diff --git "a/46623/metadata.json" "b/46623/metadata.json" new file mode 100644--- /dev/null +++ "b/46623/metadata.json" @@ -0,0 +1,61957 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "46623", + "quality_score": 0.9279, + "per_segment_quality_scores": [ + { + "start": 75.14, + "end": 76.76, + "probability": 0.6324 + }, + { + "start": 77.04, + "end": 79.24, + "probability": 0.995 + }, + { + "start": 80.0, + "end": 80.62, + "probability": 0.9404 + }, + { + "start": 81.44, + "end": 82.7, + "probability": 0.8088 + }, + { + "start": 83.54, + "end": 84.48, + "probability": 0.9806 + }, + { + "start": 84.94, + "end": 86.99, + "probability": 0.9954 + }, + { + "start": 87.64, + "end": 94.38, + "probability": 0.9964 + }, + { + "start": 94.56, + "end": 95.34, + "probability": 0.2976 + }, + { + "start": 95.5, + "end": 95.88, + "probability": 0.9317 + }, + { + "start": 96.74, + "end": 98.76, + "probability": 0.7388 + }, + { + "start": 99.96, + "end": 101.2, + "probability": 0.7301 + }, + { + "start": 101.22, + "end": 102.74, + "probability": 0.8643 + }, + { + "start": 103.14, + "end": 104.76, + "probability": 0.6007 + }, + { + "start": 105.16, + "end": 106.04, + "probability": 0.6256 + }, + { + "start": 106.04, + "end": 106.94, + "probability": 0.4014 + }, + { + "start": 107.54, + "end": 110.6, + "probability": 0.6919 + }, + { + "start": 110.74, + "end": 112.18, + "probability": 0.4315 + }, + { + "start": 112.8, + "end": 117.1, + "probability": 0.6705 + }, + { + "start": 117.66, + "end": 121.86, + "probability": 0.629 + }, + { + "start": 123.82, + "end": 126.98, + "probability": 0.2826 + }, + { + "start": 137.36, + "end": 142.16, + "probability": 0.4607 + }, + { + "start": 142.69, + "end": 144.75, + "probability": 0.5148 + }, + { + "start": 145.4, + "end": 145.85, + "probability": 0.1184 + }, + { + "start": 147.49, + "end": 150.32, + "probability": 0.4553 + }, + { + "start": 151.05, + "end": 153.63, + "probability": 0.738 + }, + { + "start": 157.59, + "end": 158.23, + "probability": 0.0587 + }, + { + "start": 159.8, + "end": 164.37, + "probability": 0.0172 + }, + { + "start": 164.37, + "end": 165.35, + "probability": 0.0373 + }, + { + "start": 165.35, + "end": 165.91, + "probability": 0.0305 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 266.08, + "end": 268.1, + "probability": 0.1845 + }, + { + "start": 270.5, + "end": 274.68, + "probability": 0.0854 + }, + { + "start": 275.52, + "end": 276.92, + "probability": 0.0521 + }, + { + "start": 276.98, + "end": 279.98, + "probability": 0.0801 + }, + { + "start": 279.98, + "end": 285.16, + "probability": 0.0756 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 387.0, + "end": 387.0, + "probability": 0.0 + }, + { + "start": 417.94, + "end": 421.32, + "probability": 0.0368 + }, + { + "start": 421.32, + "end": 423.94, + "probability": 0.1938 + }, + { + "start": 424.12, + "end": 424.77, + "probability": 0.0808 + }, + { + "start": 432.46, + "end": 435.26, + "probability": 0.282 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.0, + "end": 512.0, + "probability": 0.0 + }, + { + "start": 512.1, + "end": 512.68, + "probability": 0.7072 + }, + { + "start": 513.42, + "end": 515.72, + "probability": 0.8774 + }, + { + "start": 515.94, + "end": 517.65, + "probability": 0.9937 + }, + { + "start": 518.44, + "end": 519.04, + "probability": 0.9462 + }, + { + "start": 519.78, + "end": 520.8, + "probability": 0.9667 + }, + { + "start": 521.6, + "end": 525.06, + "probability": 0.998 + }, + { + "start": 526.18, + "end": 529.27, + "probability": 0.9956 + }, + { + "start": 530.24, + "end": 537.48, + "probability": 0.8445 + }, + { + "start": 537.48, + "end": 544.24, + "probability": 0.9928 + }, + { + "start": 544.74, + "end": 551.98, + "probability": 0.9925 + }, + { + "start": 552.64, + "end": 555.2, + "probability": 0.9951 + }, + { + "start": 556.44, + "end": 557.64, + "probability": 0.984 + }, + { + "start": 558.68, + "end": 563.71, + "probability": 0.9193 + }, + { + "start": 564.74, + "end": 568.76, + "probability": 0.9854 + }, + { + "start": 569.28, + "end": 572.68, + "probability": 0.9983 + }, + { + "start": 573.4, + "end": 577.22, + "probability": 0.9954 + }, + { + "start": 577.22, + "end": 581.46, + "probability": 0.9992 + }, + { + "start": 582.66, + "end": 583.96, + "probability": 0.8156 + }, + { + "start": 584.58, + "end": 586.2, + "probability": 0.9748 + }, + { + "start": 586.24, + "end": 589.2, + "probability": 0.9666 + }, + { + "start": 589.98, + "end": 592.62, + "probability": 0.9647 + }, + { + "start": 594.14, + "end": 597.16, + "probability": 0.9961 + }, + { + "start": 598.14, + "end": 604.6, + "probability": 0.973 + }, + { + "start": 605.34, + "end": 612.94, + "probability": 0.9771 + }, + { + "start": 612.94, + "end": 618.74, + "probability": 0.9974 + }, + { + "start": 619.5, + "end": 623.2, + "probability": 0.8443 + }, + { + "start": 623.84, + "end": 626.16, + "probability": 0.9824 + }, + { + "start": 626.56, + "end": 628.66, + "probability": 0.9953 + }, + { + "start": 628.8, + "end": 636.38, + "probability": 0.9844 + }, + { + "start": 637.14, + "end": 638.88, + "probability": 0.8702 + }, + { + "start": 639.1, + "end": 639.5, + "probability": 0.9024 + }, + { + "start": 640.08, + "end": 641.52, + "probability": 0.8858 + }, + { + "start": 641.96, + "end": 645.34, + "probability": 0.9823 + }, + { + "start": 645.58, + "end": 645.86, + "probability": 0.9873 + }, + { + "start": 646.72, + "end": 650.6, + "probability": 0.9637 + }, + { + "start": 651.82, + "end": 652.9, + "probability": 0.9634 + }, + { + "start": 653.66, + "end": 655.12, + "probability": 0.9808 + }, + { + "start": 655.9, + "end": 659.22, + "probability": 0.988 + }, + { + "start": 659.32, + "end": 661.2, + "probability": 0.9353 + }, + { + "start": 661.36, + "end": 662.74, + "probability": 0.9915 + }, + { + "start": 663.08, + "end": 664.41, + "probability": 0.9189 + }, + { + "start": 665.1, + "end": 666.32, + "probability": 0.9658 + }, + { + "start": 667.1, + "end": 672.0, + "probability": 0.9672 + }, + { + "start": 672.44, + "end": 674.84, + "probability": 0.9753 + }, + { + "start": 675.4, + "end": 679.34, + "probability": 0.9411 + }, + { + "start": 679.9, + "end": 682.76, + "probability": 0.9956 + }, + { + "start": 683.28, + "end": 687.44, + "probability": 0.926 + }, + { + "start": 688.6, + "end": 692.84, + "probability": 0.9839 + }, + { + "start": 693.68, + "end": 695.72, + "probability": 0.9917 + }, + { + "start": 696.36, + "end": 696.96, + "probability": 0.8117 + }, + { + "start": 697.7, + "end": 703.74, + "probability": 0.9432 + }, + { + "start": 704.22, + "end": 706.88, + "probability": 0.8153 + }, + { + "start": 707.22, + "end": 707.94, + "probability": 0.6287 + }, + { + "start": 708.06, + "end": 709.04, + "probability": 0.8181 + }, + { + "start": 709.5, + "end": 712.52, + "probability": 0.9727 + }, + { + "start": 712.6, + "end": 714.24, + "probability": 0.6735 + }, + { + "start": 714.62, + "end": 717.02, + "probability": 0.9921 + }, + { + "start": 717.94, + "end": 718.88, + "probability": 0.9398 + }, + { + "start": 719.7, + "end": 722.38, + "probability": 0.9956 + }, + { + "start": 723.32, + "end": 724.86, + "probability": 0.7067 + }, + { + "start": 725.8, + "end": 727.06, + "probability": 0.7568 + }, + { + "start": 728.08, + "end": 731.68, + "probability": 0.9512 + }, + { + "start": 732.18, + "end": 734.26, + "probability": 0.7212 + }, + { + "start": 734.34, + "end": 735.74, + "probability": 0.9762 + }, + { + "start": 736.16, + "end": 736.82, + "probability": 0.7714 + }, + { + "start": 737.46, + "end": 739.66, + "probability": 0.9451 + }, + { + "start": 740.3, + "end": 743.98, + "probability": 0.9773 + }, + { + "start": 744.2, + "end": 744.92, + "probability": 0.5852 + }, + { + "start": 745.02, + "end": 746.08, + "probability": 0.8912 + }, + { + "start": 746.14, + "end": 746.94, + "probability": 0.602 + }, + { + "start": 747.06, + "end": 747.86, + "probability": 0.9273 + }, + { + "start": 748.14, + "end": 748.86, + "probability": 0.6985 + }, + { + "start": 749.18, + "end": 749.8, + "probability": 0.7319 + }, + { + "start": 750.44, + "end": 754.4, + "probability": 0.6135 + }, + { + "start": 754.94, + "end": 757.8, + "probability": 0.6274 + }, + { + "start": 758.5, + "end": 760.32, + "probability": 0.7266 + }, + { + "start": 760.92, + "end": 765.82, + "probability": 0.9594 + }, + { + "start": 765.98, + "end": 772.45, + "probability": 0.938 + }, + { + "start": 772.74, + "end": 778.18, + "probability": 0.9836 + }, + { + "start": 778.36, + "end": 779.74, + "probability": 0.7635 + }, + { + "start": 780.5, + "end": 785.66, + "probability": 0.9609 + }, + { + "start": 786.94, + "end": 793.38, + "probability": 0.9916 + }, + { + "start": 793.84, + "end": 796.94, + "probability": 0.9354 + }, + { + "start": 797.3, + "end": 798.94, + "probability": 0.9491 + }, + { + "start": 799.02, + "end": 801.74, + "probability": 0.9775 + }, + { + "start": 802.68, + "end": 804.42, + "probability": 0.9923 + }, + { + "start": 805.06, + "end": 805.86, + "probability": 0.5947 + }, + { + "start": 805.98, + "end": 807.48, + "probability": 0.8708 + }, + { + "start": 808.12, + "end": 808.4, + "probability": 0.5251 + }, + { + "start": 808.52, + "end": 812.22, + "probability": 0.7794 + }, + { + "start": 812.82, + "end": 814.08, + "probability": 0.7124 + }, + { + "start": 814.24, + "end": 815.96, + "probability": 0.8807 + }, + { + "start": 816.56, + "end": 819.82, + "probability": 0.9889 + }, + { + "start": 821.14, + "end": 822.58, + "probability": 0.6495 + }, + { + "start": 823.0, + "end": 824.04, + "probability": 0.9564 + }, + { + "start": 825.0, + "end": 827.56, + "probability": 0.9977 + }, + { + "start": 828.08, + "end": 831.6, + "probability": 0.9839 + }, + { + "start": 831.9, + "end": 833.76, + "probability": 0.5428 + }, + { + "start": 834.34, + "end": 835.96, + "probability": 0.9623 + }, + { + "start": 836.38, + "end": 837.84, + "probability": 0.9971 + }, + { + "start": 838.16, + "end": 839.0, + "probability": 0.9509 + }, + { + "start": 839.34, + "end": 840.1, + "probability": 0.8957 + }, + { + "start": 840.14, + "end": 843.78, + "probability": 0.9961 + }, + { + "start": 843.78, + "end": 848.4, + "probability": 0.9981 + }, + { + "start": 849.26, + "end": 851.64, + "probability": 0.9976 + }, + { + "start": 851.64, + "end": 854.58, + "probability": 0.992 + }, + { + "start": 855.12, + "end": 857.26, + "probability": 0.713 + }, + { + "start": 858.14, + "end": 859.5, + "probability": 0.4587 + }, + { + "start": 859.96, + "end": 861.42, + "probability": 0.9604 + }, + { + "start": 861.84, + "end": 862.46, + "probability": 0.8723 + }, + { + "start": 862.56, + "end": 863.4, + "probability": 0.8976 + }, + { + "start": 863.8, + "end": 865.36, + "probability": 0.9955 + }, + { + "start": 865.7, + "end": 868.22, + "probability": 0.9749 + }, + { + "start": 868.22, + "end": 870.7, + "probability": 0.983 + }, + { + "start": 871.0, + "end": 871.54, + "probability": 0.6388 + }, + { + "start": 872.6, + "end": 878.68, + "probability": 0.9854 + }, + { + "start": 879.1, + "end": 880.48, + "probability": 0.499 + }, + { + "start": 880.86, + "end": 882.56, + "probability": 0.9787 + }, + { + "start": 882.68, + "end": 882.88, + "probability": 0.7986 + }, + { + "start": 883.56, + "end": 884.28, + "probability": 0.3649 + }, + { + "start": 884.34, + "end": 887.28, + "probability": 0.9353 + }, + { + "start": 887.64, + "end": 889.78, + "probability": 0.9033 + }, + { + "start": 895.4, + "end": 897.94, + "probability": 0.7461 + }, + { + "start": 898.64, + "end": 901.02, + "probability": 0.7827 + }, + { + "start": 901.8, + "end": 902.94, + "probability": 0.9213 + }, + { + "start": 903.9, + "end": 906.12, + "probability": 0.9619 + }, + { + "start": 906.72, + "end": 908.64, + "probability": 0.9436 + }, + { + "start": 909.36, + "end": 914.06, + "probability": 0.988 + }, + { + "start": 914.06, + "end": 918.1, + "probability": 0.9985 + }, + { + "start": 918.96, + "end": 925.88, + "probability": 0.978 + }, + { + "start": 926.42, + "end": 928.82, + "probability": 0.9481 + }, + { + "start": 929.12, + "end": 931.8, + "probability": 0.7688 + }, + { + "start": 932.26, + "end": 935.06, + "probability": 0.8649 + }, + { + "start": 935.96, + "end": 938.64, + "probability": 0.7525 + }, + { + "start": 939.4, + "end": 943.88, + "probability": 0.9902 + }, + { + "start": 944.4, + "end": 949.14, + "probability": 0.9992 + }, + { + "start": 949.82, + "end": 954.58, + "probability": 0.9995 + }, + { + "start": 955.8, + "end": 959.83, + "probability": 0.9951 + }, + { + "start": 959.94, + "end": 960.62, + "probability": 0.7562 + }, + { + "start": 961.1, + "end": 962.6, + "probability": 0.5213 + }, + { + "start": 963.08, + "end": 966.8, + "probability": 0.9839 + }, + { + "start": 966.98, + "end": 969.74, + "probability": 0.9925 + }, + { + "start": 970.22, + "end": 971.86, + "probability": 0.7678 + }, + { + "start": 972.7, + "end": 973.64, + "probability": 0.8313 + }, + { + "start": 974.28, + "end": 975.0, + "probability": 0.9288 + }, + { + "start": 975.1, + "end": 975.6, + "probability": 0.8149 + }, + { + "start": 975.7, + "end": 975.82, + "probability": 0.9614 + }, + { + "start": 976.84, + "end": 976.94, + "probability": 0.4993 + }, + { + "start": 977.54, + "end": 980.02, + "probability": 0.9531 + }, + { + "start": 980.7, + "end": 982.28, + "probability": 0.8578 + }, + { + "start": 982.8, + "end": 991.6, + "probability": 0.9636 + }, + { + "start": 992.1, + "end": 993.34, + "probability": 0.9869 + }, + { + "start": 993.74, + "end": 994.94, + "probability": 0.9492 + }, + { + "start": 995.48, + "end": 999.24, + "probability": 0.8633 + }, + { + "start": 999.9, + "end": 1003.82, + "probability": 0.678 + }, + { + "start": 1004.44, + "end": 1009.0, + "probability": 0.9608 + }, + { + "start": 1009.26, + "end": 1010.72, + "probability": 0.5364 + }, + { + "start": 1011.32, + "end": 1012.8, + "probability": 0.9597 + }, + { + "start": 1014.28, + "end": 1020.14, + "probability": 0.993 + }, + { + "start": 1020.86, + "end": 1021.84, + "probability": 0.6257 + }, + { + "start": 1022.48, + "end": 1022.9, + "probability": 0.8019 + }, + { + "start": 1023.0, + "end": 1029.56, + "probability": 0.868 + }, + { + "start": 1029.56, + "end": 1035.04, + "probability": 0.9937 + }, + { + "start": 1035.58, + "end": 1040.0, + "probability": 0.7445 + }, + { + "start": 1040.48, + "end": 1041.84, + "probability": 0.8953 + }, + { + "start": 1042.3, + "end": 1044.88, + "probability": 0.9386 + }, + { + "start": 1045.3, + "end": 1049.24, + "probability": 0.9385 + }, + { + "start": 1049.98, + "end": 1052.96, + "probability": 0.9199 + }, + { + "start": 1053.08, + "end": 1058.14, + "probability": 0.9959 + }, + { + "start": 1058.56, + "end": 1064.82, + "probability": 0.9667 + }, + { + "start": 1065.08, + "end": 1069.84, + "probability": 0.9976 + }, + { + "start": 1070.5, + "end": 1077.96, + "probability": 0.9828 + }, + { + "start": 1078.28, + "end": 1080.9, + "probability": 0.9814 + }, + { + "start": 1081.1, + "end": 1081.58, + "probability": 0.8248 + }, + { + "start": 1082.64, + "end": 1085.16, + "probability": 0.7423 + }, + { + "start": 1085.28, + "end": 1086.56, + "probability": 0.8223 + }, + { + "start": 1087.22, + "end": 1089.88, + "probability": 0.8677 + }, + { + "start": 1091.68, + "end": 1093.9, + "probability": 0.042 + }, + { + "start": 1094.02, + "end": 1094.7, + "probability": 0.7568 + }, + { + "start": 1094.82, + "end": 1095.46, + "probability": 0.5596 + }, + { + "start": 1095.54, + "end": 1096.4, + "probability": 0.7129 + }, + { + "start": 1096.8, + "end": 1097.9, + "probability": 0.9419 + }, + { + "start": 1098.16, + "end": 1098.8, + "probability": 0.8108 + }, + { + "start": 1098.88, + "end": 1100.12, + "probability": 0.9635 + }, + { + "start": 1100.72, + "end": 1104.66, + "probability": 0.9124 + }, + { + "start": 1105.3, + "end": 1107.16, + "probability": 0.8647 + }, + { + "start": 1108.07, + "end": 1111.1, + "probability": 0.8432 + }, + { + "start": 1111.76, + "end": 1115.9, + "probability": 0.8935 + }, + { + "start": 1121.82, + "end": 1125.7, + "probability": 0.6558 + }, + { + "start": 1127.36, + "end": 1133.02, + "probability": 0.9929 + }, + { + "start": 1134.08, + "end": 1136.84, + "probability": 0.8833 + }, + { + "start": 1138.2, + "end": 1141.64, + "probability": 0.9731 + }, + { + "start": 1142.86, + "end": 1145.08, + "probability": 0.8784 + }, + { + "start": 1146.08, + "end": 1146.18, + "probability": 0.9995 + }, + { + "start": 1147.34, + "end": 1150.2, + "probability": 0.606 + }, + { + "start": 1151.26, + "end": 1151.94, + "probability": 0.7298 + }, + { + "start": 1152.86, + "end": 1160.16, + "probability": 0.9683 + }, + { + "start": 1162.78, + "end": 1164.56, + "probability": 0.96 + }, + { + "start": 1165.84, + "end": 1170.88, + "probability": 0.9878 + }, + { + "start": 1171.72, + "end": 1178.52, + "probability": 0.9924 + }, + { + "start": 1180.36, + "end": 1184.38, + "probability": 0.7971 + }, + { + "start": 1185.86, + "end": 1193.26, + "probability": 0.9947 + }, + { + "start": 1193.82, + "end": 1195.58, + "probability": 0.9713 + }, + { + "start": 1196.66, + "end": 1198.58, + "probability": 0.9539 + }, + { + "start": 1198.68, + "end": 1200.64, + "probability": 0.962 + }, + { + "start": 1200.9, + "end": 1204.68, + "probability": 0.9762 + }, + { + "start": 1205.9, + "end": 1207.76, + "probability": 0.7266 + }, + { + "start": 1209.08, + "end": 1212.46, + "probability": 0.9991 + }, + { + "start": 1213.44, + "end": 1216.9, + "probability": 0.9774 + }, + { + "start": 1220.88, + "end": 1227.38, + "probability": 0.985 + }, + { + "start": 1229.16, + "end": 1230.12, + "probability": 0.675 + }, + { + "start": 1230.94, + "end": 1232.16, + "probability": 0.6614 + }, + { + "start": 1232.86, + "end": 1237.42, + "probability": 0.9932 + }, + { + "start": 1238.46, + "end": 1240.06, + "probability": 0.5804 + }, + { + "start": 1240.64, + "end": 1242.1, + "probability": 0.8209 + }, + { + "start": 1243.7, + "end": 1246.57, + "probability": 0.5081 + }, + { + "start": 1247.46, + "end": 1248.86, + "probability": 0.6238 + }, + { + "start": 1249.06, + "end": 1251.78, + "probability": 0.9077 + }, + { + "start": 1252.9, + "end": 1257.58, + "probability": 0.864 + }, + { + "start": 1258.56, + "end": 1261.37, + "probability": 0.9972 + }, + { + "start": 1262.06, + "end": 1268.44, + "probability": 0.984 + }, + { + "start": 1269.8, + "end": 1275.28, + "probability": 0.7391 + }, + { + "start": 1275.28, + "end": 1280.24, + "probability": 0.9443 + }, + { + "start": 1281.28, + "end": 1285.92, + "probability": 0.9648 + }, + { + "start": 1287.64, + "end": 1290.28, + "probability": 0.8371 + }, + { + "start": 1291.02, + "end": 1293.36, + "probability": 0.8458 + }, + { + "start": 1294.14, + "end": 1297.44, + "probability": 0.902 + }, + { + "start": 1298.56, + "end": 1303.4, + "probability": 0.8359 + }, + { + "start": 1303.92, + "end": 1308.5, + "probability": 0.8572 + }, + { + "start": 1309.44, + "end": 1312.36, + "probability": 0.9888 + }, + { + "start": 1312.48, + "end": 1314.32, + "probability": 0.7466 + }, + { + "start": 1315.22, + "end": 1321.78, + "probability": 0.9448 + }, + { + "start": 1321.9, + "end": 1323.22, + "probability": 0.5142 + }, + { + "start": 1324.04, + "end": 1327.36, + "probability": 0.9874 + }, + { + "start": 1328.22, + "end": 1331.12, + "probability": 0.9758 + }, + { + "start": 1331.72, + "end": 1338.74, + "probability": 0.986 + }, + { + "start": 1338.74, + "end": 1346.36, + "probability": 0.873 + }, + { + "start": 1346.5, + "end": 1351.26, + "probability": 0.8563 + }, + { + "start": 1351.76, + "end": 1352.22, + "probability": 0.8117 + }, + { + "start": 1353.22, + "end": 1354.88, + "probability": 0.9121 + }, + { + "start": 1354.96, + "end": 1357.84, + "probability": 0.8992 + }, + { + "start": 1358.48, + "end": 1360.46, + "probability": 0.7258 + }, + { + "start": 1384.74, + "end": 1384.92, + "probability": 0.0106 + }, + { + "start": 1385.22, + "end": 1386.54, + "probability": 0.022 + }, + { + "start": 1392.34, + "end": 1394.94, + "probability": 0.572 + }, + { + "start": 1396.32, + "end": 1400.48, + "probability": 0.8684 + }, + { + "start": 1401.52, + "end": 1404.5, + "probability": 0.5147 + }, + { + "start": 1405.58, + "end": 1409.26, + "probability": 0.6802 + }, + { + "start": 1410.12, + "end": 1412.78, + "probability": 0.9768 + }, + { + "start": 1414.28, + "end": 1421.02, + "probability": 0.7246 + }, + { + "start": 1422.12, + "end": 1426.52, + "probability": 0.9014 + }, + { + "start": 1427.48, + "end": 1429.28, + "probability": 0.8223 + }, + { + "start": 1431.1, + "end": 1434.34, + "probability": 0.9659 + }, + { + "start": 1435.8, + "end": 1436.84, + "probability": 0.8889 + }, + { + "start": 1438.38, + "end": 1441.88, + "probability": 0.8185 + }, + { + "start": 1442.98, + "end": 1445.26, + "probability": 0.9094 + }, + { + "start": 1446.4, + "end": 1448.86, + "probability": 0.7031 + }, + { + "start": 1450.36, + "end": 1453.98, + "probability": 0.9988 + }, + { + "start": 1454.08, + "end": 1458.66, + "probability": 0.5962 + }, + { + "start": 1459.56, + "end": 1461.3, + "probability": 0.9214 + }, + { + "start": 1462.26, + "end": 1465.8, + "probability": 0.9804 + }, + { + "start": 1465.8, + "end": 1469.64, + "probability": 0.9586 + }, + { + "start": 1470.1, + "end": 1473.28, + "probability": 0.8326 + }, + { + "start": 1473.9, + "end": 1477.12, + "probability": 0.7589 + }, + { + "start": 1478.88, + "end": 1480.02, + "probability": 0.0314 + }, + { + "start": 1480.02, + "end": 1482.56, + "probability": 0.6895 + }, + { + "start": 1482.7, + "end": 1484.58, + "probability": 0.9794 + }, + { + "start": 1484.94, + "end": 1489.48, + "probability": 0.897 + }, + { + "start": 1490.08, + "end": 1491.76, + "probability": 0.7486 + }, + { + "start": 1492.58, + "end": 1493.44, + "probability": 0.8 + }, + { + "start": 1493.62, + "end": 1494.2, + "probability": 0.6253 + }, + { + "start": 1495.32, + "end": 1496.58, + "probability": 0.6904 + }, + { + "start": 1496.66, + "end": 1498.08, + "probability": 0.8165 + }, + { + "start": 1498.8, + "end": 1500.6, + "probability": 0.7236 + }, + { + "start": 1501.3, + "end": 1502.82, + "probability": 0.8367 + }, + { + "start": 1503.48, + "end": 1506.5, + "probability": 0.8276 + }, + { + "start": 1507.1, + "end": 1512.18, + "probability": 0.9659 + }, + { + "start": 1513.22, + "end": 1516.62, + "probability": 0.7301 + }, + { + "start": 1517.56, + "end": 1518.3, + "probability": 0.5995 + }, + { + "start": 1519.46, + "end": 1520.46, + "probability": 0.8889 + }, + { + "start": 1520.56, + "end": 1521.66, + "probability": 0.9748 + }, + { + "start": 1521.72, + "end": 1522.82, + "probability": 0.9504 + }, + { + "start": 1523.76, + "end": 1525.6, + "probability": 0.2266 + }, + { + "start": 1525.66, + "end": 1527.6, + "probability": 0.8081 + }, + { + "start": 1528.88, + "end": 1530.76, + "probability": 0.0583 + }, + { + "start": 1530.98, + "end": 1531.92, + "probability": 0.101 + }, + { + "start": 1531.92, + "end": 1534.02, + "probability": 0.7163 + }, + { + "start": 1534.42, + "end": 1535.1, + "probability": 0.3295 + }, + { + "start": 1535.1, + "end": 1535.56, + "probability": 0.2686 + }, + { + "start": 1536.54, + "end": 1541.14, + "probability": 0.6551 + }, + { + "start": 1541.28, + "end": 1543.9, + "probability": 0.877 + }, + { + "start": 1544.06, + "end": 1548.94, + "probability": 0.6755 + }, + { + "start": 1549.28, + "end": 1553.42, + "probability": 0.785 + }, + { + "start": 1553.48, + "end": 1554.8, + "probability": 0.7937 + }, + { + "start": 1554.98, + "end": 1559.08, + "probability": 0.9917 + }, + { + "start": 1559.42, + "end": 1562.46, + "probability": 0.6501 + }, + { + "start": 1562.46, + "end": 1564.56, + "probability": 0.094 + }, + { + "start": 1564.56, + "end": 1569.26, + "probability": 0.2056 + }, + { + "start": 1569.4, + "end": 1571.54, + "probability": 0.0895 + }, + { + "start": 1571.54, + "end": 1571.74, + "probability": 0.1739 + }, + { + "start": 1572.02, + "end": 1574.84, + "probability": 0.0834 + }, + { + "start": 1574.84, + "end": 1574.84, + "probability": 0.2959 + }, + { + "start": 1574.84, + "end": 1574.84, + "probability": 0.03 + }, + { + "start": 1574.84, + "end": 1574.84, + "probability": 0.142 + }, + { + "start": 1574.84, + "end": 1575.72, + "probability": 0.0634 + }, + { + "start": 1576.02, + "end": 1578.36, + "probability": 0.5125 + }, + { + "start": 1578.94, + "end": 1580.1, + "probability": 0.8851 + }, + { + "start": 1580.62, + "end": 1581.66, + "probability": 0.6885 + }, + { + "start": 1582.68, + "end": 1583.08, + "probability": 0.2147 + }, + { + "start": 1583.08, + "end": 1585.32, + "probability": 0.1968 + }, + { + "start": 1586.34, + "end": 1587.46, + "probability": 0.828 + }, + { + "start": 1587.96, + "end": 1588.88, + "probability": 0.5281 + }, + { + "start": 1588.94, + "end": 1592.07, + "probability": 0.3208 + }, + { + "start": 1592.88, + "end": 1593.62, + "probability": 0.337 + }, + { + "start": 1593.7, + "end": 1593.7, + "probability": 0.359 + }, + { + "start": 1593.7, + "end": 1594.9, + "probability": 0.4312 + }, + { + "start": 1595.0, + "end": 1595.6, + "probability": 0.5878 + }, + { + "start": 1596.12, + "end": 1597.64, + "probability": 0.7443 + }, + { + "start": 1597.8, + "end": 1599.18, + "probability": 0.2344 + }, + { + "start": 1599.2, + "end": 1599.68, + "probability": 0.4157 + }, + { + "start": 1602.52, + "end": 1602.86, + "probability": 0.4113 + }, + { + "start": 1603.42, + "end": 1603.84, + "probability": 0.2307 + }, + { + "start": 1603.98, + "end": 1604.22, + "probability": 0.7944 + }, + { + "start": 1604.78, + "end": 1606.52, + "probability": 0.6014 + }, + { + "start": 1607.34, + "end": 1608.9, + "probability": 0.8584 + }, + { + "start": 1609.04, + "end": 1609.44, + "probability": 0.4048 + }, + { + "start": 1609.78, + "end": 1610.8, + "probability": 0.407 + }, + { + "start": 1610.96, + "end": 1611.52, + "probability": 0.0885 + }, + { + "start": 1612.08, + "end": 1613.9, + "probability": 0.6114 + }, + { + "start": 1614.38, + "end": 1615.14, + "probability": 0.5189 + }, + { + "start": 1615.5, + "end": 1616.44, + "probability": 0.9458 + }, + { + "start": 1616.56, + "end": 1620.38, + "probability": 0.5723 + }, + { + "start": 1620.44, + "end": 1621.44, + "probability": 0.7262 + }, + { + "start": 1622.02, + "end": 1625.42, + "probability": 0.807 + }, + { + "start": 1625.66, + "end": 1629.48, + "probability": 0.8013 + }, + { + "start": 1630.08, + "end": 1630.08, + "probability": 0.2262 + }, + { + "start": 1630.08, + "end": 1630.32, + "probability": 0.6211 + }, + { + "start": 1630.96, + "end": 1632.66, + "probability": 0.981 + }, + { + "start": 1633.16, + "end": 1634.98, + "probability": 0.9697 + }, + { + "start": 1635.34, + "end": 1637.72, + "probability": 0.9932 + }, + { + "start": 1638.38, + "end": 1639.81, + "probability": 0.803 + }, + { + "start": 1640.42, + "end": 1642.08, + "probability": 0.9777 + }, + { + "start": 1642.48, + "end": 1647.76, + "probability": 0.057 + }, + { + "start": 1649.36, + "end": 1650.62, + "probability": 0.1114 + }, + { + "start": 1650.62, + "end": 1650.86, + "probability": 0.0124 + }, + { + "start": 1651.22, + "end": 1651.22, + "probability": 0.0436 + }, + { + "start": 1651.22, + "end": 1651.3, + "probability": 0.1047 + }, + { + "start": 1651.3, + "end": 1651.3, + "probability": 0.2075 + }, + { + "start": 1651.3, + "end": 1652.46, + "probability": 0.2141 + }, + { + "start": 1653.24, + "end": 1657.08, + "probability": 0.505 + }, + { + "start": 1657.08, + "end": 1659.32, + "probability": 0.403 + }, + { + "start": 1659.6, + "end": 1663.35, + "probability": 0.8485 + }, + { + "start": 1664.04, + "end": 1664.44, + "probability": 0.0239 + }, + { + "start": 1664.44, + "end": 1667.1, + "probability": 0.494 + }, + { + "start": 1667.1, + "end": 1669.42, + "probability": 0.7905 + }, + { + "start": 1670.47, + "end": 1674.06, + "probability": 0.8066 + }, + { + "start": 1675.46, + "end": 1678.72, + "probability": 0.9165 + }, + { + "start": 1678.78, + "end": 1685.58, + "probability": 0.9895 + }, + { + "start": 1686.08, + "end": 1689.02, + "probability": 0.2557 + }, + { + "start": 1689.58, + "end": 1693.53, + "probability": 0.9948 + }, + { + "start": 1697.78, + "end": 1701.14, + "probability": 0.7182 + }, + { + "start": 1701.24, + "end": 1702.5, + "probability": 0.6446 + }, + { + "start": 1702.76, + "end": 1703.94, + "probability": 0.3867 + }, + { + "start": 1704.02, + "end": 1705.6, + "probability": 0.7219 + }, + { + "start": 1706.14, + "end": 1712.2, + "probability": 0.9856 + }, + { + "start": 1712.54, + "end": 1713.32, + "probability": 0.9326 + }, + { + "start": 1714.14, + "end": 1715.86, + "probability": 0.5686 + }, + { + "start": 1715.9, + "end": 1718.42, + "probability": 0.0802 + }, + { + "start": 1718.42, + "end": 1721.72, + "probability": 0.8855 + }, + { + "start": 1722.64, + "end": 1724.84, + "probability": 0.9919 + }, + { + "start": 1725.0, + "end": 1729.16, + "probability": 0.972 + }, + { + "start": 1729.38, + "end": 1731.42, + "probability": 0.8962 + }, + { + "start": 1732.38, + "end": 1734.68, + "probability": 0.707 + }, + { + "start": 1735.4, + "end": 1736.19, + "probability": 0.0846 + }, + { + "start": 1736.68, + "end": 1739.78, + "probability": 0.6845 + }, + { + "start": 1740.46, + "end": 1741.0, + "probability": 0.639 + }, + { + "start": 1743.04, + "end": 1745.38, + "probability": 0.3473 + }, + { + "start": 1745.8, + "end": 1746.92, + "probability": 0.1293 + }, + { + "start": 1747.2, + "end": 1748.88, + "probability": 0.9513 + }, + { + "start": 1749.5, + "end": 1751.5, + "probability": 0.8813 + }, + { + "start": 1752.04, + "end": 1753.48, + "probability": 0.0957 + }, + { + "start": 1754.64, + "end": 1754.94, + "probability": 0.5986 + }, + { + "start": 1755.86, + "end": 1758.42, + "probability": 0.7548 + }, + { + "start": 1758.6, + "end": 1759.76, + "probability": 0.8716 + }, + { + "start": 1759.92, + "end": 1763.17, + "probability": 0.9893 + }, + { + "start": 1764.88, + "end": 1768.8, + "probability": 0.6182 + }, + { + "start": 1769.38, + "end": 1771.04, + "probability": 0.9003 + }, + { + "start": 1771.52, + "end": 1774.8, + "probability": 0.7645 + }, + { + "start": 1774.96, + "end": 1779.04, + "probability": 0.9845 + }, + { + "start": 1779.64, + "end": 1781.22, + "probability": 0.7682 + }, + { + "start": 1785.72, + "end": 1788.22, + "probability": 0.2781 + }, + { + "start": 1817.6, + "end": 1819.22, + "probability": 0.791 + }, + { + "start": 1819.36, + "end": 1825.3, + "probability": 0.9984 + }, + { + "start": 1825.94, + "end": 1826.7, + "probability": 0.9645 + }, + { + "start": 1826.9, + "end": 1832.12, + "probability": 0.9801 + }, + { + "start": 1833.92, + "end": 1837.0, + "probability": 0.8369 + }, + { + "start": 1837.68, + "end": 1841.04, + "probability": 0.7628 + }, + { + "start": 1842.28, + "end": 1844.52, + "probability": 0.612 + }, + { + "start": 1844.86, + "end": 1845.87, + "probability": 0.9448 + }, + { + "start": 1846.56, + "end": 1847.68, + "probability": 0.8968 + }, + { + "start": 1849.92, + "end": 1854.32, + "probability": 0.9884 + }, + { + "start": 1854.88, + "end": 1856.55, + "probability": 0.9818 + }, + { + "start": 1857.82, + "end": 1858.54, + "probability": 0.7924 + }, + { + "start": 1859.2, + "end": 1860.14, + "probability": 0.8643 + }, + { + "start": 1860.8, + "end": 1862.48, + "probability": 0.9398 + }, + { + "start": 1863.58, + "end": 1866.7, + "probability": 0.7111 + }, + { + "start": 1867.86, + "end": 1869.82, + "probability": 0.9976 + }, + { + "start": 1870.96, + "end": 1872.8, + "probability": 0.9548 + }, + { + "start": 1874.18, + "end": 1876.52, + "probability": 0.9839 + }, + { + "start": 1877.66, + "end": 1880.26, + "probability": 0.8198 + }, + { + "start": 1881.12, + "end": 1883.16, + "probability": 0.9585 + }, + { + "start": 1883.86, + "end": 1884.66, + "probability": 0.5038 + }, + { + "start": 1886.24, + "end": 1888.16, + "probability": 0.9687 + }, + { + "start": 1889.1, + "end": 1889.36, + "probability": 0.6632 + }, + { + "start": 1889.4, + "end": 1890.32, + "probability": 0.931 + }, + { + "start": 1890.38, + "end": 1892.33, + "probability": 0.9519 + }, + { + "start": 1893.36, + "end": 1896.02, + "probability": 0.9861 + }, + { + "start": 1897.4, + "end": 1899.16, + "probability": 0.9785 + }, + { + "start": 1900.72, + "end": 1902.34, + "probability": 0.9902 + }, + { + "start": 1902.39, + "end": 1905.74, + "probability": 0.703 + }, + { + "start": 1906.46, + "end": 1907.42, + "probability": 0.8336 + }, + { + "start": 1908.12, + "end": 1908.94, + "probability": 0.8604 + }, + { + "start": 1910.12, + "end": 1911.52, + "probability": 0.7702 + }, + { + "start": 1913.2, + "end": 1914.7, + "probability": 0.6362 + }, + { + "start": 1915.58, + "end": 1921.7, + "probability": 0.869 + }, + { + "start": 1921.7, + "end": 1922.78, + "probability": 0.4312 + }, + { + "start": 1923.46, + "end": 1926.44, + "probability": 0.9484 + }, + { + "start": 1927.16, + "end": 1930.26, + "probability": 0.9627 + }, + { + "start": 1931.3, + "end": 1932.34, + "probability": 0.7738 + }, + { + "start": 1934.12, + "end": 1935.8, + "probability": 0.8556 + }, + { + "start": 1936.84, + "end": 1939.2, + "probability": 0.9224 + }, + { + "start": 1939.96, + "end": 1941.44, + "probability": 0.9839 + }, + { + "start": 1942.38, + "end": 1945.0, + "probability": 0.9094 + }, + { + "start": 1946.22, + "end": 1948.82, + "probability": 0.9302 + }, + { + "start": 1949.4, + "end": 1951.82, + "probability": 0.9932 + }, + { + "start": 1952.42, + "end": 1953.6, + "probability": 0.8315 + }, + { + "start": 1955.28, + "end": 1956.3, + "probability": 0.8366 + }, + { + "start": 1956.98, + "end": 1958.34, + "probability": 0.9945 + }, + { + "start": 1958.96, + "end": 1959.96, + "probability": 0.9637 + }, + { + "start": 1961.72, + "end": 1964.08, + "probability": 0.999 + }, + { + "start": 1964.64, + "end": 1968.78, + "probability": 0.9852 + }, + { + "start": 1969.34, + "end": 1969.92, + "probability": 0.5209 + }, + { + "start": 1970.56, + "end": 1972.12, + "probability": 0.8381 + }, + { + "start": 1973.34, + "end": 1974.4, + "probability": 0.8953 + }, + { + "start": 1975.8, + "end": 1976.64, + "probability": 0.8644 + }, + { + "start": 1976.96, + "end": 1977.68, + "probability": 0.894 + }, + { + "start": 1978.7, + "end": 1979.9, + "probability": 0.9738 + }, + { + "start": 1980.66, + "end": 1981.92, + "probability": 0.9316 + }, + { + "start": 1982.76, + "end": 1983.32, + "probability": 0.9265 + }, + { + "start": 1983.98, + "end": 1986.0, + "probability": 0.98 + }, + { + "start": 1986.38, + "end": 1988.12, + "probability": 0.9762 + }, + { + "start": 1988.5, + "end": 1989.7, + "probability": 0.9912 + }, + { + "start": 1991.2, + "end": 1992.0, + "probability": 0.4454 + }, + { + "start": 1992.94, + "end": 1996.02, + "probability": 0.9858 + }, + { + "start": 1997.08, + "end": 1997.62, + "probability": 0.9812 + }, + { + "start": 1998.0, + "end": 2004.36, + "probability": 0.9854 + }, + { + "start": 2005.52, + "end": 2011.0, + "probability": 0.995 + }, + { + "start": 2012.42, + "end": 2012.84, + "probability": 0.5731 + }, + { + "start": 2014.06, + "end": 2014.82, + "probability": 0.8573 + }, + { + "start": 2015.94, + "end": 2016.34, + "probability": 0.7981 + }, + { + "start": 2021.6, + "end": 2023.32, + "probability": 0.529 + }, + { + "start": 2023.44, + "end": 2024.82, + "probability": 0.8232 + }, + { + "start": 2024.96, + "end": 2025.34, + "probability": 0.8269 + }, + { + "start": 2025.4, + "end": 2025.72, + "probability": 0.8187 + }, + { + "start": 2025.74, + "end": 2026.28, + "probability": 0.7927 + }, + { + "start": 2026.42, + "end": 2028.2, + "probability": 0.7206 + }, + { + "start": 2042.04, + "end": 2044.86, + "probability": 0.7354 + }, + { + "start": 2045.62, + "end": 2046.77, + "probability": 0.4553 + }, + { + "start": 2048.04, + "end": 2050.22, + "probability": 0.9847 + }, + { + "start": 2050.9, + "end": 2051.74, + "probability": 0.5011 + }, + { + "start": 2052.16, + "end": 2052.28, + "probability": 0.6353 + }, + { + "start": 2052.3, + "end": 2052.8, + "probability": 0.4903 + }, + { + "start": 2052.82, + "end": 2054.1, + "probability": 0.8205 + }, + { + "start": 2054.4, + "end": 2055.18, + "probability": 0.7313 + }, + { + "start": 2055.26, + "end": 2055.7, + "probability": 0.812 + }, + { + "start": 2055.8, + "end": 2056.81, + "probability": 0.5931 + }, + { + "start": 2056.98, + "end": 2059.0, + "probability": 0.9052 + }, + { + "start": 2059.48, + "end": 2061.04, + "probability": 0.9976 + }, + { + "start": 2061.16, + "end": 2064.52, + "probability": 0.9741 + }, + { + "start": 2066.54, + "end": 2068.44, + "probability": 0.7999 + }, + { + "start": 2068.6, + "end": 2070.84, + "probability": 0.9565 + }, + { + "start": 2071.34, + "end": 2073.08, + "probability": 0.8002 + }, + { + "start": 2073.6, + "end": 2074.75, + "probability": 0.9562 + }, + { + "start": 2075.5, + "end": 2077.74, + "probability": 0.6471 + }, + { + "start": 2077.98, + "end": 2081.12, + "probability": 0.7493 + }, + { + "start": 2081.62, + "end": 2083.74, + "probability": 0.736 + }, + { + "start": 2083.9, + "end": 2084.9, + "probability": 0.929 + }, + { + "start": 2085.94, + "end": 2089.8, + "probability": 0.9546 + }, + { + "start": 2089.86, + "end": 2091.72, + "probability": 0.5667 + }, + { + "start": 2091.78, + "end": 2093.84, + "probability": 0.5797 + }, + { + "start": 2094.34, + "end": 2096.72, + "probability": 0.916 + }, + { + "start": 2097.08, + "end": 2097.92, + "probability": 0.9272 + }, + { + "start": 2098.02, + "end": 2099.18, + "probability": 0.9612 + }, + { + "start": 2099.4, + "end": 2101.9, + "probability": 0.9928 + }, + { + "start": 2102.3, + "end": 2103.08, + "probability": 0.6318 + }, + { + "start": 2103.14, + "end": 2103.74, + "probability": 0.8651 + }, + { + "start": 2103.86, + "end": 2104.84, + "probability": 0.9407 + }, + { + "start": 2105.28, + "end": 2106.81, + "probability": 0.9056 + }, + { + "start": 2107.12, + "end": 2108.74, + "probability": 0.9845 + }, + { + "start": 2109.13, + "end": 2110.02, + "probability": 0.9702 + }, + { + "start": 2110.54, + "end": 2112.44, + "probability": 0.7067 + }, + { + "start": 2113.02, + "end": 2114.8, + "probability": 0.2087 + }, + { + "start": 2115.08, + "end": 2116.8, + "probability": 0.7836 + }, + { + "start": 2119.02, + "end": 2121.23, + "probability": 0.1927 + }, + { + "start": 2121.7, + "end": 2123.0, + "probability": 0.1364 + }, + { + "start": 2123.0, + "end": 2125.84, + "probability": 0.7702 + }, + { + "start": 2125.96, + "end": 2127.7, + "probability": 0.9026 + }, + { + "start": 2127.76, + "end": 2128.48, + "probability": 0.5778 + }, + { + "start": 2128.86, + "end": 2131.3, + "probability": 0.9709 + }, + { + "start": 2132.44, + "end": 2133.74, + "probability": 0.8332 + }, + { + "start": 2134.18, + "end": 2134.54, + "probability": 0.6613 + }, + { + "start": 2135.2, + "end": 2136.43, + "probability": 0.1419 + }, + { + "start": 2136.74, + "end": 2138.2, + "probability": 0.9707 + }, + { + "start": 2139.45, + "end": 2142.53, + "probability": 0.9659 + }, + { + "start": 2143.78, + "end": 2146.22, + "probability": 0.6042 + }, + { + "start": 2146.44, + "end": 2148.8, + "probability": 0.9896 + }, + { + "start": 2149.81, + "end": 2156.12, + "probability": 0.9844 + }, + { + "start": 2156.22, + "end": 2157.36, + "probability": 0.895 + }, + { + "start": 2158.04, + "end": 2159.18, + "probability": 0.6754 + }, + { + "start": 2159.5, + "end": 2161.36, + "probability": 0.9579 + }, + { + "start": 2161.4, + "end": 2162.16, + "probability": 0.8943 + }, + { + "start": 2162.72, + "end": 2163.48, + "probability": 0.9272 + }, + { + "start": 2163.56, + "end": 2164.24, + "probability": 0.9283 + }, + { + "start": 2164.24, + "end": 2165.58, + "probability": 0.9331 + }, + { + "start": 2165.9, + "end": 2168.77, + "probability": 0.9512 + }, + { + "start": 2168.96, + "end": 2170.04, + "probability": 0.9734 + }, + { + "start": 2170.08, + "end": 2170.74, + "probability": 0.796 + }, + { + "start": 2171.02, + "end": 2171.96, + "probability": 0.9143 + }, + { + "start": 2172.4, + "end": 2173.11, + "probability": 0.9941 + }, + { + "start": 2173.4, + "end": 2175.88, + "probability": 0.9731 + }, + { + "start": 2176.26, + "end": 2176.62, + "probability": 0.9428 + }, + { + "start": 2176.88, + "end": 2178.34, + "probability": 0.968 + }, + { + "start": 2179.08, + "end": 2180.54, + "probability": 0.97 + }, + { + "start": 2180.54, + "end": 2181.85, + "probability": 0.8535 + }, + { + "start": 2182.7, + "end": 2186.88, + "probability": 0.9671 + }, + { + "start": 2187.84, + "end": 2188.0, + "probability": 0.8618 + }, + { + "start": 2188.56, + "end": 2189.8, + "probability": 0.9856 + }, + { + "start": 2189.96, + "end": 2190.78, + "probability": 0.9656 + }, + { + "start": 2190.82, + "end": 2191.6, + "probability": 0.9658 + }, + { + "start": 2192.02, + "end": 2193.08, + "probability": 0.9152 + }, + { + "start": 2193.18, + "end": 2193.77, + "probability": 0.9852 + }, + { + "start": 2194.2, + "end": 2195.22, + "probability": 0.8029 + }, + { + "start": 2195.66, + "end": 2196.88, + "probability": 0.998 + }, + { + "start": 2197.08, + "end": 2200.94, + "probability": 0.9828 + }, + { + "start": 2201.46, + "end": 2204.12, + "probability": 0.979 + }, + { + "start": 2204.4, + "end": 2207.3, + "probability": 0.9951 + }, + { + "start": 2207.76, + "end": 2208.7, + "probability": 0.9287 + }, + { + "start": 2208.74, + "end": 2210.38, + "probability": 0.7787 + }, + { + "start": 2210.46, + "end": 2212.05, + "probability": 0.497 + }, + { + "start": 2212.98, + "end": 2215.76, + "probability": 0.9412 + }, + { + "start": 2216.32, + "end": 2217.52, + "probability": 0.9379 + }, + { + "start": 2217.9, + "end": 2218.47, + "probability": 0.9512 + }, + { + "start": 2219.04, + "end": 2220.06, + "probability": 0.7786 + }, + { + "start": 2220.16, + "end": 2222.86, + "probability": 0.9869 + }, + { + "start": 2223.02, + "end": 2227.64, + "probability": 0.7541 + }, + { + "start": 2228.04, + "end": 2228.3, + "probability": 0.7807 + }, + { + "start": 2229.32, + "end": 2230.94, + "probability": 0.7667 + }, + { + "start": 2231.08, + "end": 2232.58, + "probability": 0.9498 + }, + { + "start": 2232.72, + "end": 2234.52, + "probability": 0.7662 + }, + { + "start": 2234.62, + "end": 2234.88, + "probability": 0.7265 + }, + { + "start": 2244.18, + "end": 2246.24, + "probability": 0.8357 + }, + { + "start": 2246.58, + "end": 2247.04, + "probability": 0.1927 + }, + { + "start": 2247.14, + "end": 2247.68, + "probability": 0.354 + }, + { + "start": 2247.92, + "end": 2248.86, + "probability": 0.9906 + }, + { + "start": 2249.74, + "end": 2250.78, + "probability": 0.8029 + }, + { + "start": 2250.88, + "end": 2251.28, + "probability": 0.1446 + }, + { + "start": 2251.4, + "end": 2252.8, + "probability": 0.9839 + }, + { + "start": 2253.02, + "end": 2253.88, + "probability": 0.7335 + }, + { + "start": 2254.54, + "end": 2256.28, + "probability": 0.9629 + }, + { + "start": 2257.02, + "end": 2257.66, + "probability": 0.6344 + }, + { + "start": 2258.3, + "end": 2259.4, + "probability": 0.6367 + }, + { + "start": 2273.88, + "end": 2278.32, + "probability": 0.167 + }, + { + "start": 2278.74, + "end": 2279.71, + "probability": 0.052 + }, + { + "start": 2280.32, + "end": 2281.42, + "probability": 0.2035 + }, + { + "start": 2281.42, + "end": 2283.8, + "probability": 0.3418 + }, + { + "start": 2286.67, + "end": 2289.34, + "probability": 0.0089 + }, + { + "start": 2289.34, + "end": 2289.74, + "probability": 0.0333 + }, + { + "start": 2290.8, + "end": 2293.0, + "probability": 0.0615 + }, + { + "start": 2293.0, + "end": 2296.0, + "probability": 0.3449 + }, + { + "start": 2296.38, + "end": 2296.62, + "probability": 0.0249 + }, + { + "start": 2297.04, + "end": 2299.28, + "probability": 0.0794 + }, + { + "start": 2299.58, + "end": 2303.82, + "probability": 0.0522 + }, + { + "start": 2306.0, + "end": 2309.36, + "probability": 0.1678 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.0, + "end": 2365.0, + "probability": 0.0 + }, + { + "start": 2365.2, + "end": 2365.2, + "probability": 0.1984 + }, + { + "start": 2365.2, + "end": 2365.2, + "probability": 0.114 + }, + { + "start": 2365.2, + "end": 2365.2, + "probability": 0.0102 + }, + { + "start": 2365.2, + "end": 2365.2, + "probability": 0.105 + }, + { + "start": 2365.2, + "end": 2368.16, + "probability": 0.289 + }, + { + "start": 2368.92, + "end": 2371.26, + "probability": 0.9722 + }, + { + "start": 2372.14, + "end": 2372.56, + "probability": 0.6687 + }, + { + "start": 2372.7, + "end": 2373.08, + "probability": 0.7594 + }, + { + "start": 2374.42, + "end": 2375.26, + "probability": 0.7812 + }, + { + "start": 2376.64, + "end": 2379.22, + "probability": 0.0101 + }, + { + "start": 2381.96, + "end": 2385.86, + "probability": 0.0353 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.0, + "end": 2494.0, + "probability": 0.0 + }, + { + "start": 2494.14, + "end": 2494.18, + "probability": 0.001 + }, + { + "start": 2494.18, + "end": 2494.8, + "probability": 0.0475 + }, + { + "start": 2494.8, + "end": 2494.8, + "probability": 0.0804 + }, + { + "start": 2494.8, + "end": 2494.8, + "probability": 0.3333 + }, + { + "start": 2494.8, + "end": 2495.2, + "probability": 0.4207 + }, + { + "start": 2496.08, + "end": 2498.62, + "probability": 0.6465 + }, + { + "start": 2499.18, + "end": 2504.78, + "probability": 0.9805 + }, + { + "start": 2505.8, + "end": 2505.8, + "probability": 0.236 + }, + { + "start": 2505.8, + "end": 2508.76, + "probability": 0.9263 + }, + { + "start": 2508.86, + "end": 2509.18, + "probability": 0.5606 + }, + { + "start": 2509.24, + "end": 2509.92, + "probability": 0.3225 + }, + { + "start": 2509.92, + "end": 2511.56, + "probability": 0.9355 + }, + { + "start": 2511.64, + "end": 2512.18, + "probability": 0.9225 + }, + { + "start": 2512.94, + "end": 2513.72, + "probability": 0.3741 + }, + { + "start": 2513.82, + "end": 2515.7, + "probability": 0.5346 + }, + { + "start": 2516.18, + "end": 2516.18, + "probability": 0.0167 + }, + { + "start": 2516.18, + "end": 2517.2, + "probability": 0.6995 + }, + { + "start": 2517.74, + "end": 2520.78, + "probability": 0.9589 + }, + { + "start": 2521.34, + "end": 2522.57, + "probability": 0.9807 + }, + { + "start": 2522.68, + "end": 2523.8, + "probability": 0.9424 + }, + { + "start": 2524.24, + "end": 2528.06, + "probability": 0.9973 + }, + { + "start": 2528.58, + "end": 2531.54, + "probability": 0.8356 + }, + { + "start": 2532.0, + "end": 2536.14, + "probability": 0.9375 + }, + { + "start": 2536.3, + "end": 2536.5, + "probability": 0.6813 + }, + { + "start": 2536.78, + "end": 2538.22, + "probability": 0.7373 + }, + { + "start": 2538.42, + "end": 2540.04, + "probability": 0.9879 + }, + { + "start": 2540.24, + "end": 2542.24, + "probability": 0.5818 + }, + { + "start": 2542.84, + "end": 2545.36, + "probability": 0.7289 + }, + { + "start": 2559.44, + "end": 2559.44, + "probability": 0.2758 + }, + { + "start": 2559.44, + "end": 2563.4, + "probability": 0.7844 + }, + { + "start": 2565.94, + "end": 2566.9, + "probability": 0.9363 + }, + { + "start": 2569.66, + "end": 2573.3, + "probability": 0.989 + }, + { + "start": 2573.3, + "end": 2577.2, + "probability": 0.9984 + }, + { + "start": 2577.96, + "end": 2581.98, + "probability": 0.9811 + }, + { + "start": 2584.68, + "end": 2585.74, + "probability": 0.9913 + }, + { + "start": 2587.1, + "end": 2588.48, + "probability": 0.9961 + }, + { + "start": 2591.52, + "end": 2594.02, + "probability": 0.9993 + }, + { + "start": 2595.4, + "end": 2598.66, + "probability": 0.9911 + }, + { + "start": 2599.84, + "end": 2602.54, + "probability": 0.9487 + }, + { + "start": 2603.3, + "end": 2606.54, + "probability": 0.86 + }, + { + "start": 2607.74, + "end": 2608.62, + "probability": 0.8604 + }, + { + "start": 2609.98, + "end": 2615.28, + "probability": 0.9722 + }, + { + "start": 2616.68, + "end": 2617.9, + "probability": 0.9744 + }, + { + "start": 2619.64, + "end": 2621.61, + "probability": 0.988 + }, + { + "start": 2623.38, + "end": 2624.46, + "probability": 0.7946 + }, + { + "start": 2625.66, + "end": 2626.68, + "probability": 0.9238 + }, + { + "start": 2628.18, + "end": 2637.2, + "probability": 0.9817 + }, + { + "start": 2639.44, + "end": 2639.7, + "probability": 0.8732 + }, + { + "start": 2640.66, + "end": 2641.4, + "probability": 0.9629 + }, + { + "start": 2643.54, + "end": 2646.6, + "probability": 0.9736 + }, + { + "start": 2647.48, + "end": 2651.96, + "probability": 0.9917 + }, + { + "start": 2652.64, + "end": 2656.52, + "probability": 0.999 + }, + { + "start": 2657.14, + "end": 2657.78, + "probability": 0.9302 + }, + { + "start": 2658.44, + "end": 2659.6, + "probability": 0.6328 + }, + { + "start": 2660.28, + "end": 2661.14, + "probability": 0.8375 + }, + { + "start": 2661.2, + "end": 2668.2, + "probability": 0.9679 + }, + { + "start": 2670.24, + "end": 2670.42, + "probability": 0.7662 + }, + { + "start": 2670.5, + "end": 2674.64, + "probability": 0.9917 + }, + { + "start": 2675.7, + "end": 2676.66, + "probability": 0.6888 + }, + { + "start": 2677.84, + "end": 2678.56, + "probability": 0.8485 + }, + { + "start": 2679.41, + "end": 2680.19, + "probability": 0.7486 + }, + { + "start": 2681.34, + "end": 2682.02, + "probability": 0.8724 + }, + { + "start": 2683.62, + "end": 2688.72, + "probability": 0.9857 + }, + { + "start": 2689.1, + "end": 2690.04, + "probability": 0.8708 + }, + { + "start": 2691.16, + "end": 2696.26, + "probability": 0.8618 + }, + { + "start": 2697.7, + "end": 2698.9, + "probability": 0.978 + }, + { + "start": 2701.64, + "end": 2705.1, + "probability": 0.9747 + }, + { + "start": 2706.76, + "end": 2708.1, + "probability": 0.9606 + }, + { + "start": 2709.5, + "end": 2712.2, + "probability": 0.9492 + }, + { + "start": 2714.18, + "end": 2716.24, + "probability": 0.896 + }, + { + "start": 2718.58, + "end": 2719.5, + "probability": 0.6295 + }, + { + "start": 2721.4, + "end": 2727.28, + "probability": 0.9937 + }, + { + "start": 2728.7, + "end": 2730.88, + "probability": 0.9847 + }, + { + "start": 2730.88, + "end": 2733.4, + "probability": 0.9938 + }, + { + "start": 2733.56, + "end": 2734.46, + "probability": 0.7925 + }, + { + "start": 2735.82, + "end": 2739.24, + "probability": 0.8372 + }, + { + "start": 2740.2, + "end": 2741.74, + "probability": 0.7306 + }, + { + "start": 2743.08, + "end": 2744.38, + "probability": 0.905 + }, + { + "start": 2744.4, + "end": 2746.08, + "probability": 0.9165 + }, + { + "start": 2746.22, + "end": 2746.52, + "probability": 0.7608 + }, + { + "start": 2747.14, + "end": 2750.94, + "probability": 0.7706 + }, + { + "start": 2751.98, + "end": 2753.66, + "probability": 0.9927 + }, + { + "start": 2754.82, + "end": 2757.54, + "probability": 0.9617 + }, + { + "start": 2758.12, + "end": 2759.68, + "probability": 0.8868 + }, + { + "start": 2761.58, + "end": 2762.58, + "probability": 0.8081 + }, + { + "start": 2762.68, + "end": 2764.08, + "probability": 0.9771 + }, + { + "start": 2765.04, + "end": 2769.92, + "probability": 0.9054 + }, + { + "start": 2770.66, + "end": 2772.46, + "probability": 0.4863 + }, + { + "start": 2772.46, + "end": 2772.46, + "probability": 0.1959 + }, + { + "start": 2772.46, + "end": 2772.94, + "probability": 0.6212 + }, + { + "start": 2773.08, + "end": 2773.5, + "probability": 0.4482 + }, + { + "start": 2773.62, + "end": 2774.26, + "probability": 0.7087 + }, + { + "start": 2774.58, + "end": 2775.9, + "probability": 0.9424 + }, + { + "start": 2775.94, + "end": 2776.32, + "probability": 0.4492 + }, + { + "start": 2776.32, + "end": 2777.64, + "probability": 0.5169 + }, + { + "start": 2777.94, + "end": 2780.06, + "probability": 0.4351 + }, + { + "start": 2780.06, + "end": 2780.78, + "probability": 0.917 + }, + { + "start": 2781.34, + "end": 2782.2, + "probability": 0.6112 + }, + { + "start": 2782.34, + "end": 2785.78, + "probability": 0.9957 + }, + { + "start": 2785.86, + "end": 2786.2, + "probability": 0.5903 + }, + { + "start": 2786.2, + "end": 2787.3, + "probability": 0.7719 + }, + { + "start": 2787.54, + "end": 2790.92, + "probability": 0.9958 + }, + { + "start": 2790.96, + "end": 2792.12, + "probability": 0.5616 + }, + { + "start": 2792.84, + "end": 2795.84, + "probability": 0.9399 + }, + { + "start": 2795.84, + "end": 2796.36, + "probability": 0.7134 + }, + { + "start": 2796.42, + "end": 2797.32, + "probability": 0.8778 + }, + { + "start": 2797.4, + "end": 2799.06, + "probability": 0.991 + }, + { + "start": 2799.22, + "end": 2800.22, + "probability": 0.8245 + }, + { + "start": 2802.04, + "end": 2804.16, + "probability": 0.5338 + }, + { + "start": 2807.0, + "end": 2807.0, + "probability": 0.0039 + }, + { + "start": 2807.0, + "end": 2807.0, + "probability": 0.1023 + }, + { + "start": 2807.0, + "end": 2807.0, + "probability": 0.2693 + }, + { + "start": 2807.0, + "end": 2807.0, + "probability": 0.1291 + }, + { + "start": 2807.0, + "end": 2807.0, + "probability": 0.5997 + }, + { + "start": 2807.0, + "end": 2809.38, + "probability": 0.5185 + }, + { + "start": 2811.34, + "end": 2814.18, + "probability": 0.8653 + }, + { + "start": 2832.67, + "end": 2833.9, + "probability": 0.6445 + }, + { + "start": 2833.9, + "end": 2833.9, + "probability": 0.0582 + }, + { + "start": 2833.9, + "end": 2835.3, + "probability": 0.2124 + }, + { + "start": 2835.34, + "end": 2836.12, + "probability": 0.7819 + }, + { + "start": 2836.22, + "end": 2837.74, + "probability": 0.8714 + }, + { + "start": 2837.74, + "end": 2839.02, + "probability": 0.891 + }, + { + "start": 2840.76, + "end": 2843.04, + "probability": 0.9287 + }, + { + "start": 2843.6, + "end": 2844.88, + "probability": 0.9313 + }, + { + "start": 2846.24, + "end": 2849.84, + "probability": 0.9917 + }, + { + "start": 2852.26, + "end": 2853.01, + "probability": 0.0161 + }, + { + "start": 2854.84, + "end": 2855.61, + "probability": 0.7202 + }, + { + "start": 2855.82, + "end": 2856.6, + "probability": 0.7654 + }, + { + "start": 2856.64, + "end": 2859.96, + "probability": 0.9186 + }, + { + "start": 2861.0, + "end": 2862.88, + "probability": 0.0081 + }, + { + "start": 2863.12, + "end": 2863.96, + "probability": 0.1068 + }, + { + "start": 2863.96, + "end": 2867.96, + "probability": 0.9218 + }, + { + "start": 2868.58, + "end": 2872.52, + "probability": 0.9906 + }, + { + "start": 2872.6, + "end": 2873.3, + "probability": 0.9376 + }, + { + "start": 2873.6, + "end": 2876.1, + "probability": 0.964 + }, + { + "start": 2877.38, + "end": 2879.8, + "probability": 0.967 + }, + { + "start": 2881.84, + "end": 2882.96, + "probability": 0.8098 + }, + { + "start": 2883.16, + "end": 2885.53, + "probability": 0.7417 + }, + { + "start": 2885.92, + "end": 2886.58, + "probability": 0.7475 + }, + { + "start": 2887.24, + "end": 2888.28, + "probability": 0.9834 + }, + { + "start": 2889.12, + "end": 2892.16, + "probability": 0.979 + }, + { + "start": 2893.26, + "end": 2894.08, + "probability": 0.5857 + }, + { + "start": 2894.6, + "end": 2895.48, + "probability": 0.9873 + }, + { + "start": 2896.48, + "end": 2898.7, + "probability": 0.7773 + }, + { + "start": 2899.44, + "end": 2901.88, + "probability": 0.9657 + }, + { + "start": 2901.94, + "end": 2902.34, + "probability": 0.3794 + }, + { + "start": 2902.4, + "end": 2902.9, + "probability": 0.7037 + }, + { + "start": 2903.02, + "end": 2905.84, + "probability": 0.9845 + }, + { + "start": 2905.98, + "end": 2907.5, + "probability": 0.762 + }, + { + "start": 2908.02, + "end": 2909.16, + "probability": 0.8195 + }, + { + "start": 2909.7, + "end": 2913.6, + "probability": 0.9977 + }, + { + "start": 2915.3, + "end": 2916.14, + "probability": 0.733 + }, + { + "start": 2917.12, + "end": 2919.54, + "probability": 0.9961 + }, + { + "start": 2920.18, + "end": 2922.56, + "probability": 0.989 + }, + { + "start": 2922.7, + "end": 2924.16, + "probability": 0.7217 + }, + { + "start": 2924.22, + "end": 2928.14, + "probability": 0.9931 + }, + { + "start": 2928.56, + "end": 2931.32, + "probability": 0.9879 + }, + { + "start": 2931.92, + "end": 2935.34, + "probability": 0.995 + }, + { + "start": 2935.34, + "end": 2937.7, + "probability": 0.9946 + }, + { + "start": 2938.04, + "end": 2939.04, + "probability": 0.9937 + }, + { + "start": 2939.58, + "end": 2940.78, + "probability": 0.9497 + }, + { + "start": 2941.04, + "end": 2943.12, + "probability": 0.9974 + }, + { + "start": 2943.42, + "end": 2945.32, + "probability": 0.9897 + }, + { + "start": 2945.4, + "end": 2946.65, + "probability": 0.9655 + }, + { + "start": 2948.1, + "end": 2950.64, + "probability": 0.9774 + }, + { + "start": 2951.22, + "end": 2954.56, + "probability": 0.9985 + }, + { + "start": 2954.66, + "end": 2956.56, + "probability": 0.9238 + }, + { + "start": 2957.44, + "end": 2960.52, + "probability": 0.9747 + }, + { + "start": 2961.7, + "end": 2963.58, + "probability": 0.7986 + }, + { + "start": 2964.24, + "end": 2966.54, + "probability": 0.9976 + }, + { + "start": 2968.22, + "end": 2973.24, + "probability": 0.9877 + }, + { + "start": 2973.62, + "end": 2975.12, + "probability": 0.9934 + }, + { + "start": 2975.4, + "end": 2976.18, + "probability": 0.8702 + }, + { + "start": 2976.84, + "end": 2977.34, + "probability": 0.6849 + }, + { + "start": 2978.06, + "end": 2978.78, + "probability": 0.948 + }, + { + "start": 2979.74, + "end": 2981.3, + "probability": 0.9657 + }, + { + "start": 2981.44, + "end": 2984.54, + "probability": 0.9725 + }, + { + "start": 2985.16, + "end": 2986.5, + "probability": 0.9948 + }, + { + "start": 2987.04, + "end": 2988.63, + "probability": 0.9974 + }, + { + "start": 2989.48, + "end": 2991.06, + "probability": 0.7955 + }, + { + "start": 2991.24, + "end": 2994.02, + "probability": 0.9494 + }, + { + "start": 2994.36, + "end": 2998.22, + "probability": 0.9871 + }, + { + "start": 2998.22, + "end": 3001.3, + "probability": 0.8967 + }, + { + "start": 3001.52, + "end": 3004.34, + "probability": 0.7288 + }, + { + "start": 3004.98, + "end": 3006.16, + "probability": 0.9507 + }, + { + "start": 3006.4, + "end": 3007.18, + "probability": 0.7911 + }, + { + "start": 3007.34, + "end": 3009.3, + "probability": 0.7307 + }, + { + "start": 3009.76, + "end": 3011.78, + "probability": 0.9036 + }, + { + "start": 3011.99, + "end": 3014.2, + "probability": 0.7927 + }, + { + "start": 3014.86, + "end": 3017.38, + "probability": 0.9806 + }, + { + "start": 3026.4, + "end": 3028.7, + "probability": 0.7231 + }, + { + "start": 3029.72, + "end": 3031.58, + "probability": 0.9888 + }, + { + "start": 3031.62, + "end": 3032.88, + "probability": 0.9735 + }, + { + "start": 3033.06, + "end": 3034.54, + "probability": 0.9951 + }, + { + "start": 3035.04, + "end": 3036.68, + "probability": 0.9956 + }, + { + "start": 3037.18, + "end": 3037.94, + "probability": 0.9963 + }, + { + "start": 3038.76, + "end": 3040.26, + "probability": 0.9977 + }, + { + "start": 3040.46, + "end": 3040.76, + "probability": 0.6902 + }, + { + "start": 3041.52, + "end": 3042.52, + "probability": 0.731 + }, + { + "start": 3043.08, + "end": 3048.9, + "probability": 0.9989 + }, + { + "start": 3048.9, + "end": 3052.78, + "probability": 0.9995 + }, + { + "start": 3053.56, + "end": 3055.52, + "probability": 0.9834 + }, + { + "start": 3056.1, + "end": 3060.26, + "probability": 0.995 + }, + { + "start": 3061.02, + "end": 3061.54, + "probability": 0.5935 + }, + { + "start": 3061.62, + "end": 3063.18, + "probability": 0.9338 + }, + { + "start": 3063.56, + "end": 3067.7, + "probability": 0.9964 + }, + { + "start": 3068.26, + "end": 3070.08, + "probability": 0.9783 + }, + { + "start": 3070.94, + "end": 3071.48, + "probability": 0.7674 + }, + { + "start": 3071.64, + "end": 3074.74, + "probability": 0.9944 + }, + { + "start": 3074.74, + "end": 3078.8, + "probability": 0.9919 + }, + { + "start": 3079.16, + "end": 3083.44, + "probability": 0.9446 + }, + { + "start": 3083.64, + "end": 3084.42, + "probability": 0.9653 + }, + { + "start": 3085.12, + "end": 3086.14, + "probability": 0.974 + }, + { + "start": 3086.24, + "end": 3086.5, + "probability": 0.823 + }, + { + "start": 3086.58, + "end": 3087.74, + "probability": 0.9969 + }, + { + "start": 3088.66, + "end": 3090.72, + "probability": 0.9574 + }, + { + "start": 3092.11, + "end": 3094.9, + "probability": 0.7874 + }, + { + "start": 3095.76, + "end": 3096.24, + "probability": 0.9338 + }, + { + "start": 3097.18, + "end": 3097.7, + "probability": 0.9625 + }, + { + "start": 3098.78, + "end": 3102.24, + "probability": 0.9939 + }, + { + "start": 3103.48, + "end": 3105.5, + "probability": 0.782 + }, + { + "start": 3106.48, + "end": 3108.18, + "probability": 0.9875 + }, + { + "start": 3108.32, + "end": 3110.18, + "probability": 0.7622 + }, + { + "start": 3110.94, + "end": 3112.67, + "probability": 0.9934 + }, + { + "start": 3113.56, + "end": 3115.5, + "probability": 0.7695 + }, + { + "start": 3116.3, + "end": 3117.6, + "probability": 0.5736 + }, + { + "start": 3118.3, + "end": 3123.52, + "probability": 0.7329 + }, + { + "start": 3124.34, + "end": 3125.02, + "probability": 0.7885 + }, + { + "start": 3125.36, + "end": 3126.22, + "probability": 0.911 + }, + { + "start": 3126.66, + "end": 3128.08, + "probability": 0.9392 + }, + { + "start": 3128.52, + "end": 3130.12, + "probability": 0.8288 + }, + { + "start": 3131.04, + "end": 3133.98, + "probability": 0.8732 + }, + { + "start": 3134.04, + "end": 3135.32, + "probability": 0.9669 + }, + { + "start": 3135.9, + "end": 3137.5, + "probability": 0.8147 + }, + { + "start": 3137.88, + "end": 3138.97, + "probability": 0.6611 + }, + { + "start": 3139.78, + "end": 3142.86, + "probability": 0.9045 + }, + { + "start": 3143.68, + "end": 3147.16, + "probability": 0.9971 + }, + { + "start": 3149.14, + "end": 3151.22, + "probability": 0.7243 + }, + { + "start": 3152.4, + "end": 3153.33, + "probability": 0.9756 + }, + { + "start": 3153.62, + "end": 3155.16, + "probability": 0.9763 + }, + { + "start": 3155.6, + "end": 3159.48, + "probability": 0.8328 + }, + { + "start": 3160.36, + "end": 3162.52, + "probability": 0.9496 + }, + { + "start": 3162.56, + "end": 3163.1, + "probability": 0.8639 + }, + { + "start": 3163.2, + "end": 3163.92, + "probability": 0.9424 + }, + { + "start": 3164.02, + "end": 3164.72, + "probability": 0.999 + }, + { + "start": 3165.36, + "end": 3166.74, + "probability": 0.509 + }, + { + "start": 3167.58, + "end": 3169.04, + "probability": 0.9831 + }, + { + "start": 3169.56, + "end": 3171.12, + "probability": 0.8509 + }, + { + "start": 3172.38, + "end": 3175.16, + "probability": 0.9817 + }, + { + "start": 3175.8, + "end": 3178.52, + "probability": 0.9442 + }, + { + "start": 3178.94, + "end": 3180.9, + "probability": 0.7213 + }, + { + "start": 3181.12, + "end": 3182.32, + "probability": 0.8975 + }, + { + "start": 3182.52, + "end": 3184.22, + "probability": 0.9587 + }, + { + "start": 3184.4, + "end": 3188.02, + "probability": 0.9927 + }, + { + "start": 3188.66, + "end": 3189.92, + "probability": 0.9867 + }, + { + "start": 3190.76, + "end": 3192.68, + "probability": 0.7948 + }, + { + "start": 3193.56, + "end": 3196.78, + "probability": 0.9918 + }, + { + "start": 3197.62, + "end": 3198.78, + "probability": 0.9674 + }, + { + "start": 3199.68, + "end": 3201.36, + "probability": 0.9106 + }, + { + "start": 3202.0, + "end": 3203.8, + "probability": 0.9868 + }, + { + "start": 3203.84, + "end": 3206.74, + "probability": 0.7878 + }, + { + "start": 3207.38, + "end": 3208.4, + "probability": 0.0489 + }, + { + "start": 3208.46, + "end": 3210.92, + "probability": 0.8738 + }, + { + "start": 3211.48, + "end": 3212.34, + "probability": 0.422 + }, + { + "start": 3212.46, + "end": 3213.2, + "probability": 0.6087 + }, + { + "start": 3213.48, + "end": 3215.86, + "probability": 0.2826 + }, + { + "start": 3216.04, + "end": 3220.2, + "probability": 0.8228 + }, + { + "start": 3220.52, + "end": 3222.13, + "probability": 0.9829 + }, + { + "start": 3222.6, + "end": 3223.7, + "probability": 0.9663 + }, + { + "start": 3224.1, + "end": 3227.82, + "probability": 0.9667 + }, + { + "start": 3227.84, + "end": 3228.38, + "probability": 0.3125 + }, + { + "start": 3228.42, + "end": 3231.6, + "probability": 0.9943 + }, + { + "start": 3231.82, + "end": 3232.94, + "probability": 0.9604 + }, + { + "start": 3233.06, + "end": 3234.18, + "probability": 0.8544 + }, + { + "start": 3234.62, + "end": 3235.66, + "probability": 0.8871 + }, + { + "start": 3235.94, + "end": 3238.62, + "probability": 0.9131 + }, + { + "start": 3238.68, + "end": 3239.06, + "probability": 0.7362 + }, + { + "start": 3239.06, + "end": 3239.44, + "probability": 0.2597 + }, + { + "start": 3239.64, + "end": 3240.86, + "probability": 0.549 + }, + { + "start": 3240.86, + "end": 3243.04, + "probability": 0.9191 + }, + { + "start": 3243.58, + "end": 3245.92, + "probability": 0.8047 + }, + { + "start": 3261.94, + "end": 3262.98, + "probability": 0.6392 + }, + { + "start": 3264.44, + "end": 3266.42, + "probability": 0.7997 + }, + { + "start": 3267.88, + "end": 3270.42, + "probability": 0.8801 + }, + { + "start": 3271.56, + "end": 3273.32, + "probability": 0.9651 + }, + { + "start": 3274.04, + "end": 3277.56, + "probability": 0.9815 + }, + { + "start": 3277.62, + "end": 3280.98, + "probability": 0.7192 + }, + { + "start": 3281.76, + "end": 3284.78, + "probability": 0.8984 + }, + { + "start": 3285.62, + "end": 3286.48, + "probability": 0.9026 + }, + { + "start": 3287.1, + "end": 3292.0, + "probability": 0.9767 + }, + { + "start": 3292.7, + "end": 3294.12, + "probability": 0.9893 + }, + { + "start": 3294.76, + "end": 3296.56, + "probability": 0.9746 + }, + { + "start": 3298.08, + "end": 3298.94, + "probability": 0.8961 + }, + { + "start": 3299.26, + "end": 3304.32, + "probability": 0.9883 + }, + { + "start": 3304.98, + "end": 3306.42, + "probability": 0.9717 + }, + { + "start": 3307.36, + "end": 3312.84, + "probability": 0.957 + }, + { + "start": 3313.54, + "end": 3316.12, + "probability": 0.9941 + }, + { + "start": 3317.0, + "end": 3319.06, + "probability": 0.9565 + }, + { + "start": 3319.86, + "end": 3322.48, + "probability": 0.981 + }, + { + "start": 3323.76, + "end": 3324.98, + "probability": 0.8663 + }, + { + "start": 3325.64, + "end": 3325.84, + "probability": 0.3984 + }, + { + "start": 3325.88, + "end": 3326.62, + "probability": 0.7602 + }, + { + "start": 3326.82, + "end": 3327.0, + "probability": 0.6975 + }, + { + "start": 3327.02, + "end": 3327.94, + "probability": 0.8962 + }, + { + "start": 3328.34, + "end": 3329.92, + "probability": 0.9487 + }, + { + "start": 3330.46, + "end": 3332.0, + "probability": 0.9739 + }, + { + "start": 3332.9, + "end": 3335.54, + "probability": 0.7163 + }, + { + "start": 3335.96, + "end": 3338.26, + "probability": 0.8745 + }, + { + "start": 3339.14, + "end": 3340.84, + "probability": 0.9874 + }, + { + "start": 3341.36, + "end": 3343.08, + "probability": 0.6992 + }, + { + "start": 3344.6, + "end": 3350.56, + "probability": 0.9597 + }, + { + "start": 3350.98, + "end": 3355.0, + "probability": 0.958 + }, + { + "start": 3355.92, + "end": 3357.78, + "probability": 0.8735 + }, + { + "start": 3358.48, + "end": 3359.38, + "probability": 0.6892 + }, + { + "start": 3359.52, + "end": 3364.62, + "probability": 0.9512 + }, + { + "start": 3365.26, + "end": 3366.08, + "probability": 0.9505 + }, + { + "start": 3366.24, + "end": 3367.14, + "probability": 0.7315 + }, + { + "start": 3367.78, + "end": 3368.14, + "probability": 0.6007 + }, + { + "start": 3369.16, + "end": 3370.4, + "probability": 0.7056 + }, + { + "start": 3370.94, + "end": 3372.09, + "probability": 0.8011 + }, + { + "start": 3372.7, + "end": 3374.7, + "probability": 0.7625 + }, + { + "start": 3375.24, + "end": 3376.56, + "probability": 0.5308 + }, + { + "start": 3377.36, + "end": 3378.92, + "probability": 0.7899 + }, + { + "start": 3379.38, + "end": 3381.12, + "probability": 0.894 + }, + { + "start": 3381.94, + "end": 3387.05, + "probability": 0.9534 + }, + { + "start": 3387.5, + "end": 3390.34, + "probability": 0.9813 + }, + { + "start": 3390.56, + "end": 3393.32, + "probability": 0.9891 + }, + { + "start": 3393.38, + "end": 3394.52, + "probability": 0.6497 + }, + { + "start": 3395.2, + "end": 3396.4, + "probability": 0.8796 + }, + { + "start": 3397.46, + "end": 3401.64, + "probability": 0.9281 + }, + { + "start": 3402.6, + "end": 3404.34, + "probability": 0.9204 + }, + { + "start": 3405.2, + "end": 3409.16, + "probability": 0.899 + }, + { + "start": 3409.42, + "end": 3410.66, + "probability": 0.9648 + }, + { + "start": 3410.92, + "end": 3411.82, + "probability": 0.8834 + }, + { + "start": 3412.28, + "end": 3415.98, + "probability": 0.9489 + }, + { + "start": 3416.48, + "end": 3417.46, + "probability": 0.9595 + }, + { + "start": 3417.96, + "end": 3421.52, + "probability": 0.9522 + }, + { + "start": 3421.52, + "end": 3426.46, + "probability": 0.9313 + }, + { + "start": 3426.98, + "end": 3430.76, + "probability": 0.9897 + }, + { + "start": 3431.34, + "end": 3433.02, + "probability": 0.6614 + }, + { + "start": 3433.48, + "end": 3434.39, + "probability": 0.9578 + }, + { + "start": 3435.7, + "end": 3437.48, + "probability": 0.7894 + }, + { + "start": 3437.92, + "end": 3441.2, + "probability": 0.9899 + }, + { + "start": 3441.58, + "end": 3445.22, + "probability": 0.9965 + }, + { + "start": 3445.82, + "end": 3447.66, + "probability": 0.8795 + }, + { + "start": 3448.2, + "end": 3448.81, + "probability": 0.9788 + }, + { + "start": 3449.14, + "end": 3451.98, + "probability": 0.8462 + }, + { + "start": 3452.52, + "end": 3458.5, + "probability": 0.983 + }, + { + "start": 3459.34, + "end": 3461.44, + "probability": 0.8743 + }, + { + "start": 3461.62, + "end": 3463.32, + "probability": 0.8859 + }, + { + "start": 3463.96, + "end": 3465.02, + "probability": 0.4679 + }, + { + "start": 3465.92, + "end": 3466.88, + "probability": 0.4714 + }, + { + "start": 3467.5, + "end": 3469.08, + "probability": 0.9741 + }, + { + "start": 3475.98, + "end": 3480.68, + "probability": 0.517 + }, + { + "start": 3481.7, + "end": 3483.72, + "probability": 0.9161 + }, + { + "start": 3484.38, + "end": 3485.84, + "probability": 0.7863 + }, + { + "start": 3486.14, + "end": 3488.08, + "probability": 0.9843 + }, + { + "start": 3488.96, + "end": 3490.32, + "probability": 0.9373 + }, + { + "start": 3490.6, + "end": 3494.92, + "probability": 0.9969 + }, + { + "start": 3495.38, + "end": 3497.98, + "probability": 0.9969 + }, + { + "start": 3498.44, + "end": 3501.52, + "probability": 0.9773 + }, + { + "start": 3502.0, + "end": 3504.4, + "probability": 0.9365 + }, + { + "start": 3505.02, + "end": 3505.72, + "probability": 0.9707 + }, + { + "start": 3506.22, + "end": 3506.92, + "probability": 0.779 + }, + { + "start": 3507.12, + "end": 3507.78, + "probability": 0.7507 + }, + { + "start": 3508.2, + "end": 3512.04, + "probability": 0.9772 + }, + { + "start": 3512.62, + "end": 3512.82, + "probability": 0.9135 + }, + { + "start": 3513.5, + "end": 3517.3, + "probability": 0.9826 + }, + { + "start": 3517.42, + "end": 3518.22, + "probability": 0.7758 + }, + { + "start": 3518.54, + "end": 3519.4, + "probability": 0.9106 + }, + { + "start": 3519.58, + "end": 3521.8, + "probability": 0.9845 + }, + { + "start": 3522.1, + "end": 3525.14, + "probability": 0.9598 + }, + { + "start": 3525.72, + "end": 3530.04, + "probability": 0.9741 + }, + { + "start": 3530.36, + "end": 3534.8, + "probability": 0.9894 + }, + { + "start": 3534.98, + "end": 3539.7, + "probability": 0.8644 + }, + { + "start": 3540.1, + "end": 3542.04, + "probability": 0.9977 + }, + { + "start": 3542.72, + "end": 3546.54, + "probability": 0.9938 + }, + { + "start": 3547.2, + "end": 3550.14, + "probability": 0.8694 + }, + { + "start": 3550.34, + "end": 3551.24, + "probability": 0.8777 + }, + { + "start": 3551.36, + "end": 3552.32, + "probability": 0.9677 + }, + { + "start": 3552.62, + "end": 3553.76, + "probability": 0.9785 + }, + { + "start": 3554.1, + "end": 3559.94, + "probability": 0.9892 + }, + { + "start": 3560.16, + "end": 3560.72, + "probability": 0.8304 + }, + { + "start": 3560.84, + "end": 3561.66, + "probability": 0.9133 + }, + { + "start": 3561.94, + "end": 3563.46, + "probability": 0.9739 + }, + { + "start": 3563.78, + "end": 3565.34, + "probability": 0.9163 + }, + { + "start": 3565.74, + "end": 3567.44, + "probability": 0.9587 + }, + { + "start": 3568.24, + "end": 3570.3, + "probability": 0.9246 + }, + { + "start": 3570.6, + "end": 3572.74, + "probability": 0.9925 + }, + { + "start": 3573.16, + "end": 3579.56, + "probability": 0.4638 + }, + { + "start": 3579.96, + "end": 3581.3, + "probability": 0.8934 + }, + { + "start": 3581.34, + "end": 3583.38, + "probability": 0.8814 + }, + { + "start": 3583.86, + "end": 3584.5, + "probability": 0.924 + }, + { + "start": 3584.52, + "end": 3586.8, + "probability": 0.9209 + }, + { + "start": 3586.96, + "end": 3587.7, + "probability": 0.2712 + }, + { + "start": 3588.1, + "end": 3588.68, + "probability": 0.5975 + }, + { + "start": 3589.06, + "end": 3589.92, + "probability": 0.8885 + }, + { + "start": 3590.16, + "end": 3591.84, + "probability": 0.9491 + }, + { + "start": 3591.9, + "end": 3592.32, + "probability": 0.3297 + }, + { + "start": 3592.34, + "end": 3593.58, + "probability": 0.957 + }, + { + "start": 3593.64, + "end": 3597.92, + "probability": 0.8927 + }, + { + "start": 3598.24, + "end": 3600.92, + "probability": 0.9598 + }, + { + "start": 3601.28, + "end": 3603.68, + "probability": 0.9177 + }, + { + "start": 3604.08, + "end": 3607.16, + "probability": 0.9874 + }, + { + "start": 3607.16, + "end": 3612.02, + "probability": 0.9961 + }, + { + "start": 3612.1, + "end": 3612.4, + "probability": 0.4915 + }, + { + "start": 3612.66, + "end": 3618.26, + "probability": 0.9621 + }, + { + "start": 3618.44, + "end": 3621.46, + "probability": 0.9965 + }, + { + "start": 3622.08, + "end": 3623.1, + "probability": 0.8281 + }, + { + "start": 3623.2, + "end": 3624.12, + "probability": 0.9576 + }, + { + "start": 3624.5, + "end": 3625.63, + "probability": 0.9722 + }, + { + "start": 3626.22, + "end": 3628.72, + "probability": 0.9862 + }, + { + "start": 3628.88, + "end": 3629.51, + "probability": 0.9777 + }, + { + "start": 3629.88, + "end": 3633.98, + "probability": 0.9747 + }, + { + "start": 3634.42, + "end": 3636.48, + "probability": 0.9576 + }, + { + "start": 3637.1, + "end": 3639.84, + "probability": 0.9883 + }, + { + "start": 3640.38, + "end": 3641.36, + "probability": 0.9637 + }, + { + "start": 3641.8, + "end": 3642.74, + "probability": 0.9969 + }, + { + "start": 3643.06, + "end": 3646.82, + "probability": 0.9928 + }, + { + "start": 3647.26, + "end": 3651.42, + "probability": 0.9931 + }, + { + "start": 3651.72, + "end": 3653.78, + "probability": 0.939 + }, + { + "start": 3653.98, + "end": 3654.4, + "probability": 0.6056 + }, + { + "start": 3654.6, + "end": 3655.82, + "probability": 0.9323 + }, + { + "start": 3655.98, + "end": 3657.84, + "probability": 0.8975 + }, + { + "start": 3658.1, + "end": 3659.38, + "probability": 0.9663 + }, + { + "start": 3659.86, + "end": 3665.78, + "probability": 0.9858 + }, + { + "start": 3666.1, + "end": 3667.29, + "probability": 0.9779 + }, + { + "start": 3667.58, + "end": 3669.12, + "probability": 0.9653 + }, + { + "start": 3669.4, + "end": 3671.98, + "probability": 0.9908 + }, + { + "start": 3672.12, + "end": 3674.36, + "probability": 0.9688 + }, + { + "start": 3674.76, + "end": 3675.28, + "probability": 0.1502 + }, + { + "start": 3676.0, + "end": 3676.34, + "probability": 0.9295 + }, + { + "start": 3676.54, + "end": 3677.24, + "probability": 0.9946 + }, + { + "start": 3678.74, + "end": 3680.0, + "probability": 0.9866 + }, + { + "start": 3680.1, + "end": 3680.54, + "probability": 0.642 + }, + { + "start": 3680.66, + "end": 3681.38, + "probability": 0.7199 + }, + { + "start": 3681.44, + "end": 3685.16, + "probability": 0.8639 + }, + { + "start": 3685.36, + "end": 3686.4, + "probability": 0.7342 + }, + { + "start": 3686.8, + "end": 3688.78, + "probability": 0.9871 + }, + { + "start": 3689.08, + "end": 3689.44, + "probability": 0.5976 + }, + { + "start": 3689.5, + "end": 3690.42, + "probability": 0.8621 + }, + { + "start": 3690.6, + "end": 3693.42, + "probability": 0.9898 + }, + { + "start": 3693.42, + "end": 3697.34, + "probability": 0.957 + }, + { + "start": 3697.44, + "end": 3700.8, + "probability": 0.9914 + }, + { + "start": 3701.02, + "end": 3701.98, + "probability": 0.7166 + }, + { + "start": 3702.0, + "end": 3702.0, + "probability": 0.4811 + }, + { + "start": 3702.0, + "end": 3702.28, + "probability": 0.8682 + }, + { + "start": 3703.06, + "end": 3705.34, + "probability": 0.9128 + }, + { + "start": 3720.92, + "end": 3722.68, + "probability": 0.8157 + }, + { + "start": 3722.96, + "end": 3723.94, + "probability": 0.6512 + }, + { + "start": 3724.94, + "end": 3727.56, + "probability": 0.59 + }, + { + "start": 3729.5, + "end": 3730.02, + "probability": 0.9966 + }, + { + "start": 3731.08, + "end": 3731.8, + "probability": 0.8815 + }, + { + "start": 3732.94, + "end": 3734.7, + "probability": 0.9889 + }, + { + "start": 3735.5, + "end": 3739.26, + "probability": 0.9649 + }, + { + "start": 3739.98, + "end": 3741.74, + "probability": 0.6286 + }, + { + "start": 3742.32, + "end": 3744.58, + "probability": 0.7947 + }, + { + "start": 3745.18, + "end": 3745.92, + "probability": 0.9443 + }, + { + "start": 3746.82, + "end": 3748.1, + "probability": 0.98 + }, + { + "start": 3748.26, + "end": 3749.68, + "probability": 0.9839 + }, + { + "start": 3749.74, + "end": 3752.62, + "probability": 0.906 + }, + { + "start": 3752.72, + "end": 3753.52, + "probability": 0.7566 + }, + { + "start": 3754.48, + "end": 3757.21, + "probability": 0.948 + }, + { + "start": 3757.8, + "end": 3759.86, + "probability": 0.9967 + }, + { + "start": 3760.22, + "end": 3762.16, + "probability": 0.9923 + }, + { + "start": 3762.74, + "end": 3764.7, + "probability": 0.9987 + }, + { + "start": 3765.68, + "end": 3769.78, + "probability": 0.9976 + }, + { + "start": 3769.78, + "end": 3774.92, + "probability": 0.9948 + }, + { + "start": 3776.16, + "end": 3781.16, + "probability": 0.9988 + }, + { + "start": 3781.76, + "end": 3786.94, + "probability": 0.9927 + }, + { + "start": 3789.1, + "end": 3790.52, + "probability": 0.9681 + }, + { + "start": 3791.56, + "end": 3792.56, + "probability": 0.7992 + }, + { + "start": 3793.58, + "end": 3798.88, + "probability": 0.9971 + }, + { + "start": 3798.98, + "end": 3799.54, + "probability": 0.679 + }, + { + "start": 3800.46, + "end": 3802.6, + "probability": 0.9502 + }, + { + "start": 3803.96, + "end": 3809.72, + "probability": 0.9702 + }, + { + "start": 3810.86, + "end": 3812.76, + "probability": 0.96 + }, + { + "start": 3813.52, + "end": 3815.3, + "probability": 0.9178 + }, + { + "start": 3815.44, + "end": 3815.58, + "probability": 0.1431 + }, + { + "start": 3815.66, + "end": 3816.54, + "probability": 0.9432 + }, + { + "start": 3816.9, + "end": 3817.94, + "probability": 0.7443 + }, + { + "start": 3818.02, + "end": 3818.28, + "probability": 0.5646 + }, + { + "start": 3818.32, + "end": 3819.16, + "probability": 0.7535 + }, + { + "start": 3819.8, + "end": 3820.96, + "probability": 0.9951 + }, + { + "start": 3821.72, + "end": 3823.16, + "probability": 0.9956 + }, + { + "start": 3824.04, + "end": 3825.5, + "probability": 0.9774 + }, + { + "start": 3826.12, + "end": 3828.06, + "probability": 0.5107 + }, + { + "start": 3829.7, + "end": 3831.0, + "probability": 0.7547 + }, + { + "start": 3831.4, + "end": 3834.5, + "probability": 0.9175 + }, + { + "start": 3835.1, + "end": 3838.08, + "probability": 0.9481 + }, + { + "start": 3838.76, + "end": 3842.56, + "probability": 0.7912 + }, + { + "start": 3843.46, + "end": 3844.6, + "probability": 0.9161 + }, + { + "start": 3845.56, + "end": 3847.32, + "probability": 0.9122 + }, + { + "start": 3847.96, + "end": 3848.88, + "probability": 0.9409 + }, + { + "start": 3849.04, + "end": 3849.96, + "probability": 0.9629 + }, + { + "start": 3850.0, + "end": 3850.88, + "probability": 0.9854 + }, + { + "start": 3850.92, + "end": 3852.14, + "probability": 0.9292 + }, + { + "start": 3852.18, + "end": 3853.37, + "probability": 0.811 + }, + { + "start": 3853.82, + "end": 3854.44, + "probability": 0.5835 + }, + { + "start": 3855.36, + "end": 3856.7, + "probability": 0.9561 + }, + { + "start": 3857.76, + "end": 3863.74, + "probability": 0.9869 + }, + { + "start": 3863.88, + "end": 3865.2, + "probability": 0.9985 + }, + { + "start": 3866.86, + "end": 3867.58, + "probability": 0.948 + }, + { + "start": 3867.66, + "end": 3870.44, + "probability": 0.9804 + }, + { + "start": 3871.08, + "end": 3872.9, + "probability": 0.999 + }, + { + "start": 3872.96, + "end": 3873.9, + "probability": 0.9993 + }, + { + "start": 3875.5, + "end": 3879.08, + "probability": 0.9947 + }, + { + "start": 3879.08, + "end": 3885.0, + "probability": 0.9954 + }, + { + "start": 3885.56, + "end": 3886.5, + "probability": 0.9492 + }, + { + "start": 3887.68, + "end": 3888.83, + "probability": 0.9879 + }, + { + "start": 3890.06, + "end": 3890.68, + "probability": 0.8625 + }, + { + "start": 3890.84, + "end": 3893.6, + "probability": 0.9957 + }, + { + "start": 3894.06, + "end": 3894.88, + "probability": 0.8126 + }, + { + "start": 3895.38, + "end": 3896.7, + "probability": 0.9141 + }, + { + "start": 3897.24, + "end": 3899.4, + "probability": 0.9907 + }, + { + "start": 3900.26, + "end": 3900.94, + "probability": 0.9116 + }, + { + "start": 3901.0, + "end": 3901.48, + "probability": 0.8856 + }, + { + "start": 3901.76, + "end": 3903.3, + "probability": 0.6231 + }, + { + "start": 3903.42, + "end": 3906.02, + "probability": 0.9941 + }, + { + "start": 3906.44, + "end": 3910.1, + "probability": 0.9786 + }, + { + "start": 3910.52, + "end": 3912.4, + "probability": 0.9117 + }, + { + "start": 3912.76, + "end": 3914.04, + "probability": 0.7715 + }, + { + "start": 3914.9, + "end": 3916.46, + "probability": 0.777 + }, + { + "start": 3924.92, + "end": 3925.98, + "probability": 0.7049 + }, + { + "start": 3926.62, + "end": 3928.76, + "probability": 0.6666 + }, + { + "start": 3930.38, + "end": 3935.12, + "probability": 0.9882 + }, + { + "start": 3936.14, + "end": 3939.58, + "probability": 0.975 + }, + { + "start": 3940.78, + "end": 3942.34, + "probability": 0.9978 + }, + { + "start": 3942.9, + "end": 3944.1, + "probability": 0.8175 + }, + { + "start": 3944.96, + "end": 3947.72, + "probability": 0.9219 + }, + { + "start": 3948.66, + "end": 3949.46, + "probability": 0.9677 + }, + { + "start": 3950.26, + "end": 3952.9, + "probability": 0.9874 + }, + { + "start": 3953.76, + "end": 3955.94, + "probability": 0.9696 + }, + { + "start": 3957.32, + "end": 3959.58, + "probability": 0.8192 + }, + { + "start": 3960.92, + "end": 3962.45, + "probability": 0.1255 + }, + { + "start": 3963.62, + "end": 3967.1, + "probability": 0.9902 + }, + { + "start": 3967.1, + "end": 3971.34, + "probability": 0.935 + }, + { + "start": 3972.5, + "end": 3974.03, + "probability": 0.9717 + }, + { + "start": 3974.28, + "end": 3975.26, + "probability": 0.8753 + }, + { + "start": 3975.7, + "end": 3979.44, + "probability": 0.9941 + }, + { + "start": 3980.3, + "end": 3986.12, + "probability": 0.9844 + }, + { + "start": 3986.26, + "end": 3986.71, + "probability": 0.7712 + }, + { + "start": 3987.8, + "end": 3992.82, + "probability": 0.9951 + }, + { + "start": 3992.82, + "end": 3996.24, + "probability": 0.9983 + }, + { + "start": 3997.36, + "end": 3998.34, + "probability": 0.8554 + }, + { + "start": 3998.92, + "end": 4003.56, + "probability": 0.9921 + }, + { + "start": 4004.02, + "end": 4006.64, + "probability": 0.9998 + }, + { + "start": 4007.92, + "end": 4012.58, + "probability": 0.9953 + }, + { + "start": 4013.62, + "end": 4015.06, + "probability": 0.9309 + }, + { + "start": 4015.74, + "end": 4017.54, + "probability": 0.9377 + }, + { + "start": 4018.1, + "end": 4019.34, + "probability": 0.8348 + }, + { + "start": 4020.02, + "end": 4022.64, + "probability": 0.9983 + }, + { + "start": 4023.38, + "end": 4026.4, + "probability": 0.9535 + }, + { + "start": 4026.48, + "end": 4027.86, + "probability": 0.9346 + }, + { + "start": 4028.56, + "end": 4029.14, + "probability": 0.7719 + }, + { + "start": 4029.94, + "end": 4034.66, + "probability": 0.9954 + }, + { + "start": 4035.52, + "end": 4040.7, + "probability": 0.9941 + }, + { + "start": 4041.34, + "end": 4043.08, + "probability": 0.9313 + }, + { + "start": 4043.48, + "end": 4048.74, + "probability": 0.9952 + }, + { + "start": 4049.26, + "end": 4054.28, + "probability": 0.998 + }, + { + "start": 4054.82, + "end": 4058.52, + "probability": 0.9897 + }, + { + "start": 4059.94, + "end": 4062.92, + "probability": 0.8762 + }, + { + "start": 4063.48, + "end": 4064.22, + "probability": 0.4553 + }, + { + "start": 4064.86, + "end": 4067.56, + "probability": 0.9417 + }, + { + "start": 4068.16, + "end": 4068.74, + "probability": 0.9084 + }, + { + "start": 4069.12, + "end": 4071.72, + "probability": 0.5674 + }, + { + "start": 4071.88, + "end": 4073.26, + "probability": 0.9924 + }, + { + "start": 4073.86, + "end": 4075.22, + "probability": 0.9945 + }, + { + "start": 4075.62, + "end": 4077.54, + "probability": 0.8399 + }, + { + "start": 4077.88, + "end": 4078.86, + "probability": 0.9805 + }, + { + "start": 4079.58, + "end": 4080.86, + "probability": 0.7846 + }, + { + "start": 4081.52, + "end": 4083.58, + "probability": 0.8633 + }, + { + "start": 4084.32, + "end": 4087.56, + "probability": 0.9873 + }, + { + "start": 4088.32, + "end": 4092.42, + "probability": 0.9961 + }, + { + "start": 4093.1, + "end": 4095.76, + "probability": 0.9932 + }, + { + "start": 4096.4, + "end": 4097.94, + "probability": 0.8127 + }, + { + "start": 4098.86, + "end": 4100.2, + "probability": 0.9325 + }, + { + "start": 4100.98, + "end": 4103.28, + "probability": 0.8893 + }, + { + "start": 4104.0, + "end": 4107.28, + "probability": 0.9922 + }, + { + "start": 4107.28, + "end": 4110.66, + "probability": 0.9882 + }, + { + "start": 4111.28, + "end": 4112.34, + "probability": 0.9402 + }, + { + "start": 4112.9, + "end": 4115.08, + "probability": 0.9485 + }, + { + "start": 4115.94, + "end": 4117.48, + "probability": 0.897 + }, + { + "start": 4117.86, + "end": 4121.46, + "probability": 0.9757 + }, + { + "start": 4122.0, + "end": 4123.8, + "probability": 0.9857 + }, + { + "start": 4124.34, + "end": 4126.14, + "probability": 0.778 + }, + { + "start": 4126.28, + "end": 4126.72, + "probability": 0.8383 + }, + { + "start": 4127.1, + "end": 4127.98, + "probability": 0.7489 + }, + { + "start": 4128.66, + "end": 4129.58, + "probability": 0.5011 + }, + { + "start": 4129.7, + "end": 4131.4, + "probability": 0.8621 + }, + { + "start": 4139.98, + "end": 4143.38, + "probability": 0.8614 + }, + { + "start": 4144.76, + "end": 4145.08, + "probability": 0.2781 + }, + { + "start": 4145.12, + "end": 4146.82, + "probability": 0.9537 + }, + { + "start": 4147.3, + "end": 4152.06, + "probability": 0.8813 + }, + { + "start": 4152.4, + "end": 4155.28, + "probability": 0.9504 + }, + { + "start": 4155.8, + "end": 4158.92, + "probability": 0.4459 + }, + { + "start": 4159.48, + "end": 4161.08, + "probability": 0.8598 + }, + { + "start": 4161.6, + "end": 4164.02, + "probability": 0.9797 + }, + { + "start": 4164.3, + "end": 4166.68, + "probability": 0.9562 + }, + { + "start": 4167.08, + "end": 4171.98, + "probability": 0.9931 + }, + { + "start": 4172.86, + "end": 4173.92, + "probability": 0.9744 + }, + { + "start": 4174.36, + "end": 4175.54, + "probability": 0.9503 + }, + { + "start": 4176.62, + "end": 4179.52, + "probability": 0.7172 + }, + { + "start": 4179.6, + "end": 4183.4, + "probability": 0.812 + }, + { + "start": 4184.72, + "end": 4185.22, + "probability": 0.6782 + }, + { + "start": 4186.16, + "end": 4191.3, + "probability": 0.8813 + }, + { + "start": 4191.46, + "end": 4193.56, + "probability": 0.987 + }, + { + "start": 4194.88, + "end": 4196.24, + "probability": 0.4993 + }, + { + "start": 4196.28, + "end": 4198.3, + "probability": 0.7495 + }, + { + "start": 4198.4, + "end": 4202.8, + "probability": 0.9866 + }, + { + "start": 4203.22, + "end": 4207.48, + "probability": 0.9798 + }, + { + "start": 4208.02, + "end": 4208.52, + "probability": 0.8497 + }, + { + "start": 4208.98, + "end": 4213.7, + "probability": 0.9919 + }, + { + "start": 4213.96, + "end": 4214.68, + "probability": 0.6669 + }, + { + "start": 4214.76, + "end": 4217.94, + "probability": 0.9858 + }, + { + "start": 4218.42, + "end": 4219.42, + "probability": 0.8845 + }, + { + "start": 4219.54, + "end": 4221.38, + "probability": 0.9337 + }, + { + "start": 4221.5, + "end": 4222.24, + "probability": 0.9764 + }, + { + "start": 4222.58, + "end": 4225.67, + "probability": 0.7997 + }, + { + "start": 4226.2, + "end": 4227.2, + "probability": 0.4838 + }, + { + "start": 4227.64, + "end": 4231.02, + "probability": 0.9837 + }, + { + "start": 4231.68, + "end": 4233.55, + "probability": 0.8549 + }, + { + "start": 4234.34, + "end": 4234.88, + "probability": 0.3834 + }, + { + "start": 4235.06, + "end": 4236.06, + "probability": 0.9397 + }, + { + "start": 4236.1, + "end": 4238.08, + "probability": 0.9391 + }, + { + "start": 4238.9, + "end": 4240.01, + "probability": 0.9131 + }, + { + "start": 4240.8, + "end": 4242.28, + "probability": 0.9372 + }, + { + "start": 4242.36, + "end": 4243.54, + "probability": 0.9125 + }, + { + "start": 4243.58, + "end": 4244.34, + "probability": 0.8748 + }, + { + "start": 4244.68, + "end": 4251.0, + "probability": 0.9976 + }, + { + "start": 4251.48, + "end": 4253.22, + "probability": 0.5288 + }, + { + "start": 4254.22, + "end": 4254.94, + "probability": 0.8178 + }, + { + "start": 4255.34, + "end": 4260.38, + "probability": 0.8181 + }, + { + "start": 4260.86, + "end": 4262.28, + "probability": 0.3599 + }, + { + "start": 4262.4, + "end": 4263.26, + "probability": 0.981 + }, + { + "start": 4263.56, + "end": 4264.06, + "probability": 0.929 + }, + { + "start": 4264.56, + "end": 4269.44, + "probability": 0.8828 + }, + { + "start": 4270.86, + "end": 4273.08, + "probability": 0.7919 + }, + { + "start": 4275.54, + "end": 4277.74, + "probability": 0.851 + }, + { + "start": 4278.64, + "end": 4280.3, + "probability": 0.9539 + }, + { + "start": 4280.9, + "end": 4282.84, + "probability": 0.923 + }, + { + "start": 4282.92, + "end": 4284.22, + "probability": 0.5027 + }, + { + "start": 4284.28, + "end": 4288.58, + "probability": 0.939 + }, + { + "start": 4289.06, + "end": 4290.94, + "probability": 0.8848 + }, + { + "start": 4292.04, + "end": 4294.32, + "probability": 0.998 + }, + { + "start": 4294.96, + "end": 4297.49, + "probability": 0.9575 + }, + { + "start": 4299.36, + "end": 4304.7, + "probability": 0.9952 + }, + { + "start": 4306.3, + "end": 4312.24, + "probability": 0.998 + }, + { + "start": 4312.9, + "end": 4316.72, + "probability": 0.811 + }, + { + "start": 4316.76, + "end": 4317.98, + "probability": 0.3914 + }, + { + "start": 4318.34, + "end": 4319.06, + "probability": 0.8637 + }, + { + "start": 4319.38, + "end": 4320.36, + "probability": 0.9857 + }, + { + "start": 4320.88, + "end": 4326.84, + "probability": 0.9003 + }, + { + "start": 4327.03, + "end": 4331.82, + "probability": 0.9954 + }, + { + "start": 4332.42, + "end": 4337.96, + "probability": 0.9761 + }, + { + "start": 4338.3, + "end": 4342.56, + "probability": 0.9932 + }, + { + "start": 4343.08, + "end": 4345.02, + "probability": 0.8729 + }, + { + "start": 4345.08, + "end": 4345.72, + "probability": 0.6652 + }, + { + "start": 4346.06, + "end": 4346.72, + "probability": 0.6614 + }, + { + "start": 4347.04, + "end": 4352.48, + "probability": 0.9786 + }, + { + "start": 4352.68, + "end": 4353.24, + "probability": 0.769 + }, + { + "start": 4353.68, + "end": 4355.78, + "probability": 0.9639 + }, + { + "start": 4373.04, + "end": 4373.14, + "probability": 0.0234 + }, + { + "start": 4373.14, + "end": 4373.14, + "probability": 0.1425 + }, + { + "start": 4373.14, + "end": 4373.96, + "probability": 0.5766 + }, + { + "start": 4373.96, + "end": 4374.06, + "probability": 0.2694 + }, + { + "start": 4374.12, + "end": 4376.6, + "probability": 0.8141 + }, + { + "start": 4377.54, + "end": 4378.32, + "probability": 0.9597 + }, + { + "start": 4380.41, + "end": 4383.32, + "probability": 0.7723 + }, + { + "start": 4383.82, + "end": 4384.36, + "probability": 0.4417 + }, + { + "start": 4384.58, + "end": 4387.02, + "probability": 0.5022 + }, + { + "start": 4387.02, + "end": 4387.3, + "probability": 0.8193 + }, + { + "start": 4388.98, + "end": 4391.76, + "probability": 0.8374 + }, + { + "start": 4393.66, + "end": 4395.5, + "probability": 0.7309 + }, + { + "start": 4396.6, + "end": 4397.38, + "probability": 0.9494 + }, + { + "start": 4398.92, + "end": 4399.18, + "probability": 0.9958 + }, + { + "start": 4400.46, + "end": 4401.34, + "probability": 0.5812 + }, + { + "start": 4403.58, + "end": 4404.48, + "probability": 0.8051 + }, + { + "start": 4405.82, + "end": 4407.7, + "probability": 0.8178 + }, + { + "start": 4407.88, + "end": 4408.74, + "probability": 0.6728 + }, + { + "start": 4409.42, + "end": 4410.44, + "probability": 0.5971 + }, + { + "start": 4411.34, + "end": 4412.24, + "probability": 0.9176 + }, + { + "start": 4412.3, + "end": 4413.34, + "probability": 0.9677 + }, + { + "start": 4413.4, + "end": 4414.56, + "probability": 0.9865 + }, + { + "start": 4415.04, + "end": 4415.7, + "probability": 0.8693 + }, + { + "start": 4417.68, + "end": 4419.28, + "probability": 0.8607 + }, + { + "start": 4420.32, + "end": 4422.72, + "probability": 0.9841 + }, + { + "start": 4423.44, + "end": 4424.32, + "probability": 0.8963 + }, + { + "start": 4425.32, + "end": 4426.76, + "probability": 0.9685 + }, + { + "start": 4428.36, + "end": 4430.54, + "probability": 0.9893 + }, + { + "start": 4431.34, + "end": 4435.34, + "probability": 0.9847 + }, + { + "start": 4436.38, + "end": 4437.6, + "probability": 0.5897 + }, + { + "start": 4438.36, + "end": 4440.92, + "probability": 0.6799 + }, + { + "start": 4441.12, + "end": 4444.3, + "probability": 0.9467 + }, + { + "start": 4444.7, + "end": 4448.42, + "probability": 0.8398 + }, + { + "start": 4449.5, + "end": 4450.5, + "probability": 0.9829 + }, + { + "start": 4451.08, + "end": 4452.64, + "probability": 0.9886 + }, + { + "start": 4453.96, + "end": 4457.06, + "probability": 0.9921 + }, + { + "start": 4457.14, + "end": 4457.9, + "probability": 0.9917 + }, + { + "start": 4458.66, + "end": 4459.68, + "probability": 0.9857 + }, + { + "start": 4460.46, + "end": 4461.38, + "probability": 0.9136 + }, + { + "start": 4462.92, + "end": 4463.48, + "probability": 0.9902 + }, + { + "start": 4464.46, + "end": 4465.12, + "probability": 0.9293 + }, + { + "start": 4466.32, + "end": 4466.9, + "probability": 0.0265 + }, + { + "start": 4467.22, + "end": 4467.88, + "probability": 0.0671 + }, + { + "start": 4467.88, + "end": 4468.88, + "probability": 0.6094 + }, + { + "start": 4469.14, + "end": 4469.44, + "probability": 0.723 + }, + { + "start": 4469.52, + "end": 4469.58, + "probability": 0.7317 + }, + { + "start": 4470.02, + "end": 4470.94, + "probability": 0.9741 + }, + { + "start": 4471.24, + "end": 4471.74, + "probability": 0.9229 + }, + { + "start": 4472.72, + "end": 4474.08, + "probability": 0.9777 + }, + { + "start": 4474.48, + "end": 4476.14, + "probability": 0.9368 + }, + { + "start": 4476.64, + "end": 4477.12, + "probability": 0.8975 + }, + { + "start": 4477.82, + "end": 4479.54, + "probability": 0.5103 + }, + { + "start": 4479.86, + "end": 4480.86, + "probability": 0.5171 + }, + { + "start": 4480.86, + "end": 4483.74, + "probability": 0.9974 + }, + { + "start": 4484.04, + "end": 4485.28, + "probability": 0.9888 + }, + { + "start": 4485.68, + "end": 4486.64, + "probability": 0.7107 + }, + { + "start": 4487.2, + "end": 4490.54, + "probability": 0.9919 + }, + { + "start": 4491.58, + "end": 4492.28, + "probability": 0.0169 + }, + { + "start": 4492.87, + "end": 4493.22, + "probability": 0.0351 + }, + { + "start": 4494.12, + "end": 4494.72, + "probability": 0.7547 + }, + { + "start": 4495.28, + "end": 4496.52, + "probability": 0.7729 + }, + { + "start": 4498.2, + "end": 4499.72, + "probability": 0.8496 + }, + { + "start": 4499.82, + "end": 4503.6, + "probability": 0.9917 + }, + { + "start": 4505.14, + "end": 4505.34, + "probability": 0.1271 + }, + { + "start": 4505.34, + "end": 4505.34, + "probability": 0.2618 + }, + { + "start": 4505.34, + "end": 4511.36, + "probability": 0.9751 + }, + { + "start": 4511.84, + "end": 4514.48, + "probability": 0.9935 + }, + { + "start": 4516.47, + "end": 4517.54, + "probability": 0.0256 + }, + { + "start": 4519.9, + "end": 4519.9, + "probability": 0.0265 + }, + { + "start": 4519.9, + "end": 4519.9, + "probability": 0.0306 + }, + { + "start": 4519.9, + "end": 4523.28, + "probability": 0.9822 + }, + { + "start": 4523.76, + "end": 4524.14, + "probability": 0.5933 + }, + { + "start": 4524.26, + "end": 4525.94, + "probability": 0.9858 + }, + { + "start": 4526.04, + "end": 4526.78, + "probability": 0.6247 + }, + { + "start": 4527.42, + "end": 4528.18, + "probability": 0.5966 + }, + { + "start": 4528.5, + "end": 4529.32, + "probability": 0.8885 + }, + { + "start": 4530.42, + "end": 4532.54, + "probability": 0.519 + }, + { + "start": 4533.14, + "end": 4533.9, + "probability": 0.5479 + }, + { + "start": 4535.1, + "end": 4538.28, + "probability": 0.8338 + }, + { + "start": 4538.42, + "end": 4539.88, + "probability": 0.8379 + }, + { + "start": 4540.16, + "end": 4541.54, + "probability": 0.7472 + }, + { + "start": 4542.48, + "end": 4543.24, + "probability": 0.2741 + }, + { + "start": 4543.8, + "end": 4544.4, + "probability": 0.9341 + }, + { + "start": 4545.44, + "end": 4546.1, + "probability": 0.1991 + }, + { + "start": 4546.72, + "end": 4547.0, + "probability": 0.1891 + }, + { + "start": 4548.46, + "end": 4550.24, + "probability": 0.8948 + }, + { + "start": 4551.18, + "end": 4552.58, + "probability": 0.7498 + }, + { + "start": 4553.14, + "end": 4553.74, + "probability": 0.6984 + }, + { + "start": 4554.24, + "end": 4555.6, + "probability": 0.0698 + }, + { + "start": 4556.48, + "end": 4557.22, + "probability": 0.7284 + }, + { + "start": 4557.26, + "end": 4557.8, + "probability": 0.6011 + }, + { + "start": 4558.14, + "end": 4558.38, + "probability": 0.0857 + }, + { + "start": 4558.38, + "end": 4560.12, + "probability": 0.6493 + }, + { + "start": 4560.7, + "end": 4564.6, + "probability": 0.2777 + }, + { + "start": 4565.78, + "end": 4565.88, + "probability": 0.0374 + }, + { + "start": 4565.88, + "end": 4565.88, + "probability": 0.1995 + }, + { + "start": 4565.88, + "end": 4570.8, + "probability": 0.9512 + }, + { + "start": 4570.8, + "end": 4571.37, + "probability": 0.7805 + }, + { + "start": 4574.68, + "end": 4577.08, + "probability": 0.3062 + }, + { + "start": 4577.08, + "end": 4579.54, + "probability": 0.7001 + }, + { + "start": 4582.36, + "end": 4582.6, + "probability": 0.7666 + }, + { + "start": 4583.42, + "end": 4586.88, + "probability": 0.9959 + }, + { + "start": 4589.02, + "end": 4589.98, + "probability": 0.8386 + }, + { + "start": 4591.7, + "end": 4598.42, + "probability": 0.9986 + }, + { + "start": 4598.42, + "end": 4603.28, + "probability": 0.9987 + }, + { + "start": 4603.4, + "end": 4604.12, + "probability": 0.2378 + }, + { + "start": 4604.52, + "end": 4604.68, + "probability": 0.0832 + }, + { + "start": 4606.26, + "end": 4606.32, + "probability": 0.1772 + }, + { + "start": 4606.32, + "end": 4607.2, + "probability": 0.4181 + }, + { + "start": 4608.32, + "end": 4608.34, + "probability": 0.0286 + }, + { + "start": 4608.34, + "end": 4616.94, + "probability": 0.9644 + }, + { + "start": 4618.0, + "end": 4620.18, + "probability": 0.9951 + }, + { + "start": 4621.06, + "end": 4624.52, + "probability": 0.987 + }, + { + "start": 4625.26, + "end": 4628.12, + "probability": 0.9479 + }, + { + "start": 4628.9, + "end": 4630.12, + "probability": 0.6334 + }, + { + "start": 4630.28, + "end": 4633.58, + "probability": 0.7405 + }, + { + "start": 4634.34, + "end": 4635.5, + "probability": 0.7058 + }, + { + "start": 4636.8, + "end": 4638.28, + "probability": 0.8049 + }, + { + "start": 4638.8, + "end": 4644.98, + "probability": 0.9864 + }, + { + "start": 4645.82, + "end": 4650.52, + "probability": 0.8003 + }, + { + "start": 4650.94, + "end": 4651.38, + "probability": 0.3154 + }, + { + "start": 4651.44, + "end": 4651.74, + "probability": 0.1347 + }, + { + "start": 4651.74, + "end": 4652.14, + "probability": 0.6197 + }, + { + "start": 4652.2, + "end": 4653.78, + "probability": 0.9087 + }, + { + "start": 4653.78, + "end": 4655.68, + "probability": 0.6695 + }, + { + "start": 4655.96, + "end": 4656.34, + "probability": 0.527 + }, + { + "start": 4656.36, + "end": 4659.12, + "probability": 0.9837 + }, + { + "start": 4659.46, + "end": 4664.14, + "probability": 0.9958 + }, + { + "start": 4665.2, + "end": 4667.92, + "probability": 0.9948 + }, + { + "start": 4668.82, + "end": 4673.82, + "probability": 0.9958 + }, + { + "start": 4674.24, + "end": 4674.48, + "probability": 0.5803 + }, + { + "start": 4674.98, + "end": 4676.82, + "probability": 0.6379 + }, + { + "start": 4677.24, + "end": 4678.0, + "probability": 0.2573 + }, + { + "start": 4680.48, + "end": 4680.74, + "probability": 0.0142 + }, + { + "start": 4680.74, + "end": 4680.74, + "probability": 0.1894 + }, + { + "start": 4680.74, + "end": 4680.74, + "probability": 0.0975 + }, + { + "start": 4680.74, + "end": 4680.74, + "probability": 0.154 + }, + { + "start": 4680.74, + "end": 4681.84, + "probability": 0.3559 + }, + { + "start": 4682.0, + "end": 4687.64, + "probability": 0.829 + }, + { + "start": 4688.12, + "end": 4688.64, + "probability": 0.7477 + }, + { + "start": 4689.7, + "end": 4691.72, + "probability": 0.9536 + }, + { + "start": 4714.16, + "end": 4714.52, + "probability": 0.3166 + }, + { + "start": 4714.52, + "end": 4716.36, + "probability": 0.6609 + }, + { + "start": 4717.78, + "end": 4719.92, + "probability": 0.9943 + }, + { + "start": 4719.92, + "end": 4722.72, + "probability": 0.9459 + }, + { + "start": 4724.0, + "end": 4726.04, + "probability": 0.9702 + }, + { + "start": 4727.34, + "end": 4731.7, + "probability": 0.9902 + }, + { + "start": 4731.7, + "end": 4737.26, + "probability": 0.9746 + }, + { + "start": 4738.5, + "end": 4741.42, + "probability": 0.6704 + }, + { + "start": 4743.74, + "end": 4745.9, + "probability": 0.0489 + }, + { + "start": 4746.14, + "end": 4746.14, + "probability": 0.0039 + }, + { + "start": 4747.36, + "end": 4747.88, + "probability": 0.0971 + }, + { + "start": 4747.88, + "end": 4748.06, + "probability": 0.0649 + }, + { + "start": 4749.16, + "end": 4754.76, + "probability": 0.8619 + }, + { + "start": 4754.76, + "end": 4755.46, + "probability": 0.3628 + }, + { + "start": 4756.34, + "end": 4758.98, + "probability": 0.9141 + }, + { + "start": 4758.98, + "end": 4762.32, + "probability": 0.9438 + }, + { + "start": 4763.4, + "end": 4764.68, + "probability": 0.8829 + }, + { + "start": 4765.48, + "end": 4766.02, + "probability": 0.7812 + }, + { + "start": 4766.08, + "end": 4766.42, + "probability": 0.461 + }, + { + "start": 4766.44, + "end": 4767.44, + "probability": 0.8407 + }, + { + "start": 4768.04, + "end": 4769.08, + "probability": 0.753 + }, + { + "start": 4769.4, + "end": 4770.36, + "probability": 0.8118 + }, + { + "start": 4770.52, + "end": 4773.32, + "probability": 0.9543 + }, + { + "start": 4773.4, + "end": 4775.74, + "probability": 0.9782 + }, + { + "start": 4776.9, + "end": 4780.38, + "probability": 0.9429 + }, + { + "start": 4781.74, + "end": 4784.08, + "probability": 0.9746 + }, + { + "start": 4785.1, + "end": 4785.8, + "probability": 0.669 + }, + { + "start": 4787.38, + "end": 4789.18, + "probability": 0.8332 + }, + { + "start": 4790.64, + "end": 4794.54, + "probability": 0.858 + }, + { + "start": 4795.94, + "end": 4795.94, + "probability": 0.0722 + }, + { + "start": 4795.96, + "end": 4801.14, + "probability": 0.9923 + }, + { + "start": 4801.14, + "end": 4805.84, + "probability": 0.9906 + }, + { + "start": 4807.0, + "end": 4807.4, + "probability": 0.7374 + }, + { + "start": 4808.2, + "end": 4809.52, + "probability": 0.7506 + }, + { + "start": 4810.66, + "end": 4813.54, + "probability": 0.9917 + }, + { + "start": 4814.58, + "end": 4815.94, + "probability": 0.998 + }, + { + "start": 4816.94, + "end": 4818.68, + "probability": 0.9585 + }, + { + "start": 4819.38, + "end": 4820.5, + "probability": 0.7001 + }, + { + "start": 4821.68, + "end": 4822.94, + "probability": 0.9969 + }, + { + "start": 4823.52, + "end": 4825.92, + "probability": 0.99 + }, + { + "start": 4826.7, + "end": 4827.82, + "probability": 0.9976 + }, + { + "start": 4828.7, + "end": 4831.06, + "probability": 0.9855 + }, + { + "start": 4831.78, + "end": 4834.2, + "probability": 0.9792 + }, + { + "start": 4835.56, + "end": 4837.64, + "probability": 0.9255 + }, + { + "start": 4838.44, + "end": 4839.56, + "probability": 0.9091 + }, + { + "start": 4840.18, + "end": 4844.32, + "probability": 0.9678 + }, + { + "start": 4845.04, + "end": 4847.44, + "probability": 0.8777 + }, + { + "start": 4848.8, + "end": 4849.48, + "probability": 0.8116 + }, + { + "start": 4850.1, + "end": 4851.94, + "probability": 0.5908 + }, + { + "start": 4853.4, + "end": 4853.78, + "probability": 0.1097 + }, + { + "start": 4853.84, + "end": 4859.76, + "probability": 0.6815 + }, + { + "start": 4860.32, + "end": 4861.62, + "probability": 0.6665 + }, + { + "start": 4862.74, + "end": 4867.04, + "probability": 0.6082 + }, + { + "start": 4867.78, + "end": 4868.82, + "probability": 0.3844 + }, + { + "start": 4868.92, + "end": 4872.84, + "probability": 0.8643 + }, + { + "start": 4873.06, + "end": 4876.84, + "probability": 0.6539 + }, + { + "start": 4877.12, + "end": 4880.96, + "probability": 0.9702 + }, + { + "start": 4880.96, + "end": 4884.2, + "probability": 0.9924 + }, + { + "start": 4884.84, + "end": 4890.18, + "probability": 0.9871 + }, + { + "start": 4891.1, + "end": 4895.84, + "probability": 0.9438 + }, + { + "start": 4896.0, + "end": 4901.82, + "probability": 0.7047 + }, + { + "start": 4902.88, + "end": 4902.98, + "probability": 0.5652 + }, + { + "start": 4903.1, + "end": 4903.62, + "probability": 0.7837 + }, + { + "start": 4905.7, + "end": 4906.18, + "probability": 0.087 + }, + { + "start": 4907.42, + "end": 4907.58, + "probability": 0.2659 + }, + { + "start": 4907.58, + "end": 4909.32, + "probability": 0.4028 + }, + { + "start": 4912.1, + "end": 4912.58, + "probability": 0.129 + }, + { + "start": 4912.58, + "end": 4912.58, + "probability": 0.0273 + }, + { + "start": 4912.58, + "end": 4914.2, + "probability": 0.3697 + }, + { + "start": 4914.7, + "end": 4914.7, + "probability": 0.2154 + }, + { + "start": 4914.7, + "end": 4918.72, + "probability": 0.9455 + }, + { + "start": 4918.88, + "end": 4920.38, + "probability": 0.726 + }, + { + "start": 4920.72, + "end": 4921.92, + "probability": 0.644 + }, + { + "start": 4922.3, + "end": 4924.34, + "probability": 0.7432 + }, + { + "start": 4924.52, + "end": 4925.14, + "probability": 0.3282 + }, + { + "start": 4925.24, + "end": 4926.0, + "probability": 0.0452 + }, + { + "start": 4926.0, + "end": 4929.82, + "probability": 0.6201 + }, + { + "start": 4930.06, + "end": 4931.98, + "probability": 0.3992 + }, + { + "start": 4932.02, + "end": 4933.68, + "probability": 0.0462 + }, + { + "start": 4934.66, + "end": 4936.08, + "probability": 0.0583 + }, + { + "start": 4936.4, + "end": 4937.46, + "probability": 0.6106 + }, + { + "start": 4939.52, + "end": 4940.82, + "probability": 0.0953 + }, + { + "start": 4940.9, + "end": 4940.9, + "probability": 0.2453 + }, + { + "start": 4940.9, + "end": 4940.9, + "probability": 0.0274 + }, + { + "start": 4940.98, + "end": 4942.54, + "probability": 0.7344 + }, + { + "start": 4943.16, + "end": 4943.16, + "probability": 0.0789 + }, + { + "start": 4943.16, + "end": 4945.06, + "probability": 0.8535 + }, + { + "start": 4945.08, + "end": 4945.08, + "probability": 0.034 + }, + { + "start": 4945.1, + "end": 4946.16, + "probability": 0.1812 + }, + { + "start": 4946.42, + "end": 4948.58, + "probability": 0.6992 + }, + { + "start": 4948.68, + "end": 4952.18, + "probability": 0.8262 + }, + { + "start": 4952.66, + "end": 4956.56, + "probability": 0.8313 + }, + { + "start": 4956.7, + "end": 4957.62, + "probability": 0.8436 + }, + { + "start": 4958.28, + "end": 4959.3, + "probability": 0.4223 + }, + { + "start": 4959.94, + "end": 4960.88, + "probability": 0.3711 + }, + { + "start": 4961.64, + "end": 4964.12, + "probability": 0.6532 + }, + { + "start": 4964.4, + "end": 4964.9, + "probability": 0.2521 + }, + { + "start": 4965.56, + "end": 4968.18, + "probability": 0.408 + }, + { + "start": 4969.08, + "end": 4970.3, + "probability": 0.7966 + }, + { + "start": 4970.38, + "end": 4971.02, + "probability": 0.1025 + }, + { + "start": 4971.06, + "end": 4973.32, + "probability": 0.458 + }, + { + "start": 4973.72, + "end": 4975.4, + "probability": 0.6178 + }, + { + "start": 4975.61, + "end": 4978.74, + "probability": 0.1129 + }, + { + "start": 4978.74, + "end": 4979.48, + "probability": 0.1959 + }, + { + "start": 4979.48, + "end": 4979.5, + "probability": 0.1791 + }, + { + "start": 4979.5, + "end": 4979.5, + "probability": 0.0125 + }, + { + "start": 4979.5, + "end": 4981.72, + "probability": 0.3811 + }, + { + "start": 4981.72, + "end": 4982.54, + "probability": 0.4489 + }, + { + "start": 4982.54, + "end": 4983.96, + "probability": 0.5906 + }, + { + "start": 4984.02, + "end": 4984.3, + "probability": 0.7905 + }, + { + "start": 4984.32, + "end": 4985.56, + "probability": 0.7719 + }, + { + "start": 4985.92, + "end": 4989.36, + "probability": 0.0942 + }, + { + "start": 4989.36, + "end": 4992.22, + "probability": 0.0459 + }, + { + "start": 4992.42, + "end": 4993.02, + "probability": 0.2019 + }, + { + "start": 4993.02, + "end": 4994.36, + "probability": 0.1911 + }, + { + "start": 4994.36, + "end": 4996.56, + "probability": 0.083 + }, + { + "start": 4996.9, + "end": 4996.9, + "probability": 0.0273 + }, + { + "start": 4996.9, + "end": 4999.24, + "probability": 0.2142 + }, + { + "start": 4999.54, + "end": 5001.44, + "probability": 0.1618 + }, + { + "start": 5002.61, + "end": 5006.34, + "probability": 0.3556 + }, + { + "start": 5007.18, + "end": 5010.68, + "probability": 0.1335 + }, + { + "start": 5010.68, + "end": 5011.0, + "probability": 0.2331 + }, + { + "start": 5011.06, + "end": 5012.68, + "probability": 0.1275 + }, + { + "start": 5013.32, + "end": 5017.16, + "probability": 0.1196 + }, + { + "start": 5017.16, + "end": 5019.24, + "probability": 0.1659 + }, + { + "start": 5020.1, + "end": 5020.98, + "probability": 0.1683 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.0, + "end": 5021.0, + "probability": 0.0 + }, + { + "start": 5021.36, + "end": 5022.9, + "probability": 0.1984 + }, + { + "start": 5022.9, + "end": 5024.31, + "probability": 0.9028 + }, + { + "start": 5026.2, + "end": 5027.12, + "probability": 0.8587 + }, + { + "start": 5027.12, + "end": 5027.82, + "probability": 0.0748 + }, + { + "start": 5027.9, + "end": 5028.92, + "probability": 0.019 + }, + { + "start": 5029.28, + "end": 5030.1, + "probability": 0.8389 + }, + { + "start": 5030.3, + "end": 5034.32, + "probability": 0.8527 + }, + { + "start": 5034.32, + "end": 5035.04, + "probability": 0.4273 + }, + { + "start": 5035.24, + "end": 5036.39, + "probability": 0.8931 + }, + { + "start": 5036.72, + "end": 5038.54, + "probability": 0.9485 + }, + { + "start": 5038.54, + "end": 5040.08, + "probability": 0.9751 + }, + { + "start": 5040.84, + "end": 5041.12, + "probability": 0.4754 + }, + { + "start": 5041.22, + "end": 5042.56, + "probability": 0.9761 + }, + { + "start": 5042.66, + "end": 5043.18, + "probability": 0.5894 + }, + { + "start": 5043.78, + "end": 5045.82, + "probability": 0.8123 + }, + { + "start": 5045.92, + "end": 5046.76, + "probability": 0.6123 + }, + { + "start": 5046.76, + "end": 5050.18, + "probability": 0.981 + }, + { + "start": 5050.22, + "end": 5050.66, + "probability": 0.3922 + }, + { + "start": 5051.08, + "end": 5051.14, + "probability": 0.2738 + }, + { + "start": 5051.14, + "end": 5051.2, + "probability": 0.3464 + }, + { + "start": 5051.2, + "end": 5051.6, + "probability": 0.7577 + }, + { + "start": 5051.76, + "end": 5053.02, + "probability": 0.5581 + }, + { + "start": 5054.26, + "end": 5054.82, + "probability": 0.2406 + }, + { + "start": 5054.82, + "end": 5054.82, + "probability": 0.1075 + }, + { + "start": 5054.82, + "end": 5055.6, + "probability": 0.349 + }, + { + "start": 5057.1, + "end": 5060.0, + "probability": 0.8135 + }, + { + "start": 5060.1, + "end": 5061.18, + "probability": 0.9646 + }, + { + "start": 5063.42, + "end": 5065.9, + "probability": 0.9974 + }, + { + "start": 5067.28, + "end": 5070.14, + "probability": 0.9423 + }, + { + "start": 5071.22, + "end": 5072.24, + "probability": 0.8649 + }, + { + "start": 5073.58, + "end": 5075.4, + "probability": 0.9912 + }, + { + "start": 5075.54, + "end": 5077.34, + "probability": 0.7186 + }, + { + "start": 5078.6, + "end": 5081.52, + "probability": 0.8617 + }, + { + "start": 5082.38, + "end": 5082.38, + "probability": 0.0433 + }, + { + "start": 5082.38, + "end": 5085.96, + "probability": 0.6915 + }, + { + "start": 5086.64, + "end": 5089.76, + "probability": 0.9626 + }, + { + "start": 5091.06, + "end": 5091.88, + "probability": 0.8774 + }, + { + "start": 5092.64, + "end": 5095.78, + "probability": 0.9177 + }, + { + "start": 5096.7, + "end": 5097.24, + "probability": 0.8749 + }, + { + "start": 5098.52, + "end": 5101.12, + "probability": 0.8913 + }, + { + "start": 5102.2, + "end": 5105.1, + "probability": 0.9963 + }, + { + "start": 5106.22, + "end": 5107.08, + "probability": 0.9401 + }, + { + "start": 5107.88, + "end": 5111.02, + "probability": 0.9868 + }, + { + "start": 5112.34, + "end": 5114.14, + "probability": 0.774 + }, + { + "start": 5114.94, + "end": 5116.16, + "probability": 0.9966 + }, + { + "start": 5116.92, + "end": 5117.66, + "probability": 0.758 + }, + { + "start": 5118.4, + "end": 5120.74, + "probability": 0.7627 + }, + { + "start": 5121.68, + "end": 5124.88, + "probability": 0.9933 + }, + { + "start": 5126.34, + "end": 5127.56, + "probability": 0.9646 + }, + { + "start": 5128.5, + "end": 5132.3, + "probability": 0.9894 + }, + { + "start": 5133.2, + "end": 5134.06, + "probability": 0.9922 + }, + { + "start": 5134.68, + "end": 5136.04, + "probability": 0.9758 + }, + { + "start": 5137.02, + "end": 5139.02, + "probability": 0.8171 + }, + { + "start": 5139.72, + "end": 5143.76, + "probability": 0.9979 + }, + { + "start": 5144.36, + "end": 5147.54, + "probability": 0.9207 + }, + { + "start": 5148.28, + "end": 5150.12, + "probability": 0.8218 + }, + { + "start": 5150.74, + "end": 5151.92, + "probability": 0.9019 + }, + { + "start": 5152.48, + "end": 5157.5, + "probability": 0.9893 + }, + { + "start": 5159.06, + "end": 5160.88, + "probability": 0.9358 + }, + { + "start": 5162.06, + "end": 5164.48, + "probability": 0.9961 + }, + { + "start": 5164.48, + "end": 5167.08, + "probability": 0.9923 + }, + { + "start": 5167.78, + "end": 5169.68, + "probability": 0.9395 + }, + { + "start": 5170.32, + "end": 5171.62, + "probability": 0.7837 + }, + { + "start": 5172.22, + "end": 5174.08, + "probability": 0.9272 + }, + { + "start": 5174.22, + "end": 5175.38, + "probability": 0.8726 + }, + { + "start": 5176.06, + "end": 5178.58, + "probability": 0.8854 + }, + { + "start": 5179.5, + "end": 5180.94, + "probability": 0.6748 + }, + { + "start": 5181.86, + "end": 5185.25, + "probability": 0.9727 + }, + { + "start": 5186.92, + "end": 5187.3, + "probability": 0.3582 + }, + { + "start": 5187.66, + "end": 5187.72, + "probability": 0.1336 + }, + { + "start": 5187.72, + "end": 5189.78, + "probability": 0.9845 + }, + { + "start": 5190.5, + "end": 5192.2, + "probability": 0.9852 + }, + { + "start": 5192.2, + "end": 5194.28, + "probability": 0.989 + }, + { + "start": 5195.22, + "end": 5196.5, + "probability": 0.985 + }, + { + "start": 5197.14, + "end": 5198.33, + "probability": 0.9824 + }, + { + "start": 5198.4, + "end": 5200.94, + "probability": 0.9692 + }, + { + "start": 5201.72, + "end": 5204.28, + "probability": 0.9202 + }, + { + "start": 5204.72, + "end": 5208.8, + "probability": 0.9523 + }, + { + "start": 5209.5, + "end": 5212.86, + "probability": 0.8865 + }, + { + "start": 5212.86, + "end": 5216.48, + "probability": 0.8028 + }, + { + "start": 5217.0, + "end": 5220.4, + "probability": 0.9741 + }, + { + "start": 5220.92, + "end": 5222.04, + "probability": 0.7848 + }, + { + "start": 5222.48, + "end": 5226.72, + "probability": 0.9799 + }, + { + "start": 5227.62, + "end": 5228.54, + "probability": 0.8446 + }, + { + "start": 5229.16, + "end": 5231.88, + "probability": 0.9622 + }, + { + "start": 5231.88, + "end": 5235.04, + "probability": 0.9995 + }, + { + "start": 5235.16, + "end": 5238.04, + "probability": 0.984 + }, + { + "start": 5238.64, + "end": 5240.31, + "probability": 0.9966 + }, + { + "start": 5240.38, + "end": 5242.88, + "probability": 0.9799 + }, + { + "start": 5243.0, + "end": 5243.62, + "probability": 0.843 + }, + { + "start": 5243.7, + "end": 5243.94, + "probability": 0.0361 + }, + { + "start": 5243.94, + "end": 5244.44, + "probability": 0.4822 + }, + { + "start": 5245.14, + "end": 5247.08, + "probability": 0.7928 + }, + { + "start": 5247.54, + "end": 5250.72, + "probability": 0.7914 + }, + { + "start": 5251.28, + "end": 5253.2, + "probability": 0.6645 + }, + { + "start": 5253.76, + "end": 5256.42, + "probability": 0.9355 + }, + { + "start": 5256.5, + "end": 5256.86, + "probability": 0.3794 + }, + { + "start": 5256.88, + "end": 5257.42, + "probability": 0.8418 + }, + { + "start": 5257.98, + "end": 5259.92, + "probability": 0.9702 + }, + { + "start": 5260.44, + "end": 5261.72, + "probability": 0.8518 + }, + { + "start": 5261.82, + "end": 5265.04, + "probability": 0.9932 + }, + { + "start": 5265.04, + "end": 5265.3, + "probability": 0.4883 + }, + { + "start": 5265.34, + "end": 5265.8, + "probability": 0.4455 + }, + { + "start": 5265.84, + "end": 5266.24, + "probability": 0.7115 + }, + { + "start": 5266.74, + "end": 5271.32, + "probability": 0.946 + }, + { + "start": 5271.7, + "end": 5273.68, + "probability": 0.9291 + }, + { + "start": 5274.06, + "end": 5276.38, + "probability": 0.9826 + }, + { + "start": 5276.96, + "end": 5280.86, + "probability": 0.992 + }, + { + "start": 5281.28, + "end": 5281.78, + "probability": 0.6501 + }, + { + "start": 5281.92, + "end": 5282.64, + "probability": 0.5192 + }, + { + "start": 5283.14, + "end": 5286.68, + "probability": 0.9583 + }, + { + "start": 5287.1, + "end": 5287.44, + "probability": 0.5121 + }, + { + "start": 5287.78, + "end": 5288.26, + "probability": 0.8951 + }, + { + "start": 5288.99, + "end": 5289.38, + "probability": 0.0993 + }, + { + "start": 5289.38, + "end": 5294.44, + "probability": 0.9261 + }, + { + "start": 5294.78, + "end": 5294.78, + "probability": 0.3562 + }, + { + "start": 5294.78, + "end": 5298.32, + "probability": 0.9691 + }, + { + "start": 5298.9, + "end": 5301.35, + "probability": 0.9207 + }, + { + "start": 5301.58, + "end": 5302.82, + "probability": 0.6175 + }, + { + "start": 5302.84, + "end": 5302.84, + "probability": 0.5522 + }, + { + "start": 5302.84, + "end": 5303.52, + "probability": 0.8737 + }, + { + "start": 5304.4, + "end": 5305.82, + "probability": 0.8238 + }, + { + "start": 5307.04, + "end": 5310.2, + "probability": 0.5864 + }, + { + "start": 5311.04, + "end": 5313.04, + "probability": 0.92 + }, + { + "start": 5334.44, + "end": 5334.84, + "probability": 0.4788 + }, + { + "start": 5334.94, + "end": 5335.84, + "probability": 0.8799 + }, + { + "start": 5338.82, + "end": 5339.78, + "probability": 0.7356 + }, + { + "start": 5340.14, + "end": 5340.86, + "probability": 0.9014 + }, + { + "start": 5340.9, + "end": 5341.54, + "probability": 0.7677 + }, + { + "start": 5341.94, + "end": 5342.68, + "probability": 0.9503 + }, + { + "start": 5342.82, + "end": 5343.52, + "probability": 0.9646 + }, + { + "start": 5344.34, + "end": 5345.16, + "probability": 0.9593 + }, + { + "start": 5345.84, + "end": 5347.11, + "probability": 0.9731 + }, + { + "start": 5347.96, + "end": 5349.62, + "probability": 0.99 + }, + { + "start": 5351.06, + "end": 5351.06, + "probability": 0.1668 + }, + { + "start": 5351.06, + "end": 5351.96, + "probability": 0.9199 + }, + { + "start": 5352.74, + "end": 5354.6, + "probability": 0.876 + }, + { + "start": 5355.3, + "end": 5356.6, + "probability": 0.9976 + }, + { + "start": 5356.92, + "end": 5359.12, + "probability": 0.8497 + }, + { + "start": 5360.42, + "end": 5362.44, + "probability": 0.9321 + }, + { + "start": 5363.46, + "end": 5364.3, + "probability": 0.829 + }, + { + "start": 5365.92, + "end": 5368.96, + "probability": 0.971 + }, + { + "start": 5369.64, + "end": 5372.5, + "probability": 0.8997 + }, + { + "start": 5373.34, + "end": 5374.66, + "probability": 0.8293 + }, + { + "start": 5375.14, + "end": 5377.04, + "probability": 0.9595 + }, + { + "start": 5379.38, + "end": 5383.16, + "probability": 0.9612 + }, + { + "start": 5383.68, + "end": 5385.92, + "probability": 0.975 + }, + { + "start": 5386.72, + "end": 5393.84, + "probability": 0.9941 + }, + { + "start": 5394.78, + "end": 5401.02, + "probability": 0.9922 + }, + { + "start": 5402.16, + "end": 5402.88, + "probability": 0.8685 + }, + { + "start": 5403.02, + "end": 5403.68, + "probability": 0.8599 + }, + { + "start": 5403.82, + "end": 5405.49, + "probability": 0.9916 + }, + { + "start": 5406.26, + "end": 5408.78, + "probability": 0.9885 + }, + { + "start": 5409.58, + "end": 5410.18, + "probability": 0.828 + }, + { + "start": 5410.96, + "end": 5412.34, + "probability": 0.9908 + }, + { + "start": 5413.04, + "end": 5414.18, + "probability": 0.9303 + }, + { + "start": 5414.76, + "end": 5418.72, + "probability": 0.991 + }, + { + "start": 5419.52, + "end": 5422.36, + "probability": 0.9985 + }, + { + "start": 5423.66, + "end": 5426.3, + "probability": 0.8809 + }, + { + "start": 5426.3, + "end": 5427.88, + "probability": 0.8487 + }, + { + "start": 5429.04, + "end": 5430.12, + "probability": 0.8316 + }, + { + "start": 5430.8, + "end": 5432.08, + "probability": 0.9802 + }, + { + "start": 5433.06, + "end": 5434.7, + "probability": 0.9758 + }, + { + "start": 5435.52, + "end": 5437.12, + "probability": 0.9245 + }, + { + "start": 5437.84, + "end": 5438.3, + "probability": 0.8074 + }, + { + "start": 5439.32, + "end": 5441.52, + "probability": 0.5827 + }, + { + "start": 5441.64, + "end": 5442.26, + "probability": 0.6376 + }, + { + "start": 5442.66, + "end": 5446.32, + "probability": 0.9854 + }, + { + "start": 5446.32, + "end": 5449.78, + "probability": 0.5358 + }, + { + "start": 5450.84, + "end": 5454.3, + "probability": 0.9637 + }, + { + "start": 5455.16, + "end": 5459.34, + "probability": 0.8294 + }, + { + "start": 5460.92, + "end": 5461.8, + "probability": 0.8387 + }, + { + "start": 5462.48, + "end": 5466.62, + "probability": 0.9956 + }, + { + "start": 5467.54, + "end": 5469.38, + "probability": 0.7692 + }, + { + "start": 5469.9, + "end": 5471.74, + "probability": 0.7809 + }, + { + "start": 5472.36, + "end": 5475.28, + "probability": 0.9798 + }, + { + "start": 5476.02, + "end": 5477.18, + "probability": 0.9587 + }, + { + "start": 5477.5, + "end": 5482.0, + "probability": 0.9919 + }, + { + "start": 5482.86, + "end": 5484.0, + "probability": 0.8349 + }, + { + "start": 5484.98, + "end": 5485.48, + "probability": 0.5496 + }, + { + "start": 5486.04, + "end": 5490.04, + "probability": 0.9818 + }, + { + "start": 5490.78, + "end": 5494.78, + "probability": 0.9872 + }, + { + "start": 5494.78, + "end": 5497.6, + "probability": 0.989 + }, + { + "start": 5497.98, + "end": 5499.92, + "probability": 0.9335 + }, + { + "start": 5500.3, + "end": 5503.48, + "probability": 0.9741 + }, + { + "start": 5504.2, + "end": 5505.22, + "probability": 0.9771 + }, + { + "start": 5505.78, + "end": 5506.78, + "probability": 0.96 + }, + { + "start": 5507.28, + "end": 5509.42, + "probability": 0.9966 + }, + { + "start": 5509.76, + "end": 5512.0, + "probability": 0.9993 + }, + { + "start": 5512.26, + "end": 5512.44, + "probability": 0.7025 + }, + { + "start": 5513.4, + "end": 5514.34, + "probability": 0.6165 + }, + { + "start": 5514.5, + "end": 5515.92, + "probability": 0.4918 + }, + { + "start": 5516.02, + "end": 5517.38, + "probability": 0.8901 + }, + { + "start": 5517.46, + "end": 5518.98, + "probability": 0.9356 + }, + { + "start": 5519.08, + "end": 5520.04, + "probability": 0.9004 + }, + { + "start": 5520.04, + "end": 5520.69, + "probability": 0.0667 + }, + { + "start": 5520.76, + "end": 5522.22, + "probability": 0.4551 + }, + { + "start": 5523.68, + "end": 5526.9, + "probability": 0.7061 + }, + { + "start": 5526.98, + "end": 5530.96, + "probability": 0.4855 + }, + { + "start": 5531.1, + "end": 5532.1, + "probability": 0.7515 + }, + { + "start": 5532.4, + "end": 5532.96, + "probability": 0.2229 + }, + { + "start": 5534.3, + "end": 5534.3, + "probability": 0.0757 + }, + { + "start": 5534.3, + "end": 5534.94, + "probability": 0.1843 + }, + { + "start": 5541.86, + "end": 5542.64, + "probability": 0.559 + }, + { + "start": 5543.84, + "end": 5545.56, + "probability": 0.7762 + }, + { + "start": 5545.62, + "end": 5548.74, + "probability": 0.8521 + }, + { + "start": 5549.54, + "end": 5550.8, + "probability": 0.7641 + }, + { + "start": 5552.02, + "end": 5556.84, + "probability": 0.9824 + }, + { + "start": 5556.84, + "end": 5564.56, + "probability": 0.9712 + }, + { + "start": 5564.62, + "end": 5564.98, + "probability": 0.2036 + }, + { + "start": 5565.52, + "end": 5570.8, + "probability": 0.8022 + }, + { + "start": 5571.36, + "end": 5573.6, + "probability": 0.9299 + }, + { + "start": 5574.56, + "end": 5577.89, + "probability": 0.9884 + }, + { + "start": 5578.58, + "end": 5580.08, + "probability": 0.8873 + }, + { + "start": 5580.98, + "end": 5583.52, + "probability": 0.9871 + }, + { + "start": 5583.84, + "end": 5586.18, + "probability": 0.9929 + }, + { + "start": 5588.34, + "end": 5596.28, + "probability": 0.985 + }, + { + "start": 5596.5, + "end": 5598.22, + "probability": 0.0472 + }, + { + "start": 5598.22, + "end": 5598.56, + "probability": 0.4431 + }, + { + "start": 5599.5, + "end": 5599.5, + "probability": 0.2565 + }, + { + "start": 5599.5, + "end": 5599.5, + "probability": 0.0096 + }, + { + "start": 5599.5, + "end": 5603.98, + "probability": 0.7986 + }, + { + "start": 5604.72, + "end": 5614.16, + "probability": 0.9817 + }, + { + "start": 5614.88, + "end": 5617.34, + "probability": 0.9653 + }, + { + "start": 5617.34, + "end": 5618.34, + "probability": 0.9758 + }, + { + "start": 5618.88, + "end": 5622.74, + "probability": 0.944 + }, + { + "start": 5623.4, + "end": 5625.96, + "probability": 0.6916 + }, + { + "start": 5626.0, + "end": 5627.3, + "probability": 0.9336 + }, + { + "start": 5627.56, + "end": 5628.99, + "probability": 0.9827 + }, + { + "start": 5629.68, + "end": 5631.48, + "probability": 0.979 + }, + { + "start": 5631.76, + "end": 5634.02, + "probability": 0.4921 + }, + { + "start": 5634.36, + "end": 5639.72, + "probability": 0.9701 + }, + { + "start": 5640.26, + "end": 5643.54, + "probability": 0.9899 + }, + { + "start": 5643.98, + "end": 5644.72, + "probability": 0.7162 + }, + { + "start": 5644.96, + "end": 5647.74, + "probability": 0.9909 + }, + { + "start": 5648.54, + "end": 5653.9, + "probability": 0.9574 + }, + { + "start": 5654.46, + "end": 5656.92, + "probability": 0.9816 + }, + { + "start": 5657.54, + "end": 5660.66, + "probability": 0.9515 + }, + { + "start": 5661.12, + "end": 5664.26, + "probability": 0.7939 + }, + { + "start": 5664.72, + "end": 5667.36, + "probability": 0.7628 + }, + { + "start": 5668.02, + "end": 5669.66, + "probability": 0.9193 + }, + { + "start": 5670.34, + "end": 5674.58, + "probability": 0.9573 + }, + { + "start": 5674.96, + "end": 5677.96, + "probability": 0.9816 + }, + { + "start": 5678.26, + "end": 5682.86, + "probability": 0.9925 + }, + { + "start": 5683.26, + "end": 5689.38, + "probability": 0.8575 + }, + { + "start": 5689.84, + "end": 5691.12, + "probability": 0.9054 + }, + { + "start": 5691.84, + "end": 5693.17, + "probability": 0.8105 + }, + { + "start": 5693.66, + "end": 5696.9, + "probability": 0.9954 + }, + { + "start": 5697.91, + "end": 5701.66, + "probability": 0.9421 + }, + { + "start": 5701.66, + "end": 5703.04, + "probability": 0.9033 + }, + { + "start": 5704.58, + "end": 5706.84, + "probability": 0.9659 + }, + { + "start": 5707.48, + "end": 5709.12, + "probability": 0.9717 + }, + { + "start": 5709.2, + "end": 5709.76, + "probability": 0.9462 + }, + { + "start": 5710.1, + "end": 5710.9, + "probability": 0.8929 + }, + { + "start": 5711.34, + "end": 5714.18, + "probability": 0.9703 + }, + { + "start": 5714.56, + "end": 5716.08, + "probability": 0.8428 + }, + { + "start": 5716.44, + "end": 5717.56, + "probability": 0.9893 + }, + { + "start": 5718.0, + "end": 5718.72, + "probability": 0.9742 + }, + { + "start": 5719.12, + "end": 5719.92, + "probability": 0.8999 + }, + { + "start": 5720.14, + "end": 5721.36, + "probability": 0.9802 + }, + { + "start": 5721.8, + "end": 5723.0, + "probability": 0.8203 + }, + { + "start": 5723.36, + "end": 5728.04, + "probability": 0.9939 + }, + { + "start": 5728.5, + "end": 5730.02, + "probability": 0.9657 + }, + { + "start": 5730.56, + "end": 5733.52, + "probability": 0.9723 + }, + { + "start": 5733.52, + "end": 5734.78, + "probability": 0.762 + }, + { + "start": 5735.08, + "end": 5738.06, + "probability": 0.6591 + }, + { + "start": 5738.42, + "end": 5742.52, + "probability": 0.9775 + }, + { + "start": 5742.84, + "end": 5743.14, + "probability": 0.8486 + }, + { + "start": 5743.84, + "end": 5745.86, + "probability": 0.7998 + }, + { + "start": 5746.04, + "end": 5747.6, + "probability": 0.8982 + }, + { + "start": 5748.24, + "end": 5748.74, + "probability": 0.6226 + }, + { + "start": 5764.84, + "end": 5766.36, + "probability": 0.6499 + }, + { + "start": 5768.76, + "end": 5771.62, + "probability": 0.9751 + }, + { + "start": 5773.34, + "end": 5776.06, + "probability": 0.9909 + }, + { + "start": 5776.76, + "end": 5777.5, + "probability": 0.858 + }, + { + "start": 5778.84, + "end": 5780.1, + "probability": 0.9976 + }, + { + "start": 5781.92, + "end": 5782.3, + "probability": 0.9407 + }, + { + "start": 5784.1, + "end": 5784.76, + "probability": 0.3287 + }, + { + "start": 5784.76, + "end": 5784.76, + "probability": 0.1677 + }, + { + "start": 5784.76, + "end": 5784.76, + "probability": 0.0356 + }, + { + "start": 5784.76, + "end": 5786.7, + "probability": 0.615 + }, + { + "start": 5786.78, + "end": 5787.76, + "probability": 0.9404 + }, + { + "start": 5789.4, + "end": 5792.9, + "probability": 0.994 + }, + { + "start": 5794.88, + "end": 5796.54, + "probability": 0.9406 + }, + { + "start": 5796.68, + "end": 5799.72, + "probability": 0.9366 + }, + { + "start": 5800.74, + "end": 5803.58, + "probability": 0.9719 + }, + { + "start": 5803.76, + "end": 5806.1, + "probability": 0.9676 + }, + { + "start": 5806.5, + "end": 5807.24, + "probability": 0.9956 + }, + { + "start": 5808.96, + "end": 5809.56, + "probability": 0.9087 + }, + { + "start": 5809.8, + "end": 5811.98, + "probability": 0.9919 + }, + { + "start": 5813.42, + "end": 5815.54, + "probability": 0.9966 + }, + { + "start": 5816.42, + "end": 5819.38, + "probability": 0.8158 + }, + { + "start": 5820.32, + "end": 5821.14, + "probability": 0.7399 + }, + { + "start": 5821.66, + "end": 5825.28, + "probability": 0.9847 + }, + { + "start": 5826.92, + "end": 5827.7, + "probability": 0.88 + }, + { + "start": 5827.96, + "end": 5828.3, + "probability": 0.8068 + }, + { + "start": 5828.54, + "end": 5831.54, + "probability": 0.7721 + }, + { + "start": 5831.78, + "end": 5835.38, + "probability": 0.9951 + }, + { + "start": 5836.12, + "end": 5838.72, + "probability": 0.9536 + }, + { + "start": 5839.94, + "end": 5841.44, + "probability": 0.9741 + }, + { + "start": 5843.1, + "end": 5844.32, + "probability": 0.9223 + }, + { + "start": 5844.4, + "end": 5846.62, + "probability": 0.9795 + }, + { + "start": 5846.82, + "end": 5850.24, + "probability": 0.8651 + }, + { + "start": 5850.62, + "end": 5851.99, + "probability": 0.7124 + }, + { + "start": 5852.53, + "end": 5854.84, + "probability": 0.9952 + }, + { + "start": 5855.7, + "end": 5857.22, + "probability": 0.9933 + }, + { + "start": 5857.24, + "end": 5860.2, + "probability": 0.9819 + }, + { + "start": 5861.12, + "end": 5863.42, + "probability": 0.9926 + }, + { + "start": 5864.4, + "end": 5867.0, + "probability": 0.9705 + }, + { + "start": 5867.1, + "end": 5867.54, + "probability": 0.8632 + }, + { + "start": 5868.48, + "end": 5873.76, + "probability": 0.9966 + }, + { + "start": 5873.88, + "end": 5875.34, + "probability": 0.9677 + }, + { + "start": 5875.44, + "end": 5876.6, + "probability": 0.9277 + }, + { + "start": 5878.14, + "end": 5879.96, + "probability": 0.9334 + }, + { + "start": 5881.5, + "end": 5881.74, + "probability": 0.8584 + }, + { + "start": 5881.8, + "end": 5885.76, + "probability": 0.9961 + }, + { + "start": 5885.76, + "end": 5889.68, + "probability": 0.9525 + }, + { + "start": 5890.94, + "end": 5892.54, + "probability": 0.936 + }, + { + "start": 5895.14, + "end": 5898.24, + "probability": 0.9962 + }, + { + "start": 5898.24, + "end": 5901.06, + "probability": 0.9992 + }, + { + "start": 5902.38, + "end": 5903.92, + "probability": 0.9596 + }, + { + "start": 5905.08, + "end": 5906.88, + "probability": 0.9992 + }, + { + "start": 5906.88, + "end": 5910.1, + "probability": 0.9988 + }, + { + "start": 5911.76, + "end": 5913.3, + "probability": 0.7974 + }, + { + "start": 5914.02, + "end": 5916.12, + "probability": 0.9961 + }, + { + "start": 5916.8, + "end": 5918.98, + "probability": 0.9517 + }, + { + "start": 5919.84, + "end": 5920.68, + "probability": 0.9783 + }, + { + "start": 5921.46, + "end": 5921.98, + "probability": 0.9337 + }, + { + "start": 5923.18, + "end": 5926.56, + "probability": 0.986 + }, + { + "start": 5926.62, + "end": 5930.26, + "probability": 0.9904 + }, + { + "start": 5930.32, + "end": 5931.34, + "probability": 0.8011 + }, + { + "start": 5932.68, + "end": 5934.88, + "probability": 0.9928 + }, + { + "start": 5935.9, + "end": 5938.82, + "probability": 0.9903 + }, + { + "start": 5938.86, + "end": 5939.86, + "probability": 0.9694 + }, + { + "start": 5941.48, + "end": 5943.22, + "probability": 0.9308 + }, + { + "start": 5944.28, + "end": 5946.18, + "probability": 0.9843 + }, + { + "start": 5947.28, + "end": 5949.24, + "probability": 0.9117 + }, + { + "start": 5949.56, + "end": 5950.22, + "probability": 0.5349 + }, + { + "start": 5950.26, + "end": 5952.6, + "probability": 0.9973 + }, + { + "start": 5952.6, + "end": 5955.84, + "probability": 0.9941 + }, + { + "start": 5957.3, + "end": 5958.26, + "probability": 0.9189 + }, + { + "start": 5960.86, + "end": 5961.74, + "probability": 0.4166 + }, + { + "start": 5961.78, + "end": 5962.6, + "probability": 0.9819 + }, + { + "start": 5963.54, + "end": 5964.52, + "probability": 0.7129 + }, + { + "start": 5964.58, + "end": 5967.3, + "probability": 0.9041 + }, + { + "start": 5968.22, + "end": 5971.38, + "probability": 0.9926 + }, + { + "start": 5971.68, + "end": 5971.9, + "probability": 0.7628 + }, + { + "start": 5972.24, + "end": 5974.02, + "probability": 0.8034 + }, + { + "start": 5974.42, + "end": 5976.18, + "probability": 0.685 + }, + { + "start": 5978.48, + "end": 5979.58, + "probability": 0.2648 + }, + { + "start": 5983.26, + "end": 5987.44, + "probability": 0.1077 + }, + { + "start": 5991.82, + "end": 5993.14, + "probability": 0.5888 + }, + { + "start": 5996.14, + "end": 5997.18, + "probability": 0.76 + }, + { + "start": 5998.4, + "end": 5999.82, + "probability": 0.5865 + }, + { + "start": 6002.14, + "end": 6005.9, + "probability": 0.9831 + }, + { + "start": 6005.94, + "end": 6009.62, + "probability": 0.6717 + }, + { + "start": 6011.98, + "end": 6013.36, + "probability": 0.7392 + }, + { + "start": 6014.24, + "end": 6017.52, + "probability": 0.9528 + }, + { + "start": 6019.32, + "end": 6021.38, + "probability": 0.6763 + }, + { + "start": 6022.48, + "end": 6026.2, + "probability": 0.9897 + }, + { + "start": 6027.02, + "end": 6028.0, + "probability": 0.8794 + }, + { + "start": 6028.6, + "end": 6031.84, + "probability": 0.9504 + }, + { + "start": 6033.5, + "end": 6036.48, + "probability": 0.9146 + }, + { + "start": 6036.68, + "end": 6037.16, + "probability": 0.8062 + }, + { + "start": 6038.04, + "end": 6038.76, + "probability": 0.6983 + }, + { + "start": 6040.38, + "end": 6043.04, + "probability": 0.9202 + }, + { + "start": 6044.56, + "end": 6047.1, + "probability": 0.988 + }, + { + "start": 6048.0, + "end": 6050.22, + "probability": 0.9633 + }, + { + "start": 6051.34, + "end": 6054.12, + "probability": 0.9806 + }, + { + "start": 6055.48, + "end": 6057.42, + "probability": 0.9345 + }, + { + "start": 6057.96, + "end": 6062.56, + "probability": 0.97 + }, + { + "start": 6064.2, + "end": 6064.42, + "probability": 0.9231 + }, + { + "start": 6065.18, + "end": 6068.08, + "probability": 0.9289 + }, + { + "start": 6068.92, + "end": 6070.4, + "probability": 0.9845 + }, + { + "start": 6071.02, + "end": 6072.34, + "probability": 0.8958 + }, + { + "start": 6073.18, + "end": 6077.5, + "probability": 0.9703 + }, + { + "start": 6077.98, + "end": 6079.64, + "probability": 0.9541 + }, + { + "start": 6081.52, + "end": 6083.46, + "probability": 0.8899 + }, + { + "start": 6084.44, + "end": 6088.08, + "probability": 0.9768 + }, + { + "start": 6089.32, + "end": 6093.68, + "probability": 0.9844 + }, + { + "start": 6094.9, + "end": 6095.26, + "probability": 0.9486 + }, + { + "start": 6097.58, + "end": 6098.6, + "probability": 0.9686 + }, + { + "start": 6100.96, + "end": 6105.32, + "probability": 0.901 + }, + { + "start": 6105.94, + "end": 6107.64, + "probability": 0.6209 + }, + { + "start": 6108.54, + "end": 6112.32, + "probability": 0.9744 + }, + { + "start": 6113.06, + "end": 6115.18, + "probability": 0.9267 + }, + { + "start": 6116.12, + "end": 6119.86, + "probability": 0.9956 + }, + { + "start": 6120.22, + "end": 6121.78, + "probability": 0.8441 + }, + { + "start": 6122.28, + "end": 6128.1, + "probability": 0.9847 + }, + { + "start": 6129.28, + "end": 6131.5, + "probability": 0.9988 + }, + { + "start": 6131.5, + "end": 6133.94, + "probability": 0.9932 + }, + { + "start": 6134.64, + "end": 6137.46, + "probability": 0.9271 + }, + { + "start": 6138.1, + "end": 6142.56, + "probability": 0.9897 + }, + { + "start": 6145.08, + "end": 6145.98, + "probability": 0.763 + }, + { + "start": 6146.04, + "end": 6146.92, + "probability": 0.8687 + }, + { + "start": 6147.78, + "end": 6148.34, + "probability": 0.7941 + }, + { + "start": 6148.48, + "end": 6149.58, + "probability": 0.7882 + }, + { + "start": 6149.72, + "end": 6150.44, + "probability": 0.5915 + }, + { + "start": 6150.54, + "end": 6151.68, + "probability": 0.8512 + }, + { + "start": 6152.56, + "end": 6155.0, + "probability": 0.9779 + }, + { + "start": 6155.48, + "end": 6161.9, + "probability": 0.9883 + }, + { + "start": 6162.46, + "end": 6163.44, + "probability": 0.9408 + }, + { + "start": 6164.12, + "end": 6167.22, + "probability": 0.8246 + }, + { + "start": 6167.22, + "end": 6170.0, + "probability": 0.9719 + }, + { + "start": 6170.6, + "end": 6173.12, + "probability": 0.8936 + }, + { + "start": 6173.81, + "end": 6177.34, + "probability": 0.9299 + }, + { + "start": 6178.08, + "end": 6180.62, + "probability": 0.9988 + }, + { + "start": 6181.28, + "end": 6181.86, + "probability": 0.9376 + }, + { + "start": 6182.44, + "end": 6184.24, + "probability": 0.8781 + }, + { + "start": 6184.66, + "end": 6185.64, + "probability": 0.9167 + }, + { + "start": 6185.76, + "end": 6186.5, + "probability": 0.9161 + }, + { + "start": 6186.92, + "end": 6191.86, + "probability": 0.9801 + }, + { + "start": 6191.98, + "end": 6192.72, + "probability": 0.7137 + }, + { + "start": 6193.1, + "end": 6194.04, + "probability": 0.7597 + }, + { + "start": 6194.46, + "end": 6195.72, + "probability": 0.7578 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.3927 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.1096 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.1787 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.301 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.1546 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.0501 + }, + { + "start": 6208.1, + "end": 6208.1, + "probability": 0.0519 + }, + { + "start": 6232.64, + "end": 6234.04, + "probability": 0.837 + }, + { + "start": 6235.32, + "end": 6241.8, + "probability": 0.9417 + }, + { + "start": 6241.92, + "end": 6243.46, + "probability": 0.9951 + }, + { + "start": 6243.58, + "end": 6245.82, + "probability": 0.9974 + }, + { + "start": 6246.6, + "end": 6248.54, + "probability": 0.6377 + }, + { + "start": 6248.98, + "end": 6250.78, + "probability": 0.8315 + }, + { + "start": 6251.38, + "end": 6254.82, + "probability": 0.9983 + }, + { + "start": 6255.5, + "end": 6258.76, + "probability": 0.7617 + }, + { + "start": 6260.24, + "end": 6263.24, + "probability": 0.9969 + }, + { + "start": 6264.62, + "end": 6267.8, + "probability": 0.9917 + }, + { + "start": 6268.5, + "end": 6271.32, + "probability": 0.9827 + }, + { + "start": 6271.98, + "end": 6276.86, + "probability": 0.9788 + }, + { + "start": 6278.82, + "end": 6281.58, + "probability": 0.9611 + }, + { + "start": 6283.06, + "end": 6286.9, + "probability": 0.9938 + }, + { + "start": 6287.54, + "end": 6291.06, + "probability": 0.999 + }, + { + "start": 6292.28, + "end": 6293.28, + "probability": 0.9794 + }, + { + "start": 6294.1, + "end": 6295.62, + "probability": 0.6722 + }, + { + "start": 6297.6, + "end": 6298.6, + "probability": 0.9754 + }, + { + "start": 6299.38, + "end": 6301.18, + "probability": 0.9082 + }, + { + "start": 6302.54, + "end": 6304.22, + "probability": 0.7775 + }, + { + "start": 6305.96, + "end": 6308.08, + "probability": 0.4979 + }, + { + "start": 6308.82, + "end": 6310.64, + "probability": 0.9822 + }, + { + "start": 6311.52, + "end": 6314.1, + "probability": 0.9783 + }, + { + "start": 6315.3, + "end": 6316.9, + "probability": 0.9889 + }, + { + "start": 6318.04, + "end": 6322.56, + "probability": 0.8972 + }, + { + "start": 6323.48, + "end": 6327.2, + "probability": 0.8477 + }, + { + "start": 6327.78, + "end": 6334.0, + "probability": 0.9887 + }, + { + "start": 6334.62, + "end": 6336.08, + "probability": 0.8329 + }, + { + "start": 6336.56, + "end": 6337.18, + "probability": 0.76 + }, + { + "start": 6337.38, + "end": 6339.52, + "probability": 0.8406 + }, + { + "start": 6340.0, + "end": 6345.38, + "probability": 0.8323 + }, + { + "start": 6346.0, + "end": 6346.6, + "probability": 0.8343 + }, + { + "start": 6347.2, + "end": 6351.22, + "probability": 0.9964 + }, + { + "start": 6353.4, + "end": 6355.88, + "probability": 0.99 + }, + { + "start": 6357.38, + "end": 6362.44, + "probability": 0.9886 + }, + { + "start": 6363.36, + "end": 6370.78, + "probability": 0.9878 + }, + { + "start": 6371.88, + "end": 6373.42, + "probability": 0.9849 + }, + { + "start": 6373.82, + "end": 6374.74, + "probability": 0.8526 + }, + { + "start": 6375.18, + "end": 6377.88, + "probability": 0.9942 + }, + { + "start": 6378.62, + "end": 6381.66, + "probability": 0.8599 + }, + { + "start": 6381.72, + "end": 6383.68, + "probability": 0.8997 + }, + { + "start": 6384.06, + "end": 6386.9, + "probability": 0.9696 + }, + { + "start": 6387.38, + "end": 6390.44, + "probability": 0.6978 + }, + { + "start": 6391.04, + "end": 6394.78, + "probability": 0.7701 + }, + { + "start": 6395.14, + "end": 6398.74, + "probability": 0.9947 + }, + { + "start": 6399.0, + "end": 6403.44, + "probability": 0.8022 + }, + { + "start": 6403.8, + "end": 6405.76, + "probability": 0.4904 + }, + { + "start": 6405.8, + "end": 6405.8, + "probability": 0.6134 + }, + { + "start": 6405.8, + "end": 6406.68, + "probability": 0.9373 + }, + { + "start": 6407.68, + "end": 6411.04, + "probability": 0.4924 + }, + { + "start": 6411.62, + "end": 6414.1, + "probability": 0.9928 + }, + { + "start": 6414.18, + "end": 6419.04, + "probability": 0.9935 + }, + { + "start": 6419.26, + "end": 6420.04, + "probability": 0.7719 + }, + { + "start": 6420.58, + "end": 6423.92, + "probability": 0.6387 + }, + { + "start": 6425.18, + "end": 6427.16, + "probability": 0.7714 + }, + { + "start": 6427.56, + "end": 6429.26, + "probability": 0.9616 + }, + { + "start": 6434.02, + "end": 6440.66, + "probability": 0.6102 + }, + { + "start": 6440.66, + "end": 6440.66, + "probability": 0.1453 + }, + { + "start": 6440.66, + "end": 6440.66, + "probability": 0.0191 + }, + { + "start": 6440.66, + "end": 6440.66, + "probability": 0.3736 + }, + { + "start": 6440.66, + "end": 6440.66, + "probability": 0.0314 + }, + { + "start": 6440.66, + "end": 6440.66, + "probability": 0.1142 + }, + { + "start": 6440.66, + "end": 6440.68, + "probability": 0.0517 + }, + { + "start": 6463.72, + "end": 6466.24, + "probability": 0.7582 + }, + { + "start": 6466.9, + "end": 6472.3, + "probability": 0.9836 + }, + { + "start": 6473.33, + "end": 6477.46, + "probability": 0.8636 + }, + { + "start": 6477.54, + "end": 6479.25, + "probability": 0.9707 + }, + { + "start": 6480.08, + "end": 6483.9, + "probability": 0.9834 + }, + { + "start": 6484.74, + "end": 6488.84, + "probability": 0.97 + }, + { + "start": 6488.84, + "end": 6495.56, + "probability": 0.9987 + }, + { + "start": 6496.18, + "end": 6497.66, + "probability": 0.9963 + }, + { + "start": 6498.54, + "end": 6498.74, + "probability": 0.2808 + }, + { + "start": 6498.84, + "end": 6502.46, + "probability": 0.9055 + }, + { + "start": 6502.46, + "end": 6507.1, + "probability": 0.916 + }, + { + "start": 6508.02, + "end": 6510.96, + "probability": 0.9661 + }, + { + "start": 6511.36, + "end": 6514.26, + "probability": 0.6767 + }, + { + "start": 6514.74, + "end": 6515.66, + "probability": 0.8516 + }, + { + "start": 6516.0, + "end": 6518.48, + "probability": 0.9921 + }, + { + "start": 6519.82, + "end": 6521.78, + "probability": 0.8042 + }, + { + "start": 6522.12, + "end": 6522.68, + "probability": 0.967 + }, + { + "start": 6523.2, + "end": 6527.42, + "probability": 0.9968 + }, + { + "start": 6528.52, + "end": 6530.74, + "probability": 0.9956 + }, + { + "start": 6531.42, + "end": 6534.7, + "probability": 0.9241 + }, + { + "start": 6535.88, + "end": 6537.42, + "probability": 0.9722 + }, + { + "start": 6537.62, + "end": 6538.74, + "probability": 0.5801 + }, + { + "start": 6538.82, + "end": 6540.6, + "probability": 0.9865 + }, + { + "start": 6540.6, + "end": 6542.82, + "probability": 0.9676 + }, + { + "start": 6546.16, + "end": 6547.42, + "probability": 0.8229 + }, + { + "start": 6548.22, + "end": 6551.8, + "probability": 0.9132 + }, + { + "start": 6553.22, + "end": 6554.52, + "probability": 0.9136 + }, + { + "start": 6554.64, + "end": 6555.32, + "probability": 0.8196 + }, + { + "start": 6555.36, + "end": 6560.96, + "probability": 0.9731 + }, + { + "start": 6561.26, + "end": 6564.2, + "probability": 0.8338 + }, + { + "start": 6564.68, + "end": 6568.78, + "probability": 0.9927 + }, + { + "start": 6569.54, + "end": 6574.26, + "probability": 0.9829 + }, + { + "start": 6575.3, + "end": 6576.5, + "probability": 0.98 + }, + { + "start": 6577.02, + "end": 6578.98, + "probability": 0.9839 + }, + { + "start": 6579.16, + "end": 6582.56, + "probability": 0.8907 + }, + { + "start": 6584.44, + "end": 6589.68, + "probability": 0.9834 + }, + { + "start": 6590.04, + "end": 6590.56, + "probability": 0.752 + }, + { + "start": 6590.74, + "end": 6591.16, + "probability": 0.8499 + }, + { + "start": 6591.26, + "end": 6592.5, + "probability": 0.9714 + }, + { + "start": 6593.84, + "end": 6595.32, + "probability": 0.9739 + }, + { + "start": 6595.38, + "end": 6600.26, + "probability": 0.8729 + }, + { + "start": 6600.42, + "end": 6601.58, + "probability": 0.8729 + }, + { + "start": 6601.9, + "end": 6606.92, + "probability": 0.8496 + }, + { + "start": 6607.42, + "end": 6609.42, + "probability": 0.9478 + }, + { + "start": 6610.7, + "end": 6611.78, + "probability": 0.7181 + }, + { + "start": 6612.48, + "end": 6613.86, + "probability": 0.9482 + }, + { + "start": 6614.34, + "end": 6617.8, + "probability": 0.9424 + }, + { + "start": 6617.8, + "end": 6621.96, + "probability": 0.9539 + }, + { + "start": 6622.72, + "end": 6624.36, + "probability": 0.7853 + }, + { + "start": 6625.38, + "end": 6629.0, + "probability": 0.986 + }, + { + "start": 6629.04, + "end": 6632.54, + "probability": 0.9943 + }, + { + "start": 6632.76, + "end": 6634.06, + "probability": 0.8958 + }, + { + "start": 6634.47, + "end": 6637.84, + "probability": 0.9806 + }, + { + "start": 6638.18, + "end": 6639.34, + "probability": 0.9539 + }, + { + "start": 6639.66, + "end": 6640.36, + "probability": 0.3506 + }, + { + "start": 6640.6, + "end": 6642.6, + "probability": 0.8965 + }, + { + "start": 6643.46, + "end": 6647.54, + "probability": 0.9963 + }, + { + "start": 6648.7, + "end": 6650.66, + "probability": 0.9183 + }, + { + "start": 6650.94, + "end": 6653.94, + "probability": 0.9585 + }, + { + "start": 6654.96, + "end": 6656.0, + "probability": 0.985 + }, + { + "start": 6656.1, + "end": 6659.03, + "probability": 0.9712 + }, + { + "start": 6659.72, + "end": 6663.42, + "probability": 0.9878 + }, + { + "start": 6664.58, + "end": 6667.7, + "probability": 0.9452 + }, + { + "start": 6668.46, + "end": 6670.94, + "probability": 0.9852 + }, + { + "start": 6671.8, + "end": 6674.16, + "probability": 0.9973 + }, + { + "start": 6674.58, + "end": 6677.8, + "probability": 0.996 + }, + { + "start": 6679.4, + "end": 6681.82, + "probability": 0.9478 + }, + { + "start": 6682.48, + "end": 6684.36, + "probability": 0.9983 + }, + { + "start": 6684.64, + "end": 6687.8, + "probability": 0.9913 + }, + { + "start": 6688.92, + "end": 6691.8, + "probability": 0.9984 + }, + { + "start": 6691.8, + "end": 6695.32, + "probability": 0.9083 + }, + { + "start": 6695.42, + "end": 6695.42, + "probability": 0.5084 + }, + { + "start": 6695.72, + "end": 6700.98, + "probability": 0.9989 + }, + { + "start": 6701.58, + "end": 6703.06, + "probability": 0.7191 + }, + { + "start": 6703.2, + "end": 6704.86, + "probability": 0.8738 + }, + { + "start": 6716.68, + "end": 6717.04, + "probability": 0.2262 + }, + { + "start": 6717.5, + "end": 6718.48, + "probability": 0.7547 + }, + { + "start": 6719.18, + "end": 6720.36, + "probability": 0.8145 + }, + { + "start": 6721.34, + "end": 6721.96, + "probability": 0.8887 + }, + { + "start": 6723.36, + "end": 6726.58, + "probability": 0.9834 + }, + { + "start": 6728.04, + "end": 6730.35, + "probability": 0.9885 + }, + { + "start": 6732.4, + "end": 6736.68, + "probability": 0.9479 + }, + { + "start": 6737.66, + "end": 6740.02, + "probability": 0.8259 + }, + { + "start": 6741.36, + "end": 6746.14, + "probability": 0.9882 + }, + { + "start": 6747.64, + "end": 6748.94, + "probability": 0.9827 + }, + { + "start": 6749.66, + "end": 6753.64, + "probability": 0.9749 + }, + { + "start": 6756.14, + "end": 6760.52, + "probability": 0.9875 + }, + { + "start": 6761.34, + "end": 6763.5, + "probability": 0.899 + }, + { + "start": 6764.02, + "end": 6769.76, + "probability": 0.8633 + }, + { + "start": 6769.8, + "end": 6771.38, + "probability": 0.9873 + }, + { + "start": 6772.59, + "end": 6774.9, + "probability": 0.8054 + }, + { + "start": 6775.86, + "end": 6778.28, + "probability": 0.8231 + }, + { + "start": 6779.22, + "end": 6783.34, + "probability": 0.9871 + }, + { + "start": 6784.16, + "end": 6786.0, + "probability": 0.983 + }, + { + "start": 6786.86, + "end": 6791.3, + "probability": 0.9223 + }, + { + "start": 6791.88, + "end": 6792.78, + "probability": 0.8667 + }, + { + "start": 6793.64, + "end": 6797.6, + "probability": 0.9468 + }, + { + "start": 6797.74, + "end": 6798.78, + "probability": 0.9365 + }, + { + "start": 6799.76, + "end": 6801.72, + "probability": 0.7476 + }, + { + "start": 6802.92, + "end": 6807.06, + "probability": 0.9445 + }, + { + "start": 6807.06, + "end": 6812.18, + "probability": 0.9778 + }, + { + "start": 6813.36, + "end": 6815.84, + "probability": 0.8244 + }, + { + "start": 6816.42, + "end": 6818.02, + "probability": 0.838 + }, + { + "start": 6818.84, + "end": 6819.82, + "probability": 0.9495 + }, + { + "start": 6819.98, + "end": 6820.68, + "probability": 0.7585 + }, + { + "start": 6820.86, + "end": 6822.99, + "probability": 0.6344 + }, + { + "start": 6824.26, + "end": 6825.26, + "probability": 0.9968 + }, + { + "start": 6826.02, + "end": 6830.48, + "probability": 0.8504 + }, + { + "start": 6830.56, + "end": 6830.98, + "probability": 0.4933 + }, + { + "start": 6831.04, + "end": 6832.78, + "probability": 0.9741 + }, + { + "start": 6833.52, + "end": 6836.14, + "probability": 0.9214 + }, + { + "start": 6836.92, + "end": 6840.04, + "probability": 0.9845 + }, + { + "start": 6840.7, + "end": 6842.66, + "probability": 0.9934 + }, + { + "start": 6844.0, + "end": 6845.08, + "probability": 0.9963 + }, + { + "start": 6845.98, + "end": 6848.58, + "probability": 0.9211 + }, + { + "start": 6849.02, + "end": 6849.64, + "probability": 0.843 + }, + { + "start": 6850.1, + "end": 6851.9, + "probability": 0.9861 + }, + { + "start": 6851.92, + "end": 6853.68, + "probability": 0.737 + }, + { + "start": 6854.74, + "end": 6857.14, + "probability": 0.9455 + }, + { + "start": 6858.26, + "end": 6858.75, + "probability": 0.9315 + }, + { + "start": 6860.24, + "end": 6862.72, + "probability": 0.9948 + }, + { + "start": 6862.76, + "end": 6864.34, + "probability": 0.9259 + }, + { + "start": 6864.44, + "end": 6865.32, + "probability": 0.7235 + }, + { + "start": 6866.18, + "end": 6869.64, + "probability": 0.7455 + }, + { + "start": 6870.64, + "end": 6871.5, + "probability": 0.7617 + }, + { + "start": 6872.04, + "end": 6873.54, + "probability": 0.9453 + }, + { + "start": 6874.18, + "end": 6879.38, + "probability": 0.8881 + }, + { + "start": 6880.08, + "end": 6881.66, + "probability": 0.9729 + }, + { + "start": 6882.2, + "end": 6883.98, + "probability": 0.7696 + }, + { + "start": 6885.26, + "end": 6886.36, + "probability": 0.8367 + }, + { + "start": 6887.22, + "end": 6888.56, + "probability": 0.8994 + }, + { + "start": 6889.12, + "end": 6892.66, + "probability": 0.7666 + }, + { + "start": 6892.76, + "end": 6894.18, + "probability": 0.9757 + }, + { + "start": 6894.62, + "end": 6895.9, + "probability": 0.9885 + }, + { + "start": 6896.88, + "end": 6900.9, + "probability": 0.9811 + }, + { + "start": 6901.02, + "end": 6901.7, + "probability": 0.5184 + }, + { + "start": 6902.5, + "end": 6906.2, + "probability": 0.8892 + }, + { + "start": 6906.48, + "end": 6907.6, + "probability": 0.7714 + }, + { + "start": 6908.52, + "end": 6910.8, + "probability": 0.9492 + }, + { + "start": 6911.64, + "end": 6913.64, + "probability": 0.7939 + }, + { + "start": 6914.34, + "end": 6915.88, + "probability": 0.9845 + }, + { + "start": 6916.4, + "end": 6918.98, + "probability": 0.8373 + }, + { + "start": 6918.98, + "end": 6924.76, + "probability": 0.9907 + }, + { + "start": 6925.1, + "end": 6925.18, + "probability": 0.6268 + }, + { + "start": 6925.26, + "end": 6927.78, + "probability": 0.7164 + }, + { + "start": 6928.64, + "end": 6930.98, + "probability": 0.727 + }, + { + "start": 6942.3, + "end": 6943.14, + "probability": 0.7282 + }, + { + "start": 6943.18, + "end": 6945.86, + "probability": 0.9072 + }, + { + "start": 6946.64, + "end": 6950.58, + "probability": 0.9483 + }, + { + "start": 6951.34, + "end": 6953.14, + "probability": 0.9951 + }, + { + "start": 6953.94, + "end": 6957.42, + "probability": 0.9767 + }, + { + "start": 6957.98, + "end": 6960.14, + "probability": 0.9795 + }, + { + "start": 6961.7, + "end": 6965.3, + "probability": 0.9643 + }, + { + "start": 6965.96, + "end": 6967.26, + "probability": 0.9158 + }, + { + "start": 6968.32, + "end": 6970.78, + "probability": 0.9968 + }, + { + "start": 6971.84, + "end": 6974.12, + "probability": 0.9958 + }, + { + "start": 6976.32, + "end": 6979.86, + "probability": 0.9971 + }, + { + "start": 6979.94, + "end": 6981.2, + "probability": 0.999 + }, + { + "start": 6981.32, + "end": 6983.48, + "probability": 0.9983 + }, + { + "start": 6984.28, + "end": 6986.92, + "probability": 0.9973 + }, + { + "start": 6986.92, + "end": 6991.52, + "probability": 0.9585 + }, + { + "start": 6992.22, + "end": 6995.64, + "probability": 0.9987 + }, + { + "start": 6996.26, + "end": 6997.5, + "probability": 0.5945 + }, + { + "start": 6998.8, + "end": 6999.34, + "probability": 0.9298 + }, + { + "start": 7000.36, + "end": 7003.56, + "probability": 0.8316 + }, + { + "start": 7004.52, + "end": 7008.5, + "probability": 0.9928 + }, + { + "start": 7009.42, + "end": 7012.12, + "probability": 0.9463 + }, + { + "start": 7012.2, + "end": 7012.5, + "probability": 0.6884 + }, + { + "start": 7012.5, + "end": 7013.4, + "probability": 0.8244 + }, + { + "start": 7013.5, + "end": 7014.51, + "probability": 0.7979 + }, + { + "start": 7015.82, + "end": 7017.45, + "probability": 0.9902 + }, + { + "start": 7018.6, + "end": 7020.74, + "probability": 0.9946 + }, + { + "start": 7021.62, + "end": 7023.4, + "probability": 0.9954 + }, + { + "start": 7023.86, + "end": 7025.7, + "probability": 0.9922 + }, + { + "start": 7025.84, + "end": 7027.58, + "probability": 0.696 + }, + { + "start": 7028.44, + "end": 7030.68, + "probability": 0.9909 + }, + { + "start": 7030.8, + "end": 7033.94, + "probability": 0.7775 + }, + { + "start": 7034.24, + "end": 7035.86, + "probability": 0.7247 + }, + { + "start": 7036.06, + "end": 7036.3, + "probability": 0.5104 + }, + { + "start": 7036.82, + "end": 7039.78, + "probability": 0.959 + }, + { + "start": 7040.64, + "end": 7042.26, + "probability": 0.9148 + }, + { + "start": 7042.38, + "end": 7042.72, + "probability": 0.8986 + }, + { + "start": 7042.78, + "end": 7044.2, + "probability": 0.6607 + }, + { + "start": 7044.26, + "end": 7045.04, + "probability": 0.7357 + }, + { + "start": 7045.42, + "end": 7045.68, + "probability": 0.511 + }, + { + "start": 7045.74, + "end": 7048.0, + "probability": 0.9808 + }, + { + "start": 7048.8, + "end": 7051.0, + "probability": 0.978 + }, + { + "start": 7051.56, + "end": 7053.48, + "probability": 0.8502 + }, + { + "start": 7054.26, + "end": 7058.44, + "probability": 0.9937 + }, + { + "start": 7059.14, + "end": 7063.16, + "probability": 0.9859 + }, + { + "start": 7063.46, + "end": 7069.78, + "probability": 0.9463 + }, + { + "start": 7069.78, + "end": 7074.96, + "probability": 0.9964 + }, + { + "start": 7075.78, + "end": 7078.6, + "probability": 0.9837 + }, + { + "start": 7078.76, + "end": 7079.28, + "probability": 0.7112 + }, + { + "start": 7079.4, + "end": 7079.88, + "probability": 0.8102 + }, + { + "start": 7080.52, + "end": 7082.78, + "probability": 0.9765 + }, + { + "start": 7082.78, + "end": 7085.64, + "probability": 0.9982 + }, + { + "start": 7087.28, + "end": 7091.02, + "probability": 0.9977 + }, + { + "start": 7092.44, + "end": 7094.18, + "probability": 0.9994 + }, + { + "start": 7094.24, + "end": 7094.64, + "probability": 0.8919 + }, + { + "start": 7094.96, + "end": 7096.6, + "probability": 0.9968 + }, + { + "start": 7097.6, + "end": 7100.52, + "probability": 0.9406 + }, + { + "start": 7101.68, + "end": 7105.06, + "probability": 0.9889 + }, + { + "start": 7105.08, + "end": 7105.8, + "probability": 0.6726 + }, + { + "start": 7106.16, + "end": 7108.76, + "probability": 0.9904 + }, + { + "start": 7109.46, + "end": 7112.16, + "probability": 0.9894 + }, + { + "start": 7112.64, + "end": 7115.42, + "probability": 0.6992 + }, + { + "start": 7115.94, + "end": 7117.62, + "probability": 0.9895 + }, + { + "start": 7118.18, + "end": 7121.56, + "probability": 0.9772 + }, + { + "start": 7121.74, + "end": 7122.22, + "probability": 0.7858 + }, + { + "start": 7122.74, + "end": 7125.68, + "probability": 0.6968 + }, + { + "start": 7125.82, + "end": 7126.16, + "probability": 0.9407 + }, + { + "start": 7127.34, + "end": 7128.68, + "probability": 0.6079 + }, + { + "start": 7129.56, + "end": 7130.1, + "probability": 0.7699 + }, + { + "start": 7130.34, + "end": 7132.36, + "probability": 0.8271 + }, + { + "start": 7134.82, + "end": 7137.32, + "probability": 0.8975 + }, + { + "start": 7149.58, + "end": 7151.3, + "probability": 0.6971 + }, + { + "start": 7152.94, + "end": 7155.96, + "probability": 0.7648 + }, + { + "start": 7158.92, + "end": 7159.78, + "probability": 0.9312 + }, + { + "start": 7160.06, + "end": 7161.54, + "probability": 0.4946 + }, + { + "start": 7161.58, + "end": 7163.08, + "probability": 0.4355 + }, + { + "start": 7164.24, + "end": 7166.04, + "probability": 0.2226 + }, + { + "start": 7166.28, + "end": 7167.4, + "probability": 0.9775 + }, + { + "start": 7167.48, + "end": 7168.94, + "probability": 0.8994 + }, + { + "start": 7168.98, + "end": 7172.56, + "probability": 0.9489 + }, + { + "start": 7174.28, + "end": 7177.56, + "probability": 0.9875 + }, + { + "start": 7179.6, + "end": 7183.44, + "probability": 0.9041 + }, + { + "start": 7183.52, + "end": 7185.72, + "probability": 0.9767 + }, + { + "start": 7186.7, + "end": 7187.92, + "probability": 0.9946 + }, + { + "start": 7188.92, + "end": 7190.18, + "probability": 0.7411 + }, + { + "start": 7192.24, + "end": 7193.5, + "probability": 0.9604 + }, + { + "start": 7196.98, + "end": 7198.22, + "probability": 0.9212 + }, + { + "start": 7198.98, + "end": 7200.28, + "probability": 0.5465 + }, + { + "start": 7201.52, + "end": 7204.18, + "probability": 0.9771 + }, + { + "start": 7205.0, + "end": 7206.2, + "probability": 0.943 + }, + { + "start": 7206.94, + "end": 7208.96, + "probability": 0.991 + }, + { + "start": 7210.22, + "end": 7211.08, + "probability": 0.8032 + }, + { + "start": 7211.62, + "end": 7212.24, + "probability": 0.9343 + }, + { + "start": 7212.3, + "end": 7213.3, + "probability": 0.5025 + }, + { + "start": 7213.3, + "end": 7215.38, + "probability": 0.9273 + }, + { + "start": 7219.02, + "end": 7220.2, + "probability": 0.9738 + }, + { + "start": 7221.2, + "end": 7223.56, + "probability": 0.794 + }, + { + "start": 7224.88, + "end": 7226.08, + "probability": 0.9928 + }, + { + "start": 7226.2, + "end": 7227.68, + "probability": 0.9932 + }, + { + "start": 7230.3, + "end": 7234.58, + "probability": 0.9952 + }, + { + "start": 7235.38, + "end": 7238.18, + "probability": 0.9971 + }, + { + "start": 7239.34, + "end": 7241.6, + "probability": 0.4994 + }, + { + "start": 7241.62, + "end": 7241.86, + "probability": 0.8304 + }, + { + "start": 7242.0, + "end": 7244.4, + "probability": 0.8476 + }, + { + "start": 7245.82, + "end": 7250.58, + "probability": 0.9717 + }, + { + "start": 7251.74, + "end": 7252.86, + "probability": 0.9207 + }, + { + "start": 7252.98, + "end": 7255.3, + "probability": 0.8693 + }, + { + "start": 7256.5, + "end": 7260.38, + "probability": 0.9811 + }, + { + "start": 7260.38, + "end": 7263.74, + "probability": 0.9999 + }, + { + "start": 7265.52, + "end": 7270.08, + "probability": 0.9326 + }, + { + "start": 7272.3, + "end": 7273.44, + "probability": 0.7543 + }, + { + "start": 7273.58, + "end": 7274.88, + "probability": 0.7638 + }, + { + "start": 7274.94, + "end": 7277.64, + "probability": 0.8389 + }, + { + "start": 7278.18, + "end": 7279.96, + "probability": 0.7873 + }, + { + "start": 7281.94, + "end": 7282.68, + "probability": 0.5614 + }, + { + "start": 7283.3, + "end": 7284.32, + "probability": 0.9326 + }, + { + "start": 7286.08, + "end": 7288.76, + "probability": 0.9822 + }, + { + "start": 7291.64, + "end": 7294.1, + "probability": 0.6612 + }, + { + "start": 7294.2, + "end": 7296.02, + "probability": 0.9679 + }, + { + "start": 7296.9, + "end": 7300.42, + "probability": 0.8921 + }, + { + "start": 7302.62, + "end": 7305.32, + "probability": 0.9966 + }, + { + "start": 7305.98, + "end": 7307.76, + "probability": 0.9872 + }, + { + "start": 7309.72, + "end": 7314.56, + "probability": 0.8711 + }, + { + "start": 7315.12, + "end": 7316.14, + "probability": 0.9985 + }, + { + "start": 7316.78, + "end": 7320.22, + "probability": 0.8217 + }, + { + "start": 7321.14, + "end": 7322.25, + "probability": 0.8242 + }, + { + "start": 7322.74, + "end": 7328.56, + "probability": 0.9541 + }, + { + "start": 7332.22, + "end": 7333.19, + "probability": 0.9282 + }, + { + "start": 7334.12, + "end": 7336.58, + "probability": 0.7892 + }, + { + "start": 7337.12, + "end": 7337.74, + "probability": 0.7321 + }, + { + "start": 7339.1, + "end": 7340.84, + "probability": 0.72 + }, + { + "start": 7340.9, + "end": 7341.66, + "probability": 0.9907 + }, + { + "start": 7341.7, + "end": 7343.34, + "probability": 0.9831 + }, + { + "start": 7343.42, + "end": 7344.44, + "probability": 0.7799 + }, + { + "start": 7344.66, + "end": 7345.8, + "probability": 0.869 + }, + { + "start": 7345.9, + "end": 7346.78, + "probability": 0.5338 + }, + { + "start": 7348.76, + "end": 7352.3, + "probability": 0.9967 + }, + { + "start": 7354.16, + "end": 7356.82, + "probability": 0.995 + }, + { + "start": 7357.3, + "end": 7357.66, + "probability": 0.9387 + }, + { + "start": 7359.0, + "end": 7360.2, + "probability": 0.8651 + }, + { + "start": 7361.5, + "end": 7364.26, + "probability": 0.9891 + }, + { + "start": 7364.26, + "end": 7366.5, + "probability": 0.978 + }, + { + "start": 7366.82, + "end": 7368.02, + "probability": 0.9967 + }, + { + "start": 7368.18, + "end": 7368.56, + "probability": 0.5927 + }, + { + "start": 7368.64, + "end": 7369.12, + "probability": 0.6194 + }, + { + "start": 7369.66, + "end": 7372.76, + "probability": 0.977 + }, + { + "start": 7374.82, + "end": 7375.64, + "probability": 0.8527 + }, + { + "start": 7376.32, + "end": 7378.9, + "probability": 0.7441 + }, + { + "start": 7379.76, + "end": 7382.8, + "probability": 0.9883 + }, + { + "start": 7383.44, + "end": 7384.36, + "probability": 0.9624 + }, + { + "start": 7386.04, + "end": 7389.32, + "probability": 0.9863 + }, + { + "start": 7391.38, + "end": 7392.6, + "probability": 0.6808 + }, + { + "start": 7392.88, + "end": 7393.46, + "probability": 0.5184 + }, + { + "start": 7393.54, + "end": 7394.04, + "probability": 0.732 + }, + { + "start": 7394.32, + "end": 7396.46, + "probability": 0.9944 + }, + { + "start": 7397.46, + "end": 7401.76, + "probability": 0.9897 + }, + { + "start": 7402.74, + "end": 7404.22, + "probability": 0.8499 + }, + { + "start": 7404.82, + "end": 7406.56, + "probability": 0.7636 + }, + { + "start": 7406.64, + "end": 7407.98, + "probability": 0.9316 + }, + { + "start": 7408.12, + "end": 7409.42, + "probability": 0.9395 + }, + { + "start": 7409.66, + "end": 7411.26, + "probability": 0.8166 + }, + { + "start": 7411.78, + "end": 7414.22, + "probability": 0.9655 + }, + { + "start": 7414.68, + "end": 7416.66, + "probability": 0.9753 + }, + { + "start": 7416.76, + "end": 7419.52, + "probability": 0.9568 + }, + { + "start": 7419.6, + "end": 7420.16, + "probability": 0.8367 + }, + { + "start": 7420.64, + "end": 7421.86, + "probability": 0.748 + }, + { + "start": 7422.0, + "end": 7423.78, + "probability": 0.8991 + }, + { + "start": 7423.84, + "end": 7426.9, + "probability": 0.9287 + }, + { + "start": 7428.14, + "end": 7430.19, + "probability": 0.8132 + }, + { + "start": 7434.56, + "end": 7434.56, + "probability": 0.4917 + }, + { + "start": 7434.58, + "end": 7438.52, + "probability": 0.7634 + }, + { + "start": 7438.66, + "end": 7439.44, + "probability": 0.596 + }, + { + "start": 7440.06, + "end": 7441.76, + "probability": 0.9576 + }, + { + "start": 7444.72, + "end": 7445.58, + "probability": 0.5847 + }, + { + "start": 7447.77, + "end": 7450.2, + "probability": 0.8475 + }, + { + "start": 7452.38, + "end": 7454.74, + "probability": 0.7581 + }, + { + "start": 7455.74, + "end": 7460.2, + "probability": 0.9148 + }, + { + "start": 7460.94, + "end": 7464.18, + "probability": 0.9961 + }, + { + "start": 7464.84, + "end": 7467.0, + "probability": 0.9949 + }, + { + "start": 7467.6, + "end": 7470.54, + "probability": 0.9875 + }, + { + "start": 7470.7, + "end": 7473.06, + "probability": 0.9893 + }, + { + "start": 7473.66, + "end": 7474.3, + "probability": 0.5009 + }, + { + "start": 7474.36, + "end": 7475.3, + "probability": 0.9709 + }, + { + "start": 7475.44, + "end": 7476.86, + "probability": 0.9833 + }, + { + "start": 7477.36, + "end": 7478.24, + "probability": 0.8562 + }, + { + "start": 7478.3, + "end": 7480.86, + "probability": 0.9697 + }, + { + "start": 7480.9, + "end": 7483.42, + "probability": 0.8771 + }, + { + "start": 7484.26, + "end": 7487.56, + "probability": 0.9856 + }, + { + "start": 7487.96, + "end": 7490.16, + "probability": 0.9906 + }, + { + "start": 7490.28, + "end": 7490.9, + "probability": 0.5568 + }, + { + "start": 7490.92, + "end": 7492.42, + "probability": 0.8641 + }, + { + "start": 7492.88, + "end": 7497.16, + "probability": 0.9602 + }, + { + "start": 7497.2, + "end": 7498.32, + "probability": 0.0714 + }, + { + "start": 7499.16, + "end": 7499.16, + "probability": 0.1265 + }, + { + "start": 7499.16, + "end": 7499.16, + "probability": 0.1244 + }, + { + "start": 7499.16, + "end": 7500.96, + "probability": 0.2151 + }, + { + "start": 7501.02, + "end": 7502.32, + "probability": 0.5511 + }, + { + "start": 7502.58, + "end": 7502.8, + "probability": 0.7802 + }, + { + "start": 7504.64, + "end": 7509.82, + "probability": 0.9686 + }, + { + "start": 7510.42, + "end": 7512.98, + "probability": 0.8018 + }, + { + "start": 7513.0, + "end": 7517.2, + "probability": 0.8072 + }, + { + "start": 7517.72, + "end": 7519.94, + "probability": 0.7187 + }, + { + "start": 7520.32, + "end": 7521.24, + "probability": 0.6968 + }, + { + "start": 7522.02, + "end": 7525.9, + "probability": 0.9299 + }, + { + "start": 7527.3, + "end": 7528.96, + "probability": 0.9175 + }, + { + "start": 7528.98, + "end": 7531.3, + "probability": 0.9041 + }, + { + "start": 7531.52, + "end": 7533.34, + "probability": 0.8497 + }, + { + "start": 7533.44, + "end": 7533.78, + "probability": 0.8704 + }, + { + "start": 7534.2, + "end": 7534.82, + "probability": 0.55 + }, + { + "start": 7534.94, + "end": 7538.04, + "probability": 0.708 + }, + { + "start": 7538.04, + "end": 7541.28, + "probability": 0.5968 + }, + { + "start": 7541.82, + "end": 7543.58, + "probability": 0.9556 + }, + { + "start": 7544.2, + "end": 7544.6, + "probability": 0.343 + }, + { + "start": 7544.92, + "end": 7546.78, + "probability": 0.9393 + }, + { + "start": 7546.9, + "end": 7548.07, + "probability": 0.8091 + }, + { + "start": 7548.82, + "end": 7551.76, + "probability": 0.8208 + }, + { + "start": 7551.9, + "end": 7553.9, + "probability": 0.9806 + }, + { + "start": 7554.02, + "end": 7556.66, + "probability": 0.9678 + }, + { + "start": 7556.9, + "end": 7557.48, + "probability": 0.7707 + }, + { + "start": 7558.34, + "end": 7559.56, + "probability": 0.9637 + }, + { + "start": 7560.68, + "end": 7562.96, + "probability": 0.958 + }, + { + "start": 7563.06, + "end": 7563.76, + "probability": 0.562 + }, + { + "start": 7563.86, + "end": 7565.44, + "probability": 0.9461 + }, + { + "start": 7565.72, + "end": 7567.34, + "probability": 0.9683 + }, + { + "start": 7567.72, + "end": 7568.74, + "probability": 0.7151 + }, + { + "start": 7569.18, + "end": 7571.34, + "probability": 0.9419 + }, + { + "start": 7571.52, + "end": 7572.34, + "probability": 0.9931 + }, + { + "start": 7572.52, + "end": 7573.18, + "probability": 0.7368 + }, + { + "start": 7573.32, + "end": 7574.1, + "probability": 0.9485 + }, + { + "start": 7574.34, + "end": 7577.26, + "probability": 0.8603 + }, + { + "start": 7577.72, + "end": 7580.28, + "probability": 0.9142 + }, + { + "start": 7581.08, + "end": 7583.58, + "probability": 0.9861 + }, + { + "start": 7583.92, + "end": 7585.28, + "probability": 0.977 + }, + { + "start": 7585.6, + "end": 7586.92, + "probability": 0.9771 + }, + { + "start": 7586.96, + "end": 7588.1, + "probability": 0.9817 + }, + { + "start": 7588.6, + "end": 7589.32, + "probability": 0.3957 + }, + { + "start": 7589.4, + "end": 7593.28, + "probability": 0.9934 + }, + { + "start": 7593.28, + "end": 7598.58, + "probability": 0.9846 + }, + { + "start": 7598.9, + "end": 7600.32, + "probability": 0.999 + }, + { + "start": 7600.7, + "end": 7601.94, + "probability": 0.9625 + }, + { + "start": 7602.22, + "end": 7604.64, + "probability": 0.9905 + }, + { + "start": 7605.18, + "end": 7608.9, + "probability": 0.9192 + }, + { + "start": 7609.46, + "end": 7611.16, + "probability": 0.8337 + }, + { + "start": 7611.32, + "end": 7612.74, + "probability": 0.8535 + }, + { + "start": 7612.94, + "end": 7614.74, + "probability": 0.9758 + }, + { + "start": 7614.8, + "end": 7615.5, + "probability": 0.8086 + }, + { + "start": 7616.7, + "end": 7617.54, + "probability": 0.8701 + }, + { + "start": 7618.46, + "end": 7619.66, + "probability": 0.9926 + }, + { + "start": 7620.14, + "end": 7621.14, + "probability": 0.6799 + }, + { + "start": 7621.54, + "end": 7622.16, + "probability": 0.6229 + }, + { + "start": 7622.34, + "end": 7623.42, + "probability": 0.812 + }, + { + "start": 7623.64, + "end": 7623.82, + "probability": 0.4871 + }, + { + "start": 7623.98, + "end": 7625.48, + "probability": 0.9604 + }, + { + "start": 7626.35, + "end": 7631.3, + "probability": 0.9595 + }, + { + "start": 7631.44, + "end": 7632.8, + "probability": 0.9629 + }, + { + "start": 7632.88, + "end": 7634.24, + "probability": 0.9856 + }, + { + "start": 7634.48, + "end": 7637.38, + "probability": 0.9972 + }, + { + "start": 7637.44, + "end": 7638.28, + "probability": 0.7289 + }, + { + "start": 7638.82, + "end": 7641.04, + "probability": 0.9255 + }, + { + "start": 7641.12, + "end": 7641.6, + "probability": 0.3728 + }, + { + "start": 7641.66, + "end": 7644.77, + "probability": 0.9775 + }, + { + "start": 7645.46, + "end": 7651.78, + "probability": 0.9932 + }, + { + "start": 7652.58, + "end": 7654.8, + "probability": 0.7192 + }, + { + "start": 7654.92, + "end": 7657.5, + "probability": 0.9907 + }, + { + "start": 7657.98, + "end": 7658.88, + "probability": 0.9312 + }, + { + "start": 7659.16, + "end": 7663.64, + "probability": 0.9403 + }, + { + "start": 7663.66, + "end": 7665.68, + "probability": 0.9781 + }, + { + "start": 7666.02, + "end": 7666.8, + "probability": 0.901 + }, + { + "start": 7667.1, + "end": 7670.66, + "probability": 0.7952 + }, + { + "start": 7670.66, + "end": 7672.6, + "probability": 0.9108 + }, + { + "start": 7672.68, + "end": 7673.32, + "probability": 0.6454 + }, + { + "start": 7673.32, + "end": 7674.38, + "probability": 0.5381 + }, + { + "start": 7674.58, + "end": 7676.78, + "probability": 0.7121 + }, + { + "start": 7676.88, + "end": 7678.8, + "probability": 0.6944 + }, + { + "start": 7680.12, + "end": 7680.86, + "probability": 0.9171 + }, + { + "start": 7680.9, + "end": 7683.46, + "probability": 0.9385 + }, + { + "start": 7683.56, + "end": 7685.08, + "probability": 0.939 + }, + { + "start": 7694.98, + "end": 7696.2, + "probability": 0.7979 + }, + { + "start": 7702.2, + "end": 7705.76, + "probability": 0.6441 + }, + { + "start": 7706.0, + "end": 7707.36, + "probability": 0.8643 + }, + { + "start": 7707.5, + "end": 7708.48, + "probability": 0.7831 + }, + { + "start": 7708.96, + "end": 7710.38, + "probability": 0.8174 + }, + { + "start": 7711.36, + "end": 7712.86, + "probability": 0.9288 + }, + { + "start": 7713.0, + "end": 7714.12, + "probability": 0.64 + }, + { + "start": 7714.32, + "end": 7718.7, + "probability": 0.9421 + }, + { + "start": 7719.48, + "end": 7721.84, + "probability": 0.8615 + }, + { + "start": 7722.02, + "end": 7725.08, + "probability": 0.9844 + }, + { + "start": 7725.38, + "end": 7729.1, + "probability": 0.9229 + }, + { + "start": 7729.82, + "end": 7734.0, + "probability": 0.9924 + }, + { + "start": 7736.11, + "end": 7740.4, + "probability": 0.7232 + }, + { + "start": 7740.4, + "end": 7743.18, + "probability": 0.864 + }, + { + "start": 7744.73, + "end": 7748.66, + "probability": 0.8596 + }, + { + "start": 7749.78, + "end": 7751.14, + "probability": 0.7603 + }, + { + "start": 7751.48, + "end": 7755.3, + "probability": 0.802 + }, + { + "start": 7755.3, + "end": 7760.12, + "probability": 0.9679 + }, + { + "start": 7760.2, + "end": 7760.9, + "probability": 0.6246 + }, + { + "start": 7762.36, + "end": 7767.0, + "probability": 0.9828 + }, + { + "start": 7768.04, + "end": 7768.9, + "probability": 0.2397 + }, + { + "start": 7770.48, + "end": 7775.92, + "probability": 0.6949 + }, + { + "start": 7776.7, + "end": 7777.2, + "probability": 0.6949 + }, + { + "start": 7777.36, + "end": 7779.96, + "probability": 0.968 + }, + { + "start": 7780.04, + "end": 7782.82, + "probability": 0.7137 + }, + { + "start": 7783.74, + "end": 7787.12, + "probability": 0.9958 + }, + { + "start": 7787.68, + "end": 7790.7, + "probability": 0.9844 + }, + { + "start": 7791.3, + "end": 7794.74, + "probability": 0.9971 + }, + { + "start": 7794.82, + "end": 7796.94, + "probability": 0.932 + }, + { + "start": 7796.96, + "end": 7802.96, + "probability": 0.9902 + }, + { + "start": 7803.16, + "end": 7804.18, + "probability": 0.6036 + }, + { + "start": 7804.72, + "end": 7807.36, + "probability": 0.9353 + }, + { + "start": 7807.8, + "end": 7811.98, + "probability": 0.9793 + }, + { + "start": 7812.2, + "end": 7813.32, + "probability": 0.9776 + }, + { + "start": 7814.18, + "end": 7814.58, + "probability": 0.9164 + }, + { + "start": 7814.62, + "end": 7816.28, + "probability": 0.9653 + }, + { + "start": 7816.42, + "end": 7820.24, + "probability": 0.9346 + }, + { + "start": 7820.66, + "end": 7821.79, + "probability": 0.8441 + }, + { + "start": 7821.96, + "end": 7824.02, + "probability": 0.9688 + }, + { + "start": 7824.28, + "end": 7828.64, + "probability": 0.8899 + }, + { + "start": 7828.76, + "end": 7831.2, + "probability": 0.9507 + }, + { + "start": 7831.82, + "end": 7832.68, + "probability": 0.8976 + }, + { + "start": 7832.68, + "end": 7834.42, + "probability": 0.8849 + }, + { + "start": 7834.8, + "end": 7840.96, + "probability": 0.9847 + }, + { + "start": 7841.2, + "end": 7842.28, + "probability": 0.9467 + }, + { + "start": 7842.4, + "end": 7843.36, + "probability": 0.9761 + }, + { + "start": 7843.96, + "end": 7845.68, + "probability": 0.7831 + }, + { + "start": 7846.16, + "end": 7848.1, + "probability": 0.9979 + }, + { + "start": 7848.64, + "end": 7851.7, + "probability": 0.7307 + }, + { + "start": 7852.4, + "end": 7854.84, + "probability": 0.9626 + }, + { + "start": 7854.92, + "end": 7860.9, + "probability": 0.9678 + }, + { + "start": 7860.9, + "end": 7865.86, + "probability": 0.9755 + }, + { + "start": 7866.34, + "end": 7870.73, + "probability": 0.9627 + }, + { + "start": 7871.32, + "end": 7876.22, + "probability": 0.9922 + }, + { + "start": 7876.3, + "end": 7876.86, + "probability": 0.8537 + }, + { + "start": 7877.6, + "end": 7878.84, + "probability": 0.7861 + }, + { + "start": 7883.66, + "end": 7884.24, + "probability": 0.3611 + }, + { + "start": 7884.24, + "end": 7885.26, + "probability": 0.4581 + }, + { + "start": 7886.1, + "end": 7887.72, + "probability": 0.8495 + }, + { + "start": 7889.38, + "end": 7892.0, + "probability": 0.6097 + }, + { + "start": 7896.0, + "end": 7899.3, + "probability": 0.724 + }, + { + "start": 7900.7, + "end": 7908.04, + "probability": 0.9964 + }, + { + "start": 7908.04, + "end": 7918.5, + "probability": 0.9985 + }, + { + "start": 7920.24, + "end": 7924.48, + "probability": 0.999 + }, + { + "start": 7924.9, + "end": 7930.5, + "probability": 0.7563 + }, + { + "start": 7930.5, + "end": 7934.7, + "probability": 0.9284 + }, + { + "start": 7935.16, + "end": 7936.07, + "probability": 0.9242 + }, + { + "start": 7937.0, + "end": 7938.94, + "probability": 0.9526 + }, + { + "start": 7939.64, + "end": 7944.68, + "probability": 0.998 + }, + { + "start": 7945.04, + "end": 7945.6, + "probability": 0.5855 + }, + { + "start": 7946.2, + "end": 7952.46, + "probability": 0.9976 + }, + { + "start": 7953.02, + "end": 7956.38, + "probability": 0.9623 + }, + { + "start": 7957.34, + "end": 7959.0, + "probability": 0.9603 + }, + { + "start": 7959.68, + "end": 7962.5, + "probability": 0.996 + }, + { + "start": 7962.5, + "end": 7965.94, + "probability": 0.9883 + }, + { + "start": 7966.56, + "end": 7968.54, + "probability": 0.8148 + }, + { + "start": 7968.76, + "end": 7969.22, + "probability": 0.9302 + }, + { + "start": 7969.68, + "end": 7973.06, + "probability": 0.999 + }, + { + "start": 7973.56, + "end": 7974.98, + "probability": 0.9714 + }, + { + "start": 7975.9, + "end": 7979.88, + "probability": 0.9961 + }, + { + "start": 7980.44, + "end": 7982.23, + "probability": 0.9351 + }, + { + "start": 7983.42, + "end": 7984.94, + "probability": 0.9773 + }, + { + "start": 7985.72, + "end": 7987.32, + "probability": 0.5521 + }, + { + "start": 7988.06, + "end": 7989.97, + "probability": 0.9851 + }, + { + "start": 7990.34, + "end": 7991.8, + "probability": 0.9343 + }, + { + "start": 7992.0, + "end": 7993.18, + "probability": 0.9067 + }, + { + "start": 7993.54, + "end": 7999.24, + "probability": 0.9863 + }, + { + "start": 7999.72, + "end": 8001.62, + "probability": 0.98 + }, + { + "start": 8002.5, + "end": 8003.72, + "probability": 0.9688 + }, + { + "start": 8004.52, + "end": 8006.0, + "probability": 0.998 + }, + { + "start": 8007.6, + "end": 8009.68, + "probability": 0.7094 + }, + { + "start": 8010.62, + "end": 8015.5, + "probability": 0.9253 + }, + { + "start": 8015.5, + "end": 8019.05, + "probability": 0.9982 + }, + { + "start": 8020.06, + "end": 8027.66, + "probability": 0.9961 + }, + { + "start": 8028.16, + "end": 8032.72, + "probability": 0.9987 + }, + { + "start": 8032.9, + "end": 8035.72, + "probability": 0.9648 + }, + { + "start": 8035.88, + "end": 8036.94, + "probability": 0.9238 + }, + { + "start": 8037.86, + "end": 8040.58, + "probability": 0.9727 + }, + { + "start": 8041.42, + "end": 8041.62, + "probability": 0.3146 + }, + { + "start": 8041.96, + "end": 8042.8, + "probability": 0.9472 + }, + { + "start": 8043.04, + "end": 8046.62, + "probability": 0.8926 + }, + { + "start": 8047.38, + "end": 8051.9, + "probability": 0.9863 + }, + { + "start": 8052.46, + "end": 8055.88, + "probability": 0.9798 + }, + { + "start": 8055.96, + "end": 8056.58, + "probability": 0.8738 + }, + { + "start": 8057.24, + "end": 8058.22, + "probability": 0.9695 + }, + { + "start": 8058.62, + "end": 8061.1, + "probability": 0.9792 + }, + { + "start": 8061.42, + "end": 8064.68, + "probability": 0.9854 + }, + { + "start": 8065.74, + "end": 8067.14, + "probability": 0.9902 + }, + { + "start": 8067.8, + "end": 8071.76, + "probability": 0.9735 + }, + { + "start": 8072.18, + "end": 8075.26, + "probability": 0.9712 + }, + { + "start": 8075.6, + "end": 8079.94, + "probability": 0.9985 + }, + { + "start": 8080.04, + "end": 8080.76, + "probability": 0.8521 + }, + { + "start": 8080.86, + "end": 8084.32, + "probability": 0.9905 + }, + { + "start": 8084.36, + "end": 8084.66, + "probability": 0.3731 + }, + { + "start": 8084.66, + "end": 8086.51, + "probability": 0.9531 + }, + { + "start": 8086.72, + "end": 8086.98, + "probability": 0.5429 + }, + { + "start": 8087.38, + "end": 8088.34, + "probability": 0.9489 + }, + { + "start": 8088.84, + "end": 8090.02, + "probability": 0.8989 + }, + { + "start": 8090.4, + "end": 8092.12, + "probability": 0.9789 + }, + { + "start": 8092.56, + "end": 8096.06, + "probability": 0.9728 + }, + { + "start": 8096.14, + "end": 8096.93, + "probability": 0.8789 + }, + { + "start": 8097.28, + "end": 8097.28, + "probability": 0.2301 + }, + { + "start": 8097.28, + "end": 8098.92, + "probability": 0.9477 + }, + { + "start": 8098.98, + "end": 8099.68, + "probability": 0.8343 + }, + { + "start": 8100.08, + "end": 8101.56, + "probability": 0.7595 + }, + { + "start": 8105.72, + "end": 8106.52, + "probability": 0.7798 + }, + { + "start": 8109.56, + "end": 8112.08, + "probability": 0.9338 + }, + { + "start": 8112.88, + "end": 8115.76, + "probability": 0.864 + }, + { + "start": 8116.76, + "end": 8119.46, + "probability": 0.7715 + }, + { + "start": 8120.28, + "end": 8123.12, + "probability": 0.986 + }, + { + "start": 8124.24, + "end": 8129.69, + "probability": 0.9805 + }, + { + "start": 8130.0, + "end": 8136.84, + "probability": 0.9635 + }, + { + "start": 8137.82, + "end": 8142.74, + "probability": 0.7968 + }, + { + "start": 8143.4, + "end": 8147.22, + "probability": 0.9203 + }, + { + "start": 8148.8, + "end": 8154.76, + "probability": 0.909 + }, + { + "start": 8155.26, + "end": 8158.02, + "probability": 0.8273 + }, + { + "start": 8158.58, + "end": 8161.28, + "probability": 0.9955 + }, + { + "start": 8161.36, + "end": 8162.36, + "probability": 0.9639 + }, + { + "start": 8164.08, + "end": 8167.68, + "probability": 0.8023 + }, + { + "start": 8168.32, + "end": 8174.96, + "probability": 0.9364 + }, + { + "start": 8175.76, + "end": 8176.02, + "probability": 0.2565 + }, + { + "start": 8176.04, + "end": 8181.68, + "probability": 0.9976 + }, + { + "start": 8182.62, + "end": 8185.34, + "probability": 0.8918 + }, + { + "start": 8186.72, + "end": 8189.88, + "probability": 0.9937 + }, + { + "start": 8190.04, + "end": 8194.04, + "probability": 0.9971 + }, + { + "start": 8194.38, + "end": 8198.42, + "probability": 0.9732 + }, + { + "start": 8199.4, + "end": 8200.53, + "probability": 0.9736 + }, + { + "start": 8201.54, + "end": 8205.12, + "probability": 0.9849 + }, + { + "start": 8205.8, + "end": 8210.88, + "probability": 0.9941 + }, + { + "start": 8211.62, + "end": 8211.86, + "probability": 0.8064 + }, + { + "start": 8211.96, + "end": 8215.66, + "probability": 0.9957 + }, + { + "start": 8215.88, + "end": 8216.6, + "probability": 0.7782 + }, + { + "start": 8216.7, + "end": 8217.48, + "probability": 0.9652 + }, + { + "start": 8217.5, + "end": 8218.38, + "probability": 0.8024 + }, + { + "start": 8218.76, + "end": 8220.62, + "probability": 0.9059 + }, + { + "start": 8221.16, + "end": 8223.37, + "probability": 0.9903 + }, + { + "start": 8224.14, + "end": 8225.28, + "probability": 0.7817 + }, + { + "start": 8225.58, + "end": 8227.74, + "probability": 0.9466 + }, + { + "start": 8228.28, + "end": 8231.94, + "probability": 0.8969 + }, + { + "start": 8232.52, + "end": 8236.16, + "probability": 0.7529 + }, + { + "start": 8236.72, + "end": 8240.04, + "probability": 0.9982 + }, + { + "start": 8241.06, + "end": 8241.62, + "probability": 0.63 + }, + { + "start": 8242.0, + "end": 8246.36, + "probability": 0.9478 + }, + { + "start": 8246.8, + "end": 8248.04, + "probability": 0.6702 + }, + { + "start": 8248.04, + "end": 8250.72, + "probability": 0.6137 + }, + { + "start": 8251.44, + "end": 8253.26, + "probability": 0.9086 + }, + { + "start": 8253.52, + "end": 8254.84, + "probability": 0.96 + }, + { + "start": 8255.62, + "end": 8260.0, + "probability": 0.9963 + }, + { + "start": 8260.54, + "end": 8262.28, + "probability": 0.9626 + }, + { + "start": 8262.9, + "end": 8265.3, + "probability": 0.951 + }, + { + "start": 8266.38, + "end": 8267.46, + "probability": 0.9868 + }, + { + "start": 8268.08, + "end": 8269.84, + "probability": 0.9819 + }, + { + "start": 8269.88, + "end": 8273.5, + "probability": 0.9671 + }, + { + "start": 8273.94, + "end": 8275.18, + "probability": 0.9228 + }, + { + "start": 8275.32, + "end": 8276.51, + "probability": 0.8997 + }, + { + "start": 8276.96, + "end": 8278.46, + "probability": 0.9621 + }, + { + "start": 8278.94, + "end": 8283.72, + "probability": 0.9167 + }, + { + "start": 8283.88, + "end": 8286.1, + "probability": 0.7894 + }, + { + "start": 8287.0, + "end": 8288.46, + "probability": 0.6402 + }, + { + "start": 8288.64, + "end": 8289.77, + "probability": 0.969 + }, + { + "start": 8290.72, + "end": 8295.24, + "probability": 0.9753 + }, + { + "start": 8295.74, + "end": 8297.24, + "probability": 0.9444 + }, + { + "start": 8297.7, + "end": 8299.72, + "probability": 0.9057 + }, + { + "start": 8299.78, + "end": 8300.04, + "probability": 0.2987 + }, + { + "start": 8300.08, + "end": 8300.3, + "probability": 0.292 + }, + { + "start": 8300.34, + "end": 8301.65, + "probability": 0.9122 + }, + { + "start": 8301.86, + "end": 8305.54, + "probability": 0.9233 + }, + { + "start": 8305.74, + "end": 8305.84, + "probability": 0.482 + }, + { + "start": 8305.86, + "end": 8307.36, + "probability": 0.991 + }, + { + "start": 8307.86, + "end": 8308.32, + "probability": 0.8294 + }, + { + "start": 8309.26, + "end": 8309.54, + "probability": 0.4029 + }, + { + "start": 8309.64, + "end": 8310.48, + "probability": 0.5163 + }, + { + "start": 8310.8, + "end": 8311.8, + "probability": 0.9588 + }, + { + "start": 8311.86, + "end": 8312.26, + "probability": 0.8466 + }, + { + "start": 8313.76, + "end": 8315.05, + "probability": 0.3563 + }, + { + "start": 8315.52, + "end": 8316.56, + "probability": 0.6903 + }, + { + "start": 8322.78, + "end": 8325.32, + "probability": 0.7204 + }, + { + "start": 8326.6, + "end": 8330.64, + "probability": 0.8594 + }, + { + "start": 8330.64, + "end": 8337.08, + "probability": 0.9898 + }, + { + "start": 8337.96, + "end": 8341.12, + "probability": 0.9707 + }, + { + "start": 8341.7, + "end": 8345.48, + "probability": 0.9883 + }, + { + "start": 8346.04, + "end": 8347.72, + "probability": 0.9443 + }, + { + "start": 8348.66, + "end": 8354.62, + "probability": 0.9342 + }, + { + "start": 8357.52, + "end": 8358.16, + "probability": 0.0363 + }, + { + "start": 8358.16, + "end": 8359.46, + "probability": 0.8272 + }, + { + "start": 8359.72, + "end": 8360.56, + "probability": 0.7057 + }, + { + "start": 8361.42, + "end": 8364.68, + "probability": 0.9722 + }, + { + "start": 8364.94, + "end": 8366.52, + "probability": 0.9971 + }, + { + "start": 8367.13, + "end": 8368.34, + "probability": 0.6063 + }, + { + "start": 8369.34, + "end": 8372.34, + "probability": 0.708 + }, + { + "start": 8372.54, + "end": 8377.24, + "probability": 0.9985 + }, + { + "start": 8377.24, + "end": 8387.14, + "probability": 0.9977 + }, + { + "start": 8388.14, + "end": 8390.36, + "probability": 0.7013 + }, + { + "start": 8390.7, + "end": 8393.66, + "probability": 0.9985 + }, + { + "start": 8394.36, + "end": 8398.0, + "probability": 0.9902 + }, + { + "start": 8398.0, + "end": 8400.7, + "probability": 0.9889 + }, + { + "start": 8401.08, + "end": 8403.5, + "probability": 0.9924 + }, + { + "start": 8403.6, + "end": 8404.8, + "probability": 0.7409 + }, + { + "start": 8405.56, + "end": 8409.48, + "probability": 0.8428 + }, + { + "start": 8409.86, + "end": 8413.0, + "probability": 0.9975 + }, + { + "start": 8413.18, + "end": 8413.58, + "probability": 0.7332 + }, + { + "start": 8414.18, + "end": 8416.88, + "probability": 0.8587 + }, + { + "start": 8417.42, + "end": 8418.1, + "probability": 0.8156 + }, + { + "start": 8418.18, + "end": 8420.58, + "probability": 0.9815 + }, + { + "start": 8420.74, + "end": 8421.75, + "probability": 0.9718 + }, + { + "start": 8423.66, + "end": 8425.02, + "probability": 0.9556 + }, + { + "start": 8425.48, + "end": 8430.92, + "probability": 0.9932 + }, + { + "start": 8431.8, + "end": 8438.22, + "probability": 0.9118 + }, + { + "start": 8438.28, + "end": 8439.2, + "probability": 0.601 + }, + { + "start": 8439.28, + "end": 8440.72, + "probability": 0.7536 + }, + { + "start": 8441.16, + "end": 8442.42, + "probability": 0.7523 + }, + { + "start": 8442.54, + "end": 8443.32, + "probability": 0.8916 + }, + { + "start": 8443.7, + "end": 8445.33, + "probability": 0.9858 + }, + { + "start": 8446.26, + "end": 8449.1, + "probability": 0.9819 + }, + { + "start": 8449.2, + "end": 8450.38, + "probability": 0.9536 + }, + { + "start": 8451.24, + "end": 8454.5, + "probability": 0.9944 + }, + { + "start": 8455.3, + "end": 8457.82, + "probability": 0.8516 + }, + { + "start": 8457.9, + "end": 8460.58, + "probability": 0.8523 + }, + { + "start": 8461.18, + "end": 8465.36, + "probability": 0.9946 + }, + { + "start": 8466.8, + "end": 8468.3, + "probability": 0.6002 + }, + { + "start": 8468.44, + "end": 8468.84, + "probability": 0.8682 + }, + { + "start": 8468.88, + "end": 8474.04, + "probability": 0.9965 + }, + { + "start": 8474.04, + "end": 8479.44, + "probability": 0.9476 + }, + { + "start": 8480.22, + "end": 8482.26, + "probability": 0.819 + }, + { + "start": 8482.38, + "end": 8487.7, + "probability": 0.9758 + }, + { + "start": 8488.2, + "end": 8493.74, + "probability": 0.8036 + }, + { + "start": 8494.16, + "end": 8496.7, + "probability": 0.9884 + }, + { + "start": 8497.12, + "end": 8499.94, + "probability": 0.8506 + }, + { + "start": 8500.48, + "end": 8501.8, + "probability": 0.9102 + }, + { + "start": 8502.2, + "end": 8506.12, + "probability": 0.8687 + }, + { + "start": 8507.14, + "end": 8510.16, + "probability": 0.9651 + }, + { + "start": 8510.7, + "end": 8514.72, + "probability": 0.9062 + }, + { + "start": 8515.6, + "end": 8516.22, + "probability": 0.9565 + }, + { + "start": 8516.44, + "end": 8517.12, + "probability": 0.4107 + }, + { + "start": 8517.12, + "end": 8517.67, + "probability": 0.6462 + }, + { + "start": 8518.24, + "end": 8521.42, + "probability": 0.8912 + }, + { + "start": 8522.38, + "end": 8526.08, + "probability": 0.8384 + }, + { + "start": 8526.76, + "end": 8529.04, + "probability": 0.8839 + }, + { + "start": 8529.6, + "end": 8531.48, + "probability": 0.9229 + }, + { + "start": 8531.58, + "end": 8534.34, + "probability": 0.9878 + }, + { + "start": 8534.96, + "end": 8537.36, + "probability": 0.9829 + }, + { + "start": 8537.44, + "end": 8539.62, + "probability": 0.9992 + }, + { + "start": 8540.74, + "end": 8545.28, + "probability": 0.9932 + }, + { + "start": 8546.02, + "end": 8549.32, + "probability": 0.9951 + }, + { + "start": 8549.62, + "end": 8552.2, + "probability": 0.9984 + }, + { + "start": 8552.28, + "end": 8552.74, + "probability": 0.8997 + }, + { + "start": 8553.48, + "end": 8556.34, + "probability": 0.8044 + }, + { + "start": 8556.38, + "end": 8560.12, + "probability": 0.7519 + }, + { + "start": 8560.2, + "end": 8560.92, + "probability": 0.8489 + }, + { + "start": 8584.02, + "end": 8585.14, + "probability": 0.7155 + }, + { + "start": 8586.92, + "end": 8587.8, + "probability": 0.904 + }, + { + "start": 8587.9, + "end": 8588.88, + "probability": 0.7604 + }, + { + "start": 8589.76, + "end": 8592.48, + "probability": 0.9919 + }, + { + "start": 8594.48, + "end": 8599.18, + "probability": 0.9854 + }, + { + "start": 8600.58, + "end": 8604.58, + "probability": 0.9087 + }, + { + "start": 8606.68, + "end": 8609.74, + "probability": 0.9893 + }, + { + "start": 8610.94, + "end": 8614.26, + "probability": 0.6691 + }, + { + "start": 8615.02, + "end": 8616.06, + "probability": 0.7569 + }, + { + "start": 8617.32, + "end": 8619.66, + "probability": 0.9965 + }, + { + "start": 8620.64, + "end": 8623.82, + "probability": 0.9646 + }, + { + "start": 8624.92, + "end": 8627.48, + "probability": 0.6804 + }, + { + "start": 8628.64, + "end": 8632.46, + "probability": 0.9837 + }, + { + "start": 8633.44, + "end": 8635.02, + "probability": 0.9028 + }, + { + "start": 8635.56, + "end": 8636.5, + "probability": 0.9201 + }, + { + "start": 8636.9, + "end": 8641.7, + "probability": 0.9834 + }, + { + "start": 8642.6, + "end": 8643.5, + "probability": 0.6352 + }, + { + "start": 8644.46, + "end": 8646.04, + "probability": 0.9895 + }, + { + "start": 8647.68, + "end": 8649.27, + "probability": 0.5833 + }, + { + "start": 8649.88, + "end": 8655.2, + "probability": 0.9521 + }, + { + "start": 8656.16, + "end": 8661.3, + "probability": 0.9897 + }, + { + "start": 8663.1, + "end": 8664.08, + "probability": 0.8418 + }, + { + "start": 8666.1, + "end": 8669.0, + "probability": 0.9741 + }, + { + "start": 8669.74, + "end": 8675.02, + "probability": 0.9896 + }, + { + "start": 8675.68, + "end": 8680.62, + "probability": 0.9697 + }, + { + "start": 8681.7, + "end": 8687.7, + "probability": 0.9963 + }, + { + "start": 8688.18, + "end": 8691.88, + "probability": 0.9182 + }, + { + "start": 8692.86, + "end": 8695.08, + "probability": 0.9546 + }, + { + "start": 8696.48, + "end": 8697.44, + "probability": 0.416 + }, + { + "start": 8697.98, + "end": 8700.42, + "probability": 0.6157 + }, + { + "start": 8701.16, + "end": 8706.08, + "probability": 0.9428 + }, + { + "start": 8706.46, + "end": 8712.4, + "probability": 0.9272 + }, + { + "start": 8712.98, + "end": 8714.92, + "probability": 0.9098 + }, + { + "start": 8717.34, + "end": 8723.28, + "probability": 0.6369 + }, + { + "start": 8723.58, + "end": 8725.48, + "probability": 0.9083 + }, + { + "start": 8726.36, + "end": 8729.16, + "probability": 0.7785 + }, + { + "start": 8730.28, + "end": 8731.2, + "probability": 0.9105 + }, + { + "start": 8732.46, + "end": 8740.58, + "probability": 0.9716 + }, + { + "start": 8742.18, + "end": 8745.4, + "probability": 0.9641 + }, + { + "start": 8747.16, + "end": 8751.04, + "probability": 0.9209 + }, + { + "start": 8751.04, + "end": 8755.51, + "probability": 0.9871 + }, + { + "start": 8757.52, + "end": 8764.72, + "probability": 0.9141 + }, + { + "start": 8764.84, + "end": 8766.1, + "probability": 0.9656 + }, + { + "start": 8766.28, + "end": 8767.32, + "probability": 0.9199 + }, + { + "start": 8768.42, + "end": 8771.42, + "probability": 0.671 + }, + { + "start": 8773.48, + "end": 8778.08, + "probability": 0.9915 + }, + { + "start": 8779.12, + "end": 8784.46, + "probability": 0.8703 + }, + { + "start": 8784.68, + "end": 8785.22, + "probability": 0.9539 + }, + { + "start": 8785.98, + "end": 8788.04, + "probability": 0.8059 + }, + { + "start": 8789.04, + "end": 8791.34, + "probability": 0.8454 + }, + { + "start": 8791.88, + "end": 8793.78, + "probability": 0.9836 + }, + { + "start": 8793.82, + "end": 8798.6, + "probability": 0.9811 + }, + { + "start": 8798.8, + "end": 8803.08, + "probability": 0.9604 + }, + { + "start": 8804.1, + "end": 8806.44, + "probability": 0.9105 + }, + { + "start": 8806.48, + "end": 8812.0, + "probability": 0.9748 + }, + { + "start": 8812.92, + "end": 8813.08, + "probability": 0.4947 + }, + { + "start": 8813.08, + "end": 8815.86, + "probability": 0.9073 + }, + { + "start": 8817.5, + "end": 8821.24, + "probability": 0.9831 + }, + { + "start": 8822.18, + "end": 8826.2, + "probability": 0.9609 + }, + { + "start": 8827.44, + "end": 8831.18, + "probability": 0.8757 + }, + { + "start": 8832.5, + "end": 8835.22, + "probability": 0.9623 + }, + { + "start": 8836.52, + "end": 8838.16, + "probability": 0.9888 + }, + { + "start": 8838.8, + "end": 8842.44, + "probability": 0.9236 + }, + { + "start": 8843.12, + "end": 8844.51, + "probability": 0.5818 + }, + { + "start": 8845.24, + "end": 8850.14, + "probability": 0.9626 + }, + { + "start": 8850.84, + "end": 8854.42, + "probability": 0.8812 + }, + { + "start": 8855.08, + "end": 8857.5, + "probability": 0.7835 + }, + { + "start": 8858.36, + "end": 8862.36, + "probability": 0.8258 + }, + { + "start": 8863.48, + "end": 8867.88, + "probability": 0.77 + }, + { + "start": 8868.98, + "end": 8871.12, + "probability": 0.8105 + }, + { + "start": 8873.0, + "end": 8876.86, + "probability": 0.9967 + }, + { + "start": 8876.86, + "end": 8880.92, + "probability": 0.9837 + }, + { + "start": 8882.0, + "end": 8886.1, + "probability": 0.9501 + }, + { + "start": 8886.74, + "end": 8888.16, + "probability": 0.4634 + }, + { + "start": 8888.18, + "end": 8890.5, + "probability": 0.9056 + }, + { + "start": 8890.7, + "end": 8891.68, + "probability": 0.925 + }, + { + "start": 8892.34, + "end": 8895.32, + "probability": 0.9537 + }, + { + "start": 8895.88, + "end": 8898.18, + "probability": 0.9739 + }, + { + "start": 8898.18, + "end": 8903.62, + "probability": 0.9849 + }, + { + "start": 8904.06, + "end": 8907.1, + "probability": 0.5555 + }, + { + "start": 8907.28, + "end": 8908.52, + "probability": 0.974 + }, + { + "start": 8910.97, + "end": 8914.38, + "probability": 0.9521 + }, + { + "start": 8914.7, + "end": 8916.44, + "probability": 0.6808 + }, + { + "start": 8917.44, + "end": 8920.28, + "probability": 0.8764 + }, + { + "start": 8920.58, + "end": 8921.7, + "probability": 0.4979 + }, + { + "start": 8922.96, + "end": 8927.54, + "probability": 0.5927 + }, + { + "start": 8927.54, + "end": 8930.28, + "probability": 0.5555 + }, + { + "start": 8930.92, + "end": 8932.92, + "probability": 0.981 + }, + { + "start": 8933.2, + "end": 8934.74, + "probability": 0.8215 + }, + { + "start": 8936.18, + "end": 8939.76, + "probability": 0.9839 + }, + { + "start": 8940.08, + "end": 8941.7, + "probability": 0.9878 + }, + { + "start": 8943.42, + "end": 8943.44, + "probability": 0.0978 + }, + { + "start": 8943.44, + "end": 8944.54, + "probability": 0.9214 + }, + { + "start": 8945.76, + "end": 8947.58, + "probability": 0.8855 + }, + { + "start": 8947.58, + "end": 8950.8, + "probability": 0.9528 + }, + { + "start": 8950.85, + "end": 8954.7, + "probability": 0.9944 + }, + { + "start": 8955.4, + "end": 8956.68, + "probability": 0.9359 + }, + { + "start": 8956.96, + "end": 8958.88, + "probability": 0.9938 + }, + { + "start": 8959.0, + "end": 8963.92, + "probability": 0.9953 + }, + { + "start": 8964.96, + "end": 8966.6, + "probability": 0.9515 + }, + { + "start": 8967.56, + "end": 8972.55, + "probability": 0.8503 + }, + { + "start": 8973.18, + "end": 8977.32, + "probability": 0.9529 + }, + { + "start": 8977.48, + "end": 8980.94, + "probability": 0.856 + }, + { + "start": 8982.6, + "end": 8984.8, + "probability": 0.9836 + }, + { + "start": 8985.24, + "end": 8988.16, + "probability": 0.9883 + }, + { + "start": 8989.02, + "end": 8992.54, + "probability": 0.9083 + }, + { + "start": 8993.14, + "end": 8995.14, + "probability": 0.9776 + }, + { + "start": 8995.98, + "end": 8998.46, + "probability": 0.9888 + }, + { + "start": 8999.18, + "end": 9003.2, + "probability": 0.9786 + }, + { + "start": 9003.3, + "end": 9004.02, + "probability": 0.9899 + }, + { + "start": 9004.14, + "end": 9005.4, + "probability": 0.9665 + }, + { + "start": 9006.3, + "end": 9009.28, + "probability": 0.9873 + }, + { + "start": 9009.72, + "end": 9011.54, + "probability": 0.9713 + }, + { + "start": 9012.52, + "end": 9016.46, + "probability": 0.9792 + }, + { + "start": 9018.5, + "end": 9025.18, + "probability": 0.9969 + }, + { + "start": 9026.16, + "end": 9029.5, + "probability": 0.9844 + }, + { + "start": 9030.38, + "end": 9036.42, + "probability": 0.99 + }, + { + "start": 9037.24, + "end": 9038.68, + "probability": 0.9957 + }, + { + "start": 9039.62, + "end": 9042.8, + "probability": 0.9584 + }, + { + "start": 9043.6, + "end": 9044.5, + "probability": 0.7234 + }, + { + "start": 9044.78, + "end": 9048.64, + "probability": 0.9348 + }, + { + "start": 9048.8, + "end": 9050.26, + "probability": 0.8528 + }, + { + "start": 9051.02, + "end": 9053.14, + "probability": 0.799 + }, + { + "start": 9054.34, + "end": 9055.04, + "probability": 0.9186 + }, + { + "start": 9055.88, + "end": 9063.4, + "probability": 0.9834 + }, + { + "start": 9064.34, + "end": 9069.16, + "probability": 0.9858 + }, + { + "start": 9069.32, + "end": 9070.64, + "probability": 0.8901 + }, + { + "start": 9071.22, + "end": 9075.26, + "probability": 0.9746 + }, + { + "start": 9076.46, + "end": 9079.2, + "probability": 0.7834 + }, + { + "start": 9079.78, + "end": 9080.58, + "probability": 0.9008 + }, + { + "start": 9081.3, + "end": 9085.0, + "probability": 0.9596 + }, + { + "start": 9085.76, + "end": 9087.42, + "probability": 0.9917 + }, + { + "start": 9087.98, + "end": 9089.06, + "probability": 0.7497 + }, + { + "start": 9089.98, + "end": 9092.14, + "probability": 0.2341 + }, + { + "start": 9092.14, + "end": 9092.94, + "probability": 0.2622 + }, + { + "start": 9093.94, + "end": 9095.82, + "probability": 0.0278 + }, + { + "start": 9095.9, + "end": 9097.99, + "probability": 0.926 + }, + { + "start": 9098.28, + "end": 9099.58, + "probability": 0.8448 + }, + { + "start": 9099.58, + "end": 9099.58, + "probability": 0.1724 + }, + { + "start": 9099.58, + "end": 9102.66, + "probability": 0.9878 + }, + { + "start": 9103.08, + "end": 9103.24, + "probability": 0.2883 + }, + { + "start": 9103.66, + "end": 9108.48, + "probability": 0.856 + }, + { + "start": 9108.67, + "end": 9110.6, + "probability": 0.0312 + }, + { + "start": 9111.36, + "end": 9111.52, + "probability": 0.2374 + }, + { + "start": 9111.52, + "end": 9113.8, + "probability": 0.769 + }, + { + "start": 9113.96, + "end": 9114.6, + "probability": 0.2568 + }, + { + "start": 9114.76, + "end": 9116.4, + "probability": 0.5694 + }, + { + "start": 9116.96, + "end": 9118.6, + "probability": 0.9714 + }, + { + "start": 9119.04, + "end": 9120.17, + "probability": 0.8509 + }, + { + "start": 9120.8, + "end": 9122.38, + "probability": 0.9671 + }, + { + "start": 9123.58, + "end": 9125.24, + "probability": 0.9917 + }, + { + "start": 9125.98, + "end": 9132.42, + "probability": 0.9411 + }, + { + "start": 9132.72, + "end": 9138.98, + "probability": 0.9969 + }, + { + "start": 9138.98, + "end": 9144.06, + "probability": 0.9771 + }, + { + "start": 9144.76, + "end": 9146.28, + "probability": 0.8538 + }, + { + "start": 9146.28, + "end": 9148.56, + "probability": 0.652 + }, + { + "start": 9148.68, + "end": 9149.28, + "probability": 0.633 + }, + { + "start": 9149.32, + "end": 9149.96, + "probability": 0.8452 + }, + { + "start": 9150.08, + "end": 9151.32, + "probability": 0.9865 + }, + { + "start": 9151.76, + "end": 9153.04, + "probability": 0.9749 + }, + { + "start": 9153.38, + "end": 9154.12, + "probability": 0.6217 + }, + { + "start": 9154.64, + "end": 9155.8, + "probability": 0.676 + }, + { + "start": 9156.04, + "end": 9160.0, + "probability": 0.9617 + }, + { + "start": 9160.16, + "end": 9161.66, + "probability": 0.9063 + }, + { + "start": 9162.18, + "end": 9167.44, + "probability": 0.8688 + }, + { + "start": 9168.02, + "end": 9168.91, + "probability": 0.3688 + }, + { + "start": 9169.58, + "end": 9173.78, + "probability": 0.9877 + }, + { + "start": 9174.46, + "end": 9178.38, + "probability": 0.9911 + }, + { + "start": 9178.46, + "end": 9179.92, + "probability": 0.7204 + }, + { + "start": 9180.2, + "end": 9181.22, + "probability": 0.5634 + }, + { + "start": 9181.98, + "end": 9183.25, + "probability": 0.8718 + }, + { + "start": 9183.38, + "end": 9184.1, + "probability": 0.6398 + }, + { + "start": 9184.24, + "end": 9185.32, + "probability": 0.9867 + }, + { + "start": 9185.38, + "end": 9186.1, + "probability": 0.9375 + }, + { + "start": 9186.5, + "end": 9188.9, + "probability": 0.987 + }, + { + "start": 9189.34, + "end": 9190.58, + "probability": 0.6264 + }, + { + "start": 9190.86, + "end": 9194.2, + "probability": 0.9398 + }, + { + "start": 9194.88, + "end": 9199.0, + "probability": 0.7686 + }, + { + "start": 9199.82, + "end": 9199.9, + "probability": 0.33 + }, + { + "start": 9199.9, + "end": 9199.9, + "probability": 0.0283 + }, + { + "start": 9199.9, + "end": 9199.9, + "probability": 0.3283 + }, + { + "start": 9199.9, + "end": 9199.9, + "probability": 0.129 + }, + { + "start": 9199.9, + "end": 9200.39, + "probability": 0.4595 + }, + { + "start": 9201.82, + "end": 9205.06, + "probability": 0.3062 + }, + { + "start": 9205.98, + "end": 9206.52, + "probability": 0.3026 + }, + { + "start": 9206.62, + "end": 9208.15, + "probability": 0.6266 + }, + { + "start": 9208.66, + "end": 9211.48, + "probability": 0.7759 + }, + { + "start": 9212.02, + "end": 9213.08, + "probability": 0.783 + }, + { + "start": 9213.22, + "end": 9216.16, + "probability": 0.9087 + }, + { + "start": 9216.62, + "end": 9220.72, + "probability": 0.9763 + }, + { + "start": 9221.18, + "end": 9221.36, + "probability": 0.1818 + }, + { + "start": 9221.48, + "end": 9224.1, + "probability": 0.934 + }, + { + "start": 9224.68, + "end": 9225.63, + "probability": 0.8578 + }, + { + "start": 9226.0, + "end": 9227.84, + "probability": 0.9832 + }, + { + "start": 9228.22, + "end": 9230.26, + "probability": 0.9698 + }, + { + "start": 9230.78, + "end": 9234.08, + "probability": 0.9722 + }, + { + "start": 9234.62, + "end": 9236.28, + "probability": 0.7383 + }, + { + "start": 9236.88, + "end": 9242.08, + "probability": 0.9956 + }, + { + "start": 9242.58, + "end": 9243.51, + "probability": 0.994 + }, + { + "start": 9244.16, + "end": 9248.94, + "probability": 0.9797 + }, + { + "start": 9250.68, + "end": 9255.54, + "probability": 0.9635 + }, + { + "start": 9256.06, + "end": 9257.94, + "probability": 0.9671 + }, + { + "start": 9258.04, + "end": 9258.41, + "probability": 0.9188 + }, + { + "start": 9259.42, + "end": 9260.92, + "probability": 0.9097 + }, + { + "start": 9261.5, + "end": 9265.06, + "probability": 0.9951 + }, + { + "start": 9265.28, + "end": 9266.86, + "probability": 0.8505 + }, + { + "start": 9267.36, + "end": 9269.88, + "probability": 0.9833 + }, + { + "start": 9270.42, + "end": 9272.22, + "probability": 0.7624 + }, + { + "start": 9272.74, + "end": 9273.87, + "probability": 0.8582 + }, + { + "start": 9274.64, + "end": 9277.98, + "probability": 0.9033 + }, + { + "start": 9278.64, + "end": 9280.48, + "probability": 0.8396 + }, + { + "start": 9280.56, + "end": 9281.46, + "probability": 0.5211 + }, + { + "start": 9282.32, + "end": 9286.18, + "probability": 0.8965 + }, + { + "start": 9286.52, + "end": 9293.7, + "probability": 0.9756 + }, + { + "start": 9293.8, + "end": 9295.24, + "probability": 0.6191 + }, + { + "start": 9296.08, + "end": 9298.08, + "probability": 0.7238 + }, + { + "start": 9298.36, + "end": 9300.8, + "probability": 0.8804 + }, + { + "start": 9301.82, + "end": 9305.91, + "probability": 0.9897 + }, + { + "start": 9306.4, + "end": 9309.16, + "probability": 0.9985 + }, + { + "start": 9310.14, + "end": 9315.62, + "probability": 0.9963 + }, + { + "start": 9316.32, + "end": 9319.46, + "probability": 0.9951 + }, + { + "start": 9320.04, + "end": 9324.84, + "probability": 0.7942 + }, + { + "start": 9325.52, + "end": 9329.12, + "probability": 0.9907 + }, + { + "start": 9330.0, + "end": 9334.26, + "probability": 0.7391 + }, + { + "start": 9335.28, + "end": 9337.12, + "probability": 0.9818 + }, + { + "start": 9338.06, + "end": 9339.17, + "probability": 0.7891 + }, + { + "start": 9339.66, + "end": 9346.94, + "probability": 0.9744 + }, + { + "start": 9347.98, + "end": 9349.88, + "probability": 0.712 + }, + { + "start": 9350.9, + "end": 9356.36, + "probability": 0.7657 + }, + { + "start": 9356.86, + "end": 9358.52, + "probability": 0.9049 + }, + { + "start": 9359.02, + "end": 9362.28, + "probability": 0.9646 + }, + { + "start": 9363.97, + "end": 9369.08, + "probability": 0.8376 + }, + { + "start": 9369.84, + "end": 9372.96, + "probability": 0.9735 + }, + { + "start": 9373.73, + "end": 9380.08, + "probability": 0.921 + }, + { + "start": 9380.5, + "end": 9381.26, + "probability": 0.5763 + }, + { + "start": 9381.38, + "end": 9382.12, + "probability": 0.9297 + }, + { + "start": 9382.18, + "end": 9382.8, + "probability": 0.9656 + }, + { + "start": 9382.84, + "end": 9383.86, + "probability": 0.9468 + }, + { + "start": 9384.06, + "end": 9385.52, + "probability": 0.7958 + }, + { + "start": 9386.3, + "end": 9387.94, + "probability": 0.9617 + }, + { + "start": 9389.04, + "end": 9393.32, + "probability": 0.9624 + }, + { + "start": 9394.04, + "end": 9396.72, + "probability": 0.9971 + }, + { + "start": 9397.88, + "end": 9399.3, + "probability": 0.8931 + }, + { + "start": 9400.08, + "end": 9401.92, + "probability": 0.9611 + }, + { + "start": 9402.74, + "end": 9404.72, + "probability": 0.9377 + }, + { + "start": 9405.42, + "end": 9407.29, + "probability": 0.9158 + }, + { + "start": 9408.9, + "end": 9411.07, + "probability": 0.1043 + }, + { + "start": 9412.1, + "end": 9418.96, + "probability": 0.7288 + }, + { + "start": 9419.48, + "end": 9425.44, + "probability": 0.979 + }, + { + "start": 9426.26, + "end": 9429.28, + "probability": 0.9585 + }, + { + "start": 9431.16, + "end": 9434.26, + "probability": 0.5406 + }, + { + "start": 9434.88, + "end": 9437.06, + "probability": 0.8477 + }, + { + "start": 9437.82, + "end": 9439.7, + "probability": 0.9419 + }, + { + "start": 9440.5, + "end": 9442.08, + "probability": 0.9677 + }, + { + "start": 9442.46, + "end": 9445.98, + "probability": 0.9451 + }, + { + "start": 9446.42, + "end": 9447.12, + "probability": 0.4586 + }, + { + "start": 9447.18, + "end": 9447.58, + "probability": 0.3953 + }, + { + "start": 9447.82, + "end": 9449.14, + "probability": 0.9278 + }, + { + "start": 9449.64, + "end": 9453.1, + "probability": 0.9823 + }, + { + "start": 9453.86, + "end": 9460.8, + "probability": 0.9353 + }, + { + "start": 9461.38, + "end": 9464.96, + "probability": 0.7075 + }, + { + "start": 9465.0, + "end": 9466.26, + "probability": 0.4875 + }, + { + "start": 9466.66, + "end": 9470.4, + "probability": 0.9573 + }, + { + "start": 9471.36, + "end": 9474.32, + "probability": 0.9832 + }, + { + "start": 9474.76, + "end": 9476.74, + "probability": 0.9558 + }, + { + "start": 9477.08, + "end": 9479.94, + "probability": 0.9978 + }, + { + "start": 9480.62, + "end": 9484.56, + "probability": 0.9722 + }, + { + "start": 9485.36, + "end": 9487.86, + "probability": 0.8997 + }, + { + "start": 9488.04, + "end": 9488.34, + "probability": 0.8395 + }, + { + "start": 9488.62, + "end": 9490.57, + "probability": 0.8516 + }, + { + "start": 9490.94, + "end": 9493.68, + "probability": 0.9937 + }, + { + "start": 9493.68, + "end": 9495.94, + "probability": 0.5677 + }, + { + "start": 9496.1, + "end": 9498.9, + "probability": 0.8222 + }, + { + "start": 9499.9, + "end": 9501.54, + "probability": 0.946 + }, + { + "start": 9501.64, + "end": 9504.58, + "probability": 0.8937 + }, + { + "start": 9504.6, + "end": 9505.4, + "probability": 0.9037 + }, + { + "start": 9507.57, + "end": 9510.07, + "probability": 0.5402 + }, + { + "start": 9511.28, + "end": 9513.86, + "probability": 0.6145 + }, + { + "start": 9514.84, + "end": 9517.74, + "probability": 0.9526 + }, + { + "start": 9518.54, + "end": 9520.86, + "probability": 0.8242 + }, + { + "start": 9524.34, + "end": 9526.8, + "probability": 0.9417 + }, + { + "start": 9528.22, + "end": 9530.6, + "probability": 0.9846 + }, + { + "start": 9531.46, + "end": 9533.62, + "probability": 0.9788 + }, + { + "start": 9534.46, + "end": 9537.24, + "probability": 0.434 + }, + { + "start": 9538.84, + "end": 9539.16, + "probability": 0.5782 + }, + { + "start": 9544.54, + "end": 9545.78, + "probability": 0.4426 + }, + { + "start": 9547.1, + "end": 9549.8, + "probability": 0.7657 + }, + { + "start": 9550.7, + "end": 9553.24, + "probability": 0.9255 + }, + { + "start": 9554.58, + "end": 9557.04, + "probability": 0.9608 + }, + { + "start": 9557.74, + "end": 9558.56, + "probability": 0.9927 + }, + { + "start": 9559.38, + "end": 9560.3, + "probability": 0.8912 + }, + { + "start": 9561.12, + "end": 9562.96, + "probability": 0.99 + }, + { + "start": 9565.98, + "end": 9568.98, + "probability": 0.9596 + }, + { + "start": 9569.92, + "end": 9572.54, + "probability": 0.5764 + }, + { + "start": 9573.32, + "end": 9573.78, + "probability": 0.9157 + }, + { + "start": 9574.54, + "end": 9575.7, + "probability": 0.6449 + }, + { + "start": 9576.38, + "end": 9579.16, + "probability": 0.9666 + }, + { + "start": 9579.98, + "end": 9582.06, + "probability": 0.9822 + }, + { + "start": 9582.74, + "end": 9584.72, + "probability": 0.9808 + }, + { + "start": 9585.44, + "end": 9586.74, + "probability": 0.9866 + }, + { + "start": 9589.56, + "end": 9590.56, + "probability": 0.6594 + }, + { + "start": 9591.3, + "end": 9593.48, + "probability": 0.9395 + }, + { + "start": 9596.07, + "end": 9599.26, + "probability": 0.5167 + }, + { + "start": 9600.56, + "end": 9600.98, + "probability": 0.9401 + }, + { + "start": 9601.96, + "end": 9603.0, + "probability": 0.9549 + }, + { + "start": 9603.82, + "end": 9605.86, + "probability": 0.9266 + }, + { + "start": 9606.9, + "end": 9609.16, + "probability": 0.985 + }, + { + "start": 9610.3, + "end": 9613.0, + "probability": 0.9839 + }, + { + "start": 9613.76, + "end": 9615.66, + "probability": 0.5818 + }, + { + "start": 9616.22, + "end": 9619.62, + "probability": 0.9459 + }, + { + "start": 9621.52, + "end": 9625.96, + "probability": 0.5125 + }, + { + "start": 9628.22, + "end": 9630.12, + "probability": 0.874 + }, + { + "start": 9631.58, + "end": 9632.7, + "probability": 0.7401 + }, + { + "start": 9633.26, + "end": 9634.42, + "probability": 0.9435 + }, + { + "start": 9636.06, + "end": 9641.04, + "probability": 0.9387 + }, + { + "start": 9642.78, + "end": 9643.22, + "probability": 0.8626 + }, + { + "start": 9644.0, + "end": 9644.94, + "probability": 0.9678 + }, + { + "start": 9645.74, + "end": 9647.86, + "probability": 0.9712 + }, + { + "start": 9649.2, + "end": 9649.52, + "probability": 0.3707 + }, + { + "start": 9653.28, + "end": 9654.52, + "probability": 0.3023 + }, + { + "start": 9666.06, + "end": 9667.68, + "probability": 0.4471 + }, + { + "start": 9674.32, + "end": 9675.5, + "probability": 0.5317 + }, + { + "start": 9676.34, + "end": 9678.08, + "probability": 0.7653 + }, + { + "start": 9678.74, + "end": 9681.54, + "probability": 0.6852 + }, + { + "start": 9682.44, + "end": 9682.84, + "probability": 0.8171 + }, + { + "start": 9683.44, + "end": 9687.3, + "probability": 0.968 + }, + { + "start": 9687.98, + "end": 9690.48, + "probability": 0.9622 + }, + { + "start": 9691.26, + "end": 9692.96, + "probability": 0.989 + }, + { + "start": 9693.66, + "end": 9694.68, + "probability": 0.9922 + }, + { + "start": 9695.46, + "end": 9697.48, + "probability": 0.8156 + }, + { + "start": 9698.06, + "end": 9698.48, + "probability": 0.9871 + }, + { + "start": 9699.14, + "end": 9706.74, + "probability": 0.9038 + }, + { + "start": 9707.46, + "end": 9709.64, + "probability": 0.8651 + }, + { + "start": 9710.9, + "end": 9712.8, + "probability": 0.8896 + }, + { + "start": 9714.16, + "end": 9716.92, + "probability": 0.8363 + }, + { + "start": 9717.38, + "end": 9719.22, + "probability": 0.9209 + }, + { + "start": 9719.52, + "end": 9723.74, + "probability": 0.983 + }, + { + "start": 9725.53, + "end": 9728.96, + "probability": 0.6796 + }, + { + "start": 9730.0, + "end": 9733.1, + "probability": 0.9145 + }, + { + "start": 9734.1, + "end": 9737.12, + "probability": 0.6646 + }, + { + "start": 9738.78, + "end": 9741.48, + "probability": 0.8816 + }, + { + "start": 9743.38, + "end": 9745.38, + "probability": 0.9351 + }, + { + "start": 9746.32, + "end": 9748.82, + "probability": 0.9066 + }, + { + "start": 9749.84, + "end": 9752.68, + "probability": 0.6233 + }, + { + "start": 9755.8, + "end": 9756.58, + "probability": 0.9258 + }, + { + "start": 9757.28, + "end": 9758.14, + "probability": 0.8308 + }, + { + "start": 9759.08, + "end": 9761.16, + "probability": 0.7881 + }, + { + "start": 9761.78, + "end": 9763.86, + "probability": 0.9185 + }, + { + "start": 9765.14, + "end": 9767.64, + "probability": 0.7616 + }, + { + "start": 9768.42, + "end": 9768.92, + "probability": 0.812 + }, + { + "start": 9769.84, + "end": 9770.96, + "probability": 0.9768 + }, + { + "start": 9772.27, + "end": 9774.5, + "probability": 0.9819 + }, + { + "start": 9775.38, + "end": 9777.4, + "probability": 0.9779 + }, + { + "start": 9778.4, + "end": 9780.44, + "probability": 0.9878 + }, + { + "start": 9781.2, + "end": 9783.18, + "probability": 0.9937 + }, + { + "start": 9784.8, + "end": 9786.62, + "probability": 0.9759 + }, + { + "start": 9787.54, + "end": 9789.84, + "probability": 0.9767 + }, + { + "start": 9791.16, + "end": 9794.71, + "probability": 0.2978 + }, + { + "start": 9801.46, + "end": 9805.42, + "probability": 0.6241 + }, + { + "start": 9808.91, + "end": 9812.16, + "probability": 0.4464 + }, + { + "start": 9815.1, + "end": 9816.5, + "probability": 0.6687 + }, + { + "start": 9820.04, + "end": 9821.04, + "probability": 0.5939 + }, + { + "start": 9822.24, + "end": 9824.52, + "probability": 0.8997 + }, + { + "start": 9825.96, + "end": 9828.18, + "probability": 0.9045 + }, + { + "start": 9837.72, + "end": 9845.92, + "probability": 0.7442 + }, + { + "start": 9846.62, + "end": 9849.22, + "probability": 0.7356 + }, + { + "start": 9851.28, + "end": 9854.22, + "probability": 0.8372 + }, + { + "start": 9855.02, + "end": 9857.14, + "probability": 0.9827 + }, + { + "start": 9858.42, + "end": 9860.84, + "probability": 0.9724 + }, + { + "start": 9861.92, + "end": 9864.04, + "probability": 0.9792 + }, + { + "start": 9864.72, + "end": 9865.22, + "probability": 0.9917 + }, + { + "start": 9865.76, + "end": 9866.96, + "probability": 0.7594 + }, + { + "start": 9872.38, + "end": 9877.82, + "probability": 0.6966 + }, + { + "start": 9878.46, + "end": 9881.04, + "probability": 0.9125 + }, + { + "start": 9882.72, + "end": 9885.8, + "probability": 0.9125 + }, + { + "start": 9886.7, + "end": 9888.58, + "probability": 0.761 + }, + { + "start": 9891.0, + "end": 9893.84, + "probability": 0.9263 + }, + { + "start": 9894.48, + "end": 9896.76, + "probability": 0.9041 + }, + { + "start": 9897.38, + "end": 9899.4, + "probability": 0.6005 + }, + { + "start": 9899.64, + "end": 9901.92, + "probability": 0.9121 + }, + { + "start": 9902.22, + "end": 9904.56, + "probability": 0.9292 + }, + { + "start": 9905.14, + "end": 9908.24, + "probability": 0.9609 + }, + { + "start": 9910.4, + "end": 9912.54, + "probability": 0.8805 + }, + { + "start": 9913.24, + "end": 9918.34, + "probability": 0.9758 + }, + { + "start": 9919.2, + "end": 9921.54, + "probability": 0.9785 + }, + { + "start": 9922.32, + "end": 9923.76, + "probability": 0.5679 + }, + { + "start": 9924.58, + "end": 9924.9, + "probability": 0.8101 + }, + { + "start": 9925.62, + "end": 9926.76, + "probability": 0.8775 + }, + { + "start": 9928.24, + "end": 9929.74, + "probability": 0.9495 + }, + { + "start": 9931.22, + "end": 9934.22, + "probability": 0.9056 + }, + { + "start": 9935.21, + "end": 9938.94, + "probability": 0.8205 + }, + { + "start": 9939.58, + "end": 9945.78, + "probability": 0.9264 + }, + { + "start": 9947.52, + "end": 9948.99, + "probability": 0.3767 + }, + { + "start": 9954.4, + "end": 9958.28, + "probability": 0.64 + }, + { + "start": 9959.24, + "end": 9959.48, + "probability": 0.8726 + }, + { + "start": 9960.08, + "end": 9961.08, + "probability": 0.814 + }, + { + "start": 9964.78, + "end": 9967.22, + "probability": 0.8962 + }, + { + "start": 9969.38, + "end": 9971.36, + "probability": 0.9413 + }, + { + "start": 9972.0, + "end": 9975.4, + "probability": 0.9247 + }, + { + "start": 9977.08, + "end": 9982.04, + "probability": 0.969 + }, + { + "start": 9984.56, + "end": 9990.66, + "probability": 0.7105 + }, + { + "start": 9991.4, + "end": 9992.08, + "probability": 0.9517 + }, + { + "start": 9992.62, + "end": 9993.66, + "probability": 0.9212 + }, + { + "start": 9994.46, + "end": 9996.64, + "probability": 0.7603 + }, + { + "start": 9997.44, + "end": 9999.94, + "probability": 0.9912 + }, + { + "start": 10000.64, + "end": 10002.78, + "probability": 0.9588 + }, + { + "start": 10003.32, + "end": 10004.46, + "probability": 0.9476 + }, + { + "start": 10005.0, + "end": 10005.9, + "probability": 0.9852 + }, + { + "start": 10006.94, + "end": 10009.74, + "probability": 0.7216 + }, + { + "start": 10010.3, + "end": 10012.26, + "probability": 0.9597 + }, + { + "start": 10014.48, + "end": 10018.42, + "probability": 0.9473 + }, + { + "start": 10019.7, + "end": 10020.84, + "probability": 0.4559 + }, + { + "start": 10021.12, + "end": 10023.46, + "probability": 0.8259 + }, + { + "start": 10023.86, + "end": 10026.36, + "probability": 0.9515 + }, + { + "start": 10028.18, + "end": 10028.64, + "probability": 0.5403 + }, + { + "start": 10029.88, + "end": 10031.84, + "probability": 0.9171 + }, + { + "start": 10032.28, + "end": 10034.12, + "probability": 0.8058 + }, + { + "start": 10034.58, + "end": 10038.62, + "probability": 0.8475 + }, + { + "start": 10039.32, + "end": 10041.84, + "probability": 0.9695 + }, + { + "start": 10042.16, + "end": 10044.02, + "probability": 0.8475 + }, + { + "start": 10044.2, + "end": 10046.7, + "probability": 0.8112 + }, + { + "start": 10047.06, + "end": 10049.46, + "probability": 0.9878 + }, + { + "start": 10051.06, + "end": 10051.86, + "probability": 0.9354 + }, + { + "start": 10053.2, + "end": 10054.16, + "probability": 0.3313 + }, + { + "start": 10054.92, + "end": 10056.64, + "probability": 0.9176 + }, + { + "start": 10057.18, + "end": 10057.96, + "probability": 0.9854 + }, + { + "start": 10063.3, + "end": 10069.8, + "probability": 0.8174 + }, + { + "start": 10070.46, + "end": 10076.0, + "probability": 0.8525 + }, + { + "start": 10076.14, + "end": 10079.54, + "probability": 0.6382 + }, + { + "start": 10080.4, + "end": 10087.0, + "probability": 0.5492 + }, + { + "start": 10088.38, + "end": 10093.26, + "probability": 0.8432 + }, + { + "start": 10093.92, + "end": 10099.57, + "probability": 0.9863 + }, + { + "start": 10101.26, + "end": 10102.82, + "probability": 0.0143 + }, + { + "start": 10103.92, + "end": 10106.78, + "probability": 0.1923 + }, + { + "start": 10107.72, + "end": 10110.52, + "probability": 0.6411 + }, + { + "start": 10111.12, + "end": 10111.52, + "probability": 0.6745 + }, + { + "start": 10112.88, + "end": 10115.42, + "probability": 0.6808 + }, + { + "start": 10117.21, + "end": 10121.82, + "probability": 0.6151 + }, + { + "start": 10124.76, + "end": 10126.59, + "probability": 0.0221 + }, + { + "start": 10156.66, + "end": 10157.32, + "probability": 0.015 + }, + { + "start": 10161.92, + "end": 10162.94, + "probability": 0.0 + }, + { + "start": 10166.14, + "end": 10166.64, + "probability": 0.0152 + }, + { + "start": 10236.22, + "end": 10237.9, + "probability": 0.0837 + }, + { + "start": 10239.78, + "end": 10240.32, + "probability": 0.0061 + }, + { + "start": 10240.66, + "end": 10242.28, + "probability": 0.0412 + }, + { + "start": 10242.28, + "end": 10242.84, + "probability": 0.0466 + }, + { + "start": 10243.08, + "end": 10249.86, + "probability": 0.1847 + }, + { + "start": 10250.3, + "end": 10250.98, + "probability": 0.0087 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.0, + "end": 10358.0, + "probability": 0.0 + }, + { + "start": 10358.76, + "end": 10358.84, + "probability": 0.1604 + }, + { + "start": 10358.84, + "end": 10365.92, + "probability": 0.9717 + }, + { + "start": 10367.34, + "end": 10370.04, + "probability": 0.9993 + }, + { + "start": 10370.16, + "end": 10370.72, + "probability": 0.9321 + }, + { + "start": 10370.96, + "end": 10371.52, + "probability": 0.857 + }, + { + "start": 10372.2, + "end": 10373.98, + "probability": 0.9043 + }, + { + "start": 10374.58, + "end": 10377.86, + "probability": 0.9934 + }, + { + "start": 10378.4, + "end": 10382.34, + "probability": 0.9886 + }, + { + "start": 10382.42, + "end": 10385.52, + "probability": 0.9893 + }, + { + "start": 10386.74, + "end": 10388.17, + "probability": 0.7675 + }, + { + "start": 10391.53, + "end": 10393.9, + "probability": 0.9888 + }, + { + "start": 10395.02, + "end": 10399.54, + "probability": 0.9297 + }, + { + "start": 10400.22, + "end": 10403.14, + "probability": 0.9896 + }, + { + "start": 10403.22, + "end": 10404.18, + "probability": 0.8565 + }, + { + "start": 10405.14, + "end": 10406.12, + "probability": 0.8857 + }, + { + "start": 10408.34, + "end": 10408.96, + "probability": 0.8794 + }, + { + "start": 10409.1, + "end": 10409.52, + "probability": 0.5835 + }, + { + "start": 10409.56, + "end": 10410.8, + "probability": 0.9814 + }, + { + "start": 10410.88, + "end": 10413.64, + "probability": 0.9751 + }, + { + "start": 10415.1, + "end": 10419.6, + "probability": 0.9731 + }, + { + "start": 10420.66, + "end": 10423.86, + "probability": 0.9452 + }, + { + "start": 10425.38, + "end": 10427.82, + "probability": 0.9989 + }, + { + "start": 10427.82, + "end": 10430.66, + "probability": 0.9932 + }, + { + "start": 10432.38, + "end": 10433.6, + "probability": 0.9816 + }, + { + "start": 10435.22, + "end": 10438.89, + "probability": 0.9748 + }, + { + "start": 10439.98, + "end": 10442.42, + "probability": 0.9734 + }, + { + "start": 10444.54, + "end": 10448.02, + "probability": 0.9899 + }, + { + "start": 10449.06, + "end": 10456.94, + "probability": 0.9476 + }, + { + "start": 10457.9, + "end": 10458.96, + "probability": 0.8087 + }, + { + "start": 10458.96, + "end": 10459.79, + "probability": 0.8925 + }, + { + "start": 10461.4, + "end": 10461.84, + "probability": 0.7947 + }, + { + "start": 10461.92, + "end": 10467.76, + "probability": 0.9719 + }, + { + "start": 10467.76, + "end": 10472.22, + "probability": 0.9889 + }, + { + "start": 10473.02, + "end": 10473.58, + "probability": 0.9685 + }, + { + "start": 10474.1, + "end": 10474.76, + "probability": 0.536 + }, + { + "start": 10474.96, + "end": 10476.96, + "probability": 0.7149 + }, + { + "start": 10476.98, + "end": 10478.14, + "probability": 0.5751 + }, + { + "start": 10478.22, + "end": 10480.9, + "probability": 0.8434 + }, + { + "start": 10483.14, + "end": 10488.8, + "probability": 0.9929 + }, + { + "start": 10488.86, + "end": 10490.88, + "probability": 0.9787 + }, + { + "start": 10491.98, + "end": 10494.54, + "probability": 0.8201 + }, + { + "start": 10495.28, + "end": 10499.1, + "probability": 0.9537 + }, + { + "start": 10499.98, + "end": 10502.0, + "probability": 0.825 + }, + { + "start": 10503.36, + "end": 10507.0, + "probability": 0.9961 + }, + { + "start": 10507.12, + "end": 10510.06, + "probability": 0.9943 + }, + { + "start": 10510.94, + "end": 10512.02, + "probability": 0.8867 + }, + { + "start": 10512.36, + "end": 10515.52, + "probability": 0.842 + }, + { + "start": 10516.62, + "end": 10517.1, + "probability": 0.8578 + }, + { + "start": 10518.7, + "end": 10521.8, + "probability": 0.9841 + }, + { + "start": 10521.88, + "end": 10523.02, + "probability": 0.9066 + }, + { + "start": 10523.12, + "end": 10524.2, + "probability": 0.9175 + }, + { + "start": 10525.16, + "end": 10528.74, + "probability": 0.9806 + }, + { + "start": 10528.74, + "end": 10532.1, + "probability": 0.988 + }, + { + "start": 10533.2, + "end": 10533.9, + "probability": 0.9358 + }, + { + "start": 10533.98, + "end": 10535.02, + "probability": 0.703 + }, + { + "start": 10535.74, + "end": 10536.62, + "probability": 0.9092 + }, + { + "start": 10536.72, + "end": 10538.66, + "probability": 0.7884 + }, + { + "start": 10538.76, + "end": 10540.34, + "probability": 0.9868 + }, + { + "start": 10541.2, + "end": 10543.7, + "probability": 0.981 + }, + { + "start": 10544.67, + "end": 10547.74, + "probability": 0.7583 + }, + { + "start": 10547.92, + "end": 10548.18, + "probability": 0.8413 + }, + { + "start": 10548.22, + "end": 10549.32, + "probability": 0.998 + }, + { + "start": 10549.46, + "end": 10551.22, + "probability": 0.9634 + }, + { + "start": 10551.52, + "end": 10552.7, + "probability": 0.5217 + }, + { + "start": 10552.86, + "end": 10554.06, + "probability": 0.7961 + }, + { + "start": 10554.88, + "end": 10557.32, + "probability": 0.9443 + }, + { + "start": 10559.0, + "end": 10561.38, + "probability": 0.982 + }, + { + "start": 10561.48, + "end": 10563.04, + "probability": 0.9265 + }, + { + "start": 10563.8, + "end": 10565.7, + "probability": 0.9832 + }, + { + "start": 10567.2, + "end": 10569.68, + "probability": 0.9592 + }, + { + "start": 10570.52, + "end": 10574.3, + "probability": 0.9934 + }, + { + "start": 10574.3, + "end": 10577.18, + "probability": 0.9949 + }, + { + "start": 10577.26, + "end": 10578.54, + "probability": 0.9209 + }, + { + "start": 10579.4, + "end": 10581.2, + "probability": 0.9503 + }, + { + "start": 10581.78, + "end": 10582.62, + "probability": 0.9058 + }, + { + "start": 10582.68, + "end": 10583.36, + "probability": 0.7968 + }, + { + "start": 10583.46, + "end": 10590.6, + "probability": 0.9801 + }, + { + "start": 10591.56, + "end": 10594.76, + "probability": 0.9973 + }, + { + "start": 10594.78, + "end": 10597.72, + "probability": 0.9943 + }, + { + "start": 10598.56, + "end": 10600.58, + "probability": 0.989 + }, + { + "start": 10601.28, + "end": 10603.5, + "probability": 0.9965 + }, + { + "start": 10604.32, + "end": 10607.26, + "probability": 0.9989 + }, + { + "start": 10607.26, + "end": 10610.26, + "probability": 0.9272 + }, + { + "start": 10610.3, + "end": 10611.12, + "probability": 0.5013 + }, + { + "start": 10611.24, + "end": 10611.3, + "probability": 0.3459 + }, + { + "start": 10611.3, + "end": 10613.26, + "probability": 0.9775 + }, + { + "start": 10613.36, + "end": 10614.82, + "probability": 0.8257 + }, + { + "start": 10614.92, + "end": 10616.42, + "probability": 0.5457 + }, + { + "start": 10616.72, + "end": 10617.32, + "probability": 0.8618 + }, + { + "start": 10620.24, + "end": 10620.86, + "probability": 0.9463 + }, + { + "start": 10620.86, + "end": 10620.86, + "probability": 0.1934 + }, + { + "start": 10620.86, + "end": 10621.16, + "probability": 0.3354 + }, + { + "start": 10622.24, + "end": 10622.54, + "probability": 0.6765 + }, + { + "start": 10622.66, + "end": 10623.24, + "probability": 0.8267 + }, + { + "start": 10623.32, + "end": 10623.4, + "probability": 0.6923 + }, + { + "start": 10623.52, + "end": 10623.82, + "probability": 0.4071 + }, + { + "start": 10623.86, + "end": 10625.02, + "probability": 0.6476 + }, + { + "start": 10627.26, + "end": 10631.06, + "probability": 0.9879 + }, + { + "start": 10631.9, + "end": 10634.6, + "probability": 0.9032 + }, + { + "start": 10636.02, + "end": 10637.26, + "probability": 0.8252 + }, + { + "start": 10637.3, + "end": 10641.46, + "probability": 0.8976 + }, + { + "start": 10641.6, + "end": 10642.54, + "probability": 0.9044 + }, + { + "start": 10643.3, + "end": 10647.02, + "probability": 0.9935 + }, + { + "start": 10647.02, + "end": 10647.95, + "probability": 0.5643 + }, + { + "start": 10648.94, + "end": 10652.9, + "probability": 0.9871 + }, + { + "start": 10653.0, + "end": 10653.42, + "probability": 0.8378 + }, + { + "start": 10653.56, + "end": 10653.98, + "probability": 0.7568 + }, + { + "start": 10655.46, + "end": 10657.92, + "probability": 0.9528 + }, + { + "start": 10658.68, + "end": 10659.92, + "probability": 0.7646 + }, + { + "start": 10661.14, + "end": 10663.64, + "probability": 0.9943 + }, + { + "start": 10663.74, + "end": 10664.42, + "probability": 0.9012 + }, + { + "start": 10664.6, + "end": 10665.22, + "probability": 0.9899 + }, + { + "start": 10665.42, + "end": 10666.18, + "probability": 0.8775 + }, + { + "start": 10666.86, + "end": 10670.0, + "probability": 0.9657 + }, + { + "start": 10672.1, + "end": 10673.92, + "probability": 0.9805 + }, + { + "start": 10674.16, + "end": 10674.32, + "probability": 0.5033 + }, + { + "start": 10675.42, + "end": 10678.18, + "probability": 0.9969 + }, + { + "start": 10678.26, + "end": 10679.44, + "probability": 0.7325 + }, + { + "start": 10679.56, + "end": 10680.2, + "probability": 0.5709 + }, + { + "start": 10680.5, + "end": 10681.16, + "probability": 0.8954 + }, + { + "start": 10683.66, + "end": 10686.04, + "probability": 0.9888 + }, + { + "start": 10687.18, + "end": 10688.6, + "probability": 0.9146 + }, + { + "start": 10689.6, + "end": 10690.66, + "probability": 0.8649 + }, + { + "start": 10691.32, + "end": 10692.48, + "probability": 0.8528 + }, + { + "start": 10693.16, + "end": 10696.7, + "probability": 0.9434 + }, + { + "start": 10696.8, + "end": 10700.32, + "probability": 0.9612 + }, + { + "start": 10700.8, + "end": 10701.72, + "probability": 0.7272 + }, + { + "start": 10702.44, + "end": 10705.02, + "probability": 0.9041 + }, + { + "start": 10705.7, + "end": 10709.02, + "probability": 0.9912 + }, + { + "start": 10709.1, + "end": 10709.66, + "probability": 0.7956 + }, + { + "start": 10709.86, + "end": 10711.56, + "probability": 0.6848 + }, + { + "start": 10712.14, + "end": 10712.83, + "probability": 0.9243 + }, + { + "start": 10713.08, + "end": 10714.62, + "probability": 0.9954 + }, + { + "start": 10714.9, + "end": 10718.62, + "probability": 0.9604 + }, + { + "start": 10720.02, + "end": 10722.1, + "probability": 0.9563 + }, + { + "start": 10722.54, + "end": 10722.9, + "probability": 0.9348 + }, + { + "start": 10722.98, + "end": 10723.1, + "probability": 0.9037 + }, + { + "start": 10723.18, + "end": 10724.76, + "probability": 0.9321 + }, + { + "start": 10725.94, + "end": 10726.54, + "probability": 0.8169 + }, + { + "start": 10726.82, + "end": 10727.44, + "probability": 0.9214 + }, + { + "start": 10728.56, + "end": 10730.0, + "probability": 0.9877 + }, + { + "start": 10730.38, + "end": 10730.98, + "probability": 0.881 + }, + { + "start": 10731.14, + "end": 10732.0, + "probability": 0.7087 + }, + { + "start": 10732.32, + "end": 10734.24, + "probability": 0.8452 + }, + { + "start": 10735.58, + "end": 10738.68, + "probability": 0.9883 + }, + { + "start": 10738.68, + "end": 10741.9, + "probability": 0.7491 + }, + { + "start": 10744.08, + "end": 10745.6, + "probability": 0.9576 + }, + { + "start": 10745.72, + "end": 10746.34, + "probability": 0.8913 + }, + { + "start": 10746.34, + "end": 10749.0, + "probability": 0.9885 + }, + { + "start": 10749.0, + "end": 10751.84, + "probability": 0.9831 + }, + { + "start": 10751.98, + "end": 10753.56, + "probability": 0.6729 + }, + { + "start": 10754.52, + "end": 10756.38, + "probability": 0.9985 + }, + { + "start": 10757.38, + "end": 10761.42, + "probability": 0.8726 + }, + { + "start": 10762.46, + "end": 10764.84, + "probability": 0.9925 + }, + { + "start": 10765.92, + "end": 10767.74, + "probability": 0.8322 + }, + { + "start": 10768.48, + "end": 10769.76, + "probability": 0.9237 + }, + { + "start": 10770.32, + "end": 10773.3, + "probability": 0.9944 + }, + { + "start": 10774.22, + "end": 10775.58, + "probability": 0.9621 + }, + { + "start": 10776.2, + "end": 10778.58, + "probability": 0.7843 + }, + { + "start": 10779.84, + "end": 10782.64, + "probability": 0.9995 + }, + { + "start": 10782.64, + "end": 10784.46, + "probability": 0.9904 + }, + { + "start": 10785.42, + "end": 10786.7, + "probability": 0.9934 + }, + { + "start": 10788.0, + "end": 10788.98, + "probability": 0.9631 + }, + { + "start": 10789.02, + "end": 10789.58, + "probability": 0.9659 + }, + { + "start": 10789.66, + "end": 10791.76, + "probability": 0.9729 + }, + { + "start": 10791.9, + "end": 10792.78, + "probability": 0.8472 + }, + { + "start": 10792.86, + "end": 10793.84, + "probability": 0.8551 + }, + { + "start": 10795.24, + "end": 10796.72, + "probability": 0.9684 + }, + { + "start": 10797.52, + "end": 10802.24, + "probability": 0.9279 + }, + { + "start": 10802.8, + "end": 10803.94, + "probability": 0.9985 + }, + { + "start": 10804.4, + "end": 10807.02, + "probability": 0.998 + }, + { + "start": 10807.78, + "end": 10810.1, + "probability": 0.9974 + }, + { + "start": 10810.1, + "end": 10811.92, + "probability": 0.9348 + }, + { + "start": 10812.0, + "end": 10812.32, + "probability": 0.5052 + }, + { + "start": 10812.38, + "end": 10813.72, + "probability": 0.9941 + }, + { + "start": 10814.82, + "end": 10818.62, + "probability": 0.9979 + }, + { + "start": 10819.4, + "end": 10821.12, + "probability": 0.9411 + }, + { + "start": 10821.62, + "end": 10821.98, + "probability": 0.7345 + }, + { + "start": 10827.46, + "end": 10830.16, + "probability": 0.6623 + }, + { + "start": 10831.95, + "end": 10834.3, + "probability": 0.8943 + }, + { + "start": 10834.72, + "end": 10836.38, + "probability": 0.8359 + }, + { + "start": 10837.2, + "end": 10838.9, + "probability": 0.4127 + }, + { + "start": 10839.0, + "end": 10839.0, + "probability": 0.6851 + }, + { + "start": 10839.24, + "end": 10840.36, + "probability": 0.9932 + }, + { + "start": 10841.18, + "end": 10841.68, + "probability": 0.7295 + }, + { + "start": 10842.62, + "end": 10844.16, + "probability": 0.6457 + }, + { + "start": 10845.04, + "end": 10845.58, + "probability": 0.7418 + }, + { + "start": 10846.58, + "end": 10847.84, + "probability": 0.9593 + }, + { + "start": 10849.1, + "end": 10849.56, + "probability": 0.9788 + }, + { + "start": 10850.16, + "end": 10851.68, + "probability": 0.8679 + }, + { + "start": 10852.56, + "end": 10853.36, + "probability": 0.7031 + }, + { + "start": 10858.3, + "end": 10859.89, + "probability": 0.0802 + }, + { + "start": 10862.34, + "end": 10863.96, + "probability": 0.0321 + }, + { + "start": 10874.9, + "end": 10875.04, + "probability": 0.0922 + }, + { + "start": 10875.04, + "end": 10876.68, + "probability": 0.9209 + }, + { + "start": 10878.09, + "end": 10878.3, + "probability": 0.1609 + }, + { + "start": 10878.3, + "end": 10878.44, + "probability": 0.4453 + }, + { + "start": 10879.78, + "end": 10881.64, + "probability": 0.3702 + }, + { + "start": 10881.9, + "end": 10882.14, + "probability": 0.9447 + }, + { + "start": 10882.18, + "end": 10882.18, + "probability": 0.1938 + }, + { + "start": 10882.84, + "end": 10884.3, + "probability": 0.3048 + }, + { + "start": 10884.62, + "end": 10884.92, + "probability": 0.0135 + }, + { + "start": 10884.92, + "end": 10889.08, + "probability": 0.9741 + }, + { + "start": 10889.2, + "end": 10889.92, + "probability": 0.3214 + }, + { + "start": 10894.5, + "end": 10895.3, + "probability": 0.4426 + }, + { + "start": 10895.3, + "end": 10896.0, + "probability": 0.9112 + }, + { + "start": 10896.46, + "end": 10897.3, + "probability": 0.6281 + }, + { + "start": 10897.32, + "end": 10897.72, + "probability": 0.5191 + }, + { + "start": 10897.72, + "end": 10898.92, + "probability": 0.7255 + }, + { + "start": 10899.48, + "end": 10902.2, + "probability": 0.9919 + }, + { + "start": 10902.2, + "end": 10905.98, + "probability": 0.9679 + }, + { + "start": 10906.52, + "end": 10909.52, + "probability": 0.9918 + }, + { + "start": 10909.82, + "end": 10913.0, + "probability": 0.9985 + }, + { + "start": 10913.54, + "end": 10914.32, + "probability": 0.9619 + }, + { + "start": 10914.72, + "end": 10917.22, + "probability": 0.7863 + }, + { + "start": 10918.18, + "end": 10920.96, + "probability": 0.9966 + }, + { + "start": 10920.96, + "end": 10923.7, + "probability": 0.7746 + }, + { + "start": 10923.96, + "end": 10927.76, + "probability": 0.9712 + }, + { + "start": 10928.3, + "end": 10929.14, + "probability": 0.3155 + }, + { + "start": 10929.22, + "end": 10929.92, + "probability": 0.1902 + }, + { + "start": 10930.96, + "end": 10931.16, + "probability": 0.2101 + }, + { + "start": 10931.16, + "end": 10935.58, + "probability": 0.8533 + }, + { + "start": 10935.6, + "end": 10936.92, + "probability": 0.8345 + }, + { + "start": 10936.94, + "end": 10937.3, + "probability": 0.7381 + }, + { + "start": 10937.38, + "end": 10938.0, + "probability": 0.8691 + }, + { + "start": 10938.06, + "end": 10939.7, + "probability": 0.9088 + }, + { + "start": 10940.82, + "end": 10941.38, + "probability": 0.8438 + }, + { + "start": 10941.38, + "end": 10942.64, + "probability": 0.1941 + }, + { + "start": 10943.26, + "end": 10943.62, + "probability": 0.526 + }, + { + "start": 10943.62, + "end": 10943.88, + "probability": 0.1761 + }, + { + "start": 10944.13, + "end": 10944.54, + "probability": 0.1963 + }, + { + "start": 10944.78, + "end": 10946.26, + "probability": 0.4998 + }, + { + "start": 10946.3, + "end": 10948.04, + "probability": 0.7576 + }, + { + "start": 10948.14, + "end": 10948.22, + "probability": 0.3653 + }, + { + "start": 10948.24, + "end": 10948.56, + "probability": 0.1562 + }, + { + "start": 10948.6, + "end": 10949.92, + "probability": 0.8753 + }, + { + "start": 10950.04, + "end": 10954.1, + "probability": 0.9899 + }, + { + "start": 10954.64, + "end": 10955.52, + "probability": 0.7981 + }, + { + "start": 10955.68, + "end": 10959.14, + "probability": 0.8619 + }, + { + "start": 10959.44, + "end": 10963.22, + "probability": 0.8249 + }, + { + "start": 10963.82, + "end": 10967.06, + "probability": 0.9904 + }, + { + "start": 10967.06, + "end": 10971.24, + "probability": 0.9795 + }, + { + "start": 10972.16, + "end": 10974.94, + "probability": 0.9586 + }, + { + "start": 10975.12, + "end": 10977.86, + "probability": 0.9425 + }, + { + "start": 10978.34, + "end": 10980.96, + "probability": 0.9932 + }, + { + "start": 10981.8, + "end": 10983.94, + "probability": 0.9978 + }, + { + "start": 10983.94, + "end": 10987.02, + "probability": 0.8331 + }, + { + "start": 10987.6, + "end": 10992.0, + "probability": 0.9951 + }, + { + "start": 10992.86, + "end": 10996.5, + "probability": 0.963 + }, + { + "start": 10997.07, + "end": 11000.0, + "probability": 0.9386 + }, + { + "start": 11000.58, + "end": 11006.18, + "probability": 0.9861 + }, + { + "start": 11006.24, + "end": 11008.58, + "probability": 0.955 + }, + { + "start": 11008.66, + "end": 11011.98, + "probability": 0.9829 + }, + { + "start": 11012.06, + "end": 11014.72, + "probability": 0.9868 + }, + { + "start": 11015.36, + "end": 11016.52, + "probability": 0.9653 + }, + { + "start": 11017.08, + "end": 11021.12, + "probability": 0.9701 + }, + { + "start": 11021.92, + "end": 11025.52, + "probability": 0.9961 + }, + { + "start": 11025.52, + "end": 11029.44, + "probability": 0.9817 + }, + { + "start": 11029.98, + "end": 11034.54, + "probability": 0.9946 + }, + { + "start": 11035.02, + "end": 11037.68, + "probability": 0.9951 + }, + { + "start": 11038.16, + "end": 11039.92, + "probability": 0.998 + }, + { + "start": 11040.74, + "end": 11044.92, + "probability": 0.9436 + }, + { + "start": 11044.92, + "end": 11048.28, + "probability": 0.9991 + }, + { + "start": 11048.84, + "end": 11049.26, + "probability": 0.5098 + }, + { + "start": 11049.32, + "end": 11050.54, + "probability": 0.8613 + }, + { + "start": 11050.62, + "end": 11052.25, + "probability": 0.8735 + }, + { + "start": 11053.92, + "end": 11058.9, + "probability": 0.9734 + }, + { + "start": 11058.91, + "end": 11064.16, + "probability": 0.9814 + }, + { + "start": 11064.9, + "end": 11066.34, + "probability": 0.7847 + }, + { + "start": 11066.52, + "end": 11069.5, + "probability": 0.9109 + }, + { + "start": 11069.56, + "end": 11071.12, + "probability": 0.9891 + }, + { + "start": 11071.82, + "end": 11074.96, + "probability": 0.984 + }, + { + "start": 11074.96, + "end": 11076.8, + "probability": 0.9927 + }, + { + "start": 11076.94, + "end": 11077.96, + "probability": 0.9015 + }, + { + "start": 11078.0, + "end": 11079.34, + "probability": 0.8176 + }, + { + "start": 11079.44, + "end": 11082.3, + "probability": 0.8384 + }, + { + "start": 11083.16, + "end": 11087.78, + "probability": 0.9619 + }, + { + "start": 11087.78, + "end": 11091.24, + "probability": 0.9962 + }, + { + "start": 11091.8, + "end": 11092.6, + "probability": 0.8115 + }, + { + "start": 11092.64, + "end": 11093.5, + "probability": 0.9817 + }, + { + "start": 11093.72, + "end": 11095.68, + "probability": 0.9705 + }, + { + "start": 11096.06, + "end": 11098.66, + "probability": 0.9299 + }, + { + "start": 11099.68, + "end": 11099.68, + "probability": 0.002 + }, + { + "start": 11099.68, + "end": 11100.26, + "probability": 0.1355 + }, + { + "start": 11101.04, + "end": 11102.46, + "probability": 0.7824 + }, + { + "start": 11102.54, + "end": 11104.14, + "probability": 0.7533 + }, + { + "start": 11104.2, + "end": 11107.52, + "probability": 0.9526 + }, + { + "start": 11107.86, + "end": 11109.32, + "probability": 0.4571 + }, + { + "start": 11109.6, + "end": 11112.52, + "probability": 0.985 + }, + { + "start": 11112.68, + "end": 11113.84, + "probability": 0.8523 + }, + { + "start": 11114.22, + "end": 11117.22, + "probability": 0.8661 + }, + { + "start": 11117.56, + "end": 11119.66, + "probability": 0.9797 + }, + { + "start": 11120.14, + "end": 11123.74, + "probability": 0.9966 + }, + { + "start": 11124.12, + "end": 11125.26, + "probability": 0.9474 + }, + { + "start": 11125.46, + "end": 11126.64, + "probability": 0.9083 + }, + { + "start": 11127.0, + "end": 11129.68, + "probability": 0.9945 + }, + { + "start": 11130.04, + "end": 11132.02, + "probability": 0.9432 + }, + { + "start": 11132.4, + "end": 11133.79, + "probability": 0.9909 + }, + { + "start": 11134.3, + "end": 11137.08, + "probability": 0.9957 + }, + { + "start": 11137.6, + "end": 11138.96, + "probability": 0.7347 + }, + { + "start": 11139.06, + "end": 11140.8, + "probability": 0.9861 + }, + { + "start": 11141.14, + "end": 11141.84, + "probability": 0.9912 + }, + { + "start": 11141.94, + "end": 11145.16, + "probability": 0.9932 + }, + { + "start": 11145.16, + "end": 11147.96, + "probability": 0.9964 + }, + { + "start": 11148.72, + "end": 11149.94, + "probability": 0.8914 + }, + { + "start": 11149.98, + "end": 11151.74, + "probability": 0.7123 + }, + { + "start": 11151.96, + "end": 11157.06, + "probability": 0.0145 + }, + { + "start": 11157.52, + "end": 11158.76, + "probability": 0.9789 + }, + { + "start": 11165.1, + "end": 11169.12, + "probability": 0.8087 + }, + { + "start": 11177.38, + "end": 11183.28, + "probability": 0.0847 + }, + { + "start": 11183.28, + "end": 11188.42, + "probability": 0.047 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.0, + "end": 11304.0, + "probability": 0.0 + }, + { + "start": 11304.26, + "end": 11304.9, + "probability": 0.0074 + }, + { + "start": 11304.9, + "end": 11305.7, + "probability": 0.2368 + }, + { + "start": 11305.76, + "end": 11308.46, + "probability": 0.9512 + }, + { + "start": 11309.68, + "end": 11314.58, + "probability": 0.9741 + }, + { + "start": 11315.38, + "end": 11315.88, + "probability": 0.7425 + }, + { + "start": 11320.02, + "end": 11320.18, + "probability": 0.9724 + }, + { + "start": 11320.72, + "end": 11321.56, + "probability": 0.0729 + }, + { + "start": 11321.56, + "end": 11321.56, + "probability": 0.3114 + }, + { + "start": 11321.56, + "end": 11321.91, + "probability": 0.6974 + }, + { + "start": 11323.04, + "end": 11323.66, + "probability": 0.8793 + }, + { + "start": 11324.62, + "end": 11326.24, + "probability": 0.9523 + }, + { + "start": 11327.36, + "end": 11328.08, + "probability": 0.4721 + }, + { + "start": 11344.06, + "end": 11345.72, + "probability": 0.6714 + }, + { + "start": 11345.72, + "end": 11349.16, + "probability": 0.6249 + }, + { + "start": 11349.54, + "end": 11349.78, + "probability": 0.3787 + }, + { + "start": 11349.78, + "end": 11349.78, + "probability": 0.5729 + }, + { + "start": 11349.78, + "end": 11349.88, + "probability": 0.6267 + }, + { + "start": 11351.6, + "end": 11354.42, + "probability": 0.9459 + }, + { + "start": 11354.42, + "end": 11363.66, + "probability": 0.9497 + }, + { + "start": 11364.36, + "end": 11372.4, + "probability": 0.8988 + }, + { + "start": 11373.86, + "end": 11377.24, + "probability": 0.9878 + }, + { + "start": 11378.08, + "end": 11378.18, + "probability": 0.4389 + }, + { + "start": 11378.74, + "end": 11379.22, + "probability": 0.942 + }, + { + "start": 11379.88, + "end": 11385.86, + "probability": 0.9929 + }, + { + "start": 11386.46, + "end": 11387.36, + "probability": 0.8032 + }, + { + "start": 11389.4, + "end": 11390.6, + "probability": 0.981 + }, + { + "start": 11390.86, + "end": 11394.1, + "probability": 0.9941 + }, + { + "start": 11394.6, + "end": 11397.18, + "probability": 0.9736 + }, + { + "start": 11398.16, + "end": 11402.22, + "probability": 0.9873 + }, + { + "start": 11402.62, + "end": 11405.02, + "probability": 0.9833 + }, + { + "start": 11405.48, + "end": 11408.76, + "probability": 0.9982 + }, + { + "start": 11409.4, + "end": 11414.01, + "probability": 0.9678 + }, + { + "start": 11415.22, + "end": 11415.94, + "probability": 0.8441 + }, + { + "start": 11416.1, + "end": 11419.56, + "probability": 0.9928 + }, + { + "start": 11419.98, + "end": 11424.4, + "probability": 0.989 + }, + { + "start": 11424.98, + "end": 11429.7, + "probability": 0.8456 + }, + { + "start": 11430.18, + "end": 11432.6, + "probability": 0.9108 + }, + { + "start": 11432.72, + "end": 11433.02, + "probability": 0.7328 + }, + { + "start": 11433.14, + "end": 11434.45, + "probability": 0.9601 + }, + { + "start": 11434.94, + "end": 11437.32, + "probability": 0.9944 + }, + { + "start": 11437.94, + "end": 11439.36, + "probability": 0.8246 + }, + { + "start": 11439.44, + "end": 11444.06, + "probability": 0.997 + }, + { + "start": 11444.46, + "end": 11447.56, + "probability": 0.8084 + }, + { + "start": 11447.68, + "end": 11448.96, + "probability": 0.7843 + }, + { + "start": 11449.46, + "end": 11452.38, + "probability": 0.7465 + }, + { + "start": 11453.26, + "end": 11453.7, + "probability": 0.6543 + }, + { + "start": 11454.22, + "end": 11456.1, + "probability": 0.9758 + }, + { + "start": 11456.24, + "end": 11458.64, + "probability": 0.9731 + }, + { + "start": 11459.2, + "end": 11462.28, + "probability": 0.8866 + }, + { + "start": 11462.42, + "end": 11464.3, + "probability": 0.9927 + }, + { + "start": 11464.66, + "end": 11469.58, + "probability": 0.9982 + }, + { + "start": 11470.14, + "end": 11471.74, + "probability": 0.696 + }, + { + "start": 11472.62, + "end": 11474.04, + "probability": 0.9192 + }, + { + "start": 11474.18, + "end": 11474.62, + "probability": 0.3729 + }, + { + "start": 11474.74, + "end": 11481.24, + "probability": 0.9428 + }, + { + "start": 11481.44, + "end": 11482.62, + "probability": 0.947 + }, + { + "start": 11483.06, + "end": 11485.14, + "probability": 0.5084 + }, + { + "start": 11485.64, + "end": 11486.08, + "probability": 0.5665 + }, + { + "start": 11486.18, + "end": 11488.8, + "probability": 0.8791 + }, + { + "start": 11489.52, + "end": 11490.94, + "probability": 0.9837 + }, + { + "start": 11491.14, + "end": 11492.92, + "probability": 0.7702 + }, + { + "start": 11493.24, + "end": 11493.72, + "probability": 0.9219 + }, + { + "start": 11494.18, + "end": 11494.7, + "probability": 0.6113 + }, + { + "start": 11495.4, + "end": 11497.96, + "probability": 0.8341 + }, + { + "start": 11498.14, + "end": 11500.0, + "probability": 0.7889 + }, + { + "start": 11500.76, + "end": 11504.56, + "probability": 0.9912 + }, + { + "start": 11505.14, + "end": 11506.74, + "probability": 0.8994 + }, + { + "start": 11507.52, + "end": 11509.06, + "probability": 0.9471 + }, + { + "start": 11509.16, + "end": 11511.8, + "probability": 0.9936 + }, + { + "start": 11512.04, + "end": 11513.24, + "probability": 0.727 + }, + { + "start": 11513.8, + "end": 11514.04, + "probability": 0.6331 + }, + { + "start": 11514.34, + "end": 11516.54, + "probability": 0.985 + }, + { + "start": 11516.9, + "end": 11517.54, + "probability": 0.7898 + }, + { + "start": 11517.96, + "end": 11519.38, + "probability": 0.8402 + }, + { + "start": 11519.64, + "end": 11520.28, + "probability": 0.8387 + }, + { + "start": 11520.62, + "end": 11521.08, + "probability": 0.7172 + }, + { + "start": 11521.32, + "end": 11524.7, + "probability": 0.9807 + }, + { + "start": 11525.44, + "end": 11527.42, + "probability": 0.7761 + }, + { + "start": 11527.88, + "end": 11527.95, + "probability": 0.9561 + }, + { + "start": 11528.4, + "end": 11531.1, + "probability": 0.7649 + }, + { + "start": 11531.44, + "end": 11532.02, + "probability": 0.696 + }, + { + "start": 11532.56, + "end": 11533.54, + "probability": 0.7433 + }, + { + "start": 11533.62, + "end": 11534.82, + "probability": 0.9445 + }, + { + "start": 11548.18, + "end": 11548.68, + "probability": 0.3912 + }, + { + "start": 11548.82, + "end": 11548.82, + "probability": 0.7761 + }, + { + "start": 11556.84, + "end": 11558.14, + "probability": 0.3509 + }, + { + "start": 11558.14, + "end": 11558.66, + "probability": 0.7479 + }, + { + "start": 11558.84, + "end": 11558.86, + "probability": 0.3524 + }, + { + "start": 11558.86, + "end": 11559.38, + "probability": 0.8354 + }, + { + "start": 11559.5, + "end": 11560.72, + "probability": 0.6916 + }, + { + "start": 11561.5, + "end": 11565.7, + "probability": 0.9635 + }, + { + "start": 11566.52, + "end": 11569.14, + "probability": 0.9726 + }, + { + "start": 11570.18, + "end": 11572.52, + "probability": 0.9575 + }, + { + "start": 11573.2, + "end": 11573.76, + "probability": 0.64 + }, + { + "start": 11575.08, + "end": 11580.24, + "probability": 0.8994 + }, + { + "start": 11581.06, + "end": 11585.84, + "probability": 0.9608 + }, + { + "start": 11587.35, + "end": 11590.72, + "probability": 0.9884 + }, + { + "start": 11591.34, + "end": 11592.6, + "probability": 0.9694 + }, + { + "start": 11592.72, + "end": 11593.64, + "probability": 0.9632 + }, + { + "start": 11594.04, + "end": 11598.42, + "probability": 0.8888 + }, + { + "start": 11598.84, + "end": 11600.68, + "probability": 0.8219 + }, + { + "start": 11601.02, + "end": 11601.72, + "probability": 0.8357 + }, + { + "start": 11602.84, + "end": 11605.96, + "probability": 0.9688 + }, + { + "start": 11606.24, + "end": 11607.7, + "probability": 0.8731 + }, + { + "start": 11607.98, + "end": 11610.76, + "probability": 0.9255 + }, + { + "start": 11611.58, + "end": 11614.28, + "probability": 0.9541 + }, + { + "start": 11615.04, + "end": 11616.0, + "probability": 0.9893 + }, + { + "start": 11616.56, + "end": 11617.3, + "probability": 0.5648 + }, + { + "start": 11618.06, + "end": 11621.42, + "probability": 0.9981 + }, + { + "start": 11622.04, + "end": 11628.9, + "probability": 0.998 + }, + { + "start": 11629.62, + "end": 11633.2, + "probability": 0.9844 + }, + { + "start": 11633.44, + "end": 11636.02, + "probability": 0.8212 + }, + { + "start": 11636.68, + "end": 11641.5, + "probability": 0.7774 + }, + { + "start": 11642.02, + "end": 11645.15, + "probability": 0.7914 + }, + { + "start": 11645.74, + "end": 11649.0, + "probability": 0.9866 + }, + { + "start": 11649.68, + "end": 11654.22, + "probability": 0.9894 + }, + { + "start": 11655.5, + "end": 11656.72, + "probability": 0.7581 + }, + { + "start": 11657.1, + "end": 11660.46, + "probability": 0.9675 + }, + { + "start": 11661.3, + "end": 11663.05, + "probability": 0.7632 + }, + { + "start": 11664.34, + "end": 11666.38, + "probability": 0.8252 + }, + { + "start": 11666.74, + "end": 11667.18, + "probability": 0.6897 + }, + { + "start": 11667.24, + "end": 11673.36, + "probability": 0.9873 + }, + { + "start": 11674.0, + "end": 11676.22, + "probability": 0.9956 + }, + { + "start": 11676.66, + "end": 11678.92, + "probability": 0.9939 + }, + { + "start": 11679.42, + "end": 11681.92, + "probability": 0.993 + }, + { + "start": 11682.34, + "end": 11685.54, + "probability": 0.9219 + }, + { + "start": 11686.08, + "end": 11687.18, + "probability": 0.9051 + }, + { + "start": 11687.62, + "end": 11690.55, + "probability": 0.9858 + }, + { + "start": 11691.26, + "end": 11691.48, + "probability": 0.0041 + }, + { + "start": 11691.48, + "end": 11691.48, + "probability": 0.0152 + }, + { + "start": 11691.48, + "end": 11696.76, + "probability": 0.9525 + }, + { + "start": 11696.96, + "end": 11697.06, + "probability": 0.301 + }, + { + "start": 11697.14, + "end": 11697.42, + "probability": 0.0544 + }, + { + "start": 11697.44, + "end": 11700.82, + "probability": 0.8418 + }, + { + "start": 11701.12, + "end": 11703.98, + "probability": 0.9992 + }, + { + "start": 11704.66, + "end": 11708.2, + "probability": 0.9823 + }, + { + "start": 11710.01, + "end": 11715.68, + "probability": 0.9985 + }, + { + "start": 11715.68, + "end": 11720.06, + "probability": 0.9997 + }, + { + "start": 11721.08, + "end": 11724.32, + "probability": 0.9988 + }, + { + "start": 11724.86, + "end": 11726.0, + "probability": 0.7631 + }, + { + "start": 11726.52, + "end": 11730.28, + "probability": 0.7967 + }, + { + "start": 11730.88, + "end": 11731.76, + "probability": 0.9779 + }, + { + "start": 11732.16, + "end": 11734.74, + "probability": 0.7723 + }, + { + "start": 11735.14, + "end": 11736.59, + "probability": 0.9204 + }, + { + "start": 11737.7, + "end": 11741.74, + "probability": 0.9831 + }, + { + "start": 11742.14, + "end": 11742.98, + "probability": 0.9558 + }, + { + "start": 11743.72, + "end": 11745.2, + "probability": 0.895 + }, + { + "start": 11745.74, + "end": 11747.6, + "probability": 0.9923 + }, + { + "start": 11748.1, + "end": 11749.6, + "probability": 0.876 + }, + { + "start": 11750.08, + "end": 11752.52, + "probability": 0.9863 + }, + { + "start": 11753.02, + "end": 11756.3, + "probability": 0.9619 + }, + { + "start": 11756.4, + "end": 11759.86, + "probability": 0.9836 + }, + { + "start": 11759.86, + "end": 11760.3, + "probability": 0.6402 + }, + { + "start": 11760.38, + "end": 11760.62, + "probability": 0.435 + }, + { + "start": 11760.64, + "end": 11765.08, + "probability": 0.9812 + }, + { + "start": 11765.58, + "end": 11765.92, + "probability": 0.5031 + }, + { + "start": 11765.92, + "end": 11765.99, + "probability": 0.8318 + }, + { + "start": 11766.74, + "end": 11768.38, + "probability": 0.9346 + }, + { + "start": 11769.44, + "end": 11770.04, + "probability": 0.7227 + }, + { + "start": 11770.64, + "end": 11772.34, + "probability": 0.7639 + }, + { + "start": 11773.82, + "end": 11776.32, + "probability": 0.9482 + }, + { + "start": 11778.0, + "end": 11778.44, + "probability": 0.7218 + }, + { + "start": 11779.02, + "end": 11782.26, + "probability": 0.788 + }, + { + "start": 11804.26, + "end": 11805.56, + "probability": 0.4552 + }, + { + "start": 11805.8, + "end": 11805.9, + "probability": 0.5651 + }, + { + "start": 11806.42, + "end": 11808.64, + "probability": 0.8652 + }, + { + "start": 11812.98, + "end": 11814.08, + "probability": 0.4333 + }, + { + "start": 11814.22, + "end": 11816.84, + "probability": 0.9857 + }, + { + "start": 11817.42, + "end": 11818.24, + "probability": 0.5853 + }, + { + "start": 11818.92, + "end": 11821.46, + "probability": 0.9763 + }, + { + "start": 11821.48, + "end": 11825.0, + "probability": 0.9448 + }, + { + "start": 11825.7, + "end": 11826.96, + "probability": 0.7349 + }, + { + "start": 11827.14, + "end": 11830.36, + "probability": 0.9945 + }, + { + "start": 11831.32, + "end": 11834.44, + "probability": 0.9774 + }, + { + "start": 11835.08, + "end": 11837.07, + "probability": 0.9635 + }, + { + "start": 11838.3, + "end": 11842.54, + "probability": 0.999 + }, + { + "start": 11842.92, + "end": 11844.22, + "probability": 0.6182 + }, + { + "start": 11844.44, + "end": 11845.23, + "probability": 0.539 + }, + { + "start": 11845.44, + "end": 11846.28, + "probability": 0.9712 + }, + { + "start": 11847.0, + "end": 11848.13, + "probability": 0.9485 + }, + { + "start": 11848.6, + "end": 11849.08, + "probability": 0.978 + }, + { + "start": 11849.82, + "end": 11850.35, + "probability": 0.8979 + }, + { + "start": 11850.94, + "end": 11852.94, + "probability": 0.995 + }, + { + "start": 11853.2, + "end": 11854.68, + "probability": 0.998 + }, + { + "start": 11854.96, + "end": 11857.98, + "probability": 0.9691 + }, + { + "start": 11858.36, + "end": 11859.74, + "probability": 0.7806 + }, + { + "start": 11860.24, + "end": 11864.0, + "probability": 0.9813 + }, + { + "start": 11864.42, + "end": 11866.04, + "probability": 0.9197 + }, + { + "start": 11866.22, + "end": 11866.96, + "probability": 0.764 + }, + { + "start": 11867.22, + "end": 11868.52, + "probability": 0.9861 + }, + { + "start": 11868.64, + "end": 11870.66, + "probability": 0.9427 + }, + { + "start": 11871.06, + "end": 11872.6, + "probability": 0.9976 + }, + { + "start": 11872.9, + "end": 11878.66, + "probability": 0.9985 + }, + { + "start": 11879.0, + "end": 11880.6, + "probability": 0.8436 + }, + { + "start": 11880.78, + "end": 11884.18, + "probability": 0.9917 + }, + { + "start": 11884.46, + "end": 11885.3, + "probability": 0.8734 + }, + { + "start": 11885.52, + "end": 11886.16, + "probability": 0.7404 + }, + { + "start": 11886.46, + "end": 11888.3, + "probability": 0.7623 + }, + { + "start": 11888.66, + "end": 11892.89, + "probability": 0.9966 + }, + { + "start": 11893.34, + "end": 11895.48, + "probability": 0.981 + }, + { + "start": 11896.02, + "end": 11900.14, + "probability": 0.9691 + }, + { + "start": 11900.14, + "end": 11902.74, + "probability": 0.991 + }, + { + "start": 11902.8, + "end": 11905.44, + "probability": 0.5581 + }, + { + "start": 11905.76, + "end": 11907.68, + "probability": 0.8616 + }, + { + "start": 11907.76, + "end": 11909.4, + "probability": 0.978 + }, + { + "start": 11909.5, + "end": 11911.54, + "probability": 0.9278 + }, + { + "start": 11911.56, + "end": 11913.52, + "probability": 0.6871 + }, + { + "start": 11913.98, + "end": 11917.02, + "probability": 0.9814 + }, + { + "start": 11917.3, + "end": 11918.3, + "probability": 0.9228 + }, + { + "start": 11918.72, + "end": 11919.76, + "probability": 0.7857 + }, + { + "start": 11920.04, + "end": 11923.78, + "probability": 0.7492 + }, + { + "start": 11923.9, + "end": 11926.0, + "probability": 0.8057 + }, + { + "start": 11926.12, + "end": 11928.92, + "probability": 0.897 + }, + { + "start": 11929.22, + "end": 11930.35, + "probability": 0.9946 + }, + { + "start": 11930.78, + "end": 11932.64, + "probability": 0.9805 + }, + { + "start": 11933.18, + "end": 11934.72, + "probability": 0.9987 + }, + { + "start": 11935.12, + "end": 11936.86, + "probability": 0.7856 + }, + { + "start": 11937.28, + "end": 11938.78, + "probability": 0.9865 + }, + { + "start": 11939.12, + "end": 11940.42, + "probability": 0.9909 + }, + { + "start": 11940.76, + "end": 11942.02, + "probability": 0.9897 + }, + { + "start": 11942.3, + "end": 11942.9, + "probability": 0.5513 + }, + { + "start": 11942.9, + "end": 11943.28, + "probability": 0.4066 + }, + { + "start": 11943.56, + "end": 11946.26, + "probability": 0.946 + }, + { + "start": 11946.88, + "end": 11948.64, + "probability": 0.9082 + }, + { + "start": 11949.0, + "end": 11951.78, + "probability": 0.9773 + }, + { + "start": 11951.78, + "end": 11954.1, + "probability": 0.9495 + }, + { + "start": 11954.54, + "end": 11955.34, + "probability": 0.7642 + }, + { + "start": 11955.44, + "end": 11957.32, + "probability": 0.7773 + }, + { + "start": 11957.66, + "end": 11959.22, + "probability": 0.9254 + }, + { + "start": 11959.48, + "end": 11960.36, + "probability": 0.9092 + }, + { + "start": 11960.7, + "end": 11961.35, + "probability": 0.9585 + }, + { + "start": 11962.0, + "end": 11963.04, + "probability": 0.9895 + }, + { + "start": 11963.58, + "end": 11966.56, + "probability": 0.8406 + }, + { + "start": 11966.72, + "end": 11968.44, + "probability": 0.8701 + }, + { + "start": 11968.7, + "end": 11969.92, + "probability": 0.9883 + }, + { + "start": 11969.96, + "end": 11970.9, + "probability": 0.9745 + }, + { + "start": 11971.0, + "end": 11972.78, + "probability": 0.987 + }, + { + "start": 11973.02, + "end": 11975.58, + "probability": 0.9819 + }, + { + "start": 11975.72, + "end": 11976.04, + "probability": 0.0003 + }, + { + "start": 11976.04, + "end": 11976.6, + "probability": 0.4232 + }, + { + "start": 11976.86, + "end": 11978.12, + "probability": 0.8442 + }, + { + "start": 11978.36, + "end": 11981.8, + "probability": 0.6352 + }, + { + "start": 11981.82, + "end": 11984.24, + "probability": 0.8937 + }, + { + "start": 11984.38, + "end": 11984.68, + "probability": 0.7869 + }, + { + "start": 11985.42, + "end": 11986.82, + "probability": 0.6866 + }, + { + "start": 11986.98, + "end": 11988.5, + "probability": 0.8318 + }, + { + "start": 11997.92, + "end": 11997.94, + "probability": 0.3842 + }, + { + "start": 11997.94, + "end": 11998.9, + "probability": 0.4983 + }, + { + "start": 12009.3, + "end": 12013.36, + "probability": 0.9784 + }, + { + "start": 12017.06, + "end": 12019.42, + "probability": 0.4715 + }, + { + "start": 12022.62, + "end": 12024.56, + "probability": 0.8543 + }, + { + "start": 12024.7, + "end": 12029.98, + "probability": 0.9456 + }, + { + "start": 12029.98, + "end": 12033.74, + "probability": 0.7474 + }, + { + "start": 12033.78, + "end": 12037.0, + "probability": 0.8174 + }, + { + "start": 12039.58, + "end": 12045.7, + "probability": 0.981 + }, + { + "start": 12046.3, + "end": 12047.98, + "probability": 0.9272 + }, + { + "start": 12048.66, + "end": 12050.22, + "probability": 0.9917 + }, + { + "start": 12052.08, + "end": 12052.78, + "probability": 0.9589 + }, + { + "start": 12055.54, + "end": 12059.02, + "probability": 0.978 + }, + { + "start": 12063.08, + "end": 12064.04, + "probability": 0.7303 + }, + { + "start": 12066.84, + "end": 12067.48, + "probability": 0.6048 + }, + { + "start": 12067.68, + "end": 12072.06, + "probability": 0.8736 + }, + { + "start": 12072.62, + "end": 12073.28, + "probability": 0.957 + }, + { + "start": 12074.34, + "end": 12075.22, + "probability": 0.9691 + }, + { + "start": 12075.92, + "end": 12076.9, + "probability": 0.9089 + }, + { + "start": 12077.5, + "end": 12078.26, + "probability": 0.789 + }, + { + "start": 12079.8, + "end": 12082.62, + "probability": 0.91 + }, + { + "start": 12083.48, + "end": 12083.92, + "probability": 0.8297 + }, + { + "start": 12085.58, + "end": 12090.08, + "probability": 0.999 + }, + { + "start": 12092.56, + "end": 12093.18, + "probability": 0.2027 + }, + { + "start": 12093.28, + "end": 12094.18, + "probability": 0.1766 + }, + { + "start": 12094.44, + "end": 12094.62, + "probability": 0.8322 + }, + { + "start": 12095.24, + "end": 12097.74, + "probability": 0.3514 + }, + { + "start": 12097.86, + "end": 12099.5, + "probability": 0.38 + }, + { + "start": 12099.74, + "end": 12101.0, + "probability": 0.3383 + }, + { + "start": 12101.96, + "end": 12103.72, + "probability": 0.8442 + }, + { + "start": 12103.8, + "end": 12106.16, + "probability": 0.9785 + }, + { + "start": 12106.3, + "end": 12108.22, + "probability": 0.9901 + }, + { + "start": 12108.98, + "end": 12110.4, + "probability": 0.5193 + }, + { + "start": 12110.82, + "end": 12111.7, + "probability": 0.9033 + }, + { + "start": 12112.34, + "end": 12116.64, + "probability": 0.9902 + }, + { + "start": 12118.3, + "end": 12120.52, + "probability": 0.9658 + }, + { + "start": 12121.14, + "end": 12123.9, + "probability": 0.9372 + }, + { + "start": 12124.86, + "end": 12127.64, + "probability": 0.9727 + }, + { + "start": 12128.06, + "end": 12129.62, + "probability": 0.9559 + }, + { + "start": 12130.18, + "end": 12136.64, + "probability": 0.8446 + }, + { + "start": 12137.06, + "end": 12140.08, + "probability": 0.837 + }, + { + "start": 12140.14, + "end": 12140.7, + "probability": 0.6453 + }, + { + "start": 12140.84, + "end": 12141.64, + "probability": 0.8636 + }, + { + "start": 12141.7, + "end": 12143.58, + "probability": 0.952 + }, + { + "start": 12143.66, + "end": 12145.64, + "probability": 0.943 + }, + { + "start": 12147.08, + "end": 12148.1, + "probability": 0.9399 + }, + { + "start": 12148.96, + "end": 12149.85, + "probability": 0.8936 + }, + { + "start": 12150.74, + "end": 12153.04, + "probability": 0.9943 + }, + { + "start": 12153.8, + "end": 12155.68, + "probability": 0.4857 + }, + { + "start": 12156.46, + "end": 12162.08, + "probability": 0.9469 + }, + { + "start": 12162.9, + "end": 12164.66, + "probability": 0.8331 + }, + { + "start": 12165.12, + "end": 12168.04, + "probability": 0.9458 + }, + { + "start": 12169.22, + "end": 12173.5, + "probability": 0.9739 + }, + { + "start": 12174.28, + "end": 12176.03, + "probability": 0.9449 + }, + { + "start": 12176.68, + "end": 12178.16, + "probability": 0.828 + }, + { + "start": 12178.88, + "end": 12183.44, + "probability": 0.9629 + }, + { + "start": 12183.96, + "end": 12187.18, + "probability": 0.9847 + }, + { + "start": 12187.38, + "end": 12189.98, + "probability": 0.9783 + }, + { + "start": 12190.62, + "end": 12191.28, + "probability": 0.9581 + }, + { + "start": 12192.02, + "end": 12195.62, + "probability": 0.9841 + }, + { + "start": 12195.62, + "end": 12198.68, + "probability": 0.9975 + }, + { + "start": 12199.12, + "end": 12201.05, + "probability": 0.9757 + }, + { + "start": 12201.56, + "end": 12204.14, + "probability": 0.9869 + }, + { + "start": 12204.78, + "end": 12207.24, + "probability": 0.9844 + }, + { + "start": 12207.36, + "end": 12209.38, + "probability": 0.8267 + }, + { + "start": 12209.54, + "end": 12211.0, + "probability": 0.787 + }, + { + "start": 12212.22, + "end": 12213.3, + "probability": 0.9384 + }, + { + "start": 12214.22, + "end": 12219.28, + "probability": 0.9478 + }, + { + "start": 12220.02, + "end": 12221.12, + "probability": 0.9054 + }, + { + "start": 12222.48, + "end": 12229.08, + "probability": 0.9204 + }, + { + "start": 12229.86, + "end": 12230.36, + "probability": 0.9873 + }, + { + "start": 12231.46, + "end": 12232.84, + "probability": 0.7519 + }, + { + "start": 12233.4, + "end": 12233.86, + "probability": 0.7907 + }, + { + "start": 12234.44, + "end": 12237.42, + "probability": 0.6805 + }, + { + "start": 12238.1, + "end": 12240.38, + "probability": 0.9 + }, + { + "start": 12254.86, + "end": 12255.42, + "probability": 0.4915 + }, + { + "start": 12258.17, + "end": 12261.12, + "probability": 0.7333 + }, + { + "start": 12263.5, + "end": 12267.54, + "probability": 0.8765 + }, + { + "start": 12267.64, + "end": 12270.16, + "probability": 0.9954 + }, + { + "start": 12271.26, + "end": 12273.72, + "probability": 0.9523 + }, + { + "start": 12274.86, + "end": 12276.56, + "probability": 0.9946 + }, + { + "start": 12276.92, + "end": 12279.04, + "probability": 0.9147 + }, + { + "start": 12280.38, + "end": 12282.38, + "probability": 0.8872 + }, + { + "start": 12283.22, + "end": 12284.24, + "probability": 0.9795 + }, + { + "start": 12285.28, + "end": 12286.4, + "probability": 0.4677 + }, + { + "start": 12287.48, + "end": 12289.22, + "probability": 0.9579 + }, + { + "start": 12291.42, + "end": 12293.58, + "probability": 0.8811 + }, + { + "start": 12293.66, + "end": 12295.3, + "probability": 0.864 + }, + { + "start": 12296.06, + "end": 12298.52, + "probability": 0.9793 + }, + { + "start": 12298.52, + "end": 12301.1, + "probability": 0.9719 + }, + { + "start": 12301.86, + "end": 12303.76, + "probability": 0.4332 + }, + { + "start": 12304.82, + "end": 12304.82, + "probability": 0.0059 + }, + { + "start": 12304.82, + "end": 12304.82, + "probability": 0.2344 + }, + { + "start": 12304.82, + "end": 12304.82, + "probability": 0.3695 + }, + { + "start": 12304.82, + "end": 12306.72, + "probability": 0.9385 + }, + { + "start": 12306.86, + "end": 12310.58, + "probability": 0.982 + }, + { + "start": 12311.14, + "end": 12313.0, + "probability": 0.8521 + }, + { + "start": 12313.12, + "end": 12314.72, + "probability": 0.9922 + }, + { + "start": 12315.56, + "end": 12317.1, + "probability": 0.4937 + }, + { + "start": 12317.52, + "end": 12319.78, + "probability": 0.9858 + }, + { + "start": 12320.6, + "end": 12322.14, + "probability": 0.9689 + }, + { + "start": 12322.74, + "end": 12327.16, + "probability": 0.7646 + }, + { + "start": 12327.76, + "end": 12332.5, + "probability": 0.9599 + }, + { + "start": 12332.58, + "end": 12333.3, + "probability": 0.3601 + }, + { + "start": 12334.85, + "end": 12336.94, + "probability": 0.7378 + }, + { + "start": 12339.12, + "end": 12342.42, + "probability": 0.8471 + }, + { + "start": 12342.94, + "end": 12346.84, + "probability": 0.9804 + }, + { + "start": 12346.84, + "end": 12351.3, + "probability": 0.8582 + }, + { + "start": 12351.62, + "end": 12355.64, + "probability": 0.9646 + }, + { + "start": 12356.4, + "end": 12359.12, + "probability": 0.7656 + }, + { + "start": 12359.72, + "end": 12360.46, + "probability": 0.9146 + }, + { + "start": 12360.64, + "end": 12365.9, + "probability": 0.859 + }, + { + "start": 12366.14, + "end": 12368.58, + "probability": 0.6702 + }, + { + "start": 12368.66, + "end": 12370.98, + "probability": 0.9842 + }, + { + "start": 12371.56, + "end": 12376.74, + "probability": 0.9996 + }, + { + "start": 12376.86, + "end": 12382.02, + "probability": 0.9876 + }, + { + "start": 12382.8, + "end": 12394.5, + "probability": 0.9481 + }, + { + "start": 12395.28, + "end": 12396.84, + "probability": 0.8042 + }, + { + "start": 12397.76, + "end": 12401.44, + "probability": 0.9912 + }, + { + "start": 12402.44, + "end": 12404.12, + "probability": 0.6102 + }, + { + "start": 12404.22, + "end": 12404.84, + "probability": 0.8932 + }, + { + "start": 12405.16, + "end": 12406.92, + "probability": 0.946 + }, + { + "start": 12407.42, + "end": 12408.02, + "probability": 0.5317 + }, + { + "start": 12408.14, + "end": 12408.66, + "probability": 0.2112 + }, + { + "start": 12408.84, + "end": 12411.12, + "probability": 0.9813 + }, + { + "start": 12412.08, + "end": 12413.88, + "probability": 0.8309 + }, + { + "start": 12413.94, + "end": 12417.86, + "probability": 0.9963 + }, + { + "start": 12417.86, + "end": 12421.9, + "probability": 0.9951 + }, + { + "start": 12422.58, + "end": 12425.06, + "probability": 0.9041 + }, + { + "start": 12425.14, + "end": 12425.62, + "probability": 0.6834 + }, + { + "start": 12426.52, + "end": 12427.36, + "probability": 0.9666 + }, + { + "start": 12427.44, + "end": 12431.08, + "probability": 0.8827 + }, + { + "start": 12431.08, + "end": 12437.02, + "probability": 0.882 + }, + { + "start": 12437.46, + "end": 12439.94, + "probability": 0.6596 + }, + { + "start": 12441.04, + "end": 12444.2, + "probability": 0.9888 + }, + { + "start": 12444.24, + "end": 12446.62, + "probability": 0.8816 + }, + { + "start": 12447.48, + "end": 12448.76, + "probability": 0.7969 + }, + { + "start": 12448.84, + "end": 12450.62, + "probability": 0.9786 + }, + { + "start": 12469.62, + "end": 12471.2, + "probability": 0.6215 + }, + { + "start": 12474.1, + "end": 12476.04, + "probability": 0.7646 + }, + { + "start": 12477.44, + "end": 12483.5, + "probability": 0.785 + }, + { + "start": 12483.56, + "end": 12485.08, + "probability": 0.9363 + }, + { + "start": 12485.78, + "end": 12489.16, + "probability": 0.9932 + }, + { + "start": 12490.86, + "end": 12495.54, + "probability": 0.7833 + }, + { + "start": 12495.7, + "end": 12501.76, + "probability": 0.7727 + }, + { + "start": 12504.32, + "end": 12505.3, + "probability": 0.3801 + }, + { + "start": 12506.3, + "end": 12508.6, + "probability": 0.9824 + }, + { + "start": 12508.66, + "end": 12510.08, + "probability": 0.676 + }, + { + "start": 12510.2, + "end": 12513.84, + "probability": 0.7981 + }, + { + "start": 12514.0, + "end": 12516.6, + "probability": 0.9858 + }, + { + "start": 12517.4, + "end": 12519.02, + "probability": 0.7995 + }, + { + "start": 12519.2, + "end": 12524.12, + "probability": 0.96 + }, + { + "start": 12524.96, + "end": 12527.9, + "probability": 0.9833 + }, + { + "start": 12528.36, + "end": 12537.24, + "probability": 0.9312 + }, + { + "start": 12538.62, + "end": 12541.8, + "probability": 0.6728 + }, + { + "start": 12541.96, + "end": 12543.62, + "probability": 0.9392 + }, + { + "start": 12543.88, + "end": 12545.0, + "probability": 0.7522 + }, + { + "start": 12545.76, + "end": 12547.0, + "probability": 0.9265 + }, + { + "start": 12547.12, + "end": 12548.14, + "probability": 0.8962 + }, + { + "start": 12548.2, + "end": 12549.78, + "probability": 0.9429 + }, + { + "start": 12551.14, + "end": 12553.96, + "probability": 0.9507 + }, + { + "start": 12554.56, + "end": 12558.32, + "probability": 0.55 + }, + { + "start": 12558.44, + "end": 12561.96, + "probability": 0.8199 + }, + { + "start": 12563.59, + "end": 12567.12, + "probability": 0.9953 + }, + { + "start": 12567.68, + "end": 12569.74, + "probability": 0.9127 + }, + { + "start": 12570.8, + "end": 12574.84, + "probability": 0.9881 + }, + { + "start": 12575.68, + "end": 12578.7, + "probability": 0.9475 + }, + { + "start": 12578.78, + "end": 12579.5, + "probability": 0.4171 + }, + { + "start": 12579.52, + "end": 12583.98, + "probability": 0.781 + }, + { + "start": 12585.22, + "end": 12590.3, + "probability": 0.9873 + }, + { + "start": 12591.98, + "end": 12594.76, + "probability": 0.9826 + }, + { + "start": 12594.86, + "end": 12595.84, + "probability": 0.816 + }, + { + "start": 12596.76, + "end": 12603.14, + "probability": 0.9962 + }, + { + "start": 12603.82, + "end": 12605.06, + "probability": 0.7876 + }, + { + "start": 12605.72, + "end": 12611.24, + "probability": 0.9091 + }, + { + "start": 12611.64, + "end": 12612.52, + "probability": 0.0848 + }, + { + "start": 12614.01, + "end": 12615.6, + "probability": 0.6588 + }, + { + "start": 12616.88, + "end": 12619.56, + "probability": 0.8745 + }, + { + "start": 12619.82, + "end": 12620.26, + "probability": 0.6709 + }, + { + "start": 12620.26, + "end": 12623.38, + "probability": 0.9746 + }, + { + "start": 12623.46, + "end": 12624.66, + "probability": 0.9467 + }, + { + "start": 12625.02, + "end": 12630.82, + "probability": 0.9607 + }, + { + "start": 12631.24, + "end": 12632.78, + "probability": 0.5594 + }, + { + "start": 12632.9, + "end": 12634.02, + "probability": 0.5886 + }, + { + "start": 12634.04, + "end": 12635.64, + "probability": 0.7365 + }, + { + "start": 12635.76, + "end": 12639.82, + "probability": 0.6719 + }, + { + "start": 12639.94, + "end": 12641.82, + "probability": 0.9943 + }, + { + "start": 12641.86, + "end": 12642.18, + "probability": 0.8592 + }, + { + "start": 12642.28, + "end": 12642.56, + "probability": 0.3041 + }, + { + "start": 12642.56, + "end": 12643.58, + "probability": 0.6281 + }, + { + "start": 12644.88, + "end": 12646.34, + "probability": 0.5625 + }, + { + "start": 12647.06, + "end": 12649.98, + "probability": 0.98 + }, + { + "start": 12650.06, + "end": 12650.78, + "probability": 0.8166 + }, + { + "start": 12650.82, + "end": 12654.7, + "probability": 0.9946 + }, + { + "start": 12655.12, + "end": 12656.01, + "probability": 0.9512 + }, + { + "start": 12656.14, + "end": 12656.54, + "probability": 0.9584 + }, + { + "start": 12656.94, + "end": 12660.18, + "probability": 0.7489 + }, + { + "start": 12660.66, + "end": 12666.1, + "probability": 0.8265 + }, + { + "start": 12666.1, + "end": 12669.28, + "probability": 0.978 + }, + { + "start": 12669.4, + "end": 12669.98, + "probability": 0.9478 + }, + { + "start": 12671.2, + "end": 12673.02, + "probability": 0.7372 + }, + { + "start": 12673.12, + "end": 12674.98, + "probability": 0.7446 + }, + { + "start": 12675.58, + "end": 12676.24, + "probability": 0.696 + }, + { + "start": 12676.92, + "end": 12678.56, + "probability": 0.9759 + }, + { + "start": 12679.24, + "end": 12679.88, + "probability": 0.9314 + }, + { + "start": 12681.02, + "end": 12682.58, + "probability": 0.8491 + }, + { + "start": 12684.42, + "end": 12684.92, + "probability": 0.8769 + }, + { + "start": 12688.62, + "end": 12690.72, + "probability": 0.721 + }, + { + "start": 12692.18, + "end": 12692.92, + "probability": 0.388 + }, + { + "start": 12693.0, + "end": 12693.24, + "probability": 0.7203 + }, + { + "start": 12693.72, + "end": 12694.14, + "probability": 0.3808 + }, + { + "start": 12694.3, + "end": 12695.6, + "probability": 0.8842 + }, + { + "start": 12696.52, + "end": 12698.18, + "probability": 0.9829 + }, + { + "start": 12699.54, + "end": 12701.18, + "probability": 0.88 + }, + { + "start": 12701.96, + "end": 12703.66, + "probability": 0.9898 + }, + { + "start": 12704.16, + "end": 12704.58, + "probability": 0.7256 + }, + { + "start": 12725.5, + "end": 12726.24, + "probability": 0.3201 + }, + { + "start": 12726.46, + "end": 12727.44, + "probability": 0.7879 + }, + { + "start": 12729.16, + "end": 12730.1, + "probability": 0.9795 + }, + { + "start": 12731.3, + "end": 12732.78, + "probability": 0.8478 + }, + { + "start": 12733.64, + "end": 12734.58, + "probability": 0.9222 + }, + { + "start": 12735.88, + "end": 12739.26, + "probability": 0.9959 + }, + { + "start": 12740.66, + "end": 12742.2, + "probability": 0.9119 + }, + { + "start": 12742.92, + "end": 12750.32, + "probability": 0.9917 + }, + { + "start": 12751.74, + "end": 12756.02, + "probability": 0.9973 + }, + { + "start": 12757.0, + "end": 12760.98, + "probability": 0.9682 + }, + { + "start": 12761.94, + "end": 12762.84, + "probability": 0.9726 + }, + { + "start": 12764.18, + "end": 12769.78, + "probability": 0.998 + }, + { + "start": 12771.1, + "end": 12773.02, + "probability": 0.9574 + }, + { + "start": 12773.7, + "end": 12776.98, + "probability": 0.8972 + }, + { + "start": 12778.42, + "end": 12779.02, + "probability": 0.5023 + }, + { + "start": 12780.0, + "end": 12782.88, + "probability": 0.9071 + }, + { + "start": 12783.3, + "end": 12784.54, + "probability": 0.7299 + }, + { + "start": 12785.46, + "end": 12787.32, + "probability": 0.8477 + }, + { + "start": 12788.66, + "end": 12792.56, + "probability": 0.9907 + }, + { + "start": 12793.18, + "end": 12794.72, + "probability": 0.9072 + }, + { + "start": 12795.32, + "end": 12797.08, + "probability": 0.9935 + }, + { + "start": 12797.68, + "end": 12799.24, + "probability": 0.9971 + }, + { + "start": 12800.26, + "end": 12803.0, + "probability": 0.8833 + }, + { + "start": 12803.88, + "end": 12805.5, + "probability": 0.9913 + }, + { + "start": 12806.62, + "end": 12807.64, + "probability": 0.9933 + }, + { + "start": 12809.6, + "end": 12812.82, + "probability": 0.9688 + }, + { + "start": 12813.98, + "end": 12816.62, + "probability": 0.9974 + }, + { + "start": 12816.92, + "end": 12817.46, + "probability": 0.5062 + }, + { + "start": 12818.96, + "end": 12820.98, + "probability": 0.6519 + }, + { + "start": 12822.2, + "end": 12825.66, + "probability": 0.7558 + }, + { + "start": 12827.28, + "end": 12829.4, + "probability": 0.885 + }, + { + "start": 12830.26, + "end": 12831.26, + "probability": 0.9983 + }, + { + "start": 12832.42, + "end": 12833.46, + "probability": 0.9584 + }, + { + "start": 12834.14, + "end": 12835.1, + "probability": 0.8978 + }, + { + "start": 12836.04, + "end": 12836.6, + "probability": 0.5122 + }, + { + "start": 12837.22, + "end": 12842.85, + "probability": 0.9888 + }, + { + "start": 12844.08, + "end": 12845.56, + "probability": 0.7798 + }, + { + "start": 12846.36, + "end": 12847.32, + "probability": 0.7961 + }, + { + "start": 12848.16, + "end": 12849.5, + "probability": 0.9785 + }, + { + "start": 12850.7, + "end": 12853.44, + "probability": 0.771 + }, + { + "start": 12854.46, + "end": 12854.84, + "probability": 0.6173 + }, + { + "start": 12856.72, + "end": 12857.46, + "probability": 0.8409 + }, + { + "start": 12858.02, + "end": 12862.62, + "probability": 0.9989 + }, + { + "start": 12862.82, + "end": 12863.2, + "probability": 0.9293 + }, + { + "start": 12863.7, + "end": 12864.36, + "probability": 0.78 + }, + { + "start": 12865.04, + "end": 12866.36, + "probability": 0.9896 + }, + { + "start": 12867.1, + "end": 12868.52, + "probability": 0.9271 + }, + { + "start": 12869.14, + "end": 12870.28, + "probability": 0.9917 + }, + { + "start": 12871.48, + "end": 12875.6, + "probability": 0.9902 + }, + { + "start": 12876.74, + "end": 12879.66, + "probability": 0.786 + }, + { + "start": 12880.92, + "end": 12884.94, + "probability": 0.9946 + }, + { + "start": 12886.24, + "end": 12889.88, + "probability": 0.9962 + }, + { + "start": 12890.84, + "end": 12891.84, + "probability": 0.9267 + }, + { + "start": 12892.52, + "end": 12896.06, + "probability": 0.9974 + }, + { + "start": 12896.72, + "end": 12900.08, + "probability": 0.9943 + }, + { + "start": 12900.6, + "end": 12901.32, + "probability": 0.5495 + }, + { + "start": 12901.4, + "end": 12903.26, + "probability": 0.9917 + }, + { + "start": 12903.88, + "end": 12905.58, + "probability": 0.9119 + }, + { + "start": 12905.9, + "end": 12906.0, + "probability": 0.8217 + }, + { + "start": 12906.64, + "end": 12907.34, + "probability": 0.8068 + }, + { + "start": 12909.06, + "end": 12910.76, + "probability": 0.5696 + }, + { + "start": 12912.36, + "end": 12914.24, + "probability": 0.7594 + }, + { + "start": 12915.2, + "end": 12917.54, + "probability": 0.6113 + }, + { + "start": 12918.06, + "end": 12919.31, + "probability": 0.5237 + }, + { + "start": 12920.58, + "end": 12921.08, + "probability": 0.8723 + }, + { + "start": 12921.64, + "end": 12922.4, + "probability": 0.9104 + }, + { + "start": 12923.26, + "end": 12923.78, + "probability": 0.5177 + }, + { + "start": 12924.32, + "end": 12925.72, + "probability": 0.9881 + }, + { + "start": 12928.16, + "end": 12929.0, + "probability": 0.2401 + }, + { + "start": 12930.96, + "end": 12931.0, + "probability": 0.1267 + }, + { + "start": 12931.0, + "end": 12931.24, + "probability": 0.4987 + }, + { + "start": 12939.48, + "end": 12940.86, + "probability": 0.4809 + }, + { + "start": 12942.62, + "end": 12944.22, + "probability": 0.6462 + }, + { + "start": 12946.3, + "end": 12948.72, + "probability": 0.7708 + }, + { + "start": 12949.46, + "end": 12952.4, + "probability": 0.9905 + }, + { + "start": 12953.74, + "end": 12958.06, + "probability": 0.9951 + }, + { + "start": 12958.68, + "end": 12963.96, + "probability": 0.9865 + }, + { + "start": 12964.92, + "end": 12968.0, + "probability": 0.9966 + }, + { + "start": 12968.78, + "end": 12971.24, + "probability": 0.9997 + }, + { + "start": 12972.08, + "end": 12977.22, + "probability": 0.9982 + }, + { + "start": 12978.44, + "end": 12982.62, + "probability": 0.815 + }, + { + "start": 12983.26, + "end": 12985.06, + "probability": 0.9346 + }, + { + "start": 12985.64, + "end": 12987.54, + "probability": 0.9889 + }, + { + "start": 12989.58, + "end": 12993.76, + "probability": 0.9976 + }, + { + "start": 12994.82, + "end": 13000.56, + "probability": 0.9929 + }, + { + "start": 13001.3, + "end": 13005.08, + "probability": 0.9889 + }, + { + "start": 13005.66, + "end": 13010.58, + "probability": 0.9793 + }, + { + "start": 13012.0, + "end": 13012.68, + "probability": 0.6512 + }, + { + "start": 13012.92, + "end": 13020.96, + "probability": 0.9559 + }, + { + "start": 13021.08, + "end": 13021.84, + "probability": 0.4184 + }, + { + "start": 13022.54, + "end": 13023.52, + "probability": 0.9037 + }, + { + "start": 13023.6, + "end": 13031.22, + "probability": 0.9447 + }, + { + "start": 13031.36, + "end": 13033.48, + "probability": 0.8247 + }, + { + "start": 13034.54, + "end": 13035.76, + "probability": 0.8027 + }, + { + "start": 13035.86, + "end": 13036.3, + "probability": 0.8453 + }, + { + "start": 13036.42, + "end": 13037.2, + "probability": 0.9655 + }, + { + "start": 13037.44, + "end": 13039.0, + "probability": 0.9318 + }, + { + "start": 13039.54, + "end": 13043.4, + "probability": 0.9321 + }, + { + "start": 13043.4, + "end": 13047.2, + "probability": 0.9188 + }, + { + "start": 13048.36, + "end": 13050.92, + "probability": 0.8329 + }, + { + "start": 13051.78, + "end": 13055.82, + "probability": 0.9937 + }, + { + "start": 13056.78, + "end": 13058.46, + "probability": 0.9826 + }, + { + "start": 13059.38, + "end": 13066.06, + "probability": 0.9641 + }, + { + "start": 13066.62, + "end": 13073.84, + "probability": 0.9829 + }, + { + "start": 13074.58, + "end": 13082.16, + "probability": 0.789 + }, + { + "start": 13082.54, + "end": 13085.26, + "probability": 0.9017 + }, + { + "start": 13085.92, + "end": 13089.0, + "probability": 0.9548 + }, + { + "start": 13089.48, + "end": 13092.98, + "probability": 0.8175 + }, + { + "start": 13093.58, + "end": 13098.2, + "probability": 0.9229 + }, + { + "start": 13099.0, + "end": 13103.14, + "probability": 0.6852 + }, + { + "start": 13104.1, + "end": 13107.72, + "probability": 0.9365 + }, + { + "start": 13108.26, + "end": 13109.24, + "probability": 0.7132 + }, + { + "start": 13109.48, + "end": 13112.66, + "probability": 0.9295 + }, + { + "start": 13113.26, + "end": 13117.62, + "probability": 0.8498 + }, + { + "start": 13118.36, + "end": 13121.88, + "probability": 0.9955 + }, + { + "start": 13122.22, + "end": 13125.66, + "probability": 0.9429 + }, + { + "start": 13125.66, + "end": 13131.32, + "probability": 0.9529 + }, + { + "start": 13132.36, + "end": 13134.54, + "probability": 0.9684 + }, + { + "start": 13134.72, + "end": 13138.14, + "probability": 0.9567 + }, + { + "start": 13138.14, + "end": 13143.1, + "probability": 0.9995 + }, + { + "start": 13143.68, + "end": 13148.2, + "probability": 0.9829 + }, + { + "start": 13148.74, + "end": 13153.02, + "probability": 0.7243 + }, + { + "start": 13153.22, + "end": 13153.93, + "probability": 0.9985 + }, + { + "start": 13154.72, + "end": 13156.0, + "probability": 0.8477 + }, + { + "start": 13156.18, + "end": 13157.7, + "probability": 0.7434 + }, + { + "start": 13157.9, + "end": 13160.62, + "probability": 0.9896 + }, + { + "start": 13160.62, + "end": 13162.1, + "probability": 0.9869 + }, + { + "start": 13163.12, + "end": 13166.82, + "probability": 0.9918 + }, + { + "start": 13166.96, + "end": 13167.3, + "probability": 0.7321 + }, + { + "start": 13167.3, + "end": 13167.7, + "probability": 0.8815 + }, + { + "start": 13168.58, + "end": 13171.16, + "probability": 0.9288 + }, + { + "start": 13178.28, + "end": 13179.86, + "probability": 0.7179 + }, + { + "start": 13183.96, + "end": 13185.66, + "probability": 0.8926 + }, + { + "start": 13187.76, + "end": 13189.38, + "probability": 0.8378 + }, + { + "start": 13189.52, + "end": 13192.54, + "probability": 0.7521 + }, + { + "start": 13193.62, + "end": 13198.62, + "probability": 0.9742 + }, + { + "start": 13199.62, + "end": 13203.54, + "probability": 0.9611 + }, + { + "start": 13203.54, + "end": 13209.22, + "probability": 0.9342 + }, + { + "start": 13210.42, + "end": 13211.52, + "probability": 0.9807 + }, + { + "start": 13212.14, + "end": 13213.32, + "probability": 0.9446 + }, + { + "start": 13214.22, + "end": 13218.16, + "probability": 0.9966 + }, + { + "start": 13219.18, + "end": 13221.32, + "probability": 0.9873 + }, + { + "start": 13222.0, + "end": 13222.9, + "probability": 0.9282 + }, + { + "start": 13223.8, + "end": 13228.3, + "probability": 0.9971 + }, + { + "start": 13229.38, + "end": 13232.26, + "probability": 0.9493 + }, + { + "start": 13232.82, + "end": 13235.22, + "probability": 0.9979 + }, + { + "start": 13235.22, + "end": 13238.32, + "probability": 0.995 + }, + { + "start": 13239.22, + "end": 13240.82, + "probability": 0.9909 + }, + { + "start": 13241.6, + "end": 13242.52, + "probability": 0.9715 + }, + { + "start": 13243.22, + "end": 13244.0, + "probability": 0.9838 + }, + { + "start": 13244.02, + "end": 13244.12, + "probability": 0.5778 + }, + { + "start": 13246.1, + "end": 13248.88, + "probability": 0.9575 + }, + { + "start": 13249.66, + "end": 13256.54, + "probability": 0.9609 + }, + { + "start": 13257.06, + "end": 13262.5, + "probability": 0.9937 + }, + { + "start": 13262.5, + "end": 13267.76, + "probability": 0.9995 + }, + { + "start": 13268.64, + "end": 13270.68, + "probability": 0.7605 + }, + { + "start": 13271.34, + "end": 13276.42, + "probability": 0.9631 + }, + { + "start": 13277.04, + "end": 13277.68, + "probability": 0.5335 + }, + { + "start": 13278.16, + "end": 13284.6, + "probability": 0.6995 + }, + { + "start": 13285.22, + "end": 13289.8, + "probability": 0.9755 + }, + { + "start": 13290.24, + "end": 13292.46, + "probability": 0.9779 + }, + { + "start": 13293.2, + "end": 13297.86, + "probability": 0.9839 + }, + { + "start": 13299.1, + "end": 13300.34, + "probability": 0.391 + }, + { + "start": 13301.26, + "end": 13304.4, + "probability": 0.791 + }, + { + "start": 13305.28, + "end": 13307.38, + "probability": 0.9941 + }, + { + "start": 13308.04, + "end": 13309.62, + "probability": 0.7915 + }, + { + "start": 13310.34, + "end": 13315.34, + "probability": 0.9913 + }, + { + "start": 13316.06, + "end": 13319.08, + "probability": 0.8447 + }, + { + "start": 13319.9, + "end": 13321.3, + "probability": 0.9795 + }, + { + "start": 13322.28, + "end": 13328.02, + "probability": 0.985 + }, + { + "start": 13328.02, + "end": 13333.18, + "probability": 0.986 + }, + { + "start": 13333.82, + "end": 13336.82, + "probability": 0.9274 + }, + { + "start": 13337.7, + "end": 13338.96, + "probability": 0.966 + }, + { + "start": 13339.96, + "end": 13343.52, + "probability": 0.9956 + }, + { + "start": 13344.4, + "end": 13347.8, + "probability": 0.9972 + }, + { + "start": 13348.58, + "end": 13350.12, + "probability": 0.9767 + }, + { + "start": 13351.24, + "end": 13353.37, + "probability": 0.6879 + }, + { + "start": 13354.12, + "end": 13356.4, + "probability": 0.9592 + }, + { + "start": 13361.76, + "end": 13362.52, + "probability": 0.5829 + }, + { + "start": 13362.56, + "end": 13363.46, + "probability": 0.6355 + }, + { + "start": 13363.66, + "end": 13366.78, + "probability": 0.948 + }, + { + "start": 13367.42, + "end": 13370.28, + "probability": 0.9172 + }, + { + "start": 13370.28, + "end": 13375.16, + "probability": 0.9937 + }, + { + "start": 13375.22, + "end": 13375.58, + "probability": 0.1658 + }, + { + "start": 13375.64, + "end": 13376.44, + "probability": 0.3547 + }, + { + "start": 13376.7, + "end": 13382.08, + "probability": 0.7179 + }, + { + "start": 13382.6, + "end": 13384.74, + "probability": 0.9962 + }, + { + "start": 13385.89, + "end": 13390.38, + "probability": 0.9825 + }, + { + "start": 13390.46, + "end": 13391.64, + "probability": 0.9539 + }, + { + "start": 13392.34, + "end": 13396.94, + "probability": 0.8887 + }, + { + "start": 13397.0, + "end": 13399.32, + "probability": 0.985 + }, + { + "start": 13399.32, + "end": 13402.16, + "probability": 0.9612 + }, + { + "start": 13403.08, + "end": 13404.0, + "probability": 0.7593 + }, + { + "start": 13404.41, + "end": 13407.11, + "probability": 0.9902 + }, + { + "start": 13407.44, + "end": 13409.16, + "probability": 0.6986 + }, + { + "start": 13409.88, + "end": 13412.0, + "probability": 0.9537 + }, + { + "start": 13412.22, + "end": 13412.82, + "probability": 0.425 + }, + { + "start": 13412.96, + "end": 13417.8, + "probability": 0.8942 + }, + { + "start": 13418.44, + "end": 13420.26, + "probability": 0.9393 + }, + { + "start": 13420.48, + "end": 13422.18, + "probability": 0.9479 + }, + { + "start": 13422.32, + "end": 13423.16, + "probability": 0.8601 + }, + { + "start": 13423.74, + "end": 13425.14, + "probability": 0.9805 + }, + { + "start": 13425.82, + "end": 13427.4, + "probability": 0.9863 + }, + { + "start": 13427.48, + "end": 13429.02, + "probability": 0.9968 + }, + { + "start": 13429.64, + "end": 13432.98, + "probability": 0.9131 + }, + { + "start": 13433.72, + "end": 13435.98, + "probability": 0.9574 + }, + { + "start": 13436.78, + "end": 13441.46, + "probability": 0.9073 + }, + { + "start": 13441.54, + "end": 13442.73, + "probability": 0.8337 + }, + { + "start": 13443.48, + "end": 13448.74, + "probability": 0.9747 + }, + { + "start": 13448.8, + "end": 13449.54, + "probability": 0.8683 + }, + { + "start": 13450.14, + "end": 13451.46, + "probability": 0.9739 + }, + { + "start": 13451.9, + "end": 13456.14, + "probability": 0.969 + }, + { + "start": 13456.66, + "end": 13459.56, + "probability": 0.9232 + }, + { + "start": 13460.42, + "end": 13462.4, + "probability": 0.9963 + }, + { + "start": 13462.6, + "end": 13466.7, + "probability": 0.9878 + }, + { + "start": 13467.94, + "end": 13468.22, + "probability": 0.8923 + }, + { + "start": 13468.8, + "end": 13470.76, + "probability": 0.9624 + }, + { + "start": 13471.4, + "end": 13473.58, + "probability": 0.9801 + }, + { + "start": 13473.58, + "end": 13476.42, + "probability": 0.9532 + }, + { + "start": 13477.42, + "end": 13480.94, + "probability": 0.999 + }, + { + "start": 13481.52, + "end": 13485.38, + "probability": 0.9884 + }, + { + "start": 13486.36, + "end": 13488.09, + "probability": 0.9834 + }, + { + "start": 13488.26, + "end": 13489.14, + "probability": 0.9072 + }, + { + "start": 13489.78, + "end": 13491.34, + "probability": 0.8534 + }, + { + "start": 13491.92, + "end": 13493.54, + "probability": 0.9717 + }, + { + "start": 13494.12, + "end": 13498.41, + "probability": 0.6617 + }, + { + "start": 13500.47, + "end": 13501.32, + "probability": 0.1903 + }, + { + "start": 13501.32, + "end": 13501.32, + "probability": 0.0823 + }, + { + "start": 13501.32, + "end": 13504.56, + "probability": 0.9297 + }, + { + "start": 13505.12, + "end": 13508.52, + "probability": 0.9973 + }, + { + "start": 13509.16, + "end": 13510.02, + "probability": 0.9707 + }, + { + "start": 13510.72, + "end": 13512.16, + "probability": 0.959 + }, + { + "start": 13512.18, + "end": 13513.92, + "probability": 0.9321 + }, + { + "start": 13513.92, + "end": 13516.58, + "probability": 0.9951 + }, + { + "start": 13517.32, + "end": 13520.82, + "probability": 0.8014 + }, + { + "start": 13521.62, + "end": 13526.82, + "probability": 0.7523 + }, + { + "start": 13527.2, + "end": 13530.56, + "probability": 0.9954 + }, + { + "start": 13531.28, + "end": 13534.92, + "probability": 0.9923 + }, + { + "start": 13535.08, + "end": 13537.77, + "probability": 0.9666 + }, + { + "start": 13538.06, + "end": 13539.72, + "probability": 0.6522 + }, + { + "start": 13539.9, + "end": 13542.04, + "probability": 0.9105 + }, + { + "start": 13542.68, + "end": 13544.98, + "probability": 0.999 + }, + { + "start": 13545.56, + "end": 13549.76, + "probability": 0.9775 + }, + { + "start": 13550.46, + "end": 13557.62, + "probability": 0.9158 + }, + { + "start": 13557.62, + "end": 13564.2, + "probability": 0.9958 + }, + { + "start": 13564.52, + "end": 13568.54, + "probability": 0.9949 + }, + { + "start": 13569.18, + "end": 13571.82, + "probability": 0.8241 + }, + { + "start": 13571.94, + "end": 13573.06, + "probability": 0.8479 + }, + { + "start": 13573.86, + "end": 13574.26, + "probability": 0.0466 + }, + { + "start": 13574.26, + "end": 13578.1, + "probability": 0.9609 + }, + { + "start": 13578.26, + "end": 13578.66, + "probability": 0.1665 + }, + { + "start": 13579.22, + "end": 13579.5, + "probability": 0.0317 + }, + { + "start": 13579.5, + "end": 13581.2, + "probability": 0.6045 + }, + { + "start": 13581.24, + "end": 13584.06, + "probability": 0.9834 + }, + { + "start": 13584.56, + "end": 13586.94, + "probability": 0.9938 + }, + { + "start": 13587.62, + "end": 13589.24, + "probability": 0.8994 + }, + { + "start": 13589.38, + "end": 13593.46, + "probability": 0.9912 + }, + { + "start": 13593.98, + "end": 13596.46, + "probability": 0.9666 + }, + { + "start": 13596.78, + "end": 13599.9, + "probability": 0.976 + }, + { + "start": 13599.9, + "end": 13602.96, + "probability": 0.998 + }, + { + "start": 13605.71, + "end": 13605.96, + "probability": 0.222 + }, + { + "start": 13605.96, + "end": 13605.96, + "probability": 0.1963 + }, + { + "start": 13605.96, + "end": 13609.66, + "probability": 0.9653 + }, + { + "start": 13609.78, + "end": 13611.68, + "probability": 0.8481 + }, + { + "start": 13612.18, + "end": 13615.76, + "probability": 0.9644 + }, + { + "start": 13620.52, + "end": 13621.66, + "probability": 0.2362 + }, + { + "start": 13621.66, + "end": 13622.01, + "probability": 0.4986 + }, + { + "start": 13623.64, + "end": 13624.2, + "probability": 0.4431 + }, + { + "start": 13624.88, + "end": 13626.34, + "probability": 0.8345 + }, + { + "start": 13627.38, + "end": 13628.16, + "probability": 0.6981 + }, + { + "start": 13642.22, + "end": 13643.6, + "probability": 0.9314 + }, + { + "start": 13644.5, + "end": 13644.76, + "probability": 0.9739 + }, + { + "start": 13646.02, + "end": 13647.48, + "probability": 0.9907 + }, + { + "start": 13649.56, + "end": 13650.02, + "probability": 0.8402 + }, + { + "start": 13656.1, + "end": 13657.1, + "probability": 0.7361 + }, + { + "start": 13662.54, + "end": 13663.34, + "probability": 0.5916 + }, + { + "start": 13663.66, + "end": 13664.52, + "probability": 0.8287 + }, + { + "start": 13664.72, + "end": 13669.28, + "probability": 0.9698 + }, + { + "start": 13670.04, + "end": 13672.14, + "probability": 0.9083 + }, + { + "start": 13673.1, + "end": 13674.58, + "probability": 0.8652 + }, + { + "start": 13675.48, + "end": 13679.28, + "probability": 0.9852 + }, + { + "start": 13679.74, + "end": 13683.12, + "probability": 0.9739 + }, + { + "start": 13683.3, + "end": 13684.8, + "probability": 0.863 + }, + { + "start": 13685.98, + "end": 13690.46, + "probability": 0.9039 + }, + { + "start": 13690.68, + "end": 13692.08, + "probability": 0.873 + }, + { + "start": 13692.84, + "end": 13693.9, + "probability": 0.3521 + }, + { + "start": 13694.9, + "end": 13698.7, + "probability": 0.9974 + }, + { + "start": 13698.7, + "end": 13701.7, + "probability": 0.9918 + }, + { + "start": 13702.78, + "end": 13704.7, + "probability": 0.6475 + }, + { + "start": 13705.86, + "end": 13707.62, + "probability": 0.9164 + }, + { + "start": 13708.6, + "end": 13709.88, + "probability": 0.0394 + }, + { + "start": 13712.44, + "end": 13712.54, + "probability": 0.0286 + }, + { + "start": 13713.72, + "end": 13715.88, + "probability": 0.0287 + }, + { + "start": 13716.54, + "end": 13716.88, + "probability": 0.2455 + }, + { + "start": 13720.16, + "end": 13721.42, + "probability": 0.1196 + }, + { + "start": 13722.99, + "end": 13725.48, + "probability": 0.6385 + }, + { + "start": 13727.64, + "end": 13728.32, + "probability": 0.6996 + }, + { + "start": 13728.76, + "end": 13731.4, + "probability": 0.9667 + }, + { + "start": 13731.82, + "end": 13732.66, + "probability": 0.9598 + }, + { + "start": 13732.84, + "end": 13733.33, + "probability": 0.9222 + }, + { + "start": 13734.64, + "end": 13736.86, + "probability": 0.9342 + }, + { + "start": 13737.64, + "end": 13739.06, + "probability": 0.6563 + }, + { + "start": 13740.16, + "end": 13742.42, + "probability": 0.6637 + }, + { + "start": 13743.28, + "end": 13744.84, + "probability": 0.8719 + }, + { + "start": 13745.0, + "end": 13746.24, + "probability": 0.854 + }, + { + "start": 13747.2, + "end": 13747.59, + "probability": 0.9788 + }, + { + "start": 13748.86, + "end": 13749.52, + "probability": 0.7697 + }, + { + "start": 13749.6, + "end": 13754.48, + "probability": 0.5268 + }, + { + "start": 13754.64, + "end": 13755.4, + "probability": 0.0776 + }, + { + "start": 13755.4, + "end": 13755.4, + "probability": 0.0044 + }, + { + "start": 13755.4, + "end": 13755.4, + "probability": 0.0176 + }, + { + "start": 13755.4, + "end": 13756.34, + "probability": 0.1059 + }, + { + "start": 13756.4, + "end": 13759.78, + "probability": 0.8936 + }, + { + "start": 13759.86, + "end": 13763.22, + "probability": 0.9885 + }, + { + "start": 13764.16, + "end": 13768.84, + "probability": 0.5836 + }, + { + "start": 13769.04, + "end": 13769.84, + "probability": 0.5865 + }, + { + "start": 13770.38, + "end": 13772.7, + "probability": 0.7663 + }, + { + "start": 13773.38, + "end": 13779.54, + "probability": 0.9917 + }, + { + "start": 13780.28, + "end": 13781.74, + "probability": 0.8945 + }, + { + "start": 13783.28, + "end": 13783.88, + "probability": 0.8762 + }, + { + "start": 13784.68, + "end": 13787.27, + "probability": 0.7593 + }, + { + "start": 13788.18, + "end": 13790.34, + "probability": 0.9624 + }, + { + "start": 13790.92, + "end": 13792.12, + "probability": 0.9817 + }, + { + "start": 13792.72, + "end": 13794.38, + "probability": 0.9323 + }, + { + "start": 13794.96, + "end": 13797.28, + "probability": 0.7453 + }, + { + "start": 13797.4, + "end": 13798.46, + "probability": 0.8701 + }, + { + "start": 13799.6, + "end": 13802.02, + "probability": 0.9578 + }, + { + "start": 13802.36, + "end": 13806.12, + "probability": 0.9517 + }, + { + "start": 13806.18, + "end": 13807.18, + "probability": 0.7686 + }, + { + "start": 13807.92, + "end": 13810.34, + "probability": 0.9651 + }, + { + "start": 13811.1, + "end": 13812.6, + "probability": 0.7993 + }, + { + "start": 13813.42, + "end": 13815.62, + "probability": 0.6877 + }, + { + "start": 13815.98, + "end": 13817.6, + "probability": 0.9922 + }, + { + "start": 13818.24, + "end": 13823.86, + "probability": 0.9732 + }, + { + "start": 13824.32, + "end": 13826.38, + "probability": 0.9946 + }, + { + "start": 13826.56, + "end": 13826.84, + "probability": 0.7298 + }, + { + "start": 13827.68, + "end": 13828.44, + "probability": 0.7338 + }, + { + "start": 13828.52, + "end": 13828.98, + "probability": 0.9427 + }, + { + "start": 13829.06, + "end": 13831.72, + "probability": 0.8677 + }, + { + "start": 13831.8, + "end": 13833.14, + "probability": 0.6545 + }, + { + "start": 13834.14, + "end": 13836.9, + "probability": 0.0384 + }, + { + "start": 13837.1, + "end": 13837.18, + "probability": 0.0548 + }, + { + "start": 13837.18, + "end": 13837.18, + "probability": 0.2059 + }, + { + "start": 13837.18, + "end": 13838.88, + "probability": 0.2532 + }, + { + "start": 13839.68, + "end": 13842.52, + "probability": 0.663 + }, + { + "start": 13843.36, + "end": 13846.76, + "probability": 0.6591 + }, + { + "start": 13858.76, + "end": 13859.11, + "probability": 0.5421 + }, + { + "start": 13863.94, + "end": 13865.24, + "probability": 0.554 + }, + { + "start": 13867.36, + "end": 13867.46, + "probability": 0.478 + }, + { + "start": 13867.46, + "end": 13871.68, + "probability": 0.9902 + }, + { + "start": 13871.68, + "end": 13875.46, + "probability": 0.9972 + }, + { + "start": 13875.56, + "end": 13876.74, + "probability": 0.9517 + }, + { + "start": 13876.84, + "end": 13878.94, + "probability": 0.9219 + }, + { + "start": 13879.38, + "end": 13880.34, + "probability": 0.5325 + }, + { + "start": 13881.16, + "end": 13882.18, + "probability": 0.9917 + }, + { + "start": 13882.84, + "end": 13883.66, + "probability": 0.6582 + }, + { + "start": 13886.12, + "end": 13887.36, + "probability": 0.9438 + }, + { + "start": 13888.4, + "end": 13891.52, + "probability": 0.9962 + }, + { + "start": 13892.28, + "end": 13893.76, + "probability": 0.9942 + }, + { + "start": 13894.18, + "end": 13896.36, + "probability": 0.9867 + }, + { + "start": 13897.42, + "end": 13898.35, + "probability": 0.9966 + }, + { + "start": 13899.94, + "end": 13902.08, + "probability": 0.9946 + }, + { + "start": 13903.12, + "end": 13904.76, + "probability": 0.9914 + }, + { + "start": 13905.22, + "end": 13908.4, + "probability": 0.9788 + }, + { + "start": 13909.42, + "end": 13911.74, + "probability": 0.9731 + }, + { + "start": 13911.74, + "end": 13914.34, + "probability": 0.9901 + }, + { + "start": 13914.94, + "end": 13918.32, + "probability": 0.9758 + }, + { + "start": 13918.4, + "end": 13920.44, + "probability": 0.9945 + }, + { + "start": 13920.88, + "end": 13923.24, + "probability": 0.9438 + }, + { + "start": 13924.1, + "end": 13926.64, + "probability": 0.9684 + }, + { + "start": 13926.64, + "end": 13929.48, + "probability": 0.9689 + }, + { + "start": 13930.18, + "end": 13934.52, + "probability": 0.9204 + }, + { + "start": 13934.56, + "end": 13936.26, + "probability": 0.8142 + }, + { + "start": 13936.64, + "end": 13938.27, + "probability": 0.9522 + }, + { + "start": 13939.02, + "end": 13942.1, + "probability": 0.9495 + }, + { + "start": 13942.66, + "end": 13946.92, + "probability": 0.863 + }, + { + "start": 13947.8, + "end": 13950.4, + "probability": 0.8809 + }, + { + "start": 13951.04, + "end": 13955.7, + "probability": 0.9213 + }, + { + "start": 13956.3, + "end": 13958.12, + "probability": 0.9971 + }, + { + "start": 13958.84, + "end": 13959.66, + "probability": 0.5566 + }, + { + "start": 13960.46, + "end": 13961.56, + "probability": 0.6055 + }, + { + "start": 13962.34, + "end": 13965.26, + "probability": 0.8714 + }, + { + "start": 13965.26, + "end": 13969.82, + "probability": 0.9925 + }, + { + "start": 13970.26, + "end": 13972.56, + "probability": 0.9961 + }, + { + "start": 13972.96, + "end": 13975.32, + "probability": 0.8443 + }, + { + "start": 13976.34, + "end": 13979.48, + "probability": 0.9916 + }, + { + "start": 13980.12, + "end": 13981.88, + "probability": 0.9721 + }, + { + "start": 13982.14, + "end": 13983.0, + "probability": 0.7608 + }, + { + "start": 13983.06, + "end": 13986.36, + "probability": 0.9916 + }, + { + "start": 13986.68, + "end": 13988.38, + "probability": 0.957 + }, + { + "start": 13988.44, + "end": 13991.66, + "probability": 0.9673 + }, + { + "start": 13992.06, + "end": 13992.76, + "probability": 0.7643 + }, + { + "start": 13992.88, + "end": 13993.76, + "probability": 0.8771 + }, + { + "start": 13993.9, + "end": 13996.18, + "probability": 0.9394 + }, + { + "start": 13996.86, + "end": 14000.16, + "probability": 0.8975 + }, + { + "start": 14000.54, + "end": 14001.7, + "probability": 0.6185 + }, + { + "start": 14002.06, + "end": 14002.98, + "probability": 0.7335 + }, + { + "start": 14003.42, + "end": 14003.9, + "probability": 0.4547 + }, + { + "start": 14004.6, + "end": 14007.24, + "probability": 0.8452 + }, + { + "start": 14007.86, + "end": 14010.44, + "probability": 0.7389 + }, + { + "start": 14011.96, + "end": 14012.9, + "probability": 0.8999 + }, + { + "start": 14013.42, + "end": 14014.92, + "probability": 0.9893 + }, + { + "start": 14015.06, + "end": 14019.02, + "probability": 0.9961 + }, + { + "start": 14019.12, + "end": 14020.2, + "probability": 0.7296 + }, + { + "start": 14021.1, + "end": 14022.46, + "probability": 0.9158 + }, + { + "start": 14023.66, + "end": 14025.64, + "probability": 0.9958 + }, + { + "start": 14025.68, + "end": 14028.14, + "probability": 0.9946 + }, + { + "start": 14028.72, + "end": 14033.04, + "probability": 0.9959 + }, + { + "start": 14033.1, + "end": 14034.22, + "probability": 0.639 + }, + { + "start": 14034.38, + "end": 14034.88, + "probability": 0.6429 + }, + { + "start": 14034.92, + "end": 14035.9, + "probability": 0.9432 + }, + { + "start": 14036.68, + "end": 14037.54, + "probability": 0.7071 + }, + { + "start": 14038.0, + "end": 14038.64, + "probability": 0.9059 + }, + { + "start": 14038.76, + "end": 14039.6, + "probability": 0.8363 + }, + { + "start": 14039.66, + "end": 14040.26, + "probability": 0.8298 + }, + { + "start": 14040.28, + "end": 14041.06, + "probability": 0.5778 + }, + { + "start": 14041.78, + "end": 14043.68, + "probability": 0.6928 + }, + { + "start": 14044.06, + "end": 14044.65, + "probability": 0.9868 + }, + { + "start": 14044.98, + "end": 14046.74, + "probability": 0.8459 + }, + { + "start": 14048.24, + "end": 14052.86, + "probability": 0.7678 + }, + { + "start": 14052.86, + "end": 14055.64, + "probability": 0.9956 + }, + { + "start": 14056.22, + "end": 14057.99, + "probability": 0.9287 + }, + { + "start": 14058.5, + "end": 14059.44, + "probability": 0.6705 + }, + { + "start": 14059.5, + "end": 14060.46, + "probability": 0.7998 + }, + { + "start": 14060.52, + "end": 14064.42, + "probability": 0.8777 + }, + { + "start": 14064.72, + "end": 14065.94, + "probability": 0.9786 + }, + { + "start": 14066.62, + "end": 14067.74, + "probability": 0.9438 + }, + { + "start": 14068.72, + "end": 14070.2, + "probability": 0.8154 + }, + { + "start": 14070.8, + "end": 14072.24, + "probability": 0.7974 + }, + { + "start": 14073.31, + "end": 14079.5, + "probability": 0.9674 + }, + { + "start": 14079.86, + "end": 14082.22, + "probability": 0.8817 + }, + { + "start": 14082.32, + "end": 14082.84, + "probability": 0.6841 + }, + { + "start": 14083.14, + "end": 14084.84, + "probability": 0.7377 + }, + { + "start": 14084.86, + "end": 14085.06, + "probability": 0.7546 + }, + { + "start": 14085.06, + "end": 14086.42, + "probability": 0.9416 + }, + { + "start": 14087.04, + "end": 14088.86, + "probability": 0.988 + }, + { + "start": 14088.92, + "end": 14090.6, + "probability": 0.9808 + }, + { + "start": 14091.04, + "end": 14094.1, + "probability": 0.9897 + }, + { + "start": 14094.46, + "end": 14096.68, + "probability": 0.8853 + }, + { + "start": 14097.0, + "end": 14098.54, + "probability": 0.9797 + }, + { + "start": 14098.82, + "end": 14100.94, + "probability": 0.9772 + }, + { + "start": 14101.44, + "end": 14103.12, + "probability": 0.914 + }, + { + "start": 14103.18, + "end": 14104.72, + "probability": 0.9352 + }, + { + "start": 14104.94, + "end": 14105.74, + "probability": 0.9922 + }, + { + "start": 14106.7, + "end": 14108.02, + "probability": 0.9169 + }, + { + "start": 14108.3, + "end": 14109.56, + "probability": 0.8369 + }, + { + "start": 14109.9, + "end": 14111.66, + "probability": 0.9657 + }, + { + "start": 14113.48, + "end": 14116.94, + "probability": 0.9621 + }, + { + "start": 14117.34, + "end": 14119.54, + "probability": 0.9899 + }, + { + "start": 14119.54, + "end": 14121.42, + "probability": 0.9904 + }, + { + "start": 14121.78, + "end": 14126.42, + "probability": 0.6879 + }, + { + "start": 14126.74, + "end": 14126.78, + "probability": 0.1832 + }, + { + "start": 14126.78, + "end": 14127.52, + "probability": 0.9685 + }, + { + "start": 14127.98, + "end": 14129.24, + "probability": 0.9863 + }, + { + "start": 14129.98, + "end": 14135.86, + "probability": 0.9674 + }, + { + "start": 14136.82, + "end": 14140.26, + "probability": 0.7339 + }, + { + "start": 14141.0, + "end": 14143.32, + "probability": 0.9248 + }, + { + "start": 14143.32, + "end": 14146.54, + "probability": 0.9041 + }, + { + "start": 14147.26, + "end": 14150.54, + "probability": 0.3761 + }, + { + "start": 14150.72, + "end": 14150.74, + "probability": 0.192 + }, + { + "start": 14150.74, + "end": 14155.22, + "probability": 0.6465 + }, + { + "start": 14155.52, + "end": 14156.04, + "probability": 0.6085 + }, + { + "start": 14156.34, + "end": 14158.42, + "probability": 0.6478 + }, + { + "start": 14158.76, + "end": 14159.32, + "probability": 0.882 + }, + { + "start": 14159.4, + "end": 14160.84, + "probability": 0.9487 + }, + { + "start": 14161.12, + "end": 14163.86, + "probability": 0.962 + }, + { + "start": 14164.12, + "end": 14164.52, + "probability": 0.758 + }, + { + "start": 14164.68, + "end": 14166.26, + "probability": 0.9886 + }, + { + "start": 14166.58, + "end": 14168.82, + "probability": 0.98 + }, + { + "start": 14169.1, + "end": 14172.16, + "probability": 0.6802 + }, + { + "start": 14172.46, + "end": 14174.48, + "probability": 0.8152 + }, + { + "start": 14174.66, + "end": 14177.78, + "probability": 0.8736 + }, + { + "start": 14178.22, + "end": 14179.32, + "probability": 0.9583 + }, + { + "start": 14179.52, + "end": 14183.42, + "probability": 0.864 + }, + { + "start": 14183.66, + "end": 14184.79, + "probability": 0.6247 + }, + { + "start": 14185.38, + "end": 14187.1, + "probability": 0.892 + }, + { + "start": 14187.82, + "end": 14191.1, + "probability": 0.9684 + }, + { + "start": 14191.44, + "end": 14192.74, + "probability": 0.9142 + }, + { + "start": 14193.12, + "end": 14197.86, + "probability": 0.9511 + }, + { + "start": 14198.82, + "end": 14200.66, + "probability": 0.0388 + }, + { + "start": 14200.66, + "end": 14201.08, + "probability": 0.1704 + }, + { + "start": 14201.08, + "end": 14204.4, + "probability": 0.6492 + }, + { + "start": 14204.44, + "end": 14205.46, + "probability": 0.99 + }, + { + "start": 14206.08, + "end": 14207.14, + "probability": 0.8235 + }, + { + "start": 14207.78, + "end": 14208.94, + "probability": 0.7728 + }, + { + "start": 14209.72, + "end": 14210.96, + "probability": 0.7462 + }, + { + "start": 14210.98, + "end": 14213.04, + "probability": 0.9932 + }, + { + "start": 14213.04, + "end": 14216.06, + "probability": 0.9989 + }, + { + "start": 14216.2, + "end": 14218.36, + "probability": 0.9643 + }, + { + "start": 14218.72, + "end": 14218.72, + "probability": 0.5672 + }, + { + "start": 14218.72, + "end": 14221.22, + "probability": 0.9857 + }, + { + "start": 14221.54, + "end": 14222.68, + "probability": 0.9609 + }, + { + "start": 14222.8, + "end": 14224.82, + "probability": 0.6519 + }, + { + "start": 14225.22, + "end": 14227.06, + "probability": 0.7209 + }, + { + "start": 14241.46, + "end": 14242.44, + "probability": 0.8699 + }, + { + "start": 14243.06, + "end": 14243.86, + "probability": 0.7727 + }, + { + "start": 14244.48, + "end": 14245.52, + "probability": 0.7162 + }, + { + "start": 14248.3, + "end": 14249.22, + "probability": 0.9646 + }, + { + "start": 14250.66, + "end": 14251.64, + "probability": 0.811 + }, + { + "start": 14252.24, + "end": 14253.94, + "probability": 0.9488 + }, + { + "start": 14254.02, + "end": 14255.16, + "probability": 0.7291 + }, + { + "start": 14255.46, + "end": 14256.52, + "probability": 0.8613 + }, + { + "start": 14256.84, + "end": 14257.96, + "probability": 0.9286 + }, + { + "start": 14258.54, + "end": 14262.11, + "probability": 0.9536 + }, + { + "start": 14263.14, + "end": 14270.62, + "probability": 0.9956 + }, + { + "start": 14270.96, + "end": 14272.46, + "probability": 0.8741 + }, + { + "start": 14272.74, + "end": 14279.62, + "probability": 0.9931 + }, + { + "start": 14281.02, + "end": 14281.56, + "probability": 0.9214 + }, + { + "start": 14282.38, + "end": 14283.24, + "probability": 0.9498 + }, + { + "start": 14284.5, + "end": 14286.74, + "probability": 0.9867 + }, + { + "start": 14287.4, + "end": 14293.78, + "probability": 0.9944 + }, + { + "start": 14294.92, + "end": 14296.02, + "probability": 0.765 + }, + { + "start": 14296.62, + "end": 14298.56, + "probability": 0.9563 + }, + { + "start": 14299.08, + "end": 14302.28, + "probability": 0.8231 + }, + { + "start": 14302.8, + "end": 14305.26, + "probability": 0.9837 + }, + { + "start": 14305.56, + "end": 14308.26, + "probability": 0.9949 + }, + { + "start": 14308.36, + "end": 14313.36, + "probability": 0.9829 + }, + { + "start": 14313.36, + "end": 14316.76, + "probability": 0.9977 + }, + { + "start": 14318.48, + "end": 14326.2, + "probability": 0.9904 + }, + { + "start": 14326.86, + "end": 14331.46, + "probability": 0.9917 + }, + { + "start": 14332.12, + "end": 14334.33, + "probability": 0.9834 + }, + { + "start": 14335.38, + "end": 14339.2, + "probability": 0.8096 + }, + { + "start": 14339.66, + "end": 14346.76, + "probability": 0.98 + }, + { + "start": 14347.26, + "end": 14350.72, + "probability": 0.9973 + }, + { + "start": 14352.06, + "end": 14356.84, + "probability": 0.976 + }, + { + "start": 14357.18, + "end": 14359.04, + "probability": 0.8944 + }, + { + "start": 14359.32, + "end": 14361.14, + "probability": 0.9172 + }, + { + "start": 14361.52, + "end": 14364.28, + "probability": 0.9702 + }, + { + "start": 14364.92, + "end": 14367.3, + "probability": 0.9792 + }, + { + "start": 14368.14, + "end": 14374.36, + "probability": 0.7564 + }, + { + "start": 14375.1, + "end": 14376.02, + "probability": 0.7011 + }, + { + "start": 14376.54, + "end": 14378.36, + "probability": 0.9972 + }, + { + "start": 14379.13, + "end": 14383.66, + "probability": 0.9866 + }, + { + "start": 14383.66, + "end": 14388.0, + "probability": 0.9968 + }, + { + "start": 14388.64, + "end": 14391.2, + "probability": 0.9873 + }, + { + "start": 14391.4, + "end": 14394.44, + "probability": 0.9785 + }, + { + "start": 14394.44, + "end": 14397.86, + "probability": 0.9858 + }, + { + "start": 14398.3, + "end": 14399.32, + "probability": 0.8887 + }, + { + "start": 14399.64, + "end": 14400.74, + "probability": 0.9636 + }, + { + "start": 14401.04, + "end": 14402.24, + "probability": 0.9751 + }, + { + "start": 14402.46, + "end": 14403.48, + "probability": 0.5815 + }, + { + "start": 14403.6, + "end": 14408.34, + "probability": 0.8485 + }, + { + "start": 14408.94, + "end": 14412.4, + "probability": 0.9981 + }, + { + "start": 14413.9, + "end": 14415.64, + "probability": 0.9673 + }, + { + "start": 14416.8, + "end": 14422.24, + "probability": 0.9677 + }, + { + "start": 14422.64, + "end": 14426.12, + "probability": 0.9787 + }, + { + "start": 14426.54, + "end": 14429.16, + "probability": 0.742 + }, + { + "start": 14429.46, + "end": 14430.52, + "probability": 0.8139 + }, + { + "start": 14430.64, + "end": 14434.72, + "probability": 0.9881 + }, + { + "start": 14434.72, + "end": 14439.02, + "probability": 0.998 + }, + { + "start": 14439.2, + "end": 14439.62, + "probability": 0.2701 + }, + { + "start": 14440.06, + "end": 14440.88, + "probability": 0.6562 + }, + { + "start": 14441.16, + "end": 14442.92, + "probability": 0.7944 + }, + { + "start": 14457.18, + "end": 14459.4, + "probability": 0.5106 + }, + { + "start": 14461.0, + "end": 14461.12, + "probability": 0.9089 + }, + { + "start": 14462.04, + "end": 14465.92, + "probability": 0.9538 + }, + { + "start": 14466.68, + "end": 14469.96, + "probability": 0.9985 + }, + { + "start": 14472.96, + "end": 14475.0, + "probability": 0.9767 + }, + { + "start": 14476.76, + "end": 14479.6, + "probability": 0.9901 + }, + { + "start": 14480.96, + "end": 14482.46, + "probability": 0.9976 + }, + { + "start": 14482.96, + "end": 14485.32, + "probability": 0.996 + }, + { + "start": 14487.02, + "end": 14489.32, + "probability": 0.9827 + }, + { + "start": 14489.32, + "end": 14492.56, + "probability": 0.9963 + }, + { + "start": 14493.08, + "end": 14494.38, + "probability": 0.9377 + }, + { + "start": 14495.52, + "end": 14496.26, + "probability": 0.559 + }, + { + "start": 14496.4, + "end": 14497.06, + "probability": 0.4998 + }, + { + "start": 14497.26, + "end": 14497.68, + "probability": 0.7111 + }, + { + "start": 14497.84, + "end": 14498.52, + "probability": 0.7371 + }, + { + "start": 14499.0, + "end": 14501.43, + "probability": 0.9888 + }, + { + "start": 14502.86, + "end": 14509.48, + "probability": 0.8438 + }, + { + "start": 14509.82, + "end": 14511.34, + "probability": 0.9805 + }, + { + "start": 14512.1, + "end": 14515.18, + "probability": 0.9671 + }, + { + "start": 14516.04, + "end": 14517.88, + "probability": 0.9917 + }, + { + "start": 14518.5, + "end": 14519.64, + "probability": 0.9806 + }, + { + "start": 14520.18, + "end": 14523.14, + "probability": 0.9668 + }, + { + "start": 14523.8, + "end": 14524.54, + "probability": 0.974 + }, + { + "start": 14526.54, + "end": 14528.7, + "probability": 0.9825 + }, + { + "start": 14528.98, + "end": 14530.28, + "probability": 0.897 + }, + { + "start": 14530.46, + "end": 14531.28, + "probability": 0.9646 + }, + { + "start": 14532.16, + "end": 14535.28, + "probability": 0.9029 + }, + { + "start": 14536.5, + "end": 14541.42, + "probability": 0.9891 + }, + { + "start": 14543.46, + "end": 14545.28, + "probability": 0.9951 + }, + { + "start": 14546.2, + "end": 14547.58, + "probability": 0.7513 + }, + { + "start": 14548.32, + "end": 14549.74, + "probability": 0.9741 + }, + { + "start": 14549.84, + "end": 14552.32, + "probability": 0.984 + }, + { + "start": 14552.62, + "end": 14558.68, + "probability": 0.8105 + }, + { + "start": 14560.18, + "end": 14560.92, + "probability": 0.5988 + }, + { + "start": 14561.92, + "end": 14562.64, + "probability": 0.8076 + }, + { + "start": 14562.76, + "end": 14564.56, + "probability": 0.9896 + }, + { + "start": 14564.6, + "end": 14565.84, + "probability": 0.9961 + }, + { + "start": 14565.92, + "end": 14567.9, + "probability": 0.9646 + }, + { + "start": 14568.12, + "end": 14570.94, + "probability": 0.8975 + }, + { + "start": 14571.14, + "end": 14572.54, + "probability": 0.7358 + }, + { + "start": 14572.62, + "end": 14573.48, + "probability": 0.9824 + }, + { + "start": 14574.04, + "end": 14575.82, + "probability": 0.9536 + }, + { + "start": 14575.96, + "end": 14576.18, + "probability": 0.0277 + }, + { + "start": 14576.76, + "end": 14577.56, + "probability": 0.406 + }, + { + "start": 14577.92, + "end": 14579.2, + "probability": 0.7705 + }, + { + "start": 14579.66, + "end": 14580.02, + "probability": 0.6758 + }, + { + "start": 14580.24, + "end": 14582.08, + "probability": 0.9902 + }, + { + "start": 14582.64, + "end": 14583.68, + "probability": 0.3973 + }, + { + "start": 14584.04, + "end": 14585.62, + "probability": 0.9178 + }, + { + "start": 14585.78, + "end": 14586.68, + "probability": 0.8051 + }, + { + "start": 14586.82, + "end": 14587.68, + "probability": 0.971 + }, + { + "start": 14587.78, + "end": 14593.24, + "probability": 0.9262 + }, + { + "start": 14593.24, + "end": 14596.1, + "probability": 0.8876 + }, + { + "start": 14596.34, + "end": 14596.56, + "probability": 0.828 + }, + { + "start": 14596.64, + "end": 14597.04, + "probability": 0.3941 + }, + { + "start": 14597.04, + "end": 14597.72, + "probability": 0.5715 + }, + { + "start": 14597.74, + "end": 14599.3, + "probability": 0.8879 + }, + { + "start": 14611.8, + "end": 14612.88, + "probability": 0.7066 + }, + { + "start": 14613.18, + "end": 14613.86, + "probability": 0.6696 + }, + { + "start": 14613.88, + "end": 14615.14, + "probability": 0.6563 + }, + { + "start": 14615.56, + "end": 14617.0, + "probability": 0.7137 + }, + { + "start": 14617.86, + "end": 14623.24, + "probability": 0.9704 + }, + { + "start": 14624.14, + "end": 14625.68, + "probability": 0.968 + }, + { + "start": 14626.22, + "end": 14626.96, + "probability": 0.9578 + }, + { + "start": 14629.26, + "end": 14630.4, + "probability": 0.8086 + }, + { + "start": 14631.5, + "end": 14634.4, + "probability": 0.9368 + }, + { + "start": 14635.08, + "end": 14636.36, + "probability": 0.9696 + }, + { + "start": 14636.82, + "end": 14639.94, + "probability": 0.8475 + }, + { + "start": 14640.02, + "end": 14641.12, + "probability": 0.9312 + }, + { + "start": 14641.84, + "end": 14645.86, + "probability": 0.847 + }, + { + "start": 14646.76, + "end": 14647.9, + "probability": 0.8646 + }, + { + "start": 14649.62, + "end": 14651.08, + "probability": 0.8219 + }, + { + "start": 14652.54, + "end": 14655.28, + "probability": 0.6711 + }, + { + "start": 14655.74, + "end": 14662.21, + "probability": 0.9498 + }, + { + "start": 14662.24, + "end": 14665.34, + "probability": 0.9982 + }, + { + "start": 14666.02, + "end": 14666.78, + "probability": 0.9652 + }, + { + "start": 14668.22, + "end": 14671.7, + "probability": 0.9958 + }, + { + "start": 14672.3, + "end": 14673.78, + "probability": 0.9932 + }, + { + "start": 14675.36, + "end": 14675.72, + "probability": 0.8972 + }, + { + "start": 14676.42, + "end": 14680.76, + "probability": 0.9618 + }, + { + "start": 14681.3, + "end": 14683.92, + "probability": 0.8369 + }, + { + "start": 14684.24, + "end": 14688.0, + "probability": 0.6619 + }, + { + "start": 14690.0, + "end": 14691.08, + "probability": 0.7301 + }, + { + "start": 14691.8, + "end": 14692.69, + "probability": 0.9585 + }, + { + "start": 14693.62, + "end": 14696.62, + "probability": 0.9819 + }, + { + "start": 14699.04, + "end": 14700.94, + "probability": 0.9748 + }, + { + "start": 14701.92, + "end": 14704.02, + "probability": 0.5888 + }, + { + "start": 14704.4, + "end": 14707.7, + "probability": 0.9245 + }, + { + "start": 14708.68, + "end": 14710.28, + "probability": 0.9707 + }, + { + "start": 14710.4, + "end": 14715.32, + "probability": 0.9417 + }, + { + "start": 14716.32, + "end": 14717.3, + "probability": 0.9099 + }, + { + "start": 14719.38, + "end": 14722.46, + "probability": 0.9449 + }, + { + "start": 14723.92, + "end": 14725.48, + "probability": 0.6909 + }, + { + "start": 14726.18, + "end": 14726.71, + "probability": 0.9321 + }, + { + "start": 14727.94, + "end": 14728.84, + "probability": 0.9927 + }, + { + "start": 14729.4, + "end": 14730.04, + "probability": 0.6608 + }, + { + "start": 14730.56, + "end": 14731.14, + "probability": 0.9866 + }, + { + "start": 14731.5, + "end": 14732.8, + "probability": 0.981 + }, + { + "start": 14733.1, + "end": 14734.14, + "probability": 0.9876 + }, + { + "start": 14735.11, + "end": 14738.36, + "probability": 0.998 + }, + { + "start": 14739.0, + "end": 14741.14, + "probability": 0.9377 + }, + { + "start": 14741.96, + "end": 14745.69, + "probability": 0.991 + }, + { + "start": 14745.76, + "end": 14746.42, + "probability": 0.765 + }, + { + "start": 14747.38, + "end": 14749.04, + "probability": 0.8712 + }, + { + "start": 14750.24, + "end": 14753.29, + "probability": 0.9959 + }, + { + "start": 14754.52, + "end": 14754.94, + "probability": 0.7149 + }, + { + "start": 14755.66, + "end": 14756.58, + "probability": 0.736 + }, + { + "start": 14757.84, + "end": 14759.74, + "probability": 0.9705 + }, + { + "start": 14760.36, + "end": 14763.02, + "probability": 0.6678 + }, + { + "start": 14782.28, + "end": 14785.28, + "probability": 0.5787 + }, + { + "start": 14786.16, + "end": 14788.42, + "probability": 0.7301 + }, + { + "start": 14789.44, + "end": 14791.08, + "probability": 0.8291 + }, + { + "start": 14791.52, + "end": 14794.9, + "probability": 0.7021 + }, + { + "start": 14795.56, + "end": 14796.7, + "probability": 0.9547 + }, + { + "start": 14797.32, + "end": 14800.32, + "probability": 0.929 + }, + { + "start": 14801.88, + "end": 14804.9, + "probability": 0.647 + }, + { + "start": 14805.32, + "end": 14806.64, + "probability": 0.8438 + }, + { + "start": 14807.42, + "end": 14809.4, + "probability": 0.9619 + }, + { + "start": 14810.38, + "end": 14812.08, + "probability": 0.716 + }, + { + "start": 14812.94, + "end": 14815.34, + "probability": 0.9873 + }, + { + "start": 14815.88, + "end": 14817.68, + "probability": 0.7977 + }, + { + "start": 14818.14, + "end": 14820.24, + "probability": 0.8513 + }, + { + "start": 14820.7, + "end": 14821.76, + "probability": 0.7192 + }, + { + "start": 14821.88, + "end": 14822.36, + "probability": 0.5551 + }, + { + "start": 14822.48, + "end": 14823.52, + "probability": 0.9749 + }, + { + "start": 14825.38, + "end": 14829.02, + "probability": 0.8478 + }, + { + "start": 14830.0, + "end": 14830.5, + "probability": 0.3304 + }, + { + "start": 14831.52, + "end": 14834.28, + "probability": 0.79 + }, + { + "start": 14834.82, + "end": 14838.84, + "probability": 0.8551 + }, + { + "start": 14839.9, + "end": 14842.28, + "probability": 0.9274 + }, + { + "start": 14842.92, + "end": 14845.9, + "probability": 0.8401 + }, + { + "start": 14846.78, + "end": 14849.7, + "probability": 0.9422 + }, + { + "start": 14850.54, + "end": 14853.1, + "probability": 0.932 + }, + { + "start": 14853.76, + "end": 14855.66, + "probability": 0.9871 + }, + { + "start": 14856.22, + "end": 14858.72, + "probability": 0.9639 + }, + { + "start": 14859.52, + "end": 14860.1, + "probability": 0.5017 + }, + { + "start": 14860.24, + "end": 14860.98, + "probability": 0.5722 + }, + { + "start": 14861.4, + "end": 14865.14, + "probability": 0.7405 + }, + { + "start": 14865.54, + "end": 14866.24, + "probability": 0.7947 + }, + { + "start": 14866.3, + "end": 14867.32, + "probability": 0.875 + }, + { + "start": 14867.8, + "end": 14869.88, + "probability": 0.9668 + }, + { + "start": 14870.42, + "end": 14871.36, + "probability": 0.5693 + }, + { + "start": 14872.68, + "end": 14876.54, + "probability": 0.7827 + }, + { + "start": 14877.16, + "end": 14879.5, + "probability": 0.8856 + }, + { + "start": 14879.76, + "end": 14882.24, + "probability": 0.6652 + }, + { + "start": 14883.08, + "end": 14885.28, + "probability": 0.9606 + }, + { + "start": 14885.48, + "end": 14887.98, + "probability": 0.8267 + }, + { + "start": 14890.28, + "end": 14891.08, + "probability": 0.7022 + }, + { + "start": 14891.16, + "end": 14891.74, + "probability": 0.9083 + }, + { + "start": 14891.82, + "end": 14893.68, + "probability": 0.9303 + }, + { + "start": 14893.8, + "end": 14895.58, + "probability": 0.923 + }, + { + "start": 14896.0, + "end": 14897.12, + "probability": 0.7561 + }, + { + "start": 14898.62, + "end": 14900.6, + "probability": 0.7038 + }, + { + "start": 14901.18, + "end": 14903.94, + "probability": 0.6172 + }, + { + "start": 14903.94, + "end": 14907.52, + "probability": 0.9976 + }, + { + "start": 14907.9, + "end": 14910.28, + "probability": 0.7325 + }, + { + "start": 14910.98, + "end": 14914.32, + "probability": 0.9335 + }, + { + "start": 14919.06, + "end": 14922.52, + "probability": 0.5023 + }, + { + "start": 14923.04, + "end": 14927.46, + "probability": 0.869 + }, + { + "start": 14928.24, + "end": 14930.72, + "probability": 0.7802 + }, + { + "start": 14931.18, + "end": 14932.82, + "probability": 0.7957 + }, + { + "start": 14933.8, + "end": 14935.04, + "probability": 0.6632 + }, + { + "start": 14936.38, + "end": 14939.16, + "probability": 0.748 + }, + { + "start": 14958.64, + "end": 14961.24, + "probability": 0.6918 + }, + { + "start": 14962.98, + "end": 14963.42, + "probability": 0.4784 + }, + { + "start": 14963.48, + "end": 14967.72, + "probability": 0.8304 + }, + { + "start": 14967.88, + "end": 14970.76, + "probability": 0.9944 + }, + { + "start": 14972.08, + "end": 14974.6, + "probability": 0.9394 + }, + { + "start": 14975.52, + "end": 14978.26, + "probability": 0.9941 + }, + { + "start": 14979.24, + "end": 14980.42, + "probability": 0.7847 + }, + { + "start": 14980.6, + "end": 14981.06, + "probability": 0.6362 + }, + { + "start": 14981.14, + "end": 14984.12, + "probability": 0.9088 + }, + { + "start": 14985.12, + "end": 14989.46, + "probability": 0.938 + }, + { + "start": 14990.66, + "end": 14994.06, + "probability": 0.983 + }, + { + "start": 14995.46, + "end": 14998.86, + "probability": 0.9653 + }, + { + "start": 14999.4, + "end": 15003.76, + "probability": 0.9575 + }, + { + "start": 15004.92, + "end": 15005.84, + "probability": 0.6771 + }, + { + "start": 15005.92, + "end": 15009.88, + "probability": 0.9696 + }, + { + "start": 15010.92, + "end": 15015.06, + "probability": 0.9981 + }, + { + "start": 15015.22, + "end": 15015.82, + "probability": 0.7997 + }, + { + "start": 15016.8, + "end": 15018.72, + "probability": 0.9932 + }, + { + "start": 15020.18, + "end": 15020.42, + "probability": 0.4805 + }, + { + "start": 15020.62, + "end": 15024.9, + "probability": 0.981 + }, + { + "start": 15025.86, + "end": 15029.44, + "probability": 0.9877 + }, + { + "start": 15030.62, + "end": 15037.48, + "probability": 0.964 + }, + { + "start": 15037.98, + "end": 15039.5, + "probability": 0.9282 + }, + { + "start": 15039.6, + "end": 15040.2, + "probability": 0.5555 + }, + { + "start": 15040.68, + "end": 15042.32, + "probability": 0.7465 + }, + { + "start": 15043.18, + "end": 15047.72, + "probability": 0.9127 + }, + { + "start": 15048.6, + "end": 15050.98, + "probability": 0.9159 + }, + { + "start": 15051.54, + "end": 15052.48, + "probability": 0.9587 + }, + { + "start": 15053.56, + "end": 15056.96, + "probability": 0.9885 + }, + { + "start": 15057.72, + "end": 15061.84, + "probability": 0.9982 + }, + { + "start": 15062.04, + "end": 15066.42, + "probability": 0.9932 + }, + { + "start": 15067.82, + "end": 15074.38, + "probability": 0.73 + }, + { + "start": 15074.42, + "end": 15078.54, + "probability": 0.8797 + }, + { + "start": 15079.36, + "end": 15081.16, + "probability": 0.9165 + }, + { + "start": 15081.38, + "end": 15085.6, + "probability": 0.9101 + }, + { + "start": 15086.22, + "end": 15090.36, + "probability": 0.9663 + }, + { + "start": 15090.36, + "end": 15095.06, + "probability": 0.9964 + }, + { + "start": 15096.84, + "end": 15101.1, + "probability": 0.9437 + }, + { + "start": 15102.4, + "end": 15103.28, + "probability": 0.8936 + }, + { + "start": 15103.94, + "end": 15110.34, + "probability": 0.9946 + }, + { + "start": 15111.28, + "end": 15115.82, + "probability": 0.8424 + }, + { + "start": 15116.36, + "end": 15116.66, + "probability": 0.6646 + }, + { + "start": 15117.6, + "end": 15118.74, + "probability": 0.5092 + }, + { + "start": 15119.42, + "end": 15120.9, + "probability": 0.9376 + }, + { + "start": 15121.6, + "end": 15123.86, + "probability": 0.8254 + }, + { + "start": 15125.12, + "end": 15127.98, + "probability": 0.9583 + }, + { + "start": 15128.9, + "end": 15130.52, + "probability": 0.9736 + }, + { + "start": 15130.6, + "end": 15133.96, + "probability": 0.9539 + }, + { + "start": 15134.95, + "end": 15136.82, + "probability": 0.0159 + }, + { + "start": 15136.82, + "end": 15141.7, + "probability": 0.7429 + }, + { + "start": 15142.0, + "end": 15142.0, + "probability": 0.1288 + }, + { + "start": 15142.0, + "end": 15142.88, + "probability": 0.6622 + }, + { + "start": 15143.8, + "end": 15150.32, + "probability": 0.7217 + }, + { + "start": 15151.18, + "end": 15151.52, + "probability": 0.1958 + }, + { + "start": 15151.52, + "end": 15153.96, + "probability": 0.8385 + }, + { + "start": 15155.44, + "end": 15159.28, + "probability": 0.9951 + }, + { + "start": 15159.28, + "end": 15163.84, + "probability": 0.9825 + }, + { + "start": 15164.82, + "end": 15172.34, + "probability": 0.99 + }, + { + "start": 15173.32, + "end": 15174.68, + "probability": 0.7883 + }, + { + "start": 15175.24, + "end": 15179.58, + "probability": 0.8477 + }, + { + "start": 15180.84, + "end": 15181.54, + "probability": 0.9344 + }, + { + "start": 15182.48, + "end": 15185.32, + "probability": 0.9331 + }, + { + "start": 15187.48, + "end": 15192.12, + "probability": 0.8761 + }, + { + "start": 15192.86, + "end": 15194.48, + "probability": 0.8976 + }, + { + "start": 15195.26, + "end": 15198.3, + "probability": 0.8759 + }, + { + "start": 15198.3, + "end": 15202.8, + "probability": 0.9865 + }, + { + "start": 15202.98, + "end": 15206.42, + "probability": 0.969 + }, + { + "start": 15206.46, + "end": 15207.92, + "probability": 0.9739 + }, + { + "start": 15213.74, + "end": 15218.46, + "probability": 0.9753 + }, + { + "start": 15219.38, + "end": 15223.62, + "probability": 0.9363 + }, + { + "start": 15223.72, + "end": 15223.92, + "probability": 0.7246 + }, + { + "start": 15224.32, + "end": 15225.46, + "probability": 0.7396 + }, + { + "start": 15226.04, + "end": 15228.8, + "probability": 0.9819 + }, + { + "start": 15230.18, + "end": 15236.86, + "probability": 0.9971 + }, + { + "start": 15237.94, + "end": 15239.46, + "probability": 0.9995 + }, + { + "start": 15239.88, + "end": 15247.2, + "probability": 0.9797 + }, + { + "start": 15247.26, + "end": 15250.4, + "probability": 0.9849 + }, + { + "start": 15251.22, + "end": 15252.92, + "probability": 0.9912 + }, + { + "start": 15253.64, + "end": 15254.82, + "probability": 0.8473 + }, + { + "start": 15255.8, + "end": 15257.74, + "probability": 0.9897 + }, + { + "start": 15257.94, + "end": 15259.88, + "probability": 0.7782 + }, + { + "start": 15260.18, + "end": 15260.82, + "probability": 0.9491 + }, + { + "start": 15261.92, + "end": 15263.98, + "probability": 0.9961 + }, + { + "start": 15264.7, + "end": 15267.4, + "probability": 0.9951 + }, + { + "start": 15268.28, + "end": 15273.36, + "probability": 0.9662 + }, + { + "start": 15275.24, + "end": 15281.1, + "probability": 0.9734 + }, + { + "start": 15282.18, + "end": 15282.96, + "probability": 0.5126 + }, + { + "start": 15283.54, + "end": 15288.86, + "probability": 0.8865 + }, + { + "start": 15289.02, + "end": 15290.24, + "probability": 0.685 + }, + { + "start": 15291.06, + "end": 15291.68, + "probability": 0.4973 + }, + { + "start": 15291.88, + "end": 15292.1, + "probability": 0.9433 + }, + { + "start": 15292.18, + "end": 15300.4, + "probability": 0.9835 + }, + { + "start": 15300.56, + "end": 15303.86, + "probability": 0.9536 + }, + { + "start": 15305.12, + "end": 15307.14, + "probability": 0.805 + }, + { + "start": 15307.86, + "end": 15312.48, + "probability": 0.9303 + }, + { + "start": 15313.08, + "end": 15314.02, + "probability": 0.8206 + }, + { + "start": 15314.74, + "end": 15316.8, + "probability": 0.624 + }, + { + "start": 15317.38, + "end": 15322.46, + "probability": 0.9808 + }, + { + "start": 15323.28, + "end": 15325.58, + "probability": 0.9757 + }, + { + "start": 15326.34, + "end": 15329.48, + "probability": 0.9531 + }, + { + "start": 15329.7, + "end": 15335.36, + "probability": 0.9984 + }, + { + "start": 15336.14, + "end": 15337.7, + "probability": 0.9399 + }, + { + "start": 15338.36, + "end": 15341.36, + "probability": 0.7975 + }, + { + "start": 15342.48, + "end": 15346.19, + "probability": 0.9976 + }, + { + "start": 15347.24, + "end": 15350.18, + "probability": 0.9681 + }, + { + "start": 15351.16, + "end": 15355.86, + "probability": 0.9723 + }, + { + "start": 15356.66, + "end": 15357.5, + "probability": 0.9263 + }, + { + "start": 15358.12, + "end": 15364.24, + "probability": 0.9985 + }, + { + "start": 15365.76, + "end": 15369.32, + "probability": 0.9971 + }, + { + "start": 15369.84, + "end": 15372.26, + "probability": 0.8487 + }, + { + "start": 15372.38, + "end": 15374.58, + "probability": 0.8378 + }, + { + "start": 15375.62, + "end": 15379.92, + "probability": 0.9958 + }, + { + "start": 15380.8, + "end": 15383.3, + "probability": 0.999 + }, + { + "start": 15383.96, + "end": 15386.1, + "probability": 0.9994 + }, + { + "start": 15386.7, + "end": 15388.42, + "probability": 0.8953 + }, + { + "start": 15389.32, + "end": 15391.3, + "probability": 0.9819 + }, + { + "start": 15391.92, + "end": 15395.14, + "probability": 0.9811 + }, + { + "start": 15395.92, + "end": 15398.93, + "probability": 0.9868 + }, + { + "start": 15400.04, + "end": 15404.48, + "probability": 0.9253 + }, + { + "start": 15405.48, + "end": 15408.83, + "probability": 0.9669 + }, + { + "start": 15409.6, + "end": 15415.0, + "probability": 0.9361 + }, + { + "start": 15416.12, + "end": 15423.56, + "probability": 0.9799 + }, + { + "start": 15424.24, + "end": 15428.88, + "probability": 0.9958 + }, + { + "start": 15428.88, + "end": 15431.96, + "probability": 1.0 + }, + { + "start": 15432.92, + "end": 15435.28, + "probability": 0.7731 + }, + { + "start": 15436.28, + "end": 15439.24, + "probability": 0.9929 + }, + { + "start": 15439.9, + "end": 15442.3, + "probability": 0.9908 + }, + { + "start": 15443.8, + "end": 15446.78, + "probability": 0.9768 + }, + { + "start": 15447.68, + "end": 15452.27, + "probability": 0.9976 + }, + { + "start": 15452.62, + "end": 15454.94, + "probability": 0.8911 + }, + { + "start": 15456.1, + "end": 15457.8, + "probability": 0.9186 + }, + { + "start": 15458.88, + "end": 15462.72, + "probability": 0.9912 + }, + { + "start": 15462.84, + "end": 15466.0, + "probability": 0.7604 + }, + { + "start": 15466.6, + "end": 15468.88, + "probability": 0.9934 + }, + { + "start": 15469.64, + "end": 15473.3, + "probability": 0.9727 + }, + { + "start": 15473.66, + "end": 15475.96, + "probability": 0.9805 + }, + { + "start": 15476.76, + "end": 15480.0, + "probability": 0.9517 + }, + { + "start": 15480.64, + "end": 15481.58, + "probability": 0.8939 + }, + { + "start": 15482.26, + "end": 15487.64, + "probability": 0.9443 + }, + { + "start": 15487.74, + "end": 15488.34, + "probability": 0.7326 + }, + { + "start": 15489.78, + "end": 15490.54, + "probability": 0.8024 + }, + { + "start": 15491.22, + "end": 15496.04, + "probability": 0.9138 + }, + { + "start": 15502.26, + "end": 15503.52, + "probability": 0.9171 + }, + { + "start": 15520.23, + "end": 15525.96, + "probability": 0.7942 + }, + { + "start": 15526.04, + "end": 15529.82, + "probability": 0.9863 + }, + { + "start": 15530.29, + "end": 15532.84, + "probability": 0.7358 + }, + { + "start": 15532.92, + "end": 15534.48, + "probability": 0.5622 + }, + { + "start": 15534.56, + "end": 15535.34, + "probability": 0.8057 + }, + { + "start": 15536.62, + "end": 15540.88, + "probability": 0.9136 + }, + { + "start": 15541.28, + "end": 15544.68, + "probability": 0.9976 + }, + { + "start": 15546.24, + "end": 15549.2, + "probability": 0.9972 + }, + { + "start": 15549.57, + "end": 15553.64, + "probability": 0.9354 + }, + { + "start": 15553.98, + "end": 15555.02, + "probability": 0.752 + }, + { + "start": 15556.22, + "end": 15559.04, + "probability": 0.9973 + }, + { + "start": 15560.0, + "end": 15563.38, + "probability": 0.9941 + }, + { + "start": 15563.4, + "end": 15567.44, + "probability": 0.9936 + }, + { + "start": 15568.58, + "end": 15571.14, + "probability": 0.797 + }, + { + "start": 15571.68, + "end": 15572.16, + "probability": 0.904 + }, + { + "start": 15577.74, + "end": 15580.32, + "probability": 0.5998 + }, + { + "start": 15581.0, + "end": 15582.52, + "probability": 0.9802 + }, + { + "start": 15583.18, + "end": 15590.56, + "probability": 0.9946 + }, + { + "start": 15590.56, + "end": 15597.3, + "probability": 0.9954 + }, + { + "start": 15597.52, + "end": 15598.31, + "probability": 0.5672 + }, + { + "start": 15598.62, + "end": 15599.14, + "probability": 0.8313 + }, + { + "start": 15599.76, + "end": 15601.98, + "probability": 0.6835 + }, + { + "start": 15602.1, + "end": 15607.9, + "probability": 0.4689 + }, + { + "start": 15608.04, + "end": 15608.8, + "probability": 0.0212 + }, + { + "start": 15608.82, + "end": 15610.08, + "probability": 0.5775 + }, + { + "start": 15610.36, + "end": 15615.6, + "probability": 0.6667 + }, + { + "start": 15615.68, + "end": 15617.66, + "probability": 0.9769 + }, + { + "start": 15617.8, + "end": 15618.24, + "probability": 0.1624 + }, + { + "start": 15618.56, + "end": 15622.42, + "probability": 0.989 + }, + { + "start": 15622.42, + "end": 15627.32, + "probability": 0.9225 + }, + { + "start": 15627.86, + "end": 15629.96, + "probability": 0.8052 + }, + { + "start": 15630.24, + "end": 15632.12, + "probability": 0.8763 + }, + { + "start": 15632.2, + "end": 15634.8, + "probability": 0.9823 + }, + { + "start": 15635.7, + "end": 15639.1, + "probability": 0.986 + }, + { + "start": 15639.28, + "end": 15639.5, + "probability": 0.7461 + }, + { + "start": 15639.52, + "end": 15642.2, + "probability": 0.9478 + }, + { + "start": 15642.3, + "end": 15643.36, + "probability": 0.9897 + }, + { + "start": 15643.42, + "end": 15646.84, + "probability": 0.875 + }, + { + "start": 15646.92, + "end": 15648.6, + "probability": 0.9888 + }, + { + "start": 15648.7, + "end": 15653.6, + "probability": 0.8875 + }, + { + "start": 15656.62, + "end": 15658.38, + "probability": 0.9932 + }, + { + "start": 15659.68, + "end": 15662.98, + "probability": 0.9996 + }, + { + "start": 15663.14, + "end": 15665.19, + "probability": 0.9658 + }, + { + "start": 15666.46, + "end": 15669.02, + "probability": 0.9961 + }, + { + "start": 15669.25, + "end": 15673.8, + "probability": 0.9346 + }, + { + "start": 15674.74, + "end": 15675.52, + "probability": 0.6743 + }, + { + "start": 15675.8, + "end": 15678.52, + "probability": 0.9949 + }, + { + "start": 15678.64, + "end": 15681.5, + "probability": 0.855 + }, + { + "start": 15681.68, + "end": 15684.26, + "probability": 0.7883 + }, + { + "start": 15685.28, + "end": 15687.58, + "probability": 0.9497 + }, + { + "start": 15687.72, + "end": 15689.05, + "probability": 0.5114 + }, + { + "start": 15689.48, + "end": 15689.76, + "probability": 0.9391 + }, + { + "start": 15689.84, + "end": 15690.9, + "probability": 0.7938 + }, + { + "start": 15690.98, + "end": 15691.22, + "probability": 0.299 + }, + { + "start": 15691.32, + "end": 15692.22, + "probability": 0.9906 + }, + { + "start": 15692.34, + "end": 15693.28, + "probability": 0.7506 + }, + { + "start": 15693.92, + "end": 15695.16, + "probability": 0.7585 + }, + { + "start": 15695.22, + "end": 15695.8, + "probability": 0.6674 + }, + { + "start": 15695.88, + "end": 15697.2, + "probability": 0.9818 + }, + { + "start": 15697.7, + "end": 15698.8, + "probability": 0.8784 + }, + { + "start": 15698.86, + "end": 15699.1, + "probability": 0.8209 + }, + { + "start": 15699.76, + "end": 15703.86, + "probability": 0.9607 + }, + { + "start": 15705.56, + "end": 15708.98, + "probability": 0.6253 + }, + { + "start": 15710.32, + "end": 15713.26, + "probability": 0.9899 + }, + { + "start": 15713.76, + "end": 15714.58, + "probability": 0.735 + }, + { + "start": 15714.72, + "end": 15715.98, + "probability": 0.8164 + }, + { + "start": 15716.02, + "end": 15717.16, + "probability": 0.8792 + }, + { + "start": 15717.6, + "end": 15720.98, + "probability": 0.9709 + }, + { + "start": 15721.18, + "end": 15723.24, + "probability": 0.9766 + }, + { + "start": 15723.94, + "end": 15730.08, + "probability": 0.7743 + }, + { + "start": 15730.32, + "end": 15731.57, + "probability": 0.2068 + }, + { + "start": 15731.86, + "end": 15734.7, + "probability": 0.5348 + }, + { + "start": 15734.7, + "end": 15736.06, + "probability": 0.1606 + }, + { + "start": 15736.08, + "end": 15738.16, + "probability": 0.1633 + }, + { + "start": 15738.38, + "end": 15740.72, + "probability": 0.905 + }, + { + "start": 15740.82, + "end": 15741.64, + "probability": 0.6464 + }, + { + "start": 15741.76, + "end": 15745.28, + "probability": 0.97 + }, + { + "start": 15745.4, + "end": 15745.78, + "probability": 0.962 + }, + { + "start": 15745.9, + "end": 15747.38, + "probability": 0.8532 + }, + { + "start": 15747.78, + "end": 15749.56, + "probability": 0.6287 + }, + { + "start": 15750.32, + "end": 15752.46, + "probability": 0.9868 + }, + { + "start": 15752.6, + "end": 15757.38, + "probability": 0.9771 + }, + { + "start": 15758.22, + "end": 15759.28, + "probability": 0.9824 + }, + { + "start": 15760.98, + "end": 15763.18, + "probability": 0.902 + }, + { + "start": 15763.24, + "end": 15766.38, + "probability": 0.9734 + }, + { + "start": 15766.44, + "end": 15766.9, + "probability": 0.6917 + }, + { + "start": 15768.0, + "end": 15769.44, + "probability": 0.8852 + }, + { + "start": 15769.92, + "end": 15770.6, + "probability": 0.0043 + }, + { + "start": 15770.6, + "end": 15777.7, + "probability": 0.8918 + }, + { + "start": 15778.28, + "end": 15781.86, + "probability": 0.8491 + }, + { + "start": 15781.86, + "end": 15786.18, + "probability": 0.9705 + }, + { + "start": 15786.26, + "end": 15791.14, + "probability": 0.9968 + }, + { + "start": 15791.46, + "end": 15794.42, + "probability": 0.9646 + }, + { + "start": 15794.54, + "end": 15795.64, + "probability": 0.8898 + }, + { + "start": 15796.06, + "end": 15798.28, + "probability": 0.565 + }, + { + "start": 15799.36, + "end": 15800.42, + "probability": 0.0371 + }, + { + "start": 15800.42, + "end": 15800.68, + "probability": 0.1634 + }, + { + "start": 15800.76, + "end": 15802.16, + "probability": 0.7043 + }, + { + "start": 15802.16, + "end": 15804.92, + "probability": 0.9555 + }, + { + "start": 15805.08, + "end": 15808.28, + "probability": 0.9914 + }, + { + "start": 15808.4, + "end": 15808.64, + "probability": 0.4818 + }, + { + "start": 15808.78, + "end": 15810.7, + "probability": 0.8156 + }, + { + "start": 15811.28, + "end": 15815.26, + "probability": 0.7781 + }, + { + "start": 15815.94, + "end": 15815.94, + "probability": 0.0153 + }, + { + "start": 15815.94, + "end": 15818.66, + "probability": 0.9455 + }, + { + "start": 15818.66, + "end": 15819.27, + "probability": 0.1552 + }, + { + "start": 15820.45, + "end": 15820.52, + "probability": 0.03 + }, + { + "start": 15820.86, + "end": 15822.44, + "probability": 0.5136 + }, + { + "start": 15822.46, + "end": 15824.3, + "probability": 0.9738 + }, + { + "start": 15825.08, + "end": 15826.78, + "probability": 0.9979 + }, + { + "start": 15826.9, + "end": 15827.62, + "probability": 0.5269 + }, + { + "start": 15828.7, + "end": 15833.5, + "probability": 0.6834 + }, + { + "start": 15834.02, + "end": 15838.76, + "probability": 0.9648 + }, + { + "start": 15839.16, + "end": 15839.82, + "probability": 0.9521 + }, + { + "start": 15839.9, + "end": 15840.94, + "probability": 0.9534 + }, + { + "start": 15841.04, + "end": 15841.14, + "probability": 0.5886 + }, + { + "start": 15841.26, + "end": 15842.26, + "probability": 0.7767 + }, + { + "start": 15842.9, + "end": 15847.22, + "probability": 0.9409 + }, + { + "start": 15847.38, + "end": 15849.66, + "probability": 0.7604 + }, + { + "start": 15851.0, + "end": 15853.98, + "probability": 0.1379 + }, + { + "start": 15853.98, + "end": 15854.32, + "probability": 0.0056 + }, + { + "start": 15854.32, + "end": 15854.32, + "probability": 0.0195 + }, + { + "start": 15854.32, + "end": 15855.58, + "probability": 0.0841 + }, + { + "start": 15855.78, + "end": 15862.42, + "probability": 0.9666 + }, + { + "start": 15864.04, + "end": 15865.92, + "probability": 0.8248 + }, + { + "start": 15865.94, + "end": 15867.06, + "probability": 0.5586 + }, + { + "start": 15867.5, + "end": 15868.42, + "probability": 0.7423 + }, + { + "start": 15868.5, + "end": 15871.29, + "probability": 0.7745 + }, + { + "start": 15871.98, + "end": 15873.62, + "probability": 0.9012 + }, + { + "start": 15874.04, + "end": 15874.22, + "probability": 0.2021 + }, + { + "start": 15874.22, + "end": 15874.78, + "probability": 0.7693 + }, + { + "start": 15875.06, + "end": 15878.74, + "probability": 0.9431 + }, + { + "start": 15878.74, + "end": 15879.26, + "probability": 0.5456 + }, + { + "start": 15879.28, + "end": 15879.3, + "probability": 0.2596 + }, + { + "start": 15879.3, + "end": 15880.72, + "probability": 0.6735 + }, + { + "start": 15881.34, + "end": 15886.16, + "probability": 0.0043 + }, + { + "start": 15887.12, + "end": 15889.46, + "probability": 0.8557 + }, + { + "start": 15889.62, + "end": 15890.14, + "probability": 0.6831 + }, + { + "start": 15890.26, + "end": 15891.1, + "probability": 0.9211 + }, + { + "start": 15891.22, + "end": 15891.64, + "probability": 0.6606 + }, + { + "start": 15891.72, + "end": 15892.35, + "probability": 0.9365 + }, + { + "start": 15892.98, + "end": 15894.7, + "probability": 0.9445 + }, + { + "start": 15894.76, + "end": 15895.12, + "probability": 0.8012 + }, + { + "start": 15895.78, + "end": 15897.76, + "probability": 0.9883 + }, + { + "start": 15898.68, + "end": 15900.38, + "probability": 0.8065 + }, + { + "start": 15900.96, + "end": 15904.72, + "probability": 0.9724 + }, + { + "start": 15905.4, + "end": 15910.78, + "probability": 0.9963 + }, + { + "start": 15911.82, + "end": 15913.34, + "probability": 0.9989 + }, + { + "start": 15914.26, + "end": 15916.62, + "probability": 0.9993 + }, + { + "start": 15916.62, + "end": 15919.96, + "probability": 0.9992 + }, + { + "start": 15921.04, + "end": 15925.6, + "probability": 0.9548 + }, + { + "start": 15926.16, + "end": 15927.28, + "probability": 0.8888 + }, + { + "start": 15927.9, + "end": 15929.38, + "probability": 0.9306 + }, + { + "start": 15930.08, + "end": 15931.52, + "probability": 0.9815 + }, + { + "start": 15931.58, + "end": 15932.26, + "probability": 0.9052 + }, + { + "start": 15932.34, + "end": 15932.76, + "probability": 0.5546 + }, + { + "start": 15932.82, + "end": 15933.38, + "probability": 0.8256 + }, + { + "start": 15933.4, + "end": 15933.94, + "probability": 0.7658 + }, + { + "start": 15934.04, + "end": 15934.68, + "probability": 0.9106 + }, + { + "start": 15935.86, + "end": 15938.76, + "probability": 0.984 + }, + { + "start": 15939.44, + "end": 15941.62, + "probability": 0.8151 + }, + { + "start": 15942.76, + "end": 15945.22, + "probability": 0.8391 + }, + { + "start": 15946.0, + "end": 15950.68, + "probability": 0.9704 + }, + { + "start": 15950.68, + "end": 15953.7, + "probability": 0.9956 + }, + { + "start": 15954.3, + "end": 15955.88, + "probability": 0.9523 + }, + { + "start": 15956.8, + "end": 15958.88, + "probability": 0.8467 + }, + { + "start": 15959.02, + "end": 15960.24, + "probability": 0.6905 + }, + { + "start": 15960.36, + "end": 15962.26, + "probability": 0.9559 + }, + { + "start": 15965.16, + "end": 15968.12, + "probability": 0.7869 + }, + { + "start": 15970.68, + "end": 15975.52, + "probability": 0.9468 + }, + { + "start": 15975.84, + "end": 15976.42, + "probability": 0.6923 + }, + { + "start": 15976.44, + "end": 15978.28, + "probability": 0.2506 + }, + { + "start": 15978.38, + "end": 15979.36, + "probability": 0.8553 + }, + { + "start": 15979.8, + "end": 15980.35, + "probability": 0.8574 + }, + { + "start": 15982.68, + "end": 15983.88, + "probability": 0.0833 + }, + { + "start": 15983.88, + "end": 15985.18, + "probability": 0.1859 + }, + { + "start": 15986.02, + "end": 15986.18, + "probability": 0.4939 + }, + { + "start": 15986.18, + "end": 15987.16, + "probability": 0.8581 + }, + { + "start": 15987.18, + "end": 15987.98, + "probability": 0.4821 + }, + { + "start": 15988.04, + "end": 15988.88, + "probability": 0.888 + }, + { + "start": 15990.04, + "end": 15990.04, + "probability": 0.0648 + }, + { + "start": 15990.04, + "end": 15994.48, + "probability": 0.9192 + }, + { + "start": 15995.14, + "end": 15997.42, + "probability": 0.9617 + }, + { + "start": 15998.62, + "end": 16004.84, + "probability": 0.9966 + }, + { + "start": 16005.42, + "end": 16005.88, + "probability": 0.7073 + }, + { + "start": 16006.02, + "end": 16006.8, + "probability": 0.667 + }, + { + "start": 16007.36, + "end": 16008.08, + "probability": 0.9165 + }, + { + "start": 16008.84, + "end": 16009.12, + "probability": 0.7288 + }, + { + "start": 16009.24, + "end": 16010.44, + "probability": 0.9878 + }, + { + "start": 16010.48, + "end": 16012.17, + "probability": 0.9956 + }, + { + "start": 16012.6, + "end": 16013.73, + "probability": 0.9593 + }, + { + "start": 16014.32, + "end": 16015.22, + "probability": 0.4735 + }, + { + "start": 16015.32, + "end": 16018.44, + "probability": 0.998 + }, + { + "start": 16018.44, + "end": 16024.1, + "probability": 0.9534 + }, + { + "start": 16025.64, + "end": 16026.64, + "probability": 0.9195 + }, + { + "start": 16026.7, + "end": 16030.22, + "probability": 0.9768 + }, + { + "start": 16030.52, + "end": 16031.64, + "probability": 0.9333 + }, + { + "start": 16031.7, + "end": 16034.74, + "probability": 0.9941 + }, + { + "start": 16034.94, + "end": 16035.68, + "probability": 0.8314 + }, + { + "start": 16036.04, + "end": 16037.54, + "probability": 0.9188 + }, + { + "start": 16038.18, + "end": 16042.5, + "probability": 0.9784 + }, + { + "start": 16043.46, + "end": 16044.4, + "probability": 0.8452 + }, + { + "start": 16044.48, + "end": 16047.0, + "probability": 0.9984 + }, + { + "start": 16048.32, + "end": 16049.89, + "probability": 0.9791 + }, + { + "start": 16050.56, + "end": 16052.14, + "probability": 0.9935 + }, + { + "start": 16052.18, + "end": 16056.84, + "probability": 0.8586 + }, + { + "start": 16056.98, + "end": 16062.32, + "probability": 0.8987 + }, + { + "start": 16062.74, + "end": 16066.41, + "probability": 0.9924 + }, + { + "start": 16067.38, + "end": 16068.08, + "probability": 0.7996 + }, + { + "start": 16068.18, + "end": 16070.48, + "probability": 0.9945 + }, + { + "start": 16070.84, + "end": 16072.12, + "probability": 0.9424 + }, + { + "start": 16072.64, + "end": 16075.48, + "probability": 0.9844 + }, + { + "start": 16076.4, + "end": 16077.32, + "probability": 0.6186 + }, + { + "start": 16078.06, + "end": 16080.22, + "probability": 0.9708 + }, + { + "start": 16082.48, + "end": 16085.5, + "probability": 0.7857 + }, + { + "start": 16085.5, + "end": 16085.6, + "probability": 0.0853 + }, + { + "start": 16086.32, + "end": 16088.08, + "probability": 0.3503 + }, + { + "start": 16089.86, + "end": 16091.5, + "probability": 0.2624 + }, + { + "start": 16093.26, + "end": 16097.1, + "probability": 0.3982 + }, + { + "start": 16097.34, + "end": 16098.6, + "probability": 0.2034 + }, + { + "start": 16098.64, + "end": 16100.14, + "probability": 0.8849 + }, + { + "start": 16100.5, + "end": 16103.04, + "probability": 0.8822 + }, + { + "start": 16103.38, + "end": 16107.16, + "probability": 0.9967 + }, + { + "start": 16107.16, + "end": 16111.02, + "probability": 0.9961 + }, + { + "start": 16111.2, + "end": 16111.46, + "probability": 0.9199 + }, + { + "start": 16116.9, + "end": 16121.14, + "probability": 0.8767 + }, + { + "start": 16122.66, + "end": 16126.92, + "probability": 0.8314 + }, + { + "start": 16131.9, + "end": 16136.0, + "probability": 0.9976 + }, + { + "start": 16136.4, + "end": 16141.62, + "probability": 0.8248 + }, + { + "start": 16142.46, + "end": 16144.16, + "probability": 0.837 + }, + { + "start": 16144.76, + "end": 16146.88, + "probability": 0.4997 + }, + { + "start": 16147.48, + "end": 16151.84, + "probability": 0.9171 + }, + { + "start": 16153.14, + "end": 16154.23, + "probability": 0.1814 + }, + { + "start": 16154.74, + "end": 16158.52, + "probability": 0.9432 + }, + { + "start": 16159.06, + "end": 16162.0, + "probability": 0.9316 + }, + { + "start": 16162.32, + "end": 16164.32, + "probability": 0.6766 + }, + { + "start": 16164.32, + "end": 16164.98, + "probability": 0.9532 + }, + { + "start": 16166.89, + "end": 16169.28, + "probability": 0.5154 + }, + { + "start": 16169.94, + "end": 16170.52, + "probability": 0.8685 + }, + { + "start": 16171.54, + "end": 16172.42, + "probability": 0.7421 + }, + { + "start": 16173.46, + "end": 16173.9, + "probability": 0.9823 + }, + { + "start": 16174.66, + "end": 16176.98, + "probability": 0.7947 + }, + { + "start": 16179.76, + "end": 16180.62, + "probability": 0.6972 + }, + { + "start": 16181.38, + "end": 16187.1, + "probability": 0.8949 + }, + { + "start": 16187.84, + "end": 16190.14, + "probability": 0.9832 + }, + { + "start": 16190.84, + "end": 16192.48, + "probability": 0.7797 + }, + { + "start": 16193.34, + "end": 16195.3, + "probability": 0.7162 + }, + { + "start": 16196.12, + "end": 16197.0, + "probability": 0.8026 + }, + { + "start": 16198.02, + "end": 16199.14, + "probability": 0.905 + }, + { + "start": 16199.82, + "end": 16201.86, + "probability": 0.9785 + }, + { + "start": 16202.54, + "end": 16207.38, + "probability": 0.9703 + }, + { + "start": 16209.56, + "end": 16211.84, + "probability": 0.8659 + }, + { + "start": 16213.12, + "end": 16214.68, + "probability": 0.8127 + }, + { + "start": 16216.48, + "end": 16218.62, + "probability": 0.8672 + }, + { + "start": 16219.54, + "end": 16221.82, + "probability": 0.9742 + }, + { + "start": 16223.4, + "end": 16224.66, + "probability": 0.9888 + }, + { + "start": 16225.44, + "end": 16231.74, + "probability": 0.9714 + }, + { + "start": 16234.02, + "end": 16235.24, + "probability": 0.9866 + }, + { + "start": 16236.56, + "end": 16237.3, + "probability": 0.6037 + }, + { + "start": 16237.86, + "end": 16240.42, + "probability": 0.8182 + }, + { + "start": 16241.08, + "end": 16241.32, + "probability": 0.95 + }, + { + "start": 16242.02, + "end": 16243.16, + "probability": 0.7796 + }, + { + "start": 16243.84, + "end": 16247.44, + "probability": 0.8029 + }, + { + "start": 16248.06, + "end": 16250.2, + "probability": 0.9701 + }, + { + "start": 16252.9, + "end": 16255.66, + "probability": 0.7872 + }, + { + "start": 16258.1, + "end": 16260.16, + "probability": 0.891 + }, + { + "start": 16262.56, + "end": 16263.36, + "probability": 0.0612 + }, + { + "start": 16268.6, + "end": 16270.1, + "probability": 0.6644 + }, + { + "start": 16271.2, + "end": 16274.24, + "probability": 0.5691 + }, + { + "start": 16275.58, + "end": 16277.7, + "probability": 0.8861 + }, + { + "start": 16278.78, + "end": 16281.54, + "probability": 0.699 + }, + { + "start": 16282.08, + "end": 16284.16, + "probability": 0.8794 + }, + { + "start": 16284.72, + "end": 16287.2, + "probability": 0.9242 + }, + { + "start": 16288.02, + "end": 16291.0, + "probability": 0.7629 + }, + { + "start": 16292.04, + "end": 16294.4, + "probability": 0.8616 + }, + { + "start": 16295.02, + "end": 16297.52, + "probability": 0.6183 + }, + { + "start": 16298.3, + "end": 16301.38, + "probability": 0.8341 + }, + { + "start": 16304.18, + "end": 16306.82, + "probability": 0.9558 + }, + { + "start": 16307.74, + "end": 16309.36, + "probability": 0.9072 + }, + { + "start": 16311.68, + "end": 16318.1, + "probability": 0.8894 + }, + { + "start": 16320.51, + "end": 16323.6, + "probability": 0.9722 + }, + { + "start": 16326.1, + "end": 16330.38, + "probability": 0.5615 + }, + { + "start": 16331.52, + "end": 16334.24, + "probability": 0.8268 + }, + { + "start": 16336.12, + "end": 16338.7, + "probability": 0.7352 + }, + { + "start": 16339.66, + "end": 16342.9, + "probability": 0.847 + }, + { + "start": 16343.28, + "end": 16345.58, + "probability": 0.7713 + }, + { + "start": 16345.9, + "end": 16348.6, + "probability": 0.9227 + }, + { + "start": 16349.86, + "end": 16353.24, + "probability": 0.9307 + }, + { + "start": 16353.86, + "end": 16355.92, + "probability": 0.5354 + }, + { + "start": 16356.56, + "end": 16359.62, + "probability": 0.8039 + }, + { + "start": 16361.47, + "end": 16363.86, + "probability": 0.8654 + }, + { + "start": 16365.58, + "end": 16368.46, + "probability": 0.8398 + }, + { + "start": 16368.64, + "end": 16370.78, + "probability": 0.9416 + }, + { + "start": 16371.22, + "end": 16373.06, + "probability": 0.8758 + }, + { + "start": 16375.04, + "end": 16379.28, + "probability": 0.7354 + }, + { + "start": 16380.02, + "end": 16382.66, + "probability": 0.8304 + }, + { + "start": 16384.78, + "end": 16388.66, + "probability": 0.4955 + }, + { + "start": 16389.74, + "end": 16391.9, + "probability": 0.8183 + }, + { + "start": 16393.3, + "end": 16395.72, + "probability": 0.8713 + }, + { + "start": 16401.02, + "end": 16402.1, + "probability": 0.843 + }, + { + "start": 16404.46, + "end": 16406.96, + "probability": 0.9037 + }, + { + "start": 16408.28, + "end": 16410.64, + "probability": 0.726 + }, + { + "start": 16412.1, + "end": 16417.12, + "probability": 0.6326 + }, + { + "start": 16420.24, + "end": 16422.76, + "probability": 0.7443 + }, + { + "start": 16424.08, + "end": 16424.48, + "probability": 0.8678 + }, + { + "start": 16425.26, + "end": 16426.14, + "probability": 0.8486 + }, + { + "start": 16428.84, + "end": 16431.34, + "probability": 0.9095 + }, + { + "start": 16432.98, + "end": 16436.2, + "probability": 0.9517 + }, + { + "start": 16437.21, + "end": 16439.72, + "probability": 0.9479 + }, + { + "start": 16440.72, + "end": 16443.06, + "probability": 0.9346 + }, + { + "start": 16443.72, + "end": 16445.94, + "probability": 0.8418 + }, + { + "start": 16446.74, + "end": 16448.74, + "probability": 0.97 + }, + { + "start": 16449.28, + "end": 16451.16, + "probability": 0.8953 + }, + { + "start": 16452.0, + "end": 16453.72, + "probability": 0.9816 + }, + { + "start": 16454.68, + "end": 16457.04, + "probability": 0.9696 + }, + { + "start": 16457.74, + "end": 16460.14, + "probability": 0.9842 + }, + { + "start": 16460.7, + "end": 16463.74, + "probability": 0.9191 + }, + { + "start": 16463.84, + "end": 16466.32, + "probability": 0.9849 + }, + { + "start": 16466.46, + "end": 16469.38, + "probability": 0.59 + }, + { + "start": 16470.64, + "end": 16471.04, + "probability": 0.9149 + }, + { + "start": 16471.92, + "end": 16474.08, + "probability": 0.9021 + }, + { + "start": 16475.0, + "end": 16476.04, + "probability": 0.9646 + }, + { + "start": 16476.64, + "end": 16478.66, + "probability": 0.9702 + }, + { + "start": 16479.58, + "end": 16480.1, + "probability": 0.9774 + }, + { + "start": 16481.38, + "end": 16482.54, + "probability": 0.9889 + }, + { + "start": 16483.26, + "end": 16485.72, + "probability": 0.9862 + }, + { + "start": 16486.46, + "end": 16489.1, + "probability": 0.9101 + }, + { + "start": 16489.78, + "end": 16490.32, + "probability": 0.8542 + }, + { + "start": 16491.44, + "end": 16492.68, + "probability": 0.9232 + }, + { + "start": 16493.3, + "end": 16496.66, + "probability": 0.5593 + }, + { + "start": 16497.52, + "end": 16497.94, + "probability": 0.9014 + }, + { + "start": 16498.96, + "end": 16500.0, + "probability": 0.7598 + }, + { + "start": 16500.96, + "end": 16503.46, + "probability": 0.958 + }, + { + "start": 16503.8, + "end": 16506.36, + "probability": 0.9097 + }, + { + "start": 16506.74, + "end": 16509.2, + "probability": 0.8392 + }, + { + "start": 16512.84, + "end": 16513.12, + "probability": 0.7837 + }, + { + "start": 16514.42, + "end": 16515.32, + "probability": 0.8632 + }, + { + "start": 16516.3, + "end": 16518.48, + "probability": 0.9116 + }, + { + "start": 16519.16, + "end": 16521.14, + "probability": 0.7979 + }, + { + "start": 16523.2, + "end": 16525.16, + "probability": 0.9042 + }, + { + "start": 16525.68, + "end": 16528.1, + "probability": 0.9604 + }, + { + "start": 16528.8, + "end": 16531.44, + "probability": 0.9863 + }, + { + "start": 16532.08, + "end": 16534.14, + "probability": 0.9167 + }, + { + "start": 16534.66, + "end": 16536.84, + "probability": 0.82 + }, + { + "start": 16537.62, + "end": 16539.58, + "probability": 0.9856 + }, + { + "start": 16541.26, + "end": 16548.34, + "probability": 0.7416 + }, + { + "start": 16549.34, + "end": 16550.58, + "probability": 0.9632 + }, + { + "start": 16551.44, + "end": 16554.16, + "probability": 0.8467 + }, + { + "start": 16556.12, + "end": 16559.42, + "probability": 0.6489 + }, + { + "start": 16560.2, + "end": 16560.74, + "probability": 0.9517 + }, + { + "start": 16561.6, + "end": 16565.28, + "probability": 0.9582 + }, + { + "start": 16566.54, + "end": 16567.04, + "probability": 0.9723 + }, + { + "start": 16567.84, + "end": 16569.06, + "probability": 0.9393 + }, + { + "start": 16569.94, + "end": 16570.48, + "probability": 0.9811 + }, + { + "start": 16571.36, + "end": 16572.52, + "probability": 0.9384 + }, + { + "start": 16573.48, + "end": 16579.42, + "probability": 0.9679 + }, + { + "start": 16581.16, + "end": 16583.54, + "probability": 0.9764 + }, + { + "start": 16584.82, + "end": 16586.88, + "probability": 0.6762 + }, + { + "start": 16587.42, + "end": 16589.98, + "probability": 0.948 + }, + { + "start": 16590.66, + "end": 16595.82, + "probability": 0.9713 + }, + { + "start": 16596.72, + "end": 16599.18, + "probability": 0.967 + }, + { + "start": 16600.02, + "end": 16600.52, + "probability": 0.9852 + }, + { + "start": 16601.08, + "end": 16602.0, + "probability": 0.989 + }, + { + "start": 16602.64, + "end": 16605.06, + "probability": 0.9292 + }, + { + "start": 16605.84, + "end": 16611.06, + "probability": 0.9513 + }, + { + "start": 16611.34, + "end": 16616.3, + "probability": 0.8503 + }, + { + "start": 16616.32, + "end": 16617.22, + "probability": 0.8602 + }, + { + "start": 16617.72, + "end": 16618.64, + "probability": 0.2324 + }, + { + "start": 16619.14, + "end": 16621.1, + "probability": 0.8149 + }, + { + "start": 16623.08, + "end": 16626.84, + "probability": 0.8904 + }, + { + "start": 16627.68, + "end": 16629.56, + "probability": 0.8775 + }, + { + "start": 16630.66, + "end": 16632.78, + "probability": 0.4679 + }, + { + "start": 16633.52, + "end": 16634.3, + "probability": 0.9639 + }, + { + "start": 16636.22, + "end": 16636.96, + "probability": 0.8968 + }, + { + "start": 16637.98, + "end": 16639.96, + "probability": 0.9546 + }, + { + "start": 16641.28, + "end": 16642.74, + "probability": 0.5167 + }, + { + "start": 16643.6, + "end": 16644.94, + "probability": 0.6481 + }, + { + "start": 16645.62, + "end": 16646.48, + "probability": 0.9375 + }, + { + "start": 16647.1, + "end": 16650.42, + "probability": 0.8596 + }, + { + "start": 16652.32, + "end": 16654.2, + "probability": 0.8205 + }, + { + "start": 16654.72, + "end": 16656.9, + "probability": 0.9867 + }, + { + "start": 16657.8, + "end": 16659.82, + "probability": 0.9885 + }, + { + "start": 16660.68, + "end": 16662.7, + "probability": 0.9813 + }, + { + "start": 16664.06, + "end": 16667.48, + "probability": 0.959 + }, + { + "start": 16668.14, + "end": 16669.66, + "probability": 0.9761 + }, + { + "start": 16672.18, + "end": 16672.5, + "probability": 0.7092 + }, + { + "start": 16677.64, + "end": 16682.64, + "probability": 0.8899 + }, + { + "start": 16684.04, + "end": 16686.6, + "probability": 0.996 + }, + { + "start": 16686.68, + "end": 16687.66, + "probability": 0.4485 + }, + { + "start": 16687.96, + "end": 16689.02, + "probability": 0.9373 + }, + { + "start": 16689.14, + "end": 16689.64, + "probability": 0.9515 + }, + { + "start": 16690.22, + "end": 16690.34, + "probability": 0.2828 + }, + { + "start": 16691.3, + "end": 16691.48, + "probability": 0.0184 + }, + { + "start": 16693.02, + "end": 16693.22, + "probability": 0.0421 + }, + { + "start": 16707.68, + "end": 16710.48, + "probability": 0.1085 + }, + { + "start": 16712.54, + "end": 16712.66, + "probability": 0.14 + }, + { + "start": 16735.48, + "end": 16736.86, + "probability": 0.0224 + }, + { + "start": 16739.52, + "end": 16739.62, + "probability": 0.0315 + }, + { + "start": 16740.98, + "end": 16741.08, + "probability": 0.0502 + }, + { + "start": 16754.97, + "end": 16755.9, + "probability": 0.0796 + }, + { + "start": 16779.0, + "end": 16784.38, + "probability": 0.2371 + }, + { + "start": 16784.9, + "end": 16785.06, + "probability": 0.2403 + }, + { + "start": 16785.64, + "end": 16787.38, + "probability": 0.8274 + }, + { + "start": 16787.48, + "end": 16790.08, + "probability": 0.3928 + }, + { + "start": 16790.58, + "end": 16793.98, + "probability": 0.9485 + }, + { + "start": 16794.48, + "end": 16794.98, + "probability": 0.9739 + }, + { + "start": 16796.56, + "end": 16797.52, + "probability": 0.1906 + }, + { + "start": 16797.52, + "end": 16801.3, + "probability": 0.7695 + }, + { + "start": 16802.04, + "end": 16805.62, + "probability": 0.684 + }, + { + "start": 16806.64, + "end": 16809.04, + "probability": 0.8273 + }, + { + "start": 16810.04, + "end": 16811.54, + "probability": 0.9425 + }, + { + "start": 16811.58, + "end": 16819.72, + "probability": 0.6948 + }, + { + "start": 16820.34, + "end": 16823.96, + "probability": 0.7139 + }, + { + "start": 16824.02, + "end": 16828.06, + "probability": 0.9499 + }, + { + "start": 16828.06, + "end": 16831.34, + "probability": 0.108 + }, + { + "start": 16831.76, + "end": 16834.14, + "probability": 0.1409 + }, + { + "start": 16834.32, + "end": 16834.5, + "probability": 0.4621 + }, + { + "start": 16834.5, + "end": 16836.1, + "probability": 0.6656 + }, + { + "start": 16836.76, + "end": 16837.26, + "probability": 0.2928 + }, + { + "start": 16837.28, + "end": 16837.86, + "probability": 0.6982 + }, + { + "start": 16837.94, + "end": 16841.72, + "probability": 0.6814 + }, + { + "start": 16842.3, + "end": 16845.42, + "probability": 0.8114 + }, + { + "start": 16845.9, + "end": 16849.36, + "probability": 0.2085 + }, + { + "start": 16851.14, + "end": 16851.54, + "probability": 0.0003 + }, + { + "start": 16869.42, + "end": 16875.88, + "probability": 0.8001 + }, + { + "start": 16876.6, + "end": 16878.42, + "probability": 0.1366 + }, + { + "start": 16879.04, + "end": 16880.84, + "probability": 0.9476 + }, + { + "start": 16881.26, + "end": 16881.5, + "probability": 0.6629 + }, + { + "start": 16882.34, + "end": 16883.64, + "probability": 0.2586 + }, + { + "start": 16888.84, + "end": 16890.96, + "probability": 0.5465 + }, + { + "start": 16891.46, + "end": 16892.48, + "probability": 0.8525 + }, + { + "start": 16892.6, + "end": 16893.46, + "probability": 0.4007 + }, + { + "start": 16893.68, + "end": 16895.22, + "probability": 0.6194 + }, + { + "start": 16895.32, + "end": 16896.9, + "probability": 0.909 + }, + { + "start": 16897.8, + "end": 16897.8, + "probability": 0.7007 + }, + { + "start": 16897.8, + "end": 16898.14, + "probability": 0.3742 + }, + { + "start": 16898.16, + "end": 16898.72, + "probability": 0.7355 + }, + { + "start": 16899.3, + "end": 16903.44, + "probability": 0.9604 + }, + { + "start": 16903.48, + "end": 16904.18, + "probability": 0.8065 + }, + { + "start": 16905.76, + "end": 16907.04, + "probability": 0.8191 + }, + { + "start": 16907.08, + "end": 16908.3, + "probability": 0.8063 + }, + { + "start": 16908.38, + "end": 16909.78, + "probability": 0.9347 + }, + { + "start": 16909.96, + "end": 16911.16, + "probability": 0.9353 + }, + { + "start": 16911.26, + "end": 16913.56, + "probability": 0.8449 + }, + { + "start": 16920.1, + "end": 16922.2, + "probability": 0.4728 + }, + { + "start": 16922.3, + "end": 16922.98, + "probability": 0.9572 + }, + { + "start": 16923.38, + "end": 16925.8, + "probability": 0.8722 + }, + { + "start": 16926.36, + "end": 16932.7, + "probability": 0.118 + }, + { + "start": 16932.74, + "end": 16935.72, + "probability": 0.8724 + }, + { + "start": 16936.0, + "end": 16937.9, + "probability": 0.6974 + }, + { + "start": 16942.08, + "end": 16943.88, + "probability": 0.8306 + }, + { + "start": 16944.04, + "end": 16944.54, + "probability": 0.7692 + }, + { + "start": 16944.64, + "end": 16945.22, + "probability": 0.6043 + }, + { + "start": 16945.22, + "end": 16945.72, + "probability": 0.9084 + }, + { + "start": 16945.82, + "end": 16946.36, + "probability": 0.4185 + }, + { + "start": 16946.8, + "end": 16953.14, + "probability": 0.9406 + }, + { + "start": 16956.28, + "end": 16957.94, + "probability": 0.2191 + }, + { + "start": 16958.8, + "end": 16959.68, + "probability": 0.0455 + }, + { + "start": 16960.82, + "end": 16964.34, + "probability": 0.0305 + }, + { + "start": 16964.64, + "end": 16967.08, + "probability": 0.6826 + }, + { + "start": 16967.54, + "end": 16968.14, + "probability": 0.7982 + }, + { + "start": 16968.36, + "end": 16969.02, + "probability": 0.9325 + }, + { + "start": 16969.08, + "end": 16970.54, + "probability": 0.894 + }, + { + "start": 16974.38, + "end": 16975.98, + "probability": 0.0196 + }, + { + "start": 16975.98, + "end": 16979.54, + "probability": 0.0813 + }, + { + "start": 16979.88, + "end": 16980.52, + "probability": 0.4641 + }, + { + "start": 16980.6, + "end": 16981.3, + "probability": 0.801 + }, + { + "start": 16981.86, + "end": 16984.32, + "probability": 0.3065 + }, + { + "start": 16984.32, + "end": 16984.44, + "probability": 0.0299 + }, + { + "start": 16984.44, + "end": 16988.6, + "probability": 0.9904 + }, + { + "start": 16988.6, + "end": 16993.5, + "probability": 0.9917 + }, + { + "start": 16993.5, + "end": 16997.68, + "probability": 0.997 + }, + { + "start": 16997.96, + "end": 16998.5, + "probability": 0.7301 + }, + { + "start": 16999.3, + "end": 16999.94, + "probability": 0.6017 + }, + { + "start": 17000.06, + "end": 17008.02, + "probability": 0.8355 + }, + { + "start": 17008.74, + "end": 17010.72, + "probability": 0.6052 + }, + { + "start": 17011.14, + "end": 17013.16, + "probability": 0.9903 + }, + { + "start": 17013.92, + "end": 17017.06, + "probability": 0.9827 + }, + { + "start": 17021.8, + "end": 17022.6, + "probability": 0.5029 + }, + { + "start": 17023.7, + "end": 17027.92, + "probability": 0.5031 + }, + { + "start": 17027.92, + "end": 17033.74, + "probability": 0.7845 + }, + { + "start": 17035.52, + "end": 17037.38, + "probability": 0.4932 + }, + { + "start": 17037.78, + "end": 17039.86, + "probability": 0.9853 + }, + { + "start": 17040.64, + "end": 17044.24, + "probability": 0.9783 + }, + { + "start": 17044.24, + "end": 17050.33, + "probability": 0.7638 + }, + { + "start": 17051.48, + "end": 17053.52, + "probability": 0.5392 + }, + { + "start": 17053.92, + "end": 17056.08, + "probability": 0.9647 + }, + { + "start": 17057.18, + "end": 17063.38, + "probability": 0.9038 + }, + { + "start": 17063.88, + "end": 17065.94, + "probability": 0.8087 + }, + { + "start": 17066.4, + "end": 17068.26, + "probability": 0.9392 + }, + { + "start": 17068.76, + "end": 17069.12, + "probability": 0.8418 + }, + { + "start": 17069.16, + "end": 17070.7, + "probability": 0.9745 + }, + { + "start": 17071.04, + "end": 17075.96, + "probability": 0.9934 + }, + { + "start": 17076.56, + "end": 17080.42, + "probability": 0.9688 + }, + { + "start": 17080.5, + "end": 17082.04, + "probability": 0.7216 + }, + { + "start": 17082.26, + "end": 17082.8, + "probability": 0.8381 + }, + { + "start": 17083.16, + "end": 17084.08, + "probability": 0.1687 + }, + { + "start": 17085.68, + "end": 17085.68, + "probability": 0.0053 + }, + { + "start": 17114.18, + "end": 17116.1, + "probability": 0.9939 + }, + { + "start": 17117.1, + "end": 17119.96, + "probability": 0.9927 + }, + { + "start": 17121.16, + "end": 17124.96, + "probability": 0.9892 + }, + { + "start": 17126.46, + "end": 17131.99, + "probability": 0.9971 + }, + { + "start": 17133.5, + "end": 17137.76, + "probability": 0.9812 + }, + { + "start": 17138.66, + "end": 17140.98, + "probability": 0.9967 + }, + { + "start": 17142.32, + "end": 17146.5, + "probability": 0.9964 + }, + { + "start": 17146.5, + "end": 17149.62, + "probability": 0.9958 + }, + { + "start": 17150.64, + "end": 17152.8, + "probability": 0.9978 + }, + { + "start": 17153.94, + "end": 17156.02, + "probability": 0.8577 + }, + { + "start": 17157.06, + "end": 17159.5, + "probability": 0.9959 + }, + { + "start": 17160.6, + "end": 17162.0, + "probability": 0.936 + }, + { + "start": 17162.48, + "end": 17163.72, + "probability": 0.8086 + }, + { + "start": 17163.8, + "end": 17169.94, + "probability": 0.9951 + }, + { + "start": 17170.08, + "end": 17175.5, + "probability": 0.9941 + }, + { + "start": 17175.64, + "end": 17178.42, + "probability": 0.9989 + }, + { + "start": 17179.1, + "end": 17182.62, + "probability": 0.9697 + }, + { + "start": 17183.66, + "end": 17187.76, + "probability": 0.8308 + }, + { + "start": 17188.42, + "end": 17190.22, + "probability": 0.9635 + }, + { + "start": 17190.3, + "end": 17192.34, + "probability": 0.9141 + }, + { + "start": 17193.28, + "end": 17194.56, + "probability": 0.948 + }, + { + "start": 17194.64, + "end": 17198.26, + "probability": 0.9279 + }, + { + "start": 17199.32, + "end": 17203.12, + "probability": 0.9912 + }, + { + "start": 17203.22, + "end": 17205.56, + "probability": 0.8901 + }, + { + "start": 17206.14, + "end": 17208.28, + "probability": 0.7856 + }, + { + "start": 17209.54, + "end": 17210.82, + "probability": 0.9501 + }, + { + "start": 17211.7, + "end": 17213.64, + "probability": 0.6946 + }, + { + "start": 17214.24, + "end": 17218.52, + "probability": 0.9897 + }, + { + "start": 17219.08, + "end": 17221.02, + "probability": 0.9714 + }, + { + "start": 17221.02, + "end": 17223.8, + "probability": 0.9457 + }, + { + "start": 17224.54, + "end": 17226.38, + "probability": 0.9753 + }, + { + "start": 17226.46, + "end": 17228.76, + "probability": 0.8359 + }, + { + "start": 17228.76, + "end": 17231.6, + "probability": 0.9884 + }, + { + "start": 17232.42, + "end": 17233.2, + "probability": 0.5825 + }, + { + "start": 17233.9, + "end": 17235.0, + "probability": 0.9284 + }, + { + "start": 17235.06, + "end": 17238.72, + "probability": 0.9898 + }, + { + "start": 17239.6, + "end": 17240.76, + "probability": 0.706 + }, + { + "start": 17241.54, + "end": 17244.36, + "probability": 0.9074 + }, + { + "start": 17244.36, + "end": 17247.98, + "probability": 0.9971 + }, + { + "start": 17249.08, + "end": 17249.58, + "probability": 0.6434 + }, + { + "start": 17249.6, + "end": 17253.16, + "probability": 0.9831 + }, + { + "start": 17253.36, + "end": 17254.9, + "probability": 0.9218 + }, + { + "start": 17255.64, + "end": 17258.2, + "probability": 0.9951 + }, + { + "start": 17258.2, + "end": 17262.14, + "probability": 0.9832 + }, + { + "start": 17262.86, + "end": 17266.6, + "probability": 0.9899 + }, + { + "start": 17267.5, + "end": 17271.36, + "probability": 0.9958 + }, + { + "start": 17271.44, + "end": 17273.7, + "probability": 0.8752 + }, + { + "start": 17274.56, + "end": 17279.68, + "probability": 0.8686 + }, + { + "start": 17280.22, + "end": 17283.96, + "probability": 0.6514 + }, + { + "start": 17285.46, + "end": 17286.22, + "probability": 0.6835 + }, + { + "start": 17286.8, + "end": 17289.5, + "probability": 0.7528 + }, + { + "start": 17289.56, + "end": 17292.52, + "probability": 0.9655 + }, + { + "start": 17293.34, + "end": 17296.16, + "probability": 0.9891 + }, + { + "start": 17296.74, + "end": 17301.08, + "probability": 0.986 + }, + { + "start": 17301.12, + "end": 17305.94, + "probability": 0.9197 + }, + { + "start": 17306.08, + "end": 17309.24, + "probability": 0.9929 + }, + { + "start": 17309.24, + "end": 17312.5, + "probability": 0.9966 + }, + { + "start": 17313.04, + "end": 17317.02, + "probability": 0.9875 + }, + { + "start": 17317.02, + "end": 17319.5, + "probability": 0.9901 + }, + { + "start": 17319.64, + "end": 17320.54, + "probability": 0.5784 + }, + { + "start": 17321.4, + "end": 17322.58, + "probability": 0.8525 + }, + { + "start": 17325.72, + "end": 17328.52, + "probability": 0.9912 + }, + { + "start": 17329.24, + "end": 17329.9, + "probability": 0.5773 + }, + { + "start": 17330.08, + "end": 17330.28, + "probability": 0.8946 + }, + { + "start": 17330.42, + "end": 17332.2, + "probability": 0.9318 + }, + { + "start": 17332.34, + "end": 17333.96, + "probability": 0.9956 + }, + { + "start": 17334.64, + "end": 17337.74, + "probability": 0.9626 + }, + { + "start": 17337.84, + "end": 17341.72, + "probability": 0.989 + }, + { + "start": 17341.76, + "end": 17342.46, + "probability": 0.895 + }, + { + "start": 17342.58, + "end": 17342.88, + "probability": 0.5597 + }, + { + "start": 17342.96, + "end": 17344.71, + "probability": 0.849 + }, + { + "start": 17345.26, + "end": 17350.96, + "probability": 0.9243 + }, + { + "start": 17352.9, + "end": 17356.5, + "probability": 0.9946 + }, + { + "start": 17356.5, + "end": 17361.02, + "probability": 0.9156 + }, + { + "start": 17361.78, + "end": 17365.18, + "probability": 0.9661 + }, + { + "start": 17365.18, + "end": 17370.26, + "probability": 0.998 + }, + { + "start": 17370.26, + "end": 17374.82, + "probability": 0.9949 + }, + { + "start": 17375.78, + "end": 17377.88, + "probability": 0.9911 + }, + { + "start": 17378.08, + "end": 17380.99, + "probability": 0.814 + }, + { + "start": 17381.56, + "end": 17385.26, + "probability": 0.969 + }, + { + "start": 17385.26, + "end": 17388.74, + "probability": 0.9373 + }, + { + "start": 17388.74, + "end": 17392.22, + "probability": 0.998 + }, + { + "start": 17393.22, + "end": 17395.34, + "probability": 0.9985 + }, + { + "start": 17396.4, + "end": 17399.66, + "probability": 0.9942 + }, + { + "start": 17399.66, + "end": 17403.14, + "probability": 0.9959 + }, + { + "start": 17404.32, + "end": 17406.26, + "probability": 0.9899 + }, + { + "start": 17408.58, + "end": 17411.46, + "probability": 0.8657 + }, + { + "start": 17412.22, + "end": 17416.46, + "probability": 0.9917 + }, + { + "start": 17417.18, + "end": 17418.18, + "probability": 0.8411 + }, + { + "start": 17418.64, + "end": 17419.38, + "probability": 0.3777 + }, + { + "start": 17419.42, + "end": 17420.58, + "probability": 0.714 + }, + { + "start": 17421.34, + "end": 17423.72, + "probability": 0.8036 + }, + { + "start": 17424.36, + "end": 17425.98, + "probability": 0.9419 + }, + { + "start": 17426.5, + "end": 17430.34, + "probability": 0.9425 + }, + { + "start": 17431.16, + "end": 17433.1, + "probability": 0.6138 + }, + { + "start": 17433.22, + "end": 17435.42, + "probability": 0.9921 + }, + { + "start": 17436.35, + "end": 17440.23, + "probability": 0.8723 + }, + { + "start": 17441.18, + "end": 17442.78, + "probability": 0.9734 + }, + { + "start": 17442.9, + "end": 17444.7, + "probability": 0.9765 + }, + { + "start": 17445.44, + "end": 17453.02, + "probability": 0.9601 + }, + { + "start": 17453.82, + "end": 17455.22, + "probability": 0.9912 + }, + { + "start": 17455.36, + "end": 17458.42, + "probability": 0.9441 + }, + { + "start": 17459.02, + "end": 17463.04, + "probability": 0.9249 + }, + { + "start": 17463.62, + "end": 17466.7, + "probability": 0.9946 + }, + { + "start": 17467.28, + "end": 17470.2, + "probability": 0.9886 + }, + { + "start": 17473.02, + "end": 17474.94, + "probability": 0.9684 + }, + { + "start": 17475.04, + "end": 17475.12, + "probability": 0.184 + }, + { + "start": 17475.12, + "end": 17476.68, + "probability": 0.6142 + }, + { + "start": 17477.74, + "end": 17481.74, + "probability": 0.9953 + }, + { + "start": 17482.52, + "end": 17485.82, + "probability": 0.9692 + }, + { + "start": 17486.66, + "end": 17488.3, + "probability": 0.8711 + }, + { + "start": 17488.72, + "end": 17489.54, + "probability": 0.6423 + }, + { + "start": 17489.62, + "end": 17493.84, + "probability": 0.8303 + }, + { + "start": 17493.92, + "end": 17495.54, + "probability": 0.7873 + }, + { + "start": 17496.94, + "end": 17499.98, + "probability": 0.9819 + }, + { + "start": 17500.64, + "end": 17504.58, + "probability": 0.972 + }, + { + "start": 17504.6, + "end": 17506.0, + "probability": 0.9983 + }, + { + "start": 17506.88, + "end": 17510.0, + "probability": 0.9722 + }, + { + "start": 17510.0, + "end": 17512.0, + "probability": 0.8732 + }, + { + "start": 17512.1, + "end": 17513.44, + "probability": 0.9922 + }, + { + "start": 17513.56, + "end": 17514.06, + "probability": 0.9507 + }, + { + "start": 17514.62, + "end": 17516.28, + "probability": 0.9622 + }, + { + "start": 17516.32, + "end": 17518.94, + "probability": 0.9928 + }, + { + "start": 17519.54, + "end": 17520.72, + "probability": 0.8439 + }, + { + "start": 17520.86, + "end": 17524.2, + "probability": 0.9905 + }, + { + "start": 17524.2, + "end": 17529.18, + "probability": 0.9957 + }, + { + "start": 17529.4, + "end": 17531.36, + "probability": 0.7408 + }, + { + "start": 17531.48, + "end": 17532.42, + "probability": 0.7897 + }, + { + "start": 17532.48, + "end": 17533.96, + "probability": 0.7861 + }, + { + "start": 17534.74, + "end": 17536.24, + "probability": 0.991 + }, + { + "start": 17536.88, + "end": 17537.49, + "probability": 0.908 + }, + { + "start": 17538.7, + "end": 17540.34, + "probability": 0.9389 + }, + { + "start": 17540.4, + "end": 17545.24, + "probability": 0.8485 + }, + { + "start": 17545.72, + "end": 17547.88, + "probability": 0.7161 + }, + { + "start": 17548.5, + "end": 17549.26, + "probability": 0.1564 + }, + { + "start": 17550.14, + "end": 17552.48, + "probability": 0.4106 + }, + { + "start": 17552.62, + "end": 17553.4, + "probability": 0.7389 + }, + { + "start": 17553.72, + "end": 17554.1, + "probability": 0.4954 + }, + { + "start": 17554.8, + "end": 17555.38, + "probability": 0.2643 + }, + { + "start": 17555.38, + "end": 17555.38, + "probability": 0.0342 + }, + { + "start": 17555.64, + "end": 17556.9, + "probability": 0.1164 + }, + { + "start": 17556.9, + "end": 17557.3, + "probability": 0.452 + }, + { + "start": 17557.48, + "end": 17558.12, + "probability": 0.3524 + }, + { + "start": 17558.3, + "end": 17560.76, + "probability": 0.4747 + }, + { + "start": 17560.82, + "end": 17562.5, + "probability": 0.7562 + }, + { + "start": 17562.5, + "end": 17562.98, + "probability": 0.2046 + }, + { + "start": 17563.56, + "end": 17564.6, + "probability": 0.215 + }, + { + "start": 17566.04, + "end": 17566.8, + "probability": 0.0615 + }, + { + "start": 17567.25, + "end": 17567.9, + "probability": 0.0311 + }, + { + "start": 17568.04, + "end": 17569.53, + "probability": 0.6596 + }, + { + "start": 17570.02, + "end": 17572.16, + "probability": 0.4791 + }, + { + "start": 17572.24, + "end": 17572.76, + "probability": 0.4539 + }, + { + "start": 17572.92, + "end": 17575.38, + "probability": 0.8984 + }, + { + "start": 17575.84, + "end": 17577.2, + "probability": 0.9971 + }, + { + "start": 17578.12, + "end": 17581.0, + "probability": 0.9919 + }, + { + "start": 17581.32, + "end": 17581.74, + "probability": 0.0101 + }, + { + "start": 17582.4, + "end": 17584.04, + "probability": 0.5644 + }, + { + "start": 17584.36, + "end": 17585.92, + "probability": 0.7987 + }, + { + "start": 17586.8, + "end": 17587.32, + "probability": 0.0693 + }, + { + "start": 17587.56, + "end": 17588.86, + "probability": 0.1718 + }, + { + "start": 17589.65, + "end": 17590.72, + "probability": 0.2453 + }, + { + "start": 17590.98, + "end": 17592.28, + "probability": 0.6919 + }, + { + "start": 17592.66, + "end": 17593.7, + "probability": 0.7181 + }, + { + "start": 17593.7, + "end": 17595.76, + "probability": 0.7554 + }, + { + "start": 17595.84, + "end": 17596.5, + "probability": 0.7909 + }, + { + "start": 17596.64, + "end": 17600.86, + "probability": 0.9911 + }, + { + "start": 17600.94, + "end": 17601.84, + "probability": 0.9193 + }, + { + "start": 17602.72, + "end": 17604.78, + "probability": 0.9631 + }, + { + "start": 17607.54, + "end": 17608.82, + "probability": 0.9521 + }, + { + "start": 17608.9, + "end": 17610.94, + "probability": 0.9942 + }, + { + "start": 17611.52, + "end": 17612.81, + "probability": 0.8377 + }, + { + "start": 17613.74, + "end": 17615.04, + "probability": 0.9673 + }, + { + "start": 17615.56, + "end": 17616.8, + "probability": 0.8248 + }, + { + "start": 17616.94, + "end": 17618.04, + "probability": 0.9703 + }, + { + "start": 17618.08, + "end": 17620.08, + "probability": 0.961 + }, + { + "start": 17620.86, + "end": 17623.34, + "probability": 0.9598 + }, + { + "start": 17624.16, + "end": 17624.7, + "probability": 0.5947 + }, + { + "start": 17624.78, + "end": 17628.88, + "probability": 0.8954 + }, + { + "start": 17629.14, + "end": 17633.28, + "probability": 0.9507 + }, + { + "start": 17633.36, + "end": 17638.3, + "probability": 0.9673 + }, + { + "start": 17638.42, + "end": 17640.62, + "probability": 0.7466 + }, + { + "start": 17641.2, + "end": 17644.96, + "probability": 0.515 + }, + { + "start": 17645.42, + "end": 17646.8, + "probability": 0.7849 + }, + { + "start": 17646.82, + "end": 17651.13, + "probability": 0.9489 + }, + { + "start": 17652.14, + "end": 17653.92, + "probability": 0.6271 + }, + { + "start": 17654.66, + "end": 17659.66, + "probability": 0.9507 + }, + { + "start": 17660.54, + "end": 17664.02, + "probability": 0.9328 + }, + { + "start": 17664.28, + "end": 17664.46, + "probability": 0.449 + }, + { + "start": 17664.74, + "end": 17666.68, + "probability": 0.5867 + }, + { + "start": 17667.44, + "end": 17667.84, + "probability": 0.8474 + }, + { + "start": 17668.32, + "end": 17669.16, + "probability": 0.8177 + }, + { + "start": 17669.42, + "end": 17670.0, + "probability": 0.7037 + }, + { + "start": 17670.3, + "end": 17672.54, + "probability": 0.9934 + }, + { + "start": 17672.54, + "end": 17675.9, + "probability": 0.9561 + }, + { + "start": 17677.36, + "end": 17677.36, + "probability": 0.0144 + }, + { + "start": 17677.36, + "end": 17679.02, + "probability": 0.8458 + }, + { + "start": 17679.62, + "end": 17680.98, + "probability": 0.7686 + }, + { + "start": 17681.0, + "end": 17681.56, + "probability": 0.7086 + }, + { + "start": 17681.66, + "end": 17682.08, + "probability": 0.1992 + }, + { + "start": 17682.24, + "end": 17686.76, + "probability": 0.6657 + }, + { + "start": 17687.62, + "end": 17689.72, + "probability": 0.6401 + }, + { + "start": 17689.82, + "end": 17692.4, + "probability": 0.6491 + }, + { + "start": 17692.4, + "end": 17695.1, + "probability": 0.7309 + }, + { + "start": 17696.0, + "end": 17698.42, + "probability": 0.9961 + }, + { + "start": 17698.96, + "end": 17701.44, + "probability": 0.974 + }, + { + "start": 17701.58, + "end": 17704.04, + "probability": 0.7973 + }, + { + "start": 17704.06, + "end": 17707.42, + "probability": 0.9069 + }, + { + "start": 17707.42, + "end": 17712.3, + "probability": 0.8002 + }, + { + "start": 17713.02, + "end": 17717.62, + "probability": 0.9341 + }, + { + "start": 17718.3, + "end": 17722.04, + "probability": 0.9638 + }, + { + "start": 17722.58, + "end": 17723.12, + "probability": 0.5564 + }, + { + "start": 17723.2, + "end": 17725.34, + "probability": 0.8719 + }, + { + "start": 17725.34, + "end": 17729.06, + "probability": 0.9896 + }, + { + "start": 17729.58, + "end": 17732.12, + "probability": 0.806 + }, + { + "start": 17732.12, + "end": 17734.82, + "probability": 0.9834 + }, + { + "start": 17735.52, + "end": 17735.88, + "probability": 0.4974 + }, + { + "start": 17735.94, + "end": 17739.42, + "probability": 0.9126 + }, + { + "start": 17739.42, + "end": 17742.34, + "probability": 0.9167 + }, + { + "start": 17743.0, + "end": 17745.04, + "probability": 0.9873 + }, + { + "start": 17745.04, + "end": 17747.58, + "probability": 0.9884 + }, + { + "start": 17748.16, + "end": 17749.72, + "probability": 0.7479 + }, + { + "start": 17750.3, + "end": 17755.12, + "probability": 0.9912 + }, + { + "start": 17755.66, + "end": 17757.78, + "probability": 0.5048 + }, + { + "start": 17757.84, + "end": 17758.98, + "probability": 0.7768 + }, + { + "start": 17759.5, + "end": 17762.02, + "probability": 0.8412 + }, + { + "start": 17762.02, + "end": 17765.22, + "probability": 0.7831 + }, + { + "start": 17765.26, + "end": 17766.94, + "probability": 0.8698 + }, + { + "start": 17767.74, + "end": 17769.84, + "probability": 0.7526 + }, + { + "start": 17770.5, + "end": 17772.38, + "probability": 0.991 + }, + { + "start": 17774.5, + "end": 17775.42, + "probability": 0.0737 + }, + { + "start": 17775.64, + "end": 17775.84, + "probability": 0.2962 + }, + { + "start": 17776.62, + "end": 17778.88, + "probability": 0.4091 + }, + { + "start": 17779.1, + "end": 17779.1, + "probability": 0.8896 + }, + { + "start": 17779.24, + "end": 17780.36, + "probability": 0.8808 + }, + { + "start": 17780.42, + "end": 17780.42, + "probability": 0.0363 + }, + { + "start": 17780.42, + "end": 17780.42, + "probability": 0.7891 + }, + { + "start": 17780.6, + "end": 17783.18, + "probability": 0.9946 + }, + { + "start": 17783.38, + "end": 17785.6, + "probability": 0.9106 + }, + { + "start": 17785.6, + "end": 17788.62, + "probability": 0.9712 + }, + { + "start": 17789.08, + "end": 17792.5, + "probability": 0.7407 + }, + { + "start": 17792.92, + "end": 17793.64, + "probability": 0.2898 + }, + { + "start": 17793.68, + "end": 17797.78, + "probability": 0.6993 + }, + { + "start": 17797.92, + "end": 17800.56, + "probability": 0.8939 + }, + { + "start": 17800.9, + "end": 17804.12, + "probability": 0.9644 + }, + { + "start": 17804.44, + "end": 17805.32, + "probability": 0.9437 + }, + { + "start": 17805.34, + "end": 17811.46, + "probability": 0.913 + }, + { + "start": 17813.24, + "end": 17816.32, + "probability": 0.7715 + }, + { + "start": 17816.38, + "end": 17819.86, + "probability": 0.9378 + }, + { + "start": 17820.24, + "end": 17823.64, + "probability": 0.9494 + }, + { + "start": 17823.64, + "end": 17827.46, + "probability": 0.8342 + }, + { + "start": 17827.66, + "end": 17831.98, + "probability": 0.6505 + }, + { + "start": 17832.1, + "end": 17834.92, + "probability": 0.9764 + }, + { + "start": 17835.24, + "end": 17836.88, + "probability": 0.6707 + }, + { + "start": 17836.98, + "end": 17841.88, + "probability": 0.7658 + }, + { + "start": 17842.0, + "end": 17842.9, + "probability": 0.696 + }, + { + "start": 17842.96, + "end": 17847.23, + "probability": 0.9875 + }, + { + "start": 17848.04, + "end": 17850.84, + "probability": 0.6703 + }, + { + "start": 17850.96, + "end": 17853.02, + "probability": 0.7192 + }, + { + "start": 17854.0, + "end": 17855.98, + "probability": 0.9548 + }, + { + "start": 17856.4, + "end": 17859.66, + "probability": 0.9617 + }, + { + "start": 17859.66, + "end": 17863.24, + "probability": 0.9737 + }, + { + "start": 17863.94, + "end": 17866.32, + "probability": 0.964 + }, + { + "start": 17866.32, + "end": 17867.26, + "probability": 0.6178 + }, + { + "start": 17867.8, + "end": 17871.66, + "probability": 0.837 + }, + { + "start": 17871.68, + "end": 17875.2, + "probability": 0.8987 + }, + { + "start": 17875.72, + "end": 17878.08, + "probability": 0.9981 + }, + { + "start": 17878.12, + "end": 17881.82, + "probability": 0.9829 + }, + { + "start": 17882.7, + "end": 17885.68, + "probability": 0.731 + }, + { + "start": 17887.69, + "end": 17891.18, + "probability": 0.9335 + }, + { + "start": 17891.32, + "end": 17894.88, + "probability": 0.855 + }, + { + "start": 17894.96, + "end": 17897.14, + "probability": 0.9243 + }, + { + "start": 17897.92, + "end": 17904.32, + "probability": 0.9281 + }, + { + "start": 17904.32, + "end": 17906.78, + "probability": 0.9939 + }, + { + "start": 17906.9, + "end": 17909.0, + "probability": 0.9929 + }, + { + "start": 17909.33, + "end": 17913.58, + "probability": 0.9759 + }, + { + "start": 17913.72, + "end": 17914.22, + "probability": 0.8439 + }, + { + "start": 17914.32, + "end": 17918.62, + "probability": 0.9629 + }, + { + "start": 17918.62, + "end": 17921.86, + "probability": 0.9972 + }, + { + "start": 17921.9, + "end": 17922.74, + "probability": 0.8085 + }, + { + "start": 17922.86, + "end": 17924.12, + "probability": 0.5275 + }, + { + "start": 17924.92, + "end": 17925.56, + "probability": 0.66 + }, + { + "start": 17925.74, + "end": 17927.1, + "probability": 0.8798 + }, + { + "start": 17927.18, + "end": 17929.64, + "probability": 0.9964 + }, + { + "start": 17930.14, + "end": 17931.42, + "probability": 0.8426 + }, + { + "start": 17931.52, + "end": 17932.58, + "probability": 0.9735 + }, + { + "start": 17932.68, + "end": 17933.72, + "probability": 0.8525 + }, + { + "start": 17934.48, + "end": 17936.2, + "probability": 0.9644 + }, + { + "start": 17936.56, + "end": 17938.12, + "probability": 0.8574 + }, + { + "start": 17938.64, + "end": 17941.1, + "probability": 0.9534 + }, + { + "start": 17941.92, + "end": 17943.22, + "probability": 0.9594 + }, + { + "start": 17943.28, + "end": 17943.93, + "probability": 0.896 + }, + { + "start": 17944.4, + "end": 17944.92, + "probability": 0.6341 + }, + { + "start": 17944.96, + "end": 17945.54, + "probability": 0.6142 + }, + { + "start": 17946.66, + "end": 17948.4, + "probability": 0.7889 + }, + { + "start": 17948.48, + "end": 17951.04, + "probability": 0.966 + }, + { + "start": 17951.5, + "end": 17953.4, + "probability": 0.9536 + }, + { + "start": 17953.62, + "end": 17954.6, + "probability": 0.6427 + }, + { + "start": 17955.46, + "end": 17957.04, + "probability": 0.8621 + }, + { + "start": 17957.58, + "end": 17957.96, + "probability": 0.4469 + }, + { + "start": 17959.16, + "end": 17962.82, + "probability": 0.9447 + }, + { + "start": 17964.12, + "end": 17966.34, + "probability": 0.9727 + }, + { + "start": 17966.9, + "end": 17967.68, + "probability": 0.8838 + }, + { + "start": 17967.74, + "end": 17968.08, + "probability": 0.6714 + }, + { + "start": 17968.16, + "end": 17970.36, + "probability": 0.9 + }, + { + "start": 17971.6, + "end": 17973.94, + "probability": 0.883 + }, + { + "start": 17974.82, + "end": 17977.92, + "probability": 0.928 + }, + { + "start": 17978.46, + "end": 17981.4, + "probability": 0.9849 + }, + { + "start": 17984.36, + "end": 17985.46, + "probability": 0.427 + }, + { + "start": 17990.07, + "end": 17992.28, + "probability": 0.8386 + }, + { + "start": 17992.46, + "end": 17993.24, + "probability": 0.9117 + }, + { + "start": 17993.48, + "end": 17999.76, + "probability": 0.9888 + }, + { + "start": 18000.4, + "end": 18003.56, + "probability": 0.9822 + }, + { + "start": 18004.1, + "end": 18005.56, + "probability": 0.9714 + }, + { + "start": 18005.8, + "end": 18007.76, + "probability": 0.9858 + }, + { + "start": 18007.84, + "end": 18008.62, + "probability": 0.457 + }, + { + "start": 18008.78, + "end": 18009.78, + "probability": 0.5936 + }, + { + "start": 18009.94, + "end": 18009.94, + "probability": 0.142 + }, + { + "start": 18010.18, + "end": 18011.56, + "probability": 0.7065 + }, + { + "start": 18011.7, + "end": 18012.5, + "probability": 0.835 + }, + { + "start": 18012.6, + "end": 18013.16, + "probability": 0.7806 + }, + { + "start": 18013.34, + "end": 18014.22, + "probability": 0.886 + }, + { + "start": 18014.28, + "end": 18014.98, + "probability": 0.6681 + }, + { + "start": 18015.02, + "end": 18016.38, + "probability": 0.9399 + }, + { + "start": 18016.44, + "end": 18017.78, + "probability": 0.4761 + }, + { + "start": 18017.84, + "end": 18018.54, + "probability": 0.9199 + }, + { + "start": 18020.2, + "end": 18023.16, + "probability": 0.8269 + }, + { + "start": 18023.3, + "end": 18024.76, + "probability": 0.99 + }, + { + "start": 18025.0, + "end": 18025.36, + "probability": 0.3772 + }, + { + "start": 18025.36, + "end": 18027.12, + "probability": 0.5814 + }, + { + "start": 18027.32, + "end": 18030.06, + "probability": 0.7228 + }, + { + "start": 18030.16, + "end": 18030.8, + "probability": 0.3583 + }, + { + "start": 18031.18, + "end": 18031.5, + "probability": 0.3659 + }, + { + "start": 18032.64, + "end": 18033.66, + "probability": 0.8982 + }, + { + "start": 18033.96, + "end": 18037.5, + "probability": 0.2369 + }, + { + "start": 18037.62, + "end": 18038.74, + "probability": 0.6528 + }, + { + "start": 18039.08, + "end": 18040.01, + "probability": 0.7441 + }, + { + "start": 18040.96, + "end": 18043.5, + "probability": 0.9937 + }, + { + "start": 18044.5, + "end": 18045.6, + "probability": 0.924 + }, + { + "start": 18045.64, + "end": 18048.26, + "probability": 0.9266 + }, + { + "start": 18048.26, + "end": 18050.58, + "probability": 0.9709 + }, + { + "start": 18050.66, + "end": 18051.06, + "probability": 0.5848 + }, + { + "start": 18051.12, + "end": 18052.02, + "probability": 0.7917 + }, + { + "start": 18052.4, + "end": 18054.46, + "probability": 0.8687 + }, + { + "start": 18054.46, + "end": 18057.36, + "probability": 0.9536 + }, + { + "start": 18057.56, + "end": 18063.22, + "probability": 0.7887 + }, + { + "start": 18063.5, + "end": 18063.86, + "probability": 0.5642 + }, + { + "start": 18063.9, + "end": 18067.82, + "probability": 0.9756 + }, + { + "start": 18068.34, + "end": 18070.64, + "probability": 0.9873 + }, + { + "start": 18070.88, + "end": 18071.44, + "probability": 0.3639 + }, + { + "start": 18071.44, + "end": 18072.38, + "probability": 0.4788 + }, + { + "start": 18072.48, + "end": 18073.34, + "probability": 0.7928 + }, + { + "start": 18073.54, + "end": 18073.82, + "probability": 0.2522 + }, + { + "start": 18073.82, + "end": 18074.16, + "probability": 0.3723 + }, + { + "start": 18074.28, + "end": 18074.86, + "probability": 0.6187 + }, + { + "start": 18074.96, + "end": 18075.26, + "probability": 0.5386 + }, + { + "start": 18075.4, + "end": 18077.84, + "probability": 0.8491 + }, + { + "start": 18081.74, + "end": 18083.12, + "probability": 0.7475 + }, + { + "start": 18083.14, + "end": 18085.18, + "probability": 0.9961 + }, + { + "start": 18085.26, + "end": 18085.76, + "probability": 0.8105 + }, + { + "start": 18085.86, + "end": 18089.8, + "probability": 0.8503 + }, + { + "start": 18090.26, + "end": 18093.46, + "probability": 0.8602 + }, + { + "start": 18093.64, + "end": 18093.9, + "probability": 0.0892 + }, + { + "start": 18093.92, + "end": 18095.4, + "probability": 0.7268 + }, + { + "start": 18096.06, + "end": 18097.86, + "probability": 0.813 + }, + { + "start": 18098.48, + "end": 18101.32, + "probability": 0.9726 + }, + { + "start": 18101.32, + "end": 18104.62, + "probability": 0.9956 + }, + { + "start": 18104.66, + "end": 18104.82, + "probability": 0.5901 + }, + { + "start": 18104.98, + "end": 18106.7, + "probability": 0.8292 + }, + { + "start": 18107.02, + "end": 18108.58, + "probability": 0.7793 + }, + { + "start": 18108.62, + "end": 18113.32, + "probability": 0.9398 + }, + { + "start": 18113.4, + "end": 18115.38, + "probability": 0.9701 + }, + { + "start": 18115.5, + "end": 18117.3, + "probability": 0.9597 + }, + { + "start": 18117.94, + "end": 18118.8, + "probability": 0.8247 + }, + { + "start": 18118.98, + "end": 18121.48, + "probability": 0.9766 + }, + { + "start": 18122.96, + "end": 18128.0, + "probability": 0.9092 + }, + { + "start": 18128.04, + "end": 18130.9, + "probability": 0.9985 + }, + { + "start": 18131.16, + "end": 18134.16, + "probability": 0.4457 + }, + { + "start": 18135.51, + "end": 18137.98, + "probability": 0.9961 + }, + { + "start": 18138.06, + "end": 18140.26, + "probability": 0.6237 + }, + { + "start": 18140.36, + "end": 18141.22, + "probability": 0.9643 + }, + { + "start": 18141.36, + "end": 18142.94, + "probability": 0.6465 + }, + { + "start": 18143.0, + "end": 18144.04, + "probability": 0.9397 + }, + { + "start": 18144.76, + "end": 18147.8, + "probability": 0.5272 + }, + { + "start": 18148.48, + "end": 18149.56, + "probability": 0.7707 + }, + { + "start": 18149.68, + "end": 18151.18, + "probability": 0.6863 + }, + { + "start": 18151.28, + "end": 18151.78, + "probability": 0.6337 + }, + { + "start": 18151.88, + "end": 18153.56, + "probability": 0.9878 + }, + { + "start": 18154.18, + "end": 18156.02, + "probability": 0.9893 + }, + { + "start": 18156.02, + "end": 18157.86, + "probability": 0.9877 + }, + { + "start": 18158.02, + "end": 18163.46, + "probability": 0.9385 + }, + { + "start": 18165.88, + "end": 18166.66, + "probability": 0.0908 + }, + { + "start": 18166.82, + "end": 18166.82, + "probability": 0.2003 + }, + { + "start": 18166.82, + "end": 18167.82, + "probability": 0.356 + }, + { + "start": 18167.92, + "end": 18169.08, + "probability": 0.3834 + }, + { + "start": 18169.08, + "end": 18169.8, + "probability": 0.7621 + }, + { + "start": 18169.92, + "end": 18171.2, + "probability": 0.6992 + }, + { + "start": 18171.2, + "end": 18171.9, + "probability": 0.7922 + }, + { + "start": 18172.24, + "end": 18173.96, + "probability": 0.9316 + }, + { + "start": 18174.04, + "end": 18176.28, + "probability": 0.6696 + }, + { + "start": 18176.36, + "end": 18179.85, + "probability": 0.8284 + }, + { + "start": 18180.92, + "end": 18183.46, + "probability": 0.9111 + }, + { + "start": 18184.46, + "end": 18185.34, + "probability": 0.4684 + }, + { + "start": 18185.48, + "end": 18186.48, + "probability": 0.3104 + }, + { + "start": 18186.78, + "end": 18187.28, + "probability": 0.1022 + }, + { + "start": 18187.38, + "end": 18187.58, + "probability": 0.2979 + }, + { + "start": 18188.16, + "end": 18190.08, + "probability": 0.3194 + }, + { + "start": 18190.28, + "end": 18192.02, + "probability": 0.4589 + }, + { + "start": 18192.64, + "end": 18195.0, + "probability": 0.3746 + }, + { + "start": 18195.0, + "end": 18199.52, + "probability": 0.8325 + }, + { + "start": 18199.6, + "end": 18200.92, + "probability": 0.5767 + }, + { + "start": 18201.34, + "end": 18202.24, + "probability": 0.9053 + }, + { + "start": 18202.28, + "end": 18203.86, + "probability": 0.9511 + }, + { + "start": 18203.86, + "end": 18207.36, + "probability": 0.9102 + }, + { + "start": 18207.92, + "end": 18208.58, + "probability": 0.7504 + }, + { + "start": 18209.6, + "end": 18210.64, + "probability": 0.3469 + }, + { + "start": 18210.86, + "end": 18212.96, + "probability": 0.9877 + }, + { + "start": 18213.38, + "end": 18216.44, + "probability": 0.8312 + }, + { + "start": 18216.56, + "end": 18217.52, + "probability": 0.529 + }, + { + "start": 18217.7, + "end": 18219.56, + "probability": 0.5116 + }, + { + "start": 18219.7, + "end": 18223.64, + "probability": 0.9048 + }, + { + "start": 18224.18, + "end": 18227.5, + "probability": 0.9269 + }, + { + "start": 18227.62, + "end": 18231.68, + "probability": 0.7309 + }, + { + "start": 18231.86, + "end": 18233.34, + "probability": 0.5161 + }, + { + "start": 18233.34, + "end": 18235.87, + "probability": 0.9604 + }, + { + "start": 18236.44, + "end": 18240.4, + "probability": 0.979 + }, + { + "start": 18241.02, + "end": 18241.84, + "probability": 0.7476 + }, + { + "start": 18242.63, + "end": 18249.28, + "probability": 0.9963 + }, + { + "start": 18250.48, + "end": 18254.84, + "probability": 0.8403 + }, + { + "start": 18254.96, + "end": 18257.68, + "probability": 0.9839 + }, + { + "start": 18257.76, + "end": 18258.32, + "probability": 0.4277 + }, + { + "start": 18259.12, + "end": 18262.22, + "probability": 0.9229 + }, + { + "start": 18262.8, + "end": 18265.14, + "probability": 0.9497 + }, + { + "start": 18265.6, + "end": 18269.02, + "probability": 0.9098 + }, + { + "start": 18269.02, + "end": 18272.24, + "probability": 0.9961 + }, + { + "start": 18273.62, + "end": 18274.72, + "probability": 0.7571 + }, + { + "start": 18275.56, + "end": 18277.62, + "probability": 0.8147 + }, + { + "start": 18278.6, + "end": 18280.26, + "probability": 0.8942 + }, + { + "start": 18280.46, + "end": 18280.66, + "probability": 0.791 + }, + { + "start": 18280.72, + "end": 18283.2, + "probability": 0.9692 + }, + { + "start": 18283.3, + "end": 18284.36, + "probability": 0.9541 + }, + { + "start": 18284.52, + "end": 18287.54, + "probability": 0.9521 + }, + { + "start": 18287.76, + "end": 18289.86, + "probability": 0.5418 + }, + { + "start": 18290.6, + "end": 18296.32, + "probability": 0.9179 + }, + { + "start": 18296.32, + "end": 18298.84, + "probability": 0.9396 + }, + { + "start": 18299.86, + "end": 18301.78, + "probability": 0.9312 + }, + { + "start": 18301.78, + "end": 18303.96, + "probability": 0.8306 + }, + { + "start": 18305.02, + "end": 18306.98, + "probability": 0.8819 + }, + { + "start": 18307.46, + "end": 18307.78, + "probability": 0.4488 + }, + { + "start": 18307.96, + "end": 18308.8, + "probability": 0.7634 + }, + { + "start": 18308.84, + "end": 18309.96, + "probability": 0.753 + }, + { + "start": 18311.16, + "end": 18312.24, + "probability": 0.7171 + }, + { + "start": 18312.8, + "end": 18314.68, + "probability": 0.955 + }, + { + "start": 18314.78, + "end": 18314.98, + "probability": 0.8836 + }, + { + "start": 18315.02, + "end": 18317.3, + "probability": 0.5617 + }, + { + "start": 18317.64, + "end": 18318.22, + "probability": 0.6307 + }, + { + "start": 18318.5, + "end": 18319.82, + "probability": 0.6826 + }, + { + "start": 18320.28, + "end": 18322.26, + "probability": 0.4979 + }, + { + "start": 18322.48, + "end": 18324.9, + "probability": 0.7563 + }, + { + "start": 18325.52, + "end": 18325.98, + "probability": 0.3868 + }, + { + "start": 18326.1, + "end": 18327.76, + "probability": 0.8916 + }, + { + "start": 18328.26, + "end": 18329.82, + "probability": 0.9841 + }, + { + "start": 18331.66, + "end": 18334.96, + "probability": 0.888 + }, + { + "start": 18334.96, + "end": 18342.56, + "probability": 0.9947 + }, + { + "start": 18343.12, + "end": 18344.94, + "probability": 0.9465 + }, + { + "start": 18345.76, + "end": 18350.04, + "probability": 0.9956 + }, + { + "start": 18350.16, + "end": 18351.6, + "probability": 0.8263 + }, + { + "start": 18351.74, + "end": 18352.26, + "probability": 0.8038 + }, + { + "start": 18352.68, + "end": 18356.8, + "probability": 0.8708 + }, + { + "start": 18357.46, + "end": 18358.24, + "probability": 0.9148 + }, + { + "start": 18358.34, + "end": 18360.94, + "probability": 0.8555 + }, + { + "start": 18361.24, + "end": 18363.68, + "probability": 0.8893 + }, + { + "start": 18367.72, + "end": 18369.38, + "probability": 0.125 + }, + { + "start": 18371.31, + "end": 18373.2, + "probability": 0.5355 + }, + { + "start": 18374.1, + "end": 18376.18, + "probability": 0.4961 + }, + { + "start": 18376.68, + "end": 18378.64, + "probability": 0.9214 + }, + { + "start": 18378.72, + "end": 18380.6, + "probability": 0.8923 + }, + { + "start": 18381.16, + "end": 18385.06, + "probability": 0.9931 + }, + { + "start": 18385.06, + "end": 18387.58, + "probability": 0.997 + }, + { + "start": 18387.76, + "end": 18391.36, + "probability": 0.9506 + }, + { + "start": 18391.36, + "end": 18397.88, + "probability": 0.7738 + }, + { + "start": 18398.56, + "end": 18403.46, + "probability": 0.9784 + }, + { + "start": 18403.92, + "end": 18406.52, + "probability": 0.9938 + }, + { + "start": 18406.53, + "end": 18410.72, + "probability": 0.8572 + }, + { + "start": 18413.9, + "end": 18417.82, + "probability": 0.8242 + }, + { + "start": 18418.58, + "end": 18420.16, + "probability": 0.8167 + }, + { + "start": 18420.28, + "end": 18422.54, + "probability": 0.8299 + }, + { + "start": 18423.02, + "end": 18427.24, + "probability": 0.956 + }, + { + "start": 18427.7, + "end": 18430.32, + "probability": 0.9967 + }, + { + "start": 18430.32, + "end": 18433.42, + "probability": 0.6914 + }, + { + "start": 18433.54, + "end": 18437.5, + "probability": 0.9933 + }, + { + "start": 18437.74, + "end": 18442.78, + "probability": 0.8713 + }, + { + "start": 18443.2, + "end": 18443.8, + "probability": 0.2295 + }, + { + "start": 18444.74, + "end": 18445.56, + "probability": 0.9843 + }, + { + "start": 18445.8, + "end": 18445.82, + "probability": 0.1014 + }, + { + "start": 18446.84, + "end": 18447.38, + "probability": 0.6385 + }, + { + "start": 18447.72, + "end": 18449.14, + "probability": 0.7506 + }, + { + "start": 18449.25, + "end": 18449.88, + "probability": 0.9854 + }, + { + "start": 18449.94, + "end": 18451.24, + "probability": 0.9905 + }, + { + "start": 18451.8, + "end": 18454.68, + "probability": 0.9883 + }, + { + "start": 18454.68, + "end": 18457.22, + "probability": 0.9163 + }, + { + "start": 18458.26, + "end": 18459.02, + "probability": 0.6068 + }, + { + "start": 18459.22, + "end": 18461.04, + "probability": 0.5764 + }, + { + "start": 18461.14, + "end": 18462.08, + "probability": 0.2977 + }, + { + "start": 18462.24, + "end": 18462.73, + "probability": 0.2815 + }, + { + "start": 18463.04, + "end": 18463.98, + "probability": 0.2456 + }, + { + "start": 18464.12, + "end": 18464.38, + "probability": 0.5195 + }, + { + "start": 18464.98, + "end": 18466.04, + "probability": 0.4714 + }, + { + "start": 18466.04, + "end": 18466.8, + "probability": 0.806 + }, + { + "start": 18466.92, + "end": 18467.62, + "probability": 0.8154 + }, + { + "start": 18467.74, + "end": 18468.98, + "probability": 0.8452 + }, + { + "start": 18469.24, + "end": 18472.14, + "probability": 0.9731 + }, + { + "start": 18472.78, + "end": 18476.78, + "probability": 0.9417 + }, + { + "start": 18476.88, + "end": 18479.8, + "probability": 0.974 + }, + { + "start": 18480.32, + "end": 18481.04, + "probability": 0.9835 + }, + { + "start": 18481.18, + "end": 18481.7, + "probability": 0.9237 + }, + { + "start": 18482.34, + "end": 18484.54, + "probability": 0.9941 + }, + { + "start": 18484.64, + "end": 18487.84, + "probability": 0.6823 + }, + { + "start": 18487.84, + "end": 18491.16, + "probability": 0.9408 + }, + { + "start": 18491.32, + "end": 18491.76, + "probability": 0.8541 + }, + { + "start": 18492.62, + "end": 18496.2, + "probability": 0.9952 + }, + { + "start": 18497.06, + "end": 18500.68, + "probability": 0.5394 + }, + { + "start": 18500.76, + "end": 18501.42, + "probability": 0.7712 + }, + { + "start": 18501.92, + "end": 18503.7, + "probability": 0.9307 + }, + { + "start": 18504.04, + "end": 18505.38, + "probability": 0.9675 + }, + { + "start": 18505.54, + "end": 18506.62, + "probability": 0.7738 + }, + { + "start": 18506.72, + "end": 18507.62, + "probability": 0.9551 + }, + { + "start": 18507.88, + "end": 18509.43, + "probability": 0.7478 + }, + { + "start": 18510.38, + "end": 18512.0, + "probability": 0.9839 + }, + { + "start": 18512.1, + "end": 18514.74, + "probability": 0.835 + }, + { + "start": 18514.74, + "end": 18515.44, + "probability": 0.6498 + }, + { + "start": 18516.24, + "end": 18520.8, + "probability": 0.9893 + }, + { + "start": 18520.94, + "end": 18521.86, + "probability": 0.0296 + }, + { + "start": 18522.22, + "end": 18523.72, + "probability": 0.4795 + }, + { + "start": 18523.74, + "end": 18527.46, + "probability": 0.9729 + }, + { + "start": 18527.46, + "end": 18533.34, + "probability": 0.9977 + }, + { + "start": 18535.12, + "end": 18536.24, + "probability": 0.5179 + }, + { + "start": 18536.78, + "end": 18543.86, + "probability": 0.343 + }, + { + "start": 18543.88, + "end": 18545.3, + "probability": 0.2457 + }, + { + "start": 18545.38, + "end": 18549.3, + "probability": 0.8403 + }, + { + "start": 18549.3, + "end": 18556.14, + "probability": 0.7027 + }, + { + "start": 18556.38, + "end": 18558.54, + "probability": 0.539 + }, + { + "start": 18558.68, + "end": 18559.98, + "probability": 0.8305 + }, + { + "start": 18560.48, + "end": 18562.6, + "probability": 0.8552 + }, + { + "start": 18563.98, + "end": 18567.24, + "probability": 0.8635 + }, + { + "start": 18567.3, + "end": 18569.08, + "probability": 0.6906 + }, + { + "start": 18569.26, + "end": 18573.02, + "probability": 0.991 + }, + { + "start": 18573.1, + "end": 18575.34, + "probability": 0.967 + }, + { + "start": 18576.28, + "end": 18579.2, + "probability": 0.9694 + }, + { + "start": 18579.98, + "end": 18580.84, + "probability": 0.8355 + }, + { + "start": 18581.96, + "end": 18584.86, + "probability": 0.6443 + }, + { + "start": 18584.9, + "end": 18586.3, + "probability": 0.6575 + }, + { + "start": 18586.34, + "end": 18589.12, + "probability": 0.924 + }, + { + "start": 18589.66, + "end": 18593.02, + "probability": 0.9264 + }, + { + "start": 18593.64, + "end": 18597.42, + "probability": 0.8427 + }, + { + "start": 18598.08, + "end": 18601.62, + "probability": 0.2826 + }, + { + "start": 18601.62, + "end": 18604.26, + "probability": 0.9292 + }, + { + "start": 18604.98, + "end": 18609.14, + "probability": 0.998 + }, + { + "start": 18609.24, + "end": 18610.24, + "probability": 0.9948 + }, + { + "start": 18611.12, + "end": 18612.78, + "probability": 0.9922 + }, + { + "start": 18612.84, + "end": 18615.58, + "probability": 0.9967 + }, + { + "start": 18615.68, + "end": 18617.34, + "probability": 0.992 + }, + { + "start": 18617.94, + "end": 18620.4, + "probability": 0.9901 + }, + { + "start": 18620.92, + "end": 18623.46, + "probability": 0.6781 + }, + { + "start": 18623.58, + "end": 18624.44, + "probability": 0.9124 + }, + { + "start": 18624.48, + "end": 18627.06, + "probability": 0.9653 + }, + { + "start": 18627.14, + "end": 18632.64, + "probability": 0.797 + }, + { + "start": 18633.16, + "end": 18633.5, + "probability": 0.7337 + }, + { + "start": 18634.24, + "end": 18636.51, + "probability": 0.5773 + }, + { + "start": 18636.82, + "end": 18638.76, + "probability": 0.2058 + }, + { + "start": 18639.04, + "end": 18639.7, + "probability": 0.3513 + }, + { + "start": 18639.94, + "end": 18640.48, + "probability": 0.6529 + }, + { + "start": 18640.9, + "end": 18643.49, + "probability": 0.3648 + }, + { + "start": 18643.58, + "end": 18644.82, + "probability": 0.7514 + }, + { + "start": 18644.96, + "end": 18647.24, + "probability": 0.4954 + }, + { + "start": 18647.24, + "end": 18648.7, + "probability": 0.0323 + }, + { + "start": 18648.7, + "end": 18649.24, + "probability": 0.3308 + }, + { + "start": 18652.14, + "end": 18656.06, + "probability": 0.7791 + }, + { + "start": 18656.28, + "end": 18657.08, + "probability": 0.5601 + }, + { + "start": 18657.3, + "end": 18658.86, + "probability": 0.2445 + }, + { + "start": 18658.86, + "end": 18659.52, + "probability": 0.3115 + }, + { + "start": 18659.52, + "end": 18659.76, + "probability": 0.4784 + }, + { + "start": 18659.88, + "end": 18662.99, + "probability": 0.6297 + }, + { + "start": 18663.66, + "end": 18664.05, + "probability": 0.1678 + }, + { + "start": 18664.92, + "end": 18666.36, + "probability": 0.5275 + }, + { + "start": 18667.52, + "end": 18669.08, + "probability": 0.4358 + }, + { + "start": 18669.16, + "end": 18671.58, + "probability": 0.1125 + }, + { + "start": 18671.7, + "end": 18672.0, + "probability": 0.3525 + }, + { + "start": 18672.12, + "end": 18673.04, + "probability": 0.217 + }, + { + "start": 18673.74, + "end": 18675.9, + "probability": 0.0303 + }, + { + "start": 18675.9, + "end": 18676.48, + "probability": 0.5173 + }, + { + "start": 18676.5, + "end": 18678.68, + "probability": 0.7391 + }, + { + "start": 18678.8, + "end": 18682.58, + "probability": 0.9785 + }, + { + "start": 18682.7, + "end": 18684.16, + "probability": 0.7462 + }, + { + "start": 18684.94, + "end": 18685.58, + "probability": 0.5274 + }, + { + "start": 18685.62, + "end": 18685.8, + "probability": 0.3667 + }, + { + "start": 18685.94, + "end": 18688.94, + "probability": 0.8799 + }, + { + "start": 18690.3, + "end": 18691.22, + "probability": 0.792 + }, + { + "start": 18692.02, + "end": 18695.84, + "probability": 0.8867 + }, + { + "start": 18695.84, + "end": 18698.2, + "probability": 0.9264 + }, + { + "start": 18698.68, + "end": 18699.68, + "probability": 0.4994 + }, + { + "start": 18699.68, + "end": 18700.06, + "probability": 0.447 + }, + { + "start": 18700.22, + "end": 18702.56, + "probability": 0.7212 + }, + { + "start": 18702.64, + "end": 18703.22, + "probability": 0.2515 + }, + { + "start": 18703.24, + "end": 18705.3, + "probability": 0.9212 + }, + { + "start": 18705.38, + "end": 18706.6, + "probability": 0.9015 + }, + { + "start": 18706.84, + "end": 18707.35, + "probability": 0.6284 + }, + { + "start": 18708.16, + "end": 18709.86, + "probability": 0.9268 + }, + { + "start": 18710.0, + "end": 18713.28, + "probability": 0.7942 + }, + { + "start": 18713.36, + "end": 18714.24, + "probability": 0.9852 + }, + { + "start": 18715.08, + "end": 18715.42, + "probability": 0.5578 + }, + { + "start": 18715.54, + "end": 18717.26, + "probability": 0.9184 + }, + { + "start": 18717.36, + "end": 18719.08, + "probability": 0.6317 + }, + { + "start": 18719.16, + "end": 18720.3, + "probability": 0.7929 + }, + { + "start": 18720.38, + "end": 18721.2, + "probability": 0.8309 + }, + { + "start": 18721.72, + "end": 18724.68, + "probability": 0.9725 + }, + { + "start": 18725.54, + "end": 18727.44, + "probability": 0.8255 + }, + { + "start": 18727.56, + "end": 18732.38, + "probability": 0.936 + }, + { + "start": 18732.38, + "end": 18735.5, + "probability": 0.9788 + }, + { + "start": 18735.94, + "end": 18737.78, + "probability": 0.9411 + }, + { + "start": 18738.26, + "end": 18739.7, + "probability": 0.9855 + }, + { + "start": 18740.26, + "end": 18741.08, + "probability": 0.9432 + }, + { + "start": 18741.66, + "end": 18746.26, + "probability": 0.9896 + }, + { + "start": 18746.72, + "end": 18749.72, + "probability": 0.9641 + }, + { + "start": 18750.14, + "end": 18751.18, + "probability": 0.9753 + }, + { + "start": 18753.88, + "end": 18754.62, + "probability": 0.8555 + }, + { + "start": 18755.16, + "end": 18755.5, + "probability": 0.1402 + }, + { + "start": 18756.48, + "end": 18757.38, + "probability": 0.3741 + }, + { + "start": 18757.38, + "end": 18757.68, + "probability": 0.4954 + }, + { + "start": 18757.82, + "end": 18758.64, + "probability": 0.6463 + }, + { + "start": 18758.74, + "end": 18759.0, + "probability": 0.8743 + }, + { + "start": 18759.0, + "end": 18760.14, + "probability": 0.2681 + }, + { + "start": 18760.16, + "end": 18760.98, + "probability": 0.7686 + }, + { + "start": 18761.32, + "end": 18764.52, + "probability": 0.9848 + }, + { + "start": 18764.62, + "end": 18765.04, + "probability": 0.9805 + }, + { + "start": 18765.62, + "end": 18766.9, + "probability": 0.9886 + }, + { + "start": 18767.0, + "end": 18768.36, + "probability": 0.9033 + }, + { + "start": 18768.46, + "end": 18769.6, + "probability": 0.9075 + }, + { + "start": 18770.04, + "end": 18771.88, + "probability": 0.858 + }, + { + "start": 18772.02, + "end": 18772.02, + "probability": 0.3977 + }, + { + "start": 18772.1, + "end": 18773.44, + "probability": 0.8168 + }, + { + "start": 18774.3, + "end": 18776.08, + "probability": 0.6603 + }, + { + "start": 18778.44, + "end": 18779.8, + "probability": 0.6405 + }, + { + "start": 18779.8, + "end": 18781.32, + "probability": 0.7653 + }, + { + "start": 18781.32, + "end": 18782.08, + "probability": 0.5912 + }, + { + "start": 18783.42, + "end": 18784.38, + "probability": 0.3557 + }, + { + "start": 18786.22, + "end": 18789.02, + "probability": 0.9978 + }, + { + "start": 18789.1, + "end": 18791.64, + "probability": 0.9956 + }, + { + "start": 18792.42, + "end": 18794.52, + "probability": 0.993 + }, + { + "start": 18795.5, + "end": 18796.76, + "probability": 0.9659 + }, + { + "start": 18797.92, + "end": 18800.7, + "probability": 0.9922 + }, + { + "start": 18800.96, + "end": 18804.96, + "probability": 0.9163 + }, + { + "start": 18805.98, + "end": 18807.94, + "probability": 0.9466 + }, + { + "start": 18808.04, + "end": 18812.96, + "probability": 0.9862 + }, + { + "start": 18813.08, + "end": 18813.74, + "probability": 0.7737 + }, + { + "start": 18814.86, + "end": 18816.76, + "probability": 0.9852 + }, + { + "start": 18817.36, + "end": 18817.94, + "probability": 0.9574 + }, + { + "start": 18818.58, + "end": 18819.06, + "probability": 0.9796 + }, + { + "start": 18819.3, + "end": 18820.16, + "probability": 0.9735 + }, + { + "start": 18820.24, + "end": 18821.76, + "probability": 0.9706 + }, + { + "start": 18822.64, + "end": 18825.24, + "probability": 0.936 + }, + { + "start": 18826.08, + "end": 18826.56, + "probability": 0.4859 + }, + { + "start": 18827.64, + "end": 18830.08, + "probability": 0.9792 + }, + { + "start": 18830.08, + "end": 18832.88, + "probability": 0.8876 + }, + { + "start": 18833.42, + "end": 18837.52, + "probability": 0.9935 + }, + { + "start": 18837.96, + "end": 18839.38, + "probability": 0.5416 + }, + { + "start": 18839.96, + "end": 18842.38, + "probability": 0.9827 + }, + { + "start": 18843.18, + "end": 18843.84, + "probability": 0.5706 + }, + { + "start": 18843.92, + "end": 18845.63, + "probability": 0.7939 + }, + { + "start": 18846.58, + "end": 18849.76, + "probability": 0.9568 + }, + { + "start": 18849.76, + "end": 18850.16, + "probability": 0.2467 + }, + { + "start": 18850.24, + "end": 18852.88, + "probability": 0.9917 + }, + { + "start": 18852.92, + "end": 18853.8, + "probability": 0.9422 + }, + { + "start": 18853.88, + "end": 18854.98, + "probability": 0.9806 + }, + { + "start": 18855.06, + "end": 18855.88, + "probability": 0.9894 + }, + { + "start": 18856.38, + "end": 18857.34, + "probability": 0.9409 + }, + { + "start": 18857.44, + "end": 18859.04, + "probability": 0.9961 + }, + { + "start": 18860.26, + "end": 18860.4, + "probability": 0.0536 + }, + { + "start": 18861.06, + "end": 18862.04, + "probability": 0.051 + }, + { + "start": 18862.4, + "end": 18865.61, + "probability": 0.2581 + }, + { + "start": 18866.78, + "end": 18867.74, + "probability": 0.7217 + }, + { + "start": 18867.98, + "end": 18869.2, + "probability": 0.9712 + }, + { + "start": 18869.34, + "end": 18870.74, + "probability": 0.9818 + }, + { + "start": 18870.78, + "end": 18872.88, + "probability": 0.9937 + }, + { + "start": 18873.6, + "end": 18876.72, + "probability": 0.9016 + }, + { + "start": 18877.34, + "end": 18878.68, + "probability": 0.8395 + }, + { + "start": 18878.92, + "end": 18880.4, + "probability": 0.8935 + }, + { + "start": 18880.64, + "end": 18881.02, + "probability": 0.7901 + }, + { + "start": 18881.1, + "end": 18884.02, + "probability": 0.8979 + }, + { + "start": 18884.7, + "end": 18885.36, + "probability": 0.1403 + }, + { + "start": 18885.36, + "end": 18885.7, + "probability": 0.46 + }, + { + "start": 18885.96, + "end": 18885.96, + "probability": 0.6349 + }, + { + "start": 18885.98, + "end": 18886.95, + "probability": 0.8652 + }, + { + "start": 18887.1, + "end": 18888.16, + "probability": 0.5381 + }, + { + "start": 18888.22, + "end": 18889.46, + "probability": 0.6325 + }, + { + "start": 18889.48, + "end": 18890.56, + "probability": 0.958 + }, + { + "start": 18890.66, + "end": 18891.48, + "probability": 0.4918 + }, + { + "start": 18891.62, + "end": 18891.86, + "probability": 0.4229 + }, + { + "start": 18891.86, + "end": 18892.22, + "probability": 0.4029 + }, + { + "start": 18892.74, + "end": 18894.12, + "probability": 0.624 + }, + { + "start": 18895.74, + "end": 18896.96, + "probability": 0.028 + }, + { + "start": 18896.96, + "end": 18897.64, + "probability": 0.4807 + }, + { + "start": 18897.7, + "end": 18900.79, + "probability": 0.791 + }, + { + "start": 18901.0, + "end": 18903.58, + "probability": 0.7328 + }, + { + "start": 18904.34, + "end": 18904.86, + "probability": 0.5204 + }, + { + "start": 18905.24, + "end": 18907.42, + "probability": 0.4964 + }, + { + "start": 18907.56, + "end": 18909.88, + "probability": 0.8477 + }, + { + "start": 18909.94, + "end": 18910.78, + "probability": 0.6842 + }, + { + "start": 18911.56, + "end": 18912.49, + "probability": 0.8442 + }, + { + "start": 18912.64, + "end": 18916.66, + "probability": 0.9031 + }, + { + "start": 18916.76, + "end": 18917.48, + "probability": 0.8188 + }, + { + "start": 18918.18, + "end": 18919.8, + "probability": 0.9905 + }, + { + "start": 18919.84, + "end": 18920.72, + "probability": 0.8672 + }, + { + "start": 18920.82, + "end": 18921.38, + "probability": 0.7319 + }, + { + "start": 18921.4, + "end": 18921.98, + "probability": 0.4843 + }, + { + "start": 18922.02, + "end": 18923.4, + "probability": 0.5427 + }, + { + "start": 18924.48, + "end": 18925.5, + "probability": 0.0854 + }, + { + "start": 18925.5, + "end": 18928.22, + "probability": 0.1742 + }, + { + "start": 18928.46, + "end": 18929.16, + "probability": 0.2861 + }, + { + "start": 18929.16, + "end": 18929.64, + "probability": 0.8511 + }, + { + "start": 18929.74, + "end": 18930.64, + "probability": 0.6608 + }, + { + "start": 18930.8, + "end": 18932.18, + "probability": 0.8138 + }, + { + "start": 18932.34, + "end": 18933.33, + "probability": 0.7204 + }, + { + "start": 18933.58, + "end": 18934.5, + "probability": 0.2699 + }, + { + "start": 18934.5, + "end": 18934.92, + "probability": 0.5339 + }, + { + "start": 18935.34, + "end": 18938.54, + "probability": 0.9835 + }, + { + "start": 18938.62, + "end": 18940.64, + "probability": 0.8073 + }, + { + "start": 18941.12, + "end": 18943.62, + "probability": 0.9587 + }, + { + "start": 18944.3, + "end": 18946.02, + "probability": 0.9232 + }, + { + "start": 18946.64, + "end": 18948.48, + "probability": 0.9088 + }, + { + "start": 18948.48, + "end": 18951.52, + "probability": 0.9888 + }, + { + "start": 18951.54, + "end": 18952.32, + "probability": 0.3708 + }, + { + "start": 18952.64, + "end": 18953.0, + "probability": 0.3652 + }, + { + "start": 18953.02, + "end": 18953.02, + "probability": 0.4011 + }, + { + "start": 18953.12, + "end": 18953.4, + "probability": 0.3954 + }, + { + "start": 18953.56, + "end": 18955.04, + "probability": 0.9459 + }, + { + "start": 18955.24, + "end": 18956.12, + "probability": 0.0223 + }, + { + "start": 18956.12, + "end": 18957.58, + "probability": 0.9468 + }, + { + "start": 18957.82, + "end": 18958.14, + "probability": 0.8301 + }, + { + "start": 18958.42, + "end": 18961.46, + "probability": 0.9578 + }, + { + "start": 18961.84, + "end": 18963.58, + "probability": 0.6703 + }, + { + "start": 18964.16, + "end": 18965.14, + "probability": 0.0357 + }, + { + "start": 18965.64, + "end": 18967.09, + "probability": 0.0064 + }, + { + "start": 18967.56, + "end": 18968.02, + "probability": 0.5685 + }, + { + "start": 18968.78, + "end": 18970.18, + "probability": 0.9679 + }, + { + "start": 18970.3, + "end": 18971.06, + "probability": 0.3977 + }, + { + "start": 18971.1, + "end": 18972.34, + "probability": 0.8855 + }, + { + "start": 18972.42, + "end": 18973.42, + "probability": 0.6752 + }, + { + "start": 18973.7, + "end": 18974.24, + "probability": 0.8709 + }, + { + "start": 18974.36, + "end": 18974.9, + "probability": 0.9717 + }, + { + "start": 18974.92, + "end": 18976.3, + "probability": 0.9715 + }, + { + "start": 18976.7, + "end": 18979.2, + "probability": 0.9912 + }, + { + "start": 18979.62, + "end": 18981.3, + "probability": 0.954 + }, + { + "start": 18981.38, + "end": 18982.88, + "probability": 0.9618 + }, + { + "start": 18983.22, + "end": 18984.38, + "probability": 0.8846 + }, + { + "start": 18984.92, + "end": 18986.9, + "probability": 0.9917 + }, + { + "start": 18987.78, + "end": 18989.04, + "probability": 0.8654 + }, + { + "start": 18989.1, + "end": 18991.58, + "probability": 0.9902 + }, + { + "start": 18991.68, + "end": 18992.12, + "probability": 0.7972 + }, + { + "start": 18992.22, + "end": 18993.48, + "probability": 0.9479 + }, + { + "start": 18993.84, + "end": 18998.08, + "probability": 0.9634 + }, + { + "start": 18998.2, + "end": 18999.48, + "probability": 0.7915 + }, + { + "start": 18999.94, + "end": 19003.9, + "probability": 0.9623 + }, + { + "start": 19003.9, + "end": 19009.86, + "probability": 0.5435 + }, + { + "start": 19010.0, + "end": 19010.28, + "probability": 0.4767 + }, + { + "start": 19010.28, + "end": 19011.24, + "probability": 0.6742 + }, + { + "start": 19012.25, + "end": 19014.94, + "probability": 0.8942 + }, + { + "start": 19015.06, + "end": 19017.14, + "probability": 0.9961 + }, + { + "start": 19017.88, + "end": 19018.82, + "probability": 0.95 + }, + { + "start": 19019.1, + "end": 19020.51, + "probability": 0.7995 + }, + { + "start": 19022.04, + "end": 19023.48, + "probability": 0.746 + }, + { + "start": 19023.6, + "end": 19025.18, + "probability": 0.9716 + }, + { + "start": 19025.78, + "end": 19029.42, + "probability": 0.9946 + }, + { + "start": 19029.58, + "end": 19030.0, + "probability": 0.7919 + }, + { + "start": 19030.58, + "end": 19035.62, + "probability": 0.954 + }, + { + "start": 19036.9, + "end": 19039.6, + "probability": 0.6129 + }, + { + "start": 19039.7, + "end": 19040.36, + "probability": 0.4243 + }, + { + "start": 19040.84, + "end": 19041.58, + "probability": 0.6235 + }, + { + "start": 19041.72, + "end": 19043.66, + "probability": 0.569 + }, + { + "start": 19050.53, + "end": 19056.62, + "probability": 0.5135 + }, + { + "start": 19057.04, + "end": 19058.04, + "probability": 0.9916 + }, + { + "start": 19058.92, + "end": 19059.68, + "probability": 0.7113 + }, + { + "start": 19060.98, + "end": 19061.16, + "probability": 0.5092 + }, + { + "start": 19062.5, + "end": 19063.65, + "probability": 0.7191 + }, + { + "start": 19064.42, + "end": 19064.64, + "probability": 0.4266 + }, + { + "start": 19064.64, + "end": 19065.02, + "probability": 0.715 + }, + { + "start": 19065.12, + "end": 19066.44, + "probability": 0.8314 + }, + { + "start": 19067.1, + "end": 19068.04, + "probability": 0.6793 + }, + { + "start": 19068.04, + "end": 19069.8, + "probability": 0.712 + }, + { + "start": 19069.9, + "end": 19070.64, + "probability": 0.1078 + }, + { + "start": 19071.3, + "end": 19073.28, + "probability": 0.6483 + }, + { + "start": 19073.74, + "end": 19074.22, + "probability": 0.4532 + }, + { + "start": 19074.32, + "end": 19075.06, + "probability": 0.8088 + }, + { + "start": 19076.7, + "end": 19078.24, + "probability": 0.9273 + }, + { + "start": 19078.3, + "end": 19080.3, + "probability": 0.6221 + }, + { + "start": 19081.28, + "end": 19086.28, + "probability": 0.6243 + }, + { + "start": 19086.5, + "end": 19087.6, + "probability": 0.6143 + }, + { + "start": 19087.86, + "end": 19088.86, + "probability": 0.923 + }, + { + "start": 19093.12, + "end": 19093.96, + "probability": 0.566 + }, + { + "start": 19095.13, + "end": 19098.74, + "probability": 0.7219 + }, + { + "start": 19099.72, + "end": 19100.36, + "probability": 0.4677 + }, + { + "start": 19101.76, + "end": 19105.88, + "probability": 0.9972 + }, + { + "start": 19105.88, + "end": 19110.0, + "probability": 0.9938 + }, + { + "start": 19111.36, + "end": 19112.88, + "probability": 0.9963 + }, + { + "start": 19114.06, + "end": 19116.02, + "probability": 0.7484 + }, + { + "start": 19116.72, + "end": 19118.46, + "probability": 0.9994 + }, + { + "start": 19119.42, + "end": 19120.92, + "probability": 0.6663 + }, + { + "start": 19121.48, + "end": 19127.32, + "probability": 0.7953 + }, + { + "start": 19128.36, + "end": 19130.39, + "probability": 0.7966 + }, + { + "start": 19133.78, + "end": 19135.36, + "probability": 0.4968 + }, + { + "start": 19136.44, + "end": 19139.28, + "probability": 0.7414 + }, + { + "start": 19140.16, + "end": 19144.77, + "probability": 0.958 + }, + { + "start": 19145.4, + "end": 19145.6, + "probability": 0.9755 + }, + { + "start": 19148.24, + "end": 19150.08, + "probability": 0.9124 + }, + { + "start": 19150.14, + "end": 19152.53, + "probability": 0.9865 + }, + { + "start": 19153.4, + "end": 19156.16, + "probability": 0.9758 + }, + { + "start": 19156.46, + "end": 19159.16, + "probability": 0.9585 + }, + { + "start": 19159.82, + "end": 19163.44, + "probability": 0.5572 + }, + { + "start": 19164.46, + "end": 19171.56, + "probability": 0.8709 + }, + { + "start": 19172.06, + "end": 19177.94, + "probability": 0.917 + }, + { + "start": 19178.64, + "end": 19183.2, + "probability": 0.9882 + }, + { + "start": 19183.7, + "end": 19185.62, + "probability": 0.8208 + }, + { + "start": 19186.18, + "end": 19189.16, + "probability": 0.8683 + }, + { + "start": 19190.52, + "end": 19192.84, + "probability": 0.9621 + }, + { + "start": 19193.82, + "end": 19196.5, + "probability": 0.9473 + }, + { + "start": 19197.53, + "end": 19199.68, + "probability": 0.984 + }, + { + "start": 19200.56, + "end": 19201.78, + "probability": 0.9303 + }, + { + "start": 19202.86, + "end": 19205.16, + "probability": 0.9966 + }, + { + "start": 19206.0, + "end": 19206.44, + "probability": 0.4422 + }, + { + "start": 19206.48, + "end": 19212.37, + "probability": 0.7486 + }, + { + "start": 19213.04, + "end": 19216.64, + "probability": 0.9508 + }, + { + "start": 19217.56, + "end": 19225.34, + "probability": 0.9877 + }, + { + "start": 19225.38, + "end": 19230.18, + "probability": 0.9971 + }, + { + "start": 19231.34, + "end": 19236.4, + "probability": 0.9906 + }, + { + "start": 19236.4, + "end": 19242.18, + "probability": 0.7846 + }, + { + "start": 19242.68, + "end": 19248.16, + "probability": 0.627 + }, + { + "start": 19249.14, + "end": 19253.54, + "probability": 0.9946 + }, + { + "start": 19254.14, + "end": 19254.5, + "probability": 0.375 + }, + { + "start": 19254.7, + "end": 19255.16, + "probability": 0.9276 + }, + { + "start": 19255.24, + "end": 19256.86, + "probability": 0.9845 + }, + { + "start": 19256.96, + "end": 19257.54, + "probability": 0.945 + }, + { + "start": 19257.9, + "end": 19260.48, + "probability": 0.7825 + }, + { + "start": 19261.28, + "end": 19270.3, + "probability": 0.9282 + }, + { + "start": 19270.96, + "end": 19274.94, + "probability": 0.9965 + }, + { + "start": 19275.28, + "end": 19280.38, + "probability": 0.9788 + }, + { + "start": 19281.2, + "end": 19282.22, + "probability": 0.816 + }, + { + "start": 19282.88, + "end": 19284.04, + "probability": 0.9897 + }, + { + "start": 19285.6, + "end": 19287.58, + "probability": 0.9873 + }, + { + "start": 19288.64, + "end": 19289.34, + "probability": 0.8237 + }, + { + "start": 19289.44, + "end": 19293.46, + "probability": 0.934 + }, + { + "start": 19293.54, + "end": 19296.12, + "probability": 0.6737 + }, + { + "start": 19296.5, + "end": 19299.95, + "probability": 0.9685 + }, + { + "start": 19300.7, + "end": 19304.32, + "probability": 0.9621 + }, + { + "start": 19305.24, + "end": 19306.8, + "probability": 0.9864 + }, + { + "start": 19307.56, + "end": 19308.28, + "probability": 0.9789 + }, + { + "start": 19309.1, + "end": 19311.04, + "probability": 0.9453 + }, + { + "start": 19311.58, + "end": 19312.2, + "probability": 0.9849 + }, + { + "start": 19313.06, + "end": 19315.44, + "probability": 0.9917 + }, + { + "start": 19316.0, + "end": 19318.14, + "probability": 0.8243 + }, + { + "start": 19319.04, + "end": 19322.64, + "probability": 0.9976 + }, + { + "start": 19323.2, + "end": 19325.34, + "probability": 0.8962 + }, + { + "start": 19326.08, + "end": 19328.06, + "probability": 0.9751 + }, + { + "start": 19328.58, + "end": 19330.86, + "probability": 0.7584 + }, + { + "start": 19331.48, + "end": 19332.6, + "probability": 0.9779 + }, + { + "start": 19333.64, + "end": 19334.74, + "probability": 0.7207 + }, + { + "start": 19336.76, + "end": 19341.7, + "probability": 0.884 + }, + { + "start": 19342.1, + "end": 19343.66, + "probability": 0.9592 + }, + { + "start": 19345.46, + "end": 19349.76, + "probability": 0.9922 + }, + { + "start": 19350.36, + "end": 19351.38, + "probability": 0.9299 + }, + { + "start": 19351.9, + "end": 19357.74, + "probability": 0.974 + }, + { + "start": 19358.22, + "end": 19358.92, + "probability": 0.7477 + }, + { + "start": 19359.9, + "end": 19362.12, + "probability": 0.9106 + }, + { + "start": 19362.76, + "end": 19369.66, + "probability": 0.9941 + }, + { + "start": 19370.2, + "end": 19372.86, + "probability": 0.9375 + }, + { + "start": 19373.6, + "end": 19374.7, + "probability": 0.4862 + }, + { + "start": 19375.6, + "end": 19381.24, + "probability": 0.9832 + }, + { + "start": 19382.3, + "end": 19383.08, + "probability": 0.8952 + }, + { + "start": 19383.96, + "end": 19392.74, + "probability": 0.9938 + }, + { + "start": 19393.46, + "end": 19393.82, + "probability": 0.7384 + }, + { + "start": 19395.4, + "end": 19396.9, + "probability": 0.7048 + }, + { + "start": 19399.84, + "end": 19401.54, + "probability": 0.9155 + }, + { + "start": 19402.84, + "end": 19405.8, + "probability": 0.6808 + }, + { + "start": 19406.68, + "end": 19411.14, + "probability": 0.9913 + }, + { + "start": 19411.14, + "end": 19417.58, + "probability": 0.92 + }, + { + "start": 19417.78, + "end": 19418.66, + "probability": 0.7896 + }, + { + "start": 19419.04, + "end": 19420.0, + "probability": 0.9764 + }, + { + "start": 19420.84, + "end": 19427.1, + "probability": 0.983 + }, + { + "start": 19428.14, + "end": 19431.24, + "probability": 0.8888 + }, + { + "start": 19431.78, + "end": 19433.94, + "probability": 0.994 + }, + { + "start": 19434.56, + "end": 19436.84, + "probability": 0.9548 + }, + { + "start": 19437.44, + "end": 19439.28, + "probability": 0.9391 + }, + { + "start": 19439.88, + "end": 19440.76, + "probability": 0.8336 + }, + { + "start": 19440.88, + "end": 19444.9, + "probability": 0.8705 + }, + { + "start": 19445.36, + "end": 19446.26, + "probability": 0.9187 + }, + { + "start": 19446.34, + "end": 19447.18, + "probability": 0.9816 + }, + { + "start": 19447.8, + "end": 19451.86, + "probability": 0.9944 + }, + { + "start": 19452.8, + "end": 19455.82, + "probability": 0.9089 + }, + { + "start": 19457.22, + "end": 19459.54, + "probability": 0.9612 + }, + { + "start": 19459.68, + "end": 19462.92, + "probability": 0.9892 + }, + { + "start": 19463.2, + "end": 19464.44, + "probability": 0.9108 + }, + { + "start": 19465.86, + "end": 19469.22, + "probability": 0.9957 + }, + { + "start": 19469.92, + "end": 19474.08, + "probability": 0.9862 + }, + { + "start": 19475.06, + "end": 19477.84, + "probability": 0.9744 + }, + { + "start": 19478.44, + "end": 19479.06, + "probability": 0.7349 + }, + { + "start": 19481.08, + "end": 19481.76, + "probability": 0.7679 + }, + { + "start": 19482.72, + "end": 19486.22, + "probability": 0.9487 + }, + { + "start": 19487.26, + "end": 19494.1, + "probability": 0.9326 + }, + { + "start": 19494.1, + "end": 19500.54, + "probability": 0.9961 + }, + { + "start": 19501.5, + "end": 19505.78, + "probability": 0.917 + }, + { + "start": 19506.52, + "end": 19507.18, + "probability": 0.914 + }, + { + "start": 19507.48, + "end": 19509.76, + "probability": 0.9941 + }, + { + "start": 19510.12, + "end": 19515.5, + "probability": 0.9785 + }, + { + "start": 19515.62, + "end": 19517.1, + "probability": 0.9751 + }, + { + "start": 19517.94, + "end": 19518.76, + "probability": 0.7622 + }, + { + "start": 19519.9, + "end": 19525.3, + "probability": 0.9793 + }, + { + "start": 19525.3, + "end": 19529.2, + "probability": 0.8324 + }, + { + "start": 19529.56, + "end": 19534.22, + "probability": 0.8405 + }, + { + "start": 19534.88, + "end": 19536.82, + "probability": 0.6954 + }, + { + "start": 19536.82, + "end": 19540.1, + "probability": 0.9811 + }, + { + "start": 19540.5, + "end": 19541.7, + "probability": 0.8378 + }, + { + "start": 19543.52, + "end": 19544.59, + "probability": 0.9955 + }, + { + "start": 19546.96, + "end": 19551.34, + "probability": 0.9708 + }, + { + "start": 19552.16, + "end": 19554.38, + "probability": 0.5852 + }, + { + "start": 19555.42, + "end": 19556.98, + "probability": 0.6911 + }, + { + "start": 19558.24, + "end": 19560.18, + "probability": 0.8734 + }, + { + "start": 19561.12, + "end": 19562.62, + "probability": 0.9825 + }, + { + "start": 19563.74, + "end": 19566.62, + "probability": 0.9489 + }, + { + "start": 19566.95, + "end": 19570.64, + "probability": 0.9053 + }, + { + "start": 19571.4, + "end": 19574.74, + "probability": 0.891 + }, + { + "start": 19575.66, + "end": 19577.28, + "probability": 0.5901 + }, + { + "start": 19577.94, + "end": 19579.54, + "probability": 0.58 + }, + { + "start": 19580.36, + "end": 19582.08, + "probability": 0.0139 + }, + { + "start": 19583.36, + "end": 19584.11, + "probability": 0.0952 + }, + { + "start": 19584.46, + "end": 19584.56, + "probability": 0.0767 + }, + { + "start": 19584.58, + "end": 19584.9, + "probability": 0.6367 + }, + { + "start": 19584.9, + "end": 19585.16, + "probability": 0.5527 + }, + { + "start": 19585.16, + "end": 19586.16, + "probability": 0.9216 + }, + { + "start": 19586.38, + "end": 19587.18, + "probability": 0.4492 + }, + { + "start": 19587.64, + "end": 19587.64, + "probability": 0.1808 + }, + { + "start": 19587.64, + "end": 19590.38, + "probability": 0.9092 + }, + { + "start": 19592.04, + "end": 19597.3, + "probability": 0.9897 + }, + { + "start": 19599.18, + "end": 19599.9, + "probability": 0.4589 + }, + { + "start": 19600.04, + "end": 19602.74, + "probability": 0.9814 + }, + { + "start": 19602.92, + "end": 19603.72, + "probability": 0.4451 + }, + { + "start": 19604.18, + "end": 19605.6, + "probability": 0.7118 + }, + { + "start": 19606.58, + "end": 19610.76, + "probability": 0.7365 + }, + { + "start": 19611.38, + "end": 19614.72, + "probability": 0.9903 + }, + { + "start": 19615.78, + "end": 19616.48, + "probability": 0.9694 + }, + { + "start": 19617.22, + "end": 19621.46, + "probability": 0.9502 + }, + { + "start": 19623.72, + "end": 19624.2, + "probability": 0.8428 + }, + { + "start": 19625.5, + "end": 19630.28, + "probability": 0.9622 + }, + { + "start": 19630.96, + "end": 19631.72, + "probability": 0.8499 + }, + { + "start": 19632.16, + "end": 19635.44, + "probability": 0.9528 + }, + { + "start": 19635.54, + "end": 19636.7, + "probability": 0.9746 + }, + { + "start": 19637.36, + "end": 19642.02, + "probability": 0.8843 + }, + { + "start": 19642.58, + "end": 19646.62, + "probability": 0.9939 + }, + { + "start": 19647.16, + "end": 19650.56, + "probability": 0.9688 + }, + { + "start": 19650.66, + "end": 19653.22, + "probability": 0.9685 + }, + { + "start": 19653.92, + "end": 19659.94, + "probability": 0.9367 + }, + { + "start": 19659.94, + "end": 19663.18, + "probability": 0.8875 + }, + { + "start": 19663.68, + "end": 19665.18, + "probability": 0.6852 + }, + { + "start": 19665.62, + "end": 19671.62, + "probability": 0.8936 + }, + { + "start": 19672.24, + "end": 19675.08, + "probability": 0.7885 + }, + { + "start": 19675.68, + "end": 19678.16, + "probability": 0.932 + }, + { + "start": 19678.74, + "end": 19683.18, + "probability": 0.9943 + }, + { + "start": 19683.66, + "end": 19685.78, + "probability": 0.9922 + }, + { + "start": 19686.78, + "end": 19692.38, + "probability": 0.7998 + }, + { + "start": 19693.66, + "end": 19700.16, + "probability": 0.9653 + }, + { + "start": 19701.04, + "end": 19701.69, + "probability": 0.9068 + }, + { + "start": 19702.52, + "end": 19703.1, + "probability": 0.9282 + }, + { + "start": 19705.36, + "end": 19710.7, + "probability": 0.9616 + }, + { + "start": 19711.2, + "end": 19716.84, + "probability": 0.9259 + }, + { + "start": 19717.18, + "end": 19717.78, + "probability": 0.4456 + }, + { + "start": 19718.1, + "end": 19719.26, + "probability": 0.8381 + }, + { + "start": 19719.66, + "end": 19722.64, + "probability": 0.9971 + }, + { + "start": 19723.1, + "end": 19725.28, + "probability": 0.9927 + }, + { + "start": 19725.92, + "end": 19727.42, + "probability": 0.8872 + }, + { + "start": 19727.8, + "end": 19729.38, + "probability": 0.8027 + }, + { + "start": 19730.02, + "end": 19736.78, + "probability": 0.9863 + }, + { + "start": 19737.9, + "end": 19741.58, + "probability": 0.9478 + }, + { + "start": 19741.7, + "end": 19742.4, + "probability": 0.9702 + }, + { + "start": 19743.06, + "end": 19746.4, + "probability": 0.806 + }, + { + "start": 19746.96, + "end": 19750.68, + "probability": 0.9598 + }, + { + "start": 19751.32, + "end": 19753.58, + "probability": 0.1959 + }, + { + "start": 19753.64, + "end": 19756.68, + "probability": 0.9954 + }, + { + "start": 19757.58, + "end": 19758.38, + "probability": 0.7807 + }, + { + "start": 19758.48, + "end": 19760.86, + "probability": 0.8504 + }, + { + "start": 19760.88, + "end": 19761.2, + "probability": 0.6317 + }, + { + "start": 19761.28, + "end": 19763.94, + "probability": 0.5338 + }, + { + "start": 19765.8, + "end": 19770.4, + "probability": 0.962 + }, + { + "start": 19771.26, + "end": 19774.42, + "probability": 0.9618 + }, + { + "start": 19775.52, + "end": 19779.66, + "probability": 0.9248 + }, + { + "start": 19780.66, + "end": 19782.18, + "probability": 0.9938 + }, + { + "start": 19783.6, + "end": 19785.08, + "probability": 0.9788 + }, + { + "start": 19785.7, + "end": 19787.44, + "probability": 0.9923 + }, + { + "start": 19787.98, + "end": 19789.52, + "probability": 0.9897 + }, + { + "start": 19790.1, + "end": 19791.8, + "probability": 0.9055 + }, + { + "start": 19793.0, + "end": 19797.78, + "probability": 0.9863 + }, + { + "start": 19798.4, + "end": 19801.38, + "probability": 0.8103 + }, + { + "start": 19802.46, + "end": 19807.48, + "probability": 0.9933 + }, + { + "start": 19807.48, + "end": 19810.34, + "probability": 0.9971 + }, + { + "start": 19810.74, + "end": 19812.52, + "probability": 0.7676 + }, + { + "start": 19813.14, + "end": 19815.14, + "probability": 0.9463 + }, + { + "start": 19815.84, + "end": 19818.28, + "probability": 0.9421 + }, + { + "start": 19819.46, + "end": 19822.16, + "probability": 0.7908 + }, + { + "start": 19822.96, + "end": 19825.52, + "probability": 0.4986 + }, + { + "start": 19826.24, + "end": 19829.6, + "probability": 0.9638 + }, + { + "start": 19831.32, + "end": 19834.04, + "probability": 0.9349 + }, + { + "start": 19834.76, + "end": 19839.2, + "probability": 0.9128 + }, + { + "start": 19839.92, + "end": 19842.32, + "probability": 0.8099 + }, + { + "start": 19843.04, + "end": 19844.13, + "probability": 0.8423 + }, + { + "start": 19845.2, + "end": 19848.58, + "probability": 0.9297 + }, + { + "start": 19850.38, + "end": 19853.7, + "probability": 0.9685 + }, + { + "start": 19854.12, + "end": 19857.58, + "probability": 0.641 + }, + { + "start": 19857.64, + "end": 19860.78, + "probability": 0.7825 + }, + { + "start": 19861.66, + "end": 19862.4, + "probability": 0.7382 + }, + { + "start": 19862.42, + "end": 19863.22, + "probability": 0.7093 + }, + { + "start": 19863.32, + "end": 19863.52, + "probability": 0.4381 + }, + { + "start": 19863.6, + "end": 19866.42, + "probability": 0.8409 + }, + { + "start": 19866.86, + "end": 19868.48, + "probability": 0.8858 + }, + { + "start": 19868.88, + "end": 19872.35, + "probability": 0.8891 + }, + { + "start": 19873.32, + "end": 19876.82, + "probability": 0.9053 + }, + { + "start": 19877.52, + "end": 19886.8, + "probability": 0.9379 + }, + { + "start": 19886.92, + "end": 19887.98, + "probability": 0.6698 + }, + { + "start": 19888.04, + "end": 19890.46, + "probability": 0.7739 + }, + { + "start": 19890.84, + "end": 19892.16, + "probability": 0.9462 + }, + { + "start": 19892.84, + "end": 19894.9, + "probability": 0.8482 + }, + { + "start": 19895.7, + "end": 19899.32, + "probability": 0.9971 + }, + { + "start": 19899.32, + "end": 19903.8, + "probability": 0.9332 + }, + { + "start": 19904.4, + "end": 19905.28, + "probability": 0.6347 + }, + { + "start": 19906.22, + "end": 19908.64, + "probability": 0.9975 + }, + { + "start": 19909.42, + "end": 19910.34, + "probability": 0.9971 + }, + { + "start": 19911.78, + "end": 19913.7, + "probability": 0.9962 + }, + { + "start": 19915.38, + "end": 19918.4, + "probability": 0.9861 + }, + { + "start": 19918.9, + "end": 19920.1, + "probability": 0.647 + }, + { + "start": 19920.2, + "end": 19920.94, + "probability": 0.8177 + }, + { + "start": 19921.48, + "end": 19926.78, + "probability": 0.9803 + }, + { + "start": 19926.92, + "end": 19927.28, + "probability": 0.8891 + }, + { + "start": 19928.1, + "end": 19931.6, + "probability": 0.9739 + }, + { + "start": 19931.76, + "end": 19935.54, + "probability": 0.6849 + }, + { + "start": 19936.16, + "end": 19941.64, + "probability": 0.9041 + }, + { + "start": 19942.62, + "end": 19946.98, + "probability": 0.9077 + }, + { + "start": 19954.54, + "end": 19956.78, + "probability": 0.8137 + }, + { + "start": 19957.18, + "end": 19959.72, + "probability": 0.9469 + }, + { + "start": 19960.74, + "end": 19964.76, + "probability": 0.7974 + }, + { + "start": 19964.84, + "end": 19965.46, + "probability": 0.594 + }, + { + "start": 19966.16, + "end": 19970.52, + "probability": 0.7444 + }, + { + "start": 19971.6, + "end": 19973.32, + "probability": 0.8665 + }, + { + "start": 19974.68, + "end": 19976.28, + "probability": 0.8366 + }, + { + "start": 19976.36, + "end": 19977.68, + "probability": 0.7927 + }, + { + "start": 19977.84, + "end": 19978.32, + "probability": 0.697 + }, + { + "start": 19978.42, + "end": 19981.16, + "probability": 0.391 + }, + { + "start": 19981.34, + "end": 19981.74, + "probability": 0.898 + }, + { + "start": 19982.0, + "end": 19985.46, + "probability": 0.978 + }, + { + "start": 19985.82, + "end": 19986.54, + "probability": 0.9 + }, + { + "start": 19986.76, + "end": 19988.08, + "probability": 0.9882 + }, + { + "start": 19988.56, + "end": 19989.42, + "probability": 0.6022 + }, + { + "start": 19990.4, + "end": 19992.78, + "probability": 0.937 + }, + { + "start": 19993.64, + "end": 19995.54, + "probability": 0.93 + }, + { + "start": 19996.22, + "end": 19997.78, + "probability": 0.753 + }, + { + "start": 19998.32, + "end": 19999.69, + "probability": 0.5 + }, + { + "start": 20001.96, + "end": 20003.38, + "probability": 0.6298 + }, + { + "start": 20004.36, + "end": 20005.58, + "probability": 0.7927 + }, + { + "start": 20006.74, + "end": 20008.86, + "probability": 0.9382 + }, + { + "start": 20009.08, + "end": 20012.04, + "probability": 0.9928 + }, + { + "start": 20012.4, + "end": 20012.94, + "probability": 0.9827 + }, + { + "start": 20013.54, + "end": 20015.76, + "probability": 0.7564 + }, + { + "start": 20018.1, + "end": 20020.02, + "probability": 0.856 + }, + { + "start": 20020.64, + "end": 20023.52, + "probability": 0.8619 + }, + { + "start": 20024.32, + "end": 20027.46, + "probability": 0.8107 + }, + { + "start": 20030.66, + "end": 20031.88, + "probability": 0.8733 + }, + { + "start": 20033.12, + "end": 20035.88, + "probability": 0.7729 + }, + { + "start": 20037.58, + "end": 20038.36, + "probability": 0.7335 + }, + { + "start": 20039.9, + "end": 20043.12, + "probability": 0.8291 + }, + { + "start": 20043.12, + "end": 20046.26, + "probability": 0.9954 + }, + { + "start": 20046.96, + "end": 20049.36, + "probability": 0.7091 + }, + { + "start": 20049.92, + "end": 20051.02, + "probability": 0.3566 + }, + { + "start": 20051.36, + "end": 20054.28, + "probability": 0.8936 + }, + { + "start": 20055.34, + "end": 20056.0, + "probability": 0.5929 + }, + { + "start": 20056.12, + "end": 20057.44, + "probability": 0.9825 + }, + { + "start": 20057.56, + "end": 20061.8, + "probability": 0.9723 + }, + { + "start": 20062.9, + "end": 20066.06, + "probability": 0.7327 + }, + { + "start": 20066.06, + "end": 20068.6, + "probability": 0.9773 + }, + { + "start": 20069.3, + "end": 20072.72, + "probability": 0.9896 + }, + { + "start": 20073.66, + "end": 20074.58, + "probability": 0.745 + }, + { + "start": 20074.68, + "end": 20078.94, + "probability": 0.9048 + }, + { + "start": 20079.72, + "end": 20083.18, + "probability": 0.9987 + }, + { + "start": 20083.18, + "end": 20086.68, + "probability": 0.9975 + }, + { + "start": 20087.54, + "end": 20088.58, + "probability": 0.7173 + }, + { + "start": 20088.68, + "end": 20093.22, + "probability": 0.6928 + }, + { + "start": 20093.22, + "end": 20095.6, + "probability": 0.9267 + }, + { + "start": 20096.06, + "end": 20098.08, + "probability": 0.5023 + }, + { + "start": 20098.16, + "end": 20098.54, + "probability": 0.6238 + }, + { + "start": 20098.62, + "end": 20103.28, + "probability": 0.6224 + }, + { + "start": 20104.06, + "end": 20104.72, + "probability": 0.7695 + }, + { + "start": 20104.84, + "end": 20105.96, + "probability": 0.7754 + }, + { + "start": 20106.38, + "end": 20107.08, + "probability": 0.7165 + }, + { + "start": 20107.18, + "end": 20107.76, + "probability": 0.7284 + }, + { + "start": 20108.46, + "end": 20114.82, + "probability": 0.8967 + }, + { + "start": 20114.98, + "end": 20117.42, + "probability": 0.9935 + }, + { + "start": 20118.32, + "end": 20121.82, + "probability": 0.9324 + }, + { + "start": 20122.04, + "end": 20123.32, + "probability": 0.1902 + }, + { + "start": 20123.78, + "end": 20124.68, + "probability": 0.2042 + }, + { + "start": 20124.76, + "end": 20126.68, + "probability": 0.7067 + }, + { + "start": 20127.52, + "end": 20131.76, + "probability": 0.8468 + }, + { + "start": 20132.3, + "end": 20134.76, + "probability": 0.5806 + }, + { + "start": 20135.4, + "end": 20138.64, + "probability": 0.8682 + }, + { + "start": 20138.64, + "end": 20142.04, + "probability": 0.9976 + }, + { + "start": 20142.44, + "end": 20145.06, + "probability": 0.923 + }, + { + "start": 20145.12, + "end": 20149.6, + "probability": 0.9554 + }, + { + "start": 20149.6, + "end": 20153.92, + "probability": 0.9964 + }, + { + "start": 20153.92, + "end": 20157.46, + "probability": 0.9952 + }, + { + "start": 20158.18, + "end": 20162.14, + "probability": 0.9813 + }, + { + "start": 20162.26, + "end": 20165.32, + "probability": 0.9375 + }, + { + "start": 20165.38, + "end": 20167.76, + "probability": 0.9493 + }, + { + "start": 20168.18, + "end": 20169.26, + "probability": 0.336 + }, + { + "start": 20169.54, + "end": 20172.16, + "probability": 0.9894 + }, + { + "start": 20172.5, + "end": 20173.5, + "probability": 0.4865 + }, + { + "start": 20173.68, + "end": 20176.9, + "probability": 0.9734 + }, + { + "start": 20177.6, + "end": 20179.8, + "probability": 0.8789 + }, + { + "start": 20180.08, + "end": 20181.7, + "probability": 0.7435 + }, + { + "start": 20181.8, + "end": 20183.24, + "probability": 0.7677 + }, + { + "start": 20183.96, + "end": 20185.3, + "probability": 0.886 + }, + { + "start": 20185.6, + "end": 20189.38, + "probability": 0.7245 + }, + { + "start": 20189.78, + "end": 20191.86, + "probability": 0.7798 + }, + { + "start": 20192.84, + "end": 20193.8, + "probability": 0.2321 + }, + { + "start": 20193.84, + "end": 20194.9, + "probability": 0.7339 + }, + { + "start": 20194.98, + "end": 20196.7, + "probability": 0.9848 + }, + { + "start": 20196.7, + "end": 20198.6, + "probability": 0.9889 + }, + { + "start": 20198.94, + "end": 20201.36, + "probability": 0.9266 + }, + { + "start": 20201.46, + "end": 20203.12, + "probability": 0.9811 + }, + { + "start": 20203.52, + "end": 20206.5, + "probability": 0.9758 + }, + { + "start": 20206.86, + "end": 20209.92, + "probability": 0.9573 + }, + { + "start": 20210.38, + "end": 20212.96, + "probability": 0.9921 + }, + { + "start": 20213.62, + "end": 20217.78, + "probability": 0.9025 + }, + { + "start": 20218.22, + "end": 20218.66, + "probability": 0.7888 + }, + { + "start": 20219.02, + "end": 20221.48, + "probability": 0.7676 + }, + { + "start": 20221.48, + "end": 20224.42, + "probability": 0.9007 + }, + { + "start": 20225.14, + "end": 20227.36, + "probability": 0.7565 + }, + { + "start": 20227.36, + "end": 20230.46, + "probability": 0.6845 + }, + { + "start": 20230.46, + "end": 20231.06, + "probability": 0.6862 + }, + { + "start": 20231.38, + "end": 20233.18, + "probability": 0.8949 + }, + { + "start": 20233.72, + "end": 20236.18, + "probability": 0.727 + }, + { + "start": 20237.16, + "end": 20240.72, + "probability": 0.8013 + }, + { + "start": 20240.94, + "end": 20245.68, + "probability": 0.7831 + }, + { + "start": 20247.26, + "end": 20249.14, + "probability": 0.9744 + }, + { + "start": 20249.56, + "end": 20251.48, + "probability": 0.6151 + }, + { + "start": 20251.5, + "end": 20255.34, + "probability": 0.9167 + }, + { + "start": 20255.34, + "end": 20258.5, + "probability": 0.9364 + }, + { + "start": 20258.92, + "end": 20261.24, + "probability": 0.9274 + }, + { + "start": 20261.6, + "end": 20263.72, + "probability": 0.996 + }, + { + "start": 20264.16, + "end": 20266.4, + "probability": 0.9856 + }, + { + "start": 20266.4, + "end": 20269.3, + "probability": 0.9313 + }, + { + "start": 20269.82, + "end": 20273.82, + "probability": 0.9355 + }, + { + "start": 20273.82, + "end": 20277.38, + "probability": 0.9954 + }, + { + "start": 20278.02, + "end": 20280.8, + "probability": 0.6117 + }, + { + "start": 20280.8, + "end": 20284.06, + "probability": 0.8275 + }, + { + "start": 20284.36, + "end": 20287.18, + "probability": 0.9824 + }, + { + "start": 20287.3, + "end": 20291.32, + "probability": 0.9774 + }, + { + "start": 20291.32, + "end": 20296.94, + "probability": 0.9791 + }, + { + "start": 20297.48, + "end": 20299.4, + "probability": 0.9179 + }, + { + "start": 20299.48, + "end": 20302.64, + "probability": 0.9765 + }, + { + "start": 20302.64, + "end": 20306.0, + "probability": 0.9977 + }, + { + "start": 20306.0, + "end": 20308.84, + "probability": 0.9858 + }, + { + "start": 20309.24, + "end": 20312.14, + "probability": 0.8931 + }, + { + "start": 20312.22, + "end": 20315.08, + "probability": 0.9105 + }, + { + "start": 20315.4, + "end": 20317.94, + "probability": 0.5019 + }, + { + "start": 20318.02, + "end": 20319.68, + "probability": 0.9893 + }, + { + "start": 20320.96, + "end": 20321.8, + "probability": 0.7933 + }, + { + "start": 20322.22, + "end": 20325.24, + "probability": 0.9842 + }, + { + "start": 20325.24, + "end": 20328.24, + "probability": 0.9544 + }, + { + "start": 20328.62, + "end": 20331.22, + "probability": 0.7769 + }, + { + "start": 20331.22, + "end": 20334.6, + "probability": 0.8224 + }, + { + "start": 20334.96, + "end": 20338.18, + "probability": 0.9862 + }, + { + "start": 20338.18, + "end": 20341.74, + "probability": 0.9793 + }, + { + "start": 20342.3, + "end": 20344.84, + "probability": 0.9287 + }, + { + "start": 20344.84, + "end": 20347.14, + "probability": 0.9234 + }, + { + "start": 20347.54, + "end": 20351.42, + "probability": 0.9932 + }, + { + "start": 20351.74, + "end": 20354.12, + "probability": 0.9917 + }, + { + "start": 20354.48, + "end": 20356.48, + "probability": 0.9403 + }, + { + "start": 20356.78, + "end": 20358.6, + "probability": 0.9668 + }, + { + "start": 20358.7, + "end": 20362.1, + "probability": 0.9915 + }, + { + "start": 20363.36, + "end": 20365.84, + "probability": 0.9744 + }, + { + "start": 20365.84, + "end": 20368.84, + "probability": 0.9115 + }, + { + "start": 20369.12, + "end": 20373.42, + "probability": 0.9795 + }, + { + "start": 20373.9, + "end": 20379.14, + "probability": 0.9686 + }, + { + "start": 20379.14, + "end": 20382.48, + "probability": 0.9937 + }, + { + "start": 20383.5, + "end": 20386.18, + "probability": 0.9128 + }, + { + "start": 20386.18, + "end": 20388.28, + "probability": 0.9992 + }, + { + "start": 20388.82, + "end": 20391.4, + "probability": 0.9648 + }, + { + "start": 20391.5, + "end": 20393.28, + "probability": 0.3388 + }, + { + "start": 20393.64, + "end": 20395.64, + "probability": 0.9897 + }, + { + "start": 20396.02, + "end": 20399.9, + "probability": 0.8836 + }, + { + "start": 20399.9, + "end": 20404.04, + "probability": 0.9932 + }, + { + "start": 20404.04, + "end": 20408.56, + "probability": 0.9583 + }, + { + "start": 20408.96, + "end": 20409.44, + "probability": 0.6332 + }, + { + "start": 20409.56, + "end": 20411.36, + "probability": 0.9893 + }, + { + "start": 20411.36, + "end": 20413.74, + "probability": 0.9914 + }, + { + "start": 20414.18, + "end": 20417.08, + "probability": 0.9641 + }, + { + "start": 20417.9, + "end": 20421.08, + "probability": 0.9858 + }, + { + "start": 20421.54, + "end": 20422.06, + "probability": 0.7596 + }, + { + "start": 20422.42, + "end": 20424.44, + "probability": 0.9425 + }, + { + "start": 20424.56, + "end": 20427.34, + "probability": 0.6699 + }, + { + "start": 20428.02, + "end": 20429.16, + "probability": 0.9214 + }, + { + "start": 20429.52, + "end": 20430.3, + "probability": 0.8577 + }, + { + "start": 20430.56, + "end": 20431.42, + "probability": 0.7955 + }, + { + "start": 20431.54, + "end": 20433.44, + "probability": 0.7875 + }, + { + "start": 20433.78, + "end": 20434.26, + "probability": 0.8983 + }, + { + "start": 20435.3, + "end": 20439.06, + "probability": 0.949 + }, + { + "start": 20439.26, + "end": 20440.82, + "probability": 0.96 + }, + { + "start": 20441.28, + "end": 20443.7, + "probability": 0.9906 + }, + { + "start": 20443.7, + "end": 20446.24, + "probability": 0.9974 + }, + { + "start": 20446.76, + "end": 20448.44, + "probability": 0.9695 + }, + { + "start": 20449.3, + "end": 20451.58, + "probability": 0.8529 + }, + { + "start": 20452.1, + "end": 20454.04, + "probability": 0.8898 + }, + { + "start": 20456.9, + "end": 20459.54, + "probability": 0.992 + }, + { + "start": 20459.88, + "end": 20461.26, + "probability": 0.7657 + }, + { + "start": 20461.4, + "end": 20462.36, + "probability": 0.9386 + }, + { + "start": 20462.76, + "end": 20466.6, + "probability": 0.9409 + }, + { + "start": 20466.6, + "end": 20471.38, + "probability": 0.9933 + }, + { + "start": 20471.38, + "end": 20475.56, + "probability": 0.9985 + }, + { + "start": 20476.22, + "end": 20478.26, + "probability": 0.6337 + }, + { + "start": 20478.6, + "end": 20481.4, + "probability": 0.9966 + }, + { + "start": 20481.98, + "end": 20484.52, + "probability": 0.9466 + }, + { + "start": 20484.94, + "end": 20492.22, + "probability": 0.8641 + }, + { + "start": 20492.5, + "end": 20495.12, + "probability": 0.9146 + }, + { + "start": 20495.12, + "end": 20497.42, + "probability": 0.8566 + }, + { + "start": 20498.52, + "end": 20500.52, + "probability": 0.9411 + }, + { + "start": 20500.52, + "end": 20502.86, + "probability": 0.9882 + }, + { + "start": 20503.2, + "end": 20505.62, + "probability": 0.9933 + }, + { + "start": 20506.16, + "end": 20508.24, + "probability": 0.9007 + }, + { + "start": 20508.28, + "end": 20510.02, + "probability": 0.995 + }, + { + "start": 20510.02, + "end": 20512.9, + "probability": 0.9584 + }, + { + "start": 20513.2, + "end": 20514.9, + "probability": 0.9925 + }, + { + "start": 20514.96, + "end": 20516.7, + "probability": 0.8991 + }, + { + "start": 20517.3, + "end": 20519.66, + "probability": 0.9744 + }, + { + "start": 20519.98, + "end": 20522.3, + "probability": 0.9564 + }, + { + "start": 20522.36, + "end": 20523.48, + "probability": 0.6897 + }, + { + "start": 20523.88, + "end": 20527.1, + "probability": 0.969 + }, + { + "start": 20527.52, + "end": 20530.78, + "probability": 0.9385 + }, + { + "start": 20532.26, + "end": 20534.6, + "probability": 0.8161 + }, + { + "start": 20534.66, + "end": 20535.98, + "probability": 0.9045 + }, + { + "start": 20536.32, + "end": 20540.26, + "probability": 0.9893 + }, + { + "start": 20540.32, + "end": 20544.12, + "probability": 0.9891 + }, + { + "start": 20544.58, + "end": 20546.98, + "probability": 0.979 + }, + { + "start": 20546.98, + "end": 20551.48, + "probability": 0.9725 + }, + { + "start": 20551.9, + "end": 20553.38, + "probability": 0.955 + }, + { + "start": 20553.76, + "end": 20555.68, + "probability": 0.8798 + }, + { + "start": 20556.14, + "end": 20559.6, + "probability": 0.9552 + }, + { + "start": 20559.94, + "end": 20560.76, + "probability": 0.716 + }, + { + "start": 20561.16, + "end": 20564.66, + "probability": 0.9905 + }, + { + "start": 20565.16, + "end": 20568.88, + "probability": 0.8055 + }, + { + "start": 20568.88, + "end": 20574.18, + "probability": 0.9774 + }, + { + "start": 20574.62, + "end": 20577.48, + "probability": 0.9877 + }, + { + "start": 20577.92, + "end": 20578.46, + "probability": 0.8185 + }, + { + "start": 20578.84, + "end": 20580.86, + "probability": 0.9478 + }, + { + "start": 20580.86, + "end": 20583.14, + "probability": 0.963 + }, + { + "start": 20583.64, + "end": 20584.64, + "probability": 0.6586 + }, + { + "start": 20584.68, + "end": 20586.16, + "probability": 0.9043 + }, + { + "start": 20586.16, + "end": 20590.06, + "probability": 0.9752 + }, + { + "start": 20590.56, + "end": 20593.96, + "probability": 0.9391 + }, + { + "start": 20594.46, + "end": 20596.72, + "probability": 0.8654 + }, + { + "start": 20596.72, + "end": 20599.84, + "probability": 0.9182 + }, + { + "start": 20600.0, + "end": 20601.06, + "probability": 0.069 + }, + { + "start": 20601.46, + "end": 20603.58, + "probability": 0.981 + }, + { + "start": 20603.68, + "end": 20604.74, + "probability": 0.8441 + }, + { + "start": 20605.1, + "end": 20607.6, + "probability": 0.9468 + }, + { + "start": 20607.6, + "end": 20611.94, + "probability": 0.955 + }, + { + "start": 20612.44, + "end": 20614.5, + "probability": 0.9779 + }, + { + "start": 20614.5, + "end": 20617.82, + "probability": 0.8809 + }, + { + "start": 20618.14, + "end": 20620.14, + "probability": 0.9954 + }, + { + "start": 20620.14, + "end": 20622.8, + "probability": 0.9849 + }, + { + "start": 20623.28, + "end": 20625.48, + "probability": 0.9885 + }, + { + "start": 20625.48, + "end": 20628.7, + "probability": 0.9912 + }, + { + "start": 20628.74, + "end": 20630.24, + "probability": 0.9751 + }, + { + "start": 20630.36, + "end": 20632.7, + "probability": 0.5158 + }, + { + "start": 20632.8, + "end": 20634.2, + "probability": 0.9131 + }, + { + "start": 20634.26, + "end": 20636.64, + "probability": 0.9866 + }, + { + "start": 20636.64, + "end": 20638.76, + "probability": 0.9738 + }, + { + "start": 20639.38, + "end": 20644.36, + "probability": 0.9932 + }, + { + "start": 20644.44, + "end": 20648.02, + "probability": 0.9683 + }, + { + "start": 20648.34, + "end": 20651.82, + "probability": 0.9359 + }, + { + "start": 20651.82, + "end": 20655.54, + "probability": 0.9154 + }, + { + "start": 20656.14, + "end": 20658.24, + "probability": 0.9951 + }, + { + "start": 20658.4, + "end": 20659.4, + "probability": 0.7924 + }, + { + "start": 20659.8, + "end": 20662.82, + "probability": 0.9562 + }, + { + "start": 20663.32, + "end": 20665.3, + "probability": 0.9624 + }, + { + "start": 20665.9, + "end": 20666.62, + "probability": 0.7801 + }, + { + "start": 20667.04, + "end": 20669.9, + "probability": 0.9941 + }, + { + "start": 20669.9, + "end": 20673.06, + "probability": 0.9966 + }, + { + "start": 20673.36, + "end": 20676.22, + "probability": 0.9333 + }, + { + "start": 20676.9, + "end": 20680.22, + "probability": 0.984 + }, + { + "start": 20680.6, + "end": 20683.9, + "probability": 0.9933 + }, + { + "start": 20684.2, + "end": 20687.16, + "probability": 0.9943 + }, + { + "start": 20687.16, + "end": 20690.14, + "probability": 0.7625 + }, + { + "start": 20690.54, + "end": 20692.86, + "probability": 0.815 + }, + { + "start": 20692.86, + "end": 20695.96, + "probability": 0.9686 + }, + { + "start": 20696.44, + "end": 20697.06, + "probability": 0.7505 + }, + { + "start": 20697.66, + "end": 20698.28, + "probability": 0.9106 + }, + { + "start": 20699.14, + "end": 20702.12, + "probability": 0.813 + }, + { + "start": 20702.64, + "end": 20704.76, + "probability": 0.9938 + }, + { + "start": 20704.76, + "end": 20706.94, + "probability": 0.9542 + }, + { + "start": 20707.32, + "end": 20709.3, + "probability": 0.9805 + }, + { + "start": 20709.3, + "end": 20712.16, + "probability": 0.9954 + }, + { + "start": 20712.46, + "end": 20714.5, + "probability": 0.7937 + }, + { + "start": 20714.96, + "end": 20719.42, + "probability": 0.9799 + }, + { + "start": 20719.98, + "end": 20720.1, + "probability": 0.2588 + }, + { + "start": 20720.16, + "end": 20720.36, + "probability": 0.7298 + }, + { + "start": 20720.44, + "end": 20720.88, + "probability": 0.7296 + }, + { + "start": 20721.06, + "end": 20724.0, + "probability": 0.9794 + }, + { + "start": 20724.58, + "end": 20726.8, + "probability": 0.5546 + }, + { + "start": 20727.28, + "end": 20728.72, + "probability": 0.7354 + }, + { + "start": 20728.74, + "end": 20729.42, + "probability": 0.4221 + }, + { + "start": 20729.52, + "end": 20730.34, + "probability": 0.768 + }, + { + "start": 20730.76, + "end": 20731.88, + "probability": 0.4514 + }, + { + "start": 20732.14, + "end": 20733.86, + "probability": 0.7269 + }, + { + "start": 20733.92, + "end": 20734.34, + "probability": 0.7282 + }, + { + "start": 20734.4, + "end": 20734.84, + "probability": 0.9387 + }, + { + "start": 20734.92, + "end": 20735.6, + "probability": 0.6305 + }, + { + "start": 20736.08, + "end": 20740.06, + "probability": 0.9951 + }, + { + "start": 20740.26, + "end": 20741.13, + "probability": 0.8407 + }, + { + "start": 20741.76, + "end": 20743.38, + "probability": 0.9873 + }, + { + "start": 20744.02, + "end": 20744.95, + "probability": 0.7656 + }, + { + "start": 20745.7, + "end": 20746.16, + "probability": 0.9267 + }, + { + "start": 20746.26, + "end": 20748.22, + "probability": 0.9926 + }, + { + "start": 20748.6, + "end": 20749.28, + "probability": 0.9438 + }, + { + "start": 20749.44, + "end": 20751.58, + "probability": 0.9744 + }, + { + "start": 20751.64, + "end": 20754.76, + "probability": 0.9878 + }, + { + "start": 20755.12, + "end": 20756.36, + "probability": 0.8457 + }, + { + "start": 20756.7, + "end": 20760.96, + "probability": 0.9234 + }, + { + "start": 20761.06, + "end": 20761.94, + "probability": 0.906 + }, + { + "start": 20762.54, + "end": 20766.24, + "probability": 0.9747 + }, + { + "start": 20766.24, + "end": 20770.2, + "probability": 0.9675 + }, + { + "start": 20770.34, + "end": 20771.42, + "probability": 0.8448 + }, + { + "start": 20771.88, + "end": 20772.6, + "probability": 0.6938 + }, + { + "start": 20772.68, + "end": 20775.57, + "probability": 0.9805 + }, + { + "start": 20776.4, + "end": 20781.6, + "probability": 0.981 + }, + { + "start": 20782.34, + "end": 20785.6, + "probability": 0.9717 + }, + { + "start": 20786.08, + "end": 20786.38, + "probability": 0.653 + }, + { + "start": 20786.8, + "end": 20792.14, + "probability": 0.9381 + }, + { + "start": 20792.66, + "end": 20794.72, + "probability": 0.9148 + }, + { + "start": 20795.2, + "end": 20797.04, + "probability": 0.9805 + }, + { + "start": 20797.32, + "end": 20801.16, + "probability": 0.9863 + }, + { + "start": 20801.66, + "end": 20806.88, + "probability": 0.9714 + }, + { + "start": 20807.48, + "end": 20811.64, + "probability": 0.9969 + }, + { + "start": 20811.98, + "end": 20812.66, + "probability": 0.9094 + }, + { + "start": 20812.8, + "end": 20813.78, + "probability": 0.9467 + }, + { + "start": 20814.28, + "end": 20815.4, + "probability": 0.7809 + }, + { + "start": 20816.1, + "end": 20820.04, + "probability": 0.9918 + }, + { + "start": 20820.16, + "end": 20821.2, + "probability": 0.9946 + }, + { + "start": 20821.32, + "end": 20821.64, + "probability": 0.3052 + }, + { + "start": 20822.08, + "end": 20822.88, + "probability": 0.7175 + }, + { + "start": 20822.96, + "end": 20823.32, + "probability": 0.9208 + }, + { + "start": 20823.88, + "end": 20825.64, + "probability": 0.9056 + }, + { + "start": 20826.09, + "end": 20826.6, + "probability": 0.1599 + }, + { + "start": 20826.74, + "end": 20826.94, + "probability": 0.2668 + }, + { + "start": 20827.38, + "end": 20830.88, + "probability": 0.5234 + }, + { + "start": 20831.48, + "end": 20834.58, + "probability": 0.9861 + }, + { + "start": 20835.38, + "end": 20837.28, + "probability": 0.9954 + }, + { + "start": 20837.9, + "end": 20838.56, + "probability": 0.1746 + }, + { + "start": 20838.84, + "end": 20840.52, + "probability": 0.2816 + }, + { + "start": 20840.64, + "end": 20841.21, + "probability": 0.5836 + }, + { + "start": 20842.7, + "end": 20844.88, + "probability": 0.9905 + }, + { + "start": 20845.23, + "end": 20847.86, + "probability": 0.9816 + }, + { + "start": 20847.86, + "end": 20850.96, + "probability": 0.9977 + }, + { + "start": 20852.18, + "end": 20854.1, + "probability": 0.5912 + }, + { + "start": 20854.1, + "end": 20857.04, + "probability": 0.5779 + }, + { + "start": 20857.1, + "end": 20859.36, + "probability": 0.8338 + }, + { + "start": 20860.27, + "end": 20860.62, + "probability": 0.1965 + }, + { + "start": 20860.9, + "end": 20862.38, + "probability": 0.5113 + }, + { + "start": 20862.5, + "end": 20864.18, + "probability": 0.9883 + }, + { + "start": 20865.72, + "end": 20870.04, + "probability": 0.8622 + }, + { + "start": 20870.14, + "end": 20871.77, + "probability": 0.7402 + }, + { + "start": 20872.38, + "end": 20873.22, + "probability": 0.6871 + }, + { + "start": 20873.44, + "end": 20874.04, + "probability": 0.828 + }, + { + "start": 20874.1, + "end": 20875.82, + "probability": 0.9941 + }, + { + "start": 20876.24, + "end": 20877.86, + "probability": 0.9371 + }, + { + "start": 20878.8, + "end": 20881.26, + "probability": 0.9498 + }, + { + "start": 20882.22, + "end": 20887.3, + "probability": 0.8699 + }, + { + "start": 20887.86, + "end": 20889.88, + "probability": 0.9516 + }, + { + "start": 20889.94, + "end": 20893.46, + "probability": 0.8607 + }, + { + "start": 20893.7, + "end": 20894.5, + "probability": 0.9141 + }, + { + "start": 20894.62, + "end": 20896.76, + "probability": 0.9588 + }, + { + "start": 20897.06, + "end": 20900.44, + "probability": 0.9155 + }, + { + "start": 20900.8, + "end": 20902.8, + "probability": 0.9847 + }, + { + "start": 20903.48, + "end": 20905.82, + "probability": 0.8514 + }, + { + "start": 20906.38, + "end": 20910.16, + "probability": 0.9456 + }, + { + "start": 20910.68, + "end": 20916.36, + "probability": 0.7108 + }, + { + "start": 20917.08, + "end": 20917.74, + "probability": 0.7863 + }, + { + "start": 20917.94, + "end": 20922.66, + "probability": 0.9611 + }, + { + "start": 20922.94, + "end": 20924.44, + "probability": 0.8753 + }, + { + "start": 20924.92, + "end": 20927.2, + "probability": 0.6492 + }, + { + "start": 20927.46, + "end": 20928.96, + "probability": 0.6722 + }, + { + "start": 20929.08, + "end": 20930.64, + "probability": 0.6199 + }, + { + "start": 20931.1, + "end": 20932.5, + "probability": 0.8488 + }, + { + "start": 20932.66, + "end": 20934.98, + "probability": 0.7213 + }, + { + "start": 20935.08, + "end": 20937.57, + "probability": 0.9955 + }, + { + "start": 20938.0, + "end": 20939.22, + "probability": 0.7767 + }, + { + "start": 20939.24, + "end": 20942.35, + "probability": 0.9779 + }, + { + "start": 20942.52, + "end": 20944.4, + "probability": 0.9189 + }, + { + "start": 20944.44, + "end": 20945.02, + "probability": 0.6214 + }, + { + "start": 20945.12, + "end": 20946.0, + "probability": 0.7091 + }, + { + "start": 20946.86, + "end": 20948.24, + "probability": 0.7499 + }, + { + "start": 20948.26, + "end": 20949.14, + "probability": 0.8678 + }, + { + "start": 20949.64, + "end": 20950.96, + "probability": 0.5586 + }, + { + "start": 20951.68, + "end": 20953.42, + "probability": 0.8612 + }, + { + "start": 20953.88, + "end": 20957.0, + "probability": 0.7123 + }, + { + "start": 20957.14, + "end": 20957.8, + "probability": 0.6807 + }, + { + "start": 20957.86, + "end": 20958.82, + "probability": 0.4819 + }, + { + "start": 20959.38, + "end": 20960.64, + "probability": 0.8822 + }, + { + "start": 20960.78, + "end": 20962.34, + "probability": 0.4848 + }, + { + "start": 20962.36, + "end": 20963.5, + "probability": 0.8317 + }, + { + "start": 20963.6, + "end": 20965.34, + "probability": 0.6349 + }, + { + "start": 20965.68, + "end": 20966.8, + "probability": 0.8758 + }, + { + "start": 20967.26, + "end": 20970.8, + "probability": 0.9373 + }, + { + "start": 20971.36, + "end": 20977.28, + "probability": 0.8588 + }, + { + "start": 20979.18, + "end": 20985.72, + "probability": 0.9882 + }, + { + "start": 20986.3, + "end": 20988.54, + "probability": 0.998 + }, + { + "start": 20988.54, + "end": 20991.12, + "probability": 0.9971 + }, + { + "start": 20992.39, + "end": 20996.84, + "probability": 0.9277 + }, + { + "start": 20997.52, + "end": 21003.42, + "probability": 0.9966 + }, + { + "start": 21003.8, + "end": 21007.08, + "probability": 0.8325 + }, + { + "start": 21007.36, + "end": 21010.52, + "probability": 0.9893 + }, + { + "start": 21010.74, + "end": 21011.66, + "probability": 0.7323 + }, + { + "start": 21012.02, + "end": 21015.15, + "probability": 0.637 + }, + { + "start": 21016.68, + "end": 21016.68, + "probability": 0.2805 + }, + { + "start": 21016.68, + "end": 21019.22, + "probability": 0.5668 + }, + { + "start": 21019.28, + "end": 21019.58, + "probability": 0.6814 + }, + { + "start": 21024.6, + "end": 21025.14, + "probability": 0.5465 + }, + { + "start": 21025.32, + "end": 21026.38, + "probability": 0.6941 + }, + { + "start": 21026.42, + "end": 21027.48, + "probability": 0.5254 + }, + { + "start": 21027.5, + "end": 21030.12, + "probability": 0.9855 + }, + { + "start": 21030.46, + "end": 21032.44, + "probability": 0.2545 + }, + { + "start": 21032.44, + "end": 21032.44, + "probability": 0.8044 + }, + { + "start": 21032.44, + "end": 21033.34, + "probability": 0.7022 + }, + { + "start": 21033.34, + "end": 21038.14, + "probability": 0.9555 + }, + { + "start": 21038.34, + "end": 21044.46, + "probability": 0.2943 + }, + { + "start": 21046.58, + "end": 21047.02, + "probability": 0.3442 + }, + { + "start": 21048.04, + "end": 21049.48, + "probability": 0.6445 + }, + { + "start": 21050.26, + "end": 21050.8, + "probability": 0.1852 + }, + { + "start": 21051.38, + "end": 21053.06, + "probability": 0.7095 + }, + { + "start": 21053.66, + "end": 21054.8, + "probability": 0.5578 + }, + { + "start": 21054.86, + "end": 21055.16, + "probability": 0.7833 + }, + { + "start": 21056.02, + "end": 21057.2, + "probability": 0.6815 + }, + { + "start": 21057.94, + "end": 21060.42, + "probability": 0.9353 + }, + { + "start": 21060.92, + "end": 21062.83, + "probability": 0.9958 + }, + { + "start": 21064.0, + "end": 21064.18, + "probability": 0.7344 + }, + { + "start": 21064.26, + "end": 21066.08, + "probability": 0.9883 + }, + { + "start": 21066.2, + "end": 21067.14, + "probability": 0.5598 + }, + { + "start": 21067.36, + "end": 21068.3, + "probability": 0.6939 + }, + { + "start": 21068.38, + "end": 21069.1, + "probability": 0.9709 + }, + { + "start": 21069.24, + "end": 21070.3, + "probability": 0.9723 + }, + { + "start": 21070.5, + "end": 21073.42, + "probability": 0.9897 + }, + { + "start": 21073.7, + "end": 21075.82, + "probability": 0.8563 + }, + { + "start": 21076.94, + "end": 21079.37, + "probability": 0.9427 + }, + { + "start": 21079.94, + "end": 21081.14, + "probability": 0.9385 + }, + { + "start": 21081.9, + "end": 21087.18, + "probability": 0.9607 + }, + { + "start": 21087.86, + "end": 21090.64, + "probability": 0.974 + }, + { + "start": 21091.68, + "end": 21093.96, + "probability": 0.9929 + }, + { + "start": 21094.46, + "end": 21095.79, + "probability": 0.8421 + }, + { + "start": 21096.1, + "end": 21096.88, + "probability": 0.9176 + }, + { + "start": 21097.48, + "end": 21098.18, + "probability": 0.8584 + }, + { + "start": 21098.28, + "end": 21098.82, + "probability": 0.8175 + }, + { + "start": 21098.88, + "end": 21099.86, + "probability": 0.7845 + }, + { + "start": 21099.9, + "end": 21101.86, + "probability": 0.9646 + }, + { + "start": 21102.36, + "end": 21103.8, + "probability": 0.9736 + }, + { + "start": 21104.7, + "end": 21105.46, + "probability": 0.7009 + }, + { + "start": 21106.0, + "end": 21106.52, + "probability": 0.5978 + }, + { + "start": 21107.82, + "end": 21110.25, + "probability": 0.9884 + }, + { + "start": 21113.1, + "end": 21115.68, + "probability": 0.974 + }, + { + "start": 21116.88, + "end": 21121.16, + "probability": 0.982 + }, + { + "start": 21122.04, + "end": 21123.32, + "probability": 0.9667 + }, + { + "start": 21123.44, + "end": 21125.24, + "probability": 0.9871 + }, + { + "start": 21126.04, + "end": 21127.2, + "probability": 0.9934 + }, + { + "start": 21127.3, + "end": 21127.56, + "probability": 0.6587 + }, + { + "start": 21127.62, + "end": 21129.98, + "probability": 0.7076 + }, + { + "start": 21131.54, + "end": 21132.12, + "probability": 0.2204 + }, + { + "start": 21133.27, + "end": 21134.82, + "probability": 0.8649 + }, + { + "start": 21134.94, + "end": 21136.36, + "probability": 0.4158 + }, + { + "start": 21136.46, + "end": 21137.8, + "probability": 0.1923 + }, + { + "start": 21137.84, + "end": 21139.67, + "probability": 0.9658 + }, + { + "start": 21140.04, + "end": 21143.44, + "probability": 0.9295 + }, + { + "start": 21145.26, + "end": 21147.3, + "probability": 0.9653 + }, + { + "start": 21147.36, + "end": 21150.24, + "probability": 0.9832 + }, + { + "start": 21150.66, + "end": 21152.7, + "probability": 0.9612 + }, + { + "start": 21152.84, + "end": 21154.7, + "probability": 0.9916 + }, + { + "start": 21155.1, + "end": 21156.16, + "probability": 0.9966 + }, + { + "start": 21156.78, + "end": 21158.12, + "probability": 0.984 + }, + { + "start": 21158.16, + "end": 21159.76, + "probability": 0.9871 + }, + { + "start": 21160.2, + "end": 21161.1, + "probability": 0.7787 + }, + { + "start": 21161.14, + "end": 21161.52, + "probability": 0.7312 + }, + { + "start": 21161.7, + "end": 21162.3, + "probability": 0.9133 + }, + { + "start": 21163.44, + "end": 21166.94, + "probability": 0.9208 + }, + { + "start": 21167.84, + "end": 21169.5, + "probability": 0.9805 + }, + { + "start": 21169.56, + "end": 21170.66, + "probability": 0.7572 + }, + { + "start": 21170.72, + "end": 21171.18, + "probability": 0.7362 + }, + { + "start": 21171.3, + "end": 21171.78, + "probability": 0.3467 + }, + { + "start": 21172.56, + "end": 21174.88, + "probability": 0.8636 + }, + { + "start": 21176.16, + "end": 21177.48, + "probability": 0.9753 + }, + { + "start": 21178.58, + "end": 21182.82, + "probability": 0.9591 + }, + { + "start": 21183.28, + "end": 21187.6, + "probability": 0.9028 + }, + { + "start": 21188.16, + "end": 21189.14, + "probability": 0.6561 + }, + { + "start": 21189.7, + "end": 21191.36, + "probability": 0.9389 + }, + { + "start": 21192.38, + "end": 21195.04, + "probability": 0.9542 + }, + { + "start": 21195.6, + "end": 21197.42, + "probability": 0.967 + }, + { + "start": 21198.0, + "end": 21201.3, + "probability": 0.9962 + }, + { + "start": 21201.58, + "end": 21202.62, + "probability": 0.9507 + }, + { + "start": 21202.7, + "end": 21204.36, + "probability": 0.9356 + }, + { + "start": 21206.04, + "end": 21207.36, + "probability": 0.9193 + }, + { + "start": 21207.56, + "end": 21208.28, + "probability": 0.5523 + }, + { + "start": 21208.46, + "end": 21210.52, + "probability": 0.8307 + }, + { + "start": 21210.62, + "end": 21211.62, + "probability": 0.8949 + }, + { + "start": 21212.46, + "end": 21214.84, + "probability": 0.998 + }, + { + "start": 21215.08, + "end": 21217.58, + "probability": 0.7041 + }, + { + "start": 21217.72, + "end": 21217.72, + "probability": 0.0551 + }, + { + "start": 21217.72, + "end": 21217.96, + "probability": 0.2914 + }, + { + "start": 21218.0, + "end": 21218.49, + "probability": 0.6012 + }, + { + "start": 21219.36, + "end": 21220.56, + "probability": 0.9716 + }, + { + "start": 21220.62, + "end": 21222.06, + "probability": 0.8746 + }, + { + "start": 21222.16, + "end": 21222.77, + "probability": 0.9434 + }, + { + "start": 21223.8, + "end": 21225.06, + "probability": 0.9756 + }, + { + "start": 21225.14, + "end": 21226.43, + "probability": 0.9917 + }, + { + "start": 21226.46, + "end": 21228.48, + "probability": 0.9448 + }, + { + "start": 21229.34, + "end": 21230.04, + "probability": 0.5294 + }, + { + "start": 21230.12, + "end": 21231.72, + "probability": 0.9318 + }, + { + "start": 21231.8, + "end": 21233.12, + "probability": 0.7113 + }, + { + "start": 21233.2, + "end": 21234.26, + "probability": 0.974 + }, + { + "start": 21234.3, + "end": 21235.49, + "probability": 0.9771 + }, + { + "start": 21236.04, + "end": 21238.44, + "probability": 0.9524 + }, + { + "start": 21239.82, + "end": 21241.68, + "probability": 0.7112 + }, + { + "start": 21242.58, + "end": 21245.12, + "probability": 0.9591 + }, + { + "start": 21246.68, + "end": 21247.74, + "probability": 0.8899 + }, + { + "start": 21247.88, + "end": 21248.64, + "probability": 0.7964 + }, + { + "start": 21248.86, + "end": 21251.06, + "probability": 0.9746 + }, + { + "start": 21251.58, + "end": 21253.48, + "probability": 0.9297 + }, + { + "start": 21254.54, + "end": 21257.72, + "probability": 0.8449 + }, + { + "start": 21258.52, + "end": 21258.78, + "probability": 0.9905 + }, + { + "start": 21259.36, + "end": 21259.88, + "probability": 0.5569 + }, + { + "start": 21259.9, + "end": 21261.22, + "probability": 0.9738 + }, + { + "start": 21261.34, + "end": 21261.5, + "probability": 0.4041 + }, + { + "start": 21261.6, + "end": 21262.02, + "probability": 0.9329 + }, + { + "start": 21262.06, + "end": 21263.04, + "probability": 0.8505 + }, + { + "start": 21263.2, + "end": 21264.36, + "probability": 0.9797 + }, + { + "start": 21264.78, + "end": 21266.84, + "probability": 0.9785 + }, + { + "start": 21267.56, + "end": 21269.0, + "probability": 0.6832 + }, + { + "start": 21270.92, + "end": 21272.86, + "probability": 0.9288 + }, + { + "start": 21273.44, + "end": 21275.58, + "probability": 0.7771 + }, + { + "start": 21276.76, + "end": 21278.74, + "probability": 0.9932 + }, + { + "start": 21278.82, + "end": 21279.42, + "probability": 0.6208 + }, + { + "start": 21280.32, + "end": 21282.2, + "probability": 0.9832 + }, + { + "start": 21283.0, + "end": 21286.7, + "probability": 0.9927 + }, + { + "start": 21286.7, + "end": 21291.68, + "probability": 0.9773 + }, + { + "start": 21291.78, + "end": 21292.66, + "probability": 0.911 + }, + { + "start": 21292.74, + "end": 21293.64, + "probability": 0.9722 + }, + { + "start": 21294.04, + "end": 21295.18, + "probability": 0.9282 + }, + { + "start": 21295.58, + "end": 21298.44, + "probability": 0.9857 + }, + { + "start": 21298.78, + "end": 21299.88, + "probability": 0.8331 + }, + { + "start": 21299.98, + "end": 21300.68, + "probability": 0.9949 + }, + { + "start": 21301.32, + "end": 21302.04, + "probability": 0.6112 + }, + { + "start": 21302.06, + "end": 21303.04, + "probability": 0.7804 + }, + { + "start": 21303.14, + "end": 21304.58, + "probability": 0.9921 + }, + { + "start": 21305.18, + "end": 21306.36, + "probability": 0.9498 + }, + { + "start": 21306.42, + "end": 21310.36, + "probability": 0.9046 + }, + { + "start": 21312.54, + "end": 21315.66, + "probability": 0.1284 + }, + { + "start": 21317.3, + "end": 21317.52, + "probability": 0.5445 + }, + { + "start": 21317.52, + "end": 21317.96, + "probability": 0.4929 + }, + { + "start": 21318.06, + "end": 21319.04, + "probability": 0.667 + }, + { + "start": 21319.46, + "end": 21321.12, + "probability": 0.8577 + }, + { + "start": 21321.22, + "end": 21322.62, + "probability": 0.8642 + }, + { + "start": 21322.8, + "end": 21323.62, + "probability": 0.889 + }, + { + "start": 21324.26, + "end": 21327.66, + "probability": 0.9918 + }, + { + "start": 21327.78, + "end": 21331.3, + "probability": 0.9401 + }, + { + "start": 21332.21, + "end": 21333.5, + "probability": 0.4952 + }, + { + "start": 21333.66, + "end": 21334.5, + "probability": 0.7196 + }, + { + "start": 21334.68, + "end": 21336.2, + "probability": 0.9045 + }, + { + "start": 21336.26, + "end": 21338.53, + "probability": 0.7102 + }, + { + "start": 21338.6, + "end": 21339.82, + "probability": 0.9852 + }, + { + "start": 21340.7, + "end": 21343.42, + "probability": 0.4366 + }, + { + "start": 21344.76, + "end": 21347.06, + "probability": 0.2687 + }, + { + "start": 21348.38, + "end": 21348.88, + "probability": 0.6236 + }, + { + "start": 21349.82, + "end": 21351.92, + "probability": 0.9784 + }, + { + "start": 21352.66, + "end": 21353.2, + "probability": 0.7648 + }, + { + "start": 21353.2, + "end": 21354.76, + "probability": 0.9619 + }, + { + "start": 21354.82, + "end": 21355.76, + "probability": 0.9194 + }, + { + "start": 21356.34, + "end": 21358.9, + "probability": 0.5733 + }, + { + "start": 21360.36, + "end": 21365.88, + "probability": 0.9545 + }, + { + "start": 21366.66, + "end": 21369.62, + "probability": 0.9625 + }, + { + "start": 21369.98, + "end": 21372.18, + "probability": 0.9622 + }, + { + "start": 21372.28, + "end": 21374.48, + "probability": 0.9868 + }, + { + "start": 21375.18, + "end": 21375.92, + "probability": 0.4933 + }, + { + "start": 21376.96, + "end": 21378.76, + "probability": 0.9688 + }, + { + "start": 21378.82, + "end": 21380.42, + "probability": 0.9133 + }, + { + "start": 21382.59, + "end": 21385.24, + "probability": 0.8894 + }, + { + "start": 21387.24, + "end": 21391.38, + "probability": 0.9543 + }, + { + "start": 21392.1, + "end": 21393.31, + "probability": 0.6814 + }, + { + "start": 21393.5, + "end": 21396.4, + "probability": 0.7517 + }, + { + "start": 21396.58, + "end": 21397.5, + "probability": 0.5904 + }, + { + "start": 21398.66, + "end": 21400.12, + "probability": 0.9013 + }, + { + "start": 21400.28, + "end": 21401.48, + "probability": 0.8101 + }, + { + "start": 21401.56, + "end": 21403.28, + "probability": 0.905 + }, + { + "start": 21404.78, + "end": 21405.72, + "probability": 0.8804 + }, + { + "start": 21406.8, + "end": 21409.54, + "probability": 0.868 + }, + { + "start": 21410.28, + "end": 21411.1, + "probability": 0.4664 + }, + { + "start": 21411.18, + "end": 21412.36, + "probability": 0.7484 + }, + { + "start": 21412.42, + "end": 21412.76, + "probability": 0.5259 + }, + { + "start": 21412.88, + "end": 21413.48, + "probability": 0.4711 + }, + { + "start": 21413.48, + "end": 21414.86, + "probability": 0.3828 + }, + { + "start": 21414.98, + "end": 21414.98, + "probability": 0.2385 + }, + { + "start": 21414.98, + "end": 21415.96, + "probability": 0.7868 + }, + { + "start": 21417.16, + "end": 21420.84, + "probability": 0.8866 + }, + { + "start": 21421.26, + "end": 21424.26, + "probability": 0.9709 + }, + { + "start": 21424.54, + "end": 21425.82, + "probability": 0.7903 + }, + { + "start": 21425.88, + "end": 21426.64, + "probability": 0.4778 + }, + { + "start": 21427.12, + "end": 21431.96, + "probability": 0.8611 + }, + { + "start": 21432.66, + "end": 21433.82, + "probability": 0.9854 + }, + { + "start": 21434.32, + "end": 21437.72, + "probability": 0.9663 + }, + { + "start": 21438.0, + "end": 21439.42, + "probability": 0.9453 + }, + { + "start": 21439.44, + "end": 21440.02, + "probability": 0.7481 + }, + { + "start": 21440.18, + "end": 21441.38, + "probability": 0.9893 + }, + { + "start": 21441.62, + "end": 21442.72, + "probability": 0.6574 + }, + { + "start": 21442.76, + "end": 21443.6, + "probability": 0.0783 + }, + { + "start": 21444.06, + "end": 21445.8, + "probability": 0.1718 + }, + { + "start": 21446.06, + "end": 21446.42, + "probability": 0.1558 + }, + { + "start": 21446.74, + "end": 21447.3, + "probability": 0.1404 + }, + { + "start": 21447.4, + "end": 21447.4, + "probability": 0.158 + }, + { + "start": 21447.4, + "end": 21451.8, + "probability": 0.8662 + }, + { + "start": 21451.9, + "end": 21452.4, + "probability": 0.8215 + }, + { + "start": 21468.94, + "end": 21469.92, + "probability": 0.4462 + }, + { + "start": 21470.16, + "end": 21470.74, + "probability": 0.7611 + }, + { + "start": 21471.0, + "end": 21474.6, + "probability": 0.9751 + }, + { + "start": 21474.66, + "end": 21480.16, + "probability": 0.954 + }, + { + "start": 21480.24, + "end": 21482.76, + "probability": 0.9647 + }, + { + "start": 21482.76, + "end": 21487.44, + "probability": 0.8724 + }, + { + "start": 21488.1, + "end": 21490.68, + "probability": 0.7845 + }, + { + "start": 21491.86, + "end": 21496.56, + "probability": 0.7527 + }, + { + "start": 21496.6, + "end": 21500.1, + "probability": 0.951 + }, + { + "start": 21500.24, + "end": 21502.68, + "probability": 0.9792 + }, + { + "start": 21503.42, + "end": 21506.0, + "probability": 0.9111 + }, + { + "start": 21506.14, + "end": 21510.72, + "probability": 0.8725 + }, + { + "start": 21511.08, + "end": 21516.48, + "probability": 0.9949 + }, + { + "start": 21517.02, + "end": 21518.4, + "probability": 0.9937 + }, + { + "start": 21519.04, + "end": 21523.34, + "probability": 0.5471 + }, + { + "start": 21523.92, + "end": 21526.98, + "probability": 0.9876 + }, + { + "start": 21527.88, + "end": 21528.68, + "probability": 0.9875 + }, + { + "start": 21529.02, + "end": 21529.42, + "probability": 0.6635 + }, + { + "start": 21530.0, + "end": 21534.1, + "probability": 0.8248 + }, + { + "start": 21534.1, + "end": 21538.02, + "probability": 0.9637 + }, + { + "start": 21538.76, + "end": 21542.42, + "probability": 0.9731 + }, + { + "start": 21543.46, + "end": 21545.82, + "probability": 0.9416 + }, + { + "start": 21545.98, + "end": 21548.54, + "probability": 0.767 + }, + { + "start": 21549.42, + "end": 21552.56, + "probability": 0.9886 + }, + { + "start": 21552.72, + "end": 21554.2, + "probability": 0.7435 + }, + { + "start": 21554.54, + "end": 21559.58, + "probability": 0.7218 + }, + { + "start": 21559.58, + "end": 21561.92, + "probability": 0.9591 + }, + { + "start": 21562.96, + "end": 21564.42, + "probability": 0.499 + }, + { + "start": 21566.58, + "end": 21569.52, + "probability": 0.1049 + }, + { + "start": 21569.52, + "end": 21572.54, + "probability": 0.9945 + }, + { + "start": 21576.86, + "end": 21578.36, + "probability": 0.7952 + }, + { + "start": 21579.26, + "end": 21584.62, + "probability": 0.9299 + }, + { + "start": 21584.62, + "end": 21585.02, + "probability": 0.487 + }, + { + "start": 21585.6, + "end": 21588.46, + "probability": 0.9926 + }, + { + "start": 21589.08, + "end": 21593.52, + "probability": 0.98 + }, + { + "start": 21594.1, + "end": 21594.76, + "probability": 0.6076 + }, + { + "start": 21595.06, + "end": 21600.84, + "probability": 0.9438 + }, + { + "start": 21601.42, + "end": 21603.9, + "probability": 0.9173 + }, + { + "start": 21604.5, + "end": 21606.32, + "probability": 0.9199 + }, + { + "start": 21606.32, + "end": 21608.6, + "probability": 0.9702 + }, + { + "start": 21609.44, + "end": 21609.72, + "probability": 0.6634 + }, + { + "start": 21610.34, + "end": 21611.96, + "probability": 0.9639 + }, + { + "start": 21612.7, + "end": 21613.78, + "probability": 0.8496 + }, + { + "start": 21613.92, + "end": 21615.44, + "probability": 0.4078 + }, + { + "start": 21615.5, + "end": 21618.74, + "probability": 0.9617 + }, + { + "start": 21618.74, + "end": 21622.02, + "probability": 0.9524 + }, + { + "start": 21622.62, + "end": 21626.64, + "probability": 0.9871 + }, + { + "start": 21627.28, + "end": 21632.52, + "probability": 0.9517 + }, + { + "start": 21632.52, + "end": 21637.96, + "probability": 0.9933 + }, + { + "start": 21638.08, + "end": 21640.06, + "probability": 0.9935 + }, + { + "start": 21640.06, + "end": 21642.6, + "probability": 0.9865 + }, + { + "start": 21643.3, + "end": 21645.38, + "probability": 0.9408 + }, + { + "start": 21646.36, + "end": 21648.9, + "probability": 0.9807 + }, + { + "start": 21649.64, + "end": 21651.9, + "probability": 0.9958 + }, + { + "start": 21652.78, + "end": 21653.84, + "probability": 0.9857 + }, + { + "start": 21654.36, + "end": 21659.22, + "probability": 0.9806 + }, + { + "start": 21660.46, + "end": 21663.32, + "probability": 0.9935 + }, + { + "start": 21663.32, + "end": 21665.74, + "probability": 0.9938 + }, + { + "start": 21665.9, + "end": 21667.3, + "probability": 0.8755 + }, + { + "start": 21667.8, + "end": 21671.8, + "probability": 0.7408 + }, + { + "start": 21672.42, + "end": 21674.88, + "probability": 0.9872 + }, + { + "start": 21675.88, + "end": 21679.7, + "probability": 0.7454 + }, + { + "start": 21679.7, + "end": 21682.7, + "probability": 0.9271 + }, + { + "start": 21682.8, + "end": 21684.3, + "probability": 0.6391 + }, + { + "start": 21685.18, + "end": 21685.84, + "probability": 0.8286 + }, + { + "start": 21686.52, + "end": 21690.38, + "probability": 0.9835 + }, + { + "start": 21690.5, + "end": 21692.88, + "probability": 0.98 + }, + { + "start": 21693.4, + "end": 21697.92, + "probability": 0.9941 + }, + { + "start": 21698.7, + "end": 21700.2, + "probability": 0.6658 + }, + { + "start": 21700.48, + "end": 21702.96, + "probability": 0.9932 + }, + { + "start": 21702.96, + "end": 21705.72, + "probability": 0.9936 + }, + { + "start": 21705.82, + "end": 21707.0, + "probability": 0.6976 + }, + { + "start": 21707.42, + "end": 21709.14, + "probability": 0.9747 + }, + { + "start": 21709.18, + "end": 21713.04, + "probability": 0.9353 + }, + { + "start": 21713.96, + "end": 21716.16, + "probability": 0.9718 + }, + { + "start": 21716.16, + "end": 21718.24, + "probability": 0.8356 + }, + { + "start": 21718.34, + "end": 21721.4, + "probability": 0.7798 + }, + { + "start": 21721.4, + "end": 21723.98, + "probability": 0.9421 + }, + { + "start": 21725.38, + "end": 21728.46, + "probability": 0.9856 + }, + { + "start": 21728.52, + "end": 21733.76, + "probability": 0.9465 + }, + { + "start": 21734.1, + "end": 21736.86, + "probability": 0.9531 + }, + { + "start": 21736.86, + "end": 21741.61, + "probability": 0.958 + }, + { + "start": 21742.28, + "end": 21746.82, + "probability": 0.981 + }, + { + "start": 21748.2, + "end": 21751.42, + "probability": 0.9906 + }, + { + "start": 21752.02, + "end": 21753.7, + "probability": 0.9253 + }, + { + "start": 21753.9, + "end": 21756.92, + "probability": 0.9699 + }, + { + "start": 21757.54, + "end": 21758.16, + "probability": 0.8765 + }, + { + "start": 21758.72, + "end": 21760.96, + "probability": 0.9751 + }, + { + "start": 21761.04, + "end": 21764.44, + "probability": 0.9393 + }, + { + "start": 21765.42, + "end": 21768.44, + "probability": 0.9352 + }, + { + "start": 21769.09, + "end": 21771.76, + "probability": 0.2449 + }, + { + "start": 21771.76, + "end": 21772.48, + "probability": 0.3403 + }, + { + "start": 21772.5, + "end": 21775.04, + "probability": 0.8759 + }, + { + "start": 21775.14, + "end": 21777.06, + "probability": 0.7371 + }, + { + "start": 21777.5, + "end": 21780.68, + "probability": 0.9269 + }, + { + "start": 21781.06, + "end": 21782.5, + "probability": 0.7715 + }, + { + "start": 21783.5, + "end": 21789.08, + "probability": 0.9167 + }, + { + "start": 21789.68, + "end": 21793.06, + "probability": 0.9956 + }, + { + "start": 21793.42, + "end": 21797.98, + "probability": 0.8665 + }, + { + "start": 21798.5, + "end": 21800.04, + "probability": 0.8918 + }, + { + "start": 21800.78, + "end": 21807.22, + "probability": 0.9104 + }, + { + "start": 21807.82, + "end": 21808.88, + "probability": 0.7959 + }, + { + "start": 21809.12, + "end": 21811.84, + "probability": 0.9405 + }, + { + "start": 21812.0, + "end": 21813.44, + "probability": 0.3013 + }, + { + "start": 21813.56, + "end": 21814.92, + "probability": 0.9255 + }, + { + "start": 21815.26, + "end": 21816.68, + "probability": 0.8884 + }, + { + "start": 21816.84, + "end": 21819.9, + "probability": 0.8221 + }, + { + "start": 21820.04, + "end": 21821.74, + "probability": 0.9495 + }, + { + "start": 21822.4, + "end": 21823.92, + "probability": 0.6232 + }, + { + "start": 21824.4, + "end": 21824.66, + "probability": 0.5461 + }, + { + "start": 21824.74, + "end": 21826.0, + "probability": 0.9738 + }, + { + "start": 21828.84, + "end": 21835.94, + "probability": 0.9683 + }, + { + "start": 21836.04, + "end": 21839.46, + "probability": 0.9934 + }, + { + "start": 21839.52, + "end": 21840.94, + "probability": 0.5008 + }, + { + "start": 21841.0, + "end": 21841.64, + "probability": 0.8597 + }, + { + "start": 21842.2, + "end": 21843.08, + "probability": 0.5547 + }, + { + "start": 21843.16, + "end": 21844.3, + "probability": 0.9402 + }, + { + "start": 21844.64, + "end": 21847.48, + "probability": 0.7939 + }, + { + "start": 21848.3, + "end": 21850.94, + "probability": 0.9561 + }, + { + "start": 21851.7, + "end": 21853.98, + "probability": 0.5493 + }, + { + "start": 21853.98, + "end": 21857.58, + "probability": 0.9598 + }, + { + "start": 21858.42, + "end": 21862.52, + "probability": 0.9962 + }, + { + "start": 21863.04, + "end": 21866.7, + "probability": 0.991 + }, + { + "start": 21867.76, + "end": 21868.34, + "probability": 0.952 + }, + { + "start": 21868.96, + "end": 21869.86, + "probability": 0.9916 + }, + { + "start": 21870.14, + "end": 21872.68, + "probability": 0.9475 + }, + { + "start": 21873.3, + "end": 21877.38, + "probability": 0.9845 + }, + { + "start": 21878.38, + "end": 21880.8, + "probability": 0.7341 + }, + { + "start": 21880.86, + "end": 21882.76, + "probability": 0.768 + }, + { + "start": 21883.14, + "end": 21885.84, + "probability": 0.9658 + }, + { + "start": 21886.44, + "end": 21888.66, + "probability": 0.6198 + }, + { + "start": 21889.46, + "end": 21891.66, + "probability": 0.8552 + }, + { + "start": 21891.92, + "end": 21897.2, + "probability": 0.734 + }, + { + "start": 21897.76, + "end": 21900.36, + "probability": 0.9953 + }, + { + "start": 21900.72, + "end": 21902.68, + "probability": 0.8732 + }, + { + "start": 21903.24, + "end": 21905.48, + "probability": 0.8843 + }, + { + "start": 21905.48, + "end": 21908.68, + "probability": 0.9834 + }, + { + "start": 21909.22, + "end": 21912.36, + "probability": 0.943 + }, + { + "start": 21913.0, + "end": 21916.78, + "probability": 0.9491 + }, + { + "start": 21917.4, + "end": 21921.12, + "probability": 0.9961 + }, + { + "start": 21921.66, + "end": 21924.24, + "probability": 0.995 + }, + { + "start": 21924.84, + "end": 21928.66, + "probability": 0.9874 + }, + { + "start": 21930.4, + "end": 21931.16, + "probability": 0.896 + }, + { + "start": 21931.74, + "end": 21935.74, + "probability": 0.9553 + }, + { + "start": 21936.26, + "end": 21940.02, + "probability": 0.7695 + }, + { + "start": 21941.08, + "end": 21943.6, + "probability": 0.9639 + }, + { + "start": 21943.7, + "end": 21944.1, + "probability": 0.5612 + }, + { + "start": 21944.28, + "end": 21947.52, + "probability": 0.9608 + }, + { + "start": 21947.52, + "end": 21950.64, + "probability": 0.9873 + }, + { + "start": 21951.32, + "end": 21953.76, + "probability": 0.9917 + }, + { + "start": 21954.34, + "end": 21956.34, + "probability": 0.9415 + }, + { + "start": 21957.18, + "end": 21957.88, + "probability": 0.7416 + }, + { + "start": 21958.46, + "end": 21960.62, + "probability": 0.8882 + }, + { + "start": 21960.74, + "end": 21963.66, + "probability": 0.9797 + }, + { + "start": 21963.66, + "end": 21966.68, + "probability": 0.7975 + }, + { + "start": 21967.84, + "end": 21972.26, + "probability": 0.9687 + }, + { + "start": 21972.38, + "end": 21972.48, + "probability": 0.3108 + }, + { + "start": 21972.6, + "end": 21972.96, + "probability": 0.81 + }, + { + "start": 21973.0, + "end": 21977.52, + "probability": 0.8009 + }, + { + "start": 21978.2, + "end": 21981.34, + "probability": 0.8796 + }, + { + "start": 21981.92, + "end": 21984.16, + "probability": 0.7562 + }, + { + "start": 21984.64, + "end": 21987.84, + "probability": 0.9883 + }, + { + "start": 21988.7, + "end": 21988.9, + "probability": 0.0069 + }, + { + "start": 21988.9, + "end": 21993.76, + "probability": 0.9884 + }, + { + "start": 21994.64, + "end": 21997.78, + "probability": 0.9908 + }, + { + "start": 21997.78, + "end": 22001.12, + "probability": 0.7472 + }, + { + "start": 22001.2, + "end": 22003.3, + "probability": 0.9204 + }, + { + "start": 22003.3, + "end": 22006.61, + "probability": 0.6029 + }, + { + "start": 22008.74, + "end": 22011.26, + "probability": 0.9974 + }, + { + "start": 22011.26, + "end": 22013.28, + "probability": 0.8583 + }, + { + "start": 22013.9, + "end": 22016.18, + "probability": 0.9868 + }, + { + "start": 22016.6, + "end": 22018.54, + "probability": 0.8553 + }, + { + "start": 22020.4, + "end": 22023.04, + "probability": 0.8244 + }, + { + "start": 22023.04, + "end": 22025.58, + "probability": 0.8263 + }, + { + "start": 22026.04, + "end": 22030.03, + "probability": 0.8739 + }, + { + "start": 22030.68, + "end": 22032.5, + "probability": 0.9732 + }, + { + "start": 22032.92, + "end": 22034.9, + "probability": 0.8452 + }, + { + "start": 22034.98, + "end": 22035.44, + "probability": 0.8834 + }, + { + "start": 22035.5, + "end": 22037.56, + "probability": 0.9198 + }, + { + "start": 22037.64, + "end": 22041.54, + "probability": 0.7682 + }, + { + "start": 22041.74, + "end": 22042.86, + "probability": 0.7914 + }, + { + "start": 22042.96, + "end": 22046.08, + "probability": 0.8517 + }, + { + "start": 22046.08, + "end": 22048.32, + "probability": 0.677 + }, + { + "start": 22049.06, + "end": 22051.24, + "probability": 0.9923 + }, + { + "start": 22051.54, + "end": 22055.19, + "probability": 0.9407 + }, + { + "start": 22055.4, + "end": 22059.16, + "probability": 0.9256 + }, + { + "start": 22059.28, + "end": 22062.8, + "probability": 0.9801 + }, + { + "start": 22063.28, + "end": 22066.4, + "probability": 0.7879 + }, + { + "start": 22066.4, + "end": 22068.34, + "probability": 0.9907 + }, + { + "start": 22069.12, + "end": 22070.64, + "probability": 0.826 + }, + { + "start": 22071.34, + "end": 22074.74, + "probability": 0.9915 + }, + { + "start": 22074.74, + "end": 22079.28, + "probability": 0.9673 + }, + { + "start": 22080.3, + "end": 22081.3, + "probability": 0.5446 + }, + { + "start": 22081.36, + "end": 22085.38, + "probability": 0.6769 + }, + { + "start": 22085.6, + "end": 22086.68, + "probability": 0.7748 + }, + { + "start": 22086.74, + "end": 22087.44, + "probability": 0.7746 + }, + { + "start": 22087.5, + "end": 22088.7, + "probability": 0.9099 + }, + { + "start": 22089.42, + "end": 22093.28, + "probability": 0.9884 + }, + { + "start": 22093.74, + "end": 22097.74, + "probability": 0.9025 + }, + { + "start": 22097.74, + "end": 22101.76, + "probability": 0.9756 + }, + { + "start": 22102.12, + "end": 22103.38, + "probability": 0.9869 + }, + { + "start": 22104.06, + "end": 22105.6, + "probability": 0.8975 + }, + { + "start": 22106.32, + "end": 22107.72, + "probability": 0.6703 + }, + { + "start": 22108.28, + "end": 22111.7, + "probability": 0.9727 + }, + { + "start": 22114.58, + "end": 22116.96, + "probability": 0.9941 + }, + { + "start": 22116.96, + "end": 22119.68, + "probability": 0.9758 + }, + { + "start": 22120.26, + "end": 22124.16, + "probability": 0.8819 + }, + { + "start": 22124.16, + "end": 22129.7, + "probability": 0.8489 + }, + { + "start": 22129.8, + "end": 22130.74, + "probability": 0.7208 + }, + { + "start": 22130.76, + "end": 22132.96, + "probability": 0.7932 + }, + { + "start": 22133.36, + "end": 22134.12, + "probability": 0.9344 + }, + { + "start": 22134.12, + "end": 22134.82, + "probability": 0.5094 + }, + { + "start": 22135.44, + "end": 22135.79, + "probability": 0.4863 + }, + { + "start": 22136.66, + "end": 22138.44, + "probability": 0.9639 + }, + { + "start": 22138.48, + "end": 22139.88, + "probability": 0.9479 + }, + { + "start": 22141.1, + "end": 22144.66, + "probability": 0.5771 + }, + { + "start": 22144.66, + "end": 22147.72, + "probability": 0.8301 + }, + { + "start": 22147.76, + "end": 22153.08, + "probability": 0.9661 + }, + { + "start": 22153.26, + "end": 22153.8, + "probability": 0.7292 + }, + { + "start": 22154.04, + "end": 22154.38, + "probability": 0.8241 + }, + { + "start": 22154.46, + "end": 22157.22, + "probability": 0.9888 + }, + { + "start": 22157.92, + "end": 22159.04, + "probability": 0.9517 + }, + { + "start": 22159.22, + "end": 22160.32, + "probability": 0.8835 + }, + { + "start": 22160.4, + "end": 22161.53, + "probability": 0.8907 + }, + { + "start": 22163.14, + "end": 22163.56, + "probability": 0.054 + }, + { + "start": 22163.56, + "end": 22165.76, + "probability": 0.4033 + }, + { + "start": 22165.86, + "end": 22167.16, + "probability": 0.7474 + }, + { + "start": 22168.16, + "end": 22168.2, + "probability": 0.0312 + }, + { + "start": 22168.2, + "end": 22172.33, + "probability": 0.7837 + }, + { + "start": 22174.76, + "end": 22174.76, + "probability": 0.141 + }, + { + "start": 22174.76, + "end": 22178.08, + "probability": 0.8726 + }, + { + "start": 22178.64, + "end": 22183.4, + "probability": 0.9725 + }, + { + "start": 22183.56, + "end": 22187.0, + "probability": 0.9926 + }, + { + "start": 22187.56, + "end": 22191.56, + "probability": 0.9659 + }, + { + "start": 22192.02, + "end": 22196.88, + "probability": 0.955 + }, + { + "start": 22196.92, + "end": 22197.48, + "probability": 0.8339 + }, + { + "start": 22197.82, + "end": 22202.96, + "probability": 0.9628 + }, + { + "start": 22203.06, + "end": 22203.7, + "probability": 0.7214 + }, + { + "start": 22204.18, + "end": 22206.76, + "probability": 0.9265 + }, + { + "start": 22206.82, + "end": 22208.86, + "probability": 0.9531 + }, + { + "start": 22209.28, + "end": 22211.52, + "probability": 0.9742 + }, + { + "start": 22211.78, + "end": 22212.18, + "probability": 0.7368 + }, + { + "start": 22212.2, + "end": 22212.96, + "probability": 0.5813 + }, + { + "start": 22213.08, + "end": 22213.42, + "probability": 0.788 + }, + { + "start": 22213.48, + "end": 22214.9, + "probability": 0.9694 + }, + { + "start": 22215.5, + "end": 22217.7, + "probability": 0.7976 + }, + { + "start": 22218.1, + "end": 22220.04, + "probability": 0.9937 + }, + { + "start": 22220.16, + "end": 22223.08, + "probability": 0.8767 + }, + { + "start": 22223.16, + "end": 22223.8, + "probability": 0.943 + }, + { + "start": 22224.54, + "end": 22225.18, + "probability": 0.5586 + }, + { + "start": 22225.58, + "end": 22227.5, + "probability": 0.6946 + }, + { + "start": 22227.64, + "end": 22228.8, + "probability": 0.9547 + }, + { + "start": 22229.2, + "end": 22232.84, + "probability": 0.9248 + }, + { + "start": 22233.24, + "end": 22238.6, + "probability": 0.9401 + }, + { + "start": 22238.66, + "end": 22242.44, + "probability": 0.9987 + }, + { + "start": 22242.44, + "end": 22246.08, + "probability": 0.983 + }, + { + "start": 22246.22, + "end": 22249.18, + "probability": 0.9043 + }, + { + "start": 22249.18, + "end": 22251.4, + "probability": 0.9905 + }, + { + "start": 22251.84, + "end": 22253.22, + "probability": 0.8359 + }, + { + "start": 22253.32, + "end": 22255.22, + "probability": 0.9531 + }, + { + "start": 22256.38, + "end": 22258.34, + "probability": 0.4945 + }, + { + "start": 22258.62, + "end": 22261.46, + "probability": 0.9515 + }, + { + "start": 22261.46, + "end": 22263.94, + "probability": 0.9718 + }, + { + "start": 22264.36, + "end": 22266.38, + "probability": 0.7487 + }, + { + "start": 22266.64, + "end": 22269.84, + "probability": 0.8892 + }, + { + "start": 22270.06, + "end": 22271.36, + "probability": 0.2643 + }, + { + "start": 22271.38, + "end": 22273.34, + "probability": 0.7748 + }, + { + "start": 22273.44, + "end": 22275.1, + "probability": 0.859 + }, + { + "start": 22275.46, + "end": 22279.4, + "probability": 0.9593 + }, + { + "start": 22279.84, + "end": 22285.14, + "probability": 0.9043 + }, + { + "start": 22286.4, + "end": 22287.3, + "probability": 0.7536 + }, + { + "start": 22287.44, + "end": 22291.12, + "probability": 0.9924 + }, + { + "start": 22291.16, + "end": 22291.42, + "probability": 0.7518 + }, + { + "start": 22291.6, + "end": 22295.1, + "probability": 0.9839 + }, + { + "start": 22295.28, + "end": 22298.12, + "probability": 0.9919 + }, + { + "start": 22298.96, + "end": 22300.78, + "probability": 0.7502 + }, + { + "start": 22301.3, + "end": 22304.16, + "probability": 0.8274 + }, + { + "start": 22304.22, + "end": 22305.76, + "probability": 0.1116 + }, + { + "start": 22306.28, + "end": 22309.46, + "probability": 0.9814 + }, + { + "start": 22309.56, + "end": 22311.28, + "probability": 0.7495 + }, + { + "start": 22311.38, + "end": 22314.74, + "probability": 0.9393 + }, + { + "start": 22315.16, + "end": 22316.76, + "probability": 0.706 + }, + { + "start": 22317.7, + "end": 22321.56, + "probability": 0.9387 + }, + { + "start": 22321.56, + "end": 22325.02, + "probability": 0.9905 + }, + { + "start": 22325.5, + "end": 22329.08, + "probability": 0.9213 + }, + { + "start": 22329.72, + "end": 22333.44, + "probability": 0.9301 + }, + { + "start": 22333.88, + "end": 22336.04, + "probability": 0.9804 + }, + { + "start": 22336.04, + "end": 22337.82, + "probability": 0.5489 + }, + { + "start": 22337.96, + "end": 22344.9, + "probability": 0.7664 + }, + { + "start": 22345.0, + "end": 22348.94, + "probability": 0.9577 + }, + { + "start": 22349.38, + "end": 22350.86, + "probability": 0.7711 + }, + { + "start": 22351.26, + "end": 22352.15, + "probability": 0.7744 + }, + { + "start": 22353.1, + "end": 22355.72, + "probability": 0.6004 + }, + { + "start": 22356.1, + "end": 22358.12, + "probability": 0.1789 + }, + { + "start": 22358.7, + "end": 22361.82, + "probability": 0.2675 + }, + { + "start": 22362.26, + "end": 22366.08, + "probability": 0.81 + }, + { + "start": 22366.22, + "end": 22368.02, + "probability": 0.5336 + }, + { + "start": 22368.16, + "end": 22368.72, + "probability": 0.4042 + }, + { + "start": 22370.16, + "end": 22373.04, + "probability": 0.7597 + }, + { + "start": 22381.18, + "end": 22384.34, + "probability": 0.8779 + }, + { + "start": 22384.34, + "end": 22386.18, + "probability": 0.9786 + }, + { + "start": 22386.24, + "end": 22386.72, + "probability": 0.709 + }, + { + "start": 22387.68, + "end": 22388.96, + "probability": 0.8731 + }, + { + "start": 22389.04, + "end": 22390.32, + "probability": 0.6573 + }, + { + "start": 22390.48, + "end": 22391.68, + "probability": 0.7784 + }, + { + "start": 22391.82, + "end": 22394.06, + "probability": 0.659 + }, + { + "start": 22394.44, + "end": 22394.86, + "probability": 0.7658 + }, + { + "start": 22394.88, + "end": 22396.82, + "probability": 0.8253 + }, + { + "start": 22397.42, + "end": 22398.68, + "probability": 0.9965 + }, + { + "start": 22399.26, + "end": 22401.88, + "probability": 0.8201 + }, + { + "start": 22402.56, + "end": 22404.4, + "probability": 0.6838 + }, + { + "start": 22405.4, + "end": 22407.0, + "probability": 0.7377 + }, + { + "start": 22407.72, + "end": 22409.5, + "probability": 0.9897 + }, + { + "start": 22409.66, + "end": 22411.08, + "probability": 0.9401 + }, + { + "start": 22411.24, + "end": 22412.54, + "probability": 0.9743 + }, + { + "start": 22413.14, + "end": 22417.02, + "probability": 0.9665 + }, + { + "start": 22417.06, + "end": 22418.66, + "probability": 0.9119 + }, + { + "start": 22419.38, + "end": 22420.84, + "probability": 0.6731 + }, + { + "start": 22420.86, + "end": 22422.6, + "probability": 0.963 + }, + { + "start": 22423.24, + "end": 22426.3, + "probability": 0.9111 + }, + { + "start": 22427.62, + "end": 22428.82, + "probability": 0.5052 + }, + { + "start": 22428.94, + "end": 22431.02, + "probability": 0.9103 + }, + { + "start": 22431.54, + "end": 22434.48, + "probability": 0.8202 + }, + { + "start": 22434.68, + "end": 22436.14, + "probability": 0.9686 + }, + { + "start": 22436.26, + "end": 22436.44, + "probability": 0.8392 + }, + { + "start": 22436.58, + "end": 22437.05, + "probability": 0.9726 + }, + { + "start": 22437.32, + "end": 22437.86, + "probability": 0.9679 + }, + { + "start": 22438.18, + "end": 22438.96, + "probability": 0.9296 + }, + { + "start": 22439.76, + "end": 22441.72, + "probability": 0.6869 + }, + { + "start": 22441.72, + "end": 22443.38, + "probability": 0.903 + }, + { + "start": 22443.58, + "end": 22446.04, + "probability": 0.8491 + }, + { + "start": 22446.14, + "end": 22446.82, + "probability": 0.4945 + }, + { + "start": 22447.12, + "end": 22447.58, + "probability": 0.8728 + }, + { + "start": 22448.66, + "end": 22452.5, + "probability": 0.6583 + }, + { + "start": 22453.0, + "end": 22453.76, + "probability": 0.8985 + }, + { + "start": 22454.4, + "end": 22458.54, + "probability": 0.6763 + }, + { + "start": 22458.6, + "end": 22460.32, + "probability": 0.871 + }, + { + "start": 22460.52, + "end": 22462.7, + "probability": 0.4816 + }, + { + "start": 22462.92, + "end": 22462.98, + "probability": 0.2723 + }, + { + "start": 22462.98, + "end": 22463.32, + "probability": 0.7476 + }, + { + "start": 22463.78, + "end": 22464.34, + "probability": 0.7505 + }, + { + "start": 22464.48, + "end": 22465.6, + "probability": 0.6356 + }, + { + "start": 22466.28, + "end": 22469.2, + "probability": 0.5889 + }, + { + "start": 22469.2, + "end": 22469.58, + "probability": 0.7674 + }, + { + "start": 22469.72, + "end": 22470.9, + "probability": 0.7764 + }, + { + "start": 22471.4, + "end": 22472.28, + "probability": 0.8001 + }, + { + "start": 22472.32, + "end": 22472.68, + "probability": 0.9472 + }, + { + "start": 22472.76, + "end": 22473.26, + "probability": 0.9255 + }, + { + "start": 22474.26, + "end": 22477.4, + "probability": 0.7646 + }, + { + "start": 22477.92, + "end": 22480.96, + "probability": 0.8078 + }, + { + "start": 22481.2, + "end": 22484.2, + "probability": 0.944 + }, + { + "start": 22484.86, + "end": 22485.62, + "probability": 0.764 + }, + { + "start": 22486.3, + "end": 22489.44, + "probability": 0.9954 + }, + { + "start": 22490.08, + "end": 22491.94, + "probability": 0.7471 + }, + { + "start": 22492.32, + "end": 22496.12, + "probability": 0.4905 + }, + { + "start": 22496.42, + "end": 22499.06, + "probability": 0.7896 + }, + { + "start": 22499.26, + "end": 22501.9, + "probability": 0.9806 + }, + { + "start": 22502.4, + "end": 22504.92, + "probability": 0.9516 + }, + { + "start": 22506.1, + "end": 22507.96, + "probability": 0.8854 + }, + { + "start": 22512.0, + "end": 22513.2, + "probability": 0.5887 + }, + { + "start": 22513.28, + "end": 22514.34, + "probability": 0.7479 + }, + { + "start": 22514.34, + "end": 22515.28, + "probability": 0.7182 + }, + { + "start": 22515.88, + "end": 22516.22, + "probability": 0.8229 + }, + { + "start": 22517.04, + "end": 22517.63, + "probability": 0.8976 + }, + { + "start": 22518.38, + "end": 22522.34, + "probability": 0.8652 + }, + { + "start": 22523.12, + "end": 22524.8, + "probability": 0.1443 + }, + { + "start": 22525.42, + "end": 22528.48, + "probability": 0.539 + }, + { + "start": 22529.26, + "end": 22532.12, + "probability": 0.9945 + }, + { + "start": 22532.12, + "end": 22539.34, + "probability": 0.8928 + }, + { + "start": 22540.02, + "end": 22543.36, + "probability": 0.9032 + }, + { + "start": 22543.96, + "end": 22546.2, + "probability": 0.8025 + }, + { + "start": 22546.38, + "end": 22546.83, + "probability": 0.627 + }, + { + "start": 22547.66, + "end": 22548.82, + "probability": 0.7795 + }, + { + "start": 22549.6, + "end": 22550.86, + "probability": 0.8379 + }, + { + "start": 22551.48, + "end": 22553.86, + "probability": 0.979 + }, + { + "start": 22553.86, + "end": 22556.68, + "probability": 0.9567 + }, + { + "start": 22557.64, + "end": 22560.16, + "probability": 0.2843 + }, + { + "start": 22561.08, + "end": 22564.1, + "probability": 0.9486 + }, + { + "start": 22564.96, + "end": 22566.88, + "probability": 0.7045 + }, + { + "start": 22569.22, + "end": 22571.22, + "probability": 0.7578 + }, + { + "start": 22571.3, + "end": 22573.28, + "probability": 0.8478 + }, + { + "start": 22574.6, + "end": 22576.16, + "probability": 0.7437 + }, + { + "start": 22576.7, + "end": 22579.48, + "probability": 0.9115 + }, + { + "start": 22580.12, + "end": 22584.56, + "probability": 0.9718 + }, + { + "start": 22584.74, + "end": 22590.36, + "probability": 0.981 + }, + { + "start": 22591.08, + "end": 22591.5, + "probability": 0.7893 + }, + { + "start": 22592.44, + "end": 22594.82, + "probability": 0.9913 + }, + { + "start": 22595.5, + "end": 22597.54, + "probability": 0.9795 + }, + { + "start": 22598.42, + "end": 22600.82, + "probability": 0.8919 + }, + { + "start": 22600.82, + "end": 22603.88, + "probability": 0.8442 + }, + { + "start": 22604.44, + "end": 22607.2, + "probability": 0.8467 + }, + { + "start": 22607.78, + "end": 22609.72, + "probability": 0.6642 + }, + { + "start": 22610.46, + "end": 22613.68, + "probability": 0.9315 + }, + { + "start": 22614.22, + "end": 22618.18, + "probability": 0.6524 + }, + { + "start": 22618.66, + "end": 22622.62, + "probability": 0.6441 + }, + { + "start": 22622.62, + "end": 22623.23, + "probability": 0.2081 + }, + { + "start": 22624.08, + "end": 22627.66, + "probability": 0.699 + }, + { + "start": 22627.66, + "end": 22631.02, + "probability": 0.8992 + }, + { + "start": 22631.42, + "end": 22633.22, + "probability": 0.9863 + }, + { + "start": 22635.3, + "end": 22635.85, + "probability": 0.9021 + }, + { + "start": 22636.82, + "end": 22639.62, + "probability": 0.859 + }, + { + "start": 22640.32, + "end": 22641.1, + "probability": 0.65 + }, + { + "start": 22643.1, + "end": 22643.94, + "probability": 0.8863 + }, + { + "start": 22644.06, + "end": 22645.44, + "probability": 0.9842 + }, + { + "start": 22645.62, + "end": 22646.06, + "probability": 0.9313 + }, + { + "start": 22646.14, + "end": 22646.76, + "probability": 0.7351 + }, + { + "start": 22647.32, + "end": 22648.08, + "probability": 0.7264 + }, + { + "start": 22649.0, + "end": 22652.12, + "probability": 0.8801 + }, + { + "start": 22652.9, + "end": 22655.04, + "probability": 0.9398 + }, + { + "start": 22655.04, + "end": 22657.86, + "probability": 0.8569 + }, + { + "start": 22658.58, + "end": 22663.8, + "probability": 0.9808 + }, + { + "start": 22663.97, + "end": 22667.62, + "probability": 0.9887 + }, + { + "start": 22668.3, + "end": 22672.78, + "probability": 0.9979 + }, + { + "start": 22673.46, + "end": 22675.04, + "probability": 0.8502 + }, + { + "start": 22675.8, + "end": 22678.7, + "probability": 0.9082 + }, + { + "start": 22679.26, + "end": 22682.34, + "probability": 0.979 + }, + { + "start": 22682.34, + "end": 22685.96, + "probability": 0.9922 + }, + { + "start": 22687.48, + "end": 22692.72, + "probability": 0.8903 + }, + { + "start": 22692.72, + "end": 22699.16, + "probability": 0.9814 + }, + { + "start": 22699.58, + "end": 22703.5, + "probability": 0.9942 + }, + { + "start": 22703.74, + "end": 22704.22, + "probability": 0.636 + }, + { + "start": 22705.38, + "end": 22708.34, + "probability": 0.979 + }, + { + "start": 22709.2, + "end": 22710.96, + "probability": 0.9882 + }, + { + "start": 22711.1, + "end": 22713.8, + "probability": 0.9835 + }, + { + "start": 22714.8, + "end": 22716.44, + "probability": 0.8631 + }, + { + "start": 22716.76, + "end": 22718.92, + "probability": 0.9451 + }, + { + "start": 22719.6, + "end": 22722.6, + "probability": 0.8984 + }, + { + "start": 22722.6, + "end": 22724.82, + "probability": 0.9858 + }, + { + "start": 22725.46, + "end": 22726.96, + "probability": 0.8659 + }, + { + "start": 22727.44, + "end": 22730.44, + "probability": 0.9008 + }, + { + "start": 22731.08, + "end": 22736.82, + "probability": 0.7913 + }, + { + "start": 22737.4, + "end": 22740.8, + "probability": 0.9562 + }, + { + "start": 22740.8, + "end": 22745.5, + "probability": 0.991 + }, + { + "start": 22745.5, + "end": 22748.62, + "probability": 0.9994 + }, + { + "start": 22748.78, + "end": 22753.52, + "probability": 0.7241 + }, + { + "start": 22754.22, + "end": 22757.1, + "probability": 0.825 + }, + { + "start": 22757.96, + "end": 22761.12, + "probability": 0.7589 + }, + { + "start": 22761.18, + "end": 22762.0, + "probability": 0.746 + }, + { + "start": 22762.52, + "end": 22766.32, + "probability": 0.9707 + }, + { + "start": 22766.62, + "end": 22767.9, + "probability": 0.9487 + }, + { + "start": 22767.98, + "end": 22768.62, + "probability": 0.7411 + }, + { + "start": 22768.7, + "end": 22769.02, + "probability": 0.8658 + }, + { + "start": 22769.52, + "end": 22769.62, + "probability": 0.8845 + }, + { + "start": 22770.36, + "end": 22770.84, + "probability": 0.7812 + }, + { + "start": 22771.4, + "end": 22772.54, + "probability": 0.9791 + }, + { + "start": 22773.32, + "end": 22776.36, + "probability": 0.7613 + }, + { + "start": 22777.02, + "end": 22782.14, + "probability": 0.9589 + }, + { + "start": 22782.48, + "end": 22783.59, + "probability": 0.4543 + }, + { + "start": 22784.0, + "end": 22784.52, + "probability": 0.9852 + }, + { + "start": 22785.1, + "end": 22788.08, + "probability": 0.9868 + }, + { + "start": 22788.98, + "end": 22792.52, + "probability": 0.994 + }, + { + "start": 22792.52, + "end": 22796.56, + "probability": 0.9969 + }, + { + "start": 22797.64, + "end": 22799.18, + "probability": 0.9325 + }, + { + "start": 22808.34, + "end": 22810.52, + "probability": 0.6169 + }, + { + "start": 22811.58, + "end": 22812.06, + "probability": 0.7159 + }, + { + "start": 22812.1, + "end": 22812.62, + "probability": 0.9631 + }, + { + "start": 22812.7, + "end": 22816.98, + "probability": 0.9799 + }, + { + "start": 22817.36, + "end": 22820.3, + "probability": 0.9762 + }, + { + "start": 22821.08, + "end": 22823.64, + "probability": 0.9352 + }, + { + "start": 22823.98, + "end": 22824.48, + "probability": 0.8169 + }, + { + "start": 22824.52, + "end": 22827.06, + "probability": 0.972 + }, + { + "start": 22827.46, + "end": 22829.2, + "probability": 0.9985 + }, + { + "start": 22829.74, + "end": 22833.84, + "probability": 0.9973 + }, + { + "start": 22834.42, + "end": 22836.68, + "probability": 0.7466 + }, + { + "start": 22837.34, + "end": 22841.24, + "probability": 0.9815 + }, + { + "start": 22842.32, + "end": 22846.36, + "probability": 0.999 + }, + { + "start": 22847.12, + "end": 22852.22, + "probability": 0.9978 + }, + { + "start": 22852.84, + "end": 22858.1, + "probability": 0.9948 + }, + { + "start": 22858.58, + "end": 22862.0, + "probability": 0.9977 + }, + { + "start": 22862.18, + "end": 22862.2, + "probability": 0.0987 + }, + { + "start": 22862.2, + "end": 22862.2, + "probability": 0.0165 + }, + { + "start": 22862.2, + "end": 22863.06, + "probability": 0.3826 + }, + { + "start": 22863.42, + "end": 22864.14, + "probability": 0.8721 + }, + { + "start": 22866.34, + "end": 22867.92, + "probability": 0.9968 + }, + { + "start": 22870.14, + "end": 22871.08, + "probability": 0.2772 + }, + { + "start": 22871.08, + "end": 22871.08, + "probability": 0.3258 + }, + { + "start": 22871.08, + "end": 22871.08, + "probability": 0.3604 + }, + { + "start": 22871.08, + "end": 22873.12, + "probability": 0.7254 + }, + { + "start": 22873.58, + "end": 22875.72, + "probability": 0.8217 + }, + { + "start": 22875.78, + "end": 22876.42, + "probability": 0.6924 + }, + { + "start": 22876.5, + "end": 22877.3, + "probability": 0.7636 + }, + { + "start": 22877.74, + "end": 22878.82, + "probability": 0.8453 + }, + { + "start": 22879.28, + "end": 22881.9, + "probability": 0.8119 + }, + { + "start": 22882.4, + "end": 22885.0, + "probability": 0.942 + }, + { + "start": 22885.12, + "end": 22885.34, + "probability": 0.0186 + }, + { + "start": 22885.34, + "end": 22885.76, + "probability": 0.3605 + }, + { + "start": 22885.82, + "end": 22887.4, + "probability": 0.7923 + }, + { + "start": 22888.27, + "end": 22890.4, + "probability": 0.1721 + }, + { + "start": 22890.4, + "end": 22892.32, + "probability": 0.3096 + }, + { + "start": 22893.16, + "end": 22893.24, + "probability": 0.0789 + }, + { + "start": 22893.24, + "end": 22893.24, + "probability": 0.0458 + }, + { + "start": 22893.24, + "end": 22894.16, + "probability": 0.9551 + }, + { + "start": 22894.2, + "end": 22898.0, + "probability": 0.8706 + }, + { + "start": 22898.0, + "end": 22904.2, + "probability": 0.9867 + }, + { + "start": 22904.28, + "end": 22904.82, + "probability": 0.7074 + }, + { + "start": 22904.86, + "end": 22905.06, + "probability": 0.8325 + }, + { + "start": 22905.14, + "end": 22906.76, + "probability": 0.8633 + }, + { + "start": 22907.5, + "end": 22911.76, + "probability": 0.978 + }, + { + "start": 22912.38, + "end": 22913.98, + "probability": 0.9624 + }, + { + "start": 22914.52, + "end": 22918.18, + "probability": 0.874 + }, + { + "start": 22918.36, + "end": 22918.36, + "probability": 0.1429 + }, + { + "start": 22918.36, + "end": 22919.92, + "probability": 0.7104 + }, + { + "start": 22920.16, + "end": 22922.28, + "probability": 0.7374 + }, + { + "start": 22922.28, + "end": 22924.93, + "probability": 0.7065 + }, + { + "start": 22925.82, + "end": 22925.86, + "probability": 0.0867 + }, + { + "start": 22925.86, + "end": 22927.9, + "probability": 0.59 + }, + { + "start": 22928.12, + "end": 22928.73, + "probability": 0.7708 + }, + { + "start": 22929.6, + "end": 22929.72, + "probability": 0.0683 + }, + { + "start": 22929.72, + "end": 22933.66, + "probability": 0.7204 + }, + { + "start": 22933.74, + "end": 22935.51, + "probability": 0.894 + }, + { + "start": 22936.4, + "end": 22938.92, + "probability": 0.0725 + }, + { + "start": 22939.1, + "end": 22941.19, + "probability": 0.3654 + }, + { + "start": 22941.52, + "end": 22945.66, + "probability": 0.7526 + }, + { + "start": 22946.06, + "end": 22950.48, + "probability": 0.9424 + }, + { + "start": 22950.92, + "end": 22952.62, + "probability": 0.9697 + }, + { + "start": 22953.16, + "end": 22958.22, + "probability": 0.9909 + }, + { + "start": 22958.74, + "end": 22960.4, + "probability": 0.9366 + }, + { + "start": 22960.52, + "end": 22963.28, + "probability": 0.9053 + }, + { + "start": 22963.34, + "end": 22965.02, + "probability": 0.9176 + }, + { + "start": 22965.19, + "end": 22967.49, + "probability": 0.9615 + }, + { + "start": 22967.84, + "end": 22968.78, + "probability": 0.8665 + }, + { + "start": 22970.12, + "end": 22971.16, + "probability": 0.6465 + }, + { + "start": 22971.56, + "end": 22975.08, + "probability": 0.9932 + }, + { + "start": 22975.08, + "end": 22978.42, + "probability": 0.9921 + }, + { + "start": 22978.88, + "end": 22982.8, + "probability": 0.9048 + }, + { + "start": 22983.14, + "end": 22986.5, + "probability": 0.9795 + }, + { + "start": 22986.9, + "end": 22989.44, + "probability": 0.8589 + }, + { + "start": 22989.84, + "end": 22995.36, + "probability": 0.9691 + }, + { + "start": 22995.78, + "end": 22996.72, + "probability": 0.9558 + }, + { + "start": 22997.36, + "end": 22998.92, + "probability": 0.7781 + }, + { + "start": 22999.52, + "end": 23002.18, + "probability": 0.9474 + }, + { + "start": 23002.28, + "end": 23007.8, + "probability": 0.9858 + }, + { + "start": 23008.24, + "end": 23008.32, + "probability": 0.2892 + }, + { + "start": 23008.4, + "end": 23008.54, + "probability": 0.8211 + }, + { + "start": 23008.62, + "end": 23013.04, + "probability": 0.991 + }, + { + "start": 23013.56, + "end": 23017.1, + "probability": 0.9885 + }, + { + "start": 23017.22, + "end": 23018.59, + "probability": 0.9819 + }, + { + "start": 23019.26, + "end": 23022.84, + "probability": 0.9272 + }, + { + "start": 23022.84, + "end": 23027.1, + "probability": 0.9824 + }, + { + "start": 23027.52, + "end": 23030.7, + "probability": 0.9919 + }, + { + "start": 23031.3, + "end": 23033.46, + "probability": 0.9132 + }, + { + "start": 23033.9, + "end": 23039.1, + "probability": 0.8587 + }, + { + "start": 23039.8, + "end": 23039.9, + "probability": 0.4722 + }, + { + "start": 23039.96, + "end": 23040.44, + "probability": 0.8693 + }, + { + "start": 23040.48, + "end": 23044.6, + "probability": 0.9509 + }, + { + "start": 23045.1, + "end": 23046.14, + "probability": 0.9941 + }, + { + "start": 23047.44, + "end": 23052.46, + "probability": 0.9611 + }, + { + "start": 23052.96, + "end": 23056.14, + "probability": 0.8104 + }, + { + "start": 23056.68, + "end": 23058.56, + "probability": 0.9694 + }, + { + "start": 23058.98, + "end": 23064.74, + "probability": 0.9944 + }, + { + "start": 23065.34, + "end": 23069.5, + "probability": 0.9917 + }, + { + "start": 23070.0, + "end": 23072.52, + "probability": 0.998 + }, + { + "start": 23073.04, + "end": 23073.48, + "probability": 0.7902 + }, + { + "start": 23073.54, + "end": 23074.74, + "probability": 0.9152 + }, + { + "start": 23074.84, + "end": 23077.42, + "probability": 0.9932 + }, + { + "start": 23077.84, + "end": 23079.26, + "probability": 0.6923 + }, + { + "start": 23079.64, + "end": 23083.04, + "probability": 0.9933 + }, + { + "start": 23083.54, + "end": 23084.24, + "probability": 0.9981 + }, + { + "start": 23085.52, + "end": 23088.18, + "probability": 0.9429 + }, + { + "start": 23088.92, + "end": 23089.4, + "probability": 0.436 + }, + { + "start": 23089.54, + "end": 23093.34, + "probability": 0.9644 + }, + { + "start": 23093.46, + "end": 23095.04, + "probability": 0.9041 + }, + { + "start": 23095.5, + "end": 23097.34, + "probability": 0.9929 + }, + { + "start": 23099.92, + "end": 23103.86, + "probability": 0.4857 + }, + { + "start": 23104.12, + "end": 23105.68, + "probability": 0.9336 + }, + { + "start": 23106.18, + "end": 23108.69, + "probability": 0.996 + }, + { + "start": 23109.18, + "end": 23110.38, + "probability": 0.954 + }, + { + "start": 23110.52, + "end": 23115.02, + "probability": 0.9814 + }, + { + "start": 23115.44, + "end": 23117.82, + "probability": 0.889 + }, + { + "start": 23118.24, + "end": 23120.4, + "probability": 0.9823 + }, + { + "start": 23121.14, + "end": 23122.68, + "probability": 0.9176 + }, + { + "start": 23123.12, + "end": 23127.08, + "probability": 0.9784 + }, + { + "start": 23127.72, + "end": 23132.76, + "probability": 0.9801 + }, + { + "start": 23132.76, + "end": 23137.4, + "probability": 0.9995 + }, + { + "start": 23138.24, + "end": 23142.68, + "probability": 0.998 + }, + { + "start": 23142.68, + "end": 23146.62, + "probability": 0.9995 + }, + { + "start": 23146.7, + "end": 23150.2, + "probability": 0.8369 + }, + { + "start": 23150.72, + "end": 23152.16, + "probability": 0.9141 + }, + { + "start": 23152.66, + "end": 23157.74, + "probability": 0.9194 + }, + { + "start": 23158.36, + "end": 23160.36, + "probability": 0.8978 + }, + { + "start": 23160.86, + "end": 23163.62, + "probability": 0.9979 + }, + { + "start": 23164.14, + "end": 23165.76, + "probability": 0.9489 + }, + { + "start": 23166.3, + "end": 23167.06, + "probability": 0.6335 + }, + { + "start": 23167.14, + "end": 23168.64, + "probability": 0.9449 + }, + { + "start": 23169.1, + "end": 23170.98, + "probability": 0.8612 + }, + { + "start": 23171.44, + "end": 23177.24, + "probability": 0.9085 + }, + { + "start": 23177.92, + "end": 23182.34, + "probability": 0.9985 + }, + { + "start": 23182.92, + "end": 23184.7, + "probability": 0.8174 + }, + { + "start": 23184.7, + "end": 23187.08, + "probability": 0.8604 + }, + { + "start": 23187.58, + "end": 23194.52, + "probability": 0.8838 + }, + { + "start": 23195.0, + "end": 23197.72, + "probability": 0.9774 + }, + { + "start": 23197.86, + "end": 23198.46, + "probability": 0.7347 + }, + { + "start": 23199.12, + "end": 23203.44, + "probability": 0.9852 + }, + { + "start": 23203.44, + "end": 23208.04, + "probability": 0.9969 + }, + { + "start": 23208.86, + "end": 23210.92, + "probability": 0.9072 + }, + { + "start": 23211.46, + "end": 23216.78, + "probability": 0.9917 + }, + { + "start": 23217.24, + "end": 23217.46, + "probability": 0.7162 + }, + { + "start": 23217.66, + "end": 23221.28, + "probability": 0.9957 + }, + { + "start": 23221.28, + "end": 23224.36, + "probability": 0.9971 + }, + { + "start": 23224.82, + "end": 23227.98, + "probability": 0.897 + }, + { + "start": 23228.52, + "end": 23231.16, + "probability": 0.9951 + }, + { + "start": 23231.66, + "end": 23237.64, + "probability": 0.9639 + }, + { + "start": 23238.0, + "end": 23240.38, + "probability": 0.9764 + }, + { + "start": 23240.74, + "end": 23244.94, + "probability": 0.9655 + }, + { + "start": 23245.58, + "end": 23248.1, + "probability": 0.9857 + }, + { + "start": 23248.64, + "end": 23252.2, + "probability": 0.9139 + }, + { + "start": 23252.68, + "end": 23255.54, + "probability": 0.9925 + }, + { + "start": 23255.98, + "end": 23258.89, + "probability": 0.9686 + }, + { + "start": 23259.42, + "end": 23261.68, + "probability": 0.9805 + }, + { + "start": 23262.12, + "end": 23263.77, + "probability": 0.8831 + }, + { + "start": 23264.46, + "end": 23265.84, + "probability": 0.9915 + }, + { + "start": 23266.18, + "end": 23268.5, + "probability": 0.9868 + }, + { + "start": 23268.94, + "end": 23270.48, + "probability": 0.9857 + }, + { + "start": 23271.22, + "end": 23271.46, + "probability": 0.6678 + }, + { + "start": 23272.38, + "end": 23280.1, + "probability": 0.9519 + }, + { + "start": 23280.52, + "end": 23282.42, + "probability": 0.8089 + }, + { + "start": 23283.06, + "end": 23283.38, + "probability": 0.6356 + }, + { + "start": 23283.44, + "end": 23288.44, + "probability": 0.7221 + }, + { + "start": 23289.88, + "end": 23292.42, + "probability": 0.7307 + }, + { + "start": 23292.88, + "end": 23297.38, + "probability": 0.9917 + }, + { + "start": 23297.38, + "end": 23302.12, + "probability": 0.9956 + }, + { + "start": 23302.8, + "end": 23304.42, + "probability": 0.9652 + }, + { + "start": 23304.84, + "end": 23305.44, + "probability": 0.6865 + }, + { + "start": 23305.54, + "end": 23306.24, + "probability": 0.8805 + }, + { + "start": 23306.64, + "end": 23311.04, + "probability": 0.9864 + }, + { + "start": 23311.62, + "end": 23315.2, + "probability": 0.9858 + }, + { + "start": 23315.52, + "end": 23318.76, + "probability": 0.9941 + }, + { + "start": 23319.2, + "end": 23321.26, + "probability": 0.988 + }, + { + "start": 23321.72, + "end": 23322.29, + "probability": 0.9849 + }, + { + "start": 23322.98, + "end": 23324.94, + "probability": 0.9904 + }, + { + "start": 23325.62, + "end": 23325.92, + "probability": 0.4629 + }, + { + "start": 23325.98, + "end": 23326.88, + "probability": 0.9878 + }, + { + "start": 23327.26, + "end": 23336.2, + "probability": 0.9094 + }, + { + "start": 23336.98, + "end": 23336.98, + "probability": 0.5639 + }, + { + "start": 23336.98, + "end": 23337.8, + "probability": 0.5567 + }, + { + "start": 23338.04, + "end": 23339.0, + "probability": 0.9465 + }, + { + "start": 23339.08, + "end": 23339.94, + "probability": 0.8513 + }, + { + "start": 23340.66, + "end": 23342.24, + "probability": 0.9307 + }, + { + "start": 23342.9, + "end": 23347.4, + "probability": 0.7498 + }, + { + "start": 23347.96, + "end": 23350.72, + "probability": 0.952 + }, + { + "start": 23351.18, + "end": 23354.26, + "probability": 0.8846 + }, + { + "start": 23354.36, + "end": 23355.32, + "probability": 0.8444 + }, + { + "start": 23355.92, + "end": 23359.74, + "probability": 0.9858 + }, + { + "start": 23360.34, + "end": 23361.88, + "probability": 0.9702 + }, + { + "start": 23362.36, + "end": 23364.76, + "probability": 0.9907 + }, + { + "start": 23365.68, + "end": 23370.44, + "probability": 0.8099 + }, + { + "start": 23370.64, + "end": 23371.7, + "probability": 0.9896 + }, + { + "start": 23373.42, + "end": 23374.9, + "probability": 0.9565 + }, + { + "start": 23375.44, + "end": 23378.24, + "probability": 0.972 + }, + { + "start": 23379.38, + "end": 23385.72, + "probability": 0.9989 + }, + { + "start": 23386.16, + "end": 23387.38, + "probability": 0.91 + }, + { + "start": 23387.78, + "end": 23392.82, + "probability": 0.971 + }, + { + "start": 23393.52, + "end": 23397.74, + "probability": 0.9946 + }, + { + "start": 23397.74, + "end": 23403.06, + "probability": 0.9941 + }, + { + "start": 23403.64, + "end": 23407.7, + "probability": 0.9814 + }, + { + "start": 23408.26, + "end": 23413.8, + "probability": 0.8693 + }, + { + "start": 23414.5, + "end": 23418.62, + "probability": 0.9932 + }, + { + "start": 23418.62, + "end": 23421.8, + "probability": 0.9995 + }, + { + "start": 23422.3, + "end": 23424.64, + "probability": 0.9883 + }, + { + "start": 23425.12, + "end": 23426.28, + "probability": 0.9306 + }, + { + "start": 23426.72, + "end": 23429.18, + "probability": 0.9355 + }, + { + "start": 23429.62, + "end": 23432.88, + "probability": 0.9735 + }, + { + "start": 23433.62, + "end": 23436.82, + "probability": 0.9424 + }, + { + "start": 23437.4, + "end": 23438.08, + "probability": 0.5928 + }, + { + "start": 23438.6, + "end": 23439.68, + "probability": 0.6996 + }, + { + "start": 23440.48, + "end": 23444.44, + "probability": 0.7529 + }, + { + "start": 23445.08, + "end": 23445.74, + "probability": 0.3622 + }, + { + "start": 23445.78, + "end": 23448.16, + "probability": 0.9363 + }, + { + "start": 23448.56, + "end": 23451.06, + "probability": 0.5468 + }, + { + "start": 23451.52, + "end": 23455.72, + "probability": 0.8928 + }, + { + "start": 23456.32, + "end": 23459.5, + "probability": 0.6315 + }, + { + "start": 23459.78, + "end": 23461.1, + "probability": 0.9922 + }, + { + "start": 23461.56, + "end": 23465.02, + "probability": 0.9506 + }, + { + "start": 23465.94, + "end": 23468.46, + "probability": 0.9872 + }, + { + "start": 23468.98, + "end": 23471.4, + "probability": 0.9676 + }, + { + "start": 23471.78, + "end": 23476.26, + "probability": 0.9044 + }, + { + "start": 23476.72, + "end": 23478.52, + "probability": 0.875 + }, + { + "start": 23479.12, + "end": 23480.6, + "probability": 0.9878 + }, + { + "start": 23481.18, + "end": 23484.3, + "probability": 0.7095 + }, + { + "start": 23484.96, + "end": 23489.98, + "probability": 0.9251 + }, + { + "start": 23490.32, + "end": 23496.36, + "probability": 0.9961 + }, + { + "start": 23496.9, + "end": 23497.94, + "probability": 0.5467 + }, + { + "start": 23498.42, + "end": 23499.3, + "probability": 0.8458 + }, + { + "start": 23499.74, + "end": 23502.9, + "probability": 0.9103 + }, + { + "start": 23503.38, + "end": 23507.62, + "probability": 0.8535 + }, + { + "start": 23508.48, + "end": 23509.94, + "probability": 0.6298 + }, + { + "start": 23510.86, + "end": 23511.88, + "probability": 0.6078 + }, + { + "start": 23512.34, + "end": 23515.1, + "probability": 0.9883 + }, + { + "start": 23515.1, + "end": 23518.16, + "probability": 0.9632 + }, + { + "start": 23518.96, + "end": 23520.74, + "probability": 0.7216 + }, + { + "start": 23521.42, + "end": 23521.72, + "probability": 0.4817 + }, + { + "start": 23522.26, + "end": 23526.58, + "probability": 0.9634 + }, + { + "start": 23527.18, + "end": 23530.56, + "probability": 0.8961 + }, + { + "start": 23531.2, + "end": 23532.52, + "probability": 0.7761 + }, + { + "start": 23533.2, + "end": 23535.35, + "probability": 0.9287 + }, + { + "start": 23536.32, + "end": 23537.6, + "probability": 0.7976 + }, + { + "start": 23538.06, + "end": 23543.8, + "probability": 0.8561 + }, + { + "start": 23543.82, + "end": 23544.42, + "probability": 0.7513 + }, + { + "start": 23544.48, + "end": 23545.82, + "probability": 0.7314 + }, + { + "start": 23546.36, + "end": 23546.88, + "probability": 0.8822 + }, + { + "start": 23547.04, + "end": 23548.06, + "probability": 0.9232 + }, + { + "start": 23548.42, + "end": 23548.72, + "probability": 0.6222 + }, + { + "start": 23548.78, + "end": 23549.74, + "probability": 0.9229 + }, + { + "start": 23550.58, + "end": 23552.5, + "probability": 0.766 + }, + { + "start": 23553.08, + "end": 23557.04, + "probability": 0.8787 + }, + { + "start": 23557.58, + "end": 23560.14, + "probability": 0.713 + }, + { + "start": 23560.42, + "end": 23560.86, + "probability": 0.7933 + }, + { + "start": 23562.34, + "end": 23564.82, + "probability": 0.9778 + }, + { + "start": 23565.42, + "end": 23568.16, + "probability": 0.9937 + }, + { + "start": 23568.98, + "end": 23573.04, + "probability": 0.8275 + }, + { + "start": 23573.42, + "end": 23574.28, + "probability": 0.8976 + }, + { + "start": 23574.84, + "end": 23576.34, + "probability": 0.8671 + }, + { + "start": 23576.42, + "end": 23576.7, + "probability": 0.8436 + }, + { + "start": 23583.5, + "end": 23588.1, + "probability": 0.748 + }, + { + "start": 23588.84, + "end": 23593.46, + "probability": 0.766 + }, + { + "start": 23594.1, + "end": 23595.48, + "probability": 0.8327 + }, + { + "start": 23596.14, + "end": 23596.76, + "probability": 0.7957 + }, + { + "start": 23596.88, + "end": 23597.44, + "probability": 0.735 + }, + { + "start": 23597.52, + "end": 23598.1, + "probability": 0.8217 + }, + { + "start": 23598.18, + "end": 23599.6, + "probability": 0.9963 + }, + { + "start": 23599.7, + "end": 23603.84, + "probability": 0.8975 + }, + { + "start": 23603.96, + "end": 23607.1, + "probability": 0.9647 + }, + { + "start": 23607.76, + "end": 23610.22, + "probability": 0.9653 + }, + { + "start": 23610.34, + "end": 23615.84, + "probability": 0.9888 + }, + { + "start": 23616.4, + "end": 23621.24, + "probability": 0.9974 + }, + { + "start": 23621.92, + "end": 23626.12, + "probability": 0.984 + }, + { + "start": 23626.94, + "end": 23632.04, + "probability": 0.9967 + }, + { + "start": 23632.48, + "end": 23637.52, + "probability": 0.9802 + }, + { + "start": 23637.9, + "end": 23641.24, + "probability": 0.979 + }, + { + "start": 23641.54, + "end": 23646.24, + "probability": 0.9904 + }, + { + "start": 23646.9, + "end": 23650.56, + "probability": 0.9664 + }, + { + "start": 23650.84, + "end": 23651.34, + "probability": 0.9197 + }, + { + "start": 23651.42, + "end": 23652.1, + "probability": 0.9333 + }, + { + "start": 23652.44, + "end": 23653.52, + "probability": 0.9578 + }, + { + "start": 23653.56, + "end": 23654.62, + "probability": 0.9183 + }, + { + "start": 23654.64, + "end": 23655.06, + "probability": 0.4925 + }, + { + "start": 23655.12, + "end": 23656.94, + "probability": 0.5894 + }, + { + "start": 23657.5, + "end": 23660.0, + "probability": 0.9972 + }, + { + "start": 23660.0, + "end": 23663.18, + "probability": 0.9985 + }, + { + "start": 23663.9, + "end": 23664.54, + "probability": 0.7095 + }, + { + "start": 23664.54, + "end": 23667.28, + "probability": 0.8607 + }, + { + "start": 23667.68, + "end": 23671.28, + "probability": 0.9972 + }, + { + "start": 23671.28, + "end": 23675.96, + "probability": 0.9992 + }, + { + "start": 23675.96, + "end": 23679.72, + "probability": 0.999 + }, + { + "start": 23680.46, + "end": 23682.8, + "probability": 0.9382 + }, + { + "start": 23684.52, + "end": 23685.94, + "probability": 0.6621 + }, + { + "start": 23686.4, + "end": 23689.88, + "probability": 0.9888 + }, + { + "start": 23689.88, + "end": 23692.94, + "probability": 0.9984 + }, + { + "start": 23693.42, + "end": 23695.92, + "probability": 0.9982 + }, + { + "start": 23695.92, + "end": 23700.3, + "probability": 0.9937 + }, + { + "start": 23700.66, + "end": 23703.08, + "probability": 0.9976 + }, + { + "start": 23703.08, + "end": 23707.3, + "probability": 0.9924 + }, + { + "start": 23707.48, + "end": 23709.56, + "probability": 0.9819 + }, + { + "start": 23710.06, + "end": 23712.06, + "probability": 0.9788 + }, + { + "start": 23712.78, + "end": 23714.36, + "probability": 0.7824 + }, + { + "start": 23715.18, + "end": 23717.9, + "probability": 0.6905 + }, + { + "start": 23718.4, + "end": 23719.96, + "probability": 0.7826 + }, + { + "start": 23720.06, + "end": 23723.84, + "probability": 0.9871 + }, + { + "start": 23724.44, + "end": 23726.96, + "probability": 0.8088 + }, + { + "start": 23727.42, + "end": 23730.43, + "probability": 0.9456 + }, + { + "start": 23731.1, + "end": 23733.62, + "probability": 0.783 + }, + { + "start": 23734.26, + "end": 23736.32, + "probability": 0.9225 + }, + { + "start": 23736.96, + "end": 23740.34, + "probability": 0.9684 + }, + { + "start": 23740.9, + "end": 23742.26, + "probability": 0.8161 + }, + { + "start": 23742.32, + "end": 23743.9, + "probability": 0.8654 + }, + { + "start": 23744.02, + "end": 23748.92, + "probability": 0.9961 + }, + { + "start": 23749.48, + "end": 23750.56, + "probability": 0.8901 + }, + { + "start": 23750.64, + "end": 23755.8, + "probability": 0.9907 + }, + { + "start": 23756.86, + "end": 23758.12, + "probability": 0.6986 + }, + { + "start": 23758.68, + "end": 23760.54, + "probability": 0.8428 + }, + { + "start": 23761.32, + "end": 23763.42, + "probability": 0.8892 + }, + { + "start": 23763.74, + "end": 23767.5, + "probability": 0.9704 + }, + { + "start": 23767.5, + "end": 23772.54, + "probability": 0.9256 + }, + { + "start": 23772.8, + "end": 23773.64, + "probability": 0.957 + }, + { + "start": 23774.16, + "end": 23776.84, + "probability": 0.9849 + }, + { + "start": 23776.9, + "end": 23780.0, + "probability": 0.9518 + }, + { + "start": 23780.5, + "end": 23781.72, + "probability": 0.8621 + }, + { + "start": 23781.86, + "end": 23782.58, + "probability": 0.7255 + }, + { + "start": 23782.92, + "end": 23785.4, + "probability": 0.9926 + }, + { + "start": 23785.64, + "end": 23790.26, + "probability": 0.9744 + }, + { + "start": 23790.34, + "end": 23792.68, + "probability": 0.7446 + }, + { + "start": 23793.44, + "end": 23795.96, + "probability": 0.9116 + }, + { + "start": 23796.96, + "end": 23798.68, + "probability": 0.9745 + }, + { + "start": 23798.86, + "end": 23801.94, + "probability": 0.9468 + }, + { + "start": 23802.08, + "end": 23803.94, + "probability": 0.8684 + }, + { + "start": 23804.4, + "end": 23806.88, + "probability": 0.8774 + }, + { + "start": 23807.14, + "end": 23808.56, + "probability": 0.9013 + }, + { + "start": 23809.24, + "end": 23811.92, + "probability": 0.9789 + }, + { + "start": 23812.18, + "end": 23813.58, + "probability": 0.5262 + }, + { + "start": 23813.64, + "end": 23816.9, + "probability": 0.9874 + }, + { + "start": 23817.02, + "end": 23822.0, + "probability": 0.9963 + }, + { + "start": 23822.54, + "end": 23826.17, + "probability": 0.998 + }, + { + "start": 23826.32, + "end": 23831.08, + "probability": 0.9969 + }, + { + "start": 23831.3, + "end": 23834.2, + "probability": 0.9894 + }, + { + "start": 23834.58, + "end": 23835.6, + "probability": 0.9085 + }, + { + "start": 23835.68, + "end": 23837.9, + "probability": 0.9467 + }, + { + "start": 23837.9, + "end": 23841.99, + "probability": 0.9693 + }, + { + "start": 23842.28, + "end": 23844.0, + "probability": 0.9291 + }, + { + "start": 23844.14, + "end": 23846.04, + "probability": 0.9448 + }, + { + "start": 23846.42, + "end": 23847.5, + "probability": 0.9847 + }, + { + "start": 23847.54, + "end": 23848.5, + "probability": 0.896 + }, + { + "start": 23848.6, + "end": 23849.62, + "probability": 0.7158 + }, + { + "start": 23850.18, + "end": 23852.16, + "probability": 0.8014 + }, + { + "start": 23852.82, + "end": 23855.6, + "probability": 0.9842 + }, + { + "start": 23855.6, + "end": 23860.01, + "probability": 0.9561 + }, + { + "start": 23860.34, + "end": 23863.92, + "probability": 0.9797 + }, + { + "start": 23864.3, + "end": 23865.16, + "probability": 0.5895 + }, + { + "start": 23865.52, + "end": 23866.32, + "probability": 0.9284 + }, + { + "start": 23867.78, + "end": 23869.46, + "probability": 0.7751 + }, + { + "start": 23869.86, + "end": 23871.96, + "probability": 0.9778 + }, + { + "start": 23872.04, + "end": 23873.04, + "probability": 0.9656 + }, + { + "start": 23873.32, + "end": 23874.32, + "probability": 0.8256 + }, + { + "start": 23874.88, + "end": 23877.52, + "probability": 0.9084 + }, + { + "start": 23878.14, + "end": 23880.76, + "probability": 0.9885 + }, + { + "start": 23880.9, + "end": 23882.85, + "probability": 0.3026 + }, + { + "start": 23883.58, + "end": 23884.33, + "probability": 0.6632 + }, + { + "start": 23884.98, + "end": 23885.66, + "probability": 0.709 + }, + { + "start": 23885.72, + "end": 23887.42, + "probability": 0.6676 + }, + { + "start": 23887.48, + "end": 23889.7, + "probability": 0.788 + }, + { + "start": 23889.92, + "end": 23892.1, + "probability": 0.9409 + }, + { + "start": 23892.26, + "end": 23896.06, + "probability": 0.6783 + }, + { + "start": 23896.73, + "end": 23898.56, + "probability": 0.3333 + }, + { + "start": 23898.64, + "end": 23900.26, + "probability": 0.6673 + }, + { + "start": 23900.26, + "end": 23901.78, + "probability": 0.2433 + }, + { + "start": 23902.14, + "end": 23902.94, + "probability": 0.1047 + }, + { + "start": 23905.8, + "end": 23906.14, + "probability": 0.1856 + }, + { + "start": 23906.14, + "end": 23906.14, + "probability": 0.3573 + }, + { + "start": 23906.14, + "end": 23907.66, + "probability": 0.7705 + }, + { + "start": 23907.66, + "end": 23908.45, + "probability": 0.957 + }, + { + "start": 23908.94, + "end": 23911.74, + "probability": 0.8938 + }, + { + "start": 23912.1, + "end": 23914.4, + "probability": 0.6309 + }, + { + "start": 23914.74, + "end": 23916.18, + "probability": 0.9391 + }, + { + "start": 23916.68, + "end": 23919.14, + "probability": 0.9939 + }, + { + "start": 23919.14, + "end": 23923.02, + "probability": 0.9987 + }, + { + "start": 23923.12, + "end": 23924.0, + "probability": 0.7505 + }, + { + "start": 23924.46, + "end": 23925.16, + "probability": 0.4188 + }, + { + "start": 23925.18, + "end": 23927.48, + "probability": 0.6007 + }, + { + "start": 23927.56, + "end": 23929.0, + "probability": 0.8586 + }, + { + "start": 23929.72, + "end": 23929.94, + "probability": 0.2069 + }, + { + "start": 23929.94, + "end": 23931.12, + "probability": 0.6407 + }, + { + "start": 23931.74, + "end": 23933.72, + "probability": 0.649 + }, + { + "start": 23933.82, + "end": 23934.72, + "probability": 0.8726 + }, + { + "start": 23935.06, + "end": 23935.7, + "probability": 0.7945 + }, + { + "start": 23936.06, + "end": 23937.48, + "probability": 0.9754 + }, + { + "start": 23937.6, + "end": 23940.18, + "probability": 0.445 + }, + { + "start": 23940.18, + "end": 23940.18, + "probability": 0.0338 + }, + { + "start": 23940.18, + "end": 23941.18, + "probability": 0.4847 + }, + { + "start": 23941.36, + "end": 23943.3, + "probability": 0.9303 + }, + { + "start": 23943.38, + "end": 23944.54, + "probability": 0.4961 + }, + { + "start": 23945.42, + "end": 23945.94, + "probability": 0.2654 + }, + { + "start": 23946.24, + "end": 23949.4, + "probability": 0.5322 + }, + { + "start": 23949.46, + "end": 23950.44, + "probability": 0.601 + }, + { + "start": 23950.76, + "end": 23952.14, + "probability": 0.9633 + }, + { + "start": 23952.3, + "end": 23952.92, + "probability": 0.8494 + }, + { + "start": 23953.68, + "end": 23954.74, + "probability": 0.7676 + }, + { + "start": 23954.8, + "end": 23956.96, + "probability": 0.8404 + }, + { + "start": 23957.22, + "end": 23960.64, + "probability": 0.8929 + }, + { + "start": 23961.24, + "end": 23961.46, + "probability": 0.4543 + }, + { + "start": 23961.54, + "end": 23963.46, + "probability": 0.3709 + }, + { + "start": 23963.96, + "end": 23965.46, + "probability": 0.7729 + }, + { + "start": 23965.88, + "end": 23966.37, + "probability": 0.8813 + }, + { + "start": 23966.5, + "end": 23967.34, + "probability": 0.7961 + }, + { + "start": 23968.18, + "end": 23969.88, + "probability": 0.9478 + }, + { + "start": 23969.96, + "end": 23970.57, + "probability": 0.8529 + }, + { + "start": 23971.24, + "end": 23974.3, + "probability": 0.8878 + }, + { + "start": 23975.12, + "end": 23976.76, + "probability": 0.8275 + }, + { + "start": 23976.88, + "end": 23979.65, + "probability": 0.9866 + }, + { + "start": 23979.96, + "end": 23981.42, + "probability": 0.9537 + }, + { + "start": 23981.74, + "end": 23982.54, + "probability": 0.6766 + }, + { + "start": 23982.62, + "end": 23983.34, + "probability": 0.5761 + }, + { + "start": 23983.42, + "end": 23983.92, + "probability": 0.8013 + }, + { + "start": 23983.96, + "end": 23985.02, + "probability": 0.7475 + }, + { + "start": 23985.28, + "end": 23988.24, + "probability": 0.9903 + }, + { + "start": 23988.64, + "end": 23991.06, + "probability": 0.7887 + }, + { + "start": 23991.68, + "end": 23995.04, + "probability": 0.8772 + }, + { + "start": 23995.34, + "end": 23997.86, + "probability": 0.9968 + }, + { + "start": 23997.86, + "end": 24001.4, + "probability": 0.9945 + }, + { + "start": 24001.98, + "end": 24003.26, + "probability": 0.9868 + }, + { + "start": 24003.32, + "end": 24004.16, + "probability": 0.6278 + }, + { + "start": 24004.28, + "end": 24005.32, + "probability": 0.8966 + }, + { + "start": 24005.64, + "end": 24008.58, + "probability": 0.8853 + }, + { + "start": 24009.24, + "end": 24009.52, + "probability": 0.7831 + }, + { + "start": 24009.66, + "end": 24009.96, + "probability": 0.9727 + }, + { + "start": 24010.04, + "end": 24013.32, + "probability": 0.868 + }, + { + "start": 24014.54, + "end": 24019.32, + "probability": 0.9927 + }, + { + "start": 24019.62, + "end": 24023.7, + "probability": 0.9796 + }, + { + "start": 24024.56, + "end": 24028.34, + "probability": 0.9068 + }, + { + "start": 24029.9, + "end": 24031.22, + "probability": 0.9077 + }, + { + "start": 24031.24, + "end": 24032.96, + "probability": 0.9618 + }, + { + "start": 24034.0, + "end": 24036.34, + "probability": 0.9874 + }, + { + "start": 24036.34, + "end": 24038.72, + "probability": 0.9926 + }, + { + "start": 24038.98, + "end": 24039.22, + "probability": 0.7317 + }, + { + "start": 24039.78, + "end": 24044.46, + "probability": 0.9221 + }, + { + "start": 24044.74, + "end": 24045.72, + "probability": 0.6382 + }, + { + "start": 24045.92, + "end": 24049.41, + "probability": 0.9873 + }, + { + "start": 24049.98, + "end": 24051.52, + "probability": 0.9857 + }, + { + "start": 24051.88, + "end": 24056.32, + "probability": 0.9924 + }, + { + "start": 24056.86, + "end": 24056.94, + "probability": 0.448 + }, + { + "start": 24056.98, + "end": 24058.18, + "probability": 0.6274 + }, + { + "start": 24058.26, + "end": 24059.4, + "probability": 0.7102 + }, + { + "start": 24059.82, + "end": 24061.84, + "probability": 0.8847 + }, + { + "start": 24062.34, + "end": 24068.56, + "probability": 0.8991 + }, + { + "start": 24068.94, + "end": 24072.56, + "probability": 0.9954 + }, + { + "start": 24072.94, + "end": 24076.17, + "probability": 0.9974 + }, + { + "start": 24076.32, + "end": 24080.16, + "probability": 0.9785 + }, + { + "start": 24080.58, + "end": 24082.94, + "probability": 0.9875 + }, + { + "start": 24083.3, + "end": 24085.62, + "probability": 0.9961 + }, + { + "start": 24085.96, + "end": 24087.96, + "probability": 0.9663 + }, + { + "start": 24088.3, + "end": 24090.02, + "probability": 0.9971 + }, + { + "start": 24090.02, + "end": 24092.96, + "probability": 0.8838 + }, + { + "start": 24093.12, + "end": 24094.14, + "probability": 0.7239 + }, + { + "start": 24094.4, + "end": 24097.04, + "probability": 0.9732 + }, + { + "start": 24097.22, + "end": 24098.48, + "probability": 0.9928 + }, + { + "start": 24099.6, + "end": 24100.78, + "probability": 0.9323 + }, + { + "start": 24101.1, + "end": 24102.23, + "probability": 0.9521 + }, + { + "start": 24102.72, + "end": 24104.24, + "probability": 0.96 + }, + { + "start": 24105.28, + "end": 24106.66, + "probability": 0.7856 + }, + { + "start": 24106.68, + "end": 24107.68, + "probability": 0.9111 + }, + { + "start": 24107.7, + "end": 24108.54, + "probability": 0.9554 + }, + { + "start": 24109.6, + "end": 24110.64, + "probability": 0.8334 + }, + { + "start": 24110.7, + "end": 24111.4, + "probability": 0.9662 + }, + { + "start": 24111.64, + "end": 24114.06, + "probability": 0.8481 + }, + { + "start": 24124.76, + "end": 24128.16, + "probability": 0.0828 + }, + { + "start": 24128.16, + "end": 24128.16, + "probability": 0.2598 + }, + { + "start": 24128.16, + "end": 24128.16, + "probability": 0.0136 + }, + { + "start": 24128.16, + "end": 24128.16, + "probability": 0.0809 + }, + { + "start": 24128.16, + "end": 24128.16, + "probability": 0.0265 + }, + { + "start": 24128.16, + "end": 24128.16, + "probability": 0.1234 + }, + { + "start": 24128.16, + "end": 24129.98, + "probability": 0.2429 + }, + { + "start": 24131.24, + "end": 24133.7, + "probability": 0.9729 + }, + { + "start": 24133.7, + "end": 24137.48, + "probability": 0.9978 + }, + { + "start": 24137.98, + "end": 24139.42, + "probability": 0.8746 + }, + { + "start": 24139.74, + "end": 24144.76, + "probability": 0.9809 + }, + { + "start": 24145.18, + "end": 24150.42, + "probability": 0.986 + }, + { + "start": 24150.42, + "end": 24155.74, + "probability": 0.9977 + }, + { + "start": 24156.32, + "end": 24159.34, + "probability": 0.9561 + }, + { + "start": 24159.82, + "end": 24162.3, + "probability": 0.9871 + }, + { + "start": 24162.3, + "end": 24166.18, + "probability": 0.9694 + }, + { + "start": 24166.8, + "end": 24169.82, + "probability": 0.98 + }, + { + "start": 24170.24, + "end": 24171.7, + "probability": 0.9176 + }, + { + "start": 24172.18, + "end": 24175.22, + "probability": 0.9417 + }, + { + "start": 24175.52, + "end": 24176.04, + "probability": 0.8448 + }, + { + "start": 24177.04, + "end": 24177.92, + "probability": 0.6866 + }, + { + "start": 24179.92, + "end": 24183.14, + "probability": 0.9797 + }, + { + "start": 24183.3, + "end": 24183.92, + "probability": 0.8192 + }, + { + "start": 24184.62, + "end": 24185.98, + "probability": 0.7466 + }, + { + "start": 24186.06, + "end": 24187.1, + "probability": 0.6372 + }, + { + "start": 24187.2, + "end": 24188.68, + "probability": 0.8754 + }, + { + "start": 24188.78, + "end": 24192.56, + "probability": 0.9905 + }, + { + "start": 24192.56, + "end": 24199.78, + "probability": 0.6762 + }, + { + "start": 24200.02, + "end": 24200.78, + "probability": 0.7066 + }, + { + "start": 24200.92, + "end": 24202.86, + "probability": 0.7205 + }, + { + "start": 24205.38, + "end": 24210.32, + "probability": 0.5405 + }, + { + "start": 24211.5, + "end": 24212.92, + "probability": 0.0724 + }, + { + "start": 24213.32, + "end": 24213.32, + "probability": 0.1023 + }, + { + "start": 24213.32, + "end": 24214.68, + "probability": 0.5437 + }, + { + "start": 24214.7, + "end": 24218.08, + "probability": 0.8056 + }, + { + "start": 24219.06, + "end": 24223.92, + "probability": 0.7941 + }, + { + "start": 24224.54, + "end": 24225.28, + "probability": 0.5702 + }, + { + "start": 24225.4, + "end": 24226.32, + "probability": 0.7943 + }, + { + "start": 24226.42, + "end": 24230.4, + "probability": 0.9026 + }, + { + "start": 24232.64, + "end": 24233.14, + "probability": 0.6264 + }, + { + "start": 24246.68, + "end": 24247.5, + "probability": 0.1275 + }, + { + "start": 24248.42, + "end": 24249.1, + "probability": 0.8268 + }, + { + "start": 24249.78, + "end": 24250.94, + "probability": 0.7386 + }, + { + "start": 24252.54, + "end": 24254.58, + "probability": 0.8619 + }, + { + "start": 24255.78, + "end": 24256.4, + "probability": 0.9641 + }, + { + "start": 24257.28, + "end": 24261.76, + "probability": 0.9649 + }, + { + "start": 24262.3, + "end": 24263.28, + "probability": 0.9537 + }, + { + "start": 24263.92, + "end": 24266.04, + "probability": 0.9109 + }, + { + "start": 24266.88, + "end": 24270.46, + "probability": 0.9949 + }, + { + "start": 24271.28, + "end": 24276.14, + "probability": 0.9913 + }, + { + "start": 24277.36, + "end": 24278.24, + "probability": 0.8808 + }, + { + "start": 24278.94, + "end": 24281.92, + "probability": 0.9684 + }, + { + "start": 24282.56, + "end": 24287.14, + "probability": 0.9739 + }, + { + "start": 24287.14, + "end": 24291.5, + "probability": 0.983 + }, + { + "start": 24292.02, + "end": 24296.6, + "probability": 0.9949 + }, + { + "start": 24297.76, + "end": 24301.42, + "probability": 0.9768 + }, + { + "start": 24302.0, + "end": 24304.2, + "probability": 0.9838 + }, + { + "start": 24304.76, + "end": 24306.62, + "probability": 0.9532 + }, + { + "start": 24308.0, + "end": 24311.1, + "probability": 0.969 + }, + { + "start": 24312.34, + "end": 24317.26, + "probability": 0.9951 + }, + { + "start": 24317.66, + "end": 24320.96, + "probability": 0.9901 + }, + { + "start": 24321.44, + "end": 24326.12, + "probability": 0.8276 + }, + { + "start": 24326.62, + "end": 24329.4, + "probability": 0.9978 + }, + { + "start": 24329.44, + "end": 24331.48, + "probability": 0.9681 + }, + { + "start": 24332.3, + "end": 24332.72, + "probability": 0.5013 + }, + { + "start": 24332.74, + "end": 24338.64, + "probability": 0.9005 + }, + { + "start": 24339.2, + "end": 24340.94, + "probability": 0.7537 + }, + { + "start": 24341.34, + "end": 24347.3, + "probability": 0.9797 + }, + { + "start": 24348.0, + "end": 24351.72, + "probability": 0.99 + }, + { + "start": 24351.82, + "end": 24353.94, + "probability": 0.9863 + }, + { + "start": 24355.06, + "end": 24361.0, + "probability": 0.9954 + }, + { + "start": 24361.56, + "end": 24363.4, + "probability": 0.9788 + }, + { + "start": 24364.34, + "end": 24367.84, + "probability": 0.9018 + }, + { + "start": 24368.76, + "end": 24372.16, + "probability": 0.98 + }, + { + "start": 24372.88, + "end": 24375.7, + "probability": 0.998 + }, + { + "start": 24376.4, + "end": 24377.22, + "probability": 0.6545 + }, + { + "start": 24377.78, + "end": 24380.54, + "probability": 0.7795 + }, + { + "start": 24381.2, + "end": 24384.84, + "probability": 0.9888 + }, + { + "start": 24385.5, + "end": 24389.38, + "probability": 0.9883 + }, + { + "start": 24390.5, + "end": 24391.2, + "probability": 0.7107 + }, + { + "start": 24391.84, + "end": 24392.48, + "probability": 0.9847 + }, + { + "start": 24393.04, + "end": 24394.44, + "probability": 0.7479 + }, + { + "start": 24394.96, + "end": 24397.24, + "probability": 0.6471 + }, + { + "start": 24397.36, + "end": 24398.64, + "probability": 0.9202 + }, + { + "start": 24398.64, + "end": 24398.99, + "probability": 0.8683 + }, + { + "start": 24399.8, + "end": 24402.22, + "probability": 0.9832 + }, + { + "start": 24403.18, + "end": 24408.88, + "probability": 0.9547 + }, + { + "start": 24409.46, + "end": 24411.82, + "probability": 0.9271 + }, + { + "start": 24412.68, + "end": 24416.42, + "probability": 0.9927 + }, + { + "start": 24417.34, + "end": 24420.62, + "probability": 0.998 + }, + { + "start": 24420.76, + "end": 24423.66, + "probability": 0.9889 + }, + { + "start": 24424.38, + "end": 24427.1, + "probability": 0.9969 + }, + { + "start": 24428.58, + "end": 24431.8, + "probability": 0.9774 + }, + { + "start": 24432.26, + "end": 24435.94, + "probability": 0.981 + }, + { + "start": 24435.94, + "end": 24439.16, + "probability": 0.9974 + }, + { + "start": 24439.78, + "end": 24447.22, + "probability": 0.973 + }, + { + "start": 24448.24, + "end": 24452.54, + "probability": 0.9946 + }, + { + "start": 24452.54, + "end": 24456.6, + "probability": 0.8995 + }, + { + "start": 24457.38, + "end": 24462.44, + "probability": 0.9648 + }, + { + "start": 24462.82, + "end": 24467.62, + "probability": 0.989 + }, + { + "start": 24468.5, + "end": 24471.68, + "probability": 0.9911 + }, + { + "start": 24472.26, + "end": 24476.9, + "probability": 0.9946 + }, + { + "start": 24477.78, + "end": 24482.18, + "probability": 0.9917 + }, + { + "start": 24482.7, + "end": 24487.96, + "probability": 0.9782 + }, + { + "start": 24488.44, + "end": 24489.48, + "probability": 0.9305 + }, + { + "start": 24491.72, + "end": 24492.92, + "probability": 0.5312 + }, + { + "start": 24493.06, + "end": 24497.78, + "probability": 0.5884 + }, + { + "start": 24497.82, + "end": 24499.06, + "probability": 0.8151 + }, + { + "start": 24499.06, + "end": 24499.94, + "probability": 0.822 + }, + { + "start": 24501.04, + "end": 24502.82, + "probability": 0.9598 + }, + { + "start": 24502.82, + "end": 24507.4, + "probability": 0.9996 + }, + { + "start": 24508.56, + "end": 24510.14, + "probability": 0.5526 + }, + { + "start": 24510.86, + "end": 24511.36, + "probability": 0.7078 + }, + { + "start": 24511.48, + "end": 24512.46, + "probability": 0.9399 + }, + { + "start": 24512.74, + "end": 24517.14, + "probability": 0.9816 + }, + { + "start": 24518.06, + "end": 24520.2, + "probability": 0.9414 + }, + { + "start": 24520.7, + "end": 24521.84, + "probability": 0.8595 + }, + { + "start": 24522.34, + "end": 24523.77, + "probability": 0.7031 + }, + { + "start": 24523.92, + "end": 24524.84, + "probability": 0.9041 + }, + { + "start": 24525.22, + "end": 24526.02, + "probability": 0.9199 + }, + { + "start": 24526.12, + "end": 24528.2, + "probability": 0.9074 + }, + { + "start": 24528.52, + "end": 24529.46, + "probability": 0.9757 + }, + { + "start": 24529.5, + "end": 24530.4, + "probability": 0.8672 + }, + { + "start": 24530.48, + "end": 24534.16, + "probability": 0.9355 + }, + { + "start": 24534.66, + "end": 24535.34, + "probability": 0.8026 + }, + { + "start": 24535.44, + "end": 24536.3, + "probability": 0.9563 + }, + { + "start": 24536.64, + "end": 24538.16, + "probability": 0.8453 + }, + { + "start": 24538.48, + "end": 24539.5, + "probability": 0.8857 + }, + { + "start": 24539.82, + "end": 24544.54, + "probability": 0.9921 + }, + { + "start": 24544.6, + "end": 24545.98, + "probability": 0.9337 + }, + { + "start": 24546.68, + "end": 24551.86, + "probability": 0.8763 + }, + { + "start": 24551.86, + "end": 24555.2, + "probability": 0.9789 + }, + { + "start": 24555.62, + "end": 24558.72, + "probability": 0.926 + }, + { + "start": 24559.02, + "end": 24560.82, + "probability": 0.9935 + }, + { + "start": 24561.2, + "end": 24563.54, + "probability": 0.9906 + }, + { + "start": 24563.56, + "end": 24565.68, + "probability": 0.9163 + }, + { + "start": 24565.86, + "end": 24568.72, + "probability": 0.9287 + }, + { + "start": 24569.26, + "end": 24569.94, + "probability": 0.753 + }, + { + "start": 24570.18, + "end": 24570.94, + "probability": 0.8685 + }, + { + "start": 24571.06, + "end": 24572.92, + "probability": 0.808 + }, + { + "start": 24573.02, + "end": 24575.7, + "probability": 0.812 + }, + { + "start": 24575.76, + "end": 24578.92, + "probability": 0.9961 + }, + { + "start": 24579.06, + "end": 24579.5, + "probability": 0.7744 + }, + { + "start": 24580.04, + "end": 24581.5, + "probability": 0.9424 + }, + { + "start": 24581.8, + "end": 24583.15, + "probability": 0.9937 + }, + { + "start": 24583.7, + "end": 24586.14, + "probability": 0.9904 + }, + { + "start": 24586.7, + "end": 24587.98, + "probability": 0.8999 + }, + { + "start": 24588.56, + "end": 24591.66, + "probability": 0.9875 + }, + { + "start": 24591.98, + "end": 24592.76, + "probability": 0.7393 + }, + { + "start": 24592.8, + "end": 24595.0, + "probability": 0.9684 + }, + { + "start": 24595.42, + "end": 24598.58, + "probability": 0.9315 + }, + { + "start": 24599.02, + "end": 24599.86, + "probability": 0.8193 + }, + { + "start": 24599.94, + "end": 24603.32, + "probability": 0.9886 + }, + { + "start": 24603.7, + "end": 24604.64, + "probability": 0.5848 + }, + { + "start": 24604.72, + "end": 24605.9, + "probability": 0.862 + }, + { + "start": 24606.32, + "end": 24606.64, + "probability": 0.6638 + }, + { + "start": 24606.74, + "end": 24607.66, + "probability": 0.5962 + }, + { + "start": 24607.78, + "end": 24608.56, + "probability": 0.8818 + }, + { + "start": 24608.7, + "end": 24611.28, + "probability": 0.932 + }, + { + "start": 24611.38, + "end": 24612.32, + "probability": 0.9648 + }, + { + "start": 24612.32, + "end": 24613.72, + "probability": 0.957 + }, + { + "start": 24613.82, + "end": 24615.7, + "probability": 0.98 + }, + { + "start": 24616.26, + "end": 24620.4, + "probability": 0.97 + }, + { + "start": 24620.78, + "end": 24624.04, + "probability": 0.9717 + }, + { + "start": 24624.62, + "end": 24627.18, + "probability": 0.9855 + }, + { + "start": 24627.24, + "end": 24628.52, + "probability": 0.9907 + }, + { + "start": 24629.74, + "end": 24635.92, + "probability": 0.9978 + }, + { + "start": 24636.66, + "end": 24638.4, + "probability": 0.9945 + }, + { + "start": 24638.78, + "end": 24641.96, + "probability": 0.9981 + }, + { + "start": 24642.3, + "end": 24642.7, + "probability": 0.6418 + }, + { + "start": 24643.02, + "end": 24644.64, + "probability": 0.907 + }, + { + "start": 24644.8, + "end": 24645.62, + "probability": 0.9359 + }, + { + "start": 24646.08, + "end": 24650.24, + "probability": 0.9589 + }, + { + "start": 24650.28, + "end": 24651.99, + "probability": 0.9687 + }, + { + "start": 24653.04, + "end": 24653.64, + "probability": 0.8946 + }, + { + "start": 24654.34, + "end": 24655.22, + "probability": 0.9398 + }, + { + "start": 24655.34, + "end": 24657.2, + "probability": 0.9711 + }, + { + "start": 24657.26, + "end": 24657.88, + "probability": 0.7027 + }, + { + "start": 24658.1, + "end": 24659.64, + "probability": 0.9941 + }, + { + "start": 24660.3, + "end": 24665.46, + "probability": 0.9595 + }, + { + "start": 24665.98, + "end": 24668.88, + "probability": 0.6573 + }, + { + "start": 24669.32, + "end": 24670.36, + "probability": 0.7889 + }, + { + "start": 24670.56, + "end": 24672.8, + "probability": 0.9699 + }, + { + "start": 24673.24, + "end": 24674.94, + "probability": 0.8973 + }, + { + "start": 24675.4, + "end": 24678.6, + "probability": 0.9717 + }, + { + "start": 24678.88, + "end": 24681.22, + "probability": 0.9291 + }, + { + "start": 24681.56, + "end": 24682.9, + "probability": 0.8281 + }, + { + "start": 24683.8, + "end": 24686.52, + "probability": 0.9371 + }, + { + "start": 24686.92, + "end": 24688.42, + "probability": 0.9985 + }, + { + "start": 24688.46, + "end": 24689.85, + "probability": 0.9976 + }, + { + "start": 24690.06, + "end": 24691.66, + "probability": 0.9967 + }, + { + "start": 24691.98, + "end": 24692.92, + "probability": 0.7769 + }, + { + "start": 24693.34, + "end": 24695.0, + "probability": 0.8819 + }, + { + "start": 24695.66, + "end": 24696.68, + "probability": 0.9734 + }, + { + "start": 24697.58, + "end": 24698.1, + "probability": 0.9902 + }, + { + "start": 24699.4, + "end": 24703.6, + "probability": 0.9963 + }, + { + "start": 24704.06, + "end": 24708.2, + "probability": 0.9771 + }, + { + "start": 24708.54, + "end": 24714.44, + "probability": 0.5415 + }, + { + "start": 24714.44, + "end": 24715.63, + "probability": 0.7193 + }, + { + "start": 24716.86, + "end": 24718.66, + "probability": 0.898 + }, + { + "start": 24719.08, + "end": 24725.74, + "probability": 0.9928 + }, + { + "start": 24726.46, + "end": 24729.48, + "probability": 0.933 + }, + { + "start": 24730.9, + "end": 24733.94, + "probability": 0.5122 + }, + { + "start": 24733.94, + "end": 24734.12, + "probability": 0.3633 + }, + { + "start": 24734.3, + "end": 24736.46, + "probability": 0.8442 + }, + { + "start": 24737.0, + "end": 24739.08, + "probability": 0.9931 + }, + { + "start": 24740.3, + "end": 24746.66, + "probability": 0.9896 + }, + { + "start": 24746.66, + "end": 24750.32, + "probability": 0.9989 + }, + { + "start": 24751.3, + "end": 24751.44, + "probability": 0.1945 + }, + { + "start": 24752.26, + "end": 24752.68, + "probability": 0.9262 + }, + { + "start": 24753.34, + "end": 24757.26, + "probability": 0.9895 + }, + { + "start": 24757.86, + "end": 24759.14, + "probability": 0.9472 + }, + { + "start": 24759.28, + "end": 24759.7, + "probability": 0.9058 + }, + { + "start": 24760.8, + "end": 24764.62, + "probability": 0.9238 + }, + { + "start": 24764.7, + "end": 24765.02, + "probability": 0.9486 + }, + { + "start": 24765.66, + "end": 24766.08, + "probability": 0.5345 + }, + { + "start": 24766.14, + "end": 24767.26, + "probability": 0.6304 + }, + { + "start": 24767.36, + "end": 24768.34, + "probability": 0.9273 + }, + { + "start": 24768.68, + "end": 24770.4, + "probability": 0.8191 + }, + { + "start": 24770.94, + "end": 24772.68, + "probability": 0.8275 + }, + { + "start": 24773.5, + "end": 24774.04, + "probability": 0.9085 + }, + { + "start": 24774.1, + "end": 24776.22, + "probability": 0.9939 + }, + { + "start": 24776.3, + "end": 24777.17, + "probability": 0.9963 + }, + { + "start": 24777.96, + "end": 24778.98, + "probability": 0.8933 + }, + { + "start": 24779.66, + "end": 24781.76, + "probability": 0.8044 + }, + { + "start": 24782.62, + "end": 24785.18, + "probability": 0.9553 + }, + { + "start": 24785.62, + "end": 24790.74, + "probability": 0.936 + }, + { + "start": 24791.02, + "end": 24791.54, + "probability": 0.71 + }, + { + "start": 24791.94, + "end": 24793.3, + "probability": 0.9556 + }, + { + "start": 24793.76, + "end": 24794.76, + "probability": 0.9624 + }, + { + "start": 24795.24, + "end": 24796.38, + "probability": 0.8209 + }, + { + "start": 24796.56, + "end": 24797.96, + "probability": 0.9429 + }, + { + "start": 24798.36, + "end": 24801.98, + "probability": 0.937 + }, + { + "start": 24802.28, + "end": 24806.36, + "probability": 0.9915 + }, + { + "start": 24806.66, + "end": 24808.08, + "probability": 0.9916 + }, + { + "start": 24809.58, + "end": 24813.0, + "probability": 0.9892 + }, + { + "start": 24813.68, + "end": 24814.42, + "probability": 0.7712 + }, + { + "start": 24815.56, + "end": 24819.5, + "probability": 0.9971 + }, + { + "start": 24820.24, + "end": 24821.68, + "probability": 0.991 + }, + { + "start": 24821.74, + "end": 24822.62, + "probability": 0.9395 + }, + { + "start": 24823.12, + "end": 24823.86, + "probability": 0.8759 + }, + { + "start": 24824.3, + "end": 24829.1, + "probability": 0.9872 + }, + { + "start": 24829.5, + "end": 24830.56, + "probability": 0.9956 + }, + { + "start": 24831.02, + "end": 24832.06, + "probability": 0.8361 + }, + { + "start": 24832.5, + "end": 24834.5, + "probability": 0.9897 + }, + { + "start": 24834.76, + "end": 24835.94, + "probability": 0.9979 + }, + { + "start": 24836.82, + "end": 24837.38, + "probability": 0.7178 + }, + { + "start": 24837.9, + "end": 24841.5, + "probability": 0.9901 + }, + { + "start": 24842.06, + "end": 24844.66, + "probability": 0.9976 + }, + { + "start": 24845.16, + "end": 24847.83, + "probability": 0.9979 + }, + { + "start": 24848.34, + "end": 24850.74, + "probability": 0.9971 + }, + { + "start": 24850.82, + "end": 24851.56, + "probability": 0.9715 + }, + { + "start": 24851.8, + "end": 24853.2, + "probability": 0.8146 + }, + { + "start": 24853.36, + "end": 24855.52, + "probability": 0.9473 + }, + { + "start": 24856.32, + "end": 24860.22, + "probability": 0.9975 + }, + { + "start": 24860.58, + "end": 24865.12, + "probability": 0.9718 + }, + { + "start": 24865.52, + "end": 24866.73, + "probability": 0.7347 + }, + { + "start": 24867.48, + "end": 24868.46, + "probability": 0.7997 + }, + { + "start": 24869.26, + "end": 24872.8, + "probability": 0.8434 + }, + { + "start": 24873.54, + "end": 24877.66, + "probability": 0.9959 + }, + { + "start": 24877.72, + "end": 24878.28, + "probability": 0.5331 + }, + { + "start": 24878.92, + "end": 24879.88, + "probability": 0.9369 + }, + { + "start": 24880.0, + "end": 24882.68, + "probability": 0.8979 + }, + { + "start": 24882.98, + "end": 24883.9, + "probability": 0.9065 + }, + { + "start": 24884.34, + "end": 24885.76, + "probability": 0.975 + }, + { + "start": 24886.26, + "end": 24887.12, + "probability": 0.9621 + }, + { + "start": 24887.64, + "end": 24888.64, + "probability": 0.7505 + }, + { + "start": 24888.78, + "end": 24890.13, + "probability": 0.9277 + }, + { + "start": 24890.44, + "end": 24891.76, + "probability": 0.844 + }, + { + "start": 24891.78, + "end": 24893.08, + "probability": 0.974 + }, + { + "start": 24893.68, + "end": 24896.17, + "probability": 0.9775 + }, + { + "start": 24896.76, + "end": 24899.96, + "probability": 0.7697 + }, + { + "start": 24900.7, + "end": 24906.2, + "probability": 0.9989 + }, + { + "start": 24906.2, + "end": 24911.06, + "probability": 0.9982 + }, + { + "start": 24911.96, + "end": 24914.52, + "probability": 0.7908 + }, + { + "start": 24915.02, + "end": 24918.7, + "probability": 0.7958 + }, + { + "start": 24918.8, + "end": 24920.64, + "probability": 0.9172 + }, + { + "start": 24921.6, + "end": 24922.32, + "probability": 0.2364 + }, + { + "start": 24922.5, + "end": 24922.78, + "probability": 0.7845 + }, + { + "start": 24937.06, + "end": 24938.82, + "probability": 0.7785 + }, + { + "start": 24938.92, + "end": 24939.28, + "probability": 0.5724 + }, + { + "start": 24939.74, + "end": 24942.88, + "probability": 0.9921 + }, + { + "start": 24942.92, + "end": 24943.34, + "probability": 0.8278 + }, + { + "start": 24944.54, + "end": 24945.44, + "probability": 0.7153 + }, + { + "start": 24945.54, + "end": 24946.2, + "probability": 0.6952 + }, + { + "start": 24946.34, + "end": 24946.84, + "probability": 0.6903 + }, + { + "start": 24947.24, + "end": 24948.74, + "probability": 0.8977 + }, + { + "start": 24949.16, + "end": 24951.86, + "probability": 0.6454 + }, + { + "start": 24953.1, + "end": 24957.42, + "probability": 0.9292 + }, + { + "start": 24960.2, + "end": 24960.94, + "probability": 0.1605 + }, + { + "start": 24961.76, + "end": 24964.92, + "probability": 0.8305 + }, + { + "start": 24966.1, + "end": 24968.42, + "probability": 0.8633 + }, + { + "start": 24972.48, + "end": 24972.8, + "probability": 0.2464 + }, + { + "start": 24973.82, + "end": 24977.22, + "probability": 0.9632 + }, + { + "start": 24978.44, + "end": 24981.26, + "probability": 0.9775 + }, + { + "start": 24982.62, + "end": 24984.3, + "probability": 0.9808 + }, + { + "start": 24985.64, + "end": 24992.36, + "probability": 0.9353 + }, + { + "start": 24993.46, + "end": 24996.66, + "probability": 0.9913 + }, + { + "start": 24997.46, + "end": 25001.46, + "probability": 0.9125 + }, + { + "start": 25001.62, + "end": 25002.8, + "probability": 0.8929 + }, + { + "start": 25002.82, + "end": 25003.22, + "probability": 0.8655 + }, + { + "start": 25004.4, + "end": 25004.88, + "probability": 0.8353 + }, + { + "start": 25008.38, + "end": 25012.18, + "probability": 0.9891 + }, + { + "start": 25012.82, + "end": 25014.7, + "probability": 0.7442 + }, + { + "start": 25016.18, + "end": 25017.32, + "probability": 0.9743 + }, + { + "start": 25017.62, + "end": 25018.5, + "probability": 0.8101 + }, + { + "start": 25020.1, + "end": 25020.2, + "probability": 0.0391 + }, + { + "start": 25021.32, + "end": 25023.34, + "probability": 0.9912 + }, + { + "start": 25025.7, + "end": 25029.32, + "probability": 0.9836 + }, + { + "start": 25030.84, + "end": 25031.98, + "probability": 0.8871 + }, + { + "start": 25034.54, + "end": 25034.58, + "probability": 0.8823 + }, + { + "start": 25035.74, + "end": 25042.76, + "probability": 0.9896 + }, + { + "start": 25044.82, + "end": 25046.78, + "probability": 0.6899 + }, + { + "start": 25048.24, + "end": 25048.58, + "probability": 0.9524 + }, + { + "start": 25050.64, + "end": 25052.08, + "probability": 0.979 + }, + { + "start": 25053.02, + "end": 25057.28, + "probability": 0.9355 + }, + { + "start": 25058.64, + "end": 25062.5, + "probability": 0.9359 + }, + { + "start": 25063.56, + "end": 25064.72, + "probability": 0.9389 + }, + { + "start": 25066.34, + "end": 25067.82, + "probability": 0.5569 + }, + { + "start": 25068.98, + "end": 25069.46, + "probability": 0.8257 + }, + { + "start": 25070.94, + "end": 25073.56, + "probability": 0.9452 + }, + { + "start": 25075.22, + "end": 25076.84, + "probability": 0.9735 + }, + { + "start": 25078.64, + "end": 25080.88, + "probability": 0.7384 + }, + { + "start": 25081.98, + "end": 25091.76, + "probability": 0.9871 + }, + { + "start": 25092.68, + "end": 25094.08, + "probability": 0.9705 + }, + { + "start": 25094.82, + "end": 25096.29, + "probability": 0.492 + }, + { + "start": 25097.24, + "end": 25099.1, + "probability": 0.9908 + }, + { + "start": 25099.84, + "end": 25101.85, + "probability": 0.9504 + }, + { + "start": 25102.86, + "end": 25103.52, + "probability": 0.7317 + }, + { + "start": 25104.68, + "end": 25105.96, + "probability": 0.6559 + }, + { + "start": 25106.48, + "end": 25108.88, + "probability": 0.9883 + }, + { + "start": 25111.62, + "end": 25112.74, + "probability": 0.7378 + }, + { + "start": 25113.62, + "end": 25114.74, + "probability": 0.8857 + }, + { + "start": 25115.08, + "end": 25117.15, + "probability": 0.968 + }, + { + "start": 25117.82, + "end": 25120.18, + "probability": 0.966 + }, + { + "start": 25121.32, + "end": 25123.28, + "probability": 0.966 + }, + { + "start": 25124.48, + "end": 25125.26, + "probability": 0.9351 + }, + { + "start": 25126.88, + "end": 25127.92, + "probability": 0.8683 + }, + { + "start": 25129.66, + "end": 25131.76, + "probability": 0.9452 + }, + { + "start": 25132.88, + "end": 25134.34, + "probability": 0.9717 + }, + { + "start": 25136.52, + "end": 25141.3, + "probability": 0.7516 + }, + { + "start": 25143.1, + "end": 25143.52, + "probability": 0.6804 + }, + { + "start": 25144.08, + "end": 25149.56, + "probability": 0.9629 + }, + { + "start": 25150.36, + "end": 25151.61, + "probability": 0.9424 + }, + { + "start": 25153.12, + "end": 25154.38, + "probability": 0.9482 + }, + { + "start": 25155.86, + "end": 25157.18, + "probability": 0.9124 + }, + { + "start": 25157.48, + "end": 25158.08, + "probability": 0.7824 + }, + { + "start": 25158.22, + "end": 25160.22, + "probability": 0.9718 + }, + { + "start": 25160.28, + "end": 25161.4, + "probability": 0.8467 + }, + { + "start": 25161.5, + "end": 25161.93, + "probability": 0.8149 + }, + { + "start": 25163.32, + "end": 25165.78, + "probability": 0.7874 + }, + { + "start": 25166.34, + "end": 25168.86, + "probability": 0.8875 + }, + { + "start": 25170.28, + "end": 25171.4, + "probability": 0.9458 + }, + { + "start": 25172.44, + "end": 25175.36, + "probability": 0.9736 + }, + { + "start": 25176.6, + "end": 25180.72, + "probability": 0.9936 + }, + { + "start": 25182.38, + "end": 25183.6, + "probability": 0.9759 + }, + { + "start": 25185.14, + "end": 25189.2, + "probability": 0.9204 + }, + { + "start": 25190.34, + "end": 25193.18, + "probability": 0.7638 + }, + { + "start": 25194.14, + "end": 25196.12, + "probability": 0.7872 + }, + { + "start": 25197.66, + "end": 25200.32, + "probability": 0.926 + }, + { + "start": 25202.04, + "end": 25207.12, + "probability": 0.9883 + }, + { + "start": 25207.82, + "end": 25214.32, + "probability": 0.9639 + }, + { + "start": 25216.28, + "end": 25219.32, + "probability": 0.7833 + }, + { + "start": 25220.64, + "end": 25224.42, + "probability": 0.9835 + }, + { + "start": 25224.98, + "end": 25227.54, + "probability": 0.9559 + }, + { + "start": 25228.14, + "end": 25228.7, + "probability": 0.9062 + }, + { + "start": 25229.28, + "end": 25235.5, + "probability": 0.8887 + }, + { + "start": 25235.8, + "end": 25237.72, + "probability": 0.8562 + }, + { + "start": 25238.4, + "end": 25240.36, + "probability": 0.8734 + }, + { + "start": 25241.28, + "end": 25241.96, + "probability": 0.8239 + }, + { + "start": 25242.94, + "end": 25244.24, + "probability": 0.9565 + }, + { + "start": 25245.18, + "end": 25246.24, + "probability": 0.7704 + }, + { + "start": 25246.36, + "end": 25247.92, + "probability": 0.9676 + }, + { + "start": 25248.0, + "end": 25249.38, + "probability": 0.9402 + }, + { + "start": 25250.38, + "end": 25251.59, + "probability": 0.7429 + }, + { + "start": 25251.68, + "end": 25252.29, + "probability": 0.8037 + }, + { + "start": 25253.26, + "end": 25254.82, + "probability": 0.9447 + }, + { + "start": 25255.67, + "end": 25257.84, + "probability": 0.5881 + }, + { + "start": 25257.84, + "end": 25258.38, + "probability": 0.6414 + }, + { + "start": 25259.32, + "end": 25259.7, + "probability": 0.4833 + }, + { + "start": 25260.88, + "end": 25261.82, + "probability": 0.4281 + }, + { + "start": 25262.32, + "end": 25263.78, + "probability": 0.0336 + }, + { + "start": 25263.78, + "end": 25265.05, + "probability": 0.2292 + }, + { + "start": 25267.32, + "end": 25268.56, + "probability": 0.9971 + }, + { + "start": 25269.42, + "end": 25272.48, + "probability": 0.9438 + }, + { + "start": 25272.88, + "end": 25273.76, + "probability": 0.9186 + }, + { + "start": 25275.4, + "end": 25277.62, + "probability": 0.9956 + }, + { + "start": 25279.14, + "end": 25280.72, + "probability": 0.9266 + }, + { + "start": 25281.38, + "end": 25282.28, + "probability": 0.9409 + }, + { + "start": 25283.5, + "end": 25286.24, + "probability": 0.9429 + }, + { + "start": 25287.62, + "end": 25290.86, + "probability": 0.9629 + }, + { + "start": 25292.14, + "end": 25293.8, + "probability": 0.9457 + }, + { + "start": 25294.16, + "end": 25295.55, + "probability": 0.9878 + }, + { + "start": 25296.56, + "end": 25297.66, + "probability": 0.9267 + }, + { + "start": 25298.18, + "end": 25299.38, + "probability": 0.9901 + }, + { + "start": 25300.1, + "end": 25301.42, + "probability": 0.9722 + }, + { + "start": 25302.0, + "end": 25302.94, + "probability": 0.9481 + }, + { + "start": 25303.48, + "end": 25305.72, + "probability": 0.7411 + }, + { + "start": 25305.74, + "end": 25306.86, + "probability": 0.5454 + }, + { + "start": 25308.64, + "end": 25311.94, + "probability": 0.9484 + }, + { + "start": 25312.5, + "end": 25316.64, + "probability": 0.8933 + }, + { + "start": 25316.96, + "end": 25319.3, + "probability": 0.821 + }, + { + "start": 25320.9, + "end": 25321.88, + "probability": 0.8096 + }, + { + "start": 25322.58, + "end": 25326.34, + "probability": 0.9655 + }, + { + "start": 25327.2, + "end": 25330.56, + "probability": 0.7946 + }, + { + "start": 25331.38, + "end": 25333.66, + "probability": 0.9302 + }, + { + "start": 25334.44, + "end": 25334.96, + "probability": 0.9012 + }, + { + "start": 25336.04, + "end": 25338.92, + "probability": 0.6617 + }, + { + "start": 25339.64, + "end": 25341.5, + "probability": 0.9895 + }, + { + "start": 25342.86, + "end": 25346.18, + "probability": 0.9722 + }, + { + "start": 25347.18, + "end": 25351.74, + "probability": 0.9356 + }, + { + "start": 25352.48, + "end": 25352.82, + "probability": 0.5869 + }, + { + "start": 25353.46, + "end": 25357.66, + "probability": 0.9918 + }, + { + "start": 25358.18, + "end": 25363.02, + "probability": 0.8549 + }, + { + "start": 25363.12, + "end": 25364.1, + "probability": 0.7912 + }, + { + "start": 25364.14, + "end": 25366.8, + "probability": 0.7814 + }, + { + "start": 25367.04, + "end": 25368.78, + "probability": 0.4669 + }, + { + "start": 25369.02, + "end": 25369.82, + "probability": 0.0026 + }, + { + "start": 25369.82, + "end": 25371.76, + "probability": 0.5945 + }, + { + "start": 25372.66, + "end": 25373.93, + "probability": 0.8234 + }, + { + "start": 25374.5, + "end": 25376.46, + "probability": 0.9875 + }, + { + "start": 25377.38, + "end": 25381.76, + "probability": 0.9761 + }, + { + "start": 25383.22, + "end": 25384.98, + "probability": 0.524 + }, + { + "start": 25385.78, + "end": 25386.8, + "probability": 0.9148 + }, + { + "start": 25387.46, + "end": 25388.38, + "probability": 0.9066 + }, + { + "start": 25389.04, + "end": 25398.72, + "probability": 0.8676 + }, + { + "start": 25399.54, + "end": 25401.12, + "probability": 0.9709 + }, + { + "start": 25402.98, + "end": 25406.18, + "probability": 0.665 + }, + { + "start": 25407.0, + "end": 25409.64, + "probability": 0.9713 + }, + { + "start": 25412.02, + "end": 25418.9, + "probability": 0.9363 + }, + { + "start": 25419.42, + "end": 25420.9, + "probability": 0.9531 + }, + { + "start": 25422.52, + "end": 25423.7, + "probability": 0.8531 + }, + { + "start": 25423.88, + "end": 25424.94, + "probability": 0.938 + }, + { + "start": 25425.92, + "end": 25428.84, + "probability": 0.9922 + }, + { + "start": 25429.56, + "end": 25431.36, + "probability": 0.984 + }, + { + "start": 25431.96, + "end": 25433.16, + "probability": 0.9583 + }, + { + "start": 25434.38, + "end": 25435.97, + "probability": 0.9941 + }, + { + "start": 25437.04, + "end": 25439.6, + "probability": 0.9974 + }, + { + "start": 25440.48, + "end": 25442.46, + "probability": 0.96 + }, + { + "start": 25442.96, + "end": 25445.53, + "probability": 0.8781 + }, + { + "start": 25446.68, + "end": 25452.62, + "probability": 0.7358 + }, + { + "start": 25453.06, + "end": 25455.96, + "probability": 0.9083 + }, + { + "start": 25457.0, + "end": 25457.72, + "probability": 0.513 + }, + { + "start": 25458.18, + "end": 25460.3, + "probability": 0.5195 + }, + { + "start": 25460.86, + "end": 25463.3, + "probability": 0.9312 + }, + { + "start": 25464.16, + "end": 25465.74, + "probability": 0.7624 + }, + { + "start": 25466.68, + "end": 25469.48, + "probability": 0.7688 + }, + { + "start": 25470.3, + "end": 25478.6, + "probability": 0.9635 + }, + { + "start": 25479.56, + "end": 25481.5, + "probability": 0.9905 + }, + { + "start": 25482.52, + "end": 25486.7, + "probability": 0.9961 + }, + { + "start": 25488.22, + "end": 25492.14, + "probability": 0.9867 + }, + { + "start": 25492.34, + "end": 25497.02, + "probability": 0.8974 + }, + { + "start": 25497.22, + "end": 25498.04, + "probability": 0.8193 + }, + { + "start": 25498.3, + "end": 25504.6, + "probability": 0.8514 + }, + { + "start": 25504.94, + "end": 25508.7, + "probability": 0.736 + }, + { + "start": 25509.8, + "end": 25511.24, + "probability": 0.7385 + }, + { + "start": 25511.32, + "end": 25512.16, + "probability": 0.5693 + }, + { + "start": 25512.8, + "end": 25518.54, + "probability": 0.9028 + }, + { + "start": 25519.44, + "end": 25529.78, + "probability": 0.9479 + }, + { + "start": 25530.38, + "end": 25532.46, + "probability": 0.9689 + }, + { + "start": 25533.6, + "end": 25534.38, + "probability": 0.9349 + }, + { + "start": 25535.14, + "end": 25543.92, + "probability": 0.9269 + }, + { + "start": 25544.42, + "end": 25550.34, + "probability": 0.9198 + }, + { + "start": 25551.18, + "end": 25553.22, + "probability": 0.5674 + }, + { + "start": 25554.2, + "end": 25556.6, + "probability": 0.8103 + }, + { + "start": 25557.12, + "end": 25559.1, + "probability": 0.8938 + }, + { + "start": 25560.0, + "end": 25561.68, + "probability": 0.8925 + }, + { + "start": 25562.04, + "end": 25563.08, + "probability": 0.7616 + }, + { + "start": 25563.38, + "end": 25567.7, + "probability": 0.9504 + }, + { + "start": 25568.64, + "end": 25572.14, + "probability": 0.9927 + }, + { + "start": 25572.44, + "end": 25577.02, + "probability": 0.8521 + }, + { + "start": 25577.44, + "end": 25578.98, + "probability": 0.601 + }, + { + "start": 25579.56, + "end": 25581.28, + "probability": 0.8364 + }, + { + "start": 25581.76, + "end": 25582.7, + "probability": 0.8351 + }, + { + "start": 25582.7, + "end": 25583.46, + "probability": 0.4258 + }, + { + "start": 25583.58, + "end": 25584.94, + "probability": 0.8576 + }, + { + "start": 25585.28, + "end": 25586.98, + "probability": 0.9722 + }, + { + "start": 25587.8, + "end": 25589.6, + "probability": 0.9629 + }, + { + "start": 25589.78, + "end": 25590.74, + "probability": 0.5881 + }, + { + "start": 25591.16, + "end": 25592.12, + "probability": 0.699 + }, + { + "start": 25592.58, + "end": 25596.96, + "probability": 0.9267 + }, + { + "start": 25597.32, + "end": 25598.04, + "probability": 0.3849 + }, + { + "start": 25598.04, + "end": 25598.2, + "probability": 0.7339 + }, + { + "start": 25599.56, + "end": 25600.68, + "probability": 0.9961 + }, + { + "start": 25601.44, + "end": 25603.22, + "probability": 0.987 + }, + { + "start": 25603.5, + "end": 25604.22, + "probability": 0.641 + }, + { + "start": 25604.56, + "end": 25605.5, + "probability": 0.5031 + }, + { + "start": 25605.98, + "end": 25608.02, + "probability": 0.8828 + }, + { + "start": 25608.14, + "end": 25609.04, + "probability": 0.8581 + }, + { + "start": 25626.32, + "end": 25629.04, + "probability": 0.6487 + }, + { + "start": 25631.52, + "end": 25633.44, + "probability": 0.9808 + }, + { + "start": 25635.14, + "end": 25640.4, + "probability": 0.8677 + }, + { + "start": 25641.72, + "end": 25644.0, + "probability": 0.973 + }, + { + "start": 25645.12, + "end": 25646.04, + "probability": 0.9696 + }, + { + "start": 25646.86, + "end": 25648.44, + "probability": 0.8919 + }, + { + "start": 25649.7, + "end": 25650.38, + "probability": 0.8005 + }, + { + "start": 25650.96, + "end": 25656.44, + "probability": 0.7242 + }, + { + "start": 25657.34, + "end": 25658.12, + "probability": 0.5625 + }, + { + "start": 25659.5, + "end": 25661.08, + "probability": 0.8188 + }, + { + "start": 25664.48, + "end": 25666.02, + "probability": 0.9484 + }, + { + "start": 25667.96, + "end": 25670.08, + "probability": 0.4261 + }, + { + "start": 25672.74, + "end": 25675.72, + "probability": 0.9902 + }, + { + "start": 25676.94, + "end": 25679.62, + "probability": 0.9319 + }, + { + "start": 25679.74, + "end": 25681.36, + "probability": 0.6131 + }, + { + "start": 25683.64, + "end": 25685.6, + "probability": 0.9941 + }, + { + "start": 25685.76, + "end": 25687.62, + "probability": 0.9409 + }, + { + "start": 25688.62, + "end": 25689.48, + "probability": 0.8991 + }, + { + "start": 25691.36, + "end": 25692.62, + "probability": 0.7996 + }, + { + "start": 25695.44, + "end": 25698.74, + "probability": 0.992 + }, + { + "start": 25699.88, + "end": 25700.7, + "probability": 0.8523 + }, + { + "start": 25702.28, + "end": 25704.94, + "probability": 0.9844 + }, + { + "start": 25706.18, + "end": 25706.9, + "probability": 0.4369 + }, + { + "start": 25707.92, + "end": 25709.38, + "probability": 0.7341 + }, + { + "start": 25710.04, + "end": 25712.68, + "probability": 0.8717 + }, + { + "start": 25714.4, + "end": 25715.9, + "probability": 0.9362 + }, + { + "start": 25716.32, + "end": 25718.0, + "probability": 0.5575 + }, + { + "start": 25718.18, + "end": 25718.84, + "probability": 0.9493 + }, + { + "start": 25718.96, + "end": 25719.66, + "probability": 0.6373 + }, + { + "start": 25721.9, + "end": 25724.52, + "probability": 0.5016 + }, + { + "start": 25726.6, + "end": 25729.26, + "probability": 0.7516 + }, + { + "start": 25731.06, + "end": 25734.0, + "probability": 0.5483 + }, + { + "start": 25735.9, + "end": 25739.0, + "probability": 0.7435 + }, + { + "start": 25739.78, + "end": 25740.38, + "probability": 0.3437 + }, + { + "start": 25742.98, + "end": 25743.3, + "probability": 0.0098 + }, + { + "start": 25746.78, + "end": 25751.72, + "probability": 0.967 + }, + { + "start": 25752.86, + "end": 25754.54, + "probability": 0.8639 + }, + { + "start": 25755.76, + "end": 25757.42, + "probability": 0.9209 + }, + { + "start": 25759.76, + "end": 25763.22, + "probability": 0.9929 + }, + { + "start": 25763.76, + "end": 25765.54, + "probability": 0.7436 + }, + { + "start": 25767.02, + "end": 25767.52, + "probability": 0.9444 + }, + { + "start": 25768.54, + "end": 25770.4, + "probability": 0.8808 + }, + { + "start": 25772.36, + "end": 25775.38, + "probability": 0.8631 + }, + { + "start": 25777.46, + "end": 25778.64, + "probability": 0.5266 + }, + { + "start": 25779.48, + "end": 25781.66, + "probability": 0.8324 + }, + { + "start": 25783.52, + "end": 25785.4, + "probability": 0.764 + }, + { + "start": 25790.08, + "end": 25792.1, + "probability": 0.786 + }, + { + "start": 25795.32, + "end": 25799.66, + "probability": 0.9025 + }, + { + "start": 25805.88, + "end": 25806.84, + "probability": 0.972 + }, + { + "start": 25808.22, + "end": 25811.82, + "probability": 0.9695 + }, + { + "start": 25814.48, + "end": 25818.78, + "probability": 0.9116 + }, + { + "start": 25821.3, + "end": 25823.76, + "probability": 0.7447 + }, + { + "start": 25824.58, + "end": 25826.5, + "probability": 0.9684 + }, + { + "start": 25829.72, + "end": 25834.36, + "probability": 0.9824 + }, + { + "start": 25835.46, + "end": 25839.64, + "probability": 0.8064 + }, + { + "start": 25842.1, + "end": 25843.92, + "probability": 0.5158 + }, + { + "start": 25846.54, + "end": 25846.92, + "probability": 0.7439 + }, + { + "start": 25846.92, + "end": 25848.86, + "probability": 0.985 + }, + { + "start": 25849.52, + "end": 25849.66, + "probability": 0.7873 + }, + { + "start": 25852.02, + "end": 25853.78, + "probability": 0.8722 + }, + { + "start": 25854.52, + "end": 25855.74, + "probability": 0.9038 + }, + { + "start": 25856.3, + "end": 25856.9, + "probability": 0.5629 + }, + { + "start": 25857.91, + "end": 25860.56, + "probability": 0.9357 + }, + { + "start": 25861.4, + "end": 25866.12, + "probability": 0.9893 + }, + { + "start": 25867.46, + "end": 25868.08, + "probability": 0.7881 + }, + { + "start": 25868.62, + "end": 25869.9, + "probability": 0.9442 + }, + { + "start": 25871.0, + "end": 25873.98, + "probability": 0.9554 + }, + { + "start": 25874.12, + "end": 25875.48, + "probability": 0.9568 + }, + { + "start": 25878.98, + "end": 25880.82, + "probability": 0.9914 + }, + { + "start": 25881.34, + "end": 25882.5, + "probability": 0.8763 + }, + { + "start": 25883.64, + "end": 25883.82, + "probability": 0.8047 + }, + { + "start": 25883.9, + "end": 25884.16, + "probability": 0.7938 + }, + { + "start": 25884.3, + "end": 25884.9, + "probability": 0.7614 + }, + { + "start": 25885.0, + "end": 25885.34, + "probability": 0.519 + }, + { + "start": 25885.46, + "end": 25888.92, + "probability": 0.9708 + }, + { + "start": 25889.64, + "end": 25890.78, + "probability": 0.736 + }, + { + "start": 25891.06, + "end": 25892.12, + "probability": 0.6743 + }, + { + "start": 25892.28, + "end": 25893.94, + "probability": 0.9636 + }, + { + "start": 25894.28, + "end": 25894.9, + "probability": 0.7493 + }, + { + "start": 25896.72, + "end": 25897.64, + "probability": 0.9412 + }, + { + "start": 25898.84, + "end": 25899.9, + "probability": 0.9868 + }, + { + "start": 25900.26, + "end": 25901.06, + "probability": 0.8394 + }, + { + "start": 25902.02, + "end": 25906.54, + "probability": 0.8522 + }, + { + "start": 25907.18, + "end": 25908.08, + "probability": 0.8745 + }, + { + "start": 25911.34, + "end": 25915.22, + "probability": 0.9841 + }, + { + "start": 25916.8, + "end": 25917.76, + "probability": 0.9761 + }, + { + "start": 25920.6, + "end": 25923.02, + "probability": 0.7612 + }, + { + "start": 25925.08, + "end": 25926.78, + "probability": 0.9928 + }, + { + "start": 25928.66, + "end": 25929.58, + "probability": 0.5659 + }, + { + "start": 25930.12, + "end": 25930.42, + "probability": 0.4973 + }, + { + "start": 25931.38, + "end": 25934.9, + "probability": 0.9138 + }, + { + "start": 25935.66, + "end": 25937.96, + "probability": 0.967 + }, + { + "start": 25938.6, + "end": 25939.24, + "probability": 0.8808 + }, + { + "start": 25942.26, + "end": 25943.1, + "probability": 0.9699 + }, + { + "start": 25944.48, + "end": 25945.38, + "probability": 0.9329 + }, + { + "start": 25946.22, + "end": 25947.1, + "probability": 0.6853 + }, + { + "start": 25947.88, + "end": 25950.82, + "probability": 0.7022 + }, + { + "start": 25950.94, + "end": 25951.82, + "probability": 0.8662 + }, + { + "start": 25952.6, + "end": 25955.66, + "probability": 0.8407 + }, + { + "start": 25958.52, + "end": 25960.96, + "probability": 0.5578 + }, + { + "start": 25961.16, + "end": 25962.4, + "probability": 0.7908 + }, + { + "start": 25964.04, + "end": 25966.08, + "probability": 0.9465 + }, + { + "start": 25967.56, + "end": 25970.4, + "probability": 0.9521 + }, + { + "start": 25971.66, + "end": 25975.08, + "probability": 0.8021 + }, + { + "start": 25976.14, + "end": 25976.48, + "probability": 0.5273 + }, + { + "start": 25980.92, + "end": 25981.26, + "probability": 0.7217 + }, + { + "start": 25983.06, + "end": 25986.5, + "probability": 0.9941 + }, + { + "start": 25987.4, + "end": 25989.3, + "probability": 0.6667 + }, + { + "start": 25991.0, + "end": 25993.74, + "probability": 0.8004 + }, + { + "start": 25994.14, + "end": 25994.42, + "probability": 0.786 + }, + { + "start": 25994.52, + "end": 26000.46, + "probability": 0.9823 + }, + { + "start": 26001.04, + "end": 26001.92, + "probability": 0.8944 + }, + { + "start": 26002.58, + "end": 26004.12, + "probability": 0.8762 + }, + { + "start": 26005.14, + "end": 26006.08, + "probability": 0.7965 + }, + { + "start": 26006.84, + "end": 26007.1, + "probability": 0.9556 + }, + { + "start": 26010.1, + "end": 26010.52, + "probability": 0.9971 + }, + { + "start": 26011.8, + "end": 26013.42, + "probability": 0.7928 + }, + { + "start": 26014.88, + "end": 26015.86, + "probability": 0.654 + }, + { + "start": 26019.06, + "end": 26022.26, + "probability": 0.9951 + }, + { + "start": 26022.54, + "end": 26023.24, + "probability": 0.3405 + }, + { + "start": 26024.8, + "end": 26026.7, + "probability": 0.9606 + }, + { + "start": 26029.56, + "end": 26033.26, + "probability": 0.9905 + }, + { + "start": 26034.44, + "end": 26042.86, + "probability": 0.9264 + }, + { + "start": 26043.52, + "end": 26044.04, + "probability": 0.0083 + }, + { + "start": 26044.26, + "end": 26045.1, + "probability": 0.5668 + }, + { + "start": 26046.44, + "end": 26050.92, + "probability": 0.9604 + }, + { + "start": 26050.92, + "end": 26053.06, + "probability": 0.965 + }, + { + "start": 26053.7, + "end": 26054.44, + "probability": 0.5806 + }, + { + "start": 26054.64, + "end": 26055.64, + "probability": 0.5127 + }, + { + "start": 26056.52, + "end": 26058.32, + "probability": 0.1336 + }, + { + "start": 26059.02, + "end": 26059.38, + "probability": 0.1086 + }, + { + "start": 26059.38, + "end": 26059.38, + "probability": 0.0046 + }, + { + "start": 26059.38, + "end": 26061.62, + "probability": 0.67 + }, + { + "start": 26064.52, + "end": 26065.7, + "probability": 0.2115 + }, + { + "start": 26067.34, + "end": 26072.02, + "probability": 0.5045 + }, + { + "start": 26072.82, + "end": 26074.88, + "probability": 0.2038 + }, + { + "start": 26075.7, + "end": 26078.12, + "probability": 0.7548 + }, + { + "start": 26078.84, + "end": 26079.68, + "probability": 0.9376 + }, + { + "start": 26080.28, + "end": 26082.26, + "probability": 0.634 + }, + { + "start": 26083.16, + "end": 26083.9, + "probability": 0.3166 + }, + { + "start": 26084.26, + "end": 26085.62, + "probability": 0.899 + }, + { + "start": 26085.7, + "end": 26086.9, + "probability": 0.9699 + }, + { + "start": 26087.18, + "end": 26088.44, + "probability": 0.51 + }, + { + "start": 26088.84, + "end": 26089.66, + "probability": 0.2283 + }, + { + "start": 26089.97, + "end": 26093.5, + "probability": 0.9509 + }, + { + "start": 26093.66, + "end": 26093.78, + "probability": 0.0135 + }, + { + "start": 26093.84, + "end": 26095.2, + "probability": 0.6176 + }, + { + "start": 26095.26, + "end": 26096.16, + "probability": 0.8237 + }, + { + "start": 26096.9, + "end": 26099.64, + "probability": 0.2723 + }, + { + "start": 26099.74, + "end": 26100.28, + "probability": 0.831 + }, + { + "start": 26100.36, + "end": 26101.02, + "probability": 0.9639 + }, + { + "start": 26101.3, + "end": 26104.74, + "probability": 0.8681 + }, + { + "start": 26104.84, + "end": 26105.34, + "probability": 0.8146 + }, + { + "start": 26106.14, + "end": 26109.02, + "probability": 0.8266 + }, + { + "start": 26109.82, + "end": 26111.96, + "probability": 0.7303 + }, + { + "start": 26113.4, + "end": 26114.92, + "probability": 0.5252 + }, + { + "start": 26115.44, + "end": 26117.42, + "probability": 0.985 + }, + { + "start": 26119.94, + "end": 26120.62, + "probability": 0.7112 + }, + { + "start": 26121.34, + "end": 26123.28, + "probability": 0.9977 + }, + { + "start": 26123.82, + "end": 26124.64, + "probability": 0.6564 + }, + { + "start": 26124.72, + "end": 26128.64, + "probability": 0.9355 + }, + { + "start": 26130.08, + "end": 26131.14, + "probability": 0.521 + }, + { + "start": 26131.16, + "end": 26131.56, + "probability": 0.8456 + }, + { + "start": 26131.7, + "end": 26132.28, + "probability": 0.7998 + }, + { + "start": 26132.32, + "end": 26134.36, + "probability": 0.9772 + }, + { + "start": 26135.38, + "end": 26136.18, + "probability": 0.8616 + }, + { + "start": 26136.24, + "end": 26137.02, + "probability": 0.979 + }, + { + "start": 26137.06, + "end": 26137.68, + "probability": 0.8228 + }, + { + "start": 26138.86, + "end": 26140.82, + "probability": 0.932 + }, + { + "start": 26140.94, + "end": 26143.0, + "probability": 0.8852 + }, + { + "start": 26143.58, + "end": 26146.54, + "probability": 0.8051 + }, + { + "start": 26147.06, + "end": 26148.06, + "probability": 0.7868 + }, + { + "start": 26148.88, + "end": 26153.26, + "probability": 0.8073 + }, + { + "start": 26156.22, + "end": 26157.22, + "probability": 0.8335 + }, + { + "start": 26158.34, + "end": 26159.46, + "probability": 0.9839 + }, + { + "start": 26160.3, + "end": 26161.86, + "probability": 0.7901 + }, + { + "start": 26162.24, + "end": 26164.12, + "probability": 0.9787 + }, + { + "start": 26164.7, + "end": 26165.04, + "probability": 0.6431 + }, + { + "start": 26166.3, + "end": 26170.48, + "probability": 0.9814 + }, + { + "start": 26171.44, + "end": 26174.32, + "probability": 0.7384 + }, + { + "start": 26174.44, + "end": 26175.86, + "probability": 0.846 + }, + { + "start": 26177.22, + "end": 26182.18, + "probability": 0.9951 + }, + { + "start": 26182.76, + "end": 26183.9, + "probability": 0.8273 + }, + { + "start": 26184.4, + "end": 26185.04, + "probability": 0.2469 + }, + { + "start": 26185.24, + "end": 26186.32, + "probability": 0.4942 + }, + { + "start": 26186.76, + "end": 26187.06, + "probability": 0.8682 + }, + { + "start": 26188.52, + "end": 26189.98, + "probability": 0.8716 + }, + { + "start": 26190.1, + "end": 26191.42, + "probability": 0.8005 + }, + { + "start": 26191.88, + "end": 26195.26, + "probability": 0.9455 + }, + { + "start": 26195.94, + "end": 26198.44, + "probability": 0.9663 + }, + { + "start": 26200.16, + "end": 26200.58, + "probability": 0.8806 + }, + { + "start": 26200.9, + "end": 26202.46, + "probability": 0.9713 + }, + { + "start": 26202.86, + "end": 26203.38, + "probability": 0.9382 + }, + { + "start": 26203.48, + "end": 26204.58, + "probability": 0.8818 + }, + { + "start": 26205.06, + "end": 26205.58, + "probability": 0.3971 + }, + { + "start": 26206.32, + "end": 26210.14, + "probability": 0.7533 + }, + { + "start": 26211.26, + "end": 26211.74, + "probability": 0.4343 + }, + { + "start": 26212.32, + "end": 26213.73, + "probability": 0.6152 + }, + { + "start": 26214.42, + "end": 26215.21, + "probability": 0.9713 + }, + { + "start": 26215.9, + "end": 26218.06, + "probability": 0.9807 + }, + { + "start": 26218.84, + "end": 26220.22, + "probability": 0.8642 + }, + { + "start": 26220.36, + "end": 26221.02, + "probability": 0.8301 + }, + { + "start": 26221.44, + "end": 26221.86, + "probability": 0.8643 + }, + { + "start": 26222.24, + "end": 26225.64, + "probability": 0.967 + }, + { + "start": 26227.28, + "end": 26231.28, + "probability": 0.9946 + }, + { + "start": 26231.76, + "end": 26232.32, + "probability": 0.644 + }, + { + "start": 26233.22, + "end": 26235.8, + "probability": 0.7745 + }, + { + "start": 26236.34, + "end": 26240.4, + "probability": 0.9917 + }, + { + "start": 26241.04, + "end": 26242.02, + "probability": 0.9648 + }, + { + "start": 26242.24, + "end": 26244.58, + "probability": 0.9506 + }, + { + "start": 26244.86, + "end": 26245.72, + "probability": 0.4532 + }, + { + "start": 26247.6, + "end": 26249.9, + "probability": 0.997 + }, + { + "start": 26250.62, + "end": 26256.76, + "probability": 0.9257 + }, + { + "start": 26257.92, + "end": 26258.78, + "probability": 0.8805 + }, + { + "start": 26259.74, + "end": 26263.78, + "probability": 0.751 + }, + { + "start": 26264.56, + "end": 26265.34, + "probability": 0.6046 + }, + { + "start": 26265.64, + "end": 26271.62, + "probability": 0.98 + }, + { + "start": 26272.58, + "end": 26273.46, + "probability": 0.8811 + }, + { + "start": 26273.46, + "end": 26274.2, + "probability": 0.7892 + }, + { + "start": 26275.6, + "end": 26277.26, + "probability": 0.7677 + }, + { + "start": 26277.32, + "end": 26278.18, + "probability": 0.5605 + }, + { + "start": 26292.5, + "end": 26293.42, + "probability": 0.4696 + }, + { + "start": 26293.78, + "end": 26294.1, + "probability": 0.7293 + }, + { + "start": 26294.1, + "end": 26297.68, + "probability": 0.9278 + }, + { + "start": 26310.2, + "end": 26312.5, + "probability": 0.7102 + }, + { + "start": 26313.14, + "end": 26314.58, + "probability": 0.6397 + }, + { + "start": 26316.2, + "end": 26318.23, + "probability": 0.7178 + }, + { + "start": 26319.2, + "end": 26320.32, + "probability": 0.923 + }, + { + "start": 26320.72, + "end": 26321.6, + "probability": 0.9549 + }, + { + "start": 26321.84, + "end": 26322.54, + "probability": 0.9644 + }, + { + "start": 26323.46, + "end": 26326.3, + "probability": 0.9954 + }, + { + "start": 26328.2, + "end": 26329.5, + "probability": 0.6983 + }, + { + "start": 26329.58, + "end": 26335.06, + "probability": 0.8816 + }, + { + "start": 26335.36, + "end": 26335.88, + "probability": 0.8116 + }, + { + "start": 26336.36, + "end": 26339.16, + "probability": 0.9083 + }, + { + "start": 26339.5, + "end": 26340.39, + "probability": 0.9668 + }, + { + "start": 26341.04, + "end": 26343.62, + "probability": 0.9793 + }, + { + "start": 26343.62, + "end": 26347.2, + "probability": 0.9536 + }, + { + "start": 26347.26, + "end": 26349.14, + "probability": 0.6718 + }, + { + "start": 26349.44, + "end": 26354.44, + "probability": 0.9854 + }, + { + "start": 26354.72, + "end": 26358.04, + "probability": 0.9976 + }, + { + "start": 26358.38, + "end": 26361.64, + "probability": 0.9932 + }, + { + "start": 26362.02, + "end": 26363.2, + "probability": 0.9971 + }, + { + "start": 26363.6, + "end": 26364.88, + "probability": 0.6853 + }, + { + "start": 26364.98, + "end": 26367.74, + "probability": 0.9577 + }, + { + "start": 26367.78, + "end": 26373.36, + "probability": 0.9912 + }, + { + "start": 26373.86, + "end": 26375.7, + "probability": 0.9501 + }, + { + "start": 26376.22, + "end": 26376.74, + "probability": 0.8687 + }, + { + "start": 26378.0, + "end": 26382.12, + "probability": 0.9834 + }, + { + "start": 26382.94, + "end": 26387.26, + "probability": 0.8043 + }, + { + "start": 26388.02, + "end": 26388.02, + "probability": 0.0359 + }, + { + "start": 26388.02, + "end": 26389.04, + "probability": 0.7897 + }, + { + "start": 26389.36, + "end": 26391.46, + "probability": 0.8807 + }, + { + "start": 26391.94, + "end": 26392.4, + "probability": 0.5505 + }, + { + "start": 26392.5, + "end": 26398.22, + "probability": 0.9746 + }, + { + "start": 26398.36, + "end": 26400.44, + "probability": 0.9547 + }, + { + "start": 26400.68, + "end": 26404.2, + "probability": 0.7726 + }, + { + "start": 26404.58, + "end": 26406.1, + "probability": 0.9593 + }, + { + "start": 26406.46, + "end": 26407.72, + "probability": 0.9913 + }, + { + "start": 26407.86, + "end": 26408.76, + "probability": 0.9002 + }, + { + "start": 26408.82, + "end": 26411.6, + "probability": 0.9452 + }, + { + "start": 26411.92, + "end": 26412.44, + "probability": 0.6572 + }, + { + "start": 26412.66, + "end": 26414.86, + "probability": 0.9854 + }, + { + "start": 26415.08, + "end": 26416.48, + "probability": 0.6964 + }, + { + "start": 26416.54, + "end": 26418.51, + "probability": 0.9894 + }, + { + "start": 26419.14, + "end": 26422.52, + "probability": 0.8786 + }, + { + "start": 26423.24, + "end": 26424.04, + "probability": 0.9622 + }, + { + "start": 26424.44, + "end": 26427.34, + "probability": 0.9711 + }, + { + "start": 26427.36, + "end": 26427.64, + "probability": 0.8772 + }, + { + "start": 26427.72, + "end": 26429.04, + "probability": 0.8759 + }, + { + "start": 26429.42, + "end": 26433.86, + "probability": 0.8928 + }, + { + "start": 26434.74, + "end": 26438.66, + "probability": 0.9784 + }, + { + "start": 26439.48, + "end": 26441.3, + "probability": 0.9938 + }, + { + "start": 26441.8, + "end": 26442.9, + "probability": 0.8377 + }, + { + "start": 26442.98, + "end": 26444.56, + "probability": 0.9523 + }, + { + "start": 26444.94, + "end": 26446.92, + "probability": 0.975 + }, + { + "start": 26447.24, + "end": 26448.56, + "probability": 0.7883 + }, + { + "start": 26449.28, + "end": 26450.38, + "probability": 0.9798 + }, + { + "start": 26450.84, + "end": 26455.82, + "probability": 0.9848 + }, + { + "start": 26455.82, + "end": 26458.72, + "probability": 0.9902 + }, + { + "start": 26459.12, + "end": 26459.61, + "probability": 0.9507 + }, + { + "start": 26460.6, + "end": 26460.6, + "probability": 0.2103 + }, + { + "start": 26460.6, + "end": 26461.38, + "probability": 0.7499 + }, + { + "start": 26462.26, + "end": 26463.36, + "probability": 0.9832 + }, + { + "start": 26463.44, + "end": 26467.24, + "probability": 0.9905 + }, + { + "start": 26467.36, + "end": 26468.72, + "probability": 0.9258 + }, + { + "start": 26469.22, + "end": 26472.04, + "probability": 0.8531 + }, + { + "start": 26472.5, + "end": 26472.7, + "probability": 0.1248 + }, + { + "start": 26472.84, + "end": 26473.6, + "probability": 0.9353 + }, + { + "start": 26473.74, + "end": 26474.82, + "probability": 0.5433 + }, + { + "start": 26474.92, + "end": 26476.02, + "probability": 0.9193 + }, + { + "start": 26476.04, + "end": 26476.94, + "probability": 0.9717 + }, + { + "start": 26477.12, + "end": 26478.88, + "probability": 0.9694 + }, + { + "start": 26479.14, + "end": 26481.34, + "probability": 0.9866 + }, + { + "start": 26482.3, + "end": 26484.95, + "probability": 0.8572 + }, + { + "start": 26485.96, + "end": 26487.44, + "probability": 0.9749 + }, + { + "start": 26487.52, + "end": 26488.52, + "probability": 0.9568 + }, + { + "start": 26488.64, + "end": 26489.34, + "probability": 0.9907 + }, + { + "start": 26489.56, + "end": 26494.08, + "probability": 0.9264 + }, + { + "start": 26494.68, + "end": 26499.62, + "probability": 0.9371 + }, + { + "start": 26500.32, + "end": 26502.98, + "probability": 0.9983 + }, + { + "start": 26502.98, + "end": 26506.34, + "probability": 0.9977 + }, + { + "start": 26506.88, + "end": 26509.24, + "probability": 0.9327 + }, + { + "start": 26509.66, + "end": 26511.18, + "probability": 0.9875 + }, + { + "start": 26511.34, + "end": 26512.26, + "probability": 0.9824 + }, + { + "start": 26512.44, + "end": 26513.46, + "probability": 0.9122 + }, + { + "start": 26513.56, + "end": 26515.66, + "probability": 0.9947 + }, + { + "start": 26515.82, + "end": 26520.4, + "probability": 0.9473 + }, + { + "start": 26520.78, + "end": 26523.7, + "probability": 0.9814 + }, + { + "start": 26524.76, + "end": 26526.7, + "probability": 0.9399 + }, + { + "start": 26526.92, + "end": 26527.82, + "probability": 0.5849 + }, + { + "start": 26527.94, + "end": 26528.66, + "probability": 0.5776 + }, + { + "start": 26529.12, + "end": 26533.54, + "probability": 0.998 + }, + { + "start": 26534.28, + "end": 26536.46, + "probability": 0.9677 + }, + { + "start": 26536.92, + "end": 26538.44, + "probability": 0.9979 + }, + { + "start": 26538.44, + "end": 26540.92, + "probability": 0.9942 + }, + { + "start": 26541.4, + "end": 26542.4, + "probability": 0.7826 + }, + { + "start": 26542.86, + "end": 26548.96, + "probability": 0.9897 + }, + { + "start": 26549.16, + "end": 26551.4, + "probability": 0.9762 + }, + { + "start": 26551.86, + "end": 26553.5, + "probability": 0.9006 + }, + { + "start": 26553.74, + "end": 26557.22, + "probability": 0.8873 + }, + { + "start": 26557.58, + "end": 26560.86, + "probability": 0.9951 + }, + { + "start": 26560.86, + "end": 26564.78, + "probability": 0.9981 + }, + { + "start": 26565.6, + "end": 26567.65, + "probability": 0.9927 + }, + { + "start": 26568.44, + "end": 26569.44, + "probability": 0.8906 + }, + { + "start": 26569.54, + "end": 26570.45, + "probability": 0.9933 + }, + { + "start": 26570.64, + "end": 26571.5, + "probability": 0.9771 + }, + { + "start": 26572.06, + "end": 26576.4, + "probability": 0.999 + }, + { + "start": 26576.84, + "end": 26579.36, + "probability": 0.9837 + }, + { + "start": 26579.36, + "end": 26581.72, + "probability": 0.9961 + }, + { + "start": 26581.82, + "end": 26586.96, + "probability": 0.9816 + }, + { + "start": 26587.02, + "end": 26589.42, + "probability": 0.9858 + }, + { + "start": 26589.96, + "end": 26590.46, + "probability": 0.0701 + }, + { + "start": 26591.22, + "end": 26594.62, + "probability": 0.9265 + }, + { + "start": 26595.0, + "end": 26596.06, + "probability": 0.9885 + }, + { + "start": 26596.84, + "end": 26598.88, + "probability": 0.9644 + }, + { + "start": 26599.32, + "end": 26600.28, + "probability": 0.9806 + }, + { + "start": 26600.4, + "end": 26604.2, + "probability": 0.9834 + }, + { + "start": 26604.5, + "end": 26605.68, + "probability": 0.9889 + }, + { + "start": 26607.64, + "end": 26609.76, + "probability": 0.8857 + }, + { + "start": 26610.26, + "end": 26611.42, + "probability": 0.8835 + }, + { + "start": 26611.88, + "end": 26615.16, + "probability": 0.9932 + }, + { + "start": 26615.38, + "end": 26618.14, + "probability": 0.9587 + }, + { + "start": 26618.5, + "end": 26619.6, + "probability": 0.9802 + }, + { + "start": 26620.08, + "end": 26621.9, + "probability": 0.9454 + }, + { + "start": 26622.4, + "end": 26623.7, + "probability": 0.8481 + }, + { + "start": 26623.84, + "end": 26624.64, + "probability": 0.8803 + }, + { + "start": 26624.72, + "end": 26625.76, + "probability": 0.7308 + }, + { + "start": 26626.48, + "end": 26629.46, + "probability": 0.6668 + }, + { + "start": 26630.22, + "end": 26634.7, + "probability": 0.9756 + }, + { + "start": 26635.38, + "end": 26636.46, + "probability": 0.9533 + }, + { + "start": 26636.64, + "end": 26641.4, + "probability": 0.9632 + }, + { + "start": 26642.72, + "end": 26645.58, + "probability": 0.9863 + }, + { + "start": 26645.61, + "end": 26651.12, + "probability": 0.9619 + }, + { + "start": 26651.22, + "end": 26651.94, + "probability": 0.8938 + }, + { + "start": 26652.0, + "end": 26655.9, + "probability": 0.9972 + }, + { + "start": 26656.22, + "end": 26660.0, + "probability": 0.9978 + }, + { + "start": 26660.3, + "end": 26662.82, + "probability": 0.9956 + }, + { + "start": 26662.92, + "end": 26665.1, + "probability": 0.9207 + }, + { + "start": 26665.48, + "end": 26668.06, + "probability": 0.9948 + }, + { + "start": 26668.06, + "end": 26670.85, + "probability": 0.9968 + }, + { + "start": 26671.1, + "end": 26672.32, + "probability": 0.6255 + }, + { + "start": 26672.96, + "end": 26674.38, + "probability": 0.877 + }, + { + "start": 26675.62, + "end": 26678.92, + "probability": 0.9299 + }, + { + "start": 26679.08, + "end": 26683.36, + "probability": 0.98 + }, + { + "start": 26683.46, + "end": 26684.48, + "probability": 0.8906 + }, + { + "start": 26684.54, + "end": 26685.66, + "probability": 0.9514 + }, + { + "start": 26686.04, + "end": 26688.38, + "probability": 0.9964 + }, + { + "start": 26688.38, + "end": 26691.82, + "probability": 0.99 + }, + { + "start": 26692.18, + "end": 26697.24, + "probability": 0.9917 + }, + { + "start": 26697.72, + "end": 26702.36, + "probability": 0.9722 + }, + { + "start": 26702.68, + "end": 26705.08, + "probability": 0.9889 + }, + { + "start": 26705.08, + "end": 26709.26, + "probability": 0.994 + }, + { + "start": 26709.84, + "end": 26710.47, + "probability": 0.6879 + }, + { + "start": 26711.24, + "end": 26714.58, + "probability": 0.9958 + }, + { + "start": 26715.0, + "end": 26716.48, + "probability": 0.9673 + }, + { + "start": 26717.12, + "end": 26721.24, + "probability": 0.9907 + }, + { + "start": 26721.98, + "end": 26723.62, + "probability": 0.9985 + }, + { + "start": 26725.14, + "end": 26728.76, + "probability": 0.9091 + }, + { + "start": 26729.14, + "end": 26729.7, + "probability": 0.8768 + }, + { + "start": 26729.78, + "end": 26731.14, + "probability": 0.9082 + }, + { + "start": 26731.74, + "end": 26732.94, + "probability": 0.8066 + }, + { + "start": 26733.06, + "end": 26734.04, + "probability": 0.98 + }, + { + "start": 26734.28, + "end": 26735.7, + "probability": 0.8525 + }, + { + "start": 26737.3, + "end": 26740.74, + "probability": 0.8627 + }, + { + "start": 26741.56, + "end": 26745.92, + "probability": 0.9502 + }, + { + "start": 26746.32, + "end": 26747.04, + "probability": 0.6349 + }, + { + "start": 26748.24, + "end": 26751.34, + "probability": 0.9136 + }, + { + "start": 26752.22, + "end": 26753.76, + "probability": 0.5495 + }, + { + "start": 26754.52, + "end": 26754.62, + "probability": 0.0305 + }, + { + "start": 26756.2, + "end": 26756.2, + "probability": 0.0308 + }, + { + "start": 26756.66, + "end": 26757.3, + "probability": 0.035 + }, + { + "start": 26757.3, + "end": 26758.22, + "probability": 0.6915 + }, + { + "start": 26758.42, + "end": 26759.24, + "probability": 0.6367 + }, + { + "start": 26760.56, + "end": 26760.99, + "probability": 0.0718 + }, + { + "start": 26761.5, + "end": 26763.2, + "probability": 0.103 + }, + { + "start": 26763.2, + "end": 26763.98, + "probability": 0.7847 + }, + { + "start": 26764.26, + "end": 26764.62, + "probability": 0.8624 + }, + { + "start": 26764.74, + "end": 26765.94, + "probability": 0.9505 + }, + { + "start": 26766.02, + "end": 26767.33, + "probability": 0.8621 + }, + { + "start": 26767.6, + "end": 26771.56, + "probability": 0.9861 + }, + { + "start": 26771.64, + "end": 26772.98, + "probability": 0.9749 + }, + { + "start": 26773.02, + "end": 26775.24, + "probability": 0.9283 + }, + { + "start": 26776.22, + "end": 26777.16, + "probability": 0.9919 + }, + { + "start": 26778.4, + "end": 26780.08, + "probability": 0.9877 + }, + { + "start": 26780.44, + "end": 26783.12, + "probability": 0.9894 + }, + { + "start": 26783.12, + "end": 26785.76, + "probability": 0.973 + }, + { + "start": 26786.14, + "end": 26787.22, + "probability": 0.7327 + }, + { + "start": 26787.32, + "end": 26787.96, + "probability": 0.8529 + }, + { + "start": 26788.0, + "end": 26788.24, + "probability": 0.3595 + }, + { + "start": 26788.88, + "end": 26789.32, + "probability": 0.763 + }, + { + "start": 26789.84, + "end": 26792.02, + "probability": 0.9819 + }, + { + "start": 26792.12, + "end": 26798.06, + "probability": 0.6602 + }, + { + "start": 26798.1, + "end": 26798.32, + "probability": 0.2805 + }, + { + "start": 26798.9, + "end": 26800.14, + "probability": 0.8556 + }, + { + "start": 26800.64, + "end": 26802.12, + "probability": 0.9885 + }, + { + "start": 26802.64, + "end": 26805.06, + "probability": 0.96 + }, + { + "start": 26805.18, + "end": 26806.1, + "probability": 0.9636 + }, + { + "start": 26806.16, + "end": 26808.9, + "probability": 0.8081 + }, + { + "start": 26809.34, + "end": 26810.77, + "probability": 0.6349 + }, + { + "start": 26811.3, + "end": 26812.02, + "probability": 0.9188 + }, + { + "start": 26812.72, + "end": 26814.62, + "probability": 0.9794 + }, + { + "start": 26815.38, + "end": 26817.44, + "probability": 0.7985 + }, + { + "start": 26817.82, + "end": 26820.32, + "probability": 0.842 + }, + { + "start": 26820.38, + "end": 26821.86, + "probability": 0.7336 + }, + { + "start": 26821.92, + "end": 26822.82, + "probability": 0.9813 + }, + { + "start": 26823.34, + "end": 26826.9, + "probability": 0.9749 + }, + { + "start": 26827.98, + "end": 26831.3, + "probability": 0.9724 + }, + { + "start": 26831.4, + "end": 26832.16, + "probability": 0.708 + }, + { + "start": 26832.44, + "end": 26837.6, + "probability": 0.7956 + }, + { + "start": 26837.84, + "end": 26842.08, + "probability": 0.9939 + }, + { + "start": 26842.22, + "end": 26844.56, + "probability": 0.7378 + }, + { + "start": 26844.94, + "end": 26846.84, + "probability": 0.7389 + }, + { + "start": 26846.98, + "end": 26847.52, + "probability": 0.8151 + }, + { + "start": 26847.84, + "end": 26849.16, + "probability": 0.9691 + }, + { + "start": 26849.2, + "end": 26849.98, + "probability": 0.7937 + }, + { + "start": 26850.94, + "end": 26853.88, + "probability": 0.9878 + }, + { + "start": 26854.62, + "end": 26856.02, + "probability": 0.8247 + }, + { + "start": 26856.06, + "end": 26858.04, + "probability": 0.9907 + }, + { + "start": 26858.12, + "end": 26860.04, + "probability": 0.8447 + }, + { + "start": 26860.14, + "end": 26862.62, + "probability": 0.9989 + }, + { + "start": 26862.62, + "end": 26867.7, + "probability": 0.9974 + }, + { + "start": 26867.88, + "end": 26868.28, + "probability": 0.8426 + }, + { + "start": 26868.36, + "end": 26869.88, + "probability": 0.9813 + }, + { + "start": 26869.96, + "end": 26873.16, + "probability": 0.9992 + }, + { + "start": 26873.7, + "end": 26875.62, + "probability": 0.9214 + }, + { + "start": 26875.68, + "end": 26879.02, + "probability": 0.9929 + }, + { + "start": 26879.12, + "end": 26879.86, + "probability": 0.7701 + }, + { + "start": 26880.72, + "end": 26885.72, + "probability": 0.8958 + }, + { + "start": 26885.88, + "end": 26887.36, + "probability": 0.8213 + }, + { + "start": 26887.48, + "end": 26889.28, + "probability": 0.9932 + }, + { + "start": 26889.9, + "end": 26892.25, + "probability": 0.6729 + }, + { + "start": 26892.8, + "end": 26893.2, + "probability": 0.6706 + }, + { + "start": 26894.04, + "end": 26896.7, + "probability": 0.9897 + }, + { + "start": 26897.5, + "end": 26898.56, + "probability": 0.9497 + }, + { + "start": 26898.8, + "end": 26900.42, + "probability": 0.9705 + }, + { + "start": 26900.5, + "end": 26902.34, + "probability": 0.9869 + }, + { + "start": 26903.74, + "end": 26906.08, + "probability": 0.9568 + }, + { + "start": 26906.22, + "end": 26907.98, + "probability": 0.9593 + }, + { + "start": 26908.3, + "end": 26909.8, + "probability": 0.9745 + }, + { + "start": 26910.18, + "end": 26914.8, + "probability": 0.9888 + }, + { + "start": 26915.12, + "end": 26916.1, + "probability": 0.9858 + }, + { + "start": 26917.08, + "end": 26919.46, + "probability": 0.9938 + }, + { + "start": 26920.16, + "end": 26920.28, + "probability": 0.6061 + }, + { + "start": 26920.28, + "end": 26920.82, + "probability": 0.2824 + }, + { + "start": 26920.94, + "end": 26922.1, + "probability": 0.8421 + }, + { + "start": 26922.22, + "end": 26925.48, + "probability": 0.9702 + }, + { + "start": 26925.58, + "end": 26929.78, + "probability": 0.9128 + }, + { + "start": 26930.18, + "end": 26933.68, + "probability": 0.9976 + }, + { + "start": 26934.34, + "end": 26937.66, + "probability": 0.9979 + }, + { + "start": 26937.82, + "end": 26938.31, + "probability": 0.9165 + }, + { + "start": 26938.84, + "end": 26939.7, + "probability": 0.9295 + }, + { + "start": 26940.06, + "end": 26941.0, + "probability": 0.8338 + }, + { + "start": 26941.08, + "end": 26941.86, + "probability": 0.951 + }, + { + "start": 26942.0, + "end": 26946.02, + "probability": 0.942 + }, + { + "start": 26946.1, + "end": 26946.72, + "probability": 0.7782 + }, + { + "start": 26946.78, + "end": 26947.82, + "probability": 0.9375 + }, + { + "start": 26949.34, + "end": 26951.74, + "probability": 0.657 + }, + { + "start": 26954.26, + "end": 26956.02, + "probability": 0.9822 + }, + { + "start": 26956.02, + "end": 26957.26, + "probability": 0.523 + }, + { + "start": 26957.32, + "end": 26957.72, + "probability": 0.0423 + }, + { + "start": 26957.72, + "end": 26959.12, + "probability": 0.7882 + }, + { + "start": 26959.74, + "end": 26961.18, + "probability": 0.9351 + }, + { + "start": 26961.96, + "end": 26965.62, + "probability": 0.9974 + }, + { + "start": 26965.62, + "end": 26969.16, + "probability": 0.9833 + }, + { + "start": 26969.5, + "end": 26969.72, + "probability": 0.6565 + }, + { + "start": 26970.1, + "end": 26972.6, + "probability": 0.5225 + }, + { + "start": 26972.72, + "end": 26975.06, + "probability": 0.8078 + }, + { + "start": 26992.36, + "end": 26993.48, + "probability": 0.8101 + }, + { + "start": 26993.64, + "end": 26994.3, + "probability": 0.6826 + }, + { + "start": 26994.4, + "end": 26995.04, + "probability": 0.7344 + }, + { + "start": 26996.48, + "end": 27000.82, + "probability": 0.9168 + }, + { + "start": 27000.82, + "end": 27004.04, + "probability": 0.9958 + }, + { + "start": 27006.32, + "end": 27007.48, + "probability": 0.2942 + }, + { + "start": 27008.6, + "end": 27012.18, + "probability": 0.967 + }, + { + "start": 27013.02, + "end": 27014.92, + "probability": 0.8787 + }, + { + "start": 27015.68, + "end": 27017.58, + "probability": 0.8579 + }, + { + "start": 27017.66, + "end": 27018.7, + "probability": 0.647 + }, + { + "start": 27019.04, + "end": 27021.42, + "probability": 0.9338 + }, + { + "start": 27023.06, + "end": 27026.16, + "probability": 0.995 + }, + { + "start": 27026.96, + "end": 27028.92, + "probability": 0.9946 + }, + { + "start": 27029.64, + "end": 27032.28, + "probability": 0.999 + }, + { + "start": 27036.14, + "end": 27037.38, + "probability": 0.1781 + }, + { + "start": 27037.38, + "end": 27038.24, + "probability": 0.3692 + }, + { + "start": 27038.5, + "end": 27041.04, + "probability": 0.8522 + }, + { + "start": 27041.08, + "end": 27042.1, + "probability": 0.9946 + }, + { + "start": 27042.52, + "end": 27043.6, + "probability": 0.9919 + }, + { + "start": 27044.3, + "end": 27046.92, + "probability": 0.9917 + }, + { + "start": 27060.19, + "end": 27060.66, + "probability": 0.389 + }, + { + "start": 27060.66, + "end": 27062.04, + "probability": 0.1645 + }, + { + "start": 27062.04, + "end": 27062.04, + "probability": 0.1184 + }, + { + "start": 27062.04, + "end": 27062.04, + "probability": 0.047 + }, + { + "start": 27062.04, + "end": 27062.44, + "probability": 0.0757 + }, + { + "start": 27062.44, + "end": 27062.94, + "probability": 0.1403 + }, + { + "start": 27063.58, + "end": 27063.58, + "probability": 0.155 + }, + { + "start": 27063.62, + "end": 27065.34, + "probability": 0.8088 + }, + { + "start": 27065.96, + "end": 27068.4, + "probability": 0.9632 + }, + { + "start": 27070.1, + "end": 27075.14, + "probability": 0.9561 + }, + { + "start": 27075.84, + "end": 27077.0, + "probability": 0.8851 + }, + { + "start": 27078.04, + "end": 27081.3, + "probability": 0.9695 + }, + { + "start": 27081.52, + "end": 27086.08, + "probability": 0.9972 + }, + { + "start": 27087.06, + "end": 27089.86, + "probability": 0.9976 + }, + { + "start": 27090.86, + "end": 27093.72, + "probability": 0.9846 + }, + { + "start": 27094.88, + "end": 27096.6, + "probability": 0.8524 + }, + { + "start": 27096.82, + "end": 27098.58, + "probability": 0.9705 + }, + { + "start": 27099.2, + "end": 27101.6, + "probability": 0.9453 + }, + { + "start": 27102.56, + "end": 27104.28, + "probability": 0.9 + }, + { + "start": 27104.92, + "end": 27107.86, + "probability": 0.9467 + }, + { + "start": 27109.18, + "end": 27112.58, + "probability": 0.9937 + }, + { + "start": 27112.58, + "end": 27116.86, + "probability": 0.9855 + }, + { + "start": 27117.42, + "end": 27119.0, + "probability": 0.9935 + }, + { + "start": 27119.48, + "end": 27121.82, + "probability": 0.9827 + }, + { + "start": 27121.98, + "end": 27124.06, + "probability": 0.9453 + }, + { + "start": 27125.72, + "end": 27126.94, + "probability": 0.6907 + }, + { + "start": 27127.02, + "end": 27127.7, + "probability": 0.5774 + }, + { + "start": 27127.76, + "end": 27129.54, + "probability": 0.7294 + }, + { + "start": 27129.66, + "end": 27130.06, + "probability": 0.777 + }, + { + "start": 27133.2, + "end": 27134.56, + "probability": 0.6448 + }, + { + "start": 27134.7, + "end": 27138.24, + "probability": 0.8414 + }, + { + "start": 27138.68, + "end": 27140.3, + "probability": 0.0493 + }, + { + "start": 27141.56, + "end": 27142.14, + "probability": 0.6729 + }, + { + "start": 27143.02, + "end": 27146.4, + "probability": 0.1743 + }, + { + "start": 27146.44, + "end": 27147.62, + "probability": 0.7664 + }, + { + "start": 27147.66, + "end": 27150.74, + "probability": 0.7021 + }, + { + "start": 27150.8, + "end": 27152.44, + "probability": 0.998 + }, + { + "start": 27153.0, + "end": 27159.94, + "probability": 0.9967 + }, + { + "start": 27160.24, + "end": 27161.54, + "probability": 0.9528 + }, + { + "start": 27162.62, + "end": 27165.48, + "probability": 0.9918 + }, + { + "start": 27166.36, + "end": 27169.62, + "probability": 0.9878 + }, + { + "start": 27169.76, + "end": 27174.96, + "probability": 0.9785 + }, + { + "start": 27175.08, + "end": 27177.96, + "probability": 0.7694 + }, + { + "start": 27178.06, + "end": 27178.66, + "probability": 0.4831 + }, + { + "start": 27179.1, + "end": 27183.22, + "probability": 0.9844 + }, + { + "start": 27183.9, + "end": 27184.98, + "probability": 0.7525 + }, + { + "start": 27185.02, + "end": 27191.44, + "probability": 0.9912 + }, + { + "start": 27192.16, + "end": 27196.32, + "probability": 0.9653 + }, + { + "start": 27197.18, + "end": 27197.7, + "probability": 0.9858 + }, + { + "start": 27197.82, + "end": 27199.24, + "probability": 0.7748 + }, + { + "start": 27199.32, + "end": 27201.84, + "probability": 0.8606 + }, + { + "start": 27201.92, + "end": 27203.2, + "probability": 0.8305 + }, + { + "start": 27203.72, + "end": 27204.74, + "probability": 0.798 + }, + { + "start": 27205.64, + "end": 27208.04, + "probability": 0.9003 + }, + { + "start": 27208.42, + "end": 27212.44, + "probability": 0.9932 + }, + { + "start": 27214.32, + "end": 27218.22, + "probability": 0.9904 + }, + { + "start": 27218.3, + "end": 27219.7, + "probability": 0.9951 + }, + { + "start": 27220.24, + "end": 27221.72, + "probability": 0.8497 + }, + { + "start": 27222.7, + "end": 27223.8, + "probability": 0.9397 + }, + { + "start": 27223.94, + "end": 27226.04, + "probability": 0.9976 + }, + { + "start": 27226.16, + "end": 27227.78, + "probability": 0.9595 + }, + { + "start": 27229.32, + "end": 27232.32, + "probability": 0.7106 + }, + { + "start": 27232.42, + "end": 27233.0, + "probability": 0.2121 + }, + { + "start": 27233.14, + "end": 27237.04, + "probability": 0.993 + }, + { + "start": 27238.94, + "end": 27239.44, + "probability": 0.8908 + }, + { + "start": 27239.54, + "end": 27240.4, + "probability": 0.9737 + }, + { + "start": 27240.48, + "end": 27243.24, + "probability": 0.998 + }, + { + "start": 27244.32, + "end": 27246.48, + "probability": 0.9983 + }, + { + "start": 27247.14, + "end": 27250.86, + "probability": 0.9666 + }, + { + "start": 27250.98, + "end": 27253.06, + "probability": 0.9883 + }, + { + "start": 27254.48, + "end": 27256.42, + "probability": 0.8293 + }, + { + "start": 27256.54, + "end": 27257.28, + "probability": 0.9614 + }, + { + "start": 27257.28, + "end": 27258.18, + "probability": 0.6665 + }, + { + "start": 27258.58, + "end": 27261.94, + "probability": 0.9912 + }, + { + "start": 27263.56, + "end": 27265.3, + "probability": 0.9987 + }, + { + "start": 27266.04, + "end": 27268.88, + "probability": 0.6657 + }, + { + "start": 27269.18, + "end": 27271.08, + "probability": 0.696 + }, + { + "start": 27272.58, + "end": 27274.54, + "probability": 0.925 + }, + { + "start": 27274.98, + "end": 27278.58, + "probability": 0.968 + }, + { + "start": 27279.24, + "end": 27280.5, + "probability": 0.9537 + }, + { + "start": 27281.44, + "end": 27283.42, + "probability": 0.9911 + }, + { + "start": 27283.42, + "end": 27285.82, + "probability": 0.9886 + }, + { + "start": 27286.1, + "end": 27287.1, + "probability": 0.6768 + }, + { + "start": 27287.14, + "end": 27288.58, + "probability": 0.9104 + }, + { + "start": 27289.18, + "end": 27290.12, + "probability": 0.8979 + }, + { + "start": 27290.42, + "end": 27291.35, + "probability": 0.9154 + }, + { + "start": 27291.68, + "end": 27294.84, + "probability": 0.9946 + }, + { + "start": 27295.08, + "end": 27297.4, + "probability": 0.9943 + }, + { + "start": 27298.18, + "end": 27300.06, + "probability": 0.8846 + }, + { + "start": 27301.06, + "end": 27303.24, + "probability": 0.8468 + }, + { + "start": 27305.0, + "end": 27306.56, + "probability": 0.9856 + }, + { + "start": 27308.36, + "end": 27311.72, + "probability": 0.9948 + }, + { + "start": 27311.72, + "end": 27314.76, + "probability": 0.9922 + }, + { + "start": 27315.08, + "end": 27318.36, + "probability": 0.9915 + }, + { + "start": 27318.67, + "end": 27321.84, + "probability": 0.9979 + }, + { + "start": 27322.58, + "end": 27325.44, + "probability": 0.9673 + }, + { + "start": 27327.16, + "end": 27330.22, + "probability": 0.99 + }, + { + "start": 27332.42, + "end": 27334.54, + "probability": 0.998 + }, + { + "start": 27334.64, + "end": 27337.4, + "probability": 0.997 + }, + { + "start": 27337.96, + "end": 27339.94, + "probability": 0.9869 + }, + { + "start": 27341.0, + "end": 27346.56, + "probability": 0.9801 + }, + { + "start": 27347.84, + "end": 27351.06, + "probability": 0.9985 + }, + { + "start": 27351.6, + "end": 27352.14, + "probability": 0.791 + }, + { + "start": 27353.72, + "end": 27355.76, + "probability": 0.9972 + }, + { + "start": 27355.84, + "end": 27356.7, + "probability": 0.8574 + }, + { + "start": 27357.36, + "end": 27358.34, + "probability": 0.9445 + }, + { + "start": 27358.98, + "end": 27359.98, + "probability": 0.9578 + }, + { + "start": 27360.3, + "end": 27360.98, + "probability": 0.9513 + }, + { + "start": 27361.02, + "end": 27364.68, + "probability": 0.9897 + }, + { + "start": 27365.88, + "end": 27368.06, + "probability": 0.9742 + }, + { + "start": 27368.74, + "end": 27369.52, + "probability": 0.9129 + }, + { + "start": 27370.3, + "end": 27371.08, + "probability": 0.8288 + }, + { + "start": 27371.7, + "end": 27372.32, + "probability": 0.9695 + }, + { + "start": 27373.14, + "end": 27376.76, + "probability": 0.9968 + }, + { + "start": 27377.78, + "end": 27382.16, + "probability": 0.985 + }, + { + "start": 27382.22, + "end": 27383.22, + "probability": 0.9308 + }, + { + "start": 27383.28, + "end": 27384.34, + "probability": 0.9189 + }, + { + "start": 27384.46, + "end": 27386.86, + "probability": 0.853 + }, + { + "start": 27388.26, + "end": 27390.14, + "probability": 0.9873 + }, + { + "start": 27390.52, + "end": 27394.44, + "probability": 0.9854 + }, + { + "start": 27394.66, + "end": 27395.78, + "probability": 0.7923 + }, + { + "start": 27396.22, + "end": 27397.06, + "probability": 0.9929 + }, + { + "start": 27397.66, + "end": 27398.02, + "probability": 0.8583 + }, + { + "start": 27398.76, + "end": 27399.72, + "probability": 0.7809 + }, + { + "start": 27400.74, + "end": 27404.34, + "probability": 0.9338 + }, + { + "start": 27413.04, + "end": 27414.72, + "probability": 0.7294 + }, + { + "start": 27415.48, + "end": 27418.22, + "probability": 0.9419 + }, + { + "start": 27420.58, + "end": 27422.54, + "probability": 0.9102 + }, + { + "start": 27422.6, + "end": 27423.18, + "probability": 0.7942 + }, + { + "start": 27423.92, + "end": 27425.04, + "probability": 0.7053 + }, + { + "start": 27425.72, + "end": 27427.3, + "probability": 0.9648 + }, + { + "start": 27428.76, + "end": 27429.54, + "probability": 0.6223 + }, + { + "start": 27429.62, + "end": 27432.72, + "probability": 0.9822 + }, + { + "start": 27433.16, + "end": 27434.74, + "probability": 0.9966 + }, + { + "start": 27435.26, + "end": 27436.24, + "probability": 0.8762 + }, + { + "start": 27436.76, + "end": 27438.86, + "probability": 0.8945 + }, + { + "start": 27439.4, + "end": 27440.45, + "probability": 0.897 + }, + { + "start": 27440.92, + "end": 27446.1, + "probability": 0.8274 + }, + { + "start": 27447.28, + "end": 27449.82, + "probability": 0.9097 + }, + { + "start": 27451.08, + "end": 27452.88, + "probability": 0.9539 + }, + { + "start": 27452.94, + "end": 27456.28, + "probability": 0.9932 + }, + { + "start": 27456.94, + "end": 27458.92, + "probability": 0.8553 + }, + { + "start": 27459.48, + "end": 27461.32, + "probability": 0.7228 + }, + { + "start": 27461.74, + "end": 27464.48, + "probability": 0.996 + }, + { + "start": 27465.04, + "end": 27465.88, + "probability": 0.8075 + }, + { + "start": 27465.96, + "end": 27469.52, + "probability": 0.907 + }, + { + "start": 27469.72, + "end": 27470.14, + "probability": 0.8542 + }, + { + "start": 27477.54, + "end": 27478.48, + "probability": 0.3897 + }, + { + "start": 27478.8, + "end": 27479.7, + "probability": 0.7118 + }, + { + "start": 27480.26, + "end": 27480.56, + "probability": 0.8727 + }, + { + "start": 27483.66, + "end": 27485.24, + "probability": 0.9888 + }, + { + "start": 27485.32, + "end": 27486.28, + "probability": 0.6916 + }, + { + "start": 27487.56, + "end": 27488.0, + "probability": 0.957 + }, + { + "start": 27489.18, + "end": 27492.43, + "probability": 0.9928 + }, + { + "start": 27494.73, + "end": 27495.5, + "probability": 0.5133 + }, + { + "start": 27495.74, + "end": 27495.74, + "probability": 0.1841 + }, + { + "start": 27495.74, + "end": 27499.22, + "probability": 0.387 + }, + { + "start": 27499.22, + "end": 27500.52, + "probability": 0.7764 + }, + { + "start": 27502.24, + "end": 27504.14, + "probability": 0.6114 + }, + { + "start": 27504.4, + "end": 27505.18, + "probability": 0.6472 + }, + { + "start": 27505.22, + "end": 27506.3, + "probability": 0.894 + }, + { + "start": 27507.64, + "end": 27508.6, + "probability": 0.9584 + }, + { + "start": 27510.72, + "end": 27511.1, + "probability": 0.7437 + }, + { + "start": 27511.4, + "end": 27512.74, + "probability": 0.9737 + }, + { + "start": 27513.72, + "end": 27516.02, + "probability": 0.984 + }, + { + "start": 27517.22, + "end": 27517.94, + "probability": 0.8676 + }, + { + "start": 27518.44, + "end": 27525.36, + "probability": 0.9901 + }, + { + "start": 27525.9, + "end": 27529.3, + "probability": 0.9893 + }, + { + "start": 27530.22, + "end": 27532.86, + "probability": 0.9946 + }, + { + "start": 27534.22, + "end": 27537.22, + "probability": 0.9954 + }, + { + "start": 27537.88, + "end": 27541.96, + "probability": 0.9974 + }, + { + "start": 27543.86, + "end": 27548.24, + "probability": 0.9951 + }, + { + "start": 27549.76, + "end": 27556.3, + "probability": 0.9297 + }, + { + "start": 27557.0, + "end": 27559.11, + "probability": 0.8419 + }, + { + "start": 27559.34, + "end": 27561.6, + "probability": 0.9683 + }, + { + "start": 27561.88, + "end": 27562.32, + "probability": 0.8889 + }, + { + "start": 27562.48, + "end": 27563.06, + "probability": 0.7695 + }, + { + "start": 27563.94, + "end": 27567.08, + "probability": 0.9351 + }, + { + "start": 27568.06, + "end": 27569.4, + "probability": 0.8687 + }, + { + "start": 27570.26, + "end": 27571.64, + "probability": 0.9165 + }, + { + "start": 27573.26, + "end": 27574.06, + "probability": 0.5615 + }, + { + "start": 27575.5, + "end": 27578.72, + "probability": 0.8868 + }, + { + "start": 27579.02, + "end": 27579.32, + "probability": 0.4555 + }, + { + "start": 27579.76, + "end": 27580.9, + "probability": 0.8346 + }, + { + "start": 27581.12, + "end": 27582.04, + "probability": 0.9044 + }, + { + "start": 27582.94, + "end": 27585.86, + "probability": 0.9112 + }, + { + "start": 27587.2, + "end": 27591.58, + "probability": 0.9848 + }, + { + "start": 27591.8, + "end": 27593.7, + "probability": 0.9636 + }, + { + "start": 27594.3, + "end": 27596.78, + "probability": 0.9954 + }, + { + "start": 27598.0, + "end": 27601.1, + "probability": 0.7468 + }, + { + "start": 27603.34, + "end": 27607.02, + "probability": 0.9825 + }, + { + "start": 27608.86, + "end": 27612.34, + "probability": 0.98 + }, + { + "start": 27612.4, + "end": 27613.66, + "probability": 0.9614 + }, + { + "start": 27614.66, + "end": 27618.58, + "probability": 0.5831 + }, + { + "start": 27618.66, + "end": 27619.98, + "probability": 0.6071 + }, + { + "start": 27620.28, + "end": 27622.04, + "probability": 0.8316 + }, + { + "start": 27622.74, + "end": 27624.54, + "probability": 0.9391 + }, + { + "start": 27625.28, + "end": 27630.1, + "probability": 0.9606 + }, + { + "start": 27630.32, + "end": 27630.8, + "probability": 0.8472 + }, + { + "start": 27630.84, + "end": 27632.0, + "probability": 0.8893 + }, + { + "start": 27632.72, + "end": 27633.92, + "probability": 0.8524 + }, + { + "start": 27634.86, + "end": 27638.22, + "probability": 0.8305 + }, + { + "start": 27639.04, + "end": 27642.42, + "probability": 0.7131 + }, + { + "start": 27644.26, + "end": 27646.74, + "probability": 0.9924 + }, + { + "start": 27647.9, + "end": 27650.76, + "probability": 0.9543 + }, + { + "start": 27651.32, + "end": 27652.76, + "probability": 0.9226 + }, + { + "start": 27653.72, + "end": 27656.22, + "probability": 0.7842 + }, + { + "start": 27656.82, + "end": 27659.12, + "probability": 0.9969 + }, + { + "start": 27660.0, + "end": 27661.42, + "probability": 0.8038 + }, + { + "start": 27661.88, + "end": 27662.94, + "probability": 0.7313 + }, + { + "start": 27663.02, + "end": 27664.6, + "probability": 0.9306 + }, + { + "start": 27664.94, + "end": 27666.18, + "probability": 0.9245 + }, + { + "start": 27666.22, + "end": 27666.58, + "probability": 0.5452 + }, + { + "start": 27667.86, + "end": 27670.66, + "probability": 0.9451 + }, + { + "start": 27671.28, + "end": 27673.4, + "probability": 0.9937 + }, + { + "start": 27674.02, + "end": 27674.64, + "probability": 0.6209 + }, + { + "start": 27674.88, + "end": 27679.7, + "probability": 0.9702 + }, + { + "start": 27680.62, + "end": 27684.6, + "probability": 0.7386 + }, + { + "start": 27685.14, + "end": 27686.58, + "probability": 0.9598 + }, + { + "start": 27686.82, + "end": 27688.18, + "probability": 0.99 + }, + { + "start": 27689.4, + "end": 27694.02, + "probability": 0.9956 + }, + { + "start": 27694.02, + "end": 27697.92, + "probability": 0.9995 + }, + { + "start": 27698.12, + "end": 27699.94, + "probability": 0.999 + }, + { + "start": 27701.6, + "end": 27705.62, + "probability": 0.9659 + }, + { + "start": 27706.88, + "end": 27709.58, + "probability": 0.9985 + }, + { + "start": 27711.8, + "end": 27715.34, + "probability": 0.9883 + }, + { + "start": 27715.92, + "end": 27717.44, + "probability": 0.9396 + }, + { + "start": 27718.54, + "end": 27722.84, + "probability": 0.9688 + }, + { + "start": 27723.7, + "end": 27724.94, + "probability": 0.8802 + }, + { + "start": 27725.6, + "end": 27729.72, + "probability": 0.9855 + }, + { + "start": 27730.66, + "end": 27732.28, + "probability": 0.806 + }, + { + "start": 27732.44, + "end": 27733.8, + "probability": 0.7334 + }, + { + "start": 27734.4, + "end": 27738.26, + "probability": 0.5973 + }, + { + "start": 27738.94, + "end": 27740.8, + "probability": 0.9469 + }, + { + "start": 27741.48, + "end": 27743.82, + "probability": 0.8485 + }, + { + "start": 27745.08, + "end": 27747.86, + "probability": 0.9905 + }, + { + "start": 27747.86, + "end": 27751.88, + "probability": 0.9443 + }, + { + "start": 27753.4, + "end": 27755.24, + "probability": 0.9771 + }, + { + "start": 27755.72, + "end": 27756.04, + "probability": 0.9941 + }, + { + "start": 27757.3, + "end": 27758.9, + "probability": 0.9944 + }, + { + "start": 27759.02, + "end": 27760.0, + "probability": 0.9209 + }, + { + "start": 27760.06, + "end": 27760.96, + "probability": 0.8012 + }, + { + "start": 27761.42, + "end": 27762.24, + "probability": 0.9946 + }, + { + "start": 27763.28, + "end": 27764.82, + "probability": 0.793 + }, + { + "start": 27764.92, + "end": 27767.2, + "probability": 0.9229 + }, + { + "start": 27768.48, + "end": 27769.22, + "probability": 0.6794 + }, + { + "start": 27769.72, + "end": 27773.18, + "probability": 0.9121 + }, + { + "start": 27773.8, + "end": 27774.96, + "probability": 0.7522 + }, + { + "start": 27776.54, + "end": 27777.22, + "probability": 0.5862 + }, + { + "start": 27778.02, + "end": 27779.9, + "probability": 0.9717 + }, + { + "start": 27781.9, + "end": 27782.73, + "probability": 0.9912 + }, + { + "start": 27783.52, + "end": 27787.64, + "probability": 0.6307 + }, + { + "start": 27788.44, + "end": 27790.96, + "probability": 0.9296 + }, + { + "start": 27792.62, + "end": 27794.12, + "probability": 0.827 + }, + { + "start": 27794.9, + "end": 27795.62, + "probability": 0.7639 + }, + { + "start": 27796.56, + "end": 27798.19, + "probability": 0.9551 + }, + { + "start": 27799.44, + "end": 27801.06, + "probability": 0.9761 + }, + { + "start": 27801.42, + "end": 27803.86, + "probability": 0.999 + }, + { + "start": 27804.34, + "end": 27806.48, + "probability": 0.9873 + }, + { + "start": 27807.92, + "end": 27809.08, + "probability": 0.7266 + }, + { + "start": 27810.02, + "end": 27813.1, + "probability": 0.866 + }, + { + "start": 27813.68, + "end": 27816.66, + "probability": 0.7769 + }, + { + "start": 27817.3, + "end": 27821.08, + "probability": 0.9844 + }, + { + "start": 27821.2, + "end": 27824.4, + "probability": 0.6621 + }, + { + "start": 27825.18, + "end": 27829.2, + "probability": 0.9204 + }, + { + "start": 27829.2, + "end": 27834.96, + "probability": 0.9572 + }, + { + "start": 27835.1, + "end": 27836.58, + "probability": 0.9359 + }, + { + "start": 27836.66, + "end": 27838.3, + "probability": 0.9961 + }, + { + "start": 27838.82, + "end": 27842.86, + "probability": 0.8085 + }, + { + "start": 27843.02, + "end": 27844.46, + "probability": 0.9948 + }, + { + "start": 27844.56, + "end": 27846.12, + "probability": 0.9734 + }, + { + "start": 27847.9, + "end": 27848.51, + "probability": 0.9558 + }, + { + "start": 27849.54, + "end": 27851.28, + "probability": 0.9932 + }, + { + "start": 27852.0, + "end": 27852.0, + "probability": 0.5652 + }, + { + "start": 27852.0, + "end": 27856.14, + "probability": 0.9877 + }, + { + "start": 27856.3, + "end": 27859.6, + "probability": 0.5093 + }, + { + "start": 27860.2, + "end": 27861.1, + "probability": 0.6677 + }, + { + "start": 27861.94, + "end": 27865.86, + "probability": 0.9167 + }, + { + "start": 27867.78, + "end": 27870.5, + "probability": 0.8826 + }, + { + "start": 27870.58, + "end": 27873.68, + "probability": 0.7342 + }, + { + "start": 27873.78, + "end": 27874.64, + "probability": 0.8524 + }, + { + "start": 27875.36, + "end": 27876.01, + "probability": 0.874 + }, + { + "start": 27876.94, + "end": 27877.54, + "probability": 0.8807 + }, + { + "start": 27879.3, + "end": 27881.94, + "probability": 0.818 + }, + { + "start": 27882.34, + "end": 27883.26, + "probability": 0.7726 + }, + { + "start": 27883.28, + "end": 27885.82, + "probability": 0.9612 + }, + { + "start": 27891.04, + "end": 27894.24, + "probability": 0.6609 + }, + { + "start": 27895.36, + "end": 27900.6, + "probability": 0.8287 + }, + { + "start": 27900.6, + "end": 27904.5, + "probability": 0.9951 + }, + { + "start": 27905.9, + "end": 27907.04, + "probability": 0.8079 + }, + { + "start": 27908.38, + "end": 27909.88, + "probability": 0.9733 + }, + { + "start": 27910.4, + "end": 27917.36, + "probability": 0.9634 + }, + { + "start": 27917.7, + "end": 27921.76, + "probability": 0.9832 + }, + { + "start": 27922.26, + "end": 27925.56, + "probability": 0.9482 + }, + { + "start": 27927.76, + "end": 27930.54, + "probability": 0.994 + }, + { + "start": 27930.68, + "end": 27933.1, + "probability": 0.9839 + }, + { + "start": 27933.8, + "end": 27935.66, + "probability": 0.6888 + }, + { + "start": 27936.62, + "end": 27938.0, + "probability": 0.9167 + }, + { + "start": 27938.06, + "end": 27941.26, + "probability": 0.7986 + }, + { + "start": 27941.72, + "end": 27943.48, + "probability": 0.9736 + }, + { + "start": 27946.22, + "end": 27947.16, + "probability": 0.1623 + }, + { + "start": 27948.34, + "end": 27948.34, + "probability": 0.597 + }, + { + "start": 27948.34, + "end": 27949.74, + "probability": 0.5138 + }, + { + "start": 27949.94, + "end": 27950.92, + "probability": 0.711 + }, + { + "start": 27951.08, + "end": 27953.68, + "probability": 0.9873 + }, + { + "start": 27954.38, + "end": 27955.82, + "probability": 0.7331 + }, + { + "start": 27957.72, + "end": 27957.94, + "probability": 0.2939 + }, + { + "start": 27957.94, + "end": 27957.94, + "probability": 0.3762 + }, + { + "start": 27957.94, + "end": 27959.36, + "probability": 0.3663 + }, + { + "start": 27960.56, + "end": 27964.26, + "probability": 0.8185 + }, + { + "start": 27964.34, + "end": 27965.5, + "probability": 0.7251 + }, + { + "start": 27966.82, + "end": 27968.31, + "probability": 0.9779 + }, + { + "start": 27969.3, + "end": 27974.12, + "probability": 0.9808 + }, + { + "start": 27974.84, + "end": 27978.32, + "probability": 0.9932 + }, + { + "start": 27978.44, + "end": 27979.2, + "probability": 0.757 + }, + { + "start": 27980.08, + "end": 27980.44, + "probability": 0.8826 + }, + { + "start": 27980.54, + "end": 27982.32, + "probability": 0.9794 + }, + { + "start": 27982.44, + "end": 27983.32, + "probability": 0.8029 + }, + { + "start": 27984.42, + "end": 27989.82, + "probability": 0.9724 + }, + { + "start": 27990.04, + "end": 27992.44, + "probability": 0.9917 + }, + { + "start": 27992.96, + "end": 27996.71, + "probability": 0.9929 + }, + { + "start": 27997.44, + "end": 27999.78, + "probability": 0.9219 + }, + { + "start": 28001.18, + "end": 28003.22, + "probability": 0.9781 + }, + { + "start": 28004.5, + "end": 28005.68, + "probability": 0.9613 + }, + { + "start": 28006.78, + "end": 28012.52, + "probability": 0.8307 + }, + { + "start": 28012.52, + "end": 28017.2, + "probability": 0.9971 + }, + { + "start": 28017.28, + "end": 28018.74, + "probability": 0.8689 + }, + { + "start": 28020.06, + "end": 28021.66, + "probability": 0.9968 + }, + { + "start": 28021.8, + "end": 28023.62, + "probability": 0.9029 + }, + { + "start": 28025.1, + "end": 28027.48, + "probability": 0.9922 + }, + { + "start": 28029.98, + "end": 28037.06, + "probability": 0.9953 + }, + { + "start": 28039.38, + "end": 28041.48, + "probability": 0.7629 + }, + { + "start": 28042.22, + "end": 28046.04, + "probability": 0.9437 + }, + { + "start": 28046.32, + "end": 28048.22, + "probability": 0.8167 + }, + { + "start": 28048.22, + "end": 28048.38, + "probability": 0.5038 + }, + { + "start": 28048.5, + "end": 28049.14, + "probability": 0.6183 + }, + { + "start": 28050.56, + "end": 28053.14, + "probability": 0.9873 + }, + { + "start": 28053.14, + "end": 28055.86, + "probability": 0.9975 + }, + { + "start": 28057.24, + "end": 28059.66, + "probability": 0.9614 + }, + { + "start": 28060.8, + "end": 28063.78, + "probability": 0.9162 + }, + { + "start": 28065.5, + "end": 28068.7, + "probability": 0.9937 + }, + { + "start": 28069.34, + "end": 28070.42, + "probability": 0.9907 + }, + { + "start": 28070.54, + "end": 28072.22, + "probability": 0.9022 + }, + { + "start": 28073.02, + "end": 28074.7, + "probability": 0.967 + }, + { + "start": 28075.24, + "end": 28078.64, + "probability": 0.9163 + }, + { + "start": 28079.82, + "end": 28082.4, + "probability": 0.7515 + }, + { + "start": 28083.0, + "end": 28084.38, + "probability": 0.868 + }, + { + "start": 28084.46, + "end": 28085.7, + "probability": 0.988 + }, + { + "start": 28085.88, + "end": 28087.36, + "probability": 0.9082 + }, + { + "start": 28088.76, + "end": 28091.74, + "probability": 0.989 + }, + { + "start": 28091.8, + "end": 28093.12, + "probability": 0.9505 + }, + { + "start": 28093.2, + "end": 28094.42, + "probability": 0.6914 + }, + { + "start": 28094.94, + "end": 28097.3, + "probability": 0.8042 + }, + { + "start": 28097.92, + "end": 28098.84, + "probability": 0.9133 + }, + { + "start": 28099.42, + "end": 28099.42, + "probability": 0.112 + }, + { + "start": 28099.42, + "end": 28101.44, + "probability": 0.9703 + }, + { + "start": 28101.66, + "end": 28103.5, + "probability": 0.9281 + }, + { + "start": 28103.92, + "end": 28106.04, + "probability": 0.9978 + }, + { + "start": 28106.38, + "end": 28107.6, + "probability": 0.9789 + }, + { + "start": 28107.92, + "end": 28108.89, + "probability": 0.9827 + }, + { + "start": 28109.34, + "end": 28115.01, + "probability": 0.858 + }, + { + "start": 28116.74, + "end": 28122.12, + "probability": 0.9822 + }, + { + "start": 28122.28, + "end": 28124.44, + "probability": 0.8701 + }, + { + "start": 28124.8, + "end": 28128.14, + "probability": 0.9011 + }, + { + "start": 28128.14, + "end": 28132.35, + "probability": 0.5586 + }, + { + "start": 28133.16, + "end": 28137.24, + "probability": 0.7128 + }, + { + "start": 28137.96, + "end": 28137.96, + "probability": 0.4875 + }, + { + "start": 28138.0, + "end": 28140.88, + "probability": 0.9741 + }, + { + "start": 28141.6, + "end": 28143.84, + "probability": 0.9743 + }, + { + "start": 28143.84, + "end": 28144.62, + "probability": 0.2423 + }, + { + "start": 28144.62, + "end": 28148.0, + "probability": 0.9888 + }, + { + "start": 28148.02, + "end": 28148.4, + "probability": 0.9158 + }, + { + "start": 28148.58, + "end": 28149.4, + "probability": 0.8444 + }, + { + "start": 28150.26, + "end": 28152.62, + "probability": 0.9879 + }, + { + "start": 28152.74, + "end": 28154.22, + "probability": 0.9928 + }, + { + "start": 28155.18, + "end": 28159.02, + "probability": 0.9272 + }, + { + "start": 28160.74, + "end": 28163.5, + "probability": 0.6645 + }, + { + "start": 28165.4, + "end": 28167.6, + "probability": 0.7861 + }, + { + "start": 28168.18, + "end": 28169.1, + "probability": 0.1306 + }, + { + "start": 28169.14, + "end": 28170.85, + "probability": 0.819 + }, + { + "start": 28171.34, + "end": 28173.22, + "probability": 0.9092 + }, + { + "start": 28173.64, + "end": 28174.02, + "probability": 0.4659 + }, + { + "start": 28174.82, + "end": 28175.82, + "probability": 0.4095 + }, + { + "start": 28175.92, + "end": 28177.48, + "probability": 0.4671 + }, + { + "start": 28177.48, + "end": 28179.09, + "probability": 0.5615 + }, + { + "start": 28179.82, + "end": 28181.74, + "probability": 0.9613 + }, + { + "start": 28181.84, + "end": 28182.4, + "probability": 0.6136 + }, + { + "start": 28182.4, + "end": 28182.47, + "probability": 0.1772 + }, + { + "start": 28183.42, + "end": 28183.58, + "probability": 0.0784 + }, + { + "start": 28184.18, + "end": 28186.78, + "probability": 0.9292 + }, + { + "start": 28187.44, + "end": 28188.16, + "probability": 0.8207 + }, + { + "start": 28188.76, + "end": 28190.5, + "probability": 0.855 + }, + { + "start": 28190.62, + "end": 28191.1, + "probability": 0.5867 + }, + { + "start": 28191.68, + "end": 28195.76, + "probability": 0.9373 + }, + { + "start": 28196.34, + "end": 28199.66, + "probability": 0.8177 + }, + { + "start": 28199.86, + "end": 28203.18, + "probability": 0.9761 + }, + { + "start": 28203.18, + "end": 28206.12, + "probability": 0.9786 + }, + { + "start": 28206.62, + "end": 28207.28, + "probability": 0.6047 + }, + { + "start": 28207.5, + "end": 28208.52, + "probability": 0.9521 + }, + { + "start": 28208.66, + "end": 28212.16, + "probability": 0.9971 + }, + { + "start": 28212.88, + "end": 28212.88, + "probability": 0.1242 + }, + { + "start": 28212.88, + "end": 28213.72, + "probability": 0.6176 + }, + { + "start": 28214.22, + "end": 28216.22, + "probability": 0.8517 + }, + { + "start": 28216.42, + "end": 28218.7, + "probability": 0.1598 + }, + { + "start": 28218.72, + "end": 28224.34, + "probability": 0.9095 + }, + { + "start": 28224.84, + "end": 28228.6, + "probability": 0.9844 + }, + { + "start": 28229.0, + "end": 28230.14, + "probability": 0.5265 + }, + { + "start": 28230.34, + "end": 28232.94, + "probability": 0.9858 + }, + { + "start": 28234.24, + "end": 28237.02, + "probability": 0.6808 + }, + { + "start": 28237.12, + "end": 28238.86, + "probability": 0.4529 + }, + { + "start": 28239.98, + "end": 28241.72, + "probability": 0.3134 + }, + { + "start": 28241.84, + "end": 28242.46, + "probability": 0.585 + }, + { + "start": 28243.0, + "end": 28246.06, + "probability": 0.8506 + }, + { + "start": 28246.55, + "end": 28249.62, + "probability": 0.9797 + }, + { + "start": 28262.82, + "end": 28264.16, + "probability": 0.7196 + }, + { + "start": 28265.42, + "end": 28265.94, + "probability": 0.8014 + }, + { + "start": 28270.46, + "end": 28271.93, + "probability": 0.5506 + }, + { + "start": 28273.36, + "end": 28275.32, + "probability": 0.9833 + }, + { + "start": 28276.06, + "end": 28279.78, + "probability": 0.9846 + }, + { + "start": 28280.54, + "end": 28284.42, + "probability": 0.9839 + }, + { + "start": 28284.42, + "end": 28287.8, + "probability": 0.9957 + }, + { + "start": 28288.4, + "end": 28288.92, + "probability": 0.808 + }, + { + "start": 28289.62, + "end": 28294.36, + "probability": 0.9587 + }, + { + "start": 28295.44, + "end": 28296.16, + "probability": 0.94 + }, + { + "start": 28296.26, + "end": 28296.96, + "probability": 0.7754 + }, + { + "start": 28297.02, + "end": 28302.76, + "probability": 0.9835 + }, + { + "start": 28303.34, + "end": 28303.54, + "probability": 0.6598 + }, + { + "start": 28304.1, + "end": 28308.18, + "probability": 0.9969 + }, + { + "start": 28308.3, + "end": 28308.88, + "probability": 0.8672 + }, + { + "start": 28309.2, + "end": 28312.42, + "probability": 0.9761 + }, + { + "start": 28312.52, + "end": 28313.66, + "probability": 0.9879 + }, + { + "start": 28313.78, + "end": 28314.86, + "probability": 0.9907 + }, + { + "start": 28314.94, + "end": 28318.4, + "probability": 0.9946 + }, + { + "start": 28318.48, + "end": 28320.02, + "probability": 0.8633 + }, + { + "start": 28320.3, + "end": 28321.91, + "probability": 0.8499 + }, + { + "start": 28322.32, + "end": 28323.62, + "probability": 0.9608 + }, + { + "start": 28323.86, + "end": 28324.6, + "probability": 0.8262 + }, + { + "start": 28324.96, + "end": 28326.82, + "probability": 0.9354 + }, + { + "start": 28326.88, + "end": 28328.94, + "probability": 0.8564 + }, + { + "start": 28329.06, + "end": 28330.1, + "probability": 0.8204 + }, + { + "start": 28330.56, + "end": 28335.78, + "probability": 0.9946 + }, + { + "start": 28336.58, + "end": 28339.32, + "probability": 0.9671 + }, + { + "start": 28340.18, + "end": 28341.36, + "probability": 0.8776 + }, + { + "start": 28341.5, + "end": 28342.4, + "probability": 0.8245 + }, + { + "start": 28342.92, + "end": 28345.44, + "probability": 0.929 + }, + { + "start": 28345.54, + "end": 28349.92, + "probability": 0.9909 + }, + { + "start": 28350.44, + "end": 28353.22, + "probability": 0.9539 + }, + { + "start": 28353.84, + "end": 28356.18, + "probability": 0.9951 + }, + { + "start": 28356.18, + "end": 28359.78, + "probability": 0.5768 + }, + { + "start": 28359.9, + "end": 28361.26, + "probability": 0.9161 + }, + { + "start": 28361.72, + "end": 28365.04, + "probability": 0.9985 + }, + { + "start": 28366.36, + "end": 28367.9, + "probability": 0.9121 + }, + { + "start": 28368.02, + "end": 28368.68, + "probability": 0.6303 + }, + { + "start": 28368.82, + "end": 28369.28, + "probability": 0.6936 + }, + { + "start": 28369.72, + "end": 28370.36, + "probability": 0.8541 + }, + { + "start": 28370.5, + "end": 28371.91, + "probability": 0.9474 + }, + { + "start": 28372.6, + "end": 28375.1, + "probability": 0.9589 + }, + { + "start": 28375.5, + "end": 28377.78, + "probability": 0.9834 + }, + { + "start": 28377.82, + "end": 28379.2, + "probability": 0.9399 + }, + { + "start": 28379.6, + "end": 28381.19, + "probability": 0.9614 + }, + { + "start": 28381.84, + "end": 28383.26, + "probability": 0.7984 + }, + { + "start": 28383.32, + "end": 28384.02, + "probability": 0.9026 + }, + { + "start": 28384.14, + "end": 28385.44, + "probability": 0.9663 + }, + { + "start": 28386.39, + "end": 28389.46, + "probability": 0.9009 + }, + { + "start": 28389.56, + "end": 28390.86, + "probability": 0.8647 + }, + { + "start": 28391.48, + "end": 28393.68, + "probability": 0.9906 + }, + { + "start": 28393.84, + "end": 28394.82, + "probability": 0.7909 + }, + { + "start": 28395.18, + "end": 28396.18, + "probability": 0.9358 + }, + { + "start": 28396.28, + "end": 28396.9, + "probability": 0.9036 + }, + { + "start": 28397.02, + "end": 28399.3, + "probability": 0.9011 + }, + { + "start": 28399.52, + "end": 28403.68, + "probability": 0.9851 + }, + { + "start": 28405.2, + "end": 28406.48, + "probability": 0.9666 + }, + { + "start": 28406.68, + "end": 28407.22, + "probability": 0.519 + }, + { + "start": 28407.5, + "end": 28409.56, + "probability": 0.9816 + }, + { + "start": 28411.04, + "end": 28412.0, + "probability": 0.9626 + }, + { + "start": 28412.26, + "end": 28412.56, + "probability": 0.4879 + }, + { + "start": 28412.68, + "end": 28414.54, + "probability": 0.8903 + }, + { + "start": 28414.92, + "end": 28418.58, + "probability": 0.9969 + }, + { + "start": 28418.62, + "end": 28420.3, + "probability": 0.7064 + }, + { + "start": 28421.24, + "end": 28422.84, + "probability": 0.9306 + }, + { + "start": 28422.84, + "end": 28425.92, + "probability": 0.9989 + }, + { + "start": 28426.02, + "end": 28426.9, + "probability": 0.988 + }, + { + "start": 28427.26, + "end": 28429.42, + "probability": 0.9993 + }, + { + "start": 28429.7, + "end": 28433.32, + "probability": 0.9945 + }, + { + "start": 28433.96, + "end": 28434.7, + "probability": 0.7916 + }, + { + "start": 28435.34, + "end": 28435.88, + "probability": 0.4901 + }, + { + "start": 28435.92, + "end": 28437.22, + "probability": 0.8922 + }, + { + "start": 28437.32, + "end": 28440.13, + "probability": 0.8738 + }, + { + "start": 28440.34, + "end": 28441.06, + "probability": 0.7924 + }, + { + "start": 28441.16, + "end": 28443.16, + "probability": 0.9904 + }, + { + "start": 28443.9, + "end": 28447.82, + "probability": 0.9775 + }, + { + "start": 28448.56, + "end": 28449.3, + "probability": 0.5002 + }, + { + "start": 28449.42, + "end": 28453.06, + "probability": 0.9116 + }, + { + "start": 28453.14, + "end": 28454.0, + "probability": 0.9378 + }, + { + "start": 28454.06, + "end": 28457.86, + "probability": 0.9822 + }, + { + "start": 28458.28, + "end": 28458.76, + "probability": 0.5593 + }, + { + "start": 28458.8, + "end": 28460.96, + "probability": 0.9883 + }, + { + "start": 28461.1, + "end": 28462.66, + "probability": 0.9941 + }, + { + "start": 28463.1, + "end": 28463.98, + "probability": 0.8127 + }, + { + "start": 28464.48, + "end": 28469.86, + "probability": 0.9528 + }, + { + "start": 28470.54, + "end": 28472.54, + "probability": 0.9886 + }, + { + "start": 28472.94, + "end": 28475.62, + "probability": 0.9368 + }, + { + "start": 28476.16, + "end": 28479.48, + "probability": 0.8366 + }, + { + "start": 28480.16, + "end": 28482.54, + "probability": 0.868 + }, + { + "start": 28482.64, + "end": 28483.4, + "probability": 0.8564 + }, + { + "start": 28483.5, + "end": 28486.28, + "probability": 0.9859 + }, + { + "start": 28486.38, + "end": 28488.32, + "probability": 0.928 + }, + { + "start": 28488.62, + "end": 28488.94, + "probability": 0.5945 + }, + { + "start": 28489.52, + "end": 28491.3, + "probability": 0.8997 + }, + { + "start": 28492.16, + "end": 28495.2, + "probability": 0.979 + }, + { + "start": 28495.34, + "end": 28498.62, + "probability": 0.983 + }, + { + "start": 28499.12, + "end": 28504.28, + "probability": 0.9885 + }, + { + "start": 28504.86, + "end": 28509.24, + "probability": 0.9651 + }, + { + "start": 28509.9, + "end": 28513.28, + "probability": 0.9863 + }, + { + "start": 28513.44, + "end": 28516.68, + "probability": 0.9756 + }, + { + "start": 28517.26, + "end": 28519.08, + "probability": 0.8545 + }, + { + "start": 28519.3, + "end": 28522.68, + "probability": 0.998 + }, + { + "start": 28522.78, + "end": 28524.94, + "probability": 0.8113 + }, + { + "start": 28526.3, + "end": 28528.22, + "probability": 0.8584 + }, + { + "start": 28529.34, + "end": 28532.84, + "probability": 0.9717 + }, + { + "start": 28533.38, + "end": 28534.54, + "probability": 0.6888 + }, + { + "start": 28534.6, + "end": 28536.72, + "probability": 0.7854 + }, + { + "start": 28536.84, + "end": 28542.24, + "probability": 0.9796 + }, + { + "start": 28543.18, + "end": 28548.01, + "probability": 0.9669 + }, + { + "start": 28549.46, + "end": 28550.08, + "probability": 0.9382 + }, + { + "start": 28550.68, + "end": 28553.56, + "probability": 0.9954 + }, + { + "start": 28553.82, + "end": 28556.68, + "probability": 0.9757 + }, + { + "start": 28557.68, + "end": 28560.52, + "probability": 0.97 + }, + { + "start": 28560.86, + "end": 28563.26, + "probability": 0.9128 + }, + { + "start": 28563.42, + "end": 28564.2, + "probability": 0.744 + }, + { + "start": 28565.36, + "end": 28571.38, + "probability": 0.9441 + }, + { + "start": 28571.72, + "end": 28573.06, + "probability": 0.7107 + }, + { + "start": 28573.5, + "end": 28574.92, + "probability": 0.9607 + }, + { + "start": 28575.16, + "end": 28577.52, + "probability": 0.7333 + }, + { + "start": 28577.52, + "end": 28580.52, + "probability": 0.9885 + }, + { + "start": 28581.3, + "end": 28582.76, + "probability": 0.9934 + }, + { + "start": 28583.28, + "end": 28586.69, + "probability": 0.9651 + }, + { + "start": 28587.66, + "end": 28590.9, + "probability": 0.9971 + }, + { + "start": 28591.44, + "end": 28592.12, + "probability": 0.2879 + }, + { + "start": 28592.2, + "end": 28594.74, + "probability": 0.9751 + }, + { + "start": 28594.88, + "end": 28595.56, + "probability": 0.7654 + }, + { + "start": 28595.96, + "end": 28596.62, + "probability": 0.5191 + }, + { + "start": 28596.78, + "end": 28596.92, + "probability": 0.9146 + }, + { + "start": 28597.04, + "end": 28601.9, + "probability": 0.973 + }, + { + "start": 28603.1, + "end": 28604.44, + "probability": 0.941 + }, + { + "start": 28605.68, + "end": 28609.6, + "probability": 0.9309 + }, + { + "start": 28610.22, + "end": 28613.32, + "probability": 0.9979 + }, + { + "start": 28613.86, + "end": 28614.26, + "probability": 0.5988 + }, + { + "start": 28614.38, + "end": 28615.66, + "probability": 0.8572 + }, + { + "start": 28615.74, + "end": 28616.18, + "probability": 0.9171 + }, + { + "start": 28616.22, + "end": 28618.6, + "probability": 0.9697 + }, + { + "start": 28618.84, + "end": 28619.3, + "probability": 0.946 + }, + { + "start": 28619.34, + "end": 28623.7, + "probability": 0.9893 + }, + { + "start": 28624.3, + "end": 28625.63, + "probability": 0.722 + }, + { + "start": 28626.12, + "end": 28628.4, + "probability": 0.9697 + }, + { + "start": 28629.08, + "end": 28630.86, + "probability": 0.8982 + }, + { + "start": 28630.88, + "end": 28633.28, + "probability": 0.9614 + }, + { + "start": 28633.64, + "end": 28636.48, + "probability": 0.9456 + }, + { + "start": 28637.06, + "end": 28639.7, + "probability": 0.9739 + }, + { + "start": 28639.82, + "end": 28643.64, + "probability": 0.9624 + }, + { + "start": 28643.82, + "end": 28644.66, + "probability": 0.8329 + }, + { + "start": 28645.18, + "end": 28645.9, + "probability": 0.7601 + }, + { + "start": 28646.0, + "end": 28647.58, + "probability": 0.9971 + }, + { + "start": 28647.78, + "end": 28648.44, + "probability": 0.9049 + }, + { + "start": 28648.56, + "end": 28649.0, + "probability": 0.6246 + }, + { + "start": 28649.02, + "end": 28650.38, + "probability": 0.9806 + }, + { + "start": 28650.98, + "end": 28654.06, + "probability": 0.8686 + }, + { + "start": 28654.58, + "end": 28657.34, + "probability": 0.9222 + }, + { + "start": 28657.42, + "end": 28660.04, + "probability": 0.9985 + }, + { + "start": 28660.04, + "end": 28663.66, + "probability": 0.9985 + }, + { + "start": 28664.12, + "end": 28665.02, + "probability": 0.722 + }, + { + "start": 28665.72, + "end": 28666.8, + "probability": 0.8326 + }, + { + "start": 28668.26, + "end": 28670.24, + "probability": 0.8652 + }, + { + "start": 28670.42, + "end": 28670.86, + "probability": 0.8357 + }, + { + "start": 28670.96, + "end": 28673.92, + "probability": 0.9673 + }, + { + "start": 28673.92, + "end": 28676.56, + "probability": 0.9937 + }, + { + "start": 28676.66, + "end": 28677.6, + "probability": 0.9943 + }, + { + "start": 28677.72, + "end": 28678.1, + "probability": 0.3598 + }, + { + "start": 28679.5, + "end": 28681.98, + "probability": 0.8262 + }, + { + "start": 28683.22, + "end": 28685.14, + "probability": 0.9674 + }, + { + "start": 28685.2, + "end": 28686.2, + "probability": 0.9071 + }, + { + "start": 28686.26, + "end": 28687.62, + "probability": 0.9688 + }, + { + "start": 28688.88, + "end": 28691.98, + "probability": 0.9393 + }, + { + "start": 28692.82, + "end": 28693.82, + "probability": 0.8663 + }, + { + "start": 28694.0, + "end": 28698.12, + "probability": 0.9672 + }, + { + "start": 28700.08, + "end": 28700.64, + "probability": 0.9238 + }, + { + "start": 28701.18, + "end": 28701.68, + "probability": 0.4941 + }, + { + "start": 28701.7, + "end": 28704.14, + "probability": 0.6307 + }, + { + "start": 28704.28, + "end": 28705.12, + "probability": 0.7815 + }, + { + "start": 28705.22, + "end": 28706.68, + "probability": 0.9609 + }, + { + "start": 28706.7, + "end": 28707.9, + "probability": 0.9673 + }, + { + "start": 28708.06, + "end": 28708.62, + "probability": 0.6443 + }, + { + "start": 28708.62, + "end": 28708.94, + "probability": 0.6512 + }, + { + "start": 28709.28, + "end": 28710.7, + "probability": 0.9922 + }, + { + "start": 28712.14, + "end": 28717.96, + "probability": 0.946 + }, + { + "start": 28718.3, + "end": 28720.4, + "probability": 0.9684 + }, + { + "start": 28721.3, + "end": 28723.56, + "probability": 0.9541 + }, + { + "start": 28724.46, + "end": 28725.52, + "probability": 0.9255 + }, + { + "start": 28725.7, + "end": 28729.3, + "probability": 0.982 + }, + { + "start": 28729.3, + "end": 28732.66, + "probability": 0.9997 + }, + { + "start": 28733.16, + "end": 28734.24, + "probability": 0.8883 + }, + { + "start": 28734.36, + "end": 28737.7, + "probability": 0.927 + }, + { + "start": 28738.26, + "end": 28739.4, + "probability": 0.6486 + }, + { + "start": 28740.36, + "end": 28743.32, + "probability": 0.9673 + }, + { + "start": 28743.62, + "end": 28744.12, + "probability": 0.8564 + }, + { + "start": 28745.02, + "end": 28745.95, + "probability": 0.7854 + }, + { + "start": 28746.42, + "end": 28747.92, + "probability": 0.944 + }, + { + "start": 28749.65, + "end": 28754.96, + "probability": 0.9553 + }, + { + "start": 28755.7, + "end": 28758.02, + "probability": 0.8245 + }, + { + "start": 28766.74, + "end": 28767.48, + "probability": 0.2889 + }, + { + "start": 28767.5, + "end": 28769.02, + "probability": 0.7369 + }, + { + "start": 28769.24, + "end": 28769.24, + "probability": 0.3842 + }, + { + "start": 28769.24, + "end": 28770.35, + "probability": 0.5286 + }, + { + "start": 28770.84, + "end": 28772.2, + "probability": 0.9543 + }, + { + "start": 28772.26, + "end": 28773.7, + "probability": 0.9233 + }, + { + "start": 28774.18, + "end": 28774.76, + "probability": 0.9668 + }, + { + "start": 28775.88, + "end": 28782.42, + "probability": 0.9944 + }, + { + "start": 28782.94, + "end": 28783.46, + "probability": 0.597 + }, + { + "start": 28783.58, + "end": 28784.42, + "probability": 0.7512 + }, + { + "start": 28784.6, + "end": 28786.16, + "probability": 0.998 + }, + { + "start": 28786.82, + "end": 28788.62, + "probability": 0.8955 + }, + { + "start": 28788.92, + "end": 28793.4, + "probability": 0.5275 + }, + { + "start": 28793.4, + "end": 28797.29, + "probability": 0.791 + }, + { + "start": 28798.31, + "end": 28800.74, + "probability": 0.9818 + }, + { + "start": 28802.48, + "end": 28807.18, + "probability": 0.9131 + }, + { + "start": 28808.1, + "end": 28810.86, + "probability": 0.9971 + }, + { + "start": 28811.92, + "end": 28814.64, + "probability": 0.9801 + }, + { + "start": 28815.66, + "end": 28816.26, + "probability": 0.981 + }, + { + "start": 28816.34, + "end": 28817.94, + "probability": 0.9154 + }, + { + "start": 28818.32, + "end": 28819.46, + "probability": 0.8199 + }, + { + "start": 28821.2, + "end": 28822.86, + "probability": 0.9974 + }, + { + "start": 28823.62, + "end": 28825.24, + "probability": 0.9285 + }, + { + "start": 28826.04, + "end": 28828.76, + "probability": 0.994 + }, + { + "start": 28829.4, + "end": 28831.54, + "probability": 0.9825 + }, + { + "start": 28832.22, + "end": 28834.8, + "probability": 0.9917 + }, + { + "start": 28835.86, + "end": 28839.06, + "probability": 0.9751 + }, + { + "start": 28840.18, + "end": 28841.36, + "probability": 0.8374 + }, + { + "start": 28842.66, + "end": 28843.28, + "probability": 0.9595 + }, + { + "start": 28844.1, + "end": 28845.12, + "probability": 0.8195 + }, + { + "start": 28846.22, + "end": 28850.78, + "probability": 0.8766 + }, + { + "start": 28852.02, + "end": 28852.82, + "probability": 0.5989 + }, + { + "start": 28855.24, + "end": 28855.86, + "probability": 0.543 + }, + { + "start": 28857.34, + "end": 28859.94, + "probability": 0.9364 + }, + { + "start": 28860.92, + "end": 28861.42, + "probability": 0.6842 + }, + { + "start": 28861.48, + "end": 28864.2, + "probability": 0.9802 + }, + { + "start": 28864.86, + "end": 28865.84, + "probability": 0.8964 + }, + { + "start": 28866.32, + "end": 28867.8, + "probability": 0.926 + }, + { + "start": 28869.42, + "end": 28870.86, + "probability": 0.832 + }, + { + "start": 28871.7, + "end": 28874.98, + "probability": 0.7821 + }, + { + "start": 28876.24, + "end": 28877.28, + "probability": 0.8885 + }, + { + "start": 28877.36, + "end": 28878.48, + "probability": 0.9847 + }, + { + "start": 28878.48, + "end": 28879.28, + "probability": 0.6051 + }, + { + "start": 28879.64, + "end": 28880.98, + "probability": 0.9785 + }, + { + "start": 28881.6, + "end": 28881.7, + "probability": 0.7128 + }, + { + "start": 28886.38, + "end": 28888.66, + "probability": 0.6825 + }, + { + "start": 28888.7, + "end": 28889.85, + "probability": 0.8284 + }, + { + "start": 28890.52, + "end": 28890.94, + "probability": 0.5811 + }, + { + "start": 28891.72, + "end": 28894.22, + "probability": 0.903 + }, + { + "start": 28895.1, + "end": 28895.9, + "probability": 0.7013 + }, + { + "start": 28896.56, + "end": 28897.84, + "probability": 0.5822 + }, + { + "start": 28898.76, + "end": 28898.97, + "probability": 0.184 + }, + { + "start": 28899.58, + "end": 28900.83, + "probability": 0.7508 + }, + { + "start": 28900.94, + "end": 28903.27, + "probability": 0.9685 + }, + { + "start": 28903.7, + "end": 28905.12, + "probability": 0.8188 + }, + { + "start": 28906.36, + "end": 28908.5, + "probability": 0.9738 + }, + { + "start": 28910.0, + "end": 28910.3, + "probability": 0.9917 + }, + { + "start": 28911.66, + "end": 28913.56, + "probability": 0.662 + }, + { + "start": 28914.14, + "end": 28914.7, + "probability": 0.8849 + }, + { + "start": 28915.6, + "end": 28916.76, + "probability": 0.8175 + }, + { + "start": 28916.98, + "end": 28917.64, + "probability": 0.7189 + }, + { + "start": 28918.72, + "end": 28919.24, + "probability": 0.9744 + }, + { + "start": 28920.66, + "end": 28924.7, + "probability": 0.9735 + }, + { + "start": 28925.36, + "end": 28926.91, + "probability": 0.9978 + }, + { + "start": 28927.82, + "end": 28928.72, + "probability": 0.6652 + }, + { + "start": 28929.76, + "end": 28931.72, + "probability": 0.9774 + }, + { + "start": 28932.52, + "end": 28934.28, + "probability": 0.9429 + }, + { + "start": 28934.38, + "end": 28935.3, + "probability": 0.6559 + }, + { + "start": 28935.36, + "end": 28936.08, + "probability": 0.9228 + }, + { + "start": 28936.1, + "end": 28937.88, + "probability": 0.9332 + }, + { + "start": 28937.94, + "end": 28938.96, + "probability": 0.979 + }, + { + "start": 28939.76, + "end": 28940.44, + "probability": 0.4115 + }, + { + "start": 28940.5, + "end": 28943.72, + "probability": 0.994 + }, + { + "start": 28943.8, + "end": 28944.64, + "probability": 0.5213 + }, + { + "start": 28945.24, + "end": 28946.17, + "probability": 0.913 + }, + { + "start": 28946.98, + "end": 28947.54, + "probability": 0.8322 + }, + { + "start": 28948.68, + "end": 28949.82, + "probability": 0.8594 + }, + { + "start": 28950.76, + "end": 28953.44, + "probability": 0.9711 + }, + { + "start": 28954.06, + "end": 28956.76, + "probability": 0.8421 + }, + { + "start": 28957.38, + "end": 28959.18, + "probability": 0.9688 + }, + { + "start": 28959.96, + "end": 28960.86, + "probability": 0.9412 + }, + { + "start": 28961.56, + "end": 28962.76, + "probability": 0.9802 + }, + { + "start": 28963.3, + "end": 28964.5, + "probability": 0.9927 + }, + { + "start": 28965.4, + "end": 28968.02, + "probability": 0.9898 + }, + { + "start": 28968.96, + "end": 28970.38, + "probability": 0.9741 + }, + { + "start": 28971.22, + "end": 28971.92, + "probability": 0.8284 + }, + { + "start": 28971.92, + "end": 28972.96, + "probability": 0.8496 + }, + { + "start": 28973.42, + "end": 28974.66, + "probability": 0.9919 + }, + { + "start": 28974.84, + "end": 28977.9, + "probability": 0.974 + }, + { + "start": 28977.92, + "end": 28979.18, + "probability": 0.9929 + }, + { + "start": 28980.84, + "end": 28984.34, + "probability": 0.9009 + }, + { + "start": 28986.42, + "end": 28987.72, + "probability": 0.6887 + }, + { + "start": 28990.12, + "end": 28992.86, + "probability": 0.9958 + }, + { + "start": 28993.76, + "end": 28996.0, + "probability": 0.9713 + }, + { + "start": 28997.28, + "end": 28998.42, + "probability": 0.9873 + }, + { + "start": 28998.58, + "end": 28999.2, + "probability": 0.7307 + }, + { + "start": 28999.2, + "end": 29000.06, + "probability": 0.8061 + }, + { + "start": 29000.22, + "end": 29002.16, + "probability": 0.8254 + }, + { + "start": 29003.3, + "end": 29005.36, + "probability": 0.9863 + }, + { + "start": 29007.78, + "end": 29011.84, + "probability": 0.9746 + }, + { + "start": 29012.74, + "end": 29013.1, + "probability": 0.8807 + }, + { + "start": 29014.64, + "end": 29017.26, + "probability": 0.9875 + }, + { + "start": 29017.3, + "end": 29017.46, + "probability": 0.6494 + }, + { + "start": 29017.54, + "end": 29019.42, + "probability": 0.9911 + }, + { + "start": 29020.06, + "end": 29021.98, + "probability": 0.9521 + }, + { + "start": 29025.18, + "end": 29025.28, + "probability": 0.1429 + }, + { + "start": 29025.28, + "end": 29025.28, + "probability": 0.0644 + }, + { + "start": 29025.28, + "end": 29026.37, + "probability": 0.7113 + }, + { + "start": 29028.16, + "end": 29028.52, + "probability": 0.4465 + }, + { + "start": 29028.54, + "end": 29028.82, + "probability": 0.404 + }, + { + "start": 29030.5, + "end": 29031.52, + "probability": 0.8966 + }, + { + "start": 29031.58, + "end": 29032.4, + "probability": 0.2919 + }, + { + "start": 29034.14, + "end": 29035.44, + "probability": 0.6888 + }, + { + "start": 29035.95, + "end": 29038.18, + "probability": 0.8812 + }, + { + "start": 29039.4, + "end": 29041.9, + "probability": 0.9975 + }, + { + "start": 29042.6, + "end": 29043.66, + "probability": 0.7704 + }, + { + "start": 29044.22, + "end": 29045.15, + "probability": 0.7603 + }, + { + "start": 29045.9, + "end": 29047.1, + "probability": 0.8911 + }, + { + "start": 29047.26, + "end": 29048.46, + "probability": 0.8397 + }, + { + "start": 29048.52, + "end": 29049.76, + "probability": 0.981 + }, + { + "start": 29050.1, + "end": 29051.16, + "probability": 0.9774 + }, + { + "start": 29051.38, + "end": 29052.04, + "probability": 0.8747 + }, + { + "start": 29052.18, + "end": 29052.96, + "probability": 0.9303 + }, + { + "start": 29053.12, + "end": 29054.06, + "probability": 0.6936 + }, + { + "start": 29055.66, + "end": 29062.16, + "probability": 0.9935 + }, + { + "start": 29062.34, + "end": 29064.2, + "probability": 0.9983 + }, + { + "start": 29064.9, + "end": 29066.42, + "probability": 0.9763 + }, + { + "start": 29067.6, + "end": 29067.98, + "probability": 0.5262 + }, + { + "start": 29069.18, + "end": 29070.35, + "probability": 0.7466 + }, + { + "start": 29070.6, + "end": 29071.64, + "probability": 0.9854 + }, + { + "start": 29072.14, + "end": 29073.66, + "probability": 0.9966 + }, + { + "start": 29074.56, + "end": 29076.34, + "probability": 0.9678 + }, + { + "start": 29077.1, + "end": 29077.34, + "probability": 0.7539 + }, + { + "start": 29077.48, + "end": 29078.54, + "probability": 0.5095 + }, + { + "start": 29078.62, + "end": 29081.69, + "probability": 0.8209 + }, + { + "start": 29082.22, + "end": 29083.16, + "probability": 0.7751 + }, + { + "start": 29083.9, + "end": 29084.86, + "probability": 0.9928 + }, + { + "start": 29085.44, + "end": 29088.62, + "probability": 0.3185 + }, + { + "start": 29088.98, + "end": 29090.82, + "probability": 0.9932 + }, + { + "start": 29091.42, + "end": 29092.22, + "probability": 0.4876 + }, + { + "start": 29092.4, + "end": 29093.06, + "probability": 0.7219 + }, + { + "start": 29093.54, + "end": 29096.94, + "probability": 0.3252 + }, + { + "start": 29097.14, + "end": 29099.58, + "probability": 0.602 + }, + { + "start": 29099.58, + "end": 29102.52, + "probability": 0.7625 + }, + { + "start": 29103.78, + "end": 29107.4, + "probability": 0.9965 + }, + { + "start": 29107.46, + "end": 29108.52, + "probability": 0.865 + }, + { + "start": 29109.02, + "end": 29109.9, + "probability": 0.917 + }, + { + "start": 29111.56, + "end": 29114.58, + "probability": 0.9958 + }, + { + "start": 29114.92, + "end": 29117.9, + "probability": 0.7329 + }, + { + "start": 29118.28, + "end": 29118.74, + "probability": 0.8808 + }, + { + "start": 29120.06, + "end": 29120.93, + "probability": 0.8818 + }, + { + "start": 29121.69, + "end": 29123.62, + "probability": 0.6298 + }, + { + "start": 29123.7, + "end": 29124.54, + "probability": 0.9012 + }, + { + "start": 29124.6, + "end": 29126.48, + "probability": 0.9963 + }, + { + "start": 29127.9, + "end": 29129.25, + "probability": 0.9219 + }, + { + "start": 29130.52, + "end": 29131.62, + "probability": 0.9491 + }, + { + "start": 29132.66, + "end": 29133.28, + "probability": 0.9461 + }, + { + "start": 29133.9, + "end": 29136.08, + "probability": 0.9527 + }, + { + "start": 29136.4, + "end": 29140.26, + "probability": 0.94 + }, + { + "start": 29141.04, + "end": 29142.14, + "probability": 0.9784 + }, + { + "start": 29142.88, + "end": 29146.02, + "probability": 0.9929 + }, + { + "start": 29146.04, + "end": 29147.04, + "probability": 0.7463 + }, + { + "start": 29147.7, + "end": 29149.58, + "probability": 0.9279 + }, + { + "start": 29150.1, + "end": 29151.06, + "probability": 0.8153 + }, + { + "start": 29151.14, + "end": 29152.78, + "probability": 0.9734 + }, + { + "start": 29154.76, + "end": 29156.82, + "probability": 0.802 + }, + { + "start": 29157.94, + "end": 29158.84, + "probability": 0.7494 + }, + { + "start": 29161.48, + "end": 29161.64, + "probability": 0.6455 + }, + { + "start": 29161.64, + "end": 29162.66, + "probability": 0.8342 + }, + { + "start": 29163.4, + "end": 29166.8, + "probability": 0.9893 + }, + { + "start": 29167.48, + "end": 29168.9, + "probability": 0.7993 + }, + { + "start": 29169.24, + "end": 29169.94, + "probability": 0.5469 + }, + { + "start": 29172.18, + "end": 29172.66, + "probability": 0.35 + }, + { + "start": 29173.62, + "end": 29175.48, + "probability": 0.8397 + }, + { + "start": 29176.1, + "end": 29177.14, + "probability": 0.9802 + }, + { + "start": 29177.22, + "end": 29178.39, + "probability": 0.8125 + }, + { + "start": 29178.92, + "end": 29180.12, + "probability": 0.4774 + }, + { + "start": 29180.26, + "end": 29180.48, + "probability": 0.5531 + }, + { + "start": 29181.36, + "end": 29181.82, + "probability": 0.7075 + }, + { + "start": 29182.46, + "end": 29184.3, + "probability": 0.6727 + }, + { + "start": 29184.74, + "end": 29186.46, + "probability": 0.8324 + }, + { + "start": 29186.46, + "end": 29187.94, + "probability": 0.8967 + }, + { + "start": 29188.02, + "end": 29188.68, + "probability": 0.3681 + }, + { + "start": 29188.74, + "end": 29191.54, + "probability": 0.8842 + }, + { + "start": 29192.88, + "end": 29195.66, + "probability": 0.7021 + }, + { + "start": 29195.82, + "end": 29197.06, + "probability": 0.5049 + }, + { + "start": 29197.14, + "end": 29199.44, + "probability": 0.1475 + }, + { + "start": 29199.72, + "end": 29200.16, + "probability": 0.432 + }, + { + "start": 29201.95, + "end": 29203.66, + "probability": 0.8682 + }, + { + "start": 29204.63, + "end": 29207.26, + "probability": 0.8296 + }, + { + "start": 29207.82, + "end": 29209.3, + "probability": 0.9133 + }, + { + "start": 29209.74, + "end": 29212.14, + "probability": 0.9874 + }, + { + "start": 29212.68, + "end": 29213.44, + "probability": 0.1471 + }, + { + "start": 29213.76, + "end": 29214.26, + "probability": 0.858 + }, + { + "start": 29214.32, + "end": 29214.8, + "probability": 0.886 + }, + { + "start": 29214.92, + "end": 29217.72, + "probability": 0.9806 + }, + { + "start": 29218.36, + "end": 29221.5, + "probability": 0.9874 + }, + { + "start": 29222.1, + "end": 29224.68, + "probability": 0.9691 + }, + { + "start": 29225.3, + "end": 29229.2, + "probability": 0.9899 + }, + { + "start": 29229.26, + "end": 29230.56, + "probability": 0.8501 + }, + { + "start": 29230.7, + "end": 29233.32, + "probability": 0.9051 + }, + { + "start": 29234.2, + "end": 29236.74, + "probability": 0.7549 + }, + { + "start": 29237.88, + "end": 29239.18, + "probability": 0.9399 + }, + { + "start": 29239.82, + "end": 29241.52, + "probability": 0.7744 + }, + { + "start": 29241.96, + "end": 29242.74, + "probability": 0.9719 + }, + { + "start": 29242.92, + "end": 29244.14, + "probability": 0.9886 + }, + { + "start": 29244.8, + "end": 29247.04, + "probability": 0.9604 + }, + { + "start": 29247.84, + "end": 29249.02, + "probability": 0.9166 + }, + { + "start": 29249.3, + "end": 29250.48, + "probability": 0.9778 + }, + { + "start": 29250.98, + "end": 29253.26, + "probability": 0.8823 + }, + { + "start": 29253.42, + "end": 29253.98, + "probability": 0.9971 + }, + { + "start": 29254.68, + "end": 29259.92, + "probability": 0.924 + }, + { + "start": 29260.44, + "end": 29260.7, + "probability": 0.8184 + }, + { + "start": 29261.22, + "end": 29264.2, + "probability": 0.9959 + }, + { + "start": 29264.8, + "end": 29268.34, + "probability": 0.9722 + }, + { + "start": 29268.7, + "end": 29269.48, + "probability": 0.9092 + }, + { + "start": 29269.96, + "end": 29270.56, + "probability": 0.8356 + }, + { + "start": 29271.46, + "end": 29273.9, + "probability": 0.5987 + }, + { + "start": 29274.82, + "end": 29276.88, + "probability": 0.9464 + }, + { + "start": 29277.66, + "end": 29280.38, + "probability": 0.9744 + }, + { + "start": 29280.44, + "end": 29281.16, + "probability": 0.901 + }, + { + "start": 29281.72, + "end": 29283.7, + "probability": 0.8569 + }, + { + "start": 29284.74, + "end": 29287.52, + "probability": 0.9023 + }, + { + "start": 29287.6, + "end": 29288.16, + "probability": 0.7068 + }, + { + "start": 29289.4, + "end": 29289.78, + "probability": 0.0491 + }, + { + "start": 29290.48, + "end": 29294.96, + "probability": 0.5824 + }, + { + "start": 29295.38, + "end": 29296.54, + "probability": 0.5477 + }, + { + "start": 29296.8, + "end": 29296.88, + "probability": 0.4174 + }, + { + "start": 29296.88, + "end": 29299.42, + "probability": 0.3978 + }, + { + "start": 29299.74, + "end": 29305.8, + "probability": 0.2143 + }, + { + "start": 29306.48, + "end": 29307.76, + "probability": 0.2496 + }, + { + "start": 29308.4, + "end": 29308.5, + "probability": 0.0792 + }, + { + "start": 29308.5, + "end": 29309.24, + "probability": 0.632 + }, + { + "start": 29309.92, + "end": 29311.0, + "probability": 0.7476 + }, + { + "start": 29311.92, + "end": 29315.28, + "probability": 0.7623 + }, + { + "start": 29315.78, + "end": 29316.61, + "probability": 0.9821 + }, + { + "start": 29316.76, + "end": 29318.88, + "probability": 0.6503 + }, + { + "start": 29318.88, + "end": 29320.5, + "probability": 0.603 + }, + { + "start": 29321.18, + "end": 29321.76, + "probability": 0.0012 + }, + { + "start": 29322.5, + "end": 29323.62, + "probability": 0.006 + }, + { + "start": 29323.76, + "end": 29324.32, + "probability": 0.0693 + }, + { + "start": 29324.76, + "end": 29327.24, + "probability": 0.3754 + }, + { + "start": 29327.44, + "end": 29329.68, + "probability": 0.0426 + }, + { + "start": 29331.08, + "end": 29333.9, + "probability": 0.1625 + }, + { + "start": 29334.54, + "end": 29336.82, + "probability": 0.1998 + }, + { + "start": 29336.82, + "end": 29337.5, + "probability": 0.0675 + }, + { + "start": 29337.58, + "end": 29338.14, + "probability": 0.1201 + }, + { + "start": 29339.24, + "end": 29340.34, + "probability": 0.4858 + }, + { + "start": 29340.38, + "end": 29340.84, + "probability": 0.272 + }, + { + "start": 29341.08, + "end": 29342.21, + "probability": 0.187 + }, + { + "start": 29343.77, + "end": 29348.98, + "probability": 0.4411 + }, + { + "start": 29349.06, + "end": 29349.9, + "probability": 0.1992 + }, + { + "start": 29350.24, + "end": 29350.58, + "probability": 0.8447 + }, + { + "start": 29351.1, + "end": 29351.54, + "probability": 0.427 + }, + { + "start": 29353.12, + "end": 29354.0, + "probability": 0.8525 + }, + { + "start": 29354.0, + "end": 29355.1, + "probability": 0.4564 + }, + { + "start": 29356.08, + "end": 29357.32, + "probability": 0.8044 + }, + { + "start": 29359.78, + "end": 29362.44, + "probability": 0.974 + }, + { + "start": 29362.54, + "end": 29362.84, + "probability": 0.0216 + }, + { + "start": 29362.84, + "end": 29362.84, + "probability": 0.0615 + }, + { + "start": 29362.84, + "end": 29362.84, + "probability": 0.0359 + }, + { + "start": 29362.84, + "end": 29362.94, + "probability": 0.1442 + }, + { + "start": 29363.88, + "end": 29364.08, + "probability": 0.3092 + }, + { + "start": 29364.7, + "end": 29365.76, + "probability": 0.9232 + }, + { + "start": 29365.84, + "end": 29367.12, + "probability": 0.016 + }, + { + "start": 29367.32, + "end": 29367.96, + "probability": 0.2143 + }, + { + "start": 29368.22, + "end": 29368.78, + "probability": 0.1942 + }, + { + "start": 29370.96, + "end": 29374.92, + "probability": 0.8008 + }, + { + "start": 29374.92, + "end": 29381.92, + "probability": 0.9839 + }, + { + "start": 29383.24, + "end": 29384.26, + "probability": 0.9013 + }, + { + "start": 29386.38, + "end": 29388.64, + "probability": 0.9315 + }, + { + "start": 29389.62, + "end": 29391.7, + "probability": 0.939 + }, + { + "start": 29393.32, + "end": 29397.82, + "probability": 0.9296 + }, + { + "start": 29400.02, + "end": 29401.44, + "probability": 0.8672 + }, + { + "start": 29403.38, + "end": 29404.94, + "probability": 0.8168 + }, + { + "start": 29406.58, + "end": 29409.76, + "probability": 0.8584 + }, + { + "start": 29409.76, + "end": 29413.18, + "probability": 0.999 + }, + { + "start": 29416.56, + "end": 29418.2, + "probability": 0.8981 + }, + { + "start": 29419.66, + "end": 29422.08, + "probability": 0.9994 + }, + { + "start": 29423.74, + "end": 29425.16, + "probability": 0.9893 + }, + { + "start": 29426.58, + "end": 29428.22, + "probability": 0.9993 + }, + { + "start": 29430.18, + "end": 29435.68, + "probability": 0.9932 + }, + { + "start": 29438.64, + "end": 29440.54, + "probability": 0.9935 + }, + { + "start": 29441.66, + "end": 29448.2, + "probability": 0.9963 + }, + { + "start": 29449.9, + "end": 29455.22, + "probability": 0.9907 + }, + { + "start": 29457.02, + "end": 29459.26, + "probability": 0.712 + }, + { + "start": 29460.4, + "end": 29465.9, + "probability": 0.8674 + }, + { + "start": 29466.1, + "end": 29467.72, + "probability": 0.8504 + }, + { + "start": 29469.06, + "end": 29474.96, + "probability": 0.7915 + }, + { + "start": 29476.98, + "end": 29478.06, + "probability": 0.7545 + }, + { + "start": 29479.5, + "end": 29484.28, + "probability": 0.9257 + }, + { + "start": 29486.28, + "end": 29488.42, + "probability": 0.9746 + }, + { + "start": 29489.82, + "end": 29491.68, + "probability": 0.7068 + }, + { + "start": 29494.02, + "end": 29498.16, + "probability": 0.8152 + }, + { + "start": 29500.12, + "end": 29502.3, + "probability": 0.5164 + }, + { + "start": 29503.8, + "end": 29504.62, + "probability": 0.8499 + }, + { + "start": 29507.84, + "end": 29508.76, + "probability": 0.4948 + }, + { + "start": 29511.3, + "end": 29514.18, + "probability": 0.7105 + }, + { + "start": 29516.92, + "end": 29520.72, + "probability": 0.6485 + }, + { + "start": 29523.78, + "end": 29526.28, + "probability": 0.7284 + }, + { + "start": 29527.82, + "end": 29531.7, + "probability": 0.763 + }, + { + "start": 29533.7, + "end": 29535.72, + "probability": 0.8923 + }, + { + "start": 29538.86, + "end": 29545.44, + "probability": 0.7699 + }, + { + "start": 29545.54, + "end": 29548.38, + "probability": 0.8771 + }, + { + "start": 29551.54, + "end": 29553.92, + "probability": 0.9933 + }, + { + "start": 29556.68, + "end": 29556.92, + "probability": 0.4665 + }, + { + "start": 29557.04, + "end": 29557.86, + "probability": 0.555 + }, + { + "start": 29557.94, + "end": 29558.9, + "probability": 0.4857 + }, + { + "start": 29558.94, + "end": 29559.36, + "probability": 0.4654 + }, + { + "start": 29560.8, + "end": 29566.46, + "probability": 0.864 + }, + { + "start": 29566.94, + "end": 29567.1, + "probability": 0.9518 + }, + { + "start": 29568.68, + "end": 29570.32, + "probability": 0.9063 + }, + { + "start": 29570.86, + "end": 29572.28, + "probability": 0.9807 + }, + { + "start": 29573.96, + "end": 29576.78, + "probability": 0.9894 + }, + { + "start": 29580.2, + "end": 29583.96, + "probability": 0.6516 + }, + { + "start": 29585.7, + "end": 29588.8, + "probability": 0.9912 + }, + { + "start": 29590.72, + "end": 29593.5, + "probability": 0.9186 + }, + { + "start": 29597.48, + "end": 29604.0, + "probability": 0.9485 + }, + { + "start": 29607.36, + "end": 29611.18, + "probability": 0.7708 + }, + { + "start": 29611.88, + "end": 29612.67, + "probability": 0.6878 + }, + { + "start": 29613.02, + "end": 29613.98, + "probability": 0.9822 + }, + { + "start": 29614.18, + "end": 29614.88, + "probability": 0.976 + }, + { + "start": 29615.88, + "end": 29617.86, + "probability": 0.9458 + }, + { + "start": 29620.04, + "end": 29622.92, + "probability": 0.9783 + }, + { + "start": 29626.32, + "end": 29627.22, + "probability": 0.6826 + }, + { + "start": 29627.86, + "end": 29631.24, + "probability": 0.9393 + }, + { + "start": 29634.6, + "end": 29635.92, + "probability": 0.8677 + }, + { + "start": 29639.6, + "end": 29641.04, + "probability": 0.8618 + }, + { + "start": 29641.62, + "end": 29644.28, + "probability": 0.7624 + }, + { + "start": 29645.9, + "end": 29649.82, + "probability": 0.6752 + }, + { + "start": 29653.46, + "end": 29654.18, + "probability": 0.331 + }, + { + "start": 29654.56, + "end": 29658.38, + "probability": 0.7896 + }, + { + "start": 29659.16, + "end": 29660.48, + "probability": 0.8373 + }, + { + "start": 29661.6, + "end": 29663.72, + "probability": 0.8518 + }, + { + "start": 29665.08, + "end": 29668.18, + "probability": 0.7593 + }, + { + "start": 29669.24, + "end": 29669.9, + "probability": 0.7359 + }, + { + "start": 29670.96, + "end": 29671.62, + "probability": 0.9573 + }, + { + "start": 29672.54, + "end": 29673.14, + "probability": 0.4772 + }, + { + "start": 29673.22, + "end": 29673.74, + "probability": 0.6214 + }, + { + "start": 29681.34, + "end": 29683.78, + "probability": 0.9719 + }, + { + "start": 29684.64, + "end": 29685.3, + "probability": 0.9938 + }, + { + "start": 29686.74, + "end": 29690.84, + "probability": 0.9329 + }, + { + "start": 29690.84, + "end": 29695.32, + "probability": 0.9962 + }, + { + "start": 29696.84, + "end": 29701.48, + "probability": 0.9686 + }, + { + "start": 29702.42, + "end": 29703.76, + "probability": 0.9946 + }, + { + "start": 29705.02, + "end": 29708.01, + "probability": 0.8186 + }, + { + "start": 29709.52, + "end": 29712.52, + "probability": 0.6898 + }, + { + "start": 29713.8, + "end": 29717.72, + "probability": 0.6881 + }, + { + "start": 29719.16, + "end": 29720.56, + "probability": 0.641 + }, + { + "start": 29721.74, + "end": 29725.32, + "probability": 0.8866 + }, + { + "start": 29725.96, + "end": 29726.42, + "probability": 0.9396 + }, + { + "start": 29727.88, + "end": 29728.88, + "probability": 0.446 + }, + { + "start": 29731.14, + "end": 29733.74, + "probability": 0.947 + }, + { + "start": 29735.52, + "end": 29738.99, + "probability": 0.9294 + }, + { + "start": 29739.86, + "end": 29740.3, + "probability": 0.8505 + }, + { + "start": 29740.38, + "end": 29741.0, + "probability": 0.6029 + }, + { + "start": 29742.36, + "end": 29744.04, + "probability": 0.9762 + }, + { + "start": 29745.22, + "end": 29745.6, + "probability": 0.4711 + }, + { + "start": 29745.68, + "end": 29746.26, + "probability": 0.9878 + }, + { + "start": 29747.98, + "end": 29748.42, + "probability": 0.9253 + }, + { + "start": 29749.6, + "end": 29750.06, + "probability": 0.4083 + }, + { + "start": 29750.56, + "end": 29752.02, + "probability": 0.7412 + }, + { + "start": 29753.06, + "end": 29755.04, + "probability": 0.9814 + }, + { + "start": 29756.0, + "end": 29757.04, + "probability": 0.3264 + }, + { + "start": 29758.0, + "end": 29760.04, + "probability": 0.8956 + }, + { + "start": 29760.08, + "end": 29760.9, + "probability": 0.9335 + }, + { + "start": 29761.82, + "end": 29762.94, + "probability": 0.8841 + }, + { + "start": 29764.26, + "end": 29769.42, + "probability": 0.8794 + }, + { + "start": 29771.5, + "end": 29775.48, + "probability": 0.9778 + }, + { + "start": 29776.04, + "end": 29778.14, + "probability": 0.6036 + }, + { + "start": 29779.8, + "end": 29782.52, + "probability": 0.9614 + }, + { + "start": 29784.56, + "end": 29785.28, + "probability": 0.5604 + }, + { + "start": 29785.38, + "end": 29786.06, + "probability": 0.7853 + }, + { + "start": 29786.98, + "end": 29787.56, + "probability": 0.8951 + }, + { + "start": 29788.8, + "end": 29793.24, + "probability": 0.8272 + }, + { + "start": 29794.84, + "end": 29795.14, + "probability": 0.8599 + }, + { + "start": 29795.36, + "end": 29795.66, + "probability": 0.9692 + }, + { + "start": 29796.18, + "end": 29797.29, + "probability": 0.9736 + }, + { + "start": 29797.56, + "end": 29798.66, + "probability": 0.9604 + }, + { + "start": 29800.08, + "end": 29804.58, + "probability": 0.7233 + }, + { + "start": 29805.14, + "end": 29806.16, + "probability": 0.6346 + }, + { + "start": 29806.7, + "end": 29807.22, + "probability": 0.751 + }, + { + "start": 29812.02, + "end": 29812.54, + "probability": 0.8486 + }, + { + "start": 29813.66, + "end": 29816.84, + "probability": 0.9506 + }, + { + "start": 29818.58, + "end": 29820.75, + "probability": 0.7798 + }, + { + "start": 29822.46, + "end": 29824.42, + "probability": 0.766 + }, + { + "start": 29825.94, + "end": 29826.94, + "probability": 0.6755 + }, + { + "start": 29828.08, + "end": 29830.68, + "probability": 0.9836 + }, + { + "start": 29831.34, + "end": 29832.74, + "probability": 0.9948 + }, + { + "start": 29833.5, + "end": 29837.3, + "probability": 0.7741 + }, + { + "start": 29838.28, + "end": 29839.2, + "probability": 0.9666 + }, + { + "start": 29841.16, + "end": 29843.26, + "probability": 0.6286 + }, + { + "start": 29844.56, + "end": 29847.68, + "probability": 0.9079 + }, + { + "start": 29850.42, + "end": 29855.56, + "probability": 0.4987 + }, + { + "start": 29855.7, + "end": 29856.66, + "probability": 0.9243 + }, + { + "start": 29857.7, + "end": 29858.41, + "probability": 0.9183 + }, + { + "start": 29859.94, + "end": 29863.6, + "probability": 0.8869 + }, + { + "start": 29864.86, + "end": 29866.22, + "probability": 0.8698 + }, + { + "start": 29866.46, + "end": 29867.26, + "probability": 0.9713 + }, + { + "start": 29868.32, + "end": 29873.08, + "probability": 0.9925 + }, + { + "start": 29873.4, + "end": 29873.52, + "probability": 0.8438 + }, + { + "start": 29873.9, + "end": 29874.58, + "probability": 0.9927 + }, + { + "start": 29876.64, + "end": 29878.86, + "probability": 0.7983 + }, + { + "start": 29880.36, + "end": 29881.32, + "probability": 0.8321 + }, + { + "start": 29881.9, + "end": 29882.6, + "probability": 0.9022 + }, + { + "start": 29884.44, + "end": 29885.78, + "probability": 0.9792 + }, + { + "start": 29886.44, + "end": 29887.38, + "probability": 0.6698 + }, + { + "start": 29888.58, + "end": 29889.16, + "probability": 0.5725 + }, + { + "start": 29890.38, + "end": 29891.84, + "probability": 0.5378 + }, + { + "start": 29893.04, + "end": 29893.62, + "probability": 0.7586 + }, + { + "start": 29895.06, + "end": 29897.38, + "probability": 0.7485 + }, + { + "start": 29898.3, + "end": 29900.26, + "probability": 0.725 + }, + { + "start": 29900.84, + "end": 29901.72, + "probability": 0.5581 + }, + { + "start": 29902.12, + "end": 29902.7, + "probability": 0.9354 + }, + { + "start": 29903.2, + "end": 29904.06, + "probability": 0.9258 + }, + { + "start": 29904.48, + "end": 29905.34, + "probability": 0.634 + }, + { + "start": 29906.18, + "end": 29906.78, + "probability": 0.7291 + }, + { + "start": 29908.84, + "end": 29909.42, + "probability": 0.771 + }, + { + "start": 29909.88, + "end": 29910.0, + "probability": 0.5231 + }, + { + "start": 29910.28, + "end": 29910.64, + "probability": 0.9161 + }, + { + "start": 29910.64, + "end": 29911.04, + "probability": 0.5534 + }, + { + "start": 29911.22, + "end": 29911.76, + "probability": 0.4383 + }, + { + "start": 29911.76, + "end": 29912.3, + "probability": 0.9056 + }, + { + "start": 29912.46, + "end": 29913.9, + "probability": 0.8743 + }, + { + "start": 29914.02, + "end": 29914.18, + "probability": 0.8462 + }, + { + "start": 29916.12, + "end": 29921.3, + "probability": 0.6526 + }, + { + "start": 29921.86, + "end": 29922.3, + "probability": 0.1157 + }, + { + "start": 29922.88, + "end": 29924.02, + "probability": 0.8115 + }, + { + "start": 29925.18, + "end": 29926.58, + "probability": 0.9677 + }, + { + "start": 29927.24, + "end": 29930.46, + "probability": 0.8667 + }, + { + "start": 29930.9, + "end": 29932.24, + "probability": 0.9183 + }, + { + "start": 29933.66, + "end": 29934.22, + "probability": 0.6292 + }, + { + "start": 29934.8, + "end": 29936.32, + "probability": 0.0538 + }, + { + "start": 29937.38, + "end": 29938.16, + "probability": 0.0719 + }, + { + "start": 29939.08, + "end": 29941.0, + "probability": 0.0166 + }, + { + "start": 29941.0, + "end": 29941.1, + "probability": 0.2603 + }, + { + "start": 29941.88, + "end": 29946.7, + "probability": 0.8269 + }, + { + "start": 29947.86, + "end": 29948.72, + "probability": 0.522 + }, + { + "start": 29949.26, + "end": 29949.42, + "probability": 0.3824 + }, + { + "start": 29951.34, + "end": 29952.88, + "probability": 0.4635 + }, + { + "start": 29953.48, + "end": 29954.24, + "probability": 0.6168 + }, + { + "start": 29956.1, + "end": 29960.14, + "probability": 0.9131 + }, + { + "start": 29970.1, + "end": 29972.28, + "probability": 0.6593 + }, + { + "start": 29972.48, + "end": 29973.37, + "probability": 0.54 + }, + { + "start": 29974.92, + "end": 29975.86, + "probability": 0.7301 + }, + { + "start": 29976.38, + "end": 29979.5, + "probability": 0.9858 + }, + { + "start": 29980.56, + "end": 29981.86, + "probability": 0.8339 + }, + { + "start": 29982.82, + "end": 29985.48, + "probability": 0.9795 + }, + { + "start": 29986.68, + "end": 29988.25, + "probability": 0.9802 + }, + { + "start": 29990.5, + "end": 29993.7, + "probability": 0.9962 + }, + { + "start": 29994.98, + "end": 29996.34, + "probability": 0.9594 + }, + { + "start": 29997.02, + "end": 29998.04, + "probability": 0.8257 + }, + { + "start": 29999.94, + "end": 30004.5, + "probability": 0.9332 + }, + { + "start": 30004.6, + "end": 30005.68, + "probability": 0.9937 + }, + { + "start": 30006.06, + "end": 30006.64, + "probability": 0.9266 + }, + { + "start": 30007.74, + "end": 30010.18, + "probability": 0.9938 + }, + { + "start": 30011.16, + "end": 30012.22, + "probability": 0.9376 + }, + { + "start": 30012.3, + "end": 30013.63, + "probability": 0.8946 + }, + { + "start": 30014.12, + "end": 30015.14, + "probability": 0.9577 + }, + { + "start": 30015.26, + "end": 30016.74, + "probability": 0.9924 + }, + { + "start": 30017.5, + "end": 30020.54, + "probability": 0.9835 + }, + { + "start": 30022.0, + "end": 30023.14, + "probability": 0.8318 + }, + { + "start": 30024.04, + "end": 30025.14, + "probability": 0.7239 + }, + { + "start": 30026.1, + "end": 30026.9, + "probability": 0.9766 + }, + { + "start": 30028.1, + "end": 30029.86, + "probability": 0.9951 + }, + { + "start": 30029.9, + "end": 30032.94, + "probability": 0.8193 + }, + { + "start": 30032.98, + "end": 30035.08, + "probability": 0.9929 + }, + { + "start": 30036.98, + "end": 30039.22, + "probability": 0.9934 + }, + { + "start": 30039.28, + "end": 30039.78, + "probability": 0.6813 + }, + { + "start": 30039.84, + "end": 30041.38, + "probability": 0.9956 + }, + { + "start": 30042.3, + "end": 30046.18, + "probability": 0.9834 + }, + { + "start": 30046.32, + "end": 30047.7, + "probability": 0.9802 + }, + { + "start": 30047.78, + "end": 30048.9, + "probability": 0.979 + }, + { + "start": 30050.32, + "end": 30051.76, + "probability": 0.9982 + }, + { + "start": 30053.46, + "end": 30054.54, + "probability": 0.9811 + }, + { + "start": 30054.64, + "end": 30056.02, + "probability": 0.9858 + }, + { + "start": 30056.16, + "end": 30056.78, + "probability": 0.8461 + }, + { + "start": 30057.44, + "end": 30060.98, + "probability": 0.8756 + }, + { + "start": 30061.68, + "end": 30064.16, + "probability": 0.7565 + }, + { + "start": 30064.94, + "end": 30065.7, + "probability": 0.9205 + }, + { + "start": 30066.78, + "end": 30068.06, + "probability": 0.8821 + }, + { + "start": 30068.84, + "end": 30070.0, + "probability": 0.6148 + }, + { + "start": 30070.0, + "end": 30071.16, + "probability": 0.7122 + }, + { + "start": 30071.24, + "end": 30071.78, + "probability": 0.8206 + }, + { + "start": 30073.18, + "end": 30073.68, + "probability": 0.6129 + }, + { + "start": 30073.74, + "end": 30076.14, + "probability": 0.6816 + }, + { + "start": 30077.4, + "end": 30077.44, + "probability": 0.0131 + }, + { + "start": 30077.44, + "end": 30080.06, + "probability": 0.8408 + }, + { + "start": 30081.22, + "end": 30081.48, + "probability": 0.5784 + }, + { + "start": 30082.06, + "end": 30082.42, + "probability": 0.9351 + }, + { + "start": 30082.72, + "end": 30083.8, + "probability": 0.8784 + }, + { + "start": 30084.32, + "end": 30086.04, + "probability": 0.2904 + }, + { + "start": 30086.5, + "end": 30086.98, + "probability": 0.1429 + }, + { + "start": 30087.28, + "end": 30090.28, + "probability": 0.9659 + }, + { + "start": 30091.12, + "end": 30092.56, + "probability": 0.8099 + }, + { + "start": 30093.84, + "end": 30094.3, + "probability": 0.0103 + }, + { + "start": 30094.3, + "end": 30095.82, + "probability": 0.3947 + }, + { + "start": 30095.86, + "end": 30096.66, + "probability": 0.6055 + }, + { + "start": 30096.9, + "end": 30097.68, + "probability": 0.8292 + }, + { + "start": 30098.66, + "end": 30098.66, + "probability": 0.0971 + }, + { + "start": 30098.66, + "end": 30099.45, + "probability": 0.7231 + }, + { + "start": 30099.76, + "end": 30105.74, + "probability": 0.8676 + }, + { + "start": 30106.32, + "end": 30110.5, + "probability": 0.8444 + }, + { + "start": 30112.02, + "end": 30113.22, + "probability": 0.7023 + }, + { + "start": 30114.38, + "end": 30118.28, + "probability": 0.7525 + }, + { + "start": 30118.6, + "end": 30119.04, + "probability": 0.4008 + }, + { + "start": 30119.04, + "end": 30119.62, + "probability": 0.3395 + }, + { + "start": 30119.66, + "end": 30119.76, + "probability": 0.9279 + }, + { + "start": 30119.96, + "end": 30120.74, + "probability": 0.5371 + }, + { + "start": 30120.82, + "end": 30121.74, + "probability": 0.8232 + }, + { + "start": 30122.8, + "end": 30123.9, + "probability": 0.9943 + }, + { + "start": 30124.56, + "end": 30126.4, + "probability": 0.8755 + }, + { + "start": 30127.08, + "end": 30128.24, + "probability": 0.8122 + }, + { + "start": 30129.44, + "end": 30130.28, + "probability": 0.6694 + }, + { + "start": 30130.8, + "end": 30131.62, + "probability": 0.3633 + }, + { + "start": 30131.92, + "end": 30132.58, + "probability": 0.6239 + }, + { + "start": 30132.86, + "end": 30134.74, + "probability": 0.3386 + }, + { + "start": 30134.74, + "end": 30136.56, + "probability": 0.9286 + }, + { + "start": 30136.7, + "end": 30140.2, + "probability": 0.8794 + }, + { + "start": 30140.34, + "end": 30141.12, + "probability": 0.6836 + }, + { + "start": 30141.36, + "end": 30142.3, + "probability": 0.5451 + }, + { + "start": 30142.44, + "end": 30143.42, + "probability": 0.9049 + }, + { + "start": 30143.9, + "end": 30147.78, + "probability": 0.9945 + }, + { + "start": 30148.9, + "end": 30150.66, + "probability": 0.7872 + }, + { + "start": 30151.21, + "end": 30153.74, + "probability": 0.9977 + }, + { + "start": 30154.62, + "end": 30156.06, + "probability": 0.8875 + }, + { + "start": 30157.4, + "end": 30158.26, + "probability": 0.988 + }, + { + "start": 30158.96, + "end": 30159.93, + "probability": 0.9526 + }, + { + "start": 30160.56, + "end": 30161.16, + "probability": 0.7356 + }, + { + "start": 30161.26, + "end": 30161.74, + "probability": 0.8383 + }, + { + "start": 30161.8, + "end": 30162.81, + "probability": 0.9565 + }, + { + "start": 30165.02, + "end": 30168.64, + "probability": 0.9545 + }, + { + "start": 30169.34, + "end": 30172.5, + "probability": 0.9519 + }, + { + "start": 30173.2, + "end": 30175.96, + "probability": 0.9924 + }, + { + "start": 30176.76, + "end": 30178.2, + "probability": 0.7707 + }, + { + "start": 30178.56, + "end": 30180.78, + "probability": 0.9639 + }, + { + "start": 30181.58, + "end": 30182.62, + "probability": 0.9217 + }, + { + "start": 30183.08, + "end": 30184.24, + "probability": 0.9939 + }, + { + "start": 30184.96, + "end": 30186.82, + "probability": 0.9894 + }, + { + "start": 30187.76, + "end": 30188.48, + "probability": 0.679 + }, + { + "start": 30189.3, + "end": 30190.75, + "probability": 0.9495 + }, + { + "start": 30190.9, + "end": 30191.4, + "probability": 0.6098 + }, + { + "start": 30191.44, + "end": 30192.48, + "probability": 0.9209 + }, + { + "start": 30192.6, + "end": 30193.72, + "probability": 0.9208 + }, + { + "start": 30193.98, + "end": 30196.34, + "probability": 0.4577 + }, + { + "start": 30196.84, + "end": 30199.92, + "probability": 0.9794 + }, + { + "start": 30200.1, + "end": 30202.08, + "probability": 0.618 + }, + { + "start": 30202.1, + "end": 30202.1, + "probability": 0.0433 + }, + { + "start": 30202.1, + "end": 30203.44, + "probability": 0.5055 + }, + { + "start": 30203.82, + "end": 30205.4, + "probability": 0.4223 + }, + { + "start": 30207.1, + "end": 30209.1, + "probability": 0.9849 + }, + { + "start": 30209.38, + "end": 30210.42, + "probability": 0.9229 + }, + { + "start": 30210.56, + "end": 30211.72, + "probability": 0.9701 + }, + { + "start": 30211.8, + "end": 30212.28, + "probability": 0.9718 + }, + { + "start": 30213.08, + "end": 30213.68, + "probability": 0.4181 + }, + { + "start": 30214.56, + "end": 30215.5, + "probability": 0.0516 + }, + { + "start": 30215.64, + "end": 30218.22, + "probability": 0.9875 + }, + { + "start": 30218.26, + "end": 30220.79, + "probability": 0.9906 + }, + { + "start": 30221.68, + "end": 30224.5, + "probability": 0.924 + }, + { + "start": 30225.38, + "end": 30228.22, + "probability": 0.9934 + }, + { + "start": 30228.82, + "end": 30230.56, + "probability": 0.7903 + }, + { + "start": 30230.74, + "end": 30230.98, + "probability": 0.8838 + }, + { + "start": 30231.06, + "end": 30232.34, + "probability": 0.9628 + }, + { + "start": 30233.72, + "end": 30235.0, + "probability": 0.9978 + }, + { + "start": 30235.88, + "end": 30237.48, + "probability": 0.9472 + }, + { + "start": 30238.62, + "end": 30240.48, + "probability": 0.9948 + }, + { + "start": 30241.34, + "end": 30243.64, + "probability": 0.9978 + }, + { + "start": 30244.7, + "end": 30248.24, + "probability": 0.9668 + }, + { + "start": 30249.6, + "end": 30253.3, + "probability": 0.9985 + }, + { + "start": 30253.92, + "end": 30254.46, + "probability": 0.7021 + }, + { + "start": 30254.6, + "end": 30259.84, + "probability": 0.9308 + }, + { + "start": 30259.9, + "end": 30264.06, + "probability": 0.9049 + }, + { + "start": 30265.16, + "end": 30265.76, + "probability": 0.6482 + }, + { + "start": 30266.52, + "end": 30268.04, + "probability": 0.9976 + }, + { + "start": 30268.94, + "end": 30271.68, + "probability": 0.925 + }, + { + "start": 30272.14, + "end": 30273.12, + "probability": 0.9698 + }, + { + "start": 30273.98, + "end": 30275.28, + "probability": 0.9333 + }, + { + "start": 30275.38, + "end": 30280.04, + "probability": 0.9691 + }, + { + "start": 30281.82, + "end": 30282.94, + "probability": 0.8262 + }, + { + "start": 30283.36, + "end": 30284.76, + "probability": 0.9108 + }, + { + "start": 30285.3, + "end": 30286.39, + "probability": 0.999 + }, + { + "start": 30286.78, + "end": 30289.36, + "probability": 0.8282 + }, + { + "start": 30289.6, + "end": 30290.84, + "probability": 0.9326 + }, + { + "start": 30290.98, + "end": 30291.2, + "probability": 0.8523 + }, + { + "start": 30293.13, + "end": 30296.86, + "probability": 0.0309 + }, + { + "start": 30309.78, + "end": 30309.94, + "probability": 0.1345 + }, + { + "start": 30309.94, + "end": 30309.94, + "probability": 0.2424 + }, + { + "start": 30309.94, + "end": 30309.94, + "probability": 0.3187 + }, + { + "start": 30309.94, + "end": 30310.88, + "probability": 0.253 + }, + { + "start": 30310.88, + "end": 30311.34, + "probability": 0.8142 + }, + { + "start": 30312.26, + "end": 30313.68, + "probability": 0.5208 + }, + { + "start": 30315.16, + "end": 30316.62, + "probability": 0.7208 + }, + { + "start": 30318.64, + "end": 30321.64, + "probability": 0.986 + }, + { + "start": 30322.8, + "end": 30323.86, + "probability": 0.9526 + }, + { + "start": 30324.9, + "end": 30326.82, + "probability": 0.9993 + }, + { + "start": 30328.46, + "end": 30332.08, + "probability": 0.9699 + }, + { + "start": 30333.16, + "end": 30336.34, + "probability": 0.9982 + }, + { + "start": 30337.3, + "end": 30340.38, + "probability": 0.9924 + }, + { + "start": 30342.34, + "end": 30347.92, + "probability": 0.9987 + }, + { + "start": 30348.06, + "end": 30350.07, + "probability": 0.5892 + }, + { + "start": 30351.5, + "end": 30352.78, + "probability": 0.779 + }, + { + "start": 30354.82, + "end": 30358.38, + "probability": 0.9631 + }, + { + "start": 30361.28, + "end": 30363.06, + "probability": 0.9549 + }, + { + "start": 30364.24, + "end": 30365.32, + "probability": 0.6523 + }, + { + "start": 30366.8, + "end": 30367.64, + "probability": 0.9622 + }, + { + "start": 30368.24, + "end": 30371.16, + "probability": 0.8518 + }, + { + "start": 30371.62, + "end": 30373.06, + "probability": 0.9895 + }, + { + "start": 30373.74, + "end": 30376.34, + "probability": 0.9861 + }, + { + "start": 30377.7, + "end": 30383.98, + "probability": 0.9915 + }, + { + "start": 30384.7, + "end": 30390.0, + "probability": 0.9753 + }, + { + "start": 30391.32, + "end": 30394.62, + "probability": 0.9499 + }, + { + "start": 30395.54, + "end": 30398.42, + "probability": 0.994 + }, + { + "start": 30399.9, + "end": 30400.3, + "probability": 0.1661 + }, + { + "start": 30401.62, + "end": 30402.84, + "probability": 0.5862 + }, + { + "start": 30403.12, + "end": 30403.42, + "probability": 0.1277 + }, + { + "start": 30403.42, + "end": 30405.64, + "probability": 0.8715 + }, + { + "start": 30406.52, + "end": 30407.86, + "probability": 0.8789 + }, + { + "start": 30408.5, + "end": 30409.08, + "probability": 0.7645 + }, + { + "start": 30409.78, + "end": 30416.26, + "probability": 0.9946 + }, + { + "start": 30417.08, + "end": 30417.86, + "probability": 0.8103 + }, + { + "start": 30418.0, + "end": 30419.36, + "probability": 0.9531 + }, + { + "start": 30420.3, + "end": 30424.96, + "probability": 0.9773 + }, + { + "start": 30425.9, + "end": 30426.66, + "probability": 0.7924 + }, + { + "start": 30427.7, + "end": 30432.4, + "probability": 0.9174 + }, + { + "start": 30433.3, + "end": 30434.88, + "probability": 0.9471 + }, + { + "start": 30435.72, + "end": 30436.77, + "probability": 0.9258 + }, + { + "start": 30437.66, + "end": 30439.94, + "probability": 0.9869 + }, + { + "start": 30440.84, + "end": 30442.8, + "probability": 0.9263 + }, + { + "start": 30443.04, + "end": 30444.32, + "probability": 0.8388 + }, + { + "start": 30444.38, + "end": 30444.86, + "probability": 0.5286 + }, + { + "start": 30446.8, + "end": 30449.1, + "probability": 0.9838 + }, + { + "start": 30449.9, + "end": 30452.86, + "probability": 0.9692 + }, + { + "start": 30453.82, + "end": 30454.26, + "probability": 0.4915 + }, + { + "start": 30454.42, + "end": 30455.9, + "probability": 0.9443 + }, + { + "start": 30455.94, + "end": 30457.72, + "probability": 0.9331 + }, + { + "start": 30458.12, + "end": 30459.07, + "probability": 0.9041 + }, + { + "start": 30460.06, + "end": 30465.82, + "probability": 0.9469 + }, + { + "start": 30466.64, + "end": 30467.44, + "probability": 0.4606 + }, + { + "start": 30467.98, + "end": 30469.16, + "probability": 0.6012 + }, + { + "start": 30470.08, + "end": 30470.82, + "probability": 0.8788 + }, + { + "start": 30471.48, + "end": 30474.0, + "probability": 0.6469 + }, + { + "start": 30474.1, + "end": 30475.46, + "probability": 0.5851 + }, + { + "start": 30476.0, + "end": 30477.54, + "probability": 0.9111 + }, + { + "start": 30478.16, + "end": 30478.16, + "probability": 0.0 + }, + { + "start": 30484.3, + "end": 30484.56, + "probability": 0.006 + }, + { + "start": 30484.56, + "end": 30486.14, + "probability": 0.9054 + }, + { + "start": 30489.78, + "end": 30494.1, + "probability": 0.5608 + }, + { + "start": 30495.14, + "end": 30498.62, + "probability": 0.8014 + }, + { + "start": 30499.28, + "end": 30501.58, + "probability": 0.9531 + }, + { + "start": 30502.7, + "end": 30504.22, + "probability": 0.9463 + }, + { + "start": 30504.94, + "end": 30510.1, + "probability": 0.9917 + }, + { + "start": 30510.54, + "end": 30510.98, + "probability": 0.3941 + }, + { + "start": 30512.0, + "end": 30513.06, + "probability": 0.9826 + }, + { + "start": 30514.74, + "end": 30518.48, + "probability": 0.6632 + }, + { + "start": 30519.2, + "end": 30519.2, + "probability": 0.0939 + }, + { + "start": 30519.2, + "end": 30519.2, + "probability": 0.0622 + }, + { + "start": 30519.2, + "end": 30522.72, + "probability": 0.6134 + }, + { + "start": 30522.96, + "end": 30524.46, + "probability": 0.1837 + }, + { + "start": 30537.6, + "end": 30540.62, + "probability": 0.2678 + }, + { + "start": 30540.62, + "end": 30540.76, + "probability": 0.0173 + }, + { + "start": 30540.76, + "end": 30540.76, + "probability": 0.2061 + }, + { + "start": 30540.76, + "end": 30541.78, + "probability": 0.1883 + }, + { + "start": 30542.86, + "end": 30547.8, + "probability": 0.7667 + }, + { + "start": 30547.88, + "end": 30550.1, + "probability": 0.9648 + }, + { + "start": 30550.26, + "end": 30551.18, + "probability": 0.6026 + }, + { + "start": 30552.12, + "end": 30555.5, + "probability": 0.9658 + }, + { + "start": 30556.54, + "end": 30558.26, + "probability": 0.791 + }, + { + "start": 30559.12, + "end": 30562.14, + "probability": 0.9838 + }, + { + "start": 30562.18, + "end": 30568.5, + "probability": 0.7359 + }, + { + "start": 30570.78, + "end": 30573.24, + "probability": 0.7792 + }, + { + "start": 30574.04, + "end": 30578.52, + "probability": 0.991 + }, + { + "start": 30579.4, + "end": 30580.98, + "probability": 0.9002 + }, + { + "start": 30581.72, + "end": 30585.24, + "probability": 0.998 + }, + { + "start": 30585.48, + "end": 30586.66, + "probability": 0.8245 + }, + { + "start": 30587.5, + "end": 30588.81, + "probability": 0.7266 + }, + { + "start": 30589.0, + "end": 30590.6, + "probability": 0.7261 + }, + { + "start": 30590.64, + "end": 30592.22, + "probability": 0.9237 + }, + { + "start": 30592.26, + "end": 30592.6, + "probability": 0.7517 + }, + { + "start": 30592.64, + "end": 30594.66, + "probability": 0.9791 + }, + { + "start": 30595.88, + "end": 30598.6, + "probability": 0.9832 + }, + { + "start": 30598.6, + "end": 30601.5, + "probability": 0.9508 + }, + { + "start": 30602.72, + "end": 30604.02, + "probability": 0.7783 + }, + { + "start": 30604.14, + "end": 30606.68, + "probability": 0.8062 + }, + { + "start": 30607.34, + "end": 30609.28, + "probability": 0.9967 + }, + { + "start": 30609.82, + "end": 30611.6, + "probability": 0.6752 + }, + { + "start": 30612.36, + "end": 30615.96, + "probability": 0.9785 + }, + { + "start": 30617.18, + "end": 30620.1, + "probability": 0.9023 + }, + { + "start": 30620.72, + "end": 30625.18, + "probability": 0.8566 + }, + { + "start": 30626.16, + "end": 30631.15, + "probability": 0.9447 + }, + { + "start": 30631.56, + "end": 30636.62, + "probability": 0.6788 + }, + { + "start": 30637.72, + "end": 30641.8, + "probability": 0.9321 + }, + { + "start": 30642.08, + "end": 30643.66, + "probability": 0.8268 + }, + { + "start": 30644.98, + "end": 30649.84, + "probability": 0.9912 + }, + { + "start": 30650.64, + "end": 30655.17, + "probability": 0.9961 + }, + { + "start": 30655.24, + "end": 30656.76, + "probability": 0.9429 + }, + { + "start": 30657.38, + "end": 30659.64, + "probability": 0.9824 + }, + { + "start": 30660.42, + "end": 30664.82, + "probability": 0.7946 + }, + { + "start": 30665.5, + "end": 30668.5, + "probability": 0.9858 + }, + { + "start": 30668.5, + "end": 30673.1, + "probability": 0.9995 + }, + { + "start": 30673.18, + "end": 30675.08, + "probability": 0.9879 + }, + { + "start": 30675.7, + "end": 30678.1, + "probability": 0.9935 + }, + { + "start": 30680.12, + "end": 30680.7, + "probability": 0.6404 + }, + { + "start": 30681.8, + "end": 30685.06, + "probability": 0.9954 + }, + { + "start": 30685.9, + "end": 30687.28, + "probability": 0.8967 + }, + { + "start": 30688.0, + "end": 30689.62, + "probability": 0.9049 + }, + { + "start": 30690.32, + "end": 30692.52, + "probability": 0.8855 + }, + { + "start": 30693.18, + "end": 30694.22, + "probability": 0.9536 + }, + { + "start": 30694.76, + "end": 30697.74, + "probability": 0.9945 + }, + { + "start": 30697.74, + "end": 30702.08, + "probability": 0.995 + }, + { + "start": 30702.26, + "end": 30703.34, + "probability": 0.6685 + }, + { + "start": 30703.8, + "end": 30708.88, + "probability": 0.996 + }, + { + "start": 30711.66, + "end": 30712.7, + "probability": 0.6779 + }, + { + "start": 30713.46, + "end": 30713.97, + "probability": 0.8914 + }, + { + "start": 30714.32, + "end": 30715.58, + "probability": 0.8003 + }, + { + "start": 30715.64, + "end": 30717.26, + "probability": 0.9399 + }, + { + "start": 30717.82, + "end": 30719.48, + "probability": 0.8186 + }, + { + "start": 30720.14, + "end": 30724.34, + "probability": 0.8671 + }, + { + "start": 30725.32, + "end": 30729.5, + "probability": 0.8429 + }, + { + "start": 30730.32, + "end": 30732.32, + "probability": 0.6251 + }, + { + "start": 30732.44, + "end": 30733.84, + "probability": 0.9821 + }, + { + "start": 30734.02, + "end": 30734.22, + "probability": 0.603 + }, + { + "start": 30734.26, + "end": 30735.98, + "probability": 0.9368 + }, + { + "start": 30736.96, + "end": 30736.98, + "probability": 0.7993 + }, + { + "start": 30737.92, + "end": 30739.12, + "probability": 0.3908 + }, + { + "start": 30740.46, + "end": 30746.86, + "probability": 0.921 + }, + { + "start": 30747.36, + "end": 30749.2, + "probability": 0.98 + }, + { + "start": 30750.02, + "end": 30752.24, + "probability": 0.975 + }, + { + "start": 30753.04, + "end": 30753.56, + "probability": 0.2769 + }, + { + "start": 30753.86, + "end": 30756.3, + "probability": 0.8384 + }, + { + "start": 30757.22, + "end": 30761.36, + "probability": 0.946 + }, + { + "start": 30761.36, + "end": 30768.74, + "probability": 0.9911 + }, + { + "start": 30769.76, + "end": 30771.06, + "probability": 0.9244 + }, + { + "start": 30771.82, + "end": 30773.92, + "probability": 0.9543 + }, + { + "start": 30774.6, + "end": 30777.82, + "probability": 0.9517 + }, + { + "start": 30778.42, + "end": 30782.66, + "probability": 0.9103 + }, + { + "start": 30783.64, + "end": 30788.76, + "probability": 0.8579 + }, + { + "start": 30789.0, + "end": 30790.28, + "probability": 0.5311 + }, + { + "start": 30791.62, + "end": 30793.86, + "probability": 0.9008 + }, + { + "start": 30794.06, + "end": 30795.14, + "probability": 0.8122 + }, + { + "start": 30795.28, + "end": 30796.48, + "probability": 0.7801 + }, + { + "start": 30796.84, + "end": 30797.64, + "probability": 0.9904 + }, + { + "start": 30797.9, + "end": 30800.14, + "probability": 0.9889 + }, + { + "start": 30800.82, + "end": 30801.62, + "probability": 0.8979 + }, + { + "start": 30801.76, + "end": 30802.54, + "probability": 0.6376 + }, + { + "start": 30802.68, + "end": 30804.16, + "probability": 0.9692 + }, + { + "start": 30804.76, + "end": 30808.9, + "probability": 0.771 + }, + { + "start": 30810.36, + "end": 30811.38, + "probability": 0.9749 + }, + { + "start": 30811.7, + "end": 30815.88, + "probability": 0.9561 + }, + { + "start": 30816.22, + "end": 30818.98, + "probability": 0.9393 + }, + { + "start": 30819.5, + "end": 30824.74, + "probability": 0.9903 + }, + { + "start": 30824.86, + "end": 30825.92, + "probability": 0.8948 + }, + { + "start": 30826.48, + "end": 30828.44, + "probability": 0.9968 + }, + { + "start": 30828.78, + "end": 30830.82, + "probability": 0.9991 + }, + { + "start": 30831.06, + "end": 30833.94, + "probability": 0.9926 + }, + { + "start": 30834.04, + "end": 30834.54, + "probability": 0.756 + }, + { + "start": 30835.06, + "end": 30835.38, + "probability": 0.3993 + }, + { + "start": 30835.38, + "end": 30836.02, + "probability": 0.6932 + }, + { + "start": 30836.74, + "end": 30838.62, + "probability": 0.8755 + }, + { + "start": 30838.72, + "end": 30839.18, + "probability": 0.9724 + }, + { + "start": 30857.78, + "end": 30857.94, + "probability": 0.3597 + }, + { + "start": 30857.94, + "end": 30858.78, + "probability": 0.3952 + }, + { + "start": 30859.14, + "end": 30859.24, + "probability": 0.6917 + }, + { + "start": 30861.38, + "end": 30861.6, + "probability": 0.8618 + }, + { + "start": 30862.46, + "end": 30863.16, + "probability": 0.859 + }, + { + "start": 30863.68, + "end": 30864.28, + "probability": 0.8989 + }, + { + "start": 30865.54, + "end": 30866.86, + "probability": 0.952 + }, + { + "start": 30867.52, + "end": 30869.98, + "probability": 0.9515 + }, + { + "start": 30870.8, + "end": 30874.6, + "probability": 0.9035 + }, + { + "start": 30875.02, + "end": 30876.5, + "probability": 0.8239 + }, + { + "start": 30876.6, + "end": 30877.3, + "probability": 0.9714 + }, + { + "start": 30877.3, + "end": 30877.72, + "probability": 0.9713 + }, + { + "start": 30878.22, + "end": 30879.9, + "probability": 0.999 + }, + { + "start": 30881.1, + "end": 30881.54, + "probability": 0.9275 + }, + { + "start": 30882.24, + "end": 30884.02, + "probability": 0.9366 + }, + { + "start": 30885.06, + "end": 30887.64, + "probability": 0.9923 + }, + { + "start": 30888.54, + "end": 30889.98, + "probability": 0.9803 + }, + { + "start": 30890.78, + "end": 30891.54, + "probability": 0.8517 + }, + { + "start": 30892.1, + "end": 30893.12, + "probability": 0.8828 + }, + { + "start": 30893.98, + "end": 30896.02, + "probability": 0.9985 + }, + { + "start": 30897.04, + "end": 30898.96, + "probability": 0.9966 + }, + { + "start": 30899.64, + "end": 30901.5, + "probability": 0.7096 + }, + { + "start": 30902.5, + "end": 30903.52, + "probability": 0.962 + }, + { + "start": 30904.24, + "end": 30906.74, + "probability": 0.998 + }, + { + "start": 30908.14, + "end": 30911.68, + "probability": 0.9969 + }, + { + "start": 30913.06, + "end": 30914.08, + "probability": 0.9025 + }, + { + "start": 30915.68, + "end": 30917.4, + "probability": 0.9703 + }, + { + "start": 30917.9, + "end": 30920.78, + "probability": 0.7355 + }, + { + "start": 30921.22, + "end": 30922.42, + "probability": 0.9973 + }, + { + "start": 30922.96, + "end": 30925.3, + "probability": 0.9963 + }, + { + "start": 30926.82, + "end": 30931.06, + "probability": 0.998 + }, + { + "start": 30931.82, + "end": 30932.98, + "probability": 0.9363 + }, + { + "start": 30933.82, + "end": 30936.12, + "probability": 0.9824 + }, + { + "start": 30938.1, + "end": 30940.6, + "probability": 0.9777 + }, + { + "start": 30941.84, + "end": 30942.82, + "probability": 0.9834 + }, + { + "start": 30943.66, + "end": 30945.38, + "probability": 0.8384 + }, + { + "start": 30945.92, + "end": 30947.98, + "probability": 0.8942 + }, + { + "start": 30949.32, + "end": 30950.72, + "probability": 0.997 + }, + { + "start": 30951.36, + "end": 30952.46, + "probability": 0.8476 + }, + { + "start": 30953.72, + "end": 30955.34, + "probability": 0.9902 + }, + { + "start": 30956.34, + "end": 30958.2, + "probability": 0.9707 + }, + { + "start": 30959.12, + "end": 30959.68, + "probability": 0.7964 + }, + { + "start": 30960.36, + "end": 30961.5, + "probability": 0.9241 + }, + { + "start": 30962.72, + "end": 30963.38, + "probability": 0.9169 + }, + { + "start": 30964.14, + "end": 30967.82, + "probability": 0.9965 + }, + { + "start": 30968.66, + "end": 30970.42, + "probability": 0.9395 + }, + { + "start": 30971.52, + "end": 30974.38, + "probability": 0.9701 + }, + { + "start": 30975.32, + "end": 30976.68, + "probability": 0.8513 + }, + { + "start": 30977.22, + "end": 30980.96, + "probability": 0.9553 + }, + { + "start": 30981.96, + "end": 30982.84, + "probability": 0.9574 + }, + { + "start": 30983.94, + "end": 30988.74, + "probability": 0.9884 + }, + { + "start": 30989.72, + "end": 30991.24, + "probability": 0.9928 + }, + { + "start": 30991.76, + "end": 30993.42, + "probability": 0.9988 + }, + { + "start": 30993.92, + "end": 30995.4, + "probability": 0.9732 + }, + { + "start": 30996.32, + "end": 30998.2, + "probability": 0.9172 + }, + { + "start": 30999.06, + "end": 31002.48, + "probability": 0.9904 + }, + { + "start": 31002.48, + "end": 31005.52, + "probability": 0.988 + }, + { + "start": 31006.32, + "end": 31008.46, + "probability": 0.926 + }, + { + "start": 31009.3, + "end": 31011.46, + "probability": 0.9937 + }, + { + "start": 31013.48, + "end": 31014.16, + "probability": 0.9124 + }, + { + "start": 31015.28, + "end": 31016.89, + "probability": 0.9338 + }, + { + "start": 31017.36, + "end": 31017.36, + "probability": 0.5228 + }, + { + "start": 31017.36, + "end": 31019.14, + "probability": 0.976 + }, + { + "start": 31019.86, + "end": 31020.98, + "probability": 0.9453 + }, + { + "start": 31021.76, + "end": 31022.66, + "probability": 0.9901 + }, + { + "start": 31023.98, + "end": 31024.65, + "probability": 0.9895 + }, + { + "start": 31025.1, + "end": 31026.9, + "probability": 0.9427 + }, + { + "start": 31026.98, + "end": 31029.16, + "probability": 0.929 + }, + { + "start": 31030.78, + "end": 31031.36, + "probability": 0.9042 + }, + { + "start": 31032.24, + "end": 31034.04, + "probability": 0.917 + }, + { + "start": 31034.44, + "end": 31038.14, + "probability": 0.9979 + }, + { + "start": 31038.64, + "end": 31040.32, + "probability": 0.9238 + }, + { + "start": 31041.2, + "end": 31042.78, + "probability": 0.9956 + }, + { + "start": 31043.48, + "end": 31044.44, + "probability": 0.7504 + }, + { + "start": 31045.5, + "end": 31046.64, + "probability": 0.9651 + }, + { + "start": 31047.42, + "end": 31052.44, + "probability": 0.9415 + }, + { + "start": 31053.42, + "end": 31054.94, + "probability": 0.9569 + }, + { + "start": 31055.84, + "end": 31056.16, + "probability": 0.8345 + }, + { + "start": 31056.48, + "end": 31058.32, + "probability": 0.9981 + }, + { + "start": 31059.44, + "end": 31060.5, + "probability": 0.9242 + }, + { + "start": 31061.4, + "end": 31063.03, + "probability": 0.9367 + }, + { + "start": 31065.1, + "end": 31068.68, + "probability": 0.9972 + }, + { + "start": 31069.88, + "end": 31070.78, + "probability": 0.9259 + }, + { + "start": 31071.2, + "end": 31073.08, + "probability": 0.9962 + }, + { + "start": 31073.6, + "end": 31076.68, + "probability": 0.8658 + }, + { + "start": 31077.26, + "end": 31080.32, + "probability": 0.9838 + }, + { + "start": 31081.72, + "end": 31084.86, + "probability": 0.984 + }, + { + "start": 31085.86, + "end": 31086.1, + "probability": 0.7463 + }, + { + "start": 31087.28, + "end": 31088.08, + "probability": 0.7594 + }, + { + "start": 31089.04, + "end": 31091.39, + "probability": 0.8594 + }, + { + "start": 31091.78, + "end": 31093.6, + "probability": 0.9678 + }, + { + "start": 31094.06, + "end": 31096.34, + "probability": 0.9919 + }, + { + "start": 31096.58, + "end": 31097.88, + "probability": 0.9733 + }, + { + "start": 31098.6, + "end": 31099.36, + "probability": 0.8582 + }, + { + "start": 31100.5, + "end": 31101.86, + "probability": 0.9966 + }, + { + "start": 31102.5, + "end": 31103.32, + "probability": 0.9707 + }, + { + "start": 31104.14, + "end": 31105.75, + "probability": 0.9969 + }, + { + "start": 31106.68, + "end": 31109.28, + "probability": 0.9307 + }, + { + "start": 31110.2, + "end": 31113.44, + "probability": 0.9502 + }, + { + "start": 31114.56, + "end": 31117.92, + "probability": 0.7694 + }, + { + "start": 31119.0, + "end": 31120.96, + "probability": 0.9822 + }, + { + "start": 31121.86, + "end": 31122.36, + "probability": 0.8162 + }, + { + "start": 31123.26, + "end": 31124.48, + "probability": 0.9119 + }, + { + "start": 31125.76, + "end": 31127.86, + "probability": 0.7828 + }, + { + "start": 31128.68, + "end": 31133.0, + "probability": 0.9874 + }, + { + "start": 31134.52, + "end": 31139.84, + "probability": 0.9473 + }, + { + "start": 31141.1, + "end": 31143.68, + "probability": 0.9269 + }, + { + "start": 31145.02, + "end": 31146.34, + "probability": 0.9406 + }, + { + "start": 31146.56, + "end": 31151.16, + "probability": 0.9897 + }, + { + "start": 31152.02, + "end": 31154.68, + "probability": 0.9946 + }, + { + "start": 31156.04, + "end": 31156.56, + "probability": 0.8938 + }, + { + "start": 31157.44, + "end": 31159.58, + "probability": 0.9929 + }, + { + "start": 31160.22, + "end": 31161.42, + "probability": 0.8227 + }, + { + "start": 31162.32, + "end": 31165.14, + "probability": 0.9722 + }, + { + "start": 31166.14, + "end": 31168.7, + "probability": 0.9873 + }, + { + "start": 31169.96, + "end": 31171.16, + "probability": 0.999 + }, + { + "start": 31171.8, + "end": 31172.83, + "probability": 0.9805 + }, + { + "start": 31174.0, + "end": 31175.36, + "probability": 0.9922 + }, + { + "start": 31176.6, + "end": 31178.34, + "probability": 0.8937 + }, + { + "start": 31179.5, + "end": 31180.08, + "probability": 0.7104 + }, + { + "start": 31180.92, + "end": 31184.18, + "probability": 0.9842 + }, + { + "start": 31185.86, + "end": 31187.84, + "probability": 0.967 + }, + { + "start": 31188.64, + "end": 31189.48, + "probability": 0.7417 + }, + { + "start": 31189.7, + "end": 31191.38, + "probability": 0.8745 + }, + { + "start": 31191.5, + "end": 31192.96, + "probability": 0.6793 + }, + { + "start": 31193.84, + "end": 31194.46, + "probability": 0.7448 + }, + { + "start": 31194.52, + "end": 31197.26, + "probability": 0.9614 + }, + { + "start": 31197.98, + "end": 31200.38, + "probability": 0.9642 + }, + { + "start": 31200.88, + "end": 31203.92, + "probability": 0.9929 + }, + { + "start": 31204.94, + "end": 31206.06, + "probability": 0.8496 + }, + { + "start": 31206.86, + "end": 31207.94, + "probability": 0.9647 + }, + { + "start": 31208.86, + "end": 31210.78, + "probability": 0.9818 + }, + { + "start": 31211.3, + "end": 31212.2, + "probability": 0.9332 + }, + { + "start": 31212.98, + "end": 31213.96, + "probability": 0.9533 + }, + { + "start": 31214.74, + "end": 31215.46, + "probability": 0.8915 + }, + { + "start": 31216.34, + "end": 31218.4, + "probability": 0.9756 + }, + { + "start": 31219.2, + "end": 31220.48, + "probability": 0.8232 + }, + { + "start": 31221.12, + "end": 31223.3, + "probability": 0.9961 + }, + { + "start": 31224.24, + "end": 31227.09, + "probability": 0.9724 + }, + { + "start": 31227.56, + "end": 31231.3, + "probability": 0.9881 + }, + { + "start": 31232.24, + "end": 31232.62, + "probability": 0.6161 + }, + { + "start": 31233.54, + "end": 31235.38, + "probability": 0.9907 + }, + { + "start": 31236.08, + "end": 31237.18, + "probability": 0.6316 + }, + { + "start": 31237.88, + "end": 31239.16, + "probability": 0.9964 + }, + { + "start": 31239.84, + "end": 31240.72, + "probability": 0.8789 + }, + { + "start": 31241.22, + "end": 31242.86, + "probability": 0.9662 + }, + { + "start": 31243.2, + "end": 31244.24, + "probability": 0.9951 + }, + { + "start": 31245.12, + "end": 31248.01, + "probability": 0.9937 + }, + { + "start": 31249.22, + "end": 31249.94, + "probability": 0.7492 + }, + { + "start": 31251.28, + "end": 31253.2, + "probability": 0.8335 + }, + { + "start": 31254.0, + "end": 31255.96, + "probability": 0.6846 + }, + { + "start": 31256.86, + "end": 31259.02, + "probability": 0.9357 + }, + { + "start": 31259.9, + "end": 31262.32, + "probability": 0.9693 + }, + { + "start": 31262.94, + "end": 31263.7, + "probability": 0.9526 + }, + { + "start": 31265.14, + "end": 31267.46, + "probability": 0.8325 + }, + { + "start": 31268.26, + "end": 31269.22, + "probability": 0.7359 + }, + { + "start": 31269.98, + "end": 31270.46, + "probability": 0.6218 + }, + { + "start": 31270.56, + "end": 31271.1, + "probability": 0.9377 + }, + { + "start": 31271.2, + "end": 31273.42, + "probability": 0.9968 + }, + { + "start": 31273.42, + "end": 31276.66, + "probability": 0.999 + }, + { + "start": 31277.68, + "end": 31278.7, + "probability": 0.5369 + }, + { + "start": 31279.64, + "end": 31282.04, + "probability": 0.9961 + }, + { + "start": 31283.16, + "end": 31283.64, + "probability": 0.5825 + }, + { + "start": 31283.74, + "end": 31285.86, + "probability": 0.999 + }, + { + "start": 31286.62, + "end": 31288.28, + "probability": 0.9492 + }, + { + "start": 31288.96, + "end": 31289.38, + "probability": 0.9323 + }, + { + "start": 31290.8, + "end": 31294.42, + "probability": 0.9878 + }, + { + "start": 31295.61, + "end": 31297.74, + "probability": 0.9838 + }, + { + "start": 31298.44, + "end": 31300.0, + "probability": 0.9961 + }, + { + "start": 31301.72, + "end": 31302.64, + "probability": 0.9004 + }, + { + "start": 31303.16, + "end": 31303.62, + "probability": 0.8134 + }, + { + "start": 31304.38, + "end": 31306.12, + "probability": 0.996 + }, + { + "start": 31306.12, + "end": 31309.4, + "probability": 0.991 + }, + { + "start": 31310.1, + "end": 31312.04, + "probability": 0.9507 + }, + { + "start": 31312.62, + "end": 31313.94, + "probability": 0.9011 + }, + { + "start": 31314.52, + "end": 31315.82, + "probability": 0.959 + }, + { + "start": 31316.08, + "end": 31317.72, + "probability": 0.9723 + }, + { + "start": 31318.74, + "end": 31320.32, + "probability": 0.8736 + }, + { + "start": 31320.9, + "end": 31323.78, + "probability": 0.9275 + }, + { + "start": 31323.78, + "end": 31324.74, + "probability": 0.825 + }, + { + "start": 31325.58, + "end": 31327.9, + "probability": 0.9896 + }, + { + "start": 31329.46, + "end": 31329.94, + "probability": 0.8901 + }, + { + "start": 31330.64, + "end": 31331.3, + "probability": 0.6047 + }, + { + "start": 31331.8, + "end": 31332.66, + "probability": 0.7618 + }, + { + "start": 31333.94, + "end": 31334.58, + "probability": 0.9851 + }, + { + "start": 31335.42, + "end": 31338.02, + "probability": 0.9828 + }, + { + "start": 31338.62, + "end": 31339.46, + "probability": 0.993 + }, + { + "start": 31340.04, + "end": 31343.48, + "probability": 0.9438 + }, + { + "start": 31344.04, + "end": 31345.68, + "probability": 0.9093 + }, + { + "start": 31346.94, + "end": 31350.98, + "probability": 0.9798 + }, + { + "start": 31351.94, + "end": 31352.86, + "probability": 0.9897 + }, + { + "start": 31353.88, + "end": 31355.74, + "probability": 0.9824 + }, + { + "start": 31356.66, + "end": 31357.08, + "probability": 0.8381 + }, + { + "start": 31357.68, + "end": 31359.6, + "probability": 0.9959 + }, + { + "start": 31360.36, + "end": 31362.04, + "probability": 0.949 + }, + { + "start": 31362.44, + "end": 31362.76, + "probability": 0.8362 + }, + { + "start": 31363.08, + "end": 31363.64, + "probability": 0.9041 + }, + { + "start": 31363.7, + "end": 31364.36, + "probability": 0.8657 + }, + { + "start": 31364.84, + "end": 31365.74, + "probability": 0.9098 + }, + { + "start": 31365.82, + "end": 31366.38, + "probability": 0.762 + }, + { + "start": 31366.4, + "end": 31366.92, + "probability": 0.8607 + }, + { + "start": 31367.22, + "end": 31368.74, + "probability": 0.7069 + }, + { + "start": 31369.6, + "end": 31371.12, + "probability": 0.7616 + }, + { + "start": 31371.74, + "end": 31373.88, + "probability": 0.9724 + }, + { + "start": 31374.6, + "end": 31377.02, + "probability": 0.9993 + }, + { + "start": 31377.02, + "end": 31380.6, + "probability": 0.998 + }, + { + "start": 31381.44, + "end": 31382.16, + "probability": 0.999 + }, + { + "start": 31382.7, + "end": 31383.96, + "probability": 0.9296 + }, + { + "start": 31384.54, + "end": 31385.96, + "probability": 0.9356 + }, + { + "start": 31386.72, + "end": 31390.14, + "probability": 0.9247 + }, + { + "start": 31390.86, + "end": 31391.7, + "probability": 0.9707 + }, + { + "start": 31392.44, + "end": 31393.68, + "probability": 0.9979 + }, + { + "start": 31394.64, + "end": 31394.96, + "probability": 0.9048 + }, + { + "start": 31395.82, + "end": 31398.4, + "probability": 0.9964 + }, + { + "start": 31398.88, + "end": 31402.4, + "probability": 0.931 + }, + { + "start": 31403.68, + "end": 31404.72, + "probability": 0.9798 + }, + { + "start": 31405.42, + "end": 31407.78, + "probability": 0.9831 + }, + { + "start": 31407.78, + "end": 31410.28, + "probability": 0.869 + }, + { + "start": 31410.94, + "end": 31412.16, + "probability": 0.9738 + }, + { + "start": 31412.8, + "end": 31413.92, + "probability": 0.9381 + }, + { + "start": 31415.2, + "end": 31415.64, + "probability": 0.9268 + }, + { + "start": 31416.8, + "end": 31419.3, + "probability": 0.9947 + }, + { + "start": 31419.3, + "end": 31422.1, + "probability": 0.9958 + }, + { + "start": 31422.74, + "end": 31424.34, + "probability": 0.7837 + }, + { + "start": 31425.16, + "end": 31425.68, + "probability": 0.9525 + }, + { + "start": 31426.3, + "end": 31427.0, + "probability": 0.84 + }, + { + "start": 31427.9, + "end": 31427.96, + "probability": 0.0409 + }, + { + "start": 31428.04, + "end": 31428.44, + "probability": 0.8808 + }, + { + "start": 31428.52, + "end": 31432.54, + "probability": 0.9927 + }, + { + "start": 31433.3, + "end": 31435.78, + "probability": 0.959 + }, + { + "start": 31436.36, + "end": 31437.48, + "probability": 0.9026 + }, + { + "start": 31438.2, + "end": 31441.04, + "probability": 0.9866 + }, + { + "start": 31454.56, + "end": 31456.12, + "probability": 0.049 + }, + { + "start": 31456.12, + "end": 31457.02, + "probability": 0.1118 + }, + { + "start": 31458.16, + "end": 31460.34, + "probability": 0.1 + }, + { + "start": 31460.8, + "end": 31463.94, + "probability": 0.0986 + }, + { + "start": 31464.3, + "end": 31465.14, + "probability": 0.1281 + }, + { + "start": 31466.91, + "end": 31468.12, + "probability": 0.066 + }, + { + "start": 31468.12, + "end": 31471.26, + "probability": 0.0565 + }, + { + "start": 31471.84, + "end": 31472.46, + "probability": 0.0049 + }, + { + "start": 31473.36, + "end": 31473.68, + "probability": 0.0712 + }, + { + "start": 31473.68, + "end": 31473.68, + "probability": 0.0232 + }, + { + "start": 31473.68, + "end": 31473.68, + "probability": 0.0908 + }, + { + "start": 31473.68, + "end": 31473.68, + "probability": 0.0492 + }, + { + "start": 31473.68, + "end": 31475.54, + "probability": 0.1783 + }, + { + "start": 31479.92, + "end": 31480.04, + "probability": 0.1159 + }, + { + "start": 31480.04, + "end": 31482.97, + "probability": 0.8899 + }, + { + "start": 31483.8, + "end": 31484.37, + "probability": 0.9008 + }, + { + "start": 31485.46, + "end": 31489.34, + "probability": 0.9839 + }, + { + "start": 31490.4, + "end": 31494.16, + "probability": 0.6173 + }, + { + "start": 31494.22, + "end": 31494.66, + "probability": 0.8665 + }, + { + "start": 31495.18, + "end": 31496.3, + "probability": 0.7753 + }, + { + "start": 31496.96, + "end": 31498.04, + "probability": 0.8723 + }, + { + "start": 31498.6, + "end": 31501.16, + "probability": 0.8884 + }, + { + "start": 31501.86, + "end": 31502.3, + "probability": 0.9704 + }, + { + "start": 31503.12, + "end": 31503.84, + "probability": 0.8902 + }, + { + "start": 31503.96, + "end": 31507.44, + "probability": 0.9922 + }, + { + "start": 31508.0, + "end": 31509.28, + "probability": 0.9935 + }, + { + "start": 31510.06, + "end": 31511.06, + "probability": 0.7816 + }, + { + "start": 31511.14, + "end": 31513.0, + "probability": 0.9787 + }, + { + "start": 31513.32, + "end": 31514.16, + "probability": 0.7289 + }, + { + "start": 31514.88, + "end": 31517.04, + "probability": 0.9782 + }, + { + "start": 31524.44, + "end": 31524.54, + "probability": 0.8039 + }, + { + "start": 31526.05, + "end": 31526.54, + "probability": 0.0384 + }, + { + "start": 31526.54, + "end": 31527.36, + "probability": 0.5746 + }, + { + "start": 31529.14, + "end": 31531.57, + "probability": 0.7313 + }, + { + "start": 31532.46, + "end": 31533.6, + "probability": 0.9811 + }, + { + "start": 31534.82, + "end": 31536.88, + "probability": 0.9284 + }, + { + "start": 31537.78, + "end": 31540.56, + "probability": 0.9245 + }, + { + "start": 31541.66, + "end": 31543.64, + "probability": 0.9954 + }, + { + "start": 31545.18, + "end": 31548.08, + "probability": 0.983 + }, + { + "start": 31549.9, + "end": 31551.42, + "probability": 0.7262 + }, + { + "start": 31553.14, + "end": 31556.74, + "probability": 0.9911 + }, + { + "start": 31557.72, + "end": 31560.74, + "probability": 0.994 + }, + { + "start": 31561.32, + "end": 31565.58, + "probability": 0.9968 + }, + { + "start": 31565.62, + "end": 31566.98, + "probability": 0.9844 + }, + { + "start": 31567.58, + "end": 31570.26, + "probability": 0.9212 + }, + { + "start": 31571.56, + "end": 31571.56, + "probability": 0.8242 + }, + { + "start": 31574.26, + "end": 31575.39, + "probability": 0.9995 + }, + { + "start": 31577.56, + "end": 31581.2, + "probability": 0.9865 + }, + { + "start": 31581.98, + "end": 31586.3, + "probability": 0.9935 + }, + { + "start": 31586.92, + "end": 31589.06, + "probability": 0.9722 + }, + { + "start": 31590.62, + "end": 31593.88, + "probability": 0.9948 + }, + { + "start": 31595.42, + "end": 31601.42, + "probability": 0.9941 + }, + { + "start": 31602.36, + "end": 31603.74, + "probability": 0.7971 + }, + { + "start": 31603.84, + "end": 31604.55, + "probability": 0.7686 + }, + { + "start": 31604.9, + "end": 31606.02, + "probability": 0.8944 + }, + { + "start": 31606.76, + "end": 31609.46, + "probability": 0.8942 + }, + { + "start": 31610.98, + "end": 31613.82, + "probability": 0.9846 + }, + { + "start": 31615.04, + "end": 31619.82, + "probability": 0.9739 + }, + { + "start": 31620.5, + "end": 31621.78, + "probability": 0.975 + }, + { + "start": 31622.7, + "end": 31625.04, + "probability": 0.9939 + }, + { + "start": 31627.44, + "end": 31629.4, + "probability": 0.8681 + }, + { + "start": 31629.52, + "end": 31631.06, + "probability": 0.998 + }, + { + "start": 31632.0, + "end": 31633.66, + "probability": 0.5758 + }, + { + "start": 31633.82, + "end": 31634.58, + "probability": 0.7206 + }, + { + "start": 31634.66, + "end": 31636.74, + "probability": 0.9852 + }, + { + "start": 31637.36, + "end": 31637.92, + "probability": 0.745 + }, + { + "start": 31640.22, + "end": 31640.82, + "probability": 0.8188 + }, + { + "start": 31643.6, + "end": 31645.28, + "probability": 0.61 + }, + { + "start": 31646.66, + "end": 31650.78, + "probability": 0.9972 + }, + { + "start": 31651.54, + "end": 31655.14, + "probability": 0.8486 + }, + { + "start": 31657.16, + "end": 31659.22, + "probability": 0.9949 + }, + { + "start": 31660.3, + "end": 31663.26, + "probability": 0.9077 + }, + { + "start": 31664.08, + "end": 31665.18, + "probability": 0.9786 + }, + { + "start": 31666.12, + "end": 31667.52, + "probability": 0.9774 + }, + { + "start": 31668.2, + "end": 31669.38, + "probability": 0.6668 + }, + { + "start": 31669.9, + "end": 31672.54, + "probability": 0.9122 + }, + { + "start": 31673.24, + "end": 31676.72, + "probability": 0.988 + }, + { + "start": 31677.9, + "end": 31679.4, + "probability": 0.715 + }, + { + "start": 31679.52, + "end": 31682.36, + "probability": 0.909 + }, + { + "start": 31683.42, + "end": 31684.7, + "probability": 0.909 + }, + { + "start": 31685.34, + "end": 31687.52, + "probability": 0.997 + }, + { + "start": 31687.96, + "end": 31690.9, + "probability": 0.9862 + }, + { + "start": 31690.94, + "end": 31691.54, + "probability": 0.8303 + }, + { + "start": 31691.96, + "end": 31695.04, + "probability": 0.998 + }, + { + "start": 31695.92, + "end": 31700.76, + "probability": 0.9883 + }, + { + "start": 31700.76, + "end": 31705.46, + "probability": 0.9775 + }, + { + "start": 31705.58, + "end": 31705.7, + "probability": 0.3019 + }, + { + "start": 31707.64, + "end": 31709.72, + "probability": 0.9116 + }, + { + "start": 31709.92, + "end": 31711.14, + "probability": 0.9922 + }, + { + "start": 31711.26, + "end": 31712.0, + "probability": 0.6238 + }, + { + "start": 31712.02, + "end": 31712.62, + "probability": 0.377 + }, + { + "start": 31713.6, + "end": 31715.58, + "probability": 0.809 + }, + { + "start": 31716.46, + "end": 31718.96, + "probability": 0.9978 + }, + { + "start": 31720.54, + "end": 31722.66, + "probability": 0.902 + }, + { + "start": 31722.86, + "end": 31723.96, + "probability": 0.9427 + }, + { + "start": 31724.64, + "end": 31727.24, + "probability": 0.9969 + }, + { + "start": 31728.42, + "end": 31731.44, + "probability": 0.9744 + }, + { + "start": 31732.44, + "end": 31736.56, + "probability": 0.9875 + }, + { + "start": 31737.6, + "end": 31740.26, + "probability": 0.9971 + }, + { + "start": 31740.82, + "end": 31743.26, + "probability": 0.9939 + }, + { + "start": 31744.1, + "end": 31745.66, + "probability": 0.5627 + }, + { + "start": 31747.1, + "end": 31748.06, + "probability": 0.9355 + }, + { + "start": 31748.68, + "end": 31750.64, + "probability": 0.9973 + }, + { + "start": 31751.4, + "end": 31752.54, + "probability": 0.6246 + }, + { + "start": 31753.1, + "end": 31753.98, + "probability": 0.9571 + }, + { + "start": 31754.04, + "end": 31755.7, + "probability": 0.9714 + }, + { + "start": 31756.1, + "end": 31757.92, + "probability": 0.9937 + }, + { + "start": 31758.78, + "end": 31759.78, + "probability": 0.7615 + }, + { + "start": 31760.3, + "end": 31763.58, + "probability": 0.9725 + }, + { + "start": 31765.7, + "end": 31766.64, + "probability": 0.4922 + }, + { + "start": 31768.36, + "end": 31772.54, + "probability": 0.9986 + }, + { + "start": 31773.14, + "end": 31777.14, + "probability": 0.9948 + }, + { + "start": 31777.14, + "end": 31779.44, + "probability": 0.9992 + }, + { + "start": 31780.46, + "end": 31784.52, + "probability": 0.9954 + }, + { + "start": 31785.64, + "end": 31788.3, + "probability": 0.9982 + }, + { + "start": 31789.12, + "end": 31790.94, + "probability": 0.9695 + }, + { + "start": 31791.12, + "end": 31791.68, + "probability": 0.8218 + }, + { + "start": 31792.06, + "end": 31794.25, + "probability": 0.9412 + }, + { + "start": 31795.22, + "end": 31800.42, + "probability": 0.9955 + }, + { + "start": 31800.52, + "end": 31801.55, + "probability": 0.9479 + }, + { + "start": 31802.22, + "end": 31803.78, + "probability": 0.9845 + }, + { + "start": 31805.18, + "end": 31809.36, + "probability": 0.8554 + }, + { + "start": 31810.72, + "end": 31813.54, + "probability": 0.9583 + }, + { + "start": 31814.46, + "end": 31817.54, + "probability": 0.9491 + }, + { + "start": 31818.1, + "end": 31820.04, + "probability": 0.8867 + }, + { + "start": 31821.34, + "end": 31823.42, + "probability": 0.7816 + }, + { + "start": 31823.68, + "end": 31824.18, + "probability": 0.7939 + }, + { + "start": 31824.3, + "end": 31825.0, + "probability": 0.7737 + }, + { + "start": 31825.06, + "end": 31825.82, + "probability": 0.8433 + }, + { + "start": 31827.6, + "end": 31832.3, + "probability": 0.9791 + }, + { + "start": 31832.9, + "end": 31835.08, + "probability": 0.9385 + }, + { + "start": 31835.82, + "end": 31837.18, + "probability": 0.9575 + }, + { + "start": 31837.88, + "end": 31839.3, + "probability": 0.8468 + }, + { + "start": 31839.96, + "end": 31841.5, + "probability": 0.9736 + }, + { + "start": 31843.06, + "end": 31847.12, + "probability": 0.9673 + }, + { + "start": 31847.64, + "end": 31850.84, + "probability": 0.9823 + }, + { + "start": 31852.04, + "end": 31854.02, + "probability": 0.8812 + }, + { + "start": 31856.1, + "end": 31858.56, + "probability": 0.9795 + }, + { + "start": 31859.9, + "end": 31861.6, + "probability": 0.95 + }, + { + "start": 31862.56, + "end": 31866.96, + "probability": 0.9946 + }, + { + "start": 31866.96, + "end": 31869.26, + "probability": 0.996 + }, + { + "start": 31870.46, + "end": 31871.3, + "probability": 0.9944 + }, + { + "start": 31872.24, + "end": 31875.7, + "probability": 0.9994 + }, + { + "start": 31876.46, + "end": 31878.92, + "probability": 0.998 + }, + { + "start": 31879.78, + "end": 31882.62, + "probability": 0.6715 + }, + { + "start": 31883.46, + "end": 31887.92, + "probability": 0.9468 + }, + { + "start": 31888.36, + "end": 31889.2, + "probability": 0.9629 + }, + { + "start": 31889.32, + "end": 31890.16, + "probability": 0.6318 + }, + { + "start": 31890.98, + "end": 31893.84, + "probability": 0.971 + }, + { + "start": 31894.24, + "end": 31896.56, + "probability": 0.9358 + }, + { + "start": 31896.98, + "end": 31899.18, + "probability": 0.9601 + }, + { + "start": 31900.1, + "end": 31902.38, + "probability": 0.8661 + }, + { + "start": 31902.46, + "end": 31903.29, + "probability": 0.9662 + }, + { + "start": 31905.86, + "end": 31907.32, + "probability": 0.9019 + }, + { + "start": 31907.5, + "end": 31910.56, + "probability": 0.5583 + }, + { + "start": 31912.1, + "end": 31915.78, + "probability": 0.9847 + }, + { + "start": 31915.78, + "end": 31918.1, + "probability": 0.7087 + }, + { + "start": 31919.02, + "end": 31921.9, + "probability": 0.9888 + }, + { + "start": 31922.94, + "end": 31927.14, + "probability": 0.9902 + }, + { + "start": 31927.28, + "end": 31931.48, + "probability": 0.8865 + }, + { + "start": 31931.66, + "end": 31931.68, + "probability": 0.8394 + }, + { + "start": 31932.54, + "end": 31933.38, + "probability": 0.573 + }, + { + "start": 31933.38, + "end": 31933.6, + "probability": 0.3406 + }, + { + "start": 31934.02, + "end": 31936.18, + "probability": 0.9685 + }, + { + "start": 31936.62, + "end": 31937.48, + "probability": 0.9722 + }, + { + "start": 31937.8, + "end": 31938.9, + "probability": 0.9167 + }, + { + "start": 31940.22, + "end": 31943.38, + "probability": 0.8791 + }, + { + "start": 31943.96, + "end": 31947.46, + "probability": 0.9896 + }, + { + "start": 31948.16, + "end": 31952.96, + "probability": 0.9836 + }, + { + "start": 31953.4, + "end": 31954.7, + "probability": 0.7359 + }, + { + "start": 31956.06, + "end": 31959.76, + "probability": 0.9952 + }, + { + "start": 31961.32, + "end": 31963.72, + "probability": 0.9414 + }, + { + "start": 31964.3, + "end": 31967.3, + "probability": 0.8978 + }, + { + "start": 31969.66, + "end": 31970.2, + "probability": 0.7397 + }, + { + "start": 31970.42, + "end": 31971.1, + "probability": 0.6101 + }, + { + "start": 31971.14, + "end": 31973.5, + "probability": 0.892 + }, + { + "start": 31973.62, + "end": 31976.28, + "probability": 0.9952 + }, + { + "start": 31977.18, + "end": 31978.74, + "probability": 0.9272 + }, + { + "start": 31980.06, + "end": 31980.75, + "probability": 0.9985 + }, + { + "start": 31982.18, + "end": 31983.28, + "probability": 0.8135 + }, + { + "start": 31984.34, + "end": 31986.86, + "probability": 0.9514 + }, + { + "start": 31988.2, + "end": 31992.92, + "probability": 0.6855 + }, + { + "start": 31994.96, + "end": 31999.44, + "probability": 0.969 + }, + { + "start": 32002.54, + "end": 32004.84, + "probability": 0.9207 + }, + { + "start": 32007.16, + "end": 32008.04, + "probability": 0.8971 + }, + { + "start": 32008.66, + "end": 32009.4, + "probability": 0.9493 + }, + { + "start": 32010.7, + "end": 32011.26, + "probability": 0.8415 + }, + { + "start": 32012.06, + "end": 32014.9, + "probability": 0.9916 + }, + { + "start": 32015.9, + "end": 32017.14, + "probability": 0.9713 + }, + { + "start": 32018.52, + "end": 32019.12, + "probability": 0.7946 + }, + { + "start": 32019.18, + "end": 32021.12, + "probability": 0.9596 + }, + { + "start": 32021.12, + "end": 32022.1, + "probability": 0.5475 + }, + { + "start": 32023.3, + "end": 32024.12, + "probability": 0.8017 + }, + { + "start": 32024.18, + "end": 32024.94, + "probability": 0.7191 + }, + { + "start": 32025.12, + "end": 32028.84, + "probability": 0.9764 + }, + { + "start": 32029.44, + "end": 32030.46, + "probability": 0.9603 + }, + { + "start": 32030.52, + "end": 32032.4, + "probability": 0.9946 + }, + { + "start": 32034.12, + "end": 32035.88, + "probability": 0.9836 + }, + { + "start": 32037.04, + "end": 32039.44, + "probability": 0.9431 + }, + { + "start": 32039.5, + "end": 32040.08, + "probability": 0.5078 + }, + { + "start": 32041.08, + "end": 32044.42, + "probability": 0.9907 + }, + { + "start": 32045.36, + "end": 32046.1, + "probability": 0.9158 + }, + { + "start": 32046.9, + "end": 32049.02, + "probability": 0.9971 + }, + { + "start": 32049.92, + "end": 32051.54, + "probability": 0.9731 + }, + { + "start": 32052.38, + "end": 32056.76, + "probability": 0.5678 + }, + { + "start": 32057.1, + "end": 32057.76, + "probability": 0.9441 + }, + { + "start": 32058.96, + "end": 32061.74, + "probability": 0.987 + }, + { + "start": 32061.74, + "end": 32065.6, + "probability": 0.9036 + }, + { + "start": 32066.68, + "end": 32067.32, + "probability": 0.9236 + }, + { + "start": 32068.18, + "end": 32068.94, + "probability": 0.8164 + }, + { + "start": 32070.12, + "end": 32071.6, + "probability": 0.7732 + }, + { + "start": 32072.4, + "end": 32072.72, + "probability": 0.8503 + }, + { + "start": 32073.36, + "end": 32073.72, + "probability": 0.5963 + }, + { + "start": 32073.84, + "end": 32076.2, + "probability": 0.9656 + }, + { + "start": 32076.52, + "end": 32082.2, + "probability": 0.9802 + }, + { + "start": 32083.24, + "end": 32084.4, + "probability": 0.7171 + }, + { + "start": 32084.48, + "end": 32086.32, + "probability": 0.9851 + }, + { + "start": 32086.48, + "end": 32088.48, + "probability": 0.9592 + }, + { + "start": 32089.76, + "end": 32093.38, + "probability": 0.9943 + }, + { + "start": 32094.52, + "end": 32099.02, + "probability": 0.9983 + }, + { + "start": 32100.86, + "end": 32104.46, + "probability": 0.989 + }, + { + "start": 32104.9, + "end": 32107.24, + "probability": 0.998 + }, + { + "start": 32108.2, + "end": 32111.98, + "probability": 0.9684 + }, + { + "start": 32113.6, + "end": 32115.28, + "probability": 0.9595 + }, + { + "start": 32116.22, + "end": 32116.6, + "probability": 0.3948 + }, + { + "start": 32117.84, + "end": 32120.46, + "probability": 0.9671 + }, + { + "start": 32121.06, + "end": 32122.42, + "probability": 0.7308 + }, + { + "start": 32125.72, + "end": 32127.94, + "probability": 0.8754 + }, + { + "start": 32129.2, + "end": 32130.88, + "probability": 0.9832 + }, + { + "start": 32131.76, + "end": 32135.2, + "probability": 0.9917 + }, + { + "start": 32135.76, + "end": 32136.84, + "probability": 0.9315 + }, + { + "start": 32138.38, + "end": 32139.04, + "probability": 0.9625 + }, + { + "start": 32140.16, + "end": 32142.13, + "probability": 0.999 + }, + { + "start": 32142.64, + "end": 32143.68, + "probability": 0.769 + }, + { + "start": 32143.72, + "end": 32144.82, + "probability": 0.9036 + }, + { + "start": 32146.22, + "end": 32148.6, + "probability": 0.9937 + }, + { + "start": 32149.3, + "end": 32151.42, + "probability": 0.9891 + }, + { + "start": 32152.5, + "end": 32155.74, + "probability": 0.9678 + }, + { + "start": 32156.28, + "end": 32159.94, + "probability": 0.9423 + }, + { + "start": 32161.04, + "end": 32164.78, + "probability": 0.9977 + }, + { + "start": 32165.02, + "end": 32165.94, + "probability": 0.9243 + }, + { + "start": 32166.58, + "end": 32167.62, + "probability": 0.8929 + }, + { + "start": 32167.66, + "end": 32168.12, + "probability": 0.8059 + }, + { + "start": 32168.4, + "end": 32169.26, + "probability": 0.7867 + }, + { + "start": 32169.7, + "end": 32171.5, + "probability": 0.7954 + }, + { + "start": 32176.98, + "end": 32178.34, + "probability": 0.6519 + }, + { + "start": 32178.34, + "end": 32178.34, + "probability": 0.0747 + }, + { + "start": 32178.34, + "end": 32178.34, + "probability": 0.0668 + }, + { + "start": 32178.34, + "end": 32178.34, + "probability": 0.12 + }, + { + "start": 32178.34, + "end": 32178.36, + "probability": 0.1067 + }, + { + "start": 32178.36, + "end": 32178.36, + "probability": 0.0078 + }, + { + "start": 32178.36, + "end": 32178.36, + "probability": 0.2941 + }, + { + "start": 32178.36, + "end": 32178.36, + "probability": 0.133 + }, + { + "start": 32178.36, + "end": 32178.44, + "probability": 0.0153 + }, + { + "start": 32189.24, + "end": 32189.48, + "probability": 0.1733 + }, + { + "start": 32189.48, + "end": 32189.48, + "probability": 0.3917 + }, + { + "start": 32189.48, + "end": 32189.48, + "probability": 0.2145 + }, + { + "start": 32189.48, + "end": 32189.72, + "probability": 0.0737 + }, + { + "start": 32189.72, + "end": 32189.86, + "probability": 0.0583 + }, + { + "start": 32189.86, + "end": 32189.93, + "probability": 0.0287 + }, + { + "start": 32190.0, + "end": 32190.02, + "probability": 0.0531 + }, + { + "start": 32207.98, + "end": 32208.26, + "probability": 0.7988 + }, + { + "start": 32210.42, + "end": 32211.39, + "probability": 0.8481 + }, + { + "start": 32226.04, + "end": 32229.4, + "probability": 0.6973 + }, + { + "start": 32230.36, + "end": 32232.78, + "probability": 0.9882 + }, + { + "start": 32233.68, + "end": 32234.18, + "probability": 0.5623 + }, + { + "start": 32235.14, + "end": 32236.7, + "probability": 0.9979 + }, + { + "start": 32237.6, + "end": 32240.64, + "probability": 0.9272 + }, + { + "start": 32241.78, + "end": 32244.42, + "probability": 0.9895 + }, + { + "start": 32246.06, + "end": 32247.42, + "probability": 0.921 + }, + { + "start": 32247.98, + "end": 32251.48, + "probability": 0.9825 + }, + { + "start": 32253.58, + "end": 32257.82, + "probability": 0.9053 + }, + { + "start": 32257.84, + "end": 32260.04, + "probability": 0.986 + }, + { + "start": 32260.06, + "end": 32260.52, + "probability": 0.8593 + }, + { + "start": 32260.58, + "end": 32262.32, + "probability": 0.9946 + }, + { + "start": 32263.36, + "end": 32265.42, + "probability": 0.9739 + }, + { + "start": 32265.54, + "end": 32267.84, + "probability": 0.9501 + }, + { + "start": 32269.42, + "end": 32274.26, + "probability": 0.9927 + }, + { + "start": 32275.5, + "end": 32277.86, + "probability": 0.7533 + }, + { + "start": 32278.52, + "end": 32278.74, + "probability": 0.6343 + }, + { + "start": 32278.9, + "end": 32279.8, + "probability": 0.803 + }, + { + "start": 32280.94, + "end": 32282.12, + "probability": 0.7494 + }, + { + "start": 32282.52, + "end": 32284.62, + "probability": 0.9993 + }, + { + "start": 32284.62, + "end": 32285.62, + "probability": 0.9734 + }, + { + "start": 32285.7, + "end": 32286.56, + "probability": 0.9971 + }, + { + "start": 32287.66, + "end": 32288.98, + "probability": 0.9919 + }, + { + "start": 32289.58, + "end": 32293.58, + "probability": 0.9605 + }, + { + "start": 32293.64, + "end": 32294.88, + "probability": 0.827 + }, + { + "start": 32294.98, + "end": 32295.66, + "probability": 0.5682 + }, + { + "start": 32295.8, + "end": 32296.2, + "probability": 0.7934 + }, + { + "start": 32296.32, + "end": 32298.56, + "probability": 0.9968 + }, + { + "start": 32298.56, + "end": 32301.94, + "probability": 0.975 + }, + { + "start": 32302.82, + "end": 32306.92, + "probability": 0.9924 + }, + { + "start": 32306.92, + "end": 32312.3, + "probability": 0.9968 + }, + { + "start": 32312.7, + "end": 32314.38, + "probability": 0.9279 + }, + { + "start": 32315.64, + "end": 32317.62, + "probability": 0.7998 + }, + { + "start": 32317.76, + "end": 32321.6, + "probability": 0.9858 + }, + { + "start": 32322.1, + "end": 32322.6, + "probability": 0.4998 + }, + { + "start": 32322.84, + "end": 32323.02, + "probability": 0.9827 + }, + { + "start": 32323.58, + "end": 32324.39, + "probability": 0.9946 + }, + { + "start": 32325.66, + "end": 32328.56, + "probability": 0.9948 + }, + { + "start": 32332.14, + "end": 32333.32, + "probability": 0.9437 + }, + { + "start": 32334.02, + "end": 32335.2, + "probability": 0.9837 + }, + { + "start": 32336.04, + "end": 32337.18, + "probability": 0.989 + }, + { + "start": 32337.76, + "end": 32341.36, + "probability": 0.9673 + }, + { + "start": 32341.36, + "end": 32342.28, + "probability": 0.6405 + }, + { + "start": 32342.84, + "end": 32344.32, + "probability": 0.9976 + }, + { + "start": 32344.7, + "end": 32347.38, + "probability": 0.999 + }, + { + "start": 32347.78, + "end": 32348.96, + "probability": 0.8479 + }, + { + "start": 32350.06, + "end": 32351.14, + "probability": 0.9871 + }, + { + "start": 32352.12, + "end": 32352.7, + "probability": 0.8334 + }, + { + "start": 32353.58, + "end": 32354.72, + "probability": 0.9111 + }, + { + "start": 32355.58, + "end": 32360.02, + "probability": 0.993 + }, + { + "start": 32360.74, + "end": 32361.45, + "probability": 0.9246 + }, + { + "start": 32361.64, + "end": 32363.28, + "probability": 0.8164 + }, + { + "start": 32363.34, + "end": 32366.28, + "probability": 0.9352 + }, + { + "start": 32366.4, + "end": 32366.7, + "probability": 0.4911 + }, + { + "start": 32367.86, + "end": 32367.96, + "probability": 0.3866 + }, + { + "start": 32368.04, + "end": 32372.18, + "probability": 0.9964 + }, + { + "start": 32373.38, + "end": 32376.28, + "probability": 0.9084 + }, + { + "start": 32376.58, + "end": 32379.72, + "probability": 0.9553 + }, + { + "start": 32379.72, + "end": 32382.08, + "probability": 0.999 + }, + { + "start": 32383.04, + "end": 32384.5, + "probability": 0.6834 + }, + { + "start": 32385.28, + "end": 32386.7, + "probability": 0.9401 + }, + { + "start": 32386.74, + "end": 32389.38, + "probability": 0.9511 + }, + { + "start": 32389.4, + "end": 32390.38, + "probability": 0.9067 + }, + { + "start": 32390.42, + "end": 32392.64, + "probability": 0.9128 + }, + { + "start": 32392.98, + "end": 32393.76, + "probability": 0.7225 + }, + { + "start": 32393.9, + "end": 32395.12, + "probability": 0.9927 + }, + { + "start": 32395.96, + "end": 32398.8, + "probability": 0.9955 + }, + { + "start": 32399.4, + "end": 32404.14, + "probability": 0.9976 + }, + { + "start": 32404.6, + "end": 32406.02, + "probability": 0.9983 + }, + { + "start": 32407.46, + "end": 32407.88, + "probability": 0.4284 + }, + { + "start": 32408.54, + "end": 32409.38, + "probability": 0.9942 + }, + { + "start": 32409.98, + "end": 32413.78, + "probability": 0.9458 + }, + { + "start": 32413.78, + "end": 32414.44, + "probability": 0.763 + }, + { + "start": 32414.6, + "end": 32415.5, + "probability": 0.9646 + }, + { + "start": 32415.68, + "end": 32416.94, + "probability": 0.9235 + }, + { + "start": 32417.5, + "end": 32420.4, + "probability": 0.9668 + }, + { + "start": 32420.4, + "end": 32422.46, + "probability": 0.9785 + }, + { + "start": 32423.08, + "end": 32423.86, + "probability": 0.6002 + }, + { + "start": 32424.26, + "end": 32426.18, + "probability": 0.9906 + }, + { + "start": 32426.4, + "end": 32426.66, + "probability": 0.7373 + }, + { + "start": 32426.7, + "end": 32427.34, + "probability": 0.9183 + }, + { + "start": 32427.62, + "end": 32428.16, + "probability": 0.8353 + }, + { + "start": 32428.48, + "end": 32430.34, + "probability": 0.9562 + }, + { + "start": 32430.94, + "end": 32431.36, + "probability": 0.7865 + }, + { + "start": 32431.74, + "end": 32432.46, + "probability": 0.5019 + }, + { + "start": 32432.48, + "end": 32434.18, + "probability": 0.8825 + }, + { + "start": 32434.2, + "end": 32435.0, + "probability": 0.97 + }, + { + "start": 32435.04, + "end": 32435.54, + "probability": 0.8587 + }, + { + "start": 32435.92, + "end": 32438.83, + "probability": 0.9895 + }, + { + "start": 32439.2, + "end": 32440.0, + "probability": 0.8892 + }, + { + "start": 32440.96, + "end": 32444.22, + "probability": 0.8761 + }, + { + "start": 32444.34, + "end": 32445.72, + "probability": 0.7966 + }, + { + "start": 32446.54, + "end": 32447.72, + "probability": 0.8928 + }, + { + "start": 32447.78, + "end": 32448.38, + "probability": 0.9589 + }, + { + "start": 32448.54, + "end": 32450.04, + "probability": 0.9203 + }, + { + "start": 32450.5, + "end": 32453.52, + "probability": 0.9623 + }, + { + "start": 32453.92, + "end": 32455.84, + "probability": 0.9454 + }, + { + "start": 32456.12, + "end": 32458.48, + "probability": 0.9809 + }, + { + "start": 32458.5, + "end": 32460.04, + "probability": 0.9716 + }, + { + "start": 32460.78, + "end": 32461.74, + "probability": 0.7646 + }, + { + "start": 32462.06, + "end": 32462.8, + "probability": 0.8467 + }, + { + "start": 32463.48, + "end": 32467.38, + "probability": 0.923 + }, + { + "start": 32467.44, + "end": 32470.7, + "probability": 0.9826 + }, + { + "start": 32471.32, + "end": 32472.24, + "probability": 0.8898 + }, + { + "start": 32472.48, + "end": 32474.9, + "probability": 0.9921 + }, + { + "start": 32475.26, + "end": 32478.3, + "probability": 0.9935 + }, + { + "start": 32479.5, + "end": 32484.12, + "probability": 0.9857 + }, + { + "start": 32485.18, + "end": 32488.06, + "probability": 0.9256 + }, + { + "start": 32488.78, + "end": 32490.22, + "probability": 0.6734 + }, + { + "start": 32491.12, + "end": 32493.32, + "probability": 0.9863 + }, + { + "start": 32494.88, + "end": 32496.72, + "probability": 0.9961 + }, + { + "start": 32497.52, + "end": 32501.62, + "probability": 0.7755 + }, + { + "start": 32501.76, + "end": 32503.3, + "probability": 0.8558 + }, + { + "start": 32505.1, + "end": 32507.52, + "probability": 0.9944 + }, + { + "start": 32507.58, + "end": 32509.54, + "probability": 0.8991 + }, + { + "start": 32509.6, + "end": 32511.28, + "probability": 0.9312 + }, + { + "start": 32511.72, + "end": 32516.72, + "probability": 0.954 + }, + { + "start": 32516.72, + "end": 32518.74, + "probability": 0.9916 + }, + { + "start": 32518.8, + "end": 32520.28, + "probability": 0.8382 + }, + { + "start": 32521.16, + "end": 32523.16, + "probability": 0.9526 + }, + { + "start": 32524.16, + "end": 32525.5, + "probability": 0.9956 + }, + { + "start": 32526.48, + "end": 32526.74, + "probability": 0.6521 + }, + { + "start": 32526.78, + "end": 32528.54, + "probability": 0.8903 + }, + { + "start": 32528.64, + "end": 32532.37, + "probability": 0.9247 + }, + { + "start": 32533.22, + "end": 32537.42, + "probability": 0.7878 + }, + { + "start": 32537.68, + "end": 32539.0, + "probability": 0.9454 + }, + { + "start": 32539.32, + "end": 32539.88, + "probability": 0.5803 + }, + { + "start": 32541.08, + "end": 32545.44, + "probability": 0.9968 + }, + { + "start": 32545.52, + "end": 32546.74, + "probability": 0.9973 + }, + { + "start": 32546.86, + "end": 32548.2, + "probability": 0.9904 + }, + { + "start": 32549.28, + "end": 32551.1, + "probability": 0.9837 + }, + { + "start": 32551.72, + "end": 32553.72, + "probability": 0.9969 + }, + { + "start": 32554.5, + "end": 32555.46, + "probability": 0.9484 + }, + { + "start": 32556.86, + "end": 32558.76, + "probability": 0.9968 + }, + { + "start": 32559.4, + "end": 32561.2, + "probability": 0.9985 + }, + { + "start": 32561.6, + "end": 32564.96, + "probability": 0.7128 + }, + { + "start": 32565.58, + "end": 32566.1, + "probability": 0.6206 + }, + { + "start": 32566.26, + "end": 32568.2, + "probability": 0.8181 + }, + { + "start": 32568.22, + "end": 32569.68, + "probability": 0.8729 + }, + { + "start": 32570.1, + "end": 32570.52, + "probability": 0.8631 + }, + { + "start": 32570.6, + "end": 32571.54, + "probability": 0.7363 + }, + { + "start": 32572.02, + "end": 32572.08, + "probability": 0.2423 + }, + { + "start": 32572.08, + "end": 32572.08, + "probability": 0.0356 + }, + { + "start": 32572.08, + "end": 32575.26, + "probability": 0.8833 + }, + { + "start": 32575.32, + "end": 32578.5, + "probability": 0.9204 + }, + { + "start": 32578.68, + "end": 32579.2, + "probability": 0.7222 + }, + { + "start": 32580.12, + "end": 32581.19, + "probability": 0.3605 + }, + { + "start": 32581.3, + "end": 32581.84, + "probability": 0.6879 + }, + { + "start": 32581.96, + "end": 32585.5, + "probability": 0.9777 + }, + { + "start": 32585.84, + "end": 32586.46, + "probability": 0.7861 + }, + { + "start": 32586.8, + "end": 32587.98, + "probability": 0.952 + }, + { + "start": 32588.08, + "end": 32591.82, + "probability": 0.9909 + }, + { + "start": 32592.38, + "end": 32594.57, + "probability": 0.9927 + }, + { + "start": 32594.94, + "end": 32596.34, + "probability": 0.9469 + }, + { + "start": 32597.18, + "end": 32601.4, + "probability": 0.9874 + }, + { + "start": 32601.48, + "end": 32601.6, + "probability": 0.4288 + }, + { + "start": 32601.68, + "end": 32605.04, + "probability": 0.8282 + }, + { + "start": 32605.5, + "end": 32609.0, + "probability": 0.9606 + }, + { + "start": 32609.12, + "end": 32610.36, + "probability": 0.9767 + }, + { + "start": 32610.42, + "end": 32611.06, + "probability": 0.9873 + }, + { + "start": 32611.12, + "end": 32611.58, + "probability": 0.9283 + }, + { + "start": 32611.66, + "end": 32612.42, + "probability": 0.784 + }, + { + "start": 32613.8, + "end": 32615.12, + "probability": 0.8672 + }, + { + "start": 32616.56, + "end": 32617.66, + "probability": 0.9964 + }, + { + "start": 32620.98, + "end": 32622.8, + "probability": 0.9977 + }, + { + "start": 32622.84, + "end": 32625.94, + "probability": 0.9848 + }, + { + "start": 32625.94, + "end": 32628.2, + "probability": 0.7637 + }, + { + "start": 32630.4, + "end": 32632.42, + "probability": 0.9712 + }, + { + "start": 32633.04, + "end": 32635.54, + "probability": 0.9974 + }, + { + "start": 32635.54, + "end": 32637.64, + "probability": 0.998 + }, + { + "start": 32638.04, + "end": 32638.97, + "probability": 0.6627 + }, + { + "start": 32639.4, + "end": 32640.89, + "probability": 0.7888 + }, + { + "start": 32641.36, + "end": 32643.38, + "probability": 0.8798 + }, + { + "start": 32644.24, + "end": 32646.66, + "probability": 0.9923 + }, + { + "start": 32648.24, + "end": 32651.98, + "probability": 0.9922 + }, + { + "start": 32652.04, + "end": 32653.8, + "probability": 0.9749 + }, + { + "start": 32655.66, + "end": 32658.22, + "probability": 0.9719 + }, + { + "start": 32659.6, + "end": 32660.52, + "probability": 0.722 + }, + { + "start": 32661.98, + "end": 32664.47, + "probability": 0.9971 + }, + { + "start": 32665.16, + "end": 32670.34, + "probability": 0.9956 + }, + { + "start": 32670.78, + "end": 32673.2, + "probability": 0.9774 + }, + { + "start": 32674.26, + "end": 32676.34, + "probability": 0.9889 + }, + { + "start": 32676.62, + "end": 32679.94, + "probability": 0.9871 + }, + { + "start": 32680.08, + "end": 32682.74, + "probability": 0.9873 + }, + { + "start": 32683.42, + "end": 32687.5, + "probability": 0.999 + }, + { + "start": 32687.64, + "end": 32690.66, + "probability": 0.9943 + }, + { + "start": 32690.74, + "end": 32693.44, + "probability": 0.9813 + }, + { + "start": 32694.94, + "end": 32699.62, + "probability": 0.9935 + }, + { + "start": 32700.84, + "end": 32703.1, + "probability": 0.9995 + }, + { + "start": 32703.64, + "end": 32704.28, + "probability": 0.8682 + }, + { + "start": 32706.36, + "end": 32711.3, + "probability": 0.9863 + }, + { + "start": 32712.02, + "end": 32715.12, + "probability": 0.9956 + }, + { + "start": 32716.18, + "end": 32721.56, + "probability": 0.9953 + }, + { + "start": 32722.12, + "end": 32723.1, + "probability": 0.7775 + }, + { + "start": 32723.36, + "end": 32724.36, + "probability": 0.9484 + }, + { + "start": 32724.42, + "end": 32725.02, + "probability": 0.8621 + }, + { + "start": 32725.14, + "end": 32728.38, + "probability": 0.9417 + }, + { + "start": 32728.38, + "end": 32732.62, + "probability": 0.9879 + }, + { + "start": 32732.62, + "end": 32736.06, + "probability": 0.999 + }, + { + "start": 32736.14, + "end": 32738.34, + "probability": 0.9805 + }, + { + "start": 32739.58, + "end": 32744.94, + "probability": 0.985 + }, + { + "start": 32745.3, + "end": 32746.86, + "probability": 0.7345 + }, + { + "start": 32747.5, + "end": 32749.04, + "probability": 0.9979 + }, + { + "start": 32749.04, + "end": 32752.54, + "probability": 0.9961 + }, + { + "start": 32753.1, + "end": 32755.66, + "probability": 0.988 + }, + { + "start": 32756.66, + "end": 32760.76, + "probability": 0.995 + }, + { + "start": 32761.86, + "end": 32763.88, + "probability": 0.9152 + }, + { + "start": 32764.98, + "end": 32766.4, + "probability": 0.7647 + }, + { + "start": 32767.38, + "end": 32769.74, + "probability": 0.995 + }, + { + "start": 32770.74, + "end": 32772.32, + "probability": 0.9888 + }, + { + "start": 32772.46, + "end": 32773.72, + "probability": 0.9045 + }, + { + "start": 32774.04, + "end": 32775.58, + "probability": 0.9692 + }, + { + "start": 32776.2, + "end": 32779.22, + "probability": 0.9822 + }, + { + "start": 32780.06, + "end": 32782.32, + "probability": 0.9902 + }, + { + "start": 32782.62, + "end": 32784.82, + "probability": 0.9814 + }, + { + "start": 32785.18, + "end": 32789.26, + "probability": 0.9854 + }, + { + "start": 32789.74, + "end": 32790.48, + "probability": 0.9337 + }, + { + "start": 32791.78, + "end": 32793.62, + "probability": 0.9811 + }, + { + "start": 32794.62, + "end": 32796.88, + "probability": 0.9762 + }, + { + "start": 32798.26, + "end": 32801.8, + "probability": 0.998 + }, + { + "start": 32801.86, + "end": 32802.7, + "probability": 0.9307 + }, + { + "start": 32803.54, + "end": 32806.0, + "probability": 0.9985 + }, + { + "start": 32806.66, + "end": 32809.6, + "probability": 0.9961 + }, + { + "start": 32810.62, + "end": 32811.7, + "probability": 0.8542 + }, + { + "start": 32812.48, + "end": 32814.0, + "probability": 0.8897 + }, + { + "start": 32814.94, + "end": 32816.1, + "probability": 0.7769 + }, + { + "start": 32816.64, + "end": 32821.54, + "probability": 0.9945 + }, + { + "start": 32822.74, + "end": 32823.46, + "probability": 0.9108 + }, + { + "start": 32823.92, + "end": 32824.46, + "probability": 0.8834 + }, + { + "start": 32824.48, + "end": 32828.02, + "probability": 0.9961 + }, + { + "start": 32828.12, + "end": 32829.89, + "probability": 0.9698 + }, + { + "start": 32830.3, + "end": 32831.8, + "probability": 0.8637 + }, + { + "start": 32832.1, + "end": 32832.4, + "probability": 0.7388 + }, + { + "start": 32833.54, + "end": 32834.34, + "probability": 0.6306 + }, + { + "start": 32834.4, + "end": 32836.32, + "probability": 0.925 + }, + { + "start": 32854.08, + "end": 32855.44, + "probability": 0.8138 + }, + { + "start": 32856.48, + "end": 32858.2, + "probability": 0.0332 + }, + { + "start": 32866.16, + "end": 32866.5, + "probability": 0.0139 + }, + { + "start": 32866.5, + "end": 32867.84, + "probability": 0.5857 + }, + { + "start": 32874.5, + "end": 32874.5, + "probability": 0.0272 + }, + { + "start": 32874.5, + "end": 32875.7, + "probability": 0.6508 + }, + { + "start": 32877.2, + "end": 32877.62, + "probability": 0.786 + }, + { + "start": 32878.08, + "end": 32878.29, + "probability": 0.0161 + }, + { + "start": 32881.98, + "end": 32883.4, + "probability": 0.1813 + }, + { + "start": 32883.66, + "end": 32886.37, + "probability": 0.8071 + }, + { + "start": 32888.02, + "end": 32888.02, + "probability": 0.0117 + }, + { + "start": 32888.02, + "end": 32888.52, + "probability": 0.4229 + }, + { + "start": 32888.92, + "end": 32890.2, + "probability": 0.9845 + }, + { + "start": 32892.92, + "end": 32895.1, + "probability": 0.748 + }, + { + "start": 32897.93, + "end": 32903.64, + "probability": 0.9611 + }, + { + "start": 32904.1, + "end": 32904.88, + "probability": 0.9175 + }, + { + "start": 32906.6, + "end": 32909.84, + "probability": 0.9917 + }, + { + "start": 32910.86, + "end": 32911.58, + "probability": 0.7963 + }, + { + "start": 32914.18, + "end": 32920.32, + "probability": 0.9658 + }, + { + "start": 32922.2, + "end": 32923.7, + "probability": 0.8956 + }, + { + "start": 32924.28, + "end": 32926.18, + "probability": 0.9856 + }, + { + "start": 32926.6, + "end": 32928.29, + "probability": 0.9786 + }, + { + "start": 32931.36, + "end": 32937.16, + "probability": 0.9968 + }, + { + "start": 32937.98, + "end": 32940.2, + "probability": 0.9744 + }, + { + "start": 32941.22, + "end": 32946.0, + "probability": 0.9882 + }, + { + "start": 32946.46, + "end": 32946.62, + "probability": 0.6804 + }, + { + "start": 32946.8, + "end": 32947.38, + "probability": 0.6684 + }, + { + "start": 32948.06, + "end": 32949.8, + "probability": 0.998 + }, + { + "start": 32951.1, + "end": 32957.18, + "probability": 0.9188 + }, + { + "start": 32957.92, + "end": 32962.3, + "probability": 0.9741 + }, + { + "start": 32963.24, + "end": 32963.66, + "probability": 0.4943 + }, + { + "start": 32964.54, + "end": 32968.48, + "probability": 0.9601 + }, + { + "start": 32969.5, + "end": 32971.42, + "probability": 0.9463 + }, + { + "start": 32972.3, + "end": 32973.14, + "probability": 0.989 + }, + { + "start": 32974.76, + "end": 32975.38, + "probability": 0.9611 + }, + { + "start": 32976.16, + "end": 32978.22, + "probability": 0.9912 + }, + { + "start": 32979.32, + "end": 32983.6, + "probability": 0.9539 + }, + { + "start": 32984.46, + "end": 32987.08, + "probability": 0.9741 + }, + { + "start": 32989.14, + "end": 32993.16, + "probability": 0.7946 + }, + { + "start": 32993.84, + "end": 32995.64, + "probability": 0.9756 + }, + { + "start": 32998.74, + "end": 32999.93, + "probability": 0.9895 + }, + { + "start": 33001.98, + "end": 33004.66, + "probability": 0.9671 + }, + { + "start": 33005.64, + "end": 33006.54, + "probability": 0.4699 + }, + { + "start": 33007.5, + "end": 33008.3, + "probability": 0.9358 + }, + { + "start": 33010.96, + "end": 33013.06, + "probability": 0.9948 + }, + { + "start": 33014.04, + "end": 33017.68, + "probability": 0.9868 + }, + { + "start": 33019.0, + "end": 33021.48, + "probability": 0.9748 + }, + { + "start": 33023.1, + "end": 33026.08, + "probability": 0.9944 + }, + { + "start": 33027.82, + "end": 33029.92, + "probability": 0.9186 + }, + { + "start": 33031.08, + "end": 33031.34, + "probability": 0.7167 + }, + { + "start": 33032.2, + "end": 33033.82, + "probability": 0.894 + }, + { + "start": 33035.1, + "end": 33040.94, + "probability": 0.9469 + }, + { + "start": 33042.85, + "end": 33045.62, + "probability": 0.9658 + }, + { + "start": 33048.6, + "end": 33052.16, + "probability": 0.8543 + }, + { + "start": 33054.12, + "end": 33054.8, + "probability": 0.8606 + }, + { + "start": 33055.7, + "end": 33058.86, + "probability": 0.9905 + }, + { + "start": 33061.14, + "end": 33062.32, + "probability": 0.9053 + }, + { + "start": 33063.66, + "end": 33071.42, + "probability": 0.9958 + }, + { + "start": 33072.4, + "end": 33078.14, + "probability": 0.9977 + }, + { + "start": 33078.28, + "end": 33078.6, + "probability": 0.7763 + }, + { + "start": 33079.26, + "end": 33080.82, + "probability": 0.9911 + }, + { + "start": 33082.52, + "end": 33083.22, + "probability": 0.6195 + }, + { + "start": 33084.72, + "end": 33085.62, + "probability": 0.9445 + }, + { + "start": 33086.78, + "end": 33087.98, + "probability": 0.9196 + }, + { + "start": 33088.98, + "end": 33093.0, + "probability": 0.8833 + }, + { + "start": 33093.94, + "end": 33095.52, + "probability": 0.9797 + }, + { + "start": 33097.0, + "end": 33099.04, + "probability": 0.969 + }, + { + "start": 33101.1, + "end": 33102.96, + "probability": 0.957 + }, + { + "start": 33104.88, + "end": 33107.36, + "probability": 0.9225 + }, + { + "start": 33108.48, + "end": 33111.16, + "probability": 0.9966 + }, + { + "start": 33111.96, + "end": 33118.98, + "probability": 0.9642 + }, + { + "start": 33119.5, + "end": 33120.66, + "probability": 0.8866 + }, + { + "start": 33121.74, + "end": 33125.5, + "probability": 0.9707 + }, + { + "start": 33126.86, + "end": 33128.64, + "probability": 0.9703 + }, + { + "start": 33129.48, + "end": 33132.36, + "probability": 0.996 + }, + { + "start": 33133.28, + "end": 33137.49, + "probability": 0.9839 + }, + { + "start": 33138.2, + "end": 33142.12, + "probability": 0.958 + }, + { + "start": 33142.78, + "end": 33149.26, + "probability": 0.9459 + }, + { + "start": 33149.38, + "end": 33150.12, + "probability": 0.6663 + }, + { + "start": 33150.78, + "end": 33154.48, + "probability": 0.8836 + }, + { + "start": 33155.32, + "end": 33155.96, + "probability": 0.9725 + }, + { + "start": 33156.84, + "end": 33158.74, + "probability": 0.9949 + }, + { + "start": 33159.54, + "end": 33160.72, + "probability": 0.9417 + }, + { + "start": 33161.52, + "end": 33162.66, + "probability": 0.8088 + }, + { + "start": 33163.46, + "end": 33165.42, + "probability": 0.7055 + }, + { + "start": 33166.64, + "end": 33168.94, + "probability": 0.9374 + }, + { + "start": 33169.8, + "end": 33171.3, + "probability": 0.8766 + }, + { + "start": 33171.96, + "end": 33173.12, + "probability": 0.7229 + }, + { + "start": 33173.2, + "end": 33175.61, + "probability": 0.979 + }, + { + "start": 33176.28, + "end": 33176.74, + "probability": 0.8522 + }, + { + "start": 33177.74, + "end": 33180.08, + "probability": 0.9772 + }, + { + "start": 33181.54, + "end": 33182.32, + "probability": 0.7481 + }, + { + "start": 33182.9, + "end": 33183.62, + "probability": 0.9159 + }, + { + "start": 33184.74, + "end": 33185.48, + "probability": 0.9184 + }, + { + "start": 33191.42, + "end": 33192.02, + "probability": 0.9897 + }, + { + "start": 33193.3, + "end": 33195.62, + "probability": 0.779 + }, + { + "start": 33197.36, + "end": 33198.24, + "probability": 0.9078 + }, + { + "start": 33199.54, + "end": 33201.32, + "probability": 0.8683 + }, + { + "start": 33202.44, + "end": 33204.62, + "probability": 0.9976 + }, + { + "start": 33205.78, + "end": 33211.52, + "probability": 0.9971 + }, + { + "start": 33214.74, + "end": 33217.06, + "probability": 0.9763 + }, + { + "start": 33218.28, + "end": 33220.88, + "probability": 0.949 + }, + { + "start": 33221.82, + "end": 33223.22, + "probability": 0.9533 + }, + { + "start": 33225.52, + "end": 33230.0, + "probability": 0.6692 + }, + { + "start": 33230.64, + "end": 33230.98, + "probability": 0.9259 + }, + { + "start": 33232.6, + "end": 33233.58, + "probability": 0.9902 + }, + { + "start": 33234.6, + "end": 33236.16, + "probability": 0.8923 + }, + { + "start": 33237.1, + "end": 33237.4, + "probability": 0.8889 + }, + { + "start": 33238.7, + "end": 33242.24, + "probability": 0.8182 + }, + { + "start": 33243.32, + "end": 33246.32, + "probability": 0.6501 + }, + { + "start": 33247.02, + "end": 33247.58, + "probability": 0.7996 + }, + { + "start": 33248.12, + "end": 33248.68, + "probability": 0.6445 + }, + { + "start": 33248.8, + "end": 33249.88, + "probability": 0.4968 + }, + { + "start": 33249.88, + "end": 33250.04, + "probability": 0.7798 + }, + { + "start": 33251.2, + "end": 33256.66, + "probability": 0.7703 + }, + { + "start": 33256.68, + "end": 33258.18, + "probability": 0.5692 + }, + { + "start": 33259.8, + "end": 33262.88, + "probability": 0.9552 + }, + { + "start": 33263.08, + "end": 33264.12, + "probability": 0.9322 + }, + { + "start": 33264.6, + "end": 33267.76, + "probability": 0.9941 + }, + { + "start": 33268.18, + "end": 33271.1, + "probability": 0.9579 + }, + { + "start": 33271.84, + "end": 33272.84, + "probability": 0.4884 + }, + { + "start": 33272.9, + "end": 33276.96, + "probability": 0.9963 + }, + { + "start": 33277.88, + "end": 33279.9, + "probability": 0.7969 + }, + { + "start": 33280.28, + "end": 33281.56, + "probability": 0.9927 + }, + { + "start": 33281.64, + "end": 33286.38, + "probability": 0.9788 + }, + { + "start": 33287.26, + "end": 33288.02, + "probability": 0.258 + }, + { + "start": 33288.02, + "end": 33288.02, + "probability": 0.4778 + }, + { + "start": 33288.02, + "end": 33288.08, + "probability": 0.3933 + }, + { + "start": 33288.28, + "end": 33289.45, + "probability": 0.9058 + }, + { + "start": 33290.8, + "end": 33291.0, + "probability": 0.6655 + }, + { + "start": 33291.0, + "end": 33291.34, + "probability": 0.6024 + }, + { + "start": 33291.46, + "end": 33291.98, + "probability": 0.8474 + }, + { + "start": 33292.04, + "end": 33293.2, + "probability": 0.733 + }, + { + "start": 33293.36, + "end": 33294.58, + "probability": 0.9253 + }, + { + "start": 33295.8, + "end": 33297.56, + "probability": 0.4891 + }, + { + "start": 33298.38, + "end": 33299.08, + "probability": 0.4965 + }, + { + "start": 33299.18, + "end": 33300.28, + "probability": 0.4807 + }, + { + "start": 33302.34, + "end": 33305.32, + "probability": 0.9222 + }, + { + "start": 33306.02, + "end": 33308.56, + "probability": 0.7552 + }, + { + "start": 33309.36, + "end": 33310.5, + "probability": 0.7967 + }, + { + "start": 33311.62, + "end": 33313.94, + "probability": 0.6486 + }, + { + "start": 33314.68, + "end": 33315.8, + "probability": 0.6795 + }, + { + "start": 33316.78, + "end": 33318.26, + "probability": 0.7241 + }, + { + "start": 33319.12, + "end": 33319.96, + "probability": 0.743 + }, + { + "start": 33320.72, + "end": 33323.44, + "probability": 0.9842 + }, + { + "start": 33324.9, + "end": 33325.72, + "probability": 0.9673 + }, + { + "start": 33326.84, + "end": 33330.88, + "probability": 0.9741 + }, + { + "start": 33331.98, + "end": 33335.48, + "probability": 0.9688 + }, + { + "start": 33335.52, + "end": 33338.06, + "probability": 0.9982 + }, + { + "start": 33338.94, + "end": 33340.3, + "probability": 0.7967 + }, + { + "start": 33341.48, + "end": 33343.68, + "probability": 0.99 + }, + { + "start": 33344.26, + "end": 33349.1, + "probability": 0.9249 + }, + { + "start": 33350.42, + "end": 33353.4, + "probability": 0.9592 + }, + { + "start": 33356.58, + "end": 33359.08, + "probability": 0.9462 + }, + { + "start": 33360.42, + "end": 33368.8, + "probability": 0.9816 + }, + { + "start": 33370.1, + "end": 33372.06, + "probability": 0.9941 + }, + { + "start": 33373.94, + "end": 33376.72, + "probability": 0.9941 + }, + { + "start": 33376.92, + "end": 33377.52, + "probability": 0.6566 + }, + { + "start": 33379.3, + "end": 33382.16, + "probability": 0.9919 + }, + { + "start": 33382.78, + "end": 33384.08, + "probability": 0.9628 + }, + { + "start": 33386.34, + "end": 33386.92, + "probability": 0.8629 + }, + { + "start": 33388.46, + "end": 33391.56, + "probability": 0.9963 + }, + { + "start": 33393.28, + "end": 33394.82, + "probability": 0.8271 + }, + { + "start": 33394.94, + "end": 33399.24, + "probability": 0.9768 + }, + { + "start": 33400.46, + "end": 33404.6, + "probability": 0.7956 + }, + { + "start": 33404.68, + "end": 33405.8, + "probability": 0.9443 + }, + { + "start": 33406.14, + "end": 33407.1, + "probability": 0.8748 + }, + { + "start": 33407.1, + "end": 33409.21, + "probability": 0.9028 + }, + { + "start": 33411.1, + "end": 33412.62, + "probability": 0.9694 + }, + { + "start": 33413.96, + "end": 33418.98, + "probability": 0.9749 + }, + { + "start": 33419.96, + "end": 33421.04, + "probability": 0.8139 + }, + { + "start": 33421.9, + "end": 33422.9, + "probability": 0.5021 + }, + { + "start": 33423.76, + "end": 33426.18, + "probability": 0.9134 + }, + { + "start": 33427.08, + "end": 33431.4, + "probability": 0.8227 + }, + { + "start": 33432.16, + "end": 33432.62, + "probability": 0.8418 + }, + { + "start": 33433.7, + "end": 33434.4, + "probability": 0.8407 + }, + { + "start": 33434.56, + "end": 33442.06, + "probability": 0.7903 + }, + { + "start": 33442.58, + "end": 33443.74, + "probability": 0.2888 + }, + { + "start": 33444.5, + "end": 33448.94, + "probability": 0.8774 + }, + { + "start": 33451.26, + "end": 33451.8, + "probability": 0.5564 + }, + { + "start": 33451.8, + "end": 33458.22, + "probability": 0.9661 + }, + { + "start": 33459.16, + "end": 33461.9, + "probability": 0.9966 + }, + { + "start": 33462.68, + "end": 33464.28, + "probability": 0.9297 + }, + { + "start": 33465.46, + "end": 33471.38, + "probability": 0.8102 + }, + { + "start": 33472.3, + "end": 33474.52, + "probability": 0.8857 + }, + { + "start": 33474.72, + "end": 33475.58, + "probability": 0.0411 + }, + { + "start": 33476.62, + "end": 33478.32, + "probability": 0.5945 + }, + { + "start": 33479.64, + "end": 33481.84, + "probability": 0.9788 + }, + { + "start": 33482.54, + "end": 33484.88, + "probability": 0.5869 + }, + { + "start": 33485.24, + "end": 33485.24, + "probability": 0.5986 + }, + { + "start": 33485.58, + "end": 33490.56, + "probability": 0.9977 + }, + { + "start": 33491.26, + "end": 33492.16, + "probability": 0.9049 + }, + { + "start": 33492.5, + "end": 33495.29, + "probability": 0.9919 + }, + { + "start": 33495.76, + "end": 33495.86, + "probability": 0.3319 + }, + { + "start": 33495.92, + "end": 33497.22, + "probability": 0.9823 + }, + { + "start": 33497.6, + "end": 33498.78, + "probability": 0.8222 + }, + { + "start": 33499.12, + "end": 33500.56, + "probability": 0.9784 + }, + { + "start": 33501.42, + "end": 33503.7, + "probability": 0.543 + }, + { + "start": 33503.8, + "end": 33505.42, + "probability": 0.9757 + }, + { + "start": 33516.48, + "end": 33516.8, + "probability": 0.4752 + }, + { + "start": 33516.82, + "end": 33517.4, + "probability": 0.5072 + }, + { + "start": 33519.96, + "end": 33520.94, + "probability": 0.7324 + }, + { + "start": 33521.62, + "end": 33522.44, + "probability": 0.8301 + }, + { + "start": 33522.54, + "end": 33523.16, + "probability": 0.8242 + }, + { + "start": 33523.34, + "end": 33525.02, + "probability": 0.9756 + }, + { + "start": 33525.14, + "end": 33525.74, + "probability": 0.3656 + }, + { + "start": 33526.84, + "end": 33527.24, + "probability": 0.7547 + }, + { + "start": 33528.62, + "end": 33531.54, + "probability": 0.9233 + }, + { + "start": 33532.88, + "end": 33533.9, + "probability": 0.9922 + }, + { + "start": 33534.8, + "end": 33537.11, + "probability": 0.9989 + }, + { + "start": 33538.92, + "end": 33542.28, + "probability": 0.9729 + }, + { + "start": 33542.32, + "end": 33543.66, + "probability": 0.6222 + }, + { + "start": 33545.96, + "end": 33551.16, + "probability": 0.9122 + }, + { + "start": 33555.18, + "end": 33558.6, + "probability": 0.9915 + }, + { + "start": 33558.88, + "end": 33559.94, + "probability": 0.6886 + }, + { + "start": 33560.5, + "end": 33561.92, + "probability": 0.957 + }, + { + "start": 33563.44, + "end": 33564.52, + "probability": 0.9837 + }, + { + "start": 33565.46, + "end": 33566.98, + "probability": 0.8332 + }, + { + "start": 33567.06, + "end": 33567.96, + "probability": 0.8979 + }, + { + "start": 33568.06, + "end": 33571.58, + "probability": 0.8951 + }, + { + "start": 33571.92, + "end": 33572.5, + "probability": 0.6861 + }, + { + "start": 33573.44, + "end": 33574.64, + "probability": 0.8244 + }, + { + "start": 33576.12, + "end": 33577.42, + "probability": 0.9691 + }, + { + "start": 33579.48, + "end": 33580.52, + "probability": 0.9507 + }, + { + "start": 33581.38, + "end": 33584.32, + "probability": 0.8153 + }, + { + "start": 33584.84, + "end": 33587.42, + "probability": 0.9866 + }, + { + "start": 33589.0, + "end": 33592.36, + "probability": 0.9878 + }, + { + "start": 33592.72, + "end": 33594.59, + "probability": 0.9097 + }, + { + "start": 33595.86, + "end": 33599.2, + "probability": 0.6799 + }, + { + "start": 33601.98, + "end": 33605.46, + "probability": 0.9384 + }, + { + "start": 33607.84, + "end": 33609.24, + "probability": 0.9973 + }, + { + "start": 33610.18, + "end": 33612.66, + "probability": 0.9976 + }, + { + "start": 33614.62, + "end": 33620.24, + "probability": 0.9875 + }, + { + "start": 33621.3, + "end": 33622.42, + "probability": 0.9939 + }, + { + "start": 33624.76, + "end": 33626.18, + "probability": 0.7822 + }, + { + "start": 33628.54, + "end": 33630.18, + "probability": 0.5429 + }, + { + "start": 33631.98, + "end": 33637.84, + "probability": 0.9069 + }, + { + "start": 33638.5, + "end": 33641.36, + "probability": 0.8573 + }, + { + "start": 33642.86, + "end": 33647.32, + "probability": 0.9917 + }, + { + "start": 33647.86, + "end": 33648.38, + "probability": 0.6736 + }, + { + "start": 33649.2, + "end": 33653.03, + "probability": 0.8908 + }, + { + "start": 33654.72, + "end": 33655.22, + "probability": 0.9818 + }, + { + "start": 33657.46, + "end": 33659.46, + "probability": 0.8953 + }, + { + "start": 33661.04, + "end": 33663.9, + "probability": 0.728 + }, + { + "start": 33664.42, + "end": 33664.56, + "probability": 0.0027 + }, + { + "start": 33665.26, + "end": 33668.74, + "probability": 0.0085 + }, + { + "start": 33668.74, + "end": 33669.3, + "probability": 0.5695 + }, + { + "start": 33669.5, + "end": 33670.16, + "probability": 0.0418 + }, + { + "start": 33670.16, + "end": 33672.08, + "probability": 0.1508 + }, + { + "start": 33672.48, + "end": 33673.04, + "probability": 0.9124 + }, + { + "start": 33675.94, + "end": 33675.94, + "probability": 0.1206 + }, + { + "start": 33675.94, + "end": 33680.86, + "probability": 0.6116 + }, + { + "start": 33681.72, + "end": 33684.64, + "probability": 0.9371 + }, + { + "start": 33684.72, + "end": 33686.08, + "probability": 0.9972 + }, + { + "start": 33689.04, + "end": 33689.46, + "probability": 0.6488 + }, + { + "start": 33691.0, + "end": 33691.59, + "probability": 0.9983 + }, + { + "start": 33693.14, + "end": 33694.04, + "probability": 0.6368 + }, + { + "start": 33696.04, + "end": 33697.04, + "probability": 0.981 + }, + { + "start": 33698.7, + "end": 33698.9, + "probability": 0.4947 + }, + { + "start": 33699.0, + "end": 33701.82, + "probability": 0.9485 + }, + { + "start": 33701.98, + "end": 33702.64, + "probability": 0.9568 + }, + { + "start": 33702.98, + "end": 33707.26, + "probability": 0.871 + }, + { + "start": 33707.38, + "end": 33708.68, + "probability": 0.7991 + }, + { + "start": 33709.92, + "end": 33711.58, + "probability": 0.6125 + }, + { + "start": 33712.38, + "end": 33717.48, + "probability": 0.8682 + }, + { + "start": 33717.62, + "end": 33718.72, + "probability": 0.491 + }, + { + "start": 33718.74, + "end": 33719.32, + "probability": 0.0333 + }, + { + "start": 33719.34, + "end": 33719.34, + "probability": 0.1401 + }, + { + "start": 33719.48, + "end": 33720.48, + "probability": 0.8209 + }, + { + "start": 33721.3, + "end": 33722.78, + "probability": 0.9258 + }, + { + "start": 33724.04, + "end": 33725.04, + "probability": 0.9485 + }, + { + "start": 33725.32, + "end": 33727.76, + "probability": 0.9043 + }, + { + "start": 33729.44, + "end": 33731.82, + "probability": 0.8987 + }, + { + "start": 33732.38, + "end": 33732.72, + "probability": 0.908 + }, + { + "start": 33733.76, + "end": 33734.66, + "probability": 0.945 + }, + { + "start": 33735.44, + "end": 33741.32, + "probability": 0.9485 + }, + { + "start": 33742.0, + "end": 33742.86, + "probability": 0.9398 + }, + { + "start": 33743.78, + "end": 33744.72, + "probability": 0.9395 + }, + { + "start": 33747.74, + "end": 33748.4, + "probability": 0.8764 + }, + { + "start": 33749.88, + "end": 33751.44, + "probability": 0.5512 + }, + { + "start": 33752.38, + "end": 33753.52, + "probability": 0.6866 + }, + { + "start": 33753.86, + "end": 33758.02, + "probability": 0.8159 + }, + { + "start": 33758.1, + "end": 33758.46, + "probability": 0.8577 + }, + { + "start": 33758.8, + "end": 33759.9, + "probability": 0.9515 + }, + { + "start": 33761.0, + "end": 33762.41, + "probability": 0.9784 + }, + { + "start": 33764.32, + "end": 33766.26, + "probability": 0.9021 + }, + { + "start": 33768.16, + "end": 33770.48, + "probability": 0.9977 + }, + { + "start": 33771.44, + "end": 33772.0, + "probability": 0.8474 + }, + { + "start": 33774.56, + "end": 33775.46, + "probability": 0.773 + }, + { + "start": 33775.56, + "end": 33776.92, + "probability": 0.998 + }, + { + "start": 33777.5, + "end": 33779.9, + "probability": 0.998 + }, + { + "start": 33779.96, + "end": 33782.9, + "probability": 0.9608 + }, + { + "start": 33783.68, + "end": 33786.64, + "probability": 0.9182 + }, + { + "start": 33787.22, + "end": 33787.46, + "probability": 0.7591 + }, + { + "start": 33788.2, + "end": 33789.0, + "probability": 0.6554 + }, + { + "start": 33790.04, + "end": 33796.02, + "probability": 0.9685 + }, + { + "start": 33796.06, + "end": 33796.8, + "probability": 0.7303 + }, + { + "start": 33797.24, + "end": 33798.48, + "probability": 0.9946 + }, + { + "start": 33798.66, + "end": 33800.7, + "probability": 0.9476 + }, + { + "start": 33801.46, + "end": 33801.8, + "probability": 0.7829 + }, + { + "start": 33804.08, + "end": 33805.64, + "probability": 0.9979 + }, + { + "start": 33806.4, + "end": 33809.06, + "probability": 0.7517 + }, + { + "start": 33809.88, + "end": 33811.72, + "probability": 0.9888 + }, + { + "start": 33811.86, + "end": 33813.2, + "probability": 0.9229 + }, + { + "start": 33814.18, + "end": 33815.96, + "probability": 0.9779 + }, + { + "start": 33816.94, + "end": 33818.74, + "probability": 0.9958 + }, + { + "start": 33819.28, + "end": 33821.62, + "probability": 0.9969 + }, + { + "start": 33823.18, + "end": 33824.58, + "probability": 0.9839 + }, + { + "start": 33826.74, + "end": 33828.2, + "probability": 0.9036 + }, + { + "start": 33829.84, + "end": 33830.92, + "probability": 0.9685 + }, + { + "start": 33832.94, + "end": 33833.62, + "probability": 0.9784 + }, + { + "start": 33834.5, + "end": 33837.9, + "probability": 0.935 + }, + { + "start": 33839.44, + "end": 33841.02, + "probability": 0.9985 + }, + { + "start": 33842.34, + "end": 33844.62, + "probability": 0.9987 + }, + { + "start": 33846.7, + "end": 33847.84, + "probability": 0.9417 + }, + { + "start": 33851.72, + "end": 33854.02, + "probability": 0.979 + }, + { + "start": 33855.64, + "end": 33861.1, + "probability": 0.9946 + }, + { + "start": 33861.58, + "end": 33863.3, + "probability": 0.9868 + }, + { + "start": 33864.58, + "end": 33865.37, + "probability": 0.9835 + }, + { + "start": 33866.36, + "end": 33866.68, + "probability": 0.7705 + }, + { + "start": 33868.82, + "end": 33871.42, + "probability": 0.9932 + }, + { + "start": 33872.52, + "end": 33873.36, + "probability": 0.9348 + }, + { + "start": 33873.94, + "end": 33874.44, + "probability": 0.9198 + }, + { + "start": 33875.66, + "end": 33877.04, + "probability": 0.9262 + }, + { + "start": 33879.12, + "end": 33880.94, + "probability": 0.9627 + }, + { + "start": 33882.12, + "end": 33883.72, + "probability": 0.9845 + }, + { + "start": 33885.66, + "end": 33889.32, + "probability": 0.9769 + }, + { + "start": 33892.6, + "end": 33895.7, + "probability": 0.9948 + }, + { + "start": 33896.24, + "end": 33897.72, + "probability": 0.8973 + }, + { + "start": 33899.62, + "end": 33900.56, + "probability": 0.9949 + }, + { + "start": 33901.26, + "end": 33901.89, + "probability": 0.7788 + }, + { + "start": 33903.7, + "end": 33909.08, + "probability": 0.9143 + }, + { + "start": 33910.3, + "end": 33911.46, + "probability": 0.505 + }, + { + "start": 33912.76, + "end": 33919.46, + "probability": 0.9063 + }, + { + "start": 33922.18, + "end": 33927.14, + "probability": 0.9877 + }, + { + "start": 33927.22, + "end": 33927.82, + "probability": 0.521 + }, + { + "start": 33928.28, + "end": 33929.12, + "probability": 0.6602 + }, + { + "start": 33929.26, + "end": 33930.02, + "probability": 0.9951 + }, + { + "start": 33931.34, + "end": 33932.8, + "probability": 0.9805 + }, + { + "start": 33933.56, + "end": 33934.26, + "probability": 0.6972 + }, + { + "start": 33937.04, + "end": 33938.1, + "probability": 0.5517 + }, + { + "start": 33938.94, + "end": 33941.62, + "probability": 0.9181 + }, + { + "start": 33942.36, + "end": 33943.2, + "probability": 0.8994 + }, + { + "start": 33944.7, + "end": 33948.02, + "probability": 0.9115 + }, + { + "start": 33948.24, + "end": 33949.42, + "probability": 0.6322 + }, + { + "start": 33950.44, + "end": 33950.64, + "probability": 0.0657 + }, + { + "start": 33950.64, + "end": 33951.4, + "probability": 0.2994 + }, + { + "start": 33951.86, + "end": 33953.0, + "probability": 0.9692 + }, + { + "start": 33953.26, + "end": 33958.3, + "probability": 0.9934 + }, + { + "start": 33959.38, + "end": 33961.18, + "probability": 0.879 + }, + { + "start": 33961.7, + "end": 33963.98, + "probability": 0.9807 + }, + { + "start": 33964.64, + "end": 33965.36, + "probability": 0.8428 + }, + { + "start": 33966.46, + "end": 33970.38, + "probability": 0.9962 + }, + { + "start": 33971.56, + "end": 33974.04, + "probability": 0.8708 + }, + { + "start": 33974.58, + "end": 33975.18, + "probability": 0.9801 + }, + { + "start": 33977.4, + "end": 33978.36, + "probability": 0.9836 + }, + { + "start": 33979.62, + "end": 33981.1, + "probability": 0.958 + }, + { + "start": 33982.58, + "end": 33985.34, + "probability": 0.9849 + }, + { + "start": 33986.42, + "end": 33987.26, + "probability": 0.9702 + }, + { + "start": 33987.58, + "end": 33988.22, + "probability": 0.9307 + }, + { + "start": 33989.46, + "end": 33990.38, + "probability": 0.7769 + }, + { + "start": 33991.4, + "end": 33994.18, + "probability": 0.785 + }, + { + "start": 33994.6, + "end": 33996.25, + "probability": 0.9521 + }, + { + "start": 33997.3, + "end": 34001.18, + "probability": 0.7207 + }, + { + "start": 34001.7, + "end": 34002.4, + "probability": 0.6378 + }, + { + "start": 34003.42, + "end": 34005.14, + "probability": 0.1787 + }, + { + "start": 34005.5, + "end": 34007.0, + "probability": 0.3609 + }, + { + "start": 34007.04, + "end": 34008.12, + "probability": 0.833 + }, + { + "start": 34008.82, + "end": 34009.76, + "probability": 0.558 + }, + { + "start": 34009.82, + "end": 34015.62, + "probability": 0.8228 + }, + { + "start": 34015.66, + "end": 34017.38, + "probability": 0.8875 + }, + { + "start": 34017.82, + "end": 34020.94, + "probability": 0.9972 + }, + { + "start": 34021.02, + "end": 34021.78, + "probability": 0.777 + }, + { + "start": 34022.96, + "end": 34028.94, + "probability": 0.9934 + }, + { + "start": 34029.2, + "end": 34029.2, + "probability": 0.0323 + }, + { + "start": 34030.98, + "end": 34032.54, + "probability": 0.8663 + }, + { + "start": 34032.86, + "end": 34034.82, + "probability": 0.9722 + }, + { + "start": 34035.38, + "end": 34035.78, + "probability": 0.9863 + }, + { + "start": 34036.66, + "end": 34037.12, + "probability": 0.7985 + }, + { + "start": 34041.08, + "end": 34042.28, + "probability": 0.7168 + }, + { + "start": 34043.68, + "end": 34044.96, + "probability": 0.8953 + }, + { + "start": 34047.02, + "end": 34048.96, + "probability": 0.9268 + }, + { + "start": 34051.26, + "end": 34053.96, + "probability": 0.5492 + }, + { + "start": 34055.14, + "end": 34059.12, + "probability": 0.9752 + }, + { + "start": 34061.0, + "end": 34063.26, + "probability": 0.8206 + }, + { + "start": 34064.28, + "end": 34064.92, + "probability": 0.6919 + }, + { + "start": 34067.6, + "end": 34068.96, + "probability": 0.998 + }, + { + "start": 34070.64, + "end": 34074.86, + "probability": 0.9473 + }, + { + "start": 34077.84, + "end": 34079.82, + "probability": 0.9995 + }, + { + "start": 34079.96, + "end": 34082.02, + "probability": 0.8018 + }, + { + "start": 34082.84, + "end": 34083.6, + "probability": 0.0542 + }, + { + "start": 34084.16, + "end": 34085.48, + "probability": 0.9929 + }, + { + "start": 34085.64, + "end": 34089.8, + "probability": 0.6604 + }, + { + "start": 34089.94, + "end": 34090.74, + "probability": 0.6353 + }, + { + "start": 34090.86, + "end": 34091.72, + "probability": 0.9231 + }, + { + "start": 34092.68, + "end": 34098.0, + "probability": 0.9782 + }, + { + "start": 34098.98, + "end": 34100.54, + "probability": 0.9492 + }, + { + "start": 34101.4, + "end": 34106.38, + "probability": 0.9877 + }, + { + "start": 34106.86, + "end": 34107.2, + "probability": 0.8455 + }, + { + "start": 34107.66, + "end": 34110.5, + "probability": 0.7188 + }, + { + "start": 34110.5, + "end": 34111.97, + "probability": 0.6383 + }, + { + "start": 34114.14, + "end": 34114.88, + "probability": 0.5623 + }, + { + "start": 34117.56, + "end": 34119.48, + "probability": 0.8739 + }, + { + "start": 34120.52, + "end": 34120.98, + "probability": 0.2238 + }, + { + "start": 34121.16, + "end": 34121.66, + "probability": 0.0404 + }, + { + "start": 34122.44, + "end": 34122.68, + "probability": 0.8704 + }, + { + "start": 34123.28, + "end": 34124.34, + "probability": 0.6136 + }, + { + "start": 34124.44, + "end": 34127.74, + "probability": 0.7224 + }, + { + "start": 34128.78, + "end": 34132.54, + "probability": 0.8822 + }, + { + "start": 34132.76, + "end": 34134.42, + "probability": 0.2897 + }, + { + "start": 34135.06, + "end": 34135.78, + "probability": 0.7201 + }, + { + "start": 34136.96, + "end": 34138.2, + "probability": 0.9947 + }, + { + "start": 34140.76, + "end": 34141.42, + "probability": 0.6577 + }, + { + "start": 34141.5, + "end": 34142.8, + "probability": 0.9895 + }, + { + "start": 34143.22, + "end": 34144.14, + "probability": 0.9619 + }, + { + "start": 34144.18, + "end": 34146.68, + "probability": 0.7796 + }, + { + "start": 34147.28, + "end": 34149.24, + "probability": 0.2171 + }, + { + "start": 34150.64, + "end": 34152.32, + "probability": 0.1872 + }, + { + "start": 34152.6, + "end": 34154.32, + "probability": 0.7878 + }, + { + "start": 34154.86, + "end": 34156.16, + "probability": 0.4702 + }, + { + "start": 34156.74, + "end": 34158.58, + "probability": 0.5116 + }, + { + "start": 34158.84, + "end": 34164.34, + "probability": 0.9189 + }, + { + "start": 34165.12, + "end": 34167.22, + "probability": 0.5322 + }, + { + "start": 34167.9, + "end": 34169.36, + "probability": 0.7563 + }, + { + "start": 34169.56, + "end": 34171.38, + "probability": 0.9712 + }, + { + "start": 34171.92, + "end": 34172.02, + "probability": 0.1473 + }, + { + "start": 34173.8, + "end": 34174.68, + "probability": 0.6079 + }, + { + "start": 34177.08, + "end": 34179.26, + "probability": 0.9941 + }, + { + "start": 34180.1, + "end": 34182.22, + "probability": 0.834 + }, + { + "start": 34182.28, + "end": 34182.84, + "probability": 0.4791 + }, + { + "start": 34182.92, + "end": 34184.2, + "probability": 0.9951 + }, + { + "start": 34184.2, + "end": 34184.58, + "probability": 0.4433 + }, + { + "start": 34184.6, + "end": 34184.82, + "probability": 0.2788 + }, + { + "start": 34185.68, + "end": 34186.0, + "probability": 0.389 + }, + { + "start": 34186.08, + "end": 34188.57, + "probability": 0.7346 + }, + { + "start": 34191.12, + "end": 34195.2, + "probability": 0.9952 + }, + { + "start": 34195.2, + "end": 34200.22, + "probability": 0.5609 + }, + { + "start": 34200.34, + "end": 34201.52, + "probability": 0.5114 + }, + { + "start": 34202.44, + "end": 34205.8, + "probability": 0.3933 + }, + { + "start": 34206.4, + "end": 34208.9, + "probability": 0.6671 + }, + { + "start": 34210.02, + "end": 34212.14, + "probability": 0.9966 + }, + { + "start": 34213.02, + "end": 34214.46, + "probability": 0.9944 + }, + { + "start": 34215.04, + "end": 34217.2, + "probability": 0.9973 + }, + { + "start": 34219.66, + "end": 34220.76, + "probability": 0.9407 + }, + { + "start": 34221.5, + "end": 34222.13, + "probability": 0.9909 + }, + { + "start": 34223.24, + "end": 34227.98, + "probability": 0.9069 + }, + { + "start": 34228.76, + "end": 34233.86, + "probability": 0.9077 + }, + { + "start": 34234.42, + "end": 34236.3, + "probability": 0.9883 + }, + { + "start": 34236.76, + "end": 34237.5, + "probability": 0.6669 + }, + { + "start": 34238.06, + "end": 34239.62, + "probability": 0.9104 + }, + { + "start": 34241.08, + "end": 34244.14, + "probability": 0.9967 + }, + { + "start": 34246.68, + "end": 34248.02, + "probability": 0.5735 + }, + { + "start": 34248.08, + "end": 34250.06, + "probability": 0.9836 + }, + { + "start": 34251.5, + "end": 34255.74, + "probability": 0.7387 + }, + { + "start": 34257.12, + "end": 34261.58, + "probability": 0.904 + }, + { + "start": 34262.6, + "end": 34263.86, + "probability": 0.8937 + }, + { + "start": 34264.34, + "end": 34265.34, + "probability": 0.9099 + }, + { + "start": 34265.44, + "end": 34266.06, + "probability": 0.5344 + }, + { + "start": 34266.28, + "end": 34268.52, + "probability": 0.6217 + }, + { + "start": 34269.92, + "end": 34272.82, + "probability": 0.71 + }, + { + "start": 34273.96, + "end": 34276.66, + "probability": 0.7433 + }, + { + "start": 34276.68, + "end": 34278.38, + "probability": 0.9797 + }, + { + "start": 34278.56, + "end": 34279.1, + "probability": 0.8326 + }, + { + "start": 34279.4, + "end": 34281.72, + "probability": 0.6848 + }, + { + "start": 34281.78, + "end": 34282.16, + "probability": 0.1433 + }, + { + "start": 34282.16, + "end": 34282.7, + "probability": 0.2582 + }, + { + "start": 34285.6, + "end": 34289.32, + "probability": 0.2458 + }, + { + "start": 34289.86, + "end": 34290.98, + "probability": 0.7341 + }, + { + "start": 34291.2, + "end": 34291.72, + "probability": 0.5028 + }, + { + "start": 34291.78, + "end": 34292.36, + "probability": 0.9875 + }, + { + "start": 34292.56, + "end": 34293.0, + "probability": 0.4549 + }, + { + "start": 34293.54, + "end": 34297.3, + "probability": 0.9515 + }, + { + "start": 34297.3, + "end": 34299.64, + "probability": 0.99 + }, + { + "start": 34299.76, + "end": 34301.14, + "probability": 0.3069 + }, + { + "start": 34301.26, + "end": 34302.2, + "probability": 0.2952 + }, + { + "start": 34302.28, + "end": 34303.04, + "probability": 0.8188 + }, + { + "start": 34303.04, + "end": 34304.5, + "probability": 0.9243 + }, + { + "start": 34304.54, + "end": 34305.88, + "probability": 0.9554 + }, + { + "start": 34308.5, + "end": 34309.16, + "probability": 0.9742 + }, + { + "start": 34309.28, + "end": 34312.26, + "probability": 0.8383 + }, + { + "start": 34312.36, + "end": 34317.74, + "probability": 0.9914 + }, + { + "start": 34317.74, + "end": 34322.54, + "probability": 0.9941 + }, + { + "start": 34323.3, + "end": 34327.28, + "probability": 0.9749 + }, + { + "start": 34327.9, + "end": 34329.5, + "probability": 0.8577 + }, + { + "start": 34330.76, + "end": 34331.1, + "probability": 0.8565 + }, + { + "start": 34331.26, + "end": 34331.89, + "probability": 0.7563 + }, + { + "start": 34332.42, + "end": 34335.64, + "probability": 0.7771 + }, + { + "start": 34336.48, + "end": 34338.38, + "probability": 0.7396 + }, + { + "start": 34339.38, + "end": 34342.04, + "probability": 0.9394 + }, + { + "start": 34342.24, + "end": 34345.24, + "probability": 0.9659 + }, + { + "start": 34345.24, + "end": 34347.7, + "probability": 0.9964 + }, + { + "start": 34348.94, + "end": 34350.08, + "probability": 0.0471 + }, + { + "start": 34350.08, + "end": 34354.8, + "probability": 0.8134 + }, + { + "start": 34355.28, + "end": 34356.38, + "probability": 0.9433 + }, + { + "start": 34356.46, + "end": 34360.8, + "probability": 0.8592 + }, + { + "start": 34361.7, + "end": 34364.26, + "probability": 0.9904 + }, + { + "start": 34364.56, + "end": 34365.74, + "probability": 0.7201 + }, + { + "start": 34366.38, + "end": 34369.84, + "probability": 0.8341 + }, + { + "start": 34370.14, + "end": 34373.18, + "probability": 0.9054 + }, + { + "start": 34373.18, + "end": 34377.94, + "probability": 0.9236 + }, + { + "start": 34378.04, + "end": 34379.56, + "probability": 0.8459 + }, + { + "start": 34379.82, + "end": 34381.02, + "probability": 0.57 + }, + { + "start": 34381.72, + "end": 34382.94, + "probability": 0.8591 + }, + { + "start": 34383.66, + "end": 34385.76, + "probability": 0.7796 + }, + { + "start": 34386.3, + "end": 34387.9, + "probability": 0.7916 + }, + { + "start": 34388.52, + "end": 34391.14, + "probability": 0.9905 + }, + { + "start": 34391.28, + "end": 34395.94, + "probability": 0.9872 + }, + { + "start": 34396.44, + "end": 34397.8, + "probability": 0.8745 + }, + { + "start": 34399.54, + "end": 34402.1, + "probability": 0.9377 + }, + { + "start": 34402.5, + "end": 34403.92, + "probability": 0.7094 + }, + { + "start": 34403.98, + "end": 34404.64, + "probability": 0.4736 + }, + { + "start": 34404.86, + "end": 34406.48, + "probability": 0.8315 + }, + { + "start": 34407.4, + "end": 34410.56, + "probability": 0.9956 + }, + { + "start": 34411.32, + "end": 34415.68, + "probability": 0.7732 + }, + { + "start": 34416.32, + "end": 34420.1, + "probability": 0.9938 + }, + { + "start": 34420.96, + "end": 34423.26, + "probability": 0.9839 + }, + { + "start": 34423.82, + "end": 34425.28, + "probability": 0.7205 + }, + { + "start": 34425.84, + "end": 34428.22, + "probability": 0.9495 + }, + { + "start": 34429.16, + "end": 34429.36, + "probability": 0.1516 + }, + { + "start": 34429.42, + "end": 34434.28, + "probability": 0.9184 + }, + { + "start": 34434.8, + "end": 34435.14, + "probability": 0.2807 + }, + { + "start": 34435.26, + "end": 34436.7, + "probability": 0.5935 + }, + { + "start": 34436.94, + "end": 34439.0, + "probability": 0.9305 + }, + { + "start": 34439.04, + "end": 34440.2, + "probability": 0.9831 + }, + { + "start": 34441.0, + "end": 34442.62, + "probability": 0.9189 + }, + { + "start": 34442.72, + "end": 34444.2, + "probability": 0.959 + }, + { + "start": 34444.64, + "end": 34446.38, + "probability": 0.9825 + }, + { + "start": 34447.02, + "end": 34449.36, + "probability": 0.9323 + }, + { + "start": 34449.82, + "end": 34453.66, + "probability": 0.9692 + }, + { + "start": 34453.98, + "end": 34458.16, + "probability": 0.9708 + }, + { + "start": 34458.24, + "end": 34458.7, + "probability": 0.8266 + }, + { + "start": 34459.04, + "end": 34459.94, + "probability": 0.9434 + }, + { + "start": 34463.76, + "end": 34465.02, + "probability": 0.7887 + }, + { + "start": 34465.4, + "end": 34467.03, + "probability": 0.5137 + }, + { + "start": 34468.38, + "end": 34471.68, + "probability": 0.5954 + }, + { + "start": 34471.8, + "end": 34475.78, + "probability": 0.8242 + }, + { + "start": 34475.82, + "end": 34476.44, + "probability": 0.8011 + }, + { + "start": 34476.44, + "end": 34476.74, + "probability": 0.9158 + }, + { + "start": 34476.74, + "end": 34480.8, + "probability": 0.9321 + }, + { + "start": 34482.15, + "end": 34483.17, + "probability": 0.1618 + }, + { + "start": 34484.34, + "end": 34486.02, + "probability": 0.694 + }, + { + "start": 34487.72, + "end": 34488.88, + "probability": 0.9504 + }, + { + "start": 34489.96, + "end": 34491.66, + "probability": 0.9534 + }, + { + "start": 34492.22, + "end": 34492.92, + "probability": 0.8138 + }, + { + "start": 34493.04, + "end": 34493.8, + "probability": 0.7658 + }, + { + "start": 34494.04, + "end": 34494.12, + "probability": 0.1262 + }, + { + "start": 34494.32, + "end": 34495.34, + "probability": 0.7726 + }, + { + "start": 34495.36, + "end": 34496.38, + "probability": 0.7736 + }, + { + "start": 34497.46, + "end": 34500.06, + "probability": 0.9593 + }, + { + "start": 34501.12, + "end": 34502.36, + "probability": 0.9653 + }, + { + "start": 34503.32, + "end": 34507.58, + "probability": 0.9967 + }, + { + "start": 34508.12, + "end": 34509.08, + "probability": 0.8336 + }, + { + "start": 34509.26, + "end": 34509.96, + "probability": 0.0863 + }, + { + "start": 34510.52, + "end": 34512.1, + "probability": 0.798 + }, + { + "start": 34512.2, + "end": 34512.4, + "probability": 0.6156 + }, + { + "start": 34512.78, + "end": 34513.04, + "probability": 0.6621 + }, + { + "start": 34513.98, + "end": 34517.08, + "probability": 0.8374 + }, + { + "start": 34517.44, + "end": 34521.67, + "probability": 0.931 + }, + { + "start": 34523.9, + "end": 34527.46, + "probability": 0.8536 + }, + { + "start": 34527.6, + "end": 34528.24, + "probability": 0.7794 + }, + { + "start": 34528.9, + "end": 34529.2, + "probability": 0.7886 + }, + { + "start": 34530.18, + "end": 34531.14, + "probability": 0.7683 + }, + { + "start": 34531.22, + "end": 34533.02, + "probability": 0.9304 + }, + { + "start": 34533.1, + "end": 34533.66, + "probability": 0.9509 + }, + { + "start": 34535.34, + "end": 34536.66, + "probability": 0.9963 + }, + { + "start": 34537.0, + "end": 34538.82, + "probability": 0.981 + }, + { + "start": 34538.94, + "end": 34542.04, + "probability": 0.915 + }, + { + "start": 34542.2, + "end": 34544.5, + "probability": 0.8516 + }, + { + "start": 34545.64, + "end": 34548.6, + "probability": 0.9518 + }, + { + "start": 34548.76, + "end": 34551.44, + "probability": 0.9449 + }, + { + "start": 34552.02, + "end": 34554.58, + "probability": 0.9292 + }, + { + "start": 34555.22, + "end": 34556.3, + "probability": 0.8319 + }, + { + "start": 34556.42, + "end": 34561.46, + "probability": 0.8265 + }, + { + "start": 34561.9, + "end": 34562.16, + "probability": 0.3463 + }, + { + "start": 34562.26, + "end": 34568.88, + "probability": 0.979 + }, + { + "start": 34569.96, + "end": 34570.4, + "probability": 0.7951 + }, + { + "start": 34571.32, + "end": 34572.34, + "probability": 0.8519 + }, + { + "start": 34572.7, + "end": 34574.1, + "probability": 0.9368 + }, + { + "start": 34574.42, + "end": 34577.3, + "probability": 0.979 + }, + { + "start": 34578.02, + "end": 34579.94, + "probability": 0.8755 + }, + { + "start": 34580.42, + "end": 34582.84, + "probability": 0.9245 + }, + { + "start": 34584.14, + "end": 34592.08, + "probability": 0.9766 + }, + { + "start": 34592.38, + "end": 34594.68, + "probability": 0.9448 + }, + { + "start": 34594.82, + "end": 34595.08, + "probability": 0.7187 + }, + { + "start": 34595.14, + "end": 34595.24, + "probability": 0.872 + }, + { + "start": 34596.38, + "end": 34598.2, + "probability": 0.9531 + }, + { + "start": 34598.66, + "end": 34601.9, + "probability": 0.5493 + }, + { + "start": 34602.66, + "end": 34603.22, + "probability": 0.5976 + }, + { + "start": 34603.28, + "end": 34604.06, + "probability": 0.6737 + }, + { + "start": 34604.22, + "end": 34604.63, + "probability": 0.8957 + }, + { + "start": 34604.84, + "end": 34607.6, + "probability": 0.9523 + }, + { + "start": 34607.88, + "end": 34609.18, + "probability": 0.9455 + }, + { + "start": 34609.22, + "end": 34609.66, + "probability": 0.8229 + }, + { + "start": 34611.7, + "end": 34612.58, + "probability": 0.4452 + }, + { + "start": 34613.5, + "end": 34615.62, + "probability": 0.8221 + }, + { + "start": 34615.74, + "end": 34618.9, + "probability": 0.9551 + }, + { + "start": 34619.36, + "end": 34621.88, + "probability": 0.8592 + }, + { + "start": 34622.46, + "end": 34623.72, + "probability": 0.9646 + }, + { + "start": 34623.94, + "end": 34624.92, + "probability": 0.6467 + }, + { + "start": 34625.12, + "end": 34626.1, + "probability": 0.672 + }, + { + "start": 34626.52, + "end": 34628.58, + "probability": 0.8286 + }, + { + "start": 34629.02, + "end": 34629.12, + "probability": 0.7437 + }, + { + "start": 34629.78, + "end": 34631.58, + "probability": 0.9819 + }, + { + "start": 34632.3, + "end": 34635.52, + "probability": 0.8303 + }, + { + "start": 34636.2, + "end": 34637.3, + "probability": 0.9818 + }, + { + "start": 34638.18, + "end": 34639.58, + "probability": 0.6716 + }, + { + "start": 34640.22, + "end": 34641.3, + "probability": 0.7882 + }, + { + "start": 34641.74, + "end": 34643.38, + "probability": 0.9663 + }, + { + "start": 34644.2, + "end": 34645.14, + "probability": 0.637 + }, + { + "start": 34646.28, + "end": 34647.42, + "probability": 0.6863 + }, + { + "start": 34647.7, + "end": 34652.68, + "probability": 0.55 + }, + { + "start": 34653.26, + "end": 34653.94, + "probability": 0.798 + }, + { + "start": 34654.5, + "end": 34656.56, + "probability": 0.5553 + }, + { + "start": 34658.12, + "end": 34660.3, + "probability": 0.6631 + }, + { + "start": 34660.3, + "end": 34663.8, + "probability": 0.8507 + }, + { + "start": 34664.4, + "end": 34665.6, + "probability": 0.8857 + }, + { + "start": 34665.8, + "end": 34668.22, + "probability": 0.8135 + }, + { + "start": 34668.9, + "end": 34669.75, + "probability": 0.6288 + }, + { + "start": 34671.04, + "end": 34672.68, + "probability": 0.9721 + }, + { + "start": 34673.22, + "end": 34676.26, + "probability": 0.9272 + }, + { + "start": 34676.32, + "end": 34677.04, + "probability": 0.9062 + }, + { + "start": 34679.2, + "end": 34681.6, + "probability": 0.8123 + }, + { + "start": 34682.34, + "end": 34684.3, + "probability": 0.8429 + }, + { + "start": 34684.42, + "end": 34685.42, + "probability": 0.9968 + }, + { + "start": 34686.1, + "end": 34687.51, + "probability": 0.9287 + }, + { + "start": 34687.8, + "end": 34688.46, + "probability": 0.9698 + }, + { + "start": 34689.12, + "end": 34690.84, + "probability": 0.9373 + }, + { + "start": 34691.38, + "end": 34693.42, + "probability": 0.994 + }, + { + "start": 34693.94, + "end": 34695.7, + "probability": 0.7869 + }, + { + "start": 34696.6, + "end": 34698.24, + "probability": 0.8608 + }, + { + "start": 34698.76, + "end": 34700.62, + "probability": 0.9655 + }, + { + "start": 34700.76, + "end": 34702.62, + "probability": 0.9562 + }, + { + "start": 34703.14, + "end": 34704.68, + "probability": 0.9273 + }, + { + "start": 34705.16, + "end": 34705.92, + "probability": 0.539 + }, + { + "start": 34706.04, + "end": 34708.52, + "probability": 0.8146 + }, + { + "start": 34709.02, + "end": 34710.34, + "probability": 0.8955 + }, + { + "start": 34710.88, + "end": 34710.88, + "probability": 0.3325 + }, + { + "start": 34711.18, + "end": 34711.42, + "probability": 0.8505 + }, + { + "start": 34711.5, + "end": 34715.28, + "probability": 0.9346 + }, + { + "start": 34715.8, + "end": 34717.68, + "probability": 0.8956 + }, + { + "start": 34720.02, + "end": 34721.14, + "probability": 0.6489 + }, + { + "start": 34721.18, + "end": 34723.4, + "probability": 0.932 + }, + { + "start": 34723.86, + "end": 34724.86, + "probability": 0.7375 + }, + { + "start": 34725.52, + "end": 34729.86, + "probability": 0.8474 + }, + { + "start": 34730.3, + "end": 34731.76, + "probability": 0.8769 + }, + { + "start": 34732.14, + "end": 34734.92, + "probability": 0.9805 + }, + { + "start": 34736.0, + "end": 34739.78, + "probability": 0.9965 + }, + { + "start": 34740.26, + "end": 34743.9, + "probability": 0.9803 + }, + { + "start": 34744.76, + "end": 34747.18, + "probability": 0.9946 + }, + { + "start": 34748.52, + "end": 34749.06, + "probability": 0.8494 + }, + { + "start": 34750.28, + "end": 34751.36, + "probability": 0.993 + }, + { + "start": 34751.36, + "end": 34751.96, + "probability": 0.9613 + }, + { + "start": 34752.5, + "end": 34753.9, + "probability": 0.6806 + }, + { + "start": 34755.14, + "end": 34757.08, + "probability": 0.4523 + }, + { + "start": 34758.36, + "end": 34759.96, + "probability": 0.8872 + }, + { + "start": 34760.98, + "end": 34762.86, + "probability": 0.9907 + }, + { + "start": 34763.6, + "end": 34766.44, + "probability": 0.8208 + }, + { + "start": 34766.94, + "end": 34772.22, + "probability": 0.7995 + }, + { + "start": 34772.54, + "end": 34773.42, + "probability": 0.963 + }, + { + "start": 34773.5, + "end": 34774.36, + "probability": 0.7637 + }, + { + "start": 34774.88, + "end": 34776.12, + "probability": 0.9614 + }, + { + "start": 34776.84, + "end": 34781.5, + "probability": 0.9308 + }, + { + "start": 34781.54, + "end": 34782.42, + "probability": 0.9902 + }, + { + "start": 34782.94, + "end": 34783.54, + "probability": 0.6702 + }, + { + "start": 34783.58, + "end": 34783.72, + "probability": 0.8792 + }, + { + "start": 34784.22, + "end": 34784.88, + "probability": 0.9397 + }, + { + "start": 34786.52, + "end": 34786.92, + "probability": 0.7972 + }, + { + "start": 34787.84, + "end": 34789.7, + "probability": 0.9927 + }, + { + "start": 34790.18, + "end": 34791.94, + "probability": 0.9823 + }, + { + "start": 34792.44, + "end": 34794.32, + "probability": 0.6084 + }, + { + "start": 34795.16, + "end": 34796.2, + "probability": 0.3851 + }, + { + "start": 34796.28, + "end": 34796.9, + "probability": 0.882 + }, + { + "start": 34797.1, + "end": 34799.34, + "probability": 0.3029 + }, + { + "start": 34799.34, + "end": 34800.26, + "probability": 0.3109 + }, + { + "start": 34800.54, + "end": 34801.22, + "probability": 0.922 + }, + { + "start": 34801.44, + "end": 34802.14, + "probability": 0.7553 + }, + { + "start": 34802.46, + "end": 34805.38, + "probability": 0.8581 + }, + { + "start": 34805.54, + "end": 34806.58, + "probability": 0.8755 + }, + { + "start": 34807.06, + "end": 34809.26, + "probability": 0.8853 + }, + { + "start": 34809.92, + "end": 34813.9, + "probability": 0.9171 + }, + { + "start": 34814.6, + "end": 34816.24, + "probability": 0.9414 + }, + { + "start": 34816.94, + "end": 34819.44, + "probability": 0.7254 + }, + { + "start": 34820.92, + "end": 34822.94, + "probability": 0.6357 + }, + { + "start": 34823.06, + "end": 34823.66, + "probability": 0.5189 + }, + { + "start": 34823.86, + "end": 34824.56, + "probability": 0.9713 + }, + { + "start": 34824.7, + "end": 34827.37, + "probability": 0.8579 + }, + { + "start": 34828.7, + "end": 34830.38, + "probability": 0.7972 + }, + { + "start": 34831.02, + "end": 34835.14, + "probability": 0.9935 + }, + { + "start": 34835.8, + "end": 34837.44, + "probability": 0.6888 + }, + { + "start": 34837.48, + "end": 34841.66, + "probability": 0.9504 + }, + { + "start": 34842.38, + "end": 34844.54, + "probability": 0.9569 + }, + { + "start": 34846.88, + "end": 34848.28, + "probability": 0.9057 + }, + { + "start": 34848.8, + "end": 34851.68, + "probability": 0.8178 + }, + { + "start": 34853.0, + "end": 34854.6, + "probability": 0.9771 + }, + { + "start": 34855.22, + "end": 34858.3, + "probability": 0.9559 + }, + { + "start": 34858.86, + "end": 34861.34, + "probability": 0.983 + }, + { + "start": 34861.96, + "end": 34863.12, + "probability": 0.8905 + }, + { + "start": 34863.68, + "end": 34866.44, + "probability": 0.9213 + }, + { + "start": 34867.24, + "end": 34868.5, + "probability": 0.9727 + }, + { + "start": 34868.6, + "end": 34871.12, + "probability": 0.7987 + }, + { + "start": 34872.36, + "end": 34874.88, + "probability": 0.7943 + }, + { + "start": 34875.06, + "end": 34876.18, + "probability": 0.7528 + }, + { + "start": 34876.36, + "end": 34878.96, + "probability": 0.9684 + }, + { + "start": 34880.1, + "end": 34881.34, + "probability": 0.9814 + }, + { + "start": 34882.0, + "end": 34883.08, + "probability": 0.9283 + }, + { + "start": 34883.46, + "end": 34885.2, + "probability": 0.9977 + }, + { + "start": 34888.06, + "end": 34888.12, + "probability": 0.0333 + }, + { + "start": 34888.12, + "end": 34888.12, + "probability": 0.2974 + }, + { + "start": 34888.12, + "end": 34889.32, + "probability": 0.63 + }, + { + "start": 34889.44, + "end": 34890.5, + "probability": 0.7109 + }, + { + "start": 34890.6, + "end": 34892.08, + "probability": 0.3696 + }, + { + "start": 34892.5, + "end": 34893.44, + "probability": 0.7586 + }, + { + "start": 34893.52, + "end": 34896.56, + "probability": 0.6888 + }, + { + "start": 34896.92, + "end": 34897.14, + "probability": 0.8304 + }, + { + "start": 34897.2, + "end": 34899.08, + "probability": 0.8809 + }, + { + "start": 34899.34, + "end": 34904.12, + "probability": 0.7792 + }, + { + "start": 34904.62, + "end": 34906.58, + "probability": 0.9956 + }, + { + "start": 34907.34, + "end": 34909.3, + "probability": 0.983 + }, + { + "start": 34909.4, + "end": 34910.85, + "probability": 0.67 + }, + { + "start": 34911.56, + "end": 34912.52, + "probability": 0.5093 + }, + { + "start": 34913.14, + "end": 34915.7, + "probability": 0.8611 + }, + { + "start": 34915.78, + "end": 34916.67, + "probability": 0.9709 + }, + { + "start": 34917.54, + "end": 34918.04, + "probability": 0.9592 + }, + { + "start": 34919.1, + "end": 34921.3, + "probability": 0.7735 + }, + { + "start": 34922.0, + "end": 34924.07, + "probability": 0.3543 + }, + { + "start": 34924.82, + "end": 34926.38, + "probability": 0.3167 + }, + { + "start": 34926.48, + "end": 34929.16, + "probability": 0.8795 + }, + { + "start": 34932.44, + "end": 34934.5, + "probability": 0.929 + }, + { + "start": 34940.14, + "end": 34944.1, + "probability": 0.9966 + }, + { + "start": 34945.66, + "end": 34947.68, + "probability": 0.7991 + }, + { + "start": 34947.7, + "end": 34949.38, + "probability": 0.6604 + }, + { + "start": 34949.5, + "end": 34950.02, + "probability": 0.5686 + }, + { + "start": 34950.66, + "end": 34953.68, + "probability": 0.7461 + }, + { + "start": 34953.86, + "end": 34956.42, + "probability": 0.8256 + }, + { + "start": 34956.44, + "end": 34959.3, + "probability": 0.6912 + }, + { + "start": 34959.94, + "end": 34961.7, + "probability": 0.7984 + }, + { + "start": 34961.92, + "end": 34962.74, + "probability": 0.8763 + }, + { + "start": 34963.46, + "end": 34966.66, + "probability": 0.7842 + }, + { + "start": 34972.72, + "end": 34975.12, + "probability": 0.7056 + }, + { + "start": 34976.02, + "end": 34976.88, + "probability": 0.6943 + }, + { + "start": 34977.72, + "end": 34982.18, + "probability": 0.9644 + }, + { + "start": 34982.38, + "end": 34983.4, + "probability": 0.8588 + }, + { + "start": 34983.58, + "end": 34984.6, + "probability": 0.8779 + }, + { + "start": 34984.76, + "end": 34988.08, + "probability": 0.9774 + }, + { + "start": 34988.18, + "end": 34989.52, + "probability": 0.9487 + }, + { + "start": 34989.6, + "end": 34991.74, + "probability": 0.9932 + }, + { + "start": 34992.6, + "end": 34996.52, + "probability": 0.9448 + }, + { + "start": 34997.12, + "end": 34998.5, + "probability": 0.9214 + }, + { + "start": 34999.22, + "end": 35001.0, + "probability": 0.7371 + }, + { + "start": 35001.28, + "end": 35002.14, + "probability": 0.8787 + }, + { + "start": 35002.26, + "end": 35002.36, + "probability": 0.278 + }, + { + "start": 35003.56, + "end": 35005.42, + "probability": 0.4708 + }, + { + "start": 35006.56, + "end": 35007.74, + "probability": 0.9713 + }, + { + "start": 35008.04, + "end": 35009.1, + "probability": 0.8164 + }, + { + "start": 35009.26, + "end": 35012.76, + "probability": 0.9009 + }, + { + "start": 35012.92, + "end": 35014.3, + "probability": 0.795 + }, + { + "start": 35014.94, + "end": 35019.12, + "probability": 0.7742 + }, + { + "start": 35019.77, + "end": 35021.55, + "probability": 0.8389 + }, + { + "start": 35022.02, + "end": 35023.59, + "probability": 0.9178 + }, + { + "start": 35023.9, + "end": 35025.02, + "probability": 0.8276 + }, + { + "start": 35025.1, + "end": 35026.18, + "probability": 0.6647 + }, + { + "start": 35027.24, + "end": 35030.32, + "probability": 0.8021 + }, + { + "start": 35030.7, + "end": 35033.22, + "probability": 0.9711 + }, + { + "start": 35033.64, + "end": 35035.72, + "probability": 0.9426 + }, + { + "start": 35035.92, + "end": 35037.02, + "probability": 0.8521 + }, + { + "start": 35037.82, + "end": 35039.34, + "probability": 0.9004 + }, + { + "start": 35040.32, + "end": 35042.88, + "probability": 0.9664 + }, + { + "start": 35043.02, + "end": 35043.84, + "probability": 0.7498 + }, + { + "start": 35043.86, + "end": 35044.66, + "probability": 0.8398 + }, + { + "start": 35045.14, + "end": 35046.56, + "probability": 0.9854 + }, + { + "start": 35047.06, + "end": 35050.22, + "probability": 0.9534 + }, + { + "start": 35050.72, + "end": 35051.54, + "probability": 0.9443 + }, + { + "start": 35051.66, + "end": 35052.5, + "probability": 0.959 + }, + { + "start": 35053.14, + "end": 35056.1, + "probability": 0.9507 + }, + { + "start": 35056.92, + "end": 35059.25, + "probability": 0.8339 + }, + { + "start": 35059.94, + "end": 35061.0, + "probability": 0.4638 + }, + { + "start": 35061.48, + "end": 35066.42, + "probability": 0.6739 + }, + { + "start": 35067.04, + "end": 35067.98, + "probability": 0.8508 + }, + { + "start": 35068.1, + "end": 35070.24, + "probability": 0.7119 + }, + { + "start": 35070.24, + "end": 35073.76, + "probability": 0.7488 + }, + { + "start": 35074.18, + "end": 35077.4, + "probability": 0.8626 + }, + { + "start": 35077.54, + "end": 35077.9, + "probability": 0.7687 + }, + { + "start": 35078.18, + "end": 35078.44, + "probability": 0.9303 + }, + { + "start": 35079.56, + "end": 35080.44, + "probability": 0.7301 + }, + { + "start": 35081.62, + "end": 35083.96, + "probability": 0.9447 + }, + { + "start": 35086.44, + "end": 35088.12, + "probability": 0.7524 + }, + { + "start": 35088.76, + "end": 35091.4, + "probability": 0.9681 + }, + { + "start": 35091.66, + "end": 35092.5, + "probability": 0.7886 + }, + { + "start": 35093.72, + "end": 35094.24, + "probability": 0.8993 + }, + { + "start": 35103.64, + "end": 35105.84, + "probability": 0.7896 + }, + { + "start": 35107.02, + "end": 35112.54, + "probability": 0.9197 + }, + { + "start": 35113.5, + "end": 35116.3, + "probability": 0.9521 + }, + { + "start": 35116.96, + "end": 35118.9, + "probability": 0.9966 + }, + { + "start": 35119.9, + "end": 35120.34, + "probability": 0.6349 + }, + { + "start": 35120.78, + "end": 35123.94, + "probability": 0.9346 + }, + { + "start": 35124.96, + "end": 35126.86, + "probability": 0.9664 + }, + { + "start": 35128.62, + "end": 35128.82, + "probability": 0.4474 + }, + { + "start": 35128.82, + "end": 35132.38, + "probability": 0.8461 + }, + { + "start": 35134.69, + "end": 35139.22, + "probability": 0.8389 + }, + { + "start": 35139.98, + "end": 35142.18, + "probability": 0.8655 + }, + { + "start": 35142.8, + "end": 35144.12, + "probability": 0.8177 + }, + { + "start": 35144.56, + "end": 35147.08, + "probability": 0.9578 + }, + { + "start": 35147.3, + "end": 35150.42, + "probability": 0.9517 + }, + { + "start": 35151.46, + "end": 35153.46, + "probability": 0.995 + }, + { + "start": 35154.46, + "end": 35156.54, + "probability": 0.9669 + }, + { + "start": 35157.3, + "end": 35157.87, + "probability": 0.8179 + }, + { + "start": 35158.86, + "end": 35159.48, + "probability": 0.6623 + }, + { + "start": 35160.04, + "end": 35161.6, + "probability": 0.9764 + }, + { + "start": 35162.58, + "end": 35164.72, + "probability": 0.8669 + }, + { + "start": 35165.78, + "end": 35167.46, + "probability": 0.857 + }, + { + "start": 35168.52, + "end": 35170.28, + "probability": 0.9823 + }, + { + "start": 35171.52, + "end": 35174.08, + "probability": 0.8586 + }, + { + "start": 35175.66, + "end": 35179.78, + "probability": 0.9082 + }, + { + "start": 35180.92, + "end": 35183.0, + "probability": 0.918 + }, + { + "start": 35183.12, + "end": 35185.22, + "probability": 0.5392 + }, + { + "start": 35186.5, + "end": 35189.12, + "probability": 0.9756 + }, + { + "start": 35189.28, + "end": 35191.92, + "probability": 0.9937 + }, + { + "start": 35192.72, + "end": 35194.56, + "probability": 0.9679 + }, + { + "start": 35195.78, + "end": 35199.3, + "probability": 0.9799 + }, + { + "start": 35200.52, + "end": 35203.2, + "probability": 0.9862 + }, + { + "start": 35204.12, + "end": 35206.24, + "probability": 0.8621 + }, + { + "start": 35207.58, + "end": 35212.4, + "probability": 0.8285 + }, + { + "start": 35212.56, + "end": 35213.34, + "probability": 0.774 + }, + { + "start": 35213.44, + "end": 35215.02, + "probability": 0.8228 + }, + { + "start": 35215.34, + "end": 35216.88, + "probability": 0.8984 + }, + { + "start": 35218.6, + "end": 35219.16, + "probability": 0.75 + }, + { + "start": 35220.52, + "end": 35222.4, + "probability": 0.9648 + }, + { + "start": 35223.86, + "end": 35226.28, + "probability": 0.9856 + }, + { + "start": 35227.06, + "end": 35234.26, + "probability": 0.9924 + }, + { + "start": 35235.14, + "end": 35239.46, + "probability": 0.9617 + }, + { + "start": 35240.82, + "end": 35242.92, + "probability": 0.8697 + }, + { + "start": 35243.46, + "end": 35244.92, + "probability": 0.869 + }, + { + "start": 35246.66, + "end": 35249.4, + "probability": 0.7983 + }, + { + "start": 35249.92, + "end": 35253.4, + "probability": 0.9818 + }, + { + "start": 35253.4, + "end": 35256.76, + "probability": 0.9746 + }, + { + "start": 35258.08, + "end": 35259.85, + "probability": 0.9868 + }, + { + "start": 35261.04, + "end": 35262.86, + "probability": 0.991 + }, + { + "start": 35263.98, + "end": 35265.14, + "probability": 0.6174 + }, + { + "start": 35265.94, + "end": 35267.72, + "probability": 0.9027 + }, + { + "start": 35269.12, + "end": 35271.06, + "probability": 0.8538 + }, + { + "start": 35272.96, + "end": 35274.54, + "probability": 0.9907 + }, + { + "start": 35275.44, + "end": 35279.02, + "probability": 0.8545 + }, + { + "start": 35279.14, + "end": 35282.44, + "probability": 0.2244 + }, + { + "start": 35283.36, + "end": 35283.36, + "probability": 0.0851 + }, + { + "start": 35283.36, + "end": 35285.04, + "probability": 0.7699 + }, + { + "start": 35285.8, + "end": 35293.46, + "probability": 0.9749 + }, + { + "start": 35293.91, + "end": 35297.11, + "probability": 0.9978 + }, + { + "start": 35298.36, + "end": 35304.24, + "probability": 0.9968 + }, + { + "start": 35304.86, + "end": 35308.88, + "probability": 0.994 + }, + { + "start": 35309.98, + "end": 35314.24, + "probability": 0.9948 + }, + { + "start": 35314.84, + "end": 35315.78, + "probability": 0.9879 + }, + { + "start": 35316.72, + "end": 35321.14, + "probability": 0.9983 + }, + { + "start": 35321.96, + "end": 35324.66, + "probability": 0.9971 + }, + { + "start": 35326.26, + "end": 35327.96, + "probability": 0.9869 + }, + { + "start": 35328.48, + "end": 35329.26, + "probability": 0.5755 + }, + { + "start": 35330.02, + "end": 35331.96, + "probability": 0.7966 + }, + { + "start": 35332.48, + "end": 35334.46, + "probability": 0.8066 + }, + { + "start": 35336.62, + "end": 35342.24, + "probability": 0.9298 + }, + { + "start": 35342.64, + "end": 35342.9, + "probability": 0.4844 + }, + { + "start": 35343.18, + "end": 35344.76, + "probability": 0.9905 + }, + { + "start": 35345.44, + "end": 35347.74, + "probability": 0.9834 + }, + { + "start": 35349.08, + "end": 35350.87, + "probability": 0.9954 + }, + { + "start": 35352.3, + "end": 35355.06, + "probability": 0.9414 + }, + { + "start": 35355.66, + "end": 35357.52, + "probability": 0.8187 + }, + { + "start": 35358.14, + "end": 35361.16, + "probability": 0.9712 + }, + { + "start": 35361.48, + "end": 35362.56, + "probability": 0.6411 + }, + { + "start": 35362.74, + "end": 35366.94, + "probability": 0.8843 + }, + { + "start": 35367.54, + "end": 35369.28, + "probability": 0.8582 + }, + { + "start": 35370.6, + "end": 35371.73, + "probability": 0.9358 + }, + { + "start": 35372.9, + "end": 35373.36, + "probability": 0.5613 + }, + { + "start": 35374.86, + "end": 35375.6, + "probability": 0.9326 + }, + { + "start": 35376.4, + "end": 35376.94, + "probability": 0.8103 + }, + { + "start": 35377.7, + "end": 35378.3, + "probability": 0.8375 + }, + { + "start": 35379.16, + "end": 35382.24, + "probability": 0.8804 + }, + { + "start": 35383.84, + "end": 35385.9, + "probability": 0.9882 + }, + { + "start": 35387.38, + "end": 35388.36, + "probability": 0.9934 + }, + { + "start": 35389.44, + "end": 35391.74, + "probability": 0.9692 + }, + { + "start": 35393.42, + "end": 35394.62, + "probability": 0.9512 + }, + { + "start": 35396.22, + "end": 35397.52, + "probability": 0.9885 + }, + { + "start": 35398.24, + "end": 35400.9, + "probability": 0.9661 + }, + { + "start": 35401.8, + "end": 35407.5, + "probability": 0.968 + }, + { + "start": 35408.68, + "end": 35410.94, + "probability": 0.8271 + }, + { + "start": 35411.5, + "end": 35418.98, + "probability": 0.7729 + }, + { + "start": 35419.34, + "end": 35423.33, + "probability": 0.9865 + }, + { + "start": 35424.34, + "end": 35425.76, + "probability": 0.8535 + }, + { + "start": 35426.38, + "end": 35430.5, + "probability": 0.9331 + }, + { + "start": 35431.48, + "end": 35433.28, + "probability": 0.9777 + }, + { + "start": 35434.28, + "end": 35435.4, + "probability": 0.9858 + }, + { + "start": 35436.74, + "end": 35440.1, + "probability": 0.9894 + }, + { + "start": 35441.04, + "end": 35442.06, + "probability": 0.7033 + }, + { + "start": 35442.66, + "end": 35443.6, + "probability": 0.4819 + }, + { + "start": 35444.0, + "end": 35445.48, + "probability": 0.9236 + }, + { + "start": 35445.54, + "end": 35446.56, + "probability": 0.9321 + }, + { + "start": 35446.88, + "end": 35452.8, + "probability": 0.9954 + }, + { + "start": 35453.28, + "end": 35453.82, + "probability": 0.8065 + }, + { + "start": 35453.82, + "end": 35454.61, + "probability": 0.9313 + }, + { + "start": 35454.9, + "end": 35457.92, + "probability": 0.962 + }, + { + "start": 35458.4, + "end": 35463.1, + "probability": 0.7895 + }, + { + "start": 35463.86, + "end": 35468.1, + "probability": 0.9822 + }, + { + "start": 35470.12, + "end": 35470.66, + "probability": 0.9307 + }, + { + "start": 35471.92, + "end": 35479.16, + "probability": 0.9951 + }, + { + "start": 35480.68, + "end": 35484.64, + "probability": 0.9958 + }, + { + "start": 35485.8, + "end": 35489.06, + "probability": 0.6959 + }, + { + "start": 35489.72, + "end": 35491.26, + "probability": 0.9771 + }, + { + "start": 35492.04, + "end": 35493.42, + "probability": 0.9644 + }, + { + "start": 35493.52, + "end": 35495.28, + "probability": 0.9779 + }, + { + "start": 35495.82, + "end": 35496.82, + "probability": 0.7078 + }, + { + "start": 35497.9, + "end": 35498.88, + "probability": 0.8666 + }, + { + "start": 35499.54, + "end": 35500.76, + "probability": 0.9689 + }, + { + "start": 35501.72, + "end": 35502.68, + "probability": 0.9782 + }, + { + "start": 35503.24, + "end": 35504.74, + "probability": 0.9969 + }, + { + "start": 35504.94, + "end": 35508.76, + "probability": 0.9913 + }, + { + "start": 35509.48, + "end": 35511.08, + "probability": 0.9659 + }, + { + "start": 35511.8, + "end": 35513.36, + "probability": 0.9806 + }, + { + "start": 35514.18, + "end": 35515.09, + "probability": 0.7544 + }, + { + "start": 35515.62, + "end": 35521.14, + "probability": 0.9852 + }, + { + "start": 35521.4, + "end": 35524.0, + "probability": 0.8208 + }, + { + "start": 35524.38, + "end": 35526.68, + "probability": 0.9712 + }, + { + "start": 35526.96, + "end": 35527.52, + "probability": 0.8846 + }, + { + "start": 35528.26, + "end": 35529.94, + "probability": 0.8894 + }, + { + "start": 35530.6, + "end": 35534.12, + "probability": 0.8062 + }, + { + "start": 35534.64, + "end": 35537.88, + "probability": 0.9846 + }, + { + "start": 35538.52, + "end": 35540.86, + "probability": 0.9961 + }, + { + "start": 35540.86, + "end": 35541.56, + "probability": 0.3665 + }, + { + "start": 35542.48, + "end": 35543.1, + "probability": 0.8198 + }, + { + "start": 35543.68, + "end": 35547.72, + "probability": 0.9937 + }, + { + "start": 35548.4, + "end": 35552.52, + "probability": 0.9919 + }, + { + "start": 35553.28, + "end": 35554.36, + "probability": 0.6732 + }, + { + "start": 35554.42, + "end": 35555.16, + "probability": 0.8035 + }, + { + "start": 35555.62, + "end": 35559.8, + "probability": 0.9954 + }, + { + "start": 35560.14, + "end": 35564.0, + "probability": 0.9604 + }, + { + "start": 35564.12, + "end": 35565.08, + "probability": 0.9989 + }, + { + "start": 35565.5, + "end": 35565.92, + "probability": 0.6428 + }, + { + "start": 35567.46, + "end": 35572.68, + "probability": 0.9205 + }, + { + "start": 35573.24, + "end": 35574.1, + "probability": 0.7159 + }, + { + "start": 35574.2, + "end": 35576.98, + "probability": 0.2571 + }, + { + "start": 35576.98, + "end": 35579.22, + "probability": 0.9346 + }, + { + "start": 35579.78, + "end": 35580.6, + "probability": 0.9663 + }, + { + "start": 35580.82, + "end": 35581.84, + "probability": 0.9905 + }, + { + "start": 35582.48, + "end": 35586.18, + "probability": 0.9938 + }, + { + "start": 35586.4, + "end": 35587.5, + "probability": 0.4534 + }, + { + "start": 35588.24, + "end": 35589.26, + "probability": 0.9353 + }, + { + "start": 35590.06, + "end": 35590.38, + "probability": 0.8433 + }, + { + "start": 35590.76, + "end": 35592.4, + "probability": 0.9592 + }, + { + "start": 35592.84, + "end": 35595.16, + "probability": 0.9835 + }, + { + "start": 35596.59, + "end": 35597.18, + "probability": 0.0292 + }, + { + "start": 35598.91, + "end": 35599.03, + "probability": 0.1115 + }, + { + "start": 35599.6, + "end": 35600.24, + "probability": 0.5107 + }, + { + "start": 35600.32, + "end": 35600.98, + "probability": 0.9458 + }, + { + "start": 35601.06, + "end": 35602.08, + "probability": 0.9603 + }, + { + "start": 35602.18, + "end": 35603.28, + "probability": 0.9312 + }, + { + "start": 35603.32, + "end": 35603.42, + "probability": 0.0791 + }, + { + "start": 35604.96, + "end": 35608.2, + "probability": 0.0695 + }, + { + "start": 35608.86, + "end": 35610.32, + "probability": 0.0813 + }, + { + "start": 35610.32, + "end": 35610.32, + "probability": 0.0239 + }, + { + "start": 35610.32, + "end": 35610.98, + "probability": 0.0711 + }, + { + "start": 35611.32, + "end": 35612.1, + "probability": 0.9232 + }, + { + "start": 35612.2, + "end": 35612.87, + "probability": 0.7522 + }, + { + "start": 35613.04, + "end": 35615.08, + "probability": 0.9617 + }, + { + "start": 35615.46, + "end": 35617.96, + "probability": 0.9304 + }, + { + "start": 35618.1, + "end": 35618.94, + "probability": 0.9482 + }, + { + "start": 35619.08, + "end": 35619.52, + "probability": 0.648 + }, + { + "start": 35619.9, + "end": 35621.08, + "probability": 0.8054 + }, + { + "start": 35621.58, + "end": 35624.5, + "probability": 0.9273 + }, + { + "start": 35625.06, + "end": 35627.44, + "probability": 0.9841 + }, + { + "start": 35628.28, + "end": 35629.58, + "probability": 0.7506 + }, + { + "start": 35630.12, + "end": 35631.44, + "probability": 0.7482 + }, + { + "start": 35631.46, + "end": 35632.46, + "probability": 0.866 + }, + { + "start": 35633.24, + "end": 35635.04, + "probability": 0.5476 + }, + { + "start": 35635.6, + "end": 35639.32, + "probability": 0.9515 + }, + { + "start": 35639.54, + "end": 35639.84, + "probability": 0.0542 + }, + { + "start": 35639.84, + "end": 35641.88, + "probability": 0.1542 + }, + { + "start": 35642.3, + "end": 35643.66, + "probability": 0.9637 + }, + { + "start": 35644.38, + "end": 35650.0, + "probability": 0.9945 + }, + { + "start": 35650.82, + "end": 35652.26, + "probability": 0.9376 + }, + { + "start": 35653.0, + "end": 35655.66, + "probability": 0.9056 + }, + { + "start": 35656.1, + "end": 35657.86, + "probability": 0.9138 + }, + { + "start": 35658.34, + "end": 35658.72, + "probability": 0.483 + }, + { + "start": 35658.84, + "end": 35659.76, + "probability": 0.8891 + }, + { + "start": 35659.84, + "end": 35660.48, + "probability": 0.771 + }, + { + "start": 35660.62, + "end": 35661.52, + "probability": 0.8044 + }, + { + "start": 35661.82, + "end": 35662.94, + "probability": 0.9929 + }, + { + "start": 35663.64, + "end": 35667.82, + "probability": 0.9971 + }, + { + "start": 35667.98, + "end": 35669.5, + "probability": 0.8738 + }, + { + "start": 35670.06, + "end": 35672.42, + "probability": 0.9968 + }, + { + "start": 35672.86, + "end": 35675.06, + "probability": 0.9881 + }, + { + "start": 35675.58, + "end": 35678.96, + "probability": 0.9614 + }, + { + "start": 35679.82, + "end": 35681.27, + "probability": 0.937 + }, + { + "start": 35681.94, + "end": 35685.18, + "probability": 0.99 + }, + { + "start": 35685.22, + "end": 35689.94, + "probability": 0.9949 + }, + { + "start": 35691.22, + "end": 35692.6, + "probability": 0.862 + }, + { + "start": 35692.7, + "end": 35694.2, + "probability": 0.9785 + }, + { + "start": 35694.24, + "end": 35695.48, + "probability": 0.8582 + }, + { + "start": 35695.84, + "end": 35696.38, + "probability": 0.7662 + }, + { + "start": 35696.94, + "end": 35700.84, + "probability": 0.9174 + }, + { + "start": 35702.82, + "end": 35704.12, + "probability": 0.6343 + }, + { + "start": 35704.26, + "end": 35705.64, + "probability": 0.9734 + }, + { + "start": 35706.4, + "end": 35708.44, + "probability": 0.3683 + }, + { + "start": 35709.98, + "end": 35711.44, + "probability": 0.6014 + }, + { + "start": 35711.98, + "end": 35715.14, + "probability": 0.614 + }, + { + "start": 35715.54, + "end": 35717.38, + "probability": 0.9279 + }, + { + "start": 35718.16, + "end": 35719.22, + "probability": 0.9875 + }, + { + "start": 35719.32, + "end": 35720.26, + "probability": 0.9485 + }, + { + "start": 35720.44, + "end": 35721.56, + "probability": 0.9744 + }, + { + "start": 35721.88, + "end": 35722.8, + "probability": 0.6711 + }, + { + "start": 35722.9, + "end": 35723.5, + "probability": 0.6202 + }, + { + "start": 35724.48, + "end": 35725.26, + "probability": 0.4947 + }, + { + "start": 35725.5, + "end": 35726.16, + "probability": 0.9515 + }, + { + "start": 35727.24, + "end": 35729.34, + "probability": 0.8807 + }, + { + "start": 35729.42, + "end": 35729.96, + "probability": 0.748 + }, + { + "start": 35730.18, + "end": 35731.36, + "probability": 0.9946 + }, + { + "start": 35732.54, + "end": 35733.76, + "probability": 0.919 + }, + { + "start": 35734.7, + "end": 35736.84, + "probability": 0.9936 + }, + { + "start": 35737.96, + "end": 35740.92, + "probability": 0.9814 + }, + { + "start": 35742.72, + "end": 35747.18, + "probability": 0.9749 + }, + { + "start": 35747.52, + "end": 35748.08, + "probability": 0.5939 + }, + { + "start": 35748.16, + "end": 35751.84, + "probability": 0.957 + }, + { + "start": 35752.72, + "end": 35755.96, + "probability": 0.928 + }, + { + "start": 35757.5, + "end": 35758.1, + "probability": 0.8021 + }, + { + "start": 35758.2, + "end": 35759.24, + "probability": 0.8115 + }, + { + "start": 35759.58, + "end": 35761.36, + "probability": 0.8781 + }, + { + "start": 35761.78, + "end": 35764.34, + "probability": 0.9846 + }, + { + "start": 35764.85, + "end": 35765.28, + "probability": 0.9719 + }, + { + "start": 35766.08, + "end": 35769.32, + "probability": 0.9729 + }, + { + "start": 35770.02, + "end": 35771.15, + "probability": 0.5243 + }, + { + "start": 35771.34, + "end": 35772.7, + "probability": 0.7061 + }, + { + "start": 35773.3, + "end": 35774.22, + "probability": 0.7935 + }, + { + "start": 35774.36, + "end": 35777.6, + "probability": 0.99 + }, + { + "start": 35777.6, + "end": 35782.16, + "probability": 0.9937 + }, + { + "start": 35783.16, + "end": 35787.42, + "probability": 0.9661 + }, + { + "start": 35788.68, + "end": 35791.84, + "probability": 0.9955 + }, + { + "start": 35793.18, + "end": 35797.98, + "probability": 0.9936 + }, + { + "start": 35798.86, + "end": 35800.68, + "probability": 0.9648 + }, + { + "start": 35801.5, + "end": 35803.32, + "probability": 0.9781 + }, + { + "start": 35804.2, + "end": 35806.04, + "probability": 0.9795 + }, + { + "start": 35806.44, + "end": 35808.18, + "probability": 0.8423 + }, + { + "start": 35809.48, + "end": 35811.76, + "probability": 0.9463 + }, + { + "start": 35812.4, + "end": 35813.84, + "probability": 0.8016 + }, + { + "start": 35814.34, + "end": 35818.44, + "probability": 0.9945 + }, + { + "start": 35819.64, + "end": 35820.74, + "probability": 0.7285 + }, + { + "start": 35820.94, + "end": 35823.04, + "probability": 0.9906 + }, + { + "start": 35823.62, + "end": 35824.94, + "probability": 0.5641 + }, + { + "start": 35825.24, + "end": 35826.32, + "probability": 0.9473 + }, + { + "start": 35826.42, + "end": 35827.66, + "probability": 0.9048 + }, + { + "start": 35829.28, + "end": 35830.54, + "probability": 0.9023 + }, + { + "start": 35831.34, + "end": 35832.56, + "probability": 0.9921 + }, + { + "start": 35832.86, + "end": 35833.26, + "probability": 0.6543 + }, + { + "start": 35833.32, + "end": 35835.74, + "probability": 0.9357 + }, + { + "start": 35836.2, + "end": 35838.58, + "probability": 0.9872 + }, + { + "start": 35838.98, + "end": 35842.35, + "probability": 0.9341 + }, + { + "start": 35843.06, + "end": 35843.9, + "probability": 0.755 + }, + { + "start": 35844.32, + "end": 35845.1, + "probability": 0.8037 + }, + { + "start": 35845.18, + "end": 35846.62, + "probability": 0.9592 + }, + { + "start": 35847.08, + "end": 35851.54, + "probability": 0.9754 + }, + { + "start": 35852.04, + "end": 35852.78, + "probability": 0.506 + }, + { + "start": 35852.82, + "end": 35853.12, + "probability": 0.6938 + }, + { + "start": 35853.14, + "end": 35853.98, + "probability": 0.6065 + }, + { + "start": 35854.06, + "end": 35855.04, + "probability": 0.5243 + }, + { + "start": 35855.58, + "end": 35857.16, + "probability": 0.8037 + }, + { + "start": 35857.22, + "end": 35857.26, + "probability": 0.6139 + }, + { + "start": 35857.58, + "end": 35858.88, + "probability": 0.8979 + }, + { + "start": 35859.12, + "end": 35860.7, + "probability": 0.9852 + }, + { + "start": 35860.84, + "end": 35862.92, + "probability": 0.9847 + }, + { + "start": 35863.12, + "end": 35863.12, + "probability": 0.6035 + }, + { + "start": 35863.12, + "end": 35863.12, + "probability": 0.4899 + }, + { + "start": 35863.14, + "end": 35863.36, + "probability": 0.055 + }, + { + "start": 35863.36, + "end": 35867.04, + "probability": 0.9829 + }, + { + "start": 35867.4, + "end": 35867.98, + "probability": 0.8342 + }, + { + "start": 35868.38, + "end": 35869.16, + "probability": 0.7819 + }, + { + "start": 35869.16, + "end": 35869.5, + "probability": 0.5797 + }, + { + "start": 35870.44, + "end": 35870.58, + "probability": 0.2315 + }, + { + "start": 35870.58, + "end": 35870.58, + "probability": 0.605 + }, + { + "start": 35870.58, + "end": 35871.56, + "probability": 0.4808 + }, + { + "start": 35872.04, + "end": 35873.82, + "probability": 0.9541 + }, + { + "start": 35874.54, + "end": 35875.5, + "probability": 0.7379 + }, + { + "start": 35876.08, + "end": 35876.08, + "probability": 0.0287 + }, + { + "start": 35876.08, + "end": 35876.08, + "probability": 0.1004 + }, + { + "start": 35876.08, + "end": 35877.12, + "probability": 0.1439 + }, + { + "start": 35877.38, + "end": 35879.24, + "probability": 0.8906 + }, + { + "start": 35879.3, + "end": 35881.78, + "probability": 0.9716 + }, + { + "start": 35881.98, + "end": 35882.14, + "probability": 0.0009 + } + ], + "segments_count": 12388, + "words_count": 61239, + "avg_words_per_segment": 4.9434, + "avg_segment_duration": 2.0948, + "avg_words_per_minute": 102.2964, + "plenum_id": "46623", + "duration": 35918.58, + "title": null, + "plenum_date": "2015-11-16" +} \ No newline at end of file