diff --git "a/27384/metadata.json" "b/27384/metadata.json" new file mode 100644--- /dev/null +++ "b/27384/metadata.json" @@ -0,0 +1,29187 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27384", + "quality_score": 0.9194, + "per_segment_quality_scores": [ + { + "start": 29.52, + "end": 31.68, + "probability": 0.8312 + }, + { + "start": 32.34, + "end": 33.38, + "probability": 0.894 + }, + { + "start": 33.5, + "end": 35.62, + "probability": 0.8543 + }, + { + "start": 36.0, + "end": 38.14, + "probability": 0.9746 + }, + { + "start": 38.22, + "end": 43.5, + "probability": 0.9927 + }, + { + "start": 44.28, + "end": 46.24, + "probability": 0.9749 + }, + { + "start": 46.44, + "end": 46.92, + "probability": 0.7408 + }, + { + "start": 48.48, + "end": 50.94, + "probability": 0.7375 + }, + { + "start": 54.6, + "end": 54.8, + "probability": 0.01 + }, + { + "start": 56.78, + "end": 61.08, + "probability": 0.1338 + }, + { + "start": 61.34, + "end": 63.6, + "probability": 0.9948 + }, + { + "start": 65.2, + "end": 65.46, + "probability": 0.4788 + }, + { + "start": 65.46, + "end": 69.52, + "probability": 0.9519 + }, + { + "start": 69.7, + "end": 70.4, + "probability": 0.9048 + }, + { + "start": 70.54, + "end": 71.69, + "probability": 0.9924 + }, + { + "start": 72.36, + "end": 74.1, + "probability": 0.9392 + }, + { + "start": 74.18, + "end": 75.98, + "probability": 0.9816 + }, + { + "start": 76.34, + "end": 77.84, + "probability": 0.3103 + }, + { + "start": 78.02, + "end": 81.8, + "probability": 0.9019 + }, + { + "start": 81.84, + "end": 82.46, + "probability": 0.5718 + }, + { + "start": 85.56, + "end": 88.54, + "probability": 0.8101 + }, + { + "start": 88.66, + "end": 88.84, + "probability": 0.3291 + }, + { + "start": 88.9, + "end": 91.44, + "probability": 0.8634 + }, + { + "start": 91.52, + "end": 92.46, + "probability": 0.8717 + }, + { + "start": 92.58, + "end": 93.36, + "probability": 0.7006 + }, + { + "start": 93.46, + "end": 95.22, + "probability": 0.9799 + }, + { + "start": 95.46, + "end": 98.26, + "probability": 0.9692 + }, + { + "start": 98.86, + "end": 99.46, + "probability": 0.7059 + }, + { + "start": 99.54, + "end": 99.76, + "probability": 0.6839 + }, + { + "start": 99.84, + "end": 103.68, + "probability": 0.991 + }, + { + "start": 104.3, + "end": 106.56, + "probability": 0.9429 + }, + { + "start": 107.06, + "end": 107.94, + "probability": 0.9212 + }, + { + "start": 108.4, + "end": 111.72, + "probability": 0.9862 + }, + { + "start": 112.02, + "end": 115.82, + "probability": 0.8285 + }, + { + "start": 116.24, + "end": 118.08, + "probability": 0.9525 + }, + { + "start": 118.24, + "end": 119.64, + "probability": 0.914 + }, + { + "start": 119.88, + "end": 120.88, + "probability": 0.7154 + }, + { + "start": 121.52, + "end": 126.94, + "probability": 0.9719 + }, + { + "start": 126.94, + "end": 133.36, + "probability": 0.8162 + }, + { + "start": 134.3, + "end": 135.74, + "probability": 0.9858 + }, + { + "start": 136.7, + "end": 137.1, + "probability": 0.483 + }, + { + "start": 137.28, + "end": 141.78, + "probability": 0.9963 + }, + { + "start": 141.78, + "end": 146.3, + "probability": 0.9884 + }, + { + "start": 146.44, + "end": 148.16, + "probability": 0.8695 + }, + { + "start": 149.16, + "end": 151.64, + "probability": 0.6103 + }, + { + "start": 152.68, + "end": 158.72, + "probability": 0.84 + }, + { + "start": 159.38, + "end": 163.48, + "probability": 0.9062 + }, + { + "start": 164.1, + "end": 165.94, + "probability": 0.957 + }, + { + "start": 166.26, + "end": 168.48, + "probability": 0.9352 + }, + { + "start": 169.24, + "end": 169.5, + "probability": 0.7749 + }, + { + "start": 169.56, + "end": 170.52, + "probability": 0.9739 + }, + { + "start": 170.88, + "end": 174.2, + "probability": 0.9212 + }, + { + "start": 174.92, + "end": 179.64, + "probability": 0.8498 + }, + { + "start": 180.36, + "end": 184.98, + "probability": 0.9945 + }, + { + "start": 186.56, + "end": 192.5, + "probability": 0.9954 + }, + { + "start": 192.86, + "end": 194.32, + "probability": 0.8804 + }, + { + "start": 194.76, + "end": 199.32, + "probability": 0.9862 + }, + { + "start": 199.5, + "end": 199.8, + "probability": 0.8447 + }, + { + "start": 200.08, + "end": 202.54, + "probability": 0.9719 + }, + { + "start": 202.62, + "end": 205.56, + "probability": 0.6846 + }, + { + "start": 205.8, + "end": 208.5, + "probability": 0.946 + }, + { + "start": 215.34, + "end": 220.76, + "probability": 0.7628 + }, + { + "start": 221.6, + "end": 222.56, + "probability": 0.7295 + }, + { + "start": 222.7, + "end": 224.48, + "probability": 0.9567 + }, + { + "start": 224.63, + "end": 229.74, + "probability": 0.8702 + }, + { + "start": 230.22, + "end": 230.78, + "probability": 0.924 + }, + { + "start": 230.86, + "end": 231.56, + "probability": 0.9037 + }, + { + "start": 231.72, + "end": 233.74, + "probability": 0.9203 + }, + { + "start": 234.44, + "end": 235.78, + "probability": 0.8412 + }, + { + "start": 236.0, + "end": 237.68, + "probability": 0.9128 + }, + { + "start": 239.13, + "end": 242.12, + "probability": 0.6337 + }, + { + "start": 242.36, + "end": 245.94, + "probability": 0.9737 + }, + { + "start": 246.8, + "end": 251.46, + "probability": 0.9885 + }, + { + "start": 251.96, + "end": 258.56, + "probability": 0.993 + }, + { + "start": 259.02, + "end": 261.26, + "probability": 0.8314 + }, + { + "start": 261.88, + "end": 264.08, + "probability": 0.8792 + }, + { + "start": 264.22, + "end": 267.36, + "probability": 0.9985 + }, + { + "start": 268.14, + "end": 272.2, + "probability": 0.9895 + }, + { + "start": 272.22, + "end": 273.17, + "probability": 0.3154 + }, + { + "start": 273.84, + "end": 276.82, + "probability": 0.7004 + }, + { + "start": 277.42, + "end": 279.56, + "probability": 0.7875 + }, + { + "start": 279.56, + "end": 285.16, + "probability": 0.9163 + }, + { + "start": 288.52, + "end": 291.64, + "probability": 0.6073 + }, + { + "start": 291.76, + "end": 297.26, + "probability": 0.8932 + }, + { + "start": 297.26, + "end": 301.14, + "probability": 0.9967 + }, + { + "start": 302.34, + "end": 304.52, + "probability": 0.9784 + }, + { + "start": 306.2, + "end": 308.24, + "probability": 0.9182 + }, + { + "start": 309.1, + "end": 313.04, + "probability": 0.9833 + }, + { + "start": 313.22, + "end": 313.9, + "probability": 0.7784 + }, + { + "start": 314.62, + "end": 318.22, + "probability": 0.9404 + }, + { + "start": 318.68, + "end": 324.02, + "probability": 0.9841 + }, + { + "start": 324.42, + "end": 325.3, + "probability": 0.9681 + }, + { + "start": 325.76, + "end": 326.54, + "probability": 0.6786 + }, + { + "start": 326.62, + "end": 328.33, + "probability": 0.8325 + }, + { + "start": 328.74, + "end": 330.44, + "probability": 0.3901 + }, + { + "start": 330.96, + "end": 333.0, + "probability": 0.8035 + }, + { + "start": 333.58, + "end": 336.66, + "probability": 0.9122 + }, + { + "start": 337.26, + "end": 339.84, + "probability": 0.952 + }, + { + "start": 339.98, + "end": 341.68, + "probability": 0.7901 + }, + { + "start": 342.06, + "end": 344.26, + "probability": 0.7608 + }, + { + "start": 344.56, + "end": 345.9, + "probability": 0.6609 + }, + { + "start": 346.02, + "end": 354.5, + "probability": 0.7557 + }, + { + "start": 354.82, + "end": 355.88, + "probability": 0.6803 + }, + { + "start": 355.9, + "end": 356.88, + "probability": 0.6803 + }, + { + "start": 357.24, + "end": 357.64, + "probability": 0.755 + }, + { + "start": 358.12, + "end": 360.92, + "probability": 0.6335 + }, + { + "start": 361.68, + "end": 363.8, + "probability": 0.244 + }, + { + "start": 363.8, + "end": 363.8, + "probability": 0.4357 + }, + { + "start": 363.8, + "end": 364.48, + "probability": 0.771 + }, + { + "start": 365.8, + "end": 370.86, + "probability": 0.7319 + }, + { + "start": 371.12, + "end": 372.18, + "probability": 0.9263 + }, + { + "start": 372.3, + "end": 376.96, + "probability": 0.9985 + }, + { + "start": 377.78, + "end": 385.36, + "probability": 0.994 + }, + { + "start": 386.44, + "end": 387.26, + "probability": 0.8049 + }, + { + "start": 387.94, + "end": 389.7, + "probability": 0.8618 + }, + { + "start": 390.22, + "end": 390.24, + "probability": 0.5927 + }, + { + "start": 390.24, + "end": 396.2, + "probability": 0.9751 + }, + { + "start": 396.34, + "end": 398.38, + "probability": 0.944 + }, + { + "start": 398.58, + "end": 400.34, + "probability": 0.9854 + }, + { + "start": 401.42, + "end": 402.8, + "probability": 0.9482 + }, + { + "start": 402.92, + "end": 403.66, + "probability": 0.7229 + }, + { + "start": 404.12, + "end": 410.02, + "probability": 0.9229 + }, + { + "start": 411.0, + "end": 413.7, + "probability": 0.9784 + }, + { + "start": 413.86, + "end": 416.98, + "probability": 0.8647 + }, + { + "start": 417.5, + "end": 418.04, + "probability": 0.9224 + }, + { + "start": 418.16, + "end": 424.78, + "probability": 0.9944 + }, + { + "start": 424.86, + "end": 426.06, + "probability": 0.9372 + }, + { + "start": 426.14, + "end": 428.76, + "probability": 0.9968 + }, + { + "start": 429.2, + "end": 430.28, + "probability": 0.5644 + }, + { + "start": 430.92, + "end": 433.26, + "probability": 0.9635 + }, + { + "start": 433.64, + "end": 434.98, + "probability": 0.998 + }, + { + "start": 435.7, + "end": 437.18, + "probability": 0.8862 + }, + { + "start": 437.28, + "end": 437.96, + "probability": 0.8269 + }, + { + "start": 437.98, + "end": 439.9, + "probability": 0.8623 + }, + { + "start": 440.04, + "end": 441.83, + "probability": 0.9714 + }, + { + "start": 442.26, + "end": 445.78, + "probability": 0.9542 + }, + { + "start": 446.12, + "end": 449.44, + "probability": 0.9712 + }, + { + "start": 449.56, + "end": 454.58, + "probability": 0.9943 + }, + { + "start": 455.18, + "end": 456.8, + "probability": 0.6748 + }, + { + "start": 456.9, + "end": 458.78, + "probability": 0.918 + }, + { + "start": 459.12, + "end": 459.64, + "probability": 0.5077 + }, + { + "start": 459.78, + "end": 461.88, + "probability": 0.9443 + }, + { + "start": 464.63, + "end": 468.32, + "probability": 0.6481 + }, + { + "start": 468.82, + "end": 473.3, + "probability": 0.9489 + }, + { + "start": 473.46, + "end": 474.76, + "probability": 0.9255 + }, + { + "start": 475.34, + "end": 479.96, + "probability": 0.9697 + }, + { + "start": 480.8, + "end": 486.4, + "probability": 0.9024 + }, + { + "start": 486.8, + "end": 489.16, + "probability": 0.9362 + }, + { + "start": 489.9, + "end": 494.92, + "probability": 0.9814 + }, + { + "start": 495.72, + "end": 501.2, + "probability": 0.9622 + }, + { + "start": 501.84, + "end": 504.3, + "probability": 0.8595 + }, + { + "start": 504.66, + "end": 505.88, + "probability": 0.7481 + }, + { + "start": 506.36, + "end": 508.52, + "probability": 0.7912 + }, + { + "start": 510.14, + "end": 514.2, + "probability": 0.9733 + }, + { + "start": 514.2, + "end": 517.92, + "probability": 0.9746 + }, + { + "start": 518.74, + "end": 520.68, + "probability": 0.7302 + }, + { + "start": 521.28, + "end": 522.02, + "probability": 0.5821 + }, + { + "start": 522.24, + "end": 522.94, + "probability": 0.8997 + }, + { + "start": 523.4, + "end": 524.64, + "probability": 0.9617 + }, + { + "start": 524.9, + "end": 528.12, + "probability": 0.9315 + }, + { + "start": 528.88, + "end": 533.08, + "probability": 0.8633 + }, + { + "start": 533.08, + "end": 536.14, + "probability": 0.9948 + }, + { + "start": 536.8, + "end": 539.36, + "probability": 0.972 + }, + { + "start": 540.22, + "end": 542.26, + "probability": 0.8656 + }, + { + "start": 542.78, + "end": 545.38, + "probability": 0.6887 + }, + { + "start": 545.38, + "end": 548.82, + "probability": 0.8492 + }, + { + "start": 549.36, + "end": 551.77, + "probability": 0.9792 + }, + { + "start": 552.24, + "end": 557.18, + "probability": 0.9783 + }, + { + "start": 558.28, + "end": 560.82, + "probability": 0.5383 + }, + { + "start": 561.58, + "end": 568.06, + "probability": 0.9948 + }, + { + "start": 569.02, + "end": 573.52, + "probability": 0.7361 + }, + { + "start": 574.14, + "end": 578.5, + "probability": 0.9857 + }, + { + "start": 578.82, + "end": 579.04, + "probability": 0.7702 + }, + { + "start": 579.74, + "end": 581.76, + "probability": 0.6528 + }, + { + "start": 581.84, + "end": 583.26, + "probability": 0.7246 + }, + { + "start": 583.64, + "end": 584.36, + "probability": 0.4986 + }, + { + "start": 584.62, + "end": 586.3, + "probability": 0.8082 + }, + { + "start": 586.42, + "end": 589.8, + "probability": 0.9705 + }, + { + "start": 590.62, + "end": 592.98, + "probability": 0.5481 + }, + { + "start": 594.46, + "end": 598.12, + "probability": 0.8148 + }, + { + "start": 599.08, + "end": 602.64, + "probability": 0.9479 + }, + { + "start": 603.62, + "end": 609.84, + "probability": 0.98 + }, + { + "start": 610.52, + "end": 611.26, + "probability": 0.4824 + }, + { + "start": 611.5, + "end": 612.52, + "probability": 0.9232 + }, + { + "start": 612.56, + "end": 617.88, + "probability": 0.9785 + }, + { + "start": 619.4, + "end": 621.78, + "probability": 0.8952 + }, + { + "start": 621.82, + "end": 624.08, + "probability": 0.8836 + }, + { + "start": 624.64, + "end": 626.72, + "probability": 0.9778 + }, + { + "start": 627.54, + "end": 629.44, + "probability": 0.8572 + }, + { + "start": 630.14, + "end": 633.74, + "probability": 0.8094 + }, + { + "start": 634.6, + "end": 638.46, + "probability": 0.9637 + }, + { + "start": 639.44, + "end": 642.02, + "probability": 0.4758 + }, + { + "start": 642.98, + "end": 649.0, + "probability": 0.9715 + }, + { + "start": 649.92, + "end": 653.42, + "probability": 0.9356 + }, + { + "start": 653.98, + "end": 657.48, + "probability": 0.9617 + }, + { + "start": 658.08, + "end": 661.08, + "probability": 0.8724 + }, + { + "start": 662.66, + "end": 663.84, + "probability": 0.6695 + }, + { + "start": 664.52, + "end": 672.34, + "probability": 0.7793 + }, + { + "start": 672.34, + "end": 678.72, + "probability": 0.9884 + }, + { + "start": 678.8, + "end": 679.78, + "probability": 0.7691 + }, + { + "start": 680.46, + "end": 680.96, + "probability": 0.274 + }, + { + "start": 681.78, + "end": 683.92, + "probability": 0.6364 + }, + { + "start": 684.6, + "end": 686.38, + "probability": 0.9818 + }, + { + "start": 692.4, + "end": 693.4, + "probability": 0.5782 + }, + { + "start": 693.66, + "end": 694.84, + "probability": 0.8358 + }, + { + "start": 695.12, + "end": 698.8, + "probability": 0.8854 + }, + { + "start": 698.86, + "end": 701.34, + "probability": 0.8765 + }, + { + "start": 701.92, + "end": 702.36, + "probability": 0.7456 + }, + { + "start": 704.68, + "end": 708.32, + "probability": 0.8589 + }, + { + "start": 708.32, + "end": 713.94, + "probability": 0.981 + }, + { + "start": 714.86, + "end": 717.16, + "probability": 0.9829 + }, + { + "start": 717.38, + "end": 718.4, + "probability": 0.7306 + }, + { + "start": 718.6, + "end": 720.98, + "probability": 0.9299 + }, + { + "start": 722.44, + "end": 726.6, + "probability": 0.7839 + }, + { + "start": 727.08, + "end": 732.68, + "probability": 0.9956 + }, + { + "start": 733.24, + "end": 735.06, + "probability": 0.9911 + }, + { + "start": 735.22, + "end": 736.74, + "probability": 0.9951 + }, + { + "start": 737.02, + "end": 738.38, + "probability": 0.999 + }, + { + "start": 738.76, + "end": 739.7, + "probability": 0.5744 + }, + { + "start": 739.74, + "end": 743.26, + "probability": 0.993 + }, + { + "start": 743.7, + "end": 744.78, + "probability": 0.9742 + }, + { + "start": 744.94, + "end": 746.42, + "probability": 0.9747 + }, + { + "start": 746.86, + "end": 749.36, + "probability": 0.9879 + }, + { + "start": 749.68, + "end": 755.76, + "probability": 0.9473 + }, + { + "start": 757.32, + "end": 758.34, + "probability": 0.3804 + }, + { + "start": 758.92, + "end": 760.48, + "probability": 0.9277 + }, + { + "start": 761.16, + "end": 762.81, + "probability": 0.7493 + }, + { + "start": 763.4, + "end": 763.82, + "probability": 0.7877 + }, + { + "start": 763.84, + "end": 764.48, + "probability": 0.7704 + }, + { + "start": 764.54, + "end": 765.86, + "probability": 0.9106 + }, + { + "start": 765.98, + "end": 768.42, + "probability": 0.9109 + }, + { + "start": 768.48, + "end": 769.08, + "probability": 0.9557 + }, + { + "start": 769.78, + "end": 772.88, + "probability": 0.7773 + }, + { + "start": 772.92, + "end": 774.54, + "probability": 0.7577 + }, + { + "start": 775.02, + "end": 775.86, + "probability": 0.8844 + }, + { + "start": 776.32, + "end": 777.52, + "probability": 0.917 + }, + { + "start": 777.66, + "end": 779.04, + "probability": 0.7633 + }, + { + "start": 779.12, + "end": 780.73, + "probability": 0.8814 + }, + { + "start": 781.22, + "end": 782.08, + "probability": 0.7374 + }, + { + "start": 782.32, + "end": 787.14, + "probability": 0.7539 + }, + { + "start": 787.41, + "end": 793.16, + "probability": 0.7434 + }, + { + "start": 793.16, + "end": 798.12, + "probability": 0.7459 + }, + { + "start": 798.52, + "end": 800.62, + "probability": 0.8041 + }, + { + "start": 801.36, + "end": 802.88, + "probability": 0.7802 + }, + { + "start": 803.1, + "end": 806.08, + "probability": 0.9892 + }, + { + "start": 806.98, + "end": 809.48, + "probability": 0.9849 + }, + { + "start": 810.46, + "end": 812.18, + "probability": 0.751 + }, + { + "start": 812.78, + "end": 815.3, + "probability": 0.9124 + }, + { + "start": 816.56, + "end": 819.69, + "probability": 0.9882 + }, + { + "start": 820.4, + "end": 820.66, + "probability": 0.831 + }, + { + "start": 820.82, + "end": 821.44, + "probability": 0.7005 + }, + { + "start": 821.52, + "end": 822.49, + "probability": 0.9023 + }, + { + "start": 822.88, + "end": 824.98, + "probability": 0.9656 + }, + { + "start": 825.82, + "end": 828.29, + "probability": 0.9023 + }, + { + "start": 829.12, + "end": 830.82, + "probability": 0.799 + }, + { + "start": 831.3, + "end": 836.0, + "probability": 0.9919 + }, + { + "start": 836.46, + "end": 837.11, + "probability": 0.9316 + }, + { + "start": 837.48, + "end": 838.08, + "probability": 0.9062 + }, + { + "start": 838.48, + "end": 839.69, + "probability": 0.9917 + }, + { + "start": 839.86, + "end": 842.14, + "probability": 0.9281 + }, + { + "start": 842.3, + "end": 845.22, + "probability": 0.8738 + }, + { + "start": 845.74, + "end": 848.22, + "probability": 0.8618 + }, + { + "start": 848.44, + "end": 849.75, + "probability": 0.9069 + }, + { + "start": 849.8, + "end": 850.76, + "probability": 0.789 + }, + { + "start": 850.92, + "end": 851.2, + "probability": 0.8646 + }, + { + "start": 851.26, + "end": 855.44, + "probability": 0.8086 + }, + { + "start": 855.54, + "end": 856.86, + "probability": 0.832 + }, + { + "start": 857.92, + "end": 859.78, + "probability": 0.8909 + }, + { + "start": 860.2, + "end": 863.58, + "probability": 0.8195 + }, + { + "start": 863.8, + "end": 865.5, + "probability": 0.9571 + }, + { + "start": 866.02, + "end": 868.94, + "probability": 0.6294 + }, + { + "start": 869.44, + "end": 870.58, + "probability": 0.8615 + }, + { + "start": 870.7, + "end": 872.24, + "probability": 0.9577 + }, + { + "start": 872.3, + "end": 873.52, + "probability": 0.8292 + }, + { + "start": 873.76, + "end": 875.11, + "probability": 0.7315 + }, + { + "start": 875.48, + "end": 876.63, + "probability": 0.7163 + }, + { + "start": 877.28, + "end": 878.34, + "probability": 0.8562 + }, + { + "start": 878.6, + "end": 880.5, + "probability": 0.8829 + }, + { + "start": 880.64, + "end": 883.0, + "probability": 0.9569 + }, + { + "start": 883.46, + "end": 888.4, + "probability": 0.9852 + }, + { + "start": 888.54, + "end": 889.96, + "probability": 0.5722 + }, + { + "start": 890.16, + "end": 893.58, + "probability": 0.9978 + }, + { + "start": 893.58, + "end": 896.84, + "probability": 0.8745 + }, + { + "start": 897.14, + "end": 900.84, + "probability": 0.9927 + }, + { + "start": 900.84, + "end": 904.04, + "probability": 0.9988 + }, + { + "start": 904.48, + "end": 907.06, + "probability": 0.8894 + }, + { + "start": 907.3, + "end": 910.04, + "probability": 0.8806 + }, + { + "start": 910.04, + "end": 910.98, + "probability": 0.7765 + }, + { + "start": 911.1, + "end": 911.86, + "probability": 0.5964 + }, + { + "start": 912.06, + "end": 914.18, + "probability": 0.9543 + }, + { + "start": 919.18, + "end": 920.22, + "probability": 0.5792 + }, + { + "start": 920.4, + "end": 921.98, + "probability": 0.6707 + }, + { + "start": 922.12, + "end": 922.54, + "probability": 0.538 + }, + { + "start": 922.58, + "end": 925.36, + "probability": 0.9111 + }, + { + "start": 928.76, + "end": 930.02, + "probability": 0.2768 + }, + { + "start": 930.32, + "end": 933.32, + "probability": 0.9881 + }, + { + "start": 933.82, + "end": 934.74, + "probability": 0.8934 + }, + { + "start": 934.92, + "end": 936.98, + "probability": 0.7875 + }, + { + "start": 938.1, + "end": 940.76, + "probability": 0.8064 + }, + { + "start": 941.4, + "end": 946.36, + "probability": 0.9528 + }, + { + "start": 946.58, + "end": 947.92, + "probability": 0.6974 + }, + { + "start": 948.02, + "end": 948.72, + "probability": 0.3965 + }, + { + "start": 948.82, + "end": 950.76, + "probability": 0.8995 + }, + { + "start": 950.92, + "end": 952.04, + "probability": 0.9912 + }, + { + "start": 953.33, + "end": 960.58, + "probability": 0.9946 + }, + { + "start": 960.58, + "end": 963.3, + "probability": 0.9012 + }, + { + "start": 963.32, + "end": 963.78, + "probability": 0.8975 + }, + { + "start": 964.14, + "end": 964.62, + "probability": 0.6862 + }, + { + "start": 964.8, + "end": 965.76, + "probability": 0.9054 + }, + { + "start": 965.82, + "end": 972.9, + "probability": 0.7716 + }, + { + "start": 973.78, + "end": 976.16, + "probability": 0.9857 + }, + { + "start": 976.76, + "end": 981.72, + "probability": 0.8827 + }, + { + "start": 981.84, + "end": 985.9, + "probability": 0.9928 + }, + { + "start": 986.14, + "end": 988.73, + "probability": 0.6576 + }, + { + "start": 990.86, + "end": 991.48, + "probability": 0.8295 + }, + { + "start": 992.18, + "end": 995.12, + "probability": 0.9874 + }, + { + "start": 995.96, + "end": 1000.34, + "probability": 0.8411 + }, + { + "start": 1000.96, + "end": 1003.12, + "probability": 0.9045 + }, + { + "start": 1003.74, + "end": 1007.0, + "probability": 0.9946 + }, + { + "start": 1007.46, + "end": 1014.34, + "probability": 0.9825 + }, + { + "start": 1014.8, + "end": 1020.34, + "probability": 0.9962 + }, + { + "start": 1021.8, + "end": 1023.38, + "probability": 0.9781 + }, + { + "start": 1023.7, + "end": 1027.16, + "probability": 0.8357 + }, + { + "start": 1027.22, + "end": 1027.76, + "probability": 0.7283 + }, + { + "start": 1028.12, + "end": 1031.51, + "probability": 0.9763 + }, + { + "start": 1032.12, + "end": 1034.36, + "probability": 0.979 + }, + { + "start": 1035.1, + "end": 1037.18, + "probability": 0.5192 + }, + { + "start": 1038.72, + "end": 1041.22, + "probability": 0.9351 + }, + { + "start": 1041.84, + "end": 1043.34, + "probability": 0.7063 + }, + { + "start": 1044.08, + "end": 1047.74, + "probability": 0.9956 + }, + { + "start": 1049.3, + "end": 1057.28, + "probability": 0.6695 + }, + { + "start": 1057.38, + "end": 1062.92, + "probability": 0.9761 + }, + { + "start": 1064.32, + "end": 1071.5, + "probability": 0.9785 + }, + { + "start": 1072.86, + "end": 1078.74, + "probability": 0.9805 + }, + { + "start": 1081.68, + "end": 1085.94, + "probability": 0.9912 + }, + { + "start": 1086.3, + "end": 1088.18, + "probability": 0.789 + }, + { + "start": 1088.28, + "end": 1090.24, + "probability": 0.8882 + }, + { + "start": 1091.5, + "end": 1094.58, + "probability": 0.9635 + }, + { + "start": 1094.76, + "end": 1097.02, + "probability": 0.9062 + }, + { + "start": 1097.12, + "end": 1097.4, + "probability": 0.4764 + }, + { + "start": 1097.78, + "end": 1102.06, + "probability": 0.7421 + }, + { + "start": 1102.48, + "end": 1103.88, + "probability": 0.7236 + }, + { + "start": 1103.9, + "end": 1104.48, + "probability": 0.6707 + }, + { + "start": 1104.64, + "end": 1105.88, + "probability": 0.6196 + }, + { + "start": 1106.08, + "end": 1108.14, + "probability": 0.8227 + }, + { + "start": 1108.68, + "end": 1109.58, + "probability": 0.7843 + }, + { + "start": 1109.68, + "end": 1110.72, + "probability": 0.9113 + }, + { + "start": 1111.1, + "end": 1112.16, + "probability": 0.3245 + }, + { + "start": 1113.06, + "end": 1116.78, + "probability": 0.7302 + }, + { + "start": 1117.36, + "end": 1119.38, + "probability": 0.993 + }, + { + "start": 1120.18, + "end": 1123.18, + "probability": 0.9543 + }, + { + "start": 1123.34, + "end": 1126.06, + "probability": 0.9774 + }, + { + "start": 1126.08, + "end": 1126.54, + "probability": 0.4667 + }, + { + "start": 1126.68, + "end": 1129.13, + "probability": 0.9812 + }, + { + "start": 1129.92, + "end": 1133.84, + "probability": 0.9824 + }, + { + "start": 1133.84, + "end": 1138.08, + "probability": 0.9569 + }, + { + "start": 1138.9, + "end": 1143.22, + "probability": 0.7965 + }, + { + "start": 1144.04, + "end": 1145.38, + "probability": 0.5137 + }, + { + "start": 1145.72, + "end": 1150.36, + "probability": 0.9966 + }, + { + "start": 1150.52, + "end": 1152.84, + "probability": 0.976 + }, + { + "start": 1153.86, + "end": 1156.34, + "probability": 0.8323 + }, + { + "start": 1157.08, + "end": 1161.36, + "probability": 0.9877 + }, + { + "start": 1161.44, + "end": 1167.84, + "probability": 0.8509 + }, + { + "start": 1168.08, + "end": 1173.01, + "probability": 0.7732 + }, + { + "start": 1174.0, + "end": 1179.06, + "probability": 0.993 + }, + { + "start": 1179.6, + "end": 1181.24, + "probability": 0.9456 + }, + { + "start": 1181.68, + "end": 1188.74, + "probability": 0.9567 + }, + { + "start": 1188.88, + "end": 1190.46, + "probability": 0.706 + }, + { + "start": 1190.58, + "end": 1196.58, + "probability": 0.9917 + }, + { + "start": 1196.58, + "end": 1201.5, + "probability": 0.9985 + }, + { + "start": 1201.5, + "end": 1207.36, + "probability": 0.9918 + }, + { + "start": 1208.6, + "end": 1208.6, + "probability": 0.2445 + }, + { + "start": 1208.6, + "end": 1209.67, + "probability": 0.4359 + }, + { + "start": 1210.08, + "end": 1212.98, + "probability": 0.9066 + }, + { + "start": 1213.06, + "end": 1213.82, + "probability": 0.505 + }, + { + "start": 1213.86, + "end": 1215.14, + "probability": 0.9768 + }, + { + "start": 1217.14, + "end": 1219.36, + "probability": 0.5484 + }, + { + "start": 1219.74, + "end": 1220.08, + "probability": 0.6395 + }, + { + "start": 1220.08, + "end": 1224.32, + "probability": 0.9734 + }, + { + "start": 1224.98, + "end": 1229.76, + "probability": 0.9954 + }, + { + "start": 1230.56, + "end": 1236.52, + "probability": 0.9734 + }, + { + "start": 1236.92, + "end": 1241.78, + "probability": 0.815 + }, + { + "start": 1242.42, + "end": 1246.44, + "probability": 0.9854 + }, + { + "start": 1247.44, + "end": 1247.9, + "probability": 0.564 + }, + { + "start": 1247.98, + "end": 1250.58, + "probability": 0.9707 + }, + { + "start": 1251.34, + "end": 1253.39, + "probability": 0.8237 + }, + { + "start": 1253.7, + "end": 1254.56, + "probability": 0.8627 + }, + { + "start": 1255.04, + "end": 1257.3, + "probability": 0.9827 + }, + { + "start": 1257.56, + "end": 1261.32, + "probability": 0.9918 + }, + { + "start": 1261.84, + "end": 1264.98, + "probability": 0.7465 + }, + { + "start": 1265.02, + "end": 1267.76, + "probability": 0.8909 + }, + { + "start": 1268.44, + "end": 1269.08, + "probability": 0.5325 + }, + { + "start": 1269.62, + "end": 1274.04, + "probability": 0.9724 + }, + { + "start": 1274.4, + "end": 1275.42, + "probability": 0.9639 + }, + { + "start": 1275.68, + "end": 1277.76, + "probability": 0.978 + }, + { + "start": 1278.84, + "end": 1280.8, + "probability": 0.7691 + }, + { + "start": 1280.9, + "end": 1285.88, + "probability": 0.9934 + }, + { + "start": 1286.1, + "end": 1292.46, + "probability": 0.9896 + }, + { + "start": 1293.06, + "end": 1293.2, + "probability": 0.2353 + }, + { + "start": 1293.22, + "end": 1295.66, + "probability": 0.8412 + }, + { + "start": 1295.74, + "end": 1298.3, + "probability": 0.8095 + }, + { + "start": 1299.4, + "end": 1300.42, + "probability": 0.9316 + }, + { + "start": 1300.7, + "end": 1301.64, + "probability": 0.9082 + }, + { + "start": 1301.68, + "end": 1311.44, + "probability": 0.9826 + }, + { + "start": 1311.7, + "end": 1313.7, + "probability": 0.9489 + }, + { + "start": 1314.64, + "end": 1317.22, + "probability": 0.9465 + }, + { + "start": 1317.24, + "end": 1319.34, + "probability": 0.8972 + }, + { + "start": 1319.44, + "end": 1319.46, + "probability": 0.4717 + }, + { + "start": 1319.46, + "end": 1320.0, + "probability": 0.3778 + }, + { + "start": 1320.34, + "end": 1323.82, + "probability": 0.9462 + }, + { + "start": 1324.52, + "end": 1328.44, + "probability": 0.9834 + }, + { + "start": 1328.96, + "end": 1332.16, + "probability": 0.9819 + }, + { + "start": 1332.28, + "end": 1335.38, + "probability": 0.9766 + }, + { + "start": 1336.3, + "end": 1338.06, + "probability": 0.8943 + }, + { + "start": 1338.66, + "end": 1340.7, + "probability": 0.9964 + }, + { + "start": 1340.76, + "end": 1341.06, + "probability": 0.5779 + }, + { + "start": 1341.06, + "end": 1343.06, + "probability": 0.5406 + }, + { + "start": 1343.5, + "end": 1344.14, + "probability": 0.4074 + }, + { + "start": 1344.18, + "end": 1345.52, + "probability": 0.9775 + }, + { + "start": 1345.6, + "end": 1346.56, + "probability": 0.6752 + }, + { + "start": 1346.66, + "end": 1347.42, + "probability": 0.8736 + }, + { + "start": 1347.48, + "end": 1350.6, + "probability": 0.8281 + }, + { + "start": 1351.7, + "end": 1352.88, + "probability": 0.8474 + }, + { + "start": 1352.98, + "end": 1357.02, + "probability": 0.9914 + }, + { + "start": 1357.02, + "end": 1361.02, + "probability": 0.7386 + }, + { + "start": 1361.52, + "end": 1366.88, + "probability": 0.9702 + }, + { + "start": 1367.18, + "end": 1371.88, + "probability": 0.9893 + }, + { + "start": 1371.88, + "end": 1376.12, + "probability": 0.876 + }, + { + "start": 1376.2, + "end": 1379.6, + "probability": 0.9817 + }, + { + "start": 1379.68, + "end": 1380.74, + "probability": 0.9061 + }, + { + "start": 1380.94, + "end": 1385.94, + "probability": 0.943 + }, + { + "start": 1386.22, + "end": 1389.56, + "probability": 0.999 + }, + { + "start": 1389.86, + "end": 1390.16, + "probability": 0.5363 + }, + { + "start": 1391.58, + "end": 1393.2, + "probability": 0.5438 + }, + { + "start": 1393.3, + "end": 1395.14, + "probability": 0.8667 + }, + { + "start": 1395.76, + "end": 1400.74, + "probability": 0.9839 + }, + { + "start": 1401.0, + "end": 1403.42, + "probability": 0.9111 + }, + { + "start": 1403.76, + "end": 1404.82, + "probability": 0.7209 + }, + { + "start": 1404.92, + "end": 1409.58, + "probability": 0.9019 + }, + { + "start": 1409.58, + "end": 1411.82, + "probability": 0.9874 + }, + { + "start": 1411.98, + "end": 1413.7, + "probability": 0.9958 + }, + { + "start": 1413.88, + "end": 1414.12, + "probability": 0.0554 + }, + { + "start": 1414.14, + "end": 1415.8, + "probability": 0.1888 + }, + { + "start": 1416.48, + "end": 1416.58, + "probability": 0.3323 + }, + { + "start": 1416.58, + "end": 1417.26, + "probability": 0.4775 + }, + { + "start": 1417.26, + "end": 1418.24, + "probability": 0.7811 + }, + { + "start": 1420.82, + "end": 1423.9, + "probability": 0.9855 + }, + { + "start": 1423.98, + "end": 1426.46, + "probability": 0.52 + }, + { + "start": 1426.58, + "end": 1431.5, + "probability": 0.9058 + }, + { + "start": 1432.78, + "end": 1433.04, + "probability": 0.3895 + }, + { + "start": 1433.98, + "end": 1438.88, + "probability": 0.9791 + }, + { + "start": 1440.12, + "end": 1444.88, + "probability": 0.9948 + }, + { + "start": 1445.56, + "end": 1450.56, + "probability": 0.9963 + }, + { + "start": 1450.56, + "end": 1456.28, + "probability": 0.9953 + }, + { + "start": 1457.16, + "end": 1461.2, + "probability": 0.934 + }, + { + "start": 1462.52, + "end": 1467.98, + "probability": 0.9668 + }, + { + "start": 1468.08, + "end": 1471.06, + "probability": 0.9314 + }, + { + "start": 1474.84, + "end": 1477.7, + "probability": 0.5548 + }, + { + "start": 1478.4, + "end": 1482.8, + "probability": 0.7114 + }, + { + "start": 1484.06, + "end": 1487.96, + "probability": 0.9704 + }, + { + "start": 1488.8, + "end": 1493.06, + "probability": 0.9468 + }, + { + "start": 1493.46, + "end": 1494.48, + "probability": 0.4946 + }, + { + "start": 1494.66, + "end": 1496.28, + "probability": 0.958 + }, + { + "start": 1496.48, + "end": 1500.36, + "probability": 0.8684 + }, + { + "start": 1501.38, + "end": 1501.72, + "probability": 0.7175 + }, + { + "start": 1501.86, + "end": 1503.4, + "probability": 0.9434 + }, + { + "start": 1503.5, + "end": 1504.54, + "probability": 0.8962 + }, + { + "start": 1504.92, + "end": 1506.26, + "probability": 0.9258 + }, + { + "start": 1507.2, + "end": 1509.54, + "probability": 0.9443 + }, + { + "start": 1510.3, + "end": 1511.56, + "probability": 0.6417 + }, + { + "start": 1511.94, + "end": 1518.68, + "probability": 0.9957 + }, + { + "start": 1518.9, + "end": 1520.34, + "probability": 0.7145 + }, + { + "start": 1520.42, + "end": 1521.14, + "probability": 0.6403 + }, + { + "start": 1521.16, + "end": 1522.72, + "probability": 0.6061 + }, + { + "start": 1523.44, + "end": 1523.88, + "probability": 0.7729 + }, + { + "start": 1524.78, + "end": 1527.42, + "probability": 0.9075 + }, + { + "start": 1527.8, + "end": 1533.06, + "probability": 0.9232 + }, + { + "start": 1533.12, + "end": 1534.06, + "probability": 0.927 + }, + { + "start": 1534.4, + "end": 1536.56, + "probability": 0.9617 + }, + { + "start": 1536.74, + "end": 1542.16, + "probability": 0.8149 + }, + { + "start": 1542.4, + "end": 1543.76, + "probability": 0.6587 + }, + { + "start": 1543.86, + "end": 1544.08, + "probability": 0.685 + }, + { + "start": 1544.7, + "end": 1550.92, + "probability": 0.99 + }, + { + "start": 1550.92, + "end": 1556.28, + "probability": 0.9939 + }, + { + "start": 1556.28, + "end": 1561.48, + "probability": 0.9316 + }, + { + "start": 1561.92, + "end": 1562.16, + "probability": 0.6027 + }, + { + "start": 1562.7, + "end": 1563.38, + "probability": 0.5433 + }, + { + "start": 1563.54, + "end": 1568.0, + "probability": 0.9446 + }, + { + "start": 1568.78, + "end": 1571.2, + "probability": 0.6807 + }, + { + "start": 1571.42, + "end": 1574.92, + "probability": 0.6453 + }, + { + "start": 1575.22, + "end": 1578.02, + "probability": 0.9539 + }, + { + "start": 1578.52, + "end": 1582.24, + "probability": 0.9504 + }, + { + "start": 1582.3, + "end": 1582.96, + "probability": 0.6456 + }, + { + "start": 1589.98, + "end": 1590.98, + "probability": 0.751 + }, + { + "start": 1591.04, + "end": 1591.98, + "probability": 0.7364 + }, + { + "start": 1592.12, + "end": 1594.94, + "probability": 0.798 + }, + { + "start": 1595.04, + "end": 1597.84, + "probability": 0.9803 + }, + { + "start": 1597.88, + "end": 1599.34, + "probability": 0.9939 + }, + { + "start": 1599.88, + "end": 1601.34, + "probability": 0.9624 + }, + { + "start": 1602.4, + "end": 1603.98, + "probability": 0.8879 + }, + { + "start": 1604.04, + "end": 1606.72, + "probability": 0.9748 + }, + { + "start": 1607.36, + "end": 1609.13, + "probability": 0.9206 + }, + { + "start": 1609.3, + "end": 1611.88, + "probability": 0.9857 + }, + { + "start": 1612.34, + "end": 1613.82, + "probability": 0.9836 + }, + { + "start": 1614.0, + "end": 1616.06, + "probability": 0.9971 + }, + { + "start": 1616.14, + "end": 1617.74, + "probability": 0.8947 + }, + { + "start": 1617.86, + "end": 1619.36, + "probability": 0.9119 + }, + { + "start": 1620.22, + "end": 1621.84, + "probability": 0.9086 + }, + { + "start": 1621.88, + "end": 1624.46, + "probability": 0.9771 + }, + { + "start": 1624.5, + "end": 1626.48, + "probability": 0.9885 + }, + { + "start": 1627.28, + "end": 1628.74, + "probability": 0.9797 + }, + { + "start": 1628.78, + "end": 1630.78, + "probability": 0.9785 + }, + { + "start": 1630.96, + "end": 1632.54, + "probability": 0.8334 + }, + { + "start": 1633.22, + "end": 1634.8, + "probability": 0.9318 + }, + { + "start": 1634.82, + "end": 1636.74, + "probability": 0.9991 + }, + { + "start": 1636.84, + "end": 1638.3, + "probability": 0.9825 + }, + { + "start": 1639.08, + "end": 1640.62, + "probability": 0.8512 + }, + { + "start": 1640.66, + "end": 1643.04, + "probability": 0.9628 + }, + { + "start": 1643.24, + "end": 1645.52, + "probability": 0.9406 + }, + { + "start": 1645.98, + "end": 1647.44, + "probability": 0.9597 + }, + { + "start": 1647.56, + "end": 1649.76, + "probability": 0.8786 + }, + { + "start": 1651.02, + "end": 1652.38, + "probability": 0.7335 + }, + { + "start": 1652.58, + "end": 1654.74, + "probability": 0.8966 + }, + { + "start": 1654.94, + "end": 1656.72, + "probability": 0.8418 + }, + { + "start": 1657.14, + "end": 1659.04, + "probability": 0.9538 + }, + { + "start": 1659.18, + "end": 1660.5, + "probability": 0.8181 + }, + { + "start": 1660.66, + "end": 1661.98, + "probability": 0.8138 + }, + { + "start": 1662.76, + "end": 1665.64, + "probability": 0.6552 + }, + { + "start": 1665.74, + "end": 1670.28, + "probability": 0.8672 + }, + { + "start": 1670.68, + "end": 1671.44, + "probability": 0.7489 + }, + { + "start": 1671.9, + "end": 1672.78, + "probability": 0.6185 + }, + { + "start": 1672.88, + "end": 1676.48, + "probability": 0.8914 + }, + { + "start": 1676.48, + "end": 1676.84, + "probability": 0.4867 + }, + { + "start": 1676.88, + "end": 1681.72, + "probability": 0.9818 + }, + { + "start": 1682.0, + "end": 1685.2, + "probability": 0.9717 + }, + { + "start": 1685.36, + "end": 1687.42, + "probability": 0.8684 + }, + { + "start": 1687.5, + "end": 1690.32, + "probability": 0.7905 + }, + { + "start": 1691.36, + "end": 1693.56, + "probability": 0.6159 + }, + { + "start": 1693.7, + "end": 1698.02, + "probability": 0.9395 + }, + { + "start": 1698.4, + "end": 1702.78, + "probability": 0.5071 + }, + { + "start": 1702.88, + "end": 1704.02, + "probability": 0.832 + }, + { + "start": 1704.2, + "end": 1708.84, + "probability": 0.6766 + }, + { + "start": 1709.3, + "end": 1711.42, + "probability": 0.9046 + }, + { + "start": 1711.52, + "end": 1713.22, + "probability": 0.8975 + }, + { + "start": 1713.68, + "end": 1714.7, + "probability": 0.876 + }, + { + "start": 1715.14, + "end": 1715.8, + "probability": 0.5371 + }, + { + "start": 1715.9, + "end": 1718.4, + "probability": 0.4846 + }, + { + "start": 1718.48, + "end": 1719.4, + "probability": 0.8291 + }, + { + "start": 1719.76, + "end": 1721.28, + "probability": 0.1021 + }, + { + "start": 1721.54, + "end": 1722.26, + "probability": 0.8028 + }, + { + "start": 1723.4, + "end": 1724.42, + "probability": 0.8765 + }, + { + "start": 1724.52, + "end": 1727.28, + "probability": 0.9981 + }, + { + "start": 1728.08, + "end": 1728.38, + "probability": 0.0535 + }, + { + "start": 1729.7, + "end": 1729.9, + "probability": 0.1968 + }, + { + "start": 1729.94, + "end": 1730.54, + "probability": 0.3877 + }, + { + "start": 1730.54, + "end": 1730.54, + "probability": 0.0049 + }, + { + "start": 1730.54, + "end": 1730.56, + "probability": 0.5509 + }, + { + "start": 1730.56, + "end": 1730.56, + "probability": 0.011 + }, + { + "start": 1730.56, + "end": 1731.22, + "probability": 0.2473 + }, + { + "start": 1731.32, + "end": 1732.88, + "probability": 0.4134 + }, + { + "start": 1733.28, + "end": 1734.92, + "probability": 0.0256 + }, + { + "start": 1735.16, + "end": 1737.0, + "probability": 0.1197 + }, + { + "start": 1737.42, + "end": 1737.66, + "probability": 0.0271 + }, + { + "start": 1738.2, + "end": 1738.36, + "probability": 0.0952 + }, + { + "start": 1738.52, + "end": 1743.06, + "probability": 0.0248 + }, + { + "start": 1743.06, + "end": 1743.06, + "probability": 0.0655 + }, + { + "start": 1743.06, + "end": 1743.06, + "probability": 0.4717 + }, + { + "start": 1743.06, + "end": 1744.19, + "probability": 0.257 + }, + { + "start": 1745.02, + "end": 1745.66, + "probability": 0.7322 + }, + { + "start": 1745.8, + "end": 1746.23, + "probability": 0.2336 + }, + { + "start": 1746.46, + "end": 1747.58, + "probability": 0.1069 + }, + { + "start": 1747.64, + "end": 1747.98, + "probability": 0.1452 + }, + { + "start": 1747.98, + "end": 1751.52, + "probability": 0.8037 + }, + { + "start": 1751.68, + "end": 1752.6, + "probability": 0.4828 + }, + { + "start": 1752.76, + "end": 1752.78, + "probability": 0.0282 + }, + { + "start": 1752.86, + "end": 1753.4, + "probability": 0.4721 + }, + { + "start": 1753.42, + "end": 1753.98, + "probability": 0.9586 + }, + { + "start": 1754.04, + "end": 1755.64, + "probability": 0.9221 + }, + { + "start": 1755.7, + "end": 1757.34, + "probability": 0.5687 + }, + { + "start": 1758.4, + "end": 1759.96, + "probability": 0.2109 + }, + { + "start": 1760.54, + "end": 1770.06, + "probability": 0.8223 + }, + { + "start": 1771.22, + "end": 1771.56, + "probability": 0.0722 + }, + { + "start": 1771.56, + "end": 1774.64, + "probability": 0.3929 + }, + { + "start": 1775.08, + "end": 1775.52, + "probability": 0.8914 + }, + { + "start": 1775.78, + "end": 1777.34, + "probability": 0.2579 + }, + { + "start": 1777.34, + "end": 1777.74, + "probability": 0.4808 + }, + { + "start": 1777.98, + "end": 1778.82, + "probability": 0.6675 + }, + { + "start": 1778.94, + "end": 1783.9, + "probability": 0.0561 + }, + { + "start": 1783.94, + "end": 1783.94, + "probability": 0.2166 + }, + { + "start": 1783.94, + "end": 1785.22, + "probability": 0.1638 + }, + { + "start": 1785.32, + "end": 1786.34, + "probability": 0.5639 + }, + { + "start": 1786.42, + "end": 1787.32, + "probability": 0.7947 + }, + { + "start": 1787.62, + "end": 1790.48, + "probability": 0.1116 + }, + { + "start": 1790.98, + "end": 1791.66, + "probability": 0.5501 + }, + { + "start": 1793.26, + "end": 1798.1, + "probability": 0.998 + }, + { + "start": 1798.26, + "end": 1799.58, + "probability": 0.7021 + }, + { + "start": 1799.74, + "end": 1801.74, + "probability": 0.9378 + }, + { + "start": 1802.18, + "end": 1802.94, + "probability": 0.2624 + }, + { + "start": 1803.06, + "end": 1805.88, + "probability": 0.9875 + }, + { + "start": 1806.24, + "end": 1807.26, + "probability": 0.9207 + }, + { + "start": 1807.3, + "end": 1809.07, + "probability": 0.9409 + }, + { + "start": 1809.78, + "end": 1813.5, + "probability": 0.9973 + }, + { + "start": 1813.5, + "end": 1817.36, + "probability": 0.9974 + }, + { + "start": 1818.16, + "end": 1819.44, + "probability": 0.868 + }, + { + "start": 1819.58, + "end": 1820.76, + "probability": 0.991 + }, + { + "start": 1820.82, + "end": 1822.92, + "probability": 0.9725 + }, + { + "start": 1823.08, + "end": 1829.48, + "probability": 0.8618 + }, + { + "start": 1829.48, + "end": 1832.39, + "probability": 0.9985 + }, + { + "start": 1833.06, + "end": 1835.9, + "probability": 0.9937 + }, + { + "start": 1838.26, + "end": 1838.26, + "probability": 0.0808 + }, + { + "start": 1838.26, + "end": 1841.12, + "probability": 0.9202 + }, + { + "start": 1842.22, + "end": 1844.46, + "probability": 0.1399 + }, + { + "start": 1845.02, + "end": 1845.66, + "probability": 0.6825 + }, + { + "start": 1847.04, + "end": 1848.52, + "probability": 0.7012 + }, + { + "start": 1848.88, + "end": 1849.68, + "probability": 0.6619 + }, + { + "start": 1849.88, + "end": 1851.5, + "probability": 0.1526 + }, + { + "start": 1851.52, + "end": 1855.22, + "probability": 0.8403 + }, + { + "start": 1855.22, + "end": 1857.02, + "probability": 0.8687 + }, + { + "start": 1857.16, + "end": 1857.46, + "probability": 0.6066 + }, + { + "start": 1857.48, + "end": 1858.24, + "probability": 0.7829 + }, + { + "start": 1858.42, + "end": 1863.5, + "probability": 0.9884 + }, + { + "start": 1863.62, + "end": 1864.12, + "probability": 0.7237 + }, + { + "start": 1864.42, + "end": 1868.16, + "probability": 0.819 + }, + { + "start": 1868.16, + "end": 1871.95, + "probability": 0.6572 + }, + { + "start": 1872.18, + "end": 1874.42, + "probability": 0.9428 + }, + { + "start": 1874.42, + "end": 1878.38, + "probability": 0.9275 + }, + { + "start": 1879.42, + "end": 1883.12, + "probability": 0.7559 + }, + { + "start": 1883.12, + "end": 1885.96, + "probability": 0.9971 + }, + { + "start": 1886.78, + "end": 1888.58, + "probability": 0.8944 + }, + { + "start": 1888.64, + "end": 1893.68, + "probability": 0.9884 + }, + { + "start": 1893.82, + "end": 1898.42, + "probability": 0.9843 + }, + { + "start": 1899.12, + "end": 1901.5, + "probability": 0.9871 + }, + { + "start": 1901.5, + "end": 1905.16, + "probability": 0.7665 + }, + { + "start": 1905.36, + "end": 1906.1, + "probability": 0.7874 + }, + { + "start": 1906.22, + "end": 1908.46, + "probability": 0.9687 + }, + { + "start": 1909.12, + "end": 1912.75, + "probability": 0.8128 + }, + { + "start": 1913.68, + "end": 1916.62, + "probability": 0.9941 + }, + { + "start": 1916.62, + "end": 1919.92, + "probability": 0.9966 + }, + { + "start": 1920.48, + "end": 1923.8, + "probability": 0.9855 + }, + { + "start": 1923.8, + "end": 1927.74, + "probability": 0.8691 + }, + { + "start": 1928.82, + "end": 1930.56, + "probability": 0.943 + }, + { + "start": 1931.08, + "end": 1936.0, + "probability": 0.9954 + }, + { + "start": 1936.64, + "end": 1937.66, + "probability": 0.7614 + }, + { + "start": 1938.38, + "end": 1943.18, + "probability": 0.9907 + }, + { + "start": 1943.84, + "end": 1946.72, + "probability": 0.9929 + }, + { + "start": 1946.8, + "end": 1948.13, + "probability": 0.9897 + }, + { + "start": 1948.3, + "end": 1950.44, + "probability": 0.9941 + }, + { + "start": 1951.18, + "end": 1953.64, + "probability": 0.9743 + }, + { + "start": 1954.88, + "end": 1959.16, + "probability": 0.9993 + }, + { + "start": 1959.16, + "end": 1963.16, + "probability": 0.9995 + }, + { + "start": 1963.76, + "end": 1969.32, + "probability": 0.9937 + }, + { + "start": 1969.48, + "end": 1974.4, + "probability": 0.8483 + }, + { + "start": 1974.4, + "end": 1981.24, + "probability": 0.9211 + }, + { + "start": 1982.18, + "end": 1986.64, + "probability": 0.9783 + }, + { + "start": 1986.64, + "end": 1990.4, + "probability": 0.9971 + }, + { + "start": 1991.34, + "end": 1992.24, + "probability": 0.5183 + }, + { + "start": 1992.38, + "end": 1995.56, + "probability": 0.988 + }, + { + "start": 1995.56, + "end": 2000.46, + "probability": 0.9933 + }, + { + "start": 2000.54, + "end": 2003.82, + "probability": 0.877 + }, + { + "start": 2004.91, + "end": 2009.38, + "probability": 0.9753 + }, + { + "start": 2009.38, + "end": 2012.96, + "probability": 0.9893 + }, + { + "start": 2013.18, + "end": 2017.38, + "probability": 0.9854 + }, + { + "start": 2017.9, + "end": 2023.48, + "probability": 0.936 + }, + { + "start": 2023.48, + "end": 2029.35, + "probability": 0.9875 + }, + { + "start": 2029.5, + "end": 2032.16, + "probability": 0.6221 + }, + { + "start": 2033.1, + "end": 2035.82, + "probability": 0.9362 + }, + { + "start": 2035.92, + "end": 2036.14, + "probability": 0.4848 + }, + { + "start": 2036.4, + "end": 2039.78, + "probability": 0.9095 + }, + { + "start": 2040.42, + "end": 2041.9, + "probability": 0.7441 + }, + { + "start": 2041.98, + "end": 2046.44, + "probability": 0.7323 + }, + { + "start": 2047.26, + "end": 2048.14, + "probability": 0.657 + }, + { + "start": 2048.24, + "end": 2050.02, + "probability": 0.9621 + }, + { + "start": 2051.22, + "end": 2054.56, + "probability": 0.9918 + }, + { + "start": 2054.7, + "end": 2056.6, + "probability": 0.9008 + }, + { + "start": 2056.74, + "end": 2057.52, + "probability": 0.943 + }, + { + "start": 2058.1, + "end": 2060.92, + "probability": 0.9714 + }, + { + "start": 2061.3, + "end": 2063.98, + "probability": 0.9529 + }, + { + "start": 2073.86, + "end": 2074.94, + "probability": 0.5614 + }, + { + "start": 2075.24, + "end": 2075.76, + "probability": 0.8187 + }, + { + "start": 2075.8, + "end": 2077.24, + "probability": 0.8656 + }, + { + "start": 2077.34, + "end": 2078.24, + "probability": 0.9299 + }, + { + "start": 2078.3, + "end": 2080.6, + "probability": 0.9495 + }, + { + "start": 2081.18, + "end": 2082.18, + "probability": 0.9489 + }, + { + "start": 2083.58, + "end": 2084.32, + "probability": 0.6811 + }, + { + "start": 2084.48, + "end": 2085.7, + "probability": 0.8975 + }, + { + "start": 2085.86, + "end": 2087.5, + "probability": 0.6818 + }, + { + "start": 2088.26, + "end": 2093.26, + "probability": 0.7241 + }, + { + "start": 2093.48, + "end": 2093.74, + "probability": 0.6407 + }, + { + "start": 2095.04, + "end": 2095.92, + "probability": 0.6381 + }, + { + "start": 2096.3, + "end": 2096.86, + "probability": 0.4299 + }, + { + "start": 2097.02, + "end": 2097.62, + "probability": 0.9699 + }, + { + "start": 2097.72, + "end": 2100.58, + "probability": 0.9959 + }, + { + "start": 2102.28, + "end": 2102.92, + "probability": 0.9912 + }, + { + "start": 2103.64, + "end": 2107.66, + "probability": 0.9976 + }, + { + "start": 2107.66, + "end": 2109.76, + "probability": 0.9865 + }, + { + "start": 2110.9, + "end": 2113.04, + "probability": 0.8674 + }, + { + "start": 2114.24, + "end": 2116.68, + "probability": 0.9376 + }, + { + "start": 2118.12, + "end": 2120.9, + "probability": 0.9977 + }, + { + "start": 2120.94, + "end": 2124.26, + "probability": 0.6556 + }, + { + "start": 2124.98, + "end": 2127.36, + "probability": 0.7998 + }, + { + "start": 2127.6, + "end": 2131.06, + "probability": 0.9506 + }, + { + "start": 2131.92, + "end": 2135.04, + "probability": 0.9112 + }, + { + "start": 2135.08, + "end": 2138.74, + "probability": 0.9105 + }, + { + "start": 2139.66, + "end": 2140.78, + "probability": 0.3555 + }, + { + "start": 2140.78, + "end": 2142.2, + "probability": 0.9768 + }, + { + "start": 2142.36, + "end": 2144.44, + "probability": 0.948 + }, + { + "start": 2144.84, + "end": 2149.26, + "probability": 0.9944 + }, + { + "start": 2150.2, + "end": 2150.96, + "probability": 0.4282 + }, + { + "start": 2151.18, + "end": 2152.22, + "probability": 0.8437 + }, + { + "start": 2152.38, + "end": 2158.04, + "probability": 0.9744 + }, + { + "start": 2158.04, + "end": 2160.94, + "probability": 0.9948 + }, + { + "start": 2161.92, + "end": 2162.58, + "probability": 0.5868 + }, + { + "start": 2162.66, + "end": 2163.6, + "probability": 0.9865 + }, + { + "start": 2163.76, + "end": 2167.88, + "probability": 0.9266 + }, + { + "start": 2167.96, + "end": 2169.44, + "probability": 0.8662 + }, + { + "start": 2170.04, + "end": 2171.52, + "probability": 0.9862 + }, + { + "start": 2171.68, + "end": 2175.14, + "probability": 0.9736 + }, + { + "start": 2175.8, + "end": 2177.04, + "probability": 0.6898 + }, + { + "start": 2177.56, + "end": 2178.92, + "probability": 0.9788 + }, + { + "start": 2179.18, + "end": 2180.64, + "probability": 0.9785 + }, + { + "start": 2180.66, + "end": 2183.44, + "probability": 0.991 + }, + { + "start": 2183.74, + "end": 2185.2, + "probability": 0.7621 + }, + { + "start": 2185.74, + "end": 2188.2, + "probability": 0.8593 + }, + { + "start": 2188.62, + "end": 2191.66, + "probability": 0.992 + }, + { + "start": 2191.66, + "end": 2194.16, + "probability": 0.9961 + }, + { + "start": 2194.24, + "end": 2198.42, + "probability": 0.9617 + }, + { + "start": 2198.72, + "end": 2201.46, + "probability": 0.8533 + }, + { + "start": 2201.52, + "end": 2203.32, + "probability": 0.957 + }, + { + "start": 2203.6, + "end": 2206.64, + "probability": 0.8541 + }, + { + "start": 2206.74, + "end": 2207.3, + "probability": 0.9106 + }, + { + "start": 2207.8, + "end": 2209.88, + "probability": 0.9604 + }, + { + "start": 2210.6, + "end": 2212.32, + "probability": 0.2431 + }, + { + "start": 2212.46, + "end": 2213.44, + "probability": 0.2713 + }, + { + "start": 2213.54, + "end": 2214.92, + "probability": 0.4706 + }, + { + "start": 2215.16, + "end": 2218.52, + "probability": 0.1334 + }, + { + "start": 2220.12, + "end": 2220.54, + "probability": 0.2778 + }, + { + "start": 2220.72, + "end": 2222.74, + "probability": 0.9097 + }, + { + "start": 2222.88, + "end": 2224.06, + "probability": 0.957 + }, + { + "start": 2224.58, + "end": 2227.86, + "probability": 0.9966 + }, + { + "start": 2227.98, + "end": 2229.87, + "probability": 0.992 + }, + { + "start": 2230.04, + "end": 2236.68, + "probability": 0.9551 + }, + { + "start": 2236.68, + "end": 2242.42, + "probability": 0.9973 + }, + { + "start": 2242.56, + "end": 2243.44, + "probability": 0.9435 + }, + { + "start": 2243.54, + "end": 2244.6, + "probability": 0.8406 + }, + { + "start": 2244.78, + "end": 2246.42, + "probability": 0.9951 + }, + { + "start": 2246.52, + "end": 2247.54, + "probability": 0.4361 + }, + { + "start": 2247.58, + "end": 2248.1, + "probability": 0.738 + }, + { + "start": 2248.16, + "end": 2250.18, + "probability": 0.9832 + }, + { + "start": 2250.54, + "end": 2254.68, + "probability": 0.9792 + }, + { + "start": 2255.1, + "end": 2258.06, + "probability": 0.4019 + }, + { + "start": 2258.42, + "end": 2261.6, + "probability": 0.916 + }, + { + "start": 2261.76, + "end": 2262.82, + "probability": 0.8535 + }, + { + "start": 2262.94, + "end": 2265.94, + "probability": 0.9658 + }, + { + "start": 2266.04, + "end": 2266.56, + "probability": 0.773 + }, + { + "start": 2266.62, + "end": 2267.12, + "probability": 0.5112 + }, + { + "start": 2267.48, + "end": 2270.08, + "probability": 0.9531 + }, + { + "start": 2270.12, + "end": 2272.24, + "probability": 0.9722 + }, + { + "start": 2272.66, + "end": 2275.44, + "probability": 0.9328 + }, + { + "start": 2275.7, + "end": 2276.36, + "probability": 0.7583 + }, + { + "start": 2276.66, + "end": 2278.26, + "probability": 0.9624 + }, + { + "start": 2278.42, + "end": 2281.74, + "probability": 0.9225 + }, + { + "start": 2282.12, + "end": 2285.38, + "probability": 0.9304 + }, + { + "start": 2294.82, + "end": 2297.32, + "probability": 0.844 + }, + { + "start": 2298.22, + "end": 2299.16, + "probability": 0.6394 + }, + { + "start": 2299.16, + "end": 2300.52, + "probability": 0.5746 + }, + { + "start": 2300.74, + "end": 2306.52, + "probability": 0.9905 + }, + { + "start": 2307.32, + "end": 2310.0, + "probability": 0.9946 + }, + { + "start": 2310.84, + "end": 2312.04, + "probability": 0.8969 + }, + { + "start": 2312.95, + "end": 2319.4, + "probability": 0.9824 + }, + { + "start": 2319.4, + "end": 2324.24, + "probability": 0.9973 + }, + { + "start": 2324.3, + "end": 2326.46, + "probability": 0.9946 + }, + { + "start": 2327.56, + "end": 2331.82, + "probability": 0.9535 + }, + { + "start": 2332.44, + "end": 2336.9, + "probability": 0.9943 + }, + { + "start": 2336.9, + "end": 2339.0, + "probability": 0.9963 + }, + { + "start": 2339.04, + "end": 2342.04, + "probability": 0.9889 + }, + { + "start": 2342.12, + "end": 2342.78, + "probability": 0.4022 + }, + { + "start": 2342.94, + "end": 2344.66, + "probability": 0.9219 + }, + { + "start": 2345.24, + "end": 2348.06, + "probability": 0.9951 + }, + { + "start": 2348.38, + "end": 2351.14, + "probability": 0.7938 + }, + { + "start": 2351.34, + "end": 2353.6, + "probability": 0.9785 + }, + { + "start": 2353.74, + "end": 2357.8, + "probability": 0.9953 + }, + { + "start": 2358.38, + "end": 2359.8, + "probability": 0.7325 + }, + { + "start": 2360.58, + "end": 2361.4, + "probability": 0.9856 + }, + { + "start": 2361.52, + "end": 2362.9, + "probability": 0.7137 + }, + { + "start": 2362.92, + "end": 2370.82, + "probability": 0.9626 + }, + { + "start": 2371.42, + "end": 2376.36, + "probability": 0.9906 + }, + { + "start": 2376.46, + "end": 2376.66, + "probability": 0.735 + }, + { + "start": 2376.72, + "end": 2378.64, + "probability": 0.9943 + }, + { + "start": 2378.78, + "end": 2384.12, + "probability": 0.9546 + }, + { + "start": 2384.88, + "end": 2388.14, + "probability": 0.9525 + }, + { + "start": 2388.38, + "end": 2392.5, + "probability": 0.9592 + }, + { + "start": 2393.1, + "end": 2394.58, + "probability": 0.9146 + }, + { + "start": 2394.94, + "end": 2398.94, + "probability": 0.8977 + }, + { + "start": 2399.3, + "end": 2400.38, + "probability": 0.7904 + }, + { + "start": 2400.52, + "end": 2402.3, + "probability": 0.9495 + }, + { + "start": 2402.4, + "end": 2405.25, + "probability": 0.7194 + }, + { + "start": 2407.76, + "end": 2408.64, + "probability": 0.8869 + }, + { + "start": 2409.2, + "end": 2412.68, + "probability": 0.8895 + }, + { + "start": 2412.98, + "end": 2416.28, + "probability": 0.706 + }, + { + "start": 2417.18, + "end": 2419.94, + "probability": 0.8418 + }, + { + "start": 2420.28, + "end": 2422.22, + "probability": 0.974 + }, + { + "start": 2423.2, + "end": 2426.1, + "probability": 0.8802 + }, + { + "start": 2426.94, + "end": 2432.02, + "probability": 0.8402 + }, + { + "start": 2435.46, + "end": 2440.24, + "probability": 0.8748 + }, + { + "start": 2440.42, + "end": 2441.2, + "probability": 0.7888 + }, + { + "start": 2441.62, + "end": 2444.66, + "probability": 0.9913 + }, + { + "start": 2445.2, + "end": 2450.52, + "probability": 0.9736 + }, + { + "start": 2450.8, + "end": 2452.42, + "probability": 0.9677 + }, + { + "start": 2452.54, + "end": 2453.46, + "probability": 0.8505 + }, + { + "start": 2453.76, + "end": 2455.6, + "probability": 0.9467 + }, + { + "start": 2456.06, + "end": 2460.56, + "probability": 0.9867 + }, + { + "start": 2461.56, + "end": 2461.9, + "probability": 0.3029 + }, + { + "start": 2461.94, + "end": 2462.52, + "probability": 0.5228 + }, + { + "start": 2462.58, + "end": 2466.58, + "probability": 0.9485 + }, + { + "start": 2466.78, + "end": 2467.66, + "probability": 0.9277 + }, + { + "start": 2467.78, + "end": 2472.06, + "probability": 0.9383 + }, + { + "start": 2472.38, + "end": 2472.66, + "probability": 0.2894 + }, + { + "start": 2472.7, + "end": 2474.21, + "probability": 0.7359 + }, + { + "start": 2474.8, + "end": 2475.38, + "probability": 0.1411 + }, + { + "start": 2475.7, + "end": 2477.75, + "probability": 0.9697 + }, + { + "start": 2478.06, + "end": 2478.78, + "probability": 0.8785 + }, + { + "start": 2478.84, + "end": 2479.5, + "probability": 0.6639 + }, + { + "start": 2480.08, + "end": 2485.46, + "probability": 0.9941 + }, + { + "start": 2485.62, + "end": 2487.96, + "probability": 0.9491 + }, + { + "start": 2489.14, + "end": 2489.88, + "probability": 0.8672 + }, + { + "start": 2490.08, + "end": 2492.98, + "probability": 0.9703 + }, + { + "start": 2493.38, + "end": 2494.02, + "probability": 0.4537 + }, + { + "start": 2494.12, + "end": 2497.22, + "probability": 0.9539 + }, + { + "start": 2497.28, + "end": 2498.34, + "probability": 0.9637 + }, + { + "start": 2498.52, + "end": 2503.92, + "probability": 0.9792 + }, + { + "start": 2504.4, + "end": 2507.5, + "probability": 0.9135 + }, + { + "start": 2507.9, + "end": 2511.36, + "probability": 0.9917 + }, + { + "start": 2511.42, + "end": 2512.02, + "probability": 0.7904 + }, + { + "start": 2512.16, + "end": 2513.9, + "probability": 0.9575 + }, + { + "start": 2513.9, + "end": 2515.16, + "probability": 0.768 + }, + { + "start": 2517.51, + "end": 2520.15, + "probability": 0.8363 + }, + { + "start": 2525.6, + "end": 2527.5, + "probability": 0.965 + }, + { + "start": 2528.32, + "end": 2529.46, + "probability": 0.4902 + }, + { + "start": 2535.26, + "end": 2536.56, + "probability": 0.8393 + }, + { + "start": 2536.7, + "end": 2537.94, + "probability": 0.7085 + }, + { + "start": 2538.14, + "end": 2538.32, + "probability": 0.6286 + }, + { + "start": 2538.32, + "end": 2539.06, + "probability": 0.7939 + }, + { + "start": 2539.12, + "end": 2540.6, + "probability": 0.9272 + }, + { + "start": 2540.76, + "end": 2544.32, + "probability": 0.9617 + }, + { + "start": 2544.86, + "end": 2546.6, + "probability": 0.9738 + }, + { + "start": 2547.58, + "end": 2549.06, + "probability": 0.746 + }, + { + "start": 2549.18, + "end": 2551.14, + "probability": 0.9658 + }, + { + "start": 2551.36, + "end": 2553.22, + "probability": 0.9289 + }, + { + "start": 2553.24, + "end": 2554.42, + "probability": 0.7823 + }, + { + "start": 2554.44, + "end": 2557.62, + "probability": 0.9974 + }, + { + "start": 2557.62, + "end": 2561.2, + "probability": 0.9774 + }, + { + "start": 2561.86, + "end": 2563.34, + "probability": 0.6974 + }, + { + "start": 2564.2, + "end": 2564.42, + "probability": 0.8269 + }, + { + "start": 2564.66, + "end": 2566.36, + "probability": 0.9916 + }, + { + "start": 2566.52, + "end": 2569.08, + "probability": 0.9614 + }, + { + "start": 2570.24, + "end": 2572.32, + "probability": 0.8809 + }, + { + "start": 2572.76, + "end": 2577.04, + "probability": 0.9944 + }, + { + "start": 2577.26, + "end": 2578.94, + "probability": 0.9585 + }, + { + "start": 2579.44, + "end": 2580.28, + "probability": 0.9409 + }, + { + "start": 2580.62, + "end": 2582.46, + "probability": 0.9702 + }, + { + "start": 2582.82, + "end": 2585.2, + "probability": 0.9817 + }, + { + "start": 2586.88, + "end": 2590.48, + "probability": 0.6426 + }, + { + "start": 2592.18, + "end": 2592.38, + "probability": 0.0295 + }, + { + "start": 2592.38, + "end": 2592.38, + "probability": 0.0401 + }, + { + "start": 2592.38, + "end": 2593.86, + "probability": 0.1642 + }, + { + "start": 2593.94, + "end": 2594.14, + "probability": 0.3773 + }, + { + "start": 2594.3, + "end": 2596.3, + "probability": 0.7548 + }, + { + "start": 2596.76, + "end": 2597.52, + "probability": 0.1229 + }, + { + "start": 2602.46, + "end": 2603.26, + "probability": 0.7346 + }, + { + "start": 2605.79, + "end": 2609.5, + "probability": 0.8672 + }, + { + "start": 2609.5, + "end": 2613.1, + "probability": 0.999 + }, + { + "start": 2613.14, + "end": 2614.48, + "probability": 0.9951 + }, + { + "start": 2614.58, + "end": 2617.32, + "probability": 0.9559 + }, + { + "start": 2618.02, + "end": 2623.26, + "probability": 0.9907 + }, + { + "start": 2623.62, + "end": 2627.34, + "probability": 0.9945 + }, + { + "start": 2627.38, + "end": 2628.2, + "probability": 0.9178 + }, + { + "start": 2629.44, + "end": 2632.88, + "probability": 0.9866 + }, + { + "start": 2632.88, + "end": 2637.32, + "probability": 0.9316 + }, + { + "start": 2637.44, + "end": 2637.76, + "probability": 0.674 + }, + { + "start": 2637.84, + "end": 2641.88, + "probability": 0.9976 + }, + { + "start": 2642.06, + "end": 2642.38, + "probability": 0.966 + }, + { + "start": 2642.44, + "end": 2644.26, + "probability": 0.9513 + }, + { + "start": 2644.36, + "end": 2645.62, + "probability": 0.8301 + }, + { + "start": 2645.8, + "end": 2649.12, + "probability": 0.8662 + }, + { + "start": 2649.88, + "end": 2651.3, + "probability": 0.9962 + }, + { + "start": 2651.48, + "end": 2653.42, + "probability": 0.9268 + }, + { + "start": 2653.62, + "end": 2655.28, + "probability": 0.9946 + }, + { + "start": 2655.82, + "end": 2661.73, + "probability": 0.9605 + }, + { + "start": 2662.34, + "end": 2666.32, + "probability": 0.9342 + }, + { + "start": 2667.46, + "end": 2670.68, + "probability": 0.9969 + }, + { + "start": 2670.68, + "end": 2674.8, + "probability": 0.9965 + }, + { + "start": 2676.06, + "end": 2677.78, + "probability": 0.8218 + }, + { + "start": 2678.14, + "end": 2679.18, + "probability": 0.9539 + }, + { + "start": 2679.32, + "end": 2680.41, + "probability": 0.9746 + }, + { + "start": 2680.86, + "end": 2682.48, + "probability": 0.9644 + }, + { + "start": 2682.9, + "end": 2685.98, + "probability": 0.9886 + }, + { + "start": 2685.98, + "end": 2688.96, + "probability": 0.9991 + }, + { + "start": 2689.74, + "end": 2690.44, + "probability": 0.7195 + }, + { + "start": 2690.48, + "end": 2691.98, + "probability": 0.9584 + }, + { + "start": 2692.34, + "end": 2694.44, + "probability": 0.8389 + }, + { + "start": 2695.3, + "end": 2697.1, + "probability": 0.7788 + }, + { + "start": 2697.24, + "end": 2699.44, + "probability": 0.8811 + }, + { + "start": 2699.54, + "end": 2700.2, + "probability": 0.8906 + }, + { + "start": 2700.32, + "end": 2701.48, + "probability": 0.9852 + }, + { + "start": 2702.06, + "end": 2702.94, + "probability": 0.3198 + }, + { + "start": 2703.42, + "end": 2706.24, + "probability": 0.9873 + }, + { + "start": 2706.36, + "end": 2709.81, + "probability": 0.9524 + }, + { + "start": 2710.68, + "end": 2713.92, + "probability": 0.8949 + }, + { + "start": 2714.38, + "end": 2717.74, + "probability": 0.9915 + }, + { + "start": 2717.82, + "end": 2720.4, + "probability": 0.9708 + }, + { + "start": 2720.48, + "end": 2720.9, + "probability": 0.8459 + }, + { + "start": 2721.96, + "end": 2723.74, + "probability": 0.8655 + }, + { + "start": 2723.94, + "end": 2725.58, + "probability": 0.8781 + }, + { + "start": 2725.68, + "end": 2726.58, + "probability": 0.5611 + }, + { + "start": 2726.6, + "end": 2728.03, + "probability": 0.9785 + }, + { + "start": 2729.14, + "end": 2730.78, + "probability": 0.9971 + }, + { + "start": 2733.12, + "end": 2735.34, + "probability": 0.8263 + }, + { + "start": 2738.12, + "end": 2740.26, + "probability": 0.6233 + }, + { + "start": 2740.42, + "end": 2742.06, + "probability": 0.9597 + }, + { + "start": 2742.12, + "end": 2742.74, + "probability": 0.9265 + }, + { + "start": 2743.68, + "end": 2744.54, + "probability": 0.9614 + }, + { + "start": 2745.38, + "end": 2751.1, + "probability": 0.9714 + }, + { + "start": 2751.78, + "end": 2753.53, + "probability": 0.9924 + }, + { + "start": 2754.76, + "end": 2760.98, + "probability": 0.9963 + }, + { + "start": 2761.66, + "end": 2763.96, + "probability": 0.9972 + }, + { + "start": 2763.96, + "end": 2767.64, + "probability": 0.9868 + }, + { + "start": 2768.8, + "end": 2771.88, + "probability": 0.8346 + }, + { + "start": 2772.58, + "end": 2776.06, + "probability": 0.9922 + }, + { + "start": 2776.78, + "end": 2780.88, + "probability": 0.8612 + }, + { + "start": 2781.7, + "end": 2785.64, + "probability": 0.9937 + }, + { + "start": 2786.7, + "end": 2790.84, + "probability": 0.9993 + }, + { + "start": 2791.9, + "end": 2795.96, + "probability": 0.9971 + }, + { + "start": 2796.36, + "end": 2797.04, + "probability": 0.9316 + }, + { + "start": 2797.14, + "end": 2800.1, + "probability": 0.9952 + }, + { + "start": 2800.1, + "end": 2803.38, + "probability": 0.9829 + }, + { + "start": 2804.54, + "end": 2808.14, + "probability": 0.9984 + }, + { + "start": 2808.14, + "end": 2811.88, + "probability": 0.9486 + }, + { + "start": 2813.14, + "end": 2816.7, + "probability": 0.9473 + }, + { + "start": 2817.28, + "end": 2821.68, + "probability": 0.9894 + }, + { + "start": 2822.2, + "end": 2826.06, + "probability": 0.9929 + }, + { + "start": 2826.7, + "end": 2830.18, + "probability": 0.9955 + }, + { + "start": 2830.42, + "end": 2830.86, + "probability": 0.8895 + }, + { + "start": 2831.04, + "end": 2836.9, + "probability": 0.9961 + }, + { + "start": 2837.5, + "end": 2839.84, + "probability": 0.9824 + }, + { + "start": 2840.4, + "end": 2844.08, + "probability": 0.9985 + }, + { + "start": 2844.9, + "end": 2845.7, + "probability": 0.6983 + }, + { + "start": 2845.78, + "end": 2850.04, + "probability": 0.9397 + }, + { + "start": 2850.4, + "end": 2850.84, + "probability": 0.77 + }, + { + "start": 2850.94, + "end": 2854.24, + "probability": 0.9935 + }, + { + "start": 2855.1, + "end": 2859.54, + "probability": 0.9868 + }, + { + "start": 2859.98, + "end": 2862.08, + "probability": 0.9344 + }, + { + "start": 2862.46, + "end": 2866.92, + "probability": 0.9958 + }, + { + "start": 2867.82, + "end": 2870.54, + "probability": 0.9883 + }, + { + "start": 2870.96, + "end": 2872.2, + "probability": 0.8446 + }, + { + "start": 2872.34, + "end": 2875.58, + "probability": 0.9898 + }, + { + "start": 2876.48, + "end": 2882.04, + "probability": 0.9787 + }, + { + "start": 2882.04, + "end": 2886.72, + "probability": 0.9968 + }, + { + "start": 2887.36, + "end": 2889.64, + "probability": 0.9782 + }, + { + "start": 2890.14, + "end": 2891.3, + "probability": 0.9919 + }, + { + "start": 2891.72, + "end": 2893.94, + "probability": 0.9979 + }, + { + "start": 2895.51, + "end": 2897.16, + "probability": 0.812 + }, + { + "start": 2897.16, + "end": 2899.34, + "probability": 0.8557 + }, + { + "start": 2899.9, + "end": 2904.54, + "probability": 0.9985 + }, + { + "start": 2904.54, + "end": 2911.48, + "probability": 0.9842 + }, + { + "start": 2912.46, + "end": 2912.86, + "probability": 0.3413 + }, + { + "start": 2913.52, + "end": 2918.56, + "probability": 0.9037 + }, + { + "start": 2918.58, + "end": 2922.72, + "probability": 0.9349 + }, + { + "start": 2923.8, + "end": 2928.06, + "probability": 0.9852 + }, + { + "start": 2928.06, + "end": 2931.8, + "probability": 0.7806 + }, + { + "start": 2931.8, + "end": 2934.44, + "probability": 0.9082 + }, + { + "start": 2934.58, + "end": 2937.22, + "probability": 0.9722 + }, + { + "start": 2937.3, + "end": 2938.36, + "probability": 0.8754 + }, + { + "start": 2939.32, + "end": 2940.4, + "probability": 0.9637 + }, + { + "start": 2940.46, + "end": 2941.34, + "probability": 0.9834 + }, + { + "start": 2941.76, + "end": 2947.78, + "probability": 0.968 + }, + { + "start": 2947.78, + "end": 2953.54, + "probability": 0.999 + }, + { + "start": 2953.92, + "end": 2954.08, + "probability": 0.5807 + }, + { + "start": 2954.14, + "end": 2957.22, + "probability": 0.6132 + }, + { + "start": 2957.36, + "end": 2959.9, + "probability": 0.7184 + }, + { + "start": 2960.02, + "end": 2962.5, + "probability": 0.5096 + }, + { + "start": 2974.08, + "end": 2975.98, + "probability": 0.8006 + }, + { + "start": 2976.16, + "end": 2977.43, + "probability": 0.9517 + }, + { + "start": 2977.9, + "end": 2979.64, + "probability": 0.694 + }, + { + "start": 2980.6, + "end": 2983.84, + "probability": 0.9982 + }, + { + "start": 2983.84, + "end": 2987.42, + "probability": 0.9524 + }, + { + "start": 2988.38, + "end": 2991.16, + "probability": 0.6767 + }, + { + "start": 2991.7, + "end": 2995.86, + "probability": 0.9618 + }, + { + "start": 2995.86, + "end": 2999.78, + "probability": 0.9387 + }, + { + "start": 3000.4, + "end": 3006.24, + "probability": 0.9185 + }, + { + "start": 3006.76, + "end": 3011.24, + "probability": 0.9925 + }, + { + "start": 3011.84, + "end": 3017.24, + "probability": 0.9949 + }, + { + "start": 3017.28, + "end": 3019.36, + "probability": 0.6849 + }, + { + "start": 3019.8, + "end": 3023.06, + "probability": 0.9723 + }, + { + "start": 3023.44, + "end": 3027.76, + "probability": 0.995 + }, + { + "start": 3027.76, + "end": 3033.1, + "probability": 0.9985 + }, + { + "start": 3033.94, + "end": 3037.46, + "probability": 0.9932 + }, + { + "start": 3037.46, + "end": 3041.98, + "probability": 0.9951 + }, + { + "start": 3042.46, + "end": 3048.72, + "probability": 0.9735 + }, + { + "start": 3049.24, + "end": 3053.64, + "probability": 0.8957 + }, + { + "start": 3054.18, + "end": 3058.34, + "probability": 0.9987 + }, + { + "start": 3058.48, + "end": 3064.04, + "probability": 0.9937 + }, + { + "start": 3064.62, + "end": 3066.74, + "probability": 0.9918 + }, + { + "start": 3067.24, + "end": 3070.0, + "probability": 0.97 + }, + { + "start": 3072.35, + "end": 3077.86, + "probability": 0.8611 + }, + { + "start": 3078.4, + "end": 3081.94, + "probability": 0.9836 + }, + { + "start": 3081.94, + "end": 3087.36, + "probability": 0.9315 + }, + { + "start": 3087.44, + "end": 3088.96, + "probability": 0.6609 + }, + { + "start": 3089.58, + "end": 3093.94, + "probability": 0.9613 + }, + { + "start": 3094.5, + "end": 3097.08, + "probability": 0.9841 + }, + { + "start": 3101.0, + "end": 3102.32, + "probability": 0.8162 + }, + { + "start": 3102.9, + "end": 3104.48, + "probability": 0.8753 + }, + { + "start": 3104.9, + "end": 3110.54, + "probability": 0.9839 + }, + { + "start": 3110.84, + "end": 3112.58, + "probability": 0.9838 + }, + { + "start": 3113.04, + "end": 3114.73, + "probability": 0.9538 + }, + { + "start": 3116.32, + "end": 3120.54, + "probability": 0.9575 + }, + { + "start": 3121.62, + "end": 3123.41, + "probability": 0.9521 + }, + { + "start": 3123.96, + "end": 3126.04, + "probability": 0.9673 + }, + { + "start": 3126.6, + "end": 3132.72, + "probability": 0.7914 + }, + { + "start": 3133.24, + "end": 3134.92, + "probability": 0.9969 + }, + { + "start": 3134.92, + "end": 3137.96, + "probability": 0.9658 + }, + { + "start": 3138.2, + "end": 3140.2, + "probability": 0.8683 + }, + { + "start": 3140.82, + "end": 3145.82, + "probability": 0.9923 + }, + { + "start": 3145.82, + "end": 3150.12, + "probability": 0.9974 + }, + { + "start": 3150.58, + "end": 3150.86, + "probability": 0.4498 + }, + { + "start": 3150.96, + "end": 3152.36, + "probability": 0.651 + }, + { + "start": 3152.58, + "end": 3153.36, + "probability": 0.7052 + }, + { + "start": 3153.48, + "end": 3154.44, + "probability": 0.8622 + }, + { + "start": 3154.58, + "end": 3158.96, + "probability": 0.9585 + }, + { + "start": 3159.2, + "end": 3160.06, + "probability": 0.8885 + }, + { + "start": 3162.46, + "end": 3164.42, + "probability": 0.7969 + }, + { + "start": 3164.58, + "end": 3166.28, + "probability": 0.631 + }, + { + "start": 3166.86, + "end": 3168.82, + "probability": 0.2636 + }, + { + "start": 3169.34, + "end": 3170.42, + "probability": 0.5261 + }, + { + "start": 3171.38, + "end": 3172.72, + "probability": 0.9344 + }, + { + "start": 3181.72, + "end": 3185.02, + "probability": 0.4601 + }, + { + "start": 3185.54, + "end": 3186.52, + "probability": 0.472 + }, + { + "start": 3186.66, + "end": 3187.22, + "probability": 0.283 + }, + { + "start": 3187.78, + "end": 3188.32, + "probability": 0.7267 + }, + { + "start": 3188.74, + "end": 3189.86, + "probability": 0.6473 + }, + { + "start": 3189.9, + "end": 3191.12, + "probability": 0.8684 + }, + { + "start": 3191.4, + "end": 3197.3, + "probability": 0.9932 + }, + { + "start": 3198.24, + "end": 3203.88, + "probability": 0.9492 + }, + { + "start": 3204.78, + "end": 3209.66, + "probability": 0.9823 + }, + { + "start": 3210.82, + "end": 3214.84, + "probability": 0.983 + }, + { + "start": 3214.91, + "end": 3220.12, + "probability": 0.9955 + }, + { + "start": 3220.9, + "end": 3227.24, + "probability": 0.9771 + }, + { + "start": 3227.74, + "end": 3230.42, + "probability": 0.993 + }, + { + "start": 3230.5, + "end": 3235.9, + "probability": 0.9666 + }, + { + "start": 3236.16, + "end": 3238.38, + "probability": 0.9943 + }, + { + "start": 3238.56, + "end": 3242.32, + "probability": 0.9923 + }, + { + "start": 3242.52, + "end": 3244.22, + "probability": 0.998 + }, + { + "start": 3244.96, + "end": 3246.72, + "probability": 0.7718 + }, + { + "start": 3248.26, + "end": 3255.02, + "probability": 0.984 + }, + { + "start": 3255.08, + "end": 3259.74, + "probability": 0.9157 + }, + { + "start": 3260.34, + "end": 3262.46, + "probability": 0.9028 + }, + { + "start": 3262.66, + "end": 3265.4, + "probability": 0.888 + }, + { + "start": 3265.8, + "end": 3266.88, + "probability": 0.9808 + }, + { + "start": 3267.44, + "end": 3273.4, + "probability": 0.9885 + }, + { + "start": 3274.06, + "end": 3274.66, + "probability": 0.8265 + }, + { + "start": 3274.84, + "end": 3276.76, + "probability": 0.9124 + }, + { + "start": 3277.1, + "end": 3282.26, + "probability": 0.9803 + }, + { + "start": 3282.26, + "end": 3288.76, + "probability": 0.998 + }, + { + "start": 3289.28, + "end": 3294.78, + "probability": 0.8948 + }, + { + "start": 3295.14, + "end": 3296.54, + "probability": 0.9709 + }, + { + "start": 3296.7, + "end": 3302.86, + "probability": 0.9937 + }, + { + "start": 3303.34, + "end": 3304.86, + "probability": 0.8412 + }, + { + "start": 3305.8, + "end": 3308.02, + "probability": 0.9573 + }, + { + "start": 3308.14, + "end": 3313.6, + "probability": 0.9971 + }, + { + "start": 3314.1, + "end": 3315.94, + "probability": 0.945 + }, + { + "start": 3316.44, + "end": 3318.14, + "probability": 0.9162 + }, + { + "start": 3318.62, + "end": 3324.14, + "probability": 0.9959 + }, + { + "start": 3324.8, + "end": 3325.1, + "probability": 0.991 + }, + { + "start": 3326.24, + "end": 3327.24, + "probability": 0.6995 + }, + { + "start": 3327.32, + "end": 3328.18, + "probability": 0.8923 + }, + { + "start": 3328.32, + "end": 3329.2, + "probability": 0.8704 + }, + { + "start": 3329.66, + "end": 3332.64, + "probability": 0.7256 + }, + { + "start": 3333.18, + "end": 3335.6, + "probability": 0.9539 + }, + { + "start": 3335.74, + "end": 3339.28, + "probability": 0.7863 + }, + { + "start": 3339.54, + "end": 3342.86, + "probability": 0.979 + }, + { + "start": 3343.28, + "end": 3345.32, + "probability": 0.82 + }, + { + "start": 3348.18, + "end": 3348.76, + "probability": 0.5187 + }, + { + "start": 3349.24, + "end": 3353.9, + "probability": 0.938 + }, + { + "start": 3354.36, + "end": 3356.3, + "probability": 0.4014 + }, + { + "start": 3356.42, + "end": 3359.98, + "probability": 0.9598 + }, + { + "start": 3360.12, + "end": 3360.76, + "probability": 0.4755 + }, + { + "start": 3360.9, + "end": 3369.9, + "probability": 0.9697 + }, + { + "start": 3370.2, + "end": 3370.42, + "probability": 0.432 + }, + { + "start": 3372.26, + "end": 3373.92, + "probability": 0.5459 + }, + { + "start": 3374.02, + "end": 3374.54, + "probability": 0.4229 + }, + { + "start": 3374.56, + "end": 3376.06, + "probability": 0.7161 + }, + { + "start": 3376.06, + "end": 3377.34, + "probability": 0.7241 + }, + { + "start": 3377.48, + "end": 3379.3, + "probability": 0.9646 + }, + { + "start": 3379.36, + "end": 3383.11, + "probability": 0.7161 + }, + { + "start": 3389.0, + "end": 3389.28, + "probability": 0.0383 + }, + { + "start": 3389.28, + "end": 3389.7, + "probability": 0.2562 + }, + { + "start": 3389.7, + "end": 3390.16, + "probability": 0.3469 + }, + { + "start": 3393.72, + "end": 3394.52, + "probability": 0.0134 + }, + { + "start": 3402.6, + "end": 3404.56, + "probability": 0.0451 + }, + { + "start": 3407.26, + "end": 3407.48, + "probability": 0.0758 + }, + { + "start": 3424.84, + "end": 3426.92, + "probability": 0.6435 + }, + { + "start": 3427.08, + "end": 3428.9, + "probability": 0.8071 + }, + { + "start": 3429.56, + "end": 3432.66, + "probability": 0.5433 + }, + { + "start": 3432.84, + "end": 3435.38, + "probability": 0.78 + }, + { + "start": 3435.86, + "end": 3441.14, + "probability": 0.6712 + }, + { + "start": 3441.9, + "end": 3447.42, + "probability": 0.9126 + }, + { + "start": 3447.56, + "end": 3448.02, + "probability": 0.401 + }, + { + "start": 3448.62, + "end": 3450.32, + "probability": 0.9298 + }, + { + "start": 3450.62, + "end": 3454.16, + "probability": 0.8996 + }, + { + "start": 3455.14, + "end": 3456.14, + "probability": 0.7051 + }, + { + "start": 3457.44, + "end": 3458.62, + "probability": 0.9495 + }, + { + "start": 3460.02, + "end": 3460.9, + "probability": 0.6995 + }, + { + "start": 3461.0, + "end": 3461.82, + "probability": 0.9155 + }, + { + "start": 3461.92, + "end": 3465.72, + "probability": 0.8871 + }, + { + "start": 3466.34, + "end": 3469.84, + "probability": 0.9937 + }, + { + "start": 3470.4, + "end": 3473.16, + "probability": 0.8558 + }, + { + "start": 3474.1, + "end": 3475.34, + "probability": 0.9676 + }, + { + "start": 3475.84, + "end": 3479.72, + "probability": 0.9025 + }, + { + "start": 3479.84, + "end": 3482.6, + "probability": 0.8738 + }, + { + "start": 3482.72, + "end": 3486.28, + "probability": 0.9483 + }, + { + "start": 3486.38, + "end": 3488.72, + "probability": 0.8831 + }, + { + "start": 3488.92, + "end": 3490.54, + "probability": 0.1786 + }, + { + "start": 3491.34, + "end": 3493.16, + "probability": 0.0248 + }, + { + "start": 3493.54, + "end": 3493.54, + "probability": 0.1533 + }, + { + "start": 3493.54, + "end": 3493.54, + "probability": 0.2654 + }, + { + "start": 3493.7, + "end": 3493.9, + "probability": 0.5773 + }, + { + "start": 3494.18, + "end": 3494.18, + "probability": 0.5728 + }, + { + "start": 3494.32, + "end": 3494.5, + "probability": 0.3916 + }, + { + "start": 3494.58, + "end": 3495.66, + "probability": 0.4609 + }, + { + "start": 3495.88, + "end": 3497.72, + "probability": 0.2876 + }, + { + "start": 3497.72, + "end": 3498.0, + "probability": 0.0777 + }, + { + "start": 3498.22, + "end": 3498.98, + "probability": 0.177 + }, + { + "start": 3499.88, + "end": 3501.48, + "probability": 0.3464 + }, + { + "start": 3502.1, + "end": 3502.7, + "probability": 0.4838 + }, + { + "start": 3502.94, + "end": 3505.24, + "probability": 0.6815 + }, + { + "start": 3505.82, + "end": 3511.9, + "probability": 0.996 + }, + { + "start": 3512.02, + "end": 3514.76, + "probability": 0.9556 + }, + { + "start": 3515.01, + "end": 3517.66, + "probability": 0.9974 + }, + { + "start": 3517.78, + "end": 3518.1, + "probability": 0.8631 + }, + { + "start": 3519.1, + "end": 3523.58, + "probability": 0.9357 + }, + { + "start": 3523.64, + "end": 3525.34, + "probability": 0.9354 + }, + { + "start": 3525.46, + "end": 3527.34, + "probability": 0.8479 + }, + { + "start": 3528.0, + "end": 3531.28, + "probability": 0.9958 + }, + { + "start": 3531.8, + "end": 3539.5, + "probability": 0.9902 + }, + { + "start": 3539.9, + "end": 3544.9, + "probability": 0.9924 + }, + { + "start": 3545.2, + "end": 3547.96, + "probability": 0.999 + }, + { + "start": 3548.5, + "end": 3552.04, + "probability": 0.8973 + }, + { + "start": 3552.28, + "end": 3553.66, + "probability": 0.8792 + }, + { + "start": 3553.74, + "end": 3555.57, + "probability": 0.8606 + }, + { + "start": 3556.06, + "end": 3556.9, + "probability": 0.8041 + }, + { + "start": 3557.24, + "end": 3557.86, + "probability": 0.5603 + }, + { + "start": 3557.98, + "end": 3559.08, + "probability": 0.9534 + }, + { + "start": 3559.18, + "end": 3560.44, + "probability": 0.8401 + }, + { + "start": 3560.72, + "end": 3562.12, + "probability": 0.8854 + }, + { + "start": 3562.2, + "end": 3563.1, + "probability": 0.9951 + }, + { + "start": 3564.24, + "end": 3566.72, + "probability": 0.8818 + }, + { + "start": 3567.68, + "end": 3572.56, + "probability": 0.9521 + }, + { + "start": 3572.56, + "end": 3576.24, + "probability": 0.8999 + }, + { + "start": 3576.38, + "end": 3578.62, + "probability": 0.9777 + }, + { + "start": 3578.84, + "end": 3581.1, + "probability": 0.5261 + }, + { + "start": 3581.24, + "end": 3583.98, + "probability": 0.9652 + }, + { + "start": 3584.6, + "end": 3588.24, + "probability": 0.981 + }, + { + "start": 3588.24, + "end": 3591.56, + "probability": 0.994 + }, + { + "start": 3591.98, + "end": 3594.02, + "probability": 0.7071 + }, + { + "start": 3594.14, + "end": 3597.52, + "probability": 0.9975 + }, + { + "start": 3597.84, + "end": 3598.6, + "probability": 0.9059 + }, + { + "start": 3598.66, + "end": 3599.02, + "probability": 0.783 + }, + { + "start": 3599.06, + "end": 3600.22, + "probability": 0.5798 + }, + { + "start": 3600.5, + "end": 3602.22, + "probability": 0.5229 + }, + { + "start": 3602.34, + "end": 3603.2, + "probability": 0.7962 + }, + { + "start": 3603.58, + "end": 3603.68, + "probability": 0.4015 + }, + { + "start": 3603.76, + "end": 3604.04, + "probability": 0.9568 + }, + { + "start": 3604.8, + "end": 3605.54, + "probability": 0.8196 + }, + { + "start": 3606.58, + "end": 3609.68, + "probability": 0.808 + }, + { + "start": 3610.1, + "end": 3611.05, + "probability": 0.9733 + }, + { + "start": 3611.24, + "end": 3612.62, + "probability": 0.7625 + }, + { + "start": 3612.7, + "end": 3616.58, + "probability": 0.9412 + }, + { + "start": 3616.68, + "end": 3617.31, + "probability": 0.932 + }, + { + "start": 3617.68, + "end": 3618.87, + "probability": 0.988 + }, + { + "start": 3619.68, + "end": 3621.74, + "probability": 0.7119 + }, + { + "start": 3622.04, + "end": 3623.1, + "probability": 0.932 + }, + { + "start": 3624.0, + "end": 3625.14, + "probability": 0.7151 + }, + { + "start": 3625.14, + "end": 3630.44, + "probability": 0.6718 + }, + { + "start": 3644.23, + "end": 3646.42, + "probability": 0.0427 + }, + { + "start": 3646.42, + "end": 3649.18, + "probability": 0.0318 + }, + { + "start": 3650.98, + "end": 3652.94, + "probability": 0.0727 + }, + { + "start": 3667.09, + "end": 3669.04, + "probability": 0.0682 + }, + { + "start": 3671.19, + "end": 3671.85, + "probability": 0.0191 + }, + { + "start": 3674.32, + "end": 3677.4, + "probability": 0.033 + }, + { + "start": 3677.8, + "end": 3678.94, + "probability": 0.3342 + }, + { + "start": 3679.5, + "end": 3681.22, + "probability": 0.3089 + }, + { + "start": 3682.67, + "end": 3682.92, + "probability": 0.8615 + }, + { + "start": 3684.88, + "end": 3685.92, + "probability": 0.2349 + }, + { + "start": 3688.02, + "end": 3688.24, + "probability": 0.1063 + }, + { + "start": 3689.18, + "end": 3689.9, + "probability": 0.0731 + }, + { + "start": 3689.9, + "end": 3689.9, + "probability": 0.0815 + }, + { + "start": 3689.9, + "end": 3689.9, + "probability": 0.3197 + }, + { + "start": 3689.9, + "end": 3689.9, + "probability": 0.0298 + }, + { + "start": 3689.9, + "end": 3689.9, + "probability": 0.0179 + }, + { + "start": 3689.9, + "end": 3692.96, + "probability": 0.8153 + }, + { + "start": 3704.66, + "end": 3704.86, + "probability": 0.0474 + }, + { + "start": 3704.86, + "end": 3704.86, + "probability": 0.1121 + }, + { + "start": 3704.86, + "end": 3704.86, + "probability": 0.0683 + }, + { + "start": 3704.86, + "end": 3705.82, + "probability": 0.0145 + }, + { + "start": 3707.46, + "end": 3709.52, + "probability": 0.6757 + }, + { + "start": 3710.52, + "end": 3712.58, + "probability": 0.7599 + }, + { + "start": 3712.68, + "end": 3714.9, + "probability": 0.9341 + }, + { + "start": 3715.0, + "end": 3715.08, + "probability": 0.4536 + }, + { + "start": 3715.18, + "end": 3716.74, + "probability": 0.821 + }, + { + "start": 3716.78, + "end": 3717.89, + "probability": 0.9878 + }, + { + "start": 3718.94, + "end": 3724.42, + "probability": 0.9751 + }, + { + "start": 3725.76, + "end": 3726.62, + "probability": 0.9038 + }, + { + "start": 3726.84, + "end": 3727.9, + "probability": 0.9069 + }, + { + "start": 3727.92, + "end": 3735.16, + "probability": 0.9823 + }, + { + "start": 3735.96, + "end": 3741.02, + "probability": 0.8104 + }, + { + "start": 3741.12, + "end": 3742.45, + "probability": 0.9443 + }, + { + "start": 3743.12, + "end": 3745.22, + "probability": 0.9911 + }, + { + "start": 3745.8, + "end": 3748.0, + "probability": 0.9903 + }, + { + "start": 3748.12, + "end": 3748.64, + "probability": 0.3852 + }, + { + "start": 3749.4, + "end": 3750.46, + "probability": 0.7798 + }, + { + "start": 3751.02, + "end": 3752.94, + "probability": 0.9976 + }, + { + "start": 3752.94, + "end": 3755.8, + "probability": 0.9986 + }, + { + "start": 3755.9, + "end": 3757.06, + "probability": 0.9639 + }, + { + "start": 3757.18, + "end": 3758.31, + "probability": 0.9924 + }, + { + "start": 3759.36, + "end": 3760.36, + "probability": 0.9717 + }, + { + "start": 3760.9, + "end": 3763.23, + "probability": 0.9322 + }, + { + "start": 3764.48, + "end": 3765.19, + "probability": 0.6785 + }, + { + "start": 3766.08, + "end": 3768.3, + "probability": 0.9548 + }, + { + "start": 3768.7, + "end": 3771.04, + "probability": 0.9478 + }, + { + "start": 3772.1, + "end": 3777.58, + "probability": 0.9414 + }, + { + "start": 3777.9, + "end": 3782.54, + "probability": 0.9984 + }, + { + "start": 3782.54, + "end": 3786.16, + "probability": 0.9968 + }, + { + "start": 3786.94, + "end": 3788.08, + "probability": 0.6591 + }, + { + "start": 3788.14, + "end": 3790.12, + "probability": 0.9714 + }, + { + "start": 3790.44, + "end": 3791.5, + "probability": 0.8793 + }, + { + "start": 3791.62, + "end": 3792.19, + "probability": 0.8207 + }, + { + "start": 3793.12, + "end": 3796.44, + "probability": 0.9902 + }, + { + "start": 3796.8, + "end": 3798.26, + "probability": 0.9493 + }, + { + "start": 3798.52, + "end": 3803.86, + "probability": 0.7238 + }, + { + "start": 3804.08, + "end": 3806.9, + "probability": 0.8757 + }, + { + "start": 3808.22, + "end": 3809.3, + "probability": 0.2505 + }, + { + "start": 3809.3, + "end": 3814.32, + "probability": 0.9962 + }, + { + "start": 3814.42, + "end": 3816.0, + "probability": 0.9129 + }, + { + "start": 3816.1, + "end": 3817.9, + "probability": 0.888 + }, + { + "start": 3818.6, + "end": 3818.92, + "probability": 0.6375 + }, + { + "start": 3818.98, + "end": 3819.48, + "probability": 0.8506 + }, + { + "start": 3819.58, + "end": 3821.58, + "probability": 0.992 + }, + { + "start": 3821.58, + "end": 3825.72, + "probability": 0.9963 + }, + { + "start": 3826.34, + "end": 3829.76, + "probability": 0.9989 + }, + { + "start": 3829.76, + "end": 3832.72, + "probability": 0.9734 + }, + { + "start": 3832.9, + "end": 3833.72, + "probability": 0.9207 + }, + { + "start": 3833.86, + "end": 3834.76, + "probability": 0.8453 + }, + { + "start": 3835.26, + "end": 3836.84, + "probability": 0.7222 + }, + { + "start": 3836.92, + "end": 3839.88, + "probability": 0.9892 + }, + { + "start": 3839.88, + "end": 3841.28, + "probability": 0.9824 + }, + { + "start": 3842.02, + "end": 3843.09, + "probability": 0.9537 + }, + { + "start": 3843.28, + "end": 3846.22, + "probability": 0.8546 + }, + { + "start": 3846.78, + "end": 3850.94, + "probability": 0.9377 + }, + { + "start": 3851.18, + "end": 3854.38, + "probability": 0.9927 + }, + { + "start": 3854.56, + "end": 3856.54, + "probability": 0.9896 + }, + { + "start": 3856.74, + "end": 3859.32, + "probability": 0.8072 + }, + { + "start": 3859.6, + "end": 3863.61, + "probability": 0.9862 + }, + { + "start": 3864.1, + "end": 3867.02, + "probability": 0.7538 + }, + { + "start": 3868.1, + "end": 3871.86, + "probability": 0.97 + }, + { + "start": 3872.28, + "end": 3875.68, + "probability": 0.9961 + }, + { + "start": 3876.02, + "end": 3878.46, + "probability": 0.9984 + }, + { + "start": 3879.06, + "end": 3881.27, + "probability": 0.7802 + }, + { + "start": 3881.54, + "end": 3885.98, + "probability": 0.9929 + }, + { + "start": 3885.98, + "end": 3891.8, + "probability": 0.885 + }, + { + "start": 3891.94, + "end": 3893.74, + "probability": 0.7543 + }, + { + "start": 3894.7, + "end": 3903.24, + "probability": 0.9165 + }, + { + "start": 3903.28, + "end": 3904.4, + "probability": 0.6517 + }, + { + "start": 3904.46, + "end": 3906.32, + "probability": 0.8952 + }, + { + "start": 3906.74, + "end": 3914.59, + "probability": 0.9908 + }, + { + "start": 3914.86, + "end": 3916.92, + "probability": 0.9111 + }, + { + "start": 3917.02, + "end": 3917.5, + "probability": 0.9556 + }, + { + "start": 3917.66, + "end": 3923.62, + "probability": 0.9537 + }, + { + "start": 3924.32, + "end": 3924.62, + "probability": 0.5992 + }, + { + "start": 3924.62, + "end": 3927.54, + "probability": 0.7528 + }, + { + "start": 3928.36, + "end": 3930.86, + "probability": 0.9961 + }, + { + "start": 3932.36, + "end": 3933.74, + "probability": 0.8338 + }, + { + "start": 3933.82, + "end": 3938.0, + "probability": 0.7744 + }, + { + "start": 3939.76, + "end": 3940.66, + "probability": 0.2776 + }, + { + "start": 3940.68, + "end": 3941.64, + "probability": 0.6089 + }, + { + "start": 3941.7, + "end": 3946.26, + "probability": 0.9927 + }, + { + "start": 3947.08, + "end": 3951.16, + "probability": 0.993 + }, + { + "start": 3952.4, + "end": 3955.6, + "probability": 0.972 + }, + { + "start": 3955.6, + "end": 3959.32, + "probability": 0.9478 + }, + { + "start": 3959.58, + "end": 3960.94, + "probability": 0.8896 + }, + { + "start": 3962.11, + "end": 3965.02, + "probability": 0.9984 + }, + { + "start": 3966.0, + "end": 3966.64, + "probability": 0.7815 + }, + { + "start": 3966.72, + "end": 3967.26, + "probability": 0.7993 + }, + { + "start": 3967.38, + "end": 3968.06, + "probability": 0.9721 + }, + { + "start": 3968.18, + "end": 3969.22, + "probability": 0.9538 + }, + { + "start": 3969.56, + "end": 3970.52, + "probability": 0.9109 + }, + { + "start": 3970.74, + "end": 3974.32, + "probability": 0.9481 + }, + { + "start": 3974.98, + "end": 3981.08, + "probability": 0.9988 + }, + { + "start": 3981.56, + "end": 3983.14, + "probability": 0.8962 + }, + { + "start": 3983.3, + "end": 3986.74, + "probability": 0.9976 + }, + { + "start": 3987.52, + "end": 3988.66, + "probability": 0.8844 + }, + { + "start": 3989.56, + "end": 3990.0, + "probability": 0.8653 + }, + { + "start": 3990.06, + "end": 3992.12, + "probability": 0.8981 + }, + { + "start": 3992.62, + "end": 3997.04, + "probability": 0.9927 + }, + { + "start": 3997.36, + "end": 4000.46, + "probability": 0.9921 + }, + { + "start": 4000.92, + "end": 4001.06, + "probability": 0.7018 + }, + { + "start": 4001.18, + "end": 4002.04, + "probability": 0.7707 + }, + { + "start": 4002.34, + "end": 4004.68, + "probability": 0.9808 + }, + { + "start": 4005.02, + "end": 4006.26, + "probability": 0.9707 + }, + { + "start": 4006.32, + "end": 4007.9, + "probability": 0.9959 + }, + { + "start": 4008.12, + "end": 4009.78, + "probability": 0.979 + }, + { + "start": 4009.92, + "end": 4011.2, + "probability": 0.9854 + }, + { + "start": 4011.3, + "end": 4011.6, + "probability": 0.8472 + }, + { + "start": 4011.66, + "end": 4012.52, + "probability": 0.9326 + }, + { + "start": 4012.58, + "end": 4013.92, + "probability": 0.9851 + }, + { + "start": 4014.24, + "end": 4017.64, + "probability": 0.9956 + }, + { + "start": 4018.32, + "end": 4019.3, + "probability": 0.7531 + }, + { + "start": 4019.96, + "end": 4022.0, + "probability": 0.9868 + }, + { + "start": 4022.2, + "end": 4023.94, + "probability": 0.9873 + }, + { + "start": 4024.04, + "end": 4026.62, + "probability": 0.9476 + }, + { + "start": 4027.26, + "end": 4030.72, + "probability": 0.9776 + }, + { + "start": 4030.88, + "end": 4032.28, + "probability": 0.8914 + }, + { + "start": 4032.72, + "end": 4033.8, + "probability": 0.9788 + }, + { + "start": 4034.0, + "end": 4036.0, + "probability": 0.966 + }, + { + "start": 4036.3, + "end": 4041.02, + "probability": 0.9798 + }, + { + "start": 4041.9, + "end": 4048.0, + "probability": 0.9862 + }, + { + "start": 4048.12, + "end": 4048.8, + "probability": 0.7 + }, + { + "start": 4048.9, + "end": 4050.96, + "probability": 0.8896 + }, + { + "start": 4051.88, + "end": 4055.66, + "probability": 0.9413 + }, + { + "start": 4055.66, + "end": 4058.78, + "probability": 0.9891 + }, + { + "start": 4058.82, + "end": 4060.81, + "probability": 0.9962 + }, + { + "start": 4061.12, + "end": 4063.19, + "probability": 0.9917 + }, + { + "start": 4063.8, + "end": 4067.04, + "probability": 0.9934 + }, + { + "start": 4067.16, + "end": 4068.7, + "probability": 0.9376 + }, + { + "start": 4069.04, + "end": 4072.86, + "probability": 0.9907 + }, + { + "start": 4073.22, + "end": 4074.24, + "probability": 0.8254 + }, + { + "start": 4074.32, + "end": 4078.31, + "probability": 0.9958 + }, + { + "start": 4079.02, + "end": 4079.96, + "probability": 0.8737 + }, + { + "start": 4080.02, + "end": 4081.0, + "probability": 0.8743 + }, + { + "start": 4081.08, + "end": 4083.94, + "probability": 0.9965 + }, + { + "start": 4084.5, + "end": 4086.68, + "probability": 0.9919 + }, + { + "start": 4086.78, + "end": 4088.9, + "probability": 0.797 + }, + { + "start": 4089.16, + "end": 4091.96, + "probability": 0.8392 + }, + { + "start": 4091.96, + "end": 4095.96, + "probability": 0.9852 + }, + { + "start": 4096.04, + "end": 4101.34, + "probability": 0.983 + }, + { + "start": 4101.72, + "end": 4103.06, + "probability": 0.9895 + }, + { + "start": 4103.18, + "end": 4104.1, + "probability": 0.7367 + }, + { + "start": 4104.22, + "end": 4108.98, + "probability": 0.9768 + }, + { + "start": 4109.14, + "end": 4110.38, + "probability": 0.7971 + }, + { + "start": 4110.44, + "end": 4111.16, + "probability": 0.9396 + }, + { + "start": 4111.9, + "end": 4113.44, + "probability": 0.9971 + }, + { + "start": 4114.16, + "end": 4114.74, + "probability": 0.9888 + }, + { + "start": 4115.76, + "end": 4116.78, + "probability": 0.9989 + }, + { + "start": 4117.32, + "end": 4119.74, + "probability": 0.9976 + }, + { + "start": 4120.84, + "end": 4125.5, + "probability": 0.9709 + }, + { + "start": 4125.82, + "end": 4127.36, + "probability": 0.7828 + }, + { + "start": 4127.7, + "end": 4128.94, + "probability": 0.9574 + }, + { + "start": 4129.0, + "end": 4130.35, + "probability": 0.9943 + }, + { + "start": 4130.58, + "end": 4132.33, + "probability": 0.8963 + }, + { + "start": 4133.9, + "end": 4136.08, + "probability": 0.8054 + }, + { + "start": 4137.26, + "end": 4138.0, + "probability": 0.9471 + }, + { + "start": 4138.04, + "end": 4138.68, + "probability": 0.7224 + }, + { + "start": 4138.92, + "end": 4139.58, + "probability": 0.9407 + }, + { + "start": 4140.6, + "end": 4142.42, + "probability": 0.9971 + }, + { + "start": 4142.72, + "end": 4144.9, + "probability": 0.9407 + }, + { + "start": 4145.8, + "end": 4150.38, + "probability": 0.9595 + }, + { + "start": 4150.44, + "end": 4152.88, + "probability": 0.9864 + }, + { + "start": 4153.26, + "end": 4156.28, + "probability": 0.9985 + }, + { + "start": 4156.68, + "end": 4159.83, + "probability": 0.9985 + }, + { + "start": 4160.04, + "end": 4161.78, + "probability": 0.9727 + }, + { + "start": 4161.98, + "end": 4162.82, + "probability": 0.9964 + }, + { + "start": 4162.88, + "end": 4164.22, + "probability": 0.9978 + }, + { + "start": 4165.46, + "end": 4169.1, + "probability": 0.9651 + }, + { + "start": 4169.24, + "end": 4170.0, + "probability": 0.7593 + }, + { + "start": 4170.9, + "end": 4173.36, + "probability": 0.9065 + }, + { + "start": 4174.82, + "end": 4181.1, + "probability": 0.7719 + }, + { + "start": 4181.3, + "end": 4182.12, + "probability": 0.5312 + }, + { + "start": 4182.14, + "end": 4183.26, + "probability": 0.9628 + }, + { + "start": 4184.22, + "end": 4186.6, + "probability": 0.2028 + }, + { + "start": 4196.26, + "end": 4199.72, + "probability": 0.7312 + }, + { + "start": 4200.36, + "end": 4203.18, + "probability": 0.8869 + }, + { + "start": 4203.84, + "end": 4207.5, + "probability": 0.9292 + }, + { + "start": 4207.58, + "end": 4208.2, + "probability": 0.5659 + }, + { + "start": 4210.32, + "end": 4211.2, + "probability": 0.5422 + }, + { + "start": 4212.02, + "end": 4212.02, + "probability": 0.0924 + }, + { + "start": 4212.02, + "end": 4213.28, + "probability": 0.5085 + }, + { + "start": 4213.42, + "end": 4215.32, + "probability": 0.8809 + }, + { + "start": 4215.38, + "end": 4218.22, + "probability": 0.9741 + }, + { + "start": 4219.28, + "end": 4221.22, + "probability": 0.975 + }, + { + "start": 4222.0, + "end": 4223.18, + "probability": 0.8931 + }, + { + "start": 4224.46, + "end": 4226.32, + "probability": 0.9784 + }, + { + "start": 4227.96, + "end": 4228.88, + "probability": 0.7281 + }, + { + "start": 4229.22, + "end": 4230.1, + "probability": 0.8139 + }, + { + "start": 4230.1, + "end": 4233.0, + "probability": 0.9484 + }, + { + "start": 4235.0, + "end": 4236.6, + "probability": 0.9339 + }, + { + "start": 4237.2, + "end": 4238.02, + "probability": 0.8427 + }, + { + "start": 4238.56, + "end": 4239.2, + "probability": 0.8929 + }, + { + "start": 4240.3, + "end": 4243.64, + "probability": 0.992 + }, + { + "start": 4244.12, + "end": 4244.4, + "probability": 0.8823 + }, + { + "start": 4244.52, + "end": 4246.16, + "probability": 0.9962 + }, + { + "start": 4246.24, + "end": 4246.88, + "probability": 0.7706 + }, + { + "start": 4249.18, + "end": 4254.06, + "probability": 0.9016 + }, + { + "start": 4254.94, + "end": 4258.46, + "probability": 0.9873 + }, + { + "start": 4258.82, + "end": 4260.76, + "probability": 0.9929 + }, + { + "start": 4261.7, + "end": 4266.32, + "probability": 0.9542 + }, + { + "start": 4267.44, + "end": 4269.4, + "probability": 0.7734 + }, + { + "start": 4270.22, + "end": 4271.65, + "probability": 0.9841 + }, + { + "start": 4273.08, + "end": 4275.86, + "probability": 0.8906 + }, + { + "start": 4275.97, + "end": 4277.26, + "probability": 0.9912 + }, + { + "start": 4278.78, + "end": 4279.24, + "probability": 0.6931 + }, + { + "start": 4280.64, + "end": 4282.74, + "probability": 0.8707 + }, + { + "start": 4283.02, + "end": 4284.26, + "probability": 0.9888 + }, + { + "start": 4285.2, + "end": 4286.32, + "probability": 0.9688 + }, + { + "start": 4286.88, + "end": 4287.62, + "probability": 0.8189 + }, + { + "start": 4288.46, + "end": 4293.94, + "probability": 0.9476 + }, + { + "start": 4296.12, + "end": 4298.26, + "probability": 0.8979 + }, + { + "start": 4299.9, + "end": 4300.96, + "probability": 0.6326 + }, + { + "start": 4300.96, + "end": 4302.56, + "probability": 0.4543 + }, + { + "start": 4302.98, + "end": 4304.96, + "probability": 0.1524 + }, + { + "start": 4305.04, + "end": 4305.66, + "probability": 0.45 + }, + { + "start": 4305.66, + "end": 4309.46, + "probability": 0.2203 + }, + { + "start": 4309.7, + "end": 4310.56, + "probability": 0.5822 + }, + { + "start": 4311.12, + "end": 4312.84, + "probability": 0.9608 + }, + { + "start": 4313.46, + "end": 4317.4, + "probability": 0.8924 + }, + { + "start": 4317.48, + "end": 4322.06, + "probability": 0.8926 + }, + { + "start": 4322.08, + "end": 4323.74, + "probability": 0.7718 + }, + { + "start": 4324.14, + "end": 4326.8, + "probability": 0.6193 + }, + { + "start": 4328.02, + "end": 4328.4, + "probability": 0.7099 + }, + { + "start": 4328.56, + "end": 4331.28, + "probability": 0.9707 + }, + { + "start": 4331.44, + "end": 4332.06, + "probability": 0.3741 + }, + { + "start": 4333.94, + "end": 4338.62, + "probability": 0.9306 + }, + { + "start": 4339.34, + "end": 4341.4, + "probability": 0.9843 + }, + { + "start": 4341.54, + "end": 4344.44, + "probability": 0.9873 + }, + { + "start": 4344.86, + "end": 4353.32, + "probability": 0.9844 + }, + { + "start": 4354.0, + "end": 4354.4, + "probability": 0.0853 + }, + { + "start": 4354.44, + "end": 4355.4, + "probability": 0.8016 + }, + { + "start": 4355.52, + "end": 4356.82, + "probability": 0.8302 + }, + { + "start": 4356.88, + "end": 4357.98, + "probability": 0.9626 + }, + { + "start": 4359.58, + "end": 4362.38, + "probability": 0.9661 + }, + { + "start": 4363.24, + "end": 4365.5, + "probability": 0.8763 + }, + { + "start": 4366.02, + "end": 4369.6, + "probability": 0.9485 + }, + { + "start": 4370.14, + "end": 4371.24, + "probability": 0.75 + }, + { + "start": 4371.36, + "end": 4371.96, + "probability": 0.7565 + }, + { + "start": 4372.0, + "end": 4372.36, + "probability": 0.8923 + }, + { + "start": 4372.42, + "end": 4372.83, + "probability": 0.4957 + }, + { + "start": 4373.76, + "end": 4375.96, + "probability": 0.4516 + }, + { + "start": 4375.98, + "end": 4377.0, + "probability": 0.7674 + }, + { + "start": 4377.22, + "end": 4378.64, + "probability": 0.864 + }, + { + "start": 4378.74, + "end": 4380.06, + "probability": 0.9254 + }, + { + "start": 4380.28, + "end": 4381.42, + "probability": 0.5154 + }, + { + "start": 4381.52, + "end": 4381.98, + "probability": 0.7652 + }, + { + "start": 4382.04, + "end": 4385.04, + "probability": 0.9875 + }, + { + "start": 4385.54, + "end": 4386.98, + "probability": 0.5768 + }, + { + "start": 4387.24, + "end": 4388.32, + "probability": 0.6368 + }, + { + "start": 4388.46, + "end": 4389.46, + "probability": 0.912 + }, + { + "start": 4389.6, + "end": 4390.36, + "probability": 0.8404 + }, + { + "start": 4390.64, + "end": 4391.62, + "probability": 0.7263 + }, + { + "start": 4392.18, + "end": 4393.68, + "probability": 0.8156 + }, + { + "start": 4395.04, + "end": 4396.16, + "probability": 0.9773 + }, + { + "start": 4397.28, + "end": 4398.32, + "probability": 0.8598 + }, + { + "start": 4399.28, + "end": 4400.44, + "probability": 0.7142 + }, + { + "start": 4401.94, + "end": 4405.58, + "probability": 0.9315 + }, + { + "start": 4406.0, + "end": 4407.92, + "probability": 0.8925 + }, + { + "start": 4409.18, + "end": 4412.08, + "probability": 0.9758 + }, + { + "start": 4412.08, + "end": 4415.14, + "probability": 0.9557 + }, + { + "start": 4415.22, + "end": 4416.3, + "probability": 0.7397 + }, + { + "start": 4416.74, + "end": 4419.28, + "probability": 0.9824 + }, + { + "start": 4419.36, + "end": 4421.46, + "probability": 0.8345 + }, + { + "start": 4421.52, + "end": 4422.72, + "probability": 0.8473 + }, + { + "start": 4422.84, + "end": 4423.34, + "probability": 0.8116 + }, + { + "start": 4423.52, + "end": 4425.68, + "probability": 0.9486 + }, + { + "start": 4426.16, + "end": 4429.64, + "probability": 0.9417 + }, + { + "start": 4429.84, + "end": 4430.34, + "probability": 0.4215 + }, + { + "start": 4431.0, + "end": 4432.36, + "probability": 0.911 + }, + { + "start": 4454.96, + "end": 4455.68, + "probability": 0.4975 + }, + { + "start": 4455.68, + "end": 4456.22, + "probability": 0.5872 + }, + { + "start": 4457.1, + "end": 4458.98, + "probability": 0.6723 + }, + { + "start": 4459.06, + "end": 4459.22, + "probability": 0.6122 + }, + { + "start": 4459.36, + "end": 4463.86, + "probability": 0.5917 + }, + { + "start": 4463.94, + "end": 4465.13, + "probability": 0.9912 + }, + { + "start": 4466.26, + "end": 4470.76, + "probability": 0.9715 + }, + { + "start": 4473.4, + "end": 4477.76, + "probability": 0.9885 + }, + { + "start": 4477.82, + "end": 4481.64, + "probability": 0.7276 + }, + { + "start": 4482.16, + "end": 4487.68, + "probability": 0.9901 + }, + { + "start": 4487.82, + "end": 4493.78, + "probability": 0.92 + }, + { + "start": 4495.02, + "end": 4498.36, + "probability": 0.8958 + }, + { + "start": 4498.92, + "end": 4501.38, + "probability": 0.7381 + }, + { + "start": 4501.74, + "end": 4503.34, + "probability": 0.8633 + }, + { + "start": 4503.74, + "end": 4504.24, + "probability": 0.6108 + }, + { + "start": 4505.5, + "end": 4507.26, + "probability": 0.8066 + }, + { + "start": 4507.42, + "end": 4510.0, + "probability": 0.8909 + }, + { + "start": 4510.08, + "end": 4512.38, + "probability": 0.9531 + }, + { + "start": 4513.0, + "end": 4514.38, + "probability": 0.9053 + }, + { + "start": 4514.48, + "end": 4515.44, + "probability": 0.8263 + }, + { + "start": 4515.72, + "end": 4518.0, + "probability": 0.8547 + }, + { + "start": 4518.62, + "end": 4519.38, + "probability": 0.7571 + }, + { + "start": 4519.5, + "end": 4520.22, + "probability": 0.648 + }, + { + "start": 4520.68, + "end": 4522.36, + "probability": 0.9713 + }, + { + "start": 4523.22, + "end": 4524.9, + "probability": 0.8381 + }, + { + "start": 4525.18, + "end": 4528.59, + "probability": 0.9688 + }, + { + "start": 4528.74, + "end": 4529.4, + "probability": 0.8387 + }, + { + "start": 4530.24, + "end": 4531.21, + "probability": 0.917 + }, + { + "start": 4531.54, + "end": 4534.44, + "probability": 0.8028 + }, + { + "start": 4534.54, + "end": 4536.09, + "probability": 0.9983 + }, + { + "start": 4536.18, + "end": 4536.76, + "probability": 0.9525 + }, + { + "start": 4537.14, + "end": 4538.92, + "probability": 0.9929 + }, + { + "start": 4539.76, + "end": 4545.04, + "probability": 0.7595 + }, + { + "start": 4545.74, + "end": 4550.46, + "probability": 0.9268 + }, + { + "start": 4551.16, + "end": 4556.9, + "probability": 0.9932 + }, + { + "start": 4557.08, + "end": 4558.76, + "probability": 0.3721 + }, + { + "start": 4559.02, + "end": 4560.26, + "probability": 0.8787 + }, + { + "start": 4560.82, + "end": 4564.48, + "probability": 0.8036 + }, + { + "start": 4564.56, + "end": 4566.8, + "probability": 0.9264 + }, + { + "start": 4567.24, + "end": 4569.12, + "probability": 0.7784 + }, + { + "start": 4569.5, + "end": 4574.68, + "probability": 0.8038 + }, + { + "start": 4575.24, + "end": 4576.76, + "probability": 0.8523 + }, + { + "start": 4577.44, + "end": 4581.94, + "probability": 0.9827 + }, + { + "start": 4582.26, + "end": 4586.44, + "probability": 0.9753 + }, + { + "start": 4587.04, + "end": 4590.0, + "probability": 0.999 + }, + { + "start": 4590.0, + "end": 4593.5, + "probability": 0.9995 + }, + { + "start": 4594.3, + "end": 4595.66, + "probability": 0.8003 + }, + { + "start": 4596.5, + "end": 4598.52, + "probability": 0.9946 + }, + { + "start": 4598.52, + "end": 4603.78, + "probability": 0.989 + }, + { + "start": 4604.4, + "end": 4607.6, + "probability": 0.7351 + }, + { + "start": 4608.12, + "end": 4610.24, + "probability": 0.8058 + }, + { + "start": 4610.48, + "end": 4611.28, + "probability": 0.7636 + }, + { + "start": 4611.36, + "end": 4614.86, + "probability": 0.9642 + }, + { + "start": 4615.12, + "end": 4618.26, + "probability": 0.992 + }, + { + "start": 4618.86, + "end": 4619.94, + "probability": 0.965 + }, + { + "start": 4620.84, + "end": 4622.78, + "probability": 0.9919 + }, + { + "start": 4623.4, + "end": 4626.4, + "probability": 0.9619 + }, + { + "start": 4626.8, + "end": 4627.88, + "probability": 0.9382 + }, + { + "start": 4628.24, + "end": 4629.16, + "probability": 0.9431 + }, + { + "start": 4629.44, + "end": 4631.7, + "probability": 0.8269 + }, + { + "start": 4632.42, + "end": 4635.07, + "probability": 0.823 + }, + { + "start": 4636.08, + "end": 4636.92, + "probability": 0.8589 + }, + { + "start": 4637.0, + "end": 4639.34, + "probability": 0.9814 + }, + { + "start": 4639.62, + "end": 4640.94, + "probability": 0.9732 + }, + { + "start": 4640.98, + "end": 4644.12, + "probability": 0.9801 + }, + { + "start": 4644.74, + "end": 4647.74, + "probability": 0.7889 + }, + { + "start": 4647.82, + "end": 4649.38, + "probability": 0.7978 + }, + { + "start": 4649.46, + "end": 4651.24, + "probability": 0.8905 + }, + { + "start": 4651.42, + "end": 4657.12, + "probability": 0.9323 + }, + { + "start": 4657.24, + "end": 4659.88, + "probability": 0.9625 + }, + { + "start": 4660.4, + "end": 4660.5, + "probability": 0.2137 + }, + { + "start": 4660.5, + "end": 4662.42, + "probability": 0.9927 + }, + { + "start": 4662.5, + "end": 4667.3, + "probability": 0.8629 + }, + { + "start": 4667.44, + "end": 4668.8, + "probability": 0.8757 + }, + { + "start": 4669.78, + "end": 4672.98, + "probability": 0.9091 + }, + { + "start": 4673.58, + "end": 4677.02, + "probability": 0.9472 + }, + { + "start": 4677.72, + "end": 4683.02, + "probability": 0.9827 + }, + { + "start": 4683.98, + "end": 4686.72, + "probability": 0.9982 + }, + { + "start": 4686.96, + "end": 4687.18, + "probability": 0.6593 + }, + { + "start": 4687.64, + "end": 4689.4, + "probability": 0.761 + }, + { + "start": 4689.6, + "end": 4691.58, + "probability": 0.8215 + }, + { + "start": 4691.82, + "end": 4693.82, + "probability": 0.5504 + }, + { + "start": 4693.84, + "end": 4696.63, + "probability": 0.7867 + }, + { + "start": 4697.6, + "end": 4697.92, + "probability": 0.1814 + }, + { + "start": 4700.3, + "end": 4701.36, + "probability": 0.1291 + }, + { + "start": 4702.68, + "end": 4703.34, + "probability": 0.5112 + }, + { + "start": 4703.96, + "end": 4704.44, + "probability": 0.4933 + }, + { + "start": 4704.84, + "end": 4705.5, + "probability": 0.8373 + }, + { + "start": 4710.46, + "end": 4711.24, + "probability": 0.3887 + }, + { + "start": 4711.3, + "end": 4712.06, + "probability": 0.9663 + }, + { + "start": 4717.1, + "end": 4717.12, + "probability": 0.1725 + }, + { + "start": 4717.12, + "end": 4717.12, + "probability": 0.1797 + }, + { + "start": 4717.12, + "end": 4718.53, + "probability": 0.992 + }, + { + "start": 4719.04, + "end": 4724.08, + "probability": 0.993 + }, + { + "start": 4724.9, + "end": 4727.02, + "probability": 0.9976 + }, + { + "start": 4727.12, + "end": 4728.76, + "probability": 0.8531 + }, + { + "start": 4728.82, + "end": 4729.52, + "probability": 0.7741 + }, + { + "start": 4729.6, + "end": 4730.9, + "probability": 0.9226 + }, + { + "start": 4732.18, + "end": 4737.9, + "probability": 0.9318 + }, + { + "start": 4738.62, + "end": 4741.12, + "probability": 0.9956 + }, + { + "start": 4741.74, + "end": 4745.29, + "probability": 0.9159 + }, + { + "start": 4746.06, + "end": 4746.46, + "probability": 0.9569 + }, + { + "start": 4747.0, + "end": 4752.38, + "probability": 0.9927 + }, + { + "start": 4752.62, + "end": 4753.16, + "probability": 0.5518 + }, + { + "start": 4753.28, + "end": 4754.6, + "probability": 0.8788 + }, + { + "start": 4756.2, + "end": 4760.26, + "probability": 0.8611 + }, + { + "start": 4760.84, + "end": 4762.66, + "probability": 0.9846 + }, + { + "start": 4762.92, + "end": 4765.44, + "probability": 0.9596 + }, + { + "start": 4765.82, + "end": 4766.74, + "probability": 0.8521 + }, + { + "start": 4767.04, + "end": 4768.88, + "probability": 0.9683 + }, + { + "start": 4768.96, + "end": 4769.88, + "probability": 0.7792 + }, + { + "start": 4770.2, + "end": 4774.36, + "probability": 0.9954 + }, + { + "start": 4775.06, + "end": 4776.94, + "probability": 0.9932 + }, + { + "start": 4777.0, + "end": 4779.04, + "probability": 0.8837 + }, + { + "start": 4781.24, + "end": 4781.24, + "probability": 0.0837 + }, + { + "start": 4781.24, + "end": 4783.4, + "probability": 0.8392 + }, + { + "start": 4783.9, + "end": 4787.24, + "probability": 0.9958 + }, + { + "start": 4787.24, + "end": 4790.8, + "probability": 0.999 + }, + { + "start": 4791.96, + "end": 4796.26, + "probability": 0.9357 + }, + { + "start": 4796.72, + "end": 4801.22, + "probability": 0.7686 + }, + { + "start": 4801.84, + "end": 4804.22, + "probability": 0.9253 + }, + { + "start": 4804.76, + "end": 4807.08, + "probability": 0.9324 + }, + { + "start": 4807.16, + "end": 4810.36, + "probability": 0.967 + }, + { + "start": 4812.5, + "end": 4815.14, + "probability": 0.9801 + }, + { + "start": 4815.3, + "end": 4817.66, + "probability": 0.9982 + }, + { + "start": 4817.74, + "end": 4820.46, + "probability": 0.9949 + }, + { + "start": 4821.16, + "end": 4822.9, + "probability": 0.9738 + }, + { + "start": 4823.92, + "end": 4825.2, + "probability": 0.9496 + }, + { + "start": 4825.38, + "end": 4825.84, + "probability": 0.7909 + }, + { + "start": 4826.02, + "end": 4827.5, + "probability": 0.988 + }, + { + "start": 4827.86, + "end": 4830.72, + "probability": 0.9961 + }, + { + "start": 4830.72, + "end": 4834.88, + "probability": 0.9775 + }, + { + "start": 4836.0, + "end": 4840.46, + "probability": 0.9692 + }, + { + "start": 4840.6, + "end": 4845.18, + "probability": 0.89 + }, + { + "start": 4845.3, + "end": 4845.64, + "probability": 0.3753 + }, + { + "start": 4845.76, + "end": 4846.41, + "probability": 0.6354 + }, + { + "start": 4847.16, + "end": 4851.3, + "probability": 0.9821 + }, + { + "start": 4851.3, + "end": 4855.14, + "probability": 0.9995 + }, + { + "start": 4855.84, + "end": 4859.1, + "probability": 0.9956 + }, + { + "start": 4859.38, + "end": 4860.09, + "probability": 0.8164 + }, + { + "start": 4860.72, + "end": 4863.2, + "probability": 0.9856 + }, + { + "start": 4863.32, + "end": 4864.18, + "probability": 0.7232 + }, + { + "start": 4864.34, + "end": 4865.54, + "probability": 0.975 + }, + { + "start": 4865.8, + "end": 4870.1, + "probability": 0.9663 + }, + { + "start": 4870.88, + "end": 4875.4, + "probability": 0.9187 + }, + { + "start": 4875.8, + "end": 4877.52, + "probability": 0.9944 + }, + { + "start": 4878.26, + "end": 4881.86, + "probability": 0.8925 + }, + { + "start": 4881.86, + "end": 4886.1, + "probability": 0.8463 + }, + { + "start": 4886.6, + "end": 4889.66, + "probability": 0.915 + }, + { + "start": 4889.8, + "end": 4890.0, + "probability": 0.5884 + }, + { + "start": 4891.08, + "end": 4893.72, + "probability": 0.6586 + }, + { + "start": 4894.06, + "end": 4896.6, + "probability": 0.8537 + }, + { + "start": 4904.86, + "end": 4909.22, + "probability": 0.5749 + }, + { + "start": 4910.66, + "end": 4911.3, + "probability": 0.7882 + }, + { + "start": 4912.24, + "end": 4912.24, + "probability": 0.7445 + }, + { + "start": 4913.66, + "end": 4916.39, + "probability": 0.9543 + }, + { + "start": 4917.96, + "end": 4920.94, + "probability": 0.8934 + }, + { + "start": 4924.43, + "end": 4927.24, + "probability": 0.5001 + }, + { + "start": 4933.06, + "end": 4933.32, + "probability": 0.0424 + }, + { + "start": 4933.52, + "end": 4935.86, + "probability": 0.1757 + }, + { + "start": 4936.36, + "end": 4938.58, + "probability": 0.4055 + }, + { + "start": 4939.38, + "end": 4940.92, + "probability": 0.5256 + }, + { + "start": 4943.6, + "end": 4950.42, + "probability": 0.6921 + }, + { + "start": 4951.28, + "end": 4951.4, + "probability": 0.0382 + }, + { + "start": 4951.54, + "end": 4954.22, + "probability": 0.9937 + }, + { + "start": 4955.5, + "end": 4958.78, + "probability": 0.9681 + }, + { + "start": 4959.36, + "end": 4964.28, + "probability": 0.7115 + }, + { + "start": 4965.44, + "end": 4969.06, + "probability": 0.4303 + }, + { + "start": 4970.04, + "end": 4976.18, + "probability": 0.995 + }, + { + "start": 4976.64, + "end": 4977.7, + "probability": 0.946 + }, + { + "start": 4977.94, + "end": 4985.23, + "probability": 0.9845 + }, + { + "start": 4985.36, + "end": 4993.6, + "probability": 0.9946 + }, + { + "start": 4994.16, + "end": 4995.78, + "probability": 0.7941 + }, + { + "start": 4996.84, + "end": 5000.38, + "probability": 0.8997 + }, + { + "start": 5001.2, + "end": 5002.76, + "probability": 0.4533 + }, + { + "start": 5004.4, + "end": 5008.38, + "probability": 0.9847 + }, + { + "start": 5008.54, + "end": 5010.26, + "probability": 0.8768 + }, + { + "start": 5010.8, + "end": 5016.78, + "probability": 0.9434 + }, + { + "start": 5016.78, + "end": 5021.96, + "probability": 0.9548 + }, + { + "start": 5022.46, + "end": 5024.8, + "probability": 0.8217 + }, + { + "start": 5024.8, + "end": 5027.16, + "probability": 0.5916 + }, + { + "start": 5027.4, + "end": 5032.7, + "probability": 0.9665 + }, + { + "start": 5032.7, + "end": 5041.22, + "probability": 0.9658 + }, + { + "start": 5041.5, + "end": 5046.6, + "probability": 0.9918 + }, + { + "start": 5046.94, + "end": 5053.24, + "probability": 0.7829 + }, + { + "start": 5053.88, + "end": 5056.92, + "probability": 0.948 + }, + { + "start": 5057.84, + "end": 5060.54, + "probability": 0.7958 + }, + { + "start": 5060.68, + "end": 5066.4, + "probability": 0.9274 + }, + { + "start": 5067.1, + "end": 5072.3, + "probability": 0.9513 + }, + { + "start": 5073.4, + "end": 5078.0, + "probability": 0.9814 + }, + { + "start": 5078.1, + "end": 5081.84, + "probability": 0.8787 + }, + { + "start": 5082.8, + "end": 5084.7, + "probability": 0.7451 + }, + { + "start": 5084.8, + "end": 5087.3, + "probability": 0.5843 + }, + { + "start": 5087.46, + "end": 5088.52, + "probability": 0.7392 + }, + { + "start": 5088.6, + "end": 5089.78, + "probability": 0.8422 + }, + { + "start": 5089.94, + "end": 5095.75, + "probability": 0.9905 + }, + { + "start": 5098.74, + "end": 5102.32, + "probability": 0.8699 + }, + { + "start": 5102.86, + "end": 5105.71, + "probability": 0.9878 + }, + { + "start": 5107.64, + "end": 5115.18, + "probability": 0.9153 + }, + { + "start": 5115.18, + "end": 5122.04, + "probability": 0.9756 + }, + { + "start": 5122.04, + "end": 5127.4, + "probability": 0.9988 + }, + { + "start": 5127.74, + "end": 5129.76, + "probability": 0.7476 + }, + { + "start": 5130.42, + "end": 5132.84, + "probability": 0.8854 + }, + { + "start": 5133.04, + "end": 5134.56, + "probability": 0.7916 + }, + { + "start": 5135.02, + "end": 5141.4, + "probability": 0.9 + }, + { + "start": 5142.58, + "end": 5146.56, + "probability": 0.9154 + }, + { + "start": 5147.38, + "end": 5154.66, + "probability": 0.9884 + }, + { + "start": 5155.56, + "end": 5162.08, + "probability": 0.9189 + }, + { + "start": 5163.06, + "end": 5164.68, + "probability": 0.5668 + }, + { + "start": 5165.72, + "end": 5169.76, + "probability": 0.9668 + }, + { + "start": 5169.76, + "end": 5172.88, + "probability": 0.9826 + }, + { + "start": 5174.18, + "end": 5177.7, + "probability": 0.8872 + }, + { + "start": 5178.0, + "end": 5179.44, + "probability": 0.9115 + }, + { + "start": 5183.0, + "end": 5186.56, + "probability": 0.9871 + }, + { + "start": 5186.56, + "end": 5190.44, + "probability": 0.9714 + }, + { + "start": 5190.52, + "end": 5190.62, + "probability": 0.6768 + }, + { + "start": 5192.16, + "end": 5195.52, + "probability": 0.768 + }, + { + "start": 5195.62, + "end": 5197.34, + "probability": 0.5787 + }, + { + "start": 5197.86, + "end": 5200.11, + "probability": 0.1043 + }, + { + "start": 5201.56, + "end": 5203.71, + "probability": 0.3282 + }, + { + "start": 5206.32, + "end": 5207.07, + "probability": 0.0667 + }, + { + "start": 5207.82, + "end": 5208.13, + "probability": 0.148 + }, + { + "start": 5208.96, + "end": 5210.58, + "probability": 0.9421 + }, + { + "start": 5213.94, + "end": 5215.0, + "probability": 0.5886 + }, + { + "start": 5215.75, + "end": 5218.36, + "probability": 0.7899 + }, + { + "start": 5218.9, + "end": 5220.06, + "probability": 0.7946 + }, + { + "start": 5221.06, + "end": 5227.8, + "probability": 0.8918 + }, + { + "start": 5228.72, + "end": 5231.84, + "probability": 0.9373 + }, + { + "start": 5231.84, + "end": 5234.14, + "probability": 0.6362 + }, + { + "start": 5234.34, + "end": 5235.72, + "probability": 0.9896 + }, + { + "start": 5237.1, + "end": 5238.78, + "probability": 0.8063 + }, + { + "start": 5240.22, + "end": 5243.38, + "probability": 0.9586 + }, + { + "start": 5243.6, + "end": 5247.84, + "probability": 0.9175 + }, + { + "start": 5248.06, + "end": 5249.42, + "probability": 0.9542 + }, + { + "start": 5251.06, + "end": 5255.98, + "probability": 0.9868 + }, + { + "start": 5256.38, + "end": 5257.52, + "probability": 0.6432 + }, + { + "start": 5257.94, + "end": 5261.36, + "probability": 0.4448 + }, + { + "start": 5262.26, + "end": 5262.58, + "probability": 0.1005 + }, + { + "start": 5262.58, + "end": 5263.26, + "probability": 0.3011 + }, + { + "start": 5263.26, + "end": 5268.48, + "probability": 0.5569 + }, + { + "start": 5268.66, + "end": 5269.28, + "probability": 0.8376 + }, + { + "start": 5269.38, + "end": 5269.88, + "probability": 0.7496 + }, + { + "start": 5269.88, + "end": 5270.54, + "probability": 0.8921 + }, + { + "start": 5270.7, + "end": 5271.86, + "probability": 0.8904 + }, + { + "start": 5271.86, + "end": 5273.06, + "probability": 0.9673 + }, + { + "start": 5273.24, + "end": 5274.28, + "probability": 0.9207 + }, + { + "start": 5274.6, + "end": 5275.96, + "probability": 0.5356 + }, + { + "start": 5276.06, + "end": 5277.34, + "probability": 0.766 + }, + { + "start": 5278.48, + "end": 5281.04, + "probability": 0.788 + }, + { + "start": 5281.62, + "end": 5285.84, + "probability": 0.9731 + }, + { + "start": 5286.68, + "end": 5287.9, + "probability": 0.969 + }, + { + "start": 5289.0, + "end": 5290.72, + "probability": 0.7582 + }, + { + "start": 5290.84, + "end": 5296.08, + "probability": 0.8535 + }, + { + "start": 5296.62, + "end": 5297.25, + "probability": 0.9141 + }, + { + "start": 5298.66, + "end": 5303.12, + "probability": 0.7916 + }, + { + "start": 5304.84, + "end": 5306.16, + "probability": 0.8982 + }, + { + "start": 5306.36, + "end": 5307.84, + "probability": 0.9071 + }, + { + "start": 5308.32, + "end": 5312.52, + "probability": 0.9436 + }, + { + "start": 5313.3, + "end": 5314.6, + "probability": 0.9219 + }, + { + "start": 5314.72, + "end": 5316.84, + "probability": 0.7994 + }, + { + "start": 5317.58, + "end": 5319.6, + "probability": 0.8647 + }, + { + "start": 5320.6, + "end": 5322.86, + "probability": 0.988 + }, + { + "start": 5324.08, + "end": 5326.68, + "probability": 0.9405 + }, + { + "start": 5327.12, + "end": 5332.32, + "probability": 0.9786 + }, + { + "start": 5333.38, + "end": 5336.4, + "probability": 0.7536 + }, + { + "start": 5337.64, + "end": 5341.4, + "probability": 0.9083 + }, + { + "start": 5342.1, + "end": 5344.5, + "probability": 0.9036 + }, + { + "start": 5346.0, + "end": 5346.72, + "probability": 0.9003 + }, + { + "start": 5346.9, + "end": 5347.4, + "probability": 0.9158 + }, + { + "start": 5347.42, + "end": 5357.64, + "probability": 0.9868 + }, + { + "start": 5358.5, + "end": 5361.6, + "probability": 0.9365 + }, + { + "start": 5362.54, + "end": 5363.76, + "probability": 0.9771 + }, + { + "start": 5364.62, + "end": 5368.92, + "probability": 0.8564 + }, + { + "start": 5369.22, + "end": 5373.12, + "probability": 0.9641 + }, + { + "start": 5373.54, + "end": 5374.58, + "probability": 0.8164 + }, + { + "start": 5374.62, + "end": 5375.5, + "probability": 0.6305 + }, + { + "start": 5375.62, + "end": 5376.92, + "probability": 0.9248 + }, + { + "start": 5377.74, + "end": 5380.02, + "probability": 0.9621 + }, + { + "start": 5380.46, + "end": 5382.68, + "probability": 0.9819 + }, + { + "start": 5383.48, + "end": 5384.9, + "probability": 0.8032 + }, + { + "start": 5385.7, + "end": 5387.9, + "probability": 0.9766 + }, + { + "start": 5388.72, + "end": 5392.5, + "probability": 0.9421 + }, + { + "start": 5393.16, + "end": 5396.3, + "probability": 0.9091 + }, + { + "start": 5397.28, + "end": 5400.0, + "probability": 0.8966 + }, + { + "start": 5400.38, + "end": 5404.0, + "probability": 0.9832 + }, + { + "start": 5404.58, + "end": 5410.06, + "probability": 0.99 + }, + { + "start": 5410.4, + "end": 5412.42, + "probability": 0.8943 + }, + { + "start": 5412.98, + "end": 5414.64, + "probability": 0.8824 + }, + { + "start": 5415.36, + "end": 5419.86, + "probability": 0.9395 + }, + { + "start": 5420.26, + "end": 5421.9, + "probability": 0.9943 + }, + { + "start": 5422.58, + "end": 5428.5, + "probability": 0.9775 + }, + { + "start": 5428.72, + "end": 5430.72, + "probability": 0.9892 + }, + { + "start": 5431.0, + "end": 5431.44, + "probability": 0.6898 + }, + { + "start": 5431.96, + "end": 5432.2, + "probability": 0.2959 + }, + { + "start": 5432.2, + "end": 5434.88, + "probability": 0.7412 + }, + { + "start": 5435.8, + "end": 5438.28, + "probability": 0.7828 + }, + { + "start": 5438.36, + "end": 5439.08, + "probability": 0.5049 + }, + { + "start": 5439.18, + "end": 5440.62, + "probability": 0.7106 + }, + { + "start": 5440.7, + "end": 5441.24, + "probability": 0.7067 + }, + { + "start": 5441.38, + "end": 5445.92, + "probability": 0.9736 + }, + { + "start": 5447.22, + "end": 5449.16, + "probability": 0.8818 + }, + { + "start": 5449.34, + "end": 5452.14, + "probability": 0.7775 + }, + { + "start": 5455.54, + "end": 5460.98, + "probability": 0.988 + }, + { + "start": 5461.24, + "end": 5463.94, + "probability": 0.971 + }, + { + "start": 5465.52, + "end": 5465.52, + "probability": 0.6929 + }, + { + "start": 5465.52, + "end": 5466.72, + "probability": 0.7269 + }, + { + "start": 5466.88, + "end": 5467.44, + "probability": 0.646 + }, + { + "start": 5467.44, + "end": 5468.94, + "probability": 0.6334 + }, + { + "start": 5468.98, + "end": 5469.8, + "probability": 0.8424 + }, + { + "start": 5469.94, + "end": 5470.78, + "probability": 0.6755 + }, + { + "start": 5471.02, + "end": 5473.26, + "probability": 0.9409 + }, + { + "start": 5473.3, + "end": 5480.92, + "probability": 0.9927 + }, + { + "start": 5481.44, + "end": 5482.04, + "probability": 0.8751 + }, + { + "start": 5482.22, + "end": 5483.26, + "probability": 0.849 + }, + { + "start": 5483.58, + "end": 5484.46, + "probability": 0.8754 + }, + { + "start": 5484.56, + "end": 5485.48, + "probability": 0.8055 + }, + { + "start": 5485.98, + "end": 5487.58, + "probability": 0.7628 + }, + { + "start": 5488.14, + "end": 5489.24, + "probability": 0.6877 + }, + { + "start": 5489.32, + "end": 5490.04, + "probability": 0.7028 + }, + { + "start": 5490.08, + "end": 5490.68, + "probability": 0.9262 + }, + { + "start": 5491.02, + "end": 5494.52, + "probability": 0.9372 + }, + { + "start": 5494.84, + "end": 5497.82, + "probability": 0.8418 + }, + { + "start": 5498.12, + "end": 5500.24, + "probability": 0.972 + }, + { + "start": 5500.68, + "end": 5501.88, + "probability": 0.9692 + }, + { + "start": 5502.5, + "end": 5503.68, + "probability": 0.6646 + }, + { + "start": 5504.18, + "end": 5505.3, + "probability": 0.7015 + }, + { + "start": 5505.32, + "end": 5507.64, + "probability": 0.9791 + }, + { + "start": 5507.96, + "end": 5512.15, + "probability": 0.6432 + }, + { + "start": 5512.62, + "end": 5513.4, + "probability": 0.7628 + }, + { + "start": 5513.86, + "end": 5515.58, + "probability": 0.9927 + }, + { + "start": 5515.94, + "end": 5518.3, + "probability": 0.9838 + }, + { + "start": 5518.46, + "end": 5519.39, + "probability": 0.9608 + }, + { + "start": 5520.18, + "end": 5524.48, + "probability": 0.9895 + }, + { + "start": 5525.42, + "end": 5526.78, + "probability": 0.8431 + }, + { + "start": 5527.16, + "end": 5527.5, + "probability": 0.5342 + }, + { + "start": 5527.6, + "end": 5528.46, + "probability": 0.7585 + }, + { + "start": 5528.62, + "end": 5529.36, + "probability": 0.8259 + }, + { + "start": 5529.64, + "end": 5530.92, + "probability": 0.993 + }, + { + "start": 5531.58, + "end": 5532.68, + "probability": 0.8983 + }, + { + "start": 5533.1, + "end": 5534.58, + "probability": 0.711 + }, + { + "start": 5534.6, + "end": 5536.8, + "probability": 0.8578 + }, + { + "start": 5536.86, + "end": 5538.16, + "probability": 0.938 + }, + { + "start": 5538.78, + "end": 5539.81, + "probability": 0.8537 + }, + { + "start": 5540.56, + "end": 5541.35, + "probability": 0.9773 + }, + { + "start": 5542.22, + "end": 5544.04, + "probability": 0.9568 + }, + { + "start": 5544.34, + "end": 5547.8, + "probability": 0.9722 + }, + { + "start": 5548.56, + "end": 5548.56, + "probability": 0.1819 + }, + { + "start": 5548.56, + "end": 5548.9, + "probability": 0.4181 + }, + { + "start": 5548.98, + "end": 5552.48, + "probability": 0.8917 + }, + { + "start": 5553.48, + "end": 5555.86, + "probability": 0.7524 + }, + { + "start": 5555.92, + "end": 5557.08, + "probability": 0.915 + }, + { + "start": 5557.12, + "end": 5559.0, + "probability": 0.9326 + }, + { + "start": 5559.78, + "end": 5564.52, + "probability": 0.9723 + }, + { + "start": 5564.88, + "end": 5567.74, + "probability": 0.9971 + }, + { + "start": 5568.02, + "end": 5570.72, + "probability": 0.9956 + }, + { + "start": 5571.66, + "end": 5576.78, + "probability": 0.8374 + }, + { + "start": 5577.18, + "end": 5579.22, + "probability": 0.9589 + }, + { + "start": 5579.62, + "end": 5583.2, + "probability": 0.9755 + }, + { + "start": 5583.76, + "end": 5584.62, + "probability": 0.6129 + }, + { + "start": 5584.8, + "end": 5589.14, + "probability": 0.78 + }, + { + "start": 5589.48, + "end": 5590.4, + "probability": 0.4812 + }, + { + "start": 5590.6, + "end": 5591.52, + "probability": 0.6419 + }, + { + "start": 5592.04, + "end": 5595.36, + "probability": 0.918 + }, + { + "start": 5595.86, + "end": 5597.66, + "probability": 0.8887 + }, + { + "start": 5598.06, + "end": 5600.22, + "probability": 0.9773 + }, + { + "start": 5600.56, + "end": 5603.1, + "probability": 0.7409 + }, + { + "start": 5603.28, + "end": 5604.3, + "probability": 0.8911 + }, + { + "start": 5604.48, + "end": 5607.34, + "probability": 0.9137 + }, + { + "start": 5607.62, + "end": 5609.1, + "probability": 0.9174 + }, + { + "start": 5609.26, + "end": 5610.46, + "probability": 0.5729 + }, + { + "start": 5610.54, + "end": 5612.7, + "probability": 0.7751 + }, + { + "start": 5612.84, + "end": 5615.16, + "probability": 0.9314 + }, + { + "start": 5615.26, + "end": 5615.6, + "probability": 0.34 + }, + { + "start": 5615.66, + "end": 5618.06, + "probability": 0.8807 + }, + { + "start": 5618.5, + "end": 5621.98, + "probability": 0.9739 + }, + { + "start": 5622.74, + "end": 5624.76, + "probability": 0.9827 + }, + { + "start": 5625.86, + "end": 5626.74, + "probability": 0.9325 + }, + { + "start": 5626.98, + "end": 5628.1, + "probability": 0.8589 + }, + { + "start": 5628.36, + "end": 5630.1, + "probability": 0.8984 + }, + { + "start": 5630.52, + "end": 5631.12, + "probability": 0.7715 + }, + { + "start": 5631.9, + "end": 5632.56, + "probability": 0.5286 + }, + { + "start": 5632.58, + "end": 5634.34, + "probability": 0.9427 + }, + { + "start": 5634.6, + "end": 5635.2, + "probability": 0.8415 + }, + { + "start": 5635.24, + "end": 5636.56, + "probability": 0.9166 + }, + { + "start": 5637.4, + "end": 5643.24, + "probability": 0.9289 + }, + { + "start": 5645.78, + "end": 5646.32, + "probability": 0.981 + }, + { + "start": 5646.84, + "end": 5648.2, + "probability": 0.5294 + }, + { + "start": 5648.6, + "end": 5649.92, + "probability": 0.7513 + }, + { + "start": 5650.56, + "end": 5652.16, + "probability": 0.7245 + }, + { + "start": 5653.08, + "end": 5655.1, + "probability": 0.8822 + }, + { + "start": 5655.18, + "end": 5656.36, + "probability": 0.9733 + }, + { + "start": 5658.26, + "end": 5659.26, + "probability": 0.9829 + }, + { + "start": 5659.56, + "end": 5661.1, + "probability": 0.9929 + }, + { + "start": 5661.64, + "end": 5663.98, + "probability": 0.946 + }, + { + "start": 5665.48, + "end": 5666.62, + "probability": 0.5106 + }, + { + "start": 5666.62, + "end": 5667.54, + "probability": 0.9275 + }, + { + "start": 5667.62, + "end": 5669.01, + "probability": 0.9793 + }, + { + "start": 5669.28, + "end": 5669.94, + "probability": 0.4458 + }, + { + "start": 5671.1, + "end": 5673.52, + "probability": 0.7004 + }, + { + "start": 5673.62, + "end": 5675.72, + "probability": 0.9102 + }, + { + "start": 5675.82, + "end": 5676.48, + "probability": 0.8351 + }, + { + "start": 5677.06, + "end": 5682.5, + "probability": 0.9292 + }, + { + "start": 5683.06, + "end": 5684.56, + "probability": 0.7434 + }, + { + "start": 5684.92, + "end": 5691.08, + "probability": 0.9852 + }, + { + "start": 5691.08, + "end": 5695.58, + "probability": 0.9666 + }, + { + "start": 5696.56, + "end": 5697.64, + "probability": 0.7314 + }, + { + "start": 5698.58, + "end": 5700.24, + "probability": 0.9697 + }, + { + "start": 5700.76, + "end": 5703.54, + "probability": 0.2581 + }, + { + "start": 5703.54, + "end": 5706.04, + "probability": 0.7079 + }, + { + "start": 5707.0, + "end": 5712.5, + "probability": 0.9791 + }, + { + "start": 5712.94, + "end": 5713.6, + "probability": 0.9724 + }, + { + "start": 5714.72, + "end": 5715.62, + "probability": 0.7744 + }, + { + "start": 5715.84, + "end": 5716.86, + "probability": 0.8678 + }, + { + "start": 5716.9, + "end": 5718.4, + "probability": 0.9195 + }, + { + "start": 5718.84, + "end": 5721.94, + "probability": 0.9907 + }, + { + "start": 5722.22, + "end": 5723.3, + "probability": 0.9417 + }, + { + "start": 5724.12, + "end": 5728.48, + "probability": 0.9156 + }, + { + "start": 5729.42, + "end": 5731.5, + "probability": 0.7636 + }, + { + "start": 5732.12, + "end": 5736.56, + "probability": 0.9627 + }, + { + "start": 5736.62, + "end": 5739.38, + "probability": 0.9698 + }, + { + "start": 5740.06, + "end": 5741.32, + "probability": 0.9355 + }, + { + "start": 5741.88, + "end": 5744.2, + "probability": 0.9924 + }, + { + "start": 5744.94, + "end": 5747.16, + "probability": 0.907 + }, + { + "start": 5747.9, + "end": 5752.86, + "probability": 0.8092 + }, + { + "start": 5753.46, + "end": 5756.92, + "probability": 0.8239 + }, + { + "start": 5757.62, + "end": 5760.82, + "probability": 0.9613 + }, + { + "start": 5760.94, + "end": 5761.5, + "probability": 0.5275 + }, + { + "start": 5762.02, + "end": 5763.34, + "probability": 0.9675 + }, + { + "start": 5763.56, + "end": 5764.46, + "probability": 0.7858 + }, + { + "start": 5764.78, + "end": 5765.7, + "probability": 0.8802 + }, + { + "start": 5766.16, + "end": 5771.4, + "probability": 0.9542 + }, + { + "start": 5772.32, + "end": 5775.58, + "probability": 0.9648 + }, + { + "start": 5776.1, + "end": 5776.92, + "probability": 0.8776 + }, + { + "start": 5777.82, + "end": 5783.94, + "probability": 0.9963 + }, + { + "start": 5784.4, + "end": 5786.0, + "probability": 0.9903 + }, + { + "start": 5786.4, + "end": 5788.28, + "probability": 0.99 + }, + { + "start": 5789.08, + "end": 5790.58, + "probability": 0.7659 + }, + { + "start": 5790.72, + "end": 5791.8, + "probability": 0.5711 + }, + { + "start": 5792.74, + "end": 5793.8, + "probability": 0.5441 + }, + { + "start": 5794.72, + "end": 5798.42, + "probability": 0.9946 + }, + { + "start": 5798.88, + "end": 5800.32, + "probability": 0.9933 + }, + { + "start": 5800.68, + "end": 5802.72, + "probability": 0.9841 + }, + { + "start": 5803.58, + "end": 5804.44, + "probability": 0.9259 + }, + { + "start": 5804.5, + "end": 5805.32, + "probability": 0.931 + }, + { + "start": 5805.4, + "end": 5805.6, + "probability": 0.8255 + }, + { + "start": 5805.62, + "end": 5806.32, + "probability": 0.8549 + }, + { + "start": 5807.44, + "end": 5810.32, + "probability": 0.9536 + }, + { + "start": 5810.5, + "end": 5814.82, + "probability": 0.91 + }, + { + "start": 5815.02, + "end": 5817.66, + "probability": 0.9937 + }, + { + "start": 5819.28, + "end": 5821.7, + "probability": 0.9878 + }, + { + "start": 5822.04, + "end": 5824.66, + "probability": 0.4937 + }, + { + "start": 5825.12, + "end": 5828.72, + "probability": 0.9707 + }, + { + "start": 5829.32, + "end": 5830.68, + "probability": 0.8827 + }, + { + "start": 5831.42, + "end": 5833.0, + "probability": 0.7666 + }, + { + "start": 5833.0, + "end": 5835.44, + "probability": 0.9248 + }, + { + "start": 5835.54, + "end": 5836.04, + "probability": 0.3473 + }, + { + "start": 5837.02, + "end": 5841.72, + "probability": 0.9937 + }, + { + "start": 5841.72, + "end": 5846.12, + "probability": 0.9785 + }, + { + "start": 5847.06, + "end": 5848.8, + "probability": 0.9897 + }, + { + "start": 5849.5, + "end": 5851.33, + "probability": 0.9983 + }, + { + "start": 5852.1, + "end": 5857.34, + "probability": 0.9879 + }, + { + "start": 5857.44, + "end": 5858.13, + "probability": 0.561 + }, + { + "start": 5859.42, + "end": 5861.33, + "probability": 0.894 + }, + { + "start": 5862.08, + "end": 5863.48, + "probability": 0.9629 + }, + { + "start": 5863.58, + "end": 5864.18, + "probability": 0.8464 + }, + { + "start": 5864.5, + "end": 5866.78, + "probability": 0.7646 + }, + { + "start": 5866.86, + "end": 5868.6, + "probability": 0.885 + }, + { + "start": 5868.7, + "end": 5869.48, + "probability": 0.423 + }, + { + "start": 5869.52, + "end": 5870.96, + "probability": 0.9268 + }, + { + "start": 5871.6, + "end": 5875.04, + "probability": 0.9484 + }, + { + "start": 5875.34, + "end": 5876.44, + "probability": 0.0551 + }, + { + "start": 5877.82, + "end": 5878.7, + "probability": 0.0191 + }, + { + "start": 5879.42, + "end": 5879.52, + "probability": 0.0014 + }, + { + "start": 5879.76, + "end": 5881.41, + "probability": 0.195 + }, + { + "start": 5881.56, + "end": 5882.82, + "probability": 0.6541 + }, + { + "start": 5883.46, + "end": 5887.26, + "probability": 0.7236 + }, + { + "start": 5887.3, + "end": 5893.0, + "probability": 0.936 + }, + { + "start": 5893.5, + "end": 5896.38, + "probability": 0.4894 + }, + { + "start": 5897.0, + "end": 5899.36, + "probability": 0.6359 + }, + { + "start": 5900.62, + "end": 5906.06, + "probability": 0.8604 + }, + { + "start": 5906.06, + "end": 5910.42, + "probability": 0.8669 + }, + { + "start": 5911.22, + "end": 5914.0, + "probability": 0.83 + }, + { + "start": 5915.66, + "end": 5917.96, + "probability": 0.9797 + }, + { + "start": 5918.52, + "end": 5923.62, + "probability": 0.9946 + }, + { + "start": 5924.06, + "end": 5926.9, + "probability": 0.89 + }, + { + "start": 5927.54, + "end": 5931.1, + "probability": 0.9094 + }, + { + "start": 5932.08, + "end": 5939.7, + "probability": 0.9945 + }, + { + "start": 5940.94, + "end": 5943.1, + "probability": 0.9509 + }, + { + "start": 5944.34, + "end": 5947.6, + "probability": 0.7918 + }, + { + "start": 5947.82, + "end": 5950.1, + "probability": 0.9255 + }, + { + "start": 5950.42, + "end": 5954.03, + "probability": 0.8428 + }, + { + "start": 5954.9, + "end": 5958.36, + "probability": 0.9909 + }, + { + "start": 5958.87, + "end": 5960.52, + "probability": 0.5875 + }, + { + "start": 5960.6, + "end": 5961.6, + "probability": 0.5174 + }, + { + "start": 5962.08, + "end": 5964.84, + "probability": 0.6064 + }, + { + "start": 5964.84, + "end": 5964.92, + "probability": 0.0258 + }, + { + "start": 5964.92, + "end": 5965.68, + "probability": 0.5131 + }, + { + "start": 5965.84, + "end": 5969.58, + "probability": 0.866 + }, + { + "start": 5971.36, + "end": 5973.02, + "probability": 0.9297 + }, + { + "start": 5973.26, + "end": 5974.62, + "probability": 0.5537 + }, + { + "start": 5978.34, + "end": 5979.48, + "probability": 0.3628 + }, + { + "start": 5979.48, + "end": 5979.48, + "probability": 0.1083 + }, + { + "start": 5979.48, + "end": 5981.18, + "probability": 0.6165 + }, + { + "start": 5981.26, + "end": 5982.28, + "probability": 0.6945 + }, + { + "start": 5982.98, + "end": 5984.65, + "probability": 0.75 + }, + { + "start": 5985.46, + "end": 5986.66, + "probability": 0.5791 + }, + { + "start": 5986.68, + "end": 5987.15, + "probability": 0.9733 + }, + { + "start": 5989.28, + "end": 5995.0, + "probability": 0.958 + }, + { + "start": 5996.46, + "end": 5997.3, + "probability": 0.6863 + }, + { + "start": 5998.36, + "end": 6001.68, + "probability": 0.992 + }, + { + "start": 6001.78, + "end": 6002.48, + "probability": 0.9893 + }, + { + "start": 6002.54, + "end": 6003.44, + "probability": 0.9478 + }, + { + "start": 6003.48, + "end": 6004.29, + "probability": 0.9208 + }, + { + "start": 6004.88, + "end": 6008.04, + "probability": 0.9943 + }, + { + "start": 6008.04, + "end": 6011.68, + "probability": 0.9103 + }, + { + "start": 6011.82, + "end": 6012.98, + "probability": 0.7521 + }, + { + "start": 6013.6, + "end": 6015.16, + "probability": 0.6689 + }, + { + "start": 6015.48, + "end": 6016.34, + "probability": 0.5352 + }, + { + "start": 6016.56, + "end": 6018.38, + "probability": 0.7601 + }, + { + "start": 6018.5, + "end": 6018.86, + "probability": 0.712 + }, + { + "start": 6019.36, + "end": 6021.12, + "probability": 0.8766 + }, + { + "start": 6021.16, + "end": 6021.78, + "probability": 0.8265 + }, + { + "start": 6022.86, + "end": 6024.9, + "probability": 0.8734 + }, + { + "start": 6025.82, + "end": 6029.2, + "probability": 0.9596 + }, + { + "start": 6029.68, + "end": 6030.56, + "probability": 0.97 + }, + { + "start": 6030.58, + "end": 6034.24, + "probability": 0.9949 + }, + { + "start": 6036.16, + "end": 6036.86, + "probability": 0.5883 + }, + { + "start": 6036.96, + "end": 6038.02, + "probability": 0.6732 + }, + { + "start": 6040.36, + "end": 6041.92, + "probability": 0.7174 + }, + { + "start": 6042.1, + "end": 6045.4, + "probability": 0.9354 + }, + { + "start": 6046.4, + "end": 6049.14, + "probability": 0.9476 + }, + { + "start": 6049.14, + "end": 6050.92, + "probability": 0.7525 + }, + { + "start": 6051.24, + "end": 6052.51, + "probability": 0.9055 + }, + { + "start": 6052.62, + "end": 6053.7, + "probability": 0.9274 + }, + { + "start": 6053.82, + "end": 6054.86, + "probability": 0.9978 + }, + { + "start": 6059.18, + "end": 6061.36, + "probability": 0.7271 + }, + { + "start": 6061.38, + "end": 6062.68, + "probability": 0.6947 + }, + { + "start": 6062.86, + "end": 6066.58, + "probability": 0.8745 + }, + { + "start": 6066.98, + "end": 6067.5, + "probability": 0.6902 + }, + { + "start": 6067.58, + "end": 6070.8, + "probability": 0.9863 + }, + { + "start": 6072.2, + "end": 6074.42, + "probability": 0.7119 + }, + { + "start": 6074.58, + "end": 6074.92, + "probability": 0.7354 + }, + { + "start": 6075.0, + "end": 6075.54, + "probability": 0.5282 + }, + { + "start": 6075.62, + "end": 6076.1, + "probability": 0.6366 + }, + { + "start": 6076.18, + "end": 6077.03, + "probability": 0.8457 + }, + { + "start": 6077.08, + "end": 6078.32, + "probability": 0.9626 + }, + { + "start": 6078.4, + "end": 6079.61, + "probability": 0.868 + }, + { + "start": 6081.22, + "end": 6083.98, + "probability": 0.9348 + }, + { + "start": 6084.1, + "end": 6087.94, + "probability": 0.6907 + }, + { + "start": 6087.98, + "end": 6089.98, + "probability": 0.8657 + }, + { + "start": 6090.42, + "end": 6093.74, + "probability": 0.7122 + }, + { + "start": 6093.78, + "end": 6095.66, + "probability": 0.9236 + }, + { + "start": 6096.88, + "end": 6097.16, + "probability": 0.6243 + }, + { + "start": 6097.28, + "end": 6098.08, + "probability": 0.9254 + }, + { + "start": 6098.14, + "end": 6098.92, + "probability": 0.7774 + }, + { + "start": 6099.44, + "end": 6100.66, + "probability": 0.8839 + }, + { + "start": 6101.92, + "end": 6105.96, + "probability": 0.9663 + }, + { + "start": 6106.24, + "end": 6108.56, + "probability": 0.9346 + }, + { + "start": 6109.38, + "end": 6110.96, + "probability": 0.9783 + }, + { + "start": 6111.5, + "end": 6112.82, + "probability": 0.2854 + }, + { + "start": 6114.48, + "end": 6119.58, + "probability": 0.951 + }, + { + "start": 6120.12, + "end": 6123.64, + "probability": 0.9862 + }, + { + "start": 6123.86, + "end": 6125.16, + "probability": 0.9818 + }, + { + "start": 6125.46, + "end": 6125.88, + "probability": 0.8389 + }, + { + "start": 6125.94, + "end": 6126.54, + "probability": 0.7486 + }, + { + "start": 6126.62, + "end": 6128.92, + "probability": 0.5616 + }, + { + "start": 6129.48, + "end": 6134.62, + "probability": 0.7631 + }, + { + "start": 6135.04, + "end": 6138.01, + "probability": 0.6679 + }, + { + "start": 6138.98, + "end": 6140.54, + "probability": 0.846 + }, + { + "start": 6140.68, + "end": 6141.66, + "probability": 0.8822 + }, + { + "start": 6142.44, + "end": 6147.02, + "probability": 0.9862 + }, + { + "start": 6148.18, + "end": 6149.26, + "probability": 0.9702 + }, + { + "start": 6149.38, + "end": 6150.36, + "probability": 0.9093 + }, + { + "start": 6150.76, + "end": 6154.91, + "probability": 0.8511 + }, + { + "start": 6155.05, + "end": 6158.56, + "probability": 0.9786 + }, + { + "start": 6158.62, + "end": 6159.76, + "probability": 0.9957 + }, + { + "start": 6159.82, + "end": 6160.44, + "probability": 0.6676 + }, + { + "start": 6160.84, + "end": 6162.62, + "probability": 0.8373 + }, + { + "start": 6162.66, + "end": 6164.28, + "probability": 0.7041 + }, + { + "start": 6164.38, + "end": 6164.59, + "probability": 0.6257 + }, + { + "start": 6165.66, + "end": 6167.02, + "probability": 0.959 + }, + { + "start": 6167.54, + "end": 6168.81, + "probability": 0.6748 + }, + { + "start": 6169.36, + "end": 6171.34, + "probability": 0.9567 + }, + { + "start": 6171.54, + "end": 6173.19, + "probability": 0.9658 + }, + { + "start": 6173.64, + "end": 6175.68, + "probability": 0.9856 + }, + { + "start": 6176.6, + "end": 6178.72, + "probability": 0.9902 + }, + { + "start": 6178.72, + "end": 6180.38, + "probability": 0.8128 + }, + { + "start": 6180.46, + "end": 6183.34, + "probability": 0.9271 + }, + { + "start": 6183.4, + "end": 6184.1, + "probability": 0.3629 + }, + { + "start": 6184.14, + "end": 6185.84, + "probability": 0.2167 + }, + { + "start": 6185.84, + "end": 6188.38, + "probability": 0.9607 + }, + { + "start": 6188.8, + "end": 6192.38, + "probability": 0.9411 + }, + { + "start": 6192.5, + "end": 6192.98, + "probability": 0.7468 + }, + { + "start": 6192.98, + "end": 6194.3, + "probability": 0.9432 + }, + { + "start": 6194.38, + "end": 6195.84, + "probability": 0.7136 + }, + { + "start": 6196.08, + "end": 6198.4, + "probability": 0.9071 + }, + { + "start": 6198.86, + "end": 6201.18, + "probability": 0.983 + }, + { + "start": 6201.52, + "end": 6202.9, + "probability": 0.504 + }, + { + "start": 6202.96, + "end": 6203.42, + "probability": 0.8474 + }, + { + "start": 6203.86, + "end": 6205.64, + "probability": 0.906 + }, + { + "start": 6205.78, + "end": 6207.66, + "probability": 0.9316 + }, + { + "start": 6207.98, + "end": 6208.5, + "probability": 0.3903 + }, + { + "start": 6208.64, + "end": 6210.88, + "probability": 0.8598 + }, + { + "start": 6220.4, + "end": 6224.06, + "probability": 0.9775 + }, + { + "start": 6230.58, + "end": 6231.6, + "probability": 0.7578 + }, + { + "start": 6232.52, + "end": 6234.88, + "probability": 0.8381 + }, + { + "start": 6235.08, + "end": 6237.42, + "probability": 0.9788 + }, + { + "start": 6238.24, + "end": 6241.46, + "probability": 0.6618 + }, + { + "start": 6241.94, + "end": 6243.06, + "probability": 0.7002 + }, + { + "start": 6243.4, + "end": 6244.4, + "probability": 0.9515 + }, + { + "start": 6244.66, + "end": 6245.72, + "probability": 0.9169 + }, + { + "start": 6245.9, + "end": 6249.7, + "probability": 0.7767 + }, + { + "start": 6251.14, + "end": 6253.42, + "probability": 0.9878 + }, + { + "start": 6254.64, + "end": 6258.0, + "probability": 0.7903 + }, + { + "start": 6258.2, + "end": 6259.23, + "probability": 0.9841 + }, + { + "start": 6259.78, + "end": 6261.1, + "probability": 0.9533 + }, + { + "start": 6261.24, + "end": 6262.56, + "probability": 0.9756 + }, + { + "start": 6262.68, + "end": 6264.98, + "probability": 0.989 + }, + { + "start": 6266.2, + "end": 6268.92, + "probability": 0.9849 + }, + { + "start": 6269.56, + "end": 6270.36, + "probability": 0.967 + }, + { + "start": 6270.42, + "end": 6271.32, + "probability": 0.738 + }, + { + "start": 6271.42, + "end": 6273.02, + "probability": 0.4736 + }, + { + "start": 6273.88, + "end": 6274.9, + "probability": 0.5699 + }, + { + "start": 6275.02, + "end": 6276.12, + "probability": 0.9932 + }, + { + "start": 6277.24, + "end": 6278.52, + "probability": 0.8447 + }, + { + "start": 6278.6, + "end": 6281.3, + "probability": 0.8936 + }, + { + "start": 6284.8, + "end": 6288.9, + "probability": 0.8773 + }, + { + "start": 6289.5, + "end": 6291.04, + "probability": 0.6964 + }, + { + "start": 6291.96, + "end": 6295.1, + "probability": 0.9951 + }, + { + "start": 6297.95, + "end": 6303.68, + "probability": 0.9954 + }, + { + "start": 6303.88, + "end": 6305.0, + "probability": 0.8783 + }, + { + "start": 6305.38, + "end": 6308.7, + "probability": 0.9987 + }, + { + "start": 6309.2, + "end": 6310.3, + "probability": 0.998 + }, + { + "start": 6310.6, + "end": 6312.18, + "probability": 0.8691 + }, + { + "start": 6313.22, + "end": 6317.26, + "probability": 0.8937 + }, + { + "start": 6317.84, + "end": 6322.38, + "probability": 0.7355 + }, + { + "start": 6322.4, + "end": 6323.83, + "probability": 0.9202 + }, + { + "start": 6324.7, + "end": 6326.4, + "probability": 0.9594 + }, + { + "start": 6326.52, + "end": 6327.72, + "probability": 0.8814 + }, + { + "start": 6327.92, + "end": 6329.32, + "probability": 0.9924 + }, + { + "start": 6329.32, + "end": 6334.05, + "probability": 0.9736 + }, + { + "start": 6334.8, + "end": 6338.62, + "probability": 0.989 + }, + { + "start": 6338.9, + "end": 6341.3, + "probability": 0.9927 + }, + { + "start": 6341.82, + "end": 6345.88, + "probability": 0.9143 + }, + { + "start": 6346.42, + "end": 6347.04, + "probability": 0.4949 + }, + { + "start": 6347.18, + "end": 6347.6, + "probability": 0.6395 + }, + { + "start": 6349.58, + "end": 6351.02, + "probability": 0.9961 + }, + { + "start": 6351.64, + "end": 6353.03, + "probability": 0.8267 + }, + { + "start": 6353.2, + "end": 6354.64, + "probability": 0.8868 + }, + { + "start": 6354.68, + "end": 6356.12, + "probability": 0.8768 + }, + { + "start": 6356.32, + "end": 6358.68, + "probability": 0.9662 + }, + { + "start": 6358.7, + "end": 6360.82, + "probability": 0.9893 + }, + { + "start": 6361.8, + "end": 6363.04, + "probability": 0.534 + }, + { + "start": 6363.3, + "end": 6365.99, + "probability": 0.9185 + }, + { + "start": 6366.78, + "end": 6370.18, + "probability": 0.9652 + }, + { + "start": 6370.76, + "end": 6372.18, + "probability": 0.9702 + }, + { + "start": 6373.28, + "end": 6375.08, + "probability": 0.9921 + }, + { + "start": 6375.96, + "end": 6377.24, + "probability": 0.7969 + }, + { + "start": 6377.62, + "end": 6382.02, + "probability": 0.9956 + }, + { + "start": 6382.62, + "end": 6384.6, + "probability": 0.9894 + }, + { + "start": 6386.2, + "end": 6388.14, + "probability": 0.9536 + }, + { + "start": 6388.48, + "end": 6389.48, + "probability": 0.9228 + }, + { + "start": 6389.54, + "end": 6391.64, + "probability": 0.96 + }, + { + "start": 6391.84, + "end": 6392.75, + "probability": 0.9206 + }, + { + "start": 6393.24, + "end": 6395.7, + "probability": 0.9227 + }, + { + "start": 6395.82, + "end": 6398.02, + "probability": 0.9128 + }, + { + "start": 6398.58, + "end": 6400.67, + "probability": 0.9122 + }, + { + "start": 6401.5, + "end": 6403.48, + "probability": 0.8491 + }, + { + "start": 6403.62, + "end": 6404.96, + "probability": 0.8909 + }, + { + "start": 6406.76, + "end": 6410.54, + "probability": 0.9868 + }, + { + "start": 6411.0, + "end": 6415.14, + "probability": 0.9286 + }, + { + "start": 6415.14, + "end": 6418.6, + "probability": 0.934 + }, + { + "start": 6419.16, + "end": 6420.2, + "probability": 0.7078 + }, + { + "start": 6421.62, + "end": 6423.5, + "probability": 0.9873 + }, + { + "start": 6423.9, + "end": 6424.9, + "probability": 0.9876 + }, + { + "start": 6425.04, + "end": 6425.44, + "probability": 0.6395 + }, + { + "start": 6425.44, + "end": 6426.28, + "probability": 0.7985 + }, + { + "start": 6426.58, + "end": 6427.86, + "probability": 0.7872 + }, + { + "start": 6427.96, + "end": 6430.08, + "probability": 0.8274 + }, + { + "start": 6431.18, + "end": 6431.94, + "probability": 0.873 + }, + { + "start": 6432.52, + "end": 6432.74, + "probability": 0.8903 + }, + { + "start": 6432.78, + "end": 6434.82, + "probability": 0.9908 + }, + { + "start": 6434.94, + "end": 6436.48, + "probability": 0.74 + }, + { + "start": 6437.48, + "end": 6438.92, + "probability": 0.6378 + }, + { + "start": 6439.46, + "end": 6441.04, + "probability": 0.9001 + }, + { + "start": 6442.3, + "end": 6443.73, + "probability": 0.9937 + }, + { + "start": 6445.54, + "end": 6447.16, + "probability": 0.8704 + }, + { + "start": 6449.0, + "end": 6450.82, + "probability": 0.9454 + }, + { + "start": 6452.62, + "end": 6454.46, + "probability": 0.977 + }, + { + "start": 6455.66, + "end": 6457.2, + "probability": 0.8001 + }, + { + "start": 6458.24, + "end": 6458.98, + "probability": 0.3076 + }, + { + "start": 6460.58, + "end": 6463.3, + "probability": 0.8283 + }, + { + "start": 6463.38, + "end": 6465.23, + "probability": 0.9633 + }, + { + "start": 6465.94, + "end": 6467.48, + "probability": 0.6221 + }, + { + "start": 6467.62, + "end": 6469.26, + "probability": 0.9973 + }, + { + "start": 6469.84, + "end": 6471.92, + "probability": 0.855 + }, + { + "start": 6472.54, + "end": 6474.02, + "probability": 0.9904 + }, + { + "start": 6474.82, + "end": 6476.04, + "probability": 0.721 + }, + { + "start": 6476.66, + "end": 6477.42, + "probability": 0.753 + }, + { + "start": 6477.8, + "end": 6479.04, + "probability": 0.9803 + }, + { + "start": 6479.72, + "end": 6480.42, + "probability": 0.7562 + }, + { + "start": 6480.5, + "end": 6481.66, + "probability": 0.9638 + }, + { + "start": 6482.04, + "end": 6482.72, + "probability": 0.8901 + }, + { + "start": 6482.82, + "end": 6484.02, + "probability": 0.8119 + }, + { + "start": 6484.12, + "end": 6484.62, + "probability": 0.6144 + }, + { + "start": 6484.7, + "end": 6485.3, + "probability": 0.7221 + }, + { + "start": 6485.38, + "end": 6486.46, + "probability": 0.8522 + }, + { + "start": 6487.14, + "end": 6488.66, + "probability": 0.8398 + }, + { + "start": 6488.68, + "end": 6489.04, + "probability": 0.7567 + }, + { + "start": 6489.1, + "end": 6490.62, + "probability": 0.9609 + }, + { + "start": 6491.18, + "end": 6494.42, + "probability": 0.4463 + }, + { + "start": 6495.52, + "end": 6497.34, + "probability": 0.4855 + }, + { + "start": 6502.6, + "end": 6503.24, + "probability": 0.3337 + }, + { + "start": 6504.14, + "end": 6506.02, + "probability": 0.9631 + }, + { + "start": 6506.16, + "end": 6509.56, + "probability": 0.8848 + }, + { + "start": 6510.46, + "end": 6512.36, + "probability": 0.8573 + }, + { + "start": 6512.4, + "end": 6514.0, + "probability": 0.8645 + }, + { + "start": 6514.72, + "end": 6518.86, + "probability": 0.9702 + }, + { + "start": 6519.8, + "end": 6522.4, + "probability": 0.8152 + }, + { + "start": 6522.76, + "end": 6526.58, + "probability": 0.9852 + }, + { + "start": 6526.88, + "end": 6527.68, + "probability": 0.8149 + }, + { + "start": 6527.94, + "end": 6528.64, + "probability": 0.9607 + }, + { + "start": 6528.7, + "end": 6529.9, + "probability": 0.9303 + }, + { + "start": 6530.86, + "end": 6532.6, + "probability": 0.7865 + }, + { + "start": 6533.34, + "end": 6534.62, + "probability": 0.8076 + }, + { + "start": 6536.02, + "end": 6538.05, + "probability": 0.8037 + }, + { + "start": 6538.3, + "end": 6540.6, + "probability": 0.9006 + }, + { + "start": 6541.72, + "end": 6544.32, + "probability": 0.9922 + }, + { + "start": 6545.08, + "end": 6545.71, + "probability": 0.8327 + }, + { + "start": 6546.92, + "end": 6550.12, + "probability": 0.9833 + }, + { + "start": 6551.16, + "end": 6554.24, + "probability": 0.8875 + }, + { + "start": 6554.24, + "end": 6560.16, + "probability": 0.9856 + }, + { + "start": 6560.16, + "end": 6564.02, + "probability": 0.8892 + }, + { + "start": 6565.02, + "end": 6566.82, + "probability": 0.6108 + }, + { + "start": 6566.82, + "end": 6567.5, + "probability": 0.44 + }, + { + "start": 6567.62, + "end": 6567.9, + "probability": 0.4311 + }, + { + "start": 6567.98, + "end": 6569.58, + "probability": 0.9941 + }, + { + "start": 6570.02, + "end": 6571.48, + "probability": 0.8742 + }, + { + "start": 6571.68, + "end": 6572.14, + "probability": 0.5548 + }, + { + "start": 6572.14, + "end": 6573.54, + "probability": 0.9644 + }, + { + "start": 6574.08, + "end": 6575.54, + "probability": 0.8881 + }, + { + "start": 6576.08, + "end": 6578.74, + "probability": 0.9875 + }, + { + "start": 6579.28, + "end": 6582.3, + "probability": 0.9941 + }, + { + "start": 6582.52, + "end": 6583.8, + "probability": 0.8466 + }, + { + "start": 6584.26, + "end": 6584.92, + "probability": 0.8236 + }, + { + "start": 6585.78, + "end": 6586.7, + "probability": 0.8403 + }, + { + "start": 6587.36, + "end": 6589.68, + "probability": 0.7656 + }, + { + "start": 6590.02, + "end": 6592.08, + "probability": 0.9878 + }, + { + "start": 6592.14, + "end": 6592.76, + "probability": 0.4214 + }, + { + "start": 6592.8, + "end": 6595.18, + "probability": 0.7772 + }, + { + "start": 6606.48, + "end": 6608.28, + "probability": 0.7817 + }, + { + "start": 6609.02, + "end": 6612.52, + "probability": 0.7161 + }, + { + "start": 6612.86, + "end": 6612.88, + "probability": 0.4205 + }, + { + "start": 6612.88, + "end": 6613.54, + "probability": 0.7852 + }, + { + "start": 6613.7, + "end": 6616.04, + "probability": 0.5497 + }, + { + "start": 6616.18, + "end": 6620.6, + "probability": 0.9709 + }, + { + "start": 6620.8, + "end": 6622.26, + "probability": 0.8557 + }, + { + "start": 6623.14, + "end": 6625.52, + "probability": 0.8781 + }, + { + "start": 6625.7, + "end": 6627.66, + "probability": 0.7081 + }, + { + "start": 6627.76, + "end": 6629.52, + "probability": 0.8815 + }, + { + "start": 6629.88, + "end": 6630.88, + "probability": 0.4106 + }, + { + "start": 6631.02, + "end": 6632.18, + "probability": 0.9445 + }, + { + "start": 6632.34, + "end": 6634.58, + "probability": 0.7971 + }, + { + "start": 6634.64, + "end": 6635.62, + "probability": 0.9284 + }, + { + "start": 6635.84, + "end": 6637.44, + "probability": 0.9811 + }, + { + "start": 6637.54, + "end": 6637.82, + "probability": 0.7586 + }, + { + "start": 6637.82, + "end": 6638.24, + "probability": 0.6818 + }, + { + "start": 6641.1, + "end": 6642.62, + "probability": 0.6708 + }, + { + "start": 6642.68, + "end": 6644.5, + "probability": 0.9055 + }, + { + "start": 6644.52, + "end": 6644.68, + "probability": 0.7017 + }, + { + "start": 6644.84, + "end": 6645.73, + "probability": 0.9037 + }, + { + "start": 6646.1, + "end": 6647.34, + "probability": 0.6768 + }, + { + "start": 6647.34, + "end": 6648.14, + "probability": 0.4457 + }, + { + "start": 6648.14, + "end": 6649.92, + "probability": 0.9756 + }, + { + "start": 6649.92, + "end": 6651.1, + "probability": 0.4543 + }, + { + "start": 6651.74, + "end": 6652.02, + "probability": 0.1107 + }, + { + "start": 6652.02, + "end": 6652.02, + "probability": 0.0672 + }, + { + "start": 6652.02, + "end": 6652.02, + "probability": 0.2488 + }, + { + "start": 6652.02, + "end": 6652.46, + "probability": 0.338 + }, + { + "start": 6652.58, + "end": 6653.0, + "probability": 0.7504 + }, + { + "start": 6653.2, + "end": 6654.16, + "probability": 0.7719 + }, + { + "start": 6654.42, + "end": 6656.18, + "probability": 0.7154 + }, + { + "start": 6656.24, + "end": 6658.2, + "probability": 0.8284 + }, + { + "start": 6658.34, + "end": 6661.2, + "probability": 0.9267 + }, + { + "start": 6661.46, + "end": 6668.08, + "probability": 0.9246 + }, + { + "start": 6668.6, + "end": 6671.82, + "probability": 0.8367 + }, + { + "start": 6671.92, + "end": 6674.36, + "probability": 0.8538 + }, + { + "start": 6674.7, + "end": 6676.04, + "probability": 0.7937 + }, + { + "start": 6676.2, + "end": 6678.9, + "probability": 0.9738 + }, + { + "start": 6679.18, + "end": 6685.94, + "probability": 0.9728 + }, + { + "start": 6686.84, + "end": 6689.2, + "probability": 0.6935 + }, + { + "start": 6689.68, + "end": 6695.42, + "probability": 0.996 + }, + { + "start": 6695.5, + "end": 6699.22, + "probability": 0.998 + }, + { + "start": 6699.6, + "end": 6702.64, + "probability": 0.957 + }, + { + "start": 6702.98, + "end": 6706.26, + "probability": 0.9723 + }, + { + "start": 6706.98, + "end": 6708.42, + "probability": 0.9608 + }, + { + "start": 6708.6, + "end": 6710.24, + "probability": 0.8132 + }, + { + "start": 6710.5, + "end": 6713.6, + "probability": 0.9705 + }, + { + "start": 6715.38, + "end": 6718.38, + "probability": 0.7138 + }, + { + "start": 6718.44, + "end": 6718.86, + "probability": 0.732 + }, + { + "start": 6718.86, + "end": 6720.2, + "probability": 0.9589 + }, + { + "start": 6720.3, + "end": 6722.32, + "probability": 0.8882 + }, + { + "start": 6723.3, + "end": 6726.68, + "probability": 0.7479 + }, + { + "start": 6726.76, + "end": 6727.68, + "probability": 0.7204 + }, + { + "start": 6729.2, + "end": 6729.92, + "probability": 0.7211 + }, + { + "start": 6729.96, + "end": 6730.96, + "probability": 0.8268 + }, + { + "start": 6731.04, + "end": 6736.4, + "probability": 0.9135 + }, + { + "start": 6736.7, + "end": 6739.32, + "probability": 0.9202 + }, + { + "start": 6739.38, + "end": 6741.32, + "probability": 0.877 + }, + { + "start": 6741.4, + "end": 6743.44, + "probability": 0.779 + }, + { + "start": 6743.92, + "end": 6746.96, + "probability": 0.7903 + }, + { + "start": 6747.4, + "end": 6751.22, + "probability": 0.9824 + }, + { + "start": 6751.42, + "end": 6752.9, + "probability": 0.9736 + }, + { + "start": 6753.42, + "end": 6755.02, + "probability": 0.9927 + }, + { + "start": 6755.22, + "end": 6758.18, + "probability": 0.9146 + }, + { + "start": 6758.68, + "end": 6762.3, + "probability": 0.9736 + }, + { + "start": 6764.02, + "end": 6764.32, + "probability": 0.3387 + }, + { + "start": 6764.66, + "end": 6772.9, + "probability": 0.9792 + }, + { + "start": 6773.16, + "end": 6775.42, + "probability": 0.9694 + }, + { + "start": 6776.42, + "end": 6777.94, + "probability": 0.9672 + }, + { + "start": 6778.52, + "end": 6783.02, + "probability": 0.971 + }, + { + "start": 6783.42, + "end": 6785.14, + "probability": 0.9689 + }, + { + "start": 6785.56, + "end": 6791.02, + "probability": 0.9409 + }, + { + "start": 6792.34, + "end": 6795.36, + "probability": 0.999 + }, + { + "start": 6795.44, + "end": 6796.52, + "probability": 0.9714 + }, + { + "start": 6796.88, + "end": 6797.22, + "probability": 0.4803 + }, + { + "start": 6797.46, + "end": 6798.06, + "probability": 0.8419 + }, + { + "start": 6798.42, + "end": 6807.46, + "probability": 0.992 + }, + { + "start": 6808.76, + "end": 6813.7, + "probability": 0.9211 + }, + { + "start": 6813.98, + "end": 6818.3, + "probability": 0.9952 + }, + { + "start": 6818.34, + "end": 6821.05, + "probability": 0.998 + }, + { + "start": 6821.48, + "end": 6825.02, + "probability": 0.8738 + }, + { + "start": 6825.02, + "end": 6828.3, + "probability": 0.9868 + }, + { + "start": 6828.78, + "end": 6833.18, + "probability": 0.9874 + }, + { + "start": 6833.62, + "end": 6835.12, + "probability": 0.9157 + }, + { + "start": 6836.16, + "end": 6841.42, + "probability": 0.889 + }, + { + "start": 6841.76, + "end": 6844.82, + "probability": 0.9979 + }, + { + "start": 6845.6, + "end": 6846.26, + "probability": 0.4998 + }, + { + "start": 6847.78, + "end": 6850.4, + "probability": 0.9368 + }, + { + "start": 6850.54, + "end": 6851.62, + "probability": 0.7693 + }, + { + "start": 6852.02, + "end": 6853.96, + "probability": 0.9635 + }, + { + "start": 6854.9, + "end": 6858.38, + "probability": 0.9443 + }, + { + "start": 6858.54, + "end": 6865.22, + "probability": 0.9659 + }, + { + "start": 6865.82, + "end": 6867.24, + "probability": 0.7187 + }, + { + "start": 6867.32, + "end": 6868.34, + "probability": 0.851 + }, + { + "start": 6868.4, + "end": 6870.8, + "probability": 0.7908 + }, + { + "start": 6871.26, + "end": 6874.06, + "probability": 0.8978 + }, + { + "start": 6874.46, + "end": 6876.8, + "probability": 0.8298 + }, + { + "start": 6876.84, + "end": 6877.4, + "probability": 0.9351 + }, + { + "start": 6877.48, + "end": 6878.02, + "probability": 0.8122 + }, + { + "start": 6878.12, + "end": 6880.26, + "probability": 0.6304 + }, + { + "start": 6880.68, + "end": 6887.66, + "probability": 0.9348 + }, + { + "start": 6887.84, + "end": 6889.42, + "probability": 0.8176 + }, + { + "start": 6889.84, + "end": 6893.08, + "probability": 0.9463 + }, + { + "start": 6893.26, + "end": 6896.24, + "probability": 0.9733 + }, + { + "start": 6896.3, + "end": 6899.1, + "probability": 0.9746 + }, + { + "start": 6899.5, + "end": 6909.08, + "probability": 0.9648 + }, + { + "start": 6909.9, + "end": 6917.18, + "probability": 0.9502 + }, + { + "start": 6917.28, + "end": 6918.08, + "probability": 0.6934 + }, + { + "start": 6918.64, + "end": 6919.46, + "probability": 0.7181 + }, + { + "start": 6919.72, + "end": 6925.66, + "probability": 0.9714 + }, + { + "start": 6925.8, + "end": 6927.32, + "probability": 0.8662 + }, + { + "start": 6927.4, + "end": 6931.64, + "probability": 0.8719 + }, + { + "start": 6932.7, + "end": 6937.26, + "probability": 0.8797 + }, + { + "start": 6938.04, + "end": 6939.8, + "probability": 0.8263 + }, + { + "start": 6940.4, + "end": 6944.62, + "probability": 0.5952 + }, + { + "start": 6944.9, + "end": 6948.5, + "probability": 0.8179 + }, + { + "start": 6948.84, + "end": 6954.53, + "probability": 0.9891 + }, + { + "start": 6954.92, + "end": 6958.28, + "probability": 0.9187 + }, + { + "start": 6958.56, + "end": 6960.84, + "probability": 0.9297 + }, + { + "start": 6961.26, + "end": 6967.54, + "probability": 0.9708 + }, + { + "start": 6968.5, + "end": 6968.76, + "probability": 0.6557 + }, + { + "start": 6969.44, + "end": 6972.84, + "probability": 0.6206 + }, + { + "start": 6974.18, + "end": 6977.86, + "probability": 0.814 + }, + { + "start": 6977.86, + "end": 6979.64, + "probability": 0.3523 + }, + { + "start": 6979.66, + "end": 6980.02, + "probability": 0.3583 + }, + { + "start": 6980.22, + "end": 6981.52, + "probability": 0.5768 + }, + { + "start": 6981.66, + "end": 6983.9, + "probability": 0.9941 + }, + { + "start": 6983.9, + "end": 6988.24, + "probability": 0.9543 + }, + { + "start": 6988.42, + "end": 6991.26, + "probability": 0.838 + }, + { + "start": 6992.08, + "end": 6995.78, + "probability": 0.6782 + }, + { + "start": 6995.98, + "end": 6997.86, + "probability": 0.4894 + }, + { + "start": 6998.66, + "end": 6999.84, + "probability": 0.7611 + }, + { + "start": 7000.0, + "end": 7001.7, + "probability": 0.9067 + }, + { + "start": 7002.08, + "end": 7007.46, + "probability": 0.9774 + }, + { + "start": 7008.62, + "end": 7015.6, + "probability": 0.9875 + }, + { + "start": 7015.8, + "end": 7020.56, + "probability": 0.9987 + }, + { + "start": 7021.56, + "end": 7027.47, + "probability": 0.9488 + }, + { + "start": 7028.22, + "end": 7034.64, + "probability": 0.9966 + }, + { + "start": 7036.12, + "end": 7042.16, + "probability": 0.9709 + }, + { + "start": 7042.16, + "end": 7047.66, + "probability": 0.9944 + }, + { + "start": 7048.62, + "end": 7056.96, + "probability": 0.9868 + }, + { + "start": 7057.0, + "end": 7063.54, + "probability": 0.995 + }, + { + "start": 7064.36, + "end": 7070.5, + "probability": 0.9866 + }, + { + "start": 7070.8, + "end": 7073.56, + "probability": 0.994 + }, + { + "start": 7073.68, + "end": 7075.36, + "probability": 0.807 + }, + { + "start": 7076.62, + "end": 7078.3, + "probability": 0.9294 + }, + { + "start": 7078.64, + "end": 7084.4, + "probability": 0.9854 + }, + { + "start": 7084.54, + "end": 7086.94, + "probability": 0.998 + }, + { + "start": 7087.96, + "end": 7089.06, + "probability": 0.924 + }, + { + "start": 7089.18, + "end": 7094.22, + "probability": 0.9706 + }, + { + "start": 7095.92, + "end": 7099.64, + "probability": 0.9754 + }, + { + "start": 7101.2, + "end": 7109.12, + "probability": 0.961 + }, + { + "start": 7109.36, + "end": 7112.2, + "probability": 0.9968 + }, + { + "start": 7113.14, + "end": 7117.08, + "probability": 0.9974 + }, + { + "start": 7119.9, + "end": 7123.32, + "probability": 0.7344 + }, + { + "start": 7123.42, + "end": 7128.64, + "probability": 0.9932 + }, + { + "start": 7128.64, + "end": 7132.18, + "probability": 0.9974 + }, + { + "start": 7132.22, + "end": 7133.54, + "probability": 0.6896 + }, + { + "start": 7134.18, + "end": 7135.4, + "probability": 0.9688 + }, + { + "start": 7135.5, + "end": 7136.22, + "probability": 0.7047 + }, + { + "start": 7136.28, + "end": 7140.28, + "probability": 0.9741 + }, + { + "start": 7140.66, + "end": 7141.0, + "probability": 0.8445 + }, + { + "start": 7141.56, + "end": 7143.96, + "probability": 0.832 + }, + { + "start": 7144.4, + "end": 7148.5, + "probability": 0.8893 + }, + { + "start": 7149.36, + "end": 7150.92, + "probability": 0.7323 + }, + { + "start": 7151.14, + "end": 7154.14, + "probability": 0.8631 + }, + { + "start": 7155.56, + "end": 7158.12, + "probability": 0.9908 + }, + { + "start": 7158.76, + "end": 7160.98, + "probability": 0.5796 + }, + { + "start": 7162.74, + "end": 7165.24, + "probability": 0.8251 + }, + { + "start": 7165.56, + "end": 7169.24, + "probability": 0.9574 + }, + { + "start": 7169.79, + "end": 7171.92, + "probability": 0.87 + }, + { + "start": 7171.98, + "end": 7173.84, + "probability": 0.9761 + }, + { + "start": 7174.22, + "end": 7174.28, + "probability": 0.1031 + }, + { + "start": 7174.28, + "end": 7176.72, + "probability": 0.5891 + }, + { + "start": 7177.36, + "end": 7183.36, + "probability": 0.9858 + }, + { + "start": 7183.46, + "end": 7183.86, + "probability": 0.3871 + }, + { + "start": 7183.96, + "end": 7187.64, + "probability": 0.8181 + }, + { + "start": 7188.52, + "end": 7193.76, + "probability": 0.8292 + }, + { + "start": 7194.16, + "end": 7197.3, + "probability": 0.9515 + }, + { + "start": 7197.64, + "end": 7202.92, + "probability": 0.9825 + }, + { + "start": 7203.18, + "end": 7205.62, + "probability": 0.9951 + }, + { + "start": 7205.84, + "end": 7212.44, + "probability": 0.9968 + }, + { + "start": 7213.94, + "end": 7214.44, + "probability": 0.8843 + }, + { + "start": 7214.52, + "end": 7219.02, + "probability": 0.998 + }, + { + "start": 7219.16, + "end": 7220.36, + "probability": 0.9707 + }, + { + "start": 7220.36, + "end": 7223.02, + "probability": 0.9716 + }, + { + "start": 7224.02, + "end": 7224.7, + "probability": 0.693 + }, + { + "start": 7224.96, + "end": 7227.8, + "probability": 0.8336 + }, + { + "start": 7227.8, + "end": 7232.56, + "probability": 0.947 + }, + { + "start": 7233.54, + "end": 7234.54, + "probability": 0.6343 + }, + { + "start": 7234.68, + "end": 7236.08, + "probability": 0.7752 + }, + { + "start": 7236.34, + "end": 7239.72, + "probability": 0.9412 + }, + { + "start": 7239.72, + "end": 7243.56, + "probability": 0.9533 + }, + { + "start": 7244.28, + "end": 7246.98, + "probability": 0.853 + }, + { + "start": 7247.06, + "end": 7250.42, + "probability": 0.9943 + }, + { + "start": 7251.28, + "end": 7252.26, + "probability": 0.8421 + }, + { + "start": 7255.12, + "end": 7257.64, + "probability": 0.7592 + }, + { + "start": 7258.52, + "end": 7262.12, + "probability": 0.9837 + }, + { + "start": 7263.46, + "end": 7271.62, + "probability": 0.6437 + }, + { + "start": 7272.5, + "end": 7275.01, + "probability": 0.8196 + }, + { + "start": 7275.84, + "end": 7277.08, + "probability": 0.7553 + }, + { + "start": 7277.1, + "end": 7277.28, + "probability": 0.4238 + }, + { + "start": 7277.52, + "end": 7279.6, + "probability": 0.9761 + }, + { + "start": 7280.08, + "end": 7282.4, + "probability": 0.6722 + }, + { + "start": 7282.84, + "end": 7288.48, + "probability": 0.9549 + }, + { + "start": 7288.6, + "end": 7288.98, + "probability": 0.0675 + }, + { + "start": 7289.18, + "end": 7291.52, + "probability": 0.8512 + }, + { + "start": 7291.74, + "end": 7297.48, + "probability": 0.9943 + }, + { + "start": 7297.6, + "end": 7298.64, + "probability": 0.9897 + }, + { + "start": 7300.35, + "end": 7300.98, + "probability": 0.0702 + }, + { + "start": 7300.98, + "end": 7306.12, + "probability": 0.9956 + }, + { + "start": 7306.98, + "end": 7310.2, + "probability": 0.9359 + }, + { + "start": 7310.74, + "end": 7314.08, + "probability": 0.9508 + }, + { + "start": 7315.2, + "end": 7318.08, + "probability": 0.9941 + }, + { + "start": 7318.08, + "end": 7322.46, + "probability": 0.9996 + }, + { + "start": 7323.28, + "end": 7325.86, + "probability": 0.9956 + }, + { + "start": 7326.26, + "end": 7328.84, + "probability": 0.9806 + }, + { + "start": 7329.99, + "end": 7335.4, + "probability": 0.985 + }, + { + "start": 7336.32, + "end": 7340.66, + "probability": 0.9833 + }, + { + "start": 7340.72, + "end": 7342.48, + "probability": 0.943 + }, + { + "start": 7342.76, + "end": 7344.52, + "probability": 0.7633 + }, + { + "start": 7344.66, + "end": 7348.44, + "probability": 0.9805 + }, + { + "start": 7348.44, + "end": 7352.14, + "probability": 0.9966 + }, + { + "start": 7352.62, + "end": 7355.1, + "probability": 0.9852 + }, + { + "start": 7355.22, + "end": 7359.66, + "probability": 0.7257 + }, + { + "start": 7359.72, + "end": 7360.52, + "probability": 0.7596 + }, + { + "start": 7360.96, + "end": 7370.22, + "probability": 0.8465 + }, + { + "start": 7370.22, + "end": 7378.42, + "probability": 0.6053 + }, + { + "start": 7378.6, + "end": 7380.92, + "probability": 0.6671 + }, + { + "start": 7381.28, + "end": 7381.84, + "probability": 0.495 + }, + { + "start": 7383.07, + "end": 7388.04, + "probability": 0.0339 + }, + { + "start": 7388.74, + "end": 7391.18, + "probability": 0.0332 + }, + { + "start": 7391.18, + "end": 7391.58, + "probability": 0.0553 + }, + { + "start": 7401.4, + "end": 7404.14, + "probability": 0.0001 + }, + { + "start": 7407.58, + "end": 7407.86, + "probability": 0.3766 + }, + { + "start": 7407.86, + "end": 7410.32, + "probability": 0.3918 + }, + { + "start": 7410.38, + "end": 7413.36, + "probability": 0.4865 + }, + { + "start": 7414.02, + "end": 7415.32, + "probability": 0.8466 + }, + { + "start": 7415.36, + "end": 7416.58, + "probability": 0.9464 + }, + { + "start": 7416.7, + "end": 7417.94, + "probability": 0.9349 + }, + { + "start": 7418.06, + "end": 7418.84, + "probability": 0.7156 + }, + { + "start": 7419.3, + "end": 7420.22, + "probability": 0.6909 + }, + { + "start": 7420.22, + "end": 7423.16, + "probability": 0.8307 + }, + { + "start": 7423.36, + "end": 7427.68, + "probability": 0.8526 + }, + { + "start": 7427.78, + "end": 7428.22, + "probability": 0.5254 + }, + { + "start": 7428.32, + "end": 7431.16, + "probability": 0.8052 + }, + { + "start": 7431.38, + "end": 7436.52, + "probability": 0.9949 + }, + { + "start": 7436.52, + "end": 7440.6, + "probability": 0.9993 + }, + { + "start": 7440.86, + "end": 7441.16, + "probability": 0.32 + }, + { + "start": 7441.2, + "end": 7441.88, + "probability": 0.9578 + }, + { + "start": 7442.22, + "end": 7446.56, + "probability": 0.7882 + }, + { + "start": 7446.64, + "end": 7449.02, + "probability": 0.8237 + }, + { + "start": 7449.5, + "end": 7454.3, + "probability": 0.0326 + }, + { + "start": 7454.3, + "end": 7455.3, + "probability": 0.9204 + }, + { + "start": 7457.31, + "end": 7458.0, + "probability": 0.105 + }, + { + "start": 7458.0, + "end": 7458.98, + "probability": 0.4911 + }, + { + "start": 7458.98, + "end": 7459.78, + "probability": 0.9913 + }, + { + "start": 7460.02, + "end": 7460.14, + "probability": 0.5045 + }, + { + "start": 7460.32, + "end": 7461.42, + "probability": 0.7532 + }, + { + "start": 7461.48, + "end": 7463.9, + "probability": 0.9909 + }, + { + "start": 7464.38, + "end": 7465.1, + "probability": 0.6914 + }, + { + "start": 7465.22, + "end": 7470.14, + "probability": 0.7993 + }, + { + "start": 7470.3, + "end": 7474.06, + "probability": 0.9673 + }, + { + "start": 7474.32, + "end": 7476.64, + "probability": 0.8138 + }, + { + "start": 7476.72, + "end": 7478.68, + "probability": 0.9731 + }, + { + "start": 7478.82, + "end": 7480.06, + "probability": 0.9424 + }, + { + "start": 7480.06, + "end": 7480.72, + "probability": 0.5608 + }, + { + "start": 7480.82, + "end": 7484.96, + "probability": 0.9259 + }, + { + "start": 7485.48, + "end": 7487.7, + "probability": 0.9918 + }, + { + "start": 7487.7, + "end": 7489.98, + "probability": 0.9762 + }, + { + "start": 7490.1, + "end": 7492.16, + "probability": 0.7655 + }, + { + "start": 7492.16, + "end": 7495.68, + "probability": 0.9911 + }, + { + "start": 7496.1, + "end": 7497.24, + "probability": 0.5056 + }, + { + "start": 7497.36, + "end": 7502.38, + "probability": 0.934 + }, + { + "start": 7502.38, + "end": 7506.26, + "probability": 0.8643 + }, + { + "start": 7506.34, + "end": 7510.14, + "probability": 0.9026 + }, + { + "start": 7510.14, + "end": 7513.46, + "probability": 0.9554 + }, + { + "start": 7513.56, + "end": 7514.96, + "probability": 0.853 + }, + { + "start": 7515.48, + "end": 7515.54, + "probability": 0.2824 + }, + { + "start": 7515.54, + "end": 7517.04, + "probability": 0.6868 + }, + { + "start": 7517.14, + "end": 7517.66, + "probability": 0.3676 + }, + { + "start": 7517.7, + "end": 7517.72, + "probability": 0.5107 + }, + { + "start": 7517.92, + "end": 7518.02, + "probability": 0.1961 + }, + { + "start": 7518.56, + "end": 7518.8, + "probability": 0.4354 + }, + { + "start": 7518.88, + "end": 7519.68, + "probability": 0.7882 + }, + { + "start": 7519.96, + "end": 7525.0, + "probability": 0.9615 + }, + { + "start": 7525.1, + "end": 7526.52, + "probability": 0.9297 + }, + { + "start": 7526.56, + "end": 7527.64, + "probability": 0.5656 + }, + { + "start": 7527.8, + "end": 7528.48, + "probability": 0.5243 + }, + { + "start": 7530.86, + "end": 7531.36, + "probability": 0.2893 + }, + { + "start": 7531.36, + "end": 7536.5, + "probability": 0.6563 + }, + { + "start": 7542.73, + "end": 7544.98, + "probability": 0.116 + }, + { + "start": 7544.98, + "end": 7547.6, + "probability": 0.0966 + }, + { + "start": 7547.6, + "end": 7548.1, + "probability": 0.3737 + }, + { + "start": 7549.08, + "end": 7549.92, + "probability": 0.0853 + }, + { + "start": 7550.04, + "end": 7552.1, + "probability": 0.565 + }, + { + "start": 7553.06, + "end": 7554.78, + "probability": 0.8394 + }, + { + "start": 7554.86, + "end": 7555.12, + "probability": 0.0571 + }, + { + "start": 7555.12, + "end": 7561.32, + "probability": 0.7282 + }, + { + "start": 7561.32, + "end": 7562.94, + "probability": 0.8825 + }, + { + "start": 7563.02, + "end": 7565.93, + "probability": 0.9652 + }, + { + "start": 7566.38, + "end": 7570.22, + "probability": 0.9832 + }, + { + "start": 7570.22, + "end": 7574.72, + "probability": 0.9051 + }, + { + "start": 7575.02, + "end": 7577.36, + "probability": 0.0936 + }, + { + "start": 7577.52, + "end": 7578.98, + "probability": 0.485 + }, + { + "start": 7579.14, + "end": 7584.26, + "probability": 0.9828 + }, + { + "start": 7584.76, + "end": 7589.52, + "probability": 0.8417 + }, + { + "start": 7589.56, + "end": 7591.86, + "probability": 0.7954 + }, + { + "start": 7591.96, + "end": 7592.42, + "probability": 0.7178 + }, + { + "start": 7592.5, + "end": 7593.14, + "probability": 0.7155 + }, + { + "start": 7593.18, + "end": 7593.92, + "probability": 0.8827 + }, + { + "start": 7594.0, + "end": 7594.62, + "probability": 0.9285 + }, + { + "start": 7594.68, + "end": 7595.26, + "probability": 0.9888 + }, + { + "start": 7595.36, + "end": 7596.26, + "probability": 0.9144 + }, + { + "start": 7596.54, + "end": 7597.32, + "probability": 0.9909 + }, + { + "start": 7597.38, + "end": 7598.32, + "probability": 0.8352 + }, + { + "start": 7598.68, + "end": 7599.32, + "probability": 0.493 + }, + { + "start": 7599.4, + "end": 7600.54, + "probability": 0.4911 + }, + { + "start": 7600.68, + "end": 7601.28, + "probability": 0.8254 + }, + { + "start": 7601.38, + "end": 7601.98, + "probability": 0.8496 + }, + { + "start": 7602.08, + "end": 7603.2, + "probability": 0.8237 + }, + { + "start": 7603.28, + "end": 7604.12, + "probability": 0.9828 + }, + { + "start": 7604.18, + "end": 7604.86, + "probability": 0.9216 + }, + { + "start": 7604.94, + "end": 7605.52, + "probability": 0.9853 + }, + { + "start": 7605.56, + "end": 7606.34, + "probability": 0.9017 + }, + { + "start": 7606.46, + "end": 7607.46, + "probability": 0.9774 + }, + { + "start": 7607.54, + "end": 7608.48, + "probability": 0.9838 + }, + { + "start": 7608.5, + "end": 7609.54, + "probability": 0.5061 + }, + { + "start": 7609.54, + "end": 7610.38, + "probability": 0.8681 + }, + { + "start": 7610.46, + "end": 7611.14, + "probability": 0.7874 + }, + { + "start": 7611.28, + "end": 7611.94, + "probability": 0.9302 + }, + { + "start": 7612.12, + "end": 7612.68, + "probability": 0.9703 + }, + { + "start": 7612.76, + "end": 7613.38, + "probability": 0.7473 + }, + { + "start": 7613.5, + "end": 7614.48, + "probability": 0.9683 + }, + { + "start": 7614.62, + "end": 7615.32, + "probability": 0.9886 + }, + { + "start": 7615.48, + "end": 7617.32, + "probability": 0.9135 + }, + { + "start": 7617.72, + "end": 7621.02, + "probability": 0.5519 + }, + { + "start": 7621.12, + "end": 7626.7, + "probability": 0.7177 + }, + { + "start": 7626.82, + "end": 7627.12, + "probability": 0.5952 + }, + { + "start": 7627.46, + "end": 7628.92, + "probability": 0.3913 + }, + { + "start": 7632.2, + "end": 7634.74, + "probability": 0.8383 + }, + { + "start": 7635.32, + "end": 7637.15, + "probability": 0.8573 + }, + { + "start": 7637.6, + "end": 7638.5, + "probability": 0.8166 + }, + { + "start": 7638.62, + "end": 7644.3, + "probability": 0.8939 + }, + { + "start": 7644.32, + "end": 7645.56, + "probability": 0.6525 + }, + { + "start": 7645.7, + "end": 7646.62, + "probability": 0.7621 + }, + { + "start": 7646.7, + "end": 7647.9, + "probability": 0.7116 + }, + { + "start": 7671.28, + "end": 7672.12, + "probability": 0.6622 + }, + { + "start": 7672.68, + "end": 7674.68, + "probability": 0.0732 + }, + { + "start": 7689.7, + "end": 7690.52, + "probability": 0.0056 + }, + { + "start": 7697.3, + "end": 7701.56, + "probability": 0.5376 + }, + { + "start": 7701.56, + "end": 7704.7, + "probability": 0.6523 + }, + { + "start": 7704.8, + "end": 7706.46, + "probability": 0.5605 + }, + { + "start": 7708.74, + "end": 7711.54, + "probability": 0.0124 + }, + { + "start": 7713.46, + "end": 7715.24, + "probability": 0.0099 + }, + { + "start": 7720.62, + "end": 7721.72, + "probability": 0.1834 + }, + { + "start": 7726.6, + "end": 7728.5, + "probability": 0.2289 + }, + { + "start": 7729.18, + "end": 7730.66, + "probability": 0.1198 + }, + { + "start": 7731.88, + "end": 7733.34, + "probability": 0.0338 + }, + { + "start": 7733.34, + "end": 7733.34, + "probability": 0.4369 + }, + { + "start": 7733.34, + "end": 7733.86, + "probability": 0.0322 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.0, + "end": 7760.0, + "probability": 0.0 + }, + { + "start": 7760.22, + "end": 7760.44, + "probability": 0.0175 + }, + { + "start": 7760.44, + "end": 7760.46, + "probability": 0.0459 + }, + { + "start": 7760.46, + "end": 7760.46, + "probability": 0.4669 + }, + { + "start": 7760.46, + "end": 7762.17, + "probability": 0.5096 + }, + { + "start": 7762.98, + "end": 7764.41, + "probability": 0.7608 + }, + { + "start": 7767.72, + "end": 7769.42, + "probability": 0.3704 + }, + { + "start": 7771.18, + "end": 7772.02, + "probability": 0.323 + }, + { + "start": 7773.22, + "end": 7777.8, + "probability": 0.8788 + }, + { + "start": 7778.4, + "end": 7782.62, + "probability": 0.9746 + }, + { + "start": 7783.48, + "end": 7784.68, + "probability": 0.8214 + }, + { + "start": 7785.2, + "end": 7788.3, + "probability": 0.9893 + }, + { + "start": 7788.96, + "end": 7792.2, + "probability": 0.8992 + }, + { + "start": 7793.44, + "end": 7794.02, + "probability": 0.6922 + }, + { + "start": 7794.2, + "end": 7796.0, + "probability": 0.8446 + }, + { + "start": 7796.26, + "end": 7796.78, + "probability": 0.7671 + }, + { + "start": 7796.98, + "end": 7798.04, + "probability": 0.7571 + }, + { + "start": 7798.54, + "end": 7800.3, + "probability": 0.988 + }, + { + "start": 7800.92, + "end": 7802.38, + "probability": 0.9929 + }, + { + "start": 7805.88, + "end": 7807.92, + "probability": 0.6924 + }, + { + "start": 7808.46, + "end": 7810.6, + "probability": 0.7825 + }, + { + "start": 7810.64, + "end": 7811.54, + "probability": 0.6488 + }, + { + "start": 7812.3, + "end": 7818.08, + "probability": 0.9831 + }, + { + "start": 7819.12, + "end": 7820.38, + "probability": 0.0047 + }, + { + "start": 7828.56, + "end": 7829.66, + "probability": 0.0414 + }, + { + "start": 7830.06, + "end": 7833.46, + "probability": 0.8005 + }, + { + "start": 7834.1, + "end": 7835.46, + "probability": 0.786 + }, + { + "start": 7835.54, + "end": 7838.68, + "probability": 0.9834 + }, + { + "start": 7838.78, + "end": 7839.72, + "probability": 0.6678 + }, + { + "start": 7840.16, + "end": 7841.88, + "probability": 0.998 + }, + { + "start": 7842.48, + "end": 7844.34, + "probability": 0.9388 + }, + { + "start": 7849.98, + "end": 7852.38, + "probability": 0.5998 + }, + { + "start": 7853.06, + "end": 7854.18, + "probability": 0.8148 + }, + { + "start": 7855.19, + "end": 7859.42, + "probability": 0.9917 + }, + { + "start": 7859.42, + "end": 7863.2, + "probability": 0.8503 + }, + { + "start": 7864.6, + "end": 7871.92, + "probability": 0.9648 + }, + { + "start": 7872.6, + "end": 7873.98, + "probability": 0.7002 + }, + { + "start": 7874.06, + "end": 7876.04, + "probability": 0.6308 + }, + { + "start": 7876.04, + "end": 7878.82, + "probability": 0.9357 + }, + { + "start": 7879.36, + "end": 7881.4, + "probability": 0.948 + }, + { + "start": 7882.0, + "end": 7884.44, + "probability": 0.6071 + }, + { + "start": 7885.04, + "end": 7890.26, + "probability": 0.874 + }, + { + "start": 7891.54, + "end": 7893.32, + "probability": 0.7001 + }, + { + "start": 7894.82, + "end": 7897.1, + "probability": 0.9839 + }, + { + "start": 7897.1, + "end": 7900.16, + "probability": 0.7586 + }, + { + "start": 7900.84, + "end": 7904.84, + "probability": 0.7196 + }, + { + "start": 7905.24, + "end": 7908.86, + "probability": 0.9269 + }, + { + "start": 7908.98, + "end": 7917.0, + "probability": 0.9951 + }, + { + "start": 7918.8, + "end": 7920.92, + "probability": 0.9833 + }, + { + "start": 7921.56, + "end": 7927.12, + "probability": 0.9759 + }, + { + "start": 7927.76, + "end": 7931.46, + "probability": 0.888 + }, + { + "start": 7933.55, + "end": 7940.31, + "probability": 0.7971 + }, + { + "start": 7941.58, + "end": 7942.5, + "probability": 0.8335 + }, + { + "start": 7942.54, + "end": 7943.22, + "probability": 0.4572 + }, + { + "start": 7943.28, + "end": 7944.68, + "probability": 0.9695 + }, + { + "start": 7946.84, + "end": 7947.82, + "probability": 0.9456 + }, + { + "start": 7948.18, + "end": 7952.58, + "probability": 0.8745 + }, + { + "start": 7953.64, + "end": 7956.34, + "probability": 0.9316 + }, + { + "start": 7957.18, + "end": 7962.09, + "probability": 0.9457 + }, + { + "start": 7962.76, + "end": 7966.88, + "probability": 0.98 + }, + { + "start": 7967.1, + "end": 7969.26, + "probability": 0.9791 + }, + { + "start": 7969.6, + "end": 7974.76, + "probability": 0.9972 + }, + { + "start": 7975.34, + "end": 7976.58, + "probability": 0.6511 + }, + { + "start": 7976.68, + "end": 7978.22, + "probability": 0.8765 + }, + { + "start": 7979.58, + "end": 7982.58, + "probability": 0.8364 + }, + { + "start": 7983.02, + "end": 7987.98, + "probability": 0.9624 + }, + { + "start": 7988.42, + "end": 7990.5, + "probability": 0.8571 + }, + { + "start": 7990.98, + "end": 7991.86, + "probability": 0.9209 + }, + { + "start": 7992.34, + "end": 7994.36, + "probability": 0.9712 + }, + { + "start": 7994.68, + "end": 8002.04, + "probability": 0.9664 + }, + { + "start": 8002.36, + "end": 8003.02, + "probability": 0.8839 + }, + { + "start": 8003.38, + "end": 8007.36, + "probability": 0.7352 + }, + { + "start": 8007.46, + "end": 8011.8, + "probability": 0.9952 + }, + { + "start": 8012.94, + "end": 8016.24, + "probability": 0.9819 + }, + { + "start": 8016.26, + "end": 8016.76, + "probability": 0.3796 + }, + { + "start": 8016.78, + "end": 8018.84, + "probability": 0.9738 + }, + { + "start": 8028.04, + "end": 8029.61, + "probability": 0.8283 + }, + { + "start": 8035.06, + "end": 8036.78, + "probability": 0.7233 + }, + { + "start": 8037.56, + "end": 8038.9, + "probability": 0.5733 + }, + { + "start": 8038.96, + "end": 8039.34, + "probability": 0.4084 + }, + { + "start": 8039.38, + "end": 8044.38, + "probability": 0.9868 + }, + { + "start": 8044.68, + "end": 8047.76, + "probability": 0.9948 + }, + { + "start": 8048.18, + "end": 8048.24, + "probability": 0.0002 + }, + { + "start": 8048.94, + "end": 8049.63, + "probability": 0.7002 + }, + { + "start": 8050.2, + "end": 8050.62, + "probability": 0.7483 + }, + { + "start": 8052.78, + "end": 8054.72, + "probability": 0.816 + }, + { + "start": 8055.2, + "end": 8060.38, + "probability": 0.9691 + }, + { + "start": 8061.18, + "end": 8062.5, + "probability": 0.987 + }, + { + "start": 8063.88, + "end": 8065.24, + "probability": 0.9376 + }, + { + "start": 8065.24, + "end": 8068.2, + "probability": 0.8215 + }, + { + "start": 8068.44, + "end": 8070.82, + "probability": 0.968 + }, + { + "start": 8070.9, + "end": 8071.58, + "probability": 0.5149 + }, + { + "start": 8071.6, + "end": 8073.9, + "probability": 0.9922 + }, + { + "start": 8074.7, + "end": 8075.3, + "probability": 0.7844 + }, + { + "start": 8075.58, + "end": 8077.28, + "probability": 0.985 + }, + { + "start": 8078.24, + "end": 8080.86, + "probability": 0.9948 + }, + { + "start": 8080.86, + "end": 8085.02, + "probability": 0.9965 + }, + { + "start": 8085.18, + "end": 8086.2, + "probability": 0.5794 + }, + { + "start": 8086.84, + "end": 8089.55, + "probability": 0.9827 + }, + { + "start": 8090.12, + "end": 8092.34, + "probability": 0.9684 + }, + { + "start": 8093.18, + "end": 8097.0, + "probability": 0.9972 + }, + { + "start": 8097.1, + "end": 8098.14, + "probability": 0.8748 + }, + { + "start": 8098.84, + "end": 8100.66, + "probability": 0.8358 + }, + { + "start": 8100.94, + "end": 8103.96, + "probability": 0.9968 + }, + { + "start": 8104.62, + "end": 8107.22, + "probability": 0.8789 + }, + { + "start": 8107.76, + "end": 8109.02, + "probability": 0.9697 + }, + { + "start": 8109.2, + "end": 8110.32, + "probability": 0.8553 + }, + { + "start": 8110.86, + "end": 8112.26, + "probability": 0.9816 + }, + { + "start": 8113.64, + "end": 8117.68, + "probability": 0.9785 + }, + { + "start": 8117.78, + "end": 8118.74, + "probability": 0.6919 + }, + { + "start": 8118.82, + "end": 8120.44, + "probability": 0.8644 + }, + { + "start": 8120.88, + "end": 8122.16, + "probability": 0.7431 + }, + { + "start": 8122.58, + "end": 8124.54, + "probability": 0.9368 + }, + { + "start": 8124.68, + "end": 8125.84, + "probability": 0.7893 + }, + { + "start": 8125.9, + "end": 8128.66, + "probability": 0.9866 + }, + { + "start": 8129.62, + "end": 8132.74, + "probability": 0.9683 + }, + { + "start": 8134.3, + "end": 8135.76, + "probability": 0.8346 + }, + { + "start": 8136.48, + "end": 8138.76, + "probability": 0.7544 + }, + { + "start": 8139.36, + "end": 8141.24, + "probability": 0.9448 + }, + { + "start": 8141.46, + "end": 8145.82, + "probability": 0.9833 + }, + { + "start": 8146.98, + "end": 8148.5, + "probability": 0.9451 + }, + { + "start": 8149.16, + "end": 8151.0, + "probability": 0.0984 + }, + { + "start": 8151.66, + "end": 8155.12, + "probability": 0.9941 + }, + { + "start": 8156.68, + "end": 8159.92, + "probability": 0.8835 + }, + { + "start": 8160.4, + "end": 8162.24, + "probability": 0.9627 + }, + { + "start": 8162.32, + "end": 8164.04, + "probability": 0.9497 + }, + { + "start": 8165.04, + "end": 8168.52, + "probability": 0.9658 + }, + { + "start": 8168.56, + "end": 8170.85, + "probability": 0.9578 + }, + { + "start": 8172.5, + "end": 8174.04, + "probability": 0.9775 + }, + { + "start": 8174.3, + "end": 8176.88, + "probability": 0.8364 + }, + { + "start": 8177.86, + "end": 8179.22, + "probability": 0.6655 + }, + { + "start": 8179.34, + "end": 8180.42, + "probability": 0.873 + }, + { + "start": 8180.7, + "end": 8181.78, + "probability": 0.9175 + }, + { + "start": 8182.0, + "end": 8182.94, + "probability": 0.5299 + }, + { + "start": 8183.76, + "end": 8184.94, + "probability": 0.3086 + }, + { + "start": 8185.64, + "end": 8187.06, + "probability": 0.766 + }, + { + "start": 8187.16, + "end": 8188.9, + "probability": 0.8807 + }, + { + "start": 8190.52, + "end": 8194.56, + "probability": 0.9924 + }, + { + "start": 8194.64, + "end": 8195.82, + "probability": 0.9517 + }, + { + "start": 8196.06, + "end": 8198.02, + "probability": 0.8663 + }, + { + "start": 8198.14, + "end": 8199.66, + "probability": 0.7104 + }, + { + "start": 8200.1, + "end": 8202.94, + "probability": 0.6964 + }, + { + "start": 8202.96, + "end": 8204.84, + "probability": 0.9416 + }, + { + "start": 8205.38, + "end": 8209.42, + "probability": 0.8677 + }, + { + "start": 8210.18, + "end": 8213.24, + "probability": 0.9589 + }, + { + "start": 8213.88, + "end": 8215.24, + "probability": 0.9864 + }, + { + "start": 8215.26, + "end": 8216.74, + "probability": 0.9963 + }, + { + "start": 8216.78, + "end": 8218.84, + "probability": 0.5971 + }, + { + "start": 8219.44, + "end": 8224.38, + "probability": 0.9365 + }, + { + "start": 8224.52, + "end": 8225.42, + "probability": 0.9551 + }, + { + "start": 8225.52, + "end": 8226.78, + "probability": 0.95 + }, + { + "start": 8226.88, + "end": 8229.8, + "probability": 0.9808 + }, + { + "start": 8230.7, + "end": 8231.52, + "probability": 0.764 + }, + { + "start": 8231.58, + "end": 8232.1, + "probability": 0.952 + }, + { + "start": 8232.24, + "end": 8233.2, + "probability": 0.681 + }, + { + "start": 8233.7, + "end": 8234.82, + "probability": 0.7371 + }, + { + "start": 8236.52, + "end": 8238.34, + "probability": 0.9884 + }, + { + "start": 8239.14, + "end": 8241.34, + "probability": 0.762 + }, + { + "start": 8241.88, + "end": 8243.7, + "probability": 0.9473 + }, + { + "start": 8244.66, + "end": 8248.94, + "probability": 0.9911 + }, + { + "start": 8249.94, + "end": 8251.36, + "probability": 0.999 + }, + { + "start": 8252.52, + "end": 8254.24, + "probability": 0.9314 + }, + { + "start": 8254.6, + "end": 8255.94, + "probability": 0.9778 + }, + { + "start": 8256.12, + "end": 8261.12, + "probability": 0.8731 + }, + { + "start": 8262.16, + "end": 8266.04, + "probability": 0.9823 + }, + { + "start": 8266.92, + "end": 8269.04, + "probability": 0.6656 + }, + { + "start": 8269.68, + "end": 8272.4, + "probability": 0.8885 + }, + { + "start": 8273.4, + "end": 8276.48, + "probability": 0.6704 + }, + { + "start": 8276.62, + "end": 8278.17, + "probability": 0.7999 + }, + { + "start": 8278.66, + "end": 8279.66, + "probability": 0.2134 + }, + { + "start": 8280.26, + "end": 8282.9, + "probability": 0.8682 + }, + { + "start": 8282.94, + "end": 8285.0, + "probability": 0.2307 + }, + { + "start": 8285.4, + "end": 8286.4, + "probability": 0.6643 + }, + { + "start": 8286.66, + "end": 8289.38, + "probability": 0.9949 + }, + { + "start": 8289.48, + "end": 8290.58, + "probability": 0.9946 + }, + { + "start": 8290.7, + "end": 8292.1, + "probability": 0.8777 + }, + { + "start": 8293.78, + "end": 8299.9, + "probability": 0.9985 + }, + { + "start": 8300.36, + "end": 8302.82, + "probability": 0.93 + }, + { + "start": 8303.66, + "end": 8307.62, + "probability": 0.8496 + }, + { + "start": 8308.5, + "end": 8311.7, + "probability": 0.8442 + }, + { + "start": 8317.4, + "end": 8320.0, + "probability": 0.738 + }, + { + "start": 8326.24, + "end": 8327.26, + "probability": 0.7687 + }, + { + "start": 8327.32, + "end": 8328.46, + "probability": 0.8286 + }, + { + "start": 8328.78, + "end": 8330.84, + "probability": 0.8989 + }, + { + "start": 8331.62, + "end": 8334.25, + "probability": 0.9447 + }, + { + "start": 8336.06, + "end": 8341.06, + "probability": 0.972 + }, + { + "start": 8341.94, + "end": 8344.78, + "probability": 0.8877 + }, + { + "start": 8344.78, + "end": 8348.34, + "probability": 0.9949 + }, + { + "start": 8348.46, + "end": 8352.42, + "probability": 0.9644 + }, + { + "start": 8352.76, + "end": 8357.44, + "probability": 0.9608 + }, + { + "start": 8357.76, + "end": 8359.12, + "probability": 0.8848 + }, + { + "start": 8359.56, + "end": 8360.92, + "probability": 0.8939 + }, + { + "start": 8361.38, + "end": 8364.14, + "probability": 0.9453 + }, + { + "start": 8364.86, + "end": 8365.74, + "probability": 0.7419 + }, + { + "start": 8365.86, + "end": 8367.5, + "probability": 0.4773 + }, + { + "start": 8367.5, + "end": 8368.51, + "probability": 0.538 + }, + { + "start": 8369.34, + "end": 8373.72, + "probability": 0.8559 + }, + { + "start": 8373.98, + "end": 8376.04, + "probability": 0.9939 + }, + { + "start": 8376.16, + "end": 8377.9, + "probability": 0.8999 + }, + { + "start": 8378.28, + "end": 8380.69, + "probability": 0.9836 + }, + { + "start": 8381.12, + "end": 8383.84, + "probability": 0.991 + }, + { + "start": 8384.34, + "end": 8390.8, + "probability": 0.9816 + }, + { + "start": 8390.8, + "end": 8397.14, + "probability": 0.9959 + }, + { + "start": 8398.24, + "end": 8398.74, + "probability": 0.0359 + }, + { + "start": 8399.56, + "end": 8402.08, + "probability": 0.5379 + }, + { + "start": 8402.72, + "end": 8403.3, + "probability": 0.6582 + }, + { + "start": 8404.52, + "end": 8404.88, + "probability": 0.9121 + }, + { + "start": 8408.6, + "end": 8411.2, + "probability": 0.7447 + }, + { + "start": 8412.24, + "end": 8413.18, + "probability": 0.6852 + }, + { + "start": 8413.42, + "end": 8414.22, + "probability": 0.7264 + }, + { + "start": 8414.88, + "end": 8415.88, + "probability": 0.6855 + }, + { + "start": 8416.48, + "end": 8417.48, + "probability": 0.9284 + }, + { + "start": 8419.1, + "end": 8426.3, + "probability": 0.9768 + }, + { + "start": 8426.86, + "end": 8432.62, + "probability": 0.9956 + }, + { + "start": 8432.62, + "end": 8438.06, + "probability": 0.9929 + }, + { + "start": 8439.32, + "end": 8444.14, + "probability": 0.9946 + }, + { + "start": 8444.14, + "end": 8450.46, + "probability": 0.9839 + }, + { + "start": 8451.12, + "end": 8452.56, + "probability": 0.9982 + }, + { + "start": 8453.36, + "end": 8460.62, + "probability": 0.9857 + }, + { + "start": 8461.02, + "end": 8464.5, + "probability": 0.8998 + }, + { + "start": 8464.8, + "end": 8466.22, + "probability": 0.9893 + }, + { + "start": 8466.56, + "end": 8468.46, + "probability": 0.9872 + }, + { + "start": 8468.82, + "end": 8475.18, + "probability": 0.9922 + }, + { + "start": 8475.18, + "end": 8479.74, + "probability": 0.9907 + }, + { + "start": 8480.36, + "end": 8485.66, + "probability": 0.998 + }, + { + "start": 8486.06, + "end": 8490.28, + "probability": 0.971 + }, + { + "start": 8490.78, + "end": 8492.3, + "probability": 0.9403 + }, + { + "start": 8492.54, + "end": 8493.96, + "probability": 0.9885 + }, + { + "start": 8494.04, + "end": 8495.52, + "probability": 0.9443 + }, + { + "start": 8496.1, + "end": 8501.75, + "probability": 0.9848 + }, + { + "start": 8502.46, + "end": 8503.04, + "probability": 0.6952 + }, + { + "start": 8503.26, + "end": 8506.14, + "probability": 0.962 + }, + { + "start": 8506.34, + "end": 8507.54, + "probability": 0.872 + }, + { + "start": 8507.7, + "end": 8508.78, + "probability": 0.8397 + }, + { + "start": 8508.8, + "end": 8514.18, + "probability": 0.9149 + }, + { + "start": 8514.42, + "end": 8514.84, + "probability": 0.846 + }, + { + "start": 8514.92, + "end": 8518.5, + "probability": 0.9568 + }, + { + "start": 8518.56, + "end": 8521.52, + "probability": 0.9541 + }, + { + "start": 8521.58, + "end": 8522.44, + "probability": 0.9247 + }, + { + "start": 8522.72, + "end": 8523.9, + "probability": 0.6095 + }, + { + "start": 8524.8, + "end": 8525.88, + "probability": 0.7975 + }, + { + "start": 8526.22, + "end": 8526.22, + "probability": 0.3293 + }, + { + "start": 8526.22, + "end": 8529.14, + "probability": 0.9558 + }, + { + "start": 8529.14, + "end": 8532.06, + "probability": 0.9951 + }, + { + "start": 8532.3, + "end": 8533.74, + "probability": 0.8736 + }, + { + "start": 8533.82, + "end": 8534.46, + "probability": 0.805 + }, + { + "start": 8534.78, + "end": 8537.24, + "probability": 0.9543 + }, + { + "start": 8537.42, + "end": 8540.14, + "probability": 0.9523 + }, + { + "start": 8540.84, + "end": 8544.58, + "probability": 0.9725 + }, + { + "start": 8550.68, + "end": 8553.14, + "probability": 0.7297 + }, + { + "start": 8555.48, + "end": 8556.34, + "probability": 0.9463 + }, + { + "start": 8557.06, + "end": 8558.84, + "probability": 0.5453 + }, + { + "start": 8559.78, + "end": 8566.06, + "probability": 0.9149 + }, + { + "start": 8566.29, + "end": 8569.66, + "probability": 0.9692 + }, + { + "start": 8569.94, + "end": 8570.26, + "probability": 0.8348 + }, + { + "start": 8570.32, + "end": 8574.38, + "probability": 0.9257 + }, + { + "start": 8574.78, + "end": 8576.38, + "probability": 0.7361 + }, + { + "start": 8576.38, + "end": 8576.88, + "probability": 0.6718 + }, + { + "start": 8577.0, + "end": 8584.76, + "probability": 0.9182 + }, + { + "start": 8585.42, + "end": 8591.22, + "probability": 0.9625 + }, + { + "start": 8591.92, + "end": 8594.44, + "probability": 0.9927 + }, + { + "start": 8594.52, + "end": 8597.5, + "probability": 0.9389 + }, + { + "start": 8597.54, + "end": 8599.42, + "probability": 0.8229 + }, + { + "start": 8599.82, + "end": 8606.08, + "probability": 0.8611 + }, + { + "start": 8606.36, + "end": 8607.4, + "probability": 0.3503 + }, + { + "start": 8607.52, + "end": 8611.68, + "probability": 0.9832 + }, + { + "start": 8611.9, + "end": 8613.59, + "probability": 0.9458 + }, + { + "start": 8614.0, + "end": 8614.98, + "probability": 0.8317 + }, + { + "start": 8615.08, + "end": 8617.2, + "probability": 0.9087 + }, + { + "start": 8617.38, + "end": 8620.78, + "probability": 0.9922 + }, + { + "start": 8620.78, + "end": 8624.92, + "probability": 0.9772 + }, + { + "start": 8625.46, + "end": 8626.6, + "probability": 0.8419 + }, + { + "start": 8626.9, + "end": 8628.24, + "probability": 0.8917 + }, + { + "start": 8628.68, + "end": 8629.4, + "probability": 0.7991 + }, + { + "start": 8629.52, + "end": 8630.83, + "probability": 0.998 + }, + { + "start": 8631.12, + "end": 8632.76, + "probability": 0.8359 + }, + { + "start": 8633.24, + "end": 8633.96, + "probability": 0.5645 + }, + { + "start": 8633.96, + "end": 8639.58, + "probability": 0.992 + }, + { + "start": 8639.7, + "end": 8642.44, + "probability": 0.98 + }, + { + "start": 8642.44, + "end": 8643.43, + "probability": 0.6374 + }, + { + "start": 8643.72, + "end": 8646.74, + "probability": 0.7834 + }, + { + "start": 8647.0, + "end": 8650.46, + "probability": 0.9956 + }, + { + "start": 8650.46, + "end": 8652.66, + "probability": 0.8005 + }, + { + "start": 8652.9, + "end": 8656.62, + "probability": 0.996 + }, + { + "start": 8657.0, + "end": 8659.92, + "probability": 0.9961 + }, + { + "start": 8660.72, + "end": 8665.88, + "probability": 0.9941 + }, + { + "start": 8666.11, + "end": 8669.88, + "probability": 0.9521 + }, + { + "start": 8669.88, + "end": 8675.14, + "probability": 0.9993 + }, + { + "start": 8675.14, + "end": 8679.96, + "probability": 0.9987 + }, + { + "start": 8679.96, + "end": 8684.36, + "probability": 0.999 + }, + { + "start": 8684.76, + "end": 8688.14, + "probability": 0.9951 + }, + { + "start": 8688.14, + "end": 8692.54, + "probability": 0.9917 + }, + { + "start": 8692.7, + "end": 8694.68, + "probability": 0.9963 + }, + { + "start": 8695.12, + "end": 8696.5, + "probability": 0.8589 + }, + { + "start": 8696.84, + "end": 8701.22, + "probability": 0.9933 + }, + { + "start": 8701.22, + "end": 8704.74, + "probability": 0.9991 + }, + { + "start": 8704.82, + "end": 8706.38, + "probability": 0.7873 + }, + { + "start": 8706.7, + "end": 8708.8, + "probability": 0.6221 + }, + { + "start": 8709.0, + "end": 8712.14, + "probability": 0.9269 + }, + { + "start": 8712.38, + "end": 8713.4, + "probability": 0.9979 + }, + { + "start": 8714.2, + "end": 8715.48, + "probability": 0.9213 + }, + { + "start": 8715.7, + "end": 8718.12, + "probability": 0.9966 + }, + { + "start": 8718.32, + "end": 8721.64, + "probability": 0.9802 + }, + { + "start": 8721.9, + "end": 8728.22, + "probability": 0.9982 + }, + { + "start": 8728.64, + "end": 8733.74, + "probability": 0.972 + }, + { + "start": 8734.12, + "end": 8735.32, + "probability": 0.8439 + }, + { + "start": 8735.58, + "end": 8740.24, + "probability": 0.9877 + }, + { + "start": 8740.68, + "end": 8741.28, + "probability": 0.9792 + }, + { + "start": 8741.38, + "end": 8743.44, + "probability": 0.9904 + }, + { + "start": 8743.5, + "end": 8744.5, + "probability": 0.7499 + }, + { + "start": 8744.82, + "end": 8747.28, + "probability": 0.9895 + }, + { + "start": 8747.38, + "end": 8749.02, + "probability": 0.9984 + }, + { + "start": 8749.12, + "end": 8752.58, + "probability": 0.9971 + }, + { + "start": 8752.68, + "end": 8754.98, + "probability": 0.9281 + }, + { + "start": 8755.14, + "end": 8759.94, + "probability": 0.9385 + }, + { + "start": 8760.34, + "end": 8764.04, + "probability": 0.9767 + }, + { + "start": 8764.34, + "end": 8766.16, + "probability": 0.9989 + }, + { + "start": 8766.18, + "end": 8769.15, + "probability": 0.991 + }, + { + "start": 8769.16, + "end": 8773.08, + "probability": 0.9983 + }, + { + "start": 8773.2, + "end": 8776.72, + "probability": 0.8523 + }, + { + "start": 8776.72, + "end": 8777.68, + "probability": 0.9625 + }, + { + "start": 8777.8, + "end": 8778.14, + "probability": 0.7709 + }, + { + "start": 8778.42, + "end": 8780.18, + "probability": 0.8369 + }, + { + "start": 8780.34, + "end": 8782.9, + "probability": 0.9521 + }, + { + "start": 8782.96, + "end": 8783.56, + "probability": 0.3963 + }, + { + "start": 8783.58, + "end": 8785.38, + "probability": 0.9641 + }, + { + "start": 8795.26, + "end": 8797.88, + "probability": 0.8372 + }, + { + "start": 8800.02, + "end": 8802.0, + "probability": 0.5402 + }, + { + "start": 8802.04, + "end": 8802.76, + "probability": 0.7823 + }, + { + "start": 8803.8, + "end": 8807.44, + "probability": 0.6484 + }, + { + "start": 8807.66, + "end": 8808.43, + "probability": 0.7194 + }, + { + "start": 8809.82, + "end": 8810.72, + "probability": 0.814 + }, + { + "start": 8810.86, + "end": 8811.44, + "probability": 0.6409 + }, + { + "start": 8811.52, + "end": 8813.02, + "probability": 0.7395 + }, + { + "start": 8813.2, + "end": 8816.82, + "probability": 0.9673 + }, + { + "start": 8816.94, + "end": 8818.08, + "probability": 0.8236 + }, + { + "start": 8818.27, + "end": 8820.46, + "probability": 0.961 + }, + { + "start": 8820.56, + "end": 8821.6, + "probability": 0.6975 + }, + { + "start": 8822.54, + "end": 8824.68, + "probability": 0.7246 + }, + { + "start": 8824.8, + "end": 8825.5, + "probability": 0.4934 + }, + { + "start": 8826.84, + "end": 8826.86, + "probability": 0.0748 + }, + { + "start": 8826.86, + "end": 8830.42, + "probability": 0.6249 + }, + { + "start": 8830.42, + "end": 8833.6, + "probability": 0.6873 + }, + { + "start": 8833.92, + "end": 8837.1, + "probability": 0.9818 + }, + { + "start": 8837.16, + "end": 8839.08, + "probability": 0.0603 + }, + { + "start": 8839.08, + "end": 8840.12, + "probability": 0.7345 + }, + { + "start": 8840.34, + "end": 8842.36, + "probability": 0.2136 + }, + { + "start": 8842.54, + "end": 8845.96, + "probability": 0.9287 + }, + { + "start": 8845.96, + "end": 8849.4, + "probability": 0.9664 + }, + { + "start": 8849.46, + "end": 8850.3, + "probability": 0.7452 + }, + { + "start": 8850.7, + "end": 8852.82, + "probability": 0.861 + }, + { + "start": 8853.32, + "end": 8858.22, + "probability": 0.8979 + }, + { + "start": 8858.24, + "end": 8859.02, + "probability": 0.7726 + }, + { + "start": 8859.06, + "end": 8860.82, + "probability": 0.5021 + }, + { + "start": 8860.82, + "end": 8861.66, + "probability": 0.7224 + }, + { + "start": 8862.0, + "end": 8863.38, + "probability": 0.9683 + }, + { + "start": 8863.62, + "end": 8865.96, + "probability": 0.9016 + }, + { + "start": 8866.1, + "end": 8867.92, + "probability": 0.8114 + }, + { + "start": 8869.02, + "end": 8870.44, + "probability": 0.9805 + }, + { + "start": 8871.44, + "end": 8872.37, + "probability": 0.9001 + }, + { + "start": 8872.9, + "end": 8875.86, + "probability": 0.7637 + }, + { + "start": 8875.96, + "end": 8878.26, + "probability": 0.8842 + }, + { + "start": 8878.36, + "end": 8882.56, + "probability": 0.7355 + }, + { + "start": 8882.88, + "end": 8883.69, + "probability": 0.9705 + }, + { + "start": 8884.24, + "end": 8884.84, + "probability": 0.7285 + }, + { + "start": 8884.9, + "end": 8885.62, + "probability": 0.8707 + }, + { + "start": 8886.66, + "end": 8889.86, + "probability": 0.7727 + }, + { + "start": 8890.0, + "end": 8890.5, + "probability": 0.59 + }, + { + "start": 8891.68, + "end": 8893.54, + "probability": 0.9152 + }, + { + "start": 8893.54, + "end": 8893.94, + "probability": 0.6584 + }, + { + "start": 8894.0, + "end": 8896.52, + "probability": 0.9797 + }, + { + "start": 8896.52, + "end": 8898.94, + "probability": 0.9507 + }, + { + "start": 8899.36, + "end": 8901.06, + "probability": 0.5179 + }, + { + "start": 8901.58, + "end": 8902.02, + "probability": 0.8374 + }, + { + "start": 8902.06, + "end": 8904.88, + "probability": 0.9144 + }, + { + "start": 8904.96, + "end": 8905.88, + "probability": 0.9862 + }, + { + "start": 8906.86, + "end": 8910.14, + "probability": 0.6851 + }, + { + "start": 8910.38, + "end": 8914.34, + "probability": 0.9322 + }, + { + "start": 8914.34, + "end": 8918.36, + "probability": 0.998 + }, + { + "start": 8918.5, + "end": 8920.42, + "probability": 0.9883 + }, + { + "start": 8920.82, + "end": 8922.58, + "probability": 0.5319 + }, + { + "start": 8923.16, + "end": 8923.88, + "probability": 0.5396 + }, + { + "start": 8924.08, + "end": 8924.34, + "probability": 0.4165 + }, + { + "start": 8924.76, + "end": 8927.28, + "probability": 0.8285 + }, + { + "start": 8927.28, + "end": 8930.08, + "probability": 0.5878 + }, + { + "start": 8930.56, + "end": 8931.48, + "probability": 0.7744 + }, + { + "start": 8931.52, + "end": 8935.76, + "probability": 0.9651 + }, + { + "start": 8935.94, + "end": 8940.12, + "probability": 0.9521 + }, + { + "start": 8940.12, + "end": 8940.38, + "probability": 0.6038 + }, + { + "start": 8941.0, + "end": 8942.14, + "probability": 0.0481 + }, + { + "start": 8942.76, + "end": 8944.63, + "probability": 0.9182 + }, + { + "start": 8945.38, + "end": 8947.46, + "probability": 0.9514 + }, + { + "start": 8947.56, + "end": 8950.18, + "probability": 0.5388 + }, + { + "start": 8950.18, + "end": 8951.44, + "probability": 0.149 + }, + { + "start": 8952.36, + "end": 8954.42, + "probability": 0.2419 + }, + { + "start": 8954.42, + "end": 8955.64, + "probability": 0.3581 + }, + { + "start": 8956.22, + "end": 8958.26, + "probability": 0.9632 + }, + { + "start": 8958.34, + "end": 8961.44, + "probability": 0.7983 + }, + { + "start": 8961.88, + "end": 8963.92, + "probability": 0.4811 + }, + { + "start": 8964.02, + "end": 8965.98, + "probability": 0.8977 + }, + { + "start": 8966.18, + "end": 8966.72, + "probability": 0.8572 + }, + { + "start": 8966.82, + "end": 8967.84, + "probability": 0.8896 + }, + { + "start": 8967.86, + "end": 8970.78, + "probability": 0.9741 + }, + { + "start": 8970.82, + "end": 8971.52, + "probability": 0.4361 + }, + { + "start": 8971.78, + "end": 8975.74, + "probability": 0.8164 + }, + { + "start": 8984.04, + "end": 8986.08, + "probability": 0.6021 + }, + { + "start": 8986.22, + "end": 8986.62, + "probability": 0.6939 + }, + { + "start": 8986.74, + "end": 8987.28, + "probability": 0.6888 + }, + { + "start": 8987.48, + "end": 8990.94, + "probability": 0.8585 + }, + { + "start": 8990.94, + "end": 8993.7, + "probability": 0.9805 + }, + { + "start": 8993.88, + "end": 8994.64, + "probability": 0.5935 + }, + { + "start": 8995.18, + "end": 8997.22, + "probability": 0.8184 + }, + { + "start": 8997.68, + "end": 9003.26, + "probability": 0.9576 + }, + { + "start": 9003.34, + "end": 9005.08, + "probability": 0.8992 + }, + { + "start": 9005.08, + "end": 9006.03, + "probability": 0.7415 + }, + { + "start": 9006.74, + "end": 9008.82, + "probability": 0.6686 + }, + { + "start": 9009.32, + "end": 9011.12, + "probability": 0.945 + }, + { + "start": 9011.18, + "end": 9012.12, + "probability": 0.8776 + }, + { + "start": 9012.18, + "end": 9015.54, + "probability": 0.9601 + }, + { + "start": 9015.84, + "end": 9016.48, + "probability": 0.7238 + }, + { + "start": 9016.58, + "end": 9018.48, + "probability": 0.9946 + }, + { + "start": 9018.66, + "end": 9020.82, + "probability": 0.9706 + }, + { + "start": 9020.98, + "end": 9022.92, + "probability": 0.9652 + }, + { + "start": 9023.7, + "end": 9024.26, + "probability": 0.6722 + }, + { + "start": 9024.3, + "end": 9025.12, + "probability": 0.4932 + }, + { + "start": 9025.12, + "end": 9028.14, + "probability": 0.9319 + }, + { + "start": 9028.3, + "end": 9029.96, + "probability": 0.9855 + }, + { + "start": 9030.0, + "end": 9032.96, + "probability": 0.8834 + }, + { + "start": 9033.08, + "end": 9035.48, + "probability": 0.907 + }, + { + "start": 9035.92, + "end": 9039.42, + "probability": 0.66 + }, + { + "start": 9039.48, + "end": 9039.66, + "probability": 0.3868 + }, + { + "start": 9039.68, + "end": 9042.04, + "probability": 0.9326 + }, + { + "start": 9042.1, + "end": 9044.6, + "probability": 0.9407 + }, + { + "start": 9044.62, + "end": 9048.02, + "probability": 0.873 + }, + { + "start": 9062.12, + "end": 9063.66, + "probability": 0.8372 + }, + { + "start": 9066.3, + "end": 9070.62, + "probability": 0.8881 + }, + { + "start": 9071.34, + "end": 9075.9, + "probability": 0.9828 + }, + { + "start": 9076.56, + "end": 9079.52, + "probability": 0.9342 + }, + { + "start": 9081.16, + "end": 9083.96, + "probability": 0.8681 + }, + { + "start": 9085.2, + "end": 9088.6, + "probability": 0.9264 + }, + { + "start": 9088.8, + "end": 9090.96, + "probability": 0.9937 + }, + { + "start": 9091.42, + "end": 9092.76, + "probability": 0.9246 + }, + { + "start": 9093.18, + "end": 9097.96, + "probability": 0.9822 + }, + { + "start": 9097.96, + "end": 9103.88, + "probability": 0.9612 + }, + { + "start": 9103.96, + "end": 9109.16, + "probability": 0.7498 + }, + { + "start": 9109.62, + "end": 9110.9, + "probability": 0.8087 + }, + { + "start": 9111.36, + "end": 9117.58, + "probability": 0.9911 + }, + { + "start": 9117.94, + "end": 9120.14, + "probability": 0.9958 + }, + { + "start": 9120.58, + "end": 9125.74, + "probability": 0.9459 + }, + { + "start": 9125.8, + "end": 9130.56, + "probability": 0.9634 + }, + { + "start": 9131.7, + "end": 9132.74, + "probability": 0.8515 + }, + { + "start": 9132.94, + "end": 9137.88, + "probability": 0.9858 + }, + { + "start": 9138.42, + "end": 9138.8, + "probability": 0.5333 + }, + { + "start": 9138.98, + "end": 9141.4, + "probability": 0.9692 + }, + { + "start": 9142.72, + "end": 9147.8, + "probability": 0.6664 + }, + { + "start": 9147.96, + "end": 9150.42, + "probability": 0.6577 + }, + { + "start": 9150.82, + "end": 9151.7, + "probability": 0.9016 + }, + { + "start": 9151.78, + "end": 9156.7, + "probability": 0.9696 + }, + { + "start": 9157.42, + "end": 9159.13, + "probability": 0.9692 + }, + { + "start": 9159.82, + "end": 9164.04, + "probability": 0.9988 + }, + { + "start": 9164.04, + "end": 9171.26, + "probability": 0.9955 + }, + { + "start": 9171.78, + "end": 9177.7, + "probability": 0.9977 + }, + { + "start": 9177.7, + "end": 9183.38, + "probability": 0.9967 + }, + { + "start": 9183.98, + "end": 9186.0, + "probability": 0.9512 + }, + { + "start": 9186.46, + "end": 9190.18, + "probability": 0.6675 + }, + { + "start": 9190.82, + "end": 9193.14, + "probability": 0.87 + }, + { + "start": 9193.68, + "end": 9199.86, + "probability": 0.9639 + }, + { + "start": 9200.48, + "end": 9201.96, + "probability": 0.7435 + }, + { + "start": 9202.2, + "end": 9202.42, + "probability": 0.088 + }, + { + "start": 9202.78, + "end": 9207.74, + "probability": 0.9925 + }, + { + "start": 9207.74, + "end": 9212.98, + "probability": 0.7965 + }, + { + "start": 9213.36, + "end": 9217.62, + "probability": 0.9569 + }, + { + "start": 9218.72, + "end": 9219.86, + "probability": 0.5434 + }, + { + "start": 9219.98, + "end": 9221.74, + "probability": 0.9281 + }, + { + "start": 9222.18, + "end": 9223.6, + "probability": 0.8604 + }, + { + "start": 9224.24, + "end": 9225.82, + "probability": 0.9334 + }, + { + "start": 9226.28, + "end": 9227.34, + "probability": 0.8995 + }, + { + "start": 9227.82, + "end": 9228.44, + "probability": 0.957 + }, + { + "start": 9228.54, + "end": 9234.18, + "probability": 0.7666 + }, + { + "start": 9235.46, + "end": 9240.3, + "probability": 0.9893 + }, + { + "start": 9240.3, + "end": 9248.42, + "probability": 0.9819 + }, + { + "start": 9248.42, + "end": 9254.68, + "probability": 0.9993 + }, + { + "start": 9254.94, + "end": 9255.28, + "probability": 0.5743 + }, + { + "start": 9256.02, + "end": 9257.98, + "probability": 0.9475 + }, + { + "start": 9258.06, + "end": 9260.18, + "probability": 0.9933 + }, + { + "start": 9260.26, + "end": 9262.76, + "probability": 0.6508 + }, + { + "start": 9270.52, + "end": 9271.74, + "probability": 0.8074 + }, + { + "start": 9276.56, + "end": 9279.22, + "probability": 0.7137 + }, + { + "start": 9279.86, + "end": 9280.44, + "probability": 0.5427 + }, + { + "start": 9280.82, + "end": 9281.76, + "probability": 0.8569 + }, + { + "start": 9281.82, + "end": 9282.94, + "probability": 0.9133 + }, + { + "start": 9283.34, + "end": 9286.64, + "probability": 0.9807 + }, + { + "start": 9286.76, + "end": 9289.16, + "probability": 0.9421 + }, + { + "start": 9289.56, + "end": 9293.54, + "probability": 0.9942 + }, + { + "start": 9293.68, + "end": 9296.34, + "probability": 0.8245 + }, + { + "start": 9296.34, + "end": 9299.42, + "probability": 0.8494 + }, + { + "start": 9299.44, + "end": 9303.96, + "probability": 0.9469 + }, + { + "start": 9304.04, + "end": 9306.26, + "probability": 0.7038 + }, + { + "start": 9306.34, + "end": 9307.04, + "probability": 0.3287 + }, + { + "start": 9307.22, + "end": 9308.84, + "probability": 0.9756 + }, + { + "start": 9309.22, + "end": 9309.64, + "probability": 0.3361 + }, + { + "start": 9309.66, + "end": 9311.46, + "probability": 0.9836 + }, + { + "start": 9311.78, + "end": 9317.3, + "probability": 0.8932 + }, + { + "start": 9318.18, + "end": 9319.76, + "probability": 0.98 + }, + { + "start": 9319.88, + "end": 9321.22, + "probability": 0.918 + }, + { + "start": 9321.62, + "end": 9323.24, + "probability": 0.9268 + }, + { + "start": 9323.6, + "end": 9326.6, + "probability": 0.9935 + }, + { + "start": 9326.96, + "end": 9329.64, + "probability": 0.9951 + }, + { + "start": 9329.72, + "end": 9331.4, + "probability": 0.9707 + }, + { + "start": 9331.96, + "end": 9332.4, + "probability": 0.7035 + }, + { + "start": 9332.48, + "end": 9336.44, + "probability": 0.9979 + }, + { + "start": 9336.86, + "end": 9338.56, + "probability": 0.9961 + }, + { + "start": 9338.62, + "end": 9339.54, + "probability": 0.5912 + }, + { + "start": 9339.9, + "end": 9341.04, + "probability": 0.7764 + }, + { + "start": 9341.22, + "end": 9342.4, + "probability": 0.9888 + }, + { + "start": 9342.6, + "end": 9343.72, + "probability": 0.8066 + }, + { + "start": 9343.82, + "end": 9344.5, + "probability": 0.8896 + }, + { + "start": 9344.58, + "end": 9345.62, + "probability": 0.7054 + }, + { + "start": 9345.72, + "end": 9346.82, + "probability": 0.9355 + }, + { + "start": 9347.02, + "end": 9347.72, + "probability": 0.8065 + }, + { + "start": 9347.74, + "end": 9350.78, + "probability": 0.7495 + }, + { + "start": 9351.02, + "end": 9351.8, + "probability": 0.7876 + }, + { + "start": 9351.9, + "end": 9352.69, + "probability": 0.8526 + }, + { + "start": 9352.84, + "end": 9354.36, + "probability": 0.9397 + }, + { + "start": 9354.6, + "end": 9357.94, + "probability": 0.9109 + }, + { + "start": 9358.28, + "end": 9361.9, + "probability": 0.9893 + }, + { + "start": 9362.18, + "end": 9365.96, + "probability": 0.9922 + }, + { + "start": 9366.1, + "end": 9369.16, + "probability": 0.9814 + }, + { + "start": 9369.22, + "end": 9370.58, + "probability": 0.3403 + }, + { + "start": 9370.78, + "end": 9375.76, + "probability": 0.9818 + }, + { + "start": 9375.96, + "end": 9376.24, + "probability": 0.388 + }, + { + "start": 9376.54, + "end": 9377.48, + "probability": 0.8607 + }, + { + "start": 9377.76, + "end": 9382.98, + "probability": 0.9865 + }, + { + "start": 9383.32, + "end": 9385.38, + "probability": 0.9946 + }, + { + "start": 9385.46, + "end": 9387.68, + "probability": 0.9753 + }, + { + "start": 9388.1, + "end": 9388.68, + "probability": 0.6648 + }, + { + "start": 9389.2, + "end": 9393.86, + "probability": 0.9506 + }, + { + "start": 9394.12, + "end": 9395.74, + "probability": 0.9883 + }, + { + "start": 9395.98, + "end": 9397.82, + "probability": 0.9668 + }, + { + "start": 9397.94, + "end": 9400.72, + "probability": 0.9653 + }, + { + "start": 9401.84, + "end": 9405.4, + "probability": 0.9511 + }, + { + "start": 9406.32, + "end": 9408.24, + "probability": 0.999 + }, + { + "start": 9408.28, + "end": 9408.68, + "probability": 0.8323 + }, + { + "start": 9409.4, + "end": 9411.7, + "probability": 0.9446 + }, + { + "start": 9411.74, + "end": 9413.66, + "probability": 0.8872 + }, + { + "start": 9413.7, + "end": 9414.5, + "probability": 0.5975 + }, + { + "start": 9415.04, + "end": 9417.48, + "probability": 0.912 + }, + { + "start": 9440.14, + "end": 9441.46, + "probability": 0.7637 + }, + { + "start": 9442.34, + "end": 9443.58, + "probability": 0.6676 + }, + { + "start": 9443.58, + "end": 9446.06, + "probability": 0.8182 + }, + { + "start": 9446.26, + "end": 9447.52, + "probability": 0.8542 + }, + { + "start": 9447.6, + "end": 9448.62, + "probability": 0.5907 + }, + { + "start": 9448.62, + "end": 9449.32, + "probability": 0.8282 + }, + { + "start": 9450.6, + "end": 9456.6, + "probability": 0.9562 + }, + { + "start": 9458.36, + "end": 9462.16, + "probability": 0.7261 + }, + { + "start": 9463.12, + "end": 9465.76, + "probability": 0.8653 + }, + { + "start": 9466.46, + "end": 9467.96, + "probability": 0.9336 + }, + { + "start": 9468.54, + "end": 9472.14, + "probability": 0.9924 + }, + { + "start": 9473.32, + "end": 9477.14, + "probability": 0.8269 + }, + { + "start": 9477.92, + "end": 9479.48, + "probability": 0.7159 + }, + { + "start": 9481.12, + "end": 9488.8, + "probability": 0.9097 + }, + { + "start": 9488.88, + "end": 9491.82, + "probability": 0.953 + }, + { + "start": 9492.04, + "end": 9493.86, + "probability": 0.7409 + }, + { + "start": 9494.4, + "end": 9496.12, + "probability": 0.8224 + }, + { + "start": 9496.3, + "end": 9499.02, + "probability": 0.9828 + }, + { + "start": 9499.34, + "end": 9499.64, + "probability": 0.8179 + }, + { + "start": 9499.64, + "end": 9500.82, + "probability": 0.9707 + }, + { + "start": 9500.96, + "end": 9505.28, + "probability": 0.9517 + }, + { + "start": 9505.28, + "end": 9508.42, + "probability": 0.9793 + }, + { + "start": 9509.5, + "end": 9510.5, + "probability": 0.8602 + }, + { + "start": 9510.7, + "end": 9512.06, + "probability": 0.9879 + }, + { + "start": 9512.16, + "end": 9514.34, + "probability": 0.9842 + }, + { + "start": 9514.34, + "end": 9518.7, + "probability": 0.911 + }, + { + "start": 9518.94, + "end": 9519.8, + "probability": 0.7778 + }, + { + "start": 9520.0, + "end": 9522.3, + "probability": 0.798 + }, + { + "start": 9522.8, + "end": 9527.16, + "probability": 0.9851 + }, + { + "start": 9528.34, + "end": 9530.28, + "probability": 0.9642 + }, + { + "start": 9530.4, + "end": 9533.5, + "probability": 0.9257 + }, + { + "start": 9533.76, + "end": 9539.08, + "probability": 0.8871 + }, + { + "start": 9539.5, + "end": 9541.26, + "probability": 0.8735 + }, + { + "start": 9541.5, + "end": 9542.98, + "probability": 0.9365 + }, + { + "start": 9543.22, + "end": 9549.24, + "probability": 0.9911 + }, + { + "start": 9549.24, + "end": 9555.52, + "probability": 0.9991 + }, + { + "start": 9555.58, + "end": 9556.32, + "probability": 0.6659 + }, + { + "start": 9556.4, + "end": 9557.34, + "probability": 0.6467 + }, + { + "start": 9557.66, + "end": 9562.84, + "probability": 0.9918 + }, + { + "start": 9562.84, + "end": 9567.06, + "probability": 0.9074 + }, + { + "start": 9567.76, + "end": 9572.58, + "probability": 0.9824 + }, + { + "start": 9572.66, + "end": 9573.42, + "probability": 0.911 + }, + { + "start": 9574.04, + "end": 9577.7, + "probability": 0.8931 + }, + { + "start": 9577.88, + "end": 9580.96, + "probability": 0.8506 + }, + { + "start": 9581.44, + "end": 9586.26, + "probability": 0.9324 + }, + { + "start": 9586.26, + "end": 9588.96, + "probability": 0.9927 + }, + { + "start": 9589.02, + "end": 9590.28, + "probability": 0.7303 + }, + { + "start": 9590.78, + "end": 9592.24, + "probability": 0.6907 + }, + { + "start": 9593.5, + "end": 9596.62, + "probability": 0.8872 + }, + { + "start": 9596.82, + "end": 9600.38, + "probability": 0.9826 + }, + { + "start": 9600.76, + "end": 9603.24, + "probability": 0.9919 + }, + { + "start": 9603.52, + "end": 9606.78, + "probability": 0.9971 + }, + { + "start": 9607.16, + "end": 9612.01, + "probability": 0.9978 + }, + { + "start": 9612.88, + "end": 9615.38, + "probability": 0.9802 + }, + { + "start": 9615.7, + "end": 9616.74, + "probability": 0.8986 + }, + { + "start": 9617.26, + "end": 9617.94, + "probability": 0.9157 + }, + { + "start": 9618.36, + "end": 9620.52, + "probability": 0.8819 + }, + { + "start": 9620.84, + "end": 9621.88, + "probability": 0.8938 + }, + { + "start": 9621.92, + "end": 9622.86, + "probability": 0.9545 + }, + { + "start": 9623.5, + "end": 9625.72, + "probability": 0.6449 + }, + { + "start": 9626.7, + "end": 9629.77, + "probability": 0.6797 + }, + { + "start": 9630.02, + "end": 9630.92, + "probability": 0.4033 + }, + { + "start": 9630.92, + "end": 9633.2, + "probability": 0.8543 + }, + { + "start": 9634.42, + "end": 9636.37, + "probability": 0.6605 + }, + { + "start": 9637.76, + "end": 9642.18, + "probability": 0.6973 + }, + { + "start": 9642.3, + "end": 9644.74, + "probability": 0.8369 + }, + { + "start": 9645.88, + "end": 9647.12, + "probability": 0.9492 + }, + { + "start": 9648.1, + "end": 9649.06, + "probability": 0.5471 + }, + { + "start": 9651.7, + "end": 9651.86, + "probability": 0.8743 + }, + { + "start": 9652.08, + "end": 9654.21, + "probability": 0.9355 + }, + { + "start": 9654.66, + "end": 9658.4, + "probability": 0.9979 + }, + { + "start": 9659.58, + "end": 9664.6, + "probability": 0.9972 + }, + { + "start": 9664.92, + "end": 9666.88, + "probability": 0.9497 + }, + { + "start": 9667.68, + "end": 9670.74, + "probability": 0.9456 + }, + { + "start": 9671.46, + "end": 9674.28, + "probability": 0.9686 + }, + { + "start": 9674.44, + "end": 9677.58, + "probability": 0.995 + }, + { + "start": 9677.96, + "end": 9682.69, + "probability": 0.9539 + }, + { + "start": 9683.18, + "end": 9685.43, + "probability": 0.9972 + }, + { + "start": 9686.24, + "end": 9688.9, + "probability": 0.9919 + }, + { + "start": 9689.92, + "end": 9694.16, + "probability": 0.9974 + }, + { + "start": 9695.46, + "end": 9700.78, + "probability": 0.9935 + }, + { + "start": 9701.1, + "end": 9703.06, + "probability": 0.96 + }, + { + "start": 9703.62, + "end": 9707.3, + "probability": 0.7745 + }, + { + "start": 9707.84, + "end": 9712.34, + "probability": 0.9734 + }, + { + "start": 9712.8, + "end": 9714.13, + "probability": 0.964 + }, + { + "start": 9714.2, + "end": 9717.06, + "probability": 0.892 + }, + { + "start": 9717.5, + "end": 9722.06, + "probability": 0.8755 + }, + { + "start": 9723.06, + "end": 9726.8, + "probability": 0.9905 + }, + { + "start": 9726.8, + "end": 9731.5, + "probability": 0.9961 + }, + { + "start": 9732.1, + "end": 9733.79, + "probability": 0.9006 + }, + { + "start": 9733.86, + "end": 9736.02, + "probability": 0.9427 + }, + { + "start": 9736.48, + "end": 9739.04, + "probability": 0.8051 + }, + { + "start": 9739.04, + "end": 9742.28, + "probability": 0.9267 + }, + { + "start": 9743.34, + "end": 9744.32, + "probability": 0.5093 + }, + { + "start": 9744.46, + "end": 9745.38, + "probability": 0.7168 + }, + { + "start": 9745.54, + "end": 9746.72, + "probability": 0.5607 + }, + { + "start": 9746.94, + "end": 9748.18, + "probability": 0.8148 + }, + { + "start": 9749.3, + "end": 9751.14, + "probability": 0.9482 + }, + { + "start": 9751.54, + "end": 9757.84, + "probability": 0.9556 + }, + { + "start": 9758.6, + "end": 9761.34, + "probability": 0.9858 + }, + { + "start": 9761.34, + "end": 9763.92, + "probability": 0.9064 + }, + { + "start": 9764.42, + "end": 9767.0, + "probability": 0.9871 + }, + { + "start": 9767.28, + "end": 9770.9, + "probability": 0.9977 + }, + { + "start": 9771.64, + "end": 9772.25, + "probability": 0.7849 + }, + { + "start": 9773.06, + "end": 9776.44, + "probability": 0.9567 + }, + { + "start": 9776.44, + "end": 9780.18, + "probability": 0.9953 + }, + { + "start": 9780.7, + "end": 9783.26, + "probability": 0.983 + }, + { + "start": 9783.26, + "end": 9786.3, + "probability": 0.9924 + }, + { + "start": 9786.38, + "end": 9790.26, + "probability": 0.9966 + }, + { + "start": 9791.32, + "end": 9793.76, + "probability": 0.996 + }, + { + "start": 9793.96, + "end": 9795.88, + "probability": 0.9138 + }, + { + "start": 9796.66, + "end": 9800.94, + "probability": 0.9907 + }, + { + "start": 9801.64, + "end": 9806.8, + "probability": 0.9883 + }, + { + "start": 9807.34, + "end": 9810.22, + "probability": 0.925 + }, + { + "start": 9810.42, + "end": 9811.46, + "probability": 0.7969 + }, + { + "start": 9811.72, + "end": 9815.2, + "probability": 0.7998 + }, + { + "start": 9815.2, + "end": 9819.48, + "probability": 0.9958 + }, + { + "start": 9819.68, + "end": 9821.78, + "probability": 0.9612 + }, + { + "start": 9822.58, + "end": 9825.14, + "probability": 0.9688 + }, + { + "start": 9825.62, + "end": 9828.06, + "probability": 0.9932 + }, + { + "start": 9828.22, + "end": 9830.08, + "probability": 0.7872 + }, + { + "start": 9830.4, + "end": 9833.8, + "probability": 0.9538 + }, + { + "start": 9834.52, + "end": 9838.28, + "probability": 0.9939 + }, + { + "start": 9839.36, + "end": 9841.88, + "probability": 0.9513 + }, + { + "start": 9842.6, + "end": 9843.66, + "probability": 0.7494 + }, + { + "start": 9843.84, + "end": 9846.72, + "probability": 0.9479 + }, + { + "start": 9846.72, + "end": 9848.92, + "probability": 0.9845 + }, + { + "start": 9849.42, + "end": 9853.1, + "probability": 0.9956 + }, + { + "start": 9854.1, + "end": 9856.36, + "probability": 0.9896 + }, + { + "start": 9856.76, + "end": 9859.94, + "probability": 0.999 + }, + { + "start": 9859.94, + "end": 9863.02, + "probability": 0.9993 + }, + { + "start": 9863.52, + "end": 9868.78, + "probability": 0.9924 + }, + { + "start": 9868.8, + "end": 9870.3, + "probability": 0.2185 + }, + { + "start": 9870.42, + "end": 9872.5, + "probability": 0.3065 + }, + { + "start": 9872.74, + "end": 9872.96, + "probability": 0.6238 + }, + { + "start": 9875.6, + "end": 9878.8, + "probability": 0.6554 + }, + { + "start": 9879.34, + "end": 9883.3, + "probability": 0.8436 + }, + { + "start": 9883.86, + "end": 9886.16, + "probability": 0.9438 + }, + { + "start": 9886.16, + "end": 9887.18, + "probability": 0.3771 + }, + { + "start": 9887.32, + "end": 9889.84, + "probability": 0.7055 + }, + { + "start": 9890.02, + "end": 9892.22, + "probability": 0.1906 + }, + { + "start": 9892.3, + "end": 9894.1, + "probability": 0.7993 + }, + { + "start": 9897.44, + "end": 9899.28, + "probability": 0.9415 + }, + { + "start": 9899.46, + "end": 9903.68, + "probability": 0.5904 + }, + { + "start": 9903.78, + "end": 9904.54, + "probability": 0.7381 + }, + { + "start": 9904.92, + "end": 9909.12, + "probability": 0.9535 + }, + { + "start": 9909.24, + "end": 9910.38, + "probability": 0.8126 + }, + { + "start": 9910.68, + "end": 9912.62, + "probability": 0.9918 + }, + { + "start": 9913.48, + "end": 9915.36, + "probability": 0.8429 + }, + { + "start": 9916.02, + "end": 9917.72, + "probability": 0.9637 + }, + { + "start": 9917.88, + "end": 9919.4, + "probability": 0.999 + }, + { + "start": 9919.72, + "end": 9924.26, + "probability": 0.9657 + }, + { + "start": 9924.38, + "end": 9929.36, + "probability": 0.9538 + }, + { + "start": 9929.7, + "end": 9930.34, + "probability": 0.5661 + }, + { + "start": 9930.54, + "end": 9932.2, + "probability": 0.859 + }, + { + "start": 9932.28, + "end": 9935.48, + "probability": 0.9364 + }, + { + "start": 9935.6, + "end": 9937.21, + "probability": 0.917 + }, + { + "start": 9938.86, + "end": 9943.36, + "probability": 0.9436 + }, + { + "start": 9943.64, + "end": 9948.46, + "probability": 0.9906 + }, + { + "start": 9949.02, + "end": 9953.7, + "probability": 0.8461 + }, + { + "start": 9953.92, + "end": 9958.96, + "probability": 0.9903 + }, + { + "start": 9958.96, + "end": 9962.8, + "probability": 0.9912 + }, + { + "start": 9963.12, + "end": 9964.12, + "probability": 0.8341 + }, + { + "start": 9964.24, + "end": 9966.02, + "probability": 0.8946 + }, + { + "start": 9966.16, + "end": 9969.18, + "probability": 0.8993 + }, + { + "start": 9969.24, + "end": 9971.48, + "probability": 0.9906 + }, + { + "start": 9971.66, + "end": 9975.86, + "probability": 0.9783 + }, + { + "start": 9976.06, + "end": 9979.68, + "probability": 0.7296 + }, + { + "start": 9980.06, + "end": 9985.24, + "probability": 0.9006 + }, + { + "start": 9985.74, + "end": 9991.84, + "probability": 0.7475 + }, + { + "start": 9992.1, + "end": 9994.3, + "probability": 0.4536 + }, + { + "start": 9994.3, + "end": 9997.32, + "probability": 0.6197 + }, + { + "start": 10000.72, + "end": 10002.7, + "probability": 0.9507 + }, + { + "start": 10007.48, + "end": 10010.58, + "probability": 0.7276 + }, + { + "start": 10010.6, + "end": 10012.38, + "probability": 0.4135 + }, + { + "start": 10013.06, + "end": 10014.68, + "probability": 0.9512 + }, + { + "start": 10014.8, + "end": 10017.74, + "probability": 0.8508 + }, + { + "start": 10017.88, + "end": 10018.5, + "probability": 0.9219 + }, + { + "start": 10018.52, + "end": 10019.02, + "probability": 0.9861 + }, + { + "start": 10019.12, + "end": 10019.58, + "probability": 0.9399 + }, + { + "start": 10019.66, + "end": 10021.46, + "probability": 0.9533 + }, + { + "start": 10021.74, + "end": 10023.25, + "probability": 0.8184 + }, + { + "start": 10023.6, + "end": 10027.6, + "probability": 0.9155 + }, + { + "start": 10027.78, + "end": 10030.88, + "probability": 0.7519 + }, + { + "start": 10030.96, + "end": 10035.92, + "probability": 0.9281 + }, + { + "start": 10036.0, + "end": 10038.22, + "probability": 0.8669 + }, + { + "start": 10038.62, + "end": 10038.78, + "probability": 0.1679 + }, + { + "start": 10038.88, + "end": 10039.36, + "probability": 0.9429 + }, + { + "start": 10039.46, + "end": 10041.8, + "probability": 0.8927 + }, + { + "start": 10042.2, + "end": 10045.28, + "probability": 0.9635 + }, + { + "start": 10045.54, + "end": 10047.58, + "probability": 0.764 + }, + { + "start": 10047.68, + "end": 10051.96, + "probability": 0.9805 + }, + { + "start": 10052.36, + "end": 10058.98, + "probability": 0.9884 + }, + { + "start": 10059.18, + "end": 10059.6, + "probability": 0.6728 + }, + { + "start": 10060.26, + "end": 10062.66, + "probability": 0.9323 + }, + { + "start": 10062.74, + "end": 10065.22, + "probability": 0.7049 + }, + { + "start": 10066.14, + "end": 10068.26, + "probability": 0.7448 + }, + { + "start": 10077.3, + "end": 10079.56, + "probability": 0.7051 + }, + { + "start": 10079.96, + "end": 10081.56, + "probability": 0.727 + }, + { + "start": 10082.7, + "end": 10083.66, + "probability": 0.7486 + }, + { + "start": 10084.34, + "end": 10085.34, + "probability": 0.7599 + }, + { + "start": 10086.34, + "end": 10091.4, + "probability": 0.8721 + }, + { + "start": 10092.3, + "end": 10095.1, + "probability": 0.6837 + }, + { + "start": 10096.06, + "end": 10099.12, + "probability": 0.953 + }, + { + "start": 10099.12, + "end": 10103.28, + "probability": 0.9915 + }, + { + "start": 10104.36, + "end": 10105.8, + "probability": 0.685 + }, + { + "start": 10106.38, + "end": 10112.06, + "probability": 0.2082 + }, + { + "start": 10112.06, + "end": 10112.06, + "probability": 0.1075 + }, + { + "start": 10112.06, + "end": 10113.26, + "probability": 0.4342 + }, + { + "start": 10115.3, + "end": 10116.68, + "probability": 0.6622 + }, + { + "start": 10118.62, + "end": 10121.7, + "probability": 0.8608 + }, + { + "start": 10121.7, + "end": 10124.26, + "probability": 0.9009 + }, + { + "start": 10124.92, + "end": 10126.12, + "probability": 0.9709 + }, + { + "start": 10126.36, + "end": 10128.1, + "probability": 0.9688 + }, + { + "start": 10128.52, + "end": 10131.52, + "probability": 0.1722 + }, + { + "start": 10131.52, + "end": 10134.82, + "probability": 0.8281 + }, + { + "start": 10149.82, + "end": 10154.34, + "probability": 0.0291 + }, + { + "start": 10154.34, + "end": 10155.24, + "probability": 0.0644 + }, + { + "start": 10155.24, + "end": 10155.92, + "probability": 0.179 + }, + { + "start": 10160.44, + "end": 10161.4, + "probability": 0.1266 + }, + { + "start": 10161.4, + "end": 10164.0, + "probability": 0.0154 + }, + { + "start": 10166.42, + "end": 10167.44, + "probability": 0.0878 + }, + { + "start": 10168.08, + "end": 10173.59, + "probability": 0.025 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.0, + "end": 10213.0, + "probability": 0.0 + }, + { + "start": 10213.18, + "end": 10215.71, + "probability": 0.0796 + }, + { + "start": 10220.48, + "end": 10222.46, + "probability": 0.063 + }, + { + "start": 10226.32, + "end": 10229.42, + "probability": 0.023 + }, + { + "start": 10229.42, + "end": 10234.26, + "probability": 0.1076 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.0, + "end": 10342.0, + "probability": 0.0 + }, + { + "start": 10342.2, + "end": 10342.78, + "probability": 0.4085 + }, + { + "start": 10343.04, + "end": 10344.03, + "probability": 0.7656 + }, + { + "start": 10344.42, + "end": 10345.0, + "probability": 0.7803 + }, + { + "start": 10345.3, + "end": 10348.15, + "probability": 0.856 + }, + { + "start": 10348.24, + "end": 10349.72, + "probability": 0.9684 + }, + { + "start": 10349.8, + "end": 10351.18, + "probability": 0.9064 + }, + { + "start": 10351.28, + "end": 10352.38, + "probability": 0.6985 + }, + { + "start": 10352.68, + "end": 10357.58, + "probability": 0.9918 + }, + { + "start": 10358.02, + "end": 10358.88, + "probability": 0.4139 + }, + { + "start": 10358.92, + "end": 10359.2, + "probability": 0.4047 + }, + { + "start": 10359.28, + "end": 10362.44, + "probability": 0.978 + }, + { + "start": 10362.48, + "end": 10363.02, + "probability": 0.9038 + }, + { + "start": 10363.76, + "end": 10365.54, + "probability": 0.9045 + }, + { + "start": 10365.92, + "end": 10368.3, + "probability": 0.9395 + }, + { + "start": 10368.48, + "end": 10369.64, + "probability": 0.9028 + }, + { + "start": 10370.16, + "end": 10371.9, + "probability": 0.9985 + }, + { + "start": 10372.08, + "end": 10374.68, + "probability": 0.9664 + }, + { + "start": 10374.68, + "end": 10379.04, + "probability": 0.9722 + }, + { + "start": 10379.12, + "end": 10379.8, + "probability": 0.8275 + }, + { + "start": 10381.38, + "end": 10384.08, + "probability": 0.5326 + }, + { + "start": 10384.74, + "end": 10384.86, + "probability": 0.2693 + }, + { + "start": 10384.86, + "end": 10387.28, + "probability": 0.7978 + }, + { + "start": 10387.64, + "end": 10388.54, + "probability": 0.6822 + }, + { + "start": 10389.26, + "end": 10390.52, + "probability": 0.7964 + }, + { + "start": 10391.92, + "end": 10395.06, + "probability": 0.8765 + }, + { + "start": 10395.12, + "end": 10396.46, + "probability": 0.9193 + }, + { + "start": 10397.34, + "end": 10398.5, + "probability": 0.2607 + }, + { + "start": 10398.64, + "end": 10401.62, + "probability": 0.9854 + }, + { + "start": 10401.72, + "end": 10403.08, + "probability": 0.9932 + }, + { + "start": 10403.52, + "end": 10404.5, + "probability": 0.578 + }, + { + "start": 10405.78, + "end": 10407.66, + "probability": 0.8545 + }, + { + "start": 10408.0, + "end": 10408.88, + "probability": 0.49 + }, + { + "start": 10410.44, + "end": 10411.32, + "probability": 0.4409 + }, + { + "start": 10412.32, + "end": 10414.9, + "probability": 0.8769 + }, + { + "start": 10415.4, + "end": 10416.44, + "probability": 0.7127 + }, + { + "start": 10416.54, + "end": 10419.38, + "probability": 0.8219 + }, + { + "start": 10420.6, + "end": 10423.58, + "probability": 0.9683 + }, + { + "start": 10424.46, + "end": 10425.36, + "probability": 0.8688 + }, + { + "start": 10425.48, + "end": 10426.12, + "probability": 0.9375 + }, + { + "start": 10426.2, + "end": 10427.42, + "probability": 0.9868 + }, + { + "start": 10427.9, + "end": 10428.94, + "probability": 0.9868 + }, + { + "start": 10429.18, + "end": 10430.98, + "probability": 0.9209 + }, + { + "start": 10432.84, + "end": 10437.82, + "probability": 0.98 + }, + { + "start": 10439.4, + "end": 10441.82, + "probability": 0.85 + }, + { + "start": 10442.06, + "end": 10442.72, + "probability": 0.3955 + }, + { + "start": 10442.96, + "end": 10445.74, + "probability": 0.9354 + }, + { + "start": 10446.42, + "end": 10449.66, + "probability": 0.9674 + }, + { + "start": 10450.86, + "end": 10452.06, + "probability": 0.7702 + }, + { + "start": 10452.98, + "end": 10454.38, + "probability": 0.8018 + }, + { + "start": 10454.8, + "end": 10455.44, + "probability": 0.457 + }, + { + "start": 10455.54, + "end": 10461.14, + "probability": 0.9988 + }, + { + "start": 10461.54, + "end": 10464.56, + "probability": 0.9936 + }, + { + "start": 10465.04, + "end": 10467.28, + "probability": 0.9818 + }, + { + "start": 10467.66, + "end": 10469.04, + "probability": 0.9578 + }, + { + "start": 10470.1, + "end": 10471.21, + "probability": 0.5255 + }, + { + "start": 10471.76, + "end": 10474.96, + "probability": 0.9823 + }, + { + "start": 10474.96, + "end": 10478.28, + "probability": 0.9683 + }, + { + "start": 10478.44, + "end": 10482.54, + "probability": 0.889 + }, + { + "start": 10483.2, + "end": 10484.58, + "probability": 0.9463 + }, + { + "start": 10485.92, + "end": 10488.98, + "probability": 0.96 + }, + { + "start": 10489.08, + "end": 10490.74, + "probability": 0.8434 + }, + { + "start": 10491.12, + "end": 10494.16, + "probability": 0.8721 + }, + { + "start": 10494.48, + "end": 10495.94, + "probability": 0.6942 + }, + { + "start": 10496.52, + "end": 10496.92, + "probability": 0.6983 + }, + { + "start": 10497.02, + "end": 10498.24, + "probability": 0.746 + }, + { + "start": 10498.28, + "end": 10499.44, + "probability": 0.7054 + }, + { + "start": 10499.46, + "end": 10500.82, + "probability": 0.8862 + }, + { + "start": 10501.1, + "end": 10503.06, + "probability": 0.9845 + }, + { + "start": 10504.04, + "end": 10505.87, + "probability": 0.9563 + }, + { + "start": 10507.18, + "end": 10508.1, + "probability": 0.6912 + }, + { + "start": 10508.16, + "end": 10511.72, + "probability": 0.825 + }, + { + "start": 10511.86, + "end": 10513.88, + "probability": 0.7753 + }, + { + "start": 10513.98, + "end": 10518.5, + "probability": 0.7736 + }, + { + "start": 10519.68, + "end": 10520.86, + "probability": 0.1272 + }, + { + "start": 10520.86, + "end": 10522.02, + "probability": 0.4757 + }, + { + "start": 10522.1, + "end": 10524.88, + "probability": 0.4923 + }, + { + "start": 10525.46, + "end": 10527.28, + "probability": 0.7655 + }, + { + "start": 10529.5, + "end": 10533.02, + "probability": 0.991 + }, + { + "start": 10533.08, + "end": 10533.78, + "probability": 0.8027 + }, + { + "start": 10534.98, + "end": 10536.38, + "probability": 0.5225 + }, + { + "start": 10536.54, + "end": 10540.12, + "probability": 0.7204 + }, + { + "start": 10540.4, + "end": 10542.0, + "probability": 0.99 + }, + { + "start": 10542.26, + "end": 10545.52, + "probability": 0.9673 + }, + { + "start": 10545.64, + "end": 10547.0, + "probability": 0.5225 + }, + { + "start": 10547.54, + "end": 10548.72, + "probability": 0.7869 + }, + { + "start": 10548.76, + "end": 10549.35, + "probability": 0.6395 + }, + { + "start": 10549.78, + "end": 10550.92, + "probability": 0.9312 + }, + { + "start": 10551.0, + "end": 10554.54, + "probability": 0.7964 + }, + { + "start": 10554.54, + "end": 10558.76, + "probability": 0.8492 + }, + { + "start": 10560.16, + "end": 10561.48, + "probability": 0.5707 + }, + { + "start": 10561.96, + "end": 10563.68, + "probability": 0.9019 + }, + { + "start": 10563.76, + "end": 10566.44, + "probability": 0.9774 + }, + { + "start": 10566.72, + "end": 10567.26, + "probability": 0.8494 + }, + { + "start": 10567.26, + "end": 10568.16, + "probability": 0.646 + }, + { + "start": 10568.24, + "end": 10568.72, + "probability": 0.7069 + }, + { + "start": 10568.8, + "end": 10569.76, + "probability": 0.7238 + }, + { + "start": 10570.44, + "end": 10571.88, + "probability": 0.9604 + }, + { + "start": 10572.18, + "end": 10573.38, + "probability": 0.8586 + }, + { + "start": 10573.86, + "end": 10576.62, + "probability": 0.9883 + }, + { + "start": 10576.86, + "end": 10580.28, + "probability": 0.8275 + }, + { + "start": 10580.44, + "end": 10581.46, + "probability": 0.6853 + }, + { + "start": 10581.52, + "end": 10582.74, + "probability": 0.9368 + }, + { + "start": 10583.14, + "end": 10584.04, + "probability": 0.7952 + }, + { + "start": 10584.12, + "end": 10586.85, + "probability": 0.8901 + }, + { + "start": 10587.16, + "end": 10589.22, + "probability": 0.9313 + }, + { + "start": 10589.63, + "end": 10592.36, + "probability": 0.939 + }, + { + "start": 10592.96, + "end": 10595.34, + "probability": 0.4248 + }, + { + "start": 10595.34, + "end": 10598.32, + "probability": 0.7482 + }, + { + "start": 10598.76, + "end": 10600.2, + "probability": 0.8921 + }, + { + "start": 10600.32, + "end": 10602.42, + "probability": 0.9751 + }, + { + "start": 10602.44, + "end": 10603.48, + "probability": 0.8326 + }, + { + "start": 10603.6, + "end": 10604.8, + "probability": 0.9584 + }, + { + "start": 10605.08, + "end": 10608.64, + "probability": 0.9829 + }, + { + "start": 10609.2, + "end": 10610.63, + "probability": 0.9194 + }, + { + "start": 10611.0, + "end": 10611.95, + "probability": 0.9062 + }, + { + "start": 10613.32, + "end": 10615.04, + "probability": 0.9198 + }, + { + "start": 10615.1, + "end": 10616.52, + "probability": 0.9888 + }, + { + "start": 10616.66, + "end": 10617.43, + "probability": 0.6353 + }, + { + "start": 10617.7, + "end": 10620.93, + "probability": 0.7835 + }, + { + "start": 10623.04, + "end": 10626.98, + "probability": 0.9766 + }, + { + "start": 10627.5, + "end": 10628.8, + "probability": 0.9326 + }, + { + "start": 10629.02, + "end": 10630.02, + "probability": 0.9366 + }, + { + "start": 10630.08, + "end": 10631.34, + "probability": 0.9305 + }, + { + "start": 10631.46, + "end": 10631.86, + "probability": 0.5467 + }, + { + "start": 10631.92, + "end": 10633.45, + "probability": 0.9749 + }, + { + "start": 10633.52, + "end": 10636.36, + "probability": 0.8083 + }, + { + "start": 10637.78, + "end": 10638.4, + "probability": 0.9739 + }, + { + "start": 10638.48, + "end": 10641.24, + "probability": 0.8328 + }, + { + "start": 10641.28, + "end": 10643.54, + "probability": 0.7564 + }, + { + "start": 10643.82, + "end": 10646.44, + "probability": 0.8435 + }, + { + "start": 10646.54, + "end": 10647.52, + "probability": 0.6461 + }, + { + "start": 10647.66, + "end": 10648.52, + "probability": 0.9448 + }, + { + "start": 10648.6, + "end": 10651.4, + "probability": 0.8359 + }, + { + "start": 10651.46, + "end": 10652.88, + "probability": 0.801 + }, + { + "start": 10653.1, + "end": 10654.18, + "probability": 0.9272 + }, + { + "start": 10654.42, + "end": 10656.04, + "probability": 0.7896 + }, + { + "start": 10656.18, + "end": 10657.38, + "probability": 0.7822 + }, + { + "start": 10657.84, + "end": 10657.86, + "probability": 0.0078 + }, + { + "start": 10657.86, + "end": 10657.86, + "probability": 0.0767 + }, + { + "start": 10657.86, + "end": 10658.34, + "probability": 0.2553 + }, + { + "start": 10658.56, + "end": 10660.48, + "probability": 0.4971 + }, + { + "start": 10660.62, + "end": 10662.6, + "probability": 0.9728 + }, + { + "start": 10662.66, + "end": 10664.12, + "probability": 0.9001 + }, + { + "start": 10664.48, + "end": 10667.82, + "probability": 0.9907 + }, + { + "start": 10668.01, + "end": 10673.06, + "probability": 0.7985 + }, + { + "start": 10673.27, + "end": 10676.88, + "probability": 0.9454 + }, + { + "start": 10678.16, + "end": 10679.34, + "probability": 0.7314 + }, + { + "start": 10679.42, + "end": 10681.54, + "probability": 0.6923 + }, + { + "start": 10682.42, + "end": 10686.28, + "probability": 0.8318 + }, + { + "start": 10686.28, + "end": 10690.02, + "probability": 0.7304 + }, + { + "start": 10690.32, + "end": 10693.7, + "probability": 0.9297 + }, + { + "start": 10694.3, + "end": 10696.52, + "probability": 0.7899 + }, + { + "start": 10696.56, + "end": 10697.22, + "probability": 0.6386 + }, + { + "start": 10699.16, + "end": 10699.24, + "probability": 0.0161 + }, + { + "start": 10699.24, + "end": 10699.24, + "probability": 0.0409 + }, + { + "start": 10699.24, + "end": 10702.1, + "probability": 0.6088 + }, + { + "start": 10703.02, + "end": 10704.64, + "probability": 0.2595 + }, + { + "start": 10704.64, + "end": 10705.06, + "probability": 0.5903 + }, + { + "start": 10705.1, + "end": 10706.88, + "probability": 0.9753 + }, + { + "start": 10707.16, + "end": 10710.14, + "probability": 0.9334 + }, + { + "start": 10710.18, + "end": 10710.97, + "probability": 0.8571 + }, + { + "start": 10711.28, + "end": 10711.48, + "probability": 0.569 + }, + { + "start": 10711.58, + "end": 10712.2, + "probability": 0.8367 + }, + { + "start": 10712.22, + "end": 10713.0, + "probability": 0.8077 + }, + { + "start": 10713.54, + "end": 10716.82, + "probability": 0.937 + }, + { + "start": 10717.36, + "end": 10722.12, + "probability": 0.9531 + }, + { + "start": 10722.16, + "end": 10724.58, + "probability": 0.8057 + }, + { + "start": 10724.62, + "end": 10725.52, + "probability": 0.5637 + }, + { + "start": 10725.86, + "end": 10727.78, + "probability": 0.9551 + }, + { + "start": 10727.78, + "end": 10730.18, + "probability": 0.7471 + }, + { + "start": 10730.34, + "end": 10731.82, + "probability": 0.5598 + }, + { + "start": 10731.88, + "end": 10732.86, + "probability": 0.6005 + }, + { + "start": 10733.18, + "end": 10734.26, + "probability": 0.8147 + }, + { + "start": 10734.64, + "end": 10735.22, + "probability": 0.8689 + }, + { + "start": 10735.28, + "end": 10736.86, + "probability": 0.9753 + }, + { + "start": 10736.92, + "end": 10737.88, + "probability": 0.7365 + }, + { + "start": 10738.02, + "end": 10739.1, + "probability": 0.7289 + }, + { + "start": 10739.18, + "end": 10739.3, + "probability": 0.3156 + }, + { + "start": 10739.3, + "end": 10741.9, + "probability": 0.9582 + }, + { + "start": 10742.26, + "end": 10742.46, + "probability": 0.5206 + }, + { + "start": 10742.46, + "end": 10744.08, + "probability": 0.7925 + }, + { + "start": 10744.24, + "end": 10746.18, + "probability": 0.9368 + }, + { + "start": 10746.22, + "end": 10749.34, + "probability": 0.8369 + }, + { + "start": 10777.28, + "end": 10778.36, + "probability": 0.6743 + }, + { + "start": 10780.14, + "end": 10781.36, + "probability": 0.7953 + }, + { + "start": 10782.7, + "end": 10784.68, + "probability": 0.7373 + }, + { + "start": 10785.98, + "end": 10786.94, + "probability": 0.9116 + }, + { + "start": 10789.12, + "end": 10792.46, + "probability": 0.9518 + }, + { + "start": 10792.56, + "end": 10793.28, + "probability": 0.822 + }, + { + "start": 10793.28, + "end": 10794.22, + "probability": 0.6553 + }, + { + "start": 10794.26, + "end": 10795.9, + "probability": 0.8057 + }, + { + "start": 10795.94, + "end": 10796.22, + "probability": 0.6252 + }, + { + "start": 10796.28, + "end": 10797.08, + "probability": 0.8967 + }, + { + "start": 10798.14, + "end": 10801.14, + "probability": 0.9917 + }, + { + "start": 10802.82, + "end": 10803.57, + "probability": 0.976 + }, + { + "start": 10803.8, + "end": 10804.76, + "probability": 0.9889 + }, + { + "start": 10804.88, + "end": 10806.94, + "probability": 0.9721 + }, + { + "start": 10807.54, + "end": 10809.28, + "probability": 0.8783 + }, + { + "start": 10809.4, + "end": 10810.28, + "probability": 0.5471 + }, + { + "start": 10810.6, + "end": 10811.92, + "probability": 0.6799 + }, + { + "start": 10812.82, + "end": 10813.88, + "probability": 0.8351 + }, + { + "start": 10814.4, + "end": 10814.44, + "probability": 0.4896 + }, + { + "start": 10814.6, + "end": 10818.24, + "probability": 0.9403 + }, + { + "start": 10819.0, + "end": 10821.8, + "probability": 0.9985 + }, + { + "start": 10821.98, + "end": 10824.9, + "probability": 0.9148 + }, + { + "start": 10825.42, + "end": 10826.4, + "probability": 0.6691 + }, + { + "start": 10826.52, + "end": 10827.29, + "probability": 0.6482 + }, + { + "start": 10827.9, + "end": 10829.24, + "probability": 0.8376 + }, + { + "start": 10829.42, + "end": 10830.5, + "probability": 0.9444 + }, + { + "start": 10830.58, + "end": 10832.52, + "probability": 0.9634 + }, + { + "start": 10832.66, + "end": 10834.01, + "probability": 0.984 + }, + { + "start": 10835.34, + "end": 10836.94, + "probability": 0.6333 + }, + { + "start": 10837.7, + "end": 10839.98, + "probability": 0.8822 + }, + { + "start": 10840.06, + "end": 10843.88, + "probability": 0.9872 + }, + { + "start": 10844.14, + "end": 10845.01, + "probability": 0.6666 + }, + { + "start": 10845.84, + "end": 10849.02, + "probability": 0.991 + }, + { + "start": 10849.48, + "end": 10850.94, + "probability": 0.9692 + }, + { + "start": 10851.76, + "end": 10858.94, + "probability": 0.7981 + }, + { + "start": 10859.72, + "end": 10861.18, + "probability": 0.9417 + }, + { + "start": 10861.72, + "end": 10864.14, + "probability": 0.8696 + }, + { + "start": 10864.66, + "end": 10866.82, + "probability": 0.972 + }, + { + "start": 10866.86, + "end": 10867.68, + "probability": 0.9053 + }, + { + "start": 10868.08, + "end": 10869.7, + "probability": 0.5624 + }, + { + "start": 10869.74, + "end": 10870.66, + "probability": 0.8463 + }, + { + "start": 10871.54, + "end": 10872.88, + "probability": 0.9766 + }, + { + "start": 10873.42, + "end": 10874.84, + "probability": 0.9502 + }, + { + "start": 10874.94, + "end": 10876.24, + "probability": 0.9827 + }, + { + "start": 10876.66, + "end": 10878.34, + "probability": 0.9761 + }, + { + "start": 10878.46, + "end": 10880.54, + "probability": 0.9836 + }, + { + "start": 10880.64, + "end": 10885.44, + "probability": 0.9542 + }, + { + "start": 10887.02, + "end": 10888.46, + "probability": 0.6912 + }, + { + "start": 10889.2, + "end": 10890.06, + "probability": 0.9183 + }, + { + "start": 10892.24, + "end": 10896.34, + "probability": 0.9902 + }, + { + "start": 10896.66, + "end": 10899.04, + "probability": 0.84 + }, + { + "start": 10900.04, + "end": 10900.98, + "probability": 0.9922 + }, + { + "start": 10901.24, + "end": 10902.66, + "probability": 0.9989 + }, + { + "start": 10902.7, + "end": 10903.18, + "probability": 0.6893 + }, + { + "start": 10903.18, + "end": 10903.7, + "probability": 0.7108 + }, + { + "start": 10903.8, + "end": 10904.66, + "probability": 0.8074 + }, + { + "start": 10904.98, + "end": 10906.66, + "probability": 0.6924 + }, + { + "start": 10907.18, + "end": 10908.98, + "probability": 0.8682 + }, + { + "start": 10912.06, + "end": 10914.76, + "probability": 0.8682 + }, + { + "start": 10914.86, + "end": 10915.84, + "probability": 0.6727 + }, + { + "start": 10915.86, + "end": 10921.1, + "probability": 0.9203 + }, + { + "start": 10921.5, + "end": 10923.34, + "probability": 0.8867 + }, + { + "start": 10923.38, + "end": 10923.66, + "probability": 0.7196 + }, + { + "start": 10924.02, + "end": 10925.88, + "probability": 0.5493 + }, + { + "start": 10926.04, + "end": 10928.12, + "probability": 0.8395 + }, + { + "start": 10928.16, + "end": 10928.76, + "probability": 0.3983 + }, + { + "start": 10928.8, + "end": 10930.5, + "probability": 0.8552 + }, + { + "start": 10943.68, + "end": 10944.42, + "probability": 0.7528 + }, + { + "start": 10944.5, + "end": 10944.8, + "probability": 0.5463 + }, + { + "start": 10944.94, + "end": 10952.26, + "probability": 0.8257 + }, + { + "start": 10952.32, + "end": 10953.38, + "probability": 0.897 + }, + { + "start": 10954.08, + "end": 10959.08, + "probability": 0.6829 + }, + { + "start": 10959.08, + "end": 10960.52, + "probability": 0.8267 + }, + { + "start": 10960.6, + "end": 10962.66, + "probability": 0.6848 + }, + { + "start": 10962.82, + "end": 10962.92, + "probability": 0.1995 + }, + { + "start": 10963.46, + "end": 10967.2, + "probability": 0.667 + }, + { + "start": 10967.28, + "end": 10967.84, + "probability": 0.7966 + }, + { + "start": 10968.2, + "end": 10968.2, + "probability": 0.543 + }, + { + "start": 10968.52, + "end": 10969.54, + "probability": 0.8214 + }, + { + "start": 10969.64, + "end": 10979.98, + "probability": 0.9445 + }, + { + "start": 10979.98, + "end": 10986.24, + "probability": 0.9725 + }, + { + "start": 10986.52, + "end": 10987.44, + "probability": 0.6045 + }, + { + "start": 10987.66, + "end": 10990.82, + "probability": 0.9932 + }, + { + "start": 10991.54, + "end": 10994.15, + "probability": 0.9421 + }, + { + "start": 10995.22, + "end": 10997.84, + "probability": 0.9035 + }, + { + "start": 10998.88, + "end": 11001.07, + "probability": 0.9922 + }, + { + "start": 11001.32, + "end": 11007.28, + "probability": 0.9872 + }, + { + "start": 11008.34, + "end": 11012.82, + "probability": 0.9541 + }, + { + "start": 11013.82, + "end": 11016.56, + "probability": 0.9884 + }, + { + "start": 11017.38, + "end": 11022.26, + "probability": 0.9749 + }, + { + "start": 11023.14, + "end": 11029.44, + "probability": 0.9778 + }, + { + "start": 11030.68, + "end": 11031.16, + "probability": 0.5625 + }, + { + "start": 11031.36, + "end": 11031.74, + "probability": 0.9733 + }, + { + "start": 11031.82, + "end": 11032.84, + "probability": 0.5997 + }, + { + "start": 11032.9, + "end": 11034.08, + "probability": 0.9543 + }, + { + "start": 11034.18, + "end": 11037.4, + "probability": 0.9854 + }, + { + "start": 11038.5, + "end": 11041.0, + "probability": 0.9551 + }, + { + "start": 11042.02, + "end": 11047.4, + "probability": 0.9215 + }, + { + "start": 11047.84, + "end": 11049.56, + "probability": 0.7569 + }, + { + "start": 11049.62, + "end": 11050.97, + "probability": 0.9796 + }, + { + "start": 11052.26, + "end": 11060.24, + "probability": 0.9807 + }, + { + "start": 11060.78, + "end": 11061.9, + "probability": 0.9724 + }, + { + "start": 11062.68, + "end": 11066.88, + "probability": 0.4753 + }, + { + "start": 11067.72, + "end": 11071.52, + "probability": 0.9563 + }, + { + "start": 11071.52, + "end": 11077.34, + "probability": 0.9991 + }, + { + "start": 11078.14, + "end": 11082.8, + "probability": 0.9811 + }, + { + "start": 11083.02, + "end": 11084.42, + "probability": 0.9726 + }, + { + "start": 11084.52, + "end": 11085.94, + "probability": 0.957 + }, + { + "start": 11087.04, + "end": 11092.3, + "probability": 0.9904 + }, + { + "start": 11092.6, + "end": 11095.02, + "probability": 0.9915 + }, + { + "start": 11095.9, + "end": 11098.02, + "probability": 0.7498 + }, + { + "start": 11098.02, + "end": 11101.44, + "probability": 0.9831 + }, + { + "start": 11102.08, + "end": 11105.4, + "probability": 0.9641 + }, + { + "start": 11105.6, + "end": 11108.78, + "probability": 0.9541 + }, + { + "start": 11109.52, + "end": 11116.52, + "probability": 0.9827 + }, + { + "start": 11117.58, + "end": 11121.82, + "probability": 0.95 + }, + { + "start": 11122.26, + "end": 11126.14, + "probability": 0.9951 + }, + { + "start": 11126.42, + "end": 11126.72, + "probability": 0.5957 + }, + { + "start": 11126.96, + "end": 11130.28, + "probability": 0.9236 + }, + { + "start": 11130.36, + "end": 11132.86, + "probability": 0.7512 + }, + { + "start": 11133.28, + "end": 11133.88, + "probability": 0.4244 + }, + { + "start": 11133.9, + "end": 11135.88, + "probability": 0.96 + }, + { + "start": 11136.4, + "end": 11139.74, + "probability": 0.8342 + }, + { + "start": 11147.12, + "end": 11150.36, + "probability": 0.7006 + }, + { + "start": 11160.14, + "end": 11162.1, + "probability": 0.6942 + }, + { + "start": 11163.04, + "end": 11171.2, + "probability": 0.9969 + }, + { + "start": 11171.2, + "end": 11180.32, + "probability": 0.3294 + }, + { + "start": 11180.32, + "end": 11180.32, + "probability": 0.0399 + }, + { + "start": 11191.06, + "end": 11194.32, + "probability": 0.9979 + }, + { + "start": 11194.86, + "end": 11196.22, + "probability": 0.9925 + }, + { + "start": 11197.46, + "end": 11199.13, + "probability": 0.8628 + }, + { + "start": 11200.3, + "end": 11202.46, + "probability": 0.9886 + }, + { + "start": 11202.46, + "end": 11205.68, + "probability": 0.9356 + }, + { + "start": 11206.64, + "end": 11209.76, + "probability": 0.9009 + }, + { + "start": 11210.04, + "end": 11211.56, + "probability": 0.9104 + }, + { + "start": 11212.32, + "end": 11215.74, + "probability": 0.8256 + }, + { + "start": 11217.1, + "end": 11221.25, + "probability": 0.9641 + }, + { + "start": 11222.38, + "end": 11224.92, + "probability": 0.925 + }, + { + "start": 11225.52, + "end": 11226.82, + "probability": 0.8401 + }, + { + "start": 11227.92, + "end": 11231.14, + "probability": 0.9672 + }, + { + "start": 11231.14, + "end": 11234.74, + "probability": 0.9939 + }, + { + "start": 11235.92, + "end": 11238.38, + "probability": 0.9836 + }, + { + "start": 11239.6, + "end": 11240.1, + "probability": 0.5212 + }, + { + "start": 11240.76, + "end": 11243.66, + "probability": 0.9103 + }, + { + "start": 11244.42, + "end": 11252.12, + "probability": 0.8919 + }, + { + "start": 11252.96, + "end": 11256.36, + "probability": 0.9324 + }, + { + "start": 11258.82, + "end": 11262.92, + "probability": 0.9985 + }, + { + "start": 11263.82, + "end": 11268.04, + "probability": 0.9955 + }, + { + "start": 11269.16, + "end": 11275.34, + "probability": 0.9823 + }, + { + "start": 11276.1, + "end": 11278.94, + "probability": 0.9752 + }, + { + "start": 11279.94, + "end": 11282.2, + "probability": 0.9538 + }, + { + "start": 11283.2, + "end": 11289.04, + "probability": 0.9977 + }, + { + "start": 11289.9, + "end": 11295.42, + "probability": 0.9778 + }, + { + "start": 11296.46, + "end": 11297.2, + "probability": 0.752 + }, + { + "start": 11297.28, + "end": 11298.54, + "probability": 0.9902 + }, + { + "start": 11299.36, + "end": 11301.64, + "probability": 0.8699 + }, + { + "start": 11302.62, + "end": 11307.2, + "probability": 0.9927 + }, + { + "start": 11307.72, + "end": 11311.88, + "probability": 0.9916 + }, + { + "start": 11312.66, + "end": 11316.66, + "probability": 0.943 + }, + { + "start": 11316.66, + "end": 11319.7, + "probability": 0.9906 + }, + { + "start": 11322.84, + "end": 11323.37, + "probability": 0.5801 + }, + { + "start": 11323.5, + "end": 11323.82, + "probability": 0.3532 + }, + { + "start": 11325.16, + "end": 11326.36, + "probability": 0.2661 + }, + { + "start": 11326.36, + "end": 11326.94, + "probability": 0.5767 + }, + { + "start": 11327.08, + "end": 11329.42, + "probability": 0.907 + }, + { + "start": 11330.12, + "end": 11332.1, + "probability": 0.7369 + }, + { + "start": 11332.68, + "end": 11335.12, + "probability": 0.8522 + }, + { + "start": 11335.52, + "end": 11336.32, + "probability": 0.0544 + }, + { + "start": 11336.64, + "end": 11337.6, + "probability": 0.6168 + }, + { + "start": 11338.38, + "end": 11340.8, + "probability": 0.9851 + }, + { + "start": 11341.38, + "end": 11341.92, + "probability": 0.7358 + }, + { + "start": 11342.02, + "end": 11342.6, + "probability": 0.8483 + }, + { + "start": 11342.88, + "end": 11344.08, + "probability": 0.8808 + }, + { + "start": 11344.34, + "end": 11346.1, + "probability": 0.7132 + }, + { + "start": 11346.32, + "end": 11346.74, + "probability": 0.3302 + }, + { + "start": 11346.76, + "end": 11346.86, + "probability": 0.0136 + }, + { + "start": 11346.86, + "end": 11348.52, + "probability": 0.5559 + }, + { + "start": 11348.52, + "end": 11348.66, + "probability": 0.2214 + }, + { + "start": 11349.16, + "end": 11352.82, + "probability": 0.2458 + }, + { + "start": 11352.94, + "end": 11353.34, + "probability": 0.6651 + }, + { + "start": 11354.06, + "end": 11356.36, + "probability": 0.9736 + }, + { + "start": 11356.94, + "end": 11362.36, + "probability": 0.9399 + }, + { + "start": 11362.42, + "end": 11365.06, + "probability": 0.9983 + }, + { + "start": 11365.54, + "end": 11367.78, + "probability": 0.994 + }, + { + "start": 11368.2, + "end": 11370.58, + "probability": 0.936 + }, + { + "start": 11371.02, + "end": 11378.16, + "probability": 0.9205 + }, + { + "start": 11378.66, + "end": 11385.58, + "probability": 0.9936 + }, + { + "start": 11385.92, + "end": 11386.9, + "probability": 0.4996 + }, + { + "start": 11386.96, + "end": 11388.04, + "probability": 0.855 + }, + { + "start": 11391.06, + "end": 11397.07, + "probability": 0.9582 + }, + { + "start": 11397.62, + "end": 11402.56, + "probability": 0.9119 + }, + { + "start": 11403.22, + "end": 11407.24, + "probability": 0.9739 + }, + { + "start": 11407.92, + "end": 11412.1, + "probability": 0.9961 + }, + { + "start": 11412.94, + "end": 11417.28, + "probability": 0.9985 + }, + { + "start": 11417.76, + "end": 11423.6, + "probability": 0.9987 + }, + { + "start": 11424.22, + "end": 11426.52, + "probability": 0.9687 + }, + { + "start": 11426.94, + "end": 11428.56, + "probability": 0.7562 + }, + { + "start": 11428.76, + "end": 11430.64, + "probability": 0.9172 + }, + { + "start": 11430.94, + "end": 11432.47, + "probability": 0.9946 + }, + { + "start": 11433.18, + "end": 11434.56, + "probability": 0.9745 + }, + { + "start": 11434.9, + "end": 11436.18, + "probability": 0.9834 + }, + { + "start": 11436.5, + "end": 11437.86, + "probability": 0.9644 + }, + { + "start": 11438.12, + "end": 11441.08, + "probability": 0.9898 + }, + { + "start": 11441.62, + "end": 11445.0, + "probability": 0.9885 + }, + { + "start": 11445.9, + "end": 11449.78, + "probability": 0.7744 + }, + { + "start": 11450.12, + "end": 11457.5, + "probability": 0.9839 + }, + { + "start": 11457.74, + "end": 11463.64, + "probability": 0.9948 + }, + { + "start": 11463.68, + "end": 11464.2, + "probability": 0.7671 + }, + { + "start": 11464.32, + "end": 11466.02, + "probability": 0.9341 + }, + { + "start": 11466.1, + "end": 11467.8, + "probability": 0.6611 + }, + { + "start": 11467.84, + "end": 11470.7, + "probability": 0.7271 + }, + { + "start": 11471.16, + "end": 11473.68, + "probability": 0.9855 + }, + { + "start": 11479.98, + "end": 11481.82, + "probability": 0.8102 + }, + { + "start": 11483.1, + "end": 11484.44, + "probability": 0.9972 + }, + { + "start": 11486.9, + "end": 11487.54, + "probability": 0.8313 + }, + { + "start": 11487.62, + "end": 11488.46, + "probability": 0.6632 + }, + { + "start": 11488.66, + "end": 11494.52, + "probability": 0.9742 + }, + { + "start": 11495.4, + "end": 11496.06, + "probability": 0.7695 + }, + { + "start": 11496.94, + "end": 11497.84, + "probability": 0.6155 + }, + { + "start": 11497.88, + "end": 11499.0, + "probability": 0.7304 + }, + { + "start": 11499.06, + "end": 11502.33, + "probability": 0.9588 + }, + { + "start": 11502.7, + "end": 11503.78, + "probability": 0.8551 + }, + { + "start": 11503.82, + "end": 11505.01, + "probability": 0.98 + }, + { + "start": 11505.26, + "end": 11506.64, + "probability": 0.9976 + }, + { + "start": 11506.84, + "end": 11511.16, + "probability": 0.9607 + }, + { + "start": 11511.22, + "end": 11512.12, + "probability": 0.7572 + }, + { + "start": 11512.16, + "end": 11514.34, + "probability": 0.9727 + }, + { + "start": 11514.48, + "end": 11515.42, + "probability": 0.908 + }, + { + "start": 11515.7, + "end": 11519.34, + "probability": 0.9811 + }, + { + "start": 11520.48, + "end": 11521.6, + "probability": 0.6536 + }, + { + "start": 11521.74, + "end": 11522.48, + "probability": 0.6799 + }, + { + "start": 11522.96, + "end": 11524.41, + "probability": 0.919 + }, + { + "start": 11524.98, + "end": 11526.88, + "probability": 0.9007 + }, + { + "start": 11526.94, + "end": 11528.0, + "probability": 0.9165 + }, + { + "start": 11528.26, + "end": 11529.56, + "probability": 0.9924 + }, + { + "start": 11529.7, + "end": 11530.57, + "probability": 0.8582 + }, + { + "start": 11530.98, + "end": 11537.14, + "probability": 0.7067 + }, + { + "start": 11537.48, + "end": 11538.61, + "probability": 0.6461 + }, + { + "start": 11539.32, + "end": 11548.0, + "probability": 0.9491 + }, + { + "start": 11550.52, + "end": 11552.24, + "probability": 0.7462 + }, + { + "start": 11552.4, + "end": 11555.66, + "probability": 0.5607 + }, + { + "start": 11556.12, + "end": 11556.56, + "probability": 0.7112 + }, + { + "start": 11556.66, + "end": 11557.34, + "probability": 0.9584 + }, + { + "start": 11557.62, + "end": 11559.06, + "probability": 0.5742 + }, + { + "start": 11559.34, + "end": 11565.81, + "probability": 0.7899 + }, + { + "start": 11567.74, + "end": 11567.74, + "probability": 0.0908 + }, + { + "start": 11567.74, + "end": 11568.42, + "probability": 0.8617 + }, + { + "start": 11568.7, + "end": 11569.4, + "probability": 0.8867 + }, + { + "start": 11569.48, + "end": 11570.08, + "probability": 0.9491 + }, + { + "start": 11570.22, + "end": 11571.98, + "probability": 0.9782 + }, + { + "start": 11572.1, + "end": 11573.24, + "probability": 0.8848 + }, + { + "start": 11573.32, + "end": 11574.14, + "probability": 0.7631 + }, + { + "start": 11574.46, + "end": 11581.62, + "probability": 0.9722 + }, + { + "start": 11581.8, + "end": 11582.7, + "probability": 0.5403 + }, + { + "start": 11582.94, + "end": 11583.82, + "probability": 0.8887 + }, + { + "start": 11584.32, + "end": 11585.62, + "probability": 0.9234 + }, + { + "start": 11585.72, + "end": 11587.44, + "probability": 0.996 + }, + { + "start": 11587.96, + "end": 11589.56, + "probability": 0.7413 + }, + { + "start": 11589.72, + "end": 11590.87, + "probability": 0.7317 + }, + { + "start": 11591.94, + "end": 11595.4, + "probability": 0.8541 + }, + { + "start": 11595.4, + "end": 11599.92, + "probability": 0.8726 + }, + { + "start": 11600.52, + "end": 11604.28, + "probability": 0.9708 + }, + { + "start": 11605.12, + "end": 11608.73, + "probability": 0.9974 + }, + { + "start": 11609.78, + "end": 11610.4, + "probability": 0.7581 + }, + { + "start": 11611.36, + "end": 11612.62, + "probability": 0.9241 + }, + { + "start": 11613.18, + "end": 11616.8, + "probability": 0.944 + }, + { + "start": 11616.8, + "end": 11618.24, + "probability": 0.8896 + }, + { + "start": 11618.32, + "end": 11621.3, + "probability": 0.9565 + }, + { + "start": 11621.3, + "end": 11625.0, + "probability": 0.9711 + }, + { + "start": 11626.38, + "end": 11629.76, + "probability": 0.9887 + }, + { + "start": 11629.76, + "end": 11633.76, + "probability": 0.961 + }, + { + "start": 11633.8, + "end": 11634.52, + "probability": 0.4642 + }, + { + "start": 11635.06, + "end": 11636.88, + "probability": 0.6448 + }, + { + "start": 11637.64, + "end": 11640.8, + "probability": 0.9634 + }, + { + "start": 11641.0, + "end": 11648.1, + "probability": 0.975 + }, + { + "start": 11648.54, + "end": 11651.88, + "probability": 0.9858 + }, + { + "start": 11651.88, + "end": 11656.36, + "probability": 0.9833 + }, + { + "start": 11656.66, + "end": 11657.42, + "probability": 0.8968 + }, + { + "start": 11657.5, + "end": 11658.72, + "probability": 0.7479 + }, + { + "start": 11658.92, + "end": 11659.62, + "probability": 0.7452 + }, + { + "start": 11659.68, + "end": 11660.7, + "probability": 0.8375 + }, + { + "start": 11661.1, + "end": 11661.56, + "probability": 0.4983 + }, + { + "start": 11661.8, + "end": 11663.9, + "probability": 0.8553 + }, + { + "start": 11663.96, + "end": 11664.76, + "probability": 0.7944 + }, + { + "start": 11665.16, + "end": 11667.56, + "probability": 0.962 + }, + { + "start": 11668.04, + "end": 11670.54, + "probability": 0.8118 + }, + { + "start": 11670.6, + "end": 11671.06, + "probability": 0.7854 + }, + { + "start": 11671.74, + "end": 11673.8, + "probability": 0.9575 + }, + { + "start": 11673.86, + "end": 11677.6, + "probability": 0.7854 + }, + { + "start": 11694.5, + "end": 11697.4, + "probability": 0.8384 + }, + { + "start": 11698.34, + "end": 11698.94, + "probability": 0.436 + }, + { + "start": 11699.1, + "end": 11700.64, + "probability": 0.9202 + }, + { + "start": 11700.74, + "end": 11702.32, + "probability": 0.9107 + }, + { + "start": 11702.34, + "end": 11705.6, + "probability": 0.9467 + }, + { + "start": 11705.7, + "end": 11706.44, + "probability": 0.8788 + }, + { + "start": 11707.38, + "end": 11709.16, + "probability": 0.263 + }, + { + "start": 11709.16, + "end": 11711.92, + "probability": 0.7504 + }, + { + "start": 11712.46, + "end": 11713.76, + "probability": 0.9883 + }, + { + "start": 11713.84, + "end": 11715.74, + "probability": 0.8683 + }, + { + "start": 11716.24, + "end": 11716.82, + "probability": 0.8135 + }, + { + "start": 11716.9, + "end": 11717.4, + "probability": 0.8262 + }, + { + "start": 11717.46, + "end": 11720.4, + "probability": 0.9688 + }, + { + "start": 11720.52, + "end": 11725.96, + "probability": 0.8945 + }, + { + "start": 11726.02, + "end": 11726.38, + "probability": 0.6361 + }, + { + "start": 11726.4, + "end": 11726.74, + "probability": 0.6823 + }, + { + "start": 11726.96, + "end": 11727.96, + "probability": 0.8262 + }, + { + "start": 11728.88, + "end": 11732.46, + "probability": 0.9961 + }, + { + "start": 11732.46, + "end": 11735.34, + "probability": 0.9879 + }, + { + "start": 11735.36, + "end": 11736.84, + "probability": 0.9185 + }, + { + "start": 11737.64, + "end": 11739.38, + "probability": 0.9827 + }, + { + "start": 11739.44, + "end": 11739.82, + "probability": 0.6151 + }, + { + "start": 11739.82, + "end": 11740.58, + "probability": 0.8564 + }, + { + "start": 11741.86, + "end": 11744.22, + "probability": 0.7225 + }, + { + "start": 11744.24, + "end": 11747.79, + "probability": 0.981 + }, + { + "start": 11748.38, + "end": 11751.26, + "probability": 0.9857 + }, + { + "start": 11751.42, + "end": 11754.52, + "probability": 0.9553 + }, + { + "start": 11754.7, + "end": 11755.16, + "probability": 0.5691 + }, + { + "start": 11755.26, + "end": 11756.64, + "probability": 0.8993 + }, + { + "start": 11756.74, + "end": 11757.66, + "probability": 0.6249 + }, + { + "start": 11757.96, + "end": 11759.98, + "probability": 0.9643 + }, + { + "start": 11760.36, + "end": 11762.48, + "probability": 0.7361 + }, + { + "start": 11762.48, + "end": 11762.96, + "probability": 0.5938 + }, + { + "start": 11763.16, + "end": 11768.22, + "probability": 0.9558 + }, + { + "start": 11768.54, + "end": 11770.02, + "probability": 0.7986 + }, + { + "start": 11770.82, + "end": 11774.26, + "probability": 0.9737 + }, + { + "start": 11774.34, + "end": 11776.92, + "probability": 0.9797 + }, + { + "start": 11777.2, + "end": 11780.64, + "probability": 0.8994 + }, + { + "start": 11780.74, + "end": 11781.78, + "probability": 0.6272 + }, + { + "start": 11781.8, + "end": 11783.2, + "probability": 0.9202 + }, + { + "start": 11783.28, + "end": 11785.88, + "probability": 0.8217 + }, + { + "start": 11785.92, + "end": 11787.62, + "probability": 0.8021 + }, + { + "start": 11788.32, + "end": 11790.45, + "probability": 0.8918 + }, + { + "start": 11791.48, + "end": 11793.95, + "probability": 0.9673 + }, + { + "start": 11794.96, + "end": 11795.44, + "probability": 0.5125 + }, + { + "start": 11795.48, + "end": 11798.04, + "probability": 0.8693 + }, + { + "start": 11798.06, + "end": 11798.46, + "probability": 0.8187 + }, + { + "start": 11798.56, + "end": 11801.88, + "probability": 0.9468 + }, + { + "start": 11802.52, + "end": 11804.24, + "probability": 0.7115 + }, + { + "start": 11804.32, + "end": 11806.46, + "probability": 0.7966 + }, + { + "start": 11806.6, + "end": 11807.52, + "probability": 0.4375 + }, + { + "start": 11808.46, + "end": 11809.04, + "probability": 0.8638 + }, + { + "start": 11809.12, + "end": 11810.76, + "probability": 0.9769 + }, + { + "start": 11810.78, + "end": 11813.58, + "probability": 0.9014 + }, + { + "start": 11814.28, + "end": 11815.28, + "probability": 0.8569 + }, + { + "start": 11815.34, + "end": 11815.94, + "probability": 0.7503 + }, + { + "start": 11816.02, + "end": 11817.94, + "probability": 0.9849 + }, + { + "start": 11818.34, + "end": 11823.24, + "probability": 0.9711 + }, + { + "start": 11823.72, + "end": 11825.04, + "probability": 0.8463 + }, + { + "start": 11825.42, + "end": 11826.96, + "probability": 0.9734 + }, + { + "start": 11827.28, + "end": 11829.0, + "probability": 0.9863 + }, + { + "start": 11829.02, + "end": 11830.94, + "probability": 0.9029 + }, + { + "start": 11831.0, + "end": 11833.02, + "probability": 0.7092 + }, + { + "start": 11835.06, + "end": 11835.56, + "probability": 0.063 + }, + { + "start": 11835.56, + "end": 11836.46, + "probability": 0.4089 + }, + { + "start": 11836.6, + "end": 11838.02, + "probability": 0.995 + }, + { + "start": 11838.18, + "end": 11839.08, + "probability": 0.8414 + }, + { + "start": 11839.4, + "end": 11840.32, + "probability": 0.9445 + }, + { + "start": 11840.44, + "end": 11841.06, + "probability": 0.8513 + }, + { + "start": 11841.2, + "end": 11844.66, + "probability": 0.981 + }, + { + "start": 11844.84, + "end": 11845.54, + "probability": 0.9326 + }, + { + "start": 11845.62, + "end": 11847.35, + "probability": 0.991 + }, + { + "start": 11848.36, + "end": 11850.8, + "probability": 0.989 + }, + { + "start": 11851.36, + "end": 11854.39, + "probability": 0.9526 + }, + { + "start": 11854.72, + "end": 11856.76, + "probability": 0.9346 + }, + { + "start": 11856.84, + "end": 11857.92, + "probability": 0.7477 + }, + { + "start": 11858.16, + "end": 11860.12, + "probability": 0.9521 + }, + { + "start": 11860.42, + "end": 11864.96, + "probability": 0.9743 + }, + { + "start": 11865.26, + "end": 11867.32, + "probability": 0.9793 + }, + { + "start": 11867.76, + "end": 11869.44, + "probability": 0.9851 + }, + { + "start": 11869.8, + "end": 11875.1, + "probability": 0.9958 + }, + { + "start": 11875.1, + "end": 11879.62, + "probability": 0.9832 + }, + { + "start": 11879.68, + "end": 11883.02, + "probability": 0.9409 + }, + { + "start": 11884.62, + "end": 11887.54, + "probability": 0.8279 + }, + { + "start": 11887.98, + "end": 11890.04, + "probability": 0.9465 + }, + { + "start": 11890.16, + "end": 11890.58, + "probability": 0.4196 + }, + { + "start": 11892.3, + "end": 11895.52, + "probability": 0.9749 + }, + { + "start": 11907.42, + "end": 11909.16, + "probability": 0.7034 + }, + { + "start": 11910.46, + "end": 11912.77, + "probability": 0.0145 + }, + { + "start": 11918.32, + "end": 11920.28, + "probability": 0.0341 + }, + { + "start": 11921.76, + "end": 11925.38, + "probability": 0.6123 + }, + { + "start": 11925.66, + "end": 11927.14, + "probability": 0.7501 + }, + { + "start": 11927.17, + "end": 11935.04, + "probability": 0.9873 + }, + { + "start": 11935.78, + "end": 11936.41, + "probability": 0.8486 + }, + { + "start": 11937.4, + "end": 11937.74, + "probability": 0.7664 + }, + { + "start": 11937.82, + "end": 11939.02, + "probability": 0.9082 + }, + { + "start": 11939.16, + "end": 11940.2, + "probability": 0.759 + }, + { + "start": 11941.44, + "end": 11944.51, + "probability": 0.8242 + }, + { + "start": 11945.94, + "end": 11948.74, + "probability": 0.8812 + }, + { + "start": 11949.44, + "end": 11951.96, + "probability": 0.9253 + }, + { + "start": 11952.42, + "end": 11956.44, + "probability": 0.9769 + }, + { + "start": 11957.24, + "end": 11961.24, + "probability": 0.8904 + }, + { + "start": 11961.9, + "end": 11963.22, + "probability": 0.801 + }, + { + "start": 11963.94, + "end": 11969.54, + "probability": 0.9946 + }, + { + "start": 11970.06, + "end": 11976.68, + "probability": 0.9572 + }, + { + "start": 11977.08, + "end": 11983.36, + "probability": 0.985 + }, + { + "start": 11983.86, + "end": 11988.14, + "probability": 0.7118 + }, + { + "start": 11988.3, + "end": 11991.74, + "probability": 0.9575 + }, + { + "start": 11992.14, + "end": 11995.28, + "probability": 0.9839 + }, + { + "start": 11995.68, + "end": 11998.22, + "probability": 0.9841 + }, + { + "start": 11998.84, + "end": 12006.22, + "probability": 0.9888 + }, + { + "start": 12006.86, + "end": 12009.28, + "probability": 0.0207 + }, + { + "start": 12010.02, + "end": 12010.46, + "probability": 0.5878 + }, + { + "start": 12012.7, + "end": 12013.14, + "probability": 0.197 + }, + { + "start": 12013.14, + "end": 12013.52, + "probability": 0.0334 + }, + { + "start": 12013.92, + "end": 12014.4, + "probability": 0.4124 + }, + { + "start": 12015.24, + "end": 12015.92, + "probability": 0.3447 + }, + { + "start": 12016.34, + "end": 12017.88, + "probability": 0.6051 + }, + { + "start": 12018.06, + "end": 12019.87, + "probability": 0.5118 + }, + { + "start": 12021.92, + "end": 12022.52, + "probability": 0.9229 + }, + { + "start": 12023.1, + "end": 12023.46, + "probability": 0.8525 + }, + { + "start": 12024.14, + "end": 12025.72, + "probability": 0.2139 + }, + { + "start": 12028.12, + "end": 12028.94, + "probability": 0.7971 + }, + { + "start": 12029.54, + "end": 12033.02, + "probability": 0.9954 + }, + { + "start": 12033.34, + "end": 12034.6, + "probability": 0.6668 + }, + { + "start": 12035.34, + "end": 12037.08, + "probability": 0.7213 + }, + { + "start": 12041.7, + "end": 12047.92, + "probability": 0.3301 + }, + { + "start": 12048.46, + "end": 12052.86, + "probability": 0.7633 + }, + { + "start": 12053.52, + "end": 12054.36, + "probability": 0.0731 + }, + { + "start": 12054.36, + "end": 12055.52, + "probability": 0.6855 + }, + { + "start": 12056.24, + "end": 12063.84, + "probability": 0.7777 + }, + { + "start": 12064.1, + "end": 12070.24, + "probability": 0.9546 + }, + { + "start": 12070.92, + "end": 12075.92, + "probability": 0.9458 + }, + { + "start": 12076.54, + "end": 12078.0, + "probability": 0.0753 + }, + { + "start": 12078.3, + "end": 12079.02, + "probability": 0.4157 + }, + { + "start": 12079.84, + "end": 12083.68, + "probability": 0.719 + }, + { + "start": 12084.14, + "end": 12086.4, + "probability": 0.1675 + }, + { + "start": 12086.88, + "end": 12086.88, + "probability": 0.2108 + }, + { + "start": 12086.88, + "end": 12086.88, + "probability": 0.0284 + }, + { + "start": 12086.88, + "end": 12086.88, + "probability": 0.0499 + }, + { + "start": 12086.88, + "end": 12087.58, + "probability": 0.3666 + }, + { + "start": 12088.32, + "end": 12092.94, + "probability": 0.8163 + }, + { + "start": 12093.02, + "end": 12093.81, + "probability": 0.9729 + }, + { + "start": 12094.18, + "end": 12096.48, + "probability": 0.874 + }, + { + "start": 12096.52, + "end": 12097.6, + "probability": 0.8518 + }, + { + "start": 12098.32, + "end": 12100.3, + "probability": 0.4915 + }, + { + "start": 12101.02, + "end": 12105.08, + "probability": 0.9935 + }, + { + "start": 12105.08, + "end": 12109.12, + "probability": 0.7056 + }, + { + "start": 12109.12, + "end": 12111.1, + "probability": 0.4247 + }, + { + "start": 12111.42, + "end": 12112.42, + "probability": 0.7396 + }, + { + "start": 12112.42, + "end": 12114.42, + "probability": 0.7168 + }, + { + "start": 12114.78, + "end": 12115.54, + "probability": 0.721 + }, + { + "start": 12121.14, + "end": 12128.94, + "probability": 0.0797 + }, + { + "start": 12129.06, + "end": 12135.84, + "probability": 0.1065 + }, + { + "start": 12136.04, + "end": 12136.4, + "probability": 0.0187 + }, + { + "start": 12140.88, + "end": 12145.88, + "probability": 0.7067 + }, + { + "start": 12159.0, + "end": 12160.52, + "probability": 0.4564 + }, + { + "start": 12163.3, + "end": 12168.22, + "probability": 0.4198 + }, + { + "start": 12169.19, + "end": 12170.78, + "probability": 0.0373 + }, + { + "start": 12170.78, + "end": 12175.1, + "probability": 0.0169 + }, + { + "start": 12176.16, + "end": 12177.16, + "probability": 0.1553 + }, + { + "start": 12181.64, + "end": 12184.92, + "probability": 0.4022 + }, + { + "start": 12185.92, + "end": 12190.76, + "probability": 0.2075 + }, + { + "start": 12190.76, + "end": 12192.66, + "probability": 0.1549 + }, + { + "start": 12192.76, + "end": 12192.76, + "probability": 0.0332 + }, + { + "start": 12193.48, + "end": 12194.39, + "probability": 0.0952 + }, + { + "start": 12194.96, + "end": 12195.34, + "probability": 0.0127 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.26, + "end": 12196.28, + "probability": 0.0285 + }, + { + "start": 12196.28, + "end": 12196.28, + "probability": 0.0518 + }, + { + "start": 12196.28, + "end": 12197.58, + "probability": 0.3851 + }, + { + "start": 12198.22, + "end": 12201.74, + "probability": 0.7932 + }, + { + "start": 12201.94, + "end": 12202.48, + "probability": 0.5957 + }, + { + "start": 12202.48, + "end": 12203.66, + "probability": 0.7621 + }, + { + "start": 12203.66, + "end": 12207.02, + "probability": 0.9576 + }, + { + "start": 12207.54, + "end": 12210.02, + "probability": 0.0764 + }, + { + "start": 12210.22, + "end": 12212.08, + "probability": 0.5958 + }, + { + "start": 12212.18, + "end": 12214.1, + "probability": 0.9932 + }, + { + "start": 12214.3, + "end": 12217.78, + "probability": 0.906 + }, + { + "start": 12218.06, + "end": 12219.92, + "probability": 0.9523 + }, + { + "start": 12220.72, + "end": 12224.8, + "probability": 0.8136 + }, + { + "start": 12225.14, + "end": 12225.94, + "probability": 0.0083 + }, + { + "start": 12226.78, + "end": 12227.2, + "probability": 0.4021 + }, + { + "start": 12227.2, + "end": 12227.98, + "probability": 0.7358 + }, + { + "start": 12228.1, + "end": 12232.12, + "probability": 0.9854 + }, + { + "start": 12232.26, + "end": 12235.3, + "probability": 0.8419 + }, + { + "start": 12235.49, + "end": 12238.26, + "probability": 0.0219 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.0, + "end": 19343.0, + "probability": 0.0 + }, + { + "start": 19343.51, + "end": 19344.16, + "probability": 0.1884 + }, + { + "start": 19344.16, + "end": 19345.84, + "probability": 0.628 + }, + { + "start": 19350.48, + "end": 19351.78, + "probability": 0.7092 + }, + { + "start": 19351.98, + "end": 19353.68, + "probability": 0.7792 + }, + { + "start": 19354.08, + "end": 19355.98, + "probability": 0.8432 + }, + { + "start": 19357.02, + "end": 19361.28, + "probability": 0.8807 + }, + { + "start": 19361.28, + "end": 19369.12, + "probability": 0.764 + }, + { + "start": 19370.28, + "end": 19371.88, + "probability": 0.4647 + }, + { + "start": 19375.4, + "end": 19380.28, + "probability": 0.9106 + }, + { + "start": 19380.28, + "end": 19383.32, + "probability": 0.8187 + }, + { + "start": 19383.52, + "end": 19386.58, + "probability": 0.2595 + }, + { + "start": 19386.86, + "end": 19391.36, + "probability": 0.9767 + }, + { + "start": 19391.46, + "end": 19392.18, + "probability": 0.7908 + }, + { + "start": 19392.66, + "end": 19393.74, + "probability": 0.7238 + }, + { + "start": 19393.88, + "end": 19394.04, + "probability": 0.421 + }, + { + "start": 19394.12, + "end": 19395.86, + "probability": 0.9886 + }, + { + "start": 19395.86, + "end": 19399.02, + "probability": 0.7836 + }, + { + "start": 19399.8, + "end": 19401.74, + "probability": 0.8988 + }, + { + "start": 19402.02, + "end": 19403.2, + "probability": 0.949 + }, + { + "start": 19403.94, + "end": 19408.02, + "probability": 0.8521 + }, + { + "start": 19408.47, + "end": 19411.82, + "probability": 0.5211 + }, + { + "start": 19412.3, + "end": 19412.3, + "probability": 0.5012 + }, + { + "start": 19412.3, + "end": 19415.14, + "probability": 0.6772 + }, + { + "start": 19416.04, + "end": 19416.92, + "probability": 0.2747 + }, + { + "start": 19417.2, + "end": 19419.04, + "probability": 0.8933 + }, + { + "start": 19419.62, + "end": 19421.02, + "probability": 0.6892 + }, + { + "start": 19421.52, + "end": 19422.98, + "probability": 0.876 + }, + { + "start": 19423.94, + "end": 19427.04, + "probability": 0.8682 + }, + { + "start": 19427.9, + "end": 19428.08, + "probability": 0.8138 + }, + { + "start": 19428.12, + "end": 19430.02, + "probability": 0.8472 + }, + { + "start": 19430.5, + "end": 19431.26, + "probability": 0.5783 + }, + { + "start": 19431.42, + "end": 19432.64, + "probability": 0.2185 + }, + { + "start": 19433.24, + "end": 19435.94, + "probability": 0.4089 + }, + { + "start": 19436.08, + "end": 19437.86, + "probability": 0.4609 + }, + { + "start": 19438.22, + "end": 19439.28, + "probability": 0.7628 + }, + { + "start": 19439.4, + "end": 19441.0, + "probability": 0.6747 + }, + { + "start": 19441.04, + "end": 19442.96, + "probability": 0.819 + }, + { + "start": 19443.3, + "end": 19444.44, + "probability": 0.9395 + }, + { + "start": 19445.02, + "end": 19446.14, + "probability": 0.7784 + }, + { + "start": 19446.22, + "end": 19446.97, + "probability": 0.978 + }, + { + "start": 19447.5, + "end": 19448.04, + "probability": 0.9775 + }, + { + "start": 19453.0, + "end": 19455.06, + "probability": 0.1823 + }, + { + "start": 19470.46, + "end": 19471.86, + "probability": 0.2045 + }, + { + "start": 19476.2, + "end": 19479.1, + "probability": 0.7309 + }, + { + "start": 19479.26, + "end": 19480.04, + "probability": 0.4426 + }, + { + "start": 19480.69, + "end": 19483.72, + "probability": 0.9325 + }, + { + "start": 19484.3, + "end": 19484.86, + "probability": 0.7878 + }, + { + "start": 19488.86, + "end": 19489.74, + "probability": 0.1664 + }, + { + "start": 19491.28, + "end": 19493.96, + "probability": 0.028 + }, + { + "start": 19495.34, + "end": 19498.14, + "probability": 0.1763 + }, + { + "start": 19499.24, + "end": 19500.06, + "probability": 0.7124 + }, + { + "start": 19500.46, + "end": 19503.32, + "probability": 0.1093 + }, + { + "start": 19503.64, + "end": 19504.64, + "probability": 0.8651 + }, + { + "start": 19504.72, + "end": 19505.38, + "probability": 0.9382 + }, + { + "start": 19505.56, + "end": 19506.92, + "probability": 0.8079 + }, + { + "start": 19507.26, + "end": 19508.92, + "probability": 0.9277 + }, + { + "start": 19508.96, + "end": 19511.82, + "probability": 0.9588 + }, + { + "start": 19511.82, + "end": 19516.02, + "probability": 0.9927 + }, + { + "start": 19516.7, + "end": 19522.14, + "probability": 0.669 + }, + { + "start": 19522.84, + "end": 19525.84, + "probability": 0.502 + }, + { + "start": 19525.98, + "end": 19526.98, + "probability": 0.8633 + }, + { + "start": 19527.22, + "end": 19527.63, + "probability": 0.647 + }, + { + "start": 19530.09, + "end": 19531.13, + "probability": 0.4958 + }, + { + "start": 19531.8, + "end": 19532.54, + "probability": 0.4779 + }, + { + "start": 19534.24, + "end": 19535.9, + "probability": 0.8571 + }, + { + "start": 19536.64, + "end": 19537.24, + "probability": 0.8228 + }, + { + "start": 19537.72, + "end": 19540.4, + "probability": 0.8615 + }, + { + "start": 19542.64, + "end": 19544.22, + "probability": 0.8387 + }, + { + "start": 19544.92, + "end": 19545.7, + "probability": 0.7759 + }, + { + "start": 19546.0, + "end": 19552.5, + "probability": 0.972 + }, + { + "start": 19552.5, + "end": 19556.51, + "probability": 0.7774 + }, + { + "start": 19558.04, + "end": 19564.52, + "probability": 0.5981 + }, + { + "start": 19564.92, + "end": 19567.76, + "probability": 0.4802 + }, + { + "start": 19568.0, + "end": 19569.24, + "probability": 0.6666 + }, + { + "start": 19569.32, + "end": 19573.7, + "probability": 0.8883 + }, + { + "start": 19574.52, + "end": 19582.82, + "probability": 0.9468 + }, + { + "start": 19588.9, + "end": 19593.22, + "probability": 0.9033 + }, + { + "start": 19593.98, + "end": 19600.22, + "probability": 0.9143 + }, + { + "start": 19601.86, + "end": 19604.18, + "probability": 0.4916 + }, + { + "start": 19604.28, + "end": 19604.44, + "probability": 0.5825 + }, + { + "start": 19604.48, + "end": 19605.96, + "probability": 0.7936 + }, + { + "start": 19606.06, + "end": 19607.5, + "probability": 0.9634 + }, + { + "start": 19608.38, + "end": 19611.14, + "probability": 0.9631 + }, + { + "start": 19611.28, + "end": 19613.41, + "probability": 0.9917 + }, + { + "start": 19614.92, + "end": 19616.56, + "probability": 0.8581 + }, + { + "start": 19616.64, + "end": 19617.54, + "probability": 0.9888 + }, + { + "start": 19619.08, + "end": 19620.34, + "probability": 0.9489 + }, + { + "start": 19620.42, + "end": 19622.34, + "probability": 0.9697 + }, + { + "start": 19623.0, + "end": 19624.34, + "probability": 0.994 + }, + { + "start": 19624.68, + "end": 19625.74, + "probability": 0.8651 + }, + { + "start": 19625.92, + "end": 19626.66, + "probability": 0.9646 + }, + { + "start": 19626.82, + "end": 19628.08, + "probability": 0.984 + }, + { + "start": 19628.16, + "end": 19630.94, + "probability": 0.9764 + }, + { + "start": 19630.94, + "end": 19635.36, + "probability": 0.9178 + }, + { + "start": 19636.24, + "end": 19641.6, + "probability": 0.9168 + }, + { + "start": 19642.42, + "end": 19642.54, + "probability": 0.3129 + }, + { + "start": 19642.56, + "end": 19645.24, + "probability": 0.9349 + }, + { + "start": 19645.48, + "end": 19648.68, + "probability": 0.9929 + }, + { + "start": 19649.82, + "end": 19655.06, + "probability": 0.9961 + }, + { + "start": 19655.06, + "end": 19659.07, + "probability": 0.999 + }, + { + "start": 19660.78, + "end": 19662.98, + "probability": 0.541 + }, + { + "start": 19663.98, + "end": 19667.4, + "probability": 0.9867 + }, + { + "start": 19668.06, + "end": 19669.38, + "probability": 0.8147 + }, + { + "start": 19672.84, + "end": 19677.6, + "probability": 0.827 + }, + { + "start": 19678.5, + "end": 19681.5, + "probability": 0.8369 + }, + { + "start": 19683.55, + "end": 19689.44, + "probability": 0.875 + }, + { + "start": 19689.56, + "end": 19692.14, + "probability": 0.9974 + }, + { + "start": 19692.92, + "end": 19698.96, + "probability": 0.9836 + }, + { + "start": 19698.96, + "end": 19705.12, + "probability": 0.993 + }, + { + "start": 19706.92, + "end": 19710.08, + "probability": 0.9966 + }, + { + "start": 19710.08, + "end": 19711.92, + "probability": 0.9963 + }, + { + "start": 19712.0, + "end": 19717.34, + "probability": 0.9967 + }, + { + "start": 19719.35, + "end": 19722.64, + "probability": 0.9949 + }, + { + "start": 19723.36, + "end": 19728.64, + "probability": 0.9556 + }, + { + "start": 19728.97, + "end": 19731.56, + "probability": 0.8741 + }, + { + "start": 19732.34, + "end": 19735.9, + "probability": 0.8939 + }, + { + "start": 19735.9, + "end": 19739.28, + "probability": 0.7952 + }, + { + "start": 19739.46, + "end": 19747.2, + "probability": 0.9946 + }, + { + "start": 19747.2, + "end": 19753.94, + "probability": 0.9646 + }, + { + "start": 19754.06, + "end": 19757.48, + "probability": 0.9275 + }, + { + "start": 19758.44, + "end": 19761.52, + "probability": 0.085 + }, + { + "start": 19761.52, + "end": 19765.9, + "probability": 0.7478 + }, + { + "start": 19766.7, + "end": 19770.5, + "probability": 0.7687 + }, + { + "start": 19772.98, + "end": 19776.96, + "probability": 0.567 + }, + { + "start": 19777.14, + "end": 19782.5, + "probability": 0.9285 + }, + { + "start": 19782.74, + "end": 19785.16, + "probability": 0.7626 + }, + { + "start": 19785.28, + "end": 19793.2, + "probability": 0.9688 + }, + { + "start": 19793.2, + "end": 19798.24, + "probability": 0.9979 + }, + { + "start": 19799.16, + "end": 19804.23, + "probability": 0.9839 + }, + { + "start": 19805.18, + "end": 19809.46, + "probability": 0.8987 + }, + { + "start": 19810.0, + "end": 19812.18, + "probability": 0.9879 + }, + { + "start": 19812.34, + "end": 19814.72, + "probability": 0.9023 + }, + { + "start": 19814.88, + "end": 19816.4, + "probability": 0.7604 + }, + { + "start": 19816.86, + "end": 19819.12, + "probability": 0.9216 + }, + { + "start": 19819.68, + "end": 19823.2, + "probability": 0.9736 + }, + { + "start": 19823.2, + "end": 19826.12, + "probability": 0.9936 + }, + { + "start": 19826.62, + "end": 19827.84, + "probability": 0.9703 + }, + { + "start": 19830.9, + "end": 19834.32, + "probability": 0.8987 + }, + { + "start": 19834.4, + "end": 19836.16, + "probability": 0.9524 + }, + { + "start": 19836.22, + "end": 19837.18, + "probability": 0.7987 + }, + { + "start": 19837.86, + "end": 19840.06, + "probability": 0.7418 + }, + { + "start": 19840.16, + "end": 19843.92, + "probability": 0.9786 + }, + { + "start": 19844.08, + "end": 19847.54, + "probability": 0.9502 + }, + { + "start": 19847.66, + "end": 19850.46, + "probability": 0.994 + }, + { + "start": 19850.78, + "end": 19852.28, + "probability": 0.897 + }, + { + "start": 19852.62, + "end": 19858.84, + "probability": 0.9697 + }, + { + "start": 19858.96, + "end": 19860.92, + "probability": 0.9949 + }, + { + "start": 19862.26, + "end": 19864.28, + "probability": 0.4246 + }, + { + "start": 19864.28, + "end": 19868.82, + "probability": 0.9908 + }, + { + "start": 19868.96, + "end": 19870.7, + "probability": 0.9536 + }, + { + "start": 19871.38, + "end": 19871.86, + "probability": 0.1522 + }, + { + "start": 19871.88, + "end": 19875.66, + "probability": 0.9657 + }, + { + "start": 19876.24, + "end": 19878.92, + "probability": 0.9896 + }, + { + "start": 19878.92, + "end": 19882.86, + "probability": 0.9959 + }, + { + "start": 19883.68, + "end": 19887.58, + "probability": 0.8477 + }, + { + "start": 19888.26, + "end": 19891.88, + "probability": 0.9937 + }, + { + "start": 19892.34, + "end": 19898.96, + "probability": 0.9692 + }, + { + "start": 19899.86, + "end": 19901.66, + "probability": 0.9945 + }, + { + "start": 19901.8, + "end": 19903.28, + "probability": 0.6243 + }, + { + "start": 19903.64, + "end": 19906.78, + "probability": 0.9944 + }, + { + "start": 19906.78, + "end": 19909.8, + "probability": 0.9966 + }, + { + "start": 19910.42, + "end": 19914.18, + "probability": 0.9924 + }, + { + "start": 19914.18, + "end": 19917.68, + "probability": 0.995 + }, + { + "start": 19917.84, + "end": 19920.76, + "probability": 0.9867 + }, + { + "start": 19920.76, + "end": 19922.7, + "probability": 0.9835 + }, + { + "start": 19922.74, + "end": 19923.24, + "probability": 0.7535 + }, + { + "start": 19923.82, + "end": 19926.28, + "probability": 0.5969 + }, + { + "start": 19926.64, + "end": 19928.91, + "probability": 0.6961 + }, + { + "start": 19930.51, + "end": 19935.73, + "probability": 0.9204 + }, + { + "start": 19947.12, + "end": 19948.14, + "probability": 0.7389 + }, + { + "start": 19948.52, + "end": 19949.72, + "probability": 0.7178 + }, + { + "start": 19949.78, + "end": 19950.3, + "probability": 0.617 + }, + { + "start": 19964.17, + "end": 19966.12, + "probability": 0.8772 + }, + { + "start": 19966.22, + "end": 19968.06, + "probability": 0.9346 + }, + { + "start": 19968.48, + "end": 19969.6, + "probability": 0.9451 + }, + { + "start": 19971.07, + "end": 19973.46, + "probability": 0.9731 + }, + { + "start": 19973.52, + "end": 19975.76, + "probability": 0.9963 + }, + { + "start": 19975.98, + "end": 19978.16, + "probability": 0.3907 + }, + { + "start": 19978.58, + "end": 19979.52, + "probability": 0.7727 + }, + { + "start": 19979.96, + "end": 19981.46, + "probability": 0.6871 + }, + { + "start": 19982.12, + "end": 19984.42, + "probability": 0.1254 + }, + { + "start": 19986.2, + "end": 19989.16, + "probability": 0.5961 + }, + { + "start": 19989.52, + "end": 19990.84, + "probability": 0.5739 + }, + { + "start": 19990.88, + "end": 19991.62, + "probability": 0.6196 + }, + { + "start": 19991.8, + "end": 19993.08, + "probability": 0.7592 + }, + { + "start": 19993.24, + "end": 19995.1, + "probability": 0.7441 + }, + { + "start": 19995.1, + "end": 19999.24, + "probability": 0.9695 + }, + { + "start": 19999.36, + "end": 20006.26, + "probability": 0.9504 + }, + { + "start": 20007.0, + "end": 20013.24, + "probability": 0.9622 + }, + { + "start": 20014.18, + "end": 20015.16, + "probability": 0.8478 + }, + { + "start": 20015.4, + "end": 20017.84, + "probability": 0.9294 + }, + { + "start": 20018.0, + "end": 20020.18, + "probability": 0.9732 + }, + { + "start": 20020.84, + "end": 20024.62, + "probability": 0.9932 + }, + { + "start": 20024.62, + "end": 20029.02, + "probability": 0.9779 + }, + { + "start": 20029.48, + "end": 20033.14, + "probability": 0.9659 + }, + { + "start": 20033.52, + "end": 20037.0, + "probability": 0.9895 + }, + { + "start": 20037.0, + "end": 20040.58, + "probability": 0.937 + }, + { + "start": 20040.92, + "end": 20044.02, + "probability": 0.9944 + }, + { + "start": 20044.18, + "end": 20044.94, + "probability": 0.0191 + }, + { + "start": 20044.94, + "end": 20045.1, + "probability": 0.2503 + }, + { + "start": 20045.96, + "end": 20049.11, + "probability": 0.9973 + }, + { + "start": 20050.4, + "end": 20055.6, + "probability": 0.9932 + }, + { + "start": 20056.1, + "end": 20061.78, + "probability": 0.8585 + }, + { + "start": 20062.98, + "end": 20065.44, + "probability": 0.884 + }, + { + "start": 20066.06, + "end": 20070.22, + "probability": 0.9052 + }, + { + "start": 20070.82, + "end": 20072.06, + "probability": 0.9207 + }, + { + "start": 20072.5, + "end": 20076.7, + "probability": 0.8836 + }, + { + "start": 20076.82, + "end": 20078.48, + "probability": 0.6068 + }, + { + "start": 20078.94, + "end": 20082.12, + "probability": 0.9832 + }, + { + "start": 20082.52, + "end": 20085.5, + "probability": 0.9049 + }, + { + "start": 20085.5, + "end": 20088.58, + "probability": 0.8073 + }, + { + "start": 20088.9, + "end": 20091.98, + "probability": 0.9885 + }, + { + "start": 20091.98, + "end": 20096.1, + "probability": 0.9215 + }, + { + "start": 20096.42, + "end": 20097.24, + "probability": 0.794 + }, + { + "start": 20097.36, + "end": 20098.52, + "probability": 0.8816 + }, + { + "start": 20099.1, + "end": 20101.58, + "probability": 0.5527 + }, + { + "start": 20101.92, + "end": 20103.1, + "probability": 0.8999 + }, + { + "start": 20103.5, + "end": 20104.62, + "probability": 0.7963 + }, + { + "start": 20104.96, + "end": 20106.96, + "probability": 0.965 + }, + { + "start": 20107.3, + "end": 20109.26, + "probability": 0.9832 + }, + { + "start": 20109.32, + "end": 20112.52, + "probability": 0.8526 + }, + { + "start": 20115.0, + "end": 20116.22, + "probability": 0.3102 + }, + { + "start": 20116.38, + "end": 20117.38, + "probability": 0.4452 + }, + { + "start": 20117.5, + "end": 20121.42, + "probability": 0.9805 + }, + { + "start": 20122.32, + "end": 20123.58, + "probability": 0.7517 + }, + { + "start": 20123.58, + "end": 20125.72, + "probability": 0.9889 + }, + { + "start": 20125.72, + "end": 20128.52, + "probability": 0.4754 + }, + { + "start": 20128.64, + "end": 20130.12, + "probability": 0.364 + }, + { + "start": 20130.54, + "end": 20133.1, + "probability": 0.5253 + }, + { + "start": 20133.16, + "end": 20134.41, + "probability": 0.67 + }, + { + "start": 20136.5, + "end": 20137.82, + "probability": 0.5117 + }, + { + "start": 20137.92, + "end": 20140.88, + "probability": 0.8792 + }, + { + "start": 20140.88, + "end": 20142.58, + "probability": 0.9452 + }, + { + "start": 20142.62, + "end": 20145.54, + "probability": 0.6847 + }, + { + "start": 20157.46, + "end": 20161.52, + "probability": 0.7129 + }, + { + "start": 20162.08, + "end": 20163.28, + "probability": 0.9486 + }, + { + "start": 20163.38, + "end": 20166.94, + "probability": 0.6319 + }, + { + "start": 20168.82, + "end": 20168.89, + "probability": 0.0165 + }, + { + "start": 20168.92, + "end": 20170.03, + "probability": 0.0497 + }, + { + "start": 20172.74, + "end": 20174.92, + "probability": 0.6474 + }, + { + "start": 20175.22, + "end": 20179.66, + "probability": 0.9899 + }, + { + "start": 20179.66, + "end": 20187.44, + "probability": 0.9946 + }, + { + "start": 20188.32, + "end": 20196.18, + "probability": 0.9927 + }, + { + "start": 20197.02, + "end": 20199.62, + "probability": 0.9949 + }, + { + "start": 20199.8, + "end": 20203.86, + "probability": 0.9883 + }, + { + "start": 20203.86, + "end": 20209.36, + "probability": 0.9958 + }, + { + "start": 20211.88, + "end": 20212.96, + "probability": 0.8298 + }, + { + "start": 20214.52, + "end": 20221.0, + "probability": 0.94 + }, + { + "start": 20222.08, + "end": 20222.84, + "probability": 0.3707 + }, + { + "start": 20223.02, + "end": 20223.82, + "probability": 0.9901 + }, + { + "start": 20224.04, + "end": 20226.34, + "probability": 0.8491 + }, + { + "start": 20226.76, + "end": 20227.9, + "probability": 0.7701 + }, + { + "start": 20227.94, + "end": 20230.08, + "probability": 0.9729 + }, + { + "start": 20230.2, + "end": 20233.02, + "probability": 0.9946 + }, + { + "start": 20233.1, + "end": 20238.16, + "probability": 0.9868 + }, + { + "start": 20238.24, + "end": 20240.3, + "probability": 0.9203 + }, + { + "start": 20240.82, + "end": 20242.56, + "probability": 0.9722 + }, + { + "start": 20243.76, + "end": 20248.0, + "probability": 0.9302 + }, + { + "start": 20248.12, + "end": 20249.22, + "probability": 0.888 + }, + { + "start": 20249.32, + "end": 20251.08, + "probability": 0.8263 + }, + { + "start": 20251.14, + "end": 20251.8, + "probability": 0.9041 + }, + { + "start": 20257.48, + "end": 20258.92, + "probability": 0.581 + }, + { + "start": 20259.34, + "end": 20260.18, + "probability": 0.9869 + }, + { + "start": 20260.34, + "end": 20260.62, + "probability": 0.7835 + }, + { + "start": 20260.68, + "end": 20261.34, + "probability": 0.9232 + }, + { + "start": 20261.52, + "end": 20264.58, + "probability": 0.7033 + }, + { + "start": 20264.58, + "end": 20267.82, + "probability": 0.7807 + }, + { + "start": 20268.38, + "end": 20269.98, + "probability": 0.9529 + }, + { + "start": 20270.64, + "end": 20271.48, + "probability": 0.8801 + }, + { + "start": 20271.62, + "end": 20274.52, + "probability": 0.9906 + }, + { + "start": 20274.92, + "end": 20276.2, + "probability": 0.6742 + }, + { + "start": 20276.28, + "end": 20281.18, + "probability": 0.9911 + }, + { + "start": 20281.64, + "end": 20287.9, + "probability": 0.9641 + }, + { + "start": 20288.3, + "end": 20292.6, + "probability": 0.9888 + }, + { + "start": 20292.88, + "end": 20294.64, + "probability": 0.7987 + }, + { + "start": 20295.2, + "end": 20296.22, + "probability": 0.797 + }, + { + "start": 20296.48, + "end": 20297.78, + "probability": 0.5913 + }, + { + "start": 20299.56, + "end": 20300.08, + "probability": 0.1554 + }, + { + "start": 20300.2, + "end": 20303.4, + "probability": 0.7896 + }, + { + "start": 20303.8, + "end": 20306.06, + "probability": 0.9326 + }, + { + "start": 20306.34, + "end": 20307.94, + "probability": 0.9861 + }, + { + "start": 20308.62, + "end": 20310.4, + "probability": 0.963 + }, + { + "start": 20310.6, + "end": 20311.56, + "probability": 0.7707 + }, + { + "start": 20311.78, + "end": 20315.28, + "probability": 0.9686 + }, + { + "start": 20316.1, + "end": 20317.98, + "probability": 0.8776 + }, + { + "start": 20318.04, + "end": 20320.82, + "probability": 0.9813 + }, + { + "start": 20321.34, + "end": 20323.08, + "probability": 0.9894 + }, + { + "start": 20323.88, + "end": 20326.36, + "probability": 0.9741 + }, + { + "start": 20326.54, + "end": 20334.3, + "probability": 0.9857 + }, + { + "start": 20340.42, + "end": 20343.14, + "probability": 0.9598 + }, + { + "start": 20343.14, + "end": 20346.8, + "probability": 0.9959 + }, + { + "start": 20346.88, + "end": 20348.26, + "probability": 0.959 + }, + { + "start": 20349.02, + "end": 20354.52, + "probability": 0.814 + }, + { + "start": 20354.72, + "end": 20360.04, + "probability": 0.9131 + }, + { + "start": 20361.34, + "end": 20365.46, + "probability": 0.4931 + }, + { + "start": 20365.58, + "end": 20366.86, + "probability": 0.7575 + }, + { + "start": 20367.34, + "end": 20368.06, + "probability": 0.7321 + }, + { + "start": 20368.28, + "end": 20368.88, + "probability": 0.573 + }, + { + "start": 20368.94, + "end": 20369.66, + "probability": 0.5033 + }, + { + "start": 20369.74, + "end": 20370.76, + "probability": 0.8699 + }, + { + "start": 20371.14, + "end": 20372.68, + "probability": 0.0015 + }, + { + "start": 20381.62, + "end": 20381.82, + "probability": 0.0 + }, + { + "start": 20382.88, + "end": 20385.32, + "probability": 0.0791 + }, + { + "start": 20386.4, + "end": 20391.92, + "probability": 0.6161 + }, + { + "start": 20392.06, + "end": 20395.88, + "probability": 0.8744 + }, + { + "start": 20396.08, + "end": 20397.4, + "probability": 0.7479 + }, + { + "start": 20397.82, + "end": 20399.76, + "probability": 0.7695 + }, + { + "start": 20399.9, + "end": 20401.84, + "probability": 0.8941 + }, + { + "start": 20402.28, + "end": 20403.02, + "probability": 0.4419 + }, + { + "start": 20403.46, + "end": 20404.88, + "probability": 0.2462 + }, + { + "start": 20404.98, + "end": 20405.38, + "probability": 0.7857 + }, + { + "start": 20405.42, + "end": 20406.54, + "probability": 0.6481 + }, + { + "start": 20409.04, + "end": 20410.14, + "probability": 0.6406 + }, + { + "start": 20410.56, + "end": 20411.64, + "probability": 0.9 + }, + { + "start": 20411.74, + "end": 20413.68, + "probability": 0.7793 + }, + { + "start": 20413.74, + "end": 20414.74, + "probability": 0.5544 + }, + { + "start": 20414.92, + "end": 20419.04, + "probability": 0.9794 + }, + { + "start": 20419.81, + "end": 20422.14, + "probability": 0.8928 + }, + { + "start": 20422.28, + "end": 20422.58, + "probability": 0.4787 + }, + { + "start": 20422.62, + "end": 20425.3, + "probability": 0.9289 + }, + { + "start": 20425.48, + "end": 20426.8, + "probability": 0.3964 + }, + { + "start": 20426.9, + "end": 20427.12, + "probability": 0.4152 + }, + { + "start": 20427.2, + "end": 20428.28, + "probability": 0.9482 + }, + { + "start": 20428.62, + "end": 20430.46, + "probability": 0.8792 + }, + { + "start": 20430.56, + "end": 20431.26, + "probability": 0.8708 + }, + { + "start": 20431.82, + "end": 20432.84, + "probability": 0.8029 + }, + { + "start": 20433.08, + "end": 20433.64, + "probability": 0.8696 + }, + { + "start": 20433.76, + "end": 20437.26, + "probability": 0.8693 + }, + { + "start": 20437.76, + "end": 20439.02, + "probability": 0.7808 + }, + { + "start": 20439.02, + "end": 20441.1, + "probability": 0.7043 + }, + { + "start": 20441.84, + "end": 20446.94, + "probability": 0.999 + }, + { + "start": 20446.94, + "end": 20451.56, + "probability": 0.9642 + }, + { + "start": 20453.22, + "end": 20456.46, + "probability": 0.2284 + }, + { + "start": 20456.92, + "end": 20456.94, + "probability": 0.2507 + }, + { + "start": 20456.94, + "end": 20458.46, + "probability": 0.7262 + }, + { + "start": 20460.32, + "end": 20460.32, + "probability": 0.0526 + }, + { + "start": 20460.32, + "end": 20461.44, + "probability": 0.5881 + }, + { + "start": 20462.18, + "end": 20463.04, + "probability": 0.0773 + }, + { + "start": 20464.14, + "end": 20464.92, + "probability": 0.1803 + }, + { + "start": 20464.92, + "end": 20466.67, + "probability": 0.1389 + }, + { + "start": 20468.12, + "end": 20470.06, + "probability": 0.209 + }, + { + "start": 20470.06, + "end": 20476.82, + "probability": 0.7475 + }, + { + "start": 20477.44, + "end": 20479.55, + "probability": 0.9707 + }, + { + "start": 20480.18, + "end": 20481.42, + "probability": 0.1355 + }, + { + "start": 20481.68, + "end": 20483.46, + "probability": 0.98 + }, + { + "start": 20483.86, + "end": 20484.62, + "probability": 0.0184 + }, + { + "start": 20484.66, + "end": 20487.86, + "probability": 0.1341 + }, + { + "start": 20488.2, + "end": 20489.13, + "probability": 0.6091 + }, + { + "start": 20489.63, + "end": 20495.78, + "probability": 0.1213 + }, + { + "start": 20500.0, + "end": 20503.04, + "probability": 0.8217 + }, + { + "start": 20503.74, + "end": 20506.82, + "probability": 0.8391 + }, + { + "start": 20507.24, + "end": 20509.42, + "probability": 0.9473 + }, + { + "start": 20509.42, + "end": 20510.22, + "probability": 0.9095 + }, + { + "start": 20510.78, + "end": 20512.14, + "probability": 0.897 + }, + { + "start": 20512.24, + "end": 20513.62, + "probability": 0.7728 + }, + { + "start": 20513.97, + "end": 20516.44, + "probability": 0.7856 + }, + { + "start": 20516.6, + "end": 20518.44, + "probability": 0.8438 + }, + { + "start": 20518.76, + "end": 20522.62, + "probability": 0.773 + }, + { + "start": 20522.8, + "end": 20523.26, + "probability": 0.6677 + }, + { + "start": 20523.4, + "end": 20525.88, + "probability": 0.7123 + }, + { + "start": 20525.96, + "end": 20528.06, + "probability": 0.8911 + }, + { + "start": 20528.38, + "end": 20531.12, + "probability": 0.9874 + }, + { + "start": 20531.26, + "end": 20534.7, + "probability": 0.981 + }, + { + "start": 20534.8, + "end": 20537.06, + "probability": 0.8604 + }, + { + "start": 20537.12, + "end": 20537.54, + "probability": 0.7145 + }, + { + "start": 20538.13, + "end": 20542.3, + "probability": 0.7563 + }, + { + "start": 20546.82, + "end": 20549.12, + "probability": 0.672 + }, + { + "start": 20549.24, + "end": 20551.8, + "probability": 0.7236 + }, + { + "start": 20552.04, + "end": 20557.14, + "probability": 0.9803 + }, + { + "start": 20557.54, + "end": 20558.06, + "probability": 0.829 + }, + { + "start": 20568.04, + "end": 20571.22, + "probability": 0.8825 + }, + { + "start": 20571.66, + "end": 20574.42, + "probability": 0.929 + }, + { + "start": 20574.48, + "end": 20575.24, + "probability": 0.7769 + }, + { + "start": 20575.74, + "end": 20580.74, + "probability": 0.9575 + }, + { + "start": 20580.74, + "end": 20583.58, + "probability": 0.8287 + }, + { + "start": 20583.64, + "end": 20586.31, + "probability": 0.9842 + }, + { + "start": 20587.56, + "end": 20590.22, + "probability": 0.9888 + }, + { + "start": 20590.88, + "end": 20595.96, + "probability": 0.8281 + }, + { + "start": 20596.76, + "end": 20600.84, + "probability": 0.8179 + }, + { + "start": 20601.18, + "end": 20603.38, + "probability": 0.9915 + }, + { + "start": 20604.0, + "end": 20607.24, + "probability": 0.992 + }, + { + "start": 20607.42, + "end": 20609.77, + "probability": 0.9695 + }, + { + "start": 20610.04, + "end": 20611.32, + "probability": 0.8108 + }, + { + "start": 20612.58, + "end": 20614.73, + "probability": 0.8115 + }, + { + "start": 20615.02, + "end": 20617.5, + "probability": 0.9947 + }, + { + "start": 20617.56, + "end": 20619.88, + "probability": 0.9395 + }, + { + "start": 20619.92, + "end": 20620.72, + "probability": 0.7521 + }, + { + "start": 20621.02, + "end": 20623.68, + "probability": 0.5777 + }, + { + "start": 20623.88, + "end": 20626.02, + "probability": 0.8951 + }, + { + "start": 20626.02, + "end": 20626.26, + "probability": 0.5371 + }, + { + "start": 20626.26, + "end": 20626.26, + "probability": 0.3565 + }, + { + "start": 20626.26, + "end": 20627.68, + "probability": 0.9732 + }, + { + "start": 20627.8, + "end": 20628.88, + "probability": 0.5556 + }, + { + "start": 20628.96, + "end": 20630.86, + "probability": 0.8977 + }, + { + "start": 20632.06, + "end": 20632.86, + "probability": 0.9259 + }, + { + "start": 20632.86, + "end": 20633.24, + "probability": 0.3708 + }, + { + "start": 20633.3, + "end": 20634.02, + "probability": 0.4851 + }, + { + "start": 20634.02, + "end": 20634.74, + "probability": 0.6763 + }, + { + "start": 20634.84, + "end": 20636.0, + "probability": 0.9261 + }, + { + "start": 20636.3, + "end": 20637.14, + "probability": 0.9272 + }, + { + "start": 20637.28, + "end": 20639.58, + "probability": 0.6931 + }, + { + "start": 20639.66, + "end": 20642.72, + "probability": 0.9814 + }, + { + "start": 20642.98, + "end": 20645.76, + "probability": 0.9895 + }, + { + "start": 20645.9, + "end": 20646.67, + "probability": 0.6363 + }, + { + "start": 20647.3, + "end": 20649.74, + "probability": 0.8325 + }, + { + "start": 20649.76, + "end": 20650.1, + "probability": 0.6983 + }, + { + "start": 20650.18, + "end": 20651.08, + "probability": 0.6924 + }, + { + "start": 20651.08, + "end": 20652.38, + "probability": 0.8228 + }, + { + "start": 20652.64, + "end": 20654.06, + "probability": 0.9785 + }, + { + "start": 20655.48, + "end": 20659.78, + "probability": 0.907 + }, + { + "start": 20660.38, + "end": 20662.16, + "probability": 0.9346 + }, + { + "start": 20662.38, + "end": 20662.96, + "probability": 0.7841 + }, + { + "start": 20663.08, + "end": 20664.66, + "probability": 0.9528 + }, + { + "start": 20664.72, + "end": 20665.64, + "probability": 0.8903 + }, + { + "start": 20665.76, + "end": 20667.28, + "probability": 0.9294 + }, + { + "start": 20667.54, + "end": 20668.9, + "probability": 0.9488 + }, + { + "start": 20669.5, + "end": 20673.38, + "probability": 0.9927 + }, + { + "start": 20673.76, + "end": 20676.02, + "probability": 0.9905 + }, + { + "start": 20676.44, + "end": 20678.16, + "probability": 0.9817 + }, + { + "start": 20678.24, + "end": 20679.16, + "probability": 0.7961 + }, + { + "start": 20679.58, + "end": 20680.18, + "probability": 0.6332 + }, + { + "start": 20680.26, + "end": 20681.58, + "probability": 0.4066 + }, + { + "start": 20682.02, + "end": 20682.76, + "probability": 0.687 + }, + { + "start": 20682.9, + "end": 20685.82, + "probability": 0.9943 + }, + { + "start": 20685.82, + "end": 20689.68, + "probability": 0.9585 + }, + { + "start": 20690.02, + "end": 20690.98, + "probability": 0.8585 + }, + { + "start": 20692.61, + "end": 20693.2, + "probability": 0.1363 + }, + { + "start": 20693.2, + "end": 20694.86, + "probability": 0.4776 + }, + { + "start": 20694.94, + "end": 20695.72, + "probability": 0.9102 + }, + { + "start": 20695.86, + "end": 20697.46, + "probability": 0.7679 + }, + { + "start": 20697.46, + "end": 20699.34, + "probability": 0.0911 + }, + { + "start": 20701.0, + "end": 20701.12, + "probability": 0.1662 + }, + { + "start": 20701.12, + "end": 20701.12, + "probability": 0.0989 + }, + { + "start": 20701.12, + "end": 20703.64, + "probability": 0.4275 + }, + { + "start": 20703.66, + "end": 20704.72, + "probability": 0.9041 + }, + { + "start": 20704.78, + "end": 20706.1, + "probability": 0.7966 + }, + { + "start": 20706.18, + "end": 20707.15, + "probability": 0.9617 + }, + { + "start": 20707.26, + "end": 20709.12, + "probability": 0.9207 + }, + { + "start": 20710.59, + "end": 20712.96, + "probability": 0.9814 + }, + { + "start": 20718.68, + "end": 20719.16, + "probability": 0.6007 + }, + { + "start": 20719.3, + "end": 20720.4, + "probability": 0.7594 + }, + { + "start": 20720.52, + "end": 20721.86, + "probability": 0.6931 + }, + { + "start": 20721.9, + "end": 20724.98, + "probability": 0.7693 + }, + { + "start": 20725.26, + "end": 20726.48, + "probability": 0.9374 + }, + { + "start": 20726.5, + "end": 20729.16, + "probability": 0.9827 + }, + { + "start": 20729.16, + "end": 20729.44, + "probability": 0.6573 + }, + { + "start": 20729.74, + "end": 20730.38, + "probability": 0.6282 + }, + { + "start": 20730.46, + "end": 20731.69, + "probability": 0.8635 + }, + { + "start": 20732.82, + "end": 20737.24, + "probability": 0.7122 + }, + { + "start": 20737.24, + "end": 20740.34, + "probability": 0.5054 + }, + { + "start": 20740.64, + "end": 20741.02, + "probability": 0.5328 + }, + { + "start": 20741.34, + "end": 20742.22, + "probability": 0.801 + }, + { + "start": 20742.32, + "end": 20742.68, + "probability": 0.8782 + }, + { + "start": 20742.76, + "end": 20743.3, + "probability": 0.8952 + }, + { + "start": 20743.68, + "end": 20745.12, + "probability": 0.8791 + }, + { + "start": 20745.7, + "end": 20748.96, + "probability": 0.9837 + }, + { + "start": 20749.18, + "end": 20750.2, + "probability": 0.9991 + }, + { + "start": 20750.3, + "end": 20751.14, + "probability": 0.9424 + }, + { + "start": 20751.4, + "end": 20752.48, + "probability": 0.971 + }, + { + "start": 20752.68, + "end": 20757.0, + "probability": 0.9822 + }, + { + "start": 20757.36, + "end": 20757.48, + "probability": 0.6862 + }, + { + "start": 20757.84, + "end": 20760.32, + "probability": 0.6102 + }, + { + "start": 20760.32, + "end": 20761.2, + "probability": 0.51 + }, + { + "start": 20761.44, + "end": 20763.8, + "probability": 0.8324 + }, + { + "start": 20763.92, + "end": 20764.02, + "probability": 0.7223 + }, + { + "start": 20764.08, + "end": 20765.62, + "probability": 0.9812 + }, + { + "start": 20765.76, + "end": 20769.48, + "probability": 0.9409 + }, + { + "start": 20769.72, + "end": 20771.76, + "probability": 0.9563 + }, + { + "start": 20772.2, + "end": 20772.32, + "probability": 0.3783 + }, + { + "start": 20772.32, + "end": 20772.98, + "probability": 0.6915 + }, + { + "start": 20773.18, + "end": 20774.22, + "probability": 0.6339 + }, + { + "start": 20774.54, + "end": 20777.86, + "probability": 0.8887 + }, + { + "start": 20778.08, + "end": 20781.02, + "probability": 0.9912 + }, + { + "start": 20781.5, + "end": 20783.52, + "probability": 0.9707 + }, + { + "start": 20784.36, + "end": 20789.46, + "probability": 0.9985 + }, + { + "start": 20789.82, + "end": 20791.66, + "probability": 0.8448 + }, + { + "start": 20792.12, + "end": 20796.0, + "probability": 0.9962 + }, + { + "start": 20796.44, + "end": 20797.49, + "probability": 0.8228 + }, + { + "start": 20797.78, + "end": 20798.24, + "probability": 0.7172 + }, + { + "start": 20798.32, + "end": 20800.39, + "probability": 0.9885 + }, + { + "start": 20801.84, + "end": 20803.74, + "probability": 0.5423 + }, + { + "start": 20803.78, + "end": 20804.56, + "probability": 0.6975 + }, + { + "start": 20804.86, + "end": 20807.08, + "probability": 0.3946 + }, + { + "start": 20807.14, + "end": 20807.66, + "probability": 0.8644 + }, + { + "start": 20807.68, + "end": 20808.08, + "probability": 0.4243 + }, + { + "start": 20808.36, + "end": 20809.12, + "probability": 0.921 + }, + { + "start": 20809.16, + "end": 20811.08, + "probability": 0.9617 + }, + { + "start": 20811.18, + "end": 20812.68, + "probability": 0.8683 + }, + { + "start": 20813.02, + "end": 20816.3, + "probability": 0.9706 + }, + { + "start": 20816.92, + "end": 20819.36, + "probability": 0.3516 + }, + { + "start": 20819.66, + "end": 20820.04, + "probability": 0.2452 + }, + { + "start": 20820.43, + "end": 20824.18, + "probability": 0.4893 + }, + { + "start": 20824.52, + "end": 20829.7, + "probability": 0.989 + }, + { + "start": 20829.88, + "end": 20835.24, + "probability": 0.932 + }, + { + "start": 20837.36, + "end": 20839.1, + "probability": 0.7263 + }, + { + "start": 20839.54, + "end": 20845.02, + "probability": 0.9787 + }, + { + "start": 20845.1, + "end": 20846.24, + "probability": 0.8777 + }, + { + "start": 20846.48, + "end": 20848.14, + "probability": 0.8662 + }, + { + "start": 20848.2, + "end": 20849.58, + "probability": 0.7791 + }, + { + "start": 20849.58, + "end": 20851.08, + "probability": 0.7924 + }, + { + "start": 20854.54, + "end": 20855.84, + "probability": 0.657 + }, + { + "start": 20856.2, + "end": 20859.48, + "probability": 0.1353 + }, + { + "start": 20859.58, + "end": 20859.72, + "probability": 0.1392 + }, + { + "start": 20860.96, + "end": 20861.54, + "probability": 0.0001 + }, + { + "start": 20871.78, + "end": 20871.78, + "probability": 0.1172 + }, + { + "start": 20871.78, + "end": 20877.16, + "probability": 0.6176 + }, + { + "start": 20877.32, + "end": 20882.0, + "probability": 0.8296 + }, + { + "start": 20882.0, + "end": 20887.18, + "probability": 0.4779 + }, + { + "start": 20887.86, + "end": 20889.58, + "probability": 0.9723 + }, + { + "start": 20889.6, + "end": 20894.3, + "probability": 0.8321 + }, + { + "start": 20896.74, + "end": 20902.31, + "probability": 0.964 + }, + { + "start": 20903.22, + "end": 20905.88, + "probability": 0.9806 + }, + { + "start": 20905.88, + "end": 20908.44, + "probability": 0.7469 + }, + { + "start": 20910.34, + "end": 20914.46, + "probability": 0.5235 + }, + { + "start": 20914.68, + "end": 20918.3, + "probability": 0.5061 + }, + { + "start": 20918.42, + "end": 20919.44, + "probability": 0.7482 + }, + { + "start": 20919.44, + "end": 20920.12, + "probability": 0.8299 + }, + { + "start": 20920.26, + "end": 20924.28, + "probability": 0.9194 + }, + { + "start": 20924.28, + "end": 20928.32, + "probability": 0.9616 + }, + { + "start": 20928.84, + "end": 20930.28, + "probability": 0.6059 + }, + { + "start": 20930.32, + "end": 20930.32, + "probability": 0.3234 + }, + { + "start": 20930.32, + "end": 20931.44, + "probability": 0.9399 + }, + { + "start": 20931.48, + "end": 20931.72, + "probability": 0.6617 + }, + { + "start": 20931.8, + "end": 20933.31, + "probability": 0.8066 + }, + { + "start": 20933.76, + "end": 20935.92, + "probability": 0.9 + }, + { + "start": 20936.12, + "end": 20938.58, + "probability": 0.8141 + }, + { + "start": 20938.72, + "end": 20941.38, + "probability": 0.717 + }, + { + "start": 20941.52, + "end": 20945.6, + "probability": 0.8515 + }, + { + "start": 20946.76, + "end": 20947.12, + "probability": 0.6407 + }, + { + "start": 20947.26, + "end": 20948.02, + "probability": 0.6426 + }, + { + "start": 20948.16, + "end": 20948.6, + "probability": 0.8775 + }, + { + "start": 20948.76, + "end": 20951.07, + "probability": 0.3795 + }, + { + "start": 20951.44, + "end": 20951.44, + "probability": 0.5483 + }, + { + "start": 20951.48, + "end": 20954.72, + "probability": 0.9924 + }, + { + "start": 20954.72, + "end": 20958.4, + "probability": 0.7237 + }, + { + "start": 20959.01, + "end": 20962.25, + "probability": 0.662 + }, + { + "start": 20963.38, + "end": 20965.88, + "probability": 0.8251 + }, + { + "start": 20966.24, + "end": 20968.02, + "probability": 0.3449 + }, + { + "start": 20968.48, + "end": 20969.32, + "probability": 0.2572 + }, + { + "start": 20969.38, + "end": 20972.12, + "probability": 0.9631 + }, + { + "start": 20972.26, + "end": 20974.56, + "probability": 0.96 + }, + { + "start": 20974.56, + "end": 20977.02, + "probability": 0.9744 + }, + { + "start": 20977.7, + "end": 20982.37, + "probability": 0.9181 + }, + { + "start": 20983.92, + "end": 20989.82, + "probability": 0.746 + }, + { + "start": 20989.82, + "end": 20994.54, + "probability": 0.7025 + }, + { + "start": 20994.92, + "end": 20999.08, + "probability": 0.939 + }, + { + "start": 20999.14, + "end": 21004.08, + "probability": 0.9155 + }, + { + "start": 21005.24, + "end": 21008.6, + "probability": 0.9466 + }, + { + "start": 21008.6, + "end": 21011.0, + "probability": 0.986 + }, + { + "start": 21012.28, + "end": 21015.79, + "probability": 0.9481 + }, + { + "start": 21016.5, + "end": 21018.0, + "probability": 0.8745 + }, + { + "start": 21018.1, + "end": 21018.96, + "probability": 0.9685 + }, + { + "start": 21019.32, + "end": 21021.98, + "probability": 0.4213 + }, + { + "start": 21021.98, + "end": 21023.85, + "probability": 0.5495 + }, + { + "start": 21024.6, + "end": 21028.64, + "probability": 0.8668 + }, + { + "start": 21029.12, + "end": 21033.1, + "probability": 0.9236 + }, + { + "start": 21033.24, + "end": 21036.06, + "probability": 0.979 + }, + { + "start": 21036.06, + "end": 21038.3, + "probability": 0.9956 + }, + { + "start": 21038.46, + "end": 21041.54, + "probability": 0.9828 + }, + { + "start": 21041.54, + "end": 21044.22, + "probability": 0.9491 + }, + { + "start": 21044.46, + "end": 21046.12, + "probability": 0.8561 + }, + { + "start": 21046.84, + "end": 21048.86, + "probability": 0.7362 + }, + { + "start": 21049.16, + "end": 21055.12, + "probability": 0.9972 + }, + { + "start": 21055.12, + "end": 21059.9, + "probability": 0.9993 + }, + { + "start": 21060.02, + "end": 21060.42, + "probability": 0.6175 + }, + { + "start": 21061.76, + "end": 21064.1, + "probability": 0.9639 + }, + { + "start": 21064.2, + "end": 21070.06, + "probability": 0.9736 + }, + { + "start": 21070.16, + "end": 21071.4, + "probability": 0.78 + }, + { + "start": 21072.22, + "end": 21073.86, + "probability": 0.79 + }, + { + "start": 21074.42, + "end": 21075.22, + "probability": 0.4681 + }, + { + "start": 21075.3, + "end": 21076.54, + "probability": 0.9768 + }, + { + "start": 21076.72, + "end": 21077.3, + "probability": 0.9019 + }, + { + "start": 21077.44, + "end": 21077.94, + "probability": 0.7428 + }, + { + "start": 21078.08, + "end": 21078.68, + "probability": 0.8343 + }, + { + "start": 21078.76, + "end": 21079.74, + "probability": 0.9648 + }, + { + "start": 21079.94, + "end": 21081.7, + "probability": 0.9209 + }, + { + "start": 21082.08, + "end": 21084.28, + "probability": 0.8692 + }, + { + "start": 21085.28, + "end": 21086.64, + "probability": 0.9093 + }, + { + "start": 21086.8, + "end": 21087.4, + "probability": 0.5027 + }, + { + "start": 21087.42, + "end": 21088.24, + "probability": 0.8213 + }, + { + "start": 21088.44, + "end": 21089.18, + "probability": 0.7997 + }, + { + "start": 21090.22, + "end": 21090.76, + "probability": 0.0418 + }, + { + "start": 21090.76, + "end": 21093.8, + "probability": 0.9268 + }, + { + "start": 21095.78, + "end": 21099.26, + "probability": 0.9365 + }, + { + "start": 21099.88, + "end": 21103.08, + "probability": 0.8262 + }, + { + "start": 21103.12, + "end": 21103.94, + "probability": 0.5271 + }, + { + "start": 21104.16, + "end": 21105.51, + "probability": 0.8748 + }, + { + "start": 21112.96, + "end": 21116.54, + "probability": 0.9259 + }, + { + "start": 21117.08, + "end": 21119.0, + "probability": 0.9394 + }, + { + "start": 21119.72, + "end": 21124.64, + "probability": 0.9941 + }, + { + "start": 21124.64, + "end": 21129.74, + "probability": 0.9935 + }, + { + "start": 21130.78, + "end": 21137.8, + "probability": 0.9736 + }, + { + "start": 21138.74, + "end": 21139.7, + "probability": 0.7649 + }, + { + "start": 21140.42, + "end": 21142.46, + "probability": 0.9497 + }, + { + "start": 21142.56, + "end": 21147.3, + "probability": 0.9534 + }, + { + "start": 21147.94, + "end": 21148.74, + "probability": 0.5187 + }, + { + "start": 21149.8, + "end": 21151.58, + "probability": 0.9805 + }, + { + "start": 21151.74, + "end": 21152.44, + "probability": 0.9648 + }, + { + "start": 21152.9, + "end": 21159.34, + "probability": 0.9798 + }, + { + "start": 21159.34, + "end": 21167.64, + "probability": 0.9776 + }, + { + "start": 21167.78, + "end": 21169.78, + "probability": 0.9976 + }, + { + "start": 21169.86, + "end": 21170.4, + "probability": 0.4629 + }, + { + "start": 21170.52, + "end": 21172.38, + "probability": 0.5387 + }, + { + "start": 21172.62, + "end": 21172.62, + "probability": 0.1669 + }, + { + "start": 21172.62, + "end": 21174.37, + "probability": 0.967 + }, + { + "start": 21174.54, + "end": 21175.74, + "probability": 0.8234 + }, + { + "start": 21176.14, + "end": 21178.24, + "probability": 0.9966 + }, + { + "start": 21178.58, + "end": 21179.28, + "probability": 0.4212 + }, + { + "start": 21179.42, + "end": 21179.86, + "probability": 0.5777 + }, + { + "start": 21179.96, + "end": 21180.28, + "probability": 0.2594 + }, + { + "start": 21180.36, + "end": 21181.36, + "probability": 0.6895 + }, + { + "start": 21181.5, + "end": 21181.54, + "probability": 0.6925 + }, + { + "start": 21181.54, + "end": 21181.94, + "probability": 0.6122 + }, + { + "start": 21181.94, + "end": 21182.22, + "probability": 0.0129 + }, + { + "start": 21182.28, + "end": 21183.88, + "probability": 0.8784 + }, + { + "start": 21183.88, + "end": 21183.92, + "probability": 0.7583 + }, + { + "start": 21184.0, + "end": 21186.73, + "probability": 0.9927 + }, + { + "start": 21187.0, + "end": 21187.9, + "probability": 0.7534 + }, + { + "start": 21187.9, + "end": 21188.22, + "probability": 0.3377 + }, + { + "start": 21188.22, + "end": 21188.58, + "probability": 0.4052 + }, + { + "start": 21189.01, + "end": 21191.22, + "probability": 0.2756 + }, + { + "start": 21191.32, + "end": 21192.8, + "probability": 0.808 + }, + { + "start": 21193.0, + "end": 21196.92, + "probability": 0.9395 + }, + { + "start": 21197.72, + "end": 21201.36, + "probability": 0.9954 + }, + { + "start": 21201.88, + "end": 21203.5, + "probability": 0.9617 + }, + { + "start": 21203.64, + "end": 21205.82, + "probability": 0.6265 + }, + { + "start": 21206.86, + "end": 21208.57, + "probability": 0.9443 + }, + { + "start": 21210.16, + "end": 21213.24, + "probability": 0.7344 + }, + { + "start": 21213.34, + "end": 21215.08, + "probability": 0.532 + }, + { + "start": 21215.16, + "end": 21216.38, + "probability": 0.9437 + }, + { + "start": 21217.1, + "end": 21219.34, + "probability": 0.9921 + }, + { + "start": 21220.66, + "end": 21222.86, + "probability": 0.9693 + }, + { + "start": 21222.92, + "end": 21224.03, + "probability": 0.9961 + }, + { + "start": 21224.64, + "end": 21226.86, + "probability": 0.9764 + }, + { + "start": 21228.08, + "end": 21230.62, + "probability": 0.9468 + }, + { + "start": 21231.84, + "end": 21232.87, + "probability": 0.9722 + }, + { + "start": 21233.84, + "end": 21235.52, + "probability": 0.878 + }, + { + "start": 21236.86, + "end": 21237.35, + "probability": 0.9551 + }, + { + "start": 21238.08, + "end": 21238.52, + "probability": 0.5365 + }, + { + "start": 21238.6, + "end": 21241.0, + "probability": 0.999 + }, + { + "start": 21241.32, + "end": 21242.69, + "probability": 0.9711 + }, + { + "start": 21243.5, + "end": 21244.68, + "probability": 0.7694 + }, + { + "start": 21244.82, + "end": 21248.86, + "probability": 0.9956 + }, + { + "start": 21250.56, + "end": 21252.14, + "probability": 0.9813 + }, + { + "start": 21252.36, + "end": 21254.0, + "probability": 0.0708 + }, + { + "start": 21254.08, + "end": 21255.0, + "probability": 0.7429 + }, + { + "start": 21257.76, + "end": 21259.18, + "probability": 0.0122 + }, + { + "start": 21259.18, + "end": 21259.86, + "probability": 0.4318 + }, + { + "start": 21260.06, + "end": 21260.24, + "probability": 0.929 + }, + { + "start": 21260.58, + "end": 21263.42, + "probability": 0.9736 + }, + { + "start": 21264.04, + "end": 21265.88, + "probability": 0.8907 + }, + { + "start": 21266.32, + "end": 21267.54, + "probability": 0.8817 + }, + { + "start": 21267.54, + "end": 21267.98, + "probability": 0.7827 + }, + { + "start": 21268.0, + "end": 21270.1, + "probability": 0.8555 + }, + { + "start": 21270.18, + "end": 21272.2, + "probability": 0.8936 + }, + { + "start": 21272.2, + "end": 21275.6, + "probability": 0.837 + }, + { + "start": 21276.18, + "end": 21278.74, + "probability": 0.7374 + }, + { + "start": 21278.74, + "end": 21280.8, + "probability": 0.9788 + }, + { + "start": 21280.88, + "end": 21283.74, + "probability": 0.8516 + }, + { + "start": 21284.14, + "end": 21288.78, + "probability": 0.9657 + }, + { + "start": 21289.52, + "end": 21291.34, + "probability": 0.9365 + }, + { + "start": 21291.88, + "end": 21292.74, + "probability": 0.9485 + }, + { + "start": 21292.88, + "end": 21294.5, + "probability": 0.8781 + }, + { + "start": 21295.0, + "end": 21295.92, + "probability": 0.9704 + }, + { + "start": 21296.1, + "end": 21298.18, + "probability": 0.9439 + }, + { + "start": 21298.18, + "end": 21301.08, + "probability": 0.7913 + }, + { + "start": 21301.18, + "end": 21301.96, + "probability": 0.8151 + }, + { + "start": 21302.06, + "end": 21304.86, + "probability": 0.9172 + }, + { + "start": 21305.5, + "end": 21306.04, + "probability": 0.6193 + }, + { + "start": 21306.14, + "end": 21307.26, + "probability": 0.8694 + }, + { + "start": 21307.42, + "end": 21309.04, + "probability": 0.991 + }, + { + "start": 21309.94, + "end": 21310.64, + "probability": 0.4998 + }, + { + "start": 21311.72, + "end": 21313.76, + "probability": 0.9789 + }, + { + "start": 21313.76, + "end": 21317.18, + "probability": 0.9966 + }, + { + "start": 21318.18, + "end": 21322.42, + "probability": 0.9762 + }, + { + "start": 21322.42, + "end": 21325.96, + "probability": 0.996 + }, + { + "start": 21326.8, + "end": 21327.34, + "probability": 0.6883 + }, + { + "start": 21327.46, + "end": 21328.7, + "probability": 0.5211 + }, + { + "start": 21328.86, + "end": 21331.76, + "probability": 0.5508 + }, + { + "start": 21331.82, + "end": 21332.46, + "probability": 0.902 + }, + { + "start": 21332.62, + "end": 21336.82, + "probability": 0.6284 + }, + { + "start": 21336.86, + "end": 21337.69, + "probability": 0.948 + }, + { + "start": 21337.88, + "end": 21338.68, + "probability": 0.2587 + }, + { + "start": 21338.98, + "end": 21339.32, + "probability": 0.4437 + }, + { + "start": 21339.4, + "end": 21342.49, + "probability": 0.3754 + }, + { + "start": 21347.34, + "end": 21347.42, + "probability": 0.1117 + }, + { + "start": 21347.42, + "end": 21347.42, + "probability": 0.0318 + }, + { + "start": 21347.42, + "end": 21347.86, + "probability": 0.2784 + }, + { + "start": 21347.86, + "end": 21348.66, + "probability": 0.6188 + }, + { + "start": 21349.38, + "end": 21355.2, + "probability": 0.9914 + }, + { + "start": 21355.3, + "end": 21358.52, + "probability": 0.9761 + }, + { + "start": 21359.28, + "end": 21363.46, + "probability": 0.9603 + }, + { + "start": 21363.46, + "end": 21368.34, + "probability": 0.9924 + }, + { + "start": 21369.42, + "end": 21373.02, + "probability": 0.9233 + }, + { + "start": 21373.02, + "end": 21374.42, + "probability": 0.7716 + }, + { + "start": 21374.9, + "end": 21376.08, + "probability": 0.9425 + }, + { + "start": 21376.4, + "end": 21378.82, + "probability": 0.9918 + }, + { + "start": 21379.1, + "end": 21380.64, + "probability": 0.1179 + }, + { + "start": 21380.66, + "end": 21381.16, + "probability": 0.1201 + }, + { + "start": 21381.72, + "end": 21382.5, + "probability": 0.7153 + }, + { + "start": 21383.06, + "end": 21384.08, + "probability": 0.3741 + }, + { + "start": 21384.28, + "end": 21387.28, + "probability": 0.8999 + }, + { + "start": 21387.28, + "end": 21389.18, + "probability": 0.7489 + }, + { + "start": 21389.5, + "end": 21391.1, + "probability": 0.6907 + }, + { + "start": 21391.2, + "end": 21394.98, + "probability": 0.7161 + }, + { + "start": 21394.98, + "end": 21395.87, + "probability": 0.1299 + }, + { + "start": 21396.4, + "end": 21397.64, + "probability": 0.8464 + }, + { + "start": 21398.7, + "end": 21399.16, + "probability": 0.7846 + }, + { + "start": 21399.3, + "end": 21400.32, + "probability": 0.9668 + }, + { + "start": 21400.6, + "end": 21402.94, + "probability": 0.9888 + }, + { + "start": 21404.66, + "end": 21406.6, + "probability": 0.9899 + }, + { + "start": 21407.7, + "end": 21412.2, + "probability": 0.9824 + }, + { + "start": 21414.9, + "end": 21418.52, + "probability": 0.6373 + }, + { + "start": 21418.52, + "end": 21422.14, + "probability": 0.9688 + }, + { + "start": 21422.54, + "end": 21424.52, + "probability": 0.7847 + }, + { + "start": 21424.96, + "end": 21427.92, + "probability": 0.9695 + }, + { + "start": 21428.12, + "end": 21428.54, + "probability": 0.8676 + }, + { + "start": 21428.84, + "end": 21434.04, + "probability": 0.9823 + }, + { + "start": 21435.9, + "end": 21436.54, + "probability": 0.9263 + }, + { + "start": 21436.64, + "end": 21440.8, + "probability": 0.9572 + }, + { + "start": 21440.92, + "end": 21443.64, + "probability": 0.6887 + }, + { + "start": 21445.0, + "end": 21446.4, + "probability": 0.9636 + }, + { + "start": 21447.06, + "end": 21448.7, + "probability": 0.9971 + }, + { + "start": 21449.76, + "end": 21451.14, + "probability": 0.9102 + }, + { + "start": 21451.78, + "end": 21452.36, + "probability": 0.5061 + }, + { + "start": 21452.4, + "end": 21453.12, + "probability": 0.8218 + }, + { + "start": 21453.2, + "end": 21456.1, + "probability": 0.9253 + }, + { + "start": 21456.82, + "end": 21457.3, + "probability": 0.6152 + }, + { + "start": 21457.64, + "end": 21459.96, + "probability": 0.9087 + }, + { + "start": 21460.02, + "end": 21460.81, + "probability": 0.9752 + }, + { + "start": 21462.02, + "end": 21465.94, + "probability": 0.9822 + }, + { + "start": 21466.74, + "end": 21468.78, + "probability": 0.7351 + }, + { + "start": 21468.84, + "end": 21470.08, + "probability": 0.9932 + }, + { + "start": 21471.2, + "end": 21472.9, + "probability": 0.9954 + }, + { + "start": 21473.32, + "end": 21477.32, + "probability": 0.9911 + }, + { + "start": 21478.76, + "end": 21479.41, + "probability": 0.9272 + }, + { + "start": 21480.0, + "end": 21481.96, + "probability": 0.9741 + }, + { + "start": 21482.8, + "end": 21484.41, + "probability": 0.9078 + }, + { + "start": 21485.48, + "end": 21487.0, + "probability": 0.9884 + }, + { + "start": 21487.0, + "end": 21492.4, + "probability": 0.847 + }, + { + "start": 21493.54, + "end": 21498.1, + "probability": 0.9933 + }, + { + "start": 21498.1, + "end": 21502.16, + "probability": 0.9987 + }, + { + "start": 21503.0, + "end": 21507.16, + "probability": 0.6844 + }, + { + "start": 21507.3, + "end": 21508.72, + "probability": 0.9269 + }, + { + "start": 21510.04, + "end": 21510.84, + "probability": 0.7781 + }, + { + "start": 21511.58, + "end": 21514.66, + "probability": 0.9273 + }, + { + "start": 21515.04, + "end": 21517.02, + "probability": 0.924 + }, + { + "start": 21517.02, + "end": 21519.54, + "probability": 0.9984 + }, + { + "start": 21520.44, + "end": 21521.53, + "probability": 0.875 + }, + { + "start": 21522.88, + "end": 21528.14, + "probability": 0.9411 + }, + { + "start": 21528.4, + "end": 21529.34, + "probability": 0.857 + }, + { + "start": 21529.38, + "end": 21531.54, + "probability": 0.9896 + }, + { + "start": 21531.78, + "end": 21533.79, + "probability": 0.9974 + }, + { + "start": 21535.54, + "end": 21536.2, + "probability": 0.7694 + }, + { + "start": 21536.9, + "end": 21539.1, + "probability": 0.9945 + }, + { + "start": 21539.44, + "end": 21540.11, + "probability": 0.9508 + }, + { + "start": 21541.24, + "end": 21545.11, + "probability": 0.925 + }, + { + "start": 21545.96, + "end": 21551.18, + "probability": 0.9785 + }, + { + "start": 21551.42, + "end": 21553.26, + "probability": 0.9829 + }, + { + "start": 21553.46, + "end": 21555.1, + "probability": 0.9143 + }, + { + "start": 21555.44, + "end": 21557.38, + "probability": 0.7033 + }, + { + "start": 21557.98, + "end": 21558.76, + "probability": 0.4825 + }, + { + "start": 21559.22, + "end": 21560.42, + "probability": 0.873 + }, + { + "start": 21561.22, + "end": 21563.0, + "probability": 0.9977 + }, + { + "start": 21563.7, + "end": 21568.0, + "probability": 0.993 + }, + { + "start": 21568.3, + "end": 21568.68, + "probability": 0.5234 + }, + { + "start": 21568.76, + "end": 21570.48, + "probability": 0.9967 + }, + { + "start": 21571.8, + "end": 21572.91, + "probability": 0.9135 + }, + { + "start": 21573.46, + "end": 21574.48, + "probability": 0.8936 + }, + { + "start": 21574.58, + "end": 21577.64, + "probability": 0.9892 + }, + { + "start": 21578.36, + "end": 21585.36, + "probability": 0.9888 + }, + { + "start": 21585.84, + "end": 21589.4, + "probability": 0.9614 + }, + { + "start": 21589.5, + "end": 21592.62, + "probability": 0.7405 + }, + { + "start": 21592.84, + "end": 21597.1, + "probability": 0.9257 + }, + { + "start": 21598.0, + "end": 21599.24, + "probability": 0.9612 + }, + { + "start": 21599.46, + "end": 21599.94, + "probability": 0.802 + }, + { + "start": 21600.26, + "end": 21600.7, + "probability": 0.9287 + }, + { + "start": 21601.86, + "end": 21603.78, + "probability": 0.827 + }, + { + "start": 21604.28, + "end": 21606.37, + "probability": 0.9951 + }, + { + "start": 21607.6, + "end": 21609.9, + "probability": 0.9641 + }, + { + "start": 21610.1, + "end": 21612.6, + "probability": 0.9542 + }, + { + "start": 21613.36, + "end": 21615.9, + "probability": 0.999 + }, + { + "start": 21616.8, + "end": 21621.58, + "probability": 0.9869 + }, + { + "start": 21622.08, + "end": 21623.2, + "probability": 0.6399 + }, + { + "start": 21623.52, + "end": 21625.72, + "probability": 0.8351 + }, + { + "start": 21626.2, + "end": 21629.82, + "probability": 0.9256 + }, + { + "start": 21629.86, + "end": 21631.12, + "probability": 0.9461 + }, + { + "start": 21631.96, + "end": 21634.78, + "probability": 0.9697 + }, + { + "start": 21635.4, + "end": 21636.84, + "probability": 0.8503 + }, + { + "start": 21637.34, + "end": 21639.08, + "probability": 0.9619 + }, + { + "start": 21639.79, + "end": 21642.49, + "probability": 0.9819 + }, + { + "start": 21642.5, + "end": 21644.8, + "probability": 0.8978 + }, + { + "start": 21647.69, + "end": 21650.92, + "probability": 0.6075 + }, + { + "start": 21651.22, + "end": 21653.26, + "probability": 0.3051 + }, + { + "start": 21653.26, + "end": 21653.94, + "probability": 0.7974 + }, + { + "start": 21654.08, + "end": 21656.14, + "probability": 0.7119 + }, + { + "start": 21656.8, + "end": 21656.86, + "probability": 0.2024 + }, + { + "start": 21656.86, + "end": 21657.76, + "probability": 0.2421 + }, + { + "start": 21658.74, + "end": 21663.28, + "probability": 0.9753 + }, + { + "start": 21663.5, + "end": 21665.0, + "probability": 0.9934 + }, + { + "start": 21666.16, + "end": 21668.3, + "probability": 0.9811 + }, + { + "start": 21668.32, + "end": 21669.16, + "probability": 0.7261 + }, + { + "start": 21671.32, + "end": 21672.58, + "probability": 0.2488 + }, + { + "start": 21672.7, + "end": 21673.24, + "probability": 0.4288 + }, + { + "start": 21673.38, + "end": 21674.3, + "probability": 0.4548 + }, + { + "start": 21674.42, + "end": 21674.7, + "probability": 0.7836 + }, + { + "start": 21674.74, + "end": 21675.32, + "probability": 0.7547 + }, + { + "start": 21675.36, + "end": 21675.76, + "probability": 0.4819 + }, + { + "start": 21675.82, + "end": 21677.8, + "probability": 0.9285 + }, + { + "start": 21678.56, + "end": 21682.02, + "probability": 0.977 + }, + { + "start": 21682.36, + "end": 21684.86, + "probability": 0.96 + }, + { + "start": 21685.74, + "end": 21686.78, + "probability": 0.8951 + }, + { + "start": 21686.8, + "end": 21687.85, + "probability": 0.9535 + }, + { + "start": 21688.2, + "end": 21689.92, + "probability": 0.9878 + }, + { + "start": 21689.94, + "end": 21695.24, + "probability": 0.9 + }, + { + "start": 21695.36, + "end": 21697.12, + "probability": 0.4636 + }, + { + "start": 21697.36, + "end": 21702.0, + "probability": 0.5759 + }, + { + "start": 21702.92, + "end": 21704.7, + "probability": 0.8795 + }, + { + "start": 21705.32, + "end": 21706.74, + "probability": 0.8806 + }, + { + "start": 21707.0, + "end": 21707.5, + "probability": 0.7726 + }, + { + "start": 21707.6, + "end": 21708.7, + "probability": 0.9857 + }, + { + "start": 21708.82, + "end": 21712.52, + "probability": 0.9478 + }, + { + "start": 21713.26, + "end": 21718.04, + "probability": 0.8981 + }, + { + "start": 21718.58, + "end": 21725.26, + "probability": 0.9945 + }, + { + "start": 21725.86, + "end": 21727.26, + "probability": 0.9922 + }, + { + "start": 21728.12, + "end": 21730.4, + "probability": 0.9846 + }, + { + "start": 21730.94, + "end": 21732.44, + "probability": 0.9941 + }, + { + "start": 21732.52, + "end": 21735.52, + "probability": 0.9945 + }, + { + "start": 21735.6, + "end": 21737.3, + "probability": 0.925 + }, + { + "start": 21737.34, + "end": 21737.95, + "probability": 0.9 + }, + { + "start": 21738.48, + "end": 21742.82, + "probability": 0.972 + }, + { + "start": 21743.1, + "end": 21745.64, + "probability": 0.6048 + }, + { + "start": 21745.66, + "end": 21745.88, + "probability": 0.0964 + }, + { + "start": 21745.9, + "end": 21747.98, + "probability": 0.968 + }, + { + "start": 21748.47, + "end": 21752.9, + "probability": 0.9943 + }, + { + "start": 21753.34, + "end": 21756.56, + "probability": 0.9968 + }, + { + "start": 21756.8, + "end": 21758.82, + "probability": 0.9968 + }, + { + "start": 21758.82, + "end": 21762.26, + "probability": 0.9943 + }, + { + "start": 21762.92, + "end": 21765.04, + "probability": 0.9646 + }, + { + "start": 21765.28, + "end": 21766.92, + "probability": 0.7523 + }, + { + "start": 21767.34, + "end": 21769.2, + "probability": 0.857 + }, + { + "start": 21769.42, + "end": 21771.14, + "probability": 0.9946 + }, + { + "start": 21771.3, + "end": 21774.54, + "probability": 0.9725 + }, + { + "start": 21774.6, + "end": 21775.16, + "probability": 0.8679 + }, + { + "start": 21775.6, + "end": 21776.82, + "probability": 0.7571 + }, + { + "start": 21777.44, + "end": 21778.86, + "probability": 0.9861 + }, + { + "start": 21779.54, + "end": 21780.66, + "probability": 0.7761 + }, + { + "start": 21780.84, + "end": 21782.8, + "probability": 0.7921 + }, + { + "start": 21782.86, + "end": 21784.03, + "probability": 0.7815 + }, + { + "start": 21784.54, + "end": 21786.29, + "probability": 0.9083 + }, + { + "start": 21786.42, + "end": 21788.3, + "probability": 0.9791 + }, + { + "start": 21788.62, + "end": 21790.98, + "probability": 0.8229 + }, + { + "start": 21791.12, + "end": 21793.02, + "probability": 0.7809 + }, + { + "start": 21793.62, + "end": 21796.04, + "probability": 0.9666 + }, + { + "start": 21796.12, + "end": 21797.3, + "probability": 0.914 + }, + { + "start": 21797.58, + "end": 21799.0, + "probability": 0.8094 + }, + { + "start": 21799.28, + "end": 21800.6, + "probability": 0.6631 + }, + { + "start": 21800.72, + "end": 21802.04, + "probability": 0.6903 + }, + { + "start": 21820.84, + "end": 21821.5, + "probability": 0.5376 + }, + { + "start": 21822.45, + "end": 21825.29, + "probability": 0.8162 + }, + { + "start": 21825.58, + "end": 21829.28, + "probability": 0.7007 + }, + { + "start": 21835.48, + "end": 21839.76, + "probability": 0.6796 + }, + { + "start": 21839.78, + "end": 21847.32, + "probability": 0.9146 + }, + { + "start": 21848.5, + "end": 21851.98, + "probability": 0.9717 + }, + { + "start": 21852.68, + "end": 21854.18, + "probability": 0.9896 + }, + { + "start": 21854.34, + "end": 21855.65, + "probability": 0.7825 + }, + { + "start": 21856.4, + "end": 21860.82, + "probability": 0.9824 + }, + { + "start": 21860.82, + "end": 21863.34, + "probability": 0.912 + }, + { + "start": 21864.78, + "end": 21866.69, + "probability": 0.9954 + }, + { + "start": 21867.86, + "end": 21868.88, + "probability": 0.8582 + }, + { + "start": 21869.22, + "end": 21870.26, + "probability": 0.9888 + }, + { + "start": 21870.36, + "end": 21870.61, + "probability": 0.4893 + }, + { + "start": 21871.06, + "end": 21878.36, + "probability": 0.998 + }, + { + "start": 21880.38, + "end": 21881.5, + "probability": 0.9596 + }, + { + "start": 21884.22, + "end": 21885.3, + "probability": 0.6457 + }, + { + "start": 21886.32, + "end": 21889.88, + "probability": 0.7926 + }, + { + "start": 21893.06, + "end": 21894.54, + "probability": 0.8847 + }, + { + "start": 21894.9, + "end": 21896.22, + "probability": 0.6805 + }, + { + "start": 21896.4, + "end": 21897.14, + "probability": 0.8216 + }, + { + "start": 21897.22, + "end": 21898.13, + "probability": 0.8445 + }, + { + "start": 21898.98, + "end": 21906.66, + "probability": 0.9141 + }, + { + "start": 21907.56, + "end": 21912.24, + "probability": 0.9828 + }, + { + "start": 21912.58, + "end": 21914.34, + "probability": 0.8802 + }, + { + "start": 21915.22, + "end": 21919.48, + "probability": 0.9722 + }, + { + "start": 21919.5, + "end": 21920.71, + "probability": 0.4592 + }, + { + "start": 21921.2, + "end": 21924.24, + "probability": 0.983 + }, + { + "start": 21924.32, + "end": 21926.44, + "probability": 0.9666 + }, + { + "start": 21927.54, + "end": 21928.44, + "probability": 0.9158 + }, + { + "start": 21929.76, + "end": 21932.74, + "probability": 0.5885 + }, + { + "start": 21933.42, + "end": 21937.3, + "probability": 0.9912 + }, + { + "start": 21937.34, + "end": 21938.94, + "probability": 0.9321 + }, + { + "start": 21939.06, + "end": 21939.86, + "probability": 0.7515 + }, + { + "start": 21939.92, + "end": 21940.74, + "probability": 0.8286 + }, + { + "start": 21941.58, + "end": 21943.05, + "probability": 0.6952 + }, + { + "start": 21944.92, + "end": 21953.46, + "probability": 0.9951 + }, + { + "start": 21954.32, + "end": 21962.5, + "probability": 0.9424 + }, + { + "start": 21962.66, + "end": 21966.98, + "probability": 0.9839 + }, + { + "start": 21967.44, + "end": 21970.22, + "probability": 0.9543 + }, + { + "start": 21971.8, + "end": 21972.96, + "probability": 0.8676 + }, + { + "start": 21973.02, + "end": 21973.76, + "probability": 0.8899 + }, + { + "start": 21974.1, + "end": 21977.52, + "probability": 0.9658 + }, + { + "start": 21977.64, + "end": 21978.48, + "probability": 0.7729 + }, + { + "start": 21978.8, + "end": 21979.4, + "probability": 0.7824 + }, + { + "start": 21979.6, + "end": 21981.26, + "probability": 0.7557 + }, + { + "start": 21981.28, + "end": 21985.04, + "probability": 0.7963 + }, + { + "start": 21985.8, + "end": 21989.84, + "probability": 0.9871 + }, + { + "start": 21989.98, + "end": 21990.56, + "probability": 0.6322 + }, + { + "start": 21990.6, + "end": 21991.14, + "probability": 0.7077 + }, + { + "start": 21991.26, + "end": 21992.9, + "probability": 0.9714 + }, + { + "start": 21993.0, + "end": 21997.74, + "probability": 0.9877 + }, + { + "start": 21999.62, + "end": 22002.66, + "probability": 0.9411 + }, + { + "start": 22003.34, + "end": 22003.96, + "probability": 0.62 + }, + { + "start": 22003.96, + "end": 22006.34, + "probability": 0.8155 + }, + { + "start": 22006.48, + "end": 22007.8, + "probability": 0.9528 + }, + { + "start": 22007.88, + "end": 22010.12, + "probability": 0.9934 + }, + { + "start": 22011.0, + "end": 22012.24, + "probability": 0.9032 + }, + { + "start": 22012.38, + "end": 22012.86, + "probability": 0.6847 + }, + { + "start": 22012.86, + "end": 22013.32, + "probability": 0.7363 + }, + { + "start": 22013.32, + "end": 22014.02, + "probability": 0.7826 + }, + { + "start": 22014.2, + "end": 22018.82, + "probability": 0.9258 + }, + { + "start": 22019.3, + "end": 22021.24, + "probability": 0.9093 + }, + { + "start": 22022.02, + "end": 22023.34, + "probability": 0.9582 + }, + { + "start": 22023.98, + "end": 22025.49, + "probability": 0.6928 + }, + { + "start": 22026.28, + "end": 22031.62, + "probability": 0.9858 + }, + { + "start": 22032.2, + "end": 22033.97, + "probability": 0.9138 + }, + { + "start": 22034.5, + "end": 22036.7, + "probability": 0.9814 + }, + { + "start": 22036.94, + "end": 22037.98, + "probability": 0.9831 + }, + { + "start": 22038.46, + "end": 22043.76, + "probability": 0.9797 + }, + { + "start": 22045.6, + "end": 22046.98, + "probability": 0.9676 + }, + { + "start": 22047.06, + "end": 22047.6, + "probability": 0.8221 + }, + { + "start": 22047.98, + "end": 22050.02, + "probability": 0.9335 + }, + { + "start": 22051.02, + "end": 22056.68, + "probability": 0.9748 + }, + { + "start": 22056.8, + "end": 22063.14, + "probability": 0.967 + }, + { + "start": 22063.18, + "end": 22066.27, + "probability": 0.8926 + }, + { + "start": 22066.8, + "end": 22069.38, + "probability": 0.7968 + }, + { + "start": 22069.9, + "end": 22071.82, + "probability": 0.9957 + }, + { + "start": 22071.96, + "end": 22072.84, + "probability": 0.8688 + }, + { + "start": 22073.16, + "end": 22077.14, + "probability": 0.9333 + }, + { + "start": 22077.98, + "end": 22080.08, + "probability": 0.9369 + }, + { + "start": 22081.16, + "end": 22086.38, + "probability": 0.9369 + }, + { + "start": 22089.54, + "end": 22094.5, + "probability": 0.9674 + }, + { + "start": 22095.14, + "end": 22095.88, + "probability": 0.8994 + }, + { + "start": 22095.94, + "end": 22099.16, + "probability": 0.9552 + }, + { + "start": 22099.24, + "end": 22100.78, + "probability": 0.9385 + }, + { + "start": 22101.34, + "end": 22103.48, + "probability": 0.968 + }, + { + "start": 22104.32, + "end": 22111.76, + "probability": 0.9396 + }, + { + "start": 22111.76, + "end": 22117.1, + "probability": 0.8664 + }, + { + "start": 22117.52, + "end": 22118.48, + "probability": 0.6487 + }, + { + "start": 22118.52, + "end": 22119.1, + "probability": 0.4666 + }, + { + "start": 22119.1, + "end": 22120.35, + "probability": 0.9158 + }, + { + "start": 22121.38, + "end": 22124.22, + "probability": 0.7163 + }, + { + "start": 22124.62, + "end": 22126.1, + "probability": 0.7059 + }, + { + "start": 22126.8, + "end": 22131.12, + "probability": 0.9373 + }, + { + "start": 22131.58, + "end": 22132.54, + "probability": 0.9227 + }, + { + "start": 22132.58, + "end": 22132.98, + "probability": 0.6502 + }, + { + "start": 22133.12, + "end": 22138.48, + "probability": 0.9375 + }, + { + "start": 22139.18, + "end": 22141.54, + "probability": 0.9935 + }, + { + "start": 22142.12, + "end": 22147.1, + "probability": 0.9615 + }, + { + "start": 22147.7, + "end": 22149.86, + "probability": 0.8867 + }, + { + "start": 22150.54, + "end": 22153.24, + "probability": 0.8387 + }, + { + "start": 22153.96, + "end": 22157.19, + "probability": 0.8492 + }, + { + "start": 22158.14, + "end": 22165.2, + "probability": 0.9679 + }, + { + "start": 22166.14, + "end": 22167.36, + "probability": 0.7277 + }, + { + "start": 22168.66, + "end": 22171.2, + "probability": 0.988 + }, + { + "start": 22171.86, + "end": 22173.53, + "probability": 0.9915 + }, + { + "start": 22174.7, + "end": 22179.5, + "probability": 0.9945 + }, + { + "start": 22180.28, + "end": 22182.4, + "probability": 0.9598 + }, + { + "start": 22182.4, + "end": 22186.5, + "probability": 0.9969 + }, + { + "start": 22186.82, + "end": 22188.74, + "probability": 0.9318 + }, + { + "start": 22189.3, + "end": 22190.04, + "probability": 0.8892 + }, + { + "start": 22190.24, + "end": 22191.32, + "probability": 0.9105 + }, + { + "start": 22191.74, + "end": 22193.26, + "probability": 0.7565 + }, + { + "start": 22194.48, + "end": 22195.9, + "probability": 0.6361 + }, + { + "start": 22196.78, + "end": 22199.94, + "probability": 0.9881 + }, + { + "start": 22200.68, + "end": 22201.36, + "probability": 0.9646 + }, + { + "start": 22202.34, + "end": 22205.58, + "probability": 0.8955 + }, + { + "start": 22206.34, + "end": 22212.72, + "probability": 0.8101 + }, + { + "start": 22213.48, + "end": 22219.46, + "probability": 0.9978 + }, + { + "start": 22220.2, + "end": 22221.1, + "probability": 0.4068 + }, + { + "start": 22221.72, + "end": 22222.56, + "probability": 0.9215 + }, + { + "start": 22222.64, + "end": 22223.0, + "probability": 0.5575 + }, + { + "start": 22223.46, + "end": 22224.72, + "probability": 0.8446 + }, + { + "start": 22224.84, + "end": 22226.28, + "probability": 0.7865 + }, + { + "start": 22226.68, + "end": 22228.52, + "probability": 0.9746 + }, + { + "start": 22238.12, + "end": 22240.16, + "probability": 0.9675 + }, + { + "start": 22240.74, + "end": 22241.74, + "probability": 0.9312 + }, + { + "start": 22243.2, + "end": 22245.6, + "probability": 0.8437 + }, + { + "start": 22245.88, + "end": 22246.2, + "probability": 0.7804 + }, + { + "start": 22246.44, + "end": 22246.72, + "probability": 0.6512 + }, + { + "start": 22247.04, + "end": 22247.84, + "probability": 0.8213 + }, + { + "start": 22247.88, + "end": 22252.0, + "probability": 0.8307 + }, + { + "start": 22252.0, + "end": 22256.92, + "probability": 0.9969 + }, + { + "start": 22256.92, + "end": 22257.02, + "probability": 0.5948 + }, + { + "start": 22257.72, + "end": 22260.82, + "probability": 0.9079 + }, + { + "start": 22260.96, + "end": 22263.96, + "probability": 0.9819 + }, + { + "start": 22264.54, + "end": 22267.56, + "probability": 0.6516 + }, + { + "start": 22268.34, + "end": 22268.34, + "probability": 0.1931 + }, + { + "start": 22268.34, + "end": 22269.4, + "probability": 0.9468 + }, + { + "start": 22270.08, + "end": 22271.01, + "probability": 0.9834 + }, + { + "start": 22271.38, + "end": 22275.58, + "probability": 0.5635 + }, + { + "start": 22275.64, + "end": 22276.22, + "probability": 0.59 + }, + { + "start": 22276.26, + "end": 22277.64, + "probability": 0.9712 + }, + { + "start": 22277.72, + "end": 22282.84, + "probability": 0.9424 + }, + { + "start": 22282.84, + "end": 22286.2, + "probability": 0.9444 + }, + { + "start": 22286.32, + "end": 22287.76, + "probability": 0.8342 + }, + { + "start": 22287.88, + "end": 22288.06, + "probability": 0.5057 + }, + { + "start": 22288.4, + "end": 22290.15, + "probability": 0.978 + }, + { + "start": 22290.52, + "end": 22292.08, + "probability": 0.7485 + }, + { + "start": 22292.14, + "end": 22292.66, + "probability": 0.894 + }, + { + "start": 22292.68, + "end": 22292.98, + "probability": 0.499 + }, + { + "start": 22293.18, + "end": 22294.76, + "probability": 0.6891 + }, + { + "start": 22294.84, + "end": 22295.63, + "probability": 0.9043 + }, + { + "start": 22295.8, + "end": 22296.8, + "probability": 0.8792 + }, + { + "start": 22297.9, + "end": 22297.9, + "probability": 0.06 + }, + { + "start": 22297.9, + "end": 22301.3, + "probability": 0.7484 + }, + { + "start": 22301.36, + "end": 22302.02, + "probability": 0.6881 + }, + { + "start": 22302.06, + "end": 22303.16, + "probability": 0.7812 + }, + { + "start": 22303.84, + "end": 22304.87, + "probability": 0.9785 + }, + { + "start": 22304.94, + "end": 22306.68, + "probability": 0.8792 + }, + { + "start": 22307.36, + "end": 22308.7, + "probability": 0.4874 + }, + { + "start": 22309.2, + "end": 22310.18, + "probability": 0.6718 + }, + { + "start": 22310.62, + "end": 22311.8, + "probability": 0.4217 + }, + { + "start": 22312.02, + "end": 22316.62, + "probability": 0.9349 + }, + { + "start": 22316.7, + "end": 22319.78, + "probability": 0.9707 + }, + { + "start": 22320.04, + "end": 22320.88, + "probability": 0.9521 + }, + { + "start": 22321.06, + "end": 22322.98, + "probability": 0.928 + }, + { + "start": 22323.06, + "end": 22325.9, + "probability": 0.8941 + }, + { + "start": 22326.16, + "end": 22329.34, + "probability": 0.9824 + }, + { + "start": 22329.4, + "end": 22330.6, + "probability": 0.7468 + }, + { + "start": 22330.88, + "end": 22334.43, + "probability": 0.9785 + }, + { + "start": 22334.76, + "end": 22339.52, + "probability": 0.9941 + }, + { + "start": 22340.18, + "end": 22340.38, + "probability": 0.1911 + }, + { + "start": 22340.38, + "end": 22340.38, + "probability": 0.3656 + }, + { + "start": 22340.38, + "end": 22340.38, + "probability": 0.1808 + }, + { + "start": 22340.38, + "end": 22342.26, + "probability": 0.7585 + }, + { + "start": 22342.36, + "end": 22344.6, + "probability": 0.6636 + }, + { + "start": 22344.76, + "end": 22346.28, + "probability": 0.0606 + }, + { + "start": 22346.28, + "end": 22347.72, + "probability": 0.875 + }, + { + "start": 22347.76, + "end": 22349.26, + "probability": 0.477 + }, + { + "start": 22349.34, + "end": 22350.82, + "probability": 0.6291 + }, + { + "start": 22350.92, + "end": 22351.3, + "probability": 0.8029 + }, + { + "start": 22351.36, + "end": 22354.6, + "probability": 0.9298 + }, + { + "start": 22354.7, + "end": 22356.84, + "probability": 0.9863 + }, + { + "start": 22356.96, + "end": 22357.99, + "probability": 0.7125 + }, + { + "start": 22358.58, + "end": 22360.86, + "probability": 0.2931 + }, + { + "start": 22361.04, + "end": 22363.86, + "probability": 0.8557 + }, + { + "start": 22364.52, + "end": 22367.32, + "probability": 0.8722 + }, + { + "start": 22368.42, + "end": 22369.61, + "probability": 0.8682 + }, + { + "start": 22370.02, + "end": 22373.5, + "probability": 0.9708 + }, + { + "start": 22376.42, + "end": 22376.8, + "probability": 0.0545 + }, + { + "start": 22376.8, + "end": 22376.8, + "probability": 0.2012 + }, + { + "start": 22376.8, + "end": 22376.8, + "probability": 0.0153 + }, + { + "start": 22376.8, + "end": 22377.58, + "probability": 0.5211 + }, + { + "start": 22377.78, + "end": 22382.08, + "probability": 0.7216 + }, + { + "start": 22382.5, + "end": 22383.08, + "probability": 0.9205 + }, + { + "start": 22383.32, + "end": 22383.68, + "probability": 0.8603 + }, + { + "start": 22384.66, + "end": 22385.26, + "probability": 0.8059 + }, + { + "start": 22385.42, + "end": 22388.56, + "probability": 0.9736 + }, + { + "start": 22388.78, + "end": 22389.68, + "probability": 0.5521 + }, + { + "start": 22389.92, + "end": 22392.2, + "probability": 0.9532 + }, + { + "start": 22392.22, + "end": 22395.48, + "probability": 0.9928 + }, + { + "start": 22395.88, + "end": 22398.96, + "probability": 0.9355 + }, + { + "start": 22398.96, + "end": 22402.2, + "probability": 0.8566 + }, + { + "start": 22402.76, + "end": 22405.28, + "probability": 0.9768 + }, + { + "start": 22405.46, + "end": 22406.66, + "probability": 0.7651 + }, + { + "start": 22406.66, + "end": 22408.1, + "probability": 0.7521 + }, + { + "start": 22408.2, + "end": 22409.92, + "probability": 0.9873 + }, + { + "start": 22410.46, + "end": 22413.72, + "probability": 0.9963 + }, + { + "start": 22414.2, + "end": 22414.6, + "probability": 0.8662 + }, + { + "start": 22414.66, + "end": 22416.32, + "probability": 0.9553 + }, + { + "start": 22416.56, + "end": 22417.1, + "probability": 0.5079 + }, + { + "start": 22417.18, + "end": 22417.8, + "probability": 0.7224 + }, + { + "start": 22418.12, + "end": 22418.86, + "probability": 0.8091 + }, + { + "start": 22418.94, + "end": 22420.54, + "probability": 0.7463 + }, + { + "start": 22420.66, + "end": 22421.8, + "probability": 0.9242 + }, + { + "start": 22423.04, + "end": 22424.36, + "probability": 0.9507 + }, + { + "start": 22424.46, + "end": 22424.9, + "probability": 0.8361 + }, + { + "start": 22424.92, + "end": 22425.4, + "probability": 0.6892 + }, + { + "start": 22425.42, + "end": 22425.9, + "probability": 0.8882 + }, + { + "start": 22426.48, + "end": 22428.56, + "probability": 0.9731 + }, + { + "start": 22429.12, + "end": 22431.82, + "probability": 0.9252 + }, + { + "start": 22431.82, + "end": 22435.4, + "probability": 0.9553 + }, + { + "start": 22435.6, + "end": 22436.88, + "probability": 0.7068 + }, + { + "start": 22437.02, + "end": 22438.1, + "probability": 0.8739 + }, + { + "start": 22438.18, + "end": 22438.28, + "probability": 0.531 + }, + { + "start": 22438.4, + "end": 22439.04, + "probability": 0.8097 + }, + { + "start": 22439.26, + "end": 22440.55, + "probability": 0.9242 + }, + { + "start": 22441.1, + "end": 22443.5, + "probability": 0.9445 + }, + { + "start": 22443.88, + "end": 22445.26, + "probability": 0.9927 + }, + { + "start": 22445.42, + "end": 22446.32, + "probability": 0.7634 + }, + { + "start": 22446.36, + "end": 22446.8, + "probability": 0.6364 + }, + { + "start": 22446.92, + "end": 22447.71, + "probability": 0.8529 + }, + { + "start": 22448.32, + "end": 22450.92, + "probability": 0.9509 + }, + { + "start": 22450.92, + "end": 22454.68, + "probability": 0.983 + }, + { + "start": 22455.04, + "end": 22455.66, + "probability": 0.7998 + }, + { + "start": 22455.76, + "end": 22456.84, + "probability": 0.9307 + }, + { + "start": 22456.98, + "end": 22458.36, + "probability": 0.9683 + }, + { + "start": 22459.02, + "end": 22462.78, + "probability": 0.9788 + }, + { + "start": 22463.1, + "end": 22466.5, + "probability": 0.9904 + }, + { + "start": 22466.5, + "end": 22469.74, + "probability": 0.9694 + }, + { + "start": 22470.2, + "end": 22470.56, + "probability": 0.8771 + }, + { + "start": 22479.2, + "end": 22482.02, + "probability": 0.2844 + }, + { + "start": 22482.26, + "end": 22485.94, + "probability": 0.8311 + }, + { + "start": 22485.94, + "end": 22488.8, + "probability": 0.7608 + }, + { + "start": 22488.98, + "end": 22490.08, + "probability": 0.7379 + }, + { + "start": 22490.8, + "end": 22493.74, + "probability": 0.9899 + }, + { + "start": 22494.22, + "end": 22495.2, + "probability": 0.9233 + }, + { + "start": 22495.28, + "end": 22495.79, + "probability": 0.3716 + }, + { + "start": 22496.76, + "end": 22499.64, + "probability": 0.7641 + }, + { + "start": 22499.64, + "end": 22502.94, + "probability": 0.9819 + }, + { + "start": 22503.88, + "end": 22504.6, + "probability": 0.9004 + }, + { + "start": 22504.92, + "end": 22506.64, + "probability": 0.7407 + }, + { + "start": 22506.72, + "end": 22507.95, + "probability": 0.7324 + }, + { + "start": 22508.18, + "end": 22508.72, + "probability": 0.3516 + }, + { + "start": 22508.96, + "end": 22511.48, + "probability": 0.8022 + }, + { + "start": 22512.0, + "end": 22513.0, + "probability": 0.9961 + }, + { + "start": 22513.08, + "end": 22513.7, + "probability": 0.8681 + }, + { + "start": 22513.82, + "end": 22516.81, + "probability": 0.8744 + }, + { + "start": 22517.0, + "end": 22521.0, + "probability": 0.9915 + }, + { + "start": 22521.04, + "end": 22522.04, + "probability": 0.9421 + }, + { + "start": 22522.12, + "end": 22523.48, + "probability": 0.6825 + }, + { + "start": 22524.04, + "end": 22527.3, + "probability": 0.9794 + }, + { + "start": 22528.86, + "end": 22529.82, + "probability": 0.9045 + }, + { + "start": 22529.9, + "end": 22530.92, + "probability": 0.9321 + }, + { + "start": 22531.06, + "end": 22532.28, + "probability": 0.9194 + }, + { + "start": 22532.66, + "end": 22534.54, + "probability": 0.8594 + }, + { + "start": 22535.54, + "end": 22536.34, + "probability": 0.7359 + }, + { + "start": 22536.66, + "end": 22538.08, + "probability": 0.978 + }, + { + "start": 22538.2, + "end": 22539.68, + "probability": 0.5679 + }, + { + "start": 22539.72, + "end": 22544.68, + "probability": 0.9565 + }, + { + "start": 22544.76, + "end": 22545.34, + "probability": 0.6695 + }, + { + "start": 22545.36, + "end": 22547.6, + "probability": 0.9075 + }, + { + "start": 22547.94, + "end": 22549.16, + "probability": 0.9873 + }, + { + "start": 22549.26, + "end": 22549.78, + "probability": 0.9519 + }, + { + "start": 22549.92, + "end": 22550.9, + "probability": 0.809 + }, + { + "start": 22551.98, + "end": 22554.96, + "probability": 0.9917 + }, + { + "start": 22554.96, + "end": 22557.84, + "probability": 0.9526 + }, + { + "start": 22558.48, + "end": 22562.08, + "probability": 0.9573 + }, + { + "start": 22562.08, + "end": 22566.66, + "probability": 0.9709 + }, + { + "start": 22566.78, + "end": 22567.78, + "probability": 0.8364 + }, + { + "start": 22568.06, + "end": 22569.42, + "probability": 0.9756 + }, + { + "start": 22569.62, + "end": 22572.05, + "probability": 0.8973 + }, + { + "start": 22572.46, + "end": 22574.93, + "probability": 0.9089 + }, + { + "start": 22576.02, + "end": 22577.2, + "probability": 0.9012 + }, + { + "start": 22577.34, + "end": 22578.67, + "probability": 0.8986 + }, + { + "start": 22579.36, + "end": 22580.2, + "probability": 0.6375 + }, + { + "start": 22580.22, + "end": 22582.81, + "probability": 0.8875 + }, + { + "start": 22583.44, + "end": 22583.58, + "probability": 0.1148 + }, + { + "start": 22584.6, + "end": 22586.34, + "probability": 0.5394 + }, + { + "start": 22586.54, + "end": 22588.45, + "probability": 0.856 + }, + { + "start": 22589.0, + "end": 22591.54, + "probability": 0.9973 + }, + { + "start": 22591.76, + "end": 22595.74, + "probability": 0.9976 + }, + { + "start": 22596.1, + "end": 22597.8, + "probability": 0.8187 + }, + { + "start": 22597.8, + "end": 22600.96, + "probability": 0.988 + }, + { + "start": 22601.44, + "end": 22602.92, + "probability": 0.5948 + }, + { + "start": 22602.92, + "end": 22605.2, + "probability": 0.5392 + }, + { + "start": 22606.78, + "end": 22608.98, + "probability": 0.5446 + }, + { + "start": 22609.64, + "end": 22611.57, + "probability": 0.7697 + }, + { + "start": 22611.92, + "end": 22615.64, + "probability": 0.9498 + }, + { + "start": 22616.14, + "end": 22619.26, + "probability": 0.7417 + }, + { + "start": 22619.44, + "end": 22620.54, + "probability": 0.7979 + }, + { + "start": 22620.92, + "end": 22622.54, + "probability": 0.7788 + }, + { + "start": 22622.72, + "end": 22622.78, + "probability": 0.1969 + }, + { + "start": 22623.0, + "end": 22625.58, + "probability": 0.8064 + }, + { + "start": 22625.72, + "end": 22626.78, + "probability": 0.8987 + }, + { + "start": 22627.48, + "end": 22628.53, + "probability": 0.9541 + }, + { + "start": 22629.42, + "end": 22630.68, + "probability": 0.5479 + }, + { + "start": 22630.7, + "end": 22633.6, + "probability": 0.8294 + }, + { + "start": 22633.88, + "end": 22639.08, + "probability": 0.9049 + }, + { + "start": 22639.44, + "end": 22641.76, + "probability": 0.8194 + }, + { + "start": 22642.4, + "end": 22643.68, + "probability": 0.9786 + }, + { + "start": 22643.82, + "end": 22644.58, + "probability": 0.8746 + }, + { + "start": 22644.8, + "end": 22647.92, + "probability": 0.7322 + }, + { + "start": 22648.24, + "end": 22652.74, + "probability": 0.7978 + }, + { + "start": 22652.88, + "end": 22654.1, + "probability": 0.6028 + }, + { + "start": 22654.72, + "end": 22656.94, + "probability": 0.9512 + }, + { + "start": 22657.5, + "end": 22659.4, + "probability": 0.9639 + }, + { + "start": 22659.58, + "end": 22660.46, + "probability": 0.865 + }, + { + "start": 22660.66, + "end": 22661.08, + "probability": 0.2628 + }, + { + "start": 22661.68, + "end": 22662.82, + "probability": 0.9697 + }, + { + "start": 22664.36, + "end": 22666.24, + "probability": 0.778 + }, + { + "start": 22666.46, + "end": 22667.3, + "probability": 0.6748 + }, + { + "start": 22667.62, + "end": 22672.02, + "probability": 0.866 + }, + { + "start": 22672.22, + "end": 22673.36, + "probability": 0.873 + }, + { + "start": 22673.66, + "end": 22675.52, + "probability": 0.9636 + }, + { + "start": 22675.52, + "end": 22678.62, + "probability": 0.9753 + }, + { + "start": 22678.64, + "end": 22680.86, + "probability": 0.9843 + }, + { + "start": 22681.04, + "end": 22681.62, + "probability": 0.7897 + }, + { + "start": 22682.14, + "end": 22684.38, + "probability": 0.5409 + }, + { + "start": 22684.46, + "end": 22685.52, + "probability": 0.6531 + }, + { + "start": 22686.52, + "end": 22690.19, + "probability": 0.7346 + }, + { + "start": 22691.24, + "end": 22692.99, + "probability": 0.9956 + }, + { + "start": 22693.78, + "end": 22694.48, + "probability": 0.931 + }, + { + "start": 22694.86, + "end": 22695.44, + "probability": 0.8011 + }, + { + "start": 22695.58, + "end": 22697.02, + "probability": 0.9483 + }, + { + "start": 22698.44, + "end": 22699.34, + "probability": 0.7288 + }, + { + "start": 22719.08, + "end": 22720.76, + "probability": 0.6269 + }, + { + "start": 22721.48, + "end": 22722.55, + "probability": 0.9497 + }, + { + "start": 22724.66, + "end": 22725.3, + "probability": 0.824 + }, + { + "start": 22725.44, + "end": 22726.64, + "probability": 0.598 + }, + { + "start": 22726.84, + "end": 22727.47, + "probability": 0.1855 + }, + { + "start": 22728.22, + "end": 22729.04, + "probability": 0.7352 + }, + { + "start": 22730.42, + "end": 22731.16, + "probability": 0.413 + }, + { + "start": 22731.4, + "end": 22734.4, + "probability": 0.9891 + }, + { + "start": 22734.56, + "end": 22734.86, + "probability": 0.2866 + }, + { + "start": 22734.92, + "end": 22735.84, + "probability": 0.691 + }, + { + "start": 22736.36, + "end": 22738.08, + "probability": 0.6201 + }, + { + "start": 22738.16, + "end": 22740.04, + "probability": 0.9722 + }, + { + "start": 22740.34, + "end": 22743.18, + "probability": 0.9718 + }, + { + "start": 22743.28, + "end": 22744.22, + "probability": 0.9458 + }, + { + "start": 22744.3, + "end": 22744.86, + "probability": 0.9797 + }, + { + "start": 22745.94, + "end": 22746.98, + "probability": 0.9646 + }, + { + "start": 22747.2, + "end": 22751.18, + "probability": 0.8014 + }, + { + "start": 22751.38, + "end": 22752.28, + "probability": 0.5832 + }, + { + "start": 22752.76, + "end": 22753.53, + "probability": 0.7264 + }, + { + "start": 22753.7, + "end": 22754.75, + "probability": 0.8428 + }, + { + "start": 22755.5, + "end": 22756.34, + "probability": 0.9308 + }, + { + "start": 22756.46, + "end": 22757.12, + "probability": 0.8429 + }, + { + "start": 22757.22, + "end": 22763.08, + "probability": 0.9583 + }, + { + "start": 22763.22, + "end": 22765.78, + "probability": 0.5443 + }, + { + "start": 22766.0, + "end": 22766.0, + "probability": 0.0084 + }, + { + "start": 22766.0, + "end": 22767.19, + "probability": 0.5098 + }, + { + "start": 22767.72, + "end": 22768.83, + "probability": 0.7816 + }, + { + "start": 22769.2, + "end": 22771.1, + "probability": 0.949 + }, + { + "start": 22771.8, + "end": 22775.0, + "probability": 0.9938 + }, + { + "start": 22775.22, + "end": 22776.08, + "probability": 0.0698 + }, + { + "start": 22776.24, + "end": 22777.54, + "probability": 0.5236 + }, + { + "start": 22777.78, + "end": 22780.42, + "probability": 0.6165 + }, + { + "start": 22780.56, + "end": 22780.96, + "probability": 0.2822 + }, + { + "start": 22781.36, + "end": 22786.34, + "probability": 0.8711 + }, + { + "start": 22786.8, + "end": 22787.88, + "probability": 0.9446 + }, + { + "start": 22788.06, + "end": 22788.81, + "probability": 0.9714 + }, + { + "start": 22789.02, + "end": 22791.54, + "probability": 0.8976 + }, + { + "start": 22792.16, + "end": 22794.06, + "probability": 0.8813 + }, + { + "start": 22794.46, + "end": 22796.76, + "probability": 0.1335 + }, + { + "start": 22796.78, + "end": 22797.48, + "probability": 0.3086 + }, + { + "start": 22797.48, + "end": 22798.02, + "probability": 0.2158 + }, + { + "start": 22798.2, + "end": 22803.5, + "probability": 0.9354 + }, + { + "start": 22803.9, + "end": 22805.76, + "probability": 0.9165 + }, + { + "start": 22806.24, + "end": 22806.94, + "probability": 0.4668 + }, + { + "start": 22810.32, + "end": 22811.66, + "probability": 0.0556 + }, + { + "start": 22811.66, + "end": 22811.66, + "probability": 0.0179 + }, + { + "start": 22811.66, + "end": 22814.18, + "probability": 0.7894 + }, + { + "start": 22814.26, + "end": 22819.16, + "probability": 0.9775 + }, + { + "start": 22819.45, + "end": 22821.58, + "probability": 0.5272 + }, + { + "start": 22821.8, + "end": 22823.3, + "probability": 0.5737 + }, + { + "start": 22824.84, + "end": 22827.3, + "probability": 0.4374 + }, + { + "start": 22827.36, + "end": 22831.62, + "probability": 0.9272 + }, + { + "start": 22831.9, + "end": 22832.2, + "probability": 0.5041 + }, + { + "start": 22832.26, + "end": 22836.76, + "probability": 0.9469 + }, + { + "start": 22836.94, + "end": 22838.48, + "probability": 0.5771 + }, + { + "start": 22838.74, + "end": 22841.68, + "probability": 0.8603 + }, + { + "start": 22841.8, + "end": 22843.22, + "probability": 0.7197 + }, + { + "start": 22843.28, + "end": 22846.72, + "probability": 0.9565 + }, + { + "start": 22846.8, + "end": 22847.44, + "probability": 0.4951 + }, + { + "start": 22847.56, + "end": 22848.16, + "probability": 0.7681 + }, + { + "start": 22848.4, + "end": 22849.66, + "probability": 0.8716 + }, + { + "start": 22851.18, + "end": 22855.66, + "probability": 0.7471 + }, + { + "start": 22855.66, + "end": 22856.68, + "probability": 0.7491 + }, + { + "start": 22857.46, + "end": 22858.64, + "probability": 0.9644 + }, + { + "start": 22858.76, + "end": 22863.26, + "probability": 0.8272 + }, + { + "start": 22863.5, + "end": 22866.18, + "probability": 0.9768 + }, + { + "start": 22866.28, + "end": 22866.8, + "probability": 0.5828 + }, + { + "start": 22866.82, + "end": 22867.46, + "probability": 0.8879 + }, + { + "start": 22867.6, + "end": 22872.02, + "probability": 0.9653 + }, + { + "start": 22872.56, + "end": 22873.41, + "probability": 0.9741 + }, + { + "start": 22873.58, + "end": 22876.54, + "probability": 0.9771 + }, + { + "start": 22876.92, + "end": 22879.04, + "probability": 0.8978 + }, + { + "start": 22879.18, + "end": 22879.84, + "probability": 0.9206 + }, + { + "start": 22879.94, + "end": 22880.82, + "probability": 0.9399 + }, + { + "start": 22881.08, + "end": 22882.24, + "probability": 0.6947 + }, + { + "start": 22882.28, + "end": 22885.02, + "probability": 0.8365 + }, + { + "start": 22885.46, + "end": 22886.18, + "probability": 0.9707 + }, + { + "start": 22886.38, + "end": 22891.16, + "probability": 0.5154 + }, + { + "start": 22891.4, + "end": 22897.12, + "probability": 0.8378 + }, + { + "start": 22897.46, + "end": 22900.95, + "probability": 0.835 + }, + { + "start": 22902.9, + "end": 22903.52, + "probability": 0.0138 + }, + { + "start": 22904.36, + "end": 22907.38, + "probability": 0.3547 + }, + { + "start": 22907.9, + "end": 22908.9, + "probability": 0.1422 + }, + { + "start": 22908.9, + "end": 22909.86, + "probability": 0.6364 + }, + { + "start": 22910.06, + "end": 22914.08, + "probability": 0.8629 + }, + { + "start": 22914.44, + "end": 22914.92, + "probability": 0.7532 + }, + { + "start": 22914.98, + "end": 22918.44, + "probability": 0.9489 + }, + { + "start": 22918.54, + "end": 22919.38, + "probability": 0.9601 + }, + { + "start": 22919.84, + "end": 22921.42, + "probability": 0.5358 + }, + { + "start": 22921.78, + "end": 22921.88, + "probability": 0.6742 + }, + { + "start": 22921.88, + "end": 22925.26, + "probability": 0.9922 + }, + { + "start": 22926.02, + "end": 22928.45, + "probability": 0.7507 + }, + { + "start": 22928.92, + "end": 22929.18, + "probability": 0.703 + }, + { + "start": 22929.28, + "end": 22930.75, + "probability": 0.9639 + }, + { + "start": 22930.8, + "end": 22933.1, + "probability": 0.8637 + }, + { + "start": 22933.96, + "end": 22936.74, + "probability": 0.9841 + }, + { + "start": 22936.74, + "end": 22939.66, + "probability": 0.9931 + }, + { + "start": 22939.8, + "end": 22944.34, + "probability": 0.9697 + }, + { + "start": 22944.4, + "end": 22945.22, + "probability": 0.7774 + }, + { + "start": 22945.24, + "end": 22945.56, + "probability": 0.8913 + }, + { + "start": 22945.58, + "end": 22946.02, + "probability": 0.6483 + }, + { + "start": 22946.38, + "end": 22947.22, + "probability": 0.8369 + }, + { + "start": 22947.6, + "end": 22948.86, + "probability": 0.726 + }, + { + "start": 22949.06, + "end": 22952.74, + "probability": 0.9896 + }, + { + "start": 22952.88, + "end": 22953.22, + "probability": 0.4349 + }, + { + "start": 22953.22, + "end": 22955.96, + "probability": 0.8733 + }, + { + "start": 22957.09, + "end": 22963.06, + "probability": 0.9934 + }, + { + "start": 22963.76, + "end": 22966.1, + "probability": 0.9456 + }, + { + "start": 22967.3, + "end": 22969.34, + "probability": 0.9087 + }, + { + "start": 22969.54, + "end": 22970.75, + "probability": 0.7608 + }, + { + "start": 22970.92, + "end": 22974.12, + "probability": 0.7233 + }, + { + "start": 22974.86, + "end": 22976.88, + "probability": 0.8554 + }, + { + "start": 22976.92, + "end": 22979.59, + "probability": 0.9194 + }, + { + "start": 22980.58, + "end": 22984.36, + "probability": 0.9938 + }, + { + "start": 22984.64, + "end": 22987.71, + "probability": 0.9043 + }, + { + "start": 22987.8, + "end": 22990.8, + "probability": 0.8996 + }, + { + "start": 22991.18, + "end": 22992.72, + "probability": 0.8049 + }, + { + "start": 22992.98, + "end": 22993.78, + "probability": 0.8069 + }, + { + "start": 22993.86, + "end": 22994.79, + "probability": 0.9267 + }, + { + "start": 22995.36, + "end": 22996.28, + "probability": 0.9468 + }, + { + "start": 22996.34, + "end": 22996.96, + "probability": 0.8302 + }, + { + "start": 22997.1, + "end": 22999.94, + "probability": 0.627 + }, + { + "start": 23000.08, + "end": 23002.46, + "probability": 0.9912 + }, + { + "start": 23002.68, + "end": 23003.76, + "probability": 0.9497 + }, + { + "start": 23003.86, + "end": 23005.02, + "probability": 0.8095 + }, + { + "start": 23005.28, + "end": 23006.28, + "probability": 0.7259 + }, + { + "start": 23006.48, + "end": 23009.36, + "probability": 0.5277 + }, + { + "start": 23010.12, + "end": 23011.56, + "probability": 0.884 + }, + { + "start": 23011.86, + "end": 23014.32, + "probability": 0.8533 + }, + { + "start": 23014.56, + "end": 23016.46, + "probability": 0.9982 + }, + { + "start": 23016.46, + "end": 23020.08, + "probability": 0.8959 + }, + { + "start": 23020.7, + "end": 23023.42, + "probability": 0.7901 + }, + { + "start": 23024.1, + "end": 23028.04, + "probability": 0.9834 + }, + { + "start": 23028.76, + "end": 23029.06, + "probability": 0.8779 + }, + { + "start": 23030.12, + "end": 23033.3, + "probability": 0.9386 + }, + { + "start": 23033.3, + "end": 23037.22, + "probability": 0.9977 + }, + { + "start": 23037.72, + "end": 23038.96, + "probability": 0.8204 + }, + { + "start": 23039.3, + "end": 23042.39, + "probability": 0.9636 + }, + { + "start": 23042.8, + "end": 23043.7, + "probability": 0.8892 + }, + { + "start": 23043.84, + "end": 23048.09, + "probability": 0.9629 + }, + { + "start": 23048.86, + "end": 23049.26, + "probability": 0.7712 + }, + { + "start": 23049.58, + "end": 23050.8, + "probability": 0.7218 + }, + { + "start": 23051.0, + "end": 23053.27, + "probability": 0.9893 + }, + { + "start": 23053.8, + "end": 23054.85, + "probability": 0.9858 + }, + { + "start": 23055.66, + "end": 23060.04, + "probability": 0.8674 + }, + { + "start": 23060.28, + "end": 23061.18, + "probability": 0.4441 + }, + { + "start": 23061.24, + "end": 23061.82, + "probability": 0.9457 + }, + { + "start": 23062.04, + "end": 23062.92, + "probability": 0.2925 + }, + { + "start": 23063.48, + "end": 23066.26, + "probability": 0.8917 + }, + { + "start": 23066.4, + "end": 23067.2, + "probability": 0.9465 + }, + { + "start": 23067.22, + "end": 23068.82, + "probability": 0.7871 + }, + { + "start": 23069.44, + "end": 23073.0, + "probability": 0.8335 + }, + { + "start": 23073.06, + "end": 23074.88, + "probability": 0.933 + }, + { + "start": 23075.2, + "end": 23075.92, + "probability": 0.9822 + }, + { + "start": 23076.02, + "end": 23076.44, + "probability": 0.9142 + }, + { + "start": 23077.59, + "end": 23079.8, + "probability": 0.7485 + }, + { + "start": 23079.86, + "end": 23081.98, + "probability": 0.9878 + }, + { + "start": 23082.0, + "end": 23082.5, + "probability": 0.7863 + }, + { + "start": 23082.5, + "end": 23083.06, + "probability": 0.6882 + }, + { + "start": 23083.08, + "end": 23084.9, + "probability": 0.8315 + }, + { + "start": 23085.2, + "end": 23086.58, + "probability": 0.9504 + }, + { + "start": 23087.18, + "end": 23092.54, + "probability": 0.9255 + }, + { + "start": 23093.16, + "end": 23099.9, + "probability": 0.8779 + }, + { + "start": 23100.26, + "end": 23104.22, + "probability": 0.9903 + }, + { + "start": 23104.22, + "end": 23110.12, + "probability": 0.9619 + }, + { + "start": 23110.88, + "end": 23111.94, + "probability": 0.877 + }, + { + "start": 23112.88, + "end": 23114.76, + "probability": 0.584 + }, + { + "start": 23114.88, + "end": 23117.92, + "probability": 0.9519 + }, + { + "start": 23118.42, + "end": 23121.42, + "probability": 0.5825 + }, + { + "start": 23121.56, + "end": 23126.76, + "probability": 0.9324 + }, + { + "start": 23127.68, + "end": 23130.76, + "probability": 0.966 + }, + { + "start": 23131.18, + "end": 23136.06, + "probability": 0.9903 + }, + { + "start": 23136.06, + "end": 23140.32, + "probability": 0.9514 + }, + { + "start": 23140.76, + "end": 23144.1, + "probability": 0.9468 + }, + { + "start": 23144.38, + "end": 23145.45, + "probability": 0.6981 + }, + { + "start": 23145.56, + "end": 23149.82, + "probability": 0.972 + }, + { + "start": 23149.9, + "end": 23153.7, + "probability": 0.6981 + }, + { + "start": 23155.73, + "end": 23156.0, + "probability": 0.6771 + }, + { + "start": 23156.04, + "end": 23156.32, + "probability": 0.5369 + }, + { + "start": 23156.34, + "end": 23156.94, + "probability": 0.2834 + }, + { + "start": 23156.96, + "end": 23157.28, + "probability": 0.7077 + }, + { + "start": 23158.22, + "end": 23165.24, + "probability": 0.8005 + }, + { + "start": 23165.54, + "end": 23166.46, + "probability": 0.6802 + }, + { + "start": 23166.62, + "end": 23168.3, + "probability": 0.9458 + }, + { + "start": 23168.4, + "end": 23171.68, + "probability": 0.7161 + }, + { + "start": 23173.32, + "end": 23174.46, + "probability": 0.7805 + }, + { + "start": 23174.9, + "end": 23174.9, + "probability": 0.3452 + }, + { + "start": 23175.3, + "end": 23175.84, + "probability": 0.6145 + }, + { + "start": 23175.88, + "end": 23177.38, + "probability": 0.9854 + }, + { + "start": 23177.72, + "end": 23182.06, + "probability": 0.9715 + }, + { + "start": 23182.34, + "end": 23183.32, + "probability": 0.8789 + }, + { + "start": 23183.76, + "end": 23185.68, + "probability": 0.9722 + }, + { + "start": 23186.26, + "end": 23190.04, + "probability": 0.7201 + }, + { + "start": 23190.3, + "end": 23194.58, + "probability": 0.9082 + }, + { + "start": 23194.66, + "end": 23195.92, + "probability": 0.8971 + }, + { + "start": 23195.92, + "end": 23198.62, + "probability": 0.841 + }, + { + "start": 23199.12, + "end": 23200.5, + "probability": 0.9411 + }, + { + "start": 23200.84, + "end": 23201.66, + "probability": 0.5297 + }, + { + "start": 23201.68, + "end": 23205.56, + "probability": 0.8439 + }, + { + "start": 23205.78, + "end": 23206.51, + "probability": 0.9323 + }, + { + "start": 23207.2, + "end": 23209.94, + "probability": 0.8003 + }, + { + "start": 23210.3, + "end": 23213.26, + "probability": 0.5684 + }, + { + "start": 23213.26, + "end": 23214.84, + "probability": 0.7192 + }, + { + "start": 23214.94, + "end": 23216.76, + "probability": 0.7641 + }, + { + "start": 23217.04, + "end": 23218.12, + "probability": 0.5911 + }, + { + "start": 23218.82, + "end": 23219.95, + "probability": 0.801 + }, + { + "start": 23220.02, + "end": 23222.14, + "probability": 0.9888 + }, + { + "start": 23222.78, + "end": 23223.54, + "probability": 0.3537 + }, + { + "start": 23223.54, + "end": 23228.46, + "probability": 0.7972 + }, + { + "start": 23229.52, + "end": 23231.7, + "probability": 0.7709 + }, + { + "start": 23232.56, + "end": 23234.34, + "probability": 0.7293 + }, + { + "start": 23234.42, + "end": 23235.8, + "probability": 0.9723 + }, + { + "start": 23236.0, + "end": 23238.46, + "probability": 0.9636 + }, + { + "start": 23239.2, + "end": 23240.86, + "probability": 0.833 + }, + { + "start": 23241.36, + "end": 23242.94, + "probability": 0.8123 + }, + { + "start": 23243.58, + "end": 23247.54, + "probability": 0.7959 + }, + { + "start": 23247.98, + "end": 23248.76, + "probability": 0.7883 + }, + { + "start": 23248.96, + "end": 23250.82, + "probability": 0.971 + }, + { + "start": 23250.94, + "end": 23251.61, + "probability": 0.9822 + }, + { + "start": 23251.76, + "end": 23252.22, + "probability": 0.9822 + }, + { + "start": 23252.46, + "end": 23252.8, + "probability": 0.2733 + }, + { + "start": 23252.92, + "end": 23253.42, + "probability": 0.2479 + }, + { + "start": 23254.14, + "end": 23254.3, + "probability": 0.6466 + }, + { + "start": 23254.34, + "end": 23258.3, + "probability": 0.9937 + }, + { + "start": 23258.76, + "end": 23261.76, + "probability": 0.8775 + }, + { + "start": 23262.86, + "end": 23265.49, + "probability": 0.9639 + }, + { + "start": 23266.3, + "end": 23270.36, + "probability": 0.9604 + }, + { + "start": 23270.88, + "end": 23272.34, + "probability": 0.9713 + }, + { + "start": 23273.04, + "end": 23273.84, + "probability": 0.6842 + }, + { + "start": 23274.54, + "end": 23276.12, + "probability": 0.937 + }, + { + "start": 23276.36, + "end": 23277.8, + "probability": 0.7966 + }, + { + "start": 23277.94, + "end": 23278.7, + "probability": 0.6597 + }, + { + "start": 23278.82, + "end": 23279.31, + "probability": 0.9888 + }, + { + "start": 23280.14, + "end": 23280.46, + "probability": 0.4551 + }, + { + "start": 23280.46, + "end": 23280.8, + "probability": 0.726 + }, + { + "start": 23280.86, + "end": 23281.88, + "probability": 0.9941 + }, + { + "start": 23281.96, + "end": 23283.42, + "probability": 0.9775 + }, + { + "start": 23284.04, + "end": 23285.5, + "probability": 0.9643 + }, + { + "start": 23286.36, + "end": 23287.24, + "probability": 0.9497 + }, + { + "start": 23288.3, + "end": 23289.68, + "probability": 0.7518 + }, + { + "start": 23290.12, + "end": 23290.84, + "probability": 0.9855 + }, + { + "start": 23291.2, + "end": 23292.15, + "probability": 0.9668 + }, + { + "start": 23292.91, + "end": 23294.27, + "probability": 0.9694 + }, + { + "start": 23294.76, + "end": 23296.94, + "probability": 0.9937 + }, + { + "start": 23298.02, + "end": 23299.06, + "probability": 0.906 + }, + { + "start": 23299.62, + "end": 23302.18, + "probability": 0.7313 + }, + { + "start": 23302.88, + "end": 23305.26, + "probability": 0.9485 + }, + { + "start": 23305.26, + "end": 23307.8, + "probability": 0.9828 + }, + { + "start": 23308.14, + "end": 23310.4, + "probability": 0.7944 + }, + { + "start": 23310.4, + "end": 23312.26, + "probability": 0.9855 + }, + { + "start": 23312.44, + "end": 23314.04, + "probability": 0.9801 + }, + { + "start": 23314.36, + "end": 23315.24, + "probability": 0.7529 + }, + { + "start": 23315.4, + "end": 23315.68, + "probability": 0.8435 + }, + { + "start": 23315.74, + "end": 23317.12, + "probability": 0.7791 + }, + { + "start": 23317.14, + "end": 23320.06, + "probability": 0.9317 + }, + { + "start": 23320.14, + "end": 23320.84, + "probability": 0.6004 + }, + { + "start": 23321.3, + "end": 23322.06, + "probability": 0.7137 + }, + { + "start": 23322.24, + "end": 23322.94, + "probability": 0.8136 + }, + { + "start": 23323.06, + "end": 23325.84, + "probability": 0.9661 + }, + { + "start": 23326.44, + "end": 23327.38, + "probability": 0.4595 + }, + { + "start": 23328.22, + "end": 23328.6, + "probability": 0.0418 + }, + { + "start": 23330.2, + "end": 23330.92, + "probability": 0.9136 + }, + { + "start": 23331.14, + "end": 23332.14, + "probability": 0.9232 + }, + { + "start": 23335.18, + "end": 23339.66, + "probability": 0.9539 + }, + { + "start": 23340.34, + "end": 23342.34, + "probability": 0.9926 + }, + { + "start": 23344.5, + "end": 23347.8, + "probability": 0.9971 + }, + { + "start": 23350.16, + "end": 23350.98, + "probability": 0.9128 + }, + { + "start": 23353.26, + "end": 23359.68, + "probability": 0.9876 + }, + { + "start": 23360.66, + "end": 23362.72, + "probability": 0.7752 + }, + { + "start": 23363.92, + "end": 23365.13, + "probability": 0.8282 + }, + { + "start": 23366.0, + "end": 23372.64, + "probability": 0.9854 + }, + { + "start": 23373.92, + "end": 23375.6, + "probability": 0.7896 + }, + { + "start": 23376.18, + "end": 23380.92, + "probability": 0.9897 + }, + { + "start": 23383.06, + "end": 23384.86, + "probability": 0.9132 + }, + { + "start": 23388.9, + "end": 23394.6, + "probability": 0.9955 + }, + { + "start": 23395.24, + "end": 23398.56, + "probability": 0.9914 + }, + { + "start": 23398.9, + "end": 23400.9, + "probability": 0.9854 + }, + { + "start": 23401.46, + "end": 23404.94, + "probability": 0.7879 + }, + { + "start": 23405.66, + "end": 23412.92, + "probability": 0.9587 + }, + { + "start": 23413.66, + "end": 23417.04, + "probability": 0.9751 + }, + { + "start": 23418.28, + "end": 23419.18, + "probability": 0.7016 + }, + { + "start": 23419.74, + "end": 23422.3, + "probability": 0.9719 + }, + { + "start": 23422.94, + "end": 23427.76, + "probability": 0.905 + }, + { + "start": 23429.55, + "end": 23433.54, + "probability": 0.8521 + }, + { + "start": 23434.52, + "end": 23436.7, + "probability": 0.846 + }, + { + "start": 23437.7, + "end": 23439.04, + "probability": 0.8475 + }, + { + "start": 23441.76, + "end": 23446.28, + "probability": 0.9261 + }, + { + "start": 23448.26, + "end": 23452.94, + "probability": 0.9805 + }, + { + "start": 23454.58, + "end": 23456.0, + "probability": 0.988 + }, + { + "start": 23456.2, + "end": 23457.48, + "probability": 0.886 + }, + { + "start": 23457.6, + "end": 23460.13, + "probability": 0.5753 + }, + { + "start": 23461.2, + "end": 23462.26, + "probability": 0.8936 + }, + { + "start": 23463.32, + "end": 23467.86, + "probability": 0.8664 + }, + { + "start": 23469.16, + "end": 23472.84, + "probability": 0.8872 + }, + { + "start": 23473.5, + "end": 23475.96, + "probability": 0.9178 + }, + { + "start": 23478.58, + "end": 23484.12, + "probability": 0.8573 + }, + { + "start": 23484.32, + "end": 23489.5, + "probability": 0.9873 + }, + { + "start": 23490.22, + "end": 23495.34, + "probability": 0.9937 + }, + { + "start": 23497.28, + "end": 23498.29, + "probability": 0.9744 + }, + { + "start": 23499.18, + "end": 23499.78, + "probability": 0.6673 + }, + { + "start": 23499.86, + "end": 23502.36, + "probability": 0.6997 + }, + { + "start": 23502.36, + "end": 23503.26, + "probability": 0.6698 + }, + { + "start": 23503.3, + "end": 23504.1, + "probability": 0.5396 + }, + { + "start": 23504.14, + "end": 23504.82, + "probability": 0.842 + }, + { + "start": 23505.46, + "end": 23508.38, + "probability": 0.9658 + }, + { + "start": 23509.96, + "end": 23511.7, + "probability": 0.9649 + }, + { + "start": 23513.28, + "end": 23517.84, + "probability": 0.9741 + }, + { + "start": 23519.1, + "end": 23523.96, + "probability": 0.863 + }, + { + "start": 23524.04, + "end": 23529.62, + "probability": 0.8314 + }, + { + "start": 23529.66, + "end": 23531.36, + "probability": 0.7448 + }, + { + "start": 23534.04, + "end": 23538.04, + "probability": 0.9864 + }, + { + "start": 23538.54, + "end": 23538.9, + "probability": 0.9583 + }, + { + "start": 23540.91, + "end": 23544.73, + "probability": 0.6237 + }, + { + "start": 23544.86, + "end": 23545.46, + "probability": 0.8163 + }, + { + "start": 23545.56, + "end": 23546.37, + "probability": 0.741 + }, + { + "start": 23547.44, + "end": 23547.84, + "probability": 0.3084 + }, + { + "start": 23548.0, + "end": 23548.28, + "probability": 0.5992 + }, + { + "start": 23548.28, + "end": 23549.36, + "probability": 0.8598 + }, + { + "start": 23549.44, + "end": 23550.28, + "probability": 0.8335 + }, + { + "start": 23550.32, + "end": 23552.56, + "probability": 0.7516 + }, + { + "start": 23552.56, + "end": 23557.84, + "probability": 0.4449 + }, + { + "start": 23558.84, + "end": 23559.8, + "probability": 0.5376 + }, + { + "start": 23560.26, + "end": 23561.66, + "probability": 0.507 + }, + { + "start": 23562.76, + "end": 23565.05, + "probability": 0.9863 + }, + { + "start": 23565.36, + "end": 23566.62, + "probability": 0.8504 + }, + { + "start": 23566.8, + "end": 23569.06, + "probability": 0.8663 + }, + { + "start": 23570.16, + "end": 23573.18, + "probability": 0.9828 + }, + { + "start": 23573.52, + "end": 23575.04, + "probability": 0.9904 + }, + { + "start": 23575.42, + "end": 23576.18, + "probability": 0.5079 + }, + { + "start": 23576.66, + "end": 23578.64, + "probability": 0.955 + }, + { + "start": 23579.0, + "end": 23582.48, + "probability": 0.9828 + }, + { + "start": 23583.92, + "end": 23589.72, + "probability": 0.9668 + }, + { + "start": 23589.88, + "end": 23597.26, + "probability": 0.8764 + }, + { + "start": 23597.78, + "end": 23603.64, + "probability": 0.9845 + }, + { + "start": 23605.58, + "end": 23608.54, + "probability": 0.9897 + }, + { + "start": 23608.54, + "end": 23611.92, + "probability": 0.9931 + }, + { + "start": 23613.32, + "end": 23616.92, + "probability": 0.8767 + }, + { + "start": 23617.54, + "end": 23619.22, + "probability": 0.8019 + }, + { + "start": 23620.18, + "end": 23621.3, + "probability": 0.9163 + }, + { + "start": 23621.44, + "end": 23621.96, + "probability": 0.9473 + }, + { + "start": 23622.06, + "end": 23623.02, + "probability": 0.65 + }, + { + "start": 23623.36, + "end": 23627.54, + "probability": 0.9845 + }, + { + "start": 23628.02, + "end": 23628.74, + "probability": 0.9374 + }, + { + "start": 23629.64, + "end": 23635.18, + "probability": 0.8782 + }, + { + "start": 23636.2, + "end": 23641.46, + "probability": 0.9836 + }, + { + "start": 23642.08, + "end": 23645.92, + "probability": 0.9306 + }, + { + "start": 23646.72, + "end": 23649.62, + "probability": 0.9386 + }, + { + "start": 23650.4, + "end": 23654.16, + "probability": 0.88 + }, + { + "start": 23654.72, + "end": 23656.06, + "probability": 0.6366 + }, + { + "start": 23657.24, + "end": 23661.1, + "probability": 0.9877 + }, + { + "start": 23661.4, + "end": 23664.15, + "probability": 0.9985 + }, + { + "start": 23664.46, + "end": 23665.66, + "probability": 0.8307 + }, + { + "start": 23666.86, + "end": 23672.42, + "probability": 0.9829 + }, + { + "start": 23673.26, + "end": 23674.68, + "probability": 0.9675 + }, + { + "start": 23675.4, + "end": 23680.36, + "probability": 0.7738 + }, + { + "start": 23682.14, + "end": 23689.24, + "probability": 0.9927 + }, + { + "start": 23689.62, + "end": 23690.2, + "probability": 0.5581 + }, + { + "start": 23690.36, + "end": 23690.86, + "probability": 0.0796 + }, + { + "start": 23691.12, + "end": 23693.14, + "probability": 0.9883 + }, + { + "start": 23693.48, + "end": 23695.6, + "probability": 0.9971 + }, + { + "start": 23696.02, + "end": 23697.1, + "probability": 0.359 + }, + { + "start": 23697.48, + "end": 23699.06, + "probability": 0.9854 + }, + { + "start": 23699.86, + "end": 23701.03, + "probability": 0.9747 + }, + { + "start": 23701.84, + "end": 23703.26, + "probability": 0.9189 + }, + { + "start": 23703.74, + "end": 23706.18, + "probability": 0.9904 + }, + { + "start": 23706.84, + "end": 23709.01, + "probability": 0.9978 + }, + { + "start": 23709.56, + "end": 23713.06, + "probability": 0.9912 + }, + { + "start": 23713.06, + "end": 23716.36, + "probability": 0.996 + }, + { + "start": 23717.22, + "end": 23719.86, + "probability": 0.9447 + }, + { + "start": 23720.22, + "end": 23721.22, + "probability": 0.6105 + }, + { + "start": 23721.68, + "end": 23723.94, + "probability": 0.9503 + }, + { + "start": 23724.2, + "end": 23730.66, + "probability": 0.8667 + }, + { + "start": 23731.48, + "end": 23733.7, + "probability": 0.8276 + }, + { + "start": 23734.52, + "end": 23737.52, + "probability": 0.6948 + }, + { + "start": 23737.8, + "end": 23738.96, + "probability": 0.918 + }, + { + "start": 23739.12, + "end": 23741.68, + "probability": 0.9968 + }, + { + "start": 23741.74, + "end": 23743.69, + "probability": 0.749 + }, + { + "start": 23744.1, + "end": 23746.12, + "probability": 0.8531 + }, + { + "start": 23746.18, + "end": 23748.06, + "probability": 0.6823 + }, + { + "start": 23748.7, + "end": 23748.94, + "probability": 0.7247 + }, + { + "start": 23749.0, + "end": 23752.36, + "probability": 0.972 + }, + { + "start": 23752.4, + "end": 23753.42, + "probability": 0.5635 + }, + { + "start": 23754.26, + "end": 23754.94, + "probability": 0.5647 + }, + { + "start": 23755.08, + "end": 23755.08, + "probability": 0.3301 + }, + { + "start": 23755.32, + "end": 23756.18, + "probability": 0.9481 + }, + { + "start": 23756.3, + "end": 23758.62, + "probability": 0.8308 + }, + { + "start": 23761.06, + "end": 23764.64, + "probability": 0.6234 + }, + { + "start": 23764.64, + "end": 23767.88, + "probability": 0.9267 + }, + { + "start": 23768.68, + "end": 23770.22, + "probability": 0.7895 + }, + { + "start": 23770.36, + "end": 23771.0, + "probability": 0.8516 + }, + { + "start": 23771.1, + "end": 23773.68, + "probability": 0.898 + }, + { + "start": 23774.56, + "end": 23777.66, + "probability": 0.9406 + }, + { + "start": 23777.9, + "end": 23782.08, + "probability": 0.9709 + }, + { + "start": 23783.36, + "end": 23785.44, + "probability": 0.958 + }, + { + "start": 23785.62, + "end": 23786.54, + "probability": 0.4079 + }, + { + "start": 23786.86, + "end": 23787.74, + "probability": 0.6828 + }, + { + "start": 23788.02, + "end": 23791.06, + "probability": 0.987 + }, + { + "start": 23791.06, + "end": 23795.3, + "probability": 0.9993 + }, + { + "start": 23796.1, + "end": 23797.9, + "probability": 0.9312 + }, + { + "start": 23798.08, + "end": 23802.06, + "probability": 0.95 + }, + { + "start": 23802.12, + "end": 23802.52, + "probability": 0.4908 + }, + { + "start": 23802.62, + "end": 23808.04, + "probability": 0.9958 + }, + { + "start": 23808.12, + "end": 23811.04, + "probability": 0.9624 + }, + { + "start": 23811.2, + "end": 23811.85, + "probability": 0.6905 + }, + { + "start": 23812.62, + "end": 23813.38, + "probability": 0.9181 + }, + { + "start": 23813.72, + "end": 23814.58, + "probability": 0.8848 + }, + { + "start": 23814.94, + "end": 23818.16, + "probability": 0.9911 + }, + { + "start": 23818.38, + "end": 23821.4, + "probability": 0.9774 + }, + { + "start": 23821.88, + "end": 23821.96, + "probability": 0.0097 + }, + { + "start": 23823.62, + "end": 23824.68, + "probability": 0.1343 + }, + { + "start": 23825.58, + "end": 23828.84, + "probability": 0.8954 + }, + { + "start": 23828.94, + "end": 23833.9, + "probability": 0.9779 + }, + { + "start": 23834.44, + "end": 23837.98, + "probability": 0.9788 + }, + { + "start": 23839.64, + "end": 23841.7, + "probability": 0.9854 + }, + { + "start": 23842.74, + "end": 23844.32, + "probability": 0.6978 + }, + { + "start": 23844.38, + "end": 23848.02, + "probability": 0.9651 + }, + { + "start": 23848.02, + "end": 23851.32, + "probability": 0.7015 + }, + { + "start": 23851.8, + "end": 23857.68, + "probability": 0.7266 + }, + { + "start": 23858.12, + "end": 23863.12, + "probability": 0.8447 + }, + { + "start": 23863.34, + "end": 23866.48, + "probability": 0.5346 + }, + { + "start": 23866.54, + "end": 23867.76, + "probability": 0.4205 + }, + { + "start": 23876.1, + "end": 23876.96, + "probability": 0.0866 + }, + { + "start": 23879.22, + "end": 23879.78, + "probability": 0.1015 + }, + { + "start": 23879.78, + "end": 23883.74, + "probability": 0.5779 + }, + { + "start": 23884.4, + "end": 23887.56, + "probability": 0.5554 + }, + { + "start": 23888.14, + "end": 23888.48, + "probability": 0.1105 + }, + { + "start": 23889.9, + "end": 23891.02, + "probability": 0.443 + }, + { + "start": 23891.16, + "end": 23893.4, + "probability": 0.968 + }, + { + "start": 23893.48, + "end": 23895.1, + "probability": 0.7202 + }, + { + "start": 23897.36, + "end": 23899.96, + "probability": 0.7743 + }, + { + "start": 23900.16, + "end": 23904.42, + "probability": 0.9819 + }, + { + "start": 23904.48, + "end": 23904.96, + "probability": 0.5094 + }, + { + "start": 23905.02, + "end": 23905.56, + "probability": 0.5575 + }, + { + "start": 23905.72, + "end": 23906.28, + "probability": 0.4575 + }, + { + "start": 23906.32, + "end": 23907.48, + "probability": 0.8967 + }, + { + "start": 23907.64, + "end": 23909.64, + "probability": 0.6888 + }, + { + "start": 23910.08, + "end": 23911.72, + "probability": 0.8148 + }, + { + "start": 23912.66, + "end": 23915.56, + "probability": 0.7988 + }, + { + "start": 23916.24, + "end": 23917.42, + "probability": 0.6731 + }, + { + "start": 23920.06, + "end": 23923.14, + "probability": 0.2112 + }, + { + "start": 23928.22, + "end": 23930.58, + "probability": 0.0019 + }, + { + "start": 23932.34, + "end": 23933.12, + "probability": 0.0674 + }, + { + "start": 23933.3, + "end": 23938.1, + "probability": 0.5096 + }, + { + "start": 23938.38, + "end": 23944.08, + "probability": 0.9639 + }, + { + "start": 23944.6, + "end": 23948.46, + "probability": 0.6509 + }, + { + "start": 23948.68, + "end": 23949.92, + "probability": 0.834 + }, + { + "start": 23950.8, + "end": 23955.46, + "probability": 0.9806 + }, + { + "start": 23955.62, + "end": 23958.28, + "probability": 0.293 + }, + { + "start": 23959.05, + "end": 23963.72, + "probability": 0.9939 + }, + { + "start": 23963.78, + "end": 23964.84, + "probability": 0.902 + }, + { + "start": 23967.44, + "end": 23968.96, + "probability": 0.7425 + }, + { + "start": 23975.2, + "end": 23978.0, + "probability": 0.0662 + }, + { + "start": 23978.0, + "end": 23979.46, + "probability": 0.1703 + }, + { + "start": 23980.1, + "end": 23982.3, + "probability": 0.7078 + }, + { + "start": 23982.82, + "end": 23985.92, + "probability": 0.9437 + }, + { + "start": 23986.14, + "end": 23987.28, + "probability": 0.9559 + }, + { + "start": 23988.24, + "end": 23989.2, + "probability": 0.7407 + }, + { + "start": 23989.3, + "end": 23990.6, + "probability": 0.8388 + }, + { + "start": 23991.0, + "end": 23993.02, + "probability": 0.6177 + }, + { + "start": 23993.8, + "end": 23993.92, + "probability": 0.2694 + }, + { + "start": 23994.98, + "end": 23996.02, + "probability": 0.5781 + }, + { + "start": 23996.82, + "end": 23997.2, + "probability": 0.0406 + }, + { + "start": 23998.14, + "end": 23999.06, + "probability": 0.8279 + }, + { + "start": 23999.48, + "end": 24000.78, + "probability": 0.714 + }, + { + "start": 24000.9, + "end": 24004.04, + "probability": 0.8731 + }, + { + "start": 24004.4, + "end": 24006.72, + "probability": 0.9976 + }, + { + "start": 24007.72, + "end": 24011.9, + "probability": 0.9622 + }, + { + "start": 24013.32, + "end": 24014.25, + "probability": 0.9146 + }, + { + "start": 24014.38, + "end": 24015.08, + "probability": 0.7626 + }, + { + "start": 24015.2, + "end": 24015.34, + "probability": 0.493 + }, + { + "start": 24015.52, + "end": 24016.12, + "probability": 0.8805 + }, + { + "start": 24016.2, + "end": 24016.42, + "probability": 0.4842 + }, + { + "start": 24016.5, + "end": 24017.36, + "probability": 0.9269 + }, + { + "start": 24021.58, + "end": 24023.58, + "probability": 0.6257 + }, + { + "start": 24023.58, + "end": 24023.58, + "probability": 0.1851 + }, + { + "start": 24028.48, + "end": 24030.36, + "probability": 0.644 + }, + { + "start": 24030.84, + "end": 24034.72, + "probability": 0.9966 + }, + { + "start": 24035.48, + "end": 24040.8, + "probability": 0.9775 + }, + { + "start": 24040.9, + "end": 24042.24, + "probability": 0.6136 + }, + { + "start": 24042.84, + "end": 24044.8, + "probability": 0.6694 + }, + { + "start": 24044.9, + "end": 24046.0, + "probability": 0.7255 + }, + { + "start": 24047.98, + "end": 24048.6, + "probability": 0.447 + }, + { + "start": 24055.78, + "end": 24058.88, + "probability": 0.1413 + }, + { + "start": 24059.92, + "end": 24061.06, + "probability": 0.3185 + }, + { + "start": 24062.4, + "end": 24064.44, + "probability": 0.5738 + }, + { + "start": 24064.82, + "end": 24067.08, + "probability": 0.8467 + }, + { + "start": 24067.82, + "end": 24071.44, + "probability": 0.9916 + }, + { + "start": 24071.44, + "end": 24074.02, + "probability": 0.5458 + }, + { + "start": 24074.16, + "end": 24076.82, + "probability": 0.1108 + }, + { + "start": 24077.36, + "end": 24078.84, + "probability": 0.7528 + }, + { + "start": 24079.04, + "end": 24079.76, + "probability": 0.6913 + }, + { + "start": 24079.94, + "end": 24080.68, + "probability": 0.7921 + }, + { + "start": 24081.34, + "end": 24082.24, + "probability": 0.8915 + }, + { + "start": 24084.06, + "end": 24087.5, + "probability": 0.0789 + }, + { + "start": 24098.06, + "end": 24099.1, + "probability": 0.1327 + }, + { + "start": 24101.92, + "end": 24101.92, + "probability": 0.0881 + }, + { + "start": 24101.92, + "end": 24102.32, + "probability": 0.2539 + }, + { + "start": 24103.04, + "end": 24103.96, + "probability": 0.2439 + }, + { + "start": 24104.56, + "end": 24107.24, + "probability": 0.6082 + }, + { + "start": 24107.4, + "end": 24111.3, + "probability": 0.937 + }, + { + "start": 24114.64, + "end": 24118.14, + "probability": 0.774 + }, + { + "start": 24125.16, + "end": 24126.38, + "probability": 0.579 + }, + { + "start": 24132.46, + "end": 24133.66, + "probability": 0.1662 + } + ], + "segments_count": 5834, + "words_count": 29843, + "avg_words_per_segment": 5.1154, + "avg_segment_duration": 2.2831, + "avg_words_per_minute": 74.045, + "plenum_id": "27384", + "duration": 24182.33, + "title": null, + "plenum_date": "2013-03-19" +} \ No newline at end of file