diff --git "a/47041/metadata.json" "b/47041/metadata.json" new file mode 100644--- /dev/null +++ "b/47041/metadata.json" @@ -0,0 +1,57182 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "47041", + "quality_score": 0.902, + "per_segment_quality_scores": [ + { + "start": 48.8, + "end": 50.18, + "probability": 0.9825 + }, + { + "start": 52.82, + "end": 54.04, + "probability": 0.749 + }, + { + "start": 54.12, + "end": 55.6, + "probability": 0.8672 + }, + { + "start": 55.68, + "end": 57.2, + "probability": 0.6514 + }, + { + "start": 57.4, + "end": 59.1, + "probability": 0.9525 + }, + { + "start": 59.66, + "end": 63.04, + "probability": 0.8643 + }, + { + "start": 63.54, + "end": 64.88, + "probability": 0.5759 + }, + { + "start": 65.08, + "end": 65.94, + "probability": 0.9523 + }, + { + "start": 66.48, + "end": 67.54, + "probability": 0.9764 + }, + { + "start": 67.84, + "end": 68.5, + "probability": 0.6463 + }, + { + "start": 68.54, + "end": 72.76, + "probability": 0.6104 + }, + { + "start": 73.36, + "end": 74.56, + "probability": 0.3967 + }, + { + "start": 75.26, + "end": 77.98, + "probability": 0.9868 + }, + { + "start": 78.47, + "end": 81.78, + "probability": 0.5208 + }, + { + "start": 81.8, + "end": 82.96, + "probability": 0.3317 + }, + { + "start": 83.7, + "end": 87.72, + "probability": 0.8821 + }, + { + "start": 87.92, + "end": 90.78, + "probability": 0.6757 + }, + { + "start": 90.84, + "end": 92.84, + "probability": 0.7572 + }, + { + "start": 93.02, + "end": 94.16, + "probability": 0.7913 + }, + { + "start": 94.8, + "end": 97.55, + "probability": 0.2315 + }, + { + "start": 98.66, + "end": 100.38, + "probability": 0.6942 + }, + { + "start": 101.3, + "end": 102.02, + "probability": 0.7119 + }, + { + "start": 102.58, + "end": 103.4, + "probability": 0.7476 + }, + { + "start": 106.57, + "end": 108.76, + "probability": 0.4707 + }, + { + "start": 108.82, + "end": 112.08, + "probability": 0.4802 + }, + { + "start": 112.08, + "end": 113.38, + "probability": 0.7674 + }, + { + "start": 113.9, + "end": 115.34, + "probability": 0.4723 + }, + { + "start": 115.86, + "end": 118.4, + "probability": 0.6429 + }, + { + "start": 120.79, + "end": 123.1, + "probability": 0.0552 + }, + { + "start": 125.24, + "end": 127.08, + "probability": 0.0654 + }, + { + "start": 127.4, + "end": 129.96, + "probability": 0.1255 + }, + { + "start": 129.96, + "end": 130.05, + "probability": 0.0234 + }, + { + "start": 130.1, + "end": 132.92, + "probability": 0.0176 + }, + { + "start": 132.92, + "end": 134.54, + "probability": 0.156 + }, + { + "start": 135.84, + "end": 141.36, + "probability": 0.0664 + }, + { + "start": 141.88, + "end": 150.18, + "probability": 0.0816 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 172.0, + "end": 172.0, + "probability": 0.0 + }, + { + "start": 175.06, + "end": 177.3, + "probability": 0.9828 + }, + { + "start": 178.3, + "end": 180.66, + "probability": 0.9092 + }, + { + "start": 181.32, + "end": 186.0, + "probability": 0.9863 + }, + { + "start": 190.42, + "end": 192.26, + "probability": 0.9795 + }, + { + "start": 193.4, + "end": 195.26, + "probability": 0.5562 + }, + { + "start": 205.72, + "end": 206.92, + "probability": 0.7304 + }, + { + "start": 207.78, + "end": 208.96, + "probability": 0.6676 + }, + { + "start": 211.18, + "end": 213.96, + "probability": 0.8869 + }, + { + "start": 214.64, + "end": 216.0, + "probability": 0.8408 + }, + { + "start": 217.4, + "end": 219.96, + "probability": 0.7552 + }, + { + "start": 220.7, + "end": 223.66, + "probability": 0.9312 + }, + { + "start": 224.28, + "end": 227.42, + "probability": 0.9463 + }, + { + "start": 228.4, + "end": 229.42, + "probability": 0.615 + }, + { + "start": 230.36, + "end": 235.7, + "probability": 0.9849 + }, + { + "start": 236.66, + "end": 241.9, + "probability": 0.9675 + }, + { + "start": 242.2, + "end": 243.2, + "probability": 0.7231 + }, + { + "start": 243.84, + "end": 246.11, + "probability": 0.979 + }, + { + "start": 246.64, + "end": 252.88, + "probability": 0.9976 + }, + { + "start": 253.64, + "end": 255.58, + "probability": 0.862 + }, + { + "start": 255.96, + "end": 258.62, + "probability": 0.999 + }, + { + "start": 259.12, + "end": 263.78, + "probability": 0.986 + }, + { + "start": 265.06, + "end": 265.48, + "probability": 0.6362 + }, + { + "start": 265.64, + "end": 270.72, + "probability": 0.9988 + }, + { + "start": 271.76, + "end": 273.32, + "probability": 0.9967 + }, + { + "start": 273.98, + "end": 278.72, + "probability": 0.9971 + }, + { + "start": 279.32, + "end": 284.68, + "probability": 0.99 + }, + { + "start": 285.54, + "end": 287.74, + "probability": 0.8936 + }, + { + "start": 289.06, + "end": 291.58, + "probability": 0.9695 + }, + { + "start": 292.2, + "end": 293.56, + "probability": 0.969 + }, + { + "start": 294.34, + "end": 297.78, + "probability": 0.9927 + }, + { + "start": 298.56, + "end": 304.78, + "probability": 0.9814 + }, + { + "start": 306.06, + "end": 310.1, + "probability": 0.9971 + }, + { + "start": 310.64, + "end": 314.6, + "probability": 0.9992 + }, + { + "start": 314.6, + "end": 320.44, + "probability": 0.9778 + }, + { + "start": 322.1, + "end": 323.88, + "probability": 0.9985 + }, + { + "start": 324.82, + "end": 328.3, + "probability": 0.9912 + }, + { + "start": 329.24, + "end": 331.18, + "probability": 0.6366 + }, + { + "start": 332.2, + "end": 333.0, + "probability": 0.7964 + }, + { + "start": 333.26, + "end": 335.66, + "probability": 0.9932 + }, + { + "start": 335.66, + "end": 339.94, + "probability": 0.998 + }, + { + "start": 340.66, + "end": 343.3, + "probability": 0.998 + }, + { + "start": 344.48, + "end": 350.64, + "probability": 0.9932 + }, + { + "start": 351.68, + "end": 354.76, + "probability": 0.8739 + }, + { + "start": 356.24, + "end": 356.7, + "probability": 0.3589 + }, + { + "start": 356.8, + "end": 360.72, + "probability": 0.9963 + }, + { + "start": 362.1, + "end": 365.86, + "probability": 0.8961 + }, + { + "start": 366.62, + "end": 370.24, + "probability": 0.9758 + }, + { + "start": 370.88, + "end": 376.66, + "probability": 0.9951 + }, + { + "start": 377.34, + "end": 378.28, + "probability": 0.6735 + }, + { + "start": 378.48, + "end": 381.38, + "probability": 0.9829 + }, + { + "start": 381.38, + "end": 386.2, + "probability": 0.957 + }, + { + "start": 386.78, + "end": 389.64, + "probability": 0.9712 + }, + { + "start": 390.76, + "end": 393.56, + "probability": 0.9576 + }, + { + "start": 394.58, + "end": 396.22, + "probability": 0.9985 + }, + { + "start": 397.34, + "end": 400.64, + "probability": 0.9971 + }, + { + "start": 401.78, + "end": 405.94, + "probability": 0.9976 + }, + { + "start": 405.94, + "end": 410.64, + "probability": 0.9912 + }, + { + "start": 411.82, + "end": 413.36, + "probability": 0.7274 + }, + { + "start": 414.3, + "end": 416.28, + "probability": 0.9777 + }, + { + "start": 416.94, + "end": 423.54, + "probability": 0.9978 + }, + { + "start": 424.04, + "end": 426.18, + "probability": 0.6941 + }, + { + "start": 426.52, + "end": 431.44, + "probability": 0.8657 + }, + { + "start": 431.68, + "end": 434.54, + "probability": 0.9789 + }, + { + "start": 434.92, + "end": 441.46, + "probability": 0.9862 + }, + { + "start": 442.7, + "end": 445.76, + "probability": 0.9554 + }, + { + "start": 446.34, + "end": 447.88, + "probability": 0.9797 + }, + { + "start": 448.22, + "end": 450.06, + "probability": 0.9976 + }, + { + "start": 450.4, + "end": 454.66, + "probability": 0.9966 + }, + { + "start": 454.66, + "end": 460.76, + "probability": 0.9895 + }, + { + "start": 461.3, + "end": 463.52, + "probability": 0.9686 + }, + { + "start": 463.58, + "end": 465.85, + "probability": 0.9839 + }, + { + "start": 467.1, + "end": 468.84, + "probability": 0.9602 + }, + { + "start": 469.56, + "end": 475.48, + "probability": 0.9952 + }, + { + "start": 475.86, + "end": 478.2, + "probability": 0.9898 + }, + { + "start": 478.2, + "end": 481.48, + "probability": 0.9961 + }, + { + "start": 481.96, + "end": 486.32, + "probability": 0.9963 + }, + { + "start": 486.32, + "end": 489.74, + "probability": 0.9978 + }, + { + "start": 490.34, + "end": 492.62, + "probability": 0.7646 + }, + { + "start": 492.82, + "end": 496.2, + "probability": 0.9907 + }, + { + "start": 496.74, + "end": 499.34, + "probability": 0.9502 + }, + { + "start": 499.98, + "end": 503.56, + "probability": 0.7288 + }, + { + "start": 504.16, + "end": 507.04, + "probability": 0.7239 + }, + { + "start": 508.2, + "end": 514.74, + "probability": 0.9591 + }, + { + "start": 515.22, + "end": 522.22, + "probability": 0.9505 + }, + { + "start": 522.54, + "end": 525.61, + "probability": 0.9967 + }, + { + "start": 525.84, + "end": 527.18, + "probability": 0.9849 + }, + { + "start": 528.1, + "end": 531.42, + "probability": 0.9347 + }, + { + "start": 532.98, + "end": 536.94, + "probability": 0.8072 + }, + { + "start": 537.7, + "end": 540.92, + "probability": 0.7859 + }, + { + "start": 540.92, + "end": 546.62, + "probability": 0.999 + }, + { + "start": 547.06, + "end": 548.48, + "probability": 0.9995 + }, + { + "start": 548.92, + "end": 552.48, + "probability": 0.9966 + }, + { + "start": 552.94, + "end": 556.34, + "probability": 0.9926 + }, + { + "start": 558.12, + "end": 559.82, + "probability": 0.9939 + }, + { + "start": 560.06, + "end": 562.86, + "probability": 0.8437 + }, + { + "start": 563.68, + "end": 567.52, + "probability": 0.9876 + }, + { + "start": 567.52, + "end": 571.48, + "probability": 0.9976 + }, + { + "start": 571.94, + "end": 575.64, + "probability": 0.9889 + }, + { + "start": 576.14, + "end": 578.52, + "probability": 0.5578 + }, + { + "start": 578.84, + "end": 582.98, + "probability": 0.9513 + }, + { + "start": 584.02, + "end": 584.96, + "probability": 0.9456 + }, + { + "start": 585.74, + "end": 588.96, + "probability": 0.8262 + }, + { + "start": 590.46, + "end": 599.08, + "probability": 0.9873 + }, + { + "start": 600.32, + "end": 605.36, + "probability": 0.9794 + }, + { + "start": 606.38, + "end": 607.62, + "probability": 0.5595 + }, + { + "start": 608.56, + "end": 612.82, + "probability": 0.9736 + }, + { + "start": 613.5, + "end": 616.74, + "probability": 0.9941 + }, + { + "start": 617.74, + "end": 621.18, + "probability": 0.9543 + }, + { + "start": 621.72, + "end": 629.38, + "probability": 0.9876 + }, + { + "start": 629.9, + "end": 635.94, + "probability": 0.998 + }, + { + "start": 636.86, + "end": 640.18, + "probability": 0.9589 + }, + { + "start": 641.1, + "end": 645.78, + "probability": 0.9988 + }, + { + "start": 646.76, + "end": 647.42, + "probability": 0.9237 + }, + { + "start": 648.04, + "end": 650.5, + "probability": 0.9895 + }, + { + "start": 652.68, + "end": 654.54, + "probability": 0.8202 + }, + { + "start": 654.78, + "end": 656.04, + "probability": 0.9023 + }, + { + "start": 656.1, + "end": 658.26, + "probability": 0.8293 + }, + { + "start": 658.8, + "end": 661.04, + "probability": 0.5944 + }, + { + "start": 661.34, + "end": 662.7, + "probability": 0.8363 + }, + { + "start": 663.0, + "end": 664.16, + "probability": 0.7822 + }, + { + "start": 664.42, + "end": 665.7, + "probability": 0.8787 + }, + { + "start": 665.88, + "end": 666.88, + "probability": 0.8262 + }, + { + "start": 667.0, + "end": 668.24, + "probability": 0.9591 + }, + { + "start": 669.12, + "end": 672.9, + "probability": 0.9829 + }, + { + "start": 673.12, + "end": 675.6, + "probability": 0.9912 + }, + { + "start": 675.8, + "end": 678.02, + "probability": 0.9827 + }, + { + "start": 679.28, + "end": 683.46, + "probability": 0.966 + }, + { + "start": 684.08, + "end": 686.28, + "probability": 0.9692 + }, + { + "start": 686.4, + "end": 687.64, + "probability": 0.7746 + }, + { + "start": 687.98, + "end": 692.16, + "probability": 0.9491 + }, + { + "start": 692.44, + "end": 694.26, + "probability": 0.8821 + }, + { + "start": 694.96, + "end": 700.86, + "probability": 0.9897 + }, + { + "start": 700.86, + "end": 705.46, + "probability": 0.9998 + }, + { + "start": 705.94, + "end": 707.08, + "probability": 0.9609 + }, + { + "start": 708.3, + "end": 712.79, + "probability": 0.9762 + }, + { + "start": 713.94, + "end": 718.18, + "probability": 0.9993 + }, + { + "start": 719.5, + "end": 721.62, + "probability": 0.9259 + }, + { + "start": 722.38, + "end": 725.48, + "probability": 0.9956 + }, + { + "start": 725.72, + "end": 726.7, + "probability": 0.9351 + }, + { + "start": 727.52, + "end": 728.58, + "probability": 0.8749 + }, + { + "start": 729.28, + "end": 731.58, + "probability": 0.9673 + }, + { + "start": 732.28, + "end": 733.48, + "probability": 0.9951 + }, + { + "start": 734.0, + "end": 735.92, + "probability": 0.9945 + }, + { + "start": 736.46, + "end": 740.98, + "probability": 0.9717 + }, + { + "start": 742.72, + "end": 747.72, + "probability": 0.9888 + }, + { + "start": 747.72, + "end": 752.24, + "probability": 0.9986 + }, + { + "start": 753.08, + "end": 760.06, + "probability": 0.9956 + }, + { + "start": 760.44, + "end": 762.14, + "probability": 0.8356 + }, + { + "start": 764.42, + "end": 765.94, + "probability": 0.7989 + }, + { + "start": 766.0, + "end": 769.32, + "probability": 0.9752 + }, + { + "start": 770.02, + "end": 775.84, + "probability": 0.4303 + }, + { + "start": 776.62, + "end": 780.32, + "probability": 0.5911 + }, + { + "start": 780.84, + "end": 785.96, + "probability": 0.8011 + }, + { + "start": 787.3, + "end": 789.92, + "probability": 0.7455 + }, + { + "start": 790.72, + "end": 794.64, + "probability": 0.9849 + }, + { + "start": 794.64, + "end": 798.41, + "probability": 0.9916 + }, + { + "start": 798.82, + "end": 803.94, + "probability": 0.9897 + }, + { + "start": 804.56, + "end": 807.6, + "probability": 0.7728 + }, + { + "start": 807.74, + "end": 809.16, + "probability": 0.7441 + }, + { + "start": 809.46, + "end": 811.38, + "probability": 0.9921 + }, + { + "start": 813.04, + "end": 815.24, + "probability": 0.331 + }, + { + "start": 817.82, + "end": 819.5, + "probability": 0.6178 + }, + { + "start": 819.66, + "end": 819.66, + "probability": 0.4341 + }, + { + "start": 819.66, + "end": 821.44, + "probability": 0.8508 + }, + { + "start": 822.08, + "end": 823.56, + "probability": 0.8952 + }, + { + "start": 824.37, + "end": 827.28, + "probability": 0.9844 + }, + { + "start": 827.44, + "end": 829.96, + "probability": 0.9955 + }, + { + "start": 830.22, + "end": 832.54, + "probability": 0.9891 + }, + { + "start": 832.54, + "end": 834.32, + "probability": 0.995 + }, + { + "start": 835.16, + "end": 836.08, + "probability": 0.9191 + }, + { + "start": 836.44, + "end": 837.38, + "probability": 0.9595 + }, + { + "start": 837.54, + "end": 837.98, + "probability": 0.0166 + }, + { + "start": 838.44, + "end": 838.86, + "probability": 0.2436 + }, + { + "start": 839.3, + "end": 840.7, + "probability": 0.9683 + }, + { + "start": 840.82, + "end": 841.88, + "probability": 0.7712 + }, + { + "start": 841.92, + "end": 845.11, + "probability": 0.842 + }, + { + "start": 845.3, + "end": 846.98, + "probability": 0.9722 + }, + { + "start": 847.12, + "end": 848.82, + "probability": 0.9817 + }, + { + "start": 849.1, + "end": 850.09, + "probability": 0.952 + }, + { + "start": 850.42, + "end": 852.48, + "probability": 0.9517 + }, + { + "start": 852.74, + "end": 855.92, + "probability": 0.9878 + }, + { + "start": 856.9, + "end": 858.52, + "probability": 0.0235 + }, + { + "start": 858.52, + "end": 863.96, + "probability": 0.8872 + }, + { + "start": 864.02, + "end": 869.26, + "probability": 0.9723 + }, + { + "start": 869.26, + "end": 872.94, + "probability": 0.9922 + }, + { + "start": 872.94, + "end": 878.62, + "probability": 0.895 + }, + { + "start": 878.8, + "end": 879.16, + "probability": 0.5598 + }, + { + "start": 879.58, + "end": 880.24, + "probability": 0.9663 + }, + { + "start": 880.34, + "end": 882.58, + "probability": 0.965 + }, + { + "start": 882.82, + "end": 884.22, + "probability": 0.896 + }, + { + "start": 884.28, + "end": 885.34, + "probability": 0.9104 + }, + { + "start": 885.76, + "end": 888.22, + "probability": 0.7466 + }, + { + "start": 888.78, + "end": 889.08, + "probability": 0.6368 + }, + { + "start": 889.12, + "end": 890.02, + "probability": 0.9395 + }, + { + "start": 890.16, + "end": 892.0, + "probability": 0.9938 + }, + { + "start": 892.14, + "end": 895.06, + "probability": 0.9662 + }, + { + "start": 895.6, + "end": 897.92, + "probability": 0.9825 + }, + { + "start": 898.02, + "end": 900.68, + "probability": 0.9893 + }, + { + "start": 900.84, + "end": 905.02, + "probability": 0.9744 + }, + { + "start": 905.2, + "end": 908.56, + "probability": 0.9867 + }, + { + "start": 908.62, + "end": 911.28, + "probability": 0.9829 + }, + { + "start": 912.2, + "end": 916.82, + "probability": 0.8594 + }, + { + "start": 917.34, + "end": 920.34, + "probability": 0.9899 + }, + { + "start": 920.46, + "end": 923.54, + "probability": 0.9818 + }, + { + "start": 923.58, + "end": 924.92, + "probability": 0.7168 + }, + { + "start": 924.94, + "end": 925.66, + "probability": 0.9141 + }, + { + "start": 925.7, + "end": 926.78, + "probability": 0.9917 + }, + { + "start": 927.46, + "end": 927.95, + "probability": 0.9804 + }, + { + "start": 928.56, + "end": 928.56, + "probability": 0.5763 + }, + { + "start": 928.9, + "end": 929.72, + "probability": 0.9584 + }, + { + "start": 929.76, + "end": 931.72, + "probability": 0.9658 + }, + { + "start": 931.74, + "end": 934.18, + "probability": 0.9589 + }, + { + "start": 934.18, + "end": 938.04, + "probability": 0.8662 + }, + { + "start": 939.78, + "end": 940.96, + "probability": 0.0968 + }, + { + "start": 940.96, + "end": 945.47, + "probability": 0.9407 + }, + { + "start": 945.68, + "end": 946.76, + "probability": 0.7299 + }, + { + "start": 946.9, + "end": 947.66, + "probability": 0.9041 + }, + { + "start": 947.74, + "end": 949.38, + "probability": 0.5846 + }, + { + "start": 950.18, + "end": 952.02, + "probability": 0.8994 + }, + { + "start": 952.7, + "end": 956.28, + "probability": 0.9721 + }, + { + "start": 956.46, + "end": 961.42, + "probability": 0.9719 + }, + { + "start": 961.68, + "end": 964.04, + "probability": 0.9863 + }, + { + "start": 964.92, + "end": 967.64, + "probability": 0.911 + }, + { + "start": 967.84, + "end": 972.14, + "probability": 0.9442 + }, + { + "start": 972.44, + "end": 975.38, + "probability": 0.777 + }, + { + "start": 976.24, + "end": 977.46, + "probability": 0.7763 + }, + { + "start": 977.72, + "end": 979.48, + "probability": 0.7781 + }, + { + "start": 979.56, + "end": 980.64, + "probability": 0.9568 + }, + { + "start": 981.08, + "end": 985.6, + "probability": 0.96 + }, + { + "start": 985.94, + "end": 987.02, + "probability": 0.8104 + }, + { + "start": 987.38, + "end": 988.16, + "probability": 0.5843 + }, + { + "start": 988.22, + "end": 990.08, + "probability": 0.9703 + }, + { + "start": 990.26, + "end": 992.76, + "probability": 0.8745 + }, + { + "start": 993.86, + "end": 997.36, + "probability": 0.7038 + }, + { + "start": 997.44, + "end": 997.58, + "probability": 0.3921 + }, + { + "start": 997.58, + "end": 998.46, + "probability": 0.943 + }, + { + "start": 998.62, + "end": 1000.3, + "probability": 0.9958 + }, + { + "start": 1000.3, + "end": 1003.6, + "probability": 0.9521 + }, + { + "start": 1004.2, + "end": 1005.9, + "probability": 0.9334 + }, + { + "start": 1006.24, + "end": 1008.16, + "probability": 0.9658 + }, + { + "start": 1008.5, + "end": 1010.5, + "probability": 0.8916 + }, + { + "start": 1010.66, + "end": 1011.38, + "probability": 0.9898 + }, + { + "start": 1011.92, + "end": 1014.42, + "probability": 0.9259 + }, + { + "start": 1014.94, + "end": 1017.8, + "probability": 0.9717 + }, + { + "start": 1018.12, + "end": 1021.56, + "probability": 0.9878 + }, + { + "start": 1021.94, + "end": 1023.04, + "probability": 0.8485 + }, + { + "start": 1023.18, + "end": 1024.94, + "probability": 0.7985 + }, + { + "start": 1025.06, + "end": 1026.62, + "probability": 0.9946 + }, + { + "start": 1026.78, + "end": 1029.44, + "probability": 0.9918 + }, + { + "start": 1029.98, + "end": 1034.3, + "probability": 0.9779 + }, + { + "start": 1034.84, + "end": 1037.32, + "probability": 0.7571 + }, + { + "start": 1037.42, + "end": 1040.58, + "probability": 0.8931 + }, + { + "start": 1041.18, + "end": 1042.1, + "probability": 0.7401 + }, + { + "start": 1042.24, + "end": 1043.16, + "probability": 0.9062 + }, + { + "start": 1043.18, + "end": 1044.34, + "probability": 0.3659 + }, + { + "start": 1044.42, + "end": 1045.48, + "probability": 0.6562 + }, + { + "start": 1045.56, + "end": 1046.02, + "probability": 0.5585 + }, + { + "start": 1046.66, + "end": 1049.16, + "probability": 0.6261 + }, + { + "start": 1049.42, + "end": 1053.48, + "probability": 0.8089 + }, + { + "start": 1053.58, + "end": 1055.0, + "probability": 0.9967 + }, + { + "start": 1055.04, + "end": 1057.1, + "probability": 0.9061 + }, + { + "start": 1057.56, + "end": 1059.64, + "probability": 0.9829 + }, + { + "start": 1060.04, + "end": 1062.3, + "probability": 0.9969 + }, + { + "start": 1062.46, + "end": 1066.1, + "probability": 0.8628 + }, + { + "start": 1066.48, + "end": 1072.22, + "probability": 0.9958 + }, + { + "start": 1072.78, + "end": 1073.07, + "probability": 0.4546 + }, + { + "start": 1073.84, + "end": 1076.77, + "probability": 0.3617 + }, + { + "start": 1077.24, + "end": 1078.54, + "probability": 0.624 + }, + { + "start": 1078.58, + "end": 1080.1, + "probability": 0.8846 + }, + { + "start": 1080.76, + "end": 1082.5, + "probability": 0.9961 + }, + { + "start": 1082.62, + "end": 1087.38, + "probability": 0.7596 + }, + { + "start": 1087.42, + "end": 1088.44, + "probability": 0.7127 + }, + { + "start": 1088.7, + "end": 1091.56, + "probability": 0.9511 + }, + { + "start": 1092.3, + "end": 1094.92, + "probability": 0.7631 + }, + { + "start": 1095.08, + "end": 1095.8, + "probability": 0.8411 + }, + { + "start": 1096.0, + "end": 1097.32, + "probability": 0.8483 + }, + { + "start": 1097.46, + "end": 1098.66, + "probability": 0.8932 + }, + { + "start": 1099.04, + "end": 1102.8, + "probability": 0.895 + }, + { + "start": 1102.9, + "end": 1104.52, + "probability": 0.9512 + }, + { + "start": 1104.8, + "end": 1107.18, + "probability": 0.6576 + }, + { + "start": 1107.34, + "end": 1107.98, + "probability": 0.576 + }, + { + "start": 1108.1, + "end": 1114.24, + "probability": 0.9703 + }, + { + "start": 1114.36, + "end": 1116.2, + "probability": 0.6782 + }, + { + "start": 1116.64, + "end": 1119.96, + "probability": 0.9941 + }, + { + "start": 1120.14, + "end": 1120.6, + "probability": 0.8507 + }, + { + "start": 1120.66, + "end": 1120.94, + "probability": 0.4423 + }, + { + "start": 1121.0, + "end": 1121.5, + "probability": 0.8453 + }, + { + "start": 1121.56, + "end": 1122.56, + "probability": 0.8027 + }, + { + "start": 1122.6, + "end": 1123.86, + "probability": 0.8198 + }, + { + "start": 1124.5, + "end": 1128.58, + "probability": 0.9829 + }, + { + "start": 1128.74, + "end": 1129.52, + "probability": 0.5787 + }, + { + "start": 1129.6, + "end": 1132.22, + "probability": 0.8721 + }, + { + "start": 1132.34, + "end": 1134.5, + "probability": 0.9836 + }, + { + "start": 1135.04, + "end": 1136.6, + "probability": 0.6596 + }, + { + "start": 1136.68, + "end": 1141.04, + "probability": 0.9937 + }, + { + "start": 1141.4, + "end": 1144.84, + "probability": 0.9901 + }, + { + "start": 1144.96, + "end": 1146.22, + "probability": 0.381 + }, + { + "start": 1146.42, + "end": 1147.78, + "probability": 0.6622 + }, + { + "start": 1148.1, + "end": 1148.79, + "probability": 0.5991 + }, + { + "start": 1149.7, + "end": 1151.02, + "probability": 0.7936 + }, + { + "start": 1151.28, + "end": 1153.3, + "probability": 0.8955 + }, + { + "start": 1153.78, + "end": 1155.18, + "probability": 0.5679 + }, + { + "start": 1155.38, + "end": 1156.12, + "probability": 0.9608 + }, + { + "start": 1156.6, + "end": 1158.56, + "probability": 0.9318 + }, + { + "start": 1159.08, + "end": 1161.84, + "probability": 0.973 + }, + { + "start": 1162.24, + "end": 1163.96, + "probability": 0.7489 + }, + { + "start": 1164.06, + "end": 1167.22, + "probability": 0.9103 + }, + { + "start": 1167.28, + "end": 1169.36, + "probability": 0.9775 + }, + { + "start": 1169.48, + "end": 1171.34, + "probability": 0.3538 + }, + { + "start": 1172.2, + "end": 1175.3, + "probability": 0.9785 + }, + { + "start": 1175.3, + "end": 1178.22, + "probability": 0.7051 + }, + { + "start": 1178.84, + "end": 1179.6, + "probability": 0.594 + }, + { + "start": 1179.64, + "end": 1180.8, + "probability": 0.976 + }, + { + "start": 1180.86, + "end": 1183.76, + "probability": 0.928 + }, + { + "start": 1183.92, + "end": 1188.58, + "probability": 0.9579 + }, + { + "start": 1188.7, + "end": 1189.66, + "probability": 0.9531 + }, + { + "start": 1190.56, + "end": 1192.04, + "probability": 0.8517 + }, + { + "start": 1192.44, + "end": 1194.92, + "probability": 0.9761 + }, + { + "start": 1195.36, + "end": 1195.9, + "probability": 0.6364 + }, + { + "start": 1196.52, + "end": 1196.78, + "probability": 0.7474 + }, + { + "start": 1196.9, + "end": 1197.54, + "probability": 0.6788 + }, + { + "start": 1197.62, + "end": 1202.93, + "probability": 0.9777 + }, + { + "start": 1203.46, + "end": 1205.52, + "probability": 0.9852 + }, + { + "start": 1206.14, + "end": 1211.3, + "probability": 0.986 + }, + { + "start": 1211.38, + "end": 1212.78, + "probability": 0.7885 + }, + { + "start": 1213.06, + "end": 1220.7, + "probability": 0.9199 + }, + { + "start": 1221.22, + "end": 1223.6, + "probability": 0.7422 + }, + { + "start": 1223.8, + "end": 1224.26, + "probability": 0.7165 + }, + { + "start": 1224.48, + "end": 1225.68, + "probability": 0.8905 + }, + { + "start": 1225.8, + "end": 1227.12, + "probability": 0.9443 + }, + { + "start": 1227.18, + "end": 1228.18, + "probability": 0.496 + }, + { + "start": 1228.22, + "end": 1228.52, + "probability": 0.9542 + }, + { + "start": 1228.52, + "end": 1229.12, + "probability": 0.9275 + }, + { + "start": 1229.86, + "end": 1233.7, + "probability": 0.9193 + }, + { + "start": 1233.86, + "end": 1234.06, + "probability": 0.8299 + }, + { + "start": 1234.24, + "end": 1235.14, + "probability": 0.7671 + }, + { + "start": 1235.28, + "end": 1237.54, + "probability": 0.8885 + }, + { + "start": 1237.6, + "end": 1238.3, + "probability": 0.5111 + }, + { + "start": 1238.44, + "end": 1240.42, + "probability": 0.9854 + }, + { + "start": 1240.42, + "end": 1243.44, + "probability": 0.9695 + }, + { + "start": 1244.36, + "end": 1246.08, + "probability": 0.5514 + }, + { + "start": 1246.46, + "end": 1249.28, + "probability": 0.5347 + }, + { + "start": 1249.44, + "end": 1250.14, + "probability": 0.4642 + }, + { + "start": 1250.34, + "end": 1250.88, + "probability": 0.4189 + }, + { + "start": 1250.96, + "end": 1252.32, + "probability": 0.7476 + }, + { + "start": 1252.42, + "end": 1253.52, + "probability": 0.8834 + }, + { + "start": 1253.6, + "end": 1255.9, + "probability": 0.5359 + }, + { + "start": 1255.98, + "end": 1257.14, + "probability": 0.7861 + }, + { + "start": 1257.2, + "end": 1260.02, + "probability": 0.9808 + }, + { + "start": 1260.16, + "end": 1262.66, + "probability": 0.989 + }, + { + "start": 1262.68, + "end": 1264.1, + "probability": 0.9136 + }, + { + "start": 1264.2, + "end": 1265.22, + "probability": 0.9012 + }, + { + "start": 1265.34, + "end": 1268.92, + "probability": 0.9337 + }, + { + "start": 1269.76, + "end": 1271.68, + "probability": 0.7989 + }, + { + "start": 1272.54, + "end": 1273.42, + "probability": 0.8776 + }, + { + "start": 1274.36, + "end": 1277.6, + "probability": 0.8849 + }, + { + "start": 1278.48, + "end": 1280.76, + "probability": 0.9966 + }, + { + "start": 1280.92, + "end": 1282.44, + "probability": 0.9546 + }, + { + "start": 1282.96, + "end": 1287.18, + "probability": 0.9438 + }, + { + "start": 1287.38, + "end": 1290.56, + "probability": 0.9849 + }, + { + "start": 1291.52, + "end": 1295.76, + "probability": 0.982 + }, + { + "start": 1298.48, + "end": 1300.46, + "probability": 0.9 + }, + { + "start": 1300.64, + "end": 1302.46, + "probability": 0.9678 + }, + { + "start": 1302.48, + "end": 1306.1, + "probability": 0.769 + }, + { + "start": 1306.16, + "end": 1309.98, + "probability": 0.9422 + }, + { + "start": 1310.04, + "end": 1312.2, + "probability": 0.9808 + }, + { + "start": 1312.78, + "end": 1313.76, + "probability": 0.5841 + }, + { + "start": 1314.34, + "end": 1315.28, + "probability": 0.9089 + }, + { + "start": 1315.44, + "end": 1316.07, + "probability": 0.5102 + }, + { + "start": 1316.26, + "end": 1317.12, + "probability": 0.7725 + }, + { + "start": 1317.42, + "end": 1320.26, + "probability": 0.9611 + }, + { + "start": 1321.46, + "end": 1325.34, + "probability": 0.9376 + }, + { + "start": 1325.34, + "end": 1329.74, + "probability": 0.9916 + }, + { + "start": 1329.84, + "end": 1332.8, + "probability": 0.8021 + }, + { + "start": 1332.92, + "end": 1333.76, + "probability": 0.7568 + }, + { + "start": 1334.18, + "end": 1335.4, + "probability": 0.9487 + }, + { + "start": 1335.68, + "end": 1337.86, + "probability": 0.9966 + }, + { + "start": 1338.0, + "end": 1339.82, + "probability": 0.9911 + }, + { + "start": 1339.88, + "end": 1344.16, + "probability": 0.9904 + }, + { + "start": 1344.22, + "end": 1346.1, + "probability": 0.6531 + }, + { + "start": 1346.24, + "end": 1348.5, + "probability": 0.9805 + }, + { + "start": 1349.5, + "end": 1353.4, + "probability": 0.8766 + }, + { + "start": 1353.46, + "end": 1353.9, + "probability": 0.5804 + }, + { + "start": 1354.36, + "end": 1355.7, + "probability": 0.8791 + }, + { + "start": 1356.26, + "end": 1358.32, + "probability": 0.9668 + }, + { + "start": 1359.06, + "end": 1361.52, + "probability": 0.9522 + }, + { + "start": 1362.06, + "end": 1365.88, + "probability": 0.9918 + }, + { + "start": 1366.04, + "end": 1367.1, + "probability": 0.8304 + }, + { + "start": 1367.2, + "end": 1368.98, + "probability": 0.7999 + }, + { + "start": 1369.38, + "end": 1370.65, + "probability": 0.9183 + }, + { + "start": 1371.86, + "end": 1373.14, + "probability": 0.6575 + }, + { + "start": 1374.6, + "end": 1379.88, + "probability": 0.9644 + }, + { + "start": 1380.16, + "end": 1382.6, + "probability": 0.956 + }, + { + "start": 1382.74, + "end": 1384.08, + "probability": 0.8219 + }, + { + "start": 1384.28, + "end": 1389.68, + "probability": 0.9873 + }, + { + "start": 1390.25, + "end": 1391.48, + "probability": 0.1193 + }, + { + "start": 1391.48, + "end": 1393.44, + "probability": 0.8571 + }, + { + "start": 1394.62, + "end": 1395.36, + "probability": 0.2363 + }, + { + "start": 1395.36, + "end": 1396.02, + "probability": 0.2084 + }, + { + "start": 1396.74, + "end": 1399.12, + "probability": 0.8401 + }, + { + "start": 1399.24, + "end": 1401.74, + "probability": 0.9523 + }, + { + "start": 1402.88, + "end": 1405.54, + "probability": 0.6966 + }, + { + "start": 1405.54, + "end": 1405.58, + "probability": 0.0961 + }, + { + "start": 1405.8, + "end": 1407.58, + "probability": 0.8776 + }, + { + "start": 1407.68, + "end": 1408.82, + "probability": 0.756 + }, + { + "start": 1408.98, + "end": 1409.32, + "probability": 0.5724 + }, + { + "start": 1409.46, + "end": 1409.66, + "probability": 0.237 + }, + { + "start": 1409.82, + "end": 1411.64, + "probability": 0.4616 + }, + { + "start": 1411.78, + "end": 1412.22, + "probability": 0.5683 + }, + { + "start": 1412.26, + "end": 1412.42, + "probability": 0.5132 + }, + { + "start": 1412.46, + "end": 1415.28, + "probability": 0.716 + }, + { + "start": 1415.74, + "end": 1415.92, + "probability": 0.2078 + }, + { + "start": 1416.46, + "end": 1420.72, + "probability": 0.3376 + }, + { + "start": 1420.82, + "end": 1422.26, + "probability": 0.8027 + }, + { + "start": 1422.66, + "end": 1424.46, + "probability": 0.9905 + }, + { + "start": 1424.62, + "end": 1425.86, + "probability": 0.973 + }, + { + "start": 1425.92, + "end": 1426.32, + "probability": 0.8085 + }, + { + "start": 1426.42, + "end": 1426.98, + "probability": 0.9541 + }, + { + "start": 1427.0, + "end": 1427.74, + "probability": 0.8993 + }, + { + "start": 1427.76, + "end": 1428.82, + "probability": 0.6126 + }, + { + "start": 1429.62, + "end": 1431.14, + "probability": 0.9907 + }, + { + "start": 1431.66, + "end": 1432.06, + "probability": 0.826 + }, + { + "start": 1432.2, + "end": 1432.36, + "probability": 0.8282 + }, + { + "start": 1432.42, + "end": 1437.16, + "probability": 0.9441 + }, + { + "start": 1437.26, + "end": 1439.36, + "probability": 0.8889 + }, + { + "start": 1440.66, + "end": 1442.22, + "probability": 0.981 + }, + { + "start": 1442.22, + "end": 1443.36, + "probability": 0.2378 + }, + { + "start": 1443.56, + "end": 1445.6, + "probability": 0.8921 + }, + { + "start": 1445.98, + "end": 1448.46, + "probability": 0.7451 + }, + { + "start": 1448.52, + "end": 1448.52, + "probability": 0.3646 + }, + { + "start": 1448.52, + "end": 1449.38, + "probability": 0.4407 + }, + { + "start": 1449.46, + "end": 1449.85, + "probability": 0.8896 + }, + { + "start": 1450.49, + "end": 1451.8, + "probability": 0.5057 + }, + { + "start": 1451.8, + "end": 1451.8, + "probability": 0.0278 + }, + { + "start": 1451.8, + "end": 1455.24, + "probability": 0.5912 + }, + { + "start": 1455.34, + "end": 1459.16, + "probability": 0.9526 + }, + { + "start": 1459.16, + "end": 1461.85, + "probability": 0.343 + }, + { + "start": 1462.18, + "end": 1463.2, + "probability": 0.766 + }, + { + "start": 1463.3, + "end": 1464.8, + "probability": 0.8377 + }, + { + "start": 1465.12, + "end": 1467.76, + "probability": 0.7894 + }, + { + "start": 1467.9, + "end": 1469.96, + "probability": 0.8237 + }, + { + "start": 1470.08, + "end": 1472.04, + "probability": 0.5058 + }, + { + "start": 1472.22, + "end": 1473.39, + "probability": 0.9478 + }, + { + "start": 1473.54, + "end": 1476.48, + "probability": 0.8621 + }, + { + "start": 1476.9, + "end": 1478.78, + "probability": 0.174 + }, + { + "start": 1479.14, + "end": 1479.76, + "probability": 0.7981 + }, + { + "start": 1479.9, + "end": 1481.12, + "probability": 0.4294 + }, + { + "start": 1481.14, + "end": 1482.42, + "probability": 0.4597 + }, + { + "start": 1482.58, + "end": 1484.46, + "probability": 0.9078 + }, + { + "start": 1484.52, + "end": 1487.99, + "probability": 0.8861 + }, + { + "start": 1488.38, + "end": 1490.72, + "probability": 0.9353 + }, + { + "start": 1490.84, + "end": 1491.8, + "probability": 0.9529 + }, + { + "start": 1491.94, + "end": 1494.9, + "probability": 0.9873 + }, + { + "start": 1495.32, + "end": 1496.56, + "probability": 0.979 + }, + { + "start": 1496.7, + "end": 1497.66, + "probability": 0.5438 + }, + { + "start": 1497.84, + "end": 1499.86, + "probability": 0.9629 + }, + { + "start": 1499.88, + "end": 1500.7, + "probability": 0.8441 + }, + { + "start": 1501.26, + "end": 1504.78, + "probability": 0.7846 + }, + { + "start": 1505.3, + "end": 1508.18, + "probability": 0.8607 + }, + { + "start": 1508.5, + "end": 1510.18, + "probability": 0.7574 + }, + { + "start": 1510.86, + "end": 1512.0, + "probability": 0.8438 + }, + { + "start": 1512.04, + "end": 1512.74, + "probability": 0.2098 + }, + { + "start": 1512.8, + "end": 1513.1, + "probability": 0.8827 + }, + { + "start": 1513.12, + "end": 1514.74, + "probability": 0.9951 + }, + { + "start": 1515.26, + "end": 1517.48, + "probability": 0.7522 + }, + { + "start": 1517.64, + "end": 1517.92, + "probability": 0.9735 + }, + { + "start": 1518.06, + "end": 1520.06, + "probability": 0.9131 + }, + { + "start": 1520.14, + "end": 1521.0, + "probability": 0.5064 + }, + { + "start": 1521.18, + "end": 1523.16, + "probability": 0.1505 + }, + { + "start": 1523.38, + "end": 1525.22, + "probability": 0.5718 + }, + { + "start": 1525.34, + "end": 1525.62, + "probability": 0.061 + }, + { + "start": 1525.62, + "end": 1528.56, + "probability": 0.1584 + }, + { + "start": 1528.66, + "end": 1529.38, + "probability": 0.3893 + }, + { + "start": 1529.52, + "end": 1536.76, + "probability": 0.7612 + }, + { + "start": 1536.88, + "end": 1537.92, + "probability": 0.9305 + }, + { + "start": 1538.44, + "end": 1539.48, + "probability": 0.9584 + }, + { + "start": 1539.7, + "end": 1541.12, + "probability": 0.9078 + }, + { + "start": 1541.88, + "end": 1544.66, + "probability": 0.9817 + }, + { + "start": 1545.14, + "end": 1545.54, + "probability": 0.7317 + }, + { + "start": 1546.5, + "end": 1551.02, + "probability": 0.9788 + }, + { + "start": 1551.14, + "end": 1552.16, + "probability": 0.947 + }, + { + "start": 1552.26, + "end": 1553.84, + "probability": 0.8041 + }, + { + "start": 1553.96, + "end": 1554.68, + "probability": 0.8385 + }, + { + "start": 1554.7, + "end": 1555.74, + "probability": 0.9203 + }, + { + "start": 1556.04, + "end": 1559.58, + "probability": 0.9728 + }, + { + "start": 1559.58, + "end": 1561.72, + "probability": 0.999 + }, + { + "start": 1562.08, + "end": 1562.68, + "probability": 0.6628 + }, + { + "start": 1562.72, + "end": 1563.74, + "probability": 0.8719 + }, + { + "start": 1563.9, + "end": 1565.42, + "probability": 0.9583 + }, + { + "start": 1565.86, + "end": 1571.0, + "probability": 0.9805 + }, + { + "start": 1571.16, + "end": 1571.7, + "probability": 0.7708 + }, + { + "start": 1571.76, + "end": 1574.72, + "probability": 0.9943 + }, + { + "start": 1576.34, + "end": 1577.72, + "probability": 0.9382 + }, + { + "start": 1577.84, + "end": 1580.46, + "probability": 0.8986 + }, + { + "start": 1580.64, + "end": 1581.2, + "probability": 0.7079 + }, + { + "start": 1581.26, + "end": 1582.04, + "probability": 0.6817 + }, + { + "start": 1582.08, + "end": 1584.1, + "probability": 0.8146 + }, + { + "start": 1584.32, + "end": 1585.84, + "probability": 0.9628 + }, + { + "start": 1586.12, + "end": 1587.44, + "probability": 0.1308 + }, + { + "start": 1587.46, + "end": 1588.56, + "probability": 0.1696 + }, + { + "start": 1588.86, + "end": 1590.52, + "probability": 0.7129 + }, + { + "start": 1590.58, + "end": 1595.42, + "probability": 0.7389 + }, + { + "start": 1595.5, + "end": 1600.74, + "probability": 0.9087 + }, + { + "start": 1600.9, + "end": 1603.3, + "probability": 0.8059 + }, + { + "start": 1603.84, + "end": 1603.84, + "probability": 0.1399 + }, + { + "start": 1603.84, + "end": 1606.14, + "probability": 0.9885 + }, + { + "start": 1606.36, + "end": 1611.0, + "probability": 0.7522 + }, + { + "start": 1611.18, + "end": 1612.08, + "probability": 0.8211 + }, + { + "start": 1612.14, + "end": 1616.66, + "probability": 0.9765 + }, + { + "start": 1616.82, + "end": 1617.32, + "probability": 0.3983 + }, + { + "start": 1617.52, + "end": 1620.58, + "probability": 0.9747 + }, + { + "start": 1620.62, + "end": 1621.0, + "probability": 0.6982 + }, + { + "start": 1621.1, + "end": 1623.6, + "probability": 0.9956 + }, + { + "start": 1623.74, + "end": 1624.84, + "probability": 0.8316 + }, + { + "start": 1624.96, + "end": 1625.6, + "probability": 0.6039 + }, + { + "start": 1625.72, + "end": 1625.98, + "probability": 0.7429 + }, + { + "start": 1626.1, + "end": 1626.92, + "probability": 0.9873 + }, + { + "start": 1627.7, + "end": 1628.72, + "probability": 0.989 + }, + { + "start": 1629.1, + "end": 1629.64, + "probability": 0.7348 + }, + { + "start": 1629.76, + "end": 1630.4, + "probability": 0.6854 + }, + { + "start": 1630.44, + "end": 1632.54, + "probability": 0.6948 + }, + { + "start": 1632.56, + "end": 1633.52, + "probability": 0.9027 + }, + { + "start": 1633.92, + "end": 1634.87, + "probability": 0.9307 + }, + { + "start": 1635.64, + "end": 1637.92, + "probability": 0.9783 + }, + { + "start": 1638.64, + "end": 1641.58, + "probability": 0.7866 + }, + { + "start": 1641.76, + "end": 1642.92, + "probability": 0.9526 + }, + { + "start": 1644.22, + "end": 1654.62, + "probability": 0.9758 + }, + { + "start": 1654.7, + "end": 1655.62, + "probability": 0.6122 + }, + { + "start": 1655.72, + "end": 1656.54, + "probability": 0.8528 + }, + { + "start": 1656.8, + "end": 1658.84, + "probability": 0.892 + }, + { + "start": 1659.1, + "end": 1659.59, + "probability": 0.9708 + }, + { + "start": 1659.82, + "end": 1660.5, + "probability": 0.8081 + }, + { + "start": 1661.2, + "end": 1663.02, + "probability": 0.9426 + }, + { + "start": 1663.14, + "end": 1663.7, + "probability": 0.9768 + }, + { + "start": 1663.94, + "end": 1666.11, + "probability": 0.9835 + }, + { + "start": 1666.6, + "end": 1668.84, + "probability": 0.9736 + }, + { + "start": 1670.56, + "end": 1672.56, + "probability": 0.7477 + }, + { + "start": 1673.24, + "end": 1675.55, + "probability": 0.9355 + }, + { + "start": 1675.88, + "end": 1678.66, + "probability": 0.9713 + }, + { + "start": 1678.82, + "end": 1680.18, + "probability": 0.962 + }, + { + "start": 1681.52, + "end": 1684.14, + "probability": 0.9903 + }, + { + "start": 1685.42, + "end": 1687.66, + "probability": 0.8518 + }, + { + "start": 1688.53, + "end": 1689.33, + "probability": 0.9971 + }, + { + "start": 1689.56, + "end": 1690.38, + "probability": 0.7959 + }, + { + "start": 1690.58, + "end": 1692.26, + "probability": 0.991 + }, + { + "start": 1693.14, + "end": 1698.04, + "probability": 0.9966 + }, + { + "start": 1698.92, + "end": 1704.38, + "probability": 0.9733 + }, + { + "start": 1704.46, + "end": 1706.42, + "probability": 0.922 + }, + { + "start": 1706.78, + "end": 1708.5, + "probability": 0.4951 + }, + { + "start": 1709.24, + "end": 1710.34, + "probability": 0.8446 + }, + { + "start": 1712.1, + "end": 1712.1, + "probability": 0.1886 + }, + { + "start": 1712.1, + "end": 1715.04, + "probability": 0.6085 + }, + { + "start": 1715.06, + "end": 1716.24, + "probability": 0.5261 + }, + { + "start": 1716.38, + "end": 1717.04, + "probability": 0.7829 + }, + { + "start": 1717.3, + "end": 1718.16, + "probability": 0.8147 + }, + { + "start": 1718.58, + "end": 1719.58, + "probability": 0.8532 + }, + { + "start": 1719.74, + "end": 1720.74, + "probability": 0.8453 + }, + { + "start": 1720.88, + "end": 1721.3, + "probability": 0.3354 + }, + { + "start": 1721.44, + "end": 1721.98, + "probability": 0.7838 + }, + { + "start": 1722.22, + "end": 1724.0, + "probability": 0.959 + }, + { + "start": 1724.12, + "end": 1725.56, + "probability": 0.6441 + }, + { + "start": 1725.64, + "end": 1726.6, + "probability": 0.6672 + }, + { + "start": 1726.9, + "end": 1728.04, + "probability": 0.8599 + }, + { + "start": 1728.08, + "end": 1730.02, + "probability": 0.6364 + }, + { + "start": 1730.12, + "end": 1731.06, + "probability": 0.8307 + }, + { + "start": 1731.4, + "end": 1733.14, + "probability": 0.8656 + }, + { + "start": 1733.2, + "end": 1735.77, + "probability": 0.9546 + }, + { + "start": 1736.82, + "end": 1737.0, + "probability": 0.0374 + }, + { + "start": 1737.12, + "end": 1737.28, + "probability": 0.3146 + }, + { + "start": 1737.48, + "end": 1740.98, + "probability": 0.9863 + }, + { + "start": 1741.04, + "end": 1742.32, + "probability": 0.7615 + }, + { + "start": 1742.36, + "end": 1745.34, + "probability": 0.7768 + }, + { + "start": 1745.74, + "end": 1747.17, + "probability": 0.8872 + }, + { + "start": 1747.4, + "end": 1749.68, + "probability": 0.8745 + }, + { + "start": 1750.04, + "end": 1750.58, + "probability": 0.7972 + }, + { + "start": 1750.64, + "end": 1751.58, + "probability": 0.9928 + }, + { + "start": 1751.66, + "end": 1754.24, + "probability": 0.9819 + }, + { + "start": 1754.24, + "end": 1757.02, + "probability": 0.9993 + }, + { + "start": 1757.46, + "end": 1758.7, + "probability": 0.881 + }, + { + "start": 1758.72, + "end": 1759.82, + "probability": 0.6496 + }, + { + "start": 1759.86, + "end": 1760.6, + "probability": 0.5912 + }, + { + "start": 1760.7, + "end": 1761.52, + "probability": 0.9016 + }, + { + "start": 1762.16, + "end": 1762.34, + "probability": 0.5505 + }, + { + "start": 1762.56, + "end": 1764.78, + "probability": 0.7224 + }, + { + "start": 1764.9, + "end": 1766.0, + "probability": 0.6394 + }, + { + "start": 1766.1, + "end": 1767.1, + "probability": 0.9941 + }, + { + "start": 1767.58, + "end": 1770.6, + "probability": 0.9928 + }, + { + "start": 1770.6, + "end": 1773.02, + "probability": 0.7405 + }, + { + "start": 1774.16, + "end": 1774.22, + "probability": 0.3479 + }, + { + "start": 1774.22, + "end": 1776.08, + "probability": 0.8109 + }, + { + "start": 1777.84, + "end": 1778.47, + "probability": 0.4596 + }, + { + "start": 1782.04, + "end": 1785.58, + "probability": 0.0185 + }, + { + "start": 1788.03, + "end": 1791.08, + "probability": 0.7214 + }, + { + "start": 1791.2, + "end": 1793.72, + "probability": 0.4982 + }, + { + "start": 1793.82, + "end": 1794.94, + "probability": 0.5483 + }, + { + "start": 1795.1, + "end": 1799.5, + "probability": 0.8985 + }, + { + "start": 1800.08, + "end": 1801.34, + "probability": 0.3761 + }, + { + "start": 1802.18, + "end": 1803.24, + "probability": 0.7839 + }, + { + "start": 1803.36, + "end": 1805.57, + "probability": 0.7777 + }, + { + "start": 1806.08, + "end": 1810.32, + "probability": 0.9846 + }, + { + "start": 1810.42, + "end": 1811.7, + "probability": 0.9875 + }, + { + "start": 1811.78, + "end": 1813.82, + "probability": 0.8049 + }, + { + "start": 1813.86, + "end": 1815.3, + "probability": 0.7806 + }, + { + "start": 1815.5, + "end": 1817.64, + "probability": 0.8733 + }, + { + "start": 1817.82, + "end": 1819.08, + "probability": 0.7378 + }, + { + "start": 1819.14, + "end": 1820.18, + "probability": 0.8143 + }, + { + "start": 1820.26, + "end": 1824.4, + "probability": 0.9359 + }, + { + "start": 1824.4, + "end": 1827.26, + "probability": 0.7987 + }, + { + "start": 1827.36, + "end": 1830.2, + "probability": 0.8948 + }, + { + "start": 1830.2, + "end": 1834.14, + "probability": 0.9761 + }, + { + "start": 1834.14, + "end": 1837.28, + "probability": 0.9861 + }, + { + "start": 1837.92, + "end": 1840.28, + "probability": 0.9575 + }, + { + "start": 1840.28, + "end": 1844.3, + "probability": 0.9528 + }, + { + "start": 1844.64, + "end": 1847.04, + "probability": 0.9364 + }, + { + "start": 1847.38, + "end": 1848.1, + "probability": 0.6843 + }, + { + "start": 1848.4, + "end": 1852.6, + "probability": 0.9332 + }, + { + "start": 1852.82, + "end": 1857.98, + "probability": 0.991 + }, + { + "start": 1858.04, + "end": 1858.2, + "probability": 0.1334 + }, + { + "start": 1858.2, + "end": 1860.12, + "probability": 0.6443 + }, + { + "start": 1860.12, + "end": 1861.34, + "probability": 0.7056 + }, + { + "start": 1861.42, + "end": 1865.8, + "probability": 0.7311 + }, + { + "start": 1865.91, + "end": 1866.86, + "probability": 0.4924 + }, + { + "start": 1867.16, + "end": 1867.32, + "probability": 0.1868 + }, + { + "start": 1867.34, + "end": 1869.84, + "probability": 0.9089 + }, + { + "start": 1869.96, + "end": 1871.0, + "probability": 0.9486 + }, + { + "start": 1871.06, + "end": 1873.56, + "probability": 0.9981 + }, + { + "start": 1873.76, + "end": 1876.44, + "probability": 0.9982 + }, + { + "start": 1876.64, + "end": 1876.7, + "probability": 0.541 + }, + { + "start": 1876.84, + "end": 1877.71, + "probability": 0.9849 + }, + { + "start": 1878.58, + "end": 1879.12, + "probability": 0.6148 + }, + { + "start": 1879.76, + "end": 1880.42, + "probability": 0.9592 + }, + { + "start": 1880.48, + "end": 1883.28, + "probability": 0.8979 + }, + { + "start": 1883.81, + "end": 1887.14, + "probability": 0.9125 + }, + { + "start": 1887.2, + "end": 1891.34, + "probability": 0.9742 + }, + { + "start": 1891.96, + "end": 1893.52, + "probability": 0.7387 + }, + { + "start": 1893.58, + "end": 1896.4, + "probability": 0.9163 + }, + { + "start": 1896.58, + "end": 1898.7, + "probability": 0.9916 + }, + { + "start": 1898.7, + "end": 1901.74, + "probability": 0.9754 + }, + { + "start": 1901.8, + "end": 1901.88, + "probability": 0.4589 + }, + { + "start": 1901.94, + "end": 1902.04, + "probability": 0.9216 + }, + { + "start": 1902.14, + "end": 1904.3, + "probability": 0.9735 + }, + { + "start": 1904.88, + "end": 1906.0, + "probability": 0.5051 + }, + { + "start": 1906.62, + "end": 1907.5, + "probability": 0.7476 + }, + { + "start": 1908.0, + "end": 1911.44, + "probability": 0.995 + }, + { + "start": 1911.44, + "end": 1915.02, + "probability": 0.9987 + }, + { + "start": 1915.32, + "end": 1915.76, + "probability": 0.4429 + }, + { + "start": 1915.94, + "end": 1916.68, + "probability": 0.8379 + }, + { + "start": 1916.88, + "end": 1917.66, + "probability": 0.8334 + }, + { + "start": 1917.8, + "end": 1920.48, + "probability": 0.9642 + }, + { + "start": 1921.3, + "end": 1923.52, + "probability": 0.8222 + }, + { + "start": 1923.8, + "end": 1924.88, + "probability": 0.665 + }, + { + "start": 1925.24, + "end": 1925.76, + "probability": 0.6287 + }, + { + "start": 1925.88, + "end": 1928.24, + "probability": 0.9779 + }, + { + "start": 1928.3, + "end": 1930.38, + "probability": 0.8719 + }, + { + "start": 1930.38, + "end": 1931.28, + "probability": 0.0263 + }, + { + "start": 1931.46, + "end": 1934.22, + "probability": 0.9839 + }, + { + "start": 1934.48, + "end": 1937.76, + "probability": 0.9158 + }, + { + "start": 1937.82, + "end": 1940.9, + "probability": 0.9956 + }, + { + "start": 1940.96, + "end": 1942.02, + "probability": 0.8035 + }, + { + "start": 1942.62, + "end": 1947.26, + "probability": 0.9887 + }, + { + "start": 1947.42, + "end": 1948.08, + "probability": 0.7058 + }, + { + "start": 1948.36, + "end": 1949.28, + "probability": 0.9512 + }, + { + "start": 1949.38, + "end": 1954.06, + "probability": 0.8563 + }, + { + "start": 1954.6, + "end": 1956.48, + "probability": 0.8481 + }, + { + "start": 1956.62, + "end": 1959.04, + "probability": 0.9957 + }, + { + "start": 1959.12, + "end": 1960.0, + "probability": 0.7128 + }, + { + "start": 1960.24, + "end": 1961.28, + "probability": 0.9906 + }, + { + "start": 1961.66, + "end": 1965.86, + "probability": 0.9892 + }, + { + "start": 1965.9, + "end": 1968.42, + "probability": 0.9855 + }, + { + "start": 1969.88, + "end": 1971.8, + "probability": 0.5349 + }, + { + "start": 1971.9, + "end": 1972.32, + "probability": 0.8942 + }, + { + "start": 1972.42, + "end": 1974.02, + "probability": 0.9762 + }, + { + "start": 1974.56, + "end": 1976.82, + "probability": 0.7264 + }, + { + "start": 1977.3, + "end": 1979.7, + "probability": 0.9834 + }, + { + "start": 1980.14, + "end": 1983.24, + "probability": 0.7663 + }, + { + "start": 1983.56, + "end": 1986.78, + "probability": 0.9951 + }, + { + "start": 1986.78, + "end": 1989.1, + "probability": 0.8705 + }, + { + "start": 1989.54, + "end": 1991.4, + "probability": 0.9662 + }, + { + "start": 1991.64, + "end": 1993.02, + "probability": 0.6043 + }, + { + "start": 1993.14, + "end": 1994.34, + "probability": 0.7634 + }, + { + "start": 1994.54, + "end": 1994.56, + "probability": 0.669 + }, + { + "start": 1994.72, + "end": 1995.46, + "probability": 0.7826 + }, + { + "start": 1995.6, + "end": 1997.22, + "probability": 0.3865 + }, + { + "start": 1997.44, + "end": 1998.2, + "probability": 0.8307 + }, + { + "start": 1998.32, + "end": 2000.96, + "probability": 0.9934 + }, + { + "start": 2002.18, + "end": 2003.3, + "probability": 0.9752 + }, + { + "start": 2003.38, + "end": 2004.24, + "probability": 0.9768 + }, + { + "start": 2004.32, + "end": 2005.1, + "probability": 0.8353 + }, + { + "start": 2005.14, + "end": 2008.44, + "probability": 0.9896 + }, + { + "start": 2008.98, + "end": 2012.34, + "probability": 0.9489 + }, + { + "start": 2012.34, + "end": 2015.6, + "probability": 0.7385 + }, + { + "start": 2016.0, + "end": 2019.16, + "probability": 0.9435 + }, + { + "start": 2019.28, + "end": 2021.92, + "probability": 0.9982 + }, + { + "start": 2021.92, + "end": 2024.38, + "probability": 0.9978 + }, + { + "start": 2025.94, + "end": 2027.74, + "probability": 0.7885 + }, + { + "start": 2027.86, + "end": 2029.56, + "probability": 0.9576 + }, + { + "start": 2029.9, + "end": 2031.56, + "probability": 0.9928 + }, + { + "start": 2032.26, + "end": 2034.36, + "probability": 0.9987 + }, + { + "start": 2034.56, + "end": 2035.12, + "probability": 0.3082 + }, + { + "start": 2035.26, + "end": 2037.92, + "probability": 0.9432 + }, + { + "start": 2038.14, + "end": 2038.56, + "probability": 0.4451 + }, + { + "start": 2038.58, + "end": 2038.94, + "probability": 0.1092 + }, + { + "start": 2039.28, + "end": 2040.52, + "probability": 0.6442 + }, + { + "start": 2040.52, + "end": 2043.18, + "probability": 0.9539 + }, + { + "start": 2043.38, + "end": 2043.99, + "probability": 0.9436 + }, + { + "start": 2044.22, + "end": 2045.76, + "probability": 0.9795 + }, + { + "start": 2045.82, + "end": 2046.8, + "probability": 0.815 + }, + { + "start": 2047.14, + "end": 2049.81, + "probability": 0.9692 + }, + { + "start": 2051.34, + "end": 2052.08, + "probability": 0.5962 + }, + { + "start": 2052.18, + "end": 2053.84, + "probability": 0.8818 + }, + { + "start": 2053.9, + "end": 2054.9, + "probability": 0.7331 + }, + { + "start": 2055.64, + "end": 2056.58, + "probability": 0.9548 + }, + { + "start": 2056.68, + "end": 2057.44, + "probability": 0.3202 + }, + { + "start": 2058.4, + "end": 2062.04, + "probability": 0.9793 + }, + { + "start": 2062.12, + "end": 2064.92, + "probability": 0.9214 + }, + { + "start": 2065.06, + "end": 2066.66, + "probability": 0.8486 + }, + { + "start": 2066.68, + "end": 2069.52, + "probability": 0.9952 + }, + { + "start": 2069.56, + "end": 2072.68, + "probability": 0.9505 + }, + { + "start": 2072.68, + "end": 2076.66, + "probability": 0.9961 + }, + { + "start": 2077.5, + "end": 2083.18, + "probability": 0.9217 + }, + { + "start": 2083.18, + "end": 2090.5, + "probability": 0.9786 + }, + { + "start": 2090.5, + "end": 2093.66, + "probability": 0.9985 + }, + { + "start": 2093.92, + "end": 2093.92, + "probability": 0.2329 + }, + { + "start": 2094.12, + "end": 2094.44, + "probability": 0.6465 + }, + { + "start": 2094.62, + "end": 2096.7, + "probability": 0.9492 + }, + { + "start": 2096.8, + "end": 2098.04, + "probability": 0.9633 + }, + { + "start": 2098.16, + "end": 2098.3, + "probability": 0.7446 + }, + { + "start": 2098.38, + "end": 2099.1, + "probability": 0.8602 + }, + { + "start": 2099.2, + "end": 2103.54, + "probability": 0.9313 + }, + { + "start": 2103.76, + "end": 2108.76, + "probability": 0.9346 + }, + { + "start": 2108.96, + "end": 2109.52, + "probability": 0.6577 + }, + { + "start": 2109.58, + "end": 2109.84, + "probability": 0.3798 + }, + { + "start": 2109.98, + "end": 2112.84, + "probability": 0.9846 + }, + { + "start": 2113.0, + "end": 2113.08, + "probability": 0.6694 + }, + { + "start": 2113.14, + "end": 2114.78, + "probability": 0.9824 + }, + { + "start": 2115.22, + "end": 2116.52, + "probability": 0.6253 + }, + { + "start": 2116.64, + "end": 2119.46, + "probability": 0.7122 + }, + { + "start": 2119.64, + "end": 2121.26, + "probability": 0.9383 + }, + { + "start": 2121.82, + "end": 2123.62, + "probability": 0.9173 + }, + { + "start": 2123.7, + "end": 2126.76, + "probability": 0.9922 + }, + { + "start": 2126.94, + "end": 2128.52, + "probability": 0.443 + }, + { + "start": 2128.74, + "end": 2132.83, + "probability": 0.7449 + }, + { + "start": 2135.94, + "end": 2136.08, + "probability": 0.2362 + }, + { + "start": 2136.08, + "end": 2136.08, + "probability": 0.1234 + }, + { + "start": 2136.08, + "end": 2136.64, + "probability": 0.2223 + }, + { + "start": 2136.8, + "end": 2138.64, + "probability": 0.9806 + }, + { + "start": 2138.72, + "end": 2139.82, + "probability": 0.7958 + }, + { + "start": 2139.96, + "end": 2141.78, + "probability": 0.9737 + }, + { + "start": 2142.04, + "end": 2143.98, + "probability": 0.998 + }, + { + "start": 2143.98, + "end": 2147.24, + "probability": 0.9989 + }, + { + "start": 2147.32, + "end": 2148.68, + "probability": 0.8916 + }, + { + "start": 2148.76, + "end": 2149.6, + "probability": 0.7504 + }, + { + "start": 2150.26, + "end": 2152.14, + "probability": 0.9981 + }, + { + "start": 2152.26, + "end": 2154.74, + "probability": 0.9431 + }, + { + "start": 2154.82, + "end": 2155.62, + "probability": 0.755 + }, + { + "start": 2155.68, + "end": 2159.18, + "probability": 0.8477 + }, + { + "start": 2159.58, + "end": 2163.58, + "probability": 0.6976 + }, + { + "start": 2163.58, + "end": 2164.7, + "probability": 0.6215 + }, + { + "start": 2164.9, + "end": 2165.98, + "probability": 0.2169 + }, + { + "start": 2166.0, + "end": 2167.06, + "probability": 0.9694 + }, + { + "start": 2167.12, + "end": 2167.76, + "probability": 0.1699 + }, + { + "start": 2167.84, + "end": 2168.76, + "probability": 0.2255 + }, + { + "start": 2168.78, + "end": 2170.28, + "probability": 0.7833 + }, + { + "start": 2170.38, + "end": 2171.14, + "probability": 0.9006 + }, + { + "start": 2171.22, + "end": 2175.58, + "probability": 0.9651 + }, + { + "start": 2175.7, + "end": 2180.66, + "probability": 0.9543 + }, + { + "start": 2180.88, + "end": 2186.6, + "probability": 0.9971 + }, + { + "start": 2186.98, + "end": 2190.24, + "probability": 0.8837 + }, + { + "start": 2190.34, + "end": 2191.0, + "probability": 0.9922 + }, + { + "start": 2191.46, + "end": 2195.06, + "probability": 0.9951 + }, + { + "start": 2195.06, + "end": 2199.0, + "probability": 0.9773 + }, + { + "start": 2199.08, + "end": 2200.66, + "probability": 0.9399 + }, + { + "start": 2201.12, + "end": 2202.7, + "probability": 0.7165 + }, + { + "start": 2203.32, + "end": 2205.14, + "probability": 0.9912 + }, + { + "start": 2205.2, + "end": 2209.26, + "probability": 0.8888 + }, + { + "start": 2209.7, + "end": 2213.02, + "probability": 0.9923 + }, + { + "start": 2214.1, + "end": 2218.26, + "probability": 0.9299 + }, + { + "start": 2218.48, + "end": 2223.0, + "probability": 0.7867 + }, + { + "start": 2223.78, + "end": 2224.58, + "probability": 0.8211 + }, + { + "start": 2224.96, + "end": 2224.96, + "probability": 0.0147 + }, + { + "start": 2224.96, + "end": 2226.68, + "probability": 0.9385 + }, + { + "start": 2226.96, + "end": 2231.08, + "probability": 0.9214 + }, + { + "start": 2232.58, + "end": 2233.78, + "probability": 0.9761 + }, + { + "start": 2233.9, + "end": 2238.76, + "probability": 0.9879 + }, + { + "start": 2238.9, + "end": 2240.56, + "probability": 0.9814 + }, + { + "start": 2240.9, + "end": 2245.64, + "probability": 0.6995 + }, + { + "start": 2245.88, + "end": 2246.18, + "probability": 0.723 + }, + { + "start": 2246.32, + "end": 2250.0, + "probability": 0.5713 + }, + { + "start": 2250.22, + "end": 2255.76, + "probability": 0.9499 + }, + { + "start": 2255.76, + "end": 2259.28, + "probability": 0.765 + }, + { + "start": 2259.78, + "end": 2261.2, + "probability": 0.0 + }, + { + "start": 2263.38, + "end": 2263.82, + "probability": 0.1528 + }, + { + "start": 2263.82, + "end": 2264.78, + "probability": 0.3894 + }, + { + "start": 2265.46, + "end": 2267.52, + "probability": 0.9717 + }, + { + "start": 2267.8, + "end": 2272.24, + "probability": 0.9946 + }, + { + "start": 2272.36, + "end": 2273.2, + "probability": 0.8481 + }, + { + "start": 2273.42, + "end": 2274.22, + "probability": 0.95 + }, + { + "start": 2274.6, + "end": 2277.8, + "probability": 0.9878 + }, + { + "start": 2277.8, + "end": 2280.1, + "probability": 0.9223 + }, + { + "start": 2280.18, + "end": 2280.42, + "probability": 0.7271 + }, + { + "start": 2280.52, + "end": 2284.5, + "probability": 0.9532 + }, + { + "start": 2284.64, + "end": 2285.5, + "probability": 0.5393 + }, + { + "start": 2285.76, + "end": 2291.36, + "probability": 0.9492 + }, + { + "start": 2291.38, + "end": 2291.4, + "probability": 0.6889 + }, + { + "start": 2291.4, + "end": 2291.9, + "probability": 0.6204 + }, + { + "start": 2292.04, + "end": 2292.94, + "probability": 0.8951 + }, + { + "start": 2293.12, + "end": 2295.61, + "probability": 0.8403 + }, + { + "start": 2296.02, + "end": 2299.8, + "probability": 0.9878 + }, + { + "start": 2299.86, + "end": 2301.44, + "probability": 0.8621 + }, + { + "start": 2301.74, + "end": 2303.18, + "probability": 0.998 + }, + { + "start": 2303.28, + "end": 2304.46, + "probability": 0.9284 + }, + { + "start": 2304.66, + "end": 2306.36, + "probability": 0.894 + }, + { + "start": 2306.8, + "end": 2308.46, + "probability": 0.9603 + }, + { + "start": 2308.56, + "end": 2311.06, + "probability": 0.997 + }, + { + "start": 2312.04, + "end": 2315.02, + "probability": 0.957 + }, + { + "start": 2315.62, + "end": 2318.42, + "probability": 0.9799 + }, + { + "start": 2318.56, + "end": 2319.62, + "probability": 0.9024 + }, + { + "start": 2320.4, + "end": 2324.32, + "probability": 0.9947 + }, + { + "start": 2324.48, + "end": 2326.72, + "probability": 0.974 + }, + { + "start": 2326.82, + "end": 2327.0, + "probability": 0.5604 + }, + { + "start": 2327.06, + "end": 2331.32, + "probability": 0.8906 + }, + { + "start": 2331.42, + "end": 2333.2, + "probability": 0.8771 + }, + { + "start": 2333.66, + "end": 2336.86, + "probability": 0.6824 + }, + { + "start": 2338.32, + "end": 2341.3, + "probability": 0.2249 + }, + { + "start": 2341.42, + "end": 2341.54, + "probability": 0.0127 + }, + { + "start": 2341.54, + "end": 2344.29, + "probability": 0.448 + }, + { + "start": 2344.44, + "end": 2346.3, + "probability": 0.7182 + }, + { + "start": 2346.46, + "end": 2348.8, + "probability": 0.9937 + }, + { + "start": 2348.8, + "end": 2352.38, + "probability": 0.826 + }, + { + "start": 2352.92, + "end": 2355.82, + "probability": 0.6149 + }, + { + "start": 2356.06, + "end": 2356.94, + "probability": 0.8483 + }, + { + "start": 2357.0, + "end": 2358.04, + "probability": 0.8681 + }, + { + "start": 2358.16, + "end": 2361.68, + "probability": 0.99 + }, + { + "start": 2361.8, + "end": 2363.52, + "probability": 0.9568 + }, + { + "start": 2363.8, + "end": 2366.08, + "probability": 0.9966 + }, + { + "start": 2367.06, + "end": 2368.28, + "probability": 0.7439 + }, + { + "start": 2368.38, + "end": 2369.04, + "probability": 0.8693 + }, + { + "start": 2369.16, + "end": 2373.58, + "probability": 0.9895 + }, + { + "start": 2374.8, + "end": 2379.26, + "probability": 0.9766 + }, + { + "start": 2379.9, + "end": 2384.32, + "probability": 0.9629 + }, + { + "start": 2384.64, + "end": 2386.32, + "probability": 0.75 + }, + { + "start": 2386.6, + "end": 2388.46, + "probability": 0.8553 + }, + { + "start": 2388.52, + "end": 2391.86, + "probability": 0.9897 + }, + { + "start": 2392.24, + "end": 2393.7, + "probability": 0.8928 + }, + { + "start": 2393.96, + "end": 2396.18, + "probability": 0.8118 + }, + { + "start": 2396.54, + "end": 2399.34, + "probability": 0.9934 + }, + { + "start": 2399.46, + "end": 2402.5, + "probability": 0.9554 + }, + { + "start": 2402.78, + "end": 2404.08, + "probability": 0.9966 + }, + { + "start": 2404.5, + "end": 2405.56, + "probability": 0.623 + }, + { + "start": 2405.62, + "end": 2409.62, + "probability": 0.7961 + }, + { + "start": 2410.01, + "end": 2412.01, + "probability": 0.5461 + }, + { + "start": 2413.24, + "end": 2418.22, + "probability": 0.9585 + }, + { + "start": 2418.82, + "end": 2421.38, + "probability": 0.6777 + }, + { + "start": 2421.38, + "end": 2426.84, + "probability": 0.9835 + }, + { + "start": 2427.12, + "end": 2427.8, + "probability": 0.7942 + }, + { + "start": 2427.96, + "end": 2428.28, + "probability": 0.6182 + }, + { + "start": 2429.06, + "end": 2433.76, + "probability": 0.9961 + }, + { + "start": 2434.78, + "end": 2437.86, + "probability": 0.9673 + }, + { + "start": 2439.24, + "end": 2440.84, + "probability": 0.9338 + }, + { + "start": 2446.66, + "end": 2449.1, + "probability": 0.5417 + }, + { + "start": 2450.88, + "end": 2455.88, + "probability": 0.8965 + }, + { + "start": 2456.7, + "end": 2458.92, + "probability": 0.9956 + }, + { + "start": 2458.92, + "end": 2465.88, + "probability": 0.9778 + }, + { + "start": 2467.7, + "end": 2470.43, + "probability": 0.9937 + }, + { + "start": 2470.46, + "end": 2473.66, + "probability": 0.9863 + }, + { + "start": 2474.79, + "end": 2477.6, + "probability": 0.9812 + }, + { + "start": 2477.76, + "end": 2481.92, + "probability": 0.9729 + }, + { + "start": 2482.42, + "end": 2483.88, + "probability": 0.9668 + }, + { + "start": 2484.08, + "end": 2486.8, + "probability": 0.98 + }, + { + "start": 2487.42, + "end": 2489.96, + "probability": 0.9696 + }, + { + "start": 2490.92, + "end": 2495.16, + "probability": 0.8994 + }, + { + "start": 2496.96, + "end": 2502.4, + "probability": 0.9353 + }, + { + "start": 2502.4, + "end": 2506.22, + "probability": 0.9988 + }, + { + "start": 2507.52, + "end": 2510.7, + "probability": 0.9553 + }, + { + "start": 2511.8, + "end": 2515.22, + "probability": 0.8304 + }, + { + "start": 2516.9, + "end": 2518.9, + "probability": 0.9879 + }, + { + "start": 2519.78, + "end": 2522.7, + "probability": 0.9358 + }, + { + "start": 2522.82, + "end": 2525.66, + "probability": 0.8364 + }, + { + "start": 2526.42, + "end": 2527.9, + "probability": 0.927 + }, + { + "start": 2528.22, + "end": 2530.6, + "probability": 0.9905 + }, + { + "start": 2531.48, + "end": 2532.64, + "probability": 0.9707 + }, + { + "start": 2533.26, + "end": 2536.52, + "probability": 0.979 + }, + { + "start": 2537.14, + "end": 2539.3, + "probability": 0.967 + }, + { + "start": 2540.06, + "end": 2545.98, + "probability": 0.9701 + }, + { + "start": 2547.12, + "end": 2550.14, + "probability": 0.5729 + }, + { + "start": 2550.68, + "end": 2551.52, + "probability": 0.9061 + }, + { + "start": 2551.68, + "end": 2555.5, + "probability": 0.9956 + }, + { + "start": 2557.46, + "end": 2560.14, + "probability": 0.9773 + }, + { + "start": 2561.54, + "end": 2564.08, + "probability": 0.9891 + }, + { + "start": 2564.34, + "end": 2568.14, + "probability": 0.9137 + }, + { + "start": 2568.32, + "end": 2571.98, + "probability": 0.9219 + }, + { + "start": 2572.12, + "end": 2572.68, + "probability": 0.4733 + }, + { + "start": 2572.76, + "end": 2576.6, + "probability": 0.9457 + }, + { + "start": 2577.36, + "end": 2580.9, + "probability": 0.9828 + }, + { + "start": 2580.9, + "end": 2583.44, + "probability": 0.9784 + }, + { + "start": 2584.06, + "end": 2587.2, + "probability": 0.9289 + }, + { + "start": 2587.28, + "end": 2589.76, + "probability": 0.9509 + }, + { + "start": 2590.36, + "end": 2592.84, + "probability": 0.9875 + }, + { + "start": 2593.38, + "end": 2597.32, + "probability": 0.9833 + }, + { + "start": 2598.16, + "end": 2600.82, + "probability": 0.9952 + }, + { + "start": 2601.18, + "end": 2602.3, + "probability": 0.6472 + }, + { + "start": 2602.36, + "end": 2604.84, + "probability": 0.8657 + }, + { + "start": 2605.0, + "end": 2610.7, + "probability": 0.9666 + }, + { + "start": 2611.9, + "end": 2612.92, + "probability": 0.924 + }, + { + "start": 2613.52, + "end": 2614.44, + "probability": 0.8336 + }, + { + "start": 2614.98, + "end": 2621.22, + "probability": 0.9134 + }, + { + "start": 2622.62, + "end": 2623.34, + "probability": 0.662 + }, + { + "start": 2623.48, + "end": 2624.41, + "probability": 0.9852 + }, + { + "start": 2624.62, + "end": 2626.78, + "probability": 0.9985 + }, + { + "start": 2626.78, + "end": 2631.25, + "probability": 0.9673 + }, + { + "start": 2632.16, + "end": 2636.12, + "probability": 0.9962 + }, + { + "start": 2637.48, + "end": 2638.86, + "probability": 0.9949 + }, + { + "start": 2639.86, + "end": 2641.16, + "probability": 0.9731 + }, + { + "start": 2641.26, + "end": 2641.4, + "probability": 0.5594 + }, + { + "start": 2641.52, + "end": 2644.66, + "probability": 0.9956 + }, + { + "start": 2647.04, + "end": 2648.02, + "probability": 0.9631 + }, + { + "start": 2649.04, + "end": 2651.58, + "probability": 0.9502 + }, + { + "start": 2651.58, + "end": 2654.72, + "probability": 0.998 + }, + { + "start": 2657.66, + "end": 2663.7, + "probability": 0.6167 + }, + { + "start": 2663.7, + "end": 2668.52, + "probability": 0.9894 + }, + { + "start": 2670.72, + "end": 2673.06, + "probability": 0.8743 + }, + { + "start": 2674.18, + "end": 2677.72, + "probability": 0.9812 + }, + { + "start": 2678.28, + "end": 2683.14, + "probability": 0.9932 + }, + { + "start": 2684.58, + "end": 2688.06, + "probability": 0.9909 + }, + { + "start": 2688.66, + "end": 2690.84, + "probability": 0.9453 + }, + { + "start": 2691.44, + "end": 2693.64, + "probability": 0.7334 + }, + { + "start": 2694.46, + "end": 2695.08, + "probability": 0.8125 + }, + { + "start": 2696.62, + "end": 2697.58, + "probability": 0.9976 + }, + { + "start": 2698.44, + "end": 2700.28, + "probability": 0.7813 + }, + { + "start": 2701.06, + "end": 2702.9, + "probability": 0.9931 + }, + { + "start": 2703.52, + "end": 2707.66, + "probability": 0.9602 + }, + { + "start": 2707.68, + "end": 2709.62, + "probability": 0.8832 + }, + { + "start": 2709.72, + "end": 2712.38, + "probability": 0.9988 + }, + { + "start": 2713.28, + "end": 2716.08, + "probability": 0.9989 + }, + { + "start": 2716.08, + "end": 2718.78, + "probability": 0.9996 + }, + { + "start": 2720.16, + "end": 2722.64, + "probability": 0.8376 + }, + { + "start": 2723.8, + "end": 2725.82, + "probability": 0.967 + }, + { + "start": 2726.58, + "end": 2728.96, + "probability": 0.9956 + }, + { + "start": 2729.06, + "end": 2729.42, + "probability": 0.4488 + }, + { + "start": 2729.5, + "end": 2731.68, + "probability": 0.9351 + }, + { + "start": 2732.88, + "end": 2737.0, + "probability": 0.8224 + }, + { + "start": 2737.12, + "end": 2740.68, + "probability": 0.9067 + }, + { + "start": 2741.54, + "end": 2744.34, + "probability": 0.9904 + }, + { + "start": 2744.72, + "end": 2747.9, + "probability": 0.9941 + }, + { + "start": 2748.28, + "end": 2751.28, + "probability": 0.9984 + }, + { + "start": 2752.46, + "end": 2755.94, + "probability": 0.9793 + }, + { + "start": 2756.08, + "end": 2758.28, + "probability": 0.9601 + }, + { + "start": 2759.08, + "end": 2762.64, + "probability": 0.6467 + }, + { + "start": 2762.84, + "end": 2763.78, + "probability": 0.4291 + }, + { + "start": 2764.8, + "end": 2768.74, + "probability": 0.9956 + }, + { + "start": 2769.62, + "end": 2771.36, + "probability": 0.9554 + }, + { + "start": 2771.9, + "end": 2773.73, + "probability": 0.9972 + }, + { + "start": 2774.22, + "end": 2775.76, + "probability": 0.9924 + }, + { + "start": 2775.98, + "end": 2776.96, + "probability": 0.5419 + }, + { + "start": 2778.7, + "end": 2780.16, + "probability": 0.7713 + }, + { + "start": 2780.78, + "end": 2783.5, + "probability": 0.7387 + }, + { + "start": 2784.08, + "end": 2786.2, + "probability": 0.9714 + }, + { + "start": 2786.66, + "end": 2788.56, + "probability": 0.8979 + }, + { + "start": 2788.68, + "end": 2789.99, + "probability": 0.9946 + }, + { + "start": 2790.18, + "end": 2791.68, + "probability": 0.8713 + }, + { + "start": 2792.64, + "end": 2795.32, + "probability": 0.7934 + }, + { + "start": 2795.38, + "end": 2797.96, + "probability": 0.6857 + }, + { + "start": 2799.4, + "end": 2802.34, + "probability": 0.8934 + }, + { + "start": 2803.2, + "end": 2807.56, + "probability": 0.9575 + }, + { + "start": 2807.72, + "end": 2808.3, + "probability": 0.7776 + }, + { + "start": 2808.36, + "end": 2809.44, + "probability": 0.8731 + }, + { + "start": 2809.88, + "end": 2814.62, + "probability": 0.9406 + }, + { + "start": 2815.92, + "end": 2817.98, + "probability": 0.9955 + }, + { + "start": 2818.72, + "end": 2820.56, + "probability": 0.9937 + }, + { + "start": 2821.54, + "end": 2825.3, + "probability": 0.9873 + }, + { + "start": 2826.84, + "end": 2827.84, + "probability": 0.9812 + }, + { + "start": 2828.5, + "end": 2829.44, + "probability": 0.9551 + }, + { + "start": 2830.24, + "end": 2830.94, + "probability": 0.857 + }, + { + "start": 2830.98, + "end": 2831.66, + "probability": 0.7887 + }, + { + "start": 2831.78, + "end": 2833.94, + "probability": 0.9927 + }, + { + "start": 2834.06, + "end": 2835.22, + "probability": 0.9427 + }, + { + "start": 2836.5, + "end": 2837.99, + "probability": 0.9875 + }, + { + "start": 2838.72, + "end": 2839.88, + "probability": 0.6691 + }, + { + "start": 2841.6, + "end": 2844.48, + "probability": 0.8726 + }, + { + "start": 2845.26, + "end": 2847.86, + "probability": 0.8668 + }, + { + "start": 2848.7, + "end": 2853.46, + "probability": 0.9504 + }, + { + "start": 2854.46, + "end": 2857.68, + "probability": 0.9974 + }, + { + "start": 2857.76, + "end": 2859.68, + "probability": 0.9941 + }, + { + "start": 2861.34, + "end": 2865.22, + "probability": 0.9827 + }, + { + "start": 2866.22, + "end": 2870.36, + "probability": 0.9482 + }, + { + "start": 2871.04, + "end": 2873.98, + "probability": 0.9111 + }, + { + "start": 2874.72, + "end": 2876.66, + "probability": 0.9844 + }, + { + "start": 2877.28, + "end": 2877.96, + "probability": 0.9276 + }, + { + "start": 2878.92, + "end": 2879.84, + "probability": 0.729 + }, + { + "start": 2880.38, + "end": 2880.94, + "probability": 0.7698 + }, + { + "start": 2880.94, + "end": 2884.36, + "probability": 0.8379 + }, + { + "start": 2885.76, + "end": 2887.06, + "probability": 0.9927 + }, + { + "start": 2888.42, + "end": 2889.42, + "probability": 0.9927 + }, + { + "start": 2890.48, + "end": 2892.02, + "probability": 0.9446 + }, + { + "start": 2892.84, + "end": 2893.54, + "probability": 0.7406 + }, + { + "start": 2894.44, + "end": 2897.56, + "probability": 0.9935 + }, + { + "start": 2898.48, + "end": 2901.38, + "probability": 0.82 + }, + { + "start": 2902.66, + "end": 2908.62, + "probability": 0.9922 + }, + { + "start": 2909.66, + "end": 2911.21, + "probability": 0.9673 + }, + { + "start": 2911.44, + "end": 2911.62, + "probability": 0.442 + }, + { + "start": 2911.66, + "end": 2912.78, + "probability": 0.7566 + }, + { + "start": 2914.68, + "end": 2916.32, + "probability": 0.1377 + }, + { + "start": 2917.38, + "end": 2918.36, + "probability": 0.9629 + }, + { + "start": 2920.14, + "end": 2925.32, + "probability": 0.9924 + }, + { + "start": 2926.68, + "end": 2928.5, + "probability": 0.9982 + }, + { + "start": 2930.78, + "end": 2933.56, + "probability": 0.9473 + }, + { + "start": 2935.16, + "end": 2936.5, + "probability": 0.8521 + }, + { + "start": 2936.62, + "end": 2937.76, + "probability": 0.8436 + }, + { + "start": 2938.74, + "end": 2941.85, + "probability": 0.9878 + }, + { + "start": 2943.02, + "end": 2945.12, + "probability": 0.9728 + }, + { + "start": 2945.28, + "end": 2947.56, + "probability": 0.5953 + }, + { + "start": 2947.6, + "end": 2948.28, + "probability": 0.9663 + }, + { + "start": 2949.04, + "end": 2952.08, + "probability": 0.578 + }, + { + "start": 2953.18, + "end": 2956.82, + "probability": 0.9343 + }, + { + "start": 2958.22, + "end": 2960.08, + "probability": 0.9724 + }, + { + "start": 2962.26, + "end": 2963.58, + "probability": 0.8765 + }, + { + "start": 2964.32, + "end": 2967.38, + "probability": 0.8243 + }, + { + "start": 2967.48, + "end": 2968.88, + "probability": 0.9814 + }, + { + "start": 2969.4, + "end": 2974.32, + "probability": 0.9034 + }, + { + "start": 2974.88, + "end": 2976.64, + "probability": 0.8253 + }, + { + "start": 2977.74, + "end": 2979.12, + "probability": 0.9938 + }, + { + "start": 2980.08, + "end": 2981.53, + "probability": 0.998 + }, + { + "start": 2982.84, + "end": 2985.6, + "probability": 0.8215 + }, + { + "start": 2987.02, + "end": 2988.08, + "probability": 0.991 + }, + { + "start": 2988.26, + "end": 2988.96, + "probability": 0.9422 + }, + { + "start": 2989.02, + "end": 2989.9, + "probability": 0.7347 + }, + { + "start": 2990.0, + "end": 2991.22, + "probability": 0.9054 + }, + { + "start": 2991.36, + "end": 2992.12, + "probability": 0.6715 + }, + { + "start": 2992.88, + "end": 2993.36, + "probability": 0.3206 + }, + { + "start": 2993.38, + "end": 2993.64, + "probability": 0.8918 + }, + { + "start": 2993.88, + "end": 2997.32, + "probability": 0.9727 + }, + { + "start": 2998.24, + "end": 2999.14, + "probability": 0.9819 + }, + { + "start": 2999.28, + "end": 3000.1, + "probability": 0.8336 + }, + { + "start": 3001.02, + "end": 3005.72, + "probability": 0.9871 + }, + { + "start": 3006.14, + "end": 3006.76, + "probability": 0.8021 + }, + { + "start": 3007.0, + "end": 3009.54, + "probability": 0.692 + }, + { + "start": 3010.62, + "end": 3010.82, + "probability": 0.6481 + }, + { + "start": 3010.86, + "end": 3011.86, + "probability": 0.1979 + }, + { + "start": 3012.98, + "end": 3014.96, + "probability": 0.9579 + }, + { + "start": 3015.5, + "end": 3016.4, + "probability": 0.9762 + }, + { + "start": 3017.34, + "end": 3019.12, + "probability": 0.998 + }, + { + "start": 3020.02, + "end": 3020.8, + "probability": 0.7574 + }, + { + "start": 3021.8, + "end": 3022.6, + "probability": 0.8702 + }, + { + "start": 3023.66, + "end": 3025.42, + "probability": 0.745 + }, + { + "start": 3026.4, + "end": 3029.94, + "probability": 0.9716 + }, + { + "start": 3030.22, + "end": 3031.28, + "probability": 0.8313 + }, + { + "start": 3031.68, + "end": 3032.46, + "probability": 0.988 + }, + { + "start": 3033.36, + "end": 3038.14, + "probability": 0.9905 + }, + { + "start": 3038.18, + "end": 3039.34, + "probability": 0.7162 + }, + { + "start": 3040.01, + "end": 3040.64, + "probability": 0.9985 + }, + { + "start": 3042.58, + "end": 3043.82, + "probability": 0.9934 + }, + { + "start": 3045.68, + "end": 3048.06, + "probability": 0.7917 + }, + { + "start": 3048.18, + "end": 3049.24, + "probability": 0.8994 + }, + { + "start": 3049.54, + "end": 3050.82, + "probability": 0.9863 + }, + { + "start": 3050.9, + "end": 3051.8, + "probability": 0.9878 + }, + { + "start": 3052.58, + "end": 3056.3, + "probability": 0.9897 + }, + { + "start": 3057.3, + "end": 3059.0, + "probability": 0.6808 + }, + { + "start": 3059.82, + "end": 3062.68, + "probability": 0.9435 + }, + { + "start": 3063.3, + "end": 3065.5, + "probability": 0.7777 + }, + { + "start": 3065.68, + "end": 3066.06, + "probability": 0.5058 + }, + { + "start": 3066.12, + "end": 3066.9, + "probability": 0.8632 + }, + { + "start": 3067.06, + "end": 3067.24, + "probability": 0.6539 + }, + { + "start": 3067.3, + "end": 3068.22, + "probability": 0.9473 + }, + { + "start": 3068.3, + "end": 3069.54, + "probability": 0.6632 + }, + { + "start": 3070.06, + "end": 3072.88, + "probability": 0.9473 + }, + { + "start": 3073.96, + "end": 3074.5, + "probability": 0.9615 + }, + { + "start": 3075.42, + "end": 3079.8, + "probability": 0.8212 + }, + { + "start": 3080.12, + "end": 3081.22, + "probability": 0.8104 + }, + { + "start": 3082.14, + "end": 3083.52, + "probability": 0.7679 + }, + { + "start": 3084.22, + "end": 3089.58, + "probability": 0.955 + }, + { + "start": 3090.28, + "end": 3090.76, + "probability": 0.8264 + }, + { + "start": 3091.58, + "end": 3091.6, + "probability": 0.2241 + }, + { + "start": 3091.6, + "end": 3093.41, + "probability": 0.8345 + }, + { + "start": 3094.04, + "end": 3094.64, + "probability": 0.2552 + }, + { + "start": 3094.88, + "end": 3095.6, + "probability": 0.7275 + }, + { + "start": 3096.44, + "end": 3097.98, + "probability": 0.6679 + }, + { + "start": 3098.5, + "end": 3102.9, + "probability": 0.7602 + }, + { + "start": 3103.78, + "end": 3104.94, + "probability": 0.7827 + }, + { + "start": 3105.54, + "end": 3107.54, + "probability": 0.9611 + }, + { + "start": 3108.6, + "end": 3109.68, + "probability": 0.9798 + }, + { + "start": 3110.84, + "end": 3113.38, + "probability": 0.988 + }, + { + "start": 3114.6, + "end": 3116.76, + "probability": 0.9766 + }, + { + "start": 3116.84, + "end": 3117.06, + "probability": 0.4718 + }, + { + "start": 3117.92, + "end": 3120.12, + "probability": 0.8088 + }, + { + "start": 3120.2, + "end": 3125.12, + "probability": 0.8586 + }, + { + "start": 3125.18, + "end": 3125.9, + "probability": 0.8121 + }, + { + "start": 3133.2, + "end": 3133.22, + "probability": 0.1891 + }, + { + "start": 3133.22, + "end": 3133.22, + "probability": 0.1538 + }, + { + "start": 3133.22, + "end": 3133.26, + "probability": 0.0535 + }, + { + "start": 3133.26, + "end": 3133.28, + "probability": 0.0686 + }, + { + "start": 3133.28, + "end": 3133.28, + "probability": 0.0006 + }, + { + "start": 3154.92, + "end": 3157.48, + "probability": 0.5945 + }, + { + "start": 3158.96, + "end": 3161.14, + "probability": 0.7599 + }, + { + "start": 3162.42, + "end": 3167.8, + "probability": 0.9644 + }, + { + "start": 3167.8, + "end": 3171.68, + "probability": 0.8025 + }, + { + "start": 3173.38, + "end": 3175.4, + "probability": 0.8593 + }, + { + "start": 3177.44, + "end": 3180.86, + "probability": 0.996 + }, + { + "start": 3182.42, + "end": 3187.06, + "probability": 0.9526 + }, + { + "start": 3188.0, + "end": 3189.6, + "probability": 0.6146 + }, + { + "start": 3191.12, + "end": 3193.82, + "probability": 0.9485 + }, + { + "start": 3194.84, + "end": 3196.1, + "probability": 0.7743 + }, + { + "start": 3197.24, + "end": 3202.66, + "probability": 0.9787 + }, + { + "start": 3202.66, + "end": 3208.32, + "probability": 0.9811 + }, + { + "start": 3209.5, + "end": 3217.76, + "probability": 0.9913 + }, + { + "start": 3217.76, + "end": 3224.48, + "probability": 0.9977 + }, + { + "start": 3226.18, + "end": 3226.78, + "probability": 0.5966 + }, + { + "start": 3227.36, + "end": 3231.62, + "probability": 0.6993 + }, + { + "start": 3232.62, + "end": 3238.98, + "probability": 0.9932 + }, + { + "start": 3239.02, + "end": 3240.3, + "probability": 0.807 + }, + { + "start": 3241.24, + "end": 3244.22, + "probability": 0.998 + }, + { + "start": 3244.22, + "end": 3247.48, + "probability": 0.9973 + }, + { + "start": 3248.92, + "end": 3250.0, + "probability": 0.6769 + }, + { + "start": 3250.52, + "end": 3253.52, + "probability": 0.9895 + }, + { + "start": 3254.72, + "end": 3257.88, + "probability": 0.996 + }, + { + "start": 3258.46, + "end": 3261.9, + "probability": 0.9148 + }, + { + "start": 3262.54, + "end": 3267.26, + "probability": 0.9619 + }, + { + "start": 3268.1, + "end": 3269.54, + "probability": 0.6889 + }, + { + "start": 3270.06, + "end": 3274.22, + "probability": 0.9865 + }, + { + "start": 3275.96, + "end": 3279.66, + "probability": 0.9751 + }, + { + "start": 3280.32, + "end": 3281.62, + "probability": 0.4867 + }, + { + "start": 3282.14, + "end": 3286.02, + "probability": 0.8846 + }, + { + "start": 3286.06, + "end": 3287.82, + "probability": 0.8925 + }, + { + "start": 3288.58, + "end": 3291.7, + "probability": 0.9828 + }, + { + "start": 3292.5, + "end": 3297.62, + "probability": 0.986 + }, + { + "start": 3298.86, + "end": 3299.68, + "probability": 0.9731 + }, + { + "start": 3299.84, + "end": 3303.44, + "probability": 0.9561 + }, + { + "start": 3303.74, + "end": 3308.4, + "probability": 0.9948 + }, + { + "start": 3309.26, + "end": 3312.8, + "probability": 0.9705 + }, + { + "start": 3313.46, + "end": 3318.6, + "probability": 0.8276 + }, + { + "start": 3319.14, + "end": 3322.24, + "probability": 0.9915 + }, + { + "start": 3323.46, + "end": 3326.72, + "probability": 0.9559 + }, + { + "start": 3327.56, + "end": 3332.82, + "probability": 0.9871 + }, + { + "start": 3333.58, + "end": 3336.54, + "probability": 0.9944 + }, + { + "start": 3336.54, + "end": 3340.56, + "probability": 0.9991 + }, + { + "start": 3341.44, + "end": 3342.66, + "probability": 0.553 + }, + { + "start": 3343.3, + "end": 3348.0, + "probability": 0.9911 + }, + { + "start": 3348.68, + "end": 3349.42, + "probability": 0.7286 + }, + { + "start": 3349.94, + "end": 3352.56, + "probability": 0.7012 + }, + { + "start": 3353.58, + "end": 3354.58, + "probability": 0.8176 + }, + { + "start": 3354.76, + "end": 3357.78, + "probability": 0.9676 + }, + { + "start": 3358.62, + "end": 3360.58, + "probability": 0.7027 + }, + { + "start": 3362.31, + "end": 3367.62, + "probability": 0.7657 + }, + { + "start": 3368.66, + "end": 3373.44, + "probability": 0.9755 + }, + { + "start": 3374.56, + "end": 3377.74, + "probability": 0.9909 + }, + { + "start": 3377.74, + "end": 3382.28, + "probability": 0.9976 + }, + { + "start": 3383.08, + "end": 3387.32, + "probability": 0.9237 + }, + { + "start": 3387.32, + "end": 3393.08, + "probability": 0.9884 + }, + { + "start": 3394.16, + "end": 3397.24, + "probability": 0.9727 + }, + { + "start": 3397.88, + "end": 3400.1, + "probability": 0.9935 + }, + { + "start": 3400.46, + "end": 3406.66, + "probability": 0.8948 + }, + { + "start": 3407.14, + "end": 3407.98, + "probability": 0.5948 + }, + { + "start": 3408.1, + "end": 3408.56, + "probability": 0.8428 + }, + { + "start": 3408.62, + "end": 3410.36, + "probability": 0.8934 + }, + { + "start": 3411.4, + "end": 3412.6, + "probability": 0.3216 + }, + { + "start": 3413.08, + "end": 3417.68, + "probability": 0.9806 + }, + { + "start": 3417.68, + "end": 3423.76, + "probability": 0.9843 + }, + { + "start": 3423.76, + "end": 3428.4, + "probability": 0.999 + }, + { + "start": 3428.5, + "end": 3432.68, + "probability": 0.9792 + }, + { + "start": 3433.62, + "end": 3438.24, + "probability": 0.9862 + }, + { + "start": 3439.3, + "end": 3441.96, + "probability": 0.9983 + }, + { + "start": 3441.96, + "end": 3446.1, + "probability": 0.9005 + }, + { + "start": 3446.52, + "end": 3450.12, + "probability": 0.9147 + }, + { + "start": 3450.12, + "end": 3452.72, + "probability": 0.9932 + }, + { + "start": 3453.3, + "end": 3458.7, + "probability": 0.9819 + }, + { + "start": 3459.62, + "end": 3460.82, + "probability": 0.8741 + }, + { + "start": 3461.54, + "end": 3464.66, + "probability": 0.9718 + }, + { + "start": 3465.3, + "end": 3469.02, + "probability": 0.9924 + }, + { + "start": 3469.02, + "end": 3471.66, + "probability": 0.9985 + }, + { + "start": 3472.26, + "end": 3473.16, + "probability": 0.8133 + }, + { + "start": 3473.68, + "end": 3476.72, + "probability": 0.9977 + }, + { + "start": 3477.64, + "end": 3482.2, + "probability": 0.9984 + }, + { + "start": 3482.2, + "end": 3486.62, + "probability": 0.9858 + }, + { + "start": 3486.62, + "end": 3491.46, + "probability": 0.9977 + }, + { + "start": 3492.64, + "end": 3496.4, + "probability": 0.9929 + }, + { + "start": 3497.16, + "end": 3498.34, + "probability": 0.7549 + }, + { + "start": 3499.1, + "end": 3503.14, + "probability": 0.9805 + }, + { + "start": 3503.72, + "end": 3506.2, + "probability": 0.6972 + }, + { + "start": 3506.76, + "end": 3507.64, + "probability": 0.7638 + }, + { + "start": 3508.38, + "end": 3512.34, + "probability": 0.9267 + }, + { + "start": 3513.4, + "end": 3517.22, + "probability": 0.72 + }, + { + "start": 3517.76, + "end": 3520.42, + "probability": 0.8302 + }, + { + "start": 3521.2, + "end": 3524.92, + "probability": 0.905 + }, + { + "start": 3525.34, + "end": 3530.54, + "probability": 0.9688 + }, + { + "start": 3531.18, + "end": 3533.44, + "probability": 0.711 + }, + { + "start": 3533.56, + "end": 3534.1, + "probability": 0.5746 + }, + { + "start": 3534.22, + "end": 3534.56, + "probability": 0.4716 + }, + { + "start": 3534.64, + "end": 3535.3, + "probability": 0.526 + }, + { + "start": 3535.4, + "end": 3535.4, + "probability": 0.1146 + }, + { + "start": 3535.4, + "end": 3538.28, + "probability": 0.9021 + }, + { + "start": 3541.04, + "end": 3543.6, + "probability": 0.7355 + }, + { + "start": 3547.58, + "end": 3548.3, + "probability": 0.4793 + }, + { + "start": 3548.64, + "end": 3551.54, + "probability": 0.5723 + }, + { + "start": 3552.6, + "end": 3554.42, + "probability": 0.9799 + }, + { + "start": 3554.92, + "end": 3558.98, + "probability": 0.8387 + }, + { + "start": 3559.58, + "end": 3560.92, + "probability": 0.9883 + }, + { + "start": 3562.4, + "end": 3567.26, + "probability": 0.9758 + }, + { + "start": 3568.48, + "end": 3570.78, + "probability": 0.9859 + }, + { + "start": 3573.06, + "end": 3575.44, + "probability": 0.9703 + }, + { + "start": 3576.08, + "end": 3578.5, + "probability": 0.9551 + }, + { + "start": 3579.96, + "end": 3581.48, + "probability": 0.8839 + }, + { + "start": 3583.16, + "end": 3584.2, + "probability": 0.9893 + }, + { + "start": 3585.84, + "end": 3590.48, + "probability": 0.7645 + }, + { + "start": 3591.18, + "end": 3594.44, + "probability": 0.9676 + }, + { + "start": 3595.98, + "end": 3597.0, + "probability": 0.7051 + }, + { + "start": 3597.98, + "end": 3599.52, + "probability": 0.9499 + }, + { + "start": 3601.18, + "end": 3602.04, + "probability": 0.9003 + }, + { + "start": 3603.4, + "end": 3606.2, + "probability": 0.56 + }, + { + "start": 3606.9, + "end": 3608.88, + "probability": 0.9768 + }, + { + "start": 3610.4, + "end": 3611.42, + "probability": 0.3593 + }, + { + "start": 3611.54, + "end": 3612.26, + "probability": 0.435 + }, + { + "start": 3612.4, + "end": 3616.32, + "probability": 0.7445 + }, + { + "start": 3619.24, + "end": 3620.86, + "probability": 0.4531 + }, + { + "start": 3621.36, + "end": 3623.08, + "probability": 0.9674 + }, + { + "start": 3623.18, + "end": 3624.62, + "probability": 0.8697 + }, + { + "start": 3625.36, + "end": 3628.92, + "probability": 0.8591 + }, + { + "start": 3630.84, + "end": 3633.14, + "probability": 0.9717 + }, + { + "start": 3633.68, + "end": 3634.56, + "probability": 0.5169 + }, + { + "start": 3635.38, + "end": 3636.59, + "probability": 0.9926 + }, + { + "start": 3637.76, + "end": 3641.82, + "probability": 0.9658 + }, + { + "start": 3642.86, + "end": 3647.58, + "probability": 0.9111 + }, + { + "start": 3649.72, + "end": 3650.62, + "probability": 0.9338 + }, + { + "start": 3655.36, + "end": 3657.18, + "probability": 0.2574 + }, + { + "start": 3658.04, + "end": 3659.98, + "probability": 0.7899 + }, + { + "start": 3660.6, + "end": 3662.96, + "probability": 0.9306 + }, + { + "start": 3663.7, + "end": 3666.04, + "probability": 0.967 + }, + { + "start": 3666.04, + "end": 3669.16, + "probability": 0.8719 + }, + { + "start": 3671.08, + "end": 3673.74, + "probability": 0.9847 + }, + { + "start": 3674.66, + "end": 3678.92, + "probability": 0.9914 + }, + { + "start": 3680.42, + "end": 3682.92, + "probability": 0.957 + }, + { + "start": 3683.12, + "end": 3687.92, + "probability": 0.9592 + }, + { + "start": 3690.06, + "end": 3695.98, + "probability": 0.8892 + }, + { + "start": 3697.42, + "end": 3700.44, + "probability": 0.9242 + }, + { + "start": 3701.62, + "end": 3702.82, + "probability": 0.7427 + }, + { + "start": 3704.36, + "end": 3706.6, + "probability": 0.7871 + }, + { + "start": 3708.1, + "end": 3712.2, + "probability": 0.947 + }, + { + "start": 3715.24, + "end": 3721.56, + "probability": 0.1736 + }, + { + "start": 3722.34, + "end": 3722.44, + "probability": 0.0783 + }, + { + "start": 3722.44, + "end": 3729.14, + "probability": 0.4746 + }, + { + "start": 3730.48, + "end": 3732.18, + "probability": 0.53 + }, + { + "start": 3733.18, + "end": 3735.0, + "probability": 0.9912 + }, + { + "start": 3736.14, + "end": 3741.22, + "probability": 0.9658 + }, + { + "start": 3742.14, + "end": 3747.54, + "probability": 0.9233 + }, + { + "start": 3748.78, + "end": 3754.32, + "probability": 0.959 + }, + { + "start": 3755.96, + "end": 3759.6, + "probability": 0.9463 + }, + { + "start": 3761.62, + "end": 3768.12, + "probability": 0.9845 + }, + { + "start": 3770.28, + "end": 3777.76, + "probability": 0.9272 + }, + { + "start": 3780.22, + "end": 3783.34, + "probability": 0.9561 + }, + { + "start": 3783.38, + "end": 3784.62, + "probability": 0.7025 + }, + { + "start": 3784.82, + "end": 3785.2, + "probability": 0.4492 + }, + { + "start": 3785.32, + "end": 3785.96, + "probability": 0.6709 + }, + { + "start": 3787.14, + "end": 3789.2, + "probability": 0.9149 + }, + { + "start": 3789.92, + "end": 3792.49, + "probability": 0.8663 + }, + { + "start": 3793.48, + "end": 3795.4, + "probability": 0.7519 + }, + { + "start": 3796.22, + "end": 3798.44, + "probability": 0.9482 + }, + { + "start": 3798.7, + "end": 3799.72, + "probability": 0.7809 + }, + { + "start": 3800.12, + "end": 3801.3, + "probability": 0.963 + }, + { + "start": 3802.5, + "end": 3804.32, + "probability": 0.9459 + }, + { + "start": 3804.48, + "end": 3810.36, + "probability": 0.9771 + }, + { + "start": 3811.88, + "end": 3814.9, + "probability": 0.9805 + }, + { + "start": 3815.02, + "end": 3816.3, + "probability": 0.8529 + }, + { + "start": 3816.72, + "end": 3820.02, + "probability": 0.9484 + }, + { + "start": 3821.12, + "end": 3824.64, + "probability": 0.852 + }, + { + "start": 3825.36, + "end": 3829.78, + "probability": 0.9624 + }, + { + "start": 3830.36, + "end": 3832.52, + "probability": 0.7045 + }, + { + "start": 3833.82, + "end": 3838.3, + "probability": 0.977 + }, + { + "start": 3838.94, + "end": 3843.8, + "probability": 0.8651 + }, + { + "start": 3845.04, + "end": 3848.9, + "probability": 0.936 + }, + { + "start": 3849.04, + "end": 3850.42, + "probability": 0.8301 + }, + { + "start": 3851.36, + "end": 3854.04, + "probability": 0.9243 + }, + { + "start": 3854.9, + "end": 3858.38, + "probability": 0.8327 + }, + { + "start": 3859.16, + "end": 3862.04, + "probability": 0.9919 + }, + { + "start": 3863.18, + "end": 3866.86, + "probability": 0.9295 + }, + { + "start": 3868.08, + "end": 3870.48, + "probability": 0.9971 + }, + { + "start": 3873.08, + "end": 3876.94, + "probability": 0.9607 + }, + { + "start": 3878.22, + "end": 3881.02, + "probability": 0.9801 + }, + { + "start": 3881.86, + "end": 3883.74, + "probability": 0.8346 + }, + { + "start": 3885.54, + "end": 3889.2, + "probability": 0.998 + }, + { + "start": 3890.48, + "end": 3891.6, + "probability": 0.8729 + }, + { + "start": 3892.26, + "end": 3893.36, + "probability": 0.7905 + }, + { + "start": 3894.16, + "end": 3895.38, + "probability": 0.7686 + }, + { + "start": 3896.68, + "end": 3897.42, + "probability": 0.725 + }, + { + "start": 3899.08, + "end": 3905.44, + "probability": 0.9697 + }, + { + "start": 3906.28, + "end": 3909.66, + "probability": 0.9414 + }, + { + "start": 3912.9, + "end": 3914.64, + "probability": 0.9184 + }, + { + "start": 3914.72, + "end": 3916.9, + "probability": 0.8942 + }, + { + "start": 3917.9, + "end": 3920.76, + "probability": 0.9242 + }, + { + "start": 3921.82, + "end": 3927.38, + "probability": 0.9873 + }, + { + "start": 3929.08, + "end": 3931.18, + "probability": 0.998 + }, + { + "start": 3933.42, + "end": 3939.12, + "probability": 0.6324 + }, + { + "start": 3940.02, + "end": 3941.84, + "probability": 0.6869 + }, + { + "start": 3942.22, + "end": 3944.7, + "probability": 0.9655 + }, + { + "start": 3946.5, + "end": 3949.46, + "probability": 0.9954 + }, + { + "start": 3951.28, + "end": 3955.52, + "probability": 0.8361 + }, + { + "start": 3956.5, + "end": 3957.68, + "probability": 0.6879 + }, + { + "start": 3959.02, + "end": 3967.26, + "probability": 0.9905 + }, + { + "start": 3969.24, + "end": 3972.28, + "probability": 0.9625 + }, + { + "start": 3973.08, + "end": 3974.84, + "probability": 0.744 + }, + { + "start": 3975.64, + "end": 3979.36, + "probability": 0.9453 + }, + { + "start": 3980.24, + "end": 3984.22, + "probability": 0.9703 + }, + { + "start": 3985.76, + "end": 3988.62, + "probability": 0.948 + }, + { + "start": 3989.36, + "end": 3992.64, + "probability": 0.8507 + }, + { + "start": 3993.92, + "end": 3997.58, + "probability": 0.9833 + }, + { + "start": 3997.74, + "end": 4000.42, + "probability": 0.5743 + }, + { + "start": 4000.42, + "end": 4004.0, + "probability": 0.8048 + }, + { + "start": 4005.12, + "end": 4014.18, + "probability": 0.7568 + }, + { + "start": 4018.64, + "end": 4019.3, + "probability": 0.0494 + }, + { + "start": 4019.3, + "end": 4019.5, + "probability": 0.5017 + }, + { + "start": 4020.12, + "end": 4024.36, + "probability": 0.9255 + }, + { + "start": 4024.88, + "end": 4026.72, + "probability": 0.4059 + }, + { + "start": 4028.32, + "end": 4030.0, + "probability": 0.6478 + }, + { + "start": 4030.14, + "end": 4030.88, + "probability": 0.3329 + }, + { + "start": 4034.3, + "end": 4040.52, + "probability": 0.636 + }, + { + "start": 4042.24, + "end": 4042.24, + "probability": 0.0676 + }, + { + "start": 4042.24, + "end": 4042.24, + "probability": 0.0829 + }, + { + "start": 4042.24, + "end": 4042.24, + "probability": 0.2824 + }, + { + "start": 4042.24, + "end": 4042.24, + "probability": 0.0556 + }, + { + "start": 4042.24, + "end": 4048.04, + "probability": 0.6902 + }, + { + "start": 4049.42, + "end": 4056.18, + "probability": 0.9912 + }, + { + "start": 4056.3, + "end": 4056.86, + "probability": 0.8972 + }, + { + "start": 4056.94, + "end": 4058.64, + "probability": 0.7534 + }, + { + "start": 4059.72, + "end": 4061.98, + "probability": 0.8052 + }, + { + "start": 4064.08, + "end": 4068.86, + "probability": 0.9926 + }, + { + "start": 4070.28, + "end": 4071.34, + "probability": 0.9845 + }, + { + "start": 4071.64, + "end": 4075.22, + "probability": 0.9769 + }, + { + "start": 4075.26, + "end": 4076.08, + "probability": 0.904 + }, + { + "start": 4076.12, + "end": 4079.98, + "probability": 0.8719 + }, + { + "start": 4080.5, + "end": 4085.72, + "probability": 0.9756 + }, + { + "start": 4086.64, + "end": 4091.28, + "probability": 0.9288 + }, + { + "start": 4091.82, + "end": 4096.08, + "probability": 0.9868 + }, + { + "start": 4096.14, + "end": 4100.46, + "probability": 0.8337 + }, + { + "start": 4102.46, + "end": 4104.54, + "probability": 0.9633 + }, + { + "start": 4105.82, + "end": 4112.34, + "probability": 0.9877 + }, + { + "start": 4112.86, + "end": 4114.36, + "probability": 0.8217 + }, + { + "start": 4115.2, + "end": 4117.58, + "probability": 0.6452 + }, + { + "start": 4118.12, + "end": 4122.26, + "probability": 0.6772 + }, + { + "start": 4123.56, + "end": 4127.84, + "probability": 0.923 + }, + { + "start": 4129.1, + "end": 4137.68, + "probability": 0.954 + }, + { + "start": 4138.52, + "end": 4141.94, + "probability": 0.8507 + }, + { + "start": 4143.9, + "end": 4145.48, + "probability": 0.7837 + }, + { + "start": 4146.74, + "end": 4152.72, + "probability": 0.8799 + }, + { + "start": 4153.62, + "end": 4154.82, + "probability": 0.9893 + }, + { + "start": 4156.38, + "end": 4159.72, + "probability": 0.9689 + }, + { + "start": 4160.72, + "end": 4166.1, + "probability": 0.9922 + }, + { + "start": 4168.2, + "end": 4172.0, + "probability": 0.9578 + }, + { + "start": 4172.9, + "end": 4174.57, + "probability": 0.6406 + }, + { + "start": 4175.6, + "end": 4178.28, + "probability": 0.9066 + }, + { + "start": 4179.12, + "end": 4183.24, + "probability": 0.9964 + }, + { + "start": 4184.34, + "end": 4187.2, + "probability": 0.9017 + }, + { + "start": 4187.52, + "end": 4189.03, + "probability": 0.9927 + }, + { + "start": 4189.88, + "end": 4194.36, + "probability": 0.9421 + }, + { + "start": 4195.22, + "end": 4199.18, + "probability": 0.8005 + }, + { + "start": 4199.72, + "end": 4201.56, + "probability": 0.7795 + }, + { + "start": 4202.02, + "end": 4202.42, + "probability": 0.7376 + }, + { + "start": 4202.66, + "end": 4204.82, + "probability": 0.8728 + }, + { + "start": 4205.2, + "end": 4208.96, + "probability": 0.8381 + }, + { + "start": 4210.04, + "end": 4211.38, + "probability": 0.3793 + }, + { + "start": 4231.38, + "end": 4234.32, + "probability": 0.749 + }, + { + "start": 4235.8, + "end": 4241.16, + "probability": 0.9842 + }, + { + "start": 4241.28, + "end": 4243.96, + "probability": 0.9558 + }, + { + "start": 4244.88, + "end": 4246.5, + "probability": 0.9622 + }, + { + "start": 4246.72, + "end": 4250.48, + "probability": 0.9644 + }, + { + "start": 4250.94, + "end": 4253.88, + "probability": 0.9967 + }, + { + "start": 4255.06, + "end": 4260.1, + "probability": 0.9639 + }, + { + "start": 4260.2, + "end": 4263.72, + "probability": 0.9634 + }, + { + "start": 4264.1, + "end": 4267.5, + "probability": 0.9964 + }, + { + "start": 4267.72, + "end": 4272.14, + "probability": 0.9869 + }, + { + "start": 4272.2, + "end": 4275.58, + "probability": 0.953 + }, + { + "start": 4276.22, + "end": 4278.84, + "probability": 0.9973 + }, + { + "start": 4278.92, + "end": 4283.0, + "probability": 0.9932 + }, + { + "start": 4283.2, + "end": 4287.38, + "probability": 0.9945 + }, + { + "start": 4287.82, + "end": 4288.98, + "probability": 0.1259 + }, + { + "start": 4289.02, + "end": 4292.46, + "probability": 0.909 + }, + { + "start": 4292.46, + "end": 4297.44, + "probability": 0.9561 + }, + { + "start": 4300.14, + "end": 4300.68, + "probability": 0.015 + }, + { + "start": 4300.86, + "end": 4301.68, + "probability": 0.8026 + }, + { + "start": 4301.94, + "end": 4302.88, + "probability": 0.63 + }, + { + "start": 4303.0, + "end": 4304.86, + "probability": 0.9266 + }, + { + "start": 4305.06, + "end": 4306.98, + "probability": 0.9456 + }, + { + "start": 4307.08, + "end": 4311.08, + "probability": 0.8867 + }, + { + "start": 4311.58, + "end": 4314.36, + "probability": 0.9282 + }, + { + "start": 4315.96, + "end": 4319.76, + "probability": 0.9153 + }, + { + "start": 4320.02, + "end": 4322.46, + "probability": 0.991 + }, + { + "start": 4322.58, + "end": 4324.26, + "probability": 0.7409 + }, + { + "start": 4324.82, + "end": 4327.62, + "probability": 0.9195 + }, + { + "start": 4328.14, + "end": 4331.31, + "probability": 0.9672 + }, + { + "start": 4332.14, + "end": 4337.42, + "probability": 0.9462 + }, + { + "start": 4338.0, + "end": 4341.18, + "probability": 0.8579 + }, + { + "start": 4341.18, + "end": 4344.88, + "probability": 0.9759 + }, + { + "start": 4346.02, + "end": 4346.84, + "probability": 0.8035 + }, + { + "start": 4346.94, + "end": 4349.92, + "probability": 0.9678 + }, + { + "start": 4349.98, + "end": 4353.34, + "probability": 0.9473 + }, + { + "start": 4353.7, + "end": 4357.7, + "probability": 0.8906 + }, + { + "start": 4358.4, + "end": 4361.38, + "probability": 0.9368 + }, + { + "start": 4361.38, + "end": 4365.12, + "probability": 0.9208 + }, + { + "start": 4365.6, + "end": 4366.57, + "probability": 0.8421 + }, + { + "start": 4367.76, + "end": 4369.2, + "probability": 0.9916 + }, + { + "start": 4369.26, + "end": 4370.5, + "probability": 0.9121 + }, + { + "start": 4370.72, + "end": 4375.8, + "probability": 0.9269 + }, + { + "start": 4376.82, + "end": 4381.74, + "probability": 0.8042 + }, + { + "start": 4381.86, + "end": 4384.36, + "probability": 0.8594 + }, + { + "start": 4385.12, + "end": 4385.9, + "probability": 0.4798 + }, + { + "start": 4385.96, + "end": 4394.66, + "probability": 0.9622 + }, + { + "start": 4394.66, + "end": 4400.46, + "probability": 0.9904 + }, + { + "start": 4402.34, + "end": 4403.04, + "probability": 0.5386 + }, + { + "start": 4403.68, + "end": 4404.34, + "probability": 0.4046 + }, + { + "start": 4404.34, + "end": 4410.36, + "probability": 0.9979 + }, + { + "start": 4410.6, + "end": 4410.82, + "probability": 0.0255 + }, + { + "start": 4411.34, + "end": 4412.55, + "probability": 0.3136 + }, + { + "start": 4412.78, + "end": 4413.48, + "probability": 0.121 + }, + { + "start": 4413.96, + "end": 4416.62, + "probability": 0.9513 + }, + { + "start": 4416.86, + "end": 4418.04, + "probability": 0.9221 + }, + { + "start": 4419.74, + "end": 4419.76, + "probability": 0.3555 + }, + { + "start": 4419.76, + "end": 4421.08, + "probability": 0.5217 + }, + { + "start": 4421.22, + "end": 4421.72, + "probability": 0.2764 + }, + { + "start": 4422.58, + "end": 4422.66, + "probability": 0.01 + }, + { + "start": 4422.66, + "end": 4422.66, + "probability": 0.1054 + }, + { + "start": 4422.66, + "end": 4425.46, + "probability": 0.8018 + }, + { + "start": 4425.54, + "end": 4426.38, + "probability": 0.8947 + }, + { + "start": 4426.44, + "end": 4428.08, + "probability": 0.9386 + }, + { + "start": 4428.24, + "end": 4428.7, + "probability": 0.9453 + }, + { + "start": 4428.74, + "end": 4430.4, + "probability": 0.9241 + }, + { + "start": 4430.92, + "end": 4432.36, + "probability": 0.6523 + }, + { + "start": 4432.94, + "end": 4438.98, + "probability": 0.998 + }, + { + "start": 4439.24, + "end": 4440.4, + "probability": 0.7721 + }, + { + "start": 4440.56, + "end": 4441.96, + "probability": 0.5623 + }, + { + "start": 4442.2, + "end": 4443.4, + "probability": 0.9248 + }, + { + "start": 4444.72, + "end": 4446.34, + "probability": 0.7586 + }, + { + "start": 4446.52, + "end": 4447.72, + "probability": 0.5873 + }, + { + "start": 4447.72, + "end": 4448.42, + "probability": 0.1127 + }, + { + "start": 4448.7, + "end": 4449.22, + "probability": 0.5711 + }, + { + "start": 4449.32, + "end": 4449.8, + "probability": 0.8284 + }, + { + "start": 4449.8, + "end": 4450.32, + "probability": 0.4616 + }, + { + "start": 4450.32, + "end": 4450.62, + "probability": 0.4071 + }, + { + "start": 4450.68, + "end": 4452.08, + "probability": 0.97 + }, + { + "start": 4452.54, + "end": 4454.84, + "probability": 0.9712 + }, + { + "start": 4454.96, + "end": 4455.38, + "probability": 0.5574 + }, + { + "start": 4455.96, + "end": 4457.72, + "probability": 0.766 + }, + { + "start": 4458.52, + "end": 4459.35, + "probability": 0.5695 + }, + { + "start": 4459.92, + "end": 4460.26, + "probability": 0.1979 + }, + { + "start": 4460.42, + "end": 4462.28, + "probability": 0.4238 + }, + { + "start": 4462.28, + "end": 4463.46, + "probability": 0.3154 + }, + { + "start": 4464.02, + "end": 4464.26, + "probability": 0.0252 + }, + { + "start": 4464.26, + "end": 4465.61, + "probability": 0.5028 + }, + { + "start": 4466.76, + "end": 4467.98, + "probability": 0.762 + }, + { + "start": 4468.68, + "end": 4470.32, + "probability": 0.6851 + }, + { + "start": 4471.66, + "end": 4475.02, + "probability": 0.9482 + }, + { + "start": 4475.14, + "end": 4476.52, + "probability": 0.8439 + }, + { + "start": 4476.94, + "end": 4478.64, + "probability": 0.9619 + }, + { + "start": 4479.12, + "end": 4483.42, + "probability": 0.9875 + }, + { + "start": 4483.9, + "end": 4486.58, + "probability": 0.9876 + }, + { + "start": 4486.88, + "end": 4490.6, + "probability": 0.9832 + }, + { + "start": 4490.84, + "end": 4492.94, + "probability": 0.9995 + }, + { + "start": 4493.0, + "end": 4498.7, + "probability": 0.9793 + }, + { + "start": 4499.3, + "end": 4505.16, + "probability": 0.9945 + }, + { + "start": 4506.1, + "end": 4507.38, + "probability": 0.6336 + }, + { + "start": 4508.04, + "end": 4511.02, + "probability": 0.9984 + }, + { + "start": 4511.22, + "end": 4512.82, + "probability": 0.7305 + }, + { + "start": 4513.16, + "end": 4515.65, + "probability": 0.9969 + }, + { + "start": 4515.94, + "end": 4519.6, + "probability": 0.9873 + }, + { + "start": 4519.82, + "end": 4520.84, + "probability": 0.7932 + }, + { + "start": 4521.5, + "end": 4527.06, + "probability": 0.9497 + }, + { + "start": 4527.22, + "end": 4530.92, + "probability": 0.9259 + }, + { + "start": 4531.1, + "end": 4531.24, + "probability": 0.3623 + }, + { + "start": 4531.34, + "end": 4532.62, + "probability": 0.7774 + }, + { + "start": 4533.38, + "end": 4536.04, + "probability": 0.8504 + }, + { + "start": 4536.28, + "end": 4539.92, + "probability": 0.9867 + }, + { + "start": 4540.0, + "end": 4545.06, + "probability": 0.997 + }, + { + "start": 4545.52, + "end": 4546.68, + "probability": 0.8455 + }, + { + "start": 4547.1, + "end": 4548.26, + "probability": 0.9812 + }, + { + "start": 4548.54, + "end": 4549.46, + "probability": 0.5324 + }, + { + "start": 4549.84, + "end": 4551.24, + "probability": 0.9057 + }, + { + "start": 4551.48, + "end": 4553.92, + "probability": 0.9832 + }, + { + "start": 4554.34, + "end": 4556.38, + "probability": 0.9951 + }, + { + "start": 4556.38, + "end": 4559.72, + "probability": 0.995 + }, + { + "start": 4559.76, + "end": 4560.68, + "probability": 0.3996 + }, + { + "start": 4560.92, + "end": 4563.9, + "probability": 0.9592 + }, + { + "start": 4563.96, + "end": 4567.88, + "probability": 0.9907 + }, + { + "start": 4568.6, + "end": 4573.62, + "probability": 0.997 + }, + { + "start": 4573.76, + "end": 4574.2, + "probability": 0.9044 + }, + { + "start": 4574.38, + "end": 4574.86, + "probability": 0.6538 + }, + { + "start": 4575.08, + "end": 4575.4, + "probability": 0.9449 + }, + { + "start": 4575.88, + "end": 4578.01, + "probability": 0.9529 + }, + { + "start": 4578.76, + "end": 4582.84, + "probability": 0.663 + }, + { + "start": 4583.5, + "end": 4584.76, + "probability": 0.9509 + }, + { + "start": 4584.76, + "end": 4590.68, + "probability": 0.9896 + }, + { + "start": 4590.68, + "end": 4597.84, + "probability": 0.9879 + }, + { + "start": 4598.58, + "end": 4600.62, + "probability": 0.7368 + }, + { + "start": 4601.2, + "end": 4603.0, + "probability": 0.8053 + }, + { + "start": 4603.38, + "end": 4604.36, + "probability": 0.7084 + }, + { + "start": 4604.44, + "end": 4609.86, + "probability": 0.9789 + }, + { + "start": 4610.94, + "end": 4612.98, + "probability": 0.9777 + }, + { + "start": 4613.08, + "end": 4616.72, + "probability": 0.9884 + }, + { + "start": 4616.88, + "end": 4617.54, + "probability": 0.7007 + }, + { + "start": 4618.24, + "end": 4619.86, + "probability": 0.9903 + }, + { + "start": 4619.92, + "end": 4621.0, + "probability": 0.774 + }, + { + "start": 4621.2, + "end": 4626.02, + "probability": 0.9933 + }, + { + "start": 4626.96, + "end": 4629.44, + "probability": 0.8134 + }, + { + "start": 4629.58, + "end": 4629.92, + "probability": 0.981 + }, + { + "start": 4631.5, + "end": 4634.62, + "probability": 0.9878 + }, + { + "start": 4634.7, + "end": 4636.4, + "probability": 0.9736 + }, + { + "start": 4636.5, + "end": 4639.7, + "probability": 0.9198 + }, + { + "start": 4640.6, + "end": 4643.28, + "probability": 0.9594 + }, + { + "start": 4643.46, + "end": 4643.82, + "probability": 0.9143 + }, + { + "start": 4643.92, + "end": 4645.12, + "probability": 0.8986 + }, + { + "start": 4645.18, + "end": 4650.62, + "probability": 0.9834 + }, + { + "start": 4651.2, + "end": 4651.66, + "probability": 0.435 + }, + { + "start": 4651.74, + "end": 4652.4, + "probability": 0.6833 + }, + { + "start": 4652.44, + "end": 4653.32, + "probability": 0.5847 + }, + { + "start": 4653.44, + "end": 4656.7, + "probability": 0.9907 + }, + { + "start": 4656.78, + "end": 4658.54, + "probability": 0.8824 + }, + { + "start": 4659.36, + "end": 4661.48, + "probability": 0.6172 + }, + { + "start": 4661.56, + "end": 4664.36, + "probability": 0.9911 + }, + { + "start": 4665.14, + "end": 4665.64, + "probability": 0.7727 + }, + { + "start": 4666.08, + "end": 4667.9, + "probability": 0.8874 + }, + { + "start": 4667.9, + "end": 4668.8, + "probability": 0.9081 + }, + { + "start": 4668.96, + "end": 4669.28, + "probability": 0.4706 + }, + { + "start": 4669.32, + "end": 4671.01, + "probability": 0.7779 + }, + { + "start": 4671.48, + "end": 4674.74, + "probability": 0.9698 + }, + { + "start": 4675.64, + "end": 4676.76, + "probability": 0.9577 + }, + { + "start": 4677.1, + "end": 4680.78, + "probability": 0.9641 + }, + { + "start": 4681.14, + "end": 4682.14, + "probability": 0.879 + }, + { + "start": 4682.16, + "end": 4686.3, + "probability": 0.6812 + }, + { + "start": 4687.1, + "end": 4690.0, + "probability": 0.9155 + }, + { + "start": 4690.06, + "end": 4690.56, + "probability": 0.9344 + }, + { + "start": 4690.62, + "end": 4692.68, + "probability": 0.9908 + }, + { + "start": 4694.64, + "end": 4699.08, + "probability": 0.8707 + }, + { + "start": 4699.08, + "end": 4702.52, + "probability": 0.9964 + }, + { + "start": 4702.68, + "end": 4705.8, + "probability": 0.9797 + }, + { + "start": 4705.88, + "end": 4708.86, + "probability": 0.8962 + }, + { + "start": 4708.9, + "end": 4709.42, + "probability": 0.7282 + }, + { + "start": 4709.48, + "end": 4710.22, + "probability": 0.9164 + }, + { + "start": 4710.28, + "end": 4712.28, + "probability": 0.9971 + }, + { + "start": 4712.9, + "end": 4715.5, + "probability": 0.9971 + }, + { + "start": 4715.76, + "end": 4719.15, + "probability": 0.9689 + }, + { + "start": 4719.62, + "end": 4725.92, + "probability": 0.9984 + }, + { + "start": 4726.38, + "end": 4734.58, + "probability": 0.9964 + }, + { + "start": 4735.02, + "end": 4737.22, + "probability": 0.9678 + }, + { + "start": 4737.42, + "end": 4740.8, + "probability": 0.8727 + }, + { + "start": 4741.0, + "end": 4743.68, + "probability": 0.9142 + }, + { + "start": 4743.8, + "end": 4744.93, + "probability": 0.9556 + }, + { + "start": 4746.7, + "end": 4747.62, + "probability": 0.9128 + }, + { + "start": 4747.78, + "end": 4750.64, + "probability": 0.9217 + }, + { + "start": 4750.8, + "end": 4751.52, + "probability": 0.8904 + }, + { + "start": 4752.12, + "end": 4756.5, + "probability": 0.9899 + }, + { + "start": 4756.5, + "end": 4759.82, + "probability": 0.9907 + }, + { + "start": 4760.5, + "end": 4761.1, + "probability": 0.5507 + }, + { + "start": 4761.54, + "end": 4762.06, + "probability": 0.6774 + }, + { + "start": 4762.14, + "end": 4762.42, + "probability": 0.9564 + }, + { + "start": 4777.34, + "end": 4778.3, + "probability": 0.3217 + }, + { + "start": 4778.74, + "end": 4779.37, + "probability": 0.9595 + }, + { + "start": 4780.04, + "end": 4783.68, + "probability": 0.9958 + }, + { + "start": 4783.94, + "end": 4787.48, + "probability": 0.9971 + }, + { + "start": 4787.48, + "end": 4791.82, + "probability": 0.9919 + }, + { + "start": 4792.16, + "end": 4793.94, + "probability": 0.993 + }, + { + "start": 4794.5, + "end": 4798.02, + "probability": 0.8394 + }, + { + "start": 4798.16, + "end": 4802.86, + "probability": 0.9966 + }, + { + "start": 4803.0, + "end": 4803.42, + "probability": 0.8415 + }, + { + "start": 4803.48, + "end": 4807.94, + "probability": 0.9641 + }, + { + "start": 4807.94, + "end": 4811.72, + "probability": 0.9962 + }, + { + "start": 4811.74, + "end": 4815.82, + "probability": 0.9951 + }, + { + "start": 4816.16, + "end": 4818.22, + "probability": 0.9395 + }, + { + "start": 4819.34, + "end": 4820.38, + "probability": 0.8827 + }, + { + "start": 4821.18, + "end": 4827.32, + "probability": 0.9443 + }, + { + "start": 4828.1, + "end": 4834.8, + "probability": 0.985 + }, + { + "start": 4835.32, + "end": 4837.96, + "probability": 0.9681 + }, + { + "start": 4838.22, + "end": 4843.02, + "probability": 0.9874 + }, + { + "start": 4843.4, + "end": 4845.52, + "probability": 0.9683 + }, + { + "start": 4845.74, + "end": 4847.58, + "probability": 0.6952 + }, + { + "start": 4847.66, + "end": 4849.96, + "probability": 0.6697 + }, + { + "start": 4849.96, + "end": 4850.52, + "probability": 0.0532 + }, + { + "start": 4850.52, + "end": 4852.66, + "probability": 0.729 + }, + { + "start": 4852.88, + "end": 4856.98, + "probability": 0.8935 + }, + { + "start": 4857.2, + "end": 4859.1, + "probability": 0.7755 + }, + { + "start": 4859.18, + "end": 4862.92, + "probability": 0.9943 + }, + { + "start": 4863.1, + "end": 4863.64, + "probability": 0.7218 + }, + { + "start": 4863.7, + "end": 4869.0, + "probability": 0.9928 + }, + { + "start": 4869.44, + "end": 4869.44, + "probability": 0.0001 + }, + { + "start": 4869.44, + "end": 4872.18, + "probability": 0.814 + }, + { + "start": 4872.2, + "end": 4875.68, + "probability": 0.0713 + }, + { + "start": 4875.68, + "end": 4875.68, + "probability": 0.1335 + }, + { + "start": 4875.68, + "end": 4876.02, + "probability": 0.2476 + }, + { + "start": 4876.02, + "end": 4877.34, + "probability": 0.8021 + }, + { + "start": 4877.4, + "end": 4878.46, + "probability": 0.8639 + }, + { + "start": 4878.58, + "end": 4879.68, + "probability": 0.472 + }, + { + "start": 4880.0, + "end": 4880.14, + "probability": 0.6934 + }, + { + "start": 4880.18, + "end": 4880.94, + "probability": 0.7508 + }, + { + "start": 4880.94, + "end": 4883.12, + "probability": 0.9922 + }, + { + "start": 4883.74, + "end": 4887.06, + "probability": 0.6435 + }, + { + "start": 4887.24, + "end": 4888.44, + "probability": 0.6013 + }, + { + "start": 4888.44, + "end": 4888.44, + "probability": 0.1091 + }, + { + "start": 4888.44, + "end": 4888.44, + "probability": 0.0431 + }, + { + "start": 4888.44, + "end": 4891.9, + "probability": 0.6934 + }, + { + "start": 4892.12, + "end": 4893.34, + "probability": 0.5306 + }, + { + "start": 4893.62, + "end": 4896.52, + "probability": 0.4186 + }, + { + "start": 4896.56, + "end": 4899.78, + "probability": 0.5424 + }, + { + "start": 4899.78, + "end": 4900.08, + "probability": 0.319 + }, + { + "start": 4900.16, + "end": 4900.72, + "probability": 0.725 + }, + { + "start": 4900.76, + "end": 4902.79, + "probability": 0.9587 + }, + { + "start": 4903.04, + "end": 4903.92, + "probability": 0.6983 + }, + { + "start": 4904.06, + "end": 4905.28, + "probability": 0.8965 + }, + { + "start": 4905.3, + "end": 4907.5, + "probability": 0.9067 + }, + { + "start": 4907.54, + "end": 4910.4, + "probability": 0.9545 + }, + { + "start": 4910.58, + "end": 4911.76, + "probability": 0.1893 + }, + { + "start": 4913.06, + "end": 4916.16, + "probability": 0.746 + }, + { + "start": 4916.26, + "end": 4917.56, + "probability": 0.7327 + }, + { + "start": 4917.6, + "end": 4920.48, + "probability": 0.8386 + }, + { + "start": 4920.5, + "end": 4923.1, + "probability": 0.9723 + }, + { + "start": 4923.3, + "end": 4923.52, + "probability": 0.6387 + }, + { + "start": 4924.24, + "end": 4925.4, + "probability": 0.7272 + }, + { + "start": 4925.46, + "end": 4926.16, + "probability": 0.8357 + }, + { + "start": 4926.22, + "end": 4931.44, + "probability": 0.7759 + }, + { + "start": 4931.54, + "end": 4933.12, + "probability": 0.6709 + }, + { + "start": 4933.26, + "end": 4935.63, + "probability": 0.9907 + }, + { + "start": 4935.84, + "end": 4938.94, + "probability": 0.9972 + }, + { + "start": 4939.54, + "end": 4942.96, + "probability": 0.8811 + }, + { + "start": 4944.44, + "end": 4949.84, + "probability": 0.9902 + }, + { + "start": 4949.9, + "end": 4952.51, + "probability": 0.8472 + }, + { + "start": 4952.9, + "end": 4953.64, + "probability": 0.7993 + }, + { + "start": 4953.8, + "end": 4954.99, + "probability": 0.9805 + }, + { + "start": 4955.22, + "end": 4957.1, + "probability": 0.9803 + }, + { + "start": 4957.18, + "end": 4961.54, + "probability": 0.9805 + }, + { + "start": 4961.54, + "end": 4967.7, + "probability": 0.9823 + }, + { + "start": 4967.84, + "end": 4969.09, + "probability": 0.9961 + }, + { + "start": 4969.78, + "end": 4970.72, + "probability": 0.9651 + }, + { + "start": 4970.94, + "end": 4973.58, + "probability": 0.9935 + }, + { + "start": 4974.36, + "end": 4975.06, + "probability": 0.0925 + }, + { + "start": 4975.62, + "end": 4975.84, + "probability": 0.0072 + }, + { + "start": 4975.84, + "end": 4975.9, + "probability": 0.2885 + }, + { + "start": 4976.32, + "end": 4977.68, + "probability": 0.7274 + }, + { + "start": 4977.78, + "end": 4978.22, + "probability": 0.9788 + }, + { + "start": 4978.32, + "end": 4979.69, + "probability": 0.8967 + }, + { + "start": 4980.24, + "end": 4985.73, + "probability": 0.992 + }, + { + "start": 4986.42, + "end": 4988.84, + "probability": 0.6298 + }, + { + "start": 4989.86, + "end": 4997.06, + "probability": 0.9868 + }, + { + "start": 4997.1, + "end": 4998.82, + "probability": 0.8198 + }, + { + "start": 4998.94, + "end": 5003.68, + "probability": 0.9956 + }, + { + "start": 5003.74, + "end": 5007.24, + "probability": 0.7729 + }, + { + "start": 5007.36, + "end": 5010.44, + "probability": 0.9871 + }, + { + "start": 5010.44, + "end": 5014.28, + "probability": 0.9915 + }, + { + "start": 5014.48, + "end": 5015.8, + "probability": 0.8136 + }, + { + "start": 5016.12, + "end": 5017.14, + "probability": 0.5334 + }, + { + "start": 5017.64, + "end": 5018.88, + "probability": 0.7354 + }, + { + "start": 5019.0, + "end": 5023.68, + "probability": 0.9925 + }, + { + "start": 5023.72, + "end": 5026.36, + "probability": 0.2081 + }, + { + "start": 5026.4, + "end": 5027.58, + "probability": 0.2516 + }, + { + "start": 5030.92, + "end": 5031.34, + "probability": 0.0466 + }, + { + "start": 5031.34, + "end": 5031.34, + "probability": 0.0765 + }, + { + "start": 5031.34, + "end": 5034.12, + "probability": 0.3516 + }, + { + "start": 5034.32, + "end": 5035.06, + "probability": 0.1723 + }, + { + "start": 5035.6, + "end": 5036.04, + "probability": 0.164 + }, + { + "start": 5036.8, + "end": 5038.44, + "probability": 0.1957 + }, + { + "start": 5039.14, + "end": 5040.1, + "probability": 0.0228 + }, + { + "start": 5040.44, + "end": 5042.08, + "probability": 0.2743 + }, + { + "start": 5042.3, + "end": 5046.25, + "probability": 0.9492 + }, + { + "start": 5046.44, + "end": 5047.02, + "probability": 0.0293 + }, + { + "start": 5047.08, + "end": 5050.74, + "probability": 0.2385 + }, + { + "start": 5050.88, + "end": 5051.9, + "probability": 0.442 + }, + { + "start": 5052.39, + "end": 5055.08, + "probability": 0.4256 + }, + { + "start": 5055.24, + "end": 5056.66, + "probability": 0.393 + }, + { + "start": 5056.72, + "end": 5059.96, + "probability": 0.9862 + }, + { + "start": 5060.82, + "end": 5061.17, + "probability": 0.0165 + }, + { + "start": 5061.22, + "end": 5061.82, + "probability": 0.3428 + }, + { + "start": 5062.44, + "end": 5069.04, + "probability": 0.8486 + }, + { + "start": 5069.04, + "end": 5071.54, + "probability": 0.9893 + }, + { + "start": 5071.54, + "end": 5075.48, + "probability": 0.9995 + }, + { + "start": 5075.8, + "end": 5076.94, + "probability": 0.9995 + }, + { + "start": 5077.16, + "end": 5078.19, + "probability": 0.9995 + }, + { + "start": 5078.7, + "end": 5080.9, + "probability": 0.9978 + }, + { + "start": 5081.36, + "end": 5083.68, + "probability": 0.9961 + }, + { + "start": 5083.68, + "end": 5088.22, + "probability": 0.9557 + }, + { + "start": 5088.66, + "end": 5090.24, + "probability": 0.1912 + }, + { + "start": 5090.26, + "end": 5090.26, + "probability": 0.2424 + }, + { + "start": 5090.3, + "end": 5091.74, + "probability": 0.289 + }, + { + "start": 5091.8, + "end": 5094.62, + "probability": 0.2099 + }, + { + "start": 5094.62, + "end": 5096.64, + "probability": 0.6513 + }, + { + "start": 5096.64, + "end": 5097.55, + "probability": 0.0508 + }, + { + "start": 5097.88, + "end": 5098.36, + "probability": 0.8579 + }, + { + "start": 5098.94, + "end": 5100.34, + "probability": 0.9622 + }, + { + "start": 5101.06, + "end": 5101.32, + "probability": 0.1317 + }, + { + "start": 5101.42, + "end": 5102.24, + "probability": 0.3179 + }, + { + "start": 5102.5, + "end": 5104.26, + "probability": 0.8826 + }, + { + "start": 5104.34, + "end": 5105.81, + "probability": 0.8944 + }, + { + "start": 5106.18, + "end": 5108.08, + "probability": 0.9976 + }, + { + "start": 5108.54, + "end": 5111.32, + "probability": 0.863 + }, + { + "start": 5111.5, + "end": 5113.14, + "probability": 0.25 + }, + { + "start": 5114.16, + "end": 5115.69, + "probability": 0.0462 + }, + { + "start": 5117.36, + "end": 5119.2, + "probability": 0.3795 + }, + { + "start": 5119.22, + "end": 5123.04, + "probability": 0.9836 + }, + { + "start": 5123.26, + "end": 5123.82, + "probability": 0.2588 + }, + { + "start": 5123.82, + "end": 5126.1, + "probability": 0.3389 + }, + { + "start": 5126.98, + "end": 5128.72, + "probability": 0.3446 + }, + { + "start": 5129.3, + "end": 5131.08, + "probability": 0.4086 + }, + { + "start": 5131.52, + "end": 5132.9, + "probability": 0.0233 + }, + { + "start": 5133.32, + "end": 5134.88, + "probability": 0.0746 + }, + { + "start": 5136.76, + "end": 5137.98, + "probability": 0.0712 + }, + { + "start": 5137.98, + "end": 5137.98, + "probability": 0.3027 + }, + { + "start": 5137.98, + "end": 5138.36, + "probability": 0.022 + }, + { + "start": 5138.42, + "end": 5138.68, + "probability": 0.0361 + }, + { + "start": 5138.68, + "end": 5144.28, + "probability": 0.2062 + }, + { + "start": 5144.56, + "end": 5145.16, + "probability": 0.0093 + }, + { + "start": 5145.44, + "end": 5147.74, + "probability": 0.198 + }, + { + "start": 5148.02, + "end": 5150.44, + "probability": 0.4416 + }, + { + "start": 5150.8, + "end": 5151.36, + "probability": 0.6634 + }, + { + "start": 5151.46, + "end": 5153.14, + "probability": 0.8542 + }, + { + "start": 5153.44, + "end": 5154.5, + "probability": 0.7529 + }, + { + "start": 5154.7, + "end": 5160.38, + "probability": 0.9059 + }, + { + "start": 5160.38, + "end": 5167.6, + "probability": 0.9796 + }, + { + "start": 5168.02, + "end": 5170.36, + "probability": 0.8298 + }, + { + "start": 5170.4, + "end": 5172.46, + "probability": 0.8669 + }, + { + "start": 5174.04, + "end": 5176.96, + "probability": 0.2369 + }, + { + "start": 5177.08, + "end": 5177.6, + "probability": 0.2866 + }, + { + "start": 5177.72, + "end": 5179.26, + "probability": 0.3221 + }, + { + "start": 5179.26, + "end": 5181.76, + "probability": 0.7435 + }, + { + "start": 5181.9, + "end": 5184.58, + "probability": 0.2833 + }, + { + "start": 5184.66, + "end": 5190.18, + "probability": 0.9874 + }, + { + "start": 5190.64, + "end": 5195.28, + "probability": 0.9686 + }, + { + "start": 5195.74, + "end": 5198.56, + "probability": 0.9937 + }, + { + "start": 5198.72, + "end": 5202.62, + "probability": 0.9866 + }, + { + "start": 5202.62, + "end": 5206.62, + "probability": 0.9942 + }, + { + "start": 5206.8, + "end": 5210.98, + "probability": 0.9897 + }, + { + "start": 5211.9, + "end": 5212.22, + "probability": 0.2883 + }, + { + "start": 5212.22, + "end": 5217.38, + "probability": 0.9655 + }, + { + "start": 5217.56, + "end": 5221.6, + "probability": 0.9473 + }, + { + "start": 5221.64, + "end": 5221.88, + "probability": 0.8125 + }, + { + "start": 5222.0, + "end": 5225.68, + "probability": 0.7128 + }, + { + "start": 5225.98, + "end": 5227.82, + "probability": 0.7212 + }, + { + "start": 5229.23, + "end": 5233.36, + "probability": 0.7702 + }, + { + "start": 5235.53, + "end": 5237.8, + "probability": 0.7291 + }, + { + "start": 5241.72, + "end": 5244.7, + "probability": 0.8536 + }, + { + "start": 5261.5, + "end": 5263.04, + "probability": 0.0985 + }, + { + "start": 5263.42, + "end": 5265.26, + "probability": 0.5529 + }, + { + "start": 5265.48, + "end": 5268.23, + "probability": 0.8395 + }, + { + "start": 5268.48, + "end": 5268.94, + "probability": 0.361 + }, + { + "start": 5269.04, + "end": 5270.38, + "probability": 0.6357 + }, + { + "start": 5270.42, + "end": 5271.4, + "probability": 0.6461 + }, + { + "start": 5271.56, + "end": 5272.46, + "probability": 0.903 + }, + { + "start": 5272.68, + "end": 5279.42, + "probability": 0.9897 + }, + { + "start": 5279.64, + "end": 5281.18, + "probability": 0.7107 + }, + { + "start": 5283.96, + "end": 5285.44, + "probability": 0.7735 + }, + { + "start": 5285.58, + "end": 5287.08, + "probability": 0.9541 + }, + { + "start": 5287.2, + "end": 5288.36, + "probability": 0.6705 + }, + { + "start": 5288.78, + "end": 5290.11, + "probability": 0.668 + }, + { + "start": 5292.36, + "end": 5293.57, + "probability": 0.866 + }, + { + "start": 5294.6, + "end": 5296.06, + "probability": 0.8936 + }, + { + "start": 5296.1, + "end": 5297.56, + "probability": 0.9917 + }, + { + "start": 5297.82, + "end": 5304.16, + "probability": 0.9147 + }, + { + "start": 5304.84, + "end": 5308.2, + "probability": 0.9639 + }, + { + "start": 5308.28, + "end": 5311.76, + "probability": 0.9883 + }, + { + "start": 5312.38, + "end": 5312.88, + "probability": 0.5413 + }, + { + "start": 5313.5, + "end": 5315.28, + "probability": 0.7278 + }, + { + "start": 5316.24, + "end": 5317.9, + "probability": 0.9694 + }, + { + "start": 5317.96, + "end": 5318.18, + "probability": 0.4508 + }, + { + "start": 5318.26, + "end": 5319.1, + "probability": 0.8156 + }, + { + "start": 5319.86, + "end": 5319.98, + "probability": 0.6708 + }, + { + "start": 5320.06, + "end": 5320.92, + "probability": 0.5789 + }, + { + "start": 5321.92, + "end": 5323.26, + "probability": 0.8856 + }, + { + "start": 5324.1, + "end": 5328.76, + "probability": 0.8569 + }, + { + "start": 5329.36, + "end": 5331.58, + "probability": 0.9773 + }, + { + "start": 5332.92, + "end": 5336.46, + "probability": 0.981 + }, + { + "start": 5337.72, + "end": 5342.9, + "probability": 0.8044 + }, + { + "start": 5344.04, + "end": 5346.0, + "probability": 0.9811 + }, + { + "start": 5346.72, + "end": 5348.66, + "probability": 0.9232 + }, + { + "start": 5349.2, + "end": 5353.3, + "probability": 0.9956 + }, + { + "start": 5354.66, + "end": 5355.2, + "probability": 0.8562 + }, + { + "start": 5355.94, + "end": 5356.84, + "probability": 0.991 + }, + { + "start": 5357.5, + "end": 5358.56, + "probability": 0.984 + }, + { + "start": 5358.94, + "end": 5360.06, + "probability": 0.9795 + }, + { + "start": 5360.22, + "end": 5361.84, + "probability": 0.7716 + }, + { + "start": 5362.2, + "end": 5363.78, + "probability": 0.96 + }, + { + "start": 5364.36, + "end": 5366.57, + "probability": 0.9728 + }, + { + "start": 5366.92, + "end": 5368.76, + "probability": 0.9866 + }, + { + "start": 5369.16, + "end": 5370.14, + "probability": 0.9814 + }, + { + "start": 5371.28, + "end": 5374.74, + "probability": 0.9412 + }, + { + "start": 5375.86, + "end": 5379.32, + "probability": 0.9685 + }, + { + "start": 5379.84, + "end": 5381.26, + "probability": 0.7924 + }, + { + "start": 5382.5, + "end": 5386.42, + "probability": 0.9469 + }, + { + "start": 5387.24, + "end": 5388.99, + "probability": 0.6488 + }, + { + "start": 5390.22, + "end": 5390.8, + "probability": 0.9218 + }, + { + "start": 5391.66, + "end": 5393.96, + "probability": 0.9388 + }, + { + "start": 5394.66, + "end": 5400.0, + "probability": 0.9875 + }, + { + "start": 5400.92, + "end": 5401.96, + "probability": 0.9246 + }, + { + "start": 5402.0, + "end": 5402.97, + "probability": 0.884 + }, + { + "start": 5403.52, + "end": 5407.96, + "probability": 0.9833 + }, + { + "start": 5408.62, + "end": 5409.38, + "probability": 0.2496 + }, + { + "start": 5409.38, + "end": 5411.68, + "probability": 0.9088 + }, + { + "start": 5411.92, + "end": 5413.36, + "probability": 0.6928 + }, + { + "start": 5413.44, + "end": 5415.23, + "probability": 0.8956 + }, + { + "start": 5416.8, + "end": 5418.06, + "probability": 0.9607 + }, + { + "start": 5418.84, + "end": 5424.6, + "probability": 0.9579 + }, + { + "start": 5424.6, + "end": 5430.56, + "probability": 0.9932 + }, + { + "start": 5431.2, + "end": 5432.19, + "probability": 0.6295 + }, + { + "start": 5432.7, + "end": 5433.55, + "probability": 0.9832 + }, + { + "start": 5434.1, + "end": 5435.46, + "probability": 0.9699 + }, + { + "start": 5435.78, + "end": 5437.68, + "probability": 0.9757 + }, + { + "start": 5438.16, + "end": 5440.94, + "probability": 0.9889 + }, + { + "start": 5441.5, + "end": 5443.98, + "probability": 0.9365 + }, + { + "start": 5444.56, + "end": 5445.58, + "probability": 0.9946 + }, + { + "start": 5446.32, + "end": 5446.96, + "probability": 0.5878 + }, + { + "start": 5447.6, + "end": 5454.2, + "probability": 0.9964 + }, + { + "start": 5454.46, + "end": 5455.58, + "probability": 0.9762 + }, + { + "start": 5456.06, + "end": 5457.58, + "probability": 0.9807 + }, + { + "start": 5458.42, + "end": 5461.47, + "probability": 0.9876 + }, + { + "start": 5462.29, + "end": 5465.14, + "probability": 0.228 + }, + { + "start": 5465.88, + "end": 5469.66, + "probability": 0.8864 + }, + { + "start": 5469.92, + "end": 5471.1, + "probability": 0.7726 + }, + { + "start": 5471.34, + "end": 5475.1, + "probability": 0.8928 + }, + { + "start": 5477.04, + "end": 5478.16, + "probability": 0.8692 + }, + { + "start": 5479.1, + "end": 5480.38, + "probability": 0.9064 + }, + { + "start": 5481.02, + "end": 5483.82, + "probability": 0.9953 + }, + { + "start": 5484.02, + "end": 5484.68, + "probability": 0.6734 + }, + { + "start": 5484.82, + "end": 5485.32, + "probability": 0.5143 + }, + { + "start": 5485.68, + "end": 5489.12, + "probability": 0.9971 + }, + { + "start": 5489.42, + "end": 5490.16, + "probability": 0.9263 + }, + { + "start": 5491.08, + "end": 5492.88, + "probability": 0.8005 + }, + { + "start": 5493.22, + "end": 5497.04, + "probability": 0.8316 + }, + { + "start": 5497.84, + "end": 5499.42, + "probability": 0.9985 + }, + { + "start": 5500.06, + "end": 5503.62, + "probability": 0.7217 + }, + { + "start": 5503.62, + "end": 5506.72, + "probability": 0.9917 + }, + { + "start": 5507.0, + "end": 5508.64, + "probability": 0.9579 + }, + { + "start": 5508.92, + "end": 5511.6, + "probability": 0.5449 + }, + { + "start": 5512.0, + "end": 5512.58, + "probability": 0.4847 + }, + { + "start": 5513.0, + "end": 5515.16, + "probability": 0.9929 + }, + { + "start": 5515.46, + "end": 5517.22, + "probability": 0.8606 + }, + { + "start": 5517.44, + "end": 5519.99, + "probability": 0.9597 + }, + { + "start": 5520.12, + "end": 5521.83, + "probability": 0.9704 + }, + { + "start": 5522.26, + "end": 5526.0, + "probability": 0.9709 + }, + { + "start": 5526.0, + "end": 5530.96, + "probability": 0.9985 + }, + { + "start": 5531.3, + "end": 5533.07, + "probability": 0.9824 + }, + { + "start": 5533.28, + "end": 5533.36, + "probability": 0.4171 + }, + { + "start": 5533.54, + "end": 5535.82, + "probability": 0.9648 + }, + { + "start": 5535.88, + "end": 5536.32, + "probability": 0.771 + }, + { + "start": 5536.4, + "end": 5537.39, + "probability": 0.9666 + }, + { + "start": 5538.02, + "end": 5539.76, + "probability": 0.8268 + }, + { + "start": 5539.76, + "end": 5543.9, + "probability": 0.744 + }, + { + "start": 5544.0, + "end": 5548.94, + "probability": 0.9691 + }, + { + "start": 5549.12, + "end": 5550.54, + "probability": 0.7867 + }, + { + "start": 5550.54, + "end": 5551.56, + "probability": 0.7462 + }, + { + "start": 5551.66, + "end": 5552.4, + "probability": 0.9614 + }, + { + "start": 5553.56, + "end": 5556.42, + "probability": 0.9932 + }, + { + "start": 5556.54, + "end": 5556.98, + "probability": 0.2584 + }, + { + "start": 5556.98, + "end": 5558.86, + "probability": 0.7181 + }, + { + "start": 5559.38, + "end": 5563.28, + "probability": 0.9234 + }, + { + "start": 5564.06, + "end": 5564.86, + "probability": 0.9283 + }, + { + "start": 5566.72, + "end": 5568.84, + "probability": 0.7833 + }, + { + "start": 5569.1, + "end": 5570.66, + "probability": 0.5911 + }, + { + "start": 5572.8, + "end": 5576.33, + "probability": 0.8885 + }, + { + "start": 5583.04, + "end": 5585.38, + "probability": 0.6608 + }, + { + "start": 5587.36, + "end": 5587.9, + "probability": 0.8417 + }, + { + "start": 5592.06, + "end": 5592.46, + "probability": 0.6966 + }, + { + "start": 5593.88, + "end": 5594.38, + "probability": 0.7037 + }, + { + "start": 5595.48, + "end": 5596.7, + "probability": 0.9736 + }, + { + "start": 5597.92, + "end": 5600.12, + "probability": 0.9963 + }, + { + "start": 5602.88, + "end": 5612.1, + "probability": 0.9253 + }, + { + "start": 5612.34, + "end": 5614.4, + "probability": 0.7922 + }, + { + "start": 5616.34, + "end": 5619.22, + "probability": 0.7671 + }, + { + "start": 5620.58, + "end": 5623.58, + "probability": 0.9205 + }, + { + "start": 5624.9, + "end": 5629.64, + "probability": 0.9829 + }, + { + "start": 5629.72, + "end": 5630.3, + "probability": 0.8876 + }, + { + "start": 5630.56, + "end": 5635.36, + "probability": 0.9684 + }, + { + "start": 5638.44, + "end": 5639.77, + "probability": 0.9873 + }, + { + "start": 5641.32, + "end": 5648.54, + "probability": 0.9744 + }, + { + "start": 5649.54, + "end": 5651.26, + "probability": 0.8551 + }, + { + "start": 5654.3, + "end": 5662.14, + "probability": 0.9913 + }, + { + "start": 5664.02, + "end": 5665.88, + "probability": 0.8854 + }, + { + "start": 5666.44, + "end": 5668.22, + "probability": 0.9895 + }, + { + "start": 5670.26, + "end": 5674.84, + "probability": 0.988 + }, + { + "start": 5676.46, + "end": 5678.1, + "probability": 0.9575 + }, + { + "start": 5680.72, + "end": 5682.3, + "probability": 0.9967 + }, + { + "start": 5683.36, + "end": 5686.05, + "probability": 0.9778 + }, + { + "start": 5691.34, + "end": 5694.48, + "probability": 0.6621 + }, + { + "start": 5697.3, + "end": 5698.74, + "probability": 0.5948 + }, + { + "start": 5700.3, + "end": 5702.5, + "probability": 0.9624 + }, + { + "start": 5703.8, + "end": 5706.06, + "probability": 0.9616 + }, + { + "start": 5707.12, + "end": 5709.5, + "probability": 0.6899 + }, + { + "start": 5710.18, + "end": 5711.5, + "probability": 0.7609 + }, + { + "start": 5716.16, + "end": 5716.52, + "probability": 0.1274 + }, + { + "start": 5717.04, + "end": 5719.96, + "probability": 0.937 + }, + { + "start": 5721.82, + "end": 5722.68, + "probability": 0.3206 + }, + { + "start": 5725.56, + "end": 5726.76, + "probability": 0.7839 + }, + { + "start": 5729.22, + "end": 5734.14, + "probability": 0.9482 + }, + { + "start": 5735.18, + "end": 5736.54, + "probability": 0.5772 + }, + { + "start": 5737.26, + "end": 5738.6, + "probability": 0.9253 + }, + { + "start": 5738.98, + "end": 5744.16, + "probability": 0.9871 + }, + { + "start": 5745.74, + "end": 5747.44, + "probability": 0.9386 + }, + { + "start": 5748.06, + "end": 5749.7, + "probability": 0.8003 + }, + { + "start": 5749.94, + "end": 5754.94, + "probability": 0.9502 + }, + { + "start": 5757.1, + "end": 5762.24, + "probability": 0.561 + }, + { + "start": 5763.58, + "end": 5764.54, + "probability": 0.8146 + }, + { + "start": 5766.46, + "end": 5769.26, + "probability": 0.9056 + }, + { + "start": 5770.86, + "end": 5771.92, + "probability": 0.8828 + }, + { + "start": 5773.98, + "end": 5783.2, + "probability": 0.9488 + }, + { + "start": 5783.6, + "end": 5786.17, + "probability": 0.9259 + }, + { + "start": 5786.68, + "end": 5789.48, + "probability": 0.869 + }, + { + "start": 5789.56, + "end": 5790.98, + "probability": 0.9635 + }, + { + "start": 5791.52, + "end": 5794.46, + "probability": 0.9827 + }, + { + "start": 5794.72, + "end": 5795.85, + "probability": 0.9817 + }, + { + "start": 5797.04, + "end": 5801.12, + "probability": 0.9904 + }, + { + "start": 5801.78, + "end": 5802.56, + "probability": 0.7759 + }, + { + "start": 5802.96, + "end": 5806.5, + "probability": 0.846 + }, + { + "start": 5806.74, + "end": 5808.2, + "probability": 0.8208 + }, + { + "start": 5808.34, + "end": 5810.36, + "probability": 0.6083 + }, + { + "start": 5810.52, + "end": 5811.72, + "probability": 0.7442 + }, + { + "start": 5812.2, + "end": 5815.08, + "probability": 0.9203 + }, + { + "start": 5815.44, + "end": 5816.32, + "probability": 0.6526 + }, + { + "start": 5816.94, + "end": 5819.54, + "probability": 0.7583 + }, + { + "start": 5820.8, + "end": 5820.96, + "probability": 0.1469 + }, + { + "start": 5820.96, + "end": 5822.0, + "probability": 0.9326 + }, + { + "start": 5824.24, + "end": 5827.44, + "probability": 0.9857 + }, + { + "start": 5828.9, + "end": 5835.14, + "probability": 0.9524 + }, + { + "start": 5835.84, + "end": 5837.06, + "probability": 0.6538 + }, + { + "start": 5837.16, + "end": 5838.22, + "probability": 0.7231 + }, + { + "start": 5838.56, + "end": 5839.1, + "probability": 0.7911 + }, + { + "start": 5839.16, + "end": 5839.62, + "probability": 0.8969 + }, + { + "start": 5839.76, + "end": 5840.4, + "probability": 0.9207 + }, + { + "start": 5840.48, + "end": 5841.28, + "probability": 0.874 + }, + { + "start": 5841.32, + "end": 5841.84, + "probability": 0.8506 + }, + { + "start": 5842.28, + "end": 5850.06, + "probability": 0.9747 + }, + { + "start": 5850.32, + "end": 5851.98, + "probability": 0.9062 + }, + { + "start": 5852.16, + "end": 5852.34, + "probability": 0.8479 + }, + { + "start": 5852.44, + "end": 5854.9, + "probability": 0.9466 + }, + { + "start": 5855.24, + "end": 5857.38, + "probability": 0.9451 + }, + { + "start": 5857.5, + "end": 5858.4, + "probability": 0.4215 + }, + { + "start": 5858.9, + "end": 5860.54, + "probability": 0.9805 + }, + { + "start": 5868.1, + "end": 5871.54, + "probability": 0.9716 + }, + { + "start": 5871.88, + "end": 5872.7, + "probability": 0.7998 + }, + { + "start": 5872.82, + "end": 5873.92, + "probability": 0.855 + }, + { + "start": 5874.42, + "end": 5880.46, + "probability": 0.9973 + }, + { + "start": 5880.86, + "end": 5884.94, + "probability": 0.8973 + }, + { + "start": 5885.8, + "end": 5886.8, + "probability": 0.9508 + }, + { + "start": 5887.84, + "end": 5890.48, + "probability": 0.9354 + }, + { + "start": 5891.4, + "end": 5895.72, + "probability": 0.9761 + }, + { + "start": 5897.1, + "end": 5901.12, + "probability": 0.9827 + }, + { + "start": 5902.52, + "end": 5904.84, + "probability": 0.8781 + }, + { + "start": 5905.58, + "end": 5905.92, + "probability": 0.6694 + }, + { + "start": 5906.1, + "end": 5907.42, + "probability": 0.9048 + }, + { + "start": 5907.5, + "end": 5910.76, + "probability": 0.9593 + }, + { + "start": 5911.84, + "end": 5915.34, + "probability": 0.7988 + }, + { + "start": 5916.42, + "end": 5920.44, + "probability": 0.9581 + }, + { + "start": 5921.9, + "end": 5923.5, + "probability": 0.4395 + }, + { + "start": 5923.96, + "end": 5926.98, + "probability": 0.9871 + }, + { + "start": 5927.04, + "end": 5927.96, + "probability": 0.44 + }, + { + "start": 5928.06, + "end": 5930.14, + "probability": 0.9771 + }, + { + "start": 5930.92, + "end": 5932.86, + "probability": 0.9051 + }, + { + "start": 5933.12, + "end": 5933.92, + "probability": 0.9678 + }, + { + "start": 5934.04, + "end": 5934.56, + "probability": 0.8796 + }, + { + "start": 5934.78, + "end": 5935.48, + "probability": 0.7298 + }, + { + "start": 5936.42, + "end": 5938.14, + "probability": 0.8438 + }, + { + "start": 5938.26, + "end": 5938.78, + "probability": 0.9875 + }, + { + "start": 5938.98, + "end": 5939.94, + "probability": 0.8239 + }, + { + "start": 5940.96, + "end": 5942.9, + "probability": 0.9131 + }, + { + "start": 5944.16, + "end": 5944.86, + "probability": 0.948 + }, + { + "start": 5944.92, + "end": 5945.52, + "probability": 0.9483 + }, + { + "start": 5945.6, + "end": 5946.64, + "probability": 0.9756 + }, + { + "start": 5946.76, + "end": 5948.84, + "probability": 0.8785 + }, + { + "start": 5949.24, + "end": 5950.01, + "probability": 0.7498 + }, + { + "start": 5950.4, + "end": 5951.0, + "probability": 0.7575 + }, + { + "start": 5951.06, + "end": 5953.34, + "probability": 0.9602 + }, + { + "start": 5953.98, + "end": 5956.92, + "probability": 0.8418 + }, + { + "start": 5959.36, + "end": 5960.56, + "probability": 0.9224 + }, + { + "start": 5960.88, + "end": 5962.8, + "probability": 0.5971 + }, + { + "start": 5962.88, + "end": 5963.53, + "probability": 0.6197 + }, + { + "start": 5964.4, + "end": 5965.56, + "probability": 0.9714 + }, + { + "start": 5966.4, + "end": 5969.28, + "probability": 0.9966 + }, + { + "start": 5969.28, + "end": 5972.2, + "probability": 0.9966 + }, + { + "start": 5973.4, + "end": 5974.72, + "probability": 0.9863 + }, + { + "start": 5975.74, + "end": 5978.26, + "probability": 0.9595 + }, + { + "start": 5978.36, + "end": 5979.74, + "probability": 0.9399 + }, + { + "start": 5981.18, + "end": 5983.58, + "probability": 0.9826 + }, + { + "start": 5984.22, + "end": 5989.0, + "probability": 0.9962 + }, + { + "start": 5989.0, + "end": 5994.08, + "probability": 0.9984 + }, + { + "start": 5994.98, + "end": 5999.52, + "probability": 0.9989 + }, + { + "start": 5999.52, + "end": 6002.42, + "probability": 0.9986 + }, + { + "start": 6002.86, + "end": 6004.0, + "probability": 0.9312 + }, + { + "start": 6008.12, + "end": 6008.48, + "probability": 0.4285 + }, + { + "start": 6008.48, + "end": 6009.14, + "probability": 0.3156 + }, + { + "start": 6009.28, + "end": 6011.94, + "probability": 0.4349 + }, + { + "start": 6012.02, + "end": 6013.28, + "probability": 0.9484 + }, + { + "start": 6013.46, + "end": 6015.88, + "probability": 0.0704 + }, + { + "start": 6016.32, + "end": 6017.12, + "probability": 0.5822 + }, + { + "start": 6017.56, + "end": 6018.64, + "probability": 0.156 + }, + { + "start": 6018.88, + "end": 6019.36, + "probability": 0.5625 + }, + { + "start": 6019.42, + "end": 6021.18, + "probability": 0.9962 + }, + { + "start": 6021.3, + "end": 6022.64, + "probability": 0.8345 + }, + { + "start": 6024.1, + "end": 6027.58, + "probability": 0.9332 + }, + { + "start": 6028.24, + "end": 6028.6, + "probability": 0.8318 + }, + { + "start": 6028.72, + "end": 6030.7, + "probability": 0.9966 + }, + { + "start": 6030.76, + "end": 6032.19, + "probability": 0.9044 + }, + { + "start": 6032.94, + "end": 6035.0, + "probability": 0.9924 + }, + { + "start": 6035.12, + "end": 6036.68, + "probability": 0.9858 + }, + { + "start": 6037.28, + "end": 6039.22, + "probability": 0.9952 + }, + { + "start": 6039.3, + "end": 6040.18, + "probability": 0.9659 + }, + { + "start": 6040.24, + "end": 6041.04, + "probability": 0.874 + }, + { + "start": 6041.34, + "end": 6042.9, + "probability": 0.9544 + }, + { + "start": 6043.22, + "end": 6047.82, + "probability": 0.9914 + }, + { + "start": 6049.14, + "end": 6051.14, + "probability": 0.9021 + }, + { + "start": 6051.22, + "end": 6051.86, + "probability": 0.8669 + }, + { + "start": 6052.02, + "end": 6053.32, + "probability": 0.9903 + }, + { + "start": 6054.26, + "end": 6058.74, + "probability": 0.9958 + }, + { + "start": 6059.34, + "end": 6060.5, + "probability": 0.8909 + }, + { + "start": 6060.6, + "end": 6063.56, + "probability": 0.9907 + }, + { + "start": 6063.64, + "end": 6064.18, + "probability": 0.9 + }, + { + "start": 6065.32, + "end": 6066.77, + "probability": 0.9043 + }, + { + "start": 6067.6, + "end": 6069.8, + "probability": 0.9915 + }, + { + "start": 6070.32, + "end": 6075.56, + "probability": 0.8977 + }, + { + "start": 6076.22, + "end": 6078.22, + "probability": 0.9314 + }, + { + "start": 6078.54, + "end": 6082.72, + "probability": 0.9784 + }, + { + "start": 6082.92, + "end": 6082.92, + "probability": 0.3924 + }, + { + "start": 6082.92, + "end": 6086.54, + "probability": 0.9941 + }, + { + "start": 6086.94, + "end": 6087.16, + "probability": 0.6967 + }, + { + "start": 6087.24, + "end": 6089.34, + "probability": 0.9634 + }, + { + "start": 6089.48, + "end": 6091.52, + "probability": 0.9793 + }, + { + "start": 6092.22, + "end": 6094.88, + "probability": 0.7656 + }, + { + "start": 6105.74, + "end": 6107.13, + "probability": 0.9487 + }, + { + "start": 6107.66, + "end": 6109.8, + "probability": 0.5488 + }, + { + "start": 6110.38, + "end": 6112.36, + "probability": 0.749 + }, + { + "start": 6113.06, + "end": 6115.66, + "probability": 0.9607 + }, + { + "start": 6117.36, + "end": 6122.08, + "probability": 0.9409 + }, + { + "start": 6122.08, + "end": 6126.84, + "probability": 0.7771 + }, + { + "start": 6126.94, + "end": 6130.66, + "probability": 0.762 + }, + { + "start": 6131.1, + "end": 6133.18, + "probability": 0.7556 + }, + { + "start": 6133.52, + "end": 6134.78, + "probability": 0.6982 + }, + { + "start": 6135.04, + "end": 6135.6, + "probability": 0.3908 + }, + { + "start": 6135.98, + "end": 6139.32, + "probability": 0.8504 + }, + { + "start": 6139.64, + "end": 6145.12, + "probability": 0.9618 + }, + { + "start": 6145.2, + "end": 6146.1, + "probability": 0.9251 + }, + { + "start": 6146.46, + "end": 6150.48, + "probability": 0.6861 + }, + { + "start": 6150.48, + "end": 6154.26, + "probability": 0.7754 + }, + { + "start": 6154.52, + "end": 6155.22, + "probability": 0.574 + }, + { + "start": 6155.38, + "end": 6157.9, + "probability": 0.7709 + }, + { + "start": 6159.0, + "end": 6163.94, + "probability": 0.955 + }, + { + "start": 6164.46, + "end": 6165.38, + "probability": 0.2566 + }, + { + "start": 6166.3, + "end": 6172.98, + "probability": 0.8771 + }, + { + "start": 6174.06, + "end": 6178.68, + "probability": 0.9956 + }, + { + "start": 6178.68, + "end": 6184.96, + "probability": 0.9938 + }, + { + "start": 6185.7, + "end": 6191.02, + "probability": 0.9844 + }, + { + "start": 6191.06, + "end": 6191.7, + "probability": 0.8113 + }, + { + "start": 6192.08, + "end": 6192.96, + "probability": 0.4894 + }, + { + "start": 6193.08, + "end": 6198.22, + "probability": 0.9634 + }, + { + "start": 6199.24, + "end": 6204.08, + "probability": 0.9844 + }, + { + "start": 6204.08, + "end": 6208.62, + "probability": 0.986 + }, + { + "start": 6209.0, + "end": 6212.36, + "probability": 0.9843 + }, + { + "start": 6212.36, + "end": 6216.38, + "probability": 0.9348 + }, + { + "start": 6216.66, + "end": 6219.8, + "probability": 0.925 + }, + { + "start": 6220.74, + "end": 6227.75, + "probability": 0.9784 + }, + { + "start": 6228.14, + "end": 6229.68, + "probability": 0.9292 + }, + { + "start": 6230.02, + "end": 6232.96, + "probability": 0.8467 + }, + { + "start": 6233.82, + "end": 6237.42, + "probability": 0.8314 + }, + { + "start": 6238.02, + "end": 6238.46, + "probability": 0.346 + }, + { + "start": 6238.6, + "end": 6241.84, + "probability": 0.8158 + }, + { + "start": 6242.04, + "end": 6243.4, + "probability": 0.7912 + }, + { + "start": 6244.06, + "end": 6248.38, + "probability": 0.9871 + }, + { + "start": 6248.52, + "end": 6253.78, + "probability": 0.899 + }, + { + "start": 6255.04, + "end": 6258.76, + "probability": 0.75 + }, + { + "start": 6258.76, + "end": 6263.82, + "probability": 0.6978 + }, + { + "start": 6264.8, + "end": 6269.26, + "probability": 0.9022 + }, + { + "start": 6269.82, + "end": 6273.92, + "probability": 0.9583 + }, + { + "start": 6274.06, + "end": 6279.04, + "probability": 0.8721 + }, + { + "start": 6279.58, + "end": 6283.92, + "probability": 0.9644 + }, + { + "start": 6285.22, + "end": 6287.88, + "probability": 0.1913 + }, + { + "start": 6288.3, + "end": 6289.02, + "probability": 0.3613 + }, + { + "start": 6289.12, + "end": 6290.08, + "probability": 0.5691 + }, + { + "start": 6290.18, + "end": 6292.28, + "probability": 0.1867 + }, + { + "start": 6292.28, + "end": 6292.28, + "probability": 0.2911 + }, + { + "start": 6292.94, + "end": 6300.74, + "probability": 0.0506 + }, + { + "start": 6301.96, + "end": 6306.12, + "probability": 0.4728 + }, + { + "start": 6306.78, + "end": 6308.12, + "probability": 0.5786 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.0, + "end": 6494.0, + "probability": 0.0 + }, + { + "start": 6494.46, + "end": 6497.82, + "probability": 0.0256 + }, + { + "start": 6499.02, + "end": 6501.12, + "probability": 0.0188 + }, + { + "start": 6503.02, + "end": 6504.46, + "probability": 0.0374 + }, + { + "start": 6505.36, + "end": 6508.9, + "probability": 0.0548 + }, + { + "start": 6513.6, + "end": 6518.22, + "probability": 0.0263 + }, + { + "start": 6523.94, + "end": 6523.98, + "probability": 0.1272 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6623.0, + "end": 6623.0, + "probability": 0.0 + }, + { + "start": 6629.16, + "end": 6632.56, + "probability": 0.4608 + }, + { + "start": 6635.92, + "end": 6638.46, + "probability": 0.2662 + }, + { + "start": 6639.56, + "end": 6639.76, + "probability": 0.0493 + }, + { + "start": 6640.34, + "end": 6642.94, + "probability": 0.3193 + }, + { + "start": 6642.94, + "end": 6643.56, + "probability": 0.306 + }, + { + "start": 6643.56, + "end": 6647.43, + "probability": 0.0372 + }, + { + "start": 6647.58, + "end": 6650.7, + "probability": 0.0484 + }, + { + "start": 6652.04, + "end": 6652.44, + "probability": 0.12 + }, + { + "start": 6653.18, + "end": 6653.84, + "probability": 0.1953 + }, + { + "start": 6655.34, + "end": 6655.7, + "probability": 0.0035 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.2, + "end": 6755.56, + "probability": 0.0001 + }, + { + "start": 6756.34, + "end": 6757.2, + "probability": 0.9081 + }, + { + "start": 6758.08, + "end": 6764.74, + "probability": 0.9375 + }, + { + "start": 6766.4, + "end": 6768.28, + "probability": 0.7808 + }, + { + "start": 6769.82, + "end": 6775.14, + "probability": 0.9979 + }, + { + "start": 6777.02, + "end": 6778.5, + "probability": 0.9832 + }, + { + "start": 6779.68, + "end": 6783.04, + "probability": 0.9759 + }, + { + "start": 6783.54, + "end": 6783.92, + "probability": 0.5125 + }, + { + "start": 6784.06, + "end": 6785.28, + "probability": 0.9556 + }, + { + "start": 6786.32, + "end": 6788.22, + "probability": 0.8744 + }, + { + "start": 6789.38, + "end": 6791.74, + "probability": 0.9937 + }, + { + "start": 6791.88, + "end": 6793.82, + "probability": 0.9736 + }, + { + "start": 6794.9, + "end": 6798.77, + "probability": 0.9209 + }, + { + "start": 6801.32, + "end": 6801.92, + "probability": 0.3135 + }, + { + "start": 6802.06, + "end": 6803.35, + "probability": 0.9355 + }, + { + "start": 6804.06, + "end": 6807.28, + "probability": 0.8091 + }, + { + "start": 6807.72, + "end": 6810.44, + "probability": 0.4296 + }, + { + "start": 6810.74, + "end": 6812.3, + "probability": 0.8928 + }, + { + "start": 6812.4, + "end": 6817.08, + "probability": 0.9583 + }, + { + "start": 6817.08, + "end": 6821.4, + "probability": 0.9933 + }, + { + "start": 6822.94, + "end": 6825.46, + "probability": 0.9858 + }, + { + "start": 6826.24, + "end": 6827.1, + "probability": 0.9316 + }, + { + "start": 6827.74, + "end": 6828.28, + "probability": 0.0957 + }, + { + "start": 6828.82, + "end": 6833.14, + "probability": 0.1006 + }, + { + "start": 6833.84, + "end": 6837.46, + "probability": 0.7822 + }, + { + "start": 6837.46, + "end": 6839.1, + "probability": 0.6695 + }, + { + "start": 6839.18, + "end": 6840.84, + "probability": 0.9253 + }, + { + "start": 6841.2, + "end": 6842.26, + "probability": 0.0857 + }, + { + "start": 6842.26, + "end": 6843.36, + "probability": 0.8993 + }, + { + "start": 6843.48, + "end": 6845.6, + "probability": 0.9448 + }, + { + "start": 6846.26, + "end": 6852.56, + "probability": 0.879 + }, + { + "start": 6853.26, + "end": 6854.12, + "probability": 0.5553 + }, + { + "start": 6854.82, + "end": 6856.26, + "probability": 0.9453 + }, + { + "start": 6856.32, + "end": 6857.4, + "probability": 0.7526 + }, + { + "start": 6858.78, + "end": 6859.6, + "probability": 0.6964 + }, + { + "start": 6859.6, + "end": 6859.6, + "probability": 0.6675 + }, + { + "start": 6859.6, + "end": 6863.34, + "probability": 0.707 + }, + { + "start": 6864.6, + "end": 6864.84, + "probability": 0.5377 + }, + { + "start": 6864.84, + "end": 6868.48, + "probability": 0.7651 + }, + { + "start": 6869.24, + "end": 6869.62, + "probability": 0.9388 + }, + { + "start": 6871.18, + "end": 6873.32, + "probability": 0.598 + }, + { + "start": 6873.34, + "end": 6873.94, + "probability": 0.769 + }, + { + "start": 6874.22, + "end": 6877.24, + "probability": 0.7634 + }, + { + "start": 6878.26, + "end": 6879.38, + "probability": 0.9225 + }, + { + "start": 6879.46, + "end": 6881.3, + "probability": 0.9366 + }, + { + "start": 6882.1, + "end": 6882.64, + "probability": 0.8789 + }, + { + "start": 6882.8, + "end": 6885.02, + "probability": 0.9736 + }, + { + "start": 6885.08, + "end": 6887.02, + "probability": 0.7915 + }, + { + "start": 6887.06, + "end": 6887.92, + "probability": 0.5508 + }, + { + "start": 6888.6, + "end": 6889.36, + "probability": 0.9817 + }, + { + "start": 6889.86, + "end": 6890.62, + "probability": 0.812 + }, + { + "start": 6891.54, + "end": 6893.51, + "probability": 0.8118 + }, + { + "start": 6893.6, + "end": 6894.1, + "probability": 0.8564 + }, + { + "start": 6895.3, + "end": 6896.38, + "probability": 0.0223 + }, + { + "start": 6896.38, + "end": 6897.36, + "probability": 0.2824 + }, + { + "start": 6897.38, + "end": 6899.34, + "probability": 0.8169 + }, + { + "start": 6899.68, + "end": 6900.34, + "probability": 0.3826 + }, + { + "start": 6900.38, + "end": 6903.8, + "probability": 0.7777 + }, + { + "start": 6905.26, + "end": 6906.6, + "probability": 0.9031 + }, + { + "start": 6916.95, + "end": 6920.24, + "probability": 0.5801 + }, + { + "start": 6921.28, + "end": 6924.48, + "probability": 0.9913 + }, + { + "start": 6924.52, + "end": 6926.44, + "probability": 0.9906 + }, + { + "start": 6930.94, + "end": 6933.34, + "probability": 0.9556 + }, + { + "start": 6934.28, + "end": 6936.3, + "probability": 0.9822 + }, + { + "start": 6937.68, + "end": 6940.68, + "probability": 0.9524 + }, + { + "start": 6941.64, + "end": 6942.88, + "probability": 0.9922 + }, + { + "start": 6943.38, + "end": 6945.3, + "probability": 0.9552 + }, + { + "start": 6946.26, + "end": 6947.26, + "probability": 0.7936 + }, + { + "start": 6948.04, + "end": 6950.04, + "probability": 0.8756 + }, + { + "start": 6950.92, + "end": 6954.52, + "probability": 0.8781 + }, + { + "start": 6955.7, + "end": 6956.72, + "probability": 0.9437 + }, + { + "start": 6957.36, + "end": 6959.52, + "probability": 0.9663 + }, + { + "start": 6960.48, + "end": 6961.63, + "probability": 0.9896 + }, + { + "start": 6961.74, + "end": 6962.64, + "probability": 0.5966 + }, + { + "start": 6963.32, + "end": 6964.74, + "probability": 0.9862 + }, + { + "start": 6964.74, + "end": 6969.48, + "probability": 0.9983 + }, + { + "start": 6970.14, + "end": 6972.8, + "probability": 0.97 + }, + { + "start": 6972.8, + "end": 6976.52, + "probability": 0.9958 + }, + { + "start": 6976.64, + "end": 6977.58, + "probability": 0.9637 + }, + { + "start": 6977.66, + "end": 6978.98, + "probability": 0.9553 + }, + { + "start": 6979.36, + "end": 6980.34, + "probability": 0.5246 + }, + { + "start": 6981.14, + "end": 6982.84, + "probability": 0.9438 + }, + { + "start": 6983.56, + "end": 6985.04, + "probability": 0.9964 + }, + { + "start": 6986.02, + "end": 6986.9, + "probability": 0.9763 + }, + { + "start": 6988.68, + "end": 6989.18, + "probability": 0.5649 + }, + { + "start": 6990.3, + "end": 6992.04, + "probability": 0.9801 + }, + { + "start": 6992.14, + "end": 6993.72, + "probability": 0.7256 + }, + { + "start": 6994.48, + "end": 6996.92, + "probability": 0.9991 + }, + { + "start": 6996.92, + "end": 6999.64, + "probability": 0.9604 + }, + { + "start": 7000.2, + "end": 7001.71, + "probability": 0.9922 + }, + { + "start": 7002.84, + "end": 7004.4, + "probability": 0.9836 + }, + { + "start": 7005.18, + "end": 7011.48, + "probability": 0.9785 + }, + { + "start": 7011.98, + "end": 7013.52, + "probability": 0.998 + }, + { + "start": 7014.42, + "end": 7016.12, + "probability": 0.9884 + }, + { + "start": 7017.08, + "end": 7020.96, + "probability": 0.9676 + }, + { + "start": 7020.96, + "end": 7024.3, + "probability": 0.8879 + }, + { + "start": 7024.94, + "end": 7028.74, + "probability": 0.9963 + }, + { + "start": 7029.86, + "end": 7031.5, + "probability": 0.9917 + }, + { + "start": 7032.42, + "end": 7036.74, + "probability": 0.9896 + }, + { + "start": 7037.32, + "end": 7039.38, + "probability": 0.9941 + }, + { + "start": 7040.44, + "end": 7041.84, + "probability": 0.9888 + }, + { + "start": 7042.7, + "end": 7047.88, + "probability": 0.965 + }, + { + "start": 7048.04, + "end": 7049.1, + "probability": 0.8251 + }, + { + "start": 7049.8, + "end": 7052.34, + "probability": 0.9716 + }, + { + "start": 7053.42, + "end": 7056.46, + "probability": 0.9968 + }, + { + "start": 7056.46, + "end": 7059.64, + "probability": 0.9984 + }, + { + "start": 7060.8, + "end": 7061.8, + "probability": 0.907 + }, + { + "start": 7061.96, + "end": 7063.14, + "probability": 0.9734 + }, + { + "start": 7063.58, + "end": 7066.66, + "probability": 0.9194 + }, + { + "start": 7067.16, + "end": 7070.1, + "probability": 0.936 + }, + { + "start": 7070.94, + "end": 7074.64, + "probability": 0.974 + }, + { + "start": 7075.12, + "end": 7079.19, + "probability": 0.999 + }, + { + "start": 7080.42, + "end": 7082.76, + "probability": 0.6318 + }, + { + "start": 7083.24, + "end": 7085.96, + "probability": 0.9917 + }, + { + "start": 7087.44, + "end": 7088.72, + "probability": 0.8628 + }, + { + "start": 7088.76, + "end": 7090.07, + "probability": 0.9955 + }, + { + "start": 7090.7, + "end": 7092.08, + "probability": 0.8101 + }, + { + "start": 7092.18, + "end": 7094.16, + "probability": 0.7375 + }, + { + "start": 7094.4, + "end": 7095.2, + "probability": 0.7402 + }, + { + "start": 7095.28, + "end": 7096.16, + "probability": 0.7441 + }, + { + "start": 7096.56, + "end": 7097.42, + "probability": 0.9951 + }, + { + "start": 7098.28, + "end": 7101.12, + "probability": 0.9574 + }, + { + "start": 7101.82, + "end": 7103.96, + "probability": 0.9149 + }, + { + "start": 7106.56, + "end": 7109.74, + "probability": 0.7296 + }, + { + "start": 7109.96, + "end": 7113.0, + "probability": 0.2963 + }, + { + "start": 7113.0, + "end": 7113.0, + "probability": 0.0854 + }, + { + "start": 7113.0, + "end": 7113.36, + "probability": 0.4679 + }, + { + "start": 7113.9, + "end": 7118.68, + "probability": 0.6302 + }, + { + "start": 7119.0, + "end": 7121.9, + "probability": 0.9433 + }, + { + "start": 7122.18, + "end": 7122.48, + "probability": 0.8256 + }, + { + "start": 7123.32, + "end": 7125.78, + "probability": 0.8097 + }, + { + "start": 7125.94, + "end": 7127.89, + "probability": 0.5485 + }, + { + "start": 7128.58, + "end": 7129.64, + "probability": 0.4777 + }, + { + "start": 7135.53, + "end": 7138.64, + "probability": 0.584 + }, + { + "start": 7144.12, + "end": 7145.18, + "probability": 0.8254 + }, + { + "start": 7146.0, + "end": 7148.14, + "probability": 0.2278 + }, + { + "start": 7148.54, + "end": 7151.72, + "probability": 0.9473 + }, + { + "start": 7152.64, + "end": 7153.76, + "probability": 0.5916 + }, + { + "start": 7155.14, + "end": 7158.12, + "probability": 0.9497 + }, + { + "start": 7158.22, + "end": 7162.78, + "probability": 0.9304 + }, + { + "start": 7162.78, + "end": 7168.44, + "probability": 0.755 + }, + { + "start": 7169.46, + "end": 7173.78, + "probability": 0.9645 + }, + { + "start": 7173.78, + "end": 7176.54, + "probability": 0.9699 + }, + { + "start": 7177.3, + "end": 7180.1, + "probability": 0.9235 + }, + { + "start": 7180.7, + "end": 7183.22, + "probability": 0.9927 + }, + { + "start": 7183.74, + "end": 7184.92, + "probability": 0.8638 + }, + { + "start": 7185.52, + "end": 7187.1, + "probability": 0.9871 + }, + { + "start": 7188.16, + "end": 7189.96, + "probability": 0.9512 + }, + { + "start": 7190.6, + "end": 7193.48, + "probability": 0.9908 + }, + { + "start": 7194.18, + "end": 7197.24, + "probability": 0.9658 + }, + { + "start": 7197.98, + "end": 7201.04, + "probability": 0.9773 + }, + { + "start": 7201.08, + "end": 7202.08, + "probability": 0.6945 + }, + { + "start": 7202.76, + "end": 7206.52, + "probability": 0.9954 + }, + { + "start": 7206.52, + "end": 7209.54, + "probability": 0.9783 + }, + { + "start": 7210.6, + "end": 7211.9, + "probability": 0.8837 + }, + { + "start": 7212.08, + "end": 7213.08, + "probability": 0.9718 + }, + { + "start": 7213.48, + "end": 7218.36, + "probability": 0.8741 + }, + { + "start": 7218.76, + "end": 7222.06, + "probability": 0.9897 + }, + { + "start": 7222.52, + "end": 7224.46, + "probability": 0.8873 + }, + { + "start": 7225.28, + "end": 7228.5, + "probability": 0.9868 + }, + { + "start": 7229.2, + "end": 7230.58, + "probability": 0.8986 + }, + { + "start": 7230.84, + "end": 7234.28, + "probability": 0.9557 + }, + { + "start": 7234.86, + "end": 7237.46, + "probability": 0.9009 + }, + { + "start": 7238.26, + "end": 7242.52, + "probability": 0.9976 + }, + { + "start": 7242.88, + "end": 7245.12, + "probability": 0.9953 + }, + { + "start": 7245.76, + "end": 7250.52, + "probability": 0.9985 + }, + { + "start": 7250.52, + "end": 7257.46, + "probability": 0.9924 + }, + { + "start": 7258.0, + "end": 7259.16, + "probability": 0.819 + }, + { + "start": 7259.4, + "end": 7260.9, + "probability": 0.8325 + }, + { + "start": 7261.28, + "end": 7263.36, + "probability": 0.9418 + }, + { + "start": 7263.54, + "end": 7264.86, + "probability": 0.2128 + }, + { + "start": 7266.92, + "end": 7267.06, + "probability": 0.0059 + }, + { + "start": 7267.06, + "end": 7268.52, + "probability": 0.2589 + }, + { + "start": 7268.58, + "end": 7270.98, + "probability": 0.9955 + }, + { + "start": 7271.46, + "end": 7274.65, + "probability": 0.9971 + }, + { + "start": 7274.78, + "end": 7279.08, + "probability": 0.7143 + }, + { + "start": 7279.72, + "end": 7283.64, + "probability": 0.9281 + }, + { + "start": 7284.06, + "end": 7285.03, + "probability": 0.9772 + }, + { + "start": 7285.7, + "end": 7288.82, + "probability": 0.9365 + }, + { + "start": 7289.0, + "end": 7290.12, + "probability": 0.2101 + }, + { + "start": 7291.16, + "end": 7292.04, + "probability": 0.0349 + }, + { + "start": 7292.52, + "end": 7294.96, + "probability": 0.6029 + }, + { + "start": 7294.96, + "end": 7295.46, + "probability": 0.1855 + }, + { + "start": 7295.46, + "end": 7295.46, + "probability": 0.6885 + }, + { + "start": 7295.46, + "end": 7296.48, + "probability": 0.3043 + }, + { + "start": 7296.68, + "end": 7298.93, + "probability": 0.7207 + }, + { + "start": 7299.38, + "end": 7303.28, + "probability": 0.9548 + }, + { + "start": 7304.14, + "end": 7305.38, + "probability": 0.6533 + }, + { + "start": 7305.98, + "end": 7307.7, + "probability": 0.9544 + }, + { + "start": 7308.32, + "end": 7309.8, + "probability": 0.9956 + }, + { + "start": 7310.16, + "end": 7314.74, + "probability": 0.9863 + }, + { + "start": 7315.32, + "end": 7317.02, + "probability": 0.8056 + }, + { + "start": 7317.02, + "end": 7317.48, + "probability": 0.0365 + }, + { + "start": 7317.54, + "end": 7321.72, + "probability": 0.8884 + }, + { + "start": 7321.76, + "end": 7322.28, + "probability": 0.7444 + }, + { + "start": 7323.0, + "end": 7326.46, + "probability": 0.8472 + }, + { + "start": 7326.52, + "end": 7332.3, + "probability": 0.9312 + }, + { + "start": 7332.86, + "end": 7333.66, + "probability": 0.757 + }, + { + "start": 7337.46, + "end": 7338.08, + "probability": 0.2758 + }, + { + "start": 7340.38, + "end": 7344.96, + "probability": 0.6199 + }, + { + "start": 7346.1, + "end": 7352.42, + "probability": 0.8476 + }, + { + "start": 7352.78, + "end": 7353.6, + "probability": 0.9484 + }, + { + "start": 7354.88, + "end": 7357.74, + "probability": 0.7642 + }, + { + "start": 7360.66, + "end": 7362.76, + "probability": 0.9469 + }, + { + "start": 7363.74, + "end": 7365.31, + "probability": 0.8291 + }, + { + "start": 7366.64, + "end": 7368.62, + "probability": 0.8336 + }, + { + "start": 7370.52, + "end": 7372.0, + "probability": 0.8184 + }, + { + "start": 7373.4, + "end": 7374.3, + "probability": 0.8982 + }, + { + "start": 7374.38, + "end": 7377.04, + "probability": 0.8617 + }, + { + "start": 7377.12, + "end": 7379.28, + "probability": 0.9478 + }, + { + "start": 7380.4, + "end": 7381.44, + "probability": 0.8818 + }, + { + "start": 7382.6, + "end": 7384.0, + "probability": 0.9393 + }, + { + "start": 7385.02, + "end": 7387.88, + "probability": 0.999 + }, + { + "start": 7387.88, + "end": 7390.62, + "probability": 0.999 + }, + { + "start": 7391.18, + "end": 7393.62, + "probability": 0.9878 + }, + { + "start": 7395.6, + "end": 7398.4, + "probability": 0.617 + }, + { + "start": 7399.2, + "end": 7401.08, + "probability": 0.6851 + }, + { + "start": 7402.24, + "end": 7405.3, + "probability": 0.9048 + }, + { + "start": 7406.3, + "end": 7413.42, + "probability": 0.8762 + }, + { + "start": 7414.26, + "end": 7417.68, + "probability": 0.9211 + }, + { + "start": 7419.38, + "end": 7421.1, + "probability": 0.8264 + }, + { + "start": 7422.62, + "end": 7428.12, + "probability": 0.7596 + }, + { + "start": 7428.18, + "end": 7430.8, + "probability": 0.8847 + }, + { + "start": 7431.14, + "end": 7432.27, + "probability": 0.9893 + }, + { + "start": 7433.06, + "end": 7435.34, + "probability": 0.968 + }, + { + "start": 7436.12, + "end": 7441.4, + "probability": 0.9863 + }, + { + "start": 7441.58, + "end": 7445.02, + "probability": 0.7309 + }, + { + "start": 7445.12, + "end": 7446.5, + "probability": 0.993 + }, + { + "start": 7447.18, + "end": 7449.46, + "probability": 0.905 + }, + { + "start": 7450.72, + "end": 7459.42, + "probability": 0.9953 + }, + { + "start": 7461.06, + "end": 7462.42, + "probability": 0.8625 + }, + { + "start": 7462.98, + "end": 7464.24, + "probability": 0.4442 + }, + { + "start": 7464.76, + "end": 7466.12, + "probability": 0.6268 + }, + { + "start": 7466.92, + "end": 7468.06, + "probability": 0.6603 + }, + { + "start": 7468.06, + "end": 7469.26, + "probability": 0.7541 + }, + { + "start": 7469.8, + "end": 7472.2, + "probability": 0.993 + }, + { + "start": 7473.14, + "end": 7475.8, + "probability": 0.9736 + }, + { + "start": 7477.22, + "end": 7479.16, + "probability": 0.899 + }, + { + "start": 7481.14, + "end": 7485.24, + "probability": 0.9812 + }, + { + "start": 7486.4, + "end": 7489.0, + "probability": 0.9958 + }, + { + "start": 7490.34, + "end": 7493.0, + "probability": 0.9889 + }, + { + "start": 7494.36, + "end": 7497.14, + "probability": 0.6779 + }, + { + "start": 7498.26, + "end": 7499.4, + "probability": 0.9108 + }, + { + "start": 7499.94, + "end": 7502.18, + "probability": 0.8735 + }, + { + "start": 7503.2, + "end": 7507.38, + "probability": 0.9966 + }, + { + "start": 7508.1, + "end": 7510.6, + "probability": 0.9851 + }, + { + "start": 7511.02, + "end": 7512.36, + "probability": 0.9061 + }, + { + "start": 7512.46, + "end": 7515.06, + "probability": 0.9775 + }, + { + "start": 7515.94, + "end": 7517.42, + "probability": 0.743 + }, + { + "start": 7518.16, + "end": 7525.2, + "probability": 0.9325 + }, + { + "start": 7526.54, + "end": 7528.08, + "probability": 0.9434 + }, + { + "start": 7529.58, + "end": 7533.26, + "probability": 0.9899 + }, + { + "start": 7534.4, + "end": 7534.54, + "probability": 0.4687 + }, + { + "start": 7534.68, + "end": 7534.92, + "probability": 0.8488 + }, + { + "start": 7535.0, + "end": 7540.06, + "probability": 0.9984 + }, + { + "start": 7540.06, + "end": 7543.68, + "probability": 0.9635 + }, + { + "start": 7545.46, + "end": 7546.32, + "probability": 0.5549 + }, + { + "start": 7546.38, + "end": 7549.68, + "probability": 0.9981 + }, + { + "start": 7549.86, + "end": 7551.06, + "probability": 0.7125 + }, + { + "start": 7551.1, + "end": 7554.16, + "probability": 0.9895 + }, + { + "start": 7555.08, + "end": 7556.42, + "probability": 0.6302 + }, + { + "start": 7557.48, + "end": 7559.64, + "probability": 0.7812 + }, + { + "start": 7559.7, + "end": 7562.4, + "probability": 0.9142 + }, + { + "start": 7563.36, + "end": 7569.18, + "probability": 0.9316 + }, + { + "start": 7573.04, + "end": 7577.13, + "probability": 0.8446 + }, + { + "start": 7581.74, + "end": 7586.6, + "probability": 0.7151 + }, + { + "start": 7588.72, + "end": 7589.46, + "probability": 0.9604 + }, + { + "start": 7590.82, + "end": 7591.5, + "probability": 0.9024 + }, + { + "start": 7593.34, + "end": 7594.86, + "probability": 0.984 + }, + { + "start": 7596.36, + "end": 7601.14, + "probability": 0.7756 + }, + { + "start": 7602.12, + "end": 7603.62, + "probability": 0.8149 + }, + { + "start": 7605.86, + "end": 7608.84, + "probability": 0.9786 + }, + { + "start": 7608.96, + "end": 7609.82, + "probability": 0.5199 + }, + { + "start": 7612.52, + "end": 7617.07, + "probability": 0.9937 + }, + { + "start": 7618.0, + "end": 7618.42, + "probability": 0.909 + }, + { + "start": 7618.62, + "end": 7619.3, + "probability": 0.4925 + }, + { + "start": 7620.56, + "end": 7622.76, + "probability": 0.8336 + }, + { + "start": 7624.42, + "end": 7627.1, + "probability": 0.9978 + }, + { + "start": 7627.9, + "end": 7629.32, + "probability": 0.8827 + }, + { + "start": 7632.14, + "end": 7635.12, + "probability": 0.9456 + }, + { + "start": 7635.86, + "end": 7637.98, + "probability": 0.9833 + }, + { + "start": 7638.98, + "end": 7641.9, + "probability": 0.9129 + }, + { + "start": 7643.14, + "end": 7645.58, + "probability": 0.9655 + }, + { + "start": 7646.24, + "end": 7646.9, + "probability": 0.7695 + }, + { + "start": 7649.8, + "end": 7657.88, + "probability": 0.9924 + }, + { + "start": 7659.0, + "end": 7659.94, + "probability": 0.6258 + }, + { + "start": 7661.74, + "end": 7663.25, + "probability": 0.967 + }, + { + "start": 7664.84, + "end": 7666.78, + "probability": 0.8172 + }, + { + "start": 7668.0, + "end": 7669.1, + "probability": 0.8389 + }, + { + "start": 7670.6, + "end": 7675.88, + "probability": 0.7059 + }, + { + "start": 7677.96, + "end": 7678.9, + "probability": 0.7028 + }, + { + "start": 7679.56, + "end": 7681.32, + "probability": 0.9401 + }, + { + "start": 7682.58, + "end": 7684.16, + "probability": 0.9929 + }, + { + "start": 7686.3, + "end": 7687.61, + "probability": 0.9976 + }, + { + "start": 7688.76, + "end": 7690.12, + "probability": 0.9591 + }, + { + "start": 7690.3, + "end": 7694.58, + "probability": 0.9969 + }, + { + "start": 7696.46, + "end": 7697.48, + "probability": 0.8696 + }, + { + "start": 7698.1, + "end": 7699.12, + "probability": 0.9662 + }, + { + "start": 7699.84, + "end": 7701.08, + "probability": 0.8402 + }, + { + "start": 7702.52, + "end": 7705.08, + "probability": 0.999 + }, + { + "start": 7705.08, + "end": 7709.88, + "probability": 0.9973 + }, + { + "start": 7711.36, + "end": 7712.78, + "probability": 0.9849 + }, + { + "start": 7714.56, + "end": 7716.27, + "probability": 0.8428 + }, + { + "start": 7718.34, + "end": 7720.28, + "probability": 0.9933 + }, + { + "start": 7720.32, + "end": 7723.16, + "probability": 0.9233 + }, + { + "start": 7723.74, + "end": 7724.48, + "probability": 0.8447 + }, + { + "start": 7726.3, + "end": 7728.44, + "probability": 0.9969 + }, + { + "start": 7729.36, + "end": 7731.26, + "probability": 0.9882 + }, + { + "start": 7732.42, + "end": 7735.46, + "probability": 0.9133 + }, + { + "start": 7737.06, + "end": 7739.58, + "probability": 0.8075 + }, + { + "start": 7740.66, + "end": 7742.64, + "probability": 0.9812 + }, + { + "start": 7745.04, + "end": 7748.88, + "probability": 0.9971 + }, + { + "start": 7751.03, + "end": 7754.71, + "probability": 0.1452 + }, + { + "start": 7756.82, + "end": 7759.64, + "probability": 0.9385 + }, + { + "start": 7760.68, + "end": 7761.2, + "probability": 0.5658 + }, + { + "start": 7762.26, + "end": 7764.26, + "probability": 0.985 + }, + { + "start": 7766.84, + "end": 7767.64, + "probability": 0.9917 + }, + { + "start": 7768.58, + "end": 7769.78, + "probability": 0.7927 + }, + { + "start": 7770.46, + "end": 7772.86, + "probability": 0.7786 + }, + { + "start": 7773.06, + "end": 7773.62, + "probability": 0.6531 + }, + { + "start": 7774.26, + "end": 7775.08, + "probability": 0.8376 + }, + { + "start": 7775.82, + "end": 7777.98, + "probability": 0.9501 + }, + { + "start": 7779.32, + "end": 7782.02, + "probability": 0.8907 + }, + { + "start": 7782.78, + "end": 7784.3, + "probability": 0.7196 + }, + { + "start": 7784.72, + "end": 7786.12, + "probability": 0.9953 + }, + { + "start": 7786.6, + "end": 7786.98, + "probability": 0.9332 + }, + { + "start": 7787.56, + "end": 7790.7, + "probability": 0.9412 + }, + { + "start": 7791.54, + "end": 7793.48, + "probability": 0.7437 + }, + { + "start": 7793.68, + "end": 7797.04, + "probability": 0.8025 + }, + { + "start": 7797.52, + "end": 7797.9, + "probability": 0.7968 + }, + { + "start": 7798.44, + "end": 7799.66, + "probability": 0.7581 + }, + { + "start": 7799.7, + "end": 7801.1, + "probability": 0.7824 + }, + { + "start": 7801.18, + "end": 7802.45, + "probability": 0.4614 + }, + { + "start": 7802.98, + "end": 7805.14, + "probability": 0.8276 + }, + { + "start": 7805.82, + "end": 7809.04, + "probability": 0.9982 + }, + { + "start": 7809.14, + "end": 7810.6, + "probability": 0.4617 + }, + { + "start": 7811.04, + "end": 7812.5, + "probability": 0.9622 + }, + { + "start": 7812.58, + "end": 7814.42, + "probability": 0.9308 + }, + { + "start": 7814.98, + "end": 7819.82, + "probability": 0.8174 + }, + { + "start": 7820.0, + "end": 7821.68, + "probability": 0.4129 + }, + { + "start": 7822.42, + "end": 7825.22, + "probability": 0.9661 + }, + { + "start": 7825.44, + "end": 7827.72, + "probability": 0.7964 + }, + { + "start": 7827.82, + "end": 7831.2, + "probability": 0.8962 + }, + { + "start": 7832.82, + "end": 7834.24, + "probability": 0.7329 + }, + { + "start": 7835.14, + "end": 7842.04, + "probability": 0.5408 + }, + { + "start": 7844.94, + "end": 7847.27, + "probability": 0.9966 + }, + { + "start": 7849.4, + "end": 7856.2, + "probability": 0.9952 + }, + { + "start": 7857.8, + "end": 7863.16, + "probability": 0.7644 + }, + { + "start": 7864.04, + "end": 7866.84, + "probability": 0.8003 + }, + { + "start": 7868.9, + "end": 7869.24, + "probability": 0.5029 + }, + { + "start": 7869.24, + "end": 7875.6, + "probability": 0.9814 + }, + { + "start": 7877.12, + "end": 7881.7, + "probability": 0.9958 + }, + { + "start": 7882.4, + "end": 7888.46, + "probability": 0.9965 + }, + { + "start": 7890.82, + "end": 7893.48, + "probability": 0.9559 + }, + { + "start": 7895.3, + "end": 7898.4, + "probability": 0.9905 + }, + { + "start": 7898.4, + "end": 7901.72, + "probability": 0.9953 + }, + { + "start": 7901.82, + "end": 7902.84, + "probability": 0.6864 + }, + { + "start": 7903.52, + "end": 7904.64, + "probability": 0.9463 + }, + { + "start": 7906.22, + "end": 7907.36, + "probability": 0.9214 + }, + { + "start": 7908.22, + "end": 7909.06, + "probability": 0.9797 + }, + { + "start": 7910.9, + "end": 7911.18, + "probability": 0.5969 + }, + { + "start": 7911.34, + "end": 7911.56, + "probability": 0.8754 + }, + { + "start": 7911.76, + "end": 7921.26, + "probability": 0.9834 + }, + { + "start": 7923.28, + "end": 7924.48, + "probability": 0.9812 + }, + { + "start": 7926.28, + "end": 7928.78, + "probability": 0.9584 + }, + { + "start": 7930.16, + "end": 7932.42, + "probability": 0.939 + }, + { + "start": 7933.4, + "end": 7936.38, + "probability": 0.9938 + }, + { + "start": 7936.54, + "end": 7938.96, + "probability": 0.8109 + }, + { + "start": 7939.46, + "end": 7943.32, + "probability": 0.9393 + }, + { + "start": 7944.66, + "end": 7948.16, + "probability": 0.9451 + }, + { + "start": 7948.32, + "end": 7949.48, + "probability": 0.8271 + }, + { + "start": 7949.78, + "end": 7955.54, + "probability": 0.9685 + }, + { + "start": 7957.26, + "end": 7958.82, + "probability": 0.7859 + }, + { + "start": 7959.78, + "end": 7965.26, + "probability": 0.9486 + }, + { + "start": 7965.94, + "end": 7967.12, + "probability": 0.6777 + }, + { + "start": 7967.56, + "end": 7969.7, + "probability": 0.68 + }, + { + "start": 7969.74, + "end": 7975.7, + "probability": 0.9559 + }, + { + "start": 7977.76, + "end": 7980.9, + "probability": 0.8918 + }, + { + "start": 7982.2, + "end": 7987.84, + "probability": 0.7506 + }, + { + "start": 7989.22, + "end": 7993.66, + "probability": 0.8779 + }, + { + "start": 7994.98, + "end": 7998.22, + "probability": 0.7633 + }, + { + "start": 7999.38, + "end": 8002.88, + "probability": 0.63 + }, + { + "start": 8003.81, + "end": 8007.42, + "probability": 0.6197 + }, + { + "start": 8009.58, + "end": 8010.3, + "probability": 0.7681 + }, + { + "start": 8010.42, + "end": 8011.56, + "probability": 0.9338 + }, + { + "start": 8011.68, + "end": 8017.54, + "probability": 0.9935 + }, + { + "start": 8018.5, + "end": 8021.12, + "probability": 0.9209 + }, + { + "start": 8023.32, + "end": 8024.04, + "probability": 0.9292 + }, + { + "start": 8025.96, + "end": 8031.62, + "probability": 0.995 + }, + { + "start": 8033.62, + "end": 8035.14, + "probability": 0.9563 + }, + { + "start": 8035.2, + "end": 8036.02, + "probability": 0.7689 + }, + { + "start": 8036.32, + "end": 8037.76, + "probability": 0.9937 + }, + { + "start": 8038.24, + "end": 8039.32, + "probability": 0.9185 + }, + { + "start": 8039.8, + "end": 8042.92, + "probability": 0.9824 + }, + { + "start": 8044.26, + "end": 8047.58, + "probability": 0.9948 + }, + { + "start": 8047.58, + "end": 8051.7, + "probability": 0.999 + }, + { + "start": 8053.58, + "end": 8054.64, + "probability": 0.6695 + }, + { + "start": 8055.14, + "end": 8058.72, + "probability": 0.9874 + }, + { + "start": 8059.16, + "end": 8060.04, + "probability": 0.9884 + }, + { + "start": 8060.48, + "end": 8061.44, + "probability": 0.7763 + }, + { + "start": 8061.92, + "end": 8063.5, + "probability": 0.9897 + }, + { + "start": 8064.42, + "end": 8066.5, + "probability": 0.6988 + }, + { + "start": 8067.28, + "end": 8071.48, + "probability": 0.87 + }, + { + "start": 8072.68, + "end": 8075.28, + "probability": 0.8779 + }, + { + "start": 8075.66, + "end": 8079.39, + "probability": 0.8215 + }, + { + "start": 8079.46, + "end": 8082.76, + "probability": 0.908 + }, + { + "start": 8083.64, + "end": 8090.34, + "probability": 0.9592 + }, + { + "start": 8091.5, + "end": 8097.42, + "probability": 0.9976 + }, + { + "start": 8098.5, + "end": 8099.84, + "probability": 0.9006 + }, + { + "start": 8101.28, + "end": 8101.8, + "probability": 0.5571 + }, + { + "start": 8102.26, + "end": 8106.6, + "probability": 0.8569 + }, + { + "start": 8106.7, + "end": 8106.96, + "probability": 0.505 + }, + { + "start": 8107.1, + "end": 8108.38, + "probability": 0.7589 + }, + { + "start": 8108.76, + "end": 8115.86, + "probability": 0.9464 + }, + { + "start": 8116.6, + "end": 8122.54, + "probability": 0.9678 + }, + { + "start": 8123.76, + "end": 8124.24, + "probability": 0.8952 + }, + { + "start": 8124.38, + "end": 8125.36, + "probability": 0.9323 + }, + { + "start": 8125.86, + "end": 8131.66, + "probability": 0.9806 + }, + { + "start": 8132.28, + "end": 8138.78, + "probability": 0.9049 + }, + { + "start": 8139.42, + "end": 8144.5, + "probability": 0.9902 + }, + { + "start": 8145.52, + "end": 8149.28, + "probability": 0.9919 + }, + { + "start": 8150.42, + "end": 8152.28, + "probability": 0.7976 + }, + { + "start": 8153.6, + "end": 8154.08, + "probability": 0.4406 + }, + { + "start": 8154.62, + "end": 8157.56, + "probability": 0.943 + }, + { + "start": 8158.32, + "end": 8164.02, + "probability": 0.917 + }, + { + "start": 8164.12, + "end": 8164.64, + "probability": 0.2943 + }, + { + "start": 8164.66, + "end": 8165.66, + "probability": 0.7468 + }, + { + "start": 8165.7, + "end": 8170.42, + "probability": 0.9933 + }, + { + "start": 8170.42, + "end": 8176.82, + "probability": 0.9287 + }, + { + "start": 8177.18, + "end": 8177.18, + "probability": 0.1344 + }, + { + "start": 8177.18, + "end": 8178.3, + "probability": 0.5412 + }, + { + "start": 8178.36, + "end": 8178.66, + "probability": 0.2446 + }, + { + "start": 8179.42, + "end": 8181.12, + "probability": 0.4516 + }, + { + "start": 8181.12, + "end": 8183.84, + "probability": 0.7325 + }, + { + "start": 8184.28, + "end": 8187.88, + "probability": 0.9736 + }, + { + "start": 8187.88, + "end": 8192.84, + "probability": 0.9885 + }, + { + "start": 8193.4, + "end": 8195.48, + "probability": 0.6829 + }, + { + "start": 8195.86, + "end": 8197.9, + "probability": 0.5834 + }, + { + "start": 8198.16, + "end": 8201.14, + "probability": 0.8672 + }, + { + "start": 8202.58, + "end": 8203.02, + "probability": 0.581 + }, + { + "start": 8203.02, + "end": 8205.76, + "probability": 0.9077 + }, + { + "start": 8205.94, + "end": 8206.42, + "probability": 0.5703 + }, + { + "start": 8207.22, + "end": 8207.9, + "probability": 0.6262 + }, + { + "start": 8207.96, + "end": 8210.8, + "probability": 0.8053 + }, + { + "start": 8211.02, + "end": 8216.9, + "probability": 0.8826 + }, + { + "start": 8216.9, + "end": 8221.44, + "probability": 0.9834 + }, + { + "start": 8221.74, + "end": 8225.94, + "probability": 0.978 + }, + { + "start": 8226.3, + "end": 8228.32, + "probability": 0.7979 + }, + { + "start": 8229.04, + "end": 8233.88, + "probability": 0.0095 + }, + { + "start": 8234.7, + "end": 8236.5, + "probability": 0.0204 + }, + { + "start": 8236.5, + "end": 8237.28, + "probability": 0.0572 + }, + { + "start": 8237.76, + "end": 8238.98, + "probability": 0.1094 + }, + { + "start": 8240.0, + "end": 8240.26, + "probability": 0.0127 + }, + { + "start": 8240.54, + "end": 8240.64, + "probability": 0.0284 + }, + { + "start": 8240.64, + "end": 8242.08, + "probability": 0.4906 + }, + { + "start": 8242.26, + "end": 8248.6, + "probability": 0.8407 + }, + { + "start": 8249.22, + "end": 8252.94, + "probability": 0.8273 + }, + { + "start": 8254.48, + "end": 8255.34, + "probability": 0.5029 + }, + { + "start": 8255.72, + "end": 8255.8, + "probability": 0.1858 + }, + { + "start": 8255.8, + "end": 8256.98, + "probability": 0.8577 + }, + { + "start": 8257.0, + "end": 8259.34, + "probability": 0.8365 + }, + { + "start": 8259.74, + "end": 8260.6, + "probability": 0.5103 + }, + { + "start": 8261.3, + "end": 8262.68, + "probability": 0.9961 + }, + { + "start": 8262.68, + "end": 8266.53, + "probability": 0.9961 + }, + { + "start": 8268.02, + "end": 8268.84, + "probability": 0.7698 + }, + { + "start": 8269.02, + "end": 8273.6, + "probability": 0.9901 + }, + { + "start": 8273.94, + "end": 8274.92, + "probability": 0.7843 + }, + { + "start": 8275.34, + "end": 8278.62, + "probability": 0.8655 + }, + { + "start": 8278.86, + "end": 8284.58, + "probability": 0.8626 + }, + { + "start": 8284.7, + "end": 8284.9, + "probability": 0.4583 + }, + { + "start": 8284.96, + "end": 8286.28, + "probability": 0.7849 + }, + { + "start": 8286.62, + "end": 8291.9, + "probability": 0.942 + }, + { + "start": 8292.34, + "end": 8294.76, + "probability": 0.9984 + }, + { + "start": 8294.98, + "end": 8296.8, + "probability": 0.9156 + }, + { + "start": 8297.18, + "end": 8298.92, + "probability": 0.987 + }, + { + "start": 8298.96, + "end": 8300.52, + "probability": 0.8993 + }, + { + "start": 8300.82, + "end": 8303.66, + "probability": 0.9883 + }, + { + "start": 8304.6, + "end": 8305.97, + "probability": 0.9749 + }, + { + "start": 8306.1, + "end": 8311.08, + "probability": 0.9723 + }, + { + "start": 8311.84, + "end": 8314.8, + "probability": 0.8965 + }, + { + "start": 8315.52, + "end": 8316.1, + "probability": 0.7871 + }, + { + "start": 8316.16, + "end": 8317.56, + "probability": 0.8174 + }, + { + "start": 8317.68, + "end": 8325.66, + "probability": 0.9881 + }, + { + "start": 8325.66, + "end": 8330.4, + "probability": 0.992 + }, + { + "start": 8331.9, + "end": 8334.8, + "probability": 0.7742 + }, + { + "start": 8335.34, + "end": 8336.12, + "probability": 0.3132 + }, + { + "start": 8337.0, + "end": 8341.16, + "probability": 0.9981 + }, + { + "start": 8341.42, + "end": 8342.6, + "probability": 0.8542 + }, + { + "start": 8342.96, + "end": 8345.2, + "probability": 0.6178 + }, + { + "start": 8345.3, + "end": 8346.0, + "probability": 0.7268 + }, + { + "start": 8346.3, + "end": 8352.36, + "probability": 0.8752 + }, + { + "start": 8352.74, + "end": 8354.24, + "probability": 0.9204 + }, + { + "start": 8354.42, + "end": 8360.26, + "probability": 0.9295 + }, + { + "start": 8363.84, + "end": 8366.43, + "probability": 0.6885 + }, + { + "start": 8367.01, + "end": 8369.24, + "probability": 0.8577 + }, + { + "start": 8369.3, + "end": 8372.54, + "probability": 0.8234 + }, + { + "start": 8373.22, + "end": 8375.22, + "probability": 0.3106 + }, + { + "start": 8375.36, + "end": 8377.04, + "probability": 0.9301 + }, + { + "start": 8377.14, + "end": 8380.94, + "probability": 0.9921 + }, + { + "start": 8381.58, + "end": 8382.9, + "probability": 0.2779 + }, + { + "start": 8384.1, + "end": 8387.24, + "probability": 0.4859 + }, + { + "start": 8389.28, + "end": 8396.5, + "probability": 0.7112 + }, + { + "start": 8396.58, + "end": 8397.48, + "probability": 0.8478 + }, + { + "start": 8397.82, + "end": 8400.94, + "probability": 0.9914 + }, + { + "start": 8401.42, + "end": 8404.36, + "probability": 0.8218 + }, + { + "start": 8404.5, + "end": 8405.86, + "probability": 0.7784 + }, + { + "start": 8405.96, + "end": 8409.46, + "probability": 0.9759 + }, + { + "start": 8409.58, + "end": 8412.29, + "probability": 0.7061 + }, + { + "start": 8412.86, + "end": 8414.57, + "probability": 0.7503 + }, + { + "start": 8415.94, + "end": 8420.92, + "probability": 0.8055 + }, + { + "start": 8421.56, + "end": 8423.06, + "probability": 0.8759 + }, + { + "start": 8423.48, + "end": 8426.72, + "probability": 0.6589 + }, + { + "start": 8426.84, + "end": 8431.24, + "probability": 0.8497 + }, + { + "start": 8431.24, + "end": 8433.24, + "probability": 0.8525 + }, + { + "start": 8433.42, + "end": 8435.94, + "probability": 0.9917 + }, + { + "start": 8436.4, + "end": 8437.46, + "probability": 0.7296 + }, + { + "start": 8437.54, + "end": 8440.5, + "probability": 0.9855 + }, + { + "start": 8440.86, + "end": 8442.06, + "probability": 0.9523 + }, + { + "start": 8442.34, + "end": 8443.72, + "probability": 0.9792 + }, + { + "start": 8443.72, + "end": 8445.58, + "probability": 0.4941 + }, + { + "start": 8446.32, + "end": 8448.18, + "probability": 0.9465 + }, + { + "start": 8448.38, + "end": 8449.64, + "probability": 0.5063 + }, + { + "start": 8449.94, + "end": 8451.9, + "probability": 0.7251 + }, + { + "start": 8452.1, + "end": 8454.93, + "probability": 0.8083 + }, + { + "start": 8455.58, + "end": 8456.8, + "probability": 0.914 + }, + { + "start": 8456.94, + "end": 8460.2, + "probability": 0.3414 + }, + { + "start": 8460.2, + "end": 8460.94, + "probability": 0.6952 + }, + { + "start": 8461.16, + "end": 8461.47, + "probability": 0.5781 + }, + { + "start": 8462.24, + "end": 8464.52, + "probability": 0.4421 + }, + { + "start": 8476.12, + "end": 8477.74, + "probability": 0.255 + }, + { + "start": 8481.74, + "end": 8482.92, + "probability": 0.175 + }, + { + "start": 8483.64, + "end": 8483.78, + "probability": 0.152 + }, + { + "start": 8483.78, + "end": 8483.84, + "probability": 0.1235 + }, + { + "start": 8483.84, + "end": 8484.47, + "probability": 0.0216 + }, + { + "start": 8485.42, + "end": 8489.1, + "probability": 0.1414 + }, + { + "start": 8490.28, + "end": 8492.16, + "probability": 0.1858 + }, + { + "start": 8493.04, + "end": 8494.18, + "probability": 0.1215 + }, + { + "start": 8494.18, + "end": 8496.18, + "probability": 0.2469 + }, + { + "start": 8496.68, + "end": 8499.86, + "probability": 0.0709 + }, + { + "start": 8500.9, + "end": 8505.48, + "probability": 0.0714 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.0, + "end": 8563.0, + "probability": 0.0 + }, + { + "start": 8563.46, + "end": 8563.66, + "probability": 0.298 + }, + { + "start": 8563.66, + "end": 8563.66, + "probability": 0.2397 + }, + { + "start": 8563.66, + "end": 8563.66, + "probability": 0.0414 + }, + { + "start": 8563.66, + "end": 8563.66, + "probability": 0.1043 + }, + { + "start": 8563.66, + "end": 8566.74, + "probability": 0.6371 + }, + { + "start": 8567.0, + "end": 8569.09, + "probability": 0.4801 + }, + { + "start": 8569.62, + "end": 8573.03, + "probability": 0.9033 + }, + { + "start": 8573.42, + "end": 8576.5, + "probability": 0.7862 + }, + { + "start": 8577.04, + "end": 8579.0, + "probability": 0.9565 + }, + { + "start": 8579.04, + "end": 8583.24, + "probability": 0.9958 + }, + { + "start": 8583.36, + "end": 8587.48, + "probability": 0.9953 + }, + { + "start": 8587.6, + "end": 8588.32, + "probability": 0.7748 + }, + { + "start": 8588.38, + "end": 8591.46, + "probability": 0.9834 + }, + { + "start": 8592.08, + "end": 8592.7, + "probability": 0.7417 + }, + { + "start": 8592.82, + "end": 8593.6, + "probability": 0.9055 + }, + { + "start": 8593.66, + "end": 8596.78, + "probability": 0.9667 + }, + { + "start": 8596.94, + "end": 8597.98, + "probability": 0.7373 + }, + { + "start": 8599.58, + "end": 8600.72, + "probability": 0.3376 + }, + { + "start": 8601.02, + "end": 8605.44, + "probability": 0.1071 + }, + { + "start": 8605.66, + "end": 8606.84, + "probability": 0.2708 + }, + { + "start": 8606.84, + "end": 8607.48, + "probability": 0.1346 + }, + { + "start": 8607.48, + "end": 8608.4, + "probability": 0.429 + }, + { + "start": 8609.07, + "end": 8611.3, + "probability": 0.9452 + }, + { + "start": 8611.5, + "end": 8613.51, + "probability": 0.9009 + }, + { + "start": 8614.4, + "end": 8615.44, + "probability": 0.7406 + }, + { + "start": 8615.8, + "end": 8616.9, + "probability": 0.951 + }, + { + "start": 8617.26, + "end": 8618.36, + "probability": 0.8853 + }, + { + "start": 8618.92, + "end": 8622.68, + "probability": 0.9411 + }, + { + "start": 8622.74, + "end": 8626.14, + "probability": 0.9678 + }, + { + "start": 8626.28, + "end": 8626.64, + "probability": 0.4031 + }, + { + "start": 8627.1, + "end": 8628.7, + "probability": 0.8659 + }, + { + "start": 8629.5, + "end": 8633.28, + "probability": 0.6384 + }, + { + "start": 8633.88, + "end": 8636.3, + "probability": 0.2287 + }, + { + "start": 8637.44, + "end": 8639.06, + "probability": 0.8972 + }, + { + "start": 8639.52, + "end": 8643.53, + "probability": 0.9058 + }, + { + "start": 8644.54, + "end": 8645.48, + "probability": 0.6088 + }, + { + "start": 8645.6, + "end": 8645.95, + "probability": 0.886 + }, + { + "start": 8646.68, + "end": 8647.9, + "probability": 0.8777 + }, + { + "start": 8648.42, + "end": 8650.28, + "probability": 0.9614 + }, + { + "start": 8650.68, + "end": 8651.62, + "probability": 0.9624 + }, + { + "start": 8651.74, + "end": 8653.04, + "probability": 0.954 + }, + { + "start": 8653.16, + "end": 8653.58, + "probability": 0.8594 + }, + { + "start": 8654.34, + "end": 8655.06, + "probability": 0.7295 + }, + { + "start": 8655.8, + "end": 8656.24, + "probability": 0.558 + }, + { + "start": 8656.3, + "end": 8657.18, + "probability": 0.8053 + }, + { + "start": 8657.28, + "end": 8658.62, + "probability": 0.8126 + }, + { + "start": 8658.78, + "end": 8660.38, + "probability": 0.8568 + }, + { + "start": 8660.52, + "end": 8660.88, + "probability": 0.7346 + }, + { + "start": 8660.96, + "end": 8662.24, + "probability": 0.9841 + }, + { + "start": 8662.98, + "end": 8669.44, + "probability": 0.7967 + }, + { + "start": 8669.52, + "end": 8670.56, + "probability": 0.9143 + }, + { + "start": 8670.62, + "end": 8671.7, + "probability": 0.9763 + }, + { + "start": 8672.16, + "end": 8672.68, + "probability": 0.7458 + }, + { + "start": 8672.88, + "end": 8672.94, + "probability": 0.0038 + }, + { + "start": 8672.94, + "end": 8674.36, + "probability": 0.196 + }, + { + "start": 8674.74, + "end": 8678.1, + "probability": 0.8394 + }, + { + "start": 8680.9, + "end": 8681.06, + "probability": 0.0305 + }, + { + "start": 8681.06, + "end": 8682.15, + "probability": 0.6434 + }, + { + "start": 8683.12, + "end": 8688.8, + "probability": 0.9945 + }, + { + "start": 8688.9, + "end": 8690.46, + "probability": 0.9414 + }, + { + "start": 8690.62, + "end": 8691.96, + "probability": 0.873 + }, + { + "start": 8692.28, + "end": 8694.02, + "probability": 0.9798 + }, + { + "start": 8694.44, + "end": 8695.7, + "probability": 0.7952 + }, + { + "start": 8695.78, + "end": 8696.52, + "probability": 0.7574 + }, + { + "start": 8696.54, + "end": 8697.44, + "probability": 0.8711 + }, + { + "start": 8697.56, + "end": 8704.12, + "probability": 0.9387 + }, + { + "start": 8704.36, + "end": 8707.18, + "probability": 0.9734 + }, + { + "start": 8707.38, + "end": 8711.16, + "probability": 0.5943 + }, + { + "start": 8711.32, + "end": 8714.96, + "probability": 0.9219 + }, + { + "start": 8714.96, + "end": 8716.7, + "probability": 0.5675 + }, + { + "start": 8716.7, + "end": 8716.88, + "probability": 0.1704 + }, + { + "start": 8716.88, + "end": 8719.7, + "probability": 0.456 + }, + { + "start": 8722.52, + "end": 8724.22, + "probability": 0.0553 + }, + { + "start": 8724.8, + "end": 8725.58, + "probability": 0.0758 + }, + { + "start": 8725.92, + "end": 8726.9, + "probability": 0.0569 + }, + { + "start": 8727.02, + "end": 8727.14, + "probability": 0.0439 + }, + { + "start": 8727.26, + "end": 8727.68, + "probability": 0.1662 + }, + { + "start": 8728.18, + "end": 8729.02, + "probability": 0.1169 + }, + { + "start": 8732.0, + "end": 8736.86, + "probability": 0.2408 + }, + { + "start": 8736.98, + "end": 8737.76, + "probability": 0.4038 + }, + { + "start": 8737.94, + "end": 8743.7, + "probability": 0.0996 + }, + { + "start": 8744.4, + "end": 8748.16, + "probability": 0.2939 + }, + { + "start": 8748.34, + "end": 8751.52, + "probability": 0.5075 + }, + { + "start": 8751.62, + "end": 8755.34, + "probability": 0.9727 + }, + { + "start": 8756.12, + "end": 8760.2, + "probability": 0.9808 + }, + { + "start": 8760.49, + "end": 8764.16, + "probability": 0.9895 + }, + { + "start": 8764.44, + "end": 8766.28, + "probability": 0.8137 + }, + { + "start": 8766.46, + "end": 8767.38, + "probability": 0.9473 + }, + { + "start": 8767.52, + "end": 8772.0, + "probability": 0.9857 + }, + { + "start": 8772.0, + "end": 8778.44, + "probability": 0.9972 + }, + { + "start": 8778.96, + "end": 8780.8, + "probability": 0.8607 + }, + { + "start": 8781.28, + "end": 8782.44, + "probability": 0.798 + }, + { + "start": 8782.56, + "end": 8783.66, + "probability": 0.6754 + }, + { + "start": 8783.98, + "end": 8786.82, + "probability": 0.9757 + }, + { + "start": 8787.18, + "end": 8790.14, + "probability": 0.9702 + }, + { + "start": 8790.42, + "end": 8795.84, + "probability": 0.9696 + }, + { + "start": 8795.96, + "end": 8799.1, + "probability": 0.993 + }, + { + "start": 8799.98, + "end": 8803.02, + "probability": 0.9966 + }, + { + "start": 8803.58, + "end": 8808.22, + "probability": 0.9756 + }, + { + "start": 8808.52, + "end": 8810.08, + "probability": 0.9797 + }, + { + "start": 8810.3, + "end": 8811.84, + "probability": 0.9955 + }, + { + "start": 8812.04, + "end": 8813.58, + "probability": 0.9072 + }, + { + "start": 8813.86, + "end": 8814.4, + "probability": 0.7674 + }, + { + "start": 8814.6, + "end": 8816.32, + "probability": 0.7908 + }, + { + "start": 8816.36, + "end": 8818.32, + "probability": 0.9828 + }, + { + "start": 8818.68, + "end": 8820.96, + "probability": 0.9639 + }, + { + "start": 8821.0, + "end": 8821.94, + "probability": 0.9824 + }, + { + "start": 8821.96, + "end": 8823.34, + "probability": 0.9033 + }, + { + "start": 8823.9, + "end": 8825.78, + "probability": 0.7712 + }, + { + "start": 8826.3, + "end": 8830.74, + "probability": 0.9557 + }, + { + "start": 8831.62, + "end": 8833.96, + "probability": 0.9893 + }, + { + "start": 8834.46, + "end": 8840.96, + "probability": 0.9717 + }, + { + "start": 8841.44, + "end": 8841.92, + "probability": 0.5718 + }, + { + "start": 8842.04, + "end": 8843.36, + "probability": 0.766 + }, + { + "start": 8843.48, + "end": 8847.52, + "probability": 0.9686 + }, + { + "start": 8848.36, + "end": 8851.94, + "probability": 0.8531 + }, + { + "start": 8852.38, + "end": 8856.48, + "probability": 0.9587 + }, + { + "start": 8856.64, + "end": 8861.2, + "probability": 0.8268 + }, + { + "start": 8861.62, + "end": 8864.84, + "probability": 0.9972 + }, + { + "start": 8865.4, + "end": 8866.9, + "probability": 0.8429 + }, + { + "start": 8867.32, + "end": 8869.98, + "probability": 0.978 + }, + { + "start": 8870.7, + "end": 8875.44, + "probability": 0.8803 + }, + { + "start": 8876.25, + "end": 8879.08, + "probability": 0.8782 + }, + { + "start": 8879.52, + "end": 8881.98, + "probability": 0.947 + }, + { + "start": 8882.1, + "end": 8883.38, + "probability": 0.7889 + }, + { + "start": 8883.56, + "end": 8889.22, + "probability": 0.99 + }, + { + "start": 8890.0, + "end": 8892.32, + "probability": 0.9934 + }, + { + "start": 8893.2, + "end": 8896.92, + "probability": 0.9817 + }, + { + "start": 8898.58, + "end": 8904.14, + "probability": 0.9787 + }, + { + "start": 8904.52, + "end": 8905.98, + "probability": 0.3263 + }, + { + "start": 8906.1, + "end": 8907.54, + "probability": 0.9221 + }, + { + "start": 8907.74, + "end": 8911.76, + "probability": 0.7235 + }, + { + "start": 8911.84, + "end": 8919.0, + "probability": 0.6081 + }, + { + "start": 8920.28, + "end": 8924.08, + "probability": 0.9741 + }, + { + "start": 8925.43, + "end": 8929.08, + "probability": 0.6438 + }, + { + "start": 8929.08, + "end": 8929.34, + "probability": 0.5344 + }, + { + "start": 8930.9, + "end": 8934.48, + "probability": 0.9613 + }, + { + "start": 8935.64, + "end": 8939.84, + "probability": 0.8678 + }, + { + "start": 8940.04, + "end": 8941.8, + "probability": 0.8683 + }, + { + "start": 8942.66, + "end": 8947.64, + "probability": 0.7967 + }, + { + "start": 8947.74, + "end": 8949.14, + "probability": 0.679 + }, + { + "start": 8949.54, + "end": 8952.56, + "probability": 0.638 + }, + { + "start": 8952.62, + "end": 8957.42, + "probability": 0.752 + }, + { + "start": 8957.42, + "end": 8959.12, + "probability": 0.8844 + }, + { + "start": 8959.74, + "end": 8962.2, + "probability": 0.5983 + }, + { + "start": 8962.44, + "end": 8965.32, + "probability": 0.8147 + }, + { + "start": 8969.88, + "end": 8971.52, + "probability": 0.7311 + }, + { + "start": 8975.32, + "end": 8976.23, + "probability": 0.6442 + }, + { + "start": 8979.94, + "end": 8982.64, + "probability": 0.5855 + }, + { + "start": 8983.48, + "end": 8988.78, + "probability": 0.8069 + }, + { + "start": 8989.6, + "end": 8990.32, + "probability": 0.5274 + }, + { + "start": 8990.38, + "end": 8991.84, + "probability": 0.372 + }, + { + "start": 8991.94, + "end": 8994.7, + "probability": 0.912 + }, + { + "start": 8995.12, + "end": 8998.48, + "probability": 0.9593 + }, + { + "start": 8999.56, + "end": 9001.6, + "probability": 0.6947 + }, + { + "start": 9002.44, + "end": 9004.8, + "probability": 0.7619 + }, + { + "start": 9005.44, + "end": 9010.88, + "probability": 0.9388 + }, + { + "start": 9013.9, + "end": 9016.82, + "probability": 0.9286 + }, + { + "start": 9018.36, + "end": 9021.6, + "probability": 0.9738 + }, + { + "start": 9022.32, + "end": 9027.28, + "probability": 0.9856 + }, + { + "start": 9028.06, + "end": 9030.04, + "probability": 0.7321 + }, + { + "start": 9030.7, + "end": 9032.46, + "probability": 0.6553 + }, + { + "start": 9034.86, + "end": 9037.02, + "probability": 0.6684 + }, + { + "start": 9038.82, + "end": 9042.82, + "probability": 0.9339 + }, + { + "start": 9043.98, + "end": 9046.36, + "probability": 0.9504 + }, + { + "start": 9047.42, + "end": 9049.64, + "probability": 0.965 + }, + { + "start": 9051.76, + "end": 9057.64, + "probability": 0.8013 + }, + { + "start": 9058.36, + "end": 9060.54, + "probability": 0.4987 + }, + { + "start": 9061.22, + "end": 9066.02, + "probability": 0.9249 + }, + { + "start": 9068.36, + "end": 9070.86, + "probability": 0.9139 + }, + { + "start": 9071.56, + "end": 9078.54, + "probability": 0.9073 + }, + { + "start": 9079.48, + "end": 9081.64, + "probability": 0.9749 + }, + { + "start": 9083.06, + "end": 9085.62, + "probability": 0.658 + }, + { + "start": 9086.36, + "end": 9088.48, + "probability": 0.9484 + }, + { + "start": 9091.68, + "end": 9094.82, + "probability": 0.8682 + }, + { + "start": 9097.48, + "end": 9100.4, + "probability": 0.9242 + }, + { + "start": 9101.68, + "end": 9103.84, + "probability": 0.4768 + }, + { + "start": 9114.66, + "end": 9115.86, + "probability": 0.2 + }, + { + "start": 9116.66, + "end": 9118.66, + "probability": 0.697 + }, + { + "start": 9119.18, + "end": 9121.62, + "probability": 0.9474 + }, + { + "start": 9122.16, + "end": 9124.58, + "probability": 0.9326 + }, + { + "start": 9125.56, + "end": 9127.96, + "probability": 0.9924 + }, + { + "start": 9128.68, + "end": 9131.24, + "probability": 0.8553 + }, + { + "start": 9132.2, + "end": 9134.66, + "probability": 0.993 + }, + { + "start": 9134.66, + "end": 9137.56, + "probability": 0.9714 + }, + { + "start": 9138.0, + "end": 9140.26, + "probability": 0.9754 + }, + { + "start": 9143.32, + "end": 9147.14, + "probability": 0.5201 + }, + { + "start": 9148.54, + "end": 9153.18, + "probability": 0.8914 + }, + { + "start": 9153.84, + "end": 9157.08, + "probability": 0.7865 + }, + { + "start": 9158.16, + "end": 9160.5, + "probability": 0.8844 + }, + { + "start": 9161.74, + "end": 9164.02, + "probability": 0.9401 + }, + { + "start": 9165.3, + "end": 9168.34, + "probability": 0.9009 + }, + { + "start": 9170.38, + "end": 9172.94, + "probability": 0.8299 + }, + { + "start": 9173.8, + "end": 9176.42, + "probability": 0.7005 + }, + { + "start": 9177.38, + "end": 9180.12, + "probability": 0.9583 + }, + { + "start": 9181.2, + "end": 9183.74, + "probability": 0.9752 + }, + { + "start": 9185.64, + "end": 9188.14, + "probability": 0.9771 + }, + { + "start": 9189.08, + "end": 9191.94, + "probability": 0.599 + }, + { + "start": 9193.02, + "end": 9195.3, + "probability": 0.9692 + }, + { + "start": 9196.12, + "end": 9198.88, + "probability": 0.8835 + }, + { + "start": 9199.6, + "end": 9201.88, + "probability": 0.697 + }, + { + "start": 9202.7, + "end": 9204.82, + "probability": 0.8684 + }, + { + "start": 9205.36, + "end": 9207.88, + "probability": 0.9865 + }, + { + "start": 9208.62, + "end": 9210.72, + "probability": 0.9767 + }, + { + "start": 9211.28, + "end": 9215.0, + "probability": 0.9246 + }, + { + "start": 9216.34, + "end": 9219.88, + "probability": 0.8545 + }, + { + "start": 9220.56, + "end": 9225.58, + "probability": 0.9868 + }, + { + "start": 9226.32, + "end": 9228.6, + "probability": 0.9451 + }, + { + "start": 9230.76, + "end": 9238.46, + "probability": 0.6977 + }, + { + "start": 9239.49, + "end": 9240.75, + "probability": 0.8828 + }, + { + "start": 9241.72, + "end": 9243.92, + "probability": 0.9814 + }, + { + "start": 9244.54, + "end": 9249.6, + "probability": 0.9805 + }, + { + "start": 9250.76, + "end": 9255.78, + "probability": 0.9889 + }, + { + "start": 9256.72, + "end": 9263.8, + "probability": 0.7028 + }, + { + "start": 9265.08, + "end": 9267.34, + "probability": 0.9286 + }, + { + "start": 9270.46, + "end": 9273.5, + "probability": 0.7502 + }, + { + "start": 9274.18, + "end": 9277.62, + "probability": 0.7737 + }, + { + "start": 9278.52, + "end": 9280.6, + "probability": 0.949 + }, + { + "start": 9281.26, + "end": 9283.48, + "probability": 0.9505 + }, + { + "start": 9283.94, + "end": 9286.28, + "probability": 0.9856 + }, + { + "start": 9286.66, + "end": 9288.66, + "probability": 0.9603 + }, + { + "start": 9288.88, + "end": 9292.3, + "probability": 0.9509 + }, + { + "start": 9292.46, + "end": 9294.74, + "probability": 0.9807 + }, + { + "start": 9296.96, + "end": 9298.32, + "probability": 0.4715 + }, + { + "start": 9298.94, + "end": 9302.5, + "probability": 0.8717 + }, + { + "start": 9303.2, + "end": 9305.32, + "probability": 0.8597 + }, + { + "start": 9305.88, + "end": 9308.04, + "probability": 0.8907 + }, + { + "start": 9308.58, + "end": 9313.86, + "probability": 0.8666 + }, + { + "start": 9315.38, + "end": 9319.42, + "probability": 0.8834 + }, + { + "start": 9320.4, + "end": 9323.84, + "probability": 0.9403 + }, + { + "start": 9324.72, + "end": 9327.42, + "probability": 0.8015 + }, + { + "start": 9328.7, + "end": 9331.24, + "probability": 0.9096 + }, + { + "start": 9332.18, + "end": 9335.52, + "probability": 0.9368 + }, + { + "start": 9336.52, + "end": 9339.18, + "probability": 0.9834 + }, + { + "start": 9340.66, + "end": 9344.06, + "probability": 0.9662 + }, + { + "start": 9344.68, + "end": 9347.44, + "probability": 0.8251 + }, + { + "start": 9348.14, + "end": 9350.28, + "probability": 0.9844 + }, + { + "start": 9350.8, + "end": 9351.28, + "probability": 0.9897 + }, + { + "start": 9352.16, + "end": 9358.56, + "probability": 0.7495 + }, + { + "start": 9359.42, + "end": 9362.58, + "probability": 0.9207 + }, + { + "start": 9363.44, + "end": 9369.5, + "probability": 0.9371 + }, + { + "start": 9370.1, + "end": 9372.42, + "probability": 0.9865 + }, + { + "start": 9374.48, + "end": 9377.02, + "probability": 0.9626 + }, + { + "start": 9378.32, + "end": 9379.5, + "probability": 0.996 + }, + { + "start": 9380.32, + "end": 9386.1, + "probability": 0.6951 + }, + { + "start": 9387.26, + "end": 9390.34, + "probability": 0.8542 + }, + { + "start": 9391.28, + "end": 9393.92, + "probability": 0.8831 + }, + { + "start": 9395.2, + "end": 9398.3, + "probability": 0.9815 + }, + { + "start": 9399.14, + "end": 9399.66, + "probability": 0.9561 + }, + { + "start": 9403.38, + "end": 9407.04, + "probability": 0.7469 + }, + { + "start": 9408.3, + "end": 9410.46, + "probability": 0.8237 + }, + { + "start": 9411.84, + "end": 9414.18, + "probability": 0.9583 + }, + { + "start": 9415.9, + "end": 9418.34, + "probability": 0.9149 + }, + { + "start": 9420.1, + "end": 9423.86, + "probability": 0.947 + }, + { + "start": 9425.6, + "end": 9427.86, + "probability": 0.9528 + }, + { + "start": 9429.42, + "end": 9430.72, + "probability": 0.525 + }, + { + "start": 9432.72, + "end": 9437.78, + "probability": 0.9771 + }, + { + "start": 9439.54, + "end": 9440.31, + "probability": 0.535 + }, + { + "start": 9442.14, + "end": 9444.66, + "probability": 0.8844 + }, + { + "start": 9445.2, + "end": 9447.08, + "probability": 0.8884 + }, + { + "start": 9447.96, + "end": 9449.94, + "probability": 0.914 + }, + { + "start": 9450.68, + "end": 9452.98, + "probability": 0.9867 + }, + { + "start": 9453.8, + "end": 9456.08, + "probability": 0.6872 + }, + { + "start": 9456.66, + "end": 9458.96, + "probability": 0.9513 + }, + { + "start": 9459.88, + "end": 9461.86, + "probability": 0.9654 + }, + { + "start": 9469.28, + "end": 9470.98, + "probability": 0.6595 + }, + { + "start": 9471.96, + "end": 9474.86, + "probability": 0.6976 + }, + { + "start": 9476.38, + "end": 9478.46, + "probability": 0.8979 + }, + { + "start": 9480.1, + "end": 9480.26, + "probability": 0.9478 + }, + { + "start": 9485.54, + "end": 9486.8, + "probability": 0.7552 + }, + { + "start": 9491.02, + "end": 9491.86, + "probability": 0.5856 + }, + { + "start": 9493.28, + "end": 9496.84, + "probability": 0.8713 + }, + { + "start": 9497.92, + "end": 9500.52, + "probability": 0.9664 + }, + { + "start": 9501.66, + "end": 9504.08, + "probability": 0.8541 + }, + { + "start": 9504.92, + "end": 9507.28, + "probability": 0.9836 + }, + { + "start": 9508.26, + "end": 9512.96, + "probability": 0.9563 + }, + { + "start": 9513.76, + "end": 9513.98, + "probability": 0.9355 + }, + { + "start": 9514.58, + "end": 9516.32, + "probability": 0.98 + }, + { + "start": 9517.12, + "end": 9519.54, + "probability": 0.7987 + }, + { + "start": 9520.3, + "end": 9524.28, + "probability": 0.9841 + }, + { + "start": 9525.22, + "end": 9527.44, + "probability": 0.6568 + }, + { + "start": 9528.44, + "end": 9530.9, + "probability": 0.9439 + }, + { + "start": 9531.18, + "end": 9534.42, + "probability": 0.6373 + }, + { + "start": 9541.6, + "end": 9546.98, + "probability": 0.6306 + }, + { + "start": 9548.34, + "end": 9550.46, + "probability": 0.8795 + }, + { + "start": 9551.5, + "end": 9553.8, + "probability": 0.8488 + }, + { + "start": 9554.38, + "end": 9556.36, + "probability": 0.8575 + }, + { + "start": 9557.62, + "end": 9559.56, + "probability": 0.9583 + }, + { + "start": 9559.76, + "end": 9564.52, + "probability": 0.9545 + }, + { + "start": 9565.46, + "end": 9565.8, + "probability": 0.6198 + }, + { + "start": 9566.42, + "end": 9570.78, + "probability": 0.5882 + }, + { + "start": 9573.76, + "end": 9576.54, + "probability": 0.6738 + }, + { + "start": 9578.78, + "end": 9581.07, + "probability": 0.7799 + }, + { + "start": 9582.24, + "end": 9584.77, + "probability": 0.5564 + }, + { + "start": 9585.98, + "end": 9589.12, + "probability": 0.7823 + }, + { + "start": 9598.72, + "end": 9599.02, + "probability": 0.06 + }, + { + "start": 9610.18, + "end": 9610.96, + "probability": 0.1704 + }, + { + "start": 9611.9, + "end": 9612.86, + "probability": 0.0181 + }, + { + "start": 9680.27, + "end": 9682.07, + "probability": 0.5244 + }, + { + "start": 9682.88, + "end": 9688.2, + "probability": 0.5216 + }, + { + "start": 9688.38, + "end": 9690.49, + "probability": 0.7982 + }, + { + "start": 9691.08, + "end": 9694.4, + "probability": 0.9315 + }, + { + "start": 9694.5, + "end": 9700.0, + "probability": 0.8969 + }, + { + "start": 9700.28, + "end": 9704.66, + "probability": 0.5598 + }, + { + "start": 9704.72, + "end": 9705.72, + "probability": 0.9521 + }, + { + "start": 9707.26, + "end": 9714.84, + "probability": 0.0422 + }, + { + "start": 9724.84, + "end": 9726.82, + "probability": 0.2635 + }, + { + "start": 9727.4, + "end": 9729.72, + "probability": 0.5796 + }, + { + "start": 9729.86, + "end": 9731.87, + "probability": 0.9026 + }, + { + "start": 9733.16, + "end": 9735.44, + "probability": 0.915 + }, + { + "start": 9736.18, + "end": 9738.98, + "probability": 0.7588 + }, + { + "start": 9739.04, + "end": 9744.78, + "probability": 0.9897 + }, + { + "start": 9745.02, + "end": 9747.04, + "probability": 0.5239 + }, + { + "start": 9747.32, + "end": 9749.78, + "probability": 0.7677 + }, + { + "start": 9749.8, + "end": 9752.8, + "probability": 0.6428 + }, + { + "start": 9753.14, + "end": 9754.28, + "probability": 0.5022 + }, + { + "start": 9756.9, + "end": 9762.14, + "probability": 0.0815 + }, + { + "start": 9772.28, + "end": 9776.9, + "probability": 0.5091 + }, + { + "start": 9777.42, + "end": 9779.67, + "probability": 0.9201 + }, + { + "start": 9780.3, + "end": 9782.57, + "probability": 0.5427 + }, + { + "start": 9784.08, + "end": 9791.48, + "probability": 0.8922 + }, + { + "start": 9802.46, + "end": 9803.6, + "probability": 0.1541 + }, + { + "start": 9803.6, + "end": 9804.46, + "probability": 0.6318 + }, + { + "start": 9804.52, + "end": 9806.04, + "probability": 0.781 + }, + { + "start": 9806.46, + "end": 9808.12, + "probability": 0.929 + }, + { + "start": 9808.7, + "end": 9812.1, + "probability": 0.5115 + }, + { + "start": 9813.94, + "end": 9815.48, + "probability": 0.918 + }, + { + "start": 9815.78, + "end": 9820.0, + "probability": 0.981 + }, + { + "start": 9820.1, + "end": 9822.54, + "probability": 0.9902 + }, + { + "start": 9823.1, + "end": 9828.4, + "probability": 0.8831 + }, + { + "start": 9828.93, + "end": 9833.56, + "probability": 0.7671 + }, + { + "start": 9834.16, + "end": 9834.68, + "probability": 0.3428 + }, + { + "start": 9834.76, + "end": 9839.5, + "probability": 0.9832 + }, + { + "start": 9840.56, + "end": 9846.02, + "probability": 0.9135 + }, + { + "start": 9853.66, + "end": 9854.22, + "probability": 0.6387 + }, + { + "start": 9854.42, + "end": 9861.26, + "probability": 0.9303 + }, + { + "start": 9862.06, + "end": 9863.82, + "probability": 0.64 + }, + { + "start": 9870.02, + "end": 9871.3, + "probability": 0.6858 + }, + { + "start": 9872.12, + "end": 9873.16, + "probability": 0.8478 + }, + { + "start": 9874.32, + "end": 9877.74, + "probability": 0.9754 + }, + { + "start": 9877.74, + "end": 9882.04, + "probability": 0.9846 + }, + { + "start": 9882.12, + "end": 9886.34, + "probability": 0.9875 + }, + { + "start": 9886.58, + "end": 9890.2, + "probability": 0.9596 + }, + { + "start": 9891.35, + "end": 9894.48, + "probability": 0.684 + }, + { + "start": 9895.18, + "end": 9900.7, + "probability": 0.9568 + }, + { + "start": 9900.78, + "end": 9903.54, + "probability": 0.8664 + }, + { + "start": 9904.44, + "end": 9907.94, + "probability": 0.9893 + }, + { + "start": 9909.91, + "end": 9912.88, + "probability": 0.8936 + }, + { + "start": 9912.98, + "end": 9916.44, + "probability": 0.9978 + }, + { + "start": 9917.6, + "end": 9921.14, + "probability": 0.9976 + }, + { + "start": 9921.82, + "end": 9927.84, + "probability": 0.9862 + }, + { + "start": 9927.84, + "end": 9931.93, + "probability": 0.9564 + }, + { + "start": 9935.46, + "end": 9939.34, + "probability": 0.9996 + }, + { + "start": 9939.34, + "end": 9945.5, + "probability": 0.9994 + }, + { + "start": 9945.96, + "end": 9951.58, + "probability": 0.9575 + }, + { + "start": 9953.1, + "end": 9956.74, + "probability": 0.9958 + }, + { + "start": 9957.48, + "end": 9959.7, + "probability": 0.9821 + }, + { + "start": 9960.2, + "end": 9963.08, + "probability": 0.9038 + }, + { + "start": 9963.94, + "end": 9969.12, + "probability": 0.9955 + }, + { + "start": 9969.22, + "end": 9971.36, + "probability": 0.5465 + }, + { + "start": 9971.46, + "end": 9976.3, + "probability": 0.8768 + }, + { + "start": 9977.78, + "end": 9981.42, + "probability": 0.9897 + }, + { + "start": 9981.42, + "end": 9986.1, + "probability": 0.8983 + }, + { + "start": 9986.9, + "end": 9989.98, + "probability": 0.9775 + }, + { + "start": 9991.7, + "end": 9995.08, + "probability": 0.9662 + }, + { + "start": 9995.08, + "end": 10002.38, + "probability": 0.9958 + }, + { + "start": 10005.2, + "end": 10005.88, + "probability": 0.73 + }, + { + "start": 10005.96, + "end": 10008.99, + "probability": 0.8931 + }, + { + "start": 10009.34, + "end": 10010.58, + "probability": 0.761 + }, + { + "start": 10011.0, + "end": 10014.88, + "probability": 0.9703 + }, + { + "start": 10017.22, + "end": 10021.52, + "probability": 0.9053 + }, + { + "start": 10022.3, + "end": 10027.48, + "probability": 0.9606 + }, + { + "start": 10027.48, + "end": 10032.12, + "probability": 0.9938 + }, + { + "start": 10034.9, + "end": 10039.9, + "probability": 0.9971 + }, + { + "start": 10039.9, + "end": 10045.54, + "probability": 0.9995 + }, + { + "start": 10045.54, + "end": 10051.28, + "probability": 0.9978 + }, + { + "start": 10053.0, + "end": 10055.68, + "probability": 0.9045 + }, + { + "start": 10056.46, + "end": 10059.96, + "probability": 0.9807 + }, + { + "start": 10062.74, + "end": 10068.61, + "probability": 0.8699 + }, + { + "start": 10069.02, + "end": 10073.38, + "probability": 0.9931 + }, + { + "start": 10073.46, + "end": 10073.56, + "probability": 0.5148 + }, + { + "start": 10074.12, + "end": 10076.6, + "probability": 0.8361 + }, + { + "start": 10077.24, + "end": 10080.22, + "probability": 0.9912 + }, + { + "start": 10080.66, + "end": 10085.26, + "probability": 0.925 + }, + { + "start": 10087.06, + "end": 10089.54, + "probability": 0.7554 + }, + { + "start": 10091.0, + "end": 10097.24, + "probability": 0.9514 + }, + { + "start": 10098.3, + "end": 10098.92, + "probability": 0.9291 + }, + { + "start": 10100.42, + "end": 10109.14, + "probability": 0.8153 + }, + { + "start": 10111.86, + "end": 10113.82, + "probability": 0.9207 + }, + { + "start": 10113.82, + "end": 10117.14, + "probability": 0.9963 + }, + { + "start": 10119.3, + "end": 10122.48, + "probability": 0.9965 + }, + { + "start": 10124.38, + "end": 10130.46, + "probability": 0.9153 + }, + { + "start": 10132.12, + "end": 10134.22, + "probability": 0.9943 + }, + { + "start": 10134.86, + "end": 10138.68, + "probability": 0.9976 + }, + { + "start": 10139.32, + "end": 10140.52, + "probability": 0.9876 + }, + { + "start": 10142.28, + "end": 10145.94, + "probability": 0.8302 + }, + { + "start": 10146.6, + "end": 10152.1, + "probability": 0.9971 + }, + { + "start": 10153.34, + "end": 10156.02, + "probability": 0.9105 + }, + { + "start": 10158.1, + "end": 10161.2, + "probability": 0.9844 + }, + { + "start": 10161.96, + "end": 10162.94, + "probability": 0.9788 + }, + { + "start": 10163.72, + "end": 10169.48, + "probability": 0.9943 + }, + { + "start": 10171.38, + "end": 10172.28, + "probability": 0.5777 + }, + { + "start": 10172.56, + "end": 10178.12, + "probability": 0.9968 + }, + { + "start": 10178.56, + "end": 10179.54, + "probability": 0.9009 + }, + { + "start": 10180.08, + "end": 10181.38, + "probability": 0.7985 + }, + { + "start": 10182.04, + "end": 10183.38, + "probability": 0.8506 + }, + { + "start": 10183.96, + "end": 10185.5, + "probability": 0.8903 + }, + { + "start": 10186.98, + "end": 10190.86, + "probability": 0.9875 + }, + { + "start": 10192.44, + "end": 10195.58, + "probability": 0.9897 + }, + { + "start": 10196.22, + "end": 10197.91, + "probability": 0.958 + }, + { + "start": 10198.4, + "end": 10199.83, + "probability": 0.9552 + }, + { + "start": 10200.38, + "end": 10203.2, + "probability": 0.9875 + }, + { + "start": 10205.12, + "end": 10205.86, + "probability": 0.8141 + }, + { + "start": 10205.94, + "end": 10206.98, + "probability": 0.7443 + }, + { + "start": 10207.32, + "end": 10210.62, + "probability": 0.9751 + }, + { + "start": 10210.62, + "end": 10213.76, + "probability": 0.9916 + }, + { + "start": 10214.36, + "end": 10218.16, + "probability": 0.8823 + }, + { + "start": 10219.02, + "end": 10223.14, + "probability": 0.9927 + }, + { + "start": 10226.04, + "end": 10226.94, + "probability": 0.7163 + }, + { + "start": 10227.02, + "end": 10228.31, + "probability": 0.8155 + }, + { + "start": 10228.58, + "end": 10234.84, + "probability": 0.9985 + }, + { + "start": 10236.44, + "end": 10241.74, + "probability": 0.9987 + }, + { + "start": 10243.02, + "end": 10247.92, + "probability": 0.9979 + }, + { + "start": 10248.56, + "end": 10250.46, + "probability": 0.967 + }, + { + "start": 10252.24, + "end": 10258.32, + "probability": 0.9833 + }, + { + "start": 10258.9, + "end": 10261.72, + "probability": 0.7891 + }, + { + "start": 10262.6, + "end": 10265.78, + "probability": 0.9982 + }, + { + "start": 10265.78, + "end": 10269.18, + "probability": 0.9907 + }, + { + "start": 10270.9, + "end": 10273.02, + "probability": 0.9952 + }, + { + "start": 10273.02, + "end": 10276.8, + "probability": 0.9948 + }, + { + "start": 10277.74, + "end": 10280.72, + "probability": 0.9952 + }, + { + "start": 10280.72, + "end": 10285.34, + "probability": 0.9982 + }, + { + "start": 10285.82, + "end": 10287.96, + "probability": 0.7637 + }, + { + "start": 10288.96, + "end": 10290.12, + "probability": 0.9586 + }, + { + "start": 10291.48, + "end": 10294.08, + "probability": 0.9884 + }, + { + "start": 10294.08, + "end": 10297.82, + "probability": 0.9924 + }, + { + "start": 10300.46, + "end": 10302.34, + "probability": 0.7334 + }, + { + "start": 10302.68, + "end": 10306.58, + "probability": 0.9588 + }, + { + "start": 10307.52, + "end": 10310.75, + "probability": 0.8349 + }, + { + "start": 10311.6, + "end": 10316.06, + "probability": 0.9944 + }, + { + "start": 10316.68, + "end": 10319.32, + "probability": 0.7202 + }, + { + "start": 10319.4, + "end": 10324.8, + "probability": 0.74 + }, + { + "start": 10324.88, + "end": 10325.82, + "probability": 0.8668 + }, + { + "start": 10325.82, + "end": 10329.7, + "probability": 0.9888 + }, + { + "start": 10329.94, + "end": 10330.48, + "probability": 0.8991 + }, + { + "start": 10330.76, + "end": 10334.08, + "probability": 0.8936 + }, + { + "start": 10336.38, + "end": 10338.7, + "probability": 0.8866 + }, + { + "start": 10339.88, + "end": 10343.22, + "probability": 0.8997 + }, + { + "start": 10348.9, + "end": 10350.84, + "probability": 0.5117 + }, + { + "start": 10350.9, + "end": 10353.86, + "probability": 0.9518 + }, + { + "start": 10355.06, + "end": 10356.28, + "probability": 0.7913 + }, + { + "start": 10357.48, + "end": 10359.96, + "probability": 0.7386 + }, + { + "start": 10360.58, + "end": 10360.8, + "probability": 0.6821 + }, + { + "start": 10361.46, + "end": 10365.44, + "probability": 0.8984 + }, + { + "start": 10366.44, + "end": 10369.28, + "probability": 0.9993 + }, + { + "start": 10369.58, + "end": 10370.38, + "probability": 0.7482 + }, + { + "start": 10370.46, + "end": 10375.88, + "probability": 0.9969 + }, + { + "start": 10376.64, + "end": 10383.5, + "probability": 0.9866 + }, + { + "start": 10384.46, + "end": 10386.14, + "probability": 0.8769 + }, + { + "start": 10386.32, + "end": 10387.44, + "probability": 0.7203 + }, + { + "start": 10387.58, + "end": 10390.24, + "probability": 0.9487 + }, + { + "start": 10390.84, + "end": 10392.92, + "probability": 0.9042 + }, + { + "start": 10393.62, + "end": 10394.74, + "probability": 0.8747 + }, + { + "start": 10394.82, + "end": 10397.18, + "probability": 0.9765 + }, + { + "start": 10397.24, + "end": 10401.06, + "probability": 0.9473 + }, + { + "start": 10402.6, + "end": 10407.54, + "probability": 0.9926 + }, + { + "start": 10407.54, + "end": 10411.08, + "probability": 0.9989 + }, + { + "start": 10411.7, + "end": 10414.64, + "probability": 0.9991 + }, + { + "start": 10415.58, + "end": 10416.8, + "probability": 0.8586 + }, + { + "start": 10417.1, + "end": 10417.4, + "probability": 0.4781 + }, + { + "start": 10417.48, + "end": 10418.74, + "probability": 0.9473 + }, + { + "start": 10418.88, + "end": 10419.68, + "probability": 0.757 + }, + { + "start": 10419.78, + "end": 10420.64, + "probability": 0.8904 + }, + { + "start": 10420.74, + "end": 10421.46, + "probability": 0.8064 + }, + { + "start": 10421.54, + "end": 10425.34, + "probability": 0.9687 + }, + { + "start": 10425.98, + "end": 10429.96, + "probability": 0.8829 + }, + { + "start": 10430.02, + "end": 10434.08, + "probability": 0.8805 + }, + { + "start": 10434.08, + "end": 10438.76, + "probability": 0.981 + }, + { + "start": 10439.82, + "end": 10440.72, + "probability": 0.9749 + }, + { + "start": 10440.84, + "end": 10441.77, + "probability": 0.8132 + }, + { + "start": 10441.82, + "end": 10444.25, + "probability": 0.9623 + }, + { + "start": 10444.98, + "end": 10445.86, + "probability": 0.9233 + }, + { + "start": 10446.12, + "end": 10449.82, + "probability": 0.9535 + }, + { + "start": 10449.84, + "end": 10449.84, + "probability": 0.6744 + }, + { + "start": 10449.84, + "end": 10450.2, + "probability": 0.8696 + }, + { + "start": 10450.3, + "end": 10451.0, + "probability": 0.7722 + }, + { + "start": 10451.16, + "end": 10452.98, + "probability": 0.5879 + }, + { + "start": 10453.16, + "end": 10457.8, + "probability": 0.7982 + }, + { + "start": 10458.2, + "end": 10463.86, + "probability": 0.9939 + }, + { + "start": 10464.36, + "end": 10467.44, + "probability": 0.9868 + }, + { + "start": 10467.44, + "end": 10471.46, + "probability": 0.9799 + }, + { + "start": 10471.56, + "end": 10473.86, + "probability": 0.9909 + }, + { + "start": 10473.96, + "end": 10474.94, + "probability": 0.9448 + }, + { + "start": 10475.08, + "end": 10477.66, + "probability": 0.9694 + }, + { + "start": 10477.84, + "end": 10482.14, + "probability": 0.979 + }, + { + "start": 10482.56, + "end": 10482.76, + "probability": 0.7662 + }, + { + "start": 10482.9, + "end": 10485.24, + "probability": 0.7513 + }, + { + "start": 10485.64, + "end": 10487.92, + "probability": 0.8459 + }, + { + "start": 10488.66, + "end": 10489.48, + "probability": 0.6362 + }, + { + "start": 10491.24, + "end": 10495.44, + "probability": 0.807 + }, + { + "start": 10502.44, + "end": 10503.62, + "probability": 0.5468 + }, + { + "start": 10504.0, + "end": 10505.04, + "probability": 0.7543 + }, + { + "start": 10505.46, + "end": 10509.36, + "probability": 0.7297 + }, + { + "start": 10509.48, + "end": 10509.86, + "probability": 0.4955 + }, + { + "start": 10509.9, + "end": 10511.5, + "probability": 0.9623 + }, + { + "start": 10512.16, + "end": 10512.8, + "probability": 0.9488 + }, + { + "start": 10513.2, + "end": 10517.72, + "probability": 0.9182 + }, + { + "start": 10518.22, + "end": 10518.68, + "probability": 0.0001 + }, + { + "start": 10520.44, + "end": 10520.44, + "probability": 0.001 + }, + { + "start": 10520.49, + "end": 10520.85, + "probability": 0.056 + }, + { + "start": 10521.56, + "end": 10522.08, + "probability": 0.2387 + }, + { + "start": 10522.2, + "end": 10523.06, + "probability": 0.7412 + }, + { + "start": 10523.62, + "end": 10525.64, + "probability": 0.9373 + }, + { + "start": 10525.68, + "end": 10526.63, + "probability": 0.9479 + }, + { + "start": 10526.9, + "end": 10527.95, + "probability": 0.9478 + }, + { + "start": 10529.32, + "end": 10531.12, + "probability": 0.1219 + }, + { + "start": 10531.6, + "end": 10531.6, + "probability": 0.1162 + }, + { + "start": 10531.6, + "end": 10533.16, + "probability": 0.6057 + }, + { + "start": 10533.9, + "end": 10535.78, + "probability": 0.5321 + }, + { + "start": 10535.82, + "end": 10536.14, + "probability": 0.8215 + }, + { + "start": 10536.26, + "end": 10538.78, + "probability": 0.9091 + }, + { + "start": 10538.96, + "end": 10541.32, + "probability": 0.9002 + }, + { + "start": 10542.3, + "end": 10544.47, + "probability": 0.4536 + }, + { + "start": 10545.78, + "end": 10545.78, + "probability": 0.3076 + }, + { + "start": 10545.82, + "end": 10548.43, + "probability": 0.4246 + }, + { + "start": 10549.22, + "end": 10550.12, + "probability": 0.8872 + }, + { + "start": 10550.48, + "end": 10552.46, + "probability": 0.8728 + }, + { + "start": 10552.5, + "end": 10552.92, + "probability": 0.2443 + }, + { + "start": 10553.5, + "end": 10555.78, + "probability": 0.7791 + }, + { + "start": 10556.18, + "end": 10559.22, + "probability": 0.7491 + }, + { + "start": 10559.44, + "end": 10562.36, + "probability": 0.7608 + }, + { + "start": 10563.1, + "end": 10564.66, + "probability": 0.7798 + }, + { + "start": 10564.82, + "end": 10565.78, + "probability": 0.6599 + }, + { + "start": 10565.88, + "end": 10567.56, + "probability": 0.7859 + }, + { + "start": 10571.12, + "end": 10575.42, + "probability": 0.028 + }, + { + "start": 10575.42, + "end": 10576.74, + "probability": 0.0506 + }, + { + "start": 10576.86, + "end": 10577.56, + "probability": 0.043 + }, + { + "start": 10577.56, + "end": 10583.58, + "probability": 0.8064 + }, + { + "start": 10583.68, + "end": 10585.58, + "probability": 0.9956 + }, + { + "start": 10586.2, + "end": 10587.28, + "probability": 0.6015 + }, + { + "start": 10587.44, + "end": 10588.44, + "probability": 0.6771 + }, + { + "start": 10588.5, + "end": 10591.18, + "probability": 0.5912 + }, + { + "start": 10591.62, + "end": 10592.82, + "probability": 0.3896 + }, + { + "start": 10594.55, + "end": 10602.02, + "probability": 0.853 + }, + { + "start": 10602.74, + "end": 10603.68, + "probability": 0.8832 + }, + { + "start": 10604.24, + "end": 10607.0, + "probability": 0.8353 + }, + { + "start": 10607.46, + "end": 10610.18, + "probability": 0.9331 + }, + { + "start": 10610.62, + "end": 10614.52, + "probability": 0.8128 + }, + { + "start": 10614.92, + "end": 10617.72, + "probability": 0.9179 + }, + { + "start": 10618.12, + "end": 10621.86, + "probability": 0.9741 + }, + { + "start": 10622.28, + "end": 10628.26, + "probability": 0.9918 + }, + { + "start": 10628.78, + "end": 10629.98, + "probability": 0.9796 + }, + { + "start": 10631.7, + "end": 10638.04, + "probability": 0.8117 + }, + { + "start": 10639.52, + "end": 10644.58, + "probability": 0.7375 + }, + { + "start": 10645.16, + "end": 10648.82, + "probability": 0.9941 + }, + { + "start": 10649.68, + "end": 10650.52, + "probability": 0.8971 + }, + { + "start": 10651.06, + "end": 10657.62, + "probability": 0.9342 + }, + { + "start": 10657.94, + "end": 10660.02, + "probability": 0.9659 + }, + { + "start": 10662.0, + "end": 10666.18, + "probability": 0.6431 + }, + { + "start": 10667.34, + "end": 10671.22, + "probability": 0.8948 + }, + { + "start": 10673.44, + "end": 10674.94, + "probability": 0.9731 + }, + { + "start": 10675.22, + "end": 10677.01, + "probability": 0.9927 + }, + { + "start": 10678.42, + "end": 10679.32, + "probability": 0.9412 + }, + { + "start": 10679.94, + "end": 10685.24, + "probability": 0.8525 + }, + { + "start": 10685.24, + "end": 10686.92, + "probability": 0.5549 + }, + { + "start": 10687.06, + "end": 10691.6, + "probability": 0.9705 + }, + { + "start": 10691.74, + "end": 10695.86, + "probability": 0.6654 + }, + { + "start": 10696.76, + "end": 10701.28, + "probability": 0.7012 + }, + { + "start": 10702.24, + "end": 10705.62, + "probability": 0.9597 + }, + { + "start": 10705.82, + "end": 10707.68, + "probability": 0.9377 + }, + { + "start": 10708.04, + "end": 10714.22, + "probability": 0.8742 + }, + { + "start": 10714.8, + "end": 10718.0, + "probability": 0.8047 + }, + { + "start": 10718.58, + "end": 10722.82, + "probability": 0.9959 + }, + { + "start": 10723.32, + "end": 10724.24, + "probability": 0.6644 + }, + { + "start": 10725.02, + "end": 10729.06, + "probability": 0.9389 + }, + { + "start": 10729.54, + "end": 10730.27, + "probability": 0.9761 + }, + { + "start": 10731.02, + "end": 10731.98, + "probability": 0.9854 + }, + { + "start": 10732.54, + "end": 10734.6, + "probability": 0.9538 + }, + { + "start": 10736.6, + "end": 10738.12, + "probability": 0.9662 + }, + { + "start": 10739.54, + "end": 10746.08, + "probability": 0.9029 + }, + { + "start": 10746.9, + "end": 10747.82, + "probability": 0.5808 + }, + { + "start": 10748.34, + "end": 10750.56, + "probability": 0.9413 + }, + { + "start": 10751.08, + "end": 10752.8, + "probability": 0.7486 + }, + { + "start": 10754.48, + "end": 10755.46, + "probability": 0.8765 + }, + { + "start": 10755.52, + "end": 10757.86, + "probability": 0.8663 + }, + { + "start": 10758.06, + "end": 10759.92, + "probability": 0.9814 + }, + { + "start": 10760.88, + "end": 10763.36, + "probability": 0.9348 + }, + { + "start": 10764.58, + "end": 10765.3, + "probability": 0.9639 + }, + { + "start": 10767.46, + "end": 10768.4, + "probability": 0.5574 + }, + { + "start": 10768.4, + "end": 10776.76, + "probability": 0.9139 + }, + { + "start": 10779.8, + "end": 10780.62, + "probability": 0.5137 + }, + { + "start": 10780.62, + "end": 10781.16, + "probability": 0.1917 + }, + { + "start": 10781.42, + "end": 10783.24, + "probability": 0.7549 + }, + { + "start": 10783.58, + "end": 10789.64, + "probability": 0.9198 + }, + { + "start": 10789.84, + "end": 10790.72, + "probability": 0.9027 + }, + { + "start": 10791.72, + "end": 10793.59, + "probability": 0.8426 + }, + { + "start": 10794.18, + "end": 10797.14, + "probability": 0.9408 + }, + { + "start": 10797.46, + "end": 10800.37, + "probability": 0.7559 + }, + { + "start": 10800.84, + "end": 10805.89, + "probability": 0.89 + }, + { + "start": 10806.34, + "end": 10807.04, + "probability": 0.9761 + }, + { + "start": 10807.48, + "end": 10810.84, + "probability": 0.9803 + }, + { + "start": 10810.84, + "end": 10814.32, + "probability": 0.7401 + }, + { + "start": 10814.9, + "end": 10818.96, + "probability": 0.7287 + }, + { + "start": 10819.42, + "end": 10821.0, + "probability": 0.597 + }, + { + "start": 10821.78, + "end": 10824.66, + "probability": 0.5574 + }, + { + "start": 10834.12, + "end": 10834.18, + "probability": 0.124 + }, + { + "start": 10837.08, + "end": 10839.96, + "probability": 0.5002 + }, + { + "start": 10839.96, + "end": 10840.68, + "probability": 0.7161 + }, + { + "start": 10841.44, + "end": 10843.74, + "probability": 0.9395 + }, + { + "start": 10845.46, + "end": 10846.1, + "probability": 0.6602 + }, + { + "start": 10846.82, + "end": 10849.0, + "probability": 0.2597 + }, + { + "start": 10849.0, + "end": 10850.7, + "probability": 0.5455 + }, + { + "start": 10850.82, + "end": 10850.82, + "probability": 0.6143 + }, + { + "start": 10850.82, + "end": 10852.54, + "probability": 0.6073 + }, + { + "start": 10852.6, + "end": 10854.36, + "probability": 0.623 + }, + { + "start": 10855.18, + "end": 10857.5, + "probability": 0.8828 + }, + { + "start": 10858.12, + "end": 10860.44, + "probability": 0.9884 + }, + { + "start": 10861.26, + "end": 10865.98, + "probability": 0.9641 + }, + { + "start": 10866.5, + "end": 10871.72, + "probability": 0.7822 + }, + { + "start": 10872.88, + "end": 10874.38, + "probability": 0.4975 + }, + { + "start": 10874.94, + "end": 10878.3, + "probability": 0.9781 + }, + { + "start": 10879.1, + "end": 10882.08, + "probability": 0.8652 + }, + { + "start": 10883.08, + "end": 10885.06, + "probability": 0.9951 + }, + { + "start": 10885.72, + "end": 10888.88, + "probability": 0.9799 + }, + { + "start": 10889.42, + "end": 10891.38, + "probability": 0.9331 + }, + { + "start": 10891.96, + "end": 10892.87, + "probability": 0.9761 + }, + { + "start": 10893.84, + "end": 10898.05, + "probability": 0.991 + }, + { + "start": 10898.96, + "end": 10901.76, + "probability": 0.6876 + }, + { + "start": 10902.48, + "end": 10903.92, + "probability": 0.477 + }, + { + "start": 10904.34, + "end": 10906.72, + "probability": 0.8838 + }, + { + "start": 10907.14, + "end": 10909.68, + "probability": 0.9863 + }, + { + "start": 10910.78, + "end": 10915.14, + "probability": 0.9907 + }, + { + "start": 10915.72, + "end": 10921.72, + "probability": 0.9916 + }, + { + "start": 10922.06, + "end": 10928.02, + "probability": 0.9966 + }, + { + "start": 10928.02, + "end": 10928.88, + "probability": 0.2522 + }, + { + "start": 10928.92, + "end": 10930.32, + "probability": 0.6842 + }, + { + "start": 10930.48, + "end": 10932.06, + "probability": 0.9236 + }, + { + "start": 10932.08, + "end": 10932.8, + "probability": 0.0994 + }, + { + "start": 10933.12, + "end": 10936.06, + "probability": 0.9512 + }, + { + "start": 10936.08, + "end": 10936.54, + "probability": 0.2947 + }, + { + "start": 10936.74, + "end": 10937.92, + "probability": 0.4839 + }, + { + "start": 10938.1, + "end": 10939.39, + "probability": 0.5219 + }, + { + "start": 10939.44, + "end": 10940.95, + "probability": 0.3294 + }, + { + "start": 10941.62, + "end": 10942.23, + "probability": 0.4906 + }, + { + "start": 10942.42, + "end": 10943.3, + "probability": 0.2573 + }, + { + "start": 10943.46, + "end": 10944.44, + "probability": 0.454 + }, + { + "start": 10944.72, + "end": 10947.8, + "probability": 0.9919 + }, + { + "start": 10949.94, + "end": 10950.1, + "probability": 0.8115 + }, + { + "start": 10950.76, + "end": 10950.76, + "probability": 0.1504 + }, + { + "start": 10950.76, + "end": 10951.0, + "probability": 0.2528 + }, + { + "start": 10951.0, + "end": 10951.1, + "probability": 0.2852 + }, + { + "start": 10951.44, + "end": 10954.2, + "probability": 0.7614 + }, + { + "start": 10954.28, + "end": 10954.96, + "probability": 0.8557 + }, + { + "start": 10955.08, + "end": 10956.14, + "probability": 0.835 + }, + { + "start": 10957.04, + "end": 10961.32, + "probability": 0.8812 + }, + { + "start": 10961.5, + "end": 10962.8, + "probability": 0.4287 + }, + { + "start": 10962.8, + "end": 10965.0, + "probability": 0.4032 + }, + { + "start": 10965.06, + "end": 10965.14, + "probability": 0.204 + }, + { + "start": 10965.14, + "end": 10968.04, + "probability": 0.9514 + }, + { + "start": 10968.04, + "end": 10971.46, + "probability": 0.9795 + }, + { + "start": 10971.8, + "end": 10973.76, + "probability": 0.8608 + }, + { + "start": 10974.14, + "end": 10976.64, + "probability": 0.9792 + }, + { + "start": 10976.82, + "end": 10980.9, + "probability": 0.9946 + }, + { + "start": 10981.36, + "end": 10984.18, + "probability": 0.9726 + }, + { + "start": 10984.8, + "end": 10987.8, + "probability": 0.9915 + }, + { + "start": 10988.24, + "end": 10990.48, + "probability": 0.9055 + }, + { + "start": 10990.9, + "end": 10993.66, + "probability": 0.9756 + }, + { + "start": 10994.2, + "end": 10998.46, + "probability": 0.9519 + }, + { + "start": 10998.68, + "end": 11003.68, + "probability": 0.9795 + }, + { + "start": 11003.76, + "end": 11005.58, + "probability": 0.9527 + }, + { + "start": 11006.16, + "end": 11008.42, + "probability": 0.9792 + }, + { + "start": 11008.96, + "end": 11011.43, + "probability": 0.9891 + }, + { + "start": 11011.84, + "end": 11014.06, + "probability": 0.9927 + }, + { + "start": 11014.7, + "end": 11016.68, + "probability": 0.9952 + }, + { + "start": 11017.7, + "end": 11020.44, + "probability": 0.9897 + }, + { + "start": 11021.26, + "end": 11025.66, + "probability": 0.9923 + }, + { + "start": 11025.66, + "end": 11032.82, + "probability": 0.9983 + }, + { + "start": 11033.26, + "end": 11034.56, + "probability": 0.5949 + }, + { + "start": 11034.6, + "end": 11036.68, + "probability": 0.9937 + }, + { + "start": 11037.24, + "end": 11040.84, + "probability": 0.9626 + }, + { + "start": 11041.12, + "end": 11043.38, + "probability": 0.9785 + }, + { + "start": 11043.82, + "end": 11044.06, + "probability": 0.0602 + }, + { + "start": 11044.06, + "end": 11045.23, + "probability": 0.5525 + }, + { + "start": 11045.46, + "end": 11047.88, + "probability": 0.986 + }, + { + "start": 11047.94, + "end": 11050.06, + "probability": 0.8334 + }, + { + "start": 11050.32, + "end": 11053.34, + "probability": 0.8206 + }, + { + "start": 11053.96, + "end": 11059.76, + "probability": 0.9658 + }, + { + "start": 11060.78, + "end": 11067.14, + "probability": 0.9978 + }, + { + "start": 11067.54, + "end": 11068.34, + "probability": 0.4823 + }, + { + "start": 11068.42, + "end": 11068.74, + "probability": 0.6172 + }, + { + "start": 11068.82, + "end": 11071.58, + "probability": 0.5697 + }, + { + "start": 11072.18, + "end": 11075.16, + "probability": 0.959 + }, + { + "start": 11075.4, + "end": 11077.16, + "probability": 0.9893 + }, + { + "start": 11077.36, + "end": 11078.92, + "probability": 0.8939 + }, + { + "start": 11079.16, + "end": 11080.5, + "probability": 0.9768 + }, + { + "start": 11080.54, + "end": 11081.72, + "probability": 0.5626 + }, + { + "start": 11081.74, + "end": 11082.48, + "probability": 0.614 + }, + { + "start": 11082.54, + "end": 11082.84, + "probability": 0.527 + }, + { + "start": 11083.32, + "end": 11084.88, + "probability": 0.5139 + }, + { + "start": 11085.02, + "end": 11086.62, + "probability": 0.7508 + }, + { + "start": 11086.68, + "end": 11087.64, + "probability": 0.4231 + }, + { + "start": 11087.96, + "end": 11089.68, + "probability": 0.8348 + }, + { + "start": 11089.76, + "end": 11090.4, + "probability": 0.7104 + }, + { + "start": 11090.9, + "end": 11092.74, + "probability": 0.8035 + }, + { + "start": 11094.34, + "end": 11095.36, + "probability": 0.4972 + }, + { + "start": 11096.14, + "end": 11097.2, + "probability": 0.4147 + }, + { + "start": 11097.9, + "end": 11099.62, + "probability": 0.7309 + }, + { + "start": 11099.76, + "end": 11102.94, + "probability": 0.7867 + }, + { + "start": 11103.76, + "end": 11104.7, + "probability": 0.7832 + }, + { + "start": 11106.5, + "end": 11108.85, + "probability": 0.9136 + }, + { + "start": 11115.56, + "end": 11119.1, + "probability": 0.7303 + }, + { + "start": 11121.04, + "end": 11124.74, + "probability": 0.9088 + }, + { + "start": 11125.92, + "end": 11130.78, + "probability": 0.9881 + }, + { + "start": 11131.62, + "end": 11136.04, + "probability": 0.7468 + }, + { + "start": 11137.72, + "end": 11145.26, + "probability": 0.9844 + }, + { + "start": 11146.26, + "end": 11148.34, + "probability": 0.7395 + }, + { + "start": 11148.78, + "end": 11150.32, + "probability": 0.8516 + }, + { + "start": 11150.76, + "end": 11154.97, + "probability": 0.8799 + }, + { + "start": 11156.14, + "end": 11161.72, + "probability": 0.947 + }, + { + "start": 11162.02, + "end": 11163.02, + "probability": 0.8634 + }, + { + "start": 11163.46, + "end": 11165.74, + "probability": 0.9926 + }, + { + "start": 11166.14, + "end": 11171.44, + "probability": 0.9538 + }, + { + "start": 11173.12, + "end": 11174.36, + "probability": 0.5056 + }, + { + "start": 11174.92, + "end": 11176.83, + "probability": 0.9619 + }, + { + "start": 11177.7, + "end": 11178.6, + "probability": 0.7089 + }, + { + "start": 11178.9, + "end": 11180.61, + "probability": 0.9891 + }, + { + "start": 11182.18, + "end": 11182.76, + "probability": 0.451 + }, + { + "start": 11183.68, + "end": 11184.7, + "probability": 0.9483 + }, + { + "start": 11185.28, + "end": 11189.72, + "probability": 0.9934 + }, + { + "start": 11190.46, + "end": 11193.52, + "probability": 0.9749 + }, + { + "start": 11194.18, + "end": 11195.26, + "probability": 0.8203 + }, + { + "start": 11196.1, + "end": 11199.54, + "probability": 0.9808 + }, + { + "start": 11200.2, + "end": 11203.94, + "probability": 0.8589 + }, + { + "start": 11204.08, + "end": 11205.32, + "probability": 0.9134 + }, + { + "start": 11205.84, + "end": 11210.76, + "probability": 0.9781 + }, + { + "start": 11211.22, + "end": 11214.52, + "probability": 0.6505 + }, + { + "start": 11214.9, + "end": 11216.05, + "probability": 0.9689 + }, + { + "start": 11216.96, + "end": 11219.52, + "probability": 0.8936 + }, + { + "start": 11220.74, + "end": 11221.06, + "probability": 0.6319 + }, + { + "start": 11221.76, + "end": 11222.42, + "probability": 0.8691 + }, + { + "start": 11223.1, + "end": 11225.96, + "probability": 0.9611 + }, + { + "start": 11226.28, + "end": 11229.8, + "probability": 0.9653 + }, + { + "start": 11230.12, + "end": 11235.04, + "probability": 0.9846 + }, + { + "start": 11236.68, + "end": 11239.52, + "probability": 0.7712 + }, + { + "start": 11239.86, + "end": 11244.32, + "probability": 0.9645 + }, + { + "start": 11244.66, + "end": 11245.36, + "probability": 0.9866 + }, + { + "start": 11246.2, + "end": 11246.52, + "probability": 0.7264 + }, + { + "start": 11247.06, + "end": 11249.28, + "probability": 0.8727 + }, + { + "start": 11250.14, + "end": 11251.06, + "probability": 0.8194 + }, + { + "start": 11251.48, + "end": 11252.88, + "probability": 0.9727 + }, + { + "start": 11253.22, + "end": 11254.32, + "probability": 0.9834 + }, + { + "start": 11254.52, + "end": 11256.82, + "probability": 0.9764 + }, + { + "start": 11256.94, + "end": 11257.78, + "probability": 0.7774 + }, + { + "start": 11257.84, + "end": 11259.18, + "probability": 0.7416 + }, + { + "start": 11259.3, + "end": 11261.26, + "probability": 0.9239 + }, + { + "start": 11261.64, + "end": 11267.36, + "probability": 0.9781 + }, + { + "start": 11268.28, + "end": 11269.98, + "probability": 0.9873 + }, + { + "start": 11270.48, + "end": 11271.25, + "probability": 0.6707 + }, + { + "start": 11272.02, + "end": 11272.72, + "probability": 0.9239 + }, + { + "start": 11273.44, + "end": 11275.42, + "probability": 0.8896 + }, + { + "start": 11275.86, + "end": 11278.02, + "probability": 0.9682 + }, + { + "start": 11279.22, + "end": 11283.62, + "probability": 0.8406 + }, + { + "start": 11284.1, + "end": 11287.28, + "probability": 0.8596 + }, + { + "start": 11287.6, + "end": 11289.8, + "probability": 0.6848 + }, + { + "start": 11290.58, + "end": 11296.5, + "probability": 0.6121 + }, + { + "start": 11297.22, + "end": 11301.3, + "probability": 0.9917 + }, + { + "start": 11302.64, + "end": 11304.08, + "probability": 0.854 + }, + { + "start": 11304.64, + "end": 11306.14, + "probability": 0.9116 + }, + { + "start": 11307.22, + "end": 11310.76, + "probability": 0.9873 + }, + { + "start": 11310.76, + "end": 11315.12, + "probability": 0.9976 + }, + { + "start": 11315.66, + "end": 11316.52, + "probability": 0.7546 + }, + { + "start": 11317.24, + "end": 11318.91, + "probability": 0.9966 + }, + { + "start": 11319.86, + "end": 11323.06, + "probability": 0.9951 + }, + { + "start": 11324.12, + "end": 11325.12, + "probability": 0.9642 + }, + { + "start": 11325.62, + "end": 11326.44, + "probability": 0.4605 + }, + { + "start": 11327.4, + "end": 11327.74, + "probability": 0.7986 + }, + { + "start": 11327.92, + "end": 11331.98, + "probability": 0.9344 + }, + { + "start": 11332.16, + "end": 11332.94, + "probability": 0.5202 + }, + { + "start": 11333.18, + "end": 11334.64, + "probability": 0.6449 + }, + { + "start": 11334.9, + "end": 11342.32, + "probability": 0.8282 + }, + { + "start": 11342.58, + "end": 11346.24, + "probability": 0.9442 + }, + { + "start": 11347.5, + "end": 11349.38, + "probability": 0.4607 + }, + { + "start": 11349.62, + "end": 11354.06, + "probability": 0.9534 + }, + { + "start": 11354.38, + "end": 11355.82, + "probability": 0.9565 + }, + { + "start": 11356.3, + "end": 11356.86, + "probability": 0.7417 + }, + { + "start": 11357.88, + "end": 11366.12, + "probability": 0.9872 + }, + { + "start": 11367.26, + "end": 11372.82, + "probability": 0.9757 + }, + { + "start": 11373.38, + "end": 11374.9, + "probability": 0.9021 + }, + { + "start": 11375.24, + "end": 11376.74, + "probability": 0.9202 + }, + { + "start": 11377.84, + "end": 11378.82, + "probability": 0.9858 + }, + { + "start": 11379.46, + "end": 11381.98, + "probability": 0.9347 + }, + { + "start": 11383.28, + "end": 11385.86, + "probability": 0.8961 + }, + { + "start": 11386.46, + "end": 11390.46, + "probability": 0.9824 + }, + { + "start": 11391.04, + "end": 11393.78, + "probability": 0.9938 + }, + { + "start": 11393.78, + "end": 11399.0, + "probability": 0.9927 + }, + { + "start": 11399.06, + "end": 11399.78, + "probability": 0.7961 + }, + { + "start": 11400.42, + "end": 11401.92, + "probability": 0.8273 + }, + { + "start": 11401.98, + "end": 11403.38, + "probability": 0.9429 + }, + { + "start": 11403.4, + "end": 11403.56, + "probability": 0.3169 + }, + { + "start": 11403.8, + "end": 11404.38, + "probability": 0.5236 + }, + { + "start": 11404.5, + "end": 11406.62, + "probability": 0.9932 + }, + { + "start": 11407.06, + "end": 11409.52, + "probability": 0.9661 + }, + { + "start": 11409.66, + "end": 11410.02, + "probability": 0.8795 + }, + { + "start": 11411.0, + "end": 11413.44, + "probability": 0.8528 + }, + { + "start": 11413.5, + "end": 11415.22, + "probability": 0.9886 + }, + { + "start": 11416.84, + "end": 11417.92, + "probability": 0.2577 + }, + { + "start": 11418.58, + "end": 11419.54, + "probability": 0.8389 + }, + { + "start": 11419.8, + "end": 11420.46, + "probability": 0.8345 + }, + { + "start": 11421.78, + "end": 11422.62, + "probability": 0.8721 + }, + { + "start": 11422.66, + "end": 11424.84, + "probability": 0.9168 + }, + { + "start": 11425.04, + "end": 11425.14, + "probability": 0.7266 + }, + { + "start": 11426.44, + "end": 11426.68, + "probability": 0.0175 + }, + { + "start": 11426.68, + "end": 11426.78, + "probability": 0.6163 + }, + { + "start": 11428.58, + "end": 11429.84, + "probability": 0.153 + }, + { + "start": 11429.84, + "end": 11430.64, + "probability": 0.7804 + }, + { + "start": 11431.02, + "end": 11431.12, + "probability": 0.9071 + }, + { + "start": 11431.12, + "end": 11432.62, + "probability": 0.8316 + }, + { + "start": 11433.32, + "end": 11434.06, + "probability": 0.6118 + }, + { + "start": 11434.22, + "end": 11436.28, + "probability": 0.6042 + }, + { + "start": 11438.6, + "end": 11440.56, + "probability": 0.8225 + }, + { + "start": 11441.92, + "end": 11442.64, + "probability": 0.7541 + }, + { + "start": 11442.96, + "end": 11448.34, + "probability": 0.6753 + }, + { + "start": 11449.92, + "end": 11452.25, + "probability": 0.9937 + }, + { + "start": 11453.7, + "end": 11455.08, + "probability": 0.9956 + }, + { + "start": 11455.2, + "end": 11456.12, + "probability": 0.9448 + }, + { + "start": 11456.12, + "end": 11459.02, + "probability": 0.9849 + }, + { + "start": 11459.58, + "end": 11461.14, + "probability": 0.8513 + }, + { + "start": 11462.54, + "end": 11463.15, + "probability": 0.9636 + }, + { + "start": 11465.36, + "end": 11466.02, + "probability": 0.954 + }, + { + "start": 11466.42, + "end": 11467.48, + "probability": 0.6752 + }, + { + "start": 11467.58, + "end": 11467.98, + "probability": 0.6569 + }, + { + "start": 11469.16, + "end": 11471.0, + "probability": 0.7456 + }, + { + "start": 11471.94, + "end": 11473.82, + "probability": 0.98 + }, + { + "start": 11475.02, + "end": 11478.12, + "probability": 0.9894 + }, + { + "start": 11478.24, + "end": 11480.08, + "probability": 0.9927 + }, + { + "start": 11481.1, + "end": 11483.34, + "probability": 0.8421 + }, + { + "start": 11484.1, + "end": 11489.02, + "probability": 0.9888 + }, + { + "start": 11489.39, + "end": 11494.06, + "probability": 0.9004 + }, + { + "start": 11494.14, + "end": 11496.76, + "probability": 0.9375 + }, + { + "start": 11498.92, + "end": 11499.96, + "probability": 0.79 + }, + { + "start": 11500.8, + "end": 11503.86, + "probability": 0.9399 + }, + { + "start": 11504.42, + "end": 11509.22, + "probability": 0.7491 + }, + { + "start": 11509.43, + "end": 11512.54, + "probability": 0.9893 + }, + { + "start": 11512.54, + "end": 11513.3, + "probability": 0.6506 + }, + { + "start": 11513.84, + "end": 11515.6, + "probability": 0.5331 + }, + { + "start": 11516.6, + "end": 11517.24, + "probability": 0.9795 + }, + { + "start": 11519.4, + "end": 11521.98, + "probability": 0.9994 + }, + { + "start": 11522.68, + "end": 11525.28, + "probability": 0.9995 + }, + { + "start": 11525.56, + "end": 11526.84, + "probability": 0.9902 + }, + { + "start": 11527.38, + "end": 11528.94, + "probability": 0.992 + }, + { + "start": 11529.64, + "end": 11532.26, + "probability": 0.9758 + }, + { + "start": 11533.02, + "end": 11535.6, + "probability": 0.9157 + }, + { + "start": 11536.72, + "end": 11541.18, + "probability": 0.9418 + }, + { + "start": 11544.34, + "end": 11548.78, + "probability": 0.9941 + }, + { + "start": 11549.26, + "end": 11549.48, + "probability": 0.2319 + }, + { + "start": 11551.1, + "end": 11554.14, + "probability": 0.8809 + }, + { + "start": 11555.4, + "end": 11557.26, + "probability": 0.9673 + }, + { + "start": 11557.44, + "end": 11558.14, + "probability": 0.6649 + }, + { + "start": 11559.16, + "end": 11561.82, + "probability": 0.9932 + }, + { + "start": 11562.0, + "end": 11562.78, + "probability": 0.6492 + }, + { + "start": 11565.36, + "end": 11566.96, + "probability": 0.0095 + }, + { + "start": 11567.52, + "end": 11572.34, + "probability": 0.701 + }, + { + "start": 11573.0, + "end": 11576.56, + "probability": 0.9016 + }, + { + "start": 11576.72, + "end": 11578.24, + "probability": 0.9832 + }, + { + "start": 11578.9, + "end": 11581.2, + "probability": 0.8259 + }, + { + "start": 11582.06, + "end": 11584.8, + "probability": 0.8349 + }, + { + "start": 11584.96, + "end": 11585.78, + "probability": 0.9462 + }, + { + "start": 11585.84, + "end": 11587.02, + "probability": 0.9587 + }, + { + "start": 11587.22, + "end": 11588.26, + "probability": 0.8977 + }, + { + "start": 11588.32, + "end": 11589.18, + "probability": 0.9951 + }, + { + "start": 11589.84, + "end": 11590.7, + "probability": 0.0703 + }, + { + "start": 11590.82, + "end": 11592.82, + "probability": 0.6763 + }, + { + "start": 11595.28, + "end": 11596.74, + "probability": 0.0526 + }, + { + "start": 11596.74, + "end": 11596.74, + "probability": 0.0482 + }, + { + "start": 11596.74, + "end": 11597.3, + "probability": 0.2386 + }, + { + "start": 11598.02, + "end": 11599.16, + "probability": 0.7508 + }, + { + "start": 11599.78, + "end": 11601.18, + "probability": 0.9526 + }, + { + "start": 11601.3, + "end": 11604.36, + "probability": 0.9744 + }, + { + "start": 11604.82, + "end": 11605.72, + "probability": 0.7324 + }, + { + "start": 11607.18, + "end": 11610.44, + "probability": 0.8125 + }, + { + "start": 11611.04, + "end": 11612.62, + "probability": 0.4294 + }, + { + "start": 11612.76, + "end": 11612.8, + "probability": 0.5303 + }, + { + "start": 11612.8, + "end": 11614.14, + "probability": 0.9579 + }, + { + "start": 11614.56, + "end": 11615.64, + "probability": 0.9663 + }, + { + "start": 11615.76, + "end": 11617.76, + "probability": 0.998 + }, + { + "start": 11617.98, + "end": 11620.34, + "probability": 0.9539 + }, + { + "start": 11620.82, + "end": 11622.3, + "probability": 0.6915 + }, + { + "start": 11623.12, + "end": 11623.22, + "probability": 0.9983 + }, + { + "start": 11623.84, + "end": 11626.1, + "probability": 0.9946 + }, + { + "start": 11626.64, + "end": 11627.24, + "probability": 0.9756 + }, + { + "start": 11627.84, + "end": 11630.04, + "probability": 0.8862 + }, + { + "start": 11630.56, + "end": 11634.6, + "probability": 0.9163 + }, + { + "start": 11634.92, + "end": 11637.18, + "probability": 0.9919 + }, + { + "start": 11637.18, + "end": 11639.8, + "probability": 0.9966 + }, + { + "start": 11640.18, + "end": 11641.36, + "probability": 0.7015 + }, + { + "start": 11641.9, + "end": 11644.1, + "probability": 0.9407 + }, + { + "start": 11644.18, + "end": 11645.58, + "probability": 0.9304 + }, + { + "start": 11646.84, + "end": 11648.52, + "probability": 0.8842 + }, + { + "start": 11650.3, + "end": 11653.14, + "probability": 0.199 + }, + { + "start": 11653.14, + "end": 11653.62, + "probability": 0.6155 + }, + { + "start": 11654.9, + "end": 11657.58, + "probability": 0.1447 + }, + { + "start": 11658.22, + "end": 11658.22, + "probability": 0.4888 + }, + { + "start": 11658.22, + "end": 11658.45, + "probability": 0.3279 + }, + { + "start": 11660.98, + "end": 11663.4, + "probability": 0.0847 + }, + { + "start": 11667.26, + "end": 11669.02, + "probability": 0.1215 + }, + { + "start": 11669.04, + "end": 11669.68, + "probability": 0.3604 + }, + { + "start": 11670.26, + "end": 11671.0, + "probability": 0.0446 + }, + { + "start": 11671.64, + "end": 11673.52, + "probability": 0.1264 + }, + { + "start": 11683.54, + "end": 11688.68, + "probability": 0.5089 + }, + { + "start": 11690.16, + "end": 11692.56, + "probability": 0.9565 + }, + { + "start": 11692.64, + "end": 11693.66, + "probability": 0.6801 + }, + { + "start": 11693.78, + "end": 11694.62, + "probability": 0.9141 + }, + { + "start": 11694.76, + "end": 11695.62, + "probability": 0.9373 + }, + { + "start": 11698.94, + "end": 11700.54, + "probability": 0.5824 + }, + { + "start": 11701.9, + "end": 11703.78, + "probability": 0.8072 + }, + { + "start": 11704.26, + "end": 11705.8, + "probability": 0.8108 + }, + { + "start": 11706.22, + "end": 11708.7, + "probability": 0.8638 + }, + { + "start": 11708.9, + "end": 11709.34, + "probability": 0.5972 + }, + { + "start": 11709.92, + "end": 11710.96, + "probability": 0.5882 + }, + { + "start": 11712.64, + "end": 11715.62, + "probability": 0.8587 + }, + { + "start": 11716.1, + "end": 11719.26, + "probability": 0.8931 + }, + { + "start": 11719.34, + "end": 11721.68, + "probability": 0.8387 + }, + { + "start": 11721.8, + "end": 11722.84, + "probability": 0.5131 + }, + { + "start": 11724.3, + "end": 11728.28, + "probability": 0.7434 + }, + { + "start": 11728.92, + "end": 11729.12, + "probability": 0.8762 + }, + { + "start": 11729.9, + "end": 11732.08, + "probability": 0.9819 + }, + { + "start": 11732.84, + "end": 11733.52, + "probability": 0.8187 + }, + { + "start": 11734.86, + "end": 11737.42, + "probability": 0.9954 + }, + { + "start": 11737.52, + "end": 11739.21, + "probability": 0.9966 + }, + { + "start": 11739.68, + "end": 11740.76, + "probability": 0.653 + }, + { + "start": 11741.56, + "end": 11743.72, + "probability": 0.5204 + }, + { + "start": 11743.72, + "end": 11746.56, + "probability": 0.9646 + }, + { + "start": 11746.58, + "end": 11747.96, + "probability": 0.9419 + }, + { + "start": 11748.16, + "end": 11749.48, + "probability": 0.9788 + }, + { + "start": 11749.64, + "end": 11750.44, + "probability": 0.5241 + }, + { + "start": 11750.8, + "end": 11750.9, + "probability": 0.0156 + }, + { + "start": 11750.9, + "end": 11753.04, + "probability": 0.5373 + }, + { + "start": 11753.54, + "end": 11755.86, + "probability": 0.6679 + }, + { + "start": 11756.16, + "end": 11758.56, + "probability": 0.9414 + }, + { + "start": 11758.66, + "end": 11762.3, + "probability": 0.6789 + }, + { + "start": 11762.4, + "end": 11762.92, + "probability": 0.767 + }, + { + "start": 11763.0, + "end": 11764.88, + "probability": 0.709 + }, + { + "start": 11765.12, + "end": 11766.06, + "probability": 0.0418 + }, + { + "start": 11766.06, + "end": 11766.06, + "probability": 0.0615 + }, + { + "start": 11766.76, + "end": 11770.38, + "probability": 0.6761 + }, + { + "start": 11771.22, + "end": 11771.68, + "probability": 0.0228 + }, + { + "start": 11771.68, + "end": 11773.69, + "probability": 0.2533 + }, + { + "start": 11773.88, + "end": 11775.68, + "probability": 0.8175 + }, + { + "start": 11775.76, + "end": 11776.56, + "probability": 0.6742 + }, + { + "start": 11777.23, + "end": 11777.38, + "probability": 0.1661 + }, + { + "start": 11777.38, + "end": 11780.2, + "probability": 0.522 + }, + { + "start": 11782.24, + "end": 11782.7, + "probability": 0.5468 + }, + { + "start": 11782.94, + "end": 11785.82, + "probability": 0.8426 + }, + { + "start": 11785.9, + "end": 11787.28, + "probability": 0.7394 + }, + { + "start": 11787.66, + "end": 11788.56, + "probability": 0.9565 + }, + { + "start": 11788.7, + "end": 11791.1, + "probability": 0.8427 + }, + { + "start": 11791.4, + "end": 11793.08, + "probability": 0.9438 + }, + { + "start": 11793.64, + "end": 11796.36, + "probability": 0.9734 + }, + { + "start": 11796.54, + "end": 11798.52, + "probability": 0.9194 + }, + { + "start": 11798.72, + "end": 11799.02, + "probability": 0.7656 + }, + { + "start": 11799.24, + "end": 11800.5, + "probability": 0.9871 + }, + { + "start": 11800.94, + "end": 11803.3, + "probability": 0.7616 + }, + { + "start": 11803.4, + "end": 11805.08, + "probability": 0.9717 + }, + { + "start": 11805.26, + "end": 11810.3, + "probability": 0.988 + }, + { + "start": 11810.5, + "end": 11812.12, + "probability": 0.9851 + }, + { + "start": 11812.28, + "end": 11813.04, + "probability": 0.77 + }, + { + "start": 11813.2, + "end": 11814.7, + "probability": 0.9956 + }, + { + "start": 11814.9, + "end": 11817.2, + "probability": 0.9696 + }, + { + "start": 11818.14, + "end": 11822.13, + "probability": 0.9459 + }, + { + "start": 11823.8, + "end": 11825.06, + "probability": 0.7783 + }, + { + "start": 11825.66, + "end": 11827.96, + "probability": 0.9987 + }, + { + "start": 11828.38, + "end": 11829.22, + "probability": 0.6914 + }, + { + "start": 11830.24, + "end": 11832.68, + "probability": 0.9927 + }, + { + "start": 11832.98, + "end": 11834.14, + "probability": 0.6975 + }, + { + "start": 11834.56, + "end": 11837.86, + "probability": 0.8206 + }, + { + "start": 11838.62, + "end": 11840.08, + "probability": 0.7225 + }, + { + "start": 11840.34, + "end": 11841.36, + "probability": 0.9411 + }, + { + "start": 11841.58, + "end": 11844.6, + "probability": 0.9888 + }, + { + "start": 11845.12, + "end": 11847.28, + "probability": 0.8468 + }, + { + "start": 11847.92, + "end": 11850.36, + "probability": 0.9654 + }, + { + "start": 11850.36, + "end": 11853.88, + "probability": 0.9928 + }, + { + "start": 11854.04, + "end": 11855.26, + "probability": 0.9974 + }, + { + "start": 11855.88, + "end": 11857.89, + "probability": 0.5797 + }, + { + "start": 11858.38, + "end": 11859.75, + "probability": 0.9915 + }, + { + "start": 11860.34, + "end": 11861.84, + "probability": 0.8448 + }, + { + "start": 11861.88, + "end": 11862.06, + "probability": 0.5516 + }, + { + "start": 11862.12, + "end": 11865.49, + "probability": 0.8813 + }, + { + "start": 11865.88, + "end": 11868.1, + "probability": 0.9968 + }, + { + "start": 11868.2, + "end": 11868.66, + "probability": 0.3737 + }, + { + "start": 11868.66, + "end": 11868.76, + "probability": 0.2448 + }, + { + "start": 11868.78, + "end": 11873.4, + "probability": 0.9878 + }, + { + "start": 11873.6, + "end": 11874.62, + "probability": 0.978 + }, + { + "start": 11874.94, + "end": 11877.12, + "probability": 0.8741 + }, + { + "start": 11877.22, + "end": 11880.16, + "probability": 0.8935 + }, + { + "start": 11880.56, + "end": 11881.43, + "probability": 0.8644 + }, + { + "start": 11882.36, + "end": 11884.0, + "probability": 0.9384 + }, + { + "start": 11884.18, + "end": 11886.16, + "probability": 0.9626 + }, + { + "start": 11886.88, + "end": 11888.62, + "probability": 0.5091 + }, + { + "start": 11889.62, + "end": 11893.0, + "probability": 0.6124 + }, + { + "start": 11896.44, + "end": 11897.7, + "probability": 0.5677 + }, + { + "start": 11897.78, + "end": 11897.88, + "probability": 0.8803 + }, + { + "start": 11901.22, + "end": 11902.18, + "probability": 0.852 + }, + { + "start": 11902.3, + "end": 11903.86, + "probability": 0.752 + }, + { + "start": 11904.41, + "end": 11907.56, + "probability": 0.9672 + }, + { + "start": 11907.7, + "end": 11908.42, + "probability": 0.9551 + }, + { + "start": 11908.66, + "end": 11909.92, + "probability": 0.9674 + }, + { + "start": 11910.8, + "end": 11911.72, + "probability": 0.9603 + }, + { + "start": 11912.06, + "end": 11913.76, + "probability": 0.9409 + }, + { + "start": 11914.06, + "end": 11914.12, + "probability": 0.0491 + }, + { + "start": 11914.12, + "end": 11914.94, + "probability": 0.8181 + }, + { + "start": 11915.2, + "end": 11916.5, + "probability": 0.9089 + }, + { + "start": 11917.26, + "end": 11919.3, + "probability": 0.8635 + }, + { + "start": 11920.12, + "end": 11922.92, + "probability": 0.9656 + }, + { + "start": 11923.52, + "end": 11925.82, + "probability": 0.9674 + }, + { + "start": 11926.56, + "end": 11928.4, + "probability": 0.9742 + }, + { + "start": 11928.64, + "end": 11929.22, + "probability": 0.4774 + }, + { + "start": 11930.46, + "end": 11935.7, + "probability": 0.9935 + }, + { + "start": 11935.7, + "end": 11941.14, + "probability": 0.9992 + }, + { + "start": 11941.52, + "end": 11943.0, + "probability": 0.918 + }, + { + "start": 11943.64, + "end": 11946.04, + "probability": 0.9995 + }, + { + "start": 11946.58, + "end": 11954.48, + "probability": 0.9977 + }, + { + "start": 11955.78, + "end": 11958.06, + "probability": 0.9337 + }, + { + "start": 11958.7, + "end": 11960.18, + "probability": 0.9492 + }, + { + "start": 11960.8, + "end": 11960.9, + "probability": 0.0052 + }, + { + "start": 11960.9, + "end": 11963.0, + "probability": 0.6099 + }, + { + "start": 11963.0, + "end": 11968.22, + "probability": 0.9598 + }, + { + "start": 11968.38, + "end": 11970.32, + "probability": 0.5656 + }, + { + "start": 11970.66, + "end": 11972.27, + "probability": 0.9455 + }, + { + "start": 11972.73, + "end": 11976.49, + "probability": 0.7478 + }, + { + "start": 11977.05, + "end": 11978.11, + "probability": 0.0605 + }, + { + "start": 11978.41, + "end": 11978.67, + "probability": 0.0397 + }, + { + "start": 11978.67, + "end": 11979.91, + "probability": 0.4029 + }, + { + "start": 11979.91, + "end": 11987.11, + "probability": 0.7769 + }, + { + "start": 11987.37, + "end": 11991.65, + "probability": 0.9603 + }, + { + "start": 11991.87, + "end": 11993.89, + "probability": 0.3904 + }, + { + "start": 11993.99, + "end": 12000.61, + "probability": 0.9805 + }, + { + "start": 12001.19, + "end": 12002.95, + "probability": 0.7546 + }, + { + "start": 12003.45, + "end": 12006.51, + "probability": 0.9971 + }, + { + "start": 12007.79, + "end": 12007.79, + "probability": 0.0897 + }, + { + "start": 12007.79, + "end": 12008.49, + "probability": 0.3474 + }, + { + "start": 12008.71, + "end": 12010.11, + "probability": 0.4544 + }, + { + "start": 12010.45, + "end": 12011.89, + "probability": 0.1926 + }, + { + "start": 12011.89, + "end": 12012.85, + "probability": 0.4997 + }, + { + "start": 12013.05, + "end": 12016.09, + "probability": 0.5942 + }, + { + "start": 12016.35, + "end": 12019.45, + "probability": 0.0783 + }, + { + "start": 12019.71, + "end": 12020.89, + "probability": 0.3627 + }, + { + "start": 12021.57, + "end": 12022.43, + "probability": 0.4482 + }, + { + "start": 12022.57, + "end": 12022.89, + "probability": 0.1966 + }, + { + "start": 12022.89, + "end": 12022.96, + "probability": 0.0362 + }, + { + "start": 12023.97, + "end": 12024.47, + "probability": 0.582 + }, + { + "start": 12024.61, + "end": 12025.62, + "probability": 0.2874 + }, + { + "start": 12026.13, + "end": 12027.93, + "probability": 0.2263 + }, + { + "start": 12027.99, + "end": 12028.71, + "probability": 0.6194 + }, + { + "start": 12028.83, + "end": 12030.42, + "probability": 0.5355 + }, + { + "start": 12031.07, + "end": 12031.07, + "probability": 0.0084 + }, + { + "start": 12031.07, + "end": 12032.25, + "probability": 0.2972 + }, + { + "start": 12032.81, + "end": 12035.61, + "probability": 0.9533 + }, + { + "start": 12035.95, + "end": 12039.17, + "probability": 0.8466 + }, + { + "start": 12039.45, + "end": 12041.34, + "probability": 0.9915 + }, + { + "start": 12042.09, + "end": 12046.99, + "probability": 0.9962 + }, + { + "start": 12047.45, + "end": 12050.35, + "probability": 0.3758 + }, + { + "start": 12050.91, + "end": 12050.91, + "probability": 0.0119 + }, + { + "start": 12050.91, + "end": 12051.75, + "probability": 0.3296 + }, + { + "start": 12052.85, + "end": 12053.99, + "probability": 0.232 + }, + { + "start": 12053.99, + "end": 12053.99, + "probability": 0.0259 + }, + { + "start": 12053.99, + "end": 12054.71, + "probability": 0.1613 + }, + { + "start": 12055.25, + "end": 12056.3, + "probability": 0.5494 + }, + { + "start": 12056.91, + "end": 12060.23, + "probability": 0.7543 + }, + { + "start": 12060.33, + "end": 12063.85, + "probability": 0.0305 + }, + { + "start": 12063.85, + "end": 12067.77, + "probability": 0.4974 + }, + { + "start": 12068.05, + "end": 12072.79, + "probability": 0.1794 + }, + { + "start": 12073.23, + "end": 12074.03, + "probability": 0.2618 + }, + { + "start": 12074.03, + "end": 12075.13, + "probability": 0.1518 + }, + { + "start": 12075.25, + "end": 12075.69, + "probability": 0.0476 + }, + { + "start": 12075.99, + "end": 12076.53, + "probability": 0.1147 + }, + { + "start": 12077.47, + "end": 12077.71, + "probability": 0.1839 + }, + { + "start": 12078.27, + "end": 12080.03, + "probability": 0.0514 + }, + { + "start": 12080.03, + "end": 12080.03, + "probability": 0.2095 + }, + { + "start": 12080.03, + "end": 12080.03, + "probability": 0.0507 + }, + { + "start": 12080.03, + "end": 12084.65, + "probability": 0.5872 + }, + { + "start": 12085.49, + "end": 12088.13, + "probability": 0.9492 + }, + { + "start": 12088.25, + "end": 12089.03, + "probability": 0.4831 + }, + { + "start": 12089.11, + "end": 12090.81, + "probability": 0.0276 + }, + { + "start": 12091.97, + "end": 12092.43, + "probability": 0.0434 + }, + { + "start": 12092.43, + "end": 12094.83, + "probability": 0.1168 + }, + { + "start": 12094.83, + "end": 12095.57, + "probability": 0.1118 + }, + { + "start": 12096.61, + "end": 12097.85, + "probability": 0.1859 + }, + { + "start": 12097.85, + "end": 12100.93, + "probability": 0.1061 + }, + { + "start": 12100.93, + "end": 12108.16, + "probability": 0.1759 + }, + { + "start": 12108.91, + "end": 12109.44, + "probability": 0.0489 + }, + { + "start": 12110.51, + "end": 12110.59, + "probability": 0.3884 + }, + { + "start": 12110.59, + "end": 12110.69, + "probability": 0.4381 + }, + { + "start": 12110.69, + "end": 12111.97, + "probability": 0.0247 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.0, + "end": 12112.0, + "probability": 0.0 + }, + { + "start": 12112.72, + "end": 12114.02, + "probability": 0.0787 + }, + { + "start": 12114.02, + "end": 12115.62, + "probability": 0.3841 + }, + { + "start": 12115.84, + "end": 12117.41, + "probability": 0.0766 + }, + { + "start": 12119.18, + "end": 12120.28, + "probability": 0.0447 + }, + { + "start": 12120.28, + "end": 12120.92, + "probability": 0.206 + }, + { + "start": 12122.2, + "end": 12123.02, + "probability": 0.4847 + }, + { + "start": 12124.96, + "end": 12128.65, + "probability": 0.0643 + }, + { + "start": 12129.08, + "end": 12130.22, + "probability": 0.06 + }, + { + "start": 12130.36, + "end": 12131.22, + "probability": 0.2954 + }, + { + "start": 12131.22, + "end": 12132.13, + "probability": 0.3854 + }, + { + "start": 12132.78, + "end": 12133.06, + "probability": 0.1437 + }, + { + "start": 12134.46, + "end": 12137.6, + "probability": 0.0675 + }, + { + "start": 12138.56, + "end": 12139.4, + "probability": 0.1849 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.0, + "end": 12235.0, + "probability": 0.0 + }, + { + "start": 12235.16, + "end": 12235.38, + "probability": 0.0687 + }, + { + "start": 12235.38, + "end": 12235.38, + "probability": 0.0571 + }, + { + "start": 12235.38, + "end": 12235.38, + "probability": 0.0579 + }, + { + "start": 12235.38, + "end": 12235.38, + "probability": 0.1334 + }, + { + "start": 12235.38, + "end": 12237.41, + "probability": 0.6694 + }, + { + "start": 12239.78, + "end": 12244.74, + "probability": 0.5262 + }, + { + "start": 12244.76, + "end": 12246.93, + "probability": 0.5686 + }, + { + "start": 12248.66, + "end": 12249.59, + "probability": 0.7665 + }, + { + "start": 12252.98, + "end": 12254.86, + "probability": 0.9903 + }, + { + "start": 12255.14, + "end": 12256.7, + "probability": 0.6382 + }, + { + "start": 12258.14, + "end": 12263.64, + "probability": 0.9828 + }, + { + "start": 12264.26, + "end": 12266.7, + "probability": 0.0133 + }, + { + "start": 12266.92, + "end": 12266.96, + "probability": 0.0455 + }, + { + "start": 12266.96, + "end": 12267.96, + "probability": 0.6003 + }, + { + "start": 12268.08, + "end": 12268.68, + "probability": 0.7659 + }, + { + "start": 12269.84, + "end": 12272.8, + "probability": 0.821 + }, + { + "start": 12272.9, + "end": 12280.74, + "probability": 0.9012 + }, + { + "start": 12281.26, + "end": 12282.8, + "probability": 0.9673 + }, + { + "start": 12283.46, + "end": 12284.32, + "probability": 0.5417 + }, + { + "start": 12284.36, + "end": 12286.0, + "probability": 0.7216 + }, + { + "start": 12286.16, + "end": 12287.04, + "probability": 0.0243 + }, + { + "start": 12287.04, + "end": 12290.32, + "probability": 0.9612 + }, + { + "start": 12291.04, + "end": 12296.2, + "probability": 0.9727 + }, + { + "start": 12298.94, + "end": 12299.66, + "probability": 0.2534 + }, + { + "start": 12301.36, + "end": 12303.96, + "probability": 0.8109 + }, + { + "start": 12305.72, + "end": 12308.08, + "probability": 0.8658 + }, + { + "start": 12309.16, + "end": 12316.84, + "probability": 0.9698 + }, + { + "start": 12317.76, + "end": 12317.94, + "probability": 0.0006 + }, + { + "start": 12317.94, + "end": 12322.12, + "probability": 0.9755 + }, + { + "start": 12323.61, + "end": 12325.0, + "probability": 0.0552 + }, + { + "start": 12325.2, + "end": 12326.54, + "probability": 0.74 + }, + { + "start": 12326.54, + "end": 12329.8, + "probability": 0.9576 + }, + { + "start": 12330.5, + "end": 12332.74, + "probability": 0.9855 + }, + { + "start": 12333.06, + "end": 12333.24, + "probability": 0.002 + }, + { + "start": 12333.24, + "end": 12334.28, + "probability": 0.2759 + }, + { + "start": 12335.18, + "end": 12340.42, + "probability": 0.9022 + }, + { + "start": 12341.56, + "end": 12345.06, + "probability": 0.8972 + }, + { + "start": 12345.58, + "end": 12347.46, + "probability": 0.9841 + }, + { + "start": 12347.92, + "end": 12350.8, + "probability": 0.8833 + }, + { + "start": 12350.82, + "end": 12354.32, + "probability": 0.9696 + }, + { + "start": 12355.76, + "end": 12359.64, + "probability": 0.4919 + }, + { + "start": 12359.64, + "end": 12362.3, + "probability": 0.4956 + }, + { + "start": 12362.3, + "end": 12363.97, + "probability": 0.1977 + }, + { + "start": 12364.02, + "end": 12365.86, + "probability": 0.5427 + }, + { + "start": 12366.7, + "end": 12366.7, + "probability": 0.0562 + }, + { + "start": 12366.7, + "end": 12368.56, + "probability": 0.8321 + }, + { + "start": 12370.52, + "end": 12371.08, + "probability": 0.1555 + }, + { + "start": 12372.1, + "end": 12372.1, + "probability": 0.2025 + }, + { + "start": 12372.38, + "end": 12373.16, + "probability": 0.3154 + }, + { + "start": 12374.4, + "end": 12377.84, + "probability": 0.3289 + }, + { + "start": 12378.54, + "end": 12380.28, + "probability": 0.4639 + }, + { + "start": 12382.02, + "end": 12382.02, + "probability": 0.1207 + }, + { + "start": 12382.02, + "end": 12384.08, + "probability": 0.8955 + }, + { + "start": 12385.24, + "end": 12385.92, + "probability": 0.0186 + }, + { + "start": 12389.1, + "end": 12392.44, + "probability": 0.1651 + }, + { + "start": 12392.44, + "end": 12393.84, + "probability": 0.0044 + }, + { + "start": 12395.78, + "end": 12397.32, + "probability": 0.6086 + }, + { + "start": 12399.68, + "end": 12399.68, + "probability": 0.1073 + }, + { + "start": 12399.68, + "end": 12399.68, + "probability": 0.1356 + }, + { + "start": 12399.68, + "end": 12399.68, + "probability": 0.037 + }, + { + "start": 12399.68, + "end": 12399.68, + "probability": 0.1616 + }, + { + "start": 12399.68, + "end": 12400.88, + "probability": 0.2284 + }, + { + "start": 12400.98, + "end": 12401.78, + "probability": 0.6709 + }, + { + "start": 12404.94, + "end": 12406.18, + "probability": 0.9289 + }, + { + "start": 12407.96, + "end": 12411.7, + "probability": 0.9123 + }, + { + "start": 12414.9, + "end": 12417.18, + "probability": 0.9948 + }, + { + "start": 12419.64, + "end": 12429.44, + "probability": 0.9868 + }, + { + "start": 12432.96, + "end": 12434.0, + "probability": 0.7823 + }, + { + "start": 12435.26, + "end": 12437.3, + "probability": 0.8001 + }, + { + "start": 12438.24, + "end": 12442.68, + "probability": 0.981 + }, + { + "start": 12443.26, + "end": 12445.52, + "probability": 0.9958 + }, + { + "start": 12447.26, + "end": 12448.34, + "probability": 0.9238 + }, + { + "start": 12449.68, + "end": 12452.08, + "probability": 0.9866 + }, + { + "start": 12452.54, + "end": 12454.46, + "probability": 0.3518 + }, + { + "start": 12454.7, + "end": 12456.72, + "probability": 0.3741 + }, + { + "start": 12456.74, + "end": 12458.44, + "probability": 0.1308 + }, + { + "start": 12458.5, + "end": 12460.86, + "probability": 0.4923 + }, + { + "start": 12461.74, + "end": 12465.2, + "probability": 0.7789 + }, + { + "start": 12465.52, + "end": 12465.84, + "probability": 0.0412 + }, + { + "start": 12465.84, + "end": 12465.98, + "probability": 0.0974 + }, + { + "start": 12466.08, + "end": 12466.14, + "probability": 0.2403 + }, + { + "start": 12466.14, + "end": 12468.6, + "probability": 0.7429 + }, + { + "start": 12468.6, + "end": 12470.1, + "probability": 0.8199 + }, + { + "start": 12470.14, + "end": 12471.76, + "probability": 0.4704 + }, + { + "start": 12472.66, + "end": 12475.02, + "probability": 0.3626 + }, + { + "start": 12475.66, + "end": 12476.6, + "probability": 0.1686 + }, + { + "start": 12476.74, + "end": 12477.7, + "probability": 0.319 + }, + { + "start": 12480.72, + "end": 12483.74, + "probability": 0.6325 + }, + { + "start": 12484.44, + "end": 12485.3, + "probability": 0.6668 + }, + { + "start": 12486.14, + "end": 12489.62, + "probability": 0.5472 + }, + { + "start": 12489.62, + "end": 12491.57, + "probability": 0.1263 + }, + { + "start": 12491.78, + "end": 12492.44, + "probability": 0.3789 + }, + { + "start": 12492.58, + "end": 12499.12, + "probability": 0.9835 + }, + { + "start": 12500.98, + "end": 12504.8, + "probability": 0.8171 + }, + { + "start": 12505.4, + "end": 12507.02, + "probability": 0.9587 + }, + { + "start": 12507.54, + "end": 12509.56, + "probability": 0.8995 + }, + { + "start": 12510.0, + "end": 12510.34, + "probability": 0.6407 + }, + { + "start": 12510.34, + "end": 12515.1, + "probability": 0.9839 + }, + { + "start": 12515.24, + "end": 12516.58, + "probability": 0.9735 + }, + { + "start": 12516.78, + "end": 12519.8, + "probability": 0.9806 + }, + { + "start": 12520.56, + "end": 12522.58, + "probability": 0.7472 + }, + { + "start": 12522.66, + "end": 12524.74, + "probability": 0.9846 + }, + { + "start": 12525.2, + "end": 12526.42, + "probability": 0.6784 + }, + { + "start": 12526.74, + "end": 12529.74, + "probability": 0.9584 + }, + { + "start": 12530.48, + "end": 12530.48, + "probability": 0.3774 + }, + { + "start": 12530.48, + "end": 12531.86, + "probability": 0.2146 + }, + { + "start": 12532.78, + "end": 12534.04, + "probability": 0.6432 + }, + { + "start": 12534.4, + "end": 12539.9, + "probability": 0.2149 + }, + { + "start": 12540.06, + "end": 12541.24, + "probability": 0.0635 + }, + { + "start": 12541.92, + "end": 12542.84, + "probability": 0.1021 + }, + { + "start": 12543.18, + "end": 12543.18, + "probability": 0.2267 + }, + { + "start": 12544.3, + "end": 12544.42, + "probability": 0.4269 + }, + { + "start": 12544.42, + "end": 12547.76, + "probability": 0.623 + }, + { + "start": 12548.72, + "end": 12549.32, + "probability": 0.0509 + }, + { + "start": 12549.32, + "end": 12554.68, + "probability": 0.9733 + }, + { + "start": 12554.94, + "end": 12554.94, + "probability": 0.4366 + }, + { + "start": 12555.09, + "end": 12555.32, + "probability": 0.3598 + }, + { + "start": 12555.32, + "end": 12555.36, + "probability": 0.2452 + }, + { + "start": 12555.36, + "end": 12556.45, + "probability": 0.7173 + }, + { + "start": 12557.3, + "end": 12560.78, + "probability": 0.5705 + }, + { + "start": 12561.02, + "end": 12561.78, + "probability": 0.1715 + }, + { + "start": 12561.9, + "end": 12564.34, + "probability": 0.7305 + }, + { + "start": 12565.64, + "end": 12565.66, + "probability": 0.6952 + }, + { + "start": 12565.66, + "end": 12566.7, + "probability": 0.4122 + }, + { + "start": 12567.52, + "end": 12568.7, + "probability": 0.475 + }, + { + "start": 12569.14, + "end": 12570.58, + "probability": 0.1392 + }, + { + "start": 12571.1, + "end": 12572.44, + "probability": 0.8339 + }, + { + "start": 12573.1, + "end": 12574.8, + "probability": 0.5473 + }, + { + "start": 12578.34, + "end": 12580.26, + "probability": 0.6105 + }, + { + "start": 12580.26, + "end": 12580.84, + "probability": 0.8347 + }, + { + "start": 12581.7, + "end": 12584.72, + "probability": 0.4716 + }, + { + "start": 12586.34, + "end": 12588.28, + "probability": 0.1435 + }, + { + "start": 12589.78, + "end": 12590.8, + "probability": 0.4156 + }, + { + "start": 12590.84, + "end": 12591.44, + "probability": 0.2594 + }, + { + "start": 12595.76, + "end": 12597.46, + "probability": 0.1826 + }, + { + "start": 12597.46, + "end": 12597.54, + "probability": 0.1084 + }, + { + "start": 12597.82, + "end": 12598.96, + "probability": 0.707 + }, + { + "start": 12600.24, + "end": 12603.76, + "probability": 0.4983 + }, + { + "start": 12604.46, + "end": 12608.46, + "probability": 0.5251 + }, + { + "start": 12609.52, + "end": 12613.22, + "probability": 0.619 + }, + { + "start": 12613.28, + "end": 12614.22, + "probability": 0.5008 + }, + { + "start": 12614.4, + "end": 12618.24, + "probability": 0.7969 + }, + { + "start": 12619.92, + "end": 12626.4, + "probability": 0.9797 + }, + { + "start": 12630.32, + "end": 12635.0, + "probability": 0.9607 + }, + { + "start": 12635.92, + "end": 12640.8, + "probability": 0.9237 + }, + { + "start": 12640.96, + "end": 12641.46, + "probability": 0.5017 + }, + { + "start": 12641.62, + "end": 12642.8, + "probability": 0.8719 + }, + { + "start": 12643.66, + "end": 12648.03, + "probability": 0.998 + }, + { + "start": 12649.42, + "end": 12654.75, + "probability": 0.991 + }, + { + "start": 12655.96, + "end": 12657.22, + "probability": 0.7486 + }, + { + "start": 12658.3, + "end": 12664.68, + "probability": 0.9332 + }, + { + "start": 12665.92, + "end": 12669.72, + "probability": 0.9619 + }, + { + "start": 12670.48, + "end": 12673.2, + "probability": 0.9658 + }, + { + "start": 12674.22, + "end": 12680.02, + "probability": 0.8571 + }, + { + "start": 12680.98, + "end": 12681.18, + "probability": 0.1077 + }, + { + "start": 12681.18, + "end": 12681.72, + "probability": 0.4465 + }, + { + "start": 12681.86, + "end": 12684.46, + "probability": 0.9934 + }, + { + "start": 12685.32, + "end": 12689.16, + "probability": 0.8229 + }, + { + "start": 12690.3, + "end": 12692.0, + "probability": 0.8528 + }, + { + "start": 12692.08, + "end": 12693.36, + "probability": 0.8477 + }, + { + "start": 12693.44, + "end": 12694.35, + "probability": 0.1469 + }, + { + "start": 12695.36, + "end": 12697.5, + "probability": 0.9954 + }, + { + "start": 12698.48, + "end": 12702.26, + "probability": 0.9972 + }, + { + "start": 12702.26, + "end": 12707.3, + "probability": 0.9982 + }, + { + "start": 12708.66, + "end": 12714.66, + "probability": 0.9652 + }, + { + "start": 12715.86, + "end": 12717.32, + "probability": 0.8875 + }, + { + "start": 12718.26, + "end": 12719.66, + "probability": 0.9062 + }, + { + "start": 12722.02, + "end": 12723.1, + "probability": 0.896 + }, + { + "start": 12723.46, + "end": 12725.98, + "probability": 0.9893 + }, + { + "start": 12726.04, + "end": 12730.6, + "probability": 0.6055 + }, + { + "start": 12730.84, + "end": 12733.48, + "probability": 0.9557 + }, + { + "start": 12733.68, + "end": 12735.06, + "probability": 0.914 + }, + { + "start": 12735.2, + "end": 12737.23, + "probability": 0.9849 + }, + { + "start": 12738.7, + "end": 12743.18, + "probability": 0.8337 + }, + { + "start": 12743.88, + "end": 12744.1, + "probability": 0.0256 + }, + { + "start": 12744.1, + "end": 12745.6, + "probability": 0.8408 + }, + { + "start": 12745.78, + "end": 12751.32, + "probability": 0.8296 + }, + { + "start": 12751.6, + "end": 12756.56, + "probability": 0.984 + }, + { + "start": 12757.24, + "end": 12761.64, + "probability": 0.8938 + }, + { + "start": 12762.28, + "end": 12763.8, + "probability": 0.5261 + }, + { + "start": 12763.98, + "end": 12765.8, + "probability": 0.8592 + }, + { + "start": 12766.18, + "end": 12768.54, + "probability": 0.9933 + }, + { + "start": 12768.7, + "end": 12770.88, + "probability": 0.9894 + }, + { + "start": 12770.88, + "end": 12772.95, + "probability": 0.9925 + }, + { + "start": 12773.72, + "end": 12778.06, + "probability": 0.9131 + }, + { + "start": 12778.4, + "end": 12779.68, + "probability": 0.9836 + }, + { + "start": 12780.24, + "end": 12785.92, + "probability": 0.8584 + }, + { + "start": 12785.94, + "end": 12786.44, + "probability": 0.9261 + }, + { + "start": 12786.68, + "end": 12788.22, + "probability": 0.9927 + }, + { + "start": 12788.28, + "end": 12789.02, + "probability": 0.9507 + }, + { + "start": 12789.14, + "end": 12790.25, + "probability": 0.9277 + }, + { + "start": 12790.5, + "end": 12791.74, + "probability": 0.7441 + }, + { + "start": 12791.76, + "end": 12793.74, + "probability": 0.9488 + }, + { + "start": 12795.28, + "end": 12795.46, + "probability": 0.3222 + }, + { + "start": 12795.46, + "end": 12797.62, + "probability": 0.6086 + }, + { + "start": 12798.04, + "end": 12799.46, + "probability": 0.97 + }, + { + "start": 12799.58, + "end": 12800.58, + "probability": 0.782 + }, + { + "start": 12801.46, + "end": 12801.54, + "probability": 0.0454 + }, + { + "start": 12801.54, + "end": 12804.75, + "probability": 0.4516 + }, + { + "start": 12805.14, + "end": 12806.38, + "probability": 0.7042 + }, + { + "start": 12806.62, + "end": 12808.9, + "probability": 0.8633 + }, + { + "start": 12809.52, + "end": 12811.28, + "probability": 0.7999 + }, + { + "start": 12811.72, + "end": 12813.08, + "probability": 0.8406 + }, + { + "start": 12813.14, + "end": 12814.72, + "probability": 0.833 + }, + { + "start": 12814.78, + "end": 12816.36, + "probability": 0.9698 + }, + { + "start": 12816.68, + "end": 12819.26, + "probability": 0.9422 + }, + { + "start": 12819.26, + "end": 12819.6, + "probability": 0.0366 + }, + { + "start": 12819.6, + "end": 12820.54, + "probability": 0.6779 + }, + { + "start": 12820.62, + "end": 12820.92, + "probability": 0.3171 + }, + { + "start": 12821.06, + "end": 12822.46, + "probability": 0.3069 + }, + { + "start": 12822.46, + "end": 12825.06, + "probability": 0.9287 + }, + { + "start": 12825.76, + "end": 12828.36, + "probability": 0.1871 + }, + { + "start": 12828.54, + "end": 12828.54, + "probability": 0.0179 + }, + { + "start": 12828.54, + "end": 12829.8, + "probability": 0.7316 + }, + { + "start": 12829.86, + "end": 12831.2, + "probability": 0.8064 + }, + { + "start": 12831.7, + "end": 12835.8, + "probability": 0.8907 + }, + { + "start": 12835.8, + "end": 12839.24, + "probability": 0.7941 + }, + { + "start": 12841.66, + "end": 12845.76, + "probability": 0.7637 + }, + { + "start": 12845.76, + "end": 12848.9, + "probability": 0.6857 + }, + { + "start": 12849.46, + "end": 12850.35, + "probability": 0.8765 + }, + { + "start": 12851.08, + "end": 12853.56, + "probability": 0.7483 + }, + { + "start": 12853.62, + "end": 12854.1, + "probability": 0.2001 + }, + { + "start": 12854.36, + "end": 12855.94, + "probability": 0.8086 + }, + { + "start": 12856.2, + "end": 12856.2, + "probability": 0.0696 + }, + { + "start": 12856.2, + "end": 12856.94, + "probability": 0.0529 + }, + { + "start": 12857.32, + "end": 12857.36, + "probability": 0.2672 + }, + { + "start": 12857.36, + "end": 12857.72, + "probability": 0.1954 + }, + { + "start": 12857.84, + "end": 12858.8, + "probability": 0.279 + }, + { + "start": 12858.8, + "end": 12859.4, + "probability": 0.392 + }, + { + "start": 12859.48, + "end": 12861.36, + "probability": 0.9137 + }, + { + "start": 12861.44, + "end": 12861.68, + "probability": 0.3422 + }, + { + "start": 12861.68, + "end": 12864.2, + "probability": 0.8154 + }, + { + "start": 12864.2, + "end": 12864.98, + "probability": 0.7051 + }, + { + "start": 12865.08, + "end": 12866.7, + "probability": 0.9922 + }, + { + "start": 12866.98, + "end": 12867.42, + "probability": 0.7073 + }, + { + "start": 12867.52, + "end": 12868.46, + "probability": 0.9536 + }, + { + "start": 12869.3, + "end": 12871.36, + "probability": 0.9932 + }, + { + "start": 12871.5, + "end": 12873.12, + "probability": 0.9958 + }, + { + "start": 12873.34, + "end": 12878.44, + "probability": 0.9648 + }, + { + "start": 12878.52, + "end": 12880.56, + "probability": 0.8932 + }, + { + "start": 12881.36, + "end": 12883.26, + "probability": 0.9979 + }, + { + "start": 12883.62, + "end": 12885.12, + "probability": 0.9568 + }, + { + "start": 12885.16, + "end": 12888.2, + "probability": 0.9969 + }, + { + "start": 12888.46, + "end": 12890.78, + "probability": 0.8105 + }, + { + "start": 12891.22, + "end": 12892.62, + "probability": 0.3334 + }, + { + "start": 12892.66, + "end": 12892.66, + "probability": 0.3788 + }, + { + "start": 12892.66, + "end": 12893.92, + "probability": 0.9878 + }, + { + "start": 12894.02, + "end": 12894.28, + "probability": 0.8266 + }, + { + "start": 12894.6, + "end": 12894.9, + "probability": 0.8372 + }, + { + "start": 12894.98, + "end": 12896.24, + "probability": 0.9226 + }, + { + "start": 12896.28, + "end": 12897.44, + "probability": 0.6712 + }, + { + "start": 12898.78, + "end": 12899.44, + "probability": 0.8703 + }, + { + "start": 12899.7, + "end": 12901.6, + "probability": 0.9846 + }, + { + "start": 12901.78, + "end": 12902.39, + "probability": 0.9119 + }, + { + "start": 12902.96, + "end": 12904.2, + "probability": 0.85 + }, + { + "start": 12904.26, + "end": 12904.68, + "probability": 0.8452 + }, + { + "start": 12907.42, + "end": 12908.04, + "probability": 0.0645 + }, + { + "start": 12916.9, + "end": 12917.58, + "probability": 0.2202 + }, + { + "start": 12917.64, + "end": 12918.74, + "probability": 0.4464 + }, + { + "start": 12918.96, + "end": 12919.46, + "probability": 0.1378 + }, + { + "start": 12919.8, + "end": 12925.82, + "probability": 0.9744 + }, + { + "start": 12926.66, + "end": 12928.4, + "probability": 0.8452 + }, + { + "start": 12928.68, + "end": 12933.2, + "probability": 0.8834 + }, + { + "start": 12933.74, + "end": 12935.68, + "probability": 0.5081 + }, + { + "start": 12935.88, + "end": 12938.21, + "probability": 0.9803 + }, + { + "start": 12939.32, + "end": 12942.21, + "probability": 0.7408 + }, + { + "start": 12942.36, + "end": 12943.2, + "probability": 0.9766 + }, + { + "start": 12944.24, + "end": 12945.64, + "probability": 0.9374 + }, + { + "start": 12946.56, + "end": 12950.2, + "probability": 0.9746 + }, + { + "start": 12950.44, + "end": 12951.82, + "probability": 0.9409 + }, + { + "start": 12953.0, + "end": 12954.88, + "probability": 0.8936 + }, + { + "start": 12955.84, + "end": 12957.98, + "probability": 0.9199 + }, + { + "start": 12958.04, + "end": 12959.92, + "probability": 0.9901 + }, + { + "start": 12960.46, + "end": 12964.38, + "probability": 0.9458 + }, + { + "start": 12964.84, + "end": 12965.8, + "probability": 0.9189 + }, + { + "start": 12965.9, + "end": 12966.8, + "probability": 0.6117 + }, + { + "start": 12967.14, + "end": 12968.42, + "probability": 0.827 + }, + { + "start": 12969.34, + "end": 12972.3, + "probability": 0.9465 + }, + { + "start": 12973.56, + "end": 12976.48, + "probability": 0.9934 + }, + { + "start": 12976.96, + "end": 12980.2, + "probability": 0.9943 + }, + { + "start": 12981.52, + "end": 12983.36, + "probability": 0.997 + }, + { + "start": 12984.46, + "end": 12985.94, + "probability": 0.9458 + }, + { + "start": 12986.2, + "end": 12988.84, + "probability": 0.8775 + }, + { + "start": 12988.84, + "end": 12992.96, + "probability": 0.9982 + }, + { + "start": 12993.5, + "end": 12995.24, + "probability": 0.9978 + }, + { + "start": 12996.08, + "end": 12997.12, + "probability": 0.8713 + }, + { + "start": 12998.06, + "end": 12999.86, + "probability": 0.7627 + }, + { + "start": 13001.12, + "end": 13001.62, + "probability": 0.2426 + }, + { + "start": 13001.62, + "end": 13002.84, + "probability": 0.7576 + }, + { + "start": 13002.9, + "end": 13005.68, + "probability": 0.9825 + }, + { + "start": 13006.16, + "end": 13008.9, + "probability": 0.9588 + }, + { + "start": 13009.8, + "end": 13011.02, + "probability": 0.8866 + }, + { + "start": 13011.8, + "end": 13015.52, + "probability": 0.9851 + }, + { + "start": 13015.52, + "end": 13018.8, + "probability": 0.9431 + }, + { + "start": 13019.12, + "end": 13019.76, + "probability": 0.1491 + }, + { + "start": 13019.8, + "end": 13022.5, + "probability": 0.7395 + }, + { + "start": 13023.24, + "end": 13026.34, + "probability": 0.9048 + }, + { + "start": 13026.46, + "end": 13026.46, + "probability": 0.2641 + }, + { + "start": 13026.46, + "end": 13026.88, + "probability": 0.4591 + }, + { + "start": 13026.98, + "end": 13028.02, + "probability": 0.9856 + }, + { + "start": 13028.92, + "end": 13033.06, + "probability": 0.9961 + }, + { + "start": 13033.84, + "end": 13037.06, + "probability": 0.9955 + }, + { + "start": 13037.16, + "end": 13038.72, + "probability": 0.916 + }, + { + "start": 13038.92, + "end": 13040.1, + "probability": 0.9556 + }, + { + "start": 13040.62, + "end": 13041.78, + "probability": 0.9616 + }, + { + "start": 13042.34, + "end": 13044.5, + "probability": 0.9957 + }, + { + "start": 13045.06, + "end": 13047.62, + "probability": 0.8538 + }, + { + "start": 13047.8, + "end": 13048.93, + "probability": 0.8591 + }, + { + "start": 13049.38, + "end": 13050.48, + "probability": 0.8685 + }, + { + "start": 13051.24, + "end": 13052.54, + "probability": 0.833 + }, + { + "start": 13052.66, + "end": 13052.92, + "probability": 0.8672 + }, + { + "start": 13053.0, + "end": 13054.64, + "probability": 0.9769 + }, + { + "start": 13055.28, + "end": 13059.06, + "probability": 0.8975 + }, + { + "start": 13059.38, + "end": 13063.44, + "probability": 0.9936 + }, + { + "start": 13064.2, + "end": 13067.82, + "probability": 0.9869 + }, + { + "start": 13068.46, + "end": 13068.92, + "probability": 0.4433 + }, + { + "start": 13069.04, + "end": 13071.08, + "probability": 0.8835 + }, + { + "start": 13071.58, + "end": 13075.18, + "probability": 0.9645 + }, + { + "start": 13075.84, + "end": 13077.57, + "probability": 0.9835 + }, + { + "start": 13078.7, + "end": 13080.02, + "probability": 0.9116 + }, + { + "start": 13080.48, + "end": 13081.98, + "probability": 0.9751 + }, + { + "start": 13082.68, + "end": 13084.72, + "probability": 0.9969 + }, + { + "start": 13084.92, + "end": 13085.34, + "probability": 0.2184 + }, + { + "start": 13085.58, + "end": 13086.28, + "probability": 0.4694 + }, + { + "start": 13086.71, + "end": 13088.22, + "probability": 0.3535 + }, + { + "start": 13088.38, + "end": 13089.2, + "probability": 0.5017 + }, + { + "start": 13089.2, + "end": 13089.42, + "probability": 0.4142 + }, + { + "start": 13089.42, + "end": 13091.1, + "probability": 0.4492 + }, + { + "start": 13091.1, + "end": 13092.6, + "probability": 0.5247 + }, + { + "start": 13092.72, + "end": 13094.72, + "probability": 0.8498 + }, + { + "start": 13095.12, + "end": 13096.72, + "probability": 0.7421 + }, + { + "start": 13096.82, + "end": 13099.08, + "probability": 0.7661 + }, + { + "start": 13099.28, + "end": 13099.9, + "probability": 0.5664 + }, + { + "start": 13099.98, + "end": 13100.38, + "probability": 0.5936 + }, + { + "start": 13100.83, + "end": 13101.18, + "probability": 0.4934 + }, + { + "start": 13101.18, + "end": 13101.68, + "probability": 0.6684 + }, + { + "start": 13102.34, + "end": 13107.6, + "probability": 0.978 + }, + { + "start": 13108.08, + "end": 13111.76, + "probability": 0.8362 + }, + { + "start": 13111.98, + "end": 13112.22, + "probability": 0.3525 + }, + { + "start": 13112.44, + "end": 13116.86, + "probability": 0.9625 + }, + { + "start": 13117.3, + "end": 13121.3, + "probability": 0.9558 + }, + { + "start": 13121.56, + "end": 13122.56, + "probability": 0.8736 + }, + { + "start": 13123.24, + "end": 13123.34, + "probability": 0.2464 + }, + { + "start": 13123.34, + "end": 13124.1, + "probability": 0.5211 + }, + { + "start": 13124.48, + "end": 13126.7, + "probability": 0.8016 + }, + { + "start": 13145.82, + "end": 13146.94, + "probability": 0.863 + }, + { + "start": 13146.94, + "end": 13147.38, + "probability": 0.8393 + }, + { + "start": 13148.5, + "end": 13151.24, + "probability": 0.7358 + }, + { + "start": 13152.92, + "end": 13154.72, + "probability": 0.7062 + }, + { + "start": 13157.26, + "end": 13161.84, + "probability": 0.9983 + }, + { + "start": 13162.3, + "end": 13167.64, + "probability": 0.866 + }, + { + "start": 13169.08, + "end": 13173.08, + "probability": 0.9917 + }, + { + "start": 13173.23, + "end": 13180.0, + "probability": 0.9731 + }, + { + "start": 13181.28, + "end": 13182.64, + "probability": 0.5477 + }, + { + "start": 13184.14, + "end": 13188.42, + "probability": 0.9388 + }, + { + "start": 13191.64, + "end": 13194.84, + "probability": 0.8698 + }, + { + "start": 13195.12, + "end": 13200.62, + "probability": 0.9165 + }, + { + "start": 13201.3, + "end": 13203.84, + "probability": 0.9785 + }, + { + "start": 13204.46, + "end": 13205.7, + "probability": 0.9838 + }, + { + "start": 13206.56, + "end": 13209.19, + "probability": 0.814 + }, + { + "start": 13209.82, + "end": 13213.94, + "probability": 0.5449 + }, + { + "start": 13213.94, + "end": 13216.4, + "probability": 0.8777 + }, + { + "start": 13216.64, + "end": 13218.46, + "probability": 0.9367 + }, + { + "start": 13219.22, + "end": 13222.52, + "probability": 0.7211 + }, + { + "start": 13223.06, + "end": 13225.04, + "probability": 0.4327 + }, + { + "start": 13231.5, + "end": 13232.94, + "probability": 0.0557 + }, + { + "start": 13232.94, + "end": 13235.4, + "probability": 0.319 + }, + { + "start": 13235.58, + "end": 13236.58, + "probability": 0.2781 + }, + { + "start": 13236.72, + "end": 13237.48, + "probability": 0.108 + }, + { + "start": 13237.94, + "end": 13238.31, + "probability": 0.1733 + }, + { + "start": 13239.3, + "end": 13240.84, + "probability": 0.1184 + }, + { + "start": 13240.84, + "end": 13243.7, + "probability": 0.076 + }, + { + "start": 13244.48, + "end": 13248.48, + "probability": 0.6729 + }, + { + "start": 13252.02, + "end": 13252.9, + "probability": 0.0469 + }, + { + "start": 13252.9, + "end": 13253.54, + "probability": 0.054 + }, + { + "start": 13253.54, + "end": 13253.54, + "probability": 0.02 + }, + { + "start": 13253.54, + "end": 13253.54, + "probability": 0.1325 + }, + { + "start": 13253.54, + "end": 13255.22, + "probability": 0.1858 + }, + { + "start": 13256.0, + "end": 13256.0, + "probability": 0.0227 + }, + { + "start": 13256.0, + "end": 13256.0, + "probability": 0.0501 + }, + { + "start": 13256.0, + "end": 13256.0, + "probability": 0.0364 + }, + { + "start": 13256.0, + "end": 13256.0, + "probability": 0.0817 + }, + { + "start": 13256.0, + "end": 13257.02, + "probability": 0.4583 + }, + { + "start": 13257.26, + "end": 13260.81, + "probability": 0.9441 + }, + { + "start": 13260.93, + "end": 13266.47, + "probability": 0.7937 + }, + { + "start": 13268.29, + "end": 13272.63, + "probability": 0.9894 + }, + { + "start": 13272.81, + "end": 13277.81, + "probability": 0.8054 + }, + { + "start": 13277.89, + "end": 13278.31, + "probability": 0.0007 + }, + { + "start": 13279.11, + "end": 13282.95, + "probability": 0.7022 + }, + { + "start": 13284.21, + "end": 13290.83, + "probability": 0.9122 + }, + { + "start": 13292.03, + "end": 13293.97, + "probability": 0.9886 + }, + { + "start": 13294.91, + "end": 13298.47, + "probability": 0.9883 + }, + { + "start": 13298.47, + "end": 13303.85, + "probability": 0.9569 + }, + { + "start": 13304.33, + "end": 13307.79, + "probability": 0.9148 + }, + { + "start": 13309.41, + "end": 13312.65, + "probability": 0.7593 + }, + { + "start": 13312.77, + "end": 13314.19, + "probability": 0.9028 + }, + { + "start": 13315.77, + "end": 13317.35, + "probability": 0.7274 + }, + { + "start": 13318.25, + "end": 13319.79, + "probability": 0.9901 + }, + { + "start": 13320.47, + "end": 13323.41, + "probability": 0.9293 + }, + { + "start": 13324.01, + "end": 13326.49, + "probability": 0.9786 + }, + { + "start": 13326.67, + "end": 13329.52, + "probability": 0.8312 + }, + { + "start": 13330.25, + "end": 13331.3, + "probability": 0.0311 + }, + { + "start": 13331.75, + "end": 13332.67, + "probability": 0.4587 + }, + { + "start": 13332.75, + "end": 13335.31, + "probability": 0.2113 + }, + { + "start": 13335.31, + "end": 13335.31, + "probability": 0.0046 + }, + { + "start": 13335.65, + "end": 13335.65, + "probability": 0.1716 + }, + { + "start": 13336.43, + "end": 13337.53, + "probability": 0.0511 + }, + { + "start": 13337.53, + "end": 13341.59, + "probability": 0.4044 + }, + { + "start": 13342.65, + "end": 13344.87, + "probability": 0.4105 + }, + { + "start": 13344.87, + "end": 13344.87, + "probability": 0.4596 + }, + { + "start": 13344.87, + "end": 13345.91, + "probability": 0.2852 + }, + { + "start": 13345.91, + "end": 13346.75, + "probability": 0.5706 + }, + { + "start": 13347.01, + "end": 13347.61, + "probability": 0.082 + }, + { + "start": 13347.61, + "end": 13348.27, + "probability": 0.237 + }, + { + "start": 13348.45, + "end": 13351.11, + "probability": 0.8178 + }, + { + "start": 13351.69, + "end": 13353.17, + "probability": 0.0651 + }, + { + "start": 13354.11, + "end": 13354.83, + "probability": 0.2189 + }, + { + "start": 13354.83, + "end": 13354.87, + "probability": 0.1483 + }, + { + "start": 13355.01, + "end": 13355.01, + "probability": 0.3728 + }, + { + "start": 13355.13, + "end": 13355.13, + "probability": 0.3353 + }, + { + "start": 13355.13, + "end": 13355.13, + "probability": 0.4071 + }, + { + "start": 13355.63, + "end": 13356.03, + "probability": 0.2595 + }, + { + "start": 13356.23, + "end": 13356.81, + "probability": 0.1044 + }, + { + "start": 13357.15, + "end": 13359.28, + "probability": 0.661 + }, + { + "start": 13360.61, + "end": 13366.41, + "probability": 0.0892 + }, + { + "start": 13367.59, + "end": 13369.91, + "probability": 0.1019 + }, + { + "start": 13373.73, + "end": 13379.13, + "probability": 0.0533 + }, + { + "start": 13380.05, + "end": 13380.93, + "probability": 0.0043 + }, + { + "start": 13381.67, + "end": 13383.31, + "probability": 0.0993 + }, + { + "start": 13383.68, + "end": 13385.23, + "probability": 0.0095 + }, + { + "start": 13385.59, + "end": 13387.91, + "probability": 0.0244 + }, + { + "start": 13387.91, + "end": 13388.75, + "probability": 0.0908 + }, + { + "start": 13388.75, + "end": 13388.81, + "probability": 0.1971 + }, + { + "start": 13388.87, + "end": 13389.79, + "probability": 0.0475 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.0, + "end": 13393.0, + "probability": 0.0 + }, + { + "start": 13393.16, + "end": 13395.08, + "probability": 0.1089 + }, + { + "start": 13395.08, + "end": 13395.68, + "probability": 0.5818 + }, + { + "start": 13396.75, + "end": 13397.68, + "probability": 0.223 + }, + { + "start": 13397.68, + "end": 13398.55, + "probability": 0.8706 + }, + { + "start": 13398.86, + "end": 13400.72, + "probability": 0.8534 + }, + { + "start": 13401.86, + "end": 13402.04, + "probability": 0.3261 + }, + { + "start": 13402.12, + "end": 13402.78, + "probability": 0.6899 + }, + { + "start": 13403.84, + "end": 13405.52, + "probability": 0.459 + }, + { + "start": 13412.88, + "end": 13414.02, + "probability": 0.5158 + }, + { + "start": 13414.06, + "end": 13414.54, + "probability": 0.4825 + }, + { + "start": 13415.32, + "end": 13417.26, + "probability": 0.7816 + }, + { + "start": 13417.62, + "end": 13417.78, + "probability": 0.3142 + }, + { + "start": 13417.78, + "end": 13419.4, + "probability": 0.8092 + }, + { + "start": 13420.88, + "end": 13424.26, + "probability": 0.8633 + }, + { + "start": 13425.62, + "end": 13427.92, + "probability": 0.8173 + }, + { + "start": 13428.52, + "end": 13429.44, + "probability": 0.7509 + }, + { + "start": 13429.92, + "end": 13430.82, + "probability": 0.969 + }, + { + "start": 13431.38, + "end": 13432.64, + "probability": 0.9497 + }, + { + "start": 13433.2, + "end": 13434.96, + "probability": 0.9282 + }, + { + "start": 13435.4, + "end": 13438.6, + "probability": 0.9927 + }, + { + "start": 13439.04, + "end": 13441.94, + "probability": 0.9871 + }, + { + "start": 13442.78, + "end": 13444.62, + "probability": 0.9944 + }, + { + "start": 13447.42, + "end": 13453.24, + "probability": 0.9878 + }, + { + "start": 13454.48, + "end": 13458.64, + "probability": 0.9922 + }, + { + "start": 13459.14, + "end": 13460.81, + "probability": 0.2432 + }, + { + "start": 13460.9, + "end": 13462.28, + "probability": 0.3289 + }, + { + "start": 13462.32, + "end": 13464.92, + "probability": 0.0815 + }, + { + "start": 13464.94, + "end": 13465.12, + "probability": 0.0898 + }, + { + "start": 13465.12, + "end": 13466.1, + "probability": 0.339 + }, + { + "start": 13466.34, + "end": 13467.06, + "probability": 0.6573 + }, + { + "start": 13467.28, + "end": 13467.88, + "probability": 0.5302 + }, + { + "start": 13468.06, + "end": 13469.34, + "probability": 0.8108 + }, + { + "start": 13469.46, + "end": 13470.64, + "probability": 0.7222 + }, + { + "start": 13470.78, + "end": 13473.09, + "probability": 0.6583 + }, + { + "start": 13473.94, + "end": 13475.86, + "probability": 0.9149 + }, + { + "start": 13475.96, + "end": 13477.18, + "probability": 0.8749 + }, + { + "start": 13477.22, + "end": 13478.46, + "probability": 0.9155 + }, + { + "start": 13478.52, + "end": 13480.14, + "probability": 0.9507 + }, + { + "start": 13480.82, + "end": 13481.12, + "probability": 0.138 + }, + { + "start": 13481.12, + "end": 13481.16, + "probability": 0.2568 + }, + { + "start": 13481.2, + "end": 13481.42, + "probability": 0.8372 + }, + { + "start": 13481.54, + "end": 13482.04, + "probability": 0.0068 + }, + { + "start": 13483.38, + "end": 13485.9, + "probability": 0.0693 + }, + { + "start": 13485.9, + "end": 13486.4, + "probability": 0.1007 + }, + { + "start": 13486.62, + "end": 13487.78, + "probability": 0.4798 + }, + { + "start": 13488.0, + "end": 13488.3, + "probability": 0.4197 + }, + { + "start": 13488.36, + "end": 13492.08, + "probability": 0.9727 + }, + { + "start": 13493.76, + "end": 13495.78, + "probability": 0.9963 + }, + { + "start": 13496.58, + "end": 13498.86, + "probability": 0.9899 + }, + { + "start": 13500.14, + "end": 13501.08, + "probability": 0.7593 + }, + { + "start": 13502.28, + "end": 13502.28, + "probability": 0.0067 + }, + { + "start": 13502.28, + "end": 13511.1, + "probability": 0.9343 + }, + { + "start": 13511.82, + "end": 13513.62, + "probability": 0.9963 + }, + { + "start": 13514.32, + "end": 13521.06, + "probability": 0.9348 + }, + { + "start": 13522.2, + "end": 13524.32, + "probability": 0.8515 + }, + { + "start": 13525.22, + "end": 13530.88, + "probability": 0.8298 + }, + { + "start": 13531.54, + "end": 13534.1, + "probability": 0.5839 + }, + { + "start": 13535.26, + "end": 13536.06, + "probability": 0.7318 + }, + { + "start": 13537.18, + "end": 13539.68, + "probability": 0.8457 + }, + { + "start": 13539.8, + "end": 13539.88, + "probability": 0.0797 + }, + { + "start": 13539.88, + "end": 13541.5, + "probability": 0.4473 + }, + { + "start": 13543.26, + "end": 13544.62, + "probability": 0.0026 + }, + { + "start": 13545.68, + "end": 13545.82, + "probability": 0.0487 + }, + { + "start": 13545.82, + "end": 13545.82, + "probability": 0.0657 + }, + { + "start": 13545.82, + "end": 13545.82, + "probability": 0.1102 + }, + { + "start": 13545.82, + "end": 13546.94, + "probability": 0.2206 + }, + { + "start": 13546.96, + "end": 13547.74, + "probability": 0.4105 + }, + { + "start": 13548.24, + "end": 13550.58, + "probability": 0.4421 + }, + { + "start": 13551.3, + "end": 13555.42, + "probability": 0.12 + }, + { + "start": 13556.28, + "end": 13556.28, + "probability": 0.0101 + }, + { + "start": 13556.28, + "end": 13556.28, + "probability": 0.0678 + }, + { + "start": 13556.28, + "end": 13556.28, + "probability": 0.1661 + }, + { + "start": 13556.28, + "end": 13556.28, + "probability": 0.1342 + }, + { + "start": 13556.28, + "end": 13558.65, + "probability": 0.8711 + }, + { + "start": 13559.32, + "end": 13560.56, + "probability": 0.0685 + }, + { + "start": 13560.98, + "end": 13561.3, + "probability": 0.3474 + }, + { + "start": 13561.72, + "end": 13561.9, + "probability": 0.0926 + }, + { + "start": 13561.9, + "end": 13565.5, + "probability": 0.7661 + }, + { + "start": 13565.72, + "end": 13566.5, + "probability": 0.6223 + }, + { + "start": 13566.76, + "end": 13570.24, + "probability": 0.7265 + }, + { + "start": 13570.66, + "end": 13572.08, + "probability": 0.7245 + }, + { + "start": 13572.36, + "end": 13573.4, + "probability": 0.621 + }, + { + "start": 13573.72, + "end": 13576.86, + "probability": 0.9106 + }, + { + "start": 13577.18, + "end": 13578.5, + "probability": 0.9426 + }, + { + "start": 13578.66, + "end": 13580.6, + "probability": 0.0652 + }, + { + "start": 13581.68, + "end": 13584.4, + "probability": 0.3378 + }, + { + "start": 13584.52, + "end": 13585.08, + "probability": 0.0917 + }, + { + "start": 13585.08, + "end": 13589.11, + "probability": 0.4229 + }, + { + "start": 13590.04, + "end": 13592.32, + "probability": 0.7288 + }, + { + "start": 13592.82, + "end": 13593.9, + "probability": 0.8596 + }, + { + "start": 13595.04, + "end": 13600.24, + "probability": 0.8141 + }, + { + "start": 13600.68, + "end": 13602.02, + "probability": 0.8501 + }, + { + "start": 13602.14, + "end": 13606.7, + "probability": 0.8508 + }, + { + "start": 13606.74, + "end": 13607.76, + "probability": 0.4763 + }, + { + "start": 13608.83, + "end": 13609.68, + "probability": 0.0415 + }, + { + "start": 13609.68, + "end": 13613.34, + "probability": 0.2915 + }, + { + "start": 13613.4, + "end": 13613.72, + "probability": 0.7158 + }, + { + "start": 13613.8, + "end": 13616.2, + "probability": 0.9746 + }, + { + "start": 13616.69, + "end": 13619.34, + "probability": 0.7003 + }, + { + "start": 13619.42, + "end": 13619.86, + "probability": 0.6759 + }, + { + "start": 13619.86, + "end": 13619.86, + "probability": 0.0257 + }, + { + "start": 13619.86, + "end": 13620.0, + "probability": 0.8098 + }, + { + "start": 13620.0, + "end": 13620.04, + "probability": 0.2745 + }, + { + "start": 13620.04, + "end": 13620.14, + "probability": 0.4377 + }, + { + "start": 13620.26, + "end": 13621.48, + "probability": 0.767 + }, + { + "start": 13622.14, + "end": 13625.18, + "probability": 0.9049 + }, + { + "start": 13625.54, + "end": 13626.2, + "probability": 0.9267 + }, + { + "start": 13626.84, + "end": 13628.4, + "probability": 0.9229 + }, + { + "start": 13628.44, + "end": 13629.32, + "probability": 0.8687 + }, + { + "start": 13629.42, + "end": 13629.94, + "probability": 0.7402 + }, + { + "start": 13630.44, + "end": 13630.72, + "probability": 0.0644 + }, + { + "start": 13630.82, + "end": 13633.78, + "probability": 0.9005 + }, + { + "start": 13636.14, + "end": 13636.76, + "probability": 0.8832 + }, + { + "start": 13636.96, + "end": 13639.94, + "probability": 0.9371 + }, + { + "start": 13640.58, + "end": 13640.98, + "probability": 0.0666 + }, + { + "start": 13658.24, + "end": 13659.52, + "probability": 0.2857 + }, + { + "start": 13659.52, + "end": 13659.76, + "probability": 0.8293 + }, + { + "start": 13659.76, + "end": 13661.26, + "probability": 0.6853 + }, + { + "start": 13662.24, + "end": 13662.72, + "probability": 0.3877 + }, + { + "start": 13663.7, + "end": 13664.2, + "probability": 0.7899 + }, + { + "start": 13665.93, + "end": 13667.6, + "probability": 0.9981 + }, + { + "start": 13670.08, + "end": 13675.28, + "probability": 0.871 + }, + { + "start": 13675.62, + "end": 13677.78, + "probability": 0.8425 + }, + { + "start": 13678.14, + "end": 13679.14, + "probability": 0.9755 + }, + { + "start": 13680.22, + "end": 13681.0, + "probability": 0.7105 + }, + { + "start": 13681.2, + "end": 13681.46, + "probability": 0.8445 + }, + { + "start": 13681.6, + "end": 13687.2, + "probability": 0.9368 + }, + { + "start": 13688.04, + "end": 13688.88, + "probability": 0.5217 + }, + { + "start": 13690.38, + "end": 13693.84, + "probability": 0.9149 + }, + { + "start": 13694.46, + "end": 13697.34, + "probability": 0.9609 + }, + { + "start": 13697.74, + "end": 13697.8, + "probability": 0.3886 + }, + { + "start": 13698.06, + "end": 13701.32, + "probability": 0.9985 + }, + { + "start": 13701.98, + "end": 13701.98, + "probability": 0.4418 + }, + { + "start": 13702.18, + "end": 13702.9, + "probability": 0.9315 + }, + { + "start": 13702.96, + "end": 13704.28, + "probability": 0.7325 + }, + { + "start": 13704.5, + "end": 13705.27, + "probability": 0.9607 + }, + { + "start": 13705.58, + "end": 13706.12, + "probability": 0.9496 + }, + { + "start": 13706.2, + "end": 13708.44, + "probability": 0.9924 + }, + { + "start": 13708.58, + "end": 13710.74, + "probability": 0.9775 + }, + { + "start": 13711.84, + "end": 13713.52, + "probability": 0.9933 + }, + { + "start": 13713.58, + "end": 13714.68, + "probability": 0.9753 + }, + { + "start": 13714.68, + "end": 13714.78, + "probability": 0.1831 + }, + { + "start": 13716.16, + "end": 13718.68, + "probability": 0.6938 + }, + { + "start": 13718.78, + "end": 13719.76, + "probability": 0.7429 + }, + { + "start": 13720.32, + "end": 13720.34, + "probability": 0.0902 + }, + { + "start": 13720.34, + "end": 13723.36, + "probability": 0.7508 + }, + { + "start": 13724.42, + "end": 13725.88, + "probability": 0.7531 + }, + { + "start": 13725.94, + "end": 13726.76, + "probability": 0.8351 + }, + { + "start": 13727.2, + "end": 13728.92, + "probability": 0.7468 + }, + { + "start": 13729.36, + "end": 13729.96, + "probability": 0.9502 + }, + { + "start": 13730.9, + "end": 13731.72, + "probability": 0.9585 + }, + { + "start": 13732.4, + "end": 13733.52, + "probability": 0.9883 + }, + { + "start": 13733.72, + "end": 13738.56, + "probability": 0.9707 + }, + { + "start": 13738.72, + "end": 13739.46, + "probability": 0.8235 + }, + { + "start": 13739.74, + "end": 13740.98, + "probability": 0.8507 + }, + { + "start": 13741.8, + "end": 13742.82, + "probability": 0.9812 + }, + { + "start": 13743.8, + "end": 13744.26, + "probability": 0.8633 + }, + { + "start": 13746.06, + "end": 13748.08, + "probability": 0.9012 + }, + { + "start": 13748.3, + "end": 13750.94, + "probability": 0.8657 + }, + { + "start": 13751.78, + "end": 13755.42, + "probability": 0.9766 + }, + { + "start": 13756.62, + "end": 13758.82, + "probability": 0.9761 + }, + { + "start": 13759.64, + "end": 13760.96, + "probability": 0.9929 + }, + { + "start": 13762.42, + "end": 13762.94, + "probability": 0.8622 + }, + { + "start": 13763.56, + "end": 13764.46, + "probability": 0.9066 + }, + { + "start": 13764.76, + "end": 13765.62, + "probability": 0.9261 + }, + { + "start": 13765.84, + "end": 13768.2, + "probability": 0.9881 + }, + { + "start": 13768.54, + "end": 13769.36, + "probability": 0.385 + }, + { + "start": 13769.58, + "end": 13770.44, + "probability": 0.7847 + }, + { + "start": 13770.52, + "end": 13771.58, + "probability": 0.8103 + }, + { + "start": 13772.48, + "end": 13775.22, + "probability": 0.9514 + }, + { + "start": 13776.34, + "end": 13778.14, + "probability": 0.941 + }, + { + "start": 13778.2, + "end": 13780.3, + "probability": 0.7496 + }, + { + "start": 13780.72, + "end": 13782.42, + "probability": 0.6876 + }, + { + "start": 13782.74, + "end": 13785.42, + "probability": 0.7874 + }, + { + "start": 13786.12, + "end": 13787.64, + "probability": 0.0281 + }, + { + "start": 13789.12, + "end": 13794.06, + "probability": 0.988 + }, + { + "start": 13795.7, + "end": 13796.76, + "probability": 0.9559 + }, + { + "start": 13796.82, + "end": 13797.21, + "probability": 0.96 + }, + { + "start": 13797.56, + "end": 13798.74, + "probability": 0.9069 + }, + { + "start": 13799.14, + "end": 13801.58, + "probability": 0.9872 + }, + { + "start": 13802.28, + "end": 13806.84, + "probability": 0.9751 + }, + { + "start": 13808.04, + "end": 13810.84, + "probability": 0.8011 + }, + { + "start": 13810.94, + "end": 13813.18, + "probability": 0.9949 + }, + { + "start": 13813.18, + "end": 13816.64, + "probability": 0.9585 + }, + { + "start": 13817.64, + "end": 13820.3, + "probability": 0.9835 + }, + { + "start": 13820.3, + "end": 13823.28, + "probability": 0.9995 + }, + { + "start": 13823.82, + "end": 13826.52, + "probability": 0.9985 + }, + { + "start": 13827.62, + "end": 13829.05, + "probability": 0.9717 + }, + { + "start": 13829.12, + "end": 13830.36, + "probability": 0.9629 + }, + { + "start": 13830.48, + "end": 13831.44, + "probability": 0.8223 + }, + { + "start": 13832.02, + "end": 13833.02, + "probability": 0.9685 + }, + { + "start": 13833.7, + "end": 13835.22, + "probability": 0.5555 + }, + { + "start": 13835.3, + "end": 13836.14, + "probability": 0.7389 + }, + { + "start": 13836.22, + "end": 13840.48, + "probability": 0.9733 + }, + { + "start": 13840.7, + "end": 13844.52, + "probability": 0.9257 + }, + { + "start": 13845.38, + "end": 13847.2, + "probability": 0.9092 + }, + { + "start": 13847.38, + "end": 13847.94, + "probability": 0.7002 + }, + { + "start": 13848.08, + "end": 13849.6, + "probability": 0.9674 + }, + { + "start": 13849.68, + "end": 13850.44, + "probability": 0.8347 + }, + { + "start": 13851.0, + "end": 13851.2, + "probability": 0.9636 + }, + { + "start": 13852.58, + "end": 13853.22, + "probability": 0.7328 + }, + { + "start": 13853.6, + "end": 13854.44, + "probability": 0.9625 + }, + { + "start": 13854.82, + "end": 13856.21, + "probability": 0.9863 + }, + { + "start": 13857.54, + "end": 13858.02, + "probability": 0.8197 + }, + { + "start": 13860.86, + "end": 13863.7, + "probability": 0.99 + }, + { + "start": 13863.78, + "end": 13867.26, + "probability": 0.981 + }, + { + "start": 13868.88, + "end": 13869.22, + "probability": 0.6049 + }, + { + "start": 13871.12, + "end": 13873.84, + "probability": 0.9983 + }, + { + "start": 13873.84, + "end": 13878.3, + "probability": 0.9976 + }, + { + "start": 13879.48, + "end": 13881.48, + "probability": 0.9976 + }, + { + "start": 13882.38, + "end": 13884.62, + "probability": 0.8703 + }, + { + "start": 13885.64, + "end": 13887.66, + "probability": 0.9993 + }, + { + "start": 13888.24, + "end": 13891.52, + "probability": 0.9976 + }, + { + "start": 13892.24, + "end": 13896.38, + "probability": 0.9988 + }, + { + "start": 13897.86, + "end": 13900.28, + "probability": 0.9972 + }, + { + "start": 13900.92, + "end": 13902.23, + "probability": 0.9468 + }, + { + "start": 13903.06, + "end": 13907.14, + "probability": 0.9882 + }, + { + "start": 13907.7, + "end": 13912.47, + "probability": 0.9906 + }, + { + "start": 13915.54, + "end": 13921.1, + "probability": 0.9076 + }, + { + "start": 13922.18, + "end": 13923.34, + "probability": 0.8561 + }, + { + "start": 13924.68, + "end": 13925.48, + "probability": 0.9231 + }, + { + "start": 13925.58, + "end": 13927.54, + "probability": 0.8759 + }, + { + "start": 13927.64, + "end": 13928.79, + "probability": 0.9919 + }, + { + "start": 13930.42, + "end": 13931.56, + "probability": 0.9971 + }, + { + "start": 13933.32, + "end": 13934.98, + "probability": 0.9688 + }, + { + "start": 13935.94, + "end": 13939.12, + "probability": 0.9147 + }, + { + "start": 13940.08, + "end": 13943.0, + "probability": 0.9057 + }, + { + "start": 13943.52, + "end": 13945.46, + "probability": 0.9971 + }, + { + "start": 13946.06, + "end": 13947.34, + "probability": 0.5129 + }, + { + "start": 13948.04, + "end": 13953.32, + "probability": 0.9928 + }, + { + "start": 13954.18, + "end": 13955.2, + "probability": 0.812 + }, + { + "start": 13956.4, + "end": 13956.68, + "probability": 0.3123 + }, + { + "start": 13956.7, + "end": 13958.76, + "probability": 0.2953 + }, + { + "start": 13958.92, + "end": 13963.24, + "probability": 0.9688 + }, + { + "start": 13963.38, + "end": 13965.42, + "probability": 0.94 + }, + { + "start": 13966.48, + "end": 13968.38, + "probability": 0.9942 + }, + { + "start": 13968.92, + "end": 13969.78, + "probability": 0.7466 + }, + { + "start": 13970.06, + "end": 13971.66, + "probability": 0.7664 + }, + { + "start": 13972.02, + "end": 13973.3, + "probability": 0.939 + }, + { + "start": 13973.56, + "end": 13974.05, + "probability": 0.9105 + }, + { + "start": 13974.52, + "end": 13976.16, + "probability": 0.9634 + }, + { + "start": 13977.08, + "end": 13977.92, + "probability": 0.8693 + }, + { + "start": 13979.02, + "end": 13982.08, + "probability": 0.8598 + }, + { + "start": 13982.64, + "end": 13986.78, + "probability": 0.9629 + }, + { + "start": 13987.5, + "end": 13990.78, + "probability": 0.8926 + }, + { + "start": 13991.2, + "end": 13992.28, + "probability": 0.4863 + }, + { + "start": 13995.36, + "end": 13996.58, + "probability": 0.5905 + }, + { + "start": 13997.38, + "end": 13998.98, + "probability": 0.9561 + }, + { + "start": 13999.38, + "end": 14001.36, + "probability": 0.9102 + }, + { + "start": 14001.66, + "end": 14002.12, + "probability": 0.6349 + }, + { + "start": 14002.18, + "end": 14004.02, + "probability": 0.9911 + }, + { + "start": 14004.16, + "end": 14007.24, + "probability": 0.865 + }, + { + "start": 14007.76, + "end": 14009.24, + "probability": 0.7109 + }, + { + "start": 14010.3, + "end": 14012.0, + "probability": 0.9956 + }, + { + "start": 14012.84, + "end": 14016.8, + "probability": 0.8872 + }, + { + "start": 14018.38, + "end": 14019.32, + "probability": 0.9816 + }, + { + "start": 14020.84, + "end": 14023.4, + "probability": 0.9136 + }, + { + "start": 14023.48, + "end": 14026.06, + "probability": 0.7998 + }, + { + "start": 14026.52, + "end": 14027.48, + "probability": 0.9668 + }, + { + "start": 14028.94, + "end": 14031.4, + "probability": 0.949 + }, + { + "start": 14032.0, + "end": 14035.48, + "probability": 0.9963 + }, + { + "start": 14035.48, + "end": 14038.66, + "probability": 0.8552 + }, + { + "start": 14039.32, + "end": 14040.64, + "probability": 0.824 + }, + { + "start": 14040.64, + "end": 14041.08, + "probability": 0.2165 + }, + { + "start": 14041.14, + "end": 14041.86, + "probability": 0.8102 + }, + { + "start": 14042.54, + "end": 14043.82, + "probability": 0.4741 + }, + { + "start": 14044.52, + "end": 14045.08, + "probability": 0.7755 + }, + { + "start": 14045.16, + "end": 14047.74, + "probability": 0.9256 + }, + { + "start": 14071.48, + "end": 14073.92, + "probability": 0.6843 + }, + { + "start": 14075.52, + "end": 14078.88, + "probability": 0.9769 + }, + { + "start": 14079.62, + "end": 14084.76, + "probability": 0.9373 + }, + { + "start": 14085.92, + "end": 14089.96, + "probability": 0.9921 + }, + { + "start": 14092.04, + "end": 14094.68, + "probability": 0.9752 + }, + { + "start": 14094.86, + "end": 14096.52, + "probability": 0.9201 + }, + { + "start": 14097.7, + "end": 14103.04, + "probability": 0.9822 + }, + { + "start": 14105.82, + "end": 14109.62, + "probability": 0.7887 + }, + { + "start": 14111.98, + "end": 14115.8, + "probability": 0.9407 + }, + { + "start": 14117.4, + "end": 14118.94, + "probability": 0.993 + }, + { + "start": 14120.56, + "end": 14123.5, + "probability": 0.9897 + }, + { + "start": 14124.88, + "end": 14126.28, + "probability": 0.9839 + }, + { + "start": 14126.96, + "end": 14133.0, + "probability": 0.9787 + }, + { + "start": 14134.88, + "end": 14136.62, + "probability": 0.8765 + }, + { + "start": 14137.68, + "end": 14141.18, + "probability": 0.9692 + }, + { + "start": 14141.92, + "end": 14145.02, + "probability": 0.8841 + }, + { + "start": 14145.64, + "end": 14150.96, + "probability": 0.9334 + }, + { + "start": 14150.96, + "end": 14155.82, + "probability": 0.9572 + }, + { + "start": 14155.88, + "end": 14159.6, + "probability": 0.9341 + }, + { + "start": 14159.6, + "end": 14162.68, + "probability": 0.9891 + }, + { + "start": 14163.06, + "end": 14164.48, + "probability": 0.7952 + }, + { + "start": 14164.56, + "end": 14165.36, + "probability": 0.65 + }, + { + "start": 14166.24, + "end": 14168.0, + "probability": 0.7751 + }, + { + "start": 14170.08, + "end": 14172.03, + "probability": 0.9675 + }, + { + "start": 14173.36, + "end": 14174.44, + "probability": 0.9948 + }, + { + "start": 14177.88, + "end": 14182.78, + "probability": 0.9054 + }, + { + "start": 14185.04, + "end": 14188.7, + "probability": 0.9924 + }, + { + "start": 14190.1, + "end": 14192.6, + "probability": 0.9797 + }, + { + "start": 14192.66, + "end": 14193.4, + "probability": 0.782 + }, + { + "start": 14195.12, + "end": 14196.5, + "probability": 0.9649 + }, + { + "start": 14196.6, + "end": 14198.19, + "probability": 0.9972 + }, + { + "start": 14198.3, + "end": 14202.1, + "probability": 0.7467 + }, + { + "start": 14207.08, + "end": 14212.1, + "probability": 0.7097 + }, + { + "start": 14213.2, + "end": 14214.54, + "probability": 0.96 + }, + { + "start": 14217.42, + "end": 14218.94, + "probability": 0.9941 + }, + { + "start": 14219.64, + "end": 14223.32, + "probability": 0.897 + }, + { + "start": 14223.96, + "end": 14227.76, + "probability": 0.9548 + }, + { + "start": 14229.28, + "end": 14231.92, + "probability": 0.9557 + }, + { + "start": 14233.0, + "end": 14234.62, + "probability": 0.9828 + }, + { + "start": 14235.36, + "end": 14237.94, + "probability": 0.9673 + }, + { + "start": 14239.12, + "end": 14242.78, + "probability": 0.9778 + }, + { + "start": 14243.72, + "end": 14245.37, + "probability": 0.9948 + }, + { + "start": 14249.92, + "end": 14251.68, + "probability": 0.9956 + }, + { + "start": 14253.58, + "end": 14254.5, + "probability": 0.8178 + }, + { + "start": 14255.6, + "end": 14259.04, + "probability": 0.9983 + }, + { + "start": 14259.04, + "end": 14263.9, + "probability": 0.9985 + }, + { + "start": 14263.98, + "end": 14265.26, + "probability": 0.7873 + }, + { + "start": 14265.52, + "end": 14267.15, + "probability": 0.9805 + }, + { + "start": 14268.26, + "end": 14274.39, + "probability": 0.9617 + }, + { + "start": 14275.04, + "end": 14279.04, + "probability": 0.9996 + }, + { + "start": 14279.1, + "end": 14279.59, + "probability": 0.7865 + }, + { + "start": 14281.08, + "end": 14284.52, + "probability": 0.8658 + }, + { + "start": 14285.36, + "end": 14289.32, + "probability": 0.9527 + }, + { + "start": 14290.02, + "end": 14291.1, + "probability": 0.8931 + }, + { + "start": 14291.2, + "end": 14293.86, + "probability": 0.8875 + }, + { + "start": 14294.56, + "end": 14297.8, + "probability": 0.8939 + }, + { + "start": 14297.8, + "end": 14300.98, + "probability": 0.995 + }, + { + "start": 14301.76, + "end": 14303.2, + "probability": 0.836 + }, + { + "start": 14304.66, + "end": 14306.14, + "probability": 0.935 + }, + { + "start": 14308.12, + "end": 14311.8, + "probability": 0.8853 + }, + { + "start": 14316.18, + "end": 14318.66, + "probability": 0.9655 + }, + { + "start": 14319.56, + "end": 14321.82, + "probability": 0.772 + }, + { + "start": 14321.94, + "end": 14322.78, + "probability": 0.866 + }, + { + "start": 14323.4, + "end": 14326.72, + "probability": 0.9961 + }, + { + "start": 14326.72, + "end": 14331.82, + "probability": 0.9934 + }, + { + "start": 14332.88, + "end": 14337.1, + "probability": 0.9957 + }, + { + "start": 14337.12, + "end": 14342.04, + "probability": 0.9946 + }, + { + "start": 14347.26, + "end": 14349.06, + "probability": 0.5764 + }, + { + "start": 14349.86, + "end": 14351.12, + "probability": 0.8568 + }, + { + "start": 14352.98, + "end": 14356.24, + "probability": 0.9478 + }, + { + "start": 14357.68, + "end": 14364.78, + "probability": 0.7143 + }, + { + "start": 14366.66, + "end": 14370.14, + "probability": 0.8806 + }, + { + "start": 14371.0, + "end": 14373.35, + "probability": 0.9912 + }, + { + "start": 14374.08, + "end": 14375.48, + "probability": 0.9697 + }, + { + "start": 14376.28, + "end": 14380.06, + "probability": 0.9971 + }, + { + "start": 14380.06, + "end": 14388.12, + "probability": 0.912 + }, + { + "start": 14388.76, + "end": 14389.84, + "probability": 0.691 + }, + { + "start": 14390.88, + "end": 14392.78, + "probability": 0.7749 + }, + { + "start": 14396.1, + "end": 14398.32, + "probability": 0.3056 + }, + { + "start": 14398.68, + "end": 14399.78, + "probability": 0.8369 + }, + { + "start": 14399.9, + "end": 14400.96, + "probability": 0.3085 + }, + { + "start": 14401.06, + "end": 14401.6, + "probability": 0.3264 + }, + { + "start": 14401.68, + "end": 14402.3, + "probability": 0.8796 + }, + { + "start": 14402.46, + "end": 14403.09, + "probability": 0.9106 + }, + { + "start": 14403.88, + "end": 14404.6, + "probability": 0.4921 + }, + { + "start": 14406.46, + "end": 14410.38, + "probability": 0.9816 + }, + { + "start": 14410.44, + "end": 14410.74, + "probability": 0.9325 + }, + { + "start": 14410.8, + "end": 14412.96, + "probability": 0.9679 + }, + { + "start": 14413.06, + "end": 14414.06, + "probability": 0.9674 + }, + { + "start": 14414.72, + "end": 14415.88, + "probability": 0.8261 + }, + { + "start": 14416.1, + "end": 14418.56, + "probability": 0.748 + }, + { + "start": 14419.0, + "end": 14422.72, + "probability": 0.7283 + }, + { + "start": 14422.82, + "end": 14423.85, + "probability": 0.7764 + }, + { + "start": 14424.94, + "end": 14425.16, + "probability": 0.4682 + }, + { + "start": 14425.26, + "end": 14429.57, + "probability": 0.9865 + }, + { + "start": 14430.76, + "end": 14432.02, + "probability": 0.836 + }, + { + "start": 14432.16, + "end": 14433.68, + "probability": 0.6782 + }, + { + "start": 14433.86, + "end": 14435.0, + "probability": 0.915 + }, + { + "start": 14435.1, + "end": 14437.1, + "probability": 0.9446 + }, + { + "start": 14437.4, + "end": 14437.9, + "probability": 0.9336 + }, + { + "start": 14438.06, + "end": 14438.68, + "probability": 0.9779 + }, + { + "start": 14438.78, + "end": 14439.48, + "probability": 0.6785 + }, + { + "start": 14439.64, + "end": 14442.73, + "probability": 0.6416 + }, + { + "start": 14443.54, + "end": 14444.66, + "probability": 0.6153 + }, + { + "start": 14444.74, + "end": 14448.58, + "probability": 0.9375 + }, + { + "start": 14448.66, + "end": 14449.9, + "probability": 0.4706 + }, + { + "start": 14450.04, + "end": 14450.44, + "probability": 0.7063 + }, + { + "start": 14450.52, + "end": 14452.16, + "probability": 0.7533 + }, + { + "start": 14452.56, + "end": 14459.64, + "probability": 0.9023 + }, + { + "start": 14459.74, + "end": 14460.64, + "probability": 0.7236 + }, + { + "start": 14460.88, + "end": 14462.68, + "probability": 0.9921 + }, + { + "start": 14462.78, + "end": 14463.57, + "probability": 0.7816 + }, + { + "start": 14464.36, + "end": 14464.98, + "probability": 0.7702 + }, + { + "start": 14466.02, + "end": 14468.16, + "probability": 0.9924 + }, + { + "start": 14469.48, + "end": 14471.9, + "probability": 0.9974 + }, + { + "start": 14471.9, + "end": 14474.56, + "probability": 0.9946 + }, + { + "start": 14474.68, + "end": 14478.94, + "probability": 0.9572 + }, + { + "start": 14479.14, + "end": 14480.9, + "probability": 0.62 + }, + { + "start": 14480.96, + "end": 14482.38, + "probability": 0.8433 + }, + { + "start": 14484.46, + "end": 14485.22, + "probability": 0.9503 + }, + { + "start": 14485.34, + "end": 14486.1, + "probability": 0.8948 + }, + { + "start": 14486.2, + "end": 14490.74, + "probability": 0.9622 + }, + { + "start": 14490.94, + "end": 14491.36, + "probability": 0.4699 + }, + { + "start": 14494.26, + "end": 14495.28, + "probability": 0.3047 + }, + { + "start": 14495.82, + "end": 14496.38, + "probability": 0.3888 + }, + { + "start": 14496.38, + "end": 14498.12, + "probability": 0.6814 + }, + { + "start": 14498.16, + "end": 14498.92, + "probability": 0.8413 + }, + { + "start": 14499.04, + "end": 14501.7, + "probability": 0.5326 + }, + { + "start": 14501.98, + "end": 14502.62, + "probability": 0.8179 + }, + { + "start": 14502.86, + "end": 14503.76, + "probability": 0.82 + }, + { + "start": 14505.98, + "end": 14508.1, + "probability": 0.073 + }, + { + "start": 14523.74, + "end": 14527.22, + "probability": 0.661 + }, + { + "start": 14527.32, + "end": 14529.96, + "probability": 0.9769 + }, + { + "start": 14531.32, + "end": 14533.96, + "probability": 0.5686 + }, + { + "start": 14534.23, + "end": 14536.22, + "probability": 0.9878 + }, + { + "start": 14537.66, + "end": 14538.18, + "probability": 0.2146 + }, + { + "start": 14538.64, + "end": 14543.76, + "probability": 0.0302 + }, + { + "start": 14543.76, + "end": 14545.64, + "probability": 0.175 + }, + { + "start": 14550.14, + "end": 14554.14, + "probability": 0.2405 + }, + { + "start": 14554.84, + "end": 14562.02, + "probability": 0.0166 + }, + { + "start": 14563.2, + "end": 14563.8, + "probability": 0.2072 + }, + { + "start": 14571.46, + "end": 14574.48, + "probability": 0.0521 + }, + { + "start": 14574.48, + "end": 14578.22, + "probability": 0.0733 + }, + { + "start": 14578.22, + "end": 14581.02, + "probability": 0.0817 + }, + { + "start": 14581.02, + "end": 14581.72, + "probability": 0.0305 + }, + { + "start": 14581.72, + "end": 14582.06, + "probability": 0.5465 + }, + { + "start": 14582.06, + "end": 14582.8, + "probability": 0.7403 + }, + { + "start": 14583.0, + "end": 14583.0, + "probability": 0.0 + }, + { + "start": 14583.34, + "end": 14583.4, + "probability": 0.1501 + }, + { + "start": 14583.4, + "end": 14583.4, + "probability": 0.1372 + }, + { + "start": 14583.4, + "end": 14583.9, + "probability": 0.1946 + }, + { + "start": 14583.9, + "end": 14584.81, + "probability": 0.5242 + }, + { + "start": 14584.88, + "end": 14586.26, + "probability": 0.9774 + }, + { + "start": 14586.78, + "end": 14589.98, + "probability": 0.9814 + }, + { + "start": 14589.98, + "end": 14592.74, + "probability": 0.8867 + }, + { + "start": 14593.4, + "end": 14595.04, + "probability": 0.5959 + }, + { + "start": 14596.32, + "end": 14602.7, + "probability": 0.4432 + }, + { + "start": 14602.74, + "end": 14603.56, + "probability": 0.7907 + }, + { + "start": 14605.64, + "end": 14607.14, + "probability": 0.7529 + }, + { + "start": 14607.24, + "end": 14609.74, + "probability": 0.7416 + }, + { + "start": 14609.82, + "end": 14612.64, + "probability": 0.1671 + }, + { + "start": 14612.64, + "end": 14613.34, + "probability": 0.3929 + }, + { + "start": 14614.04, + "end": 14618.88, + "probability": 0.835 + }, + { + "start": 14620.36, + "end": 14620.88, + "probability": 0.6876 + }, + { + "start": 14631.14, + "end": 14631.46, + "probability": 0.392 + }, + { + "start": 14632.07, + "end": 14635.02, + "probability": 0.0283 + }, + { + "start": 14635.1, + "end": 14635.36, + "probability": 0.0022 + }, + { + "start": 14645.14, + "end": 14646.36, + "probability": 0.6027 + }, + { + "start": 14647.84, + "end": 14648.16, + "probability": 0.3396 + }, + { + "start": 14648.16, + "end": 14648.22, + "probability": 0.3547 + }, + { + "start": 14648.22, + "end": 14648.74, + "probability": 0.5568 + }, + { + "start": 14649.1, + "end": 14652.34, + "probability": 0.8666 + }, + { + "start": 14652.96, + "end": 14655.26, + "probability": 0.9734 + }, + { + "start": 14656.02, + "end": 14656.3, + "probability": 0.536 + }, + { + "start": 14656.96, + "end": 14660.06, + "probability": 0.9661 + }, + { + "start": 14670.56, + "end": 14672.06, + "probability": 0.545 + }, + { + "start": 14672.06, + "end": 14672.06, + "probability": 0.4992 + }, + { + "start": 14672.06, + "end": 14672.06, + "probability": 0.3379 + }, + { + "start": 14672.06, + "end": 14673.06, + "probability": 0.7609 + }, + { + "start": 14673.06, + "end": 14673.28, + "probability": 0.3315 + }, + { + "start": 14673.42, + "end": 14673.74, + "probability": 0.1729 + }, + { + "start": 14673.74, + "end": 14674.22, + "probability": 0.4082 + }, + { + "start": 14674.22, + "end": 14674.34, + "probability": 0.2435 + }, + { + "start": 14674.34, + "end": 14674.44, + "probability": 0.6072 + }, + { + "start": 14677.82, + "end": 14679.42, + "probability": 0.9805 + }, + { + "start": 14681.44, + "end": 14683.14, + "probability": 0.9149 + }, + { + "start": 14683.38, + "end": 14684.98, + "probability": 0.6718 + }, + { + "start": 14690.14, + "end": 14692.68, + "probability": 0.7581 + }, + { + "start": 14692.72, + "end": 14695.04, + "probability": 0.2366 + }, + { + "start": 14695.26, + "end": 14696.12, + "probability": 0.9082 + }, + { + "start": 14696.94, + "end": 14697.44, + "probability": 0.7589 + }, + { + "start": 14697.96, + "end": 14700.9, + "probability": 0.8866 + }, + { + "start": 14701.9, + "end": 14703.8, + "probability": 0.6058 + }, + { + "start": 14704.14, + "end": 14704.48, + "probability": 0.6073 + }, + { + "start": 14710.48, + "end": 14711.25, + "probability": 0.2051 + }, + { + "start": 14712.62, + "end": 14715.76, + "probability": 0.9448 + }, + { + "start": 14722.14, + "end": 14722.88, + "probability": 0.8469 + }, + { + "start": 14723.1, + "end": 14728.08, + "probability": 0.9851 + }, + { + "start": 14728.1, + "end": 14728.88, + "probability": 0.3773 + }, + { + "start": 14730.58, + "end": 14733.56, + "probability": 0.8032 + }, + { + "start": 14735.24, + "end": 14737.76, + "probability": 0.8335 + }, + { + "start": 14737.82, + "end": 14740.55, + "probability": 0.9447 + }, + { + "start": 14741.38, + "end": 14743.66, + "probability": 0.9915 + }, + { + "start": 14745.06, + "end": 14751.86, + "probability": 0.9865 + }, + { + "start": 14752.92, + "end": 14755.82, + "probability": 0.8865 + }, + { + "start": 14756.86, + "end": 14762.64, + "probability": 0.9884 + }, + { + "start": 14763.98, + "end": 14769.42, + "probability": 0.9822 + }, + { + "start": 14770.6, + "end": 14772.44, + "probability": 0.9712 + }, + { + "start": 14772.6, + "end": 14776.98, + "probability": 0.5556 + }, + { + "start": 14777.06, + "end": 14778.64, + "probability": 0.9344 + }, + { + "start": 14778.82, + "end": 14782.16, + "probability": 0.8665 + }, + { + "start": 14782.76, + "end": 14785.5, + "probability": 0.9271 + }, + { + "start": 14785.5, + "end": 14789.88, + "probability": 0.9688 + }, + { + "start": 14790.56, + "end": 14793.64, + "probability": 0.9884 + }, + { + "start": 14795.24, + "end": 14796.74, + "probability": 0.6576 + }, + { + "start": 14796.82, + "end": 14797.32, + "probability": 0.9735 + }, + { + "start": 14797.38, + "end": 14800.4, + "probability": 0.9689 + }, + { + "start": 14800.98, + "end": 14801.44, + "probability": 0.9741 + }, + { + "start": 14803.64, + "end": 14806.44, + "probability": 0.6616 + }, + { + "start": 14807.02, + "end": 14808.28, + "probability": 0.9077 + }, + { + "start": 14808.52, + "end": 14814.74, + "probability": 0.9406 + }, + { + "start": 14815.02, + "end": 14815.6, + "probability": 0.8615 + }, + { + "start": 14815.68, + "end": 14816.34, + "probability": 0.9096 + }, + { + "start": 14816.7, + "end": 14819.88, + "probability": 0.9876 + }, + { + "start": 14820.4, + "end": 14821.18, + "probability": 0.8979 + }, + { + "start": 14822.14, + "end": 14828.78, + "probability": 0.9888 + }, + { + "start": 14829.82, + "end": 14831.52, + "probability": 0.9887 + }, + { + "start": 14832.24, + "end": 14834.6, + "probability": 0.9977 + }, + { + "start": 14835.38, + "end": 14838.8, + "probability": 0.9976 + }, + { + "start": 14840.08, + "end": 14840.24, + "probability": 0.3533 + }, + { + "start": 14840.44, + "end": 14848.7, + "probability": 0.9834 + }, + { + "start": 14849.42, + "end": 14849.96, + "probability": 0.9362 + }, + { + "start": 14851.2, + "end": 14851.9, + "probability": 0.9407 + }, + { + "start": 14853.52, + "end": 14854.28, + "probability": 0.9749 + }, + { + "start": 14854.88, + "end": 14857.8, + "probability": 0.999 + }, + { + "start": 14859.74, + "end": 14862.54, + "probability": 0.6193 + }, + { + "start": 14863.3, + "end": 14863.56, + "probability": 0.5243 + }, + { + "start": 14863.62, + "end": 14863.92, + "probability": 0.4701 + }, + { + "start": 14863.92, + "end": 14870.6, + "probability": 0.9835 + }, + { + "start": 14871.72, + "end": 14875.94, + "probability": 0.9497 + }, + { + "start": 14877.3, + "end": 14882.04, + "probability": 0.9319 + }, + { + "start": 14883.44, + "end": 14887.98, + "probability": 0.9814 + }, + { + "start": 14889.96, + "end": 14890.76, + "probability": 0.7643 + }, + { + "start": 14891.56, + "end": 14895.52, + "probability": 0.9214 + }, + { + "start": 14896.96, + "end": 14899.58, + "probability": 0.9164 + }, + { + "start": 14900.08, + "end": 14901.83, + "probability": 0.9363 + }, + { + "start": 14902.52, + "end": 14909.48, + "probability": 0.8991 + }, + { + "start": 14910.54, + "end": 14915.18, + "probability": 0.9546 + }, + { + "start": 14915.22, + "end": 14916.4, + "probability": 0.9417 + }, + { + "start": 14917.68, + "end": 14920.32, + "probability": 0.9821 + }, + { + "start": 14921.22, + "end": 14928.06, + "probability": 0.9922 + }, + { + "start": 14928.94, + "end": 14931.6, + "probability": 0.9355 + }, + { + "start": 14932.38, + "end": 14937.14, + "probability": 0.9782 + }, + { + "start": 14937.86, + "end": 14939.16, + "probability": 0.91 + }, + { + "start": 14940.0, + "end": 14941.92, + "probability": 0.9185 + }, + { + "start": 14943.84, + "end": 14947.68, + "probability": 0.9056 + }, + { + "start": 14949.38, + "end": 14953.84, + "probability": 0.9755 + }, + { + "start": 14953.94, + "end": 14957.16, + "probability": 0.9479 + }, + { + "start": 14957.86, + "end": 14960.84, + "probability": 0.9917 + }, + { + "start": 14961.32, + "end": 14961.92, + "probability": 0.4896 + }, + { + "start": 14962.54, + "end": 14963.16, + "probability": 0.8053 + }, + { + "start": 14963.18, + "end": 14965.08, + "probability": 0.9143 + }, + { + "start": 14965.12, + "end": 14967.44, + "probability": 0.8532 + }, + { + "start": 14969.06, + "end": 14969.84, + "probability": 0.6295 + }, + { + "start": 14970.58, + "end": 14971.68, + "probability": 0.895 + }, + { + "start": 14972.52, + "end": 14977.06, + "probability": 0.9979 + }, + { + "start": 14978.46, + "end": 14980.74, + "probability": 0.96 + }, + { + "start": 14981.7, + "end": 14984.94, + "probability": 0.9955 + }, + { + "start": 14986.22, + "end": 14988.46, + "probability": 0.837 + }, + { + "start": 14989.04, + "end": 14989.8, + "probability": 0.5844 + }, + { + "start": 14991.24, + "end": 14992.48, + "probability": 0.9725 + }, + { + "start": 14993.24, + "end": 14995.72, + "probability": 0.9214 + }, + { + "start": 14996.74, + "end": 14997.68, + "probability": 0.8836 + }, + { + "start": 14997.86, + "end": 14999.54, + "probability": 0.9892 + }, + { + "start": 15000.0, + "end": 15001.72, + "probability": 0.9836 + }, + { + "start": 15001.94, + "end": 15002.94, + "probability": 0.8508 + }, + { + "start": 15003.58, + "end": 15004.24, + "probability": 0.731 + }, + { + "start": 15005.3, + "end": 15006.68, + "probability": 0.4948 + }, + { + "start": 15007.68, + "end": 15009.48, + "probability": 0.3648 + }, + { + "start": 15009.6, + "end": 15009.96, + "probability": 0.7401 + }, + { + "start": 15011.27, + "end": 15016.02, + "probability": 0.9565 + }, + { + "start": 15016.08, + "end": 15016.74, + "probability": 0.929 + }, + { + "start": 15017.36, + "end": 15019.0, + "probability": 0.9596 + }, + { + "start": 15019.14, + "end": 15022.84, + "probability": 0.9626 + }, + { + "start": 15023.54, + "end": 15027.04, + "probability": 0.9842 + }, + { + "start": 15027.08, + "end": 15031.52, + "probability": 0.8164 + }, + { + "start": 15031.8, + "end": 15032.48, + "probability": 0.4969 + }, + { + "start": 15032.62, + "end": 15033.64, + "probability": 0.8474 + }, + { + "start": 15033.78, + "end": 15033.78, + "probability": 0.79 + }, + { + "start": 15034.5, + "end": 15037.7, + "probability": 0.9591 + }, + { + "start": 15037.8, + "end": 15040.48, + "probability": 0.9697 + }, + { + "start": 15040.98, + "end": 15041.53, + "probability": 0.7952 + }, + { + "start": 15042.98, + "end": 15044.76, + "probability": 0.9953 + }, + { + "start": 15044.76, + "end": 15051.86, + "probability": 0.9481 + }, + { + "start": 15052.28, + "end": 15054.3, + "probability": 0.9189 + }, + { + "start": 15054.32, + "end": 15055.0, + "probability": 0.9631 + }, + { + "start": 15055.4, + "end": 15056.78, + "probability": 0.9883 + }, + { + "start": 15057.44, + "end": 15058.66, + "probability": 0.9255 + }, + { + "start": 15059.38, + "end": 15060.54, + "probability": 0.9944 + }, + { + "start": 15062.1, + "end": 15062.48, + "probability": 0.7604 + }, + { + "start": 15062.98, + "end": 15065.56, + "probability": 0.9651 + }, + { + "start": 15065.62, + "end": 15067.57, + "probability": 0.6035 + }, + { + "start": 15068.82, + "end": 15069.74, + "probability": 0.5294 + }, + { + "start": 15071.12, + "end": 15075.32, + "probability": 0.8185 + }, + { + "start": 15075.42, + "end": 15076.44, + "probability": 0.8221 + }, + { + "start": 15076.86, + "end": 15079.22, + "probability": 0.8152 + }, + { + "start": 15079.74, + "end": 15082.16, + "probability": 0.9722 + }, + { + "start": 15083.18, + "end": 15086.78, + "probability": 0.9963 + }, + { + "start": 15086.86, + "end": 15091.0, + "probability": 0.9952 + }, + { + "start": 15091.52, + "end": 15097.84, + "probability": 0.9976 + }, + { + "start": 15098.94, + "end": 15101.0, + "probability": 0.779 + }, + { + "start": 15102.18, + "end": 15107.42, + "probability": 0.96 + }, + { + "start": 15108.2, + "end": 15110.26, + "probability": 0.8926 + }, + { + "start": 15111.78, + "end": 15112.9, + "probability": 0.8764 + }, + { + "start": 15114.46, + "end": 15116.82, + "probability": 0.9951 + }, + { + "start": 15117.02, + "end": 15119.66, + "probability": 0.9822 + }, + { + "start": 15121.16, + "end": 15122.54, + "probability": 0.9783 + }, + { + "start": 15122.64, + "end": 15123.78, + "probability": 0.9055 + }, + { + "start": 15124.16, + "end": 15131.0, + "probability": 0.9962 + }, + { + "start": 15133.24, + "end": 15133.48, + "probability": 0.7264 + }, + { + "start": 15133.6, + "end": 15134.04, + "probability": 0.4003 + }, + { + "start": 15134.04, + "end": 15136.28, + "probability": 0.8892 + }, + { + "start": 15136.3, + "end": 15136.37, + "probability": 0.0723 + }, + { + "start": 15137.0, + "end": 15137.34, + "probability": 0.1471 + }, + { + "start": 15138.06, + "end": 15139.9, + "probability": 0.4602 + }, + { + "start": 15139.96, + "end": 15141.54, + "probability": 0.7458 + }, + { + "start": 15141.58, + "end": 15145.24, + "probability": 0.9732 + }, + { + "start": 15145.76, + "end": 15149.66, + "probability": 0.953 + }, + { + "start": 15149.76, + "end": 15154.08, + "probability": 0.9899 + }, + { + "start": 15154.28, + "end": 15157.64, + "probability": 0.9226 + }, + { + "start": 15157.8, + "end": 15158.54, + "probability": 0.7461 + }, + { + "start": 15159.84, + "end": 15160.64, + "probability": 0.2991 + }, + { + "start": 15160.64, + "end": 15161.04, + "probability": 0.1064 + }, + { + "start": 15161.22, + "end": 15162.06, + "probability": 0.091 + }, + { + "start": 15162.14, + "end": 15162.58, + "probability": 0.0437 + }, + { + "start": 15162.74, + "end": 15166.92, + "probability": 0.9848 + }, + { + "start": 15167.44, + "end": 15169.7, + "probability": 0.836 + }, + { + "start": 15169.92, + "end": 15173.96, + "probability": 0.707 + }, + { + "start": 15174.9, + "end": 15177.26, + "probability": 0.9946 + }, + { + "start": 15178.72, + "end": 15182.04, + "probability": 0.9827 + }, + { + "start": 15183.32, + "end": 15184.72, + "probability": 0.1012 + }, + { + "start": 15184.72, + "end": 15188.12, + "probability": 0.6992 + }, + { + "start": 15188.22, + "end": 15188.34, + "probability": 0.2258 + }, + { + "start": 15188.68, + "end": 15192.94, + "probability": 0.918 + }, + { + "start": 15193.44, + "end": 15195.9, + "probability": 0.9917 + }, + { + "start": 15196.34, + "end": 15197.78, + "probability": 0.8292 + }, + { + "start": 15198.5, + "end": 15200.02, + "probability": 0.7606 + }, + { + "start": 15200.6, + "end": 15204.06, + "probability": 0.9757 + }, + { + "start": 15204.18, + "end": 15204.78, + "probability": 0.5011 + }, + { + "start": 15205.4, + "end": 15206.82, + "probability": 0.9528 + }, + { + "start": 15207.2, + "end": 15208.82, + "probability": 0.9984 + }, + { + "start": 15209.16, + "end": 15212.15, + "probability": 0.9949 + }, + { + "start": 15212.52, + "end": 15215.32, + "probability": 0.2657 + }, + { + "start": 15215.69, + "end": 15218.76, + "probability": 0.6488 + }, + { + "start": 15218.88, + "end": 15219.68, + "probability": 0.4786 + }, + { + "start": 15219.8, + "end": 15224.0, + "probability": 0.4271 + }, + { + "start": 15224.92, + "end": 15227.06, + "probability": 0.7405 + }, + { + "start": 15228.24, + "end": 15230.92, + "probability": 0.5616 + }, + { + "start": 15231.02, + "end": 15231.24, + "probability": 0.414 + }, + { + "start": 15231.34, + "end": 15231.74, + "probability": 0.6458 + }, + { + "start": 15231.8, + "end": 15234.74, + "probability": 0.6074 + }, + { + "start": 15234.74, + "end": 15237.9, + "probability": 0.9858 + }, + { + "start": 15238.1, + "end": 15241.24, + "probability": 0.5391 + }, + { + "start": 15241.24, + "end": 15244.58, + "probability": 0.8424 + }, + { + "start": 15244.68, + "end": 15246.12, + "probability": 0.9927 + }, + { + "start": 15246.26, + "end": 15246.86, + "probability": 0.94 + }, + { + "start": 15246.9, + "end": 15249.16, + "probability": 0.4827 + }, + { + "start": 15249.38, + "end": 15250.66, + "probability": 0.868 + }, + { + "start": 15250.98, + "end": 15251.48, + "probability": 0.1565 + }, + { + "start": 15251.62, + "end": 15253.3, + "probability": 0.1828 + }, + { + "start": 15253.34, + "end": 15256.54, + "probability": 0.3194 + }, + { + "start": 15258.86, + "end": 15258.86, + "probability": 0.0303 + }, + { + "start": 15258.86, + "end": 15260.24, + "probability": 0.0159 + }, + { + "start": 15260.4, + "end": 15261.24, + "probability": 0.1821 + }, + { + "start": 15261.24, + "end": 15261.5, + "probability": 0.0807 + }, + { + "start": 15261.5, + "end": 15261.88, + "probability": 0.0199 + }, + { + "start": 15262.14, + "end": 15264.06, + "probability": 0.8419 + }, + { + "start": 15264.16, + "end": 15265.72, + "probability": 0.846 + }, + { + "start": 15266.16, + "end": 15269.58, + "probability": 0.9804 + }, + { + "start": 15269.96, + "end": 15270.66, + "probability": 0.8358 + }, + { + "start": 15271.16, + "end": 15271.86, + "probability": 0.4106 + }, + { + "start": 15272.16, + "end": 15277.42, + "probability": 0.6537 + }, + { + "start": 15277.76, + "end": 15278.08, + "probability": 0.0596 + }, + { + "start": 15278.24, + "end": 15280.92, + "probability": 0.4564 + }, + { + "start": 15282.36, + "end": 15283.68, + "probability": 0.5441 + }, + { + "start": 15284.3, + "end": 15290.68, + "probability": 0.0841 + }, + { + "start": 15290.68, + "end": 15291.42, + "probability": 0.6201 + }, + { + "start": 15291.42, + "end": 15295.91, + "probability": 0.7979 + }, + { + "start": 15296.32, + "end": 15300.28, + "probability": 0.7518 + }, + { + "start": 15300.6, + "end": 15302.96, + "probability": 0.9961 + }, + { + "start": 15303.1, + "end": 15303.98, + "probability": 0.6993 + }, + { + "start": 15304.4, + "end": 15305.36, + "probability": 0.2761 + }, + { + "start": 15306.58, + "end": 15310.1, + "probability": 0.8918 + }, + { + "start": 15310.4, + "end": 15311.52, + "probability": 0.2986 + }, + { + "start": 15311.8, + "end": 15314.38, + "probability": 0.2521 + }, + { + "start": 15314.72, + "end": 15316.18, + "probability": 0.0429 + }, + { + "start": 15316.66, + "end": 15321.66, + "probability": 0.4835 + }, + { + "start": 15321.66, + "end": 15325.82, + "probability": 0.6397 + }, + { + "start": 15325.82, + "end": 15326.9, + "probability": 0.1346 + }, + { + "start": 15327.1, + "end": 15328.1, + "probability": 0.8229 + }, + { + "start": 15328.82, + "end": 15329.9, + "probability": 0.0742 + }, + { + "start": 15330.8, + "end": 15333.22, + "probability": 0.6646 + }, + { + "start": 15333.3, + "end": 15333.54, + "probability": 0.7175 + }, + { + "start": 15333.6, + "end": 15334.8, + "probability": 0.6887 + }, + { + "start": 15334.84, + "end": 15335.16, + "probability": 0.3119 + }, + { + "start": 15335.44, + "end": 15336.66, + "probability": 0.917 + }, + { + "start": 15338.22, + "end": 15338.96, + "probability": 0.0179 + }, + { + "start": 15339.72, + "end": 15340.3, + "probability": 0.012 + }, + { + "start": 15342.86, + "end": 15343.44, + "probability": 0.006 + }, + { + "start": 15344.5, + "end": 15344.88, + "probability": 0.0535 + }, + { + "start": 15344.88, + "end": 15346.52, + "probability": 0.6217 + }, + { + "start": 15347.34, + "end": 15352.82, + "probability": 0.708 + }, + { + "start": 15353.5, + "end": 15354.87, + "probability": 0.9328 + }, + { + "start": 15355.16, + "end": 15355.86, + "probability": 0.2186 + }, + { + "start": 15355.92, + "end": 15356.6, + "probability": 0.3681 + }, + { + "start": 15357.18, + "end": 15364.66, + "probability": 0.9823 + }, + { + "start": 15365.18, + "end": 15368.9, + "probability": 0.046 + }, + { + "start": 15368.9, + "end": 15368.9, + "probability": 0.2495 + }, + { + "start": 15368.9, + "end": 15368.9, + "probability": 0.2775 + }, + { + "start": 15368.9, + "end": 15371.37, + "probability": 0.6416 + }, + { + "start": 15371.86, + "end": 15373.3, + "probability": 0.2186 + }, + { + "start": 15373.4, + "end": 15378.3, + "probability": 0.0778 + }, + { + "start": 15378.54, + "end": 15379.22, + "probability": 0.2153 + }, + { + "start": 15379.48, + "end": 15381.91, + "probability": 0.2863 + }, + { + "start": 15382.28, + "end": 15383.0, + "probability": 0.7447 + }, + { + "start": 15383.18, + "end": 15383.32, + "probability": 0.0443 + }, + { + "start": 15384.16, + "end": 15384.56, + "probability": 0.0515 + }, + { + "start": 15384.56, + "end": 15387.22, + "probability": 0.1097 + }, + { + "start": 15387.48, + "end": 15389.58, + "probability": 0.988 + }, + { + "start": 15389.7, + "end": 15390.14, + "probability": 0.6957 + }, + { + "start": 15390.5, + "end": 15391.66, + "probability": 0.815 + }, + { + "start": 15392.08, + "end": 15393.04, + "probability": 0.8354 + }, + { + "start": 15393.92, + "end": 15394.82, + "probability": 0.6033 + }, + { + "start": 15394.88, + "end": 15395.64, + "probability": 0.8295 + }, + { + "start": 15395.86, + "end": 15399.78, + "probability": 0.9872 + }, + { + "start": 15399.78, + "end": 15405.5, + "probability": 0.9429 + }, + { + "start": 15406.04, + "end": 15409.22, + "probability": 0.9229 + }, + { + "start": 15411.14, + "end": 15411.63, + "probability": 0.0984 + }, + { + "start": 15412.62, + "end": 15415.88, + "probability": 0.981 + }, + { + "start": 15416.62, + "end": 15418.24, + "probability": 0.8895 + }, + { + "start": 15423.14, + "end": 15426.72, + "probability": 0.7324 + }, + { + "start": 15427.74, + "end": 15429.06, + "probability": 0.9549 + }, + { + "start": 15429.4, + "end": 15433.16, + "probability": 0.5969 + }, + { + "start": 15433.16, + "end": 15435.36, + "probability": 0.885 + }, + { + "start": 15435.64, + "end": 15436.86, + "probability": 0.9086 + }, + { + "start": 15436.92, + "end": 15442.04, + "probability": 0.9761 + }, + { + "start": 15442.1, + "end": 15442.84, + "probability": 0.6019 + }, + { + "start": 15442.84, + "end": 15445.28, + "probability": 0.9773 + }, + { + "start": 15445.38, + "end": 15446.06, + "probability": 0.8872 + }, + { + "start": 15448.21, + "end": 15452.18, + "probability": 0.808 + }, + { + "start": 15452.66, + "end": 15458.06, + "probability": 0.9949 + }, + { + "start": 15458.56, + "end": 15460.36, + "probability": 0.974 + }, + { + "start": 15461.16, + "end": 15463.34, + "probability": 0.9883 + }, + { + "start": 15463.74, + "end": 15468.44, + "probability": 0.8563 + }, + { + "start": 15469.88, + "end": 15471.18, + "probability": 0.9098 + }, + { + "start": 15471.48, + "end": 15475.52, + "probability": 0.9882 + }, + { + "start": 15475.62, + "end": 15480.96, + "probability": 0.9588 + }, + { + "start": 15483.16, + "end": 15485.04, + "probability": 0.9814 + }, + { + "start": 15486.7, + "end": 15492.0, + "probability": 0.9924 + }, + { + "start": 15492.7, + "end": 15494.6, + "probability": 0.6635 + }, + { + "start": 15495.46, + "end": 15498.66, + "probability": 0.9919 + }, + { + "start": 15498.74, + "end": 15504.46, + "probability": 0.9685 + }, + { + "start": 15505.3, + "end": 15508.24, + "probability": 0.9762 + }, + { + "start": 15508.24, + "end": 15511.12, + "probability": 0.9988 + }, + { + "start": 15511.88, + "end": 15517.22, + "probability": 0.849 + }, + { + "start": 15518.32, + "end": 15518.82, + "probability": 0.7361 + }, + { + "start": 15519.02, + "end": 15519.64, + "probability": 0.6533 + }, + { + "start": 15519.74, + "end": 15525.78, + "probability": 0.9276 + }, + { + "start": 15525.94, + "end": 15530.32, + "probability": 0.9922 + }, + { + "start": 15530.94, + "end": 15533.8, + "probability": 0.8915 + }, + { + "start": 15535.8, + "end": 15536.56, + "probability": 0.9286 + }, + { + "start": 15537.42, + "end": 15539.68, + "probability": 0.8832 + }, + { + "start": 15540.78, + "end": 15543.94, + "probability": 0.9521 + }, + { + "start": 15543.94, + "end": 15547.46, + "probability": 0.9784 + }, + { + "start": 15547.94, + "end": 15551.88, + "probability": 0.9821 + }, + { + "start": 15551.88, + "end": 15555.78, + "probability": 0.9976 + }, + { + "start": 15557.1, + "end": 15557.54, + "probability": 0.4847 + }, + { + "start": 15557.66, + "end": 15560.82, + "probability": 0.8556 + }, + { + "start": 15561.26, + "end": 15564.16, + "probability": 0.9056 + }, + { + "start": 15564.66, + "end": 15566.7, + "probability": 0.9599 + }, + { + "start": 15567.16, + "end": 15569.46, + "probability": 0.9655 + }, + { + "start": 15569.46, + "end": 15572.72, + "probability": 0.9581 + }, + { + "start": 15573.94, + "end": 15577.12, + "probability": 0.892 + }, + { + "start": 15577.28, + "end": 15579.57, + "probability": 0.9238 + }, + { + "start": 15580.46, + "end": 15586.74, + "probability": 0.9058 + }, + { + "start": 15586.88, + "end": 15592.18, + "probability": 0.988 + }, + { + "start": 15592.42, + "end": 15594.23, + "probability": 0.7467 + }, + { + "start": 15594.66, + "end": 15599.06, + "probability": 0.8315 + }, + { + "start": 15599.06, + "end": 15602.12, + "probability": 0.9767 + }, + { + "start": 15602.94, + "end": 15605.1, + "probability": 0.681 + }, + { + "start": 15605.16, + "end": 15606.86, + "probability": 0.9256 + }, + { + "start": 15607.26, + "end": 15610.28, + "probability": 0.9482 + }, + { + "start": 15611.4, + "end": 15613.73, + "probability": 0.8359 + }, + { + "start": 15614.06, + "end": 15618.88, + "probability": 0.9014 + }, + { + "start": 15618.88, + "end": 15624.54, + "probability": 0.9134 + }, + { + "start": 15624.92, + "end": 15626.08, + "probability": 0.9966 + }, + { + "start": 15626.7, + "end": 15627.36, + "probability": 0.9102 + }, + { + "start": 15627.58, + "end": 15631.46, + "probability": 0.9784 + }, + { + "start": 15631.46, + "end": 15635.22, + "probability": 0.6662 + }, + { + "start": 15636.12, + "end": 15639.22, + "probability": 0.8165 + }, + { + "start": 15639.76, + "end": 15643.56, + "probability": 0.9978 + }, + { + "start": 15644.12, + "end": 15645.0, + "probability": 0.9908 + }, + { + "start": 15645.85, + "end": 15648.38, + "probability": 0.8732 + }, + { + "start": 15648.9, + "end": 15652.84, + "probability": 0.9928 + }, + { + "start": 15652.84, + "end": 15656.84, + "probability": 0.9938 + }, + { + "start": 15658.64, + "end": 15659.36, + "probability": 0.4991 + }, + { + "start": 15659.48, + "end": 15663.06, + "probability": 0.9729 + }, + { + "start": 15664.24, + "end": 15668.98, + "probability": 0.9983 + }, + { + "start": 15668.98, + "end": 15672.9, + "probability": 0.9972 + }, + { + "start": 15674.04, + "end": 15674.5, + "probability": 0.603 + }, + { + "start": 15675.54, + "end": 15677.54, + "probability": 0.8785 + }, + { + "start": 15678.1, + "end": 15681.4, + "probability": 0.7137 + }, + { + "start": 15691.74, + "end": 15694.04, + "probability": 0.7957 + }, + { + "start": 15694.28, + "end": 15694.64, + "probability": 0.9193 + }, + { + "start": 15695.84, + "end": 15696.12, + "probability": 0.0855 + }, + { + "start": 15696.24, + "end": 15697.1, + "probability": 0.1413 + }, + { + "start": 15697.18, + "end": 15698.8, + "probability": 0.0353 + }, + { + "start": 15728.04, + "end": 15731.66, + "probability": 0.5683 + }, + { + "start": 15731.84, + "end": 15736.56, + "probability": 0.9968 + }, + { + "start": 15739.1, + "end": 15743.35, + "probability": 0.8241 + }, + { + "start": 15745.02, + "end": 15747.22, + "probability": 0.9985 + }, + { + "start": 15747.76, + "end": 15749.28, + "probability": 0.9811 + }, + { + "start": 15750.92, + "end": 15752.1, + "probability": 0.7566 + }, + { + "start": 15753.24, + "end": 15755.04, + "probability": 0.99 + }, + { + "start": 15756.84, + "end": 15758.64, + "probability": 0.9265 + }, + { + "start": 15759.88, + "end": 15761.66, + "probability": 0.9737 + }, + { + "start": 15762.88, + "end": 15765.14, + "probability": 0.9542 + }, + { + "start": 15766.64, + "end": 15769.28, + "probability": 0.9986 + }, + { + "start": 15770.56, + "end": 15771.83, + "probability": 0.9976 + }, + { + "start": 15773.12, + "end": 15776.68, + "probability": 0.707 + }, + { + "start": 15779.16, + "end": 15782.7, + "probability": 0.9929 + }, + { + "start": 15783.86, + "end": 15787.04, + "probability": 0.9948 + }, + { + "start": 15789.28, + "end": 15790.88, + "probability": 0.9013 + }, + { + "start": 15793.68, + "end": 15795.3, + "probability": 0.902 + }, + { + "start": 15796.6, + "end": 15799.02, + "probability": 0.994 + }, + { + "start": 15800.18, + "end": 15803.4, + "probability": 0.996 + }, + { + "start": 15804.62, + "end": 15809.56, + "probability": 0.995 + }, + { + "start": 15810.44, + "end": 15813.14, + "probability": 0.9923 + }, + { + "start": 15814.3, + "end": 15816.6, + "probability": 0.9599 + }, + { + "start": 15818.6, + "end": 15820.24, + "probability": 0.9861 + }, + { + "start": 15823.64, + "end": 15828.3, + "probability": 0.9878 + }, + { + "start": 15828.3, + "end": 15834.54, + "probability": 0.9989 + }, + { + "start": 15836.34, + "end": 15838.5, + "probability": 0.9851 + }, + { + "start": 15840.66, + "end": 15850.52, + "probability": 0.9956 + }, + { + "start": 15853.66, + "end": 15855.28, + "probability": 0.9988 + }, + { + "start": 15855.84, + "end": 15856.46, + "probability": 0.753 + }, + { + "start": 15858.74, + "end": 15861.3, + "probability": 0.9575 + }, + { + "start": 15863.12, + "end": 15867.5, + "probability": 0.9908 + }, + { + "start": 15870.52, + "end": 15875.78, + "probability": 0.9647 + }, + { + "start": 15876.38, + "end": 15877.72, + "probability": 0.8007 + }, + { + "start": 15879.7, + "end": 15881.78, + "probability": 0.9744 + }, + { + "start": 15884.14, + "end": 15889.28, + "probability": 0.9375 + }, + { + "start": 15891.0, + "end": 15893.48, + "probability": 0.9003 + }, + { + "start": 15894.28, + "end": 15895.66, + "probability": 0.7559 + }, + { + "start": 15896.28, + "end": 15898.3, + "probability": 0.9819 + }, + { + "start": 15901.82, + "end": 15904.92, + "probability": 0.8945 + }, + { + "start": 15908.44, + "end": 15911.12, + "probability": 0.9509 + }, + { + "start": 15911.86, + "end": 15912.78, + "probability": 0.6154 + }, + { + "start": 15914.36, + "end": 15915.4, + "probability": 0.8909 + }, + { + "start": 15916.8, + "end": 15919.46, + "probability": 0.6291 + }, + { + "start": 15920.84, + "end": 15926.58, + "probability": 0.9584 + }, + { + "start": 15927.56, + "end": 15928.72, + "probability": 0.531 + }, + { + "start": 15930.9, + "end": 15937.4, + "probability": 0.8292 + }, + { + "start": 15939.02, + "end": 15939.42, + "probability": 0.9813 + }, + { + "start": 15940.26, + "end": 15943.12, + "probability": 0.8104 + }, + { + "start": 15944.76, + "end": 15948.7, + "probability": 0.7388 + }, + { + "start": 15950.0, + "end": 15957.36, + "probability": 0.9937 + }, + { + "start": 15959.58, + "end": 15960.7, + "probability": 0.5515 + }, + { + "start": 15961.44, + "end": 15962.48, + "probability": 0.8179 + }, + { + "start": 15964.6, + "end": 15967.36, + "probability": 0.9515 + }, + { + "start": 15968.96, + "end": 15970.46, + "probability": 0.9141 + }, + { + "start": 15971.9, + "end": 15973.74, + "probability": 0.923 + }, + { + "start": 15977.38, + "end": 15986.85, + "probability": 0.8786 + }, + { + "start": 15987.84, + "end": 15992.34, + "probability": 0.9881 + }, + { + "start": 15992.36, + "end": 15997.88, + "probability": 0.9972 + }, + { + "start": 15997.98, + "end": 15998.46, + "probability": 0.6006 + }, + { + "start": 16000.22, + "end": 16002.0, + "probability": 0.9957 + }, + { + "start": 16002.26, + "end": 16003.9, + "probability": 0.8165 + }, + { + "start": 16012.7, + "end": 16015.06, + "probability": 0.6993 + }, + { + "start": 16015.12, + "end": 16015.82, + "probability": 0.9387 + }, + { + "start": 16021.66, + "end": 16022.42, + "probability": 0.6277 + }, + { + "start": 16024.44, + "end": 16029.7, + "probability": 0.9839 + }, + { + "start": 16030.7, + "end": 16033.42, + "probability": 0.8685 + }, + { + "start": 16033.48, + "end": 16038.92, + "probability": 0.9713 + }, + { + "start": 16039.14, + "end": 16039.86, + "probability": 0.8734 + }, + { + "start": 16040.2, + "end": 16044.42, + "probability": 0.7303 + }, + { + "start": 16044.58, + "end": 16046.12, + "probability": 0.6169 + }, + { + "start": 16046.26, + "end": 16046.66, + "probability": 0.4132 + }, + { + "start": 16047.32, + "end": 16050.28, + "probability": 0.8163 + }, + { + "start": 16050.38, + "end": 16053.7, + "probability": 0.9785 + }, + { + "start": 16054.72, + "end": 16056.7, + "probability": 0.9648 + }, + { + "start": 16057.76, + "end": 16062.8, + "probability": 0.9915 + }, + { + "start": 16063.82, + "end": 16064.62, + "probability": 0.683 + }, + { + "start": 16064.7, + "end": 16066.02, + "probability": 0.9976 + }, + { + "start": 16066.24, + "end": 16068.16, + "probability": 0.9789 + }, + { + "start": 16069.62, + "end": 16072.29, + "probability": 0.9805 + }, + { + "start": 16073.36, + "end": 16081.66, + "probability": 0.9413 + }, + { + "start": 16083.74, + "end": 16086.2, + "probability": 0.7952 + }, + { + "start": 16086.2, + "end": 16088.76, + "probability": 0.8608 + }, + { + "start": 16088.86, + "end": 16092.2, + "probability": 0.9238 + }, + { + "start": 16092.58, + "end": 16093.56, + "probability": 0.7588 + }, + { + "start": 16094.68, + "end": 16097.78, + "probability": 0.8872 + }, + { + "start": 16100.54, + "end": 16103.24, + "probability": 0.996 + }, + { + "start": 16105.8, + "end": 16108.64, + "probability": 0.9951 + }, + { + "start": 16109.12, + "end": 16112.7, + "probability": 0.5152 + }, + { + "start": 16112.8, + "end": 16118.24, + "probability": 0.99 + }, + { + "start": 16118.24, + "end": 16122.8, + "probability": 0.9844 + }, + { + "start": 16123.1, + "end": 16124.46, + "probability": 0.9216 + }, + { + "start": 16124.96, + "end": 16126.52, + "probability": 0.9644 + }, + { + "start": 16128.36, + "end": 16132.06, + "probability": 0.9847 + }, + { + "start": 16132.24, + "end": 16136.8, + "probability": 0.9709 + }, + { + "start": 16137.76, + "end": 16140.18, + "probability": 0.9189 + }, + { + "start": 16141.8, + "end": 16145.48, + "probability": 0.8199 + }, + { + "start": 16146.2, + "end": 16147.42, + "probability": 0.9971 + }, + { + "start": 16149.46, + "end": 16152.92, + "probability": 0.9666 + }, + { + "start": 16153.66, + "end": 16154.87, + "probability": 0.975 + }, + { + "start": 16155.54, + "end": 16160.94, + "probability": 0.9087 + }, + { + "start": 16161.36, + "end": 16165.0, + "probability": 0.9808 + }, + { + "start": 16166.02, + "end": 16170.84, + "probability": 0.9374 + }, + { + "start": 16171.04, + "end": 16172.5, + "probability": 0.8656 + }, + { + "start": 16172.9, + "end": 16176.56, + "probability": 0.9896 + }, + { + "start": 16176.96, + "end": 16179.42, + "probability": 0.9948 + }, + { + "start": 16179.42, + "end": 16183.64, + "probability": 0.997 + }, + { + "start": 16184.2, + "end": 16189.22, + "probability": 0.9573 + }, + { + "start": 16189.7, + "end": 16190.48, + "probability": 0.6531 + }, + { + "start": 16190.6, + "end": 16194.53, + "probability": 0.9588 + }, + { + "start": 16195.22, + "end": 16198.2, + "probability": 0.8444 + }, + { + "start": 16198.28, + "end": 16199.24, + "probability": 0.7795 + }, + { + "start": 16199.36, + "end": 16200.5, + "probability": 0.956 + }, + { + "start": 16201.6, + "end": 16204.76, + "probability": 0.9319 + }, + { + "start": 16205.82, + "end": 16206.74, + "probability": 0.7991 + }, + { + "start": 16207.26, + "end": 16208.48, + "probability": 0.987 + }, + { + "start": 16209.66, + "end": 16210.84, + "probability": 0.8915 + }, + { + "start": 16211.84, + "end": 16218.08, + "probability": 0.9961 + }, + { + "start": 16218.46, + "end": 16221.48, + "probability": 0.9927 + }, + { + "start": 16224.18, + "end": 16227.22, + "probability": 0.8989 + }, + { + "start": 16228.04, + "end": 16228.54, + "probability": 0.8746 + }, + { + "start": 16228.62, + "end": 16229.8, + "probability": 0.9364 + }, + { + "start": 16229.94, + "end": 16231.64, + "probability": 0.9922 + }, + { + "start": 16231.96, + "end": 16235.48, + "probability": 0.9963 + }, + { + "start": 16235.9, + "end": 16236.72, + "probability": 0.9047 + }, + { + "start": 16237.42, + "end": 16240.92, + "probability": 0.9909 + }, + { + "start": 16241.56, + "end": 16242.42, + "probability": 0.7943 + }, + { + "start": 16242.78, + "end": 16244.28, + "probability": 0.6797 + }, + { + "start": 16244.36, + "end": 16246.7, + "probability": 0.9332 + }, + { + "start": 16247.38, + "end": 16251.08, + "probability": 0.9866 + }, + { + "start": 16251.86, + "end": 16253.8, + "probability": 0.9583 + }, + { + "start": 16255.36, + "end": 16255.6, + "probability": 0.9507 + }, + { + "start": 16256.24, + "end": 16258.52, + "probability": 0.6759 + }, + { + "start": 16258.52, + "end": 16267.82, + "probability": 0.8511 + }, + { + "start": 16267.84, + "end": 16272.78, + "probability": 0.9684 + }, + { + "start": 16275.88, + "end": 16277.24, + "probability": 0.8318 + }, + { + "start": 16277.66, + "end": 16279.97, + "probability": 0.9929 + }, + { + "start": 16280.63, + "end": 16282.82, + "probability": 0.929 + }, + { + "start": 16282.92, + "end": 16284.42, + "probability": 0.8528 + }, + { + "start": 16284.96, + "end": 16288.78, + "probability": 0.9963 + }, + { + "start": 16289.9, + "end": 16293.9, + "probability": 0.9285 + }, + { + "start": 16294.68, + "end": 16295.1, + "probability": 0.4132 + }, + { + "start": 16295.12, + "end": 16296.5, + "probability": 0.8324 + }, + { + "start": 16296.6, + "end": 16298.9, + "probability": 0.9616 + }, + { + "start": 16299.22, + "end": 16300.88, + "probability": 0.9704 + }, + { + "start": 16301.24, + "end": 16307.7, + "probability": 0.9521 + }, + { + "start": 16308.28, + "end": 16312.7, + "probability": 0.964 + }, + { + "start": 16312.88, + "end": 16315.42, + "probability": 0.8464 + }, + { + "start": 16315.92, + "end": 16318.44, + "probability": 0.9873 + }, + { + "start": 16319.36, + "end": 16320.46, + "probability": 0.9847 + }, + { + "start": 16321.3, + "end": 16329.48, + "probability": 0.9893 + }, + { + "start": 16330.14, + "end": 16333.16, + "probability": 0.8066 + }, + { + "start": 16333.44, + "end": 16334.55, + "probability": 0.7747 + }, + { + "start": 16334.62, + "end": 16335.82, + "probability": 0.8114 + }, + { + "start": 16336.2, + "end": 16340.28, + "probability": 0.7275 + }, + { + "start": 16341.46, + "end": 16343.74, + "probability": 0.9982 + }, + { + "start": 16344.18, + "end": 16346.64, + "probability": 0.9675 + }, + { + "start": 16347.2, + "end": 16351.2, + "probability": 0.9738 + }, + { + "start": 16351.48, + "end": 16353.65, + "probability": 0.8552 + }, + { + "start": 16355.52, + "end": 16358.94, + "probability": 0.9955 + }, + { + "start": 16359.2, + "end": 16365.3, + "probability": 0.9962 + }, + { + "start": 16365.4, + "end": 16365.98, + "probability": 0.7229 + }, + { + "start": 16366.02, + "end": 16367.22, + "probability": 0.9966 + }, + { + "start": 16367.88, + "end": 16368.92, + "probability": 0.9272 + }, + { + "start": 16370.86, + "end": 16371.4, + "probability": 0.7705 + }, + { + "start": 16371.48, + "end": 16372.26, + "probability": 0.7723 + }, + { + "start": 16372.38, + "end": 16373.04, + "probability": 0.8544 + }, + { + "start": 16373.14, + "end": 16373.86, + "probability": 0.8923 + }, + { + "start": 16374.66, + "end": 16375.58, + "probability": 0.9175 + }, + { + "start": 16376.34, + "end": 16380.98, + "probability": 0.9609 + }, + { + "start": 16381.36, + "end": 16385.28, + "probability": 0.9712 + }, + { + "start": 16386.46, + "end": 16387.98, + "probability": 0.9282 + }, + { + "start": 16388.74, + "end": 16391.54, + "probability": 0.9939 + }, + { + "start": 16392.08, + "end": 16395.7, + "probability": 0.8984 + }, + { + "start": 16396.82, + "end": 16399.96, + "probability": 0.9113 + }, + { + "start": 16401.46, + "end": 16402.74, + "probability": 0.5751 + }, + { + "start": 16403.3, + "end": 16408.92, + "probability": 0.9416 + }, + { + "start": 16409.36, + "end": 16412.5, + "probability": 0.719 + }, + { + "start": 16412.82, + "end": 16414.4, + "probability": 0.9651 + }, + { + "start": 16414.44, + "end": 16414.82, + "probability": 0.476 + }, + { + "start": 16414.96, + "end": 16415.6, + "probability": 0.7496 + }, + { + "start": 16415.96, + "end": 16417.72, + "probability": 0.9873 + }, + { + "start": 16418.38, + "end": 16424.84, + "probability": 0.8733 + }, + { + "start": 16425.84, + "end": 16427.68, + "probability": 0.8235 + }, + { + "start": 16428.18, + "end": 16432.86, + "probability": 0.9474 + }, + { + "start": 16433.34, + "end": 16434.04, + "probability": 0.9269 + }, + { + "start": 16434.68, + "end": 16438.57, + "probability": 0.9744 + }, + { + "start": 16439.44, + "end": 16444.0, + "probability": 0.9868 + }, + { + "start": 16445.0, + "end": 16450.6, + "probability": 0.9971 + }, + { + "start": 16451.52, + "end": 16458.78, + "probability": 0.9778 + }, + { + "start": 16458.9, + "end": 16459.32, + "probability": 0.824 + }, + { + "start": 16459.36, + "end": 16461.06, + "probability": 0.9644 + }, + { + "start": 16461.14, + "end": 16463.82, + "probability": 0.9885 + }, + { + "start": 16463.92, + "end": 16466.58, + "probability": 0.0495 + }, + { + "start": 16468.52, + "end": 16472.52, + "probability": 0.9285 + }, + { + "start": 16473.8, + "end": 16478.36, + "probability": 0.8186 + }, + { + "start": 16478.92, + "end": 16479.12, + "probability": 0.6961 + }, + { + "start": 16479.96, + "end": 16482.82, + "probability": 0.9688 + }, + { + "start": 16484.3, + "end": 16484.8, + "probability": 0.4882 + }, + { + "start": 16486.22, + "end": 16487.58, + "probability": 0.7261 + }, + { + "start": 16487.58, + "end": 16488.7, + "probability": 0.9263 + }, + { + "start": 16488.8, + "end": 16489.94, + "probability": 0.9366 + }, + { + "start": 16490.02, + "end": 16491.3, + "probability": 0.856 + }, + { + "start": 16491.8, + "end": 16494.74, + "probability": 0.9424 + }, + { + "start": 16494.9, + "end": 16495.36, + "probability": 0.6577 + }, + { + "start": 16495.4, + "end": 16497.98, + "probability": 0.8237 + }, + { + "start": 16498.28, + "end": 16498.98, + "probability": 0.5154 + }, + { + "start": 16499.72, + "end": 16501.42, + "probability": 0.9497 + }, + { + "start": 16501.64, + "end": 16505.74, + "probability": 0.9681 + }, + { + "start": 16506.78, + "end": 16509.64, + "probability": 0.9824 + }, + { + "start": 16510.14, + "end": 16513.54, + "probability": 0.9949 + }, + { + "start": 16514.54, + "end": 16518.38, + "probability": 0.9346 + }, + { + "start": 16519.3, + "end": 16523.7, + "probability": 0.9147 + }, + { + "start": 16524.64, + "end": 16525.36, + "probability": 0.932 + }, + { + "start": 16525.42, + "end": 16526.34, + "probability": 0.9648 + }, + { + "start": 16526.72, + "end": 16529.32, + "probability": 0.9701 + }, + { + "start": 16529.38, + "end": 16529.84, + "probability": 0.9727 + }, + { + "start": 16532.4, + "end": 16534.68, + "probability": 0.9902 + }, + { + "start": 16534.72, + "end": 16535.32, + "probability": 0.8027 + }, + { + "start": 16535.42, + "end": 16536.04, + "probability": 0.9556 + }, + { + "start": 16536.1, + "end": 16537.32, + "probability": 0.7999 + }, + { + "start": 16537.68, + "end": 16539.41, + "probability": 0.99 + }, + { + "start": 16539.86, + "end": 16541.7, + "probability": 0.9895 + }, + { + "start": 16545.12, + "end": 16546.52, + "probability": 0.7029 + }, + { + "start": 16547.2, + "end": 16549.72, + "probability": 0.9955 + }, + { + "start": 16549.8, + "end": 16551.66, + "probability": 0.9769 + }, + { + "start": 16551.72, + "end": 16552.74, + "probability": 0.8047 + }, + { + "start": 16553.02, + "end": 16554.86, + "probability": 0.957 + }, + { + "start": 16555.38, + "end": 16559.88, + "probability": 0.8868 + }, + { + "start": 16560.88, + "end": 16562.72, + "probability": 0.3643 + }, + { + "start": 16563.74, + "end": 16564.94, + "probability": 0.9456 + }, + { + "start": 16565.04, + "end": 16566.18, + "probability": 0.783 + }, + { + "start": 16566.48, + "end": 16567.3, + "probability": 0.7624 + }, + { + "start": 16567.38, + "end": 16568.26, + "probability": 0.9579 + }, + { + "start": 16568.48, + "end": 16569.8, + "probability": 0.9807 + }, + { + "start": 16570.38, + "end": 16574.2, + "probability": 0.9275 + }, + { + "start": 16574.94, + "end": 16578.14, + "probability": 0.9727 + }, + { + "start": 16578.98, + "end": 16581.17, + "probability": 0.7488 + }, + { + "start": 16581.94, + "end": 16583.68, + "probability": 0.8643 + }, + { + "start": 16584.26, + "end": 16585.5, + "probability": 0.9883 + }, + { + "start": 16587.38, + "end": 16589.6, + "probability": 0.9304 + }, + { + "start": 16592.58, + "end": 16596.9, + "probability": 0.936 + }, + { + "start": 16597.54, + "end": 16599.96, + "probability": 0.9802 + }, + { + "start": 16600.08, + "end": 16601.62, + "probability": 0.9098 + }, + { + "start": 16601.68, + "end": 16603.22, + "probability": 0.5073 + }, + { + "start": 16603.3, + "end": 16603.94, + "probability": 0.9472 + }, + { + "start": 16605.38, + "end": 16608.32, + "probability": 0.9946 + }, + { + "start": 16608.32, + "end": 16611.38, + "probability": 0.9988 + }, + { + "start": 16611.66, + "end": 16612.43, + "probability": 0.9518 + }, + { + "start": 16612.78, + "end": 16613.92, + "probability": 0.9474 + }, + { + "start": 16614.16, + "end": 16616.0, + "probability": 0.9784 + }, + { + "start": 16616.06, + "end": 16616.68, + "probability": 0.8388 + }, + { + "start": 16617.06, + "end": 16617.68, + "probability": 0.4914 + }, + { + "start": 16617.86, + "end": 16621.5, + "probability": 0.8596 + }, + { + "start": 16622.14, + "end": 16622.92, + "probability": 0.8999 + }, + { + "start": 16623.86, + "end": 16624.68, + "probability": 0.4938 + }, + { + "start": 16625.24, + "end": 16626.4, + "probability": 0.8032 + }, + { + "start": 16626.52, + "end": 16629.46, + "probability": 0.9946 + }, + { + "start": 16630.44, + "end": 16631.34, + "probability": 0.5024 + }, + { + "start": 16634.06, + "end": 16634.68, + "probability": 0.8771 + }, + { + "start": 16635.42, + "end": 16640.76, + "probability": 0.999 + }, + { + "start": 16650.7, + "end": 16651.74, + "probability": 0.7964 + }, + { + "start": 16652.36, + "end": 16655.62, + "probability": 0.8922 + }, + { + "start": 16655.66, + "end": 16657.66, + "probability": 0.9741 + }, + { + "start": 16657.88, + "end": 16659.92, + "probability": 0.8713 + }, + { + "start": 16660.5, + "end": 16660.7, + "probability": 0.6239 + }, + { + "start": 16660.72, + "end": 16661.44, + "probability": 0.9714 + }, + { + "start": 16661.48, + "end": 16663.1, + "probability": 0.9839 + }, + { + "start": 16663.14, + "end": 16665.36, + "probability": 0.9712 + }, + { + "start": 16665.5, + "end": 16666.7, + "probability": 0.9127 + }, + { + "start": 16667.64, + "end": 16672.28, + "probability": 0.8866 + }, + { + "start": 16672.78, + "end": 16673.42, + "probability": 0.9352 + }, + { + "start": 16673.94, + "end": 16677.22, + "probability": 0.9297 + }, + { + "start": 16677.26, + "end": 16680.3, + "probability": 0.8963 + }, + { + "start": 16680.78, + "end": 16683.8, + "probability": 0.9656 + }, + { + "start": 16684.2, + "end": 16685.5, + "probability": 0.9637 + }, + { + "start": 16685.6, + "end": 16687.46, + "probability": 0.9882 + }, + { + "start": 16687.96, + "end": 16690.78, + "probability": 0.9966 + }, + { + "start": 16691.26, + "end": 16692.4, + "probability": 0.9714 + }, + { + "start": 16692.62, + "end": 16693.92, + "probability": 0.9615 + }, + { + "start": 16694.5, + "end": 16695.04, + "probability": 0.7626 + }, + { + "start": 16695.62, + "end": 16697.2, + "probability": 0.9958 + }, + { + "start": 16697.3, + "end": 16698.72, + "probability": 0.9985 + }, + { + "start": 16701.48, + "end": 16702.14, + "probability": 0.8163 + }, + { + "start": 16702.74, + "end": 16705.08, + "probability": 0.9973 + }, + { + "start": 16707.34, + "end": 16709.0, + "probability": 0.9835 + }, + { + "start": 16709.3, + "end": 16711.08, + "probability": 0.9875 + }, + { + "start": 16711.28, + "end": 16713.98, + "probability": 0.9106 + }, + { + "start": 16714.46, + "end": 16718.02, + "probability": 0.9881 + }, + { + "start": 16718.02, + "end": 16721.88, + "probability": 0.9221 + }, + { + "start": 16722.46, + "end": 16723.04, + "probability": 0.8442 + }, + { + "start": 16723.56, + "end": 16723.8, + "probability": 0.9052 + }, + { + "start": 16724.36, + "end": 16725.32, + "probability": 0.9587 + }, + { + "start": 16725.46, + "end": 16726.86, + "probability": 0.9866 + }, + { + "start": 16726.92, + "end": 16727.98, + "probability": 0.943 + }, + { + "start": 16728.88, + "end": 16729.48, + "probability": 0.972 + }, + { + "start": 16729.52, + "end": 16733.2, + "probability": 0.918 + }, + { + "start": 16733.54, + "end": 16735.92, + "probability": 0.9758 + }, + { + "start": 16736.42, + "end": 16737.76, + "probability": 0.9978 + }, + { + "start": 16740.34, + "end": 16743.89, + "probability": 0.8274 + }, + { + "start": 16744.54, + "end": 16746.66, + "probability": 0.9653 + }, + { + "start": 16746.94, + "end": 16749.38, + "probability": 0.9432 + }, + { + "start": 16750.28, + "end": 16754.14, + "probability": 0.9507 + }, + { + "start": 16754.18, + "end": 16758.7, + "probability": 0.9757 + }, + { + "start": 16759.66, + "end": 16761.1, + "probability": 0.9353 + }, + { + "start": 16762.4, + "end": 16763.34, + "probability": 0.8955 + }, + { + "start": 16763.8, + "end": 16769.6, + "probability": 0.9825 + }, + { + "start": 16769.78, + "end": 16775.02, + "probability": 0.9987 + }, + { + "start": 16775.02, + "end": 16781.58, + "probability": 0.9963 + }, + { + "start": 16781.72, + "end": 16783.36, + "probability": 0.8469 + }, + { + "start": 16783.96, + "end": 16787.64, + "probability": 0.9744 + }, + { + "start": 16791.12, + "end": 16797.96, + "probability": 0.9944 + }, + { + "start": 16797.96, + "end": 16803.42, + "probability": 0.9988 + }, + { + "start": 16806.44, + "end": 16807.48, + "probability": 0.6639 + }, + { + "start": 16808.08, + "end": 16810.84, + "probability": 0.9901 + }, + { + "start": 16810.9, + "end": 16814.98, + "probability": 0.9728 + }, + { + "start": 16815.64, + "end": 16817.78, + "probability": 0.634 + }, + { + "start": 16818.46, + "end": 16820.1, + "probability": 0.9878 + }, + { + "start": 16820.48, + "end": 16823.82, + "probability": 0.9797 + }, + { + "start": 16824.66, + "end": 16826.68, + "probability": 0.9562 + }, + { + "start": 16826.88, + "end": 16829.64, + "probability": 0.853 + }, + { + "start": 16830.36, + "end": 16832.22, + "probability": 0.8486 + }, + { + "start": 16832.74, + "end": 16840.28, + "probability": 0.8669 + }, + { + "start": 16840.4, + "end": 16843.86, + "probability": 0.9956 + }, + { + "start": 16844.1, + "end": 16850.38, + "probability": 0.9699 + }, + { + "start": 16852.42, + "end": 16853.54, + "probability": 0.8632 + }, + { + "start": 16853.7, + "end": 16862.1, + "probability": 0.9868 + }, + { + "start": 16862.26, + "end": 16864.76, + "probability": 0.7319 + }, + { + "start": 16865.64, + "end": 16871.2, + "probability": 0.9941 + }, + { + "start": 16871.48, + "end": 16873.82, + "probability": 0.505 + }, + { + "start": 16873.96, + "end": 16877.1, + "probability": 0.8888 + }, + { + "start": 16877.4, + "end": 16881.32, + "probability": 0.9529 + }, + { + "start": 16881.72, + "end": 16882.96, + "probability": 0.9756 + }, + { + "start": 16884.38, + "end": 16887.94, + "probability": 0.7793 + }, + { + "start": 16889.42, + "end": 16894.8, + "probability": 0.9786 + }, + { + "start": 16894.82, + "end": 16901.24, + "probability": 0.9681 + }, + { + "start": 16901.96, + "end": 16906.88, + "probability": 0.9294 + }, + { + "start": 16907.9, + "end": 16908.7, + "probability": 0.8068 + }, + { + "start": 16909.28, + "end": 16916.82, + "probability": 0.8885 + }, + { + "start": 16917.48, + "end": 16919.86, + "probability": 0.9738 + }, + { + "start": 16922.42, + "end": 16926.94, + "probability": 0.988 + }, + { + "start": 16927.82, + "end": 16932.02, + "probability": 0.983 + }, + { + "start": 16932.32, + "end": 16934.68, + "probability": 0.9871 + }, + { + "start": 16934.98, + "end": 16936.06, + "probability": 0.9889 + }, + { + "start": 16936.3, + "end": 16938.88, + "probability": 0.6541 + }, + { + "start": 16944.82, + "end": 16944.84, + "probability": 0.0537 + }, + { + "start": 16944.84, + "end": 16944.84, + "probability": 0.0941 + }, + { + "start": 16944.84, + "end": 16951.54, + "probability": 0.4841 + }, + { + "start": 16951.54, + "end": 16954.86, + "probability": 0.6721 + }, + { + "start": 16955.38, + "end": 16957.62, + "probability": 0.9874 + }, + { + "start": 16958.04, + "end": 16963.93, + "probability": 0.9419 + }, + { + "start": 16964.96, + "end": 16968.03, + "probability": 0.8848 + }, + { + "start": 16968.54, + "end": 16970.38, + "probability": 0.8035 + }, + { + "start": 16971.58, + "end": 16972.76, + "probability": 0.4935 + }, + { + "start": 16972.94, + "end": 16973.58, + "probability": 0.8099 + }, + { + "start": 16973.62, + "end": 16974.76, + "probability": 0.9727 + }, + { + "start": 16975.12, + "end": 16979.18, + "probability": 0.8951 + }, + { + "start": 16979.68, + "end": 16979.68, + "probability": 0.1207 + }, + { + "start": 16979.68, + "end": 16980.2, + "probability": 0.5903 + }, + { + "start": 16980.28, + "end": 16983.3, + "probability": 0.9324 + }, + { + "start": 16983.42, + "end": 16984.1, + "probability": 0.6545 + }, + { + "start": 16984.22, + "end": 16984.86, + "probability": 0.5811 + }, + { + "start": 16985.24, + "end": 16986.36, + "probability": 0.7737 + }, + { + "start": 16986.64, + "end": 16989.62, + "probability": 0.9067 + }, + { + "start": 16992.9, + "end": 16993.1, + "probability": 0.0937 + }, + { + "start": 16993.1, + "end": 16993.1, + "probability": 0.1535 + }, + { + "start": 16993.1, + "end": 16996.9, + "probability": 0.8369 + }, + { + "start": 16997.18, + "end": 16998.4, + "probability": 0.9161 + }, + { + "start": 16998.78, + "end": 17004.74, + "probability": 0.9722 + }, + { + "start": 17005.08, + "end": 17006.98, + "probability": 0.9862 + }, + { + "start": 17007.66, + "end": 17009.46, + "probability": 0.9707 + }, + { + "start": 17009.76, + "end": 17010.4, + "probability": 0.7947 + }, + { + "start": 17010.74, + "end": 17011.46, + "probability": 0.6238 + }, + { + "start": 17011.64, + "end": 17014.27, + "probability": 0.8295 + }, + { + "start": 17019.34, + "end": 17023.1, + "probability": 0.0781 + }, + { + "start": 17023.14, + "end": 17026.24, + "probability": 0.3425 + }, + { + "start": 17028.02, + "end": 17030.06, + "probability": 0.0118 + }, + { + "start": 17030.1, + "end": 17030.3, + "probability": 0.003 + }, + { + "start": 17030.9, + "end": 17032.42, + "probability": 0.1216 + }, + { + "start": 17041.88, + "end": 17042.84, + "probability": 0.2746 + }, + { + "start": 17044.94, + "end": 17044.94, + "probability": 0.4762 + }, + { + "start": 17044.94, + "end": 17044.94, + "probability": 0.0717 + }, + { + "start": 17044.94, + "end": 17046.96, + "probability": 0.4641 + }, + { + "start": 17048.0, + "end": 17048.88, + "probability": 0.4903 + }, + { + "start": 17078.4, + "end": 17081.52, + "probability": 0.6518 + }, + { + "start": 17081.88, + "end": 17086.6, + "probability": 0.9937 + }, + { + "start": 17086.6, + "end": 17090.18, + "probability": 0.9928 + }, + { + "start": 17090.72, + "end": 17091.78, + "probability": 0.8337 + }, + { + "start": 17092.02, + "end": 17095.9, + "probability": 0.7389 + }, + { + "start": 17096.68, + "end": 17099.36, + "probability": 0.9964 + }, + { + "start": 17099.94, + "end": 17105.26, + "probability": 0.9881 + }, + { + "start": 17105.54, + "end": 17105.68, + "probability": 0.3784 + }, + { + "start": 17106.36, + "end": 17106.92, + "probability": 0.8959 + }, + { + "start": 17108.46, + "end": 17108.46, + "probability": 0.1575 + }, + { + "start": 17109.58, + "end": 17113.5, + "probability": 0.9267 + }, + { + "start": 17114.02, + "end": 17115.82, + "probability": 0.7282 + }, + { + "start": 17116.44, + "end": 17117.36, + "probability": 0.9617 + }, + { + "start": 17117.5, + "end": 17118.84, + "probability": 0.9907 + }, + { + "start": 17118.94, + "end": 17121.44, + "probability": 0.9065 + }, + { + "start": 17121.62, + "end": 17124.68, + "probability": 0.973 + }, + { + "start": 17125.66, + "end": 17130.32, + "probability": 0.9623 + }, + { + "start": 17131.2, + "end": 17132.76, + "probability": 0.9703 + }, + { + "start": 17133.36, + "end": 17134.96, + "probability": 0.9845 + }, + { + "start": 17135.64, + "end": 17136.88, + "probability": 0.96 + }, + { + "start": 17137.56, + "end": 17140.18, + "probability": 0.9886 + }, + { + "start": 17140.78, + "end": 17145.28, + "probability": 0.9658 + }, + { + "start": 17146.96, + "end": 17151.26, + "probability": 0.9901 + }, + { + "start": 17152.28, + "end": 17158.16, + "probability": 0.9824 + }, + { + "start": 17158.9, + "end": 17164.7, + "probability": 0.9961 + }, + { + "start": 17165.22, + "end": 17168.26, + "probability": 0.8823 + }, + { + "start": 17169.12, + "end": 17172.04, + "probability": 0.8455 + }, + { + "start": 17172.86, + "end": 17174.54, + "probability": 0.8536 + }, + { + "start": 17175.44, + "end": 17182.34, + "probability": 0.9805 + }, + { + "start": 17182.86, + "end": 17185.38, + "probability": 0.999 + }, + { + "start": 17186.08, + "end": 17187.79, + "probability": 0.9447 + }, + { + "start": 17188.48, + "end": 17189.86, + "probability": 0.8848 + }, + { + "start": 17190.42, + "end": 17193.18, + "probability": 0.8588 + }, + { + "start": 17194.16, + "end": 17195.7, + "probability": 0.9225 + }, + { + "start": 17197.48, + "end": 17204.28, + "probability": 0.7638 + }, + { + "start": 17204.78, + "end": 17208.0, + "probability": 0.7346 + }, + { + "start": 17208.14, + "end": 17209.88, + "probability": 0.9336 + }, + { + "start": 17210.46, + "end": 17211.16, + "probability": 0.9412 + }, + { + "start": 17211.38, + "end": 17213.3, + "probability": 0.4092 + }, + { + "start": 17213.38, + "end": 17213.38, + "probability": 0.4366 + }, + { + "start": 17213.44, + "end": 17215.14, + "probability": 0.7521 + }, + { + "start": 17215.72, + "end": 17216.78, + "probability": 0.8206 + }, + { + "start": 17217.36, + "end": 17218.01, + "probability": 0.966 + }, + { + "start": 17218.84, + "end": 17219.52, + "probability": 0.8333 + }, + { + "start": 17220.88, + "end": 17223.58, + "probability": 0.817 + }, + { + "start": 17224.16, + "end": 17226.24, + "probability": 0.926 + }, + { + "start": 17227.06, + "end": 17229.44, + "probability": 0.9393 + }, + { + "start": 17230.46, + "end": 17235.42, + "probability": 0.9354 + }, + { + "start": 17236.08, + "end": 17238.34, + "probability": 0.9979 + }, + { + "start": 17238.86, + "end": 17245.62, + "probability": 0.9618 + }, + { + "start": 17245.82, + "end": 17252.9, + "probability": 0.9353 + }, + { + "start": 17253.68, + "end": 17256.68, + "probability": 0.7671 + }, + { + "start": 17257.28, + "end": 17262.12, + "probability": 0.8936 + }, + { + "start": 17262.7, + "end": 17265.26, + "probability": 0.9795 + }, + { + "start": 17265.94, + "end": 17267.21, + "probability": 0.9438 + }, + { + "start": 17267.38, + "end": 17273.22, + "probability": 0.9739 + }, + { + "start": 17273.96, + "end": 17274.7, + "probability": 0.9693 + }, + { + "start": 17275.74, + "end": 17280.08, + "probability": 0.9868 + }, + { + "start": 17281.22, + "end": 17283.88, + "probability": 0.7837 + }, + { + "start": 17284.48, + "end": 17286.7, + "probability": 0.9956 + }, + { + "start": 17287.24, + "end": 17289.18, + "probability": 0.8841 + }, + { + "start": 17289.78, + "end": 17292.29, + "probability": 0.8767 + }, + { + "start": 17293.52, + "end": 17295.72, + "probability": 0.9544 + }, + { + "start": 17296.2, + "end": 17298.56, + "probability": 0.998 + }, + { + "start": 17299.72, + "end": 17304.1, + "probability": 0.9927 + }, + { + "start": 17304.78, + "end": 17306.45, + "probability": 0.9865 + }, + { + "start": 17307.04, + "end": 17309.48, + "probability": 0.9952 + }, + { + "start": 17309.98, + "end": 17310.84, + "probability": 0.9185 + }, + { + "start": 17310.96, + "end": 17311.74, + "probability": 0.7457 + }, + { + "start": 17312.38, + "end": 17313.84, + "probability": 0.9967 + }, + { + "start": 17314.62, + "end": 17316.2, + "probability": 0.7502 + }, + { + "start": 17317.46, + "end": 17321.26, + "probability": 0.9855 + }, + { + "start": 17322.66, + "end": 17328.86, + "probability": 0.8682 + }, + { + "start": 17328.96, + "end": 17329.06, + "probability": 0.3819 + }, + { + "start": 17329.4, + "end": 17329.9, + "probability": 0.8677 + }, + { + "start": 17330.0, + "end": 17330.55, + "probability": 0.811 + }, + { + "start": 17331.4, + "end": 17335.88, + "probability": 0.8375 + }, + { + "start": 17336.6, + "end": 17338.14, + "probability": 0.9207 + }, + { + "start": 17338.7, + "end": 17340.1, + "probability": 0.6934 + }, + { + "start": 17341.4, + "end": 17347.54, + "probability": 0.9932 + }, + { + "start": 17348.26, + "end": 17350.48, + "probability": 0.7683 + }, + { + "start": 17351.06, + "end": 17352.74, + "probability": 0.7205 + }, + { + "start": 17353.32, + "end": 17354.77, + "probability": 0.9589 + }, + { + "start": 17355.72, + "end": 17356.88, + "probability": 0.9863 + }, + { + "start": 17357.72, + "end": 17358.7, + "probability": 0.3066 + }, + { + "start": 17359.46, + "end": 17360.72, + "probability": 0.7184 + }, + { + "start": 17361.42, + "end": 17363.66, + "probability": 0.901 + }, + { + "start": 17364.3, + "end": 17368.58, + "probability": 0.907 + }, + { + "start": 17369.58, + "end": 17372.38, + "probability": 0.9951 + }, + { + "start": 17373.28, + "end": 17374.42, + "probability": 0.9487 + }, + { + "start": 17375.54, + "end": 17376.0, + "probability": 0.96 + }, + { + "start": 17376.84, + "end": 17378.34, + "probability": 0.9642 + }, + { + "start": 17379.6, + "end": 17383.02, + "probability": 0.9734 + }, + { + "start": 17383.86, + "end": 17384.08, + "probability": 0.937 + }, + { + "start": 17384.92, + "end": 17385.34, + "probability": 0.1367 + }, + { + "start": 17386.22, + "end": 17387.9, + "probability": 0.5895 + }, + { + "start": 17389.1, + "end": 17390.26, + "probability": 0.4972 + }, + { + "start": 17390.84, + "end": 17392.7, + "probability": 0.8953 + }, + { + "start": 17393.24, + "end": 17395.2, + "probability": 0.9601 + }, + { + "start": 17396.06, + "end": 17399.68, + "probability": 0.9312 + }, + { + "start": 17400.56, + "end": 17403.42, + "probability": 0.9702 + }, + { + "start": 17404.1, + "end": 17405.22, + "probability": 0.9165 + }, + { + "start": 17405.98, + "end": 17406.96, + "probability": 0.5737 + }, + { + "start": 17407.48, + "end": 17408.96, + "probability": 0.6803 + }, + { + "start": 17410.26, + "end": 17414.66, + "probability": 0.9922 + }, + { + "start": 17415.24, + "end": 17416.34, + "probability": 0.7812 + }, + { + "start": 17417.32, + "end": 17418.04, + "probability": 0.9494 + }, + { + "start": 17418.16, + "end": 17422.3, + "probability": 0.9946 + }, + { + "start": 17423.14, + "end": 17424.12, + "probability": 0.5055 + }, + { + "start": 17424.22, + "end": 17424.9, + "probability": 0.757 + }, + { + "start": 17426.36, + "end": 17427.91, + "probability": 0.7763 + }, + { + "start": 17429.36, + "end": 17431.35, + "probability": 0.9771 + }, + { + "start": 17432.42, + "end": 17433.57, + "probability": 0.981 + }, + { + "start": 17434.54, + "end": 17439.04, + "probability": 0.9893 + }, + { + "start": 17439.94, + "end": 17444.12, + "probability": 0.8302 + }, + { + "start": 17444.12, + "end": 17444.71, + "probability": 0.7484 + }, + { + "start": 17445.7, + "end": 17450.16, + "probability": 0.9863 + }, + { + "start": 17451.12, + "end": 17453.4, + "probability": 0.9639 + }, + { + "start": 17454.72, + "end": 17455.69, + "probability": 0.9612 + }, + { + "start": 17456.84, + "end": 17461.94, + "probability": 0.9895 + }, + { + "start": 17461.94, + "end": 17466.08, + "probability": 0.7806 + }, + { + "start": 17467.14, + "end": 17468.96, + "probability": 0.9209 + }, + { + "start": 17469.6, + "end": 17474.84, + "probability": 0.9562 + }, + { + "start": 17475.56, + "end": 17478.0, + "probability": 0.9984 + }, + { + "start": 17478.64, + "end": 17481.14, + "probability": 0.9977 + }, + { + "start": 17481.98, + "end": 17484.42, + "probability": 0.9877 + }, + { + "start": 17485.08, + "end": 17487.9, + "probability": 0.8966 + }, + { + "start": 17487.94, + "end": 17488.28, + "probability": 0.3853 + }, + { + "start": 17488.28, + "end": 17489.42, + "probability": 0.7106 + }, + { + "start": 17489.54, + "end": 17489.84, + "probability": 0.9626 + }, + { + "start": 17490.32, + "end": 17490.86, + "probability": 0.7537 + }, + { + "start": 17491.32, + "end": 17491.82, + "probability": 0.7629 + }, + { + "start": 17491.92, + "end": 17493.88, + "probability": 0.9863 + }, + { + "start": 17500.64, + "end": 17501.9, + "probability": 0.1736 + }, + { + "start": 17518.46, + "end": 17518.78, + "probability": 0.8181 + }, + { + "start": 17520.16, + "end": 17522.0, + "probability": 0.5788 + }, + { + "start": 17523.14, + "end": 17523.18, + "probability": 0.6906 + }, + { + "start": 17523.18, + "end": 17527.12, + "probability": 0.6237 + }, + { + "start": 17528.06, + "end": 17529.4, + "probability": 0.8859 + }, + { + "start": 17530.28, + "end": 17531.46, + "probability": 0.868 + }, + { + "start": 17531.58, + "end": 17533.46, + "probability": 0.981 + }, + { + "start": 17533.64, + "end": 17535.07, + "probability": 0.9172 + }, + { + "start": 17536.64, + "end": 17538.68, + "probability": 0.8407 + }, + { + "start": 17539.96, + "end": 17543.48, + "probability": 0.9836 + }, + { + "start": 17544.64, + "end": 17548.52, + "probability": 0.9897 + }, + { + "start": 17549.32, + "end": 17552.16, + "probability": 0.989 + }, + { + "start": 17552.9, + "end": 17553.76, + "probability": 0.9468 + }, + { + "start": 17553.84, + "end": 17554.4, + "probability": 0.6376 + }, + { + "start": 17554.42, + "end": 17558.38, + "probability": 0.9766 + }, + { + "start": 17558.38, + "end": 17562.46, + "probability": 0.9917 + }, + { + "start": 17563.34, + "end": 17567.58, + "probability": 0.7455 + }, + { + "start": 17569.8, + "end": 17571.1, + "probability": 0.8016 + }, + { + "start": 17571.44, + "end": 17574.8, + "probability": 0.9961 + }, + { + "start": 17575.52, + "end": 17577.52, + "probability": 0.9501 + }, + { + "start": 17577.84, + "end": 17582.16, + "probability": 0.9718 + }, + { + "start": 17583.12, + "end": 17584.08, + "probability": 0.8888 + }, + { + "start": 17586.5, + "end": 17587.98, + "probability": 0.498 + }, + { + "start": 17589.12, + "end": 17589.72, + "probability": 0.7072 + }, + { + "start": 17590.84, + "end": 17593.34, + "probability": 0.9437 + }, + { + "start": 17594.64, + "end": 17596.68, + "probability": 0.9655 + }, + { + "start": 17597.46, + "end": 17600.84, + "probability": 0.9932 + }, + { + "start": 17601.4, + "end": 17603.78, + "probability": 0.8754 + }, + { + "start": 17604.0, + "end": 17606.16, + "probability": 0.9386 + }, + { + "start": 17606.5, + "end": 17607.58, + "probability": 0.9253 + }, + { + "start": 17608.68, + "end": 17610.55, + "probability": 0.8112 + }, + { + "start": 17611.22, + "end": 17614.2, + "probability": 0.7106 + }, + { + "start": 17615.16, + "end": 17618.74, + "probability": 0.9705 + }, + { + "start": 17619.38, + "end": 17622.3, + "probability": 0.9165 + }, + { + "start": 17623.02, + "end": 17623.64, + "probability": 0.959 + }, + { + "start": 17623.74, + "end": 17625.79, + "probability": 0.9814 + }, + { + "start": 17626.48, + "end": 17627.36, + "probability": 0.788 + }, + { + "start": 17628.24, + "end": 17629.67, + "probability": 0.8732 + }, + { + "start": 17630.84, + "end": 17631.68, + "probability": 0.9871 + }, + { + "start": 17631.72, + "end": 17635.78, + "probability": 0.9146 + }, + { + "start": 17635.78, + "end": 17638.66, + "probability": 0.9356 + }, + { + "start": 17638.78, + "end": 17640.78, + "probability": 0.7209 + }, + { + "start": 17640.88, + "end": 17641.94, + "probability": 0.8103 + }, + { + "start": 17642.44, + "end": 17644.06, + "probability": 0.9329 + }, + { + "start": 17644.5, + "end": 17648.34, + "probability": 0.9821 + }, + { + "start": 17649.0, + "end": 17650.22, + "probability": 0.8673 + }, + { + "start": 17651.68, + "end": 17653.04, + "probability": 0.8032 + }, + { + "start": 17654.08, + "end": 17654.76, + "probability": 0.938 + }, + { + "start": 17657.32, + "end": 17658.16, + "probability": 0.753 + }, + { + "start": 17659.44, + "end": 17660.02, + "probability": 0.7268 + }, + { + "start": 17660.06, + "end": 17661.2, + "probability": 0.8902 + }, + { + "start": 17662.72, + "end": 17664.64, + "probability": 0.9966 + }, + { + "start": 17665.8, + "end": 17666.38, + "probability": 0.7076 + }, + { + "start": 17667.06, + "end": 17667.9, + "probability": 0.3043 + }, + { + "start": 17668.66, + "end": 17670.52, + "probability": 0.817 + }, + { + "start": 17671.52, + "end": 17674.4, + "probability": 0.7861 + }, + { + "start": 17674.5, + "end": 17679.18, + "probability": 0.9717 + }, + { + "start": 17679.22, + "end": 17680.28, + "probability": 0.9578 + }, + { + "start": 17680.36, + "end": 17683.1, + "probability": 0.9549 + }, + { + "start": 17683.38, + "end": 17688.5, + "probability": 0.9815 + }, + { + "start": 17688.66, + "end": 17692.2, + "probability": 0.9631 + }, + { + "start": 17694.48, + "end": 17695.22, + "probability": 0.6547 + }, + { + "start": 17696.82, + "end": 17698.4, + "probability": 0.9688 + }, + { + "start": 17699.9, + "end": 17700.78, + "probability": 0.9988 + }, + { + "start": 17701.54, + "end": 17705.42, + "probability": 0.999 + }, + { + "start": 17705.52, + "end": 17706.02, + "probability": 0.8505 + }, + { + "start": 17706.8, + "end": 17708.4, + "probability": 0.9817 + }, + { + "start": 17708.8, + "end": 17708.98, + "probability": 0.7819 + }, + { + "start": 17709.44, + "end": 17712.28, + "probability": 0.9559 + }, + { + "start": 17713.18, + "end": 17713.18, + "probability": 0.0346 + }, + { + "start": 17713.18, + "end": 17713.3, + "probability": 0.3532 + }, + { + "start": 17714.52, + "end": 17717.8, + "probability": 0.8141 + }, + { + "start": 17718.46, + "end": 17720.18, + "probability": 0.8992 + }, + { + "start": 17720.24, + "end": 17721.54, + "probability": 0.9575 + }, + { + "start": 17722.18, + "end": 17724.42, + "probability": 0.9175 + }, + { + "start": 17725.26, + "end": 17728.76, + "probability": 0.8356 + }, + { + "start": 17729.3, + "end": 17730.52, + "probability": 0.9045 + }, + { + "start": 17732.72, + "end": 17734.76, + "probability": 0.9035 + }, + { + "start": 17735.04, + "end": 17737.36, + "probability": 0.9801 + }, + { + "start": 17737.88, + "end": 17739.05, + "probability": 0.979 + }, + { + "start": 17739.82, + "end": 17741.9, + "probability": 0.9861 + }, + { + "start": 17743.52, + "end": 17745.88, + "probability": 0.9963 + }, + { + "start": 17746.54, + "end": 17749.62, + "probability": 0.8544 + }, + { + "start": 17749.74, + "end": 17750.66, + "probability": 0.9951 + }, + { + "start": 17750.78, + "end": 17753.06, + "probability": 0.9829 + }, + { + "start": 17753.54, + "end": 17757.47, + "probability": 0.9833 + }, + { + "start": 17758.2, + "end": 17759.86, + "probability": 0.9805 + }, + { + "start": 17760.46, + "end": 17763.14, + "probability": 0.9757 + }, + { + "start": 17763.58, + "end": 17765.58, + "probability": 0.9914 + }, + { + "start": 17766.2, + "end": 17768.06, + "probability": 0.5732 + }, + { + "start": 17768.06, + "end": 17768.84, + "probability": 0.7723 + }, + { + "start": 17769.34, + "end": 17772.64, + "probability": 0.9972 + }, + { + "start": 17772.76, + "end": 17774.22, + "probability": 0.8462 + }, + { + "start": 17776.56, + "end": 17778.12, + "probability": 0.9566 + }, + { + "start": 17778.78, + "end": 17782.02, + "probability": 0.9855 + }, + { + "start": 17782.8, + "end": 17785.28, + "probability": 0.9124 + }, + { + "start": 17785.5, + "end": 17788.0, + "probability": 0.9924 + }, + { + "start": 17789.66, + "end": 17792.9, + "probability": 0.8114 + }, + { + "start": 17794.48, + "end": 17797.04, + "probability": 0.9808 + }, + { + "start": 17797.47, + "end": 17800.92, + "probability": 0.9963 + }, + { + "start": 17801.78, + "end": 17806.48, + "probability": 0.9075 + }, + { + "start": 17806.58, + "end": 17809.98, + "probability": 0.9688 + }, + { + "start": 17810.86, + "end": 17813.98, + "probability": 0.8716 + }, + { + "start": 17814.42, + "end": 17815.68, + "probability": 0.983 + }, + { + "start": 17816.36, + "end": 17817.36, + "probability": 0.6777 + }, + { + "start": 17817.88, + "end": 17820.18, + "probability": 0.9717 + }, + { + "start": 17820.26, + "end": 17821.91, + "probability": 0.9757 + }, + { + "start": 17822.88, + "end": 17825.88, + "probability": 0.8719 + }, + { + "start": 17826.86, + "end": 17828.22, + "probability": 0.97 + }, + { + "start": 17828.3, + "end": 17832.96, + "probability": 0.9272 + }, + { + "start": 17833.64, + "end": 17834.53, + "probability": 0.99 + }, + { + "start": 17836.08, + "end": 17838.3, + "probability": 0.8945 + }, + { + "start": 17838.94, + "end": 17842.42, + "probability": 0.9941 + }, + { + "start": 17844.52, + "end": 17845.92, + "probability": 0.8983 + }, + { + "start": 17846.62, + "end": 17847.54, + "probability": 0.5402 + }, + { + "start": 17848.88, + "end": 17851.5, + "probability": 0.7282 + }, + { + "start": 17852.3, + "end": 17854.16, + "probability": 0.9077 + }, + { + "start": 17856.02, + "end": 17858.36, + "probability": 0.9905 + }, + { + "start": 17858.44, + "end": 17859.58, + "probability": 0.853 + }, + { + "start": 17860.1, + "end": 17863.12, + "probability": 0.8826 + }, + { + "start": 17863.88, + "end": 17865.2, + "probability": 0.9865 + }, + { + "start": 17865.28, + "end": 17867.82, + "probability": 0.9946 + }, + { + "start": 17869.96, + "end": 17872.3, + "probability": 0.9545 + }, + { + "start": 17872.3, + "end": 17873.24, + "probability": 0.9418 + }, + { + "start": 17873.34, + "end": 17874.6, + "probability": 0.8317 + }, + { + "start": 17876.76, + "end": 17879.42, + "probability": 0.9822 + }, + { + "start": 17879.56, + "end": 17880.07, + "probability": 0.6405 + }, + { + "start": 17881.11, + "end": 17882.17, + "probability": 0.9834 + }, + { + "start": 17882.74, + "end": 17883.82, + "probability": 0.6976 + }, + { + "start": 17884.32, + "end": 17885.76, + "probability": 0.8945 + }, + { + "start": 17886.86, + "end": 17889.68, + "probability": 0.9965 + }, + { + "start": 17890.66, + "end": 17893.06, + "probability": 0.8586 + }, + { + "start": 17894.1, + "end": 17896.26, + "probability": 0.9916 + }, + { + "start": 17896.32, + "end": 17897.14, + "probability": 0.572 + }, + { + "start": 17897.28, + "end": 17898.44, + "probability": 0.6865 + }, + { + "start": 17899.18, + "end": 17901.41, + "probability": 0.9886 + }, + { + "start": 17901.82, + "end": 17903.34, + "probability": 0.7097 + }, + { + "start": 17903.92, + "end": 17905.87, + "probability": 0.8092 + }, + { + "start": 17907.06, + "end": 17908.98, + "probability": 0.9933 + }, + { + "start": 17910.5, + "end": 17911.54, + "probability": 0.9399 + }, + { + "start": 17912.24, + "end": 17913.76, + "probability": 0.9941 + }, + { + "start": 17914.86, + "end": 17917.8, + "probability": 0.8345 + }, + { + "start": 17918.57, + "end": 17922.12, + "probability": 0.9137 + }, + { + "start": 17922.58, + "end": 17924.08, + "probability": 0.9988 + }, + { + "start": 17924.88, + "end": 17928.52, + "probability": 0.8807 + }, + { + "start": 17929.06, + "end": 17931.88, + "probability": 0.9359 + }, + { + "start": 17932.46, + "end": 17935.75, + "probability": 0.987 + }, + { + "start": 17937.22, + "end": 17938.48, + "probability": 0.8483 + }, + { + "start": 17939.18, + "end": 17941.08, + "probability": 0.8799 + }, + { + "start": 17941.78, + "end": 17942.38, + "probability": 0.9782 + }, + { + "start": 17943.54, + "end": 17944.69, + "probability": 0.8524 + }, + { + "start": 17944.86, + "end": 17945.58, + "probability": 0.6435 + }, + { + "start": 17945.72, + "end": 17946.86, + "probability": 0.6986 + }, + { + "start": 17947.92, + "end": 17951.16, + "probability": 0.9941 + }, + { + "start": 17951.84, + "end": 17954.04, + "probability": 0.7944 + }, + { + "start": 17954.54, + "end": 17957.16, + "probability": 0.9902 + }, + { + "start": 17957.46, + "end": 17961.6, + "probability": 0.9646 + }, + { + "start": 17961.66, + "end": 17962.16, + "probability": 0.8817 + }, + { + "start": 17963.24, + "end": 17965.96, + "probability": 0.973 + }, + { + "start": 17966.14, + "end": 17967.57, + "probability": 0.7408 + }, + { + "start": 17977.52, + "end": 17979.52, + "probability": 0.8049 + }, + { + "start": 17981.42, + "end": 17982.16, + "probability": 0.8154 + }, + { + "start": 17985.6, + "end": 17988.06, + "probability": 0.8086 + }, + { + "start": 17988.72, + "end": 17991.66, + "probability": 0.9152 + }, + { + "start": 17992.2, + "end": 17996.68, + "probability": 0.9634 + }, + { + "start": 17996.8, + "end": 18001.22, + "probability": 0.9267 + }, + { + "start": 18001.28, + "end": 18002.76, + "probability": 0.8395 + }, + { + "start": 18003.08, + "end": 18004.04, + "probability": 0.116 + }, + { + "start": 18005.7, + "end": 18009.78, + "probability": 0.9803 + }, + { + "start": 18009.9, + "end": 18011.94, + "probability": 0.9438 + }, + { + "start": 18012.08, + "end": 18015.66, + "probability": 0.7773 + }, + { + "start": 18016.52, + "end": 18017.1, + "probability": 0.4525 + }, + { + "start": 18017.12, + "end": 18019.84, + "probability": 0.9545 + }, + { + "start": 18020.04, + "end": 18022.42, + "probability": 0.9875 + }, + { + "start": 18023.42, + "end": 18026.32, + "probability": 0.9588 + }, + { + "start": 18027.4, + "end": 18031.28, + "probability": 0.991 + }, + { + "start": 18031.32, + "end": 18034.78, + "probability": 0.9943 + }, + { + "start": 18034.92, + "end": 18037.06, + "probability": 0.6803 + }, + { + "start": 18038.12, + "end": 18043.82, + "probability": 0.9939 + }, + { + "start": 18045.06, + "end": 18047.5, + "probability": 0.9964 + }, + { + "start": 18047.9, + "end": 18048.94, + "probability": 0.9158 + }, + { + "start": 18049.04, + "end": 18050.42, + "probability": 0.8351 + }, + { + "start": 18051.1, + "end": 18052.86, + "probability": 0.9976 + }, + { + "start": 18053.94, + "end": 18057.62, + "probability": 0.9932 + }, + { + "start": 18058.9, + "end": 18060.8, + "probability": 0.9753 + }, + { + "start": 18061.04, + "end": 18064.26, + "probability": 0.988 + }, + { + "start": 18065.9, + "end": 18066.88, + "probability": 0.969 + }, + { + "start": 18067.04, + "end": 18067.84, + "probability": 0.9443 + }, + { + "start": 18067.92, + "end": 18072.72, + "probability": 0.9958 + }, + { + "start": 18072.86, + "end": 18073.68, + "probability": 0.872 + }, + { + "start": 18074.92, + "end": 18078.28, + "probability": 0.9325 + }, + { + "start": 18079.28, + "end": 18081.96, + "probability": 0.6909 + }, + { + "start": 18082.0, + "end": 18086.26, + "probability": 0.9818 + }, + { + "start": 18086.26, + "end": 18090.3, + "probability": 0.9838 + }, + { + "start": 18090.4, + "end": 18091.46, + "probability": 0.972 + }, + { + "start": 18092.3, + "end": 18096.34, + "probability": 0.9944 + }, + { + "start": 18096.62, + "end": 18099.92, + "probability": 0.9813 + }, + { + "start": 18100.18, + "end": 18101.1, + "probability": 0.8672 + }, + { + "start": 18101.86, + "end": 18102.38, + "probability": 0.6157 + }, + { + "start": 18102.9, + "end": 18105.44, + "probability": 0.9952 + }, + { + "start": 18107.62, + "end": 18108.52, + "probability": 0.928 + }, + { + "start": 18109.38, + "end": 18112.0, + "probability": 0.999 + }, + { + "start": 18112.0, + "end": 18115.5, + "probability": 0.9951 + }, + { + "start": 18116.76, + "end": 18120.4, + "probability": 0.998 + }, + { + "start": 18121.28, + "end": 18125.8, + "probability": 0.9362 + }, + { + "start": 18126.9, + "end": 18132.72, + "probability": 0.9893 + }, + { + "start": 18133.2, + "end": 18136.86, + "probability": 0.9992 + }, + { + "start": 18136.86, + "end": 18140.64, + "probability": 0.9979 + }, + { + "start": 18142.18, + "end": 18142.42, + "probability": 0.5215 + }, + { + "start": 18142.48, + "end": 18143.42, + "probability": 0.7773 + }, + { + "start": 18143.52, + "end": 18147.18, + "probability": 0.9739 + }, + { + "start": 18148.2, + "end": 18148.88, + "probability": 0.7112 + }, + { + "start": 18148.98, + "end": 18150.7, + "probability": 0.8999 + }, + { + "start": 18150.76, + "end": 18155.26, + "probability": 0.9893 + }, + { + "start": 18155.34, + "end": 18158.94, + "probability": 0.979 + }, + { + "start": 18159.94, + "end": 18161.8, + "probability": 0.7976 + }, + { + "start": 18162.84, + "end": 18166.22, + "probability": 0.4736 + }, + { + "start": 18166.22, + "end": 18170.3, + "probability": 0.4605 + }, + { + "start": 18170.3, + "end": 18174.76, + "probability": 0.9976 + }, + { + "start": 18174.94, + "end": 18176.84, + "probability": 0.5412 + }, + { + "start": 18177.68, + "end": 18181.28, + "probability": 0.8614 + }, + { + "start": 18182.18, + "end": 18184.59, + "probability": 0.8853 + }, + { + "start": 18185.66, + "end": 18187.98, + "probability": 0.9949 + }, + { + "start": 18188.36, + "end": 18189.52, + "probability": 0.9592 + }, + { + "start": 18189.86, + "end": 18190.78, + "probability": 0.8814 + }, + { + "start": 18191.4, + "end": 18193.14, + "probability": 0.9941 + }, + { + "start": 18193.78, + "end": 18197.68, + "probability": 0.9441 + }, + { + "start": 18197.8, + "end": 18200.77, + "probability": 0.9393 + }, + { + "start": 18201.0, + "end": 18202.54, + "probability": 0.4762 + }, + { + "start": 18202.6, + "end": 18203.74, + "probability": 0.5699 + }, + { + "start": 18204.16, + "end": 18208.64, + "probability": 0.9946 + }, + { + "start": 18208.74, + "end": 18209.7, + "probability": 0.6535 + }, + { + "start": 18210.18, + "end": 18215.38, + "probability": 0.9978 + }, + { + "start": 18216.96, + "end": 18219.26, + "probability": 0.9924 + }, + { + "start": 18220.48, + "end": 18222.48, + "probability": 0.9624 + }, + { + "start": 18222.64, + "end": 18224.64, + "probability": 0.7071 + }, + { + "start": 18224.82, + "end": 18226.14, + "probability": 0.9707 + }, + { + "start": 18226.48, + "end": 18228.42, + "probability": 0.9897 + }, + { + "start": 18228.96, + "end": 18231.12, + "probability": 0.994 + }, + { + "start": 18232.62, + "end": 18238.82, + "probability": 0.9958 + }, + { + "start": 18239.44, + "end": 18243.04, + "probability": 0.9978 + }, + { + "start": 18243.48, + "end": 18244.34, + "probability": 0.8781 + }, + { + "start": 18244.38, + "end": 18245.14, + "probability": 0.5074 + }, + { + "start": 18246.18, + "end": 18251.88, + "probability": 0.9963 + }, + { + "start": 18252.54, + "end": 18254.6, + "probability": 0.8901 + }, + { + "start": 18255.3, + "end": 18258.6, + "probability": 0.9534 + }, + { + "start": 18259.52, + "end": 18262.5, + "probability": 0.7686 + }, + { + "start": 18263.32, + "end": 18267.52, + "probability": 0.8411 + }, + { + "start": 18267.98, + "end": 18271.64, + "probability": 0.8491 + }, + { + "start": 18273.32, + "end": 18278.18, + "probability": 0.9819 + }, + { + "start": 18278.34, + "end": 18279.1, + "probability": 0.9125 + }, + { + "start": 18279.16, + "end": 18280.0, + "probability": 0.8621 + }, + { + "start": 18280.56, + "end": 18283.72, + "probability": 0.9352 + }, + { + "start": 18284.5, + "end": 18287.54, + "probability": 0.8917 + }, + { + "start": 18288.22, + "end": 18288.62, + "probability": 0.7639 + }, + { + "start": 18288.66, + "end": 18288.92, + "probability": 0.9846 + }, + { + "start": 18289.0, + "end": 18289.56, + "probability": 0.8254 + }, + { + "start": 18289.6, + "end": 18292.0, + "probability": 0.9766 + }, + { + "start": 18292.06, + "end": 18295.76, + "probability": 0.9396 + }, + { + "start": 18295.9, + "end": 18297.12, + "probability": 0.9895 + }, + { + "start": 18297.8, + "end": 18300.3, + "probability": 0.9311 + }, + { + "start": 18300.4, + "end": 18300.52, + "probability": 0.3258 + }, + { + "start": 18300.64, + "end": 18304.34, + "probability": 0.9978 + }, + { + "start": 18304.72, + "end": 18304.94, + "probability": 0.7012 + }, + { + "start": 18305.06, + "end": 18305.28, + "probability": 0.966 + }, + { + "start": 18305.3, + "end": 18307.16, + "probability": 0.9314 + }, + { + "start": 18307.8, + "end": 18310.62, + "probability": 0.9965 + }, + { + "start": 18311.32, + "end": 18312.06, + "probability": 0.7928 + }, + { + "start": 18312.78, + "end": 18316.28, + "probability": 0.9903 + }, + { + "start": 18316.38, + "end": 18318.28, + "probability": 0.9856 + }, + { + "start": 18318.72, + "end": 18321.25, + "probability": 0.9905 + }, + { + "start": 18321.4, + "end": 18325.02, + "probability": 0.9878 + }, + { + "start": 18326.82, + "end": 18330.58, + "probability": 0.9948 + }, + { + "start": 18331.28, + "end": 18334.48, + "probability": 0.9992 + }, + { + "start": 18334.5, + "end": 18338.3, + "probability": 0.9949 + }, + { + "start": 18338.96, + "end": 18341.48, + "probability": 0.9863 + }, + { + "start": 18341.76, + "end": 18345.94, + "probability": 0.9847 + }, + { + "start": 18345.96, + "end": 18346.18, + "probability": 0.0128 + }, + { + "start": 18346.18, + "end": 18349.5, + "probability": 0.7561 + }, + { + "start": 18350.0, + "end": 18354.38, + "probability": 0.9907 + }, + { + "start": 18354.38, + "end": 18359.22, + "probability": 0.9932 + }, + { + "start": 18359.88, + "end": 18363.62, + "probability": 0.9968 + }, + { + "start": 18364.96, + "end": 18365.84, + "probability": 0.7204 + }, + { + "start": 18365.94, + "end": 18367.72, + "probability": 0.9248 + }, + { + "start": 18367.86, + "end": 18374.18, + "probability": 0.9944 + }, + { + "start": 18374.28, + "end": 18376.58, + "probability": 0.7493 + }, + { + "start": 18377.34, + "end": 18381.0, + "probability": 0.9885 + }, + { + "start": 18381.14, + "end": 18382.46, + "probability": 0.6274 + }, + { + "start": 18383.22, + "end": 18383.88, + "probability": 0.6517 + }, + { + "start": 18384.52, + "end": 18385.42, + "probability": 0.8134 + }, + { + "start": 18386.36, + "end": 18391.04, + "probability": 0.9741 + }, + { + "start": 18392.02, + "end": 18395.18, + "probability": 0.9966 + }, + { + "start": 18395.18, + "end": 18400.26, + "probability": 0.853 + }, + { + "start": 18401.16, + "end": 18401.7, + "probability": 0.7771 + }, + { + "start": 18402.62, + "end": 18405.04, + "probability": 0.6956 + }, + { + "start": 18405.24, + "end": 18406.86, + "probability": 0.9062 + }, + { + "start": 18408.0, + "end": 18408.02, + "probability": 0.0171 + }, + { + "start": 18410.1, + "end": 18411.6, + "probability": 0.3489 + }, + { + "start": 18411.6, + "end": 18412.19, + "probability": 0.483 + }, + { + "start": 18412.46, + "end": 18413.42, + "probability": 0.4478 + }, + { + "start": 18421.42, + "end": 18421.9, + "probability": 0.0999 + }, + { + "start": 18421.9, + "end": 18421.9, + "probability": 0.056 + }, + { + "start": 18421.9, + "end": 18423.6, + "probability": 0.6938 + }, + { + "start": 18424.42, + "end": 18424.7, + "probability": 0.7274 + }, + { + "start": 18430.54, + "end": 18431.84, + "probability": 0.6282 + }, + { + "start": 18432.2, + "end": 18432.84, + "probability": 0.8046 + }, + { + "start": 18433.0, + "end": 18434.44, + "probability": 0.7524 + }, + { + "start": 18434.66, + "end": 18438.54, + "probability": 0.9697 + }, + { + "start": 18439.22, + "end": 18443.29, + "probability": 0.8158 + }, + { + "start": 18446.46, + "end": 18449.16, + "probability": 0.8408 + }, + { + "start": 18449.4, + "end": 18453.3, + "probability": 0.9648 + }, + { + "start": 18453.62, + "end": 18456.58, + "probability": 0.8553 + }, + { + "start": 18457.44, + "end": 18458.5, + "probability": 0.6766 + }, + { + "start": 18459.22, + "end": 18461.34, + "probability": 0.9922 + }, + { + "start": 18462.3, + "end": 18462.84, + "probability": 0.2465 + }, + { + "start": 18462.92, + "end": 18464.46, + "probability": 0.8624 + }, + { + "start": 18464.62, + "end": 18469.56, + "probability": 0.9487 + }, + { + "start": 18470.2, + "end": 18471.24, + "probability": 0.7269 + }, + { + "start": 18472.14, + "end": 18475.58, + "probability": 0.9344 + }, + { + "start": 18476.58, + "end": 18478.18, + "probability": 0.7023 + }, + { + "start": 18479.46, + "end": 18480.82, + "probability": 0.9302 + }, + { + "start": 18480.92, + "end": 18486.0, + "probability": 0.9424 + }, + { + "start": 18486.28, + "end": 18488.76, + "probability": 0.7866 + }, + { + "start": 18488.76, + "end": 18489.68, + "probability": 0.9275 + }, + { + "start": 18490.38, + "end": 18494.2, + "probability": 0.8132 + }, + { + "start": 18494.98, + "end": 18496.74, + "probability": 0.8861 + }, + { + "start": 18497.6, + "end": 18499.56, + "probability": 0.9208 + }, + { + "start": 18500.1, + "end": 18501.28, + "probability": 0.9294 + }, + { + "start": 18501.34, + "end": 18503.0, + "probability": 0.9876 + }, + { + "start": 18503.2, + "end": 18507.46, + "probability": 0.9738 + }, + { + "start": 18508.04, + "end": 18512.4, + "probability": 0.9441 + }, + { + "start": 18513.64, + "end": 18514.76, + "probability": 0.6385 + }, + { + "start": 18514.96, + "end": 18515.54, + "probability": 0.5227 + }, + { + "start": 18515.9, + "end": 18518.8, + "probability": 0.9295 + }, + { + "start": 18519.2, + "end": 18522.58, + "probability": 0.8837 + }, + { + "start": 18523.46, + "end": 18527.56, + "probability": 0.8732 + }, + { + "start": 18528.18, + "end": 18532.2, + "probability": 0.9856 + }, + { + "start": 18532.74, + "end": 18538.4, + "probability": 0.9524 + }, + { + "start": 18539.16, + "end": 18540.04, + "probability": 0.9129 + }, + { + "start": 18540.52, + "end": 18541.56, + "probability": 0.6185 + }, + { + "start": 18542.0, + "end": 18544.74, + "probability": 0.9432 + }, + { + "start": 18545.28, + "end": 18549.1, + "probability": 0.9858 + }, + { + "start": 18549.88, + "end": 18551.5, + "probability": 0.7871 + }, + { + "start": 18552.1, + "end": 18556.28, + "probability": 0.9042 + }, + { + "start": 18556.9, + "end": 18558.58, + "probability": 0.9077 + }, + { + "start": 18559.12, + "end": 18561.88, + "probability": 0.7307 + }, + { + "start": 18562.92, + "end": 18568.0, + "probability": 0.9544 + }, + { + "start": 18568.98, + "end": 18570.94, + "probability": 0.6491 + }, + { + "start": 18571.5, + "end": 18573.74, + "probability": 0.8198 + }, + { + "start": 18574.42, + "end": 18575.78, + "probability": 0.8344 + }, + { + "start": 18576.24, + "end": 18579.34, + "probability": 0.9841 + }, + { + "start": 18580.06, + "end": 18582.8, + "probability": 0.998 + }, + { + "start": 18583.38, + "end": 18584.6, + "probability": 0.9723 + }, + { + "start": 18585.3, + "end": 18588.48, + "probability": 0.9901 + }, + { + "start": 18589.12, + "end": 18593.9, + "probability": 0.9702 + }, + { + "start": 18594.42, + "end": 18596.68, + "probability": 0.9172 + }, + { + "start": 18597.12, + "end": 18600.62, + "probability": 0.9686 + }, + { + "start": 18601.22, + "end": 18605.94, + "probability": 0.944 + }, + { + "start": 18606.68, + "end": 18609.14, + "probability": 0.9519 + }, + { + "start": 18609.78, + "end": 18611.74, + "probability": 0.9648 + }, + { + "start": 18612.56, + "end": 18613.18, + "probability": 0.0344 + }, + { + "start": 18613.96, + "end": 18614.72, + "probability": 0.0228 + }, + { + "start": 18615.4, + "end": 18618.35, + "probability": 0.7279 + }, + { + "start": 18619.26, + "end": 18620.58, + "probability": 0.7795 + }, + { + "start": 18621.12, + "end": 18626.32, + "probability": 0.937 + }, + { + "start": 18626.46, + "end": 18630.72, + "probability": 0.9919 + }, + { + "start": 18631.18, + "end": 18634.56, + "probability": 0.9609 + }, + { + "start": 18635.16, + "end": 18636.32, + "probability": 0.7367 + }, + { + "start": 18637.22, + "end": 18639.18, + "probability": 0.4801 + }, + { + "start": 18640.14, + "end": 18643.96, + "probability": 0.9147 + }, + { + "start": 18644.54, + "end": 18645.58, + "probability": 0.8248 + }, + { + "start": 18646.6, + "end": 18648.64, + "probability": 0.8724 + }, + { + "start": 18648.66, + "end": 18651.16, + "probability": 0.7714 + }, + { + "start": 18651.64, + "end": 18652.7, + "probability": 0.83 + }, + { + "start": 18653.18, + "end": 18655.54, + "probability": 0.7051 + }, + { + "start": 18656.4, + "end": 18660.3, + "probability": 0.8447 + }, + { + "start": 18660.74, + "end": 18662.88, + "probability": 0.8655 + }, + { + "start": 18663.44, + "end": 18665.68, + "probability": 0.9558 + }, + { + "start": 18666.1, + "end": 18666.78, + "probability": 0.8549 + }, + { + "start": 18667.14, + "end": 18667.54, + "probability": 0.6538 + }, + { + "start": 18667.6, + "end": 18668.94, + "probability": 0.9503 + }, + { + "start": 18669.3, + "end": 18672.54, + "probability": 0.9769 + }, + { + "start": 18672.66, + "end": 18673.16, + "probability": 0.9529 + }, + { + "start": 18674.26, + "end": 18676.72, + "probability": 0.8122 + }, + { + "start": 18677.24, + "end": 18680.52, + "probability": 0.9899 + }, + { + "start": 18680.62, + "end": 18681.52, + "probability": 0.9958 + }, + { + "start": 18681.56, + "end": 18682.92, + "probability": 0.7939 + }, + { + "start": 18683.38, + "end": 18685.96, + "probability": 0.9741 + }, + { + "start": 18687.02, + "end": 18688.4, + "probability": 0.9977 + }, + { + "start": 18688.98, + "end": 18693.26, + "probability": 0.9575 + }, + { + "start": 18693.82, + "end": 18696.54, + "probability": 0.9397 + }, + { + "start": 18696.7, + "end": 18699.54, + "probability": 0.9702 + }, + { + "start": 18700.3, + "end": 18701.0, + "probability": 0.5261 + }, + { + "start": 18701.22, + "end": 18702.58, + "probability": 0.3328 + }, + { + "start": 18702.58, + "end": 18703.08, + "probability": 0.6518 + }, + { + "start": 18703.22, + "end": 18704.64, + "probability": 0.9349 + }, + { + "start": 18705.42, + "end": 18707.52, + "probability": 0.9606 + }, + { + "start": 18707.9, + "end": 18712.42, + "probability": 0.9866 + }, + { + "start": 18712.96, + "end": 18717.98, + "probability": 0.9379 + }, + { + "start": 18718.32, + "end": 18723.18, + "probability": 0.9941 + }, + { + "start": 18723.92, + "end": 18726.2, + "probability": 0.9893 + }, + { + "start": 18726.62, + "end": 18730.76, + "probability": 0.854 + }, + { + "start": 18731.4, + "end": 18733.58, + "probability": 0.9205 + }, + { + "start": 18733.58, + "end": 18736.98, + "probability": 0.9943 + }, + { + "start": 18738.06, + "end": 18738.88, + "probability": 0.5482 + }, + { + "start": 18739.6, + "end": 18742.2, + "probability": 0.9888 + }, + { + "start": 18742.44, + "end": 18745.84, + "probability": 0.9877 + }, + { + "start": 18746.2, + "end": 18747.4, + "probability": 0.9359 + }, + { + "start": 18748.32, + "end": 18748.86, + "probability": 0.8989 + }, + { + "start": 18748.92, + "end": 18750.44, + "probability": 0.9633 + }, + { + "start": 18750.48, + "end": 18751.06, + "probability": 0.9423 + }, + { + "start": 18751.08, + "end": 18752.02, + "probability": 0.9294 + }, + { + "start": 18752.12, + "end": 18753.06, + "probability": 0.7719 + }, + { + "start": 18753.48, + "end": 18754.12, + "probability": 0.7177 + }, + { + "start": 18754.24, + "end": 18756.5, + "probability": 0.8544 + }, + { + "start": 18756.52, + "end": 18758.68, + "probability": 0.9407 + }, + { + "start": 18759.0, + "end": 18764.88, + "probability": 0.8291 + }, + { + "start": 18765.92, + "end": 18769.62, + "probability": 0.9526 + }, + { + "start": 18770.06, + "end": 18773.12, + "probability": 0.9989 + }, + { + "start": 18773.12, + "end": 18776.04, + "probability": 0.9993 + }, + { + "start": 18776.2, + "end": 18780.58, + "probability": 0.894 + }, + { + "start": 18780.98, + "end": 18782.1, + "probability": 0.8687 + }, + { + "start": 18782.12, + "end": 18785.92, + "probability": 0.7505 + }, + { + "start": 18785.92, + "end": 18787.92, + "probability": 0.8663 + }, + { + "start": 18788.24, + "end": 18790.4, + "probability": 0.6472 + }, + { + "start": 18790.74, + "end": 18792.62, + "probability": 0.7278 + }, + { + "start": 18792.9, + "end": 18796.36, + "probability": 0.5648 + }, + { + "start": 18796.9, + "end": 18797.52, + "probability": 0.8324 + }, + { + "start": 18797.86, + "end": 18802.24, + "probability": 0.8136 + }, + { + "start": 18802.64, + "end": 18804.36, + "probability": 0.891 + }, + { + "start": 18804.42, + "end": 18806.06, + "probability": 0.8965 + }, + { + "start": 18806.12, + "end": 18807.22, + "probability": 0.972 + }, + { + "start": 18807.38, + "end": 18809.25, + "probability": 0.7227 + }, + { + "start": 18809.76, + "end": 18812.3, + "probability": 0.8949 + }, + { + "start": 18812.38, + "end": 18813.58, + "probability": 0.9904 + }, + { + "start": 18813.64, + "end": 18815.92, + "probability": 0.6119 + }, + { + "start": 18816.18, + "end": 18817.2, + "probability": 0.9575 + }, + { + "start": 18817.3, + "end": 18822.34, + "probability": 0.9386 + }, + { + "start": 18822.92, + "end": 18823.96, + "probability": 0.9146 + }, + { + "start": 18824.08, + "end": 18824.98, + "probability": 0.9688 + }, + { + "start": 18825.06, + "end": 18826.56, + "probability": 0.9798 + }, + { + "start": 18826.88, + "end": 18827.92, + "probability": 0.8987 + }, + { + "start": 18828.36, + "end": 18831.16, + "probability": 0.9703 + }, + { + "start": 18831.86, + "end": 18837.32, + "probability": 0.9914 + }, + { + "start": 18837.58, + "end": 18843.76, + "probability": 0.8234 + }, + { + "start": 18844.34, + "end": 18846.42, + "probability": 0.9802 + }, + { + "start": 18846.46, + "end": 18847.35, + "probability": 0.9741 + }, + { + "start": 18849.54, + "end": 18853.62, + "probability": 0.9333 + }, + { + "start": 18853.78, + "end": 18855.62, + "probability": 0.9886 + }, + { + "start": 18856.38, + "end": 18860.52, + "probability": 0.9948 + }, + { + "start": 18860.64, + "end": 18863.92, + "probability": 0.972 + }, + { + "start": 18864.04, + "end": 18866.18, + "probability": 0.999 + }, + { + "start": 18866.64, + "end": 18867.6, + "probability": 0.8655 + }, + { + "start": 18868.12, + "end": 18869.78, + "probability": 0.9375 + }, + { + "start": 18869.86, + "end": 18870.48, + "probability": 0.7897 + }, + { + "start": 18870.56, + "end": 18877.14, + "probability": 0.9667 + }, + { + "start": 18877.26, + "end": 18880.26, + "probability": 0.8266 + }, + { + "start": 18880.4, + "end": 18881.1, + "probability": 0.616 + }, + { + "start": 18881.5, + "end": 18882.11, + "probability": 0.8728 + }, + { + "start": 18882.8, + "end": 18884.4, + "probability": 0.9839 + }, + { + "start": 18884.64, + "end": 18884.9, + "probability": 0.5021 + }, + { + "start": 18885.22, + "end": 18886.18, + "probability": 0.7783 + }, + { + "start": 18886.52, + "end": 18887.6, + "probability": 0.9463 + }, + { + "start": 18887.66, + "end": 18888.44, + "probability": 0.939 + }, + { + "start": 18888.52, + "end": 18890.44, + "probability": 0.9951 + }, + { + "start": 18891.04, + "end": 18892.4, + "probability": 0.9814 + }, + { + "start": 18892.44, + "end": 18893.98, + "probability": 0.9211 + }, + { + "start": 18894.36, + "end": 18895.66, + "probability": 0.982 + }, + { + "start": 18895.78, + "end": 18898.08, + "probability": 0.8386 + }, + { + "start": 18898.26, + "end": 18899.82, + "probability": 0.8939 + }, + { + "start": 18900.06, + "end": 18902.74, + "probability": 0.9801 + }, + { + "start": 18902.84, + "end": 18903.25, + "probability": 0.9541 + }, + { + "start": 18903.64, + "end": 18904.07, + "probability": 0.9917 + }, + { + "start": 18904.3, + "end": 18904.65, + "probability": 0.9122 + }, + { + "start": 18905.44, + "end": 18905.85, + "probability": 0.731 + }, + { + "start": 18906.82, + "end": 18907.14, + "probability": 0.7378 + }, + { + "start": 18907.18, + "end": 18909.4, + "probability": 0.9926 + }, + { + "start": 18909.4, + "end": 18912.58, + "probability": 0.9761 + }, + { + "start": 18912.84, + "end": 18914.96, + "probability": 0.9925 + }, + { + "start": 18915.3, + "end": 18915.82, + "probability": 0.7315 + }, + { + "start": 18915.84, + "end": 18916.12, + "probability": 0.3542 + }, + { + "start": 18916.16, + "end": 18916.58, + "probability": 0.724 + }, + { + "start": 18916.66, + "end": 18917.24, + "probability": 0.9294 + }, + { + "start": 18917.3, + "end": 18918.36, + "probability": 0.832 + }, + { + "start": 18918.56, + "end": 18920.17, + "probability": 0.9614 + }, + { + "start": 18920.5, + "end": 18922.5, + "probability": 0.9604 + }, + { + "start": 18922.5, + "end": 18925.14, + "probability": 0.9163 + }, + { + "start": 18925.38, + "end": 18925.92, + "probability": 0.8694 + }, + { + "start": 18928.17, + "end": 18928.66, + "probability": 0.0346 + }, + { + "start": 18928.66, + "end": 18930.32, + "probability": 0.4237 + }, + { + "start": 18930.82, + "end": 18933.44, + "probability": 0.9883 + }, + { + "start": 18934.24, + "end": 18937.68, + "probability": 0.9298 + }, + { + "start": 18939.2, + "end": 18940.0, + "probability": 0.975 + }, + { + "start": 18941.06, + "end": 18945.74, + "probability": 0.9884 + }, + { + "start": 18945.74, + "end": 18950.1, + "probability": 0.9971 + }, + { + "start": 18950.36, + "end": 18952.44, + "probability": 0.9434 + }, + { + "start": 18953.02, + "end": 18954.04, + "probability": 0.7499 + }, + { + "start": 18954.9, + "end": 18958.62, + "probability": 0.9962 + }, + { + "start": 18958.66, + "end": 18960.1, + "probability": 0.8888 + }, + { + "start": 18960.34, + "end": 18963.58, + "probability": 0.9927 + }, + { + "start": 18964.14, + "end": 18967.24, + "probability": 0.9921 + }, + { + "start": 18967.24, + "end": 18971.66, + "probability": 0.99 + }, + { + "start": 18971.96, + "end": 18972.55, + "probability": 0.9745 + }, + { + "start": 18972.86, + "end": 18974.09, + "probability": 0.9761 + }, + { + "start": 18974.22, + "end": 18975.24, + "probability": 0.9878 + }, + { + "start": 18975.38, + "end": 18978.06, + "probability": 0.9553 + }, + { + "start": 18978.12, + "end": 18980.34, + "probability": 0.9426 + }, + { + "start": 18980.38, + "end": 18980.84, + "probability": 0.6569 + }, + { + "start": 18980.86, + "end": 18982.62, + "probability": 0.9922 + }, + { + "start": 18982.96, + "end": 18983.58, + "probability": 0.8838 + }, + { + "start": 18983.78, + "end": 18983.86, + "probability": 0.8794 + }, + { + "start": 18983.92, + "end": 18987.18, + "probability": 0.9268 + }, + { + "start": 18987.52, + "end": 18988.82, + "probability": 0.9668 + }, + { + "start": 18988.84, + "end": 18990.1, + "probability": 0.3814 + }, + { + "start": 18990.18, + "end": 18993.02, + "probability": 0.7631 + }, + { + "start": 18994.1, + "end": 18998.22, + "probability": 0.9482 + }, + { + "start": 18998.28, + "end": 18999.72, + "probability": 0.8378 + }, + { + "start": 18999.92, + "end": 19001.3, + "probability": 0.7063 + }, + { + "start": 19001.84, + "end": 19009.66, + "probability": 0.9749 + }, + { + "start": 19010.02, + "end": 19010.64, + "probability": 0.4972 + }, + { + "start": 19010.7, + "end": 19013.52, + "probability": 0.9937 + }, + { + "start": 19013.52, + "end": 19020.38, + "probability": 0.9797 + }, + { + "start": 19020.98, + "end": 19021.86, + "probability": 0.9744 + }, + { + "start": 19022.84, + "end": 19026.56, + "probability": 0.9841 + }, + { + "start": 19027.1, + "end": 19030.02, + "probability": 0.9971 + }, + { + "start": 19030.14, + "end": 19031.68, + "probability": 0.9752 + }, + { + "start": 19032.43, + "end": 19034.78, + "probability": 0.8554 + }, + { + "start": 19035.24, + "end": 19036.48, + "probability": 0.9619 + }, + { + "start": 19036.9, + "end": 19038.36, + "probability": 0.9851 + }, + { + "start": 19038.82, + "end": 19042.26, + "probability": 0.9941 + }, + { + "start": 19042.38, + "end": 19043.38, + "probability": 0.8028 + }, + { + "start": 19043.88, + "end": 19044.52, + "probability": 0.6952 + }, + { + "start": 19044.64, + "end": 19045.36, + "probability": 0.8327 + }, + { + "start": 19045.56, + "end": 19047.94, + "probability": 0.9537 + }, + { + "start": 19048.0, + "end": 19048.92, + "probability": 0.7592 + }, + { + "start": 19049.22, + "end": 19051.0, + "probability": 0.9868 + }, + { + "start": 19051.7, + "end": 19057.44, + "probability": 0.9717 + }, + { + "start": 19057.74, + "end": 19059.14, + "probability": 0.9159 + }, + { + "start": 19059.42, + "end": 19061.28, + "probability": 0.9988 + }, + { + "start": 19061.56, + "end": 19063.9, + "probability": 0.9957 + }, + { + "start": 19063.9, + "end": 19066.76, + "probability": 0.9089 + }, + { + "start": 19067.04, + "end": 19070.44, + "probability": 0.978 + }, + { + "start": 19070.74, + "end": 19073.62, + "probability": 0.9897 + }, + { + "start": 19074.58, + "end": 19076.73, + "probability": 0.8884 + }, + { + "start": 19078.57, + "end": 19080.92, + "probability": 0.9617 + }, + { + "start": 19081.02, + "end": 19081.56, + "probability": 0.6286 + }, + { + "start": 19081.62, + "end": 19082.5, + "probability": 0.8501 + }, + { + "start": 19082.56, + "end": 19082.88, + "probability": 0.9501 + }, + { + "start": 19082.96, + "end": 19083.7, + "probability": 0.0103 + }, + { + "start": 19088.3, + "end": 19088.68, + "probability": 0.9585 + }, + { + "start": 19089.2, + "end": 19089.2, + "probability": 0.129 + }, + { + "start": 19089.2, + "end": 19093.22, + "probability": 0.7896 + }, + { + "start": 19093.38, + "end": 19096.24, + "probability": 0.7988 + }, + { + "start": 19096.84, + "end": 19097.92, + "probability": 0.529 + }, + { + "start": 19098.14, + "end": 19099.76, + "probability": 0.9047 + }, + { + "start": 19099.86, + "end": 19102.76, + "probability": 0.9483 + }, + { + "start": 19103.4, + "end": 19108.62, + "probability": 0.9941 + }, + { + "start": 19108.62, + "end": 19113.48, + "probability": 0.9902 + }, + { + "start": 19114.06, + "end": 19115.94, + "probability": 0.6359 + }, + { + "start": 19116.22, + "end": 19120.2, + "probability": 0.9911 + }, + { + "start": 19120.7, + "end": 19123.36, + "probability": 0.9351 + }, + { + "start": 19123.78, + "end": 19125.72, + "probability": 0.8426 + }, + { + "start": 19126.1, + "end": 19129.4, + "probability": 0.9205 + }, + { + "start": 19129.48, + "end": 19134.18, + "probability": 0.9995 + }, + { + "start": 19134.18, + "end": 19139.08, + "probability": 0.9902 + }, + { + "start": 19139.38, + "end": 19139.92, + "probability": 0.8944 + }, + { + "start": 19140.04, + "end": 19143.32, + "probability": 0.9966 + }, + { + "start": 19143.78, + "end": 19150.04, + "probability": 0.9707 + }, + { + "start": 19150.08, + "end": 19153.46, + "probability": 0.965 + }, + { + "start": 19153.68, + "end": 19154.62, + "probability": 0.6447 + }, + { + "start": 19155.02, + "end": 19156.16, + "probability": 0.6235 + }, + { + "start": 19156.28, + "end": 19156.84, + "probability": 0.8787 + }, + { + "start": 19156.92, + "end": 19159.1, + "probability": 0.6002 + }, + { + "start": 19159.76, + "end": 19160.9, + "probability": 0.7167 + }, + { + "start": 19160.96, + "end": 19164.38, + "probability": 0.7833 + }, + { + "start": 19164.74, + "end": 19165.84, + "probability": 0.9468 + }, + { + "start": 19166.68, + "end": 19169.48, + "probability": 0.895 + }, + { + "start": 19170.02, + "end": 19170.94, + "probability": 0.8007 + }, + { + "start": 19171.1, + "end": 19171.38, + "probability": 0.863 + }, + { + "start": 19171.78, + "end": 19173.22, + "probability": 0.9722 + }, + { + "start": 19173.26, + "end": 19173.78, + "probability": 0.6321 + }, + { + "start": 19173.86, + "end": 19176.1, + "probability": 0.6969 + }, + { + "start": 19177.46, + "end": 19179.62, + "probability": 0.9286 + }, + { + "start": 19179.84, + "end": 19184.72, + "probability": 0.9697 + }, + { + "start": 19184.76, + "end": 19186.28, + "probability": 0.8722 + }, + { + "start": 19186.92, + "end": 19188.42, + "probability": 0.9463 + }, + { + "start": 19188.48, + "end": 19189.62, + "probability": 0.9808 + }, + { + "start": 19189.68, + "end": 19191.64, + "probability": 0.9897 + }, + { + "start": 19191.64, + "end": 19192.6, + "probability": 0.8705 + }, + { + "start": 19192.82, + "end": 19195.58, + "probability": 0.9745 + }, + { + "start": 19195.64, + "end": 19196.26, + "probability": 0.7941 + }, + { + "start": 19196.54, + "end": 19197.66, + "probability": 0.8807 + }, + { + "start": 19197.94, + "end": 19199.92, + "probability": 0.6486 + }, + { + "start": 19200.02, + "end": 19200.93, + "probability": 0.7077 + }, + { + "start": 19201.9, + "end": 19203.16, + "probability": 0.8254 + }, + { + "start": 19203.26, + "end": 19204.0, + "probability": 0.9101 + }, + { + "start": 19204.28, + "end": 19206.25, + "probability": 0.9758 + }, + { + "start": 19206.62, + "end": 19209.18, + "probability": 0.9483 + }, + { + "start": 19209.42, + "end": 19211.22, + "probability": 0.6048 + }, + { + "start": 19211.52, + "end": 19213.36, + "probability": 0.7958 + }, + { + "start": 19213.78, + "end": 19215.97, + "probability": 0.9409 + }, + { + "start": 19216.08, + "end": 19217.17, + "probability": 0.9922 + }, + { + "start": 19217.74, + "end": 19220.14, + "probability": 0.9955 + }, + { + "start": 19220.66, + "end": 19222.22, + "probability": 0.8665 + }, + { + "start": 19222.68, + "end": 19225.73, + "probability": 0.9717 + }, + { + "start": 19226.48, + "end": 19229.3, + "probability": 0.9722 + }, + { + "start": 19229.68, + "end": 19231.2, + "probability": 0.9504 + }, + { + "start": 19231.88, + "end": 19233.76, + "probability": 0.8751 + }, + { + "start": 19234.22, + "end": 19237.42, + "probability": 0.9333 + }, + { + "start": 19237.5, + "end": 19238.22, + "probability": 0.9917 + }, + { + "start": 19238.86, + "end": 19244.28, + "probability": 0.998 + }, + { + "start": 19244.88, + "end": 19250.3, + "probability": 0.9526 + }, + { + "start": 19250.6, + "end": 19252.4, + "probability": 0.97 + }, + { + "start": 19252.46, + "end": 19254.64, + "probability": 0.9578 + }, + { + "start": 19254.98, + "end": 19259.54, + "probability": 0.9985 + }, + { + "start": 19259.98, + "end": 19263.86, + "probability": 0.9932 + }, + { + "start": 19264.38, + "end": 19268.58, + "probability": 0.9938 + }, + { + "start": 19270.0, + "end": 19273.84, + "probability": 0.9619 + }, + { + "start": 19274.02, + "end": 19277.64, + "probability": 0.9874 + }, + { + "start": 19278.1, + "end": 19280.76, + "probability": 0.9558 + }, + { + "start": 19280.84, + "end": 19284.84, + "probability": 0.8979 + }, + { + "start": 19285.48, + "end": 19289.38, + "probability": 0.9979 + }, + { + "start": 19290.38, + "end": 19294.2, + "probability": 0.9816 + }, + { + "start": 19294.74, + "end": 19296.58, + "probability": 0.999 + }, + { + "start": 19296.86, + "end": 19298.69, + "probability": 0.981 + }, + { + "start": 19299.12, + "end": 19299.52, + "probability": 0.6134 + }, + { + "start": 19299.82, + "end": 19300.56, + "probability": 0.6167 + }, + { + "start": 19300.9, + "end": 19302.66, + "probability": 0.6724 + }, + { + "start": 19303.06, + "end": 19305.06, + "probability": 0.994 + }, + { + "start": 19305.6, + "end": 19312.3, + "probability": 0.8151 + }, + { + "start": 19312.78, + "end": 19316.26, + "probability": 0.9587 + }, + { + "start": 19316.3, + "end": 19320.38, + "probability": 0.8216 + }, + { + "start": 19320.6, + "end": 19321.04, + "probability": 0.3781 + }, + { + "start": 19322.48, + "end": 19322.84, + "probability": 0.903 + }, + { + "start": 19322.84, + "end": 19323.1, + "probability": 0.4716 + }, + { + "start": 19323.64, + "end": 19327.94, + "probability": 0.7254 + }, + { + "start": 19328.3, + "end": 19329.35, + "probability": 0.9046 + }, + { + "start": 19331.04, + "end": 19333.4, + "probability": 0.9187 + }, + { + "start": 19333.74, + "end": 19336.56, + "probability": 0.9734 + }, + { + "start": 19337.08, + "end": 19337.94, + "probability": 0.8192 + }, + { + "start": 19337.98, + "end": 19339.57, + "probability": 0.9579 + }, + { + "start": 19340.0, + "end": 19342.72, + "probability": 0.9858 + }, + { + "start": 19342.72, + "end": 19347.4, + "probability": 0.9923 + }, + { + "start": 19348.04, + "end": 19349.46, + "probability": 0.8692 + }, + { + "start": 19350.14, + "end": 19352.64, + "probability": 0.8039 + }, + { + "start": 19353.18, + "end": 19354.64, + "probability": 0.9294 + }, + { + "start": 19354.8, + "end": 19357.04, + "probability": 0.9725 + }, + { + "start": 19357.12, + "end": 19362.44, + "probability": 0.9951 + }, + { + "start": 19362.54, + "end": 19363.62, + "probability": 0.9914 + }, + { + "start": 19364.84, + "end": 19366.16, + "probability": 0.9807 + }, + { + "start": 19366.38, + "end": 19370.1, + "probability": 0.9424 + }, + { + "start": 19370.22, + "end": 19371.3, + "probability": 0.7497 + }, + { + "start": 19371.56, + "end": 19373.72, + "probability": 0.9949 + }, + { + "start": 19373.94, + "end": 19376.52, + "probability": 0.985 + }, + { + "start": 19376.54, + "end": 19379.6, + "probability": 0.9434 + }, + { + "start": 19380.56, + "end": 19383.16, + "probability": 0.963 + }, + { + "start": 19383.2, + "end": 19388.34, + "probability": 0.9917 + }, + { + "start": 19388.68, + "end": 19389.92, + "probability": 0.8838 + }, + { + "start": 19390.24, + "end": 19392.3, + "probability": 0.9628 + }, + { + "start": 19392.54, + "end": 19395.44, + "probability": 0.9922 + }, + { + "start": 19395.92, + "end": 19399.7, + "probability": 0.9922 + }, + { + "start": 19399.7, + "end": 19402.8, + "probability": 0.8649 + }, + { + "start": 19402.86, + "end": 19405.22, + "probability": 0.9694 + }, + { + "start": 19405.92, + "end": 19409.62, + "probability": 0.9331 + }, + { + "start": 19410.12, + "end": 19411.28, + "probability": 0.9452 + }, + { + "start": 19411.48, + "end": 19414.54, + "probability": 0.9922 + }, + { + "start": 19415.2, + "end": 19415.84, + "probability": 0.385 + }, + { + "start": 19416.26, + "end": 19421.52, + "probability": 0.8131 + }, + { + "start": 19421.52, + "end": 19427.68, + "probability": 0.9246 + }, + { + "start": 19428.26, + "end": 19431.22, + "probability": 0.9102 + }, + { + "start": 19431.9, + "end": 19437.72, + "probability": 0.9941 + }, + { + "start": 19438.1, + "end": 19440.68, + "probability": 0.9902 + }, + { + "start": 19441.1, + "end": 19444.9, + "probability": 0.9673 + }, + { + "start": 19445.32, + "end": 19446.32, + "probability": 0.9363 + }, + { + "start": 19446.9, + "end": 19447.95, + "probability": 0.9038 + }, + { + "start": 19448.62, + "end": 19452.0, + "probability": 0.9683 + }, + { + "start": 19452.38, + "end": 19452.87, + "probability": 0.894 + }, + { + "start": 19453.66, + "end": 19457.33, + "probability": 0.8625 + }, + { + "start": 19457.78, + "end": 19463.16, + "probability": 0.9803 + }, + { + "start": 19463.5, + "end": 19465.02, + "probability": 0.9584 + }, + { + "start": 19465.38, + "end": 19465.8, + "probability": 0.7563 + }, + { + "start": 19466.06, + "end": 19467.14, + "probability": 0.9806 + }, + { + "start": 19467.26, + "end": 19468.42, + "probability": 0.9187 + }, + { + "start": 19468.72, + "end": 19470.0, + "probability": 0.9172 + }, + { + "start": 19470.32, + "end": 19471.08, + "probability": 0.6922 + }, + { + "start": 19471.46, + "end": 19476.58, + "probability": 0.9648 + }, + { + "start": 19476.58, + "end": 19484.18, + "probability": 0.9763 + }, + { + "start": 19484.94, + "end": 19485.98, + "probability": 0.6916 + }, + { + "start": 19486.46, + "end": 19488.96, + "probability": 0.9249 + }, + { + "start": 19488.98, + "end": 19489.48, + "probability": 0.7888 + }, + { + "start": 19489.56, + "end": 19491.16, + "probability": 0.9685 + }, + { + "start": 19491.54, + "end": 19494.12, + "probability": 0.9399 + }, + { + "start": 19494.36, + "end": 19497.64, + "probability": 0.9802 + }, + { + "start": 19497.64, + "end": 19500.72, + "probability": 0.965 + }, + { + "start": 19500.78, + "end": 19501.36, + "probability": 0.4846 + }, + { + "start": 19501.66, + "end": 19502.96, + "probability": 0.8827 + }, + { + "start": 19503.38, + "end": 19503.8, + "probability": 0.7461 + }, + { + "start": 19503.92, + "end": 19507.46, + "probability": 0.9365 + }, + { + "start": 19507.54, + "end": 19509.94, + "probability": 0.9859 + }, + { + "start": 19510.2, + "end": 19511.28, + "probability": 0.9992 + }, + { + "start": 19511.6, + "end": 19513.46, + "probability": 0.9457 + }, + { + "start": 19513.88, + "end": 19515.4, + "probability": 0.9839 + }, + { + "start": 19515.88, + "end": 19518.86, + "probability": 0.9639 + }, + { + "start": 19518.96, + "end": 19522.76, + "probability": 0.9765 + }, + { + "start": 19523.14, + "end": 19523.96, + "probability": 0.9104 + }, + { + "start": 19524.16, + "end": 19525.4, + "probability": 0.9843 + }, + { + "start": 19525.46, + "end": 19526.6, + "probability": 0.9937 + }, + { + "start": 19526.92, + "end": 19528.02, + "probability": 0.9673 + }, + { + "start": 19528.48, + "end": 19529.36, + "probability": 0.9663 + }, + { + "start": 19529.84, + "end": 19530.3, + "probability": 0.453 + }, + { + "start": 19531.7, + "end": 19534.26, + "probability": 0.9401 + }, + { + "start": 19534.88, + "end": 19536.7, + "probability": 0.9362 + }, + { + "start": 19538.59, + "end": 19540.16, + "probability": 0.0834 + }, + { + "start": 19561.24, + "end": 19561.92, + "probability": 0.5588 + }, + { + "start": 19565.78, + "end": 19569.52, + "probability": 0.7709 + }, + { + "start": 19572.36, + "end": 19576.6, + "probability": 0.9814 + }, + { + "start": 19577.28, + "end": 19578.76, + "probability": 0.8792 + }, + { + "start": 19579.46, + "end": 19581.18, + "probability": 0.9696 + }, + { + "start": 19582.04, + "end": 19584.64, + "probability": 0.9144 + }, + { + "start": 19585.3, + "end": 19586.64, + "probability": 0.5239 + }, + { + "start": 19587.16, + "end": 19588.7, + "probability": 0.7317 + }, + { + "start": 19590.1, + "end": 19592.18, + "probability": 0.6712 + }, + { + "start": 19593.32, + "end": 19594.8, + "probability": 0.7777 + }, + { + "start": 19597.04, + "end": 19601.36, + "probability": 0.946 + }, + { + "start": 19601.76, + "end": 19603.6, + "probability": 0.7599 + }, + { + "start": 19604.52, + "end": 19607.44, + "probability": 0.9974 + }, + { + "start": 19609.0, + "end": 19610.58, + "probability": 0.9691 + }, + { + "start": 19611.8, + "end": 19614.1, + "probability": 0.3798 + }, + { + "start": 19614.84, + "end": 19616.82, + "probability": 0.7006 + }, + { + "start": 19617.66, + "end": 19618.36, + "probability": 0.4398 + }, + { + "start": 19619.0, + "end": 19622.08, + "probability": 0.8789 + }, + { + "start": 19622.92, + "end": 19623.38, + "probability": 0.5828 + }, + { + "start": 19624.78, + "end": 19629.96, + "probability": 0.8478 + }, + { + "start": 19631.38, + "end": 19632.82, + "probability": 0.6552 + }, + { + "start": 19633.98, + "end": 19635.24, + "probability": 0.9663 + }, + { + "start": 19636.26, + "end": 19639.0, + "probability": 0.829 + }, + { + "start": 19641.4, + "end": 19642.14, + "probability": 0.3365 + }, + { + "start": 19644.94, + "end": 19646.74, + "probability": 0.4642 + }, + { + "start": 19648.02, + "end": 19652.42, + "probability": 0.5791 + }, + { + "start": 19654.2, + "end": 19659.55, + "probability": 0.8247 + }, + { + "start": 19660.46, + "end": 19664.84, + "probability": 0.8802 + }, + { + "start": 19666.66, + "end": 19668.58, + "probability": 0.9258 + }, + { + "start": 19669.64, + "end": 19670.38, + "probability": 0.772 + }, + { + "start": 19671.3, + "end": 19672.12, + "probability": 0.4862 + }, + { + "start": 19674.24, + "end": 19676.78, + "probability": 0.9919 + }, + { + "start": 19678.44, + "end": 19679.14, + "probability": 0.7833 + }, + { + "start": 19679.88, + "end": 19681.54, + "probability": 0.8312 + }, + { + "start": 19682.38, + "end": 19686.18, + "probability": 0.5772 + }, + { + "start": 19689.48, + "end": 19690.84, + "probability": 0.8955 + }, + { + "start": 19691.8, + "end": 19695.38, + "probability": 0.9005 + }, + { + "start": 19696.36, + "end": 19699.48, + "probability": 0.8188 + }, + { + "start": 19700.24, + "end": 19700.9, + "probability": 0.8337 + }, + { + "start": 19701.78, + "end": 19703.76, + "probability": 0.9139 + }, + { + "start": 19704.42, + "end": 19706.32, + "probability": 0.9883 + }, + { + "start": 19708.38, + "end": 19709.52, + "probability": 0.9373 + }, + { + "start": 19709.58, + "end": 19710.52, + "probability": 0.9815 + }, + { + "start": 19710.6, + "end": 19712.34, + "probability": 0.5004 + }, + { + "start": 19713.08, + "end": 19715.1, + "probability": 0.629 + }, + { + "start": 19716.68, + "end": 19718.0, + "probability": 0.9336 + }, + { + "start": 19719.2, + "end": 19722.3, + "probability": 0.9421 + }, + { + "start": 19723.28, + "end": 19723.78, + "probability": 0.8549 + }, + { + "start": 19724.8, + "end": 19728.63, + "probability": 0.9951 + }, + { + "start": 19729.1, + "end": 19729.96, + "probability": 0.9332 + }, + { + "start": 19730.1, + "end": 19731.02, + "probability": 0.8532 + }, + { + "start": 19731.16, + "end": 19733.86, + "probability": 0.8589 + }, + { + "start": 19733.98, + "end": 19736.6, + "probability": 0.5555 + }, + { + "start": 19737.48, + "end": 19738.78, + "probability": 0.6342 + }, + { + "start": 19739.64, + "end": 19741.84, + "probability": 0.9504 + }, + { + "start": 19744.42, + "end": 19751.7, + "probability": 0.9912 + }, + { + "start": 19752.08, + "end": 19752.84, + "probability": 0.6773 + }, + { + "start": 19753.0, + "end": 19754.28, + "probability": 0.849 + }, + { + "start": 19754.78, + "end": 19760.6, + "probability": 0.934 + }, + { + "start": 19761.08, + "end": 19763.72, + "probability": 0.9335 + }, + { + "start": 19764.42, + "end": 19767.78, + "probability": 0.971 + }, + { + "start": 19768.36, + "end": 19770.58, + "probability": 0.793 + }, + { + "start": 19771.26, + "end": 19772.04, + "probability": 0.4831 + }, + { + "start": 19772.26, + "end": 19775.0, + "probability": 0.9058 + }, + { + "start": 19775.18, + "end": 19776.38, + "probability": 0.7893 + }, + { + "start": 19776.4, + "end": 19779.18, + "probability": 0.9727 + }, + { + "start": 19779.82, + "end": 19781.48, + "probability": 0.9872 + }, + { + "start": 19782.26, + "end": 19784.68, + "probability": 0.772 + }, + { + "start": 19785.38, + "end": 19789.32, + "probability": 0.637 + }, + { + "start": 19789.4, + "end": 19790.46, + "probability": 0.7503 + }, + { + "start": 19790.82, + "end": 19794.45, + "probability": 0.9634 + }, + { + "start": 19795.8, + "end": 19799.12, + "probability": 0.9023 + }, + { + "start": 19799.18, + "end": 19800.3, + "probability": 0.7735 + }, + { + "start": 19800.96, + "end": 19803.1, + "probability": 0.9837 + }, + { + "start": 19803.68, + "end": 19805.28, + "probability": 0.6438 + }, + { + "start": 19806.28, + "end": 19807.62, + "probability": 0.7932 + }, + { + "start": 19808.46, + "end": 19809.36, + "probability": 0.6682 + }, + { + "start": 19809.9, + "end": 19811.2, + "probability": 0.7712 + }, + { + "start": 19812.42, + "end": 19814.68, + "probability": 0.6671 + }, + { + "start": 19814.78, + "end": 19815.62, + "probability": 0.7935 + }, + { + "start": 19815.8, + "end": 19816.56, + "probability": 0.921 + }, + { + "start": 19816.74, + "end": 19818.33, + "probability": 0.8349 + }, + { + "start": 19819.74, + "end": 19821.66, + "probability": 0.9766 + }, + { + "start": 19822.54, + "end": 19825.3, + "probability": 0.8079 + }, + { + "start": 19825.86, + "end": 19826.64, + "probability": 0.9641 + }, + { + "start": 19827.24, + "end": 19827.82, + "probability": 0.7612 + }, + { + "start": 19828.66, + "end": 19831.02, + "probability": 0.7866 + }, + { + "start": 19833.28, + "end": 19834.28, + "probability": 0.7019 + }, + { + "start": 19835.1, + "end": 19836.56, + "probability": 0.998 + }, + { + "start": 19837.14, + "end": 19838.8, + "probability": 0.9488 + }, + { + "start": 19839.32, + "end": 19840.98, + "probability": 0.9116 + }, + { + "start": 19841.56, + "end": 19844.66, + "probability": 0.8427 + }, + { + "start": 19844.8, + "end": 19849.84, + "probability": 0.9867 + }, + { + "start": 19850.42, + "end": 19852.52, + "probability": 0.7842 + }, + { + "start": 19853.24, + "end": 19854.56, + "probability": 0.9592 + }, + { + "start": 19854.62, + "end": 19860.92, + "probability": 0.9749 + }, + { + "start": 19861.34, + "end": 19861.98, + "probability": 0.4498 + }, + { + "start": 19862.06, + "end": 19864.8, + "probability": 0.977 + }, + { + "start": 19865.24, + "end": 19867.1, + "probability": 0.9741 + }, + { + "start": 19868.0, + "end": 19871.52, + "probability": 0.8965 + }, + { + "start": 19871.6, + "end": 19873.64, + "probability": 0.9836 + }, + { + "start": 19874.06, + "end": 19874.76, + "probability": 0.9221 + }, + { + "start": 19874.96, + "end": 19876.74, + "probability": 0.9673 + }, + { + "start": 19877.24, + "end": 19879.44, + "probability": 0.9905 + }, + { + "start": 19879.82, + "end": 19883.26, + "probability": 0.9974 + }, + { + "start": 19883.58, + "end": 19885.38, + "probability": 0.9458 + }, + { + "start": 19885.8, + "end": 19888.04, + "probability": 0.8058 + }, + { + "start": 19888.26, + "end": 19893.86, + "probability": 0.9952 + }, + { + "start": 19894.2, + "end": 19896.66, + "probability": 0.986 + }, + { + "start": 19896.66, + "end": 19900.06, + "probability": 0.8881 + }, + { + "start": 19900.34, + "end": 19904.02, + "probability": 0.9821 + }, + { + "start": 19904.42, + "end": 19907.02, + "probability": 0.9297 + }, + { + "start": 19907.5, + "end": 19908.92, + "probability": 0.6592 + }, + { + "start": 19909.48, + "end": 19913.8, + "probability": 0.9506 + }, + { + "start": 19915.64, + "end": 19917.21, + "probability": 0.9878 + }, + { + "start": 19917.98, + "end": 19919.48, + "probability": 0.9888 + }, + { + "start": 19920.56, + "end": 19922.84, + "probability": 0.9902 + }, + { + "start": 19923.34, + "end": 19927.9, + "probability": 0.9961 + }, + { + "start": 19928.28, + "end": 19930.56, + "probability": 0.7587 + }, + { + "start": 19931.38, + "end": 19933.34, + "probability": 0.8199 + }, + { + "start": 19933.86, + "end": 19937.22, + "probability": 0.9946 + }, + { + "start": 19938.02, + "end": 19941.94, + "probability": 0.9436 + }, + { + "start": 19942.48, + "end": 19945.3, + "probability": 0.6667 + }, + { + "start": 19945.66, + "end": 19948.32, + "probability": 0.6042 + }, + { + "start": 19951.36, + "end": 19953.68, + "probability": 0.7542 + }, + { + "start": 19953.74, + "end": 19955.63, + "probability": 0.9646 + }, + { + "start": 19973.58, + "end": 19975.14, + "probability": 0.5947 + }, + { + "start": 19975.92, + "end": 19980.26, + "probability": 0.6234 + }, + { + "start": 19981.98, + "end": 19984.64, + "probability": 0.955 + }, + { + "start": 19985.4, + "end": 19988.64, + "probability": 0.8279 + }, + { + "start": 19989.4, + "end": 19990.78, + "probability": 0.9302 + }, + { + "start": 19992.48, + "end": 19994.46, + "probability": 0.9542 + }, + { + "start": 19995.3, + "end": 19997.62, + "probability": 0.8497 + }, + { + "start": 19998.26, + "end": 19999.66, + "probability": 0.745 + }, + { + "start": 20000.28, + "end": 20001.22, + "probability": 0.7809 + }, + { + "start": 20001.92, + "end": 20002.56, + "probability": 0.9131 + }, + { + "start": 20003.64, + "end": 20006.46, + "probability": 0.9706 + }, + { + "start": 20007.04, + "end": 20008.18, + "probability": 0.9924 + }, + { + "start": 20008.34, + "end": 20008.88, + "probability": 0.4939 + }, + { + "start": 20008.92, + "end": 20010.58, + "probability": 0.9552 + }, + { + "start": 20010.58, + "end": 20014.68, + "probability": 0.9937 + }, + { + "start": 20016.08, + "end": 20017.9, + "probability": 0.9967 + }, + { + "start": 20018.9, + "end": 20020.02, + "probability": 0.98 + }, + { + "start": 20020.8, + "end": 20021.84, + "probability": 0.9939 + }, + { + "start": 20023.3, + "end": 20026.32, + "probability": 0.967 + }, + { + "start": 20027.12, + "end": 20031.32, + "probability": 0.9719 + }, + { + "start": 20032.82, + "end": 20035.94, + "probability": 0.952 + }, + { + "start": 20036.52, + "end": 20039.14, + "probability": 0.9937 + }, + { + "start": 20040.42, + "end": 20041.89, + "probability": 0.8021 + }, + { + "start": 20042.96, + "end": 20045.92, + "probability": 0.9609 + }, + { + "start": 20046.32, + "end": 20048.64, + "probability": 0.9944 + }, + { + "start": 20050.42, + "end": 20051.18, + "probability": 0.4016 + }, + { + "start": 20051.76, + "end": 20054.88, + "probability": 0.9951 + }, + { + "start": 20055.74, + "end": 20056.64, + "probability": 0.8836 + }, + { + "start": 20057.44, + "end": 20059.54, + "probability": 0.9907 + }, + { + "start": 20060.0, + "end": 20063.06, + "probability": 0.9692 + }, + { + "start": 20064.54, + "end": 20069.98, + "probability": 0.9976 + }, + { + "start": 20070.5, + "end": 20075.3, + "probability": 0.9529 + }, + { + "start": 20075.84, + "end": 20082.56, + "probability": 0.7704 + }, + { + "start": 20083.52, + "end": 20086.7, + "probability": 0.8492 + }, + { + "start": 20087.18, + "end": 20091.52, + "probability": 0.9585 + }, + { + "start": 20091.84, + "end": 20092.38, + "probability": 0.9401 + }, + { + "start": 20092.52, + "end": 20093.0, + "probability": 0.9542 + }, + { + "start": 20093.48, + "end": 20096.18, + "probability": 0.9872 + }, + { + "start": 20096.38, + "end": 20100.72, + "probability": 0.9246 + }, + { + "start": 20101.28, + "end": 20102.7, + "probability": 0.9593 + }, + { + "start": 20103.96, + "end": 20105.12, + "probability": 0.7341 + }, + { + "start": 20106.08, + "end": 20108.68, + "probability": 0.987 + }, + { + "start": 20109.34, + "end": 20112.08, + "probability": 0.9944 + }, + { + "start": 20113.1, + "end": 20117.4, + "probability": 0.7885 + }, + { + "start": 20117.96, + "end": 20118.91, + "probability": 0.9937 + }, + { + "start": 20120.58, + "end": 20126.44, + "probability": 0.978 + }, + { + "start": 20126.94, + "end": 20127.8, + "probability": 0.9669 + }, + { + "start": 20127.94, + "end": 20128.76, + "probability": 0.7571 + }, + { + "start": 20130.86, + "end": 20131.44, + "probability": 0.8879 + }, + { + "start": 20132.08, + "end": 20133.26, + "probability": 0.9407 + }, + { + "start": 20133.48, + "end": 20135.2, + "probability": 0.9841 + }, + { + "start": 20135.6, + "end": 20136.22, + "probability": 0.835 + }, + { + "start": 20136.6, + "end": 20139.3, + "probability": 0.9963 + }, + { + "start": 20139.8, + "end": 20140.6, + "probability": 0.9951 + }, + { + "start": 20142.28, + "end": 20144.62, + "probability": 0.8444 + }, + { + "start": 20145.56, + "end": 20149.88, + "probability": 0.996 + }, + { + "start": 20150.68, + "end": 20153.62, + "probability": 0.8096 + }, + { + "start": 20154.76, + "end": 20155.54, + "probability": 0.9775 + }, + { + "start": 20156.48, + "end": 20162.04, + "probability": 0.9955 + }, + { + "start": 20163.68, + "end": 20167.42, + "probability": 0.9533 + }, + { + "start": 20167.42, + "end": 20172.14, + "probability": 0.908 + }, + { + "start": 20173.08, + "end": 20175.12, + "probability": 0.8442 + }, + { + "start": 20175.82, + "end": 20176.72, + "probability": 0.7964 + }, + { + "start": 20177.48, + "end": 20181.12, + "probability": 0.9888 + }, + { + "start": 20182.94, + "end": 20183.24, + "probability": 0.6442 + }, + { + "start": 20184.04, + "end": 20189.34, + "probability": 0.9941 + }, + { + "start": 20189.96, + "end": 20192.54, + "probability": 0.5163 + }, + { + "start": 20192.54, + "end": 20195.72, + "probability": 0.8923 + }, + { + "start": 20196.94, + "end": 20199.56, + "probability": 0.5372 + }, + { + "start": 20201.44, + "end": 20203.92, + "probability": 0.393 + }, + { + "start": 20204.8, + "end": 20207.48, + "probability": 0.9146 + }, + { + "start": 20207.94, + "end": 20208.12, + "probability": 0.5309 + }, + { + "start": 20211.76, + "end": 20213.86, + "probability": 0.9568 + }, + { + "start": 20214.68, + "end": 20216.76, + "probability": 0.8528 + }, + { + "start": 20218.06, + "end": 20219.08, + "probability": 0.9117 + }, + { + "start": 20219.58, + "end": 20219.76, + "probability": 0.6755 + }, + { + "start": 20220.5, + "end": 20222.42, + "probability": 0.9614 + }, + { + "start": 20222.94, + "end": 20225.06, + "probability": 0.9832 + }, + { + "start": 20225.7, + "end": 20226.72, + "probability": 0.8418 + }, + { + "start": 20227.58, + "end": 20228.64, + "probability": 0.5848 + }, + { + "start": 20229.28, + "end": 20230.74, + "probability": 0.9309 + }, + { + "start": 20231.38, + "end": 20232.48, + "probability": 0.8725 + }, + { + "start": 20234.28, + "end": 20234.54, + "probability": 0.8677 + }, + { + "start": 20235.2, + "end": 20238.1, + "probability": 0.9758 + }, + { + "start": 20239.04, + "end": 20244.16, + "probability": 0.9702 + }, + { + "start": 20245.34, + "end": 20248.34, + "probability": 0.9573 + }, + { + "start": 20249.0, + "end": 20256.4, + "probability": 0.9787 + }, + { + "start": 20256.52, + "end": 20257.74, + "probability": 0.983 + }, + { + "start": 20259.0, + "end": 20264.0, + "probability": 0.8516 + }, + { + "start": 20264.48, + "end": 20268.6, + "probability": 0.9453 + }, + { + "start": 20269.12, + "end": 20273.16, + "probability": 0.8537 + }, + { + "start": 20273.4, + "end": 20274.88, + "probability": 0.7878 + }, + { + "start": 20276.18, + "end": 20278.48, + "probability": 0.7764 + }, + { + "start": 20279.42, + "end": 20284.22, + "probability": 0.9584 + }, + { + "start": 20285.74, + "end": 20288.44, + "probability": 0.7944 + }, + { + "start": 20289.02, + "end": 20289.4, + "probability": 0.7379 + }, + { + "start": 20290.82, + "end": 20293.32, + "probability": 0.5569 + }, + { + "start": 20293.74, + "end": 20295.32, + "probability": 0.8713 + }, + { + "start": 20306.52, + "end": 20307.84, + "probability": 0.552 + }, + { + "start": 20309.28, + "end": 20311.74, + "probability": 0.9751 + }, + { + "start": 20312.44, + "end": 20313.96, + "probability": 0.8785 + }, + { + "start": 20315.26, + "end": 20318.64, + "probability": 0.9508 + }, + { + "start": 20320.46, + "end": 20321.16, + "probability": 0.801 + }, + { + "start": 20321.96, + "end": 20325.5, + "probability": 0.99 + }, + { + "start": 20327.08, + "end": 20331.84, + "probability": 0.9917 + }, + { + "start": 20332.72, + "end": 20336.56, + "probability": 0.833 + }, + { + "start": 20337.62, + "end": 20339.66, + "probability": 0.9117 + }, + { + "start": 20339.8, + "end": 20342.48, + "probability": 0.7417 + }, + { + "start": 20343.38, + "end": 20346.94, + "probability": 0.9895 + }, + { + "start": 20347.14, + "end": 20348.26, + "probability": 0.665 + }, + { + "start": 20348.92, + "end": 20350.42, + "probability": 0.9908 + }, + { + "start": 20350.6, + "end": 20352.58, + "probability": 0.7963 + }, + { + "start": 20353.28, + "end": 20355.22, + "probability": 0.8838 + }, + { + "start": 20356.28, + "end": 20358.54, + "probability": 0.769 + }, + { + "start": 20358.8, + "end": 20360.22, + "probability": 0.9891 + }, + { + "start": 20361.46, + "end": 20363.24, + "probability": 0.8616 + }, + { + "start": 20364.58, + "end": 20365.42, + "probability": 0.6473 + }, + { + "start": 20365.48, + "end": 20369.22, + "probability": 0.9622 + }, + { + "start": 20369.22, + "end": 20372.36, + "probability": 0.9905 + }, + { + "start": 20373.04, + "end": 20378.52, + "probability": 0.9701 + }, + { + "start": 20379.82, + "end": 20382.82, + "probability": 0.9323 + }, + { + "start": 20383.62, + "end": 20384.46, + "probability": 0.8623 + }, + { + "start": 20385.14, + "end": 20386.17, + "probability": 0.9816 + }, + { + "start": 20386.76, + "end": 20389.06, + "probability": 0.9915 + }, + { + "start": 20389.96, + "end": 20390.16, + "probability": 0.3403 + }, + { + "start": 20390.24, + "end": 20395.12, + "probability": 0.9651 + }, + { + "start": 20395.6, + "end": 20395.96, + "probability": 0.5166 + }, + { + "start": 20396.04, + "end": 20400.96, + "probability": 0.9872 + }, + { + "start": 20400.96, + "end": 20405.74, + "probability": 0.9943 + }, + { + "start": 20406.52, + "end": 20409.66, + "probability": 0.9642 + }, + { + "start": 20410.92, + "end": 20411.62, + "probability": 0.7135 + }, + { + "start": 20413.61, + "end": 20417.78, + "probability": 0.873 + }, + { + "start": 20418.04, + "end": 20420.92, + "probability": 0.9797 + }, + { + "start": 20421.02, + "end": 20421.94, + "probability": 0.8659 + }, + { + "start": 20422.76, + "end": 20424.3, + "probability": 0.8976 + }, + { + "start": 20424.9, + "end": 20426.0, + "probability": 0.7176 + }, + { + "start": 20427.1, + "end": 20430.16, + "probability": 0.9892 + }, + { + "start": 20430.16, + "end": 20434.64, + "probability": 0.9964 + }, + { + "start": 20435.64, + "end": 20440.1, + "probability": 0.8935 + }, + { + "start": 20441.2, + "end": 20445.66, + "probability": 0.9889 + }, + { + "start": 20445.74, + "end": 20447.64, + "probability": 0.9253 + }, + { + "start": 20448.14, + "end": 20448.7, + "probability": 0.5931 + }, + { + "start": 20448.8, + "end": 20449.62, + "probability": 0.9234 + }, + { + "start": 20450.48, + "end": 20453.12, + "probability": 0.9957 + }, + { + "start": 20454.1, + "end": 20457.02, + "probability": 0.9932 + }, + { + "start": 20457.62, + "end": 20458.4, + "probability": 0.8983 + }, + { + "start": 20459.8, + "end": 20463.14, + "probability": 0.9507 + }, + { + "start": 20463.84, + "end": 20466.24, + "probability": 0.9935 + }, + { + "start": 20466.96, + "end": 20472.06, + "probability": 0.98 + }, + { + "start": 20472.52, + "end": 20474.28, + "probability": 0.812 + }, + { + "start": 20475.08, + "end": 20477.02, + "probability": 0.9391 + }, + { + "start": 20477.54, + "end": 20482.26, + "probability": 0.6617 + }, + { + "start": 20482.9, + "end": 20485.32, + "probability": 0.9391 + }, + { + "start": 20485.9, + "end": 20488.4, + "probability": 0.9691 + }, + { + "start": 20489.34, + "end": 20490.88, + "probability": 0.9024 + }, + { + "start": 20492.8, + "end": 20495.18, + "probability": 0.8494 + }, + { + "start": 20495.7, + "end": 20497.86, + "probability": 0.8964 + }, + { + "start": 20498.46, + "end": 20500.7, + "probability": 0.9868 + }, + { + "start": 20501.22, + "end": 20504.72, + "probability": 0.9349 + }, + { + "start": 20505.36, + "end": 20508.32, + "probability": 0.9427 + }, + { + "start": 20509.08, + "end": 20509.32, + "probability": 0.7606 + }, + { + "start": 20510.74, + "end": 20512.76, + "probability": 0.7401 + }, + { + "start": 20512.86, + "end": 20514.38, + "probability": 0.9779 + }, + { + "start": 20535.54, + "end": 20535.84, + "probability": 0.6762 + }, + { + "start": 20536.1, + "end": 20536.58, + "probability": 0.726 + }, + { + "start": 20538.2, + "end": 20540.94, + "probability": 0.7064 + }, + { + "start": 20542.66, + "end": 20545.14, + "probability": 0.8572 + }, + { + "start": 20546.5, + "end": 20554.56, + "probability": 0.928 + }, + { + "start": 20556.46, + "end": 20558.22, + "probability": 0.9097 + }, + { + "start": 20558.6, + "end": 20560.06, + "probability": 0.3603 + }, + { + "start": 20560.16, + "end": 20560.98, + "probability": 0.7351 + }, + { + "start": 20561.18, + "end": 20563.32, + "probability": 0.6423 + }, + { + "start": 20563.94, + "end": 20565.24, + "probability": 0.9732 + }, + { + "start": 20566.98, + "end": 20568.9, + "probability": 0.8271 + }, + { + "start": 20569.1, + "end": 20574.46, + "probability": 0.9808 + }, + { + "start": 20574.94, + "end": 20578.48, + "probability": 0.8984 + }, + { + "start": 20579.62, + "end": 20581.82, + "probability": 0.7717 + }, + { + "start": 20583.46, + "end": 20589.2, + "probability": 0.8389 + }, + { + "start": 20590.58, + "end": 20595.34, + "probability": 0.9797 + }, + { + "start": 20596.2, + "end": 20596.92, + "probability": 0.9785 + }, + { + "start": 20597.82, + "end": 20598.84, + "probability": 0.9778 + }, + { + "start": 20600.92, + "end": 20602.68, + "probability": 0.7858 + }, + { + "start": 20604.16, + "end": 20607.76, + "probability": 0.8912 + }, + { + "start": 20608.32, + "end": 20610.92, + "probability": 0.9976 + }, + { + "start": 20611.98, + "end": 20613.14, + "probability": 0.9712 + }, + { + "start": 20614.4, + "end": 20616.99, + "probability": 0.9771 + }, + { + "start": 20618.2, + "end": 20621.24, + "probability": 0.9834 + }, + { + "start": 20621.82, + "end": 20627.74, + "probability": 0.9943 + }, + { + "start": 20627.74, + "end": 20632.78, + "probability": 0.907 + }, + { + "start": 20632.82, + "end": 20639.93, + "probability": 0.9761 + }, + { + "start": 20641.88, + "end": 20643.44, + "probability": 0.7226 + }, + { + "start": 20644.94, + "end": 20646.3, + "probability": 0.3548 + }, + { + "start": 20646.86, + "end": 20648.71, + "probability": 0.2557 + }, + { + "start": 20649.86, + "end": 20652.2, + "probability": 0.6883 + }, + { + "start": 20653.04, + "end": 20657.76, + "probability": 0.6479 + }, + { + "start": 20658.92, + "end": 20662.16, + "probability": 0.9838 + }, + { + "start": 20663.06, + "end": 20666.24, + "probability": 0.9901 + }, + { + "start": 20669.26, + "end": 20673.48, + "probability": 0.7838 + }, + { + "start": 20674.34, + "end": 20676.56, + "probability": 0.9626 + }, + { + "start": 20677.78, + "end": 20681.62, + "probability": 0.9881 + }, + { + "start": 20682.9, + "end": 20686.94, + "probability": 0.9906 + }, + { + "start": 20687.54, + "end": 20688.96, + "probability": 0.963 + }, + { + "start": 20689.84, + "end": 20691.08, + "probability": 0.9989 + }, + { + "start": 20692.48, + "end": 20697.12, + "probability": 0.9768 + }, + { + "start": 20698.24, + "end": 20701.78, + "probability": 0.9604 + }, + { + "start": 20702.46, + "end": 20703.38, + "probability": 0.7464 + }, + { + "start": 20704.8, + "end": 20706.52, + "probability": 0.9879 + }, + { + "start": 20707.26, + "end": 20708.82, + "probability": 0.9656 + }, + { + "start": 20708.92, + "end": 20712.7, + "probability": 0.9977 + }, + { + "start": 20714.04, + "end": 20718.4, + "probability": 0.9895 + }, + { + "start": 20719.48, + "end": 20721.98, + "probability": 0.7145 + }, + { + "start": 20723.2, + "end": 20729.62, + "probability": 0.9409 + }, + { + "start": 20729.62, + "end": 20735.44, + "probability": 0.9876 + }, + { + "start": 20736.74, + "end": 20737.92, + "probability": 0.9385 + }, + { + "start": 20738.02, + "end": 20738.72, + "probability": 0.4498 + }, + { + "start": 20738.88, + "end": 20741.6, + "probability": 0.8217 + }, + { + "start": 20742.22, + "end": 20749.96, + "probability": 0.9388 + }, + { + "start": 20749.96, + "end": 20754.02, + "probability": 0.8316 + }, + { + "start": 20755.24, + "end": 20759.0, + "probability": 0.8785 + }, + { + "start": 20760.24, + "end": 20762.56, + "probability": 0.9978 + }, + { + "start": 20764.3, + "end": 20770.28, + "probability": 0.9047 + }, + { + "start": 20771.28, + "end": 20774.62, + "probability": 0.9982 + }, + { + "start": 20774.62, + "end": 20780.74, + "probability": 0.9699 + }, + { + "start": 20785.46, + "end": 20787.18, + "probability": 0.6054 + }, + { + "start": 20787.26, + "end": 20788.5, + "probability": 0.8108 + }, + { + "start": 20788.62, + "end": 20790.52, + "probability": 0.7494 + }, + { + "start": 20791.06, + "end": 20797.6, + "probability": 0.9194 + }, + { + "start": 20798.7, + "end": 20799.94, + "probability": 0.9531 + }, + { + "start": 20801.02, + "end": 20801.72, + "probability": 0.7357 + }, + { + "start": 20802.04, + "end": 20802.94, + "probability": 0.7213 + }, + { + "start": 20804.86, + "end": 20806.21, + "probability": 0.9016 + }, + { + "start": 20807.56, + "end": 20809.84, + "probability": 0.9945 + }, + { + "start": 20810.8, + "end": 20813.66, + "probability": 0.9824 + }, + { + "start": 20814.08, + "end": 20815.1, + "probability": 0.9399 + }, + { + "start": 20815.84, + "end": 20817.84, + "probability": 0.7852 + }, + { + "start": 20818.78, + "end": 20819.28, + "probability": 0.5989 + }, + { + "start": 20819.48, + "end": 20824.52, + "probability": 0.9971 + }, + { + "start": 20825.74, + "end": 20828.44, + "probability": 0.9486 + }, + { + "start": 20829.34, + "end": 20832.04, + "probability": 0.9362 + }, + { + "start": 20833.16, + "end": 20839.12, + "probability": 0.9915 + }, + { + "start": 20840.18, + "end": 20841.72, + "probability": 0.6048 + }, + { + "start": 20842.62, + "end": 20846.52, + "probability": 0.9895 + }, + { + "start": 20846.52, + "end": 20850.62, + "probability": 0.9897 + }, + { + "start": 20851.0, + "end": 20851.2, + "probability": 0.5474 + }, + { + "start": 20851.38, + "end": 20852.86, + "probability": 0.7979 + }, + { + "start": 20855.94, + "end": 20857.5, + "probability": 0.3368 + }, + { + "start": 20861.2, + "end": 20861.34, + "probability": 0.0052 + }, + { + "start": 20861.34, + "end": 20863.46, + "probability": 0.7378 + }, + { + "start": 20864.16, + "end": 20865.22, + "probability": 0.1197 + }, + { + "start": 20865.88, + "end": 20867.12, + "probability": 0.6619 + }, + { + "start": 20867.24, + "end": 20871.62, + "probability": 0.99 + }, + { + "start": 20872.52, + "end": 20875.78, + "probability": 0.991 + }, + { + "start": 20876.42, + "end": 20879.58, + "probability": 0.9036 + }, + { + "start": 20880.24, + "end": 20882.6, + "probability": 0.9204 + }, + { + "start": 20883.34, + "end": 20885.56, + "probability": 0.993 + }, + { + "start": 20885.58, + "end": 20890.38, + "probability": 0.9982 + }, + { + "start": 20891.42, + "end": 20894.52, + "probability": 0.6037 + }, + { + "start": 20895.46, + "end": 20897.38, + "probability": 0.948 + }, + { + "start": 20898.28, + "end": 20900.92, + "probability": 0.9857 + }, + { + "start": 20901.7, + "end": 20906.02, + "probability": 0.9946 + }, + { + "start": 20906.7, + "end": 20907.46, + "probability": 0.7301 + }, + { + "start": 20908.54, + "end": 20912.0, + "probability": 0.9585 + }, + { + "start": 20912.96, + "end": 20919.86, + "probability": 0.9925 + }, + { + "start": 20920.98, + "end": 20924.0, + "probability": 0.9868 + }, + { + "start": 20924.74, + "end": 20928.7, + "probability": 0.989 + }, + { + "start": 20929.38, + "end": 20933.42, + "probability": 0.9224 + }, + { + "start": 20934.36, + "end": 20937.58, + "probability": 0.8473 + }, + { + "start": 20938.5, + "end": 20941.1, + "probability": 0.6239 + }, + { + "start": 20941.72, + "end": 20942.86, + "probability": 0.6261 + }, + { + "start": 20943.34, + "end": 20944.24, + "probability": 0.4973 + }, + { + "start": 20944.86, + "end": 20947.02, + "probability": 0.722 + }, + { + "start": 20947.82, + "end": 20950.16, + "probability": 0.9682 + }, + { + "start": 20950.92, + "end": 20952.48, + "probability": 0.9496 + }, + { + "start": 20953.08, + "end": 20956.42, + "probability": 0.895 + }, + { + "start": 20957.2, + "end": 20961.38, + "probability": 0.9692 + }, + { + "start": 20962.02, + "end": 20963.58, + "probability": 0.8776 + }, + { + "start": 20964.04, + "end": 20969.24, + "probability": 0.9922 + }, + { + "start": 20970.54, + "end": 20971.46, + "probability": 0.5808 + }, + { + "start": 20973.34, + "end": 20977.86, + "probability": 0.6579 + }, + { + "start": 20978.34, + "end": 20981.68, + "probability": 0.8998 + }, + { + "start": 20982.76, + "end": 20985.74, + "probability": 0.942 + }, + { + "start": 20985.9, + "end": 20990.44, + "probability": 0.9372 + }, + { + "start": 20991.1, + "end": 20991.82, + "probability": 0.1722 + }, + { + "start": 20991.86, + "end": 20992.32, + "probability": 0.4763 + }, + { + "start": 20992.32, + "end": 20995.0, + "probability": 0.6576 + }, + { + "start": 20995.32, + "end": 20996.36, + "probability": 0.2323 + }, + { + "start": 20996.68, + "end": 20998.07, + "probability": 0.1852 + }, + { + "start": 21000.27, + "end": 21003.82, + "probability": 0.7703 + }, + { + "start": 21004.4, + "end": 21006.72, + "probability": 0.793 + }, + { + "start": 21006.94, + "end": 21007.96, + "probability": 0.0049 + }, + { + "start": 21008.18, + "end": 21013.46, + "probability": 0.9503 + }, + { + "start": 21013.62, + "end": 21016.46, + "probability": 0.9971 + }, + { + "start": 21016.6, + "end": 21018.6, + "probability": 0.9927 + }, + { + "start": 21018.78, + "end": 21020.64, + "probability": 0.9971 + }, + { + "start": 21020.9, + "end": 21026.08, + "probability": 0.9976 + }, + { + "start": 21027.3, + "end": 21029.9, + "probability": 0.9992 + }, + { + "start": 21030.3, + "end": 21032.04, + "probability": 0.9178 + }, + { + "start": 21032.84, + "end": 21033.84, + "probability": 0.6597 + }, + { + "start": 21034.06, + "end": 21035.06, + "probability": 0.8223 + }, + { + "start": 21035.44, + "end": 21037.42, + "probability": 0.9918 + }, + { + "start": 21037.9, + "end": 21041.02, + "probability": 0.8394 + }, + { + "start": 21041.24, + "end": 21048.96, + "probability": 0.7986 + }, + { + "start": 21050.36, + "end": 21056.34, + "probability": 0.9966 + }, + { + "start": 21057.46, + "end": 21060.01, + "probability": 0.6211 + }, + { + "start": 21060.18, + "end": 21060.86, + "probability": 0.8483 + }, + { + "start": 21061.0, + "end": 21061.6, + "probability": 0.8208 + }, + { + "start": 21061.96, + "end": 21064.22, + "probability": 0.9873 + }, + { + "start": 21065.58, + "end": 21067.24, + "probability": 0.9542 + }, + { + "start": 21067.64, + "end": 21073.46, + "probability": 0.9961 + }, + { + "start": 21075.02, + "end": 21076.4, + "probability": 0.7725 + }, + { + "start": 21077.36, + "end": 21080.52, + "probability": 0.7032 + }, + { + "start": 21081.1, + "end": 21082.34, + "probability": 0.911 + }, + { + "start": 21082.76, + "end": 21087.32, + "probability": 0.9647 + }, + { + "start": 21088.1, + "end": 21091.54, + "probability": 0.9897 + }, + { + "start": 21092.48, + "end": 21095.08, + "probability": 0.9951 + }, + { + "start": 21096.08, + "end": 21100.78, + "probability": 0.9973 + }, + { + "start": 21101.46, + "end": 21102.76, + "probability": 0.8402 + }, + { + "start": 21103.66, + "end": 21106.12, + "probability": 0.9978 + }, + { + "start": 21106.72, + "end": 21110.62, + "probability": 0.9775 + }, + { + "start": 21111.44, + "end": 21115.64, + "probability": 0.9915 + }, + { + "start": 21115.64, + "end": 21120.74, + "probability": 0.994 + }, + { + "start": 21125.04, + "end": 21128.66, + "probability": 0.9042 + }, + { + "start": 21129.44, + "end": 21132.94, + "probability": 0.9867 + }, + { + "start": 21133.18, + "end": 21135.12, + "probability": 0.6661 + }, + { + "start": 21136.14, + "end": 21139.42, + "probability": 0.9972 + }, + { + "start": 21140.74, + "end": 21142.52, + "probability": 0.6393 + }, + { + "start": 21142.7, + "end": 21146.92, + "probability": 0.7823 + }, + { + "start": 21147.22, + "end": 21148.92, + "probability": 0.8094 + }, + { + "start": 21150.34, + "end": 21151.64, + "probability": 0.7224 + }, + { + "start": 21151.76, + "end": 21154.53, + "probability": 0.9133 + }, + { + "start": 21156.32, + "end": 21158.3, + "probability": 0.9436 + }, + { + "start": 21158.8, + "end": 21160.33, + "probability": 0.9679 + }, + { + "start": 21160.98, + "end": 21163.68, + "probability": 0.7288 + }, + { + "start": 21164.2, + "end": 21169.3, + "probability": 0.9921 + }, + { + "start": 21169.44, + "end": 21170.06, + "probability": 0.8636 + }, + { + "start": 21170.48, + "end": 21176.36, + "probability": 0.9006 + }, + { + "start": 21176.36, + "end": 21181.14, + "probability": 0.9938 + }, + { + "start": 21183.66, + "end": 21185.16, + "probability": 0.9385 + }, + { + "start": 21186.4, + "end": 21187.06, + "probability": 0.64 + }, + { + "start": 21188.02, + "end": 21189.1, + "probability": 0.3008 + }, + { + "start": 21189.96, + "end": 21191.22, + "probability": 0.9146 + }, + { + "start": 21192.02, + "end": 21193.66, + "probability": 0.9785 + }, + { + "start": 21194.69, + "end": 21199.18, + "probability": 0.8306 + }, + { + "start": 21200.28, + "end": 21206.34, + "probability": 0.8746 + }, + { + "start": 21206.92, + "end": 21207.78, + "probability": 0.7693 + }, + { + "start": 21209.84, + "end": 21212.7, + "probability": 0.7665 + }, + { + "start": 21214.06, + "end": 21216.14, + "probability": 0.7348 + }, + { + "start": 21217.14, + "end": 21218.25, + "probability": 0.9542 + }, + { + "start": 21218.68, + "end": 21221.94, + "probability": 0.9701 + }, + { + "start": 21222.5, + "end": 21223.2, + "probability": 0.9353 + }, + { + "start": 21223.98, + "end": 21228.46, + "probability": 0.9396 + }, + { + "start": 21228.78, + "end": 21229.88, + "probability": 0.7412 + }, + { + "start": 21232.04, + "end": 21233.78, + "probability": 0.983 + }, + { + "start": 21235.54, + "end": 21236.96, + "probability": 0.6552 + }, + { + "start": 21237.22, + "end": 21238.28, + "probability": 0.5278 + }, + { + "start": 21238.34, + "end": 21239.16, + "probability": 0.6594 + }, + { + "start": 21240.08, + "end": 21242.1, + "probability": 0.91 + }, + { + "start": 21243.6, + "end": 21245.06, + "probability": 0.9618 + }, + { + "start": 21247.02, + "end": 21250.52, + "probability": 0.8426 + }, + { + "start": 21251.2, + "end": 21255.16, + "probability": 0.9773 + }, + { + "start": 21256.22, + "end": 21256.8, + "probability": 0.6607 + }, + { + "start": 21256.88, + "end": 21261.2, + "probability": 0.9956 + }, + { + "start": 21262.42, + "end": 21263.44, + "probability": 0.7329 + }, + { + "start": 21263.9, + "end": 21265.8, + "probability": 0.1485 + }, + { + "start": 21266.12, + "end": 21267.04, + "probability": 0.4705 + }, + { + "start": 21267.42, + "end": 21268.71, + "probability": 0.9727 + }, + { + "start": 21269.3, + "end": 21270.12, + "probability": 0.6412 + }, + { + "start": 21270.3, + "end": 21271.24, + "probability": 0.2345 + }, + { + "start": 21271.72, + "end": 21274.54, + "probability": 0.7224 + }, + { + "start": 21275.16, + "end": 21275.8, + "probability": 0.1862 + }, + { + "start": 21276.2, + "end": 21276.7, + "probability": 0.687 + }, + { + "start": 21278.9, + "end": 21281.32, + "probability": 0.422 + }, + { + "start": 21281.66, + "end": 21283.86, + "probability": 0.9619 + }, + { + "start": 21284.5, + "end": 21287.1, + "probability": 0.7022 + }, + { + "start": 21287.1, + "end": 21289.76, + "probability": 0.9844 + }, + { + "start": 21290.24, + "end": 21292.56, + "probability": 0.8466 + }, + { + "start": 21293.4, + "end": 21295.28, + "probability": 0.7693 + }, + { + "start": 21296.22, + "end": 21298.34, + "probability": 0.0116 + }, + { + "start": 21298.34, + "end": 21299.64, + "probability": 0.5431 + }, + { + "start": 21299.98, + "end": 21302.04, + "probability": 0.9813 + }, + { + "start": 21302.24, + "end": 21302.66, + "probability": 0.1862 + }, + { + "start": 21303.02, + "end": 21308.05, + "probability": 0.9075 + }, + { + "start": 21308.66, + "end": 21310.38, + "probability": 0.3301 + }, + { + "start": 21310.8, + "end": 21312.96, + "probability": 0.9719 + }, + { + "start": 21313.74, + "end": 21317.9, + "probability": 0.7777 + }, + { + "start": 21319.0, + "end": 21323.42, + "probability": 0.9864 + }, + { + "start": 21324.1, + "end": 21324.1, + "probability": 0.0177 + }, + { + "start": 21324.1, + "end": 21325.8, + "probability": 0.7938 + }, + { + "start": 21326.58, + "end": 21327.52, + "probability": 0.9795 + }, + { + "start": 21328.36, + "end": 21332.16, + "probability": 0.9701 + }, + { + "start": 21332.68, + "end": 21336.44, + "probability": 0.9607 + }, + { + "start": 21337.12, + "end": 21337.14, + "probability": 0.0133 + }, + { + "start": 21337.14, + "end": 21338.6, + "probability": 0.9844 + }, + { + "start": 21339.6, + "end": 21341.34, + "probability": 0.1128 + }, + { + "start": 21341.34, + "end": 21343.04, + "probability": 0.109 + }, + { + "start": 21343.38, + "end": 21344.08, + "probability": 0.8983 + }, + { + "start": 21344.14, + "end": 21347.08, + "probability": 0.7895 + }, + { + "start": 21347.16, + "end": 21347.93, + "probability": 0.957 + }, + { + "start": 21348.58, + "end": 21350.04, + "probability": 0.8892 + }, + { + "start": 21350.94, + "end": 21353.64, + "probability": 0.7536 + }, + { + "start": 21353.84, + "end": 21354.72, + "probability": 0.9194 + }, + { + "start": 21355.64, + "end": 21359.32, + "probability": 0.9225 + }, + { + "start": 21362.52, + "end": 21362.96, + "probability": 0.9652 + }, + { + "start": 21363.66, + "end": 21368.08, + "probability": 0.9411 + }, + { + "start": 21368.22, + "end": 21371.92, + "probability": 0.987 + }, + { + "start": 21372.82, + "end": 21376.26, + "probability": 0.9922 + }, + { + "start": 21376.38, + "end": 21379.1, + "probability": 0.5594 + }, + { + "start": 21379.72, + "end": 21380.86, + "probability": 0.5586 + }, + { + "start": 21381.74, + "end": 21386.76, + "probability": 0.9019 + }, + { + "start": 21387.5, + "end": 21388.3, + "probability": 0.8413 + }, + { + "start": 21389.7, + "end": 21391.12, + "probability": 0.018 + }, + { + "start": 21391.24, + "end": 21394.66, + "probability": 0.757 + }, + { + "start": 21395.48, + "end": 21399.44, + "probability": 0.6714 + }, + { + "start": 21399.64, + "end": 21401.04, + "probability": 0.8867 + }, + { + "start": 21401.36, + "end": 21402.4, + "probability": 0.916 + }, + { + "start": 21402.5, + "end": 21404.6, + "probability": 0.7091 + }, + { + "start": 21405.66, + "end": 21407.04, + "probability": 0.5625 + }, + { + "start": 21407.48, + "end": 21408.5, + "probability": 0.937 + }, + { + "start": 21408.68, + "end": 21409.75, + "probability": 0.8669 + }, + { + "start": 21410.5, + "end": 21412.06, + "probability": 0.9445 + }, + { + "start": 21413.9, + "end": 21416.76, + "probability": 0.9802 + }, + { + "start": 21416.9, + "end": 21419.48, + "probability": 0.8347 + }, + { + "start": 21419.6, + "end": 21422.58, + "probability": 0.644 + }, + { + "start": 21428.24, + "end": 21428.82, + "probability": 0.4445 + }, + { + "start": 21429.4, + "end": 21432.16, + "probability": 0.9814 + }, + { + "start": 21432.3, + "end": 21433.7, + "probability": 0.0889 + }, + { + "start": 21434.5, + "end": 21436.2, + "probability": 0.0619 + }, + { + "start": 21437.68, + "end": 21437.96, + "probability": 0.0062 + }, + { + "start": 21441.8, + "end": 21442.66, + "probability": 0.071 + }, + { + "start": 21443.2, + "end": 21449.04, + "probability": 0.9792 + }, + { + "start": 21451.46, + "end": 21453.24, + "probability": 0.9867 + }, + { + "start": 21453.64, + "end": 21455.22, + "probability": 0.8866 + }, + { + "start": 21456.08, + "end": 21461.06, + "probability": 0.9616 + }, + { + "start": 21461.1, + "end": 21466.2, + "probability": 0.9966 + }, + { + "start": 21467.12, + "end": 21468.54, + "probability": 0.8874 + }, + { + "start": 21469.84, + "end": 21473.74, + "probability": 0.6893 + }, + { + "start": 21474.1, + "end": 21475.1, + "probability": 0.5606 + }, + { + "start": 21476.4, + "end": 21477.66, + "probability": 0.5312 + }, + { + "start": 21477.74, + "end": 21478.72, + "probability": 0.9944 + }, + { + "start": 21480.68, + "end": 21483.02, + "probability": 0.9979 + }, + { + "start": 21485.4, + "end": 21489.0, + "probability": 0.9918 + }, + { + "start": 21491.26, + "end": 21492.7, + "probability": 0.6511 + }, + { + "start": 21492.7, + "end": 21493.72, + "probability": 0.7752 + }, + { + "start": 21494.14, + "end": 21495.38, + "probability": 0.7189 + }, + { + "start": 21495.94, + "end": 21497.26, + "probability": 0.9634 + }, + { + "start": 21497.66, + "end": 21498.9, + "probability": 0.9818 + }, + { + "start": 21498.94, + "end": 21499.94, + "probability": 0.9302 + }, + { + "start": 21505.04, + "end": 21507.16, + "probability": 0.9207 + }, + { + "start": 21507.86, + "end": 21509.34, + "probability": 0.7014 + }, + { + "start": 21518.48, + "end": 21521.96, + "probability": 0.6032 + }, + { + "start": 21534.06, + "end": 21534.06, + "probability": 0.1121 + }, + { + "start": 21534.06, + "end": 21534.98, + "probability": 0.6625 + }, + { + "start": 21539.08, + "end": 21542.14, + "probability": 0.546 + }, + { + "start": 21543.8, + "end": 21544.94, + "probability": 0.8762 + }, + { + "start": 21545.5, + "end": 21546.87, + "probability": 0.7775 + }, + { + "start": 21550.88, + "end": 21552.06, + "probability": 0.0638 + }, + { + "start": 21554.17, + "end": 21556.68, + "probability": 0.2493 + }, + { + "start": 21559.24, + "end": 21562.18, + "probability": 0.5764 + }, + { + "start": 21562.64, + "end": 21564.18, + "probability": 0.7935 + }, + { + "start": 21564.18, + "end": 21565.4, + "probability": 0.3632 + }, + { + "start": 21566.26, + "end": 21569.62, + "probability": 0.2437 + }, + { + "start": 21569.86, + "end": 21571.71, + "probability": 0.7627 + }, + { + "start": 21572.56, + "end": 21573.1, + "probability": 0.3475 + }, + { + "start": 21576.22, + "end": 21577.28, + "probability": 0.3925 + }, + { + "start": 21577.56, + "end": 21578.45, + "probability": 0.1654 + }, + { + "start": 21579.3, + "end": 21582.03, + "probability": 0.7119 + }, + { + "start": 21583.08, + "end": 21585.1, + "probability": 0.8022 + }, + { + "start": 21585.2, + "end": 21587.34, + "probability": 0.4848 + }, + { + "start": 21587.64, + "end": 21588.83, + "probability": 0.661 + }, + { + "start": 21590.2, + "end": 21595.34, + "probability": 0.769 + }, + { + "start": 21595.92, + "end": 21598.4, + "probability": 0.8789 + }, + { + "start": 21598.92, + "end": 21601.06, + "probability": 0.6187 + }, + { + "start": 21601.56, + "end": 21603.52, + "probability": 0.878 + }, + { + "start": 21606.66, + "end": 21606.66, + "probability": 0.0843 + }, + { + "start": 21606.66, + "end": 21606.82, + "probability": 0.0372 + }, + { + "start": 21606.82, + "end": 21608.36, + "probability": 0.5116 + }, + { + "start": 21609.6, + "end": 21611.66, + "probability": 0.8695 + }, + { + "start": 21612.14, + "end": 21612.88, + "probability": 0.9863 + }, + { + "start": 21613.22, + "end": 21614.74, + "probability": 0.0779 + }, + { + "start": 21615.12, + "end": 21615.64, + "probability": 0.7258 + }, + { + "start": 21615.88, + "end": 21616.93, + "probability": 0.9492 + }, + { + "start": 21617.48, + "end": 21621.68, + "probability": 0.9465 + }, + { + "start": 21622.56, + "end": 21623.9, + "probability": 0.9847 + }, + { + "start": 21625.0, + "end": 21626.0, + "probability": 0.3436 + }, + { + "start": 21626.46, + "end": 21632.86, + "probability": 0.9192 + }, + { + "start": 21633.86, + "end": 21634.59, + "probability": 0.8062 + }, + { + "start": 21637.06, + "end": 21637.86, + "probability": 0.9621 + }, + { + "start": 21639.78, + "end": 21644.26, + "probability": 0.999 + }, + { + "start": 21647.64, + "end": 21649.75, + "probability": 0.9941 + }, + { + "start": 21651.0, + "end": 21653.22, + "probability": 0.8784 + }, + { + "start": 21653.22, + "end": 21657.14, + "probability": 0.8781 + }, + { + "start": 21657.36, + "end": 21658.48, + "probability": 0.8979 + }, + { + "start": 21660.2, + "end": 21662.28, + "probability": 0.9319 + }, + { + "start": 21663.92, + "end": 21665.08, + "probability": 0.8931 + }, + { + "start": 21666.78, + "end": 21668.58, + "probability": 0.8871 + }, + { + "start": 21669.1, + "end": 21670.7, + "probability": 0.8236 + }, + { + "start": 21674.2, + "end": 21675.08, + "probability": 0.9894 + }, + { + "start": 21676.52, + "end": 21677.36, + "probability": 0.6722 + }, + { + "start": 21678.1, + "end": 21678.54, + "probability": 0.5376 + }, + { + "start": 21678.6, + "end": 21680.36, + "probability": 0.9547 + }, + { + "start": 21683.48, + "end": 21684.78, + "probability": 0.5881 + }, + { + "start": 21685.08, + "end": 21686.98, + "probability": 0.6142 + }, + { + "start": 21687.2, + "end": 21688.68, + "probability": 0.8291 + }, + { + "start": 21690.18, + "end": 21691.96, + "probability": 0.7469 + }, + { + "start": 21692.04, + "end": 21692.04, + "probability": 0.1988 + }, + { + "start": 21692.04, + "end": 21692.54, + "probability": 0.6096 + }, + { + "start": 21692.56, + "end": 21693.54, + "probability": 0.6611 + }, + { + "start": 21693.76, + "end": 21694.02, + "probability": 0.6303 + }, + { + "start": 21694.14, + "end": 21695.72, + "probability": 0.7327 + }, + { + "start": 21695.78, + "end": 21696.48, + "probability": 0.8336 + }, + { + "start": 21697.0, + "end": 21698.54, + "probability": 0.9439 + }, + { + "start": 21698.62, + "end": 21699.48, + "probability": 0.4795 + }, + { + "start": 21701.1, + "end": 21704.62, + "probability": 0.6007 + }, + { + "start": 21705.14, + "end": 21707.82, + "probability": 0.9089 + }, + { + "start": 21709.08, + "end": 21712.73, + "probability": 0.9707 + }, + { + "start": 21714.22, + "end": 21715.12, + "probability": 0.9775 + }, + { + "start": 21716.33, + "end": 21720.22, + "probability": 0.9753 + }, + { + "start": 21720.64, + "end": 21722.26, + "probability": 0.9856 + }, + { + "start": 21723.46, + "end": 21725.36, + "probability": 0.9085 + }, + { + "start": 21726.24, + "end": 21728.7, + "probability": 0.9243 + }, + { + "start": 21729.38, + "end": 21730.22, + "probability": 0.6468 + }, + { + "start": 21730.44, + "end": 21731.82, + "probability": 0.8932 + }, + { + "start": 21732.32, + "end": 21733.92, + "probability": 0.9534 + }, + { + "start": 21734.32, + "end": 21737.04, + "probability": 0.9925 + }, + { + "start": 21737.28, + "end": 21738.22, + "probability": 0.853 + }, + { + "start": 21738.78, + "end": 21740.68, + "probability": 0.6664 + }, + { + "start": 21740.8, + "end": 21742.06, + "probability": 0.5123 + }, + { + "start": 21743.4, + "end": 21747.66, + "probability": 0.929 + }, + { + "start": 21749.06, + "end": 21754.34, + "probability": 0.9816 + }, + { + "start": 21757.76, + "end": 21759.44, + "probability": 0.9907 + }, + { + "start": 21760.7, + "end": 21761.47, + "probability": 0.9658 + }, + { + "start": 21763.34, + "end": 21764.54, + "probability": 0.9939 + }, + { + "start": 21764.72, + "end": 21765.32, + "probability": 0.9351 + }, + { + "start": 21765.34, + "end": 21765.86, + "probability": 0.8042 + }, + { + "start": 21766.18, + "end": 21766.64, + "probability": 0.8033 + }, + { + "start": 21766.72, + "end": 21768.98, + "probability": 0.9866 + }, + { + "start": 21769.92, + "end": 21774.26, + "probability": 0.9045 + }, + { + "start": 21775.48, + "end": 21776.45, + "probability": 0.9321 + }, + { + "start": 21777.52, + "end": 21778.54, + "probability": 0.9922 + }, + { + "start": 21779.22, + "end": 21779.7, + "probability": 0.6064 + }, + { + "start": 21779.74, + "end": 21780.55, + "probability": 0.9429 + }, + { + "start": 21781.12, + "end": 21783.44, + "probability": 0.6765 + }, + { + "start": 21784.46, + "end": 21785.84, + "probability": 0.9344 + }, + { + "start": 21786.26, + "end": 21791.24, + "probability": 0.9556 + }, + { + "start": 21791.52, + "end": 21792.82, + "probability": 0.9487 + }, + { + "start": 21794.1, + "end": 21795.32, + "probability": 0.8188 + }, + { + "start": 21795.82, + "end": 21797.66, + "probability": 0.9773 + }, + { + "start": 21799.28, + "end": 21802.28, + "probability": 0.8093 + }, + { + "start": 21802.92, + "end": 21806.46, + "probability": 0.9827 + }, + { + "start": 21809.02, + "end": 21811.36, + "probability": 0.9985 + }, + { + "start": 21812.08, + "end": 21814.76, + "probability": 0.9963 + }, + { + "start": 21816.2, + "end": 21818.76, + "probability": 0.7993 + }, + { + "start": 21819.9, + "end": 21821.34, + "probability": 0.8396 + }, + { + "start": 21822.81, + "end": 21826.36, + "probability": 0.6562 + }, + { + "start": 21827.7, + "end": 21829.92, + "probability": 0.9818 + }, + { + "start": 21830.64, + "end": 21832.9, + "probability": 0.9863 + }, + { + "start": 21833.74, + "end": 21835.02, + "probability": 0.8989 + }, + { + "start": 21836.22, + "end": 21838.75, + "probability": 0.9937 + }, + { + "start": 21842.28, + "end": 21843.41, + "probability": 0.9985 + }, + { + "start": 21844.54, + "end": 21847.42, + "probability": 0.999 + }, + { + "start": 21849.4, + "end": 21851.98, + "probability": 0.9991 + }, + { + "start": 21853.16, + "end": 21854.06, + "probability": 0.7187 + }, + { + "start": 21854.26, + "end": 21855.5, + "probability": 0.8754 + }, + { + "start": 21857.36, + "end": 21860.64, + "probability": 0.9982 + }, + { + "start": 21862.76, + "end": 21867.4, + "probability": 0.9949 + }, + { + "start": 21867.56, + "end": 21869.5, + "probability": 0.9495 + }, + { + "start": 21870.26, + "end": 21872.56, + "probability": 0.9951 + }, + { + "start": 21873.7, + "end": 21875.14, + "probability": 0.9868 + }, + { + "start": 21875.8, + "end": 21875.98, + "probability": 0.5663 + }, + { + "start": 21877.44, + "end": 21882.12, + "probability": 0.9938 + }, + { + "start": 21884.14, + "end": 21885.28, + "probability": 0.9468 + }, + { + "start": 21885.54, + "end": 21886.96, + "probability": 0.9468 + }, + { + "start": 21887.18, + "end": 21887.94, + "probability": 0.7787 + }, + { + "start": 21888.16, + "end": 21888.7, + "probability": 0.397 + }, + { + "start": 21888.72, + "end": 21889.66, + "probability": 0.7066 + }, + { + "start": 21890.26, + "end": 21891.76, + "probability": 0.9587 + }, + { + "start": 21891.86, + "end": 21894.28, + "probability": 0.9528 + }, + { + "start": 21894.36, + "end": 21898.1, + "probability": 0.9377 + }, + { + "start": 21899.36, + "end": 21900.66, + "probability": 0.6738 + }, + { + "start": 21901.6, + "end": 21905.42, + "probability": 0.9585 + }, + { + "start": 21906.18, + "end": 21908.52, + "probability": 0.9966 + }, + { + "start": 21910.16, + "end": 21914.58, + "probability": 0.9962 + }, + { + "start": 21918.44, + "end": 21920.14, + "probability": 0.9235 + }, + { + "start": 21921.16, + "end": 21924.06, + "probability": 0.8823 + }, + { + "start": 21925.04, + "end": 21926.78, + "probability": 0.9951 + }, + { + "start": 21927.76, + "end": 21929.78, + "probability": 0.9959 + }, + { + "start": 21934.48, + "end": 21936.6, + "probability": 0.9944 + }, + { + "start": 21937.7, + "end": 21939.44, + "probability": 0.7867 + }, + { + "start": 21940.68, + "end": 21942.96, + "probability": 0.8071 + }, + { + "start": 21945.02, + "end": 21946.98, + "probability": 0.9821 + }, + { + "start": 21949.1, + "end": 21950.8, + "probability": 0.9966 + }, + { + "start": 21951.74, + "end": 21955.18, + "probability": 0.9437 + }, + { + "start": 21958.16, + "end": 21962.11, + "probability": 0.9763 + }, + { + "start": 21963.68, + "end": 21964.4, + "probability": 0.9305 + }, + { + "start": 21964.74, + "end": 21966.18, + "probability": 0.6693 + }, + { + "start": 21967.86, + "end": 21970.68, + "probability": 0.9932 + }, + { + "start": 21973.22, + "end": 21975.04, + "probability": 0.9922 + }, + { + "start": 21976.54, + "end": 21977.66, + "probability": 0.8949 + }, + { + "start": 21977.82, + "end": 21978.04, + "probability": 0.8782 + }, + { + "start": 21978.12, + "end": 21981.02, + "probability": 0.9829 + }, + { + "start": 21981.32, + "end": 21985.84, + "probability": 0.9282 + }, + { + "start": 21989.1, + "end": 21992.06, + "probability": 0.9364 + }, + { + "start": 21994.42, + "end": 21996.46, + "probability": 0.9894 + }, + { + "start": 21997.42, + "end": 21999.84, + "probability": 0.9943 + }, + { + "start": 22000.18, + "end": 22000.88, + "probability": 0.68 + }, + { + "start": 22001.14, + "end": 22002.04, + "probability": 0.8667 + }, + { + "start": 22002.56, + "end": 22003.62, + "probability": 0.9936 + }, + { + "start": 22004.3, + "end": 22005.86, + "probability": 0.9242 + }, + { + "start": 22006.28, + "end": 22007.7, + "probability": 0.5034 + }, + { + "start": 22008.0, + "end": 22009.16, + "probability": 0.7068 + }, + { + "start": 22009.24, + "end": 22010.88, + "probability": 0.7051 + }, + { + "start": 22011.14, + "end": 22015.56, + "probability": 0.9908 + }, + { + "start": 22018.22, + "end": 22019.68, + "probability": 0.8893 + }, + { + "start": 22021.32, + "end": 22024.9, + "probability": 0.8637 + }, + { + "start": 22026.68, + "end": 22030.18, + "probability": 0.9899 + }, + { + "start": 22030.24, + "end": 22030.76, + "probability": 0.7533 + }, + { + "start": 22031.34, + "end": 22033.3, + "probability": 0.9153 + }, + { + "start": 22034.18, + "end": 22036.98, + "probability": 0.9277 + }, + { + "start": 22037.1, + "end": 22037.32, + "probability": 0.6161 + }, + { + "start": 22038.64, + "end": 22040.62, + "probability": 0.6485 + }, + { + "start": 22040.72, + "end": 22042.24, + "probability": 0.8372 + }, + { + "start": 22042.48, + "end": 22043.74, + "probability": 0.1891 + }, + { + "start": 22044.04, + "end": 22045.2, + "probability": 0.5712 + }, + { + "start": 22055.32, + "end": 22056.42, + "probability": 0.2322 + }, + { + "start": 22057.32, + "end": 22058.5, + "probability": 0.9014 + }, + { + "start": 22059.22, + "end": 22060.01, + "probability": 0.9663 + }, + { + "start": 22061.16, + "end": 22062.54, + "probability": 0.7188 + }, + { + "start": 22063.96, + "end": 22067.56, + "probability": 0.992 + }, + { + "start": 22069.42, + "end": 22074.94, + "probability": 0.9927 + }, + { + "start": 22075.06, + "end": 22076.22, + "probability": 0.9473 + }, + { + "start": 22077.62, + "end": 22078.56, + "probability": 0.7784 + }, + { + "start": 22079.84, + "end": 22080.68, + "probability": 0.699 + }, + { + "start": 22081.48, + "end": 22082.52, + "probability": 0.9777 + }, + { + "start": 22083.44, + "end": 22087.68, + "probability": 0.8899 + }, + { + "start": 22089.1, + "end": 22091.78, + "probability": 0.9896 + }, + { + "start": 22093.16, + "end": 22095.92, + "probability": 0.5737 + }, + { + "start": 22096.78, + "end": 22098.64, + "probability": 0.9863 + }, + { + "start": 22099.54, + "end": 22100.24, + "probability": 0.9258 + }, + { + "start": 22100.26, + "end": 22102.32, + "probability": 0.9896 + }, + { + "start": 22102.44, + "end": 22105.46, + "probability": 0.7745 + }, + { + "start": 22106.52, + "end": 22108.92, + "probability": 0.9881 + }, + { + "start": 22109.7, + "end": 22111.68, + "probability": 0.998 + }, + { + "start": 22111.8, + "end": 22113.54, + "probability": 0.7939 + }, + { + "start": 22113.82, + "end": 22114.64, + "probability": 0.5856 + }, + { + "start": 22115.32, + "end": 22116.04, + "probability": 0.8343 + }, + { + "start": 22117.52, + "end": 22119.64, + "probability": 0.6655 + }, + { + "start": 22121.14, + "end": 22122.46, + "probability": 0.9932 + }, + { + "start": 22123.54, + "end": 22124.2, + "probability": 0.8612 + }, + { + "start": 22125.18, + "end": 22130.66, + "probability": 0.9919 + }, + { + "start": 22131.3, + "end": 22132.1, + "probability": 0.9639 + }, + { + "start": 22132.24, + "end": 22133.66, + "probability": 0.8943 + }, + { + "start": 22134.64, + "end": 22134.64, + "probability": 0.1248 + }, + { + "start": 22134.64, + "end": 22137.94, + "probability": 0.7681 + }, + { + "start": 22138.32, + "end": 22139.74, + "probability": 0.7529 + }, + { + "start": 22140.42, + "end": 22143.8, + "probability": 0.9375 + }, + { + "start": 22144.62, + "end": 22147.16, + "probability": 0.4908 + }, + { + "start": 22148.8, + "end": 22152.17, + "probability": 0.9673 + }, + { + "start": 22154.07, + "end": 22158.44, + "probability": 0.676 + }, + { + "start": 22159.3, + "end": 22161.56, + "probability": 0.6496 + }, + { + "start": 22162.08, + "end": 22165.7, + "probability": 0.8715 + }, + { + "start": 22166.64, + "end": 22167.52, + "probability": 0.6974 + }, + { + "start": 22169.08, + "end": 22169.78, + "probability": 0.8618 + }, + { + "start": 22169.88, + "end": 22174.82, + "probability": 0.9757 + }, + { + "start": 22175.54, + "end": 22175.96, + "probability": 0.8388 + }, + { + "start": 22177.02, + "end": 22181.9, + "probability": 0.9873 + }, + { + "start": 22182.32, + "end": 22185.5, + "probability": 0.9785 + }, + { + "start": 22186.22, + "end": 22188.38, + "probability": 0.2578 + }, + { + "start": 22188.54, + "end": 22188.9, + "probability": 0.4396 + }, + { + "start": 22188.9, + "end": 22189.53, + "probability": 0.8159 + }, + { + "start": 22190.96, + "end": 22197.12, + "probability": 0.862 + }, + { + "start": 22198.22, + "end": 22200.98, + "probability": 0.9872 + }, + { + "start": 22202.24, + "end": 22205.04, + "probability": 0.6765 + }, + { + "start": 22205.8, + "end": 22209.5, + "probability": 0.9874 + }, + { + "start": 22210.85, + "end": 22214.0, + "probability": 0.9899 + }, + { + "start": 22214.92, + "end": 22215.78, + "probability": 0.9594 + }, + { + "start": 22215.82, + "end": 22217.14, + "probability": 0.8751 + }, + { + "start": 22217.24, + "end": 22220.08, + "probability": 0.6795 + }, + { + "start": 22220.94, + "end": 22221.96, + "probability": 0.9865 + }, + { + "start": 22223.06, + "end": 22224.82, + "probability": 0.9848 + }, + { + "start": 22225.4, + "end": 22226.92, + "probability": 0.6753 + }, + { + "start": 22227.7, + "end": 22233.34, + "probability": 0.9979 + }, + { + "start": 22234.22, + "end": 22235.32, + "probability": 0.9818 + }, + { + "start": 22236.1, + "end": 22242.3, + "probability": 0.9735 + }, + { + "start": 22243.42, + "end": 22247.78, + "probability": 0.8168 + }, + { + "start": 22249.24, + "end": 22251.06, + "probability": 0.6332 + }, + { + "start": 22252.52, + "end": 22256.48, + "probability": 0.7278 + }, + { + "start": 22257.54, + "end": 22259.78, + "probability": 0.967 + }, + { + "start": 22260.48, + "end": 22267.94, + "probability": 0.893 + }, + { + "start": 22268.76, + "end": 22273.55, + "probability": 0.979 + }, + { + "start": 22274.62, + "end": 22275.94, + "probability": 0.7969 + }, + { + "start": 22276.48, + "end": 22277.44, + "probability": 0.9326 + }, + { + "start": 22278.84, + "end": 22280.04, + "probability": 0.9062 + }, + { + "start": 22280.28, + "end": 22283.04, + "probability": 0.981 + }, + { + "start": 22283.04, + "end": 22288.24, + "probability": 0.7997 + }, + { + "start": 22288.74, + "end": 22289.88, + "probability": 0.9555 + }, + { + "start": 22289.98, + "end": 22291.04, + "probability": 0.6086 + }, + { + "start": 22291.68, + "end": 22294.04, + "probability": 0.7961 + }, + { + "start": 22294.92, + "end": 22299.42, + "probability": 0.7418 + }, + { + "start": 22299.64, + "end": 22300.5, + "probability": 0.7554 + }, + { + "start": 22300.7, + "end": 22302.1, + "probability": 0.8784 + }, + { + "start": 22303.02, + "end": 22306.36, + "probability": 0.9574 + }, + { + "start": 22306.42, + "end": 22307.62, + "probability": 0.9248 + }, + { + "start": 22308.06, + "end": 22309.34, + "probability": 0.4556 + }, + { + "start": 22310.38, + "end": 22312.06, + "probability": 0.9941 + }, + { + "start": 22313.0, + "end": 22315.3, + "probability": 0.9851 + }, + { + "start": 22315.4, + "end": 22316.96, + "probability": 0.8315 + }, + { + "start": 22317.54, + "end": 22319.38, + "probability": 0.9129 + }, + { + "start": 22320.64, + "end": 22321.68, + "probability": 0.9667 + }, + { + "start": 22322.6, + "end": 22323.7, + "probability": 0.8835 + }, + { + "start": 22324.58, + "end": 22326.34, + "probability": 0.6721 + }, + { + "start": 22327.14, + "end": 22329.32, + "probability": 0.8984 + }, + { + "start": 22330.2, + "end": 22332.26, + "probability": 0.8774 + }, + { + "start": 22332.34, + "end": 22333.24, + "probability": 0.8862 + }, + { + "start": 22333.92, + "end": 22334.76, + "probability": 0.5626 + }, + { + "start": 22335.74, + "end": 22336.46, + "probability": 0.8621 + }, + { + "start": 22337.34, + "end": 22344.58, + "probability": 0.8708 + }, + { + "start": 22345.85, + "end": 22348.44, + "probability": 0.7519 + }, + { + "start": 22349.22, + "end": 22350.52, + "probability": 0.7912 + }, + { + "start": 22351.48, + "end": 22354.38, + "probability": 0.999 + }, + { + "start": 22355.02, + "end": 22356.12, + "probability": 0.9342 + }, + { + "start": 22357.06, + "end": 22359.42, + "probability": 0.8361 + }, + { + "start": 22359.48, + "end": 22361.25, + "probability": 0.928 + }, + { + "start": 22362.44, + "end": 22362.78, + "probability": 0.2949 + }, + { + "start": 22362.92, + "end": 22363.85, + "probability": 0.6628 + }, + { + "start": 22364.34, + "end": 22366.12, + "probability": 0.7702 + }, + { + "start": 22367.18, + "end": 22370.66, + "probability": 0.9845 + }, + { + "start": 22371.36, + "end": 22371.98, + "probability": 0.9057 + }, + { + "start": 22372.98, + "end": 22376.68, + "probability": 0.8484 + }, + { + "start": 22376.74, + "end": 22377.87, + "probability": 0.9856 + }, + { + "start": 22378.78, + "end": 22379.48, + "probability": 0.2913 + }, + { + "start": 22380.28, + "end": 22382.54, + "probability": 0.8688 + }, + { + "start": 22383.22, + "end": 22386.56, + "probability": 0.9817 + }, + { + "start": 22388.28, + "end": 22390.1, + "probability": 0.7172 + }, + { + "start": 22391.24, + "end": 22391.64, + "probability": 0.4954 + }, + { + "start": 22392.44, + "end": 22394.72, + "probability": 0.912 + }, + { + "start": 22396.06, + "end": 22398.2, + "probability": 0.9299 + }, + { + "start": 22399.92, + "end": 22401.88, + "probability": 0.9667 + }, + { + "start": 22402.02, + "end": 22406.52, + "probability": 0.9713 + }, + { + "start": 22409.5, + "end": 22409.52, + "probability": 0.2442 + }, + { + "start": 22409.52, + "end": 22410.62, + "probability": 0.9917 + }, + { + "start": 22410.7, + "end": 22412.86, + "probability": 0.9003 + }, + { + "start": 22413.28, + "end": 22417.32, + "probability": 0.9526 + }, + { + "start": 22418.72, + "end": 22419.0, + "probability": 0.6636 + }, + { + "start": 22420.44, + "end": 22423.78, + "probability": 0.8708 + }, + { + "start": 22424.62, + "end": 22426.89, + "probability": 0.8896 + }, + { + "start": 22427.78, + "end": 22431.86, + "probability": 0.9763 + }, + { + "start": 22432.62, + "end": 22438.62, + "probability": 0.994 + }, + { + "start": 22439.48, + "end": 22440.7, + "probability": 0.7289 + }, + { + "start": 22441.42, + "end": 22442.14, + "probability": 0.3332 + }, + { + "start": 22443.22, + "end": 22444.48, + "probability": 0.6319 + }, + { + "start": 22445.46, + "end": 22447.44, + "probability": 0.8628 + }, + { + "start": 22448.3, + "end": 22451.52, + "probability": 0.9442 + }, + { + "start": 22452.1, + "end": 22455.28, + "probability": 0.8161 + }, + { + "start": 22456.22, + "end": 22457.5, + "probability": 0.858 + }, + { + "start": 22457.6, + "end": 22460.25, + "probability": 0.9849 + }, + { + "start": 22461.18, + "end": 22464.08, + "probability": 0.7906 + }, + { + "start": 22464.6, + "end": 22467.79, + "probability": 0.892 + }, + { + "start": 22468.08, + "end": 22472.0, + "probability": 0.8304 + }, + { + "start": 22472.58, + "end": 22476.78, + "probability": 0.7997 + }, + { + "start": 22477.54, + "end": 22479.0, + "probability": 0.9504 + }, + { + "start": 22479.86, + "end": 22480.88, + "probability": 0.8252 + }, + { + "start": 22481.4, + "end": 22485.52, + "probability": 0.8467 + }, + { + "start": 22485.86, + "end": 22487.38, + "probability": 0.7472 + }, + { + "start": 22487.62, + "end": 22488.58, + "probability": 0.7349 + }, + { + "start": 22489.28, + "end": 22490.88, + "probability": 0.9736 + }, + { + "start": 22491.7, + "end": 22495.41, + "probability": 0.7065 + }, + { + "start": 22496.2, + "end": 22497.51, + "probability": 0.9966 + }, + { + "start": 22498.22, + "end": 22500.8, + "probability": 0.981 + }, + { + "start": 22501.5, + "end": 22501.96, + "probability": 0.8022 + }, + { + "start": 22502.02, + "end": 22503.24, + "probability": 0.7863 + }, + { + "start": 22503.74, + "end": 22506.56, + "probability": 0.9507 + }, + { + "start": 22506.66, + "end": 22507.68, + "probability": 0.8634 + }, + { + "start": 22508.04, + "end": 22510.82, + "probability": 0.9632 + }, + { + "start": 22511.76, + "end": 22513.42, + "probability": 0.6885 + }, + { + "start": 22515.04, + "end": 22515.78, + "probability": 0.2876 + }, + { + "start": 22518.74, + "end": 22520.62, + "probability": 0.6575 + }, + { + "start": 22520.92, + "end": 22521.28, + "probability": 0.8538 + }, + { + "start": 22521.34, + "end": 22522.72, + "probability": 0.928 + }, + { + "start": 22523.54, + "end": 22524.26, + "probability": 0.6809 + }, + { + "start": 22524.4, + "end": 22526.5, + "probability": 0.9718 + }, + { + "start": 22526.78, + "end": 22527.06, + "probability": 0.5219 + }, + { + "start": 22527.78, + "end": 22528.66, + "probability": 0.7177 + }, + { + "start": 22528.74, + "end": 22528.94, + "probability": 0.1947 + }, + { + "start": 22528.94, + "end": 22529.36, + "probability": 0.4374 + }, + { + "start": 22530.56, + "end": 22530.64, + "probability": 0.4649 + }, + { + "start": 22531.32, + "end": 22533.74, + "probability": 0.5845 + }, + { + "start": 22533.74, + "end": 22533.98, + "probability": 0.2871 + }, + { + "start": 22534.26, + "end": 22536.84, + "probability": 0.9712 + }, + { + "start": 22537.48, + "end": 22537.66, + "probability": 0.7849 + }, + { + "start": 22537.66, + "end": 22538.72, + "probability": 0.89 + }, + { + "start": 22538.78, + "end": 22539.96, + "probability": 0.4723 + }, + { + "start": 22540.04, + "end": 22547.84, + "probability": 0.9827 + }, + { + "start": 22548.4, + "end": 22550.72, + "probability": 0.9743 + }, + { + "start": 22551.38, + "end": 22552.48, + "probability": 0.7148 + }, + { + "start": 22553.76, + "end": 22556.48, + "probability": 0.9912 + }, + { + "start": 22556.48, + "end": 22560.66, + "probability": 0.9967 + }, + { + "start": 22561.68, + "end": 22564.1, + "probability": 0.9028 + }, + { + "start": 22565.16, + "end": 22569.82, + "probability": 0.8459 + }, + { + "start": 22570.02, + "end": 22570.3, + "probability": 0.6581 + }, + { + "start": 22570.34, + "end": 22572.5, + "probability": 0.9347 + }, + { + "start": 22572.92, + "end": 22575.0, + "probability": 0.937 + }, + { + "start": 22575.68, + "end": 22577.3, + "probability": 0.9097 + }, + { + "start": 22577.74, + "end": 22581.1, + "probability": 0.9722 + }, + { + "start": 22581.26, + "end": 22581.54, + "probability": 0.6632 + }, + { + "start": 22582.34, + "end": 22584.53, + "probability": 0.596 + }, + { + "start": 22584.86, + "end": 22586.26, + "probability": 0.928 + }, + { + "start": 22587.02, + "end": 22587.86, + "probability": 0.1714 + }, + { + "start": 22587.9, + "end": 22588.22, + "probability": 0.1962 + }, + { + "start": 22588.7, + "end": 22590.84, + "probability": 0.5081 + }, + { + "start": 22591.02, + "end": 22592.28, + "probability": 0.5896 + }, + { + "start": 22592.96, + "end": 22595.12, + "probability": 0.6167 + }, + { + "start": 22596.12, + "end": 22599.04, + "probability": 0.7641 + }, + { + "start": 22604.78, + "end": 22607.38, + "probability": 0.9855 + }, + { + "start": 22619.48, + "end": 22622.72, + "probability": 0.5526 + }, + { + "start": 22625.88, + "end": 22633.18, + "probability": 0.9913 + }, + { + "start": 22635.72, + "end": 22637.54, + "probability": 0.9766 + }, + { + "start": 22638.54, + "end": 22641.94, + "probability": 0.9964 + }, + { + "start": 22643.24, + "end": 22645.84, + "probability": 0.9027 + }, + { + "start": 22647.04, + "end": 22650.58, + "probability": 0.9318 + }, + { + "start": 22651.3, + "end": 22654.98, + "probability": 0.9631 + }, + { + "start": 22655.44, + "end": 22655.78, + "probability": 0.7874 + }, + { + "start": 22657.7, + "end": 22659.92, + "probability": 0.9957 + }, + { + "start": 22661.04, + "end": 22662.32, + "probability": 0.9985 + }, + { + "start": 22663.08, + "end": 22664.42, + "probability": 0.9878 + }, + { + "start": 22665.18, + "end": 22666.58, + "probability": 0.9883 + }, + { + "start": 22667.4, + "end": 22668.34, + "probability": 0.7923 + }, + { + "start": 22668.76, + "end": 22668.92, + "probability": 0.7975 + }, + { + "start": 22670.42, + "end": 22673.21, + "probability": 0.9976 + }, + { + "start": 22674.18, + "end": 22680.84, + "probability": 0.9598 + }, + { + "start": 22681.5, + "end": 22682.46, + "probability": 0.9666 + }, + { + "start": 22683.66, + "end": 22684.98, + "probability": 0.9885 + }, + { + "start": 22685.82, + "end": 22687.72, + "probability": 0.9949 + }, + { + "start": 22688.36, + "end": 22689.28, + "probability": 0.9901 + }, + { + "start": 22690.02, + "end": 22692.6, + "probability": 0.8275 + }, + { + "start": 22693.56, + "end": 22694.63, + "probability": 0.9917 + }, + { + "start": 22695.36, + "end": 22698.32, + "probability": 0.9867 + }, + { + "start": 22699.58, + "end": 22701.86, + "probability": 0.9604 + }, + { + "start": 22702.92, + "end": 22706.1, + "probability": 0.9652 + }, + { + "start": 22707.04, + "end": 22708.84, + "probability": 0.9897 + }, + { + "start": 22710.28, + "end": 22711.1, + "probability": 0.7345 + }, + { + "start": 22712.64, + "end": 22714.84, + "probability": 0.9974 + }, + { + "start": 22714.84, + "end": 22717.92, + "probability": 0.9984 + }, + { + "start": 22718.3, + "end": 22719.02, + "probability": 0.837 + }, + { + "start": 22720.4, + "end": 22722.06, + "probability": 0.959 + }, + { + "start": 22723.7, + "end": 22726.18, + "probability": 0.9152 + }, + { + "start": 22726.26, + "end": 22727.98, + "probability": 0.4998 + }, + { + "start": 22728.08, + "end": 22728.78, + "probability": 0.8184 + }, + { + "start": 22728.86, + "end": 22729.24, + "probability": 0.8193 + }, + { + "start": 22729.3, + "end": 22731.4, + "probability": 0.5279 + }, + { + "start": 22731.4, + "end": 22733.56, + "probability": 0.7171 + }, + { + "start": 22735.74, + "end": 22736.56, + "probability": 0.8907 + }, + { + "start": 22737.54, + "end": 22739.28, + "probability": 0.9821 + }, + { + "start": 22740.86, + "end": 22744.74, + "probability": 0.9814 + }, + { + "start": 22745.02, + "end": 22746.16, + "probability": 0.9548 + }, + { + "start": 22746.86, + "end": 22749.08, + "probability": 0.9831 + }, + { + "start": 22749.72, + "end": 22756.2, + "probability": 0.9989 + }, + { + "start": 22756.98, + "end": 22759.79, + "probability": 0.9419 + }, + { + "start": 22761.46, + "end": 22763.78, + "probability": 0.7462 + }, + { + "start": 22765.64, + "end": 22766.78, + "probability": 0.852 + }, + { + "start": 22767.38, + "end": 22769.61, + "probability": 0.7883 + }, + { + "start": 22771.4, + "end": 22776.06, + "probability": 0.8933 + }, + { + "start": 22777.12, + "end": 22778.88, + "probability": 0.7569 + }, + { + "start": 22780.63, + "end": 22783.7, + "probability": 0.8444 + }, + { + "start": 22785.36, + "end": 22786.8, + "probability": 0.9829 + }, + { + "start": 22788.42, + "end": 22790.0, + "probability": 0.929 + }, + { + "start": 22791.04, + "end": 22796.8, + "probability": 0.9696 + }, + { + "start": 22798.1, + "end": 22800.08, + "probability": 0.9845 + }, + { + "start": 22800.24, + "end": 22801.68, + "probability": 0.6784 + }, + { + "start": 22801.74, + "end": 22804.86, + "probability": 0.9743 + }, + { + "start": 22805.44, + "end": 22806.39, + "probability": 0.9354 + }, + { + "start": 22807.38, + "end": 22809.78, + "probability": 0.9885 + }, + { + "start": 22810.22, + "end": 22811.28, + "probability": 0.9819 + }, + { + "start": 22812.36, + "end": 22814.48, + "probability": 0.9938 + }, + { + "start": 22814.52, + "end": 22815.2, + "probability": 0.9404 + }, + { + "start": 22815.4, + "end": 22819.06, + "probability": 0.9675 + }, + { + "start": 22819.2, + "end": 22822.98, + "probability": 0.9915 + }, + { + "start": 22824.1, + "end": 22825.84, + "probability": 0.9635 + }, + { + "start": 22826.14, + "end": 22827.68, + "probability": 0.9973 + }, + { + "start": 22829.76, + "end": 22833.22, + "probability": 0.9989 + }, + { + "start": 22833.92, + "end": 22835.2, + "probability": 0.7271 + }, + { + "start": 22836.18, + "end": 22837.28, + "probability": 0.7738 + }, + { + "start": 22838.5, + "end": 22840.22, + "probability": 0.9819 + }, + { + "start": 22841.38, + "end": 22842.96, + "probability": 0.95 + }, + { + "start": 22843.68, + "end": 22846.52, + "probability": 0.9722 + }, + { + "start": 22847.02, + "end": 22847.4, + "probability": 0.7708 + }, + { + "start": 22847.44, + "end": 22849.72, + "probability": 0.9858 + }, + { + "start": 22850.34, + "end": 22855.16, + "probability": 0.9948 + }, + { + "start": 22855.16, + "end": 22858.7, + "probability": 0.8008 + }, + { + "start": 22858.92, + "end": 22859.8, + "probability": 0.8175 + }, + { + "start": 22860.16, + "end": 22861.38, + "probability": 0.9736 + }, + { + "start": 22861.96, + "end": 22864.62, + "probability": 0.8924 + }, + { + "start": 22865.42, + "end": 22866.44, + "probability": 0.9778 + }, + { + "start": 22867.2, + "end": 22870.82, + "probability": 0.9946 + }, + { + "start": 22870.83, + "end": 22874.64, + "probability": 0.9949 + }, + { + "start": 22875.66, + "end": 22878.7, + "probability": 0.9941 + }, + { + "start": 22878.76, + "end": 22880.88, + "probability": 0.9966 + }, + { + "start": 22881.58, + "end": 22882.52, + "probability": 0.854 + }, + { + "start": 22883.1, + "end": 22883.38, + "probability": 0.6245 + }, + { + "start": 22883.58, + "end": 22883.78, + "probability": 0.5627 + }, + { + "start": 22883.88, + "end": 22884.86, + "probability": 0.9468 + }, + { + "start": 22884.88, + "end": 22886.58, + "probability": 0.5505 + }, + { + "start": 22887.0, + "end": 22888.42, + "probability": 0.9949 + }, + { + "start": 22890.2, + "end": 22893.4, + "probability": 0.9822 + }, + { + "start": 22894.24, + "end": 22896.88, + "probability": 0.9771 + }, + { + "start": 22897.4, + "end": 22902.56, + "probability": 0.9937 + }, + { + "start": 22903.08, + "end": 22907.3, + "probability": 0.9845 + }, + { + "start": 22907.5, + "end": 22910.14, + "probability": 0.9331 + }, + { + "start": 22910.48, + "end": 22912.2, + "probability": 0.9922 + }, + { + "start": 22912.92, + "end": 22914.32, + "probability": 0.4926 + }, + { + "start": 22914.5, + "end": 22916.22, + "probability": 0.8789 + }, + { + "start": 22916.64, + "end": 22917.46, + "probability": 0.9922 + }, + { + "start": 22918.1, + "end": 22921.0, + "probability": 0.971 + }, + { + "start": 22921.88, + "end": 22924.26, + "probability": 0.9595 + }, + { + "start": 22924.42, + "end": 22926.22, + "probability": 0.8025 + }, + { + "start": 22926.68, + "end": 22931.34, + "probability": 0.9186 + }, + { + "start": 22932.08, + "end": 22935.2, + "probability": 0.9844 + }, + { + "start": 22936.1, + "end": 22937.16, + "probability": 0.6719 + }, + { + "start": 22937.58, + "end": 22938.96, + "probability": 0.8877 + }, + { + "start": 22939.4, + "end": 22942.36, + "probability": 0.9857 + }, + { + "start": 22942.36, + "end": 22946.26, + "probability": 0.9719 + }, + { + "start": 22946.32, + "end": 22946.9, + "probability": 0.8933 + }, + { + "start": 22947.8, + "end": 22949.34, + "probability": 0.9783 + }, + { + "start": 22949.46, + "end": 22950.38, + "probability": 0.9946 + }, + { + "start": 22950.58, + "end": 22952.56, + "probability": 0.8254 + }, + { + "start": 22953.32, + "end": 22957.6, + "probability": 0.9468 + }, + { + "start": 22957.64, + "end": 22959.2, + "probability": 0.9395 + }, + { + "start": 22959.38, + "end": 22961.06, + "probability": 0.7907 + }, + { + "start": 22961.46, + "end": 22962.2, + "probability": 0.7231 + }, + { + "start": 22962.46, + "end": 22963.2, + "probability": 0.5304 + }, + { + "start": 22966.6, + "end": 22967.68, + "probability": 0.5828 + }, + { + "start": 22967.72, + "end": 22969.22, + "probability": 0.6641 + }, + { + "start": 22970.66, + "end": 22971.86, + "probability": 0.4194 + }, + { + "start": 22972.22, + "end": 22972.24, + "probability": 0.0866 + }, + { + "start": 22972.24, + "end": 22972.24, + "probability": 0.238 + }, + { + "start": 22972.24, + "end": 22975.12, + "probability": 0.9774 + }, + { + "start": 22975.2, + "end": 22976.94, + "probability": 0.7919 + }, + { + "start": 22978.36, + "end": 22978.36, + "probability": 0.8838 + }, + { + "start": 22978.94, + "end": 22979.86, + "probability": 0.6134 + }, + { + "start": 22980.52, + "end": 22982.24, + "probability": 0.8925 + }, + { + "start": 22983.04, + "end": 22986.02, + "probability": 0.994 + }, + { + "start": 22986.9, + "end": 22987.86, + "probability": 0.828 + }, + { + "start": 22988.24, + "end": 22989.92, + "probability": 0.964 + }, + { + "start": 22991.14, + "end": 22991.64, + "probability": 0.5072 + }, + { + "start": 22991.92, + "end": 22992.2, + "probability": 0.6014 + }, + { + "start": 22992.42, + "end": 22992.46, + "probability": 0.6841 + }, + { + "start": 22992.46, + "end": 22993.72, + "probability": 0.9933 + }, + { + "start": 22995.2, + "end": 23000.42, + "probability": 0.9953 + }, + { + "start": 23000.44, + "end": 23004.04, + "probability": 0.9995 + }, + { + "start": 23004.68, + "end": 23005.19, + "probability": 0.7042 + }, + { + "start": 23005.94, + "end": 23006.28, + "probability": 0.2302 + }, + { + "start": 23007.4, + "end": 23009.04, + "probability": 0.8315 + }, + { + "start": 23009.88, + "end": 23010.36, + "probability": 0.7921 + }, + { + "start": 23010.52, + "end": 23011.27, + "probability": 0.4462 + }, + { + "start": 23011.58, + "end": 23013.22, + "probability": 0.8738 + }, + { + "start": 23014.3, + "end": 23017.9, + "probability": 0.9347 + }, + { + "start": 23018.2, + "end": 23021.48, + "probability": 0.8613 + }, + { + "start": 23022.14, + "end": 23024.78, + "probability": 0.9129 + }, + { + "start": 23025.1, + "end": 23026.7, + "probability": 0.9666 + }, + { + "start": 23027.5, + "end": 23031.52, + "probability": 0.9957 + }, + { + "start": 23032.94, + "end": 23034.56, + "probability": 0.7226 + }, + { + "start": 23034.86, + "end": 23035.08, + "probability": 0.3235 + }, + { + "start": 23035.08, + "end": 23036.04, + "probability": 0.5959 + }, + { + "start": 23036.52, + "end": 23041.12, + "probability": 0.9993 + }, + { + "start": 23041.34, + "end": 23042.46, + "probability": 0.7112 + }, + { + "start": 23042.82, + "end": 23045.32, + "probability": 0.9875 + }, + { + "start": 23045.9, + "end": 23046.16, + "probability": 0.8203 + }, + { + "start": 23046.68, + "end": 23048.64, + "probability": 0.9361 + }, + { + "start": 23048.7, + "end": 23049.98, + "probability": 0.9574 + }, + { + "start": 23064.39, + "end": 23065.26, + "probability": 0.8892 + }, + { + "start": 23065.8, + "end": 23066.02, + "probability": 0.7069 + }, + { + "start": 23067.54, + "end": 23068.66, + "probability": 0.6383 + }, + { + "start": 23069.18, + "end": 23070.22, + "probability": 0.8633 + }, + { + "start": 23071.7, + "end": 23074.38, + "probability": 0.866 + }, + { + "start": 23076.22, + "end": 23079.0, + "probability": 0.9642 + }, + { + "start": 23079.82, + "end": 23080.64, + "probability": 0.9543 + }, + { + "start": 23081.76, + "end": 23082.64, + "probability": 0.9453 + }, + { + "start": 23084.28, + "end": 23086.52, + "probability": 0.8931 + }, + { + "start": 23087.92, + "end": 23091.92, + "probability": 0.9146 + }, + { + "start": 23093.36, + "end": 23095.82, + "probability": 0.9848 + }, + { + "start": 23097.28, + "end": 23099.22, + "probability": 0.9889 + }, + { + "start": 23100.22, + "end": 23106.14, + "probability": 0.8345 + }, + { + "start": 23107.26, + "end": 23109.26, + "probability": 0.9444 + }, + { + "start": 23110.42, + "end": 23112.32, + "probability": 0.9771 + }, + { + "start": 23113.52, + "end": 23115.12, + "probability": 0.9072 + }, + { + "start": 23116.02, + "end": 23118.44, + "probability": 0.9808 + }, + { + "start": 23119.3, + "end": 23123.58, + "probability": 0.9966 + }, + { + "start": 23124.34, + "end": 23125.1, + "probability": 0.4961 + }, + { + "start": 23125.72, + "end": 23127.92, + "probability": 0.9904 + }, + { + "start": 23129.32, + "end": 23131.74, + "probability": 0.999 + }, + { + "start": 23132.98, + "end": 23135.52, + "probability": 0.9969 + }, + { + "start": 23136.92, + "end": 23138.06, + "probability": 0.9922 + }, + { + "start": 23139.3, + "end": 23142.0, + "probability": 0.9987 + }, + { + "start": 23142.72, + "end": 23143.76, + "probability": 0.9795 + }, + { + "start": 23144.7, + "end": 23147.12, + "probability": 0.9852 + }, + { + "start": 23148.18, + "end": 23151.36, + "probability": 0.6989 + }, + { + "start": 23152.22, + "end": 23156.42, + "probability": 0.9386 + }, + { + "start": 23158.34, + "end": 23160.38, + "probability": 0.8875 + }, + { + "start": 23162.14, + "end": 23165.9, + "probability": 0.8334 + }, + { + "start": 23166.94, + "end": 23173.22, + "probability": 0.9626 + }, + { + "start": 23174.44, + "end": 23175.76, + "probability": 0.7217 + }, + { + "start": 23177.82, + "end": 23179.66, + "probability": 0.9946 + }, + { + "start": 23181.22, + "end": 23182.86, + "probability": 0.9526 + }, + { + "start": 23184.68, + "end": 23186.2, + "probability": 0.9853 + }, + { + "start": 23188.26, + "end": 23191.08, + "probability": 0.9894 + }, + { + "start": 23192.22, + "end": 23193.64, + "probability": 0.9895 + }, + { + "start": 23194.92, + "end": 23197.08, + "probability": 0.8612 + }, + { + "start": 23199.02, + "end": 23200.92, + "probability": 0.969 + }, + { + "start": 23203.04, + "end": 23204.64, + "probability": 0.7464 + }, + { + "start": 23206.44, + "end": 23209.76, + "probability": 0.782 + }, + { + "start": 23211.28, + "end": 23213.86, + "probability": 0.9939 + }, + { + "start": 23215.48, + "end": 23219.14, + "probability": 0.9935 + }, + { + "start": 23220.64, + "end": 23222.84, + "probability": 0.9553 + }, + { + "start": 23224.42, + "end": 23229.0, + "probability": 0.9985 + }, + { + "start": 23229.98, + "end": 23231.42, + "probability": 0.9054 + }, + { + "start": 23232.82, + "end": 23235.32, + "probability": 0.9811 + }, + { + "start": 23237.28, + "end": 23238.9, + "probability": 0.9901 + }, + { + "start": 23239.54, + "end": 23240.48, + "probability": 0.7306 + }, + { + "start": 23242.52, + "end": 23245.94, + "probability": 0.9916 + }, + { + "start": 23246.66, + "end": 23247.18, + "probability": 0.835 + }, + { + "start": 23247.72, + "end": 23248.36, + "probability": 0.7089 + }, + { + "start": 23250.16, + "end": 23257.64, + "probability": 0.9443 + }, + { + "start": 23258.94, + "end": 23261.14, + "probability": 0.9787 + }, + { + "start": 23262.16, + "end": 23265.88, + "probability": 0.9988 + }, + { + "start": 23267.24, + "end": 23268.78, + "probability": 0.9768 + }, + { + "start": 23270.8, + "end": 23272.96, + "probability": 0.9929 + }, + { + "start": 23273.7, + "end": 23275.66, + "probability": 0.9648 + }, + { + "start": 23276.9, + "end": 23278.24, + "probability": 0.6191 + }, + { + "start": 23279.54, + "end": 23280.54, + "probability": 0.9397 + }, + { + "start": 23282.56, + "end": 23283.7, + "probability": 0.8708 + }, + { + "start": 23284.68, + "end": 23287.88, + "probability": 0.9924 + }, + { + "start": 23288.96, + "end": 23291.2, + "probability": 0.9982 + }, + { + "start": 23292.86, + "end": 23297.04, + "probability": 0.9917 + }, + { + "start": 23297.72, + "end": 23299.74, + "probability": 0.9985 + }, + { + "start": 23303.04, + "end": 23306.78, + "probability": 0.9897 + }, + { + "start": 23307.76, + "end": 23310.82, + "probability": 1.0 + }, + { + "start": 23312.32, + "end": 23316.98, + "probability": 0.9886 + }, + { + "start": 23318.64, + "end": 23321.0, + "probability": 0.8687 + }, + { + "start": 23321.72, + "end": 23323.16, + "probability": 0.9114 + }, + { + "start": 23323.98, + "end": 23326.16, + "probability": 0.9965 + }, + { + "start": 23326.76, + "end": 23329.1, + "probability": 0.971 + }, + { + "start": 23329.62, + "end": 23330.34, + "probability": 0.626 + }, + { + "start": 23331.3, + "end": 23333.7, + "probability": 0.9681 + }, + { + "start": 23336.5, + "end": 23337.32, + "probability": 0.5934 + }, + { + "start": 23338.8, + "end": 23340.54, + "probability": 0.9413 + }, + { + "start": 23342.04, + "end": 23343.1, + "probability": 0.8902 + }, + { + "start": 23344.54, + "end": 23345.18, + "probability": 0.8379 + }, + { + "start": 23346.02, + "end": 23347.72, + "probability": 0.9679 + }, + { + "start": 23349.14, + "end": 23350.74, + "probability": 0.7915 + }, + { + "start": 23352.34, + "end": 23355.16, + "probability": 0.765 + }, + { + "start": 23356.44, + "end": 23358.58, + "probability": 0.9849 + }, + { + "start": 23359.2, + "end": 23360.1, + "probability": 0.8854 + }, + { + "start": 23361.74, + "end": 23362.3, + "probability": 0.9151 + }, + { + "start": 23367.98, + "end": 23370.06, + "probability": 0.9613 + }, + { + "start": 23370.28, + "end": 23371.98, + "probability": 0.9776 + }, + { + "start": 23372.42, + "end": 23373.12, + "probability": 0.1756 + }, + { + "start": 23373.84, + "end": 23376.0, + "probability": 0.2518 + }, + { + "start": 23376.22, + "end": 23377.58, + "probability": 0.8965 + }, + { + "start": 23384.84, + "end": 23385.5, + "probability": 0.7512 + }, + { + "start": 23386.4, + "end": 23387.15, + "probability": 0.4678 + }, + { + "start": 23387.72, + "end": 23389.71, + "probability": 0.8514 + }, + { + "start": 23392.84, + "end": 23393.88, + "probability": 0.7021 + }, + { + "start": 23394.62, + "end": 23397.26, + "probability": 0.5997 + }, + { + "start": 23398.82, + "end": 23401.5, + "probability": 0.9616 + }, + { + "start": 23402.5, + "end": 23403.52, + "probability": 0.793 + }, + { + "start": 23405.38, + "end": 23405.98, + "probability": 0.9894 + }, + { + "start": 23406.64, + "end": 23407.14, + "probability": 0.7559 + }, + { + "start": 23409.24, + "end": 23410.04, + "probability": 0.9974 + }, + { + "start": 23410.9, + "end": 23411.22, + "probability": 0.7009 + }, + { + "start": 23412.8, + "end": 23416.54, + "probability": 0.9532 + }, + { + "start": 23416.68, + "end": 23418.14, + "probability": 0.989 + }, + { + "start": 23418.62, + "end": 23419.46, + "probability": 0.828 + }, + { + "start": 23420.92, + "end": 23424.22, + "probability": 0.7873 + }, + { + "start": 23425.3, + "end": 23427.62, + "probability": 0.9597 + }, + { + "start": 23428.26, + "end": 23428.99, + "probability": 0.8952 + }, + { + "start": 23430.4, + "end": 23434.52, + "probability": 0.973 + }, + { + "start": 23435.36, + "end": 23436.0, + "probability": 0.621 + }, + { + "start": 23437.42, + "end": 23438.36, + "probability": 0.9526 + }, + { + "start": 23439.78, + "end": 23446.82, + "probability": 0.8999 + }, + { + "start": 23447.58, + "end": 23451.16, + "probability": 0.9902 + }, + { + "start": 23451.8, + "end": 23453.96, + "probability": 0.8209 + }, + { + "start": 23454.76, + "end": 23460.26, + "probability": 0.9935 + }, + { + "start": 23460.26, + "end": 23465.14, + "probability": 0.9984 + }, + { + "start": 23465.84, + "end": 23466.86, + "probability": 0.8932 + }, + { + "start": 23469.12, + "end": 23473.42, + "probability": 0.9972 + }, + { + "start": 23474.34, + "end": 23475.26, + "probability": 0.8168 + }, + { + "start": 23476.46, + "end": 23479.0, + "probability": 0.8723 + }, + { + "start": 23479.64, + "end": 23481.22, + "probability": 0.8481 + }, + { + "start": 23482.64, + "end": 23484.26, + "probability": 0.9498 + }, + { + "start": 23485.88, + "end": 23486.66, + "probability": 0.8636 + }, + { + "start": 23487.52, + "end": 23489.0, + "probability": 0.8989 + }, + { + "start": 23490.52, + "end": 23490.92, + "probability": 0.51 + }, + { + "start": 23491.02, + "end": 23493.9, + "probability": 0.9799 + }, + { + "start": 23493.98, + "end": 23494.4, + "probability": 0.6711 + }, + { + "start": 23494.6, + "end": 23494.86, + "probability": 0.6244 + }, + { + "start": 23495.64, + "end": 23497.26, + "probability": 0.9453 + }, + { + "start": 23498.4, + "end": 23499.3, + "probability": 0.9076 + }, + { + "start": 23500.08, + "end": 23500.98, + "probability": 0.9396 + }, + { + "start": 23501.62, + "end": 23505.9, + "probability": 0.9868 + }, + { + "start": 23506.56, + "end": 23508.3, + "probability": 0.9622 + }, + { + "start": 23509.28, + "end": 23510.66, + "probability": 0.6635 + }, + { + "start": 23510.96, + "end": 23511.84, + "probability": 0.4475 + }, + { + "start": 23512.28, + "end": 23513.4, + "probability": 0.6546 + }, + { + "start": 23514.54, + "end": 23520.5, + "probability": 0.9616 + }, + { + "start": 23521.1, + "end": 23522.56, + "probability": 0.9902 + }, + { + "start": 23524.66, + "end": 23527.44, + "probability": 0.9541 + }, + { + "start": 23528.54, + "end": 23534.72, + "probability": 0.9814 + }, + { + "start": 23535.28, + "end": 23537.7, + "probability": 0.974 + }, + { + "start": 23538.26, + "end": 23541.66, + "probability": 0.7284 + }, + { + "start": 23542.6, + "end": 23550.54, + "probability": 0.9356 + }, + { + "start": 23550.98, + "end": 23552.42, + "probability": 0.9434 + }, + { + "start": 23552.82, + "end": 23554.02, + "probability": 0.9857 + }, + { + "start": 23554.84, + "end": 23555.52, + "probability": 0.5565 + }, + { + "start": 23556.26, + "end": 23557.02, + "probability": 0.8349 + }, + { + "start": 23557.78, + "end": 23558.68, + "probability": 0.9748 + }, + { + "start": 23559.34, + "end": 23565.12, + "probability": 0.9807 + }, + { + "start": 23565.78, + "end": 23568.34, + "probability": 0.9741 + }, + { + "start": 23570.1, + "end": 23575.12, + "probability": 0.9596 + }, + { + "start": 23575.72, + "end": 23577.52, + "probability": 0.8781 + }, + { + "start": 23579.04, + "end": 23581.96, + "probability": 0.9972 + }, + { + "start": 23582.52, + "end": 23584.5, + "probability": 0.7799 + }, + { + "start": 23585.02, + "end": 23589.12, + "probability": 0.918 + }, + { + "start": 23589.54, + "end": 23592.94, + "probability": 0.95 + }, + { + "start": 23593.92, + "end": 23597.22, + "probability": 0.9962 + }, + { + "start": 23597.82, + "end": 23600.2, + "probability": 0.991 + }, + { + "start": 23601.3, + "end": 23603.08, + "probability": 0.5416 + }, + { + "start": 23604.08, + "end": 23606.84, + "probability": 0.9497 + }, + { + "start": 23608.42, + "end": 23609.86, + "probability": 0.7636 + }, + { + "start": 23610.48, + "end": 23615.7, + "probability": 0.9578 + }, + { + "start": 23616.14, + "end": 23619.96, + "probability": 0.9568 + }, + { + "start": 23620.56, + "end": 23624.82, + "probability": 0.9985 + }, + { + "start": 23626.22, + "end": 23629.5, + "probability": 0.9696 + }, + { + "start": 23630.1, + "end": 23632.68, + "probability": 0.9739 + }, + { + "start": 23633.34, + "end": 23634.54, + "probability": 0.9949 + }, + { + "start": 23635.92, + "end": 23637.58, + "probability": 0.6814 + }, + { + "start": 23638.06, + "end": 23639.68, + "probability": 0.8268 + }, + { + "start": 23639.89, + "end": 23642.04, + "probability": 0.9661 + }, + { + "start": 23642.68, + "end": 23647.44, + "probability": 0.9434 + }, + { + "start": 23649.2, + "end": 23651.94, + "probability": 0.9834 + }, + { + "start": 23651.94, + "end": 23656.28, + "probability": 0.9893 + }, + { + "start": 23657.0, + "end": 23658.54, + "probability": 0.9418 + }, + { + "start": 23658.92, + "end": 23663.68, + "probability": 0.9932 + }, + { + "start": 23664.22, + "end": 23665.78, + "probability": 0.835 + }, + { + "start": 23666.24, + "end": 23668.78, + "probability": 0.9641 + }, + { + "start": 23669.54, + "end": 23673.82, + "probability": 0.9932 + }, + { + "start": 23673.82, + "end": 23678.0, + "probability": 0.9967 + }, + { + "start": 23679.82, + "end": 23683.12, + "probability": 0.999 + }, + { + "start": 23683.86, + "end": 23688.16, + "probability": 0.7051 + }, + { + "start": 23688.98, + "end": 23691.82, + "probability": 0.9972 + }, + { + "start": 23692.3, + "end": 23692.66, + "probability": 0.9275 + }, + { + "start": 23693.86, + "end": 23694.38, + "probability": 0.8921 + }, + { + "start": 23696.4, + "end": 23697.3, + "probability": 0.3582 + }, + { + "start": 23697.48, + "end": 23698.08, + "probability": 0.9707 + }, + { + "start": 23698.2, + "end": 23700.5, + "probability": 0.9874 + }, + { + "start": 23701.8, + "end": 23706.5, + "probability": 0.9439 + }, + { + "start": 23706.94, + "end": 23707.74, + "probability": 0.4025 + }, + { + "start": 23708.22, + "end": 23712.04, + "probability": 0.9707 + }, + { + "start": 23712.82, + "end": 23714.52, + "probability": 0.9963 + }, + { + "start": 23715.42, + "end": 23716.82, + "probability": 0.9844 + }, + { + "start": 23717.38, + "end": 23720.32, + "probability": 0.9937 + }, + { + "start": 23720.84, + "end": 23726.42, + "probability": 0.998 + }, + { + "start": 23727.02, + "end": 23729.46, + "probability": 0.9941 + }, + { + "start": 23730.54, + "end": 23732.26, + "probability": 0.8922 + }, + { + "start": 23732.94, + "end": 23738.06, + "probability": 0.9535 + }, + { + "start": 23738.54, + "end": 23740.84, + "probability": 0.9662 + }, + { + "start": 23741.38, + "end": 23742.62, + "probability": 0.9937 + }, + { + "start": 23742.72, + "end": 23742.94, + "probability": 0.9025 + }, + { + "start": 23744.34, + "end": 23746.42, + "probability": 0.8557 + }, + { + "start": 23746.56, + "end": 23748.4, + "probability": 0.7925 + }, + { + "start": 23760.22, + "end": 23760.22, + "probability": 0.1285 + }, + { + "start": 23760.22, + "end": 23760.22, + "probability": 0.1711 + }, + { + "start": 23760.3, + "end": 23760.3, + "probability": 0.0209 + }, + { + "start": 23782.8, + "end": 23783.5, + "probability": 0.8078 + }, + { + "start": 23784.6, + "end": 23786.12, + "probability": 0.8127 + }, + { + "start": 23787.34, + "end": 23787.56, + "probability": 0.9075 + }, + { + "start": 23788.04, + "end": 23791.72, + "probability": 0.9869 + }, + { + "start": 23792.26, + "end": 23794.84, + "probability": 0.9963 + }, + { + "start": 23796.16, + "end": 23798.48, + "probability": 0.9989 + }, + { + "start": 23800.04, + "end": 23803.06, + "probability": 0.9741 + }, + { + "start": 23803.9, + "end": 23805.0, + "probability": 0.8053 + }, + { + "start": 23808.24, + "end": 23811.52, + "probability": 0.9179 + }, + { + "start": 23813.02, + "end": 23815.08, + "probability": 0.8809 + }, + { + "start": 23816.28, + "end": 23819.46, + "probability": 0.9827 + }, + { + "start": 23820.82, + "end": 23822.18, + "probability": 0.7721 + }, + { + "start": 23823.7, + "end": 23825.06, + "probability": 0.9822 + }, + { + "start": 23826.06, + "end": 23830.04, + "probability": 0.9988 + }, + { + "start": 23830.04, + "end": 23833.46, + "probability": 0.9996 + }, + { + "start": 23833.54, + "end": 23836.08, + "probability": 0.9947 + }, + { + "start": 23836.98, + "end": 23840.28, + "probability": 0.9959 + }, + { + "start": 23841.26, + "end": 23846.56, + "probability": 0.9701 + }, + { + "start": 23848.42, + "end": 23851.38, + "probability": 0.9761 + }, + { + "start": 23852.34, + "end": 23853.88, + "probability": 0.9937 + }, + { + "start": 23855.52, + "end": 23858.68, + "probability": 0.9889 + }, + { + "start": 23860.54, + "end": 23861.17, + "probability": 0.9736 + }, + { + "start": 23861.88, + "end": 23863.12, + "probability": 0.9863 + }, + { + "start": 23864.42, + "end": 23867.02, + "probability": 0.8606 + }, + { + "start": 23867.02, + "end": 23870.26, + "probability": 0.9458 + }, + { + "start": 23870.88, + "end": 23871.88, + "probability": 0.7481 + }, + { + "start": 23872.54, + "end": 23875.24, + "probability": 0.9316 + }, + { + "start": 23876.84, + "end": 23878.44, + "probability": 0.9175 + }, + { + "start": 23878.5, + "end": 23880.42, + "probability": 0.9908 + }, + { + "start": 23881.06, + "end": 23881.46, + "probability": 0.4791 + }, + { + "start": 23881.54, + "end": 23883.02, + "probability": 0.9709 + }, + { + "start": 23883.1, + "end": 23885.32, + "probability": 0.7148 + }, + { + "start": 23887.04, + "end": 23887.96, + "probability": 0.2596 + }, + { + "start": 23888.82, + "end": 23890.7, + "probability": 0.9848 + }, + { + "start": 23891.58, + "end": 23893.2, + "probability": 0.9912 + }, + { + "start": 23893.72, + "end": 23896.74, + "probability": 0.8911 + }, + { + "start": 23897.7, + "end": 23901.3, + "probability": 0.9958 + }, + { + "start": 23901.34, + "end": 23904.18, + "probability": 0.9951 + }, + { + "start": 23905.32, + "end": 23907.78, + "probability": 0.9932 + }, + { + "start": 23909.46, + "end": 23911.7, + "probability": 0.9968 + }, + { + "start": 23912.56, + "end": 23913.84, + "probability": 0.7493 + }, + { + "start": 23914.36, + "end": 23918.56, + "probability": 0.9902 + }, + { + "start": 23919.54, + "end": 23921.1, + "probability": 0.892 + }, + { + "start": 23922.08, + "end": 23925.22, + "probability": 0.8421 + }, + { + "start": 23926.1, + "end": 23927.02, + "probability": 0.9587 + }, + { + "start": 23927.4, + "end": 23928.04, + "probability": 0.9887 + }, + { + "start": 23928.16, + "end": 23929.44, + "probability": 0.9815 + }, + { + "start": 23929.58, + "end": 23930.04, + "probability": 0.6913 + }, + { + "start": 23930.14, + "end": 23930.82, + "probability": 0.7801 + }, + { + "start": 23931.14, + "end": 23932.1, + "probability": 0.8704 + }, + { + "start": 23933.28, + "end": 23937.14, + "probability": 0.9865 + }, + { + "start": 23941.3, + "end": 23942.98, + "probability": 0.9905 + }, + { + "start": 23943.8, + "end": 23947.0, + "probability": 0.9863 + }, + { + "start": 23947.86, + "end": 23952.28, + "probability": 0.9785 + }, + { + "start": 23952.82, + "end": 23953.9, + "probability": 0.9705 + }, + { + "start": 23957.3, + "end": 23959.14, + "probability": 0.9816 + }, + { + "start": 23959.22, + "end": 23960.38, + "probability": 0.8508 + }, + { + "start": 23962.3, + "end": 23964.48, + "probability": 0.8422 + }, + { + "start": 23966.14, + "end": 23967.62, + "probability": 0.9846 + }, + { + "start": 23968.66, + "end": 23974.7, + "probability": 0.9866 + }, + { + "start": 23975.86, + "end": 23977.56, + "probability": 0.9904 + }, + { + "start": 23978.24, + "end": 23980.32, + "probability": 0.994 + }, + { + "start": 23981.64, + "end": 23985.38, + "probability": 0.9907 + }, + { + "start": 23986.36, + "end": 23987.56, + "probability": 0.9595 + }, + { + "start": 23990.12, + "end": 23991.56, + "probability": 0.9923 + }, + { + "start": 23991.78, + "end": 23992.26, + "probability": 0.8197 + }, + { + "start": 23992.34, + "end": 23994.3, + "probability": 0.9871 + }, + { + "start": 23994.52, + "end": 23995.12, + "probability": 0.9858 + }, + { + "start": 23995.16, + "end": 23996.32, + "probability": 0.8381 + }, + { + "start": 23997.02, + "end": 23998.06, + "probability": 0.8861 + }, + { + "start": 23999.36, + "end": 24002.14, + "probability": 0.9766 + }, + { + "start": 24002.98, + "end": 24006.5, + "probability": 0.9763 + }, + { + "start": 24008.12, + "end": 24010.98, + "probability": 0.9738 + }, + { + "start": 24011.98, + "end": 24014.72, + "probability": 0.9431 + }, + { + "start": 24015.64, + "end": 24018.74, + "probability": 0.9985 + }, + { + "start": 24020.34, + "end": 24023.7, + "probability": 0.9852 + }, + { + "start": 24024.58, + "end": 24026.02, + "probability": 0.9821 + }, + { + "start": 24026.2, + "end": 24028.14, + "probability": 0.9667 + }, + { + "start": 24030.7, + "end": 24032.68, + "probability": 0.9219 + }, + { + "start": 24033.54, + "end": 24036.84, + "probability": 0.9937 + }, + { + "start": 24036.84, + "end": 24038.72, + "probability": 0.9805 + }, + { + "start": 24039.52, + "end": 24040.44, + "probability": 0.991 + }, + { + "start": 24041.34, + "end": 24042.54, + "probability": 0.9593 + }, + { + "start": 24043.68, + "end": 24045.16, + "probability": 0.9914 + }, + { + "start": 24046.42, + "end": 24050.76, + "probability": 0.9937 + }, + { + "start": 24051.86, + "end": 24055.1, + "probability": 0.9059 + }, + { + "start": 24055.9, + "end": 24056.8, + "probability": 0.9346 + }, + { + "start": 24057.58, + "end": 24061.42, + "probability": 0.9983 + }, + { + "start": 24062.34, + "end": 24067.3, + "probability": 0.959 + }, + { + "start": 24068.78, + "end": 24071.08, + "probability": 0.9513 + }, + { + "start": 24073.44, + "end": 24075.32, + "probability": 0.9678 + }, + { + "start": 24076.46, + "end": 24079.5, + "probability": 0.9916 + }, + { + "start": 24080.4, + "end": 24082.38, + "probability": 0.9941 + }, + { + "start": 24082.38, + "end": 24086.46, + "probability": 0.9946 + }, + { + "start": 24089.28, + "end": 24090.24, + "probability": 0.3769 + }, + { + "start": 24091.16, + "end": 24096.94, + "probability": 0.991 + }, + { + "start": 24097.54, + "end": 24098.84, + "probability": 0.9965 + }, + { + "start": 24100.46, + "end": 24102.94, + "probability": 0.9797 + }, + { + "start": 24104.16, + "end": 24104.86, + "probability": 0.9932 + }, + { + "start": 24105.4, + "end": 24107.46, + "probability": 0.9893 + }, + { + "start": 24109.08, + "end": 24110.86, + "probability": 0.9922 + }, + { + "start": 24111.94, + "end": 24113.7, + "probability": 0.9865 + }, + { + "start": 24114.64, + "end": 24117.1, + "probability": 0.7839 + }, + { + "start": 24117.84, + "end": 24120.3, + "probability": 0.9916 + }, + { + "start": 24121.12, + "end": 24122.34, + "probability": 0.7996 + }, + { + "start": 24123.04, + "end": 24123.7, + "probability": 0.5053 + }, + { + "start": 24124.22, + "end": 24125.16, + "probability": 0.9905 + }, + { + "start": 24125.2, + "end": 24127.7, + "probability": 0.8834 + }, + { + "start": 24127.78, + "end": 24129.38, + "probability": 0.9951 + }, + { + "start": 24130.58, + "end": 24133.86, + "probability": 0.9634 + }, + { + "start": 24135.02, + "end": 24142.48, + "probability": 0.997 + }, + { + "start": 24143.44, + "end": 24144.62, + "probability": 0.6721 + }, + { + "start": 24144.62, + "end": 24147.48, + "probability": 0.216 + }, + { + "start": 24147.48, + "end": 24150.2, + "probability": 0.8716 + }, + { + "start": 24150.54, + "end": 24152.98, + "probability": 0.9994 + }, + { + "start": 24153.54, + "end": 24154.44, + "probability": 0.6339 + }, + { + "start": 24154.5, + "end": 24155.04, + "probability": 0.1885 + }, + { + "start": 24155.24, + "end": 24156.9, + "probability": 0.2472 + }, + { + "start": 24156.98, + "end": 24157.08, + "probability": 0.3167 + }, + { + "start": 24157.12, + "end": 24160.44, + "probability": 0.9978 + }, + { + "start": 24160.44, + "end": 24162.08, + "probability": 0.7787 + }, + { + "start": 24162.26, + "end": 24164.8, + "probability": 0.0144 + }, + { + "start": 24165.14, + "end": 24168.74, + "probability": 0.4629 + }, + { + "start": 24169.4, + "end": 24169.42, + "probability": 0.2603 + }, + { + "start": 24169.42, + "end": 24169.42, + "probability": 0.28 + }, + { + "start": 24169.42, + "end": 24169.42, + "probability": 0.0866 + }, + { + "start": 24169.42, + "end": 24169.42, + "probability": 0.3042 + }, + { + "start": 24169.42, + "end": 24174.28, + "probability": 0.751 + }, + { + "start": 24174.38, + "end": 24175.38, + "probability": 0.0999 + }, + { + "start": 24175.48, + "end": 24176.04, + "probability": 0.4263 + }, + { + "start": 24176.3, + "end": 24177.32, + "probability": 0.7635 + }, + { + "start": 24177.76, + "end": 24179.34, + "probability": 0.1107 + }, + { + "start": 24179.5, + "end": 24181.3, + "probability": 0.6523 + }, + { + "start": 24181.5, + "end": 24181.6, + "probability": 0.1513 + }, + { + "start": 24182.4, + "end": 24185.44, + "probability": 0.6252 + }, + { + "start": 24185.6, + "end": 24191.04, + "probability": 0.9934 + }, + { + "start": 24192.54, + "end": 24194.68, + "probability": 0.6731 + }, + { + "start": 24195.42, + "end": 24199.64, + "probability": 0.9688 + }, + { + "start": 24200.18, + "end": 24202.86, + "probability": 0.894 + }, + { + "start": 24203.86, + "end": 24207.14, + "probability": 0.9433 + }, + { + "start": 24207.94, + "end": 24211.74, + "probability": 0.9902 + }, + { + "start": 24211.86, + "end": 24212.84, + "probability": 0.998 + }, + { + "start": 24213.4, + "end": 24218.34, + "probability": 0.9593 + }, + { + "start": 24218.88, + "end": 24219.12, + "probability": 0.7038 + }, + { + "start": 24220.44, + "end": 24222.54, + "probability": 0.9294 + }, + { + "start": 24222.64, + "end": 24225.1, + "probability": 0.8931 + }, + { + "start": 24234.47, + "end": 24237.18, + "probability": 0.5858 + }, + { + "start": 24237.7, + "end": 24239.72, + "probability": 0.9988 + }, + { + "start": 24241.5, + "end": 24242.26, + "probability": 0.7213 + }, + { + "start": 24242.62, + "end": 24245.08, + "probability": 0.5909 + }, + { + "start": 24246.9, + "end": 24247.14, + "probability": 0.1649 + }, + { + "start": 24247.16, + "end": 24247.34, + "probability": 0.0001 + }, + { + "start": 24248.14, + "end": 24248.42, + "probability": 0.1695 + }, + { + "start": 24248.42, + "end": 24249.32, + "probability": 0.6494 + }, + { + "start": 24249.44, + "end": 24249.72, + "probability": 0.5594 + }, + { + "start": 24250.06, + "end": 24253.3, + "probability": 0.9856 + }, + { + "start": 24253.7, + "end": 24255.06, + "probability": 0.9194 + }, + { + "start": 24255.26, + "end": 24255.28, + "probability": 0.0251 + }, + { + "start": 24255.28, + "end": 24257.2, + "probability": 0.9837 + }, + { + "start": 24257.62, + "end": 24259.66, + "probability": 0.6078 + }, + { + "start": 24259.88, + "end": 24260.1, + "probability": 0.0038 + }, + { + "start": 24260.1, + "end": 24261.22, + "probability": 0.6378 + }, + { + "start": 24261.4, + "end": 24262.3, + "probability": 0.7365 + }, + { + "start": 24263.34, + "end": 24266.44, + "probability": 0.8586 + }, + { + "start": 24268.38, + "end": 24275.84, + "probability": 0.8798 + }, + { + "start": 24277.52, + "end": 24279.34, + "probability": 0.928 + }, + { + "start": 24282.28, + "end": 24287.78, + "probability": 0.8901 + }, + { + "start": 24288.82, + "end": 24290.08, + "probability": 0.6915 + }, + { + "start": 24291.28, + "end": 24297.72, + "probability": 0.9515 + }, + { + "start": 24297.88, + "end": 24298.06, + "probability": 0.0841 + }, + { + "start": 24298.74, + "end": 24300.48, + "probability": 0.7969 + }, + { + "start": 24302.52, + "end": 24305.58, + "probability": 0.9013 + }, + { + "start": 24306.9, + "end": 24310.04, + "probability": 0.5856 + }, + { + "start": 24310.96, + "end": 24314.24, + "probability": 0.853 + }, + { + "start": 24319.66, + "end": 24322.5, + "probability": 0.9926 + }, + { + "start": 24323.84, + "end": 24326.44, + "probability": 0.9226 + }, + { + "start": 24327.02, + "end": 24329.56, + "probability": 0.8528 + }, + { + "start": 24330.16, + "end": 24332.28, + "probability": 0.9784 + }, + { + "start": 24335.78, + "end": 24337.86, + "probability": 0.7945 + }, + { + "start": 24337.86, + "end": 24340.8, + "probability": 0.9857 + }, + { + "start": 24340.92, + "end": 24342.04, + "probability": 0.8303 + }, + { + "start": 24344.28, + "end": 24345.93, + "probability": 0.7223 + }, + { + "start": 24346.5, + "end": 24347.84, + "probability": 0.9578 + }, + { + "start": 24348.04, + "end": 24349.1, + "probability": 0.9047 + }, + { + "start": 24349.52, + "end": 24350.64, + "probability": 0.9961 + }, + { + "start": 24352.32, + "end": 24353.3, + "probability": 0.998 + }, + { + "start": 24354.88, + "end": 24355.86, + "probability": 0.7946 + }, + { + "start": 24360.02, + "end": 24361.18, + "probability": 0.8951 + }, + { + "start": 24362.3, + "end": 24364.66, + "probability": 0.9809 + }, + { + "start": 24365.36, + "end": 24366.52, + "probability": 0.9909 + }, + { + "start": 24366.52, + "end": 24369.48, + "probability": 0.9898 + }, + { + "start": 24373.62, + "end": 24376.8, + "probability": 0.906 + }, + { + "start": 24379.6, + "end": 24382.22, + "probability": 0.97 + }, + { + "start": 24383.76, + "end": 24389.54, + "probability": 0.9717 + }, + { + "start": 24390.9, + "end": 24390.9, + "probability": 0.0021 + }, + { + "start": 24390.9, + "end": 24391.02, + "probability": 0.3311 + }, + { + "start": 24391.36, + "end": 24391.36, + "probability": 0.3311 + }, + { + "start": 24391.36, + "end": 24391.9, + "probability": 0.8312 + }, + { + "start": 24391.98, + "end": 24393.48, + "probability": 0.9562 + }, + { + "start": 24393.58, + "end": 24394.94, + "probability": 0.8414 + }, + { + "start": 24395.1, + "end": 24395.5, + "probability": 0.7363 + }, + { + "start": 24395.58, + "end": 24396.08, + "probability": 0.7225 + }, + { + "start": 24396.1, + "end": 24398.02, + "probability": 0.8229 + }, + { + "start": 24398.22, + "end": 24399.12, + "probability": 0.6375 + }, + { + "start": 24399.2, + "end": 24401.04, + "probability": 0.3136 + }, + { + "start": 24401.04, + "end": 24405.66, + "probability": 0.5836 + }, + { + "start": 24406.24, + "end": 24406.96, + "probability": 0.3258 + }, + { + "start": 24406.96, + "end": 24406.96, + "probability": 0.0076 + }, + { + "start": 24406.96, + "end": 24407.82, + "probability": 0.1775 + }, + { + "start": 24408.82, + "end": 24408.82, + "probability": 0.0705 + }, + { + "start": 24408.82, + "end": 24409.52, + "probability": 0.6176 + }, + { + "start": 24409.68, + "end": 24411.46, + "probability": 0.8041 + }, + { + "start": 24412.72, + "end": 24415.48, + "probability": 0.9011 + }, + { + "start": 24416.14, + "end": 24418.58, + "probability": 0.9832 + }, + { + "start": 24420.06, + "end": 24423.12, + "probability": 0.9593 + }, + { + "start": 24424.9, + "end": 24426.1, + "probability": 0.9321 + }, + { + "start": 24431.34, + "end": 24432.7, + "probability": 0.5092 + }, + { + "start": 24435.3, + "end": 24438.82, + "probability": 0.8276 + }, + { + "start": 24440.48, + "end": 24441.62, + "probability": 0.8794 + }, + { + "start": 24443.54, + "end": 24445.8, + "probability": 0.9764 + }, + { + "start": 24446.88, + "end": 24449.4, + "probability": 0.9708 + }, + { + "start": 24450.62, + "end": 24452.88, + "probability": 0.8081 + }, + { + "start": 24455.44, + "end": 24456.96, + "probability": 0.8623 + }, + { + "start": 24458.78, + "end": 24459.48, + "probability": 0.7516 + }, + { + "start": 24459.54, + "end": 24460.26, + "probability": 0.8361 + }, + { + "start": 24460.34, + "end": 24462.68, + "probability": 0.9014 + }, + { + "start": 24462.82, + "end": 24467.09, + "probability": 0.7983 + }, + { + "start": 24467.76, + "end": 24468.52, + "probability": 0.7338 + }, + { + "start": 24468.58, + "end": 24468.88, + "probability": 0.8516 + }, + { + "start": 24469.52, + "end": 24471.48, + "probability": 0.7006 + }, + { + "start": 24473.14, + "end": 24477.84, + "probability": 0.9844 + }, + { + "start": 24479.56, + "end": 24481.36, + "probability": 0.9718 + }, + { + "start": 24482.02, + "end": 24484.1, + "probability": 0.9951 + }, + { + "start": 24485.5, + "end": 24489.56, + "probability": 0.9459 + }, + { + "start": 24490.26, + "end": 24491.8, + "probability": 0.8636 + }, + { + "start": 24492.12, + "end": 24493.14, + "probability": 0.8584 + }, + { + "start": 24493.24, + "end": 24493.99, + "probability": 0.1164 + }, + { + "start": 24496.1, + "end": 24497.62, + "probability": 0.3582 + }, + { + "start": 24497.78, + "end": 24500.04, + "probability": 0.6281 + }, + { + "start": 24502.16, + "end": 24504.0, + "probability": 0.7629 + }, + { + "start": 24504.1, + "end": 24504.88, + "probability": 0.5747 + }, + { + "start": 24505.48, + "end": 24506.08, + "probability": 0.9925 + }, + { + "start": 24507.26, + "end": 24510.96, + "probability": 0.9958 + }, + { + "start": 24511.76, + "end": 24515.28, + "probability": 0.8878 + }, + { + "start": 24516.7, + "end": 24519.38, + "probability": 0.9986 + }, + { + "start": 24519.94, + "end": 24522.16, + "probability": 0.9954 + }, + { + "start": 24522.8, + "end": 24523.2, + "probability": 0.7563 + }, + { + "start": 24525.1, + "end": 24525.9, + "probability": 0.984 + }, + { + "start": 24527.24, + "end": 24527.36, + "probability": 0.5916 + }, + { + "start": 24527.42, + "end": 24527.8, + "probability": 0.9757 + }, + { + "start": 24527.96, + "end": 24529.59, + "probability": 0.9165 + }, + { + "start": 24529.8, + "end": 24531.72, + "probability": 0.9741 + }, + { + "start": 24532.1, + "end": 24535.94, + "probability": 0.9951 + }, + { + "start": 24536.6, + "end": 24537.37, + "probability": 0.9907 + }, + { + "start": 24537.44, + "end": 24538.22, + "probability": 0.8252 + }, + { + "start": 24538.26, + "end": 24540.86, + "probability": 0.1065 + }, + { + "start": 24540.86, + "end": 24543.76, + "probability": 0.7853 + }, + { + "start": 24544.18, + "end": 24549.72, + "probability": 0.9232 + }, + { + "start": 24550.58, + "end": 24554.28, + "probability": 0.9753 + }, + { + "start": 24554.92, + "end": 24556.92, + "probability": 0.4045 + }, + { + "start": 24557.32, + "end": 24558.18, + "probability": 0.8093 + }, + { + "start": 24559.16, + "end": 24559.6, + "probability": 0.8577 + }, + { + "start": 24560.44, + "end": 24562.04, + "probability": 0.5188 + }, + { + "start": 24563.8, + "end": 24565.48, + "probability": 0.9971 + }, + { + "start": 24567.56, + "end": 24572.04, + "probability": 0.991 + }, + { + "start": 24573.6, + "end": 24577.54, + "probability": 0.9937 + }, + { + "start": 24578.1, + "end": 24580.24, + "probability": 0.8334 + }, + { + "start": 24580.96, + "end": 24582.22, + "probability": 0.7277 + }, + { + "start": 24582.98, + "end": 24584.42, + "probability": 0.9969 + }, + { + "start": 24585.72, + "end": 24589.53, + "probability": 0.9922 + }, + { + "start": 24590.78, + "end": 24591.06, + "probability": 0.5573 + }, + { + "start": 24591.7, + "end": 24592.64, + "probability": 0.7964 + }, + { + "start": 24593.2, + "end": 24595.54, + "probability": 0.9767 + }, + { + "start": 24596.44, + "end": 24598.32, + "probability": 0.8617 + }, + { + "start": 24599.1, + "end": 24600.34, + "probability": 0.8066 + }, + { + "start": 24602.22, + "end": 24605.14, + "probability": 0.578 + }, + { + "start": 24606.08, + "end": 24607.22, + "probability": 0.8383 + }, + { + "start": 24607.28, + "end": 24607.84, + "probability": 0.8804 + }, + { + "start": 24607.96, + "end": 24608.92, + "probability": 0.9697 + }, + { + "start": 24609.26, + "end": 24610.08, + "probability": 0.8129 + }, + { + "start": 24610.44, + "end": 24612.54, + "probability": 0.9913 + }, + { + "start": 24612.76, + "end": 24613.32, + "probability": 0.7026 + }, + { + "start": 24614.26, + "end": 24616.4, + "probability": 0.9808 + }, + { + "start": 24618.42, + "end": 24621.05, + "probability": 0.9962 + }, + { + "start": 24622.08, + "end": 24623.24, + "probability": 0.9827 + }, + { + "start": 24626.4, + "end": 24629.2, + "probability": 0.9778 + }, + { + "start": 24630.3, + "end": 24633.58, + "probability": 0.9746 + }, + { + "start": 24635.02, + "end": 24635.18, + "probability": 0.5403 + }, + { + "start": 24635.2, + "end": 24636.52, + "probability": 0.913 + }, + { + "start": 24636.94, + "end": 24637.16, + "probability": 0.7338 + }, + { + "start": 24637.28, + "end": 24638.32, + "probability": 0.9091 + }, + { + "start": 24638.42, + "end": 24639.12, + "probability": 0.9128 + }, + { + "start": 24639.94, + "end": 24643.14, + "probability": 0.9784 + }, + { + "start": 24643.2, + "end": 24645.42, + "probability": 0.9844 + }, + { + "start": 24646.04, + "end": 24647.14, + "probability": 0.9644 + }, + { + "start": 24648.06, + "end": 24649.88, + "probability": 0.7682 + }, + { + "start": 24649.96, + "end": 24650.88, + "probability": 0.2856 + }, + { + "start": 24651.06, + "end": 24651.5, + "probability": 0.2136 + }, + { + "start": 24651.68, + "end": 24654.55, + "probability": 0.7777 + }, + { + "start": 24655.5, + "end": 24657.7, + "probability": 0.925 + }, + { + "start": 24658.26, + "end": 24659.78, + "probability": 0.9943 + }, + { + "start": 24660.76, + "end": 24663.22, + "probability": 0.8607 + }, + { + "start": 24663.72, + "end": 24665.78, + "probability": 0.9792 + }, + { + "start": 24666.6, + "end": 24668.83, + "probability": 0.9713 + }, + { + "start": 24669.52, + "end": 24672.56, + "probability": 0.9985 + }, + { + "start": 24672.68, + "end": 24673.0, + "probability": 0.801 + }, + { + "start": 24674.32, + "end": 24677.3, + "probability": 0.8499 + }, + { + "start": 24677.48, + "end": 24678.98, + "probability": 0.9355 + }, + { + "start": 24688.98, + "end": 24689.92, + "probability": 0.7935 + }, + { + "start": 24691.26, + "end": 24692.56, + "probability": 0.6959 + }, + { + "start": 24693.66, + "end": 24694.5, + "probability": 0.8545 + }, + { + "start": 24695.28, + "end": 24697.46, + "probability": 0.746 + }, + { + "start": 24698.32, + "end": 24702.16, + "probability": 0.9744 + }, + { + "start": 24702.16, + "end": 24704.96, + "probability": 0.9968 + }, + { + "start": 24705.46, + "end": 24708.86, + "probability": 0.9561 + }, + { + "start": 24709.36, + "end": 24712.62, + "probability": 0.9763 + }, + { + "start": 24712.72, + "end": 24718.92, + "probability": 0.9915 + }, + { + "start": 24720.32, + "end": 24725.66, + "probability": 0.8859 + }, + { + "start": 24726.38, + "end": 24733.76, + "probability": 0.9946 + }, + { + "start": 24735.0, + "end": 24736.8, + "probability": 0.8759 + }, + { + "start": 24737.64, + "end": 24742.9, + "probability": 0.9939 + }, + { + "start": 24744.2, + "end": 24747.82, + "probability": 0.9935 + }, + { + "start": 24747.9, + "end": 24751.74, + "probability": 0.5998 + }, + { + "start": 24752.8, + "end": 24753.76, + "probability": 0.9274 + }, + { + "start": 24754.76, + "end": 24759.14, + "probability": 0.9731 + }, + { + "start": 24759.34, + "end": 24759.68, + "probability": 0.8456 + }, + { + "start": 24759.68, + "end": 24760.4, + "probability": 0.9637 + }, + { + "start": 24761.5, + "end": 24767.14, + "probability": 0.941 + }, + { + "start": 24767.86, + "end": 24769.78, + "probability": 0.9863 + }, + { + "start": 24770.28, + "end": 24771.94, + "probability": 0.7792 + }, + { + "start": 24772.78, + "end": 24776.6, + "probability": 0.7953 + }, + { + "start": 24776.7, + "end": 24777.0, + "probability": 0.6001 + }, + { + "start": 24777.62, + "end": 24778.26, + "probability": 0.7717 + }, + { + "start": 24778.34, + "end": 24783.9, + "probability": 0.8943 + }, + { + "start": 24784.18, + "end": 24784.38, + "probability": 0.9736 + }, + { + "start": 24785.84, + "end": 24786.74, + "probability": 0.8893 + }, + { + "start": 24787.78, + "end": 24789.2, + "probability": 0.6769 + }, + { + "start": 24790.68, + "end": 24791.46, + "probability": 0.4702 + }, + { + "start": 24792.6, + "end": 24795.24, + "probability": 0.8039 + }, + { + "start": 24796.62, + "end": 24800.1, + "probability": 0.9515 + }, + { + "start": 24801.24, + "end": 24806.78, + "probability": 0.9815 + }, + { + "start": 24807.46, + "end": 24816.24, + "probability": 0.9188 + }, + { + "start": 24819.84, + "end": 24825.32, + "probability": 0.9424 + }, + { + "start": 24827.3, + "end": 24829.28, + "probability": 0.7925 + }, + { + "start": 24830.68, + "end": 24831.3, + "probability": 0.8596 + }, + { + "start": 24832.78, + "end": 24839.34, + "probability": 0.9941 + }, + { + "start": 24840.02, + "end": 24841.52, + "probability": 0.8867 + }, + { + "start": 24843.4, + "end": 24847.16, + "probability": 0.9744 + }, + { + "start": 24847.94, + "end": 24852.94, + "probability": 0.9922 + }, + { + "start": 24853.74, + "end": 24858.16, + "probability": 0.9952 + }, + { + "start": 24858.74, + "end": 24859.28, + "probability": 0.9507 + }, + { + "start": 24859.9, + "end": 24860.64, + "probability": 0.9114 + }, + { + "start": 24861.36, + "end": 24864.38, + "probability": 0.9938 + }, + { + "start": 24865.36, + "end": 24868.96, + "probability": 0.9952 + }, + { + "start": 24869.94, + "end": 24873.52, + "probability": 0.929 + }, + { + "start": 24875.46, + "end": 24879.94, + "probability": 0.9753 + }, + { + "start": 24881.02, + "end": 24882.0, + "probability": 0.8765 + }, + { + "start": 24884.96, + "end": 24885.8, + "probability": 0.9766 + }, + { + "start": 24887.3, + "end": 24888.44, + "probability": 0.9649 + }, + { + "start": 24888.7, + "end": 24889.08, + "probability": 0.6462 + }, + { + "start": 24889.18, + "end": 24893.56, + "probability": 0.4882 + }, + { + "start": 24894.56, + "end": 24895.54, + "probability": 0.5969 + }, + { + "start": 24896.2, + "end": 24897.5, + "probability": 0.7213 + }, + { + "start": 24898.04, + "end": 24899.68, + "probability": 0.8149 + }, + { + "start": 24900.76, + "end": 24903.22, + "probability": 0.9361 + }, + { + "start": 24903.96, + "end": 24908.78, + "probability": 0.9791 + }, + { + "start": 24909.36, + "end": 24910.31, + "probability": 0.7731 + }, + { + "start": 24911.58, + "end": 24912.04, + "probability": 0.5231 + }, + { + "start": 24912.28, + "end": 24915.6, + "probability": 0.8914 + }, + { + "start": 24915.6, + "end": 24920.2, + "probability": 0.9718 + }, + { + "start": 24920.48, + "end": 24921.46, + "probability": 0.9691 + }, + { + "start": 24921.88, + "end": 24923.26, + "probability": 0.9577 + }, + { + "start": 24924.08, + "end": 24927.84, + "probability": 0.9178 + }, + { + "start": 24928.18, + "end": 24929.92, + "probability": 0.952 + }, + { + "start": 24930.5, + "end": 24931.7, + "probability": 0.7815 + }, + { + "start": 24931.92, + "end": 24932.44, + "probability": 0.9451 + }, + { + "start": 24932.5, + "end": 24933.26, + "probability": 0.8985 + }, + { + "start": 24933.68, + "end": 24936.76, + "probability": 0.9813 + }, + { + "start": 24936.92, + "end": 24938.16, + "probability": 0.9636 + }, + { + "start": 24938.26, + "end": 24942.24, + "probability": 0.9534 + }, + { + "start": 24942.86, + "end": 24945.32, + "probability": 0.932 + }, + { + "start": 24946.18, + "end": 24952.92, + "probability": 0.9607 + }, + { + "start": 24953.56, + "end": 24958.66, + "probability": 0.935 + }, + { + "start": 24959.18, + "end": 24960.06, + "probability": 0.9602 + }, + { + "start": 24960.74, + "end": 24965.98, + "probability": 0.9952 + }, + { + "start": 24966.12, + "end": 24967.44, + "probability": 0.9803 + }, + { + "start": 24968.27, + "end": 24969.98, + "probability": 0.6696 + }, + { + "start": 24969.98, + "end": 24971.36, + "probability": 0.7095 + }, + { + "start": 24971.88, + "end": 24973.16, + "probability": 0.9609 + }, + { + "start": 24973.76, + "end": 24978.86, + "probability": 0.8607 + }, + { + "start": 24980.12, + "end": 24985.08, + "probability": 0.9928 + }, + { + "start": 24985.3, + "end": 24985.88, + "probability": 0.8381 + }, + { + "start": 24986.72, + "end": 24989.38, + "probability": 0.9927 + }, + { + "start": 24990.46, + "end": 24990.94, + "probability": 0.7985 + }, + { + "start": 24992.36, + "end": 24992.7, + "probability": 0.8055 + }, + { + "start": 24993.54, + "end": 24994.28, + "probability": 0.9399 + }, + { + "start": 24995.4, + "end": 24998.7, + "probability": 0.9937 + }, + { + "start": 24999.66, + "end": 25003.4, + "probability": 0.8701 + }, + { + "start": 25004.12, + "end": 25006.76, + "probability": 0.972 + }, + { + "start": 25007.44, + "end": 25008.32, + "probability": 0.7259 + }, + { + "start": 25009.76, + "end": 25012.22, + "probability": 0.3839 + }, + { + "start": 25013.32, + "end": 25014.62, + "probability": 0.9872 + }, + { + "start": 25017.18, + "end": 25021.76, + "probability": 0.6832 + }, + { + "start": 25022.84, + "end": 25023.54, + "probability": 0.9612 + }, + { + "start": 25025.84, + "end": 25026.92, + "probability": 0.9714 + }, + { + "start": 25027.78, + "end": 25036.68, + "probability": 0.995 + }, + { + "start": 25037.24, + "end": 25037.94, + "probability": 0.9489 + }, + { + "start": 25038.5, + "end": 25039.64, + "probability": 0.9376 + }, + { + "start": 25040.32, + "end": 25041.76, + "probability": 0.7682 + }, + { + "start": 25043.4, + "end": 25044.72, + "probability": 0.9415 + }, + { + "start": 25045.64, + "end": 25048.22, + "probability": 0.9831 + }, + { + "start": 25049.54, + "end": 25050.88, + "probability": 0.9651 + }, + { + "start": 25051.82, + "end": 25052.56, + "probability": 0.8644 + }, + { + "start": 25055.4, + "end": 25057.94, + "probability": 0.8746 + }, + { + "start": 25058.08, + "end": 25059.82, + "probability": 0.9407 + }, + { + "start": 25076.96, + "end": 25077.98, + "probability": 0.748 + }, + { + "start": 25083.22, + "end": 25084.46, + "probability": 0.6302 + }, + { + "start": 25085.86, + "end": 25088.2, + "probability": 0.8776 + }, + { + "start": 25089.6, + "end": 25091.06, + "probability": 0.998 + }, + { + "start": 25091.72, + "end": 25096.0, + "probability": 0.9695 + }, + { + "start": 25096.88, + "end": 25097.92, + "probability": 0.8285 + }, + { + "start": 25098.76, + "end": 25100.18, + "probability": 0.8608 + }, + { + "start": 25100.74, + "end": 25105.54, + "probability": 0.8114 + }, + { + "start": 25106.1, + "end": 25109.64, + "probability": 0.9607 + }, + { + "start": 25110.74, + "end": 25112.7, + "probability": 0.8275 + }, + { + "start": 25113.74, + "end": 25117.45, + "probability": 0.9355 + }, + { + "start": 25118.46, + "end": 25121.3, + "probability": 0.7345 + }, + { + "start": 25122.88, + "end": 25125.49, + "probability": 0.9961 + }, + { + "start": 25127.24, + "end": 25127.8, + "probability": 0.5637 + }, + { + "start": 25128.5, + "end": 25129.62, + "probability": 0.9976 + }, + { + "start": 25130.44, + "end": 25132.28, + "probability": 0.9641 + }, + { + "start": 25133.14, + "end": 25135.3, + "probability": 0.9841 + }, + { + "start": 25135.86, + "end": 25138.66, + "probability": 0.837 + }, + { + "start": 25139.8, + "end": 25144.9, + "probability": 0.9464 + }, + { + "start": 25145.5, + "end": 25146.16, + "probability": 0.9878 + }, + { + "start": 25146.72, + "end": 25149.54, + "probability": 0.9874 + }, + { + "start": 25150.06, + "end": 25153.94, + "probability": 0.9875 + }, + { + "start": 25154.56, + "end": 25156.5, + "probability": 0.9163 + }, + { + "start": 25157.18, + "end": 25161.76, + "probability": 0.9801 + }, + { + "start": 25162.38, + "end": 25164.34, + "probability": 0.9966 + }, + { + "start": 25165.3, + "end": 25168.92, + "probability": 0.9562 + }, + { + "start": 25170.08, + "end": 25171.58, + "probability": 0.9749 + }, + { + "start": 25171.68, + "end": 25172.79, + "probability": 0.9881 + }, + { + "start": 25173.3, + "end": 25174.5, + "probability": 0.9188 + }, + { + "start": 25175.12, + "end": 25179.26, + "probability": 0.9758 + }, + { + "start": 25179.82, + "end": 25180.9, + "probability": 0.3399 + }, + { + "start": 25181.68, + "end": 25184.0, + "probability": 0.9666 + }, + { + "start": 25185.42, + "end": 25186.54, + "probability": 0.9849 + }, + { + "start": 25187.6, + "end": 25192.88, + "probability": 0.9712 + }, + { + "start": 25193.58, + "end": 25194.06, + "probability": 0.998 + }, + { + "start": 25194.74, + "end": 25197.5, + "probability": 0.998 + }, + { + "start": 25198.72, + "end": 25199.84, + "probability": 0.8325 + }, + { + "start": 25200.88, + "end": 25202.22, + "probability": 0.978 + }, + { + "start": 25202.32, + "end": 25203.84, + "probability": 0.983 + }, + { + "start": 25204.26, + "end": 25208.06, + "probability": 0.909 + }, + { + "start": 25209.1, + "end": 25211.94, + "probability": 0.9739 + }, + { + "start": 25213.06, + "end": 25214.8, + "probability": 0.9608 + }, + { + "start": 25215.38, + "end": 25218.92, + "probability": 0.9906 + }, + { + "start": 25219.0, + "end": 25220.74, + "probability": 0.89 + }, + { + "start": 25220.88, + "end": 25221.36, + "probability": 0.7327 + }, + { + "start": 25221.66, + "end": 25221.96, + "probability": 0.394 + }, + { + "start": 25221.96, + "end": 25225.46, + "probability": 0.699 + }, + { + "start": 25225.98, + "end": 25229.02, + "probability": 0.9374 + }, + { + "start": 25229.82, + "end": 25231.72, + "probability": 0.881 + }, + { + "start": 25232.44, + "end": 25234.68, + "probability": 0.5719 + }, + { + "start": 25235.68, + "end": 25240.34, + "probability": 0.5886 + }, + { + "start": 25240.76, + "end": 25242.98, + "probability": 0.9509 + }, + { + "start": 25243.76, + "end": 25244.46, + "probability": 0.5398 + }, + { + "start": 25244.54, + "end": 25246.78, + "probability": 0.5933 + }, + { + "start": 25247.64, + "end": 25250.92, + "probability": 0.9009 + }, + { + "start": 25251.66, + "end": 25253.08, + "probability": 0.9036 + }, + { + "start": 25253.1, + "end": 25253.82, + "probability": 0.9009 + }, + { + "start": 25254.18, + "end": 25257.14, + "probability": 0.8613 + }, + { + "start": 25257.32, + "end": 25257.98, + "probability": 0.26 + }, + { + "start": 25258.3, + "end": 25263.06, + "probability": 0.9518 + }, + { + "start": 25264.88, + "end": 25266.54, + "probability": 0.998 + }, + { + "start": 25267.86, + "end": 25269.88, + "probability": 0.6518 + }, + { + "start": 25270.96, + "end": 25271.46, + "probability": 0.4719 + }, + { + "start": 25272.1, + "end": 25272.94, + "probability": 0.8321 + }, + { + "start": 25273.06, + "end": 25274.66, + "probability": 0.9405 + }, + { + "start": 25274.86, + "end": 25277.04, + "probability": 0.8376 + }, + { + "start": 25277.74, + "end": 25282.06, + "probability": 0.9832 + }, + { + "start": 25282.84, + "end": 25286.52, + "probability": 0.987 + }, + { + "start": 25287.18, + "end": 25295.58, + "probability": 0.9926 + }, + { + "start": 25296.58, + "end": 25301.42, + "probability": 0.7618 + }, + { + "start": 25301.54, + "end": 25304.44, + "probability": 0.9585 + }, + { + "start": 25305.04, + "end": 25305.92, + "probability": 0.9396 + }, + { + "start": 25306.74, + "end": 25308.64, + "probability": 0.9434 + }, + { + "start": 25309.78, + "end": 25313.22, + "probability": 0.9663 + }, + { + "start": 25313.34, + "end": 25314.98, + "probability": 0.9479 + }, + { + "start": 25316.4, + "end": 25317.98, + "probability": 0.9194 + }, + { + "start": 25318.1, + "end": 25322.29, + "probability": 0.931 + }, + { + "start": 25323.3, + "end": 25324.5, + "probability": 0.8788 + }, + { + "start": 25325.3, + "end": 25329.06, + "probability": 0.7485 + }, + { + "start": 25329.34, + "end": 25335.38, + "probability": 0.7881 + }, + { + "start": 25336.42, + "end": 25339.1, + "probability": 0.5222 + }, + { + "start": 25339.58, + "end": 25344.2, + "probability": 0.9784 + }, + { + "start": 25344.2, + "end": 25350.54, + "probability": 0.9668 + }, + { + "start": 25351.22, + "end": 25353.56, + "probability": 0.9861 + }, + { + "start": 25354.96, + "end": 25357.26, + "probability": 0.9866 + }, + { + "start": 25358.22, + "end": 25359.94, + "probability": 0.7871 + }, + { + "start": 25360.6, + "end": 25363.48, + "probability": 0.8245 + }, + { + "start": 25364.32, + "end": 25369.4, + "probability": 0.8867 + }, + { + "start": 25369.92, + "end": 25372.32, + "probability": 0.9649 + }, + { + "start": 25372.9, + "end": 25377.24, + "probability": 0.9866 + }, + { + "start": 25378.18, + "end": 25382.78, + "probability": 0.8468 + }, + { + "start": 25383.4, + "end": 25384.9, + "probability": 0.8253 + }, + { + "start": 25385.6, + "end": 25387.5, + "probability": 0.9922 + }, + { + "start": 25387.98, + "end": 25392.46, + "probability": 0.6672 + }, + { + "start": 25392.46, + "end": 25396.74, + "probability": 0.9578 + }, + { + "start": 25397.16, + "end": 25402.1, + "probability": 0.9736 + }, + { + "start": 25403.0, + "end": 25404.74, + "probability": 0.6901 + }, + { + "start": 25404.8, + "end": 25408.58, + "probability": 0.9474 + }, + { + "start": 25408.58, + "end": 25412.22, + "probability": 0.8403 + }, + { + "start": 25412.28, + "end": 25413.9, + "probability": 0.9027 + }, + { + "start": 25414.88, + "end": 25417.42, + "probability": 0.6492 + }, + { + "start": 25417.74, + "end": 25421.6, + "probability": 0.8748 + }, + { + "start": 25422.88, + "end": 25424.76, + "probability": 0.9248 + }, + { + "start": 25425.56, + "end": 25429.4, + "probability": 0.9758 + }, + { + "start": 25430.2, + "end": 25433.72, + "probability": 0.979 + }, + { + "start": 25434.5, + "end": 25436.48, + "probability": 0.9971 + }, + { + "start": 25436.94, + "end": 25439.6, + "probability": 0.8422 + }, + { + "start": 25441.0, + "end": 25441.14, + "probability": 0.0002 + }, + { + "start": 25441.94, + "end": 25443.16, + "probability": 0.661 + }, + { + "start": 25443.62, + "end": 25444.91, + "probability": 0.9824 + }, + { + "start": 25445.2, + "end": 25447.38, + "probability": 0.594 + }, + { + "start": 25447.52, + "end": 25447.92, + "probability": 0.7965 + }, + { + "start": 25450.52, + "end": 25451.36, + "probability": 0.3809 + }, + { + "start": 25452.1, + "end": 25455.49, + "probability": 0.9977 + }, + { + "start": 25455.98, + "end": 25460.38, + "probability": 0.9912 + }, + { + "start": 25460.7, + "end": 25466.02, + "probability": 0.855 + }, + { + "start": 25466.62, + "end": 25470.04, + "probability": 0.8474 + }, + { + "start": 25473.6, + "end": 25480.82, + "probability": 0.9913 + }, + { + "start": 25481.72, + "end": 25484.96, + "probability": 0.995 + }, + { + "start": 25486.0, + "end": 25490.42, + "probability": 0.9826 + }, + { + "start": 25491.16, + "end": 25496.74, + "probability": 0.9908 + }, + { + "start": 25497.01, + "end": 25503.92, + "probability": 0.8861 + }, + { + "start": 25504.38, + "end": 25508.4, + "probability": 0.9926 + }, + { + "start": 25509.44, + "end": 25511.9, + "probability": 0.8571 + }, + { + "start": 25513.38, + "end": 25515.16, + "probability": 0.8194 + }, + { + "start": 25518.02, + "end": 25523.51, + "probability": 0.7293 + }, + { + "start": 25524.38, + "end": 25528.52, + "probability": 0.8463 + }, + { + "start": 25529.42, + "end": 25531.06, + "probability": 0.7939 + }, + { + "start": 25531.74, + "end": 25535.16, + "probability": 0.9273 + }, + { + "start": 25535.78, + "end": 25543.89, + "probability": 0.8168 + }, + { + "start": 25543.98, + "end": 25550.56, + "probability": 0.9988 + }, + { + "start": 25551.14, + "end": 25556.28, + "probability": 0.9911 + }, + { + "start": 25556.84, + "end": 25557.46, + "probability": 0.5279 + }, + { + "start": 25558.04, + "end": 25558.92, + "probability": 0.5957 + }, + { + "start": 25559.24, + "end": 25561.32, + "probability": 0.978 + }, + { + "start": 25564.46, + "end": 25566.22, + "probability": 0.8318 + }, + { + "start": 25569.05, + "end": 25572.14, + "probability": 0.6291 + }, + { + "start": 25573.72, + "end": 25575.12, + "probability": 0.4737 + }, + { + "start": 25575.32, + "end": 25577.18, + "probability": 0.0069 + }, + { + "start": 25584.84, + "end": 25585.44, + "probability": 0.0658 + }, + { + "start": 25586.52, + "end": 25588.76, + "probability": 0.6214 + }, + { + "start": 25590.44, + "end": 25591.9, + "probability": 0.8763 + }, + { + "start": 25593.42, + "end": 25594.6, + "probability": 0.8051 + }, + { + "start": 25596.26, + "end": 25600.94, + "probability": 0.8662 + }, + { + "start": 25605.24, + "end": 25607.64, + "probability": 0.8005 + }, + { + "start": 25607.76, + "end": 25609.36, + "probability": 0.9165 + }, + { + "start": 25609.38, + "end": 25611.88, + "probability": 0.9956 + }, + { + "start": 25613.8, + "end": 25615.78, + "probability": 0.9979 + }, + { + "start": 25617.26, + "end": 25620.84, + "probability": 0.9832 + }, + { + "start": 25622.38, + "end": 25626.9, + "probability": 0.9961 + }, + { + "start": 25628.86, + "end": 25631.04, + "probability": 0.8396 + }, + { + "start": 25631.16, + "end": 25632.88, + "probability": 0.828 + }, + { + "start": 25634.46, + "end": 25636.34, + "probability": 0.5976 + }, + { + "start": 25636.86, + "end": 25638.03, + "probability": 0.9709 + }, + { + "start": 25640.18, + "end": 25641.22, + "probability": 0.7118 + }, + { + "start": 25642.34, + "end": 25646.32, + "probability": 0.9591 + }, + { + "start": 25646.5, + "end": 25647.6, + "probability": 0.8111 + }, + { + "start": 25649.44, + "end": 25651.58, + "probability": 0.9959 + }, + { + "start": 25653.14, + "end": 25657.82, + "probability": 0.9821 + }, + { + "start": 25659.44, + "end": 25661.0, + "probability": 0.9744 + }, + { + "start": 25661.72, + "end": 25665.66, + "probability": 0.9354 + }, + { + "start": 25667.8, + "end": 25670.24, + "probability": 0.9979 + }, + { + "start": 25671.96, + "end": 25672.5, + "probability": 0.6559 + }, + { + "start": 25674.06, + "end": 25677.46, + "probability": 0.9938 + }, + { + "start": 25677.46, + "end": 25680.34, + "probability": 0.9964 + }, + { + "start": 25682.38, + "end": 25683.66, + "probability": 0.8615 + }, + { + "start": 25684.7, + "end": 25686.32, + "probability": 0.9076 + }, + { + "start": 25687.34, + "end": 25688.18, + "probability": 0.8979 + }, + { + "start": 25689.32, + "end": 25691.0, + "probability": 0.7355 + }, + { + "start": 25691.96, + "end": 25693.46, + "probability": 0.8604 + }, + { + "start": 25694.76, + "end": 25696.18, + "probability": 0.9966 + }, + { + "start": 25697.12, + "end": 25698.06, + "probability": 0.6847 + }, + { + "start": 25699.36, + "end": 25701.9, + "probability": 0.7447 + }, + { + "start": 25702.72, + "end": 25708.47, + "probability": 0.9858 + }, + { + "start": 25709.2, + "end": 25710.86, + "probability": 0.8793 + }, + { + "start": 25711.0, + "end": 25711.78, + "probability": 0.9141 + }, + { + "start": 25713.38, + "end": 25714.34, + "probability": 0.5978 + }, + { + "start": 25714.52, + "end": 25715.38, + "probability": 0.7832 + }, + { + "start": 25715.52, + "end": 25718.24, + "probability": 0.7988 + }, + { + "start": 25719.62, + "end": 25723.62, + "probability": 0.998 + }, + { + "start": 25724.24, + "end": 25726.68, + "probability": 0.9863 + }, + { + "start": 25728.18, + "end": 25732.94, + "probability": 0.9126 + }, + { + "start": 25733.8, + "end": 25735.45, + "probability": 0.9629 + }, + { + "start": 25736.9, + "end": 25737.7, + "probability": 0.9978 + }, + { + "start": 25738.3, + "end": 25739.7, + "probability": 0.9506 + }, + { + "start": 25741.08, + "end": 25743.8, + "probability": 0.7894 + }, + { + "start": 25745.12, + "end": 25746.92, + "probability": 0.9971 + }, + { + "start": 25747.42, + "end": 25749.46, + "probability": 0.9552 + }, + { + "start": 25750.48, + "end": 25752.02, + "probability": 0.764 + }, + { + "start": 25753.04, + "end": 25760.52, + "probability": 0.9188 + }, + { + "start": 25761.38, + "end": 25762.68, + "probability": 0.8894 + }, + { + "start": 25762.8, + "end": 25766.22, + "probability": 0.7511 + }, + { + "start": 25767.18, + "end": 25770.2, + "probability": 0.9581 + }, + { + "start": 25772.06, + "end": 25772.84, + "probability": 0.9238 + }, + { + "start": 25773.58, + "end": 25774.87, + "probability": 0.798 + }, + { + "start": 25775.92, + "end": 25777.82, + "probability": 0.6465 + }, + { + "start": 25777.92, + "end": 25778.86, + "probability": 0.6781 + }, + { + "start": 25778.94, + "end": 25781.84, + "probability": 0.8753 + }, + { + "start": 25783.18, + "end": 25783.74, + "probability": 0.8506 + }, + { + "start": 25784.38, + "end": 25785.26, + "probability": 0.9472 + }, + { + "start": 25787.26, + "end": 25790.84, + "probability": 0.9883 + }, + { + "start": 25791.14, + "end": 25791.74, + "probability": 0.4978 + }, + { + "start": 25792.52, + "end": 25793.34, + "probability": 0.5755 + }, + { + "start": 25795.56, + "end": 25798.18, + "probability": 0.4055 + }, + { + "start": 25798.3, + "end": 25798.98, + "probability": 0.5486 + }, + { + "start": 25799.52, + "end": 25801.17, + "probability": 0.9614 + }, + { + "start": 25801.34, + "end": 25803.06, + "probability": 0.9946 + }, + { + "start": 25803.82, + "end": 25805.52, + "probability": 0.9941 + }, + { + "start": 25805.66, + "end": 25807.44, + "probability": 0.865 + }, + { + "start": 25807.48, + "end": 25808.38, + "probability": 0.6684 + }, + { + "start": 25809.65, + "end": 25811.25, + "probability": 0.9744 + }, + { + "start": 25811.4, + "end": 25812.5, + "probability": 0.9624 + }, + { + "start": 25812.64, + "end": 25815.56, + "probability": 0.9326 + }, + { + "start": 25815.76, + "end": 25815.78, + "probability": 0.1985 + }, + { + "start": 25815.78, + "end": 25817.48, + "probability": 0.9465 + }, + { + "start": 25817.52, + "end": 25818.46, + "probability": 0.7883 + }, + { + "start": 25819.48, + "end": 25821.58, + "probability": 0.8628 + }, + { + "start": 25821.68, + "end": 25822.94, + "probability": 0.8198 + }, + { + "start": 25824.28, + "end": 25824.8, + "probability": 0.7257 + }, + { + "start": 25824.88, + "end": 25827.52, + "probability": 0.6106 + }, + { + "start": 25828.02, + "end": 25830.42, + "probability": 0.532 + }, + { + "start": 25830.42, + "end": 25830.66, + "probability": 0.1743 + }, + { + "start": 25830.76, + "end": 25831.82, + "probability": 0.4113 + }, + { + "start": 25832.7, + "end": 25834.1, + "probability": 0.9988 + }, + { + "start": 25834.28, + "end": 25838.32, + "probability": 0.795 + }, + { + "start": 25840.54, + "end": 25843.92, + "probability": 0.9758 + }, + { + "start": 25845.7, + "end": 25848.38, + "probability": 0.9865 + }, + { + "start": 25849.26, + "end": 25852.1, + "probability": 0.8261 + }, + { + "start": 25854.1, + "end": 25855.7, + "probability": 0.9519 + }, + { + "start": 25857.04, + "end": 25858.16, + "probability": 0.8585 + }, + { + "start": 25859.0, + "end": 25862.02, + "probability": 0.9502 + }, + { + "start": 25862.1, + "end": 25863.46, + "probability": 0.9854 + }, + { + "start": 25864.0, + "end": 25865.44, + "probability": 0.6659 + }, + { + "start": 25865.52, + "end": 25866.12, + "probability": 0.3992 + }, + { + "start": 25867.04, + "end": 25868.42, + "probability": 0.8965 + }, + { + "start": 25870.66, + "end": 25873.01, + "probability": 0.9961 + }, + { + "start": 25875.74, + "end": 25877.86, + "probability": 0.9963 + }, + { + "start": 25878.82, + "end": 25880.76, + "probability": 0.9145 + }, + { + "start": 25882.48, + "end": 25883.5, + "probability": 0.9733 + }, + { + "start": 25883.58, + "end": 25884.61, + "probability": 0.9727 + }, + { + "start": 25885.78, + "end": 25888.8, + "probability": 0.9118 + }, + { + "start": 25890.14, + "end": 25891.76, + "probability": 0.6718 + }, + { + "start": 25892.6, + "end": 25893.56, + "probability": 0.9926 + }, + { + "start": 25895.24, + "end": 25897.23, + "probability": 0.8179 + }, + { + "start": 25899.68, + "end": 25900.18, + "probability": 0.9735 + }, + { + "start": 25900.44, + "end": 25901.3, + "probability": 0.3364 + }, + { + "start": 25902.56, + "end": 25905.08, + "probability": 0.925 + }, + { + "start": 25905.18, + "end": 25906.02, + "probability": 0.7169 + }, + { + "start": 25907.62, + "end": 25908.26, + "probability": 0.8188 + }, + { + "start": 25909.74, + "end": 25910.78, + "probability": 0.9348 + }, + { + "start": 25912.04, + "end": 25912.84, + "probability": 0.8801 + }, + { + "start": 25913.8, + "end": 25914.76, + "probability": 0.984 + }, + { + "start": 25915.3, + "end": 25918.18, + "probability": 0.9981 + }, + { + "start": 25919.02, + "end": 25920.94, + "probability": 0.9884 + }, + { + "start": 25922.4, + "end": 25926.64, + "probability": 0.7512 + }, + { + "start": 25928.18, + "end": 25929.66, + "probability": 0.9597 + }, + { + "start": 25931.02, + "end": 25931.06, + "probability": 0.2057 + }, + { + "start": 25931.64, + "end": 25932.34, + "probability": 0.7764 + }, + { + "start": 25932.48, + "end": 25933.26, + "probability": 0.9007 + }, + { + "start": 25935.4, + "end": 25938.12, + "probability": 0.7225 + }, + { + "start": 25939.5, + "end": 25941.2, + "probability": 0.8957 + }, + { + "start": 25942.52, + "end": 25943.88, + "probability": 0.9897 + }, + { + "start": 25945.0, + "end": 25947.84, + "probability": 0.9697 + }, + { + "start": 25949.28, + "end": 25951.3, + "probability": 0.9927 + }, + { + "start": 25952.44, + "end": 25953.82, + "probability": 0.998 + }, + { + "start": 25954.12, + "end": 25955.74, + "probability": 0.9976 + }, + { + "start": 25958.06, + "end": 25959.74, + "probability": 0.9744 + }, + { + "start": 25961.42, + "end": 25965.38, + "probability": 0.8898 + }, + { + "start": 25967.02, + "end": 25968.04, + "probability": 0.6063 + }, + { + "start": 25968.92, + "end": 25972.12, + "probability": 0.8154 + }, + { + "start": 25973.38, + "end": 25974.72, + "probability": 0.9695 + }, + { + "start": 25975.8, + "end": 25980.6, + "probability": 0.9982 + }, + { + "start": 25982.3, + "end": 25985.5, + "probability": 0.9824 + }, + { + "start": 25987.32, + "end": 25988.2, + "probability": 0.9255 + }, + { + "start": 25988.34, + "end": 25990.2, + "probability": 0.7067 + }, + { + "start": 25990.36, + "end": 25992.12, + "probability": 0.8658 + }, + { + "start": 25992.8, + "end": 25994.58, + "probability": 0.9907 + }, + { + "start": 25995.94, + "end": 25996.58, + "probability": 0.9112 + }, + { + "start": 25997.1, + "end": 25997.64, + "probability": 0.7605 + }, + { + "start": 25998.2, + "end": 26000.08, + "probability": 0.9978 + }, + { + "start": 26000.92, + "end": 26002.78, + "probability": 0.8916 + }, + { + "start": 26002.78, + "end": 26003.1, + "probability": 0.5893 + }, + { + "start": 26003.24, + "end": 26003.52, + "probability": 0.8204 + }, + { + "start": 26003.6, + "end": 26004.0, + "probability": 0.553 + }, + { + "start": 26005.58, + "end": 26007.6, + "probability": 0.5068 + }, + { + "start": 26007.7, + "end": 26009.32, + "probability": 0.9127 + }, + { + "start": 26009.44, + "end": 26010.26, + "probability": 0.9535 + }, + { + "start": 26010.36, + "end": 26011.22, + "probability": 0.9482 + }, + { + "start": 26011.98, + "end": 26012.56, + "probability": 0.8017 + }, + { + "start": 26013.64, + "end": 26014.38, + "probability": 0.978 + }, + { + "start": 26014.48, + "end": 26015.26, + "probability": 0.9084 + }, + { + "start": 26015.36, + "end": 26017.22, + "probability": 0.9406 + }, + { + "start": 26017.3, + "end": 26018.28, + "probability": 0.8043 + }, + { + "start": 26019.4, + "end": 26021.71, + "probability": 0.7866 + }, + { + "start": 26023.12, + "end": 26023.96, + "probability": 0.9348 + }, + { + "start": 26024.96, + "end": 26027.01, + "probability": 0.9832 + }, + { + "start": 26027.9, + "end": 26029.06, + "probability": 0.9505 + }, + { + "start": 26030.3, + "end": 26035.26, + "probability": 0.9966 + }, + { + "start": 26036.26, + "end": 26037.4, + "probability": 0.7741 + }, + { + "start": 26037.68, + "end": 26038.98, + "probability": 0.8718 + }, + { + "start": 26039.92, + "end": 26040.26, + "probability": 0.6531 + }, + { + "start": 26041.22, + "end": 26043.94, + "probability": 0.9746 + }, + { + "start": 26045.04, + "end": 26047.32, + "probability": 0.7496 + }, + { + "start": 26048.3, + "end": 26050.4, + "probability": 0.7128 + }, + { + "start": 26050.7, + "end": 26053.08, + "probability": 0.9322 + }, + { + "start": 26053.14, + "end": 26057.28, + "probability": 0.9649 + }, + { + "start": 26057.94, + "end": 26060.82, + "probability": 0.8101 + }, + { + "start": 26061.56, + "end": 26062.94, + "probability": 0.9731 + }, + { + "start": 26064.04, + "end": 26064.47, + "probability": 0.7667 + }, + { + "start": 26066.14, + "end": 26066.82, + "probability": 0.7555 + }, + { + "start": 26067.1, + "end": 26068.32, + "probability": 0.9423 + }, + { + "start": 26069.28, + "end": 26071.14, + "probability": 0.9907 + }, + { + "start": 26073.02, + "end": 26073.88, + "probability": 0.9694 + }, + { + "start": 26073.98, + "end": 26074.94, + "probability": 0.9219 + }, + { + "start": 26076.98, + "end": 26079.88, + "probability": 0.5866 + }, + { + "start": 26079.92, + "end": 26080.24, + "probability": 0.4992 + }, + { + "start": 26080.72, + "end": 26081.2, + "probability": 0.7444 + }, + { + "start": 26081.34, + "end": 26081.36, + "probability": 0.2776 + }, + { + "start": 26081.6, + "end": 26082.28, + "probability": 0.5883 + }, + { + "start": 26082.34, + "end": 26082.83, + "probability": 0.5171 + }, + { + "start": 26082.96, + "end": 26084.58, + "probability": 0.8879 + }, + { + "start": 26084.72, + "end": 26085.64, + "probability": 0.9382 + }, + { + "start": 26086.2, + "end": 26086.98, + "probability": 0.8525 + }, + { + "start": 26087.04, + "end": 26089.14, + "probability": 0.9896 + }, + { + "start": 26090.08, + "end": 26092.72, + "probability": 0.6827 + }, + { + "start": 26092.72, + "end": 26096.56, + "probability": 0.9979 + }, + { + "start": 26097.48, + "end": 26099.82, + "probability": 0.9381 + }, + { + "start": 26100.46, + "end": 26101.77, + "probability": 0.9929 + }, + { + "start": 26102.48, + "end": 26104.22, + "probability": 0.4512 + }, + { + "start": 26104.22, + "end": 26104.96, + "probability": 0.8015 + }, + { + "start": 26105.04, + "end": 26105.88, + "probability": 0.7449 + }, + { + "start": 26106.78, + "end": 26107.56, + "probability": 0.648 + }, + { + "start": 26107.66, + "end": 26109.06, + "probability": 0.9136 + }, + { + "start": 26109.16, + "end": 26112.6, + "probability": 0.7936 + }, + { + "start": 26113.66, + "end": 26114.29, + "probability": 0.9515 + }, + { + "start": 26114.44, + "end": 26115.48, + "probability": 0.9414 + }, + { + "start": 26115.66, + "end": 26118.96, + "probability": 0.5788 + }, + { + "start": 26119.72, + "end": 26122.78, + "probability": 0.7454 + }, + { + "start": 26123.42, + "end": 26125.9, + "probability": 0.9932 + }, + { + "start": 26125.9, + "end": 26127.72, + "probability": 0.9906 + }, + { + "start": 26129.28, + "end": 26131.02, + "probability": 0.8954 + }, + { + "start": 26131.94, + "end": 26135.26, + "probability": 0.8142 + }, + { + "start": 26136.14, + "end": 26136.68, + "probability": 0.1233 + }, + { + "start": 26137.32, + "end": 26137.96, + "probability": 0.8121 + }, + { + "start": 26138.68, + "end": 26139.46, + "probability": 0.7489 + }, + { + "start": 26140.16, + "end": 26141.74, + "probability": 0.7937 + }, + { + "start": 26142.62, + "end": 26144.64, + "probability": 0.9715 + }, + { + "start": 26145.74, + "end": 26146.0, + "probability": 0.5374 + }, + { + "start": 26146.06, + "end": 26147.94, + "probability": 0.9894 + }, + { + "start": 26148.08, + "end": 26150.6, + "probability": 0.9914 + }, + { + "start": 26151.78, + "end": 26156.18, + "probability": 0.9945 + }, + { + "start": 26156.42, + "end": 26157.84, + "probability": 0.967 + }, + { + "start": 26158.58, + "end": 26159.6, + "probability": 0.9951 + }, + { + "start": 26159.6, + "end": 26162.94, + "probability": 0.8727 + }, + { + "start": 26163.44, + "end": 26163.9, + "probability": 0.4963 + }, + { + "start": 26164.3, + "end": 26165.8, + "probability": 0.5466 + }, + { + "start": 26166.42, + "end": 26168.72, + "probability": 0.9775 + }, + { + "start": 26169.5, + "end": 26169.9, + "probability": 0.8964 + }, + { + "start": 26170.98, + "end": 26172.98, + "probability": 0.986 + }, + { + "start": 26173.06, + "end": 26174.6, + "probability": 0.9956 + }, + { + "start": 26175.08, + "end": 26176.7, + "probability": 0.9854 + }, + { + "start": 26177.06, + "end": 26178.3, + "probability": 0.9414 + }, + { + "start": 26179.92, + "end": 26180.9, + "probability": 0.9504 + }, + { + "start": 26181.06, + "end": 26182.4, + "probability": 0.9466 + }, + { + "start": 26182.98, + "end": 26183.98, + "probability": 0.979 + }, + { + "start": 26184.86, + "end": 26187.44, + "probability": 0.7036 + }, + { + "start": 26188.2, + "end": 26189.5, + "probability": 0.9912 + }, + { + "start": 26189.56, + "end": 26193.44, + "probability": 0.9627 + }, + { + "start": 26194.8, + "end": 26195.5, + "probability": 0.7915 + }, + { + "start": 26197.28, + "end": 26198.66, + "probability": 0.9592 + }, + { + "start": 26198.72, + "end": 26201.02, + "probability": 0.84 + }, + { + "start": 26201.56, + "end": 26203.24, + "probability": 0.8647 + }, + { + "start": 26203.38, + "end": 26204.5, + "probability": 0.9387 + }, + { + "start": 26204.94, + "end": 26210.38, + "probability": 0.9838 + }, + { + "start": 26211.54, + "end": 26213.72, + "probability": 0.7512 + }, + { + "start": 26214.78, + "end": 26217.04, + "probability": 0.6202 + }, + { + "start": 26217.88, + "end": 26218.28, + "probability": 0.7954 + }, + { + "start": 26218.8, + "end": 26220.28, + "probability": 0.9282 + }, + { + "start": 26221.84, + "end": 26222.92, + "probability": 0.9755 + }, + { + "start": 26223.88, + "end": 26224.56, + "probability": 0.5638 + }, + { + "start": 26225.62, + "end": 26226.74, + "probability": 0.7976 + }, + { + "start": 26228.22, + "end": 26229.4, + "probability": 0.7572 + }, + { + "start": 26229.46, + "end": 26230.43, + "probability": 0.9485 + }, + { + "start": 26231.78, + "end": 26233.92, + "probability": 0.9106 + }, + { + "start": 26233.92, + "end": 26234.08, + "probability": 0.8722 + }, + { + "start": 26235.76, + "end": 26237.36, + "probability": 0.9839 + }, + { + "start": 26239.42, + "end": 26240.49, + "probability": 0.7563 + }, + { + "start": 26240.76, + "end": 26241.88, + "probability": 0.8103 + }, + { + "start": 26243.34, + "end": 26246.22, + "probability": 0.9711 + }, + { + "start": 26246.42, + "end": 26247.14, + "probability": 0.9707 + }, + { + "start": 26247.58, + "end": 26250.6, + "probability": 0.9701 + }, + { + "start": 26252.04, + "end": 26254.36, + "probability": 0.9926 + }, + { + "start": 26255.1, + "end": 26256.28, + "probability": 0.824 + }, + { + "start": 26257.24, + "end": 26258.38, + "probability": 0.9777 + }, + { + "start": 26259.2, + "end": 26259.78, + "probability": 0.5605 + }, + { + "start": 26261.3, + "end": 26261.34, + "probability": 0.0119 + }, + { + "start": 26264.5, + "end": 26265.3, + "probability": 0.9258 + }, + { + "start": 26265.38, + "end": 26266.52, + "probability": 0.9791 + }, + { + "start": 26266.74, + "end": 26269.4, + "probability": 0.8846 + }, + { + "start": 26271.08, + "end": 26275.4, + "probability": 0.991 + }, + { + "start": 26275.76, + "end": 26276.78, + "probability": 0.937 + }, + { + "start": 26277.58, + "end": 26278.86, + "probability": 0.7398 + }, + { + "start": 26279.52, + "end": 26281.26, + "probability": 0.9692 + }, + { + "start": 26282.16, + "end": 26283.58, + "probability": 0.9946 + }, + { + "start": 26284.68, + "end": 26288.28, + "probability": 0.9914 + }, + { + "start": 26288.44, + "end": 26289.22, + "probability": 0.989 + }, + { + "start": 26290.0, + "end": 26291.34, + "probability": 0.958 + }, + { + "start": 26292.92, + "end": 26295.6, + "probability": 0.9854 + }, + { + "start": 26296.04, + "end": 26298.34, + "probability": 0.8598 + }, + { + "start": 26298.48, + "end": 26299.64, + "probability": 0.6982 + }, + { + "start": 26300.34, + "end": 26301.82, + "probability": 0.833 + }, + { + "start": 26303.36, + "end": 26304.5, + "probability": 0.7342 + }, + { + "start": 26305.22, + "end": 26306.5, + "probability": 0.999 + }, + { + "start": 26307.28, + "end": 26309.74, + "probability": 0.9256 + }, + { + "start": 26310.92, + "end": 26311.04, + "probability": 0.6279 + }, + { + "start": 26311.26, + "end": 26313.3, + "probability": 0.841 + }, + { + "start": 26314.16, + "end": 26317.76, + "probability": 0.9692 + }, + { + "start": 26317.84, + "end": 26319.56, + "probability": 0.6685 + }, + { + "start": 26320.28, + "end": 26321.02, + "probability": 0.7756 + }, + { + "start": 26322.02, + "end": 26326.8, + "probability": 0.9979 + }, + { + "start": 26327.0, + "end": 26328.1, + "probability": 0.9513 + }, + { + "start": 26328.78, + "end": 26329.78, + "probability": 0.9116 + }, + { + "start": 26331.24, + "end": 26332.4, + "probability": 0.9822 + }, + { + "start": 26332.56, + "end": 26334.28, + "probability": 0.8118 + }, + { + "start": 26334.82, + "end": 26336.72, + "probability": 0.8678 + }, + { + "start": 26337.64, + "end": 26339.76, + "probability": 0.7695 + }, + { + "start": 26340.52, + "end": 26342.8, + "probability": 0.8706 + }, + { + "start": 26344.06, + "end": 26345.57, + "probability": 0.9917 + }, + { + "start": 26346.22, + "end": 26347.16, + "probability": 0.8271 + }, + { + "start": 26347.78, + "end": 26349.58, + "probability": 0.9907 + }, + { + "start": 26350.78, + "end": 26352.52, + "probability": 0.9947 + }, + { + "start": 26353.68, + "end": 26355.99, + "probability": 0.9556 + }, + { + "start": 26357.14, + "end": 26362.92, + "probability": 0.9167 + }, + { + "start": 26362.98, + "end": 26364.87, + "probability": 0.6315 + }, + { + "start": 26365.32, + "end": 26367.32, + "probability": 0.8035 + }, + { + "start": 26367.76, + "end": 26369.64, + "probability": 0.8843 + }, + { + "start": 26370.54, + "end": 26373.72, + "probability": 0.6308 + }, + { + "start": 26373.84, + "end": 26374.52, + "probability": 0.9364 + }, + { + "start": 26375.56, + "end": 26376.38, + "probability": 0.9575 + }, + { + "start": 26377.54, + "end": 26378.06, + "probability": 0.9288 + }, + { + "start": 26379.4, + "end": 26380.14, + "probability": 0.85 + }, + { + "start": 26380.18, + "end": 26381.7, + "probability": 0.7771 + }, + { + "start": 26381.8, + "end": 26382.55, + "probability": 0.737 + }, + { + "start": 26382.8, + "end": 26383.52, + "probability": 0.9229 + }, + { + "start": 26383.96, + "end": 26384.46, + "probability": 0.7185 + }, + { + "start": 26385.96, + "end": 26386.46, + "probability": 0.5703 + }, + { + "start": 26387.38, + "end": 26390.7, + "probability": 0.2315 + }, + { + "start": 26391.0, + "end": 26393.34, + "probability": 0.7687 + }, + { + "start": 26394.04, + "end": 26396.76, + "probability": 0.9941 + }, + { + "start": 26397.9, + "end": 26398.24, + "probability": 0.7509 + }, + { + "start": 26398.3, + "end": 26401.87, + "probability": 0.9985 + }, + { + "start": 26403.08, + "end": 26407.56, + "probability": 0.8104 + }, + { + "start": 26407.76, + "end": 26409.1, + "probability": 0.9478 + }, + { + "start": 26409.78, + "end": 26411.16, + "probability": 0.8924 + }, + { + "start": 26411.22, + "end": 26413.06, + "probability": 0.9082 + }, + { + "start": 26413.92, + "end": 26416.9, + "probability": 0.9143 + }, + { + "start": 26418.22, + "end": 26419.96, + "probability": 0.6069 + }, + { + "start": 26420.8, + "end": 26423.3, + "probability": 0.9795 + }, + { + "start": 26423.76, + "end": 26424.52, + "probability": 0.8198 + }, + { + "start": 26424.68, + "end": 26425.43, + "probability": 0.7973 + }, + { + "start": 26427.54, + "end": 26428.6, + "probability": 0.7493 + }, + { + "start": 26429.66, + "end": 26431.24, + "probability": 0.8399 + }, + { + "start": 26431.36, + "end": 26432.82, + "probability": 0.8013 + }, + { + "start": 26433.04, + "end": 26434.78, + "probability": 0.9327 + }, + { + "start": 26436.06, + "end": 26437.98, + "probability": 0.8033 + }, + { + "start": 26438.52, + "end": 26439.46, + "probability": 0.9742 + }, + { + "start": 26439.94, + "end": 26441.98, + "probability": 0.8231 + }, + { + "start": 26443.1, + "end": 26444.1, + "probability": 0.8179 + }, + { + "start": 26445.62, + "end": 26446.66, + "probability": 0.8335 + }, + { + "start": 26447.64, + "end": 26450.26, + "probability": 0.9875 + }, + { + "start": 26451.58, + "end": 26452.24, + "probability": 0.9639 + }, + { + "start": 26452.36, + "end": 26454.46, + "probability": 0.8462 + }, + { + "start": 26455.8, + "end": 26457.62, + "probability": 0.8988 + }, + { + "start": 26457.8, + "end": 26458.57, + "probability": 0.9038 + }, + { + "start": 26458.98, + "end": 26461.7, + "probability": 0.823 + }, + { + "start": 26462.48, + "end": 26465.76, + "probability": 0.8691 + }, + { + "start": 26467.06, + "end": 26468.6, + "probability": 0.9537 + }, + { + "start": 26469.42, + "end": 26470.64, + "probability": 0.9846 + }, + { + "start": 26472.18, + "end": 26473.56, + "probability": 0.9956 + }, + { + "start": 26474.36, + "end": 26474.98, + "probability": 0.5109 + }, + { + "start": 26475.58, + "end": 26475.94, + "probability": 0.3047 + }, + { + "start": 26476.68, + "end": 26478.46, + "probability": 0.6926 + }, + { + "start": 26479.48, + "end": 26482.1, + "probability": 0.9786 + }, + { + "start": 26483.36, + "end": 26484.24, + "probability": 0.7553 + }, + { + "start": 26484.54, + "end": 26485.82, + "probability": 0.7526 + }, + { + "start": 26485.9, + "end": 26487.76, + "probability": 0.9814 + }, + { + "start": 26488.3, + "end": 26489.48, + "probability": 0.8069 + }, + { + "start": 26490.3, + "end": 26490.54, + "probability": 0.8076 + }, + { + "start": 26491.06, + "end": 26492.37, + "probability": 0.9269 + }, + { + "start": 26493.3, + "end": 26494.58, + "probability": 0.8333 + }, + { + "start": 26494.76, + "end": 26495.04, + "probability": 0.9318 + }, + { + "start": 26495.14, + "end": 26496.28, + "probability": 0.5393 + }, + { + "start": 26497.2, + "end": 26497.72, + "probability": 0.88 + }, + { + "start": 26498.94, + "end": 26500.96, + "probability": 0.9478 + }, + { + "start": 26501.94, + "end": 26502.78, + "probability": 0.9907 + }, + { + "start": 26503.64, + "end": 26504.3, + "probability": 0.5147 + }, + { + "start": 26505.12, + "end": 26510.42, + "probability": 0.9736 + }, + { + "start": 26511.22, + "end": 26512.34, + "probability": 0.4838 + }, + { + "start": 26512.5, + "end": 26515.36, + "probability": 0.8244 + }, + { + "start": 26515.42, + "end": 26515.74, + "probability": 0.9 + }, + { + "start": 26515.8, + "end": 26516.38, + "probability": 0.6984 + }, + { + "start": 26516.42, + "end": 26517.72, + "probability": 0.8019 + }, + { + "start": 26517.98, + "end": 26520.44, + "probability": 0.9858 + }, + { + "start": 26521.88, + "end": 26522.2, + "probability": 0.3882 + }, + { + "start": 26522.76, + "end": 26525.64, + "probability": 0.9874 + }, + { + "start": 26525.9, + "end": 26526.06, + "probability": 0.8585 + }, + { + "start": 26526.16, + "end": 26526.76, + "probability": 0.873 + }, + { + "start": 26527.82, + "end": 26528.68, + "probability": 0.9413 + }, + { + "start": 26528.8, + "end": 26529.44, + "probability": 0.7265 + }, + { + "start": 26529.58, + "end": 26531.12, + "probability": 0.9337 + }, + { + "start": 26531.2, + "end": 26532.2, + "probability": 0.9653 + }, + { + "start": 26533.16, + "end": 26536.04, + "probability": 0.8168 + }, + { + "start": 26536.4, + "end": 26537.4, + "probability": 0.7856 + }, + { + "start": 26538.14, + "end": 26542.56, + "probability": 0.7685 + }, + { + "start": 26542.68, + "end": 26543.19, + "probability": 0.6956 + }, + { + "start": 26544.12, + "end": 26545.42, + "probability": 0.803 + }, + { + "start": 26546.88, + "end": 26548.14, + "probability": 0.9164 + }, + { + "start": 26548.86, + "end": 26551.08, + "probability": 0.9355 + }, + { + "start": 26552.74, + "end": 26555.42, + "probability": 0.4528 + }, + { + "start": 26555.54, + "end": 26555.88, + "probability": 0.9234 + }, + { + "start": 26555.94, + "end": 26557.56, + "probability": 0.5473 + }, + { + "start": 26557.84, + "end": 26559.73, + "probability": 0.9856 + }, + { + "start": 26560.06, + "end": 26560.95, + "probability": 0.4359 + }, + { + "start": 26561.76, + "end": 26562.46, + "probability": 0.8805 + }, + { + "start": 26562.54, + "end": 26564.56, + "probability": 0.9967 + }, + { + "start": 26566.18, + "end": 26567.88, + "probability": 0.985 + }, + { + "start": 26569.0, + "end": 26571.2, + "probability": 0.9973 + }, + { + "start": 26572.06, + "end": 26573.1, + "probability": 0.8969 + }, + { + "start": 26573.56, + "end": 26575.56, + "probability": 0.9483 + }, + { + "start": 26576.56, + "end": 26577.54, + "probability": 0.9156 + }, + { + "start": 26577.6, + "end": 26578.24, + "probability": 0.8275 + }, + { + "start": 26578.7, + "end": 26580.44, + "probability": 0.9919 + }, + { + "start": 26580.56, + "end": 26581.36, + "probability": 0.9455 + }, + { + "start": 26582.46, + "end": 26585.06, + "probability": 0.9355 + }, + { + "start": 26586.82, + "end": 26587.8, + "probability": 0.9618 + }, + { + "start": 26587.94, + "end": 26589.06, + "probability": 0.6909 + }, + { + "start": 26589.16, + "end": 26590.08, + "probability": 0.7202 + }, + { + "start": 26590.14, + "end": 26590.82, + "probability": 0.9572 + }, + { + "start": 26593.56, + "end": 26595.0, + "probability": 0.9922 + }, + { + "start": 26596.24, + "end": 26597.92, + "probability": 0.9934 + }, + { + "start": 26599.36, + "end": 26601.78, + "probability": 0.9495 + }, + { + "start": 26604.96, + "end": 26608.26, + "probability": 0.9963 + }, + { + "start": 26608.66, + "end": 26610.12, + "probability": 0.9946 + }, + { + "start": 26610.62, + "end": 26613.7, + "probability": 0.9691 + }, + { + "start": 26614.08, + "end": 26614.84, + "probability": 0.9961 + }, + { + "start": 26614.94, + "end": 26616.36, + "probability": 0.9955 + }, + { + "start": 26617.46, + "end": 26618.04, + "probability": 0.464 + }, + { + "start": 26618.7, + "end": 26620.46, + "probability": 0.9814 + }, + { + "start": 26622.42, + "end": 26624.1, + "probability": 0.9964 + }, + { + "start": 26625.48, + "end": 26627.3, + "probability": 0.9913 + }, + { + "start": 26628.24, + "end": 26630.64, + "probability": 0.9972 + }, + { + "start": 26630.78, + "end": 26632.24, + "probability": 0.9843 + }, + { + "start": 26633.06, + "end": 26635.9, + "probability": 0.9872 + }, + { + "start": 26635.9, + "end": 26637.9, + "probability": 0.999 + }, + { + "start": 26639.54, + "end": 26640.8, + "probability": 0.9892 + }, + { + "start": 26642.08, + "end": 26645.62, + "probability": 0.9745 + }, + { + "start": 26645.62, + "end": 26649.74, + "probability": 0.979 + }, + { + "start": 26650.66, + "end": 26651.78, + "probability": 0.6898 + }, + { + "start": 26653.38, + "end": 26654.52, + "probability": 0.9291 + }, + { + "start": 26654.66, + "end": 26655.46, + "probability": 0.8995 + }, + { + "start": 26655.68, + "end": 26656.26, + "probability": 0.9489 + }, + { + "start": 26656.32, + "end": 26656.78, + "probability": 0.911 + }, + { + "start": 26656.96, + "end": 26658.1, + "probability": 0.79 + }, + { + "start": 26659.46, + "end": 26660.58, + "probability": 0.99 + }, + { + "start": 26661.96, + "end": 26662.4, + "probability": 0.6136 + }, + { + "start": 26662.46, + "end": 26662.8, + "probability": 0.9878 + }, + { + "start": 26662.88, + "end": 26666.04, + "probability": 0.5223 + }, + { + "start": 26666.2, + "end": 26666.62, + "probability": 0.5526 + }, + { + "start": 26667.8, + "end": 26669.48, + "probability": 0.9949 + }, + { + "start": 26670.66, + "end": 26675.16, + "probability": 0.9971 + }, + { + "start": 26675.16, + "end": 26679.6, + "probability": 0.8454 + }, + { + "start": 26681.5, + "end": 26682.9, + "probability": 0.9786 + }, + { + "start": 26684.72, + "end": 26685.46, + "probability": 0.998 + }, + { + "start": 26685.8, + "end": 26688.08, + "probability": 0.9611 + }, + { + "start": 26688.2, + "end": 26689.06, + "probability": 0.9783 + }, + { + "start": 26690.3, + "end": 26690.78, + "probability": 0.636 + }, + { + "start": 26692.16, + "end": 26694.38, + "probability": 0.9933 + }, + { + "start": 26696.08, + "end": 26696.64, + "probability": 0.6623 + }, + { + "start": 26696.64, + "end": 26697.32, + "probability": 0.9894 + }, + { + "start": 26697.42, + "end": 26698.02, + "probability": 0.8616 + }, + { + "start": 26698.08, + "end": 26698.94, + "probability": 0.998 + }, + { + "start": 26699.1, + "end": 26699.72, + "probability": 0.6131 + }, + { + "start": 26699.76, + "end": 26700.52, + "probability": 0.9214 + }, + { + "start": 26700.58, + "end": 26701.04, + "probability": 0.6313 + }, + { + "start": 26701.8, + "end": 26702.8, + "probability": 0.9246 + }, + { + "start": 26703.88, + "end": 26707.6, + "probability": 0.4165 + }, + { + "start": 26708.04, + "end": 26710.88, + "probability": 0.744 + }, + { + "start": 26711.68, + "end": 26714.14, + "probability": 0.9938 + }, + { + "start": 26715.88, + "end": 26717.86, + "probability": 0.7838 + }, + { + "start": 26718.14, + "end": 26718.88, + "probability": 0.7485 + }, + { + "start": 26718.98, + "end": 26720.06, + "probability": 0.9546 + }, + { + "start": 26720.78, + "end": 26723.2, + "probability": 0.9802 + }, + { + "start": 26725.68, + "end": 26727.8, + "probability": 0.6671 + }, + { + "start": 26727.88, + "end": 26730.1, + "probability": 0.652 + }, + { + "start": 26730.22, + "end": 26731.42, + "probability": 0.8695 + }, + { + "start": 26732.82, + "end": 26734.67, + "probability": 0.9959 + }, + { + "start": 26735.6, + "end": 26737.82, + "probability": 0.804 + }, + { + "start": 26739.14, + "end": 26739.42, + "probability": 0.5833 + }, + { + "start": 26740.04, + "end": 26740.64, + "probability": 0.8147 + }, + { + "start": 26742.04, + "end": 26743.7, + "probability": 0.9908 + }, + { + "start": 26744.94, + "end": 26747.22, + "probability": 0.9854 + }, + { + "start": 26747.36, + "end": 26750.12, + "probability": 0.9917 + }, + { + "start": 26750.7, + "end": 26752.06, + "probability": 0.7105 + }, + { + "start": 26753.84, + "end": 26755.2, + "probability": 0.983 + }, + { + "start": 26755.94, + "end": 26757.18, + "probability": 0.861 + }, + { + "start": 26758.5, + "end": 26759.36, + "probability": 0.8738 + }, + { + "start": 26759.48, + "end": 26760.82, + "probability": 0.9952 + }, + { + "start": 26761.04, + "end": 26761.24, + "probability": 0.6274 + }, + { + "start": 26761.36, + "end": 26762.2, + "probability": 0.8018 + }, + { + "start": 26764.04, + "end": 26768.22, + "probability": 0.9453 + }, + { + "start": 26768.82, + "end": 26770.1, + "probability": 0.9744 + }, + { + "start": 26771.0, + "end": 26772.5, + "probability": 0.9167 + }, + { + "start": 26772.64, + "end": 26775.74, + "probability": 0.9228 + }, + { + "start": 26776.68, + "end": 26782.64, + "probability": 0.9586 + }, + { + "start": 26783.66, + "end": 26784.24, + "probability": 0.9554 + }, + { + "start": 26784.74, + "end": 26785.74, + "probability": 0.1886 + }, + { + "start": 26787.71, + "end": 26788.66, + "probability": 0.145 + }, + { + "start": 26788.66, + "end": 26789.8, + "probability": 0.6532 + }, + { + "start": 26790.12, + "end": 26790.96, + "probability": 0.974 + }, + { + "start": 26791.36, + "end": 26791.82, + "probability": 0.8062 + }, + { + "start": 26791.9, + "end": 26792.88, + "probability": 0.6182 + }, + { + "start": 26793.1, + "end": 26795.28, + "probability": 0.7953 + }, + { + "start": 26804.32, + "end": 26805.02, + "probability": 0.7884 + }, + { + "start": 26805.86, + "end": 26806.88, + "probability": 0.7213 + }, + { + "start": 26807.54, + "end": 26811.52, + "probability": 0.9837 + }, + { + "start": 26811.64, + "end": 26812.28, + "probability": 0.6329 + }, + { + "start": 26813.08, + "end": 26817.42, + "probability": 0.9614 + }, + { + "start": 26818.06, + "end": 26818.74, + "probability": 0.8477 + }, + { + "start": 26819.86, + "end": 26820.8, + "probability": 0.9931 + }, + { + "start": 26820.9, + "end": 26822.64, + "probability": 0.9502 + }, + { + "start": 26822.7, + "end": 26823.5, + "probability": 0.9009 + }, + { + "start": 26824.46, + "end": 26825.06, + "probability": 0.5193 + }, + { + "start": 26825.62, + "end": 26826.08, + "probability": 0.462 + }, + { + "start": 26826.22, + "end": 26828.04, + "probability": 0.9387 + }, + { + "start": 26829.75, + "end": 26831.56, + "probability": 0.947 + }, + { + "start": 26835.74, + "end": 26837.66, + "probability": 0.9926 + }, + { + "start": 26837.76, + "end": 26840.48, + "probability": 0.7942 + }, + { + "start": 26841.28, + "end": 26842.92, + "probability": 0.8769 + }, + { + "start": 26844.1, + "end": 26844.58, + "probability": 0.3251 + }, + { + "start": 26845.28, + "end": 26845.88, + "probability": 0.6543 + }, + { + "start": 26846.38, + "end": 26846.56, + "probability": 0.8062 + }, + { + "start": 26846.68, + "end": 26852.21, + "probability": 0.9614 + }, + { + "start": 26852.68, + "end": 26853.72, + "probability": 0.948 + }, + { + "start": 26853.82, + "end": 26854.36, + "probability": 0.9223 + }, + { + "start": 26855.48, + "end": 26855.94, + "probability": 0.7906 + }, + { + "start": 26856.54, + "end": 26857.32, + "probability": 0.9754 + }, + { + "start": 26857.44, + "end": 26862.18, + "probability": 0.9741 + }, + { + "start": 26862.68, + "end": 26864.36, + "probability": 0.8774 + }, + { + "start": 26864.42, + "end": 26865.14, + "probability": 0.9985 + }, + { + "start": 26866.28, + "end": 26868.16, + "probability": 0.8815 + }, + { + "start": 26869.3, + "end": 26870.92, + "probability": 0.9898 + }, + { + "start": 26871.36, + "end": 26872.13, + "probability": 0.999 + }, + { + "start": 26872.8, + "end": 26874.86, + "probability": 0.8535 + }, + { + "start": 26875.04, + "end": 26875.56, + "probability": 0.8381 + }, + { + "start": 26875.78, + "end": 26876.62, + "probability": 0.528 + }, + { + "start": 26876.78, + "end": 26879.64, + "probability": 0.9641 + }, + { + "start": 26881.16, + "end": 26883.56, + "probability": 0.8477 + }, + { + "start": 26883.62, + "end": 26883.96, + "probability": 0.9499 + }, + { + "start": 26885.26, + "end": 26887.82, + "probability": 0.9851 + }, + { + "start": 26889.24, + "end": 26892.18, + "probability": 0.9655 + }, + { + "start": 26892.96, + "end": 26894.02, + "probability": 0.592 + }, + { + "start": 26894.22, + "end": 26895.6, + "probability": 0.9771 + }, + { + "start": 26895.94, + "end": 26896.46, + "probability": 0.3908 + }, + { + "start": 26896.66, + "end": 26897.7, + "probability": 0.9776 + }, + { + "start": 26898.84, + "end": 26902.24, + "probability": 0.9957 + }, + { + "start": 26902.7, + "end": 26903.04, + "probability": 0.8723 + }, + { + "start": 26904.48, + "end": 26906.36, + "probability": 0.9951 + }, + { + "start": 26907.32, + "end": 26908.36, + "probability": 0.8862 + }, + { + "start": 26909.04, + "end": 26909.54, + "probability": 0.8223 + }, + { + "start": 26910.54, + "end": 26912.28, + "probability": 0.9979 + }, + { + "start": 26912.78, + "end": 26914.04, + "probability": 0.955 + }, + { + "start": 26914.82, + "end": 26918.52, + "probability": 0.9331 + }, + { + "start": 26918.54, + "end": 26919.12, + "probability": 0.8453 + }, + { + "start": 26920.4, + "end": 26921.2, + "probability": 0.967 + }, + { + "start": 26921.36, + "end": 26922.02, + "probability": 0.8738 + }, + { + "start": 26923.16, + "end": 26925.9, + "probability": 0.9524 + }, + { + "start": 26926.72, + "end": 26928.74, + "probability": 0.8961 + }, + { + "start": 26930.46, + "end": 26931.52, + "probability": 0.998 + }, + { + "start": 26932.58, + "end": 26933.46, + "probability": 0.9709 + }, + { + "start": 26934.94, + "end": 26935.8, + "probability": 0.6188 + }, + { + "start": 26936.26, + "end": 26938.58, + "probability": 0.7135 + }, + { + "start": 26939.32, + "end": 26940.44, + "probability": 0.8811 + }, + { + "start": 26940.82, + "end": 26942.3, + "probability": 0.362 + }, + { + "start": 26942.42, + "end": 26942.92, + "probability": 0.3906 + }, + { + "start": 26943.74, + "end": 26945.04, + "probability": 0.9797 + }, + { + "start": 26945.34, + "end": 26946.46, + "probability": 0.9896 + }, + { + "start": 26947.22, + "end": 26948.04, + "probability": 0.92 + }, + { + "start": 26948.14, + "end": 26950.92, + "probability": 0.9906 + }, + { + "start": 26951.7, + "end": 26952.02, + "probability": 0.7585 + }, + { + "start": 26952.18, + "end": 26954.16, + "probability": 0.9866 + }, + { + "start": 26956.22, + "end": 26958.12, + "probability": 0.9588 + }, + { + "start": 26959.1, + "end": 26960.5, + "probability": 0.9771 + }, + { + "start": 26962.26, + "end": 26963.48, + "probability": 0.9087 + }, + { + "start": 26965.18, + "end": 26967.32, + "probability": 0.0541 + }, + { + "start": 26969.76, + "end": 26970.22, + "probability": 0.6317 + }, + { + "start": 26973.66, + "end": 26977.7, + "probability": 0.9559 + }, + { + "start": 26977.8, + "end": 26978.83, + "probability": 0.999 + }, + { + "start": 26979.7, + "end": 26984.1, + "probability": 0.725 + }, + { + "start": 26984.72, + "end": 26985.96, + "probability": 0.9591 + }, + { + "start": 26986.02, + "end": 26987.0, + "probability": 0.7952 + }, + { + "start": 26987.04, + "end": 26987.9, + "probability": 0.7943 + }, + { + "start": 26988.6, + "end": 26989.5, + "probability": 0.932 + }, + { + "start": 26990.34, + "end": 26991.62, + "probability": 0.8912 + }, + { + "start": 26991.66, + "end": 26993.4, + "probability": 0.9932 + }, + { + "start": 26993.64, + "end": 26997.74, + "probability": 0.8233 + }, + { + "start": 26998.86, + "end": 26999.26, + "probability": 0.9473 + }, + { + "start": 27000.28, + "end": 27001.46, + "probability": 0.502 + }, + { + "start": 27002.76, + "end": 27003.94, + "probability": 0.9421 + }, + { + "start": 27004.08, + "end": 27005.9, + "probability": 0.942 + }, + { + "start": 27006.06, + "end": 27007.94, + "probability": 0.9883 + }, + { + "start": 27008.48, + "end": 27010.8, + "probability": 0.9487 + }, + { + "start": 27010.94, + "end": 27012.18, + "probability": 0.8136 + }, + { + "start": 27013.62, + "end": 27015.26, + "probability": 0.9458 + }, + { + "start": 27015.84, + "end": 27017.42, + "probability": 0.9963 + }, + { + "start": 27018.5, + "end": 27020.44, + "probability": 0.5916 + }, + { + "start": 27020.62, + "end": 27020.86, + "probability": 0.8336 + }, + { + "start": 27021.04, + "end": 27021.75, + "probability": 0.9296 + }, + { + "start": 27021.94, + "end": 27022.25, + "probability": 0.5859 + }, + { + "start": 27022.6, + "end": 27023.22, + "probability": 0.8465 + }, + { + "start": 27023.64, + "end": 27024.64, + "probability": 0.7896 + }, + { + "start": 27024.78, + "end": 27025.44, + "probability": 0.75 + }, + { + "start": 27025.86, + "end": 27027.74, + "probability": 0.5551 + }, + { + "start": 27028.08, + "end": 27029.5, + "probability": 0.8198 + }, + { + "start": 27030.14, + "end": 27034.68, + "probability": 0.9548 + }, + { + "start": 27035.3, + "end": 27036.82, + "probability": 0.8771 + }, + { + "start": 27038.3, + "end": 27038.6, + "probability": 0.6578 + }, + { + "start": 27039.44, + "end": 27039.72, + "probability": 0.4609 + }, + { + "start": 27040.26, + "end": 27040.26, + "probability": 0.3034 + }, + { + "start": 27040.38, + "end": 27043.6, + "probability": 0.652 + }, + { + "start": 27044.22, + "end": 27046.88, + "probability": 0.9751 + }, + { + "start": 27048.72, + "end": 27050.24, + "probability": 0.9412 + }, + { + "start": 27051.04, + "end": 27052.14, + "probability": 0.9378 + }, + { + "start": 27052.22, + "end": 27053.72, + "probability": 0.9941 + }, + { + "start": 27055.1, + "end": 27056.76, + "probability": 0.8859 + }, + { + "start": 27056.9, + "end": 27058.19, + "probability": 0.9933 + }, + { + "start": 27059.58, + "end": 27061.1, + "probability": 0.7445 + }, + { + "start": 27061.95, + "end": 27064.06, + "probability": 0.8004 + }, + { + "start": 27064.58, + "end": 27066.3, + "probability": 0.7622 + }, + { + "start": 27067.22, + "end": 27068.9, + "probability": 0.9392 + }, + { + "start": 27070.7, + "end": 27071.43, + "probability": 0.9175 + }, + { + "start": 27073.66, + "end": 27075.4, + "probability": 0.9279 + }, + { + "start": 27076.94, + "end": 27078.6, + "probability": 0.9951 + }, + { + "start": 27078.62, + "end": 27079.4, + "probability": 0.6739 + }, + { + "start": 27079.56, + "end": 27080.96, + "probability": 0.9254 + }, + { + "start": 27083.5, + "end": 27083.7, + "probability": 0.9839 + }, + { + "start": 27084.9, + "end": 27087.02, + "probability": 0.9951 + }, + { + "start": 27087.2, + "end": 27088.14, + "probability": 0.7451 + }, + { + "start": 27089.92, + "end": 27091.48, + "probability": 0.989 + }, + { + "start": 27092.14, + "end": 27094.16, + "probability": 0.957 + }, + { + "start": 27095.44, + "end": 27096.54, + "probability": 0.9785 + }, + { + "start": 27097.5, + "end": 27099.44, + "probability": 0.9988 + }, + { + "start": 27100.7, + "end": 27101.88, + "probability": 0.8322 + }, + { + "start": 27102.88, + "end": 27103.44, + "probability": 0.4939 + }, + { + "start": 27104.1, + "end": 27104.12, + "probability": 0.0126 + }, + { + "start": 27105.08, + "end": 27105.52, + "probability": 0.5338 + }, + { + "start": 27106.74, + "end": 27108.04, + "probability": 0.7132 + }, + { + "start": 27108.24, + "end": 27108.74, + "probability": 0.3368 + }, + { + "start": 27109.88, + "end": 27110.8, + "probability": 0.8646 + }, + { + "start": 27111.16, + "end": 27112.76, + "probability": 0.9731 + }, + { + "start": 27112.82, + "end": 27113.42, + "probability": 0.9106 + }, + { + "start": 27114.52, + "end": 27116.56, + "probability": 0.882 + }, + { + "start": 27116.6, + "end": 27118.16, + "probability": 0.676 + }, + { + "start": 27118.28, + "end": 27123.38, + "probability": 0.9981 + }, + { + "start": 27123.46, + "end": 27124.16, + "probability": 0.9823 + }, + { + "start": 27124.8, + "end": 27125.59, + "probability": 0.9614 + }, + { + "start": 27125.68, + "end": 27127.7, + "probability": 0.9682 + }, + { + "start": 27127.7, + "end": 27129.9, + "probability": 0.9809 + }, + { + "start": 27131.46, + "end": 27131.98, + "probability": 0.9383 + }, + { + "start": 27134.06, + "end": 27135.8, + "probability": 0.8407 + }, + { + "start": 27136.24, + "end": 27137.42, + "probability": 0.9751 + }, + { + "start": 27137.94, + "end": 27138.92, + "probability": 0.8792 + }, + { + "start": 27140.04, + "end": 27142.26, + "probability": 0.9978 + }, + { + "start": 27143.42, + "end": 27143.46, + "probability": 0.5028 + }, + { + "start": 27143.56, + "end": 27145.56, + "probability": 0.9917 + }, + { + "start": 27146.64, + "end": 27148.76, + "probability": 0.8584 + }, + { + "start": 27149.84, + "end": 27150.61, + "probability": 0.7607 + }, + { + "start": 27151.32, + "end": 27152.06, + "probability": 0.9389 + }, + { + "start": 27153.14, + "end": 27158.3, + "probability": 0.9718 + }, + { + "start": 27159.12, + "end": 27161.34, + "probability": 0.9666 + }, + { + "start": 27161.42, + "end": 27162.7, + "probability": 0.7949 + }, + { + "start": 27164.54, + "end": 27165.74, + "probability": 0.9012 + }, + { + "start": 27168.66, + "end": 27171.52, + "probability": 0.8436 + }, + { + "start": 27172.74, + "end": 27173.48, + "probability": 0.9287 + }, + { + "start": 27174.78, + "end": 27175.96, + "probability": 0.9636 + }, + { + "start": 27176.18, + "end": 27179.06, + "probability": 0.9954 + }, + { + "start": 27179.14, + "end": 27181.16, + "probability": 0.9443 + }, + { + "start": 27182.0, + "end": 27185.54, + "probability": 0.9575 + }, + { + "start": 27185.56, + "end": 27187.2, + "probability": 0.6875 + }, + { + "start": 27187.26, + "end": 27188.52, + "probability": 0.9117 + }, + { + "start": 27188.54, + "end": 27190.14, + "probability": 0.0006 + }, + { + "start": 27190.76, + "end": 27191.44, + "probability": 0.4232 + }, + { + "start": 27191.44, + "end": 27191.46, + "probability": 0.1835 + }, + { + "start": 27191.46, + "end": 27191.72, + "probability": 0.4391 + }, + { + "start": 27191.82, + "end": 27193.58, + "probability": 0.4994 + }, + { + "start": 27194.05, + "end": 27195.56, + "probability": 0.8647 + }, + { + "start": 27195.56, + "end": 27197.24, + "probability": 0.6246 + }, + { + "start": 27197.36, + "end": 27198.54, + "probability": 0.6746 + }, + { + "start": 27199.04, + "end": 27199.52, + "probability": 0.6707 + }, + { + "start": 27199.88, + "end": 27201.7, + "probability": 0.8354 + }, + { + "start": 27201.76, + "end": 27202.9, + "probability": 0.9948 + }, + { + "start": 27203.26, + "end": 27205.0, + "probability": 0.8273 + }, + { + "start": 27205.04, + "end": 27205.61, + "probability": 0.1169 + }, + { + "start": 27206.4, + "end": 27207.06, + "probability": 0.5887 + }, + { + "start": 27207.14, + "end": 27211.58, + "probability": 0.8177 + }, + { + "start": 27212.42, + "end": 27213.98, + "probability": 0.9916 + }, + { + "start": 27214.12, + "end": 27214.96, + "probability": 0.9398 + }, + { + "start": 27215.02, + "end": 27216.0, + "probability": 0.9811 + }, + { + "start": 27216.3, + "end": 27217.56, + "probability": 0.9487 + }, + { + "start": 27218.56, + "end": 27219.06, + "probability": 0.9182 + }, + { + "start": 27219.2, + "end": 27220.5, + "probability": 0.869 + }, + { + "start": 27220.66, + "end": 27224.16, + "probability": 0.8893 + }, + { + "start": 27224.62, + "end": 27225.1, + "probability": 0.9336 + }, + { + "start": 27225.18, + "end": 27227.84, + "probability": 0.8392 + }, + { + "start": 27228.56, + "end": 27229.14, + "probability": 0.9265 + }, + { + "start": 27230.5, + "end": 27230.96, + "probability": 0.5932 + }, + { + "start": 27231.06, + "end": 27232.94, + "probability": 0.8703 + }, + { + "start": 27233.02, + "end": 27233.68, + "probability": 0.6993 + }, + { + "start": 27234.34, + "end": 27237.06, + "probability": 0.9875 + }, + { + "start": 27237.4, + "end": 27239.38, + "probability": 0.991 + }, + { + "start": 27239.5, + "end": 27239.94, + "probability": 0.9856 + }, + { + "start": 27240.76, + "end": 27241.6, + "probability": 0.7593 + }, + { + "start": 27242.22, + "end": 27243.2, + "probability": 0.9128 + }, + { + "start": 27245.5, + "end": 27246.8, + "probability": 0.9775 + }, + { + "start": 27248.1, + "end": 27249.98, + "probability": 0.8911 + }, + { + "start": 27251.42, + "end": 27255.46, + "probability": 0.9954 + }, + { + "start": 27256.04, + "end": 27260.14, + "probability": 0.9938 + }, + { + "start": 27261.16, + "end": 27262.28, + "probability": 0.9909 + }, + { + "start": 27263.44, + "end": 27264.54, + "probability": 0.8058 + }, + { + "start": 27266.92, + "end": 27267.16, + "probability": 0.9006 + }, + { + "start": 27268.22, + "end": 27272.26, + "probability": 0.9607 + }, + { + "start": 27273.14, + "end": 27274.12, + "probability": 0.9679 + }, + { + "start": 27275.62, + "end": 27279.68, + "probability": 0.9817 + }, + { + "start": 27279.68, + "end": 27282.76, + "probability": 0.991 + }, + { + "start": 27283.36, + "end": 27286.28, + "probability": 0.777 + }, + { + "start": 27286.86, + "end": 27287.84, + "probability": 0.9415 + }, + { + "start": 27289.1, + "end": 27291.58, + "probability": 0.9338 + }, + { + "start": 27292.66, + "end": 27294.64, + "probability": 0.8416 + }, + { + "start": 27295.5, + "end": 27297.72, + "probability": 0.9853 + }, + { + "start": 27298.86, + "end": 27299.76, + "probability": 0.7396 + }, + { + "start": 27300.48, + "end": 27302.24, + "probability": 0.9987 + }, + { + "start": 27303.34, + "end": 27306.21, + "probability": 0.965 + }, + { + "start": 27309.2, + "end": 27310.7, + "probability": 0.7201 + }, + { + "start": 27311.8, + "end": 27312.78, + "probability": 0.9787 + }, + { + "start": 27313.82, + "end": 27314.54, + "probability": 0.9985 + }, + { + "start": 27315.52, + "end": 27316.84, + "probability": 0.8789 + }, + { + "start": 27317.98, + "end": 27322.14, + "probability": 0.8873 + }, + { + "start": 27322.88, + "end": 27326.34, + "probability": 0.9882 + }, + { + "start": 27326.44, + "end": 27327.92, + "probability": 0.9847 + }, + { + "start": 27329.62, + "end": 27336.64, + "probability": 0.9988 + }, + { + "start": 27336.64, + "end": 27341.32, + "probability": 0.998 + }, + { + "start": 27342.98, + "end": 27346.24, + "probability": 0.9671 + }, + { + "start": 27347.34, + "end": 27352.12, + "probability": 0.9912 + }, + { + "start": 27352.34, + "end": 27356.26, + "probability": 0.9924 + }, + { + "start": 27358.2, + "end": 27359.44, + "probability": 0.9576 + }, + { + "start": 27360.43, + "end": 27362.56, + "probability": 0.7843 + }, + { + "start": 27363.76, + "end": 27366.06, + "probability": 0.7165 + }, + { + "start": 27366.46, + "end": 27366.8, + "probability": 0.4479 + }, + { + "start": 27367.42, + "end": 27367.92, + "probability": 0.1124 + }, + { + "start": 27368.08, + "end": 27368.48, + "probability": 0.1297 + }, + { + "start": 27368.98, + "end": 27369.72, + "probability": 0.8396 + }, + { + "start": 27374.46, + "end": 27376.54, + "probability": 0.8232 + }, + { + "start": 27377.18, + "end": 27378.16, + "probability": 0.7539 + }, + { + "start": 27378.2, + "end": 27380.8, + "probability": 0.5598 + }, + { + "start": 27380.8, + "end": 27382.94, + "probability": 0.9705 + }, + { + "start": 27383.02, + "end": 27383.94, + "probability": 0.9146 + }, + { + "start": 27384.48, + "end": 27384.88, + "probability": 0.5231 + }, + { + "start": 27385.54, + "end": 27386.84, + "probability": 0.2491 + }, + { + "start": 27389.18, + "end": 27391.62, + "probability": 0.9181 + }, + { + "start": 27392.68, + "end": 27395.94, + "probability": 0.8708 + }, + { + "start": 27399.26, + "end": 27402.3, + "probability": 0.79 + }, + { + "start": 27403.28, + "end": 27405.98, + "probability": 0.7324 + }, + { + "start": 27406.5, + "end": 27407.82, + "probability": 0.8647 + }, + { + "start": 27408.52, + "end": 27411.04, + "probability": 0.8308 + }, + { + "start": 27411.04, + "end": 27412.02, + "probability": 0.8526 + }, + { + "start": 27412.92, + "end": 27413.76, + "probability": 0.7877 + }, + { + "start": 27415.32, + "end": 27416.76, + "probability": 0.7424 + }, + { + "start": 27417.02, + "end": 27418.98, + "probability": 0.9934 + }, + { + "start": 27419.12, + "end": 27420.38, + "probability": 0.8691 + }, + { + "start": 27421.54, + "end": 27424.14, + "probability": 0.9952 + }, + { + "start": 27425.34, + "end": 27428.64, + "probability": 0.9421 + }, + { + "start": 27428.82, + "end": 27431.78, + "probability": 0.9927 + }, + { + "start": 27432.62, + "end": 27433.68, + "probability": 0.7783 + }, + { + "start": 27434.98, + "end": 27437.54, + "probability": 0.9849 + }, + { + "start": 27437.84, + "end": 27440.86, + "probability": 0.9944 + }, + { + "start": 27441.64, + "end": 27444.1, + "probability": 0.9999 + }, + { + "start": 27444.32, + "end": 27444.56, + "probability": 0.7036 + }, + { + "start": 27445.86, + "end": 27447.88, + "probability": 0.6634 + }, + { + "start": 27448.56, + "end": 27449.48, + "probability": 0.9506 + }, + { + "start": 27451.52, + "end": 27453.34, + "probability": 0.9287 + }, + { + "start": 27455.82, + "end": 27458.74, + "probability": 0.9553 + }, + { + "start": 27479.62, + "end": 27482.31, + "probability": 0.9205 + }, + { + "start": 27486.6, + "end": 27487.28, + "probability": 0.5752 + }, + { + "start": 27487.36, + "end": 27492.43, + "probability": 0.7567 + }, + { + "start": 27493.56, + "end": 27497.44, + "probability": 0.9933 + }, + { + "start": 27497.58, + "end": 27502.7, + "probability": 0.9893 + }, + { + "start": 27503.32, + "end": 27504.34, + "probability": 0.7 + }, + { + "start": 27504.85, + "end": 27509.38, + "probability": 0.9859 + }, + { + "start": 27510.58, + "end": 27513.58, + "probability": 0.873 + }, + { + "start": 27516.24, + "end": 27520.34, + "probability": 0.8271 + }, + { + "start": 27521.11, + "end": 27525.46, + "probability": 0.9922 + }, + { + "start": 27526.92, + "end": 27527.44, + "probability": 0.8474 + }, + { + "start": 27528.34, + "end": 27531.44, + "probability": 0.9937 + }, + { + "start": 27532.02, + "end": 27534.44, + "probability": 0.9849 + }, + { + "start": 27535.04, + "end": 27538.04, + "probability": 0.9831 + }, + { + "start": 27539.82, + "end": 27540.14, + "probability": 0.7299 + }, + { + "start": 27541.1, + "end": 27544.86, + "probability": 0.9492 + }, + { + "start": 27545.96, + "end": 27547.14, + "probability": 0.9426 + }, + { + "start": 27547.7, + "end": 27549.68, + "probability": 0.9685 + }, + { + "start": 27551.18, + "end": 27551.68, + "probability": 0.9836 + }, + { + "start": 27552.3, + "end": 27555.9, + "probability": 0.9962 + }, + { + "start": 27555.9, + "end": 27559.94, + "probability": 0.9951 + }, + { + "start": 27560.52, + "end": 27563.1, + "probability": 0.9934 + }, + { + "start": 27563.62, + "end": 27564.47, + "probability": 0.9541 + }, + { + "start": 27566.34, + "end": 27570.86, + "probability": 0.9892 + }, + { + "start": 27570.86, + "end": 27576.86, + "probability": 0.9969 + }, + { + "start": 27577.6, + "end": 27580.76, + "probability": 0.9956 + }, + { + "start": 27581.34, + "end": 27583.38, + "probability": 0.9335 + }, + { + "start": 27583.9, + "end": 27588.56, + "probability": 0.9015 + }, + { + "start": 27589.7, + "end": 27593.46, + "probability": 0.9314 + }, + { + "start": 27594.1, + "end": 27595.34, + "probability": 0.8914 + }, + { + "start": 27596.28, + "end": 27600.9, + "probability": 0.8147 + }, + { + "start": 27602.42, + "end": 27604.88, + "probability": 0.8478 + }, + { + "start": 27605.56, + "end": 27611.64, + "probability": 0.9943 + }, + { + "start": 27611.92, + "end": 27613.96, + "probability": 0.9731 + }, + { + "start": 27615.22, + "end": 27619.44, + "probability": 0.9968 + }, + { + "start": 27620.22, + "end": 27623.3, + "probability": 0.9806 + }, + { + "start": 27623.34, + "end": 27627.16, + "probability": 0.9968 + }, + { + "start": 27629.76, + "end": 27631.44, + "probability": 0.6348 + }, + { + "start": 27631.74, + "end": 27631.96, + "probability": 0.7753 + }, + { + "start": 27632.46, + "end": 27636.26, + "probability": 0.9625 + }, + { + "start": 27636.82, + "end": 27640.06, + "probability": 0.9963 + }, + { + "start": 27640.06, + "end": 27644.06, + "probability": 0.9962 + }, + { + "start": 27644.68, + "end": 27646.9, + "probability": 0.9673 + }, + { + "start": 27647.92, + "end": 27652.42, + "probability": 0.842 + }, + { + "start": 27653.64, + "end": 27657.06, + "probability": 0.9851 + }, + { + "start": 27657.66, + "end": 27658.4, + "probability": 0.7246 + }, + { + "start": 27659.04, + "end": 27661.7, + "probability": 0.9971 + }, + { + "start": 27662.42, + "end": 27665.9, + "probability": 0.9983 + }, + { + "start": 27666.48, + "end": 27668.2, + "probability": 0.9983 + }, + { + "start": 27669.28, + "end": 27672.96, + "probability": 0.9263 + }, + { + "start": 27672.96, + "end": 27676.52, + "probability": 0.9976 + }, + { + "start": 27677.2, + "end": 27680.26, + "probability": 0.9989 + }, + { + "start": 27680.98, + "end": 27685.04, + "probability": 0.861 + }, + { + "start": 27686.78, + "end": 27689.34, + "probability": 0.3499 + }, + { + "start": 27689.64, + "end": 27691.5, + "probability": 0.9396 + }, + { + "start": 27692.18, + "end": 27694.04, + "probability": 0.9919 + }, + { + "start": 27694.3, + "end": 27699.06, + "probability": 0.9645 + }, + { + "start": 27699.96, + "end": 27703.24, + "probability": 0.9895 + }, + { + "start": 27703.24, + "end": 27707.62, + "probability": 0.9908 + }, + { + "start": 27708.28, + "end": 27710.54, + "probability": 0.9915 + }, + { + "start": 27711.36, + "end": 27715.56, + "probability": 0.9923 + }, + { + "start": 27716.6, + "end": 27717.7, + "probability": 0.5564 + }, + { + "start": 27722.98, + "end": 27725.98, + "probability": 0.6965 + }, + { + "start": 27726.26, + "end": 27726.9, + "probability": 0.5758 + }, + { + "start": 27726.94, + "end": 27727.5, + "probability": 0.661 + }, + { + "start": 27729.28, + "end": 27731.82, + "probability": 0.5126 + }, + { + "start": 27732.04, + "end": 27732.46, + "probability": 0.2901 + }, + { + "start": 27732.46, + "end": 27733.54, + "probability": 0.6316 + }, + { + "start": 27733.54, + "end": 27734.52, + "probability": 0.4105 + }, + { + "start": 27735.58, + "end": 27737.72, + "probability": 0.8121 + }, + { + "start": 27741.6, + "end": 27742.52, + "probability": 0.8204 + }, + { + "start": 27745.76, + "end": 27746.32, + "probability": 0.5713 + }, + { + "start": 27747.04, + "end": 27747.74, + "probability": 0.4844 + }, + { + "start": 27747.74, + "end": 27749.14, + "probability": 0.7089 + }, + { + "start": 27750.32, + "end": 27751.86, + "probability": 0.8697 + }, + { + "start": 27758.2, + "end": 27759.62, + "probability": 0.7769 + }, + { + "start": 27760.54, + "end": 27765.8, + "probability": 0.9956 + }, + { + "start": 27766.48, + "end": 27770.28, + "probability": 0.8705 + }, + { + "start": 27770.8, + "end": 27771.9, + "probability": 0.6381 + }, + { + "start": 27772.16, + "end": 27777.02, + "probability": 0.9839 + }, + { + "start": 27777.76, + "end": 27779.92, + "probability": 0.7032 + }, + { + "start": 27780.64, + "end": 27784.76, + "probability": 0.9917 + }, + { + "start": 27785.32, + "end": 27789.78, + "probability": 0.9697 + }, + { + "start": 27790.5, + "end": 27792.96, + "probability": 0.9941 + }, + { + "start": 27793.86, + "end": 27797.3, + "probability": 0.9937 + }, + { + "start": 27797.8, + "end": 27800.5, + "probability": 0.9601 + }, + { + "start": 27801.36, + "end": 27803.02, + "probability": 0.986 + }, + { + "start": 27803.64, + "end": 27807.26, + "probability": 0.968 + }, + { + "start": 27807.64, + "end": 27809.94, + "probability": 0.9945 + }, + { + "start": 27811.42, + "end": 27816.86, + "probability": 0.9959 + }, + { + "start": 27817.26, + "end": 27819.76, + "probability": 0.9659 + }, + { + "start": 27820.5, + "end": 27821.5, + "probability": 0.9706 + }, + { + "start": 27821.96, + "end": 27828.06, + "probability": 0.9946 + }, + { + "start": 27828.86, + "end": 27830.54, + "probability": 0.9832 + }, + { + "start": 27830.64, + "end": 27834.0, + "probability": 0.8904 + }, + { + "start": 27834.64, + "end": 27839.32, + "probability": 0.9766 + }, + { + "start": 27840.58, + "end": 27842.74, + "probability": 0.9498 + }, + { + "start": 27844.12, + "end": 27844.9, + "probability": 0.5472 + }, + { + "start": 27844.92, + "end": 27847.98, + "probability": 0.9432 + }, + { + "start": 27848.68, + "end": 27852.84, + "probability": 0.9719 + }, + { + "start": 27852.84, + "end": 27856.88, + "probability": 0.9574 + }, + { + "start": 27858.04, + "end": 27861.8, + "probability": 0.998 + }, + { + "start": 27862.44, + "end": 27865.0, + "probability": 0.9461 + }, + { + "start": 27865.66, + "end": 27868.3, + "probability": 0.9965 + }, + { + "start": 27868.34, + "end": 27869.36, + "probability": 0.9241 + }, + { + "start": 27870.08, + "end": 27873.1, + "probability": 0.9829 + }, + { + "start": 27873.1, + "end": 27877.06, + "probability": 0.8986 + }, + { + "start": 27878.4, + "end": 27882.1, + "probability": 0.935 + }, + { + "start": 27882.62, + "end": 27888.74, + "probability": 0.9587 + }, + { + "start": 27889.46, + "end": 27892.42, + "probability": 0.9971 + }, + { + "start": 27892.42, + "end": 27895.36, + "probability": 0.9713 + }, + { + "start": 27896.54, + "end": 27899.94, + "probability": 0.9395 + }, + { + "start": 27900.86, + "end": 27903.72, + "probability": 0.9952 + }, + { + "start": 27904.42, + "end": 27908.0, + "probability": 0.9392 + }, + { + "start": 27908.6, + "end": 27910.76, + "probability": 0.9975 + }, + { + "start": 27911.26, + "end": 27912.36, + "probability": 0.9349 + }, + { + "start": 27912.9, + "end": 27914.15, + "probability": 0.7487 + }, + { + "start": 27915.0, + "end": 27918.88, + "probability": 0.9662 + }, + { + "start": 27919.06, + "end": 27924.38, + "probability": 0.7497 + }, + { + "start": 27924.92, + "end": 27926.4, + "probability": 0.9808 + }, + { + "start": 27926.48, + "end": 27930.38, + "probability": 0.9847 + }, + { + "start": 27932.0, + "end": 27936.58, + "probability": 0.9902 + }, + { + "start": 27937.1, + "end": 27941.72, + "probability": 0.9975 + }, + { + "start": 27942.64, + "end": 27944.7, + "probability": 0.9878 + }, + { + "start": 27945.26, + "end": 27947.68, + "probability": 0.935 + }, + { + "start": 27948.9, + "end": 27951.62, + "probability": 0.9867 + }, + { + "start": 27952.4, + "end": 27952.76, + "probability": 0.7833 + }, + { + "start": 27953.8, + "end": 27955.76, + "probability": 0.6663 + }, + { + "start": 27955.92, + "end": 27957.32, + "probability": 0.9407 + }, + { + "start": 27958.54, + "end": 27961.1, + "probability": 0.4484 + }, + { + "start": 27961.18, + "end": 27962.18, + "probability": 0.5119 + }, + { + "start": 27962.24, + "end": 27964.12, + "probability": 0.9526 + }, + { + "start": 27965.5, + "end": 27966.26, + "probability": 0.7083 + }, + { + "start": 27967.88, + "end": 27969.18, + "probability": 0.7487 + }, + { + "start": 27972.91, + "end": 27974.72, + "probability": 0.8789 + }, + { + "start": 27977.3, + "end": 27978.44, + "probability": 0.3023 + }, + { + "start": 27978.88, + "end": 27982.3, + "probability": 0.8091 + }, + { + "start": 27983.4, + "end": 27984.06, + "probability": 0.9858 + }, + { + "start": 27984.58, + "end": 27985.72, + "probability": 0.998 + }, + { + "start": 27985.9, + "end": 27989.08, + "probability": 0.9547 + }, + { + "start": 27989.24, + "end": 27991.5, + "probability": 0.9761 + }, + { + "start": 27991.72, + "end": 27992.4, + "probability": 0.7241 + }, + { + "start": 27992.72, + "end": 27995.98, + "probability": 0.9497 + }, + { + "start": 27996.36, + "end": 27997.8, + "probability": 0.9488 + }, + { + "start": 27998.48, + "end": 28001.18, + "probability": 0.1249 + }, + { + "start": 28002.06, + "end": 28004.88, + "probability": 0.6248 + }, + { + "start": 28005.14, + "end": 28007.38, + "probability": 0.7732 + }, + { + "start": 28008.42, + "end": 28012.84, + "probability": 0.9948 + }, + { + "start": 28012.9, + "end": 28015.92, + "probability": 0.8868 + }, + { + "start": 28016.44, + "end": 28022.88, + "probability": 0.9927 + }, + { + "start": 28023.58, + "end": 28024.62, + "probability": 0.9067 + }, + { + "start": 28024.82, + "end": 28025.58, + "probability": 0.921 + }, + { + "start": 28025.7, + "end": 28029.28, + "probability": 0.9185 + }, + { + "start": 28029.42, + "end": 28031.4, + "probability": 0.9431 + }, + { + "start": 28032.24, + "end": 28034.82, + "probability": 0.6653 + }, + { + "start": 28034.88, + "end": 28037.18, + "probability": 0.8022 + }, + { + "start": 28037.78, + "end": 28046.34, + "probability": 0.941 + }, + { + "start": 28047.02, + "end": 28048.12, + "probability": 0.5416 + }, + { + "start": 28048.9, + "end": 28052.94, + "probability": 0.9933 + }, + { + "start": 28053.12, + "end": 28055.7, + "probability": 0.9271 + }, + { + "start": 28056.6, + "end": 28058.48, + "probability": 0.619 + }, + { + "start": 28058.64, + "end": 28059.96, + "probability": 0.4705 + }, + { + "start": 28059.96, + "end": 28060.26, + "probability": 0.547 + }, + { + "start": 28060.28, + "end": 28061.32, + "probability": 0.7047 + }, + { + "start": 28063.22, + "end": 28063.44, + "probability": 0.4617 + }, + { + "start": 28064.02, + "end": 28065.94, + "probability": 0.8428 + }, + { + "start": 28066.96, + "end": 28068.14, + "probability": 0.625 + }, + { + "start": 28068.22, + "end": 28068.98, + "probability": 0.967 + }, + { + "start": 28069.1, + "end": 28070.06, + "probability": 0.8007 + }, + { + "start": 28070.14, + "end": 28070.84, + "probability": 0.444 + }, + { + "start": 28071.16, + "end": 28072.18, + "probability": 0.9511 + }, + { + "start": 28072.84, + "end": 28076.62, + "probability": 0.9934 + }, + { + "start": 28077.18, + "end": 28082.38, + "probability": 0.9995 + }, + { + "start": 28083.24, + "end": 28086.16, + "probability": 0.7978 + }, + { + "start": 28087.0, + "end": 28089.59, + "probability": 0.9946 + }, + { + "start": 28089.96, + "end": 28091.2, + "probability": 0.7871 + }, + { + "start": 28091.66, + "end": 28092.6, + "probability": 0.9656 + }, + { + "start": 28092.82, + "end": 28094.18, + "probability": 0.8495 + }, + { + "start": 28095.14, + "end": 28096.54, + "probability": 0.8816 + }, + { + "start": 28096.58, + "end": 28098.62, + "probability": 0.8145 + }, + { + "start": 28099.18, + "end": 28103.24, + "probability": 0.866 + }, + { + "start": 28103.94, + "end": 28105.04, + "probability": 0.9253 + }, + { + "start": 28105.46, + "end": 28105.7, + "probability": 0.9782 + }, + { + "start": 28105.78, + "end": 28110.18, + "probability": 0.9854 + }, + { + "start": 28112.12, + "end": 28113.58, + "probability": 0.6329 + }, + { + "start": 28113.72, + "end": 28116.54, + "probability": 0.9569 + }, + { + "start": 28117.82, + "end": 28123.48, + "probability": 0.999 + }, + { + "start": 28124.1, + "end": 28125.8, + "probability": 0.9983 + }, + { + "start": 28125.8, + "end": 28128.48, + "probability": 0.8857 + }, + { + "start": 28129.04, + "end": 28132.28, + "probability": 0.9205 + }, + { + "start": 28132.48, + "end": 28133.02, + "probability": 0.9775 + }, + { + "start": 28133.06, + "end": 28136.7, + "probability": 0.9546 + }, + { + "start": 28137.62, + "end": 28145.04, + "probability": 0.9904 + }, + { + "start": 28145.56, + "end": 28147.22, + "probability": 0.9175 + }, + { + "start": 28147.42, + "end": 28148.84, + "probability": 0.8202 + }, + { + "start": 28149.34, + "end": 28151.52, + "probability": 0.8824 + }, + { + "start": 28152.36, + "end": 28155.62, + "probability": 0.9668 + }, + { + "start": 28156.46, + "end": 28160.7, + "probability": 0.9971 + }, + { + "start": 28163.82, + "end": 28166.68, + "probability": 0.9663 + }, + { + "start": 28167.24, + "end": 28168.68, + "probability": 0.8134 + }, + { + "start": 28169.3, + "end": 28171.22, + "probability": 0.8524 + }, + { + "start": 28172.2, + "end": 28174.48, + "probability": 0.9985 + }, + { + "start": 28174.96, + "end": 28177.36, + "probability": 0.9971 + }, + { + "start": 28178.14, + "end": 28180.98, + "probability": 0.9892 + }, + { + "start": 28181.66, + "end": 28183.18, + "probability": 0.8887 + }, + { + "start": 28183.68, + "end": 28187.62, + "probability": 0.9372 + }, + { + "start": 28188.54, + "end": 28189.1, + "probability": 0.7383 + }, + { + "start": 28189.2, + "end": 28189.34, + "probability": 0.8327 + }, + { + "start": 28189.4, + "end": 28191.2, + "probability": 0.9982 + }, + { + "start": 28191.64, + "end": 28193.73, + "probability": 0.9877 + }, + { + "start": 28194.08, + "end": 28195.26, + "probability": 0.9944 + }, + { + "start": 28195.44, + "end": 28196.26, + "probability": 0.6969 + }, + { + "start": 28196.7, + "end": 28198.78, + "probability": 0.9024 + }, + { + "start": 28198.92, + "end": 28199.66, + "probability": 0.8873 + }, + { + "start": 28199.74, + "end": 28201.06, + "probability": 0.9915 + }, + { + "start": 28201.34, + "end": 28201.82, + "probability": 0.8245 + }, + { + "start": 28201.94, + "end": 28202.72, + "probability": 0.9595 + }, + { + "start": 28202.8, + "end": 28203.88, + "probability": 0.8007 + }, + { + "start": 28204.7, + "end": 28209.72, + "probability": 0.9761 + }, + { + "start": 28210.4, + "end": 28212.48, + "probability": 0.9897 + }, + { + "start": 28212.82, + "end": 28217.98, + "probability": 0.9937 + }, + { + "start": 28218.56, + "end": 28219.82, + "probability": 0.9716 + }, + { + "start": 28220.94, + "end": 28224.06, + "probability": 0.9969 + }, + { + "start": 28224.56, + "end": 28225.54, + "probability": 0.7491 + }, + { + "start": 28225.98, + "end": 28227.18, + "probability": 0.5888 + }, + { + "start": 28229.1, + "end": 28229.22, + "probability": 0.5719 + }, + { + "start": 28229.36, + "end": 28229.7, + "probability": 0.4435 + }, + { + "start": 28229.82, + "end": 28230.82, + "probability": 0.9129 + }, + { + "start": 28230.84, + "end": 28235.0, + "probability": 0.9944 + }, + { + "start": 28235.0, + "end": 28239.46, + "probability": 0.8698 + }, + { + "start": 28240.74, + "end": 28243.66, + "probability": 0.9814 + }, + { + "start": 28244.24, + "end": 28245.7, + "probability": 0.9438 + }, + { + "start": 28246.3, + "end": 28248.12, + "probability": 0.9989 + }, + { + "start": 28248.68, + "end": 28250.54, + "probability": 0.9978 + }, + { + "start": 28250.6, + "end": 28252.5, + "probability": 0.8219 + }, + { + "start": 28253.38, + "end": 28255.66, + "probability": 0.972 + }, + { + "start": 28256.32, + "end": 28260.78, + "probability": 0.995 + }, + { + "start": 28260.78, + "end": 28264.86, + "probability": 0.9057 + }, + { + "start": 28265.66, + "end": 28269.4, + "probability": 0.9937 + }, + { + "start": 28269.92, + "end": 28276.34, + "probability": 0.9478 + }, + { + "start": 28277.1, + "end": 28281.16, + "probability": 0.9988 + }, + { + "start": 28281.16, + "end": 28284.44, + "probability": 0.9829 + }, + { + "start": 28284.94, + "end": 28286.22, + "probability": 0.9995 + }, + { + "start": 28287.1, + "end": 28287.9, + "probability": 0.7625 + }, + { + "start": 28288.2, + "end": 28293.32, + "probability": 0.9805 + }, + { + "start": 28293.78, + "end": 28295.46, + "probability": 0.9934 + }, + { + "start": 28295.82, + "end": 28297.7, + "probability": 0.9712 + }, + { + "start": 28298.26, + "end": 28299.02, + "probability": 0.9594 + }, + { + "start": 28299.18, + "end": 28301.14, + "probability": 0.9291 + }, + { + "start": 28301.9, + "end": 28305.08, + "probability": 0.8448 + }, + { + "start": 28305.54, + "end": 28306.2, + "probability": 0.59 + }, + { + "start": 28306.26, + "end": 28308.02, + "probability": 0.4325 + }, + { + "start": 28308.96, + "end": 28312.82, + "probability": 0.8028 + }, + { + "start": 28313.22, + "end": 28315.98, + "probability": 0.7936 + }, + { + "start": 28317.4, + "end": 28317.4, + "probability": 0.0902 + }, + { + "start": 28317.4, + "end": 28317.4, + "probability": 0.5099 + }, + { + "start": 28317.4, + "end": 28318.06, + "probability": 0.6406 + }, + { + "start": 28318.3, + "end": 28319.42, + "probability": 0.9734 + }, + { + "start": 28320.24, + "end": 28322.36, + "probability": 0.8947 + }, + { + "start": 28327.2, + "end": 28329.24, + "probability": 0.5227 + }, + { + "start": 28329.38, + "end": 28332.6, + "probability": 0.9683 + }, + { + "start": 28334.32, + "end": 28335.88, + "probability": 0.1271 + }, + { + "start": 28338.45, + "end": 28339.72, + "probability": 0.1214 + }, + { + "start": 28340.78, + "end": 28344.3, + "probability": 0.8142 + }, + { + "start": 28344.88, + "end": 28345.84, + "probability": 0.8008 + }, + { + "start": 28345.92, + "end": 28347.82, + "probability": 0.7625 + }, + { + "start": 28347.88, + "end": 28350.04, + "probability": 0.918 + }, + { + "start": 28351.02, + "end": 28353.66, + "probability": 0.8921 + }, + { + "start": 28354.34, + "end": 28356.7, + "probability": 0.9865 + }, + { + "start": 28356.76, + "end": 28358.72, + "probability": 0.8819 + }, + { + "start": 28359.28, + "end": 28363.4, + "probability": 0.8781 + }, + { + "start": 28363.92, + "end": 28363.98, + "probability": 0.1921 + }, + { + "start": 28364.1, + "end": 28369.12, + "probability": 0.8711 + }, + { + "start": 28370.42, + "end": 28374.74, + "probability": 0.9985 + }, + { + "start": 28375.36, + "end": 28378.0, + "probability": 0.9389 + }, + { + "start": 28378.92, + "end": 28383.56, + "probability": 0.7651 + }, + { + "start": 28383.9, + "end": 28387.83, + "probability": 0.9939 + }, + { + "start": 28388.24, + "end": 28395.36, + "probability": 0.9487 + }, + { + "start": 28395.64, + "end": 28399.18, + "probability": 0.9943 + }, + { + "start": 28399.3, + "end": 28400.08, + "probability": 0.8128 + }, + { + "start": 28400.18, + "end": 28402.12, + "probability": 0.9937 + }, + { + "start": 28402.4, + "end": 28404.9, + "probability": 0.9844 + }, + { + "start": 28405.26, + "end": 28408.48, + "probability": 0.939 + }, + { + "start": 28408.72, + "end": 28409.08, + "probability": 0.7245 + }, + { + "start": 28409.88, + "end": 28411.48, + "probability": 0.5778 + }, + { + "start": 28411.68, + "end": 28412.64, + "probability": 0.6587 + }, + { + "start": 28412.72, + "end": 28413.6, + "probability": 0.9443 + }, + { + "start": 28413.86, + "end": 28416.28, + "probability": 0.9399 + }, + { + "start": 28417.3, + "end": 28419.22, + "probability": 0.8116 + }, + { + "start": 28433.23, + "end": 28434.68, + "probability": 0.9766 + }, + { + "start": 28435.04, + "end": 28435.22, + "probability": 0.5431 + }, + { + "start": 28435.22, + "end": 28435.44, + "probability": 0.7815 + }, + { + "start": 28436.62, + "end": 28437.64, + "probability": 0.7872 + }, + { + "start": 28439.26, + "end": 28440.16, + "probability": 0.9723 + }, + { + "start": 28442.2, + "end": 28444.62, + "probability": 0.9938 + }, + { + "start": 28446.6, + "end": 28448.8, + "probability": 0.4153 + }, + { + "start": 28449.66, + "end": 28451.34, + "probability": 0.6958 + }, + { + "start": 28452.32, + "end": 28455.06, + "probability": 0.8486 + }, + { + "start": 28456.5, + "end": 28457.98, + "probability": 0.9858 + }, + { + "start": 28459.76, + "end": 28462.82, + "probability": 0.9861 + }, + { + "start": 28463.38, + "end": 28464.43, + "probability": 0.9746 + }, + { + "start": 28466.02, + "end": 28467.06, + "probability": 0.9211 + }, + { + "start": 28467.96, + "end": 28470.72, + "probability": 0.9689 + }, + { + "start": 28471.52, + "end": 28472.7, + "probability": 0.8404 + }, + { + "start": 28472.84, + "end": 28473.4, + "probability": 0.9174 + }, + { + "start": 28473.46, + "end": 28480.44, + "probability": 0.9809 + }, + { + "start": 28481.82, + "end": 28482.86, + "probability": 0.9755 + }, + { + "start": 28483.66, + "end": 28487.76, + "probability": 0.8501 + }, + { + "start": 28489.02, + "end": 28493.68, + "probability": 0.9661 + }, + { + "start": 28494.74, + "end": 28496.64, + "probability": 0.8745 + }, + { + "start": 28497.24, + "end": 28499.32, + "probability": 0.9241 + }, + { + "start": 28500.14, + "end": 28500.94, + "probability": 0.7305 + }, + { + "start": 28501.14, + "end": 28502.82, + "probability": 0.9761 + }, + { + "start": 28502.88, + "end": 28505.14, + "probability": 0.983 + }, + { + "start": 28506.8, + "end": 28509.56, + "probability": 0.936 + }, + { + "start": 28510.72, + "end": 28513.7, + "probability": 0.7874 + }, + { + "start": 28513.74, + "end": 28514.56, + "probability": 0.8157 + }, + { + "start": 28515.36, + "end": 28517.92, + "probability": 0.8489 + }, + { + "start": 28518.84, + "end": 28522.36, + "probability": 0.9889 + }, + { + "start": 28523.12, + "end": 28525.68, + "probability": 0.9115 + }, + { + "start": 28526.52, + "end": 28527.96, + "probability": 0.9972 + }, + { + "start": 28528.9, + "end": 28533.26, + "probability": 0.9748 + }, + { + "start": 28534.98, + "end": 28539.08, + "probability": 0.9987 + }, + { + "start": 28540.48, + "end": 28547.06, + "probability": 0.9151 + }, + { + "start": 28548.26, + "end": 28551.62, + "probability": 0.9738 + }, + { + "start": 28552.44, + "end": 28554.66, + "probability": 0.9657 + }, + { + "start": 28555.28, + "end": 28557.09, + "probability": 0.9415 + }, + { + "start": 28557.8, + "end": 28560.67, + "probability": 0.9014 + }, + { + "start": 28561.32, + "end": 28562.54, + "probability": 0.9135 + }, + { + "start": 28563.48, + "end": 28566.84, + "probability": 0.9934 + }, + { + "start": 28567.3, + "end": 28568.8, + "probability": 0.9819 + }, + { + "start": 28570.16, + "end": 28572.22, + "probability": 0.9567 + }, + { + "start": 28573.04, + "end": 28574.25, + "probability": 0.9937 + }, + { + "start": 28576.24, + "end": 28580.78, + "probability": 0.9464 + }, + { + "start": 28582.34, + "end": 28584.02, + "probability": 0.7731 + }, + { + "start": 28584.2, + "end": 28585.14, + "probability": 0.8317 + }, + { + "start": 28585.26, + "end": 28586.7, + "probability": 0.8352 + }, + { + "start": 28587.84, + "end": 28593.5, + "probability": 0.9907 + }, + { + "start": 28593.66, + "end": 28594.26, + "probability": 0.8003 + }, + { + "start": 28594.7, + "end": 28597.42, + "probability": 0.9154 + }, + { + "start": 28599.29, + "end": 28600.8, + "probability": 0.9552 + }, + { + "start": 28601.34, + "end": 28602.67, + "probability": 0.2893 + }, + { + "start": 28603.14, + "end": 28605.35, + "probability": 0.9621 + }, + { + "start": 28606.56, + "end": 28607.92, + "probability": 0.9714 + }, + { + "start": 28612.22, + "end": 28614.28, + "probability": 0.5251 + }, + { + "start": 28614.32, + "end": 28614.64, + "probability": 0.8575 + }, + { + "start": 28614.72, + "end": 28616.28, + "probability": 0.7149 + }, + { + "start": 28616.38, + "end": 28617.26, + "probability": 0.2 + }, + { + "start": 28618.36, + "end": 28621.2, + "probability": 0.5231 + }, + { + "start": 28621.58, + "end": 28623.94, + "probability": 0.3619 + }, + { + "start": 28624.08, + "end": 28626.32, + "probability": 0.7479 + }, + { + "start": 28626.46, + "end": 28627.22, + "probability": 0.8242 + }, + { + "start": 28627.36, + "end": 28629.33, + "probability": 0.9466 + }, + { + "start": 28629.66, + "end": 28630.36, + "probability": 0.9184 + }, + { + "start": 28630.66, + "end": 28631.24, + "probability": 0.5812 + }, + { + "start": 28631.3, + "end": 28632.68, + "probability": 0.8996 + }, + { + "start": 28633.64, + "end": 28634.62, + "probability": 0.6875 + }, + { + "start": 28634.72, + "end": 28636.56, + "probability": 0.8931 + }, + { + "start": 28636.62, + "end": 28636.8, + "probability": 0.6458 + }, + { + "start": 28636.8, + "end": 28637.06, + "probability": 0.3821 + }, + { + "start": 28637.06, + "end": 28639.82, + "probability": 0.9592 + }, + { + "start": 28640.3, + "end": 28643.2, + "probability": 0.9858 + }, + { + "start": 28643.2, + "end": 28646.38, + "probability": 0.9797 + }, + { + "start": 28646.52, + "end": 28647.34, + "probability": 0.8723 + }, + { + "start": 28649.44, + "end": 28650.2, + "probability": 0.849 + }, + { + "start": 28651.78, + "end": 28653.4, + "probability": 0.9242 + }, + { + "start": 28654.3, + "end": 28657.64, + "probability": 0.9209 + }, + { + "start": 28658.24, + "end": 28659.58, + "probability": 0.9406 + }, + { + "start": 28660.62, + "end": 28661.32, + "probability": 0.8161 + }, + { + "start": 28662.86, + "end": 28665.04, + "probability": 0.9517 + }, + { + "start": 28665.9, + "end": 28671.72, + "probability": 0.9253 + }, + { + "start": 28672.26, + "end": 28673.38, + "probability": 0.4929 + }, + { + "start": 28673.38, + "end": 28676.34, + "probability": 0.2857 + }, + { + "start": 28677.06, + "end": 28680.26, + "probability": 0.9902 + }, + { + "start": 28680.86, + "end": 28684.18, + "probability": 0.8638 + }, + { + "start": 28686.3, + "end": 28689.52, + "probability": 0.9711 + }, + { + "start": 28689.72, + "end": 28692.22, + "probability": 0.229 + }, + { + "start": 28692.54, + "end": 28694.32, + "probability": 0.9983 + }, + { + "start": 28694.44, + "end": 28698.78, + "probability": 0.9256 + }, + { + "start": 28699.3, + "end": 28702.41, + "probability": 0.9863 + }, + { + "start": 28703.44, + "end": 28708.4, + "probability": 0.3479 + }, + { + "start": 28708.8, + "end": 28710.37, + "probability": 0.8535 + }, + { + "start": 28710.76, + "end": 28711.94, + "probability": 0.8935 + }, + { + "start": 28712.12, + "end": 28712.52, + "probability": 0.8237 + }, + { + "start": 28712.58, + "end": 28713.01, + "probability": 0.5546 + }, + { + "start": 28713.44, + "end": 28714.08, + "probability": 0.8679 + }, + { + "start": 28714.82, + "end": 28716.94, + "probability": 0.9797 + }, + { + "start": 28717.0, + "end": 28718.1, + "probability": 0.5923 + }, + { + "start": 28718.12, + "end": 28718.88, + "probability": 0.9735 + }, + { + "start": 28719.22, + "end": 28720.54, + "probability": 0.9113 + }, + { + "start": 28720.6, + "end": 28720.78, + "probability": 0.5396 + }, + { + "start": 28720.84, + "end": 28722.74, + "probability": 0.973 + }, + { + "start": 28722.84, + "end": 28723.56, + "probability": 0.9592 + }, + { + "start": 28723.64, + "end": 28724.74, + "probability": 0.9941 + }, + { + "start": 28724.8, + "end": 28725.54, + "probability": 0.9519 + }, + { + "start": 28725.64, + "end": 28726.92, + "probability": 0.9173 + }, + { + "start": 28727.24, + "end": 28728.78, + "probability": 0.9807 + }, + { + "start": 28731.12, + "end": 28733.7, + "probability": 0.8035 + }, + { + "start": 28735.28, + "end": 28738.78, + "probability": 0.9873 + }, + { + "start": 28739.98, + "end": 28740.78, + "probability": 0.8136 + }, + { + "start": 28740.86, + "end": 28741.54, + "probability": 0.9911 + }, + { + "start": 28741.6, + "end": 28742.32, + "probability": 0.9665 + }, + { + "start": 28742.42, + "end": 28743.92, + "probability": 0.9492 + }, + { + "start": 28745.32, + "end": 28746.92, + "probability": 0.8747 + }, + { + "start": 28747.84, + "end": 28752.46, + "probability": 0.9917 + }, + { + "start": 28754.06, + "end": 28756.0, + "probability": 0.2764 + }, + { + "start": 28756.2, + "end": 28759.84, + "probability": 0.3291 + }, + { + "start": 28760.16, + "end": 28761.02, + "probability": 0.8246 + }, + { + "start": 28761.08, + "end": 28762.72, + "probability": 0.4075 + }, + { + "start": 28762.82, + "end": 28769.02, + "probability": 0.8931 + }, + { + "start": 28769.06, + "end": 28771.24, + "probability": 0.9675 + }, + { + "start": 28771.62, + "end": 28772.24, + "probability": 0.1397 + }, + { + "start": 28773.0, + "end": 28773.62, + "probability": 0.2132 + }, + { + "start": 28773.62, + "end": 28775.74, + "probability": 0.43 + }, + { + "start": 28775.98, + "end": 28777.01, + "probability": 0.5065 + }, + { + "start": 28777.28, + "end": 28779.44, + "probability": 0.0654 + }, + { + "start": 28779.5, + "end": 28780.78, + "probability": 0.4786 + }, + { + "start": 28780.84, + "end": 28781.44, + "probability": 0.7733 + }, + { + "start": 28782.42, + "end": 28783.68, + "probability": 0.9343 + }, + { + "start": 28784.18, + "end": 28789.66, + "probability": 0.9868 + }, + { + "start": 28790.52, + "end": 28794.1, + "probability": 0.6732 + }, + { + "start": 28794.78, + "end": 28797.68, + "probability": 0.9475 + }, + { + "start": 28797.78, + "end": 28798.9, + "probability": 0.9517 + }, + { + "start": 28799.54, + "end": 28804.06, + "probability": 0.9919 + }, + { + "start": 28804.48, + "end": 28806.84, + "probability": 0.9924 + }, + { + "start": 28807.04, + "end": 28808.38, + "probability": 0.993 + }, + { + "start": 28810.0, + "end": 28814.42, + "probability": 0.9237 + }, + { + "start": 28816.42, + "end": 28817.04, + "probability": 0.4283 + }, + { + "start": 28818.72, + "end": 28819.84, + "probability": 0.965 + }, + { + "start": 28820.1, + "end": 28821.34, + "probability": 0.672 + }, + { + "start": 28821.46, + "end": 28823.18, + "probability": 0.6443 + }, + { + "start": 28823.42, + "end": 28824.3, + "probability": 0.9247 + }, + { + "start": 28825.42, + "end": 28826.74, + "probability": 0.9606 + }, + { + "start": 28826.8, + "end": 28831.04, + "probability": 0.995 + }, + { + "start": 28831.2, + "end": 28832.9, + "probability": 0.9777 + }, + { + "start": 28834.28, + "end": 28835.3, + "probability": 0.9973 + }, + { + "start": 28836.24, + "end": 28837.46, + "probability": 0.9784 + }, + { + "start": 28838.0, + "end": 28839.6, + "probability": 0.9846 + }, + { + "start": 28839.64, + "end": 28840.58, + "probability": 0.9392 + }, + { + "start": 28841.14, + "end": 28841.66, + "probability": 0.8348 + }, + { + "start": 28841.74, + "end": 28846.45, + "probability": 0.9945 + }, + { + "start": 28847.14, + "end": 28849.3, + "probability": 0.9932 + }, + { + "start": 28849.42, + "end": 28851.04, + "probability": 0.7671 + }, + { + "start": 28851.66, + "end": 28854.56, + "probability": 0.744 + }, + { + "start": 28855.82, + "end": 28856.6, + "probability": 0.8276 + }, + { + "start": 28856.66, + "end": 28859.12, + "probability": 0.9712 + }, + { + "start": 28859.84, + "end": 28863.04, + "probability": 0.9687 + }, + { + "start": 28863.1, + "end": 28863.45, + "probability": 0.4775 + }, + { + "start": 28864.26, + "end": 28869.68, + "probability": 0.8608 + }, + { + "start": 28871.12, + "end": 28873.52, + "probability": 0.9954 + }, + { + "start": 28875.34, + "end": 28876.32, + "probability": 0.7757 + }, + { + "start": 28877.02, + "end": 28879.24, + "probability": 0.6786 + }, + { + "start": 28879.36, + "end": 28881.48, + "probability": 0.9984 + }, + { + "start": 28881.84, + "end": 28883.24, + "probability": 0.8281 + }, + { + "start": 28883.86, + "end": 28885.7, + "probability": 0.9908 + }, + { + "start": 28887.3, + "end": 28893.1, + "probability": 0.8749 + }, + { + "start": 28893.7, + "end": 28895.66, + "probability": 0.7852 + }, + { + "start": 28897.34, + "end": 28898.54, + "probability": 0.5522 + }, + { + "start": 28899.26, + "end": 28902.08, + "probability": 0.9965 + }, + { + "start": 28902.78, + "end": 28904.52, + "probability": 0.9531 + }, + { + "start": 28905.24, + "end": 28906.58, + "probability": 0.3781 + }, + { + "start": 28906.68, + "end": 28909.46, + "probability": 0.8674 + }, + { + "start": 28910.58, + "end": 28911.84, + "probability": 0.9607 + }, + { + "start": 28912.44, + "end": 28914.3, + "probability": 0.9862 + }, + { + "start": 28915.28, + "end": 28918.58, + "probability": 0.9969 + }, + { + "start": 28919.08, + "end": 28925.7, + "probability": 0.3597 + }, + { + "start": 28925.84, + "end": 28928.72, + "probability": 0.715 + }, + { + "start": 28929.12, + "end": 28929.12, + "probability": 0.5635 + }, + { + "start": 28929.12, + "end": 28929.68, + "probability": 0.2176 + }, + { + "start": 28930.58, + "end": 28932.0, + "probability": 0.3022 + }, + { + "start": 28932.1, + "end": 28933.02, + "probability": 0.5199 + }, + { + "start": 28933.3, + "end": 28938.38, + "probability": 0.4108 + }, + { + "start": 28938.44, + "end": 28940.2, + "probability": 0.7507 + }, + { + "start": 28940.34, + "end": 28941.6, + "probability": 0.2988 + }, + { + "start": 28941.88, + "end": 28943.18, + "probability": 0.2854 + }, + { + "start": 28943.46, + "end": 28948.7, + "probability": 0.5246 + }, + { + "start": 28948.86, + "end": 28950.98, + "probability": 0.0347 + }, + { + "start": 28951.5, + "end": 28954.86, + "probability": 0.5521 + }, + { + "start": 28955.82, + "end": 28959.28, + "probability": 0.2626 + }, + { + "start": 28959.32, + "end": 28959.76, + "probability": 0.0865 + }, + { + "start": 28959.76, + "end": 28960.16, + "probability": 0.0984 + }, + { + "start": 28960.84, + "end": 28961.66, + "probability": 0.0505 + }, + { + "start": 28961.88, + "end": 28962.08, + "probability": 0.0896 + }, + { + "start": 28962.08, + "end": 28965.17, + "probability": 0.1059 + }, + { + "start": 28965.66, + "end": 28967.6, + "probability": 0.5941 + }, + { + "start": 28968.02, + "end": 28972.22, + "probability": 0.0731 + }, + { + "start": 28972.64, + "end": 28974.2, + "probability": 0.0805 + }, + { + "start": 28974.69, + "end": 28978.97, + "probability": 0.0459 + }, + { + "start": 28979.18, + "end": 28980.34, + "probability": 0.0681 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29007.0, + "end": 29007.0, + "probability": 0.0 + }, + { + "start": 29008.38, + "end": 29013.8, + "probability": 0.052 + }, + { + "start": 29028.86, + "end": 29029.72, + "probability": 0.0013 + }, + { + "start": 29029.85, + "end": 29034.64, + "probability": 0.0445 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.0, + "end": 29128.0, + "probability": 0.0 + }, + { + "start": 29128.34, + "end": 29128.88, + "probability": 0.1227 + }, + { + "start": 29136.8, + "end": 29137.54, + "probability": 0.438 + }, + { + "start": 29137.54, + "end": 29140.66, + "probability": 0.7198 + }, + { + "start": 29141.2, + "end": 29142.22, + "probability": 0.654 + }, + { + "start": 29142.28, + "end": 29144.4, + "probability": 0.6298 + }, + { + "start": 29145.48, + "end": 29145.92, + "probability": 0.2225 + }, + { + "start": 29145.92, + "end": 29145.92, + "probability": 0.0716 + }, + { + "start": 29145.92, + "end": 29148.78, + "probability": 0.9764 + }, + { + "start": 29149.74, + "end": 29153.78, + "probability": 0.9236 + }, + { + "start": 29154.54, + "end": 29157.02, + "probability": 0.9327 + }, + { + "start": 29157.7, + "end": 29158.52, + "probability": 0.7179 + }, + { + "start": 29158.56, + "end": 29159.68, + "probability": 0.8238 + }, + { + "start": 29159.72, + "end": 29161.46, + "probability": 0.9517 + }, + { + "start": 29161.62, + "end": 29162.96, + "probability": 0.9795 + }, + { + "start": 29165.06, + "end": 29166.28, + "probability": 0.4837 + }, + { + "start": 29166.98, + "end": 29168.8, + "probability": 0.7213 + }, + { + "start": 29169.0, + "end": 29169.48, + "probability": 0.8374 + }, + { + "start": 29169.52, + "end": 29170.35, + "probability": 0.9888 + }, + { + "start": 29170.48, + "end": 29173.36, + "probability": 0.9626 + }, + { + "start": 29173.4, + "end": 29175.8, + "probability": 0.9948 + }, + { + "start": 29175.9, + "end": 29177.98, + "probability": 0.8113 + }, + { + "start": 29178.54, + "end": 29182.46, + "probability": 0.3007 + }, + { + "start": 29182.46, + "end": 29184.88, + "probability": 0.9972 + }, + { + "start": 29185.6, + "end": 29188.96, + "probability": 0.9326 + }, + { + "start": 29189.04, + "end": 29190.44, + "probability": 0.9463 + }, + { + "start": 29190.54, + "end": 29191.5, + "probability": 0.8768 + }, + { + "start": 29192.2, + "end": 29193.24, + "probability": 0.9407 + }, + { + "start": 29193.4, + "end": 29194.74, + "probability": 0.9373 + }, + { + "start": 29195.18, + "end": 29197.9, + "probability": 0.9438 + }, + { + "start": 29198.24, + "end": 29199.64, + "probability": 0.8508 + }, + { + "start": 29200.08, + "end": 29203.1, + "probability": 0.5563 + }, + { + "start": 29203.5, + "end": 29204.28, + "probability": 0.7317 + }, + { + "start": 29204.44, + "end": 29206.26, + "probability": 0.761 + }, + { + "start": 29206.7, + "end": 29207.18, + "probability": 0.9078 + }, + { + "start": 29207.34, + "end": 29210.3, + "probability": 0.9886 + }, + { + "start": 29211.36, + "end": 29211.92, + "probability": 0.9244 + }, + { + "start": 29212.0, + "end": 29215.64, + "probability": 0.7268 + }, + { + "start": 29216.18, + "end": 29219.42, + "probability": 0.9841 + }, + { + "start": 29219.58, + "end": 29224.6, + "probability": 0.9453 + }, + { + "start": 29225.14, + "end": 29226.12, + "probability": 0.7764 + }, + { + "start": 29227.33, + "end": 29229.76, + "probability": 0.9883 + }, + { + "start": 29229.92, + "end": 29230.9, + "probability": 0.9004 + }, + { + "start": 29230.94, + "end": 29231.34, + "probability": 0.7017 + }, + { + "start": 29231.4, + "end": 29234.32, + "probability": 0.9809 + }, + { + "start": 29234.62, + "end": 29236.62, + "probability": 0.9905 + }, + { + "start": 29238.42, + "end": 29239.4, + "probability": 0.8015 + }, + { + "start": 29240.04, + "end": 29241.22, + "probability": 0.8879 + }, + { + "start": 29241.54, + "end": 29244.29, + "probability": 0.9707 + }, + { + "start": 29245.88, + "end": 29248.6, + "probability": 0.994 + }, + { + "start": 29249.0, + "end": 29249.77, + "probability": 0.9819 + }, + { + "start": 29249.98, + "end": 29251.32, + "probability": 0.9243 + }, + { + "start": 29251.42, + "end": 29252.8, + "probability": 0.9974 + }, + { + "start": 29266.46, + "end": 29266.88, + "probability": 0.9956 + }, + { + "start": 29267.78, + "end": 29268.12, + "probability": 0.1641 + }, + { + "start": 29268.12, + "end": 29268.12, + "probability": 0.1066 + }, + { + "start": 29268.12, + "end": 29268.12, + "probability": 0.1289 + }, + { + "start": 29268.12, + "end": 29268.12, + "probability": 0.1924 + }, + { + "start": 29268.12, + "end": 29269.29, + "probability": 0.4553 + }, + { + "start": 29270.46, + "end": 29273.34, + "probability": 0.5787 + }, + { + "start": 29275.39, + "end": 29277.6, + "probability": 0.3789 + }, + { + "start": 29278.4, + "end": 29279.72, + "probability": 0.9236 + }, + { + "start": 29279.9, + "end": 29283.12, + "probability": 0.9739 + }, + { + "start": 29283.3, + "end": 29286.46, + "probability": 0.9371 + }, + { + "start": 29287.6, + "end": 29289.96, + "probability": 0.6228 + }, + { + "start": 29291.11, + "end": 29296.68, + "probability": 0.9517 + }, + { + "start": 29299.67, + "end": 29300.02, + "probability": 0.2078 + }, + { + "start": 29300.02, + "end": 29300.02, + "probability": 0.0808 + }, + { + "start": 29300.02, + "end": 29301.4, + "probability": 0.6737 + }, + { + "start": 29301.54, + "end": 29306.62, + "probability": 0.8329 + }, + { + "start": 29306.7, + "end": 29307.34, + "probability": 0.8804 + }, + { + "start": 29307.42, + "end": 29308.49, + "probability": 0.9961 + }, + { + "start": 29309.2, + "end": 29309.4, + "probability": 0.9285 + }, + { + "start": 29310.08, + "end": 29311.52, + "probability": 0.9224 + }, + { + "start": 29311.62, + "end": 29314.6, + "probability": 0.9483 + }, + { + "start": 29314.62, + "end": 29315.84, + "probability": 0.6566 + }, + { + "start": 29316.3, + "end": 29318.26, + "probability": 0.9878 + }, + { + "start": 29318.82, + "end": 29320.0, + "probability": 0.873 + }, + { + "start": 29322.14, + "end": 29324.52, + "probability": 0.9829 + }, + { + "start": 29326.2, + "end": 29330.16, + "probability": 0.9647 + }, + { + "start": 29330.58, + "end": 29332.44, + "probability": 0.7337 + }, + { + "start": 29333.76, + "end": 29334.7, + "probability": 0.7411 + }, + { + "start": 29334.8, + "end": 29336.3, + "probability": 0.8453 + }, + { + "start": 29336.64, + "end": 29337.78, + "probability": 0.4238 + }, + { + "start": 29337.86, + "end": 29338.94, + "probability": 0.8603 + }, + { + "start": 29339.36, + "end": 29341.14, + "probability": 0.9797 + }, + { + "start": 29341.64, + "end": 29344.94, + "probability": 0.8576 + }, + { + "start": 29345.54, + "end": 29349.1, + "probability": 0.8009 + }, + { + "start": 29350.42, + "end": 29353.24, + "probability": 0.7649 + }, + { + "start": 29356.24, + "end": 29357.4, + "probability": 0.7538 + }, + { + "start": 29358.1, + "end": 29358.44, + "probability": 0.9526 + }, + { + "start": 29359.28, + "end": 29360.56, + "probability": 0.9695 + }, + { + "start": 29361.56, + "end": 29367.02, + "probability": 0.9799 + }, + { + "start": 29367.42, + "end": 29367.98, + "probability": 0.7822 + }, + { + "start": 29368.38, + "end": 29369.38, + "probability": 0.96 + }, + { + "start": 29369.92, + "end": 29371.9, + "probability": 0.6364 + }, + { + "start": 29372.48, + "end": 29374.26, + "probability": 0.9501 + }, + { + "start": 29374.82, + "end": 29376.22, + "probability": 0.9636 + }, + { + "start": 29376.6, + "end": 29377.94, + "probability": 0.9847 + }, + { + "start": 29378.38, + "end": 29381.74, + "probability": 0.9669 + }, + { + "start": 29381.82, + "end": 29383.4, + "probability": 0.9869 + }, + { + "start": 29383.92, + "end": 29385.52, + "probability": 0.9851 + }, + { + "start": 29385.96, + "end": 29387.42, + "probability": 0.9929 + }, + { + "start": 29387.98, + "end": 29389.52, + "probability": 0.9856 + }, + { + "start": 29389.72, + "end": 29393.54, + "probability": 0.9878 + }, + { + "start": 29394.04, + "end": 29394.42, + "probability": 0.7489 + }, + { + "start": 29395.44, + "end": 29397.5, + "probability": 0.8303 + }, + { + "start": 29398.22, + "end": 29399.92, + "probability": 0.9457 + }, + { + "start": 29402.89, + "end": 29407.4, + "probability": 0.8188 + }, + { + "start": 29409.42, + "end": 29409.86, + "probability": 0.9342 + }, + { + "start": 29410.46, + "end": 29411.02, + "probability": 0.6933 + }, + { + "start": 29411.2, + "end": 29412.68, + "probability": 0.4805 + }, + { + "start": 29413.84, + "end": 29414.7, + "probability": 0.7734 + }, + { + "start": 29414.78, + "end": 29418.32, + "probability": 0.9403 + }, + { + "start": 29419.2, + "end": 29419.74, + "probability": 0.7573 + }, + { + "start": 29419.78, + "end": 29420.98, + "probability": 0.9714 + }, + { + "start": 29421.24, + "end": 29424.36, + "probability": 0.9905 + }, + { + "start": 29425.5, + "end": 29428.12, + "probability": 0.9827 + }, + { + "start": 29428.12, + "end": 29431.13, + "probability": 0.9697 + }, + { + "start": 29431.44, + "end": 29434.28, + "probability": 0.8165 + }, + { + "start": 29435.12, + "end": 29436.62, + "probability": 0.9525 + }, + { + "start": 29437.44, + "end": 29439.8, + "probability": 0.9242 + }, + { + "start": 29439.8, + "end": 29441.62, + "probability": 0.9738 + }, + { + "start": 29443.38, + "end": 29445.08, + "probability": 0.9832 + }, + { + "start": 29445.14, + "end": 29446.94, + "probability": 0.6777 + }, + { + "start": 29447.02, + "end": 29452.76, + "probability": 0.9172 + }, + { + "start": 29452.84, + "end": 29453.7, + "probability": 0.3202 + }, + { + "start": 29454.06, + "end": 29455.04, + "probability": 0.8481 + }, + { + "start": 29456.32, + "end": 29459.16, + "probability": 0.9748 + }, + { + "start": 29459.68, + "end": 29463.94, + "probability": 0.9706 + }, + { + "start": 29464.86, + "end": 29465.66, + "probability": 0.8882 + }, + { + "start": 29465.88, + "end": 29467.18, + "probability": 0.9216 + }, + { + "start": 29467.3, + "end": 29468.4, + "probability": 0.952 + }, + { + "start": 29469.06, + "end": 29469.72, + "probability": 0.8392 + }, + { + "start": 29470.42, + "end": 29472.12, + "probability": 0.8345 + }, + { + "start": 29472.26, + "end": 29472.61, + "probability": 0.6036 + }, + { + "start": 29473.6, + "end": 29474.28, + "probability": 0.5148 + }, + { + "start": 29474.32, + "end": 29475.1, + "probability": 0.8389 + }, + { + "start": 29475.3, + "end": 29476.22, + "probability": 0.9246 + }, + { + "start": 29476.9, + "end": 29478.96, + "probability": 0.995 + }, + { + "start": 29479.74, + "end": 29480.7, + "probability": 0.9941 + }, + { + "start": 29481.78, + "end": 29483.3, + "probability": 0.9619 + }, + { + "start": 29484.0, + "end": 29484.39, + "probability": 0.8901 + }, + { + "start": 29484.82, + "end": 29485.78, + "probability": 0.9717 + }, + { + "start": 29486.74, + "end": 29487.64, + "probability": 0.9777 + }, + { + "start": 29488.9, + "end": 29489.76, + "probability": 0.7725 + }, + { + "start": 29490.42, + "end": 29495.0, + "probability": 0.9701 + }, + { + "start": 29495.84, + "end": 29499.02, + "probability": 0.9972 + }, + { + "start": 29499.18, + "end": 29500.1, + "probability": 0.8192 + }, + { + "start": 29500.46, + "end": 29504.74, + "probability": 0.9087 + }, + { + "start": 29505.46, + "end": 29507.68, + "probability": 0.9259 + }, + { + "start": 29507.92, + "end": 29508.06, + "probability": 0.347 + }, + { + "start": 29508.12, + "end": 29509.0, + "probability": 0.981 + }, + { + "start": 29509.8, + "end": 29513.1, + "probability": 0.9946 + }, + { + "start": 29513.1, + "end": 29515.98, + "probability": 0.9982 + }, + { + "start": 29516.66, + "end": 29517.4, + "probability": 0.807 + }, + { + "start": 29517.9, + "end": 29519.32, + "probability": 0.9853 + }, + { + "start": 29519.44, + "end": 29520.24, + "probability": 0.9896 + }, + { + "start": 29520.94, + "end": 29523.32, + "probability": 0.9943 + }, + { + "start": 29523.76, + "end": 29526.78, + "probability": 0.9678 + }, + { + "start": 29526.86, + "end": 29527.23, + "probability": 0.7592 + }, + { + "start": 29528.0, + "end": 29529.42, + "probability": 0.9282 + }, + { + "start": 29530.28, + "end": 29530.56, + "probability": 0.5875 + }, + { + "start": 29530.68, + "end": 29531.02, + "probability": 0.4175 + }, + { + "start": 29531.2, + "end": 29533.12, + "probability": 0.6833 + }, + { + "start": 29533.5, + "end": 29535.66, + "probability": 0.8816 + }, + { + "start": 29536.26, + "end": 29537.1, + "probability": 0.412 + }, + { + "start": 29537.54, + "end": 29541.94, + "probability": 0.5967 + }, + { + "start": 29542.02, + "end": 29545.1, + "probability": 0.8075 + }, + { + "start": 29546.56, + "end": 29549.8, + "probability": 0.9939 + }, + { + "start": 29550.2, + "end": 29552.48, + "probability": 0.9805 + }, + { + "start": 29552.48, + "end": 29553.68, + "probability": 0.9189 + }, + { + "start": 29553.82, + "end": 29555.72, + "probability": 0.9123 + }, + { + "start": 29556.12, + "end": 29558.48, + "probability": 0.8107 + }, + { + "start": 29559.46, + "end": 29560.62, + "probability": 0.9521 + }, + { + "start": 29561.34, + "end": 29562.04, + "probability": 0.9049 + }, + { + "start": 29563.34, + "end": 29566.64, + "probability": 0.9441 + }, + { + "start": 29566.7, + "end": 29568.4, + "probability": 0.9701 + }, + { + "start": 29569.32, + "end": 29570.84, + "probability": 0.9174 + }, + { + "start": 29570.94, + "end": 29572.9, + "probability": 0.917 + }, + { + "start": 29573.5, + "end": 29575.78, + "probability": 0.9562 + }, + { + "start": 29577.28, + "end": 29579.06, + "probability": 0.2591 + }, + { + "start": 29579.34, + "end": 29579.34, + "probability": 0.2395 + }, + { + "start": 29579.34, + "end": 29579.34, + "probability": 0.3372 + }, + { + "start": 29579.34, + "end": 29579.72, + "probability": 0.3634 + }, + { + "start": 29579.72, + "end": 29580.88, + "probability": 0.7164 + }, + { + "start": 29581.48, + "end": 29582.98, + "probability": 0.8869 + }, + { + "start": 29583.6, + "end": 29584.08, + "probability": 0.8438 + }, + { + "start": 29585.34, + "end": 29586.28, + "probability": 0.8451 + }, + { + "start": 29586.28, + "end": 29587.62, + "probability": 0.8172 + }, + { + "start": 29587.74, + "end": 29589.82, + "probability": 0.9619 + }, + { + "start": 29591.74, + "end": 29594.52, + "probability": 0.985 + }, + { + "start": 29594.52, + "end": 29597.0, + "probability": 0.5669 + }, + { + "start": 29597.62, + "end": 29599.78, + "probability": 0.9719 + }, + { + "start": 29601.22, + "end": 29602.24, + "probability": 0.7909 + }, + { + "start": 29603.16, + "end": 29604.26, + "probability": 0.7655 + }, + { + "start": 29605.58, + "end": 29608.98, + "probability": 0.983 + }, + { + "start": 29609.8, + "end": 29613.02, + "probability": 0.9948 + }, + { + "start": 29613.68, + "end": 29614.24, + "probability": 0.3749 + }, + { + "start": 29614.42, + "end": 29615.76, + "probability": 0.7816 + }, + { + "start": 29616.3, + "end": 29616.82, + "probability": 0.7891 + }, + { + "start": 29617.86, + "end": 29619.74, + "probability": 0.9015 + }, + { + "start": 29620.28, + "end": 29621.58, + "probability": 0.9236 + }, + { + "start": 29621.66, + "end": 29623.52, + "probability": 0.9569 + }, + { + "start": 29624.1, + "end": 29626.56, + "probability": 0.902 + }, + { + "start": 29626.66, + "end": 29627.7, + "probability": 0.9671 + }, + { + "start": 29628.32, + "end": 29632.16, + "probability": 0.995 + }, + { + "start": 29633.08, + "end": 29634.34, + "probability": 0.9866 + }, + { + "start": 29635.74, + "end": 29638.06, + "probability": 0.9875 + }, + { + "start": 29638.36, + "end": 29638.96, + "probability": 0.9774 + }, + { + "start": 29639.04, + "end": 29639.46, + "probability": 0.9185 + }, + { + "start": 29639.62, + "end": 29640.1, + "probability": 0.7382 + }, + { + "start": 29640.5, + "end": 29642.42, + "probability": 0.9781 + }, + { + "start": 29643.03, + "end": 29644.7, + "probability": 0.9985 + }, + { + "start": 29645.16, + "end": 29646.76, + "probability": 0.946 + }, + { + "start": 29647.86, + "end": 29649.76, + "probability": 0.9622 + }, + { + "start": 29651.32, + "end": 29653.27, + "probability": 0.9773 + }, + { + "start": 29655.1, + "end": 29659.9, + "probability": 0.9566 + }, + { + "start": 29660.54, + "end": 29664.3, + "probability": 0.8824 + }, + { + "start": 29664.38, + "end": 29666.74, + "probability": 0.9817 + }, + { + "start": 29667.08, + "end": 29668.08, + "probability": 0.8925 + }, + { + "start": 29668.18, + "end": 29669.84, + "probability": 0.7381 + }, + { + "start": 29669.96, + "end": 29670.36, + "probability": 0.7569 + }, + { + "start": 29670.72, + "end": 29671.98, + "probability": 0.9912 + }, + { + "start": 29674.16, + "end": 29674.44, + "probability": 0.4763 + }, + { + "start": 29674.5, + "end": 29675.06, + "probability": 0.7563 + }, + { + "start": 29675.22, + "end": 29675.78, + "probability": 0.608 + }, + { + "start": 29675.9, + "end": 29678.62, + "probability": 0.8998 + }, + { + "start": 29679.36, + "end": 29679.8, + "probability": 0.746 + }, + { + "start": 29679.94, + "end": 29680.86, + "probability": 0.9155 + }, + { + "start": 29681.02, + "end": 29684.22, + "probability": 0.9771 + }, + { + "start": 29685.32, + "end": 29685.84, + "probability": 0.7174 + }, + { + "start": 29687.26, + "end": 29687.6, + "probability": 0.9631 + }, + { + "start": 29688.76, + "end": 29690.82, + "probability": 0.9989 + }, + { + "start": 29691.68, + "end": 29694.12, + "probability": 0.9996 + }, + { + "start": 29694.12, + "end": 29696.04, + "probability": 0.9984 + }, + { + "start": 29697.32, + "end": 29699.12, + "probability": 0.9919 + }, + { + "start": 29699.74, + "end": 29700.58, + "probability": 0.9448 + }, + { + "start": 29701.38, + "end": 29703.4, + "probability": 0.9961 + }, + { + "start": 29703.78, + "end": 29704.7, + "probability": 0.9961 + }, + { + "start": 29704.78, + "end": 29707.08, + "probability": 0.9922 + }, + { + "start": 29707.68, + "end": 29709.63, + "probability": 0.945 + }, + { + "start": 29711.34, + "end": 29713.28, + "probability": 0.7835 + }, + { + "start": 29714.44, + "end": 29715.38, + "probability": 0.8347 + }, + { + "start": 29716.6, + "end": 29717.32, + "probability": 0.9526 + }, + { + "start": 29717.42, + "end": 29718.86, + "probability": 0.991 + }, + { + "start": 29720.12, + "end": 29722.66, + "probability": 0.8687 + }, + { + "start": 29722.92, + "end": 29723.96, + "probability": 0.6659 + }, + { + "start": 29726.0, + "end": 29726.1, + "probability": 0.7603 + }, + { + "start": 29727.66, + "end": 29730.88, + "probability": 0.9951 + }, + { + "start": 29731.76, + "end": 29734.62, + "probability": 0.9945 + }, + { + "start": 29734.62, + "end": 29738.53, + "probability": 0.9868 + }, + { + "start": 29739.76, + "end": 29741.49, + "probability": 0.9985 + }, + { + "start": 29742.72, + "end": 29744.08, + "probability": 0.999 + }, + { + "start": 29745.04, + "end": 29745.88, + "probability": 0.7417 + }, + { + "start": 29746.34, + "end": 29747.8, + "probability": 0.9935 + }, + { + "start": 29748.18, + "end": 29750.56, + "probability": 0.9694 + }, + { + "start": 29751.28, + "end": 29753.14, + "probability": 0.9985 + }, + { + "start": 29754.5, + "end": 29756.8, + "probability": 0.8398 + }, + { + "start": 29758.06, + "end": 29760.6, + "probability": 0.9812 + }, + { + "start": 29761.16, + "end": 29762.12, + "probability": 0.0029 + }, + { + "start": 29762.64, + "end": 29765.58, + "probability": 0.9941 + }, + { + "start": 29766.56, + "end": 29767.9, + "probability": 0.9954 + }, + { + "start": 29768.48, + "end": 29771.12, + "probability": 0.9092 + }, + { + "start": 29772.4, + "end": 29775.34, + "probability": 0.9934 + }, + { + "start": 29777.28, + "end": 29777.64, + "probability": 0.7014 + }, + { + "start": 29777.78, + "end": 29778.98, + "probability": 0.8455 + }, + { + "start": 29779.08, + "end": 29779.68, + "probability": 0.9336 + }, + { + "start": 29779.7, + "end": 29781.28, + "probability": 0.9067 + }, + { + "start": 29782.5, + "end": 29786.4, + "probability": 0.98 + }, + { + "start": 29787.0, + "end": 29789.41, + "probability": 0.9946 + }, + { + "start": 29790.36, + "end": 29792.08, + "probability": 0.799 + }, + { + "start": 29792.98, + "end": 29794.18, + "probability": 0.8967 + }, + { + "start": 29796.32, + "end": 29798.54, + "probability": 0.9942 + }, + { + "start": 29799.56, + "end": 29801.64, + "probability": 0.9942 + }, + { + "start": 29802.7, + "end": 29807.72, + "probability": 0.9983 + }, + { + "start": 29808.46, + "end": 29810.9, + "probability": 0.9717 + }, + { + "start": 29811.82, + "end": 29814.14, + "probability": 0.8474 + }, + { + "start": 29815.12, + "end": 29815.96, + "probability": 0.9885 + }, + { + "start": 29816.5, + "end": 29818.55, + "probability": 0.9958 + }, + { + "start": 29819.8, + "end": 29820.76, + "probability": 0.639 + }, + { + "start": 29820.82, + "end": 29823.04, + "probability": 0.9979 + }, + { + "start": 29823.84, + "end": 29824.84, + "probability": 0.9805 + }, + { + "start": 29825.6, + "end": 29827.7, + "probability": 0.963 + }, + { + "start": 29829.04, + "end": 29829.6, + "probability": 0.8892 + }, + { + "start": 29829.6, + "end": 29829.96, + "probability": 0.8955 + }, + { + "start": 29831.92, + "end": 29833.62, + "probability": 0.8771 + }, + { + "start": 29835.6, + "end": 29837.92, + "probability": 0.9792 + }, + { + "start": 29839.14, + "end": 29840.88, + "probability": 0.9102 + }, + { + "start": 29841.28, + "end": 29841.8, + "probability": 0.6957 + }, + { + "start": 29843.12, + "end": 29844.7, + "probability": 0.9951 + }, + { + "start": 29844.76, + "end": 29846.46, + "probability": 0.9147 + }, + { + "start": 29847.82, + "end": 29847.82, + "probability": 0.1603 + }, + { + "start": 29847.82, + "end": 29847.94, + "probability": 0.7349 + }, + { + "start": 29849.1, + "end": 29849.78, + "probability": 0.9141 + }, + { + "start": 29851.26, + "end": 29855.74, + "probability": 0.9839 + }, + { + "start": 29856.92, + "end": 29861.92, + "probability": 0.9932 + }, + { + "start": 29863.18, + "end": 29864.1, + "probability": 0.6346 + }, + { + "start": 29864.48, + "end": 29867.5, + "probability": 0.8608 + }, + { + "start": 29869.4, + "end": 29870.48, + "probability": 0.9464 + }, + { + "start": 29871.4, + "end": 29873.14, + "probability": 0.7682 + }, + { + "start": 29873.92, + "end": 29874.28, + "probability": 0.9578 + }, + { + "start": 29874.92, + "end": 29875.79, + "probability": 0.981 + }, + { + "start": 29877.68, + "end": 29880.44, + "probability": 0.9941 + }, + { + "start": 29881.98, + "end": 29884.11, + "probability": 0.7894 + }, + { + "start": 29884.88, + "end": 29885.82, + "probability": 0.9349 + }, + { + "start": 29886.62, + "end": 29889.06, + "probability": 0.9985 + }, + { + "start": 29889.6, + "end": 29889.96, + "probability": 0.3401 + }, + { + "start": 29891.3, + "end": 29891.81, + "probability": 0.9084 + }, + { + "start": 29892.62, + "end": 29893.12, + "probability": 0.9782 + }, + { + "start": 29893.66, + "end": 29894.94, + "probability": 0.8916 + }, + { + "start": 29895.58, + "end": 29896.56, + "probability": 0.9775 + }, + { + "start": 29897.42, + "end": 29900.02, + "probability": 0.9841 + }, + { + "start": 29901.16, + "end": 29902.42, + "probability": 0.9971 + }, + { + "start": 29903.14, + "end": 29904.34, + "probability": 0.9868 + }, + { + "start": 29917.2, + "end": 29918.36, + "probability": 0.0367 + }, + { + "start": 29918.36, + "end": 29921.58, + "probability": 0.1441 + }, + { + "start": 29934.5, + "end": 29935.92, + "probability": 0.0887 + }, + { + "start": 29937.08, + "end": 29940.32, + "probability": 0.0358 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.0, + "end": 30011.0, + "probability": 0.0 + }, + { + "start": 30011.12, + "end": 30015.27, + "probability": 0.5241 + }, + { + "start": 30016.3, + "end": 30019.36, + "probability": 0.9594 + }, + { + "start": 30020.32, + "end": 30022.48, + "probability": 0.9953 + }, + { + "start": 30023.72, + "end": 30025.16, + "probability": 0.9919 + }, + { + "start": 30025.9, + "end": 30029.04, + "probability": 0.8213 + }, + { + "start": 30030.82, + "end": 30032.29, + "probability": 0.8489 + }, + { + "start": 30032.46, + "end": 30034.44, + "probability": 0.8499 + }, + { + "start": 30035.68, + "end": 30036.42, + "probability": 0.9604 + }, + { + "start": 30037.46, + "end": 30038.8, + "probability": 0.9773 + }, + { + "start": 30040.34, + "end": 30041.88, + "probability": 0.9683 + }, + { + "start": 30042.6, + "end": 30043.9, + "probability": 0.9333 + }, + { + "start": 30045.34, + "end": 30047.46, + "probability": 0.9497 + }, + { + "start": 30048.56, + "end": 30049.68, + "probability": 0.9823 + }, + { + "start": 30050.54, + "end": 30052.76, + "probability": 0.8147 + }, + { + "start": 30053.82, + "end": 30056.5, + "probability": 0.9829 + }, + { + "start": 30057.72, + "end": 30060.24, + "probability": 0.9978 + }, + { + "start": 30061.26, + "end": 30065.34, + "probability": 0.8949 + }, + { + "start": 30066.72, + "end": 30067.72, + "probability": 0.8342 + }, + { + "start": 30067.86, + "end": 30068.37, + "probability": 0.9743 + }, + { + "start": 30068.94, + "end": 30070.18, + "probability": 0.9644 + }, + { + "start": 30071.02, + "end": 30072.18, + "probability": 0.991 + }, + { + "start": 30072.92, + "end": 30074.68, + "probability": 0.8254 + }, + { + "start": 30075.24, + "end": 30076.16, + "probability": 0.7343 + }, + { + "start": 30076.22, + "end": 30077.8, + "probability": 0.9644 + }, + { + "start": 30077.86, + "end": 30079.76, + "probability": 0.8734 + }, + { + "start": 30080.68, + "end": 30082.22, + "probability": 0.6138 + }, + { + "start": 30082.22, + "end": 30083.36, + "probability": 0.9498 + }, + { + "start": 30084.14, + "end": 30084.89, + "probability": 0.604 + }, + { + "start": 30085.4, + "end": 30086.48, + "probability": 0.6785 + }, + { + "start": 30087.3, + "end": 30087.54, + "probability": 0.9209 + }, + { + "start": 30088.2, + "end": 30091.68, + "probability": 0.9975 + }, + { + "start": 30092.0, + "end": 30092.6, + "probability": 0.8394 + }, + { + "start": 30093.18, + "end": 30094.16, + "probability": 0.9739 + }, + { + "start": 30094.46, + "end": 30096.56, + "probability": 0.9968 + }, + { + "start": 30096.84, + "end": 30097.2, + "probability": 0.8359 + }, + { + "start": 30097.98, + "end": 30099.24, + "probability": 0.8863 + }, + { + "start": 30100.02, + "end": 30100.68, + "probability": 0.7844 + }, + { + "start": 30100.76, + "end": 30103.2, + "probability": 0.7419 + }, + { + "start": 30104.9, + "end": 30107.06, + "probability": 0.9563 + }, + { + "start": 30108.14, + "end": 30110.2, + "probability": 0.0087 + }, + { + "start": 30110.2, + "end": 30110.2, + "probability": 0.0458 + }, + { + "start": 30110.2, + "end": 30110.34, + "probability": 0.2224 + }, + { + "start": 30111.26, + "end": 30111.84, + "probability": 0.0172 + }, + { + "start": 30112.22, + "end": 30112.66, + "probability": 0.0834 + }, + { + "start": 30113.52, + "end": 30114.0, + "probability": 0.343 + }, + { + "start": 30114.22, + "end": 30114.82, + "probability": 0.6665 + }, + { + "start": 30115.68, + "end": 30117.44, + "probability": 0.5471 + }, + { + "start": 30117.76, + "end": 30119.04, + "probability": 0.2446 + }, + { + "start": 30119.2, + "end": 30120.76, + "probability": 0.0922 + }, + { + "start": 30122.75, + "end": 30125.84, + "probability": 0.8608 + }, + { + "start": 30125.98, + "end": 30129.02, + "probability": 0.9793 + }, + { + "start": 30129.04, + "end": 30129.64, + "probability": 0.0333 + }, + { + "start": 30129.64, + "end": 30130.58, + "probability": 0.4283 + }, + { + "start": 30130.62, + "end": 30132.12, + "probability": 0.599 + }, + { + "start": 30132.3, + "end": 30134.22, + "probability": 0.5589 + }, + { + "start": 30134.24, + "end": 30135.06, + "probability": 0.1171 + }, + { + "start": 30135.14, + "end": 30138.76, + "probability": 0.6109 + }, + { + "start": 30138.98, + "end": 30138.98, + "probability": 0.073 + }, + { + "start": 30138.98, + "end": 30138.98, + "probability": 0.1479 + }, + { + "start": 30138.98, + "end": 30139.14, + "probability": 0.1289 + }, + { + "start": 30139.24, + "end": 30140.58, + "probability": 0.4711 + }, + { + "start": 30140.62, + "end": 30141.72, + "probability": 0.8565 + }, + { + "start": 30142.42, + "end": 30143.4, + "probability": 0.2127 + }, + { + "start": 30143.4, + "end": 30143.82, + "probability": 0.0845 + }, + { + "start": 30144.12, + "end": 30145.86, + "probability": 0.0841 + }, + { + "start": 30146.08, + "end": 30147.34, + "probability": 0.6891 + }, + { + "start": 30147.64, + "end": 30147.88, + "probability": 0.2558 + }, + { + "start": 30148.22, + "end": 30149.66, + "probability": 0.8607 + }, + { + "start": 30149.82, + "end": 30151.06, + "probability": 0.6278 + }, + { + "start": 30151.26, + "end": 30152.54, + "probability": 0.3301 + }, + { + "start": 30152.7, + "end": 30153.7, + "probability": 0.5249 + }, + { + "start": 30153.8, + "end": 30154.92, + "probability": 0.333 + }, + { + "start": 30155.76, + "end": 30156.22, + "probability": 0.1983 + }, + { + "start": 30156.4, + "end": 30157.86, + "probability": 0.8527 + }, + { + "start": 30157.96, + "end": 30159.96, + "probability": 0.9709 + }, + { + "start": 30160.22, + "end": 30164.18, + "probability": 0.9927 + }, + { + "start": 30164.18, + "end": 30164.5, + "probability": 0.0303 + }, + { + "start": 30164.66, + "end": 30165.64, + "probability": 0.7783 + }, + { + "start": 30166.76, + "end": 30167.28, + "probability": 0.7616 + }, + { + "start": 30169.08, + "end": 30169.88, + "probability": 0.7253 + }, + { + "start": 30170.7, + "end": 30171.84, + "probability": 0.9976 + }, + { + "start": 30173.16, + "end": 30173.26, + "probability": 0.0446 + }, + { + "start": 30173.26, + "end": 30173.26, + "probability": 0.1639 + }, + { + "start": 30173.26, + "end": 30175.84, + "probability": 0.9227 + }, + { + "start": 30175.96, + "end": 30176.06, + "probability": 0.0808 + }, + { + "start": 30176.06, + "end": 30176.56, + "probability": 0.5784 + }, + { + "start": 30176.6, + "end": 30177.82, + "probability": 0.7352 + }, + { + "start": 30177.82, + "end": 30178.68, + "probability": 0.8834 + }, + { + "start": 30178.84, + "end": 30179.02, + "probability": 0.3178 + }, + { + "start": 30179.14, + "end": 30179.46, + "probability": 0.6973 + }, + { + "start": 30179.46, + "end": 30180.91, + "probability": 0.7703 + }, + { + "start": 30180.96, + "end": 30181.38, + "probability": 0.6028 + }, + { + "start": 30181.78, + "end": 30183.08, + "probability": 0.3471 + }, + { + "start": 30183.1, + "end": 30183.36, + "probability": 0.2795 + }, + { + "start": 30183.36, + "end": 30185.68, + "probability": 0.5697 + }, + { + "start": 30185.68, + "end": 30186.16, + "probability": 0.2462 + }, + { + "start": 30187.3, + "end": 30190.88, + "probability": 0.9763 + }, + { + "start": 30191.8, + "end": 30195.22, + "probability": 0.9818 + }, + { + "start": 30196.1, + "end": 30200.7, + "probability": 0.9117 + }, + { + "start": 30201.22, + "end": 30202.76, + "probability": 0.9764 + }, + { + "start": 30203.3, + "end": 30205.08, + "probability": 0.8604 + }, + { + "start": 30206.0, + "end": 30206.68, + "probability": 0.3052 + }, + { + "start": 30206.8, + "end": 30212.24, + "probability": 0.9743 + }, + { + "start": 30212.9, + "end": 30216.54, + "probability": 0.9727 + }, + { + "start": 30217.36, + "end": 30220.0, + "probability": 0.6868 + }, + { + "start": 30220.66, + "end": 30224.56, + "probability": 0.9801 + }, + { + "start": 30225.28, + "end": 30231.62, + "probability": 0.9914 + }, + { + "start": 30231.76, + "end": 30232.88, + "probability": 0.636 + }, + { + "start": 30233.34, + "end": 30235.58, + "probability": 0.9256 + }, + { + "start": 30235.8, + "end": 30237.46, + "probability": 0.4991 + }, + { + "start": 30238.32, + "end": 30242.56, + "probability": 0.9744 + }, + { + "start": 30243.16, + "end": 30244.34, + "probability": 0.7336 + }, + { + "start": 30244.5, + "end": 30248.36, + "probability": 0.9973 + }, + { + "start": 30249.68, + "end": 30250.32, + "probability": 0.3598 + }, + { + "start": 30251.7, + "end": 30254.15, + "probability": 0.9095 + }, + { + "start": 30254.86, + "end": 30258.64, + "probability": 0.989 + }, + { + "start": 30259.16, + "end": 30262.2, + "probability": 0.9938 + }, + { + "start": 30262.2, + "end": 30265.94, + "probability": 0.9738 + }, + { + "start": 30266.78, + "end": 30266.78, + "probability": 0.0007 + }, + { + "start": 30266.78, + "end": 30268.26, + "probability": 0.9072 + }, + { + "start": 30271.76, + "end": 30274.88, + "probability": 0.9985 + }, + { + "start": 30276.16, + "end": 30279.0, + "probability": 0.9806 + }, + { + "start": 30280.44, + "end": 30284.2, + "probability": 0.9845 + }, + { + "start": 30284.2, + "end": 30288.82, + "probability": 0.954 + }, + { + "start": 30288.82, + "end": 30294.0, + "probability": 0.9894 + }, + { + "start": 30294.76, + "end": 30297.66, + "probability": 0.9454 + }, + { + "start": 30298.36, + "end": 30299.9, + "probability": 0.9287 + }, + { + "start": 30300.3, + "end": 30303.54, + "probability": 0.7788 + }, + { + "start": 30303.98, + "end": 30305.6, + "probability": 0.9464 + }, + { + "start": 30306.12, + "end": 30308.64, + "probability": 0.9855 + }, + { + "start": 30309.12, + "end": 30312.02, + "probability": 0.9667 + }, + { + "start": 30312.48, + "end": 30315.36, + "probability": 0.9004 + }, + { + "start": 30315.96, + "end": 30318.24, + "probability": 0.9025 + }, + { + "start": 30318.9, + "end": 30319.88, + "probability": 0.988 + }, + { + "start": 30320.52, + "end": 30325.98, + "probability": 0.8823 + }, + { + "start": 30327.12, + "end": 30328.68, + "probability": 0.7238 + }, + { + "start": 30329.2, + "end": 30331.6, + "probability": 0.9606 + }, + { + "start": 30332.26, + "end": 30336.66, + "probability": 0.9343 + }, + { + "start": 30337.16, + "end": 30340.82, + "probability": 0.8926 + }, + { + "start": 30341.32, + "end": 30342.82, + "probability": 0.734 + }, + { + "start": 30342.94, + "end": 30344.44, + "probability": 0.8711 + }, + { + "start": 30345.08, + "end": 30345.08, + "probability": 0.0292 + }, + { + "start": 30345.08, + "end": 30349.86, + "probability": 0.9656 + }, + { + "start": 30350.16, + "end": 30354.92, + "probability": 0.9769 + }, + { + "start": 30356.88, + "end": 30360.08, + "probability": 0.9983 + }, + { + "start": 30360.08, + "end": 30363.18, + "probability": 0.9962 + }, + { + "start": 30364.4, + "end": 30367.42, + "probability": 0.9984 + }, + { + "start": 30367.88, + "end": 30369.66, + "probability": 0.9954 + }, + { + "start": 30370.3, + "end": 30376.78, + "probability": 0.9941 + }, + { + "start": 30377.42, + "end": 30382.12, + "probability": 0.9944 + }, + { + "start": 30383.04, + "end": 30383.58, + "probability": 0.5153 + }, + { + "start": 30383.76, + "end": 30389.48, + "probability": 0.9478 + }, + { + "start": 30389.98, + "end": 30391.54, + "probability": 0.9457 + }, + { + "start": 30391.94, + "end": 30394.48, + "probability": 0.9958 + }, + { + "start": 30394.86, + "end": 30398.3, + "probability": 0.9786 + }, + { + "start": 30399.0, + "end": 30402.98, + "probability": 0.9978 + }, + { + "start": 30403.3, + "end": 30403.76, + "probability": 0.8226 + }, + { + "start": 30404.36, + "end": 30406.3, + "probability": 0.9651 + }, + { + "start": 30406.84, + "end": 30410.56, + "probability": 0.8981 + }, + { + "start": 30411.38, + "end": 30417.18, + "probability": 0.8213 + }, + { + "start": 30417.66, + "end": 30421.14, + "probability": 0.9708 + }, + { + "start": 30422.44, + "end": 30423.62, + "probability": 0.6743 + }, + { + "start": 30423.84, + "end": 30426.72, + "probability": 0.9757 + }, + { + "start": 30427.02, + "end": 30429.24, + "probability": 0.9421 + }, + { + "start": 30429.82, + "end": 30431.4, + "probability": 0.8694 + }, + { + "start": 30432.04, + "end": 30433.38, + "probability": 0.9221 + }, + { + "start": 30433.74, + "end": 30435.24, + "probability": 0.8856 + }, + { + "start": 30435.48, + "end": 30436.92, + "probability": 0.9152 + }, + { + "start": 30437.54, + "end": 30438.96, + "probability": 0.9678 + }, + { + "start": 30439.56, + "end": 30442.5, + "probability": 0.9902 + }, + { + "start": 30443.0, + "end": 30446.24, + "probability": 0.997 + }, + { + "start": 30446.24, + "end": 30451.32, + "probability": 0.996 + }, + { + "start": 30452.1, + "end": 30452.58, + "probability": 0.5249 + }, + { + "start": 30452.9, + "end": 30453.64, + "probability": 0.662 + }, + { + "start": 30454.06, + "end": 30458.1, + "probability": 0.9908 + }, + { + "start": 30458.88, + "end": 30462.64, + "probability": 0.9727 + }, + { + "start": 30463.3, + "end": 30465.38, + "probability": 0.8365 + }, + { + "start": 30466.4, + "end": 30471.92, + "probability": 0.9095 + }, + { + "start": 30471.92, + "end": 30476.18, + "probability": 0.9426 + }, + { + "start": 30476.4, + "end": 30476.8, + "probability": 0.5823 + }, + { + "start": 30477.84, + "end": 30481.5, + "probability": 0.9907 + }, + { + "start": 30482.04, + "end": 30485.68, + "probability": 0.8809 + }, + { + "start": 30486.38, + "end": 30489.3, + "probability": 0.9958 + }, + { + "start": 30489.86, + "end": 30491.52, + "probability": 0.9805 + }, + { + "start": 30491.94, + "end": 30495.3, + "probability": 0.9878 + }, + { + "start": 30495.34, + "end": 30495.88, + "probability": 0.9022 + }, + { + "start": 30497.46, + "end": 30501.11, + "probability": 0.8767 + }, + { + "start": 30502.0, + "end": 30502.98, + "probability": 0.8626 + }, + { + "start": 30503.02, + "end": 30506.44, + "probability": 0.9351 + }, + { + "start": 30506.46, + "end": 30508.44, + "probability": 0.6211 + }, + { + "start": 30509.2, + "end": 30512.86, + "probability": 0.9383 + }, + { + "start": 30513.58, + "end": 30515.14, + "probability": 0.0049 + }, + { + "start": 30515.2, + "end": 30515.44, + "probability": 0.0711 + }, + { + "start": 30518.74, + "end": 30520.08, + "probability": 0.3629 + }, + { + "start": 30520.38, + "end": 30534.24, + "probability": 0.6105 + }, + { + "start": 30534.24, + "end": 30538.26, + "probability": 0.7984 + }, + { + "start": 30538.26, + "end": 30540.82, + "probability": 0.9212 + }, + { + "start": 30543.38, + "end": 30546.89, + "probability": 0.0808 + }, + { + "start": 30548.38, + "end": 30549.18, + "probability": 0.3373 + }, + { + "start": 30549.34, + "end": 30549.8, + "probability": 0.0507 + }, + { + "start": 30549.8, + "end": 30550.04, + "probability": 0.0041 + }, + { + "start": 30550.58, + "end": 30552.16, + "probability": 0.76 + }, + { + "start": 30554.98, + "end": 30556.64, + "probability": 0.2464 + }, + { + "start": 30557.3, + "end": 30557.3, + "probability": 0.1989 + }, + { + "start": 30557.3, + "end": 30557.3, + "probability": 0.0413 + }, + { + "start": 30557.3, + "end": 30559.52, + "probability": 0.7758 + }, + { + "start": 30562.74, + "end": 30563.0, + "probability": 0.0083 + }, + { + "start": 30564.12, + "end": 30564.66, + "probability": 0.076 + }, + { + "start": 30566.32, + "end": 30566.92, + "probability": 0.0309 + }, + { + "start": 30576.24, + "end": 30579.48, + "probability": 0.9817 + }, + { + "start": 30581.36, + "end": 30583.7, + "probability": 0.8901 + }, + { + "start": 30584.9, + "end": 30584.9, + "probability": 0.4112 + }, + { + "start": 30589.24, + "end": 30591.13, + "probability": 0.7411 + }, + { + "start": 30594.92, + "end": 30599.74, + "probability": 0.8914 + }, + { + "start": 30600.68, + "end": 30601.02, + "probability": 0.7447 + }, + { + "start": 30603.88, + "end": 30609.62, + "probability": 0.9502 + }, + { + "start": 30611.22, + "end": 30614.1, + "probability": 0.8118 + }, + { + "start": 30614.34, + "end": 30615.33, + "probability": 0.963 + }, + { + "start": 30615.44, + "end": 30615.62, + "probability": 0.1237 + }, + { + "start": 30616.34, + "end": 30616.58, + "probability": 0.0327 + }, + { + "start": 30617.84, + "end": 30620.49, + "probability": 0.5629 + }, + { + "start": 30621.7, + "end": 30623.25, + "probability": 0.0181 + }, + { + "start": 30630.04, + "end": 30633.62, + "probability": 0.501 + }, + { + "start": 30634.9, + "end": 30638.54, + "probability": 0.6945 + }, + { + "start": 30639.74, + "end": 30642.88, + "probability": 0.5928 + }, + { + "start": 30644.02, + "end": 30645.8, + "probability": 0.8397 + }, + { + "start": 30646.64, + "end": 30647.12, + "probability": 0.7802 + }, + { + "start": 30647.56, + "end": 30647.56, + "probability": 0.5588 + }, + { + "start": 30647.56, + "end": 30647.74, + "probability": 0.7972 + }, + { + "start": 30648.64, + "end": 30650.2, + "probability": 0.1027 + }, + { + "start": 30652.36, + "end": 30655.68, + "probability": 0.9295 + }, + { + "start": 30655.68, + "end": 30658.32, + "probability": 0.8841 + }, + { + "start": 30661.36, + "end": 30661.48, + "probability": 0.7747 + }, + { + "start": 30661.62, + "end": 30668.08, + "probability": 0.876 + }, + { + "start": 30669.1, + "end": 30672.62, + "probability": 0.9685 + }, + { + "start": 30675.22, + "end": 30680.08, + "probability": 0.9941 + }, + { + "start": 30681.3, + "end": 30685.46, + "probability": 0.9669 + }, + { + "start": 30686.58, + "end": 30687.78, + "probability": 0.791 + }, + { + "start": 30689.82, + "end": 30692.4, + "probability": 0.9985 + }, + { + "start": 30694.3, + "end": 30695.76, + "probability": 0.9849 + }, + { + "start": 30695.88, + "end": 30698.61, + "probability": 0.9958 + }, + { + "start": 30700.1, + "end": 30710.0, + "probability": 0.9406 + }, + { + "start": 30710.58, + "end": 30710.92, + "probability": 0.4066 + }, + { + "start": 30715.48, + "end": 30715.58, + "probability": 0.2577 + }, + { + "start": 30715.58, + "end": 30720.28, + "probability": 0.9818 + }, + { + "start": 30720.44, + "end": 30722.07, + "probability": 0.9973 + }, + { + "start": 30723.72, + "end": 30723.92, + "probability": 0.0179 + }, + { + "start": 30723.96, + "end": 30725.88, + "probability": 0.1891 + }, + { + "start": 30726.46, + "end": 30727.38, + "probability": 0.3236 + }, + { + "start": 30728.82, + "end": 30728.82, + "probability": 0.1928 + }, + { + "start": 30728.98, + "end": 30730.34, + "probability": 0.8689 + }, + { + "start": 30730.54, + "end": 30731.63, + "probability": 0.9883 + }, + { + "start": 30732.9, + "end": 30733.43, + "probability": 0.8745 + }, + { + "start": 30735.22, + "end": 30738.8, + "probability": 0.9973 + }, + { + "start": 30738.8, + "end": 30743.36, + "probability": 0.9766 + }, + { + "start": 30743.92, + "end": 30745.42, + "probability": 0.997 + }, + { + "start": 30746.14, + "end": 30748.22, + "probability": 0.8618 + }, + { + "start": 30749.14, + "end": 30752.95, + "probability": 0.9844 + }, + { + "start": 30753.86, + "end": 30757.47, + "probability": 0.0518 + }, + { + "start": 30757.76, + "end": 30760.74, + "probability": 0.2013 + }, + { + "start": 30760.98, + "end": 30761.42, + "probability": 0.7957 + }, + { + "start": 30761.6, + "end": 30763.18, + "probability": 0.665 + }, + { + "start": 30763.26, + "end": 30770.48, + "probability": 0.8701 + }, + { + "start": 30770.62, + "end": 30775.7, + "probability": 0.9904 + }, + { + "start": 30775.98, + "end": 30777.08, + "probability": 0.9466 + }, + { + "start": 30777.24, + "end": 30778.21, + "probability": 0.5003 + }, + { + "start": 30779.9, + "end": 30781.8, + "probability": 0.9949 + }, + { + "start": 30783.08, + "end": 30784.36, + "probability": 0.9927 + }, + { + "start": 30786.02, + "end": 30791.32, + "probability": 0.993 + }, + { + "start": 30791.32, + "end": 30793.98, + "probability": 0.9955 + }, + { + "start": 30795.92, + "end": 30798.78, + "probability": 0.9785 + }, + { + "start": 30799.8, + "end": 30802.26, + "probability": 0.9727 + }, + { + "start": 30804.28, + "end": 30808.28, + "probability": 0.7243 + }, + { + "start": 30810.6, + "end": 30811.16, + "probability": 0.0164 + }, + { + "start": 30812.1, + "end": 30814.36, + "probability": 0.312 + }, + { + "start": 30815.22, + "end": 30815.28, + "probability": 0.3927 + }, + { + "start": 30815.32, + "end": 30816.12, + "probability": 0.3678 + }, + { + "start": 30816.12, + "end": 30816.5, + "probability": 0.3721 + }, + { + "start": 30816.7, + "end": 30818.36, + "probability": 0.9834 + }, + { + "start": 30819.34, + "end": 30821.05, + "probability": 0.9941 + }, + { + "start": 30821.16, + "end": 30822.12, + "probability": 0.9768 + }, + { + "start": 30823.14, + "end": 30825.16, + "probability": 0.7047 + }, + { + "start": 30825.68, + "end": 30827.96, + "probability": 0.8579 + }, + { + "start": 30828.14, + "end": 30830.36, + "probability": 0.9294 + }, + { + "start": 30830.58, + "end": 30832.88, + "probability": 0.8232 + }, + { + "start": 30833.38, + "end": 30833.96, + "probability": 0.5144 + }, + { + "start": 30834.42, + "end": 30835.36, + "probability": 0.2506 + }, + { + "start": 30835.7, + "end": 30836.38, + "probability": 0.5839 + }, + { + "start": 30836.72, + "end": 30839.94, + "probability": 0.9844 + }, + { + "start": 30840.32, + "end": 30842.7, + "probability": 0.9658 + }, + { + "start": 30842.98, + "end": 30844.82, + "probability": 0.9023 + }, + { + "start": 30845.22, + "end": 30849.34, + "probability": 0.9976 + }, + { + "start": 30850.6, + "end": 30854.58, + "probability": 0.9985 + }, + { + "start": 30855.3, + "end": 30860.04, + "probability": 0.9883 + }, + { + "start": 30861.1, + "end": 30863.71, + "probability": 0.8662 + }, + { + "start": 30864.7, + "end": 30870.6, + "probability": 0.9123 + }, + { + "start": 30870.98, + "end": 30872.03, + "probability": 0.9707 + }, + { + "start": 30872.4, + "end": 30876.9, + "probability": 0.9944 + }, + { + "start": 30878.3, + "end": 30880.14, + "probability": 0.9468 + }, + { + "start": 30880.88, + "end": 30881.94, + "probability": 0.4939 + }, + { + "start": 30882.96, + "end": 30884.14, + "probability": 0.8493 + }, + { + "start": 30884.62, + "end": 30890.08, + "probability": 0.9734 + }, + { + "start": 30890.3, + "end": 30891.52, + "probability": 0.9083 + }, + { + "start": 30891.84, + "end": 30893.6, + "probability": 0.9006 + }, + { + "start": 30894.1, + "end": 30895.65, + "probability": 0.9844 + }, + { + "start": 30896.44, + "end": 30898.84, + "probability": 0.0604 + }, + { + "start": 30899.74, + "end": 30901.38, + "probability": 0.0195 + }, + { + "start": 30901.38, + "end": 30901.4, + "probability": 0.0438 + }, + { + "start": 30901.4, + "end": 30902.16, + "probability": 0.1638 + }, + { + "start": 30902.3, + "end": 30903.28, + "probability": 0.9281 + }, + { + "start": 30904.14, + "end": 30907.2, + "probability": 0.9885 + }, + { + "start": 30907.48, + "end": 30909.36, + "probability": 0.4618 + }, + { + "start": 30910.2, + "end": 30912.14, + "probability": 0.1681 + }, + { + "start": 30913.7, + "end": 30915.32, + "probability": 0.2876 + }, + { + "start": 30915.32, + "end": 30915.5, + "probability": 0.0948 + }, + { + "start": 30916.02, + "end": 30918.78, + "probability": 0.6515 + }, + { + "start": 30920.5, + "end": 30926.82, + "probability": 0.9678 + }, + { + "start": 30927.62, + "end": 30933.74, + "probability": 0.9949 + }, + { + "start": 30934.22, + "end": 30935.18, + "probability": 0.9938 + }, + { + "start": 30936.52, + "end": 30939.02, + "probability": 0.9996 + }, + { + "start": 30939.3, + "end": 30943.8, + "probability": 0.9618 + }, + { + "start": 30945.48, + "end": 30946.34, + "probability": 0.7805 + }, + { + "start": 30947.52, + "end": 30947.54, + "probability": 0.0232 + }, + { + "start": 30947.54, + "end": 30952.4, + "probability": 0.9355 + }, + { + "start": 30954.1, + "end": 30956.38, + "probability": 0.7369 + }, + { + "start": 30956.68, + "end": 30961.34, + "probability": 0.987 + }, + { + "start": 30962.14, + "end": 30964.34, + "probability": 0.9839 + }, + { + "start": 30965.38, + "end": 30968.92, + "probability": 0.9124 + }, + { + "start": 30969.86, + "end": 30976.62, + "probability": 0.9064 + }, + { + "start": 30977.04, + "end": 30978.84, + "probability": 0.9515 + }, + { + "start": 30979.7, + "end": 30982.18, + "probability": 0.828 + }, + { + "start": 30982.62, + "end": 30983.74, + "probability": 0.7155 + }, + { + "start": 30983.94, + "end": 30985.8, + "probability": 0.9336 + }, + { + "start": 30985.92, + "end": 30988.12, + "probability": 0.9229 + }, + { + "start": 30988.58, + "end": 30991.38, + "probability": 0.9033 + }, + { + "start": 30991.74, + "end": 30992.6, + "probability": 0.3085 + }, + { + "start": 30993.24, + "end": 30995.36, + "probability": 0.9075 + }, + { + "start": 30995.92, + "end": 30996.28, + "probability": 0.6609 + }, + { + "start": 31000.42, + "end": 31001.16, + "probability": 0.5754 + }, + { + "start": 31005.06, + "end": 31010.36, + "probability": 0.9885 + }, + { + "start": 31011.12, + "end": 31015.86, + "probability": 0.9703 + }, + { + "start": 31015.86, + "end": 31020.68, + "probability": 0.9972 + }, + { + "start": 31021.02, + "end": 31021.66, + "probability": 0.8474 + }, + { + "start": 31022.02, + "end": 31022.76, + "probability": 0.5959 + }, + { + "start": 31023.34, + "end": 31027.52, + "probability": 0.993 + }, + { + "start": 31027.94, + "end": 31028.58, + "probability": 0.829 + }, + { + "start": 31030.48, + "end": 31033.54, + "probability": 0.992 + }, + { + "start": 31033.82, + "end": 31035.11, + "probability": 0.0373 + }, + { + "start": 31036.82, + "end": 31045.24, + "probability": 0.9238 + }, + { + "start": 31045.32, + "end": 31046.22, + "probability": 0.7515 + }, + { + "start": 31046.76, + "end": 31050.2, + "probability": 0.9672 + }, + { + "start": 31051.26, + "end": 31051.58, + "probability": 0.8167 + }, + { + "start": 31051.58, + "end": 31052.98, + "probability": 0.0607 + }, + { + "start": 31052.98, + "end": 31056.5, + "probability": 0.6664 + }, + { + "start": 31057.34, + "end": 31058.44, + "probability": 0.1747 + }, + { + "start": 31060.32, + "end": 31062.14, + "probability": 0.0855 + }, + { + "start": 31064.04, + "end": 31066.44, + "probability": 0.7939 + }, + { + "start": 31066.84, + "end": 31068.64, + "probability": 0.2032 + }, + { + "start": 31068.84, + "end": 31069.48, + "probability": 0.063 + }, + { + "start": 31069.48, + "end": 31071.9, + "probability": 0.7386 + }, + { + "start": 31072.14, + "end": 31073.48, + "probability": 0.4001 + }, + { + "start": 31074.1, + "end": 31076.92, + "probability": 0.9437 + }, + { + "start": 31078.58, + "end": 31080.94, + "probability": 0.9092 + }, + { + "start": 31081.38, + "end": 31082.18, + "probability": 0.3175 + }, + { + "start": 31082.88, + "end": 31084.36, + "probability": 0.0874 + }, + { + "start": 31084.58, + "end": 31085.2, + "probability": 0.7485 + }, + { + "start": 31085.24, + "end": 31085.3, + "probability": 0.469 + }, + { + "start": 31085.3, + "end": 31088.08, + "probability": 0.5291 + }, + { + "start": 31089.68, + "end": 31090.44, + "probability": 0.1932 + }, + { + "start": 31090.48, + "end": 31094.22, + "probability": 0.8486 + }, + { + "start": 31094.22, + "end": 31094.22, + "probability": 0.0016 + }, + { + "start": 31094.22, + "end": 31094.22, + "probability": 0.0406 + }, + { + "start": 31094.22, + "end": 31098.08, + "probability": 0.6329 + }, + { + "start": 31099.18, + "end": 31100.38, + "probability": 0.9139 + }, + { + "start": 31100.48, + "end": 31101.26, + "probability": 0.8794 + }, + { + "start": 31101.32, + "end": 31102.28, + "probability": 0.9707 + }, + { + "start": 31102.78, + "end": 31108.32, + "probability": 0.9325 + }, + { + "start": 31108.88, + "end": 31109.74, + "probability": 0.9927 + }, + { + "start": 31110.4, + "end": 31114.94, + "probability": 0.7903 + }, + { + "start": 31115.1, + "end": 31116.66, + "probability": 0.9937 + }, + { + "start": 31119.94, + "end": 31120.84, + "probability": 0.8778 + }, + { + "start": 31121.74, + "end": 31123.36, + "probability": 0.9493 + }, + { + "start": 31123.5, + "end": 31126.26, + "probability": 0.8393 + }, + { + "start": 31126.92, + "end": 31128.46, + "probability": 0.9806 + }, + { + "start": 31128.72, + "end": 31130.98, + "probability": 0.9014 + }, + { + "start": 31131.74, + "end": 31134.94, + "probability": 0.9404 + }, + { + "start": 31136.82, + "end": 31141.52, + "probability": 0.9946 + }, + { + "start": 31142.58, + "end": 31145.38, + "probability": 0.9962 + }, + { + "start": 31145.46, + "end": 31146.44, + "probability": 0.9456 + }, + { + "start": 31147.32, + "end": 31149.92, + "probability": 0.9237 + }, + { + "start": 31150.1, + "end": 31155.64, + "probability": 0.9789 + }, + { + "start": 31155.64, + "end": 31159.14, + "probability": 0.9977 + }, + { + "start": 31159.56, + "end": 31162.2, + "probability": 0.9902 + }, + { + "start": 31162.86, + "end": 31164.98, + "probability": 0.751 + }, + { + "start": 31168.04, + "end": 31168.32, + "probability": 0.5925 + }, + { + "start": 31168.86, + "end": 31170.2, + "probability": 0.2824 + }, + { + "start": 31170.5, + "end": 31173.82, + "probability": 0.1683 + }, + { + "start": 31174.78, + "end": 31176.66, + "probability": 0.8659 + }, + { + "start": 31177.5, + "end": 31179.8, + "probability": 0.9749 + }, + { + "start": 31180.42, + "end": 31184.16, + "probability": 0.8795 + }, + { + "start": 31184.48, + "end": 31189.56, + "probability": 0.984 + }, + { + "start": 31191.1, + "end": 31194.96, + "probability": 0.9785 + }, + { + "start": 31195.02, + "end": 31196.4, + "probability": 0.9541 + }, + { + "start": 31197.58, + "end": 31201.22, + "probability": 0.8785 + }, + { + "start": 31201.22, + "end": 31205.24, + "probability": 0.9472 + }, + { + "start": 31206.1, + "end": 31207.4, + "probability": 0.8915 + }, + { + "start": 31207.84, + "end": 31212.12, + "probability": 0.96 + }, + { + "start": 31212.74, + "end": 31214.5, + "probability": 0.8692 + }, + { + "start": 31214.68, + "end": 31215.62, + "probability": 0.8507 + }, + { + "start": 31216.34, + "end": 31217.4, + "probability": 0.9949 + }, + { + "start": 31218.32, + "end": 31220.32, + "probability": 0.4325 + }, + { + "start": 31220.32, + "end": 31222.32, + "probability": 0.5627 + }, + { + "start": 31223.1, + "end": 31223.74, + "probability": 0.1174 + }, + { + "start": 31223.94, + "end": 31228.64, + "probability": 0.973 + }, + { + "start": 31230.17, + "end": 31236.04, + "probability": 0.9915 + }, + { + "start": 31238.44, + "end": 31239.82, + "probability": 0.854 + }, + { + "start": 31239.92, + "end": 31242.32, + "probability": 0.7001 + }, + { + "start": 31242.54, + "end": 31245.62, + "probability": 0.782 + }, + { + "start": 31247.56, + "end": 31248.28, + "probability": 0.7168 + }, + { + "start": 31248.84, + "end": 31250.52, + "probability": 0.9992 + }, + { + "start": 31251.4, + "end": 31252.34, + "probability": 0.8295 + }, + { + "start": 31252.38, + "end": 31255.88, + "probability": 0.574 + }, + { + "start": 31256.58, + "end": 31257.3, + "probability": 0.8296 + }, + { + "start": 31258.06, + "end": 31263.11, + "probability": 0.9938 + }, + { + "start": 31263.86, + "end": 31267.4, + "probability": 0.9941 + }, + { + "start": 31268.34, + "end": 31270.4, + "probability": 0.998 + }, + { + "start": 31270.66, + "end": 31271.96, + "probability": 0.8928 + }, + { + "start": 31273.08, + "end": 31277.08, + "probability": 0.9397 + }, + { + "start": 31277.44, + "end": 31281.36, + "probability": 0.9901 + }, + { + "start": 31281.88, + "end": 31283.06, + "probability": 0.9049 + }, + { + "start": 31283.3, + "end": 31288.07, + "probability": 0.9973 + }, + { + "start": 31289.0, + "end": 31289.72, + "probability": 0.8006 + }, + { + "start": 31289.82, + "end": 31292.5, + "probability": 0.9938 + }, + { + "start": 31292.5, + "end": 31295.62, + "probability": 0.9347 + }, + { + "start": 31296.88, + "end": 31297.86, + "probability": 0.6902 + }, + { + "start": 31297.88, + "end": 31298.76, + "probability": 0.874 + }, + { + "start": 31300.56, + "end": 31301.3, + "probability": 0.9124 + }, + { + "start": 31301.9, + "end": 31302.66, + "probability": 0.6244 + }, + { + "start": 31302.9, + "end": 31304.16, + "probability": 0.8295 + }, + { + "start": 31304.24, + "end": 31304.47, + "probability": 0.3962 + }, + { + "start": 31304.98, + "end": 31305.4, + "probability": 0.0041 + }, + { + "start": 31306.36, + "end": 31307.18, + "probability": 0.8208 + }, + { + "start": 31307.28, + "end": 31309.02, + "probability": 0.4349 + }, + { + "start": 31309.02, + "end": 31309.32, + "probability": 0.5708 + }, + { + "start": 31309.78, + "end": 31312.24, + "probability": 0.7739 + }, + { + "start": 31312.42, + "end": 31317.94, + "probability": 0.9357 + }, + { + "start": 31320.12, + "end": 31321.34, + "probability": 0.7573 + }, + { + "start": 31322.12, + "end": 31327.72, + "probability": 0.9949 + }, + { + "start": 31327.72, + "end": 31331.0, + "probability": 0.9942 + }, + { + "start": 31331.74, + "end": 31332.5, + "probability": 0.6757 + }, + { + "start": 31332.58, + "end": 31334.24, + "probability": 0.6669 + }, + { + "start": 31334.9, + "end": 31338.56, + "probability": 0.853 + }, + { + "start": 31338.66, + "end": 31341.38, + "probability": 0.9565 + }, + { + "start": 31341.46, + "end": 31343.6, + "probability": 0.571 + }, + { + "start": 31344.06, + "end": 31346.26, + "probability": 0.8406 + }, + { + "start": 31346.48, + "end": 31347.78, + "probability": 0.846 + }, + { + "start": 31349.0, + "end": 31350.9, + "probability": 0.9266 + }, + { + "start": 31351.96, + "end": 31354.12, + "probability": 0.9653 + }, + { + "start": 31361.24, + "end": 31361.92, + "probability": 0.7252 + }, + { + "start": 31362.04, + "end": 31371.62, + "probability": 0.9323 + }, + { + "start": 31371.7, + "end": 31372.42, + "probability": 0.0424 + }, + { + "start": 31383.74, + "end": 31384.96, + "probability": 0.6622 + }, + { + "start": 31385.14, + "end": 31388.72, + "probability": 0.9202 + }, + { + "start": 31388.8, + "end": 31389.62, + "probability": 0.9608 + }, + { + "start": 31389.78, + "end": 31391.08, + "probability": 0.9509 + }, + { + "start": 31391.6, + "end": 31392.96, + "probability": 0.7369 + }, + { + "start": 31393.08, + "end": 31393.4, + "probability": 0.7259 + }, + { + "start": 31393.5, + "end": 31395.76, + "probability": 0.9872 + }, + { + "start": 31396.1, + "end": 31397.72, + "probability": 0.9346 + }, + { + "start": 31398.36, + "end": 31399.0, + "probability": 0.7153 + }, + { + "start": 31399.4, + "end": 31402.18, + "probability": 0.8174 + }, + { + "start": 31402.2, + "end": 31403.36, + "probability": 0.7524 + }, + { + "start": 31411.28, + "end": 31412.36, + "probability": 0.3863 + }, + { + "start": 31427.7, + "end": 31429.58, + "probability": 0.6431 + }, + { + "start": 31430.26, + "end": 31431.08, + "probability": 0.8315 + }, + { + "start": 31431.1, + "end": 31436.14, + "probability": 0.8537 + }, + { + "start": 31436.93, + "end": 31437.0, + "probability": 0.0685 + }, + { + "start": 31437.0, + "end": 31437.4, + "probability": 0.1124 + }, + { + "start": 31437.4, + "end": 31437.44, + "probability": 0.0281 + }, + { + "start": 31441.22, + "end": 31442.14, + "probability": 0.0414 + }, + { + "start": 31442.14, + "end": 31442.38, + "probability": 0.0435 + }, + { + "start": 31442.38, + "end": 31442.62, + "probability": 0.0077 + }, + { + "start": 31442.62, + "end": 31442.62, + "probability": 0.1149 + }, + { + "start": 31442.62, + "end": 31442.62, + "probability": 0.0585 + }, + { + "start": 31442.62, + "end": 31442.66, + "probability": 0.0768 + }, + { + "start": 31442.66, + "end": 31442.66, + "probability": 0.0529 + }, + { + "start": 31442.66, + "end": 31442.66, + "probability": 0.0259 + }, + { + "start": 31442.66, + "end": 31443.88, + "probability": 0.3657 + }, + { + "start": 31451.03, + "end": 31451.52, + "probability": 0.0977 + }, + { + "start": 31451.52, + "end": 31451.52, + "probability": 0.1041 + }, + { + "start": 31451.52, + "end": 31451.52, + "probability": 0.0508 + }, + { + "start": 31451.52, + "end": 31452.9, + "probability": 0.1342 + }, + { + "start": 31453.18, + "end": 31453.3, + "probability": 0.0627 + }, + { + "start": 31471.58, + "end": 31474.22, + "probability": 0.0187 + }, + { + "start": 31474.32, + "end": 31475.3, + "probability": 0.0133 + }, + { + "start": 31475.3, + "end": 31475.32, + "probability": 0.0715 + }, + { + "start": 31475.36, + "end": 31475.52, + "probability": 0.0903 + }, + { + "start": 31475.52, + "end": 31475.92, + "probability": 0.0983 + }, + { + "start": 31476.78, + "end": 31476.98, + "probability": 0.0999 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31477.0, + "probability": 0.0 + }, + { + "start": 31477.0, + "end": 31478.63, + "probability": 0.8823 + }, + { + "start": 31479.04, + "end": 31480.96, + "probability": 0.7313 + }, + { + "start": 31480.96, + "end": 31481.58, + "probability": 0.4961 + }, + { + "start": 31481.66, + "end": 31485.24, + "probability": 0.7964 + }, + { + "start": 31488.61, + "end": 31491.74, + "probability": 0.0816 + }, + { + "start": 31498.58, + "end": 31502.2, + "probability": 0.4955 + }, + { + "start": 31502.22, + "end": 31504.6, + "probability": 0.768 + }, + { + "start": 31505.08, + "end": 31506.77, + "probability": 0.9378 + }, + { + "start": 31507.56, + "end": 31511.6, + "probability": 0.8272 + }, + { + "start": 31511.8, + "end": 31513.36, + "probability": 0.7339 + }, + { + "start": 31513.86, + "end": 31514.86, + "probability": 0.9048 + }, + { + "start": 31514.96, + "end": 31516.06, + "probability": 0.6566 + }, + { + "start": 31516.18, + "end": 31516.99, + "probability": 0.6613 + }, + { + "start": 31517.26, + "end": 31518.22, + "probability": 0.7102 + }, + { + "start": 31522.32, + "end": 31524.62, + "probability": 0.8911 + }, + { + "start": 31524.7, + "end": 31525.46, + "probability": 0.7239 + }, + { + "start": 31525.66, + "end": 31526.36, + "probability": 0.7688 + }, + { + "start": 31531.7, + "end": 31532.32, + "probability": 0.244 + }, + { + "start": 31532.32, + "end": 31534.24, + "probability": 0.4111 + }, + { + "start": 31534.28, + "end": 31536.16, + "probability": 0.9585 + }, + { + "start": 31537.16, + "end": 31541.24, + "probability": 0.9782 + }, + { + "start": 31541.4, + "end": 31545.32, + "probability": 0.7105 + }, + { + "start": 31545.38, + "end": 31546.29, + "probability": 0.7208 + }, + { + "start": 31550.12, + "end": 31552.72, + "probability": 0.3772 + }, + { + "start": 31554.76, + "end": 31556.04, + "probability": 0.6485 + }, + { + "start": 31558.28, + "end": 31560.76, + "probability": 0.4081 + }, + { + "start": 31561.92, + "end": 31562.36, + "probability": 0.0343 + }, + { + "start": 31562.36, + "end": 31563.9, + "probability": 0.1663 + }, + { + "start": 31563.9, + "end": 31563.9, + "probability": 0.4681 + }, + { + "start": 31563.9, + "end": 31563.9, + "probability": 0.2635 + }, + { + "start": 31563.9, + "end": 31564.12, + "probability": 0.2417 + }, + { + "start": 31564.2, + "end": 31564.54, + "probability": 0.4049 + }, + { + "start": 31564.76, + "end": 31565.86, + "probability": 0.8811 + }, + { + "start": 31566.06, + "end": 31566.78, + "probability": 0.6397 + }, + { + "start": 31566.96, + "end": 31570.1, + "probability": 0.8467 + }, + { + "start": 31571.92, + "end": 31573.42, + "probability": 0.3138 + }, + { + "start": 31573.42, + "end": 31574.58, + "probability": 0.2372 + }, + { + "start": 31574.58, + "end": 31575.0, + "probability": 0.5574 + }, + { + "start": 31575.84, + "end": 31578.56, + "probability": 0.894 + }, + { + "start": 31578.68, + "end": 31581.9, + "probability": 0.9795 + }, + { + "start": 31582.98, + "end": 31583.74, + "probability": 0.3707 + }, + { + "start": 31584.06, + "end": 31587.96, + "probability": 0.9817 + }, + { + "start": 31588.62, + "end": 31592.5, + "probability": 0.7641 + }, + { + "start": 31593.02, + "end": 31594.5, + "probability": 0.1807 + }, + { + "start": 31594.5, + "end": 31594.92, + "probability": 0.576 + }, + { + "start": 31594.96, + "end": 31597.76, + "probability": 0.9271 + }, + { + "start": 31598.22, + "end": 31599.44, + "probability": 0.7691 + }, + { + "start": 31600.44, + "end": 31600.5, + "probability": 0.2332 + }, + { + "start": 31601.18, + "end": 31601.58, + "probability": 0.0235 + }, + { + "start": 31602.95, + "end": 31607.0, + "probability": 0.7946 + }, + { + "start": 31607.18, + "end": 31613.22, + "probability": 0.8999 + }, + { + "start": 31613.32, + "end": 31614.54, + "probability": 0.7089 + }, + { + "start": 31614.6, + "end": 31615.56, + "probability": 0.5563 + }, + { + "start": 31615.86, + "end": 31617.04, + "probability": 0.6663 + }, + { + "start": 31622.87, + "end": 31624.96, + "probability": 0.1255 + }, + { + "start": 31626.64, + "end": 31629.32, + "probability": 0.0674 + }, + { + "start": 31632.64, + "end": 31633.2, + "probability": 0.1183 + }, + { + "start": 31633.96, + "end": 31634.47, + "probability": 0.3613 + }, + { + "start": 31635.62, + "end": 31636.82, + "probability": 0.0442 + }, + { + "start": 31636.82, + "end": 31639.4, + "probability": 0.4726 + }, + { + "start": 31639.5, + "end": 31641.86, + "probability": 0.4983 + }, + { + "start": 31646.62, + "end": 31650.48, + "probability": 0.1742 + }, + { + "start": 31651.26, + "end": 31651.7, + "probability": 0.3681 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.0, + "end": 31736.0, + "probability": 0.0 + }, + { + "start": 31736.16, + "end": 31736.64, + "probability": 0.0899 + }, + { + "start": 31736.64, + "end": 31736.64, + "probability": 0.0933 + }, + { + "start": 31736.64, + "end": 31739.08, + "probability": 0.6898 + }, + { + "start": 31739.26, + "end": 31740.4, + "probability": 0.6749 + }, + { + "start": 31740.4, + "end": 31741.74, + "probability": 0.5317 + }, + { + "start": 31741.86, + "end": 31743.26, + "probability": 0.8088 + }, + { + "start": 31743.34, + "end": 31744.66, + "probability": 0.6338 + }, + { + "start": 31752.06, + "end": 31753.58, + "probability": 0.4797 + }, + { + "start": 31753.58, + "end": 31756.56, + "probability": 0.3455 + }, + { + "start": 31756.58, + "end": 31757.66, + "probability": 0.6066 + }, + { + "start": 31760.06, + "end": 31765.82, + "probability": 0.6758 + }, + { + "start": 31767.74, + "end": 31771.22, + "probability": 0.8165 + }, + { + "start": 31773.2, + "end": 31774.56, + "probability": 0.8551 + }, + { + "start": 31774.7, + "end": 31775.42, + "probability": 0.6334 + }, + { + "start": 31775.78, + "end": 31779.38, + "probability": 0.8486 + }, + { + "start": 31779.58, + "end": 31780.6, + "probability": 0.5246 + }, + { + "start": 31780.8, + "end": 31781.59, + "probability": 0.6637 + }, + { + "start": 31784.42, + "end": 31784.7, + "probability": 0.8113 + }, + { + "start": 31791.62, + "end": 31791.86, + "probability": 0.026 + }, + { + "start": 31791.86, + "end": 31792.68, + "probability": 0.3792 + }, + { + "start": 31793.56, + "end": 31797.98, + "probability": 0.4887 + }, + { + "start": 31798.42, + "end": 31799.82, + "probability": 0.8455 + }, + { + "start": 31800.38, + "end": 31801.96, + "probability": 0.6769 + }, + { + "start": 31802.22, + "end": 31805.12, + "probability": 0.8519 + }, + { + "start": 31805.66, + "end": 31809.74, + "probability": 0.9097 + }, + { + "start": 31810.32, + "end": 31810.84, + "probability": 0.9083 + }, + { + "start": 31813.92, + "end": 31814.54, + "probability": 0.3105 + }, + { + "start": 31816.18, + "end": 31816.7, + "probability": 0.1377 + }, + { + "start": 31827.16, + "end": 31829.78, + "probability": 0.4883 + }, + { + "start": 31830.14, + "end": 31833.32, + "probability": 0.9371 + }, + { + "start": 31834.18, + "end": 31837.18, + "probability": 0.9683 + }, + { + "start": 31838.1, + "end": 31842.28, + "probability": 0.9221 + }, + { + "start": 31842.28, + "end": 31847.02, + "probability": 0.8516 + }, + { + "start": 31847.12, + "end": 31847.96, + "probability": 0.9672 + }, + { + "start": 31854.8, + "end": 31855.7, + "probability": 0.0492 + }, + { + "start": 31856.28, + "end": 31857.34, + "probability": 0.3565 + }, + { + "start": 31857.74, + "end": 31858.54, + "probability": 0.765 + }, + { + "start": 31859.08, + "end": 31859.64, + "probability": 0.175 + }, + { + "start": 31863.08, + "end": 31866.24, + "probability": 0.2309 + }, + { + "start": 31866.24, + "end": 31866.24, + "probability": 0.2396 + }, + { + "start": 31866.24, + "end": 31866.24, + "probability": 0.2189 + }, + { + "start": 31866.24, + "end": 31866.24, + "probability": 0.5687 + }, + { + "start": 31866.24, + "end": 31869.52, + "probability": 0.6895 + }, + { + "start": 31870.1, + "end": 31872.92, + "probability": 0.7839 + }, + { + "start": 31875.8, + "end": 31876.4, + "probability": 0.2603 + }, + { + "start": 31877.8, + "end": 31879.86, + "probability": 0.5106 + }, + { + "start": 31880.4, + "end": 31883.08, + "probability": 0.0906 + }, + { + "start": 31890.2, + "end": 31890.9, + "probability": 0.1099 + }, + { + "start": 31891.22, + "end": 31895.68, + "probability": 0.4952 + }, + { + "start": 31896.1, + "end": 31898.9, + "probability": 0.8157 + }, + { + "start": 31901.1, + "end": 31904.04, + "probability": 0.9697 + }, + { + "start": 31904.6, + "end": 31905.69, + "probability": 0.4496 + }, + { + "start": 31905.9, + "end": 31906.81, + "probability": 0.7301 + }, + { + "start": 31911.84, + "end": 31914.22, + "probability": 0.5447 + }, + { + "start": 31914.32, + "end": 31914.8, + "probability": 0.6088 + }, + { + "start": 31916.14, + "end": 31918.02, + "probability": 0.0697 + }, + { + "start": 31922.8, + "end": 31922.96, + "probability": 0.0462 + }, + { + "start": 31922.96, + "end": 31923.38, + "probability": 0.4508 + }, + { + "start": 31923.52, + "end": 31924.22, + "probability": 0.471 + }, + { + "start": 31924.26, + "end": 31925.28, + "probability": 0.4406 + }, + { + "start": 31925.52, + "end": 31926.1, + "probability": 0.6206 + }, + { + "start": 31926.16, + "end": 31930.18, + "probability": 0.9131 + }, + { + "start": 31931.72, + "end": 31934.5, + "probability": 0.935 + }, + { + "start": 31934.52, + "end": 31935.38, + "probability": 0.3289 + }, + { + "start": 31936.64, + "end": 31939.88, + "probability": 0.0863 + }, + { + "start": 31940.58, + "end": 31942.12, + "probability": 0.0627 + }, + { + "start": 31943.04, + "end": 31944.0, + "probability": 0.0444 + }, + { + "start": 31944.1, + "end": 31948.78, + "probability": 0.915 + }, + { + "start": 31948.94, + "end": 31950.16, + "probability": 0.8302 + }, + { + "start": 31950.48, + "end": 31952.5, + "probability": 0.6625 + }, + { + "start": 31952.56, + "end": 31953.18, + "probability": 0.5569 + }, + { + "start": 31953.2, + "end": 31954.38, + "probability": 0.6303 + }, + { + "start": 31955.18, + "end": 31959.86, + "probability": 0.7541 + }, + { + "start": 31960.42, + "end": 31961.1, + "probability": 0.3585 + }, + { + "start": 31969.52, + "end": 31969.52, + "probability": 0.1635 + }, + { + "start": 31969.52, + "end": 31972.58, + "probability": 0.3942 + }, + { + "start": 31972.6, + "end": 31975.22, + "probability": 0.7335 + }, + { + "start": 31975.68, + "end": 31976.44, + "probability": 0.8899 + }, + { + "start": 31977.12, + "end": 31979.9, + "probability": 0.7073 + }, + { + "start": 31981.12, + "end": 31983.38, + "probability": 0.763 + }, + { + "start": 31983.44, + "end": 31984.0, + "probability": 0.6969 + }, + { + "start": 31998.3, + "end": 31998.3, + "probability": 0.2292 + }, + { + "start": 31998.3, + "end": 31998.3, + "probability": 0.0457 + }, + { + "start": 31998.3, + "end": 31999.62, + "probability": 0.5909 + }, + { + "start": 32000.32, + "end": 32003.08, + "probability": 0.432 + }, + { + "start": 32003.58, + "end": 32006.26, + "probability": 0.6464 + }, + { + "start": 32006.96, + "end": 32010.84, + "probability": 0.9897 + }, + { + "start": 32010.94, + "end": 32011.64, + "probability": 0.8246 + }, + { + "start": 32012.58, + "end": 32014.3, + "probability": 0.9451 + }, + { + "start": 32014.32, + "end": 32015.0, + "probability": 0.7555 + }, + { + "start": 32023.0, + "end": 32024.24, + "probability": 0.5663 + }, + { + "start": 32024.28, + "end": 32025.06, + "probability": 0.5409 + }, + { + "start": 32032.48, + "end": 32032.48, + "probability": 0.2432 + }, + { + "start": 32032.48, + "end": 32034.63, + "probability": 0.3518 + }, + { + "start": 32035.26, + "end": 32037.58, + "probability": 0.8785 + }, + { + "start": 32039.08, + "end": 32043.16, + "probability": 0.6802 + }, + { + "start": 32044.24, + "end": 32045.34, + "probability": 0.7014 + }, + { + "start": 32045.42, + "end": 32046.19, + "probability": 0.6264 + }, + { + "start": 32046.54, + "end": 32047.66, + "probability": 0.734 + }, + { + "start": 32048.22, + "end": 32048.98, + "probability": 0.1925 + }, + { + "start": 32061.94, + "end": 32063.0, + "probability": 0.2351 + }, + { + "start": 32063.58, + "end": 32064.96, + "probability": 0.5376 + }, + { + "start": 32065.0, + "end": 32066.98, + "probability": 0.9883 + }, + { + "start": 32067.52, + "end": 32071.1, + "probability": 0.5922 + }, + { + "start": 32071.26, + "end": 32074.76, + "probability": 0.8625 + }, + { + "start": 32074.96, + "end": 32079.26, + "probability": 0.9584 + }, + { + "start": 32080.02, + "end": 32083.14, + "probability": 0.2302 + }, + { + "start": 32083.62, + "end": 32085.12, + "probability": 0.8018 + }, + { + "start": 32085.32, + "end": 32087.22, + "probability": 0.9821 + }, + { + "start": 32088.17, + "end": 32091.8, + "probability": 0.8435 + }, + { + "start": 32092.74, + "end": 32096.78, + "probability": 0.9609 + }, + { + "start": 32097.62, + "end": 32099.72, + "probability": 0.3097 + }, + { + "start": 32101.08, + "end": 32102.7, + "probability": 0.2075 + }, + { + "start": 32110.12, + "end": 32111.08, + "probability": 0.6898 + }, + { + "start": 32112.04, + "end": 32113.54, + "probability": 0.6992 + }, + { + "start": 32114.16, + "end": 32115.24, + "probability": 0.7144 + }, + { + "start": 32115.24, + "end": 32115.5, + "probability": 0.3657 + }, + { + "start": 32115.74, + "end": 32116.02, + "probability": 0.483 + }, + { + "start": 32116.02, + "end": 32120.1, + "probability": 0.871 + }, + { + "start": 32120.84, + "end": 32121.74, + "probability": 0.5921 + }, + { + "start": 32121.78, + "end": 32122.7, + "probability": 0.8601 + }, + { + "start": 32122.86, + "end": 32125.74, + "probability": 0.7043 + }, + { + "start": 32126.72, + "end": 32127.52, + "probability": 0.5635 + }, + { + "start": 32127.68, + "end": 32129.74, + "probability": 0.9487 + }, + { + "start": 32130.12, + "end": 32134.24, + "probability": 0.8038 + }, + { + "start": 32134.98, + "end": 32136.1, + "probability": 0.424 + }, + { + "start": 32136.2, + "end": 32137.0, + "probability": 0.4709 + }, + { + "start": 32146.36, + "end": 32150.82, + "probability": 0.0531 + }, + { + "start": 32150.96, + "end": 32152.98, + "probability": 0.0774 + }, + { + "start": 32152.98, + "end": 32153.94, + "probability": 0.2106 + }, + { + "start": 32154.12, + "end": 32154.48, + "probability": 0.4005 + }, + { + "start": 32154.76, + "end": 32158.6, + "probability": 0.8154 + }, + { + "start": 32159.48, + "end": 32160.28, + "probability": 0.399 + }, + { + "start": 32161.08, + "end": 32164.34, + "probability": 0.838 + }, + { + "start": 32164.5, + "end": 32165.36, + "probability": 0.739 + }, + { + "start": 32165.48, + "end": 32166.2, + "probability": 0.6413 + }, + { + "start": 32166.28, + "end": 32166.86, + "probability": 0.771 + }, + { + "start": 32167.84, + "end": 32168.9, + "probability": 0.9147 + }, + { + "start": 32169.04, + "end": 32171.14, + "probability": 0.9629 + }, + { + "start": 32171.44, + "end": 32171.46, + "probability": 0.0845 + }, + { + "start": 32171.52, + "end": 32172.22, + "probability": 0.6828 + }, + { + "start": 32173.3, + "end": 32177.78, + "probability": 0.7834 + }, + { + "start": 32177.78, + "end": 32178.48, + "probability": 0.5478 + }, + { + "start": 32189.1, + "end": 32193.02, + "probability": 0.1886 + }, + { + "start": 32193.36, + "end": 32197.82, + "probability": 0.5022 + }, + { + "start": 32198.56, + "end": 32202.74, + "probability": 0.9048 + }, + { + "start": 32203.48, + "end": 32204.42, + "probability": 0.6459 + }, + { + "start": 32212.96, + "end": 32214.24, + "probability": 0.7952 + }, + { + "start": 32215.18, + "end": 32216.12, + "probability": 0.5741 + }, + { + "start": 32221.03, + "end": 32224.54, + "probability": 0.502 + }, + { + "start": 32226.42, + "end": 32226.86, + "probability": 0.1074 + }, + { + "start": 32227.46, + "end": 32228.04, + "probability": 0.1216 + }, + { + "start": 32229.66, + "end": 32231.02, + "probability": 0.0733 + }, + { + "start": 32231.02, + "end": 32235.16, + "probability": 0.4609 + }, + { + "start": 32235.66, + "end": 32236.9, + "probability": 0.8506 + }, + { + "start": 32237.78, + "end": 32238.27, + "probability": 0.7563 + }, + { + "start": 32239.88, + "end": 32241.32, + "probability": 0.9824 + }, + { + "start": 32241.86, + "end": 32243.71, + "probability": 0.6254 + }, + { + "start": 32243.98, + "end": 32244.87, + "probability": 0.464 + }, + { + "start": 32246.02, + "end": 32246.94, + "probability": 0.5938 + }, + { + "start": 32247.56, + "end": 32247.56, + "probability": 0.0088 + }, + { + "start": 32252.16, + "end": 32257.42, + "probability": 0.1282 + }, + { + "start": 32257.48, + "end": 32258.42, + "probability": 0.6625 + }, + { + "start": 32259.49, + "end": 32263.72, + "probability": 0.5677 + }, + { + "start": 32263.9, + "end": 32266.92, + "probability": 0.8535 + }, + { + "start": 32267.52, + "end": 32272.48, + "probability": 0.7447 + }, + { + "start": 32272.48, + "end": 32273.34, + "probability": 0.6627 + }, + { + "start": 32274.4, + "end": 32280.88, + "probability": 0.0547 + }, + { + "start": 32283.16, + "end": 32286.34, + "probability": 0.0604 + }, + { + "start": 32286.84, + "end": 32288.18, + "probability": 0.8165 + }, + { + "start": 32288.22, + "end": 32291.68, + "probability": 0.5704 + }, + { + "start": 32291.76, + "end": 32295.46, + "probability": 0.9341 + }, + { + "start": 32296.16, + "end": 32297.1, + "probability": 0.8402 + }, + { + "start": 32298.42, + "end": 32300.2, + "probability": 0.9202 + }, + { + "start": 32300.72, + "end": 32302.16, + "probability": 0.7661 + }, + { + "start": 32302.3, + "end": 32303.43, + "probability": 0.9681 + }, + { + "start": 32304.41, + "end": 32305.37, + "probability": 0.1396 + }, + { + "start": 32307.56, + "end": 32310.76, + "probability": 0.0339 + }, + { + "start": 32311.6, + "end": 32312.18, + "probability": 0.2463 + }, + { + "start": 32319.32, + "end": 32322.98, + "probability": 0.5499 + }, + { + "start": 32323.36, + "end": 32324.66, + "probability": 0.8867 + }, + { + "start": 32325.18, + "end": 32326.64, + "probability": 0.8138 + }, + { + "start": 32327.14, + "end": 32328.92, + "probability": 0.8915 + }, + { + "start": 32329.48, + "end": 32333.41, + "probability": 0.5977 + }, + { + "start": 32334.28, + "end": 32337.92, + "probability": 0.4728 + }, + { + "start": 32351.66, + "end": 32351.66, + "probability": 0.1291 + }, + { + "start": 32351.66, + "end": 32354.8, + "probability": 0.5856 + }, + { + "start": 32355.54, + "end": 32359.56, + "probability": 0.8238 + }, + { + "start": 32359.76, + "end": 32361.14, + "probability": 0.9534 + }, + { + "start": 32361.96, + "end": 32367.72, + "probability": 0.9602 + }, + { + "start": 32368.34, + "end": 32371.34, + "probability": 0.9326 + }, + { + "start": 32372.2, + "end": 32373.44, + "probability": 0.5722 + }, + { + "start": 32373.44, + "end": 32374.19, + "probability": 0.5908 + }, + { + "start": 32380.65, + "end": 32382.44, + "probability": 0.1448 + }, + { + "start": 32392.02, + "end": 32392.66, + "probability": 0.1572 + }, + { + "start": 32392.66, + "end": 32393.38, + "probability": 0.4935 + }, + { + "start": 32393.44, + "end": 32394.18, + "probability": 0.3221 + }, + { + "start": 32394.44, + "end": 32394.6, + "probability": 0.482 + }, + { + "start": 32394.98, + "end": 32398.06, + "probability": 0.6866 + }, + { + "start": 32398.1, + "end": 32399.88, + "probability": 0.7271 + }, + { + "start": 32400.22, + "end": 32402.58, + "probability": 0.9082 + }, + { + "start": 32402.9, + "end": 32406.88, + "probability": 0.7153 + }, + { + "start": 32407.34, + "end": 32408.4, + "probability": 0.8077 + }, + { + "start": 32412.4, + "end": 32414.58, + "probability": 0.0844 + }, + { + "start": 32426.66, + "end": 32427.24, + "probability": 0.2017 + }, + { + "start": 32427.24, + "end": 32429.58, + "probability": 0.4571 + }, + { + "start": 32430.14, + "end": 32430.84, + "probability": 0.6671 + }, + { + "start": 32431.04, + "end": 32434.56, + "probability": 0.8092 + }, + { + "start": 32440.72, + "end": 32442.22, + "probability": 0.6052 + }, + { + "start": 32445.94, + "end": 32448.04, + "probability": 0.3056 + }, + { + "start": 32448.22, + "end": 32450.62, + "probability": 0.7379 + }, + { + "start": 32452.26, + "end": 32458.56, + "probability": 0.9385 + }, + { + "start": 32458.6, + "end": 32460.5, + "probability": 0.9367 + }, + { + "start": 32461.04, + "end": 32462.26, + "probability": 0.7267 + }, + { + "start": 32462.4, + "end": 32462.9, + "probability": 0.2452 + }, + { + "start": 32462.9, + "end": 32463.9, + "probability": 0.4039 + }, + { + "start": 32465.84, + "end": 32466.64, + "probability": 0.033 + }, + { + "start": 32468.1, + "end": 32468.46, + "probability": 0.1249 + }, + { + "start": 32479.62, + "end": 32480.7, + "probability": 0.114 + }, + { + "start": 32480.7, + "end": 32482.16, + "probability": 0.3886 + }, + { + "start": 32483.56, + "end": 32485.88, + "probability": 0.4657 + }, + { + "start": 32486.4, + "end": 32488.02, + "probability": 0.6134 + }, + { + "start": 32491.0, + "end": 32493.99, + "probability": 0.4907 + }, + { + "start": 32494.18, + "end": 32495.14, + "probability": 0.652 + }, + { + "start": 32495.16, + "end": 32496.08, + "probability": 0.4184 + }, + { + "start": 32499.0, + "end": 32501.0, + "probability": 0.4508 + }, + { + "start": 32501.56, + "end": 32502.08, + "probability": 0.0142 + }, + { + "start": 32511.26, + "end": 32511.86, + "probability": 0.1731 + }, + { + "start": 32511.86, + "end": 32514.72, + "probability": 0.4002 + }, + { + "start": 32515.12, + "end": 32518.78, + "probability": 0.9308 + }, + { + "start": 32519.5, + "end": 32520.84, + "probability": 0.9275 + }, + { + "start": 32521.36, + "end": 32526.06, + "probability": 0.8604 + }, + { + "start": 32526.12, + "end": 32527.01, + "probability": 0.5446 + }, + { + "start": 32527.3, + "end": 32528.04, + "probability": 0.6381 + }, + { + "start": 32528.58, + "end": 32530.36, + "probability": 0.0109 + }, + { + "start": 32531.48, + "end": 32531.72, + "probability": 0.2222 + }, + { + "start": 32545.16, + "end": 32546.16, + "probability": 0.0855 + }, + { + "start": 32546.16, + "end": 32548.32, + "probability": 0.4656 + }, + { + "start": 32548.94, + "end": 32549.45, + "probability": 0.1906 + }, + { + "start": 32550.18, + "end": 32554.8, + "probability": 0.7824 + }, + { + "start": 32556.04, + "end": 32557.06, + "probability": 0.4622 + }, + { + "start": 32561.44, + "end": 32565.7, + "probability": 0.4481 + }, + { + "start": 32575.82, + "end": 32578.78, + "probability": 0.9925 + }, + { + "start": 32578.78, + "end": 32583.02, + "probability": 0.9056 + }, + { + "start": 32583.2, + "end": 32584.44, + "probability": 0.9888 + }, + { + "start": 32585.38, + "end": 32586.6, + "probability": 0.5316 + }, + { + "start": 32587.52, + "end": 32588.68, + "probability": 0.1098 + }, + { + "start": 32588.68, + "end": 32590.68, + "probability": 0.6414 + }, + { + "start": 32593.26, + "end": 32595.66, + "probability": 0.7353 + }, + { + "start": 32608.06, + "end": 32609.04, + "probability": 0.4752 + }, + { + "start": 32609.18, + "end": 32615.44, + "probability": 0.8206 + }, + { + "start": 32615.48, + "end": 32616.27, + "probability": 0.6488 + }, + { + "start": 32616.6, + "end": 32617.7, + "probability": 0.6372 + }, + { + "start": 32620.3, + "end": 32622.12, + "probability": 0.2822 + }, + { + "start": 32622.66, + "end": 32625.58, + "probability": 0.152 + }, + { + "start": 32634.74, + "end": 32635.64, + "probability": 0.1698 + }, + { + "start": 32636.18, + "end": 32638.32, + "probability": 0.3236 + }, + { + "start": 32638.48, + "end": 32641.22, + "probability": 0.9047 + }, + { + "start": 32641.78, + "end": 32643.66, + "probability": 0.8088 + }, + { + "start": 32643.66, + "end": 32644.48, + "probability": 0.5088 + }, + { + "start": 32645.3, + "end": 32646.58, + "probability": 0.0537 + }, + { + "start": 32647.96, + "end": 32650.96, + "probability": 0.0318 + }, + { + "start": 32663.56, + "end": 32665.52, + "probability": 0.6449 + }, + { + "start": 32665.66, + "end": 32668.58, + "probability": 0.8552 + }, + { + "start": 32668.76, + "end": 32673.3, + "probability": 0.8981 + }, + { + "start": 32673.58, + "end": 32674.02, + "probability": 0.7566 + }, + { + "start": 32674.1, + "end": 32674.74, + "probability": 0.8466 + }, + { + "start": 32674.78, + "end": 32675.72, + "probability": 0.6815 + }, + { + "start": 32675.84, + "end": 32676.64, + "probability": 0.719 + }, + { + "start": 32676.78, + "end": 32677.88, + "probability": 0.5441 + }, + { + "start": 32678.42, + "end": 32680.44, + "probability": 0.3058 + }, + { + "start": 32684.84, + "end": 32686.5, + "probability": 0.2259 + }, + { + "start": 32690.2, + "end": 32692.86, + "probability": 0.1561 + }, + { + "start": 32693.14, + "end": 32696.46, + "probability": 0.5795 + }, + { + "start": 32696.54, + "end": 32696.76, + "probability": 0.5016 + }, + { + "start": 32696.94, + "end": 32701.22, + "probability": 0.8152 + }, + { + "start": 32702.84, + "end": 32705.72, + "probability": 0.9237 + }, + { + "start": 32706.64, + "end": 32711.6, + "probability": 0.7021 + }, + { + "start": 32711.62, + "end": 32712.46, + "probability": 0.4945 + }, + { + "start": 32729.68, + "end": 32730.78, + "probability": 0.4525 + }, + { + "start": 32731.02, + "end": 32731.22, + "probability": 0.4151 + }, + { + "start": 32731.66, + "end": 32736.1, + "probability": 0.5586 + }, + { + "start": 32736.26, + "end": 32737.94, + "probability": 0.8191 + }, + { + "start": 32738.98, + "end": 32740.36, + "probability": 0.6943 + }, + { + "start": 32740.4, + "end": 32741.24, + "probability": 0.9475 + }, + { + "start": 32741.78, + "end": 32742.48, + "probability": 0.7046 + }, + { + "start": 32760.38, + "end": 32763.56, + "probability": 0.6047 + }, + { + "start": 32764.36, + "end": 32768.02, + "probability": 0.8765 + }, + { + "start": 32768.24, + "end": 32771.14, + "probability": 0.9601 + }, + { + "start": 32771.96, + "end": 32776.2, + "probability": 0.9465 + }, + { + "start": 32776.2, + "end": 32777.06, + "probability": 0.4541 + }, + { + "start": 32793.12, + "end": 32795.56, + "probability": 0.5601 + }, + { + "start": 32795.84, + "end": 32798.21, + "probability": 0.7789 + }, + { + "start": 32799.02, + "end": 32800.04, + "probability": 0.8252 + }, + { + "start": 32801.04, + "end": 32803.62, + "probability": 0.8491 + }, + { + "start": 32804.62, + "end": 32807.16, + "probability": 0.6571 + }, + { + "start": 32809.88, + "end": 32810.6, + "probability": 0.753 + }, + { + "start": 32825.34, + "end": 32827.32, + "probability": 0.5799 + }, + { + "start": 32828.08, + "end": 32831.72, + "probability": 0.823 + }, + { + "start": 32832.54, + "end": 32834.96, + "probability": 0.8367 + }, + { + "start": 32835.8, + "end": 32837.12, + "probability": 0.8918 + }, + { + "start": 32837.22, + "end": 32838.34, + "probability": 0.6534 + }, + { + "start": 32839.2, + "end": 32840.16, + "probability": 0.4423 + }, + { + "start": 32855.06, + "end": 32855.8, + "probability": 0.5123 + }, + { + "start": 32856.54, + "end": 32858.78, + "probability": 0.4161 + }, + { + "start": 32859.64, + "end": 32862.34, + "probability": 0.8827 + }, + { + "start": 32862.62, + "end": 32864.5, + "probability": 0.918 + }, + { + "start": 32865.12, + "end": 32869.84, + "probability": 0.6814 + }, + { + "start": 32870.94, + "end": 32872.16, + "probability": 0.5728 + }, + { + "start": 32872.24, + "end": 32872.68, + "probability": 0.4067 + }, + { + "start": 32881.78, + "end": 32884.52, + "probability": 0.3848 + }, + { + "start": 32892.22, + "end": 32892.22, + "probability": 0.136 + }, + { + "start": 32892.22, + "end": 32893.08, + "probability": 0.2147 + }, + { + "start": 32894.18, + "end": 32895.94, + "probability": 0.4378 + }, + { + "start": 32896.62, + "end": 32899.56, + "probability": 0.8693 + }, + { + "start": 32900.32, + "end": 32904.8, + "probability": 0.9457 + }, + { + "start": 32906.39, + "end": 32906.74, + "probability": 0.0478 + }, + { + "start": 32906.74, + "end": 32907.32, + "probability": 0.5714 + }, + { + "start": 32910.84, + "end": 32911.4, + "probability": 0.5845 + }, + { + "start": 32912.52, + "end": 32913.56, + "probability": 0.5674 + }, + { + "start": 32919.2, + "end": 32920.24, + "probability": 0.9336 + }, + { + "start": 32920.34, + "end": 32920.84, + "probability": 0.6078 + }, + { + "start": 32921.18, + "end": 32922.14, + "probability": 0.9322 + }, + { + "start": 32922.32, + "end": 32922.32, + "probability": 0.8252 + }, + { + "start": 32922.66, + "end": 32925.5, + "probability": 0.961 + }, + { + "start": 32925.56, + "end": 32928.8, + "probability": 0.9671 + }, + { + "start": 32928.96, + "end": 32930.08, + "probability": 0.9875 + }, + { + "start": 32930.16, + "end": 32931.66, + "probability": 0.7493 + }, + { + "start": 32933.24, + "end": 32939.68, + "probability": 0.6179 + }, + { + "start": 32939.76, + "end": 32940.53, + "probability": 0.5299 + }, + { + "start": 32945.86, + "end": 32946.82, + "probability": 0.4034 + }, + { + "start": 32948.8, + "end": 32951.54, + "probability": 0.0245 + }, + { + "start": 32954.18, + "end": 32955.42, + "probability": 0.1328 + }, + { + "start": 32956.1, + "end": 32958.22, + "probability": 0.5288 + }, + { + "start": 32958.82, + "end": 32960.96, + "probability": 0.8177 + }, + { + "start": 32961.14, + "end": 32964.64, + "probability": 0.9654 + }, + { + "start": 32964.64, + "end": 32970.9, + "probability": 0.8414 + }, + { + "start": 32971.5, + "end": 32972.44, + "probability": 0.5758 + }, + { + "start": 32972.5, + "end": 32973.22, + "probability": 0.6514 + }, + { + "start": 32976.28, + "end": 32978.3, + "probability": 0.8408 + }, + { + "start": 32978.62, + "end": 32988.4, + "probability": 0.92 + }, + { + "start": 32988.4, + "end": 32991.8, + "probability": 0.5607 + }, + { + "start": 32991.82, + "end": 32994.02, + "probability": 0.8338 + }, + { + "start": 32994.14, + "end": 32994.65, + "probability": 0.614 + }, + { + "start": 32995.12, + "end": 32995.64, + "probability": 0.9381 + }, + { + "start": 32998.56, + "end": 33005.72, + "probability": 0.9644 + }, + { + "start": 33006.1, + "end": 33007.8, + "probability": 0.6321 + }, + { + "start": 33007.92, + "end": 33008.96, + "probability": 0.9143 + }, + { + "start": 33009.94, + "end": 33013.68, + "probability": 0.8951 + }, + { + "start": 33013.76, + "end": 33014.58, + "probability": 0.8364 + }, + { + "start": 33015.12, + "end": 33015.74, + "probability": 0.7991 + }, + { + "start": 33016.3, + "end": 33021.98, + "probability": 0.021 + }, + { + "start": 33029.78, + "end": 33030.06, + "probability": 0.0868 + }, + { + "start": 33030.06, + "end": 33032.88, + "probability": 0.5137 + }, + { + "start": 33033.04, + "end": 33035.76, + "probability": 0.8124 + }, + { + "start": 33036.36, + "end": 33040.22, + "probability": 0.9038 + }, + { + "start": 33040.26, + "end": 33047.46, + "probability": 0.8651 + }, + { + "start": 33047.46, + "end": 33047.46, + "probability": 0.6186 + }, + { + "start": 33047.46, + "end": 33047.46, + "probability": 0.1846 + }, + { + "start": 33047.46, + "end": 33047.78, + "probability": 0.462 + }, + { + "start": 33047.78, + "end": 33048.84, + "probability": 0.3777 + }, + { + "start": 33049.38, + "end": 33054.64, + "probability": 0.6876 + }, + { + "start": 33063.86, + "end": 33064.12, + "probability": 0.1448 + }, + { + "start": 33064.12, + "end": 33068.1, + "probability": 0.5135 + }, + { + "start": 33068.76, + "end": 33074.16, + "probability": 0.9166 + }, + { + "start": 33077.8, + "end": 33083.38, + "probability": 0.9187 + }, + { + "start": 33083.44, + "end": 33084.5, + "probability": 0.9528 + }, + { + "start": 33084.68, + "end": 33087.12, + "probability": 0.0814 + }, + { + "start": 33101.12, + "end": 33101.96, + "probability": 0.2244 + }, + { + "start": 33101.96, + "end": 33104.52, + "probability": 0.5285 + }, + { + "start": 33105.06, + "end": 33107.96, + "probability": 0.8838 + }, + { + "start": 33108.8, + "end": 33109.9, + "probability": 0.8164 + }, + { + "start": 33111.28, + "end": 33113.36, + "probability": 0.9497 + }, + { + "start": 33113.5, + "end": 33116.32, + "probability": 0.9175 + }, + { + "start": 33116.46, + "end": 33117.42, + "probability": 0.7271 + }, + { + "start": 33118.54, + "end": 33122.68, + "probability": 0.4074 + }, + { + "start": 33136.02, + "end": 33141.65, + "probability": 0.9319 + }, + { + "start": 33141.87, + "end": 33144.63, + "probability": 0.7885 + }, + { + "start": 33145.69, + "end": 33150.69, + "probability": 0.8995 + }, + { + "start": 33151.61, + "end": 33153.07, + "probability": 0.8276 + }, + { + "start": 33153.15, + "end": 33154.13, + "probability": 0.7166 + }, + { + "start": 33154.97, + "end": 33161.29, + "probability": 0.0923 + }, + { + "start": 33173.21, + "end": 33173.99, + "probability": 0.2849 + }, + { + "start": 33173.99, + "end": 33178.51, + "probability": 0.4397 + }, + { + "start": 33178.63, + "end": 33180.45, + "probability": 0.8479 + }, + { + "start": 33180.65, + "end": 33183.77, + "probability": 0.5312 + }, + { + "start": 33185.05, + "end": 33187.11, + "probability": 0.6013 + }, + { + "start": 33187.23, + "end": 33189.89, + "probability": 0.4455 + }, + { + "start": 33206.95, + "end": 33206.95, + "probability": 0.4727 + }, + { + "start": 33206.95, + "end": 33210.11, + "probability": 0.2536 + }, + { + "start": 33210.81, + "end": 33214.09, + "probability": 0.9158 + }, + { + "start": 33214.37, + "end": 33216.71, + "probability": 0.9104 + }, + { + "start": 33216.87, + "end": 33218.61, + "probability": 0.7195 + }, + { + "start": 33219.01, + "end": 33220.75, + "probability": 0.9277 + }, + { + "start": 33220.93, + "end": 33222.03, + "probability": 0.859 + }, + { + "start": 33222.65, + "end": 33224.29, + "probability": 0.4117 + }, + { + "start": 33226.13, + "end": 33231.11, + "probability": 0.9766 + }, + { + "start": 33232.81, + "end": 33233.65, + "probability": 0.6508 + }, + { + "start": 33233.97, + "end": 33234.75, + "probability": 0.8068 + }, + { + "start": 33234.99, + "end": 33236.17, + "probability": 0.6795 + }, + { + "start": 33238.2, + "end": 33241.11, + "probability": 0.5863 + }, + { + "start": 33241.51, + "end": 33242.55, + "probability": 0.3736 + }, + { + "start": 33242.73, + "end": 33244.35, + "probability": 0.8789 + }, + { + "start": 33246.07, + "end": 33246.53, + "probability": 0.3262 + }, + { + "start": 33246.77, + "end": 33250.67, + "probability": 0.6191 + }, + { + "start": 33250.79, + "end": 33250.85, + "probability": 0.7454 + }, + { + "start": 33250.95, + "end": 33250.95, + "probability": 0.6063 + }, + { + "start": 33251.13, + "end": 33252.71, + "probability": 0.5573 + }, + { + "start": 33252.77, + "end": 33256.97, + "probability": 0.8535 + }, + { + "start": 33257.11, + "end": 33258.31, + "probability": 0.7016 + }, + { + "start": 33258.43, + "end": 33259.57, + "probability": 0.5559 + }, + { + "start": 33261.35, + "end": 33262.23, + "probability": 0.0956 + }, + { + "start": 33263.21, + "end": 33263.81, + "probability": 0.6692 + }, + { + "start": 33264.97, + "end": 33266.34, + "probability": 0.0464 + }, + { + "start": 33269.11, + "end": 33271.49, + "probability": 0.0821 + }, + { + "start": 33271.49, + "end": 33274.85, + "probability": 0.537 + }, + { + "start": 33275.03, + "end": 33277.31, + "probability": 0.4471 + }, + { + "start": 33277.35, + "end": 33279.05, + "probability": 0.0828 + }, + { + "start": 33279.37, + "end": 33281.39, + "probability": 0.9273 + }, + { + "start": 33281.95, + "end": 33285.79, + "probability": 0.1544 + }, + { + "start": 33287.31, + "end": 33288.07, + "probability": 0.204 + }, + { + "start": 33288.07, + "end": 33288.98, + "probability": 0.0297 + }, + { + "start": 33289.49, + "end": 33289.59, + "probability": 0.2053 + }, + { + "start": 33289.59, + "end": 33290.85, + "probability": 0.1695 + }, + { + "start": 33290.97, + "end": 33295.45, + "probability": 0.0152 + }, + { + "start": 33295.45, + "end": 33295.66, + "probability": 0.0681 + }, + { + "start": 33299.13, + "end": 33300.09, + "probability": 0.2481 + }, + { + "start": 33300.41, + "end": 33301.53, + "probability": 0.035 + }, + { + "start": 33360.0, + "end": 33360.0, + "probability": 0.0 + }, + { + "start": 33360.0, + "end": 33360.0, + "probability": 0.0 + }, + { + "start": 33360.12, + "end": 33360.5, + "probability": 0.0242 + }, + { + "start": 33360.5, + "end": 33364.04, + "probability": 0.5869 + }, + { + "start": 33364.2, + "end": 33370.46, + "probability": 0.3916 + }, + { + "start": 33370.48, + "end": 33372.1, + "probability": 0.7459 + }, + { + "start": 33372.62, + "end": 33374.88, + "probability": 0.973 + }, + { + "start": 33375.74, + "end": 33379.02, + "probability": 0.7523 + }, + { + "start": 33379.82, + "end": 33381.56, + "probability": 0.8018 + }, + { + "start": 33387.04, + "end": 33390.92, + "probability": 0.7668 + }, + { + "start": 33391.56, + "end": 33393.42, + "probability": 0.9231 + }, + { + "start": 33393.54, + "end": 33394.06, + "probability": 0.7189 + }, + { + "start": 33394.24, + "end": 33400.52, + "probability": 0.5351 + }, + { + "start": 33400.74, + "end": 33402.66, + "probability": 0.045 + }, + { + "start": 33404.19, + "end": 33411.12, + "probability": 0.5617 + }, + { + "start": 33412.67, + "end": 33415.72, + "probability": 0.617 + }, + { + "start": 33415.9, + "end": 33416.98, + "probability": 0.5383 + }, + { + "start": 33417.62, + "end": 33418.14, + "probability": 0.8832 + }, + { + "start": 33418.16, + "end": 33420.45, + "probability": 0.8466 + }, + { + "start": 33420.96, + "end": 33424.66, + "probability": 0.9142 + }, + { + "start": 33425.44, + "end": 33427.3, + "probability": 0.9471 + }, + { + "start": 33427.94, + "end": 33429.72, + "probability": 0.7265 + }, + { + "start": 33429.9, + "end": 33432.33, + "probability": 0.9897 + }, + { + "start": 33432.79, + "end": 33437.15, + "probability": 0.8509 + }, + { + "start": 33437.49, + "end": 33438.11, + "probability": 0.6522 + }, + { + "start": 33438.43, + "end": 33440.81, + "probability": 0.8426 + }, + { + "start": 33441.79, + "end": 33446.31, + "probability": 0.9899 + }, + { + "start": 33446.45, + "end": 33451.75, + "probability": 0.7777 + }, + { + "start": 33451.75, + "end": 33455.35, + "probability": 0.9348 + }, + { + "start": 33455.35, + "end": 33459.47, + "probability": 0.702 + }, + { + "start": 33459.47, + "end": 33464.95, + "probability": 0.6573 + }, + { + "start": 33464.95, + "end": 33465.71, + "probability": 0.4715 + }, + { + "start": 33466.19, + "end": 33469.77, + "probability": 0.8369 + }, + { + "start": 33470.21, + "end": 33471.31, + "probability": 0.7005 + }, + { + "start": 33471.43, + "end": 33472.43, + "probability": 0.8431 + }, + { + "start": 33479.25, + "end": 33480.39, + "probability": 0.5524 + }, + { + "start": 33480.47, + "end": 33481.31, + "probability": 0.8254 + }, + { + "start": 33494.99, + "end": 33497.29, + "probability": 0.3302 + }, + { + "start": 33497.39, + "end": 33503.25, + "probability": 0.1812 + }, + { + "start": 33503.54, + "end": 33504.71, + "probability": 0.0443 + }, + { + "start": 33507.59, + "end": 33509.19, + "probability": 0.0488 + }, + { + "start": 33525.05, + "end": 33526.49, + "probability": 0.0335 + }, + { + "start": 33536.57, + "end": 33539.27, + "probability": 0.0375 + }, + { + "start": 33539.33, + "end": 33541.05, + "probability": 0.4409 + }, + { + "start": 33542.05, + "end": 33542.65, + "probability": 0.0594 + }, + { + "start": 33543.69, + "end": 33544.85, + "probability": 0.1605 + }, + { + "start": 33546.19, + "end": 33548.23, + "probability": 0.0742 + }, + { + "start": 33548.23, + "end": 33548.41, + "probability": 0.0604 + }, + { + "start": 33549.09, + "end": 33551.63, + "probability": 0.1095 + }, + { + "start": 33551.63, + "end": 33553.95, + "probability": 0.04 + }, + { + "start": 33554.41, + "end": 33555.07, + "probability": 0.0364 + }, + { + "start": 33555.07, + "end": 33555.65, + "probability": 0.1244 + }, + { + "start": 33555.85, + "end": 33556.13, + "probability": 0.1265 + }, + { + "start": 33556.13, + "end": 33556.13, + "probability": 0.1046 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33557.0, + "end": 33557.0, + "probability": 0.0 + }, + { + "start": 33558.06, + "end": 33563.16, + "probability": 0.9086 + }, + { + "start": 33568.44, + "end": 33571.52, + "probability": 0.2607 + }, + { + "start": 33571.96, + "end": 33575.94, + "probability": 0.4701 + }, + { + "start": 33575.98, + "end": 33578.38, + "probability": 0.8878 + }, + { + "start": 33609.46, + "end": 33610.8, + "probability": 0.2754 + } + ], + "segments_count": 11433, + "words_count": 56425, + "avg_words_per_segment": 4.9353, + "avg_segment_duration": 2.0868, + "avg_words_per_minute": 100.6944, + "plenum_id": "47041", + "duration": 33621.52, + "title": null, + "plenum_date": "2015-11-23" +} \ No newline at end of file