0.9116 + }, + { + "start": 10700.74, + "end": 10701.58, + "probability": 0.8661 + }, + { + "start": 10701.8, + "end": 10706.06, + "probability": 0.9411 + }, + { + "start": 10706.06, + "end": 10710.96, + "probability": 0.8878 + }, + { + "start": 10711.44, + "end": 10714.06, + "probability": 0.8268 + }, + { + "start": 10714.36, + "end": 10715.24, + "probability": 0.9662 + }, + { + "start": 10715.48, + "end": 10716.34, + "probability": 0.6275 + }, + { + "start": 10716.52, + "end": 10718.82, + "probability": 0.6795 + }, + { + "start": 10718.94, + "end": 10720.54, + "probability": 0.9923 + }, + { + "start": 10721.3, + "end": 10724.08, + "probability": 0.7877 + }, + { + "start": 10724.68, + "end": 10726.76, + "probability": 0.4867 + }, + { + "start": 10727.34, + "end": 10728.14, + "probability": 0.8168 + }, + { + "start": 10728.82, + "end": 10729.26, + "probability": 0.8832 + }, + { + "start": 10730.1, + "end": 10731.36, + "probability": 0.9099 + }, + { + "start": 10731.44, + "end": 10734.82, + "probability": 0.9468 + }, + { + "start": 10735.58, + "end": 10737.4, + "probability": 0.9744 + }, + { + "start": 10738.04, + "end": 10740.24, + "probability": 0.8508 + }, + { + "start": 10740.3, + "end": 10741.28, + "probability": 0.8445 + }, + { + "start": 10741.38, + "end": 10743.56, + "probability": 0.9938 + }, + { + "start": 10744.14, + "end": 10745.88, + "probability": 0.8761 + }, + { + "start": 10746.24, + "end": 10747.1, + "probability": 0.793 + }, + { + "start": 10747.52, + "end": 10748.86, + "probability": 0.9893 + }, + { + "start": 10749.4, + "end": 10750.76, + "probability": 0.9943 + }, + { + "start": 10751.26, + "end": 10752.48, + "probability": 0.9604 + }, + { + "start": 10752.88, + "end": 10753.42, + "probability": 0.4735 + }, + { + "start": 10753.64, + "end": 10754.38, + "probability": 0.613 + }, + { + "start": 10754.66, + "end": 10755.72, + "probability": 0.6449 + }, + { + "start": 10755.78, + "end": 10760.06, + "probability": 0.9875 + }, + { + "start": 10760.06, + "end": 10764.74, + "probability": 0.7558 + }, + { + "start": 10765.2, + "end": 10767.9, + "probability": 0.8628 + }, + { + "start": 10767.94, + "end": 10768.92, + "probability": 0.8703 + }, + { + "start": 10769.22, + "end": 10772.94, + "probability": 0.9906 + }, + { + "start": 10773.68, + "end": 10775.24, + "probability": 0.9779 + }, + { + "start": 10775.82, + "end": 10778.08, + "probability": 0.9924 + }, + { + "start": 10778.94, + "end": 10782.5, + "probability": 0.9406 + }, + { + "start": 10783.28, + "end": 10784.98, + "probability": 0.9177 + }, + { + "start": 10785.62, + "end": 10786.74, + "probability": 0.97 + }, + { + "start": 10787.96, + "end": 10788.74, + "probability": 0.8519 + }, + { + "start": 10789.04, + "end": 10791.74, + "probability": 0.9844 + }, + { + "start": 10792.54, + "end": 10798.04, + "probability": 0.9922 + }, + { + "start": 10798.72, + "end": 10799.2, + "probability": 0.7577 + }, + { + "start": 10799.62, + "end": 10800.76, + "probability": 0.7985 + }, + { + "start": 10801.24, + "end": 10803.54, + "probability": 0.9941 + }, + { + "start": 10804.1, + "end": 10806.37, + "probability": 0.9962 + }, + { + "start": 10806.72, + "end": 10807.34, + "probability": 0.5332 + }, + { + "start": 10807.6, + "end": 10809.78, + "probability": 0.9946 + }, + { + "start": 10809.98, + "end": 10810.93, + "probability": 0.9841 + }, + { + "start": 10811.22, + "end": 10812.04, + "probability": 0.743 + }, + { + "start": 10812.64, + "end": 10814.06, + "probability": 0.7886 + }, + { + "start": 10814.32, + "end": 10817.06, + "probability": 0.9955 + }, + { + "start": 10817.12, + "end": 10818.0, + "probability": 0.9941 + }, + { + "start": 10818.22, + "end": 10819.26, + "probability": 0.8855 + }, + { + "start": 10820.24, + "end": 10821.66, + "probability": 0.7293 + }, + { + "start": 10821.74, + "end": 10823.0, + "probability": 0.8167 + }, + { + "start": 10823.44, + "end": 10824.64, + "probability": 0.9244 + }, + { + "start": 10824.78, + "end": 10827.02, + "probability": 0.9293 + }, + { + "start": 10827.24, + "end": 10828.08, + "probability": 0.8998 + }, + { + "start": 10828.48, + "end": 10829.38, + "probability": 0.8989 + }, + { + "start": 10829.66, + "end": 10831.84, + "probability": 0.983 + }, + { + "start": 10831.92, + "end": 10832.32, + "probability": 0.7102 + }, + { + "start": 10833.14, + "end": 10835.4, + "probability": 0.9875 + }, + { + "start": 10835.56, + "end": 10838.78, + "probability": 0.9905 + }, + { + "start": 10839.14, + "end": 10843.1, + "probability": 0.9215 + }, + { + "start": 10843.5, + "end": 10844.92, + "probability": 0.9948 + }, + { + "start": 10844.98, + "end": 10846.0, + "probability": 0.9601 + }, + { + "start": 10846.58, + "end": 10847.1, + "probability": 0.9583 + }, + { + "start": 10848.22, + "end": 10849.44, + "probability": 0.6963 + }, + { + "start": 10850.58, + "end": 10852.52, + "probability": 0.9751 + }, + { + "start": 10852.76, + "end": 10853.82, + "probability": 0.93 + }, + { + "start": 10854.64, + "end": 10860.74, + "probability": 0.9918 + }, + { + "start": 10861.14, + "end": 10863.96, + "probability": 0.9956 + }, + { + "start": 10863.98, + "end": 10865.16, + "probability": 0.9896 + }, + { + "start": 10865.44, + "end": 10867.32, + "probability": 0.9957 + }, + { + "start": 10867.52, + "end": 10869.04, + "probability": 0.9812 + }, + { + "start": 10869.14, + "end": 10870.8, + "probability": 0.8807 + }, + { + "start": 10870.8, + "end": 10872.49, + "probability": 0.9297 + }, + { + "start": 10872.66, + "end": 10874.24, + "probability": 0.9063 + }, + { + "start": 10877.0, + "end": 10877.66, + "probability": 0.7638 + }, + { + "start": 10877.88, + "end": 10879.72, + "probability": 0.9806 + }, + { + "start": 10879.76, + "end": 10880.56, + "probability": 0.8331 + }, + { + "start": 10882.52, + "end": 10885.86, + "probability": 0.1549 + }, + { + "start": 10889.94, + "end": 10890.48, + "probability": 0.1765 + }, + { + "start": 10936.78, + "end": 10937.54, + "probability": 0.5418 + }, + { + "start": 10940.26, + "end": 10946.08, + "probability": 0.9937 + }, + { + "start": 10950.74, + "end": 10955.64, + "probability": 0.8752 + }, + { + "start": 10956.38, + "end": 10958.84, + "probability": 0.9976 + }, + { + "start": 10960.18, + "end": 10960.2, + "probability": 0.0087 + }, + { + "start": 10974.44, + "end": 10974.44, + "probability": 0.2675 + }, + { + "start": 10974.44, + "end": 10974.44, + "probability": 0.0473 + }, + { + "start": 10974.44, + "end": 10974.48, + "probability": 0.1115 + }, + { + "start": 10974.98, + "end": 10977.82, + "probability": 0.6561 + }, + { + "start": 10978.68, + "end": 10982.34, + "probability": 0.9866 + }, + { + "start": 10983.44, + "end": 10985.34, + "probability": 0.9927 + }, + { + "start": 10986.8, + "end": 10988.4, + "probability": 0.6323 + }, + { + "start": 10988.56, + "end": 10989.89, + "probability": 0.9943 + }, + { + "start": 10990.78, + "end": 10993.2, + "probability": 0.955 + }, + { + "start": 10994.26, + "end": 10998.0, + "probability": 0.9972 + }, + { + "start": 10998.0, + "end": 11002.58, + "probability": 0.9953 + }, + { + "start": 11002.6, + "end": 11004.32, + "probability": 0.4303 + }, + { + "start": 11004.84, + "end": 11006.96, + "probability": 0.9897 + }, + { + "start": 11007.96, + "end": 11011.24, + "probability": 0.9868 + }, + { + "start": 11011.86, + "end": 11014.15, + "probability": 0.9418 + }, + { + "start": 11015.62, + "end": 11018.36, + "probability": 0.9549 + }, + { + "start": 11019.74, + "end": 11023.8, + "probability": 0.7794 + }, + { + "start": 11025.68, + "end": 11026.74, + "probability": 0.5446 + }, + { + "start": 11026.74, + "end": 11029.92, + "probability": 0.9404 + }, + { + "start": 11030.9, + "end": 11036.14, + "probability": 0.9917 + }, + { + "start": 11036.82, + "end": 11038.18, + "probability": 0.9801 + }, + { + "start": 11039.16, + "end": 11044.8, + "probability": 0.9336 + }, + { + "start": 11044.9, + "end": 11046.52, + "probability": 0.6922 + }, + { + "start": 11047.1, + "end": 11050.06, + "probability": 0.9844 + }, + { + "start": 11050.82, + "end": 11053.48, + "probability": 0.906 + }, + { + "start": 11053.98, + "end": 11057.52, + "probability": 0.5565 + }, + { + "start": 11058.82, + "end": 11061.08, + "probability": 0.9777 + }, + { + "start": 11061.76, + "end": 11062.68, + "probability": 0.5399 + }, + { + "start": 11063.06, + "end": 11065.02, + "probability": 0.8698 + }, + { + "start": 11065.56, + "end": 11069.3, + "probability": 0.9561 + }, + { + "start": 11069.7, + "end": 11072.03, + "probability": 0.9904 + }, + { + "start": 11072.24, + "end": 11075.26, + "probability": 0.9982 + }, + { + "start": 11076.33, + "end": 11079.01, + "probability": 0.8838 + }, + { + "start": 11079.92, + "end": 11085.74, + "probability": 0.0695 + }, + { + "start": 11085.96, + "end": 11089.55, + "probability": 0.0283 + }, + { + "start": 11091.42, + "end": 11094.16, + "probability": 0.5525 + }, + { + "start": 11094.3, + "end": 11096.1, + "probability": 0.9831 + }, + { + "start": 11096.2, + "end": 11096.8, + "probability": 0.6464 + }, + { + "start": 11096.94, + "end": 11097.8, + "probability": 0.9733 + }, + { + "start": 11097.96, + "end": 11099.7, + "probability": 0.9724 + }, + { + "start": 11100.18, + "end": 11101.94, + "probability": 0.9006 + }, + { + "start": 11102.06, + "end": 11103.28, + "probability": 0.68 + }, + { + "start": 11103.44, + "end": 11105.1, + "probability": 0.8855 + }, + { + "start": 11105.46, + "end": 11108.76, + "probability": 0.0644 + }, + { + "start": 11108.86, + "end": 11110.56, + "probability": 0.5323 + }, + { + "start": 11110.7, + "end": 11113.42, + "probability": 0.9782 + }, + { + "start": 11113.76, + "end": 11114.54, + "probability": 0.4341 + }, + { + "start": 11114.72, + "end": 11116.96, + "probability": 0.9285 + }, + { + "start": 11117.64, + "end": 11123.24, + "probability": 0.7437 + }, + { + "start": 11125.02, + "end": 11126.42, + "probability": 0.0762 + }, + { + "start": 11126.42, + "end": 11126.46, + "probability": 0.2968 + }, + { + "start": 11126.46, + "end": 11126.46, + "probability": 0.268 + }, + { + "start": 11126.46, + "end": 11127.4, + "probability": 0.2749 + }, + { + "start": 11127.62, + "end": 11129.9, + "probability": 0.8228 + }, + { + "start": 11130.5, + "end": 11130.5, + "probability": 0.1607 + }, + { + "start": 11130.5, + "end": 11131.08, + "probability": 0.77 + }, + { + "start": 11131.22, + "end": 11132.22, + "probability": 0.6995 + }, + { + "start": 11132.5, + "end": 11139.56, + "probability": 0.8902 + }, + { + "start": 11139.58, + "end": 11143.59, + "probability": 0.9956 + }, + { + "start": 11144.92, + "end": 11146.68, + "probability": 0.1457 + }, + { + "start": 11147.38, + "end": 11147.74, + "probability": 0.4195 + }, + { + "start": 11148.1, + "end": 11150.4, + "probability": 0.661 + }, + { + "start": 11150.42, + "end": 11151.38, + "probability": 0.6685 + }, + { + "start": 11153.44, + "end": 11157.12, + "probability": 0.9988 + }, + { + "start": 11157.12, + "end": 11160.54, + "probability": 0.9988 + }, + { + "start": 11161.08, + "end": 11162.74, + "probability": 0.9607 + }, + { + "start": 11162.87, + "end": 11162.94, + "probability": 0.0276 + }, + { + "start": 11163.2, + "end": 11166.86, + "probability": 0.8879 + }, + { + "start": 11167.26, + "end": 11170.08, + "probability": 0.991 + }, + { + "start": 11170.16, + "end": 11172.04, + "probability": 0.7049 + }, + { + "start": 11172.22, + "end": 11176.44, + "probability": 0.9951 + }, + { + "start": 11176.56, + "end": 11178.2, + "probability": 0.9873 + }, + { + "start": 11179.18, + "end": 11182.17, + "probability": 0.3844 + }, + { + "start": 11182.6, + "end": 11184.62, + "probability": 0.26 + }, + { + "start": 11184.74, + "end": 11186.14, + "probability": 0.9256 + }, + { + "start": 11186.14, + "end": 11187.44, + "probability": 0.6477 + }, + { + "start": 11187.62, + "end": 11189.94, + "probability": 0.9436 + }, + { + "start": 11190.16, + "end": 11191.64, + "probability": 0.7222 + }, + { + "start": 11191.66, + "end": 11193.44, + "probability": 0.6221 + }, + { + "start": 11193.54, + "end": 11195.12, + "probability": 0.6332 + }, + { + "start": 11195.4, + "end": 11195.4, + "probability": 0.407 + }, + { + "start": 11196.0, + "end": 11199.02, + "probability": 0.9937 + }, + { + "start": 11199.54, + "end": 11202.94, + "probability": 0.9819 + }, + { + "start": 11203.7, + "end": 11203.7, + "probability": 0.5144 + }, + { + "start": 11203.7, + "end": 11206.06, + "probability": 0.7002 + }, + { + "start": 11206.53, + "end": 11206.6, + "probability": 0.0847 + }, + { + "start": 11206.78, + "end": 11210.96, + "probability": 0.8649 + }, + { + "start": 11211.37, + "end": 11213.62, + "probability": 0.1138 + }, + { + "start": 11213.62, + "end": 11213.62, + "probability": 0.1065 + }, + { + "start": 11213.62, + "end": 11213.76, + "probability": 0.0493 + }, + { + "start": 11213.78, + "end": 11217.26, + "probability": 0.7812 + }, + { + "start": 11217.64, + "end": 11217.92, + "probability": 0.4541 + }, + { + "start": 11217.92, + "end": 11220.6, + "probability": 0.8997 + }, + { + "start": 11220.98, + "end": 11222.08, + "probability": 0.8885 + }, + { + "start": 11222.3, + "end": 11224.12, + "probability": 0.9973 + }, + { + "start": 11224.48, + "end": 11226.4, + "probability": 0.9885 + }, + { + "start": 11226.46, + "end": 11230.2, + "probability": 0.9949 + }, + { + "start": 11232.06, + "end": 11232.58, + "probability": 0.4488 + }, + { + "start": 11233.46, + "end": 11237.24, + "probability": 0.9958 + }, + { + "start": 11237.42, + "end": 11238.82, + "probability": 0.8607 + }, + { + "start": 11239.28, + "end": 11242.42, + "probability": 0.9921 + }, + { + "start": 11243.04, + "end": 11245.54, + "probability": 0.9559 + }, + { + "start": 11246.04, + "end": 11247.08, + "probability": 0.954 + }, + { + "start": 11247.52, + "end": 11249.5, + "probability": 0.9872 + }, + { + "start": 11249.78, + "end": 11251.18, + "probability": 0.9937 + }, + { + "start": 11251.42, + "end": 11255.24, + "probability": 0.7773 + }, + { + "start": 11255.82, + "end": 11258.86, + "probability": 0.9695 + }, + { + "start": 11259.4, + "end": 11261.4, + "probability": 0.6842 + }, + { + "start": 11261.92, + "end": 11266.1, + "probability": 0.9834 + }, + { + "start": 11266.82, + "end": 11269.18, + "probability": 0.943 + }, + { + "start": 11269.3, + "end": 11269.86, + "probability": 0.5408 + }, + { + "start": 11270.48, + "end": 11273.65, + "probability": 0.9873 + }, + { + "start": 11274.0, + "end": 11275.84, + "probability": 0.8072 + }, + { + "start": 11276.08, + "end": 11277.74, + "probability": 0.8634 + }, + { + "start": 11278.04, + "end": 11278.88, + "probability": 0.912 + }, + { + "start": 11279.24, + "end": 11282.26, + "probability": 0.9279 + }, + { + "start": 11282.34, + "end": 11283.48, + "probability": 0.9783 + }, + { + "start": 11283.78, + "end": 11287.42, + "probability": 0.9957 + }, + { + "start": 11287.58, + "end": 11289.32, + "probability": 0.9974 + }, + { + "start": 11289.62, + "end": 11290.74, + "probability": 0.9681 + }, + { + "start": 11291.06, + "end": 11293.12, + "probability": 0.9956 + }, + { + "start": 11293.88, + "end": 11296.12, + "probability": 0.8815 + }, + { + "start": 11297.02, + "end": 11297.66, + "probability": 0.9291 + }, + { + "start": 11298.02, + "end": 11300.6, + "probability": 0.994 + }, + { + "start": 11300.86, + "end": 11302.46, + "probability": 0.9984 + }, + { + "start": 11302.78, + "end": 11307.74, + "probability": 0.9904 + }, + { + "start": 11308.77, + "end": 11311.58, + "probability": 0.991 + }, + { + "start": 11313.2, + "end": 11314.5, + "probability": 0.9368 + }, + { + "start": 11315.08, + "end": 11316.78, + "probability": 0.95 + }, + { + "start": 11317.26, + "end": 11319.98, + "probability": 0.9884 + }, + { + "start": 11320.22, + "end": 11320.62, + "probability": 0.5607 + }, + { + "start": 11320.66, + "end": 11321.3, + "probability": 0.9713 + }, + { + "start": 11321.4, + "end": 11326.46, + "probability": 0.9688 + }, + { + "start": 11326.58, + "end": 11330.66, + "probability": 0.9979 + }, + { + "start": 11330.66, + "end": 11335.96, + "probability": 0.9961 + }, + { + "start": 11336.06, + "end": 11340.34, + "probability": 0.998 + }, + { + "start": 11340.34, + "end": 11344.56, + "probability": 0.9896 + }, + { + "start": 11344.88, + "end": 11345.76, + "probability": 0.9299 + }, + { + "start": 11346.12, + "end": 11346.98, + "probability": 0.5159 + }, + { + "start": 11347.28, + "end": 11348.68, + "probability": 0.988 + }, + { + "start": 11349.12, + "end": 11350.98, + "probability": 0.9804 + }, + { + "start": 11351.24, + "end": 11353.96, + "probability": 0.9494 + }, + { + "start": 11354.28, + "end": 11357.16, + "probability": 0.9988 + }, + { + "start": 11357.16, + "end": 11360.6, + "probability": 0.9514 + }, + { + "start": 11361.14, + "end": 11363.18, + "probability": 0.9872 + }, + { + "start": 11367.07, + "end": 11369.56, + "probability": 0.9971 + }, + { + "start": 11369.92, + "end": 11371.12, + "probability": 0.7194 + }, + { + "start": 11371.86, + "end": 11373.34, + "probability": 0.8504 + }, + { + "start": 11373.4, + "end": 11375.12, + "probability": 0.7866 + }, + { + "start": 11375.94, + "end": 11376.88, + "probability": 0.9955 + }, + { + "start": 11381.02, + "end": 11385.22, + "probability": 0.9727 + }, + { + "start": 11385.22, + "end": 11391.54, + "probability": 0.998 + }, + { + "start": 11392.06, + "end": 11396.26, + "probability": 0.8482 + }, + { + "start": 11396.98, + "end": 11398.34, + "probability": 0.9086 + }, + { + "start": 11398.52, + "end": 11399.8, + "probability": 0.8202 + }, + { + "start": 11400.2, + "end": 11401.94, + "probability": 0.5745 + }, + { + "start": 11402.06, + "end": 11403.5, + "probability": 0.9961 + }, + { + "start": 11403.94, + "end": 11409.68, + "probability": 0.9915 + }, + { + "start": 11409.92, + "end": 11414.01, + "probability": 0.9897 + }, + { + "start": 11414.14, + "end": 11415.78, + "probability": 0.8942 + }, + { + "start": 11416.28, + "end": 11421.16, + "probability": 0.9944 + }, + { + "start": 11421.5, + "end": 11422.93, + "probability": 0.8585 + }, + { + "start": 11423.44, + "end": 11423.98, + "probability": 0.9103 + }, + { + "start": 11424.4, + "end": 11428.64, + "probability": 0.982 + }, + { + "start": 11428.7, + "end": 11429.9, + "probability": 0.9786 + }, + { + "start": 11430.88, + "end": 11435.44, + "probability": 0.9902 + }, + { + "start": 11435.84, + "end": 11437.26, + "probability": 0.9478 + }, + { + "start": 11438.08, + "end": 11439.82, + "probability": 0.9375 + }, + { + "start": 11440.26, + "end": 11442.1, + "probability": 0.4925 + }, + { + "start": 11442.24, + "end": 11443.72, + "probability": 0.7794 + }, + { + "start": 11443.76, + "end": 11444.62, + "probability": 0.7564 + }, + { + "start": 11445.36, + "end": 11446.94, + "probability": 0.6172 + }, + { + "start": 11447.54, + "end": 11448.76, + "probability": 0.7333 + }, + { + "start": 11449.18, + "end": 11450.68, + "probability": 0.9866 + }, + { + "start": 11451.62, + "end": 11455.4, + "probability": 0.9297 + }, + { + "start": 11455.94, + "end": 11456.68, + "probability": 0.7323 + }, + { + "start": 11457.74, + "end": 11460.16, + "probability": 0.9995 + }, + { + "start": 11460.52, + "end": 11461.96, + "probability": 0.9893 + }, + { + "start": 11462.56, + "end": 11467.28, + "probability": 0.9733 + }, + { + "start": 11467.28, + "end": 11471.4, + "probability": 0.9954 + }, + { + "start": 11471.76, + "end": 11475.58, + "probability": 0.979 + }, + { + "start": 11476.32, + "end": 11477.7, + "probability": 0.9995 + }, + { + "start": 11478.66, + "end": 11479.56, + "probability": 0.6924 + }, + { + "start": 11480.02, + "end": 11480.96, + "probability": 0.8902 + }, + { + "start": 11481.04, + "end": 11484.64, + "probability": 0.9423 + }, + { + "start": 11485.12, + "end": 11486.64, + "probability": 0.9805 + }, + { + "start": 11487.26, + "end": 11491.22, + "probability": 0.9839 + }, + { + "start": 11491.98, + "end": 11492.8, + "probability": 0.7659 + }, + { + "start": 11493.98, + "end": 11495.68, + "probability": 0.577 + }, + { + "start": 11496.14, + "end": 11496.77, + "probability": 0.8222 + }, + { + "start": 11497.04, + "end": 11497.9, + "probability": 0.6384 + }, + { + "start": 11497.98, + "end": 11498.48, + "probability": 0.9749 + }, + { + "start": 11498.94, + "end": 11501.08, + "probability": 0.9512 + }, + { + "start": 11501.32, + "end": 11502.04, + "probability": 0.9817 + }, + { + "start": 11503.06, + "end": 11506.06, + "probability": 0.9893 + }, + { + "start": 11506.62, + "end": 11508.3, + "probability": 0.9438 + }, + { + "start": 11508.88, + "end": 11511.56, + "probability": 0.8772 + }, + { + "start": 11511.98, + "end": 11517.4, + "probability": 0.994 + }, + { + "start": 11517.84, + "end": 11518.82, + "probability": 0.8885 + }, + { + "start": 11519.22, + "end": 11521.92, + "probability": 0.9957 + }, + { + "start": 11522.56, + "end": 11525.78, + "probability": 0.6474 + }, + { + "start": 11525.94, + "end": 11526.96, + "probability": 0.694 + }, + { + "start": 11527.64, + "end": 11530.57, + "probability": 0.9579 + }, + { + "start": 11533.14, + "end": 11536.24, + "probability": 0.9211 + }, + { + "start": 11537.24, + "end": 11542.46, + "probability": 0.9907 + }, + { + "start": 11542.7, + "end": 11543.61, + "probability": 0.7161 + }, + { + "start": 11544.54, + "end": 11549.0, + "probability": 0.9048 + }, + { + "start": 11549.28, + "end": 11551.84, + "probability": 0.7571 + }, + { + "start": 11551.94, + "end": 11553.82, + "probability": 0.9495 + }, + { + "start": 11554.34, + "end": 11557.1, + "probability": 0.939 + }, + { + "start": 11557.16, + "end": 11558.1, + "probability": 0.9514 + }, + { + "start": 11558.12, + "end": 11560.06, + "probability": 0.9797 + }, + { + "start": 11560.44, + "end": 11562.06, + "probability": 0.8442 + }, + { + "start": 11562.42, + "end": 11567.34, + "probability": 0.9927 + }, + { + "start": 11568.0, + "end": 11569.28, + "probability": 0.3938 + }, + { + "start": 11569.76, + "end": 11573.08, + "probability": 0.8872 + }, + { + "start": 11573.38, + "end": 11575.06, + "probability": 0.9551 + }, + { + "start": 11575.76, + "end": 11578.76, + "probability": 0.9937 + }, + { + "start": 11579.22, + "end": 11582.56, + "probability": 0.9679 + }, + { + "start": 11582.96, + "end": 11587.52, + "probability": 0.9966 + }, + { + "start": 11590.4, + "end": 11596.32, + "probability": 0.998 + }, + { + "start": 11596.38, + "end": 11600.44, + "probability": 0.9992 + }, + { + "start": 11600.96, + "end": 11608.48, + "probability": 0.8952 + }, + { + "start": 11609.04, + "end": 11611.82, + "probability": 0.917 + }, + { + "start": 11612.58, + "end": 11614.38, + "probability": 0.9963 + }, + { + "start": 11614.92, + "end": 11621.42, + "probability": 0.9124 + }, + { + "start": 11621.42, + "end": 11625.9, + "probability": 0.9928 + }, + { + "start": 11625.9, + "end": 11631.54, + "probability": 0.9948 + }, + { + "start": 11631.88, + "end": 11634.52, + "probability": 0.9606 + }, + { + "start": 11635.14, + "end": 11636.78, + "probability": 0.8677 + }, + { + "start": 11636.84, + "end": 11640.12, + "probability": 0.881 + }, + { + "start": 11640.26, + "end": 11643.04, + "probability": 0.9632 + }, + { + "start": 11643.58, + "end": 11644.33, + "probability": 0.9753 + }, + { + "start": 11645.18, + "end": 11649.4, + "probability": 0.984 + }, + { + "start": 11649.66, + "end": 11651.72, + "probability": 0.9905 + }, + { + "start": 11653.16, + "end": 11657.82, + "probability": 0.9956 + }, + { + "start": 11658.16, + "end": 11660.34, + "probability": 0.9811 + }, + { + "start": 11660.64, + "end": 11663.02, + "probability": 0.9404 + }, + { + "start": 11663.3, + "end": 11664.96, + "probability": 0.9495 + }, + { + "start": 11665.04, + "end": 11666.1, + "probability": 0.9009 + }, + { + "start": 11666.8, + "end": 11668.42, + "probability": 0.9824 + }, + { + "start": 11669.04, + "end": 11671.76, + "probability": 0.9988 + }, + { + "start": 11672.28, + "end": 11673.08, + "probability": 0.9198 + }, + { + "start": 11673.68, + "end": 11675.12, + "probability": 0.9692 + }, + { + "start": 11675.76, + "end": 11679.18, + "probability": 0.6995 + }, + { + "start": 11679.5, + "end": 11683.84, + "probability": 0.9543 + }, + { + "start": 11684.58, + "end": 11685.38, + "probability": 0.9029 + }, + { + "start": 11685.9, + "end": 11687.66, + "probability": 0.898 + }, + { + "start": 11688.24, + "end": 11690.54, + "probability": 0.9597 + }, + { + "start": 11691.46, + "end": 11695.76, + "probability": 0.9959 + }, + { + "start": 11696.28, + "end": 11697.64, + "probability": 0.8896 + }, + { + "start": 11698.04, + "end": 11699.06, + "probability": 0.9546 + }, + { + "start": 11699.56, + "end": 11704.44, + "probability": 0.9389 + }, + { + "start": 11704.56, + "end": 11708.58, + "probability": 0.9863 + }, + { + "start": 11709.0, + "end": 11711.0, + "probability": 0.7534 + }, + { + "start": 11711.32, + "end": 11712.54, + "probability": 0.8366 + }, + { + "start": 11713.26, + "end": 11714.86, + "probability": 0.9869 + }, + { + "start": 11715.2, + "end": 11716.38, + "probability": 0.8962 + }, + { + "start": 11716.86, + "end": 11718.5, + "probability": 0.7316 + }, + { + "start": 11719.52, + "end": 11721.48, + "probability": 0.8763 + }, + { + "start": 11721.64, + "end": 11722.6, + "probability": 0.8823 + }, + { + "start": 11722.94, + "end": 11724.54, + "probability": 0.9692 + }, + { + "start": 11724.88, + "end": 11731.04, + "probability": 0.9973 + }, + { + "start": 11731.44, + "end": 11732.74, + "probability": 0.7566 + }, + { + "start": 11733.16, + "end": 11736.42, + "probability": 0.8225 + }, + { + "start": 11736.62, + "end": 11738.78, + "probability": 0.9464 + }, + { + "start": 11739.52, + "end": 11742.02, + "probability": 0.5378 + }, + { + "start": 11742.42, + "end": 11744.78, + "probability": 0.9902 + }, + { + "start": 11745.2, + "end": 11750.44, + "probability": 0.9937 + }, + { + "start": 11751.2, + "end": 11754.04, + "probability": 0.9968 + }, + { + "start": 11754.54, + "end": 11757.46, + "probability": 0.979 + }, + { + "start": 11758.02, + "end": 11761.4, + "probability": 0.8487 + }, + { + "start": 11761.94, + "end": 11763.44, + "probability": 0.8937 + }, + { + "start": 11763.76, + "end": 11764.15, + "probability": 0.9984 + }, + { + "start": 11765.26, + "end": 11768.26, + "probability": 0.8987 + }, + { + "start": 11768.38, + "end": 11772.24, + "probability": 0.9778 + }, + { + "start": 11772.56, + "end": 11774.48, + "probability": 0.9907 + }, + { + "start": 11774.8, + "end": 11775.39, + "probability": 0.7624 + }, + { + "start": 11776.06, + "end": 11778.3, + "probability": 0.9945 + }, + { + "start": 11778.44, + "end": 11781.76, + "probability": 0.9966 + }, + { + "start": 11782.22, + "end": 11788.6, + "probability": 0.9915 + }, + { + "start": 11789.1, + "end": 11795.9, + "probability": 0.9995 + }, + { + "start": 11796.5, + "end": 11800.4, + "probability": 0.9964 + }, + { + "start": 11800.92, + "end": 11803.4, + "probability": 0.741 + }, + { + "start": 11803.44, + "end": 11808.98, + "probability": 0.9579 + }, + { + "start": 11809.48, + "end": 11812.82, + "probability": 0.9956 + }, + { + "start": 11812.82, + "end": 11818.44, + "probability": 0.9955 + }, + { + "start": 11818.54, + "end": 11820.44, + "probability": 0.9987 + }, + { + "start": 11821.16, + "end": 11822.86, + "probability": 0.965 + }, + { + "start": 11825.7, + "end": 11826.98, + "probability": 0.2734 + }, + { + "start": 11827.3, + "end": 11832.56, + "probability": 0.9777 + }, + { + "start": 11832.76, + "end": 11836.96, + "probability": 0.6619 + }, + { + "start": 11837.06, + "end": 11841.32, + "probability": 0.9951 + }, + { + "start": 11841.36, + "end": 11843.6, + "probability": 0.9763 + }, + { + "start": 11843.76, + "end": 11848.23, + "probability": 0.9183 + }, + { + "start": 11849.14, + "end": 11852.42, + "probability": 0.9907 + }, + { + "start": 11853.0, + "end": 11856.72, + "probability": 0.7935 + }, + { + "start": 11856.72, + "end": 11860.66, + "probability": 0.9973 + }, + { + "start": 11861.06, + "end": 11864.74, + "probability": 0.935 + }, + { + "start": 11865.42, + "end": 11866.3, + "probability": 0.7335 + }, + { + "start": 11866.88, + "end": 11868.28, + "probability": 0.9597 + }, + { + "start": 11868.68, + "end": 11869.88, + "probability": 0.9888 + }, + { + "start": 11870.28, + "end": 11872.78, + "probability": 0.9966 + }, + { + "start": 11873.08, + "end": 11874.64, + "probability": 0.9316 + }, + { + "start": 11874.94, + "end": 11877.84, + "probability": 0.9953 + }, + { + "start": 11878.24, + "end": 11881.94, + "probability": 0.9641 + }, + { + "start": 11882.6, + "end": 11883.68, + "probability": 0.7804 + }, + { + "start": 11883.78, + "end": 11885.0, + "probability": 0.7747 + }, + { + "start": 11885.4, + "end": 11889.58, + "probability": 0.9971 + }, + { + "start": 11890.1, + "end": 11894.8, + "probability": 0.9971 + }, + { + "start": 11896.12, + "end": 11901.34, + "probability": 0.9456 + }, + { + "start": 11901.4, + "end": 11902.06, + "probability": 0.8865 + }, + { + "start": 11902.28, + "end": 11902.8, + "probability": 0.7074 + }, + { + "start": 11902.86, + "end": 11903.66, + "probability": 0.8194 + }, + { + "start": 11904.08, + "end": 11908.02, + "probability": 0.9971 + }, + { + "start": 11908.24, + "end": 11909.49, + "probability": 0.9375 + }, + { + "start": 11910.14, + "end": 11911.92, + "probability": 0.6782 + }, + { + "start": 11912.04, + "end": 11912.98, + "probability": 0.962 + }, + { + "start": 11913.44, + "end": 11915.28, + "probability": 0.9459 + }, + { + "start": 11915.4, + "end": 11917.22, + "probability": 0.9828 + }, + { + "start": 11917.48, + "end": 11919.4, + "probability": 0.9124 + }, + { + "start": 11919.74, + "end": 11923.36, + "probability": 0.9955 + }, + { + "start": 11923.36, + "end": 11926.64, + "probability": 0.9989 + }, + { + "start": 11927.84, + "end": 11935.76, + "probability": 0.98 + }, + { + "start": 11935.86, + "end": 11938.8, + "probability": 0.9705 + }, + { + "start": 11938.94, + "end": 11939.6, + "probability": 0.4153 + }, + { + "start": 11939.98, + "end": 11941.38, + "probability": 0.7308 + }, + { + "start": 11942.04, + "end": 11944.08, + "probability": 0.9953 + }, + { + "start": 11944.28, + "end": 11946.84, + "probability": 0.9956 + }, + { + "start": 11947.38, + "end": 11950.8, + "probability": 0.9927 + }, + { + "start": 11951.48, + "end": 11958.04, + "probability": 0.9907 + }, + { + "start": 11959.12, + "end": 11960.64, + "probability": 0.9873 + }, + { + "start": 11960.78, + "end": 11963.22, + "probability": 0.9902 + }, + { + "start": 11963.58, + "end": 11964.89, + "probability": 0.6635 + }, + { + "start": 11966.18, + "end": 11966.74, + "probability": 0.4411 + }, + { + "start": 11967.68, + "end": 11971.16, + "probability": 0.985 + }, + { + "start": 11971.48, + "end": 11972.94, + "probability": 0.8547 + }, + { + "start": 11973.3, + "end": 11974.94, + "probability": 0.9403 + }, + { + "start": 11975.4, + "end": 11976.22, + "probability": 0.7899 + }, + { + "start": 11976.82, + "end": 11978.06, + "probability": 0.782 + }, + { + "start": 11978.16, + "end": 11980.59, + "probability": 0.999 + }, + { + "start": 11981.0, + "end": 11982.58, + "probability": 0.9291 + }, + { + "start": 11983.78, + "end": 11986.94, + "probability": 0.8456 + }, + { + "start": 11987.56, + "end": 11989.08, + "probability": 0.9941 + }, + { + "start": 11989.38, + "end": 11990.24, + "probability": 0.995 + }, + { + "start": 11990.56, + "end": 11991.6, + "probability": 0.8308 + }, + { + "start": 11991.76, + "end": 11991.8, + "probability": 0.421 + }, + { + "start": 11991.8, + "end": 11993.42, + "probability": 0.8973 + }, + { + "start": 11993.48, + "end": 11998.24, + "probability": 0.9817 + }, + { + "start": 11998.82, + "end": 12001.98, + "probability": 0.9487 + }, + { + "start": 12002.1, + "end": 12002.4, + "probability": 0.8829 + }, + { + "start": 12004.12, + "end": 12006.58, + "probability": 0.9844 + }, + { + "start": 12007.24, + "end": 12008.38, + "probability": 0.9941 + }, + { + "start": 12008.52, + "end": 12014.34, + "probability": 0.9868 + }, + { + "start": 12014.44, + "end": 12015.88, + "probability": 0.9465 + }, + { + "start": 12016.24, + "end": 12017.6, + "probability": 0.944 + }, + { + "start": 12017.66, + "end": 12019.96, + "probability": 0.8145 + }, + { + "start": 12020.0, + "end": 12020.86, + "probability": 0.9026 + }, + { + "start": 12021.04, + "end": 12021.7, + "probability": 0.9827 + }, + { + "start": 12022.32, + "end": 12024.12, + "probability": 0.9949 + }, + { + "start": 12024.64, + "end": 12028.96, + "probability": 0.9473 + }, + { + "start": 12029.24, + "end": 12032.0, + "probability": 0.9976 + }, + { + "start": 12032.52, + "end": 12034.62, + "probability": 0.8753 + }, + { + "start": 12035.26, + "end": 12038.54, + "probability": 0.9215 + }, + { + "start": 12039.36, + "end": 12040.26, + "probability": 0.8651 + }, + { + "start": 12040.48, + "end": 12042.22, + "probability": 0.7495 + }, + { + "start": 12042.28, + "end": 12042.3, + "probability": 0.5952 + }, + { + "start": 12042.4, + "end": 12044.14, + "probability": 0.9797 + }, + { + "start": 12044.42, + "end": 12046.96, + "probability": 0.8389 + }, + { + "start": 12047.48, + "end": 12047.91, + "probability": 0.947 + }, + { + "start": 12048.54, + "end": 12050.8, + "probability": 0.9839 + }, + { + "start": 12050.84, + "end": 12053.3, + "probability": 0.7548 + }, + { + "start": 12054.12, + "end": 12056.82, + "probability": 0.5994 + }, + { + "start": 12057.52, + "end": 12060.24, + "probability": 0.9951 + }, + { + "start": 12060.7, + "end": 12062.64, + "probability": 0.9624 + }, + { + "start": 12062.76, + "end": 12063.48, + "probability": 0.9344 + }, + { + "start": 12063.94, + "end": 12065.86, + "probability": 0.9858 + }, + { + "start": 12066.26, + "end": 12066.88, + "probability": 0.7629 + }, + { + "start": 12067.04, + "end": 12068.54, + "probability": 0.9805 + }, + { + "start": 12069.04, + "end": 12072.3, + "probability": 0.7784 + }, + { + "start": 12072.66, + "end": 12073.08, + "probability": 0.6558 + }, + { + "start": 12073.2, + "end": 12078.54, + "probability": 0.9109 + }, + { + "start": 12078.64, + "end": 12080.44, + "probability": 0.8177 + }, + { + "start": 12080.6, + "end": 12080.7, + "probability": 0.8477 + }, + { + "start": 12080.78, + "end": 12081.44, + "probability": 0.9107 + }, + { + "start": 12081.8, + "end": 12082.88, + "probability": 0.9534 + }, + { + "start": 12083.02, + "end": 12084.16, + "probability": 0.7175 + }, + { + "start": 12084.72, + "end": 12085.76, + "probability": 0.899 + }, + { + "start": 12085.92, + "end": 12087.64, + "probability": 0.9408 + }, + { + "start": 12088.06, + "end": 12090.26, + "probability": 0.9304 + }, + { + "start": 12090.34, + "end": 12090.98, + "probability": 0.7543 + }, + { + "start": 12091.3, + "end": 12091.84, + "probability": 0.7622 + }, + { + "start": 12092.16, + "end": 12092.96, + "probability": 0.7716 + }, + { + "start": 12093.1, + "end": 12094.19, + "probability": 0.9661 + }, + { + "start": 12094.74, + "end": 12096.02, + "probability": 0.8879 + }, + { + "start": 12096.3, + "end": 12097.9, + "probability": 0.4864 + }, + { + "start": 12098.0, + "end": 12098.92, + "probability": 0.8987 + }, + { + "start": 12100.84, + "end": 12102.82, + "probability": 0.9751 + }, + { + "start": 12102.84, + "end": 12104.74, + "probability": 0.9543 + }, + { + "start": 12104.86, + "end": 12105.88, + "probability": 0.939 + }, + { + "start": 12106.4, + "end": 12110.78, + "probability": 0.9567 + }, + { + "start": 12110.88, + "end": 12111.92, + "probability": 0.9971 + }, + { + "start": 12111.96, + "end": 12113.55, + "probability": 0.9968 + }, + { + "start": 12114.36, + "end": 12115.38, + "probability": 0.9411 + }, + { + "start": 12115.46, + "end": 12116.06, + "probability": 0.4715 + }, + { + "start": 12116.06, + "end": 12119.3, + "probability": 0.9777 + }, + { + "start": 12119.74, + "end": 12120.7, + "probability": 0.8225 + }, + { + "start": 12120.8, + "end": 12121.78, + "probability": 0.896 + }, + { + "start": 12122.08, + "end": 12124.38, + "probability": 0.8566 + }, + { + "start": 12124.74, + "end": 12125.3, + "probability": 0.6829 + }, + { + "start": 12125.66, + "end": 12127.34, + "probability": 0.9607 + }, + { + "start": 12127.6, + "end": 12128.14, + "probability": 0.9723 + }, + { + "start": 12128.28, + "end": 12128.68, + "probability": 0.972 + }, + { + "start": 12128.74, + "end": 12129.36, + "probability": 0.7397 + }, + { + "start": 12129.64, + "end": 12132.3, + "probability": 0.9768 + }, + { + "start": 12132.56, + "end": 12135.08, + "probability": 0.986 + }, + { + "start": 12135.62, + "end": 12136.18, + "probability": 0.6473 + }, + { + "start": 12136.3, + "end": 12137.46, + "probability": 0.5841 + }, + { + "start": 12137.78, + "end": 12139.5, + "probability": 0.9945 + }, + { + "start": 12139.76, + "end": 12140.48, + "probability": 0.9863 + }, + { + "start": 12140.68, + "end": 12142.16, + "probability": 0.9975 + }, + { + "start": 12143.38, + "end": 12144.62, + "probability": 0.9949 + }, + { + "start": 12145.16, + "end": 12147.84, + "probability": 0.9909 + }, + { + "start": 12148.3, + "end": 12153.52, + "probability": 0.7283 + }, + { + "start": 12153.62, + "end": 12158.14, + "probability": 0.9834 + }, + { + "start": 12158.74, + "end": 12160.48, + "probability": 0.922 + }, + { + "start": 12160.9, + "end": 12164.86, + "probability": 0.9473 + }, + { + "start": 12165.18, + "end": 12165.86, + "probability": 0.6779 + }, + { + "start": 12166.28, + "end": 12167.06, + "probability": 0.9217 + }, + { + "start": 12167.28, + "end": 12171.32, + "probability": 0.9557 + }, + { + "start": 12171.72, + "end": 12174.66, + "probability": 0.9214 + }, + { + "start": 12174.66, + "end": 12177.2, + "probability": 0.9904 + }, + { + "start": 12177.96, + "end": 12179.86, + "probability": 0.8567 + }, + { + "start": 12180.66, + "end": 12181.1, + "probability": 0.9448 + }, + { + "start": 12181.52, + "end": 12184.48, + "probability": 0.8372 + }, + { + "start": 12184.54, + "end": 12185.66, + "probability": 0.9715 + }, + { + "start": 12186.12, + "end": 12188.28, + "probability": 0.9904 + }, + { + "start": 12188.28, + "end": 12188.3, + "probability": 0.6057 + }, + { + "start": 12188.5, + "end": 12188.64, + "probability": 0.3927 + }, + { + "start": 12188.86, + "end": 12189.04, + "probability": 0.2969 + }, + { + "start": 12189.2, + "end": 12190.62, + "probability": 0.8606 + }, + { + "start": 12191.08, + "end": 12192.52, + "probability": 0.8649 + }, + { + "start": 12193.12, + "end": 12195.58, + "probability": 0.8599 + }, + { + "start": 12195.92, + "end": 12196.85, + "probability": 0.4645 + }, + { + "start": 12197.34, + "end": 12200.08, + "probability": 0.9915 + }, + { + "start": 12200.24, + "end": 12201.42, + "probability": 0.7954 + }, + { + "start": 12201.54, + "end": 12202.7, + "probability": 0.9987 + }, + { + "start": 12203.4, + "end": 12204.7, + "probability": 0.7558 + }, + { + "start": 12205.54, + "end": 12211.16, + "probability": 0.9557 + }, + { + "start": 12211.16, + "end": 12214.42, + "probability": 0.802 + }, + { + "start": 12214.52, + "end": 12218.9, + "probability": 0.8043 + }, + { + "start": 12219.08, + "end": 12220.5, + "probability": 0.9668 + }, + { + "start": 12221.22, + "end": 12222.04, + "probability": 0.8596 + }, + { + "start": 12222.46, + "end": 12224.32, + "probability": 0.7776 + }, + { + "start": 12224.4, + "end": 12225.88, + "probability": 0.9971 + }, + { + "start": 12226.46, + "end": 12227.67, + "probability": 0.9539 + }, + { + "start": 12228.1, + "end": 12230.84, + "probability": 0.951 + }, + { + "start": 12231.7, + "end": 12232.2, + "probability": 0.8532 + }, + { + "start": 12232.34, + "end": 12232.9, + "probability": 0.9186 + }, + { + "start": 12233.06, + "end": 12233.64, + "probability": 0.8542 + }, + { + "start": 12233.68, + "end": 12235.18, + "probability": 0.9221 + }, + { + "start": 12235.36, + "end": 12238.08, + "probability": 0.9256 + }, + { + "start": 12238.56, + "end": 12240.86, + "probability": 0.9961 + }, + { + "start": 12240.96, + "end": 12242.32, + "probability": 0.9748 + }, + { + "start": 12242.36, + "end": 12244.0, + "probability": 0.9895 + }, + { + "start": 12244.44, + "end": 12245.38, + "probability": 0.998 + }, + { + "start": 12246.36, + "end": 12249.68, + "probability": 0.9911 + }, + { + "start": 12249.82, + "end": 12250.42, + "probability": 0.5894 + }, + { + "start": 12250.52, + "end": 12250.82, + "probability": 0.6129 + }, + { + "start": 12251.3, + "end": 12252.04, + "probability": 0.7553 + }, + { + "start": 12252.16, + "end": 12254.26, + "probability": 0.823 + }, + { + "start": 12254.72, + "end": 12255.64, + "probability": 0.9561 + }, + { + "start": 12255.7, + "end": 12256.18, + "probability": 0.8666 + }, + { + "start": 12256.28, + "end": 12261.1, + "probability": 0.9839 + }, + { + "start": 12261.16, + "end": 12262.98, + "probability": 0.994 + }, + { + "start": 12264.08, + "end": 12268.64, + "probability": 0.9956 + }, + { + "start": 12270.02, + "end": 12270.66, + "probability": 0.813 + }, + { + "start": 12271.32, + "end": 12275.96, + "probability": 0.998 + }, + { + "start": 12275.96, + "end": 12279.98, + "probability": 0.9961 + }, + { + "start": 12280.54, + "end": 12281.66, + "probability": 0.802 + }, + { + "start": 12282.06, + "end": 12287.41, + "probability": 0.9961 + }, + { + "start": 12287.84, + "end": 12290.24, + "probability": 0.9878 + }, + { + "start": 12290.76, + "end": 12292.11, + "probability": 0.7543 + }, + { + "start": 12292.56, + "end": 12294.62, + "probability": 0.9807 + }, + { + "start": 12294.96, + "end": 12295.86, + "probability": 0.7863 + }, + { + "start": 12296.68, + "end": 12300.08, + "probability": 0.9411 + }, + { + "start": 12300.44, + "end": 12300.98, + "probability": 0.8325 + }, + { + "start": 12301.46, + "end": 12301.98, + "probability": 0.9719 + }, + { + "start": 12302.58, + "end": 12303.64, + "probability": 0.9769 + }, + { + "start": 12304.2, + "end": 12305.02, + "probability": 0.9447 + }, + { + "start": 12305.78, + "end": 12306.98, + "probability": 0.8969 + }, + { + "start": 12307.28, + "end": 12308.36, + "probability": 0.9575 + }, + { + "start": 12308.78, + "end": 12311.32, + "probability": 0.9958 + }, + { + "start": 12311.86, + "end": 12317.46, + "probability": 0.8993 + }, + { + "start": 12318.46, + "end": 12320.65, + "probability": 0.9685 + }, + { + "start": 12321.12, + "end": 12326.3, + "probability": 0.9977 + }, + { + "start": 12326.9, + "end": 12329.98, + "probability": 0.9695 + }, + { + "start": 12330.16, + "end": 12333.02, + "probability": 0.986 + }, + { + "start": 12333.58, + "end": 12337.58, + "probability": 0.8733 + }, + { + "start": 12338.18, + "end": 12340.06, + "probability": 0.957 + }, + { + "start": 12341.06, + "end": 12348.14, + "probability": 0.8969 + }, + { + "start": 12348.34, + "end": 12349.5, + "probability": 0.8476 + }, + { + "start": 12349.58, + "end": 12351.02, + "probability": 0.9302 + }, + { + "start": 12351.62, + "end": 12353.4, + "probability": 0.9146 + }, + { + "start": 12353.74, + "end": 12355.74, + "probability": 0.9619 + }, + { + "start": 12356.36, + "end": 12359.12, + "probability": 0.8895 + }, + { + "start": 12359.48, + "end": 12359.64, + "probability": 0.7134 + }, + { + "start": 12359.7, + "end": 12360.72, + "probability": 0.9847 + }, + { + "start": 12360.78, + "end": 12363.4, + "probability": 0.8154 + }, + { + "start": 12364.18, + "end": 12365.72, + "probability": 0.991 + }, + { + "start": 12366.28, + "end": 12367.64, + "probability": 0.8182 + }, + { + "start": 12367.96, + "end": 12369.78, + "probability": 0.9537 + }, + { + "start": 12369.88, + "end": 12371.44, + "probability": 0.7796 + }, + { + "start": 12371.5, + "end": 12372.74, + "probability": 0.6574 + }, + { + "start": 12372.8, + "end": 12374.02, + "probability": 0.9677 + }, + { + "start": 12374.54, + "end": 12376.54, + "probability": 0.9299 + }, + { + "start": 12377.06, + "end": 12377.96, + "probability": 0.6658 + }, + { + "start": 12378.6, + "end": 12383.52, + "probability": 0.9397 + }, + { + "start": 12383.68, + "end": 12384.78, + "probability": 0.7516 + }, + { + "start": 12384.96, + "end": 12385.84, + "probability": 0.5078 + }, + { + "start": 12385.84, + "end": 12386.1, + "probability": 0.5131 + }, + { + "start": 12386.26, + "end": 12390.88, + "probability": 0.6021 + }, + { + "start": 12391.4, + "end": 12391.8, + "probability": 0.552 + }, + { + "start": 12392.18, + "end": 12392.94, + "probability": 0.8199 + }, + { + "start": 12393.7, + "end": 12394.92, + "probability": 0.3904 + }, + { + "start": 12394.98, + "end": 12395.46, + "probability": 0.2069 + }, + { + "start": 12395.76, + "end": 12396.54, + "probability": 0.2303 + }, + { + "start": 12397.42, + "end": 12398.48, + "probability": 0.8022 + }, + { + "start": 12398.96, + "end": 12401.92, + "probability": 0.9518 + }, + { + "start": 12402.14, + "end": 12403.64, + "probability": 0.0227 + }, + { + "start": 12404.02, + "end": 12405.88, + "probability": 0.351 + }, + { + "start": 12406.02, + "end": 12408.48, + "probability": 0.2889 + }, + { + "start": 12408.78, + "end": 12411.72, + "probability": 0.369 + }, + { + "start": 12411.76, + "end": 12417.62, + "probability": 0.6729 + }, + { + "start": 12417.64, + "end": 12418.62, + "probability": 0.1439 + }, + { + "start": 12419.94, + "end": 12421.72, + "probability": 0.865 + }, + { + "start": 12421.96, + "end": 12426.0, + "probability": 0.9974 + }, + { + "start": 12426.42, + "end": 12429.62, + "probability": 0.9823 + }, + { + "start": 12429.72, + "end": 12432.16, + "probability": 0.8376 + }, + { + "start": 12432.64, + "end": 12434.06, + "probability": 0.9014 + }, + { + "start": 12435.04, + "end": 12436.24, + "probability": 0.7193 + }, + { + "start": 12436.62, + "end": 12440.14, + "probability": 0.9912 + }, + { + "start": 12440.14, + "end": 12443.24, + "probability": 0.9613 + }, + { + "start": 12443.56, + "end": 12444.68, + "probability": 0.103 + }, + { + "start": 12444.68, + "end": 12445.18, + "probability": 0.147 + }, + { + "start": 12445.2, + "end": 12446.88, + "probability": 0.336 + }, + { + "start": 12446.96, + "end": 12448.22, + "probability": 0.533 + }, + { + "start": 12448.22, + "end": 12448.42, + "probability": 0.3315 + }, + { + "start": 12448.42, + "end": 12449.74, + "probability": 0.5489 + }, + { + "start": 12450.18, + "end": 12451.66, + "probability": 0.9855 + }, + { + "start": 12453.0, + "end": 12454.78, + "probability": 0.7208 + }, + { + "start": 12455.24, + "end": 12456.88, + "probability": 0.3247 + }, + { + "start": 12456.9, + "end": 12456.94, + "probability": 0.3255 + }, + { + "start": 12456.94, + "end": 12458.06, + "probability": 0.9 + }, + { + "start": 12458.36, + "end": 12458.74, + "probability": 0.0964 + }, + { + "start": 12462.28, + "end": 12463.58, + "probability": 0.5787 + }, + { + "start": 12463.63, + "end": 12467.54, + "probability": 0.9956 + }, + { + "start": 12467.7, + "end": 12471.1, + "probability": 0.8605 + }, + { + "start": 12471.22, + "end": 12472.6, + "probability": 0.937 + }, + { + "start": 12473.08, + "end": 12474.4, + "probability": 0.7494 + }, + { + "start": 12474.8, + "end": 12475.88, + "probability": 0.9123 + }, + { + "start": 12476.3, + "end": 12477.0, + "probability": 0.9775 + }, + { + "start": 12477.08, + "end": 12478.16, + "probability": 0.9774 + }, + { + "start": 12478.32, + "end": 12480.76, + "probability": 0.9743 + }, + { + "start": 12481.24, + "end": 12482.72, + "probability": 0.9531 + }, + { + "start": 12483.66, + "end": 12487.96, + "probability": 0.9959 + }, + { + "start": 12488.26, + "end": 12489.46, + "probability": 0.9686 + }, + { + "start": 12490.34, + "end": 12490.94, + "probability": 0.8928 + }, + { + "start": 12491.36, + "end": 12496.56, + "probability": 0.8811 + }, + { + "start": 12497.06, + "end": 12497.54, + "probability": 0.5157 + }, + { + "start": 12498.12, + "end": 12500.86, + "probability": 0.9807 + }, + { + "start": 12501.22, + "end": 12502.7, + "probability": 0.9243 + }, + { + "start": 12502.98, + "end": 12503.28, + "probability": 0.5092 + }, + { + "start": 12503.32, + "end": 12503.88, + "probability": 0.918 + }, + { + "start": 12504.18, + "end": 12507.9, + "probability": 0.9958 + }, + { + "start": 12508.72, + "end": 12509.72, + "probability": 0.9847 + }, + { + "start": 12510.84, + "end": 12511.1, + "probability": 0.5188 + }, + { + "start": 12513.64, + "end": 12517.88, + "probability": 0.8402 + }, + { + "start": 12518.06, + "end": 12521.14, + "probability": 0.9477 + }, + { + "start": 12521.62, + "end": 12522.66, + "probability": 0.8915 + }, + { + "start": 12522.68, + "end": 12524.2, + "probability": 0.9934 + }, + { + "start": 12526.3, + "end": 12527.74, + "probability": 0.0815 + }, + { + "start": 12529.22, + "end": 12533.6, + "probability": 0.604 + }, + { + "start": 12534.4, + "end": 12535.4, + "probability": 0.7137 + }, + { + "start": 12535.48, + "end": 12536.96, + "probability": 0.2923 + }, + { + "start": 12537.96, + "end": 12538.22, + "probability": 0.2137 + }, + { + "start": 12538.22, + "end": 12539.08, + "probability": 0.0229 + }, + { + "start": 12539.08, + "end": 12541.38, + "probability": 0.0306 + }, + { + "start": 12541.78, + "end": 12541.98, + "probability": 0.1215 + }, + { + "start": 12542.82, + "end": 12543.1, + "probability": 0.1461 + }, + { + "start": 12543.9, + "end": 12544.36, + "probability": 0.1504 + }, + { + "start": 12544.36, + "end": 12545.16, + "probability": 0.0474 + }, + { + "start": 12548.1, + "end": 12552.06, + "probability": 0.5665 + }, + { + "start": 12553.9, + "end": 12553.9, + "probability": 0.0394 + }, + { + "start": 12553.9, + "end": 12553.9, + "probability": 0.0989 + }, + { + "start": 12553.9, + "end": 12553.9, + "probability": 0.0643 + }, + { + "start": 12553.9, + "end": 12556.44, + "probability": 0.3623 + }, + { + "start": 12556.44, + "end": 12560.46, + "probability": 0.9264 + }, + { + "start": 12560.96, + "end": 12562.44, + "probability": 0.9529 + }, + { + "start": 12563.04, + "end": 12564.96, + "probability": 0.8381 + }, + { + "start": 12565.42, + "end": 12566.16, + "probability": 0.5622 + }, + { + "start": 12566.66, + "end": 12567.82, + "probability": 0.692 + }, + { + "start": 12568.18, + "end": 12569.72, + "probability": 0.8748 + }, + { + "start": 12570.1, + "end": 12571.9, + "probability": 0.9458 + }, + { + "start": 12572.12, + "end": 12573.84, + "probability": 0.9921 + }, + { + "start": 12574.26, + "end": 12575.05, + "probability": 0.9396 + }, + { + "start": 12577.72, + "end": 12578.18, + "probability": 0.0713 + }, + { + "start": 12578.18, + "end": 12578.18, + "probability": 0.143 + }, + { + "start": 12578.18, + "end": 12578.4, + "probability": 0.175 + }, + { + "start": 12578.72, + "end": 12578.72, + "probability": 0.3476 + }, + { + "start": 12578.72, + "end": 12579.74, + "probability": 0.8375 + }, + { + "start": 12579.82, + "end": 12580.12, + "probability": 0.7777 + }, + { + "start": 12580.14, + "end": 12581.0, + "probability": 0.8644 + }, + { + "start": 12581.22, + "end": 12582.72, + "probability": 0.924 + }, + { + "start": 12582.84, + "end": 12585.36, + "probability": 0.9369 + }, + { + "start": 12585.76, + "end": 12587.0, + "probability": 0.5255 + }, + { + "start": 12587.68, + "end": 12588.3, + "probability": 0.5571 + }, + { + "start": 12588.38, + "end": 12591.04, + "probability": 0.67 + }, + { + "start": 12591.28, + "end": 12593.52, + "probability": 0.3036 + }, + { + "start": 12593.6, + "end": 12594.51, + "probability": 0.862 + }, + { + "start": 12595.94, + "end": 12599.22, + "probability": 0.5773 + }, + { + "start": 12599.54, + "end": 12601.3, + "probability": 0.8186 + }, + { + "start": 12601.44, + "end": 12601.94, + "probability": 0.4047 + }, + { + "start": 12602.04, + "end": 12602.44, + "probability": 0.8232 + }, + { + "start": 12602.44, + "end": 12604.9, + "probability": 0.9928 + }, + { + "start": 12605.38, + "end": 12608.02, + "probability": 0.9731 + }, + { + "start": 12608.52, + "end": 12611.38, + "probability": 0.9951 + }, + { + "start": 12611.62, + "end": 12613.16, + "probability": 0.7056 + }, + { + "start": 12613.3, + "end": 12617.36, + "probability": 0.9819 + }, + { + "start": 12617.72, + "end": 12621.26, + "probability": 0.995 + }, + { + "start": 12621.42, + "end": 12624.56, + "probability": 0.4406 + }, + { + "start": 12624.56, + "end": 12627.28, + "probability": 0.0996 + }, + { + "start": 12627.28, + "end": 12628.24, + "probability": 0.2584 + }, + { + "start": 12628.28, + "end": 12629.18, + "probability": 0.5361 + }, + { + "start": 12629.22, + "end": 12630.25, + "probability": 0.6585 + }, + { + "start": 12630.4, + "end": 12631.94, + "probability": 0.2021 + }, + { + "start": 12631.94, + "end": 12632.43, + "probability": 0.1584 + }, + { + "start": 12634.58, + "end": 12635.42, + "probability": 0.7201 + }, + { + "start": 12635.78, + "end": 12638.04, + "probability": 0.9917 + }, + { + "start": 12638.1, + "end": 12640.36, + "probability": 0.8334 + }, + { + "start": 12640.36, + "end": 12643.12, + "probability": 0.9753 + }, + { + "start": 12643.34, + "end": 12645.44, + "probability": 0.9795 + }, + { + "start": 12645.66, + "end": 12647.86, + "probability": 0.9742 + }, + { + "start": 12647.9, + "end": 12651.76, + "probability": 0.9912 + }, + { + "start": 12651.9, + "end": 12653.16, + "probability": 0.827 + }, + { + "start": 12653.48, + "end": 12660.76, + "probability": 0.9677 + }, + { + "start": 12661.14, + "end": 12665.38, + "probability": 0.9764 + }, + { + "start": 12665.64, + "end": 12668.54, + "probability": 0.9784 + }, + { + "start": 12668.84, + "end": 12670.82, + "probability": 0.9961 + }, + { + "start": 12670.88, + "end": 12671.5, + "probability": 0.6084 + }, + { + "start": 12671.58, + "end": 12676.14, + "probability": 0.9651 + }, + { + "start": 12676.14, + "end": 12681.6, + "probability": 0.9688 + }, + { + "start": 12681.6, + "end": 12684.88, + "probability": 0.988 + }, + { + "start": 12685.06, + "end": 12688.48, + "probability": 0.9821 + }, + { + "start": 12688.48, + "end": 12691.18, + "probability": 0.9876 + }, + { + "start": 12691.26, + "end": 12692.04, + "probability": 0.7121 + }, + { + "start": 12692.14, + "end": 12694.06, + "probability": 0.412 + }, + { + "start": 12694.14, + "end": 12694.68, + "probability": 0.6223 + }, + { + "start": 12694.74, + "end": 12695.18, + "probability": 0.6553 + }, + { + "start": 12695.32, + "end": 12696.9, + "probability": 0.314 + }, + { + "start": 12697.8, + "end": 12701.42, + "probability": 0.6257 + }, + { + "start": 12701.42, + "end": 12703.0, + "probability": 0.7266 + }, + { + "start": 12703.42, + "end": 12705.12, + "probability": 0.3184 + }, + { + "start": 12705.24, + "end": 12706.06, + "probability": 0.7119 + }, + { + "start": 12706.14, + "end": 12708.16, + "probability": 0.905 + }, + { + "start": 12708.48, + "end": 12709.6, + "probability": 0.8604 + }, + { + "start": 12710.22, + "end": 12710.42, + "probability": 0.2371 + }, + { + "start": 12710.68, + "end": 12711.8, + "probability": 0.8799 + }, + { + "start": 12712.0, + "end": 12712.63, + "probability": 0.4546 + }, + { + "start": 12713.36, + "end": 12714.4, + "probability": 0.9214 + }, + { + "start": 12714.46, + "end": 12716.2, + "probability": 0.8379 + }, + { + "start": 12716.38, + "end": 12720.2, + "probability": 0.7444 + }, + { + "start": 12720.2, + "end": 12723.98, + "probability": 0.9495 + }, + { + "start": 12724.12, + "end": 12727.14, + "probability": 0.7643 + }, + { + "start": 12727.34, + "end": 12729.44, + "probability": 0.9583 + }, + { + "start": 12729.58, + "end": 12730.18, + "probability": 0.583 + }, + { + "start": 12730.52, + "end": 12731.58, + "probability": 0.58 + }, + { + "start": 12731.64, + "end": 12736.16, + "probability": 0.9827 + }, + { + "start": 12736.7, + "end": 12740.54, + "probability": 0.9958 + }, + { + "start": 12740.54, + "end": 12744.32, + "probability": 0.9705 + }, + { + "start": 12744.52, + "end": 12745.38, + "probability": 0.7332 + }, + { + "start": 12745.78, + "end": 12746.81, + "probability": 0.4997 + }, + { + "start": 12747.64, + "end": 12750.48, + "probability": 0.5938 + }, + { + "start": 12750.54, + "end": 12750.82, + "probability": 0.2325 + }, + { + "start": 12750.84, + "end": 12754.56, + "probability": 0.7988 + }, + { + "start": 12754.94, + "end": 12759.64, + "probability": 0.7086 + }, + { + "start": 12759.64, + "end": 12761.2, + "probability": 0.873 + }, + { + "start": 12761.2, + "end": 12763.78, + "probability": 0.6646 + }, + { + "start": 12763.88, + "end": 12764.74, + "probability": 0.8009 + }, + { + "start": 12764.84, + "end": 12765.92, + "probability": 0.4975 + }, + { + "start": 12766.75, + "end": 12767.8, + "probability": 0.2095 + }, + { + "start": 12767.92, + "end": 12768.46, + "probability": 0.2679 + }, + { + "start": 12768.68, + "end": 12771.32, + "probability": 0.7957 + }, + { + "start": 12771.5, + "end": 12771.94, + "probability": 0.8994 + }, + { + "start": 12772.1, + "end": 12774.18, + "probability": 0.9969 + }, + { + "start": 12774.22, + "end": 12775.2, + "probability": 0.9565 + }, + { + "start": 12775.38, + "end": 12779.08, + "probability": 0.366 + }, + { + "start": 12779.08, + "end": 12780.2, + "probability": 0.3098 + }, + { + "start": 12780.78, + "end": 12782.96, + "probability": 0.9106 + }, + { + "start": 12783.08, + "end": 12783.24, + "probability": 0.242 + }, + { + "start": 12783.34, + "end": 12784.96, + "probability": 0.5168 + }, + { + "start": 12784.96, + "end": 12785.42, + "probability": 0.505 + }, + { + "start": 12785.58, + "end": 12786.78, + "probability": 0.3423 + }, + { + "start": 12787.16, + "end": 12788.66, + "probability": 0.6239 + }, + { + "start": 12788.8, + "end": 12792.06, + "probability": 0.768 + }, + { + "start": 12792.14, + "end": 12794.68, + "probability": 0.7087 + }, + { + "start": 12794.94, + "end": 12796.3, + "probability": 0.6335 + }, + { + "start": 12796.76, + "end": 12799.3, + "probability": 0.863 + }, + { + "start": 12799.5, + "end": 12803.86, + "probability": 0.7704 + }, + { + "start": 12803.88, + "end": 12804.56, + "probability": 0.4226 + }, + { + "start": 12804.64, + "end": 12805.72, + "probability": 0.845 + }, + { + "start": 12805.96, + "end": 12807.44, + "probability": 0.8849 + }, + { + "start": 12807.68, + "end": 12810.92, + "probability": 0.9975 + }, + { + "start": 12810.92, + "end": 12812.8, + "probability": 0.8535 + }, + { + "start": 12813.34, + "end": 12813.62, + "probability": 0.0639 + }, + { + "start": 12813.62, + "end": 12813.72, + "probability": 0.1894 + }, + { + "start": 12813.72, + "end": 12816.4, + "probability": 0.5923 + }, + { + "start": 12816.44, + "end": 12818.44, + "probability": 0.5219 + }, + { + "start": 12818.62, + "end": 12823.78, + "probability": 0.5758 + }, + { + "start": 12823.78, + "end": 12825.44, + "probability": 0.4762 + }, + { + "start": 12825.44, + "end": 12826.48, + "probability": 0.2241 + }, + { + "start": 12832.68, + "end": 12835.78, + "probability": 0.0667 + }, + { + "start": 12836.79, + "end": 12838.54, + "probability": 0.0413 + }, + { + "start": 12839.12, + "end": 12839.5, + "probability": 0.1851 + }, + { + "start": 12839.5, + "end": 12840.02, + "probability": 0.103 + }, + { + "start": 12840.87, + "end": 12842.28, + "probability": 0.0124 + }, + { + "start": 12842.28, + "end": 12843.05, + "probability": 0.051 + }, + { + "start": 12843.4, + "end": 12843.72, + "probability": 0.0775 + }, + { + "start": 12844.34, + "end": 12844.42, + "probability": 0.2844 + }, + { + "start": 12844.64, + "end": 12851.64, + "probability": 0.071 + }, + { + "start": 12851.64, + "end": 12852.57, + "probability": 0.0788 + }, + { + "start": 12854.66, + "end": 12856.27, + "probability": 0.0185 + }, + { + "start": 12857.32, + "end": 12858.8, + "probability": 0.0644 + }, + { + "start": 12859.12, + "end": 12859.12, + "probability": 0.0554 + }, + { + "start": 12859.12, + "end": 12859.19, + "probability": 0.051 + }, + { + "start": 12860.72, + "end": 12862.04, + "probability": 0.0292 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.0, + "end": 12888.0, + "probability": 0.0 + }, + { + "start": 12888.1, + "end": 12888.34, + "probability": 0.1802 + }, + { + "start": 12888.34, + "end": 12889.26, + "probability": 0.0581 + }, + { + "start": 12889.44, + "end": 12889.92, + "probability": 0.0475 + }, + { + "start": 12890.14, + "end": 12891.59, + "probability": 0.3452 + }, + { + "start": 12896.28, + "end": 12898.92, + "probability": 0.3434 + }, + { + "start": 12900.04, + "end": 12904.7, + "probability": 0.0273 + }, + { + "start": 12904.78, + "end": 12905.62, + "probability": 0.0761 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.0, + "end": 13009.0, + "probability": 0.0 + }, + { + "start": 13009.6, + "end": 13010.2, + "probability": 0.0853 + }, + { + "start": 13010.26, + "end": 13010.51, + "probability": 0.1169 + }, + { + "start": 13010.86, + "end": 13011.56, + "probability": 0.1434 + }, + { + "start": 13011.98, + "end": 13012.84, + "probability": 0.7397 + }, + { + "start": 13013.26, + "end": 13013.5, + "probability": 0.2323 + }, + { + "start": 13013.5, + "end": 13017.14, + "probability": 0.3573 + }, + { + "start": 13017.4, + "end": 13018.0, + "probability": 0.7764 + }, + { + "start": 13018.0, + "end": 13021.22, + "probability": 0.6905 + }, + { + "start": 13021.64, + "end": 13022.22, + "probability": 0.4564 + }, + { + "start": 13022.32, + "end": 13023.52, + "probability": 0.7959 + }, + { + "start": 13023.6, + "end": 13024.16, + "probability": 0.5325 + }, + { + "start": 13024.16, + "end": 13026.44, + "probability": 0.5063 + }, + { + "start": 13026.64, + "end": 13029.8, + "probability": 0.9125 + }, + { + "start": 13029.94, + "end": 13033.64, + "probability": 0.8588 + }, + { + "start": 13033.72, + "end": 13035.28, + "probability": 0.2447 + }, + { + "start": 13035.98, + "end": 13036.62, + "probability": 0.1156 + }, + { + "start": 13036.62, + "end": 13037.62, + "probability": 0.9167 + }, + { + "start": 13037.72, + "end": 13038.42, + "probability": 0.6843 + }, + { + "start": 13038.82, + "end": 13040.22, + "probability": 0.9119 + }, + { + "start": 13040.64, + "end": 13045.72, + "probability": 0.8594 + }, + { + "start": 13045.86, + "end": 13047.24, + "probability": 0.7902 + }, + { + "start": 13047.74, + "end": 13052.56, + "probability": 0.9434 + }, + { + "start": 13052.68, + "end": 13056.58, + "probability": 0.5501 + }, + { + "start": 13056.88, + "end": 13056.94, + "probability": 0.037 + }, + { + "start": 13057.08, + "end": 13057.72, + "probability": 0.4088 + }, + { + "start": 13057.78, + "end": 13060.88, + "probability": 0.8111 + }, + { + "start": 13060.88, + "end": 13062.94, + "probability": 0.6062 + }, + { + "start": 13062.96, + "end": 13066.8, + "probability": 0.2781 + }, + { + "start": 13068.41, + "end": 13071.46, + "probability": 0.0251 + }, + { + "start": 13071.46, + "end": 13071.68, + "probability": 0.1042 + }, + { + "start": 13072.24, + "end": 13073.4, + "probability": 0.8893 + }, + { + "start": 13073.48, + "end": 13076.04, + "probability": 0.6516 + }, + { + "start": 13076.76, + "end": 13078.44, + "probability": 0.5969 + }, + { + "start": 13078.44, + "end": 13081.3, + "probability": 0.6253 + }, + { + "start": 13081.4, + "end": 13082.72, + "probability": 0.1421 + }, + { + "start": 13082.86, + "end": 13085.43, + "probability": 0.6877 + }, + { + "start": 13085.92, + "end": 13087.44, + "probability": 0.9299 + }, + { + "start": 13087.94, + "end": 13088.88, + "probability": 0.6877 + }, + { + "start": 13089.14, + "end": 13091.52, + "probability": 0.4444 + }, + { + "start": 13091.8, + "end": 13092.96, + "probability": 0.4258 + }, + { + "start": 13093.06, + "end": 13094.74, + "probability": 0.5906 + }, + { + "start": 13094.82, + "end": 13095.9, + "probability": 0.8381 + }, + { + "start": 13096.18, + "end": 13097.28, + "probability": 0.4561 + }, + { + "start": 13097.62, + "end": 13100.6, + "probability": 0.7793 + }, + { + "start": 13100.72, + "end": 13101.96, + "probability": 0.664 + }, + { + "start": 13102.28, + "end": 13104.68, + "probability": 0.8826 + }, + { + "start": 13104.7, + "end": 13107.48, + "probability": 0.8715 + }, + { + "start": 13107.54, + "end": 13108.4, + "probability": 0.6644 + }, + { + "start": 13108.76, + "end": 13110.6, + "probability": 0.3818 + }, + { + "start": 13110.6, + "end": 13111.42, + "probability": 0.4077 + }, + { + "start": 13111.78, + "end": 13112.4, + "probability": 0.2187 + }, + { + "start": 13112.44, + "end": 13113.18, + "probability": 0.7637 + }, + { + "start": 13113.24, + "end": 13117.3, + "probability": 0.8828 + }, + { + "start": 13117.66, + "end": 13121.28, + "probability": 0.854 + }, + { + "start": 13121.4, + "end": 13124.26, + "probability": 0.9862 + }, + { + "start": 13124.6, + "end": 13128.08, + "probability": 0.07 + }, + { + "start": 13128.12, + "end": 13129.5, + "probability": 0.0557 + }, + { + "start": 13129.5, + "end": 13129.78, + "probability": 0.0557 + }, + { + "start": 13129.78, + "end": 13132.6, + "probability": 0.8547 + }, + { + "start": 13132.6, + "end": 13135.3, + "probability": 0.8506 + }, + { + "start": 13135.56, + "end": 13140.04, + "probability": 0.1228 + }, + { + "start": 13140.04, + "end": 13140.04, + "probability": 0.0123 + }, + { + "start": 13140.04, + "end": 13140.04, + "probability": 0.0728 + }, + { + "start": 13140.04, + "end": 13140.04, + "probability": 0.0912 + }, + { + "start": 13140.04, + "end": 13140.16, + "probability": 0.0737 + }, + { + "start": 13140.4, + "end": 13140.86, + "probability": 0.7266 + }, + { + "start": 13141.28, + "end": 13143.08, + "probability": 0.7117 + }, + { + "start": 13143.44, + "end": 13145.96, + "probability": 0.9971 + }, + { + "start": 13146.32, + "end": 13148.84, + "probability": 0.9631 + }, + { + "start": 13149.3, + "end": 13150.58, + "probability": 0.7289 + }, + { + "start": 13150.78, + "end": 13152.4, + "probability": 0.8301 + }, + { + "start": 13152.5, + "end": 13155.06, + "probability": 0.8962 + }, + { + "start": 13155.18, + "end": 13158.76, + "probability": 0.8082 + }, + { + "start": 13159.62, + "end": 13161.98, + "probability": 0.6489 + }, + { + "start": 13162.34, + "end": 13164.68, + "probability": 0.9678 + }, + { + "start": 13165.0, + "end": 13166.8, + "probability": 0.5724 + }, + { + "start": 13166.98, + "end": 13169.94, + "probability": 0.7972 + }, + { + "start": 13170.54, + "end": 13171.18, + "probability": 0.377 + }, + { + "start": 13172.2, + "end": 13172.2, + "probability": 0.0398 + }, + { + "start": 13172.52, + "end": 13173.76, + "probability": 0.0118 + }, + { + "start": 13174.0, + "end": 13174.88, + "probability": 0.5039 + }, + { + "start": 13174.88, + "end": 13175.16, + "probability": 0.0671 + }, + { + "start": 13175.34, + "end": 13175.84, + "probability": 0.6884 + }, + { + "start": 13176.0, + "end": 13177.02, + "probability": 0.9536 + }, + { + "start": 13177.06, + "end": 13177.3, + "probability": 0.8658 + }, + { + "start": 13177.38, + "end": 13178.54, + "probability": 0.9712 + }, + { + "start": 13178.72, + "end": 13181.54, + "probability": 0.9868 + }, + { + "start": 13182.04, + "end": 13186.03, + "probability": 0.9873 + }, + { + "start": 13186.72, + "end": 13187.78, + "probability": 0.9514 + }, + { + "start": 13188.62, + "end": 13189.06, + "probability": 0.5978 + }, + { + "start": 13189.16, + "end": 13190.06, + "probability": 0.7674 + }, + { + "start": 13190.18, + "end": 13192.04, + "probability": 0.9615 + }, + { + "start": 13192.12, + "end": 13194.44, + "probability": 0.3892 + }, + { + "start": 13194.64, + "end": 13195.08, + "probability": 0.8125 + }, + { + "start": 13195.24, + "end": 13195.9, + "probability": 0.8507 + }, + { + "start": 13195.92, + "end": 13196.78, + "probability": 0.5763 + }, + { + "start": 13197.08, + "end": 13197.6, + "probability": 0.78 + }, + { + "start": 13198.46, + "end": 13198.64, + "probability": 0.8804 + }, + { + "start": 13198.76, + "end": 13200.94, + "probability": 0.8033 + }, + { + "start": 13201.22, + "end": 13203.62, + "probability": 0.9912 + }, + { + "start": 13203.7, + "end": 13205.22, + "probability": 0.2343 + }, + { + "start": 13205.4, + "end": 13205.82, + "probability": 0.058 + }, + { + "start": 13205.82, + "end": 13206.9, + "probability": 0.4938 + }, + { + "start": 13208.0, + "end": 13208.76, + "probability": 0.7679 + }, + { + "start": 13208.94, + "end": 13210.54, + "probability": 0.5039 + }, + { + "start": 13210.64, + "end": 13214.0, + "probability": 0.9867 + }, + { + "start": 13214.34, + "end": 13216.56, + "probability": 0.7839 + }, + { + "start": 13217.04, + "end": 13219.38, + "probability": 0.9473 + }, + { + "start": 13219.48, + "end": 13221.1, + "probability": 0.7025 + }, + { + "start": 13221.2, + "end": 13221.68, + "probability": 0.8813 + }, + { + "start": 13221.7, + "end": 13223.82, + "probability": 0.9316 + }, + { + "start": 13223.9, + "end": 13225.7, + "probability": 0.8282 + }, + { + "start": 13225.76, + "end": 13226.92, + "probability": 0.9856 + }, + { + "start": 13226.96, + "end": 13229.0, + "probability": 0.979 + }, + { + "start": 13229.32, + "end": 13232.04, + "probability": 0.9539 + }, + { + "start": 13232.32, + "end": 13233.91, + "probability": 0.7075 + }, + { + "start": 13234.24, + "end": 13235.7, + "probability": 0.8943 + }, + { + "start": 13236.06, + "end": 13237.34, + "probability": 0.8234 + }, + { + "start": 13237.34, + "end": 13238.16, + "probability": 0.3383 + }, + { + "start": 13238.28, + "end": 13240.3, + "probability": 0.8773 + }, + { + "start": 13240.8, + "end": 13241.62, + "probability": 0.4506 + }, + { + "start": 13241.7, + "end": 13243.88, + "probability": 0.9518 + }, + { + "start": 13243.9, + "end": 13245.82, + "probability": 0.9714 + }, + { + "start": 13246.16, + "end": 13247.4, + "probability": 0.96 + }, + { + "start": 13247.72, + "end": 13250.28, + "probability": 0.9186 + }, + { + "start": 13250.44, + "end": 13251.7, + "probability": 0.8354 + }, + { + "start": 13251.84, + "end": 13254.04, + "probability": 0.9603 + }, + { + "start": 13254.36, + "end": 13255.4, + "probability": 0.9477 + }, + { + "start": 13255.9, + "end": 13256.86, + "probability": 0.2155 + }, + { + "start": 13257.48, + "end": 13258.68, + "probability": 0.7052 + }, + { + "start": 13259.24, + "end": 13261.0, + "probability": 0.7602 + }, + { + "start": 13261.14, + "end": 13263.8, + "probability": 0.8529 + }, + { + "start": 13264.06, + "end": 13265.66, + "probability": 0.8537 + }, + { + "start": 13265.78, + "end": 13267.96, + "probability": 0.9653 + }, + { + "start": 13269.24, + "end": 13270.16, + "probability": 0.8554 + }, + { + "start": 13270.38, + "end": 13275.16, + "probability": 0.8754 + }, + { + "start": 13275.18, + "end": 13277.67, + "probability": 0.9982 + }, + { + "start": 13278.22, + "end": 13279.0, + "probability": 0.7576 + }, + { + "start": 13279.06, + "end": 13284.36, + "probability": 0.9785 + }, + { + "start": 13284.4, + "end": 13287.08, + "probability": 0.9932 + }, + { + "start": 13287.16, + "end": 13288.5, + "probability": 0.7858 + }, + { + "start": 13288.74, + "end": 13290.64, + "probability": 0.9712 + }, + { + "start": 13290.76, + "end": 13291.36, + "probability": 0.974 + }, + { + "start": 13291.42, + "end": 13292.28, + "probability": 0.9966 + }, + { + "start": 13292.4, + "end": 13293.9, + "probability": 0.976 + }, + { + "start": 13294.32, + "end": 13294.8, + "probability": 0.014 + }, + { + "start": 13295.0, + "end": 13297.94, + "probability": 0.9743 + }, + { + "start": 13298.52, + "end": 13301.2, + "probability": 0.9971 + }, + { + "start": 13301.58, + "end": 13304.18, + "probability": 0.9932 + }, + { + "start": 13304.18, + "end": 13306.8, + "probability": 0.9971 + }, + { + "start": 13307.56, + "end": 13314.26, + "probability": 0.9072 + }, + { + "start": 13314.36, + "end": 13314.86, + "probability": 0.4293 + }, + { + "start": 13314.86, + "end": 13315.82, + "probability": 0.7451 + }, + { + "start": 13315.96, + "end": 13316.44, + "probability": 0.4755 + }, + { + "start": 13316.5, + "end": 13316.88, + "probability": 0.8544 + }, + { + "start": 13316.96, + "end": 13317.9, + "probability": 0.8471 + }, + { + "start": 13318.0, + "end": 13320.18, + "probability": 0.984 + }, + { + "start": 13320.54, + "end": 13324.95, + "probability": 0.8015 + }, + { + "start": 13327.04, + "end": 13327.46, + "probability": 0.0501 + }, + { + "start": 13327.46, + "end": 13329.42, + "probability": 0.7722 + }, + { + "start": 13329.64, + "end": 13331.02, + "probability": 0.9241 + }, + { + "start": 13331.06, + "end": 13332.04, + "probability": 0.8123 + }, + { + "start": 13332.42, + "end": 13336.0, + "probability": 0.7204 + }, + { + "start": 13336.22, + "end": 13336.22, + "probability": 0.0571 + }, + { + "start": 13336.3, + "end": 13338.46, + "probability": 0.7412 + }, + { + "start": 13338.46, + "end": 13340.86, + "probability": 0.9851 + }, + { + "start": 13340.92, + "end": 13341.92, + "probability": 0.6059 + }, + { + "start": 13342.02, + "end": 13342.86, + "probability": 0.9157 + }, + { + "start": 13343.34, + "end": 13343.48, + "probability": 0.4335 + }, + { + "start": 13343.56, + "end": 13343.82, + "probability": 0.8376 + }, + { + "start": 13343.96, + "end": 13347.48, + "probability": 0.8739 + }, + { + "start": 13347.56, + "end": 13348.72, + "probability": 0.9087 + }, + { + "start": 13349.06, + "end": 13352.78, + "probability": 0.9929 + }, + { + "start": 13353.72, + "end": 13354.28, + "probability": 0.6951 + }, + { + "start": 13354.36, + "end": 13357.63, + "probability": 0.9873 + }, + { + "start": 13357.68, + "end": 13358.68, + "probability": 0.8798 + }, + { + "start": 13358.76, + "end": 13359.24, + "probability": 0.2709 + }, + { + "start": 13359.36, + "end": 13368.0, + "probability": 0.7989 + }, + { + "start": 13368.16, + "end": 13369.9, + "probability": 0.7891 + }, + { + "start": 13370.0, + "end": 13371.58, + "probability": 0.9419 + }, + { + "start": 13372.2, + "end": 13372.2, + "probability": 0.2729 + }, + { + "start": 13372.2, + "end": 13372.4, + "probability": 0.5581 + }, + { + "start": 13372.54, + "end": 13373.82, + "probability": 0.9486 + }, + { + "start": 13374.14, + "end": 13374.34, + "probability": 0.3339 + }, + { + "start": 13374.36, + "end": 13381.12, + "probability": 0.9253 + }, + { + "start": 13381.7, + "end": 13383.42, + "probability": 0.9751 + }, + { + "start": 13383.56, + "end": 13384.88, + "probability": 0.9393 + }, + { + "start": 13385.22, + "end": 13389.52, + "probability": 0.9169 + }, + { + "start": 13389.66, + "end": 13390.5, + "probability": 0.9551 + }, + { + "start": 13390.6, + "end": 13390.76, + "probability": 0.7094 + }, + { + "start": 13390.8, + "end": 13392.54, + "probability": 0.9988 + }, + { + "start": 13392.68, + "end": 13394.06, + "probability": 0.8266 + }, + { + "start": 13394.38, + "end": 13395.68, + "probability": 0.9735 + }, + { + "start": 13395.78, + "end": 13396.06, + "probability": 0.3589 + }, + { + "start": 13396.22, + "end": 13398.64, + "probability": 0.9797 + }, + { + "start": 13398.88, + "end": 13400.3, + "probability": 0.9612 + }, + { + "start": 13400.5, + "end": 13403.44, + "probability": 0.9801 + }, + { + "start": 13403.5, + "end": 13406.18, + "probability": 0.8742 + }, + { + "start": 13406.5, + "end": 13406.96, + "probability": 0.5294 + }, + { + "start": 13407.3, + "end": 13408.7, + "probability": 0.5609 + }, + { + "start": 13408.74, + "end": 13410.9, + "probability": 0.443 + }, + { + "start": 13411.08, + "end": 13411.9, + "probability": 0.4508 + }, + { + "start": 13412.26, + "end": 13414.74, + "probability": 0.6829 + }, + { + "start": 13414.92, + "end": 13416.93, + "probability": 0.6986 + }, + { + "start": 13417.32, + "end": 13419.96, + "probability": 0.5472 + }, + { + "start": 13420.14, + "end": 13421.7, + "probability": 0.2949 + }, + { + "start": 13422.02, + "end": 13425.12, + "probability": 0.8016 + }, + { + "start": 13425.36, + "end": 13426.68, + "probability": 0.735 + }, + { + "start": 13427.02, + "end": 13428.62, + "probability": 0.6032 + }, + { + "start": 13428.8, + "end": 13430.52, + "probability": 0.7988 + }, + { + "start": 13430.64, + "end": 13431.44, + "probability": 0.3874 + }, + { + "start": 13431.66, + "end": 13435.16, + "probability": 0.7048 + }, + { + "start": 13435.3, + "end": 13437.08, + "probability": 0.6364 + }, + { + "start": 13437.2, + "end": 13438.36, + "probability": 0.3376 + }, + { + "start": 13438.58, + "end": 13440.94, + "probability": 0.9635 + }, + { + "start": 13441.44, + "end": 13444.64, + "probability": 0.8051 + }, + { + "start": 13445.06, + "end": 13448.55, + "probability": 0.8868 + }, + { + "start": 13448.84, + "end": 13450.32, + "probability": 0.7825 + }, + { + "start": 13450.46, + "end": 13451.62, + "probability": 0.8217 + }, + { + "start": 13451.84, + "end": 13452.94, + "probability": 0.647 + }, + { + "start": 13453.04, + "end": 13455.26, + "probability": 0.7047 + }, + { + "start": 13455.42, + "end": 13456.12, + "probability": 0.8713 + }, + { + "start": 13456.24, + "end": 13458.6, + "probability": 0.3965 + }, + { + "start": 13459.28, + "end": 13460.16, + "probability": 0.5778 + }, + { + "start": 13460.42, + "end": 13462.12, + "probability": 0.7997 + }, + { + "start": 13462.72, + "end": 13464.42, + "probability": 0.7386 + }, + { + "start": 13464.46, + "end": 13470.08, + "probability": 0.9932 + }, + { + "start": 13471.3, + "end": 13475.43, + "probability": 0.2436 + }, + { + "start": 13475.84, + "end": 13475.84, + "probability": 0.2668 + }, + { + "start": 13475.9, + "end": 13478.14, + "probability": 0.1012 + }, + { + "start": 13478.16, + "end": 13479.59, + "probability": 0.01 + }, + { + "start": 13480.3, + "end": 13481.92, + "probability": 0.6644 + }, + { + "start": 13482.36, + "end": 13485.74, + "probability": 0.1825 + }, + { + "start": 13485.9, + "end": 13488.8, + "probability": 0.1791 + }, + { + "start": 13488.94, + "end": 13491.43, + "probability": 0.4908 + }, + { + "start": 13491.76, + "end": 13491.84, + "probability": 0.5436 + }, + { + "start": 13491.84, + "end": 13497.02, + "probability": 0.1322 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.0, + "end": 13578.0, + "probability": 0.0 + }, + { + "start": 13578.47, + "end": 13579.15, + "probability": 0.0939 + }, + { + "start": 13579.72, + "end": 13581.34, + "probability": 0.312 + }, + { + "start": 13581.76, + "end": 13582.88, + "probability": 0.4366 + }, + { + "start": 13583.06, + "end": 13586.36, + "probability": 0.8146 + }, + { + "start": 13586.52, + "end": 13587.0, + "probability": 0.0097 + }, + { + "start": 13587.29, + "end": 13590.2, + "probability": 0.8451 + }, + { + "start": 13590.4, + "end": 13591.17, + "probability": 0.2724 + }, + { + "start": 13591.98, + "end": 13593.42, + "probability": 0.875 + }, + { + "start": 13593.6, + "end": 13595.09, + "probability": 0.59 + }, + { + "start": 13595.46, + "end": 13596.89, + "probability": 0.8267 + }, + { + "start": 13597.78, + "end": 13597.78, + "probability": 0.0029 + }, + { + "start": 13597.96, + "end": 13598.14, + "probability": 0.0979 + }, + { + "start": 13598.76, + "end": 13598.92, + "probability": 0.0233 + }, + { + "start": 13598.92, + "end": 13598.92, + "probability": 0.3436 + }, + { + "start": 13598.92, + "end": 13602.34, + "probability": 0.8906 + }, + { + "start": 13602.34, + "end": 13604.94, + "probability": 0.9943 + }, + { + "start": 13605.04, + "end": 13607.08, + "probability": 0.9971 + }, + { + "start": 13608.34, + "end": 13609.16, + "probability": 0.7511 + }, + { + "start": 13609.2, + "end": 13609.92, + "probability": 0.5866 + }, + { + "start": 13610.16, + "end": 13611.4, + "probability": 0.8374 + }, + { + "start": 13611.4, + "end": 13611.61, + "probability": 0.4268 + }, + { + "start": 13612.16, + "end": 13612.24, + "probability": 0.312 + }, + { + "start": 13612.48, + "end": 13613.84, + "probability": 0.8662 + }, + { + "start": 13613.92, + "end": 13616.28, + "probability": 0.6392 + }, + { + "start": 13616.7, + "end": 13621.68, + "probability": 0.1958 + }, + { + "start": 13621.94, + "end": 13623.0, + "probability": 0.3234 + }, + { + "start": 13623.2, + "end": 13623.69, + "probability": 0.2465 + }, + { + "start": 13624.22, + "end": 13624.48, + "probability": 0.4449 + }, + { + "start": 13624.48, + "end": 13624.58, + "probability": 0.4735 + }, + { + "start": 13624.58, + "end": 13627.6, + "probability": 0.3528 + }, + { + "start": 13628.08, + "end": 13628.76, + "probability": 0.4857 + }, + { + "start": 13629.1, + "end": 13630.1, + "probability": 0.8989 + }, + { + "start": 13630.1, + "end": 13634.08, + "probability": 0.1509 + }, + { + "start": 13636.34, + "end": 13637.98, + "probability": 0.3078 + }, + { + "start": 13638.1, + "end": 13638.84, + "probability": 0.6466 + }, + { + "start": 13638.98, + "end": 13638.98, + "probability": 0.1048 + }, + { + "start": 13638.98, + "end": 13638.98, + "probability": 0.3269 + }, + { + "start": 13638.98, + "end": 13638.98, + "probability": 0.7026 + }, + { + "start": 13638.98, + "end": 13640.64, + "probability": 0.6143 + }, + { + "start": 13640.96, + "end": 13646.16, + "probability": 0.8214 + }, + { + "start": 13646.4, + "end": 13652.62, + "probability": 0.7487 + }, + { + "start": 13652.68, + "end": 13653.56, + "probability": 0.3078 + }, + { + "start": 13653.7, + "end": 13657.14, + "probability": 0.9677 + }, + { + "start": 13657.14, + "end": 13657.53, + "probability": 0.6977 + }, + { + "start": 13657.98, + "end": 13659.1, + "probability": 0.0701 + }, + { + "start": 13659.18, + "end": 13665.5, + "probability": 0.8829 + }, + { + "start": 13665.78, + "end": 13667.92, + "probability": 0.76 + }, + { + "start": 13668.0, + "end": 13669.58, + "probability": 0.8102 + }, + { + "start": 13669.58, + "end": 13670.5, + "probability": 0.4881 + }, + { + "start": 13670.6, + "end": 13671.14, + "probability": 0.7443 + }, + { + "start": 13671.76, + "end": 13674.26, + "probability": 0.4568 + }, + { + "start": 13674.38, + "end": 13674.84, + "probability": 0.8911 + }, + { + "start": 13674.88, + "end": 13677.26, + "probability": 0.998 + }, + { + "start": 13677.34, + "end": 13679.87, + "probability": 0.9979 + }, + { + "start": 13680.22, + "end": 13681.7, + "probability": 0.4632 + }, + { + "start": 13681.7, + "end": 13682.6, + "probability": 0.9275 + }, + { + "start": 13682.64, + "end": 13684.12, + "probability": 0.4049 + }, + { + "start": 13684.12, + "end": 13686.54, + "probability": 0.9385 + }, + { + "start": 13687.16, + "end": 13690.94, + "probability": 0.2883 + }, + { + "start": 13693.26, + "end": 13695.6, + "probability": 0.2453 + }, + { + "start": 13695.96, + "end": 13698.18, + "probability": 0.1335 + }, + { + "start": 13698.54, + "end": 13698.58, + "probability": 0.0695 + }, + { + "start": 13702.93, + "end": 13704.75, + "probability": 0.1284 + }, + { + "start": 13704.75, + "end": 13705.85, + "probability": 0.1113 + }, + { + "start": 13705.89, + "end": 13706.11, + "probability": 0.6192 + }, + { + "start": 13706.93, + "end": 13706.93, + "probability": 0.1154 + }, + { + "start": 13707.13, + "end": 13707.7, + "probability": 0.0504 + }, + { + "start": 13708.03, + "end": 13709.73, + "probability": 0.1426 + }, + { + "start": 13709.73, + "end": 13710.29, + "probability": 0.5011 + }, + { + "start": 13718.83, + "end": 13719.15, + "probability": 0.3709 + }, + { + "start": 13727.73, + "end": 13728.45, + "probability": 0.0963 + }, + { + "start": 13732.03, + "end": 13732.73, + "probability": 0.0002 + }, + { + "start": 13733.33, + "end": 13733.85, + "probability": 0.2012 + }, + { + "start": 13733.85, + "end": 13734.11, + "probability": 0.379 + }, + { + "start": 13734.11, + "end": 13736.18, + "probability": 0.1594 + }, + { + "start": 13736.93, + "end": 13737.55, + "probability": 0.2926 + }, + { + "start": 13737.55, + "end": 13737.55, + "probability": 0.0104 + }, + { + "start": 13737.67, + "end": 13744.05, + "probability": 0.0838 + }, + { + "start": 13751.93, + "end": 13752.74, + "probability": 0.2578 + }, + { + "start": 13753.87, + "end": 13756.09, + "probability": 0.0292 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13775.0, + "end": 13775.0, + "probability": 0.0 + }, + { + "start": 13785.78, + "end": 13788.74, + "probability": 0.1747 + }, + { + "start": 13788.74, + "end": 13788.74, + "probability": 0.4264 + }, + { + "start": 13788.74, + "end": 13789.58, + "probability": 0.0886 + }, + { + "start": 13798.67, + "end": 13799.09, + "probability": 0.2232 + }, + { + "start": 13800.09, + "end": 13803.39, + "probability": 0.0875 + }, + { + "start": 13803.39, + "end": 13804.41, + "probability": 0.0554 + }, + { + "start": 13805.27, + "end": 13809.33, + "probability": 0.0543 + }, + { + "start": 13810.05, + "end": 13811.53, + "probability": 0.0793 + }, + { + "start": 13812.59, + "end": 13813.29, + "probability": 0.0708 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13913.0, + "end": 13913.0, + "probability": 0.0 + }, + { + "start": 13916.42, + "end": 13919.62, + "probability": 0.0237 + }, + { + "start": 13919.66, + "end": 13924.38, + "probability": 0.097 + }, + { + "start": 13925.26, + "end": 13926.66, + "probability": 0.0625 + }, + { + "start": 13927.96, + "end": 13929.2, + "probability": 0.1247 + }, + { + "start": 13929.2, + "end": 13929.4, + "probability": 0.0318 + }, + { + "start": 13930.27, + "end": 13933.16, + "probability": 0.0943 + }, + { + "start": 13933.16, + "end": 13936.43, + "probability": 0.0185 + }, + { + "start": 13938.52, + "end": 13939.28, + "probability": 0.1702 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14040.0, + "end": 14040.0, + "probability": 0.0 + }, + { + "start": 14043.28, + "end": 14043.76, + "probability": 0.0964 + }, + { + "start": 14043.76, + "end": 14043.76, + "probability": 0.1212 + }, + { + "start": 14043.76, + "end": 14043.76, + "probability": 0.063 + }, + { + "start": 14043.76, + "end": 14043.76, + "probability": 0.0714 + }, + { + "start": 14052.28, + "end": 14054.12, + "probability": 0.0572 + }, + { + "start": 14054.14, + "end": 14054.36, + "probability": 0.2016 + }, + { + "start": 14054.36, + "end": 14058.82, + "probability": 0.1856 + }, + { + "start": 14061.84, + "end": 14064.74, + "probability": 0.0176 + }, + { + "start": 14064.74, + "end": 14065.8, + "probability": 0.0371 + }, + { + "start": 14065.8, + "end": 14068.1, + "probability": 0.0297 + }, + { + "start": 14068.18, + "end": 14069.08, + "probability": 0.0414 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14164.0, + "end": 14164.0, + "probability": 0.0 + }, + { + "start": 14165.26, + "end": 14167.2, + "probability": 0.0215 + }, + { + "start": 14167.98, + "end": 14168.08, + "probability": 0.2777 + }, + { + "start": 14169.52, + "end": 14170.28, + "probability": 0.0085 + }, + { + "start": 14171.52, + "end": 14172.8, + "probability": 0.0951 + }, + { + "start": 14173.8, + "end": 14174.44, + "probability": 0.1001 + }, + { + "start": 14174.44, + "end": 14174.44, + "probability": 0.0805 + }, + { + "start": 14174.46, + "end": 14174.98, + "probability": 0.7417 + }, + { + "start": 14174.98, + "end": 14175.05, + "probability": 0.0262 + }, + { + "start": 14176.36, + "end": 14178.06, + "probability": 0.1961 + }, + { + "start": 14179.56, + "end": 14181.72, + "probability": 0.7277 + }, + { + "start": 14182.08, + "end": 14183.3, + "probability": 0.8806 + }, + { + "start": 14184.44, + "end": 14186.4, + "probability": 0.996 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.0, + "end": 14286.0, + "probability": 0.0 + }, + { + "start": 14286.32, + "end": 14286.5, + "probability": 0.0619 + }, + { + "start": 14286.5, + "end": 14286.5, + "probability": 0.1863 + }, + { + "start": 14286.5, + "end": 14287.26, + "probability": 0.4691 + }, + { + "start": 14287.4, + "end": 14290.7, + "probability": 0.8841 + }, + { + "start": 14291.16, + "end": 14291.86, + "probability": 0.524 + }, + { + "start": 14292.2, + "end": 14293.66, + "probability": 0.8718 + }, + { + "start": 14294.16, + "end": 14295.8, + "probability": 0.6425 + }, + { + "start": 14297.44, + "end": 14298.4, + "probability": 0.7726 + }, + { + "start": 14300.46, + "end": 14304.48, + "probability": 0.9767 + }, + { + "start": 14304.64, + "end": 14307.58, + "probability": 0.9765 + }, + { + "start": 14307.68, + "end": 14309.68, + "probability": 0.9261 + }, + { + "start": 14311.22, + "end": 14316.5, + "probability": 0.9808 + }, + { + "start": 14316.88, + "end": 14318.28, + "probability": 0.6823 + }, + { + "start": 14318.76, + "end": 14319.22, + "probability": 0.918 + }, + { + "start": 14319.7, + "end": 14322.0, + "probability": 0.8081 + }, + { + "start": 14322.26, + "end": 14322.74, + "probability": 0.1521 + }, + { + "start": 14322.74, + "end": 14324.18, + "probability": 0.7857 + }, + { + "start": 14324.34, + "end": 14324.46, + "probability": 0.356 + }, + { + "start": 14324.46, + "end": 14324.8, + "probability": 0.4444 + }, + { + "start": 14324.8, + "end": 14325.68, + "probability": 0.7656 + }, + { + "start": 14326.04, + "end": 14326.88, + "probability": 0.9003 + }, + { + "start": 14332.02, + "end": 14332.64, + "probability": 0.5942 + }, + { + "start": 14332.72, + "end": 14333.77, + "probability": 0.9106 + }, + { + "start": 14334.04, + "end": 14335.32, + "probability": 0.9336 + }, + { + "start": 14335.82, + "end": 14340.7, + "probability": 0.6815 + }, + { + "start": 14341.28, + "end": 14343.52, + "probability": 0.9496 + }, + { + "start": 14343.9, + "end": 14344.12, + "probability": 0.8825 + }, + { + "start": 14344.2, + "end": 14346.62, + "probability": 0.9855 + }, + { + "start": 14346.92, + "end": 14351.28, + "probability": 0.8433 + }, + { + "start": 14352.02, + "end": 14354.58, + "probability": 0.7795 + }, + { + "start": 14354.72, + "end": 14355.96, + "probability": 0.9254 + }, + { + "start": 14356.46, + "end": 14359.78, + "probability": 0.983 + }, + { + "start": 14360.68, + "end": 14363.52, + "probability": 0.9943 + }, + { + "start": 14364.02, + "end": 14370.74, + "probability": 0.9909 + }, + { + "start": 14371.76, + "end": 14375.08, + "probability": 0.9298 + }, + { + "start": 14375.68, + "end": 14378.1, + "probability": 0.9766 + }, + { + "start": 14378.1, + "end": 14382.46, + "probability": 0.8351 + }, + { + "start": 14382.6, + "end": 14383.0, + "probability": 0.6252 + }, + { + "start": 14383.68, + "end": 14386.88, + "probability": 0.9801 + }, + { + "start": 14387.84, + "end": 14389.36, + "probability": 0.9281 + }, + { + "start": 14389.52, + "end": 14394.82, + "probability": 0.7271 + }, + { + "start": 14396.3, + "end": 14398.24, + "probability": 0.0326 + }, + { + "start": 14398.9, + "end": 14399.16, + "probability": 0.2466 + }, + { + "start": 14399.16, + "end": 14400.75, + "probability": 0.4191 + }, + { + "start": 14400.86, + "end": 14405.26, + "probability": 0.5197 + }, + { + "start": 14405.26, + "end": 14405.34, + "probability": 0.5693 + }, + { + "start": 14405.34, + "end": 14405.8, + "probability": 0.391 + }, + { + "start": 14406.58, + "end": 14406.62, + "probability": 0.0772 + }, + { + "start": 14406.62, + "end": 14407.32, + "probability": 0.3443 + }, + { + "start": 14408.02, + "end": 14409.62, + "probability": 0.6869 + }, + { + "start": 14409.94, + "end": 14410.8, + "probability": 0.2072 + }, + { + "start": 14410.8, + "end": 14410.8, + "probability": 0.3019 + }, + { + "start": 14410.8, + "end": 14410.8, + "probability": 0.3639 + }, + { + "start": 14410.8, + "end": 14412.08, + "probability": 0.9347 + }, + { + "start": 14413.2, + "end": 14414.6, + "probability": 0.0628 + }, + { + "start": 14415.74, + "end": 14416.5, + "probability": 0.279 + }, + { + "start": 14416.78, + "end": 14417.62, + "probability": 0.7489 + }, + { + "start": 14420.34, + "end": 14422.2, + "probability": 0.953 + }, + { + "start": 14422.38, + "end": 14426.42, + "probability": 0.5396 + }, + { + "start": 14426.42, + "end": 14428.8, + "probability": 0.3403 + }, + { + "start": 14428.8, + "end": 14431.86, + "probability": 0.1449 + }, + { + "start": 14431.9, + "end": 14432.92, + "probability": 0.5952 + }, + { + "start": 14433.36, + "end": 14435.24, + "probability": 0.527 + }, + { + "start": 14435.7, + "end": 14437.08, + "probability": 0.1233 + }, + { + "start": 14437.24, + "end": 14438.9, + "probability": 0.625 + }, + { + "start": 14439.04, + "end": 14439.62, + "probability": 0.4322 + }, + { + "start": 14439.8, + "end": 14442.8, + "probability": 0.7177 + }, + { + "start": 14443.06, + "end": 14444.14, + "probability": 0.8349 + }, + { + "start": 14444.34, + "end": 14449.7, + "probability": 0.0554 + }, + { + "start": 14449.7, + "end": 14449.7, + "probability": 0.0612 + }, + { + "start": 14449.7, + "end": 14449.7, + "probability": 0.0349 + }, + { + "start": 14449.7, + "end": 14450.7, + "probability": 0.2747 + }, + { + "start": 14450.74, + "end": 14452.22, + "probability": 0.3717 + }, + { + "start": 14452.22, + "end": 14453.54, + "probability": 0.6689 + }, + { + "start": 14453.54, + "end": 14454.0, + "probability": 0.6875 + }, + { + "start": 14454.4, + "end": 14455.3, + "probability": 0.9601 + }, + { + "start": 14455.52, + "end": 14456.62, + "probability": 0.7374 + }, + { + "start": 14456.84, + "end": 14456.84, + "probability": 0.0013 + }, + { + "start": 14456.84, + "end": 14456.84, + "probability": 0.2221 + }, + { + "start": 14456.84, + "end": 14458.96, + "probability": 0.5254 + }, + { + "start": 14459.26, + "end": 14460.82, + "probability": 0.9849 + }, + { + "start": 14461.08, + "end": 14462.88, + "probability": 0.7991 + }, + { + "start": 14463.08, + "end": 14464.78, + "probability": 0.8566 + }, + { + "start": 14465.14, + "end": 14465.82, + "probability": 0.65 + }, + { + "start": 14465.84, + "end": 14466.36, + "probability": 0.4764 + }, + { + "start": 14466.36, + "end": 14466.49, + "probability": 0.0055 + }, + { + "start": 14467.34, + "end": 14468.44, + "probability": 0.2288 + }, + { + "start": 14468.44, + "end": 14468.5, + "probability": 0.363 + }, + { + "start": 14469.14, + "end": 14470.86, + "probability": 0.6697 + }, + { + "start": 14471.02, + "end": 14473.12, + "probability": 0.8459 + }, + { + "start": 14473.48, + "end": 14475.74, + "probability": 0.9829 + }, + { + "start": 14475.92, + "end": 14477.08, + "probability": 0.7309 + }, + { + "start": 14477.08, + "end": 14477.24, + "probability": 0.3221 + }, + { + "start": 14477.24, + "end": 14478.52, + "probability": 0.7263 + }, + { + "start": 14478.68, + "end": 14479.8, + "probability": 0.9496 + }, + { + "start": 14480.26, + "end": 14481.8, + "probability": 0.9774 + }, + { + "start": 14482.02, + "end": 14485.2, + "probability": 0.908 + }, + { + "start": 14485.3, + "end": 14486.2, + "probability": 0.8912 + }, + { + "start": 14486.42, + "end": 14488.94, + "probability": 0.9499 + }, + { + "start": 14489.24, + "end": 14493.12, + "probability": 0.9824 + }, + { + "start": 14494.42, + "end": 14497.02, + "probability": 0.1864 + }, + { + "start": 14497.66, + "end": 14499.02, + "probability": 0.2444 + }, + { + "start": 14499.92, + "end": 14500.42, + "probability": 0.4198 + }, + { + "start": 14500.7, + "end": 14501.52, + "probability": 0.2974 + }, + { + "start": 14503.69, + "end": 14508.42, + "probability": 0.9985 + }, + { + "start": 14508.72, + "end": 14512.74, + "probability": 0.8561 + }, + { + "start": 14513.22, + "end": 14515.16, + "probability": 0.9392 + }, + { + "start": 14515.56, + "end": 14516.3, + "probability": 0.813 + }, + { + "start": 14516.4, + "end": 14518.52, + "probability": 0.9298 + }, + { + "start": 14521.28, + "end": 14522.18, + "probability": 0.8738 + }, + { + "start": 14522.6, + "end": 14523.66, + "probability": 0.8665 + }, + { + "start": 14523.76, + "end": 14527.9, + "probability": 0.9668 + }, + { + "start": 14528.28, + "end": 14530.14, + "probability": 0.9423 + }, + { + "start": 14530.68, + "end": 14533.1, + "probability": 0.9192 + }, + { + "start": 14533.7, + "end": 14534.72, + "probability": 0.831 + }, + { + "start": 14535.3, + "end": 14540.62, + "probability": 0.9968 + }, + { + "start": 14541.1, + "end": 14542.96, + "probability": 0.829 + }, + { + "start": 14546.2, + "end": 14549.52, + "probability": 0.9731 + }, + { + "start": 14550.3, + "end": 14553.28, + "probability": 0.9854 + }, + { + "start": 14553.98, + "end": 14556.36, + "probability": 0.9898 + }, + { + "start": 14557.38, + "end": 14561.84, + "probability": 0.8636 + }, + { + "start": 14562.48, + "end": 14563.94, + "probability": 0.888 + }, + { + "start": 14567.56, + "end": 14570.9, + "probability": 0.8074 + }, + { + "start": 14571.56, + "end": 14575.36, + "probability": 0.9789 + }, + { + "start": 14575.98, + "end": 14581.44, + "probability": 0.9816 + }, + { + "start": 14581.44, + "end": 14586.24, + "probability": 0.9961 + }, + { + "start": 14586.24, + "end": 14590.98, + "probability": 0.9988 + }, + { + "start": 14592.56, + "end": 14594.66, + "probability": 0.9688 + }, + { + "start": 14595.28, + "end": 14597.36, + "probability": 0.9641 + }, + { + "start": 14598.06, + "end": 14599.58, + "probability": 0.3704 + }, + { + "start": 14600.98, + "end": 14602.54, + "probability": 0.7903 + }, + { + "start": 14603.17, + "end": 14607.32, + "probability": 0.998 + }, + { + "start": 14607.96, + "end": 14612.12, + "probability": 0.8864 + }, + { + "start": 14613.32, + "end": 14616.75, + "probability": 0.8999 + }, + { + "start": 14617.64, + "end": 14620.2, + "probability": 0.9922 + }, + { + "start": 14620.46, + "end": 14623.0, + "probability": 0.9871 + }, + { + "start": 14623.72, + "end": 14626.74, + "probability": 0.9959 + }, + { + "start": 14628.68, + "end": 14632.86, + "probability": 0.9206 + }, + { + "start": 14633.56, + "end": 14636.78, + "probability": 0.8777 + }, + { + "start": 14637.44, + "end": 14639.28, + "probability": 0.9222 + }, + { + "start": 14639.96, + "end": 14641.76, + "probability": 0.9311 + }, + { + "start": 14642.28, + "end": 14646.44, + "probability": 0.9745 + }, + { + "start": 14647.6, + "end": 14648.94, + "probability": 0.9476 + }, + { + "start": 14648.98, + "end": 14651.04, + "probability": 0.9961 + }, + { + "start": 14651.54, + "end": 14654.58, + "probability": 0.9088 + }, + { + "start": 14655.2, + "end": 14657.0, + "probability": 0.9132 + }, + { + "start": 14657.06, + "end": 14662.08, + "probability": 0.8061 + }, + { + "start": 14663.46, + "end": 14666.88, + "probability": 0.8661 + }, + { + "start": 14667.4, + "end": 14670.94, + "probability": 0.7854 + }, + { + "start": 14671.42, + "end": 14672.66, + "probability": 0.9664 + }, + { + "start": 14673.04, + "end": 14676.52, + "probability": 0.9839 + }, + { + "start": 14676.84, + "end": 14677.7, + "probability": 0.5226 + }, + { + "start": 14678.12, + "end": 14681.54, + "probability": 0.9954 + }, + { + "start": 14681.66, + "end": 14686.34, + "probability": 0.7741 + }, + { + "start": 14686.58, + "end": 14692.1, + "probability": 0.9977 + }, + { + "start": 14692.62, + "end": 14693.82, + "probability": 0.8799 + }, + { + "start": 14694.16, + "end": 14697.88, + "probability": 0.9471 + }, + { + "start": 14697.88, + "end": 14701.12, + "probability": 0.9226 + }, + { + "start": 14702.08, + "end": 14702.56, + "probability": 0.7663 + }, + { + "start": 14704.3, + "end": 14706.14, + "probability": 0.8323 + }, + { + "start": 14706.42, + "end": 14712.02, + "probability": 0.8858 + }, + { + "start": 14713.66, + "end": 14717.1, + "probability": 0.706 + }, + { + "start": 14717.94, + "end": 14718.44, + "probability": 0.0413 + }, + { + "start": 14723.18, + "end": 14725.74, + "probability": 0.0643 + }, + { + "start": 14727.22, + "end": 14728.8, + "probability": 0.7116 + }, + { + "start": 14729.98, + "end": 14732.62, + "probability": 0.9419 + }, + { + "start": 14733.52, + "end": 14735.22, + "probability": 0.151 + }, + { + "start": 14735.72, + "end": 14736.52, + "probability": 0.1678 + }, + { + "start": 14736.9, + "end": 14736.9, + "probability": 0.052 + }, + { + "start": 14736.9, + "end": 14738.97, + "probability": 0.1644 + }, + { + "start": 14740.66, + "end": 14741.04, + "probability": 0.0207 + }, + { + "start": 14751.24, + "end": 14752.3, + "probability": 0.1187 + }, + { + "start": 14782.52, + "end": 14791.16, + "probability": 0.9931 + }, + { + "start": 14792.04, + "end": 14792.7, + "probability": 0.7291 + }, + { + "start": 14793.4, + "end": 14795.56, + "probability": 0.8322 + }, + { + "start": 14797.16, + "end": 14802.68, + "probability": 0.9376 + }, + { + "start": 14802.98, + "end": 14804.76, + "probability": 0.9669 + }, + { + "start": 14805.82, + "end": 14809.86, + "probability": 0.7371 + }, + { + "start": 14810.92, + "end": 14812.84, + "probability": 0.9313 + }, + { + "start": 14813.78, + "end": 14816.16, + "probability": 0.984 + }, + { + "start": 14816.96, + "end": 14821.4, + "probability": 0.9229 + }, + { + "start": 14822.2, + "end": 14824.32, + "probability": 0.8933 + }, + { + "start": 14825.18, + "end": 14828.36, + "probability": 0.9482 + }, + { + "start": 14829.24, + "end": 14831.84, + "probability": 0.9196 + }, + { + "start": 14832.62, + "end": 14834.3, + "probability": 0.9405 + }, + { + "start": 14834.84, + "end": 14836.26, + "probability": 0.9753 + }, + { + "start": 14836.3, + "end": 14840.16, + "probability": 0.9929 + }, + { + "start": 14840.28, + "end": 14841.4, + "probability": 0.869 + }, + { + "start": 14842.4, + "end": 14844.58, + "probability": 0.9437 + }, + { + "start": 14845.42, + "end": 14848.06, + "probability": 0.5112 + }, + { + "start": 14848.7, + "end": 14852.56, + "probability": 0.9788 + }, + { + "start": 14853.94, + "end": 14856.74, + "probability": 0.9922 + }, + { + "start": 14857.72, + "end": 14859.71, + "probability": 0.9857 + }, + { + "start": 14860.66, + "end": 14863.34, + "probability": 0.9932 + }, + { + "start": 14864.08, + "end": 14866.5, + "probability": 0.8923 + }, + { + "start": 14867.6, + "end": 14872.14, + "probability": 0.9574 + }, + { + "start": 14872.84, + "end": 14875.92, + "probability": 0.5351 + }, + { + "start": 14876.58, + "end": 14882.02, + "probability": 0.9925 + }, + { + "start": 14882.68, + "end": 14884.16, + "probability": 0.9716 + }, + { + "start": 14885.4, + "end": 14888.84, + "probability": 0.8657 + }, + { + "start": 14890.38, + "end": 14893.82, + "probability": 0.9987 + }, + { + "start": 14894.25, + "end": 14898.52, + "probability": 0.9697 + }, + { + "start": 14898.92, + "end": 14901.68, + "probability": 0.825 + }, + { + "start": 14902.88, + "end": 14907.42, + "probability": 0.9567 + }, + { + "start": 14910.24, + "end": 14913.36, + "probability": 0.7349 + }, + { + "start": 14913.52, + "end": 14914.98, + "probability": 0.8889 + }, + { + "start": 14915.42, + "end": 14921.14, + "probability": 0.9209 + }, + { + "start": 14921.16, + "end": 14922.16, + "probability": 0.1139 + }, + { + "start": 14922.34, + "end": 14926.04, + "probability": 0.9897 + }, + { + "start": 14926.26, + "end": 14927.78, + "probability": 0.5393 + }, + { + "start": 14928.64, + "end": 14930.34, + "probability": 0.7549 + }, + { + "start": 14930.86, + "end": 14931.14, + "probability": 0.8664 + }, + { + "start": 14931.14, + "end": 14932.94, + "probability": 0.4902 + }, + { + "start": 14934.34, + "end": 14935.7, + "probability": 0.6284 + }, + { + "start": 14936.06, + "end": 14936.56, + "probability": 0.6569 + }, + { + "start": 14936.7, + "end": 14937.88, + "probability": 0.9871 + }, + { + "start": 14938.44, + "end": 14939.19, + "probability": 0.9582 + }, + { + "start": 14939.28, + "end": 14943.08, + "probability": 0.9214 + }, + { + "start": 14943.98, + "end": 14947.02, + "probability": 0.9469 + }, + { + "start": 14947.76, + "end": 14950.1, + "probability": 0.8418 + }, + { + "start": 14950.58, + "end": 14952.2, + "probability": 0.9177 + }, + { + "start": 14952.7, + "end": 14954.66, + "probability": 0.9855 + }, + { + "start": 14954.92, + "end": 14960.06, + "probability": 0.8875 + }, + { + "start": 14960.72, + "end": 14962.2, + "probability": 0.7146 + }, + { + "start": 14963.2, + "end": 14965.34, + "probability": 0.9449 + }, + { + "start": 14965.78, + "end": 14968.98, + "probability": 0.9203 + }, + { + "start": 14970.08, + "end": 14971.45, + "probability": 0.9868 + }, + { + "start": 14972.8, + "end": 14975.68, + "probability": 0.8987 + }, + { + "start": 14976.38, + "end": 14979.98, + "probability": 0.9971 + }, + { + "start": 14980.72, + "end": 14982.62, + "probability": 0.995 + }, + { + "start": 14983.2, + "end": 14985.34, + "probability": 0.9197 + }, + { + "start": 14986.16, + "end": 14987.92, + "probability": 0.9953 + }, + { + "start": 14988.44, + "end": 14990.38, + "probability": 0.9982 + }, + { + "start": 14990.96, + "end": 14995.0, + "probability": 0.9884 + }, + { + "start": 14995.0, + "end": 14998.62, + "probability": 0.9863 + }, + { + "start": 15005.12, + "end": 15005.72, + "probability": 0.1932 + }, + { + "start": 15005.86, + "end": 15006.52, + "probability": 0.0519 + }, + { + "start": 15006.86, + "end": 15007.34, + "probability": 0.8241 + }, + { + "start": 15007.48, + "end": 15008.66, + "probability": 0.4683 + }, + { + "start": 15009.2, + "end": 15010.58, + "probability": 0.5298 + }, + { + "start": 15010.64, + "end": 15011.05, + "probability": 0.421 + }, + { + "start": 15011.9, + "end": 15013.38, + "probability": 0.9356 + }, + { + "start": 15013.38, + "end": 15014.64, + "probability": 0.8044 + }, + { + "start": 15014.76, + "end": 15020.22, + "probability": 0.7456 + }, + { + "start": 15020.3, + "end": 15020.94, + "probability": 0.7849 + }, + { + "start": 15021.26, + "end": 15024.4, + "probability": 0.7083 + }, + { + "start": 15024.48, + "end": 15025.32, + "probability": 0.8036 + }, + { + "start": 15025.32, + "end": 15031.74, + "probability": 0.9052 + }, + { + "start": 15032.18, + "end": 15040.52, + "probability": 0.979 + }, + { + "start": 15041.56, + "end": 15044.5, + "probability": 0.7119 + }, + { + "start": 15044.64, + "end": 15050.32, + "probability": 0.9559 + }, + { + "start": 15050.96, + "end": 15058.46, + "probability": 0.9517 + }, + { + "start": 15058.98, + "end": 15060.4, + "probability": 0.676 + }, + { + "start": 15061.26, + "end": 15063.22, + "probability": 0.7437 + }, + { + "start": 15064.16, + "end": 15068.26, + "probability": 0.9794 + }, + { + "start": 15068.28, + "end": 15069.18, + "probability": 0.5987 + }, + { + "start": 15070.54, + "end": 15072.84, + "probability": 0.4174 + }, + { + "start": 15073.04, + "end": 15076.74, + "probability": 0.7583 + }, + { + "start": 15076.76, + "end": 15079.14, + "probability": 0.8049 + }, + { + "start": 15080.04, + "end": 15082.72, + "probability": 0.9854 + }, + { + "start": 15083.24, + "end": 15086.48, + "probability": 0.8051 + }, + { + "start": 15087.4, + "end": 15091.36, + "probability": 0.8057 + }, + { + "start": 15093.24, + "end": 15095.08, + "probability": 0.9979 + }, + { + "start": 15098.2, + "end": 15101.54, + "probability": 0.9849 + }, + { + "start": 15101.76, + "end": 15102.44, + "probability": 0.6575 + }, + { + "start": 15102.46, + "end": 15104.42, + "probability": 0.9983 + }, + { + "start": 15104.64, + "end": 15104.98, + "probability": 0.787 + }, + { + "start": 15105.08, + "end": 15106.46, + "probability": 0.1034 + }, + { + "start": 15107.96, + "end": 15109.72, + "probability": 0.6934 + }, + { + "start": 15109.74, + "end": 15112.08, + "probability": 0.0584 + }, + { + "start": 15121.18, + "end": 15123.7, + "probability": 0.5549 + }, + { + "start": 15123.7, + "end": 15127.3, + "probability": 0.3267 + }, + { + "start": 15127.3, + "end": 15128.64, + "probability": 0.6078 + }, + { + "start": 15130.57, + "end": 15131.38, + "probability": 0.3288 + }, + { + "start": 15131.38, + "end": 15131.82, + "probability": 0.6026 + }, + { + "start": 15132.96, + "end": 15134.04, + "probability": 0.5063 + }, + { + "start": 15134.22, + "end": 15135.2, + "probability": 0.2319 + }, + { + "start": 15135.2, + "end": 15138.48, + "probability": 0.2572 + }, + { + "start": 15139.14, + "end": 15139.56, + "probability": 0.138 + }, + { + "start": 15139.56, + "end": 15139.56, + "probability": 0.249 + }, + { + "start": 15139.56, + "end": 15139.56, + "probability": 0.0774 + }, + { + "start": 15139.56, + "end": 15139.56, + "probability": 0.081 + }, + { + "start": 15139.56, + "end": 15142.48, + "probability": 0.5 + }, + { + "start": 15143.1, + "end": 15146.12, + "probability": 0.8253 + }, + { + "start": 15146.62, + "end": 15151.61, + "probability": 0.9873 + }, + { + "start": 15152.5, + "end": 15160.84, + "probability": 0.9666 + }, + { + "start": 15160.98, + "end": 15161.34, + "probability": 0.8498 + }, + { + "start": 15162.58, + "end": 15164.34, + "probability": 0.6305 + }, + { + "start": 15164.44, + "end": 15165.96, + "probability": 0.8406 + }, + { + "start": 15166.2, + "end": 15167.18, + "probability": 0.8452 + }, + { + "start": 15167.7, + "end": 15168.72, + "probability": 0.9683 + }, + { + "start": 15169.48, + "end": 15176.12, + "probability": 0.9753 + }, + { + "start": 15176.82, + "end": 15177.92, + "probability": 0.9973 + }, + { + "start": 15178.64, + "end": 15180.14, + "probability": 0.7579 + }, + { + "start": 15180.74, + "end": 15185.82, + "probability": 0.9766 + }, + { + "start": 15186.44, + "end": 15190.18, + "probability": 0.9327 + }, + { + "start": 15190.3, + "end": 15192.06, + "probability": 0.9607 + }, + { + "start": 15193.0, + "end": 15197.4, + "probability": 0.9972 + }, + { + "start": 15197.84, + "end": 15202.22, + "probability": 0.9932 + }, + { + "start": 15202.22, + "end": 15205.96, + "probability": 0.9884 + }, + { + "start": 15206.5, + "end": 15214.24, + "probability": 0.9927 + }, + { + "start": 15214.4, + "end": 15216.34, + "probability": 0.9707 + }, + { + "start": 15216.44, + "end": 15218.78, + "probability": 0.8185 + }, + { + "start": 15219.26, + "end": 15223.28, + "probability": 0.9727 + }, + { + "start": 15223.84, + "end": 15225.4, + "probability": 0.7713 + }, + { + "start": 15225.58, + "end": 15228.2, + "probability": 0.9957 + }, + { + "start": 15228.2, + "end": 15232.54, + "probability": 0.988 + }, + { + "start": 15232.54, + "end": 15232.54, + "probability": 0.7525 + }, + { + "start": 15232.54, + "end": 15235.44, + "probability": 0.9463 + }, + { + "start": 15235.6, + "end": 15236.5, + "probability": 0.8281 + }, + { + "start": 15236.52, + "end": 15238.36, + "probability": 0.9359 + }, + { + "start": 15238.56, + "end": 15239.2, + "probability": 0.5399 + }, + { + "start": 15239.2, + "end": 15241.72, + "probability": 0.771 + }, + { + "start": 15242.16, + "end": 15244.22, + "probability": 0.6501 + }, + { + "start": 15244.34, + "end": 15244.88, + "probability": 0.2558 + }, + { + "start": 15244.98, + "end": 15245.12, + "probability": 0.4902 + }, + { + "start": 15245.12, + "end": 15246.18, + "probability": 0.2189 + }, + { + "start": 15246.76, + "end": 15248.1, + "probability": 0.9487 + }, + { + "start": 15248.2, + "end": 15248.87, + "probability": 0.4257 + }, + { + "start": 15249.02, + "end": 15249.8, + "probability": 0.6571 + }, + { + "start": 15250.02, + "end": 15252.92, + "probability": 0.9891 + }, + { + "start": 15253.44, + "end": 15254.18, + "probability": 0.5217 + }, + { + "start": 15254.38, + "end": 15255.88, + "probability": 0.9647 + }, + { + "start": 15256.62, + "end": 15258.28, + "probability": 0.9905 + }, + { + "start": 15258.98, + "end": 15261.36, + "probability": 0.2695 + }, + { + "start": 15261.46, + "end": 15262.76, + "probability": 0.7738 + }, + { + "start": 15262.84, + "end": 15263.84, + "probability": 0.5479 + }, + { + "start": 15263.86, + "end": 15265.8, + "probability": 0.7349 + }, + { + "start": 15265.88, + "end": 15268.18, + "probability": 0.9642 + }, + { + "start": 15268.9, + "end": 15271.76, + "probability": 0.0289 + }, + { + "start": 15271.76, + "end": 15274.06, + "probability": 0.6732 + }, + { + "start": 15274.32, + "end": 15274.66, + "probability": 0.0841 + }, + { + "start": 15275.02, + "end": 15277.02, + "probability": 0.9299 + }, + { + "start": 15277.42, + "end": 15278.08, + "probability": 0.055 + }, + { + "start": 15278.26, + "end": 15280.68, + "probability": 0.9777 + }, + { + "start": 15281.06, + "end": 15286.72, + "probability": 0.4093 + }, + { + "start": 15286.72, + "end": 15287.04, + "probability": 0.0316 + }, + { + "start": 15287.04, + "end": 15287.04, + "probability": 0.0843 + }, + { + "start": 15287.04, + "end": 15287.04, + "probability": 0.0361 + }, + { + "start": 15287.04, + "end": 15287.04, + "probability": 0.1957 + }, + { + "start": 15287.04, + "end": 15287.53, + "probability": 0.4344 + }, + { + "start": 15287.86, + "end": 15288.44, + "probability": 0.7144 + }, + { + "start": 15288.52, + "end": 15290.92, + "probability": 0.842 + }, + { + "start": 15291.36, + "end": 15291.82, + "probability": 0.7717 + }, + { + "start": 15292.16, + "end": 15293.66, + "probability": 0.9515 + }, + { + "start": 15293.88, + "end": 15300.7, + "probability": 0.209 + }, + { + "start": 15301.7, + "end": 15302.38, + "probability": 0.8093 + }, + { + "start": 15303.46, + "end": 15304.5, + "probability": 0.669 + }, + { + "start": 15305.1, + "end": 15306.72, + "probability": 0.9803 + }, + { + "start": 15307.32, + "end": 15311.88, + "probability": 0.9021 + }, + { + "start": 15312.8, + "end": 15313.24, + "probability": 0.9714 + }, + { + "start": 15314.18, + "end": 15315.06, + "probability": 0.9524 + }, + { + "start": 15315.86, + "end": 15317.46, + "probability": 0.9252 + }, + { + "start": 15318.2, + "end": 15320.2, + "probability": 0.7962 + }, + { + "start": 15321.52, + "end": 15322.14, + "probability": 0.9896 + }, + { + "start": 15323.16, + "end": 15324.12, + "probability": 0.3815 + }, + { + "start": 15324.86, + "end": 15325.42, + "probability": 0.706 + }, + { + "start": 15326.34, + "end": 15327.22, + "probability": 0.8114 + }, + { + "start": 15327.86, + "end": 15329.96, + "probability": 0.8162 + }, + { + "start": 15330.74, + "end": 15333.26, + "probability": 0.9875 + }, + { + "start": 15333.9, + "end": 15335.74, + "probability": 0.8694 + }, + { + "start": 15336.5, + "end": 15338.5, + "probability": 0.9905 + }, + { + "start": 15339.9, + "end": 15346.28, + "probability": 0.9846 + }, + { + "start": 15347.24, + "end": 15350.26, + "probability": 0.7175 + }, + { + "start": 15351.02, + "end": 15351.96, + "probability": 0.7337 + }, + { + "start": 15353.08, + "end": 15356.56, + "probability": 0.874 + }, + { + "start": 15357.24, + "end": 15359.52, + "probability": 0.9489 + }, + { + "start": 15360.32, + "end": 15362.04, + "probability": 0.9877 + }, + { + "start": 15363.04, + "end": 15364.44, + "probability": 0.9755 + }, + { + "start": 15366.54, + "end": 15369.64, + "probability": 0.9877 + }, + { + "start": 15370.22, + "end": 15377.96, + "probability": 0.9578 + }, + { + "start": 15378.72, + "end": 15382.26, + "probability": 0.5935 + }, + { + "start": 15383.02, + "end": 15383.28, + "probability": 0.5095 + }, + { + "start": 15386.2, + "end": 15389.92, + "probability": 0.4873 + }, + { + "start": 15390.7, + "end": 15392.94, + "probability": 0.8951 + }, + { + "start": 15395.52, + "end": 15396.62, + "probability": 0.7775 + }, + { + "start": 15397.16, + "end": 15397.94, + "probability": 0.8452 + }, + { + "start": 15398.96, + "end": 15404.76, + "probability": 0.9644 + }, + { + "start": 15406.4, + "end": 15406.94, + "probability": 0.9875 + }, + { + "start": 15408.48, + "end": 15412.14, + "probability": 0.9263 + }, + { + "start": 15413.8, + "end": 15415.76, + "probability": 0.7374 + }, + { + "start": 15416.4, + "end": 15421.22, + "probability": 0.8486 + }, + { + "start": 15422.18, + "end": 15424.42, + "probability": 0.9619 + }, + { + "start": 15425.0, + "end": 15427.4, + "probability": 0.898 + }, + { + "start": 15428.64, + "end": 15430.24, + "probability": 0.8441 + }, + { + "start": 15430.78, + "end": 15432.34, + "probability": 0.6885 + }, + { + "start": 15433.18, + "end": 15439.14, + "probability": 0.6717 + }, + { + "start": 15439.86, + "end": 15442.28, + "probability": 0.9236 + }, + { + "start": 15443.98, + "end": 15445.74, + "probability": 0.731 + }, + { + "start": 15448.56, + "end": 15451.08, + "probability": 0.784 + }, + { + "start": 15454.44, + "end": 15459.82, + "probability": 0.4294 + }, + { + "start": 15459.84, + "end": 15462.3, + "probability": 0.8958 + }, + { + "start": 15462.52, + "end": 15465.14, + "probability": 0.582 + }, + { + "start": 15465.58, + "end": 15467.62, + "probability": 0.981 + }, + { + "start": 15473.82, + "end": 15476.36, + "probability": 0.6778 + }, + { + "start": 15477.1, + "end": 15479.2, + "probability": 0.6357 + }, + { + "start": 15480.14, + "end": 15482.14, + "probability": 0.9785 + }, + { + "start": 15483.94, + "end": 15489.58, + "probability": 0.9736 + }, + { + "start": 15490.68, + "end": 15492.22, + "probability": 0.8762 + }, + { + "start": 15495.04, + "end": 15495.64, + "probability": 0.9943 + }, + { + "start": 15496.26, + "end": 15500.02, + "probability": 0.7116 + }, + { + "start": 15500.8, + "end": 15502.2, + "probability": 0.9651 + }, + { + "start": 15503.22, + "end": 15507.9, + "probability": 0.8829 + }, + { + "start": 15511.08, + "end": 15513.92, + "probability": 0.5016 + }, + { + "start": 15514.94, + "end": 15520.18, + "probability": 0.9043 + }, + { + "start": 15521.0, + "end": 15522.84, + "probability": 0.9728 + }, + { + "start": 15525.82, + "end": 15528.94, + "probability": 0.9427 + }, + { + "start": 15529.9, + "end": 15531.92, + "probability": 0.8073 + }, + { + "start": 15534.12, + "end": 15537.14, + "probability": 0.9889 + }, + { + "start": 15538.76, + "end": 15541.0, + "probability": 0.6269 + }, + { + "start": 15541.18, + "end": 15544.76, + "probability": 0.8628 + }, + { + "start": 15545.02, + "end": 15548.1, + "probability": 0.853 + }, + { + "start": 15548.4, + "end": 15550.52, + "probability": 0.9723 + }, + { + "start": 15551.04, + "end": 15555.8, + "probability": 0.9425 + }, + { + "start": 15556.2, + "end": 15558.5, + "probability": 0.9508 + }, + { + "start": 15558.84, + "end": 15561.02, + "probability": 0.668 + }, + { + "start": 15561.36, + "end": 15563.92, + "probability": 0.6669 + }, + { + "start": 15564.82, + "end": 15567.24, + "probability": 0.8931 + }, + { + "start": 15569.06, + "end": 15574.32, + "probability": 0.9194 + }, + { + "start": 15575.5, + "end": 15578.64, + "probability": 0.991 + }, + { + "start": 15580.58, + "end": 15583.38, + "probability": 0.9229 + }, + { + "start": 15584.06, + "end": 15586.6, + "probability": 0.9748 + }, + { + "start": 15588.04, + "end": 15588.96, + "probability": 0.4847 + }, + { + "start": 15592.66, + "end": 15597.14, + "probability": 0.1793 + }, + { + "start": 15597.18, + "end": 15600.04, + "probability": 0.6962 + }, + { + "start": 15600.12, + "end": 15601.06, + "probability": 0.435 + }, + { + "start": 15601.3, + "end": 15604.32, + "probability": 0.8824 + }, + { + "start": 15604.68, + "end": 15604.72, + "probability": 0.0013 + }, + { + "start": 15606.78, + "end": 15607.0, + "probability": 0.0312 + }, + { + "start": 15607.0, + "end": 15607.0, + "probability": 0.148 + }, + { + "start": 15607.0, + "end": 15607.53, + "probability": 0.517 + }, + { + "start": 15609.32, + "end": 15614.68, + "probability": 0.4107 + }, + { + "start": 15614.98, + "end": 15617.12, + "probability": 0.7034 + }, + { + "start": 15617.62, + "end": 15619.2, + "probability": 0.7378 + }, + { + "start": 15620.12, + "end": 15622.06, + "probability": 0.6816 + }, + { + "start": 15624.82, + "end": 15629.36, + "probability": 0.911 + }, + { + "start": 15629.68, + "end": 15633.42, + "probability": 0.9742 + }, + { + "start": 15633.64, + "end": 15635.82, + "probability": 0.9553 + }, + { + "start": 15637.62, + "end": 15646.42, + "probability": 0.8916 + }, + { + "start": 15647.98, + "end": 15651.18, + "probability": 0.8323 + }, + { + "start": 15652.16, + "end": 15657.84, + "probability": 0.691 + }, + { + "start": 15658.36, + "end": 15665.34, + "probability": 0.9573 + }, + { + "start": 15666.34, + "end": 15671.68, + "probability": 0.9368 + }, + { + "start": 15673.56, + "end": 15676.08, + "probability": 0.5188 + }, + { + "start": 15679.42, + "end": 15683.86, + "probability": 0.5584 + }, + { + "start": 15684.68, + "end": 15687.94, + "probability": 0.8808 + }, + { + "start": 15688.76, + "end": 15692.56, + "probability": 0.7864 + }, + { + "start": 15693.3, + "end": 15695.32, + "probability": 0.9745 + }, + { + "start": 15695.98, + "end": 15700.72, + "probability": 0.9724 + }, + { + "start": 15701.54, + "end": 15704.38, + "probability": 0.9619 + }, + { + "start": 15705.38, + "end": 15706.48, + "probability": 0.9954 + }, + { + "start": 15707.5, + "end": 15711.22, + "probability": 0.7081 + }, + { + "start": 15712.48, + "end": 15714.38, + "probability": 0.683 + }, + { + "start": 15716.28, + "end": 15719.06, + "probability": 0.5297 + }, + { + "start": 15719.38, + "end": 15721.12, + "probability": 0.4907 + }, + { + "start": 15725.4, + "end": 15727.42, + "probability": 0.5294 + }, + { + "start": 15727.5, + "end": 15729.22, + "probability": 0.0831 + }, + { + "start": 15729.22, + "end": 15731.48, + "probability": 0.6865 + }, + { + "start": 15731.78, + "end": 15732.18, + "probability": 0.6774 + }, + { + "start": 15732.24, + "end": 15733.94, + "probability": 0.228 + }, + { + "start": 15733.94, + "end": 15734.68, + "probability": 0.7891 + }, + { + "start": 15734.76, + "end": 15736.32, + "probability": 0.9907 + }, + { + "start": 15736.58, + "end": 15737.52, + "probability": 0.9465 + }, + { + "start": 15737.6, + "end": 15738.3, + "probability": 0.7591 + }, + { + "start": 15739.16, + "end": 15741.42, + "probability": 0.8132 + }, + { + "start": 15741.48, + "end": 15742.14, + "probability": 0.8524 + }, + { + "start": 15743.43, + "end": 15750.68, + "probability": 0.9899 + }, + { + "start": 15750.78, + "end": 15751.42, + "probability": 0.9555 + }, + { + "start": 15751.94, + "end": 15754.8, + "probability": 0.9536 + }, + { + "start": 15754.96, + "end": 15756.62, + "probability": 0.9851 + }, + { + "start": 15756.72, + "end": 15758.42, + "probability": 0.808 + }, + { + "start": 15758.52, + "end": 15760.08, + "probability": 0.9906 + }, + { + "start": 15760.08, + "end": 15763.1, + "probability": 0.8957 + }, + { + "start": 15763.82, + "end": 15766.44, + "probability": 0.9609 + }, + { + "start": 15766.74, + "end": 15768.92, + "probability": 0.9104 + }, + { + "start": 15768.96, + "end": 15770.76, + "probability": 0.8485 + }, + { + "start": 15771.2, + "end": 15775.22, + "probability": 0.9485 + }, + { + "start": 15776.58, + "end": 15777.64, + "probability": 0.0857 + }, + { + "start": 15780.23, + "end": 15781.6, + "probability": 0.5971 + }, + { + "start": 15781.66, + "end": 15784.37, + "probability": 0.1939 + }, + { + "start": 15784.54, + "end": 15788.7, + "probability": 0.688 + }, + { + "start": 15791.78, + "end": 15798.18, + "probability": 0.7439 + }, + { + "start": 15799.2, + "end": 15800.94, + "probability": 0.7966 + }, + { + "start": 15801.96, + "end": 15805.66, + "probability": 0.8969 + }, + { + "start": 15806.64, + "end": 15808.7, + "probability": 0.9475 + }, + { + "start": 15809.48, + "end": 15814.52, + "probability": 0.9919 + }, + { + "start": 15815.1, + "end": 15817.1, + "probability": 0.7481 + }, + { + "start": 15817.8, + "end": 15820.58, + "probability": 0.7234 + }, + { + "start": 15820.82, + "end": 15824.46, + "probability": 0.8068 + }, + { + "start": 15824.6, + "end": 15829.12, + "probability": 0.9741 + }, + { + "start": 15829.18, + "end": 15830.28, + "probability": 0.8694 + }, + { + "start": 15831.14, + "end": 15833.66, + "probability": 0.1173 + }, + { + "start": 15834.16, + "end": 15834.62, + "probability": 0.6554 + }, + { + "start": 15835.48, + "end": 15838.3, + "probability": 0.5099 + }, + { + "start": 15843.2, + "end": 15843.88, + "probability": 0.4573 + }, + { + "start": 15844.5, + "end": 15847.34, + "probability": 0.2516 + }, + { + "start": 15847.5, + "end": 15848.58, + "probability": 0.6995 + }, + { + "start": 15848.58, + "end": 15850.04, + "probability": 0.866 + }, + { + "start": 15850.6, + "end": 15850.72, + "probability": 0.015 + }, + { + "start": 15850.72, + "end": 15853.2, + "probability": 0.4932 + }, + { + "start": 15853.28, + "end": 15857.1, + "probability": 0.8195 + }, + { + "start": 15857.9, + "end": 15859.9, + "probability": 0.6749 + }, + { + "start": 15860.4, + "end": 15863.04, + "probability": 0.8818 + }, + { + "start": 15864.2, + "end": 15866.18, + "probability": 0.9138 + }, + { + "start": 15866.84, + "end": 15869.94, + "probability": 0.9817 + }, + { + "start": 15870.88, + "end": 15875.82, + "probability": 0.8024 + }, + { + "start": 15876.96, + "end": 15880.36, + "probability": 0.8905 + }, + { + "start": 15881.38, + "end": 15883.56, + "probability": 0.9619 + }, + { + "start": 15884.3, + "end": 15888.02, + "probability": 0.8658 + }, + { + "start": 15891.2, + "end": 15891.84, + "probability": 0.9889 + }, + { + "start": 15896.64, + "end": 15897.6, + "probability": 0.5259 + }, + { + "start": 15898.4, + "end": 15906.7, + "probability": 0.9896 + }, + { + "start": 15906.9, + "end": 15909.26, + "probability": 0.1179 + }, + { + "start": 15909.46, + "end": 15912.18, + "probability": 0.9993 + }, + { + "start": 15912.82, + "end": 15914.08, + "probability": 0.6779 + }, + { + "start": 15914.08, + "end": 15915.24, + "probability": 0.7528 + }, + { + "start": 15917.26, + "end": 15919.4, + "probability": 0.1463 + }, + { + "start": 15920.02, + "end": 15921.86, + "probability": 0.0087 + }, + { + "start": 15922.02, + "end": 15922.54, + "probability": 0.4489 + }, + { + "start": 15922.58, + "end": 15923.46, + "probability": 0.5377 + }, + { + "start": 15923.5, + "end": 15925.04, + "probability": 0.8605 + }, + { + "start": 15925.36, + "end": 15925.9, + "probability": 0.5487 + }, + { + "start": 15926.16, + "end": 15928.7, + "probability": 0.9916 + }, + { + "start": 15928.78, + "end": 15929.5, + "probability": 0.9552 + }, + { + "start": 15933.88, + "end": 15934.04, + "probability": 0.0195 + }, + { + "start": 15936.26, + "end": 15936.28, + "probability": 0.1479 + }, + { + "start": 15936.8, + "end": 15940.62, + "probability": 0.0195 + }, + { + "start": 16030.22, + "end": 16032.64, + "probability": 0.0029 + }, + { + "start": 16036.55, + "end": 16043.84, + "probability": 0.7624 + }, + { + "start": 16044.92, + "end": 16047.5, + "probability": 0.8892 + }, + { + "start": 16047.58, + "end": 16049.6, + "probability": 0.9254 + }, + { + "start": 16049.62, + "end": 16053.74, + "probability": 0.7619 + }, + { + "start": 16054.34, + "end": 16055.38, + "probability": 0.9742 + }, + { + "start": 16055.54, + "end": 16058.44, + "probability": 0.9603 + }, + { + "start": 16059.14, + "end": 16062.26, + "probability": 0.0531 + }, + { + "start": 16062.56, + "end": 16064.92, + "probability": 0.8095 + }, + { + "start": 16064.92, + "end": 16068.4, + "probability": 0.7345 + }, + { + "start": 16068.82, + "end": 16069.78, + "probability": 0.4449 + }, + { + "start": 16070.0, + "end": 16072.64, + "probability": 0.9426 + }, + { + "start": 16072.64, + "end": 16075.1, + "probability": 0.975 + }, + { + "start": 16075.2, + "end": 16077.92, + "probability": 0.9766 + }, + { + "start": 16078.28, + "end": 16078.68, + "probability": 0.8915 + }, + { + "start": 16078.84, + "end": 16081.04, + "probability": 0.6221 + }, + { + "start": 16081.62, + "end": 16082.96, + "probability": 0.8767 + }, + { + "start": 16083.46, + "end": 16084.36, + "probability": 0.4138 + }, + { + "start": 16084.36, + "end": 16087.06, + "probability": 0.9824 + }, + { + "start": 16087.74, + "end": 16090.02, + "probability": 0.9317 + }, + { + "start": 16090.12, + "end": 16090.4, + "probability": 0.8138 + }, + { + "start": 16091.0, + "end": 16091.3, + "probability": 0.6463 + }, + { + "start": 16091.3, + "end": 16093.74, + "probability": 0.9497 + }, + { + "start": 16094.04, + "end": 16094.8, + "probability": 0.7121 + }, + { + "start": 16095.7, + "end": 16096.66, + "probability": 0.8992 + }, + { + "start": 16105.4, + "end": 16109.0, + "probability": 0.7142 + }, + { + "start": 16110.12, + "end": 16112.14, + "probability": 0.9639 + }, + { + "start": 16112.3, + "end": 16115.38, + "probability": 0.7479 + }, + { + "start": 16117.14, + "end": 16122.46, + "probability": 0.9743 + }, + { + "start": 16122.74, + "end": 16123.86, + "probability": 0.75 + }, + { + "start": 16124.92, + "end": 16126.64, + "probability": 0.6161 + }, + { + "start": 16127.68, + "end": 16130.26, + "probability": 0.8159 + }, + { + "start": 16131.1, + "end": 16136.06, + "probability": 0.9746 + }, + { + "start": 16138.08, + "end": 16140.66, + "probability": 0.8195 + }, + { + "start": 16142.26, + "end": 16149.98, + "probability": 0.9741 + }, + { + "start": 16151.0, + "end": 16152.86, + "probability": 0.8147 + }, + { + "start": 16153.56, + "end": 16154.78, + "probability": 0.9224 + }, + { + "start": 16155.84, + "end": 16162.7, + "probability": 0.9965 + }, + { + "start": 16163.36, + "end": 16167.0, + "probability": 0.8766 + }, + { + "start": 16168.22, + "end": 16174.1, + "probability": 0.9819 + }, + { + "start": 16174.68, + "end": 16176.4, + "probability": 0.9993 + }, + { + "start": 16177.02, + "end": 16177.22, + "probability": 0.9009 + }, + { + "start": 16178.28, + "end": 16185.96, + "probability": 0.9839 + }, + { + "start": 16186.38, + "end": 16187.72, + "probability": 0.8722 + }, + { + "start": 16188.36, + "end": 16190.0, + "probability": 0.9935 + }, + { + "start": 16191.36, + "end": 16192.94, + "probability": 0.7795 + }, + { + "start": 16195.32, + "end": 16199.98, + "probability": 0.9107 + }, + { + "start": 16201.14, + "end": 16202.28, + "probability": 0.8516 + }, + { + "start": 16202.92, + "end": 16203.64, + "probability": 0.7309 + }, + { + "start": 16205.04, + "end": 16210.86, + "probability": 0.9844 + }, + { + "start": 16211.06, + "end": 16215.26, + "probability": 0.9734 + }, + { + "start": 16215.74, + "end": 16220.72, + "probability": 0.8932 + }, + { + "start": 16220.84, + "end": 16223.52, + "probability": 0.3017 + }, + { + "start": 16224.58, + "end": 16227.32, + "probability": 0.9249 + }, + { + "start": 16228.06, + "end": 16231.65, + "probability": 0.9893 + }, + { + "start": 16233.42, + "end": 16233.98, + "probability": 0.6577 + }, + { + "start": 16234.98, + "end": 16239.06, + "probability": 0.9808 + }, + { + "start": 16239.66, + "end": 16243.52, + "probability": 0.7604 + }, + { + "start": 16243.52, + "end": 16244.22, + "probability": 0.4293 + }, + { + "start": 16244.48, + "end": 16245.2, + "probability": 0.7952 + }, + { + "start": 16246.12, + "end": 16248.04, + "probability": 0.9094 + }, + { + "start": 16249.06, + "end": 16249.66, + "probability": 0.9206 + }, + { + "start": 16250.5, + "end": 16251.0, + "probability": 0.8584 + }, + { + "start": 16251.6, + "end": 16252.56, + "probability": 0.9862 + }, + { + "start": 16253.16, + "end": 16257.2, + "probability": 0.9696 + }, + { + "start": 16257.96, + "end": 16258.88, + "probability": 0.2165 + }, + { + "start": 16259.48, + "end": 16262.02, + "probability": 0.547 + }, + { + "start": 16262.7, + "end": 16265.38, + "probability": 0.6809 + }, + { + "start": 16266.12, + "end": 16272.1, + "probability": 0.8989 + }, + { + "start": 16273.28, + "end": 16277.9, + "probability": 0.9858 + }, + { + "start": 16278.16, + "end": 16278.42, + "probability": 0.5792 + }, + { + "start": 16279.52, + "end": 16280.82, + "probability": 0.818 + }, + { + "start": 16282.4, + "end": 16284.76, + "probability": 0.9245 + }, + { + "start": 16285.46, + "end": 16288.32, + "probability": 0.811 + }, + { + "start": 16288.98, + "end": 16294.12, + "probability": 0.9833 + }, + { + "start": 16295.04, + "end": 16296.14, + "probability": 0.7208 + }, + { + "start": 16297.14, + "end": 16298.86, + "probability": 0.6783 + }, + { + "start": 16299.56, + "end": 16301.6, + "probability": 0.7388 + }, + { + "start": 16302.64, + "end": 16303.72, + "probability": 0.8979 + }, + { + "start": 16303.82, + "end": 16304.96, + "probability": 0.9486 + }, + { + "start": 16309.44, + "end": 16310.48, + "probability": 0.8673 + }, + { + "start": 16314.4, + "end": 16314.98, + "probability": 0.8375 + }, + { + "start": 16316.34, + "end": 16317.5, + "probability": 0.7557 + }, + { + "start": 16320.28, + "end": 16320.9, + "probability": 0.7179 + }, + { + "start": 16323.98, + "end": 16324.72, + "probability": 0.8577 + }, + { + "start": 16326.72, + "end": 16330.08, + "probability": 0.9724 + }, + { + "start": 16331.34, + "end": 16334.02, + "probability": 0.9717 + }, + { + "start": 16335.08, + "end": 16336.96, + "probability": 0.9749 + }, + { + "start": 16337.86, + "end": 16340.84, + "probability": 0.9922 + }, + { + "start": 16340.9, + "end": 16341.78, + "probability": 0.6852 + }, + { + "start": 16342.76, + "end": 16344.14, + "probability": 0.9902 + }, + { + "start": 16345.46, + "end": 16349.56, + "probability": 0.9769 + }, + { + "start": 16350.62, + "end": 16353.66, + "probability": 0.9789 + }, + { + "start": 16353.84, + "end": 16354.86, + "probability": 0.9446 + }, + { + "start": 16355.78, + "end": 16357.16, + "probability": 0.7651 + }, + { + "start": 16358.2, + "end": 16362.3, + "probability": 0.9603 + }, + { + "start": 16363.32, + "end": 16367.98, + "probability": 0.9708 + }, + { + "start": 16369.08, + "end": 16370.74, + "probability": 0.6763 + }, + { + "start": 16371.88, + "end": 16373.32, + "probability": 0.987 + }, + { + "start": 16374.48, + "end": 16376.62, + "probability": 0.9909 + }, + { + "start": 16377.46, + "end": 16379.5, + "probability": 0.9903 + }, + { + "start": 16379.52, + "end": 16382.48, + "probability": 0.8964 + }, + { + "start": 16383.64, + "end": 16385.9, + "probability": 0.8857 + }, + { + "start": 16386.42, + "end": 16390.0, + "probability": 0.9687 + }, + { + "start": 16391.4, + "end": 16392.3, + "probability": 0.9275 + }, + { + "start": 16394.26, + "end": 16395.16, + "probability": 0.7944 + }, + { + "start": 16397.58, + "end": 16398.86, + "probability": 0.9189 + }, + { + "start": 16399.6, + "end": 16401.93, + "probability": 0.8072 + }, + { + "start": 16402.08, + "end": 16402.98, + "probability": 0.5149 + }, + { + "start": 16403.26, + "end": 16404.14, + "probability": 0.7289 + }, + { + "start": 16404.76, + "end": 16407.84, + "probability": 0.9946 + }, + { + "start": 16408.78, + "end": 16410.2, + "probability": 0.9796 + }, + { + "start": 16411.46, + "end": 16414.34, + "probability": 0.5747 + }, + { + "start": 16414.34, + "end": 16418.11, + "probability": 0.9458 + }, + { + "start": 16418.28, + "end": 16421.5, + "probability": 0.7206 + }, + { + "start": 16422.58, + "end": 16422.58, + "probability": 0.1733 + }, + { + "start": 16422.58, + "end": 16422.58, + "probability": 0.0335 + }, + { + "start": 16422.58, + "end": 16422.58, + "probability": 0.0382 + }, + { + "start": 16422.58, + "end": 16423.32, + "probability": 0.9637 + }, + { + "start": 16423.4, + "end": 16424.5, + "probability": 0.9883 + }, + { + "start": 16425.64, + "end": 16427.24, + "probability": 0.8037 + }, + { + "start": 16427.4, + "end": 16431.94, + "probability": 0.2347 + }, + { + "start": 16442.46, + "end": 16443.24, + "probability": 0.1518 + }, + { + "start": 16443.24, + "end": 16443.24, + "probability": 0.0537 + }, + { + "start": 16443.24, + "end": 16443.24, + "probability": 0.0451 + }, + { + "start": 16443.24, + "end": 16444.86, + "probability": 0.4294 + }, + { + "start": 16445.54, + "end": 16449.38, + "probability": 0.8918 + }, + { + "start": 16450.08, + "end": 16451.0, + "probability": 0.6605 + }, + { + "start": 16452.21, + "end": 16455.56, + "probability": 0.9007 + }, + { + "start": 16456.98, + "end": 16461.04, + "probability": 0.9994 + }, + { + "start": 16461.22, + "end": 16462.84, + "probability": 0.0275 + }, + { + "start": 16463.98, + "end": 16463.98, + "probability": 0.1285 + }, + { + "start": 16463.98, + "end": 16464.34, + "probability": 0.0828 + }, + { + "start": 16464.42, + "end": 16466.22, + "probability": 0.1652 + }, + { + "start": 16466.22, + "end": 16468.26, + "probability": 0.7262 + }, + { + "start": 16469.1, + "end": 16470.88, + "probability": 0.2552 + }, + { + "start": 16471.04, + "end": 16471.6, + "probability": 0.0182 + }, + { + "start": 16474.2, + "end": 16474.8, + "probability": 0.0979 + }, + { + "start": 16474.8, + "end": 16474.8, + "probability": 0.1923 + }, + { + "start": 16474.8, + "end": 16474.8, + "probability": 0.092 + }, + { + "start": 16474.8, + "end": 16475.98, + "probability": 0.9904 + }, + { + "start": 16476.84, + "end": 16479.04, + "probability": 0.5483 + }, + { + "start": 16479.64, + "end": 16482.52, + "probability": 0.9766 + }, + { + "start": 16482.62, + "end": 16484.48, + "probability": 0.9031 + }, + { + "start": 16485.32, + "end": 16487.56, + "probability": 0.7767 + }, + { + "start": 16487.66, + "end": 16489.78, + "probability": 0.9709 + }, + { + "start": 16489.84, + "end": 16490.94, + "probability": 0.9684 + }, + { + "start": 16491.46, + "end": 16493.38, + "probability": 0.9314 + }, + { + "start": 16493.92, + "end": 16495.68, + "probability": 0.8961 + }, + { + "start": 16495.84, + "end": 16498.0, + "probability": 0.9342 + }, + { + "start": 16498.22, + "end": 16499.44, + "probability": 0.9125 + }, + { + "start": 16499.96, + "end": 16500.92, + "probability": 0.8711 + }, + { + "start": 16501.14, + "end": 16501.28, + "probability": 0.5792 + }, + { + "start": 16501.38, + "end": 16501.78, + "probability": 0.8985 + }, + { + "start": 16501.86, + "end": 16503.46, + "probability": 0.9618 + }, + { + "start": 16504.08, + "end": 16506.78, + "probability": 0.8371 + }, + { + "start": 16507.14, + "end": 16510.52, + "probability": 0.9814 + }, + { + "start": 16510.56, + "end": 16511.9, + "probability": 0.7716 + }, + { + "start": 16511.96, + "end": 16512.48, + "probability": 0.8226 + }, + { + "start": 16512.72, + "end": 16514.58, + "probability": 0.991 + }, + { + "start": 16514.96, + "end": 16515.64, + "probability": 0.6866 + }, + { + "start": 16516.1, + "end": 16517.21, + "probability": 0.6283 + }, + { + "start": 16518.24, + "end": 16519.18, + "probability": 0.8826 + }, + { + "start": 16519.26, + "end": 16523.7, + "probability": 0.9634 + }, + { + "start": 16524.92, + "end": 16525.98, + "probability": 0.7872 + }, + { + "start": 16526.4, + "end": 16527.72, + "probability": 0.9319 + }, + { + "start": 16527.88, + "end": 16529.46, + "probability": 0.9394 + }, + { + "start": 16529.54, + "end": 16530.18, + "probability": 0.9427 + }, + { + "start": 16530.24, + "end": 16530.86, + "probability": 0.9538 + }, + { + "start": 16531.96, + "end": 16534.2, + "probability": 0.7867 + }, + { + "start": 16534.94, + "end": 16536.26, + "probability": 0.991 + }, + { + "start": 16536.98, + "end": 16538.62, + "probability": 0.9417 + }, + { + "start": 16538.7, + "end": 16540.28, + "probability": 0.9915 + }, + { + "start": 16541.92, + "end": 16545.46, + "probability": 0.9827 + }, + { + "start": 16545.84, + "end": 16547.0, + "probability": 0.9168 + }, + { + "start": 16547.02, + "end": 16548.18, + "probability": 0.9448 + }, + { + "start": 16548.28, + "end": 16549.18, + "probability": 0.9958 + }, + { + "start": 16550.22, + "end": 16551.62, + "probability": 0.9964 + }, + { + "start": 16552.18, + "end": 16554.08, + "probability": 0.9889 + }, + { + "start": 16554.2, + "end": 16557.2, + "probability": 0.9531 + }, + { + "start": 16559.54, + "end": 16559.96, + "probability": 0.1848 + }, + { + "start": 16559.96, + "end": 16562.76, + "probability": 0.6231 + }, + { + "start": 16562.84, + "end": 16567.86, + "probability": 0.9988 + }, + { + "start": 16568.22, + "end": 16572.16, + "probability": 0.9162 + }, + { + "start": 16572.3, + "end": 16574.5, + "probability": 0.9825 + }, + { + "start": 16574.5, + "end": 16576.98, + "probability": 0.9252 + }, + { + "start": 16577.04, + "end": 16578.72, + "probability": 0.9895 + }, + { + "start": 16579.52, + "end": 16582.82, + "probability": 0.9893 + }, + { + "start": 16582.86, + "end": 16583.74, + "probability": 0.9976 + }, + { + "start": 16584.2, + "end": 16584.22, + "probability": 0.3514 + }, + { + "start": 16584.22, + "end": 16587.3, + "probability": 0.9919 + }, + { + "start": 16588.24, + "end": 16590.76, + "probability": 0.9483 + }, + { + "start": 16591.36, + "end": 16594.26, + "probability": 0.835 + }, + { + "start": 16594.48, + "end": 16597.76, + "probability": 0.905 + }, + { + "start": 16598.18, + "end": 16599.58, + "probability": 0.9972 + }, + { + "start": 16600.38, + "end": 16602.84, + "probability": 0.9956 + }, + { + "start": 16603.32, + "end": 16604.1, + "probability": 0.9591 + }, + { + "start": 16604.64, + "end": 16606.14, + "probability": 0.9594 + }, + { + "start": 16606.28, + "end": 16607.28, + "probability": 0.988 + }, + { + "start": 16608.1, + "end": 16609.78, + "probability": 0.6873 + }, + { + "start": 16609.88, + "end": 16611.46, + "probability": 0.9747 + }, + { + "start": 16611.6, + "end": 16613.24, + "probability": 0.6291 + }, + { + "start": 16613.34, + "end": 16614.66, + "probability": 0.9068 + }, + { + "start": 16614.68, + "end": 16616.5, + "probability": 0.9915 + }, + { + "start": 16616.58, + "end": 16616.92, + "probability": 0.8733 + }, + { + "start": 16617.02, + "end": 16618.05, + "probability": 0.8999 + }, + { + "start": 16618.5, + "end": 16619.72, + "probability": 0.6922 + }, + { + "start": 16620.22, + "end": 16622.22, + "probability": 0.9648 + }, + { + "start": 16622.88, + "end": 16623.3, + "probability": 0.9799 + }, + { + "start": 16623.36, + "end": 16623.86, + "probability": 0.9249 + }, + { + "start": 16623.98, + "end": 16626.54, + "probability": 0.9302 + }, + { + "start": 16626.78, + "end": 16628.94, + "probability": 0.9793 + }, + { + "start": 16629.4, + "end": 16630.76, + "probability": 0.9619 + }, + { + "start": 16631.66, + "end": 16632.62, + "probability": 0.8149 + }, + { + "start": 16632.68, + "end": 16632.92, + "probability": 0.7791 + }, + { + "start": 16633.04, + "end": 16636.88, + "probability": 0.9824 + }, + { + "start": 16637.36, + "end": 16639.24, + "probability": 0.9414 + }, + { + "start": 16639.56, + "end": 16642.54, + "probability": 0.9948 + }, + { + "start": 16642.56, + "end": 16645.54, + "probability": 0.981 + }, + { + "start": 16645.64, + "end": 16646.44, + "probability": 0.9877 + }, + { + "start": 16647.12, + "end": 16647.12, + "probability": 0.0383 + }, + { + "start": 16647.5, + "end": 16648.88, + "probability": 0.8467 + }, + { + "start": 16648.96, + "end": 16649.5, + "probability": 0.811 + }, + { + "start": 16649.54, + "end": 16652.04, + "probability": 0.9444 + }, + { + "start": 16652.04, + "end": 16652.86, + "probability": 0.5014 + }, + { + "start": 16656.24, + "end": 16657.18, + "probability": 0.9081 + }, + { + "start": 16657.28, + "end": 16660.82, + "probability": 0.9912 + }, + { + "start": 16661.72, + "end": 16663.34, + "probability": 0.7486 + }, + { + "start": 16664.52, + "end": 16664.7, + "probability": 0.5609 + }, + { + "start": 16664.74, + "end": 16667.27, + "probability": 0.9946 + }, + { + "start": 16667.36, + "end": 16669.02, + "probability": 0.9852 + }, + { + "start": 16669.12, + "end": 16670.74, + "probability": 0.9041 + }, + { + "start": 16671.5, + "end": 16674.18, + "probability": 0.9358 + }, + { + "start": 16674.32, + "end": 16674.68, + "probability": 0.7664 + }, + { + "start": 16675.08, + "end": 16677.65, + "probability": 0.8359 + }, + { + "start": 16677.88, + "end": 16679.06, + "probability": 0.959 + }, + { + "start": 16682.92, + "end": 16683.22, + "probability": 0.994 + }, + { + "start": 16684.9, + "end": 16684.9, + "probability": 0.0082 + }, + { + "start": 16684.9, + "end": 16687.72, + "probability": 0.4465 + }, + { + "start": 16687.72, + "end": 16690.98, + "probability": 0.9956 + }, + { + "start": 16691.78, + "end": 16692.9, + "probability": 0.9821 + }, + { + "start": 16693.52, + "end": 16695.58, + "probability": 0.9031 + }, + { + "start": 16695.98, + "end": 16696.84, + "probability": 0.9603 + }, + { + "start": 16697.46, + "end": 16698.68, + "probability": 0.9093 + }, + { + "start": 16699.64, + "end": 16701.52, + "probability": 0.9404 + }, + { + "start": 16702.1, + "end": 16703.14, + "probability": 0.983 + }, + { + "start": 16703.32, + "end": 16704.16, + "probability": 0.9836 + }, + { + "start": 16704.2, + "end": 16705.46, + "probability": 0.8743 + }, + { + "start": 16705.9, + "end": 16707.48, + "probability": 0.947 + }, + { + "start": 16708.04, + "end": 16709.38, + "probability": 0.9252 + }, + { + "start": 16709.5, + "end": 16710.86, + "probability": 0.9622 + }, + { + "start": 16710.92, + "end": 16712.74, + "probability": 0.9548 + }, + { + "start": 16712.82, + "end": 16713.62, + "probability": 0.8215 + }, + { + "start": 16714.4, + "end": 16715.82, + "probability": 0.9306 + }, + { + "start": 16716.64, + "end": 16717.64, + "probability": 0.9772 + }, + { + "start": 16717.96, + "end": 16718.8, + "probability": 0.9668 + }, + { + "start": 16719.3, + "end": 16720.3, + "probability": 0.8228 + }, + { + "start": 16720.38, + "end": 16722.32, + "probability": 0.9922 + }, + { + "start": 16722.54, + "end": 16723.41, + "probability": 0.9854 + }, + { + "start": 16724.16, + "end": 16724.86, + "probability": 0.8293 + }, + { + "start": 16724.9, + "end": 16725.5, + "probability": 0.9675 + }, + { + "start": 16725.6, + "end": 16726.58, + "probability": 0.7666 + }, + { + "start": 16726.72, + "end": 16727.74, + "probability": 0.8302 + }, + { + "start": 16728.24, + "end": 16731.4, + "probability": 0.8192 + }, + { + "start": 16732.2, + "end": 16734.6, + "probability": 0.8856 + }, + { + "start": 16735.1, + "end": 16736.18, + "probability": 0.8491 + }, + { + "start": 16736.26, + "end": 16737.96, + "probability": 0.8873 + }, + { + "start": 16738.0, + "end": 16739.6, + "probability": 0.6207 + }, + { + "start": 16740.4, + "end": 16741.02, + "probability": 0.8636 + }, + { + "start": 16741.1, + "end": 16743.38, + "probability": 0.9742 + }, + { + "start": 16743.88, + "end": 16748.82, + "probability": 0.9893 + }, + { + "start": 16750.18, + "end": 16753.46, + "probability": 0.7456 + }, + { + "start": 16753.74, + "end": 16755.72, + "probability": 0.776 + }, + { + "start": 16756.14, + "end": 16758.28, + "probability": 0.9647 + }, + { + "start": 16758.72, + "end": 16759.08, + "probability": 0.7655 + }, + { + "start": 16759.22, + "end": 16761.22, + "probability": 0.9805 + }, + { + "start": 16761.38, + "end": 16761.54, + "probability": 0.3468 + }, + { + "start": 16761.94, + "end": 16766.34, + "probability": 0.9756 + }, + { + "start": 16766.34, + "end": 16768.8, + "probability": 0.9946 + }, + { + "start": 16769.34, + "end": 16769.76, + "probability": 0.9287 + }, + { + "start": 16769.86, + "end": 16771.06, + "probability": 0.9701 + }, + { + "start": 16771.12, + "end": 16772.0, + "probability": 0.7536 + }, + { + "start": 16772.9, + "end": 16776.34, + "probability": 0.9858 + }, + { + "start": 16776.46, + "end": 16776.84, + "probability": 0.7957 + }, + { + "start": 16777.22, + "end": 16777.8, + "probability": 0.4842 + }, + { + "start": 16777.84, + "end": 16780.74, + "probability": 0.9644 + }, + { + "start": 16780.8, + "end": 16781.18, + "probability": 0.8484 + }, + { + "start": 16781.3, + "end": 16784.98, + "probability": 0.9038 + }, + { + "start": 16785.54, + "end": 16787.84, + "probability": 0.8442 + }, + { + "start": 16787.88, + "end": 16788.34, + "probability": 0.6091 + }, + { + "start": 16788.4, + "end": 16791.4, + "probability": 0.9932 + }, + { + "start": 16791.8, + "end": 16795.04, + "probability": 0.9737 + }, + { + "start": 16795.1, + "end": 16797.52, + "probability": 0.9489 + }, + { + "start": 16797.62, + "end": 16800.38, + "probability": 0.9897 + }, + { + "start": 16800.9, + "end": 16801.6, + "probability": 0.8394 + }, + { + "start": 16802.08, + "end": 16803.2, + "probability": 0.9124 + }, + { + "start": 16803.62, + "end": 16804.64, + "probability": 0.9109 + }, + { + "start": 16805.22, + "end": 16808.9, + "probability": 0.9736 + }, + { + "start": 16809.96, + "end": 16811.98, + "probability": 0.9539 + }, + { + "start": 16812.0, + "end": 16813.2, + "probability": 0.9485 + }, + { + "start": 16813.24, + "end": 16813.8, + "probability": 0.867 + }, + { + "start": 16813.92, + "end": 16814.32, + "probability": 0.693 + }, + { + "start": 16814.36, + "end": 16816.3, + "probability": 0.9875 + }, + { + "start": 16817.06, + "end": 16819.42, + "probability": 0.9695 + }, + { + "start": 16820.04, + "end": 16821.44, + "probability": 0.9944 + }, + { + "start": 16821.54, + "end": 16823.58, + "probability": 0.9862 + }, + { + "start": 16824.04, + "end": 16824.92, + "probability": 0.9159 + }, + { + "start": 16825.0, + "end": 16826.84, + "probability": 0.9379 + }, + { + "start": 16827.5, + "end": 16830.6, + "probability": 0.9702 + }, + { + "start": 16831.08, + "end": 16832.78, + "probability": 0.959 + }, + { + "start": 16832.92, + "end": 16833.28, + "probability": 0.7678 + }, + { + "start": 16836.26, + "end": 16836.26, + "probability": 0.3814 + }, + { + "start": 16836.26, + "end": 16836.6, + "probability": 0.2086 + }, + { + "start": 16837.0, + "end": 16841.74, + "probability": 0.9857 + }, + { + "start": 16841.74, + "end": 16845.62, + "probability": 0.9548 + }, + { + "start": 16845.62, + "end": 16847.08, + "probability": 0.9421 + }, + { + "start": 16847.3, + "end": 16848.2, + "probability": 0.9956 + }, + { + "start": 16848.28, + "end": 16851.22, + "probability": 0.939 + }, + { + "start": 16851.34, + "end": 16854.88, + "probability": 0.6812 + }, + { + "start": 16854.94, + "end": 16855.94, + "probability": 0.9001 + }, + { + "start": 16855.94, + "end": 16858.58, + "probability": 0.9856 + }, + { + "start": 16858.64, + "end": 16859.39, + "probability": 0.9933 + }, + { + "start": 16859.86, + "end": 16861.56, + "probability": 0.9927 + }, + { + "start": 16861.66, + "end": 16863.76, + "probability": 0.8757 + }, + { + "start": 16864.4, + "end": 16866.62, + "probability": 0.9269 + }, + { + "start": 16866.62, + "end": 16867.6, + "probability": 0.1956 + }, + { + "start": 16867.62, + "end": 16867.62, + "probability": 0.2004 + }, + { + "start": 16867.62, + "end": 16868.36, + "probability": 0.6352 + }, + { + "start": 16868.82, + "end": 16869.56, + "probability": 0.8853 + }, + { + "start": 16869.9, + "end": 16871.34, + "probability": 0.9259 + }, + { + "start": 16871.8, + "end": 16875.32, + "probability": 0.9546 + }, + { + "start": 16875.38, + "end": 16876.96, + "probability": 0.9874 + }, + { + "start": 16878.0, + "end": 16878.02, + "probability": 0.0889 + }, + { + "start": 16878.02, + "end": 16878.86, + "probability": 0.7004 + }, + { + "start": 16879.48, + "end": 16880.48, + "probability": 0.7609 + }, + { + "start": 16893.98, + "end": 16896.18, + "probability": 0.5726 + }, + { + "start": 16896.9, + "end": 16898.7, + "probability": 0.7207 + }, + { + "start": 16899.8, + "end": 16900.39, + "probability": 0.9958 + }, + { + "start": 16902.02, + "end": 16903.44, + "probability": 0.9989 + }, + { + "start": 16905.42, + "end": 16906.44, + "probability": 0.9096 + }, + { + "start": 16907.52, + "end": 16907.92, + "probability": 0.9834 + }, + { + "start": 16908.7, + "end": 16910.56, + "probability": 0.989 + }, + { + "start": 16911.96, + "end": 16915.2, + "probability": 0.991 + }, + { + "start": 16916.34, + "end": 16917.7, + "probability": 0.9658 + }, + { + "start": 16918.44, + "end": 16920.72, + "probability": 0.1557 + }, + { + "start": 16921.14, + "end": 16921.84, + "probability": 0.0255 + }, + { + "start": 16921.84, + "end": 16921.94, + "probability": 0.1127 + }, + { + "start": 16922.64, + "end": 16924.44, + "probability": 0.7019 + }, + { + "start": 16925.44, + "end": 16927.82, + "probability": 0.8947 + }, + { + "start": 16929.82, + "end": 16930.04, + "probability": 0.1549 + }, + { + "start": 16930.04, + "end": 16930.04, + "probability": 0.0438 + }, + { + "start": 16930.04, + "end": 16930.04, + "probability": 0.0557 + }, + { + "start": 16930.04, + "end": 16930.14, + "probability": 0.1414 + }, + { + "start": 16930.22, + "end": 16931.66, + "probability": 0.8008 + }, + { + "start": 16932.12, + "end": 16935.88, + "probability": 0.9949 + }, + { + "start": 16936.24, + "end": 16936.94, + "probability": 0.9807 + }, + { + "start": 16937.02, + "end": 16940.78, + "probability": 0.8035 + }, + { + "start": 16941.6, + "end": 16941.72, + "probability": 0.098 + }, + { + "start": 16942.32, + "end": 16943.7, + "probability": 0.8876 + }, + { + "start": 16943.7, + "end": 16945.52, + "probability": 0.9238 + }, + { + "start": 16945.98, + "end": 16948.48, + "probability": 0.9567 + }, + { + "start": 16948.48, + "end": 16949.2, + "probability": 0.7567 + }, + { + "start": 16949.54, + "end": 16950.82, + "probability": 0.9675 + }, + { + "start": 16951.48, + "end": 16954.54, + "probability": 0.9583 + }, + { + "start": 16954.64, + "end": 16958.56, + "probability": 0.7834 + }, + { + "start": 16958.56, + "end": 16960.77, + "probability": 0.7142 + }, + { + "start": 16961.0, + "end": 16961.72, + "probability": 0.194 + }, + { + "start": 16961.72, + "end": 16964.42, + "probability": 0.8481 + }, + { + "start": 16964.5, + "end": 16965.09, + "probability": 0.3076 + }, + { + "start": 16965.4, + "end": 16966.54, + "probability": 0.9136 + }, + { + "start": 16966.56, + "end": 16967.73, + "probability": 0.9932 + }, + { + "start": 16968.06, + "end": 16969.64, + "probability": 0.9932 + }, + { + "start": 16969.9, + "end": 16971.86, + "probability": 0.8137 + }, + { + "start": 16971.96, + "end": 16972.59, + "probability": 0.9646 + }, + { + "start": 16973.12, + "end": 16975.8, + "probability": 0.9378 + }, + { + "start": 16975.88, + "end": 16976.48, + "probability": 0.9276 + }, + { + "start": 16976.74, + "end": 16978.78, + "probability": 0.7708 + }, + { + "start": 16979.44, + "end": 16980.7, + "probability": 0.1073 + }, + { + "start": 16981.08, + "end": 16982.5, + "probability": 0.0457 + }, + { + "start": 16982.94, + "end": 16983.24, + "probability": 0.0374 + }, + { + "start": 16983.5, + "end": 16985.52, + "probability": 0.2263 + }, + { + "start": 16985.52, + "end": 16986.95, + "probability": 0.9543 + }, + { + "start": 16987.36, + "end": 16988.49, + "probability": 0.8894 + }, + { + "start": 16989.46, + "end": 16990.32, + "probability": 0.6855 + }, + { + "start": 16990.46, + "end": 16991.61, + "probability": 0.9543 + }, + { + "start": 16992.14, + "end": 16992.49, + "probability": 0.3927 + }, + { + "start": 16992.92, + "end": 16994.28, + "probability": 0.175 + }, + { + "start": 16994.74, + "end": 16995.56, + "probability": 0.0808 + }, + { + "start": 16995.68, + "end": 16995.98, + "probability": 0.0198 + }, + { + "start": 16996.26, + "end": 16997.04, + "probability": 0.0778 + }, + { + "start": 16997.04, + "end": 16999.3, + "probability": 0.045 + }, + { + "start": 16999.7, + "end": 17001.56, + "probability": 0.0223 + }, + { + "start": 17001.56, + "end": 17001.6, + "probability": 0.0564 + }, + { + "start": 17001.76, + "end": 17002.84, + "probability": 0.8608 + }, + { + "start": 17002.9, + "end": 17004.32, + "probability": 0.5905 + }, + { + "start": 17004.44, + "end": 17008.88, + "probability": 0.9851 + }, + { + "start": 17008.94, + "end": 17011.22, + "probability": 0.8165 + }, + { + "start": 17011.54, + "end": 17013.18, + "probability": 0.6314 + }, + { + "start": 17013.28, + "end": 17015.24, + "probability": 0.7421 + }, + { + "start": 17015.28, + "end": 17016.51, + "probability": 0.9241 + }, + { + "start": 17016.88, + "end": 17018.22, + "probability": 0.9189 + }, + { + "start": 17018.54, + "end": 17019.38, + "probability": 0.9378 + }, + { + "start": 17019.38, + "end": 17022.1, + "probability": 0.9602 + }, + { + "start": 17022.2, + "end": 17023.16, + "probability": 0.9505 + }, + { + "start": 17023.88, + "end": 17026.02, + "probability": 0.8105 + }, + { + "start": 17026.46, + "end": 17027.24, + "probability": 0.9534 + }, + { + "start": 17027.78, + "end": 17029.3, + "probability": 0.9722 + }, + { + "start": 17029.36, + "end": 17030.54, + "probability": 0.401 + }, + { + "start": 17031.12, + "end": 17031.54, + "probability": 0.6351 + }, + { + "start": 17031.7, + "end": 17032.19, + "probability": 0.0527 + }, + { + "start": 17032.74, + "end": 17035.44, + "probability": 0.7687 + }, + { + "start": 17035.56, + "end": 17037.29, + "probability": 0.0688 + }, + { + "start": 17037.5, + "end": 17037.52, + "probability": 0.6323 + }, + { + "start": 17037.52, + "end": 17038.93, + "probability": 0.9775 + }, + { + "start": 17039.44, + "end": 17041.22, + "probability": 0.8724 + }, + { + "start": 17041.92, + "end": 17043.9, + "probability": 0.7186 + }, + { + "start": 17043.98, + "end": 17047.28, + "probability": 0.9314 + }, + { + "start": 17047.36, + "end": 17049.09, + "probability": 0.9484 + }, + { + "start": 17049.38, + "end": 17049.74, + "probability": 0.8618 + }, + { + "start": 17049.88, + "end": 17054.98, + "probability": 0.8491 + }, + { + "start": 17055.28, + "end": 17056.32, + "probability": 0.7233 + }, + { + "start": 17056.54, + "end": 17058.8, + "probability": 0.7725 + }, + { + "start": 17059.0, + "end": 17059.46, + "probability": 0.4612 + }, + { + "start": 17059.6, + "end": 17061.92, + "probability": 0.2189 + }, + { + "start": 17061.92, + "end": 17062.12, + "probability": 0.0722 + }, + { + "start": 17062.22, + "end": 17062.7, + "probability": 0.7284 + }, + { + "start": 17062.78, + "end": 17063.22, + "probability": 0.6332 + }, + { + "start": 17063.8, + "end": 17065.66, + "probability": 0.8535 + }, + { + "start": 17066.2, + "end": 17066.62, + "probability": 0.8109 + }, + { + "start": 17066.74, + "end": 17068.32, + "probability": 0.995 + }, + { + "start": 17068.46, + "end": 17070.7, + "probability": 0.5076 + }, + { + "start": 17071.06, + "end": 17072.44, + "probability": 0.892 + }, + { + "start": 17072.54, + "end": 17076.3, + "probability": 0.9121 + }, + { + "start": 17076.73, + "end": 17078.09, + "probability": 0.803 + }, + { + "start": 17078.44, + "end": 17081.66, + "probability": 0.9108 + }, + { + "start": 17082.02, + "end": 17084.16, + "probability": 0.9019 + }, + { + "start": 17084.54, + "end": 17086.44, + "probability": 0.9615 + }, + { + "start": 17086.7, + "end": 17087.64, + "probability": 0.9632 + }, + { + "start": 17087.68, + "end": 17087.94, + "probability": 0.1443 + }, + { + "start": 17088.02, + "end": 17089.16, + "probability": 0.6541 + }, + { + "start": 17089.23, + "end": 17091.71, + "probability": 0.9785 + }, + { + "start": 17092.16, + "end": 17095.04, + "probability": 0.9966 + }, + { + "start": 17095.12, + "end": 17096.15, + "probability": 0.9893 + }, + { + "start": 17096.86, + "end": 17098.66, + "probability": 0.8631 + }, + { + "start": 17098.74, + "end": 17100.52, + "probability": 0.583 + }, + { + "start": 17100.84, + "end": 17102.0, + "probability": 0.906 + }, + { + "start": 17102.0, + "end": 17102.49, + "probability": 0.9205 + }, + { + "start": 17102.98, + "end": 17104.52, + "probability": 0.9556 + }, + { + "start": 17104.6, + "end": 17106.46, + "probability": 0.9779 + }, + { + "start": 17106.54, + "end": 17107.42, + "probability": 0.8987 + }, + { + "start": 17107.62, + "end": 17108.34, + "probability": 0.6438 + }, + { + "start": 17108.42, + "end": 17110.1, + "probability": 0.4351 + }, + { + "start": 17127.72, + "end": 17128.12, + "probability": 0.2919 + }, + { + "start": 17128.12, + "end": 17128.76, + "probability": 0.5759 + }, + { + "start": 17128.9, + "end": 17130.44, + "probability": 0.7469 + }, + { + "start": 17130.58, + "end": 17131.22, + "probability": 0.8753 + }, + { + "start": 17131.28, + "end": 17132.0, + "probability": 0.7918 + }, + { + "start": 17132.12, + "end": 17132.98, + "probability": 0.894 + }, + { + "start": 17133.12, + "end": 17137.4, + "probability": 0.9963 + }, + { + "start": 17138.36, + "end": 17142.44, + "probability": 0.9775 + }, + { + "start": 17143.34, + "end": 17144.87, + "probability": 0.9956 + }, + { + "start": 17145.6, + "end": 17146.5, + "probability": 0.9368 + }, + { + "start": 17147.46, + "end": 17148.74, + "probability": 0.8793 + }, + { + "start": 17149.3, + "end": 17154.92, + "probability": 0.9449 + }, + { + "start": 17155.06, + "end": 17155.5, + "probability": 0.9781 + }, + { + "start": 17156.42, + "end": 17157.7, + "probability": 0.9921 + }, + { + "start": 17158.44, + "end": 17159.36, + "probability": 0.682 + }, + { + "start": 17159.52, + "end": 17160.06, + "probability": 0.5198 + }, + { + "start": 17160.22, + "end": 17160.72, + "probability": 0.7574 + }, + { + "start": 17161.86, + "end": 17164.54, + "probability": 0.9966 + }, + { + "start": 17166.02, + "end": 17168.74, + "probability": 0.9873 + }, + { + "start": 17169.24, + "end": 17170.61, + "probability": 0.9519 + }, + { + "start": 17171.06, + "end": 17171.82, + "probability": 0.9087 + }, + { + "start": 17171.92, + "end": 17173.36, + "probability": 0.8232 + }, + { + "start": 17174.02, + "end": 17175.58, + "probability": 0.926 + }, + { + "start": 17177.1, + "end": 17178.86, + "probability": 0.7297 + }, + { + "start": 17179.34, + "end": 17183.3, + "probability": 0.9947 + }, + { + "start": 17183.44, + "end": 17183.88, + "probability": 0.758 + }, + { + "start": 17183.92, + "end": 17185.08, + "probability": 0.965 + }, + { + "start": 17185.66, + "end": 17187.36, + "probability": 0.916 + }, + { + "start": 17187.94, + "end": 17188.2, + "probability": 0.9607 + }, + { + "start": 17189.38, + "end": 17190.83, + "probability": 0.9116 + }, + { + "start": 17191.7, + "end": 17193.46, + "probability": 0.9646 + }, + { + "start": 17194.52, + "end": 17197.06, + "probability": 0.8177 + }, + { + "start": 17199.34, + "end": 17203.28, + "probability": 0.9226 + }, + { + "start": 17203.4, + "end": 17204.86, + "probability": 0.759 + }, + { + "start": 17205.02, + "end": 17205.68, + "probability": 0.6144 + }, + { + "start": 17206.7, + "end": 17212.04, + "probability": 0.2793 + }, + { + "start": 17212.04, + "end": 17212.6, + "probability": 0.1322 + }, + { + "start": 17212.68, + "end": 17213.4, + "probability": 0.589 + }, + { + "start": 17213.82, + "end": 17214.84, + "probability": 0.9352 + }, + { + "start": 17215.66, + "end": 17217.7, + "probability": 0.8097 + }, + { + "start": 17218.6, + "end": 17222.62, + "probability": 0.9785 + }, + { + "start": 17223.1, + "end": 17224.42, + "probability": 0.9791 + }, + { + "start": 17224.88, + "end": 17225.92, + "probability": 0.8247 + }, + { + "start": 17226.22, + "end": 17226.74, + "probability": 0.3801 + }, + { + "start": 17226.76, + "end": 17227.54, + "probability": 0.9295 + }, + { + "start": 17228.0, + "end": 17228.84, + "probability": 0.9445 + }, + { + "start": 17229.54, + "end": 17234.1, + "probability": 0.9024 + }, + { + "start": 17234.56, + "end": 17236.14, + "probability": 0.9274 + }, + { + "start": 17236.46, + "end": 17237.56, + "probability": 0.9941 + }, + { + "start": 17237.62, + "end": 17238.84, + "probability": 0.6757 + }, + { + "start": 17239.28, + "end": 17241.68, + "probability": 0.9953 + }, + { + "start": 17242.22, + "end": 17244.52, + "probability": 0.9584 + }, + { + "start": 17245.1, + "end": 17246.42, + "probability": 0.7035 + }, + { + "start": 17247.16, + "end": 17248.8, + "probability": 0.9137 + }, + { + "start": 17248.92, + "end": 17251.32, + "probability": 0.8753 + }, + { + "start": 17252.0, + "end": 17252.76, + "probability": 0.8103 + }, + { + "start": 17253.46, + "end": 17255.32, + "probability": 0.9099 + }, + { + "start": 17255.74, + "end": 17257.26, + "probability": 0.9905 + }, + { + "start": 17257.68, + "end": 17259.5, + "probability": 0.9798 + }, + { + "start": 17259.92, + "end": 17261.72, + "probability": 0.9468 + }, + { + "start": 17261.78, + "end": 17262.28, + "probability": 0.8569 + }, + { + "start": 17263.64, + "end": 17264.26, + "probability": 0.3689 + }, + { + "start": 17264.38, + "end": 17265.48, + "probability": 0.9778 + }, + { + "start": 17266.48, + "end": 17268.94, + "probability": 0.963 + }, + { + "start": 17270.54, + "end": 17270.54, + "probability": 0.3222 + }, + { + "start": 17270.54, + "end": 17271.7, + "probability": 0.5617 + }, + { + "start": 17272.78, + "end": 17273.54, + "probability": 0.729 + }, + { + "start": 17288.22, + "end": 17290.34, + "probability": 0.969 + }, + { + "start": 17290.56, + "end": 17291.06, + "probability": 0.8154 + }, + { + "start": 17291.6, + "end": 17292.94, + "probability": 0.9755 + }, + { + "start": 17295.86, + "end": 17298.16, + "probability": 0.8483 + }, + { + "start": 17299.55, + "end": 17302.2, + "probability": 0.8944 + }, + { + "start": 17308.1, + "end": 17310.34, + "probability": 0.9269 + }, + { + "start": 17310.52, + "end": 17312.72, + "probability": 0.823 + }, + { + "start": 17314.74, + "end": 17315.52, + "probability": 0.8888 + }, + { + "start": 17316.78, + "end": 17318.34, + "probability": 0.7382 + }, + { + "start": 17319.44, + "end": 17320.34, + "probability": 0.9405 + }, + { + "start": 17321.68, + "end": 17323.28, + "probability": 0.9763 + }, + { + "start": 17324.5, + "end": 17327.02, + "probability": 0.9753 + }, + { + "start": 17328.64, + "end": 17329.52, + "probability": 0.7201 + }, + { + "start": 17330.06, + "end": 17331.76, + "probability": 0.6644 + }, + { + "start": 17332.4, + "end": 17334.34, + "probability": 0.9244 + }, + { + "start": 17336.32, + "end": 17337.1, + "probability": 0.8829 + }, + { + "start": 17337.82, + "end": 17339.66, + "probability": 0.9868 + }, + { + "start": 17340.22, + "end": 17343.4, + "probability": 0.9952 + }, + { + "start": 17344.9, + "end": 17345.56, + "probability": 0.5553 + }, + { + "start": 17346.18, + "end": 17347.96, + "probability": 0.8945 + }, + { + "start": 17348.42, + "end": 17349.14, + "probability": 0.9458 + }, + { + "start": 17349.4, + "end": 17350.6, + "probability": 0.9576 + }, + { + "start": 17352.52, + "end": 17353.12, + "probability": 0.7212 + }, + { + "start": 17353.12, + "end": 17357.2, + "probability": 0.8854 + }, + { + "start": 17357.42, + "end": 17358.08, + "probability": 0.8063 + }, + { + "start": 17358.28, + "end": 17362.44, + "probability": 0.4866 + }, + { + "start": 17362.76, + "end": 17367.26, + "probability": 0.6716 + }, + { + "start": 17367.66, + "end": 17368.84, + "probability": 0.8525 + }, + { + "start": 17370.48, + "end": 17370.48, + "probability": 0.0665 + }, + { + "start": 17385.28, + "end": 17386.18, + "probability": 0.4852 + }, + { + "start": 17386.18, + "end": 17386.52, + "probability": 0.3316 + }, + { + "start": 17387.3, + "end": 17388.32, + "probability": 0.6659 + }, + { + "start": 17388.54, + "end": 17389.14, + "probability": 0.6615 + }, + { + "start": 17389.2, + "end": 17395.24, + "probability": 0.9951 + }, + { + "start": 17395.66, + "end": 17397.78, + "probability": 0.9947 + }, + { + "start": 17398.36, + "end": 17402.24, + "probability": 0.9387 + }, + { + "start": 17402.42, + "end": 17405.76, + "probability": 0.9568 + }, + { + "start": 17406.24, + "end": 17410.2, + "probability": 0.989 + }, + { + "start": 17410.32, + "end": 17411.42, + "probability": 0.8009 + }, + { + "start": 17411.9, + "end": 17413.1, + "probability": 0.6806 + }, + { + "start": 17413.38, + "end": 17415.86, + "probability": 0.9071 + }, + { + "start": 17416.12, + "end": 17417.32, + "probability": 0.9534 + }, + { + "start": 17417.56, + "end": 17418.08, + "probability": 0.826 + }, + { + "start": 17418.4, + "end": 17420.52, + "probability": 0.9797 + }, + { + "start": 17420.7, + "end": 17423.46, + "probability": 0.9785 + }, + { + "start": 17423.8, + "end": 17426.4, + "probability": 0.9288 + }, + { + "start": 17426.54, + "end": 17427.2, + "probability": 0.4458 + }, + { + "start": 17427.66, + "end": 17434.26, + "probability": 0.8987 + }, + { + "start": 17434.4, + "end": 17437.56, + "probability": 0.9194 + }, + { + "start": 17437.74, + "end": 17438.28, + "probability": 0.7517 + }, + { + "start": 17438.46, + "end": 17440.16, + "probability": 0.7515 + }, + { + "start": 17440.48, + "end": 17440.64, + "probability": 0.7905 + }, + { + "start": 17440.74, + "end": 17442.4, + "probability": 0.9914 + }, + { + "start": 17443.04, + "end": 17443.96, + "probability": 0.9242 + }, + { + "start": 17444.24, + "end": 17447.88, + "probability": 0.9806 + }, + { + "start": 17448.34, + "end": 17448.52, + "probability": 0.7524 + }, + { + "start": 17448.98, + "end": 17452.96, + "probability": 0.9731 + }, + { + "start": 17453.64, + "end": 17454.28, + "probability": 0.6441 + }, + { + "start": 17455.42, + "end": 17457.5, + "probability": 0.9948 + }, + { + "start": 17458.1, + "end": 17461.38, + "probability": 0.983 + }, + { + "start": 17461.92, + "end": 17464.7, + "probability": 0.9512 + }, + { + "start": 17464.98, + "end": 17465.36, + "probability": 0.8448 + }, + { + "start": 17465.78, + "end": 17469.76, + "probability": 0.9702 + }, + { + "start": 17470.39, + "end": 17474.26, + "probability": 0.968 + }, + { + "start": 17474.46, + "end": 17475.62, + "probability": 0.7425 + }, + { + "start": 17475.98, + "end": 17476.68, + "probability": 0.8033 + }, + { + "start": 17477.1, + "end": 17482.06, + "probability": 0.7327 + }, + { + "start": 17482.34, + "end": 17482.88, + "probability": 0.7174 + }, + { + "start": 17482.98, + "end": 17483.8, + "probability": 0.8809 + }, + { + "start": 17484.24, + "end": 17485.54, + "probability": 0.9683 + }, + { + "start": 17485.96, + "end": 17486.62, + "probability": 0.5995 + }, + { + "start": 17486.74, + "end": 17487.52, + "probability": 0.8448 + }, + { + "start": 17488.48, + "end": 17491.4, + "probability": 0.982 + }, + { + "start": 17492.0, + "end": 17493.54, + "probability": 0.8967 + }, + { + "start": 17493.64, + "end": 17494.86, + "probability": 0.9746 + }, + { + "start": 17495.16, + "end": 17496.48, + "probability": 0.9042 + }, + { + "start": 17497.08, + "end": 17497.84, + "probability": 0.7051 + }, + { + "start": 17498.24, + "end": 17499.0, + "probability": 0.6976 + }, + { + "start": 17499.56, + "end": 17502.74, + "probability": 0.9954 + }, + { + "start": 17502.82, + "end": 17506.0, + "probability": 0.9987 + }, + { + "start": 17506.26, + "end": 17507.14, + "probability": 0.4834 + }, + { + "start": 17507.66, + "end": 17510.58, + "probability": 0.9727 + }, + { + "start": 17511.32, + "end": 17513.7, + "probability": 0.9475 + }, + { + "start": 17513.74, + "end": 17515.16, + "probability": 0.9956 + }, + { + "start": 17515.68, + "end": 17518.34, + "probability": 0.9639 + }, + { + "start": 17518.64, + "end": 17523.14, + "probability": 0.9756 + }, + { + "start": 17523.62, + "end": 17525.08, + "probability": 0.9912 + }, + { + "start": 17525.16, + "end": 17525.26, + "probability": 0.5686 + }, + { + "start": 17525.38, + "end": 17526.84, + "probability": 0.9828 + }, + { + "start": 17527.78, + "end": 17528.34, + "probability": 0.8653 + }, + { + "start": 17529.34, + "end": 17534.57, + "probability": 0.9713 + }, + { + "start": 17535.14, + "end": 17540.92, + "probability": 0.896 + }, + { + "start": 17541.36, + "end": 17542.82, + "probability": 0.9214 + }, + { + "start": 17543.52, + "end": 17544.22, + "probability": 0.2221 + }, + { + "start": 17544.66, + "end": 17548.84, + "probability": 0.9902 + }, + { + "start": 17548.92, + "end": 17549.84, + "probability": 0.9692 + }, + { + "start": 17550.56, + "end": 17554.7, + "probability": 0.9968 + }, + { + "start": 17555.3, + "end": 17558.86, + "probability": 0.7485 + }, + { + "start": 17559.06, + "end": 17564.0, + "probability": 0.9865 + }, + { + "start": 17564.16, + "end": 17566.48, + "probability": 0.9307 + }, + { + "start": 17566.8, + "end": 17567.78, + "probability": 0.9178 + }, + { + "start": 17568.12, + "end": 17569.6, + "probability": 0.5728 + }, + { + "start": 17570.72, + "end": 17571.56, + "probability": 0.7547 + }, + { + "start": 17571.7, + "end": 17572.56, + "probability": 0.8567 + }, + { + "start": 17572.64, + "end": 17573.6, + "probability": 0.34 + }, + { + "start": 17573.7, + "end": 17574.28, + "probability": 0.7573 + }, + { + "start": 17574.38, + "end": 17575.64, + "probability": 0.7291 + }, + { + "start": 17575.84, + "end": 17579.46, + "probability": 0.8771 + }, + { + "start": 17579.58, + "end": 17580.16, + "probability": 0.8906 + }, + { + "start": 17580.24, + "end": 17581.82, + "probability": 0.9379 + }, + { + "start": 17581.86, + "end": 17583.22, + "probability": 0.7584 + }, + { + "start": 17583.22, + "end": 17583.42, + "probability": 0.0081 + }, + { + "start": 17583.42, + "end": 17585.32, + "probability": 0.9808 + }, + { + "start": 17585.86, + "end": 17588.94, + "probability": 0.8729 + }, + { + "start": 17588.94, + "end": 17591.56, + "probability": 0.9545 + }, + { + "start": 17592.02, + "end": 17593.74, + "probability": 0.8327 + }, + { + "start": 17593.82, + "end": 17595.76, + "probability": 0.8088 + }, + { + "start": 17595.76, + "end": 17595.76, + "probability": 0.3352 + }, + { + "start": 17595.76, + "end": 17595.84, + "probability": 0.143 + }, + { + "start": 17595.84, + "end": 17595.84, + "probability": 0.6209 + }, + { + "start": 17595.84, + "end": 17597.36, + "probability": 0.9728 + }, + { + "start": 17597.52, + "end": 17601.98, + "probability": 0.8735 + }, + { + "start": 17601.98, + "end": 17601.98, + "probability": 0.0852 + }, + { + "start": 17601.98, + "end": 17603.66, + "probability": 0.332 + }, + { + "start": 17604.08, + "end": 17604.12, + "probability": 0.2676 + }, + { + "start": 17604.22, + "end": 17607.06, + "probability": 0.785 + }, + { + "start": 17607.06, + "end": 17610.78, + "probability": 0.9729 + }, + { + "start": 17611.3, + "end": 17613.78, + "probability": 0.715 + }, + { + "start": 17613.78, + "end": 17615.6, + "probability": 0.3597 + }, + { + "start": 17616.16, + "end": 17616.86, + "probability": 0.4651 + }, + { + "start": 17617.36, + "end": 17618.78, + "probability": 0.9156 + }, + { + "start": 17618.86, + "end": 17619.44, + "probability": 0.9497 + }, + { + "start": 17619.56, + "end": 17621.24, + "probability": 0.9919 + }, + { + "start": 17621.54, + "end": 17621.8, + "probability": 0.7964 + }, + { + "start": 17621.84, + "end": 17624.06, + "probability": 0.6911 + }, + { + "start": 17625.06, + "end": 17627.24, + "probability": 0.5758 + }, + { + "start": 17628.72, + "end": 17630.26, + "probability": 0.8882 + }, + { + "start": 17630.3, + "end": 17630.32, + "probability": 0.0101 + }, + { + "start": 17630.32, + "end": 17631.95, + "probability": 0.642 + }, + { + "start": 17632.46, + "end": 17635.22, + "probability": 0.6602 + }, + { + "start": 17635.74, + "end": 17636.56, + "probability": 0.7814 + }, + { + "start": 17636.7, + "end": 17639.58, + "probability": 0.9555 + }, + { + "start": 17639.8, + "end": 17642.83, + "probability": 0.7411 + }, + { + "start": 17643.0, + "end": 17643.38, + "probability": 0.3697 + }, + { + "start": 17643.38, + "end": 17644.14, + "probability": 0.8174 + }, + { + "start": 17644.71, + "end": 17649.4, + "probability": 0.8013 + }, + { + "start": 17650.86, + "end": 17653.3, + "probability": 0.1966 + }, + { + "start": 17654.42, + "end": 17654.54, + "probability": 0.0303 + }, + { + "start": 17676.74, + "end": 17677.1, + "probability": 0.5516 + }, + { + "start": 17677.34, + "end": 17677.95, + "probability": 0.9456 + }, + { + "start": 17678.06, + "end": 17678.89, + "probability": 0.6532 + }, + { + "start": 17679.1, + "end": 17681.34, + "probability": 0.9758 + }, + { + "start": 17681.78, + "end": 17682.32, + "probability": 0.9183 + }, + { + "start": 17682.74, + "end": 17684.88, + "probability": 0.701 + }, + { + "start": 17685.14, + "end": 17685.18, + "probability": 0.0173 + }, + { + "start": 17688.38, + "end": 17690.18, + "probability": 0.9714 + }, + { + "start": 17691.52, + "end": 17691.86, + "probability": 0.8138 + }, + { + "start": 17692.48, + "end": 17694.76, + "probability": 0.9755 + }, + { + "start": 17695.76, + "end": 17696.6, + "probability": 0.6582 + }, + { + "start": 17696.74, + "end": 17697.72, + "probability": 0.9293 + }, + { + "start": 17697.84, + "end": 17703.0, + "probability": 0.9287 + }, + { + "start": 17705.52, + "end": 17709.0, + "probability": 0.9915 + }, + { + "start": 17710.69, + "end": 17714.52, + "probability": 0.9786 + }, + { + "start": 17714.7, + "end": 17715.12, + "probability": 0.7254 + }, + { + "start": 17715.18, + "end": 17717.14, + "probability": 0.588 + }, + { + "start": 17717.28, + "end": 17719.16, + "probability": 0.9574 + }, + { + "start": 17719.82, + "end": 17721.88, + "probability": 0.9423 + }, + { + "start": 17722.42, + "end": 17723.68, + "probability": 0.8575 + }, + { + "start": 17723.78, + "end": 17724.76, + "probability": 0.781 + }, + { + "start": 17725.36, + "end": 17725.96, + "probability": 0.9476 + }, + { + "start": 17726.06, + "end": 17727.52, + "probability": 0.9731 + }, + { + "start": 17727.58, + "end": 17728.24, + "probability": 0.9806 + }, + { + "start": 17728.28, + "end": 17730.44, + "probability": 0.9943 + }, + { + "start": 17730.58, + "end": 17731.84, + "probability": 0.9966 + }, + { + "start": 17732.72, + "end": 17733.16, + "probability": 0.8864 + }, + { + "start": 17733.26, + "end": 17734.94, + "probability": 0.6122 + }, + { + "start": 17735.46, + "end": 17736.26, + "probability": 0.8018 + }, + { + "start": 17736.66, + "end": 17737.96, + "probability": 0.9932 + }, + { + "start": 17738.94, + "end": 17740.04, + "probability": 0.811 + }, + { + "start": 17740.16, + "end": 17742.3, + "probability": 0.9843 + }, + { + "start": 17742.42, + "end": 17743.82, + "probability": 0.9927 + }, + { + "start": 17744.08, + "end": 17745.38, + "probability": 0.9646 + }, + { + "start": 17746.12, + "end": 17746.64, + "probability": 0.9526 + }, + { + "start": 17747.16, + "end": 17748.26, + "probability": 0.6322 + }, + { + "start": 17749.4, + "end": 17751.64, + "probability": 0.7918 + }, + { + "start": 17752.26, + "end": 17755.64, + "probability": 0.7654 + }, + { + "start": 17756.3, + "end": 17758.02, + "probability": 0.9876 + }, + { + "start": 17759.38, + "end": 17762.41, + "probability": 0.9485 + }, + { + "start": 17763.28, + "end": 17766.78, + "probability": 0.9934 + }, + { + "start": 17766.92, + "end": 17769.66, + "probability": 0.5845 + }, + { + "start": 17769.7, + "end": 17772.8, + "probability": 0.9578 + }, + { + "start": 17772.98, + "end": 17774.48, + "probability": 0.9645 + }, + { + "start": 17774.5, + "end": 17776.02, + "probability": 0.905 + }, + { + "start": 17777.16, + "end": 17777.52, + "probability": 0.8312 + }, + { + "start": 17777.66, + "end": 17778.78, + "probability": 0.777 + }, + { + "start": 17778.88, + "end": 17780.98, + "probability": 0.9832 + }, + { + "start": 17781.06, + "end": 17781.7, + "probability": 0.4017 + }, + { + "start": 17781.82, + "end": 17783.21, + "probability": 0.75 + }, + { + "start": 17783.42, + "end": 17785.4, + "probability": 0.8228 + }, + { + "start": 17785.54, + "end": 17785.78, + "probability": 0.4325 + }, + { + "start": 17785.9, + "end": 17791.4, + "probability": 0.9688 + }, + { + "start": 17791.98, + "end": 17793.5, + "probability": 0.8348 + }, + { + "start": 17794.42, + "end": 17796.18, + "probability": 0.8104 + }, + { + "start": 17796.24, + "end": 17797.9, + "probability": 0.9863 + }, + { + "start": 17798.58, + "end": 17801.44, + "probability": 0.9907 + }, + { + "start": 17803.18, + "end": 17807.64, + "probability": 0.6422 + }, + { + "start": 17808.6, + "end": 17811.77, + "probability": 0.9834 + }, + { + "start": 17812.06, + "end": 17815.22, + "probability": 0.9986 + }, + { + "start": 17815.3, + "end": 17816.88, + "probability": 0.949 + }, + { + "start": 17816.98, + "end": 17817.54, + "probability": 0.9837 + }, + { + "start": 17818.02, + "end": 17818.52, + "probability": 0.5874 + }, + { + "start": 17818.68, + "end": 17819.2, + "probability": 0.6535 + }, + { + "start": 17820.22, + "end": 17821.8, + "probability": 0.8765 + }, + { + "start": 17822.6, + "end": 17826.8, + "probability": 0.9978 + }, + { + "start": 17827.26, + "end": 17829.06, + "probability": 0.9929 + }, + { + "start": 17829.52, + "end": 17832.4, + "probability": 0.9952 + }, + { + "start": 17833.52, + "end": 17837.76, + "probability": 0.9213 + }, + { + "start": 17838.32, + "end": 17841.04, + "probability": 0.9937 + }, + { + "start": 17841.58, + "end": 17844.46, + "probability": 0.9985 + }, + { + "start": 17844.78, + "end": 17845.72, + "probability": 0.9919 + }, + { + "start": 17846.14, + "end": 17848.18, + "probability": 0.6593 + }, + { + "start": 17848.68, + "end": 17849.22, + "probability": 0.209 + }, + { + "start": 17849.3, + "end": 17853.66, + "probability": 0.9724 + }, + { + "start": 17854.1, + "end": 17857.08, + "probability": 0.9344 + }, + { + "start": 17857.52, + "end": 17859.26, + "probability": 0.9537 + }, + { + "start": 17859.78, + "end": 17861.78, + "probability": 0.9074 + }, + { + "start": 17861.82, + "end": 17862.02, + "probability": 0.7047 + }, + { + "start": 17862.14, + "end": 17864.7, + "probability": 0.984 + }, + { + "start": 17864.74, + "end": 17865.2, + "probability": 0.9771 + }, + { + "start": 17865.28, + "end": 17865.9, + "probability": 0.7966 + }, + { + "start": 17866.02, + "end": 17868.08, + "probability": 0.9461 + }, + { + "start": 17868.16, + "end": 17868.96, + "probability": 0.7817 + }, + { + "start": 17870.44, + "end": 17872.78, + "probability": 0.305 + }, + { + "start": 17889.85, + "end": 17894.44, + "probability": 0.7126 + }, + { + "start": 17895.76, + "end": 17897.58, + "probability": 0.7715 + }, + { + "start": 17898.08, + "end": 17902.12, + "probability": 0.8774 + }, + { + "start": 17903.6, + "end": 17905.8, + "probability": 0.819 + }, + { + "start": 17907.92, + "end": 17911.06, + "probability": 0.9526 + }, + { + "start": 17911.82, + "end": 17914.26, + "probability": 0.9846 + }, + { + "start": 17914.44, + "end": 17917.12, + "probability": 0.782 + }, + { + "start": 17917.18, + "end": 17917.56, + "probability": 0.7262 + }, + { + "start": 17918.32, + "end": 17920.1, + "probability": 0.8759 + }, + { + "start": 17920.28, + "end": 17922.9, + "probability": 0.9574 + }, + { + "start": 17924.3, + "end": 17928.97, + "probability": 0.9852 + }, + { + "start": 17930.08, + "end": 17931.48, + "probability": 0.7838 + }, + { + "start": 17931.82, + "end": 17932.4, + "probability": 0.8039 + }, + { + "start": 17933.24, + "end": 17934.54, + "probability": 0.9588 + }, + { + "start": 17935.42, + "end": 17939.4, + "probability": 0.6482 + }, + { + "start": 17939.62, + "end": 17943.5, + "probability": 0.8884 + }, + { + "start": 17944.68, + "end": 17945.8, + "probability": 0.9847 + }, + { + "start": 17946.56, + "end": 17949.56, + "probability": 0.9535 + }, + { + "start": 17950.56, + "end": 17952.72, + "probability": 0.711 + }, + { + "start": 17953.62, + "end": 17955.6, + "probability": 0.9779 + }, + { + "start": 17956.46, + "end": 17960.0, + "probability": 0.9228 + }, + { + "start": 17961.0, + "end": 17963.2, + "probability": 0.9622 + }, + { + "start": 17963.96, + "end": 17965.54, + "probability": 0.9462 + }, + { + "start": 17966.62, + "end": 17969.52, + "probability": 0.9814 + }, + { + "start": 17970.4, + "end": 17972.52, + "probability": 0.9757 + }, + { + "start": 17974.46, + "end": 17977.1, + "probability": 0.9538 + }, + { + "start": 17977.18, + "end": 17979.54, + "probability": 0.8611 + }, + { + "start": 17979.6, + "end": 17980.1, + "probability": 0.9367 + }, + { + "start": 17981.58, + "end": 17986.62, + "probability": 0.7484 + }, + { + "start": 17987.08, + "end": 17988.78, + "probability": 0.6949 + }, + { + "start": 17989.6, + "end": 17991.0, + "probability": 0.9664 + }, + { + "start": 17992.64, + "end": 17993.88, + "probability": 0.9654 + }, + { + "start": 17994.02, + "end": 17995.1, + "probability": 0.9342 + }, + { + "start": 17996.06, + "end": 17996.44, + "probability": 0.505 + }, + { + "start": 17997.18, + "end": 18000.07, + "probability": 0.4606 + }, + { + "start": 18000.8, + "end": 18003.02, + "probability": 0.8194 + }, + { + "start": 18003.82, + "end": 18013.54, + "probability": 0.9446 + }, + { + "start": 18014.1, + "end": 18016.28, + "probability": 0.986 + }, + { + "start": 18017.94, + "end": 18018.68, + "probability": 0.5791 + }, + { + "start": 18018.8, + "end": 18020.28, + "probability": 0.8554 + }, + { + "start": 18020.46, + "end": 18022.7, + "probability": 0.9198 + }, + { + "start": 18023.56, + "end": 18027.48, + "probability": 0.745 + }, + { + "start": 18028.2, + "end": 18031.2, + "probability": 0.8936 + }, + { + "start": 18031.26, + "end": 18032.12, + "probability": 0.7213 + }, + { + "start": 18033.24, + "end": 18034.6, + "probability": 0.8646 + }, + { + "start": 18035.34, + "end": 18041.12, + "probability": 0.959 + }, + { + "start": 18041.4, + "end": 18046.94, + "probability": 0.9895 + }, + { + "start": 18047.68, + "end": 18053.58, + "probability": 0.9788 + }, + { + "start": 18054.04, + "end": 18058.5, + "probability": 0.7354 + }, + { + "start": 18059.46, + "end": 18062.12, + "probability": 0.8394 + }, + { + "start": 18062.84, + "end": 18065.22, + "probability": 0.9728 + }, + { + "start": 18065.7, + "end": 18067.57, + "probability": 0.9386 + }, + { + "start": 18067.74, + "end": 18071.14, + "probability": 0.8857 + }, + { + "start": 18071.28, + "end": 18072.34, + "probability": 0.829 + }, + { + "start": 18072.72, + "end": 18074.14, + "probability": 0.7675 + }, + { + "start": 18074.56, + "end": 18078.72, + "probability": 0.8729 + }, + { + "start": 18078.82, + "end": 18081.3, + "probability": 0.9297 + }, + { + "start": 18081.68, + "end": 18083.0, + "probability": 0.8146 + }, + { + "start": 18083.18, + "end": 18085.94, + "probability": 0.7064 + }, + { + "start": 18086.38, + "end": 18087.7, + "probability": 0.9859 + }, + { + "start": 18087.88, + "end": 18088.16, + "probability": 0.7223 + }, + { + "start": 18088.16, + "end": 18094.02, + "probability": 0.9143 + }, + { + "start": 18094.24, + "end": 18095.46, + "probability": 0.5825 + }, + { + "start": 18095.96, + "end": 18096.26, + "probability": 0.6272 + }, + { + "start": 18096.38, + "end": 18097.16, + "probability": 0.9489 + }, + { + "start": 18097.26, + "end": 18098.24, + "probability": 0.8322 + }, + { + "start": 18099.84, + "end": 18102.14, + "probability": 0.7675 + }, + { + "start": 18103.62, + "end": 18104.58, + "probability": 0.8179 + }, + { + "start": 18105.32, + "end": 18106.38, + "probability": 0.8667 + }, + { + "start": 18107.72, + "end": 18108.42, + "probability": 0.6277 + }, + { + "start": 18114.88, + "end": 18117.7, + "probability": 0.2729 + }, + { + "start": 18118.68, + "end": 18121.5, + "probability": 0.0431 + }, + { + "start": 18122.52, + "end": 18124.7, + "probability": 0.0525 + }, + { + "start": 18125.88, + "end": 18126.38, + "probability": 0.0521 + }, + { + "start": 18144.6, + "end": 18145.5, + "probability": 0.8285 + }, + { + "start": 18145.6, + "end": 18147.0, + "probability": 0.6858 + }, + { + "start": 18147.14, + "end": 18147.72, + "probability": 0.3892 + }, + { + "start": 18148.3, + "end": 18148.96, + "probability": 0.9409 + }, + { + "start": 18148.96, + "end": 18150.38, + "probability": 0.7487 + }, + { + "start": 18150.44, + "end": 18151.3, + "probability": 0.8809 + }, + { + "start": 18151.32, + "end": 18157.7, + "probability": 0.9385 + }, + { + "start": 18157.84, + "end": 18158.54, + "probability": 0.6448 + }, + { + "start": 18159.26, + "end": 18160.12, + "probability": 0.4906 + }, + { + "start": 18161.46, + "end": 18163.64, + "probability": 0.8776 + }, + { + "start": 18163.74, + "end": 18164.18, + "probability": 0.55 + }, + { + "start": 18164.34, + "end": 18166.17, + "probability": 0.9943 + }, + { + "start": 18167.08, + "end": 18170.72, + "probability": 0.971 + }, + { + "start": 18171.24, + "end": 18172.54, + "probability": 0.582 + }, + { + "start": 18172.96, + "end": 18176.28, + "probability": 0.968 + }, + { + "start": 18176.84, + "end": 18179.81, + "probability": 0.999 + }, + { + "start": 18181.2, + "end": 18185.74, + "probability": 0.7516 + }, + { + "start": 18185.76, + "end": 18186.63, + "probability": 0.9995 + }, + { + "start": 18187.04, + "end": 18189.66, + "probability": 0.9334 + }, + { + "start": 18190.42, + "end": 18191.32, + "probability": 0.8979 + }, + { + "start": 18192.06, + "end": 18193.74, + "probability": 0.9551 + }, + { + "start": 18194.4, + "end": 18197.58, + "probability": 0.9678 + }, + { + "start": 18197.66, + "end": 18198.22, + "probability": 0.9158 + }, + { + "start": 18198.36, + "end": 18198.56, + "probability": 0.501 + }, + { + "start": 18198.56, + "end": 18199.56, + "probability": 0.8602 + }, + { + "start": 18199.62, + "end": 18200.34, + "probability": 0.7307 + }, + { + "start": 18200.56, + "end": 18201.66, + "probability": 0.9647 + }, + { + "start": 18202.04, + "end": 18202.44, + "probability": 0.1304 + }, + { + "start": 18203.1, + "end": 18203.24, + "probability": 0.4175 + }, + { + "start": 18203.24, + "end": 18204.7, + "probability": 0.9948 + }, + { + "start": 18204.76, + "end": 18209.32, + "probability": 0.8463 + }, + { + "start": 18209.34, + "end": 18211.3, + "probability": 0.313 + }, + { + "start": 18211.3, + "end": 18212.34, + "probability": 0.9919 + }, + { + "start": 18212.58, + "end": 18214.8, + "probability": 0.2914 + }, + { + "start": 18214.88, + "end": 18216.04, + "probability": 0.0728 + }, + { + "start": 18216.04, + "end": 18216.54, + "probability": 0.7765 + }, + { + "start": 18216.9, + "end": 18219.71, + "probability": 0.9116 + }, + { + "start": 18220.0, + "end": 18220.3, + "probability": 0.781 + }, + { + "start": 18220.3, + "end": 18221.98, + "probability": 0.7293 + }, + { + "start": 18222.06, + "end": 18222.66, + "probability": 0.463 + }, + { + "start": 18222.7, + "end": 18222.88, + "probability": 0.878 + }, + { + "start": 18222.88, + "end": 18223.42, + "probability": 0.7715 + }, + { + "start": 18223.52, + "end": 18224.06, + "probability": 0.8585 + }, + { + "start": 18224.26, + "end": 18226.34, + "probability": 0.9924 + }, + { + "start": 18226.38, + "end": 18226.6, + "probability": 0.0246 + }, + { + "start": 18226.62, + "end": 18229.26, + "probability": 0.7908 + }, + { + "start": 18229.52, + "end": 18230.72, + "probability": 0.4621 + }, + { + "start": 18230.9, + "end": 18232.54, + "probability": 0.9704 + }, + { + "start": 18232.58, + "end": 18233.48, + "probability": 0.8943 + }, + { + "start": 18233.54, + "end": 18233.88, + "probability": 0.6412 + }, + { + "start": 18234.0, + "end": 18234.72, + "probability": 0.931 + }, + { + "start": 18234.9, + "end": 18236.38, + "probability": 0.9331 + }, + { + "start": 18236.42, + "end": 18236.88, + "probability": 0.7373 + }, + { + "start": 18237.97, + "end": 18240.38, + "probability": 0.7428 + }, + { + "start": 18240.56, + "end": 18243.56, + "probability": 0.035 + }, + { + "start": 18243.56, + "end": 18243.56, + "probability": 0.1987 + }, + { + "start": 18243.56, + "end": 18243.56, + "probability": 0.0141 + }, + { + "start": 18243.56, + "end": 18244.19, + "probability": 0.5722 + }, + { + "start": 18244.62, + "end": 18245.66, + "probability": 0.6144 + }, + { + "start": 18245.66, + "end": 18247.02, + "probability": 0.7782 + }, + { + "start": 18247.16, + "end": 18248.16, + "probability": 0.8118 + }, + { + "start": 18248.32, + "end": 18249.22, + "probability": 0.9263 + }, + { + "start": 18250.32, + "end": 18252.64, + "probability": 0.994 + }, + { + "start": 18252.8, + "end": 18257.71, + "probability": 0.7871 + }, + { + "start": 18257.86, + "end": 18259.12, + "probability": 0.843 + }, + { + "start": 18259.32, + "end": 18260.02, + "probability": 0.5599 + }, + { + "start": 18260.26, + "end": 18260.34, + "probability": 0.8151 + }, + { + "start": 18260.4, + "end": 18260.79, + "probability": 0.895 + }, + { + "start": 18261.36, + "end": 18262.82, + "probability": 0.8369 + }, + { + "start": 18262.92, + "end": 18266.0, + "probability": 0.9116 + }, + { + "start": 18266.0, + "end": 18267.56, + "probability": 0.9755 + }, + { + "start": 18267.72, + "end": 18268.86, + "probability": 0.9338 + }, + { + "start": 18268.86, + "end": 18269.0, + "probability": 0.8915 + }, + { + "start": 18269.1, + "end": 18270.03, + "probability": 0.9808 + }, + { + "start": 18270.16, + "end": 18270.82, + "probability": 0.7947 + }, + { + "start": 18271.24, + "end": 18276.22, + "probability": 0.7534 + }, + { + "start": 18276.22, + "end": 18278.5, + "probability": 0.9971 + }, + { + "start": 18279.35, + "end": 18281.88, + "probability": 0.9198 + }, + { + "start": 18282.02, + "end": 18283.1, + "probability": 0.9736 + }, + { + "start": 18283.14, + "end": 18284.78, + "probability": 0.9275 + }, + { + "start": 18284.96, + "end": 18286.18, + "probability": 0.9375 + }, + { + "start": 18287.12, + "end": 18289.7, + "probability": 0.9956 + }, + { + "start": 18289.74, + "end": 18291.24, + "probability": 0.7728 + }, + { + "start": 18291.3, + "end": 18293.01, + "probability": 0.8488 + }, + { + "start": 18293.18, + "end": 18296.44, + "probability": 0.9948 + }, + { + "start": 18297.06, + "end": 18298.62, + "probability": 0.6734 + }, + { + "start": 18299.42, + "end": 18300.84, + "probability": 0.9991 + }, + { + "start": 18300.88, + "end": 18302.12, + "probability": 0.991 + }, + { + "start": 18302.22, + "end": 18303.3, + "probability": 0.5563 + }, + { + "start": 18303.46, + "end": 18304.56, + "probability": 0.821 + }, + { + "start": 18305.04, + "end": 18307.2, + "probability": 0.9302 + }, + { + "start": 18307.58, + "end": 18309.58, + "probability": 0.8752 + }, + { + "start": 18309.74, + "end": 18310.38, + "probability": 0.5577 + }, + { + "start": 18312.62, + "end": 18314.52, + "probability": 0.8079 + }, + { + "start": 18314.56, + "end": 18316.46, + "probability": 0.5682 + }, + { + "start": 18316.6, + "end": 18318.06, + "probability": 0.7267 + }, + { + "start": 18318.62, + "end": 18319.74, + "probability": 0.9377 + }, + { + "start": 18319.82, + "end": 18321.54, + "probability": 0.9886 + }, + { + "start": 18321.58, + "end": 18322.0, + "probability": 0.9174 + }, + { + "start": 18322.26, + "end": 18322.6, + "probability": 0.3054 + }, + { + "start": 18322.64, + "end": 18323.6, + "probability": 0.8099 + }, + { + "start": 18350.78, + "end": 18352.5, + "probability": 0.6514 + }, + { + "start": 18353.12, + "end": 18353.64, + "probability": 0.0307 + }, + { + "start": 18358.14, + "end": 18359.64, + "probability": 0.6481 + }, + { + "start": 18359.78, + "end": 18360.72, + "probability": 0.5216 + }, + { + "start": 18360.84, + "end": 18361.98, + "probability": 0.9206 + }, + { + "start": 18362.12, + "end": 18364.64, + "probability": 0.9431 + }, + { + "start": 18365.82, + "end": 18369.74, + "probability": 0.9869 + }, + { + "start": 18369.74, + "end": 18375.68, + "probability": 0.9971 + }, + { + "start": 18376.86, + "end": 18382.82, + "probability": 0.9978 + }, + { + "start": 18382.82, + "end": 18387.14, + "probability": 0.9998 + }, + { + "start": 18388.38, + "end": 18393.54, + "probability": 0.9902 + }, + { + "start": 18393.54, + "end": 18398.74, + "probability": 0.9836 + }, + { + "start": 18399.94, + "end": 18402.92, + "probability": 0.9639 + }, + { + "start": 18404.1, + "end": 18409.6, + "probability": 0.9945 + }, + { + "start": 18411.98, + "end": 18412.6, + "probability": 0.9791 + }, + { + "start": 18413.54, + "end": 18416.96, + "probability": 0.995 + }, + { + "start": 18417.5, + "end": 18421.48, + "probability": 0.9717 + }, + { + "start": 18421.48, + "end": 18424.78, + "probability": 0.9858 + }, + { + "start": 18425.7, + "end": 18430.36, + "probability": 0.981 + }, + { + "start": 18431.12, + "end": 18434.74, + "probability": 0.9954 + }, + { + "start": 18434.86, + "end": 18438.66, + "probability": 0.9944 + }, + { + "start": 18439.42, + "end": 18443.48, + "probability": 0.8687 + }, + { + "start": 18443.72, + "end": 18445.82, + "probability": 0.9194 + }, + { + "start": 18446.28, + "end": 18447.52, + "probability": 0.6597 + }, + { + "start": 18448.38, + "end": 18449.97, + "probability": 0.8936 + }, + { + "start": 18451.28, + "end": 18454.88, + "probability": 0.9816 + }, + { + "start": 18454.88, + "end": 18457.3, + "probability": 0.9367 + }, + { + "start": 18458.3, + "end": 18460.52, + "probability": 0.9619 + }, + { + "start": 18461.04, + "end": 18466.54, + "probability": 0.89 + }, + { + "start": 18466.88, + "end": 18469.12, + "probability": 0.9458 + }, + { + "start": 18470.0, + "end": 18472.22, + "probability": 0.9794 + }, + { + "start": 18473.82, + "end": 18475.36, + "probability": 0.8378 + }, + { + "start": 18475.7, + "end": 18476.56, + "probability": 0.5469 + }, + { + "start": 18477.3, + "end": 18481.26, + "probability": 0.8695 + }, + { + "start": 18481.86, + "end": 18486.74, + "probability": 0.9927 + }, + { + "start": 18487.34, + "end": 18489.82, + "probability": 0.9882 + }, + { + "start": 18490.5, + "end": 18490.7, + "probability": 0.0794 + }, + { + "start": 18493.54, + "end": 18493.54, + "probability": 0.0742 + }, + { + "start": 18493.54, + "end": 18493.54, + "probability": 0.0102 + }, + { + "start": 18493.54, + "end": 18494.63, + "probability": 0.1187 + }, + { + "start": 18496.02, + "end": 18496.72, + "probability": 0.6838 + }, + { + "start": 18497.58, + "end": 18499.54, + "probability": 0.7517 + }, + { + "start": 18499.92, + "end": 18500.84, + "probability": 0.7789 + }, + { + "start": 18501.16, + "end": 18502.22, + "probability": 0.981 + }, + { + "start": 18503.66, + "end": 18505.5, + "probability": 0.9558 + }, + { + "start": 18505.94, + "end": 18507.12, + "probability": 0.9001 + }, + { + "start": 18507.48, + "end": 18508.64, + "probability": 0.7508 + }, + { + "start": 18509.08, + "end": 18511.0, + "probability": 0.8851 + }, + { + "start": 18512.56, + "end": 18512.68, + "probability": 0.1551 + }, + { + "start": 18512.98, + "end": 18512.98, + "probability": 0.078 + }, + { + "start": 18512.98, + "end": 18517.24, + "probability": 0.9475 + }, + { + "start": 18517.24, + "end": 18521.48, + "probability": 0.9628 + }, + { + "start": 18522.06, + "end": 18522.1, + "probability": 0.1292 + }, + { + "start": 18522.1, + "end": 18525.58, + "probability": 0.9961 + }, + { + "start": 18525.58, + "end": 18529.3, + "probability": 0.9974 + }, + { + "start": 18529.46, + "end": 18531.74, + "probability": 0.9835 + }, + { + "start": 18532.19, + "end": 18535.77, + "probability": 0.0566 + }, + { + "start": 18536.32, + "end": 18536.52, + "probability": 0.6793 + }, + { + "start": 18536.52, + "end": 18538.38, + "probability": 0.7099 + }, + { + "start": 18538.81, + "end": 18542.32, + "probability": 0.99 + }, + { + "start": 18542.62, + "end": 18545.42, + "probability": 0.9997 + }, + { + "start": 18545.42, + "end": 18548.82, + "probability": 0.9872 + }, + { + "start": 18549.18, + "end": 18553.73, + "probability": 0.9985 + }, + { + "start": 18554.58, + "end": 18557.48, + "probability": 0.9948 + }, + { + "start": 18557.58, + "end": 18559.28, + "probability": 0.8586 + }, + { + "start": 18561.18, + "end": 18561.42, + "probability": 0.3702 + }, + { + "start": 18561.42, + "end": 18563.34, + "probability": 0.9973 + }, + { + "start": 18563.5, + "end": 18564.98, + "probability": 0.8427 + }, + { + "start": 18565.38, + "end": 18568.2, + "probability": 0.9292 + }, + { + "start": 18568.22, + "end": 18574.34, + "probability": 0.9632 + }, + { + "start": 18574.56, + "end": 18579.72, + "probability": 0.9943 + }, + { + "start": 18579.96, + "end": 18580.52, + "probability": 0.4842 + }, + { + "start": 18580.6, + "end": 18581.66, + "probability": 0.821 + }, + { + "start": 18581.74, + "end": 18582.48, + "probability": 0.0163 + }, + { + "start": 18583.44, + "end": 18586.26, + "probability": 0.9731 + }, + { + "start": 18586.36, + "end": 18587.0, + "probability": 0.944 + }, + { + "start": 18587.27, + "end": 18588.16, + "probability": 0.4248 + }, + { + "start": 18588.2, + "end": 18590.32, + "probability": 0.5054 + }, + { + "start": 18590.8, + "end": 18593.24, + "probability": 0.49 + }, + { + "start": 18593.24, + "end": 18594.76, + "probability": 0.0124 + }, + { + "start": 18596.04, + "end": 18596.32, + "probability": 0.4662 + }, + { + "start": 18596.32, + "end": 18597.36, + "probability": 0.4038 + }, + { + "start": 18597.86, + "end": 18600.26, + "probability": 0.6638 + }, + { + "start": 18600.58, + "end": 18601.38, + "probability": 0.0139 + }, + { + "start": 18601.38, + "end": 18601.8, + "probability": 0.918 + }, + { + "start": 18603.56, + "end": 18606.78, + "probability": 0.1571 + }, + { + "start": 18617.65, + "end": 18619.96, + "probability": 0.6181 + }, + { + "start": 18620.66, + "end": 18623.3, + "probability": 0.9348 + }, + { + "start": 18624.46, + "end": 18628.4, + "probability": 0.9941 + }, + { + "start": 18628.98, + "end": 18629.98, + "probability": 0.0671 + }, + { + "start": 18630.58, + "end": 18633.28, + "probability": 0.999 + }, + { + "start": 18633.36, + "end": 18635.42, + "probability": 0.6373 + }, + { + "start": 18636.18, + "end": 18638.21, + "probability": 0.7177 + }, + { + "start": 18638.48, + "end": 18643.34, + "probability": 0.9682 + }, + { + "start": 18643.34, + "end": 18646.12, + "probability": 0.9854 + }, + { + "start": 18646.58, + "end": 18649.02, + "probability": 0.8885 + }, + { + "start": 18649.12, + "end": 18650.22, + "probability": 0.9711 + }, + { + "start": 18650.76, + "end": 18653.66, + "probability": 0.9883 + }, + { + "start": 18654.04, + "end": 18656.38, + "probability": 0.9697 + }, + { + "start": 18656.96, + "end": 18658.08, + "probability": 0.991 + }, + { + "start": 18658.22, + "end": 18661.62, + "probability": 0.8953 + }, + { + "start": 18661.62, + "end": 18661.76, + "probability": 0.7087 + }, + { + "start": 18661.94, + "end": 18663.34, + "probability": 0.8985 + }, + { + "start": 18663.48, + "end": 18665.36, + "probability": 0.7225 + }, + { + "start": 18666.22, + "end": 18669.96, + "probability": 0.9933 + }, + { + "start": 18670.88, + "end": 18675.1, + "probability": 0.9921 + }, + { + "start": 18676.26, + "end": 18679.44, + "probability": 0.9813 + }, + { + "start": 18680.26, + "end": 18682.81, + "probability": 0.999 + }, + { + "start": 18684.42, + "end": 18686.22, + "probability": 0.9857 + }, + { + "start": 18686.76, + "end": 18689.62, + "probability": 0.9022 + }, + { + "start": 18690.24, + "end": 18693.14, + "probability": 0.8885 + }, + { + "start": 18693.6, + "end": 18694.9, + "probability": 0.9246 + }, + { + "start": 18695.2, + "end": 18695.96, + "probability": 0.845 + }, + { + "start": 18696.04, + "end": 18697.54, + "probability": 0.9778 + }, + { + "start": 18697.68, + "end": 18698.54, + "probability": 0.8502 + }, + { + "start": 18699.62, + "end": 18701.38, + "probability": 0.9956 + }, + { + "start": 18701.62, + "end": 18704.57, + "probability": 0.9896 + }, + { + "start": 18704.8, + "end": 18705.88, + "probability": 0.8563 + }, + { + "start": 18705.92, + "end": 18711.36, + "probability": 0.9755 + }, + { + "start": 18711.58, + "end": 18712.48, + "probability": 0.8612 + }, + { + "start": 18712.78, + "end": 18713.7, + "probability": 0.7584 + }, + { + "start": 18713.88, + "end": 18715.02, + "probability": 0.9917 + }, + { + "start": 18715.66, + "end": 18717.66, + "probability": 0.9033 + }, + { + "start": 18718.18, + "end": 18720.48, + "probability": 0.9917 + }, + { + "start": 18721.1, + "end": 18721.34, + "probability": 0.3087 + }, + { + "start": 18722.12, + "end": 18726.8, + "probability": 0.9707 + }, + { + "start": 18727.06, + "end": 18728.06, + "probability": 0.925 + }, + { + "start": 18728.36, + "end": 18729.56, + "probability": 0.9962 + }, + { + "start": 18729.68, + "end": 18730.68, + "probability": 0.6265 + }, + { + "start": 18731.16, + "end": 18732.22, + "probability": 0.9855 + }, + { + "start": 18732.24, + "end": 18733.66, + "probability": 0.8986 + }, + { + "start": 18733.74, + "end": 18734.8, + "probability": 0.952 + }, + { + "start": 18735.24, + "end": 18736.78, + "probability": 0.9957 + }, + { + "start": 18736.86, + "end": 18738.58, + "probability": 0.6214 + }, + { + "start": 18740.22, + "end": 18742.24, + "probability": 0.9962 + }, + { + "start": 18742.34, + "end": 18743.86, + "probability": 0.9927 + }, + { + "start": 18743.86, + "end": 18745.02, + "probability": 0.689 + }, + { + "start": 18745.21, + "end": 18747.16, + "probability": 0.4792 + }, + { + "start": 18747.18, + "end": 18749.92, + "probability": 0.9825 + }, + { + "start": 18750.84, + "end": 18755.56, + "probability": 0.9923 + }, + { + "start": 18755.62, + "end": 18758.1, + "probability": 0.9973 + }, + { + "start": 18758.16, + "end": 18758.79, + "probability": 0.4981 + }, + { + "start": 18758.9, + "end": 18761.78, + "probability": 0.9744 + }, + { + "start": 18762.16, + "end": 18763.62, + "probability": 0.9015 + }, + { + "start": 18764.42, + "end": 18765.58, + "probability": 0.9501 + }, + { + "start": 18765.98, + "end": 18767.88, + "probability": 0.9957 + }, + { + "start": 18768.58, + "end": 18769.79, + "probability": 0.9795 + }, + { + "start": 18770.22, + "end": 18771.99, + "probability": 0.9031 + }, + { + "start": 18772.46, + "end": 18774.48, + "probability": 0.9866 + }, + { + "start": 18774.68, + "end": 18777.24, + "probability": 0.99 + }, + { + "start": 18777.7, + "end": 18779.18, + "probability": 0.9711 + }, + { + "start": 18779.56, + "end": 18780.58, + "probability": 0.9973 + }, + { + "start": 18780.58, + "end": 18781.19, + "probability": 0.6428 + }, + { + "start": 18781.6, + "end": 18784.92, + "probability": 0.9907 + }, + { + "start": 18785.24, + "end": 18788.58, + "probability": 0.9771 + }, + { + "start": 18788.92, + "end": 18790.84, + "probability": 0.8884 + }, + { + "start": 18791.3, + "end": 18791.88, + "probability": 0.9235 + }, + { + "start": 18792.0, + "end": 18792.2, + "probability": 0.8942 + }, + { + "start": 18792.34, + "end": 18796.22, + "probability": 0.9247 + }, + { + "start": 18796.36, + "end": 18800.42, + "probability": 0.9856 + }, + { + "start": 18800.52, + "end": 18803.3, + "probability": 0.9924 + }, + { + "start": 18803.34, + "end": 18804.62, + "probability": 0.9437 + }, + { + "start": 18805.14, + "end": 18805.64, + "probability": 0.6148 + }, + { + "start": 18805.72, + "end": 18805.86, + "probability": 0.6121 + }, + { + "start": 18805.9, + "end": 18809.92, + "probability": 0.9766 + }, + { + "start": 18810.5, + "end": 18811.6, + "probability": 0.5527 + }, + { + "start": 18811.98, + "end": 18813.34, + "probability": 0.7917 + }, + { + "start": 18813.4, + "end": 18813.94, + "probability": 0.599 + }, + { + "start": 18814.28, + "end": 18815.04, + "probability": 0.9126 + }, + { + "start": 18815.14, + "end": 18815.56, + "probability": 0.9244 + }, + { + "start": 18815.58, + "end": 18818.88, + "probability": 0.9928 + }, + { + "start": 18819.1, + "end": 18820.64, + "probability": 0.8014 + }, + { + "start": 18821.5, + "end": 18823.42, + "probability": 0.9976 + }, + { + "start": 18823.9, + "end": 18826.34, + "probability": 0.934 + }, + { + "start": 18826.42, + "end": 18829.78, + "probability": 0.8479 + }, + { + "start": 18831.06, + "end": 18835.32, + "probability": 0.9972 + }, + { + "start": 18835.94, + "end": 18837.02, + "probability": 0.895 + }, + { + "start": 18837.38, + "end": 18839.08, + "probability": 0.9976 + }, + { + "start": 18839.14, + "end": 18839.58, + "probability": 0.9307 + }, + { + "start": 18839.78, + "end": 18840.36, + "probability": 0.5998 + }, + { + "start": 18840.82, + "end": 18841.98, + "probability": 0.7354 + }, + { + "start": 18842.98, + "end": 18843.86, + "probability": 0.8084 + }, + { + "start": 18844.44, + "end": 18845.88, + "probability": 0.9549 + }, + { + "start": 18846.68, + "end": 18847.44, + "probability": 0.9525 + }, + { + "start": 18847.9, + "end": 18849.66, + "probability": 0.9849 + }, + { + "start": 18849.72, + "end": 18850.22, + "probability": 0.912 + }, + { + "start": 18850.28, + "end": 18851.34, + "probability": 0.9922 + }, + { + "start": 18851.7, + "end": 18852.28, + "probability": 0.7292 + }, + { + "start": 18852.38, + "end": 18854.94, + "probability": 0.5711 + }, + { + "start": 18875.64, + "end": 18880.18, + "probability": 0.6807 + }, + { + "start": 18881.7, + "end": 18886.06, + "probability": 0.9774 + }, + { + "start": 18887.0, + "end": 18893.2, + "probability": 0.9873 + }, + { + "start": 18893.56, + "end": 18896.22, + "probability": 0.7769 + }, + { + "start": 18897.12, + "end": 18898.06, + "probability": 0.858 + }, + { + "start": 18900.22, + "end": 18905.38, + "probability": 0.9897 + }, + { + "start": 18906.16, + "end": 18911.8, + "probability": 0.9958 + }, + { + "start": 18913.14, + "end": 18917.06, + "probability": 0.8874 + }, + { + "start": 18917.92, + "end": 18919.88, + "probability": 0.5807 + }, + { + "start": 18921.08, + "end": 18925.0, + "probability": 0.8051 + }, + { + "start": 18925.0, + "end": 18925.52, + "probability": 0.177 + }, + { + "start": 18926.22, + "end": 18928.08, + "probability": 0.7889 + }, + { + "start": 18928.92, + "end": 18932.32, + "probability": 0.9928 + }, + { + "start": 18932.56, + "end": 18934.7, + "probability": 0.9893 + }, + { + "start": 18935.46, + "end": 18938.62, + "probability": 0.9513 + }, + { + "start": 18939.38, + "end": 18940.26, + "probability": 0.9164 + }, + { + "start": 18940.8, + "end": 18943.76, + "probability": 0.9902 + }, + { + "start": 18944.98, + "end": 18949.7, + "probability": 0.9718 + }, + { + "start": 18950.22, + "end": 18953.38, + "probability": 0.9902 + }, + { + "start": 18954.06, + "end": 18957.78, + "probability": 0.9894 + }, + { + "start": 18957.96, + "end": 18962.04, + "probability": 0.9814 + }, + { + "start": 18962.7, + "end": 18964.48, + "probability": 0.9578 + }, + { + "start": 18965.1, + "end": 18967.38, + "probability": 0.9651 + }, + { + "start": 18968.06, + "end": 18968.58, + "probability": 0.917 + }, + { + "start": 18968.7, + "end": 18972.26, + "probability": 0.9948 + }, + { + "start": 18972.86, + "end": 18977.34, + "probability": 0.9717 + }, + { + "start": 18977.6, + "end": 18978.02, + "probability": 0.9157 + }, + { + "start": 18978.92, + "end": 18982.08, + "probability": 0.9146 + }, + { + "start": 18982.38, + "end": 18984.9, + "probability": 0.9837 + }, + { + "start": 18985.82, + "end": 18989.5, + "probability": 0.9162 + }, + { + "start": 18990.04, + "end": 18993.46, + "probability": 0.9961 + }, + { + "start": 18994.04, + "end": 18997.4, + "probability": 0.9976 + }, + { + "start": 18998.18, + "end": 18998.8, + "probability": 0.8251 + }, + { + "start": 18999.46, + "end": 19001.2, + "probability": 0.5014 + }, + { + "start": 19001.68, + "end": 19002.26, + "probability": 0.9819 + }, + { + "start": 19003.14, + "end": 19003.68, + "probability": 0.7934 + }, + { + "start": 19003.84, + "end": 19004.64, + "probability": 0.9084 + }, + { + "start": 19004.76, + "end": 19005.4, + "probability": 0.9714 + }, + { + "start": 19005.48, + "end": 19007.07, + "probability": 0.9725 + }, + { + "start": 19007.5, + "end": 19009.98, + "probability": 0.9187 + }, + { + "start": 19010.52, + "end": 19013.26, + "probability": 0.9964 + }, + { + "start": 19013.82, + "end": 19015.96, + "probability": 0.9881 + }, + { + "start": 19016.54, + "end": 19018.94, + "probability": 0.9951 + }, + { + "start": 19019.54, + "end": 19022.28, + "probability": 0.9415 + }, + { + "start": 19022.98, + "end": 19024.46, + "probability": 0.8911 + }, + { + "start": 19025.02, + "end": 19026.74, + "probability": 0.8963 + }, + { + "start": 19027.42, + "end": 19028.42, + "probability": 0.9696 + }, + { + "start": 19029.24, + "end": 19031.52, + "probability": 0.9816 + }, + { + "start": 19035.22, + "end": 19035.22, + "probability": 0.3062 + }, + { + "start": 19035.22, + "end": 19039.7, + "probability": 0.7973 + }, + { + "start": 19056.94, + "end": 19059.98, + "probability": 0.7325 + }, + { + "start": 19062.48, + "end": 19064.46, + "probability": 0.6142 + }, + { + "start": 19065.62, + "end": 19069.44, + "probability": 0.9798 + }, + { + "start": 19070.34, + "end": 19074.7, + "probability": 0.9698 + }, + { + "start": 19075.62, + "end": 19077.84, + "probability": 0.9175 + }, + { + "start": 19078.56, + "end": 19079.3, + "probability": 0.795 + }, + { + "start": 19080.16, + "end": 19085.02, + "probability": 0.9519 + }, + { + "start": 19085.54, + "end": 19089.4, + "probability": 0.743 + }, + { + "start": 19090.14, + "end": 19091.46, + "probability": 0.9575 + }, + { + "start": 19092.76, + "end": 19093.94, + "probability": 0.7267 + }, + { + "start": 19094.94, + "end": 19099.64, + "probability": 0.3455 + }, + { + "start": 19099.64, + "end": 19103.52, + "probability": 0.9307 + }, + { + "start": 19103.94, + "end": 19108.58, + "probability": 0.8929 + }, + { + "start": 19109.02, + "end": 19110.54, + "probability": 0.9805 + }, + { + "start": 19111.46, + "end": 19116.12, + "probability": 0.8689 + }, + { + "start": 19116.12, + "end": 19120.16, + "probability": 0.9863 + }, + { + "start": 19120.82, + "end": 19121.44, + "probability": 0.7222 + }, + { + "start": 19122.42, + "end": 19125.76, + "probability": 0.998 + }, + { + "start": 19126.52, + "end": 19131.0, + "probability": 0.9952 + }, + { + "start": 19131.38, + "end": 19135.1, + "probability": 0.973 + }, + { + "start": 19135.72, + "end": 19140.14, + "probability": 0.9695 + }, + { + "start": 19140.96, + "end": 19143.54, + "probability": 0.8215 + }, + { + "start": 19144.3, + "end": 19148.0, + "probability": 0.9807 + }, + { + "start": 19148.0, + "end": 19151.5, + "probability": 0.9985 + }, + { + "start": 19152.3, + "end": 19152.96, + "probability": 0.65 + }, + { + "start": 19153.28, + "end": 19156.5, + "probability": 0.987 + }, + { + "start": 19156.5, + "end": 19160.1, + "probability": 0.9958 + }, + { + "start": 19160.8, + "end": 19162.96, + "probability": 0.9782 + }, + { + "start": 19163.94, + "end": 19166.7, + "probability": 0.986 + }, + { + "start": 19167.24, + "end": 19170.08, + "probability": 0.8773 + }, + { + "start": 19170.56, + "end": 19174.3, + "probability": 0.9933 + }, + { + "start": 19175.32, + "end": 19176.7, + "probability": 0.8078 + }, + { + "start": 19177.26, + "end": 19180.28, + "probability": 0.9944 + }, + { + "start": 19180.28, + "end": 19183.1, + "probability": 0.9657 + }, + { + "start": 19183.64, + "end": 19188.58, + "probability": 0.7156 + }, + { + "start": 19189.4, + "end": 19193.94, + "probability": 0.9815 + }, + { + "start": 19194.56, + "end": 19197.6, + "probability": 0.9232 + }, + { + "start": 19198.16, + "end": 19199.02, + "probability": 0.9409 + }, + { + "start": 19199.02, + "end": 19200.36, + "probability": 0.8296 + }, + { + "start": 19200.64, + "end": 19202.1, + "probability": 0.8705 + }, + { + "start": 19202.84, + "end": 19206.64, + "probability": 0.9926 + }, + { + "start": 19206.64, + "end": 19209.76, + "probability": 0.998 + }, + { + "start": 19211.12, + "end": 19215.0, + "probability": 0.982 + }, + { + "start": 19215.0, + "end": 19217.68, + "probability": 0.9944 + }, + { + "start": 19218.44, + "end": 19221.22, + "probability": 0.6564 + }, + { + "start": 19221.64, + "end": 19223.86, + "probability": 0.9844 + }, + { + "start": 19224.5, + "end": 19229.4, + "probability": 0.9382 + }, + { + "start": 19230.52, + "end": 19233.34, + "probability": 0.9951 + }, + { + "start": 19233.96, + "end": 19236.2, + "probability": 0.9941 + }, + { + "start": 19236.2, + "end": 19240.2, + "probability": 0.9929 + }, + { + "start": 19241.48, + "end": 19244.02, + "probability": 0.7774 + }, + { + "start": 19244.72, + "end": 19247.2, + "probability": 0.9945 + }, + { + "start": 19247.2, + "end": 19250.3, + "probability": 0.9741 + }, + { + "start": 19251.02, + "end": 19254.4, + "probability": 0.9972 + }, + { + "start": 19255.08, + "end": 19257.56, + "probability": 0.9639 + }, + { + "start": 19258.26, + "end": 19260.06, + "probability": 0.9971 + }, + { + "start": 19260.76, + "end": 19263.14, + "probability": 0.9497 + }, + { + "start": 19263.28, + "end": 19266.94, + "probability": 0.9852 + }, + { + "start": 19268.08, + "end": 19268.96, + "probability": 0.993 + }, + { + "start": 19269.76, + "end": 19272.2, + "probability": 0.9873 + }, + { + "start": 19272.28, + "end": 19273.54, + "probability": 0.9972 + }, + { + "start": 19273.76, + "end": 19273.92, + "probability": 0.4969 + }, + { + "start": 19274.04, + "end": 19275.14, + "probability": 0.7512 + }, + { + "start": 19275.42, + "end": 19276.88, + "probability": 0.6944 + }, + { + "start": 19277.62, + "end": 19279.9, + "probability": 0.8328 + }, + { + "start": 19281.32, + "end": 19282.52, + "probability": 0.564 + }, + { + "start": 19283.72, + "end": 19289.84, + "probability": 0.9556 + }, + { + "start": 19319.2, + "end": 19319.74, + "probability": 0.3911 + }, + { + "start": 19319.82, + "end": 19320.25, + "probability": 0.4901 + }, + { + "start": 19322.08, + "end": 19324.06, + "probability": 0.3342 + }, + { + "start": 19324.44, + "end": 19324.82, + "probability": 0.7974 + }, + { + "start": 19325.74, + "end": 19328.0, + "probability": 0.9787 + }, + { + "start": 19328.24, + "end": 19328.36, + "probability": 0.467 + }, + { + "start": 19329.42, + "end": 19329.96, + "probability": 0.3338 + }, + { + "start": 19331.1, + "end": 19335.24, + "probability": 0.9813 + }, + { + "start": 19335.76, + "end": 19336.04, + "probability": 0.4998 + }, + { + "start": 19337.88, + "end": 19340.44, + "probability": 0.9375 + }, + { + "start": 19343.98, + "end": 19347.24, + "probability": 0.8796 + }, + { + "start": 19347.54, + "end": 19349.2, + "probability": 0.5352 + }, + { + "start": 19351.36, + "end": 19353.1, + "probability": 0.4064 + }, + { + "start": 19353.42, + "end": 19354.82, + "probability": 0.688 + }, + { + "start": 19355.22, + "end": 19363.4, + "probability": 0.9956 + }, + { + "start": 19365.0, + "end": 19367.34, + "probability": 0.9982 + }, + { + "start": 19368.1, + "end": 19369.26, + "probability": 0.8792 + }, + { + "start": 19371.42, + "end": 19377.22, + "probability": 0.7968 + }, + { + "start": 19377.76, + "end": 19379.7, + "probability": 0.7478 + }, + { + "start": 19380.36, + "end": 19383.7, + "probability": 0.6357 + }, + { + "start": 19384.68, + "end": 19388.25, + "probability": 0.8491 + }, + { + "start": 19388.84, + "end": 19388.96, + "probability": 0.9673 + }, + { + "start": 19389.18, + "end": 19392.16, + "probability": 0.978 + }, + { + "start": 19393.4, + "end": 19394.32, + "probability": 0.9561 + }, + { + "start": 19394.42, + "end": 19399.06, + "probability": 0.9695 + }, + { + "start": 19399.32, + "end": 19400.74, + "probability": 0.9893 + }, + { + "start": 19401.16, + "end": 19402.48, + "probability": 0.8655 + }, + { + "start": 19403.14, + "end": 19404.64, + "probability": 0.6504 + }, + { + "start": 19405.56, + "end": 19408.04, + "probability": 0.9834 + }, + { + "start": 19409.88, + "end": 19416.48, + "probability": 0.7742 + }, + { + "start": 19417.7, + "end": 19420.64, + "probability": 0.8853 + }, + { + "start": 19421.2, + "end": 19425.4, + "probability": 0.9955 + }, + { + "start": 19426.42, + "end": 19430.66, + "probability": 0.9769 + }, + { + "start": 19431.68, + "end": 19436.44, + "probability": 0.9189 + }, + { + "start": 19437.62, + "end": 19439.06, + "probability": 0.563 + }, + { + "start": 19440.84, + "end": 19441.97, + "probability": 0.6481 + }, + { + "start": 19445.3, + "end": 19450.12, + "probability": 0.8707 + }, + { + "start": 19450.92, + "end": 19454.58, + "probability": 0.8661 + }, + { + "start": 19455.36, + "end": 19460.22, + "probability": 0.9934 + }, + { + "start": 19460.8, + "end": 19465.02, + "probability": 0.9968 + }, + { + "start": 19465.98, + "end": 19470.74, + "probability": 0.7866 + }, + { + "start": 19472.12, + "end": 19472.83, + "probability": 0.8194 + }, + { + "start": 19474.0, + "end": 19474.32, + "probability": 0.8695 + }, + { + "start": 19474.46, + "end": 19476.44, + "probability": 0.8306 + }, + { + "start": 19476.52, + "end": 19479.34, + "probability": 0.9641 + }, + { + "start": 19480.1, + "end": 19482.44, + "probability": 0.8658 + }, + { + "start": 19482.72, + "end": 19485.04, + "probability": 0.9989 + }, + { + "start": 19486.3, + "end": 19489.32, + "probability": 0.9919 + }, + { + "start": 19489.5, + "end": 19489.96, + "probability": 0.7611 + }, + { + "start": 19490.06, + "end": 19494.76, + "probability": 0.9928 + }, + { + "start": 19495.76, + "end": 19500.4, + "probability": 0.9988 + }, + { + "start": 19500.46, + "end": 19504.32, + "probability": 0.9741 + }, + { + "start": 19505.32, + "end": 19506.66, + "probability": 0.5111 + }, + { + "start": 19508.54, + "end": 19513.36, + "probability": 0.9873 + }, + { + "start": 19514.04, + "end": 19519.48, + "probability": 0.988 + }, + { + "start": 19520.5, + "end": 19525.02, + "probability": 0.9843 + }, + { + "start": 19526.02, + "end": 19532.24, + "probability": 0.9919 + }, + { + "start": 19532.24, + "end": 19537.74, + "probability": 0.9777 + }, + { + "start": 19538.66, + "end": 19539.46, + "probability": 0.8773 + }, + { + "start": 19539.58, + "end": 19543.52, + "probability": 0.9917 + }, + { + "start": 19544.24, + "end": 19547.7, + "probability": 0.9797 + }, + { + "start": 19547.7, + "end": 19552.22, + "probability": 0.9849 + }, + { + "start": 19553.06, + "end": 19558.96, + "probability": 0.9729 + }, + { + "start": 19559.58, + "end": 19562.16, + "probability": 0.9979 + }, + { + "start": 19563.1, + "end": 19565.82, + "probability": 0.8662 + }, + { + "start": 19566.44, + "end": 19569.72, + "probability": 0.902 + }, + { + "start": 19570.3, + "end": 19575.5, + "probability": 0.9792 + }, + { + "start": 19576.58, + "end": 19579.2, + "probability": 0.9966 + }, + { + "start": 19580.42, + "end": 19582.92, + "probability": 0.9972 + }, + { + "start": 19583.76, + "end": 19588.18, + "probability": 0.9855 + }, + { + "start": 19589.38, + "end": 19593.6, + "probability": 0.9924 + }, + { + "start": 19594.58, + "end": 19597.7, + "probability": 0.9889 + }, + { + "start": 19599.68, + "end": 19601.06, + "probability": 0.9697 + }, + { + "start": 19602.12, + "end": 19607.0, + "probability": 0.9914 + }, + { + "start": 19607.0, + "end": 19612.2, + "probability": 0.9969 + }, + { + "start": 19613.22, + "end": 19618.08, + "probability": 0.9817 + }, + { + "start": 19618.38, + "end": 19622.26, + "probability": 0.9984 + }, + { + "start": 19622.96, + "end": 19626.08, + "probability": 0.998 + }, + { + "start": 19628.14, + "end": 19630.4, + "probability": 0.972 + }, + { + "start": 19631.02, + "end": 19632.68, + "probability": 0.9972 + }, + { + "start": 19633.52, + "end": 19635.12, + "probability": 0.9429 + }, + { + "start": 19636.74, + "end": 19640.26, + "probability": 0.9845 + }, + { + "start": 19641.12, + "end": 19641.86, + "probability": 0.8551 + }, + { + "start": 19643.62, + "end": 19644.36, + "probability": 0.9972 + }, + { + "start": 19644.9, + "end": 19652.3, + "probability": 0.9974 + }, + { + "start": 19654.12, + "end": 19656.76, + "probability": 0.9963 + }, + { + "start": 19656.76, + "end": 19661.8, + "probability": 0.9906 + }, + { + "start": 19662.76, + "end": 19667.24, + "probability": 0.9949 + }, + { + "start": 19667.24, + "end": 19673.5, + "probability": 0.9985 + }, + { + "start": 19674.1, + "end": 19680.72, + "probability": 0.998 + }, + { + "start": 19681.7, + "end": 19686.92, + "probability": 0.9957 + }, + { + "start": 19687.56, + "end": 19691.12, + "probability": 0.9837 + }, + { + "start": 19692.22, + "end": 19697.68, + "probability": 0.9088 + }, + { + "start": 19698.5, + "end": 19702.42, + "probability": 0.9966 + }, + { + "start": 19702.94, + "end": 19707.86, + "probability": 0.9509 + }, + { + "start": 19709.82, + "end": 19712.32, + "probability": 0.9985 + }, + { + "start": 19712.32, + "end": 19716.32, + "probability": 0.9694 + }, + { + "start": 19717.56, + "end": 19720.98, + "probability": 0.85 + }, + { + "start": 19722.68, + "end": 19725.94, + "probability": 0.9678 + }, + { + "start": 19725.94, + "end": 19729.74, + "probability": 0.9988 + }, + { + "start": 19731.02, + "end": 19736.2, + "probability": 0.9776 + }, + { + "start": 19737.4, + "end": 19742.66, + "probability": 0.9964 + }, + { + "start": 19742.66, + "end": 19747.3, + "probability": 0.9474 + }, + { + "start": 19748.22, + "end": 19752.46, + "probability": 0.9904 + }, + { + "start": 19752.46, + "end": 19757.02, + "probability": 0.6414 + }, + { + "start": 19757.7, + "end": 19760.36, + "probability": 0.9494 + }, + { + "start": 19762.1, + "end": 19764.32, + "probability": 0.9035 + }, + { + "start": 19765.3, + "end": 19769.18, + "probability": 0.9878 + }, + { + "start": 19769.24, + "end": 19774.02, + "probability": 0.9977 + }, + { + "start": 19774.84, + "end": 19782.66, + "probability": 0.9985 + }, + { + "start": 19782.66, + "end": 19789.8, + "probability": 0.9993 + }, + { + "start": 19790.32, + "end": 19793.06, + "probability": 0.9963 + }, + { + "start": 19793.76, + "end": 19797.02, + "probability": 0.9909 + }, + { + "start": 19797.98, + "end": 19802.92, + "probability": 0.9954 + }, + { + "start": 19803.44, + "end": 19805.0, + "probability": 0.8389 + }, + { + "start": 19805.74, + "end": 19810.62, + "probability": 0.9104 + }, + { + "start": 19811.34, + "end": 19819.54, + "probability": 0.9951 + }, + { + "start": 19820.23, + "end": 19824.88, + "probability": 0.9971 + }, + { + "start": 19824.88, + "end": 19828.78, + "probability": 0.9995 + }, + { + "start": 19829.4, + "end": 19834.8, + "probability": 0.9819 + }, + { + "start": 19835.34, + "end": 19839.42, + "probability": 0.967 + }, + { + "start": 19840.86, + "end": 19848.22, + "probability": 0.9856 + }, + { + "start": 19848.22, + "end": 19852.9, + "probability": 0.9991 + }, + { + "start": 19853.62, + "end": 19857.22, + "probability": 0.9777 + }, + { + "start": 19857.96, + "end": 19859.46, + "probability": 0.6763 + }, + { + "start": 19860.16, + "end": 19864.86, + "probability": 0.9982 + }, + { + "start": 19865.44, + "end": 19870.34, + "probability": 0.9928 + }, + { + "start": 19870.94, + "end": 19872.72, + "probability": 0.9515 + }, + { + "start": 19873.24, + "end": 19878.48, + "probability": 0.9952 + }, + { + "start": 19878.48, + "end": 19884.88, + "probability": 0.999 + }, + { + "start": 19884.88, + "end": 19894.14, + "probability": 0.9969 + }, + { + "start": 19894.8, + "end": 19895.7, + "probability": 0.7191 + }, + { + "start": 19895.94, + "end": 19902.56, + "probability": 0.9924 + }, + { + "start": 19903.34, + "end": 19906.92, + "probability": 0.8886 + }, + { + "start": 19908.32, + "end": 19909.5, + "probability": 0.9779 + }, + { + "start": 19909.76, + "end": 19914.9, + "probability": 0.9888 + }, + { + "start": 19916.08, + "end": 19922.56, + "probability": 0.9845 + }, + { + "start": 19923.2, + "end": 19926.86, + "probability": 0.9188 + }, + { + "start": 19927.86, + "end": 19933.14, + "probability": 0.9699 + }, + { + "start": 19933.14, + "end": 19937.82, + "probability": 0.9917 + }, + { + "start": 19938.58, + "end": 19941.82, + "probability": 0.9842 + }, + { + "start": 19941.82, + "end": 19946.14, + "probability": 0.9327 + }, + { + "start": 19946.78, + "end": 19955.02, + "probability": 0.8796 + }, + { + "start": 19955.58, + "end": 19958.46, + "probability": 0.876 + }, + { + "start": 19959.02, + "end": 19965.49, + "probability": 0.7883 + }, + { + "start": 19967.18, + "end": 19973.94, + "probability": 0.9849 + }, + { + "start": 19974.1, + "end": 19979.9, + "probability": 0.9956 + }, + { + "start": 19980.64, + "end": 19982.26, + "probability": 0.9973 + }, + { + "start": 19982.8, + "end": 19982.9, + "probability": 0.9996 + }, + { + "start": 19985.62, + "end": 19990.54, + "probability": 0.7401 + }, + { + "start": 19991.3, + "end": 19995.74, + "probability": 0.9786 + }, + { + "start": 19995.74, + "end": 20002.58, + "probability": 0.9979 + }, + { + "start": 20004.84, + "end": 20009.45, + "probability": 0.9728 + }, + { + "start": 20011.22, + "end": 20016.74, + "probability": 0.9971 + }, + { + "start": 20016.74, + "end": 20023.88, + "probability": 0.9933 + }, + { + "start": 20023.98, + "end": 20024.58, + "probability": 0.669 + }, + { + "start": 20025.06, + "end": 20030.23, + "probability": 0.9788 + }, + { + "start": 20030.92, + "end": 20036.44, + "probability": 0.9794 + }, + { + "start": 20037.16, + "end": 20045.28, + "probability": 0.9026 + }, + { + "start": 20045.78, + "end": 20050.84, + "probability": 0.9966 + }, + { + "start": 20052.56, + "end": 20063.26, + "probability": 0.9956 + }, + { + "start": 20063.6, + "end": 20068.56, + "probability": 0.9971 + }, + { + "start": 20069.02, + "end": 20075.24, + "probability": 0.4757 + }, + { + "start": 20075.72, + "end": 20079.46, + "probability": 0.9812 + }, + { + "start": 20082.1, + "end": 20084.96, + "probability": 0.7492 + }, + { + "start": 20085.74, + "end": 20092.98, + "probability": 0.989 + }, + { + "start": 20092.98, + "end": 20100.26, + "probability": 0.9899 + }, + { + "start": 20100.26, + "end": 20105.44, + "probability": 0.9612 + }, + { + "start": 20105.44, + "end": 20106.16, + "probability": 0.5439 + }, + { + "start": 20106.24, + "end": 20111.56, + "probability": 0.6438 + }, + { + "start": 20112.44, + "end": 20116.44, + "probability": 0.9985 + }, + { + "start": 20116.44, + "end": 20120.7, + "probability": 0.9973 + }, + { + "start": 20121.76, + "end": 20124.5, + "probability": 0.8869 + }, + { + "start": 20125.3, + "end": 20129.32, + "probability": 0.9744 + }, + { + "start": 20129.32, + "end": 20134.48, + "probability": 0.7957 + }, + { + "start": 20134.96, + "end": 20137.22, + "probability": 0.9869 + }, + { + "start": 20137.7, + "end": 20141.54, + "probability": 0.9805 + }, + { + "start": 20142.1, + "end": 20144.88, + "probability": 0.9866 + }, + { + "start": 20145.2, + "end": 20153.62, + "probability": 0.935 + }, + { + "start": 20154.58, + "end": 20155.5, + "probability": 0.6342 + }, + { + "start": 20156.12, + "end": 20159.48, + "probability": 0.8468 + }, + { + "start": 20159.98, + "end": 20167.06, + "probability": 0.9945 + }, + { + "start": 20167.52, + "end": 20171.74, + "probability": 0.9987 + }, + { + "start": 20171.74, + "end": 20176.5, + "probability": 0.9631 + }, + { + "start": 20177.16, + "end": 20179.38, + "probability": 0.8307 + }, + { + "start": 20179.58, + "end": 20183.84, + "probability": 0.9954 + }, + { + "start": 20184.3, + "end": 20187.86, + "probability": 0.9049 + }, + { + "start": 20188.34, + "end": 20191.24, + "probability": 0.9863 + }, + { + "start": 20191.92, + "end": 20199.24, + "probability": 0.8886 + }, + { + "start": 20199.24, + "end": 20204.42, + "probability": 0.9644 + }, + { + "start": 20204.92, + "end": 20205.78, + "probability": 0.7883 + }, + { + "start": 20206.1, + "end": 20211.94, + "probability": 0.994 + }, + { + "start": 20211.94, + "end": 20218.48, + "probability": 0.9572 + }, + { + "start": 20219.02, + "end": 20226.62, + "probability": 0.9867 + }, + { + "start": 20227.18, + "end": 20228.24, + "probability": 0.8247 + }, + { + "start": 20229.5, + "end": 20230.4, + "probability": 0.685 + }, + { + "start": 20230.9, + "end": 20235.1, + "probability": 0.9893 + }, + { + "start": 20235.1, + "end": 20241.8, + "probability": 0.9662 + }, + { + "start": 20242.56, + "end": 20247.2, + "probability": 0.9976 + }, + { + "start": 20247.2, + "end": 20252.98, + "probability": 0.9961 + }, + { + "start": 20253.96, + "end": 20259.9, + "probability": 0.9953 + }, + { + "start": 20260.44, + "end": 20262.94, + "probability": 0.8231 + }, + { + "start": 20263.4, + "end": 20266.26, + "probability": 0.9973 + }, + { + "start": 20266.26, + "end": 20269.92, + "probability": 0.994 + }, + { + "start": 20270.68, + "end": 20273.16, + "probability": 0.9402 + }, + { + "start": 20273.96, + "end": 20277.94, + "probability": 0.9442 + }, + { + "start": 20277.94, + "end": 20282.8, + "probability": 0.9954 + }, + { + "start": 20283.22, + "end": 20287.6, + "probability": 0.9749 + }, + { + "start": 20288.44, + "end": 20292.46, + "probability": 0.8677 + }, + { + "start": 20292.46, + "end": 20297.06, + "probability": 0.9268 + }, + { + "start": 20297.7, + "end": 20300.8, + "probability": 0.9899 + }, + { + "start": 20301.28, + "end": 20303.64, + "probability": 0.9918 + }, + { + "start": 20304.12, + "end": 20311.32, + "probability": 0.9775 + }, + { + "start": 20311.9, + "end": 20313.78, + "probability": 0.9931 + }, + { + "start": 20313.84, + "end": 20316.44, + "probability": 0.9071 + }, + { + "start": 20317.06, + "end": 20319.74, + "probability": 0.9451 + }, + { + "start": 20320.32, + "end": 20324.82, + "probability": 0.991 + }, + { + "start": 20325.28, + "end": 20328.2, + "probability": 0.9578 + }, + { + "start": 20328.5, + "end": 20333.78, + "probability": 0.9907 + }, + { + "start": 20333.78, + "end": 20338.44, + "probability": 0.9918 + }, + { + "start": 20341.1, + "end": 20348.24, + "probability": 0.9979 + }, + { + "start": 20348.96, + "end": 20353.02, + "probability": 0.8249 + }, + { + "start": 20353.38, + "end": 20357.56, + "probability": 0.9989 + }, + { + "start": 20357.88, + "end": 20362.66, + "probability": 0.8984 + }, + { + "start": 20363.34, + "end": 20365.2, + "probability": 0.9268 + }, + { + "start": 20365.72, + "end": 20370.02, + "probability": 0.9482 + }, + { + "start": 20370.02, + "end": 20375.62, + "probability": 0.9937 + }, + { + "start": 20377.28, + "end": 20380.8, + "probability": 0.9521 + }, + { + "start": 20380.8, + "end": 20383.98, + "probability": 0.951 + }, + { + "start": 20384.34, + "end": 20384.78, + "probability": 0.3676 + }, + { + "start": 20384.88, + "end": 20385.76, + "probability": 0.8725 + }, + { + "start": 20386.1, + "end": 20386.2, + "probability": 0.4616 + }, + { + "start": 20387.1, + "end": 20388.54, + "probability": 0.9482 + }, + { + "start": 20393.54, + "end": 20396.0, + "probability": 0.6815 + }, + { + "start": 20396.7, + "end": 20398.56, + "probability": 0.5186 + }, + { + "start": 20398.7, + "end": 20400.19, + "probability": 0.9467 + }, + { + "start": 20400.96, + "end": 20402.72, + "probability": 0.9786 + }, + { + "start": 20402.72, + "end": 20403.48, + "probability": 0.527 + }, + { + "start": 20411.22, + "end": 20412.86, + "probability": 0.6794 + }, + { + "start": 20413.95, + "end": 20418.77, + "probability": 0.9954 + }, + { + "start": 20419.3, + "end": 20420.82, + "probability": 0.824 + }, + { + "start": 20421.34, + "end": 20425.14, + "probability": 0.8851 + }, + { + "start": 20425.24, + "end": 20426.91, + "probability": 0.9948 + }, + { + "start": 20427.08, + "end": 20427.9, + "probability": 0.4983 + }, + { + "start": 20427.9, + "end": 20428.9, + "probability": 0.9029 + }, + { + "start": 20429.0, + "end": 20429.86, + "probability": 0.6418 + }, + { + "start": 20429.94, + "end": 20433.69, + "probability": 0.9941 + }, + { + "start": 20434.64, + "end": 20440.34, + "probability": 0.8422 + }, + { + "start": 20440.34, + "end": 20443.41, + "probability": 0.9996 + }, + { + "start": 20443.9, + "end": 20447.06, + "probability": 0.9907 + }, + { + "start": 20447.06, + "end": 20452.8, + "probability": 0.9989 + }, + { + "start": 20453.48, + "end": 20456.22, + "probability": 0.8525 + }, + { + "start": 20456.4, + "end": 20462.82, + "probability": 0.9239 + }, + { + "start": 20463.46, + "end": 20463.56, + "probability": 0.4665 + }, + { + "start": 20464.08, + "end": 20467.12, + "probability": 0.9972 + }, + { + "start": 20467.24, + "end": 20467.98, + "probability": 0.8029 + }, + { + "start": 20468.58, + "end": 20473.86, + "probability": 0.95 + }, + { + "start": 20473.92, + "end": 20479.82, + "probability": 0.9954 + }, + { + "start": 20480.3, + "end": 20485.8, + "probability": 0.9761 + }, + { + "start": 20486.64, + "end": 20487.44, + "probability": 0.7322 + }, + { + "start": 20488.14, + "end": 20489.14, + "probability": 0.821 + }, + { + "start": 20489.58, + "end": 20493.98, + "probability": 0.9977 + }, + { + "start": 20493.98, + "end": 20499.56, + "probability": 0.9696 + }, + { + "start": 20500.24, + "end": 20503.7, + "probability": 0.9966 + }, + { + "start": 20503.7, + "end": 20510.22, + "probability": 0.967 + }, + { + "start": 20510.76, + "end": 20513.79, + "probability": 0.5319 + }, + { + "start": 20514.66, + "end": 20519.34, + "probability": 0.9481 + }, + { + "start": 20519.34, + "end": 20524.0, + "probability": 0.9974 + }, + { + "start": 20524.86, + "end": 20529.62, + "probability": 0.8633 + }, + { + "start": 20530.36, + "end": 20532.22, + "probability": 0.9903 + }, + { + "start": 20532.92, + "end": 20535.32, + "probability": 0.9927 + }, + { + "start": 20536.64, + "end": 20543.06, + "probability": 0.7289 + }, + { + "start": 20543.86, + "end": 20549.2, + "probability": 0.9943 + }, + { + "start": 20550.12, + "end": 20553.6, + "probability": 0.9668 + }, + { + "start": 20553.96, + "end": 20554.88, + "probability": 0.7565 + }, + { + "start": 20555.42, + "end": 20561.5, + "probability": 0.9961 + }, + { + "start": 20561.5, + "end": 20566.76, + "probability": 0.9499 + }, + { + "start": 20567.12, + "end": 20568.46, + "probability": 0.9962 + }, + { + "start": 20568.96, + "end": 20570.72, + "probability": 0.7034 + }, + { + "start": 20571.24, + "end": 20575.58, + "probability": 0.9986 + }, + { + "start": 20576.04, + "end": 20580.02, + "probability": 0.9953 + }, + { + "start": 20580.64, + "end": 20582.7, + "probability": 0.9938 + }, + { + "start": 20583.72, + "end": 20584.5, + "probability": 0.9786 + }, + { + "start": 20584.58, + "end": 20587.16, + "probability": 0.9922 + }, + { + "start": 20587.16, + "end": 20594.26, + "probability": 0.9709 + }, + { + "start": 20595.2, + "end": 20600.2, + "probability": 0.9835 + }, + { + "start": 20600.2, + "end": 20604.88, + "probability": 0.9991 + }, + { + "start": 20605.46, + "end": 20606.82, + "probability": 0.8086 + }, + { + "start": 20608.96, + "end": 20613.6, + "probability": 0.988 + }, + { + "start": 20614.24, + "end": 20615.12, + "probability": 0.5183 + }, + { + "start": 20615.64, + "end": 20621.6, + "probability": 0.9746 + }, + { + "start": 20621.6, + "end": 20630.3, + "probability": 0.9412 + }, + { + "start": 20630.5, + "end": 20634.54, + "probability": 0.8788 + }, + { + "start": 20634.72, + "end": 20639.08, + "probability": 0.9907 + }, + { + "start": 20639.08, + "end": 20645.86, + "probability": 0.9966 + }, + { + "start": 20647.72, + "end": 20651.5, + "probability": 0.9914 + }, + { + "start": 20652.32, + "end": 20654.81, + "probability": 0.7869 + }, + { + "start": 20657.12, + "end": 20659.18, + "probability": 0.7143 + }, + { + "start": 20659.76, + "end": 20661.84, + "probability": 0.881 + }, + { + "start": 20661.96, + "end": 20662.44, + "probability": 0.9521 + }, + { + "start": 20662.88, + "end": 20668.38, + "probability": 0.9854 + }, + { + "start": 20669.9, + "end": 20673.68, + "probability": 0.9122 + }, + { + "start": 20674.4, + "end": 20681.26, + "probability": 0.7065 + }, + { + "start": 20681.8, + "end": 20687.14, + "probability": 0.9914 + }, + { + "start": 20687.98, + "end": 20693.36, + "probability": 0.9927 + }, + { + "start": 20693.36, + "end": 20699.88, + "probability": 0.9986 + }, + { + "start": 20701.19, + "end": 20706.1, + "probability": 0.9478 + }, + { + "start": 20706.1, + "end": 20711.9, + "probability": 0.9922 + }, + { + "start": 20712.3, + "end": 20714.46, + "probability": 0.897 + }, + { + "start": 20714.54, + "end": 20720.82, + "probability": 0.803 + }, + { + "start": 20720.82, + "end": 20723.22, + "probability": 0.7411 + }, + { + "start": 20723.86, + "end": 20727.66, + "probability": 0.6916 + }, + { + "start": 20728.99, + "end": 20732.34, + "probability": 0.0797 + }, + { + "start": 20734.72, + "end": 20738.68, + "probability": 0.9758 + }, + { + "start": 20739.2, + "end": 20741.22, + "probability": 0.9296 + }, + { + "start": 20741.5, + "end": 20745.86, + "probability": 0.9984 + }, + { + "start": 20746.24, + "end": 20752.18, + "probability": 0.9967 + }, + { + "start": 20752.62, + "end": 20754.48, + "probability": 0.9885 + }, + { + "start": 20755.14, + "end": 20758.66, + "probability": 0.7891 + }, + { + "start": 20761.2, + "end": 20766.1, + "probability": 0.0253 + }, + { + "start": 20766.78, + "end": 20768.46, + "probability": 0.2564 + }, + { + "start": 20768.46, + "end": 20769.42, + "probability": 0.1972 + }, + { + "start": 20769.42, + "end": 20770.48, + "probability": 0.3744 + }, + { + "start": 20772.6, + "end": 20776.64, + "probability": 0.5654 + }, + { + "start": 20777.4, + "end": 20781.26, + "probability": 0.9376 + }, + { + "start": 20781.88, + "end": 20783.3, + "probability": 0.9465 + }, + { + "start": 20785.22, + "end": 20791.16, + "probability": 0.9899 + }, + { + "start": 20791.84, + "end": 20793.82, + "probability": 0.9206 + }, + { + "start": 20794.98, + "end": 20798.24, + "probability": 0.9218 + }, + { + "start": 20798.96, + "end": 20800.12, + "probability": 0.8207 + }, + { + "start": 20800.54, + "end": 20801.58, + "probability": 0.8752 + }, + { + "start": 20801.86, + "end": 20802.6, + "probability": 0.8776 + }, + { + "start": 20802.68, + "end": 20803.9, + "probability": 0.6508 + }, + { + "start": 20804.56, + "end": 20812.66, + "probability": 0.9954 + }, + { + "start": 20812.66, + "end": 20819.44, + "probability": 0.9943 + }, + { + "start": 20820.32, + "end": 20822.52, + "probability": 0.8691 + }, + { + "start": 20823.48, + "end": 20825.9, + "probability": 0.9912 + }, + { + "start": 20826.42, + "end": 20830.38, + "probability": 0.984 + }, + { + "start": 20831.26, + "end": 20832.68, + "probability": 0.839 + }, + { + "start": 20833.54, + "end": 20835.74, + "probability": 0.8655 + }, + { + "start": 20835.9, + "end": 20836.8, + "probability": 0.6752 + }, + { + "start": 20837.08, + "end": 20839.14, + "probability": 0.9845 + }, + { + "start": 20840.16, + "end": 20846.77, + "probability": 0.7697 + }, + { + "start": 20847.26, + "end": 20850.16, + "probability": 0.6463 + }, + { + "start": 20850.52, + "end": 20851.36, + "probability": 0.6588 + }, + { + "start": 20851.74, + "end": 20853.34, + "probability": 0.9132 + }, + { + "start": 20853.34, + "end": 20854.48, + "probability": 0.9779 + }, + { + "start": 20854.86, + "end": 20859.18, + "probability": 0.9521 + }, + { + "start": 20859.84, + "end": 20863.74, + "probability": 0.9971 + }, + { + "start": 20865.1, + "end": 20867.38, + "probability": 0.6474 + }, + { + "start": 20867.96, + "end": 20875.16, + "probability": 0.9836 + }, + { + "start": 20875.16, + "end": 20882.76, + "probability": 0.9758 + }, + { + "start": 20883.4, + "end": 20887.22, + "probability": 0.9917 + }, + { + "start": 20887.56, + "end": 20889.31, + "probability": 0.9342 + }, + { + "start": 20889.7, + "end": 20891.38, + "probability": 0.9706 + }, + { + "start": 20891.76, + "end": 20893.38, + "probability": 0.9754 + }, + { + "start": 20893.56, + "end": 20894.5, + "probability": 0.9677 + }, + { + "start": 20894.64, + "end": 20895.2, + "probability": 0.7545 + }, + { + "start": 20895.28, + "end": 20896.16, + "probability": 0.8344 + }, + { + "start": 20896.16, + "end": 20900.04, + "probability": 0.9513 + }, + { + "start": 20900.48, + "end": 20903.68, + "probability": 0.8851 + }, + { + "start": 20904.24, + "end": 20911.0, + "probability": 0.9764 + }, + { + "start": 20911.44, + "end": 20917.0, + "probability": 0.9857 + }, + { + "start": 20917.0, + "end": 20925.12, + "probability": 0.9985 + }, + { + "start": 20926.12, + "end": 20931.52, + "probability": 0.6665 + }, + { + "start": 20932.02, + "end": 20933.3, + "probability": 0.8212 + }, + { + "start": 20934.1, + "end": 20938.1, + "probability": 0.9868 + }, + { + "start": 20939.46, + "end": 20946.3, + "probability": 0.72 + }, + { + "start": 20946.82, + "end": 20949.66, + "probability": 0.9916 + }, + { + "start": 20950.34, + "end": 20954.11, + "probability": 0.9968 + }, + { + "start": 20955.0, + "end": 20956.8, + "probability": 0.9688 + }, + { + "start": 20957.3, + "end": 20963.62, + "probability": 0.9807 + }, + { + "start": 20964.48, + "end": 20967.88, + "probability": 0.623 + }, + { + "start": 20968.5, + "end": 20971.4, + "probability": 0.8438 + }, + { + "start": 20971.44, + "end": 20973.88, + "probability": 0.8398 + }, + { + "start": 20974.9, + "end": 20977.96, + "probability": 0.9805 + }, + { + "start": 20978.96, + "end": 20980.7, + "probability": 0.908 + }, + { + "start": 20981.26, + "end": 20986.08, + "probability": 0.8141 + }, + { + "start": 20986.16, + "end": 20994.22, + "probability": 0.9559 + }, + { + "start": 20994.84, + "end": 20996.37, + "probability": 0.7311 + }, + { + "start": 20997.24, + "end": 21000.66, + "probability": 0.9047 + }, + { + "start": 21009.96, + "end": 21013.9, + "probability": 0.8211 + }, + { + "start": 21014.32, + "end": 21014.36, + "probability": 0.0412 + }, + { + "start": 21014.36, + "end": 21016.1, + "probability": 0.9797 + }, + { + "start": 21016.1, + "end": 21017.32, + "probability": 0.4284 + }, + { + "start": 21018.0, + "end": 21021.62, + "probability": 0.6993 + }, + { + "start": 21022.2, + "end": 21023.86, + "probability": 0.9969 + }, + { + "start": 21024.6, + "end": 21029.94, + "probability": 0.8094 + }, + { + "start": 21030.76, + "end": 21035.24, + "probability": 0.9932 + }, + { + "start": 21035.24, + "end": 21043.24, + "probability": 0.8413 + }, + { + "start": 21043.64, + "end": 21044.86, + "probability": 0.9765 + }, + { + "start": 21044.9, + "end": 21046.14, + "probability": 0.9254 + }, + { + "start": 21046.46, + "end": 21052.32, + "probability": 0.9666 + }, + { + "start": 21053.12, + "end": 21056.68, + "probability": 0.8894 + }, + { + "start": 21057.62, + "end": 21058.36, + "probability": 0.8282 + }, + { + "start": 21058.5, + "end": 21062.92, + "probability": 0.9609 + }, + { + "start": 21063.42, + "end": 21066.16, + "probability": 0.861 + }, + { + "start": 21066.16, + "end": 21068.16, + "probability": 0.6074 + }, + { + "start": 21068.54, + "end": 21069.94, + "probability": 0.3495 + }, + { + "start": 21070.86, + "end": 21071.08, + "probability": 0.079 + }, + { + "start": 21071.08, + "end": 21071.46, + "probability": 0.0748 + }, + { + "start": 21071.6, + "end": 21072.54, + "probability": 0.2653 + }, + { + "start": 21072.82, + "end": 21073.86, + "probability": 0.4064 + }, + { + "start": 21074.26, + "end": 21077.74, + "probability": 0.873 + }, + { + "start": 21077.74, + "end": 21082.66, + "probability": 0.8678 + }, + { + "start": 21082.74, + "end": 21085.38, + "probability": 0.9944 + }, + { + "start": 21085.38, + "end": 21089.92, + "probability": 0.9938 + }, + { + "start": 21090.12, + "end": 21095.14, + "probability": 0.992 + }, + { + "start": 21095.76, + "end": 21097.61, + "probability": 0.8479 + }, + { + "start": 21098.24, + "end": 21100.84, + "probability": 0.5176 + }, + { + "start": 21100.98, + "end": 21104.06, + "probability": 0.7132 + }, + { + "start": 21104.12, + "end": 21107.32, + "probability": 0.9957 + }, + { + "start": 21107.48, + "end": 21108.56, + "probability": 0.9681 + }, + { + "start": 21109.22, + "end": 21110.18, + "probability": 0.6029 + }, + { + "start": 21110.48, + "end": 21113.57, + "probability": 0.9619 + }, + { + "start": 21113.68, + "end": 21116.36, + "probability": 0.8522 + }, + { + "start": 21116.8, + "end": 21118.86, + "probability": 0.9905 + }, + { + "start": 21119.42, + "end": 21122.8, + "probability": 0.9904 + }, + { + "start": 21122.92, + "end": 21124.0, + "probability": 0.8926 + }, + { + "start": 21124.18, + "end": 21126.28, + "probability": 0.9957 + }, + { + "start": 21126.88, + "end": 21129.46, + "probability": 0.9775 + }, + { + "start": 21129.62, + "end": 21131.1, + "probability": 0.9174 + }, + { + "start": 21131.46, + "end": 21136.76, + "probability": 0.988 + }, + { + "start": 21137.04, + "end": 21142.22, + "probability": 0.9777 + }, + { + "start": 21142.42, + "end": 21145.22, + "probability": 0.9854 + }, + { + "start": 21145.36, + "end": 21145.74, + "probability": 0.7415 + }, + { + "start": 21145.82, + "end": 21146.38, + "probability": 0.6716 + }, + { + "start": 21146.56, + "end": 21148.84, + "probability": 0.9632 + }, + { + "start": 21149.0, + "end": 21151.46, + "probability": 0.9716 + }, + { + "start": 21151.86, + "end": 21153.9, + "probability": 0.8245 + }, + { + "start": 21154.28, + "end": 21157.82, + "probability": 0.8332 + }, + { + "start": 21157.84, + "end": 21159.0, + "probability": 0.8459 + }, + { + "start": 21159.04, + "end": 21161.3, + "probability": 0.053 + }, + { + "start": 21161.8, + "end": 21161.8, + "probability": 0.0912 + }, + { + "start": 21161.8, + "end": 21163.45, + "probability": 0.7323 + }, + { + "start": 21163.72, + "end": 21165.88, + "probability": 0.9404 + }, + { + "start": 21166.52, + "end": 21169.36, + "probability": 0.9856 + }, + { + "start": 21169.36, + "end": 21174.44, + "probability": 0.954 + }, + { + "start": 21174.46, + "end": 21174.88, + "probability": 0.6634 + }, + { + "start": 21175.36, + "end": 21175.48, + "probability": 0.4041 + }, + { + "start": 21175.78, + "end": 21178.38, + "probability": 0.7529 + }, + { + "start": 21178.9, + "end": 21179.98, + "probability": 0.339 + }, + { + "start": 21180.16, + "end": 21183.59, + "probability": 0.9362 + }, + { + "start": 21189.13, + "end": 21196.04, + "probability": 0.9395 + }, + { + "start": 21198.2, + "end": 21205.02, + "probability": 0.9976 + }, + { + "start": 21205.78, + "end": 21212.98, + "probability": 0.9955 + }, + { + "start": 21212.98, + "end": 21217.86, + "probability": 0.9989 + }, + { + "start": 21219.1, + "end": 21219.6, + "probability": 0.2477 + }, + { + "start": 21220.08, + "end": 21221.86, + "probability": 0.4213 + }, + { + "start": 21222.3, + "end": 21223.0, + "probability": 0.8027 + }, + { + "start": 21223.02, + "end": 21229.15, + "probability": 0.9925 + }, + { + "start": 21229.88, + "end": 21231.16, + "probability": 0.5985 + }, + { + "start": 21231.84, + "end": 21232.96, + "probability": 0.8351 + }, + { + "start": 21233.34, + "end": 21240.04, + "probability": 0.7853 + }, + { + "start": 21244.46, + "end": 21245.24, + "probability": 0.0969 + }, + { + "start": 21245.38, + "end": 21245.5, + "probability": 0.0299 + }, + { + "start": 21245.5, + "end": 21246.11, + "probability": 0.2012 + }, + { + "start": 21246.9, + "end": 21248.7, + "probability": 0.6729 + }, + { + "start": 21249.3, + "end": 21251.2, + "probability": 0.8248 + }, + { + "start": 21251.86, + "end": 21253.44, + "probability": 0.8718 + }, + { + "start": 21254.4, + "end": 21256.4, + "probability": 0.8607 + }, + { + "start": 21256.94, + "end": 21258.62, + "probability": 0.5094 + }, + { + "start": 21259.24, + "end": 21265.22, + "probability": 0.6713 + }, + { + "start": 21265.82, + "end": 21268.48, + "probability": 0.9476 + }, + { + "start": 21269.1, + "end": 21271.2, + "probability": 0.9553 + }, + { + "start": 21271.84, + "end": 21273.8, + "probability": 0.9858 + }, + { + "start": 21274.36, + "end": 21276.94, + "probability": 0.8411 + }, + { + "start": 21278.34, + "end": 21285.44, + "probability": 0.7753 + }, + { + "start": 21286.14, + "end": 21289.04, + "probability": 0.9304 + }, + { + "start": 21289.7, + "end": 21291.72, + "probability": 0.8833 + }, + { + "start": 21292.3, + "end": 21294.54, + "probability": 0.9823 + }, + { + "start": 21295.24, + "end": 21299.72, + "probability": 0.9507 + }, + { + "start": 21300.42, + "end": 21302.58, + "probability": 0.984 + }, + { + "start": 21302.68, + "end": 21304.96, + "probability": 0.8298 + }, + { + "start": 21304.98, + "end": 21307.5, + "probability": 0.8753 + }, + { + "start": 21308.28, + "end": 21309.54, + "probability": 0.6108 + }, + { + "start": 21310.06, + "end": 21311.36, + "probability": 0.3338 + }, + { + "start": 21311.42, + "end": 21311.58, + "probability": 0.0742 + }, + { + "start": 21311.58, + "end": 21313.78, + "probability": 0.5322 + }, + { + "start": 21314.48, + "end": 21316.22, + "probability": 0.1137 + }, + { + "start": 21316.44, + "end": 21319.36, + "probability": 0.813 + }, + { + "start": 21320.72, + "end": 21321.0, + "probability": 0.0147 + }, + { + "start": 21323.82, + "end": 21325.02, + "probability": 0.5123 + }, + { + "start": 21325.7, + "end": 21328.52, + "probability": 0.8203 + }, + { + "start": 21328.98, + "end": 21330.82, + "probability": 0.9178 + }, + { + "start": 21331.28, + "end": 21334.42, + "probability": 0.5606 + }, + { + "start": 21335.8, + "end": 21336.81, + "probability": 0.946 + }, + { + "start": 21338.18, + "end": 21339.76, + "probability": 0.981 + }, + { + "start": 21340.8, + "end": 21342.84, + "probability": 0.976 + }, + { + "start": 21343.68, + "end": 21346.38, + "probability": 0.7297 + }, + { + "start": 21346.74, + "end": 21350.2, + "probability": 0.7775 + }, + { + "start": 21350.68, + "end": 21352.58, + "probability": 0.9709 + }, + { + "start": 21353.04, + "end": 21355.66, + "probability": 0.9712 + }, + { + "start": 21356.16, + "end": 21358.22, + "probability": 0.9832 + }, + { + "start": 21358.66, + "end": 21360.82, + "probability": 0.786 + }, + { + "start": 21361.5, + "end": 21363.04, + "probability": 0.8896 + }, + { + "start": 21364.1, + "end": 21365.9, + "probability": 0.9883 + }, + { + "start": 21366.14, + "end": 21369.22, + "probability": 0.9604 + }, + { + "start": 21369.34, + "end": 21370.9, + "probability": 0.695 + }, + { + "start": 21373.78, + "end": 21376.48, + "probability": 0.4942 + }, + { + "start": 21377.26, + "end": 21378.84, + "probability": 0.8696 + }, + { + "start": 21379.42, + "end": 21381.68, + "probability": 0.8642 + }, + { + "start": 21381.82, + "end": 21384.54, + "probability": 0.7153 + }, + { + "start": 21384.86, + "end": 21387.26, + "probability": 0.8591 + }, + { + "start": 21388.72, + "end": 21390.64, + "probability": 0.7102 + }, + { + "start": 21391.18, + "end": 21395.66, + "probability": 0.4108 + }, + { + "start": 21396.28, + "end": 21400.96, + "probability": 0.9008 + }, + { + "start": 21401.08, + "end": 21403.3, + "probability": 0.8154 + }, + { + "start": 21403.58, + "end": 21405.6, + "probability": 0.9924 + }, + { + "start": 21406.1, + "end": 21410.08, + "probability": 0.9803 + }, + { + "start": 21410.6, + "end": 21412.56, + "probability": 0.8655 + }, + { + "start": 21413.52, + "end": 21415.6, + "probability": 0.9773 + }, + { + "start": 21416.16, + "end": 21420.4, + "probability": 0.7162 + }, + { + "start": 21421.46, + "end": 21424.62, + "probability": 0.8569 + }, + { + "start": 21428.58, + "end": 21433.62, + "probability": 0.6815 + }, + { + "start": 21435.64, + "end": 21438.3, + "probability": 0.9232 + }, + { + "start": 21438.94, + "end": 21440.86, + "probability": 0.8905 + }, + { + "start": 21441.18, + "end": 21443.32, + "probability": 0.8267 + }, + { + "start": 21443.68, + "end": 21446.04, + "probability": 0.8077 + }, + { + "start": 21446.28, + "end": 21446.98, + "probability": 0.3861 + }, + { + "start": 21447.0, + "end": 21448.26, + "probability": 0.0533 + }, + { + "start": 21448.26, + "end": 21450.7, + "probability": 0.0896 + }, + { + "start": 21450.7, + "end": 21451.28, + "probability": 0.6787 + }, + { + "start": 21474.92, + "end": 21476.0, + "probability": 0.2891 + }, + { + "start": 21476.86, + "end": 21478.3, + "probability": 0.6758 + }, + { + "start": 21478.94, + "end": 21480.68, + "probability": 0.6876 + }, + { + "start": 21481.18, + "end": 21481.6, + "probability": 0.1271 + }, + { + "start": 21481.6, + "end": 21481.66, + "probability": 0.0968 + }, + { + "start": 21481.66, + "end": 21481.74, + "probability": 0.1715 + }, + { + "start": 21481.74, + "end": 21481.74, + "probability": 0.2963 + }, + { + "start": 21493.48, + "end": 21499.44, + "probability": 0.6306 + }, + { + "start": 21500.38, + "end": 21502.46, + "probability": 0.8163 + }, + { + "start": 21502.9, + "end": 21504.94, + "probability": 0.7603 + }, + { + "start": 21505.08, + "end": 21506.7, + "probability": 0.9759 + }, + { + "start": 21506.82, + "end": 21509.58, + "probability": 0.9751 + }, + { + "start": 21510.98, + "end": 21512.76, + "probability": 0.6254 + }, + { + "start": 21513.32, + "end": 21515.26, + "probability": 0.609 + }, + { + "start": 21517.74, + "end": 21521.36, + "probability": 0.5762 + }, + { + "start": 21522.96, + "end": 21526.08, + "probability": 0.9556 + }, + { + "start": 21526.94, + "end": 21529.98, + "probability": 0.9545 + }, + { + "start": 21530.82, + "end": 21539.04, + "probability": 0.8964 + }, + { + "start": 21539.08, + "end": 21542.14, + "probability": 0.9676 + }, + { + "start": 21542.54, + "end": 21544.68, + "probability": 0.9136 + }, + { + "start": 21545.08, + "end": 21547.32, + "probability": 0.5425 + }, + { + "start": 21548.72, + "end": 21558.26, + "probability": 0.8396 + }, + { + "start": 21558.86, + "end": 21560.64, + "probability": 0.8826 + }, + { + "start": 21561.93, + "end": 21564.42, + "probability": 0.931 + }, + { + "start": 21565.34, + "end": 21567.24, + "probability": 0.9781 + }, + { + "start": 21568.66, + "end": 21571.08, + "probability": 0.9421 + }, + { + "start": 21571.48, + "end": 21573.36, + "probability": 0.8297 + }, + { + "start": 21573.58, + "end": 21576.84, + "probability": 0.6828 + }, + { + "start": 21577.0, + "end": 21579.72, + "probability": 0.7501 + }, + { + "start": 21580.14, + "end": 21582.4, + "probability": 0.9725 + }, + { + "start": 21583.12, + "end": 21585.58, + "probability": 0.9781 + }, + { + "start": 21586.26, + "end": 21591.92, + "probability": 0.9868 + }, + { + "start": 21592.84, + "end": 21595.94, + "probability": 0.9771 + }, + { + "start": 21596.74, + "end": 21599.78, + "probability": 0.9524 + }, + { + "start": 21599.94, + "end": 21603.38, + "probability": 0.7924 + }, + { + "start": 21603.78, + "end": 21606.06, + "probability": 0.9778 + }, + { + "start": 21606.6, + "end": 21608.68, + "probability": 0.8103 + }, + { + "start": 21610.16, + "end": 21613.22, + "probability": 0.9278 + }, + { + "start": 21617.12, + "end": 21619.06, + "probability": 0.5662 + }, + { + "start": 21619.6, + "end": 21624.6, + "probability": 0.9037 + }, + { + "start": 21624.76, + "end": 21627.24, + "probability": 0.5916 + }, + { + "start": 21627.86, + "end": 21632.74, + "probability": 0.8817 + }, + { + "start": 21633.32, + "end": 21640.42, + "probability": 0.7368 + }, + { + "start": 21641.18, + "end": 21643.76, + "probability": 0.8004 + }, + { + "start": 21644.16, + "end": 21646.06, + "probability": 0.7806 + }, + { + "start": 21646.26, + "end": 21649.36, + "probability": 0.8804 + }, + { + "start": 21649.85, + "end": 21652.84, + "probability": 0.6776 + }, + { + "start": 21654.24, + "end": 21657.68, + "probability": 0.9479 + }, + { + "start": 21658.2, + "end": 21662.78, + "probability": 0.7678 + }, + { + "start": 21663.54, + "end": 21667.38, + "probability": 0.916 + }, + { + "start": 21667.92, + "end": 21669.28, + "probability": 0.1308 + }, + { + "start": 21670.18, + "end": 21673.12, + "probability": 0.7879 + }, + { + "start": 21673.2, + "end": 21674.78, + "probability": 0.7944 + }, + { + "start": 21674.94, + "end": 21677.62, + "probability": 0.967 + }, + { + "start": 21677.82, + "end": 21684.42, + "probability": 0.9961 + }, + { + "start": 21685.68, + "end": 21686.84, + "probability": 0.6245 + }, + { + "start": 21686.96, + "end": 21687.98, + "probability": 0.4924 + }, + { + "start": 21688.4, + "end": 21692.04, + "probability": 0.0245 + }, + { + "start": 21696.04, + "end": 21698.1, + "probability": 0.0988 + }, + { + "start": 21702.16, + "end": 21702.44, + "probability": 0.0104 + }, + { + "start": 21898.22, + "end": 21898.64, + "probability": 0.1576 + }, + { + "start": 21905.2, + "end": 21910.32, + "probability": 0.2317 + }, + { + "start": 21910.66, + "end": 21916.28, + "probability": 0.2275 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.0, + "end": 22021.0, + "probability": 0.0 + }, + { + "start": 22021.12, + "end": 22022.6, + "probability": 0.7517 + }, + { + "start": 22022.8, + "end": 22027.52, + "probability": 0.9976 + }, + { + "start": 22027.52, + "end": 22030.94, + "probability": 0.8985 + }, + { + "start": 22031.5, + "end": 22036.68, + "probability": 0.9713 + }, + { + "start": 22037.62, + "end": 22042.94, + "probability": 0.9967 + }, + { + "start": 22043.66, + "end": 22047.16, + "probability": 0.9315 + }, + { + "start": 22047.32, + "end": 22050.46, + "probability": 0.9318 + }, + { + "start": 22051.36, + "end": 22053.84, + "probability": 0.9055 + }, + { + "start": 22054.46, + "end": 22055.06, + "probability": 0.8268 + }, + { + "start": 22055.26, + "end": 22056.9, + "probability": 0.979 + }, + { + "start": 22057.3, + "end": 22064.27, + "probability": 0.9862 + }, + { + "start": 22065.84, + "end": 22065.84, + "probability": 0.1767 + }, + { + "start": 22065.88, + "end": 22066.74, + "probability": 0.7333 + }, + { + "start": 22067.34, + "end": 22070.22, + "probability": 0.9706 + }, + { + "start": 22070.9, + "end": 22073.34, + "probability": 0.9366 + }, + { + "start": 22073.68, + "end": 22075.22, + "probability": 0.973 + }, + { + "start": 22075.72, + "end": 22078.3, + "probability": 0.9968 + }, + { + "start": 22078.3, + "end": 22081.56, + "probability": 0.9951 + }, + { + "start": 22083.43, + "end": 22087.5, + "probability": 0.9722 + }, + { + "start": 22088.78, + "end": 22093.04, + "probability": 0.9889 + }, + { + "start": 22093.04, + "end": 22097.4, + "probability": 0.9956 + }, + { + "start": 22099.16, + "end": 22103.02, + "probability": 0.8242 + }, + { + "start": 22103.96, + "end": 22105.04, + "probability": 0.5234 + }, + { + "start": 22106.0, + "end": 22106.8, + "probability": 0.5082 + }, + { + "start": 22107.76, + "end": 22108.64, + "probability": 0.8118 + }, + { + "start": 22110.4, + "end": 22112.72, + "probability": 0.8766 + }, + { + "start": 22113.48, + "end": 22115.54, + "probability": 0.9385 + }, + { + "start": 22115.84, + "end": 22118.24, + "probability": 0.9952 + }, + { + "start": 22118.4, + "end": 22121.1, + "probability": 0.9222 + }, + { + "start": 22121.52, + "end": 22124.76, + "probability": 0.9609 + }, + { + "start": 22125.28, + "end": 22126.58, + "probability": 0.8019 + }, + { + "start": 22126.72, + "end": 22127.46, + "probability": 0.3243 + }, + { + "start": 22127.74, + "end": 22129.0, + "probability": 0.8357 + }, + { + "start": 22129.2, + "end": 22131.14, + "probability": 0.9755 + }, + { + "start": 22131.32, + "end": 22131.68, + "probability": 0.987 + }, + { + "start": 22131.78, + "end": 22132.36, + "probability": 0.9939 + }, + { + "start": 22132.92, + "end": 22133.4, + "probability": 0.7438 + }, + { + "start": 22133.54, + "end": 22134.0, + "probability": 0.9032 + }, + { + "start": 22134.12, + "end": 22134.56, + "probability": 0.9676 + }, + { + "start": 22134.6, + "end": 22135.64, + "probability": 0.9489 + }, + { + "start": 22135.8, + "end": 22136.68, + "probability": 0.9212 + }, + { + "start": 22136.76, + "end": 22137.1, + "probability": 0.4559 + }, + { + "start": 22137.12, + "end": 22137.32, + "probability": 0.9236 + }, + { + "start": 22138.2, + "end": 22144.38, + "probability": 0.9907 + }, + { + "start": 22144.86, + "end": 22146.22, + "probability": 0.9941 + }, + { + "start": 22146.34, + "end": 22148.72, + "probability": 0.9853 + }, + { + "start": 22149.26, + "end": 22150.38, + "probability": 0.7133 + }, + { + "start": 22151.16, + "end": 22155.4, + "probability": 0.7795 + }, + { + "start": 22157.0, + "end": 22158.14, + "probability": 0.9536 + }, + { + "start": 22158.88, + "end": 22162.14, + "probability": 0.9886 + }, + { + "start": 22162.52, + "end": 22164.64, + "probability": 0.934 + }, + { + "start": 22165.0, + "end": 22168.9, + "probability": 0.8842 + }, + { + "start": 22169.02, + "end": 22172.46, + "probability": 0.9896 + }, + { + "start": 22173.84, + "end": 22179.36, + "probability": 0.993 + }, + { + "start": 22179.86, + "end": 22182.54, + "probability": 0.974 + }, + { + "start": 22183.32, + "end": 22184.52, + "probability": 0.5392 + }, + { + "start": 22184.6, + "end": 22189.38, + "probability": 0.9884 + }, + { + "start": 22190.14, + "end": 22191.88, + "probability": 0.7431 + }, + { + "start": 22192.34, + "end": 22194.92, + "probability": 0.9539 + }, + { + "start": 22195.38, + "end": 22197.1, + "probability": 0.7001 + }, + { + "start": 22197.64, + "end": 22200.22, + "probability": 0.9975 + }, + { + "start": 22200.22, + "end": 22203.7, + "probability": 0.9816 + }, + { + "start": 22204.48, + "end": 22206.84, + "probability": 0.955 + }, + { + "start": 22207.28, + "end": 22210.78, + "probability": 0.98 + }, + { + "start": 22211.46, + "end": 22212.0, + "probability": 0.4253 + }, + { + "start": 22212.08, + "end": 22215.54, + "probability": 0.9893 + }, + { + "start": 22215.54, + "end": 22220.04, + "probability": 0.9921 + }, + { + "start": 22220.76, + "end": 22223.48, + "probability": 0.9706 + }, + { + "start": 22223.58, + "end": 22224.2, + "probability": 0.7771 + }, + { + "start": 22224.66, + "end": 22226.1, + "probability": 0.975 + }, + { + "start": 22226.94, + "end": 22230.7, + "probability": 0.9759 + }, + { + "start": 22231.32, + "end": 22232.26, + "probability": 0.8269 + }, + { + "start": 22233.18, + "end": 22235.9, + "probability": 0.9286 + }, + { + "start": 22236.5, + "end": 22239.26, + "probability": 0.9344 + }, + { + "start": 22239.26, + "end": 22241.82, + "probability": 0.9985 + }, + { + "start": 22243.5, + "end": 22247.26, + "probability": 0.874 + }, + { + "start": 22247.9, + "end": 22248.88, + "probability": 0.9898 + }, + { + "start": 22252.16, + "end": 22254.1, + "probability": 0.4344 + }, + { + "start": 22254.52, + "end": 22255.5, + "probability": 0.7492 + }, + { + "start": 22255.62, + "end": 22258.68, + "probability": 0.9171 + }, + { + "start": 22258.88, + "end": 22260.24, + "probability": 0.7974 + }, + { + "start": 22261.5, + "end": 22261.96, + "probability": 0.9587 + }, + { + "start": 22262.06, + "end": 22263.3, + "probability": 0.825 + }, + { + "start": 22264.54, + "end": 22265.96, + "probability": 0.7512 + }, + { + "start": 22266.0, + "end": 22266.8, + "probability": 0.8479 + }, + { + "start": 22267.4, + "end": 22268.46, + "probability": 0.9701 + }, + { + "start": 22268.54, + "end": 22271.04, + "probability": 0.7674 + }, + { + "start": 22271.52, + "end": 22272.88, + "probability": 0.8126 + }, + { + "start": 22273.4, + "end": 22274.4, + "probability": 0.8213 + }, + { + "start": 22274.86, + "end": 22277.45, + "probability": 0.9353 + }, + { + "start": 22277.72, + "end": 22281.36, + "probability": 0.9736 + }, + { + "start": 22281.36, + "end": 22285.04, + "probability": 0.9878 + }, + { + "start": 22285.08, + "end": 22285.84, + "probability": 0.9047 + }, + { + "start": 22286.32, + "end": 22286.72, + "probability": 0.7283 + }, + { + "start": 22287.16, + "end": 22289.42, + "probability": 0.9634 + }, + { + "start": 22289.72, + "end": 22291.72, + "probability": 0.9385 + }, + { + "start": 22292.22, + "end": 22293.78, + "probability": 0.8424 + }, + { + "start": 22294.44, + "end": 22295.78, + "probability": 0.8143 + }, + { + "start": 22295.92, + "end": 22298.2, + "probability": 0.0466 + }, + { + "start": 22298.78, + "end": 22300.44, + "probability": 0.1348 + }, + { + "start": 22300.66, + "end": 22301.92, + "probability": 0.0492 + }, + { + "start": 22303.24, + "end": 22305.06, + "probability": 0.146 + }, + { + "start": 22308.24, + "end": 22309.3, + "probability": 0.0006 + }, + { + "start": 22309.32, + "end": 22309.74, + "probability": 0.1998 + }, + { + "start": 22309.74, + "end": 22310.71, + "probability": 0.0417 + }, + { + "start": 22311.44, + "end": 22312.5, + "probability": 0.0624 + }, + { + "start": 22313.72, + "end": 22314.24, + "probability": 0.0423 + }, + { + "start": 22315.46, + "end": 22315.96, + "probability": 0.135 + }, + { + "start": 22315.96, + "end": 22317.05, + "probability": 0.216 + }, + { + "start": 22317.87, + "end": 22321.2, + "probability": 0.0569 + }, + { + "start": 22321.2, + "end": 22321.92, + "probability": 0.0109 + }, + { + "start": 22321.92, + "end": 22322.6, + "probability": 0.1395 + }, + { + "start": 22322.6, + "end": 22323.8, + "probability": 0.031 + }, + { + "start": 22324.44, + "end": 22325.32, + "probability": 0.1104 + }, + { + "start": 22330.48, + "end": 22333.84, + "probability": 0.2283 + }, + { + "start": 22333.84, + "end": 22336.14, + "probability": 0.3656 + }, + { + "start": 22337.96, + "end": 22339.3, + "probability": 0.2223 + }, + { + "start": 22365.68, + "end": 22367.34, + "probability": 0.9644 + }, + { + "start": 22368.16, + "end": 22368.96, + "probability": 0.7335 + }, + { + "start": 22369.52, + "end": 22370.2, + "probability": 0.0681 + }, + { + "start": 22370.66, + "end": 22370.66, + "probability": 0.2076 + }, + { + "start": 22371.08, + "end": 22371.88, + "probability": 0.5813 + }, + { + "start": 22371.9, + "end": 22377.06, + "probability": 0.9839 + }, + { + "start": 22377.06, + "end": 22382.76, + "probability": 0.9945 + }, + { + "start": 22383.54, + "end": 22384.66, + "probability": 0.3431 + }, + { + "start": 22385.3, + "end": 22386.46, + "probability": 0.6128 + }, + { + "start": 22386.58, + "end": 22392.9, + "probability": 0.9667 + }, + { + "start": 22392.9, + "end": 22396.66, + "probability": 0.9655 + }, + { + "start": 22397.12, + "end": 22398.84, + "probability": 0.9926 + }, + { + "start": 22399.18, + "end": 22402.48, + "probability": 0.9883 + }, + { + "start": 22402.52, + "end": 22403.02, + "probability": 0.8499 + }, + { + "start": 22403.54, + "end": 22404.96, + "probability": 0.6119 + }, + { + "start": 22405.52, + "end": 22406.46, + "probability": 0.9312 + }, + { + "start": 22406.58, + "end": 22410.12, + "probability": 0.9076 + }, + { + "start": 22410.28, + "end": 22410.88, + "probability": 0.8201 + }, + { + "start": 22411.24, + "end": 22414.98, + "probability": 0.92 + }, + { + "start": 22415.14, + "end": 22416.04, + "probability": 0.8145 + }, + { + "start": 22416.36, + "end": 22418.41, + "probability": 0.7845 + }, + { + "start": 22418.66, + "end": 22419.27, + "probability": 0.8936 + }, + { + "start": 22419.9, + "end": 22422.24, + "probability": 0.877 + }, + { + "start": 22422.34, + "end": 22423.32, + "probability": 0.9789 + }, + { + "start": 22423.82, + "end": 22427.76, + "probability": 0.7755 + }, + { + "start": 22427.88, + "end": 22428.51, + "probability": 0.9788 + }, + { + "start": 22429.26, + "end": 22430.88, + "probability": 0.7642 + }, + { + "start": 22431.3, + "end": 22435.58, + "probability": 0.9697 + }, + { + "start": 22436.12, + "end": 22439.46, + "probability": 0.9236 + }, + { + "start": 22440.16, + "end": 22444.42, + "probability": 0.9919 + }, + { + "start": 22444.42, + "end": 22447.14, + "probability": 0.9191 + }, + { + "start": 22447.58, + "end": 22449.24, + "probability": 0.9454 + }, + { + "start": 22449.64, + "end": 22450.16, + "probability": 0.9325 + }, + { + "start": 22451.1, + "end": 22451.54, + "probability": 0.4248 + }, + { + "start": 22451.86, + "end": 22453.32, + "probability": 0.9692 + }, + { + "start": 22453.5, + "end": 22454.68, + "probability": 0.9648 + }, + { + "start": 22455.02, + "end": 22455.56, + "probability": 0.7395 + }, + { + "start": 22455.7, + "end": 22456.22, + "probability": 0.7281 + }, + { + "start": 22456.4, + "end": 22458.28, + "probability": 0.9751 + }, + { + "start": 22458.54, + "end": 22459.48, + "probability": 0.7455 + }, + { + "start": 22460.08, + "end": 22461.64, + "probability": 0.7525 + }, + { + "start": 22462.16, + "end": 22464.88, + "probability": 0.6635 + }, + { + "start": 22465.0, + "end": 22466.62, + "probability": 0.8325 + }, + { + "start": 22466.88, + "end": 22469.18, + "probability": 0.5888 + }, + { + "start": 22469.18, + "end": 22470.1, + "probability": 0.2124 + }, + { + "start": 22470.64, + "end": 22472.5, + "probability": 0.9606 + }, + { + "start": 22472.82, + "end": 22473.6, + "probability": 0.9258 + }, + { + "start": 22475.18, + "end": 22475.76, + "probability": 0.8161 + }, + { + "start": 22475.84, + "end": 22476.98, + "probability": 0.9814 + }, + { + "start": 22477.0, + "end": 22478.18, + "probability": 0.8748 + }, + { + "start": 22478.36, + "end": 22479.58, + "probability": 0.4925 + }, + { + "start": 22479.7, + "end": 22480.7, + "probability": 0.8731 + }, + { + "start": 22481.18, + "end": 22481.84, + "probability": 0.8789 + }, + { + "start": 22481.88, + "end": 22484.66, + "probability": 0.7344 + }, + { + "start": 22485.38, + "end": 22486.28, + "probability": 0.9268 + }, + { + "start": 22486.28, + "end": 22488.2, + "probability": 0.9484 + }, + { + "start": 22488.82, + "end": 22490.02, + "probability": 0.92 + }, + { + "start": 22490.8, + "end": 22494.12, + "probability": 0.998 + }, + { + "start": 22494.58, + "end": 22496.76, + "probability": 0.9927 + }, + { + "start": 22497.36, + "end": 22499.96, + "probability": 0.9731 + }, + { + "start": 22500.5, + "end": 22502.74, + "probability": 0.9979 + }, + { + "start": 22503.2, + "end": 22506.54, + "probability": 0.9253 + }, + { + "start": 22506.94, + "end": 22508.64, + "probability": 0.9907 + }, + { + "start": 22508.92, + "end": 22510.06, + "probability": 0.9679 + }, + { + "start": 22510.48, + "end": 22513.94, + "probability": 0.9399 + }, + { + "start": 22514.38, + "end": 22515.58, + "probability": 0.7697 + }, + { + "start": 22516.08, + "end": 22516.78, + "probability": 0.7805 + }, + { + "start": 22516.98, + "end": 22517.96, + "probability": 0.981 + }, + { + "start": 22518.02, + "end": 22518.8, + "probability": 0.2613 + }, + { + "start": 22518.82, + "end": 22521.34, + "probability": 0.6226 + }, + { + "start": 22521.8, + "end": 22522.8, + "probability": 0.8617 + }, + { + "start": 22522.88, + "end": 22523.56, + "probability": 0.7443 + }, + { + "start": 22523.7, + "end": 22524.5, + "probability": 0.1271 + }, + { + "start": 22524.64, + "end": 22525.68, + "probability": 0.877 + }, + { + "start": 22526.02, + "end": 22527.42, + "probability": 0.9801 + }, + { + "start": 22527.66, + "end": 22530.1, + "probability": 0.956 + }, + { + "start": 22530.42, + "end": 22533.04, + "probability": 0.9074 + }, + { + "start": 22533.04, + "end": 22536.38, + "probability": 0.8331 + }, + { + "start": 22536.38, + "end": 22537.1, + "probability": 0.8419 + }, + { + "start": 22537.3, + "end": 22538.92, + "probability": 0.7681 + }, + { + "start": 22538.96, + "end": 22539.68, + "probability": 0.6436 + }, + { + "start": 22539.74, + "end": 22541.74, + "probability": 0.8963 + }, + { + "start": 22542.24, + "end": 22545.06, + "probability": 0.9539 + }, + { + "start": 22545.22, + "end": 22546.2, + "probability": 0.8308 + }, + { + "start": 22546.32, + "end": 22547.34, + "probability": 0.573 + }, + { + "start": 22547.42, + "end": 22548.84, + "probability": 0.9838 + }, + { + "start": 22549.0, + "end": 22550.56, + "probability": 0.9638 + }, + { + "start": 22550.8, + "end": 22553.72, + "probability": 0.9647 + }, + { + "start": 22553.76, + "end": 22557.98, + "probability": 0.8743 + }, + { + "start": 22557.98, + "end": 22561.06, + "probability": 0.9907 + }, + { + "start": 22561.06, + "end": 22562.78, + "probability": 0.4519 + }, + { + "start": 22563.28, + "end": 22564.54, + "probability": 0.9522 + }, + { + "start": 22564.62, + "end": 22564.82, + "probability": 0.7352 + }, + { + "start": 22565.9, + "end": 22568.24, + "probability": 0.8901 + }, + { + "start": 22585.82, + "end": 22589.56, + "probability": 0.6969 + }, + { + "start": 22590.98, + "end": 22591.56, + "probability": 0.8236 + }, + { + "start": 22592.34, + "end": 22594.46, + "probability": 0.9791 + }, + { + "start": 22594.72, + "end": 22596.2, + "probability": 0.9097 + }, + { + "start": 22597.14, + "end": 22601.42, + "probability": 0.9849 + }, + { + "start": 22602.06, + "end": 22603.62, + "probability": 0.9406 + }, + { + "start": 22605.02, + "end": 22606.78, + "probability": 0.8156 + }, + { + "start": 22607.44, + "end": 22611.46, + "probability": 0.7775 + }, + { + "start": 22611.46, + "end": 22613.52, + "probability": 0.9953 + }, + { + "start": 22613.6, + "end": 22617.38, + "probability": 0.8153 + }, + { + "start": 22618.02, + "end": 22618.02, + "probability": 0.0068 + }, + { + "start": 22618.08, + "end": 22621.6, + "probability": 0.9794 + }, + { + "start": 22621.6, + "end": 22625.22, + "probability": 0.9293 + }, + { + "start": 22625.42, + "end": 22627.04, + "probability": 0.8495 + }, + { + "start": 22627.48, + "end": 22627.48, + "probability": 0.0024 + }, + { + "start": 22627.48, + "end": 22629.3, + "probability": 0.9473 + }, + { + "start": 22629.3, + "end": 22632.62, + "probability": 0.9979 + }, + { + "start": 22632.72, + "end": 22635.9, + "probability": 0.8497 + }, + { + "start": 22636.76, + "end": 22638.18, + "probability": 0.8456 + }, + { + "start": 22639.0, + "end": 22644.22, + "probability": 0.9955 + }, + { + "start": 22644.22, + "end": 22647.0, + "probability": 0.9883 + }, + { + "start": 22647.56, + "end": 22652.02, + "probability": 0.9976 + }, + { + "start": 22653.42, + "end": 22656.46, + "probability": 0.7791 + }, + { + "start": 22657.16, + "end": 22658.26, + "probability": 0.7495 + }, + { + "start": 22658.44, + "end": 22661.0, + "probability": 0.9954 + }, + { + "start": 22661.4, + "end": 22668.1, + "probability": 0.9884 + }, + { + "start": 22668.82, + "end": 22672.78, + "probability": 0.8688 + }, + { + "start": 22673.78, + "end": 22674.7, + "probability": 0.9172 + }, + { + "start": 22675.52, + "end": 22677.56, + "probability": 0.9919 + }, + { + "start": 22677.9, + "end": 22681.08, + "probability": 0.9718 + }, + { + "start": 22681.26, + "end": 22685.98, + "probability": 0.8232 + }, + { + "start": 22686.56, + "end": 22688.76, + "probability": 0.863 + }, + { + "start": 22689.38, + "end": 22692.28, + "probability": 0.9966 + }, + { + "start": 22692.7, + "end": 22695.07, + "probability": 0.8282 + }, + { + "start": 22696.24, + "end": 22697.32, + "probability": 0.9497 + }, + { + "start": 22697.42, + "end": 22698.0, + "probability": 0.7372 + }, + { + "start": 22698.0, + "end": 22698.26, + "probability": 0.941 + }, + { + "start": 22698.3, + "end": 22698.96, + "probability": 0.8883 + }, + { + "start": 22699.06, + "end": 22699.9, + "probability": 0.9937 + }, + { + "start": 22699.96, + "end": 22701.28, + "probability": 0.9965 + }, + { + "start": 22702.06, + "end": 22704.82, + "probability": 0.9407 + }, + { + "start": 22705.6, + "end": 22707.34, + "probability": 0.9489 + }, + { + "start": 22707.68, + "end": 22708.91, + "probability": 0.9639 + }, + { + "start": 22709.5, + "end": 22716.04, + "probability": 0.9963 + }, + { + "start": 22716.38, + "end": 22717.9, + "probability": 0.946 + }, + { + "start": 22718.4, + "end": 22719.64, + "probability": 0.9854 + }, + { + "start": 22720.1, + "end": 22725.12, + "probability": 0.9641 + }, + { + "start": 22725.5, + "end": 22727.84, + "probability": 0.9883 + }, + { + "start": 22728.46, + "end": 22729.78, + "probability": 0.9772 + }, + { + "start": 22729.86, + "end": 22731.54, + "probability": 0.9927 + }, + { + "start": 22731.68, + "end": 22735.18, + "probability": 0.9788 + }, + { + "start": 22735.72, + "end": 22738.34, + "probability": 0.9971 + }, + { + "start": 22738.54, + "end": 22739.58, + "probability": 0.9553 + }, + { + "start": 22740.04, + "end": 22741.3, + "probability": 0.5468 + }, + { + "start": 22741.92, + "end": 22742.94, + "probability": 0.9656 + }, + { + "start": 22743.42, + "end": 22748.34, + "probability": 0.9913 + }, + { + "start": 22748.64, + "end": 22754.9, + "probability": 0.9926 + }, + { + "start": 22755.7, + "end": 22756.74, + "probability": 0.6431 + }, + { + "start": 22756.82, + "end": 22760.26, + "probability": 0.9985 + }, + { + "start": 22760.26, + "end": 22764.6, + "probability": 0.9937 + }, + { + "start": 22765.24, + "end": 22769.26, + "probability": 0.9062 + }, + { + "start": 22769.98, + "end": 22770.66, + "probability": 0.5602 + }, + { + "start": 22770.72, + "end": 22772.7, + "probability": 0.7713 + }, + { + "start": 22782.96, + "end": 22782.98, + "probability": 0.1552 + }, + { + "start": 22782.98, + "end": 22782.98, + "probability": 0.1337 + }, + { + "start": 22782.98, + "end": 22782.98, + "probability": 0.0465 + }, + { + "start": 22782.98, + "end": 22783.0, + "probability": 0.179 + }, + { + "start": 22801.38, + "end": 22803.64, + "probability": 0.5216 + }, + { + "start": 22804.58, + "end": 22805.7, + "probability": 0.8135 + }, + { + "start": 22806.68, + "end": 22807.58, + "probability": 0.7985 + }, + { + "start": 22807.6, + "end": 22811.7, + "probability": 0.93 + }, + { + "start": 22811.7, + "end": 22817.24, + "probability": 0.9947 + }, + { + "start": 22817.76, + "end": 22821.88, + "probability": 0.9921 + }, + { + "start": 22822.5, + "end": 22825.58, + "probability": 0.986 + }, + { + "start": 22826.0, + "end": 22828.14, + "probability": 0.7394 + }, + { + "start": 22828.72, + "end": 22832.48, + "probability": 0.9886 + }, + { + "start": 22832.48, + "end": 22836.4, + "probability": 0.9609 + }, + { + "start": 22836.98, + "end": 22841.2, + "probability": 0.9896 + }, + { + "start": 22841.2, + "end": 22845.48, + "probability": 0.9594 + }, + { + "start": 22846.84, + "end": 22850.32, + "probability": 0.9116 + }, + { + "start": 22850.86, + "end": 22852.3, + "probability": 0.9636 + }, + { + "start": 22853.2, + "end": 22856.24, + "probability": 0.9857 + }, + { + "start": 22856.84, + "end": 22859.66, + "probability": 0.625 + }, + { + "start": 22860.72, + "end": 22862.02, + "probability": 0.9574 + }, + { + "start": 22862.14, + "end": 22863.42, + "probability": 0.9321 + }, + { + "start": 22863.92, + "end": 22864.76, + "probability": 0.9655 + }, + { + "start": 22865.2, + "end": 22866.32, + "probability": 0.9666 + }, + { + "start": 22866.4, + "end": 22866.88, + "probability": 0.6516 + }, + { + "start": 22866.94, + "end": 22867.52, + "probability": 0.9285 + }, + { + "start": 22867.6, + "end": 22868.4, + "probability": 0.7093 + }, + { + "start": 22868.92, + "end": 22870.36, + "probability": 0.9312 + }, + { + "start": 22870.48, + "end": 22871.44, + "probability": 0.7417 + }, + { + "start": 22871.8, + "end": 22873.88, + "probability": 0.9569 + }, + { + "start": 22874.26, + "end": 22874.72, + "probability": 0.8779 + }, + { + "start": 22875.72, + "end": 22877.56, + "probability": 0.9469 + }, + { + "start": 22877.64, + "end": 22879.76, + "probability": 0.8299 + }, + { + "start": 22880.93, + "end": 22885.2, + "probability": 0.7382 + }, + { + "start": 22885.28, + "end": 22887.43, + "probability": 0.6613 + }, + { + "start": 22888.8, + "end": 22890.3, + "probability": 0.7501 + }, + { + "start": 22890.96, + "end": 22891.78, + "probability": 0.9385 + }, + { + "start": 22893.16, + "end": 22893.82, + "probability": 0.7256 + }, + { + "start": 22893.88, + "end": 22894.44, + "probability": 0.7751 + }, + { + "start": 22894.44, + "end": 22896.56, + "probability": 0.9742 + }, + { + "start": 22897.36, + "end": 22901.42, + "probability": 0.8782 + }, + { + "start": 22901.94, + "end": 22904.76, + "probability": 0.8548 + }, + { + "start": 22905.14, + "end": 22907.36, + "probability": 0.9136 + }, + { + "start": 22908.28, + "end": 22910.14, + "probability": 0.1111 + }, + { + "start": 22910.14, + "end": 22912.04, + "probability": 0.5443 + }, + { + "start": 22912.5, + "end": 22915.4, + "probability": 0.9141 + }, + { + "start": 22915.74, + "end": 22917.66, + "probability": 0.8581 + }, + { + "start": 22918.0, + "end": 22918.48, + "probability": 0.5317 + }, + { + "start": 22918.52, + "end": 22919.14, + "probability": 0.812 + }, + { + "start": 22919.18, + "end": 22919.68, + "probability": 0.4548 + }, + { + "start": 22919.78, + "end": 22920.84, + "probability": 0.7534 + }, + { + "start": 22920.98, + "end": 22923.0, + "probability": 0.9333 + }, + { + "start": 22923.32, + "end": 22925.02, + "probability": 0.8557 + }, + { + "start": 22925.7, + "end": 22926.48, + "probability": 0.855 + }, + { + "start": 22926.72, + "end": 22927.98, + "probability": 0.9648 + }, + { + "start": 22928.24, + "end": 22932.24, + "probability": 0.9494 + }, + { + "start": 22932.44, + "end": 22940.36, + "probability": 0.9791 + }, + { + "start": 22940.48, + "end": 22942.06, + "probability": 0.8421 + }, + { + "start": 22942.44, + "end": 22942.64, + "probability": 0.525 + }, + { + "start": 22942.88, + "end": 22945.98, + "probability": 0.9812 + }, + { + "start": 22946.32, + "end": 22946.97, + "probability": 0.8384 + }, + { + "start": 22947.28, + "end": 22949.04, + "probability": 0.9971 + }, + { + "start": 22949.16, + "end": 22950.3, + "probability": 0.92 + }, + { + "start": 22950.82, + "end": 22951.04, + "probability": 0.2446 + }, + { + "start": 22951.04, + "end": 22951.04, + "probability": 0.1874 + }, + { + "start": 22951.04, + "end": 22953.78, + "probability": 0.6193 + }, + { + "start": 22954.48, + "end": 22955.28, + "probability": 0.9076 + }, + { + "start": 22955.6, + "end": 22957.96, + "probability": 0.9576 + }, + { + "start": 22958.0, + "end": 22958.62, + "probability": 0.3101 + }, + { + "start": 22959.3, + "end": 22960.2, + "probability": 0.9158 + }, + { + "start": 22960.56, + "end": 22963.62, + "probability": 0.8359 + }, + { + "start": 22963.86, + "end": 22964.6, + "probability": 0.8806 + }, + { + "start": 22964.94, + "end": 22966.57, + "probability": 0.9891 + }, + { + "start": 22967.06, + "end": 22968.18, + "probability": 0.9534 + }, + { + "start": 22968.26, + "end": 22968.64, + "probability": 0.6948 + }, + { + "start": 22968.66, + "end": 22969.96, + "probability": 0.769 + }, + { + "start": 22970.1, + "end": 22971.2, + "probability": 0.8786 + }, + { + "start": 22971.2, + "end": 22972.02, + "probability": 0.8382 + }, + { + "start": 22972.02, + "end": 22972.56, + "probability": 0.7472 + }, + { + "start": 22973.24, + "end": 22975.08, + "probability": 0.9268 + }, + { + "start": 22995.8, + "end": 22996.74, + "probability": 0.7669 + }, + { + "start": 22996.84, + "end": 22998.0, + "probability": 0.8673 + }, + { + "start": 22998.64, + "end": 23004.1, + "probability": 0.973 + }, + { + "start": 23005.3, + "end": 23011.42, + "probability": 0.9863 + }, + { + "start": 23012.44, + "end": 23016.6, + "probability": 0.9478 + }, + { + "start": 23017.12, + "end": 23018.1, + "probability": 0.8676 + }, + { + "start": 23018.84, + "end": 23020.42, + "probability": 0.9615 + }, + { + "start": 23020.88, + "end": 23022.62, + "probability": 0.9988 + }, + { + "start": 23023.46, + "end": 23024.74, + "probability": 0.8414 + }, + { + "start": 23025.34, + "end": 23028.32, + "probability": 0.8818 + }, + { + "start": 23029.18, + "end": 23031.64, + "probability": 0.8064 + }, + { + "start": 23031.74, + "end": 23032.68, + "probability": 0.5225 + }, + { + "start": 23033.4, + "end": 23036.3, + "probability": 0.9883 + }, + { + "start": 23036.94, + "end": 23041.52, + "probability": 0.995 + }, + { + "start": 23041.58, + "end": 23043.2, + "probability": 0.698 + }, + { + "start": 23043.52, + "end": 23045.4, + "probability": 0.9422 + }, + { + "start": 23045.84, + "end": 23047.72, + "probability": 0.995 + }, + { + "start": 23048.2, + "end": 23054.76, + "probability": 0.9961 + }, + { + "start": 23055.04, + "end": 23057.94, + "probability": 0.9966 + }, + { + "start": 23060.12, + "end": 23060.76, + "probability": 0.7306 + }, + { + "start": 23060.82, + "end": 23063.1, + "probability": 0.984 + }, + { + "start": 23063.36, + "end": 23066.36, + "probability": 0.7756 + }, + { + "start": 23066.88, + "end": 23067.9, + "probability": 0.7388 + }, + { + "start": 23068.06, + "end": 23071.74, + "probability": 0.9549 + }, + { + "start": 23072.26, + "end": 23075.3, + "probability": 0.9668 + }, + { + "start": 23075.94, + "end": 23077.3, + "probability": 0.5997 + }, + { + "start": 23078.02, + "end": 23080.0, + "probability": 0.8527 + }, + { + "start": 23081.4, + "end": 23082.78, + "probability": 0.8859 + }, + { + "start": 23083.14, + "end": 23084.42, + "probability": 0.9858 + }, + { + "start": 23084.58, + "end": 23085.64, + "probability": 0.6963 + }, + { + "start": 23086.18, + "end": 23088.12, + "probability": 0.991 + }, + { + "start": 23088.24, + "end": 23092.08, + "probability": 0.9944 + }, + { + "start": 23092.52, + "end": 23095.12, + "probability": 0.9924 + }, + { + "start": 23095.6, + "end": 23096.4, + "probability": 0.9532 + }, + { + "start": 23097.36, + "end": 23098.92, + "probability": 0.6727 + }, + { + "start": 23099.02, + "end": 23100.3, + "probability": 0.9673 + }, + { + "start": 23100.8, + "end": 23102.24, + "probability": 0.9968 + }, + { + "start": 23104.22, + "end": 23105.84, + "probability": 0.9956 + }, + { + "start": 23117.32, + "end": 23118.86, + "probability": 0.0231 + }, + { + "start": 23118.86, + "end": 23118.86, + "probability": 0.0308 + }, + { + "start": 23118.86, + "end": 23119.66, + "probability": 0.07 + }, + { + "start": 23119.74, + "end": 23120.44, + "probability": 0.3947 + }, + { + "start": 23121.34, + "end": 23123.34, + "probability": 0.8091 + }, + { + "start": 23123.92, + "end": 23126.52, + "probability": 0.9297 + }, + { + "start": 23127.44, + "end": 23129.72, + "probability": 0.889 + }, + { + "start": 23130.12, + "end": 23131.93, + "probability": 0.9764 + }, + { + "start": 23133.44, + "end": 23134.99, + "probability": 0.9819 + }, + { + "start": 23135.56, + "end": 23138.08, + "probability": 0.8939 + }, + { + "start": 23138.38, + "end": 23139.52, + "probability": 0.9677 + }, + { + "start": 23139.6, + "end": 23140.84, + "probability": 0.982 + }, + { + "start": 23141.28, + "end": 23144.1, + "probability": 0.0407 + }, + { + "start": 23144.1, + "end": 23147.64, + "probability": 0.7739 + }, + { + "start": 23147.74, + "end": 23148.78, + "probability": 0.65 + }, + { + "start": 23149.7, + "end": 23151.98, + "probability": 0.9948 + }, + { + "start": 23152.42, + "end": 23154.16, + "probability": 0.9982 + }, + { + "start": 23154.66, + "end": 23160.72, + "probability": 0.9968 + }, + { + "start": 23161.38, + "end": 23165.02, + "probability": 0.9988 + }, + { + "start": 23165.7, + "end": 23168.38, + "probability": 0.9263 + }, + { + "start": 23168.78, + "end": 23177.0, + "probability": 0.9892 + }, + { + "start": 23177.16, + "end": 23179.54, + "probability": 0.9881 + }, + { + "start": 23180.56, + "end": 23182.54, + "probability": 0.959 + }, + { + "start": 23198.02, + "end": 23205.38, + "probability": 0.9848 + }, + { + "start": 23207.4, + "end": 23208.44, + "probability": 0.8353 + }, + { + "start": 23209.44, + "end": 23211.4, + "probability": 0.9521 + }, + { + "start": 23214.18, + "end": 23217.94, + "probability": 0.9976 + }, + { + "start": 23219.16, + "end": 23221.68, + "probability": 0.6953 + }, + { + "start": 23223.94, + "end": 23229.68, + "probability": 0.9985 + }, + { + "start": 23230.3, + "end": 23231.64, + "probability": 0.8091 + }, + { + "start": 23233.36, + "end": 23237.66, + "probability": 0.9966 + }, + { + "start": 23240.36, + "end": 23242.4, + "probability": 0.8662 + }, + { + "start": 23242.86, + "end": 23246.48, + "probability": 0.9744 + }, + { + "start": 23248.56, + "end": 23250.1, + "probability": 0.9587 + }, + { + "start": 23251.98, + "end": 23253.2, + "probability": 0.9659 + }, + { + "start": 23254.68, + "end": 23256.48, + "probability": 0.9533 + }, + { + "start": 23259.38, + "end": 23262.68, + "probability": 0.9629 + }, + { + "start": 23265.58, + "end": 23270.98, + "probability": 0.9963 + }, + { + "start": 23272.12, + "end": 23274.94, + "probability": 0.9817 + }, + { + "start": 23276.76, + "end": 23279.1, + "probability": 0.9835 + }, + { + "start": 23280.86, + "end": 23284.64, + "probability": 0.9665 + }, + { + "start": 23285.7, + "end": 23291.62, + "probability": 0.9012 + }, + { + "start": 23294.48, + "end": 23298.38, + "probability": 0.9873 + }, + { + "start": 23299.58, + "end": 23301.76, + "probability": 0.8342 + }, + { + "start": 23303.88, + "end": 23307.96, + "probability": 0.8522 + }, + { + "start": 23308.98, + "end": 23310.22, + "probability": 0.3624 + }, + { + "start": 23310.78, + "end": 23313.1, + "probability": 0.9922 + }, + { + "start": 23315.08, + "end": 23317.58, + "probability": 0.9762 + }, + { + "start": 23319.02, + "end": 23321.58, + "probability": 0.9054 + }, + { + "start": 23322.96, + "end": 23323.7, + "probability": 0.9053 + }, + { + "start": 23324.34, + "end": 23329.02, + "probability": 0.9446 + }, + { + "start": 23330.44, + "end": 23333.3, + "probability": 0.9976 + }, + { + "start": 23335.33, + "end": 23340.42, + "probability": 0.998 + }, + { + "start": 23341.78, + "end": 23345.16, + "probability": 0.9988 + }, + { + "start": 23345.16, + "end": 23349.58, + "probability": 0.9973 + }, + { + "start": 23350.96, + "end": 23352.82, + "probability": 0.9481 + }, + { + "start": 23352.92, + "end": 23354.28, + "probability": 0.8194 + }, + { + "start": 23355.56, + "end": 23357.9, + "probability": 0.9689 + }, + { + "start": 23359.48, + "end": 23360.66, + "probability": 0.9341 + }, + { + "start": 23361.7, + "end": 23363.8, + "probability": 0.8901 + }, + { + "start": 23366.22, + "end": 23368.6, + "probability": 0.853 + }, + { + "start": 23369.3, + "end": 23371.33, + "probability": 0.8568 + }, + { + "start": 23372.58, + "end": 23374.16, + "probability": 0.9807 + }, + { + "start": 23375.42, + "end": 23376.86, + "probability": 0.998 + }, + { + "start": 23377.16, + "end": 23377.42, + "probability": 0.3384 + }, + { + "start": 23377.88, + "end": 23378.1, + "probability": 0.545 + }, + { + "start": 23378.1, + "end": 23378.1, + "probability": 0.3611 + }, + { + "start": 23378.1, + "end": 23379.12, + "probability": 0.9983 + }, + { + "start": 23380.18, + "end": 23380.46, + "probability": 0.1796 + }, + { + "start": 23380.82, + "end": 23383.18, + "probability": 0.097 + }, + { + "start": 23383.54, + "end": 23384.06, + "probability": 0.6484 + }, + { + "start": 23384.12, + "end": 23384.72, + "probability": 0.3139 + }, + { + "start": 23384.72, + "end": 23385.52, + "probability": 0.1586 + }, + { + "start": 23385.54, + "end": 23386.22, + "probability": 0.5955 + }, + { + "start": 23386.22, + "end": 23386.24, + "probability": 0.2196 + }, + { + "start": 23386.24, + "end": 23386.44, + "probability": 0.0519 + }, + { + "start": 23386.44, + "end": 23387.99, + "probability": 0.3891 + }, + { + "start": 23388.8, + "end": 23389.96, + "probability": 0.901 + }, + { + "start": 23390.8, + "end": 23390.82, + "probability": 0.1445 + }, + { + "start": 23390.82, + "end": 23390.82, + "probability": 0.1904 + }, + { + "start": 23390.82, + "end": 23391.73, + "probability": 0.3621 + }, + { + "start": 23392.44, + "end": 23395.92, + "probability": 0.557 + }, + { + "start": 23396.91, + "end": 23406.46, + "probability": 0.9968 + }, + { + "start": 23407.06, + "end": 23410.66, + "probability": 0.8959 + }, + { + "start": 23410.74, + "end": 23411.56, + "probability": 0.7316 + }, + { + "start": 23411.8, + "end": 23414.12, + "probability": 0.9673 + }, + { + "start": 23414.56, + "end": 23418.38, + "probability": 0.7029 + }, + { + "start": 23419.02, + "end": 23420.32, + "probability": 0.9259 + }, + { + "start": 23420.38, + "end": 23420.6, + "probability": 0.3375 + }, + { + "start": 23420.7, + "end": 23421.0, + "probability": 0.6604 + }, + { + "start": 23421.42, + "end": 23423.32, + "probability": 0.9723 + }, + { + "start": 23437.08, + "end": 23438.48, + "probability": 0.7463 + }, + { + "start": 23439.26, + "end": 23443.28, + "probability": 0.8609 + }, + { + "start": 23444.22, + "end": 23446.82, + "probability": 0.6475 + }, + { + "start": 23447.5, + "end": 23448.18, + "probability": 0.3646 + }, + { + "start": 23449.88, + "end": 23453.0, + "probability": 0.2874 + }, + { + "start": 23457.52, + "end": 23458.32, + "probability": 0.5651 + }, + { + "start": 23459.1, + "end": 23463.5, + "probability": 0.9064 + }, + { + "start": 23463.96, + "end": 23468.34, + "probability": 0.8781 + }, + { + "start": 23468.68, + "end": 23471.02, + "probability": 0.7009 + }, + { + "start": 23471.46, + "end": 23474.88, + "probability": 0.9879 + }, + { + "start": 23475.32, + "end": 23476.56, + "probability": 0.9928 + }, + { + "start": 23478.1, + "end": 23478.94, + "probability": 0.3576 + }, + { + "start": 23479.54, + "end": 23479.54, + "probability": 0.1246 + }, + { + "start": 23479.54, + "end": 23482.76, + "probability": 0.6871 + }, + { + "start": 23483.26, + "end": 23487.08, + "probability": 0.7882 + }, + { + "start": 23487.66, + "end": 23488.62, + "probability": 0.8672 + }, + { + "start": 23488.92, + "end": 23491.7, + "probability": 0.6504 + }, + { + "start": 23492.02, + "end": 23493.84, + "probability": 0.9648 + }, + { + "start": 23494.62, + "end": 23499.7, + "probability": 0.9781 + }, + { + "start": 23499.88, + "end": 23500.5, + "probability": 0.395 + }, + { + "start": 23500.84, + "end": 23501.86, + "probability": 0.9597 + }, + { + "start": 23502.14, + "end": 23505.86, + "probability": 0.9793 + }, + { + "start": 23505.92, + "end": 23510.26, + "probability": 0.9871 + }, + { + "start": 23511.12, + "end": 23512.44, + "probability": 0.5455 + }, + { + "start": 23513.24, + "end": 23515.56, + "probability": 0.8342 + }, + { + "start": 23516.38, + "end": 23518.6, + "probability": 0.9218 + }, + { + "start": 23519.53, + "end": 23521.01, + "probability": 0.8023 + }, + { + "start": 23522.0, + "end": 23530.62, + "probability": 0.9419 + }, + { + "start": 23530.92, + "end": 23531.6, + "probability": 0.811 + }, + { + "start": 23531.84, + "end": 23532.56, + "probability": 0.8147 + }, + { + "start": 23532.56, + "end": 23533.12, + "probability": 0.9016 + }, + { + "start": 23533.62, + "end": 23535.78, + "probability": 0.429 + }, + { + "start": 23535.78, + "end": 23539.82, + "probability": 0.5723 + }, + { + "start": 23540.84, + "end": 23542.8, + "probability": 0.6328 + }, + { + "start": 23543.66, + "end": 23545.62, + "probability": 0.9808 + }, + { + "start": 23545.98, + "end": 23549.54, + "probability": 0.9974 + }, + { + "start": 23549.94, + "end": 23553.5, + "probability": 0.7776 + }, + { + "start": 23554.2, + "end": 23554.82, + "probability": 0.5618 + }, + { + "start": 23554.88, + "end": 23558.54, + "probability": 0.9365 + }, + { + "start": 23561.2, + "end": 23563.24, + "probability": 0.1563 + }, + { + "start": 23564.02, + "end": 23564.8, + "probability": 0.1507 + }, + { + "start": 23564.8, + "end": 23566.24, + "probability": 0.168 + }, + { + "start": 23567.98, + "end": 23568.3, + "probability": 0.0964 + }, + { + "start": 23568.3, + "end": 23569.52, + "probability": 0.749 + }, + { + "start": 23575.72, + "end": 23580.16, + "probability": 0.5041 + }, + { + "start": 23580.16, + "end": 23581.94, + "probability": 0.7974 + }, + { + "start": 23582.62, + "end": 23583.0, + "probability": 0.7068 + }, + { + "start": 23583.1, + "end": 23586.02, + "probability": 0.9962 + }, + { + "start": 23586.9, + "end": 23591.36, + "probability": 0.9573 + }, + { + "start": 23592.14, + "end": 23597.94, + "probability": 0.8981 + }, + { + "start": 23598.26, + "end": 23599.2, + "probability": 0.527 + }, + { + "start": 23599.34, + "end": 23599.86, + "probability": 0.9272 + }, + { + "start": 23600.32, + "end": 23603.01, + "probability": 0.9847 + }, + { + "start": 23603.56, + "end": 23603.98, + "probability": 0.5079 + }, + { + "start": 23603.98, + "end": 23604.78, + "probability": 0.822 + }, + { + "start": 23604.84, + "end": 23608.7, + "probability": 0.9939 + }, + { + "start": 23609.24, + "end": 23610.04, + "probability": 0.875 + }, + { + "start": 23610.22, + "end": 23616.12, + "probability": 0.9749 + }, + { + "start": 23616.34, + "end": 23617.84, + "probability": 0.8127 + }, + { + "start": 23617.96, + "end": 23619.86, + "probability": 0.816 + }, + { + "start": 23620.38, + "end": 23621.84, + "probability": 0.9807 + }, + { + "start": 23622.6, + "end": 23628.28, + "probability": 0.9922 + }, + { + "start": 23628.82, + "end": 23632.76, + "probability": 0.9963 + }, + { + "start": 23632.86, + "end": 23634.5, + "probability": 0.9741 + }, + { + "start": 23634.62, + "end": 23636.72, + "probability": 0.7602 + }, + { + "start": 23636.94, + "end": 23642.14, + "probability": 0.9851 + }, + { + "start": 23642.14, + "end": 23645.5, + "probability": 0.9961 + }, + { + "start": 23646.22, + "end": 23646.56, + "probability": 0.6803 + }, + { + "start": 23646.62, + "end": 23647.5, + "probability": 0.8969 + }, + { + "start": 23647.56, + "end": 23651.96, + "probability": 0.9854 + }, + { + "start": 23652.74, + "end": 23654.12, + "probability": 0.9705 + }, + { + "start": 23654.78, + "end": 23655.38, + "probability": 0.6465 + }, + { + "start": 23655.46, + "end": 23658.63, + "probability": 0.9419 + }, + { + "start": 23658.88, + "end": 23659.28, + "probability": 0.5774 + }, + { + "start": 23659.6, + "end": 23662.62, + "probability": 0.8918 + }, + { + "start": 23662.66, + "end": 23663.46, + "probability": 0.9712 + }, + { + "start": 23663.5, + "end": 23666.66, + "probability": 0.8317 + }, + { + "start": 23666.74, + "end": 23667.74, + "probability": 0.2345 + }, + { + "start": 23668.42, + "end": 23671.68, + "probability": 0.9902 + }, + { + "start": 23672.22, + "end": 23672.78, + "probability": 0.4961 + }, + { + "start": 23672.82, + "end": 23673.28, + "probability": 0.6359 + }, + { + "start": 23673.34, + "end": 23674.62, + "probability": 0.6406 + }, + { + "start": 23675.74, + "end": 23677.73, + "probability": 0.8897 + }, + { + "start": 23678.46, + "end": 23680.76, + "probability": 0.8997 + }, + { + "start": 23681.3, + "end": 23684.32, + "probability": 0.9906 + }, + { + "start": 23684.74, + "end": 23688.72, + "probability": 0.9854 + }, + { + "start": 23688.92, + "end": 23689.66, + "probability": 0.4855 + }, + { + "start": 23689.96, + "end": 23691.2, + "probability": 0.9645 + }, + { + "start": 23691.4, + "end": 23694.06, + "probability": 0.9899 + }, + { + "start": 23694.06, + "end": 23697.96, + "probability": 0.9875 + }, + { + "start": 23698.48, + "end": 23700.86, + "probability": 0.9743 + }, + { + "start": 23701.5, + "end": 23702.92, + "probability": 0.917 + }, + { + "start": 23703.04, + "end": 23706.18, + "probability": 0.9726 + }, + { + "start": 23706.84, + "end": 23709.18, + "probability": 0.969 + }, + { + "start": 23709.38, + "end": 23714.56, + "probability": 0.994 + }, + { + "start": 23714.92, + "end": 23720.05, + "probability": 0.951 + }, + { + "start": 23721.28, + "end": 23723.84, + "probability": 0.6269 + }, + { + "start": 23724.98, + "end": 23725.84, + "probability": 0.6774 + }, + { + "start": 23726.86, + "end": 23729.36, + "probability": 0.9358 + }, + { + "start": 23729.42, + "end": 23731.3, + "probability": 0.8292 + }, + { + "start": 23731.58, + "end": 23732.18, + "probability": 0.7897 + }, + { + "start": 23732.54, + "end": 23736.02, + "probability": 0.977 + }, + { + "start": 23736.22, + "end": 23739.24, + "probability": 0.9093 + }, + { + "start": 23739.56, + "end": 23740.96, + "probability": 0.5283 + }, + { + "start": 23741.3, + "end": 23742.26, + "probability": 0.5355 + }, + { + "start": 23742.38, + "end": 23744.64, + "probability": 0.8566 + }, + { + "start": 23745.0, + "end": 23749.26, + "probability": 0.8516 + }, + { + "start": 23749.38, + "end": 23754.12, + "probability": 0.9572 + }, + { + "start": 23754.38, + "end": 23757.38, + "probability": 0.9172 + }, + { + "start": 23757.5, + "end": 23759.0, + "probability": 0.7491 + }, + { + "start": 23759.32, + "end": 23762.76, + "probability": 0.9641 + }, + { + "start": 23763.38, + "end": 23766.34, + "probability": 0.8805 + }, + { + "start": 23766.52, + "end": 23769.96, + "probability": 0.99 + }, + { + "start": 23770.38, + "end": 23772.1, + "probability": 0.9531 + }, + { + "start": 23772.18, + "end": 23776.94, + "probability": 0.9531 + }, + { + "start": 23777.23, + "end": 23780.72, + "probability": 0.4266 + }, + { + "start": 23781.24, + "end": 23783.58, + "probability": 0.4118 + }, + { + "start": 23783.58, + "end": 23784.44, + "probability": 0.0244 + }, + { + "start": 23785.82, + "end": 23785.82, + "probability": 0.0074 + }, + { + "start": 23786.44, + "end": 23789.78, + "probability": 0.1065 + }, + { + "start": 23793.12, + "end": 23793.46, + "probability": 0.0369 + }, + { + "start": 23795.64, + "end": 23797.64, + "probability": 0.2938 + }, + { + "start": 23797.68, + "end": 23797.93, + "probability": 0.2928 + }, + { + "start": 23804.4, + "end": 23805.98, + "probability": 0.4157 + }, + { + "start": 23807.92, + "end": 23811.64, + "probability": 0.6748 + }, + { + "start": 23812.64, + "end": 23815.5, + "probability": 0.9897 + }, + { + "start": 23816.02, + "end": 23817.68, + "probability": 0.761 + }, + { + "start": 23818.76, + "end": 23821.24, + "probability": 0.9513 + }, + { + "start": 23822.16, + "end": 23824.24, + "probability": 0.9973 + }, + { + "start": 23824.96, + "end": 23826.58, + "probability": 0.7481 + }, + { + "start": 23826.72, + "end": 23833.0, + "probability": 0.9791 + }, + { + "start": 23833.7, + "end": 23834.72, + "probability": 0.7071 + }, + { + "start": 23835.3, + "end": 23838.98, + "probability": 0.9834 + }, + { + "start": 23839.62, + "end": 23846.96, + "probability": 0.9841 + }, + { + "start": 23847.54, + "end": 23851.28, + "probability": 0.785 + }, + { + "start": 23851.88, + "end": 23852.64, + "probability": 0.6551 + }, + { + "start": 23853.6, + "end": 23856.92, + "probability": 0.9933 + }, + { + "start": 23857.66, + "end": 23860.96, + "probability": 0.9506 + }, + { + "start": 23861.68, + "end": 23866.14, + "probability": 0.9912 + }, + { + "start": 23866.66, + "end": 23870.14, + "probability": 0.9922 + }, + { + "start": 23870.38, + "end": 23874.25, + "probability": 0.9888 + }, + { + "start": 23874.68, + "end": 23875.42, + "probability": 0.6626 + }, + { + "start": 23876.22, + "end": 23877.9, + "probability": 0.566 + }, + { + "start": 23878.32, + "end": 23881.77, + "probability": 0.9467 + }, + { + "start": 23882.5, + "end": 23884.34, + "probability": 0.8222 + }, + { + "start": 23885.92, + "end": 23890.5, + "probability": 0.0786 + }, + { + "start": 23890.82, + "end": 23892.34, + "probability": 0.2416 + }, + { + "start": 23892.48, + "end": 23893.72, + "probability": 0.406 + }, + { + "start": 23893.82, + "end": 23894.9, + "probability": 0.535 + }, + { + "start": 23895.02, + "end": 23896.18, + "probability": 0.4565 + }, + { + "start": 23896.7, + "end": 23899.96, + "probability": 0.6444 + }, + { + "start": 23901.88, + "end": 23903.48, + "probability": 0.0217 + }, + { + "start": 23903.48, + "end": 23903.48, + "probability": 0.0217 + }, + { + "start": 23903.48, + "end": 23911.7, + "probability": 0.9725 + }, + { + "start": 23912.62, + "end": 23918.48, + "probability": 0.9981 + }, + { + "start": 23918.92, + "end": 23920.42, + "probability": 0.7249 + }, + { + "start": 23920.96, + "end": 23925.52, + "probability": 0.9395 + }, + { + "start": 23926.22, + "end": 23927.78, + "probability": 0.9163 + }, + { + "start": 23928.38, + "end": 23932.06, + "probability": 0.9806 + }, + { + "start": 23934.52, + "end": 23943.6, + "probability": 0.9912 + }, + { + "start": 23945.18, + "end": 23945.18, + "probability": 0.8984 + }, + { + "start": 23945.74, + "end": 23947.0, + "probability": 0.9893 + }, + { + "start": 23947.86, + "end": 23950.72, + "probability": 0.9701 + }, + { + "start": 23951.82, + "end": 23953.2, + "probability": 0.9311 + }, + { + "start": 23954.2, + "end": 23958.76, + "probability": 0.9958 + }, + { + "start": 23958.76, + "end": 23963.76, + "probability": 0.9941 + }, + { + "start": 23964.58, + "end": 23966.94, + "probability": 0.6637 + }, + { + "start": 23968.42, + "end": 23970.36, + "probability": 0.9204 + }, + { + "start": 23970.58, + "end": 23975.44, + "probability": 0.9843 + }, + { + "start": 23975.8, + "end": 23981.38, + "probability": 0.9572 + }, + { + "start": 23981.88, + "end": 23985.04, + "probability": 0.8977 + }, + { + "start": 23985.86, + "end": 23994.7, + "probability": 0.9557 + }, + { + "start": 23995.4, + "end": 24003.16, + "probability": 0.9151 + }, + { + "start": 24003.6, + "end": 24012.4, + "probability": 0.6217 + }, + { + "start": 24012.86, + "end": 24013.44, + "probability": 0.7462 + }, + { + "start": 24014.26, + "end": 24016.22, + "probability": 0.458 + }, + { + "start": 24016.98, + "end": 24018.26, + "probability": 0.4926 + }, + { + "start": 24018.62, + "end": 24019.04, + "probability": 0.2679 + }, + { + "start": 24035.55, + "end": 24038.68, + "probability": 0.6654 + }, + { + "start": 24039.4, + "end": 24042.42, + "probability": 0.9963 + }, + { + "start": 24043.16, + "end": 24046.74, + "probability": 0.93 + }, + { + "start": 24047.46, + "end": 24049.48, + "probability": 0.9896 + }, + { + "start": 24050.12, + "end": 24051.9, + "probability": 0.7547 + }, + { + "start": 24052.4, + "end": 24053.0, + "probability": 0.451 + }, + { + "start": 24053.08, + "end": 24057.3, + "probability": 0.9886 + }, + { + "start": 24057.72, + "end": 24062.12, + "probability": 0.6887 + }, + { + "start": 24062.84, + "end": 24066.38, + "probability": 0.9916 + }, + { + "start": 24066.9, + "end": 24069.6, + "probability": 0.9739 + }, + { + "start": 24070.26, + "end": 24075.68, + "probability": 0.9989 + }, + { + "start": 24076.64, + "end": 24078.82, + "probability": 0.9995 + }, + { + "start": 24079.34, + "end": 24081.24, + "probability": 0.9901 + }, + { + "start": 24081.84, + "end": 24087.42, + "probability": 0.9399 + }, + { + "start": 24088.42, + "end": 24093.08, + "probability": 0.7816 + }, + { + "start": 24093.3, + "end": 24095.76, + "probability": 0.949 + }, + { + "start": 24096.44, + "end": 24098.02, + "probability": 0.7427 + }, + { + "start": 24098.6, + "end": 24099.74, + "probability": 0.796 + }, + { + "start": 24100.42, + "end": 24102.42, + "probability": 0.9269 + }, + { + "start": 24102.76, + "end": 24104.1, + "probability": 0.8927 + }, + { + "start": 24104.16, + "end": 24105.0, + "probability": 0.9658 + }, + { + "start": 24105.28, + "end": 24106.2, + "probability": 0.9856 + }, + { + "start": 24106.4, + "end": 24108.68, + "probability": 0.9016 + }, + { + "start": 24109.24, + "end": 24114.34, + "probability": 0.9536 + }, + { + "start": 24115.26, + "end": 24118.1, + "probability": 0.8997 + }, + { + "start": 24118.44, + "end": 24120.5, + "probability": 0.9983 + }, + { + "start": 24121.02, + "end": 24123.66, + "probability": 0.8506 + }, + { + "start": 24124.02, + "end": 24127.84, + "probability": 0.9861 + }, + { + "start": 24128.06, + "end": 24128.8, + "probability": 0.8796 + }, + { + "start": 24129.14, + "end": 24129.88, + "probability": 0.9837 + }, + { + "start": 24130.12, + "end": 24136.3, + "probability": 0.9847 + }, + { + "start": 24136.44, + "end": 24137.68, + "probability": 0.8156 + }, + { + "start": 24138.08, + "end": 24140.8, + "probability": 0.4924 + }, + { + "start": 24141.8, + "end": 24146.7, + "probability": 0.718 + }, + { + "start": 24147.26, + "end": 24149.3, + "probability": 0.7684 + }, + { + "start": 24149.38, + "end": 24150.94, + "probability": 0.9611 + }, + { + "start": 24150.96, + "end": 24152.78, + "probability": 0.4883 + }, + { + "start": 24153.38, + "end": 24155.66, + "probability": 0.8452 + }, + { + "start": 24156.38, + "end": 24160.04, + "probability": 0.9224 + }, + { + "start": 24160.48, + "end": 24160.92, + "probability": 0.6194 + }, + { + "start": 24160.98, + "end": 24165.82, + "probability": 0.9723 + }, + { + "start": 24165.82, + "end": 24170.74, + "probability": 0.9568 + }, + { + "start": 24171.08, + "end": 24172.28, + "probability": 0.5208 + }, + { + "start": 24172.46, + "end": 24174.5, + "probability": 0.8636 + }, + { + "start": 24175.06, + "end": 24179.88, + "probability": 0.7441 + }, + { + "start": 24180.28, + "end": 24183.12, + "probability": 0.9712 + }, + { + "start": 24183.66, + "end": 24191.28, + "probability": 0.9691 + }, + { + "start": 24191.32, + "end": 24196.02, + "probability": 0.9958 + }, + { + "start": 24196.02, + "end": 24202.12, + "probability": 0.9915 + }, + { + "start": 24202.88, + "end": 24209.7, + "probability": 0.974 + }, + { + "start": 24210.24, + "end": 24212.06, + "probability": 0.6894 + }, + { + "start": 24212.08, + "end": 24220.3, + "probability": 0.9189 + }, + { + "start": 24220.64, + "end": 24222.18, + "probability": 0.8505 + }, + { + "start": 24222.26, + "end": 24222.28, + "probability": 0.6646 + }, + { + "start": 24222.4, + "end": 24224.2, + "probability": 0.7281 + }, + { + "start": 24245.3, + "end": 24246.54, + "probability": 0.4011 + }, + { + "start": 24253.12, + "end": 24256.68, + "probability": 0.9757 + }, + { + "start": 24257.98, + "end": 24260.62, + "probability": 0.9461 + }, + { + "start": 24262.76, + "end": 24264.48, + "probability": 0.9883 + }, + { + "start": 24265.72, + "end": 24267.0, + "probability": 0.986 + }, + { + "start": 24268.64, + "end": 24276.12, + "probability": 0.9585 + }, + { + "start": 24278.7, + "end": 24284.6, + "probability": 0.9819 + }, + { + "start": 24286.16, + "end": 24289.18, + "probability": 0.9358 + }, + { + "start": 24290.59, + "end": 24296.76, + "probability": 0.8184 + }, + { + "start": 24297.48, + "end": 24298.22, + "probability": 0.8439 + }, + { + "start": 24301.1, + "end": 24301.48, + "probability": 0.6246 + }, + { + "start": 24301.48, + "end": 24305.4, + "probability": 0.5557 + }, + { + "start": 24306.96, + "end": 24310.48, + "probability": 0.9009 + }, + { + "start": 24312.38, + "end": 24314.34, + "probability": 0.9879 + }, + { + "start": 24316.68, + "end": 24320.58, + "probability": 0.9331 + }, + { + "start": 24321.88, + "end": 24325.98, + "probability": 0.959 + }, + { + "start": 24326.66, + "end": 24327.52, + "probability": 0.9624 + }, + { + "start": 24329.5, + "end": 24332.62, + "probability": 0.8604 + }, + { + "start": 24335.46, + "end": 24336.88, + "probability": 0.8104 + }, + { + "start": 24338.16, + "end": 24343.26, + "probability": 0.9551 + }, + { + "start": 24344.36, + "end": 24344.9, + "probability": 0.8562 + }, + { + "start": 24346.0, + "end": 24348.88, + "probability": 0.9954 + }, + { + "start": 24351.34, + "end": 24353.4, + "probability": 0.8723 + }, + { + "start": 24355.64, + "end": 24357.74, + "probability": 0.9979 + }, + { + "start": 24361.8, + "end": 24364.84, + "probability": 0.8574 + }, + { + "start": 24370.0, + "end": 24376.82, + "probability": 0.9414 + }, + { + "start": 24377.56, + "end": 24379.32, + "probability": 0.8382 + }, + { + "start": 24380.34, + "end": 24381.44, + "probability": 0.5618 + }, + { + "start": 24382.82, + "end": 24388.54, + "probability": 0.8672 + }, + { + "start": 24389.48, + "end": 24392.12, + "probability": 0.941 + }, + { + "start": 24394.28, + "end": 24401.24, + "probability": 0.9861 + }, + { + "start": 24401.24, + "end": 24405.48, + "probability": 0.8085 + }, + { + "start": 24408.82, + "end": 24411.76, + "probability": 0.9417 + }, + { + "start": 24412.36, + "end": 24418.9, + "probability": 0.8806 + }, + { + "start": 24419.46, + "end": 24421.06, + "probability": 0.6519 + }, + { + "start": 24421.76, + "end": 24424.74, + "probability": 0.8336 + }, + { + "start": 24427.26, + "end": 24430.2, + "probability": 0.8346 + }, + { + "start": 24451.86, + "end": 24453.72, + "probability": 0.8885 + }, + { + "start": 24454.9, + "end": 24456.02, + "probability": 0.6673 + }, + { + "start": 24458.52, + "end": 24458.94, + "probability": 0.6406 + }, + { + "start": 24461.06, + "end": 24465.5, + "probability": 0.9651 + }, + { + "start": 24466.52, + "end": 24467.1, + "probability": 0.9693 + }, + { + "start": 24468.56, + "end": 24471.56, + "probability": 0.6477 + }, + { + "start": 24471.74, + "end": 24474.98, + "probability": 0.9176 + }, + { + "start": 24476.54, + "end": 24479.86, + "probability": 0.7872 + }, + { + "start": 24480.64, + "end": 24484.44, + "probability": 0.9872 + }, + { + "start": 24485.16, + "end": 24487.74, + "probability": 0.9749 + }, + { + "start": 24487.86, + "end": 24490.72, + "probability": 0.8958 + }, + { + "start": 24491.52, + "end": 24495.16, + "probability": 0.9789 + }, + { + "start": 24495.82, + "end": 24496.4, + "probability": 0.8209 + }, + { + "start": 24496.94, + "end": 24499.72, + "probability": 0.8032 + }, + { + "start": 24500.26, + "end": 24501.18, + "probability": 0.8531 + }, + { + "start": 24501.86, + "end": 24504.72, + "probability": 0.9037 + }, + { + "start": 24505.62, + "end": 24511.81, + "probability": 0.8962 + }, + { + "start": 24512.76, + "end": 24514.96, + "probability": 0.7459 + }, + { + "start": 24515.28, + "end": 24516.08, + "probability": 0.6646 + }, + { + "start": 24516.42, + "end": 24522.72, + "probability": 0.959 + }, + { + "start": 24522.86, + "end": 24529.7, + "probability": 0.885 + }, + { + "start": 24530.5, + "end": 24533.36, + "probability": 0.9072 + }, + { + "start": 24534.44, + "end": 24537.36, + "probability": 0.8167 + }, + { + "start": 24539.1, + "end": 24543.58, + "probability": 0.8594 + }, + { + "start": 24543.96, + "end": 24546.26, + "probability": 0.9189 + }, + { + "start": 24546.82, + "end": 24551.4, + "probability": 0.7067 + }, + { + "start": 24552.5, + "end": 24560.02, + "probability": 0.664 + }, + { + "start": 24561.04, + "end": 24561.52, + "probability": 0.4923 + }, + { + "start": 24561.74, + "end": 24563.66, + "probability": 0.8753 + }, + { + "start": 24564.43, + "end": 24568.29, + "probability": 0.9695 + }, + { + "start": 24568.54, + "end": 24569.12, + "probability": 0.6803 + }, + { + "start": 24569.5, + "end": 24572.7, + "probability": 0.7964 + }, + { + "start": 24573.16, + "end": 24577.8, + "probability": 0.945 + }, + { + "start": 24578.22, + "end": 24580.02, + "probability": 0.9342 + }, + { + "start": 24580.42, + "end": 24583.12, + "probability": 0.8958 + }, + { + "start": 24583.62, + "end": 24586.16, + "probability": 0.9197 + }, + { + "start": 24586.52, + "end": 24590.92, + "probability": 0.6583 + }, + { + "start": 24591.64, + "end": 24596.94, + "probability": 0.6663 + }, + { + "start": 24598.16, + "end": 24599.18, + "probability": 0.9689 + }, + { + "start": 24599.88, + "end": 24604.56, + "probability": 0.9946 + }, + { + "start": 24604.92, + "end": 24607.82, + "probability": 0.9357 + }, + { + "start": 24608.21, + "end": 24611.28, + "probability": 0.9888 + }, + { + "start": 24611.84, + "end": 24616.4, + "probability": 0.9594 + }, + { + "start": 24616.98, + "end": 24620.88, + "probability": 0.9277 + }, + { + "start": 24621.46, + "end": 24622.38, + "probability": 0.957 + }, + { + "start": 24622.78, + "end": 24625.62, + "probability": 0.8928 + }, + { + "start": 24626.12, + "end": 24628.16, + "probability": 0.9971 + }, + { + "start": 24628.48, + "end": 24629.6, + "probability": 0.9048 + }, + { + "start": 24629.84, + "end": 24633.92, + "probability": 0.9688 + }, + { + "start": 24634.2, + "end": 24638.94, + "probability": 0.8012 + }, + { + "start": 24639.16, + "end": 24643.15, + "probability": 0.9185 + }, + { + "start": 24643.2, + "end": 24647.74, + "probability": 0.8963 + }, + { + "start": 24648.3, + "end": 24651.56, + "probability": 0.9695 + }, + { + "start": 24651.88, + "end": 24654.68, + "probability": 0.8903 + }, + { + "start": 24654.98, + "end": 24655.4, + "probability": 0.2985 + }, + { + "start": 24655.54, + "end": 24657.96, + "probability": 0.8244 + }, + { + "start": 24658.26, + "end": 24659.16, + "probability": 0.7737 + }, + { + "start": 24659.6, + "end": 24661.48, + "probability": 0.8067 + }, + { + "start": 24661.8, + "end": 24662.34, + "probability": 0.9325 + }, + { + "start": 24664.06, + "end": 24665.47, + "probability": 0.9146 + }, + { + "start": 24666.0, + "end": 24668.4, + "probability": 0.2558 + }, + { + "start": 24668.7, + "end": 24668.94, + "probability": 0.7396 + }, + { + "start": 24669.08, + "end": 24669.98, + "probability": 0.498 + }, + { + "start": 24669.98, + "end": 24670.4, + "probability": 0.144 + }, + { + "start": 24671.26, + "end": 24672.0, + "probability": 0.3995 + }, + { + "start": 24673.68, + "end": 24675.64, + "probability": 0.8052 + }, + { + "start": 24675.92, + "end": 24676.78, + "probability": 0.0423 + }, + { + "start": 24677.24, + "end": 24679.24, + "probability": 0.596 + }, + { + "start": 24680.46, + "end": 24681.68, + "probability": 0.0293 + }, + { + "start": 24681.68, + "end": 24681.89, + "probability": 0.3245 + }, + { + "start": 24683.2, + "end": 24683.86, + "probability": 0.7841 + }, + { + "start": 24684.18, + "end": 24686.92, + "probability": 0.4255 + }, + { + "start": 24686.98, + "end": 24689.24, + "probability": 0.6859 + }, + { + "start": 24691.14, + "end": 24691.24, + "probability": 0.7665 + }, + { + "start": 24691.5, + "end": 24692.36, + "probability": 0.8874 + }, + { + "start": 24692.64, + "end": 24693.72, + "probability": 0.5269 + }, + { + "start": 24695.48, + "end": 24698.21, + "probability": 0.9784 + }, + { + "start": 24701.6, + "end": 24702.2, + "probability": 0.8976 + }, + { + "start": 24705.04, + "end": 24707.48, + "probability": 0.9976 + }, + { + "start": 24709.3, + "end": 24710.6, + "probability": 0.5486 + }, + { + "start": 24713.22, + "end": 24713.78, + "probability": 0.9222 + }, + { + "start": 24716.56, + "end": 24717.38, + "probability": 0.6311 + }, + { + "start": 24718.32, + "end": 24719.88, + "probability": 0.8461 + }, + { + "start": 24722.88, + "end": 24725.5, + "probability": 0.9991 + }, + { + "start": 24728.76, + "end": 24730.02, + "probability": 0.9961 + }, + { + "start": 24732.58, + "end": 24733.68, + "probability": 0.7733 + }, + { + "start": 24736.04, + "end": 24737.76, + "probability": 0.7427 + }, + { + "start": 24740.3, + "end": 24745.36, + "probability": 0.9753 + }, + { + "start": 24746.86, + "end": 24748.7, + "probability": 0.9954 + }, + { + "start": 24749.92, + "end": 24753.3, + "probability": 0.9964 + }, + { + "start": 24755.2, + "end": 24756.2, + "probability": 0.7726 + }, + { + "start": 24758.32, + "end": 24761.22, + "probability": 0.9878 + }, + { + "start": 24762.08, + "end": 24765.2, + "probability": 0.9868 + }, + { + "start": 24766.4, + "end": 24767.58, + "probability": 0.812 + }, + { + "start": 24768.78, + "end": 24772.08, + "probability": 0.994 + }, + { + "start": 24774.74, + "end": 24775.44, + "probability": 0.4985 + }, + { + "start": 24776.18, + "end": 24777.26, + "probability": 0.8671 + }, + { + "start": 24779.48, + "end": 24780.74, + "probability": 0.5975 + }, + { + "start": 24783.36, + "end": 24784.62, + "probability": 0.4742 + }, + { + "start": 24787.2, + "end": 24787.94, + "probability": 0.8385 + }, + { + "start": 24789.34, + "end": 24790.2, + "probability": 0.9884 + }, + { + "start": 24791.08, + "end": 24792.48, + "probability": 0.9194 + }, + { + "start": 24793.72, + "end": 24795.4, + "probability": 0.9474 + }, + { + "start": 24798.84, + "end": 24802.28, + "probability": 0.9087 + }, + { + "start": 24803.46, + "end": 24806.54, + "probability": 0.9097 + }, + { + "start": 24808.62, + "end": 24811.9, + "probability": 0.7128 + }, + { + "start": 24814.96, + "end": 24817.04, + "probability": 0.9671 + }, + { + "start": 24818.28, + "end": 24820.44, + "probability": 0.8463 + }, + { + "start": 24821.92, + "end": 24823.82, + "probability": 0.9906 + }, + { + "start": 24825.66, + "end": 24826.68, + "probability": 0.748 + }, + { + "start": 24828.92, + "end": 24829.9, + "probability": 0.3772 + }, + { + "start": 24830.92, + "end": 24832.66, + "probability": 0.8666 + }, + { + "start": 24833.36, + "end": 24833.96, + "probability": 0.854 + }, + { + "start": 24836.42, + "end": 24840.06, + "probability": 0.9905 + }, + { + "start": 24841.72, + "end": 24843.66, + "probability": 0.9259 + }, + { + "start": 24844.94, + "end": 24846.14, + "probability": 0.9595 + }, + { + "start": 24847.2, + "end": 24850.5, + "probability": 0.9946 + }, + { + "start": 24852.7, + "end": 24856.08, + "probability": 0.9799 + }, + { + "start": 24859.3, + "end": 24860.87, + "probability": 0.9702 + }, + { + "start": 24863.96, + "end": 24869.0, + "probability": 0.9988 + }, + { + "start": 24869.78, + "end": 24871.06, + "probability": 0.9731 + }, + { + "start": 24872.18, + "end": 24875.4, + "probability": 0.7448 + }, + { + "start": 24877.74, + "end": 24879.98, + "probability": 0.946 + }, + { + "start": 24880.6, + "end": 24881.52, + "probability": 0.973 + }, + { + "start": 24883.7, + "end": 24884.24, + "probability": 0.4946 + }, + { + "start": 24884.26, + "end": 24887.84, + "probability": 0.8752 + }, + { + "start": 24902.58, + "end": 24902.58, + "probability": 0.2279 + }, + { + "start": 24902.58, + "end": 24902.58, + "probability": 0.0156 + }, + { + "start": 24902.58, + "end": 24902.58, + "probability": 0.033 + }, + { + "start": 24902.58, + "end": 24902.58, + "probability": 0.0382 + }, + { + "start": 24902.58, + "end": 24902.58, + "probability": 0.0352 + }, + { + "start": 24911.92, + "end": 24912.64, + "probability": 0.0206 + }, + { + "start": 24919.4, + "end": 24923.7, + "probability": 0.4602 + }, + { + "start": 24924.78, + "end": 24925.1, + "probability": 0.322 + }, + { + "start": 24925.36, + "end": 24926.65, + "probability": 0.7057 + }, + { + "start": 24927.28, + "end": 24928.22, + "probability": 0.7831 + }, + { + "start": 24928.28, + "end": 24929.36, + "probability": 0.9487 + }, + { + "start": 24929.92, + "end": 24933.82, + "probability": 0.997 + }, + { + "start": 24934.38, + "end": 24936.0, + "probability": 0.9252 + }, + { + "start": 24936.22, + "end": 24936.97, + "probability": 0.9167 + }, + { + "start": 24937.74, + "end": 24939.14, + "probability": 0.9739 + }, + { + "start": 24939.22, + "end": 24940.22, + "probability": 0.7184 + }, + { + "start": 24940.76, + "end": 24945.88, + "probability": 0.9343 + }, + { + "start": 24946.44, + "end": 24947.82, + "probability": 0.9854 + }, + { + "start": 24948.74, + "end": 24950.14, + "probability": 0.929 + }, + { + "start": 24950.26, + "end": 24951.66, + "probability": 0.9336 + }, + { + "start": 24952.16, + "end": 24954.38, + "probability": 0.9764 + }, + { + "start": 24954.92, + "end": 24960.82, + "probability": 0.9952 + }, + { + "start": 24961.58, + "end": 24962.94, + "probability": 0.7878 + }, + { + "start": 24963.46, + "end": 24966.7, + "probability": 0.9846 + }, + { + "start": 24967.56, + "end": 24968.42, + "probability": 0.9806 + }, + { + "start": 24968.72, + "end": 24969.78, + "probability": 0.9891 + }, + { + "start": 24970.26, + "end": 24971.86, + "probability": 0.9951 + }, + { + "start": 24972.44, + "end": 24973.44, + "probability": 0.4235 + }, + { + "start": 24973.5, + "end": 24975.14, + "probability": 0.9632 + }, + { + "start": 24975.88, + "end": 24977.5, + "probability": 0.9677 + }, + { + "start": 24978.04, + "end": 24978.64, + "probability": 0.9676 + }, + { + "start": 24980.19, + "end": 24983.28, + "probability": 0.84 + }, + { + "start": 24983.76, + "end": 24985.1, + "probability": 0.7747 + }, + { + "start": 24985.52, + "end": 24986.66, + "probability": 0.6863 + }, + { + "start": 24986.82, + "end": 24986.86, + "probability": 0.6384 + }, + { + "start": 24986.86, + "end": 24988.6, + "probability": 0.938 + }, + { + "start": 24988.74, + "end": 24992.4, + "probability": 0.9747 + }, + { + "start": 24993.36, + "end": 25001.74, + "probability": 0.995 + }, + { + "start": 25002.28, + "end": 25005.68, + "probability": 0.9066 + }, + { + "start": 25006.38, + "end": 25007.4, + "probability": 0.9579 + }, + { + "start": 25008.86, + "end": 25009.44, + "probability": 0.5021 + }, + { + "start": 25010.22, + "end": 25013.0, + "probability": 0.4958 + }, + { + "start": 25013.94, + "end": 25015.53, + "probability": 0.8156 + }, + { + "start": 25016.42, + "end": 25017.3, + "probability": 0.9773 + }, + { + "start": 25017.9, + "end": 25019.64, + "probability": 0.9657 + }, + { + "start": 25020.3, + "end": 25025.5, + "probability": 0.9633 + }, + { + "start": 25026.66, + "end": 25028.1, + "probability": 0.9113 + }, + { + "start": 25028.22, + "end": 25029.32, + "probability": 0.967 + }, + { + "start": 25029.56, + "end": 25031.38, + "probability": 0.9873 + }, + { + "start": 25032.22, + "end": 25037.38, + "probability": 0.9213 + }, + { + "start": 25037.82, + "end": 25039.86, + "probability": 0.973 + }, + { + "start": 25040.58, + "end": 25041.16, + "probability": 0.6805 + }, + { + "start": 25041.7, + "end": 25048.06, + "probability": 0.9622 + }, + { + "start": 25048.62, + "end": 25053.38, + "probability": 0.98 + }, + { + "start": 25054.12, + "end": 25056.02, + "probability": 0.6094 + }, + { + "start": 25056.74, + "end": 25060.78, + "probability": 0.9922 + }, + { + "start": 25061.32, + "end": 25067.06, + "probability": 0.9973 + }, + { + "start": 25067.18, + "end": 25072.84, + "probability": 0.9976 + }, + { + "start": 25073.28, + "end": 25079.9, + "probability": 0.9935 + }, + { + "start": 25080.54, + "end": 25081.06, + "probability": 0.1475 + }, + { + "start": 25081.14, + "end": 25082.72, + "probability": 0.8149 + }, + { + "start": 25083.22, + "end": 25084.28, + "probability": 0.8944 + }, + { + "start": 25084.54, + "end": 25088.92, + "probability": 0.9154 + }, + { + "start": 25089.86, + "end": 25094.88, + "probability": 0.9745 + }, + { + "start": 25094.88, + "end": 25097.16, + "probability": 0.7931 + }, + { + "start": 25097.68, + "end": 25102.58, + "probability": 0.9659 + }, + { + "start": 25103.26, + "end": 25104.66, + "probability": 0.9395 + }, + { + "start": 25105.7, + "end": 25107.92, + "probability": 0.9663 + }, + { + "start": 25108.72, + "end": 25110.18, + "probability": 0.9858 + }, + { + "start": 25110.86, + "end": 25118.08, + "probability": 0.9863 + }, + { + "start": 25118.76, + "end": 25126.06, + "probability": 0.9767 + }, + { + "start": 25126.44, + "end": 25126.54, + "probability": 0.6318 + }, + { + "start": 25126.82, + "end": 25129.0, + "probability": 0.9916 + }, + { + "start": 25129.94, + "end": 25133.22, + "probability": 0.9819 + }, + { + "start": 25133.42, + "end": 25133.64, + "probability": 0.7726 + }, + { + "start": 25133.66, + "end": 25134.58, + "probability": 0.7585 + }, + { + "start": 25134.78, + "end": 25135.6, + "probability": 0.9712 + }, + { + "start": 25135.62, + "end": 25136.24, + "probability": 0.6035 + }, + { + "start": 25136.36, + "end": 25140.56, + "probability": 0.7585 + }, + { + "start": 25141.18, + "end": 25142.4, + "probability": 0.9951 + }, + { + "start": 25143.39, + "end": 25145.68, + "probability": 0.7603 + }, + { + "start": 25146.14, + "end": 25152.52, + "probability": 0.9923 + }, + { + "start": 25152.88, + "end": 25154.18, + "probability": 0.8618 + }, + { + "start": 25154.7, + "end": 25155.04, + "probability": 0.7264 + }, + { + "start": 25155.66, + "end": 25157.78, + "probability": 0.0179 + }, + { + "start": 25158.54, + "end": 25158.68, + "probability": 0.0396 + }, + { + "start": 25158.68, + "end": 25158.68, + "probability": 0.2199 + }, + { + "start": 25158.68, + "end": 25161.24, + "probability": 0.025 + }, + { + "start": 25161.42, + "end": 25162.36, + "probability": 0.1392 + }, + { + "start": 25162.78, + "end": 25163.41, + "probability": 0.0632 + }, + { + "start": 25164.66, + "end": 25164.82, + "probability": 0.0266 + }, + { + "start": 25164.82, + "end": 25165.3, + "probability": 0.101 + }, + { + "start": 25165.54, + "end": 25167.28, + "probability": 0.9524 + }, + { + "start": 25168.72, + "end": 25169.3, + "probability": 0.0268 + }, + { + "start": 25170.18, + "end": 25171.22, + "probability": 0.0235 + }, + { + "start": 25171.22, + "end": 25173.96, + "probability": 0.0261 + }, + { + "start": 25174.2, + "end": 25176.34, + "probability": 0.0846 + }, + { + "start": 25176.34, + "end": 25177.68, + "probability": 0.2849 + }, + { + "start": 25181.98, + "end": 25183.66, + "probability": 0.0358 + }, + { + "start": 25183.66, + "end": 25184.46, + "probability": 0.0588 + }, + { + "start": 25185.04, + "end": 25190.12, + "probability": 0.0332 + }, + { + "start": 25190.22, + "end": 25190.46, + "probability": 0.3333 + }, + { + "start": 25193.58, + "end": 25195.66, + "probability": 0.1009 + }, + { + "start": 25196.14, + "end": 25196.72, + "probability": 0.0963 + }, + { + "start": 25198.92, + "end": 25199.92, + "probability": 0.1617 + }, + { + "start": 25204.12, + "end": 25205.0, + "probability": 0.0231 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25247.0, + "end": 25247.0, + "probability": 0.0 + }, + { + "start": 25249.1, + "end": 25251.12, + "probability": 0.4549 + }, + { + "start": 25251.12, + "end": 25252.4, + "probability": 0.2955 + }, + { + "start": 25253.46, + "end": 25255.24, + "probability": 0.7285 + }, + { + "start": 25255.94, + "end": 25257.26, + "probability": 0.3467 + }, + { + "start": 25257.5, + "end": 25260.82, + "probability": 0.5228 + }, + { + "start": 25262.7, + "end": 25266.38, + "probability": 0.9691 + }, + { + "start": 25266.68, + "end": 25267.32, + "probability": 0.823 + }, + { + "start": 25268.3, + "end": 25272.16, + "probability": 0.8569 + }, + { + "start": 25272.22, + "end": 25273.36, + "probability": 0.4088 + }, + { + "start": 25274.04, + "end": 25277.88, + "probability": 0.9836 + }, + { + "start": 25277.88, + "end": 25278.14, + "probability": 0.5582 + }, + { + "start": 25278.3, + "end": 25280.2, + "probability": 0.8901 + }, + { + "start": 25281.3, + "end": 25283.38, + "probability": 0.9769 + }, + { + "start": 25283.48, + "end": 25291.06, + "probability": 0.9229 + }, + { + "start": 25291.7, + "end": 25293.5, + "probability": 0.93 + }, + { + "start": 25293.84, + "end": 25297.5, + "probability": 0.9229 + }, + { + "start": 25300.66, + "end": 25307.4, + "probability": 0.9978 + }, + { + "start": 25307.44, + "end": 25310.46, + "probability": 0.9897 + }, + { + "start": 25310.74, + "end": 25310.84, + "probability": 0.572 + }, + { + "start": 25311.18, + "end": 25312.28, + "probability": 0.9851 + }, + { + "start": 25312.64, + "end": 25313.4, + "probability": 0.8369 + }, + { + "start": 25313.42, + "end": 25316.74, + "probability": 0.9649 + }, + { + "start": 25317.42, + "end": 25318.54, + "probability": 0.8502 + }, + { + "start": 25323.96, + "end": 25327.1, + "probability": 0.742 + }, + { + "start": 25328.1, + "end": 25328.82, + "probability": 0.6433 + }, + { + "start": 25329.98, + "end": 25331.2, + "probability": 0.4884 + }, + { + "start": 25331.96, + "end": 25334.76, + "probability": 0.1142 + }, + { + "start": 25334.76, + "end": 25334.76, + "probability": 0.1221 + }, + { + "start": 25334.76, + "end": 25334.76, + "probability": 0.026 + }, + { + "start": 25334.76, + "end": 25338.86, + "probability": 0.5417 + }, + { + "start": 25339.92, + "end": 25341.02, + "probability": 0.1388 + }, + { + "start": 25341.58, + "end": 25341.92, + "probability": 0.0982 + }, + { + "start": 25341.92, + "end": 25342.72, + "probability": 0.2266 + }, + { + "start": 25342.74, + "end": 25342.78, + "probability": 0.4144 + }, + { + "start": 25342.97, + "end": 25345.76, + "probability": 0.8954 + }, + { + "start": 25346.22, + "end": 25349.7, + "probability": 0.9891 + }, + { + "start": 25350.0, + "end": 25354.62, + "probability": 0.7531 + }, + { + "start": 25354.62, + "end": 25355.24, + "probability": 0.8149 + }, + { + "start": 25355.62, + "end": 25356.24, + "probability": 0.7816 + }, + { + "start": 25356.66, + "end": 25357.44, + "probability": 0.653 + }, + { + "start": 25357.44, + "end": 25357.82, + "probability": 0.8496 + }, + { + "start": 25357.86, + "end": 25358.5, + "probability": 0.8385 + }, + { + "start": 25359.64, + "end": 25364.28, + "probability": 0.923 + }, + { + "start": 25365.6, + "end": 25368.44, + "probability": 0.9839 + }, + { + "start": 25369.54, + "end": 25371.52, + "probability": 0.9779 + }, + { + "start": 25372.66, + "end": 25375.44, + "probability": 0.5651 + }, + { + "start": 25376.56, + "end": 25381.64, + "probability": 0.9611 + }, + { + "start": 25381.94, + "end": 25383.18, + "probability": 0.9161 + }, + { + "start": 25384.06, + "end": 25387.42, + "probability": 0.9131 + }, + { + "start": 25389.06, + "end": 25394.28, + "probability": 0.8729 + }, + { + "start": 25395.18, + "end": 25396.68, + "probability": 0.9076 + }, + { + "start": 25397.72, + "end": 25399.46, + "probability": 0.8646 + }, + { + "start": 25400.96, + "end": 25403.9, + "probability": 0.7555 + }, + { + "start": 25406.52, + "end": 25406.9, + "probability": 0.8994 + }, + { + "start": 25407.76, + "end": 25410.56, + "probability": 0.6608 + }, + { + "start": 25411.08, + "end": 25412.78, + "probability": 0.9775 + }, + { + "start": 25413.38, + "end": 25414.04, + "probability": 0.9533 + }, + { + "start": 25414.24, + "end": 25421.08, + "probability": 0.983 + }, + { + "start": 25421.92, + "end": 25423.8, + "probability": 0.9154 + }, + { + "start": 25424.44, + "end": 25428.92, + "probability": 0.9453 + }, + { + "start": 25430.16, + "end": 25431.82, + "probability": 0.9292 + }, + { + "start": 25431.82, + "end": 25432.32, + "probability": 0.5785 + }, + { + "start": 25432.48, + "end": 25433.28, + "probability": 0.7403 + }, + { + "start": 25433.9, + "end": 25435.1, + "probability": 0.9917 + }, + { + "start": 25438.04, + "end": 25439.12, + "probability": 0.7693 + }, + { + "start": 25440.4, + "end": 25443.52, + "probability": 0.9542 + }, + { + "start": 25444.1, + "end": 25447.16, + "probability": 0.8999 + }, + { + "start": 25449.7, + "end": 25450.02, + "probability": 0.8022 + }, + { + "start": 25451.1, + "end": 25454.5, + "probability": 0.872 + }, + { + "start": 25455.14, + "end": 25455.9, + "probability": 0.7979 + }, + { + "start": 25457.42, + "end": 25460.92, + "probability": 0.9722 + }, + { + "start": 25461.54, + "end": 25465.9, + "probability": 0.904 + }, + { + "start": 25467.56, + "end": 25471.24, + "probability": 0.9122 + }, + { + "start": 25474.68, + "end": 25480.96, + "probability": 0.8848 + }, + { + "start": 25480.96, + "end": 25481.62, + "probability": 0.5442 + }, + { + "start": 25481.66, + "end": 25486.68, + "probability": 0.9799 + }, + { + "start": 25489.12, + "end": 25492.92, + "probability": 0.6767 + }, + { + "start": 25493.0, + "end": 25494.78, + "probability": 0.8654 + }, + { + "start": 25494.92, + "end": 25497.25, + "probability": 0.9011 + }, + { + "start": 25498.52, + "end": 25501.84, + "probability": 0.9666 + }, + { + "start": 25501.88, + "end": 25503.36, + "probability": 0.9961 + }, + { + "start": 25503.9, + "end": 25507.54, + "probability": 0.8016 + }, + { + "start": 25508.46, + "end": 25510.09, + "probability": 0.9971 + }, + { + "start": 25513.14, + "end": 25515.38, + "probability": 0.342 + }, + { + "start": 25515.38, + "end": 25515.44, + "probability": 0.1127 + }, + { + "start": 25515.44, + "end": 25515.44, + "probability": 0.526 + }, + { + "start": 25515.44, + "end": 25518.8, + "probability": 0.8103 + }, + { + "start": 25520.37, + "end": 25524.58, + "probability": 0.8625 + }, + { + "start": 25524.82, + "end": 25525.7, + "probability": 0.8541 + }, + { + "start": 25525.76, + "end": 25526.58, + "probability": 0.8403 + }, + { + "start": 25527.22, + "end": 25529.36, + "probability": 0.6227 + }, + { + "start": 25530.5, + "end": 25533.24, + "probability": 0.9642 + }, + { + "start": 25533.46, + "end": 25535.84, + "probability": 0.7509 + }, + { + "start": 25556.42, + "end": 25557.5, + "probability": 0.8708 + }, + { + "start": 25558.36, + "end": 25561.18, + "probability": 0.6957 + }, + { + "start": 25562.14, + "end": 25571.32, + "probability": 0.9937 + }, + { + "start": 25572.14, + "end": 25576.62, + "probability": 0.8589 + }, + { + "start": 25577.66, + "end": 25580.48, + "probability": 0.995 + }, + { + "start": 25581.02, + "end": 25585.72, + "probability": 0.9966 + }, + { + "start": 25586.54, + "end": 25589.28, + "probability": 0.5854 + }, + { + "start": 25590.5, + "end": 25593.56, + "probability": 0.9401 + }, + { + "start": 25594.1, + "end": 25597.84, + "probability": 0.9731 + }, + { + "start": 25598.64, + "end": 25603.48, + "probability": 0.9982 + }, + { + "start": 25604.26, + "end": 25608.16, + "probability": 0.9316 + }, + { + "start": 25608.66, + "end": 25610.62, + "probability": 0.7356 + }, + { + "start": 25611.44, + "end": 25613.52, + "probability": 0.9978 + }, + { + "start": 25614.28, + "end": 25614.38, + "probability": 0.9991 + }, + { + "start": 25616.86, + "end": 25618.74, + "probability": 0.8821 + }, + { + "start": 25619.02, + "end": 25623.68, + "probability": 0.9954 + }, + { + "start": 25624.26, + "end": 25629.6, + "probability": 0.9378 + }, + { + "start": 25630.32, + "end": 25630.32, + "probability": 0.0094 + }, + { + "start": 25630.32, + "end": 25636.12, + "probability": 0.9174 + }, + { + "start": 25636.12, + "end": 25639.2, + "probability": 0.9689 + }, + { + "start": 25640.16, + "end": 25641.3, + "probability": 0.5928 + }, + { + "start": 25642.22, + "end": 25643.44, + "probability": 0.7759 + }, + { + "start": 25644.02, + "end": 25650.34, + "probability": 0.9946 + }, + { + "start": 25650.9, + "end": 25657.08, + "probability": 0.9915 + }, + { + "start": 25657.88, + "end": 25659.42, + "probability": 0.9849 + }, + { + "start": 25659.96, + "end": 25660.68, + "probability": 0.0024 + }, + { + "start": 25661.94, + "end": 25663.38, + "probability": 0.6661 + }, + { + "start": 25663.86, + "end": 25664.7, + "probability": 0.4121 + }, + { + "start": 25664.98, + "end": 25665.32, + "probability": 0.4354 + }, + { + "start": 25665.42, + "end": 25671.86, + "probability": 0.9792 + }, + { + "start": 25672.06, + "end": 25672.72, + "probability": 0.901 + }, + { + "start": 25673.56, + "end": 25675.08, + "probability": 0.8053 + }, + { + "start": 25677.28, + "end": 25681.98, + "probability": 0.8921 + }, + { + "start": 25683.0, + "end": 25691.86, + "probability": 0.7677 + }, + { + "start": 25691.94, + "end": 25695.8, + "probability": 0.9926 + }, + { + "start": 25695.8, + "end": 25700.92, + "probability": 0.998 + }, + { + "start": 25701.88, + "end": 25703.32, + "probability": 0.9443 + }, + { + "start": 25703.68, + "end": 25711.12, + "probability": 0.8231 + }, + { + "start": 25711.12, + "end": 25716.84, + "probability": 0.8795 + }, + { + "start": 25717.58, + "end": 25721.12, + "probability": 0.6819 + }, + { + "start": 25721.5, + "end": 25722.96, + "probability": 0.9078 + }, + { + "start": 25723.5, + "end": 25726.14, + "probability": 0.9305 + }, + { + "start": 25726.6, + "end": 25732.36, + "probability": 0.9795 + }, + { + "start": 25732.64, + "end": 25737.42, + "probability": 0.97 + }, + { + "start": 25737.42, + "end": 25742.58, + "probability": 0.9945 + }, + { + "start": 25742.72, + "end": 25746.3, + "probability": 0.8254 + }, + { + "start": 25746.32, + "end": 25746.5, + "probability": 0.6888 + }, + { + "start": 25746.86, + "end": 25752.0, + "probability": 0.9966 + }, + { + "start": 25752.22, + "end": 25753.18, + "probability": 0.9883 + }, + { + "start": 25753.64, + "end": 25755.14, + "probability": 0.998 + }, + { + "start": 25755.74, + "end": 25762.52, + "probability": 0.9976 + }, + { + "start": 25763.52, + "end": 25763.88, + "probability": 0.5216 + }, + { + "start": 25763.94, + "end": 25765.18, + "probability": 0.7125 + }, + { + "start": 25766.18, + "end": 25766.82, + "probability": 0.4025 + }, + { + "start": 25767.36, + "end": 25768.62, + "probability": 0.9789 + }, + { + "start": 25781.72, + "end": 25782.04, + "probability": 0.1339 + }, + { + "start": 25783.7, + "end": 25783.78, + "probability": 0.012 + }, + { + "start": 25785.46, + "end": 25785.68, + "probability": 0.7257 + }, + { + "start": 25786.26, + "end": 25787.84, + "probability": 0.9285 + }, + { + "start": 25792.84, + "end": 25794.52, + "probability": 0.8537 + }, + { + "start": 25795.82, + "end": 25798.24, + "probability": 0.6119 + }, + { + "start": 25801.95, + "end": 25803.2, + "probability": 0.0785 + }, + { + "start": 25805.5, + "end": 25805.94, + "probability": 0.0385 + }, + { + "start": 25941.6, + "end": 25942.44, + "probability": 0.3328 + }, + { + "start": 25942.44, + "end": 25944.28, + "probability": 0.0869 + }, + { + "start": 25944.28, + "end": 25944.56, + "probability": 0.0911 + }, + { + "start": 25946.46, + "end": 25947.28, + "probability": 0.5765 + }, + { + "start": 25948.98, + "end": 25951.98, + "probability": 0.0491 + }, + { + "start": 25955.5, + "end": 25957.66, + "probability": 0.0234 + }, + { + "start": 25958.06, + "end": 25961.54, + "probability": 0.1352 + }, + { + "start": 25961.63, + "end": 25965.95, + "probability": 0.0387 + }, + { + "start": 26063.0, + "end": 26063.0, + "probability": 0.0 + }, + { + "start": 26063.0, + "end": 26063.0, + "probability": 0.0 + }, + { + "start": 26063.0, + "end": 26063.0, + "probability": 0.0 + }, + { + "start": 26063.0, + "end": 26063.0, + "probability": 0.0 + }, + { + "start": 26063.0, + "end": 26063.0, + "probability": 0.0 + }, + { + "start": 26063.0, + "end": 26063.0, + "probability": 0.0 + }, + { + "start": 26064.6, + "end": 26064.6, + "probability": 0.3091 + }, + { + "start": 26064.6, + "end": 26068.16, + "probability": 0.9472 + }, + { + "start": 26069.68, + "end": 26072.36, + "probability": 0.9723 + }, + { + "start": 26073.62, + "end": 26076.86, + "probability": 0.8973 + }, + { + "start": 26077.6, + "end": 26079.88, + "probability": 0.9897 + }, + { + "start": 26080.92, + "end": 26083.16, + "probability": 0.8277 + }, + { + "start": 26084.12, + "end": 26085.68, + "probability": 0.8477 + }, + { + "start": 26086.82, + "end": 26090.46, + "probability": 0.9743 + }, + { + "start": 26091.14, + "end": 26094.7, + "probability": 0.9299 + }, + { + "start": 26094.9, + "end": 26096.72, + "probability": 0.9909 + }, + { + "start": 26097.88, + "end": 26098.82, + "probability": 0.9961 + }, + { + "start": 26101.58, + "end": 26104.22, + "probability": 0.9888 + }, + { + "start": 26105.86, + "end": 26107.02, + "probability": 0.8718 + }, + { + "start": 26109.24, + "end": 26110.9, + "probability": 0.7982 + }, + { + "start": 26112.1, + "end": 26112.76, + "probability": 0.7105 + }, + { + "start": 26113.54, + "end": 26115.12, + "probability": 0.8005 + }, + { + "start": 26116.02, + "end": 26121.32, + "probability": 0.871 + }, + { + "start": 26121.44, + "end": 26122.06, + "probability": 0.8359 + }, + { + "start": 26122.22, + "end": 26123.16, + "probability": 0.9583 + }, + { + "start": 26124.64, + "end": 26132.0, + "probability": 0.9785 + }, + { + "start": 26132.9, + "end": 26140.62, + "probability": 0.995 + }, + { + "start": 26141.88, + "end": 26142.8, + "probability": 0.9694 + }, + { + "start": 26144.38, + "end": 26146.24, + "probability": 0.9744 + }, + { + "start": 26149.32, + "end": 26153.88, + "probability": 0.8625 + }, + { + "start": 26154.04, + "end": 26155.7, + "probability": 0.9927 + }, + { + "start": 26157.12, + "end": 26160.28, + "probability": 0.8751 + }, + { + "start": 26162.5, + "end": 26163.74, + "probability": 0.951 + }, + { + "start": 26163.86, + "end": 26165.36, + "probability": 0.7632 + }, + { + "start": 26165.44, + "end": 26168.75, + "probability": 0.9954 + }, + { + "start": 26170.18, + "end": 26174.76, + "probability": 0.9874 + }, + { + "start": 26175.34, + "end": 26176.86, + "probability": 0.9635 + }, + { + "start": 26178.94, + "end": 26181.9, + "probability": 0.9626 + }, + { + "start": 26182.6, + "end": 26184.64, + "probability": 0.9875 + }, + { + "start": 26186.94, + "end": 26190.22, + "probability": 0.994 + }, + { + "start": 26191.38, + "end": 26196.74, + "probability": 0.9875 + }, + { + "start": 26198.22, + "end": 26199.1, + "probability": 0.9209 + }, + { + "start": 26200.04, + "end": 26204.84, + "probability": 0.9797 + }, + { + "start": 26205.54, + "end": 26207.16, + "probability": 0.987 + }, + { + "start": 26207.58, + "end": 26209.76, + "probability": 0.9574 + }, + { + "start": 26210.0, + "end": 26212.8, + "probability": 0.907 + }, + { + "start": 26213.7, + "end": 26215.26, + "probability": 0.991 + }, + { + "start": 26215.96, + "end": 26216.18, + "probability": 0.4144 + }, + { + "start": 26216.22, + "end": 26218.64, + "probability": 0.7415 + }, + { + "start": 26219.9, + "end": 26222.88, + "probability": 0.7999 + }, + { + "start": 26223.46, + "end": 26225.5, + "probability": 0.9914 + }, + { + "start": 26226.2, + "end": 26227.88, + "probability": 0.6575 + }, + { + "start": 26229.3, + "end": 26230.0, + "probability": 0.5336 + }, + { + "start": 26230.7, + "end": 26232.7, + "probability": 0.9653 + }, + { + "start": 26234.24, + "end": 26235.46, + "probability": 0.9863 + }, + { + "start": 26236.38, + "end": 26237.1, + "probability": 0.979 + }, + { + "start": 26238.24, + "end": 26240.24, + "probability": 0.9739 + }, + { + "start": 26240.76, + "end": 26242.4, + "probability": 0.9956 + }, + { + "start": 26243.26, + "end": 26243.78, + "probability": 0.329 + }, + { + "start": 26245.14, + "end": 26246.72, + "probability": 0.5982 + }, + { + "start": 26247.46, + "end": 26248.18, + "probability": 0.8167 + }, + { + "start": 26249.9, + "end": 26251.14, + "probability": 0.9904 + }, + { + "start": 26251.9, + "end": 26252.62, + "probability": 0.7154 + }, + { + "start": 26253.32, + "end": 26255.3, + "probability": 0.9797 + }, + { + "start": 26261.96, + "end": 26261.98, + "probability": 0.164 + }, + { + "start": 26261.98, + "end": 26261.98, + "probability": 0.1452 + }, + { + "start": 26261.98, + "end": 26263.1, + "probability": 0.0185 + }, + { + "start": 26263.14, + "end": 26263.3, + "probability": 0.0179 + }, + { + "start": 26288.76, + "end": 26289.7, + "probability": 0.5785 + }, + { + "start": 26289.94, + "end": 26296.16, + "probability": 0.7808 + }, + { + "start": 26296.96, + "end": 26297.96, + "probability": 0.5459 + }, + { + "start": 26299.7, + "end": 26301.98, + "probability": 0.7245 + }, + { + "start": 26302.16, + "end": 26303.44, + "probability": 0.9873 + }, + { + "start": 26303.86, + "end": 26307.96, + "probability": 0.997 + }, + { + "start": 26308.72, + "end": 26309.62, + "probability": 0.7269 + }, + { + "start": 26310.26, + "end": 26312.24, + "probability": 0.9838 + }, + { + "start": 26313.64, + "end": 26313.64, + "probability": 0.5156 + }, + { + "start": 26314.26, + "end": 26319.2, + "probability": 0.9937 + }, + { + "start": 26320.0, + "end": 26322.16, + "probability": 0.9945 + }, + { + "start": 26323.18, + "end": 26324.58, + "probability": 0.9954 + }, + { + "start": 26325.96, + "end": 26331.2, + "probability": 0.9978 + }, + { + "start": 26331.94, + "end": 26335.3, + "probability": 0.9966 + }, + { + "start": 26336.54, + "end": 26339.32, + "probability": 0.8518 + }, + { + "start": 26340.34, + "end": 26342.96, + "probability": 0.9823 + }, + { + "start": 26343.12, + "end": 26346.4, + "probability": 0.8031 + }, + { + "start": 26347.8, + "end": 26352.7, + "probability": 0.9932 + }, + { + "start": 26353.24, + "end": 26354.04, + "probability": 0.9925 + }, + { + "start": 26354.08, + "end": 26354.9, + "probability": 0.7569 + }, + { + "start": 26355.34, + "end": 26355.96, + "probability": 0.8535 + }, + { + "start": 26356.18, + "end": 26356.72, + "probability": 0.9055 + }, + { + "start": 26356.8, + "end": 26357.74, + "probability": 0.9751 + }, + { + "start": 26358.6, + "end": 26363.08, + "probability": 0.8967 + }, + { + "start": 26363.72, + "end": 26367.76, + "probability": 0.995 + }, + { + "start": 26368.78, + "end": 26370.02, + "probability": 0.9924 + }, + { + "start": 26370.24, + "end": 26371.72, + "probability": 0.9163 + }, + { + "start": 26372.02, + "end": 26374.24, + "probability": 0.9751 + }, + { + "start": 26375.0, + "end": 26378.06, + "probability": 0.9906 + }, + { + "start": 26378.18, + "end": 26380.24, + "probability": 0.9994 + }, + { + "start": 26380.24, + "end": 26383.38, + "probability": 0.9945 + }, + { + "start": 26384.12, + "end": 26385.38, + "probability": 0.9622 + }, + { + "start": 26386.14, + "end": 26389.28, + "probability": 0.8088 + }, + { + "start": 26389.38, + "end": 26390.24, + "probability": 0.8694 + }, + { + "start": 26390.74, + "end": 26393.92, + "probability": 0.9966 + }, + { + "start": 26393.92, + "end": 26396.62, + "probability": 0.998 + }, + { + "start": 26397.66, + "end": 26401.94, + "probability": 0.9952 + }, + { + "start": 26402.4, + "end": 26404.2, + "probability": 0.9956 + }, + { + "start": 26404.2, + "end": 26406.92, + "probability": 0.8582 + }, + { + "start": 26407.58, + "end": 26411.17, + "probability": 0.9586 + }, + { + "start": 26411.8, + "end": 26414.2, + "probability": 0.9722 + }, + { + "start": 26414.74, + "end": 26416.88, + "probability": 0.9673 + }, + { + "start": 26417.86, + "end": 26418.48, + "probability": 0.8056 + }, + { + "start": 26418.64, + "end": 26421.44, + "probability": 0.9233 + }, + { + "start": 26421.8, + "end": 26425.32, + "probability": 0.9492 + }, + { + "start": 26426.12, + "end": 26427.18, + "probability": 0.7532 + }, + { + "start": 26428.4, + "end": 26429.08, + "probability": 0.743 + }, + { + "start": 26429.56, + "end": 26430.86, + "probability": 0.7367 + }, + { + "start": 26431.86, + "end": 26435.04, + "probability": 0.7473 + }, + { + "start": 26435.66, + "end": 26437.06, + "probability": 0.9494 + }, + { + "start": 26437.38, + "end": 26438.68, + "probability": 0.7733 + }, + { + "start": 26439.14, + "end": 26440.8, + "probability": 0.9849 + }, + { + "start": 26441.22, + "end": 26441.78, + "probability": 0.3101 + }, + { + "start": 26442.64, + "end": 26443.7, + "probability": 0.895 + }, + { + "start": 26444.56, + "end": 26445.26, + "probability": 0.929 + }, + { + "start": 26445.86, + "end": 26447.24, + "probability": 0.9547 + }, + { + "start": 26447.86, + "end": 26449.62, + "probability": 0.9188 + }, + { + "start": 26450.74, + "end": 26451.4, + "probability": 0.9705 + }, + { + "start": 26452.72, + "end": 26455.5, + "probability": 0.9425 + }, + { + "start": 26456.26, + "end": 26457.42, + "probability": 0.863 + }, + { + "start": 26458.44, + "end": 26460.8, + "probability": 0.9367 + }, + { + "start": 26461.54, + "end": 26462.34, + "probability": 0.7427 + }, + { + "start": 26463.88, + "end": 26465.06, + "probability": 0.9942 + }, + { + "start": 26465.94, + "end": 26466.68, + "probability": 0.9316 + }, + { + "start": 26467.26, + "end": 26468.46, + "probability": 0.8858 + }, + { + "start": 26469.48, + "end": 26470.26, + "probability": 0.9734 + }, + { + "start": 26472.04, + "end": 26473.92, + "probability": 0.6436 + }, + { + "start": 26474.04, + "end": 26474.74, + "probability": 0.5335 + }, + { + "start": 26474.86, + "end": 26476.38, + "probability": 0.9845 + }, + { + "start": 26476.74, + "end": 26477.42, + "probability": 0.9134 + }, + { + "start": 26478.2, + "end": 26479.06, + "probability": 0.9511 + }, + { + "start": 26479.1, + "end": 26479.5, + "probability": 0.9076 + }, + { + "start": 26479.6, + "end": 26480.5, + "probability": 0.8882 + }, + { + "start": 26480.56, + "end": 26480.96, + "probability": 0.7357 + }, + { + "start": 26481.02, + "end": 26482.44, + "probability": 0.9237 + }, + { + "start": 26492.22, + "end": 26492.24, + "probability": 0.3328 + }, + { + "start": 26492.24, + "end": 26494.98, + "probability": 0.4899 + }, + { + "start": 26495.64, + "end": 26496.52, + "probability": 0.9375 + }, + { + "start": 26496.62, + "end": 26496.88, + "probability": 0.6708 + }, + { + "start": 26497.02, + "end": 26498.14, + "probability": 0.736 + }, + { + "start": 26498.16, + "end": 26498.46, + "probability": 0.8344 + }, + { + "start": 26498.54, + "end": 26499.76, + "probability": 0.6603 + }, + { + "start": 26499.92, + "end": 26500.52, + "probability": 0.8424 + }, + { + "start": 26501.96, + "end": 26503.64, + "probability": 0.6296 + }, + { + "start": 26504.5, + "end": 26505.28, + "probability": 0.7044 + }, + { + "start": 26506.22, + "end": 26507.5, + "probability": 0.8986 + }, + { + "start": 26507.84, + "end": 26508.52, + "probability": 0.8916 + }, + { + "start": 26508.62, + "end": 26510.34, + "probability": 0.9862 + }, + { + "start": 26510.48, + "end": 26511.16, + "probability": 0.948 + }, + { + "start": 26511.74, + "end": 26513.28, + "probability": 0.9742 + }, + { + "start": 26513.94, + "end": 26516.57, + "probability": 0.843 + }, + { + "start": 26517.04, + "end": 26518.48, + "probability": 0.8787 + }, + { + "start": 26519.2, + "end": 26521.34, + "probability": 0.8938 + }, + { + "start": 26524.5, + "end": 26525.16, + "probability": 0.6176 + }, + { + "start": 26527.02, + "end": 26527.8, + "probability": 0.7117 + }, + { + "start": 26527.9, + "end": 26529.22, + "probability": 0.8867 + }, + { + "start": 26529.4, + "end": 26530.0, + "probability": 0.7116 + }, + { + "start": 26530.14, + "end": 26531.28, + "probability": 0.943 + }, + { + "start": 26531.46, + "end": 26532.12, + "probability": 0.5432 + }, + { + "start": 26532.52, + "end": 26533.9, + "probability": 0.9503 + }, + { + "start": 26534.3, + "end": 26536.16, + "probability": 0.9613 + }, + { + "start": 26536.46, + "end": 26539.16, + "probability": 0.7336 + }, + { + "start": 26539.22, + "end": 26539.38, + "probability": 0.2986 + }, + { + "start": 26540.64, + "end": 26541.88, + "probability": 0.1976 + }, + { + "start": 26542.9, + "end": 26545.1, + "probability": 0.8811 + }, + { + "start": 26545.22, + "end": 26546.44, + "probability": 0.6334 + }, + { + "start": 26547.02, + "end": 26548.1, + "probability": 0.8643 + }, + { + "start": 26562.36, + "end": 26567.46, + "probability": 0.3176 + }, + { + "start": 26567.48, + "end": 26568.48, + "probability": 0.7537 + }, + { + "start": 26568.62, + "end": 26569.8, + "probability": 0.6975 + }, + { + "start": 26569.82, + "end": 26576.12, + "probability": 0.9863 + }, + { + "start": 26579.48, + "end": 26580.28, + "probability": 0.6531 + }, + { + "start": 26581.22, + "end": 26582.22, + "probability": 0.6715 + }, + { + "start": 26584.58, + "end": 26590.86, + "probability": 0.9832 + }, + { + "start": 26590.96, + "end": 26595.3, + "probability": 0.9707 + }, + { + "start": 26596.78, + "end": 26598.92, + "probability": 0.7327 + }, + { + "start": 26599.0, + "end": 26599.52, + "probability": 0.8153 + }, + { + "start": 26599.54, + "end": 26600.36, + "probability": 0.7507 + }, + { + "start": 26601.6, + "end": 26603.87, + "probability": 0.9816 + }, + { + "start": 26605.44, + "end": 26613.54, + "probability": 0.9897 + }, + { + "start": 26613.64, + "end": 26615.36, + "probability": 0.9878 + }, + { + "start": 26615.88, + "end": 26616.94, + "probability": 0.6561 + }, + { + "start": 26618.02, + "end": 26620.68, + "probability": 0.9562 + }, + { + "start": 26622.3, + "end": 26625.76, + "probability": 0.993 + }, + { + "start": 26625.96, + "end": 26629.9, + "probability": 0.9988 + }, + { + "start": 26631.68, + "end": 26641.72, + "probability": 0.9902 + }, + { + "start": 26641.78, + "end": 26644.0, + "probability": 0.8918 + }, + { + "start": 26644.1, + "end": 26648.76, + "probability": 0.8802 + }, + { + "start": 26650.0, + "end": 26654.18, + "probability": 0.4908 + }, + { + "start": 26655.62, + "end": 26661.7, + "probability": 0.9897 + }, + { + "start": 26661.7, + "end": 26667.0, + "probability": 0.9988 + }, + { + "start": 26667.46, + "end": 26669.32, + "probability": 0.9429 + }, + { + "start": 26669.54, + "end": 26672.32, + "probability": 0.9971 + }, + { + "start": 26672.86, + "end": 26674.06, + "probability": 0.9961 + }, + { + "start": 26674.78, + "end": 26677.14, + "probability": 0.8896 + }, + { + "start": 26677.66, + "end": 26680.68, + "probability": 0.9954 + }, + { + "start": 26681.14, + "end": 26683.44, + "probability": 0.9936 + }, + { + "start": 26683.8, + "end": 26684.51, + "probability": 0.9211 + }, + { + "start": 26685.36, + "end": 26687.6, + "probability": 0.138 + }, + { + "start": 26687.6, + "end": 26688.95, + "probability": 0.0867 + }, + { + "start": 26690.24, + "end": 26692.06, + "probability": 0.8491 + }, + { + "start": 26693.88, + "end": 26695.12, + "probability": 0.8763 + }, + { + "start": 26695.2, + "end": 26696.82, + "probability": 0.9292 + }, + { + "start": 26697.02, + "end": 26698.14, + "probability": 0.7453 + }, + { + "start": 26698.26, + "end": 26701.28, + "probability": 0.5205 + }, + { + "start": 26701.64, + "end": 26703.24, + "probability": 0.6519 + }, + { + "start": 26703.32, + "end": 26704.41, + "probability": 0.8788 + }, + { + "start": 26704.52, + "end": 26706.7, + "probability": 0.7847 + }, + { + "start": 26706.84, + "end": 26708.68, + "probability": 0.8176 + }, + { + "start": 26708.78, + "end": 26709.8, + "probability": 0.7694 + }, + { + "start": 26709.82, + "end": 26710.86, + "probability": 0.9507 + }, + { + "start": 26710.94, + "end": 26711.44, + "probability": 0.9759 + }, + { + "start": 26712.02, + "end": 26712.47, + "probability": 0.6322 + }, + { + "start": 26713.46, + "end": 26715.5, + "probability": 0.9788 + }, + { + "start": 26715.52, + "end": 26716.8, + "probability": 0.8594 + }, + { + "start": 26716.88, + "end": 26717.38, + "probability": 0.6801 + }, + { + "start": 26717.5, + "end": 26720.26, + "probability": 0.9988 + }, + { + "start": 26720.26, + "end": 26722.52, + "probability": 0.9099 + }, + { + "start": 26723.14, + "end": 26724.76, + "probability": 0.7639 + }, + { + "start": 26725.52, + "end": 26729.42, + "probability": 0.8947 + }, + { + "start": 26730.06, + "end": 26731.1, + "probability": 0.9829 + }, + { + "start": 26731.86, + "end": 26734.94, + "probability": 0.8696 + }, + { + "start": 26735.46, + "end": 26737.34, + "probability": 0.926 + }, + { + "start": 26737.46, + "end": 26738.96, + "probability": 0.9197 + }, + { + "start": 26739.44, + "end": 26739.98, + "probability": 0.8848 + }, + { + "start": 26740.9, + "end": 26742.64, + "probability": 0.9951 + }, + { + "start": 26744.38, + "end": 26746.68, + "probability": 0.6913 + }, + { + "start": 26746.78, + "end": 26750.52, + "probability": 0.8036 + }, + { + "start": 26751.72, + "end": 26751.82, + "probability": 0.418 + }, + { + "start": 26751.82, + "end": 26752.12, + "probability": 0.5233 + }, + { + "start": 26753.34, + "end": 26754.2, + "probability": 0.7553 + }, + { + "start": 26754.36, + "end": 26758.4, + "probability": 0.57 + }, + { + "start": 26768.46, + "end": 26769.2, + "probability": 0.4603 + }, + { + "start": 26769.2, + "end": 26769.2, + "probability": 0.0051 + }, + { + "start": 26769.2, + "end": 26769.2, + "probability": 0.0561 + }, + { + "start": 26769.2, + "end": 26769.2, + "probability": 0.0596 + }, + { + "start": 26769.2, + "end": 26770.14, + "probability": 0.0821 + }, + { + "start": 26770.64, + "end": 26773.58, + "probability": 0.8661 + }, + { + "start": 26775.3, + "end": 26777.08, + "probability": 0.4783 + }, + { + "start": 26777.32, + "end": 26779.58, + "probability": 0.7856 + }, + { + "start": 26779.66, + "end": 26780.94, + "probability": 0.9471 + }, + { + "start": 26781.78, + "end": 26785.94, + "probability": 0.9846 + }, + { + "start": 26786.36, + "end": 26789.98, + "probability": 0.9981 + }, + { + "start": 26789.98, + "end": 26793.18, + "probability": 0.9987 + }, + { + "start": 26793.96, + "end": 26795.74, + "probability": 0.8285 + }, + { + "start": 26795.98, + "end": 26796.94, + "probability": 0.9987 + }, + { + "start": 26797.48, + "end": 26798.72, + "probability": 0.8905 + }, + { + "start": 26799.4, + "end": 26804.44, + "probability": 0.9909 + }, + { + "start": 26804.5, + "end": 26805.3, + "probability": 0.5468 + }, + { + "start": 26805.76, + "end": 26807.9, + "probability": 0.9904 + }, + { + "start": 26808.0, + "end": 26811.56, + "probability": 0.5278 + }, + { + "start": 26811.66, + "end": 26812.37, + "probability": 0.7339 + }, + { + "start": 26815.64, + "end": 26816.02, + "probability": 0.0081 + }, + { + "start": 26816.04, + "end": 26816.06, + "probability": 0.3071 + }, + { + "start": 26816.06, + "end": 26816.06, + "probability": 0.0977 + }, + { + "start": 26816.06, + "end": 26816.06, + "probability": 0.3418 + }, + { + "start": 26816.06, + "end": 26817.11, + "probability": 0.4656 + }, + { + "start": 26817.14, + "end": 26819.84, + "probability": 0.6338 + }, + { + "start": 26819.84, + "end": 26819.84, + "probability": 0.7081 + }, + { + "start": 26819.84, + "end": 26820.1, + "probability": 0.4681 + }, + { + "start": 26820.24, + "end": 26820.64, + "probability": 0.9069 + }, + { + "start": 26820.78, + "end": 26821.74, + "probability": 0.6817 + }, + { + "start": 26821.82, + "end": 26826.36, + "probability": 0.7266 + }, + { + "start": 26826.4, + "end": 26828.2, + "probability": 0.2233 + }, + { + "start": 26828.2, + "end": 26829.78, + "probability": 0.7411 + }, + { + "start": 26829.94, + "end": 26829.94, + "probability": 0.0678 + }, + { + "start": 26829.94, + "end": 26830.0, + "probability": 0.3689 + }, + { + "start": 26830.14, + "end": 26830.7, + "probability": 0.7844 + }, + { + "start": 26830.74, + "end": 26831.5, + "probability": 0.82 + }, + { + "start": 26831.56, + "end": 26834.06, + "probability": 0.6096 + }, + { + "start": 26834.24, + "end": 26839.5, + "probability": 0.1155 + }, + { + "start": 26841.18, + "end": 26841.2, + "probability": 0.1631 + }, + { + "start": 26841.2, + "end": 26841.2, + "probability": 0.0284 + }, + { + "start": 26841.2, + "end": 26841.2, + "probability": 0.4497 + }, + { + "start": 26841.2, + "end": 26841.2, + "probability": 0.0359 + }, + { + "start": 26841.2, + "end": 26842.33, + "probability": 0.3691 + }, + { + "start": 26842.7, + "end": 26843.64, + "probability": 0.9337 + }, + { + "start": 26843.68, + "end": 26845.88, + "probability": 0.831 + }, + { + "start": 26846.2, + "end": 26846.84, + "probability": 0.8021 + }, + { + "start": 26846.88, + "end": 26847.28, + "probability": 0.892 + }, + { + "start": 26847.4, + "end": 26848.1, + "probability": 0.9526 + }, + { + "start": 26848.54, + "end": 26849.26, + "probability": 0.6693 + }, + { + "start": 26849.34, + "end": 26849.68, + "probability": 0.63 + }, + { + "start": 26849.82, + "end": 26851.76, + "probability": 0.9247 + }, + { + "start": 26851.96, + "end": 26853.2, + "probability": 0.9815 + }, + { + "start": 26853.26, + "end": 26854.41, + "probability": 0.7644 + }, + { + "start": 26855.34, + "end": 26855.83, + "probability": 0.9441 + }, + { + "start": 26856.74, + "end": 26858.88, + "probability": 0.9126 + }, + { + "start": 26859.32, + "end": 26861.36, + "probability": 0.7896 + }, + { + "start": 26861.48, + "end": 26861.98, + "probability": 0.5658 + }, + { + "start": 26862.06, + "end": 26862.66, + "probability": 0.6406 + }, + { + "start": 26862.76, + "end": 26863.38, + "probability": 0.8705 + }, + { + "start": 26863.46, + "end": 26866.72, + "probability": 0.9106 + }, + { + "start": 26867.12, + "end": 26868.42, + "probability": 0.9637 + }, + { + "start": 26868.6, + "end": 26873.84, + "probability": 0.9943 + }, + { + "start": 26873.84, + "end": 26879.5, + "probability": 0.9995 + }, + { + "start": 26879.98, + "end": 26883.02, + "probability": 0.9431 + }, + { + "start": 26883.02, + "end": 26885.68, + "probability": 0.9976 + }, + { + "start": 26885.78, + "end": 26886.9, + "probability": 0.929 + }, + { + "start": 26887.06, + "end": 26887.96, + "probability": 0.8582 + }, + { + "start": 26888.5, + "end": 26895.08, + "probability": 0.9871 + }, + { + "start": 26895.6, + "end": 26899.88, + "probability": 0.9621 + }, + { + "start": 26899.98, + "end": 26901.02, + "probability": 0.9076 + }, + { + "start": 26901.5, + "end": 26903.18, + "probability": 0.9807 + }, + { + "start": 26904.78, + "end": 26906.64, + "probability": 0.9663 + }, + { + "start": 26906.78, + "end": 26909.6, + "probability": 0.9977 + }, + { + "start": 26909.6, + "end": 26913.48, + "probability": 0.9892 + }, + { + "start": 26913.78, + "end": 26918.16, + "probability": 0.9019 + }, + { + "start": 26918.68, + "end": 26923.76, + "probability": 0.9337 + }, + { + "start": 26925.34, + "end": 26925.92, + "probability": 0.8813 + }, + { + "start": 26926.06, + "end": 26926.68, + "probability": 0.9221 + }, + { + "start": 26927.08, + "end": 26927.84, + "probability": 0.5774 + }, + { + "start": 26927.88, + "end": 26932.44, + "probability": 0.9668 + }, + { + "start": 26932.86, + "end": 26933.8, + "probability": 0.9742 + }, + { + "start": 26933.86, + "end": 26935.44, + "probability": 0.8818 + }, + { + "start": 26935.58, + "end": 26936.14, + "probability": 0.9139 + }, + { + "start": 26936.22, + "end": 26937.48, + "probability": 0.9466 + }, + { + "start": 26937.92, + "end": 26944.24, + "probability": 0.9694 + }, + { + "start": 26945.06, + "end": 26950.06, + "probability": 0.991 + }, + { + "start": 26950.64, + "end": 26953.09, + "probability": 0.9945 + }, + { + "start": 26953.74, + "end": 26955.98, + "probability": 0.9893 + }, + { + "start": 26956.76, + "end": 26959.12, + "probability": 0.9478 + }, + { + "start": 26959.7, + "end": 26962.0, + "probability": 0.9648 + }, + { + "start": 26962.42, + "end": 26963.9, + "probability": 0.6887 + }, + { + "start": 26964.32, + "end": 26965.46, + "probability": 0.9119 + }, + { + "start": 26965.9, + "end": 26971.74, + "probability": 0.8652 + }, + { + "start": 26971.74, + "end": 26972.28, + "probability": 0.1308 + }, + { + "start": 26972.3, + "end": 26972.3, + "probability": 0.0579 + }, + { + "start": 26972.3, + "end": 26972.88, + "probability": 0.2173 + }, + { + "start": 26973.22, + "end": 26978.74, + "probability": 0.9225 + }, + { + "start": 26978.74, + "end": 26979.12, + "probability": 0.382 + }, + { + "start": 26979.26, + "end": 26980.9, + "probability": 0.824 + }, + { + "start": 26980.96, + "end": 26982.96, + "probability": 0.9841 + }, + { + "start": 26983.44, + "end": 26985.88, + "probability": 0.9409 + }, + { + "start": 26986.72, + "end": 26987.48, + "probability": 0.0539 + }, + { + "start": 26987.48, + "end": 26988.92, + "probability": 0.2233 + }, + { + "start": 26989.35, + "end": 26992.76, + "probability": 0.0567 + }, + { + "start": 26992.76, + "end": 26992.94, + "probability": 0.3649 + }, + { + "start": 26993.08, + "end": 26999.68, + "probability": 0.9893 + }, + { + "start": 26999.78, + "end": 27000.9, + "probability": 0.0107 + }, + { + "start": 27000.9, + "end": 27001.26, + "probability": 0.4479 + }, + { + "start": 27001.74, + "end": 27004.14, + "probability": 0.9973 + }, + { + "start": 27005.26, + "end": 27008.7, + "probability": 0.9534 + }, + { + "start": 27009.4, + "end": 27017.1, + "probability": 0.9977 + }, + { + "start": 27018.36, + "end": 27019.9, + "probability": 0.8378 + }, + { + "start": 27020.94, + "end": 27022.1, + "probability": 0.8036 + }, + { + "start": 27022.2, + "end": 27024.32, + "probability": 0.8751 + }, + { + "start": 27025.22, + "end": 27030.07, + "probability": 0.9647 + }, + { + "start": 27031.42, + "end": 27038.82, + "probability": 0.9673 + }, + { + "start": 27038.82, + "end": 27042.02, + "probability": 0.9995 + }, + { + "start": 27042.98, + "end": 27043.68, + "probability": 0.9985 + }, + { + "start": 27044.36, + "end": 27044.84, + "probability": 0.829 + }, + { + "start": 27044.96, + "end": 27046.12, + "probability": 0.9759 + }, + { + "start": 27046.66, + "end": 27047.47, + "probability": 0.9961 + }, + { + "start": 27047.78, + "end": 27049.62, + "probability": 0.8235 + }, + { + "start": 27050.81, + "end": 27053.64, + "probability": 0.9815 + }, + { + "start": 27054.84, + "end": 27056.26, + "probability": 0.8164 + }, + { + "start": 27056.32, + "end": 27058.16, + "probability": 0.9505 + }, + { + "start": 27059.19, + "end": 27063.5, + "probability": 0.7356 + }, + { + "start": 27063.62, + "end": 27068.2, + "probability": 0.7827 + }, + { + "start": 27068.44, + "end": 27070.16, + "probability": 0.9839 + }, + { + "start": 27070.16, + "end": 27075.62, + "probability": 0.6736 + }, + { + "start": 27076.24, + "end": 27080.98, + "probability": 0.9969 + }, + { + "start": 27080.98, + "end": 27084.52, + "probability": 0.9731 + }, + { + "start": 27085.8, + "end": 27090.06, + "probability": 0.9952 + }, + { + "start": 27090.06, + "end": 27094.82, + "probability": 0.9978 + }, + { + "start": 27094.93, + "end": 27097.46, + "probability": 0.3383 + }, + { + "start": 27097.46, + "end": 27103.38, + "probability": 0.9985 + }, + { + "start": 27104.42, + "end": 27104.56, + "probability": 0.1342 + }, + { + "start": 27104.56, + "end": 27105.92, + "probability": 0.8261 + }, + { + "start": 27106.46, + "end": 27107.68, + "probability": 0.9173 + }, + { + "start": 27108.02, + "end": 27109.3, + "probability": 0.37 + }, + { + "start": 27109.54, + "end": 27110.2, + "probability": 0.7052 + }, + { + "start": 27111.78, + "end": 27112.06, + "probability": 0.1307 + }, + { + "start": 27112.06, + "end": 27112.06, + "probability": 0.123 + }, + { + "start": 27112.06, + "end": 27112.06, + "probability": 0.0894 + }, + { + "start": 27112.2, + "end": 27112.62, + "probability": 0.1403 + }, + { + "start": 27112.82, + "end": 27114.08, + "probability": 0.2025 + }, + { + "start": 27114.42, + "end": 27116.9, + "probability": 0.5166 + }, + { + "start": 27117.06, + "end": 27121.44, + "probability": 0.9949 + }, + { + "start": 27121.54, + "end": 27122.79, + "probability": 0.9115 + }, + { + "start": 27122.94, + "end": 27123.76, + "probability": 0.3928 + }, + { + "start": 27123.8, + "end": 27124.12, + "probability": 0.4536 + }, + { + "start": 27124.22, + "end": 27126.44, + "probability": 0.5415 + }, + { + "start": 27126.46, + "end": 27126.98, + "probability": 0.024 + }, + { + "start": 27127.28, + "end": 27130.28, + "probability": 0.9849 + }, + { + "start": 27130.52, + "end": 27132.18, + "probability": 0.9946 + }, + { + "start": 27132.34, + "end": 27138.43, + "probability": 0.9454 + }, + { + "start": 27139.3, + "end": 27144.32, + "probability": 0.9985 + }, + { + "start": 27144.36, + "end": 27144.94, + "probability": 0.8477 + }, + { + "start": 27145.02, + "end": 27146.12, + "probability": 0.9906 + }, + { + "start": 27146.22, + "end": 27146.98, + "probability": 0.9771 + }, + { + "start": 27147.62, + "end": 27150.32, + "probability": 0.7529 + }, + { + "start": 27150.52, + "end": 27151.98, + "probability": 0.0808 + }, + { + "start": 27151.98, + "end": 27155.72, + "probability": 0.9571 + }, + { + "start": 27155.84, + "end": 27164.66, + "probability": 0.9858 + }, + { + "start": 27165.12, + "end": 27165.64, + "probability": 0.3703 + }, + { + "start": 27165.72, + "end": 27166.24, + "probability": 0.8557 + }, + { + "start": 27166.34, + "end": 27171.32, + "probability": 0.9779 + }, + { + "start": 27171.62, + "end": 27176.82, + "probability": 0.9951 + }, + { + "start": 27177.52, + "end": 27179.1, + "probability": 0.9867 + }, + { + "start": 27179.86, + "end": 27186.84, + "probability": 0.6502 + }, + { + "start": 27187.4, + "end": 27188.08, + "probability": 0.8213 + }, + { + "start": 27188.12, + "end": 27189.45, + "probability": 0.7482 + }, + { + "start": 27189.92, + "end": 27190.18, + "probability": 0.77 + }, + { + "start": 27190.3, + "end": 27193.22, + "probability": 0.9625 + }, + { + "start": 27193.34, + "end": 27198.15, + "probability": 0.9653 + }, + { + "start": 27198.32, + "end": 27203.02, + "probability": 0.9902 + }, + { + "start": 27203.02, + "end": 27205.96, + "probability": 0.9988 + }, + { + "start": 27205.96, + "end": 27206.2, + "probability": 0.0753 + }, + { + "start": 27206.2, + "end": 27207.36, + "probability": 0.1903 + }, + { + "start": 27208.26, + "end": 27208.38, + "probability": 0.6462 + }, + { + "start": 27208.6, + "end": 27210.86, + "probability": 0.9928 + }, + { + "start": 27210.94, + "end": 27211.08, + "probability": 0.4481 + }, + { + "start": 27211.32, + "end": 27213.24, + "probability": 0.9966 + }, + { + "start": 27213.33, + "end": 27213.56, + "probability": 0.1074 + }, + { + "start": 27213.58, + "end": 27215.38, + "probability": 0.5638 + }, + { + "start": 27215.8, + "end": 27215.94, + "probability": 0.498 + }, + { + "start": 27215.94, + "end": 27216.46, + "probability": 0.0065 + }, + { + "start": 27216.6, + "end": 27216.74, + "probability": 0.4836 + }, + { + "start": 27216.96, + "end": 27218.04, + "probability": 0.7181 + }, + { + "start": 27218.12, + "end": 27219.8, + "probability": 0.7987 + }, + { + "start": 27219.88, + "end": 27219.96, + "probability": 0.611 + }, + { + "start": 27220.06, + "end": 27220.4, + "probability": 0.7439 + }, + { + "start": 27221.08, + "end": 27221.2, + "probability": 0.1357 + }, + { + "start": 27221.2, + "end": 27221.78, + "probability": 0.2337 + }, + { + "start": 27221.9, + "end": 27222.94, + "probability": 0.3727 + }, + { + "start": 27223.1, + "end": 27225.1, + "probability": 0.3118 + }, + { + "start": 27225.44, + "end": 27226.4, + "probability": 0.5861 + }, + { + "start": 27226.54, + "end": 27226.98, + "probability": 0.7375 + }, + { + "start": 27227.12, + "end": 27227.2, + "probability": 0.4685 + }, + { + "start": 27227.2, + "end": 27227.2, + "probability": 0.4559 + }, + { + "start": 27227.2, + "end": 27227.34, + "probability": 0.024 + }, + { + "start": 27227.34, + "end": 27228.7, + "probability": 0.8608 + }, + { + "start": 27230.5, + "end": 27232.74, + "probability": 0.9902 + }, + { + "start": 27233.5, + "end": 27237.46, + "probability": 0.9929 + }, + { + "start": 27237.46, + "end": 27243.16, + "probability": 0.9995 + }, + { + "start": 27244.2, + "end": 27246.52, + "probability": 0.7208 + }, + { + "start": 27246.88, + "end": 27248.74, + "probability": 0.9985 + }, + { + "start": 27249.56, + "end": 27251.58, + "probability": 0.8324 + }, + { + "start": 27252.4, + "end": 27254.18, + "probability": 0.9755 + }, + { + "start": 27254.18, + "end": 27257.52, + "probability": 0.7944 + }, + { + "start": 27258.46, + "end": 27260.42, + "probability": 0.0084 + }, + { + "start": 27260.88, + "end": 27261.24, + "probability": 0.0039 + }, + { + "start": 27261.24, + "end": 27262.25, + "probability": 0.73 + }, + { + "start": 27262.8, + "end": 27264.12, + "probability": 0.1264 + }, + { + "start": 27264.12, + "end": 27266.9, + "probability": 0.9936 + }, + { + "start": 27267.54, + "end": 27267.8, + "probability": 0.0084 + }, + { + "start": 27267.8, + "end": 27267.8, + "probability": 0.0272 + }, + { + "start": 27267.8, + "end": 27269.7, + "probability": 0.6812 + }, + { + "start": 27269.76, + "end": 27271.74, + "probability": 0.8193 + }, + { + "start": 27272.62, + "end": 27275.36, + "probability": 0.926 + }, + { + "start": 27275.7, + "end": 27276.08, + "probability": 0.6175 + }, + { + "start": 27276.18, + "end": 27280.98, + "probability": 0.469 + }, + { + "start": 27280.98, + "end": 27282.88, + "probability": 0.4464 + }, + { + "start": 27283.06, + "end": 27284.02, + "probability": 0.9124 + }, + { + "start": 27284.16, + "end": 27284.98, + "probability": 0.8841 + }, + { + "start": 27285.1, + "end": 27287.92, + "probability": 0.4283 + }, + { + "start": 27288.33, + "end": 27289.46, + "probability": 0.347 + }, + { + "start": 27289.68, + "end": 27291.3, + "probability": 0.7385 + }, + { + "start": 27291.48, + "end": 27293.04, + "probability": 0.7479 + }, + { + "start": 27293.16, + "end": 27294.48, + "probability": 0.7428 + }, + { + "start": 27294.68, + "end": 27296.16, + "probability": 0.7507 + }, + { + "start": 27296.3, + "end": 27297.16, + "probability": 0.7768 + }, + { + "start": 27297.66, + "end": 27298.56, + "probability": 0.9422 + }, + { + "start": 27298.68, + "end": 27299.46, + "probability": 0.856 + }, + { + "start": 27299.52, + "end": 27300.86, + "probability": 0.7902 + }, + { + "start": 27301.9, + "end": 27302.84, + "probability": 0.8167 + }, + { + "start": 27302.9, + "end": 27306.0, + "probability": 0.989 + }, + { + "start": 27306.0, + "end": 27308.36, + "probability": 0.9811 + }, + { + "start": 27308.8, + "end": 27309.88, + "probability": 0.9909 + }, + { + "start": 27310.02, + "end": 27311.5, + "probability": 0.9875 + }, + { + "start": 27311.72, + "end": 27313.45, + "probability": 0.9662 + }, + { + "start": 27313.72, + "end": 27315.62, + "probability": 0.7949 + }, + { + "start": 27315.8, + "end": 27316.64, + "probability": 0.8337 + }, + { + "start": 27316.78, + "end": 27320.04, + "probability": 0.9681 + }, + { + "start": 27320.04, + "end": 27323.14, + "probability": 0.8255 + }, + { + "start": 27323.42, + "end": 27328.05, + "probability": 0.9829 + }, + { + "start": 27329.52, + "end": 27330.46, + "probability": 0.3869 + }, + { + "start": 27330.82, + "end": 27331.2, + "probability": 0.1655 + }, + { + "start": 27331.2, + "end": 27334.08, + "probability": 0.653 + }, + { + "start": 27334.82, + "end": 27337.8, + "probability": 0.1777 + }, + { + "start": 27337.8, + "end": 27337.8, + "probability": 0.0049 + }, + { + "start": 27337.8, + "end": 27338.67, + "probability": 0.7037 + }, + { + "start": 27339.06, + "end": 27341.82, + "probability": 0.6353 + }, + { + "start": 27341.84, + "end": 27342.28, + "probability": 0.2435 + }, + { + "start": 27342.48, + "end": 27345.02, + "probability": 0.2358 + }, + { + "start": 27345.3, + "end": 27345.32, + "probability": 0.0972 + }, + { + "start": 27345.32, + "end": 27345.7, + "probability": 0.0659 + }, + { + "start": 27345.9, + "end": 27347.4, + "probability": 0.3855 + }, + { + "start": 27347.6, + "end": 27351.88, + "probability": 0.8208 + }, + { + "start": 27352.78, + "end": 27356.16, + "probability": 0.9861 + }, + { + "start": 27357.9, + "end": 27358.12, + "probability": 0.0431 + }, + { + "start": 27358.12, + "end": 27361.6, + "probability": 0.9924 + }, + { + "start": 27361.72, + "end": 27365.96, + "probability": 0.6788 + }, + { + "start": 27366.02, + "end": 27367.81, + "probability": 0.8007 + }, + { + "start": 27368.2, + "end": 27370.12, + "probability": 0.9838 + }, + { + "start": 27370.22, + "end": 27371.44, + "probability": 0.8681 + }, + { + "start": 27371.76, + "end": 27375.96, + "probability": 0.7554 + }, + { + "start": 27375.96, + "end": 27376.56, + "probability": 0.9114 + }, + { + "start": 27376.66, + "end": 27377.56, + "probability": 0.9053 + }, + { + "start": 27377.58, + "end": 27379.52, + "probability": 0.9761 + }, + { + "start": 27379.76, + "end": 27382.7, + "probability": 0.8665 + }, + { + "start": 27382.7, + "end": 27385.0, + "probability": 0.4298 + }, + { + "start": 27385.14, + "end": 27385.6, + "probability": 0.3751 + }, + { + "start": 27385.7, + "end": 27388.0, + "probability": 0.7054 + }, + { + "start": 27388.14, + "end": 27388.32, + "probability": 0.2308 + }, + { + "start": 27388.5, + "end": 27391.4, + "probability": 0.2063 + }, + { + "start": 27392.32, + "end": 27392.92, + "probability": 0.0392 + }, + { + "start": 27392.92, + "end": 27394.36, + "probability": 0.4874 + }, + { + "start": 27394.6, + "end": 27395.12, + "probability": 0.365 + }, + { + "start": 27395.28, + "end": 27397.2, + "probability": 0.9132 + }, + { + "start": 27397.26, + "end": 27401.14, + "probability": 0.8882 + }, + { + "start": 27401.16, + "end": 27402.24, + "probability": 0.9414 + }, + { + "start": 27402.36, + "end": 27402.86, + "probability": 0.527 + }, + { + "start": 27404.25, + "end": 27405.12, + "probability": 0.0593 + }, + { + "start": 27405.91, + "end": 27407.98, + "probability": 0.4216 + }, + { + "start": 27407.98, + "end": 27409.94, + "probability": 0.9778 + }, + { + "start": 27410.16, + "end": 27412.18, + "probability": 0.9149 + }, + { + "start": 27412.18, + "end": 27412.18, + "probability": 0.0018 + }, + { + "start": 27412.18, + "end": 27414.26, + "probability": 0.5668 + }, + { + "start": 27414.94, + "end": 27418.14, + "probability": 0.9879 + }, + { + "start": 27418.16, + "end": 27420.22, + "probability": 0.8607 + }, + { + "start": 27420.26, + "end": 27420.32, + "probability": 0.0509 + }, + { + "start": 27420.32, + "end": 27420.76, + "probability": 0.3731 + }, + { + "start": 27420.78, + "end": 27421.76, + "probability": 0.9722 + }, + { + "start": 27422.32, + "end": 27423.18, + "probability": 0.4574 + }, + { + "start": 27423.32, + "end": 27424.48, + "probability": 0.959 + }, + { + "start": 27425.6, + "end": 27428.06, + "probability": 0.0176 + }, + { + "start": 27428.1, + "end": 27428.1, + "probability": 0.007 + }, + { + "start": 27428.1, + "end": 27428.1, + "probability": 0.0054 + }, + { + "start": 27428.1, + "end": 27428.1, + "probability": 0.2999 + }, + { + "start": 27428.29, + "end": 27428.78, + "probability": 0.0427 + }, + { + "start": 27428.8, + "end": 27431.4, + "probability": 0.5722 + }, + { + "start": 27432.1, + "end": 27436.1, + "probability": 0.2891 + }, + { + "start": 27436.3, + "end": 27438.26, + "probability": 0.6518 + }, + { + "start": 27439.41, + "end": 27439.62, + "probability": 0.2119 + }, + { + "start": 27439.7, + "end": 27441.68, + "probability": 0.7572 + }, + { + "start": 27441.92, + "end": 27446.56, + "probability": 0.997 + }, + { + "start": 27446.88, + "end": 27448.06, + "probability": 0.7378 + }, + { + "start": 27448.54, + "end": 27451.4, + "probability": 0.7537 + }, + { + "start": 27452.92, + "end": 27453.96, + "probability": 0.0087 + }, + { + "start": 27453.96, + "end": 27454.42, + "probability": 0.1248 + }, + { + "start": 27454.42, + "end": 27457.5, + "probability": 0.2629 + }, + { + "start": 27457.74, + "end": 27459.02, + "probability": 0.4498 + }, + { + "start": 27459.44, + "end": 27461.0, + "probability": 0.2962 + }, + { + "start": 27461.12, + "end": 27462.6, + "probability": 0.1123 + }, + { + "start": 27463.94, + "end": 27467.3, + "probability": 0.6552 + }, + { + "start": 27467.56, + "end": 27467.9, + "probability": 0.5724 + }, + { + "start": 27467.92, + "end": 27470.08, + "probability": 0.8801 + }, + { + "start": 27470.46, + "end": 27472.5, + "probability": 0.1614 + }, + { + "start": 27472.5, + "end": 27472.66, + "probability": 0.4574 + }, + { + "start": 27472.8, + "end": 27474.34, + "probability": 0.2591 + }, + { + "start": 27474.56, + "end": 27475.22, + "probability": 0.5045 + }, + { + "start": 27475.36, + "end": 27476.0, + "probability": 0.3751 + }, + { + "start": 27476.0, + "end": 27476.38, + "probability": 0.9462 + }, + { + "start": 27476.56, + "end": 27481.46, + "probability": 0.667 + }, + { + "start": 27482.16, + "end": 27482.44, + "probability": 0.2116 + }, + { + "start": 27482.44, + "end": 27482.44, + "probability": 0.0191 + }, + { + "start": 27482.44, + "end": 27482.66, + "probability": 0.4167 + }, + { + "start": 27483.1, + "end": 27483.1, + "probability": 0.2607 + }, + { + "start": 27483.1, + "end": 27483.1, + "probability": 0.2766 + }, + { + "start": 27483.1, + "end": 27484.36, + "probability": 0.1277 + }, + { + "start": 27484.48, + "end": 27485.42, + "probability": 0.786 + }, + { + "start": 27485.76, + "end": 27491.26, + "probability": 0.8761 + }, + { + "start": 27491.62, + "end": 27495.88, + "probability": 0.9918 + }, + { + "start": 27496.0, + "end": 27499.02, + "probability": 0.9971 + }, + { + "start": 27499.48, + "end": 27506.06, + "probability": 0.9892 + }, + { + "start": 27506.54, + "end": 27513.22, + "probability": 0.9963 + }, + { + "start": 27513.62, + "end": 27515.38, + "probability": 0.3326 + }, + { + "start": 27515.96, + "end": 27519.56, + "probability": 0.9551 + }, + { + "start": 27520.32, + "end": 27522.0, + "probability": 0.9094 + }, + { + "start": 27522.06, + "end": 27524.34, + "probability": 0.9815 + }, + { + "start": 27524.68, + "end": 27525.9, + "probability": 0.7884 + }, + { + "start": 27526.36, + "end": 27527.38, + "probability": 0.9935 + }, + { + "start": 27528.24, + "end": 27529.52, + "probability": 0.9639 + }, + { + "start": 27529.62, + "end": 27530.78, + "probability": 0.9324 + }, + { + "start": 27530.82, + "end": 27532.62, + "probability": 0.9954 + }, + { + "start": 27533.18, + "end": 27540.62, + "probability": 0.9761 + }, + { + "start": 27540.9, + "end": 27542.5, + "probability": 0.7502 + }, + { + "start": 27542.82, + "end": 27545.9, + "probability": 0.9871 + }, + { + "start": 27546.06, + "end": 27549.86, + "probability": 0.9487 + }, + { + "start": 27550.08, + "end": 27553.4, + "probability": 0.9688 + }, + { + "start": 27553.84, + "end": 27558.86, + "probability": 0.991 + }, + { + "start": 27559.32, + "end": 27560.56, + "probability": 0.9641 + }, + { + "start": 27560.82, + "end": 27563.34, + "probability": 0.986 + }, + { + "start": 27563.5, + "end": 27568.66, + "probability": 0.4472 + }, + { + "start": 27568.74, + "end": 27572.52, + "probability": 0.3623 + }, + { + "start": 27572.72, + "end": 27575.3, + "probability": 0.0322 + }, + { + "start": 27583.64, + "end": 27584.94, + "probability": 0.3398 + }, + { + "start": 27586.08, + "end": 27590.04, + "probability": 0.3633 + }, + { + "start": 27590.28, + "end": 27596.48, + "probability": 0.2885 + }, + { + "start": 27596.48, + "end": 27599.7, + "probability": 0.6883 + }, + { + "start": 27599.82, + "end": 27601.02, + "probability": 0.4844 + }, + { + "start": 27601.12, + "end": 27603.7, + "probability": 0.9666 + }, + { + "start": 27603.84, + "end": 27606.82, + "probability": 0.6192 + }, + { + "start": 27606.88, + "end": 27608.86, + "probability": 0.9419 + }, + { + "start": 27609.06, + "end": 27609.66, + "probability": 0.2887 + }, + { + "start": 27610.37, + "end": 27612.36, + "probability": 0.9823 + }, + { + "start": 27612.44, + "end": 27613.0, + "probability": 0.4689 + }, + { + "start": 27613.0, + "end": 27613.8, + "probability": 0.9258 + }, + { + "start": 27613.94, + "end": 27614.88, + "probability": 0.9609 + }, + { + "start": 27615.0, + "end": 27616.2, + "probability": 0.7108 + }, + { + "start": 27617.4, + "end": 27629.66, + "probability": 0.7416 + }, + { + "start": 27630.5, + "end": 27632.46, + "probability": 0.9831 + }, + { + "start": 27634.08, + "end": 27638.2, + "probability": 0.9673 + }, + { + "start": 27638.74, + "end": 27640.42, + "probability": 0.9988 + }, + { + "start": 27640.7, + "end": 27645.44, + "probability": 0.9206 + }, + { + "start": 27645.82, + "end": 27647.6, + "probability": 0.8553 + }, + { + "start": 27648.26, + "end": 27649.92, + "probability": 0.9507 + }, + { + "start": 27650.72, + "end": 27651.51, + "probability": 0.6112 + }, + { + "start": 27652.54, + "end": 27656.18, + "probability": 0.9735 + }, + { + "start": 27656.72, + "end": 27658.34, + "probability": 0.9913 + }, + { + "start": 27658.34, + "end": 27658.7, + "probability": 0.7035 + }, + { + "start": 27659.1, + "end": 27662.18, + "probability": 0.9721 + }, + { + "start": 27663.54, + "end": 27666.34, + "probability": 0.9984 + }, + { + "start": 27667.06, + "end": 27670.16, + "probability": 0.9585 + }, + { + "start": 27670.9, + "end": 27673.76, + "probability": 0.7802 + }, + { + "start": 27677.52, + "end": 27679.24, + "probability": 0.7209 + }, + { + "start": 27680.56, + "end": 27681.72, + "probability": 0.9764 + }, + { + "start": 27681.8, + "end": 27682.9, + "probability": 0.771 + }, + { + "start": 27683.2, + "end": 27690.54, + "probability": 0.9767 + }, + { + "start": 27690.72, + "end": 27691.74, + "probability": 0.7893 + }, + { + "start": 27692.14, + "end": 27692.36, + "probability": 0.5028 + }, + { + "start": 27692.44, + "end": 27697.22, + "probability": 0.9897 + }, + { + "start": 27697.22, + "end": 27697.76, + "probability": 0.1779 + }, + { + "start": 27697.78, + "end": 27698.5, + "probability": 0.9774 + }, + { + "start": 27700.92, + "end": 27705.08, + "probability": 0.9878 + }, + { + "start": 27705.24, + "end": 27708.2, + "probability": 0.9844 + }, + { + "start": 27709.0, + "end": 27710.7, + "probability": 0.9923 + }, + { + "start": 27711.06, + "end": 27713.46, + "probability": 0.984 + }, + { + "start": 27714.3, + "end": 27714.46, + "probability": 0.5024 + }, + { + "start": 27714.46, + "end": 27714.56, + "probability": 0.7209 + }, + { + "start": 27714.68, + "end": 27715.6, + "probability": 0.9443 + }, + { + "start": 27716.04, + "end": 27717.14, + "probability": 0.8936 + }, + { + "start": 27717.28, + "end": 27718.82, + "probability": 0.927 + }, + { + "start": 27720.09, + "end": 27722.98, + "probability": 0.9229 + }, + { + "start": 27723.1, + "end": 27724.02, + "probability": 0.9507 + }, + { + "start": 27724.64, + "end": 27726.96, + "probability": 0.9724 + }, + { + "start": 27728.24, + "end": 27731.34, + "probability": 0.5009 + }, + { + "start": 27733.1, + "end": 27737.56, + "probability": 0.7447 + }, + { + "start": 27738.0, + "end": 27739.2, + "probability": 0.9751 + }, + { + "start": 27739.36, + "end": 27741.04, + "probability": 0.9766 + }, + { + "start": 27741.16, + "end": 27744.82, + "probability": 0.9167 + }, + { + "start": 27745.18, + "end": 27749.34, + "probability": 0.964 + }, + { + "start": 27749.66, + "end": 27752.8, + "probability": 0.9158 + }, + { + "start": 27752.99, + "end": 27755.46, + "probability": 0.6667 + }, + { + "start": 27756.06, + "end": 27759.88, + "probability": 0.9949 + }, + { + "start": 27760.26, + "end": 27762.0, + "probability": 0.9797 + }, + { + "start": 27762.56, + "end": 27765.18, + "probability": 0.9048 + }, + { + "start": 27765.98, + "end": 27769.96, + "probability": 0.1039 + }, + { + "start": 27770.26, + "end": 27772.34, + "probability": 0.6402 + }, + { + "start": 27772.42, + "end": 27772.72, + "probability": 0.3585 + }, + { + "start": 27772.88, + "end": 27773.46, + "probability": 0.7095 + }, + { + "start": 27773.56, + "end": 27775.98, + "probability": 0.9893 + }, + { + "start": 27776.02, + "end": 27777.74, + "probability": 0.8857 + }, + { + "start": 27778.0, + "end": 27779.57, + "probability": 0.9637 + }, + { + "start": 27779.78, + "end": 27782.44, + "probability": 0.8737 + }, + { + "start": 27782.6, + "end": 27784.92, + "probability": 0.8429 + }, + { + "start": 27784.92, + "end": 27786.42, + "probability": 0.8179 + }, + { + "start": 27788.16, + "end": 27794.26, + "probability": 0.9913 + }, + { + "start": 27794.36, + "end": 27795.63, + "probability": 0.7756 + }, + { + "start": 27796.34, + "end": 27798.28, + "probability": 0.8931 + }, + { + "start": 27798.32, + "end": 27799.78, + "probability": 0.8386 + }, + { + "start": 27799.92, + "end": 27800.54, + "probability": 0.8102 + }, + { + "start": 27800.74, + "end": 27805.58, + "probability": 0.9101 + }, + { + "start": 27805.88, + "end": 27807.24, + "probability": 0.6656 + }, + { + "start": 27807.4, + "end": 27808.98, + "probability": 0.7236 + }, + { + "start": 27809.46, + "end": 27811.68, + "probability": 0.7196 + }, + { + "start": 27812.62, + "end": 27815.48, + "probability": 0.6953 + }, + { + "start": 27816.04, + "end": 27817.38, + "probability": 0.9204 + }, + { + "start": 27817.5, + "end": 27818.46, + "probability": 0.6665 + }, + { + "start": 27819.04, + "end": 27820.1, + "probability": 0.8719 + }, + { + "start": 27820.5, + "end": 27822.36, + "probability": 0.7195 + }, + { + "start": 27823.83, + "end": 27825.79, + "probability": 0.8146 + }, + { + "start": 27827.24, + "end": 27835.22, + "probability": 0.0389 + }, + { + "start": 27835.97, + "end": 27837.88, + "probability": 0.4404 + }, + { + "start": 27838.68, + "end": 27840.02, + "probability": 0.9814 + }, + { + "start": 27840.52, + "end": 27841.96, + "probability": 0.9449 + }, + { + "start": 27843.29, + "end": 27844.2, + "probability": 0.6743 + }, + { + "start": 27844.24, + "end": 27846.98, + "probability": 0.6086 + }, + { + "start": 27847.56, + "end": 27852.4, + "probability": 0.9876 + }, + { + "start": 27852.54, + "end": 27854.94, + "probability": 0.9585 + }, + { + "start": 27854.98, + "end": 27857.02, + "probability": 0.9668 + }, + { + "start": 27857.2, + "end": 27862.26, + "probability": 0.9727 + }, + { + "start": 27862.34, + "end": 27863.04, + "probability": 0.5046 + }, + { + "start": 27863.1, + "end": 27864.6, + "probability": 0.9682 + }, + { + "start": 27865.0, + "end": 27865.66, + "probability": 0.8354 + }, + { + "start": 27865.68, + "end": 27866.4, + "probability": 0.4316 + }, + { + "start": 27867.26, + "end": 27867.86, + "probability": 0.8014 + }, + { + "start": 27867.92, + "end": 27868.91, + "probability": 0.9668 + }, + { + "start": 27869.22, + "end": 27871.92, + "probability": 0.8685 + }, + { + "start": 27872.7, + "end": 27874.62, + "probability": 0.9949 + }, + { + "start": 27875.34, + "end": 27877.04, + "probability": 0.96 + }, + { + "start": 27877.14, + "end": 27877.14, + "probability": 0.1941 + }, + { + "start": 27877.14, + "end": 27878.26, + "probability": 0.5191 + }, + { + "start": 27879.98, + "end": 27882.64, + "probability": 0.9388 + }, + { + "start": 27883.0, + "end": 27883.2, + "probability": 0.9349 + }, + { + "start": 27883.32, + "end": 27884.66, + "probability": 0.9126 + }, + { + "start": 27884.7, + "end": 27886.34, + "probability": 0.9622 + }, + { + "start": 27886.34, + "end": 27887.32, + "probability": 0.9756 + }, + { + "start": 27887.64, + "end": 27891.3, + "probability": 0.994 + }, + { + "start": 27891.7, + "end": 27893.8, + "probability": 0.7748 + }, + { + "start": 27893.94, + "end": 27896.0, + "probability": 0.4858 + }, + { + "start": 27896.62, + "end": 27897.53, + "probability": 0.6907 + }, + { + "start": 27897.82, + "end": 27899.96, + "probability": 0.8889 + }, + { + "start": 27900.49, + "end": 27902.58, + "probability": 0.5969 + }, + { + "start": 27903.36, + "end": 27903.74, + "probability": 0.5139 + }, + { + "start": 27903.74, + "end": 27906.0, + "probability": 0.9937 + }, + { + "start": 27906.52, + "end": 27910.36, + "probability": 0.9605 + }, + { + "start": 27910.36, + "end": 27913.82, + "probability": 0.7696 + }, + { + "start": 27915.04, + "end": 27915.44, + "probability": 0.6012 + }, + { + "start": 27916.34, + "end": 27917.29, + "probability": 0.8246 + }, + { + "start": 27918.54, + "end": 27921.1, + "probability": 0.9941 + }, + { + "start": 27921.46, + "end": 27922.34, + "probability": 0.9357 + }, + { + "start": 27922.88, + "end": 27923.6, + "probability": 0.2846 + }, + { + "start": 27924.24, + "end": 27929.08, + "probability": 0.5941 + }, + { + "start": 27930.24, + "end": 27936.92, + "probability": 0.8662 + }, + { + "start": 27937.44, + "end": 27943.14, + "probability": 0.9563 + }, + { + "start": 27943.74, + "end": 27946.14, + "probability": 0.7856 + }, + { + "start": 27946.7, + "end": 27950.86, + "probability": 0.7667 + }, + { + "start": 27951.38, + "end": 27953.36, + "probability": 0.9896 + }, + { + "start": 27956.16, + "end": 27958.9, + "probability": 0.9846 + }, + { + "start": 27959.92, + "end": 27962.96, + "probability": 0.6528 + }, + { + "start": 27963.6, + "end": 27966.3, + "probability": 0.8545 + }, + { + "start": 27967.0, + "end": 27969.64, + "probability": 0.9854 + }, + { + "start": 27970.36, + "end": 27973.56, + "probability": 0.9533 + }, + { + "start": 27974.69, + "end": 27977.42, + "probability": 0.9749 + }, + { + "start": 27978.48, + "end": 27978.92, + "probability": 0.9941 + }, + { + "start": 27980.02, + "end": 27985.54, + "probability": 0.9872 + }, + { + "start": 27986.16, + "end": 27992.64, + "probability": 0.8562 + }, + { + "start": 27993.36, + "end": 27996.7, + "probability": 0.9598 + }, + { + "start": 27997.44, + "end": 28003.46, + "probability": 0.9784 + }, + { + "start": 28004.3, + "end": 28004.74, + "probability": 0.9862 + }, + { + "start": 28007.7, + "end": 28008.76, + "probability": 0.7461 + }, + { + "start": 28009.98, + "end": 28012.98, + "probability": 0.8442 + }, + { + "start": 28013.55, + "end": 28016.28, + "probability": 0.949 + }, + { + "start": 28017.88, + "end": 28021.08, + "probability": 0.6661 + }, + { + "start": 28022.45, + "end": 28025.5, + "probability": 0.9899 + }, + { + "start": 28026.06, + "end": 28029.4, + "probability": 0.9846 + }, + { + "start": 28030.62, + "end": 28034.76, + "probability": 0.974 + }, + { + "start": 28036.66, + "end": 28039.44, + "probability": 0.777 + }, + { + "start": 28040.16, + "end": 28042.92, + "probability": 0.9243 + }, + { + "start": 28043.56, + "end": 28049.64, + "probability": 0.9808 + }, + { + "start": 28050.3, + "end": 28052.56, + "probability": 0.7409 + }, + { + "start": 28053.38, + "end": 28055.04, + "probability": 0.8455 + }, + { + "start": 28055.86, + "end": 28057.94, + "probability": 0.9919 + }, + { + "start": 28058.66, + "end": 28061.32, + "probability": 0.8532 + }, + { + "start": 28061.88, + "end": 28064.8, + "probability": 0.8247 + }, + { + "start": 28065.9, + "end": 28068.04, + "probability": 0.851 + }, + { + "start": 28069.14, + "end": 28076.32, + "probability": 0.9412 + }, + { + "start": 28077.0, + "end": 28080.36, + "probability": 0.9526 + }, + { + "start": 28081.04, + "end": 28088.32, + "probability": 0.8889 + }, + { + "start": 28089.24, + "end": 28089.52, + "probability": 0.7819 + }, + { + "start": 28093.0, + "end": 28104.06, + "probability": 0.875 + }, + { + "start": 28106.9, + "end": 28111.34, + "probability": 0.7848 + }, + { + "start": 28113.04, + "end": 28116.44, + "probability": 0.9626 + }, + { + "start": 28117.0, + "end": 28119.04, + "probability": 0.9582 + }, + { + "start": 28119.74, + "end": 28122.26, + "probability": 0.9887 + }, + { + "start": 28123.06, + "end": 28125.88, + "probability": 0.9892 + }, + { + "start": 28126.58, + "end": 28128.1, + "probability": 0.9875 + }, + { + "start": 28128.94, + "end": 28129.94, + "probability": 0.8484 + }, + { + "start": 28132.35, + "end": 28133.54, + "probability": 0.0452 + }, + { + "start": 28142.42, + "end": 28144.48, + "probability": 0.5703 + }, + { + "start": 28145.5, + "end": 28147.56, + "probability": 0.8862 + }, + { + "start": 28148.62, + "end": 28153.3, + "probability": 0.8569 + }, + { + "start": 28157.2, + "end": 28158.58, + "probability": 0.9644 + }, + { + "start": 28165.58, + "end": 28165.72, + "probability": 0.4784 + }, + { + "start": 28171.52, + "end": 28172.8, + "probability": 0.3344 + }, + { + "start": 28173.34, + "end": 28176.74, + "probability": 0.7021 + }, + { + "start": 28178.47, + "end": 28180.82, + "probability": 0.9651 + }, + { + "start": 28181.98, + "end": 28184.54, + "probability": 0.9899 + }, + { + "start": 28185.4, + "end": 28187.62, + "probability": 0.9758 + }, + { + "start": 28188.72, + "end": 28190.82, + "probability": 0.9492 + }, + { + "start": 28191.94, + "end": 28195.02, + "probability": 0.9742 + }, + { + "start": 28195.98, + "end": 28196.36, + "probability": 0.9883 + }, + { + "start": 28198.68, + "end": 28199.38, + "probability": 0.7441 + }, + { + "start": 28200.08, + "end": 28202.98, + "probability": 0.9399 + }, + { + "start": 28203.74, + "end": 28204.2, + "probability": 0.9229 + }, + { + "start": 28205.42, + "end": 28209.8, + "probability": 0.9736 + }, + { + "start": 28210.72, + "end": 28213.72, + "probability": 0.9635 + }, + { + "start": 28214.4, + "end": 28217.1, + "probability": 0.9854 + }, + { + "start": 28217.78, + "end": 28220.46, + "probability": 0.8756 + }, + { + "start": 28220.98, + "end": 28221.38, + "probability": 0.9941 + }, + { + "start": 28222.16, + "end": 28222.96, + "probability": 0.8135 + }, + { + "start": 28223.8, + "end": 28224.06, + "probability": 0.5501 + }, + { + "start": 28225.06, + "end": 28226.28, + "probability": 0.7052 + }, + { + "start": 28229.16, + "end": 28233.82, + "probability": 0.9269 + }, + { + "start": 28235.04, + "end": 28237.9, + "probability": 0.8291 + }, + { + "start": 28239.0, + "end": 28241.4, + "probability": 0.9795 + }, + { + "start": 28242.02, + "end": 28245.4, + "probability": 0.9928 + }, + { + "start": 28246.52, + "end": 28249.92, + "probability": 0.9938 + }, + { + "start": 28250.56, + "end": 28256.16, + "probability": 0.7411 + }, + { + "start": 28256.94, + "end": 28259.14, + "probability": 0.908 + }, + { + "start": 28260.32, + "end": 28263.7, + "probability": 0.8749 + }, + { + "start": 28264.37, + "end": 28267.08, + "probability": 0.8463 + }, + { + "start": 28268.16, + "end": 28268.6, + "probability": 0.9946 + }, + { + "start": 28270.7, + "end": 28272.04, + "probability": 0.9066 + }, + { + "start": 28273.06, + "end": 28277.62, + "probability": 0.9068 + }, + { + "start": 28278.14, + "end": 28280.24, + "probability": 0.8655 + }, + { + "start": 28281.06, + "end": 28287.18, + "probability": 0.8107 + }, + { + "start": 28290.68, + "end": 28294.52, + "probability": 0.96 + }, + { + "start": 28296.24, + "end": 28299.52, + "probability": 0.9572 + }, + { + "start": 28300.22, + "end": 28305.92, + "probability": 0.8434 + }, + { + "start": 28306.68, + "end": 28309.48, + "probability": 0.9858 + }, + { + "start": 28310.18, + "end": 28310.98, + "probability": 0.9928 + }, + { + "start": 28311.8, + "end": 28313.34, + "probability": 0.882 + }, + { + "start": 28315.2, + "end": 28321.0, + "probability": 0.824 + }, + { + "start": 28322.8, + "end": 28325.28, + "probability": 0.8333 + }, + { + "start": 28326.68, + "end": 28329.08, + "probability": 0.993 + }, + { + "start": 28329.94, + "end": 28332.46, + "probability": 0.9259 + }, + { + "start": 28333.34, + "end": 28336.38, + "probability": 0.9315 + }, + { + "start": 28337.38, + "end": 28340.64, + "probability": 0.994 + }, + { + "start": 28341.34, + "end": 28347.26, + "probability": 0.8112 + }, + { + "start": 28348.24, + "end": 28354.04, + "probability": 0.9711 + }, + { + "start": 28356.02, + "end": 28357.56, + "probability": 0.9503 + }, + { + "start": 28358.84, + "end": 28361.12, + "probability": 0.9961 + }, + { + "start": 28362.0, + "end": 28364.28, + "probability": 0.9973 + }, + { + "start": 28365.86, + "end": 28366.62, + "probability": 0.9916 + }, + { + "start": 28367.74, + "end": 28370.06, + "probability": 0.9303 + }, + { + "start": 28371.14, + "end": 28372.76, + "probability": 0.6148 + }, + { + "start": 28373.76, + "end": 28375.92, + "probability": 0.9046 + }, + { + "start": 28376.7, + "end": 28379.16, + "probability": 0.9647 + }, + { + "start": 28380.02, + "end": 28383.06, + "probability": 0.9271 + }, + { + "start": 28383.76, + "end": 28385.88, + "probability": 0.9958 + }, + { + "start": 28386.46, + "end": 28388.72, + "probability": 0.9836 + }, + { + "start": 28389.54, + "end": 28393.64, + "probability": 0.931 + }, + { + "start": 28394.48, + "end": 28395.02, + "probability": 0.9743 + }, + { + "start": 28396.14, + "end": 28397.22, + "probability": 0.6149 + }, + { + "start": 28401.33, + "end": 28405.16, + "probability": 0.9809 + }, + { + "start": 28408.42, + "end": 28409.36, + "probability": 0.4769 + }, + { + "start": 28409.74, + "end": 28411.94, + "probability": 0.9238 + }, + { + "start": 28412.08, + "end": 28415.74, + "probability": 0.67 + }, + { + "start": 28416.6, + "end": 28418.94, + "probability": 0.9002 + }, + { + "start": 28420.12, + "end": 28420.72, + "probability": 0.6826 + }, + { + "start": 28423.62, + "end": 28425.92, + "probability": 0.7724 + }, + { + "start": 28430.4, + "end": 28433.92, + "probability": 0.9958 + }, + { + "start": 28435.62, + "end": 28437.46, + "probability": 0.226 + }, + { + "start": 28437.74, + "end": 28438.48, + "probability": 0.3219 + }, + { + "start": 28438.5, + "end": 28440.26, + "probability": 0.7538 + }, + { + "start": 28449.9, + "end": 28450.26, + "probability": 0.0176 + }, + { + "start": 28455.58, + "end": 28458.14, + "probability": 0.0681 + }, + { + "start": 28469.72, + "end": 28474.68, + "probability": 0.0311 + }, + { + "start": 28474.68, + "end": 28474.68, + "probability": 0.0334 + }, + { + "start": 28475.18, + "end": 28475.18, + "probability": 0.039 + }, + { + "start": 28475.18, + "end": 28476.24, + "probability": 0.0338 + }, + { + "start": 28594.0, + "end": 28594.0, + "probability": 0.0 + }, + { + "start": 28594.48, + "end": 28596.6, + "probability": 0.8544 + }, + { + "start": 28597.18, + "end": 28599.78, + "probability": 0.906 + }, + { + "start": 28600.4, + "end": 28604.02, + "probability": 0.5156 + }, + { + "start": 28604.02, + "end": 28607.21, + "probability": 0.7581 + }, + { + "start": 28607.94, + "end": 28609.22, + "probability": 0.6898 + }, + { + "start": 28609.36, + "end": 28610.38, + "probability": 0.9835 + }, + { + "start": 28611.84, + "end": 28614.0, + "probability": 0.8493 + }, + { + "start": 28614.1, + "end": 28616.14, + "probability": 0.0726 + }, + { + "start": 28616.16, + "end": 28616.78, + "probability": 0.8588 + }, + { + "start": 28618.06, + "end": 28621.62, + "probability": 0.4497 + }, + { + "start": 28622.26, + "end": 28623.86, + "probability": 0.8426 + }, + { + "start": 28624.18, + "end": 28626.12, + "probability": 0.9744 + }, + { + "start": 28626.46, + "end": 28629.42, + "probability": 0.913 + }, + { + "start": 28629.96, + "end": 28632.04, + "probability": 0.9319 + }, + { + "start": 28633.22, + "end": 28635.4, + "probability": 0.974 + }, + { + "start": 28636.2, + "end": 28636.46, + "probability": 0.5819 + }, + { + "start": 28637.08, + "end": 28637.8, + "probability": 0.4856 + }, + { + "start": 28638.36, + "end": 28640.44, + "probability": 0.8023 + }, + { + "start": 28641.38, + "end": 28643.76, + "probability": 0.769 + }, + { + "start": 28645.26, + "end": 28650.24, + "probability": 0.9914 + }, + { + "start": 28651.16, + "end": 28653.6, + "probability": 0.9948 + }, + { + "start": 28654.5, + "end": 28659.94, + "probability": 0.9854 + }, + { + "start": 28660.64, + "end": 28662.96, + "probability": 0.6119 + }, + { + "start": 28667.06, + "end": 28671.62, + "probability": 0.9575 + }, + { + "start": 28674.26, + "end": 28677.54, + "probability": 0.9665 + }, + { + "start": 28678.14, + "end": 28680.16, + "probability": 0.9541 + }, + { + "start": 28681.98, + "end": 28684.44, + "probability": 0.9324 + }, + { + "start": 28684.82, + "end": 28687.18, + "probability": 0.9486 + }, + { + "start": 28687.58, + "end": 28690.1, + "probability": 0.8862 + }, + { + "start": 28690.1, + "end": 28693.18, + "probability": 0.7967 + }, + { + "start": 28696.58, + "end": 28699.76, + "probability": 0.7912 + }, + { + "start": 28700.62, + "end": 28705.62, + "probability": 0.9561 + }, + { + "start": 28706.5, + "end": 28708.4, + "probability": 0.943 + }, + { + "start": 28709.22, + "end": 28715.14, + "probability": 0.6003 + }, + { + "start": 28722.42, + "end": 28726.14, + "probability": 0.5216 + }, + { + "start": 28728.38, + "end": 28733.04, + "probability": 0.9624 + }, + { + "start": 28734.12, + "end": 28737.74, + "probability": 0.9911 + }, + { + "start": 28738.48, + "end": 28740.54, + "probability": 0.9888 + }, + { + "start": 28741.08, + "end": 28745.54, + "probability": 0.9663 + }, + { + "start": 28746.26, + "end": 28748.88, + "probability": 0.3506 + }, + { + "start": 28751.6, + "end": 28754.58, + "probability": 0.7308 + }, + { + "start": 28756.02, + "end": 28757.24, + "probability": 0.9734 + }, + { + "start": 28757.8, + "end": 28762.44, + "probability": 0.9151 + }, + { + "start": 28763.5, + "end": 28767.14, + "probability": 0.8013 + }, + { + "start": 28767.72, + "end": 28771.06, + "probability": 0.8315 + }, + { + "start": 28771.06, + "end": 28774.54, + "probability": 0.8436 + }, + { + "start": 28774.92, + "end": 28778.66, + "probability": 0.8602 + }, + { + "start": 28779.34, + "end": 28785.14, + "probability": 0.8721 + }, + { + "start": 28786.34, + "end": 28789.02, + "probability": 0.8216 + }, + { + "start": 28790.06, + "end": 28795.32, + "probability": 0.9566 + }, + { + "start": 28795.86, + "end": 28799.3, + "probability": 0.9097 + }, + { + "start": 28800.18, + "end": 28802.24, + "probability": 0.7493 + }, + { + "start": 28803.08, + "end": 28803.56, + "probability": 0.7607 + }, + { + "start": 28804.36, + "end": 28805.22, + "probability": 0.8773 + }, + { + "start": 28806.46, + "end": 28809.62, + "probability": 0.9862 + }, + { + "start": 28810.16, + "end": 28816.42, + "probability": 0.9596 + }, + { + "start": 28820.26, + "end": 28823.24, + "probability": 0.8363 + }, + { + "start": 28824.16, + "end": 28825.86, + "probability": 0.9655 + }, + { + "start": 28826.64, + "end": 28828.56, + "probability": 0.9517 + }, + { + "start": 28829.62, + "end": 28837.1, + "probability": 0.9802 + }, + { + "start": 28837.74, + "end": 28842.94, + "probability": 0.9705 + }, + { + "start": 28843.9, + "end": 28845.86, + "probability": 0.9785 + }, + { + "start": 28846.84, + "end": 28848.68, + "probability": 0.8381 + }, + { + "start": 28849.68, + "end": 28851.74, + "probability": 0.9731 + }, + { + "start": 28852.64, + "end": 28855.38, + "probability": 0.9148 + }, + { + "start": 28856.18, + "end": 28858.84, + "probability": 0.9925 + }, + { + "start": 28859.58, + "end": 28862.16, + "probability": 0.9897 + }, + { + "start": 28862.7, + "end": 28869.76, + "probability": 0.9771 + }, + { + "start": 28870.54, + "end": 28872.94, + "probability": 0.5682 + }, + { + "start": 28874.06, + "end": 28874.82, + "probability": 0.8044 + }, + { + "start": 28875.34, + "end": 28876.92, + "probability": 0.9099 + }, + { + "start": 28877.74, + "end": 28880.74, + "probability": 0.951 + }, + { + "start": 28881.08, + "end": 28883.56, + "probability": 0.8402 + }, + { + "start": 28883.96, + "end": 28885.7, + "probability": 0.9881 + }, + { + "start": 28886.48, + "end": 28889.4, + "probability": 0.9706 + }, + { + "start": 28890.84, + "end": 28902.46, + "probability": 0.9549 + }, + { + "start": 28902.98, + "end": 28905.48, + "probability": 0.8664 + }, + { + "start": 28906.0, + "end": 28913.02, + "probability": 0.9317 + }, + { + "start": 28913.62, + "end": 28916.54, + "probability": 0.9316 + }, + { + "start": 28917.5, + "end": 28920.48, + "probability": 0.9753 + }, + { + "start": 28920.98, + "end": 28923.88, + "probability": 0.9304 + }, + { + "start": 28924.65, + "end": 28926.72, + "probability": 0.905 + }, + { + "start": 28927.92, + "end": 28930.52, + "probability": 0.9665 + }, + { + "start": 28931.04, + "end": 28934.52, + "probability": 0.6306 + }, + { + "start": 28940.14, + "end": 28940.78, + "probability": 0.546 + }, + { + "start": 28941.9, + "end": 28942.8, + "probability": 0.7339 + }, + { + "start": 28943.64, + "end": 28946.06, + "probability": 0.9502 + }, + { + "start": 28946.92, + "end": 28949.0, + "probability": 0.9836 + }, + { + "start": 28953.76, + "end": 28955.86, + "probability": 0.9032 + }, + { + "start": 28956.88, + "end": 28958.04, + "probability": 0.9552 + }, + { + "start": 28959.5, + "end": 28963.58, + "probability": 0.9679 + }, + { + "start": 28964.8, + "end": 28967.76, + "probability": 0.5635 + }, + { + "start": 28968.94, + "end": 28970.74, + "probability": 0.6053 + }, + { + "start": 28971.4, + "end": 28973.58, + "probability": 0.8016 + }, + { + "start": 28974.46, + "end": 28977.48, + "probability": 0.9756 + }, + { + "start": 28978.58, + "end": 28981.02, + "probability": 0.9937 + }, + { + "start": 28981.58, + "end": 28983.86, + "probability": 0.9421 + }, + { + "start": 28984.92, + "end": 28985.82, + "probability": 0.9866 + }, + { + "start": 28986.44, + "end": 28987.68, + "probability": 0.9792 + }, + { + "start": 28988.34, + "end": 28991.12, + "probability": 0.9138 + }, + { + "start": 28991.88, + "end": 28995.46, + "probability": 0.8503 + }, + { + "start": 28996.2, + "end": 28998.36, + "probability": 0.835 + }, + { + "start": 28999.08, + "end": 29001.6, + "probability": 0.868 + }, + { + "start": 29002.6, + "end": 29005.72, + "probability": 0.9883 + }, + { + "start": 29007.06, + "end": 29009.26, + "probability": 0.9762 + }, + { + "start": 29009.78, + "end": 29012.16, + "probability": 0.9603 + }, + { + "start": 29012.8, + "end": 29017.86, + "probability": 0.9851 + }, + { + "start": 29019.06, + "end": 29022.04, + "probability": 0.9966 + }, + { + "start": 29025.34, + "end": 29026.42, + "probability": 0.6484 + }, + { + "start": 29027.24, + "end": 29029.72, + "probability": 0.8854 + }, + { + "start": 29031.12, + "end": 29034.34, + "probability": 0.9451 + }, + { + "start": 29035.12, + "end": 29037.02, + "probability": 0.9346 + }, + { + "start": 29037.94, + "end": 29040.5, + "probability": 0.9441 + }, + { + "start": 29041.16, + "end": 29044.6, + "probability": 0.9941 + }, + { + "start": 29045.1, + "end": 29051.08, + "probability": 0.7048 + }, + { + "start": 29051.6, + "end": 29055.18, + "probability": 0.7953 + }, + { + "start": 29056.27, + "end": 29060.74, + "probability": 0.9915 + }, + { + "start": 29061.78, + "end": 29065.14, + "probability": 0.2916 + }, + { + "start": 29066.14, + "end": 29068.26, + "probability": 0.7306 + }, + { + "start": 29069.06, + "end": 29075.78, + "probability": 0.941 + }, + { + "start": 29077.0, + "end": 29079.78, + "probability": 0.94 + }, + { + "start": 29081.2, + "end": 29082.0, + "probability": 0.9876 + }, + { + "start": 29088.09, + "end": 29090.8, + "probability": 0.917 + }, + { + "start": 29092.97, + "end": 29094.91, + "probability": 0.6396 + }, + { + "start": 29094.93, + "end": 29096.31, + "probability": 0.9512 + }, + { + "start": 29098.03, + "end": 29100.63, + "probability": 0.0 + }, + { + "start": 29101.63, + "end": 29102.95, + "probability": 0.03 + }, + { + "start": 29112.01, + "end": 29112.01, + "probability": 0.0 + }, + { + "start": 29165.05, + "end": 29167.37, + "probability": 0.203 + }, + { + "start": 29168.61, + "end": 29170.21, + "probability": 0.011 + }, + { + "start": 29173.72, + "end": 29175.65, + "probability": 0.0092 + }, + { + "start": 29248.22, + "end": 29248.24, + "probability": 0.1943 + }, + { + "start": 29248.24, + "end": 29248.24, + "probability": 0.0337 + }, + { + "start": 29248.24, + "end": 29253.46, + "probability": 0.9113 + }, + { + "start": 29254.12, + "end": 29257.5, + "probability": 0.9267 + }, + { + "start": 29257.92, + "end": 29259.06, + "probability": 0.7087 + }, + { + "start": 29259.18, + "end": 29260.06, + "probability": 0.5949 + }, + { + "start": 29260.16, + "end": 29261.32, + "probability": 0.9791 + }, + { + "start": 29261.44, + "end": 29265.66, + "probability": 0.9773 + }, + { + "start": 29265.66, + "end": 29271.68, + "probability": 0.828 + }, + { + "start": 29271.92, + "end": 29274.68, + "probability": 0.6444 + }, + { + "start": 29283.36, + "end": 29284.66, + "probability": 0.7477 + }, + { + "start": 29284.74, + "end": 29288.08, + "probability": 0.9748 + }, + { + "start": 29290.38, + "end": 29292.14, + "probability": 0.2302 + }, + { + "start": 29292.14, + "end": 29293.18, + "probability": 0.57 + }, + { + "start": 29293.32, + "end": 29294.04, + "probability": 0.605 + }, + { + "start": 29294.12, + "end": 29294.52, + "probability": 0.7841 + }, + { + "start": 29299.91, + "end": 29301.1, + "probability": 0.6785 + }, + { + "start": 29303.29, + "end": 29305.73, + "probability": 0.6909 + }, + { + "start": 29306.05, + "end": 29308.99, + "probability": 0.5948 + }, + { + "start": 29309.03, + "end": 29309.58, + "probability": 0.9844 + }, + { + "start": 29315.87, + "end": 29316.47, + "probability": 0.6259 + }, + { + "start": 29316.53, + "end": 29317.43, + "probability": 0.8333 + }, + { + "start": 29317.49, + "end": 29319.33, + "probability": 0.9089 + }, + { + "start": 29319.33, + "end": 29321.59, + "probability": 0.9441 + }, + { + "start": 29323.01, + "end": 29326.01, + "probability": 0.9831 + }, + { + "start": 29326.47, + "end": 29328.91, + "probability": 0.9803 + }, + { + "start": 29328.91, + "end": 29331.07, + "probability": 0.9938 + }, + { + "start": 29331.23, + "end": 29332.01, + "probability": 0.7311 + }, + { + "start": 29332.55, + "end": 29337.11, + "probability": 0.9728 + }, + { + "start": 29337.61, + "end": 29341.39, + "probability": 0.9785 + }, + { + "start": 29341.91, + "end": 29343.21, + "probability": 0.8176 + }, + { + "start": 29343.37, + "end": 29346.61, + "probability": 0.9961 + }, + { + "start": 29348.27, + "end": 29351.95, + "probability": 0.9779 + }, + { + "start": 29352.3, + "end": 29356.83, + "probability": 0.9854 + }, + { + "start": 29356.89, + "end": 29357.37, + "probability": 0.7347 + }, + { + "start": 29357.41, + "end": 29361.87, + "probability": 0.9839 + }, + { + "start": 29362.01, + "end": 29363.63, + "probability": 0.972 + }, + { + "start": 29363.97, + "end": 29366.25, + "probability": 0.938 + }, + { + "start": 29366.55, + "end": 29368.25, + "probability": 0.7825 + }, + { + "start": 29368.25, + "end": 29370.89, + "probability": 0.9814 + }, + { + "start": 29371.17, + "end": 29372.89, + "probability": 0.9902 + }, + { + "start": 29373.93, + "end": 29377.45, + "probability": 0.7153 + }, + { + "start": 29377.59, + "end": 29379.29, + "probability": 0.6688 + }, + { + "start": 29379.37, + "end": 29380.03, + "probability": 0.3782 + }, + { + "start": 29380.07, + "end": 29381.15, + "probability": 0.4776 + }, + { + "start": 29381.19, + "end": 29382.03, + "probability": 0.8064 + }, + { + "start": 29382.07, + "end": 29384.29, + "probability": 0.9824 + }, + { + "start": 29384.29, + "end": 29387.61, + "probability": 0.9962 + }, + { + "start": 29387.71, + "end": 29388.97, + "probability": 0.996 + }, + { + "start": 29389.47, + "end": 29392.41, + "probability": 0.8092 + }, + { + "start": 29393.41, + "end": 29393.79, + "probability": 0.8079 + }, + { + "start": 29394.03, + "end": 29396.65, + "probability": 0.9618 + }, + { + "start": 29396.65, + "end": 29399.97, + "probability": 0.9943 + }, + { + "start": 29400.43, + "end": 29402.43, + "probability": 0.8537 + }, + { + "start": 29402.43, + "end": 29404.83, + "probability": 0.9912 + }, + { + "start": 29405.05, + "end": 29407.13, + "probability": 0.9916 + }, + { + "start": 29407.13, + "end": 29411.06, + "probability": 0.9902 + }, + { + "start": 29411.39, + "end": 29412.19, + "probability": 0.7665 + }, + { + "start": 29412.51, + "end": 29414.59, + "probability": 0.9881 + }, + { + "start": 29414.77, + "end": 29417.81, + "probability": 0.709 + }, + { + "start": 29418.21, + "end": 29421.97, + "probability": 0.9926 + }, + { + "start": 29422.41, + "end": 29425.31, + "probability": 0.9888 + }, + { + "start": 29425.31, + "end": 29429.29, + "probability": 0.9978 + }, + { + "start": 29430.43, + "end": 29433.07, + "probability": 0.9314 + }, + { + "start": 29433.75, + "end": 29434.27, + "probability": 0.033 + }, + { + "start": 29434.49, + "end": 29438.17, + "probability": 0.9759 + }, + { + "start": 29438.25, + "end": 29438.51, + "probability": 0.3369 + }, + { + "start": 29438.65, + "end": 29439.33, + "probability": 0.6765 + }, + { + "start": 29440.03, + "end": 29441.06, + "probability": 0.1303 + }, + { + "start": 29441.25, + "end": 29444.87, + "probability": 0.9976 + }, + { + "start": 29444.87, + "end": 29450.49, + "probability": 0.9875 + }, + { + "start": 29450.49, + "end": 29450.49, + "probability": 0.0795 + }, + { + "start": 29450.49, + "end": 29451.93, + "probability": 0.6462 + }, + { + "start": 29451.93, + "end": 29456.93, + "probability": 0.2908 + }, + { + "start": 29457.17, + "end": 29457.81, + "probability": 0.1526 + }, + { + "start": 29459.27, + "end": 29460.27, + "probability": 0.753 + }, + { + "start": 29460.47, + "end": 29465.53, + "probability": 0.997 + }, + { + "start": 29465.65, + "end": 29469.45, + "probability": 0.946 + }, + { + "start": 29469.53, + "end": 29469.75, + "probability": 0.729 + }, + { + "start": 29471.21, + "end": 29471.83, + "probability": 0.571 + }, + { + "start": 29472.25, + "end": 29473.95, + "probability": 0.974 + }, + { + "start": 29474.36, + "end": 29478.59, + "probability": 0.9811 + }, + { + "start": 29478.95, + "end": 29480.83, + "probability": 0.429 + }, + { + "start": 29481.03, + "end": 29482.07, + "probability": 0.7688 + }, + { + "start": 29482.56, + "end": 29484.03, + "probability": 0.6888 + }, + { + "start": 29484.39, + "end": 29484.71, + "probability": 0.2598 + }, + { + "start": 29484.77, + "end": 29485.65, + "probability": 0.5552 + }, + { + "start": 29485.65, + "end": 29486.71, + "probability": 0.7997 + }, + { + "start": 29486.81, + "end": 29487.27, + "probability": 0.7451 + }, + { + "start": 29487.77, + "end": 29489.63, + "probability": 0.9971 + }, + { + "start": 29489.75, + "end": 29490.98, + "probability": 0.9902 + }, + { + "start": 29491.87, + "end": 29499.93, + "probability": 0.9717 + }, + { + "start": 29500.49, + "end": 29504.57, + "probability": 0.994 + }, + { + "start": 29504.69, + "end": 29505.89, + "probability": 0.952 + }, + { + "start": 29506.31, + "end": 29507.98, + "probability": 0.7282 + }, + { + "start": 29508.57, + "end": 29509.61, + "probability": 0.8895 + }, + { + "start": 29509.93, + "end": 29510.79, + "probability": 0.963 + }, + { + "start": 29510.89, + "end": 29511.27, + "probability": 0.9608 + }, + { + "start": 29511.55, + "end": 29513.21, + "probability": 0.9536 + }, + { + "start": 29513.95, + "end": 29517.01, + "probability": 0.8397 + }, + { + "start": 29517.57, + "end": 29518.83, + "probability": 0.9644 + }, + { + "start": 29519.35, + "end": 29520.49, + "probability": 0.8346 + }, + { + "start": 29520.65, + "end": 29525.13, + "probability": 0.9772 + }, + { + "start": 29525.47, + "end": 29529.63, + "probability": 0.9914 + }, + { + "start": 29529.85, + "end": 29531.5, + "probability": 0.6998 + }, + { + "start": 29531.79, + "end": 29533.33, + "probability": 0.7491 + }, + { + "start": 29533.75, + "end": 29536.23, + "probability": 0.9972 + }, + { + "start": 29536.41, + "end": 29538.51, + "probability": 0.9915 + }, + { + "start": 29538.97, + "end": 29540.35, + "probability": 0.8469 + }, + { + "start": 29540.51, + "end": 29541.84, + "probability": 0.9783 + }, + { + "start": 29542.25, + "end": 29542.97, + "probability": 0.4837 + }, + { + "start": 29543.07, + "end": 29546.35, + "probability": 0.967 + }, + { + "start": 29546.45, + "end": 29547.49, + "probability": 0.3057 + }, + { + "start": 29547.53, + "end": 29549.45, + "probability": 0.4351 + }, + { + "start": 29549.53, + "end": 29551.77, + "probability": 0.5994 + }, + { + "start": 29551.85, + "end": 29552.41, + "probability": 0.9099 + }, + { + "start": 29552.41, + "end": 29557.03, + "probability": 0.9775 + }, + { + "start": 29558.06, + "end": 29560.95, + "probability": 0.9586 + }, + { + "start": 29561.45, + "end": 29562.41, + "probability": 0.4458 + }, + { + "start": 29562.41, + "end": 29563.87, + "probability": 0.6092 + }, + { + "start": 29564.19, + "end": 29567.37, + "probability": 0.7896 + }, + { + "start": 29567.71, + "end": 29569.27, + "probability": 0.9603 + }, + { + "start": 29569.39, + "end": 29571.25, + "probability": 0.7513 + }, + { + "start": 29571.63, + "end": 29572.87, + "probability": 0.9206 + }, + { + "start": 29572.99, + "end": 29574.79, + "probability": 0.8887 + }, + { + "start": 29574.93, + "end": 29575.21, + "probability": 0.7673 + }, + { + "start": 29575.29, + "end": 29579.23, + "probability": 0.932 + }, + { + "start": 29579.41, + "end": 29580.53, + "probability": 0.869 + }, + { + "start": 29581.13, + "end": 29586.51, + "probability": 0.9597 + }, + { + "start": 29587.69, + "end": 29591.39, + "probability": 0.7015 + }, + { + "start": 29591.53, + "end": 29593.25, + "probability": 0.8984 + }, + { + "start": 29593.77, + "end": 29596.25, + "probability": 0.9925 + }, + { + "start": 29596.67, + "end": 29598.58, + "probability": 0.9859 + }, + { + "start": 29599.19, + "end": 29600.23, + "probability": 0.7913 + }, + { + "start": 29600.43, + "end": 29601.05, + "probability": 0.5244 + }, + { + "start": 29601.33, + "end": 29602.23, + "probability": 0.9311 + }, + { + "start": 29603.65, + "end": 29603.65, + "probability": 0.4907 + }, + { + "start": 29603.75, + "end": 29604.35, + "probability": 0.7355 + }, + { + "start": 29604.69, + "end": 29605.99, + "probability": 0.8845 + }, + { + "start": 29606.13, + "end": 29609.93, + "probability": 0.9733 + }, + { + "start": 29610.45, + "end": 29611.37, + "probability": 0.8324 + }, + { + "start": 29611.93, + "end": 29612.73, + "probability": 0.9771 + }, + { + "start": 29612.85, + "end": 29614.18, + "probability": 0.9961 + }, + { + "start": 29614.45, + "end": 29617.77, + "probability": 0.9766 + }, + { + "start": 29617.91, + "end": 29619.77, + "probability": 0.4275 + }, + { + "start": 29619.77, + "end": 29621.45, + "probability": 0.5724 + }, + { + "start": 29621.77, + "end": 29622.97, + "probability": 0.7468 + }, + { + "start": 29623.31, + "end": 29624.97, + "probability": 0.6597 + }, + { + "start": 29625.19, + "end": 29629.49, + "probability": 0.7757 + }, + { + "start": 29629.49, + "end": 29631.29, + "probability": 0.9192 + }, + { + "start": 29631.89, + "end": 29632.65, + "probability": 0.8624 + }, + { + "start": 29633.05, + "end": 29635.07, + "probability": 0.9251 + }, + { + "start": 29635.41, + "end": 29639.23, + "probability": 0.9839 + }, + { + "start": 29639.75, + "end": 29640.33, + "probability": 0.8322 + }, + { + "start": 29640.73, + "end": 29640.95, + "probability": 0.106 + }, + { + "start": 29640.95, + "end": 29641.67, + "probability": 0.8001 + }, + { + "start": 29642.33, + "end": 29644.31, + "probability": 0.6761 + }, + { + "start": 29644.47, + "end": 29645.51, + "probability": 0.5122 + }, + { + "start": 29645.67, + "end": 29645.81, + "probability": 0.2966 + }, + { + "start": 29646.39, + "end": 29647.07, + "probability": 0.0209 + }, + { + "start": 29647.33, + "end": 29647.43, + "probability": 0.672 + }, + { + "start": 29647.53, + "end": 29650.11, + "probability": 0.8724 + }, + { + "start": 29650.51, + "end": 29650.63, + "probability": 0.3847 + }, + { + "start": 29650.63, + "end": 29652.37, + "probability": 0.4688 + }, + { + "start": 29652.61, + "end": 29653.33, + "probability": 0.3853 + }, + { + "start": 29653.33, + "end": 29654.35, + "probability": 0.6363 + }, + { + "start": 29654.49, + "end": 29655.51, + "probability": 0.4766 + }, + { + "start": 29655.93, + "end": 29656.09, + "probability": 0.1912 + }, + { + "start": 29656.09, + "end": 29658.35, + "probability": 0.6657 + }, + { + "start": 29658.37, + "end": 29659.17, + "probability": 0.7397 + }, + { + "start": 29659.21, + "end": 29659.49, + "probability": 0.9227 + }, + { + "start": 29659.49, + "end": 29660.31, + "probability": 0.9629 + }, + { + "start": 29660.39, + "end": 29665.43, + "probability": 0.9873 + }, + { + "start": 29665.43, + "end": 29669.87, + "probability": 0.9944 + }, + { + "start": 29670.27, + "end": 29671.99, + "probability": 0.9606 + }, + { + "start": 29672.41, + "end": 29672.83, + "probability": 0.924 + }, + { + "start": 29672.95, + "end": 29674.19, + "probability": 0.9692 + }, + { + "start": 29674.27, + "end": 29674.55, + "probability": 0.9563 + }, + { + "start": 29674.65, + "end": 29676.21, + "probability": 0.9398 + }, + { + "start": 29676.63, + "end": 29677.87, + "probability": 0.78 + }, + { + "start": 29678.25, + "end": 29682.41, + "probability": 0.8566 + }, + { + "start": 29683.01, + "end": 29684.92, + "probability": 0.9096 + }, + { + "start": 29685.09, + "end": 29685.83, + "probability": 0.9255 + }, + { + "start": 29685.91, + "end": 29686.59, + "probability": 0.8666 + }, + { + "start": 29686.61, + "end": 29687.21, + "probability": 0.6841 + }, + { + "start": 29687.25, + "end": 29690.21, + "probability": 0.5829 + }, + { + "start": 29691.13, + "end": 29691.13, + "probability": 0.0181 + }, + { + "start": 29691.13, + "end": 29692.57, + "probability": 0.7322 + }, + { + "start": 29693.01, + "end": 29693.35, + "probability": 0.7087 + }, + { + "start": 29693.41, + "end": 29694.53, + "probability": 0.9659 + }, + { + "start": 29694.67, + "end": 29695.53, + "probability": 0.627 + }, + { + "start": 29696.59, + "end": 29698.15, + "probability": 0.9155 + }, + { + "start": 29698.45, + "end": 29700.27, + "probability": 0.9955 + }, + { + "start": 29700.83, + "end": 29704.01, + "probability": 0.9827 + }, + { + "start": 29704.57, + "end": 29706.71, + "probability": 0.9795 + }, + { + "start": 29707.43, + "end": 29709.43, + "probability": 0.8353 + }, + { + "start": 29710.09, + "end": 29711.65, + "probability": 0.8784 + }, + { + "start": 29711.67, + "end": 29714.63, + "probability": 0.9124 + }, + { + "start": 29715.33, + "end": 29716.85, + "probability": 0.9951 + }, + { + "start": 29716.97, + "end": 29717.17, + "probability": 0.825 + }, + { + "start": 29717.23, + "end": 29719.57, + "probability": 0.896 + }, + { + "start": 29719.57, + "end": 29719.99, + "probability": 0.4362 + }, + { + "start": 29720.09, + "end": 29721.07, + "probability": 0.987 + }, + { + "start": 29721.41, + "end": 29722.13, + "probability": 0.4757 + }, + { + "start": 29722.33, + "end": 29723.97, + "probability": 0.7674 + }, + { + "start": 29724.77, + "end": 29726.85, + "probability": 0.9317 + }, + { + "start": 29726.89, + "end": 29727.57, + "probability": 0.9917 + }, + { + "start": 29727.69, + "end": 29728.43, + "probability": 0.5147 + }, + { + "start": 29728.45, + "end": 29728.45, + "probability": 0.4653 + }, + { + "start": 29728.55, + "end": 29730.41, + "probability": 0.6341 + }, + { + "start": 29730.95, + "end": 29733.09, + "probability": 0.4112 + }, + { + "start": 29733.17, + "end": 29733.81, + "probability": 0.9342 + }, + { + "start": 29734.03, + "end": 29735.05, + "probability": 0.6126 + }, + { + "start": 29735.31, + "end": 29736.77, + "probability": 0.7467 + }, + { + "start": 29736.93, + "end": 29737.93, + "probability": 0.5693 + }, + { + "start": 29738.01, + "end": 29738.63, + "probability": 0.9575 + }, + { + "start": 29738.71, + "end": 29741.17, + "probability": 0.9666 + }, + { + "start": 29741.99, + "end": 29743.59, + "probability": 0.938 + }, + { + "start": 29743.79, + "end": 29746.03, + "probability": 0.9363 + }, + { + "start": 29746.57, + "end": 29748.25, + "probability": 0.9908 + }, + { + "start": 29748.87, + "end": 29750.37, + "probability": 0.9592 + }, + { + "start": 29750.73, + "end": 29751.71, + "probability": 0.8123 + }, + { + "start": 29752.03, + "end": 29753.69, + "probability": 0.7534 + }, + { + "start": 29753.69, + "end": 29754.63, + "probability": 0.8196 + }, + { + "start": 29755.07, + "end": 29757.09, + "probability": 0.9679 + }, + { + "start": 29757.25, + "end": 29757.37, + "probability": 0.7323 + }, + { + "start": 29757.45, + "end": 29758.43, + "probability": 0.525 + }, + { + "start": 29758.63, + "end": 29761.33, + "probability": 0.9618 + }, + { + "start": 29761.37, + "end": 29762.17, + "probability": 0.9521 + }, + { + "start": 29762.17, + "end": 29763.49, + "probability": 0.8392 + }, + { + "start": 29763.91, + "end": 29765.21, + "probability": 0.4786 + }, + { + "start": 29765.21, + "end": 29765.21, + "probability": 0.3872 + }, + { + "start": 29765.59, + "end": 29767.33, + "probability": 0.8354 + }, + { + "start": 29767.37, + "end": 29769.51, + "probability": 0.8187 + }, + { + "start": 29769.59, + "end": 29770.07, + "probability": 0.5749 + }, + { + "start": 29770.07, + "end": 29771.29, + "probability": 0.7239 + }, + { + "start": 29771.33, + "end": 29771.57, + "probability": 0.8766 + }, + { + "start": 29771.63, + "end": 29772.65, + "probability": 0.6284 + }, + { + "start": 29772.65, + "end": 29775.35, + "probability": 0.8506 + }, + { + "start": 29776.01, + "end": 29778.07, + "probability": 0.9646 + }, + { + "start": 29778.42, + "end": 29780.11, + "probability": 0.9739 + }, + { + "start": 29780.93, + "end": 29784.05, + "probability": 0.9219 + }, + { + "start": 29784.17, + "end": 29785.93, + "probability": 0.9983 + }, + { + "start": 29786.05, + "end": 29786.82, + "probability": 0.5719 + }, + { + "start": 29787.21, + "end": 29787.8, + "probability": 0.9608 + }, + { + "start": 29788.27, + "end": 29791.23, + "probability": 0.9946 + }, + { + "start": 29792.41, + "end": 29794.05, + "probability": 0.9326 + }, + { + "start": 29794.79, + "end": 29797.25, + "probability": 0.6422 + }, + { + "start": 29797.25, + "end": 29798.39, + "probability": 0.3266 + }, + { + "start": 29798.49, + "end": 29798.61, + "probability": 0.6529 + }, + { + "start": 29798.71, + "end": 29799.57, + "probability": 0.6709 + }, + { + "start": 29799.63, + "end": 29801.83, + "probability": 0.1641 + }, + { + "start": 29802.98, + "end": 29804.59, + "probability": 0.4992 + }, + { + "start": 29804.67, + "end": 29805.63, + "probability": 0.6626 + }, + { + "start": 29805.65, + "end": 29806.15, + "probability": 0.7738 + }, + { + "start": 29806.23, + "end": 29806.85, + "probability": 0.3334 + }, + { + "start": 29806.85, + "end": 29806.99, + "probability": 0.1079 + }, + { + "start": 29806.99, + "end": 29808.07, + "probability": 0.2968 + }, + { + "start": 29809.53, + "end": 29811.31, + "probability": 0.2431 + }, + { + "start": 29811.47, + "end": 29812.21, + "probability": 0.4192 + }, + { + "start": 29812.33, + "end": 29814.41, + "probability": 0.9399 + }, + { + "start": 29814.67, + "end": 29816.21, + "probability": 0.6653 + }, + { + "start": 29816.55, + "end": 29818.39, + "probability": 0.6018 + }, + { + "start": 29819.23, + "end": 29819.39, + "probability": 0.5397 + }, + { + "start": 29819.39, + "end": 29824.07, + "probability": 0.4878 + }, + { + "start": 29825.84, + "end": 29828.19, + "probability": 0.5458 + }, + { + "start": 29828.19, + "end": 29828.95, + "probability": 0.6372 + }, + { + "start": 29829.05, + "end": 29830.76, + "probability": 0.9476 + }, + { + "start": 29831.95, + "end": 29832.33, + "probability": 0.7471 + }, + { + "start": 29832.37, + "end": 29832.99, + "probability": 0.6182 + }, + { + "start": 29833.07, + "end": 29834.49, + "probability": 0.8457 + }, + { + "start": 29834.59, + "end": 29834.83, + "probability": 0.7281 + }, + { + "start": 29834.87, + "end": 29836.25, + "probability": 0.9858 + }, + { + "start": 29837.41, + "end": 29839.41, + "probability": 0.7202 + }, + { + "start": 29839.51, + "end": 29839.87, + "probability": 0.7145 + }, + { + "start": 29840.45, + "end": 29841.57, + "probability": 0.65 + }, + { + "start": 29841.61, + "end": 29842.44, + "probability": 0.1927 + }, + { + "start": 29842.79, + "end": 29843.33, + "probability": 0.2154 + }, + { + "start": 29844.31, + "end": 29844.65, + "probability": 0.0161 + }, + { + "start": 29844.65, + "end": 29844.83, + "probability": 0.1739 + }, + { + "start": 29844.83, + "end": 29844.83, + "probability": 0.0771 + }, + { + "start": 29844.83, + "end": 29845.01, + "probability": 0.0754 + }, + { + "start": 29845.17, + "end": 29846.05, + "probability": 0.96 + }, + { + "start": 29846.13, + "end": 29846.65, + "probability": 0.5011 + }, + { + "start": 29846.69, + "end": 29848.29, + "probability": 0.7798 + }, + { + "start": 29848.33, + "end": 29850.13, + "probability": 0.4539 + }, + { + "start": 29850.13, + "end": 29850.93, + "probability": 0.1246 + }, + { + "start": 29850.93, + "end": 29853.41, + "probability": 0.7316 + }, + { + "start": 29853.41, + "end": 29855.09, + "probability": 0.5563 + }, + { + "start": 29855.35, + "end": 29857.15, + "probability": 0.1983 + }, + { + "start": 29857.15, + "end": 29857.86, + "probability": 0.6424 + }, + { + "start": 29858.71, + "end": 29858.91, + "probability": 0.4681 + }, + { + "start": 29859.69, + "end": 29860.05, + "probability": 0.1148 + }, + { + "start": 29860.05, + "end": 29862.13, + "probability": 0.5954 + }, + { + "start": 29862.43, + "end": 29862.59, + "probability": 0.3532 + }, + { + "start": 29862.85, + "end": 29863.81, + "probability": 0.7335 + }, + { + "start": 29863.89, + "end": 29865.03, + "probability": 0.9289 + }, + { + "start": 29865.13, + "end": 29869.17, + "probability": 0.9883 + }, + { + "start": 29869.59, + "end": 29873.51, + "probability": 0.9905 + }, + { + "start": 29874.07, + "end": 29874.62, + "probability": 0.9196 + }, + { + "start": 29875.29, + "end": 29876.61, + "probability": 0.689 + }, + { + "start": 29878.03, + "end": 29878.72, + "probability": 0.9556 + }, + { + "start": 29879.61, + "end": 29880.85, + "probability": 0.9659 + }, + { + "start": 29881.17, + "end": 29883.75, + "probability": 0.9802 + }, + { + "start": 29884.57, + "end": 29885.55, + "probability": 0.9968 + }, + { + "start": 29885.69, + "end": 29888.33, + "probability": 0.9893 + }, + { + "start": 29888.77, + "end": 29892.33, + "probability": 0.9851 + }, + { + "start": 29892.83, + "end": 29895.79, + "probability": 0.9863 + }, + { + "start": 29896.11, + "end": 29897.69, + "probability": 0.9724 + }, + { + "start": 29898.03, + "end": 29901.35, + "probability": 0.9954 + }, + { + "start": 29901.79, + "end": 29903.7, + "probability": 0.9968 + }, + { + "start": 29903.81, + "end": 29904.95, + "probability": 0.8922 + }, + { + "start": 29905.37, + "end": 29906.55, + "probability": 0.9014 + }, + { + "start": 29906.95, + "end": 29910.43, + "probability": 0.9662 + }, + { + "start": 29910.79, + "end": 29914.73, + "probability": 0.9785 + }, + { + "start": 29915.19, + "end": 29920.09, + "probability": 0.9888 + }, + { + "start": 29920.59, + "end": 29921.82, + "probability": 0.5447 + }, + { + "start": 29922.39, + "end": 29924.05, + "probability": 0.8219 + }, + { + "start": 29924.65, + "end": 29929.99, + "probability": 0.9961 + }, + { + "start": 29930.17, + "end": 29930.25, + "probability": 0.0013 + }, + { + "start": 29931.71, + "end": 29934.81, + "probability": 0.999 + }, + { + "start": 29935.23, + "end": 29937.97, + "probability": 0.995 + }, + { + "start": 29937.97, + "end": 29943.15, + "probability": 0.9956 + }, + { + "start": 29943.33, + "end": 29947.39, + "probability": 0.9092 + }, + { + "start": 29948.41, + "end": 29953.17, + "probability": 0.9995 + }, + { + "start": 29953.17, + "end": 29958.61, + "probability": 0.9976 + }, + { + "start": 29959.07, + "end": 29959.98, + "probability": 0.5862 + }, + { + "start": 29960.17, + "end": 29964.47, + "probability": 0.9954 + }, + { + "start": 29964.91, + "end": 29968.71, + "probability": 0.9984 + }, + { + "start": 29969.11, + "end": 29973.13, + "probability": 0.9992 + }, + { + "start": 29973.71, + "end": 29978.17, + "probability": 0.9723 + }, + { + "start": 29978.17, + "end": 29982.47, + "probability": 0.9467 + }, + { + "start": 29982.91, + "end": 29984.31, + "probability": 0.9838 + }, + { + "start": 29988.07, + "end": 29988.73, + "probability": 0.4579 + }, + { + "start": 29988.73, + "end": 29989.09, + "probability": 0.6967 + }, + { + "start": 29989.47, + "end": 29991.77, + "probability": 0.9403 + }, + { + "start": 29992.07, + "end": 29992.21, + "probability": 0.5869 + }, + { + "start": 29992.23, + "end": 29994.59, + "probability": 0.9985 + }, + { + "start": 29994.97, + "end": 29997.11, + "probability": 0.9696 + }, + { + "start": 29997.73, + "end": 29997.97, + "probability": 0.4323 + }, + { + "start": 29997.97, + "end": 29998.11, + "probability": 0.344 + }, + { + "start": 29998.39, + "end": 29999.31, + "probability": 0.9268 + }, + { + "start": 29999.35, + "end": 29999.87, + "probability": 0.5368 + }, + { + "start": 30000.05, + "end": 30001.25, + "probability": 0.6426 + }, + { + "start": 30001.25, + "end": 30001.51, + "probability": 0.6099 + }, + { + "start": 30001.51, + "end": 30001.89, + "probability": 0.7546 + }, + { + "start": 30001.95, + "end": 30002.79, + "probability": 0.9253 + }, + { + "start": 30002.93, + "end": 30006.49, + "probability": 0.9784 + }, + { + "start": 30006.53, + "end": 30010.25, + "probability": 0.9939 + }, + { + "start": 30010.47, + "end": 30010.89, + "probability": 0.7466 + }, + { + "start": 30011.35, + "end": 30011.77, + "probability": 0.7798 + }, + { + "start": 30011.87, + "end": 30012.55, + "probability": 0.5273 + }, + { + "start": 30012.57, + "end": 30013.87, + "probability": 0.4237 + }, + { + "start": 30013.87, + "end": 30014.21, + "probability": 0.2431 + }, + { + "start": 30014.21, + "end": 30014.61, + "probability": 0.8672 + }, + { + "start": 30014.99, + "end": 30015.77, + "probability": 0.6567 + }, + { + "start": 30016.21, + "end": 30016.21, + "probability": 0.0911 + }, + { + "start": 30016.21, + "end": 30017.53, + "probability": 0.8293 + }, + { + "start": 30017.61, + "end": 30018.19, + "probability": 0.562 + }, + { + "start": 30018.21, + "end": 30019.05, + "probability": 0.7581 + }, + { + "start": 30019.59, + "end": 30020.73, + "probability": 0.7284 + }, + { + "start": 30021.69, + "end": 30022.65, + "probability": 0.7139 + }, + { + "start": 30030.25, + "end": 30030.93, + "probability": 0.5596 + }, + { + "start": 30031.49, + "end": 30032.47, + "probability": 0.6989 + }, + { + "start": 30032.53, + "end": 30033.57, + "probability": 0.9955 + }, + { + "start": 30034.17, + "end": 30035.87, + "probability": 0.7241 + }, + { + "start": 30036.05, + "end": 30036.77, + "probability": 0.9336 + }, + { + "start": 30038.53, + "end": 30039.13, + "probability": 0.8533 + }, + { + "start": 30039.21, + "end": 30040.95, + "probability": 0.7246 + }, + { + "start": 30040.95, + "end": 30043.39, + "probability": 0.9546 + }, + { + "start": 30044.15, + "end": 30047.35, + "probability": 0.999 + }, + { + "start": 30047.39, + "end": 30049.03, + "probability": 0.9659 + }, + { + "start": 30049.37, + "end": 30050.63, + "probability": 0.9905 + }, + { + "start": 30050.71, + "end": 30052.07, + "probability": 0.9988 + }, + { + "start": 30052.49, + "end": 30054.02, + "probability": 0.9992 + }, + { + "start": 30054.97, + "end": 30057.19, + "probability": 0.9914 + }, + { + "start": 30057.33, + "end": 30059.95, + "probability": 0.8755 + }, + { + "start": 30060.29, + "end": 30062.43, + "probability": 0.9848 + }, + { + "start": 30063.55, + "end": 30067.89, + "probability": 0.6707 + }, + { + "start": 30068.17, + "end": 30069.21, + "probability": 0.9173 + }, + { + "start": 30069.55, + "end": 30072.29, + "probability": 0.9968 + }, + { + "start": 30072.73, + "end": 30074.35, + "probability": 0.993 + }, + { + "start": 30075.08, + "end": 30076.81, + "probability": 0.7808 + }, + { + "start": 30076.93, + "end": 30079.05, + "probability": 0.8401 + }, + { + "start": 30079.13, + "end": 30083.89, + "probability": 0.9933 + }, + { + "start": 30083.97, + "end": 30085.19, + "probability": 0.9778 + }, + { + "start": 30085.57, + "end": 30085.97, + "probability": 0.7749 + }, + { + "start": 30085.97, + "end": 30090.21, + "probability": 0.9281 + }, + { + "start": 30090.65, + "end": 30091.97, + "probability": 0.7089 + }, + { + "start": 30091.97, + "end": 30092.49, + "probability": 0.7557 + }, + { + "start": 30092.61, + "end": 30093.67, + "probability": 0.7192 + }, + { + "start": 30094.05, + "end": 30096.17, + "probability": 0.7524 + }, + { + "start": 30096.21, + "end": 30098.16, + "probability": 0.4305 + }, + { + "start": 30098.29, + "end": 30098.39, + "probability": 0.3291 + }, + { + "start": 30098.39, + "end": 30099.15, + "probability": 0.4444 + }, + { + "start": 30099.15, + "end": 30099.69, + "probability": 0.2231 + }, + { + "start": 30099.93, + "end": 30100.45, + "probability": 0.8832 + }, + { + "start": 30100.65, + "end": 30102.87, + "probability": 0.8998 + }, + { + "start": 30103.49, + "end": 30104.31, + "probability": 0.0275 + }, + { + "start": 30104.37, + "end": 30106.49, + "probability": 0.4891 + }, + { + "start": 30106.83, + "end": 30106.95, + "probability": 0.0247 + }, + { + "start": 30112.91, + "end": 30114.17, + "probability": 0.1151 + }, + { + "start": 30114.17, + "end": 30116.45, + "probability": 0.6178 + }, + { + "start": 30117.03, + "end": 30117.83, + "probability": 0.0425 + }, + { + "start": 30126.01, + "end": 30127.53, + "probability": 0.1667 + }, + { + "start": 30127.53, + "end": 30129.59, + "probability": 0.5699 + }, + { + "start": 30130.67, + "end": 30133.15, + "probability": 0.8783 + }, + { + "start": 30135.65, + "end": 30137.25, + "probability": 0.9885 + }, + { + "start": 30139.09, + "end": 30142.83, + "probability": 0.957 + }, + { + "start": 30144.19, + "end": 30145.23, + "probability": 0.9971 + }, + { + "start": 30147.33, + "end": 30147.83, + "probability": 0.9775 + }, + { + "start": 30147.89, + "end": 30152.25, + "probability": 0.9924 + }, + { + "start": 30152.31, + "end": 30153.35, + "probability": 0.7059 + }, + { + "start": 30154.73, + "end": 30155.85, + "probability": 0.7869 + }, + { + "start": 30156.61, + "end": 30157.57, + "probability": 0.8805 + }, + { + "start": 30158.33, + "end": 30161.07, + "probability": 0.9908 + }, + { + "start": 30163.25, + "end": 30167.79, + "probability": 0.9751 + }, + { + "start": 30169.53, + "end": 30172.69, + "probability": 0.9834 + }, + { + "start": 30172.77, + "end": 30174.15, + "probability": 0.9413 + }, + { + "start": 30175.81, + "end": 30179.41, + "probability": 0.9522 + }, + { + "start": 30179.63, + "end": 30180.41, + "probability": 0.9239 + }, + { + "start": 30180.49, + "end": 30181.63, + "probability": 0.6753 + }, + { + "start": 30181.79, + "end": 30182.67, + "probability": 0.9839 + }, + { + "start": 30183.85, + "end": 30187.01, + "probability": 0.8948 + }, + { + "start": 30189.11, + "end": 30191.81, + "probability": 0.9499 + }, + { + "start": 30191.95, + "end": 30193.01, + "probability": 0.6864 + }, + { + "start": 30194.65, + "end": 30198.11, + "probability": 0.8171 + }, + { + "start": 30198.71, + "end": 30201.47, + "probability": 0.8301 + }, + { + "start": 30202.31, + "end": 30207.51, + "probability": 0.7581 + }, + { + "start": 30209.25, + "end": 30211.39, + "probability": 0.1177 + }, + { + "start": 30212.89, + "end": 30215.59, + "probability": 0.9961 + }, + { + "start": 30216.31, + "end": 30217.17, + "probability": 0.975 + }, + { + "start": 30217.69, + "end": 30218.99, + "probability": 0.9956 + }, + { + "start": 30219.51, + "end": 30220.15, + "probability": 0.7377 + }, + { + "start": 30221.29, + "end": 30222.69, + "probability": 0.8127 + }, + { + "start": 30223.55, + "end": 30227.73, + "probability": 0.8948 + }, + { + "start": 30229.15, + "end": 30232.87, + "probability": 0.5415 + }, + { + "start": 30234.41, + "end": 30238.31, + "probability": 0.8503 + }, + { + "start": 30238.41, + "end": 30244.53, + "probability": 0.967 + }, + { + "start": 30244.65, + "end": 30246.77, + "probability": 0.7052 + }, + { + "start": 30248.05, + "end": 30249.97, + "probability": 0.993 + }, + { + "start": 30251.09, + "end": 30253.47, + "probability": 0.9915 + }, + { + "start": 30253.57, + "end": 30254.29, + "probability": 0.8906 + }, + { + "start": 30254.39, + "end": 30255.95, + "probability": 0.918 + }, + { + "start": 30257.19, + "end": 30262.41, + "probability": 0.911 + }, + { + "start": 30263.69, + "end": 30263.87, + "probability": 0.9659 + }, + { + "start": 30264.05, + "end": 30264.79, + "probability": 0.8257 + }, + { + "start": 30264.83, + "end": 30265.99, + "probability": 0.8574 + }, + { + "start": 30266.17, + "end": 30268.59, + "probability": 0.9727 + }, + { + "start": 30269.21, + "end": 30271.65, + "probability": 0.9228 + }, + { + "start": 30272.53, + "end": 30275.63, + "probability": 0.9487 + }, + { + "start": 30276.35, + "end": 30277.45, + "probability": 0.5738 + }, + { + "start": 30277.73, + "end": 30279.71, + "probability": 0.9752 + }, + { + "start": 30280.81, + "end": 30284.05, + "probability": 0.969 + }, + { + "start": 30285.03, + "end": 30288.25, + "probability": 0.6631 + }, + { + "start": 30288.93, + "end": 30290.17, + "probability": 0.9895 + }, + { + "start": 30290.89, + "end": 30293.13, + "probability": 0.985 + }, + { + "start": 30294.13, + "end": 30296.07, + "probability": 0.9912 + }, + { + "start": 30297.99, + "end": 30299.99, + "probability": 0.9929 + }, + { + "start": 30300.47, + "end": 30302.93, + "probability": 0.9941 + }, + { + "start": 30304.07, + "end": 30305.55, + "probability": 0.9945 + }, + { + "start": 30306.81, + "end": 30309.73, + "probability": 0.9615 + }, + { + "start": 30310.39, + "end": 30310.39, + "probability": 0.6591 + }, + { + "start": 30310.41, + "end": 30312.89, + "probability": 0.8585 + }, + { + "start": 30314.35, + "end": 30315.65, + "probability": 0.9582 + }, + { + "start": 30315.71, + "end": 30316.11, + "probability": 0.5276 + }, + { + "start": 30316.11, + "end": 30317.93, + "probability": 0.99 + }, + { + "start": 30319.11, + "end": 30324.29, + "probability": 0.991 + }, + { + "start": 30324.33, + "end": 30330.05, + "probability": 0.9846 + }, + { + "start": 30330.81, + "end": 30334.95, + "probability": 0.998 + }, + { + "start": 30335.05, + "end": 30335.35, + "probability": 0.6461 + }, + { + "start": 30335.73, + "end": 30336.25, + "probability": 0.8541 + }, + { + "start": 30336.43, + "end": 30337.63, + "probability": 0.9294 + }, + { + "start": 30338.23, + "end": 30339.39, + "probability": 0.9507 + }, + { + "start": 30339.79, + "end": 30343.12, + "probability": 0.2031 + }, + { + "start": 30344.51, + "end": 30345.79, + "probability": 0.165 + }, + { + "start": 30346.43, + "end": 30347.37, + "probability": 0.3806 + }, + { + "start": 30347.57, + "end": 30347.75, + "probability": 0.1727 + }, + { + "start": 30347.75, + "end": 30348.13, + "probability": 0.2355 + }, + { + "start": 30348.13, + "end": 30348.95, + "probability": 0.411 + }, + { + "start": 30350.61, + "end": 30352.27, + "probability": 0.1275 + }, + { + "start": 30352.48, + "end": 30354.13, + "probability": 0.8063 + }, + { + "start": 30354.23, + "end": 30356.85, + "probability": 0.7236 + }, + { + "start": 30358.67, + "end": 30362.87, + "probability": 0.8139 + }, + { + "start": 30363.79, + "end": 30363.81, + "probability": 0.2525 + }, + { + "start": 30363.81, + "end": 30365.45, + "probability": 0.7137 + }, + { + "start": 30365.63, + "end": 30366.75, + "probability": 0.9753 + }, + { + "start": 30367.37, + "end": 30368.05, + "probability": 0.9368 + }, + { + "start": 30368.17, + "end": 30376.31, + "probability": 0.9899 + }, + { + "start": 30376.47, + "end": 30377.73, + "probability": 0.6226 + }, + { + "start": 30378.81, + "end": 30383.01, + "probability": 0.9288 + }, + { + "start": 30383.73, + "end": 30386.37, + "probability": 0.969 + }, + { + "start": 30386.77, + "end": 30388.87, + "probability": 0.9849 + }, + { + "start": 30389.01, + "end": 30389.75, + "probability": 0.9698 + }, + { + "start": 30390.33, + "end": 30390.87, + "probability": 0.5981 + }, + { + "start": 30391.67, + "end": 30395.39, + "probability": 0.8065 + }, + { + "start": 30396.43, + "end": 30398.25, + "probability": 0.9281 + }, + { + "start": 30398.45, + "end": 30400.27, + "probability": 0.9912 + }, + { + "start": 30400.65, + "end": 30402.37, + "probability": 0.6884 + }, + { + "start": 30402.47, + "end": 30404.55, + "probability": 0.917 + }, + { + "start": 30405.25, + "end": 30409.33, + "probability": 0.9941 + }, + { + "start": 30409.63, + "end": 30412.93, + "probability": 0.9922 + }, + { + "start": 30413.53, + "end": 30414.66, + "probability": 0.9225 + }, + { + "start": 30415.71, + "end": 30423.75, + "probability": 0.9869 + }, + { + "start": 30424.31, + "end": 30429.63, + "probability": 0.9826 + }, + { + "start": 30431.37, + "end": 30434.39, + "probability": 0.7956 + }, + { + "start": 30434.91, + "end": 30436.07, + "probability": 0.8225 + }, + { + "start": 30436.81, + "end": 30437.89, + "probability": 0.931 + }, + { + "start": 30438.45, + "end": 30442.09, + "probability": 0.9183 + }, + { + "start": 30442.79, + "end": 30445.23, + "probability": 0.9869 + }, + { + "start": 30445.91, + "end": 30448.55, + "probability": 0.8665 + }, + { + "start": 30448.61, + "end": 30449.95, + "probability": 0.9631 + }, + { + "start": 30450.13, + "end": 30452.95, + "probability": 0.9865 + }, + { + "start": 30453.21, + "end": 30453.69, + "probability": 0.9399 + }, + { + "start": 30453.81, + "end": 30454.49, + "probability": 0.604 + }, + { + "start": 30455.27, + "end": 30460.29, + "probability": 0.8888 + }, + { + "start": 30460.95, + "end": 30461.65, + "probability": 0.9074 + }, + { + "start": 30461.95, + "end": 30462.44, + "probability": 0.6504 + }, + { + "start": 30462.61, + "end": 30463.75, + "probability": 0.9875 + }, + { + "start": 30463.89, + "end": 30464.87, + "probability": 0.9082 + }, + { + "start": 30464.91, + "end": 30466.67, + "probability": 0.9839 + }, + { + "start": 30467.15, + "end": 30471.59, + "probability": 0.9639 + }, + { + "start": 30472.41, + "end": 30475.19, + "probability": 0.669 + }, + { + "start": 30476.07, + "end": 30477.87, + "probability": 0.7529 + }, + { + "start": 30477.97, + "end": 30482.65, + "probability": 0.8582 + }, + { + "start": 30482.69, + "end": 30483.41, + "probability": 0.8749 + }, + { + "start": 30483.63, + "end": 30483.73, + "probability": 0.2381 + }, + { + "start": 30484.55, + "end": 30485.83, + "probability": 0.6578 + }, + { + "start": 30486.89, + "end": 30487.97, + "probability": 0.763 + }, + { + "start": 30488.95, + "end": 30490.41, + "probability": 0.991 + }, + { + "start": 30490.97, + "end": 30496.67, + "probability": 0.9058 + }, + { + "start": 30497.09, + "end": 30499.61, + "probability": 0.9915 + }, + { + "start": 30499.93, + "end": 30501.53, + "probability": 0.9741 + }, + { + "start": 30502.15, + "end": 30508.53, + "probability": 0.9417 + }, + { + "start": 30508.71, + "end": 30512.53, + "probability": 0.7482 + }, + { + "start": 30512.61, + "end": 30512.95, + "probability": 0.6597 + }, + { + "start": 30513.05, + "end": 30514.65, + "probability": 0.7086 + }, + { + "start": 30515.27, + "end": 30520.81, + "probability": 0.9944 + }, + { + "start": 30521.41, + "end": 30525.65, + "probability": 0.9962 + }, + { + "start": 30526.37, + "end": 30529.79, + "probability": 0.9508 + }, + { + "start": 30530.69, + "end": 30531.35, + "probability": 0.965 + }, + { + "start": 30531.77, + "end": 30539.61, + "probability": 0.976 + }, + { + "start": 30540.07, + "end": 30541.49, + "probability": 0.5578 + }, + { + "start": 30542.09, + "end": 30545.47, + "probability": 0.8024 + }, + { + "start": 30545.53, + "end": 30547.43, + "probability": 0.8574 + }, + { + "start": 30547.87, + "end": 30551.61, + "probability": 0.9817 + }, + { + "start": 30551.77, + "end": 30552.79, + "probability": 0.82 + }, + { + "start": 30553.03, + "end": 30557.37, + "probability": 0.7905 + }, + { + "start": 30557.61, + "end": 30557.63, + "probability": 0.1066 + }, + { + "start": 30557.63, + "end": 30560.81, + "probability": 0.8369 + }, + { + "start": 30561.01, + "end": 30561.35, + "probability": 0.7642 + }, + { + "start": 30562.15, + "end": 30562.69, + "probability": 0.764 + }, + { + "start": 30562.89, + "end": 30564.81, + "probability": 0.7636 + }, + { + "start": 30568.15, + "end": 30572.05, + "probability": 0.391 + }, + { + "start": 30585.19, + "end": 30590.05, + "probability": 0.7902 + }, + { + "start": 30591.61, + "end": 30598.49, + "probability": 0.9845 + }, + { + "start": 30600.51, + "end": 30604.15, + "probability": 0.873 + }, + { + "start": 30604.25, + "end": 30609.37, + "probability": 0.9453 + }, + { + "start": 30610.43, + "end": 30613.39, + "probability": 0.8696 + }, + { + "start": 30613.51, + "end": 30616.69, + "probability": 0.7685 + }, + { + "start": 30617.07, + "end": 30622.33, + "probability": 0.8005 + }, + { + "start": 30623.23, + "end": 30630.95, + "probability": 0.9824 + }, + { + "start": 30632.13, + "end": 30634.59, + "probability": 0.6397 + }, + { + "start": 30635.45, + "end": 30640.69, + "probability": 0.9656 + }, + { + "start": 30641.47, + "end": 30648.67, + "probability": 0.9569 + }, + { + "start": 30650.15, + "end": 30654.57, + "probability": 0.9775 + }, + { + "start": 30655.73, + "end": 30660.21, + "probability": 0.9555 + }, + { + "start": 30661.05, + "end": 30665.81, + "probability": 0.9899 + }, + { + "start": 30666.97, + "end": 30669.85, + "probability": 0.9957 + }, + { + "start": 30670.47, + "end": 30674.79, + "probability": 0.9926 + }, + { + "start": 30675.59, + "end": 30676.73, + "probability": 0.724 + }, + { + "start": 30677.47, + "end": 30680.81, + "probability": 0.8057 + }, + { + "start": 30681.53, + "end": 30682.47, + "probability": 0.8653 + }, + { + "start": 30683.67, + "end": 30687.99, + "probability": 0.9567 + }, + { + "start": 30688.71, + "end": 30691.95, + "probability": 0.8461 + }, + { + "start": 30692.81, + "end": 30696.63, + "probability": 0.8818 + }, + { + "start": 30696.63, + "end": 30701.63, + "probability": 0.9865 + }, + { + "start": 30702.87, + "end": 30705.03, + "probability": 0.9852 + }, + { + "start": 30705.75, + "end": 30708.81, + "probability": 0.8394 + }, + { + "start": 30710.15, + "end": 30711.41, + "probability": 0.698 + }, + { + "start": 30712.25, + "end": 30719.61, + "probability": 0.9788 + }, + { + "start": 30720.53, + "end": 30725.73, + "probability": 0.9042 + }, + { + "start": 30725.97, + "end": 30726.75, + "probability": 0.637 + }, + { + "start": 30726.99, + "end": 30730.81, + "probability": 0.9873 + }, + { + "start": 30731.95, + "end": 30735.53, + "probability": 0.9808 + }, + { + "start": 30737.87, + "end": 30741.03, + "probability": 0.9749 + }, + { + "start": 30742.63, + "end": 30747.59, + "probability": 0.9094 + }, + { + "start": 30748.51, + "end": 30751.81, + "probability": 0.9783 + }, + { + "start": 30752.49, + "end": 30755.27, + "probability": 0.6992 + }, + { + "start": 30756.15, + "end": 30758.81, + "probability": 0.9348 + }, + { + "start": 30759.27, + "end": 30759.93, + "probability": 0.7011 + }, + { + "start": 30760.41, + "end": 30764.63, + "probability": 0.9966 + }, + { + "start": 30765.15, + "end": 30766.73, + "probability": 0.8524 + }, + { + "start": 30767.73, + "end": 30768.19, + "probability": 0.8177 + }, + { + "start": 30769.05, + "end": 30770.31, + "probability": 0.8053 + }, + { + "start": 30781.09, + "end": 30781.85, + "probability": 0.7457 + }, + { + "start": 30781.99, + "end": 30782.93, + "probability": 0.534 + }, + { + "start": 30783.13, + "end": 30784.29, + "probability": 0.7676 + }, + { + "start": 30784.39, + "end": 30787.16, + "probability": 0.7937 + }, + { + "start": 30787.41, + "end": 30790.55, + "probability": 0.8111 + }, + { + "start": 30790.77, + "end": 30796.65, + "probability": 0.9189 + }, + { + "start": 30797.65, + "end": 30798.97, + "probability": 0.9902 + }, + { + "start": 30799.91, + "end": 30800.63, + "probability": 0.7359 + }, + { + "start": 30801.31, + "end": 30803.91, + "probability": 0.9692 + }, + { + "start": 30804.61, + "end": 30804.97, + "probability": 0.9352 + }, + { + "start": 30805.55, + "end": 30809.47, + "probability": 0.9512 + }, + { + "start": 30810.51, + "end": 30814.81, + "probability": 0.9745 + }, + { + "start": 30815.13, + "end": 30817.75, + "probability": 0.9697 + }, + { + "start": 30818.75, + "end": 30820.67, + "probability": 0.5242 + }, + { + "start": 30820.79, + "end": 30825.75, + "probability": 0.9878 + }, + { + "start": 30826.39, + "end": 30827.11, + "probability": 0.9316 + }, + { + "start": 30828.05, + "end": 30830.55, + "probability": 0.909 + }, + { + "start": 30830.97, + "end": 30833.05, + "probability": 0.9435 + }, + { + "start": 30833.53, + "end": 30835.59, + "probability": 0.8293 + }, + { + "start": 30836.29, + "end": 30836.39, + "probability": 0.9842 + }, + { + "start": 30836.99, + "end": 30837.89, + "probability": 0.7069 + }, + { + "start": 30838.85, + "end": 30839.91, + "probability": 0.0636 + }, + { + "start": 30839.91, + "end": 30841.62, + "probability": 0.6604 + }, + { + "start": 30842.43, + "end": 30845.91, + "probability": 0.8363 + }, + { + "start": 30846.57, + "end": 30850.57, + "probability": 0.9658 + }, + { + "start": 30851.81, + "end": 30853.33, + "probability": 0.7418 + }, + { + "start": 30855.06, + "end": 30856.39, + "probability": 0.1852 + }, + { + "start": 30856.39, + "end": 30859.33, + "probability": 0.6777 + }, + { + "start": 30859.75, + "end": 30863.89, + "probability": 0.952 + }, + { + "start": 30864.99, + "end": 30867.15, + "probability": 0.705 + }, + { + "start": 30867.71, + "end": 30867.99, + "probability": 0.5928 + }, + { + "start": 30869.07, + "end": 30871.45, + "probability": 0.8447 + }, + { + "start": 30871.57, + "end": 30872.05, + "probability": 0.8586 + }, + { + "start": 30872.57, + "end": 30876.19, + "probability": 0.8629 + }, + { + "start": 30877.03, + "end": 30881.73, + "probability": 0.7483 + }, + { + "start": 30882.33, + "end": 30886.43, + "probability": 0.9313 + }, + { + "start": 30887.47, + "end": 30889.87, + "probability": 0.9666 + }, + { + "start": 30890.07, + "end": 30893.69, + "probability": 0.958 + }, + { + "start": 30894.33, + "end": 30897.67, + "probability": 0.9901 + }, + { + "start": 30898.77, + "end": 30901.43, + "probability": 0.833 + }, + { + "start": 30902.21, + "end": 30902.71, + "probability": 0.8516 + }, + { + "start": 30903.57, + "end": 30904.51, + "probability": 0.9673 + }, + { + "start": 30906.29, + "end": 30908.39, + "probability": 0.9663 + }, + { + "start": 30909.07, + "end": 30910.75, + "probability": 0.9839 + }, + { + "start": 30912.09, + "end": 30912.99, + "probability": 0.9388 + }, + { + "start": 30913.93, + "end": 30915.23, + "probability": 0.7212 + }, + { + "start": 30915.27, + "end": 30919.47, + "probability": 0.8569 + }, + { + "start": 30919.79, + "end": 30919.93, + "probability": 0.8508 + }, + { + "start": 30920.53, + "end": 30924.7, + "probability": 0.998 + }, + { + "start": 30925.83, + "end": 30927.03, + "probability": 0.7132 + }, + { + "start": 30927.21, + "end": 30931.45, + "probability": 0.8958 + }, + { + "start": 30932.37, + "end": 30936.53, + "probability": 0.9364 + }, + { + "start": 30936.87, + "end": 30937.39, + "probability": 0.6735 + }, + { + "start": 30938.31, + "end": 30939.19, + "probability": 0.4373 + }, + { + "start": 30939.47, + "end": 30941.09, + "probability": 0.8088 + }, + { + "start": 30942.73, + "end": 30942.73, + "probability": 0.1054 + }, + { + "start": 30965.23, + "end": 30968.01, + "probability": 0.4798 + }, + { + "start": 30969.33, + "end": 30972.35, + "probability": 0.7224 + }, + { + "start": 30972.41, + "end": 30973.63, + "probability": 0.7427 + }, + { + "start": 30975.43, + "end": 30977.37, + "probability": 0.1904 + }, + { + "start": 30977.81, + "end": 30982.03, + "probability": 0.9901 + }, + { + "start": 30982.03, + "end": 30985.91, + "probability": 0.9869 + }, + { + "start": 30988.35, + "end": 30989.87, + "probability": 0.3167 + }, + { + "start": 30990.63, + "end": 30992.15, + "probability": 0.805 + }, + { + "start": 30992.21, + "end": 30993.88, + "probability": 0.7791 + }, + { + "start": 30994.71, + "end": 30996.77, + "probability": 0.645 + }, + { + "start": 30997.93, + "end": 30999.99, + "probability": 0.9959 + }, + { + "start": 31001.31, + "end": 31002.37, + "probability": 0.8864 + }, + { + "start": 31003.55, + "end": 31010.49, + "probability": 0.938 + }, + { + "start": 31011.81, + "end": 31015.07, + "probability": 0.759 + }, + { + "start": 31015.99, + "end": 31019.77, + "probability": 0.9193 + }, + { + "start": 31020.91, + "end": 31025.75, + "probability": 0.9779 + }, + { + "start": 31026.83, + "end": 31031.33, + "probability": 0.9847 + }, + { + "start": 31032.39, + "end": 31034.95, + "probability": 0.9946 + }, + { + "start": 31037.07, + "end": 31039.09, + "probability": 0.8968 + }, + { + "start": 31039.89, + "end": 31042.77, + "probability": 0.915 + }, + { + "start": 31043.65, + "end": 31045.11, + "probability": 0.8151 + }, + { + "start": 31045.77, + "end": 31050.01, + "probability": 0.9969 + }, + { + "start": 31050.93, + "end": 31052.33, + "probability": 0.97 + }, + { + "start": 31054.41, + "end": 31055.41, + "probability": 0.8736 + }, + { + "start": 31055.45, + "end": 31056.19, + "probability": 0.7466 + }, + { + "start": 31056.25, + "end": 31057.74, + "probability": 0.8628 + }, + { + "start": 31058.11, + "end": 31058.94, + "probability": 0.7041 + }, + { + "start": 31061.65, + "end": 31065.31, + "probability": 0.9915 + }, + { + "start": 31066.17, + "end": 31067.25, + "probability": 0.918 + }, + { + "start": 31068.03, + "end": 31071.25, + "probability": 0.6466 + }, + { + "start": 31072.83, + "end": 31076.89, + "probability": 0.9641 + }, + { + "start": 31079.15, + "end": 31080.57, + "probability": 0.9553 + }, + { + "start": 31080.71, + "end": 31082.67, + "probability": 0.8362 + }, + { + "start": 31083.05, + "end": 31084.39, + "probability": 0.7601 + }, + { + "start": 31084.85, + "end": 31089.03, + "probability": 0.7912 + }, + { + "start": 31089.53, + "end": 31090.95, + "probability": 0.9858 + }, + { + "start": 31091.49, + "end": 31096.23, + "probability": 0.9576 + }, + { + "start": 31096.95, + "end": 31100.67, + "probability": 0.8639 + }, + { + "start": 31102.01, + "end": 31105.97, + "probability": 0.9768 + }, + { + "start": 31106.37, + "end": 31109.31, + "probability": 0.9808 + }, + { + "start": 31110.05, + "end": 31110.31, + "probability": 0.9294 + }, + { + "start": 31111.75, + "end": 31113.65, + "probability": 0.6752 + }, + { + "start": 31114.71, + "end": 31116.17, + "probability": 0.9392 + }, + { + "start": 31116.33, + "end": 31119.95, + "probability": 0.9954 + }, + { + "start": 31120.09, + "end": 31123.07, + "probability": 0.9985 + }, + { + "start": 31123.57, + "end": 31125.41, + "probability": 0.7248 + }, + { + "start": 31125.53, + "end": 31126.31, + "probability": 0.9215 + }, + { + "start": 31126.75, + "end": 31127.23, + "probability": 0.8877 + }, + { + "start": 31127.41, + "end": 31128.3, + "probability": 0.897 + }, + { + "start": 31128.73, + "end": 31129.59, + "probability": 0.8623 + }, + { + "start": 31130.39, + "end": 31131.67, + "probability": 0.989 + }, + { + "start": 31132.25, + "end": 31134.73, + "probability": 0.9907 + }, + { + "start": 31135.11, + "end": 31136.15, + "probability": 0.9995 + }, + { + "start": 31136.59, + "end": 31137.75, + "probability": 0.886 + }, + { + "start": 31138.45, + "end": 31140.31, + "probability": 0.9736 + }, + { + "start": 31140.73, + "end": 31141.96, + "probability": 0.9919 + }, + { + "start": 31142.49, + "end": 31143.35, + "probability": 0.9533 + }, + { + "start": 31143.67, + "end": 31145.07, + "probability": 0.9505 + }, + { + "start": 31145.13, + "end": 31145.75, + "probability": 0.5995 + }, + { + "start": 31145.79, + "end": 31146.65, + "probability": 0.9871 + }, + { + "start": 31147.17, + "end": 31149.85, + "probability": 0.9659 + }, + { + "start": 31149.93, + "end": 31150.47, + "probability": 0.6788 + }, + { + "start": 31151.13, + "end": 31151.65, + "probability": 0.5251 + }, + { + "start": 31151.75, + "end": 31153.09, + "probability": 0.963 + }, + { + "start": 31154.41, + "end": 31155.53, + "probability": 0.7459 + }, + { + "start": 31155.63, + "end": 31156.49, + "probability": 0.721 + }, + { + "start": 31156.49, + "end": 31156.63, + "probability": 0.1929 + }, + { + "start": 31157.11, + "end": 31158.07, + "probability": 0.298 + }, + { + "start": 31158.23, + "end": 31159.93, + "probability": 0.74 + }, + { + "start": 31160.05, + "end": 31162.45, + "probability": 0.7128 + }, + { + "start": 31162.51, + "end": 31166.51, + "probability": 0.8242 + }, + { + "start": 31166.59, + "end": 31167.69, + "probability": 0.6013 + }, + { + "start": 31167.69, + "end": 31170.19, + "probability": 0.9023 + }, + { + "start": 31171.09, + "end": 31173.79, + "probability": 0.1121 + }, + { + "start": 31174.53, + "end": 31177.01, + "probability": 0.0479 + }, + { + "start": 31177.11, + "end": 31177.31, + "probability": 0.4937 + }, + { + "start": 31177.31, + "end": 31178.09, + "probability": 0.4762 + }, + { + "start": 31179.02, + "end": 31181.01, + "probability": 0.6626 + }, + { + "start": 31181.05, + "end": 31182.33, + "probability": 0.1288 + }, + { + "start": 31182.33, + "end": 31182.61, + "probability": 0.5647 + }, + { + "start": 31182.87, + "end": 31184.29, + "probability": 0.3117 + }, + { + "start": 31185.07, + "end": 31186.91, + "probability": 0.6416 + }, + { + "start": 31186.91, + "end": 31187.39, + "probability": 0.1964 + }, + { + "start": 31187.43, + "end": 31188.91, + "probability": 0.711 + }, + { + "start": 31189.59, + "end": 31191.59, + "probability": 0.7352 + }, + { + "start": 31191.89, + "end": 31193.11, + "probability": 0.5119 + }, + { + "start": 31193.11, + "end": 31194.01, + "probability": 0.6397 + }, + { + "start": 31194.81, + "end": 31196.62, + "probability": 0.5684 + }, + { + "start": 31198.37, + "end": 31198.73, + "probability": 0.9456 + }, + { + "start": 31198.77, + "end": 31201.03, + "probability": 0.6537 + }, + { + "start": 31201.47, + "end": 31205.27, + "probability": 0.962 + }, + { + "start": 31205.55, + "end": 31206.38, + "probability": 0.9565 + }, + { + "start": 31207.25, + "end": 31210.79, + "probability": 0.7369 + }, + { + "start": 31211.49, + "end": 31211.71, + "probability": 0.47 + }, + { + "start": 31211.81, + "end": 31212.75, + "probability": 0.6738 + }, + { + "start": 31213.05, + "end": 31215.33, + "probability": 0.9505 + }, + { + "start": 31215.73, + "end": 31216.89, + "probability": 0.9385 + }, + { + "start": 31217.57, + "end": 31219.41, + "probability": 0.8545 + }, + { + "start": 31219.81, + "end": 31222.07, + "probability": 0.9658 + }, + { + "start": 31222.23, + "end": 31223.77, + "probability": 0.7413 + }, + { + "start": 31223.87, + "end": 31226.11, + "probability": 0.8518 + }, + { + "start": 31226.61, + "end": 31231.25, + "probability": 0.9958 + }, + { + "start": 31231.77, + "end": 31232.45, + "probability": 0.6353 + }, + { + "start": 31232.55, + "end": 31233.79, + "probability": 0.9709 + }, + { + "start": 31234.03, + "end": 31237.29, + "probability": 0.9872 + }, + { + "start": 31238.11, + "end": 31241.69, + "probability": 0.9452 + }, + { + "start": 31242.29, + "end": 31243.61, + "probability": 0.9568 + }, + { + "start": 31244.31, + "end": 31247.19, + "probability": 0.9052 + }, + { + "start": 31247.41, + "end": 31251.71, + "probability": 0.9897 + }, + { + "start": 31252.05, + "end": 31254.79, + "probability": 0.9388 + }, + { + "start": 31255.33, + "end": 31257.49, + "probability": 0.7173 + }, + { + "start": 31257.83, + "end": 31261.89, + "probability": 0.9819 + }, + { + "start": 31262.11, + "end": 31263.57, + "probability": 0.7443 + }, + { + "start": 31263.95, + "end": 31265.79, + "probability": 0.5063 + }, + { + "start": 31266.31, + "end": 31267.84, + "probability": 0.8433 + }, + { + "start": 31268.39, + "end": 31269.49, + "probability": 0.9853 + }, + { + "start": 31270.17, + "end": 31272.01, + "probability": 0.9448 + }, + { + "start": 31272.09, + "end": 31273.39, + "probability": 0.9558 + }, + { + "start": 31273.81, + "end": 31276.01, + "probability": 0.9777 + }, + { + "start": 31276.13, + "end": 31280.29, + "probability": 0.978 + }, + { + "start": 31281.07, + "end": 31283.05, + "probability": 0.9967 + }, + { + "start": 31283.95, + "end": 31285.05, + "probability": 0.7462 + }, + { + "start": 31285.67, + "end": 31288.88, + "probability": 0.9893 + }, + { + "start": 31289.15, + "end": 31290.49, + "probability": 0.6412 + }, + { + "start": 31290.79, + "end": 31295.09, + "probability": 0.9941 + }, + { + "start": 31296.11, + "end": 31298.97, + "probability": 0.994 + }, + { + "start": 31298.97, + "end": 31303.27, + "probability": 0.9749 + }, + { + "start": 31303.87, + "end": 31307.47, + "probability": 0.9956 + }, + { + "start": 31307.81, + "end": 31310.03, + "probability": 0.998 + }, + { + "start": 31310.17, + "end": 31313.65, + "probability": 0.9967 + }, + { + "start": 31313.71, + "end": 31317.05, + "probability": 0.7644 + }, + { + "start": 31317.45, + "end": 31321.63, + "probability": 0.9865 + }, + { + "start": 31322.53, + "end": 31324.11, + "probability": 0.9592 + }, + { + "start": 31324.21, + "end": 31327.87, + "probability": 0.8358 + }, + { + "start": 31328.09, + "end": 31328.89, + "probability": 0.9893 + }, + { + "start": 31329.11, + "end": 31330.75, + "probability": 0.7362 + }, + { + "start": 31332.05, + "end": 31336.01, + "probability": 0.9774 + }, + { + "start": 31336.43, + "end": 31339.55, + "probability": 0.9435 + }, + { + "start": 31339.77, + "end": 31340.53, + "probability": 0.6848 + }, + { + "start": 31341.03, + "end": 31343.63, + "probability": 0.8667 + }, + { + "start": 31344.11, + "end": 31347.83, + "probability": 0.984 + }, + { + "start": 31348.09, + "end": 31353.55, + "probability": 0.9682 + }, + { + "start": 31354.09, + "end": 31357.05, + "probability": 0.8002 + }, + { + "start": 31357.59, + "end": 31359.33, + "probability": 0.9386 + }, + { + "start": 31359.65, + "end": 31360.15, + "probability": 0.8612 + }, + { + "start": 31363.13, + "end": 31363.61, + "probability": 0.6524 + }, + { + "start": 31363.63, + "end": 31364.91, + "probability": 0.7338 + }, + { + "start": 31367.47, + "end": 31368.69, + "probability": 0.2849 + }, + { + "start": 31379.65, + "end": 31380.79, + "probability": 0.4204 + }, + { + "start": 31380.91, + "end": 31382.29, + "probability": 0.6737 + }, + { + "start": 31382.43, + "end": 31386.49, + "probability": 0.9312 + }, + { + "start": 31387.77, + "end": 31389.25, + "probability": 0.9102 + }, + { + "start": 31389.31, + "end": 31390.99, + "probability": 0.6216 + }, + { + "start": 31391.05, + "end": 31392.27, + "probability": 0.5578 + }, + { + "start": 31392.83, + "end": 31396.24, + "probability": 0.9242 + }, + { + "start": 31399.65, + "end": 31401.01, + "probability": 0.9038 + }, + { + "start": 31402.11, + "end": 31404.39, + "probability": 0.9844 + }, + { + "start": 31405.53, + "end": 31408.73, + "probability": 0.9937 + }, + { + "start": 31409.41, + "end": 31413.97, + "probability": 0.862 + }, + { + "start": 31414.07, + "end": 31417.49, + "probability": 0.9127 + }, + { + "start": 31418.05, + "end": 31418.95, + "probability": 0.6772 + }, + { + "start": 31419.57, + "end": 31420.25, + "probability": 0.7444 + }, + { + "start": 31420.97, + "end": 31421.69, + "probability": 0.5438 + }, + { + "start": 31421.83, + "end": 31422.41, + "probability": 0.7197 + }, + { + "start": 31422.59, + "end": 31425.83, + "probability": 0.6603 + }, + { + "start": 31426.61, + "end": 31430.13, + "probability": 0.9707 + }, + { + "start": 31430.93, + "end": 31434.21, + "probability": 0.9412 + }, + { + "start": 31435.93, + "end": 31441.37, + "probability": 0.7946 + }, + { + "start": 31442.03, + "end": 31450.57, + "probability": 0.978 + }, + { + "start": 31450.79, + "end": 31452.93, + "probability": 0.7677 + }, + { + "start": 31453.83, + "end": 31455.49, + "probability": 0.9976 + }, + { + "start": 31456.23, + "end": 31457.89, + "probability": 0.7771 + }, + { + "start": 31458.01, + "end": 31458.85, + "probability": 0.9644 + }, + { + "start": 31459.35, + "end": 31461.87, + "probability": 0.9355 + }, + { + "start": 31461.97, + "end": 31466.65, + "probability": 0.9708 + }, + { + "start": 31466.85, + "end": 31468.93, + "probability": 0.4973 + }, + { + "start": 31468.97, + "end": 31471.81, + "probability": 0.9393 + }, + { + "start": 31472.31, + "end": 31476.43, + "probability": 0.9883 + }, + { + "start": 31476.61, + "end": 31481.83, + "probability": 0.9934 + }, + { + "start": 31482.57, + "end": 31488.73, + "probability": 0.7461 + }, + { + "start": 31489.39, + "end": 31492.15, + "probability": 0.5031 + }, + { + "start": 31492.25, + "end": 31494.31, + "probability": 0.9483 + }, + { + "start": 31494.97, + "end": 31495.71, + "probability": 0.7898 + }, + { + "start": 31495.75, + "end": 31496.57, + "probability": 0.9555 + }, + { + "start": 31496.65, + "end": 31499.89, + "probability": 0.849 + }, + { + "start": 31500.55, + "end": 31501.53, + "probability": 0.7447 + }, + { + "start": 31501.73, + "end": 31502.13, + "probability": 0.7176 + }, + { + "start": 31502.59, + "end": 31504.33, + "probability": 0.8771 + }, + { + "start": 31505.03, + "end": 31506.23, + "probability": 0.992 + }, + { + "start": 31507.11, + "end": 31509.41, + "probability": 0.9907 + }, + { + "start": 31509.55, + "end": 31511.17, + "probability": 0.9787 + }, + { + "start": 31512.01, + "end": 31514.27, + "probability": 0.9467 + }, + { + "start": 31514.75, + "end": 31519.73, + "probability": 0.9255 + }, + { + "start": 31520.25, + "end": 31521.97, + "probability": 0.9446 + }, + { + "start": 31522.57, + "end": 31524.61, + "probability": 0.9599 + }, + { + "start": 31525.73, + "end": 31527.37, + "probability": 0.9172 + }, + { + "start": 31527.95, + "end": 31529.53, + "probability": 0.918 + }, + { + "start": 31529.75, + "end": 31531.43, + "probability": 0.9214 + }, + { + "start": 31531.89, + "end": 31534.21, + "probability": 0.954 + }, + { + "start": 31534.63, + "end": 31537.11, + "probability": 0.9766 + }, + { + "start": 31537.79, + "end": 31538.83, + "probability": 0.8872 + }, + { + "start": 31538.91, + "end": 31539.95, + "probability": 0.9449 + }, + { + "start": 31540.47, + "end": 31543.51, + "probability": 0.6385 + }, + { + "start": 31544.13, + "end": 31545.45, + "probability": 0.9408 + }, + { + "start": 31546.13, + "end": 31548.03, + "probability": 0.8364 + }, + { + "start": 31548.59, + "end": 31549.63, + "probability": 0.664 + }, + { + "start": 31549.69, + "end": 31555.59, + "probability": 0.9791 + }, + { + "start": 31556.09, + "end": 31558.05, + "probability": 0.7842 + }, + { + "start": 31558.43, + "end": 31559.33, + "probability": 0.7809 + }, + { + "start": 31559.45, + "end": 31560.31, + "probability": 0.7332 + }, + { + "start": 31560.53, + "end": 31562.81, + "probability": 0.9962 + }, + { + "start": 31563.27, + "end": 31566.45, + "probability": 0.7845 + }, + { + "start": 31566.47, + "end": 31567.81, + "probability": 0.9932 + }, + { + "start": 31568.17, + "end": 31569.03, + "probability": 0.6994 + }, + { + "start": 31569.61, + "end": 31570.17, + "probability": 0.9465 + }, + { + "start": 31571.05, + "end": 31572.18, + "probability": 0.891 + }, + { + "start": 31572.39, + "end": 31578.77, + "probability": 0.9907 + }, + { + "start": 31579.19, + "end": 31579.63, + "probability": 0.7188 + }, + { + "start": 31580.25, + "end": 31580.25, + "probability": 0.5892 + }, + { + "start": 31580.25, + "end": 31581.49, + "probability": 0.9491 + }, + { + "start": 31610.73, + "end": 31611.75, + "probability": 0.6496 + }, + { + "start": 31611.91, + "end": 31613.17, + "probability": 0.6349 + }, + { + "start": 31613.55, + "end": 31618.19, + "probability": 0.8613 + }, + { + "start": 31618.23, + "end": 31619.45, + "probability": 0.6692 + }, + { + "start": 31621.77, + "end": 31630.09, + "probability": 0.9953 + }, + { + "start": 31630.63, + "end": 31634.71, + "probability": 0.9629 + }, + { + "start": 31635.43, + "end": 31637.57, + "probability": 0.8268 + }, + { + "start": 31638.35, + "end": 31641.63, + "probability": 0.929 + }, + { + "start": 31642.25, + "end": 31645.01, + "probability": 0.9679 + }, + { + "start": 31647.41, + "end": 31651.59, + "probability": 0.99 + }, + { + "start": 31652.79, + "end": 31657.17, + "probability": 0.9935 + }, + { + "start": 31658.13, + "end": 31665.19, + "probability": 0.9955 + }, + { + "start": 31665.19, + "end": 31667.55, + "probability": 0.9048 + }, + { + "start": 31668.35, + "end": 31673.87, + "probability": 0.9785 + }, + { + "start": 31674.43, + "end": 31676.17, + "probability": 0.998 + }, + { + "start": 31677.83, + "end": 31682.61, + "probability": 0.9322 + }, + { + "start": 31685.53, + "end": 31687.27, + "probability": 0.9971 + }, + { + "start": 31688.73, + "end": 31695.29, + "probability": 0.8828 + }, + { + "start": 31697.77, + "end": 31701.69, + "probability": 0.9519 + }, + { + "start": 31702.07, + "end": 31703.57, + "probability": 0.9982 + }, + { + "start": 31704.29, + "end": 31706.61, + "probability": 0.7006 + }, + { + "start": 31707.49, + "end": 31711.17, + "probability": 0.9411 + }, + { + "start": 31711.81, + "end": 31714.21, + "probability": 0.9883 + }, + { + "start": 31714.65, + "end": 31716.27, + "probability": 0.8847 + }, + { + "start": 31716.35, + "end": 31722.01, + "probability": 0.9199 + }, + { + "start": 31722.57, + "end": 31723.21, + "probability": 0.6022 + }, + { + "start": 31723.83, + "end": 31725.63, + "probability": 0.9894 + }, + { + "start": 31726.73, + "end": 31733.09, + "probability": 0.9965 + }, + { + "start": 31735.09, + "end": 31740.81, + "probability": 0.9976 + }, + { + "start": 31741.49, + "end": 31746.9, + "probability": 0.8984 + }, + { + "start": 31748.01, + "end": 31751.99, + "probability": 0.9761 + }, + { + "start": 31751.99, + "end": 31757.99, + "probability": 0.9985 + }, + { + "start": 31759.13, + "end": 31764.65, + "probability": 0.9942 + }, + { + "start": 31765.37, + "end": 31770.03, + "probability": 0.6672 + }, + { + "start": 31770.03, + "end": 31775.33, + "probability": 0.9912 + }, + { + "start": 31778.27, + "end": 31782.47, + "probability": 0.9963 + }, + { + "start": 31782.83, + "end": 31785.57, + "probability": 0.8554 + }, + { + "start": 31786.93, + "end": 31788.71, + "probability": 0.8569 + }, + { + "start": 31788.85, + "end": 31792.53, + "probability": 0.7593 + }, + { + "start": 31792.89, + "end": 31794.01, + "probability": 0.8544 + }, + { + "start": 31794.41, + "end": 31797.71, + "probability": 0.8205 + }, + { + "start": 31798.23, + "end": 31802.27, + "probability": 0.8192 + }, + { + "start": 31802.79, + "end": 31805.33, + "probability": 0.9144 + }, + { + "start": 31805.51, + "end": 31809.27, + "probability": 0.9098 + }, + { + "start": 31809.29, + "end": 31813.73, + "probability": 0.987 + }, + { + "start": 31814.39, + "end": 31818.07, + "probability": 0.9523 + }, + { + "start": 31818.33, + "end": 31818.77, + "probability": 0.7444 + }, + { + "start": 31819.13, + "end": 31820.49, + "probability": 0.5691 + }, + { + "start": 31839.45, + "end": 31841.69, + "probability": 0.5534 + }, + { + "start": 31843.13, + "end": 31846.35, + "probability": 0.9103 + }, + { + "start": 31847.31, + "end": 31848.61, + "probability": 0.995 + }, + { + "start": 31926.0, + "end": 31926.0, + "probability": 0.0 + }, + { + "start": 31926.0, + "end": 31926.0, + "probability": 0.0 + }, + { + "start": 31927.77, + "end": 31929.68, + "probability": 0.0486 + }, + { + "start": 31932.66, + "end": 31932.88, + "probability": 0.1146 + }, + { + "start": 31935.1, + "end": 31936.0, + "probability": 0.4934 + }, + { + "start": 31936.88, + "end": 31940.14, + "probability": 0.0878 + }, + { + "start": 31942.32, + "end": 31942.94, + "probability": 0.0362 + }, + { + "start": 31943.47, + "end": 31945.14, + "probability": 0.0561 + }, + { + "start": 32048.0, + "end": 32048.0, + "probability": 0.0 + }, + { + "start": 32048.52, + "end": 32049.74, + "probability": 0.2994 + }, + { + "start": 32052.9, + "end": 32055.62, + "probability": 0.9954 + }, + { + "start": 32055.62, + "end": 32059.76, + "probability": 0.9844 + }, + { + "start": 32060.72, + "end": 32061.78, + "probability": 0.9923 + }, + { + "start": 32062.74, + "end": 32067.66, + "probability": 0.999 + }, + { + "start": 32068.9, + "end": 32069.72, + "probability": 0.7729 + }, + { + "start": 32069.78, + "end": 32070.52, + "probability": 0.8495 + }, + { + "start": 32070.52, + "end": 32072.28, + "probability": 0.4795 + }, + { + "start": 32072.56, + "end": 32074.74, + "probability": 0.9264 + }, + { + "start": 32074.9, + "end": 32075.53, + "probability": 0.863 + }, + { + "start": 32076.98, + "end": 32079.74, + "probability": 0.8295 + }, + { + "start": 32081.14, + "end": 32083.75, + "probability": 0.9945 + }, + { + "start": 32084.46, + "end": 32089.06, + "probability": 0.9619 + }, + { + "start": 32090.28, + "end": 32091.42, + "probability": 0.8971 + }, + { + "start": 32092.3, + "end": 32094.32, + "probability": 0.9485 + }, + { + "start": 32095.06, + "end": 32095.7, + "probability": 0.7456 + }, + { + "start": 32096.82, + "end": 32097.74, + "probability": 0.6507 + }, + { + "start": 32098.9, + "end": 32101.74, + "probability": 0.9375 + }, + { + "start": 32103.28, + "end": 32104.44, + "probability": 0.9292 + }, + { + "start": 32105.06, + "end": 32109.82, + "probability": 0.7707 + }, + { + "start": 32110.74, + "end": 32111.71, + "probability": 0.9672 + }, + { + "start": 32112.24, + "end": 32112.72, + "probability": 0.3266 + }, + { + "start": 32113.2, + "end": 32115.52, + "probability": 0.9657 + }, + { + "start": 32115.62, + "end": 32117.34, + "probability": 0.7993 + }, + { + "start": 32118.72, + "end": 32119.88, + "probability": 0.975 + }, + { + "start": 32120.96, + "end": 32122.68, + "probability": 0.9834 + }, + { + "start": 32124.42, + "end": 32124.8, + "probability": 0.8717 + }, + { + "start": 32125.94, + "end": 32128.94, + "probability": 0.9814 + }, + { + "start": 32130.38, + "end": 32133.28, + "probability": 0.8256 + }, + { + "start": 32133.64, + "end": 32137.6, + "probability": 0.9985 + }, + { + "start": 32140.28, + "end": 32142.78, + "probability": 0.975 + }, + { + "start": 32143.84, + "end": 32145.24, + "probability": 0.9956 + }, + { + "start": 32146.16, + "end": 32152.56, + "probability": 0.9912 + }, + { + "start": 32153.28, + "end": 32156.0, + "probability": 0.9668 + }, + { + "start": 32157.56, + "end": 32157.84, + "probability": 0.9509 + }, + { + "start": 32157.94, + "end": 32159.38, + "probability": 0.9395 + }, + { + "start": 32159.6, + "end": 32162.0, + "probability": 0.9272 + }, + { + "start": 32162.56, + "end": 32165.56, + "probability": 0.9489 + }, + { + "start": 32166.54, + "end": 32169.16, + "probability": 0.9089 + }, + { + "start": 32169.32, + "end": 32173.66, + "probability": 0.9453 + }, + { + "start": 32174.54, + "end": 32175.08, + "probability": 0.6767 + }, + { + "start": 32175.52, + "end": 32176.94, + "probability": 0.9949 + }, + { + "start": 32178.12, + "end": 32180.28, + "probability": 0.9874 + }, + { + "start": 32182.6, + "end": 32183.98, + "probability": 0.9692 + }, + { + "start": 32184.64, + "end": 32186.64, + "probability": 0.9534 + }, + { + "start": 32187.52, + "end": 32191.46, + "probability": 0.9724 + }, + { + "start": 32191.54, + "end": 32197.62, + "probability": 0.9326 + }, + { + "start": 32198.02, + "end": 32199.26, + "probability": 0.8176 + }, + { + "start": 32199.78, + "end": 32202.14, + "probability": 0.8908 + }, + { + "start": 32202.24, + "end": 32203.24, + "probability": 0.9135 + }, + { + "start": 32203.6, + "end": 32204.3, + "probability": 0.6735 + }, + { + "start": 32204.3, + "end": 32205.8, + "probability": 0.9476 + }, + { + "start": 32206.4, + "end": 32208.48, + "probability": 0.9274 + }, + { + "start": 32209.92, + "end": 32213.8, + "probability": 0.9889 + }, + { + "start": 32214.98, + "end": 32219.44, + "probability": 0.9922 + }, + { + "start": 32221.22, + "end": 32227.98, + "probability": 0.9902 + }, + { + "start": 32228.92, + "end": 32231.04, + "probability": 0.9567 + }, + { + "start": 32232.02, + "end": 32237.46, + "probability": 0.993 + }, + { + "start": 32238.74, + "end": 32243.02, + "probability": 0.9429 + }, + { + "start": 32244.16, + "end": 32247.3, + "probability": 0.9041 + }, + { + "start": 32248.02, + "end": 32249.86, + "probability": 0.9648 + }, + { + "start": 32252.0, + "end": 32255.8, + "probability": 0.9657 + }, + { + "start": 32256.2, + "end": 32256.76, + "probability": 0.6112 + }, + { + "start": 32257.14, + "end": 32257.66, + "probability": 0.7767 + }, + { + "start": 32258.7, + "end": 32260.82, + "probability": 0.7783 + }, + { + "start": 32278.84, + "end": 32280.18, + "probability": 0.5362 + }, + { + "start": 32280.22, + "end": 32281.34, + "probability": 0.6658 + }, + { + "start": 32281.78, + "end": 32282.06, + "probability": 0.6448 + }, + { + "start": 32282.12, + "end": 32283.32, + "probability": 0.9741 + }, + { + "start": 32283.66, + "end": 32289.48, + "probability": 0.9635 + }, + { + "start": 32290.16, + "end": 32293.92, + "probability": 0.9598 + }, + { + "start": 32294.86, + "end": 32300.53, + "probability": 0.9948 + }, + { + "start": 32301.32, + "end": 32302.26, + "probability": 0.8737 + }, + { + "start": 32302.5, + "end": 32306.14, + "probability": 0.9656 + }, + { + "start": 32306.14, + "end": 32309.1, + "probability": 0.9145 + }, + { + "start": 32309.82, + "end": 32313.06, + "probability": 0.9954 + }, + { + "start": 32313.06, + "end": 32317.1, + "probability": 0.9975 + }, + { + "start": 32318.14, + "end": 32322.49, + "probability": 0.9956 + }, + { + "start": 32323.42, + "end": 32326.34, + "probability": 0.9712 + }, + { + "start": 32326.98, + "end": 32328.62, + "probability": 0.6831 + }, + { + "start": 32329.2, + "end": 32331.25, + "probability": 0.9551 + }, + { + "start": 32331.68, + "end": 32335.3, + "probability": 0.9945 + }, + { + "start": 32336.26, + "end": 32341.7, + "probability": 0.9893 + }, + { + "start": 32342.16, + "end": 32343.68, + "probability": 0.9881 + }, + { + "start": 32344.68, + "end": 32347.84, + "probability": 0.9185 + }, + { + "start": 32348.16, + "end": 32349.62, + "probability": 0.9202 + }, + { + "start": 32350.88, + "end": 32351.58, + "probability": 0.5307 + }, + { + "start": 32352.26, + "end": 32355.16, + "probability": 0.9961 + }, + { + "start": 32355.16, + "end": 32358.96, + "probability": 0.9966 + }, + { + "start": 32359.68, + "end": 32363.98, + "probability": 0.9939 + }, + { + "start": 32363.98, + "end": 32369.18, + "probability": 0.9987 + }, + { + "start": 32371.66, + "end": 32372.82, + "probability": 0.7585 + }, + { + "start": 32373.08, + "end": 32374.14, + "probability": 0.8527 + }, + { + "start": 32374.34, + "end": 32376.02, + "probability": 0.9877 + }, + { + "start": 32376.06, + "end": 32377.1, + "probability": 0.9713 + }, + { + "start": 32377.46, + "end": 32378.38, + "probability": 0.9636 + }, + { + "start": 32378.98, + "end": 32382.96, + "probability": 0.9366 + }, + { + "start": 32383.6, + "end": 32384.94, + "probability": 0.8279 + }, + { + "start": 32386.28, + "end": 32389.84, + "probability": 0.9985 + }, + { + "start": 32389.84, + "end": 32393.94, + "probability": 0.99 + }, + { + "start": 32394.92, + "end": 32397.68, + "probability": 0.9939 + }, + { + "start": 32398.8, + "end": 32399.92, + "probability": 0.7305 + }, + { + "start": 32400.8, + "end": 32404.56, + "probability": 0.8408 + }, + { + "start": 32405.98, + "end": 32409.02, + "probability": 0.9933 + }, + { + "start": 32409.72, + "end": 32412.84, + "probability": 0.9971 + }, + { + "start": 32413.28, + "end": 32414.84, + "probability": 0.9421 + }, + { + "start": 32415.56, + "end": 32417.3, + "probability": 0.8324 + }, + { + "start": 32418.06, + "end": 32420.91, + "probability": 0.9269 + }, + { + "start": 32421.46, + "end": 32427.44, + "probability": 0.9971 + }, + { + "start": 32428.48, + "end": 32434.94, + "probability": 0.9924 + }, + { + "start": 32435.84, + "end": 32442.32, + "probability": 0.9964 + }, + { + "start": 32443.04, + "end": 32443.7, + "probability": 0.4304 + }, + { + "start": 32446.24, + "end": 32448.16, + "probability": 0.9928 + }, + { + "start": 32448.24, + "end": 32449.28, + "probability": 0.8552 + }, + { + "start": 32449.4, + "end": 32449.9, + "probability": 0.9428 + }, + { + "start": 32450.02, + "end": 32450.5, + "probability": 0.9117 + }, + { + "start": 32450.58, + "end": 32452.5, + "probability": 0.7892 + }, + { + "start": 32452.94, + "end": 32454.54, + "probability": 0.8297 + }, + { + "start": 32455.42, + "end": 32458.06, + "probability": 0.9956 + }, + { + "start": 32459.08, + "end": 32463.16, + "probability": 0.8867 + }, + { + "start": 32465.18, + "end": 32466.08, + "probability": 0.6385 + }, + { + "start": 32466.18, + "end": 32470.52, + "probability": 0.964 + }, + { + "start": 32471.82, + "end": 32474.08, + "probability": 0.7445 + }, + { + "start": 32474.72, + "end": 32475.34, + "probability": 0.6453 + }, + { + "start": 32476.98, + "end": 32478.16, + "probability": 0.9063 + }, + { + "start": 32478.28, + "end": 32478.36, + "probability": 0.0419 + }, + { + "start": 32478.36, + "end": 32479.46, + "probability": 0.7873 + }, + { + "start": 32480.34, + "end": 32482.13, + "probability": 0.7527 + }, + { + "start": 32483.1, + "end": 32484.42, + "probability": 0.5223 + }, + { + "start": 32485.1, + "end": 32487.04, + "probability": 0.9659 + }, + { + "start": 32488.48, + "end": 32491.7, + "probability": 0.4621 + }, + { + "start": 32493.64, + "end": 32494.2, + "probability": 0.4129 + }, + { + "start": 32494.22, + "end": 32494.76, + "probability": 0.701 + }, + { + "start": 32503.0, + "end": 32505.14, + "probability": 0.7808 + }, + { + "start": 32508.64, + "end": 32511.48, + "probability": 0.7612 + }, + { + "start": 32511.6, + "end": 32517.56, + "probability": 0.4554 + }, + { + "start": 32518.92, + "end": 32521.82, + "probability": 0.9713 + }, + { + "start": 32523.12, + "end": 32525.33, + "probability": 0.9834 + }, + { + "start": 32526.98, + "end": 32529.32, + "probability": 0.9817 + }, + { + "start": 32530.86, + "end": 32532.71, + "probability": 0.7633 + }, + { + "start": 32533.88, + "end": 32536.28, + "probability": 0.9584 + }, + { + "start": 32537.32, + "end": 32538.62, + "probability": 0.9316 + }, + { + "start": 32539.32, + "end": 32540.9, + "probability": 0.9086 + }, + { + "start": 32542.14, + "end": 32544.43, + "probability": 0.8544 + }, + { + "start": 32545.34, + "end": 32547.1, + "probability": 0.9191 + }, + { + "start": 32547.62, + "end": 32548.3, + "probability": 0.7147 + }, + { + "start": 32548.38, + "end": 32549.62, + "probability": 0.9375 + }, + { + "start": 32549.74, + "end": 32552.16, + "probability": 0.9902 + }, + { + "start": 32552.22, + "end": 32555.0, + "probability": 0.8825 + }, + { + "start": 32555.34, + "end": 32556.54, + "probability": 0.8872 + }, + { + "start": 32556.62, + "end": 32558.84, + "probability": 0.995 + }, + { + "start": 32559.62, + "end": 32562.68, + "probability": 0.9284 + }, + { + "start": 32562.82, + "end": 32563.9, + "probability": 0.6135 + }, + { + "start": 32564.04, + "end": 32566.24, + "probability": 0.9517 + }, + { + "start": 32566.66, + "end": 32569.94, + "probability": 0.908 + }, + { + "start": 32570.6, + "end": 32575.3, + "probability": 0.9325 + }, + { + "start": 32575.44, + "end": 32577.48, + "probability": 0.9585 + }, + { + "start": 32577.56, + "end": 32579.34, + "probability": 0.809 + }, + { + "start": 32580.02, + "end": 32583.54, + "probability": 0.8901 + }, + { + "start": 32585.88, + "end": 32586.36, + "probability": 0.7577 + }, + { + "start": 32586.44, + "end": 32586.96, + "probability": 0.9547 + }, + { + "start": 32586.98, + "end": 32592.38, + "probability": 0.983 + }, + { + "start": 32593.28, + "end": 32593.5, + "probability": 0.7046 + }, + { + "start": 32593.76, + "end": 32595.4, + "probability": 0.931 + }, + { + "start": 32595.56, + "end": 32600.58, + "probability": 0.9601 + }, + { + "start": 32600.58, + "end": 32604.76, + "probability": 0.9935 + }, + { + "start": 32604.76, + "end": 32608.92, + "probability": 0.9969 + }, + { + "start": 32609.6, + "end": 32611.96, + "probability": 0.9987 + }, + { + "start": 32613.04, + "end": 32615.88, + "probability": 0.9958 + }, + { + "start": 32615.88, + "end": 32619.06, + "probability": 0.9739 + }, + { + "start": 32619.68, + "end": 32620.43, + "probability": 0.9951 + }, + { + "start": 32621.8, + "end": 32625.06, + "probability": 0.8266 + }, + { + "start": 32625.2, + "end": 32628.92, + "probability": 0.864 + }, + { + "start": 32628.92, + "end": 32632.02, + "probability": 0.9595 + }, + { + "start": 32632.08, + "end": 32633.32, + "probability": 0.9386 + }, + { + "start": 32634.42, + "end": 32635.28, + "probability": 0.8998 + }, + { + "start": 32635.82, + "end": 32637.58, + "probability": 0.9477 + }, + { + "start": 32638.02, + "end": 32638.14, + "probability": 0.9561 + }, + { + "start": 32638.9, + "end": 32642.06, + "probability": 0.9956 + }, + { + "start": 32642.94, + "end": 32644.62, + "probability": 0.6671 + }, + { + "start": 32645.38, + "end": 32648.14, + "probability": 0.7312 + }, + { + "start": 32649.12, + "end": 32651.28, + "probability": 0.9377 + }, + { + "start": 32652.06, + "end": 32655.04, + "probability": 0.9948 + }, + { + "start": 32655.04, + "end": 32657.48, + "probability": 0.9956 + }, + { + "start": 32658.18, + "end": 32659.24, + "probability": 0.998 + }, + { + "start": 32659.98, + "end": 32660.96, + "probability": 0.9591 + }, + { + "start": 32661.3, + "end": 32664.4, + "probability": 0.9952 + }, + { + "start": 32665.38, + "end": 32668.06, + "probability": 0.9174 + }, + { + "start": 32668.4, + "end": 32672.78, + "probability": 0.9645 + }, + { + "start": 32673.18, + "end": 32676.98, + "probability": 0.9685 + }, + { + "start": 32678.26, + "end": 32678.82, + "probability": 0.6542 + }, + { + "start": 32679.24, + "end": 32680.1, + "probability": 0.9683 + }, + { + "start": 32680.2, + "end": 32682.96, + "probability": 0.923 + }, + { + "start": 32683.72, + "end": 32686.22, + "probability": 0.9989 + }, + { + "start": 32686.26, + "end": 32688.98, + "probability": 0.9874 + }, + { + "start": 32689.09, + "end": 32692.6, + "probability": 0.9982 + }, + { + "start": 32692.76, + "end": 32693.77, + "probability": 0.9546 + }, + { + "start": 32694.1, + "end": 32696.62, + "probability": 0.9346 + }, + { + "start": 32696.72, + "end": 32699.36, + "probability": 0.9637 + }, + { + "start": 32699.64, + "end": 32703.68, + "probability": 0.9834 + }, + { + "start": 32703.9, + "end": 32705.06, + "probability": 0.3797 + }, + { + "start": 32705.1, + "end": 32706.8, + "probability": 0.8541 + }, + { + "start": 32706.92, + "end": 32707.32, + "probability": 0.688 + }, + { + "start": 32707.5, + "end": 32708.62, + "probability": 0.4678 + }, + { + "start": 32708.98, + "end": 32709.62, + "probability": 0.0633 + }, + { + "start": 32710.52, + "end": 32711.32, + "probability": 0.6349 + }, + { + "start": 32712.26, + "end": 32715.74, + "probability": 0.6558 + }, + { + "start": 32732.82, + "end": 32734.44, + "probability": 0.6558 + }, + { + "start": 32735.1, + "end": 32736.69, + "probability": 0.6714 + }, + { + "start": 32739.28, + "end": 32740.44, + "probability": 0.7263 + }, + { + "start": 32740.54, + "end": 32747.24, + "probability": 0.9028 + }, + { + "start": 32747.96, + "end": 32749.78, + "probability": 0.7847 + }, + { + "start": 32750.76, + "end": 32754.22, + "probability": 0.998 + }, + { + "start": 32754.34, + "end": 32755.56, + "probability": 0.62 + }, + { + "start": 32756.46, + "end": 32758.84, + "probability": 0.9194 + }, + { + "start": 32759.86, + "end": 32763.56, + "probability": 0.9865 + }, + { + "start": 32764.06, + "end": 32765.02, + "probability": 0.7929 + }, + { + "start": 32765.72, + "end": 32773.26, + "probability": 0.9974 + }, + { + "start": 32775.5, + "end": 32776.24, + "probability": 0.3856 + }, + { + "start": 32776.82, + "end": 32779.22, + "probability": 0.9092 + }, + { + "start": 32780.08, + "end": 32781.38, + "probability": 0.9976 + }, + { + "start": 32784.44, + "end": 32788.2, + "probability": 0.9867 + }, + { + "start": 32788.2, + "end": 32792.72, + "probability": 0.9983 + }, + { + "start": 32794.74, + "end": 32797.03, + "probability": 0.8942 + }, + { + "start": 32798.08, + "end": 32802.72, + "probability": 0.9973 + }, + { + "start": 32803.52, + "end": 32805.77, + "probability": 0.9316 + }, + { + "start": 32806.42, + "end": 32812.74, + "probability": 0.9775 + }, + { + "start": 32813.54, + "end": 32814.24, + "probability": 0.9907 + }, + { + "start": 32814.3, + "end": 32815.32, + "probability": 0.968 + }, + { + "start": 32815.92, + "end": 32817.82, + "probability": 0.9967 + }, + { + "start": 32818.52, + "end": 32819.21, + "probability": 0.9736 + }, + { + "start": 32820.7, + "end": 32824.9, + "probability": 0.9661 + }, + { + "start": 32828.96, + "end": 32830.04, + "probability": 0.6369 + }, + { + "start": 32831.28, + "end": 32836.52, + "probability": 0.7674 + }, + { + "start": 32837.58, + "end": 32842.6, + "probability": 0.9814 + }, + { + "start": 32842.7, + "end": 32844.0, + "probability": 0.9872 + }, + { + "start": 32844.18, + "end": 32847.66, + "probability": 0.8421 + }, + { + "start": 32848.84, + "end": 32850.31, + "probability": 0.7872 + }, + { + "start": 32851.06, + "end": 32852.43, + "probability": 0.9888 + }, + { + "start": 32853.3, + "end": 32858.16, + "probability": 0.9879 + }, + { + "start": 32860.74, + "end": 32866.8, + "probability": 0.9971 + }, + { + "start": 32868.42, + "end": 32871.43, + "probability": 0.8793 + }, + { + "start": 32871.76, + "end": 32875.52, + "probability": 0.8942 + }, + { + "start": 32875.66, + "end": 32877.82, + "probability": 0.9319 + }, + { + "start": 32877.92, + "end": 32879.4, + "probability": 0.9151 + }, + { + "start": 32879.84, + "end": 32882.28, + "probability": 0.9513 + }, + { + "start": 32882.68, + "end": 32884.58, + "probability": 0.9916 + }, + { + "start": 32884.62, + "end": 32886.16, + "probability": 0.9415 + }, + { + "start": 32886.3, + "end": 32889.0, + "probability": 0.5571 + }, + { + "start": 32889.16, + "end": 32891.34, + "probability": 0.0833 + }, + { + "start": 32891.5, + "end": 32892.68, + "probability": 0.0289 + }, + { + "start": 32892.68, + "end": 32892.82, + "probability": 0.0434 + }, + { + "start": 32892.82, + "end": 32896.62, + "probability": 0.3192 + }, + { + "start": 32896.94, + "end": 32897.08, + "probability": 0.5662 + }, + { + "start": 32897.2, + "end": 32897.48, + "probability": 0.6533 + }, + { + "start": 32897.58, + "end": 32901.3, + "probability": 0.4945 + }, + { + "start": 32901.46, + "end": 32902.64, + "probability": 0.8313 + }, + { + "start": 32902.8, + "end": 32903.56, + "probability": 0.7582 + }, + { + "start": 32903.58, + "end": 32905.86, + "probability": 0.7142 + }, + { + "start": 32906.34, + "end": 32910.26, + "probability": 0.5393 + }, + { + "start": 32911.17, + "end": 32912.94, + "probability": 0.1176 + }, + { + "start": 32913.06, + "end": 32913.82, + "probability": 0.6068 + }, + { + "start": 32913.94, + "end": 32914.56, + "probability": 0.7501 + }, + { + "start": 32915.92, + "end": 32918.93, + "probability": 0.9623 + }, + { + "start": 32919.82, + "end": 32922.46, + "probability": 0.9784 + }, + { + "start": 32923.06, + "end": 32924.96, + "probability": 0.9974 + }, + { + "start": 32925.52, + "end": 32928.26, + "probability": 0.9945 + }, + { + "start": 32928.26, + "end": 32928.26, + "probability": 0.1533 + }, + { + "start": 32928.26, + "end": 32931.42, + "probability": 0.1351 + }, + { + "start": 32931.94, + "end": 32937.7, + "probability": 0.3692 + }, + { + "start": 32937.84, + "end": 32938.34, + "probability": 0.0442 + }, + { + "start": 32938.34, + "end": 32939.3, + "probability": 0.1139 + }, + { + "start": 32939.3, + "end": 32939.74, + "probability": 0.0624 + }, + { + "start": 32939.76, + "end": 32940.18, + "probability": 0.4908 + }, + { + "start": 32940.22, + "end": 32941.12, + "probability": 0.5609 + }, + { + "start": 32941.56, + "end": 32943.6, + "probability": 0.851 + }, + { + "start": 32943.64, + "end": 32944.32, + "probability": 0.8365 + }, + { + "start": 32944.4, + "end": 32944.86, + "probability": 0.4901 + }, + { + "start": 32945.0, + "end": 32946.04, + "probability": 0.6924 + }, + { + "start": 32946.5, + "end": 32946.7, + "probability": 0.1627 + }, + { + "start": 32947.82, + "end": 32948.0, + "probability": 0.1016 + }, + { + "start": 32949.46, + "end": 32951.5, + "probability": 0.4957 + }, + { + "start": 32952.14, + "end": 32958.74, + "probability": 0.4352 + }, + { + "start": 32959.22, + "end": 32963.38, + "probability": 0.6784 + }, + { + "start": 32963.68, + "end": 32964.81, + "probability": 0.4778 + }, + { + "start": 32965.64, + "end": 32966.12, + "probability": 0.4729 + }, + { + "start": 32970.98, + "end": 32972.06, + "probability": 0.7295 + }, + { + "start": 32973.04, + "end": 32975.35, + "probability": 0.7301 + }, + { + "start": 32975.72, + "end": 32977.29, + "probability": 0.4989 + }, + { + "start": 32977.4, + "end": 32977.96, + "probability": 0.0171 + }, + { + "start": 32977.96, + "end": 32979.12, + "probability": 0.6779 + }, + { + "start": 32979.88, + "end": 32986.44, + "probability": 0.1093 + }, + { + "start": 32986.76, + "end": 32990.42, + "probability": 0.3352 + }, + { + "start": 32990.88, + "end": 32991.28, + "probability": 0.0291 + }, + { + "start": 32991.28, + "end": 32993.36, + "probability": 0.3244 + }, + { + "start": 32993.5, + "end": 32995.96, + "probability": 0.9871 + }, + { + "start": 32996.64, + "end": 32998.48, + "probability": 0.9886 + }, + { + "start": 32998.58, + "end": 32999.22, + "probability": 0.8167 + }, + { + "start": 32999.46, + "end": 33000.66, + "probability": 0.6042 + }, + { + "start": 33001.2, + "end": 33002.02, + "probability": 0.6317 + }, + { + "start": 33002.1, + "end": 33003.32, + "probability": 0.7894 + }, + { + "start": 33003.54, + "end": 33004.52, + "probability": 0.8064 + }, + { + "start": 33004.6, + "end": 33006.42, + "probability": 0.8295 + }, + { + "start": 33006.42, + "end": 33009.08, + "probability": 0.833 + }, + { + "start": 33009.46, + "end": 33010.7, + "probability": 0.7362 + }, + { + "start": 33011.82, + "end": 33015.26, + "probability": 0.9946 + }, + { + "start": 33015.76, + "end": 33020.36, + "probability": 0.9916 + }, + { + "start": 33021.68, + "end": 33026.64, + "probability": 0.9481 + }, + { + "start": 33026.92, + "end": 33030.1, + "probability": 0.9869 + }, + { + "start": 33030.22, + "end": 33031.02, + "probability": 0.8937 + }, + { + "start": 33031.18, + "end": 33035.36, + "probability": 0.797 + }, + { + "start": 33036.24, + "end": 33038.34, + "probability": 0.8973 + }, + { + "start": 33038.52, + "end": 33043.38, + "probability": 0.9882 + }, + { + "start": 33043.46, + "end": 33044.4, + "probability": 0.8016 + }, + { + "start": 33044.98, + "end": 33047.36, + "probability": 0.9562 + }, + { + "start": 33047.46, + "end": 33048.32, + "probability": 0.9865 + }, + { + "start": 33048.42, + "end": 33049.74, + "probability": 0.9279 + }, + { + "start": 33050.44, + "end": 33051.3, + "probability": 0.9873 + }, + { + "start": 33051.66, + "end": 33054.71, + "probability": 0.9941 + }, + { + "start": 33055.88, + "end": 33057.84, + "probability": 0.9962 + }, + { + "start": 33058.36, + "end": 33061.62, + "probability": 0.9959 + }, + { + "start": 33062.2, + "end": 33063.9, + "probability": 0.0744 + }, + { + "start": 33064.0, + "end": 33064.22, + "probability": 0.2407 + }, + { + "start": 33064.52, + "end": 33067.12, + "probability": 0.1542 + }, + { + "start": 33067.26, + "end": 33071.3, + "probability": 0.9764 + }, + { + "start": 33071.82, + "end": 33072.9, + "probability": 0.67 + }, + { + "start": 33073.34, + "end": 33074.06, + "probability": 0.8568 + }, + { + "start": 33074.14, + "end": 33079.68, + "probability": 0.8608 + }, + { + "start": 33079.78, + "end": 33080.98, + "probability": 0.8719 + }, + { + "start": 33081.36, + "end": 33086.08, + "probability": 0.8959 + }, + { + "start": 33086.12, + "end": 33086.84, + "probability": 0.0509 + }, + { + "start": 33086.96, + "end": 33087.74, + "probability": 0.0182 + }, + { + "start": 33087.74, + "end": 33088.86, + "probability": 0.1047 + }, + { + "start": 33089.08, + "end": 33089.94, + "probability": 0.9763 + }, + { + "start": 33090.02, + "end": 33091.02, + "probability": 0.755 + }, + { + "start": 33091.02, + "end": 33092.61, + "probability": 0.4864 + }, + { + "start": 33093.06, + "end": 33094.94, + "probability": 0.1478 + }, + { + "start": 33094.94, + "end": 33094.94, + "probability": 0.2575 + }, + { + "start": 33094.94, + "end": 33094.94, + "probability": 0.302 + }, + { + "start": 33094.94, + "end": 33097.7, + "probability": 0.4016 + }, + { + "start": 33098.56, + "end": 33101.86, + "probability": 0.8485 + }, + { + "start": 33101.9, + "end": 33107.3, + "probability": 0.9849 + }, + { + "start": 33107.84, + "end": 33109.24, + "probability": 0.9798 + }, + { + "start": 33109.98, + "end": 33114.14, + "probability": 0.8959 + }, + { + "start": 33114.16, + "end": 33117.2, + "probability": 0.9922 + }, + { + "start": 33117.2, + "end": 33119.2, + "probability": 0.5597 + }, + { + "start": 33119.38, + "end": 33119.98, + "probability": 0.9529 + }, + { + "start": 33119.98, + "end": 33120.33, + "probability": 0.0255 + }, + { + "start": 33120.66, + "end": 33120.98, + "probability": 0.0391 + }, + { + "start": 33121.16, + "end": 33122.94, + "probability": 0.3814 + }, + { + "start": 33123.32, + "end": 33124.66, + "probability": 0.1464 + }, + { + "start": 33125.66, + "end": 33129.76, + "probability": 0.6393 + }, + { + "start": 33130.18, + "end": 33135.1, + "probability": 0.9641 + }, + { + "start": 33135.1, + "end": 33139.04, + "probability": 0.9435 + }, + { + "start": 33139.3, + "end": 33140.9, + "probability": 0.8153 + }, + { + "start": 33141.0, + "end": 33142.7, + "probability": 0.8082 + }, + { + "start": 33143.6, + "end": 33144.98, + "probability": 0.9292 + }, + { + "start": 33145.08, + "end": 33149.96, + "probability": 0.9319 + }, + { + "start": 33150.66, + "end": 33156.34, + "probability": 0.9944 + }, + { + "start": 33156.68, + "end": 33158.24, + "probability": 0.7592 + }, + { + "start": 33158.62, + "end": 33159.43, + "probability": 0.9551 + }, + { + "start": 33159.76, + "end": 33161.12, + "probability": 0.9035 + }, + { + "start": 33161.6, + "end": 33162.68, + "probability": 0.6463 + }, + { + "start": 33163.08, + "end": 33165.26, + "probability": 0.7301 + }, + { + "start": 33165.9, + "end": 33167.64, + "probability": 0.5273 + }, + { + "start": 33167.72, + "end": 33172.46, + "probability": 0.9482 + }, + { + "start": 33172.78, + "end": 33175.82, + "probability": 0.9015 + }, + { + "start": 33176.34, + "end": 33178.53, + "probability": 0.9951 + }, + { + "start": 33181.32, + "end": 33181.76, + "probability": 0.7109 + }, + { + "start": 33182.14, + "end": 33183.04, + "probability": 0.7071 + }, + { + "start": 33183.32, + "end": 33186.14, + "probability": 0.9709 + }, + { + "start": 33186.42, + "end": 33190.36, + "probability": 0.9922 + }, + { + "start": 33190.36, + "end": 33192.66, + "probability": 0.5155 + }, + { + "start": 33193.0, + "end": 33195.64, + "probability": 0.9575 + }, + { + "start": 33196.24, + "end": 33198.14, + "probability": 0.496 + }, + { + "start": 33198.24, + "end": 33201.68, + "probability": 0.8961 + }, + { + "start": 33202.18, + "end": 33207.44, + "probability": 0.9521 + }, + { + "start": 33207.84, + "end": 33212.9, + "probability": 0.8564 + }, + { + "start": 33212.98, + "end": 33213.82, + "probability": 0.6759 + }, + { + "start": 33214.34, + "end": 33216.04, + "probability": 0.9773 + }, + { + "start": 33216.44, + "end": 33217.08, + "probability": 0.6393 + }, + { + "start": 33217.16, + "end": 33218.68, + "probability": 0.9558 + }, + { + "start": 33218.74, + "end": 33219.7, + "probability": 0.6752 + }, + { + "start": 33219.86, + "end": 33221.28, + "probability": 0.9831 + }, + { + "start": 33222.82, + "end": 33224.44, + "probability": 0.912 + }, + { + "start": 33235.84, + "end": 33237.28, + "probability": 0.5807 + }, + { + "start": 33238.82, + "end": 33241.44, + "probability": 0.7938 + }, + { + "start": 33242.78, + "end": 33246.76, + "probability": 0.9991 + }, + { + "start": 33247.68, + "end": 33249.22, + "probability": 0.9028 + }, + { + "start": 33250.02, + "end": 33254.34, + "probability": 0.9543 + }, + { + "start": 33254.92, + "end": 33259.18, + "probability": 0.9634 + }, + { + "start": 33259.74, + "end": 33261.54, + "probability": 0.9927 + }, + { + "start": 33262.46, + "end": 33265.62, + "probability": 0.9806 + }, + { + "start": 33266.12, + "end": 33270.04, + "probability": 0.7278 + }, + { + "start": 33270.18, + "end": 33271.16, + "probability": 0.8317 + }, + { + "start": 33271.34, + "end": 33272.42, + "probability": 0.8475 + }, + { + "start": 33273.24, + "end": 33278.74, + "probability": 0.9869 + }, + { + "start": 33279.4, + "end": 33282.44, + "probability": 0.9816 + }, + { + "start": 33283.04, + "end": 33285.28, + "probability": 0.9797 + }, + { + "start": 33285.86, + "end": 33288.08, + "probability": 0.9951 + }, + { + "start": 33290.52, + "end": 33291.3, + "probability": 0.4342 + }, + { + "start": 33291.72, + "end": 33292.62, + "probability": 0.7109 + }, + { + "start": 33292.78, + "end": 33294.54, + "probability": 0.9164 + }, + { + "start": 33294.68, + "end": 33300.66, + "probability": 0.9927 + }, + { + "start": 33301.4, + "end": 33305.2, + "probability": 0.9796 + }, + { + "start": 33305.8, + "end": 33308.5, + "probability": 0.9398 + }, + { + "start": 33309.34, + "end": 33312.2, + "probability": 0.9941 + }, + { + "start": 33312.64, + "end": 33314.14, + "probability": 0.723 + }, + { + "start": 33314.24, + "end": 33315.3, + "probability": 0.8584 + }, + { + "start": 33315.8, + "end": 33316.9, + "probability": 0.9102 + }, + { + "start": 33317.6, + "end": 33318.8, + "probability": 0.6529 + }, + { + "start": 33319.34, + "end": 33323.48, + "probability": 0.9865 + }, + { + "start": 33324.38, + "end": 33325.24, + "probability": 0.5545 + }, + { + "start": 33325.7, + "end": 33332.4, + "probability": 0.9909 + }, + { + "start": 33333.44, + "end": 33335.44, + "probability": 0.9949 + }, + { + "start": 33336.06, + "end": 33339.0, + "probability": 0.7773 + }, + { + "start": 33339.38, + "end": 33343.26, + "probability": 0.9974 + }, + { + "start": 33343.26, + "end": 33347.6, + "probability": 0.9883 + }, + { + "start": 33348.4, + "end": 33352.82, + "probability": 0.9921 + }, + { + "start": 33356.28, + "end": 33359.74, + "probability": 0.9829 + }, + { + "start": 33359.98, + "end": 33362.46, + "probability": 0.9991 + }, + { + "start": 33362.82, + "end": 33364.72, + "probability": 0.9826 + }, + { + "start": 33364.9, + "end": 33368.24, + "probability": 0.9759 + }, + { + "start": 33368.58, + "end": 33371.84, + "probability": 0.9989 + }, + { + "start": 33372.42, + "end": 33374.04, + "probability": 0.4591 + }, + { + "start": 33375.66, + "end": 33377.96, + "probability": 0.9722 + }, + { + "start": 33378.56, + "end": 33379.8, + "probability": 0.824 + }, + { + "start": 33380.42, + "end": 33381.04, + "probability": 0.6323 + }, + { + "start": 33381.7, + "end": 33383.26, + "probability": 0.9363 + }, + { + "start": 33383.44, + "end": 33385.22, + "probability": 0.9382 + }, + { + "start": 33385.62, + "end": 33388.12, + "probability": 0.8469 + }, + { + "start": 33388.88, + "end": 33392.02, + "probability": 0.9978 + }, + { + "start": 33392.38, + "end": 33393.12, + "probability": 0.9078 + }, + { + "start": 33393.2, + "end": 33394.1, + "probability": 0.9611 + }, + { + "start": 33394.16, + "end": 33394.74, + "probability": 0.9019 + }, + { + "start": 33395.4, + "end": 33396.22, + "probability": 0.954 + }, + { + "start": 33396.9, + "end": 33399.36, + "probability": 0.7938 + }, + { + "start": 33399.96, + "end": 33403.46, + "probability": 0.9902 + }, + { + "start": 33404.6, + "end": 33409.9, + "probability": 0.8223 + }, + { + "start": 33409.9, + "end": 33411.36, + "probability": 0.9805 + }, + { + "start": 33412.2, + "end": 33416.4, + "probability": 0.9984 + }, + { + "start": 33416.84, + "end": 33417.46, + "probability": 0.8193 + }, + { + "start": 33417.58, + "end": 33418.26, + "probability": 0.3468 + }, + { + "start": 33418.54, + "end": 33420.72, + "probability": 0.5878 + }, + { + "start": 33420.74, + "end": 33422.86, + "probability": 0.828 + }, + { + "start": 33422.92, + "end": 33423.52, + "probability": 0.5587 + }, + { + "start": 33423.54, + "end": 33424.92, + "probability": 0.8992 + }, + { + "start": 33425.46, + "end": 33426.0, + "probability": 0.9388 + }, + { + "start": 33439.0, + "end": 33439.5, + "probability": 0.816 + }, + { + "start": 33440.66, + "end": 33442.66, + "probability": 0.7042 + }, + { + "start": 33443.7, + "end": 33445.0, + "probability": 0.9468 + }, + { + "start": 33445.92, + "end": 33447.38, + "probability": 0.8384 + }, + { + "start": 33447.48, + "end": 33453.08, + "probability": 0.9891 + }, + { + "start": 33453.9, + "end": 33457.68, + "probability": 0.9897 + }, + { + "start": 33457.9, + "end": 33458.78, + "probability": 0.8769 + }, + { + "start": 33458.82, + "end": 33459.28, + "probability": 0.9559 + }, + { + "start": 33459.42, + "end": 33460.82, + "probability": 0.8933 + }, + { + "start": 33462.16, + "end": 33463.3, + "probability": 0.9857 + }, + { + "start": 33463.76, + "end": 33465.62, + "probability": 0.9863 + }, + { + "start": 33466.2, + "end": 33472.56, + "probability": 0.9053 + }, + { + "start": 33473.18, + "end": 33479.92, + "probability": 0.9865 + }, + { + "start": 33480.98, + "end": 33485.52, + "probability": 0.9699 + }, + { + "start": 33486.74, + "end": 33487.58, + "probability": 0.9312 + }, + { + "start": 33488.14, + "end": 33493.66, + "probability": 0.9771 + }, + { + "start": 33493.74, + "end": 33502.56, + "probability": 0.9572 + }, + { + "start": 33502.56, + "end": 33508.8, + "probability": 0.9441 + }, + { + "start": 33509.54, + "end": 33512.42, + "probability": 0.8868 + }, + { + "start": 33513.52, + "end": 33520.88, + "probability": 0.9759 + }, + { + "start": 33521.88, + "end": 33524.76, + "probability": 0.8945 + }, + { + "start": 33525.32, + "end": 33528.48, + "probability": 0.6314 + }, + { + "start": 33530.18, + "end": 33535.52, + "probability": 0.8716 + }, + { + "start": 33536.08, + "end": 33536.6, + "probability": 0.8267 + }, + { + "start": 33537.16, + "end": 33541.88, + "probability": 0.9875 + }, + { + "start": 33542.66, + "end": 33543.0, + "probability": 0.5568 + }, + { + "start": 33543.08, + "end": 33547.18, + "probability": 0.9891 + }, + { + "start": 33548.08, + "end": 33549.24, + "probability": 0.6175 + }, + { + "start": 33549.32, + "end": 33556.68, + "probability": 0.981 + }, + { + "start": 33557.2, + "end": 33562.48, + "probability": 0.8138 + }, + { + "start": 33564.06, + "end": 33566.18, + "probability": 0.9274 + }, + { + "start": 33566.5, + "end": 33570.14, + "probability": 0.9902 + }, + { + "start": 33570.36, + "end": 33572.68, + "probability": 0.7016 + }, + { + "start": 33573.0, + "end": 33575.66, + "probability": 0.9567 + }, + { + "start": 33577.66, + "end": 33583.32, + "probability": 0.9841 + }, + { + "start": 33584.3, + "end": 33587.2, + "probability": 0.9597 + }, + { + "start": 33587.2, + "end": 33591.34, + "probability": 0.9836 + }, + { + "start": 33592.16, + "end": 33596.1, + "probability": 0.9949 + }, + { + "start": 33596.52, + "end": 33598.16, + "probability": 0.7909 + }, + { + "start": 33598.82, + "end": 33601.94, + "probability": 0.9917 + }, + { + "start": 33604.2, + "end": 33604.5, + "probability": 0.5326 + }, + { + "start": 33604.7, + "end": 33608.68, + "probability": 0.9792 + }, + { + "start": 33608.86, + "end": 33612.72, + "probability": 0.9519 + }, + { + "start": 33613.42, + "end": 33621.81, + "probability": 0.9532 + }, + { + "start": 33622.22, + "end": 33627.54, + "probability": 0.9613 + }, + { + "start": 33627.79, + "end": 33633.46, + "probability": 0.9986 + }, + { + "start": 33633.52, + "end": 33634.4, + "probability": 0.4982 + }, + { + "start": 33634.5, + "end": 33636.26, + "probability": 0.917 + }, + { + "start": 33636.7, + "end": 33637.2, + "probability": 0.6716 + }, + { + "start": 33637.3, + "end": 33639.62, + "probability": 0.9023 + }, + { + "start": 33639.78, + "end": 33640.7, + "probability": 0.7445 + }, + { + "start": 33640.7, + "end": 33642.06, + "probability": 0.9701 + }, + { + "start": 33642.6, + "end": 33643.9, + "probability": 0.9491 + }, + { + "start": 33653.06, + "end": 33654.85, + "probability": 0.7998 + }, + { + "start": 33655.92, + "end": 33660.82, + "probability": 0.9099 + }, + { + "start": 33660.9, + "end": 33663.78, + "probability": 0.8029 + }, + { + "start": 33665.0, + "end": 33665.64, + "probability": 0.6239 + }, + { + "start": 33667.08, + "end": 33668.72, + "probability": 0.9835 + }, + { + "start": 33672.02, + "end": 33675.47, + "probability": 0.6397 + }, + { + "start": 33677.0, + "end": 33679.82, + "probability": 0.7893 + }, + { + "start": 33683.28, + "end": 33685.7, + "probability": 0.9533 + }, + { + "start": 33690.06, + "end": 33694.88, + "probability": 0.9778 + }, + { + "start": 33695.08, + "end": 33696.0, + "probability": 0.3237 + }, + { + "start": 33697.08, + "end": 33698.78, + "probability": 0.4647 + }, + { + "start": 33699.96, + "end": 33702.08, + "probability": 0.8339 + }, + { + "start": 33703.36, + "end": 33705.8, + "probability": 0.891 + }, + { + "start": 33707.08, + "end": 33709.36, + "probability": 0.998 + }, + { + "start": 33710.52, + "end": 33711.22, + "probability": 0.7981 + }, + { + "start": 33712.06, + "end": 33714.44, + "probability": 0.9023 + }, + { + "start": 33715.8, + "end": 33719.6, + "probability": 0.9746 + }, + { + "start": 33720.88, + "end": 33723.1, + "probability": 0.5063 + }, + { + "start": 33724.5, + "end": 33727.34, + "probability": 0.9424 + }, + { + "start": 33728.84, + "end": 33731.3, + "probability": 0.9701 + }, + { + "start": 33732.36, + "end": 33733.4, + "probability": 0.9138 + }, + { + "start": 33734.08, + "end": 33737.78, + "probability": 0.9848 + }, + { + "start": 33739.14, + "end": 33742.48, + "probability": 0.9938 + }, + { + "start": 33744.52, + "end": 33749.78, + "probability": 0.9663 + }, + { + "start": 33754.44, + "end": 33755.4, + "probability": 0.9255 + }, + { + "start": 33755.64, + "end": 33756.58, + "probability": 0.9225 + }, + { + "start": 33759.48, + "end": 33761.78, + "probability": 0.9736 + }, + { + "start": 33764.08, + "end": 33764.8, + "probability": 0.924 + }, + { + "start": 33766.46, + "end": 33770.44, + "probability": 0.991 + }, + { + "start": 33772.18, + "end": 33775.42, + "probability": 0.9492 + }, + { + "start": 33777.77, + "end": 33781.26, + "probability": 0.7814 + }, + { + "start": 33785.14, + "end": 33786.8, + "probability": 0.7677 + }, + { + "start": 33788.5, + "end": 33791.51, + "probability": 0.9912 + }, + { + "start": 33796.14, + "end": 33799.08, + "probability": 0.9347 + }, + { + "start": 33800.76, + "end": 33802.14, + "probability": 0.9307 + }, + { + "start": 33803.34, + "end": 33805.52, + "probability": 0.7543 + }, + { + "start": 33806.86, + "end": 33807.6, + "probability": 0.8919 + }, + { + "start": 33808.66, + "end": 33809.8, + "probability": 0.8564 + }, + { + "start": 33812.2, + "end": 33818.7, + "probability": 0.9736 + }, + { + "start": 33818.7, + "end": 33830.54, + "probability": 0.9863 + }, + { + "start": 33831.04, + "end": 33831.78, + "probability": 0.494 + }, + { + "start": 33832.94, + "end": 33833.67, + "probability": 0.9365 + }, + { + "start": 33835.7, + "end": 33840.02, + "probability": 0.9938 + }, + { + "start": 33840.52, + "end": 33840.86, + "probability": 0.8462 + }, + { + "start": 33841.56, + "end": 33842.52, + "probability": 0.5102 + }, + { + "start": 33842.84, + "end": 33844.82, + "probability": 0.9102 + }, + { + "start": 33845.54, + "end": 33847.02, + "probability": 0.9818 + }, + { + "start": 33850.1, + "end": 33851.74, + "probability": 0.5937 + }, + { + "start": 33853.06, + "end": 33853.62, + "probability": 0.6314 + }, + { + "start": 33854.44, + "end": 33856.08, + "probability": 0.703 + }, + { + "start": 33856.08, + "end": 33857.52, + "probability": 0.6427 + }, + { + "start": 33870.4, + "end": 33871.95, + "probability": 0.577 + }, + { + "start": 33872.2, + "end": 33873.36, + "probability": 0.5828 + }, + { + "start": 33874.26, + "end": 33877.84, + "probability": 0.8808 + }, + { + "start": 33878.82, + "end": 33881.12, + "probability": 0.9614 + }, + { + "start": 33881.24, + "end": 33882.25, + "probability": 0.9966 + }, + { + "start": 33883.2, + "end": 33885.1, + "probability": 0.9396 + }, + { + "start": 33885.85, + "end": 33888.54, + "probability": 0.9476 + }, + { + "start": 33888.8, + "end": 33891.0, + "probability": 0.9078 + }, + { + "start": 33891.36, + "end": 33892.14, + "probability": 0.9636 + }, + { + "start": 33892.32, + "end": 33892.96, + "probability": 0.1495 + }, + { + "start": 33893.1, + "end": 33893.56, + "probability": 0.5567 + }, + { + "start": 33893.6, + "end": 33897.44, + "probability": 0.9819 + }, + { + "start": 33898.22, + "end": 33902.38, + "probability": 0.9949 + }, + { + "start": 33903.1, + "end": 33906.02, + "probability": 0.8764 + }, + { + "start": 33906.6, + "end": 33907.38, + "probability": 0.9023 + }, + { + "start": 33908.0, + "end": 33910.58, + "probability": 0.9976 + }, + { + "start": 33911.22, + "end": 33914.74, + "probability": 0.9985 + }, + { + "start": 33915.14, + "end": 33918.46, + "probability": 0.9937 + }, + { + "start": 33919.8, + "end": 33922.68, + "probability": 0.8877 + }, + { + "start": 33923.02, + "end": 33926.28, + "probability": 0.9404 + }, + { + "start": 33926.34, + "end": 33926.97, + "probability": 0.9388 + }, + { + "start": 33927.22, + "end": 33928.84, + "probability": 0.1308 + }, + { + "start": 33928.98, + "end": 33929.96, + "probability": 0.4466 + }, + { + "start": 33931.04, + "end": 33932.04, + "probability": 0.2255 + }, + { + "start": 33932.58, + "end": 33934.46, + "probability": 0.2555 + }, + { + "start": 33934.58, + "end": 33935.56, + "probability": 0.301 + }, + { + "start": 33935.66, + "end": 33936.01, + "probability": 0.1709 + }, + { + "start": 33936.2, + "end": 33942.76, + "probability": 0.783 + }, + { + "start": 33942.78, + "end": 33943.96, + "probability": 0.6034 + }, + { + "start": 33944.0, + "end": 33944.24, + "probability": 0.6479 + }, + { + "start": 33944.26, + "end": 33945.1, + "probability": 0.8979 + }, + { + "start": 33945.16, + "end": 33946.04, + "probability": 0.7508 + }, + { + "start": 33946.22, + "end": 33946.48, + "probability": 0.0766 + }, + { + "start": 33946.64, + "end": 33948.12, + "probability": 0.878 + }, + { + "start": 33948.44, + "end": 33949.25, + "probability": 0.1317 + }, + { + "start": 33950.12, + "end": 33952.72, + "probability": 0.9517 + }, + { + "start": 33954.02, + "end": 33954.66, + "probability": 0.6511 + }, + { + "start": 33954.84, + "end": 33960.94, + "probability": 0.9839 + }, + { + "start": 33961.1, + "end": 33962.57, + "probability": 0.8468 + }, + { + "start": 33963.42, + "end": 33965.38, + "probability": 0.7095 + }, + { + "start": 33965.94, + "end": 33970.48, + "probability": 0.1358 + }, + { + "start": 33970.48, + "end": 33970.72, + "probability": 0.2078 + }, + { + "start": 33971.02, + "end": 33971.02, + "probability": 0.4869 + }, + { + "start": 33971.02, + "end": 33971.7, + "probability": 0.7416 + }, + { + "start": 33972.74, + "end": 33974.48, + "probability": 0.7993 + }, + { + "start": 33974.56, + "end": 33976.0, + "probability": 0.9486 + }, + { + "start": 33976.1, + "end": 33977.92, + "probability": 0.9294 + }, + { + "start": 33978.42, + "end": 33978.9, + "probability": 0.7188 + }, + { + "start": 33979.88, + "end": 33985.06, + "probability": 0.9847 + }, + { + "start": 33985.06, + "end": 33990.2, + "probability": 0.9983 + }, + { + "start": 33990.68, + "end": 33994.66, + "probability": 0.9961 + }, + { + "start": 33995.26, + "end": 33999.84, + "probability": 0.9938 + }, + { + "start": 34000.46, + "end": 34001.14, + "probability": 0.9946 + }, + { + "start": 34001.98, + "end": 34004.18, + "probability": 0.9976 + }, + { + "start": 34005.58, + "end": 34006.8, + "probability": 0.3942 + }, + { + "start": 34007.54, + "end": 34008.34, + "probability": 0.989 + }, + { + "start": 34008.74, + "end": 34011.08, + "probability": 0.9007 + }, + { + "start": 34011.26, + "end": 34014.82, + "probability": 0.9306 + }, + { + "start": 34014.92, + "end": 34016.1, + "probability": 0.8578 + }, + { + "start": 34016.32, + "end": 34019.3, + "probability": 0.9478 + }, + { + "start": 34019.68, + "end": 34020.88, + "probability": 0.9758 + }, + { + "start": 34020.94, + "end": 34022.55, + "probability": 0.9941 + }, + { + "start": 34023.02, + "end": 34023.92, + "probability": 0.8596 + }, + { + "start": 34024.24, + "end": 34027.34, + "probability": 0.9797 + }, + { + "start": 34027.64, + "end": 34028.23, + "probability": 0.9216 + }, + { + "start": 34028.6, + "end": 34031.58, + "probability": 0.858 + }, + { + "start": 34031.98, + "end": 34033.2, + "probability": 0.664 + }, + { + "start": 34035.78, + "end": 34036.94, + "probability": 0.4715 + }, + { + "start": 34037.86, + "end": 34038.3, + "probability": 0.658 + }, + { + "start": 34038.84, + "end": 34041.58, + "probability": 0.983 + }, + { + "start": 34042.04, + "end": 34044.92, + "probability": 0.9551 + }, + { + "start": 34045.04, + "end": 34048.6, + "probability": 0.9266 + }, + { + "start": 34048.96, + "end": 34053.48, + "probability": 0.9959 + }, + { + "start": 34053.98, + "end": 34055.22, + "probability": 0.8366 + }, + { + "start": 34055.36, + "end": 34057.48, + "probability": 0.962 + }, + { + "start": 34057.78, + "end": 34061.0, + "probability": 0.9544 + }, + { + "start": 34061.36, + "end": 34061.93, + "probability": 0.9854 + }, + { + "start": 34062.78, + "end": 34063.16, + "probability": 0.7161 + }, + { + "start": 34064.58, + "end": 34068.08, + "probability": 0.9046 + }, + { + "start": 34068.78, + "end": 34069.46, + "probability": 0.7369 + }, + { + "start": 34069.52, + "end": 34070.82, + "probability": 0.991 + }, + { + "start": 34070.9, + "end": 34072.68, + "probability": 0.9726 + }, + { + "start": 34073.68, + "end": 34076.28, + "probability": 0.5599 + }, + { + "start": 34076.42, + "end": 34078.54, + "probability": 0.6588 + }, + { + "start": 34079.88, + "end": 34081.53, + "probability": 0.8066 + }, + { + "start": 34083.37, + "end": 34087.88, + "probability": 0.9807 + }, + { + "start": 34088.02, + "end": 34089.0, + "probability": 0.9868 + }, + { + "start": 34090.28, + "end": 34091.5, + "probability": 0.9476 + }, + { + "start": 34091.98, + "end": 34094.16, + "probability": 0.9805 + }, + { + "start": 34095.32, + "end": 34098.0, + "probability": 0.8677 + }, + { + "start": 34099.22, + "end": 34100.24, + "probability": 0.0179 + }, + { + "start": 34100.73, + "end": 34101.24, + "probability": 0.0591 + }, + { + "start": 34101.24, + "end": 34101.48, + "probability": 0.0424 + }, + { + "start": 34101.56, + "end": 34101.58, + "probability": 0.2904 + }, + { + "start": 34102.36, + "end": 34102.88, + "probability": 0.8164 + }, + { + "start": 34103.06, + "end": 34104.32, + "probability": 0.8497 + }, + { + "start": 34104.46, + "end": 34106.86, + "probability": 0.8944 + }, + { + "start": 34106.98, + "end": 34107.4, + "probability": 0.4486 + }, + { + "start": 34107.5, + "end": 34108.16, + "probability": 0.4956 + }, + { + "start": 34108.96, + "end": 34110.46, + "probability": 0.6769 + }, + { + "start": 34111.34, + "end": 34111.74, + "probability": 0.7195 + }, + { + "start": 34111.92, + "end": 34113.42, + "probability": 0.6293 + }, + { + "start": 34113.5, + "end": 34114.6, + "probability": 0.831 + }, + { + "start": 34114.72, + "end": 34119.08, + "probability": 0.9372 + }, + { + "start": 34119.18, + "end": 34120.82, + "probability": 0.9541 + }, + { + "start": 34120.92, + "end": 34122.44, + "probability": 0.9397 + }, + { + "start": 34123.22, + "end": 34125.88, + "probability": 0.9006 + }, + { + "start": 34126.04, + "end": 34129.14, + "probability": 0.999 + }, + { + "start": 34129.14, + "end": 34132.64, + "probability": 0.9997 + }, + { + "start": 34133.7, + "end": 34135.15, + "probability": 0.9937 + }, + { + "start": 34135.96, + "end": 34137.84, + "probability": 0.8719 + }, + { + "start": 34138.9, + "end": 34140.38, + "probability": 0.914 + }, + { + "start": 34141.99, + "end": 34144.9, + "probability": 0.3767 + }, + { + "start": 34144.9, + "end": 34144.9, + "probability": 0.0098 + }, + { + "start": 34144.9, + "end": 34146.11, + "probability": 0.8337 + }, + { + "start": 34146.4, + "end": 34147.36, + "probability": 0.6813 + }, + { + "start": 34148.28, + "end": 34149.7, + "probability": 0.8403 + }, + { + "start": 34150.14, + "end": 34154.3, + "probability": 0.9321 + }, + { + "start": 34154.46, + "end": 34156.9, + "probability": 0.9221 + }, + { + "start": 34157.16, + "end": 34159.4, + "probability": 0.9943 + }, + { + "start": 34160.0, + "end": 34164.5, + "probability": 0.9529 + }, + { + "start": 34165.18, + "end": 34166.58, + "probability": 0.8724 + }, + { + "start": 34166.68, + "end": 34167.9, + "probability": 0.9275 + }, + { + "start": 34168.58, + "end": 34168.68, + "probability": 0.2242 + }, + { + "start": 34168.68, + "end": 34170.56, + "probability": 0.9988 + }, + { + "start": 34171.72, + "end": 34173.08, + "probability": 0.9929 + }, + { + "start": 34173.28, + "end": 34174.64, + "probability": 0.9946 + }, + { + "start": 34174.92, + "end": 34175.54, + "probability": 0.8673 + }, + { + "start": 34175.8, + "end": 34176.0, + "probability": 0.8018 + }, + { + "start": 34176.1, + "end": 34178.86, + "probability": 0.8504 + }, + { + "start": 34181.02, + "end": 34181.88, + "probability": 0.6242 + }, + { + "start": 34182.02, + "end": 34182.02, + "probability": 0.2672 + }, + { + "start": 34182.02, + "end": 34182.02, + "probability": 0.0809 + }, + { + "start": 34182.02, + "end": 34183.68, + "probability": 0.066 + }, + { + "start": 34184.08, + "end": 34185.78, + "probability": 0.9268 + }, + { + "start": 34185.88, + "end": 34187.72, + "probability": 0.9655 + }, + { + "start": 34188.0, + "end": 34191.54, + "probability": 0.9915 + }, + { + "start": 34191.77, + "end": 34194.84, + "probability": 0.9957 + }, + { + "start": 34196.48, + "end": 34197.77, + "probability": 0.5077 + }, + { + "start": 34198.3, + "end": 34200.66, + "probability": 0.1916 + }, + { + "start": 34201.2, + "end": 34204.26, + "probability": 0.1635 + }, + { + "start": 34204.34, + "end": 34207.19, + "probability": 0.5552 + }, + { + "start": 34207.32, + "end": 34211.52, + "probability": 0.8962 + }, + { + "start": 34211.66, + "end": 34214.4, + "probability": 0.9781 + }, + { + "start": 34214.44, + "end": 34217.66, + "probability": 0.9216 + }, + { + "start": 34217.76, + "end": 34218.48, + "probability": 0.9482 + }, + { + "start": 34218.58, + "end": 34219.54, + "probability": 0.9756 + }, + { + "start": 34220.14, + "end": 34223.16, + "probability": 0.908 + }, + { + "start": 34223.94, + "end": 34225.72, + "probability": 0.9727 + }, + { + "start": 34225.86, + "end": 34227.96, + "probability": 0.9944 + }, + { + "start": 34228.1, + "end": 34228.1, + "probability": 0.938 + }, + { + "start": 34230.98, + "end": 34233.1, + "probability": 0.8358 + }, + { + "start": 34233.7, + "end": 34234.62, + "probability": 0.8899 + }, + { + "start": 34235.04, + "end": 34239.0, + "probability": 0.9609 + }, + { + "start": 34239.1, + "end": 34242.48, + "probability": 0.8806 + }, + { + "start": 34243.14, + "end": 34245.32, + "probability": 0.9085 + }, + { + "start": 34245.72, + "end": 34248.98, + "probability": 0.9861 + }, + { + "start": 34249.1, + "end": 34249.8, + "probability": 0.9375 + }, + { + "start": 34250.28, + "end": 34252.44, + "probability": 0.7384 + }, + { + "start": 34252.6, + "end": 34253.12, + "probability": 0.913 + }, + { + "start": 34253.18, + "end": 34253.68, + "probability": 0.511 + }, + { + "start": 34253.7, + "end": 34254.76, + "probability": 0.9316 + }, + { + "start": 34255.36, + "end": 34256.94, + "probability": 0.6573 + }, + { + "start": 34257.72, + "end": 34258.32, + "probability": 0.6962 + }, + { + "start": 34258.38, + "end": 34259.19, + "probability": 0.9895 + }, + { + "start": 34259.36, + "end": 34261.02, + "probability": 0.9494 + }, + { + "start": 34261.46, + "end": 34264.8, + "probability": 0.9989 + }, + { + "start": 34265.32, + "end": 34267.3, + "probability": 0.9198 + }, + { + "start": 34267.46, + "end": 34268.16, + "probability": 0.6592 + }, + { + "start": 34268.28, + "end": 34271.62, + "probability": 0.9979 + }, + { + "start": 34272.1, + "end": 34275.86, + "probability": 0.8871 + }, + { + "start": 34276.4, + "end": 34277.05, + "probability": 0.7896 + }, + { + "start": 34277.76, + "end": 34278.44, + "probability": 0.6892 + }, + { + "start": 34278.56, + "end": 34281.46, + "probability": 0.8005 + }, + { + "start": 34282.26, + "end": 34284.04, + "probability": 0.9302 + }, + { + "start": 34284.54, + "end": 34288.1, + "probability": 0.9814 + }, + { + "start": 34288.64, + "end": 34290.51, + "probability": 0.9277 + }, + { + "start": 34290.62, + "end": 34290.9, + "probability": 0.6509 + }, + { + "start": 34291.28, + "end": 34291.3, + "probability": 0.0449 + }, + { + "start": 34291.3, + "end": 34291.62, + "probability": 0.3955 + }, + { + "start": 34291.9, + "end": 34293.52, + "probability": 0.6374 + }, + { + "start": 34294.62, + "end": 34296.76, + "probability": 0.7726 + }, + { + "start": 34299.82, + "end": 34301.58, + "probability": 0.8792 + }, + { + "start": 34302.72, + "end": 34307.24, + "probability": 0.8647 + }, + { + "start": 34307.34, + "end": 34308.26, + "probability": 0.7975 + }, + { + "start": 34308.36, + "end": 34308.88, + "probability": 0.8852 + }, + { + "start": 34308.98, + "end": 34310.24, + "probability": 0.8565 + }, + { + "start": 34310.64, + "end": 34311.52, + "probability": 0.937 + }, + { + "start": 34311.56, + "end": 34313.48, + "probability": 0.7629 + }, + { + "start": 34313.5, + "end": 34314.38, + "probability": 0.7878 + }, + { + "start": 34314.78, + "end": 34315.3, + "probability": 0.6322 + }, + { + "start": 34316.24, + "end": 34319.64, + "probability": 0.9635 + }, + { + "start": 34320.58, + "end": 34321.28, + "probability": 0.7462 + }, + { + "start": 34321.88, + "end": 34323.62, + "probability": 0.8502 + }, + { + "start": 34324.46, + "end": 34325.56, + "probability": 0.6898 + }, + { + "start": 34325.9, + "end": 34327.22, + "probability": 0.946 + }, + { + "start": 34327.66, + "end": 34330.56, + "probability": 0.5865 + }, + { + "start": 34334.56, + "end": 34336.56, + "probability": 0.8248 + }, + { + "start": 34345.8, + "end": 34351.68, + "probability": 0.6954 + }, + { + "start": 34354.44, + "end": 34356.68, + "probability": 0.914 + }, + { + "start": 34357.8, + "end": 34361.2, + "probability": 0.8657 + }, + { + "start": 34362.04, + "end": 34364.02, + "probability": 0.8568 + }, + { + "start": 34364.72, + "end": 34368.74, + "probability": 0.9961 + }, + { + "start": 34368.74, + "end": 34373.26, + "probability": 0.9897 + }, + { + "start": 34373.8, + "end": 34376.76, + "probability": 0.6899 + }, + { + "start": 34377.24, + "end": 34380.18, + "probability": 0.9876 + }, + { + "start": 34380.8, + "end": 34387.76, + "probability": 0.9702 + }, + { + "start": 34388.14, + "end": 34390.7, + "probability": 0.9893 + }, + { + "start": 34391.1, + "end": 34393.94, + "probability": 0.9243 + }, + { + "start": 34394.68, + "end": 34395.36, + "probability": 0.9724 + }, + { + "start": 34395.86, + "end": 34403.12, + "probability": 0.9258 + }, + { + "start": 34403.52, + "end": 34406.96, + "probability": 0.9594 + }, + { + "start": 34407.8, + "end": 34410.56, + "probability": 0.9356 + }, + { + "start": 34411.42, + "end": 34415.76, + "probability": 0.939 + }, + { + "start": 34416.36, + "end": 34418.82, + "probability": 0.9675 + }, + { + "start": 34418.88, + "end": 34424.24, + "probability": 0.9971 + }, + { + "start": 34425.12, + "end": 34428.0, + "probability": 0.995 + }, + { + "start": 34428.78, + "end": 34432.28, + "probability": 0.9931 + }, + { + "start": 34432.92, + "end": 34436.02, + "probability": 0.9647 + }, + { + "start": 34436.6, + "end": 34439.34, + "probability": 0.939 + }, + { + "start": 34440.46, + "end": 34441.3, + "probability": 0.8332 + }, + { + "start": 34442.12, + "end": 34445.26, + "probability": 0.971 + }, + { + "start": 34445.92, + "end": 34448.11, + "probability": 0.9915 + }, + { + "start": 34449.36, + "end": 34452.36, + "probability": 0.9979 + }, + { + "start": 34453.18, + "end": 34457.14, + "probability": 0.9429 + }, + { + "start": 34457.88, + "end": 34461.74, + "probability": 0.9919 + }, + { + "start": 34462.42, + "end": 34469.68, + "probability": 0.9945 + }, + { + "start": 34470.78, + "end": 34474.74, + "probability": 0.9995 + }, + { + "start": 34474.74, + "end": 34478.84, + "probability": 0.9984 + }, + { + "start": 34479.02, + "end": 34487.36, + "probability": 0.9808 + }, + { + "start": 34487.92, + "end": 34489.36, + "probability": 0.9332 + }, + { + "start": 34489.56, + "end": 34494.88, + "probability": 0.9927 + }, + { + "start": 34495.5, + "end": 34496.02, + "probability": 0.9291 + }, + { + "start": 34496.16, + "end": 34501.5, + "probability": 0.9819 + }, + { + "start": 34501.5, + "end": 34505.42, + "probability": 0.9618 + }, + { + "start": 34505.52, + "end": 34506.16, + "probability": 0.7488 + }, + { + "start": 34506.78, + "end": 34506.98, + "probability": 0.8184 + }, + { + "start": 34508.34, + "end": 34509.02, + "probability": 0.8854 + }, + { + "start": 34509.12, + "end": 34517.02, + "probability": 0.9981 + }, + { + "start": 34517.68, + "end": 34517.94, + "probability": 0.6081 + }, + { + "start": 34518.7, + "end": 34521.44, + "probability": 0.867 + }, + { + "start": 34522.7, + "end": 34525.32, + "probability": 0.9606 + }, + { + "start": 34525.48, + "end": 34526.36, + "probability": 0.4824 + }, + { + "start": 34526.56, + "end": 34529.5, + "probability": 0.6302 + }, + { + "start": 34529.6, + "end": 34531.06, + "probability": 0.9816 + }, + { + "start": 34535.7, + "end": 34539.44, + "probability": 0.8294 + }, + { + "start": 34539.44, + "end": 34542.28, + "probability": 0.1467 + }, + { + "start": 34542.38, + "end": 34543.6, + "probability": 0.3638 + }, + { + "start": 34543.72, + "end": 34545.04, + "probability": 0.7178 + }, + { + "start": 34545.56, + "end": 34546.86, + "probability": 0.6167 + }, + { + "start": 34547.42, + "end": 34548.3, + "probability": 0.5203 + }, + { + "start": 34548.32, + "end": 34549.64, + "probability": 0.75 + }, + { + "start": 34566.5, + "end": 34568.74, + "probability": 0.3582 + }, + { + "start": 34568.74, + "end": 34572.04, + "probability": 0.1982 + }, + { + "start": 34572.12, + "end": 34573.12, + "probability": 0.2603 + }, + { + "start": 34573.8, + "end": 34578.2, + "probability": 0.7204 + }, + { + "start": 34578.9, + "end": 34580.62, + "probability": 0.0954 + }, + { + "start": 34580.62, + "end": 34581.94, + "probability": 0.011 + }, + { + "start": 34581.94, + "end": 34582.79, + "probability": 0.1253 + }, + { + "start": 34584.24, + "end": 34584.24, + "probability": 0.007 + }, + { + "start": 34592.32, + "end": 34592.42, + "probability": 0.0003 + }, + { + "start": 34601.78, + "end": 34602.54, + "probability": 0.0 + }, + { + "start": 34604.58, + "end": 34607.24, + "probability": 0.2189 + }, + { + "start": 34607.92, + "end": 34610.3, + "probability": 0.0802 + }, + { + "start": 34610.3, + "end": 34610.44, + "probability": 0.1301 + }, + { + "start": 34729.07, + "end": 34729.07, + "probability": 0.0 + }, + { + "start": 34729.07, + "end": 34729.07, + "probability": 0.0 + } + ], + "segments_count": 12184, + "words_count": 59040, + "avg_words_per_segment": 4.8457, + "avg_segment_duration": 1.9615, + "avg_words_per_minute": 102.001, + "plenum_id": "133334", + "duration": 34729.07, + "title": null, + "plenum_date": "2024-12-16" +} \ No newline at end of file