diff --git "a/104433/metadata.json" "b/104433/metadata.json" new file mode 100644--- /dev/null +++ "b/104433/metadata.json" @@ -0,0 +1,36397 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104433", + "quality_score": 0.8894, + "per_segment_quality_scores": [ + { + "start": 117.0, + "end": 117.0, + "probability": 0.0 + }, + { + "start": 117.0, + "end": 117.0, + "probability": 0.0 + }, + { + "start": 118.16, + "end": 119.54, + "probability": 0.0709 + }, + { + "start": 120.14, + "end": 127.32, + "probability": 0.8984 + }, + { + "start": 127.6, + "end": 128.68, + "probability": 0.859 + }, + { + "start": 129.26, + "end": 129.36, + "probability": 0.9351 + }, + { + "start": 130.64, + "end": 131.0, + "probability": 0.7691 + }, + { + "start": 132.72, + "end": 135.64, + "probability": 0.8534 + }, + { + "start": 136.58, + "end": 139.22, + "probability": 0.9607 + }, + { + "start": 139.84, + "end": 140.78, + "probability": 0.9174 + }, + { + "start": 144.34, + "end": 147.96, + "probability": 0.6118 + }, + { + "start": 148.58, + "end": 149.78, + "probability": 0.5023 + }, + { + "start": 150.14, + "end": 153.02, + "probability": 0.2893 + }, + { + "start": 153.14, + "end": 155.34, + "probability": 0.974 + }, + { + "start": 156.2, + "end": 158.04, + "probability": 0.7847 + }, + { + "start": 164.56, + "end": 166.94, + "probability": 0.0169 + }, + { + "start": 168.6, + "end": 171.4, + "probability": 0.2366 + }, + { + "start": 171.42, + "end": 174.56, + "probability": 0.2255 + }, + { + "start": 174.72, + "end": 176.38, + "probability": 0.3369 + }, + { + "start": 177.16, + "end": 179.1, + "probability": 0.054 + }, + { + "start": 179.68, + "end": 181.76, + "probability": 0.1679 + }, + { + "start": 182.46, + "end": 184.46, + "probability": 0.065 + }, + { + "start": 185.44, + "end": 187.96, + "probability": 0.0374 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 318.0, + "end": 318.0, + "probability": 0.0 + }, + { + "start": 323.18, + "end": 323.56, + "probability": 0.7401 + }, + { + "start": 324.46, + "end": 325.42, + "probability": 0.7458 + }, + { + "start": 325.96, + "end": 328.62, + "probability": 0.9664 + }, + { + "start": 329.4, + "end": 333.82, + "probability": 0.9888 + }, + { + "start": 333.82, + "end": 338.7, + "probability": 0.9916 + }, + { + "start": 339.28, + "end": 342.28, + "probability": 0.8959 + }, + { + "start": 343.1, + "end": 345.42, + "probability": 0.9844 + }, + { + "start": 346.38, + "end": 349.2, + "probability": 0.9174 + }, + { + "start": 350.08, + "end": 350.94, + "probability": 0.8505 + }, + { + "start": 351.56, + "end": 356.66, + "probability": 0.983 + }, + { + "start": 357.46, + "end": 363.92, + "probability": 0.9977 + }, + { + "start": 364.64, + "end": 369.54, + "probability": 0.9682 + }, + { + "start": 370.28, + "end": 371.72, + "probability": 0.8936 + }, + { + "start": 372.58, + "end": 374.3, + "probability": 0.971 + }, + { + "start": 375.02, + "end": 379.86, + "probability": 0.991 + }, + { + "start": 380.62, + "end": 384.1, + "probability": 0.9909 + }, + { + "start": 384.7, + "end": 387.34, + "probability": 0.9751 + }, + { + "start": 387.76, + "end": 393.28, + "probability": 0.9966 + }, + { + "start": 394.08, + "end": 395.28, + "probability": 0.7482 + }, + { + "start": 395.96, + "end": 402.94, + "probability": 0.9989 + }, + { + "start": 403.68, + "end": 404.46, + "probability": 0.8914 + }, + { + "start": 405.06, + "end": 408.22, + "probability": 0.9922 + }, + { + "start": 409.14, + "end": 411.24, + "probability": 0.9841 + }, + { + "start": 412.28, + "end": 416.6, + "probability": 0.9756 + }, + { + "start": 416.6, + "end": 421.72, + "probability": 0.9989 + }, + { + "start": 422.6, + "end": 427.84, + "probability": 0.9283 + }, + { + "start": 428.68, + "end": 432.48, + "probability": 0.9449 + }, + { + "start": 433.62, + "end": 434.18, + "probability": 0.9634 + }, + { + "start": 434.86, + "end": 441.78, + "probability": 0.9921 + }, + { + "start": 442.52, + "end": 443.78, + "probability": 0.9346 + }, + { + "start": 444.72, + "end": 449.9, + "probability": 0.9979 + }, + { + "start": 452.36, + "end": 454.9, + "probability": 0.9967 + }, + { + "start": 455.64, + "end": 457.14, + "probability": 0.8707 + }, + { + "start": 457.94, + "end": 460.52, + "probability": 0.9244 + }, + { + "start": 461.76, + "end": 463.12, + "probability": 0.8291 + }, + { + "start": 463.92, + "end": 469.34, + "probability": 0.9927 + }, + { + "start": 470.24, + "end": 471.3, + "probability": 0.9614 + }, + { + "start": 471.8, + "end": 474.42, + "probability": 0.9936 + }, + { + "start": 474.58, + "end": 476.3, + "probability": 0.9933 + }, + { + "start": 476.74, + "end": 479.76, + "probability": 0.9842 + }, + { + "start": 480.58, + "end": 485.24, + "probability": 0.9731 + }, + { + "start": 485.98, + "end": 487.62, + "probability": 0.8417 + }, + { + "start": 488.41, + "end": 496.06, + "probability": 0.9396 + }, + { + "start": 496.66, + "end": 501.26, + "probability": 0.9396 + }, + { + "start": 501.94, + "end": 507.18, + "probability": 0.9066 + }, + { + "start": 507.18, + "end": 510.46, + "probability": 0.9981 + }, + { + "start": 511.52, + "end": 515.34, + "probability": 0.9943 + }, + { + "start": 515.42, + "end": 519.32, + "probability": 0.9849 + }, + { + "start": 520.02, + "end": 523.84, + "probability": 0.9985 + }, + { + "start": 524.76, + "end": 526.32, + "probability": 0.9393 + }, + { + "start": 527.0, + "end": 529.84, + "probability": 0.9504 + }, + { + "start": 530.46, + "end": 532.96, + "probability": 0.9987 + }, + { + "start": 533.72, + "end": 535.4, + "probability": 0.9753 + }, + { + "start": 536.66, + "end": 539.16, + "probability": 0.9805 + }, + { + "start": 539.92, + "end": 541.84, + "probability": 0.8597 + }, + { + "start": 542.04, + "end": 544.24, + "probability": 0.9856 + }, + { + "start": 545.02, + "end": 547.86, + "probability": 0.9367 + }, + { + "start": 548.68, + "end": 553.06, + "probability": 0.9519 + }, + { + "start": 554.12, + "end": 559.08, + "probability": 0.999 + }, + { + "start": 559.08, + "end": 563.74, + "probability": 0.9968 + }, + { + "start": 564.48, + "end": 568.28, + "probability": 0.984 + }, + { + "start": 569.12, + "end": 573.28, + "probability": 0.9958 + }, + { + "start": 573.88, + "end": 576.24, + "probability": 0.9382 + }, + { + "start": 577.12, + "end": 578.66, + "probability": 0.9976 + }, + { + "start": 579.3, + "end": 580.36, + "probability": 0.9811 + }, + { + "start": 581.44, + "end": 582.62, + "probability": 0.848 + }, + { + "start": 583.46, + "end": 587.56, + "probability": 0.9973 + }, + { + "start": 588.26, + "end": 592.0, + "probability": 0.9969 + }, + { + "start": 592.0, + "end": 594.94, + "probability": 0.999 + }, + { + "start": 596.28, + "end": 596.64, + "probability": 0.6486 + }, + { + "start": 598.2, + "end": 601.38, + "probability": 0.9803 + }, + { + "start": 602.32, + "end": 602.68, + "probability": 0.513 + }, + { + "start": 602.86, + "end": 604.68, + "probability": 0.7745 + }, + { + "start": 605.18, + "end": 608.1, + "probability": 0.9172 + }, + { + "start": 608.82, + "end": 614.12, + "probability": 0.9777 + }, + { + "start": 614.82, + "end": 617.58, + "probability": 0.9904 + }, + { + "start": 619.78, + "end": 621.06, + "probability": 0.8256 + }, + { + "start": 621.48, + "end": 624.16, + "probability": 0.9751 + }, + { + "start": 632.94, + "end": 636.6, + "probability": 0.9966 + }, + { + "start": 636.6, + "end": 639.42, + "probability": 0.9984 + }, + { + "start": 640.1, + "end": 640.72, + "probability": 0.5976 + }, + { + "start": 641.62, + "end": 645.3, + "probability": 0.9922 + }, + { + "start": 645.88, + "end": 647.12, + "probability": 0.9635 + }, + { + "start": 648.12, + "end": 649.06, + "probability": 0.5158 + }, + { + "start": 655.82, + "end": 656.78, + "probability": 0.209 + }, + { + "start": 659.88, + "end": 665.2, + "probability": 0.9835 + }, + { + "start": 665.38, + "end": 666.2, + "probability": 0.8089 + }, + { + "start": 666.24, + "end": 666.94, + "probability": 0.9122 + }, + { + "start": 695.48, + "end": 697.43, + "probability": 0.7281 + }, + { + "start": 699.26, + "end": 699.96, + "probability": 0.9549 + }, + { + "start": 700.66, + "end": 702.58, + "probability": 0.8909 + }, + { + "start": 703.62, + "end": 704.14, + "probability": 0.6063 + }, + { + "start": 704.4, + "end": 706.94, + "probability": 0.9799 + }, + { + "start": 707.72, + "end": 708.98, + "probability": 0.9656 + }, + { + "start": 709.6, + "end": 711.48, + "probability": 0.9564 + }, + { + "start": 713.44, + "end": 714.31, + "probability": 0.9265 + }, + { + "start": 716.52, + "end": 717.36, + "probability": 0.9978 + }, + { + "start": 718.02, + "end": 718.96, + "probability": 0.981 + }, + { + "start": 719.96, + "end": 722.62, + "probability": 0.9375 + }, + { + "start": 723.9, + "end": 725.62, + "probability": 0.8789 + }, + { + "start": 726.66, + "end": 734.38, + "probability": 0.9031 + }, + { + "start": 736.56, + "end": 741.42, + "probability": 0.9955 + }, + { + "start": 742.22, + "end": 746.5, + "probability": 0.9731 + }, + { + "start": 746.5, + "end": 748.94, + "probability": 0.9961 + }, + { + "start": 750.16, + "end": 752.62, + "probability": 0.993 + }, + { + "start": 753.5, + "end": 756.5, + "probability": 0.9183 + }, + { + "start": 757.24, + "end": 761.4, + "probability": 0.9399 + }, + { + "start": 762.76, + "end": 763.94, + "probability": 0.8696 + }, + { + "start": 764.74, + "end": 765.88, + "probability": 0.8141 + }, + { + "start": 766.8, + "end": 767.99, + "probability": 0.8523 + }, + { + "start": 770.26, + "end": 772.96, + "probability": 0.9598 + }, + { + "start": 773.72, + "end": 777.34, + "probability": 0.9964 + }, + { + "start": 777.86, + "end": 780.12, + "probability": 0.9955 + }, + { + "start": 781.56, + "end": 782.84, + "probability": 0.8706 + }, + { + "start": 782.94, + "end": 784.54, + "probability": 0.9191 + }, + { + "start": 784.68, + "end": 785.66, + "probability": 0.9047 + }, + { + "start": 785.84, + "end": 786.34, + "probability": 0.9836 + }, + { + "start": 786.5, + "end": 786.98, + "probability": 0.8955 + }, + { + "start": 788.12, + "end": 793.0, + "probability": 0.9238 + }, + { + "start": 795.94, + "end": 796.82, + "probability": 0.9604 + }, + { + "start": 797.58, + "end": 799.6, + "probability": 0.6284 + }, + { + "start": 801.04, + "end": 803.64, + "probability": 0.5559 + }, + { + "start": 804.54, + "end": 805.98, + "probability": 0.9021 + }, + { + "start": 807.32, + "end": 807.82, + "probability": 0.9711 + }, + { + "start": 809.14, + "end": 810.4, + "probability": 0.9865 + }, + { + "start": 811.32, + "end": 812.04, + "probability": 0.8068 + }, + { + "start": 812.08, + "end": 817.2, + "probability": 0.99 + }, + { + "start": 818.2, + "end": 822.44, + "probability": 0.9985 + }, + { + "start": 823.34, + "end": 827.12, + "probability": 0.9829 + }, + { + "start": 828.1, + "end": 828.48, + "probability": 0.9685 + }, + { + "start": 829.44, + "end": 832.96, + "probability": 0.6873 + }, + { + "start": 833.48, + "end": 836.08, + "probability": 0.948 + }, + { + "start": 836.78, + "end": 838.54, + "probability": 0.9878 + }, + { + "start": 839.64, + "end": 840.24, + "probability": 0.7181 + }, + { + "start": 840.78, + "end": 841.42, + "probability": 0.7837 + }, + { + "start": 842.28, + "end": 845.01, + "probability": 0.9775 + }, + { + "start": 846.4, + "end": 847.44, + "probability": 0.999 + }, + { + "start": 848.56, + "end": 849.18, + "probability": 0.9763 + }, + { + "start": 851.28, + "end": 852.3, + "probability": 0.9964 + }, + { + "start": 855.08, + "end": 857.94, + "probability": 0.9921 + }, + { + "start": 858.3, + "end": 861.08, + "probability": 0.6638 + }, + { + "start": 862.8, + "end": 865.26, + "probability": 0.9984 + }, + { + "start": 865.72, + "end": 867.98, + "probability": 0.9943 + }, + { + "start": 868.74, + "end": 869.6, + "probability": 0.9993 + }, + { + "start": 870.58, + "end": 872.3, + "probability": 0.9964 + }, + { + "start": 873.32, + "end": 876.96, + "probability": 0.9983 + }, + { + "start": 877.88, + "end": 878.98, + "probability": 0.9828 + }, + { + "start": 879.34, + "end": 881.96, + "probability": 0.9929 + }, + { + "start": 883.06, + "end": 883.34, + "probability": 0.7903 + }, + { + "start": 883.36, + "end": 886.42, + "probability": 0.9971 + }, + { + "start": 886.88, + "end": 889.5, + "probability": 0.9956 + }, + { + "start": 890.32, + "end": 891.86, + "probability": 0.998 + }, + { + "start": 892.7, + "end": 894.92, + "probability": 0.9888 + }, + { + "start": 896.78, + "end": 901.74, + "probability": 0.9936 + }, + { + "start": 902.08, + "end": 902.5, + "probability": 0.9692 + }, + { + "start": 903.06, + "end": 904.14, + "probability": 0.9824 + }, + { + "start": 905.28, + "end": 906.54, + "probability": 0.8502 + }, + { + "start": 907.12, + "end": 909.8, + "probability": 0.9896 + }, + { + "start": 910.54, + "end": 912.48, + "probability": 0.9961 + }, + { + "start": 913.72, + "end": 916.15, + "probability": 0.9961 + }, + { + "start": 916.78, + "end": 917.36, + "probability": 0.8048 + }, + { + "start": 917.48, + "end": 922.4, + "probability": 0.9932 + }, + { + "start": 923.86, + "end": 924.5, + "probability": 0.844 + }, + { + "start": 924.6, + "end": 927.52, + "probability": 0.6782 + }, + { + "start": 927.8, + "end": 929.88, + "probability": 0.8247 + }, + { + "start": 930.48, + "end": 933.22, + "probability": 0.7769 + }, + { + "start": 933.78, + "end": 935.08, + "probability": 0.9818 + }, + { + "start": 935.98, + "end": 937.44, + "probability": 0.8707 + }, + { + "start": 938.0, + "end": 941.12, + "probability": 0.9814 + }, + { + "start": 941.88, + "end": 946.86, + "probability": 0.9867 + }, + { + "start": 947.2, + "end": 949.58, + "probability": 0.9677 + }, + { + "start": 951.56, + "end": 952.33, + "probability": 0.9322 + }, + { + "start": 953.54, + "end": 956.1, + "probability": 0.9746 + }, + { + "start": 957.22, + "end": 959.1, + "probability": 0.8885 + }, + { + "start": 960.22, + "end": 964.4, + "probability": 0.8486 + }, + { + "start": 966.32, + "end": 968.7, + "probability": 0.9862 + }, + { + "start": 970.24, + "end": 973.28, + "probability": 0.8578 + }, + { + "start": 974.08, + "end": 976.7, + "probability": 0.9133 + }, + { + "start": 977.54, + "end": 980.24, + "probability": 0.9916 + }, + { + "start": 980.82, + "end": 981.68, + "probability": 0.9696 + }, + { + "start": 982.4, + "end": 983.64, + "probability": 0.9621 + }, + { + "start": 984.08, + "end": 986.32, + "probability": 0.9587 + }, + { + "start": 987.08, + "end": 990.52, + "probability": 0.996 + }, + { + "start": 990.6, + "end": 991.14, + "probability": 0.9429 + }, + { + "start": 991.8, + "end": 994.17, + "probability": 0.8181 + }, + { + "start": 994.78, + "end": 996.98, + "probability": 0.8064 + }, + { + "start": 997.26, + "end": 998.64, + "probability": 0.8977 + }, + { + "start": 998.8, + "end": 999.12, + "probability": 0.642 + }, + { + "start": 1002.0, + "end": 1003.42, + "probability": 0.9665 + }, + { + "start": 1005.28, + "end": 1007.44, + "probability": 0.98 + }, + { + "start": 1008.56, + "end": 1009.22, + "probability": 0.7578 + }, + { + "start": 1009.54, + "end": 1012.64, + "probability": 0.9459 + }, + { + "start": 1012.78, + "end": 1014.26, + "probability": 0.9695 + }, + { + "start": 1014.46, + "end": 1015.34, + "probability": 0.9725 + }, + { + "start": 1015.9, + "end": 1016.98, + "probability": 0.9894 + }, + { + "start": 1018.36, + "end": 1020.84, + "probability": 0.9375 + }, + { + "start": 1021.8, + "end": 1022.32, + "probability": 0.5693 + }, + { + "start": 1023.62, + "end": 1024.48, + "probability": 0.7154 + }, + { + "start": 1026.12, + "end": 1029.06, + "probability": 0.9882 + }, + { + "start": 1030.0, + "end": 1033.02, + "probability": 0.7274 + }, + { + "start": 1034.34, + "end": 1037.96, + "probability": 0.981 + }, + { + "start": 1039.64, + "end": 1041.26, + "probability": 0.9993 + }, + { + "start": 1042.14, + "end": 1043.54, + "probability": 0.9714 + }, + { + "start": 1044.18, + "end": 1047.6, + "probability": 0.8914 + }, + { + "start": 1048.22, + "end": 1048.72, + "probability": 0.6552 + }, + { + "start": 1049.44, + "end": 1050.2, + "probability": 0.98 + }, + { + "start": 1052.16, + "end": 1053.82, + "probability": 0.9928 + }, + { + "start": 1054.56, + "end": 1056.54, + "probability": 0.8591 + }, + { + "start": 1058.04, + "end": 1058.82, + "probability": 0.7484 + }, + { + "start": 1059.58, + "end": 1061.89, + "probability": 0.988 + }, + { + "start": 1063.2, + "end": 1064.16, + "probability": 0.8086 + }, + { + "start": 1065.52, + "end": 1066.14, + "probability": 0.8104 + }, + { + "start": 1066.26, + "end": 1070.22, + "probability": 0.9915 + }, + { + "start": 1071.7, + "end": 1072.44, + "probability": 0.843 + }, + { + "start": 1072.96, + "end": 1077.04, + "probability": 0.9846 + }, + { + "start": 1077.8, + "end": 1078.94, + "probability": 0.9538 + }, + { + "start": 1079.64, + "end": 1080.12, + "probability": 0.9985 + }, + { + "start": 1081.56, + "end": 1082.0, + "probability": 0.9129 + }, + { + "start": 1083.14, + "end": 1084.0, + "probability": 0.7997 + }, + { + "start": 1086.14, + "end": 1087.14, + "probability": 0.9258 + }, + { + "start": 1088.02, + "end": 1093.92, + "probability": 0.9724 + }, + { + "start": 1094.12, + "end": 1096.56, + "probability": 0.9335 + }, + { + "start": 1096.98, + "end": 1097.72, + "probability": 0.9795 + }, + { + "start": 1097.84, + "end": 1098.33, + "probability": 0.9043 + }, + { + "start": 1098.7, + "end": 1102.5, + "probability": 0.9971 + }, + { + "start": 1103.22, + "end": 1104.18, + "probability": 0.9976 + }, + { + "start": 1107.36, + "end": 1109.58, + "probability": 0.9751 + }, + { + "start": 1110.74, + "end": 1111.18, + "probability": 0.7211 + }, + { + "start": 1116.96, + "end": 1117.92, + "probability": 0.983 + }, + { + "start": 1118.8, + "end": 1120.68, + "probability": 0.9539 + }, + { + "start": 1121.3, + "end": 1122.7, + "probability": 0.7852 + }, + { + "start": 1123.44, + "end": 1125.0, + "probability": 0.9956 + }, + { + "start": 1126.6, + "end": 1129.38, + "probability": 0.8599 + }, + { + "start": 1130.48, + "end": 1130.7, + "probability": 0.7676 + }, + { + "start": 1131.88, + "end": 1132.4, + "probability": 0.786 + }, + { + "start": 1133.0, + "end": 1133.5, + "probability": 0.7333 + }, + { + "start": 1135.18, + "end": 1136.3, + "probability": 0.8888 + }, + { + "start": 1136.9, + "end": 1138.02, + "probability": 0.7198 + }, + { + "start": 1139.64, + "end": 1143.18, + "probability": 0.9453 + }, + { + "start": 1145.0, + "end": 1147.02, + "probability": 0.8995 + }, + { + "start": 1147.8, + "end": 1148.92, + "probability": 0.9932 + }, + { + "start": 1148.94, + "end": 1149.66, + "probability": 0.8756 + }, + { + "start": 1149.7, + "end": 1150.02, + "probability": 0.8612 + }, + { + "start": 1150.42, + "end": 1151.68, + "probability": 0.9174 + }, + { + "start": 1152.16, + "end": 1154.32, + "probability": 0.9883 + }, + { + "start": 1154.66, + "end": 1155.86, + "probability": 0.7996 + }, + { + "start": 1155.96, + "end": 1156.12, + "probability": 0.4871 + }, + { + "start": 1156.76, + "end": 1157.56, + "probability": 0.9233 + }, + { + "start": 1160.84, + "end": 1161.94, + "probability": 0.9778 + }, + { + "start": 1162.9, + "end": 1164.1, + "probability": 0.6756 + }, + { + "start": 1165.54, + "end": 1166.5, + "probability": 0.6532 + }, + { + "start": 1166.58, + "end": 1166.94, + "probability": 0.8466 + }, + { + "start": 1167.1, + "end": 1168.16, + "probability": 0.8284 + }, + { + "start": 1168.3, + "end": 1169.38, + "probability": 0.8826 + }, + { + "start": 1169.42, + "end": 1170.4, + "probability": 0.9725 + }, + { + "start": 1170.46, + "end": 1171.08, + "probability": 0.8997 + }, + { + "start": 1172.32, + "end": 1173.42, + "probability": 0.9155 + }, + { + "start": 1174.2, + "end": 1175.58, + "probability": 0.8422 + }, + { + "start": 1175.82, + "end": 1175.94, + "probability": 0.0217 + }, + { + "start": 1176.08, + "end": 1176.24, + "probability": 0.3777 + }, + { + "start": 1176.3, + "end": 1177.84, + "probability": 0.7338 + }, + { + "start": 1178.5, + "end": 1180.48, + "probability": 0.9438 + }, + { + "start": 1181.1, + "end": 1182.4, + "probability": 0.9893 + }, + { + "start": 1188.6, + "end": 1194.33, + "probability": 0.9888 + }, + { + "start": 1200.24, + "end": 1203.06, + "probability": 0.6698 + }, + { + "start": 1205.1, + "end": 1205.96, + "probability": 0.9243 + }, + { + "start": 1206.66, + "end": 1207.08, + "probability": 0.9417 + }, + { + "start": 1208.02, + "end": 1211.04, + "probability": 0.7496 + }, + { + "start": 1212.2, + "end": 1215.28, + "probability": 0.9451 + }, + { + "start": 1215.96, + "end": 1219.04, + "probability": 0.9248 + }, + { + "start": 1220.0, + "end": 1220.94, + "probability": 0.9252 + }, + { + "start": 1225.34, + "end": 1226.48, + "probability": 0.8701 + }, + { + "start": 1227.5, + "end": 1229.54, + "probability": 0.9878 + }, + { + "start": 1230.58, + "end": 1231.01, + "probability": 0.9571 + }, + { + "start": 1232.12, + "end": 1233.52, + "probability": 0.9886 + }, + { + "start": 1233.96, + "end": 1234.53, + "probability": 0.9933 + }, + { + "start": 1235.02, + "end": 1238.2, + "probability": 0.9904 + }, + { + "start": 1239.02, + "end": 1240.59, + "probability": 0.9905 + }, + { + "start": 1241.38, + "end": 1247.06, + "probability": 0.9863 + }, + { + "start": 1248.3, + "end": 1248.88, + "probability": 0.9653 + }, + { + "start": 1250.3, + "end": 1251.28, + "probability": 0.7004 + }, + { + "start": 1253.6, + "end": 1254.84, + "probability": 0.5132 + }, + { + "start": 1255.58, + "end": 1257.02, + "probability": 0.9057 + }, + { + "start": 1257.56, + "end": 1259.44, + "probability": 0.989 + }, + { + "start": 1260.72, + "end": 1261.62, + "probability": 0.7659 + }, + { + "start": 1261.66, + "end": 1262.54, + "probability": 0.8925 + }, + { + "start": 1262.64, + "end": 1263.38, + "probability": 0.7723 + }, + { + "start": 1263.38, + "end": 1265.24, + "probability": 0.5825 + }, + { + "start": 1267.2, + "end": 1267.76, + "probability": 0.2658 + }, + { + "start": 1269.78, + "end": 1270.8, + "probability": 0.8169 + }, + { + "start": 1272.26, + "end": 1273.04, + "probability": 0.5732 + }, + { + "start": 1274.5, + "end": 1276.62, + "probability": 0.867 + }, + { + "start": 1277.54, + "end": 1279.52, + "probability": 0.8979 + }, + { + "start": 1281.14, + "end": 1281.72, + "probability": 0.9092 + }, + { + "start": 1283.12, + "end": 1284.8, + "probability": 0.9658 + }, + { + "start": 1285.92, + "end": 1289.78, + "probability": 0.9412 + }, + { + "start": 1289.9, + "end": 1290.28, + "probability": 0.7988 + }, + { + "start": 1292.18, + "end": 1294.3, + "probability": 0.8861 + }, + { + "start": 1300.0, + "end": 1303.92, + "probability": 0.9894 + }, + { + "start": 1303.94, + "end": 1304.46, + "probability": 0.8526 + }, + { + "start": 1323.38, + "end": 1326.04, + "probability": 0.8573 + }, + { + "start": 1327.08, + "end": 1328.24, + "probability": 0.8586 + }, + { + "start": 1329.88, + "end": 1331.4, + "probability": 0.9255 + }, + { + "start": 1331.92, + "end": 1333.86, + "probability": 0.9802 + }, + { + "start": 1334.96, + "end": 1335.62, + "probability": 0.999 + }, + { + "start": 1336.32, + "end": 1337.6, + "probability": 0.8429 + }, + { + "start": 1338.92, + "end": 1340.19, + "probability": 0.9777 + }, + { + "start": 1341.56, + "end": 1342.64, + "probability": 0.9873 + }, + { + "start": 1343.34, + "end": 1344.04, + "probability": 0.9889 + }, + { + "start": 1344.64, + "end": 1345.34, + "probability": 0.9862 + }, + { + "start": 1347.36, + "end": 1347.88, + "probability": 0.6994 + }, + { + "start": 1348.78, + "end": 1351.94, + "probability": 0.917 + }, + { + "start": 1353.18, + "end": 1357.32, + "probability": 0.9973 + }, + { + "start": 1357.98, + "end": 1358.9, + "probability": 0.6251 + }, + { + "start": 1359.68, + "end": 1360.22, + "probability": 0.7274 + }, + { + "start": 1361.26, + "end": 1363.16, + "probability": 0.9185 + }, + { + "start": 1363.92, + "end": 1364.98, + "probability": 0.955 + }, + { + "start": 1365.76, + "end": 1367.94, + "probability": 0.9982 + }, + { + "start": 1369.0, + "end": 1370.82, + "probability": 0.8923 + }, + { + "start": 1372.08, + "end": 1373.16, + "probability": 0.979 + }, + { + "start": 1375.26, + "end": 1377.48, + "probability": 0.964 + }, + { + "start": 1377.64, + "end": 1378.4, + "probability": 0.7867 + }, + { + "start": 1379.54, + "end": 1382.76, + "probability": 0.981 + }, + { + "start": 1384.24, + "end": 1385.52, + "probability": 0.9884 + }, + { + "start": 1386.92, + "end": 1388.76, + "probability": 0.6337 + }, + { + "start": 1389.98, + "end": 1390.94, + "probability": 0.6578 + }, + { + "start": 1391.52, + "end": 1393.09, + "probability": 0.9446 + }, + { + "start": 1394.82, + "end": 1397.88, + "probability": 0.9779 + }, + { + "start": 1398.84, + "end": 1399.92, + "probability": 0.9553 + }, + { + "start": 1400.9, + "end": 1403.08, + "probability": 0.8095 + }, + { + "start": 1403.66, + "end": 1404.72, + "probability": 0.7853 + }, + { + "start": 1405.46, + "end": 1408.32, + "probability": 0.9766 + }, + { + "start": 1408.6, + "end": 1410.16, + "probability": 0.9885 + }, + { + "start": 1410.7, + "end": 1411.14, + "probability": 0.9355 + }, + { + "start": 1411.56, + "end": 1415.08, + "probability": 0.975 + }, + { + "start": 1416.44, + "end": 1417.16, + "probability": 0.769 + }, + { + "start": 1418.02, + "end": 1418.82, + "probability": 0.7961 + }, + { + "start": 1419.68, + "end": 1421.8, + "probability": 0.9494 + }, + { + "start": 1422.54, + "end": 1423.38, + "probability": 0.9836 + }, + { + "start": 1424.2, + "end": 1424.98, + "probability": 0.9819 + }, + { + "start": 1425.98, + "end": 1428.28, + "probability": 0.9878 + }, + { + "start": 1429.58, + "end": 1430.6, + "probability": 0.961 + }, + { + "start": 1432.3, + "end": 1433.58, + "probability": 0.8103 + }, + { + "start": 1434.42, + "end": 1435.92, + "probability": 0.6885 + }, + { + "start": 1437.22, + "end": 1438.3, + "probability": 0.9658 + }, + { + "start": 1438.9, + "end": 1442.84, + "probability": 0.9237 + }, + { + "start": 1443.58, + "end": 1446.86, + "probability": 0.9388 + }, + { + "start": 1447.42, + "end": 1448.92, + "probability": 0.9724 + }, + { + "start": 1450.16, + "end": 1451.22, + "probability": 0.9319 + }, + { + "start": 1451.36, + "end": 1451.84, + "probability": 0.5841 + }, + { + "start": 1451.98, + "end": 1452.12, + "probability": 0.844 + }, + { + "start": 1452.2, + "end": 1452.56, + "probability": 0.8384 + }, + { + "start": 1453.02, + "end": 1454.1, + "probability": 0.8635 + }, + { + "start": 1454.72, + "end": 1455.62, + "probability": 0.7719 + }, + { + "start": 1457.06, + "end": 1460.5, + "probability": 0.9927 + }, + { + "start": 1461.54, + "end": 1464.22, + "probability": 0.9952 + }, + { + "start": 1464.6, + "end": 1464.86, + "probability": 0.9195 + }, + { + "start": 1464.92, + "end": 1465.62, + "probability": 0.7858 + }, + { + "start": 1465.98, + "end": 1466.96, + "probability": 0.9747 + }, + { + "start": 1467.36, + "end": 1467.82, + "probability": 0.3573 + }, + { + "start": 1468.8, + "end": 1469.44, + "probability": 0.4785 + }, + { + "start": 1469.48, + "end": 1470.34, + "probability": 0.9299 + }, + { + "start": 1470.42, + "end": 1471.54, + "probability": 0.9474 + }, + { + "start": 1472.32, + "end": 1474.98, + "probability": 0.9178 + }, + { + "start": 1475.1, + "end": 1475.9, + "probability": 0.7451 + }, + { + "start": 1476.36, + "end": 1477.58, + "probability": 0.7907 + }, + { + "start": 1478.18, + "end": 1481.24, + "probability": 0.957 + }, + { + "start": 1481.78, + "end": 1484.02, + "probability": 0.8823 + }, + { + "start": 1484.56, + "end": 1486.84, + "probability": 0.7693 + }, + { + "start": 1486.9, + "end": 1487.88, + "probability": 0.753 + }, + { + "start": 1488.28, + "end": 1490.1, + "probability": 0.8152 + }, + { + "start": 1490.62, + "end": 1492.68, + "probability": 0.9933 + }, + { + "start": 1493.26, + "end": 1498.38, + "probability": 0.9661 + }, + { + "start": 1499.4, + "end": 1501.42, + "probability": 0.9883 + }, + { + "start": 1503.4, + "end": 1505.0, + "probability": 0.6903 + }, + { + "start": 1505.56, + "end": 1507.1, + "probability": 0.8299 + }, + { + "start": 1508.04, + "end": 1511.54, + "probability": 0.8526 + }, + { + "start": 1511.54, + "end": 1514.86, + "probability": 0.993 + }, + { + "start": 1515.56, + "end": 1518.16, + "probability": 0.9888 + }, + { + "start": 1518.78, + "end": 1519.94, + "probability": 0.7304 + }, + { + "start": 1520.02, + "end": 1521.54, + "probability": 0.8995 + }, + { + "start": 1521.68, + "end": 1524.24, + "probability": 0.9934 + }, + { + "start": 1524.58, + "end": 1527.88, + "probability": 0.9868 + }, + { + "start": 1527.88, + "end": 1530.54, + "probability": 0.9766 + }, + { + "start": 1530.62, + "end": 1531.08, + "probability": 0.5501 + }, + { + "start": 1532.08, + "end": 1533.12, + "probability": 0.8823 + }, + { + "start": 1534.2, + "end": 1535.0, + "probability": 0.9053 + }, + { + "start": 1535.7, + "end": 1538.4, + "probability": 0.9889 + }, + { + "start": 1538.48, + "end": 1539.02, + "probability": 0.9258 + }, + { + "start": 1540.76, + "end": 1541.88, + "probability": 0.7771 + }, + { + "start": 1542.18, + "end": 1546.58, + "probability": 0.9333 + }, + { + "start": 1547.68, + "end": 1548.58, + "probability": 0.8474 + }, + { + "start": 1549.3, + "end": 1552.24, + "probability": 0.9859 + }, + { + "start": 1552.82, + "end": 1554.84, + "probability": 0.9093 + }, + { + "start": 1555.8, + "end": 1556.68, + "probability": 0.8249 + }, + { + "start": 1557.9, + "end": 1560.74, + "probability": 0.9674 + }, + { + "start": 1561.64, + "end": 1568.44, + "probability": 0.9664 + }, + { + "start": 1568.44, + "end": 1571.74, + "probability": 0.9895 + }, + { + "start": 1573.06, + "end": 1574.66, + "probability": 0.8892 + }, + { + "start": 1575.38, + "end": 1576.08, + "probability": 0.7019 + }, + { + "start": 1576.74, + "end": 1579.24, + "probability": 0.9438 + }, + { + "start": 1580.14, + "end": 1582.42, + "probability": 0.9604 + }, + { + "start": 1584.22, + "end": 1586.8, + "probability": 0.968 + }, + { + "start": 1587.62, + "end": 1588.68, + "probability": 0.7473 + }, + { + "start": 1589.72, + "end": 1592.34, + "probability": 0.8123 + }, + { + "start": 1593.2, + "end": 1594.9, + "probability": 0.9444 + }, + { + "start": 1596.68, + "end": 1600.1, + "probability": 0.9605 + }, + { + "start": 1600.5, + "end": 1602.38, + "probability": 0.9722 + }, + { + "start": 1603.04, + "end": 1604.9, + "probability": 0.7732 + }, + { + "start": 1605.44, + "end": 1608.02, + "probability": 0.8979 + }, + { + "start": 1608.06, + "end": 1611.6, + "probability": 0.9131 + }, + { + "start": 1611.96, + "end": 1614.42, + "probability": 0.9652 + }, + { + "start": 1615.82, + "end": 1618.06, + "probability": 0.9915 + }, + { + "start": 1618.14, + "end": 1618.68, + "probability": 0.5923 + }, + { + "start": 1619.06, + "end": 1620.02, + "probability": 0.8212 + }, + { + "start": 1620.36, + "end": 1621.22, + "probability": 0.7355 + }, + { + "start": 1623.14, + "end": 1626.52, + "probability": 0.8404 + }, + { + "start": 1627.2, + "end": 1632.66, + "probability": 0.9858 + }, + { + "start": 1634.78, + "end": 1636.74, + "probability": 0.9038 + }, + { + "start": 1637.32, + "end": 1639.02, + "probability": 0.7931 + }, + { + "start": 1640.1, + "end": 1641.54, + "probability": 0.8707 + }, + { + "start": 1642.4, + "end": 1643.24, + "probability": 0.8529 + }, + { + "start": 1644.44, + "end": 1646.54, + "probability": 0.9166 + }, + { + "start": 1647.14, + "end": 1653.22, + "probability": 0.9866 + }, + { + "start": 1654.42, + "end": 1655.56, + "probability": 0.6556 + }, + { + "start": 1656.0, + "end": 1656.32, + "probability": 0.8067 + }, + { + "start": 1657.8, + "end": 1659.7, + "probability": 0.8971 + }, + { + "start": 1660.72, + "end": 1662.34, + "probability": 0.998 + }, + { + "start": 1663.44, + "end": 1669.2, + "probability": 0.9849 + }, + { + "start": 1670.22, + "end": 1673.38, + "probability": 0.9664 + }, + { + "start": 1673.86, + "end": 1677.08, + "probability": 0.9908 + }, + { + "start": 1678.1, + "end": 1680.85, + "probability": 0.8582 + }, + { + "start": 1682.38, + "end": 1684.5, + "probability": 0.9521 + }, + { + "start": 1684.82, + "end": 1686.28, + "probability": 0.9351 + }, + { + "start": 1687.02, + "end": 1688.6, + "probability": 0.9927 + }, + { + "start": 1688.9, + "end": 1690.4, + "probability": 0.833 + }, + { + "start": 1691.46, + "end": 1692.1, + "probability": 0.8109 + }, + { + "start": 1692.96, + "end": 1694.46, + "probability": 0.9985 + }, + { + "start": 1696.06, + "end": 1697.94, + "probability": 0.9314 + }, + { + "start": 1699.3, + "end": 1702.94, + "probability": 0.995 + }, + { + "start": 1703.88, + "end": 1704.48, + "probability": 0.8071 + }, + { + "start": 1705.0, + "end": 1707.42, + "probability": 0.9043 + }, + { + "start": 1708.3, + "end": 1709.34, + "probability": 0.9324 + }, + { + "start": 1710.34, + "end": 1715.2, + "probability": 0.9714 + }, + { + "start": 1716.72, + "end": 1719.1, + "probability": 0.6381 + }, + { + "start": 1719.46, + "end": 1719.64, + "probability": 0.8183 + }, + { + "start": 1719.7, + "end": 1720.44, + "probability": 0.9427 + }, + { + "start": 1720.56, + "end": 1721.15, + "probability": 0.8852 + }, + { + "start": 1722.22, + "end": 1724.72, + "probability": 0.9958 + }, + { + "start": 1725.7, + "end": 1727.76, + "probability": 0.7731 + }, + { + "start": 1728.68, + "end": 1731.53, + "probability": 0.9959 + }, + { + "start": 1732.88, + "end": 1735.98, + "probability": 0.9887 + }, + { + "start": 1736.98, + "end": 1739.06, + "probability": 0.8303 + }, + { + "start": 1740.54, + "end": 1741.5, + "probability": 0.918 + }, + { + "start": 1741.6, + "end": 1742.2, + "probability": 0.657 + }, + { + "start": 1742.32, + "end": 1743.22, + "probability": 0.976 + }, + { + "start": 1743.74, + "end": 1745.0, + "probability": 0.906 + }, + { + "start": 1745.72, + "end": 1748.08, + "probability": 0.9943 + }, + { + "start": 1748.84, + "end": 1749.42, + "probability": 0.6261 + }, + { + "start": 1750.42, + "end": 1752.42, + "probability": 0.9611 + }, + { + "start": 1752.82, + "end": 1756.38, + "probability": 0.9006 + }, + { + "start": 1757.34, + "end": 1760.68, + "probability": 0.9521 + }, + { + "start": 1761.68, + "end": 1765.82, + "probability": 0.9971 + }, + { + "start": 1766.4, + "end": 1768.44, + "probability": 0.9917 + }, + { + "start": 1769.18, + "end": 1771.68, + "probability": 0.991 + }, + { + "start": 1772.82, + "end": 1774.16, + "probability": 0.7408 + }, + { + "start": 1775.16, + "end": 1778.41, + "probability": 0.9827 + }, + { + "start": 1779.78, + "end": 1782.04, + "probability": 0.9111 + }, + { + "start": 1782.92, + "end": 1783.88, + "probability": 0.8823 + }, + { + "start": 1784.76, + "end": 1788.68, + "probability": 0.972 + }, + { + "start": 1788.9, + "end": 1790.06, + "probability": 0.86 + }, + { + "start": 1790.5, + "end": 1790.7, + "probability": 0.7443 + }, + { + "start": 1790.78, + "end": 1792.26, + "probability": 0.8532 + }, + { + "start": 1793.16, + "end": 1794.96, + "probability": 0.8539 + }, + { + "start": 1795.68, + "end": 1797.22, + "probability": 0.9276 + }, + { + "start": 1798.2, + "end": 1801.36, + "probability": 0.9972 + }, + { + "start": 1803.42, + "end": 1805.38, + "probability": 0.5561 + }, + { + "start": 1806.48, + "end": 1806.48, + "probability": 0.4778 + }, + { + "start": 1806.48, + "end": 1808.82, + "probability": 0.9076 + }, + { + "start": 1809.34, + "end": 1810.58, + "probability": 0.8357 + }, + { + "start": 1811.26, + "end": 1812.72, + "probability": 0.9927 + }, + { + "start": 1813.14, + "end": 1814.42, + "probability": 0.9287 + }, + { + "start": 1814.44, + "end": 1814.86, + "probability": 0.7968 + }, + { + "start": 1815.84, + "end": 1818.62, + "probability": 0.9596 + }, + { + "start": 1819.26, + "end": 1820.52, + "probability": 0.5526 + }, + { + "start": 1820.94, + "end": 1822.72, + "probability": 0.9352 + }, + { + "start": 1822.86, + "end": 1825.5, + "probability": 0.9001 + }, + { + "start": 1825.6, + "end": 1827.8, + "probability": 0.9917 + }, + { + "start": 1828.12, + "end": 1829.46, + "probability": 0.9129 + }, + { + "start": 1829.84, + "end": 1831.26, + "probability": 0.9965 + }, + { + "start": 1832.28, + "end": 1834.02, + "probability": 0.9907 + }, + { + "start": 1834.58, + "end": 1836.46, + "probability": 0.9816 + }, + { + "start": 1836.62, + "end": 1837.12, + "probability": 0.9707 + }, + { + "start": 1837.42, + "end": 1838.08, + "probability": 0.9729 + }, + { + "start": 1838.3, + "end": 1838.9, + "probability": 0.8839 + }, + { + "start": 1839.08, + "end": 1839.93, + "probability": 0.9886 + }, + { + "start": 1840.48, + "end": 1841.04, + "probability": 0.6668 + }, + { + "start": 1841.68, + "end": 1842.94, + "probability": 0.8552 + }, + { + "start": 1843.5, + "end": 1844.64, + "probability": 0.8882 + }, + { + "start": 1845.34, + "end": 1850.58, + "probability": 0.9933 + }, + { + "start": 1851.52, + "end": 1854.9, + "probability": 0.9128 + }, + { + "start": 1855.38, + "end": 1856.78, + "probability": 0.7266 + }, + { + "start": 1857.38, + "end": 1859.52, + "probability": 0.9683 + }, + { + "start": 1860.04, + "end": 1861.32, + "probability": 0.9091 + }, + { + "start": 1861.96, + "end": 1864.2, + "probability": 0.9966 + }, + { + "start": 1864.56, + "end": 1866.18, + "probability": 0.9824 + }, + { + "start": 1866.28, + "end": 1868.84, + "probability": 0.9897 + }, + { + "start": 1870.32, + "end": 1874.96, + "probability": 0.9964 + }, + { + "start": 1875.84, + "end": 1879.7, + "probability": 0.9642 + }, + { + "start": 1881.72, + "end": 1884.1, + "probability": 0.8597 + }, + { + "start": 1884.68, + "end": 1886.32, + "probability": 0.9187 + }, + { + "start": 1887.0, + "end": 1888.2, + "probability": 0.9589 + }, + { + "start": 1889.22, + "end": 1889.92, + "probability": 0.0448 + }, + { + "start": 1889.94, + "end": 1891.4, + "probability": 0.9709 + }, + { + "start": 1892.54, + "end": 1893.34, + "probability": 0.6655 + }, + { + "start": 1894.04, + "end": 1894.94, + "probability": 0.9766 + }, + { + "start": 1895.78, + "end": 1896.98, + "probability": 0.9894 + }, + { + "start": 1898.34, + "end": 1902.08, + "probability": 0.9556 + }, + { + "start": 1902.88, + "end": 1903.66, + "probability": 0.6084 + }, + { + "start": 1904.74, + "end": 1905.52, + "probability": 0.8941 + }, + { + "start": 1906.36, + "end": 1907.4, + "probability": 0.6952 + }, + { + "start": 1908.6, + "end": 1911.74, + "probability": 0.9906 + }, + { + "start": 1912.26, + "end": 1915.74, + "probability": 0.9915 + }, + { + "start": 1916.0, + "end": 1920.04, + "probability": 0.8844 + }, + { + "start": 1921.06, + "end": 1922.3, + "probability": 0.9957 + }, + { + "start": 1923.0, + "end": 1923.54, + "probability": 0.9073 + }, + { + "start": 1924.58, + "end": 1926.76, + "probability": 0.4162 + }, + { + "start": 1927.16, + "end": 1930.96, + "probability": 0.9333 + }, + { + "start": 1931.86, + "end": 1934.0, + "probability": 0.8315 + }, + { + "start": 1935.34, + "end": 1940.76, + "probability": 0.967 + }, + { + "start": 1941.5, + "end": 1945.81, + "probability": 0.7488 + }, + { + "start": 1947.62, + "end": 1949.52, + "probability": 0.9734 + }, + { + "start": 1956.08, + "end": 1959.14, + "probability": 0.9849 + }, + { + "start": 1960.36, + "end": 1961.6, + "probability": 0.9836 + }, + { + "start": 1965.22, + "end": 1968.82, + "probability": 0.1549 + }, + { + "start": 1978.9, + "end": 1980.32, + "probability": 0.1182 + }, + { + "start": 2059.36, + "end": 2061.22, + "probability": 0.7221 + }, + { + "start": 2061.88, + "end": 2062.3, + "probability": 0.684 + }, + { + "start": 2062.84, + "end": 2064.0, + "probability": 0.7376 + }, + { + "start": 2064.08, + "end": 2066.0, + "probability": 0.6674 + }, + { + "start": 2066.2, + "end": 2067.88, + "probability": 0.8055 + }, + { + "start": 2067.96, + "end": 2068.76, + "probability": 0.7158 + }, + { + "start": 2068.8, + "end": 2069.88, + "probability": 0.7956 + }, + { + "start": 2070.48, + "end": 2075.3, + "probability": 0.9773 + }, + { + "start": 2075.82, + "end": 2076.54, + "probability": 0.1098 + }, + { + "start": 2077.16, + "end": 2077.38, + "probability": 0.0592 + }, + { + "start": 2077.9, + "end": 2079.46, + "probability": 0.6858 + }, + { + "start": 2079.98, + "end": 2083.22, + "probability": 0.3941 + }, + { + "start": 2085.32, + "end": 2086.6, + "probability": 0.6586 + }, + { + "start": 2086.68, + "end": 2088.3, + "probability": 0.6802 + }, + { + "start": 2088.4, + "end": 2091.66, + "probability": 0.9973 + }, + { + "start": 2093.86, + "end": 2096.2, + "probability": 0.9893 + }, + { + "start": 2097.62, + "end": 2098.08, + "probability": 0.7442 + }, + { + "start": 2098.18, + "end": 2099.64, + "probability": 0.8815 + }, + { + "start": 2099.68, + "end": 2101.36, + "probability": 0.9514 + }, + { + "start": 2101.42, + "end": 2102.84, + "probability": 0.8792 + }, + { + "start": 2102.88, + "end": 2104.82, + "probability": 0.9124 + }, + { + "start": 2115.74, + "end": 2117.44, + "probability": 0.8712 + }, + { + "start": 2118.2, + "end": 2120.78, + "probability": 0.9348 + }, + { + "start": 2130.18, + "end": 2132.74, + "probability": 0.7075 + }, + { + "start": 2134.64, + "end": 2135.28, + "probability": 0.7244 + }, + { + "start": 2135.56, + "end": 2136.4, + "probability": 0.8276 + }, + { + "start": 2137.04, + "end": 2139.02, + "probability": 0.9778 + }, + { + "start": 2140.0, + "end": 2146.22, + "probability": 0.9747 + }, + { + "start": 2146.92, + "end": 2149.18, + "probability": 0.8868 + }, + { + "start": 2149.94, + "end": 2150.8, + "probability": 0.7504 + }, + { + "start": 2151.64, + "end": 2157.08, + "probability": 0.8835 + }, + { + "start": 2157.8, + "end": 2160.84, + "probability": 0.8682 + }, + { + "start": 2161.56, + "end": 2165.1, + "probability": 0.9922 + }, + { + "start": 2165.84, + "end": 2167.04, + "probability": 0.8193 + }, + { + "start": 2168.24, + "end": 2169.62, + "probability": 0.8109 + }, + { + "start": 2170.26, + "end": 2172.16, + "probability": 0.9434 + }, + { + "start": 2172.32, + "end": 2174.64, + "probability": 0.9739 + }, + { + "start": 2175.42, + "end": 2181.19, + "probability": 0.9832 + }, + { + "start": 2181.88, + "end": 2183.5, + "probability": 0.9278 + }, + { + "start": 2184.78, + "end": 2188.76, + "probability": 0.8973 + }, + { + "start": 2189.82, + "end": 2191.38, + "probability": 0.9121 + }, + { + "start": 2192.42, + "end": 2195.96, + "probability": 0.9679 + }, + { + "start": 2196.52, + "end": 2198.84, + "probability": 0.9402 + }, + { + "start": 2199.88, + "end": 2200.26, + "probability": 0.5317 + }, + { + "start": 2200.3, + "end": 2205.26, + "probability": 0.8994 + }, + { + "start": 2205.78, + "end": 2208.6, + "probability": 0.6559 + }, + { + "start": 2208.6, + "end": 2214.58, + "probability": 0.8182 + }, + { + "start": 2214.66, + "end": 2216.7, + "probability": 0.9878 + }, + { + "start": 2217.44, + "end": 2222.78, + "probability": 0.9793 + }, + { + "start": 2223.1, + "end": 2223.74, + "probability": 0.7383 + }, + { + "start": 2227.46, + "end": 2227.94, + "probability": 0.4856 + }, + { + "start": 2227.98, + "end": 2229.28, + "probability": 0.8237 + }, + { + "start": 2236.3, + "end": 2236.38, + "probability": 0.5969 + }, + { + "start": 2236.38, + "end": 2237.64, + "probability": 0.6217 + }, + { + "start": 2237.96, + "end": 2239.26, + "probability": 0.7122 + }, + { + "start": 2239.44, + "end": 2239.78, + "probability": 0.9147 + }, + { + "start": 2240.92, + "end": 2243.46, + "probability": 0.923 + }, + { + "start": 2244.38, + "end": 2246.37, + "probability": 0.9385 + }, + { + "start": 2247.28, + "end": 2250.2, + "probability": 0.9928 + }, + { + "start": 2250.92, + "end": 2251.54, + "probability": 0.565 + }, + { + "start": 2252.44, + "end": 2253.56, + "probability": 0.7578 + }, + { + "start": 2254.6, + "end": 2256.22, + "probability": 0.549 + }, + { + "start": 2257.46, + "end": 2257.86, + "probability": 0.7896 + }, + { + "start": 2258.68, + "end": 2262.68, + "probability": 0.9344 + }, + { + "start": 2262.78, + "end": 2263.5, + "probability": 0.7808 + }, + { + "start": 2264.26, + "end": 2265.24, + "probability": 0.9663 + }, + { + "start": 2265.34, + "end": 2269.26, + "probability": 0.9624 + }, + { + "start": 2269.88, + "end": 2272.36, + "probability": 0.998 + }, + { + "start": 2272.52, + "end": 2275.8, + "probability": 0.9839 + }, + { + "start": 2276.5, + "end": 2281.46, + "probability": 0.9658 + }, + { + "start": 2281.98, + "end": 2284.9, + "probability": 0.9504 + }, + { + "start": 2285.52, + "end": 2287.49, + "probability": 0.6782 + }, + { + "start": 2288.44, + "end": 2290.72, + "probability": 0.9946 + }, + { + "start": 2291.64, + "end": 2295.94, + "probability": 0.9725 + }, + { + "start": 2296.06, + "end": 2297.56, + "probability": 0.9351 + }, + { + "start": 2298.06, + "end": 2298.66, + "probability": 0.7096 + }, + { + "start": 2299.24, + "end": 2299.98, + "probability": 0.2736 + }, + { + "start": 2299.98, + "end": 2300.92, + "probability": 0.7634 + }, + { + "start": 2301.0, + "end": 2303.98, + "probability": 0.9888 + }, + { + "start": 2304.38, + "end": 2307.42, + "probability": 0.8594 + }, + { + "start": 2307.6, + "end": 2314.2, + "probability": 0.9966 + }, + { + "start": 2314.7, + "end": 2317.56, + "probability": 0.6931 + }, + { + "start": 2318.1, + "end": 2322.64, + "probability": 0.9775 + }, + { + "start": 2323.1, + "end": 2325.74, + "probability": 0.9266 + }, + { + "start": 2326.28, + "end": 2326.94, + "probability": 0.4721 + }, + { + "start": 2327.4, + "end": 2329.72, + "probability": 0.9163 + }, + { + "start": 2329.78, + "end": 2333.1, + "probability": 0.875 + }, + { + "start": 2333.22, + "end": 2333.6, + "probability": 0.8245 + }, + { + "start": 2334.22, + "end": 2334.82, + "probability": 0.5864 + }, + { + "start": 2334.9, + "end": 2336.58, + "probability": 0.9789 + }, + { + "start": 2342.7, + "end": 2344.32, + "probability": 0.5683 + }, + { + "start": 2344.76, + "end": 2346.88, + "probability": 0.6892 + }, + { + "start": 2347.68, + "end": 2357.72, + "probability": 0.9934 + }, + { + "start": 2358.76, + "end": 2361.54, + "probability": 0.9399 + }, + { + "start": 2361.72, + "end": 2362.34, + "probability": 0.8344 + }, + { + "start": 2362.94, + "end": 2364.4, + "probability": 0.9842 + }, + { + "start": 2364.48, + "end": 2366.08, + "probability": 0.9753 + }, + { + "start": 2366.14, + "end": 2367.18, + "probability": 0.9622 + }, + { + "start": 2368.64, + "end": 2369.48, + "probability": 0.8982 + }, + { + "start": 2369.68, + "end": 2373.36, + "probability": 0.9683 + }, + { + "start": 2374.14, + "end": 2376.96, + "probability": 0.7833 + }, + { + "start": 2377.64, + "end": 2379.08, + "probability": 0.9798 + }, + { + "start": 2379.72, + "end": 2385.14, + "probability": 0.9674 + }, + { + "start": 2385.68, + "end": 2389.22, + "probability": 0.9482 + }, + { + "start": 2389.28, + "end": 2390.82, + "probability": 0.9905 + }, + { + "start": 2391.34, + "end": 2394.38, + "probability": 0.9451 + }, + { + "start": 2394.84, + "end": 2397.42, + "probability": 0.9718 + }, + { + "start": 2397.94, + "end": 2399.18, + "probability": 0.8779 + }, + { + "start": 2399.84, + "end": 2400.96, + "probability": 0.5744 + }, + { + "start": 2401.62, + "end": 2404.0, + "probability": 0.6662 + }, + { + "start": 2404.08, + "end": 2405.64, + "probability": 0.9812 + }, + { + "start": 2406.0, + "end": 2407.32, + "probability": 0.9833 + }, + { + "start": 2407.92, + "end": 2409.32, + "probability": 0.9171 + }, + { + "start": 2409.54, + "end": 2409.76, + "probability": 0.843 + }, + { + "start": 2411.56, + "end": 2415.14, + "probability": 0.8532 + }, + { + "start": 2416.88, + "end": 2419.04, + "probability": 0.8967 + }, + { + "start": 2427.02, + "end": 2427.2, + "probability": 0.7358 + }, + { + "start": 2432.52, + "end": 2433.58, + "probability": 0.7026 + }, + { + "start": 2434.56, + "end": 2435.62, + "probability": 0.6708 + }, + { + "start": 2436.12, + "end": 2440.98, + "probability": 0.9844 + }, + { + "start": 2441.8, + "end": 2444.66, + "probability": 0.6929 + }, + { + "start": 2445.32, + "end": 2447.46, + "probability": 0.9581 + }, + { + "start": 2448.54, + "end": 2449.58, + "probability": 0.9763 + }, + { + "start": 2450.4, + "end": 2453.82, + "probability": 0.9815 + }, + { + "start": 2454.54, + "end": 2456.44, + "probability": 0.9288 + }, + { + "start": 2458.6, + "end": 2464.06, + "probability": 0.9878 + }, + { + "start": 2464.68, + "end": 2468.94, + "probability": 0.9847 + }, + { + "start": 2469.16, + "end": 2470.3, + "probability": 0.9775 + }, + { + "start": 2470.74, + "end": 2472.08, + "probability": 0.9749 + }, + { + "start": 2472.36, + "end": 2475.48, + "probability": 0.9198 + }, + { + "start": 2475.94, + "end": 2477.94, + "probability": 0.9917 + }, + { + "start": 2478.62, + "end": 2482.24, + "probability": 0.9404 + }, + { + "start": 2482.9, + "end": 2488.38, + "probability": 0.8314 + }, + { + "start": 2488.94, + "end": 2494.5, + "probability": 0.9941 + }, + { + "start": 2495.1, + "end": 2503.36, + "probability": 0.9946 + }, + { + "start": 2504.38, + "end": 2504.92, + "probability": 0.5094 + }, + { + "start": 2504.98, + "end": 2506.52, + "probability": 0.8352 + }, + { + "start": 2510.74, + "end": 2511.28, + "probability": 0.5369 + }, + { + "start": 2512.6, + "end": 2512.6, + "probability": 0.2341 + }, + { + "start": 2512.6, + "end": 2514.92, + "probability": 0.6249 + }, + { + "start": 2516.28, + "end": 2520.14, + "probability": 0.8748 + }, + { + "start": 2520.14, + "end": 2522.74, + "probability": 0.9434 + }, + { + "start": 2524.2, + "end": 2528.42, + "probability": 0.9134 + }, + { + "start": 2529.16, + "end": 2531.96, + "probability": 0.9795 + }, + { + "start": 2532.02, + "end": 2534.01, + "probability": 0.9875 + }, + { + "start": 2534.92, + "end": 2537.06, + "probability": 0.7002 + }, + { + "start": 2537.18, + "end": 2538.09, + "probability": 0.9399 + }, + { + "start": 2538.22, + "end": 2539.44, + "probability": 0.7551 + }, + { + "start": 2539.56, + "end": 2542.02, + "probability": 0.9983 + }, + { + "start": 2542.26, + "end": 2545.3, + "probability": 0.853 + }, + { + "start": 2546.68, + "end": 2548.08, + "probability": 0.855 + }, + { + "start": 2548.42, + "end": 2549.4, + "probability": 0.5876 + }, + { + "start": 2549.44, + "end": 2550.1, + "probability": 0.9813 + }, + { + "start": 2550.18, + "end": 2551.68, + "probability": 0.721 + }, + { + "start": 2551.98, + "end": 2552.72, + "probability": 0.5723 + }, + { + "start": 2553.2, + "end": 2558.76, + "probability": 0.9463 + }, + { + "start": 2558.86, + "end": 2562.64, + "probability": 0.9417 + }, + { + "start": 2563.08, + "end": 2564.52, + "probability": 0.3223 + }, + { + "start": 2566.32, + "end": 2567.08, + "probability": 0.6866 + }, + { + "start": 2568.06, + "end": 2569.92, + "probability": 0.8981 + }, + { + "start": 2580.42, + "end": 2581.44, + "probability": 0.467 + }, + { + "start": 2605.96, + "end": 2606.9, + "probability": 0.6699 + }, + { + "start": 2609.08, + "end": 2610.44, + "probability": 0.8891 + }, + { + "start": 2613.3, + "end": 2614.16, + "probability": 0.9512 + }, + { + "start": 2615.36, + "end": 2616.3, + "probability": 0.6396 + }, + { + "start": 2617.64, + "end": 2623.25, + "probability": 0.997 + }, + { + "start": 2624.26, + "end": 2626.26, + "probability": 0.9941 + }, + { + "start": 2627.56, + "end": 2629.62, + "probability": 0.9727 + }, + { + "start": 2630.78, + "end": 2630.88, + "probability": 0.3515 + }, + { + "start": 2631.0, + "end": 2632.9, + "probability": 0.6762 + }, + { + "start": 2633.04, + "end": 2634.7, + "probability": 0.9026 + }, + { + "start": 2635.36, + "end": 2637.98, + "probability": 0.962 + }, + { + "start": 2637.98, + "end": 2640.9, + "probability": 0.9756 + }, + { + "start": 2641.94, + "end": 2645.43, + "probability": 0.9253 + }, + { + "start": 2646.44, + "end": 2648.5, + "probability": 0.958 + }, + { + "start": 2649.44, + "end": 2651.22, + "probability": 0.9867 + }, + { + "start": 2652.3, + "end": 2656.84, + "probability": 0.9946 + }, + { + "start": 2657.52, + "end": 2658.62, + "probability": 0.9712 + }, + { + "start": 2660.02, + "end": 2663.34, + "probability": 0.9727 + }, + { + "start": 2665.22, + "end": 2669.36, + "probability": 0.9966 + }, + { + "start": 2669.36, + "end": 2675.38, + "probability": 0.7614 + }, + { + "start": 2676.52, + "end": 2679.92, + "probability": 0.9971 + }, + { + "start": 2680.86, + "end": 2684.3, + "probability": 0.9932 + }, + { + "start": 2686.7, + "end": 2689.24, + "probability": 0.9766 + }, + { + "start": 2691.22, + "end": 2694.86, + "probability": 0.9853 + }, + { + "start": 2695.02, + "end": 2695.82, + "probability": 0.9498 + }, + { + "start": 2697.06, + "end": 2699.76, + "probability": 0.9854 + }, + { + "start": 2701.04, + "end": 2702.38, + "probability": 0.999 + }, + { + "start": 2703.2, + "end": 2707.76, + "probability": 0.9974 + }, + { + "start": 2707.88, + "end": 2712.2, + "probability": 0.9995 + }, + { + "start": 2714.14, + "end": 2716.18, + "probability": 0.9982 + }, + { + "start": 2717.24, + "end": 2721.56, + "probability": 0.9961 + }, + { + "start": 2722.58, + "end": 2723.24, + "probability": 0.8312 + }, + { + "start": 2724.4, + "end": 2728.3, + "probability": 0.9943 + }, + { + "start": 2729.82, + "end": 2730.4, + "probability": 0.9235 + }, + { + "start": 2731.5, + "end": 2736.84, + "probability": 0.9989 + }, + { + "start": 2738.16, + "end": 2743.64, + "probability": 0.9984 + }, + { + "start": 2745.66, + "end": 2747.42, + "probability": 0.9955 + }, + { + "start": 2748.34, + "end": 2753.5, + "probability": 0.9996 + }, + { + "start": 2753.7, + "end": 2755.66, + "probability": 0.937 + }, + { + "start": 2757.12, + "end": 2758.98, + "probability": 0.8948 + }, + { + "start": 2759.86, + "end": 2766.86, + "probability": 0.9871 + }, + { + "start": 2768.04, + "end": 2770.04, + "probability": 0.989 + }, + { + "start": 2772.08, + "end": 2774.8, + "probability": 0.9963 + }, + { + "start": 2776.1, + "end": 2777.68, + "probability": 0.9957 + }, + { + "start": 2779.04, + "end": 2783.18, + "probability": 0.9583 + }, + { + "start": 2783.94, + "end": 2786.62, + "probability": 0.9919 + }, + { + "start": 2787.26, + "end": 2788.84, + "probability": 0.949 + }, + { + "start": 2790.06, + "end": 2793.36, + "probability": 0.9995 + }, + { + "start": 2793.67, + "end": 2797.62, + "probability": 0.9994 + }, + { + "start": 2798.54, + "end": 2799.54, + "probability": 0.9899 + }, + { + "start": 2800.3, + "end": 2802.52, + "probability": 0.9949 + }, + { + "start": 2803.7, + "end": 2806.12, + "probability": 0.9984 + }, + { + "start": 2807.86, + "end": 2809.02, + "probability": 0.8103 + }, + { + "start": 2810.22, + "end": 2813.62, + "probability": 0.9694 + }, + { + "start": 2815.12, + "end": 2817.66, + "probability": 0.9795 + }, + { + "start": 2818.96, + "end": 2824.42, + "probability": 0.9928 + }, + { + "start": 2825.88, + "end": 2826.6, + "probability": 0.9518 + }, + { + "start": 2827.62, + "end": 2831.68, + "probability": 0.9974 + }, + { + "start": 2833.38, + "end": 2835.38, + "probability": 0.9711 + }, + { + "start": 2835.6, + "end": 2839.86, + "probability": 0.9213 + }, + { + "start": 2840.76, + "end": 2843.8, + "probability": 0.9834 + }, + { + "start": 2846.3, + "end": 2848.96, + "probability": 0.8692 + }, + { + "start": 2850.16, + "end": 2851.86, + "probability": 0.9985 + }, + { + "start": 2852.9, + "end": 2853.62, + "probability": 0.9623 + }, + { + "start": 2855.18, + "end": 2856.54, + "probability": 0.8007 + }, + { + "start": 2858.02, + "end": 2859.7, + "probability": 0.9989 + }, + { + "start": 2861.1, + "end": 2863.4, + "probability": 0.9951 + }, + { + "start": 2864.6, + "end": 2866.04, + "probability": 0.9983 + }, + { + "start": 2868.12, + "end": 2869.5, + "probability": 0.9986 + }, + { + "start": 2870.58, + "end": 2873.5, + "probability": 0.9974 + }, + { + "start": 2874.54, + "end": 2879.16, + "probability": 0.9985 + }, + { + "start": 2881.08, + "end": 2882.68, + "probability": 0.8936 + }, + { + "start": 2883.92, + "end": 2887.66, + "probability": 0.9899 + }, + { + "start": 2887.78, + "end": 2890.82, + "probability": 0.9988 + }, + { + "start": 2891.98, + "end": 2894.16, + "probability": 0.9979 + }, + { + "start": 2894.84, + "end": 2896.6, + "probability": 0.9553 + }, + { + "start": 2898.4, + "end": 2906.14, + "probability": 0.9982 + }, + { + "start": 2906.96, + "end": 2910.2, + "probability": 0.9966 + }, + { + "start": 2911.54, + "end": 2912.0, + "probability": 0.7032 + }, + { + "start": 2912.14, + "end": 2914.18, + "probability": 0.9923 + }, + { + "start": 2914.32, + "end": 2914.92, + "probability": 0.4988 + }, + { + "start": 2915.82, + "end": 2918.62, + "probability": 0.9956 + }, + { + "start": 2920.1, + "end": 2925.52, + "probability": 0.9989 + }, + { + "start": 2925.52, + "end": 2931.02, + "probability": 0.996 + }, + { + "start": 2932.72, + "end": 2935.88, + "probability": 0.9673 + }, + { + "start": 2936.66, + "end": 2940.3, + "probability": 0.9342 + }, + { + "start": 2941.96, + "end": 2942.98, + "probability": 0.7136 + }, + { + "start": 2944.1, + "end": 2948.8, + "probability": 0.891 + }, + { + "start": 2949.92, + "end": 2952.48, + "probability": 0.9767 + }, + { + "start": 2953.96, + "end": 2957.66, + "probability": 0.9368 + }, + { + "start": 2958.3, + "end": 2959.58, + "probability": 0.9883 + }, + { + "start": 2960.44, + "end": 2962.1, + "probability": 0.9996 + }, + { + "start": 2964.34, + "end": 2967.88, + "probability": 0.9993 + }, + { + "start": 2968.7, + "end": 2969.98, + "probability": 0.9878 + }, + { + "start": 2971.36, + "end": 2974.69, + "probability": 0.9977 + }, + { + "start": 2975.48, + "end": 2977.92, + "probability": 0.9888 + }, + { + "start": 2979.53, + "end": 2985.74, + "probability": 0.9552 + }, + { + "start": 2987.8, + "end": 2989.16, + "probability": 0.9634 + }, + { + "start": 2991.06, + "end": 2996.12, + "probability": 0.9734 + }, + { + "start": 2997.7, + "end": 3000.4, + "probability": 0.9978 + }, + { + "start": 3001.26, + "end": 3007.66, + "probability": 0.9967 + }, + { + "start": 3008.82, + "end": 3011.52, + "probability": 0.9954 + }, + { + "start": 3012.44, + "end": 3015.74, + "probability": 0.9958 + }, + { + "start": 3016.46, + "end": 3018.12, + "probability": 0.9954 + }, + { + "start": 3019.06, + "end": 3020.74, + "probability": 0.9724 + }, + { + "start": 3021.48, + "end": 3024.0, + "probability": 0.9031 + }, + { + "start": 3024.76, + "end": 3029.32, + "probability": 0.9985 + }, + { + "start": 3030.7, + "end": 3031.68, + "probability": 0.9471 + }, + { + "start": 3032.82, + "end": 3036.1, + "probability": 0.9797 + }, + { + "start": 3037.48, + "end": 3039.18, + "probability": 0.9661 + }, + { + "start": 3040.18, + "end": 3041.42, + "probability": 0.9401 + }, + { + "start": 3041.7, + "end": 3044.6, + "probability": 0.959 + }, + { + "start": 3045.84, + "end": 3047.78, + "probability": 0.8646 + }, + { + "start": 3047.98, + "end": 3049.74, + "probability": 0.9054 + }, + { + "start": 3053.62, + "end": 3056.78, + "probability": 0.1731 + }, + { + "start": 3063.98, + "end": 3064.18, + "probability": 0.1013 + }, + { + "start": 3064.18, + "end": 3064.42, + "probability": 0.0309 + }, + { + "start": 3064.5, + "end": 3065.04, + "probability": 0.1369 + }, + { + "start": 3065.04, + "end": 3065.14, + "probability": 0.1048 + }, + { + "start": 3065.14, + "end": 3065.34, + "probability": 0.0555 + }, + { + "start": 3065.4, + "end": 3065.56, + "probability": 0.0761 + }, + { + "start": 3081.48, + "end": 3085.44, + "probability": 0.3015 + }, + { + "start": 3099.76, + "end": 3101.84, + "probability": 0.969 + }, + { + "start": 3102.28, + "end": 3103.36, + "probability": 0.9821 + }, + { + "start": 3103.44, + "end": 3104.54, + "probability": 0.7397 + }, + { + "start": 3104.7, + "end": 3105.64, + "probability": 0.857 + }, + { + "start": 3106.12, + "end": 3108.52, + "probability": 0.9596 + }, + { + "start": 3109.5, + "end": 3110.92, + "probability": 0.8665 + }, + { + "start": 3111.72, + "end": 3113.36, + "probability": 0.8737 + }, + { + "start": 3114.38, + "end": 3116.72, + "probability": 0.9846 + }, + { + "start": 3117.44, + "end": 3119.5, + "probability": 0.9455 + }, + { + "start": 3120.1, + "end": 3124.7, + "probability": 0.9525 + }, + { + "start": 3124.7, + "end": 3129.34, + "probability": 0.9781 + }, + { + "start": 3130.04, + "end": 3131.6, + "probability": 0.9875 + }, + { + "start": 3132.9, + "end": 3134.6, + "probability": 0.931 + }, + { + "start": 3135.94, + "end": 3136.4, + "probability": 0.6221 + }, + { + "start": 3137.3, + "end": 3138.38, + "probability": 0.9058 + }, + { + "start": 3138.9, + "end": 3141.72, + "probability": 0.9958 + }, + { + "start": 3142.48, + "end": 3145.88, + "probability": 0.9797 + }, + { + "start": 3146.52, + "end": 3152.84, + "probability": 0.9646 + }, + { + "start": 3153.42, + "end": 3158.46, + "probability": 0.9954 + }, + { + "start": 3158.46, + "end": 3162.62, + "probability": 0.9978 + }, + { + "start": 3163.7, + "end": 3164.54, + "probability": 0.645 + }, + { + "start": 3165.24, + "end": 3172.92, + "probability": 0.9829 + }, + { + "start": 3173.6, + "end": 3174.88, + "probability": 0.8364 + }, + { + "start": 3175.68, + "end": 3179.84, + "probability": 0.9732 + }, + { + "start": 3180.32, + "end": 3183.52, + "probability": 0.9934 + }, + { + "start": 3184.16, + "end": 3189.92, + "probability": 0.9913 + }, + { + "start": 3190.48, + "end": 3194.9, + "probability": 0.9438 + }, + { + "start": 3194.9, + "end": 3198.96, + "probability": 0.9839 + }, + { + "start": 3199.44, + "end": 3200.48, + "probability": 0.7954 + }, + { + "start": 3200.58, + "end": 3203.14, + "probability": 0.9468 + }, + { + "start": 3204.38, + "end": 3205.54, + "probability": 0.8234 + }, + { + "start": 3206.22, + "end": 3209.16, + "probability": 0.9592 + }, + { + "start": 3210.04, + "end": 3210.42, + "probability": 0.6335 + }, + { + "start": 3211.14, + "end": 3213.2, + "probability": 0.9915 + }, + { + "start": 3213.88, + "end": 3216.44, + "probability": 0.9969 + }, + { + "start": 3217.18, + "end": 3222.46, + "probability": 0.9764 + }, + { + "start": 3222.58, + "end": 3223.5, + "probability": 0.8125 + }, + { + "start": 3224.1, + "end": 3224.74, + "probability": 0.9938 + }, + { + "start": 3226.08, + "end": 3230.18, + "probability": 0.9419 + }, + { + "start": 3230.7, + "end": 3233.1, + "probability": 0.9454 + }, + { + "start": 3233.74, + "end": 3235.48, + "probability": 0.8851 + }, + { + "start": 3236.22, + "end": 3240.58, + "probability": 0.9977 + }, + { + "start": 3240.58, + "end": 3244.02, + "probability": 0.9998 + }, + { + "start": 3244.86, + "end": 3245.7, + "probability": 0.7599 + }, + { + "start": 3246.56, + "end": 3248.04, + "probability": 0.9721 + }, + { + "start": 3248.94, + "end": 3254.86, + "probability": 0.9943 + }, + { + "start": 3255.4, + "end": 3260.16, + "probability": 0.9984 + }, + { + "start": 3260.86, + "end": 3261.88, + "probability": 0.719 + }, + { + "start": 3262.04, + "end": 3262.82, + "probability": 0.765 + }, + { + "start": 3263.22, + "end": 3267.22, + "probability": 0.9386 + }, + { + "start": 3267.22, + "end": 3271.08, + "probability": 0.9974 + }, + { + "start": 3272.3, + "end": 3272.94, + "probability": 0.5733 + }, + { + "start": 3273.22, + "end": 3276.04, + "probability": 0.9076 + }, + { + "start": 3298.28, + "end": 3298.96, + "probability": 0.5106 + }, + { + "start": 3300.52, + "end": 3301.84, + "probability": 0.8322 + }, + { + "start": 3303.4, + "end": 3308.2, + "probability": 0.9735 + }, + { + "start": 3309.5, + "end": 3314.52, + "probability": 0.9861 + }, + { + "start": 3315.26, + "end": 3317.58, + "probability": 0.9837 + }, + { + "start": 3318.64, + "end": 3319.3, + "probability": 0.9261 + }, + { + "start": 3321.06, + "end": 3321.16, + "probability": 0.8003 + }, + { + "start": 3322.0, + "end": 3324.52, + "probability": 0.877 + }, + { + "start": 3325.56, + "end": 3326.09, + "probability": 0.9956 + }, + { + "start": 3327.1, + "end": 3328.46, + "probability": 0.9854 + }, + { + "start": 3329.48, + "end": 3333.8, + "probability": 0.8216 + }, + { + "start": 3334.7, + "end": 3338.08, + "probability": 0.9092 + }, + { + "start": 3338.94, + "end": 3341.32, + "probability": 0.6552 + }, + { + "start": 3343.22, + "end": 3344.24, + "probability": 0.8131 + }, + { + "start": 3345.72, + "end": 3346.38, + "probability": 0.895 + }, + { + "start": 3347.94, + "end": 3351.84, + "probability": 0.9559 + }, + { + "start": 3351.84, + "end": 3355.1, + "probability": 0.9907 + }, + { + "start": 3356.14, + "end": 3358.36, + "probability": 0.8526 + }, + { + "start": 3359.08, + "end": 3360.58, + "probability": 0.8824 + }, + { + "start": 3360.66, + "end": 3361.88, + "probability": 0.9148 + }, + { + "start": 3362.1, + "end": 3364.42, + "probability": 0.9795 + }, + { + "start": 3365.24, + "end": 3371.06, + "probability": 0.832 + }, + { + "start": 3372.06, + "end": 3374.06, + "probability": 0.7512 + }, + { + "start": 3375.12, + "end": 3377.8, + "probability": 0.998 + }, + { + "start": 3378.78, + "end": 3382.24, + "probability": 0.8965 + }, + { + "start": 3383.12, + "end": 3385.36, + "probability": 0.9194 + }, + { + "start": 3385.58, + "end": 3386.9, + "probability": 0.9875 + }, + { + "start": 3388.12, + "end": 3388.94, + "probability": 0.8636 + }, + { + "start": 3389.84, + "end": 3391.86, + "probability": 0.9985 + }, + { + "start": 3392.28, + "end": 3392.7, + "probability": 0.9126 + }, + { + "start": 3392.86, + "end": 3394.06, + "probability": 0.7148 + }, + { + "start": 3394.18, + "end": 3394.74, + "probability": 0.7539 + }, + { + "start": 3394.84, + "end": 3396.02, + "probability": 0.8887 + }, + { + "start": 3397.06, + "end": 3399.34, + "probability": 0.8278 + }, + { + "start": 3400.6, + "end": 3406.28, + "probability": 0.9233 + }, + { + "start": 3407.08, + "end": 3408.98, + "probability": 0.9199 + }, + { + "start": 3409.18, + "end": 3410.66, + "probability": 0.9976 + }, + { + "start": 3411.92, + "end": 3412.8, + "probability": 0.875 + }, + { + "start": 3413.6, + "end": 3416.9, + "probability": 0.9937 + }, + { + "start": 3417.6, + "end": 3418.88, + "probability": 0.9501 + }, + { + "start": 3419.34, + "end": 3421.32, + "probability": 0.9969 + }, + { + "start": 3421.86, + "end": 3422.64, + "probability": 0.9198 + }, + { + "start": 3423.34, + "end": 3428.36, + "probability": 0.9979 + }, + { + "start": 3429.1, + "end": 3430.58, + "probability": 0.6807 + }, + { + "start": 3430.76, + "end": 3431.48, + "probability": 0.5195 + }, + { + "start": 3432.02, + "end": 3435.92, + "probability": 0.9664 + }, + { + "start": 3436.7, + "end": 3438.84, + "probability": 0.9414 + }, + { + "start": 3439.48, + "end": 3442.88, + "probability": 0.998 + }, + { + "start": 3443.36, + "end": 3445.94, + "probability": 0.8806 + }, + { + "start": 3446.84, + "end": 3450.12, + "probability": 0.9807 + }, + { + "start": 3451.0, + "end": 3452.18, + "probability": 0.9606 + }, + { + "start": 3452.3, + "end": 3454.42, + "probability": 0.9973 + }, + { + "start": 3455.54, + "end": 3458.1, + "probability": 0.9851 + }, + { + "start": 3459.04, + "end": 3462.52, + "probability": 0.9831 + }, + { + "start": 3463.1, + "end": 3464.12, + "probability": 0.8355 + }, + { + "start": 3464.76, + "end": 3468.3, + "probability": 0.9987 + }, + { + "start": 3468.82, + "end": 3470.58, + "probability": 0.998 + }, + { + "start": 3470.78, + "end": 3472.88, + "probability": 0.9845 + }, + { + "start": 3473.2, + "end": 3473.9, + "probability": 0.3943 + }, + { + "start": 3474.62, + "end": 3476.42, + "probability": 0.7445 + }, + { + "start": 3476.76, + "end": 3480.36, + "probability": 0.9727 + }, + { + "start": 3480.48, + "end": 3481.62, + "probability": 0.9878 + }, + { + "start": 3481.7, + "end": 3483.14, + "probability": 0.8158 + }, + { + "start": 3483.62, + "end": 3485.62, + "probability": 0.8933 + }, + { + "start": 3485.86, + "end": 3486.64, + "probability": 0.7236 + }, + { + "start": 3487.26, + "end": 3491.1, + "probability": 0.9961 + }, + { + "start": 3491.76, + "end": 3492.97, + "probability": 0.998 + }, + { + "start": 3493.84, + "end": 3496.36, + "probability": 0.9504 + }, + { + "start": 3497.2, + "end": 3498.4, + "probability": 0.7935 + }, + { + "start": 3498.66, + "end": 3501.66, + "probability": 0.9956 + }, + { + "start": 3501.66, + "end": 3503.52, + "probability": 0.9993 + }, + { + "start": 3503.6, + "end": 3503.92, + "probability": 0.6824 + }, + { + "start": 3504.4, + "end": 3505.08, + "probability": 0.6952 + }, + { + "start": 3505.42, + "end": 3506.02, + "probability": 0.9298 + }, + { + "start": 3506.3, + "end": 3507.1, + "probability": 0.6756 + }, + { + "start": 3507.12, + "end": 3509.08, + "probability": 0.8428 + }, + { + "start": 3509.62, + "end": 3510.42, + "probability": 0.9854 + }, + { + "start": 3511.74, + "end": 3512.66, + "probability": 0.9152 + }, + { + "start": 3513.18, + "end": 3513.38, + "probability": 0.2596 + }, + { + "start": 3516.72, + "end": 3517.92, + "probability": 0.384 + }, + { + "start": 3518.2, + "end": 3519.18, + "probability": 0.7109 + }, + { + "start": 3519.18, + "end": 3523.4, + "probability": 0.14 + }, + { + "start": 3523.8, + "end": 3524.7, + "probability": 0.0153 + }, + { + "start": 3555.56, + "end": 3555.66, + "probability": 0.6649 + }, + { + "start": 3558.28, + "end": 3559.56, + "probability": 0.8219 + }, + { + "start": 3559.66, + "end": 3561.92, + "probability": 0.969 + }, + { + "start": 3562.38, + "end": 3564.82, + "probability": 0.8293 + }, + { + "start": 3564.92, + "end": 3565.54, + "probability": 0.4994 + }, + { + "start": 3566.2, + "end": 3568.16, + "probability": 0.9844 + }, + { + "start": 3568.72, + "end": 3578.18, + "probability": 0.7463 + }, + { + "start": 3578.74, + "end": 3579.48, + "probability": 0.407 + }, + { + "start": 3580.4, + "end": 3584.7, + "probability": 0.9246 + }, + { + "start": 3584.9, + "end": 3586.6, + "probability": 0.7768 + }, + { + "start": 3586.72, + "end": 3587.3, + "probability": 0.9627 + }, + { + "start": 3588.64, + "end": 3591.22, + "probability": 0.9894 + }, + { + "start": 3593.16, + "end": 3595.66, + "probability": 0.9043 + }, + { + "start": 3597.04, + "end": 3599.18, + "probability": 0.9878 + }, + { + "start": 3599.78, + "end": 3604.84, + "probability": 0.9932 + }, + { + "start": 3605.32, + "end": 3606.5, + "probability": 0.5833 + }, + { + "start": 3606.54, + "end": 3609.7, + "probability": 0.9869 + }, + { + "start": 3610.32, + "end": 3613.96, + "probability": 0.6311 + }, + { + "start": 3616.58, + "end": 3617.64, + "probability": 0.9813 + }, + { + "start": 3619.12, + "end": 3620.6, + "probability": 0.6646 + }, + { + "start": 3620.86, + "end": 3622.98, + "probability": 0.8735 + }, + { + "start": 3623.82, + "end": 3626.2, + "probability": 0.9982 + }, + { + "start": 3627.26, + "end": 3629.3, + "probability": 0.9285 + }, + { + "start": 3630.56, + "end": 3631.54, + "probability": 0.8791 + }, + { + "start": 3632.96, + "end": 3634.42, + "probability": 0.7262 + }, + { + "start": 3635.36, + "end": 3638.12, + "probability": 0.9268 + }, + { + "start": 3638.62, + "end": 3640.8, + "probability": 0.9849 + }, + { + "start": 3642.56, + "end": 3644.68, + "probability": 0.4503 + }, + { + "start": 3645.38, + "end": 3646.26, + "probability": 0.853 + }, + { + "start": 3647.06, + "end": 3649.12, + "probability": 0.6551 + }, + { + "start": 3649.44, + "end": 3650.86, + "probability": 0.8077 + }, + { + "start": 3651.12, + "end": 3651.98, + "probability": 0.9481 + }, + { + "start": 3652.42, + "end": 3653.3, + "probability": 0.9355 + }, + { + "start": 3654.14, + "end": 3658.06, + "probability": 0.9526 + }, + { + "start": 3658.5, + "end": 3661.32, + "probability": 0.9429 + }, + { + "start": 3661.82, + "end": 3664.32, + "probability": 0.9971 + }, + { + "start": 3664.72, + "end": 3668.06, + "probability": 0.7672 + }, + { + "start": 3668.32, + "end": 3670.64, + "probability": 0.9587 + }, + { + "start": 3673.54, + "end": 3675.94, + "probability": 0.9953 + }, + { + "start": 3677.72, + "end": 3679.82, + "probability": 0.8577 + }, + { + "start": 3681.28, + "end": 3688.0, + "probability": 0.9248 + }, + { + "start": 3688.34, + "end": 3689.85, + "probability": 0.6709 + }, + { + "start": 3691.48, + "end": 3693.18, + "probability": 0.9832 + }, + { + "start": 3694.78, + "end": 3697.32, + "probability": 0.9414 + }, + { + "start": 3699.68, + "end": 3702.3, + "probability": 0.8787 + }, + { + "start": 3704.34, + "end": 3705.54, + "probability": 0.8802 + }, + { + "start": 3707.48, + "end": 3708.68, + "probability": 0.8323 + }, + { + "start": 3708.96, + "end": 3710.19, + "probability": 0.9259 + }, + { + "start": 3712.44, + "end": 3715.58, + "probability": 0.9835 + }, + { + "start": 3715.68, + "end": 3716.44, + "probability": 0.7929 + }, + { + "start": 3717.88, + "end": 3720.16, + "probability": 0.9515 + }, + { + "start": 3720.7, + "end": 3722.82, + "probability": 0.693 + }, + { + "start": 3723.22, + "end": 3724.2, + "probability": 0.6809 + }, + { + "start": 3724.74, + "end": 3725.8, + "probability": 0.5753 + }, + { + "start": 3726.18, + "end": 3730.88, + "probability": 0.812 + }, + { + "start": 3732.36, + "end": 3734.74, + "probability": 0.9265 + }, + { + "start": 3735.5, + "end": 3738.72, + "probability": 0.8792 + }, + { + "start": 3739.5, + "end": 3742.9, + "probability": 0.9489 + }, + { + "start": 3743.42, + "end": 3746.8, + "probability": 0.6598 + }, + { + "start": 3746.92, + "end": 3746.92, + "probability": 0.0 + }, + { + "start": 3748.4, + "end": 3751.0, + "probability": 0.8973 + }, + { + "start": 3752.04, + "end": 3755.78, + "probability": 0.575 + }, + { + "start": 3756.8, + "end": 3759.68, + "probability": 0.4998 + }, + { + "start": 3760.04, + "end": 3761.5, + "probability": 0.8821 + }, + { + "start": 3761.92, + "end": 3765.27, + "probability": 0.9675 + }, + { + "start": 3765.96, + "end": 3766.38, + "probability": 0.4874 + }, + { + "start": 3766.52, + "end": 3767.12, + "probability": 0.3122 + }, + { + "start": 3767.16, + "end": 3769.04, + "probability": 0.5502 + }, + { + "start": 3769.52, + "end": 3773.24, + "probability": 0.8546 + }, + { + "start": 3774.6, + "end": 3775.08, + "probability": 0.5717 + }, + { + "start": 3775.12, + "end": 3776.4, + "probability": 0.9328 + }, + { + "start": 3785.0, + "end": 3787.16, + "probability": 0.1622 + }, + { + "start": 3787.22, + "end": 3787.22, + "probability": 0.1834 + }, + { + "start": 3787.22, + "end": 3787.44, + "probability": 0.066 + }, + { + "start": 3787.44, + "end": 3787.52, + "probability": 0.1241 + }, + { + "start": 3818.1, + "end": 3819.14, + "probability": 0.3812 + }, + { + "start": 3820.72, + "end": 3822.76, + "probability": 0.8744 + }, + { + "start": 3825.1, + "end": 3828.48, + "probability": 0.9767 + }, + { + "start": 3828.48, + "end": 3832.7, + "probability": 0.9595 + }, + { + "start": 3832.9, + "end": 3835.24, + "probability": 0.9945 + }, + { + "start": 3836.18, + "end": 3838.24, + "probability": 0.9766 + }, + { + "start": 3839.08, + "end": 3841.72, + "probability": 0.9807 + }, + { + "start": 3842.96, + "end": 3844.66, + "probability": 0.9946 + }, + { + "start": 3845.3, + "end": 3847.26, + "probability": 0.908 + }, + { + "start": 3848.18, + "end": 3849.02, + "probability": 0.9676 + }, + { + "start": 3850.7, + "end": 3852.14, + "probability": 0.6555 + }, + { + "start": 3852.32, + "end": 3854.28, + "probability": 0.9665 + }, + { + "start": 3854.46, + "end": 3856.0, + "probability": 0.9908 + }, + { + "start": 3856.62, + "end": 3859.88, + "probability": 0.9113 + }, + { + "start": 3860.96, + "end": 3864.78, + "probability": 0.9943 + }, + { + "start": 3865.44, + "end": 3868.1, + "probability": 0.9978 + }, + { + "start": 3868.74, + "end": 3871.3, + "probability": 0.989 + }, + { + "start": 3872.46, + "end": 3875.22, + "probability": 0.9951 + }, + { + "start": 3875.22, + "end": 3878.62, + "probability": 0.981 + }, + { + "start": 3880.02, + "end": 3884.44, + "probability": 0.9978 + }, + { + "start": 3884.44, + "end": 3889.66, + "probability": 0.9949 + }, + { + "start": 3890.3, + "end": 3894.61, + "probability": 0.8954 + }, + { + "start": 3895.22, + "end": 3896.5, + "probability": 0.9191 + }, + { + "start": 3897.42, + "end": 3899.94, + "probability": 0.7759 + }, + { + "start": 3900.92, + "end": 3906.8, + "probability": 0.972 + }, + { + "start": 3907.56, + "end": 3910.6, + "probability": 0.9487 + }, + { + "start": 3911.62, + "end": 3914.82, + "probability": 0.9917 + }, + { + "start": 3915.42, + "end": 3920.22, + "probability": 0.9888 + }, + { + "start": 3920.92, + "end": 3924.56, + "probability": 0.9954 + }, + { + "start": 3925.7, + "end": 3928.42, + "probability": 0.9993 + }, + { + "start": 3928.74, + "end": 3932.44, + "probability": 0.9764 + }, + { + "start": 3932.96, + "end": 3934.18, + "probability": 0.9005 + }, + { + "start": 3935.82, + "end": 3940.48, + "probability": 0.9976 + }, + { + "start": 3941.42, + "end": 3942.5, + "probability": 0.9186 + }, + { + "start": 3943.16, + "end": 3946.64, + "probability": 0.9964 + }, + { + "start": 3947.46, + "end": 3952.46, + "probability": 0.9814 + }, + { + "start": 3952.92, + "end": 3953.42, + "probability": 0.7898 + }, + { + "start": 3954.38, + "end": 3959.88, + "probability": 0.9995 + }, + { + "start": 3959.88, + "end": 3967.18, + "probability": 0.9977 + }, + { + "start": 3967.86, + "end": 3967.96, + "probability": 0.6024 + }, + { + "start": 3968.78, + "end": 3973.62, + "probability": 0.967 + }, + { + "start": 3974.5, + "end": 3976.2, + "probability": 0.9457 + }, + { + "start": 3976.46, + "end": 3979.96, + "probability": 0.881 + }, + { + "start": 3980.7, + "end": 3983.74, + "probability": 0.957 + }, + { + "start": 3983.92, + "end": 3984.4, + "probability": 0.7345 + }, + { + "start": 3985.14, + "end": 3987.78, + "probability": 0.7317 + }, + { + "start": 3988.1, + "end": 3990.64, + "probability": 0.9501 + }, + { + "start": 3990.72, + "end": 3993.96, + "probability": 0.8387 + }, + { + "start": 3994.66, + "end": 3999.94, + "probability": 0.9816 + }, + { + "start": 3999.98, + "end": 4004.34, + "probability": 0.9817 + }, + { + "start": 4005.08, + "end": 4008.86, + "probability": 0.9626 + }, + { + "start": 4009.44, + "end": 4014.76, + "probability": 0.9694 + }, + { + "start": 4014.8, + "end": 4019.28, + "probability": 0.9508 + }, + { + "start": 4019.38, + "end": 4020.08, + "probability": 0.6875 + }, + { + "start": 4021.08, + "end": 4021.9, + "probability": 0.6029 + }, + { + "start": 4021.92, + "end": 4022.0, + "probability": 0.646 + }, + { + "start": 4022.1, + "end": 4022.9, + "probability": 0.7533 + }, + { + "start": 4023.36, + "end": 4024.1, + "probability": 0.9885 + }, + { + "start": 4025.18, + "end": 4028.42, + "probability": 0.5614 + }, + { + "start": 4031.42, + "end": 4031.82, + "probability": 0.7884 + }, + { + "start": 4032.8, + "end": 4034.7, + "probability": 0.8482 + }, + { + "start": 4035.22, + "end": 4037.68, + "probability": 0.9781 + }, + { + "start": 4056.1, + "end": 4056.7, + "probability": 0.6138 + }, + { + "start": 4057.5, + "end": 4058.66, + "probability": 0.7842 + }, + { + "start": 4061.32, + "end": 4062.1, + "probability": 0.8199 + }, + { + "start": 4062.86, + "end": 4063.48, + "probability": 0.9116 + }, + { + "start": 4064.2, + "end": 4066.98, + "probability": 0.1606 + }, + { + "start": 4067.92, + "end": 4068.26, + "probability": 0.8858 + }, + { + "start": 4068.74, + "end": 4069.36, + "probability": 0.7684 + }, + { + "start": 4071.52, + "end": 4074.08, + "probability": 0.9816 + }, + { + "start": 4075.5, + "end": 4077.82, + "probability": 0.975 + }, + { + "start": 4079.44, + "end": 4082.08, + "probability": 0.9728 + }, + { + "start": 4083.02, + "end": 4084.2, + "probability": 0.7496 + }, + { + "start": 4085.12, + "end": 4086.58, + "probability": 0.9839 + }, + { + "start": 4087.54, + "end": 4091.36, + "probability": 0.8303 + }, + { + "start": 4092.04, + "end": 4094.48, + "probability": 0.9741 + }, + { + "start": 4096.04, + "end": 4097.86, + "probability": 0.9805 + }, + { + "start": 4098.34, + "end": 4100.42, + "probability": 0.9121 + }, + { + "start": 4101.82, + "end": 4105.04, + "probability": 0.9797 + }, + { + "start": 4105.04, + "end": 4108.34, + "probability": 0.9073 + }, + { + "start": 4108.74, + "end": 4111.62, + "probability": 0.753 + }, + { + "start": 4112.34, + "end": 4114.1, + "probability": 0.8818 + }, + { + "start": 4114.4, + "end": 4115.88, + "probability": 0.5971 + }, + { + "start": 4115.96, + "end": 4116.54, + "probability": 0.6227 + }, + { + "start": 4116.58, + "end": 4118.7, + "probability": 0.6445 + }, + { + "start": 4118.93, + "end": 4120.84, + "probability": 0.63 + }, + { + "start": 4120.84, + "end": 4123.74, + "probability": 0.2932 + }, + { + "start": 4124.36, + "end": 4125.76, + "probability": 0.7894 + }, + { + "start": 4125.82, + "end": 4128.68, + "probability": 0.7673 + }, + { + "start": 4129.52, + "end": 4131.3, + "probability": 0.7401 + }, + { + "start": 4131.36, + "end": 4133.18, + "probability": 0.7989 + }, + { + "start": 4133.92, + "end": 4135.3, + "probability": 0.991 + }, + { + "start": 4135.36, + "end": 4139.22, + "probability": 0.9972 + }, + { + "start": 4139.88, + "end": 4141.42, + "probability": 0.9554 + }, + { + "start": 4141.94, + "end": 4143.9, + "probability": 0.7317 + }, + { + "start": 4144.46, + "end": 4147.18, + "probability": 0.9537 + }, + { + "start": 4147.8, + "end": 4150.72, + "probability": 0.9541 + }, + { + "start": 4151.22, + "end": 4154.68, + "probability": 0.8958 + }, + { + "start": 4156.12, + "end": 4157.92, + "probability": 0.9568 + }, + { + "start": 4158.84, + "end": 4160.58, + "probability": 0.9993 + }, + { + "start": 4161.28, + "end": 4162.24, + "probability": 0.868 + }, + { + "start": 4162.26, + "end": 4163.36, + "probability": 0.6531 + }, + { + "start": 4163.4, + "end": 4163.72, + "probability": 0.7684 + }, + { + "start": 4163.76, + "end": 4165.86, + "probability": 0.8727 + }, + { + "start": 4166.42, + "end": 4168.04, + "probability": 0.9509 + }, + { + "start": 4169.54, + "end": 4170.68, + "probability": 0.7742 + }, + { + "start": 4172.04, + "end": 4172.34, + "probability": 0.7484 + }, + { + "start": 4172.46, + "end": 4173.96, + "probability": 0.9521 + }, + { + "start": 4174.04, + "end": 4174.62, + "probability": 0.4821 + }, + { + "start": 4174.7, + "end": 4175.28, + "probability": 0.5187 + }, + { + "start": 4175.34, + "end": 4176.02, + "probability": 0.8053 + }, + { + "start": 4176.02, + "end": 4176.5, + "probability": 0.7086 + }, + { + "start": 4176.72, + "end": 4177.56, + "probability": 0.9101 + }, + { + "start": 4178.5, + "end": 4180.36, + "probability": 0.967 + }, + { + "start": 4181.62, + "end": 4182.16, + "probability": 0.9917 + }, + { + "start": 4182.24, + "end": 4183.28, + "probability": 0.9258 + }, + { + "start": 4183.34, + "end": 4186.32, + "probability": 0.9147 + }, + { + "start": 4187.9, + "end": 4191.33, + "probability": 0.9686 + }, + { + "start": 4191.8, + "end": 4193.2, + "probability": 0.9937 + }, + { + "start": 4194.56, + "end": 4196.28, + "probability": 0.9884 + }, + { + "start": 4198.7, + "end": 4201.34, + "probability": 0.9956 + }, + { + "start": 4201.46, + "end": 4204.16, + "probability": 0.9269 + }, + { + "start": 4205.38, + "end": 4206.22, + "probability": 0.7805 + }, + { + "start": 4207.18, + "end": 4209.16, + "probability": 0.9594 + }, + { + "start": 4210.5, + "end": 4212.02, + "probability": 0.9205 + }, + { + "start": 4212.54, + "end": 4213.82, + "probability": 0.9477 + }, + { + "start": 4214.22, + "end": 4215.6, + "probability": 0.9863 + }, + { + "start": 4215.92, + "end": 4216.96, + "probability": 0.9734 + }, + { + "start": 4217.58, + "end": 4218.52, + "probability": 0.932 + }, + { + "start": 4219.28, + "end": 4221.34, + "probability": 0.9922 + }, + { + "start": 4221.9, + "end": 4223.38, + "probability": 0.9583 + }, + { + "start": 4224.06, + "end": 4226.98, + "probability": 0.8212 + }, + { + "start": 4227.24, + "end": 4228.02, + "probability": 0.7711 + }, + { + "start": 4228.16, + "end": 4231.82, + "probability": 0.9844 + }, + { + "start": 4232.98, + "end": 4235.02, + "probability": 0.9897 + }, + { + "start": 4235.94, + "end": 4236.8, + "probability": 0.7748 + }, + { + "start": 4237.54, + "end": 4238.74, + "probability": 0.9746 + }, + { + "start": 4240.46, + "end": 4242.14, + "probability": 0.9814 + }, + { + "start": 4242.62, + "end": 4244.86, + "probability": 0.9902 + }, + { + "start": 4246.54, + "end": 4247.6, + "probability": 0.9913 + }, + { + "start": 4247.88, + "end": 4248.1, + "probability": 0.5608 + }, + { + "start": 4248.14, + "end": 4249.0, + "probability": 0.9897 + }, + { + "start": 4250.7, + "end": 4251.7, + "probability": 0.7039 + }, + { + "start": 4252.06, + "end": 4254.6, + "probability": 0.9966 + }, + { + "start": 4254.72, + "end": 4255.28, + "probability": 0.8836 + }, + { + "start": 4255.92, + "end": 4257.52, + "probability": 0.9624 + }, + { + "start": 4257.66, + "end": 4258.44, + "probability": 0.802 + }, + { + "start": 4258.82, + "end": 4261.78, + "probability": 0.9263 + }, + { + "start": 4262.18, + "end": 4264.4, + "probability": 0.6665 + }, + { + "start": 4265.36, + "end": 4267.26, + "probability": 0.9329 + }, + { + "start": 4268.24, + "end": 4269.08, + "probability": 0.9375 + }, + { + "start": 4269.22, + "end": 4269.73, + "probability": 0.9664 + }, + { + "start": 4269.82, + "end": 4271.64, + "probability": 0.9468 + }, + { + "start": 4272.24, + "end": 4274.26, + "probability": 0.987 + }, + { + "start": 4274.92, + "end": 4276.7, + "probability": 0.9956 + }, + { + "start": 4276.88, + "end": 4278.64, + "probability": 0.9915 + }, + { + "start": 4278.9, + "end": 4279.4, + "probability": 0.8503 + }, + { + "start": 4280.12, + "end": 4280.8, + "probability": 0.5619 + }, + { + "start": 4280.86, + "end": 4281.26, + "probability": 0.3784 + }, + { + "start": 4281.3, + "end": 4283.98, + "probability": 0.9467 + }, + { + "start": 4284.46, + "end": 4285.8, + "probability": 0.9775 + }, + { + "start": 4286.22, + "end": 4287.34, + "probability": 0.9653 + }, + { + "start": 4287.66, + "end": 4288.84, + "probability": 0.9927 + }, + { + "start": 4289.12, + "end": 4289.98, + "probability": 0.9669 + }, + { + "start": 4290.3, + "end": 4291.06, + "probability": 0.8039 + }, + { + "start": 4291.34, + "end": 4292.88, + "probability": 0.9956 + }, + { + "start": 4293.24, + "end": 4296.24, + "probability": 0.7803 + }, + { + "start": 4296.24, + "end": 4299.58, + "probability": 0.9028 + }, + { + "start": 4300.12, + "end": 4301.84, + "probability": 0.7823 + }, + { + "start": 4302.2, + "end": 4304.4, + "probability": 0.9863 + }, + { + "start": 4304.74, + "end": 4306.06, + "probability": 0.1266 + }, + { + "start": 4307.1, + "end": 4310.0, + "probability": 0.8054 + }, + { + "start": 4310.5, + "end": 4312.26, + "probability": 0.8898 + }, + { + "start": 4312.42, + "end": 4313.04, + "probability": 0.4832 + }, + { + "start": 4315.46, + "end": 4317.36, + "probability": 0.8919 + }, + { + "start": 4319.0, + "end": 4323.08, + "probability": 0.8545 + }, + { + "start": 4323.28, + "end": 4323.38, + "probability": 0.5271 + }, + { + "start": 4324.12, + "end": 4324.44, + "probability": 0.9185 + }, + { + "start": 4327.35, + "end": 4330.58, + "probability": 0.9697 + }, + { + "start": 4332.0, + "end": 4334.18, + "probability": 0.9711 + }, + { + "start": 4335.8, + "end": 4336.6, + "probability": 0.733 + }, + { + "start": 4338.08, + "end": 4340.04, + "probability": 0.9966 + }, + { + "start": 4341.18, + "end": 4344.26, + "probability": 0.9716 + }, + { + "start": 4345.78, + "end": 4347.32, + "probability": 0.9351 + }, + { + "start": 4348.52, + "end": 4350.34, + "probability": 0.7634 + }, + { + "start": 4351.18, + "end": 4352.12, + "probability": 0.817 + }, + { + "start": 4353.7, + "end": 4357.04, + "probability": 0.4511 + }, + { + "start": 4358.58, + "end": 4362.68, + "probability": 0.9097 + }, + { + "start": 4364.02, + "end": 4365.56, + "probability": 0.9604 + }, + { + "start": 4366.34, + "end": 4367.98, + "probability": 0.9951 + }, + { + "start": 4368.74, + "end": 4371.77, + "probability": 0.9863 + }, + { + "start": 4373.1, + "end": 4374.32, + "probability": 0.9792 + }, + { + "start": 4375.24, + "end": 4378.76, + "probability": 0.9569 + }, + { + "start": 4379.84, + "end": 4384.34, + "probability": 0.8067 + }, + { + "start": 4385.14, + "end": 4389.1, + "probability": 0.917 + }, + { + "start": 4389.72, + "end": 4391.22, + "probability": 0.7631 + }, + { + "start": 4392.26, + "end": 4392.88, + "probability": 0.661 + }, + { + "start": 4393.52, + "end": 4396.32, + "probability": 0.9941 + }, + { + "start": 4397.52, + "end": 4400.2, + "probability": 0.7493 + }, + { + "start": 4401.36, + "end": 4403.86, + "probability": 0.9502 + }, + { + "start": 4404.66, + "end": 4405.8, + "probability": 0.6447 + }, + { + "start": 4407.12, + "end": 4407.76, + "probability": 0.0291 + }, + { + "start": 4407.76, + "end": 4410.76, + "probability": 0.5695 + }, + { + "start": 4411.38, + "end": 4412.14, + "probability": 0.0378 + }, + { + "start": 4412.42, + "end": 4414.08, + "probability": 0.0468 + }, + { + "start": 4418.04, + "end": 4419.32, + "probability": 0.0008 + }, + { + "start": 4421.02, + "end": 4421.02, + "probability": 0.0276 + }, + { + "start": 4421.02, + "end": 4421.04, + "probability": 0.0733 + }, + { + "start": 4421.04, + "end": 4421.04, + "probability": 0.0832 + }, + { + "start": 4421.04, + "end": 4421.04, + "probability": 0.0903 + }, + { + "start": 4421.04, + "end": 4424.5, + "probability": 0.8705 + }, + { + "start": 4426.08, + "end": 4428.2, + "probability": 0.6844 + }, + { + "start": 4429.18, + "end": 4433.44, + "probability": 0.7887 + }, + { + "start": 4434.86, + "end": 4436.6, + "probability": 0.9828 + }, + { + "start": 4437.34, + "end": 4438.76, + "probability": 0.715 + }, + { + "start": 4439.48, + "end": 4440.52, + "probability": 0.7956 + }, + { + "start": 4441.7, + "end": 4443.08, + "probability": 0.9458 + }, + { + "start": 4443.56, + "end": 4447.12, + "probability": 0.958 + }, + { + "start": 4448.4, + "end": 4448.92, + "probability": 0.7129 + }, + { + "start": 4449.92, + "end": 4450.46, + "probability": 0.906 + }, + { + "start": 4451.78, + "end": 4453.56, + "probability": 0.7644 + }, + { + "start": 4454.36, + "end": 4456.98, + "probability": 0.8701 + }, + { + "start": 4457.56, + "end": 4459.36, + "probability": 0.9476 + }, + { + "start": 4460.08, + "end": 4464.24, + "probability": 0.9806 + }, + { + "start": 4465.08, + "end": 4468.62, + "probability": 0.9504 + }, + { + "start": 4469.74, + "end": 4471.46, + "probability": 0.9964 + }, + { + "start": 4471.66, + "end": 4472.54, + "probability": 0.7268 + }, + { + "start": 4473.24, + "end": 4477.14, + "probability": 0.9938 + }, + { + "start": 4478.3, + "end": 4479.44, + "probability": 0.9628 + }, + { + "start": 4481.4, + "end": 4482.29, + "probability": 0.9976 + }, + { + "start": 4482.88, + "end": 4484.16, + "probability": 0.9744 + }, + { + "start": 4484.2, + "end": 4486.54, + "probability": 0.9687 + }, + { + "start": 4487.32, + "end": 4489.72, + "probability": 0.8024 + }, + { + "start": 4490.46, + "end": 4493.8, + "probability": 0.9839 + }, + { + "start": 4494.3, + "end": 4495.2, + "probability": 0.8585 + }, + { + "start": 4495.32, + "end": 4497.34, + "probability": 0.9196 + }, + { + "start": 4498.16, + "end": 4501.04, + "probability": 0.9042 + }, + { + "start": 4501.8, + "end": 4503.48, + "probability": 0.9958 + }, + { + "start": 4504.42, + "end": 4505.04, + "probability": 0.4809 + }, + { + "start": 4505.2, + "end": 4506.16, + "probability": 0.5928 + }, + { + "start": 4506.34, + "end": 4507.92, + "probability": 0.9367 + }, + { + "start": 4507.92, + "end": 4509.02, + "probability": 0.2409 + }, + { + "start": 4509.74, + "end": 4512.36, + "probability": 0.5339 + }, + { + "start": 4513.14, + "end": 4516.02, + "probability": 0.1515 + }, + { + "start": 4516.68, + "end": 4519.73, + "probability": 0.9899 + }, + { + "start": 4521.1, + "end": 4521.73, + "probability": 0.9053 + }, + { + "start": 4522.6, + "end": 4523.92, + "probability": 0.7637 + }, + { + "start": 4524.72, + "end": 4527.68, + "probability": 0.8187 + }, + { + "start": 4528.26, + "end": 4529.46, + "probability": 0.9146 + }, + { + "start": 4530.12, + "end": 4532.26, + "probability": 0.9965 + }, + { + "start": 4532.72, + "end": 4537.46, + "probability": 0.0541 + }, + { + "start": 4538.46, + "end": 4538.46, + "probability": 0.1883 + }, + { + "start": 4538.46, + "end": 4538.46, + "probability": 0.2094 + }, + { + "start": 4538.46, + "end": 4538.96, + "probability": 0.6768 + }, + { + "start": 4539.04, + "end": 4539.52, + "probability": 0.8497 + }, + { + "start": 4540.58, + "end": 4541.44, + "probability": 0.9422 + }, + { + "start": 4542.44, + "end": 4546.0, + "probability": 0.8594 + }, + { + "start": 4547.3, + "end": 4548.98, + "probability": 0.0901 + }, + { + "start": 4550.08, + "end": 4552.38, + "probability": 0.0272 + }, + { + "start": 4554.64, + "end": 4555.38, + "probability": 0.0674 + }, + { + "start": 4555.64, + "end": 4557.56, + "probability": 0.0168 + }, + { + "start": 4557.58, + "end": 4558.12, + "probability": 0.0625 + }, + { + "start": 4558.12, + "end": 4558.76, + "probability": 0.1157 + }, + { + "start": 4558.96, + "end": 4559.06, + "probability": 0.3873 + }, + { + "start": 4559.06, + "end": 4559.7, + "probability": 0.7033 + }, + { + "start": 4559.82, + "end": 4560.51, + "probability": 0.9619 + }, + { + "start": 4561.06, + "end": 4562.94, + "probability": 0.986 + }, + { + "start": 4563.5, + "end": 4565.38, + "probability": 0.7923 + }, + { + "start": 4566.52, + "end": 4567.04, + "probability": 0.8802 + }, + { + "start": 4567.66, + "end": 4568.94, + "probability": 0.9221 + }, + { + "start": 4569.54, + "end": 4572.44, + "probability": 0.6992 + }, + { + "start": 4573.4, + "end": 4574.56, + "probability": 0.8108 + }, + { + "start": 4575.16, + "end": 4576.02, + "probability": 0.6257 + }, + { + "start": 4576.7, + "end": 4577.34, + "probability": 0.7099 + }, + { + "start": 4577.38, + "end": 4579.47, + "probability": 0.9883 + }, + { + "start": 4580.02, + "end": 4583.66, + "probability": 0.7459 + }, + { + "start": 4586.33, + "end": 4589.76, + "probability": 0.5951 + }, + { + "start": 4589.98, + "end": 4591.24, + "probability": 0.9514 + }, + { + "start": 4591.68, + "end": 4592.54, + "probability": 0.3351 + }, + { + "start": 4593.3, + "end": 4596.32, + "probability": 0.9728 + }, + { + "start": 4596.76, + "end": 4597.84, + "probability": 0.3235 + }, + { + "start": 4597.84, + "end": 4597.84, + "probability": 0.1544 + }, + { + "start": 4597.84, + "end": 4598.58, + "probability": 0.7529 + }, + { + "start": 4599.6, + "end": 4601.7, + "probability": 0.9758 + }, + { + "start": 4601.8, + "end": 4605.03, + "probability": 0.7544 + }, + { + "start": 4614.94, + "end": 4618.8, + "probability": 0.6166 + }, + { + "start": 4620.08, + "end": 4621.9, + "probability": 0.7792 + }, + { + "start": 4623.1, + "end": 4624.14, + "probability": 0.8014 + }, + { + "start": 4625.66, + "end": 4627.1, + "probability": 0.9964 + }, + { + "start": 4627.2, + "end": 4628.12, + "probability": 0.4266 + }, + { + "start": 4628.27, + "end": 4631.78, + "probability": 0.9109 + }, + { + "start": 4632.34, + "end": 4635.24, + "probability": 0.8982 + }, + { + "start": 4636.32, + "end": 4636.9, + "probability": 0.6182 + }, + { + "start": 4637.74, + "end": 4639.18, + "probability": 0.8182 + }, + { + "start": 4640.64, + "end": 4641.4, + "probability": 0.6972 + }, + { + "start": 4642.66, + "end": 4643.34, + "probability": 0.7779 + }, + { + "start": 4643.62, + "end": 4644.0, + "probability": 0.9259 + }, + { + "start": 4644.08, + "end": 4647.36, + "probability": 0.9952 + }, + { + "start": 4648.64, + "end": 4650.48, + "probability": 0.9674 + }, + { + "start": 4651.16, + "end": 4652.72, + "probability": 0.7568 + }, + { + "start": 4653.62, + "end": 4658.06, + "probability": 0.747 + }, + { + "start": 4658.76, + "end": 4663.12, + "probability": 0.9696 + }, + { + "start": 4663.8, + "end": 4666.34, + "probability": 0.9802 + }, + { + "start": 4667.38, + "end": 4670.76, + "probability": 0.9847 + }, + { + "start": 4673.76, + "end": 4674.36, + "probability": 0.9556 + }, + { + "start": 4675.6, + "end": 4676.82, + "probability": 0.699 + }, + { + "start": 4677.62, + "end": 4680.44, + "probability": 0.9752 + }, + { + "start": 4681.6, + "end": 4685.42, + "probability": 0.7536 + }, + { + "start": 4686.7, + "end": 4691.34, + "probability": 0.7766 + }, + { + "start": 4691.64, + "end": 4692.46, + "probability": 0.4118 + }, + { + "start": 4693.22, + "end": 4695.64, + "probability": 0.8545 + }, + { + "start": 4695.76, + "end": 4696.7, + "probability": 0.9824 + }, + { + "start": 4697.16, + "end": 4698.39, + "probability": 0.9341 + }, + { + "start": 4699.22, + "end": 4701.02, + "probability": 0.7135 + }, + { + "start": 4702.08, + "end": 4703.2, + "probability": 0.6697 + }, + { + "start": 4703.7, + "end": 4704.74, + "probability": 0.9596 + }, + { + "start": 4704.8, + "end": 4705.54, + "probability": 0.8945 + }, + { + "start": 4706.74, + "end": 4708.2, + "probability": 0.8076 + }, + { + "start": 4708.68, + "end": 4712.74, + "probability": 0.9896 + }, + { + "start": 4713.96, + "end": 4717.6, + "probability": 0.763 + }, + { + "start": 4717.9, + "end": 4721.42, + "probability": 0.7158 + }, + { + "start": 4721.54, + "end": 4727.74, + "probability": 0.9899 + }, + { + "start": 4727.84, + "end": 4728.54, + "probability": 0.5364 + }, + { + "start": 4729.4, + "end": 4732.34, + "probability": 0.8892 + }, + { + "start": 4733.18, + "end": 4735.14, + "probability": 0.9263 + }, + { + "start": 4737.02, + "end": 4738.36, + "probability": 0.7518 + }, + { + "start": 4739.62, + "end": 4742.24, + "probability": 0.9736 + }, + { + "start": 4744.64, + "end": 4751.08, + "probability": 0.9699 + }, + { + "start": 4751.72, + "end": 4752.52, + "probability": 0.9632 + }, + { + "start": 4753.72, + "end": 4755.22, + "probability": 0.9603 + }, + { + "start": 4756.14, + "end": 4758.62, + "probability": 0.9498 + }, + { + "start": 4758.74, + "end": 4759.34, + "probability": 0.8735 + }, + { + "start": 4759.48, + "end": 4760.02, + "probability": 0.8775 + }, + { + "start": 4761.64, + "end": 4763.18, + "probability": 0.9375 + }, + { + "start": 4764.56, + "end": 4765.92, + "probability": 0.7972 + }, + { + "start": 4767.54, + "end": 4769.34, + "probability": 0.8516 + }, + { + "start": 4769.76, + "end": 4770.22, + "probability": 0.6682 + }, + { + "start": 4770.66, + "end": 4772.94, + "probability": 0.6361 + }, + { + "start": 4773.12, + "end": 4774.04, + "probability": 0.8535 + }, + { + "start": 4774.34, + "end": 4775.8, + "probability": 0.92 + }, + { + "start": 4776.98, + "end": 4778.18, + "probability": 0.5996 + }, + { + "start": 4778.34, + "end": 4778.76, + "probability": 0.3978 + }, + { + "start": 4778.78, + "end": 4782.02, + "probability": 0.7495 + }, + { + "start": 4782.76, + "end": 4783.62, + "probability": 0.9313 + }, + { + "start": 4783.68, + "end": 4784.24, + "probability": 0.9193 + }, + { + "start": 4784.36, + "end": 4785.82, + "probability": 0.8486 + }, + { + "start": 4786.72, + "end": 4789.72, + "probability": 0.9563 + }, + { + "start": 4790.85, + "end": 4794.76, + "probability": 0.9257 + }, + { + "start": 4795.12, + "end": 4796.88, + "probability": 0.8269 + }, + { + "start": 4796.96, + "end": 4798.94, + "probability": 0.9934 + }, + { + "start": 4800.22, + "end": 4801.1, + "probability": 0.9543 + }, + { + "start": 4801.24, + "end": 4802.72, + "probability": 0.9115 + }, + { + "start": 4802.84, + "end": 4803.62, + "probability": 0.7178 + }, + { + "start": 4804.06, + "end": 4804.75, + "probability": 0.6013 + }, + { + "start": 4804.92, + "end": 4805.56, + "probability": 0.6686 + }, + { + "start": 4806.36, + "end": 4806.72, + "probability": 0.6817 + }, + { + "start": 4806.78, + "end": 4807.16, + "probability": 0.8164 + }, + { + "start": 4807.52, + "end": 4808.5, + "probability": 0.9048 + }, + { + "start": 4808.92, + "end": 4809.74, + "probability": 0.964 + }, + { + "start": 4810.12, + "end": 4810.8, + "probability": 0.9656 + }, + { + "start": 4811.12, + "end": 4814.1, + "probability": 0.978 + }, + { + "start": 4814.44, + "end": 4815.8, + "probability": 0.9897 + }, + { + "start": 4816.28, + "end": 4818.86, + "probability": 0.7519 + }, + { + "start": 4819.26, + "end": 4820.07, + "probability": 0.9688 + }, + { + "start": 4820.26, + "end": 4820.89, + "probability": 0.8191 + }, + { + "start": 4821.56, + "end": 4823.74, + "probability": 0.7384 + }, + { + "start": 4823.88, + "end": 4826.38, + "probability": 0.7584 + }, + { + "start": 4826.68, + "end": 4827.54, + "probability": 0.3495 + }, + { + "start": 4827.7, + "end": 4829.06, + "probability": 0.9637 + }, + { + "start": 4829.3, + "end": 4830.42, + "probability": 0.8395 + }, + { + "start": 4830.84, + "end": 4831.18, + "probability": 0.2929 + }, + { + "start": 4831.5, + "end": 4832.84, + "probability": 0.9782 + }, + { + "start": 4833.74, + "end": 4834.4, + "probability": 0.637 + }, + { + "start": 4834.46, + "end": 4835.48, + "probability": 0.5825 + }, + { + "start": 4835.52, + "end": 4836.48, + "probability": 0.7943 + }, + { + "start": 4836.54, + "end": 4837.24, + "probability": 0.6616 + }, + { + "start": 4837.66, + "end": 4840.04, + "probability": 0.9873 + }, + { + "start": 4840.14, + "end": 4841.3, + "probability": 0.7524 + }, + { + "start": 4841.98, + "end": 4842.18, + "probability": 0.477 + }, + { + "start": 4842.3, + "end": 4846.5, + "probability": 0.8966 + }, + { + "start": 4847.04, + "end": 4850.08, + "probability": 0.9805 + }, + { + "start": 4850.12, + "end": 4852.26, + "probability": 0.7131 + }, + { + "start": 4853.22, + "end": 4858.56, + "probability": 0.634 + }, + { + "start": 4859.24, + "end": 4861.5, + "probability": 0.6458 + }, + { + "start": 4862.54, + "end": 4862.54, + "probability": 0.4533 + }, + { + "start": 4862.56, + "end": 4863.7, + "probability": 0.9697 + }, + { + "start": 4865.54, + "end": 4867.3, + "probability": 0.8473 + }, + { + "start": 4868.58, + "end": 4871.86, + "probability": 0.9979 + }, + { + "start": 4872.64, + "end": 4875.6, + "probability": 0.998 + }, + { + "start": 4876.62, + "end": 4879.54, + "probability": 0.8866 + }, + { + "start": 4881.4, + "end": 4887.32, + "probability": 0.9612 + }, + { + "start": 4887.34, + "end": 4887.77, + "probability": 0.7049 + }, + { + "start": 4888.54, + "end": 4889.42, + "probability": 0.992 + }, + { + "start": 4889.56, + "end": 4892.86, + "probability": 0.8091 + }, + { + "start": 4893.36, + "end": 4894.64, + "probability": 0.92 + }, + { + "start": 4895.24, + "end": 4896.86, + "probability": 0.9532 + }, + { + "start": 4897.2, + "end": 4898.52, + "probability": 0.9775 + }, + { + "start": 4898.86, + "end": 4901.04, + "probability": 0.7943 + }, + { + "start": 4901.52, + "end": 4902.74, + "probability": 0.998 + }, + { + "start": 4902.88, + "end": 4907.08, + "probability": 0.9986 + }, + { + "start": 4907.08, + "end": 4910.84, + "probability": 0.9929 + }, + { + "start": 4911.06, + "end": 4913.58, + "probability": 0.6975 + }, + { + "start": 4914.46, + "end": 4916.78, + "probability": 0.8772 + }, + { + "start": 4917.18, + "end": 4920.1, + "probability": 0.9653 + }, + { + "start": 4920.58, + "end": 4921.4, + "probability": 0.9009 + }, + { + "start": 4921.76, + "end": 4924.98, + "probability": 0.5681 + }, + { + "start": 4925.18, + "end": 4927.4, + "probability": 0.8689 + }, + { + "start": 4927.46, + "end": 4927.82, + "probability": 0.7698 + }, + { + "start": 4928.4, + "end": 4928.92, + "probability": 0.7988 + }, + { + "start": 4928.96, + "end": 4933.04, + "probability": 0.9258 + }, + { + "start": 4933.64, + "end": 4935.3, + "probability": 0.674 + }, + { + "start": 4936.06, + "end": 4936.94, + "probability": 0.5458 + }, + { + "start": 4937.04, + "end": 4937.77, + "probability": 0.7885 + }, + { + "start": 4938.52, + "end": 4938.8, + "probability": 0.0293 + }, + { + "start": 4938.96, + "end": 4941.88, + "probability": 0.8545 + }, + { + "start": 4942.1, + "end": 4944.6, + "probability": 0.7998 + }, + { + "start": 4944.86, + "end": 4947.32, + "probability": 0.849 + }, + { + "start": 4947.66, + "end": 4948.34, + "probability": 0.9177 + }, + { + "start": 4948.98, + "end": 4950.24, + "probability": 0.9407 + }, + { + "start": 4951.16, + "end": 4954.18, + "probability": 0.3805 + }, + { + "start": 4954.62, + "end": 4955.72, + "probability": 0.8181 + }, + { + "start": 4955.9, + "end": 4958.08, + "probability": 0.9902 + }, + { + "start": 4958.12, + "end": 4963.74, + "probability": 0.8628 + }, + { + "start": 4966.33, + "end": 4967.06, + "probability": 0.4649 + }, + { + "start": 4968.3, + "end": 4968.62, + "probability": 0.5103 + }, + { + "start": 4969.88, + "end": 4971.16, + "probability": 0.7427 + }, + { + "start": 4971.52, + "end": 4971.88, + "probability": 0.771 + }, + { + "start": 4971.9, + "end": 4973.46, + "probability": 0.649 + }, + { + "start": 4974.04, + "end": 4975.84, + "probability": 0.9475 + }, + { + "start": 4976.06, + "end": 4976.08, + "probability": 0.5519 + }, + { + "start": 4976.08, + "end": 4978.38, + "probability": 0.929 + }, + { + "start": 4978.9, + "end": 4980.42, + "probability": 0.9862 + }, + { + "start": 4980.56, + "end": 4982.78, + "probability": 0.8598 + }, + { + "start": 4983.16, + "end": 4984.2, + "probability": 0.8239 + }, + { + "start": 4984.82, + "end": 4986.14, + "probability": 0.4812 + }, + { + "start": 4986.64, + "end": 4989.82, + "probability": 0.9059 + }, + { + "start": 4990.84, + "end": 4993.48, + "probability": 0.9869 + }, + { + "start": 4994.86, + "end": 5001.24, + "probability": 0.9905 + }, + { + "start": 5002.14, + "end": 5002.7, + "probability": 0.9518 + }, + { + "start": 5003.22, + "end": 5005.28, + "probability": 0.9957 + }, + { + "start": 5006.0, + "end": 5006.7, + "probability": 0.9572 + }, + { + "start": 5007.58, + "end": 5008.9, + "probability": 0.7246 + }, + { + "start": 5010.04, + "end": 5014.14, + "probability": 0.954 + }, + { + "start": 5014.7, + "end": 5015.5, + "probability": 0.8133 + }, + { + "start": 5016.06, + "end": 5017.46, + "probability": 0.8665 + }, + { + "start": 5018.58, + "end": 5020.84, + "probability": 0.9186 + }, + { + "start": 5021.89, + "end": 5028.46, + "probability": 0.9676 + }, + { + "start": 5029.02, + "end": 5031.86, + "probability": 0.8056 + }, + { + "start": 5032.4, + "end": 5034.16, + "probability": 0.7609 + }, + { + "start": 5035.12, + "end": 5035.82, + "probability": 0.9912 + }, + { + "start": 5036.42, + "end": 5036.98, + "probability": 0.8814 + }, + { + "start": 5037.74, + "end": 5037.94, + "probability": 0.7632 + }, + { + "start": 5038.54, + "end": 5038.92, + "probability": 0.8323 + }, + { + "start": 5039.46, + "end": 5040.63, + "probability": 0.9814 + }, + { + "start": 5041.66, + "end": 5042.32, + "probability": 0.9671 + }, + { + "start": 5044.16, + "end": 5044.32, + "probability": 0.4922 + }, + { + "start": 5045.32, + "end": 5047.38, + "probability": 0.9479 + }, + { + "start": 5047.82, + "end": 5048.88, + "probability": 0.874 + }, + { + "start": 5049.16, + "end": 5050.2, + "probability": 0.7382 + }, + { + "start": 5052.76, + "end": 5053.3, + "probability": 0.2178 + }, + { + "start": 5053.9, + "end": 5059.46, + "probability": 0.6475 + }, + { + "start": 5059.86, + "end": 5064.98, + "probability": 0.8215 + }, + { + "start": 5065.1, + "end": 5065.86, + "probability": 0.8128 + }, + { + "start": 5065.98, + "end": 5066.64, + "probability": 0.8437 + }, + { + "start": 5067.92, + "end": 5068.58, + "probability": 0.9808 + }, + { + "start": 5068.98, + "end": 5070.34, + "probability": 0.9025 + }, + { + "start": 5070.44, + "end": 5071.26, + "probability": 0.6953 + }, + { + "start": 5072.3, + "end": 5073.36, + "probability": 0.8902 + }, + { + "start": 5074.42, + "end": 5078.9, + "probability": 0.8267 + }, + { + "start": 5079.94, + "end": 5081.04, + "probability": 0.8165 + }, + { + "start": 5082.96, + "end": 5087.02, + "probability": 0.9913 + }, + { + "start": 5088.8, + "end": 5089.93, + "probability": 0.6403 + }, + { + "start": 5090.82, + "end": 5091.42, + "probability": 0.642 + }, + { + "start": 5092.74, + "end": 5096.58, + "probability": 0.9764 + }, + { + "start": 5096.9, + "end": 5100.48, + "probability": 0.9916 + }, + { + "start": 5101.46, + "end": 5104.26, + "probability": 0.9917 + }, + { + "start": 5104.68, + "end": 5108.12, + "probability": 0.9967 + }, + { + "start": 5109.64, + "end": 5112.74, + "probability": 0.9816 + }, + { + "start": 5113.72, + "end": 5115.0, + "probability": 0.5241 + }, + { + "start": 5115.68, + "end": 5116.26, + "probability": 0.826 + }, + { + "start": 5116.8, + "end": 5118.16, + "probability": 0.9847 + }, + { + "start": 5118.88, + "end": 5119.9, + "probability": 0.9914 + }, + { + "start": 5121.18, + "end": 5122.04, + "probability": 0.9995 + }, + { + "start": 5123.82, + "end": 5126.0, + "probability": 0.8387 + }, + { + "start": 5126.08, + "end": 5127.38, + "probability": 0.9983 + }, + { + "start": 5128.88, + "end": 5129.22, + "probability": 0.6642 + }, + { + "start": 5130.96, + "end": 5133.76, + "probability": 0.668 + }, + { + "start": 5134.74, + "end": 5135.74, + "probability": 0.8184 + }, + { + "start": 5137.2, + "end": 5139.1, + "probability": 0.9272 + }, + { + "start": 5139.82, + "end": 5141.64, + "probability": 0.7662 + }, + { + "start": 5142.54, + "end": 5143.38, + "probability": 0.9814 + }, + { + "start": 5144.16, + "end": 5148.64, + "probability": 0.9858 + }, + { + "start": 5148.98, + "end": 5149.48, + "probability": 0.3585 + }, + { + "start": 5150.1, + "end": 5150.84, + "probability": 0.9067 + }, + { + "start": 5151.04, + "end": 5152.38, + "probability": 0.9938 + }, + { + "start": 5153.44, + "end": 5155.58, + "probability": 0.9761 + }, + { + "start": 5156.84, + "end": 5157.7, + "probability": 0.6786 + }, + { + "start": 5158.44, + "end": 5159.45, + "probability": 0.9927 + }, + { + "start": 5160.66, + "end": 5166.1, + "probability": 0.9916 + }, + { + "start": 5166.48, + "end": 5172.0, + "probability": 0.9941 + }, + { + "start": 5173.86, + "end": 5177.54, + "probability": 0.9305 + }, + { + "start": 5177.66, + "end": 5179.26, + "probability": 0.9655 + }, + { + "start": 5179.94, + "end": 5183.1, + "probability": 0.8122 + }, + { + "start": 5183.44, + "end": 5185.76, + "probability": 0.9529 + }, + { + "start": 5185.82, + "end": 5186.7, + "probability": 0.4008 + }, + { + "start": 5187.6, + "end": 5191.24, + "probability": 0.9897 + }, + { + "start": 5192.04, + "end": 5193.92, + "probability": 0.719 + }, + { + "start": 5194.74, + "end": 5195.88, + "probability": 0.9944 + }, + { + "start": 5196.1, + "end": 5198.84, + "probability": 0.9919 + }, + { + "start": 5199.46, + "end": 5202.82, + "probability": 0.6055 + }, + { + "start": 5204.18, + "end": 5204.66, + "probability": 0.849 + }, + { + "start": 5205.84, + "end": 5207.1, + "probability": 0.9242 + }, + { + "start": 5208.46, + "end": 5209.54, + "probability": 0.9621 + }, + { + "start": 5210.88, + "end": 5214.04, + "probability": 0.9972 + }, + { + "start": 5215.04, + "end": 5218.02, + "probability": 0.9954 + }, + { + "start": 5218.74, + "end": 5220.6, + "probability": 0.9941 + }, + { + "start": 5221.88, + "end": 5225.92, + "probability": 0.9972 + }, + { + "start": 5227.28, + "end": 5234.16, + "probability": 0.995 + }, + { + "start": 5234.24, + "end": 5235.38, + "probability": 0.5916 + }, + { + "start": 5236.66, + "end": 5238.04, + "probability": 0.9569 + }, + { + "start": 5240.38, + "end": 5245.88, + "probability": 0.9604 + }, + { + "start": 5246.24, + "end": 5246.86, + "probability": 0.667 + }, + { + "start": 5247.08, + "end": 5247.38, + "probability": 0.6262 + }, + { + "start": 5248.22, + "end": 5252.74, + "probability": 0.9957 + }, + { + "start": 5253.18, + "end": 5254.96, + "probability": 0.9546 + }, + { + "start": 5255.62, + "end": 5258.14, + "probability": 0.9069 + }, + { + "start": 5258.64, + "end": 5260.84, + "probability": 0.9968 + }, + { + "start": 5261.48, + "end": 5262.22, + "probability": 0.9805 + }, + { + "start": 5263.9, + "end": 5264.64, + "probability": 0.9409 + }, + { + "start": 5265.54, + "end": 5268.06, + "probability": 0.9868 + }, + { + "start": 5268.58, + "end": 5269.7, + "probability": 0.9818 + }, + { + "start": 5270.46, + "end": 5270.98, + "probability": 0.5379 + }, + { + "start": 5271.08, + "end": 5273.1, + "probability": 0.7701 + }, + { + "start": 5273.5, + "end": 5275.18, + "probability": 0.9245 + }, + { + "start": 5302.06, + "end": 5304.16, + "probability": 0.572 + }, + { + "start": 5305.6, + "end": 5310.1, + "probability": 0.9905 + }, + { + "start": 5310.1, + "end": 5315.88, + "probability": 0.9729 + }, + { + "start": 5316.56, + "end": 5319.96, + "probability": 0.9935 + }, + { + "start": 5320.76, + "end": 5322.68, + "probability": 0.9526 + }, + { + "start": 5324.24, + "end": 5326.06, + "probability": 0.6734 + }, + { + "start": 5327.28, + "end": 5328.3, + "probability": 0.8707 + }, + { + "start": 5329.3, + "end": 5331.16, + "probability": 0.9227 + }, + { + "start": 5332.22, + "end": 5334.76, + "probability": 0.9797 + }, + { + "start": 5336.7, + "end": 5337.72, + "probability": 0.9926 + }, + { + "start": 5337.86, + "end": 5339.5, + "probability": 0.9634 + }, + { + "start": 5339.76, + "end": 5342.78, + "probability": 0.9978 + }, + { + "start": 5342.86, + "end": 5344.87, + "probability": 0.8226 + }, + { + "start": 5346.2, + "end": 5350.56, + "probability": 0.9971 + }, + { + "start": 5351.54, + "end": 5353.2, + "probability": 0.9873 + }, + { + "start": 5356.28, + "end": 5361.86, + "probability": 0.9621 + }, + { + "start": 5362.4, + "end": 5369.08, + "probability": 0.9839 + }, + { + "start": 5369.64, + "end": 5370.5, + "probability": 0.7158 + }, + { + "start": 5371.4, + "end": 5373.86, + "probability": 0.6326 + }, + { + "start": 5374.02, + "end": 5374.54, + "probability": 0.4065 + }, + { + "start": 5377.14, + "end": 5378.05, + "probability": 0.9732 + }, + { + "start": 5378.62, + "end": 5379.96, + "probability": 0.979 + }, + { + "start": 5380.08, + "end": 5380.46, + "probability": 0.8952 + }, + { + "start": 5381.08, + "end": 5381.88, + "probability": 0.8929 + }, + { + "start": 5382.6, + "end": 5384.14, + "probability": 0.9576 + }, + { + "start": 5384.86, + "end": 5387.62, + "probability": 0.9817 + }, + { + "start": 5388.34, + "end": 5391.22, + "probability": 0.9804 + }, + { + "start": 5392.26, + "end": 5392.26, + "probability": 0.8179 + }, + { + "start": 5392.84, + "end": 5395.28, + "probability": 0.8666 + }, + { + "start": 5395.32, + "end": 5397.32, + "probability": 0.8532 + }, + { + "start": 5398.02, + "end": 5400.12, + "probability": 0.9895 + }, + { + "start": 5401.06, + "end": 5401.82, + "probability": 0.7987 + }, + { + "start": 5402.78, + "end": 5404.5, + "probability": 0.9452 + }, + { + "start": 5405.64, + "end": 5406.48, + "probability": 0.9419 + }, + { + "start": 5407.62, + "end": 5411.4, + "probability": 0.9972 + }, + { + "start": 5411.4, + "end": 5413.8, + "probability": 0.9988 + }, + { + "start": 5414.6, + "end": 5416.56, + "probability": 0.7839 + }, + { + "start": 5418.02, + "end": 5422.94, + "probability": 0.8701 + }, + { + "start": 5423.66, + "end": 5424.28, + "probability": 0.7758 + }, + { + "start": 5425.62, + "end": 5426.26, + "probability": 0.972 + }, + { + "start": 5426.56, + "end": 5430.14, + "probability": 0.9859 + }, + { + "start": 5430.14, + "end": 5434.54, + "probability": 0.8818 + }, + { + "start": 5434.74, + "end": 5435.8, + "probability": 0.817 + }, + { + "start": 5436.44, + "end": 5441.82, + "probability": 0.9675 + }, + { + "start": 5443.72, + "end": 5444.59, + "probability": 0.9995 + }, + { + "start": 5445.5, + "end": 5446.58, + "probability": 0.673 + }, + { + "start": 5446.9, + "end": 5454.54, + "probability": 0.9902 + }, + { + "start": 5455.06, + "end": 5457.39, + "probability": 0.794 + }, + { + "start": 5459.2, + "end": 5462.84, + "probability": 0.9911 + }, + { + "start": 5463.76, + "end": 5466.2, + "probability": 0.8018 + }, + { + "start": 5466.3, + "end": 5467.2, + "probability": 0.7407 + }, + { + "start": 5468.86, + "end": 5470.98, + "probability": 0.9905 + }, + { + "start": 5471.74, + "end": 5473.9, + "probability": 0.9883 + }, + { + "start": 5475.08, + "end": 5479.18, + "probability": 0.9881 + }, + { + "start": 5480.68, + "end": 5482.24, + "probability": 0.9517 + }, + { + "start": 5483.42, + "end": 5489.66, + "probability": 0.9948 + }, + { + "start": 5490.08, + "end": 5490.56, + "probability": 0.7298 + }, + { + "start": 5490.56, + "end": 5491.04, + "probability": 0.8594 + }, + { + "start": 5492.08, + "end": 5493.46, + "probability": 0.8337 + }, + { + "start": 5494.28, + "end": 5498.04, + "probability": 0.9899 + }, + { + "start": 5498.32, + "end": 5499.28, + "probability": 0.7794 + }, + { + "start": 5500.44, + "end": 5502.32, + "probability": 0.9968 + }, + { + "start": 5502.86, + "end": 5505.72, + "probability": 0.9988 + }, + { + "start": 5506.88, + "end": 5508.08, + "probability": 0.9231 + }, + { + "start": 5509.1, + "end": 5509.84, + "probability": 0.7905 + }, + { + "start": 5510.9, + "end": 5514.8, + "probability": 0.9956 + }, + { + "start": 5515.08, + "end": 5519.06, + "probability": 0.9684 + }, + { + "start": 5519.3, + "end": 5520.86, + "probability": 0.9741 + }, + { + "start": 5521.6, + "end": 5523.3, + "probability": 0.8286 + }, + { + "start": 5523.96, + "end": 5525.04, + "probability": 0.9637 + }, + { + "start": 5525.2, + "end": 5525.5, + "probability": 0.7472 + }, + { + "start": 5525.8, + "end": 5527.4, + "probability": 0.9296 + }, + { + "start": 5528.54, + "end": 5529.14, + "probability": 0.7826 + }, + { + "start": 5568.9, + "end": 5569.0, + "probability": 0.3106 + }, + { + "start": 5569.0, + "end": 5570.04, + "probability": 0.592 + }, + { + "start": 5571.9, + "end": 5573.26, + "probability": 0.7357 + }, + { + "start": 5576.56, + "end": 5577.3, + "probability": 0.7563 + }, + { + "start": 5579.18, + "end": 5580.54, + "probability": 0.9086 + }, + { + "start": 5580.58, + "end": 5587.4, + "probability": 0.9515 + }, + { + "start": 5589.06, + "end": 5590.5, + "probability": 0.9978 + }, + { + "start": 5592.56, + "end": 5595.48, + "probability": 0.9341 + }, + { + "start": 5595.56, + "end": 5600.2, + "probability": 0.9121 + }, + { + "start": 5601.94, + "end": 5603.9, + "probability": 0.7443 + }, + { + "start": 5604.14, + "end": 5610.5, + "probability": 0.9946 + }, + { + "start": 5610.5, + "end": 5620.74, + "probability": 0.9927 + }, + { + "start": 5622.98, + "end": 5628.44, + "probability": 0.9814 + }, + { + "start": 5628.64, + "end": 5629.56, + "probability": 0.9808 + }, + { + "start": 5629.64, + "end": 5630.46, + "probability": 0.7395 + }, + { + "start": 5631.44, + "end": 5633.7, + "probability": 0.8901 + }, + { + "start": 5635.42, + "end": 5637.26, + "probability": 0.9603 + }, + { + "start": 5638.24, + "end": 5638.77, + "probability": 0.6226 + }, + { + "start": 5639.46, + "end": 5642.92, + "probability": 0.9684 + }, + { + "start": 5643.76, + "end": 5645.74, + "probability": 0.9801 + }, + { + "start": 5647.2, + "end": 5648.3, + "probability": 0.8719 + }, + { + "start": 5649.1, + "end": 5649.74, + "probability": 0.7229 + }, + { + "start": 5649.96, + "end": 5650.54, + "probability": 0.6299 + }, + { + "start": 5653.02, + "end": 5654.06, + "probability": 0.959 + }, + { + "start": 5655.34, + "end": 5658.2, + "probability": 0.9976 + }, + { + "start": 5659.24, + "end": 5660.04, + "probability": 0.6187 + }, + { + "start": 5661.54, + "end": 5662.22, + "probability": 0.9409 + }, + { + "start": 5662.3, + "end": 5663.89, + "probability": 0.9622 + }, + { + "start": 5664.08, + "end": 5664.8, + "probability": 0.9586 + }, + { + "start": 5665.26, + "end": 5666.5, + "probability": 0.6005 + }, + { + "start": 5669.04, + "end": 5672.64, + "probability": 0.9968 + }, + { + "start": 5673.9, + "end": 5676.42, + "probability": 0.9309 + }, + { + "start": 5678.1, + "end": 5682.58, + "probability": 0.9561 + }, + { + "start": 5683.84, + "end": 5685.32, + "probability": 0.9179 + }, + { + "start": 5686.76, + "end": 5690.8, + "probability": 0.9739 + }, + { + "start": 5692.86, + "end": 5695.92, + "probability": 0.9607 + }, + { + "start": 5696.1, + "end": 5697.09, + "probability": 0.8562 + }, + { + "start": 5699.2, + "end": 5701.78, + "probability": 0.9971 + }, + { + "start": 5705.2, + "end": 5706.86, + "probability": 0.9409 + }, + { + "start": 5708.16, + "end": 5709.78, + "probability": 0.9398 + }, + { + "start": 5711.0, + "end": 5711.28, + "probability": 0.9573 + }, + { + "start": 5711.34, + "end": 5712.58, + "probability": 0.9917 + }, + { + "start": 5712.76, + "end": 5715.19, + "probability": 0.7759 + }, + { + "start": 5715.66, + "end": 5718.1, + "probability": 0.9419 + }, + { + "start": 5718.54, + "end": 5720.1, + "probability": 0.9711 + }, + { + "start": 5722.04, + "end": 5725.24, + "probability": 0.8741 + }, + { + "start": 5725.78, + "end": 5729.28, + "probability": 0.9312 + }, + { + "start": 5730.1, + "end": 5732.14, + "probability": 0.9397 + }, + { + "start": 5732.74, + "end": 5733.3, + "probability": 0.7876 + }, + { + "start": 5733.42, + "end": 5740.32, + "probability": 0.9476 + }, + { + "start": 5741.86, + "end": 5742.26, + "probability": 0.7359 + }, + { + "start": 5743.12, + "end": 5744.16, + "probability": 0.9983 + }, + { + "start": 5745.08, + "end": 5749.8, + "probability": 0.8871 + }, + { + "start": 5750.96, + "end": 5754.76, + "probability": 0.993 + }, + { + "start": 5756.98, + "end": 5758.33, + "probability": 0.9631 + }, + { + "start": 5760.14, + "end": 5763.56, + "probability": 0.6496 + }, + { + "start": 5764.16, + "end": 5766.42, + "probability": 0.604 + }, + { + "start": 5767.82, + "end": 5769.62, + "probability": 0.9863 + }, + { + "start": 5769.74, + "end": 5773.34, + "probability": 0.9976 + }, + { + "start": 5773.8, + "end": 5775.38, + "probability": 0.9829 + }, + { + "start": 5775.86, + "end": 5775.94, + "probability": 0.1746 + }, + { + "start": 5776.12, + "end": 5778.16, + "probability": 0.8087 + }, + { + "start": 5778.82, + "end": 5779.96, + "probability": 0.9919 + }, + { + "start": 5780.46, + "end": 5782.3, + "probability": 0.9917 + }, + { + "start": 5782.82, + "end": 5786.14, + "probability": 0.9843 + }, + { + "start": 5786.94, + "end": 5788.1, + "probability": 0.998 + }, + { + "start": 5789.72, + "end": 5790.88, + "probability": 0.9981 + }, + { + "start": 5791.86, + "end": 5799.62, + "probability": 0.9802 + }, + { + "start": 5800.66, + "end": 5803.02, + "probability": 0.9663 + }, + { + "start": 5804.02, + "end": 5806.56, + "probability": 0.9814 + }, + { + "start": 5808.12, + "end": 5810.12, + "probability": 0.6434 + }, + { + "start": 5810.64, + "end": 5812.58, + "probability": 0.9849 + }, + { + "start": 5813.18, + "end": 5817.38, + "probability": 0.9099 + }, + { + "start": 5817.7, + "end": 5819.6, + "probability": 0.9999 + }, + { + "start": 5820.18, + "end": 5822.82, + "probability": 0.7026 + }, + { + "start": 5822.82, + "end": 5824.84, + "probability": 0.9813 + }, + { + "start": 5825.56, + "end": 5826.98, + "probability": 0.6472 + }, + { + "start": 5828.08, + "end": 5828.78, + "probability": 0.969 + }, + { + "start": 5829.6, + "end": 5839.08, + "probability": 0.9943 + }, + { + "start": 5839.32, + "end": 5843.22, + "probability": 0.9468 + }, + { + "start": 5844.14, + "end": 5846.58, + "probability": 0.9796 + }, + { + "start": 5846.74, + "end": 5847.32, + "probability": 0.5779 + }, + { + "start": 5847.46, + "end": 5849.38, + "probability": 0.8484 + }, + { + "start": 5850.26, + "end": 5852.42, + "probability": 0.9248 + }, + { + "start": 5876.08, + "end": 5876.96, + "probability": 0.5682 + }, + { + "start": 5878.96, + "end": 5880.0, + "probability": 0.7708 + }, + { + "start": 5882.44, + "end": 5886.62, + "probability": 0.9441 + }, + { + "start": 5888.48, + "end": 5890.82, + "probability": 0.9108 + }, + { + "start": 5892.04, + "end": 5894.92, + "probability": 0.9977 + }, + { + "start": 5895.98, + "end": 5897.14, + "probability": 0.9777 + }, + { + "start": 5897.8, + "end": 5898.84, + "probability": 0.9933 + }, + { + "start": 5901.54, + "end": 5902.14, + "probability": 0.6764 + }, + { + "start": 5904.68, + "end": 5905.82, + "probability": 0.8813 + }, + { + "start": 5908.44, + "end": 5912.52, + "probability": 0.8643 + }, + { + "start": 5913.86, + "end": 5917.5, + "probability": 0.9267 + }, + { + "start": 5918.48, + "end": 5919.04, + "probability": 0.6842 + }, + { + "start": 5920.72, + "end": 5923.24, + "probability": 0.9512 + }, + { + "start": 5924.06, + "end": 5925.38, + "probability": 0.5444 + }, + { + "start": 5926.54, + "end": 5928.76, + "probability": 0.9917 + }, + { + "start": 5929.68, + "end": 5936.18, + "probability": 0.9608 + }, + { + "start": 5936.66, + "end": 5940.2, + "probability": 0.9658 + }, + { + "start": 5940.62, + "end": 5941.92, + "probability": 0.5744 + }, + { + "start": 5944.04, + "end": 5944.72, + "probability": 0.7761 + }, + { + "start": 5945.18, + "end": 5948.58, + "probability": 0.9956 + }, + { + "start": 5948.92, + "end": 5949.85, + "probability": 0.8516 + }, + { + "start": 5950.6, + "end": 5953.22, + "probability": 0.9878 + }, + { + "start": 5956.52, + "end": 5958.26, + "probability": 0.9624 + }, + { + "start": 5958.36, + "end": 5959.88, + "probability": 0.7141 + }, + { + "start": 5961.1, + "end": 5963.74, + "probability": 0.9669 + }, + { + "start": 5964.46, + "end": 5965.86, + "probability": 0.8557 + }, + { + "start": 5965.94, + "end": 5966.9, + "probability": 0.7517 + }, + { + "start": 5967.38, + "end": 5972.94, + "probability": 0.9904 + }, + { + "start": 5973.3, + "end": 5974.2, + "probability": 0.6577 + }, + { + "start": 5975.24, + "end": 5978.18, + "probability": 0.9389 + }, + { + "start": 5978.64, + "end": 5983.24, + "probability": 0.8623 + }, + { + "start": 5983.34, + "end": 5983.88, + "probability": 0.8761 + }, + { + "start": 5984.58, + "end": 5985.36, + "probability": 0.9485 + }, + { + "start": 5986.84, + "end": 5989.28, + "probability": 0.9875 + }, + { + "start": 5990.88, + "end": 5992.32, + "probability": 0.9019 + }, + { + "start": 5992.52, + "end": 5995.68, + "probability": 0.8229 + }, + { + "start": 5996.14, + "end": 6000.0, + "probability": 0.9652 + }, + { + "start": 6000.16, + "end": 6003.76, + "probability": 0.9933 + }, + { + "start": 6004.48, + "end": 6007.24, + "probability": 0.9984 + }, + { + "start": 6007.94, + "end": 6012.0, + "probability": 0.9628 + }, + { + "start": 6012.38, + "end": 6013.02, + "probability": 0.2242 + }, + { + "start": 6014.12, + "end": 6015.34, + "probability": 0.0825 + }, + { + "start": 6015.6, + "end": 6016.6, + "probability": 0.4811 + }, + { + "start": 6016.72, + "end": 6017.8, + "probability": 0.5108 + }, + { + "start": 6017.8, + "end": 6021.3, + "probability": 0.9013 + }, + { + "start": 6022.02, + "end": 6023.34, + "probability": 0.9553 + }, + { + "start": 6023.78, + "end": 6027.42, + "probability": 0.9806 + }, + { + "start": 6028.86, + "end": 6029.46, + "probability": 0.3989 + }, + { + "start": 6029.46, + "end": 6030.42, + "probability": 0.6767 + }, + { + "start": 6031.2, + "end": 6035.24, + "probability": 0.9489 + }, + { + "start": 6035.24, + "end": 6039.12, + "probability": 0.9983 + }, + { + "start": 6039.58, + "end": 6042.02, + "probability": 0.6672 + }, + { + "start": 6042.58, + "end": 6045.8, + "probability": 0.8628 + }, + { + "start": 6046.4, + "end": 6047.5, + "probability": 0.8776 + }, + { + "start": 6048.12, + "end": 6049.72, + "probability": 0.8475 + }, + { + "start": 6049.96, + "end": 6051.0, + "probability": 0.9338 + }, + { + "start": 6051.68, + "end": 6052.7, + "probability": 0.7242 + }, + { + "start": 6053.22, + "end": 6054.42, + "probability": 0.6134 + }, + { + "start": 6055.12, + "end": 6056.12, + "probability": 0.5665 + }, + { + "start": 6056.64, + "end": 6059.04, + "probability": 0.9298 + }, + { + "start": 6059.48, + "end": 6061.18, + "probability": 0.7271 + }, + { + "start": 6063.48, + "end": 6066.8, + "probability": 0.9642 + }, + { + "start": 6067.4, + "end": 6069.89, + "probability": 0.9791 + }, + { + "start": 6070.04, + "end": 6070.92, + "probability": 0.7179 + }, + { + "start": 6071.14, + "end": 6071.68, + "probability": 0.1436 + }, + { + "start": 6071.72, + "end": 6072.22, + "probability": 0.4385 + }, + { + "start": 6072.7, + "end": 6074.9, + "probability": 0.7993 + }, + { + "start": 6075.28, + "end": 6079.46, + "probability": 0.9162 + }, + { + "start": 6079.5, + "end": 6079.88, + "probability": 0.7611 + }, + { + "start": 6079.88, + "end": 6080.26, + "probability": 0.5798 + }, + { + "start": 6080.26, + "end": 6083.53, + "probability": 0.7167 + }, + { + "start": 6085.35, + "end": 6086.7, + "probability": 0.3549 + }, + { + "start": 6086.7, + "end": 6087.16, + "probability": 0.3228 + }, + { + "start": 6087.76, + "end": 6087.86, + "probability": 0.7802 + }, + { + "start": 6089.02, + "end": 6089.72, + "probability": 0.6102 + }, + { + "start": 6090.16, + "end": 6092.94, + "probability": 0.3634 + }, + { + "start": 6092.94, + "end": 6096.48, + "probability": 0.8682 + }, + { + "start": 6096.7, + "end": 6097.96, + "probability": 0.072 + }, + { + "start": 6099.04, + "end": 6100.04, + "probability": 0.1727 + }, + { + "start": 6102.78, + "end": 6104.36, + "probability": 0.1288 + }, + { + "start": 6104.76, + "end": 6104.9, + "probability": 0.118 + }, + { + "start": 6104.9, + "end": 6106.34, + "probability": 0.3797 + }, + { + "start": 6106.54, + "end": 6107.98, + "probability": 0.5792 + }, + { + "start": 6108.52, + "end": 6110.0, + "probability": 0.6308 + }, + { + "start": 6125.28, + "end": 6125.44, + "probability": 0.0086 + }, + { + "start": 6125.44, + "end": 6127.28, + "probability": 0.7091 + }, + { + "start": 6128.64, + "end": 6131.34, + "probability": 0.9766 + }, + { + "start": 6131.42, + "end": 6136.74, + "probability": 0.9905 + }, + { + "start": 6137.44, + "end": 6138.1, + "probability": 0.8462 + }, + { + "start": 6139.14, + "end": 6140.9, + "probability": 0.9954 + }, + { + "start": 6141.64, + "end": 6143.04, + "probability": 0.8549 + }, + { + "start": 6143.82, + "end": 6145.94, + "probability": 0.8344 + }, + { + "start": 6146.54, + "end": 6149.48, + "probability": 0.9414 + }, + { + "start": 6149.62, + "end": 6151.02, + "probability": 0.9915 + }, + { + "start": 6151.12, + "end": 6152.38, + "probability": 0.9765 + }, + { + "start": 6152.9, + "end": 6154.04, + "probability": 0.9811 + }, + { + "start": 6154.26, + "end": 6155.16, + "probability": 0.9778 + }, + { + "start": 6155.24, + "end": 6157.44, + "probability": 0.9905 + }, + { + "start": 6157.62, + "end": 6159.66, + "probability": 0.9955 + }, + { + "start": 6160.16, + "end": 6162.3, + "probability": 0.7342 + }, + { + "start": 6164.08, + "end": 6165.42, + "probability": 0.8023 + }, + { + "start": 6166.18, + "end": 6167.5, + "probability": 0.9259 + }, + { + "start": 6167.66, + "end": 6169.04, + "probability": 0.9841 + }, + { + "start": 6169.1, + "end": 6173.52, + "probability": 0.9883 + }, + { + "start": 6173.52, + "end": 6179.28, + "probability": 0.9911 + }, + { + "start": 6179.34, + "end": 6180.42, + "probability": 0.8507 + }, + { + "start": 6180.58, + "end": 6183.4, + "probability": 0.9902 + }, + { + "start": 6184.22, + "end": 6186.76, + "probability": 0.9966 + }, + { + "start": 6187.6, + "end": 6188.98, + "probability": 0.9971 + }, + { + "start": 6189.7, + "end": 6194.78, + "probability": 0.9745 + }, + { + "start": 6194.98, + "end": 6197.4, + "probability": 0.9986 + }, + { + "start": 6197.46, + "end": 6197.64, + "probability": 0.7159 + }, + { + "start": 6198.92, + "end": 6199.5, + "probability": 0.7688 + }, + { + "start": 6199.56, + "end": 6202.76, + "probability": 0.8936 + }, + { + "start": 6202.76, + "end": 6206.22, + "probability": 0.9954 + }, + { + "start": 6207.26, + "end": 6210.74, + "probability": 0.501 + }, + { + "start": 6210.74, + "end": 6214.36, + "probability": 0.9986 + }, + { + "start": 6214.52, + "end": 6215.1, + "probability": 0.5546 + }, + { + "start": 6215.98, + "end": 6219.54, + "probability": 0.9752 + }, + { + "start": 6219.54, + "end": 6221.76, + "probability": 0.99 + }, + { + "start": 6222.5, + "end": 6222.88, + "probability": 0.6678 + }, + { + "start": 6223.4, + "end": 6225.04, + "probability": 0.8383 + }, + { + "start": 6225.74, + "end": 6228.1, + "probability": 0.977 + }, + { + "start": 6228.54, + "end": 6229.82, + "probability": 0.998 + }, + { + "start": 6230.54, + "end": 6231.4, + "probability": 0.991 + }, + { + "start": 6232.26, + "end": 6235.66, + "probability": 0.9971 + }, + { + "start": 6236.62, + "end": 6240.2, + "probability": 0.9825 + }, + { + "start": 6240.2, + "end": 6244.02, + "probability": 0.9976 + }, + { + "start": 6244.88, + "end": 6248.0, + "probability": 0.9722 + }, + { + "start": 6248.7, + "end": 6251.36, + "probability": 0.8429 + }, + { + "start": 6251.44, + "end": 6252.78, + "probability": 0.9545 + }, + { + "start": 6253.26, + "end": 6254.68, + "probability": 0.9555 + }, + { + "start": 6254.98, + "end": 6260.51, + "probability": 0.9938 + }, + { + "start": 6261.24, + "end": 6261.86, + "probability": 0.5054 + }, + { + "start": 6261.96, + "end": 6262.98, + "probability": 0.8629 + }, + { + "start": 6263.82, + "end": 6265.92, + "probability": 0.8803 + }, + { + "start": 6266.48, + "end": 6268.9, + "probability": 0.9062 + }, + { + "start": 6269.2, + "end": 6271.32, + "probability": 0.7391 + }, + { + "start": 6271.76, + "end": 6273.32, + "probability": 0.7847 + }, + { + "start": 6273.86, + "end": 6276.38, + "probability": 0.9912 + }, + { + "start": 6276.39, + "end": 6278.92, + "probability": 0.9971 + }, + { + "start": 6279.56, + "end": 6281.32, + "probability": 0.9749 + }, + { + "start": 6281.48, + "end": 6285.94, + "probability": 0.9697 + }, + { + "start": 6286.08, + "end": 6286.58, + "probability": 0.7108 + }, + { + "start": 6286.66, + "end": 6288.72, + "probability": 0.9371 + }, + { + "start": 6289.12, + "end": 6292.66, + "probability": 0.9873 + }, + { + "start": 6293.06, + "end": 6293.86, + "probability": 0.4856 + }, + { + "start": 6293.94, + "end": 6298.04, + "probability": 0.9467 + }, + { + "start": 6298.08, + "end": 6298.78, + "probability": 0.7939 + }, + { + "start": 6298.84, + "end": 6304.12, + "probability": 0.9937 + }, + { + "start": 6304.54, + "end": 6308.82, + "probability": 0.7188 + }, + { + "start": 6308.98, + "end": 6309.56, + "probability": 0.7468 + }, + { + "start": 6310.02, + "end": 6312.58, + "probability": 0.7968 + }, + { + "start": 6312.88, + "end": 6316.58, + "probability": 0.958 + }, + { + "start": 6317.1, + "end": 6318.36, + "probability": 0.9906 + }, + { + "start": 6318.46, + "end": 6320.74, + "probability": 0.7987 + }, + { + "start": 6320.88, + "end": 6321.5, + "probability": 0.5135 + }, + { + "start": 6321.5, + "end": 6321.5, + "probability": 0.4203 + }, + { + "start": 6321.56, + "end": 6322.32, + "probability": 0.9185 + }, + { + "start": 6325.98, + "end": 6327.74, + "probability": 0.5658 + }, + { + "start": 6328.92, + "end": 6332.7, + "probability": 0.6725 + }, + { + "start": 6332.7, + "end": 6333.9, + "probability": 0.9844 + }, + { + "start": 6334.74, + "end": 6336.2, + "probability": 0.3379 + }, + { + "start": 6338.06, + "end": 6339.64, + "probability": 0.5954 + }, + { + "start": 6342.64, + "end": 6343.4, + "probability": 0.1403 + }, + { + "start": 6352.8, + "end": 6352.8, + "probability": 0.0437 + }, + { + "start": 6352.8, + "end": 6354.8, + "probability": 0.985 + }, + { + "start": 6354.92, + "end": 6355.66, + "probability": 0.667 + }, + { + "start": 6356.48, + "end": 6357.3, + "probability": 0.5134 + }, + { + "start": 6359.05, + "end": 6359.98, + "probability": 0.7462 + }, + { + "start": 6360.28, + "end": 6361.8, + "probability": 0.9044 + }, + { + "start": 6362.1, + "end": 6362.96, + "probability": 0.7395 + }, + { + "start": 6364.46, + "end": 6367.8, + "probability": 0.1841 + }, + { + "start": 6370.24, + "end": 6372.48, + "probability": 0.0398 + }, + { + "start": 6372.48, + "end": 6377.73, + "probability": 0.0832 + }, + { + "start": 6377.84, + "end": 6378.76, + "probability": 0.1565 + }, + { + "start": 6379.28, + "end": 6387.2, + "probability": 0.0439 + }, + { + "start": 6421.52, + "end": 6423.14, + "probability": 0.7358 + }, + { + "start": 6424.08, + "end": 6425.74, + "probability": 0.8825 + }, + { + "start": 6426.44, + "end": 6427.42, + "probability": 0.4385 + }, + { + "start": 6428.3, + "end": 6431.06, + "probability": 0.9577 + }, + { + "start": 6431.88, + "end": 6432.37, + "probability": 0.9097 + }, + { + "start": 6433.23, + "end": 6433.82, + "probability": 0.9871 + }, + { + "start": 6434.44, + "end": 6435.8, + "probability": 0.9836 + }, + { + "start": 6436.36, + "end": 6438.94, + "probability": 0.9883 + }, + { + "start": 6440.04, + "end": 6442.61, + "probability": 0.9897 + }, + { + "start": 6443.46, + "end": 6443.46, + "probability": 0.1618 + }, + { + "start": 6443.46, + "end": 6448.04, + "probability": 0.9971 + }, + { + "start": 6448.72, + "end": 6450.7, + "probability": 0.8485 + }, + { + "start": 6451.46, + "end": 6452.36, + "probability": 0.7876 + }, + { + "start": 6453.22, + "end": 6453.82, + "probability": 0.6938 + }, + { + "start": 6454.26, + "end": 6457.22, + "probability": 0.9027 + }, + { + "start": 6457.86, + "end": 6460.48, + "probability": 0.9951 + }, + { + "start": 6462.1, + "end": 6465.06, + "probability": 0.9652 + }, + { + "start": 6465.1, + "end": 6466.18, + "probability": 0.9736 + }, + { + "start": 6467.5, + "end": 6468.98, + "probability": 0.9596 + }, + { + "start": 6469.62, + "end": 6471.68, + "probability": 0.8086 + }, + { + "start": 6473.74, + "end": 6474.9, + "probability": 0.9897 + }, + { + "start": 6476.4, + "end": 6477.96, + "probability": 0.9954 + }, + { + "start": 6478.24, + "end": 6478.58, + "probability": 0.9518 + }, + { + "start": 6479.14, + "end": 6481.74, + "probability": 0.8932 + }, + { + "start": 6482.42, + "end": 6483.42, + "probability": 0.7988 + }, + { + "start": 6484.52, + "end": 6485.62, + "probability": 0.9796 + }, + { + "start": 6487.28, + "end": 6489.16, + "probability": 0.9844 + }, + { + "start": 6490.64, + "end": 6491.48, + "probability": 0.9418 + }, + { + "start": 6492.04, + "end": 6494.0, + "probability": 0.9352 + }, + { + "start": 6495.96, + "end": 6496.18, + "probability": 0.1768 + }, + { + "start": 6498.0, + "end": 6498.52, + "probability": 0.0215 + }, + { + "start": 6498.52, + "end": 6498.66, + "probability": 0.0227 + }, + { + "start": 6498.66, + "end": 6499.34, + "probability": 0.5076 + }, + { + "start": 6499.7, + "end": 6501.1, + "probability": 0.5624 + }, + { + "start": 6501.28, + "end": 6501.85, + "probability": 0.84 + }, + { + "start": 6502.06, + "end": 6504.98, + "probability": 0.8678 + }, + { + "start": 6505.66, + "end": 6508.82, + "probability": 0.9958 + }, + { + "start": 6510.32, + "end": 6510.48, + "probability": 0.0561 + }, + { + "start": 6510.48, + "end": 6512.2, + "probability": 0.7263 + }, + { + "start": 6512.98, + "end": 6514.78, + "probability": 0.9006 + }, + { + "start": 6515.42, + "end": 6518.28, + "probability": 0.9976 + }, + { + "start": 6519.14, + "end": 6521.1, + "probability": 0.9949 + }, + { + "start": 6521.1, + "end": 6521.98, + "probability": 0.7625 + }, + { + "start": 6522.58, + "end": 6523.64, + "probability": 0.5513 + }, + { + "start": 6524.94, + "end": 6527.58, + "probability": 0.871 + }, + { + "start": 6528.36, + "end": 6530.34, + "probability": 0.958 + }, + { + "start": 6531.02, + "end": 6532.18, + "probability": 0.8317 + }, + { + "start": 6532.84, + "end": 6535.1, + "probability": 0.9972 + }, + { + "start": 6536.12, + "end": 6540.16, + "probability": 0.9771 + }, + { + "start": 6541.18, + "end": 6545.54, + "probability": 0.996 + }, + { + "start": 6546.3, + "end": 6551.42, + "probability": 0.9985 + }, + { + "start": 6551.82, + "end": 6554.68, + "probability": 0.9373 + }, + { + "start": 6555.82, + "end": 6558.48, + "probability": 0.991 + }, + { + "start": 6559.24, + "end": 6560.9, + "probability": 0.8417 + }, + { + "start": 6561.16, + "end": 6563.56, + "probability": 0.8695 + }, + { + "start": 6564.72, + "end": 6565.74, + "probability": 0.9171 + }, + { + "start": 6566.26, + "end": 6567.96, + "probability": 0.9042 + }, + { + "start": 6568.24, + "end": 6568.58, + "probability": 0.5741 + }, + { + "start": 6568.66, + "end": 6572.04, + "probability": 0.9884 + }, + { + "start": 6572.56, + "end": 6576.26, + "probability": 0.9973 + }, + { + "start": 6576.84, + "end": 6577.83, + "probability": 0.8854 + }, + { + "start": 6578.62, + "end": 6579.24, + "probability": 0.8805 + }, + { + "start": 6579.74, + "end": 6580.6, + "probability": 0.7853 + }, + { + "start": 6580.8, + "end": 6583.38, + "probability": 0.9716 + }, + { + "start": 6583.92, + "end": 6588.88, + "probability": 0.9421 + }, + { + "start": 6588.94, + "end": 6589.98, + "probability": 0.7439 + }, + { + "start": 6590.0, + "end": 6592.5, + "probability": 0.985 + }, + { + "start": 6592.7, + "end": 6596.78, + "probability": 0.9964 + }, + { + "start": 6597.04, + "end": 6597.34, + "probability": 0.5717 + }, + { + "start": 6597.82, + "end": 6598.28, + "probability": 0.6179 + }, + { + "start": 6598.34, + "end": 6599.4, + "probability": 0.915 + }, + { + "start": 6609.26, + "end": 6609.26, + "probability": 0.5154 + }, + { + "start": 6609.26, + "end": 6609.26, + "probability": 0.1296 + }, + { + "start": 6609.26, + "end": 6609.34, + "probability": 0.1695 + }, + { + "start": 6609.34, + "end": 6609.4, + "probability": 0.1033 + }, + { + "start": 6609.4, + "end": 6609.66, + "probability": 0.0397 + }, + { + "start": 6616.28, + "end": 6616.4, + "probability": 0.0003 + }, + { + "start": 6641.08, + "end": 6644.74, + "probability": 0.4434 + }, + { + "start": 6645.56, + "end": 6646.56, + "probability": 0.5359 + }, + { + "start": 6647.6, + "end": 6650.88, + "probability": 0.8021 + }, + { + "start": 6651.88, + "end": 6655.6, + "probability": 0.9951 + }, + { + "start": 6655.76, + "end": 6658.68, + "probability": 0.9663 + }, + { + "start": 6659.14, + "end": 6659.88, + "probability": 0.7339 + }, + { + "start": 6660.04, + "end": 6660.66, + "probability": 0.5845 + }, + { + "start": 6662.27, + "end": 6666.0, + "probability": 0.8966 + }, + { + "start": 6666.92, + "end": 6670.58, + "probability": 0.9916 + }, + { + "start": 6672.0, + "end": 6673.02, + "probability": 0.9963 + }, + { + "start": 6673.1, + "end": 6675.12, + "probability": 0.9409 + }, + { + "start": 6676.36, + "end": 6678.94, + "probability": 0.8992 + }, + { + "start": 6679.12, + "end": 6686.48, + "probability": 0.9671 + }, + { + "start": 6687.9, + "end": 6690.18, + "probability": 0.9537 + }, + { + "start": 6690.9, + "end": 6694.16, + "probability": 0.9949 + }, + { + "start": 6694.28, + "end": 6696.8, + "probability": 0.9706 + }, + { + "start": 6696.86, + "end": 6697.08, + "probability": 0.608 + }, + { + "start": 6697.16, + "end": 6698.0, + "probability": 0.4979 + }, + { + "start": 6698.08, + "end": 6698.32, + "probability": 0.7671 + }, + { + "start": 6699.4, + "end": 6701.86, + "probability": 0.9897 + }, + { + "start": 6702.04, + "end": 6702.64, + "probability": 0.5465 + }, + { + "start": 6704.63, + "end": 6706.48, + "probability": 0.9766 + }, + { + "start": 6706.64, + "end": 6706.9, + "probability": 0.7904 + }, + { + "start": 6707.02, + "end": 6708.9, + "probability": 0.9976 + }, + { + "start": 6710.36, + "end": 6711.84, + "probability": 0.2029 + }, + { + "start": 6712.04, + "end": 6713.0, + "probability": 0.6635 + }, + { + "start": 6713.22, + "end": 6714.72, + "probability": 0.5168 + }, + { + "start": 6716.24, + "end": 6718.0, + "probability": 0.8904 + }, + { + "start": 6718.86, + "end": 6723.98, + "probability": 0.938 + }, + { + "start": 6725.58, + "end": 6731.62, + "probability": 0.9956 + }, + { + "start": 6732.84, + "end": 6733.64, + "probability": 0.974 + }, + { + "start": 6735.16, + "end": 6736.7, + "probability": 0.823 + }, + { + "start": 6737.14, + "end": 6738.27, + "probability": 0.9044 + }, + { + "start": 6738.86, + "end": 6741.12, + "probability": 0.9752 + }, + { + "start": 6741.66, + "end": 6743.02, + "probability": 0.9398 + }, + { + "start": 6743.4, + "end": 6744.82, + "probability": 0.979 + }, + { + "start": 6744.94, + "end": 6745.44, + "probability": 0.9254 + }, + { + "start": 6745.48, + "end": 6746.24, + "probability": 0.4369 + }, + { + "start": 6746.64, + "end": 6747.84, + "probability": 0.9716 + }, + { + "start": 6748.3, + "end": 6749.03, + "probability": 0.9692 + }, + { + "start": 6749.28, + "end": 6750.31, + "probability": 0.8831 + }, + { + "start": 6751.46, + "end": 6752.56, + "probability": 0.8451 + }, + { + "start": 6752.76, + "end": 6754.16, + "probability": 0.8649 + }, + { + "start": 6754.42, + "end": 6755.56, + "probability": 0.9818 + }, + { + "start": 6756.9, + "end": 6757.64, + "probability": 0.5926 + }, + { + "start": 6757.8, + "end": 6760.14, + "probability": 0.9804 + }, + { + "start": 6760.62, + "end": 6762.6, + "probability": 0.9407 + }, + { + "start": 6763.38, + "end": 6767.16, + "probability": 0.8345 + }, + { + "start": 6768.02, + "end": 6769.72, + "probability": 0.909 + }, + { + "start": 6769.84, + "end": 6770.98, + "probability": 0.7029 + }, + { + "start": 6771.14, + "end": 6772.36, + "probability": 0.7742 + }, + { + "start": 6773.0, + "end": 6774.95, + "probability": 0.8584 + }, + { + "start": 6776.2, + "end": 6778.16, + "probability": 0.7117 + }, + { + "start": 6778.32, + "end": 6780.82, + "probability": 0.9902 + }, + { + "start": 6781.2, + "end": 6782.24, + "probability": 0.9832 + }, + { + "start": 6783.42, + "end": 6786.38, + "probability": 0.8533 + }, + { + "start": 6787.16, + "end": 6789.58, + "probability": 0.9847 + }, + { + "start": 6790.6, + "end": 6793.1, + "probability": 0.9775 + }, + { + "start": 6793.58, + "end": 6796.62, + "probability": 0.9966 + }, + { + "start": 6797.16, + "end": 6797.74, + "probability": 0.3713 + }, + { + "start": 6798.34, + "end": 6799.12, + "probability": 0.9639 + }, + { + "start": 6801.04, + "end": 6805.24, + "probability": 0.976 + }, + { + "start": 6805.42, + "end": 6809.0, + "probability": 0.9732 + }, + { + "start": 6809.36, + "end": 6809.82, + "probability": 0.4412 + }, + { + "start": 6809.96, + "end": 6811.42, + "probability": 0.7748 + }, + { + "start": 6811.7, + "end": 6812.16, + "probability": 0.7973 + }, + { + "start": 6812.24, + "end": 6812.84, + "probability": 0.7283 + }, + { + "start": 6812.96, + "end": 6816.46, + "probability": 0.9697 + }, + { + "start": 6820.66, + "end": 6824.62, + "probability": 0.8329 + }, + { + "start": 6825.24, + "end": 6826.54, + "probability": 0.8255 + }, + { + "start": 6827.6, + "end": 6828.84, + "probability": 0.8777 + }, + { + "start": 6829.42, + "end": 6830.87, + "probability": 0.8638 + }, + { + "start": 6831.62, + "end": 6833.32, + "probability": 0.9944 + }, + { + "start": 6833.92, + "end": 6836.72, + "probability": 0.9951 + }, + { + "start": 6837.54, + "end": 6837.88, + "probability": 0.8168 + }, + { + "start": 6838.3, + "end": 6840.92, + "probability": 0.8394 + }, + { + "start": 6841.04, + "end": 6842.64, + "probability": 0.9303 + }, + { + "start": 6863.42, + "end": 6865.1, + "probability": 0.7299 + }, + { + "start": 6866.86, + "end": 6867.16, + "probability": 0.8186 + }, + { + "start": 6867.24, + "end": 6870.9, + "probability": 0.998 + }, + { + "start": 6870.9, + "end": 6873.82, + "probability": 0.9995 + }, + { + "start": 6874.4, + "end": 6875.92, + "probability": 0.5615 + }, + { + "start": 6876.68, + "end": 6879.68, + "probability": 0.9226 + }, + { + "start": 6879.78, + "end": 6881.2, + "probability": 0.8337 + }, + { + "start": 6881.84, + "end": 6884.84, + "probability": 0.8732 + }, + { + "start": 6885.36, + "end": 6889.6, + "probability": 0.9463 + }, + { + "start": 6890.06, + "end": 6890.76, + "probability": 0.9756 + }, + { + "start": 6890.88, + "end": 6891.54, + "probability": 0.9205 + }, + { + "start": 6891.68, + "end": 6892.22, + "probability": 0.9608 + }, + { + "start": 6892.36, + "end": 6892.9, + "probability": 0.9834 + }, + { + "start": 6892.94, + "end": 6893.64, + "probability": 0.5833 + }, + { + "start": 6894.34, + "end": 6898.68, + "probability": 0.9836 + }, + { + "start": 6899.56, + "end": 6904.58, + "probability": 0.9938 + }, + { + "start": 6904.66, + "end": 6906.4, + "probability": 0.9978 + }, + { + "start": 6906.98, + "end": 6912.66, + "probability": 0.9817 + }, + { + "start": 6912.76, + "end": 6918.38, + "probability": 0.9878 + }, + { + "start": 6918.78, + "end": 6922.98, + "probability": 0.9959 + }, + { + "start": 6923.56, + "end": 6925.52, + "probability": 0.7869 + }, + { + "start": 6925.78, + "end": 6930.52, + "probability": 0.9662 + }, + { + "start": 6930.86, + "end": 6932.76, + "probability": 0.8674 + }, + { + "start": 6933.08, + "end": 6936.22, + "probability": 0.999 + }, + { + "start": 6936.22, + "end": 6939.46, + "probability": 0.999 + }, + { + "start": 6940.14, + "end": 6942.38, + "probability": 0.9917 + }, + { + "start": 6943.1, + "end": 6944.57, + "probability": 0.9904 + }, + { + "start": 6945.24, + "end": 6947.48, + "probability": 0.9721 + }, + { + "start": 6947.94, + "end": 6953.06, + "probability": 0.948 + }, + { + "start": 6953.06, + "end": 6958.6, + "probability": 0.8812 + }, + { + "start": 6958.64, + "end": 6962.58, + "probability": 0.9982 + }, + { + "start": 6962.58, + "end": 6966.04, + "probability": 0.9956 + }, + { + "start": 6966.68, + "end": 6970.0, + "probability": 0.8593 + }, + { + "start": 6970.62, + "end": 6971.44, + "probability": 0.8401 + }, + { + "start": 6971.72, + "end": 6974.18, + "probability": 0.4965 + }, + { + "start": 6974.54, + "end": 6977.2, + "probability": 0.9868 + }, + { + "start": 6977.54, + "end": 6978.02, + "probability": 0.5047 + }, + { + "start": 6978.46, + "end": 6978.92, + "probability": 0.8937 + }, + { + "start": 6979.34, + "end": 6984.34, + "probability": 0.9373 + }, + { + "start": 6984.68, + "end": 6988.02, + "probability": 0.9234 + }, + { + "start": 6988.3, + "end": 6992.54, + "probability": 0.9878 + }, + { + "start": 6992.58, + "end": 6994.94, + "probability": 0.8136 + }, + { + "start": 6995.22, + "end": 6999.04, + "probability": 0.7935 + }, + { + "start": 6999.72, + "end": 7002.4, + "probability": 0.9573 + }, + { + "start": 7002.84, + "end": 7005.06, + "probability": 0.9271 + }, + { + "start": 7005.66, + "end": 7009.46, + "probability": 0.9788 + }, + { + "start": 7009.46, + "end": 7014.22, + "probability": 0.9933 + }, + { + "start": 7015.68, + "end": 7017.8, + "probability": 0.9336 + }, + { + "start": 7018.54, + "end": 7019.8, + "probability": 0.8544 + }, + { + "start": 7020.38, + "end": 7022.76, + "probability": 0.947 + }, + { + "start": 7023.24, + "end": 7028.82, + "probability": 0.9922 + }, + { + "start": 7029.38, + "end": 7031.06, + "probability": 0.6357 + }, + { + "start": 7031.78, + "end": 7034.12, + "probability": 0.9229 + }, + { + "start": 7034.74, + "end": 7040.5, + "probability": 0.9434 + }, + { + "start": 7041.18, + "end": 7042.24, + "probability": 0.7146 + }, + { + "start": 7043.62, + "end": 7046.16, + "probability": 0.9169 + }, + { + "start": 7046.32, + "end": 7046.93, + "probability": 0.9414 + }, + { + "start": 7048.16, + "end": 7049.64, + "probability": 0.7986 + }, + { + "start": 7049.78, + "end": 7050.28, + "probability": 0.8154 + }, + { + "start": 7050.8, + "end": 7052.68, + "probability": 0.7707 + }, + { + "start": 7052.86, + "end": 7055.12, + "probability": 0.9624 + }, + { + "start": 7055.12, + "end": 7055.42, + "probability": 0.8036 + }, + { + "start": 7055.54, + "end": 7055.66, + "probability": 0.6653 + }, + { + "start": 7055.82, + "end": 7055.96, + "probability": 0.369 + }, + { + "start": 7056.08, + "end": 7056.14, + "probability": 0.2783 + }, + { + "start": 7056.22, + "end": 7056.72, + "probability": 0.2978 + }, + { + "start": 7056.72, + "end": 7057.38, + "probability": 0.6352 + }, + { + "start": 7057.38, + "end": 7058.8, + "probability": 0.8748 + }, + { + "start": 7059.34, + "end": 7059.6, + "probability": 0.7024 + }, + { + "start": 7059.92, + "end": 7061.58, + "probability": 0.5048 + }, + { + "start": 7061.6, + "end": 7061.68, + "probability": 0.3398 + }, + { + "start": 7061.84, + "end": 7062.94, + "probability": 0.7758 + }, + { + "start": 7063.22, + "end": 7063.56, + "probability": 0.6938 + }, + { + "start": 7063.62, + "end": 7065.76, + "probability": 0.6853 + }, + { + "start": 7065.76, + "end": 7065.8, + "probability": 0.4856 + }, + { + "start": 7065.8, + "end": 7067.64, + "probability": 0.9207 + }, + { + "start": 7067.98, + "end": 7068.62, + "probability": 0.7421 + }, + { + "start": 7069.14, + "end": 7072.04, + "probability": 0.9976 + }, + { + "start": 7072.4, + "end": 7075.58, + "probability": 0.9985 + }, + { + "start": 7075.88, + "end": 7080.32, + "probability": 0.9407 + }, + { + "start": 7080.78, + "end": 7081.14, + "probability": 0.7955 + }, + { + "start": 7084.52, + "end": 7086.94, + "probability": 0.8798 + }, + { + "start": 7087.6, + "end": 7088.3, + "probability": 0.1003 + }, + { + "start": 7089.08, + "end": 7090.94, + "probability": 0.3286 + }, + { + "start": 7092.4, + "end": 7093.9, + "probability": 0.3491 + }, + { + "start": 7094.58, + "end": 7094.98, + "probability": 0.3539 + }, + { + "start": 7115.98, + "end": 7117.36, + "probability": 0.5366 + }, + { + "start": 7118.24, + "end": 7119.6, + "probability": 0.7043 + }, + { + "start": 7121.28, + "end": 7123.78, + "probability": 0.9614 + }, + { + "start": 7124.36, + "end": 7124.8, + "probability": 0.8028 + }, + { + "start": 7127.16, + "end": 7128.14, + "probability": 0.8642 + }, + { + "start": 7129.12, + "end": 7131.66, + "probability": 0.8154 + }, + { + "start": 7132.62, + "end": 7135.7, + "probability": 0.9873 + }, + { + "start": 7137.68, + "end": 7139.62, + "probability": 0.9081 + }, + { + "start": 7141.32, + "end": 7143.56, + "probability": 0.9796 + }, + { + "start": 7144.3, + "end": 7145.72, + "probability": 0.998 + }, + { + "start": 7146.66, + "end": 7148.7, + "probability": 0.9998 + }, + { + "start": 7149.32, + "end": 7149.94, + "probability": 0.5512 + }, + { + "start": 7151.68, + "end": 7153.3, + "probability": 0.9535 + }, + { + "start": 7154.98, + "end": 7155.8, + "probability": 0.9081 + }, + { + "start": 7157.46, + "end": 7159.32, + "probability": 0.877 + }, + { + "start": 7160.42, + "end": 7164.58, + "probability": 0.9971 + }, + { + "start": 7164.58, + "end": 7168.66, + "probability": 0.8124 + }, + { + "start": 7168.76, + "end": 7169.44, + "probability": 0.7628 + }, + { + "start": 7171.1, + "end": 7172.26, + "probability": 0.9876 + }, + { + "start": 7174.3, + "end": 7175.7, + "probability": 0.6146 + }, + { + "start": 7176.72, + "end": 7177.28, + "probability": 0.3299 + }, + { + "start": 7177.86, + "end": 7179.14, + "probability": 0.868 + }, + { + "start": 7180.4, + "end": 7186.16, + "probability": 0.7525 + }, + { + "start": 7187.4, + "end": 7188.32, + "probability": 0.8287 + }, + { + "start": 7188.84, + "end": 7189.66, + "probability": 0.758 + }, + { + "start": 7190.68, + "end": 7191.66, + "probability": 0.4886 + }, + { + "start": 7192.64, + "end": 7193.8, + "probability": 0.9111 + }, + { + "start": 7194.48, + "end": 7196.98, + "probability": 0.9745 + }, + { + "start": 7197.8, + "end": 7199.52, + "probability": 0.7509 + }, + { + "start": 7200.82, + "end": 7201.62, + "probability": 0.6242 + }, + { + "start": 7203.36, + "end": 7203.9, + "probability": 0.8722 + }, + { + "start": 7206.44, + "end": 7207.74, + "probability": 0.9026 + }, + { + "start": 7209.0, + "end": 7210.76, + "probability": 0.9655 + }, + { + "start": 7211.98, + "end": 7213.58, + "probability": 0.8062 + }, + { + "start": 7214.68, + "end": 7218.05, + "probability": 0.9622 + }, + { + "start": 7218.68, + "end": 7220.02, + "probability": 0.8982 + }, + { + "start": 7220.7, + "end": 7222.06, + "probability": 0.7731 + }, + { + "start": 7222.84, + "end": 7223.44, + "probability": 0.7667 + }, + { + "start": 7224.7, + "end": 7229.46, + "probability": 0.9897 + }, + { + "start": 7229.46, + "end": 7234.12, + "probability": 0.9857 + }, + { + "start": 7235.16, + "end": 7237.0, + "probability": 0.895 + }, + { + "start": 7237.8, + "end": 7238.5, + "probability": 0.9398 + }, + { + "start": 7239.56, + "end": 7245.86, + "probability": 0.9943 + }, + { + "start": 7247.12, + "end": 7248.0, + "probability": 0.8599 + }, + { + "start": 7249.58, + "end": 7250.52, + "probability": 0.6727 + }, + { + "start": 7252.3, + "end": 7253.94, + "probability": 0.9838 + }, + { + "start": 7254.82, + "end": 7258.64, + "probability": 0.9845 + }, + { + "start": 7259.54, + "end": 7263.08, + "probability": 0.9867 + }, + { + "start": 7263.76, + "end": 7267.68, + "probability": 0.9325 + }, + { + "start": 7268.3, + "end": 7270.9, + "probability": 0.8842 + }, + { + "start": 7271.44, + "end": 7272.12, + "probability": 0.8356 + }, + { + "start": 7273.58, + "end": 7274.08, + "probability": 0.6354 + }, + { + "start": 7275.1, + "end": 7278.6, + "probability": 0.9901 + }, + { + "start": 7279.24, + "end": 7281.38, + "probability": 0.9851 + }, + { + "start": 7283.46, + "end": 7284.68, + "probability": 0.8328 + }, + { + "start": 7285.88, + "end": 7287.4, + "probability": 0.9404 + }, + { + "start": 7288.96, + "end": 7295.14, + "probability": 0.981 + }, + { + "start": 7296.76, + "end": 7298.48, + "probability": 0.6523 + }, + { + "start": 7299.92, + "end": 7302.12, + "probability": 0.8866 + }, + { + "start": 7302.18, + "end": 7304.5, + "probability": 0.7964 + }, + { + "start": 7304.56, + "end": 7304.56, + "probability": 0.234 + }, + { + "start": 7304.56, + "end": 7304.56, + "probability": 0.4032 + }, + { + "start": 7304.56, + "end": 7305.42, + "probability": 0.019 + }, + { + "start": 7305.54, + "end": 7305.7, + "probability": 0.1541 + }, + { + "start": 7305.8, + "end": 7311.4, + "probability": 0.9787 + }, + { + "start": 7312.56, + "end": 7313.24, + "probability": 0.8134 + }, + { + "start": 7313.94, + "end": 7315.86, + "probability": 0.5615 + }, + { + "start": 7316.02, + "end": 7316.7, + "probability": 0.9919 + }, + { + "start": 7317.8, + "end": 7321.18, + "probability": 0.9927 + }, + { + "start": 7322.14, + "end": 7325.1, + "probability": 0.9961 + }, + { + "start": 7325.54, + "end": 7329.02, + "probability": 0.9983 + }, + { + "start": 7329.48, + "end": 7329.48, + "probability": 0.6555 + }, + { + "start": 7329.54, + "end": 7331.12, + "probability": 0.882 + }, + { + "start": 7331.98, + "end": 7332.14, + "probability": 0.527 + }, + { + "start": 7332.14, + "end": 7335.38, + "probability": 0.9678 + }, + { + "start": 7335.62, + "end": 7336.18, + "probability": 0.9888 + }, + { + "start": 7336.26, + "end": 7341.36, + "probability": 0.9707 + }, + { + "start": 7342.04, + "end": 7342.36, + "probability": 0.5372 + }, + { + "start": 7342.36, + "end": 7343.62, + "probability": 0.8808 + }, + { + "start": 7344.54, + "end": 7345.86, + "probability": 0.7812 + }, + { + "start": 7346.02, + "end": 7346.46, + "probability": 0.7087 + }, + { + "start": 7346.92, + "end": 7349.57, + "probability": 0.6785 + }, + { + "start": 7349.64, + "end": 7350.44, + "probability": 0.8489 + }, + { + "start": 7350.48, + "end": 7352.58, + "probability": 0.952 + }, + { + "start": 7352.72, + "end": 7353.18, + "probability": 0.4418 + }, + { + "start": 7353.6, + "end": 7355.74, + "probability": 0.762 + }, + { + "start": 7355.96, + "end": 7357.38, + "probability": 0.8196 + }, + { + "start": 7357.94, + "end": 7358.12, + "probability": 0.6235 + }, + { + "start": 7358.94, + "end": 7359.22, + "probability": 0.0829 + }, + { + "start": 7359.22, + "end": 7360.46, + "probability": 0.696 + }, + { + "start": 7360.5, + "end": 7360.78, + "probability": 0.6819 + }, + { + "start": 7361.0, + "end": 7361.36, + "probability": 0.8777 + }, + { + "start": 7361.5, + "end": 7364.08, + "probability": 0.2394 + }, + { + "start": 7364.08, + "end": 7364.66, + "probability": 0.2835 + }, + { + "start": 7364.66, + "end": 7365.42, + "probability": 0.3105 + }, + { + "start": 7365.72, + "end": 7366.5, + "probability": 0.0074 + }, + { + "start": 7366.56, + "end": 7369.44, + "probability": 0.1884 + }, + { + "start": 7369.44, + "end": 7370.4, + "probability": 0.7239 + }, + { + "start": 7370.82, + "end": 7371.64, + "probability": 0.6585 + }, + { + "start": 7371.74, + "end": 7373.34, + "probability": 0.5924 + }, + { + "start": 7373.34, + "end": 7373.5, + "probability": 0.5656 + }, + { + "start": 7376.38, + "end": 7377.6, + "probability": 0.5991 + }, + { + "start": 7378.7, + "end": 7380.5, + "probability": 0.1481 + }, + { + "start": 7381.46, + "end": 7381.46, + "probability": 0.0002 + }, + { + "start": 7382.0, + "end": 7382.54, + "probability": 0.1965 + }, + { + "start": 7382.64, + "end": 7382.74, + "probability": 0.2723 + }, + { + "start": 7382.92, + "end": 7385.62, + "probability": 0.7221 + }, + { + "start": 7386.08, + "end": 7386.22, + "probability": 0.0204 + }, + { + "start": 7388.22, + "end": 7389.0, + "probability": 0.1209 + }, + { + "start": 7389.18, + "end": 7389.78, + "probability": 0.104 + }, + { + "start": 7390.06, + "end": 7391.82, + "probability": 0.9017 + }, + { + "start": 7393.0, + "end": 7394.84, + "probability": 0.4212 + }, + { + "start": 7395.39, + "end": 7399.6, + "probability": 0.4643 + }, + { + "start": 7399.74, + "end": 7400.31, + "probability": 0.3247 + }, + { + "start": 7405.94, + "end": 7410.02, + "probability": 0.517 + }, + { + "start": 7416.6, + "end": 7416.7, + "probability": 0.0509 + }, + { + "start": 7417.78, + "end": 7418.68, + "probability": 0.3207 + }, + { + "start": 7420.34, + "end": 7420.52, + "probability": 0.0652 + }, + { + "start": 7420.52, + "end": 7421.29, + "probability": 0.0379 + }, + { + "start": 7422.64, + "end": 7423.04, + "probability": 0.2224 + }, + { + "start": 7423.04, + "end": 7423.11, + "probability": 0.1122 + }, + { + "start": 7423.18, + "end": 7423.5, + "probability": 0.2389 + }, + { + "start": 7424.28, + "end": 7425.58, + "probability": 0.0629 + }, + { + "start": 7425.58, + "end": 7426.94, + "probability": 0.322 + }, + { + "start": 7427.18, + "end": 7428.0, + "probability": 0.0888 + }, + { + "start": 7428.4, + "end": 7429.64, + "probability": 0.3084 + }, + { + "start": 7429.64, + "end": 7430.12, + "probability": 0.1727 + }, + { + "start": 7432.64, + "end": 7433.18, + "probability": 0.1168 + }, + { + "start": 7433.3, + "end": 7433.66, + "probability": 0.0753 + }, + { + "start": 7434.52, + "end": 7434.68, + "probability": 0.0873 + }, + { + "start": 7434.68, + "end": 7434.68, + "probability": 0.0973 + }, + { + "start": 7434.68, + "end": 7434.78, + "probability": 0.0468 + }, + { + "start": 7434.78, + "end": 7434.78, + "probability": 0.0409 + }, + { + "start": 7434.78, + "end": 7434.78, + "probability": 0.1767 + }, + { + "start": 7434.78, + "end": 7435.38, + "probability": 0.3766 + }, + { + "start": 7435.42, + "end": 7436.56, + "probability": 0.7985 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.0, + "end": 7454.0, + "probability": 0.0 + }, + { + "start": 7454.14, + "end": 7454.8, + "probability": 0.3367 + }, + { + "start": 7454.8, + "end": 7455.72, + "probability": 0.2745 + }, + { + "start": 7456.04, + "end": 7458.6, + "probability": 0.8323 + }, + { + "start": 7458.6, + "end": 7459.5, + "probability": 0.9019 + }, + { + "start": 7460.48, + "end": 7461.0, + "probability": 0.9093 + }, + { + "start": 7461.68, + "end": 7464.86, + "probability": 0.9988 + }, + { + "start": 7464.96, + "end": 7466.58, + "probability": 0.9527 + }, + { + "start": 7466.7, + "end": 7466.82, + "probability": 0.9054 + }, + { + "start": 7467.62, + "end": 7468.18, + "probability": 0.9929 + }, + { + "start": 7469.95, + "end": 7473.88, + "probability": 0.9349 + }, + { + "start": 7474.58, + "end": 7476.52, + "probability": 0.6292 + }, + { + "start": 7477.06, + "end": 7485.24, + "probability": 0.9878 + }, + { + "start": 7485.74, + "end": 7489.36, + "probability": 0.9966 + }, + { + "start": 7489.72, + "end": 7490.8, + "probability": 0.9058 + }, + { + "start": 7492.54, + "end": 7497.98, + "probability": 0.9473 + }, + { + "start": 7498.84, + "end": 7501.79, + "probability": 0.9984 + }, + { + "start": 7502.26, + "end": 7508.58, + "probability": 0.8954 + }, + { + "start": 7509.32, + "end": 7514.24, + "probability": 0.9963 + }, + { + "start": 7515.74, + "end": 7517.3, + "probability": 0.6569 + }, + { + "start": 7517.58, + "end": 7524.66, + "probability": 0.979 + }, + { + "start": 7524.66, + "end": 7533.02, + "probability": 0.9961 + }, + { + "start": 7534.02, + "end": 7537.26, + "probability": 0.9888 + }, + { + "start": 7537.44, + "end": 7542.0, + "probability": 0.747 + }, + { + "start": 7543.64, + "end": 7544.88, + "probability": 0.9443 + }, + { + "start": 7545.42, + "end": 7549.0, + "probability": 0.9954 + }, + { + "start": 7549.9, + "end": 7555.08, + "probability": 0.9812 + }, + { + "start": 7555.58, + "end": 7558.44, + "probability": 0.9929 + }, + { + "start": 7559.86, + "end": 7563.9, + "probability": 0.9948 + }, + { + "start": 7564.68, + "end": 7565.84, + "probability": 0.9287 + }, + { + "start": 7566.7, + "end": 7574.84, + "probability": 0.9211 + }, + { + "start": 7574.9, + "end": 7578.92, + "probability": 0.9963 + }, + { + "start": 7579.08, + "end": 7582.74, + "probability": 0.9663 + }, + { + "start": 7584.08, + "end": 7588.86, + "probability": 0.7097 + }, + { + "start": 7588.86, + "end": 7594.48, + "probability": 0.9918 + }, + { + "start": 7594.81, + "end": 7600.44, + "probability": 0.669 + }, + { + "start": 7602.1, + "end": 7605.2, + "probability": 0.9862 + }, + { + "start": 7605.96, + "end": 7610.92, + "probability": 0.6707 + }, + { + "start": 7612.1, + "end": 7616.44, + "probability": 0.9807 + }, + { + "start": 7617.58, + "end": 7620.96, + "probability": 0.9875 + }, + { + "start": 7621.18, + "end": 7624.18, + "probability": 0.5394 + }, + { + "start": 7624.72, + "end": 7626.72, + "probability": 0.9776 + }, + { + "start": 7627.64, + "end": 7629.26, + "probability": 0.9923 + }, + { + "start": 7629.84, + "end": 7631.82, + "probability": 0.9424 + }, + { + "start": 7632.68, + "end": 7637.22, + "probability": 0.8947 + }, + { + "start": 7637.4, + "end": 7638.94, + "probability": 0.9958 + }, + { + "start": 7639.74, + "end": 7643.68, + "probability": 0.9911 + }, + { + "start": 7644.02, + "end": 7645.6, + "probability": 0.9778 + }, + { + "start": 7646.82, + "end": 7648.46, + "probability": 0.9889 + }, + { + "start": 7649.32, + "end": 7651.6, + "probability": 0.9922 + }, + { + "start": 7652.62, + "end": 7657.32, + "probability": 0.7504 + }, + { + "start": 7657.32, + "end": 7660.66, + "probability": 0.9564 + }, + { + "start": 7661.3, + "end": 7663.96, + "probability": 0.6111 + }, + { + "start": 7663.96, + "end": 7666.12, + "probability": 0.8939 + }, + { + "start": 7666.66, + "end": 7667.56, + "probability": 0.7525 + }, + { + "start": 7667.9, + "end": 7668.88, + "probability": 0.962 + }, + { + "start": 7669.08, + "end": 7670.4, + "probability": 0.9584 + }, + { + "start": 7670.82, + "end": 7673.34, + "probability": 0.9825 + }, + { + "start": 7674.0, + "end": 7676.54, + "probability": 0.9945 + }, + { + "start": 7676.78, + "end": 7677.12, + "probability": 0.739 + }, + { + "start": 7678.56, + "end": 7681.02, + "probability": 0.9484 + }, + { + "start": 7681.58, + "end": 7684.22, + "probability": 0.9451 + }, + { + "start": 7685.62, + "end": 7686.04, + "probability": 0.0287 + }, + { + "start": 7688.94, + "end": 7694.56, + "probability": 0.8919 + }, + { + "start": 7694.56, + "end": 7698.6, + "probability": 0.9988 + }, + { + "start": 7698.94, + "end": 7700.58, + "probability": 0.9899 + }, + { + "start": 7700.86, + "end": 7704.06, + "probability": 0.7334 + }, + { + "start": 7704.24, + "end": 7707.44, + "probability": 0.9136 + }, + { + "start": 7707.52, + "end": 7707.98, + "probability": 0.6559 + }, + { + "start": 7708.38, + "end": 7709.54, + "probability": 0.9578 + }, + { + "start": 7709.6, + "end": 7709.94, + "probability": 0.3641 + }, + { + "start": 7710.24, + "end": 7711.24, + "probability": 0.8731 + }, + { + "start": 7733.32, + "end": 7735.26, + "probability": 0.1115 + }, + { + "start": 7738.3, + "end": 7739.48, + "probability": 0.2405 + }, + { + "start": 7740.74, + "end": 7741.62, + "probability": 0.1154 + }, + { + "start": 7747.08, + "end": 7747.86, + "probability": 0.0487 + }, + { + "start": 7751.1, + "end": 7752.39, + "probability": 0.1736 + }, + { + "start": 7754.3, + "end": 7754.3, + "probability": 0.052 + }, + { + "start": 7754.3, + "end": 7754.3, + "probability": 0.1142 + }, + { + "start": 7754.3, + "end": 7754.3, + "probability": 0.0515 + }, + { + "start": 7754.3, + "end": 7754.3, + "probability": 0.1139 + }, + { + "start": 7755.72, + "end": 7761.96, + "probability": 0.7832 + }, + { + "start": 7763.16, + "end": 7764.96, + "probability": 0.4857 + }, + { + "start": 7765.76, + "end": 7767.06, + "probability": 0.6761 + }, + { + "start": 7770.0, + "end": 7775.07, + "probability": 0.988 + }, + { + "start": 7777.72, + "end": 7781.28, + "probability": 0.9689 + }, + { + "start": 7781.4, + "end": 7786.9, + "probability": 0.7862 + }, + { + "start": 7787.72, + "end": 7790.94, + "probability": 0.7164 + }, + { + "start": 7793.74, + "end": 7796.9, + "probability": 0.886 + }, + { + "start": 7798.2, + "end": 7798.76, + "probability": 0.7399 + }, + { + "start": 7801.2, + "end": 7803.64, + "probability": 0.9681 + }, + { + "start": 7804.68, + "end": 7806.42, + "probability": 0.9855 + }, + { + "start": 7806.64, + "end": 7808.36, + "probability": 0.9969 + }, + { + "start": 7809.66, + "end": 7809.9, + "probability": 0.1625 + }, + { + "start": 7809.9, + "end": 7816.0, + "probability": 0.8347 + }, + { + "start": 7816.38, + "end": 7820.22, + "probability": 0.9834 + }, + { + "start": 7821.02, + "end": 7822.02, + "probability": 0.7864 + }, + { + "start": 7822.6, + "end": 7823.6, + "probability": 0.8837 + }, + { + "start": 7824.4, + "end": 7826.06, + "probability": 0.8323 + }, + { + "start": 7827.2, + "end": 7830.62, + "probability": 0.9141 + }, + { + "start": 7832.16, + "end": 7833.98, + "probability": 0.9927 + }, + { + "start": 7834.92, + "end": 7835.58, + "probability": 0.9668 + }, + { + "start": 7836.84, + "end": 7841.18, + "probability": 0.9375 + }, + { + "start": 7842.26, + "end": 7843.08, + "probability": 0.4863 + }, + { + "start": 7843.72, + "end": 7846.22, + "probability": 0.8748 + }, + { + "start": 7849.32, + "end": 7853.7, + "probability": 0.9906 + }, + { + "start": 7854.76, + "end": 7856.56, + "probability": 0.9968 + }, + { + "start": 7857.44, + "end": 7858.04, + "probability": 0.9857 + }, + { + "start": 7862.26, + "end": 7865.28, + "probability": 0.8469 + }, + { + "start": 7870.04, + "end": 7876.06, + "probability": 0.5681 + }, + { + "start": 7876.3, + "end": 7882.08, + "probability": 0.8172 + }, + { + "start": 7882.46, + "end": 7887.68, + "probability": 0.9894 + }, + { + "start": 7888.18, + "end": 7888.72, + "probability": 0.803 + }, + { + "start": 7889.04, + "end": 7890.08, + "probability": 0.8169 + }, + { + "start": 7890.46, + "end": 7890.66, + "probability": 0.2098 + }, + { + "start": 7890.7, + "end": 7890.9, + "probability": 0.3762 + }, + { + "start": 7892.1, + "end": 7894.84, + "probability": 0.9907 + }, + { + "start": 7895.42, + "end": 7896.73, + "probability": 0.8162 + }, + { + "start": 7897.98, + "end": 7901.62, + "probability": 0.9902 + }, + { + "start": 7902.12, + "end": 7903.78, + "probability": 0.9847 + }, + { + "start": 7905.26, + "end": 7905.66, + "probability": 0.7937 + }, + { + "start": 7907.0, + "end": 7908.52, + "probability": 0.9028 + }, + { + "start": 7911.72, + "end": 7913.36, + "probability": 0.1443 + }, + { + "start": 7914.44, + "end": 7917.56, + "probability": 0.8555 + }, + { + "start": 7918.14, + "end": 7920.08, + "probability": 0.9622 + }, + { + "start": 7921.02, + "end": 7925.38, + "probability": 0.8762 + }, + { + "start": 7925.62, + "end": 7930.58, + "probability": 0.9174 + }, + { + "start": 7931.12, + "end": 7934.36, + "probability": 0.8844 + }, + { + "start": 7935.0, + "end": 7937.02, + "probability": 0.851 + }, + { + "start": 7937.34, + "end": 7943.24, + "probability": 0.8595 + }, + { + "start": 7943.72, + "end": 7947.88, + "probability": 0.7865 + }, + { + "start": 7948.48, + "end": 7949.68, + "probability": 0.6662 + }, + { + "start": 7950.28, + "end": 7954.26, + "probability": 0.9551 + }, + { + "start": 7956.76, + "end": 7956.98, + "probability": 0.1607 + }, + { + "start": 7959.15, + "end": 7961.06, + "probability": 0.7122 + }, + { + "start": 7963.08, + "end": 7964.3, + "probability": 0.0293 + }, + { + "start": 7966.86, + "end": 7967.4, + "probability": 0.1534 + }, + { + "start": 7967.8, + "end": 7969.84, + "probability": 0.0189 + }, + { + "start": 7970.54, + "end": 7970.82, + "probability": 0.1494 + }, + { + "start": 7970.82, + "end": 7974.02, + "probability": 0.0207 + }, + { + "start": 7974.96, + "end": 7977.52, + "probability": 0.2085 + }, + { + "start": 7978.24, + "end": 7980.16, + "probability": 0.1136 + }, + { + "start": 7980.94, + "end": 7984.46, + "probability": 0.3765 + }, + { + "start": 7985.72, + "end": 7987.36, + "probability": 0.103 + }, + { + "start": 7987.72, + "end": 7988.74, + "probability": 0.3546 + }, + { + "start": 7989.64, + "end": 7992.79, + "probability": 0.1009 + }, + { + "start": 7994.26, + "end": 7998.01, + "probability": 0.2601 + }, + { + "start": 7998.96, + "end": 7999.96, + "probability": 0.0094 + }, + { + "start": 7999.96, + "end": 8000.78, + "probability": 0.1679 + }, + { + "start": 8000.78, + "end": 8000.78, + "probability": 0.35 + }, + { + "start": 8000.78, + "end": 8000.9, + "probability": 0.7109 + }, + { + "start": 8000.94, + "end": 8000.96, + "probability": 0.3314 + }, + { + "start": 8000.96, + "end": 8002.72, + "probability": 0.7789 + }, + { + "start": 8002.94, + "end": 8004.66, + "probability": 0.4981 + }, + { + "start": 8005.66, + "end": 8008.3, + "probability": 0.6344 + }, + { + "start": 8008.94, + "end": 8011.02, + "probability": 0.2695 + }, + { + "start": 8021.12, + "end": 8021.8, + "probability": 0.1421 + }, + { + "start": 8023.12, + "end": 8024.8, + "probability": 0.8089 + }, + { + "start": 8025.42, + "end": 8026.2, + "probability": 0.6719 + }, + { + "start": 8027.08, + "end": 8028.84, + "probability": 0.8805 + }, + { + "start": 8029.22, + "end": 8029.8, + "probability": 0.6749 + }, + { + "start": 8029.94, + "end": 8031.56, + "probability": 0.9053 + }, + { + "start": 8032.16, + "end": 8036.4, + "probability": 0.8853 + }, + { + "start": 8036.98, + "end": 8037.9, + "probability": 0.9052 + }, + { + "start": 8039.68, + "end": 8040.22, + "probability": 0.9462 + }, + { + "start": 8040.3, + "end": 8045.52, + "probability": 0.988 + }, + { + "start": 8045.52, + "end": 8050.3, + "probability": 0.9988 + }, + { + "start": 8051.56, + "end": 8052.5, + "probability": 0.9556 + }, + { + "start": 8053.28, + "end": 8056.88, + "probability": 0.9092 + }, + { + "start": 8057.46, + "end": 8060.28, + "probability": 0.9986 + }, + { + "start": 8060.64, + "end": 8063.68, + "probability": 0.9831 + }, + { + "start": 8065.3, + "end": 8065.82, + "probability": 0.6762 + }, + { + "start": 8066.34, + "end": 8067.24, + "probability": 0.732 + }, + { + "start": 8068.72, + "end": 8072.62, + "probability": 0.9971 + }, + { + "start": 8072.62, + "end": 8075.94, + "probability": 0.9991 + }, + { + "start": 8077.16, + "end": 8078.34, + "probability": 0.9066 + }, + { + "start": 8078.6, + "end": 8079.28, + "probability": 0.8665 + }, + { + "start": 8079.72, + "end": 8081.78, + "probability": 0.995 + }, + { + "start": 8082.1, + "end": 8083.92, + "probability": 0.9933 + }, + { + "start": 8084.84, + "end": 8085.54, + "probability": 0.3547 + }, + { + "start": 8086.54, + "end": 8087.18, + "probability": 0.915 + }, + { + "start": 8088.64, + "end": 8093.98, + "probability": 0.9879 + }, + { + "start": 8094.08, + "end": 8097.4, + "probability": 0.9638 + }, + { + "start": 8097.86, + "end": 8098.66, + "probability": 0.9594 + }, + { + "start": 8099.18, + "end": 8101.6, + "probability": 0.9697 + }, + { + "start": 8102.38, + "end": 8104.2, + "probability": 0.7902 + }, + { + "start": 8105.28, + "end": 8108.32, + "probability": 0.7734 + }, + { + "start": 8109.18, + "end": 8111.76, + "probability": 0.9958 + }, + { + "start": 8113.0, + "end": 8113.22, + "probability": 0.596 + }, + { + "start": 8114.08, + "end": 8117.06, + "probability": 0.9146 + }, + { + "start": 8118.18, + "end": 8120.72, + "probability": 0.9507 + }, + { + "start": 8121.36, + "end": 8124.1, + "probability": 0.7209 + }, + { + "start": 8124.62, + "end": 8125.7, + "probability": 0.9697 + }, + { + "start": 8126.8, + "end": 8128.96, + "probability": 0.9905 + }, + { + "start": 8129.48, + "end": 8131.1, + "probability": 0.9868 + }, + { + "start": 8132.14, + "end": 8136.66, + "probability": 0.992 + }, + { + "start": 8137.92, + "end": 8139.64, + "probability": 0.9897 + }, + { + "start": 8140.44, + "end": 8143.58, + "probability": 0.9881 + }, + { + "start": 8143.58, + "end": 8145.8, + "probability": 0.9952 + }, + { + "start": 8146.38, + "end": 8147.16, + "probability": 0.8868 + }, + { + "start": 8147.3, + "end": 8151.1, + "probability": 0.9948 + }, + { + "start": 8151.82, + "end": 8153.38, + "probability": 0.8811 + }, + { + "start": 8153.9, + "end": 8155.08, + "probability": 0.8553 + }, + { + "start": 8155.68, + "end": 8157.06, + "probability": 0.9749 + }, + { + "start": 8158.24, + "end": 8163.38, + "probability": 0.9886 + }, + { + "start": 8164.1, + "end": 8167.06, + "probability": 0.7485 + }, + { + "start": 8167.5, + "end": 8168.07, + "probability": 0.8438 + }, + { + "start": 8168.52, + "end": 8169.32, + "probability": 0.7198 + }, + { + "start": 8170.02, + "end": 8172.02, + "probability": 0.9821 + }, + { + "start": 8172.72, + "end": 8173.68, + "probability": 0.9225 + }, + { + "start": 8174.86, + "end": 8176.4, + "probability": 0.9899 + }, + { + "start": 8176.8, + "end": 8178.36, + "probability": 0.6973 + }, + { + "start": 8179.42, + "end": 8180.6, + "probability": 0.5543 + }, + { + "start": 8181.12, + "end": 8182.22, + "probability": 0.752 + }, + { + "start": 8182.8, + "end": 8183.12, + "probability": 0.3445 + }, + { + "start": 8183.34, + "end": 8184.52, + "probability": 0.9922 + }, + { + "start": 8185.36, + "end": 8187.66, + "probability": 0.9908 + }, + { + "start": 8189.58, + "end": 8193.62, + "probability": 0.9984 + }, + { + "start": 8194.22, + "end": 8195.46, + "probability": 0.7069 + }, + { + "start": 8196.7, + "end": 8199.26, + "probability": 0.9818 + }, + { + "start": 8199.7, + "end": 8203.1, + "probability": 0.9943 + }, + { + "start": 8204.02, + "end": 8204.54, + "probability": 0.8485 + }, + { + "start": 8205.6, + "end": 8211.44, + "probability": 0.9836 + }, + { + "start": 8212.94, + "end": 8213.44, + "probability": 0.4122 + }, + { + "start": 8213.62, + "end": 8215.58, + "probability": 0.9754 + }, + { + "start": 8216.94, + "end": 8218.2, + "probability": 0.9445 + }, + { + "start": 8218.76, + "end": 8223.2, + "probability": 0.9741 + }, + { + "start": 8223.76, + "end": 8226.58, + "probability": 0.9998 + }, + { + "start": 8226.58, + "end": 8228.56, + "probability": 0.9761 + }, + { + "start": 8229.22, + "end": 8232.99, + "probability": 0.7209 + }, + { + "start": 8234.48, + "end": 8235.64, + "probability": 0.9678 + }, + { + "start": 8236.5, + "end": 8237.3, + "probability": 0.7744 + }, + { + "start": 8238.1, + "end": 8239.58, + "probability": 0.8965 + }, + { + "start": 8239.94, + "end": 8240.6, + "probability": 0.5219 + }, + { + "start": 8240.84, + "end": 8240.98, + "probability": 0.3839 + }, + { + "start": 8241.0, + "end": 8241.52, + "probability": 0.4342 + }, + { + "start": 8241.66, + "end": 8242.5, + "probability": 0.574 + }, + { + "start": 8242.9, + "end": 8244.32, + "probability": 0.6014 + }, + { + "start": 8244.82, + "end": 8246.12, + "probability": 0.9879 + }, + { + "start": 8246.86, + "end": 8247.3, + "probability": 0.6025 + }, + { + "start": 8247.62, + "end": 8250.7, + "probability": 0.9819 + }, + { + "start": 8251.08, + "end": 8256.54, + "probability": 0.9978 + }, + { + "start": 8257.1, + "end": 8257.48, + "probability": 0.4982 + }, + { + "start": 8257.54, + "end": 8259.48, + "probability": 0.9822 + }, + { + "start": 8260.02, + "end": 8260.84, + "probability": 0.9706 + }, + { + "start": 8261.22, + "end": 8263.14, + "probability": 0.9447 + }, + { + "start": 8263.5, + "end": 8263.92, + "probability": 0.333 + }, + { + "start": 8264.0, + "end": 8264.4, + "probability": 0.7979 + }, + { + "start": 8264.94, + "end": 8265.62, + "probability": 0.9679 + }, + { + "start": 8265.92, + "end": 8266.1, + "probability": 0.8414 + }, + { + "start": 8266.48, + "end": 8268.38, + "probability": 0.6509 + }, + { + "start": 8271.05, + "end": 8273.14, + "probability": 0.6658 + }, + { + "start": 8273.2, + "end": 8273.2, + "probability": 0.3577 + }, + { + "start": 8273.2, + "end": 8273.46, + "probability": 0.4073 + }, + { + "start": 8273.66, + "end": 8273.98, + "probability": 0.5874 + }, + { + "start": 8274.1, + "end": 8275.14, + "probability": 0.7678 + }, + { + "start": 8275.18, + "end": 8275.4, + "probability": 0.2566 + }, + { + "start": 8275.46, + "end": 8276.74, + "probability": 0.8726 + }, + { + "start": 8277.32, + "end": 8278.18, + "probability": 0.9064 + }, + { + "start": 8296.88, + "end": 8298.62, + "probability": 0.6122 + }, + { + "start": 8298.82, + "end": 8300.24, + "probability": 0.8222 + }, + { + "start": 8300.9, + "end": 8302.14, + "probability": 0.9322 + }, + { + "start": 8302.72, + "end": 8304.02, + "probability": 0.9538 + }, + { + "start": 8304.54, + "end": 8305.12, + "probability": 0.9731 + }, + { + "start": 8306.36, + "end": 8306.98, + "probability": 0.8394 + }, + { + "start": 8308.36, + "end": 8310.9, + "probability": 0.9523 + }, + { + "start": 8312.2, + "end": 8315.24, + "probability": 0.9875 + }, + { + "start": 8316.48, + "end": 8316.98, + "probability": 0.9628 + }, + { + "start": 8317.96, + "end": 8319.32, + "probability": 0.6408 + }, + { + "start": 8321.82, + "end": 8325.54, + "probability": 0.9952 + }, + { + "start": 8326.18, + "end": 8328.24, + "probability": 0.9958 + }, + { + "start": 8328.98, + "end": 8330.92, + "probability": 0.9483 + }, + { + "start": 8331.48, + "end": 8332.54, + "probability": 0.8602 + }, + { + "start": 8333.82, + "end": 8336.66, + "probability": 0.8877 + }, + { + "start": 8337.24, + "end": 8339.32, + "probability": 0.9886 + }, + { + "start": 8340.16, + "end": 8342.32, + "probability": 0.9565 + }, + { + "start": 8343.36, + "end": 8345.24, + "probability": 0.9454 + }, + { + "start": 8345.82, + "end": 8346.7, + "probability": 0.9112 + }, + { + "start": 8347.3, + "end": 8349.62, + "probability": 0.9948 + }, + { + "start": 8350.02, + "end": 8350.89, + "probability": 0.9931 + }, + { + "start": 8351.34, + "end": 8352.48, + "probability": 0.895 + }, + { + "start": 8353.54, + "end": 8355.12, + "probability": 0.9701 + }, + { + "start": 8356.02, + "end": 8356.48, + "probability": 0.7719 + }, + { + "start": 8357.26, + "end": 8357.64, + "probability": 0.2454 + }, + { + "start": 8357.7, + "end": 8360.52, + "probability": 0.8964 + }, + { + "start": 8361.08, + "end": 8362.52, + "probability": 0.9263 + }, + { + "start": 8364.28, + "end": 8367.06, + "probability": 0.9229 + }, + { + "start": 8367.06, + "end": 8371.22, + "probability": 0.9902 + }, + { + "start": 8371.84, + "end": 8373.38, + "probability": 0.9418 + }, + { + "start": 8375.66, + "end": 8378.02, + "probability": 0.7955 + }, + { + "start": 8378.12, + "end": 8378.74, + "probability": 0.5995 + }, + { + "start": 8378.86, + "end": 8379.68, + "probability": 0.6734 + }, + { + "start": 8380.34, + "end": 8383.08, + "probability": 0.9973 + }, + { + "start": 8384.06, + "end": 8384.52, + "probability": 0.6757 + }, + { + "start": 8385.14, + "end": 8388.2, + "probability": 0.9905 + }, + { + "start": 8388.2, + "end": 8392.14, + "probability": 0.9998 + }, + { + "start": 8392.78, + "end": 8396.76, + "probability": 0.9592 + }, + { + "start": 8397.22, + "end": 8397.68, + "probability": 0.8762 + }, + { + "start": 8398.18, + "end": 8399.66, + "probability": 0.9941 + }, + { + "start": 8400.04, + "end": 8401.44, + "probability": 0.8763 + }, + { + "start": 8402.02, + "end": 8406.82, + "probability": 0.9934 + }, + { + "start": 8407.46, + "end": 8409.94, + "probability": 0.9851 + }, + { + "start": 8410.52, + "end": 8411.75, + "probability": 0.9905 + }, + { + "start": 8412.7, + "end": 8413.16, + "probability": 0.8567 + }, + { + "start": 8414.9, + "end": 8415.68, + "probability": 0.9653 + }, + { + "start": 8416.46, + "end": 8419.02, + "probability": 0.9848 + }, + { + "start": 8420.26, + "end": 8422.68, + "probability": 0.9581 + }, + { + "start": 8423.48, + "end": 8424.18, + "probability": 0.7942 + }, + { + "start": 8424.72, + "end": 8428.2, + "probability": 0.9386 + }, + { + "start": 8428.86, + "end": 8430.42, + "probability": 0.96 + }, + { + "start": 8431.08, + "end": 8435.94, + "probability": 0.9908 + }, + { + "start": 8436.36, + "end": 8437.44, + "probability": 0.946 + }, + { + "start": 8437.48, + "end": 8441.52, + "probability": 0.9758 + }, + { + "start": 8442.66, + "end": 8444.06, + "probability": 0.9961 + }, + { + "start": 8446.94, + "end": 8449.9, + "probability": 0.9742 + }, + { + "start": 8450.28, + "end": 8452.02, + "probability": 0.9263 + }, + { + "start": 8452.5, + "end": 8454.42, + "probability": 0.8772 + }, + { + "start": 8455.66, + "end": 8458.44, + "probability": 0.9803 + }, + { + "start": 8459.1, + "end": 8461.32, + "probability": 0.9863 + }, + { + "start": 8462.02, + "end": 8464.72, + "probability": 0.883 + }, + { + "start": 8465.46, + "end": 8466.78, + "probability": 0.7142 + }, + { + "start": 8467.89, + "end": 8472.1, + "probability": 0.9733 + }, + { + "start": 8473.18, + "end": 8473.38, + "probability": 0.7476 + }, + { + "start": 8474.24, + "end": 8474.96, + "probability": 0.7949 + }, + { + "start": 8476.2, + "end": 8478.5, + "probability": 0.9092 + }, + { + "start": 8479.3, + "end": 8481.18, + "probability": 0.8345 + }, + { + "start": 8482.18, + "end": 8485.23, + "probability": 0.9722 + }, + { + "start": 8501.34, + "end": 8504.48, + "probability": 0.0864 + }, + { + "start": 8505.36, + "end": 8505.62, + "probability": 0.3095 + }, + { + "start": 8507.34, + "end": 8507.92, + "probability": 0.2287 + }, + { + "start": 8508.14, + "end": 8511.04, + "probability": 0.5252 + }, + { + "start": 8511.18, + "end": 8512.32, + "probability": 0.6801 + }, + { + "start": 8512.46, + "end": 8514.32, + "probability": 0.7031 + }, + { + "start": 8516.02, + "end": 8517.04, + "probability": 0.5692 + }, + { + "start": 8517.72, + "end": 8518.38, + "probability": 0.5283 + }, + { + "start": 8520.56, + "end": 8522.0, + "probability": 0.991 + }, + { + "start": 8523.3, + "end": 8523.86, + "probability": 0.8575 + }, + { + "start": 8525.28, + "end": 8526.26, + "probability": 0.8457 + }, + { + "start": 8527.26, + "end": 8532.6, + "probability": 0.9951 + }, + { + "start": 8533.62, + "end": 8536.82, + "probability": 0.9969 + }, + { + "start": 8537.52, + "end": 8538.11, + "probability": 0.614 + }, + { + "start": 8540.36, + "end": 8541.2, + "probability": 0.816 + }, + { + "start": 8542.3, + "end": 8545.8, + "probability": 0.8497 + }, + { + "start": 8546.38, + "end": 8546.96, + "probability": 0.8791 + }, + { + "start": 8548.85, + "end": 8550.78, + "probability": 0.7493 + }, + { + "start": 8552.52, + "end": 8555.14, + "probability": 0.999 + }, + { + "start": 8556.14, + "end": 8556.66, + "probability": 0.9939 + }, + { + "start": 8557.8, + "end": 8559.56, + "probability": 0.8945 + }, + { + "start": 8559.7, + "end": 8565.72, + "probability": 0.8608 + }, + { + "start": 8565.84, + "end": 8566.36, + "probability": 0.6746 + }, + { + "start": 8567.5, + "end": 8568.98, + "probability": 0.906 + }, + { + "start": 8570.04, + "end": 8570.94, + "probability": 0.6455 + }, + { + "start": 8572.92, + "end": 8579.8, + "probability": 0.8455 + }, + { + "start": 8579.86, + "end": 8580.34, + "probability": 0.9596 + }, + { + "start": 8581.08, + "end": 8584.54, + "probability": 0.9961 + }, + { + "start": 8585.06, + "end": 8586.24, + "probability": 0.8511 + }, + { + "start": 8586.4, + "end": 8588.5, + "probability": 0.9759 + }, + { + "start": 8589.1, + "end": 8592.38, + "probability": 0.9973 + }, + { + "start": 8593.06, + "end": 8594.68, + "probability": 0.9828 + }, + { + "start": 8595.8, + "end": 8596.48, + "probability": 0.979 + }, + { + "start": 8597.1, + "end": 8599.4, + "probability": 0.9964 + }, + { + "start": 8600.72, + "end": 8601.66, + "probability": 0.9922 + }, + { + "start": 8601.76, + "end": 8603.8, + "probability": 0.8673 + }, + { + "start": 8604.34, + "end": 8605.3, + "probability": 0.5947 + }, + { + "start": 8605.36, + "end": 8606.16, + "probability": 0.7528 + }, + { + "start": 8606.62, + "end": 8610.32, + "probability": 0.9181 + }, + { + "start": 8610.32, + "end": 8613.3, + "probability": 0.9913 + }, + { + "start": 8613.92, + "end": 8615.0, + "probability": 0.4276 + }, + { + "start": 8616.38, + "end": 8619.48, + "probability": 0.3967 + }, + { + "start": 8619.48, + "end": 8619.88, + "probability": 0.1475 + }, + { + "start": 8620.08, + "end": 8625.8, + "probability": 0.9875 + }, + { + "start": 8626.94, + "end": 8629.08, + "probability": 0.7092 + }, + { + "start": 8629.96, + "end": 8632.2, + "probability": 0.8242 + }, + { + "start": 8637.06, + "end": 8643.92, + "probability": 0.9859 + }, + { + "start": 8644.7, + "end": 8645.88, + "probability": 0.9946 + }, + { + "start": 8645.98, + "end": 8648.98, + "probability": 0.9907 + }, + { + "start": 8650.2, + "end": 8651.02, + "probability": 0.56 + }, + { + "start": 8651.18, + "end": 8653.14, + "probability": 0.7825 + }, + { + "start": 8654.02, + "end": 8656.36, + "probability": 0.8734 + }, + { + "start": 8656.9, + "end": 8658.71, + "probability": 0.6425 + }, + { + "start": 8660.5, + "end": 8661.56, + "probability": 0.9497 + }, + { + "start": 8661.64, + "end": 8662.58, + "probability": 0.9902 + }, + { + "start": 8663.52, + "end": 8664.56, + "probability": 0.8397 + }, + { + "start": 8664.62, + "end": 8664.86, + "probability": 0.9075 + }, + { + "start": 8665.2, + "end": 8668.92, + "probability": 0.9559 + }, + { + "start": 8668.92, + "end": 8672.44, + "probability": 0.9268 + }, + { + "start": 8672.5, + "end": 8673.44, + "probability": 0.7074 + }, + { + "start": 8674.02, + "end": 8676.71, + "probability": 0.5236 + }, + { + "start": 8678.02, + "end": 8680.72, + "probability": 0.7656 + }, + { + "start": 8680.9, + "end": 8682.6, + "probability": 0.9884 + }, + { + "start": 8682.68, + "end": 8683.16, + "probability": 0.8404 + }, + { + "start": 8683.52, + "end": 8683.98, + "probability": 0.3845 + }, + { + "start": 8683.98, + "end": 8685.1, + "probability": 0.4947 + }, + { + "start": 8686.57, + "end": 8690.72, + "probability": 0.9958 + }, + { + "start": 8691.84, + "end": 8694.72, + "probability": 0.9966 + }, + { + "start": 8695.8, + "end": 8696.91, + "probability": 0.7611 + }, + { + "start": 8697.08, + "end": 8700.54, + "probability": 0.9747 + }, + { + "start": 8700.54, + "end": 8701.6, + "probability": 0.9974 + }, + { + "start": 8702.14, + "end": 8706.32, + "probability": 0.9878 + }, + { + "start": 8706.46, + "end": 8707.82, + "probability": 0.9346 + }, + { + "start": 8708.56, + "end": 8709.84, + "probability": 0.8663 + }, + { + "start": 8710.58, + "end": 8712.78, + "probability": 0.9899 + }, + { + "start": 8714.44, + "end": 8715.12, + "probability": 0.4847 + }, + { + "start": 8715.7, + "end": 8718.12, + "probability": 0.8158 + }, + { + "start": 8718.74, + "end": 8720.78, + "probability": 0.9932 + }, + { + "start": 8720.78, + "end": 8723.48, + "probability": 0.9542 + }, + { + "start": 8723.54, + "end": 8723.92, + "probability": 0.8253 + }, + { + "start": 8725.34, + "end": 8726.06, + "probability": 0.621 + }, + { + "start": 8727.18, + "end": 8729.84, + "probability": 0.9007 + }, + { + "start": 8730.5, + "end": 8732.18, + "probability": 0.1137 + }, + { + "start": 8757.66, + "end": 8760.35, + "probability": 0.5867 + }, + { + "start": 8761.58, + "end": 8766.44, + "probability": 0.2613 + }, + { + "start": 8766.9, + "end": 8767.1, + "probability": 0.1956 + }, + { + "start": 8767.48, + "end": 8768.5, + "probability": 0.3481 + }, + { + "start": 8772.5, + "end": 8778.14, + "probability": 0.7131 + }, + { + "start": 8778.86, + "end": 8778.9, + "probability": 0.3379 + }, + { + "start": 8778.94, + "end": 8779.18, + "probability": 0.6414 + }, + { + "start": 8779.82, + "end": 8780.5, + "probability": 0.8115 + }, + { + "start": 8782.38, + "end": 8787.28, + "probability": 0.9934 + }, + { + "start": 8788.5, + "end": 8794.4, + "probability": 0.9933 + }, + { + "start": 8794.72, + "end": 8799.76, + "probability": 0.6209 + }, + { + "start": 8800.56, + "end": 8805.56, + "probability": 0.9996 + }, + { + "start": 8807.08, + "end": 8810.58, + "probability": 0.8466 + }, + { + "start": 8812.44, + "end": 8815.54, + "probability": 0.5204 + }, + { + "start": 8824.58, + "end": 8827.6, + "probability": 0.7794 + }, + { + "start": 8827.82, + "end": 8828.28, + "probability": 0.7205 + }, + { + "start": 8828.82, + "end": 8829.32, + "probability": 0.7075 + }, + { + "start": 8829.66, + "end": 8831.86, + "probability": 0.6222 + }, + { + "start": 8832.0, + "end": 8833.92, + "probability": 0.8628 + }, + { + "start": 8834.04, + "end": 8835.18, + "probability": 0.9716 + }, + { + "start": 8836.06, + "end": 8837.16, + "probability": 0.8713 + }, + { + "start": 8837.82, + "end": 8840.04, + "probability": 0.7352 + }, + { + "start": 8840.96, + "end": 8846.06, + "probability": 0.9557 + }, + { + "start": 8847.18, + "end": 8850.02, + "probability": 0.7254 + }, + { + "start": 8851.02, + "end": 8856.56, + "probability": 0.7921 + }, + { + "start": 8857.56, + "end": 8862.12, + "probability": 0.8838 + }, + { + "start": 8863.24, + "end": 8867.82, + "probability": 0.8246 + }, + { + "start": 8868.64, + "end": 8869.86, + "probability": 0.9913 + }, + { + "start": 8872.18, + "end": 8872.84, + "probability": 0.4093 + }, + { + "start": 8875.22, + "end": 8877.84, + "probability": 0.8887 + }, + { + "start": 8878.46, + "end": 8881.9, + "probability": 0.697 + }, + { + "start": 8883.26, + "end": 8887.14, + "probability": 0.8544 + }, + { + "start": 8887.24, + "end": 8888.3, + "probability": 0.6034 + }, + { + "start": 8888.8, + "end": 8889.84, + "probability": 0.2346 + }, + { + "start": 8890.64, + "end": 8895.74, + "probability": 0.7474 + }, + { + "start": 8895.92, + "end": 8898.22, + "probability": 0.829 + }, + { + "start": 8898.76, + "end": 8902.86, + "probability": 0.9675 + }, + { + "start": 8902.94, + "end": 8903.96, + "probability": 0.9177 + }, + { + "start": 8904.06, + "end": 8905.17, + "probability": 0.9921 + }, + { + "start": 8905.48, + "end": 8906.52, + "probability": 0.9976 + }, + { + "start": 8907.62, + "end": 8913.92, + "probability": 0.8884 + }, + { + "start": 8914.44, + "end": 8917.4, + "probability": 0.9243 + }, + { + "start": 8917.6, + "end": 8917.84, + "probability": 0.7844 + }, + { + "start": 8926.22, + "end": 8928.96, + "probability": 0.5402 + }, + { + "start": 8929.68, + "end": 8931.54, + "probability": 0.9302 + }, + { + "start": 8931.64, + "end": 8933.12, + "probability": 0.98 + }, + { + "start": 8933.74, + "end": 8935.34, + "probability": 0.7005 + }, + { + "start": 8937.67, + "end": 8937.92, + "probability": 0.1422 + }, + { + "start": 8950.5, + "end": 8952.48, + "probability": 0.5457 + }, + { + "start": 8954.34, + "end": 8955.04, + "probability": 0.5601 + }, + { + "start": 8957.22, + "end": 8959.06, + "probability": 0.8499 + }, + { + "start": 8959.16, + "end": 8961.76, + "probability": 0.9973 + }, + { + "start": 8962.26, + "end": 8963.16, + "probability": 0.9393 + }, + { + "start": 8964.7, + "end": 8966.6, + "probability": 0.9973 + }, + { + "start": 8968.42, + "end": 8970.84, + "probability": 0.7012 + }, + { + "start": 8972.2, + "end": 8975.98, + "probability": 0.819 + }, + { + "start": 8976.9, + "end": 8980.02, + "probability": 0.9944 + }, + { + "start": 8982.66, + "end": 8985.86, + "probability": 0.8151 + }, + { + "start": 8986.2, + "end": 8987.47, + "probability": 0.9634 + }, + { + "start": 8988.4, + "end": 8989.32, + "probability": 0.9995 + }, + { + "start": 8990.02, + "end": 8992.62, + "probability": 0.8665 + }, + { + "start": 8993.34, + "end": 8996.32, + "probability": 0.9698 + }, + { + "start": 9001.22, + "end": 9004.36, + "probability": 0.9961 + }, + { + "start": 9004.36, + "end": 9006.82, + "probability": 0.9971 + }, + { + "start": 9008.16, + "end": 9009.54, + "probability": 0.8788 + }, + { + "start": 9010.16, + "end": 9011.43, + "probability": 0.9984 + }, + { + "start": 9013.56, + "end": 9019.88, + "probability": 0.952 + }, + { + "start": 9022.22, + "end": 9026.36, + "probability": 0.9976 + }, + { + "start": 9026.74, + "end": 9027.84, + "probability": 0.6975 + }, + { + "start": 9028.44, + "end": 9031.86, + "probability": 0.9944 + }, + { + "start": 9032.3, + "end": 9034.96, + "probability": 0.7199 + }, + { + "start": 9037.1, + "end": 9038.78, + "probability": 0.9824 + }, + { + "start": 9039.28, + "end": 9040.04, + "probability": 0.9728 + }, + { + "start": 9040.54, + "end": 9041.12, + "probability": 0.8838 + }, + { + "start": 9042.26, + "end": 9045.48, + "probability": 0.8167 + }, + { + "start": 9045.84, + "end": 9047.8, + "probability": 0.9198 + }, + { + "start": 9047.98, + "end": 9050.82, + "probability": 0.9097 + }, + { + "start": 9051.74, + "end": 9056.42, + "probability": 0.9989 + }, + { + "start": 9058.59, + "end": 9060.41, + "probability": 0.5512 + }, + { + "start": 9061.5, + "end": 9062.36, + "probability": 0.6741 + }, + { + "start": 9062.4, + "end": 9067.26, + "probability": 0.9953 + }, + { + "start": 9068.56, + "end": 9069.94, + "probability": 0.9671 + }, + { + "start": 9070.82, + "end": 9072.38, + "probability": 0.898 + }, + { + "start": 9074.2, + "end": 9075.46, + "probability": 0.9915 + }, + { + "start": 9076.5, + "end": 9080.34, + "probability": 0.3011 + }, + { + "start": 9080.4, + "end": 9082.9, + "probability": 0.985 + }, + { + "start": 9083.56, + "end": 9084.78, + "probability": 0.9976 + }, + { + "start": 9085.98, + "end": 9087.54, + "probability": 0.9874 + }, + { + "start": 9088.2, + "end": 9090.64, + "probability": 0.5773 + }, + { + "start": 9091.84, + "end": 9094.94, + "probability": 0.9932 + }, + { + "start": 9095.62, + "end": 9097.22, + "probability": 0.9924 + }, + { + "start": 9098.7, + "end": 9101.92, + "probability": 0.9797 + }, + { + "start": 9101.92, + "end": 9105.12, + "probability": 0.923 + }, + { + "start": 9105.72, + "end": 9110.78, + "probability": 0.9893 + }, + { + "start": 9110.78, + "end": 9114.0, + "probability": 0.7625 + }, + { + "start": 9114.8, + "end": 9115.74, + "probability": 0.9458 + }, + { + "start": 9115.88, + "end": 9117.44, + "probability": 0.9361 + }, + { + "start": 9117.72, + "end": 9119.76, + "probability": 0.6364 + }, + { + "start": 9120.18, + "end": 9123.0, + "probability": 0.9928 + }, + { + "start": 9127.62, + "end": 9130.16, + "probability": 0.9885 + }, + { + "start": 9130.16, + "end": 9133.12, + "probability": 0.9995 + }, + { + "start": 9134.12, + "end": 9139.2, + "probability": 0.9951 + }, + { + "start": 9139.8, + "end": 9143.48, + "probability": 0.7701 + }, + { + "start": 9144.48, + "end": 9145.38, + "probability": 0.0104 + }, + { + "start": 9145.38, + "end": 9145.38, + "probability": 0.0597 + }, + { + "start": 9145.38, + "end": 9145.88, + "probability": 0.0285 + }, + { + "start": 9145.92, + "end": 9149.66, + "probability": 0.9791 + }, + { + "start": 9150.06, + "end": 9151.26, + "probability": 0.8708 + }, + { + "start": 9151.84, + "end": 9154.8, + "probability": 0.7911 + }, + { + "start": 9154.8, + "end": 9157.68, + "probability": 0.8751 + }, + { + "start": 9157.8, + "end": 9158.28, + "probability": 0.659 + }, + { + "start": 9158.62, + "end": 9159.12, + "probability": 0.5933 + }, + { + "start": 9159.12, + "end": 9160.32, + "probability": 0.8145 + }, + { + "start": 9166.7, + "end": 9167.04, + "probability": 0.5378 + }, + { + "start": 9167.86, + "end": 9167.92, + "probability": 0.1656 + }, + { + "start": 9167.92, + "end": 9168.34, + "probability": 0.3443 + }, + { + "start": 9168.34, + "end": 9168.42, + "probability": 0.1349 + }, + { + "start": 9168.42, + "end": 9168.74, + "probability": 0.1264 + }, + { + "start": 9168.74, + "end": 9169.02, + "probability": 0.055 + }, + { + "start": 9191.4, + "end": 9193.3, + "probability": 0.6007 + }, + { + "start": 9194.0, + "end": 9194.7, + "probability": 0.8487 + }, + { + "start": 9195.92, + "end": 9198.48, + "probability": 0.9967 + }, + { + "start": 9199.78, + "end": 9204.32, + "probability": 0.9761 + }, + { + "start": 9204.94, + "end": 9205.68, + "probability": 0.6767 + }, + { + "start": 9206.98, + "end": 9208.69, + "probability": 0.9092 + }, + { + "start": 9209.52, + "end": 9211.66, + "probability": 0.9785 + }, + { + "start": 9211.7, + "end": 9212.6, + "probability": 0.9971 + }, + { + "start": 9212.7, + "end": 9213.51, + "probability": 0.9819 + }, + { + "start": 9213.64, + "end": 9214.75, + "probability": 0.9952 + }, + { + "start": 9215.92, + "end": 9220.14, + "probability": 0.9126 + }, + { + "start": 9221.74, + "end": 9223.2, + "probability": 0.9094 + }, + { + "start": 9223.88, + "end": 9227.44, + "probability": 0.9541 + }, + { + "start": 9227.74, + "end": 9228.12, + "probability": 0.7151 + }, + { + "start": 9229.1, + "end": 9229.4, + "probability": 0.9817 + }, + { + "start": 9230.36, + "end": 9230.88, + "probability": 0.7251 + }, + { + "start": 9231.44, + "end": 9231.84, + "probability": 0.447 + }, + { + "start": 9233.08, + "end": 9234.34, + "probability": 0.8242 + }, + { + "start": 9234.94, + "end": 9236.8, + "probability": 0.8308 + }, + { + "start": 9237.4, + "end": 9238.56, + "probability": 0.9608 + }, + { + "start": 9239.46, + "end": 9240.32, + "probability": 0.7921 + }, + { + "start": 9240.92, + "end": 9242.12, + "probability": 0.626 + }, + { + "start": 9242.74, + "end": 9245.69, + "probability": 0.989 + }, + { + "start": 9247.42, + "end": 9250.74, + "probability": 0.9961 + }, + { + "start": 9251.4, + "end": 9254.82, + "probability": 0.9981 + }, + { + "start": 9254.82, + "end": 9257.96, + "probability": 0.9968 + }, + { + "start": 9259.88, + "end": 9260.68, + "probability": 0.947 + }, + { + "start": 9260.84, + "end": 9261.75, + "probability": 0.8784 + }, + { + "start": 9262.23, + "end": 9265.56, + "probability": 0.9507 + }, + { + "start": 9266.3, + "end": 9267.28, + "probability": 0.9733 + }, + { + "start": 9268.28, + "end": 9270.82, + "probability": 0.936 + }, + { + "start": 9272.26, + "end": 9274.58, + "probability": 0.9951 + }, + { + "start": 9275.0, + "end": 9275.82, + "probability": 0.9288 + }, + { + "start": 9276.12, + "end": 9276.58, + "probability": 0.7928 + }, + { + "start": 9278.04, + "end": 9280.86, + "probability": 0.9961 + }, + { + "start": 9280.92, + "end": 9285.08, + "probability": 0.909 + }, + { + "start": 9285.12, + "end": 9286.24, + "probability": 0.987 + }, + { + "start": 9287.04, + "end": 9287.62, + "probability": 0.9813 + }, + { + "start": 9288.6, + "end": 9289.76, + "probability": 0.9585 + }, + { + "start": 9291.16, + "end": 9293.34, + "probability": 0.9971 + }, + { + "start": 9293.36, + "end": 9294.74, + "probability": 0.7656 + }, + { + "start": 9294.86, + "end": 9296.22, + "probability": 0.9145 + }, + { + "start": 9296.32, + "end": 9298.24, + "probability": 0.8672 + }, + { + "start": 9298.24, + "end": 9299.12, + "probability": 0.6342 + }, + { + "start": 9300.56, + "end": 9303.8, + "probability": 0.9894 + }, + { + "start": 9303.9, + "end": 9307.28, + "probability": 0.9785 + }, + { + "start": 9307.82, + "end": 9308.98, + "probability": 0.9938 + }, + { + "start": 9309.02, + "end": 9309.28, + "probability": 0.8776 + }, + { + "start": 9309.36, + "end": 9312.18, + "probability": 0.8596 + }, + { + "start": 9312.4, + "end": 9313.26, + "probability": 0.5993 + }, + { + "start": 9313.3, + "end": 9314.96, + "probability": 0.9893 + }, + { + "start": 9315.02, + "end": 9316.12, + "probability": 0.9108 + }, + { + "start": 9316.18, + "end": 9318.52, + "probability": 0.9767 + }, + { + "start": 9320.4, + "end": 9322.08, + "probability": 0.5979 + }, + { + "start": 9322.3, + "end": 9326.82, + "probability": 0.8885 + }, + { + "start": 9327.28, + "end": 9331.38, + "probability": 0.9964 + }, + { + "start": 9331.6, + "end": 9334.28, + "probability": 0.9651 + }, + { + "start": 9335.78, + "end": 9337.28, + "probability": 0.7233 + }, + { + "start": 9337.48, + "end": 9340.52, + "probability": 0.9165 + }, + { + "start": 9340.62, + "end": 9341.57, + "probability": 0.7098 + }, + { + "start": 9342.38, + "end": 9345.62, + "probability": 0.9604 + }, + { + "start": 9345.68, + "end": 9348.74, + "probability": 0.9795 + }, + { + "start": 9349.2, + "end": 9350.32, + "probability": 0.6753 + }, + { + "start": 9350.4, + "end": 9352.24, + "probability": 0.9376 + }, + { + "start": 9352.46, + "end": 9354.2, + "probability": 0.984 + }, + { + "start": 9356.08, + "end": 9358.38, + "probability": 0.9836 + }, + { + "start": 9358.46, + "end": 9360.48, + "probability": 0.7445 + }, + { + "start": 9360.64, + "end": 9363.31, + "probability": 0.8561 + }, + { + "start": 9363.98, + "end": 9365.98, + "probability": 0.9957 + }, + { + "start": 9366.1, + "end": 9367.8, + "probability": 0.9825 + }, + { + "start": 9367.94, + "end": 9368.6, + "probability": 0.4995 + }, + { + "start": 9368.7, + "end": 9369.42, + "probability": 0.5122 + }, + { + "start": 9369.54, + "end": 9370.26, + "probability": 0.6781 + }, + { + "start": 9370.74, + "end": 9371.74, + "probability": 0.9868 + }, + { + "start": 9371.86, + "end": 9373.12, + "probability": 0.9741 + }, + { + "start": 9373.2, + "end": 9376.08, + "probability": 0.66 + }, + { + "start": 9377.52, + "end": 9380.1, + "probability": 0.9697 + }, + { + "start": 9380.26, + "end": 9381.02, + "probability": 0.6967 + }, + { + "start": 9381.1, + "end": 9381.94, + "probability": 0.7984 + }, + { + "start": 9382.14, + "end": 9384.4, + "probability": 0.9602 + }, + { + "start": 9384.48, + "end": 9385.96, + "probability": 0.8028 + }, + { + "start": 9386.08, + "end": 9386.9, + "probability": 0.9078 + }, + { + "start": 9387.38, + "end": 9388.66, + "probability": 0.8018 + }, + { + "start": 9388.9, + "end": 9391.08, + "probability": 0.896 + }, + { + "start": 9391.46, + "end": 9393.28, + "probability": 0.9702 + }, + { + "start": 9393.42, + "end": 9395.86, + "probability": 0.9824 + }, + { + "start": 9396.46, + "end": 9397.34, + "probability": 0.9511 + }, + { + "start": 9397.54, + "end": 9398.44, + "probability": 0.9072 + }, + { + "start": 9398.7, + "end": 9400.72, + "probability": 0.8141 + }, + { + "start": 9400.74, + "end": 9400.86, + "probability": 0.6027 + }, + { + "start": 9400.98, + "end": 9401.44, + "probability": 0.6877 + }, + { + "start": 9401.44, + "end": 9403.48, + "probability": 0.937 + }, + { + "start": 9403.5, + "end": 9405.62, + "probability": 0.9973 + }, + { + "start": 9406.18, + "end": 9407.38, + "probability": 0.9733 + }, + { + "start": 9407.88, + "end": 9411.22, + "probability": 0.9945 + }, + { + "start": 9411.8, + "end": 9412.58, + "probability": 0.5855 + }, + { + "start": 9412.66, + "end": 9412.7, + "probability": 0.5126 + }, + { + "start": 9413.06, + "end": 9414.1, + "probability": 0.9049 + }, + { + "start": 9414.28, + "end": 9414.54, + "probability": 0.4394 + }, + { + "start": 9414.62, + "end": 9415.62, + "probability": 0.922 + }, + { + "start": 9415.7, + "end": 9416.1, + "probability": 0.6438 + }, + { + "start": 9416.1, + "end": 9417.04, + "probability": 0.9839 + }, + { + "start": 9417.1, + "end": 9417.36, + "probability": 0.9393 + }, + { + "start": 9417.44, + "end": 9418.32, + "probability": 0.9819 + }, + { + "start": 9418.42, + "end": 9418.66, + "probability": 0.9007 + }, + { + "start": 9419.3, + "end": 9420.38, + "probability": 0.8659 + }, + { + "start": 9420.46, + "end": 9420.78, + "probability": 0.1728 + }, + { + "start": 9420.78, + "end": 9421.86, + "probability": 0.9441 + }, + { + "start": 9421.92, + "end": 9422.14, + "probability": 0.5605 + }, + { + "start": 9422.18, + "end": 9423.16, + "probability": 0.9694 + }, + { + "start": 9423.24, + "end": 9423.46, + "probability": 0.7469 + }, + { + "start": 9423.8, + "end": 9424.64, + "probability": 0.9378 + }, + { + "start": 9425.26, + "end": 9427.46, + "probability": 0.6876 + }, + { + "start": 9428.04, + "end": 9430.56, + "probability": 0.991 + }, + { + "start": 9433.36, + "end": 9437.8, + "probability": 0.9736 + }, + { + "start": 9438.38, + "end": 9439.92, + "probability": 0.9644 + }, + { + "start": 9450.06, + "end": 9450.16, + "probability": 0.2695 + }, + { + "start": 9450.16, + "end": 9450.16, + "probability": 0.0232 + }, + { + "start": 9450.16, + "end": 9451.5, + "probability": 0.6449 + }, + { + "start": 9451.64, + "end": 9452.64, + "probability": 0.6699 + }, + { + "start": 9453.38, + "end": 9453.82, + "probability": 0.4749 + }, + { + "start": 9454.02, + "end": 9458.1, + "probability": 0.552 + }, + { + "start": 9459.48, + "end": 9461.1, + "probability": 0.7591 + }, + { + "start": 9461.12, + "end": 9463.54, + "probability": 0.6622 + }, + { + "start": 9463.64, + "end": 9464.58, + "probability": 0.8647 + }, + { + "start": 9464.94, + "end": 9465.0, + "probability": 0.3307 + }, + { + "start": 9465.14, + "end": 9469.02, + "probability": 0.8392 + }, + { + "start": 9469.16, + "end": 9469.32, + "probability": 0.865 + }, + { + "start": 9469.74, + "end": 9471.8, + "probability": 0.0215 + }, + { + "start": 9471.8, + "end": 9472.6, + "probability": 0.8368 + }, + { + "start": 9472.68, + "end": 9474.06, + "probability": 0.5015 + }, + { + "start": 9474.18, + "end": 9476.02, + "probability": 0.9785 + }, + { + "start": 9476.54, + "end": 9477.88, + "probability": 0.9555 + }, + { + "start": 9478.18, + "end": 9478.54, + "probability": 0.6306 + }, + { + "start": 9478.66, + "end": 9481.48, + "probability": 0.7828 + }, + { + "start": 9482.54, + "end": 9483.26, + "probability": 0.9816 + }, + { + "start": 9484.26, + "end": 9485.28, + "probability": 0.7852 + }, + { + "start": 9486.14, + "end": 9488.55, + "probability": 0.7011 + }, + { + "start": 9489.32, + "end": 9495.48, + "probability": 0.9246 + }, + { + "start": 9495.58, + "end": 9496.04, + "probability": 0.8342 + }, + { + "start": 9497.1, + "end": 9499.58, + "probability": 0.8652 + }, + { + "start": 9500.12, + "end": 9500.64, + "probability": 0.7518 + }, + { + "start": 9501.22, + "end": 9502.74, + "probability": 0.9971 + }, + { + "start": 9503.64, + "end": 9505.62, + "probability": 0.995 + }, + { + "start": 9506.32, + "end": 9507.36, + "probability": 0.8618 + }, + { + "start": 9508.06, + "end": 9511.32, + "probability": 0.9982 + }, + { + "start": 9512.62, + "end": 9517.44, + "probability": 0.9946 + }, + { + "start": 9518.26, + "end": 9521.42, + "probability": 0.9805 + }, + { + "start": 9522.08, + "end": 9523.28, + "probability": 0.9925 + }, + { + "start": 9524.4, + "end": 9526.4, + "probability": 0.9686 + }, + { + "start": 9527.16, + "end": 9529.12, + "probability": 0.8928 + }, + { + "start": 9529.76, + "end": 9531.5, + "probability": 0.9467 + }, + { + "start": 9532.5, + "end": 9534.02, + "probability": 0.8144 + }, + { + "start": 9534.74, + "end": 9537.84, + "probability": 0.8346 + }, + { + "start": 9538.32, + "end": 9538.81, + "probability": 0.7982 + }, + { + "start": 9539.78, + "end": 9542.22, + "probability": 0.8177 + }, + { + "start": 9543.08, + "end": 9546.42, + "probability": 0.9365 + }, + { + "start": 9546.94, + "end": 9548.88, + "probability": 0.8816 + }, + { + "start": 9549.9, + "end": 9554.68, + "probability": 0.9963 + }, + { + "start": 9556.22, + "end": 9556.22, + "probability": 0.0934 + }, + { + "start": 9556.22, + "end": 9557.05, + "probability": 0.934 + }, + { + "start": 9558.78, + "end": 9562.08, + "probability": 0.9694 + }, + { + "start": 9562.96, + "end": 9564.78, + "probability": 0.9966 + }, + { + "start": 9564.84, + "end": 9567.66, + "probability": 0.9546 + }, + { + "start": 9568.48, + "end": 9569.7, + "probability": 0.9169 + }, + { + "start": 9570.28, + "end": 9571.7, + "probability": 0.8807 + }, + { + "start": 9572.6, + "end": 9574.62, + "probability": 0.9921 + }, + { + "start": 9575.74, + "end": 9577.32, + "probability": 0.9977 + }, + { + "start": 9577.96, + "end": 9580.08, + "probability": 0.9894 + }, + { + "start": 9581.24, + "end": 9583.62, + "probability": 0.9957 + }, + { + "start": 9584.38, + "end": 9587.44, + "probability": 0.9797 + }, + { + "start": 9588.74, + "end": 9590.02, + "probability": 0.9651 + }, + { + "start": 9591.26, + "end": 9593.64, + "probability": 0.9983 + }, + { + "start": 9594.48, + "end": 9595.56, + "probability": 0.7394 + }, + { + "start": 9596.04, + "end": 9597.44, + "probability": 0.9941 + }, + { + "start": 9597.86, + "end": 9598.8, + "probability": 0.9774 + }, + { + "start": 9599.26, + "end": 9599.7, + "probability": 0.5884 + }, + { + "start": 9600.38, + "end": 9601.8, + "probability": 0.8752 + }, + { + "start": 9602.36, + "end": 9604.78, + "probability": 0.9791 + }, + { + "start": 9605.36, + "end": 9606.58, + "probability": 0.8662 + }, + { + "start": 9607.14, + "end": 9608.08, + "probability": 0.7362 + }, + { + "start": 9608.64, + "end": 9611.44, + "probability": 0.8713 + }, + { + "start": 9611.88, + "end": 9612.68, + "probability": 0.9281 + }, + { + "start": 9612.88, + "end": 9613.56, + "probability": 0.9197 + }, + { + "start": 9613.62, + "end": 9614.2, + "probability": 0.6184 + }, + { + "start": 9615.0, + "end": 9616.93, + "probability": 0.5883 + }, + { + "start": 9617.74, + "end": 9620.0, + "probability": 0.8022 + }, + { + "start": 9620.54, + "end": 9623.7, + "probability": 0.9963 + }, + { + "start": 9624.42, + "end": 9625.64, + "probability": 0.874 + }, + { + "start": 9626.46, + "end": 9630.48, + "probability": 0.998 + }, + { + "start": 9631.04, + "end": 9632.72, + "probability": 0.9969 + }, + { + "start": 9654.08, + "end": 9657.68, + "probability": 0.0258 + }, + { + "start": 9660.99, + "end": 9663.84, + "probability": 0.1316 + }, + { + "start": 9663.84, + "end": 9667.5, + "probability": 0.3783 + }, + { + "start": 9667.81, + "end": 9668.77, + "probability": 0.2117 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.0, + "end": 9754.0, + "probability": 0.0 + }, + { + "start": 9754.8, + "end": 9756.82, + "probability": 0.821 + }, + { + "start": 9757.9, + "end": 9758.73, + "probability": 0.8799 + }, + { + "start": 9760.56, + "end": 9763.48, + "probability": 0.9902 + }, + { + "start": 9764.42, + "end": 9765.16, + "probability": 0.6451 + }, + { + "start": 9766.06, + "end": 9767.18, + "probability": 0.7218 + }, + { + "start": 9767.35, + "end": 9767.78, + "probability": 0.5192 + }, + { + "start": 9767.78, + "end": 9767.78, + "probability": 0.4584 + }, + { + "start": 9767.78, + "end": 9768.88, + "probability": 0.4932 + }, + { + "start": 9769.54, + "end": 9769.58, + "probability": 0.2292 + }, + { + "start": 9769.6, + "end": 9770.24, + "probability": 0.0647 + }, + { + "start": 9770.82, + "end": 9771.76, + "probability": 0.3649 + }, + { + "start": 9771.92, + "end": 9772.6, + "probability": 0.8708 + }, + { + "start": 9772.62, + "end": 9773.3, + "probability": 0.5447 + }, + { + "start": 9773.5, + "end": 9773.78, + "probability": 0.4116 + }, + { + "start": 9774.46, + "end": 9776.0, + "probability": 0.7975 + }, + { + "start": 9777.42, + "end": 9778.64, + "probability": 0.3052 + }, + { + "start": 9778.84, + "end": 9781.44, + "probability": 0.837 + }, + { + "start": 9781.46, + "end": 9784.8, + "probability": 0.9492 + }, + { + "start": 9786.02, + "end": 9788.32, + "probability": 0.9897 + }, + { + "start": 9788.94, + "end": 9792.2, + "probability": 0.9747 + }, + { + "start": 9792.52, + "end": 9795.68, + "probability": 0.9415 + }, + { + "start": 9796.1, + "end": 9797.2, + "probability": 0.9634 + }, + { + "start": 9797.82, + "end": 9798.46, + "probability": 0.424 + }, + { + "start": 9798.5, + "end": 9801.46, + "probability": 0.749 + }, + { + "start": 9802.12, + "end": 9808.08, + "probability": 0.7467 + }, + { + "start": 9808.64, + "end": 9811.6, + "probability": 0.8642 + }, + { + "start": 9811.6, + "end": 9814.64, + "probability": 0.989 + }, + { + "start": 9815.34, + "end": 9815.64, + "probability": 0.9603 + }, + { + "start": 9815.72, + "end": 9817.88, + "probability": 0.9938 + }, + { + "start": 9818.32, + "end": 9819.72, + "probability": 0.8789 + }, + { + "start": 9820.46, + "end": 9822.08, + "probability": 0.9365 + }, + { + "start": 9822.12, + "end": 9823.76, + "probability": 0.9989 + }, + { + "start": 9824.38, + "end": 9825.64, + "probability": 0.882 + }, + { + "start": 9826.66, + "end": 9826.88, + "probability": 0.1998 + }, + { + "start": 9826.88, + "end": 9827.31, + "probability": 0.4685 + }, + { + "start": 9828.06, + "end": 9828.84, + "probability": 0.4533 + }, + { + "start": 9828.9, + "end": 9831.12, + "probability": 0.6351 + }, + { + "start": 9831.26, + "end": 9831.26, + "probability": 0.1981 + }, + { + "start": 9831.26, + "end": 9832.56, + "probability": 0.7329 + }, + { + "start": 9832.58, + "end": 9832.58, + "probability": 0.2317 + }, + { + "start": 9832.64, + "end": 9833.7, + "probability": 0.4955 + }, + { + "start": 9833.86, + "end": 9834.46, + "probability": 0.8267 + }, + { + "start": 9834.48, + "end": 9835.76, + "probability": 0.7695 + }, + { + "start": 9835.9, + "end": 9836.84, + "probability": 0.8191 + }, + { + "start": 9837.16, + "end": 9837.76, + "probability": 0.1945 + }, + { + "start": 9837.76, + "end": 9838.78, + "probability": 0.7526 + }, + { + "start": 9839.34, + "end": 9839.34, + "probability": 0.0292 + }, + { + "start": 9839.34, + "end": 9841.22, + "probability": 0.4315 + }, + { + "start": 9841.34, + "end": 9841.66, + "probability": 0.7988 + }, + { + "start": 9842.54, + "end": 9844.74, + "probability": 0.9302 + }, + { + "start": 9845.5, + "end": 9845.66, + "probability": 0.7559 + }, + { + "start": 9846.08, + "end": 9847.92, + "probability": 0.9958 + }, + { + "start": 9848.12, + "end": 9849.4, + "probability": 0.9417 + }, + { + "start": 9849.66, + "end": 9850.6, + "probability": 0.801 + }, + { + "start": 9851.16, + "end": 9851.48, + "probability": 0.5175 + }, + { + "start": 9852.04, + "end": 9853.23, + "probability": 0.5943 + }, + { + "start": 9853.62, + "end": 9854.2, + "probability": 0.1696 + }, + { + "start": 9854.2, + "end": 9858.36, + "probability": 0.9853 + }, + { + "start": 9859.74, + "end": 9860.2, + "probability": 0.0056 + }, + { + "start": 9860.2, + "end": 9860.2, + "probability": 0.1233 + }, + { + "start": 9860.2, + "end": 9860.2, + "probability": 0.2401 + }, + { + "start": 9860.28, + "end": 9860.28, + "probability": 0.0014 + }, + { + "start": 9860.28, + "end": 9860.44, + "probability": 0.7119 + }, + { + "start": 9860.54, + "end": 9860.96, + "probability": 0.4415 + }, + { + "start": 9861.14, + "end": 9862.08, + "probability": 0.4445 + }, + { + "start": 9862.1, + "end": 9864.6, + "probability": 0.6697 + }, + { + "start": 9864.8, + "end": 9865.98, + "probability": 0.5164 + }, + { + "start": 9866.54, + "end": 9867.64, + "probability": 0.5242 + }, + { + "start": 9868.26, + "end": 9869.8, + "probability": 0.4654 + }, + { + "start": 9870.32, + "end": 9872.44, + "probability": 0.9954 + }, + { + "start": 9872.44, + "end": 9873.37, + "probability": 0.7634 + }, + { + "start": 9874.5, + "end": 9874.5, + "probability": 0.48 + }, + { + "start": 9874.56, + "end": 9875.66, + "probability": 0.9631 + }, + { + "start": 9875.76, + "end": 9876.79, + "probability": 0.9912 + }, + { + "start": 9877.22, + "end": 9880.7, + "probability": 0.9692 + }, + { + "start": 9880.78, + "end": 9881.56, + "probability": 0.8072 + }, + { + "start": 9882.14, + "end": 9884.1, + "probability": 0.8257 + }, + { + "start": 9884.46, + "end": 9885.42, + "probability": 0.6932 + }, + { + "start": 9885.7, + "end": 9887.1, + "probability": 0.8763 + }, + { + "start": 9887.2, + "end": 9887.38, + "probability": 0.3386 + }, + { + "start": 9887.38, + "end": 9888.66, + "probability": 0.0342 + }, + { + "start": 9888.92, + "end": 9889.4, + "probability": 0.8391 + }, + { + "start": 9890.26, + "end": 9892.48, + "probability": 0.9754 + }, + { + "start": 9892.94, + "end": 9894.04, + "probability": 0.9941 + }, + { + "start": 9894.14, + "end": 9897.0, + "probability": 0.9012 + }, + { + "start": 9897.22, + "end": 9897.98, + "probability": 0.8645 + }, + { + "start": 9898.0, + "end": 9899.02, + "probability": 0.8525 + }, + { + "start": 9899.02, + "end": 9899.46, + "probability": 0.1932 + }, + { + "start": 9899.72, + "end": 9900.48, + "probability": 0.0205 + }, + { + "start": 9900.52, + "end": 9901.66, + "probability": 0.6588 + }, + { + "start": 9901.76, + "end": 9902.88, + "probability": 0.9297 + }, + { + "start": 9903.18, + "end": 9903.92, + "probability": 0.9214 + }, + { + "start": 9903.98, + "end": 9904.26, + "probability": 0.5601 + }, + { + "start": 9904.3, + "end": 9905.26, + "probability": 0.7852 + }, + { + "start": 9905.74, + "end": 9907.94, + "probability": 0.5098 + }, + { + "start": 9908.14, + "end": 9910.38, + "probability": 0.9709 + }, + { + "start": 9910.44, + "end": 9911.36, + "probability": 0.668 + }, + { + "start": 9911.36, + "end": 9914.02, + "probability": 0.0938 + }, + { + "start": 9916.2, + "end": 9916.2, + "probability": 0.0265 + }, + { + "start": 9916.2, + "end": 9916.2, + "probability": 0.0889 + }, + { + "start": 9916.2, + "end": 9916.2, + "probability": 0.0714 + }, + { + "start": 9916.2, + "end": 9917.14, + "probability": 0.027 + }, + { + "start": 9917.86, + "end": 9922.3, + "probability": 0.9702 + }, + { + "start": 9922.88, + "end": 9925.42, + "probability": 0.8799 + }, + { + "start": 9926.1, + "end": 9929.78, + "probability": 0.9838 + }, + { + "start": 9930.12, + "end": 9930.8, + "probability": 0.5974 + }, + { + "start": 9930.86, + "end": 9932.08, + "probability": 0.8463 + }, + { + "start": 9932.08, + "end": 9933.04, + "probability": 0.0885 + }, + { + "start": 9933.36, + "end": 9933.8, + "probability": 0.3015 + }, + { + "start": 9933.8, + "end": 9934.36, + "probability": 0.1102 + }, + { + "start": 9934.56, + "end": 9936.34, + "probability": 0.7423 + }, + { + "start": 9936.46, + "end": 9937.62, + "probability": 0.9178 + }, + { + "start": 9937.66, + "end": 9938.14, + "probability": 0.4244 + }, + { + "start": 9938.26, + "end": 9939.08, + "probability": 0.8331 + }, + { + "start": 9939.42, + "end": 9940.52, + "probability": 0.9902 + }, + { + "start": 9941.14, + "end": 9941.94, + "probability": 0.0646 + }, + { + "start": 9941.94, + "end": 9942.02, + "probability": 0.0517 + }, + { + "start": 9942.02, + "end": 9942.74, + "probability": 0.2866 + }, + { + "start": 9942.84, + "end": 9944.8, + "probability": 0.7791 + }, + { + "start": 9945.64, + "end": 9946.74, + "probability": 0.8171 + }, + { + "start": 9946.9, + "end": 9947.0, + "probability": 0.2682 + }, + { + "start": 9947.44, + "end": 9947.46, + "probability": 0.0153 + }, + { + "start": 9947.46, + "end": 9947.46, + "probability": 0.4783 + }, + { + "start": 9947.46, + "end": 9948.02, + "probability": 0.9426 + }, + { + "start": 9949.5, + "end": 9949.7, + "probability": 0.92 + }, + { + "start": 9949.8, + "end": 9954.96, + "probability": 0.9692 + }, + { + "start": 9955.9, + "end": 9959.84, + "probability": 0.9502 + }, + { + "start": 9960.58, + "end": 9963.06, + "probability": 0.588 + }, + { + "start": 9963.58, + "end": 9964.58, + "probability": 0.7903 + }, + { + "start": 9965.26, + "end": 9969.12, + "probability": 0.9608 + }, + { + "start": 9969.22, + "end": 9969.64, + "probability": 0.8068 + }, + { + "start": 9969.7, + "end": 9970.62, + "probability": 0.9937 + }, + { + "start": 9970.76, + "end": 9974.06, + "probability": 0.9448 + }, + { + "start": 9974.12, + "end": 9974.52, + "probability": 0.5611 + }, + { + "start": 9974.8, + "end": 9975.14, + "probability": 0.8478 + }, + { + "start": 9975.96, + "end": 9979.72, + "probability": 0.9838 + }, + { + "start": 9980.76, + "end": 9982.36, + "probability": 0.9818 + }, + { + "start": 9982.48, + "end": 9987.14, + "probability": 0.9916 + }, + { + "start": 9987.54, + "end": 9988.34, + "probability": 0.7554 + }, + { + "start": 9988.5, + "end": 9990.8, + "probability": 0.9926 + }, + { + "start": 9991.06, + "end": 9993.66, + "probability": 0.9956 + }, + { + "start": 9993.74, + "end": 9994.64, + "probability": 0.9283 + }, + { + "start": 9995.94, + "end": 9998.84, + "probability": 0.9828 + }, + { + "start": 9999.94, + "end": 10003.26, + "probability": 0.7074 + }, + { + "start": 10003.8, + "end": 10006.22, + "probability": 0.9974 + }, + { + "start": 10006.34, + "end": 10007.52, + "probability": 0.7794 + }, + { + "start": 10007.6, + "end": 10008.4, + "probability": 0.7667 + }, + { + "start": 10009.02, + "end": 10013.92, + "probability": 0.9638 + }, + { + "start": 10013.98, + "end": 10014.98, + "probability": 0.8254 + }, + { + "start": 10015.34, + "end": 10016.9, + "probability": 0.9585 + }, + { + "start": 10017.42, + "end": 10018.5, + "probability": 0.8626 + }, + { + "start": 10018.5, + "end": 10019.72, + "probability": 0.9644 + }, + { + "start": 10020.34, + "end": 10020.76, + "probability": 0.0247 + }, + { + "start": 10020.78, + "end": 10022.22, + "probability": 0.071 + }, + { + "start": 10022.56, + "end": 10023.98, + "probability": 0.9082 + }, + { + "start": 10024.0, + "end": 10024.0, + "probability": 0.0149 + }, + { + "start": 10024.02, + "end": 10024.68, + "probability": 0.1819 + }, + { + "start": 10025.06, + "end": 10028.72, + "probability": 0.322 + }, + { + "start": 10028.72, + "end": 10029.0, + "probability": 0.2851 + }, + { + "start": 10029.16, + "end": 10029.16, + "probability": 0.2002 + }, + { + "start": 10029.16, + "end": 10029.74, + "probability": 0.214 + }, + { + "start": 10030.18, + "end": 10031.82, + "probability": 0.5231 + }, + { + "start": 10033.18, + "end": 10033.9, + "probability": 0.3153 + }, + { + "start": 10033.9, + "end": 10035.12, + "probability": 0.9121 + }, + { + "start": 10035.52, + "end": 10038.36, + "probability": 0.2899 + }, + { + "start": 10038.36, + "end": 10038.98, + "probability": 0.4077 + }, + { + "start": 10039.0, + "end": 10039.56, + "probability": 0.6752 + }, + { + "start": 10039.88, + "end": 10040.08, + "probability": 0.265 + }, + { + "start": 10040.14, + "end": 10041.19, + "probability": 0.5393 + }, + { + "start": 10041.38, + "end": 10041.84, + "probability": 0.03 + }, + { + "start": 10041.84, + "end": 10041.94, + "probability": 0.4487 + }, + { + "start": 10041.94, + "end": 10042.26, + "probability": 0.6885 + }, + { + "start": 10042.48, + "end": 10045.26, + "probability": 0.9928 + }, + { + "start": 10045.26, + "end": 10045.76, + "probability": 0.8882 + }, + { + "start": 10045.82, + "end": 10046.26, + "probability": 0.6865 + }, + { + "start": 10047.04, + "end": 10048.22, + "probability": 0.7065 + }, + { + "start": 10048.32, + "end": 10048.38, + "probability": 0.5837 + }, + { + "start": 10048.38, + "end": 10049.9, + "probability": 0.7832 + }, + { + "start": 10050.1, + "end": 10052.84, + "probability": 0.9955 + }, + { + "start": 10053.02, + "end": 10053.44, + "probability": 0.3481 + }, + { + "start": 10053.46, + "end": 10053.86, + "probability": 0.6644 + }, + { + "start": 10053.86, + "end": 10056.86, + "probability": 0.2058 + }, + { + "start": 10056.98, + "end": 10057.36, + "probability": 0.1646 + }, + { + "start": 10069.02, + "end": 10075.24, + "probability": 0.9619 + }, + { + "start": 10080.26, + "end": 10082.74, + "probability": 0.0141 + }, + { + "start": 10082.74, + "end": 10082.96, + "probability": 0.0255 + }, + { + "start": 10082.96, + "end": 10083.24, + "probability": 0.0243 + }, + { + "start": 10083.94, + "end": 10085.34, + "probability": 0.0392 + }, + { + "start": 10087.38, + "end": 10087.5, + "probability": 0.0109 + }, + { + "start": 10089.36, + "end": 10089.8, + "probability": 0.0901 + }, + { + "start": 10089.97, + "end": 10093.12, + "probability": 0.0413 + }, + { + "start": 10093.12, + "end": 10096.32, + "probability": 0.0739 + }, + { + "start": 10096.4, + "end": 10096.42, + "probability": 0.0649 + }, + { + "start": 10096.42, + "end": 10096.42, + "probability": 0.0462 + }, + { + "start": 10096.42, + "end": 10096.42, + "probability": 0.3339 + }, + { + "start": 10096.42, + "end": 10096.42, + "probability": 0.4594 + }, + { + "start": 10096.42, + "end": 10098.62, + "probability": 0.1848 + }, + { + "start": 10100.59, + "end": 10103.5, + "probability": 0.0623 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10127.0, + "end": 10127.0, + "probability": 0.0 + }, + { + "start": 10132.3, + "end": 10132.6, + "probability": 0.1612 + }, + { + "start": 10132.64, + "end": 10134.46, + "probability": 0.3976 + }, + { + "start": 10134.48, + "end": 10135.34, + "probability": 0.496 + }, + { + "start": 10135.82, + "end": 10136.73, + "probability": 0.4346 + }, + { + "start": 10137.06, + "end": 10138.08, + "probability": 0.2469 + }, + { + "start": 10138.08, + "end": 10139.08, + "probability": 0.0702 + }, + { + "start": 10140.72, + "end": 10142.1, + "probability": 0.7329 + }, + { + "start": 10142.28, + "end": 10142.28, + "probability": 0.403 + }, + { + "start": 10142.38, + "end": 10143.12, + "probability": 0.9738 + }, + { + "start": 10143.92, + "end": 10145.14, + "probability": 0.3954 + }, + { + "start": 10145.92, + "end": 10146.98, + "probability": 0.03 + }, + { + "start": 10147.12, + "end": 10147.12, + "probability": 0.1616 + }, + { + "start": 10147.12, + "end": 10147.52, + "probability": 0.2838 + }, + { + "start": 10147.52, + "end": 10147.72, + "probability": 0.5205 + }, + { + "start": 10147.8, + "end": 10149.34, + "probability": 0.8102 + }, + { + "start": 10149.34, + "end": 10149.84, + "probability": 0.6876 + }, + { + "start": 10150.02, + "end": 10150.14, + "probability": 0.1623 + }, + { + "start": 10150.14, + "end": 10150.4, + "probability": 0.3288 + }, + { + "start": 10150.46, + "end": 10152.04, + "probability": 0.4252 + }, + { + "start": 10152.14, + "end": 10154.9, + "probability": 0.6701 + }, + { + "start": 10155.22, + "end": 10155.48, + "probability": 0.0466 + }, + { + "start": 10155.87, + "end": 10156.96, + "probability": 0.2108 + }, + { + "start": 10156.96, + "end": 10159.12, + "probability": 0.0321 + }, + { + "start": 10159.2, + "end": 10163.64, + "probability": 0.6141 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10258.0, + "end": 10258.0, + "probability": 0.0 + }, + { + "start": 10266.18, + "end": 10267.02, + "probability": 0.4331 + }, + { + "start": 10276.94, + "end": 10281.12, + "probability": 0.0277 + }, + { + "start": 10281.52, + "end": 10287.44, + "probability": 0.0264 + }, + { + "start": 10287.58, + "end": 10289.76, + "probability": 0.0133 + }, + { + "start": 10289.76, + "end": 10294.9, + "probability": 0.0232 + }, + { + "start": 10296.18, + "end": 10299.88, + "probability": 0.0574 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10392.0, + "end": 10392.0, + "probability": 0.0 + }, + { + "start": 10404.04, + "end": 10407.42, + "probability": 0.0597 + }, + { + "start": 10414.38, + "end": 10416.54, + "probability": 0.0627 + }, + { + "start": 10416.54, + "end": 10416.9, + "probability": 0.0257 + }, + { + "start": 10420.6, + "end": 10422.04, + "probability": 0.0601 + }, + { + "start": 10422.82, + "end": 10423.4, + "probability": 0.0131 + }, + { + "start": 10425.42, + "end": 10428.58, + "probability": 0.3168 + }, + { + "start": 10429.06, + "end": 10431.4, + "probability": 0.1736 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.28, + "end": 10513.78, + "probability": 0.3019 + }, + { + "start": 10514.6, + "end": 10515.86, + "probability": 0.9313 + }, + { + "start": 10517.46, + "end": 10519.16, + "probability": 0.9885 + }, + { + "start": 10520.12, + "end": 10521.18, + "probability": 0.9588 + }, + { + "start": 10521.72, + "end": 10524.68, + "probability": 0.979 + }, + { + "start": 10524.76, + "end": 10527.66, + "probability": 0.991 + }, + { + "start": 10528.8, + "end": 10531.62, + "probability": 0.9427 + }, + { + "start": 10532.3, + "end": 10533.9, + "probability": 0.6197 + }, + { + "start": 10534.46, + "end": 10537.38, + "probability": 0.8193 + }, + { + "start": 10537.94, + "end": 10539.14, + "probability": 0.9613 + }, + { + "start": 10539.24, + "end": 10541.82, + "probability": 0.8448 + }, + { + "start": 10542.28, + "end": 10543.52, + "probability": 0.9784 + }, + { + "start": 10544.04, + "end": 10544.68, + "probability": 0.8154 + }, + { + "start": 10545.5, + "end": 10546.17, + "probability": 0.8452 + }, + { + "start": 10548.02, + "end": 10551.32, + "probability": 0.9376 + }, + { + "start": 10552.12, + "end": 10557.08, + "probability": 0.7867 + }, + { + "start": 10558.36, + "end": 10558.58, + "probability": 0.3151 + }, + { + "start": 10559.2, + "end": 10560.38, + "probability": 0.8601 + }, + { + "start": 10561.58, + "end": 10562.3, + "probability": 0.9975 + }, + { + "start": 10564.5, + "end": 10568.2, + "probability": 0.9653 + }, + { + "start": 10568.2, + "end": 10570.26, + "probability": 0.9976 + }, + { + "start": 10570.88, + "end": 10571.62, + "probability": 0.9605 + }, + { + "start": 10572.16, + "end": 10574.61, + "probability": 0.9924 + }, + { + "start": 10574.62, + "end": 10577.0, + "probability": 0.9955 + }, + { + "start": 10579.42, + "end": 10582.78, + "probability": 0.8943 + }, + { + "start": 10583.6, + "end": 10584.94, + "probability": 0.9139 + }, + { + "start": 10585.82, + "end": 10587.58, + "probability": 0.9976 + }, + { + "start": 10588.6, + "end": 10589.44, + "probability": 0.7118 + }, + { + "start": 10592.52, + "end": 10593.74, + "probability": 0.9323 + }, + { + "start": 10594.28, + "end": 10594.68, + "probability": 0.9904 + }, + { + "start": 10597.82, + "end": 10599.18, + "probability": 0.9417 + }, + { + "start": 10600.56, + "end": 10603.32, + "probability": 0.9814 + }, + { + "start": 10604.72, + "end": 10607.78, + "probability": 0.9861 + }, + { + "start": 10608.36, + "end": 10609.6, + "probability": 0.8955 + }, + { + "start": 10610.24, + "end": 10611.06, + "probability": 0.9741 + }, + { + "start": 10611.68, + "end": 10612.98, + "probability": 0.9973 + }, + { + "start": 10614.18, + "end": 10617.76, + "probability": 0.8926 + }, + { + "start": 10618.58, + "end": 10620.58, + "probability": 0.8888 + }, + { + "start": 10622.16, + "end": 10623.84, + "probability": 0.9966 + }, + { + "start": 10624.8, + "end": 10627.88, + "probability": 0.9902 + }, + { + "start": 10628.18, + "end": 10630.1, + "probability": 0.9961 + }, + { + "start": 10630.54, + "end": 10631.6, + "probability": 0.7926 + }, + { + "start": 10632.98, + "end": 10635.48, + "probability": 0.8514 + }, + { + "start": 10635.54, + "end": 10635.9, + "probability": 0.8201 + }, + { + "start": 10639.78, + "end": 10640.9, + "probability": 0.5309 + }, + { + "start": 10641.48, + "end": 10642.9, + "probability": 0.8375 + }, + { + "start": 10643.46, + "end": 10644.6, + "probability": 0.937 + }, + { + "start": 10645.16, + "end": 10648.44, + "probability": 0.9936 + }, + { + "start": 10649.04, + "end": 10652.32, + "probability": 0.9297 + }, + { + "start": 10652.96, + "end": 10654.84, + "probability": 0.8676 + }, + { + "start": 10654.9, + "end": 10657.18, + "probability": 0.9552 + }, + { + "start": 10657.62, + "end": 10659.42, + "probability": 0.7323 + }, + { + "start": 10660.64, + "end": 10661.98, + "probability": 0.9261 + }, + { + "start": 10662.44, + "end": 10666.4, + "probability": 0.9672 + }, + { + "start": 10666.74, + "end": 10668.92, + "probability": 0.9381 + }, + { + "start": 10669.34, + "end": 10670.18, + "probability": 0.7527 + }, + { + "start": 10670.66, + "end": 10671.9, + "probability": 0.975 + }, + { + "start": 10672.2, + "end": 10673.16, + "probability": 0.9727 + }, + { + "start": 10673.54, + "end": 10675.04, + "probability": 0.9972 + }, + { + "start": 10675.8, + "end": 10676.84, + "probability": 0.7533 + }, + { + "start": 10677.98, + "end": 10680.1, + "probability": 0.5905 + }, + { + "start": 10680.24, + "end": 10680.78, + "probability": 0.9656 + }, + { + "start": 10681.06, + "end": 10681.86, + "probability": 0.1441 + }, + { + "start": 10681.86, + "end": 10683.24, + "probability": 0.3072 + }, + { + "start": 10683.52, + "end": 10684.84, + "probability": 0.3481 + }, + { + "start": 10684.84, + "end": 10685.36, + "probability": 0.2599 + }, + { + "start": 10685.5, + "end": 10686.66, + "probability": 0.9059 + }, + { + "start": 10686.96, + "end": 10688.32, + "probability": 0.8666 + }, + { + "start": 10688.54, + "end": 10688.8, + "probability": 0.8379 + }, + { + "start": 10688.88, + "end": 10689.66, + "probability": 0.3862 + }, + { + "start": 10689.66, + "end": 10690.82, + "probability": 0.5906 + }, + { + "start": 10690.94, + "end": 10691.6, + "probability": 0.8615 + }, + { + "start": 10691.78, + "end": 10694.54, + "probability": 0.1448 + }, + { + "start": 10695.0, + "end": 10696.08, + "probability": 0.3233 + }, + { + "start": 10696.08, + "end": 10696.84, + "probability": 0.0453 + }, + { + "start": 10696.84, + "end": 10697.04, + "probability": 0.0781 + }, + { + "start": 10697.78, + "end": 10697.78, + "probability": 0.1666 + }, + { + "start": 10697.78, + "end": 10700.59, + "probability": 0.7116 + }, + { + "start": 10700.78, + "end": 10701.96, + "probability": 0.6982 + }, + { + "start": 10702.5, + "end": 10703.26, + "probability": 0.1972 + }, + { + "start": 10705.24, + "end": 10708.96, + "probability": 0.3221 + }, + { + "start": 10709.32, + "end": 10709.64, + "probability": 0.017 + }, + { + "start": 10709.8, + "end": 10712.18, + "probability": 0.847 + }, + { + "start": 10712.74, + "end": 10714.62, + "probability": 0.9557 + }, + { + "start": 10715.22, + "end": 10717.3, + "probability": 0.4982 + }, + { + "start": 10718.42, + "end": 10719.36, + "probability": 0.8995 + }, + { + "start": 10719.9, + "end": 10720.6, + "probability": 0.9052 + }, + { + "start": 10730.74, + "end": 10731.86, + "probability": 0.4876 + }, + { + "start": 10736.72, + "end": 10739.0, + "probability": 0.736 + }, + { + "start": 10739.92, + "end": 10740.64, + "probability": 0.8347 + }, + { + "start": 10742.6, + "end": 10745.78, + "probability": 0.9562 + }, + { + "start": 10746.3, + "end": 10750.92, + "probability": 0.7975 + }, + { + "start": 10752.62, + "end": 10758.42, + "probability": 0.7768 + }, + { + "start": 10760.02, + "end": 10762.78, + "probability": 0.9305 + }, + { + "start": 10764.14, + "end": 10764.82, + "probability": 0.7195 + }, + { + "start": 10767.08, + "end": 10768.44, + "probability": 0.709 + }, + { + "start": 10770.2, + "end": 10775.74, + "probability": 0.9863 + }, + { + "start": 10776.32, + "end": 10776.86, + "probability": 0.7841 + }, + { + "start": 10777.56, + "end": 10784.34, + "probability": 0.9782 + }, + { + "start": 10786.54, + "end": 10787.38, + "probability": 0.7462 + }, + { + "start": 10788.64, + "end": 10790.66, + "probability": 0.9534 + }, + { + "start": 10791.28, + "end": 10792.24, + "probability": 0.8016 + }, + { + "start": 10794.12, + "end": 10798.12, + "probability": 0.9979 + }, + { + "start": 10798.86, + "end": 10802.46, + "probability": 0.9849 + }, + { + "start": 10803.62, + "end": 10806.86, + "probability": 0.9823 + }, + { + "start": 10807.38, + "end": 10812.86, + "probability": 0.9751 + }, + { + "start": 10813.62, + "end": 10814.98, + "probability": 0.8256 + }, + { + "start": 10816.14, + "end": 10820.58, + "probability": 0.9933 + }, + { + "start": 10820.58, + "end": 10825.4, + "probability": 0.9804 + }, + { + "start": 10826.6, + "end": 10830.34, + "probability": 0.9925 + }, + { + "start": 10830.34, + "end": 10834.22, + "probability": 0.9946 + }, + { + "start": 10835.12, + "end": 10840.74, + "probability": 0.9976 + }, + { + "start": 10840.8, + "end": 10847.48, + "probability": 0.9964 + }, + { + "start": 10849.4, + "end": 10849.6, + "probability": 0.7609 + }, + { + "start": 10850.88, + "end": 10851.78, + "probability": 0.7432 + }, + { + "start": 10851.9, + "end": 10856.6, + "probability": 0.967 + }, + { + "start": 10856.6, + "end": 10863.6, + "probability": 0.9921 + }, + { + "start": 10864.46, + "end": 10867.86, + "probability": 0.8921 + }, + { + "start": 10870.0, + "end": 10870.6, + "probability": 0.7792 + }, + { + "start": 10871.4, + "end": 10872.26, + "probability": 0.9944 + }, + { + "start": 10873.4, + "end": 10875.08, + "probability": 0.7784 + }, + { + "start": 10876.1, + "end": 10877.84, + "probability": 0.767 + }, + { + "start": 10878.66, + "end": 10879.8, + "probability": 0.872 + }, + { + "start": 10880.48, + "end": 10882.0, + "probability": 0.9886 + }, + { + "start": 10882.98, + "end": 10887.9, + "probability": 0.9536 + }, + { + "start": 10889.82, + "end": 10890.22, + "probability": 0.3072 + }, + { + "start": 10890.78, + "end": 10892.02, + "probability": 0.7614 + }, + { + "start": 10893.46, + "end": 10897.22, + "probability": 0.8514 + }, + { + "start": 10898.64, + "end": 10900.4, + "probability": 0.8827 + }, + { + "start": 10901.24, + "end": 10902.76, + "probability": 0.7587 + }, + { + "start": 10903.54, + "end": 10907.02, + "probability": 0.9991 + }, + { + "start": 10907.76, + "end": 10909.08, + "probability": 0.7595 + }, + { + "start": 10910.56, + "end": 10914.0, + "probability": 0.8869 + }, + { + "start": 10915.3, + "end": 10917.66, + "probability": 0.9149 + }, + { + "start": 10917.9, + "end": 10918.36, + "probability": 0.807 + }, + { + "start": 10919.16, + "end": 10920.02, + "probability": 0.6409 + }, + { + "start": 10920.72, + "end": 10921.44, + "probability": 0.6126 + }, + { + "start": 10922.14, + "end": 10925.78, + "probability": 0.9628 + }, + { + "start": 10926.74, + "end": 10928.6, + "probability": 0.9271 + }, + { + "start": 10929.38, + "end": 10931.74, + "probability": 0.9946 + }, + { + "start": 10932.34, + "end": 10934.59, + "probability": 0.8506 + }, + { + "start": 10936.54, + "end": 10936.54, + "probability": 0.0432 + }, + { + "start": 10936.54, + "end": 10937.38, + "probability": 0.5605 + }, + { + "start": 10937.6, + "end": 10938.48, + "probability": 0.9174 + }, + { + "start": 10938.54, + "end": 10940.18, + "probability": 0.8833 + }, + { + "start": 10940.9, + "end": 10941.76, + "probability": 0.8646 + }, + { + "start": 10942.9, + "end": 10943.72, + "probability": 0.9136 + }, + { + "start": 10943.74, + "end": 10946.04, + "probability": 0.9691 + }, + { + "start": 10946.78, + "end": 10949.58, + "probability": 0.9766 + }, + { + "start": 10949.58, + "end": 10952.44, + "probability": 0.9963 + }, + { + "start": 10952.58, + "end": 10952.8, + "probability": 0.6993 + }, + { + "start": 10953.54, + "end": 10954.84, + "probability": 0.668 + }, + { + "start": 10955.54, + "end": 10962.02, + "probability": 0.9775 + }, + { + "start": 10962.38, + "end": 10963.44, + "probability": 0.8494 + }, + { + "start": 10963.96, + "end": 10964.06, + "probability": 0.5625 + }, + { + "start": 10964.06, + "end": 10967.22, + "probability": 0.9781 + }, + { + "start": 10967.22, + "end": 10971.52, + "probability": 0.9544 + }, + { + "start": 10971.64, + "end": 10972.06, + "probability": 0.4875 + }, + { + "start": 10972.1, + "end": 10972.2, + "probability": 0.3912 + }, + { + "start": 10972.3, + "end": 10973.54, + "probability": 0.7913 + }, + { + "start": 10975.39, + "end": 10976.32, + "probability": 0.0694 + }, + { + "start": 10976.32, + "end": 10976.6, + "probability": 0.1108 + }, + { + "start": 10976.6, + "end": 10981.32, + "probability": 0.6064 + }, + { + "start": 10981.54, + "end": 10981.9, + "probability": 0.4124 + }, + { + "start": 10981.9, + "end": 10982.1, + "probability": 0.588 + }, + { + "start": 10982.76, + "end": 10983.94, + "probability": 0.5286 + }, + { + "start": 10984.48, + "end": 10985.04, + "probability": 0.4443 + }, + { + "start": 10985.48, + "end": 10986.7, + "probability": 0.5558 + }, + { + "start": 10986.76, + "end": 10987.06, + "probability": 0.8442 + }, + { + "start": 10987.56, + "end": 10988.72, + "probability": 0.8319 + }, + { + "start": 10989.64, + "end": 10990.2, + "probability": 0.7148 + }, + { + "start": 10990.94, + "end": 10991.36, + "probability": 0.4349 + }, + { + "start": 10992.06, + "end": 10993.14, + "probability": 0.8907 + }, + { + "start": 10998.56, + "end": 11000.77, + "probability": 0.7311 + }, + { + "start": 11011.48, + "end": 11012.1, + "probability": 0.5029 + }, + { + "start": 11013.92, + "end": 11014.36, + "probability": 0.6819 + }, + { + "start": 11015.3, + "end": 11015.86, + "probability": 0.6148 + }, + { + "start": 11021.14, + "end": 11021.76, + "probability": 0.5478 + }, + { + "start": 11022.72, + "end": 11024.84, + "probability": 0.9216 + }, + { + "start": 11025.84, + "end": 11028.57, + "probability": 0.9588 + }, + { + "start": 11028.58, + "end": 11029.3, + "probability": 0.7468 + }, + { + "start": 11029.94, + "end": 11034.68, + "probability": 0.9473 + }, + { + "start": 11035.14, + "end": 11035.8, + "probability": 0.7153 + }, + { + "start": 11036.58, + "end": 11038.36, + "probability": 0.9385 + }, + { + "start": 11038.7, + "end": 11039.0, + "probability": 0.453 + }, + { + "start": 11039.24, + "end": 11041.18, + "probability": 0.9907 + }, + { + "start": 11041.62, + "end": 11043.12, + "probability": 0.9916 + }, + { + "start": 11044.22, + "end": 11045.86, + "probability": 0.9989 + }, + { + "start": 11046.04, + "end": 11048.38, + "probability": 0.7324 + }, + { + "start": 11049.38, + "end": 11052.58, + "probability": 0.9536 + }, + { + "start": 11052.78, + "end": 11056.4, + "probability": 0.9037 + }, + { + "start": 11056.78, + "end": 11058.05, + "probability": 0.9678 + }, + { + "start": 11058.82, + "end": 11060.34, + "probability": 0.9565 + }, + { + "start": 11060.66, + "end": 11061.43, + "probability": 0.6172 + }, + { + "start": 11061.62, + "end": 11066.4, + "probability": 0.9663 + }, + { + "start": 11066.54, + "end": 11068.9, + "probability": 0.6441 + }, + { + "start": 11069.04, + "end": 11069.64, + "probability": 0.8704 + }, + { + "start": 11070.22, + "end": 11072.48, + "probability": 0.7766 + }, + { + "start": 11072.68, + "end": 11074.18, + "probability": 0.8814 + }, + { + "start": 11074.72, + "end": 11077.24, + "probability": 0.8819 + }, + { + "start": 11077.34, + "end": 11078.22, + "probability": 0.843 + }, + { + "start": 11078.34, + "end": 11080.28, + "probability": 0.9202 + }, + { + "start": 11080.66, + "end": 11081.94, + "probability": 0.7028 + }, + { + "start": 11082.06, + "end": 11082.5, + "probability": 0.7118 + }, + { + "start": 11082.98, + "end": 11085.92, + "probability": 0.6729 + }, + { + "start": 11086.16, + "end": 11086.6, + "probability": 0.7301 + }, + { + "start": 11086.6, + "end": 11087.92, + "probability": 0.7101 + }, + { + "start": 11089.94, + "end": 11090.74, + "probability": 0.2116 + }, + { + "start": 11091.4, + "end": 11091.76, + "probability": 0.1872 + }, + { + "start": 11091.76, + "end": 11091.76, + "probability": 0.068 + }, + { + "start": 11091.76, + "end": 11093.88, + "probability": 0.7819 + }, + { + "start": 11094.3, + "end": 11094.32, + "probability": 0.1636 + }, + { + "start": 11094.32, + "end": 11094.54, + "probability": 0.291 + }, + { + "start": 11096.2, + "end": 11097.28, + "probability": 0.5956 + }, + { + "start": 11097.56, + "end": 11098.83, + "probability": 0.9268 + }, + { + "start": 11099.06, + "end": 11099.72, + "probability": 0.8187 + }, + { + "start": 11100.06, + "end": 11103.88, + "probability": 0.9038 + }, + { + "start": 11104.12, + "end": 11104.92, + "probability": 0.8336 + }, + { + "start": 11105.12, + "end": 11106.14, + "probability": 0.9255 + }, + { + "start": 11106.6, + "end": 11107.94, + "probability": 0.9128 + }, + { + "start": 11108.06, + "end": 11108.66, + "probability": 0.9126 + }, + { + "start": 11109.18, + "end": 11112.74, + "probability": 0.952 + }, + { + "start": 11113.14, + "end": 11113.9, + "probability": 0.903 + }, + { + "start": 11114.5, + "end": 11115.44, + "probability": 0.9905 + }, + { + "start": 11115.54, + "end": 11115.92, + "probability": 0.3151 + }, + { + "start": 11116.24, + "end": 11121.22, + "probability": 0.9695 + }, + { + "start": 11121.58, + "end": 11124.0, + "probability": 0.9755 + }, + { + "start": 11124.12, + "end": 11126.94, + "probability": 0.595 + }, + { + "start": 11126.98, + "end": 11128.1, + "probability": 0.9395 + }, + { + "start": 11128.4, + "end": 11129.04, + "probability": 0.7936 + }, + { + "start": 11129.3, + "end": 11130.02, + "probability": 0.6696 + }, + { + "start": 11130.24, + "end": 11132.42, + "probability": 0.8892 + }, + { + "start": 11132.68, + "end": 11133.74, + "probability": 0.982 + }, + { + "start": 11134.12, + "end": 11134.56, + "probability": 0.6088 + }, + { + "start": 11134.86, + "end": 11135.48, + "probability": 0.8754 + }, + { + "start": 11135.56, + "end": 11137.89, + "probability": 0.9736 + }, + { + "start": 11138.28, + "end": 11141.16, + "probability": 0.9109 + }, + { + "start": 11143.45, + "end": 11145.24, + "probability": 0.8594 + }, + { + "start": 11145.5, + "end": 11146.86, + "probability": 0.9851 + }, + { + "start": 11147.74, + "end": 11150.18, + "probability": 0.8524 + }, + { + "start": 11150.84, + "end": 11155.06, + "probability": 0.7778 + }, + { + "start": 11155.3, + "end": 11156.28, + "probability": 0.9539 + }, + { + "start": 11156.64, + "end": 11157.54, + "probability": 0.9179 + }, + { + "start": 11157.62, + "end": 11158.08, + "probability": 0.542 + }, + { + "start": 11158.1, + "end": 11158.82, + "probability": 0.8914 + }, + { + "start": 11159.36, + "end": 11162.18, + "probability": 0.9756 + }, + { + "start": 11162.64, + "end": 11165.6, + "probability": 0.9733 + }, + { + "start": 11165.68, + "end": 11167.24, + "probability": 0.9198 + }, + { + "start": 11167.78, + "end": 11168.92, + "probability": 0.9833 + }, + { + "start": 11169.12, + "end": 11169.78, + "probability": 0.897 + }, + { + "start": 11170.08, + "end": 11170.58, + "probability": 0.7588 + }, + { + "start": 11170.86, + "end": 11172.08, + "probability": 0.835 + }, + { + "start": 11172.18, + "end": 11176.06, + "probability": 0.9558 + }, + { + "start": 11176.34, + "end": 11177.92, + "probability": 0.9973 + }, + { + "start": 11177.98, + "end": 11180.1, + "probability": 0.9879 + }, + { + "start": 11180.8, + "end": 11182.5, + "probability": 0.9803 + }, + { + "start": 11182.84, + "end": 11185.3, + "probability": 0.9843 + }, + { + "start": 11185.58, + "end": 11187.62, + "probability": 0.9271 + }, + { + "start": 11188.06, + "end": 11189.74, + "probability": 0.4436 + }, + { + "start": 11190.06, + "end": 11190.52, + "probability": 0.6039 + }, + { + "start": 11190.68, + "end": 11193.54, + "probability": 0.954 + }, + { + "start": 11193.78, + "end": 11195.4, + "probability": 0.7942 + }, + { + "start": 11195.9, + "end": 11196.82, + "probability": 0.7655 + }, + { + "start": 11197.08, + "end": 11198.06, + "probability": 0.5737 + }, + { + "start": 11198.96, + "end": 11200.66, + "probability": 0.8186 + }, + { + "start": 11201.08, + "end": 11201.98, + "probability": 0.8735 + }, + { + "start": 11202.32, + "end": 11205.78, + "probability": 0.9409 + }, + { + "start": 11205.82, + "end": 11206.66, + "probability": 0.8975 + }, + { + "start": 11207.51, + "end": 11209.52, + "probability": 0.9062 + }, + { + "start": 11209.64, + "end": 11210.08, + "probability": 0.8074 + }, + { + "start": 11210.52, + "end": 11211.04, + "probability": 0.7435 + }, + { + "start": 11211.16, + "end": 11212.5, + "probability": 0.9421 + }, + { + "start": 11212.58, + "end": 11212.72, + "probability": 0.189 + }, + { + "start": 11212.88, + "end": 11213.18, + "probability": 0.6011 + }, + { + "start": 11213.26, + "end": 11214.1, + "probability": 0.7518 + }, + { + "start": 11214.28, + "end": 11214.64, + "probability": 0.7448 + }, + { + "start": 11214.7, + "end": 11215.08, + "probability": 0.801 + }, + { + "start": 11215.14, + "end": 11215.48, + "probability": 0.7163 + }, + { + "start": 11215.56, + "end": 11215.7, + "probability": 0.2612 + }, + { + "start": 11216.14, + "end": 11216.58, + "probability": 0.7538 + }, + { + "start": 11216.66, + "end": 11218.62, + "probability": 0.7889 + }, + { + "start": 11218.82, + "end": 11219.92, + "probability": 0.9708 + }, + { + "start": 11221.12, + "end": 11223.76, + "probability": 0.4996 + }, + { + "start": 11223.88, + "end": 11224.22, + "probability": 0.4505 + }, + { + "start": 11224.92, + "end": 11230.84, + "probability": 0.9815 + }, + { + "start": 11231.5, + "end": 11234.46, + "probability": 0.954 + }, + { + "start": 11234.86, + "end": 11237.72, + "probability": 0.9014 + }, + { + "start": 11238.06, + "end": 11241.86, + "probability": 0.9248 + }, + { + "start": 11242.56, + "end": 11245.7, + "probability": 0.6981 + }, + { + "start": 11246.28, + "end": 11249.78, + "probability": 0.7081 + }, + { + "start": 11249.8, + "end": 11252.32, + "probability": 0.9905 + }, + { + "start": 11252.74, + "end": 11256.94, + "probability": 0.9893 + }, + { + "start": 11257.36, + "end": 11260.62, + "probability": 0.9656 + }, + { + "start": 11260.92, + "end": 11263.82, + "probability": 0.7181 + }, + { + "start": 11264.9, + "end": 11265.5, + "probability": 0.8567 + }, + { + "start": 11265.64, + "end": 11266.8, + "probability": 0.5778 + }, + { + "start": 11267.06, + "end": 11267.55, + "probability": 0.8846 + }, + { + "start": 11268.14, + "end": 11270.98, + "probability": 0.957 + }, + { + "start": 11271.8, + "end": 11273.46, + "probability": 0.9982 + }, + { + "start": 11274.02, + "end": 11277.4, + "probability": 0.9978 + }, + { + "start": 11277.4, + "end": 11280.26, + "probability": 0.9668 + }, + { + "start": 11280.58, + "end": 11280.58, + "probability": 0.3589 + }, + { + "start": 11280.72, + "end": 11281.64, + "probability": 0.9858 + }, + { + "start": 11281.82, + "end": 11283.24, + "probability": 0.9456 + }, + { + "start": 11283.58, + "end": 11285.66, + "probability": 0.9984 + }, + { + "start": 11286.36, + "end": 11290.7, + "probability": 0.9909 + }, + { + "start": 11290.7, + "end": 11293.68, + "probability": 0.9675 + }, + { + "start": 11293.76, + "end": 11295.54, + "probability": 0.9696 + }, + { + "start": 11295.54, + "end": 11296.62, + "probability": 0.667 + }, + { + "start": 11296.68, + "end": 11301.74, + "probability": 0.8949 + }, + { + "start": 11302.06, + "end": 11302.24, + "probability": 0.6082 + }, + { + "start": 11302.64, + "end": 11303.76, + "probability": 0.957 + }, + { + "start": 11304.28, + "end": 11305.8, + "probability": 0.952 + }, + { + "start": 11309.22, + "end": 11309.96, + "probability": 0.0864 + }, + { + "start": 11309.96, + "end": 11309.96, + "probability": 0.2841 + }, + { + "start": 11309.96, + "end": 11310.84, + "probability": 0.0187 + }, + { + "start": 11311.22, + "end": 11311.9, + "probability": 0.1213 + }, + { + "start": 11315.1, + "end": 11317.18, + "probability": 0.0451 + }, + { + "start": 11317.84, + "end": 11318.32, + "probability": 0.1133 + }, + { + "start": 11326.73, + "end": 11331.1, + "probability": 0.4154 + }, + { + "start": 11332.08, + "end": 11333.0, + "probability": 0.1053 + }, + { + "start": 11333.7, + "end": 11334.11, + "probability": 0.4154 + }, + { + "start": 11334.78, + "end": 11337.68, + "probability": 0.2371 + }, + { + "start": 11340.5, + "end": 11340.8, + "probability": 0.0883 + }, + { + "start": 11341.47, + "end": 11342.84, + "probability": 0.5307 + }, + { + "start": 11342.98, + "end": 11342.98, + "probability": 0.024 + }, + { + "start": 11343.04, + "end": 11344.72, + "probability": 0.2878 + }, + { + "start": 11346.82, + "end": 11347.48, + "probability": 0.3746 + }, + { + "start": 11353.5, + "end": 11355.72, + "probability": 0.7311 + }, + { + "start": 11356.68, + "end": 11356.86, + "probability": 0.0733 + }, + { + "start": 11356.86, + "end": 11356.86, + "probability": 0.49 + }, + { + "start": 11356.86, + "end": 11356.86, + "probability": 0.1311 + }, + { + "start": 11356.86, + "end": 11356.86, + "probability": 0.2105 + }, + { + "start": 11356.86, + "end": 11356.86, + "probability": 0.2887 + }, + { + "start": 11356.86, + "end": 11356.86, + "probability": 0.2276 + }, + { + "start": 11356.86, + "end": 11361.28, + "probability": 0.4324 + }, + { + "start": 11361.54, + "end": 11362.08, + "probability": 0.5236 + }, + { + "start": 11362.26, + "end": 11363.66, + "probability": 0.9495 + }, + { + "start": 11364.02, + "end": 11365.06, + "probability": 0.9146 + }, + { + "start": 11365.22, + "end": 11369.04, + "probability": 0.992 + }, + { + "start": 11369.58, + "end": 11374.06, + "probability": 0.9775 + }, + { + "start": 11375.46, + "end": 11377.78, + "probability": 0.8354 + }, + { + "start": 11377.96, + "end": 11378.99, + "probability": 0.4636 + }, + { + "start": 11379.44, + "end": 11379.82, + "probability": 0.3908 + }, + { + "start": 11379.96, + "end": 11384.0, + "probability": 0.5633 + }, + { + "start": 11384.06, + "end": 11385.28, + "probability": 0.5353 + }, + { + "start": 11385.34, + "end": 11387.0, + "probability": 0.8843 + }, + { + "start": 11387.56, + "end": 11389.42, + "probability": 0.9925 + }, + { + "start": 11389.96, + "end": 11391.26, + "probability": 0.9597 + }, + { + "start": 11391.8, + "end": 11392.16, + "probability": 0.5003 + }, + { + "start": 11392.24, + "end": 11396.1, + "probability": 0.584 + }, + { + "start": 11396.72, + "end": 11397.1, + "probability": 0.9577 + }, + { + "start": 11399.08, + "end": 11400.76, + "probability": 0.6785 + }, + { + "start": 11401.38, + "end": 11402.47, + "probability": 0.978 + }, + { + "start": 11403.48, + "end": 11408.24, + "probability": 0.9945 + }, + { + "start": 11408.54, + "end": 11412.14, + "probability": 0.9822 + }, + { + "start": 11412.64, + "end": 11412.74, + "probability": 0.3517 + }, + { + "start": 11413.18, + "end": 11418.16, + "probability": 0.9782 + }, + { + "start": 11418.34, + "end": 11422.42, + "probability": 0.9993 + }, + { + "start": 11423.44, + "end": 11423.92, + "probability": 0.8943 + }, + { + "start": 11424.54, + "end": 11429.34, + "probability": 0.9787 + }, + { + "start": 11429.48, + "end": 11430.72, + "probability": 0.731 + }, + { + "start": 11431.66, + "end": 11432.78, + "probability": 0.5585 + }, + { + "start": 11433.18, + "end": 11435.54, + "probability": 0.6965 + }, + { + "start": 11435.94, + "end": 11439.34, + "probability": 0.7659 + }, + { + "start": 11439.72, + "end": 11443.86, + "probability": 0.9899 + }, + { + "start": 11444.44, + "end": 11450.18, + "probability": 0.9991 + }, + { + "start": 11451.0, + "end": 11454.18, + "probability": 0.9327 + }, + { + "start": 11454.98, + "end": 11457.18, + "probability": 0.9983 + }, + { + "start": 11457.32, + "end": 11459.72, + "probability": 0.3075 + }, + { + "start": 11459.86, + "end": 11460.62, + "probability": 0.873 + }, + { + "start": 11460.8, + "end": 11465.24, + "probability": 0.9103 + }, + { + "start": 11465.6, + "end": 11469.3, + "probability": 0.9918 + }, + { + "start": 11469.3, + "end": 11472.74, + "probability": 0.995 + }, + { + "start": 11473.32, + "end": 11474.97, + "probability": 0.647 + }, + { + "start": 11475.5, + "end": 11477.46, + "probability": 0.9769 + }, + { + "start": 11477.46, + "end": 11480.8, + "probability": 0.9902 + }, + { + "start": 11481.2, + "end": 11484.26, + "probability": 0.8467 + }, + { + "start": 11484.78, + "end": 11486.72, + "probability": 0.8063 + }, + { + "start": 11487.44, + "end": 11489.28, + "probability": 0.5434 + }, + { + "start": 11489.34, + "end": 11492.42, + "probability": 0.7065 + }, + { + "start": 11493.4, + "end": 11495.84, + "probability": 0.9963 + }, + { + "start": 11496.72, + "end": 11500.14, + "probability": 0.8518 + }, + { + "start": 11500.46, + "end": 11502.94, + "probability": 0.9868 + }, + { + "start": 11504.14, + "end": 11505.92, + "probability": 0.7004 + }, + { + "start": 11506.34, + "end": 11510.08, + "probability": 0.8694 + }, + { + "start": 11510.14, + "end": 11510.68, + "probability": 0.7874 + }, + { + "start": 11511.1, + "end": 11516.67, + "probability": 0.9883 + }, + { + "start": 11517.98, + "end": 11518.66, + "probability": 0.8112 + }, + { + "start": 11518.74, + "end": 11520.2, + "probability": 0.582 + }, + { + "start": 11520.62, + "end": 11523.62, + "probability": 0.8662 + }, + { + "start": 11524.74, + "end": 11527.1, + "probability": 0.6794 + }, + { + "start": 11527.18, + "end": 11527.74, + "probability": 0.6234 + }, + { + "start": 11527.78, + "end": 11529.69, + "probability": 0.591 + }, + { + "start": 11530.96, + "end": 11532.92, + "probability": 0.9383 + }, + { + "start": 11533.08, + "end": 11537.72, + "probability": 0.973 + }, + { + "start": 11538.36, + "end": 11543.16, + "probability": 0.9812 + }, + { + "start": 11543.16, + "end": 11546.72, + "probability": 0.9908 + }, + { + "start": 11547.16, + "end": 11553.0, + "probability": 0.9832 + }, + { + "start": 11553.0, + "end": 11553.34, + "probability": 0.7122 + }, + { + "start": 11553.42, + "end": 11555.0, + "probability": 0.8809 + }, + { + "start": 11555.0, + "end": 11556.2, + "probability": 0.6778 + }, + { + "start": 11557.1, + "end": 11558.0, + "probability": 0.6466 + }, + { + "start": 11558.52, + "end": 11559.14, + "probability": 0.7022 + }, + { + "start": 11559.66, + "end": 11561.48, + "probability": 0.8415 + }, + { + "start": 11580.06, + "end": 11581.28, + "probability": 0.0149 + }, + { + "start": 11584.6, + "end": 11588.18, + "probability": 0.5513 + }, + { + "start": 11588.98, + "end": 11591.96, + "probability": 0.7146 + }, + { + "start": 11592.74, + "end": 11595.7, + "probability": 0.9775 + }, + { + "start": 11596.22, + "end": 11597.24, + "probability": 0.8329 + }, + { + "start": 11598.12, + "end": 11598.86, + "probability": 0.793 + }, + { + "start": 11599.14, + "end": 11599.52, + "probability": 0.6695 + }, + { + "start": 11600.12, + "end": 11600.68, + "probability": 0.978 + }, + { + "start": 11601.36, + "end": 11605.04, + "probability": 0.9449 + }, + { + "start": 11605.24, + "end": 11607.62, + "probability": 0.808 + }, + { + "start": 11608.36, + "end": 11610.68, + "probability": 0.9455 + }, + { + "start": 11611.54, + "end": 11612.36, + "probability": 0.999 + }, + { + "start": 11613.12, + "end": 11614.2, + "probability": 0.9839 + }, + { + "start": 11615.16, + "end": 11615.88, + "probability": 0.985 + }, + { + "start": 11616.8, + "end": 11621.66, + "probability": 0.7922 + }, + { + "start": 11621.78, + "end": 11624.68, + "probability": 0.9078 + }, + { + "start": 11625.68, + "end": 11626.42, + "probability": 0.5571 + }, + { + "start": 11627.38, + "end": 11629.74, + "probability": 0.9966 + }, + { + "start": 11630.38, + "end": 11633.28, + "probability": 0.9746 + }, + { + "start": 11633.98, + "end": 11637.56, + "probability": 0.9819 + }, + { + "start": 11637.88, + "end": 11638.4, + "probability": 0.9826 + }, + { + "start": 11638.86, + "end": 11639.46, + "probability": 0.9853 + }, + { + "start": 11639.82, + "end": 11640.14, + "probability": 0.7903 + }, + { + "start": 11640.4, + "end": 11640.76, + "probability": 0.6974 + }, + { + "start": 11641.44, + "end": 11644.62, + "probability": 0.9492 + }, + { + "start": 11645.62, + "end": 11646.76, + "probability": 0.9533 + }, + { + "start": 11647.46, + "end": 11648.82, + "probability": 0.93 + }, + { + "start": 11649.58, + "end": 11651.43, + "probability": 0.9648 + }, + { + "start": 11652.16, + "end": 11653.82, + "probability": 0.9995 + }, + { + "start": 11654.52, + "end": 11656.28, + "probability": 0.9993 + }, + { + "start": 11657.26, + "end": 11658.48, + "probability": 0.9655 + }, + { + "start": 11659.48, + "end": 11662.04, + "probability": 0.9626 + }, + { + "start": 11663.36, + "end": 11666.99, + "probability": 0.9971 + }, + { + "start": 11667.76, + "end": 11668.92, + "probability": 0.9906 + }, + { + "start": 11669.58, + "end": 11669.88, + "probability": 0.9733 + }, + { + "start": 11670.74, + "end": 11673.24, + "probability": 0.8308 + }, + { + "start": 11673.8, + "end": 11675.74, + "probability": 0.9979 + }, + { + "start": 11676.42, + "end": 11679.38, + "probability": 0.9074 + }, + { + "start": 11680.18, + "end": 11682.86, + "probability": 0.8082 + }, + { + "start": 11683.5, + "end": 11685.02, + "probability": 0.6154 + }, + { + "start": 11685.96, + "end": 11689.94, + "probability": 0.9971 + }, + { + "start": 11690.8, + "end": 11691.22, + "probability": 0.8342 + }, + { + "start": 11691.22, + "end": 11692.28, + "probability": 0.8174 + }, + { + "start": 11692.5, + "end": 11694.7, + "probability": 0.9174 + }, + { + "start": 11694.96, + "end": 11695.89, + "probability": 0.956 + }, + { + "start": 11696.52, + "end": 11698.68, + "probability": 0.9946 + }, + { + "start": 11699.26, + "end": 11701.78, + "probability": 0.8572 + }, + { + "start": 11702.5, + "end": 11704.72, + "probability": 0.9575 + }, + { + "start": 11705.7, + "end": 11708.64, + "probability": 0.7609 + }, + { + "start": 11709.54, + "end": 11710.46, + "probability": 0.9924 + }, + { + "start": 11710.98, + "end": 11714.26, + "probability": 0.8493 + }, + { + "start": 11714.9, + "end": 11716.1, + "probability": 0.6701 + }, + { + "start": 11716.66, + "end": 11717.7, + "probability": 0.8123 + }, + { + "start": 11718.3, + "end": 11721.0, + "probability": 0.9666 + }, + { + "start": 11721.58, + "end": 11724.38, + "probability": 0.9781 + }, + { + "start": 11725.4, + "end": 11726.74, + "probability": 0.9583 + }, + { + "start": 11728.52, + "end": 11729.58, + "probability": 0.9976 + }, + { + "start": 11730.2, + "end": 11732.52, + "probability": 0.9763 + }, + { + "start": 11733.24, + "end": 11735.08, + "probability": 0.8548 + }, + { + "start": 11735.72, + "end": 11738.3, + "probability": 0.9697 + }, + { + "start": 11738.84, + "end": 11739.21, + "probability": 0.7373 + }, + { + "start": 11740.1, + "end": 11740.8, + "probability": 0.7727 + }, + { + "start": 11741.52, + "end": 11743.06, + "probability": 0.9449 + }, + { + "start": 11743.94, + "end": 11744.9, + "probability": 0.6517 + }, + { + "start": 11745.46, + "end": 11748.18, + "probability": 0.9811 + }, + { + "start": 11748.76, + "end": 11753.06, + "probability": 0.9975 + }, + { + "start": 11753.68, + "end": 11754.76, + "probability": 0.9285 + }, + { + "start": 11755.3, + "end": 11758.88, + "probability": 0.9241 + }, + { + "start": 11759.06, + "end": 11761.7, + "probability": 0.9899 + }, + { + "start": 11762.26, + "end": 11763.72, + "probability": 0.9937 + }, + { + "start": 11764.22, + "end": 11767.04, + "probability": 0.988 + }, + { + "start": 11767.04, + "end": 11770.46, + "probability": 0.9879 + }, + { + "start": 11770.8, + "end": 11770.86, + "probability": 0.6618 + }, + { + "start": 11771.2, + "end": 11772.7, + "probability": 0.6648 + }, + { + "start": 11773.08, + "end": 11775.7, + "probability": 0.9954 + }, + { + "start": 11775.94, + "end": 11776.14, + "probability": 0.9 + }, + { + "start": 11776.78, + "end": 11777.34, + "probability": 0.6935 + }, + { + "start": 11777.7, + "end": 11782.44, + "probability": 0.776 + }, + { + "start": 11783.26, + "end": 11784.68, + "probability": 0.5245 + }, + { + "start": 11784.68, + "end": 11784.68, + "probability": 0.5568 + }, + { + "start": 11784.68, + "end": 11785.1, + "probability": 0.8278 + }, + { + "start": 11786.14, + "end": 11786.78, + "probability": 0.9034 + }, + { + "start": 11787.34, + "end": 11788.26, + "probability": 0.8164 + }, + { + "start": 11789.04, + "end": 11789.72, + "probability": 0.6884 + }, + { + "start": 11789.92, + "end": 11791.86, + "probability": 0.9366 + }, + { + "start": 11805.32, + "end": 11807.06, + "probability": 0.6716 + }, + { + "start": 11807.06, + "end": 11807.8, + "probability": 0.6927 + }, + { + "start": 11808.36, + "end": 11811.08, + "probability": 0.1993 + }, + { + "start": 11811.26, + "end": 11811.42, + "probability": 0.5228 + }, + { + "start": 11812.0, + "end": 11812.0, + "probability": 0.1207 + }, + { + "start": 11812.0, + "end": 11812.88, + "probability": 0.1392 + }, + { + "start": 11812.92, + "end": 11813.26, + "probability": 0.2232 + }, + { + "start": 11813.26, + "end": 11813.9, + "probability": 0.0779 + }, + { + "start": 11813.9, + "end": 11814.64, + "probability": 0.5144 + }, + { + "start": 11814.7, + "end": 11815.8, + "probability": 0.7643 + }, + { + "start": 11816.2, + "end": 11819.68, + "probability": 0.8939 + }, + { + "start": 11819.94, + "end": 11821.14, + "probability": 0.8672 + }, + { + "start": 11821.18, + "end": 11822.62, + "probability": 0.5647 + }, + { + "start": 11823.08, + "end": 11825.4, + "probability": 0.9825 + }, + { + "start": 11825.56, + "end": 11825.91, + "probability": 0.5009 + }, + { + "start": 11826.14, + "end": 11826.36, + "probability": 0.6095 + }, + { + "start": 11826.48, + "end": 11827.66, + "probability": 0.8981 + }, + { + "start": 11828.66, + "end": 11830.26, + "probability": 0.998 + }, + { + "start": 11831.08, + "end": 11833.16, + "probability": 0.9881 + }, + { + "start": 11833.54, + "end": 11833.6, + "probability": 0.7292 + }, + { + "start": 11833.76, + "end": 11834.64, + "probability": 0.915 + }, + { + "start": 11835.24, + "end": 11836.8, + "probability": 0.4271 + }, + { + "start": 11836.88, + "end": 11841.08, + "probability": 0.7784 + }, + { + "start": 11841.16, + "end": 11841.48, + "probability": 0.7908 + }, + { + "start": 11841.84, + "end": 11842.94, + "probability": 0.8386 + }, + { + "start": 11843.02, + "end": 11843.9, + "probability": 0.9863 + }, + { + "start": 11844.66, + "end": 11845.39, + "probability": 0.1581 + }, + { + "start": 11845.46, + "end": 11847.98, + "probability": 0.7744 + }, + { + "start": 11847.98, + "end": 11848.48, + "probability": 0.851 + }, + { + "start": 11848.76, + "end": 11850.81, + "probability": 0.9863 + }, + { + "start": 11851.26, + "end": 11852.22, + "probability": 0.8728 + }, + { + "start": 11852.22, + "end": 11855.06, + "probability": 0.7753 + }, + { + "start": 11856.68, + "end": 11856.74, + "probability": 0.1023 + }, + { + "start": 11856.74, + "end": 11858.09, + "probability": 0.9435 + }, + { + "start": 11859.79, + "end": 11863.16, + "probability": 0.8428 + }, + { + "start": 11863.22, + "end": 11863.89, + "probability": 0.5679 + }, + { + "start": 11864.6, + "end": 11866.38, + "probability": 0.803 + }, + { + "start": 11866.48, + "end": 11866.84, + "probability": 0.4882 + }, + { + "start": 11868.24, + "end": 11869.4, + "probability": 0.9856 + }, + { + "start": 11869.94, + "end": 11871.44, + "probability": 0.9878 + }, + { + "start": 11871.76, + "end": 11872.49, + "probability": 0.5791 + }, + { + "start": 11872.52, + "end": 11874.12, + "probability": 0.8099 + }, + { + "start": 11875.2, + "end": 11876.36, + "probability": 0.6171 + }, + { + "start": 11876.94, + "end": 11877.5, + "probability": 0.775 + }, + { + "start": 11877.82, + "end": 11878.92, + "probability": 0.9463 + }, + { + "start": 11880.9, + "end": 11885.48, + "probability": 0.9884 + }, + { + "start": 11885.8, + "end": 11887.64, + "probability": 0.9767 + }, + { + "start": 11888.22, + "end": 11891.96, + "probability": 0.9922 + }, + { + "start": 11892.38, + "end": 11893.2, + "probability": 0.867 + }, + { + "start": 11894.36, + "end": 11897.54, + "probability": 0.508 + }, + { + "start": 11897.62, + "end": 11897.96, + "probability": 0.7367 + }, + { + "start": 11898.44, + "end": 11899.96, + "probability": 0.9706 + }, + { + "start": 11900.3, + "end": 11902.14, + "probability": 0.8086 + }, + { + "start": 11902.66, + "end": 11906.82, + "probability": 0.9496 + }, + { + "start": 11907.56, + "end": 11908.46, + "probability": 0.8412 + }, + { + "start": 11909.16, + "end": 11913.66, + "probability": 0.9253 + }, + { + "start": 11913.82, + "end": 11914.32, + "probability": 0.6641 + }, + { + "start": 11914.7, + "end": 11914.94, + "probability": 0.1956 + }, + { + "start": 11915.0, + "end": 11916.74, + "probability": 0.6119 + }, + { + "start": 11917.26, + "end": 11920.44, + "probability": 0.9195 + }, + { + "start": 11920.56, + "end": 11923.52, + "probability": 0.998 + }, + { + "start": 11923.52, + "end": 11926.66, + "probability": 0.9997 + }, + { + "start": 11926.82, + "end": 11928.02, + "probability": 0.5913 + }, + { + "start": 11928.14, + "end": 11928.84, + "probability": 0.4703 + }, + { + "start": 11929.22, + "end": 11930.46, + "probability": 0.266 + }, + { + "start": 11931.02, + "end": 11934.6, + "probability": 0.9482 + }, + { + "start": 11935.16, + "end": 11936.28, + "probability": 0.8273 + }, + { + "start": 11936.58, + "end": 11938.32, + "probability": 0.9695 + }, + { + "start": 11938.74, + "end": 11942.12, + "probability": 0.9922 + }, + { + "start": 11942.22, + "end": 11943.18, + "probability": 0.8915 + }, + { + "start": 11944.18, + "end": 11945.06, + "probability": 0.9813 + }, + { + "start": 11945.22, + "end": 11946.52, + "probability": 0.9819 + }, + { + "start": 11947.18, + "end": 11948.48, + "probability": 0.6599 + }, + { + "start": 11949.0, + "end": 11951.24, + "probability": 0.9135 + }, + { + "start": 11951.6, + "end": 11952.32, + "probability": 0.9609 + }, + { + "start": 11952.78, + "end": 11955.34, + "probability": 0.9171 + }, + { + "start": 11955.68, + "end": 11957.66, + "probability": 0.9128 + }, + { + "start": 11958.02, + "end": 11959.2, + "probability": 0.4253 + }, + { + "start": 11959.5, + "end": 11961.46, + "probability": 0.9076 + }, + { + "start": 11964.46, + "end": 11966.6, + "probability": 0.6571 + }, + { + "start": 11966.78, + "end": 11969.64, + "probability": 0.9968 + }, + { + "start": 11970.16, + "end": 11973.78, + "probability": 0.996 + }, + { + "start": 11974.54, + "end": 11975.28, + "probability": 0.0397 + }, + { + "start": 11975.72, + "end": 11977.51, + "probability": 0.8367 + }, + { + "start": 11977.66, + "end": 11982.8, + "probability": 0.2449 + }, + { + "start": 11984.65, + "end": 11985.48, + "probability": 0.0325 + }, + { + "start": 11985.48, + "end": 11985.48, + "probability": 0.0459 + }, + { + "start": 11985.48, + "end": 11985.54, + "probability": 0.106 + }, + { + "start": 11985.54, + "end": 11985.54, + "probability": 0.0597 + }, + { + "start": 11985.54, + "end": 11985.54, + "probability": 0.2763 + }, + { + "start": 11985.54, + "end": 11985.54, + "probability": 0.1455 + }, + { + "start": 11985.54, + "end": 11987.52, + "probability": 0.9212 + }, + { + "start": 11987.9, + "end": 11989.42, + "probability": 0.9128 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12106.0, + "end": 12106.0, + "probability": 0.0 + }, + { + "start": 12118.82, + "end": 12119.52, + "probability": 0.0148 + }, + { + "start": 12119.52, + "end": 12119.86, + "probability": 0.0975 + }, + { + "start": 12120.02, + "end": 12121.26, + "probability": 0.116 + }, + { + "start": 12121.98, + "end": 12123.27, + "probability": 0.1753 + }, + { + "start": 12123.48, + "end": 12123.86, + "probability": 0.0624 + }, + { + "start": 12141.92, + "end": 12145.08, + "probability": 0.0722 + }, + { + "start": 12145.08, + "end": 12145.72, + "probability": 0.1594 + }, + { + "start": 12145.72, + "end": 12146.04, + "probability": 0.0792 + }, + { + "start": 12146.04, + "end": 12147.51, + "probability": 0.068 + }, + { + "start": 12148.51, + "end": 12148.89, + "probability": 0.093 + }, + { + "start": 12149.88, + "end": 12150.23, + "probability": 0.0241 + }, + { + "start": 12151.58, + "end": 12152.5, + "probability": 0.0074 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.0, + "end": 12226.0, + "probability": 0.0 + }, + { + "start": 12226.3, + "end": 12226.9, + "probability": 0.1267 + }, + { + "start": 12228.14, + "end": 12235.92, + "probability": 0.9861 + }, + { + "start": 12238.12, + "end": 12240.0, + "probability": 0.0358 + }, + { + "start": 12242.06, + "end": 12242.2, + "probability": 0.0209 + }, + { + "start": 12242.2, + "end": 12242.83, + "probability": 0.014 + }, + { + "start": 12245.42, + "end": 12245.6, + "probability": 0.2743 + }, + { + "start": 12245.6, + "end": 12245.6, + "probability": 0.1946 + }, + { + "start": 12245.6, + "end": 12245.6, + "probability": 0.2655 + }, + { + "start": 12245.6, + "end": 12245.6, + "probability": 0.0688 + }, + { + "start": 12245.6, + "end": 12251.16, + "probability": 0.9602 + }, + { + "start": 12252.52, + "end": 12259.04, + "probability": 0.9915 + }, + { + "start": 12260.08, + "end": 12261.86, + "probability": 0.9892 + }, + { + "start": 12263.16, + "end": 12270.32, + "probability": 0.9961 + }, + { + "start": 12271.3, + "end": 12276.2, + "probability": 0.8157 + }, + { + "start": 12277.2, + "end": 12278.44, + "probability": 0.6851 + }, + { + "start": 12279.9, + "end": 12282.58, + "probability": 0.9138 + }, + { + "start": 12283.22, + "end": 12285.38, + "probability": 0.6963 + }, + { + "start": 12285.94, + "end": 12286.32, + "probability": 0.5767 + }, + { + "start": 12287.36, + "end": 12289.18, + "probability": 0.4727 + }, + { + "start": 12289.9, + "end": 12291.76, + "probability": 0.5089 + }, + { + "start": 12292.52, + "end": 12293.92, + "probability": 0.8783 + }, + { + "start": 12294.86, + "end": 12296.58, + "probability": 0.9683 + }, + { + "start": 12297.2, + "end": 12298.18, + "probability": 0.6727 + }, + { + "start": 12299.02, + "end": 12299.92, + "probability": 0.9574 + }, + { + "start": 12301.16, + "end": 12302.6, + "probability": 0.8023 + }, + { + "start": 12303.16, + "end": 12304.24, + "probability": 0.5885 + }, + { + "start": 12304.24, + "end": 12304.46, + "probability": 0.2204 + }, + { + "start": 12306.14, + "end": 12308.26, + "probability": 0.6589 + }, + { + "start": 12309.36, + "end": 12314.02, + "probability": 0.8544 + }, + { + "start": 12314.82, + "end": 12317.74, + "probability": 0.9744 + }, + { + "start": 12318.3, + "end": 12325.18, + "probability": 0.7146 + }, + { + "start": 12325.66, + "end": 12326.48, + "probability": 0.9458 + }, + { + "start": 12327.6, + "end": 12333.6, + "probability": 0.9945 + }, + { + "start": 12333.74, + "end": 12335.38, + "probability": 0.8841 + }, + { + "start": 12336.7, + "end": 12343.58, + "probability": 0.9966 + }, + { + "start": 12343.72, + "end": 12345.62, + "probability": 0.9552 + }, + { + "start": 12346.48, + "end": 12347.76, + "probability": 0.7664 + }, + { + "start": 12349.42, + "end": 12351.32, + "probability": 0.6266 + }, + { + "start": 12352.48, + "end": 12354.72, + "probability": 0.8063 + }, + { + "start": 12355.32, + "end": 12358.56, + "probability": 0.8857 + }, + { + "start": 12359.34, + "end": 12360.54, + "probability": 0.6286 + }, + { + "start": 12361.7, + "end": 12363.66, + "probability": 0.9941 + }, + { + "start": 12364.84, + "end": 12369.82, + "probability": 0.1692 + }, + { + "start": 12370.02, + "end": 12370.4, + "probability": 0.0041 + }, + { + "start": 12370.4, + "end": 12370.4, + "probability": 0.1589 + }, + { + "start": 12370.4, + "end": 12370.4, + "probability": 0.065 + }, + { + "start": 12370.4, + "end": 12371.02, + "probability": 0.2428 + }, + { + "start": 12371.88, + "end": 12372.72, + "probability": 0.8312 + }, + { + "start": 12373.22, + "end": 12375.7, + "probability": 0.517 + }, + { + "start": 12375.98, + "end": 12382.74, + "probability": 0.9398 + }, + { + "start": 12384.26, + "end": 12391.2, + "probability": 0.9994 + }, + { + "start": 12391.72, + "end": 12393.22, + "probability": 0.824 + }, + { + "start": 12394.68, + "end": 12398.9, + "probability": 0.9923 + }, + { + "start": 12398.96, + "end": 12399.64, + "probability": 0.8567 + }, + { + "start": 12400.38, + "end": 12403.54, + "probability": 0.804 + }, + { + "start": 12404.26, + "end": 12408.9, + "probability": 0.9963 + }, + { + "start": 12408.96, + "end": 12409.54, + "probability": 0.79 + }, + { + "start": 12409.6, + "end": 12413.78, + "probability": 0.991 + }, + { + "start": 12415.06, + "end": 12420.72, + "probability": 0.8317 + }, + { + "start": 12421.34, + "end": 12422.38, + "probability": 0.9908 + }, + { + "start": 12422.94, + "end": 12424.09, + "probability": 0.6959 + }, + { + "start": 12425.0, + "end": 12426.92, + "probability": 0.924 + }, + { + "start": 12427.86, + "end": 12430.6, + "probability": 0.9951 + }, + { + "start": 12431.08, + "end": 12436.24, + "probability": 0.9886 + }, + { + "start": 12436.34, + "end": 12437.22, + "probability": 0.9818 + }, + { + "start": 12437.92, + "end": 12440.56, + "probability": 0.8821 + }, + { + "start": 12441.24, + "end": 12443.34, + "probability": 0.9409 + }, + { + "start": 12444.12, + "end": 12446.9, + "probability": 0.9268 + }, + { + "start": 12447.58, + "end": 12453.5, + "probability": 0.9606 + }, + { + "start": 12454.2, + "end": 12458.96, + "probability": 0.9966 + }, + { + "start": 12459.02, + "end": 12459.76, + "probability": 0.8897 + }, + { + "start": 12460.42, + "end": 12464.6, + "probability": 0.9726 + }, + { + "start": 12465.36, + "end": 12467.68, + "probability": 0.9629 + }, + { + "start": 12468.26, + "end": 12469.06, + "probability": 0.9126 + }, + { + "start": 12469.58, + "end": 12473.18, + "probability": 0.8191 + }, + { + "start": 12474.48, + "end": 12479.16, + "probability": 0.9989 + }, + { + "start": 12479.72, + "end": 12482.08, + "probability": 0.9203 + }, + { + "start": 12482.6, + "end": 12488.26, + "probability": 0.9784 + }, + { + "start": 12488.9, + "end": 12492.82, + "probability": 0.989 + }, + { + "start": 12493.4, + "end": 12497.42, + "probability": 0.8809 + }, + { + "start": 12497.98, + "end": 12501.02, + "probability": 0.9307 + }, + { + "start": 12501.9, + "end": 12502.83, + "probability": 0.8096 + }, + { + "start": 12503.48, + "end": 12504.32, + "probability": 0.9509 + }, + { + "start": 12504.74, + "end": 12505.42, + "probability": 0.5965 + }, + { + "start": 12505.54, + "end": 12508.04, + "probability": 0.7819 + }, + { + "start": 12508.48, + "end": 12514.16, + "probability": 0.9868 + }, + { + "start": 12514.16, + "end": 12519.15, + "probability": 0.999 + }, + { + "start": 12519.86, + "end": 12522.94, + "probability": 0.9902 + }, + { + "start": 12523.48, + "end": 12525.34, + "probability": 0.9138 + }, + { + "start": 12526.28, + "end": 12527.82, + "probability": 0.9963 + }, + { + "start": 12528.58, + "end": 12530.68, + "probability": 0.9845 + }, + { + "start": 12531.4, + "end": 12535.92, + "probability": 0.9661 + }, + { + "start": 12536.38, + "end": 12537.62, + "probability": 0.7268 + }, + { + "start": 12538.32, + "end": 12548.02, + "probability": 0.96 + }, + { + "start": 12548.76, + "end": 12550.52, + "probability": 0.9922 + }, + { + "start": 12552.28, + "end": 12557.74, + "probability": 0.985 + }, + { + "start": 12558.42, + "end": 12562.25, + "probability": 0.9544 + }, + { + "start": 12565.44, + "end": 12567.64, + "probability": 0.924 + }, + { + "start": 12569.22, + "end": 12571.98, + "probability": 0.8625 + }, + { + "start": 12572.78, + "end": 12575.7, + "probability": 0.6465 + }, + { + "start": 12576.96, + "end": 12582.32, + "probability": 0.9908 + }, + { + "start": 12582.96, + "end": 12584.52, + "probability": 0.9533 + }, + { + "start": 12585.5, + "end": 12588.84, + "probability": 0.8006 + }, + { + "start": 12589.78, + "end": 12594.56, + "probability": 0.9156 + }, + { + "start": 12596.14, + "end": 12600.04, + "probability": 0.9867 + }, + { + "start": 12601.06, + "end": 12606.25, + "probability": 0.9954 + }, + { + "start": 12608.78, + "end": 12612.04, + "probability": 0.9174 + }, + { + "start": 12613.02, + "end": 12615.51, + "probability": 0.9735 + }, + { + "start": 12616.32, + "end": 12621.24, + "probability": 0.9966 + }, + { + "start": 12622.62, + "end": 12627.34, + "probability": 0.999 + }, + { + "start": 12628.4, + "end": 12633.88, + "probability": 0.9987 + }, + { + "start": 12634.82, + "end": 12640.1, + "probability": 0.9931 + }, + { + "start": 12640.76, + "end": 12642.96, + "probability": 0.9083 + }, + { + "start": 12643.6, + "end": 12646.64, + "probability": 0.9207 + }, + { + "start": 12647.36, + "end": 12652.54, + "probability": 0.9905 + }, + { + "start": 12653.28, + "end": 12655.58, + "probability": 0.9966 + }, + { + "start": 12656.66, + "end": 12658.82, + "probability": 0.9987 + }, + { + "start": 12659.84, + "end": 12664.8, + "probability": 0.9526 + }, + { + "start": 12665.24, + "end": 12666.48, + "probability": 0.991 + }, + { + "start": 12667.98, + "end": 12668.56, + "probability": 0.9829 + }, + { + "start": 12671.54, + "end": 12676.48, + "probability": 0.9896 + }, + { + "start": 12677.14, + "end": 12677.82, + "probability": 0.9878 + }, + { + "start": 12678.66, + "end": 12679.16, + "probability": 0.9896 + }, + { + "start": 12680.12, + "end": 12682.26, + "probability": 0.7978 + }, + { + "start": 12683.18, + "end": 12683.94, + "probability": 0.9877 + }, + { + "start": 12684.66, + "end": 12685.9, + "probability": 0.985 + }, + { + "start": 12686.38, + "end": 12687.68, + "probability": 0.9888 + }, + { + "start": 12688.08, + "end": 12689.68, + "probability": 0.9761 + }, + { + "start": 12690.72, + "end": 12698.86, + "probability": 0.9927 + }, + { + "start": 12699.2, + "end": 12699.76, + "probability": 0.8499 + }, + { + "start": 12701.5, + "end": 12703.56, + "probability": 0.7606 + }, + { + "start": 12704.24, + "end": 12709.7, + "probability": 0.9812 + }, + { + "start": 12711.06, + "end": 12711.52, + "probability": 0.9714 + }, + { + "start": 12712.06, + "end": 12713.36, + "probability": 0.9214 + }, + { + "start": 12714.08, + "end": 12715.04, + "probability": 0.9944 + }, + { + "start": 12715.12, + "end": 12715.96, + "probability": 0.7815 + }, + { + "start": 12716.44, + "end": 12718.44, + "probability": 0.9984 + }, + { + "start": 12718.96, + "end": 12725.28, + "probability": 0.9647 + }, + { + "start": 12725.98, + "end": 12728.84, + "probability": 0.9132 + }, + { + "start": 12729.76, + "end": 12735.26, + "probability": 0.998 + }, + { + "start": 12735.64, + "end": 12737.34, + "probability": 0.9602 + }, + { + "start": 12737.94, + "end": 12739.08, + "probability": 0.9869 + }, + { + "start": 12739.82, + "end": 12741.64, + "probability": 0.9963 + }, + { + "start": 12742.08, + "end": 12743.56, + "probability": 0.8387 + }, + { + "start": 12743.62, + "end": 12750.02, + "probability": 0.623 + }, + { + "start": 12750.72, + "end": 12754.83, + "probability": 0.991 + }, + { + "start": 12756.36, + "end": 12760.88, + "probability": 0.9424 + }, + { + "start": 12761.74, + "end": 12764.24, + "probability": 0.8643 + }, + { + "start": 12764.82, + "end": 12767.34, + "probability": 0.8971 + }, + { + "start": 12767.92, + "end": 12769.2, + "probability": 0.6895 + }, + { + "start": 12769.78, + "end": 12774.75, + "probability": 0.9962 + }, + { + "start": 12774.9, + "end": 12775.34, + "probability": 0.6556 + }, + { + "start": 12776.14, + "end": 12782.4, + "probability": 0.9888 + }, + { + "start": 12783.34, + "end": 12790.08, + "probability": 0.9616 + }, + { + "start": 12790.52, + "end": 12794.24, + "probability": 0.9946 + }, + { + "start": 12794.96, + "end": 12796.44, + "probability": 0.9518 + }, + { + "start": 12797.04, + "end": 12804.1, + "probability": 0.9883 + }, + { + "start": 12804.82, + "end": 12808.6, + "probability": 0.9454 + }, + { + "start": 12809.66, + "end": 12813.12, + "probability": 0.9533 + }, + { + "start": 12813.76, + "end": 12818.06, + "probability": 0.9017 + }, + { + "start": 12818.78, + "end": 12820.14, + "probability": 0.7183 + }, + { + "start": 12820.64, + "end": 12821.72, + "probability": 0.988 + }, + { + "start": 12821.78, + "end": 12822.52, + "probability": 0.7872 + }, + { + "start": 12822.64, + "end": 12823.8, + "probability": 0.9668 + }, + { + "start": 12824.22, + "end": 12824.84, + "probability": 0.9952 + }, + { + "start": 12825.24, + "end": 12825.94, + "probability": 0.9532 + }, + { + "start": 12826.42, + "end": 12831.2, + "probability": 0.9863 + }, + { + "start": 12831.68, + "end": 12834.02, + "probability": 0.9959 + }, + { + "start": 12834.38, + "end": 12838.4, + "probability": 0.9887 + }, + { + "start": 12839.16, + "end": 12839.3, + "probability": 0.6262 + }, + { + "start": 12840.68, + "end": 12843.24, + "probability": 0.9177 + }, + { + "start": 12843.3, + "end": 12844.84, + "probability": 0.9183 + }, + { + "start": 12846.12, + "end": 12847.36, + "probability": 0.5228 + }, + { + "start": 12847.36, + "end": 12850.02, + "probability": 0.7463 + }, + { + "start": 12852.5, + "end": 12854.63, + "probability": 0.8599 + }, + { + "start": 12855.48, + "end": 12856.9, + "probability": 0.8628 + }, + { + "start": 12858.34, + "end": 12859.64, + "probability": 0.9915 + }, + { + "start": 12862.48, + "end": 12864.02, + "probability": 0.9236 + }, + { + "start": 12872.32, + "end": 12874.64, + "probability": 0.8405 + }, + { + "start": 12875.56, + "end": 12879.5, + "probability": 0.955 + }, + { + "start": 12880.12, + "end": 12881.56, + "probability": 0.7553 + }, + { + "start": 12882.14, + "end": 12883.48, + "probability": 0.8747 + }, + { + "start": 12883.7, + "end": 12885.02, + "probability": 0.8665 + }, + { + "start": 12885.16, + "end": 12887.54, + "probability": 0.9505 + }, + { + "start": 12887.56, + "end": 12888.14, + "probability": 0.8828 + }, + { + "start": 12889.68, + "end": 12892.86, + "probability": 0.2287 + }, + { + "start": 12894.82, + "end": 12896.02, + "probability": 0.5451 + }, + { + "start": 12896.88, + "end": 12899.42, + "probability": 0.8149 + }, + { + "start": 12900.96, + "end": 12903.86, + "probability": 0.7935 + }, + { + "start": 12904.76, + "end": 12905.26, + "probability": 0.9862 + }, + { + "start": 12905.96, + "end": 12906.9, + "probability": 0.8776 + }, + { + "start": 12907.54, + "end": 12908.0, + "probability": 0.9967 + }, + { + "start": 12908.68, + "end": 12909.5, + "probability": 0.8486 + }, + { + "start": 12910.16, + "end": 12910.4, + "probability": 0.5631 + }, + { + "start": 12911.2, + "end": 12912.14, + "probability": 0.5375 + }, + { + "start": 12913.2, + "end": 12913.72, + "probability": 0.9521 + }, + { + "start": 12914.8, + "end": 12915.6, + "probability": 0.7753 + }, + { + "start": 12916.78, + "end": 12919.06, + "probability": 0.9518 + }, + { + "start": 12920.06, + "end": 12923.08, + "probability": 0.9699 + }, + { + "start": 12923.9, + "end": 12924.46, + "probability": 0.9868 + }, + { + "start": 12926.18, + "end": 12927.06, + "probability": 0.9764 + }, + { + "start": 12927.96, + "end": 12930.48, + "probability": 0.9873 + }, + { + "start": 12931.6, + "end": 12932.18, + "probability": 0.9945 + }, + { + "start": 12932.86, + "end": 12934.08, + "probability": 0.9881 + }, + { + "start": 12935.46, + "end": 12935.92, + "probability": 0.9797 + }, + { + "start": 12936.9, + "end": 12937.94, + "probability": 0.8872 + }, + { + "start": 12938.94, + "end": 12939.44, + "probability": 0.7196 + }, + { + "start": 12940.3, + "end": 12941.24, + "probability": 0.788 + }, + { + "start": 12942.08, + "end": 12943.96, + "probability": 0.7307 + }, + { + "start": 12944.8, + "end": 12945.68, + "probability": 0.9672 + }, + { + "start": 12948.36, + "end": 12949.58, + "probability": 0.9938 + }, + { + "start": 12951.04, + "end": 12952.1, + "probability": 0.8866 + }, + { + "start": 12952.94, + "end": 12955.18, + "probability": 0.9197 + }, + { + "start": 12956.5, + "end": 12957.04, + "probability": 0.9842 + }, + { + "start": 12958.02, + "end": 12959.0, + "probability": 0.9347 + }, + { + "start": 12959.88, + "end": 12961.82, + "probability": 0.8357 + }, + { + "start": 12962.34, + "end": 12963.74, + "probability": 0.9901 + }, + { + "start": 12964.66, + "end": 12965.04, + "probability": 0.9951 + }, + { + "start": 12965.78, + "end": 12966.76, + "probability": 0.7508 + }, + { + "start": 12967.66, + "end": 12968.1, + "probability": 0.7744 + }, + { + "start": 12969.0, + "end": 12969.86, + "probability": 0.9834 + }, + { + "start": 12970.82, + "end": 12971.18, + "probability": 0.9946 + }, + { + "start": 12972.48, + "end": 12973.08, + "probability": 0.937 + }, + { + "start": 12974.08, + "end": 12975.32, + "probability": 0.2508 + }, + { + "start": 12976.28, + "end": 12977.92, + "probability": 0.4639 + }, + { + "start": 12978.1, + "end": 12979.13, + "probability": 0.4834 + }, + { + "start": 12980.02, + "end": 12980.78, + "probability": 0.4429 + }, + { + "start": 12985.78, + "end": 12986.02, + "probability": 0.1172 + }, + { + "start": 12986.02, + "end": 12988.44, + "probability": 0.2721 + }, + { + "start": 12988.8, + "end": 12990.28, + "probability": 0.2678 + }, + { + "start": 12990.38, + "end": 12991.22, + "probability": 0.4268 + }, + { + "start": 12991.88, + "end": 12994.86, + "probability": 0.567 + }, + { + "start": 12995.92, + "end": 12998.12, + "probability": 0.5196 + }, + { + "start": 12998.12, + "end": 12998.64, + "probability": 0.6481 + }, + { + "start": 12998.88, + "end": 12999.88, + "probability": 0.6602 + }, + { + "start": 13000.64, + "end": 13002.88, + "probability": 0.0117 + }, + { + "start": 13006.64, + "end": 13007.64, + "probability": 0.6449 + }, + { + "start": 13008.88, + "end": 13009.74, + "probability": 0.664 + }, + { + "start": 13010.8, + "end": 13011.56, + "probability": 0.6456 + }, + { + "start": 13013.2, + "end": 13013.58, + "probability": 0.894 + }, + { + "start": 13014.14, + "end": 13016.64, + "probability": 0.809 + }, + { + "start": 13017.88, + "end": 13019.9, + "probability": 0.6917 + }, + { + "start": 13023.96, + "end": 13024.44, + "probability": 0.8556 + }, + { + "start": 13026.94, + "end": 13030.6, + "probability": 0.9111 + }, + { + "start": 13031.32, + "end": 13031.8, + "probability": 0.9897 + }, + { + "start": 13032.7, + "end": 13032.94, + "probability": 0.7703 + }, + { + "start": 13035.16, + "end": 13036.48, + "probability": 0.5713 + }, + { + "start": 13037.9, + "end": 13041.74, + "probability": 0.6979 + }, + { + "start": 13043.28, + "end": 13044.04, + "probability": 0.8593 + }, + { + "start": 13045.14, + "end": 13046.0, + "probability": 0.967 + }, + { + "start": 13046.72, + "end": 13049.1, + "probability": 0.8801 + }, + { + "start": 13050.22, + "end": 13056.02, + "probability": 0.9644 + }, + { + "start": 13056.94, + "end": 13059.82, + "probability": 0.8659 + }, + { + "start": 13060.6, + "end": 13061.18, + "probability": 0.9819 + }, + { + "start": 13062.3, + "end": 13063.46, + "probability": 0.641 + }, + { + "start": 13064.32, + "end": 13064.64, + "probability": 0.7134 + }, + { + "start": 13065.54, + "end": 13066.32, + "probability": 0.817 + }, + { + "start": 13067.64, + "end": 13070.12, + "probability": 0.8816 + }, + { + "start": 13071.24, + "end": 13074.18, + "probability": 0.8182 + }, + { + "start": 13075.02, + "end": 13077.54, + "probability": 0.9144 + }, + { + "start": 13078.66, + "end": 13081.32, + "probability": 0.9356 + }, + { + "start": 13082.76, + "end": 13087.06, + "probability": 0.9065 + }, + { + "start": 13090.72, + "end": 13091.4, + "probability": 0.6026 + }, + { + "start": 13092.2, + "end": 13093.06, + "probability": 0.6117 + }, + { + "start": 13099.44, + "end": 13099.86, + "probability": 0.3153 + }, + { + "start": 13104.04, + "end": 13107.48, + "probability": 0.504 + }, + { + "start": 13120.16, + "end": 13120.3, + "probability": 0.1488 + }, + { + "start": 13126.94, + "end": 13128.06, + "probability": 0.4832 + }, + { + "start": 13128.84, + "end": 13129.62, + "probability": 0.6339 + }, + { + "start": 13130.32, + "end": 13131.12, + "probability": 0.7935 + }, + { + "start": 13132.14, + "end": 13132.6, + "probability": 0.8335 + }, + { + "start": 13133.52, + "end": 13134.2, + "probability": 0.9414 + }, + { + "start": 13135.3, + "end": 13137.6, + "probability": 0.6266 + }, + { + "start": 13139.68, + "end": 13140.16, + "probability": 0.9722 + }, + { + "start": 13140.9, + "end": 13141.94, + "probability": 0.9689 + }, + { + "start": 13142.9, + "end": 13143.32, + "probability": 0.9595 + }, + { + "start": 13144.08, + "end": 13144.88, + "probability": 0.9501 + }, + { + "start": 13146.22, + "end": 13146.8, + "probability": 0.9753 + }, + { + "start": 13148.9, + "end": 13149.74, + "probability": 0.9441 + }, + { + "start": 13152.16, + "end": 13153.26, + "probability": 0.5702 + }, + { + "start": 13155.18, + "end": 13156.58, + "probability": 0.7449 + }, + { + "start": 13157.72, + "end": 13158.48, + "probability": 0.8832 + }, + { + "start": 13159.04, + "end": 13159.92, + "probability": 0.8095 + }, + { + "start": 13161.26, + "end": 13162.28, + "probability": 0.8136 + }, + { + "start": 13162.88, + "end": 13163.92, + "probability": 0.8019 + }, + { + "start": 13164.74, + "end": 13166.52, + "probability": 0.9657 + }, + { + "start": 13168.68, + "end": 13170.68, + "probability": 0.9766 + }, + { + "start": 13171.34, + "end": 13171.8, + "probability": 0.9749 + }, + { + "start": 13172.5, + "end": 13173.26, + "probability": 0.9792 + }, + { + "start": 13174.32, + "end": 13175.62, + "probability": 0.9795 + }, + { + "start": 13176.78, + "end": 13178.16, + "probability": 0.7219 + }, + { + "start": 13178.88, + "end": 13181.86, + "probability": 0.5457 + }, + { + "start": 13190.58, + "end": 13192.28, + "probability": 0.7234 + }, + { + "start": 13194.44, + "end": 13195.44, + "probability": 0.5983 + }, + { + "start": 13196.4, + "end": 13199.08, + "probability": 0.8852 + }, + { + "start": 13199.94, + "end": 13200.9, + "probability": 0.8998 + }, + { + "start": 13201.44, + "end": 13202.54, + "probability": 0.9624 + }, + { + "start": 13203.44, + "end": 13205.7, + "probability": 0.9744 + }, + { + "start": 13206.82, + "end": 13207.26, + "probability": 0.9246 + }, + { + "start": 13208.28, + "end": 13209.08, + "probability": 0.9699 + }, + { + "start": 13210.06, + "end": 13210.32, + "probability": 0.9844 + }, + { + "start": 13211.2, + "end": 13212.46, + "probability": 0.9622 + }, + { + "start": 13213.3, + "end": 13215.52, + "probability": 0.861 + }, + { + "start": 13216.7, + "end": 13217.56, + "probability": 0.9854 + }, + { + "start": 13218.14, + "end": 13218.96, + "probability": 0.7773 + }, + { + "start": 13220.24, + "end": 13220.78, + "probability": 0.6835 + }, + { + "start": 13222.78, + "end": 13224.1, + "probability": 0.6906 + }, + { + "start": 13224.82, + "end": 13225.22, + "probability": 0.8752 + }, + { + "start": 13226.58, + "end": 13227.64, + "probability": 0.6242 + }, + { + "start": 13229.92, + "end": 13233.94, + "probability": 0.978 + }, + { + "start": 13234.72, + "end": 13239.26, + "probability": 0.9461 + }, + { + "start": 13240.6, + "end": 13241.62, + "probability": 0.9661 + }, + { + "start": 13242.54, + "end": 13243.08, + "probability": 0.9928 + }, + { + "start": 13244.02, + "end": 13244.92, + "probability": 0.926 + }, + { + "start": 13246.22, + "end": 13246.66, + "probability": 0.9937 + }, + { + "start": 13252.44, + "end": 13254.18, + "probability": 0.2903 + }, + { + "start": 13255.22, + "end": 13260.54, + "probability": 0.7532 + }, + { + "start": 13261.6, + "end": 13261.94, + "probability": 0.826 + }, + { + "start": 13263.04, + "end": 13264.16, + "probability": 0.8448 + }, + { + "start": 13266.0, + "end": 13266.94, + "probability": 0.873 + }, + { + "start": 13267.56, + "end": 13268.76, + "probability": 0.9205 + }, + { + "start": 13270.32, + "end": 13271.12, + "probability": 0.969 + }, + { + "start": 13272.22, + "end": 13273.5, + "probability": 0.6919 + }, + { + "start": 13274.16, + "end": 13275.86, + "probability": 0.948 + }, + { + "start": 13276.86, + "end": 13280.92, + "probability": 0.5847 + }, + { + "start": 13285.98, + "end": 13286.5, + "probability": 0.8319 + }, + { + "start": 13290.36, + "end": 13291.24, + "probability": 0.3551 + }, + { + "start": 13293.66, + "end": 13294.7, + "probability": 0.9474 + }, + { + "start": 13295.68, + "end": 13296.74, + "probability": 0.8091 + }, + { + "start": 13297.6, + "end": 13298.04, + "probability": 0.8328 + }, + { + "start": 13299.0, + "end": 13300.0, + "probability": 0.4648 + }, + { + "start": 13301.14, + "end": 13301.6, + "probability": 0.9045 + }, + { + "start": 13302.32, + "end": 13303.32, + "probability": 0.7697 + }, + { + "start": 13304.4, + "end": 13304.92, + "probability": 0.9912 + }, + { + "start": 13306.08, + "end": 13307.18, + "probability": 0.549 + }, + { + "start": 13311.4, + "end": 13312.08, + "probability": 0.8536 + }, + { + "start": 13313.72, + "end": 13314.48, + "probability": 0.7614 + }, + { + "start": 13316.52, + "end": 13316.9, + "probability": 0.6439 + }, + { + "start": 13319.54, + "end": 13323.2, + "probability": 0.6206 + }, + { + "start": 13325.61, + "end": 13327.83, + "probability": 0.8921 + }, + { + "start": 13328.96, + "end": 13328.96, + "probability": 0.035 + }, + { + "start": 13328.96, + "end": 13329.92, + "probability": 0.8523 + }, + { + "start": 13330.0, + "end": 13331.28, + "probability": 0.7528 + }, + { + "start": 13331.36, + "end": 13332.55, + "probability": 0.9022 + }, + { + "start": 13334.68, + "end": 13337.4, + "probability": 0.3678 + }, + { + "start": 13337.86, + "end": 13339.2, + "probability": 0.2133 + }, + { + "start": 13340.44, + "end": 13341.08, + "probability": 0.0577 + }, + { + "start": 13344.08, + "end": 13344.08, + "probability": 0.2211 + }, + { + "start": 13344.08, + "end": 13346.0, + "probability": 0.3201 + }, + { + "start": 13346.16, + "end": 13346.34, + "probability": 0.4066 + }, + { + "start": 13347.06, + "end": 13347.74, + "probability": 0.0948 + }, + { + "start": 13347.74, + "end": 13349.58, + "probability": 0.1477 + }, + { + "start": 13349.6, + "end": 13351.32, + "probability": 0.0202 + }, + { + "start": 13351.66, + "end": 13352.66, + "probability": 0.3303 + }, + { + "start": 13353.36, + "end": 13353.36, + "probability": 0.0436 + }, + { + "start": 13353.36, + "end": 13353.36, + "probability": 0.0131 + }, + { + "start": 13353.36, + "end": 13353.36, + "probability": 0.0169 + }, + { + "start": 13353.36, + "end": 13356.76, + "probability": 0.6236 + }, + { + "start": 13358.04, + "end": 13360.34, + "probability": 0.6868 + }, + { + "start": 13361.06, + "end": 13361.48, + "probability": 0.8013 + }, + { + "start": 13363.66, + "end": 13365.96, + "probability": 0.5013 + }, + { + "start": 13366.98, + "end": 13367.98, + "probability": 0.8591 + }, + { + "start": 13368.9, + "end": 13369.32, + "probability": 0.9724 + }, + { + "start": 13370.28, + "end": 13371.1, + "probability": 0.881 + }, + { + "start": 13373.42, + "end": 13375.88, + "probability": 0.9261 + }, + { + "start": 13378.38, + "end": 13379.6, + "probability": 0.5743 + }, + { + "start": 13381.68, + "end": 13384.62, + "probability": 0.403 + }, + { + "start": 13386.22, + "end": 13389.62, + "probability": 0.7885 + }, + { + "start": 13390.66, + "end": 13390.98, + "probability": 0.5123 + }, + { + "start": 13392.04, + "end": 13393.02, + "probability": 0.7962 + }, + { + "start": 13394.32, + "end": 13395.78, + "probability": 0.9141 + }, + { + "start": 13396.38, + "end": 13399.24, + "probability": 0.7897 + }, + { + "start": 13400.86, + "end": 13403.88, + "probability": 0.9587 + }, + { + "start": 13405.6, + "end": 13408.58, + "probability": 0.7929 + }, + { + "start": 13409.22, + "end": 13409.24, + "probability": 0.653 + }, + { + "start": 13411.36, + "end": 13413.0, + "probability": 0.8397 + }, + { + "start": 13413.82, + "end": 13414.1, + "probability": 0.551 + }, + { + "start": 13415.22, + "end": 13416.5, + "probability": 0.9645 + }, + { + "start": 13417.7, + "end": 13419.8, + "probability": 0.9473 + }, + { + "start": 13420.66, + "end": 13423.2, + "probability": 0.947 + }, + { + "start": 13423.96, + "end": 13424.32, + "probability": 0.9797 + }, + { + "start": 13425.34, + "end": 13426.7, + "probability": 0.8793 + }, + { + "start": 13427.8, + "end": 13428.28, + "probability": 0.9409 + }, + { + "start": 13429.84, + "end": 13431.26, + "probability": 0.8833 + }, + { + "start": 13432.88, + "end": 13436.94, + "probability": 0.861 + }, + { + "start": 13437.98, + "end": 13439.18, + "probability": 0.6359 + }, + { + "start": 13443.04, + "end": 13444.82, + "probability": 0.5982 + }, + { + "start": 13451.02, + "end": 13452.18, + "probability": 0.6404 + }, + { + "start": 13461.24, + "end": 13462.76, + "probability": 0.1958 + }, + { + "start": 13463.74, + "end": 13466.52, + "probability": 0.7086 + }, + { + "start": 13467.32, + "end": 13476.62, + "probability": 0.6951 + }, + { + "start": 13477.44, + "end": 13480.66, + "probability": 0.9146 + }, + { + "start": 13482.22, + "end": 13486.6, + "probability": 0.9658 + }, + { + "start": 13486.88, + "end": 13490.2, + "probability": 0.5275 + }, + { + "start": 13497.3, + "end": 13499.76, + "probability": 0.4325 + }, + { + "start": 13503.96, + "end": 13505.48, + "probability": 0.3588 + }, + { + "start": 13506.5, + "end": 13509.84, + "probability": 0.5682 + }, + { + "start": 13511.34, + "end": 13515.58, + "probability": 0.597 + }, + { + "start": 13518.1, + "end": 13518.82, + "probability": 0.5489 + }, + { + "start": 13520.02, + "end": 13523.12, + "probability": 0.8929 + }, + { + "start": 13533.98, + "end": 13535.22, + "probability": 0.6808 + }, + { + "start": 13535.78, + "end": 13537.7, + "probability": 0.4744 + }, + { + "start": 13537.72, + "end": 13537.9, + "probability": 0.748 + }, + { + "start": 13538.32, + "end": 13539.39, + "probability": 0.492 + }, + { + "start": 13541.52, + "end": 13542.58, + "probability": 0.5881 + }, + { + "start": 13543.1, + "end": 13548.28, + "probability": 0.5116 + }, + { + "start": 13549.78, + "end": 13553.36, + "probability": 0.9683 + }, + { + "start": 13554.68, + "end": 13558.12, + "probability": 0.5472 + }, + { + "start": 13558.4, + "end": 13561.48, + "probability": 0.5934 + }, + { + "start": 13562.42, + "end": 13563.12, + "probability": 0.9552 + }, + { + "start": 13566.3, + "end": 13567.76, + "probability": 0.5254 + }, + { + "start": 13568.64, + "end": 13572.18, + "probability": 0.7309 + }, + { + "start": 13572.98, + "end": 13573.98, + "probability": 0.9457 + }, + { + "start": 13575.06, + "end": 13576.66, + "probability": 0.7882 + }, + { + "start": 13581.06, + "end": 13582.18, + "probability": 0.6673 + }, + { + "start": 13584.44, + "end": 13585.72, + "probability": 0.4626 + }, + { + "start": 13587.36, + "end": 13592.46, + "probability": 0.8205 + }, + { + "start": 13593.2, + "end": 13595.06, + "probability": 0.8896 + }, + { + "start": 13596.84, + "end": 13599.14, + "probability": 0.9295 + }, + { + "start": 13601.66, + "end": 13603.0, + "probability": 0.6477 + }, + { + "start": 13603.94, + "end": 13607.84, + "probability": 0.6666 + }, + { + "start": 13610.94, + "end": 13611.2, + "probability": 0.3579 + }, + { + "start": 13611.72, + "end": 13613.15, + "probability": 0.1135 + }, + { + "start": 13613.24, + "end": 13614.56, + "probability": 0.6736 + }, + { + "start": 13616.78, + "end": 13616.86, + "probability": 0.0044 + }, + { + "start": 13776.6, + "end": 13779.51, + "probability": 0.1141 + }, + { + "start": 13780.86, + "end": 13781.08, + "probability": 0.0247 + }, + { + "start": 13781.52, + "end": 13782.62, + "probability": 0.0083 + }, + { + "start": 13789.06, + "end": 13792.66, + "probability": 0.4983 + }, + { + "start": 13792.74, + "end": 13795.18, + "probability": 0.5894 + }, + { + "start": 13796.04, + "end": 13799.22, + "probability": 0.7108 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.0, + "end": 13901.0, + "probability": 0.0 + }, + { + "start": 13901.06, + "end": 13902.47, + "probability": 0.46 + }, + { + "start": 13904.04, + "end": 13907.7, + "probability": 0.658 + }, + { + "start": 13908.46, + "end": 13910.72, + "probability": 0.824 + }, + { + "start": 13915.18, + "end": 13917.31, + "probability": 0.6622 + }, + { + "start": 13917.4, + "end": 13918.02, + "probability": 0.5173 + }, + { + "start": 13918.12, + "end": 13919.24, + "probability": 0.717 + }, + { + "start": 13919.3, + "end": 13919.8, + "probability": 0.5335 + }, + { + "start": 13919.86, + "end": 13921.51, + "probability": 0.6446 + }, + { + "start": 13922.02, + "end": 13924.63, + "probability": 0.3951 + }, + { + "start": 13925.28, + "end": 13926.9, + "probability": 0.9625 + }, + { + "start": 13927.26, + "end": 13928.7, + "probability": 0.7457 + }, + { + "start": 13928.8, + "end": 13929.54, + "probability": 0.4988 + }, + { + "start": 13929.68, + "end": 13930.5, + "probability": 0.7591 + }, + { + "start": 13930.88, + "end": 13932.59, + "probability": 0.8653 + }, + { + "start": 13933.84, + "end": 13936.8, + "probability": 0.5027 + }, + { + "start": 13937.94, + "end": 13939.82, + "probability": 0.6994 + }, + { + "start": 13939.92, + "end": 13940.62, + "probability": 0.3511 + }, + { + "start": 13940.72, + "end": 13942.6, + "probability": 0.6072 + }, + { + "start": 13942.82, + "end": 13944.96, + "probability": 0.6503 + }, + { + "start": 13948.84, + "end": 13950.02, + "probability": 0.8964 + }, + { + "start": 13950.16, + "end": 13951.08, + "probability": 0.67 + }, + { + "start": 13951.14, + "end": 13951.24, + "probability": 0.354 + }, + { + "start": 13951.32, + "end": 13951.9, + "probability": 0.6698 + }, + { + "start": 13951.92, + "end": 13952.48, + "probability": 0.7805 + }, + { + "start": 13953.08, + "end": 13955.16, + "probability": 0.7464 + }, + { + "start": 13955.8, + "end": 13957.2, + "probability": 0.9902 + }, + { + "start": 13962.36, + "end": 13963.84, + "probability": 0.9699 + }, + { + "start": 13964.6, + "end": 13966.94, + "probability": 0.8802 + }, + { + "start": 13967.9, + "end": 13968.55, + "probability": 0.3716 + }, + { + "start": 13969.68, + "end": 13970.6, + "probability": 0.6449 + }, + { + "start": 13970.64, + "end": 13971.25, + "probability": 0.5293 + }, + { + "start": 13971.76, + "end": 13971.94, + "probability": 0.1865 + }, + { + "start": 13971.94, + "end": 13972.44, + "probability": 0.6591 + }, + { + "start": 13972.6, + "end": 13974.11, + "probability": 0.7615 + }, + { + "start": 13975.6, + "end": 13977.86, + "probability": 0.8325 + }, + { + "start": 13979.8, + "end": 13982.06, + "probability": 0.8958 + }, + { + "start": 13983.44, + "end": 13983.44, + "probability": 0.2555 + }, + { + "start": 13983.44, + "end": 13985.35, + "probability": 0.5625 + }, + { + "start": 13990.82, + "end": 13992.74, + "probability": 0.3254 + }, + { + "start": 13993.78, + "end": 13996.6, + "probability": 0.7611 + }, + { + "start": 13997.51, + "end": 14002.42, + "probability": 0.9377 + }, + { + "start": 14002.42, + "end": 14005.84, + "probability": 0.9942 + }, + { + "start": 14006.46, + "end": 14007.46, + "probability": 0.9277 + }, + { + "start": 14008.86, + "end": 14009.32, + "probability": 0.6964 + }, + { + "start": 14009.38, + "end": 14014.14, + "probability": 0.9932 + }, + { + "start": 14014.14, + "end": 14019.0, + "probability": 0.9417 + }, + { + "start": 14019.02, + "end": 14019.88, + "probability": 0.6927 + }, + { + "start": 14020.76, + "end": 14022.74, + "probability": 0.1806 + }, + { + "start": 14027.74, + "end": 14028.78, + "probability": 0.0354 + }, + { + "start": 14029.52, + "end": 14031.06, + "probability": 0.9868 + }, + { + "start": 14032.18, + "end": 14033.46, + "probability": 0.316 + }, + { + "start": 14033.68, + "end": 14034.08, + "probability": 0.8387 + }, + { + "start": 14034.66, + "end": 14035.22, + "probability": 0.8325 + }, + { + "start": 14035.94, + "end": 14036.94, + "probability": 0.9623 + }, + { + "start": 14038.48, + "end": 14040.46, + "probability": 0.8548 + }, + { + "start": 14041.4, + "end": 14041.96, + "probability": 0.8832 + }, + { + "start": 14043.28, + "end": 14048.9, + "probability": 0.6495 + }, + { + "start": 14049.12, + "end": 14049.78, + "probability": 0.7939 + }, + { + "start": 14050.24, + "end": 14051.74, + "probability": 0.0451 + }, + { + "start": 14051.94, + "end": 14052.62, + "probability": 0.1299 + }, + { + "start": 14052.82, + "end": 14053.6, + "probability": 0.7973 + }, + { + "start": 14053.76, + "end": 14054.48, + "probability": 0.9607 + }, + { + "start": 14055.6, + "end": 14056.74, + "probability": 0.9584 + }, + { + "start": 14058.47, + "end": 14061.68, + "probability": 0.4064 + }, + { + "start": 14061.86, + "end": 14063.04, + "probability": 0.309 + }, + { + "start": 14063.1, + "end": 14063.9, + "probability": 0.413 + }, + { + "start": 14064.02, + "end": 14067.68, + "probability": 0.6886 + }, + { + "start": 14067.68, + "end": 14070.9, + "probability": 0.619 + }, + { + "start": 14071.04, + "end": 14074.14, + "probability": 0.8708 + }, + { + "start": 14075.6, + "end": 14081.92, + "probability": 0.7424 + }, + { + "start": 14083.36, + "end": 14083.48, + "probability": 0.6813 + }, + { + "start": 14083.48, + "end": 14089.27, + "probability": 0.8689 + }, + { + "start": 14091.76, + "end": 14093.9, + "probability": 0.889 + }, + { + "start": 14094.46, + "end": 14095.52, + "probability": 0.911 + }, + { + "start": 14096.74, + "end": 14097.86, + "probability": 0.0353 + }, + { + "start": 14097.86, + "end": 14097.86, + "probability": 0.4558 + }, + { + "start": 14097.86, + "end": 14098.34, + "probability": 0.1821 + }, + { + "start": 14098.82, + "end": 14099.76, + "probability": 0.4366 + }, + { + "start": 14099.82, + "end": 14101.66, + "probability": 0.4962 + }, + { + "start": 14101.9, + "end": 14102.36, + "probability": 0.3393 + }, + { + "start": 14102.36, + "end": 14102.5, + "probability": 0.0773 + }, + { + "start": 14102.5, + "end": 14103.7, + "probability": 0.7238 + }, + { + "start": 14103.74, + "end": 14104.78, + "probability": 0.7386 + }, + { + "start": 14106.0, + "end": 14106.0, + "probability": 0.417 + }, + { + "start": 14106.0, + "end": 14109.98, + "probability": 0.9971 + }, + { + "start": 14109.98, + "end": 14115.14, + "probability": 0.9958 + }, + { + "start": 14115.46, + "end": 14115.74, + "probability": 0.6813 + }, + { + "start": 14116.6, + "end": 14116.94, + "probability": 0.6557 + }, + { + "start": 14117.54, + "end": 14120.42, + "probability": 0.7834 + }, + { + "start": 14123.02, + "end": 14126.82, + "probability": 0.7017 + }, + { + "start": 14127.38, + "end": 14130.22, + "probability": 0.7297 + }, + { + "start": 14130.84, + "end": 14134.78, + "probability": 0.9967 + }, + { + "start": 14136.12, + "end": 14136.8, + "probability": 0.8378 + }, + { + "start": 14138.44, + "end": 14140.08, + "probability": 0.8763 + }, + { + "start": 14141.72, + "end": 14143.52, + "probability": 0.9796 + }, + { + "start": 14144.54, + "end": 14146.94, + "probability": 0.7451 + }, + { + "start": 14147.1, + "end": 14152.26, + "probability": 0.7899 + }, + { + "start": 14153.26, + "end": 14154.0, + "probability": 0.7339 + }, + { + "start": 14154.1, + "end": 14154.9, + "probability": 0.8141 + }, + { + "start": 14155.98, + "end": 14157.06, + "probability": 0.4332 + }, + { + "start": 14157.38, + "end": 14157.72, + "probability": 0.6775 + }, + { + "start": 14160.78, + "end": 14162.4, + "probability": 0.3435 + }, + { + "start": 14162.84, + "end": 14163.1, + "probability": 0.1631 + }, + { + "start": 14163.3, + "end": 14164.6, + "probability": 0.9169 + }, + { + "start": 14165.88, + "end": 14168.04, + "probability": 0.7301 + }, + { + "start": 14181.28, + "end": 14185.66, + "probability": 0.7749 + }, + { + "start": 14187.18, + "end": 14188.67, + "probability": 0.9093 + }, + { + "start": 14189.44, + "end": 14192.88, + "probability": 0.8861 + }, + { + "start": 14192.88, + "end": 14195.3, + "probability": 0.8144 + }, + { + "start": 14196.02, + "end": 14200.06, + "probability": 0.4538 + }, + { + "start": 14200.22, + "end": 14202.18, + "probability": 0.1746 + }, + { + "start": 14202.22, + "end": 14203.0, + "probability": 0.6666 + }, + { + "start": 14203.66, + "end": 14204.94, + "probability": 0.9255 + }, + { + "start": 14205.46, + "end": 14207.8, + "probability": 0.6307 + }, + { + "start": 14209.06, + "end": 14209.58, + "probability": 0.7161 + }, + { + "start": 14211.32, + "end": 14212.52, + "probability": 0.937 + }, + { + "start": 14213.2, + "end": 14214.86, + "probability": 0.9218 + }, + { + "start": 14215.4, + "end": 14216.42, + "probability": 0.8471 + }, + { + "start": 14227.82, + "end": 14227.96, + "probability": 0.6921 + }, + { + "start": 14228.02, + "end": 14228.32, + "probability": 0.8229 + }, + { + "start": 14228.36, + "end": 14228.88, + "probability": 0.6584 + }, + { + "start": 14228.9, + "end": 14230.14, + "probability": 0.8711 + }, + { + "start": 14231.18, + "end": 14233.42, + "probability": 0.741 + }, + { + "start": 14234.04, + "end": 14234.72, + "probability": 0.9037 + }, + { + "start": 14235.4, + "end": 14239.1, + "probability": 0.6217 + }, + { + "start": 14239.18, + "end": 14240.58, + "probability": 0.6818 + }, + { + "start": 14241.1, + "end": 14241.9, + "probability": 0.8558 + }, + { + "start": 14241.96, + "end": 14242.76, + "probability": 0.8738 + }, + { + "start": 14243.12, + "end": 14244.3, + "probability": 0.6305 + }, + { + "start": 14244.3, + "end": 14244.8, + "probability": 0.791 + }, + { + "start": 14245.28, + "end": 14245.8, + "probability": 0.9589 + }, + { + "start": 14247.44, + "end": 14249.92, + "probability": 0.9536 + }, + { + "start": 14250.8, + "end": 14252.58, + "probability": 0.9734 + }, + { + "start": 14252.6, + "end": 14252.82, + "probability": 0.4892 + }, + { + "start": 14253.7, + "end": 14254.72, + "probability": 0.817 + }, + { + "start": 14255.44, + "end": 14257.24, + "probability": 0.7156 + }, + { + "start": 14259.3, + "end": 14261.0, + "probability": 0.6493 + }, + { + "start": 14269.44, + "end": 14271.4, + "probability": 0.8325 + }, + { + "start": 14271.64, + "end": 14271.9, + "probability": 0.2336 + }, + { + "start": 14272.02, + "end": 14274.1, + "probability": 0.6379 + }, + { + "start": 14279.88, + "end": 14281.6, + "probability": 0.6909 + }, + { + "start": 14284.1, + "end": 14284.92, + "probability": 0.5358 + }, + { + "start": 14285.08, + "end": 14285.7, + "probability": 0.7675 + }, + { + "start": 14286.3, + "end": 14288.2, + "probability": 0.9559 + }, + { + "start": 14288.41, + "end": 14289.86, + "probability": 0.9932 + }, + { + "start": 14290.22, + "end": 14291.8, + "probability": 0.7644 + }, + { + "start": 14292.5, + "end": 14293.04, + "probability": 0.8735 + }, + { + "start": 14293.7, + "end": 14294.24, + "probability": 0.7042 + }, + { + "start": 14296.68, + "end": 14298.08, + "probability": 0.6692 + }, + { + "start": 14298.48, + "end": 14299.36, + "probability": 0.8701 + }, + { + "start": 14299.46, + "end": 14299.82, + "probability": 0.3321 + }, + { + "start": 14299.96, + "end": 14300.74, + "probability": 0.4244 + }, + { + "start": 14300.84, + "end": 14301.27, + "probability": 0.9028 + }, + { + "start": 14301.86, + "end": 14302.38, + "probability": 0.2617 + }, + { + "start": 14302.38, + "end": 14304.62, + "probability": 0.8686 + }, + { + "start": 14304.9, + "end": 14308.92, + "probability": 0.8608 + }, + { + "start": 14309.52, + "end": 14310.36, + "probability": 0.8751 + }, + { + "start": 14310.36, + "end": 14311.46, + "probability": 0.3625 + }, + { + "start": 14312.2, + "end": 14313.35, + "probability": 0.6983 + }, + { + "start": 14314.8, + "end": 14316.5, + "probability": 0.8331 + }, + { + "start": 14317.16, + "end": 14318.2, + "probability": 0.9632 + }, + { + "start": 14318.42, + "end": 14318.74, + "probability": 0.8981 + }, + { + "start": 14319.36, + "end": 14320.28, + "probability": 0.7901 + }, + { + "start": 14320.42, + "end": 14321.4, + "probability": 0.7179 + }, + { + "start": 14321.54, + "end": 14323.68, + "probability": 0.9801 + }, + { + "start": 14324.56, + "end": 14326.0, + "probability": 0.9009 + }, + { + "start": 14327.16, + "end": 14329.2, + "probability": 0.989 + }, + { + "start": 14329.26, + "end": 14331.32, + "probability": 0.9979 + }, + { + "start": 14332.44, + "end": 14338.6, + "probability": 0.987 + }, + { + "start": 14339.16, + "end": 14341.56, + "probability": 0.9351 + }, + { + "start": 14343.04, + "end": 14346.94, + "probability": 0.8485 + }, + { + "start": 14347.96, + "end": 14348.54, + "probability": 0.3436 + }, + { + "start": 14349.74, + "end": 14353.16, + "probability": 0.9406 + }, + { + "start": 14353.16, + "end": 14356.64, + "probability": 0.6605 + }, + { + "start": 14357.46, + "end": 14358.96, + "probability": 0.1885 + }, + { + "start": 14359.6, + "end": 14363.9, + "probability": 0.7337 + }, + { + "start": 14365.02, + "end": 14370.66, + "probability": 0.9743 + }, + { + "start": 14371.64, + "end": 14378.84, + "probability": 0.8854 + }, + { + "start": 14379.7, + "end": 14382.48, + "probability": 0.9317 + }, + { + "start": 14382.48, + "end": 14386.38, + "probability": 0.9798 + }, + { + "start": 14386.64, + "end": 14388.48, + "probability": 0.7782 + }, + { + "start": 14389.02, + "end": 14390.64, + "probability": 0.9504 + }, + { + "start": 14391.5, + "end": 14396.14, + "probability": 0.993 + }, + { + "start": 14396.14, + "end": 14402.42, + "probability": 0.8592 + }, + { + "start": 14402.76, + "end": 14405.62, + "probability": 0.9917 + }, + { + "start": 14406.18, + "end": 14410.4, + "probability": 0.9848 + }, + { + "start": 14411.9, + "end": 14415.38, + "probability": 0.7544 + }, + { + "start": 14416.16, + "end": 14420.28, + "probability": 0.7779 + }, + { + "start": 14420.44, + "end": 14421.5, + "probability": 0.5033 + }, + { + "start": 14422.46, + "end": 14424.6, + "probability": 0.9708 + }, + { + "start": 14433.72, + "end": 14437.36, + "probability": 0.9329 + }, + { + "start": 14437.72, + "end": 14440.58, + "probability": 0.766 + }, + { + "start": 14440.82, + "end": 14441.85, + "probability": 0.4869 + }, + { + "start": 14442.46, + "end": 14443.7, + "probability": 0.4974 + }, + { + "start": 14443.88, + "end": 14444.7, + "probability": 0.7697 + }, + { + "start": 14445.08, + "end": 14446.06, + "probability": 0.514 + }, + { + "start": 14446.94, + "end": 14447.22, + "probability": 0.3289 + }, + { + "start": 14447.3, + "end": 14447.92, + "probability": 0.6819 + }, + { + "start": 14447.94, + "end": 14450.84, + "probability": 0.8979 + }, + { + "start": 14451.52, + "end": 14454.22, + "probability": 0.856 + }, + { + "start": 14454.22, + "end": 14457.88, + "probability": 0.9951 + }, + { + "start": 14457.92, + "end": 14460.7, + "probability": 0.9075 + }, + { + "start": 14460.9, + "end": 14463.26, + "probability": 0.6999 + }, + { + "start": 14463.78, + "end": 14466.24, + "probability": 0.8938 + }, + { + "start": 14466.46, + "end": 14467.98, + "probability": 0.7712 + }, + { + "start": 14468.52, + "end": 14471.28, + "probability": 0.9696 + }, + { + "start": 14471.28, + "end": 14475.12, + "probability": 0.979 + }, + { + "start": 14475.8, + "end": 14478.02, + "probability": 0.7419 + }, + { + "start": 14478.88, + "end": 14483.9, + "probability": 0.9364 + }, + { + "start": 14484.64, + "end": 14486.76, + "probability": 0.9284 + }, + { + "start": 14488.08, + "end": 14490.72, + "probability": 0.9939 + }, + { + "start": 14491.28, + "end": 14493.42, + "probability": 0.8772 + }, + { + "start": 14494.1, + "end": 14496.78, + "probability": 0.8542 + }, + { + "start": 14497.8, + "end": 14501.48, + "probability": 0.7942 + }, + { + "start": 14502.4, + "end": 14505.2, + "probability": 0.9113 + }, + { + "start": 14505.2, + "end": 14508.62, + "probability": 0.9375 + }, + { + "start": 14508.76, + "end": 14512.08, + "probability": 0.8394 + }, + { + "start": 14512.48, + "end": 14514.6, + "probability": 0.9635 + }, + { + "start": 14519.24, + "end": 14523.41, + "probability": 0.9778 + }, + { + "start": 14524.08, + "end": 14529.8, + "probability": 0.2392 + }, + { + "start": 14530.0, + "end": 14536.78, + "probability": 0.6934 + }, + { + "start": 14537.2, + "end": 14539.8, + "probability": 0.8946 + }, + { + "start": 14539.98, + "end": 14540.14, + "probability": 0.6351 + }, + { + "start": 14540.52, + "end": 14544.26, + "probability": 0.9775 + }, + { + "start": 14544.3, + "end": 14547.72, + "probability": 0.9045 + }, + { + "start": 14548.34, + "end": 14551.1, + "probability": 0.7379 + }, + { + "start": 14551.64, + "end": 14556.4, + "probability": 0.884 + }, + { + "start": 14556.86, + "end": 14559.64, + "probability": 0.9913 + }, + { + "start": 14560.94, + "end": 14561.4, + "probability": 0.6904 + }, + { + "start": 14561.44, + "end": 14565.27, + "probability": 0.7803 + }, + { + "start": 14565.68, + "end": 14566.94, + "probability": 0.8754 + }, + { + "start": 14567.58, + "end": 14572.16, + "probability": 0.7893 + }, + { + "start": 14572.54, + "end": 14575.58, + "probability": 0.9865 + }, + { + "start": 14575.96, + "end": 14577.32, + "probability": 0.7272 + }, + { + "start": 14577.7, + "end": 14578.96, + "probability": 0.8246 + }, + { + "start": 14579.18, + "end": 14579.5, + "probability": 0.5472 + }, + { + "start": 14579.6, + "end": 14580.26, + "probability": 0.5576 + }, + { + "start": 14581.5, + "end": 14588.08, + "probability": 0.947 + }, + { + "start": 14588.24, + "end": 14588.6, + "probability": 0.7242 + }, + { + "start": 14589.62, + "end": 14591.1, + "probability": 0.9951 + }, + { + "start": 14591.78, + "end": 14594.44, + "probability": 0.9086 + }, + { + "start": 14594.88, + "end": 14596.46, + "probability": 0.9713 + }, + { + "start": 14597.36, + "end": 14599.66, + "probability": 0.8055 + }, + { + "start": 14600.56, + "end": 14602.48, + "probability": 0.9043 + }, + { + "start": 14602.8, + "end": 14605.14, + "probability": 0.9805 + }, + { + "start": 14606.0, + "end": 14607.76, + "probability": 0.9463 + }, + { + "start": 14609.3, + "end": 14611.02, + "probability": 0.4129 + }, + { + "start": 14611.58, + "end": 14612.58, + "probability": 0.8966 + }, + { + "start": 14613.6, + "end": 14614.38, + "probability": 0.7504 + }, + { + "start": 14614.88, + "end": 14616.32, + "probability": 0.8859 + }, + { + "start": 14617.12, + "end": 14617.7, + "probability": 0.8786 + }, + { + "start": 14641.92, + "end": 14643.22, + "probability": 0.8454 + }, + { + "start": 14644.78, + "end": 14647.14, + "probability": 0.8438 + }, + { + "start": 14648.62, + "end": 14655.94, + "probability": 0.9914 + }, + { + "start": 14656.06, + "end": 14657.18, + "probability": 0.826 + }, + { + "start": 14658.4, + "end": 14660.62, + "probability": 0.758 + }, + { + "start": 14663.1, + "end": 14665.42, + "probability": 0.999 + }, + { + "start": 14666.92, + "end": 14670.86, + "probability": 0.9961 + }, + { + "start": 14671.58, + "end": 14673.54, + "probability": 0.9985 + }, + { + "start": 14674.52, + "end": 14675.38, + "probability": 0.5422 + }, + { + "start": 14676.74, + "end": 14680.42, + "probability": 0.9979 + }, + { + "start": 14682.18, + "end": 14685.04, + "probability": 0.9875 + }, + { + "start": 14685.16, + "end": 14689.12, + "probability": 0.9552 + }, + { + "start": 14689.12, + "end": 14694.62, + "probability": 0.9966 + }, + { + "start": 14696.63, + "end": 14700.26, + "probability": 0.9618 + }, + { + "start": 14701.64, + "end": 14702.64, + "probability": 0.8738 + }, + { + "start": 14704.14, + "end": 14706.56, + "probability": 0.0154 + }, + { + "start": 14707.46, + "end": 14708.32, + "probability": 0.6903 + }, + { + "start": 14709.1, + "end": 14710.58, + "probability": 0.4983 + }, + { + "start": 14710.58, + "end": 14711.14, + "probability": 0.4449 + }, + { + "start": 14712.3, + "end": 14715.14, + "probability": 0.9267 + }, + { + "start": 14716.5, + "end": 14717.98, + "probability": 0.6251 + }, + { + "start": 14719.64, + "end": 14721.5, + "probability": 0.6623 + }, + { + "start": 14722.76, + "end": 14729.02, + "probability": 0.9833 + }, + { + "start": 14729.8, + "end": 14730.98, + "probability": 0.9565 + }, + { + "start": 14731.64, + "end": 14732.54, + "probability": 0.8534 + }, + { + "start": 14733.24, + "end": 14738.38, + "probability": 0.9907 + }, + { + "start": 14738.52, + "end": 14739.62, + "probability": 0.9363 + }, + { + "start": 14740.24, + "end": 14741.3, + "probability": 0.9588 + }, + { + "start": 14741.84, + "end": 14744.68, + "probability": 0.5143 + }, + { + "start": 14745.24, + "end": 14746.68, + "probability": 0.3928 + }, + { + "start": 14747.2, + "end": 14748.41, + "probability": 0.9658 + }, + { + "start": 14749.0, + "end": 14751.22, + "probability": 0.9336 + }, + { + "start": 14751.36, + "end": 14752.32, + "probability": 0.8208 + }, + { + "start": 14753.06, + "end": 14754.42, + "probability": 0.8492 + }, + { + "start": 14755.1, + "end": 14756.38, + "probability": 0.9146 + }, + { + "start": 14756.92, + "end": 14758.66, + "probability": 0.8914 + }, + { + "start": 14759.66, + "end": 14761.76, + "probability": 0.9096 + }, + { + "start": 14762.3, + "end": 14764.28, + "probability": 0.9385 + }, + { + "start": 14765.28, + "end": 14770.26, + "probability": 0.9591 + }, + { + "start": 14770.4, + "end": 14771.52, + "probability": 0.9602 + }, + { + "start": 14771.62, + "end": 14772.24, + "probability": 0.8923 + }, + { + "start": 14773.26, + "end": 14777.42, + "probability": 0.7782 + }, + { + "start": 14777.98, + "end": 14779.68, + "probability": 0.8875 + }, + { + "start": 14780.16, + "end": 14782.34, + "probability": 0.8972 + }, + { + "start": 14782.44, + "end": 14784.98, + "probability": 0.9928 + }, + { + "start": 14786.02, + "end": 14789.08, + "probability": 0.9685 + }, + { + "start": 14790.28, + "end": 14792.52, + "probability": 0.9973 + }, + { + "start": 14792.58, + "end": 14794.36, + "probability": 0.9816 + }, + { + "start": 14795.24, + "end": 14801.06, + "probability": 0.9989 + }, + { + "start": 14801.82, + "end": 14805.16, + "probability": 0.9866 + }, + { + "start": 14806.08, + "end": 14806.6, + "probability": 0.7244 + }, + { + "start": 14807.22, + "end": 14808.06, + "probability": 0.9854 + }, + { + "start": 14808.62, + "end": 14810.14, + "probability": 0.9876 + }, + { + "start": 14810.74, + "end": 14813.28, + "probability": 0.9774 + }, + { + "start": 14813.32, + "end": 14815.22, + "probability": 0.848 + }, + { + "start": 14816.5, + "end": 14817.6, + "probability": 0.9109 + }, + { + "start": 14818.24, + "end": 14822.4, + "probability": 0.7908 + }, + { + "start": 14824.88, + "end": 14827.7, + "probability": 0.986 + }, + { + "start": 14829.34, + "end": 14829.34, + "probability": 0.6289 + }, + { + "start": 14830.24, + "end": 14833.18, + "probability": 0.9333 + }, + { + "start": 14833.54, + "end": 14836.22, + "probability": 0.9555 + }, + { + "start": 14836.22, + "end": 14837.68, + "probability": 0.7473 + }, + { + "start": 14837.72, + "end": 14838.26, + "probability": 0.6863 + }, + { + "start": 14838.36, + "end": 14838.94, + "probability": 0.9401 + }, + { + "start": 14839.44, + "end": 14841.56, + "probability": 0.8984 + }, + { + "start": 14874.66, + "end": 14876.14, + "probability": 0.7805 + }, + { + "start": 14879.46, + "end": 14885.66, + "probability": 0.6718 + }, + { + "start": 14886.72, + "end": 14887.68, + "probability": 0.7713 + }, + { + "start": 14888.58, + "end": 14889.82, + "probability": 0.7534 + }, + { + "start": 14891.78, + "end": 14895.2, + "probability": 0.9681 + }, + { + "start": 14896.16, + "end": 14900.18, + "probability": 0.8431 + }, + { + "start": 14900.64, + "end": 14901.58, + "probability": 0.8851 + }, + { + "start": 14901.6, + "end": 14902.6, + "probability": 0.3963 + }, + { + "start": 14902.8, + "end": 14902.8, + "probability": 0.0177 + }, + { + "start": 14902.8, + "end": 14908.32, + "probability": 0.9739 + }, + { + "start": 14908.56, + "end": 14911.86, + "probability": 0.7971 + }, + { + "start": 14915.4, + "end": 14916.54, + "probability": 0.9488 + }, + { + "start": 14917.0, + "end": 14918.64, + "probability": 0.542 + }, + { + "start": 14919.46, + "end": 14920.06, + "probability": 0.6633 + }, + { + "start": 14920.92, + "end": 14923.35, + "probability": 0.5071 + }, + { + "start": 14923.62, + "end": 14924.08, + "probability": 0.4982 + }, + { + "start": 14925.08, + "end": 14925.81, + "probability": 0.9712 + }, + { + "start": 14926.24, + "end": 14926.84, + "probability": 0.9607 + }, + { + "start": 14927.3, + "end": 14930.5, + "probability": 0.9878 + }, + { + "start": 14932.26, + "end": 14934.68, + "probability": 0.8424 + }, + { + "start": 14934.76, + "end": 14935.5, + "probability": 0.9532 + }, + { + "start": 14936.54, + "end": 14937.78, + "probability": 0.8477 + }, + { + "start": 14938.64, + "end": 14939.92, + "probability": 0.3789 + }, + { + "start": 14941.38, + "end": 14942.28, + "probability": 0.9844 + }, + { + "start": 14944.08, + "end": 14944.74, + "probability": 0.8385 + }, + { + "start": 14945.7, + "end": 14950.72, + "probability": 0.9318 + }, + { + "start": 14951.26, + "end": 14953.58, + "probability": 0.9446 + }, + { + "start": 14954.82, + "end": 14956.98, + "probability": 0.9646 + }, + { + "start": 14958.12, + "end": 14960.76, + "probability": 0.9865 + }, + { + "start": 14961.54, + "end": 14965.44, + "probability": 0.706 + }, + { + "start": 14966.2, + "end": 14967.25, + "probability": 0.855 + }, + { + "start": 14968.14, + "end": 14968.72, + "probability": 0.8863 + }, + { + "start": 14969.84, + "end": 14971.0, + "probability": 0.9257 + }, + { + "start": 14971.54, + "end": 14974.44, + "probability": 0.9218 + }, + { + "start": 14975.76, + "end": 14978.92, + "probability": 0.9653 + }, + { + "start": 14979.72, + "end": 14981.36, + "probability": 0.8389 + }, + { + "start": 14981.42, + "end": 14982.78, + "probability": 0.4249 + }, + { + "start": 14983.96, + "end": 14984.82, + "probability": 0.754 + }, + { + "start": 14984.88, + "end": 14987.34, + "probability": 0.8088 + }, + { + "start": 14988.88, + "end": 14991.6, + "probability": 0.7475 + }, + { + "start": 14991.74, + "end": 14993.12, + "probability": 0.9662 + }, + { + "start": 14993.78, + "end": 14996.06, + "probability": 0.9692 + }, + { + "start": 14996.54, + "end": 14997.64, + "probability": 0.9446 + }, + { + "start": 14999.1, + "end": 14999.58, + "probability": 0.6747 + }, + { + "start": 15000.38, + "end": 15001.64, + "probability": 0.9754 + }, + { + "start": 15002.1, + "end": 15006.94, + "probability": 0.9883 + }, + { + "start": 15007.72, + "end": 15012.02, + "probability": 0.9725 + }, + { + "start": 15013.5, + "end": 15014.76, + "probability": 0.5562 + }, + { + "start": 15014.86, + "end": 15019.36, + "probability": 0.9695 + }, + { + "start": 15020.14, + "end": 15021.56, + "probability": 0.995 + }, + { + "start": 15022.74, + "end": 15027.5, + "probability": 0.6924 + }, + { + "start": 15029.12, + "end": 15030.24, + "probability": 0.9238 + }, + { + "start": 15032.24, + "end": 15036.72, + "probability": 0.9474 + }, + { + "start": 15037.3, + "end": 15037.9, + "probability": 0.8 + }, + { + "start": 15039.06, + "end": 15039.76, + "probability": 0.5793 + }, + { + "start": 15039.86, + "end": 15040.08, + "probability": 0.8261 + }, + { + "start": 15040.48, + "end": 15042.98, + "probability": 0.8247 + }, + { + "start": 15043.38, + "end": 15044.06, + "probability": 0.9211 + }, + { + "start": 15044.64, + "end": 15048.36, + "probability": 0.9812 + }, + { + "start": 15048.6, + "end": 15049.64, + "probability": 0.9768 + }, + { + "start": 15050.78, + "end": 15051.54, + "probability": 0.8528 + }, + { + "start": 15052.28, + "end": 15054.6, + "probability": 0.4351 + }, + { + "start": 15054.92, + "end": 15056.3, + "probability": 0.8646 + }, + { + "start": 15056.82, + "end": 15057.9, + "probability": 0.6486 + }, + { + "start": 15057.9, + "end": 15060.58, + "probability": 0.7087 + }, + { + "start": 15061.16, + "end": 15062.6, + "probability": 0.6393 + }, + { + "start": 15063.36, + "end": 15066.18, + "probability": 0.9351 + }, + { + "start": 15089.62, + "end": 15091.3, + "probability": 0.8381 + }, + { + "start": 15092.06, + "end": 15094.39, + "probability": 0.8716 + }, + { + "start": 15094.96, + "end": 15096.42, + "probability": 0.9092 + }, + { + "start": 15097.62, + "end": 15099.56, + "probability": 0.9307 + }, + { + "start": 15100.78, + "end": 15101.48, + "probability": 0.7212 + }, + { + "start": 15102.14, + "end": 15103.28, + "probability": 0.9886 + }, + { + "start": 15104.2, + "end": 15105.86, + "probability": 0.7902 + }, + { + "start": 15106.78, + "end": 15108.64, + "probability": 0.5819 + }, + { + "start": 15109.2, + "end": 15109.94, + "probability": 0.5201 + }, + { + "start": 15110.12, + "end": 15111.04, + "probability": 0.8409 + }, + { + "start": 15111.58, + "end": 15112.36, + "probability": 0.8985 + }, + { + "start": 15137.42, + "end": 15139.98, + "probability": 0.4768 + }, + { + "start": 15141.42, + "end": 15141.46, + "probability": 0.5227 + }, + { + "start": 15141.46, + "end": 15142.8, + "probability": 0.903 + }, + { + "start": 15143.52, + "end": 15144.56, + "probability": 0.8537 + }, + { + "start": 15146.72, + "end": 15151.6, + "probability": 0.9658 + }, + { + "start": 15151.84, + "end": 15153.52, + "probability": 0.7392 + }, + { + "start": 15153.62, + "end": 15156.82, + "probability": 0.8922 + }, + { + "start": 15157.4, + "end": 15159.92, + "probability": 0.9937 + }, + { + "start": 15160.08, + "end": 15163.32, + "probability": 0.9912 + }, + { + "start": 15163.4, + "end": 15164.42, + "probability": 0.8802 + }, + { + "start": 15164.46, + "end": 15167.34, + "probability": 0.9815 + }, + { + "start": 15167.48, + "end": 15168.23, + "probability": 0.5902 + }, + { + "start": 15169.02, + "end": 15170.66, + "probability": 0.8074 + }, + { + "start": 15170.68, + "end": 15172.58, + "probability": 0.9943 + }, + { + "start": 15173.22, + "end": 15178.68, + "probability": 0.4703 + }, + { + "start": 15179.22, + "end": 15182.84, + "probability": 0.9901 + }, + { + "start": 15182.84, + "end": 15184.13, + "probability": 0.5846 + }, + { + "start": 15184.96, + "end": 15188.38, + "probability": 0.9678 + }, + { + "start": 15189.08, + "end": 15190.98, + "probability": 0.7974 + }, + { + "start": 15191.48, + "end": 15192.06, + "probability": 0.7895 + }, + { + "start": 15192.66, + "end": 15194.92, + "probability": 0.9425 + }, + { + "start": 15194.96, + "end": 15195.56, + "probability": 0.9451 + }, + { + "start": 15195.74, + "end": 15197.42, + "probability": 0.9787 + }, + { + "start": 15197.9, + "end": 15200.35, + "probability": 0.984 + }, + { + "start": 15200.46, + "end": 15201.86, + "probability": 0.9843 + }, + { + "start": 15201.94, + "end": 15203.62, + "probability": 0.8998 + }, + { + "start": 15204.1, + "end": 15205.42, + "probability": 0.674 + }, + { + "start": 15205.6, + "end": 15206.8, + "probability": 0.9644 + }, + { + "start": 15207.48, + "end": 15207.96, + "probability": 0.9032 + }, + { + "start": 15208.16, + "end": 15210.12, + "probability": 0.877 + }, + { + "start": 15210.46, + "end": 15212.26, + "probability": 0.7936 + }, + { + "start": 15212.72, + "end": 15214.62, + "probability": 0.9907 + }, + { + "start": 15214.92, + "end": 15216.82, + "probability": 0.9102 + }, + { + "start": 15217.38, + "end": 15219.7, + "probability": 0.9094 + }, + { + "start": 15220.12, + "end": 15222.18, + "probability": 0.9922 + }, + { + "start": 15222.7, + "end": 15223.4, + "probability": 0.6645 + }, + { + "start": 15223.46, + "end": 15224.08, + "probability": 0.9688 + }, + { + "start": 15224.22, + "end": 15226.56, + "probability": 0.9639 + }, + { + "start": 15226.82, + "end": 15228.22, + "probability": 0.4895 + }, + { + "start": 15228.28, + "end": 15229.96, + "probability": 0.6708 + }, + { + "start": 15230.32, + "end": 15233.52, + "probability": 0.7684 + }, + { + "start": 15233.62, + "end": 15234.14, + "probability": 0.9381 + }, + { + "start": 15234.22, + "end": 15235.27, + "probability": 0.4741 + }, + { + "start": 15235.82, + "end": 15237.5, + "probability": 0.7251 + }, + { + "start": 15238.32, + "end": 15240.38, + "probability": 0.7106 + }, + { + "start": 15240.58, + "end": 15241.48, + "probability": 0.9662 + }, + { + "start": 15241.54, + "end": 15242.01, + "probability": 0.7866 + }, + { + "start": 15242.34, + "end": 15242.86, + "probability": 0.7791 + }, + { + "start": 15243.14, + "end": 15244.08, + "probability": 0.8094 + }, + { + "start": 15245.38, + "end": 15246.5, + "probability": 0.5664 + }, + { + "start": 15246.78, + "end": 15248.48, + "probability": 0.9922 + }, + { + "start": 15248.6, + "end": 15249.19, + "probability": 0.8328 + }, + { + "start": 15249.26, + "end": 15249.78, + "probability": 0.7555 + }, + { + "start": 15250.36, + "end": 15251.03, + "probability": 0.473 + }, + { + "start": 15251.2, + "end": 15251.48, + "probability": 0.7785 + }, + { + "start": 15251.7, + "end": 15252.78, + "probability": 0.96 + }, + { + "start": 15252.82, + "end": 15253.64, + "probability": 0.7776 + }, + { + "start": 15254.06, + "end": 15256.72, + "probability": 0.7148 + }, + { + "start": 15257.18, + "end": 15257.69, + "probability": 0.21 + }, + { + "start": 15258.02, + "end": 15258.76, + "probability": 0.7719 + }, + { + "start": 15258.84, + "end": 15259.66, + "probability": 0.6911 + }, + { + "start": 15259.7, + "end": 15263.18, + "probability": 0.7287 + }, + { + "start": 15263.3, + "end": 15265.26, + "probability": 0.966 + }, + { + "start": 15265.8, + "end": 15267.5, + "probability": 0.6592 + }, + { + "start": 15267.7, + "end": 15269.1, + "probability": 0.8573 + }, + { + "start": 15269.28, + "end": 15272.0, + "probability": 0.8134 + }, + { + "start": 15272.1, + "end": 15275.48, + "probability": 0.9167 + }, + { + "start": 15275.6, + "end": 15276.88, + "probability": 0.9541 + }, + { + "start": 15276.96, + "end": 15277.58, + "probability": 0.7384 + }, + { + "start": 15278.02, + "end": 15280.43, + "probability": 0.9955 + }, + { + "start": 15282.24, + "end": 15283.18, + "probability": 0.1344 + }, + { + "start": 15283.5, + "end": 15286.06, + "probability": 0.7292 + }, + { + "start": 15286.52, + "end": 15289.82, + "probability": 0.8747 + }, + { + "start": 15289.98, + "end": 15292.86, + "probability": 0.9971 + }, + { + "start": 15293.84, + "end": 15294.3, + "probability": 0.5036 + }, + { + "start": 15294.72, + "end": 15298.04, + "probability": 0.995 + }, + { + "start": 15298.14, + "end": 15299.6, + "probability": 0.8325 + }, + { + "start": 15300.04, + "end": 15301.2, + "probability": 0.9238 + }, + { + "start": 15301.24, + "end": 15302.62, + "probability": 0.7633 + }, + { + "start": 15303.12, + "end": 15305.46, + "probability": 0.6625 + }, + { + "start": 15305.72, + "end": 15307.14, + "probability": 0.7874 + }, + { + "start": 15307.24, + "end": 15308.77, + "probability": 0.5094 + }, + { + "start": 15309.14, + "end": 15311.14, + "probability": 0.8924 + }, + { + "start": 15311.24, + "end": 15316.32, + "probability": 0.759 + }, + { + "start": 15316.42, + "end": 15316.92, + "probability": 0.6674 + }, + { + "start": 15316.98, + "end": 15320.68, + "probability": 0.9888 + }, + { + "start": 15321.06, + "end": 15321.06, + "probability": 0.3888 + }, + { + "start": 15321.06, + "end": 15321.52, + "probability": 0.3498 + }, + { + "start": 15321.58, + "end": 15323.18, + "probability": 0.8083 + }, + { + "start": 15323.28, + "end": 15323.82, + "probability": 0.7507 + }, + { + "start": 15323.92, + "end": 15325.02, + "probability": 0.74 + }, + { + "start": 15325.12, + "end": 15325.3, + "probability": 0.7119 + }, + { + "start": 15328.02, + "end": 15328.16, + "probability": 0.0599 + }, + { + "start": 15328.16, + "end": 15328.5, + "probability": 0.1612 + }, + { + "start": 15329.32, + "end": 15329.78, + "probability": 0.5859 + }, + { + "start": 15330.48, + "end": 15332.82, + "probability": 0.9736 + }, + { + "start": 15332.92, + "end": 15333.7, + "probability": 0.8774 + }, + { + "start": 15333.78, + "end": 15334.36, + "probability": 0.8733 + }, + { + "start": 15334.52, + "end": 15335.72, + "probability": 0.7586 + }, + { + "start": 15336.22, + "end": 15337.72, + "probability": 0.8086 + }, + { + "start": 15337.84, + "end": 15338.84, + "probability": 0.711 + }, + { + "start": 15338.86, + "end": 15339.5, + "probability": 0.7513 + }, + { + "start": 15339.66, + "end": 15340.14, + "probability": 0.8089 + }, + { + "start": 15340.2, + "end": 15345.42, + "probability": 0.8899 + }, + { + "start": 15345.54, + "end": 15345.82, + "probability": 0.6564 + }, + { + "start": 15346.06, + "end": 15348.92, + "probability": 0.9939 + }, + { + "start": 15349.34, + "end": 15350.4, + "probability": 0.8442 + }, + { + "start": 15351.04, + "end": 15351.72, + "probability": 0.306 + }, + { + "start": 15352.5, + "end": 15354.56, + "probability": 0.7326 + }, + { + "start": 15354.58, + "end": 15354.62, + "probability": 0.4677 + }, + { + "start": 15354.62, + "end": 15355.46, + "probability": 0.7968 + }, + { + "start": 15355.9, + "end": 15357.46, + "probability": 0.916 + }, + { + "start": 15357.6, + "end": 15361.68, + "probability": 0.9688 + }, + { + "start": 15362.1, + "end": 15363.12, + "probability": 0.8327 + }, + { + "start": 15363.4, + "end": 15365.58, + "probability": 0.887 + }, + { + "start": 15365.8, + "end": 15366.1, + "probability": 0.3683 + }, + { + "start": 15366.1, + "end": 15366.32, + "probability": 0.7269 + }, + { + "start": 15366.88, + "end": 15367.9, + "probability": 0.8538 + }, + { + "start": 15368.66, + "end": 15369.24, + "probability": 0.7363 + }, + { + "start": 15370.38, + "end": 15371.2, + "probability": 0.9081 + }, + { + "start": 15373.36, + "end": 15376.06, + "probability": 0.7017 + }, + { + "start": 15376.26, + "end": 15376.9, + "probability": 0.395 + }, + { + "start": 15376.92, + "end": 15378.55, + "probability": 0.5183 + }, + { + "start": 15378.66, + "end": 15379.3, + "probability": 0.8407 + }, + { + "start": 15379.84, + "end": 15381.04, + "probability": 0.9174 + }, + { + "start": 15388.06, + "end": 15391.32, + "probability": 0.8066 + }, + { + "start": 15391.56, + "end": 15392.74, + "probability": 0.9152 + }, + { + "start": 15393.3, + "end": 15394.4, + "probability": 0.6892 + }, + { + "start": 15395.78, + "end": 15396.62, + "probability": 0.8191 + }, + { + "start": 15400.94, + "end": 15402.17, + "probability": 0.9903 + }, + { + "start": 15403.78, + "end": 15404.59, + "probability": 0.741 + }, + { + "start": 15404.62, + "end": 15407.12, + "probability": 0.855 + }, + { + "start": 15407.92, + "end": 15408.36, + "probability": 0.1975 + }, + { + "start": 15408.8, + "end": 15409.82, + "probability": 0.9876 + }, + { + "start": 15410.84, + "end": 15415.72, + "probability": 0.9841 + }, + { + "start": 15417.38, + "end": 15419.04, + "probability": 0.9982 + }, + { + "start": 15420.36, + "end": 15424.84, + "probability": 0.9705 + }, + { + "start": 15425.46, + "end": 15427.0, + "probability": 0.9949 + }, + { + "start": 15427.08, + "end": 15428.47, + "probability": 0.8716 + }, + { + "start": 15429.04, + "end": 15432.38, + "probability": 0.9855 + }, + { + "start": 15433.44, + "end": 15437.76, + "probability": 0.8865 + }, + { + "start": 15437.76, + "end": 15441.52, + "probability": 0.998 + }, + { + "start": 15442.78, + "end": 15446.56, + "probability": 0.9941 + }, + { + "start": 15448.2, + "end": 15454.8, + "probability": 0.9554 + }, + { + "start": 15456.06, + "end": 15459.34, + "probability": 0.9871 + }, + { + "start": 15459.54, + "end": 15462.62, + "probability": 0.9977 + }, + { + "start": 15463.52, + "end": 15467.36, + "probability": 0.9471 + }, + { + "start": 15468.74, + "end": 15471.36, + "probability": 0.8283 + }, + { + "start": 15472.04, + "end": 15473.26, + "probability": 0.8568 + }, + { + "start": 15474.06, + "end": 15481.78, + "probability": 0.9982 + }, + { + "start": 15481.86, + "end": 15484.02, + "probability": 0.9716 + }, + { + "start": 15485.52, + "end": 15486.7, + "probability": 0.7736 + }, + { + "start": 15487.9, + "end": 15488.74, + "probability": 0.9772 + }, + { + "start": 15491.1, + "end": 15494.26, + "probability": 0.7523 + }, + { + "start": 15494.76, + "end": 15495.38, + "probability": 0.9668 + }, + { + "start": 15496.44, + "end": 15497.98, + "probability": 0.7372 + }, + { + "start": 15498.98, + "end": 15506.76, + "probability": 0.9787 + }, + { + "start": 15507.54, + "end": 15509.92, + "probability": 0.96 + }, + { + "start": 15511.91, + "end": 15517.2, + "probability": 0.7703 + }, + { + "start": 15518.26, + "end": 15520.04, + "probability": 0.2491 + }, + { + "start": 15520.7, + "end": 15521.64, + "probability": 0.4056 + }, + { + "start": 15522.98, + "end": 15525.38, + "probability": 0.8413 + }, + { + "start": 15525.98, + "end": 15528.18, + "probability": 0.609 + }, + { + "start": 15528.3, + "end": 15529.7, + "probability": 0.887 + }, + { + "start": 15530.86, + "end": 15530.86, + "probability": 0.3104 + }, + { + "start": 15538.7, + "end": 15538.86, + "probability": 0.0827 + }, + { + "start": 15538.86, + "end": 15539.28, + "probability": 0.2006 + }, + { + "start": 15539.28, + "end": 15539.76, + "probability": 0.0603 + }, + { + "start": 15561.42, + "end": 15562.34, + "probability": 0.6511 + }, + { + "start": 15563.0, + "end": 15567.02, + "probability": 0.6844 + }, + { + "start": 15567.46, + "end": 15569.06, + "probability": 0.6766 + }, + { + "start": 15570.14, + "end": 15571.28, + "probability": 0.8232 + }, + { + "start": 15572.94, + "end": 15574.12, + "probability": 0.9581 + }, + { + "start": 15575.08, + "end": 15576.78, + "probability": 0.8878 + }, + { + "start": 15579.66, + "end": 15581.98, + "probability": 0.8442 + }, + { + "start": 15582.64, + "end": 15583.34, + "probability": 0.6607 + }, + { + "start": 15583.34, + "end": 15585.18, + "probability": 0.6967 + }, + { + "start": 15585.48, + "end": 15587.3, + "probability": 0.949 + }, + { + "start": 15588.72, + "end": 15589.94, + "probability": 0.737 + }, + { + "start": 15591.22, + "end": 15593.62, + "probability": 0.9673 + }, + { + "start": 15595.12, + "end": 15599.84, + "probability": 0.9958 + }, + { + "start": 15604.12, + "end": 15604.8, + "probability": 0.6841 + }, + { + "start": 15605.7, + "end": 15612.58, + "probability": 0.9871 + }, + { + "start": 15613.06, + "end": 15613.94, + "probability": 0.8743 + }, + { + "start": 15617.46, + "end": 15618.06, + "probability": 0.8693 + }, + { + "start": 15618.22, + "end": 15621.58, + "probability": 0.9947 + }, + { + "start": 15623.0, + "end": 15623.66, + "probability": 0.8413 + }, + { + "start": 15624.72, + "end": 15626.56, + "probability": 0.993 + }, + { + "start": 15626.9, + "end": 15630.24, + "probability": 0.9481 + }, + { + "start": 15631.64, + "end": 15633.34, + "probability": 0.8047 + }, + { + "start": 15633.68, + "end": 15636.4, + "probability": 0.9771 + }, + { + "start": 15638.48, + "end": 15639.1, + "probability": 0.9519 + }, + { + "start": 15644.06, + "end": 15646.14, + "probability": 0.9196 + }, + { + "start": 15647.64, + "end": 15648.94, + "probability": 0.2376 + }, + { + "start": 15649.5, + "end": 15651.98, + "probability": 0.366 + }, + { + "start": 15652.12, + "end": 15652.82, + "probability": 0.3684 + }, + { + "start": 15652.82, + "end": 15653.4, + "probability": 0.4557 + }, + { + "start": 15653.9, + "end": 15654.92, + "probability": 0.7073 + }, + { + "start": 15654.98, + "end": 15657.1, + "probability": 0.9627 + }, + { + "start": 15657.22, + "end": 15659.58, + "probability": 0.9749 + }, + { + "start": 15660.08, + "end": 15665.28, + "probability": 0.9705 + }, + { + "start": 15665.3, + "end": 15666.5, + "probability": 0.8548 + }, + { + "start": 15667.62, + "end": 15669.78, + "probability": 0.9684 + }, + { + "start": 15670.68, + "end": 15672.3, + "probability": 0.9795 + }, + { + "start": 15673.0, + "end": 15678.36, + "probability": 0.9885 + }, + { + "start": 15680.14, + "end": 15686.46, + "probability": 0.9988 + }, + { + "start": 15687.22, + "end": 15688.12, + "probability": 0.6591 + }, + { + "start": 15688.34, + "end": 15691.08, + "probability": 0.9595 + }, + { + "start": 15691.64, + "end": 15693.24, + "probability": 0.9058 + }, + { + "start": 15693.94, + "end": 15696.7, + "probability": 0.9901 + }, + { + "start": 15697.64, + "end": 15699.42, + "probability": 0.9971 + }, + { + "start": 15699.64, + "end": 15700.86, + "probability": 0.9857 + }, + { + "start": 15702.64, + "end": 15704.42, + "probability": 0.7015 + }, + { + "start": 15704.54, + "end": 15705.18, + "probability": 0.8059 + }, + { + "start": 15705.44, + "end": 15707.14, + "probability": 0.9949 + }, + { + "start": 15709.5, + "end": 15711.8, + "probability": 0.953 + }, + { + "start": 15712.16, + "end": 15714.2, + "probability": 0.8973 + }, + { + "start": 15714.32, + "end": 15718.52, + "probability": 0.9941 + }, + { + "start": 15720.08, + "end": 15721.79, + "probability": 0.9661 + }, + { + "start": 15722.38, + "end": 15723.8, + "probability": 0.9547 + }, + { + "start": 15724.16, + "end": 15726.3, + "probability": 0.9643 + }, + { + "start": 15726.72, + "end": 15729.36, + "probability": 0.951 + }, + { + "start": 15729.8, + "end": 15731.78, + "probability": 0.7397 + }, + { + "start": 15732.6, + "end": 15740.12, + "probability": 0.9962 + }, + { + "start": 15740.56, + "end": 15742.0, + "probability": 0.5943 + }, + { + "start": 15742.16, + "end": 15744.68, + "probability": 0.9951 + }, + { + "start": 15745.3, + "end": 15748.08, + "probability": 0.8587 + }, + { + "start": 15748.56, + "end": 15750.18, + "probability": 0.984 + }, + { + "start": 15750.7, + "end": 15757.44, + "probability": 0.974 + }, + { + "start": 15757.72, + "end": 15760.37, + "probability": 0.9883 + }, + { + "start": 15761.52, + "end": 15762.7, + "probability": 0.6441 + }, + { + "start": 15762.88, + "end": 15767.08, + "probability": 0.9919 + }, + { + "start": 15767.24, + "end": 15768.34, + "probability": 0.8813 + }, + { + "start": 15768.84, + "end": 15774.74, + "probability": 0.9838 + }, + { + "start": 15775.16, + "end": 15777.68, + "probability": 0.9821 + }, + { + "start": 15777.74, + "end": 15780.28, + "probability": 0.9479 + }, + { + "start": 15780.74, + "end": 15781.72, + "probability": 0.8286 + }, + { + "start": 15782.0, + "end": 15784.22, + "probability": 0.8804 + }, + { + "start": 15784.66, + "end": 15786.3, + "probability": 0.9706 + }, + { + "start": 15787.04, + "end": 15791.26, + "probability": 0.9767 + }, + { + "start": 15792.74, + "end": 15796.3, + "probability": 0.936 + }, + { + "start": 15797.32, + "end": 15800.62, + "probability": 0.9808 + }, + { + "start": 15800.68, + "end": 15802.8, + "probability": 0.9171 + }, + { + "start": 15802.82, + "end": 15807.24, + "probability": 0.965 + }, + { + "start": 15807.24, + "end": 15808.18, + "probability": 0.8234 + }, + { + "start": 15809.38, + "end": 15810.98, + "probability": 0.9391 + }, + { + "start": 15813.16, + "end": 15813.88, + "probability": 0.8403 + }, + { + "start": 15815.96, + "end": 15817.68, + "probability": 0.9921 + }, + { + "start": 15820.4, + "end": 15821.64, + "probability": 0.9865 + }, + { + "start": 15822.9, + "end": 15823.78, + "probability": 0.9704 + }, + { + "start": 15827.12, + "end": 15829.38, + "probability": 0.8015 + }, + { + "start": 15829.6, + "end": 15831.48, + "probability": 0.9596 + }, + { + "start": 15831.78, + "end": 15833.9, + "probability": 0.3601 + }, + { + "start": 15833.98, + "end": 15834.56, + "probability": 0.8342 + }, + { + "start": 15834.76, + "end": 15834.92, + "probability": 0.6781 + }, + { + "start": 15835.54, + "end": 15836.68, + "probability": 0.7254 + }, + { + "start": 15848.62, + "end": 15850.08, + "probability": 0.0569 + }, + { + "start": 15850.08, + "end": 15850.24, + "probability": 0.0808 + }, + { + "start": 15879.36, + "end": 15880.36, + "probability": 0.7572 + }, + { + "start": 15880.48, + "end": 15880.86, + "probability": 0.5954 + }, + { + "start": 15880.92, + "end": 15881.32, + "probability": 0.7269 + }, + { + "start": 15881.4, + "end": 15884.9, + "probability": 0.7827 + }, + { + "start": 15885.74, + "end": 15887.12, + "probability": 0.9503 + }, + { + "start": 15888.28, + "end": 15889.02, + "probability": 0.6652 + }, + { + "start": 15890.34, + "end": 15892.08, + "probability": 0.9945 + }, + { + "start": 15892.92, + "end": 15896.0, + "probability": 0.8937 + }, + { + "start": 15896.6, + "end": 15899.78, + "probability": 0.9907 + }, + { + "start": 15900.62, + "end": 15903.2, + "probability": 0.9536 + }, + { + "start": 15903.86, + "end": 15904.68, + "probability": 0.9363 + }, + { + "start": 15905.14, + "end": 15905.86, + "probability": 0.797 + }, + { + "start": 15905.9, + "end": 15907.9, + "probability": 0.9361 + }, + { + "start": 15908.58, + "end": 15910.46, + "probability": 0.9903 + }, + { + "start": 15910.6, + "end": 15914.46, + "probability": 0.981 + }, + { + "start": 15915.36, + "end": 15918.48, + "probability": 0.9721 + }, + { + "start": 15919.42, + "end": 15924.7, + "probability": 0.9976 + }, + { + "start": 15925.32, + "end": 15930.02, + "probability": 0.9429 + }, + { + "start": 15931.08, + "end": 15933.66, + "probability": 0.9846 + }, + { + "start": 15934.34, + "end": 15936.04, + "probability": 0.9971 + }, + { + "start": 15936.56, + "end": 15938.42, + "probability": 0.9478 + }, + { + "start": 15938.94, + "end": 15940.44, + "probability": 0.7626 + }, + { + "start": 15940.98, + "end": 15941.56, + "probability": 0.6028 + }, + { + "start": 15942.32, + "end": 15945.54, + "probability": 0.9976 + }, + { + "start": 15946.18, + "end": 15948.47, + "probability": 0.9513 + }, + { + "start": 15949.58, + "end": 15951.6, + "probability": 0.9785 + }, + { + "start": 15952.3, + "end": 15957.56, + "probability": 0.9985 + }, + { + "start": 15958.06, + "end": 15960.17, + "probability": 0.998 + }, + { + "start": 15960.94, + "end": 15965.98, + "probability": 0.9971 + }, + { + "start": 15966.6, + "end": 15969.56, + "probability": 0.9961 + }, + { + "start": 15970.2, + "end": 15971.62, + "probability": 0.8153 + }, + { + "start": 15972.16, + "end": 15976.8, + "probability": 0.9823 + }, + { + "start": 15977.54, + "end": 15979.56, + "probability": 0.9849 + }, + { + "start": 15980.1, + "end": 15982.02, + "probability": 0.994 + }, + { + "start": 15982.62, + "end": 15988.86, + "probability": 0.9956 + }, + { + "start": 15989.46, + "end": 15990.3, + "probability": 0.8953 + }, + { + "start": 15991.04, + "end": 15993.88, + "probability": 0.969 + }, + { + "start": 15994.6, + "end": 15996.6, + "probability": 0.8503 + }, + { + "start": 15997.22, + "end": 16001.48, + "probability": 0.9857 + }, + { + "start": 16002.26, + "end": 16005.96, + "probability": 0.9332 + }, + { + "start": 16006.58, + "end": 16009.56, + "probability": 0.9426 + }, + { + "start": 16009.66, + "end": 16010.3, + "probability": 0.6028 + }, + { + "start": 16010.96, + "end": 16012.95, + "probability": 0.963 + }, + { + "start": 16013.56, + "end": 16016.26, + "probability": 0.8803 + }, + { + "start": 16016.56, + "end": 16023.1, + "probability": 0.9482 + }, + { + "start": 16023.7, + "end": 16026.04, + "probability": 0.8952 + }, + { + "start": 16026.78, + "end": 16028.62, + "probability": 0.9933 + }, + { + "start": 16029.0, + "end": 16029.62, + "probability": 0.8696 + }, + { + "start": 16029.96, + "end": 16030.92, + "probability": 0.9434 + }, + { + "start": 16031.36, + "end": 16034.56, + "probability": 0.9865 + }, + { + "start": 16035.34, + "end": 16036.02, + "probability": 0.796 + }, + { + "start": 16036.72, + "end": 16037.96, + "probability": 0.8069 + }, + { + "start": 16038.54, + "end": 16041.12, + "probability": 0.988 + }, + { + "start": 16041.76, + "end": 16045.44, + "probability": 0.9845 + }, + { + "start": 16045.56, + "end": 16046.76, + "probability": 0.9922 + }, + { + "start": 16048.12, + "end": 16050.64, + "probability": 0.2141 + }, + { + "start": 16051.22, + "end": 16051.22, + "probability": 0.092 + }, + { + "start": 16051.22, + "end": 16052.62, + "probability": 0.5532 + }, + { + "start": 16053.22, + "end": 16056.14, + "probability": 0.7565 + }, + { + "start": 16056.16, + "end": 16059.03, + "probability": 0.9447 + }, + { + "start": 16059.82, + "end": 16061.16, + "probability": 0.98 + }, + { + "start": 16061.76, + "end": 16064.24, + "probability": 0.6111 + }, + { + "start": 16064.38, + "end": 16066.42, + "probability": 0.8765 + }, + { + "start": 16067.0, + "end": 16070.1, + "probability": 0.993 + }, + { + "start": 16070.3, + "end": 16070.78, + "probability": 0.7499 + }, + { + "start": 16070.88, + "end": 16074.06, + "probability": 0.9951 + }, + { + "start": 16074.24, + "end": 16075.42, + "probability": 0.9868 + }, + { + "start": 16075.96, + "end": 16079.66, + "probability": 0.9368 + }, + { + "start": 16080.02, + "end": 16082.6, + "probability": 0.8975 + }, + { + "start": 16082.76, + "end": 16083.6, + "probability": 0.9262 + }, + { + "start": 16084.52, + "end": 16085.28, + "probability": 0.6457 + }, + { + "start": 16085.58, + "end": 16087.24, + "probability": 0.9786 + }, + { + "start": 16089.54, + "end": 16089.78, + "probability": 0.1061 + }, + { + "start": 16091.66, + "end": 16092.49, + "probability": 0.0394 + }, + { + "start": 16097.49, + "end": 16098.4, + "probability": 0.0965 + }, + { + "start": 16098.4, + "end": 16098.4, + "probability": 0.1451 + }, + { + "start": 16098.4, + "end": 16098.4, + "probability": 0.0439 + }, + { + "start": 16098.4, + "end": 16098.4, + "probability": 0.0196 + }, + { + "start": 16098.4, + "end": 16099.02, + "probability": 0.0371 + }, + { + "start": 16099.4, + "end": 16101.04, + "probability": 0.8377 + }, + { + "start": 16101.58, + "end": 16102.5, + "probability": 0.1439 + }, + { + "start": 16102.78, + "end": 16103.78, + "probability": 0.4544 + }, + { + "start": 16108.92, + "end": 16111.72, + "probability": 0.6348 + }, + { + "start": 16112.5, + "end": 16115.11, + "probability": 0.8867 + }, + { + "start": 16115.3, + "end": 16116.16, + "probability": 0.7891 + }, + { + "start": 16117.8, + "end": 16118.78, + "probability": 0.8737 + }, + { + "start": 16118.94, + "end": 16120.46, + "probability": 0.7835 + }, + { + "start": 16120.68, + "end": 16122.94, + "probability": 0.8885 + }, + { + "start": 16124.38, + "end": 16130.82, + "probability": 0.9794 + }, + { + "start": 16131.14, + "end": 16131.98, + "probability": 0.5258 + }, + { + "start": 16132.54, + "end": 16135.26, + "probability": 0.9399 + }, + { + "start": 16135.42, + "end": 16136.56, + "probability": 0.9829 + }, + { + "start": 16137.32, + "end": 16141.92, + "probability": 0.9978 + }, + { + "start": 16142.78, + "end": 16143.74, + "probability": 0.9766 + }, + { + "start": 16143.84, + "end": 16144.26, + "probability": 0.9824 + }, + { + "start": 16144.8, + "end": 16145.78, + "probability": 0.8481 + }, + { + "start": 16146.2, + "end": 16147.2, + "probability": 0.986 + }, + { + "start": 16148.22, + "end": 16151.54, + "probability": 0.9901 + }, + { + "start": 16152.52, + "end": 16153.7, + "probability": 0.9897 + }, + { + "start": 16153.86, + "end": 16154.56, + "probability": 0.9224 + }, + { + "start": 16154.76, + "end": 16155.38, + "probability": 0.8682 + }, + { + "start": 16155.44, + "end": 16156.04, + "probability": 0.8352 + }, + { + "start": 16156.88, + "end": 16158.41, + "probability": 0.995 + }, + { + "start": 16160.1, + "end": 16161.06, + "probability": 0.9546 + }, + { + "start": 16162.24, + "end": 16164.46, + "probability": 0.9337 + }, + { + "start": 16165.24, + "end": 16169.94, + "probability": 0.9948 + }, + { + "start": 16170.5, + "end": 16172.32, + "probability": 0.9982 + }, + { + "start": 16174.24, + "end": 16174.92, + "probability": 0.11 + }, + { + "start": 16174.92, + "end": 16177.94, + "probability": 0.9226 + }, + { + "start": 16179.58, + "end": 16181.68, + "probability": 0.8723 + }, + { + "start": 16182.74, + "end": 16185.14, + "probability": 0.9578 + }, + { + "start": 16185.7, + "end": 16187.54, + "probability": 0.9992 + }, + { + "start": 16188.12, + "end": 16189.26, + "probability": 0.9233 + }, + { + "start": 16190.16, + "end": 16194.62, + "probability": 0.9976 + }, + { + "start": 16195.26, + "end": 16196.66, + "probability": 0.9987 + }, + { + "start": 16198.8, + "end": 16199.82, + "probability": 0.663 + }, + { + "start": 16200.0, + "end": 16202.72, + "probability": 0.9928 + }, + { + "start": 16203.42, + "end": 16204.5, + "probability": 0.9912 + }, + { + "start": 16205.52, + "end": 16206.4, + "probability": 0.8917 + }, + { + "start": 16207.04, + "end": 16211.36, + "probability": 0.999 + }, + { + "start": 16211.36, + "end": 16216.1, + "probability": 0.9888 + }, + { + "start": 16216.18, + "end": 16222.38, + "probability": 0.9953 + }, + { + "start": 16222.38, + "end": 16227.76, + "probability": 0.9956 + }, + { + "start": 16228.5, + "end": 16230.76, + "probability": 0.9563 + }, + { + "start": 16230.94, + "end": 16232.3, + "probability": 0.9809 + }, + { + "start": 16232.74, + "end": 16234.98, + "probability": 0.9785 + }, + { + "start": 16235.64, + "end": 16238.28, + "probability": 0.9984 + }, + { + "start": 16239.22, + "end": 16240.68, + "probability": 0.9594 + }, + { + "start": 16242.08, + "end": 16243.88, + "probability": 0.878 + }, + { + "start": 16244.62, + "end": 16245.37, + "probability": 0.9661 + }, + { + "start": 16246.04, + "end": 16247.84, + "probability": 0.8995 + }, + { + "start": 16248.36, + "end": 16248.72, + "probability": 0.7309 + }, + { + "start": 16248.78, + "end": 16249.56, + "probability": 0.8481 + }, + { + "start": 16250.02, + "end": 16250.62, + "probability": 0.9624 + }, + { + "start": 16250.76, + "end": 16251.7, + "probability": 0.9866 + }, + { + "start": 16252.34, + "end": 16255.14, + "probability": 0.9869 + }, + { + "start": 16256.58, + "end": 16257.62, + "probability": 0.661 + }, + { + "start": 16258.5, + "end": 16259.86, + "probability": 0.9418 + }, + { + "start": 16264.04, + "end": 16266.52, + "probability": 0.3419 + }, + { + "start": 16267.28, + "end": 16269.96, + "probability": 0.1575 + }, + { + "start": 16270.78, + "end": 16271.08, + "probability": 0.2473 + }, + { + "start": 16287.21, + "end": 16291.34, + "probability": 0.9937 + }, + { + "start": 16291.72, + "end": 16292.22, + "probability": 0.8233 + }, + { + "start": 16292.86, + "end": 16294.62, + "probability": 0.931 + }, + { + "start": 16295.42, + "end": 16297.34, + "probability": 0.765 + }, + { + "start": 16298.0, + "end": 16302.43, + "probability": 0.9854 + }, + { + "start": 16303.18, + "end": 16306.92, + "probability": 0.9856 + }, + { + "start": 16307.66, + "end": 16311.82, + "probability": 0.9784 + }, + { + "start": 16312.72, + "end": 16318.14, + "probability": 0.9938 + }, + { + "start": 16318.96, + "end": 16320.36, + "probability": 0.8738 + }, + { + "start": 16320.52, + "end": 16323.2, + "probability": 0.9447 + }, + { + "start": 16323.68, + "end": 16327.88, + "probability": 0.9736 + }, + { + "start": 16328.54, + "end": 16334.7, + "probability": 0.9861 + }, + { + "start": 16335.4, + "end": 16337.56, + "probability": 0.9413 + }, + { + "start": 16337.64, + "end": 16339.26, + "probability": 0.9719 + }, + { + "start": 16339.88, + "end": 16342.82, + "probability": 0.9878 + }, + { + "start": 16342.94, + "end": 16344.08, + "probability": 0.9412 + }, + { + "start": 16344.16, + "end": 16347.44, + "probability": 0.9641 + }, + { + "start": 16347.96, + "end": 16351.0, + "probability": 0.9074 + }, + { + "start": 16351.62, + "end": 16354.92, + "probability": 0.908 + }, + { + "start": 16355.78, + "end": 16360.4, + "probability": 0.9964 + }, + { + "start": 16361.04, + "end": 16361.54, + "probability": 0.8653 + }, + { + "start": 16361.62, + "end": 16362.5, + "probability": 0.915 + }, + { + "start": 16362.58, + "end": 16363.42, + "probability": 0.985 + }, + { + "start": 16363.58, + "end": 16364.6, + "probability": 0.9802 + }, + { + "start": 16365.06, + "end": 16366.46, + "probability": 0.4996 + }, + { + "start": 16366.64, + "end": 16367.5, + "probability": 0.7281 + }, + { + "start": 16368.0, + "end": 16371.98, + "probability": 0.99 + }, + { + "start": 16371.98, + "end": 16377.7, + "probability": 0.9976 + }, + { + "start": 16378.5, + "end": 16381.76, + "probability": 0.998 + }, + { + "start": 16381.76, + "end": 16385.4, + "probability": 0.999 + }, + { + "start": 16386.66, + "end": 16388.96, + "probability": 0.8765 + }, + { + "start": 16389.14, + "end": 16391.06, + "probability": 0.7331 + }, + { + "start": 16391.64, + "end": 16394.24, + "probability": 0.9951 + }, + { + "start": 16394.82, + "end": 16399.66, + "probability": 0.9968 + }, + { + "start": 16400.36, + "end": 16403.96, + "probability": 0.98 + }, + { + "start": 16404.78, + "end": 16409.38, + "probability": 0.9944 + }, + { + "start": 16409.38, + "end": 16413.94, + "probability": 0.9982 + }, + { + "start": 16413.94, + "end": 16420.46, + "probability": 0.9982 + }, + { + "start": 16421.2, + "end": 16423.36, + "probability": 0.9358 + }, + { + "start": 16424.28, + "end": 16427.96, + "probability": 0.9258 + }, + { + "start": 16427.96, + "end": 16431.26, + "probability": 0.993 + }, + { + "start": 16432.2, + "end": 16435.46, + "probability": 0.9961 + }, + { + "start": 16436.4, + "end": 16441.64, + "probability": 0.9906 + }, + { + "start": 16442.34, + "end": 16444.7, + "probability": 0.9604 + }, + { + "start": 16444.76, + "end": 16445.42, + "probability": 0.4422 + }, + { + "start": 16445.88, + "end": 16447.82, + "probability": 0.5568 + }, + { + "start": 16447.92, + "end": 16453.46, + "probability": 0.9939 + }, + { + "start": 16453.46, + "end": 16456.58, + "probability": 0.9854 + }, + { + "start": 16457.2, + "end": 16460.08, + "probability": 0.9956 + }, + { + "start": 16460.08, + "end": 16466.16, + "probability": 0.9992 + }, + { + "start": 16466.46, + "end": 16467.12, + "probability": 0.6751 + }, + { + "start": 16467.12, + "end": 16469.04, + "probability": 0.9891 + }, + { + "start": 16469.9, + "end": 16470.66, + "probability": 0.791 + }, + { + "start": 16473.84, + "end": 16475.48, + "probability": 0.8454 + }, + { + "start": 16477.08, + "end": 16477.84, + "probability": 0.9094 + }, + { + "start": 16481.5, + "end": 16484.34, + "probability": 0.0451 + }, + { + "start": 16502.84, + "end": 16504.9, + "probability": 0.8638 + }, + { + "start": 16507.82, + "end": 16510.36, + "probability": 0.6546 + }, + { + "start": 16511.66, + "end": 16515.44, + "probability": 0.9677 + }, + { + "start": 16515.74, + "end": 16516.34, + "probability": 0.5707 + }, + { + "start": 16518.22, + "end": 16520.1, + "probability": 0.9925 + }, + { + "start": 16520.28, + "end": 16521.78, + "probability": 0.9893 + }, + { + "start": 16521.86, + "end": 16523.09, + "probability": 0.9865 + }, + { + "start": 16524.08, + "end": 16525.9, + "probability": 0.8538 + }, + { + "start": 16526.74, + "end": 16531.22, + "probability": 0.9932 + }, + { + "start": 16531.9, + "end": 16533.72, + "probability": 0.9162 + }, + { + "start": 16534.08, + "end": 16535.48, + "probability": 0.9863 + }, + { + "start": 16535.54, + "end": 16537.84, + "probability": 0.9939 + }, + { + "start": 16538.76, + "end": 16542.14, + "probability": 0.9579 + }, + { + "start": 16542.84, + "end": 16545.08, + "probability": 0.8982 + }, + { + "start": 16545.92, + "end": 16547.54, + "probability": 0.9568 + }, + { + "start": 16548.56, + "end": 16549.34, + "probability": 0.682 + }, + { + "start": 16549.34, + "end": 16549.58, + "probability": 0.4967 + }, + { + "start": 16550.04, + "end": 16550.78, + "probability": 0.9199 + }, + { + "start": 16551.92, + "end": 16552.12, + "probability": 0.725 + }, + { + "start": 16552.74, + "end": 16553.36, + "probability": 0.9888 + }, + { + "start": 16554.06, + "end": 16556.46, + "probability": 0.8787 + }, + { + "start": 16557.7, + "end": 16558.7, + "probability": 0.6715 + }, + { + "start": 16559.46, + "end": 16559.94, + "probability": 0.9014 + }, + { + "start": 16561.16, + "end": 16562.38, + "probability": 0.9951 + }, + { + "start": 16563.24, + "end": 16563.74, + "probability": 0.9302 + }, + { + "start": 16565.4, + "end": 16568.96, + "probability": 0.9837 + }, + { + "start": 16570.34, + "end": 16575.5, + "probability": 0.9004 + }, + { + "start": 16575.6, + "end": 16576.32, + "probability": 0.499 + }, + { + "start": 16576.5, + "end": 16576.86, + "probability": 0.835 + }, + { + "start": 16579.0, + "end": 16579.98, + "probability": 0.901 + }, + { + "start": 16581.54, + "end": 16585.5, + "probability": 0.9876 + }, + { + "start": 16585.62, + "end": 16586.5, + "probability": 0.966 + }, + { + "start": 16586.68, + "end": 16587.42, + "probability": 0.913 + }, + { + "start": 16587.6, + "end": 16589.82, + "probability": 0.8744 + }, + { + "start": 16589.96, + "end": 16591.44, + "probability": 0.8385 + }, + { + "start": 16591.5, + "end": 16592.53, + "probability": 0.9242 + }, + { + "start": 16595.04, + "end": 16596.18, + "probability": 0.6361 + }, + { + "start": 16597.4, + "end": 16599.22, + "probability": 0.9927 + }, + { + "start": 16599.56, + "end": 16601.74, + "probability": 0.7833 + }, + { + "start": 16602.14, + "end": 16603.22, + "probability": 0.4879 + }, + { + "start": 16603.38, + "end": 16603.72, + "probability": 0.449 + }, + { + "start": 16604.04, + "end": 16607.42, + "probability": 0.7648 + }, + { + "start": 16608.06, + "end": 16610.18, + "probability": 0.842 + }, + { + "start": 16610.82, + "end": 16612.46, + "probability": 0.675 + }, + { + "start": 16613.2, + "end": 16614.19, + "probability": 0.9486 + }, + { + "start": 16614.34, + "end": 16615.2, + "probability": 0.8978 + }, + { + "start": 16615.3, + "end": 16615.86, + "probability": 0.8123 + }, + { + "start": 16616.62, + "end": 16621.38, + "probability": 0.9856 + }, + { + "start": 16622.08, + "end": 16623.64, + "probability": 0.8654 + }, + { + "start": 16623.66, + "end": 16624.4, + "probability": 0.6632 + }, + { + "start": 16624.62, + "end": 16625.36, + "probability": 0.6452 + }, + { + "start": 16625.6, + "end": 16628.66, + "probability": 0.4565 + }, + { + "start": 16629.1, + "end": 16630.04, + "probability": 0.7255 + }, + { + "start": 16630.06, + "end": 16630.98, + "probability": 0.0761 + }, + { + "start": 16631.04, + "end": 16634.12, + "probability": 0.9376 + }, + { + "start": 16634.72, + "end": 16635.94, + "probability": 0.886 + }, + { + "start": 16636.86, + "end": 16637.72, + "probability": 0.6424 + }, + { + "start": 16638.24, + "end": 16639.84, + "probability": 0.8267 + }, + { + "start": 16640.38, + "end": 16642.52, + "probability": 0.8594 + }, + { + "start": 16642.56, + "end": 16646.98, + "probability": 0.9591 + }, + { + "start": 16646.98, + "end": 16651.8, + "probability": 0.9792 + }, + { + "start": 16651.94, + "end": 16652.52, + "probability": 0.7285 + }, + { + "start": 16654.76, + "end": 16656.42, + "probability": 0.551 + }, + { + "start": 16656.98, + "end": 16663.52, + "probability": 0.7609 + }, + { + "start": 16664.74, + "end": 16666.72, + "probability": 0.8682 + }, + { + "start": 16666.74, + "end": 16669.12, + "probability": 0.9963 + }, + { + "start": 16669.12, + "end": 16673.7, + "probability": 0.9679 + }, + { + "start": 16673.96, + "end": 16675.58, + "probability": 0.8826 + }, + { + "start": 16676.1, + "end": 16679.88, + "probability": 0.6602 + }, + { + "start": 16680.38, + "end": 16684.4, + "probability": 0.9971 + }, + { + "start": 16685.84, + "end": 16687.96, + "probability": 0.946 + }, + { + "start": 16688.5, + "end": 16689.54, + "probability": 0.976 + }, + { + "start": 16689.58, + "end": 16689.96, + "probability": 0.6367 + }, + { + "start": 16690.34, + "end": 16690.72, + "probability": 0.756 + }, + { + "start": 16691.12, + "end": 16694.46, + "probability": 0.8025 + }, + { + "start": 16694.74, + "end": 16695.09, + "probability": 0.4921 + }, + { + "start": 16695.96, + "end": 16697.82, + "probability": 0.981 + }, + { + "start": 16697.88, + "end": 16698.18, + "probability": 0.2987 + }, + { + "start": 16698.18, + "end": 16698.36, + "probability": 0.7267 + }, + { + "start": 16699.72, + "end": 16706.3, + "probability": 0.8701 + }, + { + "start": 16710.26, + "end": 16711.28, + "probability": 0.4989 + }, + { + "start": 16711.46, + "end": 16713.2, + "probability": 0.7076 + }, + { + "start": 16713.5, + "end": 16715.08, + "probability": 0.0933 + }, + { + "start": 16716.68, + "end": 16718.46, + "probability": 0.055 + }, + { + "start": 16718.46, + "end": 16719.8, + "probability": 0.8442 + }, + { + "start": 16720.02, + "end": 16720.62, + "probability": 0.6684 + }, + { + "start": 16720.68, + "end": 16723.46, + "probability": 0.3585 + }, + { + "start": 16724.16, + "end": 16725.49, + "probability": 0.1068 + }, + { + "start": 16727.14, + "end": 16727.94, + "probability": 0.3754 + }, + { + "start": 16728.2, + "end": 16728.68, + "probability": 0.5571 + }, + { + "start": 16728.68, + "end": 16730.3, + "probability": 0.7155 + }, + { + "start": 16730.6, + "end": 16732.84, + "probability": 0.7789 + }, + { + "start": 16733.38, + "end": 16734.61, + "probability": 0.0329 + }, + { + "start": 16736.48, + "end": 16737.18, + "probability": 0.1863 + }, + { + "start": 16737.22, + "end": 16738.74, + "probability": 0.0238 + }, + { + "start": 16739.82, + "end": 16739.92, + "probability": 0.0621 + }, + { + "start": 16742.05, + "end": 16743.16, + "probability": 0.0055 + }, + { + "start": 16743.74, + "end": 16744.16, + "probability": 0.0196 + }, + { + "start": 16751.12, + "end": 16751.94, + "probability": 0.1333 + }, + { + "start": 16755.38, + "end": 16756.82, + "probability": 0.033 + }, + { + "start": 16757.82, + "end": 16758.4, + "probability": 0.2659 + }, + { + "start": 16761.58, + "end": 16764.4, + "probability": 0.8189 + }, + { + "start": 16764.96, + "end": 16765.52, + "probability": 0.8315 + }, + { + "start": 16766.22, + "end": 16769.08, + "probability": 0.4883 + }, + { + "start": 16770.61, + "end": 16774.44, + "probability": 0.8744 + }, + { + "start": 16774.62, + "end": 16777.77, + "probability": 0.5621 + }, + { + "start": 16778.32, + "end": 16784.22, + "probability": 0.7028 + }, + { + "start": 16784.98, + "end": 16788.42, + "probability": 0.9528 + }, + { + "start": 16790.68, + "end": 16790.98, + "probability": 0.8029 + }, + { + "start": 16794.06, + "end": 16796.54, + "probability": 0.6676 + }, + { + "start": 16797.52, + "end": 16800.34, + "probability": 0.9288 + }, + { + "start": 16800.38, + "end": 16804.74, + "probability": 0.9101 + }, + { + "start": 16806.0, + "end": 16807.94, + "probability": 0.2031 + }, + { + "start": 16808.62, + "end": 16809.28, + "probability": 0.0411 + }, + { + "start": 16809.88, + "end": 16813.48, + "probability": 0.6943 + }, + { + "start": 16814.08, + "end": 16819.02, + "probability": 0.9974 + }, + { + "start": 16819.94, + "end": 16820.18, + "probability": 0.9457 + }, + { + "start": 16821.54, + "end": 16824.32, + "probability": 0.2844 + }, + { + "start": 16835.14, + "end": 16835.6, + "probability": 0.2819 + }, + { + "start": 16836.5, + "end": 16837.8, + "probability": 0.6405 + }, + { + "start": 16838.18, + "end": 16842.1, + "probability": 0.7857 + }, + { + "start": 16842.32, + "end": 16842.48, + "probability": 0.3017 + }, + { + "start": 16842.54, + "end": 16842.54, + "probability": 0.7018 + }, + { + "start": 16842.56, + "end": 16843.93, + "probability": 0.9718 + }, + { + "start": 16844.78, + "end": 16845.95, + "probability": 0.9631 + }, + { + "start": 16847.22, + "end": 16850.66, + "probability": 0.9577 + }, + { + "start": 16851.38, + "end": 16852.22, + "probability": 0.537 + }, + { + "start": 16852.62, + "end": 16853.48, + "probability": 0.9939 + }, + { + "start": 16854.36, + "end": 16857.34, + "probability": 0.9698 + }, + { + "start": 16857.56, + "end": 16858.42, + "probability": 0.788 + }, + { + "start": 16859.7, + "end": 16860.82, + "probability": 0.9553 + }, + { + "start": 16861.12, + "end": 16861.56, + "probability": 0.8107 + }, + { + "start": 16861.78, + "end": 16865.06, + "probability": 0.8853 + }, + { + "start": 16865.78, + "end": 16867.01, + "probability": 0.6676 + }, + { + "start": 16868.74, + "end": 16872.62, + "probability": 0.7221 + }, + { + "start": 16873.32, + "end": 16874.2, + "probability": 0.9582 + }, + { + "start": 16874.84, + "end": 16876.01, + "probability": 0.9442 + }, + { + "start": 16877.12, + "end": 16879.4, + "probability": 0.7563 + }, + { + "start": 16880.72, + "end": 16882.0, + "probability": 0.9914 + }, + { + "start": 16882.04, + "end": 16888.06, + "probability": 0.9189 + }, + { + "start": 16890.86, + "end": 16896.12, + "probability": 0.9665 + }, + { + "start": 16896.12, + "end": 16899.86, + "probability": 0.9277 + }, + { + "start": 16900.64, + "end": 16901.7, + "probability": 0.0452 + }, + { + "start": 16902.74, + "end": 16904.34, + "probability": 0.7388 + }, + { + "start": 16905.48, + "end": 16909.08, + "probability": 0.9873 + }, + { + "start": 16909.98, + "end": 16912.42, + "probability": 0.8627 + }, + { + "start": 16913.22, + "end": 16915.48, + "probability": 0.8232 + }, + { + "start": 16916.56, + "end": 16920.68, + "probability": 0.8373 + }, + { + "start": 16922.54, + "end": 16923.4, + "probability": 0.9464 + }, + { + "start": 16924.66, + "end": 16928.62, + "probability": 0.9747 + }, + { + "start": 16932.34, + "end": 16935.48, + "probability": 0.7833 + }, + { + "start": 16935.48, + "end": 16939.54, + "probability": 0.9993 + }, + { + "start": 16940.7, + "end": 16942.7, + "probability": 0.8413 + }, + { + "start": 16944.7, + "end": 16948.76, + "probability": 0.9721 + }, + { + "start": 16949.9, + "end": 16952.78, + "probability": 0.9728 + }, + { + "start": 16957.36, + "end": 16959.24, + "probability": 0.7938 + }, + { + "start": 16959.74, + "end": 16964.4, + "probability": 0.9497 + }, + { + "start": 16965.44, + "end": 16972.1, + "probability": 0.899 + }, + { + "start": 16973.16, + "end": 16976.1, + "probability": 0.9674 + }, + { + "start": 16976.88, + "end": 16979.2, + "probability": 0.8139 + }, + { + "start": 16980.12, + "end": 16984.9, + "probability": 0.9715 + }, + { + "start": 16985.24, + "end": 16987.74, + "probability": 0.9736 + }, + { + "start": 16989.72, + "end": 16990.08, + "probability": 0.8338 + }, + { + "start": 16992.46, + "end": 16994.3, + "probability": 0.9181 + }, + { + "start": 16995.2, + "end": 16997.76, + "probability": 0.9121 + }, + { + "start": 16998.48, + "end": 17001.36, + "probability": 0.9788 + }, + { + "start": 17001.36, + "end": 17008.04, + "probability": 0.9668 + }, + { + "start": 17008.68, + "end": 17010.48, + "probability": 0.8155 + }, + { + "start": 17010.96, + "end": 17014.68, + "probability": 0.9482 + }, + { + "start": 17016.14, + "end": 17016.82, + "probability": 0.7894 + }, + { + "start": 17017.42, + "end": 17018.06, + "probability": 0.594 + }, + { + "start": 17018.22, + "end": 17022.44, + "probability": 0.8885 + }, + { + "start": 17023.58, + "end": 17025.0, + "probability": 0.7399 + }, + { + "start": 17025.22, + "end": 17031.06, + "probability": 0.9884 + }, + { + "start": 17032.08, + "end": 17035.52, + "probability": 0.9375 + }, + { + "start": 17035.58, + "end": 17039.28, + "probability": 0.711 + }, + { + "start": 17039.82, + "end": 17040.18, + "probability": 0.2919 + }, + { + "start": 17040.26, + "end": 17041.08, + "probability": 0.7137 + }, + { + "start": 17041.5, + "end": 17043.86, + "probability": 0.674 + }, + { + "start": 17044.1, + "end": 17046.12, + "probability": 0.9008 + }, + { + "start": 17046.56, + "end": 17046.88, + "probability": 0.2074 + }, + { + "start": 17046.88, + "end": 17047.26, + "probability": 0.4237 + }, + { + "start": 17047.8, + "end": 17049.08, + "probability": 0.6002 + }, + { + "start": 17049.3, + "end": 17051.51, + "probability": 0.9858 + }, + { + "start": 17051.88, + "end": 17052.86, + "probability": 0.7729 + }, + { + "start": 17052.86, + "end": 17055.8, + "probability": 0.8459 + }, + { + "start": 17055.88, + "end": 17055.88, + "probability": 0.8448 + }, + { + "start": 17056.06, + "end": 17056.76, + "probability": 0.6385 + }, + { + "start": 17057.6, + "end": 17062.44, + "probability": 0.2711 + }, + { + "start": 17062.58, + "end": 17063.76, + "probability": 0.9526 + }, + { + "start": 17064.32, + "end": 17065.02, + "probability": 0.9443 + }, + { + "start": 17065.82, + "end": 17068.6, + "probability": 0.9812 + }, + { + "start": 17069.59, + "end": 17075.52, + "probability": 0.943 + }, + { + "start": 17076.8, + "end": 17077.76, + "probability": 0.8687 + }, + { + "start": 17078.5, + "end": 17080.26, + "probability": 0.9884 + }, + { + "start": 17081.83, + "end": 17089.12, + "probability": 0.9982 + }, + { + "start": 17090.02, + "end": 17091.98, + "probability": 0.9424 + }, + { + "start": 17093.34, + "end": 17095.42, + "probability": 0.9902 + }, + { + "start": 17096.7, + "end": 17099.94, + "probability": 0.9933 + }, + { + "start": 17100.82, + "end": 17101.4, + "probability": 0.4954 + }, + { + "start": 17101.48, + "end": 17103.54, + "probability": 0.978 + }, + { + "start": 17103.62, + "end": 17104.4, + "probability": 0.519 + }, + { + "start": 17105.38, + "end": 17106.18, + "probability": 0.979 + }, + { + "start": 17107.14, + "end": 17113.86, + "probability": 0.8148 + }, + { + "start": 17115.22, + "end": 17116.82, + "probability": 0.9992 + }, + { + "start": 17117.92, + "end": 17119.56, + "probability": 0.9966 + }, + { + "start": 17121.0, + "end": 17122.68, + "probability": 0.9778 + }, + { + "start": 17123.68, + "end": 17124.96, + "probability": 0.9905 + }, + { + "start": 17125.78, + "end": 17126.84, + "probability": 0.9375 + }, + { + "start": 17128.3, + "end": 17130.88, + "probability": 0.9972 + }, + { + "start": 17132.52, + "end": 17135.52, + "probability": 0.8975 + }, + { + "start": 17136.62, + "end": 17138.24, + "probability": 0.9747 + }, + { + "start": 17138.28, + "end": 17140.7, + "probability": 0.9868 + }, + { + "start": 17141.5, + "end": 17143.06, + "probability": 0.7389 + }, + { + "start": 17143.58, + "end": 17146.16, + "probability": 0.9377 + }, + { + "start": 17147.02, + "end": 17148.71, + "probability": 0.9633 + }, + { + "start": 17149.18, + "end": 17151.18, + "probability": 0.8972 + }, + { + "start": 17151.98, + "end": 17152.88, + "probability": 0.9937 + }, + { + "start": 17154.22, + "end": 17156.44, + "probability": 0.9844 + }, + { + "start": 17157.32, + "end": 17158.92, + "probability": 0.9566 + }, + { + "start": 17158.98, + "end": 17160.46, + "probability": 0.9425 + }, + { + "start": 17161.74, + "end": 17163.98, + "probability": 0.9904 + }, + { + "start": 17165.1, + "end": 17166.8, + "probability": 0.9537 + }, + { + "start": 17167.24, + "end": 17170.88, + "probability": 0.9924 + }, + { + "start": 17171.06, + "end": 17172.6, + "probability": 0.9614 + }, + { + "start": 17173.56, + "end": 17175.05, + "probability": 0.8315 + }, + { + "start": 17175.88, + "end": 17178.12, + "probability": 0.9915 + }, + { + "start": 17178.26, + "end": 17179.28, + "probability": 0.9709 + }, + { + "start": 17179.4, + "end": 17180.1, + "probability": 0.8739 + }, + { + "start": 17180.88, + "end": 17183.64, + "probability": 0.8803 + }, + { + "start": 17184.2, + "end": 17186.84, + "probability": 0.9934 + }, + { + "start": 17187.84, + "end": 17193.18, + "probability": 0.9875 + }, + { + "start": 17193.36, + "end": 17193.7, + "probability": 0.7012 + }, + { + "start": 17194.4, + "end": 17198.7, + "probability": 0.9949 + }, + { + "start": 17198.78, + "end": 17200.4, + "probability": 0.9565 + }, + { + "start": 17200.74, + "end": 17202.34, + "probability": 0.7514 + }, + { + "start": 17203.04, + "end": 17203.94, + "probability": 0.9155 + }, + { + "start": 17204.6, + "end": 17206.82, + "probability": 0.8805 + }, + { + "start": 17206.9, + "end": 17208.32, + "probability": 0.8523 + }, + { + "start": 17208.52, + "end": 17210.22, + "probability": 0.6439 + }, + { + "start": 17210.92, + "end": 17212.98, + "probability": 0.9731 + }, + { + "start": 17213.74, + "end": 17214.92, + "probability": 0.9368 + }, + { + "start": 17215.04, + "end": 17220.1, + "probability": 0.9814 + }, + { + "start": 17220.1, + "end": 17224.18, + "probability": 0.9985 + }, + { + "start": 17224.58, + "end": 17229.5, + "probability": 0.9451 + }, + { + "start": 17229.6, + "end": 17232.48, + "probability": 0.9967 + }, + { + "start": 17233.22, + "end": 17235.7, + "probability": 0.9756 + }, + { + "start": 17235.96, + "end": 17239.0, + "probability": 0.931 + }, + { + "start": 17239.38, + "end": 17239.58, + "probability": 0.8238 + }, + { + "start": 17240.72, + "end": 17242.96, + "probability": 0.9889 + }, + { + "start": 17243.28, + "end": 17246.06, + "probability": 0.9977 + }, + { + "start": 17246.18, + "end": 17248.83, + "probability": 0.9357 + }, + { + "start": 17250.0, + "end": 17252.88, + "probability": 0.7847 + }, + { + "start": 17254.26, + "end": 17255.12, + "probability": 0.8017 + }, + { + "start": 17255.68, + "end": 17257.74, + "probability": 0.9904 + }, + { + "start": 17258.82, + "end": 17259.9, + "probability": 0.9186 + }, + { + "start": 17263.02, + "end": 17264.58, + "probability": 0.9921 + }, + { + "start": 17265.22, + "end": 17265.94, + "probability": 0.9609 + }, + { + "start": 17266.92, + "end": 17268.3, + "probability": 0.9973 + }, + { + "start": 17270.82, + "end": 17271.54, + "probability": 0.984 + }, + { + "start": 17273.02, + "end": 17274.26, + "probability": 0.998 + }, + { + "start": 17275.62, + "end": 17276.34, + "probability": 0.4192 + }, + { + "start": 17276.98, + "end": 17278.1, + "probability": 0.9061 + }, + { + "start": 17288.74, + "end": 17290.92, + "probability": 0.0165 + }, + { + "start": 17291.5, + "end": 17292.32, + "probability": 0.455 + }, + { + "start": 17292.98, + "end": 17293.46, + "probability": 0.0212 + }, + { + "start": 17293.74, + "end": 17293.8, + "probability": 0.4602 + }, + { + "start": 17293.8, + "end": 17293.98, + "probability": 0.1161 + }, + { + "start": 17294.02, + "end": 17294.78, + "probability": 0.1605 + }, + { + "start": 17295.62, + "end": 17295.94, + "probability": 0.1499 + }, + { + "start": 17296.77, + "end": 17297.49, + "probability": 0.0511 + }, + { + "start": 17312.62, + "end": 17315.56, + "probability": 0.9783 + }, + { + "start": 17315.7, + "end": 17318.04, + "probability": 0.9913 + }, + { + "start": 17319.29, + "end": 17321.64, + "probability": 0.4775 + }, + { + "start": 17321.74, + "end": 17322.4, + "probability": 0.793 + }, + { + "start": 17322.56, + "end": 17326.3, + "probability": 0.9886 + }, + { + "start": 17326.3, + "end": 17329.98, + "probability": 0.9941 + }, + { + "start": 17330.74, + "end": 17332.98, + "probability": 0.8034 + }, + { + "start": 17333.66, + "end": 17337.7, + "probability": 0.7717 + }, + { + "start": 17338.02, + "end": 17339.42, + "probability": 0.7385 + }, + { + "start": 17340.04, + "end": 17342.52, + "probability": 0.9371 + }, + { + "start": 17343.3, + "end": 17345.86, + "probability": 0.9926 + }, + { + "start": 17346.42, + "end": 17351.82, + "probability": 0.9871 + }, + { + "start": 17352.94, + "end": 17355.94, + "probability": 0.9791 + }, + { + "start": 17356.96, + "end": 17357.82, + "probability": 0.7598 + }, + { + "start": 17358.18, + "end": 17361.52, + "probability": 0.9939 + }, + { + "start": 17362.26, + "end": 17363.6, + "probability": 0.9833 + }, + { + "start": 17364.46, + "end": 17366.44, + "probability": 0.9612 + }, + { + "start": 17367.2, + "end": 17367.9, + "probability": 0.8798 + }, + { + "start": 17367.98, + "end": 17372.72, + "probability": 0.9852 + }, + { + "start": 17373.14, + "end": 17374.7, + "probability": 0.96 + }, + { + "start": 17375.32, + "end": 17377.92, + "probability": 0.9951 + }, + { + "start": 17377.92, + "end": 17381.62, + "probability": 0.9927 + }, + { + "start": 17382.18, + "end": 17386.36, + "probability": 0.9907 + }, + { + "start": 17387.34, + "end": 17392.9, + "probability": 0.9972 + }, + { + "start": 17393.04, + "end": 17395.56, + "probability": 0.9971 + }, + { + "start": 17396.3, + "end": 17400.36, + "probability": 0.8695 + }, + { + "start": 17400.88, + "end": 17403.46, + "probability": 0.9926 + }, + { + "start": 17404.1, + "end": 17406.2, + "probability": 0.9881 + }, + { + "start": 17406.7, + "end": 17407.3, + "probability": 0.7981 + }, + { + "start": 17407.52, + "end": 17411.76, + "probability": 0.993 + }, + { + "start": 17412.42, + "end": 17413.92, + "probability": 0.6267 + }, + { + "start": 17415.9, + "end": 17419.5, + "probability": 0.9948 + }, + { + "start": 17419.5, + "end": 17424.46, + "probability": 0.999 + }, + { + "start": 17424.46, + "end": 17429.22, + "probability": 0.9985 + }, + { + "start": 17429.94, + "end": 17433.38, + "probability": 0.9643 + }, + { + "start": 17433.88, + "end": 17436.2, + "probability": 0.9929 + }, + { + "start": 17436.76, + "end": 17438.04, + "probability": 0.9058 + }, + { + "start": 17438.5, + "end": 17443.48, + "probability": 0.9832 + }, + { + "start": 17444.84, + "end": 17447.42, + "probability": 0.9872 + }, + { + "start": 17447.42, + "end": 17450.16, + "probability": 0.9993 + }, + { + "start": 17450.98, + "end": 17453.24, + "probability": 0.9918 + }, + { + "start": 17453.38, + "end": 17453.98, + "probability": 0.5326 + }, + { + "start": 17454.2, + "end": 17454.76, + "probability": 0.9338 + }, + { + "start": 17455.22, + "end": 17457.6, + "probability": 0.9647 + }, + { + "start": 17458.0, + "end": 17461.18, + "probability": 0.9976 + }, + { + "start": 17461.18, + "end": 17465.06, + "probability": 0.9945 + }, + { + "start": 17465.5, + "end": 17469.36, + "probability": 0.9653 + }, + { + "start": 17469.36, + "end": 17472.84, + "probability": 0.993 + }, + { + "start": 17473.04, + "end": 17476.76, + "probability": 0.9753 + }, + { + "start": 17476.82, + "end": 17479.96, + "probability": 0.9941 + }, + { + "start": 17480.48, + "end": 17482.7, + "probability": 0.7809 + }, + { + "start": 17483.16, + "end": 17488.76, + "probability": 0.9761 + }, + { + "start": 17489.2, + "end": 17491.08, + "probability": 0.7884 + }, + { + "start": 17491.84, + "end": 17493.42, + "probability": 0.9473 + }, + { + "start": 17493.64, + "end": 17493.9, + "probability": 0.4794 + }, + { + "start": 17495.88, + "end": 17496.66, + "probability": 0.8781 + }, + { + "start": 17497.86, + "end": 17498.8, + "probability": 0.9097 + }, + { + "start": 17498.88, + "end": 17500.76, + "probability": 0.7999 + }, + { + "start": 17501.3, + "end": 17502.18, + "probability": 0.7499 + }, + { + "start": 17502.9, + "end": 17504.04, + "probability": 0.9884 + }, + { + "start": 17505.98, + "end": 17506.86, + "probability": 0.9561 + }, + { + "start": 17507.9, + "end": 17511.43, + "probability": 0.9761 + }, + { + "start": 17513.02, + "end": 17513.98, + "probability": 0.9728 + }, + { + "start": 17515.08, + "end": 17516.96, + "probability": 0.9632 + }, + { + "start": 17517.64, + "end": 17520.46, + "probability": 0.966 + }, + { + "start": 17521.44, + "end": 17522.16, + "probability": 0.9588 + }, + { + "start": 17522.86, + "end": 17525.32, + "probability": 0.9848 + }, + { + "start": 17526.54, + "end": 17527.36, + "probability": 0.9922 + }, + { + "start": 17528.06, + "end": 17529.34, + "probability": 0.9818 + }, + { + "start": 17530.64, + "end": 17531.44, + "probability": 0.995 + }, + { + "start": 17532.1, + "end": 17533.68, + "probability": 0.9962 + }, + { + "start": 17534.38, + "end": 17535.12, + "probability": 0.6337 + }, + { + "start": 17535.72, + "end": 17537.0, + "probability": 0.8971 + }, + { + "start": 17554.72, + "end": 17557.5, + "probability": 0.6653 + }, + { + "start": 17558.9, + "end": 17559.72, + "probability": 0.9116 + }, + { + "start": 17560.88, + "end": 17563.0, + "probability": 0.9854 + }, + { + "start": 17563.96, + "end": 17569.1, + "probability": 0.7585 + }, + { + "start": 17570.46, + "end": 17572.02, + "probability": 0.8506 + }, + { + "start": 17572.8, + "end": 17574.66, + "probability": 0.8227 + }, + { + "start": 17576.58, + "end": 17578.4, + "probability": 0.6387 + }, + { + "start": 17579.5, + "end": 17582.52, + "probability": 0.8683 + }, + { + "start": 17583.36, + "end": 17585.3, + "probability": 0.5764 + }, + { + "start": 17586.58, + "end": 17587.1, + "probability": 0.9434 + }, + { + "start": 17588.3, + "end": 17589.82, + "probability": 0.966 + }, + { + "start": 17591.22, + "end": 17594.08, + "probability": 0.9876 + }, + { + "start": 17595.26, + "end": 17596.92, + "probability": 0.971 + }, + { + "start": 17598.34, + "end": 17601.08, + "probability": 0.9058 + }, + { + "start": 17601.6, + "end": 17605.04, + "probability": 0.6054 + }, + { + "start": 17606.54, + "end": 17610.22, + "probability": 0.9651 + }, + { + "start": 17611.84, + "end": 17614.92, + "probability": 0.9766 + }, + { + "start": 17615.9, + "end": 17616.64, + "probability": 0.7328 + }, + { + "start": 17617.64, + "end": 17618.34, + "probability": 0.7505 + }, + { + "start": 17619.22, + "end": 17623.1, + "probability": 0.9965 + }, + { + "start": 17624.06, + "end": 17625.68, + "probability": 0.5107 + }, + { + "start": 17627.12, + "end": 17629.5, + "probability": 0.9976 + }, + { + "start": 17632.86, + "end": 17638.04, + "probability": 0.9952 + }, + { + "start": 17639.22, + "end": 17642.08, + "probability": 0.9921 + }, + { + "start": 17642.46, + "end": 17645.34, + "probability": 0.9885 + }, + { + "start": 17645.56, + "end": 17646.4, + "probability": 0.7894 + }, + { + "start": 17646.5, + "end": 17646.72, + "probability": 0.7584 + }, + { + "start": 17647.98, + "end": 17650.22, + "probability": 0.9965 + }, + { + "start": 17650.52, + "end": 17652.36, + "probability": 0.9296 + }, + { + "start": 17653.0, + "end": 17654.46, + "probability": 0.648 + }, + { + "start": 17655.06, + "end": 17656.72, + "probability": 0.7121 + }, + { + "start": 17657.41, + "end": 17659.94, + "probability": 0.9966 + }, + { + "start": 17660.86, + "end": 17664.02, + "probability": 0.9952 + }, + { + "start": 17664.7, + "end": 17666.74, + "probability": 0.9744 + }, + { + "start": 17668.08, + "end": 17672.38, + "probability": 0.9395 + }, + { + "start": 17673.24, + "end": 17673.98, + "probability": 0.9328 + }, + { + "start": 17675.02, + "end": 17679.84, + "probability": 0.9729 + }, + { + "start": 17680.28, + "end": 17681.16, + "probability": 0.749 + }, + { + "start": 17681.48, + "end": 17682.44, + "probability": 0.9263 + }, + { + "start": 17683.16, + "end": 17684.6, + "probability": 0.9606 + }, + { + "start": 17685.72, + "end": 17687.62, + "probability": 0.8706 + }, + { + "start": 17688.74, + "end": 17691.78, + "probability": 0.9954 + }, + { + "start": 17691.92, + "end": 17694.02, + "probability": 0.9157 + }, + { + "start": 17695.44, + "end": 17702.06, + "probability": 0.9758 + }, + { + "start": 17702.78, + "end": 17704.9, + "probability": 0.7479 + }, + { + "start": 17705.54, + "end": 17706.5, + "probability": 0.9246 + }, + { + "start": 17707.1, + "end": 17710.5, + "probability": 0.8538 + }, + { + "start": 17710.86, + "end": 17711.1, + "probability": 0.7119 + }, + { + "start": 17714.24, + "end": 17715.22, + "probability": 0.7566 + }, + { + "start": 17715.84, + "end": 17717.46, + "probability": 0.9386 + }, + { + "start": 17719.22, + "end": 17721.82, + "probability": 0.9852 + }, + { + "start": 17722.56, + "end": 17723.32, + "probability": 0.7666 + }, + { + "start": 17724.66, + "end": 17726.28, + "probability": 0.9437 + }, + { + "start": 17728.44, + "end": 17730.1, + "probability": 0.9663 + }, + { + "start": 17730.8, + "end": 17733.28, + "probability": 0.9417 + }, + { + "start": 17733.92, + "end": 17735.5, + "probability": 0.9812 + }, + { + "start": 17736.22, + "end": 17736.94, + "probability": 0.9753 + }, + { + "start": 17737.6, + "end": 17740.46, + "probability": 0.8502 + }, + { + "start": 17743.58, + "end": 17744.22, + "probability": 0.5049 + }, + { + "start": 17745.66, + "end": 17748.08, + "probability": 0.9364 + }, + { + "start": 17749.36, + "end": 17751.84, + "probability": 0.9324 + }, + { + "start": 17752.94, + "end": 17753.68, + "probability": 0.9499 + }, + { + "start": 17754.32, + "end": 17756.72, + "probability": 0.7819 + }, + { + "start": 17757.86, + "end": 17758.76, + "probability": 0.9937 + }, + { + "start": 17759.36, + "end": 17760.56, + "probability": 0.9954 + }, + { + "start": 17762.8, + "end": 17763.6, + "probability": 0.6051 + }, + { + "start": 17764.18, + "end": 17766.0, + "probability": 0.8956 + }, + { + "start": 17766.9, + "end": 17767.6, + "probability": 0.9379 + }, + { + "start": 17768.18, + "end": 17768.8, + "probability": 0.9889 + }, + { + "start": 17769.38, + "end": 17770.22, + "probability": 0.803 + }, + { + "start": 17773.06, + "end": 17773.94, + "probability": 0.9684 + }, + { + "start": 17774.64, + "end": 17776.18, + "probability": 0.9963 + }, + { + "start": 17778.06, + "end": 17781.64, + "probability": 0.9919 + }, + { + "start": 17782.68, + "end": 17785.62, + "probability": 0.9799 + }, + { + "start": 17786.48, + "end": 17789.24, + "probability": 0.8422 + }, + { + "start": 17790.44, + "end": 17791.0, + "probability": 0.6372 + }, + { + "start": 17791.14, + "end": 17793.08, + "probability": 0.9212 + }, + { + "start": 17793.66, + "end": 17796.32, + "probability": 0.827 + }, + { + "start": 17814.8, + "end": 17815.5, + "probability": 0.6934 + }, + { + "start": 17815.62, + "end": 17818.12, + "probability": 0.985 + }, + { + "start": 17818.26, + "end": 17819.02, + "probability": 0.488 + }, + { + "start": 17819.18, + "end": 17819.56, + "probability": 0.3293 + }, + { + "start": 17819.58, + "end": 17820.0, + "probability": 0.5995 + }, + { + "start": 17821.02, + "end": 17821.94, + "probability": 0.8447 + }, + { + "start": 17821.98, + "end": 17823.86, + "probability": 0.9889 + }, + { + "start": 17824.16, + "end": 17825.74, + "probability": 0.8309 + }, + { + "start": 17826.18, + "end": 17826.81, + "probability": 0.8366 + }, + { + "start": 17827.22, + "end": 17827.44, + "probability": 0.7664 + }, + { + "start": 17827.98, + "end": 17828.42, + "probability": 0.8171 + }, + { + "start": 17829.98, + "end": 17831.5, + "probability": 0.735 + }, + { + "start": 17831.82, + "end": 17833.02, + "probability": 0.7862 + }, + { + "start": 17834.94, + "end": 17835.24, + "probability": 0.8869 + }, + { + "start": 17835.86, + "end": 17837.36, + "probability": 0.9124 + }, + { + "start": 17838.02, + "end": 17838.02, + "probability": 0.7941 + }, + { + "start": 17838.08, + "end": 17840.31, + "probability": 0.5193 + }, + { + "start": 17842.56, + "end": 17843.94, + "probability": 0.5917 + }, + { + "start": 17846.06, + "end": 17847.48, + "probability": 0.8886 + }, + { + "start": 17850.9, + "end": 17851.78, + "probability": 0.9176 + }, + { + "start": 17852.82, + "end": 17853.94, + "probability": 0.4001 + }, + { + "start": 17854.48, + "end": 17856.26, + "probability": 0.9467 + }, + { + "start": 17857.12, + "end": 17857.78, + "probability": 0.6808 + }, + { + "start": 17858.28, + "end": 17859.1, + "probability": 0.8212 + }, + { + "start": 17859.34, + "end": 17860.25, + "probability": 0.957 + }, + { + "start": 17860.34, + "end": 17861.76, + "probability": 0.8008 + }, + { + "start": 17861.8, + "end": 17862.22, + "probability": 0.0295 + }, + { + "start": 17863.14, + "end": 17864.02, + "probability": 0.9402 + }, + { + "start": 17864.08, + "end": 17867.92, + "probability": 0.885 + }, + { + "start": 17869.46, + "end": 17872.84, + "probability": 0.9505 + }, + { + "start": 17872.84, + "end": 17875.66, + "probability": 0.9819 + }, + { + "start": 17876.84, + "end": 17877.38, + "probability": 0.4081 + }, + { + "start": 17877.56, + "end": 17879.34, + "probability": 0.9573 + }, + { + "start": 17879.66, + "end": 17880.48, + "probability": 0.6369 + }, + { + "start": 17880.64, + "end": 17881.36, + "probability": 0.8564 + }, + { + "start": 17882.06, + "end": 17883.2, + "probability": 0.6885 + }, + { + "start": 17883.22, + "end": 17889.76, + "probability": 0.835 + }, + { + "start": 17892.18, + "end": 17895.26, + "probability": 0.8684 + }, + { + "start": 17895.72, + "end": 17898.3, + "probability": 0.8153 + }, + { + "start": 17900.5, + "end": 17903.92, + "probability": 0.847 + }, + { + "start": 17905.08, + "end": 17907.62, + "probability": 0.9208 + }, + { + "start": 17908.16, + "end": 17909.3, + "probability": 0.983 + }, + { + "start": 17909.44, + "end": 17910.5, + "probability": 0.9461 + }, + { + "start": 17910.82, + "end": 17914.22, + "probability": 0.8828 + }, + { + "start": 17915.06, + "end": 17915.94, + "probability": 0.929 + }, + { + "start": 17915.98, + "end": 17916.88, + "probability": 0.8464 + }, + { + "start": 17917.0, + "end": 17917.76, + "probability": 0.9326 + }, + { + "start": 17918.2, + "end": 17918.95, + "probability": 0.4938 + }, + { + "start": 17919.8, + "end": 17923.2, + "probability": 0.9657 + }, + { + "start": 17923.78, + "end": 17924.48, + "probability": 0.743 + }, + { + "start": 17924.66, + "end": 17929.08, + "probability": 0.9932 + }, + { + "start": 17929.14, + "end": 17930.08, + "probability": 0.9465 + }, + { + "start": 17930.98, + "end": 17932.64, + "probability": 0.9564 + }, + { + "start": 17932.94, + "end": 17933.46, + "probability": 0.9944 + }, + { + "start": 17934.08, + "end": 17938.35, + "probability": 0.9937 + }, + { + "start": 17938.7, + "end": 17939.34, + "probability": 0.8836 + }, + { + "start": 17939.78, + "end": 17939.88, + "probability": 0.9318 + }, + { + "start": 17940.74, + "end": 17941.72, + "probability": 0.9269 + }, + { + "start": 17942.04, + "end": 17943.18, + "probability": 0.7957 + }, + { + "start": 17943.56, + "end": 17948.26, + "probability": 0.9507 + }, + { + "start": 17948.26, + "end": 17952.56, + "probability": 0.9907 + }, + { + "start": 17952.92, + "end": 17953.84, + "probability": 0.7722 + }, + { + "start": 17954.64, + "end": 17957.36, + "probability": 0.9155 + }, + { + "start": 17957.78, + "end": 17959.22, + "probability": 0.9791 + }, + { + "start": 17960.41, + "end": 17963.62, + "probability": 0.9602 + }, + { + "start": 17963.7, + "end": 17965.3, + "probability": 0.9655 + }, + { + "start": 17965.38, + "end": 17968.4, + "probability": 0.9127 + }, + { + "start": 17969.4, + "end": 17970.88, + "probability": 0.7581 + }, + { + "start": 17971.28, + "end": 17973.04, + "probability": 0.8203 + }, + { + "start": 17973.34, + "end": 17976.82, + "probability": 0.8667 + }, + { + "start": 17977.42, + "end": 17982.92, + "probability": 0.979 + }, + { + "start": 17983.3, + "end": 17985.46, + "probability": 0.8935 + }, + { + "start": 17985.72, + "end": 17986.38, + "probability": 0.8772 + }, + { + "start": 17986.48, + "end": 17987.12, + "probability": 0.7996 + }, + { + "start": 17987.78, + "end": 17990.0, + "probability": 0.813 + }, + { + "start": 17990.32, + "end": 17991.78, + "probability": 0.9157 + }, + { + "start": 17992.2, + "end": 17993.22, + "probability": 0.9854 + }, + { + "start": 17993.34, + "end": 17994.6, + "probability": 0.9871 + }, + { + "start": 17995.04, + "end": 17996.63, + "probability": 0.9912 + }, + { + "start": 17997.58, + "end": 17997.64, + "probability": 0.9583 + }, + { + "start": 17997.66, + "end": 17998.52, + "probability": 0.9317 + }, + { + "start": 17998.66, + "end": 17999.28, + "probability": 0.7419 + }, + { + "start": 17999.38, + "end": 17999.98, + "probability": 0.6671 + }, + { + "start": 18000.1, + "end": 18000.84, + "probability": 0.5029 + }, + { + "start": 18001.28, + "end": 18002.16, + "probability": 0.948 + }, + { + "start": 18002.82, + "end": 18003.1, + "probability": 0.6044 + }, + { + "start": 18003.18, + "end": 18004.18, + "probability": 0.9778 + }, + { + "start": 18004.52, + "end": 18004.9, + "probability": 0.9489 + }, + { + "start": 18005.0, + "end": 18005.5, + "probability": 0.9528 + }, + { + "start": 18006.38, + "end": 18008.6, + "probability": 0.9493 + }, + { + "start": 18008.9, + "end": 18010.0, + "probability": 0.9437 + }, + { + "start": 18010.56, + "end": 18016.66, + "probability": 0.9135 + }, + { + "start": 18016.66, + "end": 18021.78, + "probability": 0.9829 + }, + { + "start": 18021.9, + "end": 18022.66, + "probability": 0.7822 + }, + { + "start": 18023.1, + "end": 18023.6, + "probability": 0.4703 + }, + { + "start": 18023.68, + "end": 18023.9, + "probability": 0.6213 + }, + { + "start": 18023.96, + "end": 18026.16, + "probability": 0.9523 + }, + { + "start": 18026.6, + "end": 18027.55, + "probability": 0.7969 + }, + { + "start": 18027.96, + "end": 18030.9, + "probability": 0.947 + }, + { + "start": 18031.44, + "end": 18032.56, + "probability": 0.9751 + }, + { + "start": 18033.58, + "end": 18039.42, + "probability": 0.8926 + }, + { + "start": 18039.42, + "end": 18042.48, + "probability": 0.9883 + }, + { + "start": 18042.52, + "end": 18043.15, + "probability": 0.703 + }, + { + "start": 18043.56, + "end": 18045.58, + "probability": 0.9886 + }, + { + "start": 18046.58, + "end": 18049.2, + "probability": 0.9839 + }, + { + "start": 18049.2, + "end": 18051.2, + "probability": 0.7733 + }, + { + "start": 18051.28, + "end": 18052.0, + "probability": 0.9604 + }, + { + "start": 18052.12, + "end": 18052.38, + "probability": 0.6942 + }, + { + "start": 18052.42, + "end": 18053.14, + "probability": 0.8581 + }, + { + "start": 18054.0, + "end": 18055.6, + "probability": 0.7348 + }, + { + "start": 18055.9, + "end": 18060.04, + "probability": 0.8924 + }, + { + "start": 18060.24, + "end": 18062.3, + "probability": 0.8721 + }, + { + "start": 18062.32, + "end": 18062.68, + "probability": 0.4462 + }, + { + "start": 18062.68, + "end": 18068.06, + "probability": 0.9568 + }, + { + "start": 18068.48, + "end": 18069.5, + "probability": 0.9751 + }, + { + "start": 18069.92, + "end": 18070.8, + "probability": 0.7155 + }, + { + "start": 18071.1, + "end": 18073.68, + "probability": 0.9882 + }, + { + "start": 18074.0, + "end": 18074.54, + "probability": 0.8027 + }, + { + "start": 18074.72, + "end": 18075.56, + "probability": 0.8178 + }, + { + "start": 18076.9, + "end": 18079.4, + "probability": 0.8973 + }, + { + "start": 18099.06, + "end": 18102.38, + "probability": 0.7302 + }, + { + "start": 18103.78, + "end": 18105.78, + "probability": 0.8589 + }, + { + "start": 18106.68, + "end": 18108.86, + "probability": 0.9904 + }, + { + "start": 18110.36, + "end": 18115.36, + "probability": 0.9957 + }, + { + "start": 18116.18, + "end": 18118.8, + "probability": 0.9712 + }, + { + "start": 18120.18, + "end": 18126.04, + "probability": 0.9948 + }, + { + "start": 18127.24, + "end": 18130.78, + "probability": 0.9431 + }, + { + "start": 18131.64, + "end": 18132.72, + "probability": 0.9962 + }, + { + "start": 18132.9, + "end": 18134.32, + "probability": 0.7008 + }, + { + "start": 18134.76, + "end": 18136.34, + "probability": 0.9571 + }, + { + "start": 18137.12, + "end": 18139.98, + "probability": 0.9829 + }, + { + "start": 18140.6, + "end": 18144.68, + "probability": 0.8198 + }, + { + "start": 18145.86, + "end": 18147.76, + "probability": 0.7992 + }, + { + "start": 18148.28, + "end": 18149.42, + "probability": 0.9771 + }, + { + "start": 18150.78, + "end": 18153.44, + "probability": 0.9797 + }, + { + "start": 18153.96, + "end": 18156.54, + "probability": 0.9906 + }, + { + "start": 18158.04, + "end": 18159.9, + "probability": 0.932 + }, + { + "start": 18160.72, + "end": 18164.52, + "probability": 0.9982 + }, + { + "start": 18164.52, + "end": 18167.46, + "probability": 0.9697 + }, + { + "start": 18168.88, + "end": 18173.82, + "probability": 0.9938 + }, + { + "start": 18174.38, + "end": 18177.45, + "probability": 0.7162 + }, + { + "start": 18179.24, + "end": 18186.32, + "probability": 0.9642 + }, + { + "start": 18187.26, + "end": 18189.96, + "probability": 0.9788 + }, + { + "start": 18191.06, + "end": 18191.72, + "probability": 0.9733 + }, + { + "start": 18192.14, + "end": 18193.08, + "probability": 0.8105 + }, + { + "start": 18194.06, + "end": 18197.14, + "probability": 0.9866 + }, + { + "start": 18197.14, + "end": 18201.98, + "probability": 0.993 + }, + { + "start": 18202.42, + "end": 18203.38, + "probability": 0.884 + }, + { + "start": 18203.8, + "end": 18205.02, + "probability": 0.9417 + }, + { + "start": 18206.34, + "end": 18206.94, + "probability": 0.976 + }, + { + "start": 18208.4, + "end": 18211.18, + "probability": 0.9967 + }, + { + "start": 18211.18, + "end": 18215.4, + "probability": 0.987 + }, + { + "start": 18215.98, + "end": 18217.68, + "probability": 0.8194 + }, + { + "start": 18218.32, + "end": 18221.66, + "probability": 0.9902 + }, + { + "start": 18222.9, + "end": 18223.4, + "probability": 0.582 + }, + { + "start": 18223.9, + "end": 18226.14, + "probability": 0.6515 + }, + { + "start": 18226.22, + "end": 18226.66, + "probability": 0.6375 + }, + { + "start": 18227.4, + "end": 18230.88, + "probability": 0.9811 + }, + { + "start": 18231.44, + "end": 18232.34, + "probability": 0.9389 + }, + { + "start": 18232.86, + "end": 18237.18, + "probability": 0.9793 + }, + { + "start": 18238.26, + "end": 18238.86, + "probability": 0.8718 + }, + { + "start": 18239.14, + "end": 18239.58, + "probability": 0.8312 + }, + { + "start": 18239.66, + "end": 18243.94, + "probability": 0.9722 + }, + { + "start": 18244.26, + "end": 18245.56, + "probability": 0.8154 + }, + { + "start": 18246.44, + "end": 18247.44, + "probability": 0.9379 + }, + { + "start": 18248.4, + "end": 18249.52, + "probability": 0.7172 + }, + { + "start": 18250.4, + "end": 18254.14, + "probability": 0.978 + }, + { + "start": 18255.56, + "end": 18256.22, + "probability": 0.7882 + }, + { + "start": 18256.88, + "end": 18261.8, + "probability": 0.9972 + }, + { + "start": 18261.8, + "end": 18266.72, + "probability": 0.9981 + }, + { + "start": 18268.16, + "end": 18271.42, + "probability": 0.8176 + }, + { + "start": 18271.96, + "end": 18274.96, + "probability": 0.9888 + }, + { + "start": 18274.96, + "end": 18278.08, + "probability": 0.999 + }, + { + "start": 18279.2, + "end": 18279.9, + "probability": 0.5576 + }, + { + "start": 18280.56, + "end": 18280.84, + "probability": 0.5747 + }, + { + "start": 18281.18, + "end": 18283.39, + "probability": 0.8715 + }, + { + "start": 18284.3, + "end": 18284.88, + "probability": 0.3911 + }, + { + "start": 18285.28, + "end": 18286.36, + "probability": 0.8102 + }, + { + "start": 18286.94, + "end": 18289.44, + "probability": 0.9973 + }, + { + "start": 18290.02, + "end": 18291.02, + "probability": 0.9844 + }, + { + "start": 18291.72, + "end": 18295.44, + "probability": 0.0744 + }, + { + "start": 18296.12, + "end": 18296.62, + "probability": 0.6631 + }, + { + "start": 18297.6, + "end": 18298.0, + "probability": 0.481 + }, + { + "start": 18298.08, + "end": 18298.6, + "probability": 0.8975 + }, + { + "start": 18298.9, + "end": 18299.46, + "probability": 0.6601 + }, + { + "start": 18299.62, + "end": 18301.9, + "probability": 0.9796 + }, + { + "start": 18302.54, + "end": 18305.28, + "probability": 0.9913 + }, + { + "start": 18305.8, + "end": 18307.52, + "probability": 0.9358 + }, + { + "start": 18307.78, + "end": 18309.39, + "probability": 0.9956 + }, + { + "start": 18309.94, + "end": 18310.04, + "probability": 0.3553 + }, + { + "start": 18310.16, + "end": 18312.55, + "probability": 0.6788 + }, + { + "start": 18312.96, + "end": 18314.6, + "probability": 0.8467 + }, + { + "start": 18316.34, + "end": 18317.04, + "probability": 0.6527 + }, + { + "start": 18318.66, + "end": 18321.52, + "probability": 0.8413 + }, + { + "start": 18323.68, + "end": 18325.16, + "probability": 0.7554 + }, + { + "start": 18326.14, + "end": 18328.38, + "probability": 0.953 + }, + { + "start": 18328.5, + "end": 18329.1, + "probability": 0.7047 + }, + { + "start": 18329.45, + "end": 18330.44, + "probability": 0.9961 + }, + { + "start": 18330.86, + "end": 18331.6, + "probability": 0.7437 + }, + { + "start": 18333.32, + "end": 18335.24, + "probability": 0.8657 + }, + { + "start": 18335.92, + "end": 18337.4, + "probability": 0.9839 + }, + { + "start": 18338.44, + "end": 18339.12, + "probability": 0.7392 + }, + { + "start": 18339.66, + "end": 18344.62, + "probability": 0.9373 + }, + { + "start": 18352.88, + "end": 18353.34, + "probability": 0.1377 + }, + { + "start": 18357.92, + "end": 18360.22, + "probability": 0.7822 + }, + { + "start": 18362.32, + "end": 18363.3, + "probability": 0.7087 + }, + { + "start": 18363.56, + "end": 18365.0, + "probability": 0.6974 + }, + { + "start": 18365.2, + "end": 18366.9, + "probability": 0.8181 + }, + { + "start": 18367.36, + "end": 18367.8, + "probability": 0.7414 + }, + { + "start": 18367.86, + "end": 18368.62, + "probability": 0.9589 + }, + { + "start": 18368.66, + "end": 18369.72, + "probability": 0.7753 + }, + { + "start": 18369.74, + "end": 18370.26, + "probability": 0.8273 + }, + { + "start": 18370.3, + "end": 18370.74, + "probability": 0.9258 + }, + { + "start": 18370.82, + "end": 18372.2, + "probability": 0.99 + }, + { + "start": 18372.38, + "end": 18372.92, + "probability": 0.9739 + }, + { + "start": 18373.8, + "end": 18374.42, + "probability": 0.8011 + }, + { + "start": 18375.04, + "end": 18376.06, + "probability": 0.8445 + }, + { + "start": 18376.28, + "end": 18377.18, + "probability": 0.9584 + }, + { + "start": 18377.4, + "end": 18379.36, + "probability": 0.9724 + }, + { + "start": 18380.34, + "end": 18382.58, + "probability": 0.7611 + }, + { + "start": 18384.08, + "end": 18386.02, + "probability": 0.981 + }, + { + "start": 18386.9, + "end": 18387.34, + "probability": 0.9823 + }, + { + "start": 18388.46, + "end": 18390.74, + "probability": 0.7319 + }, + { + "start": 18393.22, + "end": 18393.48, + "probability": 0.2619 + }, + { + "start": 18393.88, + "end": 18396.34, + "probability": 0.8032 + }, + { + "start": 18397.24, + "end": 18397.84, + "probability": 0.8145 + }, + { + "start": 18398.7, + "end": 18399.52, + "probability": 0.7809 + }, + { + "start": 18400.64, + "end": 18402.2, + "probability": 0.7542 + }, + { + "start": 18403.0, + "end": 18403.12, + "probability": 0.2653 + }, + { + "start": 18403.12, + "end": 18403.26, + "probability": 0.6119 + }, + { + "start": 18403.98, + "end": 18409.7, + "probability": 0.7679 + }, + { + "start": 18409.76, + "end": 18411.12, + "probability": 0.963 + }, + { + "start": 18411.46, + "end": 18412.04, + "probability": 0.8143 + }, + { + "start": 18412.1, + "end": 18412.62, + "probability": 0.5098 + }, + { + "start": 18412.66, + "end": 18413.82, + "probability": 0.9438 + }, + { + "start": 18414.75, + "end": 18419.34, + "probability": 0.0614 + }, + { + "start": 18419.4, + "end": 18419.88, + "probability": 0.3823 + }, + { + "start": 18420.04, + "end": 18421.96, + "probability": 0.8956 + }, + { + "start": 18423.66, + "end": 18427.28, + "probability": 0.969 + }, + { + "start": 18428.44, + "end": 18429.04, + "probability": 0.8807 + }, + { + "start": 18430.18, + "end": 18431.8, + "probability": 0.9928 + }, + { + "start": 18431.8, + "end": 18433.54, + "probability": 0.998 + }, + { + "start": 18433.6, + "end": 18436.1, + "probability": 0.9377 + }, + { + "start": 18436.16, + "end": 18436.8, + "probability": 0.1241 + }, + { + "start": 18436.82, + "end": 18438.73, + "probability": 0.9888 + }, + { + "start": 18440.8, + "end": 18444.5, + "probability": 0.4944 + }, + { + "start": 18444.5, + "end": 18444.5, + "probability": 0.0723 + }, + { + "start": 18444.5, + "end": 18444.5, + "probability": 0.1589 + }, + { + "start": 18444.5, + "end": 18444.98, + "probability": 0.1491 + }, + { + "start": 18445.2, + "end": 18446.58, + "probability": 0.5646 + }, + { + "start": 18447.24, + "end": 18448.12, + "probability": 0.8586 + }, + { + "start": 18450.32, + "end": 18450.72, + "probability": 0.0179 + }, + { + "start": 18450.72, + "end": 18450.84, + "probability": 0.1314 + }, + { + "start": 18450.84, + "end": 18452.36, + "probability": 0.7529 + }, + { + "start": 18452.42, + "end": 18453.88, + "probability": 0.8718 + }, + { + "start": 18453.92, + "end": 18454.26, + "probability": 0.598 + }, + { + "start": 18454.28, + "end": 18455.98, + "probability": 0.988 + }, + { + "start": 18456.16, + "end": 18457.46, + "probability": 0.2608 + }, + { + "start": 18458.3, + "end": 18458.42, + "probability": 0.0331 + }, + { + "start": 18458.42, + "end": 18460.32, + "probability": 0.9106 + }, + { + "start": 18461.08, + "end": 18461.94, + "probability": 0.891 + }, + { + "start": 18461.98, + "end": 18463.08, + "probability": 0.8461 + }, + { + "start": 18463.12, + "end": 18463.74, + "probability": 0.9059 + }, + { + "start": 18463.8, + "end": 18464.4, + "probability": 0.9536 + }, + { + "start": 18465.36, + "end": 18466.04, + "probability": 0.9302 + }, + { + "start": 18466.3, + "end": 18467.2, + "probability": 0.3199 + }, + { + "start": 18467.2, + "end": 18468.98, + "probability": 0.8731 + }, + { + "start": 18469.12, + "end": 18469.86, + "probability": 0.3344 + }, + { + "start": 18470.46, + "end": 18471.8, + "probability": 0.9504 + }, + { + "start": 18471.98, + "end": 18473.06, + "probability": 0.7147 + }, + { + "start": 18473.06, + "end": 18473.92, + "probability": 0.1656 + }, + { + "start": 18474.04, + "end": 18475.94, + "probability": 0.9864 + }, + { + "start": 18476.02, + "end": 18476.52, + "probability": 0.177 + }, + { + "start": 18476.54, + "end": 18477.98, + "probability": 0.359 + }, + { + "start": 18478.06, + "end": 18480.0, + "probability": 0.9937 + }, + { + "start": 18480.4, + "end": 18482.96, + "probability": 0.9098 + }, + { + "start": 18483.13, + "end": 18483.22, + "probability": 0.1235 + }, + { + "start": 18483.3, + "end": 18486.06, + "probability": 0.9822 + }, + { + "start": 18486.18, + "end": 18486.7, + "probability": 0.8919 + }, + { + "start": 18486.86, + "end": 18487.1, + "probability": 0.4553 + }, + { + "start": 18487.16, + "end": 18487.72, + "probability": 0.5699 + }, + { + "start": 18487.72, + "end": 18488.22, + "probability": 0.1817 + }, + { + "start": 18489.62, + "end": 18490.7, + "probability": 0.5551 + }, + { + "start": 18490.72, + "end": 18494.29, + "probability": 0.9272 + }, + { + "start": 18494.32, + "end": 18494.7, + "probability": 0.228 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.3706 + }, + { + "start": 18495.02, + "end": 18496.0, + "probability": 0.5721 + }, + { + "start": 18496.2, + "end": 18496.72, + "probability": 0.6625 + }, + { + "start": 18496.76, + "end": 18497.92, + "probability": 0.98 + }, + { + "start": 18498.0, + "end": 18498.52, + "probability": 0.5507 + }, + { + "start": 18498.64, + "end": 18500.46, + "probability": 0.7246 + }, + { + "start": 18500.84, + "end": 18500.86, + "probability": 0.0045 + }, + { + "start": 18500.86, + "end": 18501.8, + "probability": 0.917 + }, + { + "start": 18502.18, + "end": 18504.94, + "probability": 0.9919 + }, + { + "start": 18505.04, + "end": 18506.02, + "probability": 0.9795 + }, + { + "start": 18506.16, + "end": 18507.7, + "probability": 0.2778 + }, + { + "start": 18508.26, + "end": 18509.38, + "probability": 0.7197 + }, + { + "start": 18509.5, + "end": 18510.86, + "probability": 0.9399 + }, + { + "start": 18511.24, + "end": 18512.22, + "probability": 0.8386 + }, + { + "start": 18512.8, + "end": 18517.02, + "probability": 0.9066 + }, + { + "start": 18517.38, + "end": 18517.74, + "probability": 0.582 + }, + { + "start": 18518.4, + "end": 18521.08, + "probability": 0.939 + }, + { + "start": 18521.18, + "end": 18523.26, + "probability": 0.89 + }, + { + "start": 18523.66, + "end": 18524.86, + "probability": 0.9875 + }, + { + "start": 18524.9, + "end": 18525.66, + "probability": 0.8653 + }, + { + "start": 18525.94, + "end": 18526.54, + "probability": 0.881 + }, + { + "start": 18526.6, + "end": 18527.61, + "probability": 0.987 + }, + { + "start": 18528.02, + "end": 18529.14, + "probability": 0.9406 + }, + { + "start": 18529.5, + "end": 18530.88, + "probability": 0.9879 + }, + { + "start": 18531.56, + "end": 18533.56, + "probability": 0.9259 + }, + { + "start": 18533.68, + "end": 18534.12, + "probability": 0.9325 + }, + { + "start": 18534.24, + "end": 18534.92, + "probability": 0.505 + }, + { + "start": 18535.0, + "end": 18537.48, + "probability": 0.8813 + }, + { + "start": 18538.5, + "end": 18541.4, + "probability": 0.8132 + }, + { + "start": 18542.62, + "end": 18543.58, + "probability": 0.7905 + }, + { + "start": 18544.48, + "end": 18547.2, + "probability": 0.9126 + }, + { + "start": 18548.44, + "end": 18554.94, + "probability": 0.8345 + }, + { + "start": 18564.76, + "end": 18567.74, + "probability": 0.5991 + }, + { + "start": 18567.74, + "end": 18573.58, + "probability": 0.7389 + }, + { + "start": 18573.82, + "end": 18576.28, + "probability": 0.4333 + }, + { + "start": 18576.38, + "end": 18577.62, + "probability": 0.7664 + }, + { + "start": 18578.52, + "end": 18581.36, + "probability": 0.9665 + }, + { + "start": 18585.92, + "end": 18586.41, + "probability": 0.5763 + }, + { + "start": 18586.66, + "end": 18587.16, + "probability": 0.71 + }, + { + "start": 18589.64, + "end": 18590.0, + "probability": 0.748 + }, + { + "start": 18622.03, + "end": 18626.94, + "probability": 0.8117 + }, + { + "start": 18626.94, + "end": 18631.88, + "probability": 0.9282 + }, + { + "start": 18632.6, + "end": 18633.52, + "probability": 0.3184 + }, + { + "start": 18634.2, + "end": 18635.24, + "probability": 0.3388 + }, + { + "start": 18638.5, + "end": 18640.86, + "probability": 0.0427 + }, + { + "start": 18643.68, + "end": 18644.32, + "probability": 0.0901 + }, + { + "start": 18663.96, + "end": 18669.34, + "probability": 0.6557 + }, + { + "start": 18669.7, + "end": 18674.04, + "probability": 0.5238 + }, + { + "start": 18674.04, + "end": 18678.16, + "probability": 0.5248 + }, + { + "start": 18679.74, + "end": 18681.58, + "probability": 0.1356 + }, + { + "start": 18685.08, + "end": 18685.96, + "probability": 0.1305 + }, + { + "start": 18685.96, + "end": 18689.28, + "probability": 0.1147 + }, + { + "start": 18689.28, + "end": 18690.26, + "probability": 0.0271 + }, + { + "start": 18690.94, + "end": 18693.06, + "probability": 0.0604 + }, + { + "start": 18694.3, + "end": 18694.76, + "probability": 0.0413 + }, + { + "start": 18696.82, + "end": 18697.08, + "probability": 0.0356 + }, + { + "start": 18697.08, + "end": 18697.16, + "probability": 0.1816 + }, + { + "start": 18697.16, + "end": 18697.2, + "probability": 0.2471 + }, + { + "start": 18697.2, + "end": 18698.64, + "probability": 0.2515 + }, + { + "start": 18699.94, + "end": 18700.76, + "probability": 0.0205 + }, + { + "start": 18700.76, + "end": 18700.85, + "probability": 0.0473 + }, + { + "start": 18703.39, + "end": 18703.88, + "probability": 0.0365 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.0, + "end": 18704.0, + "probability": 0.0 + }, + { + "start": 18704.32, + "end": 18704.62, + "probability": 0.0946 + }, + { + "start": 18704.62, + "end": 18706.24, + "probability": 0.7013 + }, + { + "start": 18706.44, + "end": 18706.74, + "probability": 0.8166 + }, + { + "start": 18718.66, + "end": 18720.12, + "probability": 0.629 + }, + { + "start": 18720.96, + "end": 18722.4, + "probability": 0.6939 + }, + { + "start": 18723.7, + "end": 18724.86, + "probability": 0.7062 + }, + { + "start": 18725.44, + "end": 18725.76, + "probability": 0.7162 + }, + { + "start": 18726.42, + "end": 18727.84, + "probability": 0.4531 + }, + { + "start": 18727.9, + "end": 18730.74, + "probability": 0.7865 + }, + { + "start": 18731.24, + "end": 18733.4, + "probability": 0.9725 + }, + { + "start": 18734.42, + "end": 18737.08, + "probability": 0.9888 + }, + { + "start": 18737.08, + "end": 18742.52, + "probability": 0.9972 + }, + { + "start": 18742.62, + "end": 18745.82, + "probability": 0.9959 + }, + { + "start": 18745.88, + "end": 18748.04, + "probability": 0.9816 + }, + { + "start": 18748.8, + "end": 18752.24, + "probability": 0.9985 + }, + { + "start": 18753.36, + "end": 18754.54, + "probability": 0.925 + }, + { + "start": 18759.18, + "end": 18764.74, + "probability": 0.8576 + }, + { + "start": 18766.5, + "end": 18767.62, + "probability": 0.0115 + }, + { + "start": 18767.82, + "end": 18772.36, + "probability": 0.9532 + }, + { + "start": 18772.5, + "end": 18773.86, + "probability": 0.9669 + }, + { + "start": 18774.72, + "end": 18775.44, + "probability": 0.6562 + }, + { + "start": 18775.58, + "end": 18777.72, + "probability": 0.9805 + }, + { + "start": 18777.72, + "end": 18780.72, + "probability": 0.9864 + }, + { + "start": 18781.72, + "end": 18782.14, + "probability": 0.5231 + }, + { + "start": 18782.28, + "end": 18786.42, + "probability": 0.9939 + }, + { + "start": 18786.42, + "end": 18789.54, + "probability": 0.9918 + }, + { + "start": 18789.64, + "end": 18790.32, + "probability": 0.8314 + }, + { + "start": 18790.94, + "end": 18792.98, + "probability": 0.8906 + }, + { + "start": 18792.98, + "end": 18795.92, + "probability": 0.9849 + }, + { + "start": 18796.84, + "end": 18800.32, + "probability": 0.993 + }, + { + "start": 18800.52, + "end": 18800.66, + "probability": 0.8075 + }, + { + "start": 18800.86, + "end": 18801.94, + "probability": 0.8553 + }, + { + "start": 18802.22, + "end": 18804.14, + "probability": 0.9632 + }, + { + "start": 18804.86, + "end": 18806.8, + "probability": 0.894 + }, + { + "start": 18807.08, + "end": 18810.42, + "probability": 0.9657 + }, + { + "start": 18810.62, + "end": 18812.5, + "probability": 0.8894 + }, + { + "start": 18812.6, + "end": 18812.8, + "probability": 0.7213 + }, + { + "start": 18814.58, + "end": 18815.62, + "probability": 0.7107 + }, + { + "start": 18817.5, + "end": 18820.48, + "probability": 0.8782 + }, + { + "start": 18821.18, + "end": 18823.04, + "probability": 0.8491 + }, + { + "start": 18823.98, + "end": 18824.96, + "probability": 0.543 + }, + { + "start": 18825.44, + "end": 18826.88, + "probability": 0.8981 + }, + { + "start": 18827.38, + "end": 18828.1, + "probability": 0.7915 + }, + { + "start": 18828.6, + "end": 18829.94, + "probability": 0.9849 + }, + { + "start": 18830.52, + "end": 18832.52, + "probability": 0.9812 + }, + { + "start": 18833.06, + "end": 18835.22, + "probability": 0.9524 + }, + { + "start": 18835.86, + "end": 18839.22, + "probability": 0.7569 + }, + { + "start": 18840.16, + "end": 18841.26, + "probability": 0.334 + }, + { + "start": 18841.26, + "end": 18843.6, + "probability": 0.6194 + }, + { + "start": 18844.42, + "end": 18849.08, + "probability": 0.9341 + }, + { + "start": 18850.08, + "end": 18851.16, + "probability": 0.9075 + }, + { + "start": 18852.32, + "end": 18853.26, + "probability": 0.9038 + }, + { + "start": 18853.32, + "end": 18853.72, + "probability": 0.4307 + }, + { + "start": 18853.74, + "end": 18854.82, + "probability": 0.5382 + }, + { + "start": 18856.78, + "end": 18859.62, + "probability": 0.5609 + }, + { + "start": 18859.74, + "end": 18860.34, + "probability": 0.4904 + }, + { + "start": 18860.46, + "end": 18862.14, + "probability": 0.9724 + }, + { + "start": 18862.34, + "end": 18864.84, + "probability": 0.8063 + }, + { + "start": 18865.94, + "end": 18868.16, + "probability": 0.9497 + }, + { + "start": 18869.3, + "end": 18870.88, + "probability": 0.934 + }, + { + "start": 18871.44, + "end": 18871.96, + "probability": 0.2604 + }, + { + "start": 18872.1, + "end": 18872.84, + "probability": 0.8508 + }, + { + "start": 18873.02, + "end": 18876.39, + "probability": 0.6113 + }, + { + "start": 18878.52, + "end": 18881.36, + "probability": 0.8655 + }, + { + "start": 18881.86, + "end": 18884.2, + "probability": 0.8191 + }, + { + "start": 18884.78, + "end": 18885.98, + "probability": 0.9567 + }, + { + "start": 18886.06, + "end": 18889.42, + "probability": 0.9894 + }, + { + "start": 18890.64, + "end": 18891.78, + "probability": 0.7732 + }, + { + "start": 18892.66, + "end": 18893.9, + "probability": 0.5345 + }, + { + "start": 18894.0, + "end": 18894.87, + "probability": 0.9699 + }, + { + "start": 18895.46, + "end": 18897.18, + "probability": 0.9297 + }, + { + "start": 18897.58, + "end": 18898.18, + "probability": 0.9637 + }, + { + "start": 18900.12, + "end": 18900.56, + "probability": 0.591 + }, + { + "start": 18900.56, + "end": 18902.22, + "probability": 0.7486 + }, + { + "start": 18902.92, + "end": 18905.84, + "probability": 0.9433 + }, + { + "start": 18906.94, + "end": 18908.38, + "probability": 0.593 + }, + { + "start": 18909.04, + "end": 18910.2, + "probability": 0.923 + }, + { + "start": 18910.92, + "end": 18911.28, + "probability": 0.5185 + }, + { + "start": 18912.08, + "end": 18916.16, + "probability": 0.994 + }, + { + "start": 18916.8, + "end": 18919.56, + "probability": 0.9984 + }, + { + "start": 18920.54, + "end": 18921.16, + "probability": 0.7114 + }, + { + "start": 18921.16, + "end": 18924.44, + "probability": 0.9949 + }, + { + "start": 18925.08, + "end": 18929.66, + "probability": 0.9782 + }, + { + "start": 18929.7, + "end": 18930.9, + "probability": 0.9509 + }, + { + "start": 18931.32, + "end": 18935.64, + "probability": 0.9744 + }, + { + "start": 18935.64, + "end": 18939.38, + "probability": 0.9575 + }, + { + "start": 18939.98, + "end": 18945.36, + "probability": 0.9761 + }, + { + "start": 18946.02, + "end": 18948.96, + "probability": 0.9816 + }, + { + "start": 18948.96, + "end": 18953.0, + "probability": 0.9991 + }, + { + "start": 18953.08, + "end": 18958.58, + "probability": 0.9728 + }, + { + "start": 18958.86, + "end": 18959.44, + "probability": 0.4373 + }, + { + "start": 18960.04, + "end": 18962.18, + "probability": 0.9777 + }, + { + "start": 18963.0, + "end": 18969.82, + "probability": 0.9929 + }, + { + "start": 18970.5, + "end": 18972.86, + "probability": 0.9815 + }, + { + "start": 18973.64, + "end": 18976.58, + "probability": 0.9946 + }, + { + "start": 18977.38, + "end": 18978.18, + "probability": 0.8476 + }, + { + "start": 18979.86, + "end": 18983.4, + "probability": 0.9943 + }, + { + "start": 18983.98, + "end": 18986.5, + "probability": 0.9878 + }, + { + "start": 18987.5, + "end": 18989.16, + "probability": 0.9041 + }, + { + "start": 18989.8, + "end": 18990.94, + "probability": 0.7388 + }, + { + "start": 18991.08, + "end": 18995.74, + "probability": 0.9914 + }, + { + "start": 18997.52, + "end": 18998.84, + "probability": 0.9209 + }, + { + "start": 18999.04, + "end": 18999.86, + "probability": 0.9391 + }, + { + "start": 19000.0, + "end": 19000.9, + "probability": 0.9567 + }, + { + "start": 19000.98, + "end": 19004.28, + "probability": 0.9822 + }, + { + "start": 19005.1, + "end": 19007.54, + "probability": 0.8525 + }, + { + "start": 19008.54, + "end": 19010.86, + "probability": 0.6659 + }, + { + "start": 19011.7, + "end": 19014.88, + "probability": 0.8709 + }, + { + "start": 19015.42, + "end": 19018.92, + "probability": 0.95 + }, + { + "start": 19019.4, + "end": 19023.68, + "probability": 0.9445 + }, + { + "start": 19025.52, + "end": 19026.36, + "probability": 0.6381 + }, + { + "start": 19027.5, + "end": 19029.14, + "probability": 0.9595 + }, + { + "start": 19029.82, + "end": 19031.06, + "probability": 0.8242 + }, + { + "start": 19031.32, + "end": 19032.28, + "probability": 0.797 + }, + { + "start": 19032.78, + "end": 19034.66, + "probability": 0.9985 + }, + { + "start": 19035.54, + "end": 19036.8, + "probability": 0.9535 + }, + { + "start": 19037.36, + "end": 19040.55, + "probability": 0.9797 + }, + { + "start": 19041.74, + "end": 19043.12, + "probability": 0.9691 + }, + { + "start": 19044.86, + "end": 19045.86, + "probability": 0.6747 + }, + { + "start": 19046.7, + "end": 19048.88, + "probability": 0.9575 + }, + { + "start": 19050.12, + "end": 19051.58, + "probability": 0.7471 + }, + { + "start": 19052.14, + "end": 19052.62, + "probability": 0.8317 + }, + { + "start": 19053.4, + "end": 19058.2, + "probability": 0.9811 + }, + { + "start": 19058.86, + "end": 19063.42, + "probability": 0.9964 + }, + { + "start": 19064.24, + "end": 19066.48, + "probability": 0.998 + }, + { + "start": 19067.38, + "end": 19071.62, + "probability": 0.8424 + }, + { + "start": 19072.18, + "end": 19074.86, + "probability": 0.9509 + }, + { + "start": 19075.52, + "end": 19080.32, + "probability": 0.9889 + }, + { + "start": 19080.32, + "end": 19084.4, + "probability": 0.9948 + }, + { + "start": 19085.16, + "end": 19089.36, + "probability": 0.8574 + }, + { + "start": 19090.1, + "end": 19092.06, + "probability": 0.9767 + }, + { + "start": 19092.44, + "end": 19092.68, + "probability": 0.7231 + }, + { + "start": 19093.88, + "end": 19094.86, + "probability": 0.7797 + }, + { + "start": 19095.56, + "end": 19097.24, + "probability": 0.9742 + }, + { + "start": 19097.6, + "end": 19098.24, + "probability": 0.4509 + }, + { + "start": 19098.44, + "end": 19099.64, + "probability": 0.9312 + }, + { + "start": 19100.12, + "end": 19100.68, + "probability": 0.3233 + }, + { + "start": 19100.84, + "end": 19103.56, + "probability": 0.9666 + }, + { + "start": 19104.58, + "end": 19105.28, + "probability": 0.7648 + }, + { + "start": 19105.44, + "end": 19107.7, + "probability": 0.9788 + }, + { + "start": 19108.78, + "end": 19110.82, + "probability": 0.9858 + }, + { + "start": 19111.66, + "end": 19114.24, + "probability": 0.9768 + }, + { + "start": 19115.1, + "end": 19118.1, + "probability": 0.6854 + }, + { + "start": 19118.18, + "end": 19119.1, + "probability": 0.3524 + }, + { + "start": 19119.1, + "end": 19119.1, + "probability": 0.6765 + }, + { + "start": 19119.1, + "end": 19119.38, + "probability": 0.9356 + }, + { + "start": 19120.02, + "end": 19120.74, + "probability": 0.8566 + }, + { + "start": 19121.42, + "end": 19123.2, + "probability": 0.9326 + }, + { + "start": 19124.42, + "end": 19126.78, + "probability": 0.9876 + }, + { + "start": 19127.78, + "end": 19130.08, + "probability": 0.9485 + }, + { + "start": 19130.86, + "end": 19131.54, + "probability": 0.5068 + }, + { + "start": 19133.16, + "end": 19134.64, + "probability": 0.9788 + }, + { + "start": 19135.2, + "end": 19136.84, + "probability": 0.8747 + }, + { + "start": 19137.62, + "end": 19139.14, + "probability": 0.9686 + }, + { + "start": 19139.84, + "end": 19140.58, + "probability": 0.8961 + }, + { + "start": 19141.4, + "end": 19144.0, + "probability": 0.9925 + }, + { + "start": 19144.54, + "end": 19147.96, + "probability": 0.8317 + }, + { + "start": 19148.58, + "end": 19150.92, + "probability": 0.9646 + }, + { + "start": 19151.56, + "end": 19155.12, + "probability": 0.8367 + }, + { + "start": 19155.7, + "end": 19157.9, + "probability": 0.7897 + }, + { + "start": 19158.9, + "end": 19159.06, + "probability": 0.7549 + }, + { + "start": 19159.86, + "end": 19162.66, + "probability": 0.9318 + }, + { + "start": 19163.38, + "end": 19165.52, + "probability": 0.861 + }, + { + "start": 19166.24, + "end": 19168.48, + "probability": 0.9786 + }, + { + "start": 19169.54, + "end": 19170.2, + "probability": 0.925 + }, + { + "start": 19170.88, + "end": 19173.7, + "probability": 0.9733 + }, + { + "start": 19174.52, + "end": 19176.64, + "probability": 0.9913 + }, + { + "start": 19177.24, + "end": 19177.94, + "probability": 0.9528 + }, + { + "start": 19178.34, + "end": 19180.84, + "probability": 0.9706 + }, + { + "start": 19181.32, + "end": 19182.08, + "probability": 0.5622 + }, + { + "start": 19182.56, + "end": 19183.94, + "probability": 0.9563 + }, + { + "start": 19184.62, + "end": 19185.28, + "probability": 0.7302 + }, + { + "start": 19185.84, + "end": 19188.78, + "probability": 0.9575 + }, + { + "start": 19189.32, + "end": 19190.88, + "probability": 0.9886 + }, + { + "start": 19191.66, + "end": 19192.48, + "probability": 0.6478 + }, + { + "start": 19193.1, + "end": 19195.44, + "probability": 0.9545 + }, + { + "start": 19211.24, + "end": 19214.0, + "probability": 0.6726 + }, + { + "start": 19215.74, + "end": 19218.98, + "probability": 0.9924 + }, + { + "start": 19220.0, + "end": 19224.54, + "probability": 0.9865 + }, + { + "start": 19225.92, + "end": 19227.92, + "probability": 0.9173 + }, + { + "start": 19228.66, + "end": 19230.8, + "probability": 0.996 + }, + { + "start": 19231.76, + "end": 19233.74, + "probability": 0.9819 + }, + { + "start": 19234.28, + "end": 19234.96, + "probability": 0.8863 + }, + { + "start": 19235.52, + "end": 19239.4, + "probability": 0.8981 + }, + { + "start": 19240.2, + "end": 19241.44, + "probability": 0.9992 + }, + { + "start": 19242.14, + "end": 19244.8, + "probability": 0.9653 + }, + { + "start": 19246.58, + "end": 19249.32, + "probability": 0.9956 + }, + { + "start": 19250.1, + "end": 19251.08, + "probability": 0.9331 + }, + { + "start": 19252.12, + "end": 19254.52, + "probability": 0.9885 + }, + { + "start": 19255.34, + "end": 19257.94, + "probability": 0.9018 + }, + { + "start": 19258.64, + "end": 19260.96, + "probability": 0.9627 + }, + { + "start": 19262.06, + "end": 19266.24, + "probability": 0.7546 + }, + { + "start": 19267.74, + "end": 19272.68, + "probability": 0.9849 + }, + { + "start": 19273.74, + "end": 19278.2, + "probability": 0.9818 + }, + { + "start": 19278.8, + "end": 19279.26, + "probability": 0.8627 + }, + { + "start": 19280.0, + "end": 19283.04, + "probability": 0.9875 + }, + { + "start": 19283.92, + "end": 19286.74, + "probability": 0.8682 + }, + { + "start": 19286.74, + "end": 19289.66, + "probability": 0.9978 + }, + { + "start": 19290.18, + "end": 19290.86, + "probability": 0.5577 + }, + { + "start": 19291.72, + "end": 19294.9, + "probability": 0.9408 + }, + { + "start": 19296.08, + "end": 19299.86, + "probability": 0.9087 + }, + { + "start": 19301.36, + "end": 19306.18, + "probability": 0.9731 + }, + { + "start": 19307.28, + "end": 19311.64, + "probability": 0.9937 + }, + { + "start": 19312.68, + "end": 19314.58, + "probability": 0.9255 + }, + { + "start": 19316.08, + "end": 19317.9, + "probability": 0.9951 + }, + { + "start": 19318.64, + "end": 19319.06, + "probability": 0.9709 + }, + { + "start": 19319.7, + "end": 19326.58, + "probability": 0.9944 + }, + { + "start": 19328.08, + "end": 19333.28, + "probability": 0.9652 + }, + { + "start": 19333.96, + "end": 19337.08, + "probability": 0.9228 + }, + { + "start": 19337.08, + "end": 19339.2, + "probability": 0.995 + }, + { + "start": 19340.28, + "end": 19342.78, + "probability": 0.9743 + }, + { + "start": 19343.5, + "end": 19344.9, + "probability": 0.9554 + }, + { + "start": 19345.6, + "end": 19346.18, + "probability": 0.9289 + }, + { + "start": 19346.74, + "end": 19349.82, + "probability": 0.996 + }, + { + "start": 19350.48, + "end": 19354.32, + "probability": 0.9945 + }, + { + "start": 19355.48, + "end": 19356.2, + "probability": 0.9436 + }, + { + "start": 19356.4, + "end": 19356.9, + "probability": 0.5058 + }, + { + "start": 19357.38, + "end": 19359.12, + "probability": 0.9984 + }, + { + "start": 19360.48, + "end": 19361.52, + "probability": 0.8491 + }, + { + "start": 19362.28, + "end": 19363.48, + "probability": 0.8932 + }, + { + "start": 19364.22, + "end": 19366.24, + "probability": 0.9939 + }, + { + "start": 19367.36, + "end": 19370.62, + "probability": 0.8826 + }, + { + "start": 19371.4, + "end": 19373.14, + "probability": 0.9407 + }, + { + "start": 19373.76, + "end": 19376.22, + "probability": 0.9985 + }, + { + "start": 19376.31, + "end": 19379.16, + "probability": 0.9981 + }, + { + "start": 19379.84, + "end": 19382.6, + "probability": 0.9778 + }, + { + "start": 19383.62, + "end": 19386.36, + "probability": 0.993 + }, + { + "start": 19387.24, + "end": 19389.34, + "probability": 0.9956 + }, + { + "start": 19389.8, + "end": 19391.94, + "probability": 0.9893 + }, + { + "start": 19392.64, + "end": 19393.94, + "probability": 0.998 + }, + { + "start": 19394.94, + "end": 19396.14, + "probability": 0.9537 + }, + { + "start": 19396.6, + "end": 19397.46, + "probability": 0.9617 + }, + { + "start": 19398.92, + "end": 19399.64, + "probability": 0.8794 + }, + { + "start": 19400.86, + "end": 19403.46, + "probability": 0.875 + }, + { + "start": 19404.18, + "end": 19406.16, + "probability": 0.6608 + }, + { + "start": 19407.06, + "end": 19410.64, + "probability": 0.9935 + }, + { + "start": 19411.9, + "end": 19414.18, + "probability": 0.9911 + }, + { + "start": 19414.62, + "end": 19416.12, + "probability": 0.8412 + }, + { + "start": 19416.46, + "end": 19419.26, + "probability": 0.9661 + }, + { + "start": 19419.72, + "end": 19419.94, + "probability": 0.8054 + }, + { + "start": 19420.58, + "end": 19424.62, + "probability": 0.9774 + }, + { + "start": 19425.86, + "end": 19427.02, + "probability": 0.8937 + }, + { + "start": 19427.72, + "end": 19427.94, + "probability": 0.8243 + }, + { + "start": 19428.74, + "end": 19431.18, + "probability": 0.9734 + }, + { + "start": 19432.12, + "end": 19433.72, + "probability": 0.7685 + }, + { + "start": 19435.18, + "end": 19438.62, + "probability": 0.8018 + }, + { + "start": 19439.28, + "end": 19439.98, + "probability": 0.8796 + }, + { + "start": 19440.9, + "end": 19442.26, + "probability": 0.9945 + }, + { + "start": 19443.14, + "end": 19443.84, + "probability": 0.7587 + }, + { + "start": 19443.98, + "end": 19446.43, + "probability": 0.9834 + }, + { + "start": 19459.18, + "end": 19461.8, + "probability": 0.6213 + }, + { + "start": 19463.72, + "end": 19467.58, + "probability": 0.9808 + }, + { + "start": 19469.6, + "end": 19472.48, + "probability": 0.9967 + }, + { + "start": 19474.98, + "end": 19477.65, + "probability": 0.9985 + }, + { + "start": 19478.3, + "end": 19479.1, + "probability": 0.9349 + }, + { + "start": 19480.16, + "end": 19480.88, + "probability": 0.3136 + }, + { + "start": 19481.9, + "end": 19483.46, + "probability": 0.6754 + }, + { + "start": 19484.86, + "end": 19486.46, + "probability": 0.9969 + }, + { + "start": 19487.32, + "end": 19492.52, + "probability": 0.949 + }, + { + "start": 19492.52, + "end": 19495.76, + "probability": 0.9987 + }, + { + "start": 19497.1, + "end": 19499.66, + "probability": 0.9906 + }, + { + "start": 19500.28, + "end": 19505.6, + "probability": 0.9892 + }, + { + "start": 19506.8, + "end": 19509.38, + "probability": 0.6433 + }, + { + "start": 19510.68, + "end": 19513.9, + "probability": 0.9914 + }, + { + "start": 19513.9, + "end": 19517.1, + "probability": 0.9896 + }, + { + "start": 19517.64, + "end": 19519.9, + "probability": 0.2392 + }, + { + "start": 19520.2, + "end": 19520.64, + "probability": 0.6723 + }, + { + "start": 19520.82, + "end": 19527.12, + "probability": 0.8611 + }, + { + "start": 19527.2, + "end": 19528.72, + "probability": 0.9055 + }, + { + "start": 19528.86, + "end": 19530.9, + "probability": 0.9396 + }, + { + "start": 19531.9, + "end": 19537.2, + "probability": 0.9293 + }, + { + "start": 19537.26, + "end": 19538.64, + "probability": 0.894 + }, + { + "start": 19538.68, + "end": 19540.02, + "probability": 0.9006 + }, + { + "start": 19541.02, + "end": 19546.4, + "probability": 0.9006 + }, + { + "start": 19547.02, + "end": 19550.08, + "probability": 0.994 + }, + { + "start": 19551.4, + "end": 19553.56, + "probability": 0.9979 + }, + { + "start": 19553.72, + "end": 19558.52, + "probability": 0.9554 + }, + { + "start": 19559.24, + "end": 19561.04, + "probability": 0.9714 + }, + { + "start": 19562.36, + "end": 19563.2, + "probability": 0.9494 + }, + { + "start": 19564.6, + "end": 19568.42, + "probability": 0.9669 + }, + { + "start": 19568.44, + "end": 19570.66, + "probability": 0.8689 + }, + { + "start": 19571.26, + "end": 19572.78, + "probability": 0.9677 + }, + { + "start": 19573.52, + "end": 19576.64, + "probability": 0.981 + }, + { + "start": 19576.9, + "end": 19580.4, + "probability": 0.984 + }, + { + "start": 19580.8, + "end": 19583.98, + "probability": 0.9756 + }, + { + "start": 19584.84, + "end": 19585.16, + "probability": 0.3627 + }, + { + "start": 19585.3, + "end": 19590.04, + "probability": 0.9969 + }, + { + "start": 19590.52, + "end": 19591.4, + "probability": 0.7779 + }, + { + "start": 19591.58, + "end": 19594.68, + "probability": 0.9427 + }, + { + "start": 19595.98, + "end": 19599.86, + "probability": 0.9055 + }, + { + "start": 19600.5, + "end": 19602.46, + "probability": 0.8802 + }, + { + "start": 19603.4, + "end": 19606.76, + "probability": 0.9926 + }, + { + "start": 19606.76, + "end": 19610.38, + "probability": 0.9054 + }, + { + "start": 19611.16, + "end": 19611.96, + "probability": 0.8472 + }, + { + "start": 19612.56, + "end": 19614.12, + "probability": 0.9212 + }, + { + "start": 19615.74, + "end": 19617.7, + "probability": 0.9967 + }, + { + "start": 19618.08, + "end": 19620.24, + "probability": 0.495 + }, + { + "start": 19622.16, + "end": 19624.1, + "probability": 0.7943 + }, + { + "start": 19624.62, + "end": 19628.46, + "probability": 0.9668 + }, + { + "start": 19629.38, + "end": 19631.2, + "probability": 0.9899 + }, + { + "start": 19632.54, + "end": 19634.96, + "probability": 0.9995 + }, + { + "start": 19634.96, + "end": 19637.52, + "probability": 0.9969 + }, + { + "start": 19638.68, + "end": 19640.6, + "probability": 0.9987 + }, + { + "start": 19640.8, + "end": 19642.92, + "probability": 0.9931 + }, + { + "start": 19645.18, + "end": 19648.74, + "probability": 0.9984 + }, + { + "start": 19649.06, + "end": 19652.76, + "probability": 0.9992 + }, + { + "start": 19653.02, + "end": 19657.7, + "probability": 0.9872 + }, + { + "start": 19658.34, + "end": 19660.3, + "probability": 0.9351 + }, + { + "start": 19660.5, + "end": 19660.96, + "probability": 0.7609 + }, + { + "start": 19663.92, + "end": 19664.7, + "probability": 0.667 + }, + { + "start": 19665.02, + "end": 19668.76, + "probability": 0.6992 + }, + { + "start": 19670.52, + "end": 19672.2, + "probability": 0.7213 + }, + { + "start": 19673.82, + "end": 19675.36, + "probability": 0.1283 + }, + { + "start": 19675.58, + "end": 19675.68, + "probability": 0.1145 + }, + { + "start": 19675.68, + "end": 19676.36, + "probability": 0.5426 + }, + { + "start": 19676.58, + "end": 19684.22, + "probability": 0.9863 + }, + { + "start": 19684.78, + "end": 19685.34, + "probability": 0.4426 + }, + { + "start": 19685.96, + "end": 19690.02, + "probability": 0.6342 + }, + { + "start": 19691.06, + "end": 19692.34, + "probability": 0.8995 + }, + { + "start": 19693.06, + "end": 19695.0, + "probability": 0.7242 + }, + { + "start": 19695.22, + "end": 19695.78, + "probability": 0.7228 + }, + { + "start": 19696.2, + "end": 19696.86, + "probability": 0.7034 + }, + { + "start": 19698.02, + "end": 19698.64, + "probability": 0.961 + }, + { + "start": 19721.07, + "end": 19723.68, + "probability": 0.4113 + }, + { + "start": 19723.68, + "end": 19726.3, + "probability": 0.4881 + }, + { + "start": 19726.38, + "end": 19727.34, + "probability": 0.4978 + }, + { + "start": 19732.02, + "end": 19734.26, + "probability": 0.7946 + }, + { + "start": 19738.1, + "end": 19740.24, + "probability": 0.0678 + }, + { + "start": 19741.92, + "end": 19742.9, + "probability": 0.0685 + }, + { + "start": 19742.9, + "end": 19744.35, + "probability": 0.0457 + }, + { + "start": 19745.44, + "end": 19746.0, + "probability": 0.0041 + }, + { + "start": 19763.76, + "end": 19764.98, + "probability": 0.0631 + }, + { + "start": 19764.98, + "end": 19765.22, + "probability": 0.0264 + }, + { + "start": 19765.22, + "end": 19765.22, + "probability": 0.0891 + }, + { + "start": 19765.22, + "end": 19769.76, + "probability": 0.0364 + }, + { + "start": 19770.96, + "end": 19771.2, + "probability": 0.0173 + }, + { + "start": 19775.1, + "end": 19775.42, + "probability": 0.1169 + }, + { + "start": 19775.42, + "end": 19775.52, + "probability": 0.0238 + }, + { + "start": 19775.54, + "end": 19775.88, + "probability": 0.2725 + }, + { + "start": 19775.88, + "end": 19775.88, + "probability": 0.0145 + }, + { + "start": 19776.0, + "end": 19776.0, + "probability": 0.0 + }, + { + "start": 19776.16, + "end": 19776.16, + "probability": 0.005 + }, + { + "start": 19776.16, + "end": 19776.16, + "probability": 0.4416 + }, + { + "start": 19776.16, + "end": 19776.4, + "probability": 0.2118 + }, + { + "start": 19776.54, + "end": 19777.72, + "probability": 0.7889 + }, + { + "start": 19777.94, + "end": 19780.04, + "probability": 0.8728 + }, + { + "start": 19780.6, + "end": 19780.7, + "probability": 0.3022 + }, + { + "start": 19780.82, + "end": 19782.92, + "probability": 0.981 + }, + { + "start": 19783.3, + "end": 19784.56, + "probability": 0.9855 + }, + { + "start": 19784.7, + "end": 19788.32, + "probability": 0.9907 + }, + { + "start": 19788.32, + "end": 19791.5, + "probability": 0.9992 + }, + { + "start": 19792.12, + "end": 19795.36, + "probability": 0.9458 + }, + { + "start": 19796.2, + "end": 19797.36, + "probability": 0.9247 + }, + { + "start": 19797.58, + "end": 19800.7, + "probability": 0.968 + }, + { + "start": 19801.2, + "end": 19805.56, + "probability": 0.9912 + }, + { + "start": 19805.62, + "end": 19806.32, + "probability": 0.7466 + }, + { + "start": 19806.38, + "end": 19809.72, + "probability": 0.9836 + }, + { + "start": 19810.22, + "end": 19812.32, + "probability": 0.821 + }, + { + "start": 19812.46, + "end": 19816.1, + "probability": 0.971 + }, + { + "start": 19816.1, + "end": 19819.38, + "probability": 0.9594 + }, + { + "start": 19819.9, + "end": 19823.56, + "probability": 0.9904 + }, + { + "start": 19824.34, + "end": 19826.82, + "probability": 0.8204 + }, + { + "start": 19827.3, + "end": 19829.74, + "probability": 0.958 + }, + { + "start": 19829.91, + "end": 19834.3, + "probability": 0.9506 + }, + { + "start": 19834.86, + "end": 19838.58, + "probability": 0.974 + }, + { + "start": 19839.28, + "end": 19839.8, + "probability": 0.7997 + }, + { + "start": 19840.28, + "end": 19843.28, + "probability": 0.9868 + }, + { + "start": 19843.28, + "end": 19845.68, + "probability": 0.7984 + }, + { + "start": 19846.14, + "end": 19847.5, + "probability": 0.988 + }, + { + "start": 19848.16, + "end": 19849.52, + "probability": 0.9199 + }, + { + "start": 19849.62, + "end": 19851.9, + "probability": 0.9844 + }, + { + "start": 19851.9, + "end": 19855.6, + "probability": 0.9983 + }, + { + "start": 19856.38, + "end": 19860.82, + "probability": 0.9983 + }, + { + "start": 19861.62, + "end": 19863.1, + "probability": 0.9988 + }, + { + "start": 19863.96, + "end": 19865.8, + "probability": 0.9987 + }, + { + "start": 19866.38, + "end": 19868.14, + "probability": 0.9715 + }, + { + "start": 19868.4, + "end": 19868.8, + "probability": 0.6026 + }, + { + "start": 19869.66, + "end": 19871.24, + "probability": 0.7155 + }, + { + "start": 19871.6, + "end": 19875.0, + "probability": 0.9756 + }, + { + "start": 19875.0, + "end": 19878.74, + "probability": 0.9884 + }, + { + "start": 19878.96, + "end": 19881.56, + "probability": 0.8098 + }, + { + "start": 19881.86, + "end": 19883.68, + "probability": 0.9814 + }, + { + "start": 19884.08, + "end": 19885.14, + "probability": 0.6941 + }, + { + "start": 19886.22, + "end": 19889.04, + "probability": 0.9876 + }, + { + "start": 19904.78, + "end": 19906.48, + "probability": 0.7791 + }, + { + "start": 19907.0, + "end": 19908.0, + "probability": 0.7417 + }, + { + "start": 19908.58, + "end": 19911.24, + "probability": 0.9878 + }, + { + "start": 19911.86, + "end": 19914.46, + "probability": 0.9374 + }, + { + "start": 19914.78, + "end": 19915.66, + "probability": 0.965 + }, + { + "start": 19915.84, + "end": 19917.06, + "probability": 0.9208 + }, + { + "start": 19918.28, + "end": 19918.98, + "probability": 0.4205 + }, + { + "start": 19919.96, + "end": 19921.34, + "probability": 0.8394 + }, + { + "start": 19922.34, + "end": 19923.96, + "probability": 0.7441 + }, + { + "start": 19924.04, + "end": 19928.54, + "probability": 0.9794 + }, + { + "start": 19928.54, + "end": 19932.37, + "probability": 0.998 + }, + { + "start": 19932.92, + "end": 19935.46, + "probability": 0.9021 + }, + { + "start": 19935.54, + "end": 19937.12, + "probability": 0.75 + }, + { + "start": 19937.66, + "end": 19940.78, + "probability": 0.8301 + }, + { + "start": 19942.08, + "end": 19943.3, + "probability": 0.7823 + }, + { + "start": 19943.46, + "end": 19949.28, + "probability": 0.9498 + }, + { + "start": 19949.4, + "end": 19952.0, + "probability": 0.7558 + }, + { + "start": 19952.14, + "end": 19952.24, + "probability": 0.3536 + }, + { + "start": 19953.32, + "end": 19954.46, + "probability": 0.7368 + }, + { + "start": 19954.6, + "end": 19955.18, + "probability": 0.5223 + }, + { + "start": 19955.78, + "end": 19958.12, + "probability": 0.965 + }, + { + "start": 19959.06, + "end": 19960.48, + "probability": 0.9909 + }, + { + "start": 19961.32, + "end": 19964.28, + "probability": 0.946 + }, + { + "start": 19964.28, + "end": 19967.42, + "probability": 0.998 + }, + { + "start": 19967.44, + "end": 19969.7, + "probability": 0.9683 + }, + { + "start": 19969.84, + "end": 19970.72, + "probability": 0.5887 + }, + { + "start": 19971.16, + "end": 19972.24, + "probability": 0.8415 + }, + { + "start": 19972.32, + "end": 19973.42, + "probability": 0.7247 + }, + { + "start": 19974.14, + "end": 19974.6, + "probability": 0.8791 + }, + { + "start": 19975.24, + "end": 19979.82, + "probability": 0.8727 + }, + { + "start": 19979.82, + "end": 19983.72, + "probability": 0.993 + }, + { + "start": 19983.9, + "end": 19984.54, + "probability": 0.8851 + }, + { + "start": 19985.32, + "end": 19989.1, + "probability": 0.9971 + }, + { + "start": 19989.4, + "end": 19994.76, + "probability": 0.9995 + }, + { + "start": 19995.16, + "end": 19998.52, + "probability": 0.858 + }, + { + "start": 19998.66, + "end": 20002.46, + "probability": 0.9973 + }, + { + "start": 20003.4, + "end": 20004.0, + "probability": 0.6187 + }, + { + "start": 20004.56, + "end": 20007.37, + "probability": 0.9985 + }, + { + "start": 20007.66, + "end": 20009.76, + "probability": 0.9967 + }, + { + "start": 20010.34, + "end": 20011.4, + "probability": 0.877 + }, + { + "start": 20012.88, + "end": 20016.9, + "probability": 0.9285 + }, + { + "start": 20017.62, + "end": 20020.68, + "probability": 0.842 + }, + { + "start": 20022.82, + "end": 20026.0, + "probability": 0.8665 + }, + { + "start": 20027.08, + "end": 20027.94, + "probability": 0.8051 + }, + { + "start": 20028.84, + "end": 20033.26, + "probability": 0.8884 + }, + { + "start": 20033.8, + "end": 20039.0, + "probability": 0.9777 + }, + { + "start": 20039.64, + "end": 20040.4, + "probability": 0.7261 + }, + { + "start": 20040.4, + "end": 20040.4, + "probability": 0.8972 + }, + { + "start": 20040.4, + "end": 20041.2, + "probability": 0.8418 + }, + { + "start": 20041.74, + "end": 20045.02, + "probability": 0.9434 + }, + { + "start": 20045.5, + "end": 20047.1, + "probability": 0.9789 + }, + { + "start": 20054.8, + "end": 20054.8, + "probability": 0.1461 + }, + { + "start": 20054.8, + "end": 20054.8, + "probability": 0.182 + }, + { + "start": 20054.8, + "end": 20054.82, + "probability": 0.0497 + }, + { + "start": 20054.82, + "end": 20054.82, + "probability": 0.0287 + }, + { + "start": 20071.08, + "end": 20071.52, + "probability": 0.0004 + }, + { + "start": 20072.06, + "end": 20072.96, + "probability": 0.6454 + }, + { + "start": 20073.98, + "end": 20074.72, + "probability": 0.6869 + }, + { + "start": 20076.0, + "end": 20080.8, + "probability": 0.9951 + }, + { + "start": 20081.5, + "end": 20083.8, + "probability": 0.772 + }, + { + "start": 20084.46, + "end": 20087.56, + "probability": 0.993 + }, + { + "start": 20088.5, + "end": 20090.5, + "probability": 0.5612 + }, + { + "start": 20091.3, + "end": 20094.8, + "probability": 0.9865 + }, + { + "start": 20095.58, + "end": 20098.3, + "probability": 0.7857 + }, + { + "start": 20099.0, + "end": 20102.13, + "probability": 0.9959 + }, + { + "start": 20103.02, + "end": 20106.5, + "probability": 0.9941 + }, + { + "start": 20107.06, + "end": 20111.78, + "probability": 0.8051 + }, + { + "start": 20112.9, + "end": 20117.34, + "probability": 0.8849 + }, + { + "start": 20118.0, + "end": 20122.76, + "probability": 0.9917 + }, + { + "start": 20123.34, + "end": 20127.48, + "probability": 0.9604 + }, + { + "start": 20128.18, + "end": 20131.06, + "probability": 0.9958 + }, + { + "start": 20131.56, + "end": 20134.46, + "probability": 0.9631 + }, + { + "start": 20135.08, + "end": 20137.36, + "probability": 0.997 + }, + { + "start": 20138.28, + "end": 20141.54, + "probability": 0.9469 + }, + { + "start": 20142.06, + "end": 20147.08, + "probability": 0.9944 + }, + { + "start": 20147.08, + "end": 20151.1, + "probability": 0.9937 + }, + { + "start": 20151.84, + "end": 20152.38, + "probability": 0.8799 + }, + { + "start": 20152.48, + "end": 20153.12, + "probability": 0.9536 + }, + { + "start": 20153.62, + "end": 20158.02, + "probability": 0.9749 + }, + { + "start": 20158.84, + "end": 20163.24, + "probability": 0.9933 + }, + { + "start": 20163.38, + "end": 20163.9, + "probability": 0.9248 + }, + { + "start": 20164.04, + "end": 20165.32, + "probability": 0.98 + }, + { + "start": 20165.88, + "end": 20169.8, + "probability": 0.9821 + }, + { + "start": 20169.8, + "end": 20172.68, + "probability": 0.9917 + }, + { + "start": 20173.26, + "end": 20175.76, + "probability": 0.7826 + }, + { + "start": 20176.32, + "end": 20179.92, + "probability": 0.9647 + }, + { + "start": 20181.62, + "end": 20187.48, + "probability": 0.9507 + }, + { + "start": 20188.34, + "end": 20194.16, + "probability": 0.9963 + }, + { + "start": 20195.16, + "end": 20196.86, + "probability": 0.9401 + }, + { + "start": 20197.9, + "end": 20199.14, + "probability": 0.7708 + }, + { + "start": 20200.1, + "end": 20203.86, + "probability": 0.9732 + }, + { + "start": 20204.7, + "end": 20206.06, + "probability": 0.9846 + }, + { + "start": 20206.7, + "end": 20208.06, + "probability": 0.9595 + }, + { + "start": 20208.86, + "end": 20212.88, + "probability": 0.9973 + }, + { + "start": 20212.88, + "end": 20216.0, + "probability": 0.9958 + }, + { + "start": 20217.0, + "end": 20218.92, + "probability": 0.8558 + }, + { + "start": 20219.74, + "end": 20220.56, + "probability": 0.9826 + }, + { + "start": 20221.26, + "end": 20222.98, + "probability": 0.9946 + }, + { + "start": 20224.26, + "end": 20226.28, + "probability": 0.9798 + }, + { + "start": 20227.2, + "end": 20228.78, + "probability": 0.993 + }, + { + "start": 20229.32, + "end": 20230.12, + "probability": 0.9416 + }, + { + "start": 20230.6, + "end": 20234.8, + "probability": 0.9718 + }, + { + "start": 20234.8, + "end": 20239.76, + "probability": 0.9987 + }, + { + "start": 20240.34, + "end": 20242.24, + "probability": 0.8198 + }, + { + "start": 20242.98, + "end": 20246.86, + "probability": 0.9857 + }, + { + "start": 20247.36, + "end": 20252.12, + "probability": 0.9905 + }, + { + "start": 20252.74, + "end": 20253.46, + "probability": 0.7851 + }, + { + "start": 20255.22, + "end": 20255.9, + "probability": 0.8806 + }, + { + "start": 20258.16, + "end": 20258.84, + "probability": 0.9293 + }, + { + "start": 20259.56, + "end": 20260.54, + "probability": 0.7868 + }, + { + "start": 20261.12, + "end": 20262.66, + "probability": 0.962 + }, + { + "start": 20263.4, + "end": 20267.5, + "probability": 0.9976 + }, + { + "start": 20268.12, + "end": 20273.06, + "probability": 0.9906 + }, + { + "start": 20273.3, + "end": 20273.54, + "probability": 0.9245 + }, + { + "start": 20274.9, + "end": 20275.8, + "probability": 0.7526 + }, + { + "start": 20277.58, + "end": 20280.94, + "probability": 0.9083 + }, + { + "start": 20281.84, + "end": 20283.0, + "probability": 0.7688 + }, + { + "start": 20285.26, + "end": 20286.1, + "probability": 0.6968 + }, + { + "start": 20286.66, + "end": 20289.3, + "probability": 0.9354 + }, + { + "start": 20290.78, + "end": 20291.6, + "probability": 0.9121 + }, + { + "start": 20292.36, + "end": 20293.84, + "probability": 0.9742 + }, + { + "start": 20294.54, + "end": 20295.38, + "probability": 0.8803 + }, + { + "start": 20296.04, + "end": 20297.92, + "probability": 0.9921 + }, + { + "start": 20299.36, + "end": 20300.06, + "probability": 0.7839 + }, + { + "start": 20300.58, + "end": 20301.98, + "probability": 0.9226 + }, + { + "start": 20302.52, + "end": 20303.08, + "probability": 0.5015 + }, + { + "start": 20303.24, + "end": 20304.66, + "probability": 0.9227 + }, + { + "start": 20304.98, + "end": 20305.54, + "probability": 0.9113 + }, + { + "start": 20305.66, + "end": 20307.2, + "probability": 0.972 + }, + { + "start": 20307.84, + "end": 20310.54, + "probability": 0.9733 + }, + { + "start": 20311.32, + "end": 20313.46, + "probability": 0.992 + }, + { + "start": 20314.42, + "end": 20315.02, + "probability": 0.3547 + }, + { + "start": 20315.72, + "end": 20317.08, + "probability": 0.8533 + }, + { + "start": 20318.08, + "end": 20318.74, + "probability": 0.8026 + }, + { + "start": 20320.26, + "end": 20324.9, + "probability": 0.9564 + }, + { + "start": 20325.56, + "end": 20326.78, + "probability": 0.9851 + }, + { + "start": 20327.56, + "end": 20328.22, + "probability": 0.8894 + }, + { + "start": 20328.84, + "end": 20330.18, + "probability": 0.9788 + }, + { + "start": 20330.58, + "end": 20331.2, + "probability": 0.6844 + }, + { + "start": 20331.7, + "end": 20333.76, + "probability": 0.6634 + }, + { + "start": 20333.98, + "end": 20334.72, + "probability": 0.6733 + }, + { + "start": 20335.9, + "end": 20339.14, + "probability": 0.8096 + }, + { + "start": 20339.92, + "end": 20340.6, + "probability": 0.8958 + }, + { + "start": 20341.28, + "end": 20344.54, + "probability": 0.853 + }, + { + "start": 20345.06, + "end": 20346.54, + "probability": 0.6687 + }, + { + "start": 20347.36, + "end": 20349.52, + "probability": 0.7743 + }, + { + "start": 20350.12, + "end": 20352.74, + "probability": 0.9504 + }, + { + "start": 20353.36, + "end": 20355.6, + "probability": 0.9631 + }, + { + "start": 20356.3, + "end": 20359.0, + "probability": 0.9913 + }, + { + "start": 20359.52, + "end": 20362.48, + "probability": 0.726 + }, + { + "start": 20363.42, + "end": 20367.38, + "probability": 0.7961 + }, + { + "start": 20368.24, + "end": 20370.26, + "probability": 0.9727 + }, + { + "start": 20370.44, + "end": 20371.1, + "probability": 0.7701 + }, + { + "start": 20371.28, + "end": 20372.84, + "probability": 0.993 + }, + { + "start": 20373.56, + "end": 20376.98, + "probability": 0.8205 + }, + { + "start": 20379.3, + "end": 20380.16, + "probability": 0.7063 + }, + { + "start": 20381.04, + "end": 20382.52, + "probability": 0.8755 + }, + { + "start": 20383.12, + "end": 20383.92, + "probability": 0.9012 + }, + { + "start": 20385.2, + "end": 20388.64, + "probability": 0.7234 + }, + { + "start": 20389.3, + "end": 20390.02, + "probability": 0.9404 + }, + { + "start": 20390.66, + "end": 20395.14, + "probability": 0.7302 + }, + { + "start": 20397.06, + "end": 20399.04, + "probability": 0.4998 + }, + { + "start": 20401.76, + "end": 20402.64, + "probability": 0.614 + }, + { + "start": 20409.36, + "end": 20414.7, + "probability": 0.989 + }, + { + "start": 20414.93, + "end": 20420.0, + "probability": 0.9573 + }, + { + "start": 20420.9, + "end": 20424.8, + "probability": 0.907 + }, + { + "start": 20425.34, + "end": 20427.46, + "probability": 0.9596 + }, + { + "start": 20427.98, + "end": 20432.36, + "probability": 0.7935 + }, + { + "start": 20432.7, + "end": 20433.76, + "probability": 0.5224 + }, + { + "start": 20435.54, + "end": 20437.5, + "probability": 0.934 + }, + { + "start": 20438.44, + "end": 20441.16, + "probability": 0.5342 + }, + { + "start": 20442.45, + "end": 20443.06, + "probability": 0.6923 + }, + { + "start": 20443.84, + "end": 20444.38, + "probability": 0.7038 + }, + { + "start": 20444.56, + "end": 20444.72, + "probability": 0.9004 + }, + { + "start": 20463.74, + "end": 20467.02, + "probability": 0.2745 + }, + { + "start": 20467.02, + "end": 20469.9, + "probability": 0.4156 + }, + { + "start": 20470.12, + "end": 20471.24, + "probability": 0.5998 + }, + { + "start": 20476.58, + "end": 20480.74, + "probability": 0.4893 + }, + { + "start": 20482.08, + "end": 20482.58, + "probability": 0.0876 + }, + { + "start": 20483.3, + "end": 20483.48, + "probability": 0.0953 + }, + { + "start": 20486.12, + "end": 20486.12, + "probability": 0.0767 + }, + { + "start": 20487.36, + "end": 20493.04, + "probability": 0.2844 + }, + { + "start": 20493.72, + "end": 20494.67, + "probability": 0.0137 + }, + { + "start": 20495.0, + "end": 20496.04, + "probability": 0.5052 + }, + { + "start": 20496.8, + "end": 20498.36, + "probability": 0.0899 + }, + { + "start": 20499.98, + "end": 20506.88, + "probability": 0.0568 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.0, + "end": 20563.0, + "probability": 0.0 + }, + { + "start": 20563.24, + "end": 20563.5, + "probability": 0.4691 + }, + { + "start": 20564.18, + "end": 20565.12, + "probability": 0.8932 + }, + { + "start": 20566.02, + "end": 20570.3, + "probability": 0.7748 + }, + { + "start": 20571.1, + "end": 20574.64, + "probability": 0.9285 + }, + { + "start": 20577.76, + "end": 20577.96, + "probability": 0.0073 + } + ], + "segments_count": 7276, + "words_count": 34121, + "avg_words_per_segment": 4.6895, + "avg_segment_duration": 1.7988, + "avg_words_per_minute": 98.9885, + "plenum_id": "104433", + "duration": 20681.8, + "title": null, + "plenum_date": "2022-01-17" +} \ No newline at end of file