diff --git "a/45791/metadata.json" "b/45791/metadata.json" new file mode 100644--- /dev/null +++ "b/45791/metadata.json" @@ -0,0 +1,51092 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "45791", + "quality_score": 0.9076, + "per_segment_quality_scores": [ + { + "start": 107.0, + "end": 107.88, + "probability": 0.5811 + }, + { + "start": 108.0, + "end": 110.3, + "probability": 0.5914 + }, + { + "start": 111.5, + "end": 112.26, + "probability": 0.8213 + }, + { + "start": 143.29, + "end": 147.92, + "probability": 0.0503 + }, + { + "start": 148.31, + "end": 153.98, + "probability": 0.0218 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.75, + "end": 256.98, + "probability": 0.8602 + }, + { + "start": 257.62, + "end": 258.84, + "probability": 0.9364 + }, + { + "start": 259.3, + "end": 260.96, + "probability": 0.9963 + }, + { + "start": 262.08, + "end": 263.18, + "probability": 0.9719 + }, + { + "start": 265.24, + "end": 269.14, + "probability": 0.9976 + }, + { + "start": 269.24, + "end": 273.7, + "probability": 0.9751 + }, + { + "start": 273.94, + "end": 276.94, + "probability": 0.9964 + }, + { + "start": 276.96, + "end": 281.88, + "probability": 0.9921 + }, + { + "start": 282.8, + "end": 285.56, + "probability": 0.9695 + }, + { + "start": 285.72, + "end": 288.54, + "probability": 0.9572 + }, + { + "start": 288.68, + "end": 292.22, + "probability": 0.9727 + }, + { + "start": 292.44, + "end": 294.28, + "probability": 0.7593 + }, + { + "start": 294.42, + "end": 296.76, + "probability": 0.7693 + }, + { + "start": 296.9, + "end": 297.92, + "probability": 0.7143 + }, + { + "start": 297.94, + "end": 299.36, + "probability": 0.7966 + }, + { + "start": 299.4, + "end": 300.3, + "probability": 0.7929 + }, + { + "start": 300.68, + "end": 302.64, + "probability": 0.8184 + }, + { + "start": 303.0, + "end": 304.28, + "probability": 0.6621 + }, + { + "start": 304.86, + "end": 306.0, + "probability": 0.9701 + }, + { + "start": 306.74, + "end": 310.38, + "probability": 0.9636 + }, + { + "start": 310.78, + "end": 316.3, + "probability": 0.966 + }, + { + "start": 316.3, + "end": 319.3, + "probability": 0.9583 + }, + { + "start": 319.6, + "end": 319.94, + "probability": 0.497 + }, + { + "start": 321.88, + "end": 324.64, + "probability": 0.7083 + }, + { + "start": 324.68, + "end": 326.78, + "probability": 0.9989 + }, + { + "start": 328.18, + "end": 335.54, + "probability": 0.995 + }, + { + "start": 336.14, + "end": 340.44, + "probability": 0.835 + }, + { + "start": 341.44, + "end": 346.82, + "probability": 0.9554 + }, + { + "start": 347.16, + "end": 349.18, + "probability": 0.826 + }, + { + "start": 349.86, + "end": 351.06, + "probability": 0.5353 + }, + { + "start": 351.54, + "end": 353.52, + "probability": 0.8433 + }, + { + "start": 355.1, + "end": 361.2, + "probability": 0.9884 + }, + { + "start": 362.22, + "end": 362.36, + "probability": 0.0457 + }, + { + "start": 363.32, + "end": 364.06, + "probability": 0.8831 + }, + { + "start": 364.54, + "end": 367.2, + "probability": 0.8789 + }, + { + "start": 367.26, + "end": 372.34, + "probability": 0.9374 + }, + { + "start": 373.04, + "end": 376.72, + "probability": 0.9944 + }, + { + "start": 376.9, + "end": 377.5, + "probability": 0.8774 + }, + { + "start": 377.62, + "end": 380.42, + "probability": 0.9959 + }, + { + "start": 381.42, + "end": 382.28, + "probability": 0.846 + }, + { + "start": 383.0, + "end": 387.24, + "probability": 0.9989 + }, + { + "start": 387.36, + "end": 391.94, + "probability": 0.9901 + }, + { + "start": 392.62, + "end": 398.36, + "probability": 0.9911 + }, + { + "start": 398.36, + "end": 405.1, + "probability": 0.9819 + }, + { + "start": 405.24, + "end": 411.36, + "probability": 0.9892 + }, + { + "start": 411.36, + "end": 415.68, + "probability": 0.9893 + }, + { + "start": 415.86, + "end": 416.7, + "probability": 0.8286 + }, + { + "start": 416.92, + "end": 418.08, + "probability": 0.8592 + }, + { + "start": 418.62, + "end": 423.13, + "probability": 0.9625 + }, + { + "start": 423.68, + "end": 425.58, + "probability": 0.9509 + }, + { + "start": 425.82, + "end": 426.08, + "probability": 0.821 + }, + { + "start": 428.82, + "end": 430.69, + "probability": 0.7311 + }, + { + "start": 431.2, + "end": 436.9, + "probability": 0.7489 + }, + { + "start": 437.46, + "end": 441.76, + "probability": 0.637 + }, + { + "start": 441.98, + "end": 442.9, + "probability": 0.9832 + }, + { + "start": 444.1, + "end": 445.82, + "probability": 0.7816 + }, + { + "start": 447.14, + "end": 452.88, + "probability": 0.9805 + }, + { + "start": 453.46, + "end": 456.5, + "probability": 0.9985 + }, + { + "start": 457.32, + "end": 465.9, + "probability": 0.9932 + }, + { + "start": 466.0, + "end": 468.34, + "probability": 0.8842 + }, + { + "start": 468.4, + "end": 472.4, + "probability": 0.7716 + }, + { + "start": 473.58, + "end": 477.82, + "probability": 0.9888 + }, + { + "start": 477.9, + "end": 484.22, + "probability": 0.723 + }, + { + "start": 484.36, + "end": 487.82, + "probability": 0.8792 + }, + { + "start": 488.88, + "end": 492.62, + "probability": 0.9402 + }, + { + "start": 492.7, + "end": 493.12, + "probability": 0.7381 + }, + { + "start": 493.5, + "end": 494.02, + "probability": 0.7896 + }, + { + "start": 494.64, + "end": 495.26, + "probability": 0.4379 + }, + { + "start": 495.42, + "end": 497.26, + "probability": 0.7898 + }, + { + "start": 497.3, + "end": 497.82, + "probability": 0.4207 + }, + { + "start": 497.82, + "end": 499.36, + "probability": 0.7275 + }, + { + "start": 505.94, + "end": 506.8, + "probability": 0.7972 + }, + { + "start": 506.9, + "end": 508.16, + "probability": 0.8745 + }, + { + "start": 508.22, + "end": 510.78, + "probability": 0.7575 + }, + { + "start": 511.26, + "end": 516.24, + "probability": 0.6203 + }, + { + "start": 517.72, + "end": 520.32, + "probability": 0.6959 + }, + { + "start": 520.88, + "end": 521.98, + "probability": 0.9734 + }, + { + "start": 522.12, + "end": 526.6, + "probability": 0.903 + }, + { + "start": 526.9, + "end": 527.2, + "probability": 0.7775 + }, + { + "start": 528.24, + "end": 533.58, + "probability": 0.9509 + }, + { + "start": 534.36, + "end": 535.22, + "probability": 0.8211 + }, + { + "start": 535.74, + "end": 539.24, + "probability": 0.9657 + }, + { + "start": 539.56, + "end": 542.88, + "probability": 0.8657 + }, + { + "start": 543.42, + "end": 547.13, + "probability": 0.8418 + }, + { + "start": 548.46, + "end": 554.06, + "probability": 0.9972 + }, + { + "start": 554.54, + "end": 556.08, + "probability": 0.8802 + }, + { + "start": 556.56, + "end": 558.6, + "probability": 0.8625 + }, + { + "start": 559.02, + "end": 563.02, + "probability": 0.8694 + }, + { + "start": 564.26, + "end": 566.14, + "probability": 0.7589 + }, + { + "start": 566.32, + "end": 568.5, + "probability": 0.9754 + }, + { + "start": 569.1, + "end": 571.42, + "probability": 0.7912 + }, + { + "start": 571.86, + "end": 572.9, + "probability": 0.5183 + }, + { + "start": 573.2, + "end": 575.1, + "probability": 0.5245 + }, + { + "start": 579.94, + "end": 581.72, + "probability": 0.6988 + }, + { + "start": 582.28, + "end": 586.76, + "probability": 0.7353 + }, + { + "start": 586.96, + "end": 589.39, + "probability": 0.7109 + }, + { + "start": 590.34, + "end": 592.52, + "probability": 0.9403 + }, + { + "start": 592.56, + "end": 594.3, + "probability": 0.9624 + }, + { + "start": 594.86, + "end": 596.14, + "probability": 0.8542 + }, + { + "start": 596.6, + "end": 598.42, + "probability": 0.8737 + }, + { + "start": 598.48, + "end": 600.42, + "probability": 0.8362 + }, + { + "start": 600.6, + "end": 602.02, + "probability": 0.8876 + }, + { + "start": 602.1, + "end": 603.94, + "probability": 0.8741 + }, + { + "start": 605.08, + "end": 606.92, + "probability": 0.8562 + }, + { + "start": 608.84, + "end": 611.75, + "probability": 0.9653 + }, + { + "start": 611.86, + "end": 615.66, + "probability": 0.4952 + }, + { + "start": 615.68, + "end": 618.62, + "probability": 0.5237 + }, + { + "start": 619.4, + "end": 623.24, + "probability": 0.8263 + }, + { + "start": 624.0, + "end": 627.08, + "probability": 0.9779 + }, + { + "start": 628.11, + "end": 631.78, + "probability": 0.9917 + }, + { + "start": 632.32, + "end": 633.58, + "probability": 0.6659 + }, + { + "start": 634.0, + "end": 635.97, + "probability": 0.9424 + }, + { + "start": 637.06, + "end": 641.0, + "probability": 0.9675 + }, + { + "start": 641.44, + "end": 642.8, + "probability": 0.6981 + }, + { + "start": 643.1, + "end": 643.62, + "probability": 0.6266 + }, + { + "start": 644.1, + "end": 646.46, + "probability": 0.9209 + }, + { + "start": 647.04, + "end": 650.46, + "probability": 0.9434 + }, + { + "start": 650.52, + "end": 655.28, + "probability": 0.9492 + }, + { + "start": 655.92, + "end": 656.66, + "probability": 0.6764 + }, + { + "start": 656.8, + "end": 659.5, + "probability": 0.9417 + }, + { + "start": 659.84, + "end": 661.64, + "probability": 0.7388 + }, + { + "start": 662.06, + "end": 665.02, + "probability": 0.8073 + }, + { + "start": 665.78, + "end": 667.46, + "probability": 0.8293 + }, + { + "start": 667.86, + "end": 668.78, + "probability": 0.8791 + }, + { + "start": 669.44, + "end": 670.8, + "probability": 0.8031 + }, + { + "start": 671.36, + "end": 672.64, + "probability": 0.8961 + }, + { + "start": 673.54, + "end": 678.36, + "probability": 0.9664 + }, + { + "start": 678.64, + "end": 680.72, + "probability": 0.9904 + }, + { + "start": 680.9, + "end": 683.36, + "probability": 0.99 + }, + { + "start": 683.58, + "end": 684.54, + "probability": 0.93 + }, + { + "start": 684.94, + "end": 685.92, + "probability": 0.9767 + }, + { + "start": 686.54, + "end": 687.32, + "probability": 0.8207 + }, + { + "start": 688.08, + "end": 692.9, + "probability": 0.9689 + }, + { + "start": 692.9, + "end": 696.52, + "probability": 0.9977 + }, + { + "start": 697.02, + "end": 698.58, + "probability": 0.9904 + }, + { + "start": 698.84, + "end": 701.5, + "probability": 0.9141 + }, + { + "start": 702.26, + "end": 703.8, + "probability": 0.6921 + }, + { + "start": 704.88, + "end": 711.58, + "probability": 0.9984 + }, + { + "start": 711.66, + "end": 713.22, + "probability": 0.9265 + }, + { + "start": 713.88, + "end": 719.1, + "probability": 0.8098 + }, + { + "start": 719.96, + "end": 723.08, + "probability": 0.987 + }, + { + "start": 723.08, + "end": 725.98, + "probability": 0.9902 + }, + { + "start": 726.26, + "end": 729.36, + "probability": 0.7261 + }, + { + "start": 729.94, + "end": 735.64, + "probability": 0.975 + }, + { + "start": 736.26, + "end": 737.72, + "probability": 0.4174 + }, + { + "start": 738.16, + "end": 740.1, + "probability": 0.9336 + }, + { + "start": 740.84, + "end": 743.52, + "probability": 0.9912 + }, + { + "start": 743.68, + "end": 748.22, + "probability": 0.9942 + }, + { + "start": 748.78, + "end": 752.76, + "probability": 0.9932 + }, + { + "start": 752.82, + "end": 755.52, + "probability": 0.9976 + }, + { + "start": 755.6, + "end": 758.0, + "probability": 0.8691 + }, + { + "start": 758.46, + "end": 759.08, + "probability": 0.8379 + }, + { + "start": 759.36, + "end": 759.88, + "probability": 0.9811 + }, + { + "start": 760.02, + "end": 760.54, + "probability": 0.8643 + }, + { + "start": 761.51, + "end": 768.2, + "probability": 0.7096 + }, + { + "start": 768.42, + "end": 770.24, + "probability": 0.9773 + }, + { + "start": 770.88, + "end": 775.32, + "probability": 0.9702 + }, + { + "start": 775.52, + "end": 778.68, + "probability": 0.9938 + }, + { + "start": 778.78, + "end": 780.22, + "probability": 0.9596 + }, + { + "start": 780.68, + "end": 781.82, + "probability": 0.7708 + }, + { + "start": 783.1, + "end": 787.5, + "probability": 0.9915 + }, + { + "start": 788.14, + "end": 791.64, + "probability": 0.9984 + }, + { + "start": 792.72, + "end": 794.68, + "probability": 0.6786 + }, + { + "start": 794.84, + "end": 796.46, + "probability": 0.7765 + }, + { + "start": 797.6, + "end": 799.9, + "probability": 0.7927 + }, + { + "start": 800.5, + "end": 801.7, + "probability": 0.9134 + }, + { + "start": 802.6, + "end": 805.48, + "probability": 0.9937 + }, + { + "start": 805.98, + "end": 809.4, + "probability": 0.9976 + }, + { + "start": 810.22, + "end": 815.0, + "probability": 0.9991 + }, + { + "start": 815.1, + "end": 815.48, + "probability": 0.8274 + }, + { + "start": 815.56, + "end": 819.56, + "probability": 0.9435 + }, + { + "start": 820.14, + "end": 820.92, + "probability": 0.6067 + }, + { + "start": 821.34, + "end": 824.72, + "probability": 0.9736 + }, + { + "start": 824.96, + "end": 827.7, + "probability": 0.9962 + }, + { + "start": 827.74, + "end": 830.8, + "probability": 0.4939 + }, + { + "start": 831.54, + "end": 836.58, + "probability": 0.9438 + }, + { + "start": 837.06, + "end": 838.4, + "probability": 0.989 + }, + { + "start": 838.44, + "end": 839.32, + "probability": 0.9908 + }, + { + "start": 839.5, + "end": 840.16, + "probability": 0.9951 + }, + { + "start": 840.86, + "end": 843.5, + "probability": 0.9556 + }, + { + "start": 843.74, + "end": 845.62, + "probability": 0.9795 + }, + { + "start": 845.76, + "end": 846.82, + "probability": 0.9966 + }, + { + "start": 847.54, + "end": 848.76, + "probability": 0.7135 + }, + { + "start": 848.86, + "end": 851.74, + "probability": 0.8389 + }, + { + "start": 851.8, + "end": 856.48, + "probability": 0.9548 + }, + { + "start": 857.02, + "end": 857.3, + "probability": 0.7336 + }, + { + "start": 857.3, + "end": 858.81, + "probability": 0.9858 + }, + { + "start": 859.74, + "end": 863.52, + "probability": 0.9813 + }, + { + "start": 863.8, + "end": 865.66, + "probability": 0.7386 + }, + { + "start": 865.96, + "end": 867.4, + "probability": 0.9755 + }, + { + "start": 867.86, + "end": 871.86, + "probability": 0.9816 + }, + { + "start": 871.96, + "end": 873.08, + "probability": 0.9404 + }, + { + "start": 873.58, + "end": 878.64, + "probability": 0.9784 + }, + { + "start": 878.76, + "end": 880.32, + "probability": 0.8444 + }, + { + "start": 880.44, + "end": 881.5, + "probability": 0.9735 + }, + { + "start": 882.08, + "end": 883.46, + "probability": 0.8677 + }, + { + "start": 883.76, + "end": 887.96, + "probability": 0.9941 + }, + { + "start": 888.12, + "end": 889.02, + "probability": 0.9309 + }, + { + "start": 889.7, + "end": 891.02, + "probability": 0.9739 + }, + { + "start": 891.1, + "end": 895.46, + "probability": 0.9762 + }, + { + "start": 895.56, + "end": 899.68, + "probability": 0.994 + }, + { + "start": 899.8, + "end": 900.64, + "probability": 0.5845 + }, + { + "start": 900.68, + "end": 901.08, + "probability": 0.3905 + }, + { + "start": 901.5, + "end": 902.06, + "probability": 0.7935 + }, + { + "start": 902.14, + "end": 903.79, + "probability": 0.8812 + }, + { + "start": 903.94, + "end": 905.07, + "probability": 0.8296 + }, + { + "start": 905.42, + "end": 905.9, + "probability": 0.6778 + }, + { + "start": 906.04, + "end": 906.58, + "probability": 0.6486 + }, + { + "start": 909.14, + "end": 910.86, + "probability": 0.6041 + }, + { + "start": 911.48, + "end": 913.88, + "probability": 0.6655 + }, + { + "start": 914.38, + "end": 918.92, + "probability": 0.9354 + }, + { + "start": 919.06, + "end": 922.42, + "probability": 0.9984 + }, + { + "start": 922.84, + "end": 923.82, + "probability": 0.7732 + }, + { + "start": 923.9, + "end": 928.76, + "probability": 0.974 + }, + { + "start": 928.88, + "end": 931.66, + "probability": 0.9935 + }, + { + "start": 932.18, + "end": 935.08, + "probability": 0.9534 + }, + { + "start": 935.26, + "end": 936.86, + "probability": 0.95 + }, + { + "start": 937.44, + "end": 939.52, + "probability": 0.811 + }, + { + "start": 939.66, + "end": 943.32, + "probability": 0.999 + }, + { + "start": 943.36, + "end": 948.8, + "probability": 0.959 + }, + { + "start": 948.96, + "end": 949.72, + "probability": 0.9838 + }, + { + "start": 949.92, + "end": 951.9, + "probability": 0.9945 + }, + { + "start": 952.98, + "end": 954.02, + "probability": 0.7896 + }, + { + "start": 954.16, + "end": 954.52, + "probability": 0.6053 + }, + { + "start": 954.56, + "end": 958.64, + "probability": 0.9624 + }, + { + "start": 958.78, + "end": 959.94, + "probability": 0.9791 + }, + { + "start": 960.64, + "end": 960.98, + "probability": 0.7961 + }, + { + "start": 961.68, + "end": 964.85, + "probability": 0.1263 + }, + { + "start": 965.8, + "end": 965.94, + "probability": 0.2429 + }, + { + "start": 965.94, + "end": 968.68, + "probability": 0.6857 + }, + { + "start": 968.78, + "end": 971.74, + "probability": 0.8478 + }, + { + "start": 972.4, + "end": 976.12, + "probability": 0.9812 + }, + { + "start": 977.48, + "end": 982.72, + "probability": 0.56 + }, + { + "start": 982.96, + "end": 986.06, + "probability": 0.9362 + }, + { + "start": 999.08, + "end": 1002.44, + "probability": 0.542 + }, + { + "start": 1003.26, + "end": 1006.76, + "probability": 0.6934 + }, + { + "start": 1007.9, + "end": 1013.12, + "probability": 0.9014 + }, + { + "start": 1013.96, + "end": 1016.28, + "probability": 0.981 + }, + { + "start": 1016.62, + "end": 1018.96, + "probability": 0.9953 + }, + { + "start": 1019.6, + "end": 1020.98, + "probability": 0.9063 + }, + { + "start": 1021.94, + "end": 1022.66, + "probability": 0.6689 + }, + { + "start": 1023.26, + "end": 1025.12, + "probability": 0.9105 + }, + { + "start": 1026.0, + "end": 1028.98, + "probability": 0.889 + }, + { + "start": 1029.46, + "end": 1032.8, + "probability": 0.9839 + }, + { + "start": 1035.46, + "end": 1037.98, + "probability": 0.3863 + }, + { + "start": 1038.52, + "end": 1039.72, + "probability": 0.5876 + }, + { + "start": 1040.26, + "end": 1041.35, + "probability": 0.9419 + }, + { + "start": 1041.98, + "end": 1045.08, + "probability": 0.9868 + }, + { + "start": 1045.52, + "end": 1047.04, + "probability": 0.5279 + }, + { + "start": 1047.26, + "end": 1048.32, + "probability": 0.952 + }, + { + "start": 1048.98, + "end": 1050.78, + "probability": 0.8131 + }, + { + "start": 1051.46, + "end": 1053.58, + "probability": 0.8174 + }, + { + "start": 1054.44, + "end": 1056.58, + "probability": 0.9452 + }, + { + "start": 1057.32, + "end": 1060.46, + "probability": 0.9858 + }, + { + "start": 1061.22, + "end": 1062.0, + "probability": 0.8526 + }, + { + "start": 1062.36, + "end": 1065.54, + "probability": 0.975 + }, + { + "start": 1066.16, + "end": 1071.1, + "probability": 0.8292 + }, + { + "start": 1072.04, + "end": 1075.08, + "probability": 0.9922 + }, + { + "start": 1075.22, + "end": 1079.5, + "probability": 0.9891 + }, + { + "start": 1080.36, + "end": 1084.58, + "probability": 0.7445 + }, + { + "start": 1085.26, + "end": 1088.58, + "probability": 0.9468 + }, + { + "start": 1090.0, + "end": 1091.34, + "probability": 0.5701 + }, + { + "start": 1091.48, + "end": 1093.22, + "probability": 0.9694 + }, + { + "start": 1095.12, + "end": 1097.78, + "probability": 0.8687 + }, + { + "start": 1098.14, + "end": 1099.6, + "probability": 0.8747 + }, + { + "start": 1099.76, + "end": 1104.56, + "probability": 0.9922 + }, + { + "start": 1105.58, + "end": 1107.16, + "probability": 0.6208 + }, + { + "start": 1107.22, + "end": 1108.18, + "probability": 0.8842 + }, + { + "start": 1108.32, + "end": 1111.6, + "probability": 0.9308 + }, + { + "start": 1112.04, + "end": 1112.92, + "probability": 0.9504 + }, + { + "start": 1113.28, + "end": 1115.72, + "probability": 0.9198 + }, + { + "start": 1116.5, + "end": 1121.18, + "probability": 0.8232 + }, + { + "start": 1121.72, + "end": 1123.06, + "probability": 0.9575 + }, + { + "start": 1123.2, + "end": 1125.7, + "probability": 0.7577 + }, + { + "start": 1126.08, + "end": 1128.61, + "probability": 0.769 + }, + { + "start": 1129.44, + "end": 1130.28, + "probability": 0.9612 + }, + { + "start": 1130.4, + "end": 1131.26, + "probability": 0.9704 + }, + { + "start": 1131.4, + "end": 1135.68, + "probability": 0.9712 + }, + { + "start": 1135.76, + "end": 1136.64, + "probability": 0.7879 + }, + { + "start": 1137.62, + "end": 1140.26, + "probability": 0.9327 + }, + { + "start": 1140.46, + "end": 1142.18, + "probability": 0.9207 + }, + { + "start": 1142.56, + "end": 1143.56, + "probability": 0.8823 + }, + { + "start": 1144.24, + "end": 1148.28, + "probability": 0.9888 + }, + { + "start": 1148.68, + "end": 1149.54, + "probability": 0.783 + }, + { + "start": 1150.0, + "end": 1151.48, + "probability": 0.9965 + }, + { + "start": 1151.86, + "end": 1154.0, + "probability": 0.7695 + }, + { + "start": 1154.38, + "end": 1156.56, + "probability": 0.9596 + }, + { + "start": 1156.68, + "end": 1159.64, + "probability": 0.9757 + }, + { + "start": 1159.82, + "end": 1160.32, + "probability": 0.7519 + }, + { + "start": 1160.56, + "end": 1165.66, + "probability": 0.9648 + }, + { + "start": 1166.48, + "end": 1168.11, + "probability": 0.4286 + }, + { + "start": 1168.36, + "end": 1169.94, + "probability": 0.6437 + }, + { + "start": 1169.94, + "end": 1169.94, + "probability": 0.4685 + }, + { + "start": 1170.0, + "end": 1174.02, + "probability": 0.6982 + }, + { + "start": 1174.58, + "end": 1180.08, + "probability": 0.8965 + }, + { + "start": 1180.54, + "end": 1182.1, + "probability": 0.9028 + }, + { + "start": 1182.24, + "end": 1184.28, + "probability": 0.9816 + }, + { + "start": 1184.84, + "end": 1188.18, + "probability": 0.9357 + }, + { + "start": 1188.76, + "end": 1190.0, + "probability": 0.9866 + }, + { + "start": 1190.1, + "end": 1192.5, + "probability": 0.9688 + }, + { + "start": 1193.14, + "end": 1196.54, + "probability": 0.9312 + }, + { + "start": 1196.86, + "end": 1197.84, + "probability": 0.6875 + }, + { + "start": 1197.96, + "end": 1200.18, + "probability": 0.934 + }, + { + "start": 1200.58, + "end": 1201.54, + "probability": 0.9463 + }, + { + "start": 1202.8, + "end": 1206.01, + "probability": 0.9061 + }, + { + "start": 1206.72, + "end": 1209.94, + "probability": 0.9888 + }, + { + "start": 1209.94, + "end": 1214.76, + "probability": 0.9897 + }, + { + "start": 1215.28, + "end": 1220.16, + "probability": 0.2934 + }, + { + "start": 1220.56, + "end": 1221.94, + "probability": 0.8707 + }, + { + "start": 1222.8, + "end": 1224.4, + "probability": 0.7679 + }, + { + "start": 1224.56, + "end": 1226.44, + "probability": 0.949 + }, + { + "start": 1226.88, + "end": 1229.14, + "probability": 0.9805 + }, + { + "start": 1235.94, + "end": 1238.26, + "probability": 0.4908 + }, + { + "start": 1238.34, + "end": 1241.5, + "probability": 0.9269 + }, + { + "start": 1242.14, + "end": 1242.94, + "probability": 0.652 + }, + { + "start": 1243.14, + "end": 1245.62, + "probability": 0.7148 + }, + { + "start": 1246.3, + "end": 1252.12, + "probability": 0.9741 + }, + { + "start": 1252.72, + "end": 1256.02, + "probability": 0.989 + }, + { + "start": 1256.64, + "end": 1258.74, + "probability": 0.9646 + }, + { + "start": 1259.04, + "end": 1261.4, + "probability": 0.9839 + }, + { + "start": 1263.16, + "end": 1263.4, + "probability": 0.0731 + }, + { + "start": 1263.4, + "end": 1263.78, + "probability": 0.2714 + }, + { + "start": 1263.8, + "end": 1265.22, + "probability": 0.5905 + }, + { + "start": 1265.94, + "end": 1267.58, + "probability": 0.5903 + }, + { + "start": 1268.66, + "end": 1273.86, + "probability": 0.9865 + }, + { + "start": 1273.86, + "end": 1278.44, + "probability": 0.998 + }, + { + "start": 1279.28, + "end": 1283.46, + "probability": 0.9839 + }, + { + "start": 1284.1, + "end": 1286.26, + "probability": 0.9795 + }, + { + "start": 1286.84, + "end": 1288.08, + "probability": 0.8182 + }, + { + "start": 1288.14, + "end": 1290.82, + "probability": 0.8802 + }, + { + "start": 1291.6, + "end": 1293.94, + "probability": 0.9752 + }, + { + "start": 1293.94, + "end": 1297.74, + "probability": 0.9526 + }, + { + "start": 1298.48, + "end": 1301.4, + "probability": 0.5243 + }, + { + "start": 1301.96, + "end": 1306.06, + "probability": 0.8346 + }, + { + "start": 1306.44, + "end": 1307.62, + "probability": 0.9023 + }, + { + "start": 1308.52, + "end": 1311.66, + "probability": 0.9735 + }, + { + "start": 1312.2, + "end": 1317.34, + "probability": 0.9625 + }, + { + "start": 1318.16, + "end": 1322.56, + "probability": 0.8796 + }, + { + "start": 1323.14, + "end": 1325.8, + "probability": 0.9404 + }, + { + "start": 1326.56, + "end": 1332.66, + "probability": 0.9794 + }, + { + "start": 1333.4, + "end": 1339.04, + "probability": 0.9973 + }, + { + "start": 1339.56, + "end": 1341.66, + "probability": 0.9545 + }, + { + "start": 1342.2, + "end": 1344.48, + "probability": 0.9821 + }, + { + "start": 1345.14, + "end": 1348.04, + "probability": 0.8889 + }, + { + "start": 1348.04, + "end": 1352.18, + "probability": 0.994 + }, + { + "start": 1354.32, + "end": 1360.44, + "probability": 0.9655 + }, + { + "start": 1360.44, + "end": 1367.02, + "probability": 0.9869 + }, + { + "start": 1367.4, + "end": 1368.1, + "probability": 0.8185 + }, + { + "start": 1368.84, + "end": 1369.46, + "probability": 0.8096 + }, + { + "start": 1369.98, + "end": 1374.77, + "probability": 0.9806 + }, + { + "start": 1375.72, + "end": 1378.26, + "probability": 0.9188 + }, + { + "start": 1378.88, + "end": 1380.16, + "probability": 0.5539 + }, + { + "start": 1380.78, + "end": 1381.9, + "probability": 0.8956 + }, + { + "start": 1382.74, + "end": 1384.94, + "probability": 0.9784 + }, + { + "start": 1384.94, + "end": 1388.0, + "probability": 0.9882 + }, + { + "start": 1388.72, + "end": 1392.12, + "probability": 0.9816 + }, + { + "start": 1392.82, + "end": 1396.76, + "probability": 0.9891 + }, + { + "start": 1397.38, + "end": 1401.98, + "probability": 0.9943 + }, + { + "start": 1402.5, + "end": 1404.22, + "probability": 0.7737 + }, + { + "start": 1404.74, + "end": 1406.72, + "probability": 0.9626 + }, + { + "start": 1407.16, + "end": 1410.0, + "probability": 0.9894 + }, + { + "start": 1410.86, + "end": 1413.26, + "probability": 0.8124 + }, + { + "start": 1413.98, + "end": 1415.42, + "probability": 0.8735 + }, + { + "start": 1415.98, + "end": 1418.78, + "probability": 0.9938 + }, + { + "start": 1418.78, + "end": 1422.54, + "probability": 0.9759 + }, + { + "start": 1423.18, + "end": 1425.56, + "probability": 0.9973 + }, + { + "start": 1425.6, + "end": 1429.22, + "probability": 0.9979 + }, + { + "start": 1429.82, + "end": 1430.52, + "probability": 0.8712 + }, + { + "start": 1431.18, + "end": 1432.5, + "probability": 0.4756 + }, + { + "start": 1433.42, + "end": 1433.42, + "probability": 0.77 + }, + { + "start": 1433.42, + "end": 1440.66, + "probability": 0.88 + }, + { + "start": 1441.62, + "end": 1446.8, + "probability": 0.9733 + }, + { + "start": 1447.3, + "end": 1448.62, + "probability": 0.8162 + }, + { + "start": 1449.78, + "end": 1451.42, + "probability": 0.7584 + }, + { + "start": 1451.94, + "end": 1455.96, + "probability": 0.969 + }, + { + "start": 1456.68, + "end": 1459.64, + "probability": 0.9307 + }, + { + "start": 1459.64, + "end": 1463.94, + "probability": 0.9443 + }, + { + "start": 1464.34, + "end": 1465.44, + "probability": 0.6802 + }, + { + "start": 1465.96, + "end": 1467.96, + "probability": 0.9577 + }, + { + "start": 1469.04, + "end": 1470.58, + "probability": 0.9352 + }, + { + "start": 1471.26, + "end": 1474.16, + "probability": 0.7559 + }, + { + "start": 1474.16, + "end": 1477.34, + "probability": 0.9767 + }, + { + "start": 1478.16, + "end": 1478.68, + "probability": 0.5158 + }, + { + "start": 1479.18, + "end": 1481.66, + "probability": 0.8624 + }, + { + "start": 1482.1, + "end": 1484.76, + "probability": 0.9722 + }, + { + "start": 1485.68, + "end": 1489.5, + "probability": 0.9711 + }, + { + "start": 1490.02, + "end": 1491.6, + "probability": 0.9041 + }, + { + "start": 1492.12, + "end": 1494.74, + "probability": 0.9806 + }, + { + "start": 1495.28, + "end": 1501.02, + "probability": 0.9977 + }, + { + "start": 1501.58, + "end": 1503.6, + "probability": 0.8838 + }, + { + "start": 1504.1, + "end": 1507.18, + "probability": 0.9818 + }, + { + "start": 1507.84, + "end": 1511.98, + "probability": 0.983 + }, + { + "start": 1512.84, + "end": 1516.54, + "probability": 0.7388 + }, + { + "start": 1516.65, + "end": 1522.32, + "probability": 0.877 + }, + { + "start": 1522.32, + "end": 1528.66, + "probability": 0.9663 + }, + { + "start": 1529.18, + "end": 1534.16, + "probability": 0.9289 + }, + { + "start": 1534.9, + "end": 1537.06, + "probability": 0.9288 + }, + { + "start": 1537.56, + "end": 1539.14, + "probability": 0.9927 + }, + { + "start": 1539.76, + "end": 1541.56, + "probability": 0.9966 + }, + { + "start": 1542.2, + "end": 1544.16, + "probability": 0.9272 + }, + { + "start": 1544.88, + "end": 1549.16, + "probability": 0.8849 + }, + { + "start": 1550.04, + "end": 1550.6, + "probability": 0.9232 + }, + { + "start": 1551.12, + "end": 1551.62, + "probability": 0.5385 + }, + { + "start": 1551.7, + "end": 1553.72, + "probability": 0.9931 + }, + { + "start": 1554.24, + "end": 1556.56, + "probability": 0.9928 + }, + { + "start": 1557.36, + "end": 1560.36, + "probability": 0.9941 + }, + { + "start": 1560.48, + "end": 1562.18, + "probability": 0.9964 + }, + { + "start": 1562.92, + "end": 1564.86, + "probability": 0.8366 + }, + { + "start": 1565.64, + "end": 1567.74, + "probability": 0.7472 + }, + { + "start": 1567.74, + "end": 1571.0, + "probability": 0.8886 + }, + { + "start": 1571.52, + "end": 1576.06, + "probability": 0.9801 + }, + { + "start": 1576.56, + "end": 1577.8, + "probability": 0.7978 + }, + { + "start": 1578.5, + "end": 1579.14, + "probability": 0.739 + }, + { + "start": 1579.76, + "end": 1582.86, + "probability": 0.916 + }, + { + "start": 1582.86, + "end": 1586.84, + "probability": 0.9803 + }, + { + "start": 1587.36, + "end": 1588.44, + "probability": 0.9663 + }, + { + "start": 1591.22, + "end": 1594.4, + "probability": 0.8686 + }, + { + "start": 1594.54, + "end": 1595.68, + "probability": 0.8306 + }, + { + "start": 1596.16, + "end": 1598.88, + "probability": 0.8647 + }, + { + "start": 1598.98, + "end": 1599.88, + "probability": 0.6587 + }, + { + "start": 1600.74, + "end": 1601.3, + "probability": 0.8238 + }, + { + "start": 1601.3, + "end": 1603.98, + "probability": 0.8552 + }, + { + "start": 1604.0, + "end": 1605.38, + "probability": 0.9868 + }, + { + "start": 1606.06, + "end": 1607.0, + "probability": 0.7456 + }, + { + "start": 1607.12, + "end": 1607.96, + "probability": 0.546 + }, + { + "start": 1608.32, + "end": 1614.22, + "probability": 0.928 + }, + { + "start": 1614.76, + "end": 1619.48, + "probability": 0.9457 + }, + { + "start": 1619.54, + "end": 1620.02, + "probability": 0.5151 + }, + { + "start": 1620.14, + "end": 1622.36, + "probability": 0.9026 + }, + { + "start": 1622.8, + "end": 1623.49, + "probability": 0.2923 + }, + { + "start": 1623.9, + "end": 1625.98, + "probability": 0.8431 + }, + { + "start": 1626.5, + "end": 1628.04, + "probability": 0.9963 + }, + { + "start": 1628.46, + "end": 1630.42, + "probability": 0.9847 + }, + { + "start": 1631.2, + "end": 1632.64, + "probability": 0.7292 + }, + { + "start": 1632.72, + "end": 1636.76, + "probability": 0.9877 + }, + { + "start": 1636.88, + "end": 1637.38, + "probability": 0.527 + }, + { + "start": 1637.7, + "end": 1638.3, + "probability": 0.7544 + }, + { + "start": 1638.86, + "end": 1641.86, + "probability": 0.9576 + }, + { + "start": 1642.56, + "end": 1644.12, + "probability": 0.8889 + }, + { + "start": 1644.96, + "end": 1646.46, + "probability": 0.6797 + }, + { + "start": 1646.9, + "end": 1650.5, + "probability": 0.9316 + }, + { + "start": 1651.02, + "end": 1652.34, + "probability": 0.9098 + }, + { + "start": 1652.82, + "end": 1653.59, + "probability": 0.9529 + }, + { + "start": 1654.28, + "end": 1654.98, + "probability": 0.8745 + }, + { + "start": 1655.78, + "end": 1656.26, + "probability": 0.9326 + }, + { + "start": 1657.04, + "end": 1658.34, + "probability": 0.9541 + }, + { + "start": 1658.68, + "end": 1659.04, + "probability": 0.8804 + }, + { + "start": 1659.96, + "end": 1660.68, + "probability": 0.4072 + }, + { + "start": 1660.76, + "end": 1661.88, + "probability": 0.8221 + }, + { + "start": 1662.06, + "end": 1663.28, + "probability": 0.6683 + }, + { + "start": 1663.86, + "end": 1666.8, + "probability": 0.6804 + }, + { + "start": 1667.2, + "end": 1669.58, + "probability": 0.795 + }, + { + "start": 1669.58, + "end": 1670.42, + "probability": 0.965 + }, + { + "start": 1670.74, + "end": 1672.16, + "probability": 0.8708 + }, + { + "start": 1673.52, + "end": 1676.1, + "probability": 0.9948 + }, + { + "start": 1676.1, + "end": 1678.86, + "probability": 0.8656 + }, + { + "start": 1679.54, + "end": 1683.6, + "probability": 0.9966 + }, + { + "start": 1685.28, + "end": 1688.36, + "probability": 0.9368 + }, + { + "start": 1688.7, + "end": 1692.3, + "probability": 0.8976 + }, + { + "start": 1693.18, + "end": 1694.94, + "probability": 0.9372 + }, + { + "start": 1709.62, + "end": 1711.96, + "probability": 0.8096 + }, + { + "start": 1712.4, + "end": 1715.48, + "probability": 0.6753 + }, + { + "start": 1716.04, + "end": 1723.14, + "probability": 0.9635 + }, + { + "start": 1723.9, + "end": 1730.12, + "probability": 0.9833 + }, + { + "start": 1730.12, + "end": 1734.12, + "probability": 0.987 + }, + { + "start": 1735.14, + "end": 1737.14, + "probability": 0.835 + }, + { + "start": 1737.38, + "end": 1742.8, + "probability": 0.8154 + }, + { + "start": 1742.84, + "end": 1743.0, + "probability": 0.754 + }, + { + "start": 1744.06, + "end": 1744.36, + "probability": 0.1645 + }, + { + "start": 1744.36, + "end": 1744.36, + "probability": 0.2249 + }, + { + "start": 1744.36, + "end": 1744.66, + "probability": 0.2209 + }, + { + "start": 1744.76, + "end": 1745.74, + "probability": 0.7336 + }, + { + "start": 1746.04, + "end": 1747.28, + "probability": 0.7608 + }, + { + "start": 1747.84, + "end": 1749.22, + "probability": 0.7507 + }, + { + "start": 1750.0, + "end": 1752.32, + "probability": 0.9814 + }, + { + "start": 1752.86, + "end": 1755.52, + "probability": 0.7295 + }, + { + "start": 1757.02, + "end": 1757.66, + "probability": 0.7503 + }, + { + "start": 1757.84, + "end": 1759.38, + "probability": 0.1926 + }, + { + "start": 1759.74, + "end": 1763.3, + "probability": 0.9859 + }, + { + "start": 1764.52, + "end": 1766.98, + "probability": 0.9766 + }, + { + "start": 1766.98, + "end": 1769.76, + "probability": 0.9976 + }, + { + "start": 1770.56, + "end": 1772.52, + "probability": 0.7354 + }, + { + "start": 1773.9, + "end": 1775.36, + "probability": 0.77 + }, + { + "start": 1776.12, + "end": 1783.56, + "probability": 0.9398 + }, + { + "start": 1783.56, + "end": 1786.72, + "probability": 0.7139 + }, + { + "start": 1787.3, + "end": 1788.82, + "probability": 0.8182 + }, + { + "start": 1790.4, + "end": 1792.9, + "probability": 0.9318 + }, + { + "start": 1794.08, + "end": 1795.68, + "probability": 0.307 + }, + { + "start": 1796.64, + "end": 1799.7, + "probability": 0.7546 + }, + { + "start": 1799.76, + "end": 1803.6, + "probability": 0.9794 + }, + { + "start": 1804.1, + "end": 1806.52, + "probability": 0.9019 + }, + { + "start": 1808.5, + "end": 1812.64, + "probability": 0.8413 + }, + { + "start": 1812.64, + "end": 1817.72, + "probability": 0.9421 + }, + { + "start": 1817.88, + "end": 1820.12, + "probability": 0.8793 + }, + { + "start": 1820.94, + "end": 1823.54, + "probability": 0.8062 + }, + { + "start": 1826.18, + "end": 1827.6, + "probability": 0.434 + }, + { + "start": 1828.56, + "end": 1831.66, + "probability": 0.8678 + }, + { + "start": 1836.08, + "end": 1836.7, + "probability": 0.9474 + }, + { + "start": 1837.34, + "end": 1841.56, + "probability": 0.7889 + }, + { + "start": 1841.96, + "end": 1843.02, + "probability": 0.4875 + }, + { + "start": 1843.12, + "end": 1843.34, + "probability": 0.8517 + }, + { + "start": 1843.38, + "end": 1843.9, + "probability": 0.7901 + }, + { + "start": 1843.94, + "end": 1845.66, + "probability": 0.945 + }, + { + "start": 1845.7, + "end": 1849.38, + "probability": 0.9517 + }, + { + "start": 1849.66, + "end": 1852.9, + "probability": 0.9803 + }, + { + "start": 1853.0, + "end": 1858.96, + "probability": 0.6178 + }, + { + "start": 1859.16, + "end": 1864.04, + "probability": 0.9807 + }, + { + "start": 1864.26, + "end": 1866.15, + "probability": 0.9348 + }, + { + "start": 1866.98, + "end": 1869.12, + "probability": 0.8057 + }, + { + "start": 1870.48, + "end": 1871.88, + "probability": 0.6838 + }, + { + "start": 1872.08, + "end": 1875.4, + "probability": 0.8457 + }, + { + "start": 1875.54, + "end": 1876.46, + "probability": 0.7722 + }, + { + "start": 1876.6, + "end": 1877.63, + "probability": 0.7708 + }, + { + "start": 1878.16, + "end": 1879.42, + "probability": 0.58 + }, + { + "start": 1880.58, + "end": 1881.02, + "probability": 0.8231 + }, + { + "start": 1881.36, + "end": 1881.92, + "probability": 0.8643 + }, + { + "start": 1882.02, + "end": 1883.92, + "probability": 0.8564 + }, + { + "start": 1884.0, + "end": 1885.16, + "probability": 0.8334 + }, + { + "start": 1886.16, + "end": 1887.36, + "probability": 0.7056 + }, + { + "start": 1888.01, + "end": 1891.4, + "probability": 0.7682 + }, + { + "start": 1892.4, + "end": 1896.18, + "probability": 0.8894 + }, + { + "start": 1896.46, + "end": 1896.98, + "probability": 0.9546 + }, + { + "start": 1898.02, + "end": 1899.82, + "probability": 0.9964 + }, + { + "start": 1900.6, + "end": 1903.14, + "probability": 0.6187 + }, + { + "start": 1903.84, + "end": 1904.98, + "probability": 0.5385 + }, + { + "start": 1905.0, + "end": 1906.22, + "probability": 0.6064 + }, + { + "start": 1906.42, + "end": 1907.78, + "probability": 0.6567 + }, + { + "start": 1907.78, + "end": 1908.24, + "probability": 0.1154 + }, + { + "start": 1908.42, + "end": 1908.44, + "probability": 0.0426 + }, + { + "start": 1909.12, + "end": 1909.44, + "probability": 0.0529 + }, + { + "start": 1909.44, + "end": 1911.56, + "probability": 0.8493 + }, + { + "start": 1913.0, + "end": 1915.0, + "probability": 0.9619 + }, + { + "start": 1915.14, + "end": 1917.16, + "probability": 0.7846 + }, + { + "start": 1918.24, + "end": 1919.3, + "probability": 0.5389 + }, + { + "start": 1919.3, + "end": 1920.84, + "probability": 0.783 + }, + { + "start": 1921.5, + "end": 1921.54, + "probability": 0.0182 + }, + { + "start": 1921.54, + "end": 1922.34, + "probability": 0.8009 + }, + { + "start": 1922.36, + "end": 1922.72, + "probability": 0.6197 + }, + { + "start": 1922.76, + "end": 1923.18, + "probability": 0.7276 + }, + { + "start": 1923.96, + "end": 1927.16, + "probability": 0.9423 + }, + { + "start": 1928.7, + "end": 1928.88, + "probability": 0.0005 + }, + { + "start": 1929.78, + "end": 1930.28, + "probability": 0.071 + }, + { + "start": 1930.28, + "end": 1930.28, + "probability": 0.2498 + }, + { + "start": 1930.28, + "end": 1930.58, + "probability": 0.246 + }, + { + "start": 1931.28, + "end": 1933.66, + "probability": 0.6834 + }, + { + "start": 1933.86, + "end": 1935.14, + "probability": 0.9631 + }, + { + "start": 1935.28, + "end": 1937.16, + "probability": 0.888 + }, + { + "start": 1937.86, + "end": 1941.54, + "probability": 0.9485 + }, + { + "start": 1941.62, + "end": 1947.28, + "probability": 0.9887 + }, + { + "start": 1950.24, + "end": 1955.48, + "probability": 0.8875 + }, + { + "start": 1956.36, + "end": 1959.98, + "probability": 0.9109 + }, + { + "start": 1961.54, + "end": 1963.82, + "probability": 0.95 + }, + { + "start": 1963.9, + "end": 1964.2, + "probability": 0.639 + }, + { + "start": 1964.32, + "end": 1965.34, + "probability": 0.8884 + }, + { + "start": 1965.68, + "end": 1967.26, + "probability": 0.9823 + }, + { + "start": 1967.44, + "end": 1969.28, + "probability": 0.8049 + }, + { + "start": 1969.5, + "end": 1970.26, + "probability": 0.6695 + }, + { + "start": 1971.99, + "end": 1977.66, + "probability": 0.8395 + }, + { + "start": 1978.2, + "end": 1978.88, + "probability": 0.7998 + }, + { + "start": 1980.58, + "end": 1985.3, + "probability": 0.9898 + }, + { + "start": 1986.18, + "end": 1989.46, + "probability": 0.9795 + }, + { + "start": 1989.62, + "end": 1994.92, + "probability": 0.9468 + }, + { + "start": 1995.54, + "end": 1997.74, + "probability": 0.7038 + }, + { + "start": 1997.74, + "end": 2001.26, + "probability": 0.9717 + }, + { + "start": 2001.82, + "end": 2007.72, + "probability": 0.9023 + }, + { + "start": 2008.06, + "end": 2009.3, + "probability": 0.9085 + }, + { + "start": 2009.4, + "end": 2012.42, + "probability": 0.8979 + }, + { + "start": 2012.5, + "end": 2013.64, + "probability": 0.7803 + }, + { + "start": 2013.74, + "end": 2014.36, + "probability": 0.667 + }, + { + "start": 2014.42, + "end": 2015.62, + "probability": 0.9774 + }, + { + "start": 2016.14, + "end": 2016.92, + "probability": 0.743 + }, + { + "start": 2017.96, + "end": 2018.92, + "probability": 0.0482 + }, + { + "start": 2019.46, + "end": 2021.18, + "probability": 0.5561 + }, + { + "start": 2021.32, + "end": 2023.46, + "probability": 0.9449 + }, + { + "start": 2024.0, + "end": 2025.72, + "probability": 0.694 + }, + { + "start": 2025.86, + "end": 2026.98, + "probability": 0.7014 + }, + { + "start": 2027.7, + "end": 2029.72, + "probability": 0.631 + }, + { + "start": 2031.64, + "end": 2035.52, + "probability": 0.7265 + }, + { + "start": 2037.44, + "end": 2038.84, + "probability": 0.9674 + }, + { + "start": 2039.96, + "end": 2042.48, + "probability": 0.9991 + }, + { + "start": 2043.26, + "end": 2048.36, + "probability": 0.995 + }, + { + "start": 2050.32, + "end": 2055.5, + "probability": 0.9485 + }, + { + "start": 2055.5, + "end": 2058.9, + "probability": 0.9907 + }, + { + "start": 2059.52, + "end": 2062.36, + "probability": 0.9987 + }, + { + "start": 2063.08, + "end": 2068.44, + "probability": 0.9937 + }, + { + "start": 2068.96, + "end": 2070.84, + "probability": 0.9651 + }, + { + "start": 2072.16, + "end": 2078.04, + "probability": 0.9571 + }, + { + "start": 2078.84, + "end": 2079.98, + "probability": 0.9818 + }, + { + "start": 2081.04, + "end": 2083.12, + "probability": 0.9969 + }, + { + "start": 2084.42, + "end": 2085.56, + "probability": 0.6409 + }, + { + "start": 2086.14, + "end": 2088.96, + "probability": 0.7458 + }, + { + "start": 2089.98, + "end": 2092.66, + "probability": 0.8313 + }, + { + "start": 2094.62, + "end": 2097.9, + "probability": 0.9793 + }, + { + "start": 2097.9, + "end": 2102.42, + "probability": 0.8751 + }, + { + "start": 2103.28, + "end": 2104.94, + "probability": 0.6436 + }, + { + "start": 2105.7, + "end": 2108.56, + "probability": 0.9235 + }, + { + "start": 2109.78, + "end": 2112.24, + "probability": 0.9916 + }, + { + "start": 2113.14, + "end": 2115.14, + "probability": 0.8625 + }, + { + "start": 2115.96, + "end": 2118.94, + "probability": 0.9714 + }, + { + "start": 2119.68, + "end": 2120.98, + "probability": 0.8064 + }, + { + "start": 2121.68, + "end": 2123.52, + "probability": 0.6918 + }, + { + "start": 2124.32, + "end": 2125.46, + "probability": 0.957 + }, + { + "start": 2126.86, + "end": 2133.8, + "probability": 0.9705 + }, + { + "start": 2134.4, + "end": 2137.16, + "probability": 0.8356 + }, + { + "start": 2138.06, + "end": 2140.44, + "probability": 0.9642 + }, + { + "start": 2141.5, + "end": 2146.82, + "probability": 0.9757 + }, + { + "start": 2149.04, + "end": 2150.0, + "probability": 0.5788 + }, + { + "start": 2150.08, + "end": 2152.32, + "probability": 0.9816 + }, + { + "start": 2152.42, + "end": 2153.0, + "probability": 0.6318 + }, + { + "start": 2153.16, + "end": 2155.02, + "probability": 0.9713 + }, + { + "start": 2155.28, + "end": 2157.38, + "probability": 0.7365 + }, + { + "start": 2157.52, + "end": 2158.79, + "probability": 0.9833 + }, + { + "start": 2159.5, + "end": 2163.06, + "probability": 0.946 + }, + { + "start": 2163.82, + "end": 2164.92, + "probability": 0.79 + }, + { + "start": 2165.38, + "end": 2169.4, + "probability": 0.979 + }, + { + "start": 2169.5, + "end": 2172.47, + "probability": 0.989 + }, + { + "start": 2172.78, + "end": 2176.0, + "probability": 0.9622 + }, + { + "start": 2176.08, + "end": 2177.0, + "probability": 0.7151 + }, + { + "start": 2177.18, + "end": 2177.46, + "probability": 0.891 + }, + { + "start": 2178.2, + "end": 2178.9, + "probability": 0.5843 + }, + { + "start": 2178.9, + "end": 2180.48, + "probability": 0.9481 + }, + { + "start": 2180.88, + "end": 2182.77, + "probability": 0.9012 + }, + { + "start": 2183.38, + "end": 2184.8, + "probability": 0.9398 + }, + { + "start": 2184.86, + "end": 2186.48, + "probability": 0.9644 + }, + { + "start": 2186.48, + "end": 2189.78, + "probability": 0.8789 + }, + { + "start": 2190.81, + "end": 2194.7, + "probability": 0.9914 + }, + { + "start": 2195.06, + "end": 2197.26, + "probability": 0.929 + }, + { + "start": 2197.32, + "end": 2199.76, + "probability": 0.411 + }, + { + "start": 2200.48, + "end": 2203.2, + "probability": 0.7806 + }, + { + "start": 2203.2, + "end": 2206.12, + "probability": 0.9744 + }, + { + "start": 2206.42, + "end": 2207.68, + "probability": 0.9327 + }, + { + "start": 2207.68, + "end": 2210.3, + "probability": 0.4945 + }, + { + "start": 2211.4, + "end": 2211.4, + "probability": 0.0857 + }, + { + "start": 2211.4, + "end": 2211.4, + "probability": 0.0305 + }, + { + "start": 2211.4, + "end": 2212.98, + "probability": 0.5572 + }, + { + "start": 2213.6, + "end": 2216.48, + "probability": 0.9684 + }, + { + "start": 2216.8, + "end": 2219.62, + "probability": 0.9941 + }, + { + "start": 2219.72, + "end": 2220.96, + "probability": 0.9929 + }, + { + "start": 2221.48, + "end": 2223.76, + "probability": 0.4294 + }, + { + "start": 2224.2, + "end": 2226.22, + "probability": 0.9954 + }, + { + "start": 2226.54, + "end": 2227.92, + "probability": 0.8535 + }, + { + "start": 2228.16, + "end": 2230.58, + "probability": 0.9581 + }, + { + "start": 2230.58, + "end": 2233.52, + "probability": 0.9953 + }, + { + "start": 2233.58, + "end": 2234.86, + "probability": 0.8607 + }, + { + "start": 2234.98, + "end": 2239.32, + "probability": 0.7996 + }, + { + "start": 2239.48, + "end": 2240.88, + "probability": 0.8648 + }, + { + "start": 2241.68, + "end": 2241.94, + "probability": 0.6941 + }, + { + "start": 2242.14, + "end": 2243.42, + "probability": 0.3734 + }, + { + "start": 2243.5, + "end": 2247.08, + "probability": 0.7921 + }, + { + "start": 2251.46, + "end": 2253.04, + "probability": 0.7029 + }, + { + "start": 2253.96, + "end": 2255.04, + "probability": 0.8849 + }, + { + "start": 2255.1, + "end": 2259.76, + "probability": 0.9919 + }, + { + "start": 2260.74, + "end": 2261.88, + "probability": 0.5537 + }, + { + "start": 2262.22, + "end": 2264.99, + "probability": 0.8996 + }, + { + "start": 2265.42, + "end": 2266.78, + "probability": 0.9124 + }, + { + "start": 2267.26, + "end": 2267.86, + "probability": 0.4741 + }, + { + "start": 2267.96, + "end": 2269.38, + "probability": 0.805 + }, + { + "start": 2269.86, + "end": 2271.62, + "probability": 0.8649 + }, + { + "start": 2271.84, + "end": 2272.8, + "probability": 0.9874 + }, + { + "start": 2272.9, + "end": 2273.86, + "probability": 0.9009 + }, + { + "start": 2273.96, + "end": 2275.02, + "probability": 0.9611 + }, + { + "start": 2275.1, + "end": 2276.36, + "probability": 0.9635 + }, + { + "start": 2276.7, + "end": 2277.48, + "probability": 0.8859 + }, + { + "start": 2278.18, + "end": 2280.4, + "probability": 0.9855 + }, + { + "start": 2280.5, + "end": 2285.1, + "probability": 0.9797 + }, + { + "start": 2285.78, + "end": 2287.46, + "probability": 0.8875 + }, + { + "start": 2287.64, + "end": 2289.48, + "probability": 0.5024 + }, + { + "start": 2289.58, + "end": 2290.76, + "probability": 0.9577 + }, + { + "start": 2291.5, + "end": 2297.6, + "probability": 0.9703 + }, + { + "start": 2298.18, + "end": 2302.52, + "probability": 0.9979 + }, + { + "start": 2302.64, + "end": 2302.9, + "probability": 0.5343 + }, + { + "start": 2302.98, + "end": 2305.24, + "probability": 0.7501 + }, + { + "start": 2305.58, + "end": 2306.46, + "probability": 0.9344 + }, + { + "start": 2306.64, + "end": 2307.46, + "probability": 0.9769 + }, + { + "start": 2307.62, + "end": 2308.82, + "probability": 0.8816 + }, + { + "start": 2310.1, + "end": 2315.8, + "probability": 0.9849 + }, + { + "start": 2315.86, + "end": 2316.46, + "probability": 0.5624 + }, + { + "start": 2316.76, + "end": 2319.0, + "probability": 0.8784 + }, + { + "start": 2319.72, + "end": 2324.24, + "probability": 0.9937 + }, + { + "start": 2324.24, + "end": 2327.96, + "probability": 0.928 + }, + { + "start": 2328.5, + "end": 2331.7, + "probability": 0.7925 + }, + { + "start": 2331.8, + "end": 2332.16, + "probability": 0.959 + }, + { + "start": 2332.26, + "end": 2332.6, + "probability": 0.744 + }, + { + "start": 2332.62, + "end": 2332.94, + "probability": 0.8538 + }, + { + "start": 2333.02, + "end": 2333.8, + "probability": 0.9507 + }, + { + "start": 2334.36, + "end": 2335.92, + "probability": 0.8511 + }, + { + "start": 2337.06, + "end": 2340.22, + "probability": 0.994 + }, + { + "start": 2340.22, + "end": 2343.6, + "probability": 0.9946 + }, + { + "start": 2344.9, + "end": 2347.84, + "probability": 0.8162 + }, + { + "start": 2348.02, + "end": 2349.36, + "probability": 0.9966 + }, + { + "start": 2349.5, + "end": 2350.66, + "probability": 0.9689 + }, + { + "start": 2350.9, + "end": 2352.21, + "probability": 0.9222 + }, + { + "start": 2352.84, + "end": 2354.14, + "probability": 0.5872 + }, + { + "start": 2354.24, + "end": 2355.02, + "probability": 0.887 + }, + { + "start": 2356.36, + "end": 2360.24, + "probability": 0.9797 + }, + { + "start": 2361.62, + "end": 2363.28, + "probability": 0.9727 + }, + { + "start": 2363.48, + "end": 2369.04, + "probability": 0.8258 + }, + { + "start": 2369.26, + "end": 2369.96, + "probability": 0.7955 + }, + { + "start": 2370.1, + "end": 2370.5, + "probability": 0.8294 + }, + { + "start": 2371.98, + "end": 2374.19, + "probability": 0.3713 + }, + { + "start": 2375.06, + "end": 2377.9, + "probability": 0.8991 + }, + { + "start": 2379.16, + "end": 2382.04, + "probability": 0.9609 + }, + { + "start": 2383.18, + "end": 2383.38, + "probability": 0.9766 + }, + { + "start": 2383.96, + "end": 2390.2, + "probability": 0.8329 + }, + { + "start": 2390.28, + "end": 2392.58, + "probability": 0.7922 + }, + { + "start": 2393.04, + "end": 2399.07, + "probability": 0.834 + }, + { + "start": 2399.18, + "end": 2400.49, + "probability": 0.9138 + }, + { + "start": 2400.82, + "end": 2401.18, + "probability": 0.7147 + }, + { + "start": 2402.22, + "end": 2404.13, + "probability": 0.8306 + }, + { + "start": 2405.3, + "end": 2407.2, + "probability": 0.9604 + }, + { + "start": 2408.1, + "end": 2408.32, + "probability": 0.9174 + }, + { + "start": 2408.4, + "end": 2411.74, + "probability": 0.9739 + }, + { + "start": 2412.34, + "end": 2415.36, + "probability": 0.9148 + }, + { + "start": 2415.5, + "end": 2421.61, + "probability": 0.9684 + }, + { + "start": 2428.06, + "end": 2428.78, + "probability": 0.0758 + }, + { + "start": 2429.36, + "end": 2433.5, + "probability": 0.9932 + }, + { + "start": 2433.58, + "end": 2436.58, + "probability": 0.467 + }, + { + "start": 2436.58, + "end": 2436.58, + "probability": 0.3692 + }, + { + "start": 2436.58, + "end": 2436.86, + "probability": 0.7633 + }, + { + "start": 2437.94, + "end": 2440.58, + "probability": 0.8562 + }, + { + "start": 2441.64, + "end": 2441.88, + "probability": 0.0035 + }, + { + "start": 2442.06, + "end": 2442.66, + "probability": 0.8014 + }, + { + "start": 2442.72, + "end": 2444.56, + "probability": 0.8533 + }, + { + "start": 2444.9, + "end": 2445.76, + "probability": 0.8729 + }, + { + "start": 2446.96, + "end": 2448.26, + "probability": 0.8714 + }, + { + "start": 2449.72, + "end": 2452.98, + "probability": 0.6764 + }, + { + "start": 2453.06, + "end": 2453.94, + "probability": 0.2847 + }, + { + "start": 2454.02, + "end": 2455.26, + "probability": 0.9187 + }, + { + "start": 2456.06, + "end": 2457.56, + "probability": 0.6181 + }, + { + "start": 2458.36, + "end": 2459.6, + "probability": 0.9749 + }, + { + "start": 2460.76, + "end": 2464.28, + "probability": 0.9337 + }, + { + "start": 2465.24, + "end": 2465.7, + "probability": 0.7513 + }, + { + "start": 2465.76, + "end": 2470.36, + "probability": 0.9813 + }, + { + "start": 2471.26, + "end": 2473.36, + "probability": 0.9382 + }, + { + "start": 2473.88, + "end": 2478.72, + "probability": 0.824 + }, + { + "start": 2479.3, + "end": 2483.26, + "probability": 0.8281 + }, + { + "start": 2484.14, + "end": 2487.28, + "probability": 0.7719 + }, + { + "start": 2487.9, + "end": 2490.48, + "probability": 0.9168 + }, + { + "start": 2491.96, + "end": 2493.74, + "probability": 0.9862 + }, + { + "start": 2494.62, + "end": 2496.58, + "probability": 0.9761 + }, + { + "start": 2497.64, + "end": 2498.76, + "probability": 0.6794 + }, + { + "start": 2498.96, + "end": 2499.38, + "probability": 0.7511 + }, + { + "start": 2499.38, + "end": 2501.59, + "probability": 0.7401 + }, + { + "start": 2502.16, + "end": 2502.74, + "probability": 0.7855 + }, + { + "start": 2503.64, + "end": 2510.56, + "probability": 0.9302 + }, + { + "start": 2511.78, + "end": 2512.34, + "probability": 0.9585 + }, + { + "start": 2512.44, + "end": 2514.12, + "probability": 0.6552 + }, + { + "start": 2514.34, + "end": 2518.08, + "probability": 0.7264 + }, + { + "start": 2518.18, + "end": 2519.12, + "probability": 0.6719 + }, + { + "start": 2519.9, + "end": 2526.38, + "probability": 0.9294 + }, + { + "start": 2526.58, + "end": 2529.14, + "probability": 0.8351 + }, + { + "start": 2530.36, + "end": 2533.46, + "probability": 0.9191 + }, + { + "start": 2534.1, + "end": 2536.52, + "probability": 0.9216 + }, + { + "start": 2537.12, + "end": 2539.44, + "probability": 0.9214 + }, + { + "start": 2540.08, + "end": 2545.62, + "probability": 0.9852 + }, + { + "start": 2546.02, + "end": 2546.62, + "probability": 0.4872 + }, + { + "start": 2546.64, + "end": 2547.98, + "probability": 0.8988 + }, + { + "start": 2548.46, + "end": 2556.84, + "probability": 0.9632 + }, + { + "start": 2556.84, + "end": 2563.72, + "probability": 0.949 + }, + { + "start": 2564.26, + "end": 2565.94, + "probability": 0.7821 + }, + { + "start": 2566.96, + "end": 2571.96, + "probability": 0.9851 + }, + { + "start": 2572.74, + "end": 2574.72, + "probability": 0.6671 + }, + { + "start": 2575.84, + "end": 2578.94, + "probability": 0.9866 + }, + { + "start": 2579.42, + "end": 2581.94, + "probability": 0.9742 + }, + { + "start": 2582.72, + "end": 2585.38, + "probability": 0.9906 + }, + { + "start": 2586.52, + "end": 2586.76, + "probability": 0.661 + }, + { + "start": 2589.54, + "end": 2590.62, + "probability": 0.779 + }, + { + "start": 2591.44, + "end": 2593.24, + "probability": 0.9907 + }, + { + "start": 2593.42, + "end": 2594.08, + "probability": 0.6848 + }, + { + "start": 2594.14, + "end": 2598.32, + "probability": 0.9202 + }, + { + "start": 2599.06, + "end": 2600.22, + "probability": 0.7651 + }, + { + "start": 2600.76, + "end": 2603.23, + "probability": 0.9238 + }, + { + "start": 2604.06, + "end": 2605.24, + "probability": 0.7573 + }, + { + "start": 2605.4, + "end": 2609.02, + "probability": 0.8545 + }, + { + "start": 2609.14, + "end": 2610.06, + "probability": 0.9249 + }, + { + "start": 2610.84, + "end": 2616.28, + "probability": 0.8013 + }, + { + "start": 2616.33, + "end": 2624.23, + "probability": 0.9808 + }, + { + "start": 2624.52, + "end": 2626.4, + "probability": 0.7747 + }, + { + "start": 2627.22, + "end": 2633.66, + "probability": 0.9808 + }, + { + "start": 2634.12, + "end": 2635.78, + "probability": 0.8732 + }, + { + "start": 2636.48, + "end": 2641.8, + "probability": 0.8359 + }, + { + "start": 2642.64, + "end": 2646.62, + "probability": 0.9481 + }, + { + "start": 2647.12, + "end": 2648.76, + "probability": 0.9879 + }, + { + "start": 2649.5, + "end": 2651.04, + "probability": 0.8718 + }, + { + "start": 2651.84, + "end": 2653.98, + "probability": 0.9346 + }, + { + "start": 2654.06, + "end": 2654.78, + "probability": 0.88 + }, + { + "start": 2654.96, + "end": 2656.68, + "probability": 0.801 + }, + { + "start": 2657.66, + "end": 2660.1, + "probability": 0.9272 + }, + { + "start": 2660.98, + "end": 2663.84, + "probability": 0.945 + }, + { + "start": 2664.56, + "end": 2667.3, + "probability": 0.9854 + }, + { + "start": 2667.3, + "end": 2670.2, + "probability": 0.972 + }, + { + "start": 2671.02, + "end": 2672.62, + "probability": 0.9969 + }, + { + "start": 2672.74, + "end": 2673.3, + "probability": 0.74 + }, + { + "start": 2673.42, + "end": 2673.86, + "probability": 0.5778 + }, + { + "start": 2673.88, + "end": 2677.06, + "probability": 0.7275 + }, + { + "start": 2678.0, + "end": 2682.32, + "probability": 0.6985 + }, + { + "start": 2682.52, + "end": 2686.9, + "probability": 0.9927 + }, + { + "start": 2687.78, + "end": 2691.18, + "probability": 0.9805 + }, + { + "start": 2692.34, + "end": 2694.04, + "probability": 0.9675 + }, + { + "start": 2694.18, + "end": 2698.46, + "probability": 0.701 + }, + { + "start": 2698.66, + "end": 2699.76, + "probability": 0.6974 + }, + { + "start": 2699.88, + "end": 2701.06, + "probability": 0.9528 + }, + { + "start": 2702.06, + "end": 2705.64, + "probability": 0.9458 + }, + { + "start": 2706.62, + "end": 2707.52, + "probability": 0.8433 + }, + { + "start": 2708.66, + "end": 2711.48, + "probability": 0.9872 + }, + { + "start": 2711.6, + "end": 2713.74, + "probability": 0.9624 + }, + { + "start": 2715.16, + "end": 2717.58, + "probability": 0.8757 + }, + { + "start": 2718.0, + "end": 2721.54, + "probability": 0.8936 + }, + { + "start": 2721.62, + "end": 2722.38, + "probability": 0.9222 + }, + { + "start": 2722.42, + "end": 2725.0, + "probability": 0.9866 + }, + { + "start": 2725.88, + "end": 2728.2, + "probability": 0.9683 + }, + { + "start": 2729.46, + "end": 2732.92, + "probability": 0.6858 + }, + { + "start": 2733.82, + "end": 2737.76, + "probability": 0.7965 + }, + { + "start": 2737.82, + "end": 2739.18, + "probability": 0.8412 + }, + { + "start": 2739.42, + "end": 2743.24, + "probability": 0.7939 + }, + { + "start": 2743.76, + "end": 2745.94, + "probability": 0.9912 + }, + { + "start": 2746.68, + "end": 2749.86, + "probability": 0.9656 + }, + { + "start": 2750.5, + "end": 2752.92, + "probability": 0.9482 + }, + { + "start": 2753.82, + "end": 2754.52, + "probability": 0.8295 + }, + { + "start": 2754.9, + "end": 2760.14, + "probability": 0.9395 + }, + { + "start": 2760.36, + "end": 2761.2, + "probability": 0.9958 + }, + { + "start": 2763.64, + "end": 2766.36, + "probability": 0.5475 + }, + { + "start": 2766.46, + "end": 2769.28, + "probability": 0.9917 + }, + { + "start": 2769.42, + "end": 2773.86, + "probability": 0.8495 + }, + { + "start": 2775.2, + "end": 2782.26, + "probability": 0.9231 + }, + { + "start": 2782.34, + "end": 2783.64, + "probability": 0.8933 + }, + { + "start": 2783.74, + "end": 2784.51, + "probability": 0.717 + }, + { + "start": 2785.86, + "end": 2787.16, + "probability": 0.1278 + }, + { + "start": 2788.24, + "end": 2788.32, + "probability": 0.0759 + }, + { + "start": 2788.32, + "end": 2790.86, + "probability": 0.5495 + }, + { + "start": 2791.5, + "end": 2793.62, + "probability": 0.8656 + }, + { + "start": 2793.8, + "end": 2794.82, + "probability": 0.537 + }, + { + "start": 2801.75, + "end": 2804.74, + "probability": 0.7018 + }, + { + "start": 2805.72, + "end": 2806.68, + "probability": 0.5674 + }, + { + "start": 2806.82, + "end": 2807.4, + "probability": 0.4425 + }, + { + "start": 2807.66, + "end": 2810.61, + "probability": 0.8197 + }, + { + "start": 2811.48, + "end": 2813.11, + "probability": 0.946 + }, + { + "start": 2813.36, + "end": 2814.06, + "probability": 0.4959 + }, + { + "start": 2816.36, + "end": 2819.09, + "probability": 0.2776 + }, + { + "start": 2819.74, + "end": 2819.74, + "probability": 0.0705 + }, + { + "start": 2819.74, + "end": 2823.42, + "probability": 0.4158 + }, + { + "start": 2823.58, + "end": 2826.4, + "probability": 0.6868 + }, + { + "start": 2826.85, + "end": 2832.24, + "probability": 0.7742 + }, + { + "start": 2832.36, + "end": 2834.39, + "probability": 0.5247 + }, + { + "start": 2841.38, + "end": 2842.18, + "probability": 0.1837 + }, + { + "start": 2842.92, + "end": 2843.48, + "probability": 0.8962 + }, + { + "start": 2843.6, + "end": 2845.24, + "probability": 0.98 + }, + { + "start": 2845.36, + "end": 2851.02, + "probability": 0.981 + }, + { + "start": 2851.28, + "end": 2851.66, + "probability": 0.6613 + }, + { + "start": 2853.04, + "end": 2853.98, + "probability": 0.9791 + }, + { + "start": 2856.9, + "end": 2858.66, + "probability": 0.8139 + }, + { + "start": 2859.16, + "end": 2860.82, + "probability": 0.772 + }, + { + "start": 2874.62, + "end": 2875.28, + "probability": 0.7535 + }, + { + "start": 2875.4, + "end": 2877.78, + "probability": 0.9722 + }, + { + "start": 2877.78, + "end": 2881.66, + "probability": 0.9907 + }, + { + "start": 2882.94, + "end": 2885.52, + "probability": 0.791 + }, + { + "start": 2885.96, + "end": 2887.4, + "probability": 0.9606 + }, + { + "start": 2899.4, + "end": 2899.74, + "probability": 0.1354 + }, + { + "start": 2904.2, + "end": 2908.66, + "probability": 0.994 + }, + { + "start": 2908.98, + "end": 2910.06, + "probability": 0.8049 + }, + { + "start": 2910.76, + "end": 2914.58, + "probability": 0.9769 + }, + { + "start": 2915.72, + "end": 2919.32, + "probability": 0.9878 + }, + { + "start": 2919.32, + "end": 2923.2, + "probability": 0.9548 + }, + { + "start": 2923.9, + "end": 2927.5, + "probability": 0.9943 + }, + { + "start": 2927.5, + "end": 2930.2, + "probability": 0.8308 + }, + { + "start": 2931.42, + "end": 2933.7, + "probability": 0.8628 + }, + { + "start": 2933.92, + "end": 2937.28, + "probability": 0.9097 + }, + { + "start": 2938.4, + "end": 2940.62, + "probability": 0.9613 + }, + { + "start": 2941.68, + "end": 2945.04, + "probability": 0.9719 + }, + { + "start": 2945.04, + "end": 2947.8, + "probability": 0.9377 + }, + { + "start": 2948.96, + "end": 2950.82, + "probability": 0.9169 + }, + { + "start": 2966.42, + "end": 2968.68, + "probability": 0.9929 + }, + { + "start": 2968.82, + "end": 2972.06, + "probability": 0.9146 + }, + { + "start": 2972.18, + "end": 2975.24, + "probability": 0.987 + }, + { + "start": 2975.88, + "end": 2976.34, + "probability": 0.6245 + }, + { + "start": 2976.44, + "end": 2976.78, + "probability": 0.8714 + }, + { + "start": 2977.1, + "end": 2978.38, + "probability": 0.4236 + }, + { + "start": 2978.74, + "end": 2981.52, + "probability": 0.9935 + }, + { + "start": 2982.36, + "end": 2983.98, + "probability": 0.5592 + }, + { + "start": 2984.74, + "end": 2986.96, + "probability": 0.9033 + }, + { + "start": 2988.2, + "end": 2993.52, + "probability": 0.731 + }, + { + "start": 2994.82, + "end": 2994.82, + "probability": 0.0215 + }, + { + "start": 2994.82, + "end": 2996.3, + "probability": 0.877 + }, + { + "start": 2996.52, + "end": 2997.18, + "probability": 0.4355 + }, + { + "start": 2997.22, + "end": 2998.62, + "probability": 0.8395 + }, + { + "start": 2999.3, + "end": 2999.64, + "probability": 0.4629 + }, + { + "start": 2999.68, + "end": 3000.1, + "probability": 0.8814 + }, + { + "start": 3000.3, + "end": 3003.54, + "probability": 0.968 + }, + { + "start": 3004.56, + "end": 3009.32, + "probability": 0.947 + }, + { + "start": 3009.42, + "end": 3010.34, + "probability": 0.676 + }, + { + "start": 3010.9, + "end": 3012.6, + "probability": 0.9798 + }, + { + "start": 3012.78, + "end": 3016.08, + "probability": 0.9874 + }, + { + "start": 3017.12, + "end": 3019.78, + "probability": 0.9941 + }, + { + "start": 3020.84, + "end": 3021.38, + "probability": 0.3959 + }, + { + "start": 3022.42, + "end": 3025.94, + "probability": 0.8276 + }, + { + "start": 3026.72, + "end": 3031.14, + "probability": 0.9824 + }, + { + "start": 3031.86, + "end": 3033.86, + "probability": 0.9899 + }, + { + "start": 3035.48, + "end": 3035.88, + "probability": 0.5872 + }, + { + "start": 3035.92, + "end": 3040.2, + "probability": 0.9898 + }, + { + "start": 3040.48, + "end": 3042.02, + "probability": 0.7401 + }, + { + "start": 3043.18, + "end": 3044.6, + "probability": 0.9849 + }, + { + "start": 3045.28, + "end": 3047.34, + "probability": 0.9767 + }, + { + "start": 3047.58, + "end": 3053.26, + "probability": 0.9847 + }, + { + "start": 3054.36, + "end": 3057.84, + "probability": 0.7982 + }, + { + "start": 3058.98, + "end": 3059.54, + "probability": 0.7725 + }, + { + "start": 3059.58, + "end": 3061.34, + "probability": 0.9912 + }, + { + "start": 3061.62, + "end": 3066.36, + "probability": 0.9783 + }, + { + "start": 3066.36, + "end": 3071.52, + "probability": 0.6067 + }, + { + "start": 3072.2, + "end": 3075.02, + "probability": 0.9756 + }, + { + "start": 3076.52, + "end": 3078.68, + "probability": 0.9822 + }, + { + "start": 3078.82, + "end": 3080.16, + "probability": 0.9893 + }, + { + "start": 3080.52, + "end": 3080.82, + "probability": 0.0397 + }, + { + "start": 3080.82, + "end": 3081.28, + "probability": 0.211 + }, + { + "start": 3081.28, + "end": 3083.28, + "probability": 0.9425 + }, + { + "start": 3084.26, + "end": 3088.9, + "probability": 0.9859 + }, + { + "start": 3089.62, + "end": 3094.18, + "probability": 0.9277 + }, + { + "start": 3094.92, + "end": 3095.96, + "probability": 0.6892 + }, + { + "start": 3096.52, + "end": 3098.7, + "probability": 0.8988 + }, + { + "start": 3098.82, + "end": 3100.06, + "probability": 0.9493 + }, + { + "start": 3100.14, + "end": 3101.88, + "probability": 0.7856 + }, + { + "start": 3102.66, + "end": 3105.47, + "probability": 0.9888 + }, + { + "start": 3106.4, + "end": 3109.42, + "probability": 0.9891 + }, + { + "start": 3109.42, + "end": 3113.0, + "probability": 0.9508 + }, + { + "start": 3113.7, + "end": 3121.94, + "probability": 0.9753 + }, + { + "start": 3122.74, + "end": 3122.96, + "probability": 0.3402 + }, + { + "start": 3123.1, + "end": 3123.42, + "probability": 0.1187 + }, + { + "start": 3123.5, + "end": 3125.86, + "probability": 0.9659 + }, + { + "start": 3126.06, + "end": 3128.88, + "probability": 0.9228 + }, + { + "start": 3130.52, + "end": 3133.94, + "probability": 0.8762 + }, + { + "start": 3133.98, + "end": 3134.38, + "probability": 0.3982 + }, + { + "start": 3134.4, + "end": 3134.92, + "probability": 0.9033 + }, + { + "start": 3134.98, + "end": 3137.36, + "probability": 0.9448 + }, + { + "start": 3137.84, + "end": 3143.16, + "probability": 0.9833 + }, + { + "start": 3143.8, + "end": 3145.34, + "probability": 0.5999 + }, + { + "start": 3147.9, + "end": 3149.7, + "probability": 0.383 + }, + { + "start": 3150.28, + "end": 3154.06, + "probability": 0.9097 + }, + { + "start": 3154.66, + "end": 3160.0, + "probability": 0.9729 + }, + { + "start": 3160.5, + "end": 3161.54, + "probability": 0.9797 + }, + { + "start": 3162.6, + "end": 3163.52, + "probability": 0.727 + }, + { + "start": 3163.7, + "end": 3165.94, + "probability": 0.9932 + }, + { + "start": 3166.02, + "end": 3170.34, + "probability": 0.8481 + }, + { + "start": 3171.12, + "end": 3171.6, + "probability": 0.9967 + }, + { + "start": 3172.14, + "end": 3176.12, + "probability": 0.9966 + }, + { + "start": 3197.24, + "end": 3200.3, + "probability": 0.7519 + }, + { + "start": 3201.18, + "end": 3202.5, + "probability": 0.1718 + }, + { + "start": 3203.9, + "end": 3206.94, + "probability": 0.4386 + }, + { + "start": 3207.0, + "end": 3208.18, + "probability": 0.7111 + }, + { + "start": 3208.26, + "end": 3212.72, + "probability": 0.8627 + }, + { + "start": 3213.94, + "end": 3216.46, + "probability": 0.8439 + }, + { + "start": 3216.54, + "end": 3219.44, + "probability": 0.9242 + }, + { + "start": 3220.2, + "end": 3222.74, + "probability": 0.5777 + }, + { + "start": 3223.28, + "end": 3224.82, + "probability": 0.3797 + }, + { + "start": 3225.92, + "end": 3227.88, + "probability": 0.8885 + }, + { + "start": 3228.86, + "end": 3229.86, + "probability": 0.5734 + }, + { + "start": 3230.58, + "end": 3231.72, + "probability": 0.641 + }, + { + "start": 3232.9, + "end": 3240.6, + "probability": 0.8694 + }, + { + "start": 3241.6, + "end": 3242.34, + "probability": 0.8359 + }, + { + "start": 3242.88, + "end": 3244.38, + "probability": 0.5226 + }, + { + "start": 3245.36, + "end": 3248.62, + "probability": 0.7207 + }, + { + "start": 3249.6, + "end": 3250.54, + "probability": 0.9569 + }, + { + "start": 3251.46, + "end": 3252.48, + "probability": 0.9105 + }, + { + "start": 3253.58, + "end": 3254.84, + "probability": 0.9451 + }, + { + "start": 3255.42, + "end": 3260.16, + "probability": 0.9527 + }, + { + "start": 3261.22, + "end": 3262.66, + "probability": 0.8622 + }, + { + "start": 3263.2, + "end": 3268.1, + "probability": 0.8906 + }, + { + "start": 3269.42, + "end": 3272.78, + "probability": 0.7813 + }, + { + "start": 3273.5, + "end": 3275.82, + "probability": 0.8494 + }, + { + "start": 3276.3, + "end": 3276.88, + "probability": 0.9602 + }, + { + "start": 3276.96, + "end": 3280.22, + "probability": 0.8902 + }, + { + "start": 3281.98, + "end": 3283.12, + "probability": 0.9883 + }, + { + "start": 3284.4, + "end": 3288.38, + "probability": 0.9455 + }, + { + "start": 3290.98, + "end": 3291.1, + "probability": 0.1958 + }, + { + "start": 3291.1, + "end": 3291.82, + "probability": 0.6968 + }, + { + "start": 3292.0, + "end": 3292.82, + "probability": 0.9434 + }, + { + "start": 3293.02, + "end": 3296.72, + "probability": 0.9989 + }, + { + "start": 3296.72, + "end": 3301.62, + "probability": 0.9956 + }, + { + "start": 3302.62, + "end": 3305.22, + "probability": 0.9842 + }, + { + "start": 3305.22, + "end": 3308.32, + "probability": 0.7002 + }, + { + "start": 3308.46, + "end": 3310.36, + "probability": 0.4716 + }, + { + "start": 3311.08, + "end": 3313.52, + "probability": 0.5824 + }, + { + "start": 3313.6, + "end": 3314.32, + "probability": 0.7682 + }, + { + "start": 3314.4, + "end": 3317.04, + "probability": 0.9346 + }, + { + "start": 3318.04, + "end": 3321.1, + "probability": 0.9009 + }, + { + "start": 3322.3, + "end": 3327.43, + "probability": 0.891 + }, + { + "start": 3328.48, + "end": 3329.18, + "probability": 0.971 + }, + { + "start": 3331.58, + "end": 3332.66, + "probability": 0.4979 + }, + { + "start": 3335.4, + "end": 3336.6, + "probability": 0.3557 + }, + { + "start": 3337.3, + "end": 3338.45, + "probability": 0.6329 + }, + { + "start": 3339.28, + "end": 3342.62, + "probability": 0.8727 + }, + { + "start": 3343.38, + "end": 3345.06, + "probability": 0.8382 + }, + { + "start": 3345.74, + "end": 3347.12, + "probability": 0.9642 + }, + { + "start": 3347.58, + "end": 3349.52, + "probability": 0.8503 + }, + { + "start": 3349.92, + "end": 3350.44, + "probability": 0.4821 + }, + { + "start": 3350.78, + "end": 3351.36, + "probability": 0.7871 + }, + { + "start": 3351.36, + "end": 3351.96, + "probability": 0.9731 + }, + { + "start": 3351.96, + "end": 3352.72, + "probability": 0.9332 + }, + { + "start": 3353.12, + "end": 3354.28, + "probability": 0.6559 + }, + { + "start": 3355.32, + "end": 3355.66, + "probability": 0.7786 + }, + { + "start": 3356.44, + "end": 3357.08, + "probability": 0.7461 + }, + { + "start": 3358.92, + "end": 3361.0, + "probability": 0.8441 + }, + { + "start": 3362.12, + "end": 3363.36, + "probability": 0.9598 + }, + { + "start": 3364.28, + "end": 3365.5, + "probability": 0.9739 + }, + { + "start": 3366.14, + "end": 3367.98, + "probability": 0.6794 + }, + { + "start": 3368.14, + "end": 3371.86, + "probability": 0.8143 + }, + { + "start": 3372.62, + "end": 3374.14, + "probability": 0.9336 + }, + { + "start": 3394.08, + "end": 3394.78, + "probability": 0.6058 + }, + { + "start": 3396.96, + "end": 3398.82, + "probability": 0.6614 + }, + { + "start": 3399.38, + "end": 3399.64, + "probability": 0.7686 + }, + { + "start": 3400.5, + "end": 3402.06, + "probability": 0.7367 + }, + { + "start": 3403.96, + "end": 3411.86, + "probability": 0.9562 + }, + { + "start": 3411.92, + "end": 3412.78, + "probability": 0.762 + }, + { + "start": 3412.94, + "end": 3413.68, + "probability": 0.5726 + }, + { + "start": 3414.62, + "end": 3417.48, + "probability": 0.7542 + }, + { + "start": 3418.02, + "end": 3419.8, + "probability": 0.9448 + }, + { + "start": 3420.92, + "end": 3420.92, + "probability": 0.4271 + }, + { + "start": 3421.22, + "end": 3422.24, + "probability": 0.8402 + }, + { + "start": 3422.36, + "end": 3424.86, + "probability": 0.945 + }, + { + "start": 3425.34, + "end": 3427.18, + "probability": 0.264 + }, + { + "start": 3427.18, + "end": 3428.76, + "probability": 0.9505 + }, + { + "start": 3428.9, + "end": 3430.6, + "probability": 0.9741 + }, + { + "start": 3431.78, + "end": 3435.0, + "probability": 0.9713 + }, + { + "start": 3436.38, + "end": 3437.78, + "probability": 0.9756 + }, + { + "start": 3437.9, + "end": 3440.66, + "probability": 0.8647 + }, + { + "start": 3441.4, + "end": 3441.4, + "probability": 0.3943 + }, + { + "start": 3441.58, + "end": 3441.78, + "probability": 0.5916 + }, + { + "start": 3441.82, + "end": 3443.72, + "probability": 0.9956 + }, + { + "start": 3443.82, + "end": 3444.7, + "probability": 0.659 + }, + { + "start": 3445.22, + "end": 3445.84, + "probability": 0.75 + }, + { + "start": 3445.9, + "end": 3446.42, + "probability": 0.714 + }, + { + "start": 3446.5, + "end": 3447.28, + "probability": 0.7373 + }, + { + "start": 3447.32, + "end": 3447.66, + "probability": 0.1248 + }, + { + "start": 3447.74, + "end": 3448.74, + "probability": 0.9617 + }, + { + "start": 3449.8, + "end": 3450.66, + "probability": 0.9241 + }, + { + "start": 3450.8, + "end": 3451.08, + "probability": 0.4943 + }, + { + "start": 3451.14, + "end": 3454.76, + "probability": 0.7444 + }, + { + "start": 3454.8, + "end": 3455.9, + "probability": 0.9119 + }, + { + "start": 3456.3, + "end": 3457.36, + "probability": 0.5532 + }, + { + "start": 3457.46, + "end": 3459.28, + "probability": 0.7644 + }, + { + "start": 3459.32, + "end": 3461.72, + "probability": 0.9867 + }, + { + "start": 3462.22, + "end": 3465.58, + "probability": 0.866 + }, + { + "start": 3467.52, + "end": 3468.14, + "probability": 0.7661 + }, + { + "start": 3468.46, + "end": 3469.18, + "probability": 0.9751 + }, + { + "start": 3469.28, + "end": 3472.44, + "probability": 0.9836 + }, + { + "start": 3472.76, + "end": 3474.08, + "probability": 0.9839 + }, + { + "start": 3475.58, + "end": 3476.1, + "probability": 0.2989 + }, + { + "start": 3476.32, + "end": 3477.44, + "probability": 0.9937 + }, + { + "start": 3477.46, + "end": 3481.4, + "probability": 0.9248 + }, + { + "start": 3482.46, + "end": 3486.96, + "probability": 0.9268 + }, + { + "start": 3487.5, + "end": 3489.74, + "probability": 0.9717 + }, + { + "start": 3490.74, + "end": 3491.52, + "probability": 0.5446 + }, + { + "start": 3492.98, + "end": 3495.28, + "probability": 0.8856 + }, + { + "start": 3496.74, + "end": 3497.37, + "probability": 0.812 + }, + { + "start": 3498.16, + "end": 3500.9, + "probability": 0.9399 + }, + { + "start": 3501.39, + "end": 3507.18, + "probability": 0.9896 + }, + { + "start": 3507.28, + "end": 3508.3, + "probability": 0.7051 + }, + { + "start": 3509.88, + "end": 3514.72, + "probability": 0.9875 + }, + { + "start": 3516.2, + "end": 3518.3, + "probability": 0.9168 + }, + { + "start": 3518.48, + "end": 3519.1, + "probability": 0.4395 + }, + { + "start": 3519.2, + "end": 3519.62, + "probability": 0.675 + }, + { + "start": 3519.74, + "end": 3520.36, + "probability": 0.3094 + }, + { + "start": 3520.38, + "end": 3521.85, + "probability": 0.8672 + }, + { + "start": 3522.0, + "end": 3524.9, + "probability": 0.8748 + }, + { + "start": 3525.0, + "end": 3526.06, + "probability": 0.8131 + }, + { + "start": 3527.3, + "end": 3527.8, + "probability": 0.9735 + }, + { + "start": 3530.64, + "end": 3531.84, + "probability": 0.6535 + }, + { + "start": 3533.12, + "end": 3536.44, + "probability": 0.911 + }, + { + "start": 3536.54, + "end": 3537.76, + "probability": 0.9097 + }, + { + "start": 3539.12, + "end": 3540.42, + "probability": 0.5786 + }, + { + "start": 3541.62, + "end": 3541.74, + "probability": 0.3475 + }, + { + "start": 3542.14, + "end": 3543.76, + "probability": 0.647 + }, + { + "start": 3543.9, + "end": 3544.32, + "probability": 0.8997 + }, + { + "start": 3544.38, + "end": 3544.89, + "probability": 0.8423 + }, + { + "start": 3545.08, + "end": 3546.36, + "probability": 0.6846 + }, + { + "start": 3547.58, + "end": 3554.64, + "probability": 0.9991 + }, + { + "start": 3555.52, + "end": 3556.98, + "probability": 0.9908 + }, + { + "start": 3558.48, + "end": 3560.52, + "probability": 0.9663 + }, + { + "start": 3562.34, + "end": 3568.06, + "probability": 0.8338 + }, + { + "start": 3569.56, + "end": 3571.9, + "probability": 0.792 + }, + { + "start": 3572.24, + "end": 3572.92, + "probability": 0.6148 + }, + { + "start": 3580.54, + "end": 3584.56, + "probability": 0.9532 + }, + { + "start": 3584.66, + "end": 3586.7, + "probability": 0.4298 + }, + { + "start": 3588.12, + "end": 3591.66, + "probability": 0.9598 + }, + { + "start": 3594.42, + "end": 3596.92, + "probability": 0.8851 + }, + { + "start": 3598.12, + "end": 3601.32, + "probability": 0.8073 + }, + { + "start": 3601.94, + "end": 3608.3, + "probability": 0.9463 + }, + { + "start": 3610.02, + "end": 3612.02, + "probability": 0.6404 + }, + { + "start": 3612.78, + "end": 3613.52, + "probability": 0.6337 + }, + { + "start": 3614.92, + "end": 3617.52, + "probability": 0.9128 + }, + { + "start": 3617.84, + "end": 3618.44, + "probability": 0.9253 + }, + { + "start": 3619.6, + "end": 3621.0, + "probability": 0.7725 + }, + { + "start": 3622.12, + "end": 3625.02, + "probability": 0.9902 + }, + { + "start": 3626.12, + "end": 3633.38, + "probability": 0.9425 + }, + { + "start": 3633.38, + "end": 3637.76, + "probability": 0.7871 + }, + { + "start": 3640.46, + "end": 3642.92, + "probability": 0.8851 + }, + { + "start": 3644.16, + "end": 3645.06, + "probability": 0.7874 + }, + { + "start": 3646.28, + "end": 3651.8, + "probability": 0.7372 + }, + { + "start": 3652.58, + "end": 3657.54, + "probability": 0.7674 + }, + { + "start": 3658.18, + "end": 3660.34, + "probability": 0.0462 + }, + { + "start": 3663.26, + "end": 3667.08, + "probability": 0.9807 + }, + { + "start": 3669.3, + "end": 3672.42, + "probability": 0.9883 + }, + { + "start": 3673.5, + "end": 3678.34, + "probability": 0.9958 + }, + { + "start": 3679.1, + "end": 3681.34, + "probability": 0.9243 + }, + { + "start": 3682.86, + "end": 3689.12, + "probability": 0.7394 + }, + { + "start": 3689.12, + "end": 3693.0, + "probability": 0.9945 + }, + { + "start": 3694.82, + "end": 3700.78, + "probability": 0.9198 + }, + { + "start": 3701.72, + "end": 3705.26, + "probability": 0.9183 + }, + { + "start": 3706.64, + "end": 3712.9, + "probability": 0.8831 + }, + { + "start": 3713.36, + "end": 3715.26, + "probability": 0.9199 + }, + { + "start": 3715.9, + "end": 3719.16, + "probability": 0.97 + }, + { + "start": 3720.68, + "end": 3725.18, + "probability": 0.9844 + }, + { + "start": 3725.8, + "end": 3728.22, + "probability": 0.5055 + }, + { + "start": 3729.72, + "end": 3731.68, + "probability": 0.7194 + }, + { + "start": 3732.54, + "end": 3737.26, + "probability": 0.9951 + }, + { + "start": 3738.24, + "end": 3738.77, + "probability": 0.8242 + }, + { + "start": 3741.52, + "end": 3744.66, + "probability": 0.9773 + }, + { + "start": 3745.9, + "end": 3752.12, + "probability": 0.9547 + }, + { + "start": 3753.34, + "end": 3758.52, + "probability": 0.9914 + }, + { + "start": 3760.04, + "end": 3761.94, + "probability": 0.9209 + }, + { + "start": 3762.1, + "end": 3767.84, + "probability": 0.9743 + }, + { + "start": 3768.22, + "end": 3774.14, + "probability": 0.9565 + }, + { + "start": 3776.26, + "end": 3783.52, + "probability": 0.8735 + }, + { + "start": 3784.82, + "end": 3785.64, + "probability": 0.5332 + }, + { + "start": 3786.9, + "end": 3788.94, + "probability": 0.0261 + }, + { + "start": 3792.76, + "end": 3793.06, + "probability": 0.3922 + }, + { + "start": 3796.85, + "end": 3797.91, + "probability": 0.0038 + }, + { + "start": 3798.89, + "end": 3800.17, + "probability": 0.035 + }, + { + "start": 3800.87, + "end": 3802.95, + "probability": 0.0173 + }, + { + "start": 3803.99, + "end": 3805.95, + "probability": 0.5421 + }, + { + "start": 3806.29, + "end": 3810.43, + "probability": 0.9762 + }, + { + "start": 3811.25, + "end": 3820.23, + "probability": 0.9871 + }, + { + "start": 3821.87, + "end": 3826.63, + "probability": 0.7662 + }, + { + "start": 3827.41, + "end": 3830.25, + "probability": 0.7282 + }, + { + "start": 3830.55, + "end": 3832.43, + "probability": 0.6402 + }, + { + "start": 3833.29, + "end": 3837.65, + "probability": 0.7576 + }, + { + "start": 3838.11, + "end": 3840.53, + "probability": 0.9822 + }, + { + "start": 3841.25, + "end": 3844.03, + "probability": 0.9458 + }, + { + "start": 3845.31, + "end": 3848.97, + "probability": 0.8654 + }, + { + "start": 3849.91, + "end": 3853.89, + "probability": 0.8406 + }, + { + "start": 3855.03, + "end": 3858.22, + "probability": 0.8463 + }, + { + "start": 3858.99, + "end": 3860.73, + "probability": 0.6647 + }, + { + "start": 3863.89, + "end": 3868.17, + "probability": 0.9092 + }, + { + "start": 3870.01, + "end": 3877.39, + "probability": 0.9907 + }, + { + "start": 3878.61, + "end": 3886.71, + "probability": 0.9633 + }, + { + "start": 3887.23, + "end": 3889.95, + "probability": 0.8961 + }, + { + "start": 3890.61, + "end": 3893.29, + "probability": 0.8462 + }, + { + "start": 3894.01, + "end": 3896.69, + "probability": 0.8539 + }, + { + "start": 3897.75, + "end": 3900.45, + "probability": 0.9945 + }, + { + "start": 3900.97, + "end": 3903.93, + "probability": 0.9023 + }, + { + "start": 3904.15, + "end": 3904.71, + "probability": 0.8716 + }, + { + "start": 3904.73, + "end": 3909.47, + "probability": 0.9782 + }, + { + "start": 3910.49, + "end": 3914.61, + "probability": 0.9332 + }, + { + "start": 3915.85, + "end": 3918.77, + "probability": 0.9243 + }, + { + "start": 3919.57, + "end": 3921.05, + "probability": 0.9749 + }, + { + "start": 3921.57, + "end": 3923.49, + "probability": 0.7802 + }, + { + "start": 3924.37, + "end": 3929.01, + "probability": 0.8831 + }, + { + "start": 3930.77, + "end": 3933.38, + "probability": 0.6756 + }, + { + "start": 3935.85, + "end": 3937.13, + "probability": 0.614 + }, + { + "start": 3938.17, + "end": 3940.03, + "probability": 0.9957 + }, + { + "start": 3942.85, + "end": 3947.65, + "probability": 0.4998 + }, + { + "start": 3948.31, + "end": 3953.71, + "probability": 0.8679 + }, + { + "start": 3954.61, + "end": 3956.21, + "probability": 0.9941 + }, + { + "start": 3957.31, + "end": 3959.93, + "probability": 0.5566 + }, + { + "start": 3960.13, + "end": 3962.77, + "probability": 0.9661 + }, + { + "start": 3963.31, + "end": 3964.81, + "probability": 0.6576 + }, + { + "start": 3966.19, + "end": 3967.69, + "probability": 0.7182 + }, + { + "start": 3969.47, + "end": 3971.71, + "probability": 0.6863 + }, + { + "start": 3971.83, + "end": 3976.65, + "probability": 0.8293 + }, + { + "start": 3977.73, + "end": 3981.25, + "probability": 0.9956 + }, + { + "start": 3982.07, + "end": 3988.61, + "probability": 0.9925 + }, + { + "start": 3989.13, + "end": 3990.57, + "probability": 0.9938 + }, + { + "start": 3992.35, + "end": 3994.63, + "probability": 0.9145 + }, + { + "start": 3995.09, + "end": 3997.63, + "probability": 0.9619 + }, + { + "start": 3998.23, + "end": 4006.37, + "probability": 0.9438 + }, + { + "start": 4006.79, + "end": 4011.11, + "probability": 0.9938 + }, + { + "start": 4014.37, + "end": 4017.95, + "probability": 0.7174 + }, + { + "start": 4018.93, + "end": 4023.63, + "probability": 0.9406 + }, + { + "start": 4024.71, + "end": 4031.51, + "probability": 0.9901 + }, + { + "start": 4031.57, + "end": 4033.95, + "probability": 0.8377 + }, + { + "start": 4035.39, + "end": 4037.23, + "probability": 0.818 + }, + { + "start": 4038.75, + "end": 4040.67, + "probability": 0.9011 + }, + { + "start": 4041.29, + "end": 4048.91, + "probability": 0.9942 + }, + { + "start": 4049.67, + "end": 4052.95, + "probability": 0.802 + }, + { + "start": 4053.51, + "end": 4055.03, + "probability": 0.2022 + }, + { + "start": 4056.05, + "end": 4058.29, + "probability": 0.8235 + }, + { + "start": 4058.39, + "end": 4063.55, + "probability": 0.9292 + }, + { + "start": 4063.67, + "end": 4064.81, + "probability": 0.6607 + }, + { + "start": 4067.47, + "end": 4074.29, + "probability": 0.999 + }, + { + "start": 4075.05, + "end": 4081.43, + "probability": 0.8542 + }, + { + "start": 4082.03, + "end": 4083.09, + "probability": 0.9016 + }, + { + "start": 4084.95, + "end": 4084.95, + "probability": 0.0092 + }, + { + "start": 4084.95, + "end": 4085.97, + "probability": 0.8147 + }, + { + "start": 4086.81, + "end": 4089.13, + "probability": 0.6593 + }, + { + "start": 4089.39, + "end": 4089.59, + "probability": 0.26 + }, + { + "start": 4089.67, + "end": 4097.37, + "probability": 0.842 + }, + { + "start": 4098.31, + "end": 4108.29, + "probability": 0.9741 + }, + { + "start": 4108.79, + "end": 4114.39, + "probability": 0.9976 + }, + { + "start": 4115.15, + "end": 4116.32, + "probability": 0.7974 + }, + { + "start": 4116.81, + "end": 4121.39, + "probability": 0.9913 + }, + { + "start": 4122.75, + "end": 4128.15, + "probability": 0.952 + }, + { + "start": 4129.83, + "end": 4131.95, + "probability": 0.983 + }, + { + "start": 4132.59, + "end": 4134.01, + "probability": 0.7517 + }, + { + "start": 4135.07, + "end": 4135.51, + "probability": 0.4459 + }, + { + "start": 4135.65, + "end": 4137.29, + "probability": 0.8352 + }, + { + "start": 4137.55, + "end": 4140.17, + "probability": 0.9895 + }, + { + "start": 4141.45, + "end": 4141.57, + "probability": 0.0455 + }, + { + "start": 4141.57, + "end": 4145.65, + "probability": 0.9052 + }, + { + "start": 4146.21, + "end": 4149.97, + "probability": 0.9872 + }, + { + "start": 4150.13, + "end": 4150.57, + "probability": 0.3521 + }, + { + "start": 4150.59, + "end": 4154.83, + "probability": 0.8642 + }, + { + "start": 4156.23, + "end": 4160.37, + "probability": 0.9826 + }, + { + "start": 4160.67, + "end": 4164.15, + "probability": 0.9966 + }, + { + "start": 4165.03, + "end": 4170.79, + "probability": 0.9832 + }, + { + "start": 4173.25, + "end": 4178.71, + "probability": 0.75 + }, + { + "start": 4179.75, + "end": 4183.07, + "probability": 0.998 + }, + { + "start": 4184.95, + "end": 4190.77, + "probability": 0.9899 + }, + { + "start": 4191.25, + "end": 4196.77, + "probability": 0.7886 + }, + { + "start": 4197.67, + "end": 4201.83, + "probability": 0.8447 + }, + { + "start": 4202.15, + "end": 4203.33, + "probability": 0.8704 + }, + { + "start": 4203.69, + "end": 4205.73, + "probability": 0.6549 + }, + { + "start": 4207.39, + "end": 4210.35, + "probability": 0.9923 + }, + { + "start": 4210.35, + "end": 4216.33, + "probability": 0.6926 + }, + { + "start": 4217.43, + "end": 4219.89, + "probability": 0.9905 + }, + { + "start": 4221.07, + "end": 4223.28, + "probability": 0.7091 + }, + { + "start": 4225.27, + "end": 4226.31, + "probability": 0.6012 + }, + { + "start": 4227.51, + "end": 4229.65, + "probability": 0.9858 + }, + { + "start": 4230.61, + "end": 4232.49, + "probability": 0.9855 + }, + { + "start": 4233.41, + "end": 4236.83, + "probability": 0.9963 + }, + { + "start": 4237.57, + "end": 4240.55, + "probability": 0.9824 + }, + { + "start": 4240.61, + "end": 4241.65, + "probability": 0.936 + }, + { + "start": 4242.01, + "end": 4242.85, + "probability": 0.5281 + }, + { + "start": 4243.21, + "end": 4248.15, + "probability": 0.8636 + }, + { + "start": 4248.95, + "end": 4256.19, + "probability": 0.9473 + }, + { + "start": 4256.97, + "end": 4261.93, + "probability": 0.865 + }, + { + "start": 4262.53, + "end": 4263.56, + "probability": 0.9873 + }, + { + "start": 4266.73, + "end": 4271.29, + "probability": 0.8747 + }, + { + "start": 4272.23, + "end": 4275.69, + "probability": 0.5599 + }, + { + "start": 4276.69, + "end": 4282.41, + "probability": 0.9866 + }, + { + "start": 4284.69, + "end": 4287.87, + "probability": 0.9647 + }, + { + "start": 4287.89, + "end": 4288.69, + "probability": 0.6081 + }, + { + "start": 4289.05, + "end": 4289.61, + "probability": 0.188 + }, + { + "start": 4289.61, + "end": 4293.89, + "probability": 0.9271 + }, + { + "start": 4295.23, + "end": 4299.51, + "probability": 0.9854 + }, + { + "start": 4300.39, + "end": 4308.69, + "probability": 0.95 + }, + { + "start": 4309.37, + "end": 4315.91, + "probability": 0.9966 + }, + { + "start": 4316.09, + "end": 4320.99, + "probability": 0.9925 + }, + { + "start": 4321.31, + "end": 4321.57, + "probability": 0.6098 + }, + { + "start": 4322.29, + "end": 4324.99, + "probability": 0.7022 + }, + { + "start": 4325.43, + "end": 4327.73, + "probability": 0.9922 + }, + { + "start": 4327.85, + "end": 4330.89, + "probability": 0.6488 + }, + { + "start": 4331.55, + "end": 4333.15, + "probability": 0.7216 + }, + { + "start": 4333.19, + "end": 4337.05, + "probability": 0.7724 + }, + { + "start": 4337.99, + "end": 4339.45, + "probability": 0.6486 + }, + { + "start": 4339.93, + "end": 4344.17, + "probability": 0.9271 + }, + { + "start": 4344.64, + "end": 4347.43, + "probability": 0.6871 + }, + { + "start": 4347.49, + "end": 4348.33, + "probability": 0.4847 + }, + { + "start": 4348.75, + "end": 4352.15, + "probability": 0.8272 + }, + { + "start": 4353.05, + "end": 4356.19, + "probability": 0.9832 + }, + { + "start": 4356.37, + "end": 4357.15, + "probability": 0.466 + }, + { + "start": 4357.15, + "end": 4357.69, + "probability": 0.7529 + }, + { + "start": 4358.15, + "end": 4359.51, + "probability": 0.6328 + }, + { + "start": 4361.09, + "end": 4366.51, + "probability": 0.7947 + }, + { + "start": 4366.71, + "end": 4367.87, + "probability": 0.1788 + }, + { + "start": 4369.65, + "end": 4370.85, + "probability": 0.944 + }, + { + "start": 4378.33, + "end": 4379.25, + "probability": 0.7103 + }, + { + "start": 4379.93, + "end": 4381.09, + "probability": 0.6982 + }, + { + "start": 4381.97, + "end": 4383.83, + "probability": 0.8584 + }, + { + "start": 4383.99, + "end": 4384.31, + "probability": 0.9359 + }, + { + "start": 4384.43, + "end": 4385.29, + "probability": 0.9063 + }, + { + "start": 4385.45, + "end": 4387.29, + "probability": 0.6345 + }, + { + "start": 4387.53, + "end": 4391.73, + "probability": 0.9817 + }, + { + "start": 4392.63, + "end": 4399.69, + "probability": 0.8049 + }, + { + "start": 4400.67, + "end": 4405.85, + "probability": 0.9646 + }, + { + "start": 4406.79, + "end": 4409.89, + "probability": 0.9484 + }, + { + "start": 4411.03, + "end": 4411.65, + "probability": 0.8403 + }, + { + "start": 4413.71, + "end": 4418.79, + "probability": 0.5959 + }, + { + "start": 4420.25, + "end": 4424.19, + "probability": 0.9751 + }, + { + "start": 4425.57, + "end": 4427.27, + "probability": 0.7043 + }, + { + "start": 4428.47, + "end": 4435.93, + "probability": 0.9501 + }, + { + "start": 4436.97, + "end": 4438.23, + "probability": 0.8121 + }, + { + "start": 4439.59, + "end": 4445.29, + "probability": 0.844 + }, + { + "start": 4448.03, + "end": 4452.45, + "probability": 0.5099 + }, + { + "start": 4453.85, + "end": 4454.99, + "probability": 0.6083 + }, + { + "start": 4455.51, + "end": 4457.51, + "probability": 0.9761 + }, + { + "start": 4458.11, + "end": 4458.95, + "probability": 0.6802 + }, + { + "start": 4460.01, + "end": 4461.47, + "probability": 0.8528 + }, + { + "start": 4461.67, + "end": 4462.71, + "probability": 0.7587 + }, + { + "start": 4462.83, + "end": 4471.83, + "probability": 0.7787 + }, + { + "start": 4472.19, + "end": 4474.83, + "probability": 0.9498 + }, + { + "start": 4475.81, + "end": 4479.11, + "probability": 0.8535 + }, + { + "start": 4481.21, + "end": 4484.95, + "probability": 0.9985 + }, + { + "start": 4485.97, + "end": 4487.97, + "probability": 0.5837 + }, + { + "start": 4489.62, + "end": 4493.39, + "probability": 0.9731 + }, + { + "start": 4494.41, + "end": 4496.95, + "probability": 0.9631 + }, + { + "start": 4498.45, + "end": 4502.81, + "probability": 0.9772 + }, + { + "start": 4504.71, + "end": 4505.79, + "probability": 0.7449 + }, + { + "start": 4505.97, + "end": 4508.31, + "probability": 0.9851 + }, + { + "start": 4508.39, + "end": 4508.87, + "probability": 0.84 + }, + { + "start": 4508.93, + "end": 4509.33, + "probability": 0.5663 + }, + { + "start": 4509.91, + "end": 4511.03, + "probability": 0.9722 + }, + { + "start": 4512.11, + "end": 4515.65, + "probability": 0.9465 + }, + { + "start": 4516.33, + "end": 4523.09, + "probability": 0.9829 + }, + { + "start": 4524.21, + "end": 4524.89, + "probability": 0.9812 + }, + { + "start": 4526.45, + "end": 4528.53, + "probability": 0.9949 + }, + { + "start": 4529.39, + "end": 4530.33, + "probability": 0.994 + }, + { + "start": 4530.89, + "end": 4531.97, + "probability": 0.7534 + }, + { + "start": 4533.61, + "end": 4539.43, + "probability": 0.7257 + }, + { + "start": 4540.43, + "end": 4543.31, + "probability": 0.9337 + }, + { + "start": 4544.83, + "end": 4549.39, + "probability": 0.9951 + }, + { + "start": 4549.39, + "end": 4552.75, + "probability": 0.969 + }, + { + "start": 4554.53, + "end": 4555.11, + "probability": 0.2984 + }, + { + "start": 4557.52, + "end": 4558.03, + "probability": 0.2057 + }, + { + "start": 4558.03, + "end": 4558.03, + "probability": 0.1555 + }, + { + "start": 4558.03, + "end": 4558.03, + "probability": 0.1858 + }, + { + "start": 4558.03, + "end": 4559.21, + "probability": 0.6695 + }, + { + "start": 4559.69, + "end": 4560.67, + "probability": 0.8049 + }, + { + "start": 4560.83, + "end": 4561.25, + "probability": 0.7781 + }, + { + "start": 4561.81, + "end": 4565.33, + "probability": 0.99 + }, + { + "start": 4565.47, + "end": 4568.09, + "probability": 0.792 + }, + { + "start": 4568.25, + "end": 4570.05, + "probability": 0.8121 + }, + { + "start": 4571.31, + "end": 4573.91, + "probability": 0.7732 + }, + { + "start": 4574.05, + "end": 4574.89, + "probability": 0.604 + }, + { + "start": 4575.89, + "end": 4575.99, + "probability": 0.1989 + }, + { + "start": 4577.49, + "end": 4578.85, + "probability": 0.7295 + }, + { + "start": 4578.87, + "end": 4580.33, + "probability": 0.8516 + }, + { + "start": 4580.35, + "end": 4581.63, + "probability": 0.7194 + }, + { + "start": 4582.61, + "end": 4583.21, + "probability": 0.8914 + }, + { + "start": 4583.27, + "end": 4585.29, + "probability": 0.9213 + }, + { + "start": 4586.23, + "end": 4587.55, + "probability": 0.7616 + }, + { + "start": 4588.09, + "end": 4589.11, + "probability": 0.7767 + }, + { + "start": 4589.99, + "end": 4592.75, + "probability": 0.8991 + }, + { + "start": 4593.59, + "end": 4594.9, + "probability": 0.9547 + }, + { + "start": 4595.51, + "end": 4597.09, + "probability": 0.8139 + }, + { + "start": 4597.35, + "end": 4598.73, + "probability": 0.9622 + }, + { + "start": 4598.73, + "end": 4601.03, + "probability": 0.9818 + }, + { + "start": 4601.49, + "end": 4605.29, + "probability": 0.9685 + }, + { + "start": 4606.47, + "end": 4608.93, + "probability": 0.5518 + }, + { + "start": 4608.99, + "end": 4612.15, + "probability": 0.8841 + }, + { + "start": 4612.77, + "end": 4616.47, + "probability": 0.9828 + }, + { + "start": 4616.75, + "end": 4619.21, + "probability": 0.5127 + }, + { + "start": 4619.35, + "end": 4620.63, + "probability": 0.9927 + }, + { + "start": 4620.97, + "end": 4623.46, + "probability": 0.9488 + }, + { + "start": 4624.01, + "end": 4626.21, + "probability": 0.899 + }, + { + "start": 4626.65, + "end": 4627.83, + "probability": 0.6527 + }, + { + "start": 4628.07, + "end": 4628.67, + "probability": 0.4093 + }, + { + "start": 4628.91, + "end": 4631.59, + "probability": 0.7211 + }, + { + "start": 4632.29, + "end": 4634.35, + "probability": 0.9435 + }, + { + "start": 4634.47, + "end": 4635.71, + "probability": 0.9354 + }, + { + "start": 4635.99, + "end": 4637.15, + "probability": 0.9108 + }, + { + "start": 4637.29, + "end": 4638.55, + "probability": 0.7499 + }, + { + "start": 4639.05, + "end": 4643.07, + "probability": 0.9351 + }, + { + "start": 4644.07, + "end": 4644.91, + "probability": 0.6826 + }, + { + "start": 4645.37, + "end": 4645.69, + "probability": 0.0553 + }, + { + "start": 4645.69, + "end": 4646.97, + "probability": 0.4731 + }, + { + "start": 4646.99, + "end": 4652.06, + "probability": 0.6273 + }, + { + "start": 4652.33, + "end": 4653.73, + "probability": 0.948 + }, + { + "start": 4653.89, + "end": 4654.47, + "probability": 0.2281 + }, + { + "start": 4654.53, + "end": 4655.73, + "probability": 0.9 + }, + { + "start": 4656.05, + "end": 4659.19, + "probability": 0.9266 + }, + { + "start": 4659.77, + "end": 4660.81, + "probability": 0.6079 + }, + { + "start": 4660.85, + "end": 4661.85, + "probability": 0.9233 + }, + { + "start": 4661.99, + "end": 4663.17, + "probability": 0.8854 + }, + { + "start": 4663.23, + "end": 4665.89, + "probability": 0.7313 + }, + { + "start": 4665.93, + "end": 4667.67, + "probability": 0.4819 + }, + { + "start": 4667.67, + "end": 4667.67, + "probability": 0.7257 + }, + { + "start": 4667.67, + "end": 4667.99, + "probability": 0.9357 + }, + { + "start": 4668.05, + "end": 4670.97, + "probability": 0.9725 + }, + { + "start": 4671.27, + "end": 4672.87, + "probability": 0.9758 + }, + { + "start": 4672.99, + "end": 4673.91, + "probability": 0.8565 + }, + { + "start": 4674.25, + "end": 4676.31, + "probability": 0.854 + }, + { + "start": 4676.69, + "end": 4677.26, + "probability": 0.579 + }, + { + "start": 4677.37, + "end": 4678.65, + "probability": 0.8165 + }, + { + "start": 4678.67, + "end": 4680.27, + "probability": 0.3886 + }, + { + "start": 4680.41, + "end": 4682.97, + "probability": 0.9494 + }, + { + "start": 4683.07, + "end": 4684.05, + "probability": 0.6967 + }, + { + "start": 4684.17, + "end": 4684.61, + "probability": 0.5772 + }, + { + "start": 4684.73, + "end": 4684.87, + "probability": 0.5203 + }, + { + "start": 4684.91, + "end": 4686.03, + "probability": 0.8157 + }, + { + "start": 4686.03, + "end": 4686.46, + "probability": 0.9257 + }, + { + "start": 4686.81, + "end": 4689.65, + "probability": 0.9595 + }, + { + "start": 4689.67, + "end": 4690.41, + "probability": 0.4999 + }, + { + "start": 4690.41, + "end": 4693.47, + "probability": 0.8943 + }, + { + "start": 4693.47, + "end": 4694.13, + "probability": 0.6276 + }, + { + "start": 4694.87, + "end": 4695.69, + "probability": 0.478 + }, + { + "start": 4695.73, + "end": 4697.37, + "probability": 0.9805 + }, + { + "start": 4697.43, + "end": 4698.89, + "probability": 0.9984 + }, + { + "start": 4699.63, + "end": 4700.53, + "probability": 0.6267 + }, + { + "start": 4700.89, + "end": 4701.29, + "probability": 0.7448 + }, + { + "start": 4701.45, + "end": 4706.79, + "probability": 0.7992 + }, + { + "start": 4707.07, + "end": 4709.73, + "probability": 0.9412 + }, + { + "start": 4710.37, + "end": 4713.19, + "probability": 0.9078 + }, + { + "start": 4714.49, + "end": 4716.17, + "probability": 0.8791 + }, + { + "start": 4725.35, + "end": 4725.77, + "probability": 0.1365 + }, + { + "start": 4725.99, + "end": 4727.07, + "probability": 0.742 + }, + { + "start": 4727.17, + "end": 4730.37, + "probability": 0.9088 + }, + { + "start": 4730.97, + "end": 4731.39, + "probability": 0.0971 + }, + { + "start": 4731.39, + "end": 4733.13, + "probability": 0.7742 + }, + { + "start": 4735.59, + "end": 4735.71, + "probability": 0.3129 + }, + { + "start": 4735.71, + "end": 4735.71, + "probability": 0.2956 + }, + { + "start": 4735.71, + "end": 4735.71, + "probability": 0.1032 + }, + { + "start": 4735.71, + "end": 4738.77, + "probability": 0.6843 + }, + { + "start": 4739.17, + "end": 4741.45, + "probability": 0.8823 + }, + { + "start": 4741.45, + "end": 4741.95, + "probability": 0.3339 + }, + { + "start": 4742.17, + "end": 4743.21, + "probability": 0.5329 + }, + { + "start": 4745.39, + "end": 4748.09, + "probability": 0.5423 + }, + { + "start": 4750.93, + "end": 4755.31, + "probability": 0.7175 + }, + { + "start": 4755.37, + "end": 4757.31, + "probability": 0.2545 + }, + { + "start": 4757.33, + "end": 4758.22, + "probability": 0.703 + }, + { + "start": 4759.75, + "end": 4764.71, + "probability": 0.8043 + }, + { + "start": 4765.59, + "end": 4767.57, + "probability": 0.9795 + }, + { + "start": 4767.63, + "end": 4769.55, + "probability": 0.9711 + }, + { + "start": 4770.69, + "end": 4773.75, + "probability": 0.8413 + }, + { + "start": 4774.75, + "end": 4778.17, + "probability": 0.9753 + }, + { + "start": 4779.13, + "end": 4780.49, + "probability": 0.8184 + }, + { + "start": 4780.57, + "end": 4785.27, + "probability": 0.9932 + }, + { + "start": 4785.27, + "end": 4789.15, + "probability": 0.8914 + }, + { + "start": 4790.53, + "end": 4795.41, + "probability": 0.9358 + }, + { + "start": 4795.93, + "end": 4798.87, + "probability": 0.9828 + }, + { + "start": 4801.51, + "end": 4803.7, + "probability": 0.7776 + }, + { + "start": 4804.61, + "end": 4806.53, + "probability": 0.895 + }, + { + "start": 4806.63, + "end": 4809.77, + "probability": 0.7483 + }, + { + "start": 4810.61, + "end": 4811.07, + "probability": 0.6534 + }, + { + "start": 4812.01, + "end": 4817.15, + "probability": 0.9569 + }, + { + "start": 4818.55, + "end": 4820.65, + "probability": 0.7664 + }, + { + "start": 4821.59, + "end": 4822.99, + "probability": 0.852 + }, + { + "start": 4823.51, + "end": 4831.01, + "probability": 0.9795 + }, + { + "start": 4831.03, + "end": 4836.57, + "probability": 0.9986 + }, + { + "start": 4838.01, + "end": 4838.33, + "probability": 0.3504 + }, + { + "start": 4838.53, + "end": 4839.09, + "probability": 0.4925 + }, + { + "start": 4839.15, + "end": 4839.85, + "probability": 0.824 + }, + { + "start": 4839.89, + "end": 4840.77, + "probability": 0.968 + }, + { + "start": 4841.43, + "end": 4842.55, + "probability": 0.9468 + }, + { + "start": 4843.85, + "end": 4847.13, + "probability": 0.7339 + }, + { + "start": 4847.13, + "end": 4850.67, + "probability": 0.8566 + }, + { + "start": 4851.35, + "end": 4852.21, + "probability": 0.8115 + }, + { + "start": 4853.29, + "end": 4855.73, + "probability": 0.9932 + }, + { + "start": 4857.15, + "end": 4862.91, + "probability": 0.983 + }, + { + "start": 4865.43, + "end": 4870.63, + "probability": 0.9084 + }, + { + "start": 4871.15, + "end": 4875.73, + "probability": 0.9943 + }, + { + "start": 4876.33, + "end": 4877.49, + "probability": 0.8232 + }, + { + "start": 4878.49, + "end": 4882.45, + "probability": 0.823 + }, + { + "start": 4883.03, + "end": 4884.51, + "probability": 0.6774 + }, + { + "start": 4885.43, + "end": 4888.91, + "probability": 0.9517 + }, + { + "start": 4890.39, + "end": 4894.64, + "probability": 0.9722 + }, + { + "start": 4895.45, + "end": 4896.55, + "probability": 0.8689 + }, + { + "start": 4897.51, + "end": 4903.83, + "probability": 0.9317 + }, + { + "start": 4905.01, + "end": 4908.49, + "probability": 0.9697 + }, + { + "start": 4909.07, + "end": 4911.45, + "probability": 0.9973 + }, + { + "start": 4912.01, + "end": 4913.03, + "probability": 0.7505 + }, + { + "start": 4913.11, + "end": 4914.81, + "probability": 0.9716 + }, + { + "start": 4916.55, + "end": 4919.59, + "probability": 0.743 + }, + { + "start": 4920.21, + "end": 4921.25, + "probability": 0.8378 + }, + { + "start": 4921.95, + "end": 4923.67, + "probability": 0.8456 + }, + { + "start": 4924.55, + "end": 4926.81, + "probability": 0.9906 + }, + { + "start": 4927.25, + "end": 4929.71, + "probability": 0.8641 + }, + { + "start": 4931.49, + "end": 4932.71, + "probability": 0.7917 + }, + { + "start": 4933.91, + "end": 4935.97, + "probability": 0.6912 + }, + { + "start": 4937.63, + "end": 4939.85, + "probability": 0.9886 + }, + { + "start": 4940.37, + "end": 4942.27, + "probability": 0.8665 + }, + { + "start": 4942.87, + "end": 4943.43, + "probability": 0.4801 + }, + { + "start": 4943.43, + "end": 4949.41, + "probability": 0.986 + }, + { + "start": 4949.97, + "end": 4951.17, + "probability": 0.9968 + }, + { + "start": 4953.15, + "end": 4956.13, + "probability": 0.8302 + }, + { + "start": 4957.09, + "end": 4960.85, + "probability": 0.9902 + }, + { + "start": 4960.85, + "end": 4965.99, + "probability": 0.9958 + }, + { + "start": 4967.51, + "end": 4968.94, + "probability": 0.9961 + }, + { + "start": 4969.09, + "end": 4971.25, + "probability": 0.9736 + }, + { + "start": 4973.39, + "end": 4976.53, + "probability": 0.9373 + }, + { + "start": 4976.53, + "end": 4980.99, + "probability": 0.9727 + }, + { + "start": 4982.77, + "end": 4986.68, + "probability": 0.9648 + }, + { + "start": 4987.51, + "end": 4989.07, + "probability": 0.9901 + }, + { + "start": 4990.61, + "end": 4995.01, + "probability": 0.9938 + }, + { + "start": 4995.19, + "end": 4995.81, + "probability": 0.8224 + }, + { + "start": 4996.63, + "end": 4997.33, + "probability": 0.4642 + }, + { + "start": 4998.53, + "end": 5000.03, + "probability": 0.8538 + }, + { + "start": 5001.43, + "end": 5003.15, + "probability": 0.7614 + }, + { + "start": 5005.45, + "end": 5013.93, + "probability": 0.9839 + }, + { + "start": 5014.21, + "end": 5015.19, + "probability": 0.8395 + }, + { + "start": 5016.61, + "end": 5017.27, + "probability": 0.9865 + }, + { + "start": 5020.67, + "end": 5021.67, + "probability": 0.7781 + }, + { + "start": 5022.31, + "end": 5024.87, + "probability": 0.9753 + }, + { + "start": 5027.37, + "end": 5032.62, + "probability": 0.979 + }, + { + "start": 5033.63, + "end": 5037.13, + "probability": 0.9946 + }, + { + "start": 5037.41, + "end": 5039.03, + "probability": 0.9951 + }, + { + "start": 5040.75, + "end": 5046.09, + "probability": 0.8347 + }, + { + "start": 5047.59, + "end": 5052.79, + "probability": 0.9917 + }, + { + "start": 5055.45, + "end": 5056.29, + "probability": 0.3429 + }, + { + "start": 5056.93, + "end": 5061.23, + "probability": 0.771 + }, + { + "start": 5062.53, + "end": 5064.59, + "probability": 0.92 + }, + { + "start": 5066.01, + "end": 5067.83, + "probability": 0.9985 + }, + { + "start": 5068.45, + "end": 5070.37, + "probability": 0.999 + }, + { + "start": 5071.53, + "end": 5078.99, + "probability": 0.9943 + }, + { + "start": 5080.01, + "end": 5083.73, + "probability": 0.9909 + }, + { + "start": 5084.41, + "end": 5086.23, + "probability": 0.9679 + }, + { + "start": 5087.07, + "end": 5089.23, + "probability": 0.9784 + }, + { + "start": 5089.31, + "end": 5093.43, + "probability": 0.9104 + }, + { + "start": 5093.81, + "end": 5094.03, + "probability": 0.0903 + }, + { + "start": 5094.05, + "end": 5095.15, + "probability": 0.674 + }, + { + "start": 5095.29, + "end": 5096.09, + "probability": 0.389 + }, + { + "start": 5096.09, + "end": 5097.03, + "probability": 0.6087 + }, + { + "start": 5098.13, + "end": 5098.21, + "probability": 0.0705 + }, + { + "start": 5098.49, + "end": 5102.31, + "probability": 0.9515 + }, + { + "start": 5103.43, + "end": 5106.69, + "probability": 0.9902 + }, + { + "start": 5107.39, + "end": 5108.23, + "probability": 0.4384 + }, + { + "start": 5109.29, + "end": 5113.67, + "probability": 0.885 + }, + { + "start": 5114.47, + "end": 5118.23, + "probability": 0.9971 + }, + { + "start": 5118.23, + "end": 5121.29, + "probability": 0.9765 + }, + { + "start": 5123.43, + "end": 5126.81, + "probability": 0.996 + }, + { + "start": 5126.81, + "end": 5130.07, + "probability": 0.986 + }, + { + "start": 5130.61, + "end": 5131.83, + "probability": 0.9989 + }, + { + "start": 5132.51, + "end": 5133.71, + "probability": 0.7103 + }, + { + "start": 5135.69, + "end": 5136.15, + "probability": 0.5971 + }, + { + "start": 5141.27, + "end": 5144.43, + "probability": 0.8099 + }, + { + "start": 5144.99, + "end": 5146.45, + "probability": 0.9435 + }, + { + "start": 5148.84, + "end": 5151.93, + "probability": 0.991 + }, + { + "start": 5152.01, + "end": 5157.21, + "probability": 0.995 + }, + { + "start": 5158.65, + "end": 5159.71, + "probability": 0.9263 + }, + { + "start": 5160.79, + "end": 5163.51, + "probability": 0.7998 + }, + { + "start": 5165.23, + "end": 5168.07, + "probability": 0.8756 + }, + { + "start": 5168.07, + "end": 5168.87, + "probability": 0.841 + }, + { + "start": 5169.29, + "end": 5169.87, + "probability": 0.9238 + }, + { + "start": 5170.33, + "end": 5170.93, + "probability": 0.9482 + }, + { + "start": 5171.01, + "end": 5174.35, + "probability": 0.9611 + }, + { + "start": 5174.61, + "end": 5175.09, + "probability": 0.8453 + }, + { + "start": 5177.49, + "end": 5177.49, + "probability": 0.9707 + }, + { + "start": 5179.35, + "end": 5183.77, + "probability": 0.9833 + }, + { + "start": 5183.77, + "end": 5188.09, + "probability": 0.9958 + }, + { + "start": 5189.17, + "end": 5191.61, + "probability": 0.7065 + }, + { + "start": 5192.45, + "end": 5195.77, + "probability": 0.9917 + }, + { + "start": 5197.07, + "end": 5199.67, + "probability": 0.9272 + }, + { + "start": 5200.39, + "end": 5203.47, + "probability": 0.9657 + }, + { + "start": 5204.15, + "end": 5209.0, + "probability": 0.9925 + }, + { + "start": 5209.73, + "end": 5211.75, + "probability": 0.8743 + }, + { + "start": 5212.89, + "end": 5213.51, + "probability": 0.7248 + }, + { + "start": 5214.81, + "end": 5216.71, + "probability": 0.6964 + }, + { + "start": 5217.33, + "end": 5219.99, + "probability": 0.9578 + }, + { + "start": 5221.31, + "end": 5227.47, + "probability": 0.9136 + }, + { + "start": 5229.11, + "end": 5229.86, + "probability": 0.9805 + }, + { + "start": 5230.15, + "end": 5233.49, + "probability": 0.9912 + }, + { + "start": 5233.49, + "end": 5235.79, + "probability": 0.7639 + }, + { + "start": 5235.95, + "end": 5237.99, + "probability": 0.9944 + }, + { + "start": 5239.21, + "end": 5240.47, + "probability": 0.8916 + }, + { + "start": 5241.03, + "end": 5241.91, + "probability": 0.8755 + }, + { + "start": 5242.37, + "end": 5243.43, + "probability": 0.9409 + }, + { + "start": 5243.73, + "end": 5245.41, + "probability": 0.9377 + }, + { + "start": 5245.51, + "end": 5250.87, + "probability": 0.9963 + }, + { + "start": 5252.0, + "end": 5254.09, + "probability": 0.8708 + }, + { + "start": 5254.65, + "end": 5256.53, + "probability": 0.8417 + }, + { + "start": 5259.13, + "end": 5261.55, + "probability": 0.9885 + }, + { + "start": 5262.53, + "end": 5267.21, + "probability": 0.5229 + }, + { + "start": 5267.21, + "end": 5268.57, + "probability": 0.4239 + }, + { + "start": 5269.65, + "end": 5274.35, + "probability": 0.4988 + }, + { + "start": 5275.91, + "end": 5281.75, + "probability": 0.9335 + }, + { + "start": 5282.39, + "end": 5282.69, + "probability": 0.9182 + }, + { + "start": 5284.21, + "end": 5287.41, + "probability": 0.8317 + }, + { + "start": 5288.51, + "end": 5291.17, + "probability": 0.9108 + }, + { + "start": 5291.53, + "end": 5298.11, + "probability": 0.834 + }, + { + "start": 5298.78, + "end": 5302.74, + "probability": 0.9904 + }, + { + "start": 5304.09, + "end": 5308.39, + "probability": 0.811 + }, + { + "start": 5309.33, + "end": 5312.8, + "probability": 0.8135 + }, + { + "start": 5313.31, + "end": 5315.29, + "probability": 0.8955 + }, + { + "start": 5315.35, + "end": 5318.47, + "probability": 0.7286 + }, + { + "start": 5319.77, + "end": 5320.93, + "probability": 0.8384 + }, + { + "start": 5321.19, + "end": 5321.77, + "probability": 0.7437 + }, + { + "start": 5321.83, + "end": 5322.52, + "probability": 0.5171 + }, + { + "start": 5322.75, + "end": 5325.37, + "probability": 0.6957 + }, + { + "start": 5325.39, + "end": 5327.54, + "probability": 0.8691 + }, + { + "start": 5328.37, + "end": 5328.79, + "probability": 0.8699 + }, + { + "start": 5329.65, + "end": 5332.37, + "probability": 0.9356 + }, + { + "start": 5332.41, + "end": 5333.15, + "probability": 0.5531 + }, + { + "start": 5333.15, + "end": 5334.69, + "probability": 0.8157 + }, + { + "start": 5335.23, + "end": 5340.73, + "probability": 0.9331 + }, + { + "start": 5341.77, + "end": 5347.23, + "probability": 0.9737 + }, + { + "start": 5348.05, + "end": 5350.27, + "probability": 0.9839 + }, + { + "start": 5350.33, + "end": 5352.21, + "probability": 0.9639 + }, + { + "start": 5352.95, + "end": 5354.61, + "probability": 0.9734 + }, + { + "start": 5354.75, + "end": 5355.49, + "probability": 0.8087 + }, + { + "start": 5355.95, + "end": 5360.49, + "probability": 0.9238 + }, + { + "start": 5360.59, + "end": 5362.63, + "probability": 0.8059 + }, + { + "start": 5362.73, + "end": 5368.43, + "probability": 0.9697 + }, + { + "start": 5368.71, + "end": 5370.59, + "probability": 0.5567 + }, + { + "start": 5370.71, + "end": 5372.07, + "probability": 0.9009 + }, + { + "start": 5372.19, + "end": 5372.99, + "probability": 0.6363 + }, + { + "start": 5373.63, + "end": 5376.53, + "probability": 0.9375 + }, + { + "start": 5377.01, + "end": 5377.81, + "probability": 0.8603 + }, + { + "start": 5378.31, + "end": 5380.38, + "probability": 0.8901 + }, + { + "start": 5381.51, + "end": 5383.32, + "probability": 0.9443 + }, + { + "start": 5384.01, + "end": 5387.17, + "probability": 0.8963 + }, + { + "start": 5388.03, + "end": 5390.69, + "probability": 0.9971 + }, + { + "start": 5391.29, + "end": 5394.63, + "probability": 0.9149 + }, + { + "start": 5395.29, + "end": 5398.23, + "probability": 0.9379 + }, + { + "start": 5398.83, + "end": 5402.07, + "probability": 0.9653 + }, + { + "start": 5402.71, + "end": 5404.85, + "probability": 0.9978 + }, + { + "start": 5405.77, + "end": 5406.17, + "probability": 0.1786 + }, + { + "start": 5406.51, + "end": 5407.47, + "probability": 0.8873 + }, + { + "start": 5407.63, + "end": 5411.21, + "probability": 0.9893 + }, + { + "start": 5411.61, + "end": 5413.4, + "probability": 0.9375 + }, + { + "start": 5413.91, + "end": 5416.09, + "probability": 0.7805 + }, + { + "start": 5416.67, + "end": 5420.73, + "probability": 0.9927 + }, + { + "start": 5421.01, + "end": 5422.19, + "probability": 0.9971 + }, + { + "start": 5422.71, + "end": 5426.49, + "probability": 0.9506 + }, + { + "start": 5426.99, + "end": 5428.75, + "probability": 0.9523 + }, + { + "start": 5428.83, + "end": 5429.61, + "probability": 0.4743 + }, + { + "start": 5430.21, + "end": 5434.67, + "probability": 0.8885 + }, + { + "start": 5434.67, + "end": 5440.85, + "probability": 0.8232 + }, + { + "start": 5449.25, + "end": 5453.53, + "probability": 0.8314 + }, + { + "start": 5458.57, + "end": 5460.39, + "probability": 0.5536 + }, + { + "start": 5462.41, + "end": 5467.19, + "probability": 0.7578 + }, + { + "start": 5468.99, + "end": 5471.63, + "probability": 0.995 + }, + { + "start": 5473.83, + "end": 5476.87, + "probability": 0.1272 + }, + { + "start": 5477.57, + "end": 5480.57, + "probability": 0.9349 + }, + { + "start": 5481.13, + "end": 5483.71, + "probability": 0.3255 + }, + { + "start": 5483.71, + "end": 5486.8, + "probability": 0.8579 + }, + { + "start": 5488.63, + "end": 5493.03, + "probability": 0.9795 + }, + { + "start": 5493.63, + "end": 5497.43, + "probability": 0.955 + }, + { + "start": 5498.19, + "end": 5503.49, + "probability": 0.8636 + }, + { + "start": 5504.63, + "end": 5509.93, + "probability": 0.9373 + }, + { + "start": 5510.65, + "end": 5514.21, + "probability": 0.9696 + }, + { + "start": 5514.87, + "end": 5517.31, + "probability": 0.8048 + }, + { + "start": 5518.63, + "end": 5522.01, + "probability": 0.8026 + }, + { + "start": 5522.85, + "end": 5525.79, + "probability": 0.866 + }, + { + "start": 5526.71, + "end": 5533.41, + "probability": 0.9212 + }, + { + "start": 5534.07, + "end": 5540.59, + "probability": 0.9839 + }, + { + "start": 5541.31, + "end": 5542.21, + "probability": 0.8627 + }, + { + "start": 5543.01, + "end": 5545.15, + "probability": 0.9963 + }, + { + "start": 5545.47, + "end": 5548.79, + "probability": 0.5839 + }, + { + "start": 5550.35, + "end": 5552.78, + "probability": 0.9624 + }, + { + "start": 5553.77, + "end": 5555.61, + "probability": 0.9876 + }, + { + "start": 5556.29, + "end": 5560.23, + "probability": 0.8978 + }, + { + "start": 5560.81, + "end": 5562.25, + "probability": 0.6792 + }, + { + "start": 5562.31, + "end": 5564.4, + "probability": 0.9707 + }, + { + "start": 5565.07, + "end": 5567.37, + "probability": 0.9805 + }, + { + "start": 5568.81, + "end": 5568.83, + "probability": 0.0399 + }, + { + "start": 5568.83, + "end": 5571.47, + "probability": 0.9567 + }, + { + "start": 5572.05, + "end": 5573.69, + "probability": 0.9027 + }, + { + "start": 5574.09, + "end": 5576.41, + "probability": 0.8883 + }, + { + "start": 5576.69, + "end": 5578.67, + "probability": 0.9093 + }, + { + "start": 5579.73, + "end": 5580.67, + "probability": 0.7266 + }, + { + "start": 5581.57, + "end": 5582.55, + "probability": 0.4538 + }, + { + "start": 5583.27, + "end": 5584.47, + "probability": 0.5373 + }, + { + "start": 5584.47, + "end": 5584.49, + "probability": 0.0671 + }, + { + "start": 5584.49, + "end": 5589.53, + "probability": 0.9246 + }, + { + "start": 5589.63, + "end": 5590.29, + "probability": 0.8975 + }, + { + "start": 5590.43, + "end": 5590.83, + "probability": 0.0321 + }, + { + "start": 5590.83, + "end": 5594.71, + "probability": 0.947 + }, + { + "start": 5594.89, + "end": 5595.71, + "probability": 0.5137 + }, + { + "start": 5595.75, + "end": 5597.11, + "probability": 0.9007 + }, + { + "start": 5597.27, + "end": 5601.97, + "probability": 0.9883 + }, + { + "start": 5601.97, + "end": 5602.05, + "probability": 0.7168 + }, + { + "start": 5602.05, + "end": 5602.53, + "probability": 0.8878 + }, + { + "start": 5602.69, + "end": 5604.01, + "probability": 0.9849 + }, + { + "start": 5604.35, + "end": 5605.13, + "probability": 0.7451 + }, + { + "start": 5605.23, + "end": 5605.91, + "probability": 0.3387 + }, + { + "start": 5606.17, + "end": 5612.75, + "probability": 0.9899 + }, + { + "start": 5613.31, + "end": 5618.55, + "probability": 0.9977 + }, + { + "start": 5619.51, + "end": 5623.53, + "probability": 0.9911 + }, + { + "start": 5624.63, + "end": 5628.73, + "probability": 0.9069 + }, + { + "start": 5629.31, + "end": 5630.3, + "probability": 0.959 + }, + { + "start": 5631.03, + "end": 5633.75, + "probability": 0.9903 + }, + { + "start": 5634.31, + "end": 5639.15, + "probability": 0.9846 + }, + { + "start": 5639.69, + "end": 5639.85, + "probability": 0.3433 + }, + { + "start": 5639.99, + "end": 5645.37, + "probability": 0.7026 + }, + { + "start": 5645.63, + "end": 5647.11, + "probability": 0.6832 + }, + { + "start": 5647.21, + "end": 5651.99, + "probability": 0.7587 + }, + { + "start": 5652.03, + "end": 5658.91, + "probability": 0.9403 + }, + { + "start": 5659.41, + "end": 5662.27, + "probability": 0.8761 + }, + { + "start": 5662.35, + "end": 5663.15, + "probability": 0.5963 + }, + { + "start": 5663.61, + "end": 5665.79, + "probability": 0.9725 + }, + { + "start": 5665.91, + "end": 5666.23, + "probability": 0.5315 + }, + { + "start": 5667.03, + "end": 5670.19, + "probability": 0.9976 + }, + { + "start": 5670.41, + "end": 5674.43, + "probability": 0.9976 + }, + { + "start": 5674.55, + "end": 5675.81, + "probability": 0.9329 + }, + { + "start": 5676.27, + "end": 5679.33, + "probability": 0.6869 + }, + { + "start": 5679.45, + "end": 5681.51, + "probability": 0.8481 + }, + { + "start": 5682.03, + "end": 5684.33, + "probability": 0.8613 + }, + { + "start": 5696.59, + "end": 5698.83, + "probability": 0.655 + }, + { + "start": 5700.19, + "end": 5705.83, + "probability": 0.9674 + }, + { + "start": 5705.83, + "end": 5706.59, + "probability": 0.7056 + }, + { + "start": 5707.59, + "end": 5708.59, + "probability": 0.8794 + }, + { + "start": 5709.31, + "end": 5710.71, + "probability": 0.5804 + }, + { + "start": 5711.71, + "end": 5712.15, + "probability": 0.9246 + }, + { + "start": 5712.55, + "end": 5713.25, + "probability": 0.4335 + }, + { + "start": 5713.47, + "end": 5717.85, + "probability": 0.9644 + }, + { + "start": 5718.69, + "end": 5720.27, + "probability": 0.8486 + }, + { + "start": 5720.71, + "end": 5724.63, + "probability": 0.8757 + }, + { + "start": 5725.59, + "end": 5729.41, + "probability": 0.8935 + }, + { + "start": 5730.45, + "end": 5733.49, + "probability": 0.6658 + }, + { + "start": 5734.57, + "end": 5739.67, + "probability": 0.8718 + }, + { + "start": 5740.13, + "end": 5741.49, + "probability": 0.8228 + }, + { + "start": 5742.59, + "end": 5742.61, + "probability": 0.1893 + }, + { + "start": 5743.29, + "end": 5744.61, + "probability": 0.9598 + }, + { + "start": 5745.03, + "end": 5750.27, + "probability": 0.9327 + }, + { + "start": 5750.77, + "end": 5753.13, + "probability": 0.737 + }, + { + "start": 5753.65, + "end": 5756.85, + "probability": 0.8551 + }, + { + "start": 5757.77, + "end": 5762.77, + "probability": 0.9833 + }, + { + "start": 5764.33, + "end": 5774.15, + "probability": 0.9759 + }, + { + "start": 5774.81, + "end": 5775.89, + "probability": 0.864 + }, + { + "start": 5776.73, + "end": 5778.67, + "probability": 0.9286 + }, + { + "start": 5779.29, + "end": 5781.47, + "probability": 0.9162 + }, + { + "start": 5782.51, + "end": 5785.21, + "probability": 0.971 + }, + { + "start": 5785.81, + "end": 5792.01, + "probability": 0.9402 + }, + { + "start": 5793.03, + "end": 5794.07, + "probability": 0.9265 + }, + { + "start": 5794.95, + "end": 5796.31, + "probability": 0.9866 + }, + { + "start": 5796.95, + "end": 5798.65, + "probability": 0.5992 + }, + { + "start": 5799.21, + "end": 5806.77, + "probability": 0.8764 + }, + { + "start": 5807.53, + "end": 5811.13, + "probability": 0.834 + }, + { + "start": 5811.61, + "end": 5813.15, + "probability": 0.8843 + }, + { + "start": 5813.47, + "end": 5813.91, + "probability": 0.4182 + }, + { + "start": 5815.17, + "end": 5815.83, + "probability": 0.3953 + }, + { + "start": 5815.83, + "end": 5817.66, + "probability": 0.4474 + }, + { + "start": 5817.99, + "end": 5824.45, + "probability": 0.1108 + }, + { + "start": 5824.87, + "end": 5826.09, + "probability": 0.6802 + }, + { + "start": 5826.29, + "end": 5826.29, + "probability": 0.7653 + }, + { + "start": 5826.33, + "end": 5830.25, + "probability": 0.5444 + }, + { + "start": 5830.35, + "end": 5831.41, + "probability": 0.9512 + }, + { + "start": 5831.67, + "end": 5833.31, + "probability": 0.8757 + }, + { + "start": 5833.95, + "end": 5833.97, + "probability": 0.1308 + }, + { + "start": 5833.97, + "end": 5835.81, + "probability": 0.5795 + }, + { + "start": 5836.55, + "end": 5838.87, + "probability": 0.8052 + }, + { + "start": 5839.49, + "end": 5840.89, + "probability": 0.7338 + }, + { + "start": 5841.81, + "end": 5847.51, + "probability": 0.9807 + }, + { + "start": 5848.01, + "end": 5849.03, + "probability": 0.6766 + }, + { + "start": 5849.51, + "end": 5852.01, + "probability": 0.7148 + }, + { + "start": 5852.73, + "end": 5855.13, + "probability": 0.9793 + }, + { + "start": 5855.85, + "end": 5859.01, + "probability": 0.8457 + }, + { + "start": 5860.13, + "end": 5863.69, + "probability": 0.7042 + }, + { + "start": 5864.81, + "end": 5866.57, + "probability": 0.9922 + }, + { + "start": 5867.55, + "end": 5870.15, + "probability": 0.6697 + }, + { + "start": 5870.73, + "end": 5870.73, + "probability": 0.1368 + }, + { + "start": 5870.73, + "end": 5872.35, + "probability": 0.825 + }, + { + "start": 5873.01, + "end": 5874.19, + "probability": 0.769 + }, + { + "start": 5875.03, + "end": 5877.35, + "probability": 0.9233 + }, + { + "start": 5878.21, + "end": 5882.25, + "probability": 0.8644 + }, + { + "start": 5882.49, + "end": 5886.37, + "probability": 0.774 + }, + { + "start": 5886.37, + "end": 5887.17, + "probability": 0.7375 + }, + { + "start": 5887.37, + "end": 5889.13, + "probability": 0.9267 + }, + { + "start": 5889.45, + "end": 5894.35, + "probability": 0.9967 + }, + { + "start": 5894.73, + "end": 5895.43, + "probability": 0.7183 + }, + { + "start": 5895.47, + "end": 5895.99, + "probability": 0.598 + }, + { + "start": 5896.33, + "end": 5899.71, + "probability": 0.9888 + }, + { + "start": 5900.07, + "end": 5904.99, + "probability": 0.887 + }, + { + "start": 5905.53, + "end": 5909.35, + "probability": 0.9438 + }, + { + "start": 5909.69, + "end": 5910.45, + "probability": 0.6487 + }, + { + "start": 5910.75, + "end": 5913.05, + "probability": 0.8363 + }, + { + "start": 5913.25, + "end": 5917.77, + "probability": 0.8593 + }, + { + "start": 5918.61, + "end": 5923.97, + "probability": 0.9555 + }, + { + "start": 5924.51, + "end": 5925.91, + "probability": 0.4316 + }, + { + "start": 5926.61, + "end": 5930.87, + "probability": 0.7912 + }, + { + "start": 5930.91, + "end": 5931.65, + "probability": 0.6485 + }, + { + "start": 5932.01, + "end": 5932.79, + "probability": 0.4458 + }, + { + "start": 5933.15, + "end": 5933.79, + "probability": 0.414 + }, + { + "start": 5933.79, + "end": 5934.73, + "probability": 0.5639 + }, + { + "start": 5938.91, + "end": 5939.25, + "probability": 0.1092 + }, + { + "start": 5940.31, + "end": 5941.29, + "probability": 0.0141 + }, + { + "start": 5943.47, + "end": 5944.07, + "probability": 0.3236 + }, + { + "start": 5945.17, + "end": 5950.21, + "probability": 0.1373 + }, + { + "start": 5950.89, + "end": 5951.55, + "probability": 0.0578 + }, + { + "start": 5951.55, + "end": 5953.19, + "probability": 0.4581 + }, + { + "start": 5953.85, + "end": 5956.57, + "probability": 0.7333 + }, + { + "start": 5956.89, + "end": 5958.81, + "probability": 0.6518 + }, + { + "start": 5958.97, + "end": 5961.89, + "probability": 0.567 + }, + { + "start": 5961.97, + "end": 5962.47, + "probability": 0.6606 + }, + { + "start": 5962.57, + "end": 5963.75, + "probability": 0.6143 + }, + { + "start": 5963.75, + "end": 5964.85, + "probability": 0.4638 + }, + { + "start": 5965.01, + "end": 5965.07, + "probability": 0.6902 + }, + { + "start": 5965.17, + "end": 5966.07, + "probability": 0.8867 + }, + { + "start": 5966.79, + "end": 5968.59, + "probability": 0.9179 + }, + { + "start": 5969.33, + "end": 5969.59, + "probability": 0.8796 + }, + { + "start": 5969.59, + "end": 5969.95, + "probability": 0.6256 + }, + { + "start": 5970.01, + "end": 5973.89, + "probability": 0.5315 + }, + { + "start": 5974.07, + "end": 5975.65, + "probability": 0.929 + }, + { + "start": 5975.87, + "end": 5979.09, + "probability": 0.793 + }, + { + "start": 5979.27, + "end": 5980.45, + "probability": 0.4295 + }, + { + "start": 5981.27, + "end": 5985.63, + "probability": 0.9441 + }, + { + "start": 5985.65, + "end": 5986.09, + "probability": 0.5195 + }, + { + "start": 5986.21, + "end": 5986.91, + "probability": 0.5574 + }, + { + "start": 5986.99, + "end": 5987.41, + "probability": 0.3042 + }, + { + "start": 5987.47, + "end": 5988.19, + "probability": 0.6417 + }, + { + "start": 6000.23, + "end": 6005.75, + "probability": 0.0344 + }, + { + "start": 6007.79, + "end": 6013.45, + "probability": 0.0791 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6115.0, + "end": 6115.0, + "probability": 0.0 + }, + { + "start": 6118.72, + "end": 6120.0, + "probability": 0.58 + }, + { + "start": 6120.46, + "end": 6122.48, + "probability": 0.9214 + }, + { + "start": 6124.09, + "end": 6127.38, + "probability": 0.6834 + }, + { + "start": 6128.3, + "end": 6129.4, + "probability": 0.1429 + }, + { + "start": 6129.4, + "end": 6131.02, + "probability": 0.8766 + }, + { + "start": 6131.18, + "end": 6132.16, + "probability": 0.2375 + }, + { + "start": 6132.16, + "end": 6134.36, + "probability": 0.7456 + }, + { + "start": 6134.4, + "end": 6135.62, + "probability": 0.6171 + }, + { + "start": 6135.76, + "end": 6138.48, + "probability": 0.6942 + }, + { + "start": 6138.84, + "end": 6142.06, + "probability": 0.6717 + }, + { + "start": 6144.64, + "end": 6147.06, + "probability": 0.7735 + }, + { + "start": 6147.18, + "end": 6149.57, + "probability": 0.7533 + }, + { + "start": 6150.1, + "end": 6151.54, + "probability": 0.95 + }, + { + "start": 6151.64, + "end": 6154.56, + "probability": 0.815 + }, + { + "start": 6154.62, + "end": 6157.02, + "probability": 0.8276 + }, + { + "start": 6157.06, + "end": 6159.08, + "probability": 0.9674 + }, + { + "start": 6159.2, + "end": 6160.82, + "probability": 0.6062 + }, + { + "start": 6164.28, + "end": 6165.68, + "probability": 0.1492 + }, + { + "start": 6166.67, + "end": 6169.51, + "probability": 0.9775 + }, + { + "start": 6169.58, + "end": 6170.38, + "probability": 0.4667 + }, + { + "start": 6170.38, + "end": 6170.38, + "probability": 0.0064 + }, + { + "start": 6170.92, + "end": 6172.54, + "probability": 0.7098 + }, + { + "start": 6174.44, + "end": 6176.52, + "probability": 0.9199 + }, + { + "start": 6176.72, + "end": 6180.44, + "probability": 0.9737 + }, + { + "start": 6181.56, + "end": 6182.95, + "probability": 0.0717 + }, + { + "start": 6183.04, + "end": 6185.9, + "probability": 0.7668 + }, + { + "start": 6185.92, + "end": 6187.78, + "probability": 0.3373 + }, + { + "start": 6187.78, + "end": 6190.64, + "probability": 0.9897 + }, + { + "start": 6190.64, + "end": 6192.56, + "probability": 0.5842 + }, + { + "start": 6192.56, + "end": 6196.2, + "probability": 0.6596 + }, + { + "start": 6197.0, + "end": 6199.0, + "probability": 0.9648 + }, + { + "start": 6200.14, + "end": 6201.06, + "probability": 0.745 + }, + { + "start": 6204.06, + "end": 6210.8, + "probability": 0.953 + }, + { + "start": 6212.02, + "end": 6213.86, + "probability": 0.9114 + }, + { + "start": 6215.4, + "end": 6217.82, + "probability": 0.8975 + }, + { + "start": 6217.98, + "end": 6218.72, + "probability": 0.7521 + }, + { + "start": 6218.88, + "end": 6221.34, + "probability": 0.958 + }, + { + "start": 6221.92, + "end": 6228.56, + "probability": 0.9954 + }, + { + "start": 6229.92, + "end": 6235.16, + "probability": 0.9456 + }, + { + "start": 6235.94, + "end": 6238.82, + "probability": 0.8726 + }, + { + "start": 6239.92, + "end": 6243.34, + "probability": 0.9302 + }, + { + "start": 6243.42, + "end": 6245.6, + "probability": 0.7076 + }, + { + "start": 6246.3, + "end": 6249.28, + "probability": 0.9902 + }, + { + "start": 6250.04, + "end": 6251.4, + "probability": 0.9664 + }, + { + "start": 6252.3, + "end": 6254.4, + "probability": 0.9834 + }, + { + "start": 6255.16, + "end": 6258.12, + "probability": 0.9969 + }, + { + "start": 6258.66, + "end": 6261.28, + "probability": 0.9819 + }, + { + "start": 6261.28, + "end": 6265.84, + "probability": 0.9939 + }, + { + "start": 6267.64, + "end": 6270.22, + "probability": 0.9775 + }, + { + "start": 6270.4, + "end": 6271.0, + "probability": 0.438 + }, + { + "start": 6271.08, + "end": 6271.64, + "probability": 0.5615 + }, + { + "start": 6271.74, + "end": 6273.5, + "probability": 0.9762 + }, + { + "start": 6273.96, + "end": 6275.2, + "probability": 0.6851 + }, + { + "start": 6275.9, + "end": 6281.6, + "probability": 0.9862 + }, + { + "start": 6282.12, + "end": 6285.4, + "probability": 0.9971 + }, + { + "start": 6286.7, + "end": 6287.26, + "probability": 0.4522 + }, + { + "start": 6287.82, + "end": 6291.12, + "probability": 0.8181 + }, + { + "start": 6292.06, + "end": 6297.16, + "probability": 0.9878 + }, + { + "start": 6297.68, + "end": 6299.92, + "probability": 0.9927 + }, + { + "start": 6300.7, + "end": 6302.82, + "probability": 0.9868 + }, + { + "start": 6303.42, + "end": 6309.9, + "probability": 0.9718 + }, + { + "start": 6310.34, + "end": 6312.84, + "probability": 0.9692 + }, + { + "start": 6312.9, + "end": 6313.88, + "probability": 0.7784 + }, + { + "start": 6314.42, + "end": 6315.38, + "probability": 0.9213 + }, + { + "start": 6315.56, + "end": 6317.4, + "probability": 0.9686 + }, + { + "start": 6317.52, + "end": 6318.46, + "probability": 0.8159 + }, + { + "start": 6319.1, + "end": 6322.36, + "probability": 0.8466 + }, + { + "start": 6323.12, + "end": 6326.06, + "probability": 0.9056 + }, + { + "start": 6326.66, + "end": 6329.8, + "probability": 0.9848 + }, + { + "start": 6330.62, + "end": 6330.94, + "probability": 0.916 + }, + { + "start": 6330.94, + "end": 6338.4, + "probability": 0.9154 + }, + { + "start": 6339.22, + "end": 6342.88, + "probability": 0.8027 + }, + { + "start": 6344.4, + "end": 6346.13, + "probability": 0.9795 + }, + { + "start": 6347.08, + "end": 6349.86, + "probability": 0.9954 + }, + { + "start": 6351.2, + "end": 6356.76, + "probability": 0.8075 + }, + { + "start": 6357.16, + "end": 6357.9, + "probability": 0.7336 + }, + { + "start": 6358.14, + "end": 6361.1, + "probability": 0.9645 + }, + { + "start": 6362.8, + "end": 6366.96, + "probability": 0.9984 + }, + { + "start": 6366.96, + "end": 6377.22, + "probability": 0.9139 + }, + { + "start": 6377.5, + "end": 6378.78, + "probability": 0.5607 + }, + { + "start": 6379.12, + "end": 6379.2, + "probability": 0.3487 + }, + { + "start": 6379.26, + "end": 6380.66, + "probability": 0.3422 + }, + { + "start": 6381.92, + "end": 6383.56, + "probability": 0.919 + }, + { + "start": 6383.72, + "end": 6388.54, + "probability": 0.9307 + }, + { + "start": 6389.3, + "end": 6394.82, + "probability": 0.9658 + }, + { + "start": 6396.7, + "end": 6399.96, + "probability": 0.9739 + }, + { + "start": 6400.42, + "end": 6406.88, + "probability": 0.9932 + }, + { + "start": 6407.74, + "end": 6408.23, + "probability": 0.8027 + }, + { + "start": 6408.98, + "end": 6415.18, + "probability": 0.9643 + }, + { + "start": 6416.2, + "end": 6417.8, + "probability": 0.7527 + }, + { + "start": 6418.42, + "end": 6419.9, + "probability": 0.6619 + }, + { + "start": 6421.04, + "end": 6421.9, + "probability": 0.7592 + }, + { + "start": 6422.56, + "end": 6423.56, + "probability": 0.7601 + }, + { + "start": 6424.06, + "end": 6429.76, + "probability": 0.972 + }, + { + "start": 6430.56, + "end": 6431.6, + "probability": 0.8862 + }, + { + "start": 6432.46, + "end": 6435.6, + "probability": 0.954 + }, + { + "start": 6436.08, + "end": 6436.64, + "probability": 0.8323 + }, + { + "start": 6436.72, + "end": 6439.56, + "probability": 0.9622 + }, + { + "start": 6441.28, + "end": 6442.14, + "probability": 0.9571 + }, + { + "start": 6443.66, + "end": 6444.44, + "probability": 0.8596 + }, + { + "start": 6444.56, + "end": 6445.4, + "probability": 0.9093 + }, + { + "start": 6445.84, + "end": 6447.94, + "probability": 0.8824 + }, + { + "start": 6448.64, + "end": 6449.4, + "probability": 0.9662 + }, + { + "start": 6450.06, + "end": 6452.34, + "probability": 0.8037 + }, + { + "start": 6452.44, + "end": 6455.0, + "probability": 0.9413 + }, + { + "start": 6456.22, + "end": 6457.08, + "probability": 0.8359 + }, + { + "start": 6458.62, + "end": 6459.36, + "probability": 0.4349 + }, + { + "start": 6460.08, + "end": 6461.62, + "probability": 0.9214 + }, + { + "start": 6461.76, + "end": 6462.76, + "probability": 0.5531 + }, + { + "start": 6463.22, + "end": 6465.66, + "probability": 0.8694 + }, + { + "start": 6466.1, + "end": 6468.78, + "probability": 0.9474 + }, + { + "start": 6469.68, + "end": 6474.86, + "probability": 0.9917 + }, + { + "start": 6476.28, + "end": 6480.72, + "probability": 0.9941 + }, + { + "start": 6480.72, + "end": 6485.5, + "probability": 0.9583 + }, + { + "start": 6486.04, + "end": 6488.35, + "probability": 0.9546 + }, + { + "start": 6489.2, + "end": 6492.1, + "probability": 0.8496 + }, + { + "start": 6492.24, + "end": 6493.58, + "probability": 0.8175 + }, + { + "start": 6494.08, + "end": 6495.6, + "probability": 0.9777 + }, + { + "start": 6496.14, + "end": 6497.44, + "probability": 0.8365 + }, + { + "start": 6497.9, + "end": 6499.4, + "probability": 0.9771 + }, + { + "start": 6499.44, + "end": 6500.06, + "probability": 0.7879 + }, + { + "start": 6500.16, + "end": 6500.72, + "probability": 0.6432 + }, + { + "start": 6501.22, + "end": 6502.22, + "probability": 0.7576 + }, + { + "start": 6503.46, + "end": 6506.06, + "probability": 0.8041 + }, + { + "start": 6506.64, + "end": 6509.52, + "probability": 0.7041 + }, + { + "start": 6510.34, + "end": 6514.58, + "probability": 0.9829 + }, + { + "start": 6514.7, + "end": 6517.8, + "probability": 0.7488 + }, + { + "start": 6517.9, + "end": 6522.24, + "probability": 0.9146 + }, + { + "start": 6522.94, + "end": 6523.32, + "probability": 0.636 + }, + { + "start": 6523.48, + "end": 6528.7, + "probability": 0.9732 + }, + { + "start": 6528.78, + "end": 6528.78, + "probability": 0.8496 + }, + { + "start": 6529.4, + "end": 6530.96, + "probability": 0.8879 + }, + { + "start": 6531.4, + "end": 6538.56, + "probability": 0.7445 + }, + { + "start": 6538.9, + "end": 6539.78, + "probability": 0.6714 + }, + { + "start": 6539.94, + "end": 6543.15, + "probability": 0.6797 + }, + { + "start": 6543.82, + "end": 6545.0, + "probability": 0.7281 + }, + { + "start": 6545.18, + "end": 6549.54, + "probability": 0.9927 + }, + { + "start": 6549.54, + "end": 6554.62, + "probability": 0.9975 + }, + { + "start": 6555.08, + "end": 6557.92, + "probability": 0.8091 + }, + { + "start": 6557.92, + "end": 6561.76, + "probability": 0.7304 + }, + { + "start": 6562.18, + "end": 6562.82, + "probability": 0.504 + }, + { + "start": 6563.16, + "end": 6565.82, + "probability": 0.9941 + }, + { + "start": 6565.94, + "end": 6566.84, + "probability": 0.9183 + }, + { + "start": 6567.54, + "end": 6573.0, + "probability": 0.7515 + }, + { + "start": 6573.68, + "end": 6579.62, + "probability": 0.9917 + }, + { + "start": 6580.22, + "end": 6583.6, + "probability": 0.953 + }, + { + "start": 6584.16, + "end": 6585.62, + "probability": 0.9847 + }, + { + "start": 6586.14, + "end": 6589.92, + "probability": 0.8388 + }, + { + "start": 6589.96, + "end": 6590.98, + "probability": 0.9326 + }, + { + "start": 6591.56, + "end": 6597.08, + "probability": 0.9622 + }, + { + "start": 6597.72, + "end": 6600.27, + "probability": 0.9382 + }, + { + "start": 6600.66, + "end": 6602.0, + "probability": 0.9678 + }, + { + "start": 6602.08, + "end": 6604.64, + "probability": 0.9759 + }, + { + "start": 6604.74, + "end": 6609.94, + "probability": 0.9817 + }, + { + "start": 6610.62, + "end": 6611.02, + "probability": 0.1988 + }, + { + "start": 6611.32, + "end": 6613.38, + "probability": 0.9617 + }, + { + "start": 6613.82, + "end": 6615.66, + "probability": 0.9031 + }, + { + "start": 6615.74, + "end": 6619.82, + "probability": 0.9678 + }, + { + "start": 6619.82, + "end": 6624.66, + "probability": 0.9783 + }, + { + "start": 6625.12, + "end": 6627.9, + "probability": 0.9836 + }, + { + "start": 6628.48, + "end": 6633.26, + "probability": 0.9838 + }, + { + "start": 6633.26, + "end": 6637.32, + "probability": 0.9974 + }, + { + "start": 6637.66, + "end": 6643.46, + "probability": 0.9941 + }, + { + "start": 6643.46, + "end": 6650.18, + "probability": 0.9991 + }, + { + "start": 6650.72, + "end": 6651.44, + "probability": 0.5826 + }, + { + "start": 6651.56, + "end": 6654.24, + "probability": 0.989 + }, + { + "start": 6654.24, + "end": 6659.84, + "probability": 0.985 + }, + { + "start": 6660.04, + "end": 6662.24, + "probability": 0.8339 + }, + { + "start": 6662.36, + "end": 6665.3, + "probability": 0.5446 + }, + { + "start": 6665.34, + "end": 6668.92, + "probability": 0.9297 + }, + { + "start": 6669.02, + "end": 6670.26, + "probability": 0.5602 + }, + { + "start": 6670.8, + "end": 6673.8, + "probability": 0.9821 + }, + { + "start": 6674.44, + "end": 6675.34, + "probability": 0.6868 + }, + { + "start": 6675.42, + "end": 6676.1, + "probability": 0.6211 + }, + { + "start": 6676.3, + "end": 6678.84, + "probability": 0.8552 + }, + { + "start": 6679.28, + "end": 6679.96, + "probability": 0.4962 + }, + { + "start": 6680.24, + "end": 6680.9, + "probability": 0.0904 + }, + { + "start": 6680.96, + "end": 6681.78, + "probability": 0.66 + }, + { + "start": 6681.78, + "end": 6682.7, + "probability": 0.8258 + }, + { + "start": 6683.24, + "end": 6684.2, + "probability": 0.8132 + }, + { + "start": 6684.42, + "end": 6686.16, + "probability": 0.7343 + }, + { + "start": 6686.16, + "end": 6688.78, + "probability": 0.6962 + }, + { + "start": 6688.88, + "end": 6693.16, + "probability": 0.8673 + }, + { + "start": 6693.32, + "end": 6697.74, + "probability": 0.785 + }, + { + "start": 6698.36, + "end": 6701.76, + "probability": 0.9676 + }, + { + "start": 6702.08, + "end": 6705.98, + "probability": 0.9817 + }, + { + "start": 6705.98, + "end": 6711.0, + "probability": 0.9742 + }, + { + "start": 6711.02, + "end": 6713.52, + "probability": 0.8317 + }, + { + "start": 6713.64, + "end": 6714.04, + "probability": 0.8137 + }, + { + "start": 6714.28, + "end": 6716.56, + "probability": 0.7649 + }, + { + "start": 6716.96, + "end": 6718.4, + "probability": 0.8394 + }, + { + "start": 6718.48, + "end": 6721.25, + "probability": 0.9661 + }, + { + "start": 6721.5, + "end": 6723.26, + "probability": 0.7022 + }, + { + "start": 6723.38, + "end": 6726.58, + "probability": 0.6664 + }, + { + "start": 6726.84, + "end": 6728.18, + "probability": 0.7487 + }, + { + "start": 6728.64, + "end": 6731.76, + "probability": 0.9575 + }, + { + "start": 6732.24, + "end": 6732.76, + "probability": 0.4153 + }, + { + "start": 6733.36, + "end": 6735.46, + "probability": 0.6552 + }, + { + "start": 6735.46, + "end": 6736.08, + "probability": 0.4684 + }, + { + "start": 6736.1, + "end": 6739.02, + "probability": 0.6479 + }, + { + "start": 6739.08, + "end": 6740.3, + "probability": 0.7308 + }, + { + "start": 6741.6, + "end": 6746.88, + "probability": 0.7318 + }, + { + "start": 6747.34, + "end": 6752.68, + "probability": 0.9741 + }, + { + "start": 6754.08, + "end": 6758.12, + "probability": 0.9331 + }, + { + "start": 6758.64, + "end": 6759.06, + "probability": 0.8256 + }, + { + "start": 6759.32, + "end": 6766.88, + "probability": 0.9714 + }, + { + "start": 6767.36, + "end": 6769.86, + "probability": 0.895 + }, + { + "start": 6770.28, + "end": 6779.2, + "probability": 0.9805 + }, + { + "start": 6780.96, + "end": 6790.38, + "probability": 0.9964 + }, + { + "start": 6791.16, + "end": 6795.0, + "probability": 0.9647 + }, + { + "start": 6796.52, + "end": 6799.6, + "probability": 0.9306 + }, + { + "start": 6800.62, + "end": 6801.48, + "probability": 0.8657 + }, + { + "start": 6802.44, + "end": 6804.78, + "probability": 0.9931 + }, + { + "start": 6806.02, + "end": 6808.78, + "probability": 0.9949 + }, + { + "start": 6808.84, + "end": 6810.4, + "probability": 0.9955 + }, + { + "start": 6810.96, + "end": 6816.04, + "probability": 0.9929 + }, + { + "start": 6816.42, + "end": 6818.42, + "probability": 0.8754 + }, + { + "start": 6819.14, + "end": 6823.5, + "probability": 0.9854 + }, + { + "start": 6823.82, + "end": 6825.64, + "probability": 0.9361 + }, + { + "start": 6827.1, + "end": 6828.18, + "probability": 0.7845 + }, + { + "start": 6829.14, + "end": 6831.4, + "probability": 0.7463 + }, + { + "start": 6832.22, + "end": 6833.58, + "probability": 0.9525 + }, + { + "start": 6834.5, + "end": 6838.78, + "probability": 0.9858 + }, + { + "start": 6839.42, + "end": 6840.78, + "probability": 0.9685 + }, + { + "start": 6842.14, + "end": 6844.82, + "probability": 0.9661 + }, + { + "start": 6844.86, + "end": 6847.38, + "probability": 0.7737 + }, + { + "start": 6847.94, + "end": 6850.58, + "probability": 0.9557 + }, + { + "start": 6851.68, + "end": 6852.22, + "probability": 0.9013 + }, + { + "start": 6852.72, + "end": 6855.4, + "probability": 0.9672 + }, + { + "start": 6855.48, + "end": 6857.46, + "probability": 0.9915 + }, + { + "start": 6858.54, + "end": 6861.0, + "probability": 0.8113 + }, + { + "start": 6861.2, + "end": 6863.52, + "probability": 0.9864 + }, + { + "start": 6863.94, + "end": 6864.88, + "probability": 0.5782 + }, + { + "start": 6865.34, + "end": 6869.76, + "probability": 0.8833 + }, + { + "start": 6870.14, + "end": 6872.87, + "probability": 0.9676 + }, + { + "start": 6873.24, + "end": 6875.22, + "probability": 0.9902 + }, + { + "start": 6875.64, + "end": 6880.02, + "probability": 0.9607 + }, + { + "start": 6880.74, + "end": 6881.64, + "probability": 0.8757 + }, + { + "start": 6882.68, + "end": 6883.88, + "probability": 0.8419 + }, + { + "start": 6885.14, + "end": 6886.88, + "probability": 0.7744 + }, + { + "start": 6887.46, + "end": 6889.28, + "probability": 0.9873 + }, + { + "start": 6890.18, + "end": 6890.72, + "probability": 0.8386 + }, + { + "start": 6890.86, + "end": 6891.58, + "probability": 0.7672 + }, + { + "start": 6891.7, + "end": 6895.62, + "probability": 0.9932 + }, + { + "start": 6896.48, + "end": 6898.46, + "probability": 0.9976 + }, + { + "start": 6898.58, + "end": 6900.12, + "probability": 0.9803 + }, + { + "start": 6900.7, + "end": 6903.96, + "probability": 0.9629 + }, + { + "start": 6905.08, + "end": 6906.64, + "probability": 0.8401 + }, + { + "start": 6907.22, + "end": 6909.62, + "probability": 0.9944 + }, + { + "start": 6910.14, + "end": 6912.1, + "probability": 0.998 + }, + { + "start": 6912.18, + "end": 6913.44, + "probability": 0.9961 + }, + { + "start": 6913.82, + "end": 6917.06, + "probability": 0.1604 + }, + { + "start": 6917.06, + "end": 6918.4, + "probability": 0.5126 + }, + { + "start": 6919.98, + "end": 6924.52, + "probability": 0.7394 + }, + { + "start": 6925.08, + "end": 6929.18, + "probability": 0.9524 + }, + { + "start": 6930.76, + "end": 6933.72, + "probability": 0.9989 + }, + { + "start": 6934.36, + "end": 6938.12, + "probability": 0.9081 + }, + { + "start": 6938.12, + "end": 6941.42, + "probability": 0.8154 + }, + { + "start": 6941.5, + "end": 6942.7, + "probability": 0.9169 + }, + { + "start": 6943.22, + "end": 6945.38, + "probability": 0.9902 + }, + { + "start": 6945.44, + "end": 6947.38, + "probability": 0.9949 + }, + { + "start": 6948.08, + "end": 6949.26, + "probability": 0.8927 + }, + { + "start": 6949.26, + "end": 6949.6, + "probability": 0.6405 + }, + { + "start": 6950.02, + "end": 6952.74, + "probability": 0.9154 + }, + { + "start": 6952.8, + "end": 6957.76, + "probability": 0.9593 + }, + { + "start": 6957.82, + "end": 6958.0, + "probability": 0.8939 + }, + { + "start": 6958.12, + "end": 6959.78, + "probability": 0.7225 + }, + { + "start": 6959.88, + "end": 6963.12, + "probability": 0.7029 + }, + { + "start": 6963.58, + "end": 6967.64, + "probability": 0.8543 + }, + { + "start": 6967.9, + "end": 6971.08, + "probability": 0.9384 + }, + { + "start": 6971.16, + "end": 6972.28, + "probability": 0.4088 + }, + { + "start": 6973.2, + "end": 6977.36, + "probability": 0.9168 + }, + { + "start": 6978.72, + "end": 6980.04, + "probability": 0.8682 + }, + { + "start": 6980.7, + "end": 6982.28, + "probability": 0.9525 + }, + { + "start": 6998.02, + "end": 6999.16, + "probability": 0.6624 + }, + { + "start": 7001.5, + "end": 7003.16, + "probability": 0.7446 + }, + { + "start": 7003.62, + "end": 7007.66, + "probability": 0.9902 + }, + { + "start": 7008.42, + "end": 7013.88, + "probability": 0.9938 + }, + { + "start": 7014.66, + "end": 7016.58, + "probability": 0.9246 + }, + { + "start": 7016.66, + "end": 7019.0, + "probability": 0.9893 + }, + { + "start": 7019.0, + "end": 7021.85, + "probability": 0.8704 + }, + { + "start": 7022.98, + "end": 7024.08, + "probability": 0.8055 + }, + { + "start": 7024.38, + "end": 7027.04, + "probability": 0.9715 + }, + { + "start": 7027.42, + "end": 7030.66, + "probability": 0.9946 + }, + { + "start": 7031.18, + "end": 7032.16, + "probability": 0.979 + }, + { + "start": 7032.32, + "end": 7033.02, + "probability": 0.9039 + }, + { + "start": 7033.18, + "end": 7036.34, + "probability": 0.9736 + }, + { + "start": 7037.02, + "end": 7039.06, + "probability": 0.8818 + }, + { + "start": 7039.5, + "end": 7040.56, + "probability": 0.8407 + }, + { + "start": 7040.72, + "end": 7041.94, + "probability": 0.9375 + }, + { + "start": 7042.56, + "end": 7043.94, + "probability": 0.5105 + }, + { + "start": 7044.0, + "end": 7044.66, + "probability": 0.8916 + }, + { + "start": 7044.86, + "end": 7047.4, + "probability": 0.981 + }, + { + "start": 7047.6, + "end": 7048.08, + "probability": 0.6429 + }, + { + "start": 7048.56, + "end": 7049.98, + "probability": 0.9183 + }, + { + "start": 7050.44, + "end": 7052.92, + "probability": 0.9797 + }, + { + "start": 7053.28, + "end": 7053.96, + "probability": 0.837 + }, + { + "start": 7054.16, + "end": 7055.04, + "probability": 0.8484 + }, + { + "start": 7055.54, + "end": 7059.1, + "probability": 0.9789 + }, + { + "start": 7059.54, + "end": 7061.18, + "probability": 0.9854 + }, + { + "start": 7061.28, + "end": 7064.64, + "probability": 0.9551 + }, + { + "start": 7065.6, + "end": 7067.3, + "probability": 0.9308 + }, + { + "start": 7067.42, + "end": 7068.36, + "probability": 0.7552 + }, + { + "start": 7068.54, + "end": 7070.92, + "probability": 0.8396 + }, + { + "start": 7071.2, + "end": 7076.5, + "probability": 0.8354 + }, + { + "start": 7076.68, + "end": 7078.76, + "probability": 0.9922 + }, + { + "start": 7079.16, + "end": 7081.2, + "probability": 0.9408 + }, + { + "start": 7081.82, + "end": 7082.42, + "probability": 0.8702 + }, + { + "start": 7083.12, + "end": 7085.88, + "probability": 0.9616 + }, + { + "start": 7085.96, + "end": 7087.64, + "probability": 0.9531 + }, + { + "start": 7088.02, + "end": 7089.42, + "probability": 0.71 + }, + { + "start": 7090.36, + "end": 7091.46, + "probability": 0.9753 + }, + { + "start": 7091.66, + "end": 7093.24, + "probability": 0.8459 + }, + { + "start": 7093.64, + "end": 7095.92, + "probability": 0.9095 + }, + { + "start": 7096.4, + "end": 7098.26, + "probability": 0.9753 + }, + { + "start": 7098.86, + "end": 7103.98, + "probability": 0.9897 + }, + { + "start": 7104.3, + "end": 7107.46, + "probability": 0.9971 + }, + { + "start": 7107.92, + "end": 7111.44, + "probability": 0.9683 + }, + { + "start": 7112.1, + "end": 7112.76, + "probability": 0.733 + }, + { + "start": 7113.04, + "end": 7114.64, + "probability": 0.7572 + }, + { + "start": 7115.28, + "end": 7120.42, + "probability": 0.9329 + }, + { + "start": 7120.48, + "end": 7120.8, + "probability": 0.4961 + }, + { + "start": 7120.8, + "end": 7126.78, + "probability": 0.9722 + }, + { + "start": 7127.22, + "end": 7128.76, + "probability": 0.9445 + }, + { + "start": 7128.92, + "end": 7129.64, + "probability": 0.6936 + }, + { + "start": 7129.78, + "end": 7133.94, + "probability": 0.9844 + }, + { + "start": 7134.22, + "end": 7135.56, + "probability": 0.8615 + }, + { + "start": 7135.64, + "end": 7137.22, + "probability": 0.6754 + }, + { + "start": 7137.84, + "end": 7138.24, + "probability": 0.3252 + }, + { + "start": 7138.26, + "end": 7138.98, + "probability": 0.7797 + }, + { + "start": 7139.68, + "end": 7143.08, + "probability": 0.993 + }, + { + "start": 7143.58, + "end": 7143.96, + "probability": 0.7397 + }, + { + "start": 7144.06, + "end": 7144.4, + "probability": 0.7643 + }, + { + "start": 7144.6, + "end": 7149.9, + "probability": 0.9941 + }, + { + "start": 7150.02, + "end": 7153.26, + "probability": 0.9821 + }, + { + "start": 7153.36, + "end": 7155.92, + "probability": 0.7896 + }, + { + "start": 7156.02, + "end": 7160.71, + "probability": 0.9912 + }, + { + "start": 7160.9, + "end": 7161.18, + "probability": 0.4422 + }, + { + "start": 7161.26, + "end": 7162.24, + "probability": 0.7521 + }, + { + "start": 7162.44, + "end": 7164.06, + "probability": 0.984 + }, + { + "start": 7164.5, + "end": 7167.2, + "probability": 0.7327 + }, + { + "start": 7167.64, + "end": 7170.16, + "probability": 0.9829 + }, + { + "start": 7171.32, + "end": 7174.46, + "probability": 0.9883 + }, + { + "start": 7174.9, + "end": 7176.02, + "probability": 0.8372 + }, + { + "start": 7176.16, + "end": 7179.38, + "probability": 0.9919 + }, + { + "start": 7179.38, + "end": 7182.98, + "probability": 0.9829 + }, + { + "start": 7184.88, + "end": 7190.02, + "probability": 0.9951 + }, + { + "start": 7190.46, + "end": 7191.36, + "probability": 0.8386 + }, + { + "start": 7192.08, + "end": 7195.26, + "probability": 0.7084 + }, + { + "start": 7196.36, + "end": 7200.84, + "probability": 0.7836 + }, + { + "start": 7200.92, + "end": 7207.12, + "probability": 0.8861 + }, + { + "start": 7207.2, + "end": 7207.76, + "probability": 0.8048 + }, + { + "start": 7207.84, + "end": 7209.56, + "probability": 0.9441 + }, + { + "start": 7209.9, + "end": 7211.28, + "probability": 0.9413 + }, + { + "start": 7211.48, + "end": 7212.0, + "probability": 0.7022 + }, + { + "start": 7212.48, + "end": 7213.98, + "probability": 0.9494 + }, + { + "start": 7214.66, + "end": 7216.2, + "probability": 0.7907 + }, + { + "start": 7216.3, + "end": 7216.72, + "probability": 0.9042 + }, + { + "start": 7216.82, + "end": 7221.25, + "probability": 0.9941 + }, + { + "start": 7221.62, + "end": 7223.1, + "probability": 0.9082 + }, + { + "start": 7223.16, + "end": 7227.14, + "probability": 0.9806 + }, + { + "start": 7227.36, + "end": 7228.88, + "probability": 0.477 + }, + { + "start": 7229.04, + "end": 7230.94, + "probability": 0.8419 + }, + { + "start": 7231.14, + "end": 7232.8, + "probability": 0.984 + }, + { + "start": 7232.8, + "end": 7234.98, + "probability": 0.9961 + }, + { + "start": 7235.34, + "end": 7239.3, + "probability": 0.979 + }, + { + "start": 7239.9, + "end": 7241.38, + "probability": 0.9482 + }, + { + "start": 7241.4, + "end": 7242.72, + "probability": 0.7884 + }, + { + "start": 7242.76, + "end": 7247.48, + "probability": 0.9851 + }, + { + "start": 7248.14, + "end": 7249.8, + "probability": 0.9388 + }, + { + "start": 7250.24, + "end": 7254.78, + "probability": 0.7516 + }, + { + "start": 7255.0, + "end": 7261.82, + "probability": 0.9796 + }, + { + "start": 7262.24, + "end": 7266.46, + "probability": 0.9789 + }, + { + "start": 7266.98, + "end": 7271.38, + "probability": 0.9917 + }, + { + "start": 7271.76, + "end": 7272.78, + "probability": 0.6849 + }, + { + "start": 7272.98, + "end": 7274.64, + "probability": 0.9846 + }, + { + "start": 7274.92, + "end": 7276.66, + "probability": 0.7734 + }, + { + "start": 7276.76, + "end": 7277.88, + "probability": 0.7775 + }, + { + "start": 7278.4, + "end": 7279.1, + "probability": 0.4041 + }, + { + "start": 7279.38, + "end": 7283.82, + "probability": 0.9817 + }, + { + "start": 7283.88, + "end": 7284.96, + "probability": 0.035 + }, + { + "start": 7285.68, + "end": 7286.26, + "probability": 0.6788 + }, + { + "start": 7286.38, + "end": 7290.7, + "probability": 0.9961 + }, + { + "start": 7290.7, + "end": 7294.12, + "probability": 0.5978 + }, + { + "start": 7294.2, + "end": 7295.06, + "probability": 0.2127 + }, + { + "start": 7295.52, + "end": 7298.34, + "probability": 0.9884 + }, + { + "start": 7298.6, + "end": 7298.98, + "probability": 0.7172 + }, + { + "start": 7299.08, + "end": 7301.62, + "probability": 0.9669 + }, + { + "start": 7302.26, + "end": 7303.48, + "probability": 0.8315 + }, + { + "start": 7303.98, + "end": 7306.98, + "probability": 0.8086 + }, + { + "start": 7307.32, + "end": 7309.18, + "probability": 0.9169 + }, + { + "start": 7309.6, + "end": 7309.96, + "probability": 0.6361 + }, + { + "start": 7310.38, + "end": 7313.26, + "probability": 0.9835 + }, + { + "start": 7313.7, + "end": 7315.12, + "probability": 0.9617 + }, + { + "start": 7315.7, + "end": 7317.98, + "probability": 0.9653 + }, + { + "start": 7318.0, + "end": 7319.88, + "probability": 0.9766 + }, + { + "start": 7320.24, + "end": 7321.5, + "probability": 0.8895 + }, + { + "start": 7321.54, + "end": 7322.62, + "probability": 0.8111 + }, + { + "start": 7323.16, + "end": 7325.84, + "probability": 0.9729 + }, + { + "start": 7326.16, + "end": 7332.22, + "probability": 0.9914 + }, + { + "start": 7332.56, + "end": 7333.98, + "probability": 0.9804 + }, + { + "start": 7334.04, + "end": 7338.12, + "probability": 0.9752 + }, + { + "start": 7338.24, + "end": 7338.84, + "probability": 0.618 + }, + { + "start": 7339.22, + "end": 7340.2, + "probability": 0.937 + }, + { + "start": 7340.44, + "end": 7343.06, + "probability": 0.9546 + }, + { + "start": 7343.2, + "end": 7344.19, + "probability": 0.9859 + }, + { + "start": 7344.62, + "end": 7346.5, + "probability": 0.9579 + }, + { + "start": 7346.62, + "end": 7351.78, + "probability": 0.8228 + }, + { + "start": 7352.12, + "end": 7353.34, + "probability": 0.9875 + }, + { + "start": 7353.6, + "end": 7355.54, + "probability": 0.9199 + }, + { + "start": 7355.88, + "end": 7357.22, + "probability": 0.798 + }, + { + "start": 7357.4, + "end": 7357.72, + "probability": 0.6052 + }, + { + "start": 7357.8, + "end": 7359.68, + "probability": 0.8438 + }, + { + "start": 7360.06, + "end": 7361.18, + "probability": 0.8428 + }, + { + "start": 7361.52, + "end": 7362.44, + "probability": 0.6554 + }, + { + "start": 7362.54, + "end": 7363.36, + "probability": 0.5467 + }, + { + "start": 7363.46, + "end": 7364.58, + "probability": 0.6341 + }, + { + "start": 7364.9, + "end": 7369.2, + "probability": 0.9924 + }, + { + "start": 7369.2, + "end": 7373.38, + "probability": 0.9773 + }, + { + "start": 7373.52, + "end": 7374.54, + "probability": 0.9707 + }, + { + "start": 7374.8, + "end": 7379.44, + "probability": 0.9797 + }, + { + "start": 7379.98, + "end": 7380.3, + "probability": 0.4858 + }, + { + "start": 7380.34, + "end": 7381.62, + "probability": 0.9578 + }, + { + "start": 7381.7, + "end": 7386.08, + "probability": 0.8967 + }, + { + "start": 7386.64, + "end": 7388.26, + "probability": 0.7451 + }, + { + "start": 7388.68, + "end": 7389.19, + "probability": 0.4388 + }, + { + "start": 7389.36, + "end": 7390.0, + "probability": 0.7423 + }, + { + "start": 7390.46, + "end": 7392.74, + "probability": 0.5091 + }, + { + "start": 7394.14, + "end": 7399.24, + "probability": 0.8786 + }, + { + "start": 7414.36, + "end": 7417.02, + "probability": 0.9722 + }, + { + "start": 7418.48, + "end": 7418.55, + "probability": 0.0329 + }, + { + "start": 7419.2, + "end": 7419.68, + "probability": 0.1993 + }, + { + "start": 7420.62, + "end": 7421.32, + "probability": 0.714 + }, + { + "start": 7421.78, + "end": 7424.44, + "probability": 0.5908 + }, + { + "start": 7425.96, + "end": 7428.1, + "probability": 0.0118 + }, + { + "start": 7429.5, + "end": 7429.76, + "probability": 0.0001 + }, + { + "start": 7429.76, + "end": 7430.08, + "probability": 0.2498 + }, + { + "start": 7430.22, + "end": 7433.5, + "probability": 0.9194 + }, + { + "start": 7434.28, + "end": 7434.5, + "probability": 0.5111 + }, + { + "start": 7434.6, + "end": 7439.97, + "probability": 0.822 + }, + { + "start": 7440.48, + "end": 7443.94, + "probability": 0.988 + }, + { + "start": 7444.98, + "end": 7446.56, + "probability": 0.8472 + }, + { + "start": 7446.6, + "end": 7448.36, + "probability": 0.8186 + }, + { + "start": 7448.8, + "end": 7451.76, + "probability": 0.991 + }, + { + "start": 7451.94, + "end": 7455.82, + "probability": 0.9382 + }, + { + "start": 7455.86, + "end": 7455.86, + "probability": 0.2474 + }, + { + "start": 7455.86, + "end": 7456.6, + "probability": 0.7334 + }, + { + "start": 7456.96, + "end": 7457.62, + "probability": 0.7841 + }, + { + "start": 7458.48, + "end": 7459.42, + "probability": 0.6213 + }, + { + "start": 7459.68, + "end": 7461.32, + "probability": 0.7173 + }, + { + "start": 7463.18, + "end": 7467.64, + "probability": 0.8851 + }, + { + "start": 7467.64, + "end": 7467.8, + "probability": 0.1774 + }, + { + "start": 7467.82, + "end": 7468.0, + "probability": 0.6805 + }, + { + "start": 7468.08, + "end": 7469.94, + "probability": 0.9832 + }, + { + "start": 7470.24, + "end": 7471.06, + "probability": 0.8734 + }, + { + "start": 7472.24, + "end": 7474.22, + "probability": 0.6517 + }, + { + "start": 7474.3, + "end": 7476.94, + "probability": 0.8474 + }, + { + "start": 7477.3, + "end": 7477.62, + "probability": 0.755 + }, + { + "start": 7478.08, + "end": 7478.26, + "probability": 0.8947 + }, + { + "start": 7478.26, + "end": 7478.66, + "probability": 0.7875 + }, + { + "start": 7478.74, + "end": 7480.92, + "probability": 0.959 + }, + { + "start": 7481.64, + "end": 7484.52, + "probability": 0.8007 + }, + { + "start": 7484.52, + "end": 7485.6, + "probability": 0.6349 + }, + { + "start": 7486.02, + "end": 7486.92, + "probability": 0.508 + }, + { + "start": 7486.92, + "end": 7488.6, + "probability": 0.7339 + }, + { + "start": 7489.04, + "end": 7490.46, + "probability": 0.434 + }, + { + "start": 7491.92, + "end": 7493.76, + "probability": 0.9272 + }, + { + "start": 7494.58, + "end": 7497.3, + "probability": 0.8796 + }, + { + "start": 7510.02, + "end": 7513.68, + "probability": 0.1383 + }, + { + "start": 7520.1, + "end": 7526.04, + "probability": 0.0318 + }, + { + "start": 7527.64, + "end": 7529.34, + "probability": 0.3898 + }, + { + "start": 7530.08, + "end": 7533.4, + "probability": 0.0561 + }, + { + "start": 7534.34, + "end": 7535.84, + "probability": 0.0703 + }, + { + "start": 7536.08, + "end": 7536.96, + "probability": 0.042 + }, + { + "start": 7541.72, + "end": 7545.24, + "probability": 0.0944 + }, + { + "start": 7545.26, + "end": 7550.34, + "probability": 0.08 + }, + { + "start": 7550.34, + "end": 7550.34, + "probability": 0.2358 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7578.0, + "end": 7578.0, + "probability": 0.0 + }, + { + "start": 7579.58, + "end": 7580.66, + "probability": 0.1979 + }, + { + "start": 7580.86, + "end": 7581.96, + "probability": 0.0459 + }, + { + "start": 7582.16, + "end": 7582.74, + "probability": 0.5203 + }, + { + "start": 7583.44, + "end": 7585.32, + "probability": 0.7883 + }, + { + "start": 7585.96, + "end": 7586.91, + "probability": 0.6183 + }, + { + "start": 7589.94, + "end": 7591.9, + "probability": 0.0327 + }, + { + "start": 7593.56, + "end": 7594.12, + "probability": 0.0389 + }, + { + "start": 7595.12, + "end": 7597.7, + "probability": 0.4104 + }, + { + "start": 7597.84, + "end": 7599.84, + "probability": 0.6735 + }, + { + "start": 7599.9, + "end": 7601.04, + "probability": 0.8526 + }, + { + "start": 7601.52, + "end": 7602.2, + "probability": 0.282 + }, + { + "start": 7603.3, + "end": 7605.66, + "probability": 0.9735 + }, + { + "start": 7605.8, + "end": 7606.61, + "probability": 0.9785 + }, + { + "start": 7607.06, + "end": 7610.0, + "probability": 0.7295 + }, + { + "start": 7610.26, + "end": 7614.2, + "probability": 0.8179 + }, + { + "start": 7614.36, + "end": 7617.24, + "probability": 0.9928 + }, + { + "start": 7617.24, + "end": 7617.58, + "probability": 0.8234 + }, + { + "start": 7618.22, + "end": 7619.34, + "probability": 0.5018 + }, + { + "start": 7619.34, + "end": 7619.9, + "probability": 0.8442 + }, + { + "start": 7620.94, + "end": 7621.68, + "probability": 0.6444 + }, + { + "start": 7622.36, + "end": 7624.84, + "probability": 0.6173 + }, + { + "start": 7626.62, + "end": 7630.12, + "probability": 0.8724 + }, + { + "start": 7630.5, + "end": 7631.06, + "probability": 0.9805 + }, + { + "start": 7631.18, + "end": 7631.88, + "probability": 0.9899 + }, + { + "start": 7631.96, + "end": 7632.82, + "probability": 0.8411 + }, + { + "start": 7633.56, + "end": 7636.14, + "probability": 0.9293 + }, + { + "start": 7638.08, + "end": 7638.82, + "probability": 0.8067 + }, + { + "start": 7639.42, + "end": 7643.94, + "probability": 0.9361 + }, + { + "start": 7644.06, + "end": 7644.72, + "probability": 0.8786 + }, + { + "start": 7645.1, + "end": 7645.46, + "probability": 0.8007 + }, + { + "start": 7645.5, + "end": 7648.46, + "probability": 0.751 + }, + { + "start": 7649.37, + "end": 7652.98, + "probability": 0.9856 + }, + { + "start": 7653.5, + "end": 7657.64, + "probability": 0.9843 + }, + { + "start": 7658.14, + "end": 7662.56, + "probability": 0.9785 + }, + { + "start": 7663.94, + "end": 7664.8, + "probability": 0.5494 + }, + { + "start": 7665.64, + "end": 7666.84, + "probability": 0.9642 + }, + { + "start": 7668.82, + "end": 7671.16, + "probability": 0.9857 + }, + { + "start": 7671.24, + "end": 7676.44, + "probability": 0.6243 + }, + { + "start": 7677.44, + "end": 7679.8, + "probability": 0.8704 + }, + { + "start": 7681.86, + "end": 7681.9, + "probability": 0.7064 + }, + { + "start": 7681.96, + "end": 7683.6, + "probability": 0.5755 + }, + { + "start": 7685.48, + "end": 7686.62, + "probability": 0.8516 + }, + { + "start": 7686.7, + "end": 7687.22, + "probability": 0.9421 + }, + { + "start": 7687.32, + "end": 7688.18, + "probability": 0.6434 + }, + { + "start": 7688.24, + "end": 7689.47, + "probability": 0.9497 + }, + { + "start": 7690.86, + "end": 7692.94, + "probability": 0.9612 + }, + { + "start": 7693.78, + "end": 7698.54, + "probability": 0.979 + }, + { + "start": 7699.0, + "end": 7703.24, + "probability": 0.9917 + }, + { + "start": 7704.92, + "end": 7706.92, + "probability": 0.9241 + }, + { + "start": 7707.86, + "end": 7709.86, + "probability": 0.9663 + }, + { + "start": 7710.58, + "end": 7712.0, + "probability": 0.935 + }, + { + "start": 7712.3, + "end": 7713.08, + "probability": 0.8605 + }, + { + "start": 7713.26, + "end": 7717.84, + "probability": 0.9854 + }, + { + "start": 7719.74, + "end": 7723.46, + "probability": 0.986 + }, + { + "start": 7724.6, + "end": 7726.66, + "probability": 0.8123 + }, + { + "start": 7727.08, + "end": 7728.24, + "probability": 0.8126 + }, + { + "start": 7728.66, + "end": 7729.66, + "probability": 0.7566 + }, + { + "start": 7730.68, + "end": 7737.36, + "probability": 0.9926 + }, + { + "start": 7738.16, + "end": 7741.5, + "probability": 0.5197 + }, + { + "start": 7741.98, + "end": 7743.62, + "probability": 0.9618 + }, + { + "start": 7745.44, + "end": 7745.56, + "probability": 0.444 + }, + { + "start": 7745.66, + "end": 7748.82, + "probability": 0.9722 + }, + { + "start": 7748.86, + "end": 7749.3, + "probability": 0.7921 + }, + { + "start": 7749.82, + "end": 7750.68, + "probability": 0.9478 + }, + { + "start": 7750.78, + "end": 7751.46, + "probability": 0.9612 + }, + { + "start": 7751.6, + "end": 7753.52, + "probability": 0.9857 + }, + { + "start": 7753.52, + "end": 7758.24, + "probability": 0.9954 + }, + { + "start": 7758.68, + "end": 7763.82, + "probability": 0.9985 + }, + { + "start": 7764.7, + "end": 7767.52, + "probability": 0.8936 + }, + { + "start": 7769.2, + "end": 7771.76, + "probability": 0.9554 + }, + { + "start": 7772.92, + "end": 7773.08, + "probability": 0.5084 + }, + { + "start": 7773.2, + "end": 7774.88, + "probability": 0.9646 + }, + { + "start": 7775.54, + "end": 7780.3, + "probability": 0.9847 + }, + { + "start": 7781.3, + "end": 7782.46, + "probability": 0.9837 + }, + { + "start": 7784.02, + "end": 7784.86, + "probability": 0.5785 + }, + { + "start": 7787.04, + "end": 7790.14, + "probability": 0.9966 + }, + { + "start": 7790.14, + "end": 7794.18, + "probability": 0.9983 + }, + { + "start": 7794.72, + "end": 7797.02, + "probability": 0.9734 + }, + { + "start": 7799.16, + "end": 7799.8, + "probability": 0.7374 + }, + { + "start": 7800.5, + "end": 7802.88, + "probability": 0.1777 + }, + { + "start": 7803.62, + "end": 7805.42, + "probability": 0.9451 + }, + { + "start": 7805.88, + "end": 7807.16, + "probability": 0.9465 + }, + { + "start": 7807.7, + "end": 7810.6, + "probability": 0.9399 + }, + { + "start": 7811.28, + "end": 7812.38, + "probability": 0.3207 + }, + { + "start": 7813.82, + "end": 7817.74, + "probability": 0.8059 + }, + { + "start": 7818.28, + "end": 7820.28, + "probability": 0.9107 + }, + { + "start": 7820.92, + "end": 7822.64, + "probability": 0.9694 + }, + { + "start": 7823.38, + "end": 7824.5, + "probability": 0.7332 + }, + { + "start": 7824.9, + "end": 7825.7, + "probability": 0.7171 + }, + { + "start": 7825.78, + "end": 7828.12, + "probability": 0.7871 + }, + { + "start": 7829.82, + "end": 7834.7, + "probability": 0.9531 + }, + { + "start": 7835.26, + "end": 7838.58, + "probability": 0.9804 + }, + { + "start": 7840.2, + "end": 7841.78, + "probability": 0.7476 + }, + { + "start": 7842.4, + "end": 7843.54, + "probability": 0.6856 + }, + { + "start": 7844.68, + "end": 7846.04, + "probability": 0.9365 + }, + { + "start": 7846.12, + "end": 7850.26, + "probability": 0.9285 + }, + { + "start": 7851.74, + "end": 7856.44, + "probability": 0.9302 + }, + { + "start": 7858.84, + "end": 7862.25, + "probability": 0.8251 + }, + { + "start": 7863.5, + "end": 7866.72, + "probability": 0.5086 + }, + { + "start": 7867.62, + "end": 7868.5, + "probability": 0.9105 + }, + { + "start": 7870.18, + "end": 7871.14, + "probability": 0.5041 + }, + { + "start": 7872.22, + "end": 7874.4, + "probability": 0.9491 + }, + { + "start": 7875.48, + "end": 7877.64, + "probability": 0.987 + }, + { + "start": 7878.58, + "end": 7880.08, + "probability": 0.9878 + }, + { + "start": 7880.96, + "end": 7881.52, + "probability": 0.5883 + }, + { + "start": 7882.38, + "end": 7885.52, + "probability": 0.881 + }, + { + "start": 7886.16, + "end": 7890.22, + "probability": 0.9458 + }, + { + "start": 7891.02, + "end": 7892.54, + "probability": 0.9533 + }, + { + "start": 7893.54, + "end": 7896.98, + "probability": 0.7806 + }, + { + "start": 7897.3, + "end": 7899.67, + "probability": 0.9753 + }, + { + "start": 7900.42, + "end": 7903.44, + "probability": 0.907 + }, + { + "start": 7905.3, + "end": 7905.44, + "probability": 0.855 + }, + { + "start": 7905.54, + "end": 7907.92, + "probability": 0.945 + }, + { + "start": 7908.1, + "end": 7908.86, + "probability": 0.8041 + }, + { + "start": 7908.98, + "end": 7909.9, + "probability": 0.8713 + }, + { + "start": 7909.94, + "end": 7910.8, + "probability": 0.9517 + }, + { + "start": 7912.28, + "end": 7914.08, + "probability": 0.862 + }, + { + "start": 7915.5, + "end": 7916.28, + "probability": 0.9447 + }, + { + "start": 7917.76, + "end": 7920.52, + "probability": 0.6874 + }, + { + "start": 7921.16, + "end": 7921.8, + "probability": 0.8988 + }, + { + "start": 7922.32, + "end": 7923.25, + "probability": 0.8639 + }, + { + "start": 7924.42, + "end": 7928.22, + "probability": 0.9921 + }, + { + "start": 7928.22, + "end": 7931.24, + "probability": 0.9939 + }, + { + "start": 7931.94, + "end": 7933.48, + "probability": 0.9054 + }, + { + "start": 7933.92, + "end": 7935.02, + "probability": 0.9835 + }, + { + "start": 7935.34, + "end": 7936.36, + "probability": 0.9175 + }, + { + "start": 7936.8, + "end": 7937.68, + "probability": 0.8752 + }, + { + "start": 7938.92, + "end": 7940.82, + "probability": 0.9225 + }, + { + "start": 7942.02, + "end": 7945.32, + "probability": 0.9419 + }, + { + "start": 7945.88, + "end": 7946.86, + "probability": 0.9766 + }, + { + "start": 7948.78, + "end": 7949.94, + "probability": 0.5855 + }, + { + "start": 7950.02, + "end": 7950.78, + "probability": 0.6574 + }, + { + "start": 7951.1, + "end": 7953.92, + "probability": 0.9927 + }, + { + "start": 7954.02, + "end": 7957.44, + "probability": 0.9849 + }, + { + "start": 7957.78, + "end": 7959.28, + "probability": 0.9883 + }, + { + "start": 7959.44, + "end": 7960.1, + "probability": 0.8562 + }, + { + "start": 7960.1, + "end": 7962.4, + "probability": 0.9534 + }, + { + "start": 7963.04, + "end": 7967.32, + "probability": 0.9955 + }, + { + "start": 7968.08, + "end": 7969.82, + "probability": 0.7573 + }, + { + "start": 7970.7, + "end": 7973.2, + "probability": 0.7819 + }, + { + "start": 7973.84, + "end": 7975.62, + "probability": 0.9967 + }, + { + "start": 7976.64, + "end": 7980.08, + "probability": 0.9595 + }, + { + "start": 7980.94, + "end": 7984.88, + "probability": 0.8947 + }, + { + "start": 7986.26, + "end": 7990.36, + "probability": 0.9946 + }, + { + "start": 7990.88, + "end": 7993.12, + "probability": 0.975 + }, + { + "start": 7994.76, + "end": 7997.56, + "probability": 0.8866 + }, + { + "start": 7998.2, + "end": 7998.72, + "probability": 0.3534 + }, + { + "start": 8000.84, + "end": 8002.92, + "probability": 0.9971 + }, + { + "start": 8003.34, + "end": 8005.56, + "probability": 0.9441 + }, + { + "start": 8005.96, + "end": 8006.38, + "probability": 0.9539 + }, + { + "start": 8007.66, + "end": 8012.86, + "probability": 0.9875 + }, + { + "start": 8018.6, + "end": 8019.42, + "probability": 0.7351 + }, + { + "start": 8020.42, + "end": 8021.24, + "probability": 0.8019 + }, + { + "start": 8021.34, + "end": 8023.12, + "probability": 0.9871 + }, + { + "start": 8023.24, + "end": 8024.18, + "probability": 0.7417 + }, + { + "start": 8024.6, + "end": 8028.58, + "probability": 0.9217 + }, + { + "start": 8031.41, + "end": 8032.44, + "probability": 0.0868 + }, + { + "start": 8032.44, + "end": 8032.44, + "probability": 0.0134 + }, + { + "start": 8032.44, + "end": 8033.1, + "probability": 0.0809 + }, + { + "start": 8033.32, + "end": 8033.67, + "probability": 0.3212 + }, + { + "start": 8034.24, + "end": 8035.58, + "probability": 0.4959 + }, + { + "start": 8035.78, + "end": 8036.46, + "probability": 0.246 + }, + { + "start": 8036.54, + "end": 8036.9, + "probability": 0.2215 + }, + { + "start": 8036.9, + "end": 8037.66, + "probability": 0.1517 + }, + { + "start": 8037.7, + "end": 8039.18, + "probability": 0.6181 + }, + { + "start": 8039.66, + "end": 8044.52, + "probability": 0.9597 + }, + { + "start": 8045.72, + "end": 8052.36, + "probability": 0.9911 + }, + { + "start": 8053.76, + "end": 8054.44, + "probability": 0.7955 + }, + { + "start": 8054.72, + "end": 8054.92, + "probability": 0.7378 + }, + { + "start": 8056.78, + "end": 8059.2, + "probability": 0.7207 + }, + { + "start": 8059.7, + "end": 8060.62, + "probability": 0.4494 + }, + { + "start": 8061.42, + "end": 8065.78, + "probability": 0.9742 + }, + { + "start": 8066.96, + "end": 8068.7, + "probability": 0.8048 + }, + { + "start": 8069.88, + "end": 8074.84, + "probability": 0.6906 + }, + { + "start": 8075.92, + "end": 8080.38, + "probability": 0.911 + }, + { + "start": 8080.9, + "end": 8084.6, + "probability": 0.9497 + }, + { + "start": 8085.18, + "end": 8087.16, + "probability": 0.7441 + }, + { + "start": 8087.7, + "end": 8088.78, + "probability": 0.9366 + }, + { + "start": 8090.22, + "end": 8094.32, + "probability": 0.9479 + }, + { + "start": 8095.2, + "end": 8098.06, + "probability": 0.8609 + }, + { + "start": 8098.68, + "end": 8101.98, + "probability": 0.9792 + }, + { + "start": 8103.34, + "end": 8107.3, + "probability": 0.9923 + }, + { + "start": 8108.2, + "end": 8110.66, + "probability": 0.4726 + }, + { + "start": 8111.66, + "end": 8112.54, + "probability": 0.9673 + }, + { + "start": 8113.06, + "end": 8114.48, + "probability": 0.5247 + }, + { + "start": 8115.0, + "end": 8117.22, + "probability": 0.9287 + }, + { + "start": 8118.12, + "end": 8122.64, + "probability": 0.9502 + }, + { + "start": 8123.44, + "end": 8125.08, + "probability": 0.9863 + }, + { + "start": 8125.14, + "end": 8131.54, + "probability": 0.9937 + }, + { + "start": 8132.42, + "end": 8133.34, + "probability": 0.9049 + }, + { + "start": 8133.92, + "end": 8136.03, + "probability": 0.996 + }, + { + "start": 8136.96, + "end": 8139.78, + "probability": 0.9201 + }, + { + "start": 8140.62, + "end": 8142.16, + "probability": 0.8167 + }, + { + "start": 8142.78, + "end": 8143.9, + "probability": 0.5567 + }, + { + "start": 8144.34, + "end": 8146.12, + "probability": 0.9556 + }, + { + "start": 8146.36, + "end": 8147.06, + "probability": 0.902 + }, + { + "start": 8147.4, + "end": 8148.17, + "probability": 0.9595 + }, + { + "start": 8148.68, + "end": 8149.75, + "probability": 0.9888 + }, + { + "start": 8150.98, + "end": 8151.72, + "probability": 0.884 + }, + { + "start": 8152.54, + "end": 8156.58, + "probability": 0.9399 + }, + { + "start": 8157.12, + "end": 8158.18, + "probability": 0.9597 + }, + { + "start": 8158.7, + "end": 8161.46, + "probability": 0.9763 + }, + { + "start": 8161.94, + "end": 8162.32, + "probability": 0.7384 + }, + { + "start": 8162.58, + "end": 8165.5, + "probability": 0.8013 + }, + { + "start": 8165.72, + "end": 8170.54, + "probability": 0.6534 + }, + { + "start": 8188.52, + "end": 8189.2, + "probability": 0.7033 + }, + { + "start": 8189.36, + "end": 8190.94, + "probability": 0.7765 + }, + { + "start": 8191.06, + "end": 8191.26, + "probability": 0.3385 + }, + { + "start": 8191.36, + "end": 8191.44, + "probability": 0.6617 + }, + { + "start": 8191.44, + "end": 8195.0, + "probability": 0.7242 + }, + { + "start": 8196.16, + "end": 8196.77, + "probability": 0.2615 + }, + { + "start": 8197.34, + "end": 8197.97, + "probability": 0.9055 + }, + { + "start": 8198.04, + "end": 8198.67, + "probability": 0.9814 + }, + { + "start": 8198.88, + "end": 8199.75, + "probability": 0.9453 + }, + { + "start": 8203.02, + "end": 8203.7, + "probability": 0.9236 + }, + { + "start": 8203.98, + "end": 8207.52, + "probability": 0.7909 + }, + { + "start": 8207.72, + "end": 8208.32, + "probability": 0.8767 + }, + { + "start": 8208.44, + "end": 8209.46, + "probability": 0.8146 + }, + { + "start": 8209.62, + "end": 8211.0, + "probability": 0.7886 + }, + { + "start": 8211.32, + "end": 8215.52, + "probability": 0.932 + }, + { + "start": 8216.5, + "end": 8219.68, + "probability": 0.9688 + }, + { + "start": 8221.1, + "end": 8225.68, + "probability": 0.9024 + }, + { + "start": 8226.64, + "end": 8228.5, + "probability": 0.8748 + }, + { + "start": 8228.58, + "end": 8229.56, + "probability": 0.9815 + }, + { + "start": 8229.64, + "end": 8231.42, + "probability": 0.99 + }, + { + "start": 8232.8, + "end": 8236.12, + "probability": 0.9957 + }, + { + "start": 8238.99, + "end": 8242.86, + "probability": 0.985 + }, + { + "start": 8243.74, + "end": 8244.5, + "probability": 0.7076 + }, + { + "start": 8245.04, + "end": 8246.5, + "probability": 0.4989 + }, + { + "start": 8246.72, + "end": 8248.55, + "probability": 0.9487 + }, + { + "start": 8249.36, + "end": 8255.78, + "probability": 0.9849 + }, + { + "start": 8256.3, + "end": 8259.6, + "probability": 0.9883 + }, + { + "start": 8260.38, + "end": 8261.84, + "probability": 0.9968 + }, + { + "start": 8262.04, + "end": 8263.4, + "probability": 0.972 + }, + { + "start": 8264.72, + "end": 8265.58, + "probability": 0.9658 + }, + { + "start": 8266.12, + "end": 8269.96, + "probability": 0.965 + }, + { + "start": 8270.1, + "end": 8272.32, + "probability": 0.9867 + }, + { + "start": 8273.28, + "end": 8275.56, + "probability": 0.9908 + }, + { + "start": 8275.96, + "end": 8277.96, + "probability": 0.9958 + }, + { + "start": 8278.44, + "end": 8280.33, + "probability": 0.9907 + }, + { + "start": 8280.94, + "end": 8284.94, + "probability": 0.7949 + }, + { + "start": 8285.6, + "end": 8288.8, + "probability": 0.8987 + }, + { + "start": 8289.8, + "end": 8291.78, + "probability": 0.7559 + }, + { + "start": 8292.64, + "end": 8297.0, + "probability": 0.9901 + }, + { + "start": 8297.22, + "end": 8301.04, + "probability": 0.8575 + }, + { + "start": 8302.46, + "end": 8304.1, + "probability": 0.957 + }, + { + "start": 8304.24, + "end": 8306.36, + "probability": 0.9927 + }, + { + "start": 8306.46, + "end": 8309.46, + "probability": 0.7441 + }, + { + "start": 8311.72, + "end": 8315.86, + "probability": 0.9273 + }, + { + "start": 8316.62, + "end": 8318.14, + "probability": 0.9464 + }, + { + "start": 8320.42, + "end": 8328.44, + "probability": 0.9976 + }, + { + "start": 8329.74, + "end": 8332.8, + "probability": 0.9246 + }, + { + "start": 8334.38, + "end": 8337.24, + "probability": 0.9902 + }, + { + "start": 8338.6, + "end": 8345.28, + "probability": 0.9987 + }, + { + "start": 8346.26, + "end": 8349.78, + "probability": 0.9983 + }, + { + "start": 8349.78, + "end": 8352.06, + "probability": 0.9993 + }, + { + "start": 8355.1, + "end": 8359.34, + "probability": 0.9678 + }, + { + "start": 8359.34, + "end": 8362.04, + "probability": 0.9872 + }, + { + "start": 8362.3, + "end": 8364.48, + "probability": 0.9807 + }, + { + "start": 8364.54, + "end": 8369.12, + "probability": 0.9841 + }, + { + "start": 8370.68, + "end": 8374.78, + "probability": 0.9497 + }, + { + "start": 8376.2, + "end": 8380.36, + "probability": 0.9937 + }, + { + "start": 8380.36, + "end": 8384.22, + "probability": 0.9966 + }, + { + "start": 8384.42, + "end": 8384.66, + "probability": 0.7137 + }, + { + "start": 8384.82, + "end": 8385.92, + "probability": 0.8307 + }, + { + "start": 8386.04, + "end": 8386.82, + "probability": 0.7716 + }, + { + "start": 8386.9, + "end": 8388.38, + "probability": 0.9691 + }, + { + "start": 8388.4, + "end": 8389.36, + "probability": 0.9836 + }, + { + "start": 8390.16, + "end": 8391.06, + "probability": 0.5636 + }, + { + "start": 8391.22, + "end": 8391.98, + "probability": 0.8439 + }, + { + "start": 8392.06, + "end": 8393.12, + "probability": 0.9619 + }, + { + "start": 8393.24, + "end": 8394.98, + "probability": 0.9419 + }, + { + "start": 8396.44, + "end": 8403.76, + "probability": 0.9587 + }, + { + "start": 8403.76, + "end": 8407.22, + "probability": 0.9895 + }, + { + "start": 8408.76, + "end": 8410.18, + "probability": 0.8203 + }, + { + "start": 8410.38, + "end": 8412.96, + "probability": 0.4561 + }, + { + "start": 8413.04, + "end": 8414.24, + "probability": 0.9573 + }, + { + "start": 8414.32, + "end": 8416.34, + "probability": 0.7819 + }, + { + "start": 8416.6, + "end": 8420.04, + "probability": 0.9556 + }, + { + "start": 8420.94, + "end": 8425.94, + "probability": 0.7571 + }, + { + "start": 8426.14, + "end": 8426.4, + "probability": 0.1249 + }, + { + "start": 8426.4, + "end": 8428.18, + "probability": 0.9417 + }, + { + "start": 8428.7, + "end": 8429.92, + "probability": 0.5636 + }, + { + "start": 8430.3, + "end": 8433.02, + "probability": 0.9819 + }, + { + "start": 8434.3, + "end": 8434.68, + "probability": 0.8514 + }, + { + "start": 8435.74, + "end": 8442.54, + "probability": 0.9345 + }, + { + "start": 8442.66, + "end": 8446.8, + "probability": 0.9566 + }, + { + "start": 8446.8, + "end": 8451.86, + "probability": 0.9987 + }, + { + "start": 8451.86, + "end": 8456.88, + "probability": 0.9981 + }, + { + "start": 8456.94, + "end": 8457.74, + "probability": 0.8181 + }, + { + "start": 8458.48, + "end": 8461.66, + "probability": 0.8721 + }, + { + "start": 8461.82, + "end": 8464.6, + "probability": 0.9989 + }, + { + "start": 8464.6, + "end": 8467.98, + "probability": 0.9995 + }, + { + "start": 8468.38, + "end": 8472.7, + "probability": 0.9969 + }, + { + "start": 8473.58, + "end": 8473.84, + "probability": 0.8252 + }, + { + "start": 8473.9, + "end": 8476.42, + "probability": 0.5284 + }, + { + "start": 8476.54, + "end": 8478.36, + "probability": 0.4663 + }, + { + "start": 8478.4, + "end": 8483.3, + "probability": 0.9371 + }, + { + "start": 8483.94, + "end": 8485.06, + "probability": 0.9695 + }, + { + "start": 8485.16, + "end": 8486.7, + "probability": 0.9462 + }, + { + "start": 8486.98, + "end": 8488.77, + "probability": 0.9917 + }, + { + "start": 8489.12, + "end": 8490.93, + "probability": 0.9138 + }, + { + "start": 8491.66, + "end": 8494.78, + "probability": 0.9977 + }, + { + "start": 8494.86, + "end": 8498.46, + "probability": 0.9928 + }, + { + "start": 8498.46, + "end": 8501.38, + "probability": 0.9985 + }, + { + "start": 8501.72, + "end": 8503.6, + "probability": 0.9981 + }, + { + "start": 8503.72, + "end": 8505.14, + "probability": 0.998 + }, + { + "start": 8505.5, + "end": 8511.0, + "probability": 0.9908 + }, + { + "start": 8511.2, + "end": 8512.4, + "probability": 0.9628 + }, + { + "start": 8512.74, + "end": 8515.04, + "probability": 0.9779 + }, + { + "start": 8515.1, + "end": 8518.34, + "probability": 0.8999 + }, + { + "start": 8519.14, + "end": 8521.5, + "probability": 0.9951 + }, + { + "start": 8522.64, + "end": 8523.18, + "probability": 0.8007 + }, + { + "start": 8523.38, + "end": 8526.8, + "probability": 0.9269 + }, + { + "start": 8527.3, + "end": 8528.4, + "probability": 0.7358 + }, + { + "start": 8528.66, + "end": 8531.74, + "probability": 0.9932 + }, + { + "start": 8532.02, + "end": 8534.22, + "probability": 0.9884 + }, + { + "start": 8534.3, + "end": 8537.68, + "probability": 0.9849 + }, + { + "start": 8538.76, + "end": 8539.82, + "probability": 0.979 + }, + { + "start": 8539.94, + "end": 8541.74, + "probability": 0.5851 + }, + { + "start": 8543.42, + "end": 8552.2, + "probability": 0.9846 + }, + { + "start": 8553.22, + "end": 8559.78, + "probability": 0.9922 + }, + { + "start": 8559.78, + "end": 8564.38, + "probability": 0.9995 + }, + { + "start": 8565.12, + "end": 8567.54, + "probability": 0.998 + }, + { + "start": 8568.1, + "end": 8570.76, + "probability": 0.9967 + }, + { + "start": 8571.32, + "end": 8575.44, + "probability": 0.9549 + }, + { + "start": 8575.66, + "end": 8575.94, + "probability": 0.6461 + }, + { + "start": 8577.14, + "end": 8580.46, + "probability": 0.7722 + }, + { + "start": 8581.18, + "end": 8582.0, + "probability": 0.5624 + }, + { + "start": 8583.22, + "end": 8585.66, + "probability": 0.9534 + }, + { + "start": 8585.86, + "end": 8590.14, + "probability": 0.9923 + }, + { + "start": 8593.14, + "end": 8595.72, + "probability": 0.6645 + }, + { + "start": 8595.84, + "end": 8596.4, + "probability": 0.4795 + }, + { + "start": 8600.32, + "end": 8601.78, + "probability": 0.6822 + }, + { + "start": 8602.46, + "end": 8604.12, + "probability": 0.7211 + }, + { + "start": 8604.52, + "end": 8605.08, + "probability": 0.1664 + }, + { + "start": 8605.26, + "end": 8606.06, + "probability": 0.8207 + }, + { + "start": 8607.96, + "end": 8609.94, + "probability": 0.7572 + }, + { + "start": 8610.74, + "end": 8615.78, + "probability": 0.7038 + }, + { + "start": 8616.14, + "end": 8618.44, + "probability": 0.8022 + }, + { + "start": 8619.06, + "end": 8622.01, + "probability": 0.7936 + }, + { + "start": 8623.2, + "end": 8630.14, + "probability": 0.9956 + }, + { + "start": 8631.34, + "end": 8633.69, + "probability": 0.9777 + }, + { + "start": 8634.46, + "end": 8640.2, + "probability": 0.9893 + }, + { + "start": 8640.68, + "end": 8642.16, + "probability": 0.9744 + }, + { + "start": 8643.0, + "end": 8644.28, + "probability": 0.9321 + }, + { + "start": 8645.48, + "end": 8648.68, + "probability": 0.687 + }, + { + "start": 8648.96, + "end": 8650.02, + "probability": 0.8659 + }, + { + "start": 8650.8, + "end": 8653.1, + "probability": 0.9961 + }, + { + "start": 8653.4, + "end": 8655.84, + "probability": 0.9958 + }, + { + "start": 8656.42, + "end": 8657.46, + "probability": 0.6694 + }, + { + "start": 8657.9, + "end": 8661.74, + "probability": 0.9906 + }, + { + "start": 8662.12, + "end": 8663.7, + "probability": 0.897 + }, + { + "start": 8664.0, + "end": 8667.3, + "probability": 0.9656 + }, + { + "start": 8667.44, + "end": 8669.32, + "probability": 0.5401 + }, + { + "start": 8669.48, + "end": 8671.76, + "probability": 0.7736 + }, + { + "start": 8672.34, + "end": 8674.81, + "probability": 0.9946 + }, + { + "start": 8675.52, + "end": 8676.9, + "probability": 0.9409 + }, + { + "start": 8677.22, + "end": 8679.67, + "probability": 0.917 + }, + { + "start": 8680.14, + "end": 8680.64, + "probability": 0.4975 + }, + { + "start": 8680.8, + "end": 8680.84, + "probability": 0.1911 + }, + { + "start": 8680.84, + "end": 8680.84, + "probability": 0.0703 + }, + { + "start": 8680.84, + "end": 8681.78, + "probability": 0.6583 + }, + { + "start": 8682.06, + "end": 8682.66, + "probability": 0.5056 + }, + { + "start": 8682.74, + "end": 8684.26, + "probability": 0.959 + }, + { + "start": 8684.66, + "end": 8684.66, + "probability": 0.5753 + }, + { + "start": 8684.66, + "end": 8689.44, + "probability": 0.9225 + }, + { + "start": 8689.54, + "end": 8694.62, + "probability": 0.9749 + }, + { + "start": 8694.72, + "end": 8695.66, + "probability": 0.6806 + }, + { + "start": 8696.88, + "end": 8697.88, + "probability": 0.1909 + }, + { + "start": 8698.82, + "end": 8699.08, + "probability": 0.022 + }, + { + "start": 8699.08, + "end": 8699.08, + "probability": 0.1204 + }, + { + "start": 8699.08, + "end": 8705.53, + "probability": 0.517 + }, + { + "start": 8706.88, + "end": 8708.72, + "probability": 0.9264 + }, + { + "start": 8709.52, + "end": 8711.56, + "probability": 0.7676 + }, + { + "start": 8712.1, + "end": 8715.18, + "probability": 0.8435 + }, + { + "start": 8715.72, + "end": 8719.1, + "probability": 0.8804 + }, + { + "start": 8719.64, + "end": 8724.08, + "probability": 0.9648 + }, + { + "start": 8725.42, + "end": 8728.12, + "probability": 0.8921 + }, + { + "start": 8728.74, + "end": 8733.06, + "probability": 0.5725 + }, + { + "start": 8733.56, + "end": 8735.14, + "probability": 0.979 + }, + { + "start": 8737.74, + "end": 8738.76, + "probability": 0.906 + }, + { + "start": 8739.08, + "end": 8745.88, + "probability": 0.8863 + }, + { + "start": 8746.2, + "end": 8747.64, + "probability": 0.9307 + }, + { + "start": 8747.96, + "end": 8750.1, + "probability": 0.9924 + }, + { + "start": 8750.18, + "end": 8752.55, + "probability": 0.9839 + }, + { + "start": 8753.26, + "end": 8754.12, + "probability": 0.5007 + }, + { + "start": 8754.18, + "end": 8754.88, + "probability": 0.9288 + }, + { + "start": 8755.02, + "end": 8757.68, + "probability": 0.9521 + }, + { + "start": 8758.38, + "end": 8761.34, + "probability": 0.8094 + }, + { + "start": 8761.7, + "end": 8763.01, + "probability": 0.9495 + }, + { + "start": 8763.16, + "end": 8765.84, + "probability": 0.9932 + }, + { + "start": 8765.98, + "end": 8767.64, + "probability": 0.9695 + }, + { + "start": 8768.98, + "end": 8772.26, + "probability": 0.7588 + }, + { + "start": 8772.54, + "end": 8773.24, + "probability": 0.9869 + }, + { + "start": 8774.22, + "end": 8775.16, + "probability": 0.9653 + }, + { + "start": 8775.28, + "end": 8776.76, + "probability": 0.9961 + }, + { + "start": 8777.0, + "end": 8777.76, + "probability": 0.7671 + }, + { + "start": 8778.1, + "end": 8781.02, + "probability": 0.9303 + }, + { + "start": 8781.22, + "end": 8784.42, + "probability": 0.9656 + }, + { + "start": 8785.26, + "end": 8788.0, + "probability": 0.9131 + }, + { + "start": 8788.08, + "end": 8789.64, + "probability": 0.8906 + }, + { + "start": 8790.16, + "end": 8790.36, + "probability": 0.0227 + }, + { + "start": 8790.36, + "end": 8791.88, + "probability": 0.4523 + }, + { + "start": 8792.02, + "end": 8792.93, + "probability": 0.2705 + }, + { + "start": 8793.58, + "end": 8797.68, + "probability": 0.7851 + }, + { + "start": 8798.42, + "end": 8800.12, + "probability": 0.939 + }, + { + "start": 8800.76, + "end": 8801.94, + "probability": 0.7434 + }, + { + "start": 8801.96, + "end": 8802.58, + "probability": 0.566 + }, + { + "start": 8802.78, + "end": 8803.48, + "probability": 0.0139 + }, + { + "start": 8804.82, + "end": 8806.68, + "probability": 0.0831 + }, + { + "start": 8807.1, + "end": 8809.62, + "probability": 0.5911 + }, + { + "start": 8811.48, + "end": 8812.66, + "probability": 0.1415 + }, + { + "start": 8813.58, + "end": 8816.28, + "probability": 0.4095 + }, + { + "start": 8816.78, + "end": 8822.36, + "probability": 0.8883 + }, + { + "start": 8823.8, + "end": 8825.9, + "probability": 0.2779 + }, + { + "start": 8826.34, + "end": 8830.84, + "probability": 0.9734 + }, + { + "start": 8830.96, + "end": 8831.92, + "probability": 0.3749 + }, + { + "start": 8831.92, + "end": 8834.44, + "probability": 0.249 + }, + { + "start": 8835.06, + "end": 8836.72, + "probability": 0.6189 + }, + { + "start": 8837.92, + "end": 8838.56, + "probability": 0.7823 + }, + { + "start": 8838.68, + "end": 8838.94, + "probability": 0.6031 + }, + { + "start": 8838.94, + "end": 8839.38, + "probability": 0.7154 + }, + { + "start": 8839.42, + "end": 8840.42, + "probability": 0.739 + }, + { + "start": 8840.62, + "end": 8841.4, + "probability": 0.6636 + }, + { + "start": 8841.54, + "end": 8843.9, + "probability": 0.9271 + }, + { + "start": 8844.12, + "end": 8846.06, + "probability": 0.7729 + }, + { + "start": 8846.12, + "end": 8846.52, + "probability": 0.8491 + }, + { + "start": 8846.56, + "end": 8849.92, + "probability": 0.7913 + }, + { + "start": 8850.26, + "end": 8852.22, + "probability": 0.9647 + }, + { + "start": 8852.6, + "end": 8852.98, + "probability": 0.8966 + }, + { + "start": 8853.88, + "end": 8854.16, + "probability": 0.1887 + }, + { + "start": 8854.32, + "end": 8861.44, + "probability": 0.841 + }, + { + "start": 8861.62, + "end": 8862.84, + "probability": 0.2855 + }, + { + "start": 8863.68, + "end": 8866.78, + "probability": 0.7231 + }, + { + "start": 8867.0, + "end": 8869.12, + "probability": 0.7586 + }, + { + "start": 8869.34, + "end": 8870.26, + "probability": 0.7997 + }, + { + "start": 8870.38, + "end": 8871.18, + "probability": 0.5415 + }, + { + "start": 8874.78, + "end": 8880.38, + "probability": 0.1144 + }, + { + "start": 8880.38, + "end": 8883.9, + "probability": 0.0297 + }, + { + "start": 8890.92, + "end": 8892.44, + "probability": 0.0626 + }, + { + "start": 8893.08, + "end": 8894.1, + "probability": 0.0615 + }, + { + "start": 8894.1, + "end": 8896.58, + "probability": 0.5714 + }, + { + "start": 8897.28, + "end": 8898.94, + "probability": 0.9766 + }, + { + "start": 8900.06, + "end": 8900.32, + "probability": 0.7055 + }, + { + "start": 8900.4, + "end": 8904.08, + "probability": 0.9893 + }, + { + "start": 8904.08, + "end": 8907.18, + "probability": 0.9036 + }, + { + "start": 8907.92, + "end": 8908.3, + "probability": 0.137 + }, + { + "start": 8908.3, + "end": 8913.72, + "probability": 0.921 + }, + { + "start": 8915.28, + "end": 8919.06, + "probability": 0.795 + }, + { + "start": 8921.32, + "end": 8923.84, + "probability": 0.9973 + }, + { + "start": 8923.98, + "end": 8925.92, + "probability": 0.9854 + }, + { + "start": 8926.8, + "end": 8933.62, + "probability": 0.974 + }, + { + "start": 8934.16, + "end": 8936.3, + "probability": 0.8828 + }, + { + "start": 8936.76, + "end": 8938.76, + "probability": 0.9624 + }, + { + "start": 8939.04, + "end": 8940.84, + "probability": 0.9932 + }, + { + "start": 8941.34, + "end": 8943.15, + "probability": 0.9683 + }, + { + "start": 8943.78, + "end": 8947.36, + "probability": 0.9905 + }, + { + "start": 8949.24, + "end": 8954.76, + "probability": 0.9688 + }, + { + "start": 8955.56, + "end": 8955.6, + "probability": 0.0793 + }, + { + "start": 8955.6, + "end": 8958.62, + "probability": 0.9972 + }, + { + "start": 8959.76, + "end": 8962.26, + "probability": 0.8967 + }, + { + "start": 8963.04, + "end": 8968.32, + "probability": 0.994 + }, + { + "start": 8969.26, + "end": 8972.36, + "probability": 0.8528 + }, + { + "start": 8972.42, + "end": 8973.38, + "probability": 0.3198 + }, + { + "start": 8973.4, + "end": 8976.28, + "probability": 0.6526 + }, + { + "start": 8976.28, + "end": 8976.91, + "probability": 0.1778 + }, + { + "start": 8977.2, + "end": 8979.34, + "probability": 0.8374 + }, + { + "start": 8980.2, + "end": 8981.84, + "probability": 0.9873 + }, + { + "start": 8982.28, + "end": 8987.1, + "probability": 0.8642 + }, + { + "start": 8988.0, + "end": 8989.06, + "probability": 0.9885 + }, + { + "start": 8989.18, + "end": 8990.31, + "probability": 0.9912 + }, + { + "start": 8990.42, + "end": 8991.8, + "probability": 0.8498 + }, + { + "start": 8992.48, + "end": 8994.6, + "probability": 0.7956 + }, + { + "start": 8995.58, + "end": 8998.64, + "probability": 0.9308 + }, + { + "start": 8999.44, + "end": 9003.4, + "probability": 0.8639 + }, + { + "start": 9004.28, + "end": 9009.32, + "probability": 0.9252 + }, + { + "start": 9009.92, + "end": 9014.18, + "probability": 0.9639 + }, + { + "start": 9015.66, + "end": 9021.34, + "probability": 0.9956 + }, + { + "start": 9021.46, + "end": 9024.78, + "probability": 0.8547 + }, + { + "start": 9025.92, + "end": 9026.46, + "probability": 0.3532 + }, + { + "start": 9026.48, + "end": 9030.5, + "probability": 0.9644 + }, + { + "start": 9031.8, + "end": 9034.34, + "probability": 0.9467 + }, + { + "start": 9034.92, + "end": 9035.16, + "probability": 0.8386 + }, + { + "start": 9035.22, + "end": 9035.96, + "probability": 0.9392 + }, + { + "start": 9036.08, + "end": 9037.64, + "probability": 0.9811 + }, + { + "start": 9038.12, + "end": 9038.92, + "probability": 0.8376 + }, + { + "start": 9038.94, + "end": 9040.94, + "probability": 0.9935 + }, + { + "start": 9041.4, + "end": 9042.24, + "probability": 0.9547 + }, + { + "start": 9043.12, + "end": 9044.22, + "probability": 0.967 + }, + { + "start": 9046.52, + "end": 9048.2, + "probability": 0.9966 + }, + { + "start": 9048.38, + "end": 9049.4, + "probability": 0.9542 + }, + { + "start": 9051.42, + "end": 9056.42, + "probability": 0.9329 + }, + { + "start": 9056.42, + "end": 9059.46, + "probability": 0.9968 + }, + { + "start": 9060.12, + "end": 9061.2, + "probability": 0.8202 + }, + { + "start": 9061.72, + "end": 9062.94, + "probability": 0.7972 + }, + { + "start": 9063.32, + "end": 9066.52, + "probability": 0.99 + }, + { + "start": 9066.58, + "end": 9068.42, + "probability": 0.9963 + }, + { + "start": 9069.24, + "end": 9071.86, + "probability": 0.9696 + }, + { + "start": 9072.48, + "end": 9075.58, + "probability": 0.8328 + }, + { + "start": 9076.04, + "end": 9077.1, + "probability": 0.8798 + }, + { + "start": 9077.82, + "end": 9081.28, + "probability": 0.9897 + }, + { + "start": 9082.52, + "end": 9086.5, + "probability": 0.8394 + }, + { + "start": 9086.62, + "end": 9087.32, + "probability": 0.8278 + }, + { + "start": 9087.48, + "end": 9090.91, + "probability": 0.9769 + }, + { + "start": 9091.98, + "end": 9094.88, + "probability": 0.9967 + }, + { + "start": 9096.38, + "end": 9099.34, + "probability": 0.733 + }, + { + "start": 9100.1, + "end": 9101.12, + "probability": 0.9427 + }, + { + "start": 9101.46, + "end": 9106.0, + "probability": 0.9631 + }, + { + "start": 9107.06, + "end": 9109.54, + "probability": 0.9551 + }, + { + "start": 9110.08, + "end": 9111.65, + "probability": 0.844 + }, + { + "start": 9112.3, + "end": 9116.5, + "probability": 0.897 + }, + { + "start": 9117.86, + "end": 9120.7, + "probability": 0.9589 + }, + { + "start": 9121.18, + "end": 9122.9, + "probability": 0.9919 + }, + { + "start": 9123.28, + "end": 9124.7, + "probability": 0.9636 + }, + { + "start": 9124.92, + "end": 9126.7, + "probability": 0.9936 + }, + { + "start": 9127.1, + "end": 9129.92, + "probability": 0.6419 + }, + { + "start": 9130.84, + "end": 9133.34, + "probability": 0.9693 + }, + { + "start": 9133.42, + "end": 9135.66, + "probability": 0.9858 + }, + { + "start": 9135.96, + "end": 9136.8, + "probability": 0.6206 + }, + { + "start": 9136.9, + "end": 9138.06, + "probability": 0.7617 + }, + { + "start": 9138.72, + "end": 9139.3, + "probability": 0.7775 + }, + { + "start": 9139.32, + "end": 9139.82, + "probability": 0.9045 + }, + { + "start": 9140.22, + "end": 9142.18, + "probability": 0.9199 + }, + { + "start": 9142.42, + "end": 9142.74, + "probability": 0.5338 + }, + { + "start": 9144.24, + "end": 9148.32, + "probability": 0.8206 + }, + { + "start": 9165.78, + "end": 9166.64, + "probability": 0.7642 + }, + { + "start": 9166.76, + "end": 9166.76, + "probability": 0.3587 + }, + { + "start": 9166.76, + "end": 9167.16, + "probability": 0.8053 + }, + { + "start": 9167.34, + "end": 9168.82, + "probability": 0.9144 + }, + { + "start": 9169.32, + "end": 9172.5, + "probability": 0.8525 + }, + { + "start": 9173.02, + "end": 9178.24, + "probability": 0.998 + }, + { + "start": 9178.46, + "end": 9181.84, + "probability": 0.9976 + }, + { + "start": 9182.42, + "end": 9185.58, + "probability": 0.9902 + }, + { + "start": 9185.58, + "end": 9189.48, + "probability": 0.999 + }, + { + "start": 9190.04, + "end": 9192.02, + "probability": 0.9943 + }, + { + "start": 9192.02, + "end": 9195.12, + "probability": 0.9996 + }, + { + "start": 9196.06, + "end": 9199.1, + "probability": 0.8831 + }, + { + "start": 9199.16, + "end": 9201.38, + "probability": 0.9419 + }, + { + "start": 9201.38, + "end": 9203.84, + "probability": 0.992 + }, + { + "start": 9204.7, + "end": 9207.56, + "probability": 0.9932 + }, + { + "start": 9207.64, + "end": 9209.68, + "probability": 0.9863 + }, + { + "start": 9210.24, + "end": 9212.82, + "probability": 0.9845 + }, + { + "start": 9212.82, + "end": 9215.9, + "probability": 0.9677 + }, + { + "start": 9216.88, + "end": 9219.74, + "probability": 0.9806 + }, + { + "start": 9219.74, + "end": 9222.52, + "probability": 0.9909 + }, + { + "start": 9223.88, + "end": 9224.4, + "probability": 0.7573 + }, + { + "start": 9224.48, + "end": 9227.6, + "probability": 0.9952 + }, + { + "start": 9228.4, + "end": 9232.38, + "probability": 0.9707 + }, + { + "start": 9232.92, + "end": 9237.22, + "probability": 0.9973 + }, + { + "start": 9238.82, + "end": 9239.22, + "probability": 0.5212 + }, + { + "start": 9239.44, + "end": 9243.14, + "probability": 0.9903 + }, + { + "start": 9243.22, + "end": 9244.64, + "probability": 0.9967 + }, + { + "start": 9245.18, + "end": 9247.82, + "probability": 0.8904 + }, + { + "start": 9248.02, + "end": 9248.22, + "probability": 0.7292 + }, + { + "start": 9249.22, + "end": 9251.1, + "probability": 0.7472 + }, + { + "start": 9251.4, + "end": 9254.06, + "probability": 0.9402 + }, + { + "start": 9254.62, + "end": 9254.64, + "probability": 0.2392 + }, + { + "start": 9254.72, + "end": 9256.82, + "probability": 0.7976 + }, + { + "start": 9257.54, + "end": 9261.22, + "probability": 0.9274 + }, + { + "start": 9261.8, + "end": 9262.14, + "probability": 0.0721 + }, + { + "start": 9264.06, + "end": 9268.94, + "probability": 0.6619 + }, + { + "start": 9268.94, + "end": 9270.02, + "probability": 0.7875 + }, + { + "start": 9273.82, + "end": 9273.92, + "probability": 0.4342 + }, + { + "start": 9274.76, + "end": 9276.34, + "probability": 0.5773 + }, + { + "start": 9276.34, + "end": 9276.8, + "probability": 0.48 + }, + { + "start": 9278.32, + "end": 9281.08, + "probability": 0.7381 + }, + { + "start": 9281.1, + "end": 9282.3, + "probability": 0.0604 + }, + { + "start": 9283.64, + "end": 9290.72, + "probability": 0.7868 + }, + { + "start": 9292.46, + "end": 9295.52, + "probability": 0.8457 + }, + { + "start": 9295.62, + "end": 9298.96, + "probability": 0.7403 + }, + { + "start": 9299.86, + "end": 9302.54, + "probability": 0.7771 + }, + { + "start": 9305.88, + "end": 9306.64, + "probability": 0.8117 + }, + { + "start": 9307.36, + "end": 9308.38, + "probability": 0.6125 + }, + { + "start": 9310.1, + "end": 9312.86, + "probability": 0.7719 + }, + { + "start": 9314.2, + "end": 9315.9, + "probability": 0.8499 + }, + { + "start": 9317.12, + "end": 9319.2, + "probability": 0.6879 + }, + { + "start": 9320.86, + "end": 9322.96, + "probability": 0.8485 + }, + { + "start": 9323.98, + "end": 9326.82, + "probability": 0.8685 + }, + { + "start": 9329.8, + "end": 9332.16, + "probability": 0.9076 + }, + { + "start": 9332.84, + "end": 9337.14, + "probability": 0.9449 + }, + { + "start": 9338.3, + "end": 9340.88, + "probability": 0.9536 + }, + { + "start": 9341.88, + "end": 9342.32, + "probability": 0.9795 + }, + { + "start": 9343.74, + "end": 9344.9, + "probability": 0.6411 + }, + { + "start": 9345.9, + "end": 9346.34, + "probability": 0.9626 + }, + { + "start": 9347.5, + "end": 9348.28, + "probability": 0.6598 + }, + { + "start": 9349.52, + "end": 9350.42, + "probability": 0.9951 + }, + { + "start": 9351.0, + "end": 9353.36, + "probability": 0.8831 + }, + { + "start": 9354.5, + "end": 9355.62, + "probability": 0.9826 + }, + { + "start": 9356.84, + "end": 9357.76, + "probability": 0.7906 + }, + { + "start": 9360.22, + "end": 9361.86, + "probability": 0.9363 + }, + { + "start": 9362.96, + "end": 9365.68, + "probability": 0.7699 + }, + { + "start": 9367.48, + "end": 9369.8, + "probability": 0.9343 + }, + { + "start": 9370.82, + "end": 9377.34, + "probability": 0.9479 + }, + { + "start": 9378.26, + "end": 9378.72, + "probability": 0.9685 + }, + { + "start": 9379.62, + "end": 9380.56, + "probability": 0.9331 + }, + { + "start": 9381.22, + "end": 9382.08, + "probability": 0.8953 + }, + { + "start": 9382.7, + "end": 9383.64, + "probability": 0.8825 + }, + { + "start": 9384.96, + "end": 9387.12, + "probability": 0.9891 + }, + { + "start": 9388.84, + "end": 9389.98, + "probability": 0.7342 + }, + { + "start": 9390.62, + "end": 9391.74, + "probability": 0.7531 + }, + { + "start": 9392.88, + "end": 9396.0, + "probability": 0.5954 + }, + { + "start": 9397.14, + "end": 9402.9, + "probability": 0.8354 + }, + { + "start": 9403.6, + "end": 9405.98, + "probability": 0.9634 + }, + { + "start": 9407.4, + "end": 9409.82, + "probability": 0.9602 + }, + { + "start": 9411.12, + "end": 9412.06, + "probability": 0.9893 + }, + { + "start": 9413.32, + "end": 9414.6, + "probability": 0.8344 + }, + { + "start": 9415.78, + "end": 9417.72, + "probability": 0.7701 + }, + { + "start": 9419.16, + "end": 9421.2, + "probability": 0.9363 + }, + { + "start": 9422.2, + "end": 9424.46, + "probability": 0.9442 + }, + { + "start": 9425.6, + "end": 9428.14, + "probability": 0.9629 + }, + { + "start": 9429.02, + "end": 9431.04, + "probability": 0.9371 + }, + { + "start": 9432.92, + "end": 9435.14, + "probability": 0.9497 + }, + { + "start": 9435.78, + "end": 9438.18, + "probability": 0.6348 + }, + { + "start": 9438.9, + "end": 9443.12, + "probability": 0.7496 + }, + { + "start": 9443.88, + "end": 9446.92, + "probability": 0.7611 + }, + { + "start": 9448.06, + "end": 9450.26, + "probability": 0.9593 + }, + { + "start": 9451.36, + "end": 9454.06, + "probability": 0.8357 + }, + { + "start": 9455.14, + "end": 9461.38, + "probability": 0.877 + }, + { + "start": 9463.0, + "end": 9467.46, + "probability": 0.9437 + }, + { + "start": 9468.5, + "end": 9469.68, + "probability": 0.9279 + }, + { + "start": 9471.12, + "end": 9473.14, + "probability": 0.764 + }, + { + "start": 9473.88, + "end": 9476.48, + "probability": 0.8093 + }, + { + "start": 9477.58, + "end": 9480.74, + "probability": 0.9421 + }, + { + "start": 9481.64, + "end": 9484.2, + "probability": 0.9739 + }, + { + "start": 9484.82, + "end": 9487.2, + "probability": 0.9777 + }, + { + "start": 9488.46, + "end": 9494.58, + "probability": 0.9722 + }, + { + "start": 9495.36, + "end": 9498.2, + "probability": 0.9762 + }, + { + "start": 9498.96, + "end": 9501.26, + "probability": 0.5718 + }, + { + "start": 9502.78, + "end": 9505.08, + "probability": 0.8906 + }, + { + "start": 9506.16, + "end": 9506.94, + "probability": 0.9848 + }, + { + "start": 9507.48, + "end": 9508.32, + "probability": 0.9618 + }, + { + "start": 9508.96, + "end": 9515.04, + "probability": 0.9488 + }, + { + "start": 9516.2, + "end": 9518.9, + "probability": 0.9597 + }, + { + "start": 9519.7, + "end": 9521.64, + "probability": 0.9864 + }, + { + "start": 9522.88, + "end": 9524.96, + "probability": 0.9854 + }, + { + "start": 9525.72, + "end": 9527.52, + "probability": 0.7288 + }, + { + "start": 9528.52, + "end": 9530.58, + "probability": 0.7373 + }, + { + "start": 9532.7, + "end": 9536.84, + "probability": 0.8011 + }, + { + "start": 9537.76, + "end": 9539.46, + "probability": 0.8723 + }, + { + "start": 9540.4, + "end": 9540.94, + "probability": 0.9736 + }, + { + "start": 9541.64, + "end": 9544.46, + "probability": 0.8857 + }, + { + "start": 9545.84, + "end": 9551.94, + "probability": 0.6647 + }, + { + "start": 9552.76, + "end": 9554.76, + "probability": 0.9072 + }, + { + "start": 9556.02, + "end": 9557.98, + "probability": 0.8282 + }, + { + "start": 9559.28, + "end": 9562.52, + "probability": 0.7306 + }, + { + "start": 9563.36, + "end": 9567.32, + "probability": 0.9465 + }, + { + "start": 9568.64, + "end": 9574.86, + "probability": 0.9548 + }, + { + "start": 9575.58, + "end": 9575.94, + "probability": 0.9546 + }, + { + "start": 9576.74, + "end": 9577.54, + "probability": 0.7626 + }, + { + "start": 9578.72, + "end": 9581.24, + "probability": 0.8012 + }, + { + "start": 9582.0, + "end": 9583.94, + "probability": 0.9434 + }, + { + "start": 9585.52, + "end": 9587.3, + "probability": 0.964 + }, + { + "start": 9588.1, + "end": 9588.58, + "probability": 0.9544 + }, + { + "start": 9589.3, + "end": 9590.22, + "probability": 0.8604 + }, + { + "start": 9591.5, + "end": 9593.5, + "probability": 0.9472 + }, + { + "start": 9595.7, + "end": 9596.16, + "probability": 0.9683 + }, + { + "start": 9598.16, + "end": 9599.14, + "probability": 0.8759 + }, + { + "start": 9600.34, + "end": 9600.84, + "probability": 0.9798 + }, + { + "start": 9601.98, + "end": 9603.36, + "probability": 0.9223 + }, + { + "start": 9604.58, + "end": 9606.52, + "probability": 0.7039 + }, + { + "start": 9606.72, + "end": 9608.58, + "probability": 0.8439 + }, + { + "start": 9609.12, + "end": 9609.56, + "probability": 0.9043 + }, + { + "start": 9610.42, + "end": 9611.36, + "probability": 0.7751 + }, + { + "start": 9612.1, + "end": 9614.66, + "probability": 0.9188 + }, + { + "start": 9615.64, + "end": 9616.12, + "probability": 0.986 + }, + { + "start": 9617.0, + "end": 9618.12, + "probability": 0.687 + }, + { + "start": 9619.44, + "end": 9619.94, + "probability": 0.995 + }, + { + "start": 9620.94, + "end": 9621.98, + "probability": 0.776 + }, + { + "start": 9622.98, + "end": 9623.38, + "probability": 0.9751 + }, + { + "start": 9624.52, + "end": 9625.54, + "probability": 0.9277 + }, + { + "start": 9626.96, + "end": 9628.96, + "probability": 0.7592 + }, + { + "start": 9630.82, + "end": 9633.32, + "probability": 0.7832 + }, + { + "start": 9634.2, + "end": 9634.94, + "probability": 0.9532 + }, + { + "start": 9635.52, + "end": 9636.5, + "probability": 0.8346 + }, + { + "start": 9637.4, + "end": 9639.24, + "probability": 0.9423 + }, + { + "start": 9642.36, + "end": 9642.88, + "probability": 0.9858 + }, + { + "start": 9644.4, + "end": 9645.34, + "probability": 0.9273 + }, + { + "start": 9646.54, + "end": 9648.44, + "probability": 0.9343 + }, + { + "start": 9649.3, + "end": 9649.76, + "probability": 0.9793 + }, + { + "start": 9652.28, + "end": 9654.58, + "probability": 0.8121 + }, + { + "start": 9656.36, + "end": 9656.9, + "probability": 0.6844 + }, + { + "start": 9658.22, + "end": 9658.66, + "probability": 0.5664 + }, + { + "start": 9659.7, + "end": 9660.52, + "probability": 0.7089 + }, + { + "start": 9661.64, + "end": 9662.02, + "probability": 0.947 + }, + { + "start": 9662.7, + "end": 9663.54, + "probability": 0.7987 + }, + { + "start": 9664.86, + "end": 9666.66, + "probability": 0.8414 + }, + { + "start": 9667.44, + "end": 9667.9, + "probability": 0.9684 + }, + { + "start": 9669.1, + "end": 9669.68, + "probability": 0.8585 + }, + { + "start": 9672.92, + "end": 9673.4, + "probability": 0.9717 + }, + { + "start": 9674.4, + "end": 9676.14, + "probability": 0.7912 + }, + { + "start": 9677.9, + "end": 9680.84, + "probability": 0.917 + }, + { + "start": 9683.8, + "end": 9684.3, + "probability": 0.9941 + }, + { + "start": 9685.34, + "end": 9686.26, + "probability": 0.8855 + }, + { + "start": 9688.32, + "end": 9690.48, + "probability": 0.7338 + }, + { + "start": 9691.28, + "end": 9691.56, + "probability": 0.9883 + }, + { + "start": 9692.32, + "end": 9693.26, + "probability": 0.911 + }, + { + "start": 9694.28, + "end": 9694.72, + "probability": 0.9614 + }, + { + "start": 9695.66, + "end": 9696.76, + "probability": 0.7946 + }, + { + "start": 9697.42, + "end": 9697.76, + "probability": 0.9377 + }, + { + "start": 9699.48, + "end": 9702.58, + "probability": 0.9315 + }, + { + "start": 9704.04, + "end": 9705.58, + "probability": 0.8977 + }, + { + "start": 9706.7, + "end": 9710.14, + "probability": 0.6312 + }, + { + "start": 9711.18, + "end": 9712.76, + "probability": 0.7665 + }, + { + "start": 9713.82, + "end": 9715.56, + "probability": 0.9096 + }, + { + "start": 9718.2, + "end": 9720.56, + "probability": 0.6982 + }, + { + "start": 9721.38, + "end": 9723.62, + "probability": 0.9159 + }, + { + "start": 9724.34, + "end": 9726.5, + "probability": 0.9102 + }, + { + "start": 9727.4, + "end": 9733.78, + "probability": 0.8899 + }, + { + "start": 9734.42, + "end": 9737.16, + "probability": 0.408 + }, + { + "start": 9738.42, + "end": 9740.74, + "probability": 0.9109 + }, + { + "start": 9741.26, + "end": 9742.04, + "probability": 0.9758 + }, + { + "start": 9743.94, + "end": 9744.98, + "probability": 0.7454 + }, + { + "start": 9746.94, + "end": 9747.58, + "probability": 0.8771 + }, + { + "start": 9748.7, + "end": 9749.78, + "probability": 0.8325 + }, + { + "start": 9751.14, + "end": 9751.84, + "probability": 0.9889 + }, + { + "start": 9752.36, + "end": 9752.94, + "probability": 0.2916 + }, + { + "start": 9753.62, + "end": 9756.2, + "probability": 0.7153 + }, + { + "start": 9756.8, + "end": 9759.48, + "probability": 0.8599 + }, + { + "start": 9760.38, + "end": 9761.22, + "probability": 0.8772 + }, + { + "start": 9761.84, + "end": 9763.68, + "probability": 0.8799 + }, + { + "start": 9764.24, + "end": 9765.98, + "probability": 0.9506 + }, + { + "start": 9766.9, + "end": 9768.66, + "probability": 0.6255 + }, + { + "start": 9773.66, + "end": 9775.08, + "probability": 0.6762 + }, + { + "start": 9777.32, + "end": 9780.5, + "probability": 0.577 + }, + { + "start": 9782.54, + "end": 9782.96, + "probability": 0.4076 + }, + { + "start": 9784.06, + "end": 9784.9, + "probability": 0.9022 + }, + { + "start": 9786.68, + "end": 9788.8, + "probability": 0.7446 + }, + { + "start": 9790.12, + "end": 9796.86, + "probability": 0.8901 + }, + { + "start": 9798.26, + "end": 9800.94, + "probability": 0.8189 + }, + { + "start": 9801.74, + "end": 9804.02, + "probability": 0.9439 + }, + { + "start": 9805.26, + "end": 9813.12, + "probability": 0.6064 + }, + { + "start": 9814.4, + "end": 9818.46, + "probability": 0.8755 + }, + { + "start": 9819.48, + "end": 9821.44, + "probability": 0.9027 + }, + { + "start": 9822.32, + "end": 9824.96, + "probability": 0.9635 + }, + { + "start": 9825.98, + "end": 9828.6, + "probability": 0.9728 + }, + { + "start": 9829.5, + "end": 9832.06, + "probability": 0.8851 + }, + { + "start": 9833.1, + "end": 9833.84, + "probability": 0.6459 + }, + { + "start": 9834.4, + "end": 9836.74, + "probability": 0.7208 + }, + { + "start": 9839.97, + "end": 9842.46, + "probability": 0.7407 + }, + { + "start": 9843.12, + "end": 9846.76, + "probability": 0.8402 + }, + { + "start": 9848.66, + "end": 9849.2, + "probability": 0.8698 + }, + { + "start": 9850.76, + "end": 9851.56, + "probability": 0.6841 + }, + { + "start": 9853.92, + "end": 9855.22, + "probability": 0.8573 + }, + { + "start": 9856.84, + "end": 9857.34, + "probability": 0.6344 + }, + { + "start": 9859.16, + "end": 9860.24, + "probability": 0.8135 + }, + { + "start": 9861.16, + "end": 9863.18, + "probability": 0.9455 + }, + { + "start": 9864.24, + "end": 9866.22, + "probability": 0.9601 + }, + { + "start": 9866.96, + "end": 9869.32, + "probability": 0.7215 + }, + { + "start": 9870.4, + "end": 9871.34, + "probability": 0.8501 + }, + { + "start": 9872.96, + "end": 9873.8, + "probability": 0.6326 + }, + { + "start": 9874.96, + "end": 9877.23, + "probability": 0.9241 + }, + { + "start": 9877.88, + "end": 9881.94, + "probability": 0.9853 + }, + { + "start": 9882.92, + "end": 9885.02, + "probability": 0.9692 + }, + { + "start": 9885.88, + "end": 9887.5, + "probability": 0.8848 + }, + { + "start": 9888.16, + "end": 9892.08, + "probability": 0.9567 + }, + { + "start": 9892.86, + "end": 9897.2, + "probability": 0.9662 + }, + { + "start": 9898.24, + "end": 9898.98, + "probability": 0.9739 + }, + { + "start": 9899.58, + "end": 9900.96, + "probability": 0.8491 + }, + { + "start": 9902.08, + "end": 9906.18, + "probability": 0.9859 + }, + { + "start": 9907.16, + "end": 9909.1, + "probability": 0.9345 + }, + { + "start": 9910.0, + "end": 9911.28, + "probability": 0.8654 + }, + { + "start": 9912.58, + "end": 9913.72, + "probability": 0.8226 + }, + { + "start": 9915.7, + "end": 9916.56, + "probability": 0.833 + }, + { + "start": 9917.4, + "end": 9918.38, + "probability": 0.812 + }, + { + "start": 9919.28, + "end": 9921.98, + "probability": 0.9329 + }, + { + "start": 9923.06, + "end": 9923.88, + "probability": 0.9925 + }, + { + "start": 9926.36, + "end": 9927.26, + "probability": 0.8476 + }, + { + "start": 9928.2, + "end": 9929.84, + "probability": 0.8794 + }, + { + "start": 9930.62, + "end": 9933.88, + "probability": 0.9242 + }, + { + "start": 9935.12, + "end": 9937.18, + "probability": 0.9809 + }, + { + "start": 9937.9, + "end": 9939.56, + "probability": 0.5264 + }, + { + "start": 9940.4, + "end": 9942.52, + "probability": 0.8532 + }, + { + "start": 9943.2, + "end": 9945.63, + "probability": 0.4067 + }, + { + "start": 9946.14, + "end": 9950.02, + "probability": 0.917 + }, + { + "start": 9951.28, + "end": 9953.0, + "probability": 0.1609 + }, + { + "start": 9956.34, + "end": 9957.32, + "probability": 0.6527 + }, + { + "start": 9958.0, + "end": 9963.18, + "probability": 0.9137 + }, + { + "start": 9963.34, + "end": 9964.64, + "probability": 0.5467 + }, + { + "start": 9965.26, + "end": 9966.9, + "probability": 0.8154 + }, + { + "start": 9967.5, + "end": 9968.98, + "probability": 0.0289 + }, + { + "start": 9969.58, + "end": 9970.64, + "probability": 0.0044 + }, + { + "start": 9970.64, + "end": 9973.66, + "probability": 0.0593 + }, + { + "start": 10015.06, + "end": 10016.14, + "probability": 0.0369 + }, + { + "start": 10016.14, + "end": 10016.3, + "probability": 0.0949 + }, + { + "start": 10016.3, + "end": 10016.51, + "probability": 0.0209 + }, + { + "start": 10036.22, + "end": 10036.22, + "probability": 0.1915 + }, + { + "start": 10037.22, + "end": 10040.24, + "probability": 0.0569 + }, + { + "start": 10040.24, + "end": 10040.7, + "probability": 0.1737 + }, + { + "start": 10069.0, + "end": 10069.0, + "probability": 0.0 + }, + { + "start": 10069.1, + "end": 10071.34, + "probability": 0.7248 + }, + { + "start": 10072.28, + "end": 10076.48, + "probability": 0.9399 + }, + { + "start": 10078.84, + "end": 10087.92, + "probability": 0.7341 + }, + { + "start": 10088.72, + "end": 10089.68, + "probability": 0.9134 + }, + { + "start": 10090.22, + "end": 10091.28, + "probability": 0.7453 + }, + { + "start": 10092.92, + "end": 10096.34, + "probability": 0.9877 + }, + { + "start": 10096.84, + "end": 10102.26, + "probability": 0.9941 + }, + { + "start": 10102.26, + "end": 10105.78, + "probability": 0.9761 + }, + { + "start": 10106.11, + "end": 10112.18, + "probability": 0.9972 + }, + { + "start": 10113.0, + "end": 10114.82, + "probability": 0.971 + }, + { + "start": 10114.82, + "end": 10116.5, + "probability": 0.8198 + }, + { + "start": 10116.94, + "end": 10119.3, + "probability": 0.989 + }, + { + "start": 10121.18, + "end": 10130.52, + "probability": 0.9746 + }, + { + "start": 10131.74, + "end": 10134.38, + "probability": 0.8847 + }, + { + "start": 10135.14, + "end": 10138.14, + "probability": 0.9761 + }, + { + "start": 10138.9, + "end": 10140.44, + "probability": 0.8209 + }, + { + "start": 10141.1, + "end": 10143.1, + "probability": 0.9388 + }, + { + "start": 10143.56, + "end": 10145.3, + "probability": 0.9312 + }, + { + "start": 10145.72, + "end": 10149.34, + "probability": 0.9966 + }, + { + "start": 10149.34, + "end": 10153.7, + "probability": 0.9925 + }, + { + "start": 10154.6, + "end": 10158.22, + "probability": 0.8685 + }, + { + "start": 10159.28, + "end": 10165.04, + "probability": 0.998 + }, + { + "start": 10166.28, + "end": 10168.26, + "probability": 0.8217 + }, + { + "start": 10168.9, + "end": 10169.7, + "probability": 0.7665 + }, + { + "start": 10170.42, + "end": 10172.96, + "probability": 0.9837 + }, + { + "start": 10172.96, + "end": 10173.46, + "probability": 0.7063 + }, + { + "start": 10174.04, + "end": 10174.54, + "probability": 0.8048 + }, + { + "start": 10174.6, + "end": 10176.08, + "probability": 0.8604 + }, + { + "start": 10176.4, + "end": 10179.52, + "probability": 0.9807 + }, + { + "start": 10180.7, + "end": 10184.38, + "probability": 0.99 + }, + { + "start": 10184.92, + "end": 10186.6, + "probability": 0.9492 + }, + { + "start": 10187.54, + "end": 10189.41, + "probability": 0.5503 + }, + { + "start": 10189.94, + "end": 10192.18, + "probability": 0.8292 + }, + { + "start": 10192.74, + "end": 10196.98, + "probability": 0.9827 + }, + { + "start": 10197.86, + "end": 10199.7, + "probability": 0.9635 + }, + { + "start": 10200.68, + "end": 10202.62, + "probability": 0.9663 + }, + { + "start": 10203.26, + "end": 10204.72, + "probability": 0.9805 + }, + { + "start": 10205.1, + "end": 10207.64, + "probability": 0.9941 + }, + { + "start": 10208.12, + "end": 10212.62, + "probability": 0.9894 + }, + { + "start": 10214.52, + "end": 10217.68, + "probability": 0.9887 + }, + { + "start": 10218.38, + "end": 10223.44, + "probability": 0.9982 + }, + { + "start": 10224.78, + "end": 10227.1, + "probability": 0.7158 + }, + { + "start": 10227.68, + "end": 10230.52, + "probability": 0.7351 + }, + { + "start": 10231.46, + "end": 10235.52, + "probability": 0.997 + }, + { + "start": 10235.52, + "end": 10239.94, + "probability": 0.9277 + }, + { + "start": 10240.72, + "end": 10244.1, + "probability": 0.9792 + }, + { + "start": 10244.76, + "end": 10247.08, + "probability": 0.9893 + }, + { + "start": 10247.56, + "end": 10251.18, + "probability": 0.9376 + }, + { + "start": 10251.52, + "end": 10252.54, + "probability": 0.9099 + }, + { + "start": 10252.78, + "end": 10255.28, + "probability": 0.8288 + }, + { + "start": 10255.98, + "end": 10257.66, + "probability": 0.9837 + }, + { + "start": 10257.72, + "end": 10261.16, + "probability": 0.9829 + }, + { + "start": 10261.6, + "end": 10262.76, + "probability": 0.6958 + }, + { + "start": 10264.34, + "end": 10265.38, + "probability": 0.9052 + }, + { + "start": 10265.62, + "end": 10269.66, + "probability": 0.9946 + }, + { + "start": 10270.2, + "end": 10270.68, + "probability": 0.8682 + }, + { + "start": 10272.0, + "end": 10272.6, + "probability": 0.9133 + }, + { + "start": 10273.3, + "end": 10274.28, + "probability": 0.9533 + }, + { + "start": 10274.34, + "end": 10275.48, + "probability": 0.7542 + }, + { + "start": 10275.82, + "end": 10277.6, + "probability": 0.9728 + }, + { + "start": 10279.0, + "end": 10279.78, + "probability": 0.613 + }, + { + "start": 10281.2, + "end": 10283.48, + "probability": 0.749 + }, + { + "start": 10284.14, + "end": 10285.88, + "probability": 0.7874 + }, + { + "start": 10286.9, + "end": 10287.64, + "probability": 0.781 + }, + { + "start": 10287.78, + "end": 10293.1, + "probability": 0.9961 + }, + { + "start": 10293.64, + "end": 10301.18, + "probability": 0.9623 + }, + { + "start": 10301.22, + "end": 10303.96, + "probability": 0.9643 + }, + { + "start": 10304.24, + "end": 10305.92, + "probability": 0.9697 + }, + { + "start": 10306.26, + "end": 10307.36, + "probability": 0.7338 + }, + { + "start": 10308.42, + "end": 10311.72, + "probability": 0.699 + }, + { + "start": 10312.36, + "end": 10312.92, + "probability": 0.6291 + }, + { + "start": 10313.08, + "end": 10314.34, + "probability": 0.2486 + }, + { + "start": 10314.56, + "end": 10315.98, + "probability": 0.6856 + }, + { + "start": 10316.0, + "end": 10321.96, + "probability": 0.994 + }, + { + "start": 10321.96, + "end": 10326.36, + "probability": 0.9978 + }, + { + "start": 10326.36, + "end": 10328.95, + "probability": 0.1301 + }, + { + "start": 10329.46, + "end": 10330.32, + "probability": 0.5311 + }, + { + "start": 10331.44, + "end": 10332.45, + "probability": 0.7893 + }, + { + "start": 10333.64, + "end": 10337.94, + "probability": 0.9704 + }, + { + "start": 10337.98, + "end": 10339.8, + "probability": 0.9546 + }, + { + "start": 10339.9, + "end": 10341.28, + "probability": 0.7606 + }, + { + "start": 10341.46, + "end": 10342.06, + "probability": 0.656 + }, + { + "start": 10342.4, + "end": 10343.02, + "probability": 0.9747 + }, + { + "start": 10343.12, + "end": 10345.76, + "probability": 0.9896 + }, + { + "start": 10345.88, + "end": 10347.3, + "probability": 0.174 + }, + { + "start": 10347.32, + "end": 10349.62, + "probability": 0.6276 + }, + { + "start": 10350.3, + "end": 10350.88, + "probability": 0.7366 + }, + { + "start": 10351.0, + "end": 10355.66, + "probability": 0.9782 + }, + { + "start": 10356.46, + "end": 10361.0, + "probability": 0.9574 + }, + { + "start": 10361.36, + "end": 10365.59, + "probability": 0.9976 + }, + { + "start": 10367.64, + "end": 10371.78, + "probability": 0.9656 + }, + { + "start": 10372.44, + "end": 10375.64, + "probability": 0.8313 + }, + { + "start": 10376.14, + "end": 10376.9, + "probability": 0.7464 + }, + { + "start": 10377.26, + "end": 10379.82, + "probability": 0.847 + }, + { + "start": 10380.38, + "end": 10381.28, + "probability": 0.7237 + }, + { + "start": 10381.54, + "end": 10383.58, + "probability": 0.9868 + }, + { + "start": 10383.74, + "end": 10385.52, + "probability": 0.9952 + }, + { + "start": 10385.94, + "end": 10388.28, + "probability": 0.9792 + }, + { + "start": 10389.26, + "end": 10390.06, + "probability": 0.6683 + }, + { + "start": 10391.44, + "end": 10392.48, + "probability": 0.8035 + }, + { + "start": 10393.32, + "end": 10394.74, + "probability": 0.9442 + }, + { + "start": 10395.18, + "end": 10399.62, + "probability": 0.8716 + }, + { + "start": 10400.3, + "end": 10403.2, + "probability": 0.9688 + }, + { + "start": 10404.1, + "end": 10406.26, + "probability": 0.8979 + }, + { + "start": 10406.92, + "end": 10409.09, + "probability": 0.9141 + }, + { + "start": 10409.16, + "end": 10409.38, + "probability": 0.054 + }, + { + "start": 10409.46, + "end": 10412.86, + "probability": 0.812 + }, + { + "start": 10412.96, + "end": 10413.04, + "probability": 0.3358 + }, + { + "start": 10413.1, + "end": 10414.38, + "probability": 0.9492 + }, + { + "start": 10414.4, + "end": 10415.58, + "probability": 0.474 + }, + { + "start": 10415.82, + "end": 10417.92, + "probability": 0.8994 + }, + { + "start": 10418.54, + "end": 10420.84, + "probability": 0.8453 + }, + { + "start": 10421.48, + "end": 10425.18, + "probability": 0.9724 + }, + { + "start": 10425.42, + "end": 10429.58, + "probability": 0.4857 + }, + { + "start": 10430.06, + "end": 10430.58, + "probability": 0.7526 + }, + { + "start": 10430.78, + "end": 10432.05, + "probability": 0.9745 + }, + { + "start": 10432.8, + "end": 10437.55, + "probability": 0.9961 + }, + { + "start": 10437.66, + "end": 10438.77, + "probability": 0.9822 + }, + { + "start": 10439.5, + "end": 10440.14, + "probability": 0.7323 + }, + { + "start": 10440.38, + "end": 10441.36, + "probability": 0.9916 + }, + { + "start": 10442.78, + "end": 10445.44, + "probability": 0.9309 + }, + { + "start": 10445.44, + "end": 10450.0, + "probability": 0.9813 + }, + { + "start": 10450.08, + "end": 10452.08, + "probability": 0.9655 + }, + { + "start": 10452.48, + "end": 10453.66, + "probability": 0.9506 + }, + { + "start": 10454.88, + "end": 10456.36, + "probability": 0.701 + }, + { + "start": 10457.06, + "end": 10458.04, + "probability": 0.9271 + }, + { + "start": 10458.62, + "end": 10461.94, + "probability": 0.9954 + }, + { + "start": 10463.06, + "end": 10467.46, + "probability": 0.9906 + }, + { + "start": 10468.14, + "end": 10470.0, + "probability": 0.9785 + }, + { + "start": 10470.42, + "end": 10475.26, + "probability": 0.9893 + }, + { + "start": 10475.36, + "end": 10475.82, + "probability": 0.3303 + }, + { + "start": 10475.82, + "end": 10475.82, + "probability": 0.2898 + }, + { + "start": 10475.98, + "end": 10477.8, + "probability": 0.9897 + }, + { + "start": 10478.04, + "end": 10479.38, + "probability": 0.5075 + }, + { + "start": 10480.6, + "end": 10482.32, + "probability": 0.3475 + }, + { + "start": 10483.0, + "end": 10483.0, + "probability": 0.0209 + }, + { + "start": 10483.0, + "end": 10486.16, + "probability": 0.5041 + }, + { + "start": 10486.28, + "end": 10488.07, + "probability": 0.9976 + }, + { + "start": 10488.46, + "end": 10490.64, + "probability": 0.8635 + }, + { + "start": 10490.7, + "end": 10495.76, + "probability": 0.8582 + }, + { + "start": 10496.18, + "end": 10498.5, + "probability": 0.9703 + }, + { + "start": 10498.94, + "end": 10501.0, + "probability": 0.9756 + }, + { + "start": 10502.26, + "end": 10504.8, + "probability": 0.8152 + }, + { + "start": 10505.54, + "end": 10506.08, + "probability": 0.3682 + }, + { + "start": 10506.08, + "end": 10510.16, + "probability": 0.9374 + }, + { + "start": 10510.38, + "end": 10511.62, + "probability": 0.9076 + }, + { + "start": 10513.0, + "end": 10515.7, + "probability": 0.9885 + }, + { + "start": 10516.28, + "end": 10518.42, + "probability": 0.9976 + }, + { + "start": 10519.4, + "end": 10522.48, + "probability": 0.9888 + }, + { + "start": 10522.48, + "end": 10525.84, + "probability": 0.993 + }, + { + "start": 10525.96, + "end": 10527.07, + "probability": 0.8232 + }, + { + "start": 10527.52, + "end": 10529.24, + "probability": 0.7863 + }, + { + "start": 10529.9, + "end": 10532.12, + "probability": 0.9646 + }, + { + "start": 10533.36, + "end": 10538.26, + "probability": 0.9731 + }, + { + "start": 10539.4, + "end": 10539.98, + "probability": 0.5262 + }, + { + "start": 10540.5, + "end": 10544.06, + "probability": 0.9922 + }, + { + "start": 10544.44, + "end": 10546.2, + "probability": 0.9863 + }, + { + "start": 10547.06, + "end": 10553.2, + "probability": 0.9801 + }, + { + "start": 10553.52, + "end": 10557.89, + "probability": 0.9937 + }, + { + "start": 10559.24, + "end": 10562.86, + "probability": 0.8024 + }, + { + "start": 10563.4, + "end": 10565.92, + "probability": 0.9922 + }, + { + "start": 10566.52, + "end": 10569.88, + "probability": 0.9597 + }, + { + "start": 10569.88, + "end": 10573.82, + "probability": 0.9959 + }, + { + "start": 10574.36, + "end": 10575.4, + "probability": 0.9949 + }, + { + "start": 10576.28, + "end": 10578.32, + "probability": 0.9404 + }, + { + "start": 10579.12, + "end": 10580.72, + "probability": 0.8892 + }, + { + "start": 10581.46, + "end": 10583.46, + "probability": 0.9463 + }, + { + "start": 10584.1, + "end": 10589.4, + "probability": 0.9534 + }, + { + "start": 10590.74, + "end": 10591.3, + "probability": 0.8888 + }, + { + "start": 10591.7, + "end": 10591.9, + "probability": 0.8386 + }, + { + "start": 10591.98, + "end": 10592.56, + "probability": 0.6973 + }, + { + "start": 10593.12, + "end": 10593.68, + "probability": 0.6849 + }, + { + "start": 10593.82, + "end": 10595.72, + "probability": 0.9757 + }, + { + "start": 10596.42, + "end": 10599.04, + "probability": 0.9917 + }, + { + "start": 10599.72, + "end": 10602.34, + "probability": 0.9929 + }, + { + "start": 10602.96, + "end": 10603.72, + "probability": 0.9581 + }, + { + "start": 10605.0, + "end": 10606.44, + "probability": 0.8123 + }, + { + "start": 10607.08, + "end": 10610.4, + "probability": 0.9669 + }, + { + "start": 10611.32, + "end": 10613.14, + "probability": 0.9102 + }, + { + "start": 10613.92, + "end": 10614.26, + "probability": 0.546 + }, + { + "start": 10614.28, + "end": 10615.52, + "probability": 0.8471 + }, + { + "start": 10616.02, + "end": 10617.88, + "probability": 0.7551 + }, + { + "start": 10617.98, + "end": 10619.3, + "probability": 0.9005 + }, + { + "start": 10619.64, + "end": 10626.72, + "probability": 0.9937 + }, + { + "start": 10626.72, + "end": 10634.16, + "probability": 0.9815 + }, + { + "start": 10634.94, + "end": 10635.22, + "probability": 0.7621 + }, + { + "start": 10635.3, + "end": 10636.5, + "probability": 0.7699 + }, + { + "start": 10636.56, + "end": 10643.14, + "probability": 0.9912 + }, + { + "start": 10643.68, + "end": 10649.88, + "probability": 0.9956 + }, + { + "start": 10650.84, + "end": 10651.74, + "probability": 0.735 + }, + { + "start": 10652.04, + "end": 10652.74, + "probability": 0.9305 + }, + { + "start": 10653.02, + "end": 10653.5, + "probability": 0.8562 + }, + { + "start": 10654.58, + "end": 10657.22, + "probability": 0.9375 + }, + { + "start": 10657.34, + "end": 10661.22, + "probability": 0.4083 + }, + { + "start": 10661.64, + "end": 10662.84, + "probability": 0.9128 + }, + { + "start": 10665.06, + "end": 10667.7, + "probability": 0.8896 + }, + { + "start": 10668.96, + "end": 10670.8, + "probability": 0.3848 + }, + { + "start": 10671.42, + "end": 10673.16, + "probability": 0.9893 + }, + { + "start": 10676.2, + "end": 10677.36, + "probability": 0.6329 + }, + { + "start": 10677.52, + "end": 10679.56, + "probability": 0.9272 + }, + { + "start": 10681.52, + "end": 10681.78, + "probability": 0.9209 + }, + { + "start": 10682.84, + "end": 10686.3, + "probability": 0.9814 + }, + { + "start": 10688.0, + "end": 10688.68, + "probability": 0.662 + }, + { + "start": 10688.78, + "end": 10689.74, + "probability": 0.9724 + }, + { + "start": 10689.88, + "end": 10691.3, + "probability": 0.9561 + }, + { + "start": 10692.34, + "end": 10693.58, + "probability": 0.855 + }, + { + "start": 10693.96, + "end": 10694.84, + "probability": 0.5744 + }, + { + "start": 10694.86, + "end": 10702.08, + "probability": 0.9651 + }, + { + "start": 10702.2, + "end": 10704.3, + "probability": 0.961 + }, + { + "start": 10704.94, + "end": 10709.44, + "probability": 0.9736 + }, + { + "start": 10709.54, + "end": 10710.88, + "probability": 0.9906 + }, + { + "start": 10710.92, + "end": 10711.78, + "probability": 0.9775 + }, + { + "start": 10712.38, + "end": 10716.04, + "probability": 0.9626 + }, + { + "start": 10716.2, + "end": 10718.78, + "probability": 0.9802 + }, + { + "start": 10719.22, + "end": 10720.58, + "probability": 0.9988 + }, + { + "start": 10722.22, + "end": 10726.28, + "probability": 0.3324 + }, + { + "start": 10726.44, + "end": 10727.18, + "probability": 0.2573 + }, + { + "start": 10727.18, + "end": 10728.92, + "probability": 0.6326 + }, + { + "start": 10731.78, + "end": 10736.6, + "probability": 0.5828 + }, + { + "start": 10736.76, + "end": 10737.6, + "probability": 0.4201 + }, + { + "start": 10738.08, + "end": 10740.54, + "probability": 0.9571 + }, + { + "start": 10740.78, + "end": 10741.48, + "probability": 0.8518 + }, + { + "start": 10741.78, + "end": 10743.54, + "probability": 0.9924 + }, + { + "start": 10743.92, + "end": 10747.2, + "probability": 0.0974 + }, + { + "start": 10747.82, + "end": 10748.08, + "probability": 0.001 + }, + { + "start": 10748.08, + "end": 10749.34, + "probability": 0.2064 + }, + { + "start": 10749.34, + "end": 10749.34, + "probability": 0.4417 + }, + { + "start": 10750.3, + "end": 10754.86, + "probability": 0.9729 + }, + { + "start": 10755.68, + "end": 10757.64, + "probability": 0.9631 + }, + { + "start": 10758.06, + "end": 10760.27, + "probability": 0.9869 + }, + { + "start": 10760.8, + "end": 10762.76, + "probability": 0.9604 + }, + { + "start": 10763.0, + "end": 10766.58, + "probability": 0.9895 + }, + { + "start": 10766.98, + "end": 10768.59, + "probability": 0.7744 + }, + { + "start": 10769.06, + "end": 10771.88, + "probability": 0.6319 + }, + { + "start": 10772.4, + "end": 10775.02, + "probability": 0.6831 + }, + { + "start": 10775.54, + "end": 10780.14, + "probability": 0.993 + }, + { + "start": 10780.6, + "end": 10785.86, + "probability": 0.6952 + }, + { + "start": 10786.5, + "end": 10787.62, + "probability": 0.8442 + }, + { + "start": 10787.64, + "end": 10787.94, + "probability": 0.4795 + }, + { + "start": 10788.02, + "end": 10788.4, + "probability": 0.9 + }, + { + "start": 10788.6, + "end": 10795.18, + "probability": 0.8564 + }, + { + "start": 10795.34, + "end": 10799.46, + "probability": 0.9283 + }, + { + "start": 10800.1, + "end": 10801.6, + "probability": 0.9709 + }, + { + "start": 10801.72, + "end": 10803.52, + "probability": 0.7496 + }, + { + "start": 10803.94, + "end": 10805.34, + "probability": 0.8146 + }, + { + "start": 10805.44, + "end": 10806.22, + "probability": 0.8626 + }, + { + "start": 10806.38, + "end": 10809.08, + "probability": 0.987 + }, + { + "start": 10809.7, + "end": 10811.88, + "probability": 0.9148 + }, + { + "start": 10812.44, + "end": 10817.5, + "probability": 0.9305 + }, + { + "start": 10817.8, + "end": 10817.8, + "probability": 0.081 + }, + { + "start": 10817.8, + "end": 10817.86, + "probability": 0.119 + }, + { + "start": 10817.86, + "end": 10818.95, + "probability": 0.7784 + }, + { + "start": 10819.4, + "end": 10822.34, + "probability": 0.9873 + }, + { + "start": 10822.48, + "end": 10822.6, + "probability": 0.1107 + }, + { + "start": 10822.74, + "end": 10823.7, + "probability": 0.9009 + }, + { + "start": 10823.78, + "end": 10824.18, + "probability": 0.5212 + }, + { + "start": 10824.28, + "end": 10825.46, + "probability": 0.9811 + }, + { + "start": 10825.52, + "end": 10826.44, + "probability": 0.7824 + }, + { + "start": 10826.98, + "end": 10827.88, + "probability": 0.7744 + }, + { + "start": 10828.36, + "end": 10828.38, + "probability": 0.35 + }, + { + "start": 10828.38, + "end": 10831.62, + "probability": 0.993 + }, + { + "start": 10831.64, + "end": 10833.52, + "probability": 0.8628 + }, + { + "start": 10835.25, + "end": 10838.96, + "probability": 0.9985 + }, + { + "start": 10839.08, + "end": 10840.3, + "probability": 0.9907 + }, + { + "start": 10840.44, + "end": 10841.74, + "probability": 0.7788 + }, + { + "start": 10842.94, + "end": 10845.92, + "probability": 0.928 + }, + { + "start": 10846.06, + "end": 10847.02, + "probability": 0.389 + }, + { + "start": 10848.06, + "end": 10848.62, + "probability": 0.6625 + }, + { + "start": 10849.28, + "end": 10849.92, + "probability": 0.4763 + }, + { + "start": 10850.26, + "end": 10852.3, + "probability": 0.9976 + }, + { + "start": 10852.38, + "end": 10854.48, + "probability": 0.9873 + }, + { + "start": 10854.66, + "end": 10858.25, + "probability": 0.9939 + }, + { + "start": 10859.56, + "end": 10862.38, + "probability": 0.9968 + }, + { + "start": 10862.38, + "end": 10865.48, + "probability": 0.999 + }, + { + "start": 10866.52, + "end": 10869.46, + "probability": 0.9924 + }, + { + "start": 10869.98, + "end": 10871.84, + "probability": 0.9985 + }, + { + "start": 10872.42, + "end": 10876.46, + "probability": 0.9932 + }, + { + "start": 10877.0, + "end": 10881.5, + "probability": 0.9978 + }, + { + "start": 10881.92, + "end": 10886.76, + "probability": 0.9907 + }, + { + "start": 10886.76, + "end": 10892.46, + "probability": 0.9979 + }, + { + "start": 10893.06, + "end": 10894.56, + "probability": 0.7043 + }, + { + "start": 10894.7, + "end": 10896.6, + "probability": 0.9702 + }, + { + "start": 10897.78, + "end": 10898.12, + "probability": 0.0135 + }, + { + "start": 10898.8, + "end": 10900.28, + "probability": 0.6476 + }, + { + "start": 10900.38, + "end": 10902.56, + "probability": 0.8564 + }, + { + "start": 10904.18, + "end": 10906.4, + "probability": 0.7464 + }, + { + "start": 10907.92, + "end": 10908.22, + "probability": 0.6149 + }, + { + "start": 10908.4, + "end": 10911.7, + "probability": 0.9917 + }, + { + "start": 10912.5, + "end": 10913.0, + "probability": 0.7166 + }, + { + "start": 10913.98, + "end": 10914.68, + "probability": 0.6856 + }, + { + "start": 10914.78, + "end": 10916.6, + "probability": 0.8237 + }, + { + "start": 10917.5, + "end": 10922.0, + "probability": 0.9575 + }, + { + "start": 10922.52, + "end": 10923.16, + "probability": 0.9895 + }, + { + "start": 10924.18, + "end": 10930.46, + "probability": 0.9813 + }, + { + "start": 10931.74, + "end": 10932.42, + "probability": 0.9102 + }, + { + "start": 10933.38, + "end": 10934.8, + "probability": 0.924 + }, + { + "start": 10934.84, + "end": 10938.22, + "probability": 0.9811 + }, + { + "start": 10938.56, + "end": 10940.58, + "probability": 0.9216 + }, + { + "start": 10941.02, + "end": 10944.02, + "probability": 0.9905 + }, + { + "start": 10944.22, + "end": 10946.38, + "probability": 0.8787 + }, + { + "start": 10946.82, + "end": 10951.72, + "probability": 0.981 + }, + { + "start": 10952.14, + "end": 10956.76, + "probability": 0.9893 + }, + { + "start": 10956.76, + "end": 10958.65, + "probability": 0.9955 + }, + { + "start": 10959.68, + "end": 10959.8, + "probability": 0.7711 + }, + { + "start": 10959.94, + "end": 10960.46, + "probability": 0.6174 + }, + { + "start": 10960.56, + "end": 10962.82, + "probability": 0.951 + }, + { + "start": 10962.82, + "end": 10967.76, + "probability": 0.976 + }, + { + "start": 10968.4, + "end": 10969.0, + "probability": 0.9498 + }, + { + "start": 10969.12, + "end": 10969.54, + "probability": 0.8554 + }, + { + "start": 10969.88, + "end": 10971.94, + "probability": 0.9956 + }, + { + "start": 10973.34, + "end": 10977.94, + "probability": 0.9971 + }, + { + "start": 10977.94, + "end": 10983.3, + "probability": 0.9972 + }, + { + "start": 10984.24, + "end": 10985.7, + "probability": 0.9058 + }, + { + "start": 10985.86, + "end": 10989.86, + "probability": 0.8982 + }, + { + "start": 10990.2, + "end": 10991.64, + "probability": 0.9707 + }, + { + "start": 10991.78, + "end": 10994.62, + "probability": 0.772 + }, + { + "start": 10994.62, + "end": 10996.68, + "probability": 0.9946 + }, + { + "start": 10996.82, + "end": 10999.0, + "probability": 0.6224 + }, + { + "start": 10999.54, + "end": 11001.26, + "probability": 0.6677 + }, + { + "start": 11001.88, + "end": 11003.74, + "probability": 0.074 + }, + { + "start": 11003.78, + "end": 11004.34, + "probability": 0.7397 + }, + { + "start": 11004.54, + "end": 11005.26, + "probability": 0.8638 + }, + { + "start": 11005.38, + "end": 11008.88, + "probability": 0.9974 + }, + { + "start": 11008.88, + "end": 11012.78, + "probability": 0.9836 + }, + { + "start": 11013.36, + "end": 11016.5, + "probability": 0.9924 + }, + { + "start": 11016.98, + "end": 11021.56, + "probability": 0.978 + }, + { + "start": 11021.94, + "end": 11024.38, + "probability": 0.7566 + }, + { + "start": 11024.84, + "end": 11026.88, + "probability": 0.8467 + }, + { + "start": 11027.44, + "end": 11031.88, + "probability": 0.9965 + }, + { + "start": 11032.86, + "end": 11034.06, + "probability": 0.6472 + }, + { + "start": 11034.92, + "end": 11036.82, + "probability": 0.8007 + }, + { + "start": 11038.44, + "end": 11039.74, + "probability": 0.9644 + }, + { + "start": 11040.64, + "end": 11042.04, + "probability": 0.563 + }, + { + "start": 11042.62, + "end": 11049.24, + "probability": 0.9978 + }, + { + "start": 11049.72, + "end": 11054.32, + "probability": 0.9364 + }, + { + "start": 11054.86, + "end": 11059.88, + "probability": 0.9588 + }, + { + "start": 11060.34, + "end": 11062.18, + "probability": 0.9304 + }, + { + "start": 11062.5, + "end": 11066.06, + "probability": 0.9958 + }, + { + "start": 11066.32, + "end": 11067.27, + "probability": 0.857 + }, + { + "start": 11067.68, + "end": 11068.62, + "probability": 0.9027 + }, + { + "start": 11068.9, + "end": 11069.78, + "probability": 0.5971 + }, + { + "start": 11070.78, + "end": 11073.82, + "probability": 0.6368 + }, + { + "start": 11073.82, + "end": 11075.36, + "probability": 0.6111 + }, + { + "start": 11075.66, + "end": 11076.5, + "probability": 0.7183 + }, + { + "start": 11077.24, + "end": 11083.22, + "probability": 0.2273 + }, + { + "start": 11083.22, + "end": 11083.68, + "probability": 0.2472 + }, + { + "start": 11083.78, + "end": 11083.78, + "probability": 0.1726 + }, + { + "start": 11083.78, + "end": 11083.78, + "probability": 0.4727 + }, + { + "start": 11083.78, + "end": 11088.56, + "probability": 0.9939 + }, + { + "start": 11088.94, + "end": 11091.14, + "probability": 0.9949 + }, + { + "start": 11092.0, + "end": 11097.16, + "probability": 0.9738 + }, + { + "start": 11097.24, + "end": 11097.56, + "probability": 0.3937 + }, + { + "start": 11097.7, + "end": 11099.68, + "probability": 0.5299 + }, + { + "start": 11099.9, + "end": 11102.34, + "probability": 0.8749 + }, + { + "start": 11102.48, + "end": 11106.96, + "probability": 0.9819 + }, + { + "start": 11108.32, + "end": 11110.28, + "probability": 0.63 + }, + { + "start": 11110.5, + "end": 11110.88, + "probability": 0.689 + }, + { + "start": 11111.0, + "end": 11111.48, + "probability": 0.8664 + }, + { + "start": 11111.66, + "end": 11115.86, + "probability": 0.9365 + }, + { + "start": 11116.38, + "end": 11117.44, + "probability": 0.9351 + }, + { + "start": 11117.48, + "end": 11121.82, + "probability": 0.807 + }, + { + "start": 11122.08, + "end": 11123.08, + "probability": 0.8513 + }, + { + "start": 11123.7, + "end": 11124.09, + "probability": 0.5934 + }, + { + "start": 11124.38, + "end": 11126.33, + "probability": 0.3868 + }, + { + "start": 11126.88, + "end": 11129.44, + "probability": 0.9819 + }, + { + "start": 11130.06, + "end": 11131.86, + "probability": 0.6089 + }, + { + "start": 11132.94, + "end": 11133.52, + "probability": 0.356 + }, + { + "start": 11133.84, + "end": 11134.98, + "probability": 0.9587 + }, + { + "start": 11135.06, + "end": 11139.46, + "probability": 0.9648 + }, + { + "start": 11139.54, + "end": 11141.4, + "probability": 0.7908 + }, + { + "start": 11141.84, + "end": 11143.58, + "probability": 0.3798 + }, + { + "start": 11144.6, + "end": 11145.38, + "probability": 0.9847 + }, + { + "start": 11146.02, + "end": 11148.28, + "probability": 0.9173 + }, + { + "start": 11148.82, + "end": 11149.99, + "probability": 0.8901 + }, + { + "start": 11151.0, + "end": 11154.08, + "probability": 0.9006 + }, + { + "start": 11155.52, + "end": 11156.56, + "probability": 0.6779 + }, + { + "start": 11157.96, + "end": 11159.86, + "probability": 0.8976 + }, + { + "start": 11161.68, + "end": 11162.6, + "probability": 0.9819 + }, + { + "start": 11163.58, + "end": 11164.6, + "probability": 0.8911 + }, + { + "start": 11165.2, + "end": 11167.1, + "probability": 0.7515 + }, + { + "start": 11168.18, + "end": 11170.06, + "probability": 0.7192 + }, + { + "start": 11170.84, + "end": 11171.28, + "probability": 0.9932 + }, + { + "start": 11172.36, + "end": 11173.3, + "probability": 0.9777 + }, + { + "start": 11175.3, + "end": 11176.58, + "probability": 0.9899 + }, + { + "start": 11177.44, + "end": 11178.36, + "probability": 0.9736 + }, + { + "start": 11179.46, + "end": 11179.74, + "probability": 0.9891 + }, + { + "start": 11182.38, + "end": 11183.28, + "probability": 0.5984 + }, + { + "start": 11183.84, + "end": 11184.52, + "probability": 0.9323 + }, + { + "start": 11186.52, + "end": 11187.42, + "probability": 0.8895 + }, + { + "start": 11188.22, + "end": 11189.98, + "probability": 0.9752 + }, + { + "start": 11191.82, + "end": 11193.68, + "probability": 0.9088 + }, + { + "start": 11196.84, + "end": 11198.88, + "probability": 0.7879 + }, + { + "start": 11200.94, + "end": 11202.48, + "probability": 0.7776 + }, + { + "start": 11205.0, + "end": 11208.28, + "probability": 0.9827 + }, + { + "start": 11209.06, + "end": 11209.46, + "probability": 0.9899 + }, + { + "start": 11210.24, + "end": 11211.02, + "probability": 0.5975 + }, + { + "start": 11211.86, + "end": 11212.62, + "probability": 0.8745 + }, + { + "start": 11213.88, + "end": 11214.7, + "probability": 0.953 + }, + { + "start": 11216.36, + "end": 11219.26, + "probability": 0.9259 + }, + { + "start": 11220.3, + "end": 11221.32, + "probability": 0.7674 + }, + { + "start": 11222.1, + "end": 11225.38, + "probability": 0.9668 + }, + { + "start": 11225.94, + "end": 11227.0, + "probability": 0.9774 + }, + { + "start": 11227.62, + "end": 11228.1, + "probability": 0.9897 + }, + { + "start": 11228.74, + "end": 11234.86, + "probability": 0.8695 + }, + { + "start": 11235.48, + "end": 11236.68, + "probability": 0.8852 + }, + { + "start": 11238.22, + "end": 11238.5, + "probability": 0.772 + }, + { + "start": 11240.18, + "end": 11241.16, + "probability": 0.8087 + }, + { + "start": 11241.78, + "end": 11243.34, + "probability": 0.6465 + }, + { + "start": 11244.1, + "end": 11245.7, + "probability": 0.9756 + }, + { + "start": 11246.72, + "end": 11248.42, + "probability": 0.8004 + }, + { + "start": 11249.26, + "end": 11250.86, + "probability": 0.9851 + }, + { + "start": 11251.9, + "end": 11253.48, + "probability": 0.9673 + }, + { + "start": 11254.24, + "end": 11254.78, + "probability": 0.981 + }, + { + "start": 11257.36, + "end": 11258.42, + "probability": 0.606 + }, + { + "start": 11259.18, + "end": 11260.74, + "probability": 0.816 + }, + { + "start": 11261.96, + "end": 11265.86, + "probability": 0.951 + }, + { + "start": 11266.52, + "end": 11267.04, + "probability": 0.9738 + }, + { + "start": 11267.86, + "end": 11269.02, + "probability": 0.965 + }, + { + "start": 11269.82, + "end": 11271.48, + "probability": 0.9364 + }, + { + "start": 11272.7, + "end": 11273.18, + "probability": 0.9896 + }, + { + "start": 11274.44, + "end": 11275.44, + "probability": 0.991 + }, + { + "start": 11277.06, + "end": 11277.5, + "probability": 0.9907 + }, + { + "start": 11278.68, + "end": 11279.66, + "probability": 0.725 + }, + { + "start": 11280.44, + "end": 11280.92, + "probability": 0.9933 + }, + { + "start": 11282.6, + "end": 11283.04, + "probability": 0.7689 + }, + { + "start": 11285.36, + "end": 11287.62, + "probability": 0.8265 + }, + { + "start": 11288.82, + "end": 11290.1, + "probability": 0.7225 + }, + { + "start": 11291.7, + "end": 11293.82, + "probability": 0.9543 + }, + { + "start": 11294.42, + "end": 11296.28, + "probability": 0.8665 + }, + { + "start": 11297.24, + "end": 11299.32, + "probability": 0.9457 + }, + { + "start": 11299.86, + "end": 11302.1, + "probability": 0.8472 + }, + { + "start": 11303.0, + "end": 11304.22, + "probability": 0.9085 + }, + { + "start": 11307.18, + "end": 11308.34, + "probability": 0.896 + }, + { + "start": 11308.94, + "end": 11310.0, + "probability": 0.9404 + }, + { + "start": 11310.82, + "end": 11311.2, + "probability": 0.9728 + }, + { + "start": 11311.92, + "end": 11312.48, + "probability": 0.7228 + }, + { + "start": 11313.54, + "end": 11314.32, + "probability": 0.9778 + }, + { + "start": 11316.18, + "end": 11317.06, + "probability": 0.9314 + }, + { + "start": 11319.22, + "end": 11319.66, + "probability": 0.6868 + }, + { + "start": 11321.52, + "end": 11322.0, + "probability": 0.913 + }, + { + "start": 11324.02, + "end": 11324.46, + "probability": 0.9879 + }, + { + "start": 11328.74, + "end": 11330.14, + "probability": 0.7616 + }, + { + "start": 11330.7, + "end": 11331.0, + "probability": 0.7415 + }, + { + "start": 11331.86, + "end": 11332.7, + "probability": 0.9123 + }, + { + "start": 11334.0, + "end": 11334.44, + "probability": 0.9769 + }, + { + "start": 11336.02, + "end": 11336.82, + "probability": 0.9395 + }, + { + "start": 11337.74, + "end": 11339.78, + "probability": 0.5942 + }, + { + "start": 11341.3, + "end": 11341.76, + "probability": 0.9927 + }, + { + "start": 11342.46, + "end": 11343.22, + "probability": 0.9277 + }, + { + "start": 11346.64, + "end": 11348.16, + "probability": 0.5294 + }, + { + "start": 11349.16, + "end": 11349.44, + "probability": 0.8652 + }, + { + "start": 11350.36, + "end": 11351.18, + "probability": 0.7731 + }, + { + "start": 11353.08, + "end": 11355.16, + "probability": 0.8909 + }, + { + "start": 11356.14, + "end": 11356.46, + "probability": 0.8127 + }, + { + "start": 11357.1, + "end": 11358.0, + "probability": 0.9773 + }, + { + "start": 11359.14, + "end": 11359.44, + "probability": 0.9688 + }, + { + "start": 11360.22, + "end": 11361.04, + "probability": 0.9562 + }, + { + "start": 11361.84, + "end": 11363.4, + "probability": 0.9007 + }, + { + "start": 11365.12, + "end": 11367.04, + "probability": 0.9798 + }, + { + "start": 11368.16, + "end": 11369.64, + "probability": 0.9784 + }, + { + "start": 11370.44, + "end": 11370.82, + "probability": 0.9961 + }, + { + "start": 11372.94, + "end": 11373.6, + "probability": 0.5863 + }, + { + "start": 11374.74, + "end": 11376.5, + "probability": 0.7998 + }, + { + "start": 11377.96, + "end": 11381.28, + "probability": 0.7712 + }, + { + "start": 11382.4, + "end": 11383.9, + "probability": 0.9124 + }, + { + "start": 11384.5, + "end": 11385.06, + "probability": 0.9857 + }, + { + "start": 11386.72, + "end": 11387.66, + "probability": 0.9857 + }, + { + "start": 11389.02, + "end": 11389.44, + "probability": 0.9688 + }, + { + "start": 11390.14, + "end": 11390.96, + "probability": 0.9588 + }, + { + "start": 11391.76, + "end": 11393.74, + "probability": 0.9681 + }, + { + "start": 11394.96, + "end": 11397.0, + "probability": 0.9716 + }, + { + "start": 11397.86, + "end": 11398.14, + "probability": 0.7367 + }, + { + "start": 11399.44, + "end": 11400.22, + "probability": 0.2941 + }, + { + "start": 11402.04, + "end": 11403.32, + "probability": 0.6804 + }, + { + "start": 11404.38, + "end": 11405.1, + "probability": 0.9074 + }, + { + "start": 11405.72, + "end": 11407.48, + "probability": 0.8594 + }, + { + "start": 11408.76, + "end": 11409.9, + "probability": 0.9285 + }, + { + "start": 11410.46, + "end": 11411.78, + "probability": 0.9614 + }, + { + "start": 11412.96, + "end": 11413.46, + "probability": 0.9722 + }, + { + "start": 11414.26, + "end": 11415.6, + "probability": 0.8046 + }, + { + "start": 11416.64, + "end": 11417.08, + "probability": 0.9596 + }, + { + "start": 11417.72, + "end": 11418.5, + "probability": 0.922 + }, + { + "start": 11419.8, + "end": 11422.16, + "probability": 0.8912 + }, + { + "start": 11422.78, + "end": 11424.2, + "probability": 0.602 + }, + { + "start": 11426.52, + "end": 11426.94, + "probability": 0.8932 + }, + { + "start": 11428.58, + "end": 11429.6, + "probability": 0.9332 + }, + { + "start": 11430.76, + "end": 11431.3, + "probability": 0.9813 + }, + { + "start": 11431.9, + "end": 11432.9, + "probability": 0.871 + }, + { + "start": 11434.08, + "end": 11436.58, + "probability": 0.9876 + }, + { + "start": 11437.2, + "end": 11437.74, + "probability": 0.9741 + }, + { + "start": 11438.34, + "end": 11439.96, + "probability": 0.9539 + }, + { + "start": 11442.55, + "end": 11447.28, + "probability": 0.9429 + }, + { + "start": 11447.7, + "end": 11450.1, + "probability": 0.9285 + }, + { + "start": 11450.28, + "end": 11452.24, + "probability": 0.696 + }, + { + "start": 11453.9, + "end": 11455.72, + "probability": 0.5766 + }, + { + "start": 11463.78, + "end": 11464.14, + "probability": 0.5172 + }, + { + "start": 11465.16, + "end": 11466.26, + "probability": 0.7563 + }, + { + "start": 11467.28, + "end": 11467.68, + "probability": 0.9074 + }, + { + "start": 11468.68, + "end": 11469.66, + "probability": 0.7081 + }, + { + "start": 11470.54, + "end": 11474.42, + "probability": 0.881 + }, + { + "start": 11474.94, + "end": 11476.5, + "probability": 0.8803 + }, + { + "start": 11478.16, + "end": 11480.0, + "probability": 0.852 + }, + { + "start": 11480.9, + "end": 11482.64, + "probability": 0.8308 + }, + { + "start": 11483.94, + "end": 11484.26, + "probability": 0.8444 + }, + { + "start": 11485.38, + "end": 11487.28, + "probability": 0.711 + }, + { + "start": 11488.38, + "end": 11488.86, + "probability": 0.9901 + }, + { + "start": 11489.58, + "end": 11490.56, + "probability": 0.9643 + }, + { + "start": 11492.1, + "end": 11494.02, + "probability": 0.8992 + }, + { + "start": 11496.39, + "end": 11499.24, + "probability": 0.8091 + }, + { + "start": 11500.88, + "end": 11503.68, + "probability": 0.9862 + }, + { + "start": 11504.6, + "end": 11505.06, + "probability": 0.9502 + }, + { + "start": 11506.36, + "end": 11507.34, + "probability": 0.8003 + }, + { + "start": 11508.38, + "end": 11510.44, + "probability": 0.9822 + }, + { + "start": 11511.32, + "end": 11511.9, + "probability": 0.4974 + }, + { + "start": 11514.7, + "end": 11515.84, + "probability": 0.2197 + }, + { + "start": 11516.88, + "end": 11519.16, + "probability": 0.8348 + }, + { + "start": 11520.72, + "end": 11521.2, + "probability": 0.9404 + }, + { + "start": 11522.58, + "end": 11523.38, + "probability": 0.8466 + }, + { + "start": 11524.54, + "end": 11526.1, + "probability": 0.9915 + }, + { + "start": 11527.14, + "end": 11527.68, + "probability": 0.9697 + }, + { + "start": 11528.34, + "end": 11529.32, + "probability": 0.9117 + }, + { + "start": 11530.68, + "end": 11533.22, + "probability": 0.9736 + }, + { + "start": 11533.84, + "end": 11534.3, + "probability": 0.9399 + }, + { + "start": 11534.92, + "end": 11540.38, + "probability": 0.9644 + }, + { + "start": 11540.94, + "end": 11541.36, + "probability": 0.9909 + }, + { + "start": 11542.86, + "end": 11545.8, + "probability": 0.8346 + }, + { + "start": 11546.52, + "end": 11548.34, + "probability": 0.954 + }, + { + "start": 11549.0, + "end": 11553.44, + "probability": 0.9312 + }, + { + "start": 11553.96, + "end": 11555.6, + "probability": 0.9633 + }, + { + "start": 11557.52, + "end": 11558.54, + "probability": 0.5327 + }, + { + "start": 11559.24, + "end": 11560.08, + "probability": 0.9565 + }, + { + "start": 11560.7, + "end": 11561.14, + "probability": 0.9744 + }, + { + "start": 11561.78, + "end": 11562.6, + "probability": 0.9618 + }, + { + "start": 11565.16, + "end": 11569.12, + "probability": 0.1992 + }, + { + "start": 11569.28, + "end": 11572.5, + "probability": 0.9471 + }, + { + "start": 11573.11, + "end": 11575.31, + "probability": 0.2215 + }, + { + "start": 11576.1, + "end": 11578.04, + "probability": 0.8371 + }, + { + "start": 11581.56, + "end": 11582.58, + "probability": 0.0976 + }, + { + "start": 11582.58, + "end": 11583.0, + "probability": 0.5002 + }, + { + "start": 11584.96, + "end": 11586.94, + "probability": 0.7499 + }, + { + "start": 11587.78, + "end": 11588.48, + "probability": 0.9564 + }, + { + "start": 11589.34, + "end": 11590.04, + "probability": 0.8452 + }, + { + "start": 11590.32, + "end": 11591.94, + "probability": 0.9261 + }, + { + "start": 11592.2, + "end": 11594.34, + "probability": 0.9285 + }, + { + "start": 11594.98, + "end": 11595.36, + "probability": 0.9688 + }, + { + "start": 11597.88, + "end": 11598.94, + "probability": 0.5073 + }, + { + "start": 11599.92, + "end": 11600.68, + "probability": 0.849 + }, + { + "start": 11601.54, + "end": 11602.28, + "probability": 0.7472 + }, + { + "start": 11602.84, + "end": 11604.64, + "probability": 0.9343 + }, + { + "start": 11605.16, + "end": 11606.76, + "probability": 0.832 + }, + { + "start": 11607.4, + "end": 11608.9, + "probability": 0.9083 + }, + { + "start": 11609.66, + "end": 11611.18, + "probability": 0.686 + }, + { + "start": 11611.36, + "end": 11612.76, + "probability": 0.9828 + }, + { + "start": 11613.06, + "end": 11613.72, + "probability": 0.9809 + }, + { + "start": 11614.78, + "end": 11615.66, + "probability": 0.5643 + }, + { + "start": 11616.16, + "end": 11617.62, + "probability": 0.7571 + }, + { + "start": 11617.86, + "end": 11619.62, + "probability": 0.9189 + }, + { + "start": 11620.18, + "end": 11621.54, + "probability": 0.8915 + }, + { + "start": 11624.16, + "end": 11624.62, + "probability": 0.9186 + }, + { + "start": 11626.08, + "end": 11626.9, + "probability": 0.95 + }, + { + "start": 11627.58, + "end": 11628.36, + "probability": 0.9826 + }, + { + "start": 11629.68, + "end": 11630.58, + "probability": 0.9748 + }, + { + "start": 11631.2, + "end": 11633.46, + "probability": 0.9158 + }, + { + "start": 11635.91, + "end": 11637.4, + "probability": 0.4722 + }, + { + "start": 11637.4, + "end": 11639.08, + "probability": 0.5816 + }, + { + "start": 11639.48, + "end": 11641.34, + "probability": 0.7929 + }, + { + "start": 11644.5, + "end": 11645.3, + "probability": 0.4256 + }, + { + "start": 11648.7, + "end": 11648.84, + "probability": 0.2135 + }, + { + "start": 11651.32, + "end": 11652.84, + "probability": 0.7337 + }, + { + "start": 11653.72, + "end": 11655.1, + "probability": 0.9117 + }, + { + "start": 11655.72, + "end": 11657.28, + "probability": 0.898 + }, + { + "start": 11659.44, + "end": 11661.56, + "probability": 0.9115 + }, + { + "start": 11662.28, + "end": 11663.2, + "probability": 0.9911 + }, + { + "start": 11664.5, + "end": 11665.56, + "probability": 0.9699 + }, + { + "start": 11666.54, + "end": 11669.7, + "probability": 0.9342 + }, + { + "start": 11670.58, + "end": 11674.42, + "probability": 0.8329 + }, + { + "start": 11675.04, + "end": 11676.4, + "probability": 0.9658 + }, + { + "start": 11682.04, + "end": 11683.62, + "probability": 0.5372 + }, + { + "start": 11685.38, + "end": 11686.42, + "probability": 0.6705 + }, + { + "start": 11688.28, + "end": 11688.96, + "probability": 0.9557 + }, + { + "start": 11689.96, + "end": 11691.24, + "probability": 0.7047 + }, + { + "start": 11692.22, + "end": 11695.6, + "probability": 0.8609 + }, + { + "start": 11696.26, + "end": 11698.16, + "probability": 0.9387 + }, + { + "start": 11698.86, + "end": 11702.02, + "probability": 0.9905 + }, + { + "start": 11704.16, + "end": 11705.08, + "probability": 0.7731 + }, + { + "start": 11705.86, + "end": 11707.9, + "probability": 0.8511 + }, + { + "start": 11708.12, + "end": 11709.68, + "probability": 0.949 + }, + { + "start": 11709.9, + "end": 11711.38, + "probability": 0.9601 + }, + { + "start": 11711.42, + "end": 11712.78, + "probability": 0.7346 + }, + { + "start": 11713.58, + "end": 11715.36, + "probability": 0.9457 + }, + { + "start": 11716.24, + "end": 11718.16, + "probability": 0.9482 + }, + { + "start": 11718.84, + "end": 11723.96, + "probability": 0.9839 + }, + { + "start": 11724.1, + "end": 11727.4, + "probability": 0.9841 + }, + { + "start": 11727.42, + "end": 11729.02, + "probability": 0.2194 + }, + { + "start": 11729.08, + "end": 11731.82, + "probability": 0.9928 + }, + { + "start": 11732.66, + "end": 11734.31, + "probability": 0.0276 + }, + { + "start": 11744.12, + "end": 11744.82, + "probability": 0.054 + }, + { + "start": 11746.64, + "end": 11747.3, + "probability": 0.0061 + }, + { + "start": 11748.04, + "end": 11754.14, + "probability": 0.0339 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11848.0, + "end": 11848.0, + "probability": 0.0 + }, + { + "start": 11849.66, + "end": 11851.4, + "probability": 0.8948 + }, + { + "start": 11854.08, + "end": 11855.86, + "probability": 0.4051 + }, + { + "start": 11856.14, + "end": 11857.22, + "probability": 0.4721 + }, + { + "start": 11857.26, + "end": 11858.06, + "probability": 0.8994 + }, + { + "start": 11858.1, + "end": 11860.7, + "probability": 0.9888 + }, + { + "start": 11861.12, + "end": 11864.42, + "probability": 0.9727 + }, + { + "start": 11864.52, + "end": 11867.44, + "probability": 0.9953 + }, + { + "start": 11867.94, + "end": 11871.16, + "probability": 0.9906 + }, + { + "start": 11871.54, + "end": 11873.86, + "probability": 0.7866 + }, + { + "start": 11887.62, + "end": 11888.7, + "probability": 0.7057 + }, + { + "start": 11890.14, + "end": 11893.06, + "probability": 0.9073 + }, + { + "start": 11894.56, + "end": 11897.7, + "probability": 0.8594 + }, + { + "start": 11898.92, + "end": 11900.46, + "probability": 0.9839 + }, + { + "start": 11901.22, + "end": 11902.08, + "probability": 0.9653 + }, + { + "start": 11903.42, + "end": 11904.63, + "probability": 0.9909 + }, + { + "start": 11905.86, + "end": 11908.52, + "probability": 0.7489 + }, + { + "start": 11909.46, + "end": 11912.68, + "probability": 0.9694 + }, + { + "start": 11912.68, + "end": 11919.02, + "probability": 0.9327 + }, + { + "start": 11919.74, + "end": 11922.74, + "probability": 0.9825 + }, + { + "start": 11923.48, + "end": 11927.28, + "probability": 0.967 + }, + { + "start": 11929.76, + "end": 11936.68, + "probability": 0.9827 + }, + { + "start": 11937.22, + "end": 11940.16, + "probability": 0.8649 + }, + { + "start": 11941.46, + "end": 11942.86, + "probability": 0.9142 + }, + { + "start": 11943.4, + "end": 11944.3, + "probability": 0.927 + }, + { + "start": 11945.08, + "end": 11948.86, + "probability": 0.691 + }, + { + "start": 11948.9, + "end": 11949.24, + "probability": 0.7006 + }, + { + "start": 11949.84, + "end": 11950.06, + "probability": 0.7655 + }, + { + "start": 11951.0, + "end": 11953.58, + "probability": 0.7673 + }, + { + "start": 11954.24, + "end": 11955.48, + "probability": 0.8112 + }, + { + "start": 11956.2, + "end": 11958.54, + "probability": 0.989 + }, + { + "start": 11959.4, + "end": 11963.9, + "probability": 0.9844 + }, + { + "start": 11964.04, + "end": 11966.3, + "probability": 0.9819 + }, + { + "start": 11966.94, + "end": 11968.9, + "probability": 0.7395 + }, + { + "start": 11969.56, + "end": 11971.76, + "probability": 0.6753 + }, + { + "start": 11972.3, + "end": 11975.69, + "probability": 0.9826 + }, + { + "start": 11976.0, + "end": 11977.32, + "probability": 0.8302 + }, + { + "start": 11978.68, + "end": 11982.16, + "probability": 0.9928 + }, + { + "start": 11983.04, + "end": 11984.94, + "probability": 0.6948 + }, + { + "start": 11985.76, + "end": 11988.04, + "probability": 0.5587 + }, + { + "start": 11988.8, + "end": 11992.92, + "probability": 0.9666 + }, + { + "start": 11993.9, + "end": 11997.35, + "probability": 0.9589 + }, + { + "start": 11998.08, + "end": 12000.8, + "probability": 0.9849 + }, + { + "start": 12001.36, + "end": 12002.92, + "probability": 0.7977 + }, + { + "start": 12004.14, + "end": 12005.92, + "probability": 0.3386 + }, + { + "start": 12006.38, + "end": 12009.64, + "probability": 0.838 + }, + { + "start": 12011.06, + "end": 12012.56, + "probability": 0.0728 + }, + { + "start": 12012.56, + "end": 12013.04, + "probability": 0.0671 + }, + { + "start": 12013.04, + "end": 12015.96, + "probability": 0.978 + }, + { + "start": 12016.72, + "end": 12019.74, + "probability": 0.5154 + }, + { + "start": 12019.92, + "end": 12020.34, + "probability": 0.0425 + }, + { + "start": 12020.48, + "end": 12021.86, + "probability": 0.9794 + }, + { + "start": 12022.48, + "end": 12024.18, + "probability": 0.9153 + }, + { + "start": 12025.1, + "end": 12026.58, + "probability": 0.8657 + }, + { + "start": 12026.9, + "end": 12028.0, + "probability": 0.7575 + }, + { + "start": 12028.0, + "end": 12030.62, + "probability": 0.4528 + }, + { + "start": 12030.62, + "end": 12031.3, + "probability": 0.1091 + }, + { + "start": 12031.4, + "end": 12031.5, + "probability": 0.692 + }, + { + "start": 12031.5, + "end": 12032.4, + "probability": 0.7205 + }, + { + "start": 12033.6, + "end": 12033.64, + "probability": 0.2896 + }, + { + "start": 12033.64, + "end": 12035.82, + "probability": 0.7552 + }, + { + "start": 12036.02, + "end": 12038.12, + "probability": 0.5073 + }, + { + "start": 12040.03, + "end": 12042.48, + "probability": 0.5664 + }, + { + "start": 12042.48, + "end": 12042.66, + "probability": 0.3336 + }, + { + "start": 12042.66, + "end": 12043.02, + "probability": 0.0525 + }, + { + "start": 12043.12, + "end": 12044.68, + "probability": 0.9414 + }, + { + "start": 12045.4, + "end": 12046.7, + "probability": 0.1508 + }, + { + "start": 12046.98, + "end": 12048.8, + "probability": 0.2802 + }, + { + "start": 12050.56, + "end": 12052.54, + "probability": 0.6394 + }, + { + "start": 12053.06, + "end": 12053.06, + "probability": 0.0845 + }, + { + "start": 12053.06, + "end": 12053.06, + "probability": 0.0684 + }, + { + "start": 12053.06, + "end": 12053.58, + "probability": 0.4856 + }, + { + "start": 12053.68, + "end": 12055.24, + "probability": 0.5837 + }, + { + "start": 12056.84, + "end": 12058.66, + "probability": 0.6082 + }, + { + "start": 12059.6, + "end": 12062.06, + "probability": 0.8823 + }, + { + "start": 12062.34, + "end": 12063.26, + "probability": 0.4222 + }, + { + "start": 12064.12, + "end": 12064.32, + "probability": 0.3262 + }, + { + "start": 12064.74, + "end": 12066.16, + "probability": 0.8281 + }, + { + "start": 12066.18, + "end": 12067.78, + "probability": 0.9329 + }, + { + "start": 12068.24, + "end": 12072.36, + "probability": 0.9223 + }, + { + "start": 12073.62, + "end": 12074.6, + "probability": 0.5748 + }, + { + "start": 12075.64, + "end": 12079.46, + "probability": 0.9865 + }, + { + "start": 12080.14, + "end": 12082.46, + "probability": 0.6863 + }, + { + "start": 12083.02, + "end": 12085.52, + "probability": 0.9956 + }, + { + "start": 12085.72, + "end": 12086.3, + "probability": 0.8199 + }, + { + "start": 12086.78, + "end": 12087.74, + "probability": 0.957 + }, + { + "start": 12088.38, + "end": 12091.06, + "probability": 0.5969 + }, + { + "start": 12091.94, + "end": 12094.54, + "probability": 0.5117 + }, + { + "start": 12094.76, + "end": 12097.14, + "probability": 0.9334 + }, + { + "start": 12097.94, + "end": 12099.58, + "probability": 0.9976 + }, + { + "start": 12100.48, + "end": 12101.88, + "probability": 0.9771 + }, + { + "start": 12102.14, + "end": 12102.63, + "probability": 0.8838 + }, + { + "start": 12104.22, + "end": 12104.84, + "probability": 0.7524 + }, + { + "start": 12105.12, + "end": 12108.4, + "probability": 0.9746 + }, + { + "start": 12108.94, + "end": 12109.56, + "probability": 0.218 + }, + { + "start": 12110.56, + "end": 12110.66, + "probability": 0.1253 + }, + { + "start": 12110.66, + "end": 12110.66, + "probability": 0.2353 + }, + { + "start": 12110.66, + "end": 12113.0, + "probability": 0.631 + }, + { + "start": 12114.86, + "end": 12115.38, + "probability": 0.7325 + }, + { + "start": 12116.0, + "end": 12119.14, + "probability": 0.7803 + }, + { + "start": 12119.14, + "end": 12122.46, + "probability": 0.794 + }, + { + "start": 12123.88, + "end": 12126.98, + "probability": 0.7752 + }, + { + "start": 12127.14, + "end": 12128.64, + "probability": 0.9379 + }, + { + "start": 12129.24, + "end": 12130.24, + "probability": 0.889 + }, + { + "start": 12130.8, + "end": 12131.72, + "probability": 0.9248 + }, + { + "start": 12134.2, + "end": 12135.04, + "probability": 0.7069 + }, + { + "start": 12135.46, + "end": 12135.46, + "probability": 0.8201 + }, + { + "start": 12135.84, + "end": 12138.06, + "probability": 0.8823 + }, + { + "start": 12138.22, + "end": 12141.6, + "probability": 0.9684 + }, + { + "start": 12141.6, + "end": 12144.52, + "probability": 0.8704 + }, + { + "start": 12145.1, + "end": 12147.44, + "probability": 0.9295 + }, + { + "start": 12148.16, + "end": 12152.42, + "probability": 0.9858 + }, + { + "start": 12152.9, + "end": 12154.3, + "probability": 0.895 + }, + { + "start": 12155.02, + "end": 12158.16, + "probability": 0.7936 + }, + { + "start": 12158.76, + "end": 12160.0, + "probability": 0.8513 + }, + { + "start": 12161.14, + "end": 12167.12, + "probability": 0.7188 + }, + { + "start": 12168.46, + "end": 12171.36, + "probability": 0.8534 + }, + { + "start": 12172.08, + "end": 12175.34, + "probability": 0.9563 + }, + { + "start": 12175.86, + "end": 12179.48, + "probability": 0.922 + }, + { + "start": 12180.14, + "end": 12181.28, + "probability": 0.2767 + }, + { + "start": 12181.3, + "end": 12181.98, + "probability": 0.9235 + }, + { + "start": 12182.32, + "end": 12184.34, + "probability": 0.9821 + }, + { + "start": 12184.78, + "end": 12186.24, + "probability": 0.9565 + }, + { + "start": 12187.16, + "end": 12191.06, + "probability": 0.9839 + }, + { + "start": 12191.9, + "end": 12194.7, + "probability": 0.9952 + }, + { + "start": 12195.2, + "end": 12197.88, + "probability": 0.8537 + }, + { + "start": 12198.36, + "end": 12199.16, + "probability": 0.8164 + }, + { + "start": 12199.62, + "end": 12202.2, + "probability": 0.5752 + }, + { + "start": 12202.46, + "end": 12202.82, + "probability": 0.0012 + }, + { + "start": 12206.36, + "end": 12206.44, + "probability": 0.0421 + }, + { + "start": 12206.44, + "end": 12208.62, + "probability": 0.6378 + }, + { + "start": 12209.52, + "end": 12210.64, + "probability": 0.8116 + }, + { + "start": 12211.94, + "end": 12213.2, + "probability": 0.7514 + }, + { + "start": 12214.82, + "end": 12220.08, + "probability": 0.8733 + }, + { + "start": 12221.26, + "end": 12222.92, + "probability": 0.9776 + }, + { + "start": 12223.64, + "end": 12226.04, + "probability": 0.9963 + }, + { + "start": 12226.86, + "end": 12228.94, + "probability": 0.6829 + }, + { + "start": 12229.62, + "end": 12233.2, + "probability": 0.972 + }, + { + "start": 12234.02, + "end": 12234.66, + "probability": 0.9833 + }, + { + "start": 12235.22, + "end": 12237.02, + "probability": 0.979 + }, + { + "start": 12238.26, + "end": 12240.94, + "probability": 0.9585 + }, + { + "start": 12241.76, + "end": 12243.9, + "probability": 0.9046 + }, + { + "start": 12244.54, + "end": 12250.68, + "probability": 0.9429 + }, + { + "start": 12251.2, + "end": 12254.78, + "probability": 0.8464 + }, + { + "start": 12255.7, + "end": 12260.82, + "probability": 0.986 + }, + { + "start": 12261.26, + "end": 12261.7, + "probability": 0.8848 + }, + { + "start": 12262.22, + "end": 12263.04, + "probability": 0.9787 + }, + { + "start": 12263.94, + "end": 12269.9, + "probability": 0.9946 + }, + { + "start": 12270.04, + "end": 12270.7, + "probability": 0.3212 + }, + { + "start": 12271.34, + "end": 12272.8, + "probability": 0.9774 + }, + { + "start": 12273.5, + "end": 12274.8, + "probability": 0.8392 + }, + { + "start": 12275.46, + "end": 12276.51, + "probability": 0.9958 + }, + { + "start": 12277.46, + "end": 12278.86, + "probability": 0.6297 + }, + { + "start": 12279.28, + "end": 12280.02, + "probability": 0.9731 + }, + { + "start": 12280.1, + "end": 12280.94, + "probability": 0.954 + }, + { + "start": 12281.3, + "end": 12284.68, + "probability": 0.8952 + }, + { + "start": 12284.76, + "end": 12287.62, + "probability": 0.9497 + }, + { + "start": 12288.88, + "end": 12292.9, + "probability": 0.9976 + }, + { + "start": 12293.44, + "end": 12298.18, + "probability": 0.9006 + }, + { + "start": 12298.66, + "end": 12300.1, + "probability": 0.856 + }, + { + "start": 12300.98, + "end": 12303.2, + "probability": 0.8467 + }, + { + "start": 12304.16, + "end": 12304.74, + "probability": 0.7774 + }, + { + "start": 12305.04, + "end": 12305.52, + "probability": 0.769 + }, + { + "start": 12305.74, + "end": 12310.34, + "probability": 0.9723 + }, + { + "start": 12310.88, + "end": 12312.02, + "probability": 0.5515 + }, + { + "start": 12312.98, + "end": 12315.1, + "probability": 0.9961 + }, + { + "start": 12315.88, + "end": 12318.04, + "probability": 0.9876 + }, + { + "start": 12320.12, + "end": 12324.92, + "probability": 0.9774 + }, + { + "start": 12325.08, + "end": 12327.12, + "probability": 0.6831 + }, + { + "start": 12328.1, + "end": 12330.14, + "probability": 0.8849 + }, + { + "start": 12330.9, + "end": 12331.76, + "probability": 0.9937 + }, + { + "start": 12332.38, + "end": 12334.3, + "probability": 0.9488 + }, + { + "start": 12334.9, + "end": 12335.63, + "probability": 0.9619 + }, + { + "start": 12336.9, + "end": 12338.92, + "probability": 0.7996 + }, + { + "start": 12339.56, + "end": 12343.74, + "probability": 0.926 + }, + { + "start": 12344.46, + "end": 12345.5, + "probability": 0.942 + }, + { + "start": 12346.72, + "end": 12350.14, + "probability": 0.9747 + }, + { + "start": 12350.82, + "end": 12353.98, + "probability": 0.8831 + }, + { + "start": 12354.6, + "end": 12355.24, + "probability": 0.9854 + }, + { + "start": 12355.94, + "end": 12356.71, + "probability": 0.5238 + }, + { + "start": 12358.34, + "end": 12359.82, + "probability": 0.9652 + }, + { + "start": 12360.08, + "end": 12363.9, + "probability": 0.9775 + }, + { + "start": 12364.78, + "end": 12367.76, + "probability": 0.9841 + }, + { + "start": 12368.34, + "end": 12371.7, + "probability": 0.9933 + }, + { + "start": 12371.7, + "end": 12375.36, + "probability": 0.985 + }, + { + "start": 12375.88, + "end": 12377.06, + "probability": 0.9494 + }, + { + "start": 12378.12, + "end": 12379.26, + "probability": 0.7293 + }, + { + "start": 12379.64, + "end": 12382.76, + "probability": 0.7558 + }, + { + "start": 12383.3, + "end": 12384.14, + "probability": 0.7263 + }, + { + "start": 12384.82, + "end": 12388.42, + "probability": 0.9909 + }, + { + "start": 12389.44, + "end": 12393.12, + "probability": 0.9504 + }, + { + "start": 12393.12, + "end": 12399.8, + "probability": 0.9851 + }, + { + "start": 12401.98, + "end": 12403.42, + "probability": 0.795 + }, + { + "start": 12404.04, + "end": 12410.24, + "probability": 0.9114 + }, + { + "start": 12410.78, + "end": 12416.54, + "probability": 0.9092 + }, + { + "start": 12417.0, + "end": 12420.08, + "probability": 0.933 + }, + { + "start": 12420.66, + "end": 12423.64, + "probability": 0.9771 + }, + { + "start": 12424.12, + "end": 12425.51, + "probability": 0.9363 + }, + { + "start": 12425.94, + "end": 12427.32, + "probability": 0.9355 + }, + { + "start": 12427.9, + "end": 12429.12, + "probability": 0.7741 + }, + { + "start": 12429.18, + "end": 12429.82, + "probability": 0.976 + }, + { + "start": 12429.86, + "end": 12433.88, + "probability": 0.9524 + }, + { + "start": 12434.52, + "end": 12439.18, + "probability": 0.9541 + }, + { + "start": 12440.4, + "end": 12443.84, + "probability": 0.9905 + }, + { + "start": 12443.9, + "end": 12444.86, + "probability": 0.4734 + }, + { + "start": 12445.28, + "end": 12449.66, + "probability": 0.9941 + }, + { + "start": 12450.16, + "end": 12450.52, + "probability": 0.3963 + }, + { + "start": 12451.68, + "end": 12453.58, + "probability": 0.632 + }, + { + "start": 12455.72, + "end": 12458.94, + "probability": 0.8274 + }, + { + "start": 12458.98, + "end": 12460.0, + "probability": 0.7199 + }, + { + "start": 12473.44, + "end": 12474.48, + "probability": 0.6494 + }, + { + "start": 12474.86, + "end": 12474.86, + "probability": 0.4703 + }, + { + "start": 12474.94, + "end": 12475.95, + "probability": 0.6286 + }, + { + "start": 12476.58, + "end": 12477.24, + "probability": 0.5854 + }, + { + "start": 12477.32, + "end": 12479.14, + "probability": 0.9643 + }, + { + "start": 12479.28, + "end": 12481.38, + "probability": 0.9375 + }, + { + "start": 12482.06, + "end": 12485.8, + "probability": 0.9866 + }, + { + "start": 12485.8, + "end": 12488.96, + "probability": 0.9961 + }, + { + "start": 12489.1, + "end": 12491.04, + "probability": 0.8569 + }, + { + "start": 12492.12, + "end": 12493.67, + "probability": 0.8529 + }, + { + "start": 12494.14, + "end": 12497.21, + "probability": 0.9907 + }, + { + "start": 12497.76, + "end": 12498.94, + "probability": 0.8107 + }, + { + "start": 12498.96, + "end": 12500.51, + "probability": 0.9275 + }, + { + "start": 12500.66, + "end": 12503.22, + "probability": 0.971 + }, + { + "start": 12503.42, + "end": 12504.46, + "probability": 0.8796 + }, + { + "start": 12505.1, + "end": 12511.2, + "probability": 0.9775 + }, + { + "start": 12511.2, + "end": 12517.92, + "probability": 0.9475 + }, + { + "start": 12518.72, + "end": 12522.34, + "probability": 0.9604 + }, + { + "start": 12522.5, + "end": 12523.62, + "probability": 0.5603 + }, + { + "start": 12525.92, + "end": 12530.48, + "probability": 0.0193 + }, + { + "start": 12530.84, + "end": 12531.5, + "probability": 0.0626 + }, + { + "start": 12531.82, + "end": 12536.44, + "probability": 0.0205 + }, + { + "start": 12537.72, + "end": 12539.06, + "probability": 0.0403 + }, + { + "start": 12539.1, + "end": 12539.1, + "probability": 0.1001 + }, + { + "start": 12539.4, + "end": 12540.58, + "probability": 0.1313 + }, + { + "start": 12540.74, + "end": 12543.08, + "probability": 0.4155 + }, + { + "start": 12543.18, + "end": 12547.7, + "probability": 0.9617 + }, + { + "start": 12547.92, + "end": 12552.0, + "probability": 0.9974 + }, + { + "start": 12552.74, + "end": 12557.84, + "probability": 0.9985 + }, + { + "start": 12559.26, + "end": 12561.78, + "probability": 0.9841 + }, + { + "start": 12561.78, + "end": 12565.36, + "probability": 0.8468 + }, + { + "start": 12565.4, + "end": 12572.5, + "probability": 0.9949 + }, + { + "start": 12573.3, + "end": 12575.7, + "probability": 0.7715 + }, + { + "start": 12575.92, + "end": 12576.98, + "probability": 0.4405 + }, + { + "start": 12578.28, + "end": 12581.2, + "probability": 0.0018 + }, + { + "start": 12581.2, + "end": 12581.24, + "probability": 0.1358 + }, + { + "start": 12581.24, + "end": 12583.04, + "probability": 0.9043 + }, + { + "start": 12584.24, + "end": 12587.06, + "probability": 0.079 + }, + { + "start": 12587.62, + "end": 12590.48, + "probability": 0.0322 + }, + { + "start": 12590.48, + "end": 12592.1, + "probability": 0.9338 + }, + { + "start": 12592.52, + "end": 12596.56, + "probability": 0.9239 + }, + { + "start": 12596.9, + "end": 12599.66, + "probability": 0.9965 + }, + { + "start": 12599.7, + "end": 12600.52, + "probability": 0.9084 + }, + { + "start": 12600.56, + "end": 12602.3, + "probability": 0.9818 + }, + { + "start": 12602.46, + "end": 12603.62, + "probability": 0.5709 + }, + { + "start": 12604.54, + "end": 12605.14, + "probability": 0.678 + }, + { + "start": 12605.3, + "end": 12606.14, + "probability": 0.6091 + }, + { + "start": 12606.52, + "end": 12607.98, + "probability": 0.9799 + }, + { + "start": 12608.46, + "end": 12609.74, + "probability": 0.7424 + }, + { + "start": 12609.92, + "end": 12611.04, + "probability": 0.7611 + }, + { + "start": 12611.2, + "end": 12612.98, + "probability": 0.691 + }, + { + "start": 12613.18, + "end": 12616.72, + "probability": 0.9811 + }, + { + "start": 12616.82, + "end": 12619.56, + "probability": 0.9967 + }, + { + "start": 12619.68, + "end": 12620.74, + "probability": 0.8538 + }, + { + "start": 12621.62, + "end": 12623.48, + "probability": 0.6757 + }, + { + "start": 12624.16, + "end": 12625.02, + "probability": 0.9183 + }, + { + "start": 12625.28, + "end": 12629.04, + "probability": 0.9696 + }, + { + "start": 12629.54, + "end": 12631.22, + "probability": 0.2727 + }, + { + "start": 12632.82, + "end": 12633.92, + "probability": 0.7542 + }, + { + "start": 12635.04, + "end": 12635.72, + "probability": 0.5129 + }, + { + "start": 12635.78, + "end": 12638.0, + "probability": 0.7993 + }, + { + "start": 12638.9, + "end": 12639.84, + "probability": 0.7976 + }, + { + "start": 12641.2, + "end": 12643.3, + "probability": 0.7888 + }, + { + "start": 12649.96, + "end": 12654.64, + "probability": 0.4992 + }, + { + "start": 12655.06, + "end": 12655.92, + "probability": 0.4922 + }, + { + "start": 12658.54, + "end": 12659.58, + "probability": 0.711 + }, + { + "start": 12661.5, + "end": 12665.36, + "probability": 0.6745 + }, + { + "start": 12666.26, + "end": 12670.3, + "probability": 0.9907 + }, + { + "start": 12670.3, + "end": 12675.24, + "probability": 0.9766 + }, + { + "start": 12675.76, + "end": 12680.26, + "probability": 0.9934 + }, + { + "start": 12680.92, + "end": 12683.66, + "probability": 0.9981 + }, + { + "start": 12684.6, + "end": 12685.18, + "probability": 0.337 + }, + { + "start": 12685.34, + "end": 12686.18, + "probability": 0.9546 + }, + { + "start": 12687.42, + "end": 12688.32, + "probability": 0.9658 + }, + { + "start": 12689.32, + "end": 12691.12, + "probability": 0.9489 + }, + { + "start": 12692.12, + "end": 12695.88, + "probability": 0.9702 + }, + { + "start": 12696.64, + "end": 12698.22, + "probability": 0.9795 + }, + { + "start": 12701.1, + "end": 12704.34, + "probability": 0.661 + }, + { + "start": 12705.44, + "end": 12705.86, + "probability": 0.4438 + }, + { + "start": 12706.08, + "end": 12706.97, + "probability": 0.6946 + }, + { + "start": 12707.4, + "end": 12709.78, + "probability": 0.9585 + }, + { + "start": 12710.3, + "end": 12712.76, + "probability": 0.8716 + }, + { + "start": 12713.2, + "end": 12717.7, + "probability": 0.9145 + }, + { + "start": 12717.78, + "end": 12718.98, + "probability": 0.9221 + }, + { + "start": 12719.78, + "end": 12721.6, + "probability": 0.9818 + }, + { + "start": 12722.32, + "end": 12724.98, + "probability": 0.8502 + }, + { + "start": 12725.2, + "end": 12726.12, + "probability": 0.9351 + }, + { + "start": 12726.96, + "end": 12728.28, + "probability": 0.7958 + }, + { + "start": 12728.46, + "end": 12729.78, + "probability": 0.9868 + }, + { + "start": 12730.34, + "end": 12733.16, + "probability": 0.9902 + }, + { + "start": 12734.08, + "end": 12738.44, + "probability": 0.9458 + }, + { + "start": 12739.32, + "end": 12742.32, + "probability": 0.8255 + }, + { + "start": 12743.48, + "end": 12746.82, + "probability": 0.9937 + }, + { + "start": 12747.64, + "end": 12750.1, + "probability": 0.9764 + }, + { + "start": 12750.98, + "end": 12752.26, + "probability": 0.9339 + }, + { + "start": 12752.52, + "end": 12753.21, + "probability": 0.9116 + }, + { + "start": 12753.38, + "end": 12754.16, + "probability": 0.8057 + }, + { + "start": 12754.22, + "end": 12756.66, + "probability": 0.8822 + }, + { + "start": 12757.7, + "end": 12759.44, + "probability": 0.9031 + }, + { + "start": 12759.68, + "end": 12760.66, + "probability": 0.9556 + }, + { + "start": 12761.08, + "end": 12762.54, + "probability": 0.9941 + }, + { + "start": 12763.12, + "end": 12766.38, + "probability": 0.9901 + }, + { + "start": 12767.14, + "end": 12768.06, + "probability": 0.958 + }, + { + "start": 12768.78, + "end": 12770.9, + "probability": 0.885 + }, + { + "start": 12771.08, + "end": 12771.56, + "probability": 0.4135 + }, + { + "start": 12772.02, + "end": 12774.12, + "probability": 0.8828 + }, + { + "start": 12774.46, + "end": 12777.04, + "probability": 0.9824 + }, + { + "start": 12777.5, + "end": 12781.62, + "probability": 0.8935 + }, + { + "start": 12781.98, + "end": 12782.62, + "probability": 0.9086 + }, + { + "start": 12783.88, + "end": 12784.8, + "probability": 0.5121 + }, + { + "start": 12784.9, + "end": 12787.42, + "probability": 0.995 + }, + { + "start": 12788.87, + "end": 12790.2, + "probability": 0.5879 + }, + { + "start": 12791.1, + "end": 12791.6, + "probability": 0.195 + }, + { + "start": 12792.06, + "end": 12796.08, + "probability": 0.9858 + }, + { + "start": 12798.46, + "end": 12802.84, + "probability": 0.6365 + }, + { + "start": 12802.98, + "end": 12806.86, + "probability": 0.9473 + }, + { + "start": 12806.94, + "end": 12809.06, + "probability": 0.8647 + }, + { + "start": 12809.76, + "end": 12811.4, + "probability": 0.8296 + }, + { + "start": 12813.48, + "end": 12814.34, + "probability": 0.5917 + }, + { + "start": 12815.66, + "end": 12816.98, + "probability": 0.2401 + }, + { + "start": 12821.76, + "end": 12823.84, + "probability": 0.0176 + }, + { + "start": 12830.7, + "end": 12831.0, + "probability": 0.0655 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0356 + }, + { + "start": 12831.0, + "end": 12831.02, + "probability": 0.039 + }, + { + "start": 12831.02, + "end": 12831.24, + "probability": 0.0675 + }, + { + "start": 12832.76, + "end": 12834.38, + "probability": 0.7009 + }, + { + "start": 12834.5, + "end": 12837.2, + "probability": 0.9919 + }, + { + "start": 12839.18, + "end": 12840.97, + "probability": 0.9195 + }, + { + "start": 12841.42, + "end": 12843.22, + "probability": 0.8492 + }, + { + "start": 12843.28, + "end": 12844.72, + "probability": 0.7394 + }, + { + "start": 12844.74, + "end": 12845.66, + "probability": 0.776 + }, + { + "start": 12846.52, + "end": 12847.96, + "probability": 0.9863 + }, + { + "start": 12848.6, + "end": 12850.7, + "probability": 0.4957 + }, + { + "start": 12864.86, + "end": 12865.7, + "probability": 0.6296 + }, + { + "start": 12866.36, + "end": 12866.46, + "probability": 0.5416 + }, + { + "start": 12867.0, + "end": 12868.0, + "probability": 0.6294 + }, + { + "start": 12868.22, + "end": 12868.22, + "probability": 0.365 + }, + { + "start": 12868.36, + "end": 12868.82, + "probability": 0.9385 + }, + { + "start": 12868.96, + "end": 12871.3, + "probability": 0.827 + }, + { + "start": 12872.44, + "end": 12875.56, + "probability": 0.7567 + }, + { + "start": 12876.14, + "end": 12879.46, + "probability": 0.8752 + }, + { + "start": 12880.04, + "end": 12881.32, + "probability": 0.6718 + }, + { + "start": 12883.44, + "end": 12884.14, + "probability": 0.6966 + }, + { + "start": 12886.38, + "end": 12888.9, + "probability": 0.8532 + }, + { + "start": 12889.97, + "end": 12890.32, + "probability": 0.535 + }, + { + "start": 12890.32, + "end": 12894.82, + "probability": 0.9871 + }, + { + "start": 12896.98, + "end": 12897.08, + "probability": 0.8135 + }, + { + "start": 12901.6, + "end": 12902.2, + "probability": 0.1201 + }, + { + "start": 12902.28, + "end": 12903.16, + "probability": 0.5359 + }, + { + "start": 12907.94, + "end": 12912.56, + "probability": 0.8035 + }, + { + "start": 12913.88, + "end": 12917.5, + "probability": 0.9868 + }, + { + "start": 12917.54, + "end": 12918.56, + "probability": 0.8936 + }, + { + "start": 12918.86, + "end": 12918.92, + "probability": 0.6719 + }, + { + "start": 12919.48, + "end": 12920.44, + "probability": 0.8735 + }, + { + "start": 12920.96, + "end": 12921.16, + "probability": 0.9682 + }, + { + "start": 12922.72, + "end": 12924.04, + "probability": 0.9118 + }, + { + "start": 12924.56, + "end": 12925.98, + "probability": 0.4976 + }, + { + "start": 12929.02, + "end": 12929.12, + "probability": 0.7391 + }, + { + "start": 12929.12, + "end": 12931.56, + "probability": 0.7309 + }, + { + "start": 12931.72, + "end": 12932.26, + "probability": 0.4569 + }, + { + "start": 12932.42, + "end": 12934.6, + "probability": 0.9512 + }, + { + "start": 12936.19, + "end": 12938.38, + "probability": 0.9565 + }, + { + "start": 12939.4, + "end": 12943.99, + "probability": 0.9224 + }, + { + "start": 12945.34, + "end": 12947.74, + "probability": 0.8139 + }, + { + "start": 12948.54, + "end": 12952.0, + "probability": 0.9899 + }, + { + "start": 12953.58, + "end": 12955.98, + "probability": 0.7805 + }, + { + "start": 12957.5, + "end": 12960.86, + "probability": 0.5666 + }, + { + "start": 12961.34, + "end": 12962.55, + "probability": 0.8962 + }, + { + "start": 12963.7, + "end": 12965.08, + "probability": 0.9385 + }, + { + "start": 12965.54, + "end": 12967.02, + "probability": 0.572 + }, + { + "start": 12967.44, + "end": 12968.46, + "probability": 0.8363 + }, + { + "start": 12968.98, + "end": 12972.02, + "probability": 0.5336 + }, + { + "start": 12972.66, + "end": 12974.54, + "probability": 0.4846 + }, + { + "start": 12974.66, + "end": 12975.82, + "probability": 0.2973 + }, + { + "start": 12975.9, + "end": 12979.4, + "probability": 0.9309 + }, + { + "start": 12980.12, + "end": 12982.06, + "probability": 0.9761 + }, + { + "start": 12983.34, + "end": 12988.82, + "probability": 0.9897 + }, + { + "start": 12989.9, + "end": 12990.66, + "probability": 0.6661 + }, + { + "start": 12991.42, + "end": 12994.56, + "probability": 0.8784 + }, + { + "start": 12995.52, + "end": 12997.98, + "probability": 0.6429 + }, + { + "start": 12998.8, + "end": 12999.52, + "probability": 0.9355 + }, + { + "start": 13000.36, + "end": 13003.2, + "probability": 0.9929 + }, + { + "start": 13003.78, + "end": 13007.52, + "probability": 0.9662 + }, + { + "start": 13008.24, + "end": 13010.6, + "probability": 0.8916 + }, + { + "start": 13011.54, + "end": 13015.72, + "probability": 0.9857 + }, + { + "start": 13016.16, + "end": 13018.8, + "probability": 0.7351 + }, + { + "start": 13019.06, + "end": 13019.88, + "probability": 0.8362 + }, + { + "start": 13019.96, + "end": 13023.28, + "probability": 0.8933 + }, + { + "start": 13023.74, + "end": 13026.24, + "probability": 0.9114 + }, + { + "start": 13029.12, + "end": 13035.22, + "probability": 0.9689 + }, + { + "start": 13035.24, + "end": 13039.12, + "probability": 0.7412 + }, + { + "start": 13039.9, + "end": 13042.12, + "probability": 0.116 + }, + { + "start": 13042.12, + "end": 13044.48, + "probability": 0.1455 + }, + { + "start": 13045.44, + "end": 13046.82, + "probability": 0.6737 + }, + { + "start": 13046.9, + "end": 13047.6, + "probability": 0.7503 + }, + { + "start": 13047.72, + "end": 13048.5, + "probability": 0.6808 + }, + { + "start": 13048.82, + "end": 13049.72, + "probability": 0.5074 + }, + { + "start": 13050.2, + "end": 13051.6, + "probability": 0.6553 + }, + { + "start": 13051.96, + "end": 13053.9, + "probability": 0.9224 + }, + { + "start": 13055.84, + "end": 13058.46, + "probability": 0.7788 + }, + { + "start": 13059.22, + "end": 13061.72, + "probability": 0.9113 + }, + { + "start": 13061.78, + "end": 13062.56, + "probability": 0.91 + }, + { + "start": 13066.66, + "end": 13068.08, + "probability": 0.6781 + }, + { + "start": 13070.55, + "end": 13074.84, + "probability": 0.7576 + }, + { + "start": 13074.92, + "end": 13077.76, + "probability": 0.9426 + }, + { + "start": 13078.22, + "end": 13078.82, + "probability": 0.4903 + }, + { + "start": 13079.06, + "end": 13079.58, + "probability": 0.719 + }, + { + "start": 13080.6, + "end": 13081.24, + "probability": 0.7727 + }, + { + "start": 13081.4, + "end": 13083.36, + "probability": 0.1037 + }, + { + "start": 13083.66, + "end": 13085.92, + "probability": 0.072 + }, + { + "start": 13086.72, + "end": 13088.08, + "probability": 0.6605 + }, + { + "start": 13088.08, + "end": 13089.24, + "probability": 0.6682 + }, + { + "start": 13089.88, + "end": 13091.62, + "probability": 0.0995 + }, + { + "start": 13094.24, + "end": 13096.68, + "probability": 0.2134 + }, + { + "start": 13096.9, + "end": 13099.28, + "probability": 0.0279 + }, + { + "start": 13103.9, + "end": 13104.7, + "probability": 0.0201 + }, + { + "start": 13104.7, + "end": 13105.26, + "probability": 0.1646 + }, + { + "start": 13105.28, + "end": 13107.74, + "probability": 0.3259 + }, + { + "start": 13107.74, + "end": 13109.42, + "probability": 0.9118 + }, + { + "start": 13109.72, + "end": 13111.38, + "probability": 0.4797 + }, + { + "start": 13111.52, + "end": 13113.92, + "probability": 0.5552 + }, + { + "start": 13114.36, + "end": 13116.22, + "probability": 0.3147 + }, + { + "start": 13116.3, + "end": 13116.92, + "probability": 0.2353 + }, + { + "start": 13117.08, + "end": 13117.58, + "probability": 0.0342 + }, + { + "start": 13117.74, + "end": 13118.38, + "probability": 0.5036 + }, + { + "start": 13118.48, + "end": 13119.32, + "probability": 0.3641 + }, + { + "start": 13119.4, + "end": 13120.08, + "probability": 0.4711 + }, + { + "start": 13120.28, + "end": 13123.23, + "probability": 0.1209 + }, + { + "start": 13123.28, + "end": 13124.56, + "probability": 0.5903 + }, + { + "start": 13124.62, + "end": 13127.44, + "probability": 0.5548 + }, + { + "start": 13128.28, + "end": 13130.6, + "probability": 0.1 + }, + { + "start": 13131.8, + "end": 13132.58, + "probability": 0.0113 + }, + { + "start": 13132.58, + "end": 13135.14, + "probability": 0.0685 + }, + { + "start": 13135.52, + "end": 13135.68, + "probability": 0.093 + }, + { + "start": 13136.84, + "end": 13138.23, + "probability": 0.6762 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.0, + "end": 13175.0, + "probability": 0.0 + }, + { + "start": 13175.08, + "end": 13177.22, + "probability": 0.9873 + }, + { + "start": 13177.26, + "end": 13178.96, + "probability": 0.1899 + }, + { + "start": 13180.58, + "end": 13182.02, + "probability": 0.2904 + }, + { + "start": 13182.46, + "end": 13184.24, + "probability": 0.6595 + }, + { + "start": 13184.32, + "end": 13185.7, + "probability": 0.7882 + }, + { + "start": 13185.7, + "end": 13186.02, + "probability": 0.1834 + }, + { + "start": 13188.08, + "end": 13189.1, + "probability": 0.0817 + }, + { + "start": 13190.06, + "end": 13193.76, + "probability": 0.3318 + }, + { + "start": 13194.55, + "end": 13196.36, + "probability": 0.3248 + }, + { + "start": 13196.36, + "end": 13197.22, + "probability": 0.5576 + }, + { + "start": 13199.9, + "end": 13209.58, + "probability": 0.975 + }, + { + "start": 13211.18, + "end": 13212.94, + "probability": 0.0196 + }, + { + "start": 13219.98, + "end": 13221.84, + "probability": 0.4049 + }, + { + "start": 13221.96, + "end": 13222.84, + "probability": 0.806 + }, + { + "start": 13223.08, + "end": 13224.12, + "probability": 0.3222 + }, + { + "start": 13224.36, + "end": 13225.62, + "probability": 0.7658 + }, + { + "start": 13225.68, + "end": 13226.62, + "probability": 0.693 + }, + { + "start": 13227.42, + "end": 13228.23, + "probability": 0.2664 + }, + { + "start": 13228.62, + "end": 13231.05, + "probability": 0.4065 + }, + { + "start": 13232.6, + "end": 13234.74, + "probability": 0.6658 + }, + { + "start": 13235.56, + "end": 13237.36, + "probability": 0.2354 + }, + { + "start": 13237.38, + "end": 13240.7, + "probability": 0.6981 + }, + { + "start": 13241.76, + "end": 13243.14, + "probability": 0.8667 + }, + { + "start": 13244.8, + "end": 13245.62, + "probability": 0.8824 + }, + { + "start": 13246.2, + "end": 13247.48, + "probability": 0.972 + }, + { + "start": 13248.38, + "end": 13249.24, + "probability": 0.5928 + }, + { + "start": 13249.78, + "end": 13250.24, + "probability": 0.3067 + }, + { + "start": 13250.42, + "end": 13253.62, + "probability": 0.9908 + }, + { + "start": 13255.04, + "end": 13256.98, + "probability": 0.9284 + }, + { + "start": 13257.06, + "end": 13261.52, + "probability": 0.9957 + }, + { + "start": 13262.04, + "end": 13267.94, + "probability": 0.9966 + }, + { + "start": 13268.68, + "end": 13270.16, + "probability": 0.8955 + }, + { + "start": 13271.3, + "end": 13272.38, + "probability": 0.8564 + }, + { + "start": 13273.24, + "end": 13275.64, + "probability": 0.8894 + }, + { + "start": 13276.54, + "end": 13279.1, + "probability": 0.9838 + }, + { + "start": 13280.66, + "end": 13285.18, + "probability": 0.9631 + }, + { + "start": 13285.18, + "end": 13289.38, + "probability": 0.9708 + }, + { + "start": 13290.46, + "end": 13297.9, + "probability": 0.9834 + }, + { + "start": 13298.44, + "end": 13300.44, + "probability": 0.861 + }, + { + "start": 13300.68, + "end": 13301.92, + "probability": 0.6927 + }, + { + "start": 13302.42, + "end": 13304.96, + "probability": 0.74 + }, + { + "start": 13305.48, + "end": 13307.62, + "probability": 0.903 + }, + { + "start": 13309.8, + "end": 13310.9, + "probability": 0.445 + }, + { + "start": 13311.42, + "end": 13314.94, + "probability": 0.9982 + }, + { + "start": 13316.32, + "end": 13318.98, + "probability": 0.9965 + }, + { + "start": 13319.52, + "end": 13321.92, + "probability": 0.9221 + }, + { + "start": 13322.28, + "end": 13325.6, + "probability": 0.9811 + }, + { + "start": 13327.0, + "end": 13330.12, + "probability": 0.9446 + }, + { + "start": 13330.16, + "end": 13331.62, + "probability": 0.9573 + }, + { + "start": 13331.72, + "end": 13332.54, + "probability": 0.9124 + }, + { + "start": 13332.9, + "end": 13334.2, + "probability": 0.9848 + }, + { + "start": 13338.2, + "end": 13340.34, + "probability": 0.6999 + }, + { + "start": 13347.4, + "end": 13348.64, + "probability": 0.6739 + }, + { + "start": 13348.76, + "end": 13350.94, + "probability": 0.9475 + }, + { + "start": 13351.1, + "end": 13351.56, + "probability": 0.7288 + }, + { + "start": 13351.94, + "end": 13355.5, + "probability": 0.9083 + }, + { + "start": 13355.88, + "end": 13356.1, + "probability": 0.8571 + }, + { + "start": 13357.12, + "end": 13358.16, + "probability": 0.8388 + }, + { + "start": 13361.0, + "end": 13366.92, + "probability": 0.9992 + }, + { + "start": 13366.92, + "end": 13372.82, + "probability": 0.9978 + }, + { + "start": 13372.82, + "end": 13381.6, + "probability": 0.9843 + }, + { + "start": 13381.76, + "end": 13382.42, + "probability": 0.7349 + }, + { + "start": 13383.52, + "end": 13384.02, + "probability": 0.8979 + }, + { + "start": 13384.5, + "end": 13390.48, + "probability": 0.9928 + }, + { + "start": 13391.0, + "end": 13395.44, + "probability": 0.9657 + }, + { + "start": 13395.46, + "end": 13400.5, + "probability": 0.8958 + }, + { + "start": 13400.94, + "end": 13401.82, + "probability": 0.2385 + }, + { + "start": 13402.18, + "end": 13407.26, + "probability": 0.8895 + }, + { + "start": 13407.66, + "end": 13410.34, + "probability": 0.9526 + }, + { + "start": 13412.98, + "end": 13414.66, + "probability": 0.7806 + }, + { + "start": 13414.7, + "end": 13415.62, + "probability": 0.9383 + }, + { + "start": 13415.64, + "end": 13417.36, + "probability": 0.8825 + }, + { + "start": 13417.9, + "end": 13420.06, + "probability": 0.9597 + }, + { + "start": 13420.98, + "end": 13426.96, + "probability": 0.9763 + }, + { + "start": 13427.7, + "end": 13432.26, + "probability": 0.8718 + }, + { + "start": 13432.88, + "end": 13436.9, + "probability": 0.9824 + }, + { + "start": 13436.9, + "end": 13441.24, + "probability": 0.9974 + }, + { + "start": 13441.74, + "end": 13442.5, + "probability": 0.4499 + }, + { + "start": 13442.86, + "end": 13444.76, + "probability": 0.7441 + }, + { + "start": 13445.24, + "end": 13447.9, + "probability": 0.9121 + }, + { + "start": 13448.52, + "end": 13452.14, + "probability": 0.9252 + }, + { + "start": 13453.58, + "end": 13458.65, + "probability": 0.5748 + }, + { + "start": 13458.8, + "end": 13459.72, + "probability": 0.801 + }, + { + "start": 13460.12, + "end": 13462.82, + "probability": 0.9868 + }, + { + "start": 13462.82, + "end": 13466.44, + "probability": 0.8255 + }, + { + "start": 13468.64, + "end": 13469.54, + "probability": 0.7958 + }, + { + "start": 13470.14, + "end": 13470.48, + "probability": 0.0451 + }, + { + "start": 13470.5, + "end": 13470.86, + "probability": 0.7353 + }, + { + "start": 13470.88, + "end": 13471.48, + "probability": 0.8212 + }, + { + "start": 13471.6, + "end": 13474.42, + "probability": 0.7788 + }, + { + "start": 13475.38, + "end": 13477.32, + "probability": 0.9623 + }, + { + "start": 13477.96, + "end": 13479.86, + "probability": 0.7762 + }, + { + "start": 13480.6, + "end": 13483.88, + "probability": 0.8571 + }, + { + "start": 13484.18, + "end": 13488.78, + "probability": 0.7666 + }, + { + "start": 13489.68, + "end": 13493.36, + "probability": 0.9988 + }, + { + "start": 13493.72, + "end": 13497.28, + "probability": 0.957 + }, + { + "start": 13497.68, + "end": 13501.14, + "probability": 0.9857 + }, + { + "start": 13501.14, + "end": 13504.4, + "probability": 0.9946 + }, + { + "start": 13505.06, + "end": 13505.64, + "probability": 0.5029 + }, + { + "start": 13506.42, + "end": 13508.82, + "probability": 0.6393 + }, + { + "start": 13509.44, + "end": 13510.98, + "probability": 0.9572 + }, + { + "start": 13512.6, + "end": 13514.28, + "probability": 0.9051 + }, + { + "start": 13514.3, + "end": 13515.72, + "probability": 0.9629 + }, + { + "start": 13515.9, + "end": 13516.99, + "probability": 0.9764 + }, + { + "start": 13517.78, + "end": 13521.35, + "probability": 0.8566 + }, + { + "start": 13521.9, + "end": 13525.36, + "probability": 0.5767 + }, + { + "start": 13526.44, + "end": 13528.2, + "probability": 0.7984 + }, + { + "start": 13528.6, + "end": 13530.32, + "probability": 0.497 + }, + { + "start": 13530.32, + "end": 13532.7, + "probability": 0.6812 + }, + { + "start": 13533.0, + "end": 13534.72, + "probability": 0.9888 + }, + { + "start": 13535.38, + "end": 13535.84, + "probability": 0.6295 + }, + { + "start": 13535.88, + "end": 13536.7, + "probability": 0.7776 + }, + { + "start": 13537.1, + "end": 13538.39, + "probability": 0.9565 + }, + { + "start": 13538.68, + "end": 13540.52, + "probability": 0.7576 + }, + { + "start": 13541.64, + "end": 13543.12, + "probability": 0.4838 + }, + { + "start": 13544.76, + "end": 13547.05, + "probability": 0.4796 + }, + { + "start": 13548.14, + "end": 13550.12, + "probability": 0.9569 + }, + { + "start": 13550.28, + "end": 13552.88, + "probability": 0.4123 + }, + { + "start": 13552.88, + "end": 13554.44, + "probability": 0.8372 + }, + { + "start": 13554.98, + "end": 13556.98, + "probability": 0.9972 + }, + { + "start": 13558.72, + "end": 13560.04, + "probability": 0.4875 + }, + { + "start": 13560.8, + "end": 13563.06, + "probability": 0.6423 + }, + { + "start": 13563.06, + "end": 13564.54, + "probability": 0.964 + }, + { + "start": 13564.58, + "end": 13565.68, + "probability": 0.4275 + }, + { + "start": 13566.52, + "end": 13567.4, + "probability": 0.3393 + }, + { + "start": 13567.4, + "end": 13570.36, + "probability": 0.9189 + }, + { + "start": 13570.8, + "end": 13575.08, + "probability": 0.9412 + }, + { + "start": 13575.32, + "end": 13576.78, + "probability": 0.7995 + }, + { + "start": 13577.46, + "end": 13578.06, + "probability": 0.9062 + }, + { + "start": 13579.2, + "end": 13583.48, + "probability": 0.4815 + }, + { + "start": 13588.48, + "end": 13589.92, + "probability": 0.9621 + }, + { + "start": 13590.24, + "end": 13590.78, + "probability": 0.8643 + }, + { + "start": 13591.26, + "end": 13596.5, + "probability": 0.9768 + }, + { + "start": 13598.8, + "end": 13599.52, + "probability": 0.6208 + }, + { + "start": 13600.14, + "end": 13605.3, + "probability": 0.766 + }, + { + "start": 13606.14, + "end": 13608.44, + "probability": 0.9573 + }, + { + "start": 13608.44, + "end": 13611.52, + "probability": 0.9697 + }, + { + "start": 13612.06, + "end": 13613.65, + "probability": 0.9742 + }, + { + "start": 13615.12, + "end": 13616.28, + "probability": 0.5284 + }, + { + "start": 13616.86, + "end": 13620.7, + "probability": 0.5941 + }, + { + "start": 13623.6, + "end": 13624.73, + "probability": 0.4069 + }, + { + "start": 13625.36, + "end": 13628.1, + "probability": 0.9201 + }, + { + "start": 13628.16, + "end": 13630.36, + "probability": 0.9834 + }, + { + "start": 13631.6, + "end": 13635.48, + "probability": 0.9526 + }, + { + "start": 13636.04, + "end": 13637.04, + "probability": 0.6454 + }, + { + "start": 13637.5, + "end": 13641.44, + "probability": 0.9614 + }, + { + "start": 13642.12, + "end": 13645.16, + "probability": 0.9021 + }, + { + "start": 13647.36, + "end": 13648.3, + "probability": 0.8986 + }, + { + "start": 13648.38, + "end": 13649.5, + "probability": 0.9819 + }, + { + "start": 13650.16, + "end": 13653.58, + "probability": 0.9914 + }, + { + "start": 13653.9, + "end": 13655.66, + "probability": 0.8591 + }, + { + "start": 13656.22, + "end": 13658.38, + "probability": 0.8309 + }, + { + "start": 13659.0, + "end": 13662.68, + "probability": 0.9849 + }, + { + "start": 13663.92, + "end": 13668.28, + "probability": 0.9886 + }, + { + "start": 13668.68, + "end": 13671.3, + "probability": 0.8623 + }, + { + "start": 13671.66, + "end": 13674.1, + "probability": 0.843 + }, + { + "start": 13674.5, + "end": 13678.52, + "probability": 0.9425 + }, + { + "start": 13679.2, + "end": 13680.74, + "probability": 0.9925 + }, + { + "start": 13681.38, + "end": 13684.72, + "probability": 0.9882 + }, + { + "start": 13685.82, + "end": 13689.24, + "probability": 0.981 + }, + { + "start": 13690.54, + "end": 13696.66, + "probability": 0.8301 + }, + { + "start": 13701.88, + "end": 13702.1, + "probability": 0.8369 + }, + { + "start": 13704.97, + "end": 13707.46, + "probability": 0.7811 + }, + { + "start": 13707.56, + "end": 13709.26, + "probability": 0.9805 + }, + { + "start": 13710.5, + "end": 13713.39, + "probability": 0.9028 + }, + { + "start": 13717.36, + "end": 13718.2, + "probability": 0.866 + }, + { + "start": 13718.88, + "end": 13724.24, + "probability": 0.9919 + }, + { + "start": 13724.24, + "end": 13729.5, + "probability": 0.9811 + }, + { + "start": 13730.32, + "end": 13734.2, + "probability": 0.9837 + }, + { + "start": 13736.8, + "end": 13739.64, + "probability": 0.8512 + }, + { + "start": 13743.48, + "end": 13746.14, + "probability": 0.7635 + }, + { + "start": 13746.76, + "end": 13747.02, + "probability": 0.6868 + }, + { + "start": 13747.06, + "end": 13748.26, + "probability": 0.8765 + }, + { + "start": 13748.26, + "end": 13748.4, + "probability": 0.2314 + }, + { + "start": 13748.4, + "end": 13749.61, + "probability": 0.7026 + }, + { + "start": 13750.26, + "end": 13752.68, + "probability": 0.8774 + }, + { + "start": 13755.16, + "end": 13757.16, + "probability": 0.805 + }, + { + "start": 13759.89, + "end": 13761.68, + "probability": 0.8848 + }, + { + "start": 13764.3, + "end": 13768.16, + "probability": 0.9874 + }, + { + "start": 13768.3, + "end": 13769.86, + "probability": 0.9907 + }, + { + "start": 13773.16, + "end": 13775.46, + "probability": 0.6695 + }, + { + "start": 13775.56, + "end": 13775.6, + "probability": 0.4384 + }, + { + "start": 13775.6, + "end": 13778.12, + "probability": 0.7637 + }, + { + "start": 13778.24, + "end": 13783.44, + "probability": 0.9858 + }, + { + "start": 13784.02, + "end": 13786.02, + "probability": 0.9701 + }, + { + "start": 13786.7, + "end": 13787.92, + "probability": 0.568 + }, + { + "start": 13788.92, + "end": 13790.58, + "probability": 0.9664 + }, + { + "start": 13791.08, + "end": 13794.16, + "probability": 0.9182 + }, + { + "start": 13794.66, + "end": 13797.28, + "probability": 0.981 + }, + { + "start": 13797.76, + "end": 13798.66, + "probability": 0.5811 + }, + { + "start": 13799.28, + "end": 13801.04, + "probability": 0.9854 + }, + { + "start": 13802.32, + "end": 13807.16, + "probability": 0.9497 + }, + { + "start": 13807.82, + "end": 13809.44, + "probability": 0.9947 + }, + { + "start": 13809.72, + "end": 13815.18, + "probability": 0.988 + }, + { + "start": 13816.12, + "end": 13817.42, + "probability": 0.8478 + }, + { + "start": 13817.88, + "end": 13820.82, + "probability": 0.9279 + }, + { + "start": 13821.66, + "end": 13822.7, + "probability": 0.8851 + }, + { + "start": 13823.46, + "end": 13824.8, + "probability": 0.9671 + }, + { + "start": 13825.34, + "end": 13827.82, + "probability": 0.9976 + }, + { + "start": 13828.3, + "end": 13829.3, + "probability": 0.9863 + }, + { + "start": 13829.4, + "end": 13830.06, + "probability": 0.9692 + }, + { + "start": 13830.48, + "end": 13833.88, + "probability": 0.8935 + }, + { + "start": 13834.48, + "end": 13836.76, + "probability": 0.9849 + }, + { + "start": 13838.04, + "end": 13840.14, + "probability": 0.9572 + }, + { + "start": 13840.66, + "end": 13841.88, + "probability": 0.999 + }, + { + "start": 13842.4, + "end": 13843.64, + "probability": 0.8946 + }, + { + "start": 13843.88, + "end": 13844.18, + "probability": 0.7251 + }, + { + "start": 13845.46, + "end": 13846.08, + "probability": 0.032 + }, + { + "start": 13846.08, + "end": 13847.52, + "probability": 0.6865 + }, + { + "start": 13847.9, + "end": 13851.08, + "probability": 0.0132 + }, + { + "start": 13851.08, + "end": 13851.44, + "probability": 0.0267 + }, + { + "start": 13851.58, + "end": 13852.12, + "probability": 0.6055 + }, + { + "start": 13852.24, + "end": 13852.58, + "probability": 0.4629 + }, + { + "start": 13854.18, + "end": 13856.06, + "probability": 0.8443 + }, + { + "start": 13856.92, + "end": 13858.32, + "probability": 0.7531 + }, + { + "start": 13859.14, + "end": 13859.34, + "probability": 0.8469 + }, + { + "start": 13878.62, + "end": 13881.06, + "probability": 0.7005 + }, + { + "start": 13882.36, + "end": 13883.54, + "probability": 0.7559 + }, + { + "start": 13883.92, + "end": 13887.94, + "probability": 0.8814 + }, + { + "start": 13889.18, + "end": 13893.4, + "probability": 0.9556 + }, + { + "start": 13893.48, + "end": 13897.94, + "probability": 0.485 + }, + { + "start": 13897.96, + "end": 13899.8, + "probability": 0.9883 + }, + { + "start": 13901.1, + "end": 13903.42, + "probability": 0.9887 + }, + { + "start": 13904.18, + "end": 13907.94, + "probability": 0.6885 + }, + { + "start": 13908.48, + "end": 13911.24, + "probability": 0.8104 + }, + { + "start": 13912.12, + "end": 13913.98, + "probability": 0.9128 + }, + { + "start": 13914.26, + "end": 13915.14, + "probability": 0.9365 + }, + { + "start": 13915.4, + "end": 13916.0, + "probability": 0.3969 + }, + { + "start": 13916.24, + "end": 13917.78, + "probability": 0.8591 + }, + { + "start": 13919.72, + "end": 13921.54, + "probability": 0.9528 + }, + { + "start": 13922.4, + "end": 13923.44, + "probability": 0.9374 + }, + { + "start": 13924.3, + "end": 13930.88, + "probability": 0.9148 + }, + { + "start": 13931.84, + "end": 13934.02, + "probability": 0.9913 + }, + { + "start": 13935.5, + "end": 13939.48, + "probability": 0.9589 + }, + { + "start": 13940.38, + "end": 13942.54, + "probability": 0.993 + }, + { + "start": 13943.06, + "end": 13947.82, + "probability": 0.9477 + }, + { + "start": 13948.62, + "end": 13953.3, + "probability": 0.9536 + }, + { + "start": 13955.34, + "end": 13957.68, + "probability": 0.9876 + }, + { + "start": 13958.84, + "end": 13960.08, + "probability": 0.7529 + }, + { + "start": 13961.6, + "end": 13962.86, + "probability": 0.6185 + }, + { + "start": 13962.98, + "end": 13969.23, + "probability": 0.9437 + }, + { + "start": 13970.12, + "end": 13970.58, + "probability": 0.5893 + }, + { + "start": 13970.96, + "end": 13974.24, + "probability": 0.8735 + }, + { + "start": 13975.52, + "end": 13979.9, + "probability": 0.9733 + }, + { + "start": 13980.16, + "end": 13982.54, + "probability": 0.9597 + }, + { + "start": 13982.8, + "end": 13985.7, + "probability": 0.8574 + }, + { + "start": 13986.56, + "end": 13991.38, + "probability": 0.9358 + }, + { + "start": 13991.98, + "end": 13995.86, + "probability": 0.9539 + }, + { + "start": 13995.92, + "end": 13998.18, + "probability": 0.9922 + }, + { + "start": 13999.52, + "end": 14003.2, + "probability": 0.9894 + }, + { + "start": 14004.22, + "end": 14006.3, + "probability": 0.6981 + }, + { + "start": 14006.48, + "end": 14010.4, + "probability": 0.9871 + }, + { + "start": 14012.36, + "end": 14016.84, + "probability": 0.9868 + }, + { + "start": 14017.64, + "end": 14019.96, + "probability": 0.9839 + }, + { + "start": 14020.08, + "end": 14020.58, + "probability": 0.9095 + }, + { + "start": 14020.7, + "end": 14022.8, + "probability": 0.8267 + }, + { + "start": 14022.98, + "end": 14025.64, + "probability": 0.9149 + }, + { + "start": 14026.52, + "end": 14027.1, + "probability": 0.7432 + }, + { + "start": 14027.64, + "end": 14032.2, + "probability": 0.9861 + }, + { + "start": 14033.02, + "end": 14037.1, + "probability": 0.9901 + }, + { + "start": 14038.4, + "end": 14041.42, + "probability": 0.991 + }, + { + "start": 14041.42, + "end": 14044.52, + "probability": 0.6999 + }, + { + "start": 14045.34, + "end": 14049.5, + "probability": 0.9902 + }, + { + "start": 14051.38, + "end": 14058.56, + "probability": 0.9893 + }, + { + "start": 14060.64, + "end": 14062.94, + "probability": 0.6675 + }, + { + "start": 14063.58, + "end": 14066.52, + "probability": 0.8807 + }, + { + "start": 14067.7, + "end": 14071.86, + "probability": 0.9215 + }, + { + "start": 14072.56, + "end": 14075.5, + "probability": 0.9968 + }, + { + "start": 14076.02, + "end": 14080.3, + "probability": 0.9941 + }, + { + "start": 14083.04, + "end": 14085.3, + "probability": 0.9632 + }, + { + "start": 14085.82, + "end": 14086.52, + "probability": 0.7984 + }, + { + "start": 14087.16, + "end": 14088.54, + "probability": 0.7624 + }, + { + "start": 14088.62, + "end": 14091.06, + "probability": 0.991 + }, + { + "start": 14092.0, + "end": 14094.78, + "probability": 0.8652 + }, + { + "start": 14094.94, + "end": 14096.06, + "probability": 0.8323 + }, + { + "start": 14096.18, + "end": 14097.36, + "probability": 0.5252 + }, + { + "start": 14100.0, + "end": 14105.78, + "probability": 0.9976 + }, + { + "start": 14105.78, + "end": 14111.34, + "probability": 0.999 + }, + { + "start": 14112.54, + "end": 14116.42, + "probability": 0.6603 + }, + { + "start": 14116.42, + "end": 14123.38, + "probability": 0.9725 + }, + { + "start": 14123.58, + "end": 14124.5, + "probability": 0.2449 + }, + { + "start": 14124.62, + "end": 14125.72, + "probability": 0.6924 + }, + { + "start": 14126.22, + "end": 14127.38, + "probability": 0.8708 + }, + { + "start": 14127.46, + "end": 14132.96, + "probability": 0.984 + }, + { + "start": 14134.12, + "end": 14138.28, + "probability": 0.731 + }, + { + "start": 14139.2, + "end": 14140.8, + "probability": 0.8952 + }, + { + "start": 14141.5, + "end": 14146.86, + "probability": 0.9337 + }, + { + "start": 14146.86, + "end": 14150.68, + "probability": 0.9005 + }, + { + "start": 14151.28, + "end": 14154.36, + "probability": 0.9727 + }, + { + "start": 14155.74, + "end": 14158.18, + "probability": 0.9959 + }, + { + "start": 14158.96, + "end": 14162.42, + "probability": 0.9952 + }, + { + "start": 14163.1, + "end": 14164.66, + "probability": 0.9046 + }, + { + "start": 14164.84, + "end": 14166.3, + "probability": 0.953 + }, + { + "start": 14166.4, + "end": 14167.42, + "probability": 0.9451 + }, + { + "start": 14169.0, + "end": 14173.92, + "probability": 0.9565 + }, + { + "start": 14175.1, + "end": 14177.38, + "probability": 0.9775 + }, + { + "start": 14177.44, + "end": 14178.2, + "probability": 0.9526 + }, + { + "start": 14178.38, + "end": 14179.02, + "probability": 0.8581 + }, + { + "start": 14179.08, + "end": 14180.2, + "probability": 0.9883 + }, + { + "start": 14180.78, + "end": 14181.72, + "probability": 0.6047 + }, + { + "start": 14182.34, + "end": 14186.86, + "probability": 0.9104 + }, + { + "start": 14187.62, + "end": 14189.4, + "probability": 0.9438 + }, + { + "start": 14189.46, + "end": 14191.08, + "probability": 0.9554 + }, + { + "start": 14191.2, + "end": 14192.76, + "probability": 0.8311 + }, + { + "start": 14193.58, + "end": 14198.26, + "probability": 0.996 + }, + { + "start": 14198.88, + "end": 14203.88, + "probability": 0.9722 + }, + { + "start": 14204.86, + "end": 14207.08, + "probability": 0.9984 + }, + { + "start": 14207.94, + "end": 14210.56, + "probability": 0.9956 + }, + { + "start": 14210.82, + "end": 14212.28, + "probability": 0.9063 + }, + { + "start": 14212.34, + "end": 14216.02, + "probability": 0.9901 + }, + { + "start": 14216.52, + "end": 14218.66, + "probability": 0.9706 + }, + { + "start": 14219.18, + "end": 14222.18, + "probability": 0.9928 + }, + { + "start": 14222.48, + "end": 14223.72, + "probability": 0.4272 + }, + { + "start": 14224.3, + "end": 14226.3, + "probability": 0.989 + }, + { + "start": 14226.44, + "end": 14228.26, + "probability": 0.8626 + }, + { + "start": 14229.0, + "end": 14231.7, + "probability": 0.9896 + }, + { + "start": 14233.22, + "end": 14239.4, + "probability": 0.9829 + }, + { + "start": 14240.22, + "end": 14243.68, + "probability": 0.9529 + }, + { + "start": 14245.34, + "end": 14249.76, + "probability": 0.9569 + }, + { + "start": 14249.86, + "end": 14251.28, + "probability": 0.8325 + }, + { + "start": 14253.16, + "end": 14255.12, + "probability": 0.9339 + }, + { + "start": 14255.14, + "end": 14257.2, + "probability": 0.9967 + }, + { + "start": 14257.54, + "end": 14258.24, + "probability": 0.396 + }, + { + "start": 14258.46, + "end": 14259.33, + "probability": 0.546 + }, + { + "start": 14260.64, + "end": 14262.6, + "probability": 0.9458 + }, + { + "start": 14262.78, + "end": 14264.96, + "probability": 0.9141 + }, + { + "start": 14265.1, + "end": 14266.6, + "probability": 0.6976 + }, + { + "start": 14266.78, + "end": 14267.24, + "probability": 0.0139 + }, + { + "start": 14267.9, + "end": 14268.22, + "probability": 0.5067 + }, + { + "start": 14268.26, + "end": 14273.08, + "probability": 0.9475 + }, + { + "start": 14274.22, + "end": 14278.5, + "probability": 0.9874 + }, + { + "start": 14279.16, + "end": 14280.6, + "probability": 0.8644 + }, + { + "start": 14280.66, + "end": 14281.28, + "probability": 0.9519 + }, + { + "start": 14282.04, + "end": 14284.62, + "probability": 0.8878 + }, + { + "start": 14284.74, + "end": 14286.66, + "probability": 0.9031 + }, + { + "start": 14287.36, + "end": 14289.9, + "probability": 0.8961 + }, + { + "start": 14290.38, + "end": 14293.41, + "probability": 0.9487 + }, + { + "start": 14293.84, + "end": 14296.22, + "probability": 0.9652 + }, + { + "start": 14297.1, + "end": 14300.18, + "probability": 0.9802 + }, + { + "start": 14300.5, + "end": 14302.22, + "probability": 0.8506 + }, + { + "start": 14303.58, + "end": 14311.2, + "probability": 0.8529 + }, + { + "start": 14312.36, + "end": 14315.4, + "probability": 0.9717 + }, + { + "start": 14316.5, + "end": 14321.2, + "probability": 0.8728 + }, + { + "start": 14321.72, + "end": 14322.46, + "probability": 0.8722 + }, + { + "start": 14323.28, + "end": 14325.16, + "probability": 0.8358 + }, + { + "start": 14326.12, + "end": 14326.48, + "probability": 0.987 + }, + { + "start": 14327.66, + "end": 14329.28, + "probability": 0.7715 + }, + { + "start": 14330.14, + "end": 14330.86, + "probability": 0.6938 + }, + { + "start": 14330.9, + "end": 14335.68, + "probability": 0.9922 + }, + { + "start": 14336.7, + "end": 14340.66, + "probability": 0.9925 + }, + { + "start": 14341.32, + "end": 14343.18, + "probability": 0.8332 + }, + { + "start": 14343.26, + "end": 14343.74, + "probability": 0.892 + }, + { + "start": 14344.98, + "end": 14346.24, + "probability": 0.8116 + }, + { + "start": 14346.36, + "end": 14347.7, + "probability": 0.8041 + }, + { + "start": 14348.1, + "end": 14349.64, + "probability": 0.4075 + }, + { + "start": 14350.02, + "end": 14351.54, + "probability": 0.9355 + }, + { + "start": 14352.34, + "end": 14352.52, + "probability": 0.0011 + }, + { + "start": 14354.84, + "end": 14356.14, + "probability": 0.0362 + }, + { + "start": 14358.06, + "end": 14359.75, + "probability": 0.7762 + }, + { + "start": 14367.96, + "end": 14368.56, + "probability": 0.9862 + }, + { + "start": 14370.12, + "end": 14374.58, + "probability": 0.725 + }, + { + "start": 14375.44, + "end": 14375.79, + "probability": 0.6901 + }, + { + "start": 14377.84, + "end": 14378.26, + "probability": 0.8158 + }, + { + "start": 14379.12, + "end": 14381.58, + "probability": 0.092 + }, + { + "start": 14382.72, + "end": 14387.76, + "probability": 0.0474 + }, + { + "start": 14388.86, + "end": 14388.96, + "probability": 0.024 + }, + { + "start": 14388.96, + "end": 14388.96, + "probability": 0.0503 + }, + { + "start": 14388.96, + "end": 14388.96, + "probability": 0.2812 + }, + { + "start": 14388.96, + "end": 14388.96, + "probability": 0.0772 + }, + { + "start": 14388.96, + "end": 14392.76, + "probability": 0.354 + }, + { + "start": 14393.08, + "end": 14397.11, + "probability": 0.6328 + }, + { + "start": 14397.92, + "end": 14400.66, + "probability": 0.8026 + }, + { + "start": 14401.52, + "end": 14402.42, + "probability": 0.2597 + }, + { + "start": 14402.86, + "end": 14405.76, + "probability": 0.9178 + }, + { + "start": 14406.0, + "end": 14406.74, + "probability": 0.9189 + }, + { + "start": 14407.96, + "end": 14410.96, + "probability": 0.7885 + }, + { + "start": 14411.2, + "end": 14414.36, + "probability": 0.9849 + }, + { + "start": 14414.94, + "end": 14417.3, + "probability": 0.4989 + }, + { + "start": 14417.96, + "end": 14419.68, + "probability": 0.8888 + }, + { + "start": 14420.72, + "end": 14422.7, + "probability": 0.9677 + }, + { + "start": 14422.74, + "end": 14424.66, + "probability": 0.9446 + }, + { + "start": 14425.62, + "end": 14427.36, + "probability": 0.9533 + }, + { + "start": 14427.98, + "end": 14431.5, + "probability": 0.9945 + }, + { + "start": 14431.84, + "end": 14433.02, + "probability": 0.9627 + }, + { + "start": 14433.12, + "end": 14434.84, + "probability": 0.9698 + }, + { + "start": 14435.82, + "end": 14439.2, + "probability": 0.823 + }, + { + "start": 14440.0, + "end": 14441.8, + "probability": 0.8647 + }, + { + "start": 14442.2, + "end": 14448.76, + "probability": 0.9903 + }, + { + "start": 14449.4, + "end": 14453.64, + "probability": 0.9968 + }, + { + "start": 14454.34, + "end": 14456.36, + "probability": 0.6326 + }, + { + "start": 14456.66, + "end": 14458.1, + "probability": 0.599 + }, + { + "start": 14458.14, + "end": 14459.22, + "probability": 0.9885 + }, + { + "start": 14459.3, + "end": 14460.02, + "probability": 0.9478 + }, + { + "start": 14460.52, + "end": 14462.16, + "probability": 0.9849 + }, + { + "start": 14462.74, + "end": 14465.56, + "probability": 0.9873 + }, + { + "start": 14465.56, + "end": 14469.0, + "probability": 0.9391 + }, + { + "start": 14469.48, + "end": 14470.89, + "probability": 0.8962 + }, + { + "start": 14471.42, + "end": 14472.72, + "probability": 0.9771 + }, + { + "start": 14472.82, + "end": 14473.26, + "probability": 0.9058 + }, + { + "start": 14474.54, + "end": 14477.0, + "probability": 0.7986 + }, + { + "start": 14477.06, + "end": 14478.48, + "probability": 0.956 + }, + { + "start": 14478.74, + "end": 14479.8, + "probability": 0.9683 + }, + { + "start": 14480.6, + "end": 14483.58, + "probability": 0.8083 + }, + { + "start": 14484.48, + "end": 14489.82, + "probability": 0.9537 + }, + { + "start": 14490.12, + "end": 14491.54, + "probability": 0.9899 + }, + { + "start": 14491.66, + "end": 14492.22, + "probability": 0.9187 + }, + { + "start": 14492.5, + "end": 14496.22, + "probability": 0.9951 + }, + { + "start": 14496.32, + "end": 14498.02, + "probability": 0.842 + }, + { + "start": 14498.12, + "end": 14498.94, + "probability": 0.8739 + }, + { + "start": 14499.04, + "end": 14500.44, + "probability": 0.8174 + }, + { + "start": 14500.72, + "end": 14501.66, + "probability": 0.9645 + }, + { + "start": 14502.18, + "end": 14502.3, + "probability": 0.1644 + }, + { + "start": 14502.52, + "end": 14502.92, + "probability": 0.9065 + }, + { + "start": 14504.34, + "end": 14510.2, + "probability": 0.9873 + }, + { + "start": 14511.54, + "end": 14513.0, + "probability": 0.7505 + }, + { + "start": 14513.56, + "end": 14517.27, + "probability": 0.7108 + }, + { + "start": 14518.02, + "end": 14520.22, + "probability": 0.9131 + }, + { + "start": 14521.2, + "end": 14522.06, + "probability": 0.5909 + }, + { + "start": 14522.94, + "end": 14525.54, + "probability": 0.9941 + }, + { + "start": 14525.62, + "end": 14525.96, + "probability": 0.9431 + }, + { + "start": 14525.96, + "end": 14526.72, + "probability": 0.8938 + }, + { + "start": 14526.96, + "end": 14527.98, + "probability": 0.967 + }, + { + "start": 14529.14, + "end": 14532.3, + "probability": 0.9526 + }, + { + "start": 14532.44, + "end": 14535.0, + "probability": 0.9268 + }, + { + "start": 14536.48, + "end": 14539.28, + "probability": 0.9152 + }, + { + "start": 14539.62, + "end": 14542.12, + "probability": 0.9595 + }, + { + "start": 14542.44, + "end": 14547.76, + "probability": 0.7495 + }, + { + "start": 14548.18, + "end": 14549.12, + "probability": 0.833 + }, + { + "start": 14549.7, + "end": 14551.8, + "probability": 0.9941 + }, + { + "start": 14552.16, + "end": 14552.7, + "probability": 0.9397 + }, + { + "start": 14553.44, + "end": 14553.8, + "probability": 0.9529 + }, + { + "start": 14553.98, + "end": 14554.78, + "probability": 0.9769 + }, + { + "start": 14555.64, + "end": 14555.64, + "probability": 0.0695 + }, + { + "start": 14555.64, + "end": 14555.9, + "probability": 0.6516 + }, + { + "start": 14555.96, + "end": 14557.42, + "probability": 0.9756 + }, + { + "start": 14557.62, + "end": 14559.78, + "probability": 0.8292 + }, + { + "start": 14560.18, + "end": 14560.4, + "probability": 0.3738 + }, + { + "start": 14560.6, + "end": 14561.42, + "probability": 0.7561 + }, + { + "start": 14561.58, + "end": 14561.96, + "probability": 0.8735 + }, + { + "start": 14562.08, + "end": 14562.82, + "probability": 0.7755 + }, + { + "start": 14562.98, + "end": 14564.18, + "probability": 0.7526 + }, + { + "start": 14564.34, + "end": 14567.08, + "probability": 0.9223 + }, + { + "start": 14567.44, + "end": 14568.98, + "probability": 0.7875 + }, + { + "start": 14569.1, + "end": 14573.99, + "probability": 0.3248 + }, + { + "start": 14574.44, + "end": 14576.76, + "probability": 0.0824 + }, + { + "start": 14576.76, + "end": 14577.56, + "probability": 0.1607 + }, + { + "start": 14577.56, + "end": 14578.26, + "probability": 0.187 + }, + { + "start": 14578.5, + "end": 14578.5, + "probability": 0.3699 + }, + { + "start": 14578.56, + "end": 14581.0, + "probability": 0.9772 + }, + { + "start": 14581.26, + "end": 14582.1, + "probability": 0.75 + }, + { + "start": 14582.36, + "end": 14582.94, + "probability": 0.5835 + }, + { + "start": 14583.24, + "end": 14584.62, + "probability": 0.5073 + }, + { + "start": 14585.56, + "end": 14587.06, + "probability": 0.2986 + }, + { + "start": 14587.1, + "end": 14589.34, + "probability": 0.939 + }, + { + "start": 14589.44, + "end": 14590.24, + "probability": 0.9336 + }, + { + "start": 14590.58, + "end": 14594.28, + "probability": 0.9893 + }, + { + "start": 14594.42, + "end": 14594.84, + "probability": 0.2015 + }, + { + "start": 14595.0, + "end": 14595.94, + "probability": 0.5969 + }, + { + "start": 14596.0, + "end": 14596.72, + "probability": 0.3457 + }, + { + "start": 14597.68, + "end": 14598.1, + "probability": 0.9355 + }, + { + "start": 14599.02, + "end": 14602.24, + "probability": 0.9536 + }, + { + "start": 14602.62, + "end": 14604.74, + "probability": 0.9893 + }, + { + "start": 14605.22, + "end": 14605.87, + "probability": 0.9374 + }, + { + "start": 14606.18, + "end": 14606.36, + "probability": 0.8483 + }, + { + "start": 14606.42, + "end": 14607.22, + "probability": 0.5449 + }, + { + "start": 14607.28, + "end": 14608.57, + "probability": 0.6691 + }, + { + "start": 14609.94, + "end": 14610.76, + "probability": 0.1998 + }, + { + "start": 14611.28, + "end": 14614.44, + "probability": 0.3189 + }, + { + "start": 14614.7, + "end": 14618.52, + "probability": 0.2504 + }, + { + "start": 14619.1, + "end": 14621.16, + "probability": 0.1155 + }, + { + "start": 14621.76, + "end": 14622.38, + "probability": 0.1544 + }, + { + "start": 14622.56, + "end": 14624.18, + "probability": 0.5314 + }, + { + "start": 14624.62, + "end": 14625.3, + "probability": 0.4727 + }, + { + "start": 14625.68, + "end": 14628.7, + "probability": 0.8243 + }, + { + "start": 14629.32, + "end": 14634.7, + "probability": 0.9563 + }, + { + "start": 14635.02, + "end": 14638.56, + "probability": 0.8082 + }, + { + "start": 14639.06, + "end": 14643.9, + "probability": 0.4339 + }, + { + "start": 14644.78, + "end": 14648.33, + "probability": 0.6747 + }, + { + "start": 14649.42, + "end": 14651.04, + "probability": 0.8235 + }, + { + "start": 14651.96, + "end": 14652.24, + "probability": 0.883 + }, + { + "start": 14653.32, + "end": 14654.2, + "probability": 0.9303 + }, + { + "start": 14655.12, + "end": 14656.86, + "probability": 0.9535 + }, + { + "start": 14657.64, + "end": 14659.5, + "probability": 0.9251 + }, + { + "start": 14660.82, + "end": 14661.58, + "probability": 0.9898 + }, + { + "start": 14662.42, + "end": 14663.08, + "probability": 0.811 + }, + { + "start": 14664.58, + "end": 14666.12, + "probability": 0.7829 + }, + { + "start": 14667.16, + "end": 14670.08, + "probability": 0.978 + }, + { + "start": 14671.04, + "end": 14671.32, + "probability": 0.7486 + }, + { + "start": 14672.52, + "end": 14673.46, + "probability": 0.519 + }, + { + "start": 14674.1, + "end": 14675.86, + "probability": 0.9491 + }, + { + "start": 14676.06, + "end": 14677.68, + "probability": 0.9411 + }, + { + "start": 14678.08, + "end": 14679.58, + "probability": 0.9537 + }, + { + "start": 14681.4, + "end": 14683.2, + "probability": 0.8973 + }, + { + "start": 14684.16, + "end": 14687.14, + "probability": 0.8619 + }, + { + "start": 14688.06, + "end": 14688.78, + "probability": 0.5192 + }, + { + "start": 14693.12, + "end": 14695.42, + "probability": 0.7987 + }, + { + "start": 14697.86, + "end": 14698.6, + "probability": 0.8776 + }, + { + "start": 14700.0, + "end": 14700.72, + "probability": 0.882 + }, + { + "start": 14703.44, + "end": 14705.0, + "probability": 0.9559 + }, + { + "start": 14706.8, + "end": 14707.36, + "probability": 0.9775 + }, + { + "start": 14708.14, + "end": 14709.06, + "probability": 0.8058 + }, + { + "start": 14712.01, + "end": 14715.54, + "probability": 0.9117 + }, + { + "start": 14718.88, + "end": 14719.3, + "probability": 0.8327 + }, + { + "start": 14720.5, + "end": 14721.45, + "probability": 0.9597 + }, + { + "start": 14722.08, + "end": 14722.42, + "probability": 0.4982 + }, + { + "start": 14723.42, + "end": 14726.6, + "probability": 0.757 + }, + { + "start": 14727.36, + "end": 14731.2, + "probability": 0.9129 + }, + { + "start": 14732.7, + "end": 14733.16, + "probability": 0.9655 + }, + { + "start": 14733.98, + "end": 14734.98, + "probability": 0.9146 + }, + { + "start": 14737.54, + "end": 14738.22, + "probability": 0.9833 + }, + { + "start": 14739.04, + "end": 14742.04, + "probability": 0.7768 + }, + { + "start": 14742.98, + "end": 14743.32, + "probability": 0.5798 + }, + { + "start": 14744.36, + "end": 14744.98, + "probability": 0.6094 + }, + { + "start": 14745.98, + "end": 14747.56, + "probability": 0.9124 + }, + { + "start": 14748.3, + "end": 14749.78, + "probability": 0.806 + }, + { + "start": 14751.62, + "end": 14752.42, + "probability": 0.9821 + }, + { + "start": 14753.94, + "end": 14754.86, + "probability": 0.8402 + }, + { + "start": 14755.58, + "end": 14755.96, + "probability": 0.9829 + }, + { + "start": 14756.78, + "end": 14757.58, + "probability": 0.9548 + }, + { + "start": 14759.08, + "end": 14759.52, + "probability": 0.9839 + }, + { + "start": 14760.3, + "end": 14762.94, + "probability": 0.9386 + }, + { + "start": 14763.82, + "end": 14764.32, + "probability": 0.988 + }, + { + "start": 14765.16, + "end": 14765.84, + "probability": 0.9471 + }, + { + "start": 14766.8, + "end": 14769.42, + "probability": 0.936 + }, + { + "start": 14770.1, + "end": 14771.0, + "probability": 0.974 + }, + { + "start": 14772.48, + "end": 14774.36, + "probability": 0.8051 + }, + { + "start": 14775.26, + "end": 14776.34, + "probability": 0.9899 + }, + { + "start": 14777.14, + "end": 14778.0, + "probability": 0.9874 + }, + { + "start": 14779.06, + "end": 14779.48, + "probability": 0.9946 + }, + { + "start": 14780.06, + "end": 14781.08, + "probability": 0.9918 + }, + { + "start": 14782.56, + "end": 14783.0, + "probability": 0.9964 + }, + { + "start": 14783.74, + "end": 14784.56, + "probability": 0.9724 + }, + { + "start": 14785.7, + "end": 14786.08, + "probability": 0.9453 + }, + { + "start": 14786.72, + "end": 14787.7, + "probability": 0.6214 + }, + { + "start": 14788.52, + "end": 14790.44, + "probability": 0.9255 + }, + { + "start": 14791.5, + "end": 14792.3, + "probability": 0.6947 + }, + { + "start": 14793.06, + "end": 14794.54, + "probability": 0.6438 + }, + { + "start": 14795.58, + "end": 14796.08, + "probability": 0.9719 + }, + { + "start": 14796.7, + "end": 14797.64, + "probability": 0.8668 + }, + { + "start": 14801.28, + "end": 14802.62, + "probability": 0.8566 + }, + { + "start": 14804.94, + "end": 14805.66, + "probability": 0.9398 + }, + { + "start": 14808.6, + "end": 14809.06, + "probability": 0.9676 + }, + { + "start": 14810.1, + "end": 14810.94, + "probability": 0.8863 + }, + { + "start": 14811.92, + "end": 14816.52, + "probability": 0.976 + }, + { + "start": 14817.68, + "end": 14818.54, + "probability": 0.9803 + }, + { + "start": 14819.12, + "end": 14819.18, + "probability": 0.0074 + }, + { + "start": 14823.36, + "end": 14825.7, + "probability": 0.5 + }, + { + "start": 14827.26, + "end": 14829.1, + "probability": 0.9158 + }, + { + "start": 14830.36, + "end": 14830.82, + "probability": 0.9756 + }, + { + "start": 14831.8, + "end": 14832.62, + "probability": 0.9136 + }, + { + "start": 14833.54, + "end": 14835.16, + "probability": 0.8977 + }, + { + "start": 14836.9, + "end": 14841.64, + "probability": 0.8658 + }, + { + "start": 14842.96, + "end": 14844.7, + "probability": 0.9027 + }, + { + "start": 14846.25, + "end": 14848.22, + "probability": 0.9746 + }, + { + "start": 14849.28, + "end": 14849.54, + "probability": 0.6928 + }, + { + "start": 14850.18, + "end": 14850.96, + "probability": 0.7407 + }, + { + "start": 14853.98, + "end": 14855.64, + "probability": 0.9222 + }, + { + "start": 14856.16, + "end": 14857.62, + "probability": 0.1716 + }, + { + "start": 14858.48, + "end": 14861.38, + "probability": 0.8853 + }, + { + "start": 14862.6, + "end": 14863.88, + "probability": 0.9661 + }, + { + "start": 14864.98, + "end": 14866.48, + "probability": 0.9145 + }, + { + "start": 14867.22, + "end": 14867.64, + "probability": 0.9819 + }, + { + "start": 14868.62, + "end": 14871.44, + "probability": 0.8029 + }, + { + "start": 14872.98, + "end": 14875.02, + "probability": 0.9741 + }, + { + "start": 14876.86, + "end": 14878.26, + "probability": 0.6341 + }, + { + "start": 14879.08, + "end": 14879.32, + "probability": 0.9455 + }, + { + "start": 14880.96, + "end": 14881.8, + "probability": 0.876 + }, + { + "start": 14883.2, + "end": 14885.32, + "probability": 0.9285 + }, + { + "start": 14886.94, + "end": 14888.82, + "probability": 0.9715 + }, + { + "start": 14889.72, + "end": 14891.36, + "probability": 0.9463 + }, + { + "start": 14892.14, + "end": 14892.62, + "probability": 0.9888 + }, + { + "start": 14893.4, + "end": 14894.24, + "probability": 0.7194 + }, + { + "start": 14897.24, + "end": 14901.86, + "probability": 0.8232 + }, + { + "start": 14903.28, + "end": 14904.94, + "probability": 0.7903 + }, + { + "start": 14906.26, + "end": 14907.24, + "probability": 0.7782 + }, + { + "start": 14907.76, + "end": 14912.88, + "probability": 0.8471 + }, + { + "start": 14913.74, + "end": 14915.38, + "probability": 0.9591 + }, + { + "start": 14916.18, + "end": 14919.56, + "probability": 0.9108 + }, + { + "start": 14920.56, + "end": 14923.08, + "probability": 0.8389 + }, + { + "start": 14924.26, + "end": 14926.2, + "probability": 0.6833 + }, + { + "start": 14927.02, + "end": 14927.9, + "probability": 0.6019 + }, + { + "start": 14928.82, + "end": 14930.44, + "probability": 0.8865 + }, + { + "start": 14932.9, + "end": 14933.98, + "probability": 0.9803 + }, + { + "start": 14934.6, + "end": 14935.5, + "probability": 0.8563 + }, + { + "start": 14937.32, + "end": 14937.98, + "probability": 0.9251 + }, + { + "start": 14938.5, + "end": 14939.88, + "probability": 0.9051 + }, + { + "start": 14940.6, + "end": 14944.5, + "probability": 0.9206 + }, + { + "start": 14947.8, + "end": 14950.72, + "probability": 0.8505 + }, + { + "start": 14952.3, + "end": 14954.32, + "probability": 0.6303 + }, + { + "start": 14955.1, + "end": 14955.58, + "probability": 0.9515 + }, + { + "start": 14956.36, + "end": 14960.18, + "probability": 0.5937 + }, + { + "start": 14962.7, + "end": 14964.24, + "probability": 0.9031 + }, + { + "start": 14965.58, + "end": 14966.98, + "probability": 0.9629 + }, + { + "start": 14967.88, + "end": 14968.32, + "probability": 0.9953 + }, + { + "start": 14969.2, + "end": 14971.8, + "probability": 0.8811 + }, + { + "start": 14973.18, + "end": 14974.82, + "probability": 0.6753 + }, + { + "start": 14978.48, + "end": 14981.72, + "probability": 0.9461 + }, + { + "start": 14982.5, + "end": 14984.22, + "probability": 0.8484 + }, + { + "start": 14985.04, + "end": 14985.58, + "probability": 0.9728 + }, + { + "start": 14987.24, + "end": 14988.1, + "probability": 0.8105 + }, + { + "start": 14990.76, + "end": 14993.3, + "probability": 0.9678 + }, + { + "start": 14995.3, + "end": 14996.92, + "probability": 0.7468 + }, + { + "start": 14998.22, + "end": 14999.82, + "probability": 0.9441 + }, + { + "start": 15001.56, + "end": 15003.06, + "probability": 0.8148 + }, + { + "start": 15004.62, + "end": 15006.82, + "probability": 0.8889 + }, + { + "start": 15009.06, + "end": 15009.84, + "probability": 0.9341 + }, + { + "start": 15010.96, + "end": 15011.82, + "probability": 0.8007 + }, + { + "start": 15013.28, + "end": 15013.56, + "probability": 0.9515 + }, + { + "start": 15014.78, + "end": 15015.46, + "probability": 0.9635 + }, + { + "start": 15016.58, + "end": 15018.22, + "probability": 0.8579 + }, + { + "start": 15018.84, + "end": 15019.28, + "probability": 0.9521 + }, + { + "start": 15020.36, + "end": 15023.26, + "probability": 0.9712 + }, + { + "start": 15023.96, + "end": 15027.8, + "probability": 0.8872 + }, + { + "start": 15028.86, + "end": 15029.14, + "probability": 0.7445 + }, + { + "start": 15029.98, + "end": 15032.78, + "probability": 0.8144 + }, + { + "start": 15033.4, + "end": 15034.96, + "probability": 0.9595 + }, + { + "start": 15036.1, + "end": 15039.9, + "probability": 0.9255 + }, + { + "start": 15040.54, + "end": 15041.86, + "probability": 0.9671 + }, + { + "start": 15043.81, + "end": 15046.4, + "probability": 0.8086 + }, + { + "start": 15047.3, + "end": 15047.72, + "probability": 0.8743 + }, + { + "start": 15048.42, + "end": 15049.16, + "probability": 0.7901 + }, + { + "start": 15049.8, + "end": 15051.62, + "probability": 0.8111 + }, + { + "start": 15052.38, + "end": 15052.64, + "probability": 0.9243 + }, + { + "start": 15054.08, + "end": 15055.54, + "probability": 0.5006 + }, + { + "start": 15055.54, + "end": 15058.24, + "probability": 0.9834 + }, + { + "start": 15059.08, + "end": 15059.98, + "probability": 0.5813 + }, + { + "start": 15060.28, + "end": 15062.19, + "probability": 0.7157 + }, + { + "start": 15062.76, + "end": 15064.56, + "probability": 0.8503 + }, + { + "start": 15065.46, + "end": 15066.82, + "probability": 0.8726 + }, + { + "start": 15067.96, + "end": 15069.74, + "probability": 0.9541 + }, + { + "start": 15069.94, + "end": 15071.52, + "probability": 0.9454 + }, + { + "start": 15072.02, + "end": 15073.46, + "probability": 0.6513 + }, + { + "start": 15075.14, + "end": 15076.56, + "probability": 0.8485 + }, + { + "start": 15077.44, + "end": 15078.26, + "probability": 0.8504 + }, + { + "start": 15080.48, + "end": 15080.76, + "probability": 0.9478 + }, + { + "start": 15081.66, + "end": 15082.52, + "probability": 0.8088 + }, + { + "start": 15083.98, + "end": 15084.68, + "probability": 0.8752 + }, + { + "start": 15085.36, + "end": 15088.62, + "probability": 0.9312 + }, + { + "start": 15089.62, + "end": 15091.66, + "probability": 0.8667 + }, + { + "start": 15093.88, + "end": 15094.3, + "probability": 0.5283 + }, + { + "start": 15094.9, + "end": 15097.04, + "probability": 0.9473 + }, + { + "start": 15097.9, + "end": 15099.8, + "probability": 0.9435 + }, + { + "start": 15101.22, + "end": 15102.12, + "probability": 0.9938 + }, + { + "start": 15103.84, + "end": 15104.86, + "probability": 0.8366 + }, + { + "start": 15105.72, + "end": 15107.72, + "probability": 0.9834 + }, + { + "start": 15108.2, + "end": 15110.24, + "probability": 0.8761 + }, + { + "start": 15111.36, + "end": 15112.04, + "probability": 0.979 + }, + { + "start": 15112.6, + "end": 15113.44, + "probability": 0.9415 + }, + { + "start": 15114.94, + "end": 15117.46, + "probability": 0.9439 + }, + { + "start": 15119.38, + "end": 15119.82, + "probability": 0.6737 + }, + { + "start": 15120.68, + "end": 15121.68, + "probability": 0.7757 + }, + { + "start": 15122.5, + "end": 15123.28, + "probability": 0.9805 + }, + { + "start": 15124.3, + "end": 15125.18, + "probability": 0.8422 + }, + { + "start": 15125.96, + "end": 15127.76, + "probability": 0.9765 + }, + { + "start": 15128.54, + "end": 15130.4, + "probability": 0.9357 + }, + { + "start": 15131.24, + "end": 15133.16, + "probability": 0.7208 + }, + { + "start": 15134.04, + "end": 15135.52, + "probability": 0.9287 + }, + { + "start": 15136.44, + "end": 15137.26, + "probability": 0.9873 + }, + { + "start": 15137.9, + "end": 15139.14, + "probability": 0.8815 + }, + { + "start": 15139.9, + "end": 15143.64, + "probability": 0.992 + }, + { + "start": 15144.3, + "end": 15145.04, + "probability": 0.9886 + }, + { + "start": 15146.02, + "end": 15146.9, + "probability": 0.9846 + }, + { + "start": 15148.02, + "end": 15151.32, + "probability": 0.9544 + }, + { + "start": 15152.04, + "end": 15153.6, + "probability": 0.8013 + }, + { + "start": 15154.42, + "end": 15155.9, + "probability": 0.9436 + }, + { + "start": 15156.04, + "end": 15157.66, + "probability": 0.8807 + }, + { + "start": 15158.86, + "end": 15160.42, + "probability": 0.9217 + }, + { + "start": 15162.74, + "end": 15163.14, + "probability": 0.651 + }, + { + "start": 15164.32, + "end": 15165.06, + "probability": 0.7651 + }, + { + "start": 15165.98, + "end": 15167.44, + "probability": 0.9005 + }, + { + "start": 15168.04, + "end": 15171.72, + "probability": 0.8376 + }, + { + "start": 15172.62, + "end": 15176.5, + "probability": 0.9462 + }, + { + "start": 15178.86, + "end": 15179.34, + "probability": 0.9095 + }, + { + "start": 15180.38, + "end": 15181.26, + "probability": 0.7929 + }, + { + "start": 15182.48, + "end": 15184.42, + "probability": 0.9833 + }, + { + "start": 15185.52, + "end": 15187.18, + "probability": 0.9105 + }, + { + "start": 15188.0, + "end": 15189.34, + "probability": 0.9715 + }, + { + "start": 15190.46, + "end": 15191.22, + "probability": 0.9086 + }, + { + "start": 15192.46, + "end": 15194.0, + "probability": 0.6822 + }, + { + "start": 15195.6, + "end": 15196.26, + "probability": 0.6217 + }, + { + "start": 15197.06, + "end": 15199.02, + "probability": 0.9586 + }, + { + "start": 15199.24, + "end": 15200.62, + "probability": 0.981 + }, + { + "start": 15201.08, + "end": 15202.74, + "probability": 0.9843 + }, + { + "start": 15203.36, + "end": 15204.92, + "probability": 0.7556 + }, + { + "start": 15205.58, + "end": 15207.26, + "probability": 0.879 + }, + { + "start": 15207.82, + "end": 15210.04, + "probability": 0.9536 + }, + { + "start": 15210.18, + "end": 15213.46, + "probability": 0.5531 + }, + { + "start": 15213.84, + "end": 15215.84, + "probability": 0.2789 + }, + { + "start": 15216.54, + "end": 15220.98, + "probability": 0.9797 + }, + { + "start": 15221.14, + "end": 15222.3, + "probability": 0.3995 + }, + { + "start": 15222.34, + "end": 15224.7, + "probability": 0.9268 + }, + { + "start": 15241.9, + "end": 15242.36, + "probability": 0.1035 + }, + { + "start": 15244.08, + "end": 15244.7, + "probability": 0.2339 + }, + { + "start": 15246.38, + "end": 15246.68, + "probability": 0.0553 + }, + { + "start": 15248.48, + "end": 15248.48, + "probability": 0.0825 + }, + { + "start": 15265.3, + "end": 15266.82, + "probability": 0.1718 + }, + { + "start": 15288.0, + "end": 15288.0, + "probability": 0.01 + }, + { + "start": 15288.0, + "end": 15288.0, + "probability": 0.0446 + }, + { + "start": 15288.0, + "end": 15288.0, + "probability": 0.0286 + }, + { + "start": 15288.0, + "end": 15288.08, + "probability": 0.017 + }, + { + "start": 15288.08, + "end": 15288.16, + "probability": 0.0135 + }, + { + "start": 15314.4, + "end": 15316.12, + "probability": 0.5013 + }, + { + "start": 15316.12, + "end": 15318.88, + "probability": 0.8013 + }, + { + "start": 15318.96, + "end": 15321.04, + "probability": 0.9538 + }, + { + "start": 15321.66, + "end": 15323.48, + "probability": 0.9536 + }, + { + "start": 15335.02, + "end": 15336.3, + "probability": 0.6042 + }, + { + "start": 15339.78, + "end": 15342.72, + "probability": 0.7204 + }, + { + "start": 15344.62, + "end": 15349.18, + "probability": 0.9495 + }, + { + "start": 15350.22, + "end": 15351.7, + "probability": 0.9783 + }, + { + "start": 15352.16, + "end": 15354.16, + "probability": 0.8011 + }, + { + "start": 15354.42, + "end": 15355.22, + "probability": 0.9412 + }, + { + "start": 15355.26, + "end": 15356.38, + "probability": 0.8254 + }, + { + "start": 15356.38, + "end": 15358.26, + "probability": 0.8828 + }, + { + "start": 15358.62, + "end": 15359.2, + "probability": 0.7346 + }, + { + "start": 15360.1, + "end": 15361.98, + "probability": 0.8589 + }, + { + "start": 15362.62, + "end": 15364.56, + "probability": 0.7755 + }, + { + "start": 15366.48, + "end": 15367.02, + "probability": 0.9573 + }, + { + "start": 15368.02, + "end": 15368.76, + "probability": 0.9541 + }, + { + "start": 15369.0, + "end": 15369.96, + "probability": 0.9263 + }, + { + "start": 15370.32, + "end": 15372.64, + "probability": 0.9945 + }, + { + "start": 15373.5, + "end": 15375.82, + "probability": 0.6097 + }, + { + "start": 15379.64, + "end": 15381.9, + "probability": 0.9827 + }, + { + "start": 15382.78, + "end": 15384.9, + "probability": 0.7759 + }, + { + "start": 15387.3, + "end": 15394.46, + "probability": 0.9899 + }, + { + "start": 15395.48, + "end": 15405.22, + "probability": 0.9967 + }, + { + "start": 15406.34, + "end": 15408.6, + "probability": 0.9459 + }, + { + "start": 15409.4, + "end": 15410.24, + "probability": 0.7202 + }, + { + "start": 15411.0, + "end": 15411.94, + "probability": 0.9797 + }, + { + "start": 15412.6, + "end": 15414.52, + "probability": 0.9927 + }, + { + "start": 15415.26, + "end": 15419.06, + "probability": 0.9707 + }, + { + "start": 15419.56, + "end": 15421.66, + "probability": 0.9936 + }, + { + "start": 15421.82, + "end": 15423.44, + "probability": 0.9913 + }, + { + "start": 15424.8, + "end": 15428.38, + "probability": 0.9883 + }, + { + "start": 15429.34, + "end": 15431.14, + "probability": 0.9943 + }, + { + "start": 15431.68, + "end": 15432.48, + "probability": 0.788 + }, + { + "start": 15433.94, + "end": 15436.86, + "probability": 0.8586 + }, + { + "start": 15438.0, + "end": 15449.52, + "probability": 0.9828 + }, + { + "start": 15449.52, + "end": 15459.68, + "probability": 0.9956 + }, + { + "start": 15461.64, + "end": 15463.24, + "probability": 0.6639 + }, + { + "start": 15464.02, + "end": 15465.72, + "probability": 0.9938 + }, + { + "start": 15467.78, + "end": 15471.66, + "probability": 0.9968 + }, + { + "start": 15472.64, + "end": 15476.42, + "probability": 0.9965 + }, + { + "start": 15477.46, + "end": 15480.42, + "probability": 0.9223 + }, + { + "start": 15480.98, + "end": 15483.18, + "probability": 0.9567 + }, + { + "start": 15483.8, + "end": 15486.82, + "probability": 0.9316 + }, + { + "start": 15487.36, + "end": 15491.52, + "probability": 0.9631 + }, + { + "start": 15492.2, + "end": 15502.3, + "probability": 0.9813 + }, + { + "start": 15503.68, + "end": 15503.68, + "probability": 0.0971 + }, + { + "start": 15503.68, + "end": 15509.48, + "probability": 0.9651 + }, + { + "start": 15510.12, + "end": 15510.52, + "probability": 0.3628 + }, + { + "start": 15510.94, + "end": 15511.78, + "probability": 0.8665 + }, + { + "start": 15512.0, + "end": 15513.34, + "probability": 0.9088 + }, + { + "start": 15513.52, + "end": 15515.86, + "probability": 0.9718 + }, + { + "start": 15516.32, + "end": 15518.18, + "probability": 0.905 + }, + { + "start": 15518.6, + "end": 15522.52, + "probability": 0.9042 + }, + { + "start": 15523.0, + "end": 15529.16, + "probability": 0.8881 + }, + { + "start": 15529.48, + "end": 15531.22, + "probability": 0.6321 + }, + { + "start": 15532.62, + "end": 15536.76, + "probability": 0.8288 + }, + { + "start": 15537.38, + "end": 15540.78, + "probability": 0.9824 + }, + { + "start": 15543.04, + "end": 15544.94, + "probability": 0.9856 + }, + { + "start": 15545.8, + "end": 15548.18, + "probability": 0.8909 + }, + { + "start": 15549.0, + "end": 15555.14, + "probability": 0.978 + }, + { + "start": 15555.5, + "end": 15557.04, + "probability": 0.2051 + }, + { + "start": 15557.3, + "end": 15557.74, + "probability": 0.0669 + }, + { + "start": 15557.74, + "end": 15560.92, + "probability": 0.7117 + }, + { + "start": 15561.06, + "end": 15563.8, + "probability": 0.9924 + }, + { + "start": 15564.06, + "end": 15567.46, + "probability": 0.6423 + }, + { + "start": 15567.86, + "end": 15570.08, + "probability": 0.684 + }, + { + "start": 15570.08, + "end": 15575.96, + "probability": 0.8802 + }, + { + "start": 15576.66, + "end": 15578.08, + "probability": 0.7255 + }, + { + "start": 15578.32, + "end": 15578.32, + "probability": 0.0437 + }, + { + "start": 15578.32, + "end": 15580.74, + "probability": 0.7856 + }, + { + "start": 15581.12, + "end": 15582.64, + "probability": 0.9393 + }, + { + "start": 15582.82, + "end": 15590.82, + "probability": 0.9279 + }, + { + "start": 15591.48, + "end": 15599.46, + "probability": 0.9954 + }, + { + "start": 15600.08, + "end": 15605.8, + "probability": 0.9094 + }, + { + "start": 15606.6, + "end": 15611.28, + "probability": 0.9867 + }, + { + "start": 15611.28, + "end": 15615.84, + "probability": 0.9955 + }, + { + "start": 15616.1, + "end": 15617.58, + "probability": 0.8211 + }, + { + "start": 15618.9, + "end": 15623.26, + "probability": 0.9351 + }, + { + "start": 15623.26, + "end": 15629.5, + "probability": 0.986 + }, + { + "start": 15630.06, + "end": 15633.28, + "probability": 0.9851 + }, + { + "start": 15633.66, + "end": 15637.52, + "probability": 0.9865 + }, + { + "start": 15638.1, + "end": 15642.8, + "probability": 0.7292 + }, + { + "start": 15643.74, + "end": 15646.26, + "probability": 0.9681 + }, + { + "start": 15647.08, + "end": 15653.14, + "probability": 0.9796 + }, + { + "start": 15653.68, + "end": 15660.78, + "probability": 0.9897 + }, + { + "start": 15660.78, + "end": 15667.3, + "probability": 0.9395 + }, + { + "start": 15669.88, + "end": 15670.46, + "probability": 0.6227 + }, + { + "start": 15671.6, + "end": 15675.64, + "probability": 0.9978 + }, + { + "start": 15676.3, + "end": 15679.96, + "probability": 0.7032 + }, + { + "start": 15680.1, + "end": 15684.0, + "probability": 0.9392 + }, + { + "start": 15684.16, + "end": 15686.1, + "probability": 0.9967 + }, + { + "start": 15686.36, + "end": 15690.86, + "probability": 0.6523 + }, + { + "start": 15691.18, + "end": 15693.24, + "probability": 0.5902 + }, + { + "start": 15693.86, + "end": 15697.46, + "probability": 0.9238 + }, + { + "start": 15699.52, + "end": 15701.64, + "probability": 0.9842 + }, + { + "start": 15701.82, + "end": 15705.66, + "probability": 0.7258 + }, + { + "start": 15706.62, + "end": 15708.2, + "probability": 0.8239 + }, + { + "start": 15708.78, + "end": 15711.1, + "probability": 0.9448 + }, + { + "start": 15712.76, + "end": 15715.26, + "probability": 0.9964 + }, + { + "start": 15716.4, + "end": 15723.84, + "probability": 0.978 + }, + { + "start": 15724.02, + "end": 15725.9, + "probability": 0.788 + }, + { + "start": 15725.96, + "end": 15726.96, + "probability": 0.5445 + }, + { + "start": 15727.82, + "end": 15731.34, + "probability": 0.7533 + }, + { + "start": 15731.92, + "end": 15734.2, + "probability": 0.7645 + }, + { + "start": 15734.76, + "end": 15736.76, + "probability": 0.6871 + }, + { + "start": 15737.6, + "end": 15739.96, + "probability": 0.9836 + }, + { + "start": 15740.44, + "end": 15744.72, + "probability": 0.869 + }, + { + "start": 15745.24, + "end": 15747.72, + "probability": 0.9673 + }, + { + "start": 15748.26, + "end": 15751.36, + "probability": 0.7979 + }, + { + "start": 15751.5, + "end": 15756.56, + "probability": 0.9617 + }, + { + "start": 15759.7, + "end": 15768.64, + "probability": 0.9426 + }, + { + "start": 15769.72, + "end": 15773.7, + "probability": 0.962 + }, + { + "start": 15774.24, + "end": 15775.56, + "probability": 0.8386 + }, + { + "start": 15776.64, + "end": 15779.08, + "probability": 0.9285 + }, + { + "start": 15779.92, + "end": 15783.8, + "probability": 0.9587 + }, + { + "start": 15784.24, + "end": 15784.77, + "probability": 0.9121 + }, + { + "start": 15785.66, + "end": 15786.76, + "probability": 0.7689 + }, + { + "start": 15787.68, + "end": 15788.74, + "probability": 0.9932 + }, + { + "start": 15790.06, + "end": 15793.54, + "probability": 0.9968 + }, + { + "start": 15794.38, + "end": 15798.44, + "probability": 0.8638 + }, + { + "start": 15799.08, + "end": 15800.92, + "probability": 0.8726 + }, + { + "start": 15801.66, + "end": 15806.16, + "probability": 0.9753 + }, + { + "start": 15806.94, + "end": 15810.98, + "probability": 0.9687 + }, + { + "start": 15811.46, + "end": 15815.36, + "probability": 0.9727 + }, + { + "start": 15815.58, + "end": 15817.28, + "probability": 0.5595 + }, + { + "start": 15817.48, + "end": 15820.08, + "probability": 0.8716 + }, + { + "start": 15820.28, + "end": 15823.58, + "probability": 0.8822 + }, + { + "start": 15824.12, + "end": 15826.48, + "probability": 0.4016 + }, + { + "start": 15826.5, + "end": 15830.98, + "probability": 0.9359 + }, + { + "start": 15832.2, + "end": 15835.76, + "probability": 0.9922 + }, + { + "start": 15837.32, + "end": 15841.84, + "probability": 0.9919 + }, + { + "start": 15842.08, + "end": 15843.22, + "probability": 0.9705 + }, + { + "start": 15845.02, + "end": 15846.08, + "probability": 0.8848 + }, + { + "start": 15847.42, + "end": 15849.84, + "probability": 0.9644 + }, + { + "start": 15850.42, + "end": 15851.36, + "probability": 0.9835 + }, + { + "start": 15851.74, + "end": 15852.62, + "probability": 0.6883 + }, + { + "start": 15852.9, + "end": 15855.61, + "probability": 0.9903 + }, + { + "start": 15855.8, + "end": 15856.68, + "probability": 0.7256 + }, + { + "start": 15857.06, + "end": 15858.62, + "probability": 0.9912 + }, + { + "start": 15858.72, + "end": 15861.86, + "probability": 0.9823 + }, + { + "start": 15863.54, + "end": 15865.84, + "probability": 0.4917 + }, + { + "start": 15866.1, + "end": 15869.06, + "probability": 0.8945 + }, + { + "start": 15870.86, + "end": 15875.12, + "probability": 0.9108 + }, + { + "start": 15875.7, + "end": 15879.4, + "probability": 0.9919 + }, + { + "start": 15879.86, + "end": 15885.44, + "probability": 0.9818 + }, + { + "start": 15886.46, + "end": 15891.36, + "probability": 0.7555 + }, + { + "start": 15891.94, + "end": 15893.68, + "probability": 0.9829 + }, + { + "start": 15894.38, + "end": 15895.72, + "probability": 0.6342 + }, + { + "start": 15895.9, + "end": 15896.14, + "probability": 0.5179 + }, + { + "start": 15896.24, + "end": 15897.1, + "probability": 0.8492 + }, + { + "start": 15897.46, + "end": 15898.76, + "probability": 0.7509 + }, + { + "start": 15899.46, + "end": 15902.45, + "probability": 0.7594 + }, + { + "start": 15903.2, + "end": 15903.94, + "probability": 0.6805 + }, + { + "start": 15904.98, + "end": 15905.98, + "probability": 0.5003 + }, + { + "start": 15907.3, + "end": 15914.38, + "probability": 0.9785 + }, + { + "start": 15917.54, + "end": 15919.32, + "probability": 0.9038 + }, + { + "start": 15919.64, + "end": 15926.62, + "probability": 0.9767 + }, + { + "start": 15927.3, + "end": 15929.95, + "probability": 0.8118 + }, + { + "start": 15931.28, + "end": 15932.36, + "probability": 0.0418 + }, + { + "start": 15932.36, + "end": 15943.96, + "probability": 0.702 + }, + { + "start": 15945.5, + "end": 15948.14, + "probability": 0.2534 + }, + { + "start": 15949.02, + "end": 15949.06, + "probability": 0.0188 + }, + { + "start": 15949.06, + "end": 15949.06, + "probability": 0.2039 + }, + { + "start": 15949.06, + "end": 15951.56, + "probability": 0.8707 + }, + { + "start": 15952.42, + "end": 15953.9, + "probability": 0.9221 + }, + { + "start": 15955.64, + "end": 15959.9, + "probability": 0.8993 + }, + { + "start": 15960.52, + "end": 15966.24, + "probability": 0.9303 + }, + { + "start": 15967.16, + "end": 15968.3, + "probability": 0.6656 + }, + { + "start": 15968.72, + "end": 15973.1, + "probability": 0.8333 + }, + { + "start": 15973.16, + "end": 15973.84, + "probability": 0.9439 + }, + { + "start": 15974.0, + "end": 15974.92, + "probability": 0.7903 + }, + { + "start": 15975.18, + "end": 15977.54, + "probability": 0.9441 + }, + { + "start": 15977.56, + "end": 15977.92, + "probability": 0.2718 + }, + { + "start": 15977.92, + "end": 15981.96, + "probability": 0.604 + }, + { + "start": 15981.96, + "end": 15982.06, + "probability": 0.3027 + }, + { + "start": 15982.06, + "end": 15982.24, + "probability": 0.6597 + }, + { + "start": 15982.3, + "end": 15986.42, + "probability": 0.995 + }, + { + "start": 15986.42, + "end": 15991.42, + "probability": 0.9838 + }, + { + "start": 15991.86, + "end": 15993.78, + "probability": 0.9868 + }, + { + "start": 15994.06, + "end": 15998.84, + "probability": 0.9624 + }, + { + "start": 15998.92, + "end": 16001.92, + "probability": 0.9398 + }, + { + "start": 16002.3, + "end": 16003.42, + "probability": 0.9634 + }, + { + "start": 16003.74, + "end": 16004.88, + "probability": 0.9746 + }, + { + "start": 16005.16, + "end": 16007.96, + "probability": 0.9844 + }, + { + "start": 16009.06, + "end": 16009.24, + "probability": 0.5772 + }, + { + "start": 16009.62, + "end": 16012.44, + "probability": 0.9792 + }, + { + "start": 16012.56, + "end": 16017.14, + "probability": 0.9073 + }, + { + "start": 16017.68, + "end": 16018.4, + "probability": 0.8673 + }, + { + "start": 16018.8, + "end": 16019.36, + "probability": 0.644 + }, + { + "start": 16019.74, + "end": 16020.74, + "probability": 0.9563 + }, + { + "start": 16021.1, + "end": 16024.5, + "probability": 0.9489 + }, + { + "start": 16024.76, + "end": 16027.4, + "probability": 0.9928 + }, + { + "start": 16027.48, + "end": 16029.16, + "probability": 0.601 + }, + { + "start": 16029.26, + "end": 16030.88, + "probability": 0.6627 + }, + { + "start": 16031.26, + "end": 16031.66, + "probability": 0.0582 + }, + { + "start": 16033.07, + "end": 16036.12, + "probability": 0.5087 + }, + { + "start": 16036.18, + "end": 16036.7, + "probability": 0.5167 + }, + { + "start": 16036.74, + "end": 16040.78, + "probability": 0.6266 + }, + { + "start": 16040.84, + "end": 16042.16, + "probability": 0.8208 + }, + { + "start": 16043.38, + "end": 16045.84, + "probability": 0.4566 + }, + { + "start": 16049.33, + "end": 16052.02, + "probability": 0.6398 + }, + { + "start": 16052.58, + "end": 16053.14, + "probability": 0.8947 + }, + { + "start": 16053.88, + "end": 16057.96, + "probability": 0.6919 + }, + { + "start": 16058.54, + "end": 16060.72, + "probability": 0.9118 + }, + { + "start": 16062.97, + "end": 16064.7, + "probability": 0.8243 + }, + { + "start": 16064.84, + "end": 16068.5, + "probability": 0.9881 + }, + { + "start": 16069.78, + "end": 16071.82, + "probability": 0.1803 + }, + { + "start": 16071.82, + "end": 16072.2, + "probability": 0.0023 + }, + { + "start": 16077.71, + "end": 16081.1, + "probability": 0.723 + }, + { + "start": 16081.16, + "end": 16083.0, + "probability": 0.7216 + }, + { + "start": 16083.02, + "end": 16086.46, + "probability": 0.943 + }, + { + "start": 16087.86, + "end": 16091.26, + "probability": 0.578 + }, + { + "start": 16091.34, + "end": 16093.16, + "probability": 0.8154 + }, + { + "start": 16093.64, + "end": 16095.72, + "probability": 0.8349 + }, + { + "start": 16097.2, + "end": 16098.04, + "probability": 0.0085 + }, + { + "start": 16099.22, + "end": 16100.15, + "probability": 0.967 + }, + { + "start": 16101.65, + "end": 16103.94, + "probability": 0.933 + }, + { + "start": 16104.6, + "end": 16104.96, + "probability": 0.2045 + }, + { + "start": 16105.04, + "end": 16106.38, + "probability": 0.7054 + }, + { + "start": 16106.5, + "end": 16106.62, + "probability": 0.7161 + }, + { + "start": 16107.52, + "end": 16108.04, + "probability": 0.0333 + }, + { + "start": 16108.12, + "end": 16110.66, + "probability": 0.5226 + }, + { + "start": 16110.76, + "end": 16111.74, + "probability": 0.8466 + }, + { + "start": 16111.92, + "end": 16112.4, + "probability": 0.939 + }, + { + "start": 16112.62, + "end": 16115.58, + "probability": 0.5958 + }, + { + "start": 16116.44, + "end": 16117.76, + "probability": 0.9635 + }, + { + "start": 16119.4, + "end": 16120.86, + "probability": 0.3557 + }, + { + "start": 16120.96, + "end": 16122.08, + "probability": 0.8471 + }, + { + "start": 16122.1, + "end": 16124.2, + "probability": 0.9313 + }, + { + "start": 16125.38, + "end": 16130.68, + "probability": 0.968 + }, + { + "start": 16132.46, + "end": 16135.78, + "probability": 0.0542 + }, + { + "start": 16135.78, + "end": 16136.72, + "probability": 0.1665 + }, + { + "start": 16137.52, + "end": 16138.14, + "probability": 0.4735 + }, + { + "start": 16140.23, + "end": 16145.32, + "probability": 0.8888 + }, + { + "start": 16145.32, + "end": 16151.26, + "probability": 0.9913 + }, + { + "start": 16151.3, + "end": 16156.66, + "probability": 0.9601 + }, + { + "start": 16159.0, + "end": 16160.34, + "probability": 0.959 + }, + { + "start": 16160.46, + "end": 16163.76, + "probability": 0.851 + }, + { + "start": 16163.76, + "end": 16167.0, + "probability": 0.8296 + }, + { + "start": 16167.74, + "end": 16170.48, + "probability": 0.768 + }, + { + "start": 16171.42, + "end": 16173.74, + "probability": 0.9627 + }, + { + "start": 16173.74, + "end": 16176.16, + "probability": 0.7358 + }, + { + "start": 16176.9, + "end": 16181.38, + "probability": 0.8477 + }, + { + "start": 16182.26, + "end": 16182.86, + "probability": 0.6784 + }, + { + "start": 16183.04, + "end": 16185.86, + "probability": 0.6633 + }, + { + "start": 16186.56, + "end": 16191.38, + "probability": 0.9647 + }, + { + "start": 16192.12, + "end": 16194.16, + "probability": 0.9252 + }, + { + "start": 16194.16, + "end": 16196.52, + "probability": 0.9417 + }, + { + "start": 16197.44, + "end": 16199.9, + "probability": 0.7613 + }, + { + "start": 16200.7, + "end": 16201.14, + "probability": 0.4408 + }, + { + "start": 16201.18, + "end": 16203.06, + "probability": 0.5686 + }, + { + "start": 16203.06, + "end": 16206.08, + "probability": 0.7625 + }, + { + "start": 16206.92, + "end": 16210.18, + "probability": 0.7069 + }, + { + "start": 16210.34, + "end": 16213.94, + "probability": 0.9372 + }, + { + "start": 16215.62, + "end": 16217.18, + "probability": 0.4693 + }, + { + "start": 16217.24, + "end": 16219.62, + "probability": 0.5307 + }, + { + "start": 16219.76, + "end": 16220.16, + "probability": 0.4362 + }, + { + "start": 16220.28, + "end": 16221.72, + "probability": 0.5269 + }, + { + "start": 16222.36, + "end": 16222.7, + "probability": 0.4634 + }, + { + "start": 16222.74, + "end": 16226.55, + "probability": 0.5651 + }, + { + "start": 16226.86, + "end": 16227.32, + "probability": 0.8315 + }, + { + "start": 16227.66, + "end": 16228.84, + "probability": 0.6525 + }, + { + "start": 16229.66, + "end": 16231.36, + "probability": 0.7347 + }, + { + "start": 16231.58, + "end": 16232.2, + "probability": 0.4805 + }, + { + "start": 16233.0, + "end": 16236.41, + "probability": 0.8004 + }, + { + "start": 16237.54, + "end": 16241.12, + "probability": 0.821 + }, + { + "start": 16243.4, + "end": 16244.36, + "probability": 0.0237 + }, + { + "start": 16245.46, + "end": 16247.46, + "probability": 0.1468 + }, + { + "start": 16248.44, + "end": 16250.48, + "probability": 0.8869 + }, + { + "start": 16250.48, + "end": 16251.74, + "probability": 0.8052 + }, + { + "start": 16252.08, + "end": 16252.66, + "probability": 0.5985 + }, + { + "start": 16253.72, + "end": 16255.96, + "probability": 0.4649 + }, + { + "start": 16256.2, + "end": 16257.94, + "probability": 0.9316 + }, + { + "start": 16258.04, + "end": 16258.7, + "probability": 0.8291 + }, + { + "start": 16265.76, + "end": 16266.54, + "probability": 0.3867 + }, + { + "start": 16266.68, + "end": 16270.26, + "probability": 0.848 + }, + { + "start": 16271.56, + "end": 16275.02, + "probability": 0.8613 + }, + { + "start": 16275.74, + "end": 16278.52, + "probability": 0.0306 + }, + { + "start": 16278.54, + "end": 16280.3, + "probability": 0.0252 + }, + { + "start": 16299.36, + "end": 16301.92, + "probability": 0.6275 + }, + { + "start": 16302.24, + "end": 16303.7, + "probability": 0.8575 + }, + { + "start": 16304.5, + "end": 16307.56, + "probability": 0.8625 + }, + { + "start": 16308.34, + "end": 16309.62, + "probability": 0.994 + }, + { + "start": 16310.5, + "end": 16311.36, + "probability": 0.7627 + }, + { + "start": 16312.34, + "end": 16314.28, + "probability": 0.9672 + }, + { + "start": 16315.08, + "end": 16316.44, + "probability": 0.8669 + }, + { + "start": 16317.32, + "end": 16318.72, + "probability": 0.7312 + }, + { + "start": 16319.42, + "end": 16320.68, + "probability": 0.6811 + }, + { + "start": 16334.46, + "end": 16335.64, + "probability": 0.8424 + }, + { + "start": 16336.36, + "end": 16337.24, + "probability": 0.6699 + }, + { + "start": 16337.9, + "end": 16338.18, + "probability": 0.8389 + }, + { + "start": 16338.7, + "end": 16339.58, + "probability": 0.8846 + }, + { + "start": 16339.76, + "end": 16341.24, + "probability": 0.8653 + }, + { + "start": 16341.4, + "end": 16342.7, + "probability": 0.9392 + }, + { + "start": 16343.96, + "end": 16346.06, + "probability": 0.9624 + }, + { + "start": 16347.7, + "end": 16349.86, + "probability": 0.8066 + }, + { + "start": 16350.6, + "end": 16351.48, + "probability": 0.6525 + }, + { + "start": 16353.5, + "end": 16355.14, + "probability": 0.683 + }, + { + "start": 16356.04, + "end": 16356.32, + "probability": 0.9569 + }, + { + "start": 16357.24, + "end": 16358.04, + "probability": 0.9048 + }, + { + "start": 16358.68, + "end": 16359.02, + "probability": 0.9255 + }, + { + "start": 16359.74, + "end": 16360.54, + "probability": 0.978 + }, + { + "start": 16361.52, + "end": 16362.72, + "probability": 0.959 + }, + { + "start": 16363.26, + "end": 16365.62, + "probability": 0.916 + }, + { + "start": 16366.2, + "end": 16367.44, + "probability": 0.9287 + }, + { + "start": 16368.06, + "end": 16368.44, + "probability": 0.9751 + }, + { + "start": 16369.16, + "end": 16370.13, + "probability": 0.9601 + }, + { + "start": 16371.16, + "end": 16371.8, + "probability": 0.9773 + }, + { + "start": 16373.2, + "end": 16374.14, + "probability": 0.5116 + }, + { + "start": 16374.76, + "end": 16375.2, + "probability": 0.9512 + }, + { + "start": 16376.1, + "end": 16376.9, + "probability": 0.8763 + }, + { + "start": 16378.58, + "end": 16382.46, + "probability": 0.8543 + }, + { + "start": 16383.2, + "end": 16388.26, + "probability": 0.881 + }, + { + "start": 16389.4, + "end": 16391.34, + "probability": 0.9827 + }, + { + "start": 16392.3, + "end": 16394.14, + "probability": 0.8679 + }, + { + "start": 16395.28, + "end": 16398.12, + "probability": 0.9849 + }, + { + "start": 16398.98, + "end": 16402.06, + "probability": 0.9091 + }, + { + "start": 16403.1, + "end": 16406.26, + "probability": 0.6856 + }, + { + "start": 16407.34, + "end": 16409.2, + "probability": 0.8938 + }, + { + "start": 16410.08, + "end": 16412.02, + "probability": 0.922 + }, + { + "start": 16412.68, + "end": 16414.18, + "probability": 0.9519 + }, + { + "start": 16414.94, + "end": 16415.4, + "probability": 0.993 + }, + { + "start": 16416.04, + "end": 16417.22, + "probability": 0.9193 + }, + { + "start": 16417.78, + "end": 16419.26, + "probability": 0.8878 + }, + { + "start": 16422.04, + "end": 16424.8, + "probability": 0.9828 + }, + { + "start": 16430.22, + "end": 16430.62, + "probability": 0.9333 + }, + { + "start": 16432.1, + "end": 16432.67, + "probability": 0.3648 + }, + { + "start": 16433.76, + "end": 16435.74, + "probability": 0.8439 + }, + { + "start": 16437.36, + "end": 16439.1, + "probability": 0.8671 + }, + { + "start": 16439.8, + "end": 16442.32, + "probability": 0.79 + }, + { + "start": 16443.2, + "end": 16445.12, + "probability": 0.9632 + }, + { + "start": 16445.94, + "end": 16448.08, + "probability": 0.7935 + }, + { + "start": 16449.7, + "end": 16451.48, + "probability": 0.6104 + }, + { + "start": 16452.58, + "end": 16452.86, + "probability": 0.9613 + }, + { + "start": 16453.68, + "end": 16455.02, + "probability": 0.9512 + }, + { + "start": 16456.76, + "end": 16459.62, + "probability": 0.9338 + }, + { + "start": 16460.28, + "end": 16461.06, + "probability": 0.9303 + }, + { + "start": 16461.76, + "end": 16463.4, + "probability": 0.9801 + }, + { + "start": 16466.84, + "end": 16468.8, + "probability": 0.7509 + }, + { + "start": 16469.6, + "end": 16470.2, + "probability": 0.6108 + }, + { + "start": 16470.88, + "end": 16471.8, + "probability": 0.9313 + }, + { + "start": 16472.58, + "end": 16474.06, + "probability": 0.9723 + }, + { + "start": 16475.12, + "end": 16476.38, + "probability": 0.9517 + }, + { + "start": 16477.54, + "end": 16479.14, + "probability": 0.8301 + }, + { + "start": 16481.6, + "end": 16482.34, + "probability": 0.903 + }, + { + "start": 16483.72, + "end": 16484.6, + "probability": 0.7927 + }, + { + "start": 16485.62, + "end": 16486.3, + "probability": 0.9918 + }, + { + "start": 16487.14, + "end": 16488.14, + "probability": 0.9179 + }, + { + "start": 16489.26, + "end": 16491.04, + "probability": 0.844 + }, + { + "start": 16493.8, + "end": 16496.06, + "probability": 0.7507 + }, + { + "start": 16497.16, + "end": 16505.24, + "probability": 0.8911 + }, + { + "start": 16506.2, + "end": 16508.0, + "probability": 0.9341 + }, + { + "start": 16508.7, + "end": 16510.24, + "probability": 0.9205 + }, + { + "start": 16511.42, + "end": 16514.22, + "probability": 0.8008 + }, + { + "start": 16515.07, + "end": 16517.92, + "probability": 0.8214 + }, + { + "start": 16518.9, + "end": 16520.66, + "probability": 0.9863 + }, + { + "start": 16521.76, + "end": 16523.16, + "probability": 0.7521 + }, + { + "start": 16523.9, + "end": 16527.02, + "probability": 0.9052 + }, + { + "start": 16527.92, + "end": 16529.88, + "probability": 0.9852 + }, + { + "start": 16532.5, + "end": 16535.22, + "probability": 0.9065 + }, + { + "start": 16535.8, + "end": 16537.62, + "probability": 0.9785 + }, + { + "start": 16538.42, + "end": 16541.28, + "probability": 0.7799 + }, + { + "start": 16542.02, + "end": 16542.2, + "probability": 0.9839 + }, + { + "start": 16542.74, + "end": 16544.08, + "probability": 0.991 + }, + { + "start": 16544.8, + "end": 16547.18, + "probability": 0.7758 + }, + { + "start": 16548.98, + "end": 16551.54, + "probability": 0.8259 + }, + { + "start": 16552.32, + "end": 16556.48, + "probability": 0.8151 + }, + { + "start": 16557.38, + "end": 16559.72, + "probability": 0.8794 + }, + { + "start": 16561.14, + "end": 16564.28, + "probability": 0.8925 + }, + { + "start": 16565.46, + "end": 16570.92, + "probability": 0.8495 + }, + { + "start": 16571.98, + "end": 16573.78, + "probability": 0.8876 + }, + { + "start": 16575.86, + "end": 16577.6, + "probability": 0.9536 + }, + { + "start": 16579.14, + "end": 16581.7, + "probability": 0.8317 + }, + { + "start": 16582.36, + "end": 16583.94, + "probability": 0.9303 + }, + { + "start": 16584.08, + "end": 16586.24, + "probability": 0.8438 + }, + { + "start": 16587.2, + "end": 16588.84, + "probability": 0.5875 + }, + { + "start": 16590.12, + "end": 16592.26, + "probability": 0.8345 + }, + { + "start": 16593.22, + "end": 16593.68, + "probability": 0.9704 + }, + { + "start": 16594.66, + "end": 16595.78, + "probability": 0.6341 + }, + { + "start": 16598.06, + "end": 16599.82, + "probability": 0.7498 + }, + { + "start": 16601.92, + "end": 16603.36, + "probability": 0.7914 + }, + { + "start": 16604.2, + "end": 16605.84, + "probability": 0.9269 + }, + { + "start": 16607.1, + "end": 16607.2, + "probability": 0.993 + }, + { + "start": 16608.06, + "end": 16608.98, + "probability": 0.7751 + }, + { + "start": 16609.52, + "end": 16611.1, + "probability": 0.7877 + }, + { + "start": 16612.3, + "end": 16613.8, + "probability": 0.9366 + }, + { + "start": 16616.0, + "end": 16617.82, + "probability": 0.8418 + }, + { + "start": 16618.96, + "end": 16620.92, + "probability": 0.9354 + }, + { + "start": 16621.96, + "end": 16624.14, + "probability": 0.9172 + }, + { + "start": 16624.9, + "end": 16627.5, + "probability": 0.9461 + }, + { + "start": 16628.8, + "end": 16629.32, + "probability": 0.994 + }, + { + "start": 16630.36, + "end": 16631.26, + "probability": 0.819 + }, + { + "start": 16631.9, + "end": 16633.64, + "probability": 0.6552 + }, + { + "start": 16634.38, + "end": 16636.28, + "probability": 0.9072 + }, + { + "start": 16636.94, + "end": 16637.32, + "probability": 0.9504 + }, + { + "start": 16638.46, + "end": 16639.2, + "probability": 0.9253 + }, + { + "start": 16640.32, + "end": 16643.04, + "probability": 0.8778 + }, + { + "start": 16643.98, + "end": 16644.62, + "probability": 0.992 + }, + { + "start": 16645.26, + "end": 16646.04, + "probability": 0.9832 + }, + { + "start": 16646.86, + "end": 16648.28, + "probability": 0.9499 + }, + { + "start": 16649.18, + "end": 16654.62, + "probability": 0.8844 + }, + { + "start": 16658.1, + "end": 16661.68, + "probability": 0.7316 + }, + { + "start": 16662.64, + "end": 16662.92, + "probability": 0.9189 + }, + { + "start": 16663.9, + "end": 16666.4, + "probability": 0.8833 + }, + { + "start": 16667.16, + "end": 16668.8, + "probability": 0.9433 + }, + { + "start": 16669.92, + "end": 16672.6, + "probability": 0.9439 + }, + { + "start": 16673.1, + "end": 16674.48, + "probability": 0.9761 + }, + { + "start": 16674.96, + "end": 16676.46, + "probability": 0.9624 + }, + { + "start": 16677.28, + "end": 16679.74, + "probability": 0.679 + }, + { + "start": 16680.94, + "end": 16681.36, + "probability": 0.6434 + }, + { + "start": 16681.96, + "end": 16684.76, + "probability": 0.8627 + }, + { + "start": 16685.34, + "end": 16688.16, + "probability": 0.7121 + }, + { + "start": 16688.2, + "end": 16690.34, + "probability": 0.7313 + }, + { + "start": 16691.27, + "end": 16692.84, + "probability": 0.2798 + }, + { + "start": 16692.98, + "end": 16694.86, + "probability": 0.8479 + }, + { + "start": 16695.14, + "end": 16698.68, + "probability": 0.583 + }, + { + "start": 16701.4, + "end": 16703.0, + "probability": 0.6686 + }, + { + "start": 16703.84, + "end": 16704.82, + "probability": 0.5236 + }, + { + "start": 16706.12, + "end": 16707.8, + "probability": 0.6726 + }, + { + "start": 16708.66, + "end": 16709.38, + "probability": 0.9793 + }, + { + "start": 16710.04, + "end": 16710.88, + "probability": 0.9436 + }, + { + "start": 16711.12, + "end": 16712.46, + "probability": 0.969 + }, + { + "start": 16712.68, + "end": 16714.12, + "probability": 0.9921 + }, + { + "start": 16715.34, + "end": 16717.52, + "probability": 0.9782 + }, + { + "start": 16720.14, + "end": 16722.0, + "probability": 0.8306 + }, + { + "start": 16722.78, + "end": 16724.28, + "probability": 0.7287 + }, + { + "start": 16725.1, + "end": 16728.92, + "probability": 0.768 + }, + { + "start": 16729.7, + "end": 16733.62, + "probability": 0.9132 + }, + { + "start": 16734.54, + "end": 16736.54, + "probability": 0.9377 + }, + { + "start": 16737.12, + "end": 16741.22, + "probability": 0.95 + }, + { + "start": 16741.38, + "end": 16743.34, + "probability": 0.9217 + }, + { + "start": 16743.66, + "end": 16745.8, + "probability": 0.7202 + }, + { + "start": 16747.3, + "end": 16749.18, + "probability": 0.8954 + }, + { + "start": 16749.9, + "end": 16752.56, + "probability": 0.8612 + }, + { + "start": 16753.02, + "end": 16757.42, + "probability": 0.7091 + }, + { + "start": 16757.82, + "end": 16761.58, + "probability": 0.916 + }, + { + "start": 16767.48, + "end": 16768.46, + "probability": 0.1746 + }, + { + "start": 16769.74, + "end": 16772.34, + "probability": 0.7788 + }, + { + "start": 16773.04, + "end": 16775.48, + "probability": 0.9185 + }, + { + "start": 16776.36, + "end": 16780.1, + "probability": 0.8589 + }, + { + "start": 16781.96, + "end": 16785.88, + "probability": 0.8535 + }, + { + "start": 16786.38, + "end": 16788.24, + "probability": 0.9003 + }, + { + "start": 16788.68, + "end": 16790.42, + "probability": 0.9149 + }, + { + "start": 16791.38, + "end": 16793.08, + "probability": 0.787 + }, + { + "start": 16794.0, + "end": 16795.66, + "probability": 0.7213 + }, + { + "start": 16796.54, + "end": 16798.34, + "probability": 0.9084 + }, + { + "start": 16799.3, + "end": 16801.32, + "probability": 0.9346 + }, + { + "start": 16802.1, + "end": 16802.96, + "probability": 0.9862 + }, + { + "start": 16803.68, + "end": 16804.96, + "probability": 0.9382 + }, + { + "start": 16806.98, + "end": 16811.72, + "probability": 0.9097 + }, + { + "start": 16812.3, + "end": 16813.92, + "probability": 0.777 + }, + { + "start": 16814.74, + "end": 16816.84, + "probability": 0.9377 + }, + { + "start": 16818.52, + "end": 16821.6, + "probability": 0.9309 + }, + { + "start": 16822.02, + "end": 16823.66, + "probability": 0.9347 + }, + { + "start": 16823.86, + "end": 16825.68, + "probability": 0.9124 + }, + { + "start": 16826.38, + "end": 16828.02, + "probability": 0.8837 + }, + { + "start": 16828.86, + "end": 16830.4, + "probability": 0.9024 + }, + { + "start": 16831.58, + "end": 16833.12, + "probability": 0.8429 + }, + { + "start": 16833.22, + "end": 16835.04, + "probability": 0.7894 + }, + { + "start": 16835.8, + "end": 16837.7, + "probability": 0.893 + }, + { + "start": 16838.46, + "end": 16840.62, + "probability": 0.8735 + }, + { + "start": 16841.9, + "end": 16843.96, + "probability": 0.9257 + }, + { + "start": 16844.54, + "end": 16845.24, + "probability": 0.986 + }, + { + "start": 16845.96, + "end": 16848.92, + "probability": 0.7706 + }, + { + "start": 16849.5, + "end": 16851.26, + "probability": 0.9659 + }, + { + "start": 16852.36, + "end": 16854.44, + "probability": 0.9708 + }, + { + "start": 16855.32, + "end": 16857.14, + "probability": 0.9803 + }, + { + "start": 16857.92, + "end": 16859.48, + "probability": 0.9682 + }, + { + "start": 16860.9, + "end": 16863.86, + "probability": 0.9334 + }, + { + "start": 16865.0, + "end": 16868.64, + "probability": 0.6649 + }, + { + "start": 16869.52, + "end": 16871.38, + "probability": 0.8216 + }, + { + "start": 16872.5, + "end": 16876.38, + "probability": 0.9137 + }, + { + "start": 16877.44, + "end": 16879.08, + "probability": 0.9557 + }, + { + "start": 16880.08, + "end": 16883.66, + "probability": 0.9611 + }, + { + "start": 16884.28, + "end": 16887.28, + "probability": 0.8202 + }, + { + "start": 16888.02, + "end": 16888.46, + "probability": 0.5636 + }, + { + "start": 16888.62, + "end": 16893.5, + "probability": 0.9913 + }, + { + "start": 16894.08, + "end": 16895.92, + "probability": 0.5554 + }, + { + "start": 16896.04, + "end": 16898.54, + "probability": 0.8888 + }, + { + "start": 16921.88, + "end": 16922.28, + "probability": 0.3155 + }, + { + "start": 16924.32, + "end": 16925.48, + "probability": 0.3838 + }, + { + "start": 16962.03, + "end": 16966.69, + "probability": 0.861 + }, + { + "start": 16966.87, + "end": 16969.49, + "probability": 0.9475 + }, + { + "start": 16969.61, + "end": 16971.47, + "probability": 0.8745 + }, + { + "start": 16973.03, + "end": 16976.49, + "probability": 0.9672 + }, + { + "start": 16976.49, + "end": 16977.35, + "probability": 0.8026 + }, + { + "start": 16978.39, + "end": 16982.27, + "probability": 0.9304 + }, + { + "start": 16982.39, + "end": 16984.69, + "probability": 0.7701 + }, + { + "start": 16986.23, + "end": 16988.97, + "probability": 0.9109 + }, + { + "start": 16988.99, + "end": 16989.53, + "probability": 0.333 + }, + { + "start": 16991.51, + "end": 16993.29, + "probability": 0.5911 + }, + { + "start": 16993.29, + "end": 16993.39, + "probability": 0.5831 + }, + { + "start": 16995.47, + "end": 16998.85, + "probability": 0.7396 + }, + { + "start": 16999.67, + "end": 17003.61, + "probability": 0.9722 + }, + { + "start": 17003.61, + "end": 17008.43, + "probability": 0.9967 + }, + { + "start": 17008.89, + "end": 17012.13, + "probability": 0.8645 + }, + { + "start": 17012.21, + "end": 17014.27, + "probability": 0.944 + }, + { + "start": 17015.11, + "end": 17018.73, + "probability": 0.9875 + }, + { + "start": 17019.67, + "end": 17022.87, + "probability": 0.9867 + }, + { + "start": 17023.09, + "end": 17027.57, + "probability": 0.9865 + }, + { + "start": 17028.31, + "end": 17030.47, + "probability": 0.7654 + }, + { + "start": 17030.99, + "end": 17032.29, + "probability": 0.9699 + }, + { + "start": 17033.05, + "end": 17034.03, + "probability": 0.7826 + }, + { + "start": 17034.39, + "end": 17035.11, + "probability": 0.9224 + }, + { + "start": 17035.21, + "end": 17036.45, + "probability": 0.9895 + }, + { + "start": 17037.55, + "end": 17043.13, + "probability": 0.9714 + }, + { + "start": 17043.53, + "end": 17046.15, + "probability": 0.9832 + }, + { + "start": 17046.65, + "end": 17048.55, + "probability": 0.9836 + }, + { + "start": 17049.09, + "end": 17052.65, + "probability": 0.9913 + }, + { + "start": 17053.11, + "end": 17055.09, + "probability": 0.9744 + }, + { + "start": 17055.75, + "end": 17056.67, + "probability": 0.9073 + }, + { + "start": 17057.97, + "end": 17061.61, + "probability": 0.9949 + }, + { + "start": 17061.61, + "end": 17065.61, + "probability": 0.9954 + }, + { + "start": 17066.75, + "end": 17070.31, + "probability": 0.9973 + }, + { + "start": 17070.59, + "end": 17076.75, + "probability": 0.9528 + }, + { + "start": 17077.55, + "end": 17081.77, + "probability": 0.9833 + }, + { + "start": 17082.35, + "end": 17086.75, + "probability": 0.9945 + }, + { + "start": 17087.27, + "end": 17088.85, + "probability": 0.9665 + }, + { + "start": 17089.65, + "end": 17092.85, + "probability": 0.9907 + }, + { + "start": 17094.41, + "end": 17102.09, + "probability": 0.9959 + }, + { + "start": 17103.09, + "end": 17107.51, + "probability": 0.9952 + }, + { + "start": 17108.31, + "end": 17113.19, + "probability": 0.9871 + }, + { + "start": 17114.65, + "end": 17115.65, + "probability": 0.8483 + }, + { + "start": 17116.09, + "end": 17121.77, + "probability": 0.926 + }, + { + "start": 17122.33, + "end": 17127.23, + "probability": 0.9694 + }, + { + "start": 17128.19, + "end": 17132.33, + "probability": 0.9774 + }, + { + "start": 17132.69, + "end": 17133.79, + "probability": 0.8644 + }, + { + "start": 17134.83, + "end": 17135.78, + "probability": 0.5657 + }, + { + "start": 17137.41, + "end": 17140.95, + "probability": 0.9781 + }, + { + "start": 17141.67, + "end": 17142.11, + "probability": 0.4957 + }, + { + "start": 17142.15, + "end": 17145.35, + "probability": 0.875 + }, + { + "start": 17145.81, + "end": 17147.55, + "probability": 0.9815 + }, + { + "start": 17148.77, + "end": 17151.25, + "probability": 0.995 + }, + { + "start": 17152.03, + "end": 17157.75, + "probability": 0.9836 + }, + { + "start": 17158.65, + "end": 17160.51, + "probability": 0.8655 + }, + { + "start": 17161.05, + "end": 17164.07, + "probability": 0.9663 + }, + { + "start": 17165.11, + "end": 17166.9, + "probability": 0.8608 + }, + { + "start": 17167.85, + "end": 17169.49, + "probability": 0.8386 + }, + { + "start": 17170.71, + "end": 17174.59, + "probability": 0.9611 + }, + { + "start": 17175.19, + "end": 17176.65, + "probability": 0.9365 + }, + { + "start": 17177.27, + "end": 17177.85, + "probability": 0.8397 + }, + { + "start": 17180.15, + "end": 17180.39, + "probability": 0.9025 + }, + { + "start": 17180.57, + "end": 17182.79, + "probability": 0.9798 + }, + { + "start": 17183.41, + "end": 17184.13, + "probability": 0.752 + }, + { + "start": 17184.27, + "end": 17187.43, + "probability": 0.953 + }, + { + "start": 17187.43, + "end": 17190.63, + "probability": 0.9912 + }, + { + "start": 17191.23, + "end": 17194.19, + "probability": 0.9958 + }, + { + "start": 17194.87, + "end": 17201.53, + "probability": 0.9906 + }, + { + "start": 17202.77, + "end": 17206.03, + "probability": 0.9968 + }, + { + "start": 17206.65, + "end": 17208.47, + "probability": 0.9869 + }, + { + "start": 17209.19, + "end": 17212.61, + "probability": 0.9733 + }, + { + "start": 17213.91, + "end": 17215.99, + "probability": 0.8448 + }, + { + "start": 17216.69, + "end": 17217.33, + "probability": 0.9462 + }, + { + "start": 17217.85, + "end": 17219.35, + "probability": 0.9833 + }, + { + "start": 17220.11, + "end": 17221.39, + "probability": 0.9744 + }, + { + "start": 17222.05, + "end": 17225.17, + "probability": 0.9959 + }, + { + "start": 17225.91, + "end": 17226.89, + "probability": 0.6986 + }, + { + "start": 17227.47, + "end": 17229.39, + "probability": 0.998 + }, + { + "start": 17229.89, + "end": 17232.75, + "probability": 0.8961 + }, + { + "start": 17234.03, + "end": 17235.53, + "probability": 0.7926 + }, + { + "start": 17236.31, + "end": 17237.11, + "probability": 0.9152 + }, + { + "start": 17237.69, + "end": 17241.21, + "probability": 0.9872 + }, + { + "start": 17242.23, + "end": 17244.03, + "probability": 0.9984 + }, + { + "start": 17244.53, + "end": 17246.11, + "probability": 0.3873 + }, + { + "start": 17246.15, + "end": 17246.67, + "probability": 0.314 + }, + { + "start": 17246.81, + "end": 17249.67, + "probability": 0.9489 + }, + { + "start": 17249.95, + "end": 17250.91, + "probability": 0.331 + }, + { + "start": 17251.45, + "end": 17251.67, + "probability": 0.293 + }, + { + "start": 17251.67, + "end": 17252.65, + "probability": 0.4446 + }, + { + "start": 17257.25, + "end": 17258.81, + "probability": 0.1414 + }, + { + "start": 17260.25, + "end": 17262.17, + "probability": 0.0977 + }, + { + "start": 17262.25, + "end": 17263.45, + "probability": 0.0798 + }, + { + "start": 17263.45, + "end": 17263.45, + "probability": 0.1945 + }, + { + "start": 17263.45, + "end": 17263.45, + "probability": 0.1371 + }, + { + "start": 17263.81, + "end": 17265.06, + "probability": 0.4809 + }, + { + "start": 17266.09, + "end": 17267.31, + "probability": 0.918 + }, + { + "start": 17267.93, + "end": 17272.73, + "probability": 0.9948 + }, + { + "start": 17272.73, + "end": 17276.99, + "probability": 0.8949 + }, + { + "start": 17277.51, + "end": 17278.41, + "probability": 0.612 + }, + { + "start": 17278.83, + "end": 17282.85, + "probability": 0.9741 + }, + { + "start": 17283.21, + "end": 17283.55, + "probability": 0.7459 + }, + { + "start": 17284.63, + "end": 17286.23, + "probability": 0.7238 + }, + { + "start": 17286.39, + "end": 17291.91, + "probability": 0.7542 + }, + { + "start": 17311.06, + "end": 17313.13, + "probability": 0.7233 + }, + { + "start": 17318.07, + "end": 17318.07, + "probability": 0.4123 + }, + { + "start": 17318.18, + "end": 17318.53, + "probability": 0.4235 + }, + { + "start": 17319.61, + "end": 17323.23, + "probability": 0.0202 + }, + { + "start": 17323.57, + "end": 17325.85, + "probability": 0.0479 + }, + { + "start": 17325.95, + "end": 17327.49, + "probability": 0.1477 + }, + { + "start": 17329.31, + "end": 17330.67, + "probability": 0.6937 + }, + { + "start": 17330.77, + "end": 17332.01, + "probability": 0.8148 + }, + { + "start": 17332.13, + "end": 17333.83, + "probability": 0.9548 + }, + { + "start": 17334.01, + "end": 17336.85, + "probability": 0.9729 + }, + { + "start": 17337.81, + "end": 17341.61, + "probability": 0.9971 + }, + { + "start": 17341.87, + "end": 17344.07, + "probability": 0.9801 + }, + { + "start": 17345.53, + "end": 17347.81, + "probability": 0.6704 + }, + { + "start": 17348.85, + "end": 17351.01, + "probability": 0.6706 + }, + { + "start": 17351.01, + "end": 17351.01, + "probability": 0.0062 + }, + { + "start": 17351.01, + "end": 17351.51, + "probability": 0.0887 + }, + { + "start": 17351.89, + "end": 17354.55, + "probability": 0.8605 + }, + { + "start": 17354.55, + "end": 17357.25, + "probability": 0.9911 + }, + { + "start": 17357.37, + "end": 17358.37, + "probability": 0.648 + }, + { + "start": 17358.93, + "end": 17360.43, + "probability": 0.7784 + }, + { + "start": 17360.55, + "end": 17362.25, + "probability": 0.8607 + }, + { + "start": 17362.33, + "end": 17363.43, + "probability": 0.9835 + }, + { + "start": 17364.05, + "end": 17367.37, + "probability": 0.9748 + }, + { + "start": 17367.37, + "end": 17370.53, + "probability": 0.9647 + }, + { + "start": 17371.11, + "end": 17371.41, + "probability": 0.2804 + }, + { + "start": 17371.47, + "end": 17376.23, + "probability": 0.8555 + }, + { + "start": 17376.39, + "end": 17378.09, + "probability": 0.7743 + }, + { + "start": 17378.27, + "end": 17381.25, + "probability": 0.9367 + }, + { + "start": 17381.39, + "end": 17385.45, + "probability": 0.9661 + }, + { + "start": 17386.17, + "end": 17389.61, + "probability": 0.9927 + }, + { + "start": 17389.61, + "end": 17392.17, + "probability": 0.9951 + }, + { + "start": 17392.21, + "end": 17396.19, + "probability": 0.9818 + }, + { + "start": 17396.51, + "end": 17399.89, + "probability": 0.989 + }, + { + "start": 17400.87, + "end": 17401.71, + "probability": 0.7616 + }, + { + "start": 17402.29, + "end": 17406.17, + "probability": 0.9788 + }, + { + "start": 17406.17, + "end": 17410.43, + "probability": 0.9739 + }, + { + "start": 17410.57, + "end": 17411.83, + "probability": 0.9405 + }, + { + "start": 17412.39, + "end": 17415.09, + "probability": 0.8915 + }, + { + "start": 17415.23, + "end": 17416.69, + "probability": 0.9523 + }, + { + "start": 17416.85, + "end": 17419.51, + "probability": 0.9738 + }, + { + "start": 17419.59, + "end": 17423.59, + "probability": 0.9903 + }, + { + "start": 17424.45, + "end": 17427.63, + "probability": 0.9603 + }, + { + "start": 17427.63, + "end": 17429.93, + "probability": 0.9974 + }, + { + "start": 17430.05, + "end": 17431.53, + "probability": 0.867 + }, + { + "start": 17432.01, + "end": 17432.87, + "probability": 0.8975 + }, + { + "start": 17433.79, + "end": 17436.57, + "probability": 0.9803 + }, + { + "start": 17436.57, + "end": 17439.97, + "probability": 0.8148 + }, + { + "start": 17440.23, + "end": 17441.71, + "probability": 0.9503 + }, + { + "start": 17442.25, + "end": 17442.41, + "probability": 0.2908 + }, + { + "start": 17442.47, + "end": 17447.17, + "probability": 0.9705 + }, + { + "start": 17447.65, + "end": 17450.71, + "probability": 0.491 + }, + { + "start": 17451.03, + "end": 17453.13, + "probability": 0.9943 + }, + { + "start": 17453.25, + "end": 17455.19, + "probability": 0.8796 + }, + { + "start": 17456.03, + "end": 17462.05, + "probability": 0.9849 + }, + { + "start": 17462.05, + "end": 17465.45, + "probability": 0.8029 + }, + { + "start": 17466.15, + "end": 17467.11, + "probability": 0.8014 + }, + { + "start": 17467.31, + "end": 17469.58, + "probability": 0.8587 + }, + { + "start": 17469.91, + "end": 17472.99, + "probability": 0.9962 + }, + { + "start": 17472.99, + "end": 17477.71, + "probability": 0.9917 + }, + { + "start": 17478.25, + "end": 17478.75, + "probability": 0.984 + }, + { + "start": 17479.49, + "end": 17482.73, + "probability": 0.9927 + }, + { + "start": 17482.73, + "end": 17486.51, + "probability": 0.852 + }, + { + "start": 17486.65, + "end": 17489.83, + "probability": 0.689 + }, + { + "start": 17489.83, + "end": 17494.15, + "probability": 0.9833 + }, + { + "start": 17494.15, + "end": 17496.77, + "probability": 0.0159 + }, + { + "start": 17496.77, + "end": 17497.21, + "probability": 0.3311 + }, + { + "start": 17497.39, + "end": 17499.89, + "probability": 0.9573 + }, + { + "start": 17500.27, + "end": 17502.57, + "probability": 0.9724 + }, + { + "start": 17505.22, + "end": 17507.69, + "probability": 0.7083 + }, + { + "start": 17507.69, + "end": 17510.99, + "probability": 0.9856 + }, + { + "start": 17511.01, + "end": 17511.65, + "probability": 0.5457 + }, + { + "start": 17512.03, + "end": 17514.27, + "probability": 0.9497 + }, + { + "start": 17514.35, + "end": 17515.27, + "probability": 0.9051 + }, + { + "start": 17515.61, + "end": 17517.29, + "probability": 0.9598 + }, + { + "start": 17517.69, + "end": 17521.37, + "probability": 0.9859 + }, + { + "start": 17521.37, + "end": 17526.39, + "probability": 0.6914 + }, + { + "start": 17528.53, + "end": 17534.69, + "probability": 0.783 + }, + { + "start": 17534.89, + "end": 17540.73, + "probability": 0.6168 + }, + { + "start": 17540.91, + "end": 17542.05, + "probability": 0.865 + }, + { + "start": 17542.71, + "end": 17544.31, + "probability": 0.6467 + }, + { + "start": 17544.31, + "end": 17547.03, + "probability": 0.8527 + }, + { + "start": 17547.07, + "end": 17552.67, + "probability": 0.8535 + }, + { + "start": 17552.83, + "end": 17553.53, + "probability": 0.6505 + }, + { + "start": 17553.59, + "end": 17555.66, + "probability": 0.6343 + }, + { + "start": 17557.71, + "end": 17557.81, + "probability": 0.8153 + }, + { + "start": 17559.31, + "end": 17561.17, + "probability": 0.7271 + }, + { + "start": 17561.21, + "end": 17561.51, + "probability": 0.7525 + }, + { + "start": 17567.61, + "end": 17567.83, + "probability": 0.4043 + }, + { + "start": 17571.07, + "end": 17573.15, + "probability": 0.8453 + }, + { + "start": 17574.11, + "end": 17575.21, + "probability": 0.5615 + }, + { + "start": 17576.51, + "end": 17577.85, + "probability": 0.6641 + }, + { + "start": 17577.91, + "end": 17578.31, + "probability": 0.8826 + }, + { + "start": 17578.39, + "end": 17579.05, + "probability": 0.8936 + }, + { + "start": 17579.11, + "end": 17584.61, + "probability": 0.9858 + }, + { + "start": 17585.23, + "end": 17585.61, + "probability": 0.8856 + }, + { + "start": 17586.47, + "end": 17589.15, + "probability": 0.9583 + }, + { + "start": 17589.69, + "end": 17593.27, + "probability": 0.9524 + }, + { + "start": 17593.27, + "end": 17596.65, + "probability": 0.9422 + }, + { + "start": 17597.29, + "end": 17599.69, + "probability": 0.7996 + }, + { + "start": 17600.21, + "end": 17601.97, + "probability": 0.791 + }, + { + "start": 17602.59, + "end": 17604.17, + "probability": 0.692 + }, + { + "start": 17604.67, + "end": 17607.35, + "probability": 0.8579 + }, + { + "start": 17607.87, + "end": 17609.53, + "probability": 0.3917 + }, + { + "start": 17609.99, + "end": 17612.39, + "probability": 0.9391 + }, + { + "start": 17612.97, + "end": 17614.37, + "probability": 0.8765 + }, + { + "start": 17614.53, + "end": 17614.97, + "probability": 0.023 + }, + { + "start": 17614.97, + "end": 17620.01, + "probability": 0.4443 + }, + { + "start": 17620.07, + "end": 17621.93, + "probability": 0.3356 + }, + { + "start": 17623.17, + "end": 17625.05, + "probability": 0.7305 + }, + { + "start": 17625.75, + "end": 17631.63, + "probability": 0.9896 + }, + { + "start": 17631.97, + "end": 17633.15, + "probability": 0.8601 + }, + { + "start": 17633.83, + "end": 17636.15, + "probability": 0.9899 + }, + { + "start": 17640.91, + "end": 17642.17, + "probability": 0.7455 + }, + { + "start": 17642.69, + "end": 17643.67, + "probability": 0.2639 + }, + { + "start": 17645.79, + "end": 17646.29, + "probability": 0.8118 + }, + { + "start": 17646.81, + "end": 17646.99, + "probability": 0.3399 + }, + { + "start": 17646.99, + "end": 17648.93, + "probability": 0.9706 + }, + { + "start": 17650.83, + "end": 17652.95, + "probability": 0.9536 + }, + { + "start": 17653.35, + "end": 17655.17, + "probability": 0.7915 + }, + { + "start": 17655.17, + "end": 17655.61, + "probability": 0.4791 + }, + { + "start": 17657.8, + "end": 17659.82, + "probability": 0.4431 + }, + { + "start": 17660.53, + "end": 17661.03, + "probability": 0.1104 + }, + { + "start": 17661.03, + "end": 17661.63, + "probability": 0.4447 + }, + { + "start": 17661.89, + "end": 17662.65, + "probability": 0.3249 + }, + { + "start": 17662.71, + "end": 17664.35, + "probability": 0.2393 + }, + { + "start": 17665.17, + "end": 17669.65, + "probability": 0.0895 + }, + { + "start": 17669.73, + "end": 17670.69, + "probability": 0.811 + }, + { + "start": 17672.08, + "end": 17674.05, + "probability": 0.8307 + }, + { + "start": 17674.07, + "end": 17676.51, + "probability": 0.8491 + }, + { + "start": 17676.55, + "end": 17677.71, + "probability": 0.9853 + }, + { + "start": 17679.57, + "end": 17683.98, + "probability": 0.9769 + }, + { + "start": 17684.47, + "end": 17688.23, + "probability": 0.96 + }, + { + "start": 17689.73, + "end": 17691.61, + "probability": 0.991 + }, + { + "start": 17692.29, + "end": 17696.07, + "probability": 0.7959 + }, + { + "start": 17696.21, + "end": 17699.69, + "probability": 0.9744 + }, + { + "start": 17700.77, + "end": 17701.85, + "probability": 0.9845 + }, + { + "start": 17703.23, + "end": 17705.59, + "probability": 0.9769 + }, + { + "start": 17709.42, + "end": 17712.37, + "probability": 0.9242 + }, + { + "start": 17712.89, + "end": 17713.71, + "probability": 0.8246 + }, + { + "start": 17715.75, + "end": 17721.17, + "probability": 0.8442 + }, + { + "start": 17721.31, + "end": 17721.69, + "probability": 0.7514 + }, + { + "start": 17721.73, + "end": 17722.91, + "probability": 0.9787 + }, + { + "start": 17722.95, + "end": 17724.97, + "probability": 0.9713 + }, + { + "start": 17725.15, + "end": 17726.31, + "probability": 0.8885 + }, + { + "start": 17726.47, + "end": 17727.23, + "probability": 0.6733 + }, + { + "start": 17727.25, + "end": 17728.59, + "probability": 0.4485 + }, + { + "start": 17728.63, + "end": 17729.37, + "probability": 0.6767 + }, + { + "start": 17729.65, + "end": 17730.05, + "probability": 0.9455 + }, + { + "start": 17731.24, + "end": 17735.37, + "probability": 0.8843 + }, + { + "start": 17735.97, + "end": 17738.13, + "probability": 0.9866 + }, + { + "start": 17739.29, + "end": 17741.13, + "probability": 0.9448 + }, + { + "start": 17741.19, + "end": 17742.62, + "probability": 0.9443 + }, + { + "start": 17742.77, + "end": 17744.63, + "probability": 0.96 + }, + { + "start": 17745.25, + "end": 17750.97, + "probability": 0.9972 + }, + { + "start": 17752.05, + "end": 17755.03, + "probability": 0.8731 + }, + { + "start": 17757.67, + "end": 17760.81, + "probability": 0.9354 + }, + { + "start": 17761.19, + "end": 17763.67, + "probability": 0.9087 + }, + { + "start": 17764.31, + "end": 17765.45, + "probability": 0.7519 + }, + { + "start": 17766.77, + "end": 17767.99, + "probability": 0.9583 + }, + { + "start": 17768.07, + "end": 17769.81, + "probability": 0.713 + }, + { + "start": 17770.53, + "end": 17772.89, + "probability": 0.9937 + }, + { + "start": 17772.95, + "end": 17773.15, + "probability": 0.5809 + }, + { + "start": 17777.93, + "end": 17780.19, + "probability": 0.2091 + }, + { + "start": 17780.39, + "end": 17781.75, + "probability": 0.5927 + }, + { + "start": 17781.97, + "end": 17782.23, + "probability": 0.5403 + }, + { + "start": 17783.11, + "end": 17783.95, + "probability": 0.6262 + }, + { + "start": 17783.99, + "end": 17785.59, + "probability": 0.699 + }, + { + "start": 17785.81, + "end": 17792.07, + "probability": 0.9874 + }, + { + "start": 17793.01, + "end": 17795.71, + "probability": 0.9932 + }, + { + "start": 17796.25, + "end": 17798.09, + "probability": 0.9471 + }, + { + "start": 17798.13, + "end": 17800.17, + "probability": 0.981 + }, + { + "start": 17800.19, + "end": 17803.17, + "probability": 0.9974 + }, + { + "start": 17803.85, + "end": 17810.05, + "probability": 0.9548 + }, + { + "start": 17810.43, + "end": 17814.13, + "probability": 0.996 + }, + { + "start": 17814.63, + "end": 17818.59, + "probability": 0.9742 + }, + { + "start": 17819.15, + "end": 17823.85, + "probability": 0.9797 + }, + { + "start": 17824.67, + "end": 17826.03, + "probability": 0.9735 + }, + { + "start": 17826.27, + "end": 17827.21, + "probability": 0.8787 + }, + { + "start": 17827.27, + "end": 17830.39, + "probability": 0.9851 + }, + { + "start": 17830.39, + "end": 17833.79, + "probability": 0.995 + }, + { + "start": 17834.35, + "end": 17836.01, + "probability": 0.9619 + }, + { + "start": 17836.11, + "end": 17842.15, + "probability": 0.9916 + }, + { + "start": 17842.27, + "end": 17843.55, + "probability": 0.4627 + }, + { + "start": 17843.61, + "end": 17850.13, + "probability": 0.9953 + }, + { + "start": 17851.09, + "end": 17855.65, + "probability": 0.9956 + }, + { + "start": 17856.35, + "end": 17864.05, + "probability": 0.9795 + }, + { + "start": 17864.25, + "end": 17865.59, + "probability": 0.9769 + }, + { + "start": 17866.05, + "end": 17868.71, + "probability": 0.9981 + }, + { + "start": 17868.71, + "end": 17871.83, + "probability": 0.9502 + }, + { + "start": 17871.91, + "end": 17873.21, + "probability": 0.8701 + }, + { + "start": 17873.83, + "end": 17877.01, + "probability": 0.966 + }, + { + "start": 17877.39, + "end": 17881.69, + "probability": 0.9566 + }, + { + "start": 17882.25, + "end": 17883.49, + "probability": 0.8337 + }, + { + "start": 17883.83, + "end": 17886.75, + "probability": 0.9523 + }, + { + "start": 17887.05, + "end": 17890.21, + "probability": 0.9802 + }, + { + "start": 17890.53, + "end": 17892.97, + "probability": 0.9963 + }, + { + "start": 17893.39, + "end": 17897.79, + "probability": 0.9471 + }, + { + "start": 17898.23, + "end": 17899.07, + "probability": 0.9019 + }, + { + "start": 17899.73, + "end": 17900.13, + "probability": 0.6371 + }, + { + "start": 17900.21, + "end": 17902.41, + "probability": 0.9644 + }, + { + "start": 17902.55, + "end": 17903.91, + "probability": 0.7163 + }, + { + "start": 17904.39, + "end": 17909.59, + "probability": 0.9939 + }, + { + "start": 17910.05, + "end": 17913.79, + "probability": 0.9149 + }, + { + "start": 17914.51, + "end": 17916.15, + "probability": 0.8893 + }, + { + "start": 17916.79, + "end": 17920.11, + "probability": 0.9036 + }, + { + "start": 17920.67, + "end": 17921.81, + "probability": 0.928 + }, + { + "start": 17921.91, + "end": 17930.29, + "probability": 0.9985 + }, + { + "start": 17930.37, + "end": 17933.65, + "probability": 0.9504 + }, + { + "start": 17934.13, + "end": 17937.37, + "probability": 0.996 + }, + { + "start": 17939.41, + "end": 17942.05, + "probability": 0.7621 + }, + { + "start": 17943.75, + "end": 17944.91, + "probability": 0.5982 + }, + { + "start": 17945.11, + "end": 17946.2, + "probability": 0.5049 + }, + { + "start": 17947.01, + "end": 17950.25, + "probability": 0.9058 + }, + { + "start": 17950.33, + "end": 17951.93, + "probability": 0.8752 + }, + { + "start": 17952.41, + "end": 17954.47, + "probability": 0.8612 + }, + { + "start": 17954.77, + "end": 17957.31, + "probability": 0.9838 + }, + { + "start": 17958.59, + "end": 17958.95, + "probability": 0.8907 + }, + { + "start": 17959.07, + "end": 17964.83, + "probability": 0.8438 + }, + { + "start": 17965.43, + "end": 17972.63, + "probability": 0.9525 + }, + { + "start": 17973.55, + "end": 17974.59, + "probability": 0.7493 + }, + { + "start": 17975.37, + "end": 17977.11, + "probability": 0.9628 + }, + { + "start": 17977.23, + "end": 17984.15, + "probability": 0.9939 + }, + { + "start": 17984.91, + "end": 17988.25, + "probability": 0.8301 + }, + { + "start": 17988.83, + "end": 17991.45, + "probability": 0.9369 + }, + { + "start": 17991.93, + "end": 17995.93, + "probability": 0.9934 + }, + { + "start": 17996.55, + "end": 17998.53, + "probability": 0.9408 + }, + { + "start": 17999.19, + "end": 18000.97, + "probability": 0.9595 + }, + { + "start": 18002.27, + "end": 18005.67, + "probability": 0.7905 + }, + { + "start": 18006.23, + "end": 18009.87, + "probability": 0.7849 + }, + { + "start": 18009.87, + "end": 18014.57, + "probability": 0.9977 + }, + { + "start": 18014.91, + "end": 18021.47, + "probability": 0.9871 + }, + { + "start": 18021.55, + "end": 18023.61, + "probability": 0.9395 + }, + { + "start": 18024.25, + "end": 18027.55, + "probability": 0.9899 + }, + { + "start": 18027.65, + "end": 18028.85, + "probability": 0.8587 + }, + { + "start": 18029.23, + "end": 18031.57, + "probability": 0.8829 + }, + { + "start": 18031.89, + "end": 18039.59, + "probability": 0.9911 + }, + { + "start": 18040.39, + "end": 18045.41, + "probability": 0.9082 + }, + { + "start": 18045.49, + "end": 18047.83, + "probability": 0.8638 + }, + { + "start": 18048.07, + "end": 18053.49, + "probability": 0.9634 + }, + { + "start": 18053.67, + "end": 18054.75, + "probability": 0.9543 + }, + { + "start": 18055.07, + "end": 18058.07, + "probability": 0.9359 + }, + { + "start": 18058.51, + "end": 18060.35, + "probability": 0.9559 + }, + { + "start": 18060.39, + "end": 18066.27, + "probability": 0.9877 + }, + { + "start": 18066.75, + "end": 18067.21, + "probability": 0.727 + }, + { + "start": 18067.27, + "end": 18068.35, + "probability": 0.7706 + }, + { + "start": 18068.39, + "end": 18069.23, + "probability": 0.8812 + }, + { + "start": 18069.61, + "end": 18073.34, + "probability": 0.9941 + }, + { + "start": 18076.24, + "end": 18080.79, + "probability": 0.9983 + }, + { + "start": 18081.41, + "end": 18085.43, + "probability": 0.9936 + }, + { + "start": 18085.91, + "end": 18088.15, + "probability": 0.9904 + }, + { + "start": 18088.27, + "end": 18088.87, + "probability": 0.9313 + }, + { + "start": 18088.95, + "end": 18089.77, + "probability": 0.9635 + }, + { + "start": 18090.21, + "end": 18092.67, + "probability": 0.9882 + }, + { + "start": 18093.41, + "end": 18098.35, + "probability": 0.9813 + }, + { + "start": 18098.85, + "end": 18099.41, + "probability": 0.6021 + }, + { + "start": 18099.59, + "end": 18100.45, + "probability": 0.907 + }, + { + "start": 18101.41, + "end": 18104.47, + "probability": 0.95 + }, + { + "start": 18104.87, + "end": 18105.13, + "probability": 0.5417 + }, + { + "start": 18105.39, + "end": 18105.69, + "probability": 0.9259 + }, + { + "start": 18105.75, + "end": 18107.61, + "probability": 0.991 + }, + { + "start": 18107.99, + "end": 18109.33, + "probability": 0.9562 + }, + { + "start": 18109.89, + "end": 18111.87, + "probability": 0.6151 + }, + { + "start": 18111.99, + "end": 18117.27, + "probability": 0.9894 + }, + { + "start": 18117.27, + "end": 18124.96, + "probability": 0.984 + }, + { + "start": 18129.65, + "end": 18133.57, + "probability": 0.6659 + }, + { + "start": 18133.61, + "end": 18135.39, + "probability": 0.8462 + }, + { + "start": 18135.83, + "end": 18138.63, + "probability": 0.901 + }, + { + "start": 18139.23, + "end": 18141.41, + "probability": 0.7872 + }, + { + "start": 18141.47, + "end": 18147.33, + "probability": 0.9189 + }, + { + "start": 18147.79, + "end": 18150.45, + "probability": 0.708 + }, + { + "start": 18151.33, + "end": 18152.33, + "probability": 0.8785 + }, + { + "start": 18152.83, + "end": 18156.11, + "probability": 0.9302 + }, + { + "start": 18156.69, + "end": 18157.01, + "probability": 0.4573 + }, + { + "start": 18157.09, + "end": 18159.53, + "probability": 0.9328 + }, + { + "start": 18159.69, + "end": 18163.79, + "probability": 0.6636 + }, + { + "start": 18163.83, + "end": 18168.15, + "probability": 0.9614 + }, + { + "start": 18168.25, + "end": 18170.01, + "probability": 0.7544 + }, + { + "start": 18170.59, + "end": 18172.35, + "probability": 0.9822 + }, + { + "start": 18172.75, + "end": 18174.89, + "probability": 0.9941 + }, + { + "start": 18175.23, + "end": 18182.29, + "probability": 0.9803 + }, + { + "start": 18182.43, + "end": 18182.53, + "probability": 0.6433 + }, + { + "start": 18183.53, + "end": 18184.49, + "probability": 0.7948 + }, + { + "start": 18184.59, + "end": 18187.45, + "probability": 0.9316 + }, + { + "start": 18187.81, + "end": 18188.41, + "probability": 0.538 + }, + { + "start": 18188.41, + "end": 18190.81, + "probability": 0.8646 + }, + { + "start": 18191.17, + "end": 18195.17, + "probability": 0.8691 + }, + { + "start": 18212.99, + "end": 18214.59, + "probability": 0.6584 + }, + { + "start": 18215.83, + "end": 18218.15, + "probability": 0.979 + }, + { + "start": 18219.01, + "end": 18223.41, + "probability": 0.951 + }, + { + "start": 18224.27, + "end": 18230.41, + "probability": 0.9736 + }, + { + "start": 18230.55, + "end": 18231.05, + "probability": 0.8184 + }, + { + "start": 18231.37, + "end": 18232.17, + "probability": 0.7528 + }, + { + "start": 18232.63, + "end": 18234.07, + "probability": 0.6671 + }, + { + "start": 18234.49, + "end": 18235.17, + "probability": 0.8798 + }, + { + "start": 18236.31, + "end": 18238.57, + "probability": 0.9893 + }, + { + "start": 18238.65, + "end": 18244.15, + "probability": 0.9308 + }, + { + "start": 18244.79, + "end": 18247.03, + "probability": 0.9822 + }, + { + "start": 18248.07, + "end": 18250.45, + "probability": 0.9324 + }, + { + "start": 18250.45, + "end": 18253.65, + "probability": 0.9458 + }, + { + "start": 18253.77, + "end": 18257.37, + "probability": 0.9592 + }, + { + "start": 18257.97, + "end": 18261.11, + "probability": 0.9069 + }, + { + "start": 18262.19, + "end": 18267.75, + "probability": 0.8606 + }, + { + "start": 18268.59, + "end": 18270.35, + "probability": 0.9415 + }, + { + "start": 18271.27, + "end": 18273.38, + "probability": 0.751 + }, + { + "start": 18274.29, + "end": 18275.83, + "probability": 0.9266 + }, + { + "start": 18276.51, + "end": 18280.81, + "probability": 0.9766 + }, + { + "start": 18282.51, + "end": 18288.37, + "probability": 0.9812 + }, + { + "start": 18288.49, + "end": 18291.17, + "probability": 0.9759 + }, + { + "start": 18292.13, + "end": 18294.83, + "probability": 0.9447 + }, + { + "start": 18295.61, + "end": 18300.07, + "probability": 0.9108 + }, + { + "start": 18300.15, + "end": 18303.45, + "probability": 0.8169 + }, + { + "start": 18303.99, + "end": 18305.81, + "probability": 0.9753 + }, + { + "start": 18305.91, + "end": 18308.71, + "probability": 0.9857 + }, + { + "start": 18308.71, + "end": 18311.31, + "probability": 0.9884 + }, + { + "start": 18312.45, + "end": 18312.95, + "probability": 0.8582 + }, + { + "start": 18313.55, + "end": 18315.79, + "probability": 0.9816 + }, + { + "start": 18315.79, + "end": 18319.95, + "probability": 0.9368 + }, + { + "start": 18320.87, + "end": 18321.31, + "probability": 0.4471 + }, + { + "start": 18322.01, + "end": 18322.21, + "probability": 0.069 + }, + { + "start": 18322.53, + "end": 18326.41, + "probability": 0.9238 + }, + { + "start": 18326.41, + "end": 18330.47, + "probability": 0.9631 + }, + { + "start": 18331.39, + "end": 18333.03, + "probability": 0.8881 + }, + { + "start": 18333.37, + "end": 18336.25, + "probability": 0.9722 + }, + { + "start": 18336.83, + "end": 18338.67, + "probability": 0.8368 + }, + { + "start": 18339.69, + "end": 18342.03, + "probability": 0.7749 + }, + { + "start": 18343.09, + "end": 18346.39, + "probability": 0.9191 + }, + { + "start": 18346.39, + "end": 18350.51, + "probability": 0.9694 + }, + { + "start": 18351.31, + "end": 18356.07, + "probability": 0.8213 + }, + { + "start": 18356.61, + "end": 18359.55, + "probability": 0.8336 + }, + { + "start": 18360.31, + "end": 18363.07, + "probability": 0.9673 + }, + { + "start": 18363.07, + "end": 18365.83, + "probability": 0.8992 + }, + { + "start": 18366.67, + "end": 18367.49, + "probability": 0.9114 + }, + { + "start": 18368.21, + "end": 18371.87, + "probability": 0.8813 + }, + { + "start": 18371.97, + "end": 18374.43, + "probability": 0.958 + }, + { + "start": 18375.09, + "end": 18377.37, + "probability": 0.9058 + }, + { + "start": 18377.45, + "end": 18383.01, + "probability": 0.9681 + }, + { + "start": 18383.49, + "end": 18384.63, + "probability": 0.4577 + }, + { + "start": 18385.15, + "end": 18387.89, + "probability": 0.9876 + }, + { + "start": 18389.05, + "end": 18389.53, + "probability": 0.8898 + }, + { + "start": 18390.13, + "end": 18394.25, + "probability": 0.9446 + }, + { + "start": 18395.07, + "end": 18395.47, + "probability": 0.8599 + }, + { + "start": 18395.65, + "end": 18396.17, + "probability": 0.3339 + }, + { + "start": 18396.87, + "end": 18397.81, + "probability": 0.0078 + }, + { + "start": 18397.95, + "end": 18398.67, + "probability": 0.635 + }, + { + "start": 18398.93, + "end": 18400.97, + "probability": 0.6924 + }, + { + "start": 18409.47, + "end": 18411.85, + "probability": 0.6308 + }, + { + "start": 18412.97, + "end": 18414.33, + "probability": 0.2264 + }, + { + "start": 18414.39, + "end": 18415.65, + "probability": 0.7444 + }, + { + "start": 18417.87, + "end": 18419.07, + "probability": 0.0339 + }, + { + "start": 18419.17, + "end": 18420.23, + "probability": 0.0091 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.0, + "end": 18516.0, + "probability": 0.0 + }, + { + "start": 18516.32, + "end": 18518.2, + "probability": 0.0736 + }, + { + "start": 18520.96, + "end": 18524.3, + "probability": 0.574 + }, + { + "start": 18524.64, + "end": 18525.86, + "probability": 0.3125 + }, + { + "start": 18529.16, + "end": 18531.32, + "probability": 0.3955 + }, + { + "start": 18531.32, + "end": 18531.32, + "probability": 0.1851 + }, + { + "start": 18531.32, + "end": 18534.24, + "probability": 0.8386 + }, + { + "start": 18534.88, + "end": 18534.88, + "probability": 0.0442 + }, + { + "start": 18534.88, + "end": 18538.0, + "probability": 0.8759 + }, + { + "start": 18538.2, + "end": 18542.96, + "probability": 0.8525 + }, + { + "start": 18543.12, + "end": 18543.3, + "probability": 0.7476 + }, + { + "start": 18543.42, + "end": 18543.86, + "probability": 0.4976 + }, + { + "start": 18543.88, + "end": 18546.16, + "probability": 0.4972 + }, + { + "start": 18546.4, + "end": 18547.26, + "probability": 0.4735 + }, + { + "start": 18547.36, + "end": 18548.96, + "probability": 0.3557 + }, + { + "start": 18549.0, + "end": 18549.12, + "probability": 0.0556 + }, + { + "start": 18549.48, + "end": 18552.9, + "probability": 0.7955 + }, + { + "start": 18552.9, + "end": 18554.28, + "probability": 0.6208 + }, + { + "start": 18554.72, + "end": 18556.44, + "probability": 0.9899 + }, + { + "start": 18558.08, + "end": 18558.42, + "probability": 0.5311 + }, + { + "start": 18558.46, + "end": 18560.42, + "probability": 0.4324 + }, + { + "start": 18565.1, + "end": 18570.02, + "probability": 0.6925 + }, + { + "start": 18571.24, + "end": 18572.5, + "probability": 0.4038 + }, + { + "start": 18573.22, + "end": 18577.39, + "probability": 0.8391 + }, + { + "start": 18578.84, + "end": 18581.04, + "probability": 0.6684 + }, + { + "start": 18582.48, + "end": 18585.88, + "probability": 0.9852 + }, + { + "start": 18586.32, + "end": 18590.74, + "probability": 0.9595 + }, + { + "start": 18592.08, + "end": 18594.64, + "probability": 0.505 + }, + { + "start": 18595.46, + "end": 18599.6, + "probability": 0.924 + }, + { + "start": 18599.62, + "end": 18600.6, + "probability": 0.7256 + }, + { + "start": 18601.36, + "end": 18605.62, + "probability": 0.9878 + }, + { + "start": 18605.62, + "end": 18609.54, + "probability": 0.9985 + }, + { + "start": 18610.66, + "end": 18615.26, + "probability": 0.5222 + }, + { + "start": 18616.16, + "end": 18618.58, + "probability": 0.6438 + }, + { + "start": 18619.46, + "end": 18624.4, + "probability": 0.6284 + }, + { + "start": 18625.1, + "end": 18629.16, + "probability": 0.9616 + }, + { + "start": 18630.2, + "end": 18633.22, + "probability": 0.5177 + }, + { + "start": 18633.88, + "end": 18637.16, + "probability": 0.5532 + }, + { + "start": 18637.72, + "end": 18639.88, + "probability": 0.7718 + }, + { + "start": 18640.32, + "end": 18642.46, + "probability": 0.7606 + }, + { + "start": 18643.36, + "end": 18644.08, + "probability": 0.9188 + }, + { + "start": 18644.7, + "end": 18647.26, + "probability": 0.8369 + }, + { + "start": 18648.44, + "end": 18653.32, + "probability": 0.9751 + }, + { + "start": 18654.0, + "end": 18654.0, + "probability": 0.7817 + }, + { + "start": 18654.76, + "end": 18656.54, + "probability": 0.9951 + }, + { + "start": 18657.48, + "end": 18659.48, + "probability": 0.9527 + }, + { + "start": 18660.18, + "end": 18666.0, + "probability": 0.9878 + }, + { + "start": 18666.76, + "end": 18668.26, + "probability": 0.9638 + }, + { + "start": 18669.28, + "end": 18674.37, + "probability": 0.8648 + }, + { + "start": 18675.64, + "end": 18679.98, + "probability": 0.9912 + }, + { + "start": 18680.52, + "end": 18682.64, + "probability": 0.9716 + }, + { + "start": 18682.64, + "end": 18686.38, + "probability": 0.8855 + }, + { + "start": 18687.46, + "end": 18691.12, + "probability": 0.995 + }, + { + "start": 18691.86, + "end": 18694.12, + "probability": 0.896 + }, + { + "start": 18694.64, + "end": 18699.24, + "probability": 0.9756 + }, + { + "start": 18699.8, + "end": 18700.64, + "probability": 0.582 + }, + { + "start": 18701.46, + "end": 18703.58, + "probability": 0.8646 + }, + { + "start": 18704.12, + "end": 18707.7, + "probability": 0.9677 + }, + { + "start": 18707.7, + "end": 18711.08, + "probability": 0.8396 + }, + { + "start": 18711.78, + "end": 18713.36, + "probability": 0.954 + }, + { + "start": 18713.88, + "end": 18721.5, + "probability": 0.92 + }, + { + "start": 18722.12, + "end": 18725.34, + "probability": 0.8103 + }, + { + "start": 18726.2, + "end": 18729.64, + "probability": 0.8886 + }, + { + "start": 18730.26, + "end": 18733.94, + "probability": 0.9921 + }, + { + "start": 18733.98, + "end": 18735.94, + "probability": 0.9407 + }, + { + "start": 18736.7, + "end": 18737.84, + "probability": 0.6244 + }, + { + "start": 18738.56, + "end": 18741.4, + "probability": 0.9991 + }, + { + "start": 18741.4, + "end": 18743.92, + "probability": 0.9954 + }, + { + "start": 18744.78, + "end": 18748.82, + "probability": 0.8118 + }, + { + "start": 18749.64, + "end": 18755.06, + "probability": 0.9452 + }, + { + "start": 18755.96, + "end": 18761.06, + "probability": 0.7607 + }, + { + "start": 18761.18, + "end": 18764.54, + "probability": 0.9058 + }, + { + "start": 18765.56, + "end": 18770.64, + "probability": 0.9342 + }, + { + "start": 18770.76, + "end": 18771.78, + "probability": 0.7302 + }, + { + "start": 18772.34, + "end": 18776.02, + "probability": 0.9529 + }, + { + "start": 18776.54, + "end": 18780.08, + "probability": 0.9777 + }, + { + "start": 18780.62, + "end": 18782.7, + "probability": 0.997 + }, + { + "start": 18783.52, + "end": 18785.0, + "probability": 0.8116 + }, + { + "start": 18785.84, + "end": 18791.0, + "probability": 0.8903 + }, + { + "start": 18791.46, + "end": 18792.21, + "probability": 0.856 + }, + { + "start": 18793.02, + "end": 18793.76, + "probability": 0.992 + }, + { + "start": 18795.24, + "end": 18795.9, + "probability": 0.6602 + }, + { + "start": 18796.42, + "end": 18801.46, + "probability": 0.9591 + }, + { + "start": 18801.46, + "end": 18805.44, + "probability": 0.7094 + }, + { + "start": 18805.56, + "end": 18806.88, + "probability": 0.7218 + }, + { + "start": 18807.34, + "end": 18811.22, + "probability": 0.7981 + }, + { + "start": 18812.16, + "end": 18814.7, + "probability": 0.9357 + }, + { + "start": 18814.7, + "end": 18818.78, + "probability": 0.8845 + }, + { + "start": 18819.96, + "end": 18820.5, + "probability": 0.5498 + }, + { + "start": 18821.18, + "end": 18824.18, + "probability": 0.9837 + }, + { + "start": 18824.74, + "end": 18825.4, + "probability": 0.9848 + }, + { + "start": 18825.92, + "end": 18828.84, + "probability": 0.9601 + }, + { + "start": 18828.84, + "end": 18832.46, + "probability": 0.9927 + }, + { + "start": 18832.98, + "end": 18834.24, + "probability": 0.9972 + }, + { + "start": 18834.76, + "end": 18838.32, + "probability": 0.9847 + }, + { + "start": 18839.46, + "end": 18840.96, + "probability": 0.8537 + }, + { + "start": 18841.68, + "end": 18845.16, + "probability": 0.9821 + }, + { + "start": 18845.88, + "end": 18847.48, + "probability": 0.7932 + }, + { + "start": 18847.56, + "end": 18850.76, + "probability": 0.667 + }, + { + "start": 18850.76, + "end": 18854.52, + "probability": 0.9782 + }, + { + "start": 18855.46, + "end": 18861.72, + "probability": 0.9963 + }, + { + "start": 18862.22, + "end": 18866.28, + "probability": 0.9635 + }, + { + "start": 18866.28, + "end": 18868.78, + "probability": 0.9856 + }, + { + "start": 18869.38, + "end": 18871.22, + "probability": 0.9915 + }, + { + "start": 18872.52, + "end": 18872.9, + "probability": 0.7297 + }, + { + "start": 18874.38, + "end": 18875.1, + "probability": 0.5587 + }, + { + "start": 18875.36, + "end": 18877.74, + "probability": 0.7983 + }, + { + "start": 18880.78, + "end": 18883.88, + "probability": 0.2971 + }, + { + "start": 18885.76, + "end": 18889.76, + "probability": 0.3662 + }, + { + "start": 18895.9, + "end": 18899.12, + "probability": 0.7613 + }, + { + "start": 18899.86, + "end": 18902.88, + "probability": 0.9629 + }, + { + "start": 18903.08, + "end": 18907.08, + "probability": 0.9779 + }, + { + "start": 18907.24, + "end": 18908.9, + "probability": 0.9952 + }, + { + "start": 18908.98, + "end": 18909.14, + "probability": 0.5753 + }, + { + "start": 18909.22, + "end": 18909.8, + "probability": 0.3788 + }, + { + "start": 18910.52, + "end": 18913.46, + "probability": 0.99 + }, + { + "start": 18916.04, + "end": 18916.56, + "probability": 0.6062 + }, + { + "start": 18918.98, + "end": 18919.66, + "probability": 0.5444 + }, + { + "start": 18928.34, + "end": 18931.42, + "probability": 0.7943 + }, + { + "start": 18932.24, + "end": 18933.66, + "probability": 0.2962 + }, + { + "start": 18942.81, + "end": 18946.0, + "probability": 0.1481 + }, + { + "start": 18946.0, + "end": 18946.43, + "probability": 0.024 + }, + { + "start": 18947.44, + "end": 18950.12, + "probability": 0.3929 + }, + { + "start": 18951.82, + "end": 18951.84, + "probability": 0.0687 + }, + { + "start": 18951.84, + "end": 18951.84, + "probability": 0.1617 + }, + { + "start": 18951.84, + "end": 18951.84, + "probability": 0.0678 + }, + { + "start": 18951.84, + "end": 18951.84, + "probability": 0.0491 + }, + { + "start": 18951.84, + "end": 18951.94, + "probability": 0.2229 + }, + { + "start": 18951.94, + "end": 18953.08, + "probability": 0.5103 + }, + { + "start": 18954.12, + "end": 18958.33, + "probability": 0.4326 + }, + { + "start": 18959.26, + "end": 18962.88, + "probability": 0.9862 + }, + { + "start": 18963.32, + "end": 18964.2, + "probability": 0.7125 + }, + { + "start": 18965.02, + "end": 18966.22, + "probability": 0.7327 + }, + { + "start": 18966.36, + "end": 18967.72, + "probability": 0.6605 + }, + { + "start": 18967.86, + "end": 18969.64, + "probability": 0.8741 + }, + { + "start": 18970.06, + "end": 18972.96, + "probability": 0.553 + }, + { + "start": 18972.96, + "end": 18976.82, + "probability": 0.1007 + }, + { + "start": 18977.34, + "end": 18980.54, + "probability": 0.7975 + }, + { + "start": 18980.82, + "end": 18981.0, + "probability": 0.7304 + }, + { + "start": 18981.4, + "end": 18982.1, + "probability": 0.5928 + }, + { + "start": 18984.28, + "end": 18988.7, + "probability": 0.7175 + }, + { + "start": 18988.7, + "end": 18988.7, + "probability": 0.041 + }, + { + "start": 18988.7, + "end": 18988.7, + "probability": 0.0551 + }, + { + "start": 18988.7, + "end": 18990.9, + "probability": 0.4877 + }, + { + "start": 18991.88, + "end": 18992.24, + "probability": 0.868 + }, + { + "start": 18996.4, + "end": 18998.58, + "probability": 0.6378 + }, + { + "start": 18999.7, + "end": 19003.26, + "probability": 0.9915 + }, + { + "start": 19004.0, + "end": 19008.28, + "probability": 0.9468 + }, + { + "start": 19008.94, + "end": 19010.56, + "probability": 0.9038 + }, + { + "start": 19011.48, + "end": 19015.72, + "probability": 0.8927 + }, + { + "start": 19016.46, + "end": 19021.2, + "probability": 0.9887 + }, + { + "start": 19021.9, + "end": 19026.48, + "probability": 0.9944 + }, + { + "start": 19027.64, + "end": 19030.6, + "probability": 0.6694 + }, + { + "start": 19032.12, + "end": 19035.28, + "probability": 0.9943 + }, + { + "start": 19035.82, + "end": 19038.76, + "probability": 0.8894 + }, + { + "start": 19039.24, + "end": 19041.32, + "probability": 0.9984 + }, + { + "start": 19042.2, + "end": 19045.58, + "probability": 0.9965 + }, + { + "start": 19045.58, + "end": 19050.4, + "probability": 0.9978 + }, + { + "start": 19051.4, + "end": 19055.42, + "probability": 0.8664 + }, + { + "start": 19056.26, + "end": 19058.74, + "probability": 0.9179 + }, + { + "start": 19059.4, + "end": 19062.36, + "probability": 0.9841 + }, + { + "start": 19062.9, + "end": 19066.98, + "probability": 0.9906 + }, + { + "start": 19067.7, + "end": 19069.96, + "probability": 0.9913 + }, + { + "start": 19070.6, + "end": 19076.8, + "probability": 0.9942 + }, + { + "start": 19077.6, + "end": 19080.68, + "probability": 0.9995 + }, + { + "start": 19081.34, + "end": 19083.06, + "probability": 0.6764 + }, + { + "start": 19083.74, + "end": 19086.04, + "probability": 0.9126 + }, + { + "start": 19087.16, + "end": 19087.3, + "probability": 0.511 + }, + { + "start": 19087.42, + "end": 19089.04, + "probability": 0.7445 + }, + { + "start": 19089.14, + "end": 19089.46, + "probability": 0.9595 + }, + { + "start": 19089.56, + "end": 19091.52, + "probability": 0.9753 + }, + { + "start": 19091.86, + "end": 19094.68, + "probability": 0.5133 + }, + { + "start": 19095.72, + "end": 19099.84, + "probability": 0.9846 + }, + { + "start": 19099.92, + "end": 19101.46, + "probability": 0.9425 + }, + { + "start": 19102.14, + "end": 19104.32, + "probability": 0.9971 + }, + { + "start": 19105.08, + "end": 19106.08, + "probability": 0.9701 + }, + { + "start": 19106.16, + "end": 19107.22, + "probability": 0.8807 + }, + { + "start": 19107.42, + "end": 19109.8, + "probability": 0.9958 + }, + { + "start": 19110.44, + "end": 19111.1, + "probability": 0.8397 + }, + { + "start": 19111.66, + "end": 19114.5, + "probability": 0.9063 + }, + { + "start": 19115.36, + "end": 19116.24, + "probability": 0.9578 + }, + { + "start": 19117.76, + "end": 19121.28, + "probability": 0.948 + }, + { + "start": 19122.56, + "end": 19124.8, + "probability": 0.9819 + }, + { + "start": 19124.9, + "end": 19127.74, + "probability": 0.9794 + }, + { + "start": 19128.42, + "end": 19132.0, + "probability": 0.9682 + }, + { + "start": 19132.6, + "end": 19133.72, + "probability": 0.9515 + }, + { + "start": 19134.68, + "end": 19136.94, + "probability": 0.9305 + }, + { + "start": 19137.72, + "end": 19140.78, + "probability": 0.9677 + }, + { + "start": 19141.36, + "end": 19143.62, + "probability": 0.9016 + }, + { + "start": 19144.22, + "end": 19147.16, + "probability": 0.9777 + }, + { + "start": 19147.42, + "end": 19150.58, + "probability": 0.9652 + }, + { + "start": 19151.12, + "end": 19154.5, + "probability": 0.6287 + }, + { + "start": 19155.36, + "end": 19157.4, + "probability": 0.9847 + }, + { + "start": 19158.2, + "end": 19161.52, + "probability": 0.6892 + }, + { + "start": 19162.84, + "end": 19166.72, + "probability": 0.7958 + }, + { + "start": 19167.54, + "end": 19171.92, + "probability": 0.7161 + }, + { + "start": 19172.46, + "end": 19177.46, + "probability": 0.9595 + }, + { + "start": 19178.68, + "end": 19179.66, + "probability": 0.8212 + }, + { + "start": 19179.74, + "end": 19186.5, + "probability": 0.9785 + }, + { + "start": 19186.76, + "end": 19187.82, + "probability": 0.8687 + }, + { + "start": 19189.42, + "end": 19193.3, + "probability": 0.9638 + }, + { + "start": 19193.74, + "end": 19194.49, + "probability": 0.9707 + }, + { + "start": 19195.04, + "end": 19196.04, + "probability": 0.9743 + }, + { + "start": 19197.16, + "end": 19197.94, + "probability": 0.9587 + }, + { + "start": 19198.02, + "end": 19201.38, + "probability": 0.9971 + }, + { + "start": 19201.4, + "end": 19202.78, + "probability": 0.9028 + }, + { + "start": 19203.42, + "end": 19205.8, + "probability": 0.9441 + }, + { + "start": 19206.76, + "end": 19209.96, + "probability": 0.9933 + }, + { + "start": 19209.96, + "end": 19214.48, + "probability": 0.9844 + }, + { + "start": 19215.62, + "end": 19216.5, + "probability": 0.9473 + }, + { + "start": 19217.28, + "end": 19219.3, + "probability": 0.0015 + }, + { + "start": 19221.9, + "end": 19222.74, + "probability": 0.0253 + }, + { + "start": 19222.74, + "end": 19223.02, + "probability": 0.0674 + }, + { + "start": 19223.02, + "end": 19224.04, + "probability": 0.2718 + }, + { + "start": 19224.68, + "end": 19227.26, + "probability": 0.9609 + }, + { + "start": 19227.3, + "end": 19229.32, + "probability": 0.744 + }, + { + "start": 19229.96, + "end": 19234.78, + "probability": 0.9634 + }, + { + "start": 19234.86, + "end": 19234.86, + "probability": 0.6257 + }, + { + "start": 19234.88, + "end": 19234.98, + "probability": 0.5153 + }, + { + "start": 19235.96, + "end": 19236.48, + "probability": 0.6549 + }, + { + "start": 19237.3, + "end": 19239.62, + "probability": 0.925 + }, + { + "start": 19239.88, + "end": 19241.7, + "probability": 0.8865 + }, + { + "start": 19242.22, + "end": 19243.96, + "probability": 0.6559 + }, + { + "start": 19244.3, + "end": 19248.16, + "probability": 0.7361 + }, + { + "start": 19248.16, + "end": 19249.64, + "probability": 0.9546 + }, + { + "start": 19249.68, + "end": 19251.68, + "probability": 0.7651 + }, + { + "start": 19252.06, + "end": 19252.82, + "probability": 0.9048 + }, + { + "start": 19253.72, + "end": 19257.6, + "probability": 0.7903 + }, + { + "start": 19258.44, + "end": 19258.7, + "probability": 0.5931 + }, + { + "start": 19258.74, + "end": 19260.84, + "probability": 0.9816 + }, + { + "start": 19261.26, + "end": 19265.46, + "probability": 0.9492 + }, + { + "start": 19266.12, + "end": 19269.36, + "probability": 0.9772 + }, + { + "start": 19269.74, + "end": 19269.98, + "probability": 0.7217 + }, + { + "start": 19270.28, + "end": 19271.16, + "probability": 0.5666 + }, + { + "start": 19272.34, + "end": 19274.18, + "probability": 0.9055 + }, + { + "start": 19275.58, + "end": 19277.18, + "probability": 0.8647 + }, + { + "start": 19285.18, + "end": 19285.6, + "probability": 0.5097 + }, + { + "start": 19285.74, + "end": 19286.58, + "probability": 0.6817 + }, + { + "start": 19287.5, + "end": 19289.62, + "probability": 0.7821 + }, + { + "start": 19290.42, + "end": 19296.04, + "probability": 0.9951 + }, + { + "start": 19296.56, + "end": 19300.56, + "probability": 0.9663 + }, + { + "start": 19301.34, + "end": 19302.0, + "probability": 0.7259 + }, + { + "start": 19302.6, + "end": 19307.14, + "probability": 0.7001 + }, + { + "start": 19307.78, + "end": 19311.64, + "probability": 0.9288 + }, + { + "start": 19311.64, + "end": 19320.44, + "probability": 0.9688 + }, + { + "start": 19320.92, + "end": 19321.62, + "probability": 0.9617 + }, + { + "start": 19322.22, + "end": 19325.74, + "probability": 0.9471 + }, + { + "start": 19326.36, + "end": 19327.2, + "probability": 0.547 + }, + { + "start": 19327.3, + "end": 19332.24, + "probability": 0.9475 + }, + { + "start": 19332.86, + "end": 19339.0, + "probability": 0.9067 + }, + { + "start": 19339.58, + "end": 19345.7, + "probability": 0.9745 + }, + { + "start": 19345.84, + "end": 19348.27, + "probability": 0.9457 + }, + { + "start": 19350.04, + "end": 19358.04, + "probability": 0.9955 + }, + { + "start": 19358.12, + "end": 19363.58, + "probability": 0.9255 + }, + { + "start": 19364.02, + "end": 19365.22, + "probability": 0.7945 + }, + { + "start": 19365.72, + "end": 19368.8, + "probability": 0.8833 + }, + { + "start": 19369.54, + "end": 19373.16, + "probability": 0.9941 + }, + { + "start": 19373.32, + "end": 19375.31, + "probability": 0.8637 + }, + { + "start": 19376.2, + "end": 19379.92, + "probability": 0.9805 + }, + { + "start": 19380.42, + "end": 19383.12, + "probability": 0.6327 + }, + { + "start": 19384.82, + "end": 19392.78, + "probability": 0.9841 + }, + { + "start": 19393.06, + "end": 19395.9, + "probability": 0.8396 + }, + { + "start": 19396.1, + "end": 19400.78, + "probability": 0.8015 + }, + { + "start": 19401.4, + "end": 19403.98, + "probability": 0.9412 + }, + { + "start": 19404.52, + "end": 19408.22, + "probability": 0.7659 + }, + { + "start": 19408.34, + "end": 19409.84, + "probability": 0.9682 + }, + { + "start": 19409.96, + "end": 19416.44, + "probability": 0.9863 + }, + { + "start": 19417.16, + "end": 19419.7, + "probability": 0.8248 + }, + { + "start": 19420.3, + "end": 19421.76, + "probability": 0.8928 + }, + { + "start": 19422.9, + "end": 19423.68, + "probability": 0.7313 + }, + { + "start": 19423.72, + "end": 19424.4, + "probability": 0.8954 + }, + { + "start": 19424.42, + "end": 19424.88, + "probability": 0.736 + }, + { + "start": 19425.36, + "end": 19425.78, + "probability": 0.6107 + }, + { + "start": 19426.81, + "end": 19430.74, + "probability": 0.9548 + }, + { + "start": 19431.2, + "end": 19435.76, + "probability": 0.9848 + }, + { + "start": 19436.28, + "end": 19440.25, + "probability": 0.9634 + }, + { + "start": 19440.8, + "end": 19447.54, + "probability": 0.9949 + }, + { + "start": 19448.74, + "end": 19454.16, + "probability": 0.9446 + }, + { + "start": 19455.08, + "end": 19456.1, + "probability": 0.8966 + }, + { + "start": 19456.24, + "end": 19457.84, + "probability": 0.9257 + }, + { + "start": 19458.26, + "end": 19460.62, + "probability": 0.9492 + }, + { + "start": 19461.22, + "end": 19463.48, + "probability": 0.8062 + }, + { + "start": 19464.18, + "end": 19467.2, + "probability": 0.95 + }, + { + "start": 19467.42, + "end": 19468.74, + "probability": 0.7932 + }, + { + "start": 19469.4, + "end": 19474.76, + "probability": 0.9241 + }, + { + "start": 19474.9, + "end": 19478.58, + "probability": 0.9755 + }, + { + "start": 19478.72, + "end": 19479.68, + "probability": 0.6797 + }, + { + "start": 19479.72, + "end": 19481.06, + "probability": 0.7602 + }, + { + "start": 19481.08, + "end": 19485.58, + "probability": 0.8476 + }, + { + "start": 19485.68, + "end": 19487.38, + "probability": 0.7693 + }, + { + "start": 19487.62, + "end": 19487.78, + "probability": 0.706 + }, + { + "start": 19487.78, + "end": 19489.07, + "probability": 0.6729 + }, + { + "start": 19489.78, + "end": 19491.06, + "probability": 0.9299 + }, + { + "start": 19492.26, + "end": 19493.04, + "probability": 0.7663 + }, + { + "start": 19494.34, + "end": 19495.0, + "probability": 0.812 + }, + { + "start": 19496.34, + "end": 19497.66, + "probability": 0.8026 + }, + { + "start": 19510.34, + "end": 19511.86, + "probability": 0.6716 + }, + { + "start": 19512.56, + "end": 19513.46, + "probability": 0.9983 + }, + { + "start": 19514.3, + "end": 19517.06, + "probability": 0.9311 + }, + { + "start": 19517.12, + "end": 19520.44, + "probability": 0.8296 + }, + { + "start": 19520.84, + "end": 19524.54, + "probability": 0.9867 + }, + { + "start": 19524.58, + "end": 19530.34, + "probability": 0.9977 + }, + { + "start": 19531.3, + "end": 19535.16, + "probability": 0.6055 + }, + { + "start": 19535.76, + "end": 19538.62, + "probability": 0.7938 + }, + { + "start": 19538.86, + "end": 19546.28, + "probability": 0.9868 + }, + { + "start": 19546.92, + "end": 19552.24, + "probability": 0.9934 + }, + { + "start": 19552.24, + "end": 19555.5, + "probability": 0.9946 + }, + { + "start": 19557.28, + "end": 19559.36, + "probability": 0.9995 + }, + { + "start": 19559.84, + "end": 19565.72, + "probability": 0.7739 + }, + { + "start": 19565.88, + "end": 19566.84, + "probability": 0.9259 + }, + { + "start": 19567.0, + "end": 19568.5, + "probability": 0.9752 + }, + { + "start": 19569.14, + "end": 19570.34, + "probability": 0.8297 + }, + { + "start": 19571.08, + "end": 19575.76, + "probability": 0.9901 + }, + { + "start": 19575.96, + "end": 19577.18, + "probability": 0.9408 + }, + { + "start": 19577.44, + "end": 19580.72, + "probability": 0.7973 + }, + { + "start": 19580.88, + "end": 19581.8, + "probability": 0.9089 + }, + { + "start": 19582.04, + "end": 19582.78, + "probability": 0.8198 + }, + { + "start": 19582.9, + "end": 19583.9, + "probability": 0.8586 + }, + { + "start": 19585.34, + "end": 19586.44, + "probability": 0.9394 + }, + { + "start": 19587.2, + "end": 19590.74, + "probability": 0.99 + }, + { + "start": 19591.32, + "end": 19596.34, + "probability": 0.9922 + }, + { + "start": 19596.54, + "end": 19600.48, + "probability": 0.9882 + }, + { + "start": 19601.84, + "end": 19605.54, + "probability": 0.9805 + }, + { + "start": 19605.62, + "end": 19610.02, + "probability": 0.8894 + }, + { + "start": 19610.68, + "end": 19612.9, + "probability": 0.825 + }, + { + "start": 19613.82, + "end": 19618.08, + "probability": 0.6801 + }, + { + "start": 19618.26, + "end": 19620.2, + "probability": 0.9242 + }, + { + "start": 19620.3, + "end": 19622.4, + "probability": 0.9218 + }, + { + "start": 19625.82, + "end": 19631.16, + "probability": 0.8642 + }, + { + "start": 19631.34, + "end": 19634.64, + "probability": 0.9556 + }, + { + "start": 19635.88, + "end": 19640.84, + "probability": 0.979 + }, + { + "start": 19641.5, + "end": 19648.56, + "probability": 0.9713 + }, + { + "start": 19649.24, + "end": 19651.1, + "probability": 0.999 + }, + { + "start": 19651.18, + "end": 19652.84, + "probability": 0.8876 + }, + { + "start": 19653.28, + "end": 19655.92, + "probability": 0.9691 + }, + { + "start": 19656.9, + "end": 19660.46, + "probability": 0.9328 + }, + { + "start": 19661.19, + "end": 19667.84, + "probability": 0.969 + }, + { + "start": 19668.08, + "end": 19670.6, + "probability": 0.9938 + }, + { + "start": 19670.7, + "end": 19673.28, + "probability": 0.8981 + }, + { + "start": 19673.42, + "end": 19674.8, + "probability": 0.8761 + }, + { + "start": 19675.32, + "end": 19675.58, + "probability": 0.3532 + }, + { + "start": 19676.26, + "end": 19680.46, + "probability": 0.9954 + }, + { + "start": 19681.16, + "end": 19685.94, + "probability": 0.9802 + }, + { + "start": 19686.14, + "end": 19688.0, + "probability": 0.6717 + }, + { + "start": 19688.6, + "end": 19692.4, + "probability": 0.9242 + }, + { + "start": 19692.44, + "end": 19693.64, + "probability": 0.988 + }, + { + "start": 19693.72, + "end": 19696.14, + "probability": 0.8931 + }, + { + "start": 19697.88, + "end": 19701.28, + "probability": 0.826 + }, + { + "start": 19701.9, + "end": 19712.5, + "probability": 0.9726 + }, + { + "start": 19713.5, + "end": 19714.28, + "probability": 0.6957 + }, + { + "start": 19714.32, + "end": 19714.58, + "probability": 0.787 + }, + { + "start": 19714.74, + "end": 19715.76, + "probability": 0.924 + }, + { + "start": 19715.94, + "end": 19717.12, + "probability": 0.958 + }, + { + "start": 19717.32, + "end": 19720.7, + "probability": 0.9955 + }, + { + "start": 19721.38, + "end": 19725.88, + "probability": 0.9891 + }, + { + "start": 19725.88, + "end": 19735.32, + "probability": 0.9854 + }, + { + "start": 19735.32, + "end": 19740.34, + "probability": 0.9964 + }, + { + "start": 19740.42, + "end": 19744.98, + "probability": 0.9897 + }, + { + "start": 19745.06, + "end": 19746.6, + "probability": 0.6101 + }, + { + "start": 19746.66, + "end": 19748.38, + "probability": 0.9667 + }, + { + "start": 19748.48, + "end": 19752.34, + "probability": 0.998 + }, + { + "start": 19753.24, + "end": 19754.95, + "probability": 0.906 + }, + { + "start": 19755.12, + "end": 19759.12, + "probability": 0.977 + }, + { + "start": 19759.22, + "end": 19759.42, + "probability": 0.8195 + }, + { + "start": 19759.48, + "end": 19762.52, + "probability": 0.9922 + }, + { + "start": 19762.82, + "end": 19764.94, + "probability": 0.989 + }, + { + "start": 19765.02, + "end": 19768.16, + "probability": 0.9943 + }, + { + "start": 19768.28, + "end": 19771.92, + "probability": 0.9241 + }, + { + "start": 19772.42, + "end": 19778.06, + "probability": 0.9932 + }, + { + "start": 19781.02, + "end": 19782.46, + "probability": 0.7288 + }, + { + "start": 19783.36, + "end": 19791.42, + "probability": 0.7745 + }, + { + "start": 19792.2, + "end": 19793.72, + "probability": 0.8836 + }, + { + "start": 19793.82, + "end": 19794.82, + "probability": 0.9185 + }, + { + "start": 19794.92, + "end": 19798.0, + "probability": 0.9887 + }, + { + "start": 19798.22, + "end": 19804.94, + "probability": 0.9569 + }, + { + "start": 19805.06, + "end": 19806.34, + "probability": 0.9026 + }, + { + "start": 19806.46, + "end": 19807.68, + "probability": 0.6585 + }, + { + "start": 19808.32, + "end": 19810.14, + "probability": 0.9849 + }, + { + "start": 19810.14, + "end": 19812.74, + "probability": 0.9984 + }, + { + "start": 19813.88, + "end": 19817.92, + "probability": 0.999 + }, + { + "start": 19817.92, + "end": 19822.94, + "probability": 0.9997 + }, + { + "start": 19823.06, + "end": 19827.02, + "probability": 0.998 + }, + { + "start": 19828.16, + "end": 19828.58, + "probability": 0.6582 + }, + { + "start": 19828.62, + "end": 19829.04, + "probability": 0.8703 + }, + { + "start": 19829.16, + "end": 19833.08, + "probability": 0.9857 + }, + { + "start": 19833.22, + "end": 19834.72, + "probability": 0.9534 + }, + { + "start": 19835.2, + "end": 19838.84, + "probability": 0.9903 + }, + { + "start": 19839.58, + "end": 19843.67, + "probability": 0.8599 + }, + { + "start": 19844.24, + "end": 19850.32, + "probability": 0.9844 + }, + { + "start": 19851.26, + "end": 19853.52, + "probability": 0.9258 + }, + { + "start": 19854.24, + "end": 19854.94, + "probability": 0.9375 + }, + { + "start": 19855.08, + "end": 19857.54, + "probability": 0.9988 + }, + { + "start": 19857.54, + "end": 19860.04, + "probability": 0.9494 + }, + { + "start": 19860.08, + "end": 19863.04, + "probability": 0.9384 + }, + { + "start": 19863.66, + "end": 19865.6, + "probability": 0.9426 + }, + { + "start": 19866.16, + "end": 19870.42, + "probability": 0.9845 + }, + { + "start": 19871.54, + "end": 19873.66, + "probability": 0.9936 + }, + { + "start": 19873.84, + "end": 19876.46, + "probability": 0.9813 + }, + { + "start": 19876.46, + "end": 19880.42, + "probability": 0.9982 + }, + { + "start": 19881.28, + "end": 19887.4, + "probability": 0.985 + }, + { + "start": 19887.56, + "end": 19888.96, + "probability": 0.8644 + }, + { + "start": 19889.16, + "end": 19891.16, + "probability": 0.9966 + }, + { + "start": 19891.32, + "end": 19893.22, + "probability": 0.6642 + }, + { + "start": 19894.02, + "end": 19895.6, + "probability": 0.8714 + }, + { + "start": 19896.72, + "end": 19902.34, + "probability": 0.9622 + }, + { + "start": 19903.4, + "end": 19905.52, + "probability": 0.947 + }, + { + "start": 19905.6, + "end": 19907.67, + "probability": 0.9752 + }, + { + "start": 19908.3, + "end": 19913.7, + "probability": 0.9939 + }, + { + "start": 19914.14, + "end": 19916.52, + "probability": 0.8205 + }, + { + "start": 19916.7, + "end": 19920.54, + "probability": 0.9089 + }, + { + "start": 19921.1, + "end": 19925.46, + "probability": 0.9977 + }, + { + "start": 19925.58, + "end": 19929.36, + "probability": 0.9471 + }, + { + "start": 19929.44, + "end": 19930.66, + "probability": 0.8942 + }, + { + "start": 19930.78, + "end": 19932.78, + "probability": 0.9825 + }, + { + "start": 19932.82, + "end": 19935.48, + "probability": 0.9794 + }, + { + "start": 19936.34, + "end": 19937.88, + "probability": 0.9227 + }, + { + "start": 19938.24, + "end": 19940.92, + "probability": 0.5688 + }, + { + "start": 19940.98, + "end": 19941.84, + "probability": 0.8896 + }, + { + "start": 19942.0, + "end": 19943.02, + "probability": 0.8608 + }, + { + "start": 19943.1, + "end": 19944.24, + "probability": 0.8724 + }, + { + "start": 19945.54, + "end": 19947.32, + "probability": 0.9403 + }, + { + "start": 19947.9, + "end": 19948.66, + "probability": 0.5957 + }, + { + "start": 19949.2, + "end": 19954.52, + "probability": 0.8974 + }, + { + "start": 19954.6, + "end": 19955.32, + "probability": 0.7745 + }, + { + "start": 19955.48, + "end": 19956.3, + "probability": 0.5077 + }, + { + "start": 19956.34, + "end": 19958.69, + "probability": 0.958 + }, + { + "start": 19961.18, + "end": 19965.26, + "probability": 0.7165 + }, + { + "start": 19965.28, + "end": 19965.58, + "probability": 0.7921 + }, + { + "start": 19965.7, + "end": 19970.0, + "probability": 0.992 + }, + { + "start": 19970.54, + "end": 19973.78, + "probability": 0.9915 + }, + { + "start": 19973.86, + "end": 19974.94, + "probability": 0.8623 + }, + { + "start": 19975.1, + "end": 19975.86, + "probability": 0.8905 + }, + { + "start": 19976.06, + "end": 19977.77, + "probability": 0.8717 + }, + { + "start": 19978.24, + "end": 19979.36, + "probability": 0.9201 + }, + { + "start": 19979.42, + "end": 19983.44, + "probability": 0.9884 + }, + { + "start": 19983.94, + "end": 19988.02, + "probability": 0.9955 + }, + { + "start": 19988.58, + "end": 19991.24, + "probability": 0.9907 + }, + { + "start": 19991.34, + "end": 19992.02, + "probability": 0.9662 + }, + { + "start": 19992.12, + "end": 19992.28, + "probability": 0.928 + }, + { + "start": 19992.42, + "end": 19993.16, + "probability": 0.6994 + }, + { + "start": 19993.3, + "end": 19994.96, + "probability": 0.9246 + }, + { + "start": 19995.62, + "end": 19997.8, + "probability": 0.8846 + }, + { + "start": 19997.88, + "end": 19998.54, + "probability": 0.963 + }, + { + "start": 19998.66, + "end": 20004.08, + "probability": 0.9971 + }, + { + "start": 20005.52, + "end": 20006.22, + "probability": 0.994 + }, + { + "start": 20006.3, + "end": 20006.84, + "probability": 0.9551 + }, + { + "start": 20007.74, + "end": 20009.84, + "probability": 0.7573 + }, + { + "start": 20009.92, + "end": 20012.86, + "probability": 0.9678 + }, + { + "start": 20012.96, + "end": 20014.45, + "probability": 0.9229 + }, + { + "start": 20014.7, + "end": 20016.9, + "probability": 0.4595 + }, + { + "start": 20017.58, + "end": 20018.68, + "probability": 0.888 + }, + { + "start": 20019.26, + "end": 20020.78, + "probability": 0.9946 + }, + { + "start": 20020.84, + "end": 20024.0, + "probability": 0.9855 + }, + { + "start": 20024.04, + "end": 20026.62, + "probability": 0.9268 + }, + { + "start": 20026.68, + "end": 20027.36, + "probability": 0.753 + }, + { + "start": 20027.46, + "end": 20029.86, + "probability": 0.8725 + }, + { + "start": 20030.32, + "end": 20032.52, + "probability": 0.9627 + }, + { + "start": 20032.58, + "end": 20033.78, + "probability": 0.9783 + }, + { + "start": 20034.34, + "end": 20037.4, + "probability": 0.944 + }, + { + "start": 20038.18, + "end": 20039.04, + "probability": 0.8139 + }, + { + "start": 20040.24, + "end": 20042.1, + "probability": 0.877 + }, + { + "start": 20043.81, + "end": 20045.62, + "probability": 0.9653 + }, + { + "start": 20045.76, + "end": 20048.54, + "probability": 0.7285 + }, + { + "start": 20048.8, + "end": 20051.11, + "probability": 0.7535 + }, + { + "start": 20053.44, + "end": 20055.8, + "probability": 0.9889 + }, + { + "start": 20056.42, + "end": 20060.32, + "probability": 0.9712 + }, + { + "start": 20060.4, + "end": 20063.4, + "probability": 0.9831 + }, + { + "start": 20064.56, + "end": 20066.2, + "probability": 0.8312 + }, + { + "start": 20067.1, + "end": 20070.12, + "probability": 0.8405 + }, + { + "start": 20070.26, + "end": 20072.7, + "probability": 0.9859 + }, + { + "start": 20073.28, + "end": 20077.2, + "probability": 0.9987 + }, + { + "start": 20077.28, + "end": 20079.5, + "probability": 0.9602 + }, + { + "start": 20079.86, + "end": 20081.1, + "probability": 0.9115 + }, + { + "start": 20081.16, + "end": 20082.86, + "probability": 0.9818 + }, + { + "start": 20083.48, + "end": 20091.9, + "probability": 0.9989 + }, + { + "start": 20091.9, + "end": 20096.4, + "probability": 0.9973 + }, + { + "start": 20096.46, + "end": 20097.54, + "probability": 0.9643 + }, + { + "start": 20097.84, + "end": 20098.1, + "probability": 0.757 + }, + { + "start": 20100.24, + "end": 20102.21, + "probability": 0.5786 + }, + { + "start": 20106.84, + "end": 20108.95, + "probability": 0.5181 + }, + { + "start": 20111.74, + "end": 20115.4, + "probability": 0.8964 + }, + { + "start": 20117.7, + "end": 20118.36, + "probability": 0.8838 + }, + { + "start": 20124.1, + "end": 20124.26, + "probability": 0.2252 + }, + { + "start": 20124.26, + "end": 20124.26, + "probability": 0.0575 + }, + { + "start": 20124.26, + "end": 20125.42, + "probability": 0.3233 + }, + { + "start": 20126.4, + "end": 20128.64, + "probability": 0.3634 + }, + { + "start": 20129.32, + "end": 20130.0, + "probability": 0.1692 + }, + { + "start": 20130.66, + "end": 20134.22, + "probability": 0.8353 + }, + { + "start": 20135.18, + "end": 20135.8, + "probability": 0.1224 + }, + { + "start": 20135.82, + "end": 20136.34, + "probability": 0.1143 + }, + { + "start": 20136.36, + "end": 20137.1, + "probability": 0.7381 + }, + { + "start": 20137.28, + "end": 20137.77, + "probability": 0.2911 + }, + { + "start": 20138.32, + "end": 20139.88, + "probability": 0.2139 + }, + { + "start": 20140.24, + "end": 20142.3, + "probability": 0.316 + }, + { + "start": 20142.96, + "end": 20145.4, + "probability": 0.5301 + }, + { + "start": 20147.46, + "end": 20148.08, + "probability": 0.0014 + }, + { + "start": 20148.08, + "end": 20148.12, + "probability": 0.3203 + }, + { + "start": 20148.12, + "end": 20148.12, + "probability": 0.0849 + }, + { + "start": 20148.12, + "end": 20148.12, + "probability": 0.0285 + }, + { + "start": 20148.12, + "end": 20148.75, + "probability": 0.3492 + }, + { + "start": 20150.42, + "end": 20153.34, + "probability": 0.964 + }, + { + "start": 20154.52, + "end": 20154.52, + "probability": 0.0458 + }, + { + "start": 20154.52, + "end": 20154.52, + "probability": 0.2823 + }, + { + "start": 20154.52, + "end": 20154.52, + "probability": 0.3752 + }, + { + "start": 20154.52, + "end": 20154.52, + "probability": 0.4469 + }, + { + "start": 20154.52, + "end": 20154.52, + "probability": 0.4464 + }, + { + "start": 20154.52, + "end": 20154.52, + "probability": 0.1299 + }, + { + "start": 20154.52, + "end": 20156.62, + "probability": 0.7652 + }, + { + "start": 20158.78, + "end": 20159.72, + "probability": 0.2349 + }, + { + "start": 20160.06, + "end": 20161.64, + "probability": 0.3548 + }, + { + "start": 20161.74, + "end": 20163.58, + "probability": 0.44 + }, + { + "start": 20164.18, + "end": 20168.48, + "probability": 0.6138 + }, + { + "start": 20169.0, + "end": 20172.66, + "probability": 0.6129 + }, + { + "start": 20172.78, + "end": 20173.96, + "probability": 0.6147 + }, + { + "start": 20174.46, + "end": 20175.96, + "probability": 0.3191 + }, + { + "start": 20177.0, + "end": 20177.1, + "probability": 0.3395 + }, + { + "start": 20177.1, + "end": 20177.6, + "probability": 0.3402 + }, + { + "start": 20179.18, + "end": 20180.56, + "probability": 0.9346 + }, + { + "start": 20180.7, + "end": 20182.74, + "probability": 0.8188 + }, + { + "start": 20182.96, + "end": 20183.9, + "probability": 0.771 + }, + { + "start": 20185.2, + "end": 20186.86, + "probability": 0.9834 + }, + { + "start": 20187.88, + "end": 20190.88, + "probability": 0.941 + }, + { + "start": 20191.64, + "end": 20192.36, + "probability": 0.5127 + }, + { + "start": 20193.5, + "end": 20193.88, + "probability": 0.8553 + }, + { + "start": 20194.24, + "end": 20195.96, + "probability": 0.7656 + }, + { + "start": 20196.22, + "end": 20198.8, + "probability": 0.9374 + }, + { + "start": 20199.0, + "end": 20199.86, + "probability": 0.7454 + }, + { + "start": 20200.6, + "end": 20202.22, + "probability": 0.8988 + }, + { + "start": 20203.36, + "end": 20206.18, + "probability": 0.9385 + }, + { + "start": 20210.76, + "end": 20210.9, + "probability": 0.0178 + }, + { + "start": 20210.9, + "end": 20210.92, + "probability": 0.3023 + }, + { + "start": 20210.92, + "end": 20212.54, + "probability": 0.0449 + }, + { + "start": 20212.6, + "end": 20213.24, + "probability": 0.5968 + }, + { + "start": 20213.44, + "end": 20214.56, + "probability": 0.4966 + }, + { + "start": 20214.56, + "end": 20218.22, + "probability": 0.8491 + }, + { + "start": 20219.14, + "end": 20220.87, + "probability": 0.3452 + }, + { + "start": 20221.76, + "end": 20225.68, + "probability": 0.8375 + }, + { + "start": 20225.68, + "end": 20226.48, + "probability": 0.4807 + }, + { + "start": 20226.54, + "end": 20229.72, + "probability": 0.776 + }, + { + "start": 20230.18, + "end": 20231.9, + "probability": 0.8845 + }, + { + "start": 20231.92, + "end": 20234.92, + "probability": 0.6927 + }, + { + "start": 20235.04, + "end": 20237.6, + "probability": 0.4451 + }, + { + "start": 20238.66, + "end": 20242.86, + "probability": 0.9807 + }, + { + "start": 20242.86, + "end": 20248.54, + "probability": 0.9922 + }, + { + "start": 20249.06, + "end": 20252.36, + "probability": 0.9604 + }, + { + "start": 20253.48, + "end": 20257.5, + "probability": 0.9812 + }, + { + "start": 20258.34, + "end": 20261.34, + "probability": 0.9948 + }, + { + "start": 20261.74, + "end": 20262.5, + "probability": 0.809 + }, + { + "start": 20262.82, + "end": 20265.72, + "probability": 0.9861 + }, + { + "start": 20266.44, + "end": 20267.26, + "probability": 0.8805 + }, + { + "start": 20267.8, + "end": 20269.14, + "probability": 0.956 + }, + { + "start": 20269.92, + "end": 20272.54, + "probability": 0.995 + }, + { + "start": 20273.56, + "end": 20276.66, + "probability": 0.9956 + }, + { + "start": 20276.98, + "end": 20281.56, + "probability": 0.9962 + }, + { + "start": 20282.16, + "end": 20284.18, + "probability": 0.9933 + }, + { + "start": 20284.5, + "end": 20288.44, + "probability": 0.9854 + }, + { + "start": 20289.0, + "end": 20292.4, + "probability": 0.9662 + }, + { + "start": 20293.02, + "end": 20293.44, + "probability": 0.644 + }, + { + "start": 20294.12, + "end": 20301.34, + "probability": 0.9972 + }, + { + "start": 20301.98, + "end": 20307.86, + "probability": 0.8369 + }, + { + "start": 20308.44, + "end": 20314.54, + "probability": 0.856 + }, + { + "start": 20315.04, + "end": 20316.72, + "probability": 0.9751 + }, + { + "start": 20317.06, + "end": 20319.98, + "probability": 0.9873 + }, + { + "start": 20320.96, + "end": 20321.66, + "probability": 0.2746 + }, + { + "start": 20322.02, + "end": 20327.66, + "probability": 0.9897 + }, + { + "start": 20327.66, + "end": 20333.84, + "probability": 0.9946 + }, + { + "start": 20334.44, + "end": 20335.56, + "probability": 0.9207 + }, + { + "start": 20336.52, + "end": 20339.42, + "probability": 0.9513 + }, + { + "start": 20340.2, + "end": 20342.12, + "probability": 0.9113 + }, + { + "start": 20342.6, + "end": 20345.5, + "probability": 0.9208 + }, + { + "start": 20346.64, + "end": 20349.18, + "probability": 0.9066 + }, + { + "start": 20349.68, + "end": 20352.28, + "probability": 0.9912 + }, + { + "start": 20352.86, + "end": 20356.9, + "probability": 0.9358 + }, + { + "start": 20358.32, + "end": 20360.86, + "probability": 0.9736 + }, + { + "start": 20361.14, + "end": 20366.8, + "probability": 0.9395 + }, + { + "start": 20367.32, + "end": 20368.81, + "probability": 0.9971 + }, + { + "start": 20369.94, + "end": 20374.62, + "probability": 0.965 + }, + { + "start": 20375.22, + "end": 20377.14, + "probability": 0.9975 + }, + { + "start": 20377.9, + "end": 20378.9, + "probability": 0.7539 + }, + { + "start": 20379.78, + "end": 20385.54, + "probability": 0.9949 + }, + { + "start": 20386.1, + "end": 20392.28, + "probability": 0.9641 + }, + { + "start": 20392.78, + "end": 20396.54, + "probability": 0.9845 + }, + { + "start": 20396.54, + "end": 20400.3, + "probability": 0.9966 + }, + { + "start": 20401.26, + "end": 20407.28, + "probability": 0.9869 + }, + { + "start": 20407.84, + "end": 20411.74, + "probability": 0.994 + }, + { + "start": 20411.74, + "end": 20416.56, + "probability": 0.9911 + }, + { + "start": 20417.3, + "end": 20420.66, + "probability": 0.8948 + }, + { + "start": 20421.24, + "end": 20422.86, + "probability": 0.8478 + }, + { + "start": 20423.56, + "end": 20427.2, + "probability": 0.9867 + }, + { + "start": 20427.96, + "end": 20431.52, + "probability": 0.9933 + }, + { + "start": 20431.52, + "end": 20435.52, + "probability": 0.9982 + }, + { + "start": 20436.02, + "end": 20438.66, + "probability": 0.9882 + }, + { + "start": 20438.66, + "end": 20440.84, + "probability": 0.9951 + }, + { + "start": 20441.4, + "end": 20441.72, + "probability": 0.7407 + }, + { + "start": 20444.14, + "end": 20445.0, + "probability": 0.7466 + }, + { + "start": 20445.52, + "end": 20446.44, + "probability": 0.8127 + }, + { + "start": 20446.58, + "end": 20447.98, + "probability": 0.9199 + }, + { + "start": 20461.24, + "end": 20461.34, + "probability": 0.7905 + }, + { + "start": 20461.34, + "end": 20461.48, + "probability": 0.5031 + }, + { + "start": 20461.82, + "end": 20462.26, + "probability": 0.7886 + }, + { + "start": 20464.7, + "end": 20465.98, + "probability": 0.5686 + }, + { + "start": 20467.98, + "end": 20470.5, + "probability": 0.7838 + }, + { + "start": 20471.36, + "end": 20477.34, + "probability": 0.993 + }, + { + "start": 20478.74, + "end": 20480.0, + "probability": 0.7484 + }, + { + "start": 20480.24, + "end": 20481.5, + "probability": 0.575 + }, + { + "start": 20482.18, + "end": 20483.84, + "probability": 0.8767 + }, + { + "start": 20484.52, + "end": 20486.92, + "probability": 0.9858 + }, + { + "start": 20487.78, + "end": 20493.92, + "probability": 0.9849 + }, + { + "start": 20494.84, + "end": 20498.02, + "probability": 0.9828 + }, + { + "start": 20498.64, + "end": 20500.99, + "probability": 0.998 + }, + { + "start": 20501.82, + "end": 20505.12, + "probability": 0.9984 + }, + { + "start": 20505.88, + "end": 20509.56, + "probability": 0.993 + }, + { + "start": 20509.56, + "end": 20513.12, + "probability": 0.993 + }, + { + "start": 20514.9, + "end": 20518.04, + "probability": 0.989 + }, + { + "start": 20518.86, + "end": 20521.36, + "probability": 0.9759 + }, + { + "start": 20522.0, + "end": 20525.82, + "probability": 0.9932 + }, + { + "start": 20525.92, + "end": 20528.8, + "probability": 0.9785 + }, + { + "start": 20529.22, + "end": 20531.47, + "probability": 0.9987 + }, + { + "start": 20532.16, + "end": 20536.46, + "probability": 0.9403 + }, + { + "start": 20536.46, + "end": 20541.02, + "probability": 0.984 + }, + { + "start": 20541.6, + "end": 20543.28, + "probability": 0.9767 + }, + { + "start": 20544.36, + "end": 20545.68, + "probability": 0.9764 + }, + { + "start": 20546.2, + "end": 20550.39, + "probability": 0.8872 + }, + { + "start": 20550.54, + "end": 20552.36, + "probability": 0.9378 + }, + { + "start": 20552.82, + "end": 20556.5, + "probability": 0.9914 + }, + { + "start": 20556.5, + "end": 20559.58, + "probability": 0.9811 + }, + { + "start": 20561.0, + "end": 20564.34, + "probability": 0.9966 + }, + { + "start": 20565.1, + "end": 20567.72, + "probability": 0.9567 + }, + { + "start": 20568.38, + "end": 20570.0, + "probability": 0.9987 + }, + { + "start": 20570.42, + "end": 20572.28, + "probability": 0.9911 + }, + { + "start": 20572.74, + "end": 20574.78, + "probability": 0.9976 + }, + { + "start": 20575.82, + "end": 20579.16, + "probability": 0.9961 + }, + { + "start": 20579.74, + "end": 20584.96, + "probability": 0.9951 + }, + { + "start": 20585.48, + "end": 20587.04, + "probability": 0.9964 + }, + { + "start": 20587.7, + "end": 20590.5, + "probability": 0.9962 + }, + { + "start": 20591.06, + "end": 20593.64, + "probability": 0.9912 + }, + { + "start": 20593.64, + "end": 20597.97, + "probability": 0.9848 + }, + { + "start": 20598.88, + "end": 20603.66, + "probability": 0.9747 + }, + { + "start": 20604.38, + "end": 20609.86, + "probability": 0.9275 + }, + { + "start": 20610.36, + "end": 20612.7, + "probability": 0.9749 + }, + { + "start": 20613.96, + "end": 20618.86, + "probability": 0.9908 + }, + { + "start": 20619.04, + "end": 20622.48, + "probability": 0.9742 + }, + { + "start": 20622.62, + "end": 20626.7, + "probability": 0.9899 + }, + { + "start": 20627.54, + "end": 20628.9, + "probability": 0.7944 + }, + { + "start": 20629.22, + "end": 20630.04, + "probability": 0.9322 + }, + { + "start": 20630.54, + "end": 20631.26, + "probability": 0.9448 + }, + { + "start": 20631.32, + "end": 20632.12, + "probability": 0.9918 + }, + { + "start": 20632.26, + "end": 20632.66, + "probability": 0.9714 + }, + { + "start": 20633.1, + "end": 20633.82, + "probability": 0.9319 + }, + { + "start": 20634.34, + "end": 20637.98, + "probability": 0.9827 + }, + { + "start": 20637.98, + "end": 20641.62, + "probability": 0.9963 + }, + { + "start": 20643.0, + "end": 20644.44, + "probability": 0.8471 + }, + { + "start": 20644.9, + "end": 20645.54, + "probability": 0.9674 + }, + { + "start": 20645.66, + "end": 20646.4, + "probability": 0.9465 + }, + { + "start": 20646.9, + "end": 20649.72, + "probability": 0.8577 + }, + { + "start": 20649.82, + "end": 20652.02, + "probability": 0.6899 + }, + { + "start": 20652.57, + "end": 20656.28, + "probability": 0.8384 + }, + { + "start": 20657.28, + "end": 20661.3, + "probability": 0.9871 + }, + { + "start": 20661.84, + "end": 20664.82, + "probability": 0.9482 + }, + { + "start": 20665.54, + "end": 20666.4, + "probability": 0.9733 + }, + { + "start": 20666.98, + "end": 20668.48, + "probability": 0.9523 + }, + { + "start": 20669.48, + "end": 20672.0, + "probability": 0.9945 + }, + { + "start": 20673.08, + "end": 20673.7, + "probability": 0.7724 + }, + { + "start": 20673.84, + "end": 20678.66, + "probability": 0.9691 + }, + { + "start": 20679.1, + "end": 20684.3, + "probability": 0.9988 + }, + { + "start": 20684.88, + "end": 20690.66, + "probability": 0.9974 + }, + { + "start": 20691.34, + "end": 20695.64, + "probability": 0.9924 + }, + { + "start": 20696.12, + "end": 20700.8, + "probability": 0.9966 + }, + { + "start": 20701.14, + "end": 20702.3, + "probability": 0.6577 + }, + { + "start": 20702.58, + "end": 20703.88, + "probability": 0.4608 + }, + { + "start": 20705.3, + "end": 20707.02, + "probability": 0.8354 + }, + { + "start": 20729.82, + "end": 20732.06, + "probability": 0.7665 + }, + { + "start": 20733.44, + "end": 20736.8, + "probability": 0.9943 + }, + { + "start": 20736.8, + "end": 20741.66, + "probability": 0.9987 + }, + { + "start": 20742.32, + "end": 20744.62, + "probability": 0.9929 + }, + { + "start": 20745.62, + "end": 20750.26, + "probability": 0.9295 + }, + { + "start": 20750.26, + "end": 20753.64, + "probability": 0.9891 + }, + { + "start": 20753.66, + "end": 20756.76, + "probability": 0.9604 + }, + { + "start": 20757.42, + "end": 20758.38, + "probability": 0.9925 + }, + { + "start": 20759.16, + "end": 20762.7, + "probability": 0.9954 + }, + { + "start": 20763.22, + "end": 20764.74, + "probability": 0.9912 + }, + { + "start": 20765.76, + "end": 20769.26, + "probability": 0.9599 + }, + { + "start": 20769.58, + "end": 20770.4, + "probability": 0.7622 + }, + { + "start": 20770.46, + "end": 20772.22, + "probability": 0.9668 + }, + { + "start": 20772.96, + "end": 20774.2, + "probability": 0.9282 + }, + { + "start": 20774.34, + "end": 20775.06, + "probability": 0.7962 + }, + { + "start": 20775.14, + "end": 20778.96, + "probability": 0.989 + }, + { + "start": 20780.44, + "end": 20784.42, + "probability": 0.9984 + }, + { + "start": 20784.42, + "end": 20789.5, + "probability": 0.9978 + }, + { + "start": 20790.16, + "end": 20794.0, + "probability": 0.9963 + }, + { + "start": 20794.0, + "end": 20798.92, + "probability": 0.9983 + }, + { + "start": 20799.3, + "end": 20802.72, + "probability": 0.9986 + }, + { + "start": 20803.08, + "end": 20805.68, + "probability": 0.9812 + }, + { + "start": 20806.4, + "end": 20807.92, + "probability": 0.9915 + }, + { + "start": 20809.02, + "end": 20813.08, + "probability": 0.9766 + }, + { + "start": 20813.08, + "end": 20818.98, + "probability": 0.9924 + }, + { + "start": 20819.82, + "end": 20820.88, + "probability": 0.6321 + }, + { + "start": 20821.86, + "end": 20824.68, + "probability": 0.4837 + }, + { + "start": 20825.24, + "end": 20827.96, + "probability": 0.9871 + }, + { + "start": 20827.96, + "end": 20830.66, + "probability": 0.9933 + }, + { + "start": 20831.22, + "end": 20832.16, + "probability": 0.7082 + }, + { + "start": 20832.7, + "end": 20835.12, + "probability": 0.9891 + }, + { + "start": 20835.46, + "end": 20838.96, + "probability": 0.9989 + }, + { + "start": 20839.42, + "end": 20841.16, + "probability": 0.9701 + }, + { + "start": 20842.02, + "end": 20843.71, + "probability": 0.998 + }, + { + "start": 20843.78, + "end": 20846.46, + "probability": 0.9991 + }, + { + "start": 20846.92, + "end": 20848.16, + "probability": 0.981 + }, + { + "start": 20848.82, + "end": 20852.84, + "probability": 0.2463 + }, + { + "start": 20853.48, + "end": 20856.68, + "probability": 0.7856 + }, + { + "start": 20857.4, + "end": 20858.18, + "probability": 0.7727 + }, + { + "start": 20858.34, + "end": 20858.9, + "probability": 0.8101 + }, + { + "start": 20859.36, + "end": 20861.94, + "probability": 0.9937 + }, + { + "start": 20863.26, + "end": 20866.74, + "probability": 0.984 + }, + { + "start": 20866.94, + "end": 20868.74, + "probability": 0.9198 + }, + { + "start": 20869.24, + "end": 20872.02, + "probability": 0.9961 + }, + { + "start": 20872.58, + "end": 20874.44, + "probability": 0.964 + }, + { + "start": 20874.54, + "end": 20875.34, + "probability": 0.9481 + }, + { + "start": 20875.44, + "end": 20876.76, + "probability": 0.9688 + }, + { + "start": 20877.12, + "end": 20878.24, + "probability": 0.9969 + }, + { + "start": 20878.64, + "end": 20883.1, + "probability": 0.9992 + }, + { + "start": 20883.68, + "end": 20885.54, + "probability": 0.9921 + }, + { + "start": 20886.4, + "end": 20890.42, + "probability": 0.9753 + }, + { + "start": 20890.82, + "end": 20892.74, + "probability": 0.9914 + }, + { + "start": 20893.42, + "end": 20897.28, + "probability": 0.9913 + }, + { + "start": 20898.04, + "end": 20902.8, + "probability": 0.9416 + }, + { + "start": 20903.78, + "end": 20908.64, + "probability": 0.9974 + }, + { + "start": 20909.38, + "end": 20910.18, + "probability": 0.8324 + }, + { + "start": 20910.2, + "end": 20910.64, + "probability": 0.7402 + }, + { + "start": 20910.78, + "end": 20913.46, + "probability": 0.9903 + }, + { + "start": 20914.14, + "end": 20916.6, + "probability": 0.7952 + }, + { + "start": 20917.1, + "end": 20917.64, + "probability": 0.8566 + }, + { + "start": 20917.8, + "end": 20920.12, + "probability": 0.7456 + }, + { + "start": 20921.22, + "end": 20925.08, + "probability": 0.8304 + }, + { + "start": 20927.4, + "end": 20929.1, + "probability": 0.0712 + }, + { + "start": 20929.8, + "end": 20930.5, + "probability": 0.8335 + }, + { + "start": 20931.02, + "end": 20931.68, + "probability": 0.2096 + }, + { + "start": 20933.1, + "end": 20935.52, + "probability": 0.5308 + }, + { + "start": 20935.58, + "end": 20936.64, + "probability": 0.979 + }, + { + "start": 20936.92, + "end": 20937.16, + "probability": 0.8052 + }, + { + "start": 20937.6, + "end": 20937.94, + "probability": 0.3465 + }, + { + "start": 20938.14, + "end": 20939.02, + "probability": 0.2327 + }, + { + "start": 20939.28, + "end": 20944.52, + "probability": 0.8298 + }, + { + "start": 20944.72, + "end": 20945.7, + "probability": 0.4212 + }, + { + "start": 20946.52, + "end": 20948.24, + "probability": 0.0323 + }, + { + "start": 20952.54, + "end": 20952.82, + "probability": 0.1894 + }, + { + "start": 20952.82, + "end": 20952.92, + "probability": 0.1262 + }, + { + "start": 20952.92, + "end": 20952.92, + "probability": 0.2987 + }, + { + "start": 20952.92, + "end": 20953.4, + "probability": 0.1957 + }, + { + "start": 20954.04, + "end": 20954.76, + "probability": 0.2427 + }, + { + "start": 20955.04, + "end": 20955.04, + "probability": 0.0109 + }, + { + "start": 20955.64, + "end": 20956.54, + "probability": 0.0896 + }, + { + "start": 20956.68, + "end": 20958.54, + "probability": 0.7831 + }, + { + "start": 20958.7, + "end": 20959.04, + "probability": 0.5522 + }, + { + "start": 20959.7, + "end": 20965.8, + "probability": 0.7757 + }, + { + "start": 20965.8, + "end": 20968.38, + "probability": 0.8329 + }, + { + "start": 20969.4, + "end": 20970.44, + "probability": 0.9014 + }, + { + "start": 20971.58, + "end": 20974.46, + "probability": 0.9127 + }, + { + "start": 20975.96, + "end": 20976.56, + "probability": 0.9866 + }, + { + "start": 20978.62, + "end": 20979.38, + "probability": 0.5245 + }, + { + "start": 20980.96, + "end": 20982.9, + "probability": 0.8021 + }, + { + "start": 20983.86, + "end": 20986.24, + "probability": 0.8061 + }, + { + "start": 20986.88, + "end": 20988.1, + "probability": 0.9463 + }, + { + "start": 20989.06, + "end": 20993.64, + "probability": 0.8597 + }, + { + "start": 20996.38, + "end": 20997.24, + "probability": 0.6337 + }, + { + "start": 20999.18, + "end": 21001.08, + "probability": 0.9247 + }, + { + "start": 21005.16, + "end": 21006.1, + "probability": 0.9834 + }, + { + "start": 21008.3, + "end": 21009.92, + "probability": 0.7724 + }, + { + "start": 21011.54, + "end": 21012.24, + "probability": 0.9664 + }, + { + "start": 21015.2, + "end": 21016.4, + "probability": 0.9166 + }, + { + "start": 21020.52, + "end": 21024.84, + "probability": 0.9093 + }, + { + "start": 21026.98, + "end": 21027.8, + "probability": 0.574 + }, + { + "start": 21029.38, + "end": 21033.84, + "probability": 0.9867 + }, + { + "start": 21034.34, + "end": 21034.66, + "probability": 0.5153 + }, + { + "start": 21037.56, + "end": 21039.62, + "probability": 0.746 + }, + { + "start": 21041.04, + "end": 21041.96, + "probability": 0.7907 + }, + { + "start": 21042.98, + "end": 21046.28, + "probability": 0.9274 + }, + { + "start": 21048.12, + "end": 21049.5, + "probability": 0.9335 + }, + { + "start": 21049.5, + "end": 21050.28, + "probability": 0.9856 + }, + { + "start": 21050.96, + "end": 21051.9, + "probability": 0.9941 + }, + { + "start": 21053.1, + "end": 21054.96, + "probability": 0.9602 + }, + { + "start": 21055.96, + "end": 21057.12, + "probability": 0.9731 + }, + { + "start": 21057.72, + "end": 21059.06, + "probability": 0.905 + }, + { + "start": 21059.66, + "end": 21060.92, + "probability": 0.7457 + }, + { + "start": 21065.92, + "end": 21067.28, + "probability": 0.6711 + }, + { + "start": 21068.3, + "end": 21069.06, + "probability": 0.8587 + }, + { + "start": 21070.14, + "end": 21071.14, + "probability": 0.9912 + }, + { + "start": 21071.84, + "end": 21072.68, + "probability": 0.8885 + }, + { + "start": 21073.6, + "end": 21074.98, + "probability": 0.9366 + }, + { + "start": 21075.94, + "end": 21078.08, + "probability": 0.7659 + }, + { + "start": 21078.58, + "end": 21079.44, + "probability": 0.9938 + }, + { + "start": 21080.54, + "end": 21082.96, + "probability": 0.9618 + }, + { + "start": 21084.08, + "end": 21087.68, + "probability": 0.6641 + }, + { + "start": 21089.36, + "end": 21094.58, + "probability": 0.9424 + }, + { + "start": 21096.24, + "end": 21097.04, + "probability": 0.8711 + }, + { + "start": 21097.98, + "end": 21101.06, + "probability": 0.9885 + }, + { + "start": 21102.34, + "end": 21103.78, + "probability": 0.9954 + }, + { + "start": 21104.64, + "end": 21106.64, + "probability": 0.8903 + }, + { + "start": 21107.22, + "end": 21108.54, + "probability": 0.8193 + }, + { + "start": 21109.68, + "end": 21110.46, + "probability": 0.6027 + }, + { + "start": 21110.6, + "end": 21115.91, + "probability": 0.278 + }, + { + "start": 21118.74, + "end": 21119.54, + "probability": 0.7283 + }, + { + "start": 21120.12, + "end": 21120.74, + "probability": 0.7404 + }, + { + "start": 21122.8, + "end": 21126.32, + "probability": 0.8483 + }, + { + "start": 21126.82, + "end": 21131.36, + "probability": 0.9853 + }, + { + "start": 21132.48, + "end": 21134.14, + "probability": 0.9734 + }, + { + "start": 21135.06, + "end": 21136.9, + "probability": 0.5554 + }, + { + "start": 21137.04, + "end": 21138.12, + "probability": 0.7272 + }, + { + "start": 21139.4, + "end": 21141.34, + "probability": 0.8073 + }, + { + "start": 21141.96, + "end": 21143.14, + "probability": 0.5925 + }, + { + "start": 21143.48, + "end": 21144.18, + "probability": 0.9375 + }, + { + "start": 21145.18, + "end": 21146.56, + "probability": 0.9735 + }, + { + "start": 21147.14, + "end": 21149.64, + "probability": 0.7507 + }, + { + "start": 21150.94, + "end": 21153.64, + "probability": 0.9575 + }, + { + "start": 21155.78, + "end": 21157.56, + "probability": 0.9868 + }, + { + "start": 21160.46, + "end": 21161.12, + "probability": 0.749 + }, + { + "start": 21163.66, + "end": 21169.62, + "probability": 0.9447 + }, + { + "start": 21170.8, + "end": 21172.1, + "probability": 0.6587 + }, + { + "start": 21172.76, + "end": 21176.1, + "probability": 0.8148 + }, + { + "start": 21179.77, + "end": 21182.88, + "probability": 0.855 + }, + { + "start": 21184.1, + "end": 21184.73, + "probability": 0.9871 + }, + { + "start": 21185.12, + "end": 21185.5, + "probability": 0.9058 + }, + { + "start": 21185.8, + "end": 21187.4, + "probability": 0.9879 + }, + { + "start": 21188.3, + "end": 21189.78, + "probability": 0.9631 + }, + { + "start": 21189.92, + "end": 21191.34, + "probability": 0.9932 + }, + { + "start": 21192.18, + "end": 21194.18, + "probability": 0.7741 + }, + { + "start": 21194.62, + "end": 21195.42, + "probability": 0.4985 + }, + { + "start": 21195.6, + "end": 21198.46, + "probability": 0.804 + }, + { + "start": 21198.5, + "end": 21199.16, + "probability": 0.8293 + }, + { + "start": 21199.64, + "end": 21200.53, + "probability": 0.7183 + }, + { + "start": 21204.02, + "end": 21205.7, + "probability": 0.7905 + }, + { + "start": 21206.78, + "end": 21208.4, + "probability": 0.992 + }, + { + "start": 21209.16, + "end": 21212.12, + "probability": 0.9333 + }, + { + "start": 21215.01, + "end": 21217.14, + "probability": 0.8427 + }, + { + "start": 21217.9, + "end": 21219.18, + "probability": 0.2107 + }, + { + "start": 21219.18, + "end": 21221.34, + "probability": 0.0536 + }, + { + "start": 21221.5, + "end": 21222.84, + "probability": 0.1354 + }, + { + "start": 21222.84, + "end": 21224.64, + "probability": 0.1464 + }, + { + "start": 21224.88, + "end": 21227.54, + "probability": 0.093 + }, + { + "start": 21258.56, + "end": 21260.2, + "probability": 0.2408 + }, + { + "start": 21262.36, + "end": 21263.76, + "probability": 0.4191 + }, + { + "start": 21265.92, + "end": 21271.76, + "probability": 0.8579 + }, + { + "start": 21272.62, + "end": 21273.36, + "probability": 0.7461 + }, + { + "start": 21274.42, + "end": 21274.94, + "probability": 0.723 + }, + { + "start": 21276.22, + "end": 21276.92, + "probability": 0.46 + }, + { + "start": 21277.84, + "end": 21279.06, + "probability": 0.7249 + }, + { + "start": 21280.0, + "end": 21281.78, + "probability": 0.8528 + }, + { + "start": 21282.68, + "end": 21283.76, + "probability": 0.7231 + }, + { + "start": 21285.78, + "end": 21288.02, + "probability": 0.7597 + }, + { + "start": 21288.92, + "end": 21296.14, + "probability": 0.7183 + }, + { + "start": 21297.46, + "end": 21298.76, + "probability": 0.5802 + }, + { + "start": 21299.72, + "end": 21300.44, + "probability": 0.0579 + }, + { + "start": 21301.76, + "end": 21305.38, + "probability": 0.907 + }, + { + "start": 21305.94, + "end": 21308.52, + "probability": 0.9728 + }, + { + "start": 21310.2, + "end": 21311.26, + "probability": 0.774 + }, + { + "start": 21312.9, + "end": 21314.22, + "probability": 0.8943 + }, + { + "start": 21315.18, + "end": 21316.98, + "probability": 0.9854 + }, + { + "start": 21317.66, + "end": 21319.54, + "probability": 0.8953 + }, + { + "start": 21320.26, + "end": 21322.54, + "probability": 0.8817 + }, + { + "start": 21323.12, + "end": 21326.64, + "probability": 0.4974 + }, + { + "start": 21327.08, + "end": 21328.34, + "probability": 0.7414 + }, + { + "start": 21328.44, + "end": 21329.42, + "probability": 0.7086 + }, + { + "start": 21330.16, + "end": 21334.06, + "probability": 0.8562 + }, + { + "start": 21335.58, + "end": 21337.13, + "probability": 0.8325 + }, + { + "start": 21338.2, + "end": 21342.92, + "probability": 0.7816 + }, + { + "start": 21343.32, + "end": 21346.88, + "probability": 0.9671 + }, + { + "start": 21347.72, + "end": 21353.58, + "probability": 0.979 + }, + { + "start": 21354.54, + "end": 21357.34, + "probability": 0.9293 + }, + { + "start": 21361.42, + "end": 21363.34, + "probability": 0.8254 + }, + { + "start": 21363.58, + "end": 21364.18, + "probability": 0.8367 + }, + { + "start": 21365.22, + "end": 21366.68, + "probability": 0.9827 + }, + { + "start": 21368.84, + "end": 21370.86, + "probability": 0.7097 + }, + { + "start": 21403.58, + "end": 21405.4, + "probability": 0.7413 + }, + { + "start": 21406.18, + "end": 21408.1, + "probability": 0.9865 + }, + { + "start": 21408.42, + "end": 21409.9, + "probability": 0.9937 + }, + { + "start": 21410.95, + "end": 21418.18, + "probability": 0.8976 + }, + { + "start": 21418.22, + "end": 21423.6, + "probability": 0.8245 + }, + { + "start": 21424.08, + "end": 21426.22, + "probability": 0.979 + }, + { + "start": 21426.92, + "end": 21428.68, + "probability": 0.931 + }, + { + "start": 21429.52, + "end": 21437.28, + "probability": 0.7586 + }, + { + "start": 21437.28, + "end": 21443.3, + "probability": 0.8535 + }, + { + "start": 21443.42, + "end": 21444.92, + "probability": 0.3941 + }, + { + "start": 21445.0, + "end": 21446.12, + "probability": 0.5135 + }, + { + "start": 21446.7, + "end": 21451.44, + "probability": 0.9822 + }, + { + "start": 21451.52, + "end": 21452.81, + "probability": 0.9812 + }, + { + "start": 21452.98, + "end": 21455.72, + "probability": 0.9888 + }, + { + "start": 21455.76, + "end": 21462.24, + "probability": 0.9822 + }, + { + "start": 21463.22, + "end": 21467.68, + "probability": 0.9977 + }, + { + "start": 21467.68, + "end": 21472.5, + "probability": 0.9906 + }, + { + "start": 21473.18, + "end": 21477.18, + "probability": 0.92 + }, + { + "start": 21478.66, + "end": 21482.86, + "probability": 0.9126 + }, + { + "start": 21483.76, + "end": 21485.58, + "probability": 0.9027 + }, + { + "start": 21486.14, + "end": 21490.24, + "probability": 0.9718 + }, + { + "start": 21491.18, + "end": 21495.02, + "probability": 0.4909 + }, + { + "start": 21495.24, + "end": 21497.38, + "probability": 0.8218 + }, + { + "start": 21498.74, + "end": 21501.42, + "probability": 0.4112 + }, + { + "start": 21502.1, + "end": 21503.48, + "probability": 0.8147 + }, + { + "start": 21503.9, + "end": 21506.34, + "probability": 0.9293 + }, + { + "start": 21506.8, + "end": 21509.58, + "probability": 0.9803 + }, + { + "start": 21510.0, + "end": 21510.26, + "probability": 0.7052 + }, + { + "start": 21510.28, + "end": 21511.66, + "probability": 0.8399 + }, + { + "start": 21512.18, + "end": 21514.82, + "probability": 0.9972 + }, + { + "start": 21515.16, + "end": 21518.32, + "probability": 0.8069 + }, + { + "start": 21519.18, + "end": 21521.5, + "probability": 0.9253 + }, + { + "start": 21521.96, + "end": 21523.38, + "probability": 0.6603 + }, + { + "start": 21523.92, + "end": 21525.04, + "probability": 0.753 + }, + { + "start": 21525.44, + "end": 21526.06, + "probability": 0.8554 + }, + { + "start": 21526.08, + "end": 21530.68, + "probability": 0.9573 + }, + { + "start": 21531.1, + "end": 21532.82, + "probability": 0.9959 + }, + { + "start": 21532.84, + "end": 21533.36, + "probability": 0.7693 + }, + { + "start": 21533.44, + "end": 21535.21, + "probability": 0.9158 + }, + { + "start": 21535.98, + "end": 21537.54, + "probability": 0.9459 + }, + { + "start": 21537.76, + "end": 21540.08, + "probability": 0.9665 + }, + { + "start": 21540.48, + "end": 21541.0, + "probability": 0.8558 + }, + { + "start": 21541.38, + "end": 21543.3, + "probability": 0.9909 + }, + { + "start": 21543.3, + "end": 21545.56, + "probability": 0.9907 + }, + { + "start": 21546.14, + "end": 21547.0, + "probability": 0.9528 + }, + { + "start": 21547.42, + "end": 21549.72, + "probability": 0.9731 + }, + { + "start": 21550.14, + "end": 21551.24, + "probability": 0.866 + }, + { + "start": 21551.34, + "end": 21553.58, + "probability": 0.392 + }, + { + "start": 21554.0, + "end": 21556.34, + "probability": 0.8481 + }, + { + "start": 21556.64, + "end": 21558.1, + "probability": 0.9875 + }, + { + "start": 21558.5, + "end": 21560.01, + "probability": 0.8546 + }, + { + "start": 21560.58, + "end": 21560.78, + "probability": 0.4192 + }, + { + "start": 21561.1, + "end": 21562.12, + "probability": 0.3847 + }, + { + "start": 21562.18, + "end": 21562.97, + "probability": 0.7119 + }, + { + "start": 21563.72, + "end": 21564.64, + "probability": 0.749 + }, + { + "start": 21564.7, + "end": 21565.86, + "probability": 0.8007 + }, + { + "start": 21566.2, + "end": 21567.23, + "probability": 0.5813 + }, + { + "start": 21568.36, + "end": 21568.58, + "probability": 0.1571 + }, + { + "start": 21568.58, + "end": 21570.84, + "probability": 0.9644 + }, + { + "start": 21570.96, + "end": 21572.48, + "probability": 0.8299 + }, + { + "start": 21572.96, + "end": 21575.08, + "probability": 0.9937 + }, + { + "start": 21575.08, + "end": 21577.58, + "probability": 0.8643 + }, + { + "start": 21578.52, + "end": 21582.34, + "probability": 0.8923 + }, + { + "start": 21582.72, + "end": 21585.46, + "probability": 0.9198 + }, + { + "start": 21585.46, + "end": 21588.76, + "probability": 0.792 + }, + { + "start": 21589.4, + "end": 21590.62, + "probability": 0.6459 + }, + { + "start": 21590.66, + "end": 21591.66, + "probability": 0.8069 + }, + { + "start": 21592.08, + "end": 21594.36, + "probability": 0.9077 + }, + { + "start": 21594.72, + "end": 21594.86, + "probability": 0.4056 + }, + { + "start": 21595.06, + "end": 21596.92, + "probability": 0.8638 + }, + { + "start": 21597.24, + "end": 21598.36, + "probability": 0.9556 + }, + { + "start": 21598.44, + "end": 21601.1, + "probability": 0.906 + }, + { + "start": 21601.1, + "end": 21603.56, + "probability": 0.9803 + }, + { + "start": 21603.64, + "end": 21604.32, + "probability": 0.9286 + }, + { + "start": 21604.38, + "end": 21606.22, + "probability": 0.9702 + }, + { + "start": 21606.9, + "end": 21609.18, + "probability": 0.9056 + }, + { + "start": 21610.1, + "end": 21611.24, + "probability": 0.7402 + }, + { + "start": 21611.86, + "end": 21612.16, + "probability": 0.4896 + }, + { + "start": 21612.34, + "end": 21613.56, + "probability": 0.9119 + }, + { + "start": 21613.68, + "end": 21615.18, + "probability": 0.9561 + }, + { + "start": 21615.26, + "end": 21615.99, + "probability": 0.835 + }, + { + "start": 21617.1, + "end": 21617.71, + "probability": 0.9856 + }, + { + "start": 21618.6, + "end": 21619.9, + "probability": 0.9694 + }, + { + "start": 21620.52, + "end": 21620.76, + "probability": 0.603 + }, + { + "start": 21620.98, + "end": 21621.7, + "probability": 0.959 + }, + { + "start": 21621.8, + "end": 21623.33, + "probability": 0.9944 + }, + { + "start": 21623.94, + "end": 21625.26, + "probability": 0.9524 + }, + { + "start": 21625.3, + "end": 21626.48, + "probability": 0.9521 + }, + { + "start": 21626.86, + "end": 21629.2, + "probability": 0.9115 + }, + { + "start": 21629.26, + "end": 21630.36, + "probability": 0.8995 + }, + { + "start": 21632.2, + "end": 21633.26, + "probability": 0.999 + }, + { + "start": 21634.32, + "end": 21635.61, + "probability": 0.6683 + }, + { + "start": 21636.74, + "end": 21638.86, + "probability": 0.5352 + }, + { + "start": 21639.62, + "end": 21640.5, + "probability": 0.8857 + }, + { + "start": 21640.98, + "end": 21644.0, + "probability": 0.7606 + }, + { + "start": 21644.76, + "end": 21646.98, + "probability": 0.8386 + }, + { + "start": 21647.5, + "end": 21650.18, + "probability": 0.7041 + }, + { + "start": 21650.58, + "end": 21652.14, + "probability": 0.9061 + }, + { + "start": 21652.62, + "end": 21655.7, + "probability": 0.9515 + }, + { + "start": 21655.85, + "end": 21658.96, + "probability": 0.8561 + }, + { + "start": 21659.16, + "end": 21662.54, + "probability": 0.8201 + }, + { + "start": 21662.8, + "end": 21663.78, + "probability": 0.7514 + }, + { + "start": 21664.16, + "end": 21666.88, + "probability": 0.9738 + }, + { + "start": 21667.5, + "end": 21667.84, + "probability": 0.3328 + }, + { + "start": 21668.2, + "end": 21669.17, + "probability": 0.7422 + }, + { + "start": 21669.26, + "end": 21673.26, + "probability": 0.9573 + }, + { + "start": 21673.6, + "end": 21675.04, + "probability": 0.7658 + }, + { + "start": 21675.64, + "end": 21677.18, + "probability": 0.9777 + }, + { + "start": 21677.76, + "end": 21680.26, + "probability": 0.6745 + }, + { + "start": 21680.32, + "end": 21682.34, + "probability": 0.6636 + }, + { + "start": 21682.7, + "end": 21685.66, + "probability": 0.5856 + }, + { + "start": 21686.5, + "end": 21689.36, + "probability": 0.953 + }, + { + "start": 21689.96, + "end": 21691.4, + "probability": 0.8788 + }, + { + "start": 21691.98, + "end": 21693.24, + "probability": 0.5839 + }, + { + "start": 21693.36, + "end": 21693.78, + "probability": 0.6852 + }, + { + "start": 21694.14, + "end": 21696.96, + "probability": 0.7182 + }, + { + "start": 21697.0, + "end": 21700.18, + "probability": 0.9872 + }, + { + "start": 21700.32, + "end": 21701.1, + "probability": 0.8107 + }, + { + "start": 21701.34, + "end": 21702.8, + "probability": 0.7998 + }, + { + "start": 21703.28, + "end": 21705.24, + "probability": 0.9928 + }, + { + "start": 21705.34, + "end": 21707.34, + "probability": 0.9585 + }, + { + "start": 21707.86, + "end": 21714.04, + "probability": 0.61 + }, + { + "start": 21714.06, + "end": 21715.18, + "probability": 0.7822 + }, + { + "start": 21715.96, + "end": 21719.02, + "probability": 0.9407 + }, + { + "start": 21719.3, + "end": 21723.28, + "probability": 0.9326 + }, + { + "start": 21723.3, + "end": 21724.18, + "probability": 0.7672 + }, + { + "start": 21724.46, + "end": 21725.46, + "probability": 0.4359 + }, + { + "start": 21725.9, + "end": 21726.34, + "probability": 0.765 + }, + { + "start": 21726.42, + "end": 21728.54, + "probability": 0.6893 + }, + { + "start": 21728.72, + "end": 21730.02, + "probability": 0.9116 + }, + { + "start": 21730.1, + "end": 21731.94, + "probability": 0.9926 + }, + { + "start": 21732.3, + "end": 21734.98, + "probability": 0.9946 + }, + { + "start": 21735.4, + "end": 21738.16, + "probability": 0.6418 + }, + { + "start": 21738.26, + "end": 21738.86, + "probability": 0.7363 + }, + { + "start": 21739.02, + "end": 21739.66, + "probability": 0.6995 + }, + { + "start": 21741.28, + "end": 21742.62, + "probability": 0.4191 + }, + { + "start": 21746.2, + "end": 21747.24, + "probability": 0.96 + }, + { + "start": 21751.32, + "end": 21755.76, + "probability": 0.9702 + }, + { + "start": 21756.04, + "end": 21758.4, + "probability": 0.9958 + }, + { + "start": 21769.64, + "end": 21770.86, + "probability": 0.3996 + }, + { + "start": 21770.94, + "end": 21770.94, + "probability": 0.4372 + }, + { + "start": 21770.94, + "end": 21771.34, + "probability": 0.6091 + }, + { + "start": 21771.42, + "end": 21773.77, + "probability": 0.7906 + }, + { + "start": 21774.3, + "end": 21778.94, + "probability": 0.9219 + }, + { + "start": 21779.2, + "end": 21783.1, + "probability": 0.9925 + }, + { + "start": 21783.2, + "end": 21783.6, + "probability": 0.868 + }, + { + "start": 21783.64, + "end": 21784.88, + "probability": 0.9368 + }, + { + "start": 21784.96, + "end": 21786.08, + "probability": 0.7322 + }, + { + "start": 21786.14, + "end": 21787.86, + "probability": 0.7793 + }, + { + "start": 21788.58, + "end": 21792.48, + "probability": 0.994 + }, + { + "start": 21794.32, + "end": 21799.56, + "probability": 0.9932 + }, + { + "start": 21800.22, + "end": 21802.4, + "probability": 0.9318 + }, + { + "start": 21802.54, + "end": 21805.42, + "probability": 0.9952 + }, + { + "start": 21805.58, + "end": 21806.76, + "probability": 0.8641 + }, + { + "start": 21806.82, + "end": 21808.36, + "probability": 0.9668 + }, + { + "start": 21808.82, + "end": 21811.5, + "probability": 0.9965 + }, + { + "start": 21811.6, + "end": 21812.38, + "probability": 0.8714 + }, + { + "start": 21813.06, + "end": 21816.6, + "probability": 0.9801 + }, + { + "start": 21817.38, + "end": 21818.04, + "probability": 0.3919 + }, + { + "start": 21818.18, + "end": 21820.68, + "probability": 0.9983 + }, + { + "start": 21820.68, + "end": 21822.9, + "probability": 0.9907 + }, + { + "start": 21823.04, + "end": 21825.48, + "probability": 0.873 + }, + { + "start": 21826.02, + "end": 21828.78, + "probability": 0.9837 + }, + { + "start": 21831.04, + "end": 21831.36, + "probability": 0.2555 + }, + { + "start": 21831.93, + "end": 21835.76, + "probability": 0.9865 + }, + { + "start": 21835.92, + "end": 21838.96, + "probability": 0.9951 + }, + { + "start": 21839.04, + "end": 21840.02, + "probability": 0.9043 + }, + { + "start": 21840.78, + "end": 21843.44, + "probability": 0.4497 + }, + { + "start": 21843.5, + "end": 21845.54, + "probability": 0.9912 + }, + { + "start": 21845.64, + "end": 21848.42, + "probability": 0.9927 + }, + { + "start": 21848.42, + "end": 21853.96, + "probability": 0.9933 + }, + { + "start": 21855.88, + "end": 21859.52, + "probability": 0.9814 + }, + { + "start": 21859.52, + "end": 21862.68, + "probability": 0.9983 + }, + { + "start": 21862.76, + "end": 21864.86, + "probability": 0.9977 + }, + { + "start": 21865.62, + "end": 21869.0, + "probability": 0.9904 + }, + { + "start": 21869.0, + "end": 21871.42, + "probability": 0.9956 + }, + { + "start": 21871.52, + "end": 21871.96, + "probability": 0.8623 + }, + { + "start": 21872.1, + "end": 21874.24, + "probability": 0.9437 + }, + { + "start": 21874.24, + "end": 21877.64, + "probability": 0.9886 + }, + { + "start": 21877.72, + "end": 21879.76, + "probability": 0.9946 + }, + { + "start": 21879.76, + "end": 21882.2, + "probability": 0.745 + }, + { + "start": 21882.6, + "end": 21886.04, + "probability": 0.8474 + }, + { + "start": 21886.64, + "end": 21891.26, + "probability": 0.9974 + }, + { + "start": 21892.2, + "end": 21894.74, + "probability": 0.9906 + }, + { + "start": 21894.74, + "end": 21897.28, + "probability": 0.8291 + }, + { + "start": 21897.4, + "end": 21901.22, + "probability": 0.7882 + }, + { + "start": 21902.36, + "end": 21905.86, + "probability": 0.962 + }, + { + "start": 21905.86, + "end": 21910.82, + "probability": 0.9679 + }, + { + "start": 21912.38, + "end": 21919.66, + "probability": 0.5633 + }, + { + "start": 21920.54, + "end": 21924.2, + "probability": 0.996 + }, + { + "start": 21925.0, + "end": 21927.14, + "probability": 0.6756 + }, + { + "start": 21927.24, + "end": 21931.3, + "probability": 0.9844 + }, + { + "start": 21931.42, + "end": 21935.32, + "probability": 0.9771 + }, + { + "start": 21935.46, + "end": 21937.06, + "probability": 0.6201 + }, + { + "start": 21937.22, + "end": 21940.0, + "probability": 0.9772 + }, + { + "start": 21940.08, + "end": 21942.12, + "probability": 0.9944 + }, + { + "start": 21942.52, + "end": 21944.38, + "probability": 0.7133 + }, + { + "start": 21944.38, + "end": 21946.02, + "probability": 0.9154 + }, + { + "start": 21946.12, + "end": 21948.74, + "probability": 0.989 + }, + { + "start": 21948.74, + "end": 21952.64, + "probability": 0.9949 + }, + { + "start": 21953.52, + "end": 21957.28, + "probability": 0.997 + }, + { + "start": 21957.46, + "end": 21958.38, + "probability": 0.8811 + }, + { + "start": 21958.42, + "end": 21961.44, + "probability": 0.9956 + }, + { + "start": 21962.14, + "end": 21966.06, + "probability": 0.9954 + }, + { + "start": 21966.68, + "end": 21969.6, + "probability": 0.9674 + }, + { + "start": 21969.86, + "end": 21971.66, + "probability": 0.7552 + }, + { + "start": 21971.96, + "end": 21973.28, + "probability": 0.8101 + }, + { + "start": 21974.49, + "end": 21976.0, + "probability": 0.9787 + }, + { + "start": 21976.02, + "end": 21976.72, + "probability": 0.8033 + }, + { + "start": 21976.84, + "end": 21980.28, + "probability": 0.9894 + }, + { + "start": 21981.84, + "end": 21983.82, + "probability": 0.9677 + }, + { + "start": 21983.9, + "end": 21985.23, + "probability": 0.9216 + }, + { + "start": 21985.9, + "end": 21990.94, + "probability": 0.9912 + }, + { + "start": 21991.22, + "end": 21998.88, + "probability": 0.9845 + }, + { + "start": 21998.94, + "end": 22000.13, + "probability": 0.8347 + }, + { + "start": 22000.4, + "end": 22000.7, + "probability": 0.0304 + }, + { + "start": 22000.96, + "end": 22001.28, + "probability": 0.5154 + }, + { + "start": 22001.34, + "end": 22002.48, + "probability": 0.7623 + }, + { + "start": 22003.02, + "end": 22006.9, + "probability": 0.9917 + }, + { + "start": 22006.94, + "end": 22009.36, + "probability": 0.9955 + }, + { + "start": 22010.62, + "end": 22014.32, + "probability": 0.9937 + }, + { + "start": 22014.8, + "end": 22015.86, + "probability": 0.7757 + }, + { + "start": 22016.02, + "end": 22017.35, + "probability": 0.7326 + }, + { + "start": 22017.68, + "end": 22019.92, + "probability": 0.9931 + }, + { + "start": 22020.28, + "end": 22020.6, + "probability": 0.7618 + }, + { + "start": 22020.7, + "end": 22020.82, + "probability": 0.8933 + }, + { + "start": 22020.96, + "end": 22022.02, + "probability": 0.9546 + }, + { + "start": 22022.1, + "end": 22023.62, + "probability": 0.8021 + }, + { + "start": 22029.02, + "end": 22031.76, + "probability": 0.0586 + }, + { + "start": 22031.9, + "end": 22031.94, + "probability": 0.5605 + }, + { + "start": 22031.94, + "end": 22034.67, + "probability": 0.8433 + }, + { + "start": 22035.08, + "end": 22035.08, + "probability": 0.7314 + }, + { + "start": 22037.64, + "end": 22040.1, + "probability": 0.9956 + }, + { + "start": 22040.18, + "end": 22041.54, + "probability": 0.96 + }, + { + "start": 22041.66, + "end": 22042.58, + "probability": 0.8928 + }, + { + "start": 22042.58, + "end": 22044.48, + "probability": 0.9888 + }, + { + "start": 22044.54, + "end": 22044.86, + "probability": 0.494 + }, + { + "start": 22045.0, + "end": 22046.42, + "probability": 0.9349 + }, + { + "start": 22046.9, + "end": 22047.42, + "probability": 0.9617 + }, + { + "start": 22047.56, + "end": 22048.16, + "probability": 0.9379 + }, + { + "start": 22048.3, + "end": 22049.07, + "probability": 0.9075 + }, + { + "start": 22049.4, + "end": 22052.2, + "probability": 0.9935 + }, + { + "start": 22052.26, + "end": 22053.06, + "probability": 0.8032 + }, + { + "start": 22053.54, + "end": 22055.04, + "probability": 0.9852 + }, + { + "start": 22055.14, + "end": 22055.86, + "probability": 0.9116 + }, + { + "start": 22056.08, + "end": 22060.88, + "probability": 0.9003 + }, + { + "start": 22061.68, + "end": 22065.04, + "probability": 0.9674 + }, + { + "start": 22065.18, + "end": 22067.88, + "probability": 0.9738 + }, + { + "start": 22069.16, + "end": 22070.28, + "probability": 0.6661 + }, + { + "start": 22070.4, + "end": 22072.94, + "probability": 0.9605 + }, + { + "start": 22072.96, + "end": 22074.32, + "probability": 0.9746 + }, + { + "start": 22074.68, + "end": 22079.02, + "probability": 0.9801 + }, + { + "start": 22080.46, + "end": 22083.26, + "probability": 0.9341 + }, + { + "start": 22083.32, + "end": 22086.58, + "probability": 0.9892 + }, + { + "start": 22088.0, + "end": 22091.64, + "probability": 0.9972 + }, + { + "start": 22092.12, + "end": 22092.56, + "probability": 0.7218 + }, + { + "start": 22093.7, + "end": 22094.84, + "probability": 0.6621 + }, + { + "start": 22095.3, + "end": 22098.7, + "probability": 0.7822 + }, + { + "start": 22098.88, + "end": 22101.14, + "probability": 0.9708 + }, + { + "start": 22101.28, + "end": 22101.52, + "probability": 0.4472 + }, + { + "start": 22101.6, + "end": 22102.78, + "probability": 0.6523 + }, + { + "start": 22102.8, + "end": 22103.38, + "probability": 0.336 + }, + { + "start": 22104.88, + "end": 22105.72, + "probability": 0.7875 + }, + { + "start": 22107.58, + "end": 22109.22, + "probability": 0.8979 + }, + { + "start": 22112.4, + "end": 22113.04, + "probability": 0.0945 + }, + { + "start": 22113.42, + "end": 22116.02, + "probability": 0.9297 + }, + { + "start": 22116.48, + "end": 22119.04, + "probability": 0.9751 + }, + { + "start": 22123.04, + "end": 22128.7, + "probability": 0.7399 + }, + { + "start": 22128.84, + "end": 22129.28, + "probability": 0.4105 + }, + { + "start": 22130.22, + "end": 22138.52, + "probability": 0.6101 + }, + { + "start": 22139.9, + "end": 22140.88, + "probability": 0.6228 + }, + { + "start": 22141.94, + "end": 22144.81, + "probability": 0.4122 + }, + { + "start": 22145.32, + "end": 22147.94, + "probability": 0.3822 + }, + { + "start": 22148.34, + "end": 22149.16, + "probability": 0.7337 + }, + { + "start": 22149.28, + "end": 22150.37, + "probability": 0.7515 + }, + { + "start": 22150.62, + "end": 22153.82, + "probability": 0.8708 + }, + { + "start": 22153.92, + "end": 22158.68, + "probability": 0.9741 + }, + { + "start": 22158.68, + "end": 22163.54, + "probability": 0.9863 + }, + { + "start": 22164.28, + "end": 22170.18, + "probability": 0.9605 + }, + { + "start": 22170.7, + "end": 22175.12, + "probability": 0.9868 + }, + { + "start": 22175.12, + "end": 22179.64, + "probability": 0.9983 + }, + { + "start": 22180.12, + "end": 22184.5, + "probability": 0.8638 + }, + { + "start": 22185.2, + "end": 22187.28, + "probability": 0.9316 + }, + { + "start": 22187.64, + "end": 22190.84, + "probability": 0.9812 + }, + { + "start": 22190.84, + "end": 22197.56, + "probability": 0.7527 + }, + { + "start": 22197.56, + "end": 22198.7, + "probability": 0.9927 + }, + { + "start": 22199.24, + "end": 22205.14, + "probability": 0.9935 + }, + { + "start": 22205.54, + "end": 22211.18, + "probability": 0.8362 + }, + { + "start": 22211.48, + "end": 22212.52, + "probability": 0.5498 + }, + { + "start": 22212.78, + "end": 22217.16, + "probability": 0.9823 + }, + { + "start": 22217.44, + "end": 22219.78, + "probability": 0.9882 + }, + { + "start": 22220.52, + "end": 22222.78, + "probability": 0.9596 + }, + { + "start": 22223.32, + "end": 22226.54, + "probability": 0.7985 + }, + { + "start": 22227.14, + "end": 22230.12, + "probability": 0.7771 + }, + { + "start": 22230.24, + "end": 22235.16, + "probability": 0.9507 + }, + { + "start": 22235.16, + "end": 22238.08, + "probability": 0.7616 + }, + { + "start": 22238.14, + "end": 22239.74, + "probability": 0.9326 + }, + { + "start": 22239.8, + "end": 22242.44, + "probability": 0.7415 + }, + { + "start": 22242.48, + "end": 22244.4, + "probability": 0.3037 + }, + { + "start": 22244.64, + "end": 22246.68, + "probability": 0.7136 + }, + { + "start": 22247.24, + "end": 22251.84, + "probability": 0.9651 + }, + { + "start": 22252.04, + "end": 22253.6, + "probability": 0.4853 + }, + { + "start": 22254.88, + "end": 22256.04, + "probability": 0.3319 + }, + { + "start": 22256.36, + "end": 22258.0, + "probability": 0.2478 + }, + { + "start": 22258.08, + "end": 22258.74, + "probability": 0.7316 + }, + { + "start": 22259.38, + "end": 22261.38, + "probability": 0.8304 + }, + { + "start": 22261.74, + "end": 22262.9, + "probability": 0.7574 + }, + { + "start": 22263.04, + "end": 22264.39, + "probability": 0.7855 + }, + { + "start": 22264.7, + "end": 22266.44, + "probability": 0.9099 + }, + { + "start": 22266.88, + "end": 22267.74, + "probability": 0.7329 + }, + { + "start": 22268.4, + "end": 22273.34, + "probability": 0.4864 + }, + { + "start": 22273.44, + "end": 22274.88, + "probability": 0.7021 + }, + { + "start": 22275.02, + "end": 22275.72, + "probability": 0.5672 + }, + { + "start": 22275.72, + "end": 22277.3, + "probability": 0.8768 + }, + { + "start": 22277.54, + "end": 22279.28, + "probability": 0.8969 + }, + { + "start": 22279.75, + "end": 22280.3, + "probability": 0.2082 + }, + { + "start": 22280.3, + "end": 22283.38, + "probability": 0.3933 + }, + { + "start": 22283.54, + "end": 22283.98, + "probability": 0.3032 + }, + { + "start": 22284.06, + "end": 22285.5, + "probability": 0.3762 + }, + { + "start": 22285.68, + "end": 22285.84, + "probability": 0.5889 + }, + { + "start": 22285.96, + "end": 22288.02, + "probability": 0.2907 + }, + { + "start": 22288.2, + "end": 22290.64, + "probability": 0.6005 + }, + { + "start": 22290.76, + "end": 22291.34, + "probability": 0.8544 + }, + { + "start": 22293.18, + "end": 22293.28, + "probability": 0.1703 + }, + { + "start": 22293.28, + "end": 22294.0, + "probability": 0.4968 + }, + { + "start": 22294.12, + "end": 22294.74, + "probability": 0.9085 + }, + { + "start": 22294.86, + "end": 22295.7, + "probability": 0.5302 + }, + { + "start": 22295.88, + "end": 22297.32, + "probability": 0.8043 + }, + { + "start": 22297.72, + "end": 22300.68, + "probability": 0.9768 + }, + { + "start": 22301.74, + "end": 22304.54, + "probability": 0.9283 + }, + { + "start": 22305.62, + "end": 22307.22, + "probability": 0.5358 + }, + { + "start": 22307.28, + "end": 22308.42, + "probability": 0.9119 + }, + { + "start": 22308.46, + "end": 22309.2, + "probability": 0.18 + }, + { + "start": 22309.46, + "end": 22310.06, + "probability": 0.2168 + }, + { + "start": 22310.42, + "end": 22312.94, + "probability": 0.7583 + }, + { + "start": 22313.06, + "end": 22320.36, + "probability": 0.9952 + }, + { + "start": 22320.76, + "end": 22322.18, + "probability": 0.77 + }, + { + "start": 22322.48, + "end": 22324.14, + "probability": 0.874 + }, + { + "start": 22324.8, + "end": 22326.12, + "probability": 0.8992 + }, + { + "start": 22326.18, + "end": 22327.3, + "probability": 0.98 + }, + { + "start": 22327.36, + "end": 22331.84, + "probability": 0.9226 + }, + { + "start": 22332.76, + "end": 22334.36, + "probability": 0.9956 + }, + { + "start": 22334.64, + "end": 22339.26, + "probability": 0.9961 + }, + { + "start": 22339.4, + "end": 22339.84, + "probability": 0.8168 + }, + { + "start": 22339.94, + "end": 22340.52, + "probability": 0.8877 + }, + { + "start": 22340.64, + "end": 22343.72, + "probability": 0.9762 + }, + { + "start": 22343.74, + "end": 22346.36, + "probability": 0.9733 + }, + { + "start": 22347.02, + "end": 22349.3, + "probability": 0.998 + }, + { + "start": 22351.32, + "end": 22351.56, + "probability": 0.6747 + }, + { + "start": 22351.88, + "end": 22352.9, + "probability": 0.9763 + }, + { + "start": 22353.08, + "end": 22356.58, + "probability": 0.9565 + }, + { + "start": 22357.1, + "end": 22360.18, + "probability": 0.8071 + }, + { + "start": 22360.2, + "end": 22366.28, + "probability": 0.9204 + }, + { + "start": 22367.06, + "end": 22368.1, + "probability": 0.5485 + }, + { + "start": 22368.16, + "end": 22370.64, + "probability": 0.7912 + }, + { + "start": 22370.7, + "end": 22371.4, + "probability": 0.7528 + }, + { + "start": 22371.48, + "end": 22372.22, + "probability": 0.9932 + }, + { + "start": 22372.6, + "end": 22373.04, + "probability": 0.9692 + }, + { + "start": 22373.5, + "end": 22374.56, + "probability": 0.7664 + }, + { + "start": 22374.56, + "end": 22375.08, + "probability": 0.6031 + }, + { + "start": 22375.08, + "end": 22375.56, + "probability": 0.2803 + }, + { + "start": 22375.56, + "end": 22377.06, + "probability": 0.5337 + }, + { + "start": 22377.06, + "end": 22378.44, + "probability": 0.9407 + }, + { + "start": 22378.44, + "end": 22378.44, + "probability": 0.4156 + }, + { + "start": 22378.62, + "end": 22379.18, + "probability": 0.421 + }, + { + "start": 22379.5, + "end": 22383.32, + "probability": 0.9927 + }, + { + "start": 22383.4, + "end": 22383.94, + "probability": 0.6806 + }, + { + "start": 22384.04, + "end": 22384.4, + "probability": 0.7467 + }, + { + "start": 22384.4, + "end": 22384.56, + "probability": 0.6504 + }, + { + "start": 22384.64, + "end": 22386.96, + "probability": 0.7337 + }, + { + "start": 22388.68, + "end": 22390.3, + "probability": 0.5818 + }, + { + "start": 22390.56, + "end": 22392.36, + "probability": 0.6902 + }, + { + "start": 22393.0, + "end": 22393.28, + "probability": 0.0084 + }, + { + "start": 22393.28, + "end": 22397.02, + "probability": 0.8979 + }, + { + "start": 22398.81, + "end": 22399.3, + "probability": 0.0932 + }, + { + "start": 22399.3, + "end": 22405.04, + "probability": 0.8439 + }, + { + "start": 22405.04, + "end": 22408.0, + "probability": 0.8185 + }, + { + "start": 22408.1, + "end": 22409.34, + "probability": 0.8722 + }, + { + "start": 22409.6, + "end": 22410.94, + "probability": 0.991 + }, + { + "start": 22411.14, + "end": 22411.78, + "probability": 0.8171 + }, + { + "start": 22411.88, + "end": 22413.52, + "probability": 0.7524 + }, + { + "start": 22413.82, + "end": 22416.52, + "probability": 0.6118 + }, + { + "start": 22417.04, + "end": 22418.78, + "probability": 0.9268 + }, + { + "start": 22418.94, + "end": 22421.76, + "probability": 0.9677 + }, + { + "start": 22422.08, + "end": 22426.58, + "probability": 0.9678 + }, + { + "start": 22427.32, + "end": 22427.76, + "probability": 0.5605 + }, + { + "start": 22428.1, + "end": 22430.22, + "probability": 0.9879 + }, + { + "start": 22430.24, + "end": 22430.6, + "probability": 0.8639 + }, + { + "start": 22430.66, + "end": 22431.32, + "probability": 0.9601 + }, + { + "start": 22431.4, + "end": 22432.06, + "probability": 0.9493 + }, + { + "start": 22432.08, + "end": 22433.64, + "probability": 0.9354 + }, + { + "start": 22434.02, + "end": 22438.6, + "probability": 0.9716 + }, + { + "start": 22438.7, + "end": 22440.14, + "probability": 0.9363 + }, + { + "start": 22441.66, + "end": 22443.7, + "probability": 0.6486 + }, + { + "start": 22444.02, + "end": 22446.21, + "probability": 0.9082 + }, + { + "start": 22446.58, + "end": 22447.68, + "probability": 0.9817 + }, + { + "start": 22447.76, + "end": 22448.59, + "probability": 0.9971 + }, + { + "start": 22449.26, + "end": 22450.04, + "probability": 0.5411 + }, + { + "start": 22450.08, + "end": 22453.72, + "probability": 0.9722 + }, + { + "start": 22455.36, + "end": 22455.98, + "probability": 0.9073 + }, + { + "start": 22456.12, + "end": 22459.28, + "probability": 0.9122 + }, + { + "start": 22459.7, + "end": 22461.9, + "probability": 0.8965 + }, + { + "start": 22462.08, + "end": 22465.42, + "probability": 0.9943 + }, + { + "start": 22465.48, + "end": 22466.66, + "probability": 0.3489 + }, + { + "start": 22467.02, + "end": 22468.78, + "probability": 0.87 + }, + { + "start": 22469.0, + "end": 22470.64, + "probability": 0.9714 + }, + { + "start": 22470.88, + "end": 22471.58, + "probability": 0.8088 + }, + { + "start": 22471.72, + "end": 22472.98, + "probability": 0.9733 + }, + { + "start": 22473.06, + "end": 22475.0, + "probability": 0.8119 + }, + { + "start": 22475.28, + "end": 22476.6, + "probability": 0.9107 + }, + { + "start": 22476.68, + "end": 22479.21, + "probability": 0.9914 + }, + { + "start": 22479.42, + "end": 22480.36, + "probability": 0.4562 + }, + { + "start": 22480.42, + "end": 22482.04, + "probability": 0.79 + }, + { + "start": 22482.4, + "end": 22484.82, + "probability": 0.9883 + }, + { + "start": 22485.04, + "end": 22489.82, + "probability": 0.8696 + }, + { + "start": 22490.2, + "end": 22493.3, + "probability": 0.8319 + }, + { + "start": 22493.4, + "end": 22496.52, + "probability": 0.8733 + }, + { + "start": 22496.64, + "end": 22497.14, + "probability": 0.7648 + }, + { + "start": 22497.14, + "end": 22497.44, + "probability": 0.7447 + }, + { + "start": 22498.08, + "end": 22500.28, + "probability": 0.2048 + }, + { + "start": 22500.68, + "end": 22502.48, + "probability": 0.6248 + }, + { + "start": 22503.04, + "end": 22506.69, + "probability": 0.76 + }, + { + "start": 22507.42, + "end": 22511.58, + "probability": 0.196 + }, + { + "start": 22512.24, + "end": 22513.06, + "probability": 0.104 + }, + { + "start": 22513.22, + "end": 22515.5, + "probability": 0.8125 + }, + { + "start": 22516.69, + "end": 22522.1, + "probability": 0.7292 + }, + { + "start": 22522.64, + "end": 22523.28, + "probability": 0.5276 + }, + { + "start": 22523.82, + "end": 22524.58, + "probability": 0.7706 + }, + { + "start": 22525.14, + "end": 22532.1, + "probability": 0.7905 + }, + { + "start": 22532.42, + "end": 22534.3, + "probability": 0.9577 + }, + { + "start": 22534.62, + "end": 22536.48, + "probability": 0.2374 + }, + { + "start": 22536.64, + "end": 22537.02, + "probability": 0.006 + }, + { + "start": 22537.06, + "end": 22538.14, + "probability": 0.933 + }, + { + "start": 22538.32, + "end": 22539.94, + "probability": 0.5024 + }, + { + "start": 22540.1, + "end": 22540.86, + "probability": 0.6664 + }, + { + "start": 22541.26, + "end": 22543.18, + "probability": 0.9188 + }, + { + "start": 22543.86, + "end": 22546.6, + "probability": 0.8438 + }, + { + "start": 22546.92, + "end": 22549.92, + "probability": 0.5398 + }, + { + "start": 22549.98, + "end": 22550.88, + "probability": 0.576 + }, + { + "start": 22550.9, + "end": 22551.18, + "probability": 0.1945 + }, + { + "start": 22551.18, + "end": 22551.94, + "probability": 0.409 + }, + { + "start": 22552.0, + "end": 22553.62, + "probability": 0.6874 + }, + { + "start": 22553.62, + "end": 22555.1, + "probability": 0.814 + }, + { + "start": 22556.2, + "end": 22557.84, + "probability": 0.9886 + }, + { + "start": 22558.0, + "end": 22559.64, + "probability": 0.8087 + }, + { + "start": 22560.0, + "end": 22560.92, + "probability": 0.3229 + }, + { + "start": 22560.92, + "end": 22562.74, + "probability": 0.5889 + }, + { + "start": 22563.06, + "end": 22565.02, + "probability": 0.9249 + }, + { + "start": 22565.32, + "end": 22566.42, + "probability": 0.0467 + }, + { + "start": 22566.42, + "end": 22567.84, + "probability": 0.1881 + }, + { + "start": 22567.92, + "end": 22571.42, + "probability": 0.3145 + }, + { + "start": 22572.38, + "end": 22573.64, + "probability": 0.4284 + }, + { + "start": 22573.68, + "end": 22576.9, + "probability": 0.8175 + }, + { + "start": 22576.94, + "end": 22579.56, + "probability": 0.0993 + }, + { + "start": 22581.38, + "end": 22583.36, + "probability": 0.4187 + }, + { + "start": 22584.16, + "end": 22586.88, + "probability": 0.4736 + }, + { + "start": 22587.9, + "end": 22590.08, + "probability": 0.3674 + }, + { + "start": 22590.08, + "end": 22591.06, + "probability": 0.8644 + }, + { + "start": 22591.69, + "end": 22597.86, + "probability": 0.9814 + }, + { + "start": 22598.12, + "end": 22598.7, + "probability": 0.6009 + }, + { + "start": 22598.9, + "end": 22599.34, + "probability": 0.7707 + }, + { + "start": 22599.42, + "end": 22600.57, + "probability": 0.8511 + }, + { + "start": 22601.06, + "end": 22602.64, + "probability": 0.9663 + }, + { + "start": 22602.98, + "end": 22606.06, + "probability": 0.9317 + }, + { + "start": 22606.12, + "end": 22606.4, + "probability": 0.8156 + }, + { + "start": 22606.58, + "end": 22607.34, + "probability": 0.7884 + }, + { + "start": 22608.49, + "end": 22612.88, + "probability": 0.5333 + }, + { + "start": 22612.9, + "end": 22613.46, + "probability": 0.7636 + }, + { + "start": 22616.1, + "end": 22617.24, + "probability": 0.7611 + }, + { + "start": 22618.06, + "end": 22622.1, + "probability": 0.599 + }, + { + "start": 22622.74, + "end": 22626.74, + "probability": 0.9839 + }, + { + "start": 22627.8, + "end": 22629.12, + "probability": 0.7949 + }, + { + "start": 22629.18, + "end": 22629.96, + "probability": 0.8271 + }, + { + "start": 22629.98, + "end": 22631.2, + "probability": 0.7931 + }, + { + "start": 22631.5, + "end": 22632.38, + "probability": 0.9017 + }, + { + "start": 22632.58, + "end": 22633.0, + "probability": 0.3891 + }, + { + "start": 22635.32, + "end": 22635.6, + "probability": 0.7345 + }, + { + "start": 22638.18, + "end": 22643.98, + "probability": 0.115 + }, + { + "start": 22645.4, + "end": 22645.56, + "probability": 0.6049 + }, + { + "start": 22647.06, + "end": 22649.3, + "probability": 0.428 + }, + { + "start": 22650.24, + "end": 22650.89, + "probability": 0.4373 + }, + { + "start": 22652.41, + "end": 22652.96, + "probability": 0.2203 + }, + { + "start": 22653.68, + "end": 22657.2, + "probability": 0.4223 + }, + { + "start": 22657.84, + "end": 22658.32, + "probability": 0.6731 + }, + { + "start": 22658.44, + "end": 22660.56, + "probability": 0.788 + }, + { + "start": 22664.13, + "end": 22668.14, + "probability": 0.8433 + }, + { + "start": 22668.84, + "end": 22671.96, + "probability": 0.996 + }, + { + "start": 22672.14, + "end": 22673.06, + "probability": 0.3099 + }, + { + "start": 22674.28, + "end": 22675.2, + "probability": 0.9142 + }, + { + "start": 22675.86, + "end": 22676.88, + "probability": 0.8887 + }, + { + "start": 22677.78, + "end": 22678.32, + "probability": 0.9366 + }, + { + "start": 22679.3, + "end": 22680.42, + "probability": 0.7067 + }, + { + "start": 22684.74, + "end": 22685.88, + "probability": 0.579 + }, + { + "start": 22685.92, + "end": 22687.06, + "probability": 0.7095 + }, + { + "start": 22687.16, + "end": 22688.67, + "probability": 0.6173 + }, + { + "start": 22688.98, + "end": 22690.34, + "probability": 0.9564 + }, + { + "start": 22691.1, + "end": 22695.96, + "probability": 0.6884 + }, + { + "start": 22696.54, + "end": 22700.32, + "probability": 0.7305 + }, + { + "start": 22700.36, + "end": 22700.52, + "probability": 0.768 + }, + { + "start": 22700.92, + "end": 22702.86, + "probability": 0.8677 + }, + { + "start": 22703.7, + "end": 22706.84, + "probability": 0.209 + }, + { + "start": 22707.56, + "end": 22710.94, + "probability": 0.9434 + }, + { + "start": 22711.67, + "end": 22712.96, + "probability": 0.0286 + }, + { + "start": 22712.96, + "end": 22712.96, + "probability": 0.3001 + }, + { + "start": 22712.96, + "end": 22712.96, + "probability": 0.3484 + }, + { + "start": 22712.96, + "end": 22712.96, + "probability": 0.0937 + }, + { + "start": 22712.96, + "end": 22714.36, + "probability": 0.4093 + }, + { + "start": 22730.84, + "end": 22732.18, + "probability": 0.573 + }, + { + "start": 22732.8, + "end": 22736.38, + "probability": 0.6643 + }, + { + "start": 22737.4, + "end": 22739.08, + "probability": 0.8196 + }, + { + "start": 22739.7, + "end": 22745.69, + "probability": 0.9897 + }, + { + "start": 22746.6, + "end": 22748.4, + "probability": 0.7375 + }, + { + "start": 22749.7, + "end": 22755.24, + "probability": 0.9854 + }, + { + "start": 22755.44, + "end": 22756.2, + "probability": 0.9076 + }, + { + "start": 22756.3, + "end": 22757.16, + "probability": 0.8431 + }, + { + "start": 22757.64, + "end": 22763.96, + "probability": 0.9116 + }, + { + "start": 22764.66, + "end": 22771.24, + "probability": 0.9933 + }, + { + "start": 22771.8, + "end": 22774.12, + "probability": 0.9883 + }, + { + "start": 22774.18, + "end": 22775.66, + "probability": 0.8379 + }, + { + "start": 22775.66, + "end": 22779.4, + "probability": 0.9751 + }, + { + "start": 22779.42, + "end": 22780.54, + "probability": 0.9582 + }, + { + "start": 22780.6, + "end": 22781.4, + "probability": 0.9888 + }, + { + "start": 22781.46, + "end": 22782.12, + "probability": 0.9718 + }, + { + "start": 22782.14, + "end": 22782.92, + "probability": 0.5718 + }, + { + "start": 22784.14, + "end": 22784.38, + "probability": 0.1464 + }, + { + "start": 22784.38, + "end": 22790.0, + "probability": 0.9394 + }, + { + "start": 22790.0, + "end": 22795.38, + "probability": 0.9876 + }, + { + "start": 22795.84, + "end": 22795.96, + "probability": 0.1556 + }, + { + "start": 22795.96, + "end": 22798.0, + "probability": 0.7523 + }, + { + "start": 22798.28, + "end": 22799.72, + "probability": 0.7621 + }, + { + "start": 22799.82, + "end": 22800.26, + "probability": 0.5633 + }, + { + "start": 22800.46, + "end": 22800.84, + "probability": 0.7831 + }, + { + "start": 22800.84, + "end": 22802.08, + "probability": 0.3507 + }, + { + "start": 22802.74, + "end": 22808.82, + "probability": 0.9025 + }, + { + "start": 22809.38, + "end": 22815.5, + "probability": 0.9592 + }, + { + "start": 22816.02, + "end": 22818.58, + "probability": 0.998 + }, + { + "start": 22818.58, + "end": 22822.06, + "probability": 0.998 + }, + { + "start": 22822.22, + "end": 22823.24, + "probability": 0.7983 + }, + { + "start": 22823.62, + "end": 22826.6, + "probability": 0.9939 + }, + { + "start": 22826.66, + "end": 22826.88, + "probability": 0.7099 + }, + { + "start": 22827.04, + "end": 22827.94, + "probability": 0.6493 + }, + { + "start": 22828.24, + "end": 22834.94, + "probability": 0.9806 + }, + { + "start": 22835.66, + "end": 22840.02, + "probability": 0.9827 + }, + { + "start": 22840.12, + "end": 22843.44, + "probability": 0.9741 + }, + { + "start": 22844.02, + "end": 22848.94, + "probability": 0.8845 + }, + { + "start": 22849.58, + "end": 22850.82, + "probability": 0.9415 + }, + { + "start": 22850.9, + "end": 22851.7, + "probability": 0.8222 + }, + { + "start": 22851.94, + "end": 22856.78, + "probability": 0.9933 + }, + { + "start": 22857.46, + "end": 22860.64, + "probability": 0.9219 + }, + { + "start": 22861.34, + "end": 22861.54, + "probability": 0.9754 + }, + { + "start": 22863.0, + "end": 22867.0, + "probability": 0.956 + }, + { + "start": 22867.58, + "end": 22870.28, + "probability": 0.9927 + }, + { + "start": 22870.28, + "end": 22874.02, + "probability": 0.9762 + }, + { + "start": 22874.54, + "end": 22874.6, + "probability": 0.1595 + }, + { + "start": 22874.6, + "end": 22875.3, + "probability": 0.5352 + }, + { + "start": 22875.7, + "end": 22879.62, + "probability": 0.9 + }, + { + "start": 22879.72, + "end": 22880.46, + "probability": 0.8786 + }, + { + "start": 22880.58, + "end": 22881.64, + "probability": 0.834 + }, + { + "start": 22881.68, + "end": 22882.46, + "probability": 0.7401 + }, + { + "start": 22882.88, + "end": 22884.16, + "probability": 0.8584 + }, + { + "start": 22884.86, + "end": 22892.52, + "probability": 0.9778 + }, + { + "start": 22892.62, + "end": 22893.94, + "probability": 0.9349 + }, + { + "start": 22894.1, + "end": 22897.24, + "probability": 0.9884 + }, + { + "start": 22897.58, + "end": 22901.4, + "probability": 0.9958 + }, + { + "start": 22901.9, + "end": 22903.62, + "probability": 0.1069 + }, + { + "start": 22904.56, + "end": 22905.54, + "probability": 0.6038 + }, + { + "start": 22905.82, + "end": 22908.28, + "probability": 0.5741 + }, + { + "start": 22909.1, + "end": 22909.1, + "probability": 0.2689 + }, + { + "start": 22909.1, + "end": 22911.78, + "probability": 0.9785 + }, + { + "start": 22911.78, + "end": 22912.46, + "probability": 0.7414 + }, + { + "start": 22912.9, + "end": 22913.24, + "probability": 0.5385 + }, + { + "start": 22913.34, + "end": 22914.66, + "probability": 0.6653 + }, + { + "start": 22914.74, + "end": 22917.76, + "probability": 0.9865 + }, + { + "start": 22917.76, + "end": 22921.82, + "probability": 0.9917 + }, + { + "start": 22922.38, + "end": 22924.48, + "probability": 0.9854 + }, + { + "start": 22924.48, + "end": 22926.86, + "probability": 0.9779 + }, + { + "start": 22927.02, + "end": 22928.84, + "probability": 0.9854 + }, + { + "start": 22929.12, + "end": 22932.88, + "probability": 0.991 + }, + { + "start": 22933.1, + "end": 22934.48, + "probability": 0.8664 + }, + { + "start": 22934.74, + "end": 22939.2, + "probability": 0.9773 + }, + { + "start": 22939.2, + "end": 22943.12, + "probability": 0.9865 + }, + { + "start": 22943.62, + "end": 22947.36, + "probability": 0.9412 + }, + { + "start": 22947.54, + "end": 22952.8, + "probability": 0.9912 + }, + { + "start": 22953.38, + "end": 22954.08, + "probability": 0.018 + }, + { + "start": 22955.22, + "end": 22955.52, + "probability": 0.1588 + }, + { + "start": 22955.52, + "end": 22955.52, + "probability": 0.0262 + }, + { + "start": 22955.52, + "end": 22955.52, + "probability": 0.0252 + }, + { + "start": 22955.52, + "end": 22958.72, + "probability": 0.2588 + }, + { + "start": 22958.72, + "end": 22961.68, + "probability": 0.5476 + }, + { + "start": 22961.7, + "end": 22963.52, + "probability": 0.759 + }, + { + "start": 22963.52, + "end": 22968.46, + "probability": 0.9282 + }, + { + "start": 22968.58, + "end": 22970.56, + "probability": 0.6346 + }, + { + "start": 22971.0, + "end": 22973.4, + "probability": 0.9822 + }, + { + "start": 22973.46, + "end": 22976.28, + "probability": 0.1471 + }, + { + "start": 22976.32, + "end": 22976.52, + "probability": 0.2466 + }, + { + "start": 22976.62, + "end": 22977.8, + "probability": 0.5593 + }, + { + "start": 22983.24, + "end": 22984.22, + "probability": 0.0014 + }, + { + "start": 22987.08, + "end": 22989.36, + "probability": 0.1843 + }, + { + "start": 22991.5, + "end": 22993.38, + "probability": 0.0141 + }, + { + "start": 22994.04, + "end": 22999.46, + "probability": 0.2463 + }, + { + "start": 23000.89, + "end": 23002.72, + "probability": 0.9287 + }, + { + "start": 23003.28, + "end": 23004.48, + "probability": 0.8949 + }, + { + "start": 23004.89, + "end": 23007.04, + "probability": 0.9962 + }, + { + "start": 23007.12, + "end": 23010.16, + "probability": 0.9163 + }, + { + "start": 23011.0, + "end": 23011.54, + "probability": 0.2048 + }, + { + "start": 23012.14, + "end": 23012.36, + "probability": 0.1131 + }, + { + "start": 23012.36, + "end": 23014.28, + "probability": 0.9913 + }, + { + "start": 23014.28, + "end": 23017.22, + "probability": 0.9207 + }, + { + "start": 23017.42, + "end": 23019.64, + "probability": 0.9619 + }, + { + "start": 23019.8, + "end": 23021.16, + "probability": 0.8911 + }, + { + "start": 23021.38, + "end": 23022.8, + "probability": 0.5053 + }, + { + "start": 23022.8, + "end": 23025.02, + "probability": 0.9962 + }, + { + "start": 23025.4, + "end": 23028.3, + "probability": 0.9587 + }, + { + "start": 23028.38, + "end": 23032.32, + "probability": 0.9959 + }, + { + "start": 23032.4, + "end": 23037.28, + "probability": 0.9885 + }, + { + "start": 23038.58, + "end": 23042.44, + "probability": 0.9946 + }, + { + "start": 23042.9, + "end": 23047.19, + "probability": 0.9976 + }, + { + "start": 23047.8, + "end": 23048.1, + "probability": 0.5638 + }, + { + "start": 23048.28, + "end": 23049.5, + "probability": 0.9084 + }, + { + "start": 23049.68, + "end": 23050.62, + "probability": 0.9431 + }, + { + "start": 23050.8, + "end": 23052.66, + "probability": 0.963 + }, + { + "start": 23053.04, + "end": 23055.16, + "probability": 0.9529 + }, + { + "start": 23055.3, + "end": 23056.54, + "probability": 0.7958 + }, + { + "start": 23056.96, + "end": 23058.34, + "probability": 0.9743 + }, + { + "start": 23058.56, + "end": 23060.8, + "probability": 0.9657 + }, + { + "start": 23060.96, + "end": 23062.72, + "probability": 0.9693 + }, + { + "start": 23062.84, + "end": 23064.48, + "probability": 0.8101 + }, + { + "start": 23065.2, + "end": 23068.12, + "probability": 0.9912 + }, + { + "start": 23068.32, + "end": 23073.26, + "probability": 0.9922 + }, + { + "start": 23073.98, + "end": 23075.0, + "probability": 0.9285 + }, + { + "start": 23075.24, + "end": 23079.3, + "probability": 0.9329 + }, + { + "start": 23079.78, + "end": 23082.98, + "probability": 0.9902 + }, + { + "start": 23083.32, + "end": 23087.68, + "probability": 0.985 + }, + { + "start": 23087.96, + "end": 23091.36, + "probability": 0.9966 + }, + { + "start": 23093.1, + "end": 23098.26, + "probability": 0.9806 + }, + { + "start": 23098.78, + "end": 23101.52, + "probability": 0.9771 + }, + { + "start": 23101.52, + "end": 23105.34, + "probability": 0.9233 + }, + { + "start": 23105.74, + "end": 23106.62, + "probability": 0.7388 + }, + { + "start": 23106.88, + "end": 23108.46, + "probability": 0.9968 + }, + { + "start": 23108.58, + "end": 23109.2, + "probability": 0.9603 + }, + { + "start": 23109.48, + "end": 23110.88, + "probability": 0.8928 + }, + { + "start": 23111.64, + "end": 23114.36, + "probability": 0.183 + }, + { + "start": 23114.36, + "end": 23117.14, + "probability": 0.7808 + }, + { + "start": 23117.36, + "end": 23119.01, + "probability": 0.9797 + }, + { + "start": 23119.2, + "end": 23120.2, + "probability": 0.9742 + }, + { + "start": 23120.68, + "end": 23124.32, + "probability": 0.9927 + }, + { + "start": 23124.88, + "end": 23127.86, + "probability": 0.861 + }, + { + "start": 23128.28, + "end": 23131.46, + "probability": 0.9595 + }, + { + "start": 23132.02, + "end": 23133.26, + "probability": 0.8783 + }, + { + "start": 23133.88, + "end": 23135.76, + "probability": 0.9683 + }, + { + "start": 23135.86, + "end": 23136.2, + "probability": 0.6426 + }, + { + "start": 23136.2, + "end": 23138.24, + "probability": 0.9933 + }, + { + "start": 23138.56, + "end": 23139.34, + "probability": 0.871 + }, + { + "start": 23139.62, + "end": 23140.72, + "probability": 0.8255 + }, + { + "start": 23141.16, + "end": 23142.38, + "probability": 0.9557 + }, + { + "start": 23142.38, + "end": 23144.8, + "probability": 0.9805 + }, + { + "start": 23145.04, + "end": 23145.26, + "probability": 0.7758 + }, + { + "start": 23145.77, + "end": 23148.92, + "probability": 0.8392 + }, + { + "start": 23148.98, + "end": 23149.84, + "probability": 0.9829 + }, + { + "start": 23150.78, + "end": 23153.04, + "probability": 0.7258 + }, + { + "start": 23153.98, + "end": 23154.52, + "probability": 0.3999 + }, + { + "start": 23154.58, + "end": 23155.21, + "probability": 0.6686 + }, + { + "start": 23155.8, + "end": 23157.94, + "probability": 0.676 + }, + { + "start": 23158.3, + "end": 23158.76, + "probability": 0.3405 + }, + { + "start": 23158.78, + "end": 23158.78, + "probability": 0.7002 + }, + { + "start": 23159.08, + "end": 23159.9, + "probability": 0.2359 + }, + { + "start": 23160.46, + "end": 23163.06, + "probability": 0.8934 + }, + { + "start": 23163.14, + "end": 23163.48, + "probability": 0.1396 + }, + { + "start": 23164.6, + "end": 23165.3, + "probability": 0.5189 + }, + { + "start": 23165.5, + "end": 23166.48, + "probability": 0.7893 + }, + { + "start": 23166.84, + "end": 23168.74, + "probability": 0.76 + }, + { + "start": 23169.32, + "end": 23170.13, + "probability": 0.4595 + }, + { + "start": 23170.34, + "end": 23171.28, + "probability": 0.5172 + }, + { + "start": 23172.0, + "end": 23174.08, + "probability": 0.79 + }, + { + "start": 23174.08, + "end": 23174.9, + "probability": 0.8459 + }, + { + "start": 23175.48, + "end": 23177.46, + "probability": 0.1757 + }, + { + "start": 23178.1, + "end": 23185.12, + "probability": 0.7839 + }, + { + "start": 23186.04, + "end": 23186.6, + "probability": 0.6512 + }, + { + "start": 23188.24, + "end": 23189.88, + "probability": 0.7128 + }, + { + "start": 23190.54, + "end": 23191.24, + "probability": 0.1905 + }, + { + "start": 23191.38, + "end": 23192.38, + "probability": 0.9409 + }, + { + "start": 23192.82, + "end": 23193.16, + "probability": 0.7084 + }, + { + "start": 23193.7, + "end": 23194.64, + "probability": 0.9788 + }, + { + "start": 23194.72, + "end": 23195.12, + "probability": 0.2634 + }, + { + "start": 23195.14, + "end": 23196.39, + "probability": 0.1089 + }, + { + "start": 23196.62, + "end": 23196.74, + "probability": 0.1703 + }, + { + "start": 23197.04, + "end": 23198.66, + "probability": 0.9544 + }, + { + "start": 23198.78, + "end": 23199.28, + "probability": 0.8695 + }, + { + "start": 23199.78, + "end": 23200.9, + "probability": 0.1208 + }, + { + "start": 23201.06, + "end": 23202.58, + "probability": 0.3925 + }, + { + "start": 23202.78, + "end": 23204.24, + "probability": 0.1246 + }, + { + "start": 23205.18, + "end": 23207.2, + "probability": 0.054 + }, + { + "start": 23207.36, + "end": 23209.3, + "probability": 0.9159 + }, + { + "start": 23209.46, + "end": 23209.56, + "probability": 0.4673 + }, + { + "start": 23210.44, + "end": 23211.72, + "probability": 0.6353 + }, + { + "start": 23214.16, + "end": 23216.98, + "probability": 0.8807 + }, + { + "start": 23217.06, + "end": 23217.68, + "probability": 0.6598 + }, + { + "start": 23217.94, + "end": 23218.72, + "probability": 0.7985 + }, + { + "start": 23219.34, + "end": 23220.32, + "probability": 0.0419 + }, + { + "start": 23220.32, + "end": 23221.42, + "probability": 0.7666 + }, + { + "start": 23223.98, + "end": 23227.12, + "probability": 0.9624 + }, + { + "start": 23229.2, + "end": 23233.92, + "probability": 0.939 + }, + { + "start": 23234.9, + "end": 23239.26, + "probability": 0.9905 + }, + { + "start": 23240.5, + "end": 23246.52, + "probability": 0.995 + }, + { + "start": 23246.52, + "end": 23251.72, + "probability": 0.618 + }, + { + "start": 23251.9, + "end": 23252.64, + "probability": 0.8159 + }, + { + "start": 23254.16, + "end": 23256.08, + "probability": 0.9518 + }, + { + "start": 23259.47, + "end": 23259.68, + "probability": 0.2719 + }, + { + "start": 23259.68, + "end": 23259.88, + "probability": 0.8487 + }, + { + "start": 23261.12, + "end": 23264.32, + "probability": 0.4137 + }, + { + "start": 23264.5, + "end": 23266.78, + "probability": 0.5219 + }, + { + "start": 23268.04, + "end": 23271.24, + "probability": 0.4407 + }, + { + "start": 23271.86, + "end": 23271.86, + "probability": 0.0122 + }, + { + "start": 23271.86, + "end": 23271.86, + "probability": 0.0264 + }, + { + "start": 23271.86, + "end": 23271.86, + "probability": 0.2898 + }, + { + "start": 23271.86, + "end": 23274.1, + "probability": 0.613 + }, + { + "start": 23274.38, + "end": 23276.74, + "probability": 0.9468 + }, + { + "start": 23277.58, + "end": 23278.38, + "probability": 0.6636 + }, + { + "start": 23279.08, + "end": 23283.34, + "probability": 0.7349 + }, + { + "start": 23283.72, + "end": 23285.78, + "probability": 0.9543 + }, + { + "start": 23286.56, + "end": 23290.3, + "probability": 0.8922 + }, + { + "start": 23291.3, + "end": 23291.32, + "probability": 0.1225 + }, + { + "start": 23291.32, + "end": 23292.04, + "probability": 0.3745 + }, + { + "start": 23292.28, + "end": 23293.1, + "probability": 0.8518 + }, + { + "start": 23293.6, + "end": 23295.72, + "probability": 0.8011 + }, + { + "start": 23296.28, + "end": 23298.94, + "probability": 0.5149 + }, + { + "start": 23300.16, + "end": 23300.86, + "probability": 0.8633 + }, + { + "start": 23301.18, + "end": 23302.22, + "probability": 0.9367 + }, + { + "start": 23302.38, + "end": 23303.46, + "probability": 0.7834 + }, + { + "start": 23304.0, + "end": 23308.38, + "probability": 0.7979 + }, + { + "start": 23310.38, + "end": 23311.08, + "probability": 0.5833 + }, + { + "start": 23312.54, + "end": 23317.48, + "probability": 0.9941 + }, + { + "start": 23318.92, + "end": 23319.57, + "probability": 0.5007 + }, + { + "start": 23320.6, + "end": 23325.94, + "probability": 0.9784 + }, + { + "start": 23326.78, + "end": 23331.94, + "probability": 0.9855 + }, + { + "start": 23333.62, + "end": 23338.36, + "probability": 0.998 + }, + { + "start": 23339.5, + "end": 23343.2, + "probability": 0.9961 + }, + { + "start": 23343.42, + "end": 23346.2, + "probability": 0.2046 + }, + { + "start": 23346.2, + "end": 23350.18, + "probability": 0.7754 + }, + { + "start": 23350.72, + "end": 23351.48, + "probability": 0.9518 + }, + { + "start": 23351.84, + "end": 23358.96, + "probability": 0.8438 + }, + { + "start": 23359.14, + "end": 23364.42, + "probability": 0.9731 + }, + { + "start": 23364.66, + "end": 23365.96, + "probability": 0.8733 + }, + { + "start": 23366.1, + "end": 23367.8, + "probability": 0.9707 + }, + { + "start": 23367.92, + "end": 23369.52, + "probability": 0.9843 + }, + { + "start": 23369.62, + "end": 23371.0, + "probability": 0.9668 + }, + { + "start": 23371.16, + "end": 23374.22, + "probability": 0.9746 + }, + { + "start": 23375.16, + "end": 23375.93, + "probability": 0.915 + }, + { + "start": 23376.36, + "end": 23381.44, + "probability": 0.9852 + }, + { + "start": 23382.22, + "end": 23384.96, + "probability": 0.9286 + }, + { + "start": 23385.4, + "end": 23386.6, + "probability": 0.8823 + }, + { + "start": 23387.96, + "end": 23392.56, + "probability": 0.9897 + }, + { + "start": 23392.7, + "end": 23393.7, + "probability": 0.9209 + }, + { + "start": 23395.08, + "end": 23398.78, + "probability": 0.9929 + }, + { + "start": 23399.58, + "end": 23399.66, + "probability": 0.1171 + }, + { + "start": 23400.58, + "end": 23402.1, + "probability": 0.9334 + }, + { + "start": 23402.54, + "end": 23407.08, + "probability": 0.7618 + }, + { + "start": 23407.16, + "end": 23408.84, + "probability": 0.9495 + }, + { + "start": 23410.14, + "end": 23412.9, + "probability": 0.9912 + }, + { + "start": 23412.9, + "end": 23416.24, + "probability": 0.9784 + }, + { + "start": 23417.64, + "end": 23422.07, + "probability": 0.9637 + }, + { + "start": 23423.4, + "end": 23423.96, + "probability": 0.6231 + }, + { + "start": 23426.54, + "end": 23430.14, + "probability": 0.8092 + }, + { + "start": 23431.1, + "end": 23433.6, + "probability": 0.9669 + }, + { + "start": 23434.86, + "end": 23435.9, + "probability": 0.901 + }, + { + "start": 23436.84, + "end": 23439.06, + "probability": 0.9731 + }, + { + "start": 23439.8, + "end": 23440.66, + "probability": 0.9619 + }, + { + "start": 23441.18, + "end": 23442.5, + "probability": 0.8961 + }, + { + "start": 23443.1, + "end": 23447.64, + "probability": 0.9089 + }, + { + "start": 23448.3, + "end": 23450.96, + "probability": 0.9354 + }, + { + "start": 23451.94, + "end": 23453.46, + "probability": 0.8335 + }, + { + "start": 23454.1, + "end": 23459.54, + "probability": 0.9833 + }, + { + "start": 23459.9, + "end": 23463.38, + "probability": 0.9428 + }, + { + "start": 23464.22, + "end": 23465.26, + "probability": 0.0737 + }, + { + "start": 23465.26, + "end": 23467.3, + "probability": 0.2866 + }, + { + "start": 23468.42, + "end": 23470.33, + "probability": 0.4521 + }, + { + "start": 23472.26, + "end": 23477.04, + "probability": 0.9863 + }, + { + "start": 23478.02, + "end": 23480.38, + "probability": 0.9767 + }, + { + "start": 23481.04, + "end": 23483.34, + "probability": 0.969 + }, + { + "start": 23484.56, + "end": 23485.32, + "probability": 0.896 + }, + { + "start": 23485.94, + "end": 23487.96, + "probability": 0.9777 + }, + { + "start": 23488.98, + "end": 23491.22, + "probability": 0.9485 + }, + { + "start": 23495.1, + "end": 23496.2, + "probability": 0.7339 + }, + { + "start": 23498.02, + "end": 23501.34, + "probability": 0.8039 + }, + { + "start": 23502.7, + "end": 23506.38, + "probability": 0.501 + }, + { + "start": 23506.46, + "end": 23506.8, + "probability": 0.1969 + }, + { + "start": 23508.44, + "end": 23509.24, + "probability": 0.5352 + }, + { + "start": 23509.84, + "end": 23513.26, + "probability": 0.9852 + }, + { + "start": 23513.38, + "end": 23514.29, + "probability": 0.5023 + }, + { + "start": 23514.72, + "end": 23519.66, + "probability": 0.8716 + }, + { + "start": 23519.72, + "end": 23520.28, + "probability": 0.7041 + }, + { + "start": 23520.4, + "end": 23522.84, + "probability": 0.9769 + }, + { + "start": 23523.08, + "end": 23524.14, + "probability": 0.9058 + }, + { + "start": 23524.3, + "end": 23525.92, + "probability": 0.6996 + }, + { + "start": 23526.04, + "end": 23530.02, + "probability": 0.9937 + }, + { + "start": 23530.16, + "end": 23533.58, + "probability": 0.9885 + }, + { + "start": 23534.2, + "end": 23534.96, + "probability": 0.3185 + }, + { + "start": 23535.54, + "end": 23539.47, + "probability": 0.9235 + }, + { + "start": 23540.16, + "end": 23541.35, + "probability": 0.5586 + }, + { + "start": 23541.52, + "end": 23541.93, + "probability": 0.7344 + }, + { + "start": 23543.3, + "end": 23543.3, + "probability": 0.1746 + }, + { + "start": 23543.3, + "end": 23543.92, + "probability": 0.2885 + }, + { + "start": 23543.92, + "end": 23546.52, + "probability": 0.6927 + }, + { + "start": 23546.6, + "end": 23549.26, + "probability": 0.7076 + }, + { + "start": 23549.38, + "end": 23550.9, + "probability": 0.3105 + }, + { + "start": 23551.4, + "end": 23552.18, + "probability": 0.2971 + }, + { + "start": 23552.72, + "end": 23552.98, + "probability": 0.2554 + }, + { + "start": 23562.96, + "end": 23565.56, + "probability": 0.7835 + }, + { + "start": 23566.54, + "end": 23567.18, + "probability": 0.7858 + }, + { + "start": 23568.68, + "end": 23571.84, + "probability": 0.9694 + }, + { + "start": 23572.72, + "end": 23575.04, + "probability": 0.9562 + }, + { + "start": 23576.58, + "end": 23578.18, + "probability": 0.9037 + }, + { + "start": 23579.56, + "end": 23581.08, + "probability": 0.9203 + }, + { + "start": 23582.1, + "end": 23582.72, + "probability": 0.7159 + }, + { + "start": 23584.16, + "end": 23586.54, + "probability": 0.9953 + }, + { + "start": 23587.96, + "end": 23589.04, + "probability": 0.7812 + }, + { + "start": 23590.2, + "end": 23595.54, + "probability": 0.9918 + }, + { + "start": 23596.9, + "end": 23600.94, + "probability": 0.9958 + }, + { + "start": 23602.16, + "end": 23608.38, + "probability": 0.9746 + }, + { + "start": 23609.98, + "end": 23611.64, + "probability": 0.9849 + }, + { + "start": 23612.92, + "end": 23614.18, + "probability": 0.9321 + }, + { + "start": 23614.9, + "end": 23616.08, + "probability": 0.8447 + }, + { + "start": 23617.32, + "end": 23619.32, + "probability": 0.9978 + }, + { + "start": 23620.66, + "end": 23622.8, + "probability": 0.9992 + }, + { + "start": 23623.5, + "end": 23626.86, + "probability": 0.9882 + }, + { + "start": 23627.74, + "end": 23628.15, + "probability": 0.4388 + }, + { + "start": 23628.46, + "end": 23630.24, + "probability": 0.8861 + }, + { + "start": 23630.24, + "end": 23630.31, + "probability": 0.5493 + }, + { + "start": 23630.76, + "end": 23631.54, + "probability": 0.8669 + }, + { + "start": 23632.32, + "end": 23635.64, + "probability": 0.218 + }, + { + "start": 23635.64, + "end": 23635.9, + "probability": 0.1581 + }, + { + "start": 23637.02, + "end": 23637.02, + "probability": 0.0708 + }, + { + "start": 23637.02, + "end": 23640.09, + "probability": 0.9767 + }, + { + "start": 23640.44, + "end": 23642.1, + "probability": 0.0289 + }, + { + "start": 23642.22, + "end": 23643.56, + "probability": 0.5846 + }, + { + "start": 23644.88, + "end": 23645.5, + "probability": 0.5781 + }, + { + "start": 23645.52, + "end": 23646.3, + "probability": 0.8474 + }, + { + "start": 23646.68, + "end": 23648.24, + "probability": 0.9885 + }, + { + "start": 23648.36, + "end": 23649.06, + "probability": 0.8738 + }, + { + "start": 23649.14, + "end": 23650.16, + "probability": 0.1057 + }, + { + "start": 23650.16, + "end": 23652.36, + "probability": 0.8877 + }, + { + "start": 23652.36, + "end": 23653.5, + "probability": 0.6939 + }, + { + "start": 23653.6, + "end": 23655.3, + "probability": 0.9928 + }, + { + "start": 23656.08, + "end": 23662.12, + "probability": 0.9995 + }, + { + "start": 23663.2, + "end": 23665.24, + "probability": 0.8872 + }, + { + "start": 23665.82, + "end": 23667.96, + "probability": 0.856 + }, + { + "start": 23668.62, + "end": 23668.94, + "probability": 0.4586 + }, + { + "start": 23669.06, + "end": 23669.8, + "probability": 0.6902 + }, + { + "start": 23669.92, + "end": 23672.2, + "probability": 0.8594 + }, + { + "start": 23673.0, + "end": 23674.86, + "probability": 0.7883 + }, + { + "start": 23674.86, + "end": 23676.06, + "probability": 0.7585 + }, + { + "start": 23676.82, + "end": 23678.3, + "probability": 0.9541 + }, + { + "start": 23678.86, + "end": 23680.26, + "probability": 0.7302 + }, + { + "start": 23681.22, + "end": 23689.32, + "probability": 0.9189 + }, + { + "start": 23689.98, + "end": 23691.64, + "probability": 0.8198 + }, + { + "start": 23691.76, + "end": 23691.83, + "probability": 0.0402 + }, + { + "start": 23692.4, + "end": 23692.56, + "probability": 0.0881 + }, + { + "start": 23692.56, + "end": 23692.98, + "probability": 0.4847 + }, + { + "start": 23693.02, + "end": 23695.88, + "probability": 0.8272 + }, + { + "start": 23695.96, + "end": 23697.18, + "probability": 0.7277 + }, + { + "start": 23697.98, + "end": 23698.74, + "probability": 0.4419 + }, + { + "start": 23699.36, + "end": 23702.5, + "probability": 0.7733 + }, + { + "start": 23703.12, + "end": 23704.82, + "probability": 0.9422 + }, + { + "start": 23705.26, + "end": 23706.38, + "probability": 0.9692 + }, + { + "start": 23706.72, + "end": 23708.02, + "probability": 0.9367 + }, + { + "start": 23708.44, + "end": 23709.49, + "probability": 0.8822 + }, + { + "start": 23710.84, + "end": 23711.56, + "probability": 0.9014 + }, + { + "start": 23711.96, + "end": 23714.42, + "probability": 0.9709 + }, + { + "start": 23715.18, + "end": 23715.38, + "probability": 0.0438 + }, + { + "start": 23715.38, + "end": 23717.0, + "probability": 0.9829 + }, + { + "start": 23720.56, + "end": 23721.7, + "probability": 0.4923 + }, + { + "start": 23722.14, + "end": 23722.14, + "probability": 0.1257 + }, + { + "start": 23722.14, + "end": 23722.14, + "probability": 0.2221 + }, + { + "start": 23722.14, + "end": 23722.74, + "probability": 0.7535 + }, + { + "start": 23722.92, + "end": 23724.54, + "probability": 0.9663 + }, + { + "start": 23725.2, + "end": 23726.8, + "probability": 0.5176 + }, + { + "start": 23726.8, + "end": 23729.12, + "probability": 0.1032 + }, + { + "start": 23730.16, + "end": 23731.13, + "probability": 0.1661 + }, + { + "start": 23731.36, + "end": 23731.84, + "probability": 0.2865 + }, + { + "start": 23732.92, + "end": 23735.06, + "probability": 0.2336 + }, + { + "start": 23735.44, + "end": 23735.74, + "probability": 0.0562 + }, + { + "start": 23735.78, + "end": 23735.78, + "probability": 0.4737 + }, + { + "start": 23736.06, + "end": 23736.34, + "probability": 0.2806 + }, + { + "start": 23737.76, + "end": 23740.2, + "probability": 0.0101 + }, + { + "start": 23741.67, + "end": 23742.66, + "probability": 0.2493 + }, + { + "start": 23742.66, + "end": 23743.3, + "probability": 0.0251 + }, + { + "start": 23743.34, + "end": 23744.24, + "probability": 0.5005 + }, + { + "start": 23744.54, + "end": 23745.8, + "probability": 0.4618 + }, + { + "start": 23745.9, + "end": 23746.36, + "probability": 0.5678 + }, + { + "start": 23746.46, + "end": 23749.16, + "probability": 0.2382 + }, + { + "start": 23749.92, + "end": 23751.58, + "probability": 0.0373 + }, + { + "start": 23751.74, + "end": 23752.74, + "probability": 0.0145 + }, + { + "start": 23752.74, + "end": 23754.36, + "probability": 0.0943 + }, + { + "start": 23754.58, + "end": 23755.56, + "probability": 0.0963 + }, + { + "start": 23755.72, + "end": 23755.86, + "probability": 0.1498 + }, + { + "start": 23758.3, + "end": 23763.84, + "probability": 0.0758 + }, + { + "start": 23764.1, + "end": 23764.8, + "probability": 0.0168 + }, + { + "start": 23764.8, + "end": 23765.66, + "probability": 0.0764 + }, + { + "start": 23765.78, + "end": 23766.48, + "probability": 0.1569 + }, + { + "start": 23767.98, + "end": 23768.58, + "probability": 0.2569 + }, + { + "start": 23768.58, + "end": 23769.16, + "probability": 0.1549 + }, + { + "start": 23769.16, + "end": 23769.16, + "probability": 0.2535 + }, + { + "start": 23769.3, + "end": 23769.3, + "probability": 0.2106 + }, + { + "start": 23769.3, + "end": 23769.3, + "probability": 0.2059 + }, + { + "start": 23769.3, + "end": 23770.32, + "probability": 0.5901 + }, + { + "start": 23770.56, + "end": 23770.9, + "probability": 0.4775 + }, + { + "start": 23774.24, + "end": 23774.94, + "probability": 0.015 + }, + { + "start": 23775.46, + "end": 23776.0, + "probability": 0.0665 + }, + { + "start": 23776.0, + "end": 23776.22, + "probability": 0.057 + }, + { + "start": 23776.48, + "end": 23776.58, + "probability": 0.0632 + }, + { + "start": 23776.58, + "end": 23777.22, + "probability": 0.099 + }, + { + "start": 23778.2, + "end": 23778.62, + "probability": 0.0341 + }, + { + "start": 23779.28, + "end": 23781.4, + "probability": 0.1148 + }, + { + "start": 23781.4, + "end": 23782.24, + "probability": 0.2595 + }, + { + "start": 23782.24, + "end": 23783.24, + "probability": 0.1054 + }, + { + "start": 23783.32, + "end": 23783.6, + "probability": 0.0037 + }, + { + "start": 23783.76, + "end": 23783.86, + "probability": 0.2143 + }, + { + "start": 23784.0, + "end": 23784.84, + "probability": 0.1648 + }, + { + "start": 23787.24, + "end": 23787.96, + "probability": 0.1885 + }, + { + "start": 23787.96, + "end": 23788.66, + "probability": 0.1599 + }, + { + "start": 23788.66, + "end": 23789.98, + "probability": 0.4065 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.0, + "end": 23790.0, + "probability": 0.0 + }, + { + "start": 23790.12, + "end": 23790.18, + "probability": 0.0223 + }, + { + "start": 23790.18, + "end": 23790.18, + "probability": 0.1658 + }, + { + "start": 23790.18, + "end": 23790.86, + "probability": 0.0739 + }, + { + "start": 23791.78, + "end": 23792.88, + "probability": 0.4917 + }, + { + "start": 23793.18, + "end": 23794.6, + "probability": 0.8436 + }, + { + "start": 23794.98, + "end": 23800.1, + "probability": 0.8841 + }, + { + "start": 23801.18, + "end": 23801.42, + "probability": 0.194 + }, + { + "start": 23801.42, + "end": 23802.96, + "probability": 0.6479 + }, + { + "start": 23803.46, + "end": 23806.78, + "probability": 0.9751 + }, + { + "start": 23807.94, + "end": 23809.34, + "probability": 0.7054 + }, + { + "start": 23809.96, + "end": 23812.54, + "probability": 0.9745 + }, + { + "start": 23812.94, + "end": 23815.68, + "probability": 0.6138 + }, + { + "start": 23815.68, + "end": 23819.54, + "probability": 0.9947 + }, + { + "start": 23820.18, + "end": 23820.9, + "probability": 0.8661 + }, + { + "start": 23821.38, + "end": 23826.9, + "probability": 0.967 + }, + { + "start": 23826.9, + "end": 23831.32, + "probability": 0.9983 + }, + { + "start": 23832.14, + "end": 23834.12, + "probability": 0.9632 + }, + { + "start": 23834.76, + "end": 23837.58, + "probability": 0.9419 + }, + { + "start": 23837.98, + "end": 23841.06, + "probability": 0.6964 + }, + { + "start": 23841.06, + "end": 23841.42, + "probability": 0.5799 + }, + { + "start": 23842.18, + "end": 23845.58, + "probability": 0.9922 + }, + { + "start": 23846.1, + "end": 23850.92, + "probability": 0.8974 + }, + { + "start": 23850.92, + "end": 23851.6, + "probability": 0.7217 + }, + { + "start": 23851.7, + "end": 23852.18, + "probability": 0.8632 + }, + { + "start": 23856.56, + "end": 23856.56, + "probability": 0.6664 + }, + { + "start": 23856.56, + "end": 23859.26, + "probability": 0.4531 + }, + { + "start": 23859.26, + "end": 23860.06, + "probability": 0.4238 + }, + { + "start": 23876.9, + "end": 23878.88, + "probability": 0.616 + }, + { + "start": 23879.06, + "end": 23879.22, + "probability": 0.3397 + }, + { + "start": 23879.22, + "end": 23879.72, + "probability": 0.7392 + }, + { + "start": 23879.8, + "end": 23881.3, + "probability": 0.9092 + }, + { + "start": 23883.92, + "end": 23888.42, + "probability": 0.9919 + }, + { + "start": 23889.52, + "end": 23894.82, + "probability": 0.9952 + }, + { + "start": 23894.82, + "end": 23896.0, + "probability": 0.5389 + }, + { + "start": 23897.18, + "end": 23899.24, + "probability": 0.887 + }, + { + "start": 23899.36, + "end": 23902.46, + "probability": 0.9028 + }, + { + "start": 23903.02, + "end": 23904.9, + "probability": 0.9028 + }, + { + "start": 23905.02, + "end": 23908.2, + "probability": 0.9182 + }, + { + "start": 23908.88, + "end": 23912.38, + "probability": 0.9956 + }, + { + "start": 23912.82, + "end": 23915.16, + "probability": 0.9757 + }, + { + "start": 23915.32, + "end": 23917.82, + "probability": 0.9718 + }, + { + "start": 23917.88, + "end": 23919.28, + "probability": 0.5753 + }, + { + "start": 23919.54, + "end": 23921.8, + "probability": 0.9671 + }, + { + "start": 23921.8, + "end": 23924.1, + "probability": 0.8028 + }, + { + "start": 23924.4, + "end": 23928.1, + "probability": 0.9702 + }, + { + "start": 23928.32, + "end": 23930.42, + "probability": 0.9331 + }, + { + "start": 23930.78, + "end": 23932.44, + "probability": 0.2853 + }, + { + "start": 23932.72, + "end": 23934.96, + "probability": 0.7327 + }, + { + "start": 23935.68, + "end": 23940.62, + "probability": 0.9918 + }, + { + "start": 23941.32, + "end": 23941.72, + "probability": 0.2564 + }, + { + "start": 23941.72, + "end": 23943.78, + "probability": 0.7843 + }, + { + "start": 23943.92, + "end": 23946.0, + "probability": 0.9824 + }, + { + "start": 23946.06, + "end": 23948.3, + "probability": 0.9766 + }, + { + "start": 23948.3, + "end": 23951.7, + "probability": 0.7887 + }, + { + "start": 23952.28, + "end": 23955.52, + "probability": 0.7614 + }, + { + "start": 23957.46, + "end": 23958.43, + "probability": 0.303 + }, + { + "start": 23961.0, + "end": 23962.86, + "probability": 0.9666 + }, + { + "start": 23962.94, + "end": 23964.74, + "probability": 0.9749 + }, + { + "start": 23964.94, + "end": 23968.42, + "probability": 0.9902 + }, + { + "start": 23968.7, + "end": 23969.7, + "probability": 0.736 + }, + { + "start": 23970.86, + "end": 23973.8, + "probability": 0.9629 + }, + { + "start": 23974.68, + "end": 23976.4, + "probability": 0.9839 + }, + { + "start": 23976.46, + "end": 23980.7, + "probability": 0.9857 + }, + { + "start": 23980.78, + "end": 23982.74, + "probability": 0.9902 + }, + { + "start": 23982.88, + "end": 23986.06, + "probability": 0.9951 + }, + { + "start": 23986.06, + "end": 23992.24, + "probability": 0.9251 + }, + { + "start": 23993.1, + "end": 23995.82, + "probability": 0.9897 + }, + { + "start": 23995.9, + "end": 23999.02, + "probability": 0.9187 + }, + { + "start": 23999.18, + "end": 24000.64, + "probability": 0.9921 + }, + { + "start": 24001.16, + "end": 24003.64, + "probability": 0.9913 + }, + { + "start": 24003.76, + "end": 24007.41, + "probability": 0.9957 + }, + { + "start": 24008.84, + "end": 24011.2, + "probability": 0.9137 + }, + { + "start": 24011.72, + "end": 24013.04, + "probability": 0.9311 + }, + { + "start": 24013.16, + "end": 24014.58, + "probability": 0.7905 + }, + { + "start": 24014.9, + "end": 24019.68, + "probability": 0.9762 + }, + { + "start": 24019.82, + "end": 24021.45, + "probability": 0.8064 + }, + { + "start": 24024.94, + "end": 24025.36, + "probability": 0.0331 + }, + { + "start": 24025.78, + "end": 24025.78, + "probability": 0.1231 + }, + { + "start": 24025.78, + "end": 24030.44, + "probability": 0.9716 + }, + { + "start": 24030.74, + "end": 24032.78, + "probability": 0.8691 + }, + { + "start": 24032.84, + "end": 24034.25, + "probability": 0.8899 + }, + { + "start": 24035.67, + "end": 24037.86, + "probability": 0.2714 + }, + { + "start": 24038.1, + "end": 24042.08, + "probability": 0.9763 + }, + { + "start": 24042.14, + "end": 24043.0, + "probability": 0.7775 + }, + { + "start": 24043.2, + "end": 24047.77, + "probability": 0.958 + }, + { + "start": 24047.86, + "end": 24049.64, + "probability": 0.8258 + }, + { + "start": 24050.22, + "end": 24050.36, + "probability": 0.3835 + }, + { + "start": 24051.06, + "end": 24052.3, + "probability": 0.5378 + }, + { + "start": 24052.32, + "end": 24055.04, + "probability": 0.8485 + }, + { + "start": 24055.4, + "end": 24060.8, + "probability": 0.9648 + }, + { + "start": 24060.92, + "end": 24061.7, + "probability": 0.5294 + }, + { + "start": 24062.62, + "end": 24064.92, + "probability": 0.9512 + }, + { + "start": 24065.04, + "end": 24065.18, + "probability": 0.5124 + }, + { + "start": 24065.3, + "end": 24065.54, + "probability": 0.3009 + }, + { + "start": 24065.72, + "end": 24066.1, + "probability": 0.3886 + }, + { + "start": 24066.1, + "end": 24070.54, + "probability": 0.8915 + }, + { + "start": 24070.82, + "end": 24071.36, + "probability": 0.4405 + }, + { + "start": 24071.36, + "end": 24072.18, + "probability": 0.6535 + }, + { + "start": 24072.48, + "end": 24072.78, + "probability": 0.532 + }, + { + "start": 24074.05, + "end": 24076.2, + "probability": 0.9229 + }, + { + "start": 24076.28, + "end": 24077.34, + "probability": 0.662 + }, + { + "start": 24077.5, + "end": 24079.04, + "probability": 0.8175 + }, + { + "start": 24079.86, + "end": 24084.24, + "probability": 0.8412 + }, + { + "start": 24084.24, + "end": 24087.84, + "probability": 0.8643 + }, + { + "start": 24088.06, + "end": 24090.18, + "probability": 0.9832 + }, + { + "start": 24090.62, + "end": 24092.16, + "probability": 0.9929 + }, + { + "start": 24092.3, + "end": 24094.48, + "probability": 0.9765 + }, + { + "start": 24094.86, + "end": 24099.01, + "probability": 0.837 + }, + { + "start": 24099.54, + "end": 24101.18, + "probability": 0.9761 + }, + { + "start": 24101.42, + "end": 24102.82, + "probability": 0.8054 + }, + { + "start": 24102.96, + "end": 24106.02, + "probability": 0.8005 + }, + { + "start": 24106.24, + "end": 24107.5, + "probability": 0.5338 + }, + { + "start": 24107.72, + "end": 24110.34, + "probability": 0.9897 + }, + { + "start": 24110.62, + "end": 24111.53, + "probability": 0.713 + }, + { + "start": 24111.82, + "end": 24112.96, + "probability": 0.8813 + }, + { + "start": 24113.18, + "end": 24114.53, + "probability": 0.5905 + }, + { + "start": 24114.8, + "end": 24117.3, + "probability": 0.8584 + }, + { + "start": 24118.14, + "end": 24118.98, + "probability": 0.2645 + }, + { + "start": 24118.98, + "end": 24122.34, + "probability": 0.9351 + }, + { + "start": 24123.06, + "end": 24123.24, + "probability": 0.5222 + }, + { + "start": 24123.56, + "end": 24127.4, + "probability": 0.7701 + }, + { + "start": 24127.46, + "end": 24129.24, + "probability": 0.7604 + }, + { + "start": 24129.24, + "end": 24132.02, + "probability": 0.142 + }, + { + "start": 24132.02, + "end": 24132.93, + "probability": 0.2377 + }, + { + "start": 24133.34, + "end": 24136.7, + "probability": 0.0838 + }, + { + "start": 24137.0, + "end": 24137.54, + "probability": 0.1743 + }, + { + "start": 24137.54, + "end": 24137.54, + "probability": 0.0213 + }, + { + "start": 24137.54, + "end": 24140.2, + "probability": 0.4575 + }, + { + "start": 24140.34, + "end": 24141.84, + "probability": 0.9656 + }, + { + "start": 24141.86, + "end": 24142.99, + "probability": 0.7726 + }, + { + "start": 24143.3, + "end": 24146.38, + "probability": 0.9784 + }, + { + "start": 24147.13, + "end": 24149.36, + "probability": 0.9927 + }, + { + "start": 24150.16, + "end": 24150.88, + "probability": 0.2433 + }, + { + "start": 24152.1, + "end": 24154.34, + "probability": 0.9797 + }, + { + "start": 24154.44, + "end": 24154.86, + "probability": 0.6217 + }, + { + "start": 24154.94, + "end": 24158.3, + "probability": 0.9203 + }, + { + "start": 24158.56, + "end": 24161.42, + "probability": 0.3178 + }, + { + "start": 24162.86, + "end": 24163.72, + "probability": 0.6937 + }, + { + "start": 24163.9, + "end": 24167.9, + "probability": 0.9582 + }, + { + "start": 24167.92, + "end": 24168.12, + "probability": 0.0477 + }, + { + "start": 24168.94, + "end": 24172.5, + "probability": 0.9821 + }, + { + "start": 24172.66, + "end": 24177.0, + "probability": 0.9033 + }, + { + "start": 24177.06, + "end": 24178.06, + "probability": 0.7944 + }, + { + "start": 24178.14, + "end": 24178.8, + "probability": 0.9614 + }, + { + "start": 24178.92, + "end": 24179.84, + "probability": 0.9753 + }, + { + "start": 24180.04, + "end": 24181.14, + "probability": 0.8601 + }, + { + "start": 24181.34, + "end": 24186.1, + "probability": 0.9059 + }, + { + "start": 24186.1, + "end": 24189.74, + "probability": 0.9736 + }, + { + "start": 24190.08, + "end": 24190.16, + "probability": 0.1648 + }, + { + "start": 24190.16, + "end": 24193.36, + "probability": 0.7651 + }, + { + "start": 24194.02, + "end": 24195.22, + "probability": 0.9238 + }, + { + "start": 24195.4, + "end": 24198.76, + "probability": 0.8739 + }, + { + "start": 24199.04, + "end": 24203.2, + "probability": 0.9668 + }, + { + "start": 24203.26, + "end": 24204.84, + "probability": 0.9579 + }, + { + "start": 24204.86, + "end": 24207.67, + "probability": 0.9429 + }, + { + "start": 24208.46, + "end": 24208.7, + "probability": 0.6503 + }, + { + "start": 24208.78, + "end": 24209.36, + "probability": 0.7359 + }, + { + "start": 24209.46, + "end": 24213.46, + "probability": 0.9886 + }, + { + "start": 24213.46, + "end": 24217.3, + "probability": 0.9943 + }, + { + "start": 24217.68, + "end": 24220.82, + "probability": 0.9837 + }, + { + "start": 24221.22, + "end": 24222.56, + "probability": 0.297 + }, + { + "start": 24223.16, + "end": 24225.58, + "probability": 0.7094 + }, + { + "start": 24225.62, + "end": 24229.72, + "probability": 0.9431 + }, + { + "start": 24230.22, + "end": 24230.74, + "probability": 0.685 + }, + { + "start": 24230.86, + "end": 24233.6, + "probability": 0.9126 + }, + { + "start": 24233.6, + "end": 24236.34, + "probability": 0.999 + }, + { + "start": 24236.64, + "end": 24244.11, + "probability": 0.9874 + }, + { + "start": 24244.84, + "end": 24247.92, + "probability": 0.0795 + }, + { + "start": 24249.28, + "end": 24250.04, + "probability": 0.1373 + }, + { + "start": 24250.04, + "end": 24250.04, + "probability": 0.0251 + }, + { + "start": 24250.04, + "end": 24253.68, + "probability": 0.5106 + }, + { + "start": 24253.8, + "end": 24254.38, + "probability": 0.6318 + }, + { + "start": 24254.5, + "end": 24254.6, + "probability": 0.7825 + }, + { + "start": 24254.74, + "end": 24257.74, + "probability": 0.7546 + }, + { + "start": 24258.12, + "end": 24260.74, + "probability": 0.9012 + }, + { + "start": 24261.94, + "end": 24261.94, + "probability": 0.0927 + }, + { + "start": 24261.94, + "end": 24261.94, + "probability": 0.1893 + }, + { + "start": 24261.94, + "end": 24267.46, + "probability": 0.9812 + }, + { + "start": 24268.68, + "end": 24271.12, + "probability": 0.9814 + }, + { + "start": 24271.22, + "end": 24273.58, + "probability": 0.9857 + }, + { + "start": 24273.98, + "end": 24274.9, + "probability": 0.9559 + }, + { + "start": 24275.3, + "end": 24277.2, + "probability": 0.8397 + }, + { + "start": 24277.36, + "end": 24278.8, + "probability": 0.9037 + }, + { + "start": 24278.9, + "end": 24280.42, + "probability": 0.9951 + }, + { + "start": 24280.78, + "end": 24281.14, + "probability": 0.5062 + }, + { + "start": 24281.28, + "end": 24283.84, + "probability": 0.7714 + }, + { + "start": 24283.86, + "end": 24285.6, + "probability": 0.9528 + }, + { + "start": 24285.98, + "end": 24288.8, + "probability": 0.9899 + }, + { + "start": 24289.16, + "end": 24291.02, + "probability": 0.9209 + }, + { + "start": 24291.66, + "end": 24294.76, + "probability": 0.9185 + }, + { + "start": 24295.28, + "end": 24296.22, + "probability": 0.9004 + }, + { + "start": 24297.08, + "end": 24299.82, + "probability": 0.9841 + }, + { + "start": 24300.46, + "end": 24301.08, + "probability": 0.5444 + }, + { + "start": 24301.14, + "end": 24301.48, + "probability": 0.8469 + }, + { + "start": 24301.56, + "end": 24304.0, + "probability": 0.7066 + }, + { + "start": 24304.52, + "end": 24310.26, + "probability": 0.9638 + }, + { + "start": 24311.16, + "end": 24311.5, + "probability": 0.6057 + }, + { + "start": 24311.62, + "end": 24316.3, + "probability": 0.8879 + }, + { + "start": 24316.94, + "end": 24322.24, + "probability": 0.9889 + }, + { + "start": 24322.42, + "end": 24325.18, + "probability": 0.8891 + }, + { + "start": 24325.66, + "end": 24328.04, + "probability": 0.8187 + }, + { + "start": 24328.12, + "end": 24329.96, + "probability": 0.9233 + }, + { + "start": 24330.24, + "end": 24333.14, + "probability": 0.7284 + }, + { + "start": 24333.42, + "end": 24333.58, + "probability": 0.4241 + }, + { + "start": 24333.6, + "end": 24335.56, + "probability": 0.9779 + }, + { + "start": 24335.64, + "end": 24336.46, + "probability": 0.5829 + }, + { + "start": 24336.46, + "end": 24338.92, + "probability": 0.7817 + }, + { + "start": 24339.02, + "end": 24339.64, + "probability": 0.8246 + }, + { + "start": 24339.66, + "end": 24340.58, + "probability": 0.629 + }, + { + "start": 24340.8, + "end": 24343.8, + "probability": 0.8611 + }, + { + "start": 24344.4, + "end": 24344.4, + "probability": 0.0823 + }, + { + "start": 24344.4, + "end": 24345.1, + "probability": 0.1977 + }, + { + "start": 24345.16, + "end": 24346.88, + "probability": 0.5673 + }, + { + "start": 24347.0, + "end": 24348.33, + "probability": 0.6305 + }, + { + "start": 24348.56, + "end": 24349.38, + "probability": 0.4782 + }, + { + "start": 24350.36, + "end": 24350.38, + "probability": 0.0816 + }, + { + "start": 24350.38, + "end": 24350.94, + "probability": 0.4595 + }, + { + "start": 24351.2, + "end": 24352.52, + "probability": 0.6452 + }, + { + "start": 24353.12, + "end": 24356.32, + "probability": 0.9071 + }, + { + "start": 24356.42, + "end": 24359.02, + "probability": 0.9263 + }, + { + "start": 24359.42, + "end": 24360.38, + "probability": 0.9163 + }, + { + "start": 24360.38, + "end": 24360.38, + "probability": 0.3531 + }, + { + "start": 24360.54, + "end": 24363.48, + "probability": 0.98 + }, + { + "start": 24363.56, + "end": 24364.22, + "probability": 0.4605 + }, + { + "start": 24364.38, + "end": 24367.34, + "probability": 0.9965 + }, + { + "start": 24367.46, + "end": 24369.22, + "probability": 0.4616 + }, + { + "start": 24369.22, + "end": 24372.02, + "probability": 0.5636 + }, + { + "start": 24372.24, + "end": 24373.68, + "probability": 0.1675 + }, + { + "start": 24373.68, + "end": 24373.98, + "probability": 0.579 + }, + { + "start": 24373.98, + "end": 24376.0, + "probability": 0.5995 + }, + { + "start": 24376.0, + "end": 24377.8, + "probability": 0.8427 + }, + { + "start": 24377.8, + "end": 24378.4, + "probability": 0.7301 + }, + { + "start": 24378.6, + "end": 24382.04, + "probability": 0.762 + }, + { + "start": 24382.88, + "end": 24383.08, + "probability": 0.1251 + }, + { + "start": 24383.18, + "end": 24383.57, + "probability": 0.3205 + }, + { + "start": 24385.14, + "end": 24386.26, + "probability": 0.8398 + }, + { + "start": 24386.26, + "end": 24388.45, + "probability": 0.6177 + }, + { + "start": 24389.2, + "end": 24391.86, + "probability": 0.9805 + }, + { + "start": 24392.7, + "end": 24395.04, + "probability": 0.0449 + }, + { + "start": 24398.76, + "end": 24399.66, + "probability": 0.7314 + }, + { + "start": 24400.46, + "end": 24402.42, + "probability": 0.0758 + }, + { + "start": 24402.42, + "end": 24403.4, + "probability": 0.3228 + }, + { + "start": 24403.64, + "end": 24404.46, + "probability": 0.5856 + }, + { + "start": 24404.46, + "end": 24409.38, + "probability": 0.9023 + }, + { + "start": 24409.54, + "end": 24410.9, + "probability": 0.099 + }, + { + "start": 24411.42, + "end": 24411.8, + "probability": 0.0143 + }, + { + "start": 24411.8, + "end": 24411.86, + "probability": 0.0361 + }, + { + "start": 24411.86, + "end": 24411.86, + "probability": 0.0595 + }, + { + "start": 24411.86, + "end": 24411.88, + "probability": 0.1796 + }, + { + "start": 24411.88, + "end": 24412.52, + "probability": 0.0608 + }, + { + "start": 24412.92, + "end": 24414.6, + "probability": 0.7078 + }, + { + "start": 24414.62, + "end": 24416.92, + "probability": 0.8464 + }, + { + "start": 24417.32, + "end": 24418.1, + "probability": 0.2113 + }, + { + "start": 24418.1, + "end": 24419.72, + "probability": 0.6466 + }, + { + "start": 24419.72, + "end": 24419.72, + "probability": 0.8049 + }, + { + "start": 24419.72, + "end": 24421.48, + "probability": 0.331 + }, + { + "start": 24421.56, + "end": 24422.96, + "probability": 0.4638 + }, + { + "start": 24423.76, + "end": 24424.22, + "probability": 0.7703 + }, + { + "start": 24426.26, + "end": 24431.74, + "probability": 0.979 + }, + { + "start": 24432.7, + "end": 24433.2, + "probability": 0.6513 + }, + { + "start": 24433.98, + "end": 24437.08, + "probability": 0.8762 + }, + { + "start": 24437.48, + "end": 24439.64, + "probability": 0.9554 + }, + { + "start": 24439.78, + "end": 24441.44, + "probability": 0.7841 + }, + { + "start": 24441.94, + "end": 24441.96, + "probability": 0.0632 + }, + { + "start": 24441.96, + "end": 24445.68, + "probability": 0.9456 + }, + { + "start": 24446.46, + "end": 24450.38, + "probability": 0.9902 + }, + { + "start": 24450.78, + "end": 24453.72, + "probability": 0.7856 + }, + { + "start": 24454.06, + "end": 24455.78, + "probability": 0.9821 + }, + { + "start": 24456.34, + "end": 24458.04, + "probability": 0.9841 + }, + { + "start": 24458.2, + "end": 24459.26, + "probability": 0.918 + }, + { + "start": 24459.28, + "end": 24461.08, + "probability": 0.9653 + }, + { + "start": 24461.44, + "end": 24463.02, + "probability": 0.873 + }, + { + "start": 24467.04, + "end": 24468.1, + "probability": 0.6952 + }, + { + "start": 24468.1, + "end": 24468.1, + "probability": 0.3362 + }, + { + "start": 24468.1, + "end": 24468.1, + "probability": 0.0661 + }, + { + "start": 24468.1, + "end": 24468.1, + "probability": 0.574 + }, + { + "start": 24468.1, + "end": 24468.1, + "probability": 0.444 + }, + { + "start": 24468.1, + "end": 24470.76, + "probability": 0.5737 + }, + { + "start": 24471.1, + "end": 24474.11, + "probability": 0.9224 + }, + { + "start": 24474.24, + "end": 24477.74, + "probability": 0.6774 + }, + { + "start": 24478.52, + "end": 24479.56, + "probability": 0.3431 + }, + { + "start": 24479.64, + "end": 24482.9, + "probability": 0.9738 + }, + { + "start": 24482.98, + "end": 24483.92, + "probability": 0.9604 + }, + { + "start": 24484.14, + "end": 24486.02, + "probability": 0.9375 + }, + { + "start": 24486.24, + "end": 24487.36, + "probability": 0.7896 + }, + { + "start": 24487.86, + "end": 24491.2, + "probability": 0.9786 + }, + { + "start": 24492.04, + "end": 24494.28, + "probability": 0.8778 + }, + { + "start": 24495.82, + "end": 24496.83, + "probability": 0.9292 + }, + { + "start": 24497.3, + "end": 24501.32, + "probability": 0.9305 + }, + { + "start": 24501.62, + "end": 24502.3, + "probability": 0.7664 + }, + { + "start": 24502.68, + "end": 24503.66, + "probability": 0.1723 + }, + { + "start": 24503.7, + "end": 24505.12, + "probability": 0.6148 + }, + { + "start": 24505.22, + "end": 24507.98, + "probability": 0.6505 + }, + { + "start": 24508.78, + "end": 24510.6, + "probability": 0.0793 + }, + { + "start": 24510.6, + "end": 24512.9, + "probability": 0.8354 + }, + { + "start": 24512.98, + "end": 24516.68, + "probability": 0.6912 + }, + { + "start": 24517.4, + "end": 24522.22, + "probability": 0.9834 + }, + { + "start": 24522.26, + "end": 24525.85, + "probability": 0.9761 + }, + { + "start": 24526.78, + "end": 24533.36, + "probability": 0.4981 + }, + { + "start": 24533.56, + "end": 24536.2, + "probability": 0.8533 + }, + { + "start": 24537.74, + "end": 24540.58, + "probability": 0.1035 + }, + { + "start": 24542.78, + "end": 24545.66, + "probability": 0.3864 + }, + { + "start": 24545.66, + "end": 24545.94, + "probability": 0.0601 + }, + { + "start": 24545.94, + "end": 24546.94, + "probability": 0.0187 + }, + { + "start": 24546.94, + "end": 24546.94, + "probability": 0.6189 + }, + { + "start": 24546.94, + "end": 24546.94, + "probability": 0.2284 + }, + { + "start": 24546.94, + "end": 24546.94, + "probability": 0.0391 + }, + { + "start": 24546.94, + "end": 24551.88, + "probability": 0.7543 + }, + { + "start": 24552.64, + "end": 24555.66, + "probability": 0.9275 + }, + { + "start": 24555.84, + "end": 24556.9, + "probability": 0.7474 + }, + { + "start": 24557.52, + "end": 24558.48, + "probability": 0.6615 + }, + { + "start": 24559.06, + "end": 24559.06, + "probability": 0.0126 + }, + { + "start": 24559.06, + "end": 24560.72, + "probability": 0.799 + }, + { + "start": 24560.84, + "end": 24561.84, + "probability": 0.6879 + }, + { + "start": 24562.1, + "end": 24566.06, + "probability": 0.9513 + }, + { + "start": 24566.32, + "end": 24568.44, + "probability": 0.9868 + }, + { + "start": 24569.18, + "end": 24571.62, + "probability": 0.9344 + }, + { + "start": 24571.7, + "end": 24573.14, + "probability": 0.9951 + }, + { + "start": 24574.1, + "end": 24576.55, + "probability": 0.9836 + }, + { + "start": 24576.78, + "end": 24577.46, + "probability": 0.0128 + }, + { + "start": 24577.46, + "end": 24580.73, + "probability": 0.9893 + }, + { + "start": 24581.18, + "end": 24583.91, + "probability": 0.9512 + }, + { + "start": 24585.72, + "end": 24586.56, + "probability": 0.9488 + }, + { + "start": 24594.7, + "end": 24594.92, + "probability": 0.0821 + }, + { + "start": 24594.96, + "end": 24595.32, + "probability": 0.1414 + }, + { + "start": 24596.01, + "end": 24597.9, + "probability": 0.9197 + }, + { + "start": 24598.8, + "end": 24599.1, + "probability": 0.6751 + }, + { + "start": 24600.34, + "end": 24602.44, + "probability": 0.3773 + }, + { + "start": 24602.44, + "end": 24602.54, + "probability": 0.246 + }, + { + "start": 24607.72, + "end": 24610.94, + "probability": 0.6956 + }, + { + "start": 24615.2, + "end": 24618.06, + "probability": 0.8995 + }, + { + "start": 24618.12, + "end": 24620.68, + "probability": 0.9972 + }, + { + "start": 24622.66, + "end": 24627.68, + "probability": 0.7036 + }, + { + "start": 24628.82, + "end": 24630.26, + "probability": 0.9312 + }, + { + "start": 24630.68, + "end": 24632.96, + "probability": 0.996 + }, + { + "start": 24632.98, + "end": 24634.5, + "probability": 0.9644 + }, + { + "start": 24634.56, + "end": 24636.72, + "probability": 0.8128 + }, + { + "start": 24636.8, + "end": 24638.56, + "probability": 0.9149 + }, + { + "start": 24639.0, + "end": 24642.02, + "probability": 0.906 + }, + { + "start": 24642.62, + "end": 24647.9, + "probability": 0.88 + }, + { + "start": 24648.44, + "end": 24650.34, + "probability": 0.8038 + }, + { + "start": 24650.68, + "end": 24651.64, + "probability": 0.887 + }, + { + "start": 24651.78, + "end": 24652.84, + "probability": 0.9653 + }, + { + "start": 24653.14, + "end": 24654.58, + "probability": 0.4914 + }, + { + "start": 24654.58, + "end": 24655.12, + "probability": 0.3203 + }, + { + "start": 24655.32, + "end": 24658.62, + "probability": 0.7517 + }, + { + "start": 24658.98, + "end": 24660.58, + "probability": 0.9648 + }, + { + "start": 24661.22, + "end": 24662.24, + "probability": 0.9552 + }, + { + "start": 24662.32, + "end": 24663.24, + "probability": 0.6533 + }, + { + "start": 24663.5, + "end": 24664.22, + "probability": 0.9438 + }, + { + "start": 24664.5, + "end": 24665.84, + "probability": 0.9293 + }, + { + "start": 24667.42, + "end": 24671.02, + "probability": 0.8076 + }, + { + "start": 24671.2, + "end": 24671.2, + "probability": 0.2519 + }, + { + "start": 24671.2, + "end": 24675.8, + "probability": 0.9596 + }, + { + "start": 24676.34, + "end": 24677.38, + "probability": 0.336 + }, + { + "start": 24677.76, + "end": 24683.64, + "probability": 0.8224 + }, + { + "start": 24684.5, + "end": 24687.31, + "probability": 0.9834 + }, + { + "start": 24687.66, + "end": 24689.16, + "probability": 0.9832 + }, + { + "start": 24689.58, + "end": 24690.28, + "probability": 0.6675 + }, + { + "start": 24690.46, + "end": 24690.62, + "probability": 0.665 + }, + { + "start": 24690.76, + "end": 24695.18, + "probability": 0.8933 + }, + { + "start": 24695.24, + "end": 24698.82, + "probability": 0.848 + }, + { + "start": 24699.64, + "end": 24701.63, + "probability": 0.9716 + }, + { + "start": 24702.06, + "end": 24703.28, + "probability": 0.7248 + }, + { + "start": 24703.58, + "end": 24707.56, + "probability": 0.9677 + }, + { + "start": 24708.04, + "end": 24709.5, + "probability": 0.9137 + }, + { + "start": 24709.98, + "end": 24710.44, + "probability": 0.6031 + }, + { + "start": 24710.54, + "end": 24712.14, + "probability": 0.9138 + }, + { + "start": 24712.16, + "end": 24715.04, + "probability": 0.8423 + }, + { + "start": 24715.28, + "end": 24716.88, + "probability": 0.9627 + }, + { + "start": 24717.08, + "end": 24718.0, + "probability": 0.8756 + }, + { + "start": 24718.36, + "end": 24719.16, + "probability": 0.8669 + }, + { + "start": 24719.48, + "end": 24721.2, + "probability": 0.3393 + }, + { + "start": 24721.44, + "end": 24722.78, + "probability": 0.8458 + }, + { + "start": 24723.46, + "end": 24724.46, + "probability": 0.5405 + }, + { + "start": 24730.88, + "end": 24733.5, + "probability": 0.7544 + }, + { + "start": 24734.22, + "end": 24736.3, + "probability": 0.8928 + }, + { + "start": 24736.3, + "end": 24739.28, + "probability": 0.9237 + }, + { + "start": 24739.34, + "end": 24740.44, + "probability": 0.787 + }, + { + "start": 24740.62, + "end": 24742.2, + "probability": 0.0269 + }, + { + "start": 24742.62, + "end": 24745.66, + "probability": 0.4033 + }, + { + "start": 24745.66, + "end": 24745.96, + "probability": 0.0649 + }, + { + "start": 24746.12, + "end": 24748.11, + "probability": 0.9274 + }, + { + "start": 24749.88, + "end": 24752.12, + "probability": 0.9806 + }, + { + "start": 24752.72, + "end": 24755.22, + "probability": 0.9731 + }, + { + "start": 24755.28, + "end": 24757.56, + "probability": 0.8862 + }, + { + "start": 24757.58, + "end": 24759.1, + "probability": 0.9682 + }, + { + "start": 24759.18, + "end": 24763.06, + "probability": 0.8282 + }, + { + "start": 24763.56, + "end": 24764.56, + "probability": 0.7994 + }, + { + "start": 24764.72, + "end": 24769.08, + "probability": 0.9902 + }, + { + "start": 24770.3, + "end": 24774.08, + "probability": 0.9698 + }, + { + "start": 24774.7, + "end": 24778.32, + "probability": 0.9879 + }, + { + "start": 24778.32, + "end": 24782.26, + "probability": 0.9921 + }, + { + "start": 24783.86, + "end": 24785.02, + "probability": 0.8563 + }, + { + "start": 24787.35, + "end": 24791.98, + "probability": 0.9595 + }, + { + "start": 24793.04, + "end": 24793.96, + "probability": 0.8926 + }, + { + "start": 24794.72, + "end": 24795.66, + "probability": 0.8628 + }, + { + "start": 24796.6, + "end": 24798.0, + "probability": 0.9868 + }, + { + "start": 24798.4, + "end": 24799.76, + "probability": 0.9977 + }, + { + "start": 24800.42, + "end": 24801.94, + "probability": 0.9675 + }, + { + "start": 24802.84, + "end": 24804.14, + "probability": 0.731 + }, + { + "start": 24804.74, + "end": 24807.47, + "probability": 0.8569 + }, + { + "start": 24808.28, + "end": 24809.04, + "probability": 0.9193 + }, + { + "start": 24809.14, + "end": 24812.72, + "probability": 0.9602 + }, + { + "start": 24812.82, + "end": 24813.7, + "probability": 0.7582 + }, + { + "start": 24813.88, + "end": 24817.18, + "probability": 0.9353 + }, + { + "start": 24817.9, + "end": 24819.05, + "probability": 0.7116 + }, + { + "start": 24821.22, + "end": 24825.9, + "probability": 0.8674 + }, + { + "start": 24827.14, + "end": 24829.84, + "probability": 0.9644 + }, + { + "start": 24830.38, + "end": 24832.82, + "probability": 0.8555 + }, + { + "start": 24833.3, + "end": 24838.04, + "probability": 0.569 + }, + { + "start": 24838.08, + "end": 24842.34, + "probability": 0.4063 + }, + { + "start": 24842.34, + "end": 24842.64, + "probability": 0.122 + }, + { + "start": 24843.16, + "end": 24846.04, + "probability": 0.8026 + }, + { + "start": 24846.04, + "end": 24846.17, + "probability": 0.7212 + }, + { + "start": 24846.78, + "end": 24849.46, + "probability": 0.9827 + }, + { + "start": 24850.06, + "end": 24852.06, + "probability": 0.9565 + }, + { + "start": 24852.1, + "end": 24854.94, + "probability": 0.9608 + }, + { + "start": 24855.04, + "end": 24857.61, + "probability": 0.5429 + }, + { + "start": 24858.16, + "end": 24858.3, + "probability": 0.7263 + }, + { + "start": 24858.36, + "end": 24860.08, + "probability": 0.7973 + }, + { + "start": 24860.58, + "end": 24861.52, + "probability": 0.8074 + }, + { + "start": 24866.71, + "end": 24869.34, + "probability": 0.6553 + }, + { + "start": 24869.94, + "end": 24871.64, + "probability": 0.9727 + }, + { + "start": 24872.42, + "end": 24874.84, + "probability": 0.9884 + }, + { + "start": 24875.02, + "end": 24875.56, + "probability": 0.1749 + }, + { + "start": 24875.76, + "end": 24880.0, + "probability": 0.9108 + }, + { + "start": 24880.4, + "end": 24885.64, + "probability": 0.9896 + }, + { + "start": 24886.28, + "end": 24890.12, + "probability": 0.9962 + }, + { + "start": 24890.48, + "end": 24892.72, + "probability": 0.7815 + }, + { + "start": 24893.2, + "end": 24896.06, + "probability": 0.9424 + }, + { + "start": 24896.88, + "end": 24899.35, + "probability": 0.943 + }, + { + "start": 24899.74, + "end": 24901.58, + "probability": 0.9545 + }, + { + "start": 24902.32, + "end": 24903.46, + "probability": 0.9048 + }, + { + "start": 24903.7, + "end": 24904.98, + "probability": 0.9609 + }, + { + "start": 24905.34, + "end": 24910.9, + "probability": 0.9268 + }, + { + "start": 24911.28, + "end": 24913.74, + "probability": 0.9659 + }, + { + "start": 24913.96, + "end": 24915.08, + "probability": 0.5455 + }, + { + "start": 24915.28, + "end": 24918.34, + "probability": 0.7341 + }, + { + "start": 24918.34, + "end": 24920.76, + "probability": 0.9945 + }, + { + "start": 24922.98, + "end": 24923.85, + "probability": 0.2729 + }, + { + "start": 24925.34, + "end": 24925.44, + "probability": 0.6304 + }, + { + "start": 24925.44, + "end": 24925.44, + "probability": 0.5038 + }, + { + "start": 24925.44, + "end": 24925.92, + "probability": 0.2818 + }, + { + "start": 24926.0, + "end": 24926.66, + "probability": 0.9327 + }, + { + "start": 24926.68, + "end": 24927.62, + "probability": 0.8146 + }, + { + "start": 24927.78, + "end": 24928.52, + "probability": 0.8324 + }, + { + "start": 24928.6, + "end": 24934.72, + "probability": 0.9833 + }, + { + "start": 24936.16, + "end": 24937.06, + "probability": 0.9647 + }, + { + "start": 24937.82, + "end": 24938.64, + "probability": 0.9896 + }, + { + "start": 24939.76, + "end": 24940.56, + "probability": 0.9598 + }, + { + "start": 24941.08, + "end": 24943.48, + "probability": 0.974 + }, + { + "start": 24944.94, + "end": 24947.2, + "probability": 0.8701 + }, + { + "start": 24947.48, + "end": 24950.12, + "probability": 0.9708 + }, + { + "start": 24950.2, + "end": 24950.4, + "probability": 0.1374 + }, + { + "start": 24950.48, + "end": 24950.94, + "probability": 0.7756 + }, + { + "start": 24951.74, + "end": 24953.29, + "probability": 0.8914 + }, + { + "start": 24953.62, + "end": 24957.98, + "probability": 0.7587 + }, + { + "start": 24958.88, + "end": 24960.43, + "probability": 0.9648 + }, + { + "start": 24960.56, + "end": 24961.3, + "probability": 0.326 + }, + { + "start": 24965.12, + "end": 24967.56, + "probability": 0.9976 + }, + { + "start": 24967.74, + "end": 24967.86, + "probability": 0.3201 + }, + { + "start": 24967.86, + "end": 24968.62, + "probability": 0.4909 + }, + { + "start": 24968.96, + "end": 24969.58, + "probability": 0.5508 + }, + { + "start": 24969.62, + "end": 24970.4, + "probability": 0.7373 + }, + { + "start": 24970.46, + "end": 24971.12, + "probability": 0.7989 + }, + { + "start": 24971.4, + "end": 24973.18, + "probability": 0.9698 + }, + { + "start": 24973.84, + "end": 24976.04, + "probability": 0.5953 + }, + { + "start": 24976.06, + "end": 24978.24, + "probability": 0.5533 + }, + { + "start": 24978.54, + "end": 24981.36, + "probability": 0.9928 + }, + { + "start": 24981.6, + "end": 24983.02, + "probability": 0.9961 + }, + { + "start": 24983.76, + "end": 24984.32, + "probability": 0.9849 + }, + { + "start": 24985.34, + "end": 24986.08, + "probability": 0.9121 + }, + { + "start": 24986.66, + "end": 24987.64, + "probability": 0.8345 + }, + { + "start": 24987.8, + "end": 24989.4, + "probability": 0.9292 + }, + { + "start": 24989.44, + "end": 24992.36, + "probability": 0.2012 + }, + { + "start": 24992.38, + "end": 24995.58, + "probability": 0.985 + }, + { + "start": 24996.16, + "end": 24997.94, + "probability": 0.8514 + }, + { + "start": 24997.98, + "end": 24999.2, + "probability": 0.8767 + }, + { + "start": 24999.56, + "end": 25004.62, + "probability": 0.9953 + }, + { + "start": 25006.42, + "end": 25007.72, + "probability": 0.9966 + }, + { + "start": 25008.86, + "end": 25013.29, + "probability": 0.9951 + }, + { + "start": 25014.46, + "end": 25015.92, + "probability": 0.9962 + }, + { + "start": 25015.98, + "end": 25017.88, + "probability": 0.9727 + }, + { + "start": 25017.96, + "end": 25025.0, + "probability": 0.9819 + }, + { + "start": 25025.2, + "end": 25025.72, + "probability": 0.7014 + }, + { + "start": 25025.94, + "end": 25025.94, + "probability": 0.3596 + }, + { + "start": 25025.96, + "end": 25027.16, + "probability": 0.9972 + }, + { + "start": 25027.26, + "end": 25031.46, + "probability": 0.9897 + }, + { + "start": 25031.76, + "end": 25038.36, + "probability": 0.9944 + }, + { + "start": 25038.38, + "end": 25039.38, + "probability": 0.847 + }, + { + "start": 25040.04, + "end": 25041.68, + "probability": 0.9605 + }, + { + "start": 25042.08, + "end": 25044.48, + "probability": 0.9673 + }, + { + "start": 25044.76, + "end": 25045.34, + "probability": 0.6587 + }, + { + "start": 25045.52, + "end": 25048.0, + "probability": 0.9153 + }, + { + "start": 25052.69, + "end": 25056.08, + "probability": 0.3403 + }, + { + "start": 25056.84, + "end": 25061.34, + "probability": 0.097 + }, + { + "start": 25061.52, + "end": 25062.5, + "probability": 0.3749 + }, + { + "start": 25063.52, + "end": 25068.34, + "probability": 0.0703 + }, + { + "start": 25068.96, + "end": 25069.78, + "probability": 0.085 + }, + { + "start": 25070.06, + "end": 25070.52, + "probability": 0.1494 + }, + { + "start": 25070.56, + "end": 25072.78, + "probability": 0.353 + }, + { + "start": 25073.55, + "end": 25079.06, + "probability": 0.9754 + }, + { + "start": 25079.22, + "end": 25080.88, + "probability": 0.9592 + }, + { + "start": 25080.96, + "end": 25081.44, + "probability": 0.8439 + }, + { + "start": 25081.48, + "end": 25081.84, + "probability": 0.7317 + }, + { + "start": 25081.9, + "end": 25084.12, + "probability": 0.7447 + }, + { + "start": 25084.34, + "end": 25085.04, + "probability": 0.8226 + }, + { + "start": 25085.5, + "end": 25087.54, + "probability": 0.9783 + }, + { + "start": 25087.64, + "end": 25089.22, + "probability": 0.8985 + }, + { + "start": 25089.62, + "end": 25094.18, + "probability": 0.9824 + }, + { + "start": 25094.6, + "end": 25095.86, + "probability": 0.9341 + }, + { + "start": 25096.02, + "end": 25100.7, + "probability": 0.9858 + }, + { + "start": 25100.78, + "end": 25102.04, + "probability": 0.4584 + }, + { + "start": 25102.78, + "end": 25107.37, + "probability": 0.5015 + }, + { + "start": 25107.48, + "end": 25109.28, + "probability": 0.9957 + }, + { + "start": 25109.74, + "end": 25111.04, + "probability": 0.9927 + }, + { + "start": 25112.0, + "end": 25112.7, + "probability": 0.9102 + }, + { + "start": 25113.34, + "end": 25114.84, + "probability": 0.9805 + }, + { + "start": 25115.06, + "end": 25116.3, + "probability": 0.9732 + }, + { + "start": 25116.3, + "end": 25117.44, + "probability": 0.6907 + }, + { + "start": 25117.44, + "end": 25118.22, + "probability": 0.9308 + }, + { + "start": 25118.3, + "end": 25121.25, + "probability": 0.9946 + }, + { + "start": 25121.72, + "end": 25124.36, + "probability": 0.9923 + }, + { + "start": 25124.72, + "end": 25125.62, + "probability": 0.7931 + }, + { + "start": 25125.66, + "end": 25126.56, + "probability": 0.9674 + }, + { + "start": 25126.58, + "end": 25128.8, + "probability": 0.9379 + }, + { + "start": 25129.36, + "end": 25132.46, + "probability": 0.9901 + }, + { + "start": 25132.68, + "end": 25135.92, + "probability": 0.988 + }, + { + "start": 25135.98, + "end": 25137.48, + "probability": 0.9951 + }, + { + "start": 25138.0, + "end": 25140.19, + "probability": 0.9146 + }, + { + "start": 25140.68, + "end": 25141.84, + "probability": 0.8584 + }, + { + "start": 25142.5, + "end": 25143.84, + "probability": 0.8916 + }, + { + "start": 25144.42, + "end": 25146.86, + "probability": 0.9384 + }, + { + "start": 25146.96, + "end": 25148.76, + "probability": 0.9961 + }, + { + "start": 25149.8, + "end": 25152.9, + "probability": 0.998 + }, + { + "start": 25153.12, + "end": 25155.2, + "probability": 0.9646 + }, + { + "start": 25155.38, + "end": 25156.54, + "probability": 0.9546 + }, + { + "start": 25156.62, + "end": 25158.2, + "probability": 0.9919 + }, + { + "start": 25158.72, + "end": 25161.5, + "probability": 0.9919 + }, + { + "start": 25161.9, + "end": 25162.88, + "probability": 0.6107 + }, + { + "start": 25163.22, + "end": 25166.4, + "probability": 0.998 + }, + { + "start": 25166.48, + "end": 25168.76, + "probability": 0.9971 + }, + { + "start": 25168.8, + "end": 25173.52, + "probability": 0.9858 + }, + { + "start": 25173.6, + "end": 25175.06, + "probability": 0.9827 + }, + { + "start": 25175.3, + "end": 25175.66, + "probability": 0.6839 + }, + { + "start": 25176.76, + "end": 25177.9, + "probability": 0.7892 + }, + { + "start": 25178.32, + "end": 25183.6, + "probability": 0.9116 + }, + { + "start": 25183.7, + "end": 25184.48, + "probability": 0.6647 + }, + { + "start": 25185.56, + "end": 25189.8, + "probability": 0.9593 + }, + { + "start": 25191.18, + "end": 25192.54, + "probability": 0.8503 + }, + { + "start": 25194.52, + "end": 25196.76, + "probability": 0.0199 + }, + { + "start": 25197.04, + "end": 25197.46, + "probability": 0.0408 + }, + { + "start": 25197.46, + "end": 25200.54, + "probability": 0.2937 + }, + { + "start": 25200.84, + "end": 25201.12, + "probability": 0.0042 + }, + { + "start": 25207.0, + "end": 25207.76, + "probability": 0.0413 + }, + { + "start": 25208.34, + "end": 25208.44, + "probability": 0.0231 + }, + { + "start": 25208.44, + "end": 25209.26, + "probability": 0.5408 + }, + { + "start": 25209.38, + "end": 25210.42, + "probability": 0.8571 + }, + { + "start": 25210.6, + "end": 25213.34, + "probability": 0.9797 + }, + { + "start": 25214.1, + "end": 25216.46, + "probability": 0.8903 + }, + { + "start": 25217.18, + "end": 25219.06, + "probability": 0.3859 + }, + { + "start": 25219.16, + "end": 25219.42, + "probability": 0.4558 + }, + { + "start": 25219.56, + "end": 25220.45, + "probability": 0.9512 + }, + { + "start": 25221.09, + "end": 25224.4, + "probability": 0.8825 + }, + { + "start": 25225.5, + "end": 25232.2, + "probability": 0.9873 + }, + { + "start": 25232.98, + "end": 25236.74, + "probability": 0.9961 + }, + { + "start": 25237.02, + "end": 25238.31, + "probability": 0.9961 + }, + { + "start": 25239.06, + "end": 25240.06, + "probability": 0.9893 + }, + { + "start": 25240.76, + "end": 25242.87, + "probability": 0.9893 + }, + { + "start": 25243.04, + "end": 25248.1, + "probability": 0.9836 + }, + { + "start": 25248.96, + "end": 25255.62, + "probability": 0.994 + }, + { + "start": 25255.98, + "end": 25256.61, + "probability": 0.8486 + }, + { + "start": 25257.62, + "end": 25258.48, + "probability": 0.4146 + }, + { + "start": 25258.76, + "end": 25259.16, + "probability": 0.6887 + }, + { + "start": 25259.26, + "end": 25260.34, + "probability": 0.9433 + }, + { + "start": 25260.6, + "end": 25261.4, + "probability": 0.5448 + }, + { + "start": 25261.62, + "end": 25263.86, + "probability": 0.9849 + }, + { + "start": 25263.94, + "end": 25266.03, + "probability": 0.7129 + }, + { + "start": 25266.3, + "end": 25267.31, + "probability": 0.9985 + }, + { + "start": 25268.34, + "end": 25270.44, + "probability": 0.9565 + }, + { + "start": 25271.12, + "end": 25271.38, + "probability": 0.2662 + }, + { + "start": 25271.44, + "end": 25272.88, + "probability": 0.8212 + }, + { + "start": 25272.92, + "end": 25277.96, + "probability": 0.9476 + }, + { + "start": 25278.44, + "end": 25281.48, + "probability": 0.9731 + }, + { + "start": 25282.32, + "end": 25282.72, + "probability": 0.6627 + }, + { + "start": 25283.32, + "end": 25284.74, + "probability": 0.9824 + }, + { + "start": 25285.18, + "end": 25288.48, + "probability": 0.9536 + }, + { + "start": 25289.0, + "end": 25290.6, + "probability": 0.7952 + }, + { + "start": 25299.08, + "end": 25300.42, + "probability": 0.0099 + }, + { + "start": 25304.16, + "end": 25305.4, + "probability": 0.8193 + }, + { + "start": 25306.16, + "end": 25308.7, + "probability": 0.8613 + }, + { + "start": 25311.58, + "end": 25314.64, + "probability": 0.9104 + }, + { + "start": 25316.22, + "end": 25317.1, + "probability": 0.0132 + }, + { + "start": 25318.06, + "end": 25320.78, + "probability": 0.9171 + }, + { + "start": 25322.22, + "end": 25322.24, + "probability": 0.5736 + }, + { + "start": 25322.24, + "end": 25323.48, + "probability": 0.8486 + }, + { + "start": 25323.94, + "end": 25323.94, + "probability": 0.1081 + }, + { + "start": 25324.72, + "end": 25329.58, + "probability": 0.4818 + }, + { + "start": 25330.5, + "end": 25331.96, + "probability": 0.3467 + }, + { + "start": 25331.96, + "end": 25331.96, + "probability": 0.2084 + }, + { + "start": 25331.96, + "end": 25332.26, + "probability": 0.529 + }, + { + "start": 25332.28, + "end": 25333.0, + "probability": 0.5078 + }, + { + "start": 25333.54, + "end": 25334.52, + "probability": 0.9371 + }, + { + "start": 25337.14, + "end": 25338.16, + "probability": 0.856 + }, + { + "start": 25342.06, + "end": 25344.02, + "probability": 0.9119 + }, + { + "start": 25344.02, + "end": 25345.12, + "probability": 0.7634 + }, + { + "start": 25348.46, + "end": 25348.84, + "probability": 0.5357 + }, + { + "start": 25348.84, + "end": 25350.6, + "probability": 0.1515 + }, + { + "start": 25351.34, + "end": 25356.14, + "probability": 0.5235 + }, + { + "start": 25361.04, + "end": 25361.32, + "probability": 0.3737 + }, + { + "start": 25361.32, + "end": 25364.0, + "probability": 0.8232 + }, + { + "start": 25364.0, + "end": 25365.08, + "probability": 0.3863 + }, + { + "start": 25365.92, + "end": 25366.36, + "probability": 0.6245 + }, + { + "start": 25367.72, + "end": 25370.24, + "probability": 0.8918 + }, + { + "start": 25371.76, + "end": 25373.06, + "probability": 0.5023 + }, + { + "start": 25373.72, + "end": 25374.34, + "probability": 0.2448 + }, + { + "start": 25376.6, + "end": 25377.34, + "probability": 0.2847 + }, + { + "start": 25377.56, + "end": 25379.56, + "probability": 0.4134 + }, + { + "start": 25379.84, + "end": 25381.32, + "probability": 0.1295 + }, + { + "start": 25381.64, + "end": 25384.72, + "probability": 0.7049 + }, + { + "start": 25385.04, + "end": 25385.86, + "probability": 0.9478 + }, + { + "start": 25386.52, + "end": 25387.26, + "probability": 0.8833 + }, + { + "start": 25388.66, + "end": 25390.78, + "probability": 0.126 + }, + { + "start": 25392.58, + "end": 25393.38, + "probability": 0.1085 + }, + { + "start": 25393.8, + "end": 25393.8, + "probability": 0.2362 + }, + { + "start": 25393.8, + "end": 25395.42, + "probability": 0.5195 + }, + { + "start": 25395.9, + "end": 25396.8, + "probability": 0.343 + }, + { + "start": 25397.1, + "end": 25398.4, + "probability": 0.7478 + }, + { + "start": 25398.62, + "end": 25399.87, + "probability": 0.9849 + }, + { + "start": 25402.78, + "end": 25404.0, + "probability": 0.0598 + }, + { + "start": 25404.0, + "end": 25406.28, + "probability": 0.4412 + }, + { + "start": 25406.9, + "end": 25410.58, + "probability": 0.6413 + }, + { + "start": 25423.68, + "end": 25424.4, + "probability": 0.0122 + }, + { + "start": 25424.4, + "end": 25427.94, + "probability": 0.7872 + }, + { + "start": 25428.5, + "end": 25430.88, + "probability": 0.7628 + }, + { + "start": 25431.26, + "end": 25433.26, + "probability": 0.154 + }, + { + "start": 25433.34, + "end": 25436.71, + "probability": 0.976 + }, + { + "start": 25436.8, + "end": 25436.96, + "probability": 0.0001 + }, + { + "start": 25439.48, + "end": 25439.5, + "probability": 0.0004 + }, + { + "start": 25440.94, + "end": 25441.58, + "probability": 0.0103 + }, + { + "start": 25441.58, + "end": 25442.26, + "probability": 0.2768 + }, + { + "start": 25442.26, + "end": 25442.26, + "probability": 0.2413 + }, + { + "start": 25442.26, + "end": 25444.06, + "probability": 0.7642 + }, + { + "start": 25461.64, + "end": 25464.56, + "probability": 0.2091 + }, + { + "start": 25466.52, + "end": 25468.6, + "probability": 0.1675 + }, + { + "start": 25469.6, + "end": 25472.0, + "probability": 0.507 + }, + { + "start": 25472.62, + "end": 25474.04, + "probability": 0.6094 + }, + { + "start": 25474.04, + "end": 25475.58, + "probability": 0.6279 + }, + { + "start": 25476.2, + "end": 25478.88, + "probability": 0.9923 + }, + { + "start": 25479.76, + "end": 25483.28, + "probability": 0.8982 + }, + { + "start": 25483.82, + "end": 25485.4, + "probability": 0.9684 + }, + { + "start": 25485.44, + "end": 25486.56, + "probability": 0.9165 + }, + { + "start": 25486.62, + "end": 25487.54, + "probability": 0.7089 + }, + { + "start": 25487.56, + "end": 25489.42, + "probability": 0.8682 + }, + { + "start": 25490.9, + "end": 25494.78, + "probability": 0.9608 + }, + { + "start": 25495.4, + "end": 25496.38, + "probability": 0.8984 + }, + { + "start": 25497.22, + "end": 25497.76, + "probability": 0.9236 + }, + { + "start": 25497.94, + "end": 25503.24, + "probability": 0.9473 + }, + { + "start": 25504.04, + "end": 25505.0, + "probability": 0.8389 + }, + { + "start": 25505.44, + "end": 25510.14, + "probability": 0.9473 + }, + { + "start": 25510.62, + "end": 25514.72, + "probability": 0.981 + }, + { + "start": 25515.08, + "end": 25518.6, + "probability": 0.9944 + }, + { + "start": 25520.34, + "end": 25523.86, + "probability": 0.9461 + }, + { + "start": 25524.46, + "end": 25527.04, + "probability": 0.9631 + }, + { + "start": 25527.16, + "end": 25527.96, + "probability": 0.7467 + }, + { + "start": 25528.8, + "end": 25533.14, + "probability": 0.9788 + }, + { + "start": 25534.0, + "end": 25535.22, + "probability": 0.8892 + }, + { + "start": 25535.9, + "end": 25540.96, + "probability": 0.8868 + }, + { + "start": 25542.64, + "end": 25545.16, + "probability": 0.7291 + }, + { + "start": 25546.1, + "end": 25547.14, + "probability": 0.9484 + }, + { + "start": 25548.06, + "end": 25549.84, + "probability": 0.9862 + }, + { + "start": 25550.18, + "end": 25552.24, + "probability": 0.9888 + }, + { + "start": 25552.4, + "end": 25554.06, + "probability": 0.9797 + }, + { + "start": 25554.68, + "end": 25556.58, + "probability": 0.9862 + }, + { + "start": 25557.38, + "end": 25562.98, + "probability": 0.9277 + }, + { + "start": 25562.98, + "end": 25564.06, + "probability": 0.9249 + }, + { + "start": 25564.08, + "end": 25566.42, + "probability": 0.9775 + }, + { + "start": 25567.62, + "end": 25571.44, + "probability": 0.856 + }, + { + "start": 25572.22, + "end": 25573.5, + "probability": 0.879 + }, + { + "start": 25574.34, + "end": 25575.0, + "probability": 0.8654 + }, + { + "start": 25575.1, + "end": 25576.64, + "probability": 0.9722 + }, + { + "start": 25577.0, + "end": 25577.76, + "probability": 0.3967 + }, + { + "start": 25578.0, + "end": 25578.96, + "probability": 0.9673 + }, + { + "start": 25579.0, + "end": 25581.68, + "probability": 0.995 + }, + { + "start": 25583.02, + "end": 25584.09, + "probability": 0.9819 + }, + { + "start": 25584.9, + "end": 25585.32, + "probability": 0.7149 + }, + { + "start": 25587.0, + "end": 25587.86, + "probability": 0.6729 + }, + { + "start": 25588.8, + "end": 25593.2, + "probability": 0.921 + }, + { + "start": 25593.8, + "end": 25595.26, + "probability": 0.9528 + }, + { + "start": 25595.9, + "end": 25596.96, + "probability": 0.8862 + }, + { + "start": 25597.66, + "end": 25600.38, + "probability": 0.94 + }, + { + "start": 25600.8, + "end": 25602.6, + "probability": 0.9711 + }, + { + "start": 25603.28, + "end": 25603.66, + "probability": 0.8332 + }, + { + "start": 25604.1, + "end": 25604.86, + "probability": 0.8804 + }, + { + "start": 25605.34, + "end": 25606.3, + "probability": 0.9908 + }, + { + "start": 25606.36, + "end": 25609.04, + "probability": 0.995 + }, + { + "start": 25609.16, + "end": 25609.6, + "probability": 0.965 + }, + { + "start": 25609.66, + "end": 25610.14, + "probability": 0.9778 + }, + { + "start": 25610.18, + "end": 25610.74, + "probability": 0.9742 + }, + { + "start": 25610.8, + "end": 25611.16, + "probability": 0.9425 + }, + { + "start": 25611.2, + "end": 25611.76, + "probability": 0.9268 + }, + { + "start": 25612.16, + "end": 25612.92, + "probability": 0.7741 + }, + { + "start": 25612.94, + "end": 25614.86, + "probability": 0.9098 + }, + { + "start": 25615.76, + "end": 25616.22, + "probability": 0.4917 + }, + { + "start": 25616.6, + "end": 25618.86, + "probability": 0.5958 + }, + { + "start": 25619.84, + "end": 25620.78, + "probability": 0.9585 + }, + { + "start": 25621.12, + "end": 25624.84, + "probability": 0.9963 + }, + { + "start": 25625.16, + "end": 25627.74, + "probability": 0.9875 + }, + { + "start": 25628.94, + "end": 25629.94, + "probability": 0.9238 + }, + { + "start": 25630.54, + "end": 25633.74, + "probability": 0.9889 + }, + { + "start": 25634.9, + "end": 25638.26, + "probability": 0.9929 + }, + { + "start": 25639.82, + "end": 25640.98, + "probability": 0.6817 + }, + { + "start": 25641.66, + "end": 25643.78, + "probability": 0.3415 + }, + { + "start": 25643.82, + "end": 25646.2, + "probability": 0.3578 + }, + { + "start": 25646.96, + "end": 25647.34, + "probability": 0.6369 + }, + { + "start": 25647.58, + "end": 25648.4, + "probability": 0.73 + }, + { + "start": 25648.4, + "end": 25650.92, + "probability": 0.6478 + }, + { + "start": 25651.16, + "end": 25656.22, + "probability": 0.7064 + }, + { + "start": 25656.58, + "end": 25658.97, + "probability": 0.8647 + }, + { + "start": 25659.6, + "end": 25660.46, + "probability": 0.8534 + }, + { + "start": 25660.8, + "end": 25665.44, + "probability": 0.9642 + }, + { + "start": 25666.46, + "end": 25667.64, + "probability": 0.8555 + }, + { + "start": 25668.44, + "end": 25670.18, + "probability": 0.7711 + }, + { + "start": 25670.76, + "end": 25675.66, + "probability": 0.9671 + }, + { + "start": 25676.53, + "end": 25678.84, + "probability": 0.684 + }, + { + "start": 25683.2, + "end": 25689.4, + "probability": 0.0586 + }, + { + "start": 25694.28, + "end": 25697.22, + "probability": 0.1597 + }, + { + "start": 25700.56, + "end": 25701.06, + "probability": 0.0051 + }, + { + "start": 25701.06, + "end": 25702.54, + "probability": 0.0589 + }, + { + "start": 25702.54, + "end": 25702.82, + "probability": 0.1415 + }, + { + "start": 25703.0, + "end": 25704.66, + "probability": 0.8358 + }, + { + "start": 25705.02, + "end": 25706.6, + "probability": 0.9941 + }, + { + "start": 25706.64, + "end": 25708.14, + "probability": 0.991 + }, + { + "start": 25708.2, + "end": 25708.61, + "probability": 0.897 + }, + { + "start": 25709.62, + "end": 25709.76, + "probability": 0.0001 + }, + { + "start": 25710.36, + "end": 25710.66, + "probability": 0.0529 + }, + { + "start": 25710.66, + "end": 25710.8, + "probability": 0.3952 + }, + { + "start": 25712.66, + "end": 25714.28, + "probability": 0.5375 + }, + { + "start": 25716.34, + "end": 25719.66, + "probability": 0.715 + }, + { + "start": 25720.8, + "end": 25723.2, + "probability": 0.8044 + }, + { + "start": 25725.46, + "end": 25726.96, + "probability": 0.6306 + }, + { + "start": 25728.18, + "end": 25732.26, + "probability": 0.9056 + }, + { + "start": 25732.6, + "end": 25732.6, + "probability": 0.3879 + }, + { + "start": 25732.6, + "end": 25733.92, + "probability": 0.9363 + }, + { + "start": 25734.06, + "end": 25735.12, + "probability": 0.752 + }, + { + "start": 25736.0, + "end": 25739.66, + "probability": 0.9846 + }, + { + "start": 25740.5, + "end": 25741.16, + "probability": 0.798 + }, + { + "start": 25742.08, + "end": 25744.24, + "probability": 0.8995 + }, + { + "start": 25745.52, + "end": 25745.98, + "probability": 0.5466 + }, + { + "start": 25746.04, + "end": 25750.06, + "probability": 0.9412 + }, + { + "start": 25750.62, + "end": 25751.44, + "probability": 0.7524 + }, + { + "start": 25752.58, + "end": 25757.62, + "probability": 0.9797 + }, + { + "start": 25759.34, + "end": 25764.04, + "probability": 0.9971 + }, + { + "start": 25765.16, + "end": 25769.62, + "probability": 0.756 + }, + { + "start": 25769.66, + "end": 25774.26, + "probability": 0.8066 + }, + { + "start": 25775.48, + "end": 25776.62, + "probability": 0.6662 + }, + { + "start": 25778.06, + "end": 25780.34, + "probability": 0.946 + }, + { + "start": 25780.34, + "end": 25783.44, + "probability": 0.9931 + }, + { + "start": 25785.26, + "end": 25790.24, + "probability": 0.9735 + }, + { + "start": 25790.88, + "end": 25793.2, + "probability": 0.9781 + }, + { + "start": 25794.62, + "end": 25797.86, + "probability": 0.999 + }, + { + "start": 25798.5, + "end": 25799.46, + "probability": 0.9198 + }, + { + "start": 25799.72, + "end": 25800.38, + "probability": 0.7115 + }, + { + "start": 25800.56, + "end": 25802.1, + "probability": 0.7213 + }, + { + "start": 25802.92, + "end": 25806.26, + "probability": 0.9891 + }, + { + "start": 25807.44, + "end": 25810.42, + "probability": 0.9948 + }, + { + "start": 25811.08, + "end": 25813.8, + "probability": 0.9917 + }, + { + "start": 25813.8, + "end": 25820.32, + "probability": 0.8823 + }, + { + "start": 25821.48, + "end": 25822.74, + "probability": 0.9587 + }, + { + "start": 25823.48, + "end": 25825.74, + "probability": 0.9617 + }, + { + "start": 25827.4, + "end": 25830.04, + "probability": 0.9301 + }, + { + "start": 25830.52, + "end": 25833.1, + "probability": 0.8891 + }, + { + "start": 25833.5, + "end": 25834.64, + "probability": 0.8971 + }, + { + "start": 25838.94, + "end": 25839.62, + "probability": 0.9723 + }, + { + "start": 25840.52, + "end": 25843.1, + "probability": 0.97 + }, + { + "start": 25843.52, + "end": 25844.96, + "probability": 0.9802 + }, + { + "start": 25845.82, + "end": 25848.32, + "probability": 0.9219 + }, + { + "start": 25848.98, + "end": 25851.12, + "probability": 0.9937 + }, + { + "start": 25852.22, + "end": 25853.02, + "probability": 0.8105 + }, + { + "start": 25853.92, + "end": 25858.46, + "probability": 0.9924 + }, + { + "start": 25860.68, + "end": 25861.32, + "probability": 0.6871 + }, + { + "start": 25862.4, + "end": 25864.36, + "probability": 0.9886 + }, + { + "start": 25865.52, + "end": 25868.18, + "probability": 0.939 + }, + { + "start": 25868.26, + "end": 25869.66, + "probability": 0.9766 + }, + { + "start": 25869.8, + "end": 25870.66, + "probability": 0.7046 + }, + { + "start": 25871.02, + "end": 25872.06, + "probability": 0.8948 + }, + { + "start": 25873.3, + "end": 25877.1, + "probability": 0.9579 + }, + { + "start": 25877.22, + "end": 25881.24, + "probability": 0.9932 + }, + { + "start": 25881.98, + "end": 25884.06, + "probability": 0.8375 + }, + { + "start": 25885.56, + "end": 25887.62, + "probability": 0.9883 + }, + { + "start": 25887.72, + "end": 25889.14, + "probability": 0.811 + }, + { + "start": 25889.18, + "end": 25890.34, + "probability": 0.9774 + }, + { + "start": 25890.4, + "end": 25893.36, + "probability": 0.9928 + }, + { + "start": 25894.92, + "end": 25897.94, + "probability": 0.9953 + }, + { + "start": 25897.98, + "end": 25899.76, + "probability": 0.9796 + }, + { + "start": 25899.76, + "end": 25902.26, + "probability": 0.9888 + }, + { + "start": 25903.24, + "end": 25905.7, + "probability": 0.9976 + }, + { + "start": 25906.86, + "end": 25907.74, + "probability": 0.9214 + }, + { + "start": 25907.86, + "end": 25908.44, + "probability": 0.7148 + }, + { + "start": 25908.44, + "end": 25909.16, + "probability": 0.5169 + }, + { + "start": 25909.2, + "end": 25911.48, + "probability": 0.873 + }, + { + "start": 25912.1, + "end": 25912.18, + "probability": 0.0081 + }, + { + "start": 25912.18, + "end": 25915.2, + "probability": 0.7015 + }, + { + "start": 25915.3, + "end": 25917.92, + "probability": 0.8836 + }, + { + "start": 25918.64, + "end": 25920.24, + "probability": 0.3933 + }, + { + "start": 25920.28, + "end": 25921.5, + "probability": 0.9383 + }, + { + "start": 25921.6, + "end": 25922.38, + "probability": 0.882 + }, + { + "start": 25923.1, + "end": 25927.46, + "probability": 0.9794 + }, + { + "start": 25927.68, + "end": 25929.54, + "probability": 0.9871 + }, + { + "start": 25929.54, + "end": 25934.2, + "probability": 0.8874 + }, + { + "start": 25935.1, + "end": 25935.92, + "probability": 0.6121 + }, + { + "start": 25936.06, + "end": 25936.36, + "probability": 0.8973 + }, + { + "start": 25936.46, + "end": 25936.8, + "probability": 0.5875 + }, + { + "start": 25936.8, + "end": 25940.32, + "probability": 0.731 + }, + { + "start": 25940.36, + "end": 25942.38, + "probability": 0.9988 + }, + { + "start": 25942.48, + "end": 25942.92, + "probability": 0.7593 + }, + { + "start": 25943.02, + "end": 25943.92, + "probability": 0.8987 + }, + { + "start": 25944.23, + "end": 25946.9, + "probability": 0.996 + }, + { + "start": 25946.9, + "end": 25948.98, + "probability": 0.9564 + }, + { + "start": 25949.04, + "end": 25949.86, + "probability": 0.8909 + }, + { + "start": 25950.22, + "end": 25951.36, + "probability": 0.85 + }, + { + "start": 25951.38, + "end": 25956.17, + "probability": 0.9503 + }, + { + "start": 25956.28, + "end": 25959.09, + "probability": 0.7959 + }, + { + "start": 25959.24, + "end": 25959.86, + "probability": 0.8967 + }, + { + "start": 25960.0, + "end": 25960.1, + "probability": 0.2168 + }, + { + "start": 25960.12, + "end": 25962.97, + "probability": 0.9923 + }, + { + "start": 25963.16, + "end": 25969.56, + "probability": 0.9939 + }, + { + "start": 25969.58, + "end": 25970.12, + "probability": 0.908 + }, + { + "start": 25970.3, + "end": 25971.56, + "probability": 0.713 + }, + { + "start": 25971.64, + "end": 25974.02, + "probability": 0.9135 + }, + { + "start": 25974.12, + "end": 25975.88, + "probability": 0.7671 + }, + { + "start": 25976.6, + "end": 25977.36, + "probability": 0.9585 + }, + { + "start": 25977.98, + "end": 25986.36, + "probability": 0.9471 + }, + { + "start": 25986.36, + "end": 25989.8, + "probability": 0.9846 + }, + { + "start": 25990.44, + "end": 25991.64, + "probability": 0.7575 + }, + { + "start": 25991.7, + "end": 25992.3, + "probability": 0.9319 + }, + { + "start": 25992.36, + "end": 25993.02, + "probability": 0.6461 + }, + { + "start": 25993.04, + "end": 25996.76, + "probability": 0.9754 + }, + { + "start": 25997.3, + "end": 25998.24, + "probability": 0.7928 + }, + { + "start": 25998.3, + "end": 25998.66, + "probability": 0.7073 + }, + { + "start": 25998.84, + "end": 25999.72, + "probability": 0.9393 + }, + { + "start": 25999.74, + "end": 26000.48, + "probability": 0.8294 + }, + { + "start": 26000.68, + "end": 26003.66, + "probability": 0.8567 + }, + { + "start": 26003.7, + "end": 26004.64, + "probability": 0.9668 + }, + { + "start": 26004.7, + "end": 26005.1, + "probability": 0.6419 + }, + { + "start": 26005.66, + "end": 26008.68, + "probability": 0.9382 + }, + { + "start": 26009.22, + "end": 26010.45, + "probability": 0.9922 + }, + { + "start": 26011.1, + "end": 26012.24, + "probability": 0.6312 + }, + { + "start": 26012.38, + "end": 26012.68, + "probability": 0.8522 + }, + { + "start": 26012.78, + "end": 26013.36, + "probability": 0.7753 + }, + { + "start": 26013.64, + "end": 26014.34, + "probability": 0.9375 + }, + { + "start": 26014.4, + "end": 26015.1, + "probability": 0.7651 + }, + { + "start": 26015.2, + "end": 26015.76, + "probability": 0.6902 + }, + { + "start": 26015.78, + "end": 26016.14, + "probability": 0.0228 + }, + { + "start": 26016.2, + "end": 26017.4, + "probability": 0.7655 + }, + { + "start": 26017.62, + "end": 26019.96, + "probability": 0.9678 + }, + { + "start": 26019.96, + "end": 26024.38, + "probability": 0.9867 + }, + { + "start": 26024.62, + "end": 26025.5, + "probability": 0.9937 + }, + { + "start": 26025.7, + "end": 26026.44, + "probability": 0.7882 + }, + { + "start": 26026.48, + "end": 26029.36, + "probability": 0.9724 + }, + { + "start": 26030.64, + "end": 26031.59, + "probability": 0.7043 + }, + { + "start": 26031.9, + "end": 26032.98, + "probability": 0.9639 + }, + { + "start": 26033.04, + "end": 26033.72, + "probability": 0.8053 + }, + { + "start": 26033.8, + "end": 26035.62, + "probability": 0.9588 + }, + { + "start": 26035.94, + "end": 26039.7, + "probability": 0.9783 + }, + { + "start": 26040.76, + "end": 26040.76, + "probability": 0.0343 + }, + { + "start": 26041.04, + "end": 26041.54, + "probability": 0.6935 + }, + { + "start": 26041.64, + "end": 26043.4, + "probability": 0.5492 + }, + { + "start": 26043.52, + "end": 26044.28, + "probability": 0.5595 + }, + { + "start": 26044.48, + "end": 26045.1, + "probability": 0.6575 + }, + { + "start": 26045.26, + "end": 26046.36, + "probability": 0.1368 + }, + { + "start": 26046.36, + "end": 26046.72, + "probability": 0.6552 + }, + { + "start": 26047.1, + "end": 26047.44, + "probability": 0.5551 + }, + { + "start": 26047.48, + "end": 26048.44, + "probability": 0.9405 + }, + { + "start": 26048.48, + "end": 26049.2, + "probability": 0.7281 + }, + { + "start": 26049.5, + "end": 26051.36, + "probability": 0.2602 + }, + { + "start": 26051.56, + "end": 26052.4, + "probability": 0.4852 + }, + { + "start": 26052.54, + "end": 26052.9, + "probability": 0.5761 + }, + { + "start": 26053.04, + "end": 26053.36, + "probability": 0.7245 + }, + { + "start": 26053.52, + "end": 26053.82, + "probability": 0.7659 + }, + { + "start": 26053.94, + "end": 26055.14, + "probability": 0.7698 + }, + { + "start": 26055.34, + "end": 26056.76, + "probability": 0.556 + }, + { + "start": 26056.96, + "end": 26060.04, + "probability": 0.2137 + }, + { + "start": 26060.28, + "end": 26062.88, + "probability": 0.9855 + }, + { + "start": 26063.4, + "end": 26064.72, + "probability": 0.9968 + }, + { + "start": 26066.53, + "end": 26068.02, + "probability": 0.9619 + }, + { + "start": 26068.68, + "end": 26069.66, + "probability": 0.8643 + }, + { + "start": 26069.78, + "end": 26070.12, + "probability": 0.4212 + }, + { + "start": 26070.3, + "end": 26070.68, + "probability": 0.2467 + }, + { + "start": 26070.96, + "end": 26072.04, + "probability": 0.709 + }, + { + "start": 26072.44, + "end": 26073.22, + "probability": 0.2872 + }, + { + "start": 26073.24, + "end": 26073.98, + "probability": 0.9301 + }, + { + "start": 26074.2, + "end": 26074.9, + "probability": 0.5499 + }, + { + "start": 26075.25, + "end": 26076.0, + "probability": 0.5142 + }, + { + "start": 26077.16, + "end": 26078.7, + "probability": 0.5411 + }, + { + "start": 26083.1, + "end": 26084.04, + "probability": 0.855 + }, + { + "start": 26084.94, + "end": 26088.18, + "probability": 0.9634 + }, + { + "start": 26089.28, + "end": 26091.24, + "probability": 0.7353 + }, + { + "start": 26091.24, + "end": 26095.02, + "probability": 0.6225 + }, + { + "start": 26095.82, + "end": 26099.5, + "probability": 0.6094 + }, + { + "start": 26100.94, + "end": 26101.48, + "probability": 0.5717 + }, + { + "start": 26101.68, + "end": 26102.7, + "probability": 0.9739 + }, + { + "start": 26102.82, + "end": 26106.02, + "probability": 0.3813 + }, + { + "start": 26106.02, + "end": 26106.9, + "probability": 0.7152 + }, + { + "start": 26107.88, + "end": 26108.32, + "probability": 0.6647 + }, + { + "start": 26108.82, + "end": 26111.36, + "probability": 0.9172 + }, + { + "start": 26111.46, + "end": 26112.4, + "probability": 0.9596 + }, + { + "start": 26112.88, + "end": 26114.4, + "probability": 0.2935 + }, + { + "start": 26114.6, + "end": 26114.66, + "probability": 0.2271 + }, + { + "start": 26114.76, + "end": 26115.41, + "probability": 0.0723 + }, + { + "start": 26116.08, + "end": 26116.34, + "probability": 0.039 + }, + { + "start": 26116.64, + "end": 26120.34, + "probability": 0.918 + }, + { + "start": 26121.1, + "end": 26125.76, + "probability": 0.973 + }, + { + "start": 26127.08, + "end": 26127.96, + "probability": 0.7601 + }, + { + "start": 26128.96, + "end": 26130.3, + "probability": 0.9081 + }, + { + "start": 26131.0, + "end": 26133.46, + "probability": 0.9757 + }, + { + "start": 26134.1, + "end": 26138.12, + "probability": 0.8771 + }, + { + "start": 26138.38, + "end": 26139.76, + "probability": 0.744 + }, + { + "start": 26139.9, + "end": 26140.92, + "probability": 0.5251 + }, + { + "start": 26141.16, + "end": 26141.6, + "probability": 0.013 + }, + { + "start": 26141.8, + "end": 26143.34, + "probability": 0.1524 + }, + { + "start": 26143.94, + "end": 26144.62, + "probability": 0.0644 + }, + { + "start": 26144.8, + "end": 26147.78, + "probability": 0.626 + }, + { + "start": 26148.1, + "end": 26148.46, + "probability": 0.4634 + }, + { + "start": 26148.48, + "end": 26149.01, + "probability": 0.7865 + }, + { + "start": 26151.0, + "end": 26153.2, + "probability": 0.5949 + }, + { + "start": 26153.76, + "end": 26155.96, + "probability": 0.9801 + }, + { + "start": 26156.4, + "end": 26157.18, + "probability": 0.8172 + }, + { + "start": 26159.32, + "end": 26163.96, + "probability": 0.9712 + }, + { + "start": 26164.4, + "end": 26165.88, + "probability": 0.6911 + }, + { + "start": 26166.76, + "end": 26171.48, + "probability": 0.9917 + }, + { + "start": 26172.44, + "end": 26175.08, + "probability": 0.4883 + }, + { + "start": 26175.76, + "end": 26176.68, + "probability": 0.4583 + }, + { + "start": 26176.86, + "end": 26177.7, + "probability": 0.3631 + }, + { + "start": 26177.7, + "end": 26179.42, + "probability": 0.0162 + }, + { + "start": 26179.42, + "end": 26180.18, + "probability": 0.4242 + }, + { + "start": 26180.38, + "end": 26180.38, + "probability": 0.0128 + }, + { + "start": 26180.38, + "end": 26181.9, + "probability": 0.6106 + }, + { + "start": 26182.12, + "end": 26183.14, + "probability": 0.8502 + }, + { + "start": 26183.4, + "end": 26185.5, + "probability": 0.8722 + }, + { + "start": 26185.72, + "end": 26185.94, + "probability": 0.606 + }, + { + "start": 26186.38, + "end": 26187.14, + "probability": 0.9572 + }, + { + "start": 26187.38, + "end": 26188.58, + "probability": 0.7644 + }, + { + "start": 26188.72, + "end": 26192.96, + "probability": 0.6686 + }, + { + "start": 26193.54, + "end": 26194.88, + "probability": 0.9313 + }, + { + "start": 26195.04, + "end": 26195.94, + "probability": 0.4668 + }, + { + "start": 26196.08, + "end": 26197.26, + "probability": 0.4187 + }, + { + "start": 26197.34, + "end": 26198.2, + "probability": 0.2085 + }, + { + "start": 26198.2, + "end": 26199.78, + "probability": 0.6184 + }, + { + "start": 26200.08, + "end": 26201.86, + "probability": 0.3035 + }, + { + "start": 26202.24, + "end": 26203.1, + "probability": 0.692 + }, + { + "start": 26203.1, + "end": 26203.44, + "probability": 0.2566 + }, + { + "start": 26203.7, + "end": 26206.22, + "probability": 0.8774 + }, + { + "start": 26206.48, + "end": 26207.3, + "probability": 0.8339 + }, + { + "start": 26207.42, + "end": 26207.7, + "probability": 0.5681 + }, + { + "start": 26208.42, + "end": 26211.16, + "probability": 0.4771 + }, + { + "start": 26211.2, + "end": 26212.08, + "probability": 0.3674 + }, + { + "start": 26212.08, + "end": 26212.4, + "probability": 0.5104 + }, + { + "start": 26212.4, + "end": 26212.8, + "probability": 0.6284 + }, + { + "start": 26212.82, + "end": 26213.52, + "probability": 0.522 + }, + { + "start": 26213.58, + "end": 26214.52, + "probability": 0.5543 + }, + { + "start": 26214.58, + "end": 26214.96, + "probability": 0.2755 + }, + { + "start": 26215.06, + "end": 26218.74, + "probability": 0.8887 + }, + { + "start": 26218.74, + "end": 26220.02, + "probability": 0.6981 + }, + { + "start": 26220.16, + "end": 26221.24, + "probability": 0.5506 + }, + { + "start": 26221.26, + "end": 26221.58, + "probability": 0.0375 + }, + { + "start": 26221.58, + "end": 26222.86, + "probability": 0.8811 + }, + { + "start": 26223.16, + "end": 26224.3, + "probability": 0.5987 + }, + { + "start": 26224.8, + "end": 26226.34, + "probability": 0.0125 + }, + { + "start": 26226.46, + "end": 26226.56, + "probability": 0.1983 + }, + { + "start": 26226.56, + "end": 26226.74, + "probability": 0.3428 + }, + { + "start": 26226.74, + "end": 26228.06, + "probability": 0.6237 + }, + { + "start": 26228.12, + "end": 26230.79, + "probability": 0.2559 + }, + { + "start": 26231.78, + "end": 26231.78, + "probability": 0.0119 + }, + { + "start": 26232.32, + "end": 26234.0, + "probability": 0.1992 + }, + { + "start": 26234.66, + "end": 26236.12, + "probability": 0.915 + }, + { + "start": 26236.36, + "end": 26238.6, + "probability": 0.2725 + }, + { + "start": 26238.6, + "end": 26239.34, + "probability": 0.2739 + }, + { + "start": 26239.62, + "end": 26240.12, + "probability": 0.0946 + }, + { + "start": 26240.12, + "end": 26240.18, + "probability": 0.0002 + }, + { + "start": 26240.6, + "end": 26243.68, + "probability": 0.4444 + }, + { + "start": 26244.7, + "end": 26244.8, + "probability": 0.097 + }, + { + "start": 26244.8, + "end": 26245.7, + "probability": 0.5221 + }, + { + "start": 26245.7, + "end": 26245.7, + "probability": 0.0345 + }, + { + "start": 26245.7, + "end": 26246.04, + "probability": 0.7036 + }, + { + "start": 26246.16, + "end": 26246.76, + "probability": 0.7664 + }, + { + "start": 26246.88, + "end": 26247.68, + "probability": 0.3726 + }, + { + "start": 26247.76, + "end": 26248.76, + "probability": 0.4138 + }, + { + "start": 26248.86, + "end": 26251.22, + "probability": 0.931 + }, + { + "start": 26251.38, + "end": 26252.22, + "probability": 0.9988 + }, + { + "start": 26252.36, + "end": 26254.6, + "probability": 0.8166 + }, + { + "start": 26254.94, + "end": 26255.72, + "probability": 0.1378 + }, + { + "start": 26256.3, + "end": 26256.66, + "probability": 0.3185 + }, + { + "start": 26256.7, + "end": 26257.54, + "probability": 0.7071 + }, + { + "start": 26258.34, + "end": 26260.16, + "probability": 0.8033 + }, + { + "start": 26260.42, + "end": 26260.62, + "probability": 0.9351 + }, + { + "start": 26261.2, + "end": 26261.26, + "probability": 0.6092 + }, + { + "start": 26261.26, + "end": 26261.76, + "probability": 0.5751 + }, + { + "start": 26261.76, + "end": 26265.88, + "probability": 0.9547 + }, + { + "start": 26266.18, + "end": 26267.7, + "probability": 0.6821 + }, + { + "start": 26268.04, + "end": 26268.04, + "probability": 0.25 + }, + { + "start": 26268.04, + "end": 26268.42, + "probability": 0.5189 + }, + { + "start": 26268.78, + "end": 26268.78, + "probability": 0.3089 + }, + { + "start": 26268.78, + "end": 26269.48, + "probability": 0.3722 + }, + { + "start": 26269.5, + "end": 26269.94, + "probability": 0.5963 + }, + { + "start": 26270.24, + "end": 26270.88, + "probability": 0.7408 + }, + { + "start": 26271.66, + "end": 26272.22, + "probability": 0.175 + }, + { + "start": 26272.22, + "end": 26274.58, + "probability": 0.571 + }, + { + "start": 26275.61, + "end": 26278.76, + "probability": 0.7741 + }, + { + "start": 26278.76, + "end": 26279.28, + "probability": 0.5414 + }, + { + "start": 26279.46, + "end": 26280.58, + "probability": 0.9636 + }, + { + "start": 26280.98, + "end": 26283.36, + "probability": 0.8824 + }, + { + "start": 26283.56, + "end": 26285.32, + "probability": 0.6671 + }, + { + "start": 26285.8, + "end": 26286.56, + "probability": 0.7119 + }, + { + "start": 26286.78, + "end": 26286.78, + "probability": 0.1875 + }, + { + "start": 26286.78, + "end": 26287.92, + "probability": 0.5139 + }, + { + "start": 26287.98, + "end": 26289.06, + "probability": 0.8205 + }, + { + "start": 26289.46, + "end": 26293.24, + "probability": 0.9179 + }, + { + "start": 26293.28, + "end": 26294.86, + "probability": 0.8058 + }, + { + "start": 26294.94, + "end": 26296.6, + "probability": 0.7302 + }, + { + "start": 26297.32, + "end": 26302.08, + "probability": 0.9969 + }, + { + "start": 26303.3, + "end": 26306.92, + "probability": 0.815 + }, + { + "start": 26307.18, + "end": 26308.14, + "probability": 0.4996 + }, + { + "start": 26308.78, + "end": 26313.84, + "probability": 0.9964 + }, + { + "start": 26314.82, + "end": 26316.78, + "probability": 0.9767 + }, + { + "start": 26316.78, + "end": 26320.1, + "probability": 0.9259 + }, + { + "start": 26320.14, + "end": 26323.62, + "probability": 0.3196 + }, + { + "start": 26324.1, + "end": 26328.92, + "probability": 0.1813 + }, + { + "start": 26329.16, + "end": 26331.7, + "probability": 0.205 + }, + { + "start": 26332.9, + "end": 26334.3, + "probability": 0.7542 + }, + { + "start": 26334.38, + "end": 26336.3, + "probability": 0.27 + }, + { + "start": 26336.78, + "end": 26337.04, + "probability": 0.2651 + }, + { + "start": 26337.04, + "end": 26337.96, + "probability": 0.3869 + }, + { + "start": 26338.12, + "end": 26338.5, + "probability": 0.6284 + }, + { + "start": 26338.62, + "end": 26345.3, + "probability": 0.0363 + }, + { + "start": 26345.3, + "end": 26345.3, + "probability": 0.0385 + }, + { + "start": 26345.3, + "end": 26347.12, + "probability": 0.2966 + }, + { + "start": 26347.44, + "end": 26349.3, + "probability": 0.7766 + }, + { + "start": 26350.1, + "end": 26350.1, + "probability": 0.0074 + }, + { + "start": 26350.1, + "end": 26351.5, + "probability": 0.2518 + }, + { + "start": 26351.56, + "end": 26352.46, + "probability": 0.8176 + }, + { + "start": 26353.12, + "end": 26354.04, + "probability": 0.7355 + }, + { + "start": 26354.14, + "end": 26355.7, + "probability": 0.7123 + }, + { + "start": 26355.76, + "end": 26357.06, + "probability": 0.3759 + }, + { + "start": 26358.34, + "end": 26359.8, + "probability": 0.4662 + }, + { + "start": 26361.1, + "end": 26361.1, + "probability": 0.0258 + }, + { + "start": 26361.1, + "end": 26361.1, + "probability": 0.1618 + }, + { + "start": 26361.1, + "end": 26361.86, + "probability": 0.352 + }, + { + "start": 26361.86, + "end": 26363.0, + "probability": 0.2131 + }, + { + "start": 26363.54, + "end": 26365.34, + "probability": 0.4747 + }, + { + "start": 26365.44, + "end": 26366.04, + "probability": 0.3973 + }, + { + "start": 26366.04, + "end": 26366.6, + "probability": 0.0971 + }, + { + "start": 26366.68, + "end": 26367.98, + "probability": 0.0516 + }, + { + "start": 26369.68, + "end": 26370.0, + "probability": 0.149 + }, + { + "start": 26370.0, + "end": 26370.0, + "probability": 0.0911 + }, + { + "start": 26370.0, + "end": 26374.53, + "probability": 0.6947 + }, + { + "start": 26375.28, + "end": 26376.48, + "probability": 0.9474 + }, + { + "start": 26377.8, + "end": 26381.32, + "probability": 0.9047 + }, + { + "start": 26382.66, + "end": 26383.76, + "probability": 0.7188 + }, + { + "start": 26383.76, + "end": 26388.66, + "probability": 0.9973 + }, + { + "start": 26388.66, + "end": 26395.2, + "probability": 0.9729 + }, + { + "start": 26395.44, + "end": 26395.96, + "probability": 0.2472 + }, + { + "start": 26398.22, + "end": 26398.56, + "probability": 0.0593 + }, + { + "start": 26398.78, + "end": 26398.78, + "probability": 0.0254 + }, + { + "start": 26398.78, + "end": 26398.78, + "probability": 0.2314 + }, + { + "start": 26398.8, + "end": 26399.88, + "probability": 0.0147 + }, + { + "start": 26400.14, + "end": 26402.06, + "probability": 0.9549 + }, + { + "start": 26402.1, + "end": 26404.06, + "probability": 0.4708 + }, + { + "start": 26404.28, + "end": 26406.04, + "probability": 0.9742 + }, + { + "start": 26407.11, + "end": 26409.02, + "probability": 0.0718 + }, + { + "start": 26409.92, + "end": 26411.14, + "probability": 0.8301 + }, + { + "start": 26411.58, + "end": 26413.56, + "probability": 0.0136 + }, + { + "start": 26413.79, + "end": 26418.89, + "probability": 0.5212 + }, + { + "start": 26419.8, + "end": 26422.14, + "probability": 0.7235 + }, + { + "start": 26422.18, + "end": 26422.76, + "probability": 0.4195 + }, + { + "start": 26423.54, + "end": 26424.48, + "probability": 0.4067 + }, + { + "start": 26424.8, + "end": 26425.56, + "probability": 0.6774 + }, + { + "start": 26426.63, + "end": 26430.5, + "probability": 0.9456 + }, + { + "start": 26430.5, + "end": 26434.28, + "probability": 0.8592 + }, + { + "start": 26434.68, + "end": 26435.6, + "probability": 0.4848 + }, + { + "start": 26435.92, + "end": 26440.44, + "probability": 0.8394 + }, + { + "start": 26440.6, + "end": 26441.34, + "probability": 0.6175 + }, + { + "start": 26441.42, + "end": 26447.74, + "probability": 0.9604 + }, + { + "start": 26448.82, + "end": 26451.72, + "probability": 0.9909 + }, + { + "start": 26451.72, + "end": 26455.02, + "probability": 0.9894 + }, + { + "start": 26455.96, + "end": 26460.94, + "probability": 0.887 + }, + { + "start": 26461.3, + "end": 26461.96, + "probability": 0.7085 + }, + { + "start": 26462.4, + "end": 26462.9, + "probability": 0.6014 + }, + { + "start": 26462.96, + "end": 26465.42, + "probability": 0.9199 + }, + { + "start": 26465.56, + "end": 26468.32, + "probability": 0.761 + }, + { + "start": 26476.74, + "end": 26478.7, + "probability": 0.887 + }, + { + "start": 26480.78, + "end": 26481.72, + "probability": 0.7454 + }, + { + "start": 26481.76, + "end": 26486.24, + "probability": 0.9862 + }, + { + "start": 26487.38, + "end": 26491.5, + "probability": 0.8383 + }, + { + "start": 26492.3, + "end": 26493.72, + "probability": 0.8673 + }, + { + "start": 26493.76, + "end": 26494.52, + "probability": 0.7694 + }, + { + "start": 26494.58, + "end": 26496.66, + "probability": 0.9592 + }, + { + "start": 26496.86, + "end": 26500.38, + "probability": 0.907 + }, + { + "start": 26500.38, + "end": 26504.32, + "probability": 0.9178 + }, + { + "start": 26505.92, + "end": 26507.5, + "probability": 0.9194 + }, + { + "start": 26508.28, + "end": 26509.0, + "probability": 0.72 + }, + { + "start": 26510.64, + "end": 26516.64, + "probability": 0.9855 + }, + { + "start": 26516.76, + "end": 26517.6, + "probability": 0.9375 + }, + { + "start": 26518.12, + "end": 26519.14, + "probability": 0.8752 + }, + { + "start": 26519.8, + "end": 26521.41, + "probability": 0.9492 + }, + { + "start": 26522.08, + "end": 26524.43, + "probability": 0.8556 + }, + { + "start": 26525.4, + "end": 26526.33, + "probability": 0.9717 + }, + { + "start": 26527.06, + "end": 26528.62, + "probability": 0.9861 + }, + { + "start": 26528.84, + "end": 26529.36, + "probability": 0.8776 + }, + { + "start": 26529.5, + "end": 26530.56, + "probability": 0.828 + }, + { + "start": 26531.32, + "end": 26533.98, + "probability": 0.8145 + }, + { + "start": 26534.92, + "end": 26538.25, + "probability": 0.8717 + }, + { + "start": 26539.16, + "end": 26540.92, + "probability": 0.9909 + }, + { + "start": 26541.62, + "end": 26543.14, + "probability": 0.9869 + }, + { + "start": 26544.06, + "end": 26546.64, + "probability": 0.9943 + }, + { + "start": 26546.64, + "end": 26549.32, + "probability": 0.9965 + }, + { + "start": 26549.98, + "end": 26550.48, + "probability": 0.823 + }, + { + "start": 26550.7, + "end": 26551.76, + "probability": 0.9233 + }, + { + "start": 26552.26, + "end": 26553.98, + "probability": 0.9644 + }, + { + "start": 26554.34, + "end": 26557.41, + "probability": 0.7995 + }, + { + "start": 26557.6, + "end": 26561.6, + "probability": 0.8914 + }, + { + "start": 26562.74, + "end": 26565.7, + "probability": 0.995 + }, + { + "start": 26566.34, + "end": 26567.62, + "probability": 0.9341 + }, + { + "start": 26567.76, + "end": 26568.9, + "probability": 0.9972 + }, + { + "start": 26569.3, + "end": 26570.62, + "probability": 0.9885 + }, + { + "start": 26570.88, + "end": 26572.26, + "probability": 0.9751 + }, + { + "start": 26573.42, + "end": 26575.9, + "probability": 0.8262 + }, + { + "start": 26576.56, + "end": 26576.96, + "probability": 0.3824 + }, + { + "start": 26577.08, + "end": 26578.6, + "probability": 0.9863 + }, + { + "start": 26578.72, + "end": 26582.14, + "probability": 0.9943 + }, + { + "start": 26582.14, + "end": 26585.07, + "probability": 0.8784 + }, + { + "start": 26585.3, + "end": 26585.92, + "probability": 0.7697 + }, + { + "start": 26585.92, + "end": 26586.32, + "probability": 0.2461 + }, + { + "start": 26586.46, + "end": 26586.52, + "probability": 0.0995 + }, + { + "start": 26586.64, + "end": 26587.65, + "probability": 0.8984 + }, + { + "start": 26587.86, + "end": 26588.96, + "probability": 0.4755 + }, + { + "start": 26589.34, + "end": 26589.6, + "probability": 0.728 + }, + { + "start": 26590.74, + "end": 26590.88, + "probability": 0.0373 + }, + { + "start": 26590.88, + "end": 26591.24, + "probability": 0.1933 + }, + { + "start": 26591.38, + "end": 26592.82, + "probability": 0.9237 + }, + { + "start": 26592.96, + "end": 26594.06, + "probability": 0.9419 + }, + { + "start": 26594.82, + "end": 26597.26, + "probability": 0.9694 + }, + { + "start": 26598.16, + "end": 26601.58, + "probability": 0.8431 + }, + { + "start": 26603.0, + "end": 26605.06, + "probability": 0.9747 + }, + { + "start": 26605.4, + "end": 26607.17, + "probability": 0.9765 + }, + { + "start": 26607.44, + "end": 26608.66, + "probability": 0.9961 + }, + { + "start": 26608.76, + "end": 26608.86, + "probability": 0.5128 + }, + { + "start": 26609.0, + "end": 26609.34, + "probability": 0.3983 + }, + { + "start": 26609.44, + "end": 26610.1, + "probability": 0.4434 + }, + { + "start": 26611.48, + "end": 26612.98, + "probability": 0.4381 + }, + { + "start": 26615.46, + "end": 26623.42, + "probability": 0.988 + }, + { + "start": 26623.7, + "end": 26624.58, + "probability": 0.76 + }, + { + "start": 26624.82, + "end": 26625.72, + "probability": 0.6849 + }, + { + "start": 26625.84, + "end": 26627.62, + "probability": 0.9909 + }, + { + "start": 26627.74, + "end": 26628.58, + "probability": 0.688 + }, + { + "start": 26628.62, + "end": 26630.66, + "probability": 0.9955 + }, + { + "start": 26630.88, + "end": 26632.68, + "probability": 0.9941 + }, + { + "start": 26633.02, + "end": 26633.9, + "probability": 0.7681 + }, + { + "start": 26634.7, + "end": 26634.7, + "probability": 0.0029 + }, + { + "start": 26634.84, + "end": 26634.98, + "probability": 0.1219 + }, + { + "start": 26634.98, + "end": 26635.92, + "probability": 0.9327 + }, + { + "start": 26636.46, + "end": 26637.78, + "probability": 0.7422 + }, + { + "start": 26638.3, + "end": 26641.78, + "probability": 0.94 + }, + { + "start": 26641.98, + "end": 26642.32, + "probability": 0.5826 + }, + { + "start": 26642.36, + "end": 26645.02, + "probability": 0.9123 + }, + { + "start": 26645.56, + "end": 26646.84, + "probability": 0.9329 + }, + { + "start": 26646.94, + "end": 26648.7, + "probability": 0.9878 + }, + { + "start": 26648.76, + "end": 26649.3, + "probability": 0.7196 + }, + { + "start": 26649.8, + "end": 26650.64, + "probability": 0.8257 + }, + { + "start": 26651.06, + "end": 26651.78, + "probability": 0.8789 + }, + { + "start": 26651.84, + "end": 26653.56, + "probability": 0.7034 + }, + { + "start": 26653.6, + "end": 26654.44, + "probability": 0.7979 + }, + { + "start": 26660.82, + "end": 26661.67, + "probability": 0.2442 + }, + { + "start": 26663.2, + "end": 26664.44, + "probability": 0.7324 + }, + { + "start": 26664.8, + "end": 26665.98, + "probability": 0.7576 + }, + { + "start": 26668.74, + "end": 26670.7, + "probability": 0.379 + }, + { + "start": 26672.4, + "end": 26677.74, + "probability": 0.9902 + }, + { + "start": 26678.28, + "end": 26680.44, + "probability": 0.8469 + }, + { + "start": 26680.54, + "end": 26681.7, + "probability": 0.998 + }, + { + "start": 26682.14, + "end": 26685.24, + "probability": 0.9911 + }, + { + "start": 26686.02, + "end": 26688.64, + "probability": 0.8725 + }, + { + "start": 26688.86, + "end": 26694.34, + "probability": 0.9897 + }, + { + "start": 26694.56, + "end": 26697.22, + "probability": 0.9512 + }, + { + "start": 26697.34, + "end": 26697.82, + "probability": 0.5485 + }, + { + "start": 26697.82, + "end": 26698.68, + "probability": 0.655 + }, + { + "start": 26698.9, + "end": 26700.22, + "probability": 0.3879 + }, + { + "start": 26700.38, + "end": 26704.22, + "probability": 0.8431 + }, + { + "start": 26704.71, + "end": 26707.22, + "probability": 0.9642 + }, + { + "start": 26707.44, + "end": 26708.1, + "probability": 0.4184 + }, + { + "start": 26708.7, + "end": 26711.54, + "probability": 0.9371 + }, + { + "start": 26711.72, + "end": 26713.23, + "probability": 0.9587 + }, + { + "start": 26714.02, + "end": 26714.38, + "probability": 0.6201 + }, + { + "start": 26714.98, + "end": 26717.96, + "probability": 0.8295 + }, + { + "start": 26718.86, + "end": 26720.74, + "probability": 0.5007 + }, + { + "start": 26720.74, + "end": 26721.06, + "probability": 0.4381 + }, + { + "start": 26721.24, + "end": 26722.0, + "probability": 0.8702 + }, + { + "start": 26722.44, + "end": 26723.2, + "probability": 0.7802 + }, + { + "start": 26723.2, + "end": 26723.7, + "probability": 0.7866 + }, + { + "start": 26723.8, + "end": 26725.54, + "probability": 0.7289 + }, + { + "start": 26725.64, + "end": 26725.82, + "probability": 0.1526 + }, + { + "start": 26725.86, + "end": 26725.98, + "probability": 0.7446 + }, + { + "start": 26726.1, + "end": 26729.28, + "probability": 0.8511 + }, + { + "start": 26729.32, + "end": 26730.52, + "probability": 0.8091 + }, + { + "start": 26730.78, + "end": 26731.69, + "probability": 0.9529 + }, + { + "start": 26732.44, + "end": 26732.74, + "probability": 0.479 + }, + { + "start": 26733.24, + "end": 26734.38, + "probability": 0.6905 + }, + { + "start": 26734.48, + "end": 26735.86, + "probability": 0.8328 + }, + { + "start": 26736.14, + "end": 26738.52, + "probability": 0.8396 + }, + { + "start": 26739.1, + "end": 26741.24, + "probability": 0.9463 + }, + { + "start": 26741.36, + "end": 26745.64, + "probability": 0.4512 + }, + { + "start": 26747.16, + "end": 26749.7, + "probability": 0.6122 + }, + { + "start": 26749.7, + "end": 26753.32, + "probability": 0.994 + }, + { + "start": 26753.44, + "end": 26755.22, + "probability": 0.8799 + }, + { + "start": 26755.74, + "end": 26759.3, + "probability": 0.9971 + }, + { + "start": 26759.3, + "end": 26762.18, + "probability": 0.9669 + }, + { + "start": 26762.24, + "end": 26764.68, + "probability": 0.9357 + }, + { + "start": 26764.92, + "end": 26768.06, + "probability": 0.9849 + }, + { + "start": 26768.08, + "end": 26769.36, + "probability": 0.8197 + }, + { + "start": 26769.48, + "end": 26775.04, + "probability": 0.9941 + }, + { + "start": 26775.28, + "end": 26776.04, + "probability": 0.3688 + }, + { + "start": 26776.04, + "end": 26777.3, + "probability": 0.6121 + }, + { + "start": 26777.76, + "end": 26781.94, + "probability": 0.5914 + }, + { + "start": 26782.24, + "end": 26784.12, + "probability": 0.8455 + }, + { + "start": 26784.9, + "end": 26786.3, + "probability": 0.9814 + }, + { + "start": 26786.48, + "end": 26788.86, + "probability": 0.8328 + }, + { + "start": 26789.36, + "end": 26793.54, + "probability": 0.9884 + }, + { + "start": 26794.54, + "end": 26796.0, + "probability": 0.177 + }, + { + "start": 26796.38, + "end": 26801.16, + "probability": 0.7235 + }, + { + "start": 26801.9, + "end": 26803.38, + "probability": 0.7128 + }, + { + "start": 26803.44, + "end": 26806.03, + "probability": 0.9589 + }, + { + "start": 26806.4, + "end": 26807.32, + "probability": 0.938 + }, + { + "start": 26807.5, + "end": 26807.8, + "probability": 0.3625 + }, + { + "start": 26808.08, + "end": 26811.12, + "probability": 0.9615 + }, + { + "start": 26811.22, + "end": 26813.52, + "probability": 0.7835 + }, + { + "start": 26814.82, + "end": 26815.95, + "probability": 0.8645 + }, + { + "start": 26819.84, + "end": 26821.58, + "probability": 0.5441 + }, + { + "start": 26821.7, + "end": 26822.46, + "probability": 0.5123 + }, + { + "start": 26822.58, + "end": 26823.66, + "probability": 0.8675 + }, + { + "start": 26823.74, + "end": 26825.34, + "probability": 0.8712 + }, + { + "start": 26825.78, + "end": 26827.12, + "probability": 0.1808 + }, + { + "start": 26828.26, + "end": 26828.76, + "probability": 0.1254 + }, + { + "start": 26828.82, + "end": 26828.82, + "probability": 0.0295 + }, + { + "start": 26829.06, + "end": 26831.0, + "probability": 0.4897 + }, + { + "start": 26831.62, + "end": 26836.5, + "probability": 0.6651 + }, + { + "start": 26836.7, + "end": 26838.76, + "probability": 0.8026 + }, + { + "start": 26839.18, + "end": 26839.73, + "probability": 0.3853 + }, + { + "start": 26839.8, + "end": 26840.42, + "probability": 0.3422 + }, + { + "start": 26840.8, + "end": 26842.44, + "probability": 0.1989 + }, + { + "start": 26843.56, + "end": 26844.1, + "probability": 0.0138 + }, + { + "start": 26845.18, + "end": 26846.28, + "probability": 0.0893 + }, + { + "start": 26846.86, + "end": 26847.74, + "probability": 0.0631 + }, + { + "start": 26847.86, + "end": 26849.8, + "probability": 0.0943 + }, + { + "start": 26849.8, + "end": 26849.8, + "probability": 0.0681 + }, + { + "start": 26849.8, + "end": 26850.24, + "probability": 0.2182 + }, + { + "start": 26850.88, + "end": 26853.22, + "probability": 0.1907 + }, + { + "start": 26853.28, + "end": 26856.96, + "probability": 0.9092 + }, + { + "start": 26858.02, + "end": 26860.96, + "probability": 0.2665 + }, + { + "start": 26861.72, + "end": 26862.96, + "probability": 0.7923 + }, + { + "start": 26863.08, + "end": 26864.38, + "probability": 0.5952 + }, + { + "start": 26864.46, + "end": 26867.72, + "probability": 0.9736 + }, + { + "start": 26867.76, + "end": 26869.36, + "probability": 0.7487 + }, + { + "start": 26870.4, + "end": 26871.62, + "probability": 0.5576 + }, + { + "start": 26872.3, + "end": 26875.17, + "probability": 0.7454 + }, + { + "start": 26875.94, + "end": 26876.36, + "probability": 0.5206 + }, + { + "start": 26876.38, + "end": 26877.84, + "probability": 0.5972 + }, + { + "start": 26877.94, + "end": 26878.98, + "probability": 0.7223 + }, + { + "start": 26879.1, + "end": 26880.18, + "probability": 0.3437 + }, + { + "start": 26880.24, + "end": 26881.78, + "probability": 0.8393 + }, + { + "start": 26883.39, + "end": 26887.44, + "probability": 0.7785 + }, + { + "start": 26887.56, + "end": 26890.64, + "probability": 0.3819 + }, + { + "start": 26890.8, + "end": 26893.28, + "probability": 0.1782 + }, + { + "start": 26893.44, + "end": 26894.66, + "probability": 0.9624 + }, + { + "start": 26894.7, + "end": 26895.26, + "probability": 0.6289 + }, + { + "start": 26897.58, + "end": 26901.46, + "probability": 0.5731 + }, + { + "start": 26901.56, + "end": 26903.22, + "probability": 0.1511 + }, + { + "start": 26903.64, + "end": 26905.38, + "probability": 0.7747 + }, + { + "start": 26905.46, + "end": 26906.02, + "probability": 0.7727 + }, + { + "start": 26906.34, + "end": 26906.54, + "probability": 0.7921 + }, + { + "start": 26906.94, + "end": 26907.9, + "probability": 0.7825 + }, + { + "start": 26908.54, + "end": 26912.23, + "probability": 0.665 + }, + { + "start": 26914.78, + "end": 26917.54, + "probability": 0.8311 + }, + { + "start": 26918.06, + "end": 26918.12, + "probability": 0.5985 + }, + { + "start": 26918.12, + "end": 26918.88, + "probability": 0.59 + }, + { + "start": 26923.06, + "end": 26926.54, + "probability": 0.8431 + }, + { + "start": 26936.84, + "end": 26937.58, + "probability": 0.1219 + }, + { + "start": 26938.44, + "end": 26942.0, + "probability": 0.7637 + }, + { + "start": 26942.56, + "end": 26944.26, + "probability": 0.9077 + }, + { + "start": 26945.46, + "end": 26952.62, + "probability": 0.7713 + }, + { + "start": 26954.08, + "end": 26958.76, + "probability": 0.9275 + }, + { + "start": 26959.54, + "end": 26964.3, + "probability": 0.8878 + }, + { + "start": 26964.36, + "end": 26968.54, + "probability": 0.92 + }, + { + "start": 26969.7, + "end": 26974.86, + "probability": 0.9866 + }, + { + "start": 26974.86, + "end": 26978.26, + "probability": 0.7645 + }, + { + "start": 26978.38, + "end": 26981.74, + "probability": 0.9064 + }, + { + "start": 26982.88, + "end": 26983.8, + "probability": 0.7084 + }, + { + "start": 26983.98, + "end": 26990.16, + "probability": 0.8794 + }, + { + "start": 26990.98, + "end": 26991.78, + "probability": 0.5427 + }, + { + "start": 26991.92, + "end": 26993.26, + "probability": 0.9194 + }, + { + "start": 26993.46, + "end": 26995.6, + "probability": 0.9254 + }, + { + "start": 26998.02, + "end": 27002.38, + "probability": 0.9355 + }, + { + "start": 27002.48, + "end": 27002.78, + "probability": 0.579 + }, + { + "start": 27002.92, + "end": 27004.3, + "probability": 0.9157 + }, + { + "start": 27004.7, + "end": 27008.12, + "probability": 0.9796 + }, + { + "start": 27009.16, + "end": 27011.8, + "probability": 0.8837 + }, + { + "start": 27012.76, + "end": 27017.52, + "probability": 0.9326 + }, + { + "start": 27018.12, + "end": 27021.14, + "probability": 0.9939 + }, + { + "start": 27021.5, + "end": 27023.34, + "probability": 0.9226 + }, + { + "start": 27023.54, + "end": 27026.98, + "probability": 0.8984 + }, + { + "start": 27028.08, + "end": 27028.5, + "probability": 0.7503 + }, + { + "start": 27029.38, + "end": 27032.22, + "probability": 0.8649 + }, + { + "start": 27035.12, + "end": 27040.38, + "probability": 0.6952 + }, + { + "start": 27040.38, + "end": 27046.04, + "probability": 0.9652 + }, + { + "start": 27047.26, + "end": 27052.54, + "probability": 0.917 + }, + { + "start": 27053.14, + "end": 27056.62, + "probability": 0.7854 + }, + { + "start": 27057.18, + "end": 27058.34, + "probability": 0.6838 + }, + { + "start": 27058.54, + "end": 27060.94, + "probability": 0.6767 + }, + { + "start": 27061.28, + "end": 27064.68, + "probability": 0.9563 + }, + { + "start": 27065.62, + "end": 27068.9, + "probability": 0.905 + }, + { + "start": 27072.5, + "end": 27076.24, + "probability": 0.9471 + }, + { + "start": 27076.82, + "end": 27080.5, + "probability": 0.9491 + }, + { + "start": 27081.72, + "end": 27085.66, + "probability": 0.9042 + }, + { + "start": 27087.24, + "end": 27088.88, + "probability": 0.6645 + }, + { + "start": 27090.08, + "end": 27093.0, + "probability": 0.9188 + }, + { + "start": 27093.08, + "end": 27097.22, + "probability": 0.8679 + }, + { + "start": 27097.58, + "end": 27101.2, + "probability": 0.8792 + }, + { + "start": 27101.64, + "end": 27103.26, + "probability": 0.8877 + }, + { + "start": 27103.84, + "end": 27106.96, + "probability": 0.9911 + }, + { + "start": 27107.56, + "end": 27115.4, + "probability": 0.8089 + }, + { + "start": 27116.34, + "end": 27117.42, + "probability": 0.9388 + }, + { + "start": 27118.02, + "end": 27118.9, + "probability": 0.9593 + }, + { + "start": 27119.18, + "end": 27120.66, + "probability": 0.9705 + }, + { + "start": 27121.06, + "end": 27122.5, + "probability": 0.752 + }, + { + "start": 27122.64, + "end": 27123.16, + "probability": 0.1604 + }, + { + "start": 27123.22, + "end": 27126.56, + "probability": 0.6037 + }, + { + "start": 27127.08, + "end": 27129.36, + "probability": 0.9832 + }, + { + "start": 27130.04, + "end": 27132.96, + "probability": 0.981 + }, + { + "start": 27135.31, + "end": 27138.46, + "probability": 0.97 + }, + { + "start": 27139.54, + "end": 27142.22, + "probability": 0.9619 + }, + { + "start": 27143.0, + "end": 27143.5, + "probability": 0.8846 + }, + { + "start": 27145.12, + "end": 27149.04, + "probability": 0.8224 + }, + { + "start": 27149.08, + "end": 27152.02, + "probability": 0.8867 + }, + { + "start": 27152.48, + "end": 27155.2, + "probability": 0.9099 + }, + { + "start": 27155.78, + "end": 27157.48, + "probability": 0.7328 + }, + { + "start": 27158.7, + "end": 27161.12, + "probability": 0.5243 + }, + { + "start": 27162.18, + "end": 27163.35, + "probability": 0.9351 + }, + { + "start": 27164.46, + "end": 27166.2, + "probability": 0.9295 + }, + { + "start": 27166.54, + "end": 27169.04, + "probability": 0.7638 + }, + { + "start": 27170.22, + "end": 27173.5, + "probability": 0.9373 + }, + { + "start": 27174.36, + "end": 27181.22, + "probability": 0.8551 + }, + { + "start": 27182.54, + "end": 27188.18, + "probability": 0.7393 + }, + { + "start": 27188.56, + "end": 27189.72, + "probability": 0.4444 + }, + { + "start": 27190.14, + "end": 27192.86, + "probability": 0.6938 + }, + { + "start": 27193.4, + "end": 27194.82, + "probability": 0.6402 + }, + { + "start": 27195.24, + "end": 27198.18, + "probability": 0.9381 + }, + { + "start": 27198.3, + "end": 27200.42, + "probability": 0.9248 + }, + { + "start": 27200.48, + "end": 27201.22, + "probability": 0.886 + }, + { + "start": 27202.1, + "end": 27204.12, + "probability": 0.4087 + }, + { + "start": 27206.64, + "end": 27211.96, + "probability": 0.9217 + }, + { + "start": 27212.92, + "end": 27220.62, + "probability": 0.9803 + }, + { + "start": 27220.86, + "end": 27227.28, + "probability": 0.8575 + }, + { + "start": 27228.1, + "end": 27230.56, + "probability": 0.9312 + }, + { + "start": 27230.7, + "end": 27235.34, + "probability": 0.9916 + }, + { + "start": 27235.46, + "end": 27240.18, + "probability": 0.9209 + }, + { + "start": 27240.44, + "end": 27241.42, + "probability": 0.7723 + }, + { + "start": 27242.22, + "end": 27244.91, + "probability": 0.9352 + }, + { + "start": 27245.74, + "end": 27246.96, + "probability": 0.9123 + }, + { + "start": 27247.0, + "end": 27249.18, + "probability": 0.7989 + }, + { + "start": 27249.2, + "end": 27250.1, + "probability": 0.9001 + }, + { + "start": 27250.5, + "end": 27253.08, + "probability": 0.9111 + }, + { + "start": 27253.34, + "end": 27254.38, + "probability": 0.6045 + }, + { + "start": 27257.02, + "end": 27258.93, + "probability": 0.6161 + }, + { + "start": 27260.04, + "end": 27260.82, + "probability": 0.8286 + }, + { + "start": 27261.12, + "end": 27266.0, + "probability": 0.9413 + }, + { + "start": 27267.4, + "end": 27268.92, + "probability": 0.5303 + }, + { + "start": 27269.9, + "end": 27271.46, + "probability": 0.8747 + }, + { + "start": 27273.24, + "end": 27275.68, + "probability": 0.6536 + }, + { + "start": 27275.74, + "end": 27277.14, + "probability": 0.5942 + }, + { + "start": 27277.38, + "end": 27279.08, + "probability": 0.7501 + }, + { + "start": 27279.88, + "end": 27283.46, + "probability": 0.9316 + }, + { + "start": 27283.66, + "end": 27286.32, + "probability": 0.7979 + }, + { + "start": 27286.44, + "end": 27289.4, + "probability": 0.9409 + }, + { + "start": 27290.14, + "end": 27292.28, + "probability": 0.9254 + }, + { + "start": 27293.14, + "end": 27298.7, + "probability": 0.9573 + }, + { + "start": 27299.94, + "end": 27300.92, + "probability": 0.8931 + }, + { + "start": 27301.06, + "end": 27303.74, + "probability": 0.8896 + }, + { + "start": 27304.56, + "end": 27307.96, + "probability": 0.9626 + }, + { + "start": 27307.96, + "end": 27311.14, + "probability": 0.6797 + }, + { + "start": 27311.54, + "end": 27315.6, + "probability": 0.9006 + }, + { + "start": 27315.68, + "end": 27320.68, + "probability": 0.9634 + }, + { + "start": 27322.04, + "end": 27328.46, + "probability": 0.8474 + }, + { + "start": 27328.94, + "end": 27330.72, + "probability": 0.7942 + }, + { + "start": 27331.16, + "end": 27332.74, + "probability": 0.9614 + }, + { + "start": 27336.12, + "end": 27337.82, + "probability": 0.9731 + }, + { + "start": 27338.54, + "end": 27340.94, + "probability": 0.9349 + }, + { + "start": 27342.06, + "end": 27345.34, + "probability": 0.6658 + }, + { + "start": 27345.78, + "end": 27347.6, + "probability": 0.7795 + }, + { + "start": 27347.66, + "end": 27348.86, + "probability": 0.9467 + }, + { + "start": 27349.2, + "end": 27353.38, + "probability": 0.6216 + }, + { + "start": 27353.74, + "end": 27357.84, + "probability": 0.776 + }, + { + "start": 27357.96, + "end": 27359.94, + "probability": 0.9359 + }, + { + "start": 27360.28, + "end": 27361.94, + "probability": 0.873 + }, + { + "start": 27362.04, + "end": 27362.96, + "probability": 0.5796 + }, + { + "start": 27363.94, + "end": 27367.98, + "probability": 0.9665 + }, + { + "start": 27367.98, + "end": 27370.74, + "probability": 0.674 + }, + { + "start": 27371.6, + "end": 27373.78, + "probability": 0.9633 + }, + { + "start": 27374.04, + "end": 27375.14, + "probability": 0.9036 + }, + { + "start": 27375.36, + "end": 27377.22, + "probability": 0.9542 + }, + { + "start": 27377.44, + "end": 27378.56, + "probability": 0.4978 + }, + { + "start": 27378.74, + "end": 27380.18, + "probability": 0.7571 + }, + { + "start": 27380.56, + "end": 27381.22, + "probability": 0.1256 + }, + { + "start": 27381.22, + "end": 27382.16, + "probability": 0.5674 + }, + { + "start": 27382.64, + "end": 27383.42, + "probability": 0.7546 + }, + { + "start": 27383.76, + "end": 27387.78, + "probability": 0.929 + }, + { + "start": 27388.14, + "end": 27391.44, + "probability": 0.7393 + }, + { + "start": 27391.7, + "end": 27393.26, + "probability": 0.9572 + }, + { + "start": 27393.28, + "end": 27395.04, + "probability": 0.9627 + }, + { + "start": 27395.3, + "end": 27396.92, + "probability": 0.7907 + }, + { + "start": 27397.06, + "end": 27399.38, + "probability": 0.9506 + }, + { + "start": 27400.16, + "end": 27404.28, + "probability": 0.8542 + }, + { + "start": 27404.82, + "end": 27407.4, + "probability": 0.8721 + }, + { + "start": 27408.02, + "end": 27409.86, + "probability": 0.8981 + }, + { + "start": 27410.44, + "end": 27411.74, + "probability": 0.5974 + }, + { + "start": 27411.78, + "end": 27412.18, + "probability": 0.6038 + }, + { + "start": 27412.56, + "end": 27413.82, + "probability": 0.6812 + }, + { + "start": 27413.96, + "end": 27416.8, + "probability": 0.9557 + }, + { + "start": 27416.86, + "end": 27419.03, + "probability": 0.3472 + }, + { + "start": 27419.7, + "end": 27421.0, + "probability": 0.8477 + }, + { + "start": 27421.08, + "end": 27421.88, + "probability": 0.6527 + }, + { + "start": 27422.18, + "end": 27426.08, + "probability": 0.9736 + }, + { + "start": 27426.76, + "end": 27430.36, + "probability": 0.9875 + }, + { + "start": 27430.74, + "end": 27432.58, + "probability": 0.606 + }, + { + "start": 27432.92, + "end": 27434.1, + "probability": 0.9635 + }, + { + "start": 27434.28, + "end": 27435.72, + "probability": 0.9045 + }, + { + "start": 27436.36, + "end": 27439.26, + "probability": 0.6062 + }, + { + "start": 27439.36, + "end": 27439.58, + "probability": 0.8959 + }, + { + "start": 27440.54, + "end": 27442.12, + "probability": 0.7368 + }, + { + "start": 27442.2, + "end": 27444.3, + "probability": 0.9772 + }, + { + "start": 27444.44, + "end": 27445.94, + "probability": 0.9512 + }, + { + "start": 27445.98, + "end": 27446.44, + "probability": 0.9041 + }, + { + "start": 27446.46, + "end": 27447.94, + "probability": 0.8368 + }, + { + "start": 27448.3, + "end": 27449.08, + "probability": 0.9417 + }, + { + "start": 27449.1, + "end": 27450.86, + "probability": 0.9609 + }, + { + "start": 27453.26, + "end": 27455.02, + "probability": 0.8901 + }, + { + "start": 27456.22, + "end": 27457.8, + "probability": 0.6093 + }, + { + "start": 27458.0, + "end": 27458.62, + "probability": 0.9948 + }, + { + "start": 27458.68, + "end": 27464.02, + "probability": 0.9934 + }, + { + "start": 27464.16, + "end": 27466.88, + "probability": 0.9982 + }, + { + "start": 27467.76, + "end": 27468.86, + "probability": 0.8036 + }, + { + "start": 27469.38, + "end": 27472.38, + "probability": 0.924 + }, + { + "start": 27472.52, + "end": 27473.94, + "probability": 0.9358 + }, + { + "start": 27474.76, + "end": 27474.8, + "probability": 0.2832 + }, + { + "start": 27474.8, + "end": 27474.8, + "probability": 0.1714 + }, + { + "start": 27474.8, + "end": 27474.8, + "probability": 0.1482 + }, + { + "start": 27474.82, + "end": 27478.98, + "probability": 0.9865 + }, + { + "start": 27479.2, + "end": 27480.04, + "probability": 0.7911 + }, + { + "start": 27481.4, + "end": 27481.86, + "probability": 0.3882 + }, + { + "start": 27481.94, + "end": 27483.1, + "probability": 0.7939 + }, + { + "start": 27483.42, + "end": 27485.48, + "probability": 0.5406 + }, + { + "start": 27485.7, + "end": 27487.02, + "probability": 0.8008 + }, + { + "start": 27487.1, + "end": 27489.8, + "probability": 0.7142 + }, + { + "start": 27491.28, + "end": 27495.1, + "probability": 0.7387 + }, + { + "start": 27495.92, + "end": 27498.26, + "probability": 0.6003 + }, + { + "start": 27498.54, + "end": 27503.79, + "probability": 0.9683 + }, + { + "start": 27504.54, + "end": 27506.06, + "probability": 0.9709 + }, + { + "start": 27507.06, + "end": 27511.28, + "probability": 0.7426 + }, + { + "start": 27511.66, + "end": 27516.74, + "probability": 0.7495 + }, + { + "start": 27517.04, + "end": 27520.5, + "probability": 0.9874 + }, + { + "start": 27521.78, + "end": 27524.24, + "probability": 0.6603 + }, + { + "start": 27525.48, + "end": 27525.48, + "probability": 0.7686 + }, + { + "start": 27526.54, + "end": 27532.7, + "probability": 0.8441 + }, + { + "start": 27532.96, + "end": 27537.36, + "probability": 0.9993 + }, + { + "start": 27539.34, + "end": 27544.2, + "probability": 0.9582 + }, + { + "start": 27544.32, + "end": 27545.26, + "probability": 0.9619 + }, + { + "start": 27546.2, + "end": 27552.38, + "probability": 0.9691 + }, + { + "start": 27552.8, + "end": 27553.48, + "probability": 0.6345 + }, + { + "start": 27554.5, + "end": 27566.32, + "probability": 0.787 + }, + { + "start": 27566.98, + "end": 27570.54, + "probability": 0.6878 + }, + { + "start": 27571.0, + "end": 27577.58, + "probability": 0.9956 + }, + { + "start": 27578.64, + "end": 27580.94, + "probability": 0.9579 + }, + { + "start": 27581.66, + "end": 27582.3, + "probability": 0.5236 + }, + { + "start": 27583.65, + "end": 27589.1, + "probability": 0.8256 + }, + { + "start": 27589.68, + "end": 27592.32, + "probability": 0.9269 + }, + { + "start": 27593.52, + "end": 27599.12, + "probability": 0.9917 + }, + { + "start": 27599.12, + "end": 27601.54, + "probability": 0.9989 + }, + { + "start": 27602.18, + "end": 27603.92, + "probability": 0.9878 + }, + { + "start": 27604.74, + "end": 27605.26, + "probability": 0.6937 + }, + { + "start": 27605.96, + "end": 27609.46, + "probability": 0.95 + }, + { + "start": 27609.52, + "end": 27611.06, + "probability": 0.9761 + }, + { + "start": 27613.22, + "end": 27617.88, + "probability": 0.9559 + }, + { + "start": 27617.88, + "end": 27622.0, + "probability": 0.9956 + }, + { + "start": 27622.54, + "end": 27623.14, + "probability": 0.8375 + }, + { + "start": 27623.3, + "end": 27627.84, + "probability": 0.9627 + }, + { + "start": 27628.4, + "end": 27631.78, + "probability": 0.9802 + }, + { + "start": 27631.94, + "end": 27635.4, + "probability": 0.9209 + }, + { + "start": 27636.56, + "end": 27637.5, + "probability": 0.7993 + }, + { + "start": 27637.64, + "end": 27640.4, + "probability": 0.9381 + }, + { + "start": 27640.4, + "end": 27643.74, + "probability": 0.9979 + }, + { + "start": 27644.58, + "end": 27646.88, + "probability": 0.8466 + }, + { + "start": 27647.02, + "end": 27651.82, + "probability": 0.9636 + }, + { + "start": 27652.58, + "end": 27655.8, + "probability": 0.4513 + }, + { + "start": 27656.52, + "end": 27658.22, + "probability": 0.8092 + }, + { + "start": 27659.02, + "end": 27659.72, + "probability": 0.5525 + }, + { + "start": 27660.2, + "end": 27660.8, + "probability": 0.756 + }, + { + "start": 27660.86, + "end": 27661.56, + "probability": 0.8033 + }, + { + "start": 27661.66, + "end": 27662.22, + "probability": 0.6429 + }, + { + "start": 27662.32, + "end": 27662.92, + "probability": 0.8549 + }, + { + "start": 27663.02, + "end": 27663.92, + "probability": 0.9458 + }, + { + "start": 27664.38, + "end": 27665.1, + "probability": 0.4387 + }, + { + "start": 27666.02, + "end": 27670.78, + "probability": 0.9794 + }, + { + "start": 27672.1, + "end": 27674.42, + "probability": 0.7377 + }, + { + "start": 27675.46, + "end": 27680.38, + "probability": 0.9648 + }, + { + "start": 27681.36, + "end": 27686.2, + "probability": 0.9955 + }, + { + "start": 27687.82, + "end": 27689.6, + "probability": 0.9956 + }, + { + "start": 27690.44, + "end": 27693.44, + "probability": 0.9963 + }, + { + "start": 27693.44, + "end": 27697.26, + "probability": 0.9629 + }, + { + "start": 27697.38, + "end": 27698.79, + "probability": 0.9689 + }, + { + "start": 27699.54, + "end": 27700.74, + "probability": 0.8947 + }, + { + "start": 27700.86, + "end": 27705.2, + "probability": 0.8752 + }, + { + "start": 27706.1, + "end": 27709.42, + "probability": 0.9801 + }, + { + "start": 27710.26, + "end": 27714.6, + "probability": 0.7577 + }, + { + "start": 27714.6, + "end": 27717.46, + "probability": 0.8986 + }, + { + "start": 27718.1, + "end": 27721.7, + "probability": 0.8521 + }, + { + "start": 27722.72, + "end": 27728.0, + "probability": 0.9038 + }, + { + "start": 27728.74, + "end": 27732.3, + "probability": 0.9814 + }, + { + "start": 27732.36, + "end": 27734.7, + "probability": 0.9702 + }, + { + "start": 27735.62, + "end": 27739.66, + "probability": 0.8292 + }, + { + "start": 27739.66, + "end": 27742.8, + "probability": 0.9519 + }, + { + "start": 27742.86, + "end": 27747.06, + "probability": 0.8636 + }, + { + "start": 27747.8, + "end": 27751.66, + "probability": 0.7682 + }, + { + "start": 27752.38, + "end": 27755.66, + "probability": 0.8021 + }, + { + "start": 27756.38, + "end": 27759.74, + "probability": 0.8403 + }, + { + "start": 27759.92, + "end": 27764.56, + "probability": 0.8861 + }, + { + "start": 27764.7, + "end": 27765.16, + "probability": 0.7774 + }, + { + "start": 27766.48, + "end": 27769.42, + "probability": 0.9521 + }, + { + "start": 27769.42, + "end": 27772.66, + "probability": 0.9959 + }, + { + "start": 27773.28, + "end": 27776.58, + "probability": 0.7362 + }, + { + "start": 27777.26, + "end": 27782.86, + "probability": 0.9333 + }, + { + "start": 27783.54, + "end": 27786.76, + "probability": 0.9907 + }, + { + "start": 27786.86, + "end": 27787.32, + "probability": 0.908 + }, + { + "start": 27788.18, + "end": 27792.04, + "probability": 0.8755 + }, + { + "start": 27792.68, + "end": 27795.0, + "probability": 0.9963 + }, + { + "start": 27795.0, + "end": 27798.52, + "probability": 0.9959 + }, + { + "start": 27799.44, + "end": 27800.98, + "probability": 0.8077 + }, + { + "start": 27801.52, + "end": 27804.02, + "probability": 0.9554 + }, + { + "start": 27804.16, + "end": 27808.96, + "probability": 0.9719 + }, + { + "start": 27809.8, + "end": 27812.28, + "probability": 0.5212 + }, + { + "start": 27812.28, + "end": 27815.94, + "probability": 0.9777 + }, + { + "start": 27815.94, + "end": 27818.94, + "probability": 0.9706 + }, + { + "start": 27819.96, + "end": 27820.86, + "probability": 0.8887 + }, + { + "start": 27820.94, + "end": 27824.22, + "probability": 0.987 + }, + { + "start": 27824.88, + "end": 27828.78, + "probability": 0.9829 + }, + { + "start": 27830.02, + "end": 27831.54, + "probability": 0.8868 + }, + { + "start": 27832.7, + "end": 27836.12, + "probability": 0.9559 + }, + { + "start": 27836.16, + "end": 27840.62, + "probability": 0.9893 + }, + { + "start": 27840.74, + "end": 27842.02, + "probability": 0.7417 + }, + { + "start": 27842.82, + "end": 27843.48, + "probability": 0.9373 + }, + { + "start": 27844.32, + "end": 27844.92, + "probability": 0.4642 + }, + { + "start": 27845.0, + "end": 27846.32, + "probability": 0.8185 + }, + { + "start": 27846.44, + "end": 27849.46, + "probability": 0.9418 + }, + { + "start": 27849.52, + "end": 27852.84, + "probability": 0.7971 + }, + { + "start": 27853.38, + "end": 27853.88, + "probability": 0.9563 + }, + { + "start": 27854.44, + "end": 27857.14, + "probability": 0.7578 + }, + { + "start": 27857.26, + "end": 27858.42, + "probability": 0.6955 + }, + { + "start": 27859.1, + "end": 27863.3, + "probability": 0.8753 + }, + { + "start": 27863.92, + "end": 27865.56, + "probability": 0.8123 + }, + { + "start": 27866.34, + "end": 27867.82, + "probability": 0.9863 + }, + { + "start": 27868.48, + "end": 27871.72, + "probability": 0.876 + }, + { + "start": 27871.84, + "end": 27873.76, + "probability": 0.9945 + }, + { + "start": 27874.54, + "end": 27876.94, + "probability": 0.8829 + }, + { + "start": 27876.94, + "end": 27880.42, + "probability": 0.9734 + }, + { + "start": 27881.14, + "end": 27883.62, + "probability": 0.9407 + }, + { + "start": 27883.62, + "end": 27884.12, + "probability": 0.2802 + }, + { + "start": 27884.12, + "end": 27884.36, + "probability": 0.1132 + }, + { + "start": 27884.92, + "end": 27886.82, + "probability": 0.604 + }, + { + "start": 27887.32, + "end": 27888.76, + "probability": 0.9595 + }, + { + "start": 27888.88, + "end": 27890.24, + "probability": 0.8121 + }, + { + "start": 27890.68, + "end": 27893.86, + "probability": 0.9581 + }, + { + "start": 27894.38, + "end": 27896.48, + "probability": 0.9127 + }, + { + "start": 27897.04, + "end": 27897.78, + "probability": 0.9494 + }, + { + "start": 27897.94, + "end": 27899.44, + "probability": 0.9618 + }, + { + "start": 27899.56, + "end": 27902.2, + "probability": 0.9178 + }, + { + "start": 27903.68, + "end": 27907.36, + "probability": 0.9188 + }, + { + "start": 27908.76, + "end": 27909.85, + "probability": 0.8092 + }, + { + "start": 27911.38, + "end": 27915.02, + "probability": 0.8895 + }, + { + "start": 27915.16, + "end": 27917.58, + "probability": 0.6819 + }, + { + "start": 27918.9, + "end": 27921.08, + "probability": 0.8931 + }, + { + "start": 27921.4, + "end": 27921.66, + "probability": 0.502 + }, + { + "start": 27921.76, + "end": 27923.18, + "probability": 0.9197 + }, + { + "start": 27923.24, + "end": 27925.56, + "probability": 0.7205 + }, + { + "start": 27926.24, + "end": 27929.62, + "probability": 0.9968 + }, + { + "start": 27930.38, + "end": 27931.68, + "probability": 0.994 + }, + { + "start": 27932.52, + "end": 27934.46, + "probability": 0.869 + }, + { + "start": 27934.58, + "end": 27935.48, + "probability": 0.8965 + }, + { + "start": 27935.58, + "end": 27937.8, + "probability": 0.7501 + }, + { + "start": 27937.86, + "end": 27942.2, + "probability": 0.9692 + }, + { + "start": 27942.78, + "end": 27945.18, + "probability": 0.9614 + }, + { + "start": 27946.02, + "end": 27950.34, + "probability": 0.9189 + }, + { + "start": 27950.44, + "end": 27952.1, + "probability": 0.195 + }, + { + "start": 27952.1, + "end": 27952.94, + "probability": 0.3413 + }, + { + "start": 27953.1, + "end": 27954.8, + "probability": 0.8397 + }, + { + "start": 27955.46, + "end": 27958.42, + "probability": 0.8125 + }, + { + "start": 27958.42, + "end": 27961.15, + "probability": 0.9427 + }, + { + "start": 27962.22, + "end": 27967.82, + "probability": 0.6908 + }, + { + "start": 27968.74, + "end": 27971.74, + "probability": 0.9634 + }, + { + "start": 27971.88, + "end": 27972.16, + "probability": 0.4009 + }, + { + "start": 27972.24, + "end": 27972.92, + "probability": 0.9738 + }, + { + "start": 27973.68, + "end": 27975.64, + "probability": 0.7737 + }, + { + "start": 27976.3, + "end": 27978.62, + "probability": 0.4858 + }, + { + "start": 27979.6, + "end": 27980.72, + "probability": 0.9276 + }, + { + "start": 27981.95, + "end": 27987.1, + "probability": 0.531 + }, + { + "start": 27987.9, + "end": 27988.8, + "probability": 0.9288 + }, + { + "start": 27988.86, + "end": 27992.84, + "probability": 0.9707 + }, + { + "start": 27992.84, + "end": 27994.84, + "probability": 0.981 + }, + { + "start": 27995.36, + "end": 27996.56, + "probability": 0.8361 + }, + { + "start": 27997.3, + "end": 28000.8, + "probability": 0.8056 + }, + { + "start": 28000.9, + "end": 28001.5, + "probability": 0.9139 + }, + { + "start": 28002.32, + "end": 28006.54, + "probability": 0.9097 + }, + { + "start": 28007.3, + "end": 28010.62, + "probability": 0.8833 + }, + { + "start": 28011.16, + "end": 28015.02, + "probability": 0.8312 + }, + { + "start": 28015.64, + "end": 28018.04, + "probability": 0.9845 + }, + { + "start": 28018.36, + "end": 28019.04, + "probability": 0.3356 + }, + { + "start": 28019.84, + "end": 28021.34, + "probability": 0.8722 + }, + { + "start": 28022.92, + "end": 28025.1, + "probability": 0.3683 + }, + { + "start": 28026.98, + "end": 28028.32, + "probability": 0.6594 + }, + { + "start": 28029.68, + "end": 28031.22, + "probability": 0.5091 + }, + { + "start": 28031.52, + "end": 28035.94, + "probability": 0.9158 + }, + { + "start": 28038.18, + "end": 28039.06, + "probability": 0.2209 + }, + { + "start": 28039.2, + "end": 28040.12, + "probability": 0.7175 + }, + { + "start": 28040.72, + "end": 28042.16, + "probability": 0.7517 + }, + { + "start": 28042.3, + "end": 28044.78, + "probability": 0.7164 + }, + { + "start": 28044.86, + "end": 28047.14, + "probability": 0.9126 + }, + { + "start": 28047.26, + "end": 28049.52, + "probability": 0.4832 + }, + { + "start": 28049.8, + "end": 28051.88, + "probability": 0.6885 + }, + { + "start": 28052.12, + "end": 28052.12, + "probability": 0.5723 + }, + { + "start": 28055.16, + "end": 28058.8, + "probability": 0.5852 + }, + { + "start": 28058.92, + "end": 28060.22, + "probability": 0.24 + }, + { + "start": 28061.36, + "end": 28064.16, + "probability": 0.7086 + }, + { + "start": 28064.3, + "end": 28064.44, + "probability": 0.0632 + }, + { + "start": 28064.68, + "end": 28064.78, + "probability": 0.3823 + }, + { + "start": 28064.78, + "end": 28066.32, + "probability": 0.9258 + }, + { + "start": 28066.4, + "end": 28066.95, + "probability": 0.824 + }, + { + "start": 28067.1, + "end": 28067.83, + "probability": 0.9673 + }, + { + "start": 28067.98, + "end": 28070.01, + "probability": 0.9131 + }, + { + "start": 28070.32, + "end": 28070.68, + "probability": 0.3788 + }, + { + "start": 28070.84, + "end": 28072.82, + "probability": 0.5686 + }, + { + "start": 28072.98, + "end": 28074.3, + "probability": 0.4922 + }, + { + "start": 28075.82, + "end": 28079.74, + "probability": 0.62 + }, + { + "start": 28080.8, + "end": 28082.46, + "probability": 0.7991 + }, + { + "start": 28085.28, + "end": 28085.8, + "probability": 0.0491 + }, + { + "start": 28086.48, + "end": 28090.2, + "probability": 0.6929 + }, + { + "start": 28090.4, + "end": 28096.58, + "probability": 0.5965 + }, + { + "start": 28096.58, + "end": 28100.16, + "probability": 0.9847 + }, + { + "start": 28101.06, + "end": 28104.8, + "probability": 0.9768 + }, + { + "start": 28105.26, + "end": 28107.22, + "probability": 0.7537 + }, + { + "start": 28108.08, + "end": 28109.64, + "probability": 0.7605 + }, + { + "start": 28110.04, + "end": 28111.16, + "probability": 0.7242 + }, + { + "start": 28111.24, + "end": 28111.88, + "probability": 0.4246 + }, + { + "start": 28112.04, + "end": 28112.5, + "probability": 0.4117 + }, + { + "start": 28114.22, + "end": 28114.22, + "probability": 0.812 + }, + { + "start": 28116.6, + "end": 28120.88, + "probability": 0.6003 + }, + { + "start": 28120.94, + "end": 28122.02, + "probability": 0.9882 + }, + { + "start": 28122.12, + "end": 28122.64, + "probability": 0.4638 + }, + { + "start": 28124.28, + "end": 28124.72, + "probability": 0.1926 + }, + { + "start": 28124.72, + "end": 28130.48, + "probability": 0.6966 + }, + { + "start": 28130.52, + "end": 28131.46, + "probability": 0.9695 + }, + { + "start": 28131.52, + "end": 28132.4, + "probability": 0.4485 + }, + { + "start": 28132.4, + "end": 28133.38, + "probability": 0.9065 + }, + { + "start": 28133.67, + "end": 28137.9, + "probability": 0.8291 + }, + { + "start": 28138.0, + "end": 28138.3, + "probability": 0.844 + }, + { + "start": 28138.62, + "end": 28142.71, + "probability": 0.9303 + }, + { + "start": 28143.26, + "end": 28143.96, + "probability": 0.7894 + }, + { + "start": 28144.08, + "end": 28144.64, + "probability": 0.2724 + }, + { + "start": 28144.7, + "end": 28145.48, + "probability": 0.4348 + }, + { + "start": 28147.52, + "end": 28152.74, + "probability": 0.5994 + }, + { + "start": 28153.4, + "end": 28156.04, + "probability": 0.6942 + }, + { + "start": 28156.88, + "end": 28162.0, + "probability": 0.8899 + }, + { + "start": 28162.94, + "end": 28164.03, + "probability": 0.8951 + }, + { + "start": 28164.62, + "end": 28169.56, + "probability": 0.3559 + }, + { + "start": 28169.62, + "end": 28170.14, + "probability": 0.6669 + }, + { + "start": 28170.22, + "end": 28170.8, + "probability": 0.3735 + }, + { + "start": 28170.88, + "end": 28171.2, + "probability": 0.6802 + }, + { + "start": 28172.26, + "end": 28175.2, + "probability": 0.8391 + }, + { + "start": 28176.16, + "end": 28177.04, + "probability": 0.8999 + }, + { + "start": 28177.86, + "end": 28180.08, + "probability": 0.9653 + }, + { + "start": 28180.08, + "end": 28183.22, + "probability": 0.7582 + }, + { + "start": 28183.34, + "end": 28183.94, + "probability": 0.4223 + }, + { + "start": 28184.9, + "end": 28189.38, + "probability": 0.9814 + }, + { + "start": 28189.88, + "end": 28193.16, + "probability": 0.9402 + }, + { + "start": 28193.29, + "end": 28196.36, + "probability": 0.9696 + }, + { + "start": 28196.9, + "end": 28197.66, + "probability": 0.9838 + }, + { + "start": 28197.72, + "end": 28198.08, + "probability": 0.7558 + }, + { + "start": 28199.32, + "end": 28200.6, + "probability": 0.9837 + }, + { + "start": 28201.5, + "end": 28202.88, + "probability": 0.8618 + }, + { + "start": 28203.04, + "end": 28205.88, + "probability": 0.9418 + }, + { + "start": 28206.64, + "end": 28207.88, + "probability": 0.7639 + }, + { + "start": 28208.26, + "end": 28209.72, + "probability": 0.8878 + }, + { + "start": 28210.26, + "end": 28214.2, + "probability": 0.8956 + }, + { + "start": 28214.92, + "end": 28218.58, + "probability": 0.8561 + }, + { + "start": 28218.6, + "end": 28218.88, + "probability": 0.4442 + }, + { + "start": 28219.14, + "end": 28220.2, + "probability": 0.5761 + }, + { + "start": 28220.32, + "end": 28223.1, + "probability": 0.7715 + }, + { + "start": 28224.02, + "end": 28226.9, + "probability": 0.8919 + }, + { + "start": 28227.04, + "end": 28230.98, + "probability": 0.9231 + }, + { + "start": 28231.54, + "end": 28233.76, + "probability": 0.975 + }, + { + "start": 28234.56, + "end": 28235.16, + "probability": 0.6826 + }, + { + "start": 28235.8, + "end": 28236.3, + "probability": 0.6987 + }, + { + "start": 28237.76, + "end": 28240.8, + "probability": 0.8527 + }, + { + "start": 28241.26, + "end": 28241.26, + "probability": 0.2915 + }, + { + "start": 28242.16, + "end": 28247.92, + "probability": 0.6453 + }, + { + "start": 28247.92, + "end": 28249.12, + "probability": 0.9719 + }, + { + "start": 28249.28, + "end": 28251.06, + "probability": 0.8877 + }, + { + "start": 28251.8, + "end": 28252.65, + "probability": 0.9849 + }, + { + "start": 28253.26, + "end": 28253.78, + "probability": 0.9905 + }, + { + "start": 28254.76, + "end": 28257.56, + "probability": 0.7599 + }, + { + "start": 28258.24, + "end": 28261.68, + "probability": 0.983 + }, + { + "start": 28262.06, + "end": 28262.84, + "probability": 0.6685 + }, + { + "start": 28263.66, + "end": 28266.28, + "probability": 0.979 + }, + { + "start": 28268.72, + "end": 28269.28, + "probability": 0.5031 + }, + { + "start": 28269.28, + "end": 28270.32, + "probability": 0.826 + }, + { + "start": 28271.24, + "end": 28276.24, + "probability": 0.9194 + }, + { + "start": 28276.94, + "end": 28277.5, + "probability": 0.8547 + }, + { + "start": 28277.58, + "end": 28279.2, + "probability": 0.8548 + }, + { + "start": 28280.08, + "end": 28283.48, + "probability": 0.8307 + }, + { + "start": 28283.48, + "end": 28285.5, + "probability": 0.861 + }, + { + "start": 28286.46, + "end": 28286.46, + "probability": 0.8247 + }, + { + "start": 28287.34, + "end": 28288.76, + "probability": 0.9214 + }, + { + "start": 28288.82, + "end": 28289.72, + "probability": 0.9951 + }, + { + "start": 28291.04, + "end": 28292.78, + "probability": 0.7545 + }, + { + "start": 28293.48, + "end": 28294.47, + "probability": 0.7885 + }, + { + "start": 28295.04, + "end": 28295.28, + "probability": 0.8134 + }, + { + "start": 28295.4, + "end": 28296.93, + "probability": 0.521 + }, + { + "start": 28297.36, + "end": 28298.14, + "probability": 0.9222 + }, + { + "start": 28298.72, + "end": 28299.24, + "probability": 0.8819 + }, + { + "start": 28300.7, + "end": 28302.52, + "probability": 0.9155 + }, + { + "start": 28303.52, + "end": 28304.38, + "probability": 0.8936 + }, + { + "start": 28305.72, + "end": 28307.82, + "probability": 0.7043 + }, + { + "start": 28308.18, + "end": 28308.74, + "probability": 0.5934 + }, + { + "start": 28308.86, + "end": 28310.18, + "probability": 0.121 + }, + { + "start": 28310.32, + "end": 28310.5, + "probability": 0.6658 + }, + { + "start": 28310.54, + "end": 28311.08, + "probability": 0.7295 + }, + { + "start": 28311.18, + "end": 28313.12, + "probability": 0.8103 + }, + { + "start": 28314.1, + "end": 28317.22, + "probability": 0.9108 + }, + { + "start": 28318.0, + "end": 28320.02, + "probability": 0.6885 + }, + { + "start": 28321.32, + "end": 28321.91, + "probability": 0.7737 + }, + { + "start": 28323.8, + "end": 28328.14, + "probability": 0.8036 + }, + { + "start": 28329.58, + "end": 28330.66, + "probability": 0.8933 + }, + { + "start": 28331.78, + "end": 28336.24, + "probability": 0.9182 + }, + { + "start": 28338.26, + "end": 28338.5, + "probability": 0.6263 + }, + { + "start": 28339.28, + "end": 28340.94, + "probability": 0.9734 + }, + { + "start": 28341.74, + "end": 28342.74, + "probability": 0.9596 + }, + { + "start": 28342.88, + "end": 28343.26, + "probability": 0.7174 + }, + { + "start": 28343.52, + "end": 28344.72, + "probability": 0.9905 + }, + { + "start": 28346.12, + "end": 28348.02, + "probability": 0.9883 + }, + { + "start": 28348.6, + "end": 28350.74, + "probability": 0.9967 + }, + { + "start": 28351.84, + "end": 28353.54, + "probability": 0.998 + }, + { + "start": 28355.04, + "end": 28357.43, + "probability": 0.8811 + }, + { + "start": 28357.66, + "end": 28359.22, + "probability": 0.7306 + }, + { + "start": 28360.46, + "end": 28361.52, + "probability": 0.8955 + }, + { + "start": 28361.54, + "end": 28363.08, + "probability": 0.8933 + }, + { + "start": 28363.3, + "end": 28364.32, + "probability": 0.9927 + }, + { + "start": 28364.4, + "end": 28365.78, + "probability": 0.5134 + }, + { + "start": 28366.48, + "end": 28366.87, + "probability": 0.9839 + }, + { + "start": 28367.6, + "end": 28368.04, + "probability": 0.9744 + }, + { + "start": 28368.22, + "end": 28372.1, + "probability": 0.835 + }, + { + "start": 28372.64, + "end": 28376.92, + "probability": 0.9883 + }, + { + "start": 28378.62, + "end": 28385.0, + "probability": 0.9147 + }, + { + "start": 28386.1, + "end": 28386.7, + "probability": 0.8665 + }, + { + "start": 28387.64, + "end": 28388.38, + "probability": 0.7763 + }, + { + "start": 28388.94, + "end": 28389.42, + "probability": 0.6672 + }, + { + "start": 28390.5, + "end": 28391.5, + "probability": 0.9156 + }, + { + "start": 28392.28, + "end": 28393.62, + "probability": 0.8431 + }, + { + "start": 28394.7, + "end": 28396.12, + "probability": 0.9973 + }, + { + "start": 28397.2, + "end": 28400.68, + "probability": 0.9946 + }, + { + "start": 28400.84, + "end": 28402.44, + "probability": 0.8829 + }, + { + "start": 28403.0, + "end": 28403.98, + "probability": 0.9164 + }, + { + "start": 28404.42, + "end": 28406.24, + "probability": 0.7333 + }, + { + "start": 28406.96, + "end": 28408.9, + "probability": 0.9856 + }, + { + "start": 28409.14, + "end": 28413.0, + "probability": 0.9503 + }, + { + "start": 28413.1, + "end": 28413.98, + "probability": 0.8833 + }, + { + "start": 28414.64, + "end": 28415.38, + "probability": 0.4371 + }, + { + "start": 28416.62, + "end": 28419.74, + "probability": 0.9727 + }, + { + "start": 28420.1, + "end": 28421.9, + "probability": 0.9829 + }, + { + "start": 28423.56, + "end": 28426.28, + "probability": 0.9935 + }, + { + "start": 28426.76, + "end": 28427.82, + "probability": 0.9764 + }, + { + "start": 28428.48, + "end": 28429.44, + "probability": 0.974 + }, + { + "start": 28430.0, + "end": 28432.76, + "probability": 0.7112 + }, + { + "start": 28433.42, + "end": 28435.86, + "probability": 0.9458 + }, + { + "start": 28436.56, + "end": 28440.9, + "probability": 0.9961 + }, + { + "start": 28441.44, + "end": 28442.04, + "probability": 0.7334 + }, + { + "start": 28442.1, + "end": 28443.42, + "probability": 0.9642 + }, + { + "start": 28443.66, + "end": 28443.92, + "probability": 0.8376 + }, + { + "start": 28444.42, + "end": 28446.52, + "probability": 0.9949 + }, + { + "start": 28446.98, + "end": 28448.76, + "probability": 0.9106 + }, + { + "start": 28448.84, + "end": 28449.54, + "probability": 0.878 + }, + { + "start": 28450.12, + "end": 28454.8, + "probability": 0.6483 + }, + { + "start": 28455.92, + "end": 28456.84, + "probability": 0.4163 + }, + { + "start": 28457.04, + "end": 28460.86, + "probability": 0.8474 + }, + { + "start": 28468.42, + "end": 28470.04, + "probability": 0.3518 + }, + { + "start": 28470.42, + "end": 28470.44, + "probability": 0.5811 + }, + { + "start": 28471.56, + "end": 28472.04, + "probability": 0.1457 + }, + { + "start": 28482.6, + "end": 28484.86, + "probability": 0.6852 + }, + { + "start": 28484.98, + "end": 28486.13, + "probability": 0.9899 + }, + { + "start": 28486.94, + "end": 28489.14, + "probability": 0.993 + }, + { + "start": 28489.96, + "end": 28491.64, + "probability": 0.3736 + }, + { + "start": 28492.32, + "end": 28497.0, + "probability": 0.7773 + }, + { + "start": 28497.67, + "end": 28499.87, + "probability": 0.1481 + }, + { + "start": 28500.6, + "end": 28501.42, + "probability": 0.7495 + }, + { + "start": 28505.78, + "end": 28509.13, + "probability": 0.8765 + }, + { + "start": 28510.78, + "end": 28511.38, + "probability": 0.1801 + }, + { + "start": 28517.2, + "end": 28518.96, + "probability": 0.8363 + }, + { + "start": 28519.0, + "end": 28520.78, + "probability": 0.9493 + }, + { + "start": 28521.9, + "end": 28524.38, + "probability": 0.6312 + }, + { + "start": 28524.74, + "end": 28527.2, + "probability": 0.2758 + }, + { + "start": 28527.26, + "end": 28528.32, + "probability": 0.7231 + }, + { + "start": 28530.0, + "end": 28531.54, + "probability": 0.9655 + }, + { + "start": 28532.6, + "end": 28533.48, + "probability": 0.6799 + }, + { + "start": 28535.0, + "end": 28539.1, + "probability": 0.9666 + }, + { + "start": 28539.8, + "end": 28541.26, + "probability": 0.9941 + }, + { + "start": 28542.22, + "end": 28543.82, + "probability": 0.867 + }, + { + "start": 28545.62, + "end": 28547.14, + "probability": 0.8935 + }, + { + "start": 28548.32, + "end": 28550.6, + "probability": 0.8741 + }, + { + "start": 28551.84, + "end": 28555.24, + "probability": 0.9834 + }, + { + "start": 28556.04, + "end": 28559.82, + "probability": 0.9903 + }, + { + "start": 28561.42, + "end": 28562.62, + "probability": 0.8642 + }, + { + "start": 28563.28, + "end": 28567.84, + "probability": 0.9709 + }, + { + "start": 28569.26, + "end": 28570.6, + "probability": 0.9969 + }, + { + "start": 28571.46, + "end": 28577.28, + "probability": 0.996 + }, + { + "start": 28577.78, + "end": 28581.96, + "probability": 0.999 + }, + { + "start": 28583.3, + "end": 28585.08, + "probability": 0.9113 + }, + { + "start": 28585.82, + "end": 28586.68, + "probability": 0.9807 + }, + { + "start": 28587.94, + "end": 28588.79, + "probability": 0.8796 + }, + { + "start": 28590.42, + "end": 28595.3, + "probability": 0.9949 + }, + { + "start": 28595.3, + "end": 28601.08, + "probability": 0.972 + }, + { + "start": 28602.92, + "end": 28606.48, + "probability": 0.9692 + }, + { + "start": 28607.44, + "end": 28608.64, + "probability": 0.7619 + }, + { + "start": 28609.5, + "end": 28610.6, + "probability": 0.6694 + }, + { + "start": 28611.18, + "end": 28611.54, + "probability": 0.8517 + }, + { + "start": 28613.6, + "end": 28615.36, + "probability": 0.6986 + }, + { + "start": 28616.12, + "end": 28617.28, + "probability": 0.7394 + }, + { + "start": 28618.04, + "end": 28621.72, + "probability": 0.7927 + }, + { + "start": 28622.48, + "end": 28625.24, + "probability": 0.9646 + }, + { + "start": 28625.7, + "end": 28627.66, + "probability": 0.6376 + }, + { + "start": 28627.96, + "end": 28629.97, + "probability": 0.8945 + }, + { + "start": 28630.58, + "end": 28634.71, + "probability": 0.9597 + }, + { + "start": 28638.06, + "end": 28640.58, + "probability": 0.6581 + }, + { + "start": 28641.18, + "end": 28642.8, + "probability": 0.0376 + }, + { + "start": 28642.8, + "end": 28642.9, + "probability": 0.2235 + }, + { + "start": 28643.1, + "end": 28643.94, + "probability": 0.7064 + }, + { + "start": 28644.5, + "end": 28645.94, + "probability": 0.8847 + }, + { + "start": 28646.04, + "end": 28647.0, + "probability": 0.9946 + }, + { + "start": 28647.36, + "end": 28648.88, + "probability": 0.9507 + }, + { + "start": 28649.28, + "end": 28651.56, + "probability": 0.8855 + }, + { + "start": 28651.88, + "end": 28652.1, + "probability": 0.0008 + }, + { + "start": 28652.1, + "end": 28654.96, + "probability": 0.8981 + }, + { + "start": 28655.12, + "end": 28657.04, + "probability": 0.7754 + }, + { + "start": 28657.4, + "end": 28658.36, + "probability": 0.9331 + }, + { + "start": 28659.62, + "end": 28663.99, + "probability": 0.9878 + }, + { + "start": 28665.58, + "end": 28669.48, + "probability": 0.9726 + }, + { + "start": 28670.42, + "end": 28672.12, + "probability": 0.9934 + }, + { + "start": 28672.74, + "end": 28673.8, + "probability": 0.9314 + }, + { + "start": 28675.02, + "end": 28677.26, + "probability": 0.8507 + }, + { + "start": 28677.86, + "end": 28682.12, + "probability": 0.9984 + }, + { + "start": 28683.3, + "end": 28685.96, + "probability": 0.8845 + }, + { + "start": 28686.76, + "end": 28687.54, + "probability": 0.8909 + }, + { + "start": 28688.14, + "end": 28689.98, + "probability": 0.9777 + }, + { + "start": 28690.9, + "end": 28691.44, + "probability": 0.8029 + }, + { + "start": 28692.1, + "end": 28694.94, + "probability": 0.9858 + }, + { + "start": 28696.24, + "end": 28699.22, + "probability": 0.9906 + }, + { + "start": 28700.1, + "end": 28700.66, + "probability": 0.7551 + }, + { + "start": 28701.62, + "end": 28702.14, + "probability": 0.9687 + }, + { + "start": 28702.84, + "end": 28703.54, + "probability": 0.894 + }, + { + "start": 28704.4, + "end": 28708.24, + "probability": 0.8366 + }, + { + "start": 28709.54, + "end": 28710.62, + "probability": 0.8598 + }, + { + "start": 28711.86, + "end": 28713.16, + "probability": 0.9464 + }, + { + "start": 28714.1, + "end": 28716.74, + "probability": 0.958 + }, + { + "start": 28716.74, + "end": 28719.94, + "probability": 0.9844 + }, + { + "start": 28720.7, + "end": 28722.64, + "probability": 0.7475 + }, + { + "start": 28723.44, + "end": 28726.08, + "probability": 0.8362 + }, + { + "start": 28726.72, + "end": 28728.94, + "probability": 0.5959 + }, + { + "start": 28729.5, + "end": 28730.88, + "probability": 0.875 + }, + { + "start": 28731.72, + "end": 28735.28, + "probability": 0.8252 + }, + { + "start": 28735.9, + "end": 28737.98, + "probability": 0.793 + }, + { + "start": 28738.56, + "end": 28740.28, + "probability": 0.8944 + }, + { + "start": 28740.86, + "end": 28742.21, + "probability": 0.8454 + }, + { + "start": 28744.08, + "end": 28745.1, + "probability": 0.62 + }, + { + "start": 28745.82, + "end": 28748.04, + "probability": 0.8905 + }, + { + "start": 28748.1, + "end": 28751.04, + "probability": 0.939 + }, + { + "start": 28751.82, + "end": 28754.62, + "probability": 0.9594 + }, + { + "start": 28756.56, + "end": 28758.26, + "probability": 0.9279 + }, + { + "start": 28758.96, + "end": 28760.62, + "probability": 0.9464 + }, + { + "start": 28761.74, + "end": 28763.18, + "probability": 0.7712 + }, + { + "start": 28764.18, + "end": 28766.36, + "probability": 0.998 + }, + { + "start": 28767.22, + "end": 28769.82, + "probability": 0.9953 + }, + { + "start": 28770.84, + "end": 28773.38, + "probability": 0.9141 + }, + { + "start": 28774.32, + "end": 28777.3, + "probability": 0.7956 + }, + { + "start": 28778.12, + "end": 28781.88, + "probability": 0.9568 + }, + { + "start": 28782.98, + "end": 28783.98, + "probability": 0.9495 + }, + { + "start": 28785.3, + "end": 28792.58, + "probability": 0.9776 + }, + { + "start": 28792.58, + "end": 28798.76, + "probability": 0.9976 + }, + { + "start": 28801.4, + "end": 28804.52, + "probability": 0.0737 + }, + { + "start": 28804.52, + "end": 28808.22, + "probability": 0.9805 + }, + { + "start": 28808.76, + "end": 28810.62, + "probability": 0.9864 + }, + { + "start": 28811.2, + "end": 28811.6, + "probability": 0.7339 + }, + { + "start": 28813.72, + "end": 28815.78, + "probability": 0.6384 + }, + { + "start": 28815.84, + "end": 28816.64, + "probability": 0.7487 + }, + { + "start": 28823.4, + "end": 28823.42, + "probability": 0.7697 + }, + { + "start": 28823.42, + "end": 28823.52, + "probability": 0.0087 + }, + { + "start": 28823.62, + "end": 28824.02, + "probability": 0.7771 + }, + { + "start": 28850.48, + "end": 28851.46, + "probability": 0.642 + }, + { + "start": 28851.74, + "end": 28853.32, + "probability": 0.6009 + }, + { + "start": 28854.48, + "end": 28861.46, + "probability": 0.7803 + }, + { + "start": 28861.46, + "end": 28865.18, + "probability": 0.7809 + }, + { + "start": 28865.82, + "end": 28867.88, + "probability": 0.9855 + }, + { + "start": 28869.18, + "end": 28871.42, + "probability": 0.9843 + }, + { + "start": 28871.42, + "end": 28876.88, + "probability": 0.9786 + }, + { + "start": 28878.26, + "end": 28880.88, + "probability": 0.7737 + }, + { + "start": 28881.52, + "end": 28884.3, + "probability": 0.9229 + }, + { + "start": 28885.58, + "end": 28887.52, + "probability": 0.7804 + }, + { + "start": 28888.06, + "end": 28890.74, + "probability": 0.829 + }, + { + "start": 28892.22, + "end": 28894.46, + "probability": 0.9029 + }, + { + "start": 28895.02, + "end": 28897.36, + "probability": 0.9407 + }, + { + "start": 28898.3, + "end": 28900.66, + "probability": 0.5586 + }, + { + "start": 28901.2, + "end": 28901.4, + "probability": 0.8073 + }, + { + "start": 28902.64, + "end": 28905.14, + "probability": 0.973 + }, + { + "start": 28907.48, + "end": 28912.14, + "probability": 0.9927 + }, + { + "start": 28913.1, + "end": 28914.02, + "probability": 0.829 + }, + { + "start": 28915.4, + "end": 28920.98, + "probability": 0.8457 + }, + { + "start": 28921.42, + "end": 28921.9, + "probability": 0.7911 + }, + { + "start": 28922.1, + "end": 28923.44, + "probability": 0.7096 + }, + { + "start": 28924.08, + "end": 28931.24, + "probability": 0.8922 + }, + { + "start": 28932.12, + "end": 28934.5, + "probability": 0.9081 + }, + { + "start": 28935.2, + "end": 28940.28, + "probability": 0.9788 + }, + { + "start": 28940.28, + "end": 28944.24, + "probability": 0.9614 + }, + { + "start": 28946.66, + "end": 28948.36, + "probability": 0.6229 + }, + { + "start": 28949.14, + "end": 28954.3, + "probability": 0.9183 + }, + { + "start": 28956.9, + "end": 28959.02, + "probability": 0.6491 + }, + { + "start": 28959.8, + "end": 28962.26, + "probability": 0.8309 + }, + { + "start": 28962.26, + "end": 28964.92, + "probability": 0.9178 + }, + { + "start": 28965.4, + "end": 28968.41, + "probability": 0.8059 + }, + { + "start": 28968.66, + "end": 28972.96, + "probability": 0.9832 + }, + { + "start": 28973.56, + "end": 28975.0, + "probability": 0.9543 + }, + { + "start": 28976.22, + "end": 28977.52, + "probability": 0.5445 + }, + { + "start": 28978.16, + "end": 28981.16, + "probability": 0.7539 + }, + { + "start": 28981.66, + "end": 28983.66, + "probability": 0.9285 + }, + { + "start": 28984.28, + "end": 28985.94, + "probability": 0.933 + }, + { + "start": 28986.94, + "end": 28995.22, + "probability": 0.9825 + }, + { + "start": 28995.8, + "end": 28999.64, + "probability": 0.9404 + }, + { + "start": 28999.64, + "end": 29005.56, + "probability": 0.9788 + }, + { + "start": 29006.12, + "end": 29009.12, + "probability": 0.995 + }, + { + "start": 29009.7, + "end": 29012.35, + "probability": 0.906 + }, + { + "start": 29012.96, + "end": 29016.08, + "probability": 0.9255 + }, + { + "start": 29017.12, + "end": 29018.54, + "probability": 0.9613 + }, + { + "start": 29018.94, + "end": 29023.68, + "probability": 0.9516 + }, + { + "start": 29024.2, + "end": 29025.08, + "probability": 0.8965 + }, + { + "start": 29025.78, + "end": 29026.26, + "probability": 0.8414 + }, + { + "start": 29026.86, + "end": 29028.53, + "probability": 0.9238 + }, + { + "start": 29029.3, + "end": 29032.44, + "probability": 0.7864 + }, + { + "start": 29032.64, + "end": 29035.06, + "probability": 0.9327 + }, + { + "start": 29044.18, + "end": 29045.0, + "probability": 0.6612 + }, + { + "start": 29045.08, + "end": 29049.46, + "probability": 0.7804 + }, + { + "start": 29050.04, + "end": 29050.18, + "probability": 0.4637 + }, + { + "start": 29050.56, + "end": 29053.66, + "probability": 0.9941 + }, + { + "start": 29054.12, + "end": 29057.26, + "probability": 0.9607 + }, + { + "start": 29057.7, + "end": 29058.44, + "probability": 0.9418 + }, + { + "start": 29058.56, + "end": 29064.8, + "probability": 0.9866 + }, + { + "start": 29065.14, + "end": 29066.5, + "probability": 0.9674 + }, + { + "start": 29066.54, + "end": 29069.34, + "probability": 0.9805 + }, + { + "start": 29069.96, + "end": 29072.22, + "probability": 0.7853 + }, + { + "start": 29072.88, + "end": 29078.3, + "probability": 0.9378 + }, + { + "start": 29078.82, + "end": 29082.08, + "probability": 0.9888 + }, + { + "start": 29082.68, + "end": 29084.9, + "probability": 0.6508 + }, + { + "start": 29085.46, + "end": 29086.54, + "probability": 0.3952 + }, + { + "start": 29087.36, + "end": 29096.94, + "probability": 0.9764 + }, + { + "start": 29097.86, + "end": 29101.78, + "probability": 0.7486 + }, + { + "start": 29102.5, + "end": 29104.18, + "probability": 0.851 + }, + { + "start": 29104.78, + "end": 29107.98, + "probability": 0.9666 + }, + { + "start": 29108.44, + "end": 29111.74, + "probability": 0.8073 + }, + { + "start": 29112.44, + "end": 29114.4, + "probability": 0.8313 + }, + { + "start": 29115.58, + "end": 29117.5, + "probability": 0.2248 + }, + { + "start": 29118.36, + "end": 29122.66, + "probability": 0.9812 + }, + { + "start": 29123.34, + "end": 29123.86, + "probability": 0.5598 + }, + { + "start": 29124.54, + "end": 29127.08, + "probability": 0.9778 + }, + { + "start": 29127.66, + "end": 29132.84, + "probability": 0.973 + }, + { + "start": 29134.14, + "end": 29135.1, + "probability": 0.4977 + }, + { + "start": 29135.54, + "end": 29141.74, + "probability": 0.906 + }, + { + "start": 29141.94, + "end": 29143.62, + "probability": 0.6099 + }, + { + "start": 29144.02, + "end": 29146.04, + "probability": 0.8813 + }, + { + "start": 29146.44, + "end": 29147.8, + "probability": 0.9106 + }, + { + "start": 29148.1, + "end": 29149.22, + "probability": 0.4369 + }, + { + "start": 29149.78, + "end": 29150.37, + "probability": 0.426 + }, + { + "start": 29151.3, + "end": 29153.18, + "probability": 0.4974 + }, + { + "start": 29153.18, + "end": 29155.52, + "probability": 0.8228 + }, + { + "start": 29155.74, + "end": 29156.02, + "probability": 0.0522 + }, + { + "start": 29156.02, + "end": 29156.52, + "probability": 0.7107 + }, + { + "start": 29157.28, + "end": 29158.94, + "probability": 0.5009 + }, + { + "start": 29159.14, + "end": 29159.36, + "probability": 0.4508 + }, + { + "start": 29159.48, + "end": 29160.06, + "probability": 0.2712 + }, + { + "start": 29160.26, + "end": 29162.1, + "probability": 0.923 + }, + { + "start": 29162.28, + "end": 29164.7, + "probability": 0.7962 + }, + { + "start": 29164.96, + "end": 29167.2, + "probability": 0.9514 + }, + { + "start": 29167.78, + "end": 29169.24, + "probability": 0.9561 + }, + { + "start": 29169.54, + "end": 29171.7, + "probability": 0.6793 + }, + { + "start": 29171.84, + "end": 29172.66, + "probability": 0.7822 + }, + { + "start": 29172.86, + "end": 29173.72, + "probability": 0.9917 + }, + { + "start": 29174.32, + "end": 29175.76, + "probability": 0.916 + }, + { + "start": 29175.9, + "end": 29178.14, + "probability": 0.9873 + }, + { + "start": 29178.5, + "end": 29179.44, + "probability": 0.3014 + }, + { + "start": 29180.08, + "end": 29181.91, + "probability": 0.7583 + }, + { + "start": 29182.3, + "end": 29185.0, + "probability": 0.9591 + }, + { + "start": 29185.6, + "end": 29195.62, + "probability": 0.9619 + }, + { + "start": 29195.84, + "end": 29197.06, + "probability": 0.9861 + }, + { + "start": 29197.32, + "end": 29200.3, + "probability": 0.9969 + }, + { + "start": 29200.3, + "end": 29203.6, + "probability": 0.9868 + }, + { + "start": 29203.98, + "end": 29205.18, + "probability": 0.8486 + }, + { + "start": 29205.68, + "end": 29207.8, + "probability": 0.9745 + }, + { + "start": 29208.1, + "end": 29215.14, + "probability": 0.9358 + }, + { + "start": 29215.18, + "end": 29215.36, + "probability": 0.3108 + }, + { + "start": 29215.4, + "end": 29216.08, + "probability": 0.7387 + }, + { + "start": 29216.32, + "end": 29218.86, + "probability": 0.9701 + }, + { + "start": 29219.02, + "end": 29219.58, + "probability": 0.7794 + }, + { + "start": 29219.62, + "end": 29221.24, + "probability": 0.8015 + }, + { + "start": 29221.36, + "end": 29224.2, + "probability": 0.9502 + }, + { + "start": 29228.34, + "end": 29229.02, + "probability": 0.4966 + }, + { + "start": 29229.98, + "end": 29229.98, + "probability": 0.0817 + }, + { + "start": 29229.98, + "end": 29230.04, + "probability": 0.1444 + }, + { + "start": 29230.04, + "end": 29230.19, + "probability": 0.3984 + }, + { + "start": 29231.12, + "end": 29231.48, + "probability": 0.2354 + }, + { + "start": 29231.88, + "end": 29233.8, + "probability": 0.3969 + }, + { + "start": 29233.8, + "end": 29234.9, + "probability": 0.6193 + }, + { + "start": 29234.92, + "end": 29235.53, + "probability": 0.4639 + }, + { + "start": 29236.8, + "end": 29237.3, + "probability": 0.7568 + }, + { + "start": 29238.7, + "end": 29239.54, + "probability": 0.7306 + }, + { + "start": 29239.58, + "end": 29241.68, + "probability": 0.6553 + }, + { + "start": 29241.82, + "end": 29242.48, + "probability": 0.5103 + }, + { + "start": 29242.64, + "end": 29243.08, + "probability": 0.6824 + }, + { + "start": 29243.16, + "end": 29243.82, + "probability": 0.5168 + }, + { + "start": 29244.16, + "end": 29245.62, + "probability": 0.9937 + }, + { + "start": 29246.1, + "end": 29249.22, + "probability": 0.9898 + }, + { + "start": 29250.06, + "end": 29250.88, + "probability": 0.95 + }, + { + "start": 29251.54, + "end": 29254.1, + "probability": 0.9502 + }, + { + "start": 29254.64, + "end": 29257.6, + "probability": 0.8823 + }, + { + "start": 29259.6, + "end": 29260.6, + "probability": 0.7558 + }, + { + "start": 29261.9, + "end": 29263.5, + "probability": 0.98 + }, + { + "start": 29264.26, + "end": 29265.82, + "probability": 0.9579 + }, + { + "start": 29266.4, + "end": 29267.14, + "probability": 0.5826 + }, + { + "start": 29268.34, + "end": 29269.3, + "probability": 0.9029 + }, + { + "start": 29269.98, + "end": 29270.54, + "probability": 0.8983 + }, + { + "start": 29270.94, + "end": 29275.8, + "probability": 0.9494 + }, + { + "start": 29275.94, + "end": 29278.18, + "probability": 0.9785 + }, + { + "start": 29278.24, + "end": 29279.52, + "probability": 0.98 + }, + { + "start": 29280.16, + "end": 29283.9, + "probability": 0.9779 + }, + { + "start": 29287.16, + "end": 29290.36, + "probability": 0.8606 + }, + { + "start": 29291.4, + "end": 29292.94, + "probability": 0.9888 + }, + { + "start": 29293.74, + "end": 29294.14, + "probability": 0.6887 + }, + { + "start": 29294.26, + "end": 29295.66, + "probability": 0.8329 + }, + { + "start": 29296.18, + "end": 29296.94, + "probability": 0.8842 + }, + { + "start": 29297.68, + "end": 29298.14, + "probability": 0.0499 + }, + { + "start": 29298.32, + "end": 29299.52, + "probability": 0.5838 + }, + { + "start": 29300.24, + "end": 29302.1, + "probability": 0.8252 + }, + { + "start": 29302.56, + "end": 29307.14, + "probability": 0.9941 + }, + { + "start": 29308.48, + "end": 29311.38, + "probability": 0.8422 + }, + { + "start": 29311.76, + "end": 29312.9, + "probability": 0.9778 + }, + { + "start": 29313.06, + "end": 29314.74, + "probability": 0.9845 + }, + { + "start": 29315.0, + "end": 29317.82, + "probability": 0.9938 + }, + { + "start": 29318.86, + "end": 29322.66, + "probability": 0.988 + }, + { + "start": 29322.66, + "end": 29327.16, + "probability": 0.9822 + }, + { + "start": 29327.22, + "end": 29329.76, + "probability": 0.9717 + }, + { + "start": 29330.52, + "end": 29331.98, + "probability": 0.987 + }, + { + "start": 29333.34, + "end": 29334.98, + "probability": 0.9331 + }, + { + "start": 29335.94, + "end": 29337.72, + "probability": 0.7801 + }, + { + "start": 29338.48, + "end": 29339.58, + "probability": 0.8464 + }, + { + "start": 29340.6, + "end": 29341.36, + "probability": 0.7108 + }, + { + "start": 29342.82, + "end": 29347.86, + "probability": 0.992 + }, + { + "start": 29348.64, + "end": 29349.86, + "probability": 0.9841 + }, + { + "start": 29351.68, + "end": 29353.08, + "probability": 0.9987 + }, + { + "start": 29353.78, + "end": 29354.88, + "probability": 0.9763 + }, + { + "start": 29355.94, + "end": 29358.46, + "probability": 0.9436 + }, + { + "start": 29358.5, + "end": 29361.76, + "probability": 0.8944 + }, + { + "start": 29363.52, + "end": 29365.68, + "probability": 0.9585 + }, + { + "start": 29368.7, + "end": 29372.59, + "probability": 0.6517 + }, + { + "start": 29373.58, + "end": 29375.32, + "probability": 0.6709 + }, + { + "start": 29375.34, + "end": 29376.8, + "probability": 0.931 + }, + { + "start": 29376.82, + "end": 29378.18, + "probability": 0.7553 + }, + { + "start": 29378.36, + "end": 29378.74, + "probability": 0.6959 + }, + { + "start": 29378.84, + "end": 29379.48, + "probability": 0.6816 + }, + { + "start": 29379.9, + "end": 29381.2, + "probability": 0.7947 + }, + { + "start": 29382.36, + "end": 29384.04, + "probability": 0.9414 + }, + { + "start": 29384.96, + "end": 29389.18, + "probability": 0.9814 + }, + { + "start": 29389.2, + "end": 29389.84, + "probability": 0.7517 + }, + { + "start": 29389.88, + "end": 29390.6, + "probability": 0.7313 + }, + { + "start": 29390.66, + "end": 29391.92, + "probability": 0.8773 + }, + { + "start": 29393.32, + "end": 29397.74, + "probability": 0.8508 + }, + { + "start": 29398.54, + "end": 29401.68, + "probability": 0.7319 + }, + { + "start": 29402.46, + "end": 29402.64, + "probability": 0.4453 + }, + { + "start": 29402.64, + "end": 29404.54, + "probability": 0.8823 + }, + { + "start": 29405.18, + "end": 29410.94, + "probability": 0.991 + }, + { + "start": 29411.96, + "end": 29415.0, + "probability": 0.969 + }, + { + "start": 29415.18, + "end": 29415.98, + "probability": 0.7862 + }, + { + "start": 29416.22, + "end": 29418.2, + "probability": 0.5195 + }, + { + "start": 29418.26, + "end": 29418.68, + "probability": 0.529 + }, + { + "start": 29419.24, + "end": 29420.3, + "probability": 0.4619 + }, + { + "start": 29420.38, + "end": 29420.9, + "probability": 0.9337 + }, + { + "start": 29421.28, + "end": 29421.62, + "probability": 0.9354 + }, + { + "start": 29421.7, + "end": 29422.5, + "probability": 0.7402 + }, + { + "start": 29422.78, + "end": 29423.42, + "probability": 0.845 + }, + { + "start": 29423.72, + "end": 29425.23, + "probability": 0.981 + }, + { + "start": 29425.66, + "end": 29426.18, + "probability": 0.9176 + }, + { + "start": 29426.88, + "end": 29427.38, + "probability": 0.9858 + }, + { + "start": 29428.5, + "end": 29430.06, + "probability": 0.7948 + }, + { + "start": 29430.14, + "end": 29431.12, + "probability": 0.6683 + }, + { + "start": 29431.22, + "end": 29432.48, + "probability": 0.3932 + }, + { + "start": 29432.66, + "end": 29434.98, + "probability": 0.7791 + }, + { + "start": 29435.66, + "end": 29441.1, + "probability": 0.9938 + }, + { + "start": 29441.1, + "end": 29442.24, + "probability": 0.6451 + }, + { + "start": 29442.32, + "end": 29443.26, + "probability": 0.7259 + }, + { + "start": 29443.26, + "end": 29443.94, + "probability": 0.6272 + }, + { + "start": 29444.78, + "end": 29445.88, + "probability": 0.808 + }, + { + "start": 29453.8, + "end": 29453.8, + "probability": 0.1315 + }, + { + "start": 29453.8, + "end": 29456.48, + "probability": 0.6275 + }, + { + "start": 29456.58, + "end": 29460.34, + "probability": 0.6777 + }, + { + "start": 29460.34, + "end": 29464.28, + "probability": 0.7263 + }, + { + "start": 29464.98, + "end": 29465.72, + "probability": 0.6756 + }, + { + "start": 29465.92, + "end": 29469.2, + "probability": 0.9891 + }, + { + "start": 29469.6, + "end": 29474.98, + "probability": 0.9604 + }, + { + "start": 29475.34, + "end": 29478.64, + "probability": 0.7122 + }, + { + "start": 29480.12, + "end": 29481.06, + "probability": 0.4115 + }, + { + "start": 29485.7, + "end": 29486.3, + "probability": 0.2042 + }, + { + "start": 29486.3, + "end": 29486.98, + "probability": 0.8232 + }, + { + "start": 29487.2, + "end": 29487.58, + "probability": 0.3003 + }, + { + "start": 29487.62, + "end": 29488.69, + "probability": 0.8429 + }, + { + "start": 29489.24, + "end": 29490.92, + "probability": 0.7481 + }, + { + "start": 29491.36, + "end": 29491.86, + "probability": 0.3537 + }, + { + "start": 29493.66, + "end": 29494.4, + "probability": 0.4065 + }, + { + "start": 29496.92, + "end": 29497.73, + "probability": 0.5371 + }, + { + "start": 29506.58, + "end": 29508.7, + "probability": 0.6838 + }, + { + "start": 29509.12, + "end": 29511.72, + "probability": 0.9829 + }, + { + "start": 29512.46, + "end": 29514.44, + "probability": 0.6684 + }, + { + "start": 29514.72, + "end": 29515.84, + "probability": 0.8305 + }, + { + "start": 29515.98, + "end": 29517.62, + "probability": 0.8622 + }, + { + "start": 29517.98, + "end": 29519.0, + "probability": 0.7398 + }, + { + "start": 29519.48, + "end": 29525.06, + "probability": 0.9139 + }, + { + "start": 29525.7, + "end": 29527.28, + "probability": 0.8708 + }, + { + "start": 29527.44, + "end": 29531.36, + "probability": 0.9876 + }, + { + "start": 29532.56, + "end": 29534.1, + "probability": 0.8921 + }, + { + "start": 29534.1, + "end": 29537.6, + "probability": 0.9793 + }, + { + "start": 29537.88, + "end": 29538.84, + "probability": 0.3875 + }, + { + "start": 29539.5, + "end": 29541.44, + "probability": 0.7889 + }, + { + "start": 29541.6, + "end": 29543.96, + "probability": 0.7865 + }, + { + "start": 29544.96, + "end": 29548.8, + "probability": 0.9639 + }, + { + "start": 29549.84, + "end": 29552.08, + "probability": 0.8248 + }, + { + "start": 29552.64, + "end": 29556.4, + "probability": 0.9559 + }, + { + "start": 29556.4, + "end": 29558.94, + "probability": 0.9784 + }, + { + "start": 29560.46, + "end": 29565.03, + "probability": 0.9608 + }, + { + "start": 29565.04, + "end": 29568.84, + "probability": 0.9302 + }, + { + "start": 29569.64, + "end": 29572.16, + "probability": 0.9979 + }, + { + "start": 29572.92, + "end": 29574.04, + "probability": 0.8266 + }, + { + "start": 29575.2, + "end": 29578.42, + "probability": 0.9107 + }, + { + "start": 29579.26, + "end": 29582.14, + "probability": 0.9067 + }, + { + "start": 29582.98, + "end": 29587.52, + "probability": 0.9578 + }, + { + "start": 29588.14, + "end": 29590.8, + "probability": 0.9441 + }, + { + "start": 29592.54, + "end": 29593.06, + "probability": 0.3507 + }, + { + "start": 29593.46, + "end": 29594.28, + "probability": 0.3862 + }, + { + "start": 29594.32, + "end": 29596.14, + "probability": 0.9879 + }, + { + "start": 29596.74, + "end": 29598.96, + "probability": 0.7791 + }, + { + "start": 29599.8, + "end": 29600.18, + "probability": 0.4212 + }, + { + "start": 29600.26, + "end": 29600.86, + "probability": 0.8128 + }, + { + "start": 29600.96, + "end": 29602.02, + "probability": 0.7912 + }, + { + "start": 29602.16, + "end": 29607.7, + "probability": 0.9487 + }, + { + "start": 29608.52, + "end": 29611.32, + "probability": 0.8287 + }, + { + "start": 29612.0, + "end": 29617.5, + "probability": 0.9662 + }, + { + "start": 29618.22, + "end": 29620.18, + "probability": 0.9684 + }, + { + "start": 29620.76, + "end": 29625.04, + "probability": 0.9838 + }, + { + "start": 29625.72, + "end": 29631.88, + "probability": 0.8763 + }, + { + "start": 29633.14, + "end": 29633.7, + "probability": 0.8112 + }, + { + "start": 29634.26, + "end": 29638.72, + "probability": 0.9119 + }, + { + "start": 29638.82, + "end": 29642.94, + "probability": 0.5337 + }, + { + "start": 29642.94, + "end": 29644.56, + "probability": 0.8564 + }, + { + "start": 29645.12, + "end": 29647.95, + "probability": 0.9922 + }, + { + "start": 29648.88, + "end": 29651.02, + "probability": 0.8341 + }, + { + "start": 29651.16, + "end": 29652.58, + "probability": 0.4617 + }, + { + "start": 29654.26, + "end": 29655.14, + "probability": 0.611 + }, + { + "start": 29655.72, + "end": 29659.58, + "probability": 0.9412 + }, + { + "start": 29659.7, + "end": 29664.0, + "probability": 0.9988 + }, + { + "start": 29664.84, + "end": 29667.6, + "probability": 0.9341 + }, + { + "start": 29668.06, + "end": 29669.0, + "probability": 0.9765 + }, + { + "start": 29669.14, + "end": 29674.98, + "probability": 0.918 + }, + { + "start": 29675.4, + "end": 29676.6, + "probability": 0.7419 + }, + { + "start": 29677.12, + "end": 29678.14, + "probability": 0.6993 + }, + { + "start": 29678.88, + "end": 29679.22, + "probability": 0.6846 + }, + { + "start": 29679.32, + "end": 29681.88, + "probability": 0.9872 + }, + { + "start": 29681.88, + "end": 29686.28, + "probability": 0.9891 + }, + { + "start": 29687.06, + "end": 29689.78, + "probability": 0.7775 + }, + { + "start": 29690.3, + "end": 29691.56, + "probability": 0.9497 + }, + { + "start": 29692.08, + "end": 29694.16, + "probability": 0.9454 + }, + { + "start": 29694.98, + "end": 29700.16, + "probability": 0.9908 + }, + { + "start": 29700.96, + "end": 29702.3, + "probability": 0.654 + }, + { + "start": 29703.04, + "end": 29703.54, + "probability": 0.4474 + }, + { + "start": 29704.92, + "end": 29708.4, + "probability": 0.8256 + }, + { + "start": 29709.12, + "end": 29713.66, + "probability": 0.971 + }, + { + "start": 29714.36, + "end": 29716.82, + "probability": 0.8932 + }, + { + "start": 29717.5, + "end": 29722.24, + "probability": 0.8613 + }, + { + "start": 29722.7, + "end": 29723.42, + "probability": 0.7776 + }, + { + "start": 29723.56, + "end": 29724.78, + "probability": 0.7137 + }, + { + "start": 29725.7, + "end": 29728.88, + "probability": 0.9793 + }, + { + "start": 29729.38, + "end": 29734.62, + "probability": 0.9766 + }, + { + "start": 29735.56, + "end": 29737.06, + "probability": 0.8812 + }, + { + "start": 29738.14, + "end": 29738.74, + "probability": 0.98 + }, + { + "start": 29739.34, + "end": 29740.64, + "probability": 0.6191 + }, + { + "start": 29741.16, + "end": 29742.98, + "probability": 0.9919 + }, + { + "start": 29743.68, + "end": 29746.0, + "probability": 0.9585 + }, + { + "start": 29746.8, + "end": 29749.32, + "probability": 0.9947 + }, + { + "start": 29749.88, + "end": 29752.08, + "probability": 0.9932 + }, + { + "start": 29753.0, + "end": 29753.56, + "probability": 0.8357 + }, + { + "start": 29754.04, + "end": 29758.12, + "probability": 0.7127 + }, + { + "start": 29758.74, + "end": 29762.5, + "probability": 0.8285 + }, + { + "start": 29763.06, + "end": 29766.08, + "probability": 0.9764 + }, + { + "start": 29767.3, + "end": 29770.18, + "probability": 0.9555 + }, + { + "start": 29770.18, + "end": 29773.3, + "probability": 0.9939 + }, + { + "start": 29773.88, + "end": 29777.02, + "probability": 0.9944 + }, + { + "start": 29777.02, + "end": 29781.0, + "probability": 0.8962 + }, + { + "start": 29781.44, + "end": 29781.94, + "probability": 0.7984 + }, + { + "start": 29782.64, + "end": 29786.54, + "probability": 0.9944 + }, + { + "start": 29787.28, + "end": 29792.57, + "probability": 0.9969 + }, + { + "start": 29794.96, + "end": 29796.0, + "probability": 0.7278 + }, + { + "start": 29796.48, + "end": 29798.98, + "probability": 0.9527 + }, + { + "start": 29799.86, + "end": 29801.54, + "probability": 0.926 + }, + { + "start": 29802.34, + "end": 29804.96, + "probability": 0.9871 + }, + { + "start": 29804.96, + "end": 29807.32, + "probability": 0.9882 + }, + { + "start": 29808.46, + "end": 29811.31, + "probability": 0.9032 + }, + { + "start": 29811.68, + "end": 29812.18, + "probability": 0.8985 + }, + { + "start": 29812.6, + "end": 29813.72, + "probability": 0.693 + }, + { + "start": 29813.86, + "end": 29817.82, + "probability": 0.7991 + }, + { + "start": 29818.22, + "end": 29820.74, + "probability": 0.9695 + }, + { + "start": 29821.28, + "end": 29825.3, + "probability": 0.9142 + }, + { + "start": 29825.3, + "end": 29827.64, + "probability": 0.9905 + }, + { + "start": 29828.18, + "end": 29833.46, + "probability": 0.7716 + }, + { + "start": 29834.5, + "end": 29840.08, + "probability": 0.887 + }, + { + "start": 29840.08, + "end": 29844.62, + "probability": 0.954 + }, + { + "start": 29846.06, + "end": 29846.48, + "probability": 0.5363 + }, + { + "start": 29846.56, + "end": 29847.45, + "probability": 0.999 + }, + { + "start": 29848.74, + "end": 29849.46, + "probability": 0.613 + }, + { + "start": 29852.83, + "end": 29856.15, + "probability": 0.8574 + }, + { + "start": 29857.1, + "end": 29861.56, + "probability": 0.9942 + }, + { + "start": 29861.74, + "end": 29862.54, + "probability": 0.4683 + }, + { + "start": 29863.1, + "end": 29864.64, + "probability": 0.8641 + }, + { + "start": 29865.28, + "end": 29871.2, + "probability": 0.9912 + }, + { + "start": 29871.2, + "end": 29874.9, + "probability": 0.9925 + }, + { + "start": 29875.44, + "end": 29878.6, + "probability": 0.9954 + }, + { + "start": 29878.64, + "end": 29884.54, + "probability": 0.998 + }, + { + "start": 29885.2, + "end": 29887.3, + "probability": 0.9074 + }, + { + "start": 29887.38, + "end": 29892.14, + "probability": 0.9681 + }, + { + "start": 29892.14, + "end": 29897.82, + "probability": 0.9987 + }, + { + "start": 29898.56, + "end": 29899.14, + "probability": 0.8923 + }, + { + "start": 29899.54, + "end": 29904.4, + "probability": 0.9 + }, + { + "start": 29905.0, + "end": 29906.54, + "probability": 0.6929 + }, + { + "start": 29906.8, + "end": 29911.62, + "probability": 0.9834 + }, + { + "start": 29911.98, + "end": 29914.07, + "probability": 0.9825 + }, + { + "start": 29914.66, + "end": 29917.52, + "probability": 0.9059 + }, + { + "start": 29918.16, + "end": 29921.2, + "probability": 0.9619 + }, + { + "start": 29921.5, + "end": 29926.18, + "probability": 0.9933 + }, + { + "start": 29926.78, + "end": 29927.46, + "probability": 0.7271 + }, + { + "start": 29927.6, + "end": 29928.4, + "probability": 0.5563 + }, + { + "start": 29928.54, + "end": 29929.54, + "probability": 0.6231 + }, + { + "start": 29929.98, + "end": 29934.32, + "probability": 0.9454 + }, + { + "start": 29934.98, + "end": 29939.26, + "probability": 0.9883 + }, + { + "start": 29940.04, + "end": 29940.66, + "probability": 0.2685 + }, + { + "start": 29940.82, + "end": 29948.62, + "probability": 0.9755 + }, + { + "start": 29948.64, + "end": 29950.44, + "probability": 0.9719 + }, + { + "start": 29950.76, + "end": 29951.14, + "probability": 0.7778 + }, + { + "start": 29951.14, + "end": 29952.18, + "probability": 0.528 + }, + { + "start": 29952.72, + "end": 29953.9, + "probability": 0.4424 + }, + { + "start": 29954.64, + "end": 29955.74, + "probability": 0.8428 + }, + { + "start": 29955.96, + "end": 29956.84, + "probability": 0.5117 + }, + { + "start": 29957.12, + "end": 29958.86, + "probability": 0.8894 + }, + { + "start": 29959.02, + "end": 29963.28, + "probability": 0.9341 + }, + { + "start": 29963.56, + "end": 29964.56, + "probability": 0.9579 + }, + { + "start": 29965.08, + "end": 29970.22, + "probability": 0.9801 + }, + { + "start": 29970.98, + "end": 29975.4, + "probability": 0.9814 + }, + { + "start": 29976.19, + "end": 29979.16, + "probability": 0.6818 + }, + { + "start": 29979.2, + "end": 29980.88, + "probability": 0.9435 + }, + { + "start": 29980.92, + "end": 29982.9, + "probability": 0.6006 + }, + { + "start": 29983.7, + "end": 29984.68, + "probability": 0.7133 + }, + { + "start": 29986.36, + "end": 29987.62, + "probability": 0.4638 + }, + { + "start": 29987.72, + "end": 29987.76, + "probability": 0.339 + }, + { + "start": 29987.76, + "end": 29992.76, + "probability": 0.9734 + }, + { + "start": 29993.24, + "end": 29994.82, + "probability": 0.4813 + }, + { + "start": 29994.82, + "end": 29997.55, + "probability": 0.6806 + }, + { + "start": 29997.8, + "end": 29998.52, + "probability": 0.7685 + }, + { + "start": 29999.34, + "end": 29999.34, + "probability": 0.1374 + }, + { + "start": 29999.34, + "end": 29999.77, + "probability": 0.2776 + }, + { + "start": 30000.14, + "end": 30001.0, + "probability": 0.7845 + }, + { + "start": 30001.14, + "end": 30003.9, + "probability": 0.958 + }, + { + "start": 30004.74, + "end": 30006.88, + "probability": 0.9629 + }, + { + "start": 30007.86, + "end": 30010.14, + "probability": 0.9902 + }, + { + "start": 30010.34, + "end": 30010.88, + "probability": 0.7957 + }, + { + "start": 30011.18, + "end": 30012.32, + "probability": 0.747 + }, + { + "start": 30012.44, + "end": 30012.78, + "probability": 0.3726 + }, + { + "start": 30012.9, + "end": 30015.02, + "probability": 0.9375 + }, + { + "start": 30015.5, + "end": 30018.54, + "probability": 0.8703 + }, + { + "start": 30019.22, + "end": 30020.66, + "probability": 0.9202 + }, + { + "start": 30020.86, + "end": 30022.3, + "probability": 0.9426 + }, + { + "start": 30022.7, + "end": 30025.82, + "probability": 0.9741 + }, + { + "start": 30027.24, + "end": 30028.5, + "probability": 0.4649 + }, + { + "start": 30028.62, + "end": 30029.6, + "probability": 0.7235 + }, + { + "start": 30029.66, + "end": 30034.48, + "probability": 0.9242 + }, + { + "start": 30035.18, + "end": 30036.34, + "probability": 0.9824 + }, + { + "start": 30036.5, + "end": 30037.88, + "probability": 0.5163 + }, + { + "start": 30038.56, + "end": 30039.08, + "probability": 0.428 + }, + { + "start": 30039.84, + "end": 30041.08, + "probability": 0.6656 + }, + { + "start": 30041.72, + "end": 30042.36, + "probability": 0.2553 + }, + { + "start": 30042.6, + "end": 30044.1, + "probability": 0.7811 + }, + { + "start": 30045.04, + "end": 30046.56, + "probability": 0.2413 + }, + { + "start": 30046.74, + "end": 30047.44, + "probability": 0.6039 + }, + { + "start": 30047.54, + "end": 30048.26, + "probability": 0.7305 + }, + { + "start": 30048.26, + "end": 30048.78, + "probability": 0.9537 + }, + { + "start": 30049.14, + "end": 30049.48, + "probability": 0.5591 + }, + { + "start": 30049.48, + "end": 30050.94, + "probability": 0.8871 + }, + { + "start": 30051.54, + "end": 30053.24, + "probability": 0.828 + }, + { + "start": 30053.98, + "end": 30054.76, + "probability": 0.9945 + }, + { + "start": 30056.18, + "end": 30057.34, + "probability": 0.9736 + }, + { + "start": 30058.06, + "end": 30060.46, + "probability": 0.9181 + }, + { + "start": 30062.7, + "end": 30065.72, + "probability": 0.897 + }, + { + "start": 30067.42, + "end": 30070.06, + "probability": 0.9956 + }, + { + "start": 30070.06, + "end": 30072.38, + "probability": 0.5697 + }, + { + "start": 30072.9, + "end": 30076.32, + "probability": 0.9589 + }, + { + "start": 30076.32, + "end": 30079.36, + "probability": 0.9293 + }, + { + "start": 30079.7, + "end": 30084.12, + "probability": 0.8336 + }, + { + "start": 30084.12, + "end": 30086.58, + "probability": 0.8729 + }, + { + "start": 30087.24, + "end": 30087.4, + "probability": 0.5289 + }, + { + "start": 30087.86, + "end": 30091.0, + "probability": 0.5738 + }, + { + "start": 30092.06, + "end": 30094.22, + "probability": 0.9585 + }, + { + "start": 30094.22, + "end": 30097.28, + "probability": 0.9407 + }, + { + "start": 30098.12, + "end": 30100.78, + "probability": 0.9588 + }, + { + "start": 30100.88, + "end": 30104.0, + "probability": 0.9071 + }, + { + "start": 30104.72, + "end": 30106.22, + "probability": 0.7476 + }, + { + "start": 30106.82, + "end": 30110.96, + "probability": 0.9233 + }, + { + "start": 30110.96, + "end": 30116.82, + "probability": 0.8453 + }, + { + "start": 30117.6, + "end": 30119.82, + "probability": 0.6662 + }, + { + "start": 30120.6, + "end": 30122.2, + "probability": 0.6949 + }, + { + "start": 30122.82, + "end": 30128.14, + "probability": 0.8589 + }, + { + "start": 30128.66, + "end": 30131.9, + "probability": 0.9334 + }, + { + "start": 30132.88, + "end": 30137.5, + "probability": 0.9404 + }, + { + "start": 30138.06, + "end": 30139.2, + "probability": 0.7065 + }, + { + "start": 30140.34, + "end": 30141.46, + "probability": 0.8233 + }, + { + "start": 30141.92, + "end": 30144.62, + "probability": 0.8099 + }, + { + "start": 30145.12, + "end": 30148.4, + "probability": 0.9425 + }, + { + "start": 30148.94, + "end": 30150.82, + "probability": 0.9464 + }, + { + "start": 30151.66, + "end": 30152.22, + "probability": 0.2343 + }, + { + "start": 30152.38, + "end": 30153.34, + "probability": 0.6412 + }, + { + "start": 30153.56, + "end": 30155.0, + "probability": 0.848 + }, + { + "start": 30156.04, + "end": 30160.58, + "probability": 0.113 + }, + { + "start": 30160.74, + "end": 30162.64, + "probability": 0.7214 + }, + { + "start": 30163.18, + "end": 30165.82, + "probability": 0.8055 + }, + { + "start": 30166.2, + "end": 30166.36, + "probability": 0.3113 + }, + { + "start": 30169.62, + "end": 30170.34, + "probability": 0.0995 + }, + { + "start": 30179.34, + "end": 30180.56, + "probability": 0.6819 + }, + { + "start": 30180.68, + "end": 30181.04, + "probability": 0.7704 + }, + { + "start": 30181.4, + "end": 30182.68, + "probability": 0.9644 + }, + { + "start": 30182.86, + "end": 30184.16, + "probability": 0.9741 + }, + { + "start": 30184.4, + "end": 30187.02, + "probability": 0.7296 + }, + { + "start": 30187.54, + "end": 30190.2, + "probability": 0.9385 + }, + { + "start": 30190.44, + "end": 30192.08, + "probability": 0.5873 + }, + { + "start": 30192.18, + "end": 30194.6, + "probability": 0.8488 + }, + { + "start": 30196.08, + "end": 30199.2, + "probability": 0.9443 + }, + { + "start": 30199.76, + "end": 30203.0, + "probability": 0.9648 + }, + { + "start": 30203.72, + "end": 30210.02, + "probability": 0.9325 + }, + { + "start": 30211.1, + "end": 30211.96, + "probability": 0.79 + }, + { + "start": 30212.72, + "end": 30216.12, + "probability": 0.8092 + }, + { + "start": 30217.42, + "end": 30218.94, + "probability": 0.9579 + }, + { + "start": 30219.64, + "end": 30225.2, + "probability": 0.9897 + }, + { + "start": 30226.02, + "end": 30227.06, + "probability": 0.7053 + }, + { + "start": 30229.06, + "end": 30230.9, + "probability": 0.8358 + }, + { + "start": 30231.0, + "end": 30231.96, + "probability": 0.2404 + }, + { + "start": 30231.98, + "end": 30232.68, + "probability": 0.2184 + }, + { + "start": 30233.38, + "end": 30236.62, + "probability": 0.9637 + }, + { + "start": 30236.72, + "end": 30241.34, + "probability": 0.9888 + }, + { + "start": 30241.72, + "end": 30241.96, + "probability": 0.7693 + }, + { + "start": 30242.1, + "end": 30245.98, + "probability": 0.9657 + }, + { + "start": 30246.22, + "end": 30248.72, + "probability": 0.9448 + }, + { + "start": 30248.96, + "end": 30249.46, + "probability": 0.9922 + }, + { + "start": 30249.78, + "end": 30250.56, + "probability": 0.914 + }, + { + "start": 30251.36, + "end": 30252.2, + "probability": 0.7758 + }, + { + "start": 30252.88, + "end": 30254.4, + "probability": 0.9873 + }, + { + "start": 30254.66, + "end": 30255.8, + "probability": 0.9776 + }, + { + "start": 30255.92, + "end": 30256.7, + "probability": 0.6012 + }, + { + "start": 30256.82, + "end": 30257.86, + "probability": 0.7082 + }, + { + "start": 30258.8, + "end": 30262.52, + "probability": 0.9927 + }, + { + "start": 30262.58, + "end": 30263.22, + "probability": 0.7469 + }, + { + "start": 30263.82, + "end": 30265.28, + "probability": 0.8577 + }, + { + "start": 30265.42, + "end": 30266.18, + "probability": 0.7707 + }, + { + "start": 30266.3, + "end": 30267.66, + "probability": 0.9796 + }, + { + "start": 30268.02, + "end": 30270.6, + "probability": 0.7926 + }, + { + "start": 30270.64, + "end": 30273.24, + "probability": 0.988 + }, + { + "start": 30274.18, + "end": 30278.54, + "probability": 0.7523 + }, + { + "start": 30278.54, + "end": 30281.86, + "probability": 0.7137 + }, + { + "start": 30282.16, + "end": 30285.66, + "probability": 0.9909 + }, + { + "start": 30286.18, + "end": 30286.94, + "probability": 0.7852 + }, + { + "start": 30287.96, + "end": 30289.56, + "probability": 0.9989 + }, + { + "start": 30290.18, + "end": 30290.86, + "probability": 0.9869 + }, + { + "start": 30291.46, + "end": 30292.42, + "probability": 0.9322 + }, + { + "start": 30293.74, + "end": 30294.52, + "probability": 0.9346 + }, + { + "start": 30295.06, + "end": 30302.58, + "probability": 0.9949 + }, + { + "start": 30303.1, + "end": 30307.08, + "probability": 0.9922 + }, + { + "start": 30307.76, + "end": 30308.72, + "probability": 0.8901 + }, + { + "start": 30309.08, + "end": 30310.34, + "probability": 0.9283 + }, + { + "start": 30311.04, + "end": 30312.16, + "probability": 0.7065 + }, + { + "start": 30312.94, + "end": 30313.1, + "probability": 0.9201 + }, + { + "start": 30314.4, + "end": 30316.34, + "probability": 0.9753 + }, + { + "start": 30318.44, + "end": 30320.22, + "probability": 0.9756 + }, + { + "start": 30320.8, + "end": 30323.88, + "probability": 0.9901 + }, + { + "start": 30323.9, + "end": 30327.4, + "probability": 0.9637 + }, + { + "start": 30327.66, + "end": 30329.1, + "probability": 0.9976 + }, + { + "start": 30329.6, + "end": 30330.82, + "probability": 0.6475 + }, + { + "start": 30332.0, + "end": 30338.12, + "probability": 0.9967 + }, + { + "start": 30338.82, + "end": 30339.32, + "probability": 0.5991 + }, + { + "start": 30340.02, + "end": 30342.04, + "probability": 0.9657 + }, + { + "start": 30342.88, + "end": 30343.08, + "probability": 0.7651 + }, + { + "start": 30343.52, + "end": 30343.64, + "probability": 0.0496 + }, + { + "start": 30345.98, + "end": 30346.5, + "probability": 0.1418 + }, + { + "start": 30346.5, + "end": 30347.08, + "probability": 0.2737 + }, + { + "start": 30347.84, + "end": 30349.24, + "probability": 0.3733 + }, + { + "start": 30349.24, + "end": 30349.8, + "probability": 0.7607 + }, + { + "start": 30350.2, + "end": 30355.54, + "probability": 0.9254 + }, + { + "start": 30355.98, + "end": 30357.72, + "probability": 0.6713 + }, + { + "start": 30358.32, + "end": 30360.0, + "probability": 0.6358 + }, + { + "start": 30360.58, + "end": 30364.3, + "probability": 0.9801 + }, + { + "start": 30364.86, + "end": 30365.68, + "probability": 0.9561 + }, + { + "start": 30366.32, + "end": 30367.26, + "probability": 0.9155 + }, + { + "start": 30368.1, + "end": 30369.2, + "probability": 0.8384 + }, + { + "start": 30369.24, + "end": 30371.62, + "probability": 0.7085 + }, + { + "start": 30371.66, + "end": 30373.02, + "probability": 0.7729 + }, + { + "start": 30373.44, + "end": 30377.92, + "probability": 0.8573 + }, + { + "start": 30378.52, + "end": 30380.92, + "probability": 0.8333 + }, + { + "start": 30381.12, + "end": 30381.42, + "probability": 0.6584 + }, + { + "start": 30381.94, + "end": 30389.92, + "probability": 0.9167 + }, + { + "start": 30390.68, + "end": 30395.12, + "probability": 0.9392 + }, + { + "start": 30395.38, + "end": 30396.34, + "probability": 0.5343 + }, + { + "start": 30396.84, + "end": 30401.7, + "probability": 0.9351 + }, + { + "start": 30402.26, + "end": 30408.02, + "probability": 0.6792 + }, + { + "start": 30408.14, + "end": 30409.78, + "probability": 0.5808 + }, + { + "start": 30410.52, + "end": 30416.5, + "probability": 0.846 + }, + { + "start": 30417.0, + "end": 30418.08, + "probability": 0.7614 + }, + { + "start": 30418.7, + "end": 30419.7, + "probability": 0.9321 + }, + { + "start": 30420.26, + "end": 30420.84, + "probability": 0.5376 + }, + { + "start": 30421.42, + "end": 30424.04, + "probability": 0.9099 + }, + { + "start": 30424.7, + "end": 30425.56, + "probability": 0.86 + }, + { + "start": 30425.62, + "end": 30426.32, + "probability": 0.895 + }, + { + "start": 30426.6, + "end": 30431.04, + "probability": 0.8914 + }, + { + "start": 30431.4, + "end": 30432.46, + "probability": 0.8837 + }, + { + "start": 30432.82, + "end": 30435.92, + "probability": 0.7328 + }, + { + "start": 30436.56, + "end": 30437.88, + "probability": 0.7605 + }, + { + "start": 30441.12, + "end": 30443.5, + "probability": 0.6341 + }, + { + "start": 30444.08, + "end": 30448.28, + "probability": 0.9806 + }, + { + "start": 30448.76, + "end": 30455.96, + "probability": 0.9795 + }, + { + "start": 30457.04, + "end": 30458.52, + "probability": 0.6534 + }, + { + "start": 30459.04, + "end": 30460.24, + "probability": 0.4994 + }, + { + "start": 30460.44, + "end": 30466.18, + "probability": 0.965 + }, + { + "start": 30466.42, + "end": 30468.56, + "probability": 0.6986 + }, + { + "start": 30469.1, + "end": 30469.94, + "probability": 0.7437 + }, + { + "start": 30470.06, + "end": 30471.54, + "probability": 0.6254 + }, + { + "start": 30471.98, + "end": 30475.78, + "probability": 0.9673 + }, + { + "start": 30476.2, + "end": 30479.4, + "probability": 0.9678 + }, + { + "start": 30479.78, + "end": 30482.18, + "probability": 0.8881 + }, + { + "start": 30482.22, + "end": 30484.52, + "probability": 0.9691 + }, + { + "start": 30485.24, + "end": 30487.76, + "probability": 0.9114 + }, + { + "start": 30488.3, + "end": 30491.22, + "probability": 0.9809 + }, + { + "start": 30491.58, + "end": 30494.53, + "probability": 0.9263 + }, + { + "start": 30495.46, + "end": 30501.91, + "probability": 0.987 + }, + { + "start": 30502.02, + "end": 30502.78, + "probability": 0.6067 + }, + { + "start": 30503.04, + "end": 30504.82, + "probability": 0.8171 + }, + { + "start": 30505.16, + "end": 30508.26, + "probability": 0.9843 + }, + { + "start": 30508.7, + "end": 30511.74, + "probability": 0.9354 + }, + { + "start": 30511.74, + "end": 30514.82, + "probability": 0.9683 + }, + { + "start": 30515.36, + "end": 30517.26, + "probability": 0.991 + }, + { + "start": 30520.4, + "end": 30523.12, + "probability": 0.8414 + }, + { + "start": 30523.84, + "end": 30526.04, + "probability": 0.1791 + }, + { + "start": 30526.18, + "end": 30526.94, + "probability": 0.4159 + }, + { + "start": 30527.1, + "end": 30528.88, + "probability": 0.9268 + }, + { + "start": 30529.02, + "end": 30530.06, + "probability": 0.865 + }, + { + "start": 30530.38, + "end": 30532.44, + "probability": 0.9659 + }, + { + "start": 30532.5, + "end": 30536.72, + "probability": 0.9766 + }, + { + "start": 30536.92, + "end": 30540.04, + "probability": 0.7703 + }, + { + "start": 30540.16, + "end": 30541.34, + "probability": 0.4954 + }, + { + "start": 30541.46, + "end": 30541.76, + "probability": 0.4485 + }, + { + "start": 30541.9, + "end": 30543.34, + "probability": 0.9954 + }, + { + "start": 30543.5, + "end": 30544.5, + "probability": 0.2181 + }, + { + "start": 30544.57, + "end": 30546.7, + "probability": 0.7019 + }, + { + "start": 30546.74, + "end": 30547.58, + "probability": 0.9155 + }, + { + "start": 30547.68, + "end": 30547.78, + "probability": 0.5783 + }, + { + "start": 30547.78, + "end": 30549.52, + "probability": 0.9583 + }, + { + "start": 30549.82, + "end": 30551.54, + "probability": 0.5351 + }, + { + "start": 30551.54, + "end": 30552.34, + "probability": 0.3267 + }, + { + "start": 30552.62, + "end": 30554.64, + "probability": 0.8489 + }, + { + "start": 30554.88, + "end": 30557.96, + "probability": 0.9907 + }, + { + "start": 30557.96, + "end": 30558.02, + "probability": 0.2162 + }, + { + "start": 30558.12, + "end": 30558.82, + "probability": 0.6659 + }, + { + "start": 30558.94, + "end": 30563.3, + "probability": 0.9819 + }, + { + "start": 30563.6, + "end": 30563.6, + "probability": 0.1695 + }, + { + "start": 30563.6, + "end": 30563.6, + "probability": 0.5829 + }, + { + "start": 30563.6, + "end": 30566.16, + "probability": 0.6505 + }, + { + "start": 30566.86, + "end": 30568.66, + "probability": 0.4911 + }, + { + "start": 30568.82, + "end": 30571.96, + "probability": 0.9787 + }, + { + "start": 30572.36, + "end": 30574.04, + "probability": 0.944 + }, + { + "start": 30574.2, + "end": 30576.0, + "probability": 0.9761 + }, + { + "start": 30576.97, + "end": 30580.8, + "probability": 0.8224 + }, + { + "start": 30581.5, + "end": 30582.14, + "probability": 0.88 + }, + { + "start": 30582.2, + "end": 30583.5, + "probability": 0.8514 + }, + { + "start": 30583.52, + "end": 30589.04, + "probability": 0.9499 + }, + { + "start": 30590.38, + "end": 30590.62, + "probability": 0.4121 + }, + { + "start": 30592.32, + "end": 30592.32, + "probability": 0.0732 + }, + { + "start": 30592.32, + "end": 30592.74, + "probability": 0.3621 + }, + { + "start": 30593.1, + "end": 30595.44, + "probability": 0.7749 + }, + { + "start": 30595.58, + "end": 30597.4, + "probability": 0.3079 + }, + { + "start": 30597.8, + "end": 30599.06, + "probability": 0.6639 + }, + { + "start": 30599.06, + "end": 30599.24, + "probability": 0.759 + }, + { + "start": 30599.52, + "end": 30599.68, + "probability": 0.6942 + }, + { + "start": 30599.72, + "end": 30602.46, + "probability": 0.5728 + }, + { + "start": 30602.54, + "end": 30603.28, + "probability": 0.2953 + }, + { + "start": 30603.28, + "end": 30606.16, + "probability": 0.9089 + }, + { + "start": 30606.32, + "end": 30606.44, + "probability": 0.447 + }, + { + "start": 30607.2, + "end": 30609.16, + "probability": 0.7758 + }, + { + "start": 30609.42, + "end": 30611.3, + "probability": 0.9882 + }, + { + "start": 30611.74, + "end": 30613.36, + "probability": 0.5795 + }, + { + "start": 30613.62, + "end": 30616.24, + "probability": 0.9617 + }, + { + "start": 30616.6, + "end": 30619.42, + "probability": 0.9373 + }, + { + "start": 30621.08, + "end": 30621.24, + "probability": 0.1835 + } + ], + "segments_count": 10215, + "words_count": 49582, + "avg_words_per_segment": 4.8538, + "avg_segment_duration": 2.1991, + "avg_words_per_minute": 97.0945, + "plenum_id": "45791", + "duration": 30639.43, + "title": null, + "plenum_date": "2015-10-21" +} \ No newline at end of file